
www.it-ebooks.info

http://www.it-ebooks.info/


www.it-ebooks.info

http://www.it-ebooks.info/


Getting
Started with
Raspberry Pi

Matt Richardson and Shawn
Wallace

www.it-ebooks.info

http://www.it-ebooks.info/


ISBN: 978-1-449-34421-4

LSI

Getting Started with Raspberry Pi
by Matt Richardson and Shawn Wallace

Copyright © 2013 Matt Richardson and Shawn Wallace. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online
editions are also available for most titles (http://my.safaribooksonline.com). For more infor-
mation, contact our corporate/institutional sales department: 800-998-9938 or
corporate@oreilly.com.

Editor: Brian Jepson
Production Editor: Christopher Hearse
Cover Designer: Randy Comer
Interior Designer: Ron Bilodeau and Edie Freedman
Illustrator: Marc de Vinck

December 2012: First Edition

Revision History for the First Edition:

2012-12-07 First release

See http://oreilly.com/catalog/errata.csp?isbn=9781449344214 for release details.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trade-
marks of O’Reilly Media, Inc. Getting Started with Raspberry Pi and related trade dress are
trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and O’Reilly Me-
dia, Inc., was aware of a trademark claim, the designations have been printed in caps or initial
caps.

While every precaution has been taken in the preparation of this book, the publisher and
authors assume no responsibility for errors or omissions, or for damages resulting from the
use of the information contained herein.

www.it-ebooks.info

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781449344214
http://www.it-ebooks.info/


Contents

Preface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  vii

1/Getting Up and Running. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1

A Tour of the Boards. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

The Proper Peripherals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

The Case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Flash the SD Card. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Booting Up. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Configuring Your Pi. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Shutting Down. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Troubleshooting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Going Further. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2/Getting Around Linux on the Raspberry Pi. . . . . . . . . . . . . . . . . . . . . . . . . .  17

Using the Command Line. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Files and the Filesystem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

More Linux Commands. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

Processes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Sudo and Permissions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

The Network. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

/etc. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Setting the Date and Time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Installing New Software. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Going Further. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3/Python On The Pi. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  33

Hello Python. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

A Bit More Python. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Objects and Modules. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Even More Modules. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

Troubleshooting Errors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

iii

www.it-ebooks.info

http://www.it-ebooks.info/


Going Further. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4/Animation and Multimedia in Python. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  45

Hello Pygame. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Pygame Surfaces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

Drawing on Surfaces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

Handling Events and Inputs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

Sprites. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

Playing Sound. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Playing Video. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

Further Reading. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5/Scratch on the Pi. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  57

Hello Scratch. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

The Stage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

Two More Things to Know About Sprites. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

A Bigger Example: Astral Trespassers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

Scratch and the Real World. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

Sharing Your Programs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

Going Further. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6/Arduino and the Pi. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  75

Installing Arduino in Raspbian. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

Finding the Serial Port. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

Talking in Serial. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

Going Further. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

7/Basic Input and Output. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  83

Using Inputs and Outputs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

Digital Output: Lighting Up an LED. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

Digital Input: Reading a Button. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

Project: Cron Lamp Timer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

Scripting Commands. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

Connecting a Lamp. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

Scheduling Commands with cron. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

Going Further. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

8/Programming Inputs and Outputs with Python. . . . . . . . . . . . . . . . . . . . . .  99

Installing and Testing GPIO in Python. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

Blinking an LED. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

Reading a Button. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

iv Contents

www.it-ebooks.info

http://www.it-ebooks.info/


Project: Simple Soundboard. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

Going Further. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

9/Working with Webcams. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  111

Testing Webcams. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

Installing and Testing SimpleCV. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

Displaying an Image. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

Modifying an Image. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

Accessing the Webcam. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

Face Detection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

Project: Raspberry Pi Photobooth. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

Going Further. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

10/Python and The Internet. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  125

Download Data from a Web Server. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

Fetching the Weather Forecast. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

Serving Pi (Be a Web Server). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

Flask Basics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

Connecting the Web to the Real World. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

Project: WebLamp. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

Going Further. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

A/ Writing an SD Card Image. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  143

B/ Astral Trespassers Complete. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  147

C/ Analog Input. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  153

Contents v

www.it-ebooks.info

http://www.it-ebooks.info/


www.it-ebooks.info

http://www.it-ebooks.info/


Preface

It’s easy to understand why people were skep-
tical of the Raspberry Pi when it was first an-
nounced. A credit card-sized computer for $35
seemed like a pipe dream. Which is why, when
it started shipping, the Raspberry Pi created a
frenzy of excitement.
Demand outstripped supply for months and the waitlists for these mini com-
puters were very long. Besides the price, what is it about the Raspberry Pi
that tests the patience of this hardware-hungry mass of people? Before we
get into everything that makes the Raspberry Pi so great, let’s talk about its
intended audience.

Eben Upton and his colleagues at the University of Cambridge noticed that
today’s students applying to study computer science don’t have the skills
that they did in the 1990′s. They attribute this to—among other factors—the
“rise of the home PC and games console to replace the Amigas, BBC Micros,
Spectrum ZX and Commodore 64 machines that people of an earlier gen-
eration learned to program on.” Since the computer has become important
for every member of the household, it may also discourage younