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Preface
If you have ever wanted to get into data mining, but didn't know where to start,  
I've written this book with you in mind.

Many data mining books are highly mathematical, which is great when you  
are coming from such a background, but I feel they often miss the forest for the 
trees—that is, they focus so much on how the algorithms work, that we forget  
about why we are using these algorithms.

In this book, my aim has been to create a book for those who can program and 
want to learn data mining. By the end of this book, my aim is that you have a good 
understanding of the basics, some best practices to jump into solving problems with 
data mining, and some pointers on the next steps you can take.

Each chapter in this book introduces a new topic, algorithm, and dataset. For this 
reason, it can be a bit of a whirlwind tour, moving quickly from topic to topic. 
However, for each of the chapters, think about how you can improve upon the 
results presented in the chapter. Then, take a shot at implementing it!

One of my favorite quotes is from Shakespeare's Henry IV:

But will they come when you do call for them?

Before this quote, a character is claiming to be able to call spirits. In response, 
Hotspur points out that anyone can call spirits, but what matters is whether they 
actually come when they are called.

In much the same way, learning data mining is about performing experiments and 
getting the result. Anyone can come up with an idea to create a new data mining 
algorithm or improve upon an experiment's results. However, what matters is: can 
you build it and does it work? 
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What this book covers
Chapter 1, Getting Started with Data Mining, introduces the technologies we will be 
using, along with implementing two basic algorithms to get started.

Chapter 2, Classifying with scikit-learn Estimators, covers classification, which is a key 
form of data mining. You'll also learn about some structures to make your data 
mining experimentation easier to perform..

Chapter 3, Predicting Sports Winners with Decision Trees, introduces two new 
algorithms, Decision Trees and Random Forests, and uses them to predict sports 
winners by creating useful features.

Chapter 4, Recommending Movies Using Affinity Analysis, looks at the problem  
of recommending products based on past experience and introduces the  
Apriori algorithm.

Chapter 5, Extracting Features with Transformers, introduces different types of features 
you can create and how to work with different datasets.

Chapter 6, Social Media Insight Using Naive Bayes, uses the Naive Bayes algorithm to 
automatically parse text-based information from the social media website, Twitter.

Chapter 7, Discovering Accounts to Follow Using Graph Mining, applies cluster and 
network analysis to find good people to follow on social media.

Chapter 8, Beating CAPTCHAs with Neural Networks, looks at extracting  
information from images and then training neural networks to find words  
and letters in those images.

Chapter 9, Authorship Attribution, looks at determining who wrote a given document, 
by extracting text-based features and using support vector machines.

Chapter 10, Clustering News Articles, uses the k-means clustering algorithm to group 
together news articles based on their content.

Chapter 11, Classifying Objects in Images Using Deep Learning, determines what type of 
object is being shown in an image, by applying deep neural networks.

Chapter 12, Working with Big Data, looks at workflows for applying algorithms to big 
data and how to get insight from it.

Appendix, Next Steps…, goes through each chapter, giving hints on where to go  
next for a deeper understanding of the concepts introduced.
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What you need for this book
It should come as no surprise that you'll need a computer, or access to one, to 
complete this book. The computer should be reasonably modern, but it doesn't  
need to be overpowered. Any modern processor (from about 2010 onwards) and  
4 GB of RAM will suffice, and you can probably run almost all of the code on a 
slower system too.

The exception here is with the final two chapters. In these chapters, I step through 
using Amazon Web Services (AWS) to run the code. This will probably cost you 
some money, but the advantage is less system setup than running the code locally. 
If you don't want to pay for those services, the tools used can all be set up on a local 
computer, but you will definitely need a modern system to run it. A processor built 
in at least 2012 and with more than 4 GB of RAM is necessary.

I recommend the Ubuntu operating system, but the code should work well 
on Windows, Macs, or any other Linux variant. You may need to consult the 
documentation for your system to get some things installed, though. 

In this book, I use pip to install code, which is a command-line tool for installing 
Python libraries. Another option is to use Anaconda, which can be found online here: 
http://continuum.io/downloads.

I have also tested all code using Python 3. Most of the code examples work on 
Python 2, with no changes. If you run into any problems and can't get around them, 
send an email and we can offer a solution.

Who this book is for
This book is for programmers who want to get started in data mining in an 
application-focused manner.

If you haven't programmed before, I strongly recommend that you learn at least  
the basics before you get started. This book doesn't introduce programming, nor 
does it give too much time to explain the actual implementation (in code) of how 
to type out the instructions. That said, once you go through the basics, you should 
be able to come back to this book fairly quickly—there is no need to be an expert 
programmer first!

I highly recommend that you have some Python programming experience. If you 
don't, feel free to jump in, but you might want to take a look at some Python code 
first, possibly focusing on tutorials using the IPython Notebook. Writing programs in 
the IPython Notebook works a little differently than other methods such as writing a 
Java program in a fully fledged IDE.

www.allitebooks.com
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Conventions
In this book, you will find a number of text styles that distinguish between different 
kinds of information. Here are some examples of these styles and an explanation of 
their meaning.

The most important is code. Code that you need to enter is displayed separate from 
the text, in a box like this one:

if True:
    print("Welcome to the book")

Keep a careful eye on indentation. Python cares about how much lines are indented. 
In this book, I've used four spaces for indentation. You can use a different number 
(or tabs), but you need to be consistent. If you get a bit lost counting indentation 
levels, reference the code bundle that comes with the book.

Where I refer to code in text, I'll use this format. You don't need to type this in 
your IPython Notebooks, unless the text specifically states otherwise.

Any command-line input or output is written as follows:

# cp file1.txt file2.txt

New terms and important words are shown in bold. Words that you see on  
the screen, for example, in menus or dialog boxes, appear in the text like this:  
"Click on the Export link."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.
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Reader feedback
Feedback from our readers is always welcome. Let us know what you think about 
this book—what you liked or disliked. Reader feedback is important for us as it helps 
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention 
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing 
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to 
help you to get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.
packtpub.com for all the Packt Publishing books you have purchased. If you 
purchased this book elsewhere, you can visit http://www.packtpub.com/support 
and register to have the files e-mailed directly to you.

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/
diagrams used in this book. The color images will help you better understand the 
changes in the output. You can download this file from https://www.packtpub.
com/sites/default/files/downloads/6053OS_ColorImages.pdf.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
https://www.packtpub.com/sites/default/files/downloads/6053OS_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/6053OS_ColorImages.pdf
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Errata
Although we have taken every care to ensure the accuracy of our content, mistakes 
do happen. If you find a mistake in one of our books—maybe a mistake in the text or 
the code—we would be grateful if you could report this to us. By doing so, you can 
save other readers from frustration and help us improve subsequent versions of this 
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form 
link, and entering the details of your errata. Once your errata are verified, your 
submission will be accepted and the errata will be uploaded to our website or added 
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required 
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across  
all media. At Packt, we take the protection of our copyright and licenses very 
seriously. If you come across any illegal copies of our works in any form on the 
Internet, please provide us with the location address or website name immediately 
so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected  
pirated material.

We appreciate your help in protecting our authors and our ability to bring you 
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at 
questions@packtpub.com, and we will do our best to address the problem.

http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
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Getting Started with  
Data Mining

We are collecting information at a scale that has never been seen before in the  
history of mankind and placing more day-to-day importance on the use of this 
information in everyday life. We expect our computers to translate Web pages into 
other languages, predict the weather, suggest books we would like, and diagnose 
our health issues. These expectations will grow, both in the number of applications 
and also in the efficacy we expect. Data mining is a methodology that we can employ 
to train computers to make decisions with data and forms the backbone of many  
high-tech systems of today.

The Python language is fast growing in popularity, for a good reason. It gives  
the programmer a lot of flexibility; it has a large number of modules to perform 
different tasks; and Python code is usually more readable and concise than in 
any other languages. There is a large and an active community of researchers, 
practitioners, and beginners using Python for data mining.

In this chapter, we will introduce data mining with Python. We will cover the 
following topics:

• What is data mining and where can it be used?
• Setting up a Python-based environment to perform data mining
• An example of affinity analysis, recommending products based on 

purchasing habits
• An example of (a classic) classification problem, predicting the plant  

species based on its measurement
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Introducing data mining
Data mining provides a way for a computer to learn how to make decisions with 
data. This decision could be predicting tomorrow's weather, blocking a spam email 
from entering your inbox, detecting the language of a website, or finding a new 
romance on a dating site. There are many different applications of data mining,  
with new applications being discovered all the time.

Data mining is part of algorithms, statistics, engineering, optimization, and  
computer science. We also use concepts and knowledge from other fields such as 
linguistics, neuroscience, or town planning. Applying it effectively usually requires 
this domain-specific knowledge to be integrated with the algorithms.

Most data mining applications work with the same high-level view, although  
the details often change quite considerably. We start our data mining process by 
creating a dataset, describing an aspect of the real world. Datasets comprise  
of two aspects:

• Samples that are objects in the real world. This can be a book, photograph, 
animal, person, or any other object.

• Features that are descriptions of the samples in our dataset. Features could 
be the length, frequency of a given word, number of legs, date it was created, 
and so on.

The next step is tuning the data mining algorithm. Each data mining algorithm has 
parameters, either within the algorithm or supplied by the user. This tuning allows 
the algorithm to learn how to make decisions about the data.

As a simple example, we may wish the computer to be able to categorize people as 
"short" or "tall". We start by collecting our dataset, which includes the heights of 
different people and whether they are considered short or tall:

Person Height Short or tall?
1 155cm Short
2 165cm Short
3 175cm Tall
4 185cm Tall

The next step involves tuning our algorithm. As a simple algorithm; if the height is 
more than x, the person is tall, otherwise they are short. Our training algorithm will 
then look at the data and decide on a good value for x. For the preceding dataset, a 
reasonable value would be 170 cm. Anyone taller than 170 cm is considered tall by 
the algorithm. Anyone else is considered short.
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In the preceding dataset, we had an obvious feature type. We wanted to know if 
people are short or tall, so we collected their heights. This engineering feature is an 
important problem in data mining. In later chapters, we will discuss methods for 
choosing good features to collect in your dataset. Ultimately, this step often requires 
some expert domain knowledge or at least some trial and error.

In this book, we will introduce data mining through Python. In some 
cases, we choose clarity of code and workflows, rather than the most 
optimized way to do this. This sometimes involves skipping some 
details that can improve the algorithm's speed or effectiveness.

Using Python and the IPython Notebook
In this section, we will cover installing Python and the environment that we will use 
for most of the book, the IPython Notebook. Furthermore, we will install the numpy 
module, which we will use for the first set of examples.

Installing Python
The Python language is a fantastic, versatile, and an easy to use language.

For this book, we will be using Python 3.4, which is available for your system from 
the Python Organization's website: https://www.python.org/downloads/.

There will be two major versions to choose from, Python 3.4 and Python 2.7. 
Remember to download and install Python 3.4, which is the version tested 
throughout this book.

In this book, we will be assuming that you have some knowledge of programming 
and Python itself. You do not need to be an expert with Python to complete this 
book, although a good level of knowledge will help.

If you do not have any experience with programming, I recommend that you  
pick up the Learning Python book from.

 https://www.python.org/downloads/
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The Python organization also maintains a list of two online tutorials for those  
new to Python:

• For nonprogrammers who want to learn programming through the 
Python language: https://wiki.python.org/moin/BeginnersGuide/
NonProgrammers

• For programmers who already know how to program, but need to learn 
Python specifically: https://wiki.python.org/moin/BeginnersGuide/
Programmers

Windows users will need to set an environment variable in order to use 
Python from the command line. First, find where Python 3 is installed; 
the default location is C:\Python34. Next, enter this command 
into the command line (cmd program): set the enviornment to 
PYTHONPATH=%PYTHONPATH%;C:\Python34. Remember to change 
the C:\Python34 if Python is installed into a different directory.

Once you have Python running on your system, you should be able to open a 
command prompt and run the following code:

$ python3

Python 3.4.0 (default, Apr 11 2014, 13:05:11)

[GCC 4.8.2] on Linux

Type "help", "copyright", "credits" or "license" for more information.

>>> print("Hello, world!")

Hello, world!

>>> exit()

Note that we will be using the dollar sign ($) to denote that a command is to be  
typed into the terminal (also called a shell or cmd on Windows). You do not need to 
type this character (or the space that follows it). Just type in the rest of the line and 
press Enter.

https://wiki.python.org/moin/BeginnersGuide/NonProgrammers
https://wiki.python.org/moin/BeginnersGuide/NonProgrammers
https://wiki.python.org/moin/BeginnersGuide/Programmers
https://wiki.python.org/moin/BeginnersGuide/Programmers
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After you have the above "Hello, world!" example running, exit the program  
and move on to installing a more advanced environment to run Python code, the 
IPython Notebook.

Python 3.4 will include a program called pip, which is a package 
manager that helps to install new libraries on your system. You can 
verify that pip is working on your system by running the $ pip3 
freeze command, which tells you which packages you have 
installed on your system.

Installing IPython
IPython is a platform for Python development that contains a number of tools 
and environments for running Python and has more features than the standard 
interpreter. It contains the powerful IPython Notebook, which allows you to write 
programs in a web browser. It also formats your code, shows output, and allows you 
to annotate your scripts. It is a great tool for exploring datasets and we will be using 
it as our main environment for the code in this book.

To install IPython on your computer, you can type the following into a command 
line prompt (not into Python):

$ pip install ipython[all]

You will need administrator privileges to install this system-wide. If you do not want 
to (or can't) make system-wide changes, you can install it for just the current user by 
running this command:

$ pip install --user ipython[all]

This will install the IPython package into a user-specific location—you will be able 
to use it, but nobody else on your computer can. If you are having difficulty with 
the installation, check the official documentation for more detailed installation 
instructions: http://ipython.org/install.html.

With the IPython Notebook installed, you can launch it with the following:

$ ipython3 notebook

 http://ipython.org/install.html


Getting Started with Data Mining

[ 6 ]

This will do two things. First, it will create an IPython Notebook instance that will 
run in the command prompt you just used. Second, it will launch your web browser 
and connect to this instance, allowing you to create a new notebook. It will look 
something similar to the following screenshot (where home/bob will be replaced by 
your current working directory):

To stop the IPython Notebook from running, open the command prompt that  
has the instance running (the one you used earlier to run the IPython command). 
Then, press Ctrl + C and you will be prompted Shutdown this notebook server 
(y/[n])?. Type y and press Enter and the IPython Notebook will shutdown.

Installing scikit-learn
The scikit-learn package is a machine learning library, written in Python. It 
contains numerous algorithms, datasets, utilities, and frameworks for performing 
machine learning. Built upon the scientific python stack, scikit-learn users such as 
the numpy and scipy libraries are often optimized for speed. This makes scikit-learn 
fast and scalable in many instances and also useful for all skill ranges from beginners 
to advanced research users. We will cover more details of scikit-learn in Chapter 2, 
Classifying with scikit-learn Estimators.

To install scikit-learn, you can use the pip utility that comes with  
Python 3, which will also install the numpy and scipy libraries if you do not  
already have them. Open a terminal with administrator/root privileges and  
enter the following command:

$ pip3 install -U scikit-learn
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Windows users may need to install the numpy and scipy 
libraries before installing scikit-learn. Installation instructions are 
available at www.scipy.org/install.html for those users.

Users of major Linux distributions such as Ubuntu or Red Hat may wish to install 
the official package from their package manager. Not all distributions have the 
latest versions of scikit-learn, so check the version before installing it. The minimum 
version needed for this book is 0.14.

Those wishing to install the latest version by compiling the source, or view more 
detailed installation instructions, can go to http://scikit-learn.org/stable/
install.html to view the official documentation on installing scikit-learn.

A simple affinity analysis example
In this section, we jump into our first example. A common use case for data mining is 
to improve sales by asking a customer who is buying a product if he/she would like 
another similar product as well. This can be done through affinity analysis, which is 
the study of when things exist together.

What is affinity analysis?
Affinity analysis is a type of data mining that gives similarity between samples 
(objects). This could be the similarity between the following:

• users on a website, in order to provide varied services or targeted advertising
• items to sell to those users, in order to provide recommended  

movies or products
• human genes, in order to find people that share the same ancestors

We can measure affinity in a number of ways. For instance, we can record how 
frequently two products are purchased together. We can also record the accuracy  
of the statement when a person buys object 1 and also when they buy object 2.  
Other ways to measure affinity include computing the similarity between samples, 
which we will cover in later chapters.

www.allitebooks.com

www.scipy.org/install.html
http://scikit-learn.org/stable/install.html
http://scikit-learn.org/stable/install.html
http://www.allitebooks.org
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Product recommendations
One of the issues with moving a traditional business online, such as commerce, is 
that tasks that used to be done by humans need to be automated in order for the 
online business to scale. One example of this is up-selling, or selling an extra item to 
a customer who is already buying. Automated product recommendations through 
data mining are one of the driving forces behind the e-commerce revolution that is 
turning billions of dollars per year into revenue.

In this example, we are going to focus on a basic product recommendation  
service. We design this based on the following idea: when two items are historically 
purchased together, they are more likely to be purchased together in the future. This 
sort of thinking is behind many product recommendation services, in both online 
and offline businesses.

A very simple algorithm for this type of product recommendation algorithm  
is to simply find any historical case where a user has brought an item and to 
recommend other items that the historical user brought. In practice, simple 
algorithms such as this can do well, at least better than choosing random items to 
recommend. However, they can be improved upon significantly, which is where 
data mining comes in.

To simplify the coding, we will consider only two items at a time. As an example, 
people may buy bread and milk at the same time at the supermarket. In this early 
example, we wish to find simple rules of the form:

If a person buys product X, then they are likely to purchase product Y

More complex rules involving multiple items will not be covered such as people 
buying sausages and burgers being more likely to buy tomato sauce.

Loading the dataset with NumPy
The dataset can be downloaded from the code package supplied with the book. 
Download this file and save it on your computer, noting the path to the dataset.  
For this example, I recommend that you create a new folder on your computer to  
put your dataset and code in. From here, open your IPython Notebook, navigate to 
this folder, and create a new notebook.
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The dataset we are going to use for this example is a NumPy two-dimensional 
array, which is a format that underlies most of the examples in the rest of the book. 
The array looks like a table, with rows representing different samples and columns 
representing different features. 

The cells represent the value of a particular feature of a particular sample. To 
illustrate, we can load the dataset with the following code:

import numpy as np
dataset_filename = "affinity_dataset.txt"
X = np.loadtxt(dataset_filename)

For this example, run the IPython Notebook and create an IPython Notebook.  
Enter the above code into the first cell of your Notebook. You can then run the  
code by pressing Shift + Enter (which will also add a new cell for the next lot of 
code). After the code is run, the square brackets to the left-hand side of the first cell 
will be assigned an incrementing number, letting you know that this cell has been 
completed. The first cell should look like the following:

For later code that will take more time to run, an asterisk will be placed here to 
denote that this code is either running or scheduled to be run. This asterisk will be 
replaced by a number when the code has completed running.

You will need to save the dataset into the same directory as the IPython  
Notebook. If you choose to store it somewhere else, you will need to change  
the dataset_filename value to the new location.

Next, we can show some of the rows of the dataset to get a sense of what the dataset 
looks like. Enter the following line of code into the next cell and run it, in order to 
print the first five lines of the dataset:

print(X[:5])

Downloading the example code
You can download the example code files from your account at 
http://www.packtpub.com for all the Packt Publishing books you 
have purchased. If you purchased this book elsewhere, you can visit 
http://www.packtpub.com/support and register to have the 
files e-mailed directly to you.

http://www.packtpub.com
http://www.packtpub.com/support
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The result will show you which items were bought in the first five transactions listed:

The dataset can be read by looking at each row (horizontal line) at a time. The first 
row (0, 0, 1, 1, 1) shows the items purchased in the first transaction. Each 
column (vertical row) represents each of the items. They are bread, milk, cheese, 
apples, and bananas, respectively. Therefore, in the first transaction, the person 
bought cheese, apples, and bananas, but not bread or milk.

Each of these features contain binary values, stating only whether the items were 
purchased and not how many of them were purchased. A 1 indicates that "at least 
1" item was bought of this type, while a 0 indicates that absolutely none of that item 
was purchased.

Implementing a simple ranking of rules
We wish to find rules of the type If a person buys product X, then they are likely to 
purchase product Y. We can quite easily create a list of all of the rules in our dataset by 
simply finding all occasions when two products were purchased together. However, 
we then need a way to determine good rules from bad ones. This will allow us to 
choose specific products to recommend.

Rules of this type can be measured in many ways, of which we will focus on two: 
support and confidence.

Support is the number of times that a rule occurs in a dataset, which is computed by 
simply counting the number of samples that the rule is valid for. It can sometimes be 
normalized by dividing by the total number of times the premise of the rule is valid, 
but we will simply count the total for this implementation.

While the support measures how often a rule exists, confidence measures how 
accurate they are when they can be used. It can be computed by determining the 
percentage of times the rule applies when the premise applies. We first count how 
many times a rule applies in our dataset and divide it by the number of samples 
where the premise (the if statement) occurs.
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As an example, we will compute the support and confidence for the rule if a person 
buys apples, they also buy bananas.

As the following example shows, we can tell whether someone bought apples  
in a transaction by checking the value of sample[3], where a sample is assigned  
to a row of our matrix:

Similarly, we can check if bananas were bought in a transaction by seeing if the value 
for sample[4] is equal to 1 (and so on). We can now compute the number of times 
our rule exists in our dataset and, from that, the confidence and support.

Now we need to compute these statistics for all rules in our database. We will do 
this by creating a dictionary for both valid rules and invalid rules. The key to this 
dictionary will be a tuple (premise and conclusion). We will store the indices, rather 
than the actual feature names. Therefore, we would store (3 and 4) to signify the 
previous rule If a person buys Apples, they will also buy Bananas. If the premise and 
conclusion are given, the rule is considered valid. While if the premise is given but 
the conclusion is not, the rule is considered invalid for that sample.

To compute the confidence and support for all possible rules, we first set up some 
dictionaries to store the results. We will use defaultdict for this, which sets a 
default value if a key is accessed that doesn't yet exist. We record the number of 
valid rules, invalid rules, and occurrences of each premise:

from collections import defaultdict
valid_rules = defaultdict(int)
invalid_rules = defaultdict(int)
num_occurances = defaultdict(int)

Next we compute these values in a large loop. We iterate over each sample and 
feature in our dataset. This first feature forms the premise of the rule—if a person 
buys a product premise:

for sample in X:
  for premise in range(4):



Getting Started with Data Mining

[ 12 ]

We check whether the premise exists for this sample. If not, we do not have any 
more processing to do on this sample/premise combination, and move to the next 
iteration of the loop:

  if sample[premise] == 0: continue

If the premise is valid for this sample (it has a value of 1), then we record this and 
check each conclusion of our rule. We skip over any conclusion that is the same as 
the premise—this would give us rules such as If a person buys Apples, then they  
buy Apples, which obviously doesn't help us much;

  num_occurances[premise] += 1
  for conclusion in range(n_features):
      if premise == conclusion: continue

If the conclusion exists for this sample, we increment our valid count for this rule.  
If not, we increment our invalid count for this rule:

  if sample[conclusion] == 1: 
    valid_rules[(premise, conclusion)] += 1 
    else:
    invalid_rules[(premise, conclusion)] += 1

We have now completed computing the necessary statistics and can now  
compute the support and confidence for each rule. As before, the support is simply  
our valid_rules value:

support = valid_rules

The confidence is computed in the same way, but we must loop over each rule to 
compute this:

confidence = defaultdict(float)
for premise, conclusion in valid_rules.keys():
    rule = (premise, conclusion)
    confidence[rule] = valid_rules[rule] / num_occurances[premise]

We now have a dictionary with the support and confidence for each rule.  
We can create a function that will print out the rules in a readable format.  
The signature of the rule takes the premise and conclusion indices, the support  
and confidence dictionaries we just computed, and the features array that tells us 
what the features mean:

def print_rule(premise, conclusion,
              support, confidence, features):
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We get the names of the features for the premise and conclusion and print out the 
rule in a readable format:

    premise_name = features[premise] 
    conclusion_name = features[conclusion] 
    print("Rule: If a person buys {0} they will also buy  
      {1}".format(premise_name, conclusion_name))

Then we print out the Support and Confidence of this rule:

    print(" - Support: {0}".format(support[(premise,
                                            conclusion)]))
    print(" - Confidence: {0:.3f}".format(confidence[(premise,
                                                    conclusion)]))

We can test the code by calling it in the following way—feel free to experiment with 
different premises and conclusions:

Ranking to find the best rules
Now that we can compute the support and confidence of all rules, we want to be able 
to find the best rules. To do this, we perform a ranking and print the ones with the 
highest values. We can do this for both the support and confidence values.

To find the rules with the highest support, we first sort the support dictionary. 
Dictionaries do not support ordering by default; the items() function gives us a 
list containing the data in the dictionary. We can sort this list using the itemgetter 
class as our key, which allows for the sorting of nested lists such as this one. Using 
itemgetter(1) allows us to sort based on the values. Setting reverse=True gives 
us the highest values first:

from operator import itemgetter
sorted_support = sorted(support.items(), key=itemgetter(1), re 
verse=True)
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We can then print out the top five rules:

for index in range(5):
    print("Rule #{0}".format(index + 1))
    premise, conclusion = sorted_support[index][0]
    print_rule(premise, conclusion, support, confidence, features)

The result will look like the following:

Similarly, we can print the top rules based on confidence. First, compute the sorted 
confidence list:

sorted_confidence = sorted(confidence.items(), key=itemgetter(1),  
reverse=True)

Next, print them out using the same method as before. Note the change to  
sorted_confidence on the third line;

for index in range(5):
    print("Rule #{0}".format(index + 1))
    premise, conclusion = sorted_confidence[index][0]
    print_rule(premise, conclusion, support, confidence, features)



Chapter 1

[ 15 ]

Two rules are near the top of both lists. The first is If a person buys apples, they 
will also buy cheese, and the second is If a person buys cheese, they will also 
buy bananas. A store manager can use rules like these to organize their store. For 
example, if apples are on sale this week, put a display of cheeses nearby. Similarly, 
it would make little sense to put both bananas on sale at the same time as cheese, as 
nearly 66 percent of people buying cheese will buy bananas anyway—our sale won't 
increase banana purchases all that much.

Data mining has great exploratory power in examples like this. A person can  
use data mining techniques to explore relationships within their datasets to  
find new insights. In the next section, we will use data mining for a different 
purpose: prediction.
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A simple classification example
In the affinity analysis example, we looked for correlations between different 
variables in our dataset. In classification, we instead have a single variable that we 
are interested in and that we call the class (also called the target). If, in the previous 
example, we were interested in how to make people buy more apples, we could set 
that variable to be the class and look for classification rules that obtain that goal.  
We would then look only for rules that relate to that goal.

What is classification?
Classification is one of the largest uses of data mining, both in practical use and in 
research. As before, we have a set of samples that represents objects or things we 
are interested in classifying. We also have a new array, the class values. These class 
values give us a categorization of the samples. Some examples are as follows:

• Determining the species of a plant by looking at its measurements. The class 
value here would be Which species is this?.

• Determining if an image contains a dog. The class would be Is there a dog in 
this image?.

• Determining if a patient has cancer based on the test results. The class would 
be Does this patient have cancer?.

While many of the examples above are binary (yes/no) questions, they do not have 
to be, as in the case of plant species classification in this section.

The goal of classification applications is to train a model on a set of samples with 
known classes, and then apply that model to new unseen samples with unknown 
classes. For example, we want to train a spam classifier on my past e-mails, which 
I have labeled as spam or not spam. I then want to use that classifier to determine 
whether my next email is spam, without me needing to classify it myself.

Loading and preparing the dataset
The dataset we are going to use for this example is the famous Iris database of plant 
classification. In this dataset, we have 150 plant samples and four measurements of 
each: sepal length, sepal width, petal length, and petal width (all in centimeters). 
This classic dataset (first used in 1936!) is one of the classic datasets for data mining. 
There are three classes: Iris Setosa, Iris Versicolour, and Iris Virginica. The aim is to 
determine which type of plant a sample is, by examining its measurements.
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The scikit-learn library contains this dataset built-in, making the loading of the 
dataset straightforward:

from sklearn.datasets import load_iris
dataset = load_iris()
X = dataset.data
y = dataset.target

You can also print(dataset.DESCR) to see an outline of the dataset, including some 
details about the features.

The features in this dataset are continuous values, meaning they can take  
any range of values. Measurements are a good example of this type of feature,  
where a measurement can take the value of 1, 1.2, or 1.25 and so on. Another  
aspect about continuous features is that feature values that are close to each  
other indicate similarity. A plant with a sepal length of 1.2 cm is like a plant  
with sepal width of 1.25 cm.

In contrast are categorical features. These features, while often represented as 
numbers, cannot be compared in the same way. In the Iris dataset, the class values 
are an example of a categorical feature. The class 0 represents Iris Setosa, class 1 
represents Iris Versicolour, and class 2 represents Iris Virginica. This doesn't mean 
that Iris Setosa is more similar to Iris Versicolour than it is to Iris Virginica—despite 
the class value being more similar. The numbers here represent categories. All we 
can say is whether categories are the same or different.

There are other types of features too, some of which will be covered in later chapters.

While the features in this dataset are continuous, the algorithm we will use in this 
example requires categorical features. Turning a continuous feature into a categorical 
feature is a process called discretization.

A simple discretization algorithm is to choose some threshold and any values below 
this threshold are given a value 0. Meanwhile any above this are given the value 1. 
For our threshold, we will compute the mean (average) value for that feature. To 
start with, we compute the mean for each feature:

attribute_means = X.mean(axis=0)

This will give us an array of length 4, which is the number of features we have.  
The first value is the mean of the values for the first feature and so on. Next, we  
use this to transform our dataset from one with continuous features to one  
with discrete categorical features:

X_d = np.array(X >= attribute_means, dtype='int')

www.allitebooks.com
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We will use this new X_d dataset (for X discretized) for our training and testing, rather 
than the original dataset (X).

Implementing the OneR algorithm
OneR is a simple algorithm that simply predicts the class of a sample by finding 
the most frequent class for the feature values. OneR is a shorthand for One Rule, 
indicating we only use a single rule for this classification by choosing the feature 
with the best performance. While some of the later algorithms are significantly more 
complex, this simple algorithm has been shown to have good performance in a 
number of real-world datasets.

The algorithm starts by iterating over every value of every feature. For that value, 
count the number of samples from each class that have that feature value. Record  
the most frequent class for the feature value, and the error of that prediction.

For example, if a feature has two values, 0 and 1, we first check all samples that have 
the value 0. For that value, we may have 20 in class A, 60 in class B, and a further 20 
in class C. The most frequent class for this value is B, and there are 40 instances that 
have difference classes. The prediction for this feature value is B with an error of 
40, as there are 40 samples that have a different class from the prediction. We then 
do the same procedure for the value 1 for this feature, and then for all other feature 
value combinations.

Once all of these combinations are computed, we compute the error for each feature 
by summing up the errors for all values for that feature. The feature with the lowest 
total error is chosen as the One Rule and then used to classify other instances.

In code, we will first create a function that computes the class prediction and error 
for a specific feature value. We have two necessary imports, defaultdict and 
itemgetter, that we used in earlier code:

from collections import defaultdict
from operator import itemgetter

Next, we create the function definition, which needs the dataset, classes, the index of 
the feature we are interested in, and the value we are computing:

def train_feature_value(X, y_true, feature_index, value):
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We then iterate over all the samples in our dataset, counting the actual classes for 
each sample with that feature value:

    class_counts = defaultdict(int)
    for sample, y in zip(X, y_true):
        if sample[feature_index] == value:
            class_counts[y] += 1

We then find the most frequently assigned class by sorting the class_counts 
dictionary and finding the highest value:

    sorted_class_counts = sorted(class_counts.items(), 
      key=itemgetter(1), reverse=True) 
        most_frequent_class = sorted_class_counts[0][0]

Finally, we compute the error of this rule. In the OneR algorithm, any sample with 
this feature value would be predicted as being the most frequent class. Therefore, 
we compute the error by summing up the counts for the other classes (not the most 
frequent). These represent training samples that this rule does not work on:

incorrect_predictions = [class_count for class_value, class_count  
in class_counts.items() 
if class_value != most_frequent_class]
error = sum(incorrect_predictions)

Finally, we return both the predicted class for this feature value and the number of 
incorrectly classified training samples, the error, of this rule:

    return most_frequent_class, error

With this function, we can now compute the error for an entire feature by looping 
over all the values for that feature, summing the errors, and recording the predicted 
classes for each value.

The function header needs the dataset, classes, and feature index we are  
interested in:

def train_on_feature(X, y_true, feature_index):

Next, we find all of the unique values that the given feature takes. The indexing in 
the next line looks at the whole column for the given feature and returns it as an 
array. We then use the set function to find only the unique values:

    values = set(X[:,feature_index])
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Next, we create our dictionary that will store the predictors. This dictionary will 
have feature values as the keys and classification as the value. An entry with key 
1.5 and value 2 would mean that, when the feature has value set to 1.5, classify it as 
belonging to class 2. We also create a list storing the errors for each feature value:

    predictors = {}
    errors = []

As the main section of this function, we iterate over all the unique values for this 
feature and use our previously defined train_feature_value() function to find  
the most frequent class and the error for a given feature value. We store the results  
as outlined above:

    for current_value in values:
      most_frequent_class, error = train_feature_value(X,  
        y_true, feature_index, current_value)
      predictors[current_value] = most_frequent_class
      errors.append(error)

Finally, we compute the total errors of this rule and return the predictors along  
with this value:

    total_error = sum(errors)
    return predictors, total_error

Testing the algorithm
When we evaluated the affinity analysis algorithm of the last section, our aim was 
to explore the current dataset. With this classification, our problem is different. We 
want to build a model that will allow us to classify previously unseen samples by 
comparing them to what we know about the problem.

For this reason, we split our machine-learning workflow into two stages:  
training and testing. In training, we take a portion of the dataset and create our 
model. In testing, we apply that model and evaluate how effectively it worked  
on the dataset. As our goal is to create a model that is able to classify previously 
unseen samples, we cannot use our testing data for training the model. If we do,  
we run the risk of overfitting.
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Overfitting is the problem of creating a model that classifies our training dataset 
very well, but performs poorly on new samples. The solution is quite simple: never 
use training data to test your algorithm. This simple rule has some complex variants, 
which we will cover in later chapters; but, for now, we can evaluate our OneR 
implementation by simply splitting our dataset into two small datasets: a training 
one and a testing one. This workflow is given in this section.

The scikit-learn library contains a function to split data into training and  
testing components:

from sklearn.cross_validation import train_test_split

This function will split the dataset into two subdatasets, according to a given ratio 
(which by default uses 25 percent of the dataset for testing). It does this randomly, 
which improves the confidence that the algorithm is being appropriately tested:

Xd_train, Xd_test, y_train, y_test = train_test_split(X_d, y, random_
state=14)

We now have two smaller datasets: Xd_train contains our data for training and  
Xd_test contains our data for testing. y_train and y_test give the corresponding 
class values for these datasets.

We also specify a specific random_state. Setting the random state will give the same 
split every time the same value is entered. It will look random, but the algorithm used 
is deterministic and the output will be consistent. For this book, I recommend setting 
the random state to the same value that I do, as it will give you the same results that 
I get, allowing you to verify your results. To get truly random results that change 
every time you run it, set random_state to none.

Next, we compute the predictors for all the features for our dataset. Remember to 
only use the training data for this process. We iterate over all the features in the 
dataset and use our previously defined functions to train the predictors and compute 
the errors:

all_predictors = {}
errors = {}
for feature_index in range(Xd_train.shape[1]):
  predictors, total_error = train_on_feature(Xd_train, y_train,  
    feature_index)
  all_predictors[feature_index] = predictors
  errors[feature_index] = total_error
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Next, we find the best feature to use as our "One Rule", by finding the feature with 
the lowest error:

best_feature, best_error = sorted(errors.items(), key=itemgetter(1))
[0]

We then create our model by storing the predictors for the best feature:

model = {'feature': best_feature,
  'predictor': all_predictors[best_feature][0]}

Our model is a dictionary that tells us which feature to use for our One Rule and 
the predictions that are made based on the values it has. Given this model, we can 
predict the class of a previously unseen sample by finding the value of the specific 
feature and using the appropriate predictor. The following code does this for a  
given sample:

variable = model['variable']
predictor = model['predictor']
prediction = predictor[int(sample[variable])]

Often we want to predict a number of new samples at one time, which we can do 
using the following function; we use the above code, but iterate over all the samples 
in a dataset, obtaining the prediction for each sample:

def predict(X_test, model):
    variable = model['variable']
    predictor = model['predictor']
    y_predicted = np.array([predictor[int(sample[variable])] for  
      sample in X_test])
    return y_predicted

For our testing dataset, we get the predictions by calling the following function:

y_predicted = predict(X_test, model)

We can then compute the accuracy of this by comparing it to the known classes:

accuracy = np.mean(y_predicted == y_test) * 100
print("The test accuracy is {:.1f}%".format(accuracy))

This gives an accuracy of 68 percent, which is not bad for a single rule!
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Summary
In this chapter, we introduced data mining using Python. If you were able to run the 
code in this section (note that the full code is available in the supplied code package), 
then your computer is set up for much of the rest of the book. Other Python libraries 
will be introduced in later chapters to perform more specialized tasks.

We used the IPython Notebook to run our code, which allows us to immediately 
view the results of a small section of the code. This is a useful framework that will  
be used throughout the book.

We introduced a simple affinity analysis, finding products that are purchased 
together. This type of exploratory analysis gives an insight into a business process, 
an environment, or a scenario. The information from these types of analysis can 
assist in business processes, finding the next big medical breakthrough, or creating 
the next artificial intelligence.

Also, in this chapter, there was a simple classification example using the OneR 
algorithm. This simple algorithm simply finds the best feature and predicts the  
class that most frequently had this value in the training dataset.

Over the next few chapters, we will expand on the concepts of classification  
and affinity analysis. We will also introduce the scikit-learn package and the 
algorithms it includes.
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Classifying with scikit-learn 
Estimators

The scikit-learn library is a collection of data mining algorithms, written in Python 
and using a common programming interface. This allows users to easily try different 
algorithms as well as utilize standard tools for doing effective testing and parameter 
searching. There are a large number of algorithms and utilities in scikit-learn.

In this chapter, we focus on setting up a good framework for running data mining 
procedures. This will be used in later chapters, which are all focused on applications 
and techniques to use in those situations.

The key concepts introduced in this chapter are as follows:

• Estimators: This is to perform classification, clustering, and regression
• Transformers: This is to perform preprocessing and data alterations
• Pipelines: This is to put together your workflow into a replicable format

scikit-learn estimators
Estimators are scikit-learn's abstraction, allowing for the standardized 
implementation of a large number of classification algorithms. Estimators are used 
for classification. Estimators have the following two main functions:

• fit(): This performs the training of the algorithm and sets internal 
parameters. It takes two inputs, the training sample dataset and the 
corresponding classes for those samples.

• predict(): This predicts the class of the testing samples that is given as 
input. This function returns an array with the predictions of each input 
testing sample.
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Most scikit-learn estimators use the NumPy arrays or a related format for input  
and output.

There are a large number of estimators in scikit-learn. These include support vector 
machines (SVM), random forests, and neural networks. Many of these algorithms 
will be used in later chapters. In this chapter, we will use a different estimator from 
scikit-learn: nearest neighbor.

For this chapter, you will need to install a new library called 
matplotlib. The easiest way to install it is to use pip3, as you did in 
Chapter 1, Getting Started with Data Mining, to install scikit-learn:
$pip3 install matplotlib

If you have any difficulty installing matplotlib, seek the official 
installation instructions at http://matplotlib.org/users/
installing.html.

Nearest neighbors
Nearest neighbors is perhaps one of the most intuitive algorithms in the set of 
standard data mining algorithms. To predict the class of a new sample, we look 
through the training dataset for the samples that are most similar to our new sample. 
We take the most similar sample and predict the class that the majority of those 
samples have.

As an example, we wish to predict the class of the triangle, based on which class it is 
more similar to (represented here by having similar objects closer together). We seek 
the three nearest neighbors, which are two diamonds and one square. There are more 
diamonds than circles, and the predicted class for the triangle is, therefore, a diamond:

http://matplotlib.org/users/installing.html
http://matplotlib.org/users/installing.html
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Nearest neighbors can be used for nearly any dataset-however, it can be very 
computationally expensive to compute the distance between all pairs of samples.  
For example if there are 10 samples in the dataset, there are 45 unique distances 
to compute. However, if there are 1000 samples, there are nearly 500,000! Various 
methods exist for improving this speed dramatically; some of which are covered in 
the later chapters of this book.

It can also do poorly in categorical-based datasets, and another algorithm should be 
used for these instead.

Distance metrics
A key underlying concept in data mining is that of distance. If we have two samples, 
we need to know how close they are to each other. Further more, we need to answer 
questions such as are these two samples more similar than the other two?  
Answering questions like these is important to the outcome of the case.

The most common distance metric that the people are aware of is Euclidean 
distance, which is the real-world distance. If you were to plot the points on a graph 
and measure the distance with a straight ruler, the result would be the Euclidean 
distance. A little more formally, it is the square root of the sum of the squared 
distances for each feature.

Euclidean distance is intuitive, but provides poor accuracy if some features have 
larger values than others. It also gives poor results when lots of features have a 
value of 0, known as a sparse matrix. There are other distance metrics in use; two 
commonly employed ones are the Manhattan and Cosine distance.

The Manhattan distance is the sum of the absolute differences in each feature (with 
no use of square distances). Intuitively, it can be thought of as the number of moves 
a rook piece (or castle) in chess would take to move between the points, if it were 
limited to moving one square at a time. While the Manhattan distance does suffer if 
some features have larger values than others, the effect is not as dramatic as in the 
case of Euclidean.

www.allitebooks.com
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The Cosine distance is better suited to cases where some features are larger than 
others and when there are lots of zeros in the dataset. Intuitively, we draw a line 
from the origin to each of the samples, and measure the angle between those lines. 
This can be seen in the following diagram:

In this example, each of the grey circles are in the same distance from the white 
circle. In (a), the distances are Euclidean, and therefore, similar distances fit around 
a circle. This distance can be measured using a ruler. In (b), the distances are 
Manhattan, also called City Block. We compute the distance by moving across rows 
and columns, similar to how a Rook (Castle) in Chess moves. Finally, in (c), we 
have the Cosine distance that is measured by computing the angle between the lines 
drawn from the sample to the vector, and ignore the actual length of the line.

The distance metric chosen can have a large impact on the final performance. 
For example, if you have many features, the Euclidean distance between random 
samples approaches the same value. This makes it hard to compare samples 
as the distances are the same! Manhattan distance can be more stable in some 
circumstances, but if some features have very large values, this can overrule lots of 
similarities in other features. Finally, Cosine distance is a good metric for comparing 
items with a large number of features, but it discards some information about the 
length of the vector, which is useful in some circumstances.

For this chapter, we will stay with Euclidean distance, using other metrics in  
later chapters.
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Loading the dataset
The dataset we are going to use is called Ionosphere, which is the recording of many 
high-frequency antennas. The aim of the antennas is to determine whether there is a 
structure in the ionosphere and a region in the upper atmosphere. Those that have a 
structure are deemed good, while those that do not are deemed bad. The aim of this 
application is to build a data mining classifier that can determine whether an image 
is good or bad.

(Image Credit: https://www.flickr.com/photos/geckzilla/16149273389/)

This can be downloaded from the UCL Machine Learning data repository, which 
contains a large number of datasets for different data mining applications. Go to 
http://archive.ics.uci.edu/ml/datasets/Ionosphere and click on Data 
Folder. Download the ionosphere.data and ionosphere.names files to a folder 
on your computer. For this example, I'll assume that you have put the dataset in a 
directory called Data in your home folder.

The location of your home folder depends on your operating system. 
For Windows, it is usually at C:\Documents and Settings\
username. For Mac or Linux machines, it is usually at /home/
username. You can get your home folder by running this python code:

import os
print(os.path.expanduser("~"))

https://www.flickr.com/photos/geckzilla/16149273389/
http://archive.ics.uci.edu/ml/datasets/Ionosphere
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For each row in the dataset, there are 35 values. The first 34 are measurements taken 
from the 17 antennas (two values for each antenna). The last is either 'g' or 'b'; that 
stands for good and bad, respectively.

Start the IPython Notebook server and create a new notebook called Ionosphere 
Nearest Neighbors for this chapter.

First, we load up the NumPy and csv libraries that we will need for our code:

import numpy as np
import csv

To load the dataset, we first get the filename of the dataset. First, get the folder the 
dataset is stored in from your data folder:

data_filename = os.path.join(data_folder, "Ionosphere",  
"ionosphere.data")

We then create the X and y NumPy arrays to store the dataset in. The sizes of these 
arrays are known from the dataset. Don't worry if you don't know the size of future 
datasets—we will use other methods to load the dataset in future chapters and you 
won't need to know this size beforehand:

X = np.zeros((351, 34), dtype='float')
y = np.zeros((351,), dtype='bool')

The dataset is in a Comma-Separated Values (CSV) format, which is a commonly 
used format for datasets. We are going to use the csv module to load this file.  
Import it and set up a csv reader object:

with open(data_filename, 'r') as input_file:
    reader = csv.reader(input_file)

Next, we loop over the lines in the file. Each line represents a new set of 
measurements, which is a sample in this dataset. We use the enumerate  
function to get the line's index as well, so we can update the appropriate  
sample in the dataset (X):

    for i, row in enumerate(reader):

We take the first 34 values from this sample, turn each into a float, and save that to 
our dataset:

  data = [float(datum) for datum in row[:-1]]
  X[i] = data
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Finally, we take the last value of the row and set the class. We set it to 1 (or True) if it 
is a good sample, and 0 if it is not:

  y[i] = row[-1] == 'g'

We now have a dataset of samples and features in X, and the corresponding  
classes in y, as we did in the classification example in Chapter 1, Getting Started  
with Data Mining.

Moving towards a standard workflow
Estimators in scikit-learn have two main functions: fit() and predict().  
We train the algorithm using the fit method and our training set. We evaluate it 
using the predict method on our testing set.

First, we need to create these training and testing sets. As before, import and run the 
train_test_split function:

from sklearn.cross_validation import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, random_
state=14)

Then, we import the nearest neighbor class and create an instance for it. We leave 
the parameters as defaults for now, and will choose good parameters later in this 
chapter. By default, the algorithm will choose the five nearest neighbors to predict 
the class of a testing sample:

from sklearn.neighbors import KNeighborsClassifier 
estimator = KNeighborsClassifier()

After creating our estimator, we must then fit it on our training dataset. For the 
nearest neighbor class, this records our dataset, allowing us to find the nearest 
neighbor for a new data point, by comparing that point to the training dataset:

estimator.fit(X_train, y_train)

We then train the algorithm with our test set and evaluate with our testing set:

y_predicted = estimator.predict(X_test)
accuracy = np.mean(y_test == y_predicted) * 100
print("The accuracy is {0:.1f}%".format(accuracy))

This scores 86.4 percent accuracy, which is impressive for a default algorithm and 
just a few lines of code! Most scikit-learn default parameters are chosen explicitly 
to work well with a range of datasets. However, you should always aim to choose 
parameters based on knowledge of the application experiment.
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Running the algorithm
In our earlier experiments, we set aside a portion of the dataset as a testing set, 
with the rest being the training set. We train our algorithm on the training set and 
evaluate how effective it will be based on the testing set. However, what happens if 
we get lucky and choose an easy testing set? Alternatively, what if it was particularly 
troublesome? We can discard a good model due to poor results resulting from such 
an "unlucky" split of our data.

The cross-fold validation framework is a way to address the problem of choosing a 
testing set and a standard methodology in data mining. The process works by doing 
a number of experiments with different training and testing splits, but using each 
sample in a testing set only once. The procedure is as follows:

1. Split the entire dataset into a number of sections called folds.
2. For each fold in the dataset, execute the following steps:

 ° Set that fold aside as the current testing set
 ° Train the algorithm on the remaining folds
 ° Evaluate on the current testing set

3. Report on all the evaluation scores, including the average score.
4. In this process, each sample is used in the testing set only once.  

This reduces (but doesn't completely eliminate) the likelihood of  
choosing lucky testing sets.

Throughout this book, the code examples build upon each 
other within a chapter. Each chapter's code should be 
entered into the same IPython Notebook, unless  
otherwise specified.

The scikit-learn library contains a number of cross fold validation methods.  
A helper function is given that performs the preceding procedure. We can import  
it now in our IPython Notebook:

from sklearn.cross_validation import cross_val_score

By default, cross_val_score uses a specific methodology 
called Stratified K Fold to split the dataset into folds. This 
creates folds that have approximately the same proportion 
of classes in each fold, again reducing the likelihood of 
choosing poor folds. This is a great default, so we won't 
mess with it right now.
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Next, we use this function, passing the original (full) dataset and classes:

scores = cross_val_score(estimator, X, y, scoring='accuracy') 
average_accuracy = np.mean(scores) * 100 
print("The average accuracy is {0:.1f}%".format(average_accuracy))

This gives a slightly more modest result of 82.3 percent, but it is still quite good 
considering we have not yet tried setting better parameters. In the next section,  
we will see how we would go about changing the parameters to achieve a  
better outcome.

Setting parameters
Almost all data mining algorithms have parameters that the user can set. This is 
often a cause of generalizing an algorithm to allow it to be applicable in a wide 
variety of circumstances. Setting these parameters can be quite difficult, as choosing 
good parameter values is often highly reliant on features of the dataset.

The nearest neighbor algorithm has several parameters, but the most important 
one is that of the number of nearest neighbors to use when predicting the class of 
an unseen attribution. In scikit-learn, this parameter is called n_neighbors. 
In the following figure, we show that when this number is too low, a randomly 
labeled sample can cause an error. In contrast, when it is too high, the actual nearest 
neighbors have a lower effect on the result:
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In the figure (a), on the left-hand side, we would usually expect the test sample  
(the triangle) to be classified as a circle. However, if n_neighbors is 1, the single  
red diamond in this area (likely a noisy sample) causes the sample to be predicted  
as being a diamond, while it appears to be in a red area. In the figure (b), on the  
right-hand side, we would usually expect the test sample to be classified as a 
diamond. However, if n_neighbors is 7, the three nearest neighbors (which  
are all diamonds) are overridden by the large number of circle samples.

If we want to test a number of values for the n_neighbors parameter, for example, 
each of the values from 1 to 20, we can rerun the experiment many times by setting 
n_neighbors and observing the result:

avg_scores = []
all_scores = []
parameter_values = list(range(1, 21))  # Include 20
for n_neighbors in parameter_values:
    estimator = KNeighborsClassifier(n_neighbors=n_neighbors)
    scores = cross_val_score(estimator, X, y, scoring='accuracy')

Compute and store the average in our list of scores. We also store the full set of 
scores for later analysis:

    avg_scores.append(np.mean(scores))
    all_scores.append(scores)

We can then plot the relationship between the value of n_neighbors and the 
accuracy. First, we tell the IPython Notebook that we want to show plots inline  
in the notebook itself:

%matplotlib inline

We then import pyplot from the matplotlib library and plot the parameter values 
alongside average scores:

from matplotlib import pyplot as plt plt.plot(parameter_values,  
avg_scores, '-o')
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While there is a lot of variance, the plot shows a decreasing trend as the number of 
neighbors increases.

Preprocessing using pipelines
When taking measurements of real-world objects, we can often get features in  
very different ranges. For instance, if we are measuring the qualities of an animal,  
we might have several features, as follows:

• Number of legs: This is between the range of 0-8 for most animals, while 
some have many more!

• Weight: This is between the range of only a few micrograms, all the way  
to a blue whale with a weight of 190,000 kilograms!

• Number of hearts: This can be between zero to five, in the case of  
the earthworm.
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For a mathematical-based algorithm to compare each of these features, the 
differences in the scale, range, and units can be difficult to interpret. If we used 
the above features in many algorithms, the weight would probably be the most 
influential feature due to only the larger numbers and not anything to do with the 
actual effectiveness of the feature.

One of the methods to overcome this is to use a process called preprocessing  
to normalize the features so that they all have the same range, or are put into 
categories like small, medium and large. Suddenly, the large difference in the  
types of features has less of an impact on the algorithm, and can lead to large 
increases in the accuracy.

Preprocessing can also be used to choose only the more effective features, create new 
features, and so on. Preprocessing in scikit-learn is done through Transformer 
objects, which take a dataset in one form and return an altered dataset after some 
transformation of the data. These don't have to be numerical, as Transformers are also 
used to extract features-however, in this section, we will stick with preprocessing.

An example
We can show an example of the problem by breaking the Ionosphere dataset.  
While this is only an example, many real-world datasets have problems of this  
form. First, we create a copy of the array so that we do not alter the original dataset:

X_broken = np.array(X)

Next, we break the dataset by dividing every second feature by 10:

X_broken[:,::2] /= 10

In theory, this should not have a great effect on the result. After all, the values 
for these features are still relatively the same. The major issue is that the scale has 
changed and the odd features are now larger than the even features. We can see the 
effect of this by computing the accuracy:

estimator = KNeighborsClassifier()
original_scores = cross_val_score(estimator, X, y, 
  scoring='accuracy')
print("The original average accuracy for is  
{0:.1f}%".format(np.mean(original_scores) * 100))
broken_scores = cross_val_score(estimator, X_broken, y, 
  scoring='accuracy')
print("The 'broken' average accuracy for is  
  {0:.1f}%".format(np.mean(broken_scores) * 100))
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This gives a score of 82.3 percent for the original dataset, which drops down to  
71.5 percent on the broken dataset. We can fix this by scaling all the features to  
the range 0 to 1.

Standard preprocessing
The preprocessing we will perform for this experiment is called feature-based 
normalization through the MinMaxScaler class. Continuing with the IPython 
notebook from the rest of this chapter, first, we import this class:

from sklearn.preprocessing import MinMaxScaler

This class takes each feature and scales it to the range 0 to 1. The minimum value is 
replaced with 0, the maximum with 1, and the other values somewhere in between.

To apply our preprocessor, we run the transform function on it. While MinMaxScaler 
doesn't, some transformers need to be trained first in the same way that the classifiers 
do. We can combine these steps by running the fit_transform function instead:

X_transformed = MinMaxScaler().fit_transform(X)

Here, X_transformed will have the same shape as X. However, each column will 
have a maximum of 1 and a minimum of 0.

There are various other forms of normalizing in this way, which is effective for other 
applications and feature types:

• Ensure the sum of the values for each sample equals to 1, using sklearn.
preprocessing.Normalizer

• Force each feature to have a zero mean and a variance of 1, using sklearn.
preprocessing.StandardScaler, which is a commonly used starting point 
for normalization

• Turn numerical features into binary features, where any value above 
a threshold is 1 and any below is 0, using sklearn.preprocessing.
Binarizer

We will use combinations of these preprocessors in later chapters, along with other 
types of Transformers object.

www.allitebooks.com
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Putting it all together
We can now create a workflow by combining the code from the previous sections, 
using the broken dataset previously calculated:

X_transformed = MinMaxScaler().fit_transform(X_broken)
estimator = KNeighborsClassifier()
transformed_scores = cross_val_score(estimator, X_transformed, y,  
  scoring='accuracy')
print("The average accuracy for is  
  {0:.1f}%".format(np.mean(transformed_scores) * 100))

This gives us back our score of 82.3 percent accuracy. The MinMaxScaler resulted in 
features of the same scale, meaning that no features overpowered others by simply 
being bigger values. While the Nearest Neighbor algorithm can be confused with 
larger features, some algorithms handle scale differences better. In contrast, some  
are much worse!

Pipelines
As experiments grow, so does the complexity of the operations. We may split up 
our dataset, binarize features, perform feature-based scaling, perform sample-based 
scaling, and many more operations.

Keeping track of all of these operations can get quite confusing and can result in 
being unable to replicate the result. Problems include forgetting a step, incorrectly 
applying a transformation, or adding a transformation that wasn't needed.

Another issue is the order of the code. In the previous section, we created our  
X_transformed dataset and then created a new estimator for the cross validation.  
If we had multiple steps, we would need to track all of these changes to the dataset 
in the code.

Pipelines are a construct that addresses these problems (and others, which we will 
see in the next chapter). Pipelines store the steps in your data mining workflow. They 
can take your raw data in, perform all the necessary transformations, and then create 
a prediction. This allows us to use pipelines in functions such as cross_val_score, 
where they expect an estimator. First, import the Pipeline object:

from sklearn.pipeline import Pipeline
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Pipelines take a list of steps as input, representing the chain of the data mining 
application. The last step needs to be an Estimator, while all previous steps are 
Transformers. The input dataset is altered by each Transformer, with the output of 
one step being the input of the next step. Finally, the samples are classified by the last 
step's estimator. In our pipeline, we have two steps:

1. Use MinMaxScaler to scale the feature values from 0 to 1
2. Use KNeighborsClassifier as the classification algorithms

Each step is then represented by a tuple ('name', step). We can then create  
our pipeline:

scaling_pipeline = Pipeline([('scale', MinMaxScaler()),
                             ('predict', KNeighborsClassifier())])

The key here is the list of tuples. The first tuple is our scaling step and the second 
tuple is the predicting step. We give each step a name: the first we call scale and the 
second we call predict, but you can choose your own names. The second part of the 
tuple is the actual Transformer or estimator object.

Running this pipeline is now very easy, using the cross validation code from before:

scores = cross_val_score(scaling_pipeline, X_broken, y, 
scoring='accuracy')
print("The pipeline scored an average accuracy for is {0:.1f}%".
format(np.mean(transformed_scores) * 100))

This gives us the same score as before (82.3 percent), which is expected, as we are 
effectively running the same steps.

In later chapters, we will use more advanced testing methods, and setting  
up pipelines is a great way to ensure that the code complexity does not  
grow unmanageably.



Classifying with scikit-learn Estimators

[ 40 ]

Summary
In this chapter, we used several of scikit-learn's methods for building a 
standard workflow to run and evaluate data mining models. We introduced the 
Nearest Neighbors algorithm, which is already implemented in scikit-learn as an 
estimator. Using this class is quite easy; first, we call the fit function on our training 
data, and second, we use the predict function to predict the class of testing samples.

We then looked at preprocessing by fixing poor feature scaling. This was done using 
a Transformer object and the MinMaxScaler class. These functions also have a 
fit method and then a transform, which takes a dataset as an input and returns a 
transformed dataset as an output.

In the next chapter, we will use these concepts in a larger example, predicting the 
outcome of sports matches using real-world data.
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Predicting Sports Winners 
with Decision Trees

In this chapter, we will look at predicting the winner of sports matches using a 
different type of classification algorithm: decision trees. These algorithms have a 
number of advantages over other algorithms. One of the main advantages is that they 
are readable by humans. In this way, decision trees can be used to learn a procedure, 
which could then be given to a human to perform if needed. Another advantage is 
that they work with a variety of features, which we will see in this chapter.

We will cover the following topics in this chapter:

• Using the pandas library for loading and manipulating data
• Decision trees
• Random forests
• Using real-world datasets in data mining
• Creating new features and testing them in a robust framework

Loading the dataset
In this chapter, we will look at predicting the winner of games of the National 
Basketball Association (NBA). Matches in the NBA are often close and can be 
decided in the last minute, making predicting the winner quite difficult. Many  
sports share this characteristic, whereby the expected winner could be beaten by 
another team on the right day.
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Various research into predicting the winner suggests that there may be an upper 
limit to sports outcome prediction accuracy which, depending on the sport, is 
between 70 percent and 80 percent accuracy. There is a significant amount of 
research being performed into sports prediction, often through data mining or 
statistics-based methods.

Collecting the data
The data we will be using is the match history data for the NBA for the 2013-2014 
season. The website http://Basketball-Reference.com contains a significant 
number of resources and statistics collected from the NBA and other leagues. To 
download the dataset, perform the following steps:

1. Navigate to http://www.basketball-reference.com/leagues/NBA_2014_
games.html in your web browser.

2. Click on the Export button next to the Regular Season heading.
3. Download the file to your data folder and make a note of the path.

This will download a CSV (short for Comma Separated Values) file containing the 
results of the 1,230 games in the regular season for the NBA.

CSV files are simply text files where each line contains a new row and each  
value is separated by a comma (hence the name). CSV files can be created manually 
by simply typing into a text editor and saving with a .csv extension. They can also 
be opened in any program that can read text files, but can also be opened in Excel as 
a spreadsheet.

We will load the file with the pandas (short for Python Data Analysis) library,  
which is an incredibly useful library for manipulating data. Python also contains a 
built-in library called csv that supports reading and writing CSV files. However, we 
will use pandas, which provides more powerful functions that we will use later in 
the chapter for creating new features.

For this chapter, you will need to install pandas. The easiest way to 
install it is to use pip3, as you did in Chapter 1, Getting Started with Data 
Mining to install scikit-learn:
$pip3 install pandas

If you have difficulty in installing pandas, head to their website at 
http://pandas.pydata.org/getpandas.html and read the 
installation instructions for your system.

http://Basketball-Reference.com
http://www.basketball-reference.com/leagues/NBA_2014_games.html
http://www.basketball-reference.com/leagues/NBA_2014_games.html
http://pandas.pydata.org/getpandas.html
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Using pandas to load the dataset
The pandas library is a library for loading, managing, and manipulating data.  
It handles data structures behind-the-scenes and supports analysis methods,  
such as computing the mean.

When doing multiple data mining experiments, you will find that you write  
many of the same functions again and again, such as reading files and extracting 
features. Each time this reimplementation happens, you run the risk of introducing 
bugs. Using a high-class library such as pandas significantly reduces the amount of 
work needed to do these functions and also gives you more confidence in using well 
tested code.

Throughout this book, we will be using pandas quite significantly, introducing  
use cases as we go.

We can load the dataset using the read_csv function:

import pandas as pd
dataset = pd.read_csv(data_filename)

The result of this is a pandas Dataframe, and it has some useful functions that  
we will use later on. Looking at the resulting dataset, we can see some issues.  
Type the following and run the code to see the first five rows of the dataset:

dataset.ix[:5]

Here's the output:

This is actually a usable dataset, but it contains some problems that we will fix  
up soon.
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Cleaning up the dataset
After looking at the output, we can see a number of problems:

• The date is just a string and not a date object
• The first row is blank
• From visually inspecting the results, the headings aren't complete or correct

These issues come from the data, and we could fix this by altering the data itself. 
However, in doing this, we could forget the steps we took or misapply them; that is, 
we can't replicate our results. As with the previous section where we used pipelines 
to track the transformations we made to a dataset, we will use pandas to apply 
transformations to the raw data itself.

The pandas.read_csv function has parameters to fix each of these issues, which we 
can specify when loading the file. We can also change the headings after loading the 
file, as shown in the following code:

dataset = pd.read_csv(data_filename, parse_dates=["Date"],  
  skiprows=[0,])
dataset.columns = ["Date", "Score Type", "Visitor Team",  
  "VisitorPts", "Home Team", "HomePts", "OT?", "Notes"]

The results have significantly improved, as we can see if we print out the resulting 
data frame:

dataset.ix[:5]

The output is as follows:

Even in well-compiled data sources such as this one, you need to make some 
adjustments. Different systems have different nuances, resulting in data files  
that are not quite compatible with each other.
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Now that we have our dataset, we can compute a baseline. A baseline is an accuracy 
that indicates an easy way to get a good accuracy. Any data mining solution should 
beat this.

In each match, we have two teams: a home team and a visitor team. An obvious 
baseline, called the chance rate, is 50 percent. Choosing randomly will (over time) 
result in an accuracy of 50 percent.

Extracting new features
We can now extract our features from this dataset by combining and comparing 
the existing data. First up, we need to specify our class value, which will give 
our classification algorithm something to compare against to see if its prediction 
is correct or not. This could be encoded in a number of ways; however, for this 
application, we will specify our class as 1 if the home team wins and 0 if the visitor 
team wins. In basketball, the team with the most points wins. So, while the data set 
doesn't specify who wins, we can compute it easily.

We can specify the data set by the following:

dataset["HomeWin"] = dataset["VisitorPts"] < dataset["HomePts"]

We then copy those values into a NumPy array to use later for our scikit-learn 
classifiers. There is not currently a clean integration between pandas and scikit-learn, 
but they work nicely together through the use of NumPy arrays. While we will use 
pandas to extract features, we will need to extract the values to use them with  
scikit-learn:

y_true = dataset["HomeWin"].values

The preceding array now holds our class values in a format that scikit-learn can read.

We can also start creating some features to use in our data mining. While sometimes 
we just throw the raw data into our classifier, we often need to derive continuous 
numerical or categorical features.

The first two features we want to create to help us predict which team will win 
are whether either of those two teams won their last game. This would roughly 
approximate which team is playing well.

We will compute this feature by iterating through the rows in order and recording 
which team won. When we get to a new row, we look up whether the team won the 
last time we saw them.
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We first create a (default) dictionary to store the team's last result:

from collections import defaultdict 
won_last = defaultdict(int)

The key of this dictionary will be the team and the value will be whether they won 
their previous game. We can then iterate over all the rows and update the current 
row with the team's last result:

for index, row in dataset.iterrows():
    home_team = row["Home Team"]
    visitor_team = row["Visitor Team"]
    row["HomeLastWin"] = won_last[home_team]
    row["VisitorLastWin"] = won_last[visitor_team]
    dataset.ix[index] = row

Note that the preceding code relies on our dataset being in chronological order. Our 
dataset is in order; however, if you are using a dataset that is not in order, you will 
need to replace dataset.iterrows() with dataset.sort("Date").iterrows().

We then set our dictionary with the each team's result (from this row) for the next 
time we see these teams. The code is as follows:

    won_last[home_team] = row["HomeWin"]
    won_last[visitor_team] = not row["HomeWin"]

After the preceding code runs, we will have two new features: HomeLastWin and 
VisitorLastWin. We can have a look at the dataset. There isn't much point in 
looking at the first five games though. Due to the way our code runs, we didn't have 
data for them at that point. Therefore, until a team's second game of the season, we 
won't know their current form. We can instead look at different places in the list.  
The following code will show the 20th to the 25th games of the season:

dataset.ix[20:25]

Here's the output:
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You can change those indices to look at other parts of the data, as there are over 1000 
games in our dataset!

Currently, this gives a false value to all teams (including the previous year's 
champion!) when they are first seen. We could improve this feature using the 
previous year's data, but will not do that in this chapter.

Decision trees
Decision trees are a class of supervised learning algorithm like a flow chart that 
consists of a sequence of nodes, where the values for a sample are used to make a 
decision on the next node to go to.

As with most classification algorithms, there are two components:

• The first is the training stage, where a tree is built using training data.  
While the nearest neighbor algorithm from the previous chapter did not 
have a training phase, it is needed for decision trees. In this way, the nearest 
neighbor algorithm is a lazy learner, only doing any work when it needs 
to make a prediction. In contrast, decision trees, like most classification 
methods, are eager learners, undertaking work at the training stage.

• The second is the predicting stage, where the trained tree is used to  
predict the classification of new samples. Using the previous example  
tree, a data point of ["is raining", "very windy"] would be classed  
as "bad weather".

www.allitebooks.com

http://www.allitebooks.org
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There are many algorithms for creating decision trees. Many of these algorithms 
are iterative. They start at the base node and decide the best feature to use for the 
first decision, then go to each node and choose the next best feature, and so on. This 
process is stopped at a certain point, when it is decided that nothing more can be 
gained from extending the tree further.

The scikit-learn package implements the CART (Classification and Regression 
Trees) algorithm as its default decision tree class, which can use both categorical and 
continuous features.

Parameters in decision trees
One of the most important features for a decision tree is the stopping criterion.  
As a tree is built, the final few decisions can often be somewhat arbitrary and rely 
on only a small number of samples to make their decision. Using such specific nodes 
can results in trees that significantly overfit the training data. Instead, a stopping 
criterion can be used to ensure that the decision tree does not reach this exactness.

Instead of using a stopping criterion, the tree could be created in full and then 
trimmed. This trimming process removes nodes that do not provide much 
information to the overall process. This is known as pruning.

The decision tree implementation in scikit-learn provides a method to stop the 
building of a tree using the following options:

• min_samples_split: This specifies how many samples are needed in order 
to create a new node in the decision tree

• min_samples_leaf: This specifies how many samples must be resulting 
from a node for it to stay

The first dictates whether a decision node will be created, while the second dictates 
whether a decision node will be kept.

Another parameter for decision tress is the criterion for creating a decision.  
Gini impurity and Information gain are two popular ones:

• Gini impurity: This is a measure of how often a decision node would 
incorrectly predict a sample's class

• Information gain: This uses information-theory-based entropy to indicate 
how much extra information is gained by the decision node
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Using decision trees
We can import the DecisionTreeClassifier class and create a decision tree using 
scikit-learn:

from sklearn.tree import DecisionTreeClassifier 
clf = DecisionTreeClassifier(random_state=14)

We used 14 for our random_state again and will do so for 
most of the book. Using the same random seed allows for 
replication of experiments. However, with your experiments, 
you should mix up the random state to ensure that the 
algorithm's performance is not tied to the specific value.

We now need to extract the dataset from our pandas data frame in order to use  
it with our scikit-learn classifier. We do this by specifying the columns we  
wish to use and using the values parameter of a view of the data frame. The 
following code creates a dataset using our last win values for both the home  
team and the visitor team:

X_previouswins = dataset[["HomeLastWin", "VisitorLastWin"]].values

Decision trees are estimators, as introduced in Chapter 2, Classifying with scikit-learn 
Estimators, and therefore have fit and predict methods. We can also use the 
cross_val_score method to get the average score (as we did previously):

scores = cross_val_score(clf, X_previouswins, y_true,  
scoring='accuracy')
print("Accuracy: {0:.1f}%".format(np.mean(scores) * 100))

This scores 56.1 percent: we are better than choosing randomly! We should be  
able to do better. Feature engineering is one of the most difficult tasks in data 
mining, and choosing good features is key to getting good outcomes—more so  
than choosing the right algorithm!

Sports outcome prediction
We may be able to do better by trying other features. We have a method for  
testing how accurate our models are. The cross_val_score method allows us  
to try new features. 
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There are many possible features we could use, but we will try the following 
questions:

• Which team is considered better generally?
• Which team won their last encounter?

We will also try putting the raw teams into the algorithm to check whether the 
algorithm can learn a model that checks how different teams play against each other.

Putting it all together
For the first feature, we will create a feature that tells us if the home team is generally 
better than the visitors. To do this, we will load the standings (also called a ladder in 
some sports) from the NBA in the previous season. A team will be considered better 
if it ranked higher in 2013 than the other team.

To obtain the standings data, perform the following steps:

1. Navigate to http://www.basketball-reference.com/leagues/NBA_2013_
standings.html in your web browser.

2. Select Expanded Standings to get a single list for the entire league.
3. Click on the Export link.
4. Save the downloaded file in your data folder.

Back in your IPython Notebook, enter the following lines into a new cell. You'll need 
to ensure that the file was saved into the location pointed to by the data_folder 
variable. The code is as follows:

standings_filename = os.path.join(data_folder,  
"leagues_NBA_2013_standings_expanded-standings.csv")
standings = pd.read_csv(standings_filename, skiprows=[0,1])

You can view the ladder by just typing standings into a new cell and running  
the code:

Standings

http://www.basketball-reference.com/leagues/NBA_2013_standings.html
http://www.basketball-reference.com/leagues/NBA_2013_standings.html
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The output is as follows:

Next, we create a new feature using a similar pattern to the previous feature.  
We iterate over the rows, looking up the standings for the home team and visitor 
team. The code is as follows:

dataset["HomeTeamRanksHigher"] = 0
for index, row in dataset.iterrows():
    home_team = row["Home Team"]
    visitor_team = row["Visitor Team"]

As an important adjustment to the data, a team was renamed between the 2013 and 
2014 seasons (but it was still the same team). This is an example of one of the many 
different things that can happen when trying to integrate data! We will need to 
adjust the team lookup, ensuring we get the correct team's ranking:

    if home_team == "New Orleans Pelicans":
        home_team = "New Orleans Hornets"
    elif visitor_team == "New Orleans Pelicans":
        visitor_team = "New Orleans Hornets"

Now we can get the rankings for each team. We then compare them and update the 
feature in the row:

  home_rank = standings[standings["Team"] ==  
        home_team]["Rk"].values[0]
        visitor_rank = standings[standings["Team"] ==  
        visitor_team]["Rk"].values[0]
        row["HomeTeamRanksHigher"] = int(home_rank > visitor_rank)
        dataset.ix[index] = row
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Next, we use the cross_val_score function to test the result. First, we extract  
the dataset:

X_homehigher =  dataset[["HomeLastWin", "VisitorLastWin",  
  "HomeTeamRanksHigher"]].values

Then, we create a new DecisionTreeClassifier and run the evaluation:

clf = DecisionTreeClassifier(random_state=14)
scores = cross_val_score(clf, X_homehigher, y_true,  
  scoring='accuracy')
print("Accuracy: {0:.1f}%".format(np.mean(scores) * 100))

This now scores 60.3 percent—even better than our previous result. Can we  
do better?

Next, let's test which of the two teams won their last match. While rankings can give 
some hints on who won (the higher ranked team is more likely to win), sometimes 
teams play better against other teams. There are many reasons for this – for example, 
some teams may have strategies that work against other teams really well. Following 
our previous pattern, we create a dictionary to store the winner of the past game and 
create a new feature in our data frame. The code is as follows:

last_match_winner = defaultdict(int)
dataset["HomeTeamWonLast"] = 0

Then, we iterate over each row and get the home team and visitor team:

for index, row in dataset.iterrows():
    home_team = row["Home Team"]
    visitor_team = row["Visitor Team"]

We want to see who won the last game between these two teams regardless of which 
team was playing at home. Therefore, we sort the team names alphabetically, giving 
us a consistent key for those two teams:

      teams = tuple(sorted([home_team, visitor_team]))

We look up in our dictionary to see who won the last encounter between the two 
teams. Then, we update the row in the dataset data frame:

      row["HomeTeamWonLast"] = 1 if last_match_winner[teams] ==  
        row["Home Team"] else 0
        dataset.ix[index] = row
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Finally, we update our dictionary with the winner of this game in order to compute 
the feature for the next time these two teams meet:

    winner = row["Home Team"] if row["HomeWin"] else row 
    ["Visitor Team"]
    last_match_winner[teams] = winner

Next, we will create a dataset with just our two features. You could try different 
combinations of features to see if they obtain different results. The code is as follows:

X_lastwinner =  dataset[["HomeTeamRanksHigher", "HomeTeam 
  WonLast"]].values
clf = DecisionTreeClassifier(random_state=14)
scores = cross_val_score(clf, X_lastwinner, y_true,  
  scoring='accuracy')
print("Accuracy: {0:.1f}%".format(np.mean(scores) * 100))

This scores 60.6 percent . Our results are getting better and better.

Finally, we will check what happens if we throw a lot of data at the decision tree, and 
see if it can learn an effective model anyway. We will enter the teams into the tree 
and check whether a decision tree can learn to incorporate that information.

While decision trees are capable of learning from categorical features, the 
implementation in scikit-learn requires those features to be encoded first. We can use 
the LabelEncoder transformer to convert between the string-based team names into 
integers. The code is as follows:

from sklearn.preprocessing import LabelEncoder
encoding = LabelEncoder()

We will fit this transformer to the home teams so that it learns an integer 
representation for each team:

encoding.fit(dataset["Home Team"].values)

We extract all of the labels for the home teams and visitor teams, and then join them 
(called stacking in NumPy) to create a matrix encoding both the home team and the 
visitor team for each game. The code is as follows:

home_teams = encoding.transform(dataset["Home Team"].values)
visitor_teams = encoding.transform(dataset["Visitor Team"].values)
X_teams = np.vstack([home_teams, visitor_teams]).T
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These integers can be fed into the decision tree, but they will still be interpreted 
as continuous features by DecisionTreeClassifier. For example, teams may be 
allocated integers 0 to 16. The algorithm will see teams 1 and 2 as being similar, 
while teams 4 and 10 will be different—but this makes no sense as all. All of the 
teams are different from each other—two teams are either the same or they are not!

To fix this inconsistency, we use the OneHotEncoder transformer to encode these 
integers into a number of binary features. Each binary feature will be a single value 
for the feature. For example, if the NBA team Chicago Bulls is allocated as integer 
7 by the LabelEncoder, then the seventh feature returned by the OneHotEncoder 
will be a 1 if the team is Chicago Bulls and 0 for all other teams. This is done for every 
possible value, resulting in a much larger dataset. The code is as follows:

from sklearn.preprocessing import OneHotEncoder
onehot = OneHotEncoder()

We fit and transform on the same dataset, saving the results:

X_teams_expanded = onehot.fit_transform(X_teams).todense()

Next, we run the decision tree as before on the new dataset:

clf = DecisionTreeClassifier(random_state=14)
scores = cross_val_score(clf, X_teams_expanded, y_true,  
  scoring='accuracy')
print("Accuracy: {0:.1f}%".format(np.mean(scores) * 100))

This scores an accuracy of 60 percent. The score is better than the baseline, but 
not as good as before. It is possible that the larger number of features were not 
handled properly by the decision trees. For this reason, we will try changing the 
algorithm and see if that helps. Data mining can be an iterative process of trying new 
algorithms and features.

Random forests
A single decision tree can learn quite complex functions. However, in many ways  
it will be prone to overfitting—learning rules that work only for the training set.  
One of the ways that we can adjust for this is to limit the number of rules that it 
learns. For instance, we could limit the depth of the tree to just three layers. Such  
a tree will learn the best rules for splitting the dataset at a global level, but won't 
learn highly specific rules that separate the dataset into highly accurate groups.  
This trade-off results in trees that may have a good generalization, but overall 
slightly poorer performance.
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To compensate for this, we could create many decision trees and then ask each to 
predict the class value. We could take a majority vote and use that answer as our 
overall prediction. Random forests work on this principle.

There are two problems with the aforementioned procedure. The first problem is 
that building decision trees is largely deterministic—using the same input will result 
in the same output each time. We only have one training dataset, which means our 
input (and therefore the output) will be the same if we try build multiple trees. We 
can address this by choosing a random subsample of our dataset, effectively creating 
new training sets. This process is called bagging.

The second problem is that the features that are used for the first few decision nodes 
in our tree will be quite good. Even if we choose random subsamples of our training 
data, it is still quite possible that the decision trees built will be largely the same. To 
compensate for this, we also choose a random subset of the features to perform our 
data splits on.

Then, we have randomly built trees using randomly chosen samples, using (nearly) 
randomly chosen features. This is a Random Forest and, perhaps unintuitively,  
this algorithm is very effective on many datasets.

How do ensembles work?
The randomness inherent in Random forests may make it seem like we are leaving 
the results of the algorithm up to chance. However, we apply the benefits of 
averaging to nearly randomly built decision trees, resulting in an algorithm that 
reduces the variance of the result.

Variance is the error introduced by variations in the training dataset on the 
algorithm. Algorithms with a high variance (such as decision trees) can be greatly 
affected by variations to the training dataset. This results in models that have the 
problem of overfitting.

In contrast, bias is the error introduced by assumptions in the 
algorithm rather than anything to do with the dataset, that is, if we 
had an algorithm that presumed that all features would be normally 
distributed then our algorithm may have a high error if the features 
were not. Negative impacts from bias can be reduced by analyzing the 
data to see if the classifier's data model matches that of the actual data.
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By averaging a large number of decision trees, this variance is greatly reduced.  
This results in a model with a higher overall accuracy.

In general, ensembles work on the assumption that errors in prediction are 
effectively random and that those errors are quite different from classifier to 
classifier. By averaging the results across many models, these random errors are 
canceled out—leaving the true prediction. We will see many more ensembles in 
action throughout the rest of the book.

Parameters in Random forests
The Random forest implementation in scikit-learn is called 
RandomForestClassifier, and it has a number of parameters. As Random forests 
use many instances of DecisionTreeClassifier, they share many of the same 
parameters such as the criterion (Gini Impurity or Entropy/Information Gain),  
max_features, and min_samples_split.

Also, there are some new parameters that are used in the ensemble process:

• n_estimators: This dictates how many decision trees should be built.  
A higher value will take longer to run, but will (probably) result in a  
higher accuracy.

• oob_score: If true, the method is tested using samples that aren't in the 
random subsamples chosen for training the decision trees.

• n_jobs: This specifies the number of cores to use when training the  
decision trees in parallel.

The scikit-learn package uses a library called Joblib for in-built parallelization. 
This parameter dictates how many cores to use. By default, only a single core is 
used—if you have more cores, you can increase this, or set it to -1 to use all cores.

Applying Random forests
Random forests in scikit-learn use the estimator interface, allowing us to use almost 
the exact same code as before to do cross fold validation:

from sklearn.ensemble import RandomForestClassifier
clf = RandomForestClassifier(random_state=14)
scores = cross_val_score(clf, X_teams, y_true, scoring='accuracy')
print("Accuracy: {0:.1f}%".format(np.mean(scores) * 100))
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This results in an immediate benefit of 60.6 percent, up by 0.6 points by just 
swapping the classifier.

Random forests, using subsets of the features, should be able to learn more 
effectively with more features than normal decision trees. We can test this by 
throwing more features at the algorithm and seeing how it goes:

X_all = np.hstack([X_home_higher, X_teams])
clf = RandomForestClassifier(random_state=14)
scores = cross_val_score(clf, X_all, y_true, scoring='accuracy')
print("Accuracy: {0:.1f}%".format(np.mean(scores) * 100))

This results in 61.1 percent —even better! We can also try some other parameters 
using the GridSearchCV class as we introduced in Chapter 2, Classifying with  
scikit-learn Estimators:

parameter_space = {
  "max_features": [2, 10, 'auto'],
  "n_estimators": [100,],
  "criterion": ["gini", "entropy"],
  "min_samples_leaf": [2, 4, 6],
}
clf = RandomForestClassifier(random_state=14)
grid = GridSearchCV(clf, parameter_space)
grid.fit(X_all, y_true)
print("Accuracy: {0:.1f}%".format(grid.best_score_ * 100))

This has a much better accuracy of 64.2 percent!

If we wanted to see the parameters used, we can print out the best model that was 
found in the grid search. The code is as follows:

print(grid.best_estimator_)

The result shows the parameters that were used in the best scoring model:

RandomForestClassifier(bootstrap=True, compute_importances=None, 
  criterion='entropy', max_depth=None, max_features=2, 
    max_leaf_nodes=None, min_density=None, min_samples_leaf=6, 
      min_samples_split=2, n_estimators=100, n_jobs=1, 
        oob_score=False, random_state=14, verbose=0)
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Engineering new features
In the previous few examples, we saw that changing the features can have quite a 
large impact on the performance of the algorithm. Through our small amount of 
testing, we had more than 10 percent variance just from the features.

You can create features that come from a simple function in pandas by doing 
something like this:

dataset["New Feature"] = feature_creator()

The feature_creator function must return a list of the feature's value for each 
sample in the dataset. A common pattern is to use the dataset as a parameter:

dataset["New Feature"] = feature_creator(dataset)

You can create those features more directly by setting all the values to a single 
"default" value, like 0 in the next line:

dataset["My New Feature"] = 0

You can then iterate over the dataset, computing the features as you go. We used  
this format in this chapter to create many of our features:

  for index, row in dataset.iterrows():
    home_team = row["Home Team"]
    visitor_team = row["Visitor Team"]
    # Some calculation here to alter row  
    dataset.ix[index] = row

Keep in mind that this pattern isn't very efficient. If you are going to do this, try all of 
your features at once. A common "best practice" is to touch every sample as little as 
possible, preferably only once.

Some example features that you could try and implement are as follows:

• How many days has it been since each team's previous match? Teams may be 
tired if they play too many games in a short time frame.

• How many games of the last five did each team win? This will give a more 
stable form of the HomeLastWin and VisitorLastWin features we extracted 
earlier (and can be extracted in a very similar way).

• Do teams have a good record when visiting certain other teams? For instance, 
one team may play well in a particular stadium, even if they are the visitors.
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If you are facing trouble extracting features of these types, check the pandas 
documentation at http://pandas.pydata.org/pandas-docs/stable/ for help. 
Alternatively, you can try an online forum such as Stack Overflow for assistance.

More extreme examples could use player data to estimate the strength of each  
team's sides to predict who won. These types of complex features are used every 
day by gamblers and sports betting agencies to try to turn a profit by predicting the 
outcome of sports matches.

Summary
In this chapter, we extended our use of scikit-learn's classifiers to perform 
classification and introduced the pandas library to manage our data. We analyzed 
real-world data on basketball results from the NBA, saw some of the problems that 
even well-curated data introduces, and created new features for our analysis.

We saw the effect that good features have on performance and used an ensemble 
algorithm, Random forests, to further improve the accuracy.

In the next chapter, we will extend the affinity analysis that we performed in the first 
chapter to create a program to find similar books. We will see how to use algorithms 
for ranking and also use approximation to improve the scalability of data mining.

http://pandas.pydata.org/pandas-docs/stable/
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Recommending Movies 
Using Affinity Analysis

In this chapter, we will look at affinity analysis that determines when objects occur 
frequently together. This is colloquially called market basket analysis, after one of  
the use cases of determining when items are purchased together frequently.

In Chapter 3, Predicting Sports Winners with Decision Trees, we looked at an object 
as a focus and used features to describe that object. In this chapter, the data has a 
different form. We have transactions where the objects of interest (movies, in this 
chapter) are used within those transactions in some way. The aim is to discover 
when objects occur simultaneously. In this example, we wish to work out when  
two movies are recommended by the same reviewers.

The key concepts of this chapter are as follows:

• Affinity analysis
• Feature association mining using the Apriori algorithm
• Movie recommendations
• Sparse data formats

Affinity analysis
Affinity analysis is the task of determining when objects are used in similar  
ways. In the previous chapter, we focused on whether the objects themselves  
are similar. The data for affinity analysis is often described in the form of a 
transaction. Intuitively, this comes from a transaction at a store—determining  
when objects are purchased together. 
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However, it can be applied to many processes:

• Fraud detection
• Customer segmentation
• Software optimization
• Product recommendations

Affinity analysis is usually much more exploratory than classification. We often 
don't have the complete dataset we expect for many classification tasks. For instance, 
in movie recommendation, we have reviews from different people on different 
movies. However, it is unlikely we have each reviewer review all of the movies in 
our dataset. This leaves an important and difficult question in affinity analysis. If a 
reviewer hasn't reviewed a movie, is that an indication that they aren't interested 
in the movie (and therefore wouldn't recommend it) or simply that they haven't 
reviewed it yet?

We won't answer that question in this chapter, but thinking about gaps in your 
datasets can lead to questions like this. In turn, that can lead to answers that may 
help improve the efficacy of your approach.

Algorithms for affinity analysis
We introduced a basic method for affinity analysis in Chapter 1, Getting Started with 
Data Mining, which tested all of the possible rule combinations. We computed the 
confidence and support for each rule, which in turn allowed us to rank them to find 
the best rules.

However, this approach is not efficient. Our dataset in Chapter 1, Getting Started with 
Data Mining, had just five items for sale. We could expect even a small store to have 
hundreds of items for sale, while many online stores would have thousands (or 
millions!). With a naive rule creation, such as our previous algorithm, the growth in 
time needed to compute these rules increases exponentially. As we add more items, 
the time it takes to compute all rules increases significantly faster. Specifically, the 
total possible number of rules is 2n - 1. For our five-item dataset, there are 31 possible 
rules. For 10 items, it is 1023. For just 100 items, the number has 30 digits. Even the 
drastic increase in computing power couldn't possibly keep up with the increases in 
the number of items stored online. Therefore, we need algorithms that work smarter, 
as opposed to computers that work harder.
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The classic algorithm for affinity analysis is called the Apriori algorithm. It addresses 
the exponential problem of creating sets of items that occur frequently within a 
database, called frequent itemsets. Once these frequent itemsets are discovered, 
creating association rules is straightforward.

The intuition behind Apriori is both simple and clever. First, we ensure that a rule 
has sufficient support within the dataset. Defining a minimum support level is the 
key parameter for Apriori. To build a frequent itemset, for an itemset (A, B) to have a 
support of at least 30, both A and B must occur at least 30 times in the database. This 
property extends to larger sets as well. For an itemset (A, B, C, D) to be considered 
frequent, the set (A, B, C) must also be frequent (as must D).

These frequent itemsets can be built up and possible itemsets that are not frequent  
(of which there are many) will never be tested. This saves significant time in testing 
new rules.

Other example algorithms for affinity analysis include the Eclat and FP-growth 
algorithms. There are many improvements to these algorithms in the data mining 
literature that further improve the efficiency of the method. In this chapter, we will 
focus on the basic Apriori algorithm.

Choosing parameters
To perform association rule mining for affinity analysis, we first use the Apriori 
to generate frequent itemsets. Next, we create association rules (for example, if a 
person recommended movie X, they would also recommend movie Y) by testing 
combinations of premises and conclusions within those frequent itemsets.

For the first stage, the Apriori algorithm needs a value for the minimum support 
that an itemset needs to be considered frequent. Any itemsets with less support will 
not be considered. Setting this minimum support too low will cause Apriori to test a 
larger number of itemsets, slowing the algorithm down. Setting it too high will result 
in fewer itemsets being considered frequent.

In the second stage, after the frequent itemsets have been discovered, association 
rules are tested based on their confidence. We could choose a minimum confidence 
level, a number of rules to return, or simply return all of them and let the user decide 
what to do with them.

In this chapter, we will return only rules above a given confidence level. Therefore, 
we need to set our minimum confidence level. Setting this too low will result in rules 
that have a high support, but are not very accurate. Setting this higher will result in 
only more accurate rules being returned, but with fewer rules being discovered.
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The movie recommendation problem
Product recommendation is big business. Online stores use it to up-sell to 
customers by recommending other products that they could buy. Making better 
recommendations leads to better sales. When online shopping is selling to millions 
of customers every year, there is a lot of potential money to be made by selling more 
items to these customers.

Product recommendations have been researched for many years; however, the field 
gained a significant boost when Netflix ran their Netflix Prize between 2007 and 
2009. This competition aimed to determine if anyone can predict a user's rating of a 
film better than Netflix was currently doing. The prize went to a team that was just 
over 10 percent better than the current solution. While this may not seem like a large 
improvement, such an improvement would net millions to Netflix in revenue from 
better movie recommendations.

Obtaining the dataset
Since the inception of the Netflix Prize, Grouplens, a research group at the University 
of Minnesota, has released several datasets that are often used for testing algorithms 
in this area. They have released several versions of a movie rating dataset, which 
have different sizes. There is a version with 100,000 reviews, one with 1 million 
reviews and one with 10 million reviews.

The datasets are available from http://grouplens.org/datasets/movielens/ 
and the dataset we are going to use in this chapter is the MovieLens 1 million 
dataset. Download this dataset and unzip it in your data folder. Start a new IPython 
Notebook and type the following code:

import os
import pandas as pd
data_folder = os.path.join(os.path.expanduser("~"), "Data",  
  "ml-100k")
ratings_filename = os.path.join(data_folder, "u.data")

Ensure that ratings_filename points to the u.data file in the unzipped folder.

Loading with pandas
The MovieLens dataset is in a good shape; however, there are some changes from the 
default options in pandas.read_csv that we need to make. To start with, the data is 
separated by tabs, not commas. Next, there is no heading line. This means the first 
line in the file is actually data and we need to manually set the column names.

http://grouplens.org/datasets/movielens/
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When loading the file, we set the delimiter parameter to the tab character, tell pandas 
not to read the first row as the header (with header=None), and set the column 
names. Let's look at the following code:

all_ratings = pd.read_csv(ratings_filename, delimiter="\t", 
    header=None, names = ["UserID", "MovieID", "Rating", "Datetime"])

While we won't use it in this chapter, you can properly parse the date timestamp 
using the following line:

all_ratings["Datetime"] = pd.to_datetime(all_ratings['Datetime'], 
  unit='s')

You can view the first few records by running the following in a new cell:

all_ratings[:5]

The result will come out looking something like this:

UserID MovieID Rating Datetime
0 196 242 3 1997-12-04 15:55:49
1 186 302 3 1998-04-04 19:22:22
2 22 377 1 1997-11-07 07:18:36
3 244 51 2 1997-11-27 05:02:03
4 166 346 1 1998-02-02 05:33:16

Sparse data formats
This dataset is in a sparse format. Each row can be thought of as a cell in a large 
feature matrix of the type used in previous chapters, where rows are users and 
columns are individual movies. The first column would be each user's review  
of the first movie, the second column would be each user's review of the second 
movie, and so on.

There are 1,000 users and 1,700 movies in this dataset, which means that the full 
matrix would be quite large. We may run into issues storing the whole matrix in 
memory and computing on it would be troublesome. However, this matrix has the 
property that most cells are empty, that is, there is no review for most movies for 
most users. There is no review of movie #675 for user #213 though, and not for most 
other combinations of user and movie.
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The format given here represents the full matrix, but in a more compact way.  
The first row indicates that user #196 reviewed movie #242, giving it a ranking  
of 3 (out of five) on the December 4, 1997.

Any combination of user and movie that isn't in this database is assumed to not exist. 
This saves significant space, as opposed to storing a bunch of zeroes in memory. This 
type of format is called a sparse matrix format. As a rule of thumb, if you expect 
about 60 percent or more of your dataset to be empty or zero, a sparse format will 
take less space to store.

When computing on sparse matrices, the focus isn't usually on the data we don't 
have—comparing all of the zeroes. We usually focus on the data we have and 
compare those.

The Apriori implementation
The goal of this chapter is to produce rules of the following form: if a person 
recommends these movies, they will also recommend this movie. We will also discuss 
extensions where a person recommends a set of movies is likely to recommend 
another particular movie.

To do this, we first need to determine if a person recommends a movie. We can 
do this by creating a new feature Favorable, which is True if the person gave a 
favorable review to a movie:

all_ratings["Favorable"] = all_ratings["Rating"] > 3

We can see the new feature by viewing the dataset:

all_ratings[10:15]

UserID MovieID Rating Datetime Favorable
10 62 257 2 1997-11-12 22:07:14 False
11 286 1014 5 1997-11-17 15:38:45 True
12 200 222 5 1997-10-05 09:05:40 True
13 210 40 3 1998-03-27 21:59:54 False
14 224 29 3 1998-02-21 23:40:57 False
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We will sample our dataset to form a training dataset. This also helps reduce  
the size of the dataset that will be searched, making the Apriori algorithm run faster. 
We obtain all reviews from the first 200 users:

ratings = all_ratings[all_ratings['UserID'].isin(range(200))]

Next, we can create a dataset of only the favorable reviews in our sample:

favorable_ratings = ratings[ratings["Favorable"]]

We will be searching the user's favorable reviews for our itemsets. So, the next thing 
we need is the movies which each user has given a favorable. We can compute this 
by grouping the dataset by the User ID and iterating over the movies in each group:

favorable_reviews_by_users = dict((k, frozenset(v.values))
                                   for k, v in favorable_ratings
                                   groupby("UserID")["MovieID"])

In the preceding code, we stored the values as a frozenset, allowing us to quickly 
check if a movie has been rated by a user. Sets are much faster than lists for this type 
of operation, and we will use them in a later code.

Finally, we can create a DataFrame that tells us how frequently each movie has been 
given a favorable review:

num_favorable_by_movie = ratings[["MovieID", "Favorable"]].  
  groupby("MovieID").sum()

We can see the top five movies by running the following code:

num_favorable_by_movie.sort("Favorable", ascending=False)[:5]

Let's see the top five movies list:

MovieID Favorable
50 100
100 89
258 83
181 79
174 74
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The Apriori algorithm
The Apriori algorithm is part of our affinity analysis and deals specifically with 
finding frequent itemsets within the data. The basic procedure of Apriori builds 
up new candidate itemsets from previously discovered frequent itemsets. These 
candidates are tested to see if they are frequent, and then the algorithm iterates as 
explained here:

1. Create initial frequent itemsets by placing each item in its own itemset.  
Only items with at least the minimum support are used in this step.

2. New candidate itemsets are created from the most recently discovered 
frequent itemsets by finding supersets of the existing frequent itemsets.

3. All candidate itemsets are tested to see if they are frequent. If a candidate is 
not frequent then it is discarded. If there are no new frequent itemsets from 
this step, go to the last step.

4. Store the newly discovered frequent itemsets and go to the second step.
5. Return all of the discovered frequent itemsets.

This process is outlined in the following workflow:
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Implementation
On the first iteration of Apriori, the newly discovered itemsets will have a length 
of 2, as they will be supersets of the initial itemsets created in the first step. On the 
second iteration (after applying the fourth step), the newly discovered itemsets will 
have a length of 3. This allows us to quickly identify the newly discovered itemsets, 
as needed in second step.

We can store our discovered frequent itemsets in a dictionary, where the key is the 
length of the itemsets. This allows us to quickly access the itemsets of a given length, 
and therefore the most recently discovered frequent itemsets, with the help of the 
following code:

frequent_itemsets = {}

We also need to define the minimum support needed for an itemset to be considered 
frequent. This value is chosen based on the dataset but feel free to try different 
values. I recommend only changing it by 10 percent at a time though, as the time the 
algorithm takes to run will be significantly different! Let's apply minimum support:

min_support = 50

To implement the first step of the Apriori algorithm, we create an itemset with each 
movie individually and test if the itemset is frequent. We use frozenset, as they 
allow us to perform set operations later on, and they can also be used as keys in our 
counting dictionary (normal sets cannot). Let's look at the following code:

frequent_itemsets[1] = dict((frozenset((movie_id,)),
                                 row["Favorable"])
                                 for movie_id, row in num_favorable_ 
                                   by_movie.iterrows()
                                 if row["Favorable"] > min_support)

We implement the second and third steps together for efficiency by creating a 
function that takes the newly discovered frequent itemsets, creates the supersets, 
and then tests if they are frequent. First, we set up the function and the counting 
dictionary:

from collections import defaultdict
def find_frequent_itemsets(favorable_reviews_by_users, k_1_itemsets, 
min_support):
    counts = defaultdict(int)
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In keeping with our rule of thumb of reading through the data as little as possible, 
we iterate over the dataset once per call to this function. While this doesn't matter too 
much in this implementation (our dataset is relatively small), it is a good practice to 
get into for larger applications. We iterate over all of the users and their reviews:

    for user, reviews in favorable_reviews_by_users.items():

Next, we go through each of the previously discovered itemsets and see if it is a 
subset of the current set of reviews. If it is, this means that the user has reviewed 
each movie in the itemset. Let's look at the code:

        for itemset in k_1_itemsets:
            if itemset.issubset(reviews):

We can then go through each individual movie that the user has reviewed that isn't 
in the itemset, create a superset from it, and record in our counting dictionary that 
we saw this particular itemset. Let's look at the code:

                for other_reviewed_movie in reviews - itemset:
                    current_superset = itemset | frozenset((other_ 
                                     reviewed_movie,))
                    counts[current_superset] += 1

We end our function by testing which of the candidate itemsets have enough support 
to be considered frequent and return only those:

    return dict([(itemset, frequency) for itemset, frequency in 
counts.items() if frequency >= min_support])

To run our code, we now create a loop that iterates over the steps of the Apriori 
algorithm, storing the new itemsets as we go. In this loop, k represents the length 
of the soon-to-be discovered frequent itemsets, allowing us to access the previously 
most discovered ones by looking in our frequent_itemsets dictionary using the 
key k - 1. We create the frequent itemsets and store them in our dictionary by their 
length. Let's look at the code:

for k in range(2, 20):
    cur_frequent_itemsets =  
      find_frequent_itemsets(favorable_reviews_by_users,  
        frequent_itemsets[k-1],
          min_support)
     frequent_itemsets[k] = cur_frequent_itemsets
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We want to break out the preceding loop if we didn't find any new frequent itemsets 
(and also to print a message to let us know what is going on):

    if len(cur_frequent_itemsets) == 0:
        print("Did not find any frequent itemsets of length {}". 
          format(k))
        sys.stdout.flush()
        break

We use sys.stdout.flush() to ensure that the printouts happen 
while the code is still running. Sometimes, in large loops in particular 
cells, the printouts will not happen until the code has completed. Flushing 
the output in this way ensures that the printout happens when we want. 
Don't do it too much though—the flush operation carries a computational 
cost (as does printing) and this will slow down the program.

If we do find frequent itemsets, we print out a message to let us know the loop will 
be running again. This algorithm can take a while to run, so it is helpful to know that 
the code is still running while you wait for it to complete! Let's look at the code:

    else:
        print("I found {} frequent itemsets of length  
        {}".format(len(cur_frequent_itemsets), k))
        sys.stdout.flush()

Finally, after the end of the loop, we are no longer interested in the first set of 
itemsets anymore—these are itemsets of length one, which won't help us create 
association rules – we need at least two items to create association rules. Let's  
delete them:

del frequent_itemsets[1]

You can now run this code. It may take a few minutes, more if you have older 
hardware. If you find you are having trouble running any of the code samples,  
take a look at using an online cloud provider for additional speed. Details about 
using the cloud to do the work are given in Appendix, Next Steps.

The preceding code returns 1,718 frequent itemsets of varying lengths. You'll notice 
that the number of itemsets grows as the length increases before it shrinks. It grows 
because of the increasing number of possible rules. After a while, the large number 
of combinations no longer has the support necessary to be considered frequent. 
This results in the number shrinking. This shrinking is the benefit of the Apriori 
algorithm. If we search all possible itemsets (not just the supersets of frequent ones), 
we would be searching thousands of times more itemsets to see if they are frequent.
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Extracting association rules
After the Apriori algorithm has completed, we have a list of frequent itemsets.  
These aren't exactly association rules, but they are similar to it. A frequent itemset  
is a set of items with a minimum support, while an association rule has a premise 
and a conclusion.

We can make an association rule from a frequent itemset by taking one of the movies 
in the itemset and denoting it as the conclusion. The other movies in the itemset will 
be the premise. This will form rules of the following form: if a reviewer recommends all 
of the movies in the premise, they will also recommend the conclusion.

For each itemset, we can generate a number of association rules by setting each 
movie to be the conclusion and the remaining movies as the premise.

In code, we first generate a list of all of the rules from each of the frequent itemsets, 
by iterating over each of the discovered frequent itemsets of each length:

candidate_rules = []
for itemset_length, itemset_counts in frequent_itemsets.items():
    for itemset in itemset_counts.keys():

We then iterate over every movie in this itemset, using it as our conclusion. 
The remaining movies in the itemset are the premise. We save the premise and 
conclusion as our candidate rule:

        for conclusion in itemset:
            premise = itemset - set((conclusion,))
            candidate_rules.append((premise, conclusion))

This returns a very large number of candidate rules. We can see some by printing  
out the first few rules in the list:

print(candidate_rules[:5])

The resulting output shows the rules that were obtained:

[(frozenset({79}), 258), (frozenset({258}), 79), (frozenset({50}),  
  64), (frozenset({64}), 50), (frozenset({127}), 181)]

In these rules, the first part (the frozenset) is the list of movies in the premise,  
while the number after it is the conclusion. In the first case, if a reviewer 
recommends movie 79, they are also likely to recommend movie 258.

Next, we compute the confidence of each of these rules. This is performed much  
like in Chapter 1, Getting Started with Data Mining, with the only changes being  
those necessary for computing using the new data format.
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The process starts by creating dictionaries to store how many times we see the 
premise leading to the conclusion (a correct example of the rule) and how many  
times it doesn't (an incorrect example). Let's look at the code:

correct_counts = defaultdict(int)
incorrect_counts = defaultdict(int)

We iterate over all of the users, their favorable reviews, and over each candidate 
association rule:

for user, reviews in favorable_reviews_by_users.items():
    for candidate_rule in candidate_rules:
        premise, conclusion = candidate_rule

We then test to see if the premise is applicable to this user. In other words, did the 
user favorably review all of the movies in the premise? Let's look at the code:

        if premise.issubset(reviews):

If the premise applies, we see if the conclusion movie was also rated favorably.  
If so, the rule is correct in this instance. If not, it is incorrect. Let's look at the code:

        if premise.issubset(reviews):
            if conclusion in reviews:
                correct_counts[candidate_rule] += 1
            else:
                incorrect_counts[candidate_rule] += 1

We then compute the confidence for each rule by dividing the correct count by the 
total number of times the rule was seen:

rule_confidence = {candidate_rule: correct_counts[candidate_rule]  
  / float(correct_counts[candidate_rule] +  
    incorrect_counts[candidate_rule])
              for candidate_rule in candidate_rules}

Now we can print the top five rules by sorting this confidence dictionary and 
printing the results:

from operator import itemgetter
sorted_confidence = sorted(rule_confidence.items(),  
  key=itemgetter(1), reverse=True)
for index in range(5):
    print("Rule #{0}".format(index + 1))
    (premise, conclusion) = sorted_confidence[index][0]
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    print("Rule: If a person recommends {0} they will also  
      recommend {1}".format(premise, conclusion))
    print(" - Confidence:  
      {0:.3f}".format(rule_confidence[(premise, conclusion)]))
    print("")

The result is as follows:

Rule #1
Rule: If a person recommends frozenset({64, 56, 98, 50, 7}) they will 
also recommend 174
 - Confidence: 1.000

Rule #2
Rule: If a person recommends frozenset({98, 100, 172, 79, 50, 56}) 
they will also recommend 7
 - Confidence: 1.000

Rule #3
Rule: If a person recommends frozenset({98, 172, 181, 174, 7}) they 
will also recommend 50
 - Confidence: 1.000

Rule #4
Rule: If a person recommends frozenset({64, 98, 100, 7, 172, 50}) they 
will also recommend 174
 - Confidence: 1.000

Rule #5
Rule: If a person recommends frozenset({64, 1, 7, 172, 79, 50}) they 
will also recommend 181
 - Confidence: 1.000

The resulting printout shows only the movie IDs, which isn't very helpful without 
the names of the movies also. The dataset came with a file called u.items, which 
stores the movie names and their corresponding MovieID (as well as other 
information, such as the genre).

We can load the titles from this file using pandas. Additional information about  
the file and categories is available in the README that came with the dataset.  
The data in the files is in CSV format, but with data separated by the | symbol;  
it has no header and the encoding is important to set. The column names were  
found in the README file.

movie_name_filename = os.path.join(data_folder, "u.item")
movie_name_data = pd.read_csv(movie_name_filename, delimiter="|",  
  header=None, encoding = "mac-roman")
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movie_name_data.columns = ["MovieID", "Title", "Release Date",  
  "Video Release", "IMDB", "<UNK>", "Action", "Adventure",
    "Animation", "Children's", "Comedy", "Crime", "Documentary",  
      "Drama", "Fantasy", "Film-Noir",
  "Horror", "Musical", "Mystery", "Romance", "Sci-Fi", "Thriller", 
     "War", "Western"]

Getting the movie title is important, so we will create a function that will return a 
movie's title from its MovieID, saving us the trouble of looking it up each time. Let's 
look at the code:

def get_movie_name(movie_id):

We look up the movie_name_data DataFrame for the given MovieID and return only 
the title column:

    title_object = movie_name_data[movie_name_data["MovieID"] ==  
      movie_id]["Title"]

We use the values parameter to get the actual value (and not the pandas Series 
object that is currently stored in title_object). We are only interested in the first 
value—there should only be one title for a given MovieID anyway!

    title = title_object.values[0]

We end the function by returning the title as needed. Let's look at the code:

    return title

In a new IPython Notebook cell, we adjust our previous code for printing out the top 
rules to also include the titles:

for index in range(5):
    print("Rule #{0}".format(index + 1))
    (premise, conclusion) = sorted_confidence[index][0]
    premise_names = ", ".join(get_movie_name(idx) for idx  
      in premise)
    conclusion_name = get_movie_name(conclusion)
    print("Rule: If a person recommends {0} they will  
      also recommend {1}".format(premise_names, conclusion_name))
    print(" - Confidence: {0:.3f}".format(confidence[(premise,  
      conclusion)]))
    print("")
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The result is much more readable (there are still some issues, but we can ignore them 
for now):

Rule #1
Rule: If a person recommends Shawshank Redemption, The (1994), Pulp 
Fiction (1994), Silence of the Lambs, The (1991), Star Wars (1977), 
Twelve Monkeys (1995) they will also recommend Raiders of the Lost Ark 
(1981)
 - Confidence: 1.000

Rule #2
Rule: If a person recommends Silence of the Lambs, The (1991), Fargo 
(1996), Empire Strikes Back, The (1980), Fugitive, The (1993), Star 
Wars (1977), Pulp Fiction (1994) they will also recommend Twelve 
Monkeys (1995)
 - Confidence: 1.000

Rule #3
Rule: If a person recommends Silence of the Lambs, The (1991), Empire 
Strikes Back, The (1980), Return of the Jedi (1983), Raiders of the 
Lost Ark (1981), Twelve Monkeys (1995) they will also recommend Star 
Wars (1977)
 - Confidence: 1.000

Rule #4
Rule: If a person recommends Shawshank Redemption, The (1994), Silence 
of the Lambs, The (1991), Fargo (1996), Twelve Monkeys (1995), Empire 
Strikes Back, The (1980), Star Wars (1977) they will also recommend 
Raiders of the Lost Ark (1981)
 - Confidence: 1.000

Rule #5
Rule: If a person recommends Shawshank Redemption, The (1994), Toy 
Story (1995), Twelve Monkeys (1995), Empire Strikes Back, The (1980), 
Fugitive, The (1993), Star Wars (1977) they will also recommend Return 
of the Jedi (1983)
 - Confidence: 1.000

Evaluation
In a broad sense, we can evaluate the association rules using the same concept as for 
classification. We use a test set of data that was not used for training, and evaluate 
our discovered rules based on their performance in this test set.
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To do this, we will compute the test set confidence, that is, the confidence of each 
rule on the testing set.

We won't apply a formal evaluation metric in this case; we simply examine the rules 
and look for good examples.

First, we extract the test dataset, which is all of the records we didn't use in the 
training set. We used the first 200 users (by ID value) for the training set, and we will 
use all of the rest for the testing dataset. As with the training set, we will also get the 
favorable reviews for each of the users in this dataset as well. Let's look at the code:

test_dataset =  
all_ratings[~all_ratings['UserID'].isin(range(200))]
test_favorable = test_dataset[test_dataset["Favorable"]]
test_favorable_by_users = dict((k, frozenset(v.values)) for k, v  
  in test_favorable.groupby("UserID")["MovieID"])

We then count the correct instances where the premise leads to the conclusion, in the 
same way we did before. The only change here is the use of the test data instead of 
the training data. Let's look at the code:

correct_counts = defaultdict(int)
incorrect_counts = defaultdict(int)
for user, reviews in test_favorable_by_users.items():
    for candidate_rule in candidate_rules:
        premise, conclusion = candidate_rule
        if premise.issubset(reviews):
            if conclusion in reviews:
                correct_counts[candidate_rule] += 1
            else:
                incorrect_counts[candidate_rule] += 1

Next, we compute the confidence of each rule from the correct counts. Let's look at 
the code:

test_confidence = {candidate_rule: correct_counts[candidate_rule] 
  / float(correct_counts[candidate_rule] + incorrect_counts 
    [candidate_rule])
  for candidate_rule in rule_confidence}

Finally, we print out the best association rules with the titles instead of the  
movie IDs.

for index in range(5):
    print("Rule #{0}".format(index + 1))
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    (premise, conclusion) = sorted_confidence[index][0]
    premise_names = ", ".join(get_movie_name(idx) for idx in  
      premise)
    conclusion_name = get_movie_name(conclusion)
    print("Rule: If a person recommends {0} they will also  
      recommend {1}".format(premise_names, conclusion_name))
    print(" - Train Confidence:  
      {0:.3f}".format(rule_confidence.get((premise, conclusion),  
        -1)))
    print(" - Test Confidence:  
     {0:.3f}".format(test_confidence.get((premise, conclusion),  
        -1)))
    print("")

We can now see which rules are most applicable in new unseen data:

Rule #1
Rule: If a person recommends Shawshank Redemption, The (1994), Pulp 
Fiction (1994), Silence of the Lambs, The (1991), Star Wars (1977), 
Twelve Monkeys (1995) they will also recommend Raiders of the Lost Ark 
(1981)
 - Train Confidence: 1.000
 - Test Confidence: 0.909

Rule #2
Rule: If a person recommends Silence of the Lambs, The (1991), Fargo 
(1996), Empire Strikes Back, The (1980), Fugitive, The (1993), Star 
Wars (1977), Pulp Fiction (1994) they will also recommend Twelve 
Monkeys (1995)
 - Train Confidence: 1.000
 - Test Confidence: 0.609

Rule #3
Rule: If a person recommends Silence of the Lambs, The (1991), Empire 
Strikes Back, The (1980), Return of the Jedi (1983), Raiders of the 
Lost Ark (1981), Twelve Monkeys (1995) they will also recommend Star 
Wars (1977)
 - Train Confidence: 1.000
 - Test Confidence: 0.946

Rule #4
Rule: If a person recommends Shawshank Redemption, The (1994), Silence 
of the Lambs, The (1991), Fargo (1996), Twelve Monkeys (1995), Empire 
Strikes Back, The (1980), Star Wars (1977) they will also recommend 
Raiders of the Lost Ark (1981)
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 - Train Confidence: 1.000
 - Test Confidence: 0.971

Rule #5
Rule: If a person recommends Shawshank Redemption, The (1994), Toy 
Story (1995), Twelve Monkeys (1995), Empire Strikes Back, The (1980), 
Fugitive, The (1993), Star Wars (1977) they will also recommend Return 
of the Jedi (1983)
 - Train Confidence: 1.000
 - Test Confidence: 0.900

The second rule, for instance, has a perfect confidence in the training data, but it 
is only accurate in 60 percent of cases for the test data. Many of the other rules in 
the top 10 have high confidences in test data though, making them good rules for 
making recommendations.

If you are looking through the rest of the rules, some will have a 
test confidence of -1. Confidence values are always between 0 and 
1. This value indicates that the particular rule wasn't found in the 
test dataset at all.

Summary
In this chapter, we performed affinity analysis in order to recommend movies based 
on a large set of reviewers. We did this in two stages. First, we found frequent 
itemsets in the data using the Apriori algorithm. Then, we created association rules 
from those itemsets.

The use of the Apriori algorithm was necessary due to the size of the dataset.  
While in Chapter 1, Getting Started With Data Mining, we used a brute-force  
approach, the exponential growth in the time needed to compute those rules 
required a smarter approach. This is a common pattern for data mining: we can  
solve many problems in a brute force manner, but smarter algorithms allow us to 
apply the concepts to larger datasets.

We performed training on a subset of our data in order to find the association rules, 
and then tested those rules on the rest of the data—a testing set. From what we 
discussed in the previous chapters, we could extend this concept to use cross-fold 
validation to better evaluate the rules. This would lead to a more robust evaluation 
of the quality of each rule.
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So far, all of our datasets have been in terms of features. However, not all datasets 
are "pre-defined" in this way. In the next chapter, we will look at scikit-learn's 
transformers (they were introduced in Chapter 3, Predicting Sports Winners with 
Decision Trees) as a way to extract features from data. We will discuss how to 
implement our own transformers, extend existing ones, and concepts we can 
implement using them.



[ 81 ]

Extracting Features with 
Transformers

The datasets we have used so far have been described in terms of features. In the 
previous chapter, we used a transaction-centric dataset. However, ultimately this 
was just a different format for representing feature-based data.

There are many other types of datasets, including text, images, sounds, movies, or 
even real objects. Most data mining algorithms, however, rely on having numerical 
or categorical features. This means we need a way to represent these types before we 
input them into the data mining algorithm.

In this chapter, we will discuss how to extract numerical and categorical features, 
and choose the best features when we do have them. We will discuss some common 
patterns and techniques for extracting features.

The key concepts introduced in this chapter include:

• Extracting features from datasets
• Creating new features
• Selecting good features
• Creating your own transformer for custom datasets
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Feature extraction
Extracting features is one of the most critical tasks in data mining, and it 
generally affects your end result more than the choice of data mining algorithm. 
Unfortunately, there are no hard and fast rules for choosing features that will result 
in high performance data mining. In many ways, this is where the science of data 
mining becomes more of an art. Creating good features relies on intuition, domain 
expertise, data mining experience, trial and error, and sometimes a little luck.

Representing reality in models
Not all datasets are presented in terms of features. Sometimes, a dataset consists 
of nothing more than all of the books that have been written by a given author. 
Sometimes, it is the film of each of the movies released in 1979. At other times,  
it is a library collection of interesting historical artifacts.

From these datasets, we may want to perform a data mining task. For the books, we 
may want to know the different categories that the author writes. In the films, we 
may wish to see how women are portrayed. In the historical artifacts, we may want 
to know whether they are from one country or another. It isn't possible to just pass 
these raw datasets into a decision tree and see what the result is.

For a data mining algorithm to assist us here, we need to represent these as features. 
Features are a way to create a model and the model provides an approximation of 
reality in a way that data mining algorithms can understand. Therefore, a model is 
just a simplified version of some aspect of the real world. As an example, the game of 
chess is a simplified model for historical warfare.

Selecting features has another advantage: they reduce the complexity of the real 
world into a more manageable model. Imagine how much information it would take 
to properly, accurately, and fully describe a real-world object to someone that has 
no background knowledge of the item. You would need to describe the size, weight, 
texture, composition, age, flaws, purpose, origin, and so on.

The complexity of real objects is too much for current algorithms, so we use these 
simpler models instead.

This simplification also focuses our intent in the data mining application. In later 
chapters, we will look at clustering and where it is critically important. If you put 
random features in, you will get random results out.

However, there is a downside as this simplification reduces the detail, or may 
remove good indicators of the things we wish to perform data mining on.
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Thought should always be given to how to represent reality in the form of a model. 
Rather than just using what has been used in the past, you need to consider the goal 
of the data mining exercise. What are you trying to achieve? In Chapter 3, Predicting 
Sports Winners with Decision Trees, we created features by thinking about the goal 
(predicting winners) and used a little domain knowledge to come up with ideas for 
new features.

Not all features need to be numeric or categorical. Algorithms have 
been developed that work directly on text, graphs, and other data 
structures. Unfortunately, those algorithms are outside the scope of 
this book. In this book, we mainly use numeric or categorical features.

The Adult dataset is a great example of taking a complex reality and attempting to 
model it using features. In this dataset, the aim is to estimate if someone earns more 
than $50,000 per year. To download the dataset, navigate to http://archive.ics.
uci.edu/ml/datasets/Adult and click on the Data Folder link. Download the 
adult.data and adult.names into a directory named Adult in your data folder.

This dataset takes a complex task and describes it in features. These features describe 
the person, their environment, their background, and their life status.

Open a new IPython Notebook for this chapter and set the data's filename and 
import pandas to load the file:

import os
import pandas as pd
data_folder = os.path.join(os.path.expanduser("~"), "Data",  
  "Adult")
adult_filename = os.path.join(data_folder, "adult.data")

Using pandas as before, we load the file with read_csv:
adult = pd.read_csv(adult_filename, header=None,
    names=["Age", "Work-Class", "fnlwgt",
    "Education", "Education-Num",
    "Marital-Status", "Occupation",
    "Relationship", "Race", "Sex",
    "Capital-gain", "Capital-loss",
    "Hours-per-week", "Native-Country",
    "Earnings-Raw"])

Most of the code is the same as in the previous chapters.

http://archive.ics.uci.edu/ml/datasets/Adult
http://archive.ics.uci.edu/ml/datasets/Adult
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The adult file itself contains two blank lines at the end of the file. By default, pandas 
will interpret the penultimate new line to be an empty (but valid) row. To remove 
this, we remove any line with invalid numbers (the use of inplace just makes sure 
the same Dataframe is affected, rather than creating a new one):

adult.dropna(how='all', inplace=True)

Having a look at the dataset, we can see a variety of features from adult.columns:

adult.columns

The results show each of the feature names that are stored inside an Index object 
from pandas:

Index(['Age', 'Work-Class', 'fnlwgt', 'Education',  
'Education-Num', 'Marital-Status', 'Occupation', 'Relationship',  
'Race', 'Sex', 'Capital-gain', 'Capital-loss', 'Hours-per-week',  
'Native-Country', 'Earnings-Raw'], dtype='object')

Common feature patterns
While there are millions of ways to create features, there are some common patterns 
that are employed across different disciplines. However, choosing appropriate 
features is tricky and it is worth considering how a feature might correlate to the end 
result. As the adage says, don't judge a book by its cover—it is probably not worth 
considering the size of a book if you are interested in the message contained within.

Some commonly used features focus on the physical properties of the real world 
objects being studied, for example:

• Spatial properties such as the length, width, and height of an object
• Weight and/or density of the object
• Age of an object or its components
• The type of the object
• The quality of the object

Other features might rely on the usage or history of the object:

• The producer, publisher, or creator of the object
• The year of manufacturing
• The use of the object
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Other features describe a dataset in terms of its components:

• Frequency of a given subcomponent, such as a word in a book
• Number of subcomponents and/or the number of different subcomponents
• Average size of the subcomponents, such as the average sentence length

Ordinal features allow us to perform ranking, sorting, and grouping of similar 
values. As we have seen in previous chapters, features can be numerical or 
categorical. Numerical features are often described as being ordinal. For example, 
three people, Alice, Bob and Charlie, may have heights of 1.5 m, 1.6 m and 1.7 m. We 
would say that Alice and Bob are more similar in height than are Alice and Charlie.

The Adult dataset that we loaded in the last section contains examples of continuous, 
ordinal features. For example, the Hours-per-week feature tracks how many hours 
per week people work. Certain operations make sense on a feature like this. They 
include computing the mean, standard deviation, minimum and maximum. There is 
a function in pandas for giving some basic summary stats of this type:

adult["Hours-per-week"].describe()

The result tells us a little about this feature.

count    32561.000000
mean        40.437456
std         12.347429
min          1.000000
25%         40.000000
50%         40.000000
75%         45.000000
max         99.000000
dtype: float64

Some of these operations do not make sense for other features. For example, it 
doesn't make sense to compute the sum of the education statuses.

There are also features that are not numerical, but still ordinal. The Education 
feature in the Adult dataset is an example of this. For example, a Bachelor's degree 
is a higher education status than finishing high school, which is a higher status than 
not completing high school. It doesn't quite make sense to compute the mean of these 
values, but we can create an approximation by taking the median value. The dataset 
gives a helpful feature Education-Num, which assigns a number that is basically 
equivalent to the number of years of education completed. This allows us to quickly 
compute the median:

adult["Education-Num"].median()
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The result is 10, or finishing one year past high school. If we didn't have this, we 
could compute the median by creating an ordering over the education values.

Features can also be categorical. For instance, a ball can be a tennis ball, cricket ball, 
football, or any other type of ball. Categorical features are also referred to as nominal 
features. For nominal features, the values are either the same or they are different. 
While we could rank balls by size or weight, just the category alone isn't enough to 
compare things. A tennis ball is not a cricket ball, and it is also not a football. We 
could argue that a tennis ball is more similar to a cricket ball (say, in size), but the 
category alone doesn't differentiate this—they are the same, or they are not.

We can convert categorical features to numerical features using the one-hot 
encoding, as we saw in Chapter 3, Predicting Sports Winners with Decision Trees. For 
the aforementioned categories of balls, we can create three new binary features: is a 
tennis ball, is a cricket ball, and is a football. For a tennis ball, the vector 
would be [1, 0, 0]. A cricket ball has the values [0, 1, 0], while a football has the values 
[0, 0, 1]. These features are binary, but can be used as continuous features by many 
algorithms. One key reason for doing this is that it easily allows for direct numerical 
comparison (such as computing the distance between samples).

The Adult dataset contains several categorical features, with Work-Class being one 
example. While we could argue that some values are of higher rank than others (for 
instance, a person with a job is likely to have a better income than a person without), 
it doesn't make sense for all values. For example, a person working for the state 
government is not more or less likely to have a higher income than someone working 
in the private sector.

We can view the unique values for this feature in the dataset using the  
unique() function:

adult["Work-Class"].unique()

The result shows the unique values in this column:

array([' State-gov', ' Self-emp-not-inc', ' Private', ' Federal-gov',
       ' Local-gov', ' ?', ' Self-emp-inc', ' Without-pay',
       ' Never-worked', nan], dtype=object)

There are some missing values in the preceding dataset, but they won't affect our 
computations in this example.
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Similarly, we can convert numerical features to categorical features through a 
process called discretization, as we saw in Chapter 4, Recommending Movies Using 
Affiity Analysis. We can call any person who is taller than 1.7 m tall, and any person 
shorter than 1.7 m short. This gives us a categorical feature (although still an ordinal 
one). We do lose some data here. For instance, two people, one 1.69 m tall and one 
1.71 m, will be in two different categories and considered drastically different from 
each other. In contrast, a person 1.2 m tall will be considered "of roughly the same 
height" as the person 1.69 m tall! This loss of detail is a side effect of discretization, 
and it is an issue that we deal with when creating models.

In the Adult dataset, we can create a LongHours feature, which tells us if a  
person works more than 40 hours per week. This turns our continuous feature 
(Hours-per-week) into a categorical one:

adult["LongHours"] = adult["Hours-per-week"] > 40

Creating good features
Modeling, and the loss of information that the simplification causes, are the reasons 
why we do not have data mining methods that can just be applied to any dataset. A 
good data mining practitioner will have, or obtain, domain knowledge in the area 
they are applying data mining to. They will look at the problem, the available data, 
and come up with a model that represents what they are trying to achieve.

For instance, a height feature may describe one component of a person, but may 
not describe their academic performance well. If we were attempting to predict a 
person's grade, we may not bother measuring each person's height.

This is where data mining becomes more art than science. Extracting good features 
is difficult and is the topic of significant and ongoing research. Choosing better 
classification algorithms can improve the performance of a data mining application, 
but choosing better features is often a better option.

In all data mining applications, you should first outline what you are looking for 
before you start designing the methodology that will find it. This will dictate the 
types of features you are aiming for, the types of algorithms that you can use, and 
the expectations on the final result.
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Feature selection
We will often have a large number of features to choose from, but we wish to select 
only a small subset. There are many possible reasons for this:

• Reducing complexity: Many data mining algorithms need more time and 
resources with increase in the number of features. Reducing the number 
of features is a great way to make an algorithm run faster or with fewer 
resources.

• Reducing noise: Adding extra features doesn't always lead to better 
performance. Extra features may confuse the algorithm, finding correlations 
and patterns that don’t have meaning (this is common in smaller datasets). 
Choosing only the appropriate features is a good way to reduce the chance of 
random correlations that have no real meaning.

• Creating readable models: While many data mining algorithms will happily 
compute an answer for models with thousands of features, the results may be 
difficult to interpret for a human. In these cases, it may be worth using fewer 
features and creating a model that a human can understand.

Some classification algorithms can handle data with issues such as these. Getting 
the data right and getting the features to effectively describe the dataset you are 
modeling can still assist algorithms.

There are some basic tests we can perform, such as ensuring that the features are at 
least different. If a feature's values are all same, it can't give us extra information to 
perform our data mining.

The VarianceThreshold transformer in scikit-learn, for instance, will remove any 
feature that doesn't have at least a minimum level of variance in the values. To show 
how this works, we first create a simple matrix using NumPy:

import numpy as np
X = np.arange(30).reshape((10, 3))

The result is the numbers zero to 29, in three columns and 10 rows. This represents a 
synthetic dataset with 10 samples and three features:

array([[ 0,  1,  2],
       [ 3,  4,  5],
       [ 6,  7,  8],
       [ 9, 10, 11],
       [12, 13, 14],
       [15, 16, 17],
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       [18, 19, 20],
       [21, 22, 23],
       [24, 25, 26],
       [27, 28, 29]])

Then, we set the entire second column/feature to the value 1:

X[:,1] = 1

The result has lots of variance in the first and third rows, but no variance in the 
second row:

array([[ 0,  1,  2],
       [ 3,  1,  5],
       [ 6,  1,  8],
       [ 9,  1, 11],
       [12,  1, 14],
       [15,  1, 17],
       [18,  1, 20],
       [21,  1, 23],
       [24,  1, 26],
       [27,  1, 29]])

We can now create a VarianceThreshold transformer and apply it to our dataset:

from sklearn.feature_selection import VarianceThreshold
vt = VarianceThreshold()
Xt = vt.fit_transform(X)

Now, the result Xt does not have the second column:

array([[ 0,  2],
       [ 3,  5],
       [ 6,  8],
       [ 9, 11],
       [12, 14],
       [15, 17],
       [18, 20],
       [21, 23],
       [24, 26],
       [27, 29]])

We can observe the variances for each column by printing the vt.variances_ 
attribute:

print(vt.variances_)



Extracting Features with Transformers

[ 90 ]

The result shows that while the first and third column contains at least some 
information, the second column had no variance:

array([ 74.25,   0.  ,  74.25])

A simple and obvious test like this is always good to run when seeing data for 
the first time. Features with no variance do not add any value to a data mining 
application; however, they can slow down the performance of the algorithm.

Selecting the best individual features
If we have a number of features, the problem of finding the best subset is a difficult 
task. It relates to solving the data mining problem itself, multiple times. As we saw 
in Chapter 4, Recommending Movies Using Affinity Analysis, subset-based tasks increase 
exponentially as the number of features increase. This exponential growth in time 
needed is also true for finding the best subset of features.

A workaround to this problem is not to look for a subset that works well together, 
rather than just finding the best individual features. This univariate feature selection 
gives us a score based on how well a feature performs by itself. This is usually done 
for classification tasks, and we generally measure some type of correlation between a 
variable and the target class.

The scikit-learn package has a number of transformers for performing univariate 
feature selection. They include SelectKBest, which returns the k best performing 
features, and SelectPercentile, which returns the top r% of features. In both cases, 
there are a number of methods of computing the quality of a feature.

There are many different methods to compute how effectively a single feature 
correlates with a class value. A commonly used method is the chi-squared (χ2) test. 
Other methods include mutual information and entropy.

We can observe single-feature tests in action using our Adult dataset. First, we 
extract a dataset and class values from our pandas DataFrame. We get a selection of 
the features:

X = adult[["Age", "Education-Num", "Capital-gain", "Capital-loss",  
  "Hours-per-week"]].values

We will also create a target class array by testing whether the Earnings-Raw value  
is above $50,000 or not. If it is, the class will be True. Otherwise, it will be False. 
Let's look at the code:

y = (adult["Earnings-Raw"] == ' >50K').values
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Next, we create our transformer using the chi2 function and a SelectKBest 
transformer:

from sklearn.feature_selection import SelectKBest
from sklearn.feature_selection import chi2
transformer = SelectKBest(score_func=chi2, k=3)

Running fit_transform will call fit and then transform with the same dataset.  
The result will create a new dataset, choosing only the best three features.  
Let's look at the code:

Xt_chi2 = transformer.fit_transform(X, y)

The resulting matrix now only contains three features. We can also get the scores  
for each column, allowing us to find out which features were used. Let's look at  
the code:

print(transformer.scores_)

The printed results give us these scores:

[  8.60061182e+03   2.40142178e+03   8.21924671e+07   1.37214589e+06
   6.47640900e+03]

The highest values are for the first, third, and fourth columns Correlates to the Age, 
Capital-Gain, and Capital-Loss features. Based on a univariate feature selection, 
these are the best features to choose.

If you'd like to find out more about the features in the Adult dataset, 
take a look at the adult.names file that comes with the dataset and 
the academic paper it references.

We could also implement other correlations, such as the Pearson's correlation 
coefficient. This is implemented in SciPy, a library used for scientific computing 
(scikit-learn uses it as a base).

If scikit-learn is working on your computer, so is SciPy. You do not 
need to install anything further to get this sample working.

First, we import the pearsonr function from SciPy:

from scipy.stats import pearsonr
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The preceding function almost fits the interface needed to be used in scikit-learn's 
univariate transformers. The function needs to accept two arrays (x and y in our 
example) as parameters and returns two arrays, the scores for each feature and the 
corresponding p-values. The chi2 function we used earlier only uses the required 
interface, which allowed us to just pass it directly to SelectKBest.

The pearsonr function in SciPy accepts two arrays; however, the X array it accepts is 
only one dimension. We will write a wrapper function that allows us to use this for 
multivariate arrays like the one we have. Let's look at the code:

def multivariate_pearsonr(X, y):

We create our scores and pvalues arrays, and then iterate over each column of  
the dataset:

    scores, pvalues = [], []
    for column in range(X.shape[1]):

We compute the Pearson correlation for this column only and the record both the 
score and p-value.

        cur_score, cur_p = pearsonr(X[:,column], y)
        scores.append(abs(cur_score))
        pvalues.append(cur_p)

The Pearson value could be between -1 and 1. A value of 1 implies a 
perfect correlation between two variables, while a value of -1 implies a 
perfect negative correlation, that is, high values in one variable give low 
values in the other and vice versa. Such features are really useful to have, 
but would be discarded. For this reason, we have stored the absolute 
value in the scores array, rather than the original signed value.

Finally, we return the scores and p-values in a tuple:

    return (np.array(scores), np.array(pvalues))

Now, we can use the transformer class as before to rank the features using the 
Pearson correlation coefficient:

transformer = SelectKBest(score_func=multivariate_pearsonr, k=3)
Xt_pearson = transformer.fit_transform(X, y)
print(transformer.scores_)
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This returns a different set of features! The features chosen this way are the first, 
second, and fifth columns: the Age, Education, and Hours-per-week worked. This 
shows that there is not a definitive answer to what the best features are— it depends 
on the metric.

We can see which feature set is better by running them through a classifier. Keep in 
mind that the results only indicate which subset is better for a particular classifier 
and/or feature combination—there is rarely a case in data mining where one method 
is strictly better than another in all cases! Let's look at the code:

from sklearn.tree import DecisionTreeClassifier
from sklearn.cross_validation import cross_val_score
clf = DecisionTreeClassifier(random_state=14)
scores_chi2 = cross_val_score(clf, Xt_chi2, y, scoring='accuracy')
scores_pearson = cross_val_score(clf, Xt_pearson, y,  
  scoing='accuracy')

The chi2 average here is 0.83, while the Pearson score is lower at 0.77. For this 
combination, chi2 returns better results!

It is worth remembering the goal of this data mining activity: predicting wealth. 
Using a combination of good features and feature selection, we can achieve 83 
percent accuracy using just three features of a person!

Feature creation
Sometimes, just selecting features from what we have isn't enough. We can create 
features in different ways from features we already have. The one-hot encoding 
method we saw previously is an example of this. Instead of having a category 
features with options A, B and C, we would create three new features Is it A?, Is it B?, 
Is it C?.

Creating new features may seem unnecessary and to have no clear benefit—after all, 
the information is already in the dataset and we just need to use it. However, some 
algorithms struggle when features correlate significantly, or if there are redundant 
features. They may also struggle if there are redundant features.

For this reason, there are various ways to create new features from the features we 
already have.

We are going to load a new dataset, so now is a good time to start a new IPython 
Notebook. Download the Advertisements dataset from http://archive.ics.uci.
edu/ml/datasets/Internet+Advertisements and save it to your Data folder.

http://archive.ics.uci.edu/ml/datasets/Internet+Advertisements
http://archive.ics.uci.edu/ml/datasets/Internet+Advertisements
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Next, we need to load the dataset with pandas. First, we set the data's filename  
as always:

import os
import numpy as np
import pandas as pd
data_folder = os.path.join(os.path.expanduser("~"), "Data")
data_filename = os.path.join(data_folder, "Ads", "ad.data")

There are a couple of issues with this dataset that stop us from loading it easily.  
First, the first few features are numerical, but pandas will load them as strings.  
To fix this, we need to write a converting function that will convert strings to 
numbers if possible. Otherwise, we will get a NaN (which is short for Not a 
Number), which is a special value that indicates that the value could not be 
interpreted as a number. It is similar to none or null in other programming languages.

Another issue with this dataset is that some values are missing. These are 
represented in the dataset using the string ?. Luckily, the question mark doesn't 
convert to a float, so we can convert those to NaNs using the same concept. In further 
chapters, we will look at other ways of dealing with missing values like this.

We will create a function that will do this conversion for us:

def convert_number(x):

First, we want to convert the string to a number and see if that fails. Then, we will 
surround the conversion in a try/except block, catching a ValueError exception 
(which is what is thrown if a string cannot be converted into a number this way):

    try:
        return float(x)
    except ValueError:

Finally, if the conversion failed, we get a NaN that comes from the NumPy library 
we imported previously:

        return np.nan

Now, we create a dictionary for the conversion. We want to convert all of the 
features to floats:

converters = defaultdict(convert_number
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Also, we want to set the final column (column index #1558), which is the class,  
to a binary feature. In the Adult dataset, we created a new feature for this. In the 
dataset, we will convert the feature while we load it.

converters[1558] = lambda x: 1 if x.strip() == "ad." else 0

Now we can load the dataset using read_csv. We use the converters parameter to 
pass our custom conversion into pandas:

ads = pd.read_csv(data_filename, header=None, converters=converters)

The resulting dataset is quite large, with 1,559 features and more than 2,000 rows. 
Here are some of the feature values the first five, printed by inserting ads[:5]  
into a new cell:

This dataset describes images on websites, with the goal of determining whether a 
given image is an advertisement or not.

The features in this dataset are not described well by their headings. There are two 
files accompanying the ad.data file that have more information: ad.DOCUMENTATION 
and ad.names. The first three features are the height, width, and ratio of the image 
size. The final feature is 1 if it is an advertisement and 0 if it is not.

The other features are 1 for the presence of certain words in the URL, alt text, or 
caption of the image. These words, such as the word sponsor, are used to determine 
if the image is likely to be an advertisement. Many of the features overlap 
considerably, as they are combinations of other features. Therefore, this dataset has a 
lot of redundant information.

With our dataset loaded in pandas, we will now extract the x and y data for our 
classification algorithms. The x matrix will be all of the columns in our Dataframe, 
except for the last column. In contrast, the y array will be only that last column, 
feature #1558. Let's look at the code:

X = ads.drop(1558, axis=1).values
y = ads[1558]
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Principal Component Analysis
In some datasets, features heavily correlate with each other. For example, the speed 
and the fuel consumption would be heavily correlated in a go-kart with a single gear. 
While it can be useful to find these correlations for some applications, data mining 
algorithms typically do not need the redundant information.

The ads dataset has heavily correlated features, as many of the keywords are 
repeated across the alt text and caption.

The Principal Component Analysis (PCA) aims to find combinations of 
features that describe the dataset in less information. It aims to discover principal 
components, which are features that do not correlate with each other and explain the 
information—specifically the variance—of the dataset. What this means is that we 
can often capture most of the information in a dataset in fewer features.

We apply PCA just like any other transformer. It has one key parameter, which is the 
number of components to find. By default, it will result in as many features as you 
have in the original dataset. However, these principal components are ranked—the 
first feature explains the largest amount of the variance in the dataset, the second a 
little less, and so on. Therefore, finding just the first few features is often enough to 
explain much of the dataset. Let's look at the code:

from sklearn.decomposition import PCA
pca = PCA(n_components=5)
Xd = pca.fit_transform(X)

The resulting matrix, Xd, has just five features. However, let's look at the amount of 
variance that is explained by each of these features:

np.set_printoptions(precision=3, suppress=True)
pca.explained_variance_ratio_

The result, array([ 0.854,  0.145,  0.001,  0.   ,  0.   ]), shows  
us that the first feature accounts for 85.4 percent of the variance in the dataset,  
the second accounts for 14.5 percent, and so on. By the fourth feature, less than  
one-tenth of a percent of the variance is contained in the feature. The other 1,553 
features explain even less.
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The downside to transforming data with PCA is that these features are often complex 
combinations of the other features. For example, the first feature of the preceding 
code starts with [-0.092, -0.995, -0.024], that is, multiply the first feature in the 
original dataset by -0.092, the second by -0.995, the third by -0.024. This feature has 
1,558 values of this form, one for each of the original datasets (although many are 
zeros). Such features are indistinguishable by humans and it is hard to glean much 
relevant information from without a lot of experience working with them.

Using PCA can result in models that not only approximate the original dataset,  
but can also improve the performance in classification tasks:

clf = DecisionTreeClassifier(random_state=14)
scores_reduced = cross_val_score(clf, Xd, y, scoring='accuracy')

The resulting score is 0.9356, which is (slightly) higher than our original score using 
all of the original features. PCA won't always give a benefit like this, but it does more 
often than not.

We are using PCA here to reduce the number of features in our dataset. 
As a general rule, you shouldn't use it to reduce overfitting in your 
data mining experiments. The reason for this is that PCA doesn't take 
classes into account. A better solution is to use regularization. An 
introduction, with code, is available at http://blog.datadive.
net/selecting-good-features-part-ii-linear-models-
and-regularization/.

Another advantage is that PCA allows you to plot datasets that you otherwise 
couldn't easily visualize. For example, we can plot the first two features returned  
by PCA.

First, we tell IPython to display plots inline and import pyplot:

%matplotlib inline
from matplotlib import pyplot as plt

Next, we get all of the distinct classes in our dataset (there are only two: is ad or  
not ad):

classes = set(y)

We also assign colors to each of these classes:

colors = ['red', 'green']

We use zip to iterate over both lists at the same time:

for cur_class, color in zip(classes, colors):

http://blog.datadive.net/selecting-good-features-part-ii-linear-models-and-regularization/
http://blog.datadive.net/selecting-good-features-part-ii-linear-models-and-regularization/
http://blog.datadive.net/selecting-good-features-part-ii-linear-models-and-regularization/
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We then create a mask of all of the samples that belong to the current class:

    mask = (y == cur_class).values

Finally, we use the scatter function in pyplot to show where these are. We use the 
first two features as our x and y values in this plot.

    plt.scatter(Xd[mask,0], Xd[mask,1], marker='o', color=color,  
      label=int(cur_class))

Finally, outside the loop, we create a legend and show the graph, showing where the 
samples from each class appear:

plt.legend()
plt.show()

Creating your own transformer
As the complexity and type of dataset changes, you might find that you can't find an 
existing feature extraction transformer that fits your needs. We will see an example 
of this in Chapter 7, Discovering Accounts to Follow Using Graph Mining, where we 
create new features from graphs.
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A transformer is akin to a converting function. It takes data of one form as input 
and returns data of another form as output. Transformers can be trained using some 
training dataset, and these trained parameters can be used to convert testing data.

The transformer API is quite simple. It takes data of a specific format as input and 
returns data of another format (either the same as the input or different) as output. 
Not much else is required of the programmer.

The transformer API
Transformers have two key functions:

• fit(): This takes a training set of data as input and sets internal parameters
• transform(): This performs the transformation itself. This can take either 

the training dataset, or a new dataset of the same format

Both fit() and transform() fuction should take the same data type as input, but 
transform() can return data of a different type.

We are going to create a trivial transformer to show the API in action. The 
transformer will take a NumPy array as input, and discretize it based on the mean. 
Any value higher than the mean (of the training data) will be given the value 1 and 
any value lower or equal to the mean will be given the value 0.

We did a similar transformation with the Adult dataset using pandas: we took  
the Hours-per-week feature and created a LongHours feature if the value was more 
than 40 hours per week. This transformer is different for two reasons. First, the code 
will conform to the scikit-learn API, allowing us to use it in a pipeline. Second, the 
code will learn the mean, rather than taking it as a fixed value (such as 40 in the 
LongHours example).

Implementation details
To start, open up the IPython Notebook that we used for the Adult dataset.  
Then, click on the Cell menu item and choose Run All. This will rerun all of  
the cells and ensure that the notebook is up to date.

First, we import the TransformerMixin, which sets the API for us. While Python 
doesn't have strict interfaces (as opposed to languages like Java), using a mixin  
like this allows scikit-learn to determine that the class is actually a transformer.  
We also need to import a function that checks the input is of a valid type.  
We will use that soon. 
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Let's look at the code:

from sklearn.base import TransformerMixin
from sklearn.utils import as_float_array

Now, create a new class that subclasses from our mixin:

class MeanDiscrete(TransformerMixin):

We need to define both a fit and transform function to conform to the API. In our fit 
function, we find the mean of the dataset and set an internal variable to remember 
that value. Let's look at the code:

    def fit(self, X):

First, we ensure that X is a dataset that we can work with, using the as_float_array 
function (which will also convert X if it can, for example, if X is a list of floats):

        X = as_float_array(X)

Next, we compute the mean of the array and set an internal parameter to remember 
this value. When X is a multivariate array, self.mean will be an array that contains 
the mean of each feature:

        self.mean = X.mean(axis=0)

The fit function also needs to return the class itself. This requirement ensures 
that we can perform chaining of functionality in transformers (such as calling 
transformer.fit(X).transform(X)). Let's look at the code:

        return self

Next, we define the transform function, this takes a dataset of the same type as the fit 
function, so we need to check we got the right input:

    def transform(self, X):
        X = as_float_array(X)

We should perform another check here too. While we need the input to be a  
NumPy array (or an equivalent data structure), the shape needs to be consistent too. 
The number of features in this array needs to be the same as the number of features 
the class was trained on.

        assert X.shape[1] == self.mean.shape[0]

Now, we perform the actual transformation by simply testing if the values in X are 
higher than the stored mean.

        return X > self.mean
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We can then create an instance of this class and use it to transform our X array:

mean_discrete = MeanDiscrete()
X_mean = mean_discrete.fit_transform(X)

Unit testing
When creating your own functions and classes, it is always a good idea to do unit 
testing. Unit testing aims to test a single unit of your code. In this case, we want to 
test that our transformer does as it needs to do.

Good tests should be independently verifiable. A good way to confirm the  
legitimacy of your tests is by using another computer language or method to  
perform the calculations. In this case, I used Excel to create a dataset, and then 
computed the mean for each cell. Those values were then transferred here.

Unit tests should also be small and quick to run. Therefore, any data used should be 
of a small size. The dataset I used for creating the tests is stored in the Xt variable 
from earlier, which we will recreate in our test. The mean of these two features is 13.5 
and 15.5, respectively.

To create our unit test, we import the assert_array_equal function from NumPy's 
testing, which checks whether two arrays are equal:

from numpy.testing import assert_array_equal

Next, we create our function. It is important that the test's name starts with test_,  
as this nomenclature is used for tools that automatically find and run tests. We also 
set up our testing data:

def test_meandiscrete():
    X_test = np.array([[ 0,  2],
                        [ 3,  5],
                        [ 6,  8],
                        [ 9, 11],
                        [12, 14],
                        [15, 17],
                        [18, 20],
                        [21, 23],
                        [24, 26],
                        [27, 29]])
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We then create our transformer instance and fit it using this test data:

    mean_discrete = MeanDiscrete()
    mean_discrete.fit(X_test)

Next, we check whether the internal mean parameter was correctly set by comparing 
it with our independently verified result:

    assert_array_equal(mean_discrete.mean, np.array([13.5, 15.5]))

We then run the transform to create the transformed dataset. We also create an 
(independently computed) array with the expected values for the output:

    X_transformed = mean_discrete.transform(X_test)
    X_expected = np.array([[ 0,  0],
                            [ 0, 0],
                            [ 0, 0],
                            [ 0, 0],
                            [ 0, 0],
                            [ 1, 1],
                            [ 1, 1],
                            [ 1, 1],
                            [ 1, 1],
                            [ 1, 1]])

Finally, we test that our returned result is indeed what we expected:

    assert_array_equal(X_transformed, X_expected)

We can run the test by simply running the function itself:

test_meandiscrete()

If there was no error, then the test ran without an issue! You can verify this by 
changing some of the tests to deliberately incorrect values, and seeing that the test 
fails. Remember to change them back so that the test passes.

If we had multiple tests, it would be worth using a testing framework called nose to 
run our tests.
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Putting it all together
Now that we have a tested transformer, it is time to put it into action. Using what 
we have learned so far, we create a Pipeline, set the first step to the MeanDiscrete 
transformer, and the second step to a Decision Tree Classifier. We then run a cross 
validation and print out the result. Let's look at the code:

from sklearn.pipeline import Pipeline
pipeline = Pipeline([('mean_discrete', MeanDiscrete()),
  ('classifier', DecisionTreeClassifier(random_state=14))])
  scores_mean_discrete = cross_val_score(pipeline, X, y,  
    scoring='accuracy')
  print("Mean Discrete performance:
{0:.3f}".format(scores_mean_discrete.mean()))

The result is 0.803, which is not as good as before, but not bad for simple  
binary features.

Summary
In this chapter, we looked at features and transformers and how they can be  
used in the data mining pipeline. We discussed what makes a good feature  
and how to algorithmically choose good features from a standard set. However, 
creating good features is more art than science and often requires domain  
knowledge and experience.

We then created our own transformer using an interface that allows us to use it 
in scikit-learn's helper functions. We will be creating more transformers in later 
chapters so that we can perform effective testing using existing functions.

In the next chapter, we use feature extraction on a corpus of text documents.  
There are many transformers and feature types for text, each with their advantages 
and disadvantages.
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Social Media Insight Using 
Naive Bayes

Text-based datasets contain a lot of information, whether they are books, historical 
documents, social media, e-mail, or any of the other ways we communicate via 
writing. Extracting features from text-based datasets and using them for classification 
is a difficult problem. There are, however, some common patterns for text mining.

We look at disambiguating terms in social media using the Naive Bayes algorithm, 
which is a powerful and surprisingly simple algorithm. Naive Bayes takes a few 
shortcuts to properly compute the probabilities for classification, hence the term 
naive in the name. It can also be extended to other types of datasets quite easily and 
doesn't rely on numerical features. The model in this chapter is a baseline for text 
mining studies, as the process can work reasonably well for a variety of datasets.

We will cover the following topics in this chapter:

• Downloading data from social network APIs
• Transformers for text
• Naive Bayes classifier
• Using JSON for saving and loading datasets
• The NLTK library for extracting features from text
• The F-measure for evaluation
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Disambiguation
Text is often called an unstructured format. There is a lot of information there,  
but it is just there; no headings, no required format, loose syntax and other problems 
prohibit the easy extraction of information from text. The data is also highly 
connected, with lots of mentions and cross-references—just not in a format that 
allows us to easily extract it!

We can compare the information stored in a book with that stored in a large database 
to see the difference. In the book, there are characters, themes, places, and lots of 
information. However, the book needs to be read and, more importantly, interpreted 
to gain this information. The database sits on your server with column names and 
data types. All the information is there and the level of interpretation needed is quite 
low. Information about the data, such as its type or meaning is called metadata, and 
text lacks it. A book also contains some metadata in the form of a table of contents 
and index but the degree is significantly lower than that of a database.

One of the problems is the term disambiguation. When a person uses the word bank, 
is this a financial message or an environmental message (such as river bank)? This 
type of disambiguation is quite easy in many circumstances for humans (although 
there are still troubles), but much harder for computers to do.

In this chapter, we will look at disambiguating the use of the term Python on 
Twitter's stream. A message on Twitter is called a tweet and is limited to 140 
characters. This means there is little room for context. There isn't much metadata 
available although hashtags are often used to denote the topic of the tweet.

When people talk about Python, they could be talking about the following things:

• The programming language Python
• Monty Python, the classic comedy group
• The snake Python
• A make of shoe called Python

There can be many other things called Python. The aim of our experiment is to 
take a tweet mentioning Python and determine whether it is talking about the 
programming language, based only on the content of the tweet.
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Downloading data from a social network
We are going to download a corpus of data from Twitter and use it to sort out 
spam from useful content. Twitter provides a robust API for collecting information 
from its servers and this API is free for small-scale usage. It is, however, subject to 
some conditions that you'll need to be aware of if you start using Twitter's data in a 
commercial setting.

First, you'll need to sign up for a Twitter account (which is free). Go to  
http://twitter.com and register an account if you do not already have one.

Next, you'll need to ensure that you only make a certain number of requests per 
minute. This limit is currently 180 requests per hour. It can be tricky ensuring that 
you don't breach this limit, so it is highly recommended that you use a library to  
talk to Twitter's API.

You will need a key to access Twitter's data. Go to http://twitter.com and sign  
in to your account.

When you are logged in, go to https://apps.twitter.com/ and click on  
Create New App.

Create a name and description for your app, along with a website address.  
If you don't have a website to use, insert a placeholder. Leave the Callback URL field 
blank for this app—we won't need it. Agree to the terms of use (if you do)  
and click on Create your Twitter application.

Keep the resulting website open—you'll need the access keys that are on this page. 
Next, we need a library to talk to Twitter. There are many options; the one I like is 
simply called twitter, and is the official Twitter Python library.

You can install twitter using pip3 install twitter if you are 
using pip to install your packages. If you are using another system, 
check the documentation at https://github.com/sixohsix/
twitter.

Create a new IPython Notebook to download the data. We will create several 
notebooks in this chapter for various different purposes, so it might be a good idea to 
also create a folder to keep track of them. This first notebook, ch6_get_twitter, is 
specifically for downloading new Twitter data.

http://twitter.com
http://twitter.com
https://apps.twitter.com/
https://github.com/sixohsix/twitter
https://github.com/sixohsix/twitter
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First, we import the twitter library and set our authorization tokens. The consumer 
key, consumer secret will be available on the Keys and Access Tokens tab on your 
Twitter app's page. To get the access tokens, you'll need to click on the Create my 
access token button, which is on the same page. Enter the keys into the appropriate 
places in the following code:

import twitter
consumer_key = "<Your Consumer Key Here>"
consumer_secret = "<Your Consumer Secret Here>"
access_token = "<Your Access Token Here>"
access_token_secret = "<Your Access Token Secret Here>"
authorization = twitter.OAuth(access_token, access_token_secret, 
consumer_key, consumer_secret)

We are going to get our tweets from Twitter's search function. We will create  
a reader that connects to twitter using our authorization, and then use that  
reader to perform searches. In the Notebook, we set the filename where the  
tweets will be stored:

import os
output_filename = os.path.join(os.path.expanduser("~"),  
  "Data", "twitter", "python_tweets.json")

We also need the json library for saving our tweets:

import json

Next, create an object that can read from Twitter. We create this object with our 
authorization object that we set up earlier:

t = twitter.Twitter(auth=authorization)

We then open our output file for writing. We open it for appending—this allows 
us to rerun the script to obtain more tweets. We then use our Twitter connection to 
perform a search for the word Python. We only want the statuses that are returned 
for our dataset. This code takes the tweet, uses the json library to create a string 
representation using the dumps function, and then writes it to the file. It then creates 
a blank line under the tweet so that we can easily distinguish where one tweet starts 
and ends in our file:

with open(output_filename, 'a') as output_file:
    search_results = t.search.tweets(q="python", count=100)['statuses']
    for tweet in search_results:
        if 'text' in tweet:
            output_file.write(json.dumps(tweet))
            output_file.write("\n\n")
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In the preceding loop, we also perform a check to see whether there is text in  
the tweet or not. Not all of the objects returned by twitter will be actual tweets  
(some will be actions to delete tweets and others). The key difference is the  
inclusion of text as a key, which we test for.

Running this for a few minutes will result in 100 tweets being added to the  
output file.

You can keep rerunning this script to add more tweets to your dataset, 
keeping in mind that you may get some duplicates in the output file if 
you rerun it too fast (that is, before Twitter gets new tweets to return!).

Loading and classifying the dataset
After we have collected a set of tweets (our dataset), we need labels to perform 
classification. We are going to label the dataset by setting up a form in an IPython 
Notebook to allow us to enter the labels.

The dataset we have stored is nearly in a JSON format. JSON is a format for data 
that doesn't impose much structure and is directly readable in JavaScript (hence 
the name, JavaScript Object Notation). JSON defines basic objects such as numbers, 
strings, lists and dictionaries, making it a good format for storing datasets if they 
contain data that isn't numerical. If your dataset is fully numerical, you would save 
space and time using a matrix-based format like in NumPy.

A key difference between our dataset and real JSON is that we included newlines 
between tweets. The reason for this was to allow us to easily append new tweets  
(the actual JSON format doesn't allow this easily). Our format is a JSON representation 
of a tweet, followed by a newline, followed by the next tweet, and so on.

To parse it, we can use the json library but we will have to first split the file by 
newlines to get the actual tweet objects themselves.

Set up a new IPython Notebook (I called mine ch6_label_twitter) and enter 
the dataset's filename. This is the same filename in which we saved the data in the 
previous section. We also define the filename that we will use to save the labels to. 
The code is as follows:

import os
input_filename = os.path.join(os.path.expanduser("~"), "Data", 
"twitter", "python_tweets.json")
labels_filename = os.path.join(os.path.expanduser("~"), "Data", 
"twitter", "python_classes.json")
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As stated, we will use the json library, so import that too:

import json

We create a list that will store the tweets we received from the file:

tweets = []

We then iterate over each line in the file. We aren't interested in lines with no 
information (they separate the tweets for us), so check if the length of the line  
(minus any whitespace characters) is zero. If it is, ignore it and move to the next  
line. Otherwise, load the tweet using json.loads (which loads a JSON object  
from a string) and add it to our list of tweets. The code is as follows:

with open(input_filename) as inf:
    for line in inf:
        if len(line.strip()) == 0:
            continue
        tweets.append(json.loads(line))

We are now interested in classifying whether an item is relevant to us or not  
(in this case, relevant means refers to the programming language Python). We will use  
the IPython Notebook's ability to embed HTML and talk between JavaScript and 
Python to create a viewer of tweets to allow us to easily and quickly classify the 
tweets as spam or not.

The code will present a new tweet to the user (you) and ask for a label: is it relevant 
or not? It will then store the input and present the next tweet to be labeled.

First, we create a list for storing the labels. These labels will be stored whether or not 
the given tweet refers to the programming language Python, and it will allow our 
classifier to learn how to differentiate between meanings.

We also check if we have any labels already and load them. This helps if you need 
to close the notebook down midway through labeling. This code will load the 
labels from where you left off. It is generally a good idea to consider how to save at 
midpoints for tasks like this. Nothing hurts quite like losing an hour of work because 
your computer crashed before you saved the labels! The code is as follows:

labels = []
if os.path.exists(labels_filename):
    with open(labels_filename) as inf:
        labels = json.load(inf)
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Next, we create a simple function that will return the next tweet that needs to be 
labeled. We can work out which is the next tweet by finding the first one that hasn't 
yet been labeled. The code is as follows:

def get_next_tweet():
    return tweet_sample[len(labels)]['text']

The next step in our experiment is to collect information from 
the user (you!) on which tweets are referring to Python (the 
programming language) and which are not. As of yet, there is 
not a good, straightforward way to get interactive feedback with 
pure Python in IPython Notebooks. For this reason, we will use 
some JavaScript and HTML to get this input from the user.

Next we create some JavaScript in the IPython Notebook to run our input. 
Notebooks allow us to use magic functions to embed HTML and JavaScript  
(among other things) directly into the Notebook itself. Start a new cell with the 
following line at the top:

%%javascript

The code in here will be in JavaScript, hence the curly braces that are coming up. 
Don't worry, we will get back to Python soon. Keep in mind here that the following 
code must be in the same cell as the %%javascript magic function.

The first function we will define in JavaScript shows how easy it is to talk to  
your Python code from JavaScript in IPython Notebooks. This function, if called,  
will add a label to the labels array (which is in python code). To do this, we load 
the IPython kernel as a JavaScript object and give it a Python command to execute. 
The code is as follows:

function set_label(label){
    var kernel = IPython.notebook.kernel;
    kernel.execute("labels.append(" + label + ")");
    load_next_tweet();
}

At the end of that function, we call the load_next_tweet function. This function 
loads the next tweet to be labeled. It runs on the same principle; we load the IPython 
kernel and give it a command to execute (calling the get_next_tweet function we 
defined earlier).
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However, in this case we want to get the result. This is a little more difficult.  
We need to define a callback, which is a function that is called when the data  
is returned. The format for defining callback is outside the scope of this book.  
If you are interested in more advanced JavaScript/Python integration, consult the 
IPython documentation.

The code is as follows:

function load_next_tweet(){
   var code_input = "get_next_tweet()";
   var kernel = IPython.notebook.kernel;
   var callbacks = { 'iopub' : {'output' : handle_output}};
   kernel.execute(code_input, callbacks, {silent:false});
}

The callback function is called handle_output, which we will define now.  
This function gets called when the Python function that kernel.execute calls 
returns a value. As before, the full format of this is outside the scope of this book. 
However, for our purposes the result is returned as data of the type text/plain, 
which we extract and show in the #tweet_text div of the form we are going to 
create in the next cell. The code is as follows:

function handle_output(out){
   var res = out.content.data["text/plain"];
   $("div#tweet_text").html(res);
}

Our form will have a div that shows the next tweet to be labeled, which we will give 
the ID #tweet_text. We also create a textbox to enable us to capture key presses 
(otherwise, the Notebook will capture them and JavaScript won't do anything). This 
allows us to use the keyboard to set labels of 1 or 0, which is faster than using the 
mouse to click buttons—given that we will need to label at least 100 tweets.

Run the previous cell to embed some JavaScript into the page, although nothing will 
be shown to you in the results section.

We are going to use a different magic function now, %%html. Unsurprisingly, this 
magic function allows us to directly embed HTML into our Notebook. In a new cell, 
start with this line:

%%html
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For this cell, we will be coding in HTML and a little JavaScript. First, define a div 
element to store our current tweet to be labeled. I've also added some instructions for 
using this form. Then, create the #tweet_text div that will store the text of the next 
tweet to be labeled. As stated before, we need to create a textbox to be able to capture 
key presses. The code is as follows:

<div name="tweetbox">
    Instructions: Click in textbox. Enter a 1 if the tweet is 
relevant, enter 0 otherwise.<br>
Tweet: <div id="tweet_text" value="text"></div><br>
<input type=text id="capture"></input><br>
</div>

Don't run the cell just yet!

We create the JavaScript for capturing the key presses. This has to be defined  
after creating the form, as the #tweet_text div doesn't exist until the above  
code runs. We use the JQuery library (which IPython is already using, so we don't 
need to include the JavaScript file) to add a function that is called when key presses 
are made on the #capture textbox we defined. However, keep in mind that this is 
a %%html cell and not a JavaScript cell, so we need to enclose this JavaScript in the 
<script> tags.

We are only interested in key presses if the user presses the 0 or the 1, in which case 
the relevant label is added. We can determine which key was pressed by the ASCII 
value stored in e.which. If the user presses 0 or 1, we append the label and clear out 
the textbox. The code is as follows:

<script>
$("input#capture").keypress(function(e) {
if(e.which == 48) {
    set_label(0);
    $("input#capture").val("");
}else if (e.which == 49){
    set_label(1);
    $("input#capture").val("");
  }
});

All other key presses are ignored.
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As a last bit of JavaScript for this chapter (I promise), we call the load_next_
tweet() function. This will set the first tweet to be labeled and then close off the 
JavaScript. The code is as follows:

load_next_tweet();
</script>

After you run this cell, you will get an HTML textbox, alongside the first tweet's text. 
Click in the textbox and enter 1 if it is relevant to our goal (in this case, it means is the 
tweet related to the programming language Python) and a 0 if it is not. After you do this, 
the next tweet will load. Enter the label and the next one will load. This continues 
until the tweets run out.

When you finish all of this, simply save the labels to the output filename we defined 
earlier for the class values:

with open(labels_filename, 'w') as outf:
    json.dump(labels, outf)

You can call the preceding code even if you haven't finished. Any labeling you have 
done to that point will be saved. Running this Notebook again will pick up where 
you left off and you can keep labeling your tweets.

This might take a while to do this! If you have a lot of tweets in your dataset, you'll 
need to classify all of them. If you are pushed for time, you can download the same 
dataset I used, which contains classifications.

Creating a replicable dataset from Twitter
In data mining, there are lots of variables. These aren't just in the data mining 
algorithms—they also appear in the data collection, environment, and many other 
factors. Being able to replicate your results is important as it enables you to verify  
or improve upon your results.

Getting 80 percent accuracy on one dataset with algorithm X, and 
90 percent accuracy on another dataset with algorithm Y doesn't 
mean that Y is better. We need to be able to test on the same 
dataset in the same conditions to be able to properly compare.



Chapter 6

[ 115 ]

On running the preceding code, you will get a different dataset to the one I created 
and used. The main reasons are that Twitter will return different search results 
for you than me based on the time you performed the search. Even after that, 
your labeling of tweets might be different from what I do. While there are obvious 
examples where a given tweet relates to the python programming language, there will 
always be gray areas where the labeling isn't obvious. One tough gray area I ran into 
was tweets in non-English languages that I couldn't read. In this specific instance, 
there are options in Twitter's API for setting the language, but even these aren't 
going to be perfect.

Due to these factors, it is difficult to replicate experiments on databases that are 
extracted from social media, and Twitter is no exception. Twitter explicitly disallows 
sharing datasets directly.

One solution to this is to share tweet IDs only, which you can share freely. In this 
section, we will first create a tweet ID dataset that we can freely share. Then, we will 
see how to download the original tweets from this file to recreate the original dataset.

First, we save the replicable dataset of tweet IDs. Creating another new IPython 
Notebook, first set up the filenames. This is done in the same way we did labeling 
but there is a new filename where we can store the replicable dataset. The code is  
as follows:

import os
input_filename = os.path.join(os.path.expanduser("~"), "Data", 
"twitter", "python_tweets.json")
labels_filename = os.path.join(os.path.expanduser("~"), "Data", 
"twitter", "python_classes.json")
replicable_dataset = os.path.join(os.path.expanduser("~"),  
  "Data", "twitter", "replicable_dataset.json")

We load the tweets and labels as we did in the previous notebook:

import json
tweets = []
with open(input_filename) as inf:
    for line in inf:
        if len(line.strip()) == 0:
            continue
        tweets.append(json.loads(line))
if os.path.exists(labels_filename):
    with open(classes_filename) as inf:
        labels = json.load(inf)
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Now we create a dataset by looping over both the tweets and labels at the same  
time and saving those in a list:

dataset = [(tweet['id'], label) for tweet, label in zip(tweets,  
  labels)]

Finally, we save the results in our file:

with open(replicable_dataset, 'w') as outf:
    json.dump(dataset, outf)

Now that we have the tweet IDs and labels saved, we can recreate the original 
dataset. If you are looking to recreate the dataset I used for this chapter, it can be 
found in the code bundle that comes with this book.

Loading the preceding dataset is not difficult but it can take some time. Start a  
new IPython Notebook and set the dataset, label, and tweet ID filenames as before. 
I've adjusted the filenames here to ensure that you don't overwrite your previously 
collected dataset, but feel free to change these if you want. The code is as follows:

import os
tweet_filename = os.path.join(os.path.expanduser("~"), "Data",  
  "twitter", "replicable_python_tweets.json")
labels_filename = os.path.join(os.path.expanduser("~"), "Data",  
  "twitter", "replicable_python_classes.json")
replicable_dataset = os.path.join(os.path.expanduser("~"),  
  "Data", "twitter", "replicable_dataset.json")

Then load the tweet IDs from the file using JSON:

import json
with open(replicable_dataset) as inf:
    tweet_ids = json.load(inf)

Saving the labels is very easy. We just iterate through this dataset and extract  
the IDs. We could do this quite easily with just two lines of code (open file and save 
tweets). However, we can't guarantee that we will get all the tweets we are after  
(for example, some may have been changed to private since collecting the dataset) 
and therefore the labels will be incorrectly indexed against the data.

As an example, I tried to recreate the dataset just one day after collecting them and 
already two of the tweets were missing (they might be deleted or made private by 
the user). For this reason, it is important to only print out the labels that we need.  
To do this, we first create an empty actual labels list to store the labels for tweets 
that we actually recover from twitter, and then create a dictionary mapping the 
tweet IDs to the labels. 
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The code is as follows:

actual_labels = []
label_mapping = dict(tweet_ids)

Next, we are going to create a twitter server to collect all of these tweets.  
This is going to take a little longer. Import the twitter library that we used before, 
creating an authorization token and using that to create the twitter object:

import twitter
consumer_key = "<Your Consumer Key Here>"
consumer_secret = "<Your Consumer Secret Here>"
access_token = "<Your Access Token Here>"
access_token_secret = "<Your Access Token Secret Here>"
authorization = twitter.OAuth(access_token, access_token_secret,  
  consumer_key, consumer_secret)
t = twitter.Twitter(auth=authorization)

Iterate over each of the twitter IDs by extracting the IDs into a list using the  
following command:

all_ids = [tweet_id for tweet_id, label in tweet_ids]

Then, we open our output file to save the tweets:

with open(tweets_filename, 'a') as output_file:

The Twitter API allows us get 100 tweets at a time. Therefore, we iterate over each 
batch of 100 tweets:

    for start_index in range(0, len(tweet_ids), 100):

To search by ID, we first create a string that joins all of the IDs (in this batch) 
together:

        id_string = ",".join(str(i) for i in  
          all_ids[start_index:start_index+100])

Next, we perform a statuses/lookup API call, which is defined by Twitter.  
We pass our list of IDs (which we turned into a string) into the API call in order  
to have those tweets returned to us:

        search_results = t.statuses.lookup(_id=id_string)
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Then for each tweet in the search results, we save it to our file in the same way we 
did when we were collecting the dataset originally:

        for tweet in search_results:
            if 'text' in tweet:
                output_file.write(json.dumps(tweet))
                output_file.write("\n\n")

As a final step here (and still under the preceding if block), we want to store the 
labeling of this tweet. We can do this using the label_mapping dictionary we 
created before, looking up the tweet ID. The code is as follows:

                actual_labels.append(label_mapping[tweet['id']])

Run the previous cell and the code will collect all of the tweets for you. If you created 
a really big dataset, this may take a while—Twitter does rate-limit requests. As a 
final step here, save the actual_labels to our classes file:

with open(labels_filename, 'w') as outf:
    json.dump(actual_labels, outf)

Text transformers
Now that we have our dataset, how are we going to perform data mining on it?

Text-based datasets include books, essays, websites, manuscripts, programming 
code, and other forms of written expression. All of the algorithms we have seen so 
far deal with numerical or categorical features, so how do we convert our text into a 
format that the algorithm can deal with?

There are a number of measurements that could be taken. For instance, average 
word and average sentence length are used to predict the readability of a document. 
However, there are lots of feature types such as word occurrence which we will  
now investigate.

Bag-of-words
One of the simplest but highly effective models is to simply count each word in the 
dataset. We create a matrix, where each row represents a document in our dataset 
and each column represents a word. The value of the cell is the frequency of that 
word in the document.
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Here's an excerpt from The Lord of the Rings, J.R.R. Tolkien:

Three Rings for the Elven-kings under the sky,

Seven for the Dwarf-lords in halls of stone,

Nine for Mortal Men, doomed to die,

One for the Dark Lord on his dark throne

In the Land of Mordor where the Shadows lie.

One Ring to rule them all, One Ring to find them,

One Ring to bring them all and in the darkness bind them.

In the Land of Mordor where the Shadows lie.

                                            - J.R.R. Tolkien's epigraph to The Lord of The Rings

The word the appears nine times in this quote, while the words in, for, to, and one 
each appear four times. The word ring appears three times, as does the word of.

We can create a dataset from this, choosing a subset of words and counting  
the frequency:

Word the one ring to
Frequency 9 4 3 4

We can use the counter class to do a simple count for a given string. When counting 
words, it is normal to convert all letters to lowercase, which we do when creating the 
string. The code is as follows:

s = """Three Rings for the Elven-kings under the sky,
Seven for the Dwarf-lords in halls of stone,
Nine for Mortal Men, doomed to die,
One for the Dark Lord on his dark throne
In the Land of Mordor where the Shadows lie.
One Ring to rule them all, One Ring to find them,
One Ring to bring them all and in the darkness bind them.
In the Land of Mordor where the Shadows lie. """.lower()
words = s.split()
from collections import Counter
c = Counter(words)
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Printing c.most_common(5) gives the list of the top five most frequently occurring 
words. Ties are not handled well as only five are given and a very large number of 
words all share a tie for fifth place.

The bag-of-words model has three major types. The first is to use the raw 
frequencies, as shown in the preceding example. This does have a drawback when 
documents vary in size from fewer words to many words, as the overall values 
will be very different. The second model is to use the normalized frequency, 
where each document's sum equals 1. This is a much better solution as the length 
of the document doesn't matter as much. The third type is to simply use binary 
features—a value is 1 if the word occurs at all and 0 if it doesn't. We will use binary 
representation in this chapter.

Another popular (arguably more popular) method for performing normalization is 
called term frequency - inverse document frequency, or tf-idf. In this weighting 
scheme, term counts are first normalized to frequencies and then divided by the 
number of documents in which it appears in the corpus. We will use tf-idf in Chapter 
10, Clustering News Articles.

There are a number of libraries for working with text data in Python. We will 
use a major one, called Natural Language ToolKit (NLTK). The scikit-learn 
library also has the CountVectorizer class that performs a similar action, and 
it is recommended you take a look at it (we will use it in Chapter 9, Authorship 
Attribution). However the NLTK version has more options for word tokenization. If 
you are doing natural language processing in python, NLTK is a great library to use.

N-grams
A step up from single bag-of-words features is that of n-grams. An n-gram is a 
subsequence of n consecutive tokens. In this context, a word n-gram is a set of n 
words that appear in a row.

They are counted the same way, with the n-grams forming a word that is put in 
the bag. The value of a cell in this dataset is the frequency that a particular n-gram 
appears in the given document.

The value of n is a parameter. For English, setting it to between 2 to 5 
is a good start, although some applications call for higher values.
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As an example, for n=3, we extract the first few n-grams in the following quote:

Always look on the bright side of life.

The first n-gram (of size 3) is Always look on, the second is look on the, the third is on 
the bright. As you can see, the n-grams overlap and cover three words.

Word n-grams have advantages over using single words. This simple concept 
introduces some context to word use by considering its local environment, without 
a large overhead of understanding the language computationally. A disadvantage of 
using n-grams is that the matrix becomes even sparser—word n-grams are unlikely 
to appear twice (especially in tweets and other short documents!).

Specially for social media and other short documents, word n-grams are unlikely 
to appear in too many different tweets, unless it is a retweet. However, in larger 
documents, word n-grams are quite effective for many applications.

Another form of n-gram for text documents is that of a character n-gram. Rather than 
using sets of words, we simply use sets of characters (although character n-grams 
have lots of options for how they are computed!). This type of dataset can pick up 
words that are misspelled, as well as providing other benefits. We will test character 
n-grams in this chapter and see them again in Chapter 9, Authorship Attribution.

Other features
There are other features that can be extracted too. These include syntactic  
features, such as the usage of particular words in sentences. Part-of-speech tags  
are also popular for data mining applications that need to understand meaning 
in text. Such feature types won't be covered in this book. If you are interested in 
learning more, I recommend Python 3 Text Processing with NLTK 3 Cookbook, Jacob 
Perkins, Packt publication.

Naive Bayes
Naive Bayes is a probabilistic model that is unsurprisingly built upon a naive 
interpretation of Bayesian statistics. Despite the naive aspect, the method performs 
very well in a large number of contexts. It can be used for classification of many 
different feature types and formats, but we will focus on one in this chapter: binary 
features in the bag-of-words model.
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Bayes' theorem
For most of us, when we were taught statistics, we started from a frequentist 
approach. In this approach, we assume the data comes from some distribution and 
we aim to determine what the parameters are for that distribution. However, those 
parameters are (perhaps incorrectly) assumed to be fixed. We use our model to 
describe the data, even testing to ensure the data fits our model.

Bayesian statistics instead model how people (non-statisticians) actually  
reason. We have some data and we use that data to update our model about  
how likely something is to occur. In Bayesian statistics, we use the data to describe 
the model rather than using a model and confirming it with data (as per the 
frequentist approach).

Bayes' theorem computes the value of P(A|B), that is, knowing that B has occurred, 
what is the probability of A. In most cases, B is an observed event such as it rained 
yesterday, and A is a prediction it will rain today. For data mining, B is usually we 
observed this sample and A is it belongs to this class. We will see how to use Bayes' 
theorem for data mining in the next section.

The equation for Bayes' theorem is given as follows:

As an example, we want to determine the probability that an e-mail containing the 
word drugs is spam (as we believe that such a tweet may be a pharmaceutical spam).

A, in this context, is the probability that this tweet is spam. We can compute P(A), 
called the prior belief directly from a training dataset by computing the percentage 
of tweets in our dataset that are spam. If our dataset contains 30 spam messages for 
every 100 e-mails, P(A) is 30/100 or 0.3.

B, in this context, is this tweet contains the word 'drugs'. Likewise, we can compute P(B) 
by computing the percentage of tweets in our dataset containing the word drugs. If 10 
e-mails in every 100 of our training dataset contain the word drugs, P(B) is 10/100 or 
0.1. Note that we don't care if the e-mail is spam or not when computing this value.

P(B|A) is the probability that an e-mail contains the word drugs if it is spam.  
It is also easy to compute from our training dataset. We look through our training  
set for spam e-mails and compute the percentage of them that contain the word 
drugs. Of our 30 spam e-mails, if 6 contain the word drugs, then P(B|A) is calculated 
as 6/30 or 0.2.
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From here, we use Bayes' theorem to compute P(A|B), which is the probability that 
a tweet containing the word drugs is spam. Using the previous equation, we see the 
result is 0.6. This indicates that if an e-mail has the word drugs in it, there is a 60 
percent chance that it is spam.

Note the empirical nature of the preceding example—we use evidence directly 
from our training dataset, not from some preconceived distribution. In contrast, a 
frequentist view of this would rely on us creating a distribution of the probability of 
words in tweets to compute similar equations.

Naive Bayes algorithm
Looking back at our Bayes' theorem equation, we can use it to compute the 
probability that a given sample belongs to a given class. This allows the equation to 
be used as a classification algorithm.

With C as a given class and D as a sample in our dataset, we create the elements 
necessary for Bayes' theorem, and subsequently Naive Bayes. Naive Bayes is a 
classification algorithm that utilizes Bayes' theorem to compute the probability  
that a new data sample belongs to a particular class.

P(C) is the probability of a class, which is computed from the training dataset itself 
(as we did with the spam example). We simply compute the percentage of samples 
in our training dataset that belong to the given class.

P(D) is the probability of a given data sample. It can be difficult to compute this, 
as the sample is a complex interaction between different features, but luckily it is a 
constant across all classes. Therefore, we don't need to compute it at all. We will see 
later how to get around this issue.

P(D|C) is the probability of the data point belonging to the class. This could also 
be difficult to compute due to the different features. However, this is where we 
introduce the naive part of the Naive Bayes algorithm. We naively assume that each 
feature is independent of each other. Rather than computing the full probability of 
P(D|C), we compute the probability of each feature D1, D2, D3, … and so on. Then, 
we multiply them together:

P(D|C) = P(D1|C) x P(D2|C).... x P(Dn|C)

Each of these values is relatively easy to compute with binary features; we simply 
compute the percentage of times it is equal in our sample dataset.
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In contrast, if we were to perform a non-naive Bayes version of this part, we would 
need to compute the correlations between different features for each class. Such 
computation is infeasible at best, and nearly impossible without vast amounts of data 
or adequate language analysis models.

From here, the algorithm is straightforward. We compute P(C|D) for each possible 
class, ignoring the P(D) term. Then we choose the class with the highest probability. 
As the P(D) term is consistent across each of the classes, ignoring it has no impact on 
the final prediction.

How it works
As an example, suppose we have the following (binary) feature values from a  
sample in our dataset: [0, 0, 0, 1].

Our training dataset contains two classes with 75 percent of samples belonging  
to the class 0, and 25 percent belonging to the class 1. The likelihood of the feature 
values for each class are as follows:

For class 0: [0.3, 0.4, 0.4, 0.7]

For class 1: [0.7, 0.3, 0.4, 0.9]

These values are to be interpreted as: for feature 1, it is a 1 in 30 percent of cases for  
class 0.

We can now compute the probability that this sample should belong to the class 0. 
P(C=0) = 0.75 which is the probability that the class is 0.

P(D) isn't needed for the Naive Bayes algorithm. Let's take a look at the calculation:

P(D|C=0) = P(D1|C=0) x P(D2|C=0) x P(D3|C=0) x P(D4|C=0)
= 0.3 x 0.6 x 0.6 x 0.7
= 0.0756

The second and third values are 0.6, because the value of that feature 
in the sample was 0. The listed probabilities are for values of 1 for each 
feature. Therefore, the probability of a 0 is its inverse: P(0) = 1 – P(1).
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Now, we can compute the probability of the data point belonging to this class.  
An important point to note is that we haven't computed P(D), so this isn't a real 
probability. However, it is good enough to compare against the same value for  
the probability of the class 1. Let's take a look at the calculation:

P(C=0|D) = P(C=0) P(D|C=0)
= 0.75 * 0.0756
= 0.0567

Now, we compute the same values for the class 1:

P(C=1) = 0.25

P(D) isn't needed for naive Bayes. Let's take a look at the calculation:

P(D|C=1) = P(D1|C=1) x P(D2|C=1) x P(D3|C=1) x P(D4|C=1)
= 0.7 x 0.7 x 0.6 x 0.9
= 0.2646
P(C=1|D) = P(C=1)P(D|C=1)
= 0.25 * 0.2646
= 0.06615

Normally, P(C=0|D) + P(C=1|D) should equal to 1. After all, those 
are the only two possible options! However, the probabilities are 
not 1 due to the fact we haven't included the computation of P(D) 
in our equations here.

The data point should be classified as belonging to the class 1. You may have 
guessed this while going through the equations anyway; however, you may have 
been a bit surprised that the final decision was so close. After all, the probabilities 
in computing P(D|C) were much, much higher for the class 1. This is because we 
introduced a prior belief that most samples generally belong to the class 0.

If the classes had been equal sizes, the resulting probabilities would be much 
different. Try it yourself by changing both P(C=0) and P(C=1) to 0.5 for equal class 
sizes and computing the result again.
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Application
We will now create a pipeline that takes a tweet and determines whether it is 
relevant or not, based only on the content of that tweet.

To perform the word extraction, we will be using the NLTK, a library that  
contains a large number of tools for performing analysis on natural language.  
We will use NLTK in future chapters as well.

To get NLTK on your computer, use pip to install the package:  
pip3 install nltk

If that doesn't work, see the NLTK installation instructions at  
www.nltk.org/install.html.

We are going to create a pipeline to extract the word features and classify the tweets 
using Naive Bayes. Our pipeline has the following steps:

1. Transform the original text documents into a dictionary of counts using 
NLTK's word_tokenize function.

2. Transform those dictionaries into a vector matrix using the DictVectorizer 
transformer in scikit-learn. This is necessary to enable the Naive Bayes 
classifier to read the feature values extracted in the first step.

3. Train the Naive Bayes classifier, as we have seen in previous chapters.
4. We will need to create another Notebook (last one for the chapter!) called 

ch6_classify_twitter for performing the classification.

Extracting word counts
We are going to use NLTK to extract our word counts. We still want to use it in a 
pipeline, but NLTK doesn't conform to our transformer interface. We will therefore 
need to create a basic transformer to do this to obtain both fit and transform 
methods, enabling us to use this in a pipeline.

First, set up the transformer class. We don't need to fit anything in this class, as this 
transformer simply extracts the words in the document. Therefore, our fit is an empty 
function, except that it returns self which is necessary for transformer objects.

Our transform is a little more complicated. We want to extract each word from 
each document and record True if it was discovered. We are only using the binary 
features here—True if in the document, False otherwise. If we wanted to use the 
frequency we would set up counting dictionaries, as we have done in several of the 
past chapters.

www.nltk.org/install.html
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Let's take a look at the code:

from sklearn.base import TransformerMixin
class NLTKBOW(TransformerMixin):
    def fit(self, X, y=None):
        return self
    def transform(self, X):
        return [{word: True for word in word_tokenize(document)}
                 for document in X]

The result is a list of dictionaries, where the first dictionary is the list of words in 
the first tweet, and so on. Each dictionary has a word as key and the value true to 
indicate this word was discovered. Any word not in the dictionary will be assumed 
to have not occurred in the tweet. Explicitly stating that a word's occurrence is False 
will also work, but will take up needless space to store.

Converting dictionaries to a matrix
This step converts the dictionaries built as per the previous step into a matrix 
that can be used with a classifier. This step is made quite simple through the 
DictVectorizer transformer.

The DictVectorizer class simply takes a list of dictionaries and converts them into 
a matrix. The features in this matrix are the keys in each of the dictionaries, and the 
values correspond to the occurrence of those features in each sample. Dictionaries 
are easy to create in code, but many data algorithm implementations prefer matrices. 
This makes DictVectorizer a very useful class.

In our dataset, each dictionary has words as keys and only occurs if the word 
actually occurs in the tweet. Therefore, our matrix will have each word as a feature 
and a value of True in the cell if the word occurred in the tweet.

To use DictVectorizer, simply import it using the following command:

from sklearn.feature_extraction import DictVectorizer

Training the Naive Bayes classifier
Finally, we need to set up a classifier and we are using Naive Bayes for this chapter. 
As our dataset contains only binary features, we use the BernoulliNB classifier 
that is designed for binary features. As a classifier, it is very easy to use. As with 
DictVectorizer, we simply import it and add it to our pipeline:

from sklearn.naive_bayes import BernoulliNB
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Putting it all together
Now comes the moment to put all of these pieces together. In our IPython  
Notebook, set the filenames and load the dataset and classes as we have done  
before. Set the filenames for both the tweets themselves (not the IDs!) and the  
labels that we assigned to them. The code is as follows:

import os
input_filename = os.path.join(os.path.expanduser("~"), "Data",  
  "twitter", "python_tweets.json")
labels_filename = os.path.join(os.path.expanduser("~"), "Data",  
  "twitter", "python_classes.json")

Load the tweets themselves. We are only interested in the content of the tweets, so 
we extract the text value and store only that. The code is as follows:

tweets = []
with open(input_filename) as inf:
    for line in inf:
        if len(line.strip()) == 0:
            continue
        tweets.append(json.loads(line)['text'])

Load the labels for each of the tweets:

with open(classes_filename) as inf:
    labels = json.load(inf)

Now, create a pipeline putting together the components from before. Our pipeline 
has three parts:

• The NLTKBOW transformer we created
• A DictVectorizer transformer
• A BernoulliNB classifier

The code is as follows:

from sklearn.pipeline import Pipeline
pipeline = Pipeline([('bag-of-words', NLTKBOW()),
                     ('vectorizer', DictVectorizer()),
                     ('naive-bayes', BernoulliNB())
                     ])
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We can nearly run our pipeline now, which we will do with cross_val_score  
as we have done many times before. Before that though, we will introduce a  
better evaluation metric than the accuracy metric we used before. As we will see,  
the use of accuracy is not adequate for datasets when the number of samples in  
each class is different.

Evaluation using the F1-score
When choosing an evaluation metric, it is always important to consider cases where 
that evaluation metric is not useful. Accuracy is a good evaluation metric in many 
cases, as it is easy to understand and simple to compute. However, it can be easily 
faked. In other words, in many cases you can create algorithms that have a high 
accuracy by poor utility.

While our dataset of tweets (typically, your results may vary) contains about 50 
percent programming-related and 50 percent nonprogramming, many datasets  
aren't as balanced as this.

As an example, an e-mail spam filter may expect to see more than 80 percent of 
incoming e-mails be spam. A spam filter that simply labels everything as spam is 
quite useless; however, it will obtain an accuracy of 80 percent!

To get around this problem, we can use other evaluation metrics. One of the most 
commonly employed is called an f1-score (also called f-score, f-measure, or one of 
many other variations on this term).

The f1-score is defined on a per-class basis and is based on two concepts: the precision 
and recall. The precision is the percentage of all the samples that were predicted 
as belonging to a specific class that were actually from that class. The recall is the 
percentage of samples in the dataset that are in a class and actually labeled as 
belonging to that class.

In the case of our application, we could compute the value for both classes  
(relevant and not relevant). However, we are really interested in the spam.  
Therefore, our precision computation becomes the question: of all the tweets that  
were predicted as being relevant, what percentage were actually relevant? Likewise, the 
recall becomes the question: of all the relevant tweets in the dataset, how many were 
predicted as being relevant?
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After you compute both the precision and recall, the f1-score is the harmonic mean of 
the precision and recall:

To use the f1-score in scikit-learn methods, simply set the scoring parameter to f1. 
By default, this will return the f1-score of the class with label 1. Running the code on 
our dataset, we simply use the following line of code:

scores = cross_val_score(pipeline, tweets, labels, scoring='f1')

We then print out the average of the scores:

import numpy as np
print("Score: {:.3f}".format(np.mean(scores)))

The result is 0.798, which means we can accurately determine if a tweet using Python 
relates to the programing language nearly 80 percent of the time. This is using a 
dataset with only 200 tweets in it. Go back and collect more data and you will find 
that the results increase!

More data usually means a better accuracy, but it is not guaranteed!

Getting useful features from models
One question you may ask is what are the best features for determining if a tweet is 
relevant or not? We can extract this information from of our Naive Bayes model and 
find out which features are the best individually, according to Naive Bayes.

First we fit a new model. While the cross_val_score gives us a score across 
different folds of cross-validated testing data, it doesn't easily give us the trained 
models themselves. To do this, we simply fit our pipeline with the tweets, creating a 
new model. The code is as follows:

model = pipeline.fit(tweets, labels)
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Note that we aren't really evaluating the model here, so we don't need 
to be as careful with the training/testing split. However, before you 
put these features into practice, you should evaluate on a separate test 
split. We skip over that here for the sake of clarity.

A pipeline gives you access to the individual steps through the named_steps 
attribute and the name of the step (we defined these names ourselves when we 
created the pipeline object itself). For instance, we can get the Naive Bayes model:

nb = model.named_steps['naive-bayes']

From this model, we can extract the probabilities for each word. These are stored as 
log probabilities, which is simply log(P(A|f)), where f is a given feature.

The reason these are stored as log probabilities is because the actual values are very 
low. For instance, the first value is -3.486, which correlates to a probability under 
0.03 percent. Logarithm probabilities are used in computation involving small 
probabilities like this as they stop underflow errors where very small values are 
just rounded to zeros. Given that all of the probabilities are multiplied together, a 
single value of 0 will result in the whole answer always being 0! Regardless, the 
relationship between values is still the same; the higher the value, the more useful 
that feature is.

We can get the most useful features by sorting the array of logarithm  
probabilities. We want descending order, so we simply negate the values first.  
The code is as follows:

top_features = np.argsort(-feature_probabilities[1])[:50]

The preceding code will just give us the indices and not the actual feature values. 
This isn't very useful, so we will map the feature's indices to the actual values.  
The key is the DictVectorizer step of the pipeline, which created the matrices  
for us. Luckily this also records the mapping, allowing us to find the feature  
names that correlate to different columns. We can extract the features from  
that part of the pipeline:

dv = model.named_steps['vectorizer']
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From here, we can print out the names of the top features by looking them up in the 
feature_names_ attribute of DictVectorizer. Enter the following lines into a new 
cell and run it to print out a list of the top features:

for i, feature_index in enumerate(top_features):
    print(i, dv.feature_names_[feature_index],  
      np.exp(feature_probabilities[1][feature_index]))

The first few features include :, http, # and @. These are likely to be noise (although 
the use of a colon is not very common outside programming), based on the data we 
collected. Collecting more data is critical to smoothing out these issues. Looking 
through the list though, we get a number of more obvious programming features:

7 for 0.188679245283
11 with 0.141509433962
28 installing 0.0660377358491
29 Top 0.0660377358491
34 Developer 0.0566037735849
35 library 0.0566037735849
36 ] 0.0566037735849
37 [ 0.0566037735849
41 version 0.0471698113208
43 error 0.0471698113208

There are some others too that refer to Python in a work context, and therefore might 
be referring to the programming language (although freelance snake handlers may 
also use similar terms, they are less common on Twitter):

22 jobs 0.0660377358491
30 looking 0.0566037735849
31 Job 0.0566037735849
34 Developer 0.0566037735849
38 Freelancer 0.0471698113208
40 projects 0.0471698113208
47 We're 0.0471698113208

That last one is usually in the format: We're looking for a candidate for this job.

Looking through these features gives us quite a few benefits. We could train people 
to recognize these tweets, look for commonalities (which give insight into a topic), 
or even get rid of features that make no sense. For example, the word RT appears 
quite high in this list; however, this is a common Twitter phrase for retweet (that is, 
forwarding on someone else's tweet). An expert could decide to remove this word 
from the list, making the classifier less prone to the noise we introduced by having a 
small dataset.
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Summary
In this chapter, we looked at text mining—how to extract features from text, how to 
use those features, and ways of extending those features. In doing this, we looked 
at putting a tweet in context—was this tweet mentioning python referring to the 
programming language? We downloaded data from a web-based API, getting tweets 
from the popular microblogging website Twitter. This gave us a dataset that we 
labeled using a form we built directly in the IPython Notebook.

We also looked at reproducibility of experiments. While Twitter doesn't allow you to 
send copies of your data to others, it allows you to send the tweet's IDs. Using this, 
we created code that saved the IDs and recreated most of the original dataset. Not all 
tweets were returned; some had been deleted in the time since the ID list was created 
and the dataset was reproduced.

We used a Naive Bayes classifier to perform our text classification. This is built  
upon the Bayes' theorem that uses data to update the model, unlike the frequentist 
method that often starts with the model first. This allows the model to incorporate 
and update new data, and incorporate a prior belief. In addition, the naive part 
allows to easily compute the frequencies without dealing with complex correlations 
between features.

The features we extracted were word occurrences—did this word occur in this tweet? 
This model is called bag-of-words. While this discards information about where a 
word was used, it still achieves a high accuracy on many datasets.

This entire pipeline of using the bag-of-words model with Naive Bayes is quite 
robust. You will find that it can achieve quite good scores on most text-based tasks. 
It is a great baseline for you, before trying more advanced models. As another 
advantage, the Naive Bayes classifier doesn't have any parameters that need to  
be set (although there are some if you wish to do some tinkering).

In the next chapter, we will look at extracting features from another type of data, 
graphs, in order to make recommendations on who to follow on social media.





[ 135 ]

Discovering Accounts to 
Follow Using Graph Mining

Lots of things can be represented as graphs. This is particularly true in this day of 
Big Data, online social networks, and the Internet of Things. In particular, online 
social networks are big business, with sites such as Facebook that have over 500 
million active users (50 percent of them log in each day). These sites often monetize 
themselves by targeted advertising. However, for users to be engaged with a 
website, they often need to follow interesting people or pages.

In this chapter, we will look at the concept of similarity and how we can create 
graphs based on it. We will also see how to split this graph up into meaningful 
subgraphs using connected components. This simple algorithm introduces the 
concept of cluster analysis—splitting a dataset into subsets based on similarity. We 
will investigate cluster analysis in more depth in Chapter 10, Clustering News Articles.

The topics covered in this chapter include:

• Creating graphs from social networks
• Loading and saving built classifiers
• The NetworkX package
• Converting graphs to matrices
• Distance and similarity
• Optimizing parameters based on scoring functions
• Loss functions and scoring functions
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Loading the dataset
In this chapter, our task is to recommend users on online social networks based on 
shared connections. Our logic is that if two users have the same friends, they are highly 
similar and worth recommending to each other.

We are going to create a small social graph from Twitter using the API we 
introduced in the previous chapter. The data we are looking for is a subset of users 
interested in a similar topic (again, the Python programming language) and a list of 
all of their friends (people they follow). With this data, we will check how similar 
two users are, based on how many friends they have in common.

There are many other online social networks apart from 
Twitter. The reason we have chosen Twitter for this 
experiment is that their API makes it quite easy to get this 
sort of information. The information is available from other 
sites, such as Facebook, LinkedIn, and Instagram, as well. 
However, getting this information is more difficult.

To start collecting data, set up a new IPython Notebook and an instance of the 
twitter connection, as we did in the previous chapter. You can reuse the app 
information from the previous chapter or create a new one:

import twitter
consumer_key = "<Your Consumer Key Here>"
consumer_secret = "<Your Consumer Secret Here>"
access_token = "<Your Access Token Here>"
access_token_secret = "<Your Access Token Secret Here>"
authorization = twitter.OAuth(access_token, access_token_secret,  
  consumer_key, consumer_secret)
t = twitter.Twitter(auth=authorization, retry=True)

Also, create the output filename:

import os
data_folder = os.path.join(os.path.expanduser("~"), "Data",  
  "twitter")
output_filename = os.path.join(data_folder, "python_tweets.json")

We will also need the json library to save our data:

import json
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Next, we will need a list of users. We will do a search for tweets, as we did in the 
previous chapter, and look for those mentioning the word python. First, create two 
lists for storing the tweet's text and the corresponding users. We will need the user 
IDs later, so we create a dictionary mapping that now. The code is as follows:

original_users = []
tweets = []
user_ids = {}

We will now perform a search for the word python, as we did in the previous chapter, 
and iterate over the search results:

search_results = t.search.tweets(q="python",  
  count=100)['statuses']
for tweet in search_results:

We are only interested in tweets, not in other messages Twitter can pass along.  
So, we check whether there is text in the results:

    if 'text' in tweet:

If so, we record the screen name of the user, the tweet's text, and the mapping of the 
screen name to the user ID. The code is as follows:

        original_users.append(tweet['user']['screen_name'])
        user_ids[tweet['user']['screen_name']] =  
          tweet['user']['id']
        tweets.append(tweet['text'])

Running this code will get about 100 tweets, maybe a little fewer in some cases.  
Not all of them will be related to the programming language, though.

Classifying with an existing model
As we learned in the previous chapter, not all tweets that mention the word python 
are going to be relating to the programming language. To do that, we will use the 
classifier we used in the previous chapter to get tweets based on the programming 
language. Our classifier wasn't perfect, but it will result in a better specialization than 
just doing the search alone.

In this case, we are only interested in users who are tweeting about Python, the 
programming language. We will use our classifier from the last chapter to determine 
which tweets are related to the programming language. From there, we will select 
only those users who were tweeting about the programming language.
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To do this, we first need to save the model. Open the IPython Notebook we made in 
the last chapter, the one in which we built the classifier. If you have closed it, then 
the IPython Notebook won't remember what you did, and you will need to run the 
cells again. To do this, click on the Cell menu in the notebook and choose Run All.

After all of the cells have computed, choose the final blank cell. If your notebook 
doesn't have a blank cell at the end, choose the last cell, select the Insert menu, and 
select the Insert Cell Below option.

We are going to use the joblib library to save our model and load it.

joblib is included with the scikit-learn package.

First, import the library and create an output filename for our model (make sure the 
directories exist, or else they won't be created). I've stored this model in my Models 
directory, but you could choose to store them somewhere else. The code is as follows:

from sklearn.externals import joblib
output_filename = os.path.join(os.path.expanduser("~"), "Models",  
  "twitter", "python_context.pkl")

Next, we use the dump function in joblib, which works like in the json library.  
We pass the model itself (which, if you have forgotten, is simply called model)  
and the output filename:

joblib.dump(model, output_filename)

Running this code will save our model to the given filename. Next, go back to the 
new IPython Notebook you created in the last subsection and load this model.

You will need to set the model's filename again in this Notebook by copying the 
following code:

model_filename = os.path.join(os.path.expanduser("~"), "Models",  
  "twitter", "python_context.pkl")
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Make sure the filename is the one you used just before to save the model.  
Next, we need to recreate our NLTKBOW class, as it was a custom-built class and  
can't be loaded directly by joblib. In later chapters, we will see some better ways 
around this problem. For now, simply copy the entire NLTKBOW class from the 
previous chapter's code, including its dependencies:

from sklearn.base import TransformerMixin
from nltk import word_tokenize

class NLTKBOW(TransformerMixin):
    def fit(self, X, y=None):
        return self

    def transform(self, X):
        return [{word: True for word in word_tokenize(document)}
                 for document in X]

Loading the model now just requires a call to the load function of joblib:

from sklearn.externals import joblib
context_classifier = joblib.load(model_filename)

Our context_classifier works exactly like the model object of the notebook 
we saw in Chapter 6, Social Media Insight Using Naive Bayes, It is an instance of a 
Pipeline, with the same three steps as before (NLTKBOW, DictVectorizer, and a 
BernoulliNB classifier).

Calling the predict function on this model gives us a prediction as to whether our 
tweets are relevant to the programming language. The code is as follows:

y_pred = context_classifier.predict(tweets)

The ith item in y_pred will be 1 if the ith tweet is (predicted to be) related to the 
programming language, or else it will be 0. From here, we can get just the tweets that 
are relevant and their relevant users:

relevant_tweets = [tweets[i] for i in range(len(tweets)) if y_pred[i]  
  == 1]
relevant_users = [original_users[i] for i in range(len(tweets)) if  
  y_pred[i] == 1]

Using my data, this comes up to 46 relevant users. A little lower than our 100 
tweets/users from before, but now we have a basis for building our social network.
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Getting follower information from Twitter
Next, we need to get the friends of each of these users. A friend is a person whom the 
user is following. The API for this is called friends/ids, and it has both good and 
bad points. The good news is that it returns up to 5,000 friend IDs in a single API 
call. The bad news is that you can only make 15 calls every 15 minutes, which means 
it will take you at least 1 minute per user to get all followers—more if they have 
more than 5,000 friends (which happens more often than you may think).

However, the code is relatively easy. We will package it as a function, as we will 
use this code in the next two sections. First, we will create the function signature 
that takes our Twitter connection and a user's ID. The function will return all of the 
followers for that user, so we will also create a list to store these in. We will also need 
the time module, so we import that as well. We will first go through the composition 
of the function, but then I'll give you the unbroken function in its entirety. The code 
is as follows:

import time
def get_friends(t, user_id):
    friends = []

While it may be surprising, many Twitter users have more than 5,000 friends.  
So, we will need to use Twitter's pagination. Twitter manages multiple pages of  
data through the use of a cursor. When you ask Twitter for information, it gives  
that information along with a cursor, which is an integer that Twitter users to track 
your request. If there is no more information, this cursor is 0; otherwise, you can use 
the supplied cursor to get the next page of results. To start with, we set the cursor to 
-1, indicating the start of the results:

    cursor = -1

Next, we keep looping while this cursor is not equal to 0 (as, when it is, there  
is no more data to collect). We then perform a request for the user's followers  
and add them to our list. We do this in a try block, as there are possible errors  
that can happen that we can handle. The follower's IDs are stored in the ids key  
of the results dictionary. After obtaining that information, we update the cursor.  
It will be used in the next iteration of the loop. Finally, we check if we have more 
than 10,000 friends. If so, we break out of the loop. The code is as follows:

    while cursor != 0:
        try:
            results = t.friends.ids(user_id= user_id,  
              cursor=cursor, count=5000)
            friends.extend([friend for friend in results['ids']])
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            cursor = results['next_cursor']
            if len(friends) >= 10000:
                break

It is worth inserting a warning here. We are dealing with data from 
the Internet, which means weird things can and do happen regularly. 
A problem I ran into when developing this code was that some users 
have many, many, many thousands of friends. As a fix for this issue, 
we will put a failsafe here, exiting if we reach more than 10,000 users. 
If you want to collect the full dataset, you can remove these lines, but 
beware that it may get stuck on a particular user for a very long time.

We now handle the errors that can happen. The most likely error that can occur 
happens if we accidentally reached our API limit (while we have a sleep to stop 
that, it can occur if you stop and run your code before this sleep finishes). In this 
case, results is None and our code will fail with a TypeError. In this case, we 
wait for 5 minutes and try again, hoping that we have reached our next 15-minute 
window. There may be another TypeError that occurs at this time. If one of them 
does, we raise it and will need to handle it separately. The code is as follows:

        except TypeError as e:
            if results is None:
                print("You probably reached your API limit,  
                  waiting for 5 minutes")
                sys.stdout.flush()
                time.sleep(5*60) # 5 minute wait
            else:
                raise e

The second error that can happen occurs at Twitter's end, such as asking for a user 
that doesn't exist or some other data-based error. In this case, don't try this user 
anymore and just return any followers we did get (which, in this case, is likely to be 
0). The code is as follows:

        except twitter.TwitterHTTPError as e:
            break

Now, we will handle our API limit. Twitter only lets us ask for follower information 
15 times every 15 minutes, so we will wait for 1 minute before continuing. We do this 
in a finally block so that it happens even if an error occurs:

        finally:
            time.sleep(60)
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We complete our function by returning the friends we collected:

    return friends

The full function is given as follows:

import time
def get_friends(t, user_id):
    friends = []
    cursor = -1
    while cursor != 0:
        try:
            results = t.friends.ids(user_id= user_id,  
              cursor=cursor, count=5000)
            friends.extend([friend for friend in  
              results['ids']])
            cursor = results['next_cursor']
            if len(friends) >= 10000:
                break
        except TypeError as e:
            if results is None:
                print("You probably reached your API limit,  
                  waiting for 5 minutes")
                sys.stdout.flush()
                time.sleep(5*60) # 5 minute wait
            else:
                raise e
        except twitter.TwitterHTTPError as e:
                break
               finally:
                   time.sleep(60)
    return friends

Building the network
Now we are going to build our network. Starting with our original users, we will get 
the friends for each of them and store them in a dictionary (after obtaining the user's 
ID from our user_id dictionary):

friends = {}
for screen_name in relevant_users:
    user_id = user_ids[screen_name]
    friends[user_id] = get_friends(t, user_id)
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Next, we are going to remove any user who doesn't have any friends. For these 
users, we can't really make a recommendation in this way. Instead, we might have to 
look at their content or people who follow them. We will leave that out of the scope 
of this chapter, though, so let's just remove these users. The code is as follows:

friends = {user_id:friends[user_id] for user_id in friends
             if len(friends[user_id]) > 0}

We now have between 30 and 50 users, depending on your initial search results.  
We are now going to increase that amount to 150. The following code will take quite 
a long time to run—given the limits on the API, we can only get the friends for a user 
once every minute. Simple math will tell us that 150 users will take 150 minutes, or 
2.5 hours. Given the time we are going to be spending on getting this data, it pays to 
ensure we get only good users.

What makes a good user, though? Given that we will be looking to make 
recommendations based on shared connections, we will search for users based  
on shared connections. We will get the friends of our existing users, starting with 
those users who are better connected to our existing users. To do that, we maintain  
a count of all the times a user is in one of our friends lists. It is worth considering  
the goals of the application when considering your sampling strategy. For this 
purpose, getting lots of similar users enables the recommendations to be more 
regularly applicable.

To do this, we simply iterate over all the friends lists we have and then count each 
time a friend occurs.

from collections import defaultdict
def count_friends(friends):
    friend_count = defaultdict(int)
    for friend_list in friends.values():
        for friend in friend_list:
            friend_count[friend] += 1
    return friend_count

Computing our current friend count, we can then get the most connected (that is, 
most friends from our existing list) person from our sample. The code is as follows:

friend_count
reverse=True) = count_friends(friends)
from operator import itemgetter
best_friends = sorted(friend_count.items(), key=itemgetter(1),
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From here, we set up a loop that continues until we have the friends of 150 users. 
We then iterate over all of our best friends (which happens in order of the number 
of people who have them as friends) until we find a user whose friends we haven't 
already got. We then get the friends of that user and update the friends counts. 
Finally, we work out who is the most connected user who we haven't already got  
in our list:

while len(friends) < 150:
    for user_id, count in best_friends:
        if user_id not in friends:
            break       
        friends[user_id] = get_friends(t, user_id)
    for friend in friends[user_id]:
        friend_count[friend] += 1
    best_friends = sorted(friend_count.items(), 
      key=itemgetter(1), reverse=True)

The codes will then loop and continue until we reach 150 users.

You may want to set these value lower, such as 40 or 50 users  
(or even just skip this bit of code temporarily). Then, complete the 
chapter's code and get a feel for how the results work. After that, 
reset the number of users in this loop to 150, leave the code to run 
for a few hours, and then come back and rerun the later code.

Given that collecting that data probably took over 2 hours, it would be a good idea 
to save it in case we have to turn our computer off. Using the json library, we can 
easily save our friends dictionary to a file:

import json
friends_filename = os.path.join(data_folder, "python_friends.json")
with open(friends_filename, 'w') as outf:
    json.dump(friends, outf)

If you need to load the file, use the json.load function:

with open(friends_filename) as inf:
    friends = json.load(inf)
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Creating a graph
Now, we have a list of users and their friends and many of these users are taken 
from friends of other users. This gives us a graph where some users are friends of 
other users (although not necessarily the other way around).

A graph is a set of nodes and edges. Nodes are usually objects—in this case, they are 
our users. The edges in this initial graph indicate that user A is a friend of user B. We 
call this a directed graph, as the order of the nodes matters. Just because user A is a 
friend of user B, that doesn't imply that user B is a friend of user A. We can visualize 
this graph using the NetworkX package.

Once again, you can use pip to install NetworkX: pip3 
install networkx.

First, we create a directed graph using NetworkX. By convention, when importing 
NetworkX, we use the abbreviation nx (although this isn't necessary). The code is  
as follows:

import networkx as nx
G = nx.DiGraph()

We will only visualize our key users, not all of the friends (as there are many 
thousands of these and it is hard to visualize). We get our main users and then  
add them to our graph as nodes. The code is as follows:

main_users = friends.keys()
G.add_nodes_from(main_users)

Next we set up the edges. We create an edge from a user to another user  
if the second user is a friend of the first user. To do this, we iterate through  
all of the friends:

for user_id in friends:
    for friend in friends[user_id]:

We ensure that the friend is one of our main users (as we currently aren't  
interested in the other ones), and add the edge if they are. The code is as follows:

        if friend in main_users:
           G.add_edge(user_id, friend)
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We can now visualize network using NetworkX's draw function, which uses 
matplotlib. To get the image in our notebook, we use the inline function on 
matplotlib and then call the draw function. The code is as follows:

%matplotlib inline
nx.draw(G)

The results are a bit hard to make sense of; they show that there are some nodes with 
few connections but many nodes with many connections:

We can make the graph a bit bigger by using pyplot to handle the creation of the 
figure. To do that, we import pyplot, create a large figure, and then call NetworkX's 
draw function (NetworkX uses pyplot to draw its figures):

from matplotlib import pyplot as plt
plt.figure(3,figsize=(20,20))
nx.draw(G, alpha=0.1, edge_color='b')

The results are too big for a page here, but by making the graph bigger, an outline 
of how the graph appears can now be seen. In my graph, there was a major group 
of users all highly connected to each other, and most other users didn't have many 
connections at all. I've zoomed in on just the center of the network here and set the 
edge color to blue with a low alpha in the preceding code. 
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As you can see, it is very well connected in the center!

This is actually a property of our method of choosing new users—we choose those 
who are already well linked in our graph, so it is likely they will just make this 
group larger. For social networks, generally the number of connections a user has 
follows a power law. A small percentage of users have many connections, and others 
have only a few. The shape of the graph is often described as having a long tail. Our 
dataset doesn't follow this pattern, as we collected our data by getting friends of 
users we already had.

Creating a similarity graph
Our task in this chapter is recommendation through shared friends. As mentioned 
previously, our logic is that, if two users have the same friends, they are highly similar.  
We could recommend one user to the other on this basis.

We are therefore going to take our existing graph (which has edges relating to 
friendship) and create a new graph. The nodes are still users, but the edges are going 
to be weighted edges. A weighted edge is simply an edge with a weight property. 
The logic is that a higher weight indicates more similarity between the two nodes 
than a lower weight. This is context-dependent. If the weights represent distance, 
then the lower weights indicate more similarity.
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For our application, the weight will be the similarity of the two users connected 
by that edge (based on the number of friends they share). This graph also has the 
property that it is not directed. This is due to our similarity computation, where the 
similarity of user A to user B is the same as the similarity of user B to user A.

There are many ways to compute the similarity between two lists like this.  
For example, we could compute the number of friends the two have in common. 
However, this measure is always going to be higher for people with more friends. 
Instead, we can normalize it by dividing by the total number of distinct friends the 
two have. This is called the Jaccard Similarity.

The Jaccard Similarity, always between 0 and 1, represents the percentage overlap of 
the two. As we saw in Chapter 2, Classifying with scikit-learn Estimators, normalization 
is an important part of data mining exercises and generally a good thing to do 
(unless you have a specific reason not to).

To compute this Jaccard similarity, we divide the intersection of the two sets of 
followers by the union of the two. These are set operations and we have lists,  
so we will need to convert the friends lists to sets first. The code is as follows:

friends = {user: set(friends[user]) for user in friends}

We then create a function that computes the similarity of two sets of friends lists.  
The code is as follows:

def compute_similarity(friends1, friends2):
return len(friends1 & friends2) / len(friends1 | friends2)

From here, we can create our weighted graph of the similarity between users.  
We will use this quite a lot in the rest of the chapter, so we will create a function  
to perform this action. Let's take a look at the threshold parameter:

def create_graph(followers, threshold=0):
    G = nx.Graph()

We iterate over all combinations of users, ignoring instances where we are 
comparing a user with themselves:

    for user1 in friends.keys():
        for user2 in friends.keys():
            if user1 == user2:
                continue

We compute the weight of the edge between the two users:

            weight = compute_similarity(friends[user1], 
friends[user2])
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Next, we will only add the edge if it is above a certain threshold. This stops us from 
adding edges we don't care about—for example, edges with weight 0. By default, our 
threshold is 0, so we will be including all edges right now. However, we will use this 
parameter later in the chapter. The code is as follows:

            if weight >= threshold:

If the weight is above the threshold, we add the two users to the graph  
(they won't be added as a duplicate if they are already in the graph):

                G.add_node(user1)
                G.add_node(user2)

We then add the edge between them, setting the weight to be the computed 
similarity:

                G.add_edge(user1, user2, weight=weight)

Once the loops have finished, we have a completed graph and we return it from  
the function:

    return G

We can now create a graph by calling this function. We start with no threshold, 
which means all links are created. The code is as follows:

G = create_graph(friends)

The result is a very strongly connected graph—all nodes have edges, although  
many of those will have a weight of 0. We will see the weight of the edges by 
drawing the graph with line widths relative to the weight of the edge—thicker  
lines indicate higher weights.

Due to the number of nodes, it makes sense to make the figure larger to get a clearer 
sense of the connections:

plt.figure(figsize=(10,10))

We are going to draw the edges with a weight, so we need to draw the nodes first. 
NetworkX uses layouts to determine where to put the nodes and edges, based on 
certain criteria. Visualizing networks is a very difficult problem, especially as the 
number of nodes grows. Various techniques exist for visualizing networks, but the 
degree to which they work depends heavily on your dataset, personal preferences, 
and the aim of the visualization. I found that the spring_layout worked quite well, 
but other options such as circular_layout (which is a good default if nothing else 
works), random_layout, shell_layout, and spectral_layout also exist.
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Visit http://networkx.lanl.gov/reference/drawing.html 
for more details on layouts in NetworkX. Although it adds some 
complexity, the draw_graphviz option works quite well and is worth 
investigating for better visualizations. It is well worth considering in 
real-world uses.

Let's use spring_layout for visualization:

pos = nx.spring_layout(G)

Using our pos layout, we can then position the nodes:

nx.draw_networkx_nodes(G, pos)

Next, we draw the edges. To get the weights, we iterate over the edges in the graph 
(in a specific order) and collect the weights:

edgewidth = [ d['weight'] for (u,v,d) in G.edges(data=True)]

We then draw the edges:

nx.draw_networkx_edges(G, pos, width=edgewidth)

The result will depend on your data, but it will typically show a graph with a large 
set of nodes connected quite strongly and a few nodes poorly connected to the rest  
of the network.

http://networkx.lanl.gov/reference/drawing.html
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The difference in this graph compared to the previous graph is that the edges 
determine the similarity between the nodes based on our similarity metric and  
not on whether one is a friend of another (although there are similarities between the 
two!). We can now start extracting information from this graph in order to make  
our recommendations.

Finding subgraphs
From our similarity function, we could simply rank the results for each user, 
returning the most similar user as a recommendation—as we did with our  
product recommendations. Instead, we might want to find clusters of users that 
are all similar to each other. We could advise these users to start a group, create 
advertising targeting this segment, or even just use those clusters to do the 
recommendations themselves.

Finding these clusters of similar users is a task called cluster analysis. It is a difficult 
task, with complications that classification tasks do not typically have. For example, 
evaluating classification results is relatively easy—we compare our results to the 
ground truth (from our training set) and see what percentage we got right. With 
cluster analysis, though, there isn't typically a ground truth. Evaluation usually 
comes down to seeing if the clusters make sense, based on some preconceived notion 
we have of what the cluster should look like. Another complication with cluster 
analysis is that the model can't be trained against the expected result to learn—it has 
to use some approximation based on a mathematical model of a cluster, not what the 
user is hoping to achieve from the analysis.

Connected components
One of the simplest methods for clustering is to find the connected components in 
a graph. A connected component is a set of nodes in a graph that are connected via 
edges. Not all nodes need to be connected to each other to be a connected component. 
However, for two nodes to be in the same connected component, there needs to be a 
way to travel from one node to another in that connected component.

Connected components do not consider edge weights when being 
computed; they only check for the presence of an edge. For that 
reason, the code that follows will remove any edge with a low weight.
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NetworkX has a function for computing connected components that we can  
call on our graph. First, we create a new graph using our create_graph function, 
but this time we pass a threshold of 0.1 to get only those edges that have a weight  
of at least 0.1.

G = create_graph(friends, 0.1)

We then use NetworkX to find the connected components in the graph:

sub_graphs = nx.connected_component_subgraphs(G)

To get a sense of the sizes of the graph, we can iterate over the groups and print out 
some basic information:

for i, sub_graph in enumerate(sub_graphs):
    n_nodes = len(sub_graph.nodes())
    print("Subgraph {0} has {1} nodes".format(i, n_nodes))

The results will tell you how big each of the connected components is. My results 
had one big subgraph of 62 users and lots of little ones with a dozen or fewer users.

We can alter the threshold to alter the connected components. This is because a 
higher threshold has fewer edges connecting nodes, and therefore will have smaller 
connected components and more of them. We can see this by running the preceding 
code with a higher threshold:

G = create_graph(friends, 0.25)
sub_graphs = nx.connected_component_subgraphs(G)
for i, sub_graph in enumerate(sub_graphs):
    n_nodes = len(sub_graph.nodes())
    print("Subgraph {0} has {1} nodes".format(i, n_nodes))

The preceding code gives us much smaller nodes and more of them. My largest 
cluster was broken into at least three parts and none of the clusters had more than 
10 users. An example cluster is shown in the following figure, and the connections 
within this cluster are also shown. Note that, as it is a connected component, there 
were no edges from nodes in this component to other nodes in the graph (at least, 
with the threshold set at 0.25):
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We can graph the entire set too, showing each connected component in a different 
color. As these connected components are not connected to each other, it actually 
makes little sense to plot these on a single graph. This is because the positioning of 
the nodes and components is arbitrary, and it can confuse the visualization. Instead, 
we can plot each separately on a separate subfigure.

In a new cell, obtain the connected components and also the count of the  
connected components:

sub_graphs = nx.connected_component_subgraphs(G)
n_subgraphs = nx.number_connected_components(G)

sub_graphs is a generator, not a list of the connected components. 
For this reason, use nx.number_connected_components to find 
out how many connected components there are; don't use len, as it 
doesn't work due to the way that NetworkX stores this information. 
This is why we need to recompute the connected components here.

Create a new pyplot figure and give enough room to show all of our connected 
components. For this reason, we allow the graph to increase in size with the  
number of connected components:

fig = plt.figure(figsize=(20, (n_subgraphs * 3)))
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Next, iterate over each connected component and add a subplot for each. The 
parameters to add_subplot are the number of rows of subplots, the number of 
columns, and the index of the subplot we are interested in. My visualization uses 
three columns, but you can try other values instead of three (just remember to 
change both values):

for i, sub_graph in enumerate(sub_graphs):
    ax = fig.add_subplot(int(n_subgraphs / 3), 3, i)

By default, pyplot shows plots with axis labels, which are meaningless in this 
context. For that reason, we turn labels off:

    ax.get_xaxis().set_visible(False)
    ax.get_yaxis().set_visible(False)

Then we plot the nodes and edges (using the ax parameter to plot to the correct 
subplot). To do this, we also need to set up a layout first:

    pos = nx.spring_layout(G)
    nx.draw_networkx_nodes(G, pos, sub_graph.nodes(), ax=ax,  
      node_size=500)
    nx.draw_networkx_edges(G, pos, sub_graph.edges(), ax=ax)

The results visualize each connected component, giving us a sense of the number  
of nodes in each and also how connected they are.
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Optimizing criteria
Our algorithm for finding these connected components relies on the threshold 
parameter, which dictates whether edges are added to the graph or not. In turn, 
this directly dictates how many connected components we discover and how big 
they are. From here, we probably want to settle on some notion of which is the best 
threshold to use. This is a very subjective problem, and there is no definitive answer. 
This is a major problem with any cluster analysis task.

We can, however, determine what we think a good solution should look like  
and define a metric based on that idea. As a general rule, we usually want a  
solution where:

• Samples in the same cluster (connected components) are highly similar to  
each other

• Samples in different clusters are highly dissimilar to each other

The Silhouette Coefficient is a metric that quantifies these points. Given a  
single sample, we define the Silhouette Coefficient as follows:

( )max ,
b as
a b
−

=

Where a is the intra-cluster distance or the average distance to the other samples in 
the sample's cluster, and b is the inter-cluster distance or the average distance to the 
other samples in the next-nearest cluster.

To compute the overall Silhouette Coefficient, we take the mean of the Silhouettes 
for each sample. A clustering that provides a Silhouette Coefficient close to the 
maximum of 1 has clusters that have samples all similar to each other, and these 
clusters are very spread apart. Values near 0 indicate that the clusters all overlap and 
there is little distinction between clusters. Values close to the minimum of -1 indicate 
that samples are probably in the wrong cluster, that is, they would be better off in 
other clusters.

Using this metric, we want to find a solution (that is, a value for the threshold) that 
maximizes the Silhouette Coefficient by altering the threshold parameter. To do 
that, we create a function that takes the threshold as a parameter and computes the 
Silhouette Coefficient.
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We then pass this into the optimize module of SciPy, which contains the minimize 
function that is used to find the minimum value of a function by altering one of the 
parameters. While we are interested in maximizing the Silhouette Coefficient, SciPy 
doesn't have a maximize function. Instead, we minimize the inverse of the Silhouette 
(which is basically the same thing).

The scikit-learn library has a function for computing the Silhouette Coefficient, 
sklearn.metrics.silhouette_score; however, it doesn't fix the function format 
that is required by the SciPy minimize function. The minimize function requires the 
variable parameter to be first (in our case, the threshold value), and any arguments 
to be after it. In our case, we need to pass the friends dictionary as an argument in 
order to compute the graph. The code is as follows:

def compute_silhouette(threshold, friends):

We then create the graph using the threshold parameter, and check it has at least 
some nodes:

    G = create_graph(friends, threshold=threshold)
    if len(G.nodes()) < 2:

The Silhouette Coefficient is not defined unless there are at least two nodes  
(in order for distance to be computed at all). In this case, we define the problem 
scope as invalid. There are a few ways to handle this, but the easiest is to return a 
very poor score. In our case, the minimum value that the Silhouette Coefficient can 
take is -1, and we will return -99 to indicate an invalid problem. Any valid solution 
will score higher than this. The code is as follows:

        return -99 

We then extract the connected components:

    sub_graphs = nx.connected_component_subgraphs(G)

The Silhouette is also only defined if we have at least two connected components 
(in order to compute the inter-cluster distance), and at least one of these connected 
components has two members (to compute the intra-cluster distance). We test for 
these conditions and return our invalid problem score if it doesn't fit. The code is  
as follows:

    if not (2 <= nx.number_connected_components() < len(G.nodes())  
      - 1):
        return -99
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Next, we need to get the labels that indicate which connected component  
each sample was placed in. We iterate over all the connected components,  
noting in a dictionary which user belonged to which connected component.  
The code is as follows:

label_dict = {}
for i, sub_graph in enumerate(sub_graphs):
    for node in sub_graph.nodes():
        label_dict[node] = i

Then we iterate over the nodes in the graph to get the label for each node in order. 
We need to do this two-step process, as nodes are not clearly ordered within a graph 
but they do maintain their order as long as no changes are made to the graph. What 
this means is that, until we change the graph, we can call .nodes() on the graph to 
get the same ordering. The code is as follows:

labels = np.array([label_dict[node] for node in G.nodes()])

Next the Silhouette Coefficient function takes a distance matrix, not a graph. 
Addressing this is another two-step process. First, NetworkX provides a handy 
function to_scipy_sparse_matrix, which returns the graph in a matrix format  
that we can use:

X = nx.to_scipy_sparse_matrix(G).todense()

The Silhouette Coefficient implementation in scikit-learn, at the time of writing,  
doesn't support sparse matrices. For this reason, we need to call the todense() 
function. Typically, this is a bad idea—sparse matrices are usually used because  
the data typically shouldn't be in a dense format. In this case, it will be fine because 
our dataset is relatively small; however, don't try this for larger datasets.

For evaluating sparse datasets, I recommended that you look 
into V-Measure or Adjusted Mutual Information. These are 
both implemented in scikit-learn, but they have very different 
parameters for performing their evaluation.

However, the values are based on our weights, which are a similarity and not a 
distance. For a distance, higher values indicate more difference. We can convert  
from similarity to distance by subtracting the value from the maximum possible 
value, which for our weights was 1:

    X = 1 - X
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Now we have our distance matrix and labels, so we have all the information we 
need to compute the Silhouette Coefficient. We pass the metric as precomputed; 
otherwise, the matrix X will be considered a feature matrix, not a distance matrix 
(feature matrices are used by default nearly everywhere in scikit-learn). The code  
is as follows:

    return silhouette_score(X, labels, metric='precomputed')

We have two forms of inversion happening here. The first is taking the 
inverse of the similarity to compute a distance function; this is needed, 
as the Silhouette Coefficient only accepts distances. The second is the 
inverting of the Silhouette Coefficient score so that we can minimize 
with SciPy's optimize module.

We have one small problem, though. This function returns the Silhouette Coefficient, 
which is a score where higher values are considered better. Scipy's optimize module 
only defines a minimize function, which works off a loss function where lower 
scores are better. We can fix this by inverting the value, which takes our score 
function and returns a loss function.

def inverted_silhouette(threshold, friends):
    return -compute_silhouette(threshold, friends)

This function creates a new function from an original function. When the new 
function is called, all of the same arguments and keywords are passed onto the 
original function and the return value is returned, except that this returned  
value is negated before it is returned.

Now we can do our actual optimization. We call the minimize function on the 
inverted compute_silhouette function we defined:

result = minimize(inverted_silhouette, 0.1, args=(friends,))

The parameters are as follows:

• invert(compute_silhouette): This is the function we are trying to 
minimize (remembering that we invert it to turn it into a loss function)

• 0.1: This is an initial guess at a threshold that will minimize the function
• options={'maxiter':10}: This dictates that only 10 iterations are to be 

performed (increasing this will probably get a better result, but will take 
longer to run)
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• method='nelder-mead': This is used to select the Nelder-Mead optimize 
routing (SciPy supports quite a number of different options)

• args=(friends,): This passes the friends dictionary to the function that is 
being minimized

This function will take quite a while to run. Our graph creation 
function isn't that fast, nor is the function that computes the Silhouette 
Coefficient. Decreasing the maxiter value will result in fewer iterations 
being performed, but we run the risk of finding a suboptimal solution.

Running this function, I got a threshold of 0.135 that returns 10 components.  
The score returned by the minimize function was -0.192. However, we must 
remember that we negated this value. This means our score was actually 0.192.  
The value is positive, which indicates that the clusters tend to be more separated 
than not (a good thing). We could run other models and check whether it results  
in a better score, which means that the clusters are better separated.

We could use this result to recommend users—if a user is in a connected component, 
then we can recommend other users in that component. This recommendation 
follows our use of the Jaccard Similarity to find good connections between users, 
our use of connected components to split them up into clusters, and our use of the 
optimization technique to find the best model in this setting.

However, a large number of users may not be connected at all, so we will use a 
different algorithm to find clusters for them.

Summary
In this chapter, we looked at graphs from social networks and how to do  
cluster analysis on them. We also looked at saving and loading models from  
scikit-learn by using the classification model we created in Chapter 6, Social Media 
Insight Using Naive Bayes.

We created a graph of friends from a social network, in this case Twitter. We then 
examined how similar two users were, based on their friends. Users with more 
friends in common were considered more similar, although we normalize this by 
considering the overall number of friends they have. This is a commonly used way  
to infer knowledge (such as age or general topic of discussion) based on similar 
users. We can use this logic for recommending users to others—if they follow user X 
and user Y is similar to user X, they will probably like user Y. This is, in many ways, 
similar to our transaction-led similarity of previous chapters.
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The aim of this analysis was to recommend users, and our use of cluster  
analysis allowed us to find clusters of similar users. To do this, we found  
connected components on a weighted graph we created based on this similarity 
metric. We used the NetworkX package for creating graphs, using our graphs,  
and finding these connected components.

We then used the Silhouette Coefficient, which is a metric that evaluates how good 
a clustering solution is. Higher scores indicate a better clustering, according to the 
concepts of intra-cluster and inter-cluster distance. SciPy's optimize module was 
used to find the solution that maximises this value.

In this chapter, we compared a few opposites too. Similarity is a measure  
between two objects, where higher values indicate more similarity between those 
objects. In contrast, distance is a measure where lower values indicate more 
similarity. Another contrast we saw was a loss function, where lower scores are 
considered better (that is, we lost less). Its opposite is the score function, where 
higher scores are considered better.

In the next chapter, we will see how to extract features from another new type of 
data: images. We will discuss how to use neural networks to identify numbers in 
images and develop a program to automatically beat CAPTCHA images.
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Beating CAPTCHAs with 
Neural Networks

Interpreting information contained in images has long been a difficult problem in 
data mining, but it is one that is really starting to be addressed. The latest research is 
providing algorithms to detect and understand images to the point where automated 
commercial surveillance systems are now being used—in real-world scenarios—by 
major vendors. These systems are capable of understanding and recognizing objects 
and people in video footage.

It is difficult to extract information from images. There is lots of raw data in an 
image, and the standard method for encoding images—pixels—isn't that informative 
by itself. Images—particularly photos—can be blurry, too close to the targets, too 
dark, too light, scaled, cropped, skewed, or any other of a variety of problems that 
cause havoc for a computer system trying to extract useful information.

In this chapter, we look at extracting text from images by using neural networks 
for predicting each letter. The problem we are trying to solve is to automatically 
understand CAPTCHA messages. CAPTCHAs are images designed to be easy for 
humans to solve and hard for a computer to solve, as per the acronym: Completely 
Automated Public Turing test to tell Computers and Humans Apart. Many websites 
use them for registration and commenting systems to stop automated programs 
flooding their site with fake accounts and spam comments.

The topics covered in this chapter include:

• Neural networks
• Creating our own dataset of CAPTCHAs and letters
• The scikit-image library for working with image data
• The PyBrain library for neural networks
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• Extracting basic features from images
• Using neural networks for larger-scale classification tasks
• Improving performance using postprocessing

Artificial neural networks
Neural networks are a class of algorithm that was originally designed based on 
the way that human brains work. However, modern advances are generally based 
on mathematics rather than biological insights. A neural network is a collection of 
neurons that are connected together. Each neuron is a simple function of its inputs, 
which generates an output:

The functions that define a neuron's processing can be any standard function, such 
as a linear combination of the inputs, and are called the activation function. For the 
commonly used learning algorithms to work, we need the activation function to be 
derivable and smooth. A frequently used activation function is the logistic function, 
which is defined by the following equation (k is often simply 1, x is the inputs into 
the neuron, and L is normally 1, that is, the maximum value of the function):

The value of this graph, from -6 to +6, is shown as follows:
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The red lines indicate that the value is 0.5 when x is zero.

Each individual neuron receives its inputs and then computes the output based 
on these values. Neural networks are simply networks of these neurons connected 
together, and they can be very powerful for data mining applications. The 
combinations of these neurons, how they fit together, and how they combine  
to learn a model are one of the most powerful concepts in machine learning.

An introduction to neural networks
For data mining applications, the arrangement of neurons is usually in layers. The 
first layer, the input layer, takes the inputs from the dataset. The outputs of each  
of these neurons are computed and then passed along to the neurons in the next 
layer. This is called a feed-forward neural network. We will refer to these simply  
as neural networks for this chapter. There are other types of neural networks too  
that are used for different applications. We will see another type of network in 
Chapter 11, Classifying Objects in Images Using Deep Learning.
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The outputs of one layer become the inputs of the next layer, continuing until we 
reach the final layer: the, output layer. These outputs represent the predictions of  
the neural network as the classification. Any layer of neurons between the 
input layer and the output layer is referred to as a hidden layer, as they learn a 
representation of the data not intuitively interpretable by humans. Most neural 
networks have at least three layers, although most modern applications use networks 
with many more layers than that.

Typically, we consider fully connected layers. The outputs of each neuron in a layer 
go to all neurons in the next layer. While we do define a fully connected network, 
many of the weights will be set to zero during the training process, effectively 
removing these links. Fully connected neural networks are also simpler and more 
efficient to program than other connection patterns.

As the function of the neurons is normally the logistic function, and the neurons are 
fully connected to the next layer, the parameters for building and training a neural 
network must be other factors. The first factor for neural networks is in the building 
phase: the size of the neural network. This includes how many layers the neural 
network has and how many neurons it has in each hidden layer (the size of the  
input and output layers is usually dictated by the dataset).

The second parameter for neural networks is determined in the training phase: the 
weight of the connections between neurons. When one neuron connects to another, 
this connection has an associated weight that is multiplied by the signal (the output 
of the first neuron). If the connection has a weight of 0.8, the neuron is activated, and 
it outputs a value of 1, the resulting input to the next neuron is 0.8. If the first neuron 
is not activated and has a value of 0, this stays at 0.
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The combination of an appropriately sized network and well-trained weights 
determines how accurate the neural network can be when making classifications. The 
word "appropriately" also doesn't necessarily mean bigger, as neural networks that are 
too large can take a long time to train and can more easily overfit the training data.

Weights are normally set randomly to start with, but are then 
updated during the training phase.

We now have a classifier that has initial parameters to set (the size of the network) 
and parameters to train from the dataset. The classifier can then be used to predict the 
target of a data sample based on the inputs, much like the classification algorithms we 
have used in previous chapters. But first, we need a dataset to train and test with.

Creating the dataset
In this chapter, we will take on the role of the bad guy. We want to create a program 
that can beat CAPTCHAs, allowing our comment spam program to advertise on 
someone's website. It should be noted that our CAPTCHAs will be a little easier  
that those used on the web today and that spamming isn't a very nice thing to do.

Our CAPTCHAs will be individual English words of four letters only, as shown in 
the following image:

Our goal will be to create a program that can recover the word from images like this. 
To do this, we will use four steps:

1. Break the image into individual letters.
2. Classify each individual letter.
3. Recombine the letters to form a word.
4. Rank words with a dictionary to try to fix errors.
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Our CAPTCHA-busting algorithm will make the following assumptions. First, the 
word will be a whole and valid four-character English word (in fact, we use the same 
dictionary for creating and busting CAPTCHAs). Second, the word will only contain 
uppercase letters. No symbols, numbers, or spaces will be used. We are going to 
make the problem slightly harder: we are going to perform a shear transform to the 
text, along with varying rates of shearing.

Drawing basic CAPTCHAs
Next, we develop our function for creating our CAPTCHA. Our goal here is to  
draw an image with a word on it, along with a shear transform. We are going to  
use the PIL library to draw our CAPTCHAs and the scikit-image library to 
perform the shear transform. The scikit-image library can read images in a  
NumPy array format that PIL can export to, allowing us to use both libraries.

Both PIL and scikit-image can be installed via pip:
pip install PIL

pip install scikit-image

First, we import the necessary libraries and modules. We import NumPy and the 
Image drawing functions as follows:

import numpy as np
from PIL import Image, ImageDraw, ImageFont
from skimage import transform as tf

Then we create our base function for generating CAPTCHAs. This function takes a 
word and a shear value (which is normally between 0 and 0.5) to return an image in 
a NumPy array format. We allow the user to set the size of the resulting image, as we 
will use this function for single-letter training samples as well. The code is as follows:

def create_captcha(text, shear=0, size=(100, 24)):

We create a new image using L for the format, which means black-and-white pixels 
only, and create an instance of the ImageDraw class. This allows us to draw on this 
image using PIL. The code is as follows:

    im = Image.new("L", size, "black")
    draw = ImageDraw.Draw(im)
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Next we set the font of the CAPTCHA we will use. You will need a font file and the 
filename in the following code (Coval.otf) should point to it (I just placed the file in 
the Notebook's directory.

    font = ImageFont.truetype(r"Coval.otf", 22)
    draw.text((2, 2), text, fill=1, font=font)

You can get the Coval font I used from the Open Font Library at  
http://openfontlibrary.org/en/font/bretan.

We convert the PIL image to a NumPy array, which allows us to use scikit-image 
to perform a shear on it. The scikit-image library tends to use NumPy arrays for 
most of its computation. The code is as follows:

    image = np.array(im)

We then apply the shear transform and return the image:

    affine_tf = tf.AffineTransform(shear=shear)
    image = tf.warp(image, affine_tf)
    return image / image.max()

In the last line, we normalize by dividing by the maximum value, ensuring our 
feature values are in the range 0 to 1. This normalization can happen in the data 
preprocessing stage, the classification stage, or somewhere else.

From here, we can now generate images quite easily and use pyplot to display  
them. First, we use our inline display for the matplotlib graphs and import pyplot. 
The code is as follows:

%matplotlib inline 
from matplotlib import pyplot as plt

Then we create our first CAPTCHA and show it:

image = create_captcha("GENE", shear=0.5)
plt.imshow(image, cmap='Greys')

The result is the image shown at the start of this section: our CAPTCHA.

Splitting the image into individual letters
Our CAPTCHAs are words. Instead of building a classifier that can identify the 
thousands and thousands of possible words, we will break the problem down into  
a smaller problem: predicting letters.

http://openfontlibrary.org/en/font/bretan
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The next step in our algorithm for beating these CAPTCHAs involves segmenting 
the word to discover each of the letters within it. To do this, we are going to create  
a function that finds contiguous sections of black pixels on the image and extract 
them as sub-images. These are (or at least should be) our letters.

First we import the label and regionprops functions, which we will use in  
this function:

from skimage.measure import label, regionprops

Our function will take an image, and return a list of subimages, where each  
sub-image is a letter from the original word in the image:

def segment_image(image):

The first thing we need to do is to detect where each letter is. To do this, we will  
use the label function in scikit-image, which finds connected sets of pixels that 
have the same value. This has analogies to our connected component discovery  
in Chapter 7, Discovering Accounts to Follow Using Graph Mining.

The label function takes an image and returns an array of the same shape as the 
original. However, each connected region has a different number in the array and 
pixels that are not in a connected region have the value 0. The code is as follows:

    labeled_image = label(image > 0)

We will extract each of these sub-images and place them into a list:

    subimages = []

The scikit-image library also contains a function for extracting information about 
these regions: regionprops. We can iterate over these regions and work on each 
individually:

    for region in regionprops(labeled_image): 

From here, we can query the region object for information about the current region. 
For our algorithm, we need to obtain the starting and ending coordinates of the 
current region:

        start_x, start_y, end_x, end_y = region.bbox
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We can then extract the sub-images by indexing the image (remember it is represented 
as a simple NumPy array, so we can easily index it) using the starting and ending 
positions of the sub-image, and adding the selected sub-image to our list. The code  
is as follows:

        subimages.append(image[start_x:end_x,start_y:end_y])

Finally (and outside the loop) we return the discovered sub-images, each (hopefully) 
containing the section of the image with an individual letter in it. However, if we 
didn't find any sub-images, we just return the original image as our only sub-image. 
The code is as follows:

    if len(subimages) == 0:
        return [image,]
    return subimages

We can then get the sub-images from the example CAPTCHA using this function:

subimages = segment_image(image)

We can also view each of these sub-images:

f, axes = plt.subplots(1, len(subimages), figsize=(10, 3))
for i in range(len(subimages)):
    axes[i].imshow(subimages[i], cmap="gray")

The result will look something like this:

As you can see, our image segmentation does a reasonable job, but the results are 
still quite messy, with bits of previous letters showing.

Creating a training dataset
Using this function, we can now create a dataset of letters, each with different  
shear values. From this, we will train a neural network to recognize each letter  
from the image.
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We first set up our random state and an array that holds the options for letters and 
shear values that we will randomly select from. There isn't much surprise here, but 
if you haven't used NumPy's arange function before, it is similar to Python's range 
function—except this one works with NumPy arrays and allows the step to be a 
float. The code is as follows:

from sklearn.utils import check_random_state
random_state = check_random_state(14)
letters = list("ABCDEFGHIJKLMNOPQRSTUVWXYZ")
shear_values = np.arange(0, 0.5, 0.05)

We then create a function (for generating a single sample in our training dataset)  
that randomly selects a letter and a shear value from the available options.  
The code is as follows:

def generate_sample(random_state=None):
    random_state = check_random_state(random_state)
    letter = random_state.choice(letters)
    shear = random_state.choice(shear_values)

We then return the image of the letter, along with the target value representing the 
letter in the image. Our classes will be 0 for A, 1 for B, 2 for C, and so on. The code  
is as follows:

    return create_captcha(letter, shear=shear, size=(20, 20)),  
      letters.index(letter)

Outside the function block, we can now call this code to generate a new sample and 
then show it using pyplot:

image, target = generate_sample(random_state)
plt.imshow(image, cmap="Greys")
print("The target for this image is: {0}".format(target))

We can now generate all of our dataset by calling this several thousand times.  
We then put the data into NumPy arrays, as they are easier to work with than  
lists. The code is as follows:

dataset, targets = zip(*(generate_sample(random_state) for i in 
range(3000)))
dataset = np.array(dataset, dtype='float')
targets =  np.array(targets)
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Our targets are integer values between 0 and 26, with each representing a letter of 
the alphabet. Neural networks don't usually support multiple values from a single 
neuron, instead preferring to have multiple outputs, each with values 0 or 1. We 
therefore perform one hot-encoding of the targets, giving us a target array that has  
26 outputs per sample, using values near 1 if that letter is likely and near 0 otherwise. 
The code is as follows:

from sklearn.preprocessing import OneHotEncoder
onehot = OneHotEncoder()
y = onehot.fit_transform(targets.reshape(targets.shape[0],1))

The library we are going to use doesn't support sparse arrays, so we need to turn  
our sparse matrix into a dense NumPy array. The code is as follows:

y = y.todense()

Adjusting our training dataset to our 
methodology
Our training dataset differs from our final methodology quite significantly. Our 
dataset here is nicely created individual letters, fitting the 20-pixel by 20-pixel image. 
The methodology involves extracting the letters from words, which may squash 
them, move them away from the center, or create other problems.

Ideally, the data you train your classifier on should mimic the environment it will  
be used in. In practice, we make concessions, but aim to minimize the differences  
as much as possible.

For this experiment, we would ideally extract letters from actual CAPTCHAs and 
label those. In the interests of speeding up the process a bit, we will just run our 
segmentation function on the training dataset and return those letters instead.

We will need the resize function from scikit-image, as our sub-images won't 
always be 20 pixels by 20 pixels. The code is as follows:

from skimage.transform import resize

From here, we can run our segment_image function on each sample and then resize 
them to 20 pixels by 20 pixels. The code is as follows:

dataset = np.array([resize(segment_image(sample)[0], (20, 20)) for 
sample in dataset])
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Finally, we will create our dataset. This dataset array is three-dimensional, as it 
is an array of two-dimensional images. Our classifier will need a two-dimensional 
array, so we simply flatten the last two dimensions:

X = dataset.reshape((dataset.shape[0], dataset.shape[1] * dataset.
shape[2]))

Finally, using the train_test_split function of scikit-learn, we create a set of data 
for training and one for testing. The code is as follows:

from sklearn.cross_validation import train_test_split
X_train, X_test, y_train, y_test = \
    train_test_split(X, y, train_size=0.9)

Training and classifying
We are now going to build a neural network that will take an image as input and  
try to predict which (single) letter is in the image.

We will use the training set of single letters we created earlier. The dataset itself is 
quite simple. We have a 20 by 20 pixel image, each pixel 1 (black) or 0 (white). These 
represent the 400 features that we will use as inputs into the neural network. The 
outputs will be 26 values between 0 and 1, where higher values indicate a higher 
likelihood that the associated letter (the first neuron is A, the second is B, and so  
on) is the letter represented by the input image.

We are going to use the PyBrain library for our neural network.

As with all the libraries we have seen so far, PyBrain can be installed 
from pip: pip install pybrain.

The PyBrain library uses its own dataset format, but luckily it isn't too difficult to 
create training and testing datasets using this format. The code is as follows:

from pybrain.datasets import SupervisedDataSet

First, we iterate over our training dataset and add each as a sample into a new 
SupervisedDataSet instance. The code is as follows:

training = SupervisedDataSet(X.shape[1], y.shape[1])
for i in range(X_train.shape[0]):
    training.addSample(X_train[i], y_train[i])
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Then we iterate over our testing dataset and add each as a sample into a new 
SupervisedDataSet instance for testing. The code is as follows:

testing = SupervisedDataSet(X.shape[1], y.shape[1])
for i in range(X_test.shape[0]):
    testing.addSample(X_test[i], y_test[i])

Now we can build a neural network. We will create a basic three-layer network that 
consists of an input layer, an output layer, and a single hidden layer between them. 
The number of neurons in the input and output layers is fixed. 400 features in our 
dataset dictates that we need 400 neurons in the first layer, and 26 possible targets 
dictate that we need 26 output neurons.

Determining the number of neurons in the hidden layers can be quite difficult. 
Having too many results in a sparse network and means it is difficult to train 
enough neurons to properly represent the data. This usually results in overfitting 
the training data. If there are too few results in neurons that try to do too much 
of the classification each and again don't train properly, underfitting the data is 
the problem. I have found that creating a funnel shape, where the middle layer is 
between the size of the inputs and the size of the outputs, is a good starting place. 
For this chapter, we will use 100 neurons in the hidden layer, but playing with this 
value may yield better results.

We import the buildNetwork function and tell it to build a network based on our 
necessary dimensions. The first value, X.shape[1], is the number of neurons in the 
input layer and it is set to the number of features (which is the number of columns in 
X). The second feature is our decided value of 100 neurons in the hidden layer. The 
third value is the number of outputs, which is based on the shape of the target array 
y. Finally, we set network to use a bias neuron to each layer (except for the output 
layer), effectively a neuron that always activates (but still has connections with a 
weight that are trained). The code is as follows:

from pybrain.tools.shortcuts import buildNetwork
net = buildNetwork(X.shape[1], 100, y.shape[1], bias=True)

From here, we can now train the network and determine good values for the 
weights. But how do we train a neural network?

Back propagation
The back propagation (backprop) algorithm is a way of assigning blame to each 
neuron for incorrect predictions. Starting from the output layer, we compute which 
neurons were incorrect in their prediction, and adjust the weights into those neurons 
by a small amount to attempt to fix the incorrect prediction.
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These neurons made their mistake because of the neurons giving them input, but 
more specifically due to the weights on the connections between the neuron and its 
inputs. We then alter these weights by altering them by a small amount. The amount 
of change is based on two aspects: the partial derivative of the error function of 
the neuron's individual weights and the learning rate, which is a parameter to the 
algorithm (usually set at a very low value). We compute the gradient of the error 
of the function, multiply it by the learning rate, and subtract that from our weights. 
This is shown in the following example. The gradient will be positive or negative, 
depending on the error, and subtracting the weight will always attempt to correct 
the weight towards the correct prediction. In some cases, though, the correction will 
move towards something called a local optima, which is better than similar weights 
but not the best possible set of weights.

This process starts at the output layer and goes back each layer until we reach the 
input layer. At this point, the weights on all connections have been updated.

PyBrain contains an implementation of the backprop algorithm, which is called on 
the neural network through a trainer class. The code is as follows:

from pybrain.supervised.trainers import BackpropTrainer
trainer = BackpropTrainer(net, training, learningrate=0.01, 
weightdecay=0.01)

The backprop algorithm is run iteratively using the training dataset, and each time 
the weights are adjusted a little. We can stop running backprop when the error 
reduces by a very small amount, indicating that the algorithm isn't improving the 
error much more and it isn't worth continuing the training. In theory, we would run 
the algorithm until the error doesn't change at all. This is called convergence, but in 
practice this takes a very long time for little gain.

Alternatively, and much more simply, we can just run the algorithm a fixed number 
of times, called epochs. The higher the number of epochs, the longer the algorithm 
will take and the better the results will be (with a declining improvement for each 
epoch). We will train for 20 epochs for this code, but trying larger values will 
increase the performance (if only slightly). The code is as follows:

trainer.trainEpochs(epochs=20)

After running the previous code, which may take a number of minutes depending 
on the hardware, we can then perform predictions of samples in our testing dataset. 
PyBrain contains a function for this, and it is called on the trainer instance:

predictions = trainer.testOnClassData(dataset=testing)
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From these predictions, we can use scikit-learn to compute the F1 score:

from sklearn.metrics import f1_score 
print("F-score: {0:.2f}".format(f1_score(predictions,
                                         y_test.argmax(axis=1) )))

The score here is 0.97, which is a great result for such a relatively simple model. 
Recall that our features were simple pixel values only; the neural network worked 
out how to use them.

Now that we have a classifier with good accuracy on letter prediction, we can start 
putting together words for our CAPTCHAs.

Predicting words
We want to predict each letter from each of these segments, and put those 
predictions together to form the predicted word from a given CAPTCHA.

Our function will accept a CAPTCHA and the trained neural network, and it will 
return the predicted word:

def predict_captcha(captcha_image, neural_network):

We first extract the sub-images using the segment_image function we created earlier:

    subimages = segment_image(captcha_image)

We will be building our word from each of the letters. The sub-images are ordered 
according to their location, so usually this will place the letters in the correct order:

    predicted_word = ""

Next we iterate over the sub-images:

    for subimage in subimages:

Each sub-image is unlikely to be exactly 20 pixels by 20 pixels, so we will need to 
resize it in order to have the correct size for our neural network.

        subimage = resize(subimage, (20, 20))

We will activate our neural network by sending the sub-image data into the input 
layer. This propagates through our neural network and returns the given output. 
All this happened in our testing of the neural network earlier, but we didn't have to 
explicitly call it. The code is as follows:

        outputs = net.activate(subimage.flatten())
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The output of the neural network is 26 numbers, each relative to the likelihood that 
the letter at the given index is the predicted letter. To get the actual prediction, we 
get the index of the maximum value of these outputs and look up our letters list  
from before for the actual letter. For example, if the value is highest for the fifth 
output, the predicted letter will be E. The code is as follows:

        prediction = np.argmax(outputs)

We then append the predicted letter to the predicted word we are building:

        predicted_word += letters[prediction]

After the loop completes, we have gone through each of the letters and formed our 
predicted word:

    return predicted_word

We can now test on a word using the following code. Try different words and see 
what sorts of errors you get, but keep in mind that our neural network only knows 
about capital letters.

word = "GENE"
captcha = create_captcha(word, shear=0.2)
print(predict_captcha(captcha, net))

We can codify this into a function, allowing us to perform predictions more easily. 
We also leverage our assumption that the words will be only four-characters long to 
make prediction a little easier. Try it without the prediction = prediction[:4] 
line and see what types of errors you get. The code is as follows:

def test_prediction(word, net, shear=0.2):
    captcha = create_captcha(word, shear=shear)
    prediction = predict_captcha(captcha, net)
    prediction = prediction[:4]
    return word == prediction, word, prediction

The returned results specify whether the prediction is correct, the original word,  
and the predicted word.
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This code correctly predicts the word GENE, but makes mistakes with other words. 
How accurate is it? To test, we will create a dataset with a whole bunch of four-letter 
English words from NLTK. The code is as follows:

from nltk.corpus import words

The words instance here is actually a corpus object, so we need to call words() on it 
to extract the individual words from this corpus. We also filter to get only four-letter 
words from this list. The code is as follows:

valid_words = [word.upper() for word in words.words() if len(word) == 
4]

We can then iterate over all of the words to see how many we get correct by simply 
counting the correct and incorrect predictions:

num_correct = 0
num_incorrect = 0
for word in valid_words:
    correct, word, prediction = test_prediction(word, net,
                                                shear=0.2)
if correct:
        num_correct += 1
    else:
        num_incorrect += 1
print("Number correct is {0}".format(num_correct))
print("Number incorrect is {0}".format(num_incorrect))

The results we get are 2,832 correct and 2,681 incorrect for an accuracy of just over  
51 percent. From our original 97 percent per-letter accuracy, this is a big decline. 
What happened?

The first factor to impact is our accuracy. All other things being equal, if we have 
four letters, and 97 percent accuracy per-letter, then we can expect about an 88 
percent success rate (all other things being equal) getting four letters in a row 
(0.88≈0.974). A single error in a single letter's prediction results in the wrong word 
being predicted.
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The second impact is the shear value. Our dataset chose randomly between shear 
values of 0 to 0.5. The previous test used a shear of 0.2. For a value of 0, I get 75 
percent accuracy; for a shear of 0.5, the result is much worse at 2.5 percent. The 
higher the shear, the lower the performance.

The next impact is that our letters were randomly chosen for the dataset. In reality, 
this is not true at all. Letters, such as E, appear much more frequently than other 
letters, such as Q. Letters that appear reasonably commonly but are frequently 
mistaken for each other, will also contribute to the error.

We can table which letters are frequently mistaken for each other using a confusion 
matrix, which is a two dimensional array. Its rows and columns each represent an 
individual class.

Each cell represents the number of times that a sample is actually from one class 
(represented by the row) and predicted to be in the second class (represented by  
the column). For example, if the value of the cell (4,2) is 6, it means that there were 
six cases where a sample with the letter D was predicted as being a letter B.

from sklearn.metrics import confusion_matrix
cm = confusion_matrix(np.argmax(y_test, axis=1), predictions)

Ideally, a confusion matrix should only have values along the diagonal. The cells (i, i) 
have values, but any other cell has a value of zero. This indicates that the predicted classes 
are exactly the same as the actual classes. Values that aren't on the diagonal represent errors 
in the classification.

We can also plot this using pyplot, showing graphically which letters are confused 
with each other. The code is as follows:

plt.figure(figsize=(10, 10))
plt.imshow(cm)

We set the axis and tick marks to easily reference the letters each index  
corresponds to:

tick_marks = np.arange(len(letters))
plt.xticks(tick_marks, letters)
plt.yticks(tick_marks, letters)
plt.ylabel('Actual')
plt.xlabel('Predicted')
plt.show()
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The result is shown in the next graph. It can be quite clearly seen that the main 
source of error is U being mistaken for an H nearly every single time!

The letter U appears in 17 percent of words in our list. For each word that a U 
appears in, we can expect this to be wrong. U actually appears more often than H 
(which is in around 11 percent of words), indicating we could get a cheap (although 
possibly not a robust) boost in accuracy by changing any H prediction into a U.

In the next section, we will do something a bit smarter and actually use the 
dictionary to search for similar words.
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Improving accuracy using a dictionary
Rather than just returning the given prediction, we can check whether the word 
actually exists in our dictionary. If it does, then that is our prediction. If it isn't in the 
dictionary, we can try and find a word that is similar to it and predict that instead. 
Note that this strategy relies on our assumption that all CAPTCHA words will 
be valid English words, and therefore this strategy wouldn't work for a random 
sequence of characters. This is one reason why some CAPTCHAs don't use words.

There is one issue here—how do we determine the closest word? There are many 
ways to do this. For instance, we can compare the lengths of words. Two words that 
have a similar length could be considered more similar. However, we commonly 
consider words to be similar if they have the same letters in the same positions.  
This is where the edit distance comes in.

Ranking mechanisms for words
The Levenshtein edit distance is a commonly used method for comparing two short 
strings to see how similar they are. It isn't very scalable, so it isn't commonly used for 
very long strings. The edit distance computes the number of steps it takes to go from 
one word to another. The steps can be one of the following three actions:

1. Insert a new letter into the word at any position.
2. Delete any letter from the word.
3. Substitute a letter for another one.

The minimum number of actions needed to transform the first word into the second 
is given as the distance. Higher values indicate that the words are less similar.

This distance is available in NLTK as nltk.metrics.edit_distance. We can call  
it using on two strings and it returns the edit distance:

from nltk.metrics import edit_distance
steps = edit_distance("STEP", "STOP")
print("The number of steps needed is: {0}".format(steps))

When used with different words, the edit distance is quite a good approximation to 
what many people would intuitively feel are similar words. The edit distance is great 
for testing spelling mistakes, dictation errors, and name matching (where you can 
mix up your Marc and Mark spelling quite easily).
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However, it isn't very good. We don't really expect letters to be moved around, just 
individual letter comparisons to be wrong. For this reason, we will create a different 
distance metric, which is simply the number of letters in the same positions that are 
incorrect. The code is as follows:

def compute_distance(prediction, word):
    return len(prediction) - sum(prediction[i] == word[i] for i in  
range(len(prediction)))

We subtract the value from the length of the prediction word (which is four) to make 
it a distance metric where lower values indicate more similarity between the words.

Putting it all together
We can now test our improved prediction function using similar code to before.  
First we define a prediction, which also takes our list of valid words:

from operator import itemgetter
def improved_prediction(word, net, dictionary, shear=0.2):
    captcha = create_captcha(word, shear=shear)
    prediction = predict_captcha(captcha, net)
    prediction = prediction[:4]

Up to this point, the code is as before. We do our prediction and limit it to the first 
four characters. However, we now check if the word is in the dictionary or not. If it 
is, we return that as our prediction. If it is not, we find the next nearest word. The 
code is as follows:

    if prediction not in dictionary:

We compute the distance between our predicted word and each other word in the 
dictionary, and sort it by distance (lowest first). The code is as follows:

        distances = sorted([(word, compute_distance(prediction, word))
                            for word in dictionary], 
key=itemgetter(1))

We then get the best matching word—that is, the one with the lowest distance—and 
predict that word:

        best_word = distances[0]
        prediction = best_word[0]

We then return the correctness, word, and prediction as before:

    return word == prediction, word, prediction
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The changes in our testing code are highlighted in the following code:

num_correct = 0
num_incorrect = 0
for word in valid_words:
    correct, word, prediction = improved_prediction(word, net, valid_
words, shear=0.2)
    if correct:
        num_correct += 1
    else:
        num_incorrect += 1
print("Number correct is {0}".format(num_correct))
print("Number incorrect is {0}".format(num_incorrect))

The preceding code will take a while to run (computing all of the distances will take 
some time) but the net result is 3,037 samples correct and 2,476 samples incorrect. 
This is an accuracy of 55 percent for a boost of 4 percentage points. The reason this 
improvement is so low is that multiple words all have the same similarity, and the 
algorithm is choosing the best one randomly between this set of most similar words. 
For example, the first word in the list, AANI (I just chose the first word in the list, 
which is a dog-headed ape from Egyptian mythology), has 44 candidate words that 
are all the same distance from the word. This gives just a 1/44 chance of choosing  
the correct word from this list.

If we were to cheat and count the prediction as correct if the actual word was  
any one of the best candidates, we would rate 78 percent of predictions as correct  
(to see this code, check out the code in the bundle).

To further improve the results, we can work on our distance metric, perhaps using 
information from our confusion matrix to find commonly confused letters or some other 
improvement upon this. This iterative improvement is a feature of many data mining 
methodologies, and it mimics the scientific method—have an idea, test it out, analyze 
the results, and use that to improve the next idea.
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Summary
In this chapter, we worked with images in order to use simple pixel values to  
predict the letter being portrayed in a CAPTCHA. Our CAPTCHAs were a bit 
simplified; we only used complete four-letter English words. In practice, the problem  
is much harder—as it should be! With some improvements, it would be possible to 
solve much harder CAPTCHAs with neural networks and a methodology similar to 
what we discussed. The scikit-image library contains lots of useful functions for 
extracting shapes from images, functions for improving contrast, and other image  
tools that will help.

We took our larger problem of predicting words, and created a smaller and simple 
problem of predicting letters. From here, we were able to create a feed-forward 
neural network to accurately predict which letter was in the image. At this  
stage, our results were very good with 97 percent accuracy.

Neural networks are simply connected sets of neurons, which are basic computation 
devices consisting of a single function. However, when you connect these together, 
they can solve incredibly complex problems. Neural networks are the basis for deep 
learning, which is one of the most effective areas of data mining at the moment.

Despite our great per-letter accuracy, the performance when predicting a word  
drops to just over 50 percent when trying to predict a whole word. There were 
several factors for this, representing the difficulty of taking a problem from an 
experiment to the real world.

We improved our accuracy using a dictionary, searching for the best matching 
word. To do this, we considered the commonly used edit distance; however, we 
simplified it  because we were only concerned with individual mistakes on letters, 
not insertions or deletions. This improvement netted some benefit, but there are  
still many improvements you could try to further boost the accuracy.

In the next chapter, we will continue with string comparisons. We will attempt  
to determine which author (out of a set of authors) wrote a particular  
document—using only the content and no other information!
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Authorship Attribution
Authorship analysis is, predominately, a text mining task that aims to identify 
certain aspects about an author, based only on the content of their writings. This 
could include characteristics such as age, gender, or background. In the specific 
authorship attribution task, we aim to identify who out of a set of authors wrote 
a particular document. This is a classic case of a classification task. In many ways, 
authorship analysis tasks are performed using standard data mining methodologies, 
such as cross fold validation, feature extraction, and classification algorithms.

In this chapter, we will use the problem of authorship attribution to piece together 
the parts of the data mining methodology we developed in the previous chapters. 
We identify the problem and discuss the background and knowledge of the problem. 
This lets us choose features to extract, which we will build a pipeline for achieving. 
We will test two different types of features: function words and character n-grams. 
Finally, we will perform an in-depth analysis of the results. We will work with a 
book dataset, and then a very messy real-world corpus of e-mails.

The topics we will cover in this chapter are as follows:

• Feature engineering and how the features differ based on application
• Revisiting the bag-of-words model with a specific goal in mind
• Feature types and the character n-grams model
• Support vector machines
• Cleaning up a messy dataset for data mining



Authorship Attribution

[ 186 ]

Attributing documents to authors
Authorship analysis has a background in stylometry, which is the study of an 
author's style of writing. The concept is based on the idea that everyone learns 
language slightly differently, and measuring the nuances in people's writing will 
enable us to tell them apart using only the content of their writing.

The problem has been historically performed using manual analysis and statistics, 
which is a good indication that it could be automated with data mining. Modern 
authorship analysis studies are almost entirely data mining-based, although quite a 
significant amount of work is still done with more manually driven analysis using 
linguistic styles.

Authorship analysis has many subproblems, and the main ones are as follows:

• Authorship profiling: This determines the age, gender, or other traits  
of the author based on the writing. For example, we can detect the first 
language of a person speaking English by looking for specific ways in  
which they speak the language.

• Authorship verification: This checks whether the author of this document 
also wrote the other document. This problem is what you would normally 
think about in a legal court setting. For instance, the suspect's writing style 
(content-wise) would be analyzed to see if it matched the ransom note.

• Authorship clustering: This is an extension of authorship verification,  
where we use cluster analysis to group documents from a big set into 
clusters, and each cluster is written by the same author.

However, the most common form of authorship analysis study is that of authorship 
attribution, a classification task where we attempt to predict which of a set of authors 
wrote a given document.

Applications and use cases
Authorship analysis has a number of use cases. Many use cases are concerned with 
problems such as verifying authorship, proving shared authorship/provenance, or 
linking social media profiles with real-world users.

In a historical sense, we can use authorship analysis to verify whether certain 
documents were indeed written by their supposed authors. Controversial authorship 
claims include some of Shakespeare's plays, the Federalist papers from the USA's 
foundation period, and other historical texts. 
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Authorship studies alone cannot prove authorship, but can provide evidence for 
or against a given theory. For example, we can analyze Shakespeare's plays to 
determine his writing style, before testing whether a given sonnet actually does 
originate from him.

A more modern use case is that of linking social network accounts. For example, 
a malicious online user could set up accounts on multiple online social networks. 
Being able to link them allows authorities to track down the user of a given 
account—for example, if it is harassing other online users.

Another example used in the past is to be a backbone to provide expert testimony 
in court to determine whether a given person wrote a document. For instance, the 
suspect could be accused of writing an e-mail harassing another person. The use of 
authorship analysis could determine whether it is likely that person did in fact write 
the document. Another court-based use is to settle claims of stolen authorship. For 
example, two authors may claim to have written a book, and authorship analysis 
could provide evidence on which is the likely author.

Authorship analysis is not foolproof though. A recent study found that attributing 
documents to authors can be made considerably harder by simply asking people, 
who are otherwise untrained, to hide their writing style. This study also looked at 
a framing exercise where people were asked to write in the style of another person. 
This framing of another person proved quite reliable, with the faked document 
commonly attributed to the person being framed.

Despite these issues, authorship analysis is proving useful in a growing number  
of areas and is an interesting data mining problem to investigate.

Attributing authorship
Authorship attribution is a classification task by which we have a set of candidate 
authors, a set of documents from each of those authors (the training set), and a set 
of documents of unknown authorship (the test set). If the documents of unknown 
authorship definitely belong to one of the candidates, we call this a closed problem.



Authorship Attribution

[ 188 ]

If we cannot be sure of that, we call this an open problem. This distinction isn't just 
specific to authorship attribution though—any data mining application where the 
actual class may not be in the training set is considered an open problem, with the 
task being to find the candidate author or to select none of them.

In authorship attribution, we typically have two restrictions on the tasks. First, we 
only use content information from the documents and not metadata about time 
of writing, delivery, handwriting style, and so on. There are ways to combine 
models from these different types of information, but that isn't generally considered 
authorship attribution and is more a data fusion application.

The second restriction is that we don't look at the topic of the documents; instead, we 
look for more salient features such as word usage, punctuation, and other text-based 
features. The reasoning here is that a person can write on many different topics, so 
worrying about the topic of their writing isn't going to model their actual authorship 
style. Looking at topic words can also lead to overfitting on the training data—our 
model may train on documents from the same author and also on the same topic. 
For instance, if you were to model my authorship style by looking at this book, you 
might conclude the words data mining are indicative of my style, when in fact I write 
on other topics as well.

From here, the pipeline for performing authorship attribution looks a lot like the one 
we developed in Chapter 6, Social Media Insight Using Naive Bayes. First, we extract 
features from our text. Then, we perform some feature selection on those features. 
Finally, we train a classification algorithm to fit a model, which we can then use to 
predict the class (in this case, the author) of a document.

There are some differences, mostly having to do with which features are used, that 
we will cover in this chapter. But first, we will define the scope of the problem.
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Getting the data
The data we will use for this chapter is a set of books from Project Gutenberg at  
www.gutenberg.org, which is a repository of public domain literature works.  
The books I used for these experiments come from a variety of authors:

• Booth Tarkington (22 titles)
• Charles Dickens (44 titles)
• Edith Nesbit (10 titles)
• Arthur Conan Doyle (51 titles)
• Mark Twain (29 titles)
• Sir Richard Francis Burton (11 titles)
• Emile Gaboriau (10 titles)

Overall, there are 177 documents from 7 authors, giving a significant amount of  
text to work with. A full list of the titles, along with download links and a script  
to automatically fetch them, is given in the code bundle.

To download these books, we use the requests library to download the files into  
our data directory. First, set up the data directory and ensure the following code 
links to it:

import os
import sys
data_folder = os.path.join(os.path.expanduser("~"), "Data", "books")

Next, run the script from the code bundle to download each of the books from 
Project Gutenberg. This will place them in the appropriate subfolders of this  
data folder.

To run the script, download the getdata.py script from the Chapter 9 folder  
in the code bundle. Save it to your notebooks folder and enter the following into a 
new cell:

!load getdata.py

Then, from inside your IPython Notebook, press Shift + Enter to run the cell.  
This will load the script into the cell. Then click the code again and press  
Shift + Enter to run the script itself. This will take a while, but it will print a  
message to let you know it is complete.

www.gutenberg.org
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After taking a look at these files, you will see that many of them are quite messy—at 
least from a data analysis point of view. There is a large project Gutenberg disclaimer 
at the start of the files. This needs to be removed before we do our analysis.

We could alter the individual files on disk to remove this stuff. However, what 
happens if we were to lose our data? We would lose our changes and potentially be 
unable to replicate the study. For that reason, we will perform the preprocessing as 
we load the files—this allows us to be sure our results will be replicable (as long as 
the data source stays the same). The code is as follows:

def clean_book(document):

We first split the document into lines, as we can identify the start and end of the 
disclaimer by the starting and ending lines:

    lines = document.split("\n")

We are going to iterate through each line. We look for the line that indicates the start 
of the book, and the line that indicates the end of the book. We will then take the text 
in between as the book itself. The code is as follows:

    start = 0
    end = len(lines)
    for i in range(len(lines)):
        line = lines[i]
        if line.startswith("*** START OF THIS PROJECT GUTENBERG"):
            start = i + 1
        elif line.startswith("*** END OF THIS PROJECT GUTENBERG"):
            end = i - 1

Finally, we join those lines together with a newline character to recreate the book 
without the disclaimers:

    return "\n".join(lines[start:end])

From here, we can now create a function that loads all of the books, performs  
the preprocessing, and returns them along with a class number for each author.  
The code is as follows:

import numpy as np

By default, our function signature takes the parent folder containing each of the 
subfolders that contain the actual books. The code is as follows:

def load_books_data(folder=data_folder):



Chapter 9

[ 191 ]

We create lists for storing the documents themselves and the author classes:

    documents = []
    authors = []

We then create a list of each of the subfolders in the parent directly, as the script 
creates a subfolder for each author. The code is as follows:

    subfolders = [subfolder for subfolder in os.listdir(folder)
                  if os.path.isdir(os.path.join(folder,  
                     subfolder))]

Next we iterate over these subfolders, assigning each subfolder a number using 
enumerate:

    for author_number, subfolder in enumerate(subfolders):

We then create the full subfolder path and look for all documents within  
that subfolder:

        full_subfolder_path = os.path.join(folder, subfolder)
        for document_name in os.listdir(full_subfolder_path):

For each of those files, we open it, read the contents, preprocess those contents,  
and append it to our documents list. The code is as follows:

            with open(os.path.join(full_subfolder_path,  
              document_name)) as inf:
                documents.append(clean_book(inf.read()))

We also append the number we assigned to this author to our authors list,  
which will form our classes:

                authors.append(author_number)

We then return the documents and classes (which we transform into a NumPy  
array for each indexing later on):

    return documents, np.array(authors, dtype='int')

We can now get our documents and classes using the following function call:

documents, classes = load_books_data(data_folder)
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This dataset fits into memory quite easily, so we can load all of the text 
at once. In cases where the whole dataset doesn't fit, a better solution is 
to extract the features from each document one-at-a-time (or in batches) 
and save the resulting values to a file or in-memory matrix.

Function words
One of the earliest types of features, and one that still works quite well for 
authorship analysis, is to use function words in a bag-of-words model. Function 
words are words that have little meaning on their own, but are required for creating 
(English) sentences. For example, the words this and which are words that are 
really only defined by what they do within a sentence, rather than their meaning in 
themselves. Contrast this with a content word such as tiger, which has an explicit 
meaning and invokes imagery of a large cat when used in a sentence.

Function words are not always clearly clarified. A good rule of thumb is to choose 
the most frequent words in usage (over all possible documents, not just ones from 
the same author). Typically, the more frequently a word is used, the better it is for 
authorship analysis. In contrast, the less frequently a word is used, the better it is for 
content-based text mining, such as in the next chapter, where we look at the topic  
of different documents.
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The use of function words is less defined by the content of the document and more by 
the decisions made by the author. This makes them good candidates for separating 
the authorship traits between different users. For instance, while many Americans are 
particular about the different in usage between that and which in a sentence, people 
from other countries, such as Australia, are less particular about this. This means that 
some Australians will lean towards almost exclusively using one word or the other, 
while others may use which much more. This difference, combined with thousands of 
other nuanced differences, makes a model of authorship.

Counting function words
We can count function words using the CountVectorizer class we used in  
Chapter 6, Social Media Insight Using Naive Bayes. This class can be passed a 
vocabulary, which is the set of words it will look for. If a vocabulary is not passed 
(we didn't pass one in the code of Chapter 6), then it will learn this vocabulary  
from the dataset. All the words are in the training set of documents (depending on 
the other parameters of course).

First, we set up our vocabulary of function words, which is just a list containing  
each of them. Exactly which words are function words and which are not is up  
for debate. I've found this list, from published research, to be quite good:

function_words = ["a", "able", "aboard", "about", "above", "absent",
"according" , "accordingly", "across", "after", "against",
"ahead", "albeit", "all", "along", "alongside", "although",
"am", "amid", "amidst", "among", "amongst", "amount", "an",
"and", "another", "anti", "any", "anybody", "anyone",
"anything", "are", "around", "as", "aside", "astraddle",
"astride", "at", "away", "bar", "barring", "be", "because",
"been", "before", "behind", "being", "below", "beneath",
"beside", "besides", "better", "between", "beyond", "bit",
"both", "but", "by", "can", "certain", "circa", "close",
"concerning", "consequently", "considering", "could",
"couple", "dare", "deal", "despite", "down", "due", "during",
"each", "eight", "eighth", "either", "enough", "every",
"everybody", "everyone", "everything", "except", "excepting",
"excluding", "failing", "few", "fewer", "fifth", "first",
"five", "following", "for", "four", "fourth", "from", "front",
"given", "good", "great", "had", "half", "have", "he",
"heaps", "hence", "her", "hers", "herself", "him", "himself",
"his", "however", "i", "if", "in", "including", "inside",
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"instead", "into", "is", "it", "its", "itself", "keeping",
"lack", "less", "like", "little", "loads", "lots", "majority",
"many", "masses", "may", "me", "might", "mine", "minority",
"minus", "more", "most", "much", "must", "my", "myself",
"near", "need", "neither", "nevertheless", "next", "nine",
"ninth", "no", "nobody", "none", "nor", "nothing",
"notwithstanding", "number", "numbers", "of", "off", "on",
"once", "one", "onto", "opposite", "or", "other", "ought",
"our", "ours", "ourselves", "out", "outside", "over", "part",
"past", "pending", "per", "pertaining", "place", "plenty",
"plethora", "plus", "quantities", "quantity", "quarter",
"regarding", "remainder", "respecting", "rest", "round",
"save", "saving", "second", "seven", "seventh", "several",
"shall", "she", "should", "similar", "since", "six", "sixth",
"so", "some", "somebody", "someone", "something", "spite",
"such", "ten", "tenth", "than", "thanks", "that", "the",
"their", "theirs", "them", "themselves", "then", "thence",
"therefore", "these", "they", "third", "this", "those",
"though", "three", "through", "throughout", "thru", "thus",
"till", "time", "to", "tons", "top", "toward", "towards",
"two", "under", "underneath", "unless", "unlike", "until",
"unto", "up", "upon", "us", "used", "various", "versus",
"via", "view", "wanting", "was", "we", "were", "what",
"whatever", "when", "whenever", "where", "whereas",
"wherever", "whether", "which", "whichever", "while",
"whilst", "who", "whoever", "whole", "whom", "whomever",
"whose", "will", "with", "within", "without", "would", "yet",
"you", "your", "yours", "yourself", "yourselves"]

Now, we can set up an extractor to get the counts of these function words. We will fit 
this using a pipeline later:

from sklearn.feature_extraction.text import CountVectorizer
extractor = CountVectorizer(vocabulary=function_words)
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Classifying with function words
Next, we import our classes. The only new thing here is the support vector  
machines, which we will cover in the next section (for now, just consider it 
a standard classification algorithm). We import the SVC class, an SVM for 
classification, as well as the other standard workflow tools we have seen before:

from sklearn.svm import SVC
from sklearn.cross_validation import cross_val_score
from sklearn.pipeline import Pipeline
from sklearn import grid_search

Support vector machines take a number of parameters. As I said, we will use one 
blindly here, before going into detail in the next section. We then use a dictionary 
to set which parameters we are going to search. For the kernel parameter, we will 
try linear and rbf. For C, we will try values of 1 and 10 (descriptions of these 
parameters are covered in the next section). We then create a grid search to search 
these parameters for the best choices:

parameters = {'kernel':('linear', 'rbf'), 'C':[1, 10]}
svr = SVC()
grid = grid_search.GridSearchCV(svr, parameters)

Gaussian kernels (such as rbf) only work for reasonably sized datasets, 
such as when the number of features is fewer than about 10,000.

Next, we set up a pipeline that takes the feature extraction step using the 
CountVectorizer (only using function words), along with our grid search using 
SVM. The code is as follows:

pipeline1 = Pipeline([('feature_extraction', extractor),
                     ('clf', grid)
                     ])

Next, we apply cross_val_score to get our cross validated score for this pipeline. 
The result is 0.811, which means we approximately get 80 percent of the predictions 
correct. For 7 authors, this is a good result!
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Support vector machines
Support vector machines (SVMs) are classification algorithms based on a simple 
and intuitive idea. It performs classification between only two classes (although we 
can extend it to more classes). Suppose that our two classes can be separated by a 
line such that any points above the line belong to one class and any below the line 
belong to the other class. SVMs find this line and use it for prediction, much the same 
way as linear regression works. SVMs, however, find the best line for separating the 
dataset. In the following figure, we have three lines that separate the dataset: blue, 
black, and green. Which would you say is the best option?

Intuitively, a person would normally choose the blue line as the best option,  
as this separates the data the most. That is, it has the maximum distance from  
any point in each class.

Finding this line is an optimization problem, based on finding the lines of margin 
with the maximum distance between them.
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The derivation of these equations is outside the scope of this book, 
but I recommend interested readers to go through the derivations 
at http://en.wikibooks.org/wiki/Support_Vector_
Machines for the details. Alternatively, you can visit http://docs.
opencv.org/doc/tutorials/ml/introduction_to_svm/
introduction_to_svm.html.

Classifying with SVMs
After training the model, we have a line of maximum margin. The classification of 
new samples is then simply asking the question: does it fall above the line, or below it?  
If it falls above the line, it is predicted as one class. If it is below the line, it is 
predicted as the other class.

For multiple classes, we create multiple SVMs—each a binary classifier. We then 
connect them using any one of a variety of strategies. A basic strategy is to create a 
one-versus-all classifier for each class, where we train using two classes—the given 
class and all other samples. We do this for each class and run each classifier on a 
new sample, choosing the best match from each of these. This process is performed 
automatically in most SVM implementations.

We saw two parameters in our previous code: C and the kernel. We will cover the 
kernel parameter in the next section, but the C parameter is an important parameter 
for fitting SVMs. The C parameter relates to how much the classifier should aim to 
predict all training samples correctly, at the risk of overfitting. Selecting a higher 
C value will find a line of separation with a smaller margin, aiming to classify 
all training samples correctly. Choosing a lower C value will result in a line of 
separation with a larger margin—even if that means that some training samples 
are incorrectly classified. In this case, a lower C value presents a lower chance of 
overfitting, at the risk of choosing a generally poorer line of separation.

One limitation with SVMs (in their basic form) is that they only separate data that is 
linearly separable. What happens if the data isn't? For that problem, we use kernels.

http://en.wikibooks.org/wiki/Support_Vector_Machines
http://en.wikibooks.org/wiki/Support_Vector_Machines
http://en.wikibooks.org/wiki/Support_Vector_Machines
http://docs.opencv.org/doc/tutorials/ml/introduction_to_svm/introduction_to_svm.html
http://docs.opencv.org/doc/tutorials/ml/introduction_to_svm/introduction_to_svm.html
http://docs.opencv.org/doc/tutorials/ml/introduction_to_svm/introduction_to_svm.html
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Kernels
When the data cannot be separated linearly, the trick is to embed it onto a higher 
dimensional space. What this means, with a lot of hand-waving about the details, is 
to add pseudo-features until the data is linearly separable (which will always happen 
if you add enough of the right kinds of features).

The trick is that we often compute the inner-produce of the samples when finding 
the best line to separate the dataset. Given a function that uses the dot product, we 
effectively manufacture new features without having to actually define those new 
features. This is handy because we don't know what those features were going to  
be anyway. We now define a kernel as a function that itself is the dot product of  
the function of two samples from the dataset, rather than based on the samples  
(and the made-up features) themselves.

We can now compute what that dot product is (or approximate it) and then just  
use that.

There are a number of kernels in common use. The linear kernel is the most 
straightforward and is simply the dot product of the two sample feature vectors,  
the weight feature, and a bias value. There is also a polynomial kernel, which raises 
the dot product to a given degree (for instance, 2). Others include the Gaussian  
(rbf) and Sigmoidal functions. In our previous code sample, we tested between  
the linear kernel and the rbf kernels.

The end result from all this derivation is that these kernels effectively define a 
distance between two samples that is used in the classification of new samples in 
SVMs. In theory, any distance could be used, although it may not share the same 
characteristics that enable easy optimization of the SVM training.

In scikit-learn's implementation of SVMs, we can define the kernel parameter to 
change which kernel function is used in computations, as we saw in the previous 
code sample.

Character n-grams
We saw how function words can be used as features to predict the author of a 
document. Another feature type is character n-grams. An n-gram is a sequence of n 
objects, where n is a value (for text, generally between 2 and 6). Word n-grams have 
been used in many studies, usually relating to the topic of the documents. However, 
character n-grams have proven to be of high quality for authorship attribution.
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Character n-grams are found in text documents by representing the document as a 
sequence of characters. These n-grams are then extracted from this sequence and a 
model is trained. There are a number of different models for this, but a standard one 
is very similar to the bag-of-words model we have used earlier.

For each distinct n-gram in the training corpus, we create a feature for it. An example 
of an n-gram is <e t>, which is the letter e, a space, and then the letter t (the angle 
brackets are used to denote the start and end of the n-gram and aren't part of it). We 
then train our model using the frequency of each n-gram in the training documents 
and train the classifier using the created feature matrix.

Character n-grams are defined in many ways. For instance, 
some applications only choose within-word characters, ignoring 
whitespace and punctuation. Some use this information (like our 
implementation in this chapter).

A common theory for why character n-grams work is that people more typically 
write words they can easily say and character n-grams (at least when n is between 2 
and 6) are a good approximation for phonemes—the sounds we make when saying 
words. In this sense, using character n-grams approximates the sounds of words, 
which approximates your writing style. This is a common pattern when creating 
new features. First we have a theory on what concepts will impact the end result 
(authorship style) and then create features to approximate or measure those concepts.

A main feature of a character n-gram matrix is that it is sparse and increases  
in sparsity with higher n-values quite quickly. For an n-value of 2, approximately 75 
percent of our feature matrix is zeros. For an n-value of 5, over 93 percent is  
zeros. This is typically less sparse than a word n-gram matrix of the same type 
though and shouldn't cause many issues using a classifier that is used for  
word-based classifications.

Extracting character n-grams
We are going to use our CountVectorizer class to extract character n-grams.  
To do that, we set the analyzer parameter and specify a value for n to extract 
n-grams with.

The implementation in scikit-learn uses an n-gram range, allowing you to extract 
n-grams of multiple sizes at the same time. We won't delve into different n-values  
in this experiment, so we just set the values the same. To extract n-grams of size 3, 
you need to specify (3, 3) as the value for the n-gram range.
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We can reuse the grid search from our previous code. All we need to do is specify the 
new feature extractor in a new pipeline:

pipeline = Pipeline([('feature_extraction', CountVectorizer(analyzer='
char', ngram_range=(3, 3))),
                     ('classifier', grid)
                     ])
scores = cross_val_score(pipeline, documents, classes, scoring='f1')
print("Score: {:.3f}".format(np.mean(scores)))

There is a lot of implicit overlap between function words and character 
n-grams, as character sequences in function words are more likely to 
appear. However, the actual features are very different and character 
n-grams capture punctuation, which function words do not. For example, 
a character n-gram includes the full stop at the end of a sentence, while a 
function word-based method would only use the preceding word itself.

Using the Enron dataset
Enron was one of the largest energy companies in the world in the late 1990s, 
reporting revenue over $100 billion. It has over 20,000 staff and—as of the year 
2000—there seemed to be no indications that something was very wrong.

In 2001, the Enron Scandal occurred, where it was discovered that Enron was 
undertaking systematic, fraudulent accounting practices. This fraud was deliberate, 
wide-ranging across the company, and for significant amounts of money. After this 
was publicly discovered, its share price dropped from more than $90 in 2000 to less 
than $1 in 2001. Enron shortly filed for bankruptcy in a mess that would take more 
than 5 years to finally be resolved.

As part of the investigation into Enron, the Federal Energy Regulatory Commission 
in the United States made more than 600,000 e-mails publicly available. Since then, 
this dataset has been used for everything from social network analysis to fraud 
analysis. It is also a great dataset for authorship analysis, as we are able to extract 
e-mails from the sent folder of individual users. This allows us to create a dataset 
much larger than many previous datasets.
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Accessing the Enron dataset
The full set of Enron e-mails is available at https://www.cs.cmu.edu/~./enron/.

The full dataset is 423 MB in a compression format called gzip. If you 
don't have a Linux-based machine to decompress (unzip) this file, get 
an alternative program, such as 7-zip (http://www.7-zip.org/).

Download the full corpus and decompress it into your data folder. By default, this 
will decompress into a folder called enron_mail_20110402.

As we are looking for authorship information, we only want the e-mails we can 
attribute to a specific author. For that reason, we will look in each user's sent  
folder—that is, e-mails they have sent.

In the Notebook, setup the data folder for the Enron dataset:

enron_data_folder = os.path.join(os.path.expanduser("~"), "Data",  
  "enron_mail_20110402", "maildir")

Creating a dataset loader
We can now create a function that will choose a couple of authors at random and 
return each of the emails in their sent folder. Specifically, we are looking for the 
payloads—that is, the content rather than the e-mails themselves. For that, we will 
need an e-mail parser. The code is as follows:

from email.parser import Parser
p = Parser()

We will be using this later to extract the payloads from the e-mail files that are  
in the data folder.

We will be choosing authors at random, so we will be using a random state that 
allows us to replicate the results if we want:

from sklearn.utils import check_random_state

https://www.cs.cmu.edu/~./enron/
http://www.7-zip.org/
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With our data loading function, we are going to have a lot of options. Most of these 
ensure that our dataset is relatively balanced. Some authors will have thousands 
of e-mails in their sent mail, while others will have only a few dozen. We limit our 
search to only authors with at least 10 e-mails using min_docs_author and take a 
maximum of 100 e-mails from each author using the max_docs_author parameter. 
We also specify how many authors we want to get—10 by default using the num_
authors parameter. The code is as follows:

def get_enron_corpus(num_authors=10, data_folder=data_folder,
                     min_docs_author=10, max_docs_author=100,
                     random_state=None):
    random_state = check_random_state(random_state)

Next, we list all of the folders in the data folder, which are separate e-mail addresses 
of Enron employees. We when randomly shuffle them, allowing us to choose a new 
set every time the code is run. Remember that setting the random state will allow us 
to replicate this result:

    email_addresses = sorted(os.listdir(data_folder))
    random_state.shuffle(email_addresses)

It may seem odd that we sort the e-mail addresses, only to shuffle 
them around. The os.listdir function doesn't always return the 
same results, so we sort it first to get some stability. We then shuffle 
using a random state, which means our shuffling can reproduce a 
past result if needed.

We then set up our documents and class lists. We also create an author_num, which 
will tell us which class to use for each new author. We won't use the enumerate trick 
we used earlier, as it is possible that we won't choose some authors. For example, if 
an author doesn't have 10 sent e-mails, we will not use it. The code is as follows:

    documents = []
    classes = []
    author_num = 0

We are also going to record which authors we used and which class number we 
assigned to them. This isn't for the data mining, but will be used in the visualization 
so we can identify the authors more easily. The dictionary will simply map e-mail 
usernames to class values. The code is as follows:

    authors = {}
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Next, we iterate through each of the e-mail addresses and look for all subfolders  
with "sent" in the name, indicating a sent mail box. The code is as follows:

    for user in email_addresses:
      users_email_folder = os.path.join(data_folder, user)
      mail_folders = [os.path.join(users_email_folder,  
        subfolder) for subfolder in os.listdir(users_email_folder)
                        if "sent" in subfolder]

We then get each of the e-mails that are in this folder. I've surrounded this call  
in a try-except block, as some of the authors have subdirectories in their sent mail. 
We could use some more detailed code to get all of these e-mails, but for now we  
will just continue and ignore these users. The code is as follows:

        try:
          authored_emails = [open(os.path.join(mail_folder,  
            email_filename), encoding='cp1252').read()
          for mail_folder in mail_folders
          for email_filename in os.listdir(mail_folder)]
        except IsADirectoryError:
            continue

Next we check we have at least 10 e-mails (or whatever min_docs_author is set to):

        if len(authored_emails) < min_docs_author:
            continue

As a next step, if we have too many e-mails from this author, only take the first 100 
(from max_docs_author):

        if len(authored_emails) > max_docs_author:
            authored_emails = authored_emails[:max_docs_author]

Next, we parse the e-mail to extract the contents. We aren't interested in the 
headers—the author has little control over what goes here, so it doesn't make for 
good data for authorship analysis. We then add those e-mail payloads to our dataset:

        contents = [p.parsestr(email)._payload for email in  
          authored_emails]
        documents.extend(contents)

We then append a class value for this author, for each of the e-mails we added  
to our dataset:

        classes.extend([author_num] * len(authored_emails))
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We then record the class number we used for this author and then increment it:

        authors[user] = author_num
        author_num += 1

We then check if we have enough authors and, if so, we break out of the loop to 
return the dataset. The code is as follows:

        if author_num >= num_authors or author_num >=  
          len(email_addresses):
            break

We then return the datatset's documents and classes, along with our author 
mapping. The code is as follows:

    return documents, np.array(classes), authors

Outside this function, we can now get a dataset by making the following function 
call. We are going to use a random state of 14 here (as always in this book), but  
you can try other values or set it to none to get a random set each time the function  
is called:

documents, classes, authors = get_enron_corpus(data_folder=enron_data_
folder, random_state=14)

If you have a look at the dataset, there is still a further preprocessing set we need to 
undertake. Our e-mails are quite messy, but one of the worst bits (from a data analysis 
perspective) is that these e-mails contain writings from other authors, in the form of 
attached replies. Take the following e-mail, which is documents[100], for instance:

I am disappointed on the timing but I understand.  Thanks.  Mark

 -----Original Message-----

From:    Greenberg, Mark

Sent:    Friday, September 28, 2001 4:19 PM

To:    Haedicke, Mark E.

Subject:    Web Site

Mark -

FYI - I have attached below a screen shot of the proposed new look and feel for the 
site. We have a couple of tweaks to make, but I believe this is a much cleaner look 
than what we have now.
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This document contains another e-mail attached to the bottom as a reply, a common 
e-mail pattern. The first part of the e-mail is from Mark Haedicke, while the second is 
a previous e-mail written to Mark Haedicke by Mark Greenberg. Only the preceding 
text (the first instance of -----Original Message-----) could be attributed to the author, 
and this is the only bit we are actually worried about.

Extracting this information generally is not easy. E-mail is a notoriously badly used 
format. Different e-mail clients add their own headers, define replies in different 
ways, and just do things however they want. It is really surprising that e-mail  
works at all in the current environment.

There are some commonly used patterns that we can look for. The quotequail 
package looks for these and can find the new part of the e-mail, discarding replies 
and other information.

You can install quotequail using pip: pip3 install quotequail.

We are going to write a simple function to wrap the quotequail functionality, 
allowing us to easily call it on all of our documents. First we import quotequail  
and set up the function definition:

import quotequail
def remove_replies(email_contents):

Next, we use quotequail to unwrap the e-mail, which returns a dictionary 
containing the different parts of the e-mail. The code is as follows:

    r = quotequail.unwrap(email_contents)

In some cases, r can be none. This happens if the e-mail couldn't be parsed. In this 
case, we just return the full e-mail contents. This kind of messy solution is often 
necessary when working with real world datasets. The code is as follows:

    if r is None:
        return email_contents

The actual part of the e-mail we are interested in is called (by quotequail) the  
text_top. If this exists, we return this as our interesting part of the e-mail.  
The code is as follows:

    if 'text_top' in r:
        return r['text_top']
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If it doesn't exist, quotequail couldn't find it. It is possible it found other text in the 
e-mail. If that exists, we return only that text. The code is as follows:

    elif 'text' in r:
        return r['text']

Finally, if we couldn't get a result, we just return the e-mail contents, hoping they 
offer some benefit to our data analysis:

    return email_contents

We can now preprocess all of our documents by running this function on each  
of them:

documents = [remove_replies(document) for document in documents]

Our preceding e-mail sample is greatly clarified now and contains only the e-mail 
written by Mark Greenberg:

I am disappointed on the timing but I understand.  Thanks. Mark

Putting it all together
We can use the existing parameter space and classifier from our previous 
experiments—all we need to do is refit it on our new data. By default, training 
in scikit-learn is done from scratch—subsequent calls to fit() will discard any 
previous information.

There is a class of algorithms called online learning that update the 
training with new samples and don't restart their training each time. 
We will see online learning in action later in this book, including the 
next chapter, Chapter 10, Clustering News Articles.

As before, we can compute our scores by using cross_val_score and print the 
results. The code is as follows:

scores = cross_val_score(pipeline, documents, classes, scoring='f1')
print("Score: {:.3f}".format(np.mean(scores)))

The result is 0.523, which is a reasonable result for such a messy dataset. Adding 
more data (such as increasing max_docs_author in the dataset loading) can improve 
these results.
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Evaluation
It is generally never a good idea to base an assessment on a single number. In the 
case of the f-score, it is usually more robust than tricks that give good scores despite 
not being useful. An example of this is accuracy. As we said in our previous chapter, 
a spam classifier could predict everything as being spam and get over 80 percent 
accuracy, although that solution is not useful at all. For that reason, it is usually 
worth going more in-depth on the results.

To start with, we will look at the confusion matrix, as we did in Chapter 8, Beating 
CAPTCHAs with Neural Networks. Before we can do that, we need to predict a testing 
set. The previous code uses cross_val_score, which doesn't actually give us a 
trained model we can use. So, we will need to refit one. To do that, we need  
training and testing subsets:

from sklearn.cross_validation import train_test_split
training_documents, testing_documents, y_train, y_test =  
train_test_split(documents, classes, random_state=14)

Next, we fit the pipeline to our training documents and create our predictions for  
the testing set:

pipeline.fit(training_documents, y_train)
y_pred = pipeline.predict(testing_documents)

At this point, you might be wondering what the best combination of parameters 
actually was. We can extract this quite easily from our grid search object (which is 
the classifier step of our pipeline):

print(pipeline.named_steps['classifier'].best_params_)

The results give you all of the parameters for the classifier. However, most of the 
parameters are the defaults that we didn't touch. The ones we did search for were  
C and kernel, which were set to 1 and linear, respectively.

Now we can create a confusion matrix:

from sklearn.metrics import confusion_matrix
cm = confusion_matrix(y_pred, y_test)
cm = cm / cm.astype(np.float).sum(axis=1)

Next we get our authors so that we can label the axis correctly. For this purpose, we 
use the authors dictionary that our Enron dataset loaded. The code is as follows:

sorted_authors = sorted(authors.keys(), key=lambda x:authors[x])
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Finally, we show the confusion matrix using matplotlib. The only changes from  
the last chapter are highlighted below; just replace the letter labels with the authors 
from this chapter's experiments:

%matplotlib inline
from matplotlib import pyplot as plt
plt.figure(figsize=(10,10))
plt.imshow(cm, cmap='Blues')
tick_marks = np.arange(len(sorted_authors))
plt.xticks(tick_marks, sorted_authors)
plt.yticks(tick_marks, sorted_authors)
plt.ylabel('Actual')
plt.xlabel('Predicted')
plt.show()

The results are shown in the following figure:
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We can see that authors are predicted correctly in most cases—there is a clear 
diagonal line with high values. There are some large sources of error though (darker 
values are larger): e-mails from user baughman-d are typically predicted as being 
from reitmeyer-j for instance.

Summary
In this chapter, we looked at the text mining-based problem of authorship 
attribution. To perform this, we analyzed two types of features: function words 
and character n-grams. For function words, we were able to use the bag-of-words 
model—simply restricted to a set of words we chose beforehand. This gave us the 
frequencies of only those words. For character n-grams, we used a very similar 
workflow using the same class. However, we changed the analyzer to look at 
characters and not words. In addition, we used n-grams that are sequences of n 
tokens in a row—in our case characters. Word n-grams are also worth testing in 
some applications, as they can provide a cheap way to get the context of how a  
word is used.

For classification, we used SVMs that optimize a line of separation between the 
classes based on the idea of finding the maximum margin. Anything above the line is 
one class and anything below the line is another class. As with the other classification 
tasks we have considered, we have a set of samples (in this case, our documents).

We then used a very messy dataset, the Enron e-mails. This dataset contains lots of 
artefacts and other issues. This resulted in a lower accuracy than the books dataset, 
which was much cleaner. However, we were able to choose the correct author more 
than half the time, out of 10 possible authors.

In the next chapter, we consider what we can do if we don't have target classes.  
This is called unsupervised learning, an exploratory problem rather than a prediction 
problem. We also continue to deal with messy text-based datasets.
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Clustering News Articles
In most of the previous chapters, we performed data mining knowing what we 
were looking for. Our use of target classes allowed us to learn how our variables 
model those targets during the training phase. This type of learning, where we have 
targets to train against, is called supervised learning. In this chapter, we consider 
what we do without those targets. This is unsupervised learning and is much more 
of an exploratory task. Rather than wanting to classify with our model, the goal in 
unsupervised learning is more about exploring the data to find insights.

In this chapter, we look at clustering news articles to find trends and patterns in 
the data. We look at how we can extract data from different websites using a link 
aggregation website to show a variety of news stories.

The key concepts covered in this chapter include:

• Obtaining text from arbitrary websites
• Using the reddit API to collect interesting news stories
• Cluster analysis for unsupervised data mining
• Extracting topics from documents
• Online learning for updating a model without retraining it
• Cluster ensembling to combine different models

Obtaining news articles
In this chapter, we will build a system that takes a live feed of news articles and 
groups them together, where the groups have similar topics. You could run the 
system over several weeks (or longer) to see how trends change over that time.
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Our system will start with the popular link aggregation website reddit, which  
stores lists of links to other websites, as well as a comments section for discussion. 
Links on reddit are broken into several categories of links, called subreddits.  
There are subreddits devoted to particular TV shows, funny images, and many  
other things. What we are interested in is the subreddits for news. We will use  
the /r/worldnews subreddit in this chapter, but the code should work with any 
other subreddit.

In this chapter, our goal is to download popular stories, and then cluster them to  
see any major themes or concepts that occur. This will give us an insight into the 
popular focus, without having to manually analyze hundreds of individual stories.

Using a Web API to get data
We have used web-based APIs to extract data in several of our previous chapters. 
For instance, in Chapter 7, Discovering Accounts to Follow Using Graph Mining,  
we used Twitter's API to extract data. Collecting data is a critical part of the  
data mining pipeline, and web-based APIs are a fantastic way to collect data  
on a variety of topics.

There are three things you need to consider when using a web-based API for 
collecting data: authorization methods, rate limiting, and API endpoints.

Authorization methods allow the data provider to know who is collecting the  
data, in order to ensure that they are being appropriately rate-limited and that  
data access can be tracked. For most websites, a personal account is often enough 
to start collecting data, but some websites will ask you to create a formal developer 
account to get this access.

Rate limiting is applied to data collection, particularly free services. It is important 
to be aware of the rules when using APIs, as they can and do change from website 
to website. Twitter's API limit is 180 requests per 15 minutes (depending on the 
particular API call). Reddit, as we will see later, allows 30 requests per minute. 
Other websites impose daily limits, while others limit on a per-second basis. Even 
within websites, there are drastic differences for different API calls. For example, 
Google Maps has smaller limits and different API limits per-resource, with different 
allowances for the number of requests per hour.

If you find you are creating an app or running an experiment that 
needs more requests and faster responses, most API providers 
have commercial plans that allow for more calls.
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API Endpoints are the actual URLs that you use to extract information. These 
vary from website to website. Most often, web-based APIs will follow a RESTful 
interface (short for Representational State Transfer). RESTful interfaces often use 
the same actions that HTTP does: GET, POST, and DELETE are the most common. 
For instance, to retrieve information on a resource, we might use the following API 
endpoint: www.dataprovider.com/api/resource_type/resource_id/.

To get the information, we just send a HTTP GET request to this URL. This will 
return information on the resource with the given type and ID. Most APIs follow this 
structure, although there are some differences in the implementation. Most websites 
with APIs will have them appropriately documented, giving you details of all the 
APIs that you can retrieve.

First, we set up the parameters to connect to the service. To do this, you will need a 
developer key for reddit. In order to get this key, log in to the https://www.reddit.
com/login website and go to https://www.reddit.com/prefs/apps. From here, 
click on are you a developer? create an app… and fill out the form, setting the  
type as script. You will get your client ID and a secret, which you can add to a new 
IPython Notebook:

CLIENT_ID = "<Enter your Client ID here>"
CLIENT_SECRET = "<Enter your Client Secret here>"

Reddit also asks that, when you use their API, you set the user agent to a unique 
string that includes your username. Create a user agent string that uniquely 
identifies your application. I used the name of the book, chapter 10, and a version 
number of 0.1 to create my user agent, but it can be any string you like. Note that  
not doing this will result in your connection being heavily rate-limited:

 USER_AGENT = "python:<your unique user agent> (by /u/<your reddit 
username>)"

In addition, you will need to log into reddit using your username and password.  
If you don't have one already, sign up for a new one (it is free and you don't need  
to verify with personal information either).

You will need your password to complete the next step, so be careful 
before sharing your code to others to remove it. If you don't put 
your password in, set it to none and you will be prompted to enter 
it. However, due to the way IPython Notebooks work, you'll need 
to enter it into the command-line terminal that started the IPython 
server, not the notebook itself. If you can't do this, you'll need to set it 
in the script. The developers of the IPython Notebook are working on 
a plugin to fix this, but it was not yet available at the time of writing.

www.dataprovider.com/api/resource_type/resource_id/
https://www.reddit.com/login
https://www.reddit.com/login
https://www.reddit.com/prefs/apps
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Now let's create the username and password:

USERNAME = "<your reddit username>"
PASSWORD = "<your reddit password>"

Next, we are going to create a function to log with this information. The reddit login 
API will return a token that you can use for further connections, which will be the 
result of this function. The code is as follows:

def login(username, password):

First, if you don't want to add your password to the script, you can set it to None and 
you will be prompted, as explained previously. The code is as follows:

    if password is None:
        password = getpass.getpass("Enter reddit password for user {}: 
".format(username))

It is very important that you set the user agent to a unique value, or your connection 
might be severely restricted. The code is as follows:

    headers = {"User-Agent": USER_AGENT}

Next, we set up a HTTP authorization object to allow us to login at reddit's servers:

    client_auth = requests.auth.HTTPBasicAuth(CLIENT_ID, CLIENT_
SECRET)

To login, we make a POST request to the access_token endpoint. The data we send 
is our username and password, along with the grant type that is set to password for 
this example:

    post_data = {"grant_type": "password", "username": username, 
"password": password}

Finally, we use the requests library to make the login request (this is done via a 
HTTP POST request) and return the result, which is a dictionary of values. One of 
these values is the token we will need for future requests. The code is as follows:

    response = requests.post("https://www.reddit.com/api/v1/access_
token", auth=client_auth, data=post_data, headers=headers)
    return response.json()

We can call now our function to get a token:

token = login(USERNAME, PASSWORD)
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The token object is just a dictionary, but it contains the access_token string that  
we will pass with future requests. It also contains other information such as the 
scope of the token (which would be everything) and the time in which it  
expires—for example:

{'access_token': '<semi-random string>',  'expires_in': 3600,  
'scope': '*',  'token_type': 'bearer'}

Reddit as a data source
Reddit (www.reddit.com) is a link aggregation website used by millions worldwide, 
although the English versions are US-centric. Any user can contribute a link to a 
website they found interesting, along with a title for that link. Other users can then 
upvote it, indicating that they liked the link, or downvote it, indicating they didn't like 
the link. The highest voted links are moved to the top of the page, while the lower 
ones are not shown. Older links are removed over time (depending on how many 
upvotes it has). Users who have stories upvoted earn points called karma, providing 
an incentive to submit only good stories.

Reddit also allows nonlink content, called self-posts. These contain a title and some 
text that the submitter enters. These are used for asking questions and starting 
discussions, but do not count towards a person's karma. For this chapter, we will be 
considering only link-based posts, and not comment-based posts.

Posts are separated into different sections of the website called subreddits. A subreddit 
is a collection of posts that are related. When a user submits a link to reddit, they 
choose which subreddit it goes into. Subreddits have their own administrators, and 
have their own rules about what is valid content for that subreddit.

By default, posts are sorted by Hot, which is a function of the age of a post, the 
number of upvotes, and the number of downvotes it has received. There is also  
New, which just gives you the most recently posted stories (and therefore contains 
lots of spam and bad posts), and Top, which is the highest voted stories for a given 
time period. In this chapter, we will be using Hot, which will give us recent,  
higher-quality stories (there really are a lot of poor-quality links in New).

Using the token we previously created, we can now obtain sets of links from a 
subreddit. To do that, we will use the /r/<subredditname> API endpoint that,  
by default, returns the Hot stories. We will use the /r/worldnews subreddit:

subreddit = "worldnews"

www.reddit.com
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The URL for the previous end-point lets us create the full URL, which we can set 
using string formatting:

url = "https://oauth.reddit.com/r/{}".format(subreddit)

Next, we need to set the headers. This is needed for two reasons: to allow us to use 
the authorization token we received earlier and to set the user agent to stop our 
requests from being heavily restricted. The code is as follows:

headers = {"Authorization": "bearer {}".format(token['access_token']),
           "User-Agent": USER_AGENT}

Then, as before, we use the requests library to make the call, ensuring that we set 
the headers:

response = requests.get(url, headers=headers)

Calling json() on this will result in a Python dictionary containing the information 
returned by Reddit. It will contain the top 25 results from the given subreddit. We 
can get the title by iterating over the stories in this response. The stories themselves 
are stored under the dictionary's data key. The code is as follows:

for story in result['data']['children']:
    print(story['data']['title'])

Getting the data
Our dataset is going to consist of posts from the Hot list of the /r/worldnews 
subreddit. We saw in the previous section how to connect to reddit and how to 
download links. To put it all together, we will create a function that will extract  
the titles, links, and score for each item in a given subreddit.

We will iterate through the subreddit, getting a maximum of 100 stories at a time. 
We can also do pagination to get more results. We can read a large number of pages 
before reddit will stop us, but we will limit it to 5 pages.

As our code will be making repeated calls to an API, it is important to remember to 
rate-limit our calls. To do so, we will need the sleep function:

from time import sleep

Our function will accept a subreddit name and an authorization token. We will also 
accept a number of pages to read, although we will set a default of 5:

def get_links(subreddit, token, n_pages=5):
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We then create a list to store the stories in:

    stories = []

We saw in Chapter 7, Discovering Accounts to Follow Using Graph Mining, how 
pagination works for the Twitter API. We get a cursor with our returned results, 
which we send with our request. Twitter will then use this cursor to get the next 
page of results. The reddit API does almost exactly the same thing, except it calls the 
parameter after. We don't need it for the first page, so we initially set it to none. We 
will set it to a meaningful value after our first page of results. The code is as follows:

    after = None

We then iterate for the number of pages we want to return:

    for page_number in range(n_pages):

Inside the loop, we initialize our URL structure as we did before:

        headers = {"Authorization": "bearer  
        {}".format(token['access_token']),
            "User-Agent": USER_AGENT}
        url = "https://oauth.reddit.com/r/{}?limit=100". 
            format(subreddit)

From the second loop onwards, we need to set the after parameter (otherwise, we 
will just get multiple copies of the same page of results). This value will be set in the 
previous iteration of the loop—the first loop sets the after parameter for the second 
loop and so on. If present, we append it to the end of our URL, telling reddit to get 
us the next page of data. The code is as follows:

        if after:
            url += "&after={}".format(after)

Then, as before, we use the requests library to make the call and turn the result into a 
Python dictionary using json():

        response = requests.get(url, headers=headers)
        result = response.json()

This result will give us the after parameter for the next time the loop iterates, which 
we can now set as follows:

        after = result['data']['after']

We then sleep for 2 seconds to avoid exceeding the API limit:

        sleep(2)
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As the last action inside the loop, we get each of the stories from the returned result 
and add them to our stories list. We don't need all of the data—we only get the 
title, URL, and score. The code is as follows:

        stories.extend([(story['data']['title'], story['data']['url'], 
story['data']['score'])
                       for story in result['data']['children']])

Finally (and outside the loop), we return all the stories we have found:

    return stories

Calling the stories function is a simple case of passing the authorization token and 
the subreddit name:

stories = get_links("worldnews", token)

The returned results should contain the title, URL, and 500 stories, which we will 
now use to extract the actual text from the resulting websites.

Extracting text from arbitrary websites
The links that we get from reddit go to arbitrary websites run by many different 
organizations. To make it harder, those pages were designed to be read by a 
human, not a computer program. This can cause a problem when trying to get the 
actual content/story of those results, as modern websites have a lot going on in the 
background. JavaScript libraries are called, style sheets are applied, advertisements 
are loaded using AJAX, extra content is added to sidebars, and various other 
things are done to make the modern webpage a complex document. These features 
make the modern Web what it is, but make it difficult to automatically get good 
information from!

Finding the stories in arbitrary websites
To start with, we will download the full webpage from each of these links and  
store them in our data folder, under a raw subfolder. We will process these to  
extract the useful information later on. This caching of results ensures that we don't 
have to continuously download the websites while we are working. First, we set up 
the data folder path:

import os
data_folder = os.path.join(os.path.expanduser("~"), "Data", 
"websites", "raw")
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We are going to use MD5 hashing to create unique filenames for our articles, so we 
will import hashlib to do that. A hash function is a function that converts some 
input (in our case a string containing the title) into a string that is seemingly random. 
The same input will always return the same output, but slightly different inputs will 
return drastically different outputs. It is also impossible to go from a hash value to 
the original value, making it a one-way function. The code is as follows:

import hashlib

We are going to simply skip any website downloads that fail. In order to make sure 
we don't lose too much information doing this, we maintain a simple counter of the 
number of errors that occur. We are going to suppress any error that occurs, which 
could result in a systematic problem prohibiting downloads. If this error counter is 
too high, we can look at what those errors were and try to fix them. For example, 
if the computer has no internet access, all 500 of the downloads will fail and you 
should probably fix that before continuing!

If there is no error in the download, zero should be the output:

number_errors = 0

Next, we iterate through each of our stories:

for title, url, score in stories:

We then create a unique output filename for our article by hashing the title. Titles 
in reddit don't need to be unique, which means there is a possibility of two stories 
having the same title and, therefore, clashing in our dataset. To get our unique 
filename, we simply hash the URL of the article using the MD5 algorithm. While 
MD5 is known to have some problems, it is unlikely that a problem (a collision)  
will occur in our scenario, and we don't need to worry too much even if it does  
and we don't need to worry too much about collisions if they do occur.

    output_filename = hashlib.md5(url.encode()).hexdigest()
    fullpath = os.path.join(data_folder, output_filename + ".txt")

Next, we download the actual page and save it to our output folder:

    try:
        response = requests.get(url)
        data = response.text
        with open(fullpath, 'w') as outf:
            outf.write(data)
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If there is an error in obtaining the website, we simply skip this website and keep 
going. This code will work on 95 percent of websites and that is good enough for 
our application, as we are looking for general trends and not exactness. Note that 
sometimes you do care about getting 100 percent of responses, and you should 
adjust your code to accommodate more errors. The code to get those final 5 to 10 
percent of websites will be significantly more complex. We then catch any error that 
could occur (it is the Internet, lots of things could go wrong), increment our error 
count, and continue.

    except Exception as e:
        number_errors += 1
        print(e)

If you find that too many errors occur, change the print(e) line to just type  
raise instead. This will cause the exception to be called, allowing you to debug  
the problem.

Now, we have a bunch of websites in our raw subfolder. After taking a look at these 
pages (open the created files in a text editor), you can see that the content is there 
but there are HTML, JavaScript, CSS code, as well as other content. As we are only 
interested in the story itself, we now need a way to extract this information from 
these different websites.

Putting it all together
After we get the raw data, we need to find the story in each. There are a few online 
sources that use data mining to achieve this. You can find them listed in Appendix A, 
Next Steps…. It is rarely needed to use such complex algorithms, although you can 
get better accuracy using them. This is part of data mining—knowing when to use it, 
and when not to.

First, we get a list of each of the filenames in our raw subfolder:

filenames = [os.path.join(data_folder, filename)
             for filename in os.listdir(data_folder)]

Next, we create an output folder for the text only versions that we will extract:

text_output_folder = os.path.join(os.path.expanduser("~"), "Data",
                                  "websites", "textonly")
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Next, we develop the code that will extract the text from the files. We will use the 
lxml library to parse the HTML files, as it has a good HTML parser that deals with 
some badly formed expressions. The code is as follows:

from lxml import etree

The actual code for extracting text is based on three steps. First, we iterate through each 
of the nodes in the HTML file and extract the text in it. Second, we skip any node that 
is JavaScript, styling, or a comment, as this is unlikely to contain information of interest 
to us. Third, we ensure that the content has at least 100 characters. This is a good 
baseline, but it could be improved upon for more accurate results.

As we said before, we aren't interested in scripts, styles, or comments. So, we create 
a list to ignore nodes of those types. Any node that has a type in this list will not be 
considered as containing the story. The code is as follows:

skip_node_types = ["script", "head", "style", etree.Comment]

We will now create a function that parses an HTML file into an lxml etree, and 
then we will create another function that parses this tree looking for text. This first 
function is pretty straightforward; simply open the file and create a tree using the 
lxml library's parsing function for HTML files. The code is as follows:

def get_text_from_file(filename):
    with open(filename) as inf:
        html_tree = lxml.html.parse(inf)
    return get_text_from_node(html_tree.getroot())

In the last line of that function, we call the getroot() function to get the root node 
of the tree, rather than the full etree. This allows us to write our text extraction 
function to accept any node, and therefore write a recursive function.

This function will call itself on any child nodes to extract the text from them, and 
then return the concatenation of any child nodes text.

If the node this function is passed doesn't have any child nodes, we just return the 
text from it. If it doesn't have any text, we just return an empty string. Note that we 
also check here for our third condition—that the text is at least 100 characters long. 
The code is as follows:

def get_text_from_node(node):
    if len(node) == 0:
        # No children, just return text from this item
        if node.text and len(node.text) > 100:
            return node.text
        else:
            return ""
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At this point, we know that the node has child nodes, so we recursively call this 
function on each of those child nodes and then join the results when they return.  
The code is as follows:

    results = (get_text_from_node(child) for child in node
                     if child.tag not in skip_node_types)
    return "\n".join(r for r in results if len(r) > 1)

The final condition on the return result stops blank lines being returned (for example, 
when a node has no children and no text).

We can now run this code on all of the raw HTML pages by iterating through  
them, calling the text extraction function on each, and saving the results to the  
text-only subfolder:

for filename in os.listdir(data_folder):
    text = get_text_from_file(os.path.join(data_folder, filename))
    with open(os.path.join(text_output_folder, filename), 'w')  
      as outf:
        outf.write(text)

You can evaluate the results manually by opening each of the files in the text only 
subfolder and checking their content. If you find too many of the results have 
nonstory content, try increasing the minimum 100 character limit. If you still can't 
get good results, or need better results for your application, try the more complex 
methods listed in Appendix A, Next Steps....

Grouping news articles
The aim of this chapter is to discover trends in news articles by clustering, or 
grouping, them together. To do that, we will use the k-means algorithm, a classic 
machine-learning algorithm originally developed in 1957.

Clustering is an unsupervised learning technique and we use clustering algorithms 
for exploring data. Our dataset contains approximately 500 stories, and it would 
be quite arduous to examine each of those stories individually. Even if we 
used summary statistics, that is still a lot of data. Using clustering allows us to 
group similar stories together, and we can explore the themes in each cluster 
independently.
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We use clustering techniques when we don't have a clear set of target classes for  
our data. In that sense, clustering algorithms have little direction in their learning. 
They learn according to some function, regardless of the underlying meaning of the 
data. For this reason, it is critical to choose good features. In supervised learning, 
if you choose poor features, the learning algorithm can choose to not use those 
features. For instance, support vector machines will give little weight to features  
that aren't useful in classification. However, with clustering, all features are used in 
the final result—even if those features don't provide us with the answer we were 
looking for.

When performing cluster analysis on real-world data, it is always a good idea to  
have a sense of what sorts of features will work for your scenario. In this chapter, we 
will use the bag-of-words model. We are looking for topic-based groups, so we will use 
topic-based features to model the documents. We know those features work because 
of the work others have done in supervised versions of our problem. In contrast, if we 
were to perform an authorship-based clustering, we would use features such as those 
found in the Chapter 9, Authorship Attribution experiment.

The k-means algorithm
The k-means clustering algorithm finds centroids that best represent the data using 
an iterative process. The algorithm starts with a predefined set of centroids, which 
are normally data points taken from the training data. The k in k-means is the 
number of centroids to look for and how many clusters the algorithm will find.  
For instance, setting k to 3 will find three clusters in the dataset.

There are two phases to the k-means: assignment and updating.

In the assignment step, we set a label to every sample in the dataset linking it to the 
nearest centroid. For each sample nearest to centroid 1, we assign the label 1. For each 
sample nearest to centroid 2, we assign a label 2 and so on for each of the k centroids. 
These labels form the clusters, so we say that each data point with the label 1 is in 
cluster 1 (at this time only, as assignments can change as the algorithm runs).

In the updating step, we take each of the clusters and compute the centroid, which  
is the mean of all of the samples in that cluster.
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The algorithm then iterates between the assignment step and the updating step; each 
time the updating step occurs, each of the centroids moves a small amount. This causes 
the assignments to change slightly, causing the centroids to move a small amount in 
the next iteration. This repeats until some stopping criterion is reached. It is common to 
stop after a certain number of iterations, or when the total movement of the centroids 
is very low. The algorithm can also complete in some scenarios, which means that the 
clusters are stable—the assignments do not change and neither do the centroids.

In the following figure, k-means was performed over a dataset created randomly, 
but with three clusters in the data. The stars represent the starting location of the 
centroids, which were chosen randomly by picking a random sample from the 
dataset. Over 5 iterations of the k-means algorithm, the centroids move to the 
locations represented by the triangles.
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The k-means algorithm is fascinating for its mathematical properties and historical 
significance. It is an algorithm that (roughly) only has a single parameter, and is 
quite effective and frequently used, even more than 50 years after its discovery.

There is a k-means algorithm in scikit-learn, which we import from the cluster 
subpackage:

from sklearn.cluster import KMeans

We also import the CountVectorizer class's close cousin, TfidfVectorizer.  
This vectorizer applies a weighting to each term's counts, depending on how many 
documents it appears in. Terms that appear in many documents are weighted lower 
(by dividing the value by the log of the number of documents it appears in). For 
many text mining applications, using this type of weighting scheme can improve 
performance quite reliably. The code is as follows:

from sklearn.feature_extraction.text import TfidfVectorizer

We then set up our pipeline for our analysis. This has two steps. The first is to  
apply our vectorizer, and the second is to apply our k-means algorithm. The code  
is as follows:

from sklearn.pipeline import Pipeline
n_clusters = 10
pipeline = Pipeline([('feature_extraction', TfidfVectorizer(max_
df=0.4)),
                     ('clusterer', KMeans(n_clusters=n_clusters))
                     ])

The max_df parameter is set to a low value of 0.4, which says ignore any word that 
occurs in more than 40 percent of documents. This parameter is invaluable for removing 
function words that give little topic-based meaning on their own.

Removing any word that occurs in more than 40 percent of documents 
will remove function words, making this type of preprocessing quite 
useless for the work we saw in Chapter 9, Authorship Attribution.

We then fit and predict this pipeline. We have followed this process a number of 
times in this book so far for classification tasks, but there is a difference here—we  
do not give the target classes for our dataset to the fit function. This is what makes 
this an unsupervised learning task! The code is as follows:

pipeline.fit(documents)
labels = pipeline.predict(documents)
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The labels variable now contains the cluster numbers for each sample. Samples 
with the same label are said to belong in the same cluster. It should be noted that  
the cluster labels themselves are meaningless: clusters 1 and 2 are no more similar 
than clusters 1 and 3.

We can see how many samples were placed in each cluster using the Counter class:

from collections import Counter
c = Counter(labels)
for cluster_number in range(n_clusters):
    print("Cluster {} contains {} samples".format(cluster_number, 
c[cluster_number]))

Many of the results (keeping in mind that your dataset will be quite different to 
mine) consist of a large cluster with the majority of instances, several medium 
clusters, and some clusters with only one or two instances. This imbalance is quite 
normal in many clustering applications.

Evaluating the results
Clustering is mainly an exploratory analysis, and therefore it is difficult to evaluate 
a clustering algorithm's results effectively. A straightforward way is to evaluate the 
algorithm based on the criteria the algorithm tries to learn from.

If you have a test set, you can evaluate clustering against it. For 
more details, visit http://nlp.stanford.edu/IR-book/html/
htmledition/evaluation-of-clustering-1.html.

In the case of the k-means algorithm, the criterion that it uses when developing  
the centroids is to minimize the distance from each sample to its nearest centroid. 
This is called the inertia of the algorithm and can be retrieved from any KMeans 
instance that has had fit called on it:

pipeline.named_steps['clusterer'].inertia_

The result on my dataset was 343.94. Unfortunately, this value is quite meaningless 
by itself, but we can use it to determine how many clusters we should use. In 
the preceding example, we set n_clusters to 10, but is this the best value? The 
following code runs the k-means algorithm 10 times with each value of n_clusters 
from 2 to 20. For each run, it records the inertia of the result. 

http://nlp.stanford.edu/IR-book/html/htmledition/evaluation-of-clustering-1.html
http://nlp.stanford.edu/IR-book/html/htmledition/evaluation-of-clustering-1.html
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We only fit the X matrix once per value of n_clusters to (drastically) improve the 
speed of this code:

inertia_scores = []
n_cluster_values = list(range(2, 20))
for n_clusters in n_cluster_values:
    cur_inertia_scores = []
    X = TfidfVectorizer(max_df=0.4).fit_transform(documents)
    for i in range(10):
        km = KMeans(n_clusters=n_clusters).fit(X)
        cur_inertia_scores.append(km.inertia_)
    inertia_scores.append(cur_inertia_scores)

The inertia_scores variable now contains a list of inertia scores for each  
n_clusters value between 2 and 20. We can plot this to get a sense of how  
this value interacts with n_clusters:

Overall, the value of the inertia should decrease with reducing improvement as  
the number of clusters improves, which we can broadly see from these results.  
The increase between values of 6 to 7 is due only to the randomness in selecting  
the centroids, which directly affect how good the final results are. Despite this,  
there is a general trend (in these results; your results may vary) that about 6  
clusters is the last time a major improvement in the inertia occurred. 



Clustering News Articles

[ 228 ]

After this point, only slight improvements are made to the inertia, although it is  
hard to be specific about vague criteria such as this. Looking for this type of pattern 
is called the elbow rule, in that we are looking for an elbow-esque bend in the graph. 
Some datasets have more pronounced elbows, but this feature isn't guaranteed to 
even appear (some graphs may be smooth!).

Based on this analysis, we set n_clusters to be 6 and then rerun the algorithm:

n_clusters = 6
pipeline = Pipeline([('feature_extraction',  
  TfidfVectorizer(max_df=0.4)),
                     ('clusterer', KMeans(n_clusters=n_clusters))
                     ])
pipeline.fit(documents)
labels = pipeline.predict(documents)

Extracting topic information from clusters
Now we set our sights on the clusters in an attempt to discover the topics in each.  
We first extract the term list from our feature extraction step:

terms = pipeline.named_steps['feature_extraction'].get_feature_names()

We also set up another counter for counting the size of each of our classes:

c = Counter(labels)

Iterating over each cluster, we print the size of the cluster as before. It is important 
to keep in mind the sizes of the clusters when evaluating the results—some of the 
clusters will only have one sample, and are therefore not indicative of a general 
trend. The code is as follows:

for cluster_number in range(n_clusters):
    print("Cluster {} contains {} samples".format(cluster_number, 
c[cluster_number]))

Next (and still in the loop), we iterate over the most important terms for this cluster. 
To do this, we take the five largest values from the centroid, which we get by finding 
the features that have the highest values in the centroid itself. The code is as follows:

    print("  Most important terms")
    centroid = pipeline.named_steps['clusterer'].cluster_centers_
[cluster_number]
    most_important = centroid.argsort()
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We then print out the most important five terms:

    for i in range(5):

We use the negation of i in this line, as our most_important array is sorted with 
lowest values first:

        term_index = most_important[-(i+1)]

We then print the rank, term, and score for this value:

        print("  {0}) {1} (score: {2:.4f})".format(i+1, terms[term_
index], centroid[term_index]))

The results can be quite indicative of current trends. In my results (March 2015),  
the clusters correspond to health matters, Middle East tensions, Korean tensions,  
and Russian affairs. These were the main topics frequenting news around this  
time—although this has hardly changed for a number of years!

Using clustering algorithms as transformers
As a side note, one interesting property about the k-means algorithm (and any 
clustering algorithm) is that you can use it for feature reduction. There are many 
methods to reduce the number of features (or create new features to embed the 
dataset on), such as Principle Component Analysis, Latent Semantic Indexing, and 
many others. One issue with many of these algorithms is that they often need lots  
of computing power.

In the preceding example, the terms list had more than 14,000 entries in it—it is 
quite a large dataset. Our k-means algorithm transformed these into just six clusters. 
We can then create a dataset with a much lower number of features by taking the 
distance to each centroid as a feature. The code is as follows:

To do this, we call the transform function on a KMeans instance. Our pipeline is fit 
for this purpose, as it has a k-means instance at the end:

X = pipeline.transform(documents)

This calls the transform method on the final step of the pipeline, which is an instance 
of k-means. This results in a matrix that has six features and the number of samples 
is the same as the length of documents.
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You can then perform your own second-level clustering on the result, or use it for 
classification if you have the target values. A possible workflow for this would be to 
perform some feature selection using the supervised data, use clustering to reduce 
the number of features to a more manageable number, and then use the results in a 
classification algorithm such as SVMs.

Clustering ensembles
In Chapter 3, Predicting Sports Winners with Decision Trees, we looked at a classification 
ensemble using the random forest algorithm, which is an ensemble of many low-
quality, tree-based classifiers. Ensembling can also be performed using clustering 
algorithms. One of the key reasons for doing this is to smooth the results from many 
runs of an algorithm. As we saw before, the results from running k-means are varied, 
depending on the selection of the initial centroids. Variation can be reduced by 
running the algorithm many times and then combining the results.

Ensembling also reduces the effects of choosing parameters on the final result.  
Most clustering algorithms are quite sensitive to the parameter values chosen for  
the algorithm. Choosing slightly different parameters results in different clusters.

Evidence accumulation
As a basic ensemble, we can first cluster the data many times and record the labels 
from each run. We then record how many times each pair of samples was clustered 
together in a new matrix. This is the essence of the Evidence Accumulation 
Clustering (EAC) algorithm.

EAC has two major steps. The first step is to cluster the data many times using  
a lower-level clustering algorithm such as k-means and record the frequency 
that samples were in the same cluster, in each iteration. This is stored in a 
coassociation matrix. The second step is to perform a cluster analysis on the 
resulting coassociation matrix, which is performed using another type of 
clustering algorithm called hierarchical clustering. This has an interesting property, 
as it is mathematically the same as finding a tree that links all the nodes together  
and removing weak links.

We can create a coassociation matrix from an array of labels by iterating over  
each of the labels and recording where two samples have the same label. We use 
SciPy's csr_matrix, which is a type of sparse matrix:

from scipy.sparse import csr_matrix
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Our function definition takes a set of labels:

def create_coassociation_matrix(labels):

We then record the rows and columns of each match. We do these in a list. Sparse 
matrices are commonly just sets of lists recording the positions of nonzero values, 
and csr_matrix is an example of this type of sparse matrix:

    rows = []
    cols = []

We then iterate over each of the individual labels:

    unique_labels = set(labels)
    for label in unique_labels:

We look for all samples that have this label:

        indices = np.where(labels == label)[0]

For each pair of samples with the preceding label, we record the position of both 
samples in our list. The code is as follows:

        for index1 in indices:
            for index2 in indices:
                rows.append(index1)
                cols.append(index2)

Outside all loops, we then create the data, which is simply the value 1 for every time 
two samples were listed together. We get the number of 1 to place by noting how 
many matches we had in our labels set altogether. The code is as follows:

    data = np.ones((len(rows),))
    return csr_matrix((data, (rows, cols)), dtype='float')

To get the coassociation matrix from the labels, we simply call this function:

C = create_coassociation_matrix(labels)

From here, we can add multiple instances of these matrices together. This allows us 
to combine the results from multiple runs of k-means. Printing out C (just enter C 
into a new cell and run it) will tell you how many cells have nonzero values in them. 
In my case, about half of the cells had values in them, as my clustering result had a 
large cluster (the more even the clusters, the lower the number of nonzero values).

The next step involves the hierarchical clustering of the coassociation matrix. We will 
do this by finding minimum spanning trees on this matrix and removing edges with 
a weight lower than a given threshold.
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In graph theory, a spanning tree is a set of edges on a graph that connects all of the 
nodes together. The Minimum Spanning Tree (MST) is simply the spanning tree 
with the lowest total weight. For our application, the nodes in our graph are samples 
from our dataset, and the edge weights are the number of times those two samples 
were clustered together—that is, the value from our coassociation matrix.

In the following figure, a MST on a graph of six nodes is shown. Nodes on the graph 
can be used more than once in the MST. The only criterion for a spanning tree is that 
all nodes should be connected together.

To compute the MST, we use SciPy's minimum_spanning_tree function, which is 
found in the sparse package:

from scipy.sparse.csgraph import minimum_spanning_tree

The mst function can be called directly on the sparse matrix returned by our 
coassociation function:

mst = minimum_spanning_tree(C)

However, in our coassociation matrix C, higher values are indicative of  
samples that are clustered together more often—a similarity value. In contrast, 
minimum_spanning_tree sees the input as a distance, with higher scores penalized. 
For this reason, we compute the minimum spanning tree on the negation of the 
coassociation matrix instead:

mst = minimum_spanning_tree(-C)
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The result from the preceding function is a matrix the same size as the coassociation 
matrix (the number of rows and columns is the same as the number of samples in 
our dataset), with only the edges in the MST kept and all others removed.

We then remove any node with a weight less than a predefined threshold. To do 
this, we iterate over the edges in the MST matrix, removing any that are less than 
a specific value. We can't test this out with just a single iteration in a coassociation 
matrix (the values will be either 1 or 0, so there isn't much to work with). So, we 
will create extra labels first, create the coassociation matrix, and then add the two 
matrices together. The code is as follows:

pipeline.fit(documents)
labels2 = pipeline.predict(documents)
C2 = create_coassociation_matrix(labels2)
C_sum = (C + C2) / 2

We then compute the MST and remove any edge that didn't occur in both of  
these labels:

mst = minimum_spanning_tree(-C_sum)
mst.data[mst.data > -1] = 0

The threshold we wanted to cut off was any edge not in both clusterings—that is, 
with a value of 1. However, as we negated the coassociation matrix, we had to  
negate the threshold value too.

Lastly, we find all of the connected components, which is simply a way to find  
all of the samples that are still connected by edges after we removed the edges  
with low weights. The first returned value is the number of connected components 
(that is, the number of clusters) and the second is the labels for each sample. The 
code is as follows:

from scipy.sparse.csgraph import connected_components
number_of_clusters, labels = connected_components(mst)

In my dataset, I obtained eight clusters, with the clusters being approximately  
the same as before. This is hardly a surprise, given we only used two iterations  
of k-means; using more iterations of k-means (as we do in the next section) will  
result in more variance.
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How it works
In the k-means algorithm, each feature is used without any regard to its weight. In 
essence, all features are assumed to be on the same scale. We saw the problems with 
not scaling features in Chapter 2, Classifying with scikit-learn Estimators. The result of this 
is that k-means is looking for circular clusters, as shown in the following screenshot:

As we can see in the preceding screenshot, not all clusters have this shape. The blue 
cluster is circular and is of the type that k-means is very good at picking up. The  
red cluster is an ellipse. The k-means algorithm can pick up clusters of this shape 
with some feature scaling. The third cluster isn't even convex—it is an odd shape  
that k-means will have trouble discovering.

The EAC algorithm works by remapping the features onto a new space, in essence 
turning each run of the k-means algorithm into a transformer using the same 
principles we saw the previous section using k-means for feature reduction. In  
this case, though, we only use the actual label and not the distance to each centroid. 
This is the data that is recorded in the co-association matrix.

The result is that EAC now only cares about how close things are to each other, 
not how they are placed in the original feature space. There are still issues around 
unscaled features. Feature scaling is important and should be done anyway  
(we did it using tf-idf in this chapter, which results in feature values having  
the same scale).

We saw a similar type of transformation in Chapter 9, Authorship Attribution,  
through the use of kernels in SVMs. These transformations are very powerful  
and should be kept in mind for complex datasets.
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Implementation
Putting all this altogether, we can now create a simply clustering algorithm fitting 
the scikit-learn interface that performs all of the steps in EAC. First, we create the 
basic structure of the class using scikit-learn's ClusterMixin:

from sklearn.base import BaseEstimator, ClusterMixin
class EAC(BaseEstimator, ClusterMixin):

Our parameters are the number of k-means clusterings to perform in the first step 
(to create the coassociation matrix), the threshold to cut off at, and the number of 
clusters to find in each k-means clustering. We set a range of n_clusters in order 
to get lots of variance in our k-means iterations. Generally, in ensemble terms, 
variance is a good thing; without it, the solution can be no better than the individual 
clusterings (that said, high variance is not an indicator that the ensemble will be 
better). The code is as follows:

    def __init__(self, n_clusterings=10, cut_threshold=0.5, n_
clusters_range=(3, 10)):
        self.n_clusterings = n_clusterings
        self.cut_threshold = cut_threshold
        self.n_clusters_range = n_clusters_range

Next up is the fit function for our EAC class:

    def fit(self, X, y=None):

We then perform our low-level clustering using k-means and sum the resulting 
coassociation matrices from each iteration. We do this in a generator to save memory, 
creating only the coassociation matrices when we need them. In each iteration of this 
generator, we create a new single k-means run with our dataset and then create the 
coassociation matrix for it. We use sum to add these together. The code is as follows:

        C = sum((create_coassociation_matrix(self._single_
clustering(X))
                 for i in range(self.n_clusterings)))

As before, we create the MST, remove any edges less than the given threshold 
(properly negating values as explained earlier), and find the connected components. 
As with any fit function in scikit-learn, we need to return self in order for the class 
to work in pipelines effectively. The code is as follows:

        mst = minimum_spanning_tree(-C)
        mst.data[mst.data > -self.cut_threshold] = 0
        self.n_components, self.labels_ = connected_components(mst)
        return self
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We then write the function to cluster a single iteration. To do this, we randomly 
choose a number of clusters to find using NumPy's randint function and our  
n_clusters_range parameter, which sets the range of possible values. We then 
cluster and predict the dataset using k-means. The return value here will be the 
labels coming from k-means. The code is as follows:

    def _single_clustering(self, X):
        n_clusters = np.random.randint(*self.n_clusters_range)
        km = KMeans(n_clusters=n_clusters)
        return km.fit_predict(X)

We can now run this on our previous code by setting up a pipeline as before and 
using EAC where we previously used a KMeans instance as our final stage of the 
pipeline. The code is as follows:

pipeline = Pipeline([('feature_extraction', TfidfVectorizer(max_
df=0.4)),
                     ('clusterer', EAC())
                     ])

Online learning
In some cases, we don't have all of the data we need for training before we  
start our learning. Sometimes, we are waiting for new data to arrive, perhaps  
the data we have is too large to fit into memory, or we receive extra data after  
a prediction has been made. In cases like these, online learning is an option for 
training models over time.

An introduction to online learning
Online learning is the incremental updating of a model as new data arrives. 
Algorithms that support online learning can be trained on one or a few samples  
at a time, and updated as new samples arrive. In contrast, algorithms that are not 
online require access to all of the data at once. The standard k-means algorithm is 
like this, as are most of the algorithms we have seen so far in this book.

Online versions of algorithms have a means to partially update their model with 
only a few samples. Neural networks are a standard example of an algorithm that 
works in an online fashion. As a new sample is given to the neural network, the 
weights in the network are updated according to a learning rate, which is often a 
very small value such as 0.01. This means that any single instance only makes a small 
(but hopefully improving) change to the model. 
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Neural networks can also be trained in batch mode, where a group of samples are 
given at once and the training is done in one step. Algorithms are faster in batch 
mode, but use more memory.

In this same vein, we can slightly update the k-means centroids after a single or small 
batch of samples. To do this, we apply a learning rate to the centroid movement in 
the updating step of the k-means algorithm. Assuming that samples are randomly 
chosen from the population, the centroids should tend to move towards the positions 
they would have in the standard, offline, and k-means algorithm.

Online learning is related to streaming-based learning; however, there are some 
important differences. Online learning is capable of reviewing older samples after they 
have been used in the model, while a streaming-based machine learning algorithm 
typically only gets one pass—that is, one opportunity to look at each sample.

Implementation
The scikit-learn package contains the MiniBatchKMeans algorithm, which allows 
online learning. This class implements a partial_fit function, which takes a set of 
samples and updates the model. In contrast, calling fit() will remove any previous 
training and refit the model only on the new data.

MiniBatchKMeans follows the same clustering format as other algorithms in  
scikit-learn, so creating and using it is much the same as other algorithms.

Therefore, we can create a matrix X by extracting features from our dataset using 
TfIDFVectorizer, and then sample from this to incrementally update our model. 
The code is as follows:

vec = TfidfVectorizer(max_df=0.4)
X = vec.fit_transform(documents)

We then import MiniBatchKMeans and create an instance of it:

from sklearn.cluster import MiniBatchKMeans
mbkm = MiniBatchKMeans(random_state=14, n_clusters=3)

Next, we will randomly sample from our X matrix to simulate data coming in from 
an external source. Each time we get some data in, we update the model:

batch_size = 10
for iteration in range(int(X.shape[0] / batch_size)):
    start = batch_size * iteration
    end = batch_size * (iteration + 1)
    mbkm.partial_fit(X[start:end])
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We can then get the labels for the original dataset by asking the instance to predict:

labels  = mbkm.predict(X)

At this stage, though, we can't do this in a pipeline as TfIDFVectorizer is 
not an online algorithm. To get over this, we use a HashingVectorizer. The 
HashingVectorizer class is a clever use of hashing algorithms to drastically reduce 
the memory of computing the bag-of-words model. Instead of recording the feature 
names, such as words found in documents, we record only hashes of those names. 
This allows us to know our features before we even look at the dataset, as it is the set 
of all possible hashes. This is a very large number, usually of the order 2^18. Using 
sparse matrices, we can quite easily store and compute even a matrix of this size, as  
a very large proportion of the matrix will have the value 0.

Currently, the Pipeline class doesn't allow for its use in online learning.  
There are some nuances in different applications that mean there isn't an obvious 
one-size-fits-all approach that could be implemented. Instead, we can create our  
own subclass of Pipeline that allows us to use it for online learning. We first  
derive our class from Pipeline, as we only need to implement a single function:

class PartialFitPipeline(Pipeline):

We create a class function partial_fit, which accepts an input matrix, and an 
optional set of classes (we don't need those for this experiment though):

    def partial_fit(self, X, y=None):

A pipeline, which we introduced before, is a set of transformations where the input 
to one step is the output of the previous step. To do this, we set the first input to our 
X matrix, and then go over each of the transformers to transform this data:

        Xt = X
        for name, transform in self.steps[:-1]:

We then transform our current dataset and continue iterating until we hit the final 
step (which, in our case will be the clustering algorithm):

            Xt = transform.transform(Xt)
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We then call the partial_fit function on the final step and return the results:

        return self.steps[-1][1].partial_fit(Xt, y=y)

We can now create a pipeline to use our MiniBatchKMeans in online  
learning, alongside our HashingVectorizer. Other than using our new classes 
PartialFitPipeline and HashingVectorizer, this is the same process as used  
in the rest of this chapter, except we only fit on a few documents at a time.  
The code is as follows:

pipeline = PartialFitPipeline([('feature_extraction', 
HashingVectorizer()),
                             ('clusterer', MiniBatchKMeans(random_
state=14, n_clusters=3))
                             ])
batch_size = 10
for iteration in range(int(len(documents) / batch_size)):
    start = batch_size * iteration
    end = batch_size * (iteration + 1)
    pipeline.partial_fit(documents[start:end])
labels = pipeline.predict(documents)

There are some downsides to this approach though. For one, we can't easily find 
out which words are most important for each cluster. We can get around this by 
fitting another CountVectorizer and taking the hash of each word. We then look up 
values by hash rather than word. This is a bit cumbersome and defeats the memory 
gains from using HashingVectorizer. Further, we can't use the max_df parameter 
that we used earlier, as it requires us to know what the features mean and to count 
them over time.

We also can't use tf-idf weighting when performing training online. It would 
be possible to approximate this and apply such weighting, but again this is a 
cumbersome approach. HashingVectorizer is still a very useful algorithm and a 
great use of hashing algorithms.
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Summary
In this chapter, we looked at clustering, which is an unsupervised learning approach. 
We use unsupervised learning to explore data, rather than for classification and 
prediction purposes. In the experiment here, we didn't have topics for the news items 
we found on reddit, so we were unable to perform classification. We used k-means 
clustering to group together these news stories to find common topics and trends in 
the data.

In pulling data from reddit, we had to extract data from arbitrary websites. This 
was performed by looking for large text segments, rather than a full-blown machine 
learning approach. There are some interesting approaches to machine learning for 
this task that may improve upon these results. In the Appendix of this book, I've 
listed, for each chapter, avenues for going beyond the scope of the chapter and 
improving upon the results. This includes references to other sources of information 
and more difficult applications of the approaches in each chapter.

We also looked at a straightforward ensemble algorithm, ECA. An ensemble is often 
a good way to deal with variance in the results, especially if you don't know how  
to choose good parameters (which is especially difficult with clustering).

Finally, we introduced online learning. This is a gateway to larger learning exercises, 
including Big data, which will be discussed in the final two chapters of this book. 
These final experiments are quite large and require management of data as well  
as learning a model from them.

In the next chapter, we step away from unsupervised learning and go back to 
classification. We will look at deep learning, which is a classification method  
built on complex neural networks.
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Classifying Objects in Images 
Using Deep Learning

We used basic neural networks in Chapter 8, Beating CAPTCHAs with Neural Networks. 
A recent flood of research in the area has led to a number of significant advances to 
that base design. Today, research in neural networks is creating some of the most 
advanced and accurate classification algorithms in many areas.

These advances have come on the back of improvements in computational power, 
allowing us to train larger and more complex networks. However, the advances are 
much more than simply throwing more computational power at the problem.  
New algorithms and layer types have drastically improved performance, outside  
computational power.

In this chapter, we will look at determining what object is represented in an 
image. The pixel values will be used as input, and the neural network will then 
automatically find useful combinations of pixels to form higher-level features.  
These will then be used for the actual classification. Overall, in this chapter,  
we will examine the following:

• Classifying objects in images
• The different types of deep neural networks
• Theano, Lasagne, and Nolearn; libraries to build and train neural networks
• Using a GPU to improve the speed of the algorithms
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Object classification
Computer vision is becoming an important part of future technology. For example, 
we will have access to self-driving cars in the next five years (possibly much sooner, 
if some rumors are to be believed). In order to achieve this, the car's computer needs 
to be able to see around it: obstacles, other traffic, and weather conditions.

While we can easily detect whether there is an obstacle, for example using radar,  
it is also important we know what that object is. If it is an animal, it may move out  
of the way; if it is a building, it won't move at all and we need to go around it.

Application scenario and goals
In this chapter, we will build a system that will take an image as an input and give a 
prediction on what the object in it is. We will take on the role of a vision system for a 
car, looking around at any obstacles in the way or on the side of the road. Images are 
of the following form:
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This dataset comes from a popular dataset called CIFAR-10. It contains 60,000 
images that are 32 pixels wide and 32 pixels high, with each pixel having a  
red-green-blue (RGB) value. The dataset is already split into training and testing, 
although we will not use the testing dataset until after we complete our training.

The CIFAR-10 dataset is available for download at: http://www.
cs.toronto.edu/~kriz/cifar.html. Download the python 
version, which has already been converted to NumPy arrays.

Opening a new IPython Notebook, we can see what the data looks like. First, we set 
up the data filenames. We will only worry about the first batch to start with, and 
scale up to the full dataset size towards the end;

import os
data_folder = os.path.join(os.path.expanduser("~"), "Data", "cifar-10-
batches-py")
batch1_filename = os.path.join(data_folder, "data_batch_1")

Next, we create a function that can read the data stored in the batches. The batches 
have been saved using pickle, which is a python library to save objects. Usually,  
we can just call pickle.load on the file to get the object. However, there is a small 
issue with this data: it was saved in Python 2, but we need to open it in Python 3. In 
order to address this, we set the encoding to latin (even though we are opening it in 
byte mode):

import pickle
# Bigfix thanks to: http://stackoverflow.com/questions/11305790/
pickle-incompatability-of-numpy-arrays-between-python-2-and-3
def unpickle(filename):
    with open(filename, 'rb') as fo:
        return pickle.load(fo, encoding='latin1')

Using this function, we can now load the batch dataset:

batch1 = unpickle(batch1_filename)

This batch is a dictionary, containing the actual data in NumPy arrays, the 
corresponding labels and filenames, and finally a note to say which batch it is  
(this is training batch 1 of 5, for instance).

We can extract an image by using its index in the batch's data key:

image_index = 100
image = batch1['data'][image_index]

http://www.cs.toronto.edu/~kriz/cifar.html
http://www.cs.toronto.edu/~kriz/cifar.html
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The image array is a NumPy array with 3,072 entries, from 0 to 255. Each value is the 
red, green, or blue intensity at a specific location in the image.

The images are in a different format than what matplotlib usually uses (to display 
images), so to show the image we first need to reshape the array and rotate the 
matrix. This doesn't matter so much to train our neural network (we will define  
our network in a way that fits with the data), but we do need to convert it for 
matplotlib's sake:

image = image.reshape((32,32, 3), order='F')
import numpy as np
image = np.rot90(image, -1)

Now we can show the image using matplotlib:

%matplotlib inline

from matplotlib import pyplot as plt
plt.imshow(image)

The resulting image, a boat, is displayed:

The resolution on this image is quite poor—it is only 32 pixels wide and 32 pixels 
high. Despite that, most people will look at the image and see a boat. Can we get a 
computer to do the same?
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You can change the image index to show different images, getting a feel for the 
dataset's properties.

The aim of our project, in this chapter, is to build a classification system that can take 
an image like this and predict what the object in it is.

Use cases
Computer vision is used in many scenarios.

Online map websites, such as Google Maps, use computer vision for a number of 
reasons. One reason is to automatically blur any faces that they find, in order to give 
some privacy to the people being photographed as part of their Street View feature.

Face detection is also used in many industries. Modern cameras automatically detect 
faces, as a means to improve the quality of photos taken (the user most often wants 
to focus on a visible face). Face detection can also be used for identification. For 
example, Facebook automatically recognizes people in photos, allowing for easy 
tagging of friends.

As we stated before, autonomous vehicles are highly dependent on computer vision 
to recognize their path and avoid obstacles. Computer vision is one of the key 
problems that is being addressed not only in research into autonomous vehicles, not 
just for consumer use, but also in mining and other industries.

Other industries are using computer vision too, including warehouses examining 
goods automatically for defects.

The space industry is also using computer vision, helping to automate the collection 
of data. This is critical for effective use of spacecraft, as sending a signal from Earth 
to a rover on Mars can take a long time and is not possible at certain times (for 
instance, when the two planets are not facing each other). As we start dealing with 
space-based vehicles more frequently, and from a greater distance, increasing the 
autonomy of these spacecrafts is absolutely necessary. 
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The following screenshot shows the Mars rover designed and used by NASA; it 
made significant use of computer vision:

Deep neural networks
The neural networks we used in Chapter 8, Beating CAPTCHAs with Neural Networks, 
have some fantastic theoretical properties. For example, only a single hidden layer is 
needed to learn any mapping (although the size of the middle layer may need to be 
very, very big). Neural networks were a very active area of research in the 1970s and 
1980s, and then these networks were no longer used, particularly compared to other 
classification algorithms such as support vector machines. One of the main issues 
was that the computational power needed to run many neural networks was more 
than other algorithms and more than what many people had access to.

Another issue was training the networks. While the back propagation algorithm has 
been known about for some time, it has issues with larger networks, requiring a very 
large amount of training before the weights settle.
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Each of these issues has been addressed in recent times, leading to a resurgence 
in popularity of neural networks. Computational power is now much more easily 
available than 30 years ago, and advances in algorithms for training mean that we 
can now readily use that power.

Intuition
The aspect that differentiates deep neural networks from the more basic neural 
network we saw in Chapter 8, Beating CAPTCHAs with Neural Networks, is size. 
A neural network is considered deep when it has two or more hidden layers. In 
practice, a deep neural network is often much larger, both in the number of nodes 
in each layer and also the number of layers. While some of the research of the mid-
2000s focused on very large numbers of layers, smarter algorithms are reducing the 
actual number of layers needed.

A neural network basically takes very basic features as inputs—in the case of 
computer vision, it is simple pixel values. Then, as that data is combined and pushed 
through the network, these basic features combine into more complex features. 
Sometimes, these features have little meaning to humans, but they represent the 
aspects of the sample that the computer looks for to make its classification.

Implementation
Implementing these deep neural networks can be quite challenging due to their size. 
A bad implementation will take significantly longer to run than a good one, and may 
not even run at all due to memory usage.

A basic implementation of a neural network might start by creating a node  
class and collecting a set of these into a layer class. Each node is then connected 
to a node in the next layer using an instance of an Edge class. This type of 
implementation, a class-based one, is good to show how networks work,  
but is too inefficient for larger networks.

Neural networks are, at their core, simply mathematical expressions on matrices.  
The weights of the connections between one network and the next can be 
represented as a matrix of values, where the rows represent nodes in the first layer 
and the columns represent the nodes in the second layer (the transpose of this matrix 
is used sometimes too). The value is the weight of the edge between one layer and 
the next. A network can then be defined as a set of these weight matrices. In addition 
to the nodes, we add a bias term to each layer, which is basically a node that is 
always on and connected to each neuron in the next layer.
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This insight allows us to use mathematical operations to build, train, and use neural 
networks, as opposed to creating a class-based implementation. These mathematical 
operations are great, as many great libraries of highly optimized code have been 
written that we can use to perform these computations as efficiently as we can.

The PyBrain library that we used in Chapter 8, Beating CAPTCHAs with Neural 
Networks, does contain a simple convolutional layer for a neural network. However, it 
doesn't offer us some of the features that we need for this application. For larger and 
more customized networks, though, we need a library that gives us a bit more power. 
For this reason, we will be using the Lasagne and nolearn libraries. This library works 
on the Theano library, which is a useful tool for mathematical expressions.

In this chapter, we will start by implementing a basic neural network with Lasagne 
to introduce the concepts. We will then use nolearn to replicate our experiment in 
Chapter 8, Beating CAPTCHAs with Neural Networks, on predicting which letter is in 
an image. Finally, we will use a much more complex convolution neural network to 
perform image classification on the CIFAR dataset, which will also include running 
this on GPUs rather than CPUs to improve the performance.

An introduction to Theano
Theano is a library that allows you to build mathematical expressions and run 
them. While this may immediately not seem that different to what we normally do 
to write a program, in Theano, we define the function we want to perform, not the 
way in which it is computed. This allows Theano to optimize the evaluation of the 
expression and also to perform lazy computation—expressions are only actually 
computed when they are needed, not when they are defined.

Many programmers don't use this type of programming day-to-day, but most of 
them interact with a related system that does. Relational databases, specifically  
SQL-based ones, use this concept called the declarative paradigm. While a 
programmer might define a SELECT query on a database with a WHERE clause, 
the database interprets that and creates an optimized query based on a number of 
factors, such as whether the WHERE clause is on a primary key, the format the data 
is stored in, and other factors. The programmer defines what they want and the 
system determines how to do it.

You can install Theano using pip: pip3 install Theano.



Chapter 11

[ 249 ]

Using Theano, we can define many types of functions working on scalars, arrays, 
and matrices, as well as other mathematical expressions. For instance, we can create 
a function that computes the length of the hypotenuse of a right-angled triangle:

import theano
from theano import tensor as T

First, we define the two inputs, a and b. These are simple numerical values, so we 
define them as scalars:

a = T.dscalar()
b = T.dscalar()

Then, we define the output, c. This is an expression based on the values of a and b:

c = T.sqrt(a ** 2 + b ** 2)

Note that c isn't a function or a value here—it is simply an expression, given a and b. 
Note also that a and b don't have actual values—this is an algebraic expression, not 
an absolute one. In order to compute on this, we define a function:

f = theano.function([a,b], c)

This basically tells Theano to create a function that takes values for a and b  
as inputs, and returns c as an output, computed on the values given. For example, 
f(3, 4) returns 5.

While this simple example may not seem much more powerful than what we  
can already do with Python, we can now use our function or our mathematical 
expression c in other parts of code and the remaining mappings. In addition, while 
we defined c before the function was defined, no actual computation was done until 
we called the function.

An introduction to Lasagne
Theano isn't a library to build neural networks. In a similar way, NumPy isn't a 
library to perform machine learning; it just does the heavy lifting and is generally 
used from another library. Lasagne is such a library, designed specifically around 
building neural networks, using Theano to perform the computation.

Lasagne implements a number of modern types of neural network layers, and the 
building blocks for building them.
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 These include the following:

• Network-in-network layers: These are small neural networks that are easier 
to interpret than traditional neural network layers.

• Dropout layers: These randomly drop units during training, preventing 
overfitting, which is a major problem in neural networks.

• Noise layers: These introduce noise into the neurons; again, addressing the 
overfitting problem.

In this chapter, we will use convolution layers (layers that are organized to mimic 
the way in which human vision works). They use small collections of connected 
neurons that analyze only a segment of the input values (in this case, an image). 
This allows the network to deal with standard alterations such as dealing with 
translations of images. In the case of vision-based experiments, an example of an 
alteration dealt with by convolution layers is translating the image.

In contrast, a traditional neural network is often heavily connected—all neurons 
from one layer connect to all neurons in the next layer.

Convolutional networks are implemented in the lasagne.layers.Conv1DLayer  
and lasagne.layers.Conv2DLayer classes.

At the time of writing, Lasagne hasn't had a formal release and is not 
on pip. You can install it from github. In a new folder, download the 
source code repository using the following:
git clone https://github.com/Lasagne/Lasagne.git

From within the created Lasagne folder, you can then install the library 
using the following:
sudo python3 setup.py install

See http://lasagne.readthedocs.org/en/latest/user/
installation.html for installation instructions.

Neural networks use convolutional layers (generally, just Convolutional Neural 
Networks) and also the pooling layers, which take the maximum output for a  
certain region. This reduces noise caused by small variations in the image, and 
reduces (or down-samples) the amount of information. This has the added benefit  
of reducing the amount of work needed to be done in later layers.

Lasagne also implements these pooling layers—for example in the lasagne.layers.
MaxPool2DLayer class. Together with the convolution layers, we have all the tools 
needed to build a convolution neural network.

http://lasagne.readthedocs.org/en/latest/user/installation.html
http://lasagne.readthedocs.org/en/latest/user/installation.html
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Building a neural network in Lasagne is easier than building it using just Theano.  
To show the principles, we will implement a basic network to lean on the Iris dataset, 
which we saw in Chapter 1, Getting Started with Data Mining. The Iris dataset is great 
for testing new algorithms, even complex ones such as deep neural networks.

First, open a new IPython Notebook. We will come back to the Notebook we loaded 
the CIFAR dataset with, later in the chapter.

First, we load the dataset:

from sklearn.datasets import load_iris
iris = load_iris()
X = iris.data.astype(np.float32)
y_true = iris.target.astype(np.int32)

Due to the way Lasagne works, we need to be a bit more explicit about the data 
types. This is why we converted the classes to int32 (they are stored as int64  
in the original dataset).

We then split into training and testing datasets:

from sklearn.cross_validation import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y_true, random_
state=14)

Next, we build our network by creating the different layers. Our dataset contains 
four input variables and three output classes. This gives us the size of the first and 
last layer, but not the layers in between. Playing around with this figure will give 
different results, and it is worth trailing different values to see what happens.

We start by creating an input layer, which has the same number of nodes as  
the dataset. We can specify a batch size (where the value is 10), which allows 
Lasagne to do some optimizations in training:

import lasagne
input_layer = lasagne.layers.InputLayer(shape=(10, X.shape[1]))

Next, we create our hidden layer. This layer takes its input from our input layer 
(specified as the first argument), which has 12 nodes, and uses the sigmoid 
nonlinearity, which we saw in Chapter 8, Beating CAPTCHAs with Neural Networks;

hidden_layer = lasagne.layers.DenseLayer(input_layer, num_units=12, 
nonlinearity=lasagne.nonlinearities.sigmoid)
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Next, we have our output layer that takes its input from the hidden layer, which 
has three nodes (which is the same as the number of classes), and uses the softmax 
nonlinearity. Softmax is more typically used in the final layer of neural networks:

output_layer = lasagne.layers.DenseLayer(hidden_layer, num_units=3,
                                    nonlinearity=lasagne.
nonlinearities.softmax)

In Lasagne's usage, this output layer is our network. When we enter a sample  
into it, it looks at this output layer and obtains the layer that is inputted into it  
(the first argument). This continues recursively until we reach an input layer, which 
applies the samples to itself, as it doesn't have an input layer to it. The activations 
of the neurons in the input layer are then fed into its calling layer (in our case, the 
hidden_layer), and that is then propagated up all the way to the output layer.

In order to train our network, we now need to define some training functions, 
which are Theano-based functions. In order to do this, we need to define a Theano 
expression and a function for the training. We start by creating variables for the 
input samples, the output given by the network, and the actual output:

import theano.tensor as T
net_input = T.matrix('net_input')
net_output = output_layer.get_output(net_input)
true_output = T.ivector('true_output')

We can now define our loss function, which tells the training function how to improve 
the network—it attempts to train the network to minimize the loss according to this 
function. The loss we will use is the categorical cross entropy, a metric on categorical 
data such as ours. This is a function of the output given by the network and the actual 
output we expected:

loss = T.mean(T.nnet.categorical_crossentropy(net_output,  
  true_output))

Next, we define the function that will change the weights in our network.  
In order to do this, we obtain all of the parameters from the network and create 
a function (using a helper function given by Lasagne) that adjusts the weights to 
minimize our loss;

all_params = lasagne.layers.get_all_params(output_layer)
updates = lasagne.updates.sgd(loss, all_params, learning_rate=0.1)
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Finally, we create Theano-based functions that perform this training and also obtain 
the output of the network for testing purposes:

import theano
train = theano.function([net_input, true_output], loss, 
updates=updates)
get_output = theano.function([net_input], net_output)

We can then call our train function, on our training data, to perform one iteration 
of training the network. This involves taking each sample, computing the predicted 
class of it, comparing those predictions to the expected classes, and updating 
the weights to minimize the loss function. We then perform this 1,000 times, 
incrementally training our network over those iterations:

for n in range(1000):
    train(X_train, y_train)

Next, we can evaluate by computing the F-score on the outputs. First, we obtain 
those outputs:

y_output = get_output(X_test)

Note that get_output is a Theano function we obtained from our 
neural network, which is why we didn't need to add our network as a 
parameter to this line of code.

This result, y_output, is the activation of each of the neurons in the final output 
layer. The actual prediction itself is created by finding which neuron has the  
highest activation:

import numpy as np
y_pred = np.argmax(y_output, axis=1)

Now, y_pred is an array of class predictions, like we are used to in classification 
tasks. We can now compute the F-score using these predictions:

from sklearn.metrics import f1_score
print(f1_score(y_test, y_pred))

The result is impressively perfect—1.0! This means all the classifications were  
correct in the test data: a great result (although this is a simpler dataset).

As we can see, while it is possible to develop and train a network using just Lasagne, 
it can be a little awkward. To address this, we will be using nolearn, which is a 
package that further wraps this process in code that is conveniently convertible with 
the scikit-learn API.
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Implementing neural networks with nolearn
The nolearn package provides wrappers for Lasagne. We lose some of the  
fine-tuning that can go with building a neural network by hand in Lasagne,  
but the code is much more readable and much easier to manage.

The nolearn package implements the normal sorts of complex neural networks you 
are likely to want to build. If you want more control than nolearn gives you, you can 
revert to using Lasagne, but at the cost of having to manage a bit more of the training 
and building process.

To get started with nolearn, we are going to reimplement the example we used 
in Chapter 8, Beating CAPTCHAs with Neural Networks, to predict which letter was 
represented in an image. We will recreate the dense neural network we used in 
Chapter 8, Beating CAPTCHAs with Neural Networks. To start with, we need to enter 
our dataset building code again in our notebook. For a description of what this code 
does, refer to Chapter 8, Beating CAPTCHAs with Neural Networks:

import numpy as np
from PIL import Image, ImageDraw, ImageFont
from skimage.transform import resize
from skimage import transform as tf
from skimage.measure import label, regionprops
from sklearn.utils import check_random_state
from sklearn.preprocessing import OneHotEncoder
from sklearn.cross_validation import train_test_split

def create_captcha(text, shear=0, size=(100, 24)):
    im = Image.new("L", size, "black")
    draw = ImageDraw.Draw(im)
    font = ImageFont.truetype(r"Coval.otf", 22)
    draw.text((2, 2), text, fill=1, font=font)
    image = np.array(im)
    affine_tf = tf.AffineTransform(shear=shear)
    image = tf.warp(image, affine_tf)
    return image / image.max()

def segment_image(image):
    labeled_image = label(image > 0)
    subimages = []
    for region in regionprops(labeled_image):
        start_x, start_y, end_x, end_y = region.bbox
        subimages.append(image[start_x:end_x,start_y:end_y])
    if len(subimages) == 0:
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        return [image,]
    return subimages

random_state = check_random_state(14)
letters = list("ABCDEFGHIJKLMNOPQRSTUVWXYZ")
shear_values = np.arange(0, 0.5, 0.05)

def generate_sample(random_state=None):
    random_state = check_random_state(random_state)
    letter = random_state.choice(letters)
    shear = random_state.choice(shear_values)
    return create_captcha(letter, shear=shear, size=(20, 20)), 
letters.index(letter)
dataset, targets = zip(*(generate_sample(random_state) for i in 
range(3000)))
dataset = np.array(dataset, dtype='float')
targets =  np.array(targets)

onehot = OneHotEncoder()
y = onehot.fit_transform(targets.reshape(targets.shape[0],1))
y = y.todense().astype(np.float32)

dataset = np.array([resize(segment_image(sample)[0], (20, 20)) for 
sample in dataset])
X = dataset.reshape((dataset.shape[0], dataset.shape[1] * dataset.
shape[2]))
X = X / X.max()
X = X.astype(np.float32)

X_train, X_test, y_train, y_test = \
    train_test_split(X, y, train_size=0.9, random_state=14)

A neural network is a collection of layers. Implementing one in nolearn is a case of 
organizing what those layers will look like, much as it was with PyBrain. The neural 
network we used in Chapter 8, Beating CAPTCHAs with Neural Networks, used fully 
connected dense layers. These are implemented in nolearn, meaning we can replicate 
our basic network structure here. First, we create the layers consisting of an input 
layer, our dense hidden layer, and our dense output layer:

from lasagne import layers
layers=[
        ('input', layers.InputLayer),
        ('hidden', layers.DenseLayer),
        ('output', layers.DenseLayer),
        ]
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We then import some requirements, which we will explain as we use them:

from lasagne import updates
from nolearn.lasagne import NeuralNet
from lasagne.nonlinearities import sigmoid, softmax

Next we define the neural network, which is represented as a scikit-learn-compatible 
estimator:

net1 = NeuralNet(layers=layers,

Note that we haven't closed off the parenthesis—this is deliberate. At this point, we 
enter the parameters for the neural network, starting with the size of each layer:

    input_shape=X.shape,
    hidden_num_units=100,
    output_num_units=26,

The parameters here match the layers. In other words, the input_shape parameter 
first finds the layer in our layers that has given the name input, working much the 
same way as setting parameters in pipelines.

Next, we define the nonlinearities. Again, we will use sigmoid for the hidden layer 
and softmax for the output layer:

    hidden_nonlinearity=sigmoid,
    output_nonlinearity=softmax,

Next, we will use bias nodes, which are nodes that are always turned on in the 
hidden layer. Bias nodes are important to train a network, as they allow for 
the activations of neurons to train more specifically to their problems. As an 
oversimplified example, if our prediction is always off by 4, we can add a bias of -4 
to remove this bias. Our bias nodes allow for this, and the training of the weights 
dictates the amount of bias that is used.

The biases are given as a set of weights, meaning that it needs to be the same size as 
the layer the bias is attaching to:

    hidden_b=np.zeros((100,), dtype=np.float32),
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Next, we define how the network will train. The nolearn package doesn't  
have the exact same training mechanism as we used in Chapter 8, Beating CAPTCHAs 
with Neural Networks, as it doesn't have a way to decay weights. However, it does 
have momentum, which we will use, along with a high learning rate and low 
momentum value:

    update=updates.momentum,
    update_learning_rate=0.9,
    update_momentum=0.1,

Next, we define the problem as a regression problem. This may seem odd, as we 
are performing a classification task. However, the outputs are real-valued, and 
optimizing them as a regression problem appears to do much better in training  
than trying to optimize on classification:

    regression=True,

Finally, we set the maximum number of epochs for training at 1,000, which is a good 
fit between good training and not taking a long time to train (for this dataset; other 
datasets may require more or less training):

    max_epochs=1000,

We can now close off the parenthesis for the neural network constructor;

)

Next, we train the network on our training dataset:

net1.fit(X_train, y_train)

Now we can evaluate the trained network. To do this, we get the output of our 
network and, as with the Iris example, we need to perform an argmax to get the 
actual classification by choosing the highest activation:

y_pred = net1.predict(X_test)
y_pred = y_pred.argmax(axis=1)
assert len(y_pred) == len(X_test)
if len(y_test.shape) > 1:
    y_test = y_test.argmax(axis=1)
print(f1_score(y_test, y_pred))

The results are equally impressive—another perfect score on my machine. However, 
your results may vary as the nolearn package has some randomness that can't be 
directly controlled at this stage.
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GPU optimization
Neural networks can grow quite large in size. This has some implications for 
memory use; however, efficient structures such as sparse matrices mean that we 
don't generally run into problems fitting a neural network in memory.

The main issue when neural networks grow large is that they take a very long time 
to compute. In addition, some datasets and neural networks will need to run many 
epochs of training to get a good fit for the dataset. The neural network we will train 
in this chapter takes more than 8 minutes per epoch on my reasonably powerful 
computer, and we expect to run dozens, potentially hundreds, of epochs. Some 
larger networks can take hours to train a single epoch. To get the best performance, 
you may be considering thousands of training cycles.

The math obviously doesn't give a nice result here.

One positive is that neural networks are, at their core, full of floating point 
operations. There are also a large number of operations that can be performed  
in parallel, as neural network training is composed of mainly matrix operations. 
These factors mean that computing on GPUs is an attractive option to speed up  
this training.

When to use GPUs for computation
GPUs were originally designed to render graphics for display. These graphics  
are represented using matrices and mathematical equations on those matrices,  
which are then converted into the pixels that we see on our screen. This process 
involves lots of computation in parallel. While modern CPUs may have a number  
of cores (your computer may have 2, 4, or even 16—or more!), GPUs have  
thousands of small cores designed specifically for graphics.

A CPU is therefore better for sequential tasks, as the cores tend to be individually 
faster and tasks such as accessing the computer's memory are more efficient. It is 
also, honestly, easier to just let the CPU do the heavy lifting. Almost every machine 
learning library defaults to using the CPU, and there is extra work involved before 
you can use the GPU for computing. The benefits though, can be quite significant.

GPUs are therefore better suited for tasks in which there are lots of small  
operations on numbers that can be performed at the same time. Many machine 
learning tasks are like this, lending themselves to efficiency improvements through 
the use of a GPU.
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Getting your code to run on a GPU can be a frustrating experience. It depends 
greatly on what type of GPU you have, how it is configured, your operating system, 
and whether you are prepared to make some low-level changes to your computer.

There are three main avenues to take:

• The first is to look at your computer, search for tools and drivers for your 
GPU and operating system, explore some of the many tutorials out there, 
and find one that fits your scenario. Whether this works depends on what 
your system is like. That said, this scenario is much easier than it was a few 
years ago, with better tools and drivers available to perform GPU-enabled 
computation.

• The second avenue is to choose a system, find good documentation on 
setting it up, and buy a system to match. This will work better, but can be 
fairly expensive—in most modern computers, the GPU is one of the most 
expensive parts. This is especially true if you want to get great performance 
out of the system—you'll need a really good GPU, which can be very 
expensive.

• The third avenue is to use a virtual machine, which is already configured for 
such a purpose. For example, Markus Beissinger has created such a system 
that runs on Amazon's Web Services. The system will cost you money to 
run, but the price is much less than that of a new computer. Depending on 
your location, the exact system you get and how much you use it, you are 
probably looking at less than $1 an hour, and often much, much less. If you 
use spot instances in Amazon's Web Services, you can run them for just a few 
cents per hour (although, you will need to develop your code to run on spot 
instances separately).

If you aren't able to afford the running costs of a virtual machine, I recommend that 
you look into the first avenue, with your current system. You may also be able to 
pick up a good secondhand GPU from family or a friend who constantly updates 
their computer (gamer friends are great for this!).

Running our code on a GPU
We are going to take the third avenue in this chapter and create a virtual machine 
based on Markus Beissinger's base system. This will run on an Amazon's EC2 service. 
There are many other Web services to use, and the procedure will be slightly 
different for each. In this section, I'll outline the procedure for Amazon.
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If you want to use your own computer and have it configured to run GPU-enabled 
computation, feel free to skip this section.

You can get more information on how this was set up, which may 
also provide information on setting it up on another computer, at 
http://markus.com/install-theano-on-aws/.

To start with, go to the AWS console at:

https://console.aws.amazon.com/console/home?region=us-east-1

Log in with your Amazon account. If you don't have one, you will be prompted to 
create one, which you will need to do in order to continue.

Next, go to the EC2 service console at: https://console.aws.amazon.com/ec2/v2/
home?region=us-east-1.

Click on Launch Instance and choose N. California as your location in the drop-
down menu at the top-right.

Click on Community AMIs and search for ami-b141a2f5, which is the machine 
created by Markus Beissinger. Then, click on Select. On the next screen, choose 
g2.2xlarge as the machine type and click on Review and Launch. On the next screen, 
click on Launch.

At this point, you will be charged, so please remember to shut down your machines 
when you are done with them. You can go to the EC2 service, select the machine, and 
stop it. You won't be charged for machines that are not running.

You'll be prompted with some information on how to connect to your instance. If 
you haven't used AWS before, you will probably need to create a new key pair to 
securely connect to your instance. In this case, give your key pair a name, download 
the pem file, and store it in a safe place—if lost, you will not be able to connect to your 
instance again!

Click on Connect for information on using the pem file to connect to your instance. 
The most likely scenario is that you will use ssh with the following command:

ssh -i <certificante_name>.pem ubuntu@<server_ip_address>

http://markus.com/install-theano-on-aws/
https://console.aws.amazon.com/console/home?region=us-east-1
https://console.aws.amazon.com/ec2/v2/home?region=us-east-1
https://console.aws.amazon.com/ec2/v2/home?region=us-east-1
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Setting up the environment
When you have connected to the instance, you can install the updated Lasagne and 
nolearn packages.

First, clone the git repository for Lasagne, as was outlined earlier in this chapter:

git clone https://github.com/Lasagne/Lasagne.git

In order to build this library on this machine, we will need setuptools for  
Python 3, which we can install via apt-get, which is Ubuntu's method of installing 
applications and libraries; we also need the development library for NumPy.  
Run the following in the command line of the virtual machine:

sudo apt-get install python3-pip python3-numpy-dev

Next, we install Lasagne. First, we change to the source code directory and then run 
setup.py to build and install it:

cd Lasagne

sudo python3 setup.py install

We have installed Lasagne and will install nolearn as system-wide 
packages for simplicity. For those wanting a more portable solution, I 
recommend using virtualenv to install these packages. It will allow 
you to use different python and library versions on the same computer, 
and make moving the code to a new computer much easier. For more 
information, see http://docs.python-guide.org/en/latest/
dev/virtualenvs/.

After Lasagne is built, we can now install nolearn. Change to the home directory  
and follow the same procedure, except for the nolearn package:

cd ~/

git clone https://github.com/dnouri/nolearn.git

cd nolearn

sudo python3 setup.py install

http://docs.python-guide.org/en/latest/dev/virtualenvs/
http://docs.python-guide.org/en/latest/dev/virtualenvs/
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Our system is nearly set up. We need to install scikit-learn and scikit-image, as well 
as matplotlib. We can do all of this using pip3. As a dependency on these, we need 
the scipy and matplotlib packages as well, which aren't currently installed on this 
machine. I recommend using scipy and matplotlib from apt-get rather than pip3,  
as it can be painful in some cases to install it using pip3:

sudo apt-get install python3-scipy python3-matplotlib

sudo pip3 install scikit-learn scikit-image

Next, we need to get our code onto the machine. There are many ways to get this file 
onto your computer, but one of the easiest is to just copy-and-paste the contents.

To start with, open the IPython Notebook we used before (on your computer, not 
on the Amazon Virtual Machine). On the Notebook itself is a menu. Click on File 
and then Download as. Select Python and save it to your computer. This procedure 
downloads the code in the IPython Notebook as a python script that you can run 
from the command line.

Open this file (on some systems, you may need to right-click and open with a  
text editor). Select all of the contents and copy them to your clipboard.

On the Amazon Virtual Machine, move to the home directory and open nano  
with a new filename:

cd ~/

nano chapter11script.py

The nano program will open, which is a command-line text editor.

With this program open, paste the contents of your clipboard into this file.  
On some systems, you may need to use a file option of the ssh program,  
rather than pressing Ctrl + V to paste.

In nano, press Ctrl + O to save the file on the disk and then Ctrl + X to exit the 
program.

You'll also need the font file. The easiest way to do this is to download it again from 
the original location. To do this, enter the following:

wget http://openfontlibrary.org/assets/downloads/bretan/680bc56bbeeca9535
3ede363a3744fdf/bretan.zip

sudo apt-get install unzip

unzip -p bretan.zip Coval.otf > Coval.otf
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This will unzip only one Coval.otf file (there are lots of files in this zip folder  
that we don't need).

While still in the virtual machine, you can run the program with the following 
command:

python3 chapter11script.py

The program will run through as it would in the IPython Notebook and the results 
will print to the command line.

The results should be the same as before, but the actual training and testing of the 
neural network will be much faster. Note that it won't be that much faster in the 
other aspects of the program—we didn't write the CAPTCHA dataset creation to  
use a GPU, so we will not obtain a speedup there.

You may wish to shut down the Amazon virtual machine to 
save some money; we will be using it at the end of this chapter 
to run our main experiment, but will be developing the code on 
your main computer first.

Application
Back on your main computer now, open the first IPython Notebook we created 
in this chapter—the one that we loaded the CIFAR dataset with. In this major 
experiment, we will take the CIFAR dataset, create a deep convolution neural 
network, and then run it on our GPU-based virtual machine.

Getting the data
To start with, we will take our CIFAR images and create a dataset with them.  
Unlike previously, we are going to preserve the pixel structure—that is,. in rows  
and columns. First, load all the batches into a list:

import numpy as np
batches = []
for i in range(1, 6):
    batch_filename = os.path.join(data_folder, "data_batch_{}".
format(i))
    batches.append(unpickle(batch1_filename))
    break
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The last line, the break, is to test the code—this will drastically reduce the number of 
training examples, allowing you to quickly see if your code is working. I'll prompt 
you later to remove this line, after you have tested that the code works.

Next, create a dataset by stacking these batches on top of each other. We use 
NumPy's vstack, which can be visualized as adding rows to the end of the array:

X = np.vstack([batch['data'] for batch in batches])

We then normalize the dataset to the range 0 to 1 and then force the type to be a  
32-bit float (this is the only datatype the GPU-enabled virtual machine can run with):

X = np.array(X) / X.max()
X = X.astype(np.float32)

We then do the same with the classes, except we perform a hstack, which is similar 
to adding columns to the end of the array. We then use the OneHotEncoder to turn 
this into a one-hot array:

from sklearn.preprocessing import OneHotEncoder
y = np.hstack(batch['labels'] for batch in batches).flatten()
y = OneHotEncoder().fit_transform(y.reshape(y.shape[0],1)).todense()
y = y.astype(np.float32)

Next, we split the dataset into training and testing sets:

X_train, X_test, y_train, y_test = train_test_split(X, y, test_
size=0.2)

Next, we reshape the arrays to preserve the original data structure. The original  
data was 32 by 32 pixel images, with 3 values per pixel (for the red, green, and  
blue values);

X_train = X_train.reshape(-1, 3, 32, 32)
X_test = X_test.reshape(-1, 3, 32, 32)

We now have a familiar training and testing dataset, along with the target classes  
for each. We can now build the classifier.

Creating the neural network
We will be using the nolearn package to build the neural network, and therefore 
will follow a pattern that is similar to our replication experiment in Chapter 8,  
Beating CAPTCHAs with Neural Networks replication.
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First we create the layers of our neural network:

from lasagne import layers
layers=[
        ('input', layers.InputLayer),
        ('conv1', layers.Conv2DLayer),
        ('pool1', layers.MaxPool2DLayer),
        ('conv2', layers.Conv2DLayer),
        ('pool2', layers.MaxPool2DLayer),
        ('conv3', layers.Conv2DLayer),
        ('pool3', layers.MaxPool2DLayer),
        ('hidden4', layers.DenseLayer),
        ('hidden5', layers.DenseLayer),
        ('output', layers.DenseLayer),
        ]

We use dense layers for the last three layers, but before that we use convolution 
layers combined with pooling layers. We have three sets of these. In addition, we 
start (as we must) with an input layer. This gives us a total of 10 layers. As before, 
the size of the first and last layers is easy to work out from the dataset, although our 
input size will have the same shape as the dataset rather than just the same number 
of nodes/inputs.

Start building our neural network (remember to not close the parentheses):

from nolearn.lasagne import NeuralNet
nnet = NeuralNet(layers=layers,

Add the input shape. The shape here resembles the shape of the dataset (three values 
per pixel and a 32 by 32 pixel image). The first value, None, is the default batch size 
used by nolearn—it will train on this number of samples at once, decreasing the 
running time of the algorithm. Setting it to None removes this hard-coded value, 
giving us more flexibility in running our algorithm:

                 input_shape=(None, 3, 32, 32),

To change the batch size, you will need to create a BatchIterator 
instance. Those who are interested in this parameter can view the 
source of the file at https://github.com/dnouri/nolearn/
blob/master/nolearn/lasagne.py, track the batch_iterator_
train and batch_iterator_test parameters, and see how they 
are set in the NeuralNet class in this file.

https://github.com/dnouri/nolearn/blob/master/nolearn/lasagne.py
https://github.com/dnouri/nolearn/blob/master/nolearn/lasagne.py
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Next we set the size of the convolution layers. There are no strict rules here, but I 
found the following values to be good starting points;

                 conv1_num_filters=32,
                 conv1_filter_size=(3, 3),
                 conv2_num_filters=64,
                 conv2_filter_size=(2, 2),
                 conv3_num_filters=128,
                 conv3_filter_size=(2, 2),

The filter_size parameter dictates the size of the window of the image that the 
convolution layer looks at. In addition, we set the size of the pooling layers:

                 pool1_ds=(2,2),
                 pool2_ds=(2,2),
                 pool3_ds=(2,2),

We then set the size of the two hidden dense layers (the third-last and second-last 
layers) and also the size of the output layer, which is just the number of classes in  
our dataset;

                 hidden4_num_units=500,
                 hidden5_num_units=500,
                 output_num_units=10,

We also set a nonlinearity for the final layer, again using softmax;

                 output_nonlinearity=softmax,

We also set the learning rate and momentum. As a rule of thumb, as the number of 
samples increase, the learning rate should decrease:

                 update_learning_rate=0.01,
                 update_momentum=0.9,

We set regression to be True, as we did before, and set the number of training 
epochs to be low as this network will take a long time to run. After a successful run, 
increasing the number of epochs will result in a much better model, but you may 
need to wait for a day or two (or more!) for it to train:

                 regression=True,
                 max_epochs=3,
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Finally, we set the verbosity as equal to 1, which will give us a printout of the results 
of each epoch. This allows us to know the progress of the model and also that it is 
still running. Another feature is that it tells us the time it takes for each epoch to run. 
This is pretty consistent, so you can compute the time left in training by multiplying 
this value by the number of remaining epochs, giving a good estimate on how long 
you need to wait for the training to complete:

                 verbose=1)

Putting it all together
Now that we have our network, we can train it with our training dataset:

nnet.fit(X_train, y_train)

This will take quite a while to run, even with the reduced dataset size and the 
reduced number of epochs. Once the code completes, you can test it as we did before:

from sklearn.metrics import f1_score
y_pred = nnet.predict(X_test)
print(f1_score(y_test.argmax(axis=1), y_pred.argmax(axis=1)))

The results will be terrible—as they should be! We haven't trained the network very 
much—only for a few iterations and only on one fifth of the data.

First, go back and remove the break line we put in when creating the dataset  
(it is in the batches loop). This will allow the code to train on all of the samples,  
not just some of them.

Next, change the number of epochs to 100 in the neural network definition.

Now, we upload the script to our virtual machine. As with before, click on  
File | Download as, Python, and save the script somewhere on your computer. 
Launch and connect to the virtual machine and upload the script as you did earlier 
(I called my script chapter11cifar.py—if you named yours differently, just update 
the following code).

The next thing we need is for the dataset to be on the virtual machine. The easiest 
way to do this is to go to the virtual machine and type:

wget http://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz
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This will download the dataset. Once that has downloaded, you can extract the data 
to the Data folder by first creating that folder and then unzipping the data there:

mkdir Data

tar -zxf cifar-10-python.tar.gz -C Data

Finally, we can run our example with the following:

python3 chapter11cifar.py

The first thing you'll notice is a drastic speedup. On my home computer, each epoch 
took over 100 seconds to run. On the GPU-enabled virtual machine, each epoch takes 
just 16 seconds! If we tried running 100 epochs on my computer, it would take nearly 
three hours, compared to just 26 minutes on the virtual machine.

This drastic speedup makes trailing different models much faster. Often with trialing 
machine learning algorithms, the computational complexity of a single algorithm 
doesn't matter too much. An algorithm might take a few seconds, minutes, or hours 
to run. If you are only running one model, it is unlikely that this training time will 
matter too much—especially as prediction with most machine learning algorithms is 
quite quick, and that is where a machine learning model is mostly used.

However, when you have many parameters to run, you will suddenly need to train 
thousands of models with slightly different parameters—suddenly, these speed 
increases matter much more.

After 100 epochs of training, taking a whole 26 minutes, you will get a printout  
of the final result:

0.8497

Not too bad! We can increase the number of epochs of training to improve this 
further or we might try changing the parameters instead; perhaps, more hidden 
nodes, more convolution layers, or an additional dense layer. There are other types 
of layers in Lasagne that could be tried too; although generally, convolution layers 
are better for vision.
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Summary
In this chapter, we looked at using deep neural networks, specifically convolution 
networks, in order to perform computer vision. We did this through the Lasagne  
and nolearn packages, which work off Theano. The networks were relatively easy  
to build with nolearn's helper functions.

The convolution networks were designed for computer vision, so it shouldn't  
be a surprise that the result was quite accurate. The final result shows that  
computer vision is indeed an effective application using today's algorithms  
and computational power.

We also used a GPU-enabled virtual machine to drastically speed up the  
process, by a factor of almost 10 for my machine. If you need extra power to run 
some of these algorithms, virtual machines by cloud providers can be an effective 
way to do this (usually for less than a dollar per hour)—just remember to turn  
them off when you are done!

This chapter's focus was on a very complex algorithm. Convolution networks take 
a long time to train and have many parameters to train. Ultimately, the size of the 
data was small in comparison; although it was a large dataset, we can load it all in 
memory without even using sparse matrices. In the next chapter, we go for a much 
simpler algorithm, but a much, much larger dataset that can't fit in memory. This 
is the basis of Big Data and it underpins applications of data mining in many large 
industries such as mining and social networks.
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Working with Big Data
The amount of data is increasing at exponential rates. Today's systems are generating 
and recording information on customer behavior, distributed systems, network 
analysis, sensors and many, many more sources. While the current big trend of 
mobile data is pushing the current growth, the next big thing—the Internet of 
Things (IoT)—is going to further increase the rate of growth.

What this means for data mining is a new way of thinking. The complex algorithms 
with high run times need to be improved or discarded, while simpler algorithms 
that can deal with more samples are becoming more popular to use. As an example, 
while support vector machines are great classifiers, some variants are difficult to use 
on very large datasets. In contrast, simpler algorithms such as logistic regression can 
manage more easily in these scenarios.

In this chapter, we will investigate the following:

• Big data challenges and applications
• The MapReduce paradigm
• Hadoop MapReduce
• mrjob, a python library to run MapReduce programs on Amazon's 

infrastructure
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Big data
What makes big data different? Most big-data proponents talk about the four  
Vs of big data:

1. Volume: The amount of data that we generate and store is growing at an 
increasing rate, and predictions of the future generally only suggest further 
increases. Today's multi-gigabyte sized hard drives will turn into exabyte 
hard drives in a few years, and network throughput traffic will be increasing 
as well. The signal to noise ratio can be quite difficult, with important data 
being lost in the mountain of non-important data.

2. Velocity: While related to volume, the velocity of data is increasing too. 
Modern cars have hundreds of sensors that stream data into their computers, 
and the information from these sensors needs to be analyzed at a subsecond 
level to operate the car. It isn't just a case of finding answers in the volume of 
data; those answers often need to come quickly.

3. Variety: Nice datasets with clearly defined columns are only a small part 
of the dataset that we have these days. Consider a social media post, which 
may have text, photos, user mentions, likes, comments, videos, geographic 
information, and other fields. Simply ignoring parts of this data that 
don't fit your model will lead to a loss of information, but integrating that 
information itself can be very difficult.

4. Veracity: With the increase in the amount of data, it can be hard to determine 
whether the data is being correctly collected—whether it is outdated, noisy, 
contains outliers, or generally whether it is useful at all. Being able to trust 
the data is hard when a human can't reliably verify the data itself. External 
datasets are being increasingly merged into internal ones too, giving rise to 
more troubles relating to the veracity of the data.

These main four Vs (others have proposed additional Vs) outline why big data is 
different to just lots-of-data. At these scales, the engineering problem of working 
with the data is often more difficult—let alone the analysis. While there are lots of 
snake oil salesmen that overstate the ability to use big data, it is hard to deny the 
engineering challenges and the potential of big-data analytics.

The algorithms we have used are to date load the dataset into memory and then 
to work on the in-memory version. This gives a large benefit in terms of speed of 
computation, as it is much faster to compute on in-memory data than having to load 
a sample before we use it. In addition, in-memory data allows us to iterate over the 
data many times, improving our model.
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In big data, we can't load our data into memory, In many ways, this is a good 
definition for whether a problem is big data or not—if the data can fit in the memory 
on your computer, you aren't dealing with a big data problem.

Application scenario and goals
There are many use cases for big data, in the public and private sectors.

The most common experience people have using a big-data-based system is  
in Internet search, such as Google. To run these systems, a search needs to be  
carried out over billions of websites in a fraction of a second. Doing a basic  
text-based search would be inadequate to deal with such a problem. Simply  
storing the text of all those websites is a large problem. In order to deal with  
queries, new data structures and data mining methods need to be created and 
implemented specifically for this application.

Big data is also used in many other scientific experiments such as the Large  
Hadron Collider, part of which is pictured below, that stretches over 17 kilometers 
and contains 150 million sensors monitoring hundreds of millions of particle 
collisions per second. The data from this experiment is massive, with 25 petabytes 
created daily, after a filtering process (if filtering was not used, there would be 150 
million petabytes per year). Analysis on data this big has led to amazing insights 
about our universe, but has been a significant engineering and analytics challenge.
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Governments are increasingly using big data too, to track populations, businesses, 
and other aspects about their country. Tracking millions of people and billions of 
interactions (such as business transactions or health spending) has led to a need for 
big data analytics in many government organizations.

Traffic management is a particular focus of many governments around the world, 
who are tracking traffic using millions of sensors to determine which roads are most 
congested and predicting the impact of new roads on traffic levels.

Large retail organizations are using big data to improve the customer experience and 
reduce costs. This involves predicting customer demand in order to have the correct 
level of inventory, upselling customers with products they may like to purchase, and 
tracking transactions to look for trends, patterns, and potential frauds.

Other large businesses are also leveraging big data to automate aspects of their 
business and improve their offering. This includes leveraging analytics to predict 
future trends in their sector and track external competitors. Large businesses also use 
analytics to manage their own employees—tracking employees to look for signs that 
an employee may leave the company, in order to intervene before they do.

The information security sector is also leveraging big data in order to look for 
malware infections in large networks, by monitoring network traffic. This can 
include looking for odd traffic patterns, evidence of malware spreading, and 
other oddities. Advanced Persistent Threats (APTs) is another problem, where a 
motivated attacker will hide their code within a large network to steal information or 
cause damage over a long period of time. Finding APTs is often a case of forensically 
examining many computers, a task which simply takes too long for a human to 
effectively perform themselves. Analytics helps automate and analyze these forensic 
images to find infections.

Big data is being used in an increasing number of sectors and applications, and this 
trend is likely to only continue.

MapReduce
There are a number of concepts to perform data mining and general computation on 
big data. One of the most popular is the MapReduce model, which can be used for 
general computation on arbitrarily large datasets.
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MapReduce originates from Google, where it was developed with distributed 
computing in mind. It also introduces fault tolerance and scalability improvements. 
The "original" research for MapReduce was published in 2004, and since then there 
have been thousands of projects, implementations, and applications using it.

While the concept is similar to many previous concepts, MapReduce has become a 
staple in big data analytics.

Intuition
MapReduce has two main steps: the Map step and the Reduce step. These are built 
on the functional programming concepts of mapping a function to a list and reducing 
the result. To explain the concept, we will develop code that will iterate over a list of 
lists and produce the sum of all numbers in those lists.

There are also shuffle and combine steps in the MapReduce paradigm, which we  
will see later.

To start with, the Map step takes a function and applies it to each element in a  
list. The returned result is a list of the same size, with the results of the function 
applied to each element.

To open a new IPython Notebook, start by creating a list of lists with numbers in 
each sublist:

a = [[1,2,1], [3,2], [4,9,1,0,2]]

Next, we can perform a map, using the sum function. This step will apply the sum 
function to each element of a:

sums = map(sum, a)

While sums is a generator (the actual value isn't computed until we ask for it),  
the above step is approximately equal to the following code:

sums = []
for sublist in a:
    results = sum(sublist)
    sums.append(results)

The reduce step is a little more complicated. It involves applying a function to each 
element of the returned result, to some starting value. We start with an initial value, 
and then apply a given function to that initial value and the first value. We then 
apply the given function to the result and the next value, and so on.
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We start by creating a function that takes two numbers and adds them together.

def add(a, b):
  return a + b

We then perform the reduce. The signature of reduce is reduce(function, sequence, 
and initial), where the function is applied at each step to the sequence. In the first 
step, the initial value is used as the first value, rather than the first element of the list:

from functools import reduce
print(reduce(add, sums, 0))

The result, 25, is the sum of each of the values in the sums list and is consequently 
the sum of each of the elements in the original array.

The preceding code is equal to the following:

initial = 0
current_result = initial
for element in sums:
    current_result = add(current_result, element)

In this trivial example, our code can be greatly simplified, but the real gains come 
from distributing the computation. For instance, if we have a million sublists 
and each of those sublists contained a million elements, we can distribute this 
computation over many computers.

In order to do this, we distribute the map step. For each of the elements in our list, 
we send it, along with a description of our function, to a computer. This computer 
then returns the result to our main computer (the master).

The master then sends the result to a computer for the reduce step. In our example 
of a million sublists, we would send a million jobs to different computers (the same 
computer may be reused after it completes our first job). The returned result would 
be just a single list of a million numbers, which we then compute the sum of.

The result is that no computer ever needed to store more than a million numbers, 
despite our original data having a trillion numbers in it.

A word count example
The implementation of MapReduce is a little more complex than just using a map 
and reduce step. Both steps are invoked using keys, which allows for the separation 
of data and tracking of values.
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The map function takes a key and value pair and returns a list of key+value pairs. The 
keys for the input and output don't necessarily relate to each other. For example, for 
a MapReduce program that performs a word count, the input key might be a sample 
document's ID value, while the output key would be a given word. The input value 
would be the text of the document and the output value would be the frequency of 
each word:

from collections import defaultdict
def map_word_count(document_id, document):

We first count the frequency of each word. In this simplified example, we split the 
document on whitespace to obtain the words, although there are better options:

    counts = defaultdict(int)
    for word in document.split():
        counts[word] += 1

We then yield each of the word, count pairs. The word here is the key, with the count 
being the value in MapReduce terms:

    for word in counts:
        yield (word, counts[word])

By using the word as the key, we can then perform a shuffle step, which groups all 
of the values for each key:

def shuffle_words(results):

First, we aggregate the resulting counts for each word into a list of counts:

    records = defaultdict(list)

We then iterate over all the results that were returned by the map function;

    for results in results_generators:
        for word, count in results:
            records[word].append(count)

Next, we yield each of the words along with all the counts that were obtained  
in our dataset:

    for word in records:
        yield (word, records[word])
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The final step is the reduce step, which takes a key value pair (the value in this case is 
always a list) and produces a key value pair as a result. In our example, the key is the 
word, the input list is the list of counts produced in the shuffle step, and the output 
value is the sum of the counts:

def reduce_counts(word, list_of_counts):
    return (word, sum(list_of_counts))

To see this in action, we can use the 20 newsgroups dataset, which is provided in 
scikit-learn:

from sklearn.datasets import fetch_20newsgroups
dataset = fetch_20newsgroups(subset='train')
documents = dataset.data

We then apply our map step. We use enumerate here to automatically generate 
document IDs for us. While they aren't important in this application, these keys  
are important in other applications;

map_results = map(map_word_count, enumerate(documents))

The actual result here is just a generator, no actual counts have been produced.  
That said, it is a generator that emits (word, count) pairs.

Next, we perform the shuffle step to sort these word counts:

shuffle_results = shuffle_words(map_results)

This, in essence is a MapReduce job; however, it is only running on a single thread, 
meaning we aren't getting any benefit from the MapReduce data format. In the next 
section, we will start using Hadoop, an open source provider of MapReduce, to start 
to get the benefits from this type of paradigm.

Hadoop MapReduce
Hadoop is a set of open source tools from Apache that includes an implementation  
of MapReduce. In many cases, it is the de facto implementation used by many.  
The project is managed by the Apache group (who are responsible for the  
famous web server).
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The Hadoop ecosystem is quite complex, with a large number of tools. The main 
component we will use is Hadoop MapReduce. Other tools for working with big 
data that are included in Hadoop are as follows:

• Hadoop Distributed File System (HDFS): This is a file system that can store 
files over many computers, with the goal of being robust against hardware 
failure while providing high bandwidth.

• YARN: This is a method for scheduling applications and managing clusters 
of computers.

• Pig: This is a higher level programming language for MapReduce. Hadoop 
MapReduce is implemented in Java, and Pig sits on top of the Java 
implementation, allowing you to write programs in other languages—
including Python.

• Hive: This is for managing data warehouses and performing queries.
• HBase: This is an implementation of Google's BigTable, a distributed 

database.

These tools all solve different issues that come up when doing big data experiments, 
including data analytics.

There are also non-Hadoop-based implementations of MapReduce, as well  
as other projects with similar goals. In addition, many cloud providers have 
MapReduce-based systems.

Application
In this application, we will look at predicting the gender of a writer based on 
their use of different words. We will use a Naive Bayes method for this, trained in 
MapReduce. The final model doesn't need MapReduce, although we can use the Map 
step to do so—that is, run the prediction model on each document in a list.  
This is a common Map operation for data mining in MapReduce, with the reduce 
step simply organizing the list of predictions so they can be tracked back to the 
original document.

We will be using Amazon's infrastructure to run our application, allowing us to 
leverage their computing resources.
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Getting the data
The data we are going to use is a set of blog posts that are labeled for age, gender, 
industry (that is, work) and, funnily enough, star sign. This data was collected from 
http://blogger.com in August 2004 and has over 140 million words in more than 
600,000 posts. Each blog is probably written by just one person, with some work put 
into verifying this (although, we can never be really sure). Posts are also matched 
with the date of posting, making this a very rich dataset.

To get the data, go to http://u.cs.biu.ac.il/~koppel/BlogCorpus.htm and click 
on Download Corpus. From there, unzip the file to a directory on your computer.

The dataset is organized with a single blog to a file, with the filename giving the 
classes. For instance, one of the filenames is as follows:

1005545.male.25.Engineering.Sagittarius.xml

The filename is separated by periods, and the fields are as follows:

• Blogger ID: This a simple ID value to organize the identities.
• Gender: This is either male or female, and all the blogs are identified as one 

of these two options (no other options are included in this dataset).
• Age: The exact ages are given, but some gaps are deliberately present. Ages 

present are in the (inclusive) ranges of 13-17, 23-27, and 33-48. The reason 
for the gaps is to allow for splitting the blogs into age ranges with gaps, as 
it would be quite difficult to separate an 18 year old's writing from a 19 year 
old, and it is possible that the age itself is a little outdated.

• Industry: In one of 40 different industries including science, engineering, 
arts, and real estate. Also, included is indUnk, for unknown industry.

• Star Sign: This is one of the 12 astrological star signs.

All values are self-reported, meaning there may be errors or inconsistencies with 
labeling, but are assumed to be mostly reliable—people had the option of not  
setting values if they wanted to preserve their privacy in those ways.

A single file is in a psuedo-XML format, containing a <Blog> tag and then a sequence 
of <post> tags. Each of the <post> tag is proceeded by a <date> tag as well. While 
we can parse this as XML, it is much simpler to parse it on a line-by-line basis as the 
files are not exactly well-formed XML, with some errors (mostly encoding problems). 
To read the posts in the file, we can use a loop to iterate over the lines.

http://blogger.com
http://u.cs.biu.ac.il/~koppel/BlogCorpus.htm
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We set a test filename so we can see this in action:

import os
filename = os.path.join(os.path.expanduser("~"), "Data", "blogs", 
"1005545.male.25.Engineering.Sagittarius.xml")

First, we create a list that will let us store each of the posts:

all_posts = []

Then, we open the file to read:

with open(filename) as inf:

We then set a flag indicating whether we are currently in a post. We will set this to 
True when we find a <post> tag indicating the start of a post and set it to False 
when we find the closing </post> tag;

    post_start = False

We then create a list that stores the current post's lines:

    post = []

We then iterate over each line of the file and remove white space:

    for line in inf:
        line = line.strip()

As stated before, if we find the opening <post> tag, we indicate that we are in a new 
post. Likewise, with the close </post> tag:

        if line == "<post>":
            post_start = True
        elif line == "</post>":
            post_start = False

When we do find the closing </post> tag, we also then record the full post that we 
have found so far. We also then start a new "current" post. This code is on the same 
indentation level as the previous line:

            all_posts.append("\n".join(post))
            post = []

Finally, when the line isn't a start of end tag, but we are in a post, we add the text of 
the current line to our current post:

        elif post_start:
            post.append(line)
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If we aren't in a current post, we simply ignore the line.

We can then grab the text of each post:

print(all_posts[0])

We can also find out how many posts this author created:

print(len(all_posts))

Naive Bayes prediction
We are now going to implement the Naive Bayes algorithm (technically, a reduced 
version of it, without many of the features that more complex implementations have) 
that is able to process our dataset.

The mrjob package
The mrjob package allows us to create MapReduce jobs that can easily be transported 
to Amazon's infrastructure. While mrjob sounds like a sedulous addition to the Mr. 
Men series of children's books, it actually stands for Map Reduce Job. It is a great 
package; however, as of the time of writing, Python 3 support is still not mature yet, 
which is true for the Amazon EMR service that we will discuss later on.

You can install mrjob for Python 2 versions using the following:
sudo pip2 install mrjob

Note that pip is used for version 2, not for version 3.

In essence, mrjob provides the standard functionality that most MapReduce jobs 
need. Its most amazing feature is that you can write the same code, test on your 
local machine without Hadoop, and then push to Amazon's EMR service or another 
Hadoop server.

This makes testing the code significantly easier, although it can't magically make  
a big problem small—note that any local testing uses a subset of the dataset, rather 
than the whole, big dataset.
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Extracting the blog posts
We are first going to create a MapReduce program that will extract each of the posts 
from each blog file and store them as separate entries. As we are interested in the 
gender of the author of the posts, we will extract that too and store it with the post.

We can't do this in an IPython Notebook, so instead open a Python IDE for 
development. If you don't have a Python IDE (such as PyCharm), you can use  
a text editor. I recommend looking for an IDE that has syntax highlighting.

If you still can't find a good IDE, you can write the code in an IPython 
Notebook and then click on File | Download As | Python. Save this 
file to a directory and run it as we outlined in Chapter 11, Classifying 
Objects in Images using Deep Learning.

To do this, we will need the os and re libraries as we will be obtaining environment 
variables and we will also use a regular expression for word separation:

import os
import re

We then import the MRJob class, which we will inherit from our MapReduce job:

from mrjob.job import MRJob

We then create a new class that subclasses MRJob:

class ExtractPosts(MRJob):

We will use a similar loop, as before, to extract blog posts from the file. The mapping 
function we will define next will work off each line, meaning we have to track 
different posts outside of the mapping function. For this reason, we make post_
start and post class variables, rather than variables inside the function:

    post_start = False
    post = []

We then define our mapper function—this takes a line from a file as input and yields 
blog posts. The lines are guaranteed to be ordered from the same per-job file. This 
allows us to use the above class variables to record current post data:

    def mapper(self, key, line):
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Before we start collecting blog posts, we need to get the gender of the author  
of the blog. While we don't normally use the filename as part of MapReduce jobs, 
there is a strong need for it (as in this case) so the functionality is available. The 
current file is stored as an environment variable, which we can obtain using the 
following line of code:

        filename = os.environ["map_input_file"]

We then split the filename to get the gender (which is the second token);

        gender = filename.split(".")[1]

We remove whitespace from the start and end of the line (there is a lot of whitespace 
in these documents) and then do our post-based tracking as before;

        line = line.strip()
        if line == "<post>":
            self.post_start = True
        elif line == "</post>":
            self.post_start = False

Rather than storing the posts in a list, as we did earlier, we yield them. This allows 
mrjob to track the output. We yield both the gender and the post so that we can keep 
a record of which gender each record matches. The rest of this function is defined in 
the same way as our loop above:

            yield gender, repr("\n".join(self.post))
            self.post = []
        elif self.post_start:
            self.post.append(line)

Finally, outside the function and class, we set the script to run this MapReduce job 
when it is called from the command line:

if __name__ == '__main__':
    ExtractPosts.run()

Now, we can run this MapReduce job using the following shell command. Note that 
we are using Python 2, and not Python 3 to run this;

python extract_posts.py <your_data_folder>/blogs/51* --output- 
  dir=<your_data_folder>/blogposts –no-output
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The first parameter, <your_data_folder>/blogs/51* (just remember to change 
<your_data_folder> to the full path to your data folder), obtains a sample of the 
data (all files starting with 51, which is only 11 documents). We then set the output 
directory to a new folder, which we put in the data folder, and specify not to output 
the streamed data. Without the last option, the output data is shown to the command 
line when we run it—which isn't very helpful to us and slows down the computer 
quite a lot.

Run the script, and quite quickly each of the blog posts will be extracted and stored 
in our output folder. This script only ran on a single thread on the local computer so 
we didn't get a speedup at all, but we know the code runs.

We can now look in the output folder for the results. A bunch of files are created and 
each file contains each blog post on a separate line, preceded by the gender of the 
author of the blog.

Training Naive Bayes
Now that we have extracted the blog posts, we can train our Naive Bayes model  
on them. The intuition is that we record the probability of a word being written by  
a particular gender. To classify a new sample, we would multiply the probabilities 
and find the most likely gender.

The aim of this code is to output a file that lists each word in the corpus, along  
with the frequencies of that word for each gender. The output file will look 
something like this:

"'ailleurs"  {"female": 0.003205128205128205}
"'air"  {"female": 0.003205128205128205}
"'an"  {"male": 0.0030581039755351682, "female": 0.004273504273504274}
"'angoisse"  {"female": 0.003205128205128205}
"'apprendra"  {"male": 0.0013047113868622459, "female": 
0.0014172668603481887}
"'attendent"  {"female": 0.00641025641025641}
"'autistic"  {"male": 0.002150537634408602}
"'auto"  {"female": 0.003205128205128205}
"'avais"  {"female": 0.00641025641025641}
"'avait"  {"female": 0.004273504273504274}
"'behind"  {"male": 0.0024390243902439024}
"'bout"  {"female": 0.002034152292059272}
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The first value is the word and the second is a dictionary mapping the genders to the 
frequency of that word in that gender's writings.

Open a new file in your Python IDE or text editor. We will again need the os and re 
libraries, as well as NumPy and MRJob from mrjob. We also need itemgetter, as we will 
be sorting a dictionary:

import os
import re
import numpy as np
from mrjob.job import MRJob
from operator import itemgetter

We will also need MRStep, which outlines a step in a MapReduce job. Our previous 
job only had a single step, which is defined as a mapping function and then as a 
reducing function. This job will have three steps where we Map, Reduce, and then 
Map and Reduce again. The intuition is the same as the pipelines we used in earlier 
chapters, where the output of one step is the input to the next step:

from mrjob.step import MRStep

We then create our word search regular expression and compile it, allowing us to 
find word boundaries. This type of regular expression is much more powerful than 
the simple split we used in some previous chapters, but if you are looking for a more 
accurate word splitter, I recommend using NLTK as we did in Chapter 6, Social Media 
Insight using Naive Bayes:

word_search_re = re.compile(r"[\w']+")

We define a new class for our training:

class NaiveBayesTrainer(MRJob):

We define the steps of our MapReduce job. There are two steps. The first step will 
extract the word occurrence probabilities. The second step will compare the two 
genders and output the probabilities for each to our output file. In each MRStep, 
we define the mapper and reducer functions, which are class functions in this 
NaiveBayesTrainer class (we will write those functions next):

    def steps(self):
        return [
            MRStep(mapper=self.extract_words_mapping,
                   reducer=self.reducer_count_words),
            MRStep(reducer=self.compare_words_reducer),
            ]
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The first function is the mapper function for the first step. The goal of this function 
is to take each blog post, get all the words in that post, and then note the occurrence. 
We want the frequencies of the words, so we will return 1 / len(all_words), 
which allows us to later sum the values for frequencies. The computation here isn't 
exactly correct—we need to also normalize for the number of documents. In this 
dataset, however, the class sizes are the same, so we can conveniently ignore this 
with little impact on our final version.

We also output the gender of the post's author, as we will need that later:

    def extract_words_mapping(self, key, value):
        tokens = value.split()
        gender = eval(tokens[0])
        blog_post = eval(" ".join(tokens[1:]))
        all_words = word_search_re.findall(blog_post)
        all_words = [word.lower() for word in all_words]
            all_words = word_search_re.findall(blog_post)
            all_words = [word.lower() for word in all_words]
            for word in all_words:
                yield (gender, word), 1. / len(all_words)

We used eval in the preceding code to simplify the parsing of the blog 
posts from the file, for this example. This is not recommended. Instead, 
use a format such as JSON to properly store and parse the data from 
the files. A malicious use with access to the dataset can insert code into 
these tokens and have that code run on your server.

In the reducer for the first step, we sum the frequencies for each gender and word 
pair. We also change the key to be the word, rather than the combination, as this 
allows us to search by word when we use the final trained model (although, we still 
need to output the gender for later use);

    def reducer_count_words(self, key, frequencies):
        s = sum(frequencies)
        gender, word = key
        yield word, (gender, s)

The final step doesn't need a mapper function, so we don't add one. The data will 
pass straight through as a type of identity mapper. The reducer, however, will 
combine frequencies for each gender under the given word and then output the 
word and frequency dictionary. 
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This gives us the information we needed for our Naive Bayes implementation:

    def compare_words_reducer(self, word, values):
        per_gender = {}
        for value in values:
            gender, s = value
            per_gender[gender] = s
        yield word, per_gender

Finally, we set the code to run this model when the file is run as a script;

if __name__ == '__main__':
    NaiveBayesTrainer.run()

We can then run this script. The input to this script is the output of the previous  
post-extractor script (we can actually have them as different steps in the same 
MapReduce job if you are so inclined);

python nb_train.py <your_data_folder>/blogposts/ 
  --output-dir=<your_data_folder>/models/ 
--no-output

The output directory is a folder that will store a file containing the output from  
this MapReduce job, which will be the probabilities we need to run our Naive  
Bayes classifier.

Putting it all together
We can now actually run the Naive Bayes classifier using these probabilities.  
We will do this in an IPython Notebook, and can go back to using Python 3 (phew!).

First, take a look at the models folder that was specified in the last MapReduce job.  
If the output was more than one file, we can merge the files by just appending them 
to each other using a command line function from within the models directory:

cat * > model.txt

If you do this, you'll need to update the following code with model.txt as the  
model filename.

Back to our Notebook, we first import some standard imports we need for our script:

import os
import re
import numpy as np
from collections import defaultdict
from operator import itemgetter
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We again redefine our word search regular expression—if you were doing this in 
a real application, I recommend centralizing this. It is important that words are 
extracted in the same way for training and testing:

word_search_re = re.compile(r"[\w']+")

Next, we create the function that loads our model from a given filename:

def load_model(model_filename):

The model parameters will take the form of a dictionary of dictionaries, where the 
first key is a word, and the inner dictionary maps each gender to a probability. We 
use defaultdicts, which will return zero if a value isn't present;

    model = defaultdict(lambda: defaultdict(float))

We then open the model and parse each line;

    with open(model_filename) as inf:
        for line in inf:

The line is split into two sections, separated by whitespace. The first is the word itself 
and the second is a dictionary of probabilities. For each, we run eval on them to get 
the actual value, which was stored using repr in the previous code:

            word, values = line.split(maxsplit=1)
            word = eval(word)
            values = eval(values)

We then track the values to the word in our model:

            model[word] = values
    return model

Next, we load our actual model. You may need to change the model filename—it will 
be in the output dir of the last MapReduce job;

model_filename = os.path.join(os.path.expanduser("~"), "models", 
"part-00000")
model = load_model(model_filename)

As an example, we can see the difference in usage of the word i (all words are turned 
into lowercase in the MapReduce jobs) between males and females:

model["i"]["male"], model["i"]["female"]
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Next, we create a function that can use this model for prediction. We won't  
use the scikit-learn interface for this example, and just create a function instead.  
Our function takes the model and a document as the parameters and returns the 
most likely gender:

def nb_predict(model, document):

We start by creating a dictionary to map each gender to the computed probability:

    probabilities = defaultdict(lambda : 1)

We extract each of the words from the document:

    words = word_search_re.findall(document)

We then iterate over the words and find the probability for each gender in  
the dataset:

    for word in set(words):
        probabilities["male"] += np.log(model[word].get("male", 1e-
15))
        probabilities["female"] += np.log(model[word].get("female", 
1e-15))

We then sort the genders by their value, get the highest value, and return that  
as our prediction:

    most_likely_genders = sorted(probabilities.items(), 
key=itemgetter(1), reverse=True)
    return most_likely_genders[0][0]

It is important to note that we used np.log to compute the probabilities. 
Probabilities in Naive Bayes models are often quite small. Multiplying small  
values, which is necessary in many statistical values, can lead to an underflow  
error where the computer's precision isn't good enough and just makes the whole 
value 0. In this case, it would cause the likelihoods for both genders to be zero, 
leading to incorrect predictions.

To get around this, we use log probabilities. For two values a and b, log(a,b) is 
equal to log(a) + log(b). The log of a small probability is a negative value, but 
a relatively large one. For instance, log(0.00001) is about -11.5. This means that 
rather than multiplying actual probabilities and risking an underflow error, we can 
sum the log probabilities and compare the values in the same way (higher numbers 
still indicate a higher likelihood).
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One problem with using log probabilities is that they don't handle zero values well 
(although, neither does multiplying by zero probabilities). This is due to the fact 
that log(0) is undefined. In some implementations of Naive Bayes, a 1 is added to 
all counts to get rid of this, but there are other ways to address this. This is a simple 
form of smoothing of the values. In our code, we just return a very small value if the 
word hasn't been seen for our given gender.

Back to our prediction function, we can test this by copying a post from our dataset:

new_post = """ Every day should be a half day.  Took the afternoon 
off to hit the dentist, and while I was out I managed to get my oil 
changed, too.  Remember that business with my car dealership this 
winter?  Well, consider this the epilogue.  The friendly fellas at the 
Valvoline Instant Oil Change on Snelling were nice enough to notice 
that my dipstick was broken, and the metal piece was too far down in 
its little dipstick tube to pull out.  Looks like I'm going to need a 
magnet.   Damn you, Kline Nissan, daaaaaaammmnnn yooouuuu....   Today 
I let my boss know that I've submitted my Corps application.  The news 
has been greeted by everyone in the company with a level of enthusiasm 
that really floors me.     The back deck has finally been cleared off 
by the construction company working on the place.  This company, for 
anyone who's interested, consists mainly of one guy who spends his 
days cursing at his crew of Spanish-speaking laborers.  Construction 
of my deck began around the time Nixon was getting out of office.
"""

We then predict with the following code:

nb_predict(model, new_post)

The resulting prediction, male, is correct for this example. Of course, we never test a 
model on a single sample. We used the file starting with 51 for training this model.  
It wasn't many samples, so we can't expect too high of an accuracy.

The first thing we should do is train on more samples. We will test on any file that 
starts with a 6 or 7 and train on the rest of the files.

In the command line and in your data folder (cd <your_data_folder), where the 
blogs folder exists, create a copy of the blogs data into a new folder.

Make a folder for our training set:

mkdir blogs_train

Move any file starting with a 6 or 7 into the test set, from the train set:

cp blogs/4* blogs_train/
cp blogs/8* blogs_train/
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Then, make a folder for our test set:

mkdir blogs_test

Move any file starting with a 6 or 7 into the test set, from the train set:

cp blogs/6* blogs_test/
cp blogs/7* blogs_test/

We will rerun the blog extraction on all files in the training set. However, this is  
a large computation that is better suited to cloud infrastructure than our system.  
For this reason, we will now move the parsing job to Amazon's infrastructure.

Run the following on the command line, as you did before. The only difference is 
that we train on a different folder of input files. Before you run the following code, 
delete all files in the blog posts and models folders:

python extract_posts.py ~/Data/blogs_train --output-dir=/home/bob/
Data/blogposts –no-output
python nb_train.py ~/Data/blogposts/ --output-dir=/home/bob/models/ 
--no-output

The code here will take quite a bit longer to run.

We will test on any blog file in our test set. To get the files, we need to extract  
them. We will use the extract_posts.py MapReduce job, but store the files  
in a separate folder:

python extract_posts.py ~/Data/blogs_test --output-dir=/home/bob/Data/
blogposts_testing –no-output

Back in the IPython Notebook, we list all the outputted testing files:

testing_folder = os.path.join(os.path.expanduser("~"), "Data", 
"blogposts_testing")
testing_filenames = []
for filename in os.listdir(testing_folder):
    testing_filenames.append(os.path.join(testing_folder, filename))

For each of these files, we extract the gender and document and then call the predict 
function. We do this in a generator, as there are a lot of documents, and we don't 
want to use too much memory. The generator yields the actual gender and the 
predicted gender:

def nb_predict_many(model, input_filename):
    with open(input_filename) as inf:
        # remove leading and trailing whitespace



Chapter 12

[ 293 ]

for line in inf:
tokens = line.split()
actual_gender = eval(tokens[0])
blog_post = eval(" ".join(tokens[1:]))
yield actual_gender, nb_predict(model, blog_post)

We then record the predictions and actual genders across our entire dataset.  
Our predictions here are either male or female. In order to use the f1_score  
function from scikit-learn, we need to turn these into ones and zeroes. In order  
to do that, we record a 0 if the gender is male and 1 if it is female. To do this, we use 
a Boolean test, seeing if the gender is female. We then convert these Boolean values 
to int using NumPy:

y_true = []
y_pred = []
for actual_gender, predicted_gender in nb_predict_many(model, testing_
filenames[0]):
    y_true.append(actual_gender == "female")
    y_pred.append(predicted_gender == "female")
y_true = np.array(y_true, dtype='int')
y_pred = np.array(y_pred, dtype='int')

Now, we test the quality of this result using the F1 score in scikit-learn:

from sklearn.metrics import f1_score
print("f1={:.4f}".format(f1_score(y_true, y_pred, pos_label=None)))

The result of 0.78 is not bad. We can probably improve this by using more data,  
but to do that, we need to move to a more powerful infrastructure that can handle it.

Training on Amazon's EMR infrastructure
We are going to use Amazon's Elastic Map Reduce (EMR) infrastructure to run our 
parsing and model building jobs.

In order to do that, we first need to create a bucket in Amazon's storage cloud.  
To do this, open the Amazon S3 console in your web browser by going to  
http://console.aws.amazon.com/s3 and click on Create Bucket. Remember 
the name of the bucket, as we will need it later.

Right-click on the new bucket and select Properties. Then, change the permissions, 
granting everyone full access. This is not a good security practice in general, and I 
recommend that you change the access permissions after you complete this chapter.

http://console.aws.amazon.com/s3
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Left-click the bucket to open it and click on Create Folder. Name the folder  
blogs_train. We are going to upload our training data to this folder for  
processing on the cloud.

On your computer, we are going to use Amazon's AWS CLI, a command-line 
interface for processing on Amazon's cloud.

To install it, use the following:

sudo pip2 install awscli

Follow the instructions at http://docs.aws.amazon.com/cli/latest/userguide/
cli-chap-getting-set-up.html to set the credentials for this program.

We now want to upload our data to our new bucket. First, we want to create our 
dataset, which is all the blogs not starting with a 6 or 7. There are more graceful  
ways to do this copy, but none are cross-platform enough to recommend. Instead, 
simply copy all the files and then delete the ones that start with a 6 or 7, from the 
training dataset:

cp -R ~/Data/blogs ~/Data/blogs_train_large

rm ~/Data/blogs_train_large/6*

rm ~/Data/blogs_train_large/7*

Next, upload the data to your Amazon S3 bucket. Note that this will take some  
time and use quite a lot of upload data (several hundred megabytes). For those  
with slower internet connections, it may be worth doing this at a location with a 
faster connection;

 aws s3 cp  ~/Data/blogs_train_large/ s3://ch12/blogs_train_large 
--recursive --exclude "*" --include "*.xml"

We are going to connect to Amazon's EMR using mrjob—it handles the whole  
thing for us; it only needs our credentials to do so. Follow the instructions at 
https://pythonhosted.org/mrjob/guides/emr-quickstart.html to setup  
mrjob with your Amazon credentials.

After this is done, we alter our mrjob run, only slightly, to run on Amazon EMR. 
We just tell mrjob to use emr using the -r switch and then set our s3 containers 
as the input and output directories. Even though this will be run on Amazon's 
infrastructure, it will still take quite a long time to run.

http://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-set-up.html
http://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-set-up.html
https://pythonhosted.org/mrjob/guides/emr-quickstart.html
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python extract_posts.py -r emr s3://ch12gender/blogs_train_large/ 
--output-dir=s3://ch12/blogposts_train/ --no-output

python nb_train.py -r emr s3://ch12/blogposts_train/ --output-dir=s3://
ch12/model/ --o-output

You will also be charged for the usage. This will only be a few dollars, 
but keep this in mind if you are going to keep running the jobs or doing 
other jobs on bigger datasets. I ran a very large number of jobs and was 
charged about $20 all up. Running just these few should be less than 
$4. However, you can check your balance and set up pricing alerts, by 
going to https://console.aws.amazon.com/billing/home.

It isn't necessary for the blogposts_train and model folders to exist—they will be 
created by EMR. In fact, if they exist, you will get an error. If you are rerunning this, 
just change the names of these folders to something new, but remember to change 
both commands to the same names (that is, the output directory of the first command 
is the input directory of the second command).

If you are getting impatient, you can always stop the first job after 
a while and just use the training data gathered so far. I recommend 
leaving the job for an absolute minimum of 15 minutes and probably 
at least an hour. You can't stop the second job and get good results 
though; the second job will probably take about two to three times as 
long as the first job did.

You can now go back to the s3 console and download the output model from your 
bucket. Saving it locally, we can go back to our IPython Notebook and use the new 
model. We reenter the code here—only the differences are highlighted, just to update 
to our new model:

aws_model_filename = os.path.join(os.path.expanduser("~"), "models", 
"aws_model")
aws_model = load_model(aws_model_filename)
y_true = []
y_pred = []
for actual_gender, predicted_gender in nb_predict_many(aws_model, 
testing_filenames[0]):
    y_true.append(actual_gender == "female")
    y_pred.append(predicted_gender == "female")
y_true = np.array(y_true, dtype='int')
y_pred = np.array(y_pred, dtype='int')
print("f1={:.4f}".format(f1_score(y_true, y_pred, pos_label=None)))

https://console.aws.amazon.com/billing/home
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The result is much better with the extra data, at 0.81.

If everything went as planned, you may want to remove the bucket 
from Amazon S3—you will be charged for the storage.

Summary
In this chapter, we looked at running jobs on big data. By most standards, our 
dataset is quite small—only a few hundred megabytes. Many industrial datasets 
are much bigger, so extra processing power is needed to perform the computation. 
In addition, the algorithms we used can be optimized for different tasks to further 
increase the scalability.

Our approach extracted word frequencies from blog posts, in order to predict the 
gender of the author of a document. We extracted the blogs and word frequencies 
using MapReduce-based projects in mrjob. With those extracted, we can then 
perform a Naive Bayes-esque computation to predict the gender of a new document.

We can use the mrjob library to test locally and then automatically set up and use 
Amazon's EMR cloud infrastructure. You can use other cloud infrastructure or even 
a custom built Amazon EMR cluster to run these MapReduce jobs, but there is a bit 
more tinkering needed to get them running.
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Next Steps…
During the course of this book, there were lots of avenues not taken, options not 
presented, and subjects not fully explored. In this Appendix, I've created a collection  
of next steps for those wishing to undertake extra learning and progress their data 
mining with Python. Consider this Hero mode, the second question, of the book.

This appendix is broken up by chapter, with articles, books, and other resources for 
learning more about data mining. Also included are some challenges to extend the 
work performed in the chapter. Some of these will be small improvements; some  
will be quite a bit more work—I've made a note on those tasks that are noticeably 
more extensive than the others.

Chapter 1 – Getting Started with Data 
Mining

Scikit-learn tutorials
http://scikit-learn.org/stable/tutorial/index.html

Included in the scikit-learn documentation is a series of tutorials on data mining. 
The tutorials range from basic introductions to toy datasets, all the way through to 
comprehensive tutorials on techniques used in recent research.

The tutorials here will take quite a while to get through—they are very 
comprehensive—but are well worth the effort to learn.

http://scikit-learn.org/stable/tutorial/index.html
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Extending the IPython Notebook
http://ipython.org/ipython-doc/1/interactive/public_server.html

The IPython Notebook is a powerful tool. It can be extended in many ways, and 
one of those is to create a server to run your Notebooks, separately from your main 
computer. This is very useful if you use a low-power main computer, such as a small 
laptop, but have more powerful computers at your disposal. In addition, you can set 
up nodes to perform parallelized computations.More datasets are available at:

http://archive.ics.uci.edu/ml/

There are many datasets available on the Internet, from a number of different 
sources. These include academic, commercial, and government datasets. A collection 
of well-labelled datasets is available at the UCI ML library, which is one of the best 
options to find datasets for testing your algorithms.

Try out the OneR algorithm with some of these different datasets.

Chapter 2 – Classifying with scikit-learn 
Estimators

Scalability with the nearest neighbor
https://github.com/jnothman/scikit-learn/tree/pr2532

A naïve implementation of the nearest neighbor algorithm is quite slow—it checks 
all pairs of points to find those that are close together. Better implementations exist, 
with some implemented in scikit-learn. For instance, a kd-tree can be created that 
speeds up the algorithm (and this is already included in scikit-learn).

Another way to speed up this search is to use locality-sensitive hashing,  
Locality-Sensitive Hashing (LSH). This is a proposed improvement for scikit-learn, 
and hasn't made it into the package at the time of writing. The above link gives a 
development branch of scikit-learn that will allow you to test out LSH on a dataset. 
Read through the documentation attached to this branch for details on doing this.

http://ipython.org/ipython-doc/1/interactive/public_server.html
http://archive.ics.uci.edu/ml/
https://github.com/jnothman/scikit-learn/tree/pr2532
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To install it, clone the repository and follow the instructions to install the Bleeding 
Edge code available at: http://scikit-learn.org/stable/install.html.

Remember to use the above repository's code, rather than the official source.  
I recommend you install using virtualenv or a virtual machine, rather than 
installing it directly on your computer. A great guide to virtualenv can be found 
here: http://docs.python-guide.org/en/latest/dev/virtualenvs/.

More complex pipelines
http://scikit-learn.org/stable/modules/pipeline.html#featureunion-
composite-feature-spaces

The Pipelines we have used in the book follow a single stream—the output of one 
step is the input of another step.

Pipelines follow the transformer and estimator interfaces as well—this allows us to 
embed Pipelines within Pipelines. This is a useful construct for very complex models, 
but becomes very powerful when combined with Feature Unions, as shown in the 
above link.

This allows us to extract multiple types of features at a time and then combine them 
to form a single dataset. For more details, see the example at: http://scikit-
learn.org/stable/auto_examples/feature_stacker.html.

Comparing classifiers
There are lots of classifiers in scikit-learn that are ready to use. The one you choose 
for a particular task is going to be based on a variety of factors. You can compare the 
f1-score to see which method is better, and you can investigate the deviation of those 
scores to see if that result is statistically significant.

An important factor is that they are trained and tested on the same data—that is, 
the test set for one classifier is the test set for all classifiers. Our use of random states 
allows us to ensure this is the case—an important factor for replicating experiments.

http://scikit-learn.org/stable/install.html
http://docs.python-guide.org/en/latest/dev/virtualenvs/
http://scikit-learn.org/stable/modules/pipeline.html#featureunion-composite-feature-spaces
http://scikit-learn.org/stable/modules/pipeline.html#featureunion-composite-feature-spaces
http://scikit-learn.org/stable/auto_examples/feature_stacker.html
http://scikit-learn.org/stable/auto_examples/feature_stacker.html
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Chapter 3: Predicting Sports Winners 
with Decision Trees

More on pandas
http://pandas.pydata.org/pandas-docs/stable/tutorials.html

The pandas library is a great package—anything you normally write to do data 
loading is probably already implemented in pandas. You can learn more about it 
from their tutorial, linked above.

There is also a great blog post written by Chris Moffitt that overviews common tasks 
people do in Excel and how to do them in pandas: http://pbpython.com/excel-
pandas-comp.html

You can also handle large datasets with pandas; see the answer, from user Jeff (the 
top answer at the time of writing), to this StackOverflow question for an extensive 
overview of the process: http://stackoverflow.com/questions/14262433/
large-data-work-flows-using-pandas.

Another great tutorial on pandas is written by Brian Connelly:  
http://bconnelly.net/2013/10/summarizing-data-in-python-with-pandas/

More complex features
http://www.basketball-reference.com/teams/ORL/2014_roster_status.html

Sports teams change regularly from game to game. What is an easy win for a team 
can turn into a difficult game if a couple of the best players are injured. You can get 
the team rosters from basketball-reference as well. For example, the roster for the 
2013-2014 season for the Orlando Magic is available at the above link—similar  
data is available for all NBA teams.

Writing code to integrate how much a team changes, and using that to add new 
features, can improve the model significantly. This task will take quite a bit of  
work, though!

http://pandas.pydata.org/pandas-docs/stable/tutorials.html
http://pbpython.com/excel-pandas-comp.html
http://pbpython.com/excel-pandas-comp.html
http://stackoverflow.com/questions/14262433/large-data-work-flows-using-pandas
http://stackoverflow.com/questions/14262433/large-data-work-flows-using-pandas
http://bconnelly.net/2013/10/summarizing-data-in-python-with-pandas/
http://www.basketball-reference.com/teams/ORL/2014_roster_status.html
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Chapter 4 – Recommending Movies 
Using Affinity Analysis

New datasets
http://www2.informatik.uni-freiburg.de/~cziegler/BX/

There are many recommendation-based datasets that are worth investigating,  
each with its own issues. For example, the Book-Crossing dataset contains more  
than 278,000 users and over a million ratings. Some of these ratings are explicit  
(the user did give a rating), while others are more implicit. The weighting to  
these implicit ratings probably shouldn't be as high as for explicit ratings.

The music website www.last.fm has released a great dataset for 
music recommendation: http://www.dtic.upf.edu/~ocelma/
MusicRecommendationDataset/.

There is also a joke recommendation dataset! See here: http://eigentaste.
berkeley.edu/dataset/.

The Eclat algorithm
http://www.borgelt.net/eclat.html

The APriori algorithm implemented in this chapter is easily the most famous of the 
association rule mining graphs, but isn't necessarily the best. Eclat is a more modern 
algorithm that can be implemented relatively easily.

Chapter 5 – Extracting Features with 
Transformers

Adding noise
In this chapter, we covered removing noise to improve features; however, improved 
performance can be obtained for some datasets by adding noise. The reason for this 
is simple—it helps stop overfitting by forcing the classifier to generalize its rules a 
little (although too much noise will make the model too general). try implementing a 
Transformer that can add a given amount of noise to a dataset. Test that out on some  
of the datasets from UCI ML and see if it improves test-set performance.

http://www2.informatik.uni-freiburg.de/~cziegler/BX/
www.last.fm
http://www.dtic.upf.edu/~ocelma/MusicRecommendationDataset/
http://www.dtic.upf.edu/~ocelma/MusicRecommendationDataset/
http://eigentaste.berkeley.edu/dataset/
http://eigentaste.berkeley.edu/dataset/
http://www.borgelt.net/eclat.html
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Vowpal Wabbit
http://hunch.net/~vw/

Vowpal Wabbit is a great project, providing very fast feature extraction for text-
based problems. It comes with a Python wrapper, allowing you to call it from with 
Python code. Test it out on large datasets, such as the one we used in Chapter 12, 
Working with Big Data.

Chapter 6 – Social Media Insight Using 
Naive Bayes

Spam detection
http://scikit-learn.org/stable/modules/model_evaluation.html#scoring-
parameter

Using the concepts in this chapter, you can create a spam detection method that is 
able to view a social media post and determine whether it is spam or not. Try this 
out by first creating a dataset of spam/not-spam posts, implementing the text mining 
algorithms, and then evaluating them.

One important consideration with spam detection is the false-positive/false-negative 
ratio. Many people would prefer to have a couple of spam messages slip through, 
rather than miss out on a legitimate message because the filter was too aggressive in 
stopping the spam. In order to turn your method for this, you can use a Grid Search 
with the f1-score as the evaluation criteria. See the above link for information on how 
to do this.

Natural language processing and part-of-
speech tagging
http://www.nltk.org/book/ch05.html

The techniques we used in this chapter were quite lightweight compared to some of 
the linguistic models employed in other areas. For example, part-of-speech tagging 
can help disambiguate word forms, allowing for higher accuracy. The book that 
comes with NLTK has a chapter on this, linked above. The whole book is well worth 
reading too.

http://hunch.net/~vw/
http://scikit-learn.org/stable/modules/model_evaluation.html#scoring-parameter
http://scikit-learn.org/stable/modules/model_evaluation.html#scoring-parameter
http://www.nltk.org/book/ch05.html
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Chapter 7 – Discovering Accounts to 
Follow Using Graph Mining

More complex algorithms
https://www.cs.cornell.edu/home/kleinber/link-pred.pdf

There has been extensive research on predicting links in graphs, including for  
social networks. For instance, David Liben-Nowell and Jon Kleinberg published a 
paper on this topic that would serve as a great place for more complex algorithms, 
linked above.

NetworkX
https://networkx.github.io/

If you are going to be using graphs and networks more, going in-depth into the 
NetworkX package is well worth your time—the visualization options are great and 
the algorithms are well implemented. Another library called SNAP is also available 
with Python bindings, at http://snap.stanford.edu/snappy/index.html.

Chapter 8 – Beating CAPTCHAs with 
Neural Networks

Better (worse?) CAPTCHAs
http://scikit-image.org/docs/dev/auto_examples/applications/plot_
geometric.html

The CAPTCHAs we beat in this example were not as complex as those normally 
used today. You can create more complex variants using a number of techniques  
as follows:

• Applying different transformations such as the ones in scikit-image  
(see the link above)

• Using different colors and colors that don't translate well to graeyscale
• Adding lines or other shapes to the image: http://scikit-image.org/

docs/dev/api/skimage.draw.html

https://www.cs.cornell.edu/home/kleinber/link-pred.pdf
https://networkx.github.io/
http://snap.stanford.edu/snappy/index.html
http://scikit-image.org/docs/dev/auto_examples/applications/plot_geometric.html
http://scikit-image.org/docs/dev/auto_examples/applications/plot_geometric.html
: http://scikit-image.org/docs/dev/api/skimage.draw.html 
: http://scikit-image.org/docs/dev/api/skimage.draw.html 
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Deeper networks
These techniques will probably fool our current implementation, so improvements 
will need to be made to make the method better. Try some of the deeper networks 
we used in Chapter 11, Classifying Objects in Images Using Deep Learning.

Larger networks need more data, though, so you will probably need to generate 
more than the few thousand samples we did in this chapter in order to get good 
performance. Generating these datasets is a good candidate for parallelization—lots 
of small tasks that can be performed independently.

Reinforcement learning
http://pybrain.org/docs/tutorial/reinforcement-learning.html

Reinforcement learning is gaining traction as the next big thing in data mining—
although it has been around a long time! PyBrain has some reinforcement learning 
algorithms that are worth checking out with this dataset (and others!).

Chapter 9 – Authorship Attribution

Increasing the sample size
The Enron application we used ended up using just a portion of the overall dataset. 
There is lots more data available in this dataset. Increasing the number of authors 
will likely lead to a drop in accuracy, but it is possible to boost the accuracy further 
than was achieved in this chapter, using similar methods. Using a Grid Search, try 
different values for n-grams and different parameters for support vector machines,  
in order to get better performance on a larger number of authors.

Blogs dataset
The dataset used in Chapter 12, Working with Big Data, provides authorship-based 
classes (each blogger ID is a separate author). This dataset can be tested using 
this kind of method as well. In addition, there are the other classes of gender, age, 
industry, and star sign that can be tested—are authorship-based methods good for 
these classification tasks?

http://pybrain.org/docs/tutorial/reinforcement-learning.html
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Local n-grams
https://github.com/robertlayton/authorship_tutorials/blob/master/
LNGTutorial.ipynb

Another form of classifier is local n-gram, which involves choosing the best features 
per-author, not globally for the entire dataset. I wrote a tutorial on using local 
n-grams for authorship attribution, available at the above link.

Chapter 10 – Clustering News Articles

Evaluation
The evaluation of clustering algorithms is a difficult problem—on the one hand, we 
can sort of tell what good clusters look like; on the other hand, if we really know 
that, we should label some instances and use a supervised classifier! Much has been 
written on this topic. One slideshow on the topic that is a good introduction to the 
challenges follows:

http://www.cs.kent.edu/~jin/DM08/ClusterValidation.pdf

In addition, a very comprehensive (although now a little dated) paper on this topic is 
here: http://web.itu.edu.tr/sgunduz/courses/verimaden/paper/validity_
survey.pdf.

The scikit-learn package does implement a number of the metrics described in 
those links, with an overview here: http://scikit-learn.org/stable/modules/
clustering.html#clustering-performance-evaluation.

Using some of these, you can start evaluating which parameters need to be used 
for better clusterings. Using a Grid Search, we can find parameters that maximize a 
metric—just like in classification.

Temporal analysis
The code we developed in this chapter can be rerun over many months. By adding 
some tags to each cluster, you can track which topics stay active over time, getting a 
longitudinal viewpoint of what is being discussed in the world news.

To compare the clusters, consider a metric such as the adjusted mutual information 
score, which was linked to the scikit-learn documentation earlier. See how the 
clusters change after one month, two months, six months, and a year.
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Real-time clusterings
The k-means algorithm can be iteratively trained and updated over time, rather than 
discrete analyses at given time frames. Cluster movement can be tracked in a number 
of ways—for instance, you can track which words are popular in each cluster and 
how much the centroids move per day. Keep the API limits in mind—you probably 
only need to do one check every few hours to keep your algorithm up-to-date.

Chapter 11: Classifying Objects in 
Images Using Deep Learning

Keras and Pylearn2
Other deep learning libraries that are worth looking at, if you are going further with 
deep learning in Python, are Keras and Pylearn2. They are both based on Theano and 
have different usages and features.

Keras can be found here: https://github.com/fchollet/keras/.

Pylearn2 can be found here: http://deeplearning.net/software/pylearn2/.

Both are not stable platforms at the time of writing, although Pylearn2 is the more 
stable of the two. That said, they both do what they do very well and are worth 
investigating for future projects.

Another library called Torch is very popular but, at the time of writing, it doesn't 
have python bindings (see http://torch.ch/).

Mahotas
Another package for image processing is Mahotas, including better and  more 
complex image processing techniques that can help achieve better accuracy, although 
they may come at a high computational cost. However, many image processing tasks  
are good candidates for parallelization. More techniques on image classification  
can be found in the research literature, with this survey paper as a good start: 
http://luispedro.org/software/mahotas/.

http://ijarcce.com/upload/january/22-A%20Survey%20on%20Image%20
Classification.pdf

http://ijarcce.com/upload/january/22-A%20Survey%20on%20Image%20Classification.pdf
http://ijarcce.com/upload/january/22-A%20Survey%20on%20Image%20Classification.pdf
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Other image datasets are available at:

http://rodrigob.github.io/are_we_there_yet/build/classification_
datasets_results.html

There are many datasets of images available from a number of academic and 
industry-based sources. The linked website lists a bunch of datasets and some  
of the best algorithms to use on them. Implementing some of the better algorithms 
will require significant amounts of custom code, but the payoff can be well worth  
the pain.

Chapter 12 – Working with Big Data

Courses on Hadoop
Both Yahoo and Google have great tutorials on Hadoop, which go from beginner to 
quite advanced levels. They don't specifically address using Python, but learning the 
Hadoop concepts and then applying them in Pydoop or a similar library can yield 
great results.

Yahoo's tutorial: https://developer.yahoo.com/hadoop/tutorial/

Google's tutorial: https://cloud.google.com/hadoop/what-is-hadoop

Pydoop
Pydoop is a python library to run Hadoop jobs—it also has a great tutorial that can 
be found here: http://crs4.github.io/pydoop/tutorial/index.html.

Pydoop also works with HDFS, the Hadoop File System, although you can get that 
functionality in mrjob as well. Pydoop will give you a bit more control over running 
some jobs.

Recommendation engine
Building a large recommendation engine is a good test of your Big data skills. A 
great blog post by Mark Litwintschik covers an engine using Apache Spark, a big 
data technology: http://tech.marksblogg.com/recommendation-engine-spark-
python.html.

http://rodrigob.github.io/are_we_there_yet/build/classification_datasets_results.html
http://rodrigob.github.io/are_we_there_yet/build/classification_datasets_results.html
https://developer.yahoo.com/hadoop/tutorial/
https://cloud.google.com/hadoop/what-is-hadoop
http://crs4.github.io/pydoop/tutorial/index.html
http://tech.marksblogg.com/recommendation-engine-spark-python.html
http://tech.marksblogg.com/recommendation-engine-spark-python.html
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More resources
Kaggle competitions:

www.kaggle.com/

Kaggle runs data mining competitions regularly, often with monetary prizes.  
Testing your skills on Kaggle competitions is a fast and great way to learn to  
work with real-world data mining problems. The forums are nice and share 
environments—often, you will see code released for a top-10 entry during the 
competition!

Coursera:

www.coursera.org

Coursera contains many courses on data mining and data science. Many of the 
courses are specialized such as big data and image processing. A great general one 
to start with is Andrew Ng's famous course: https://www.coursera.org/learn/
machine-learning/.

It is a bit more advanced than this book and would be a great next step for interested 
readers.

For neural networks, check out this course: https://www.coursera.org/course/
neuralnets.

If you complete all of these, try out the course on probabilistic graphical models at 
https://www.coursera.org/course/pgm.

www.kaggle.com/
www.coursera.org
https://www.coursera.org/learn/machine-learning/
https://www.coursera.org/learn/machine-learning/
https://www.coursera.org/course/neuralnets
https://www.coursera.org/course/neuralnets
https://www.coursera.org/course/pgm
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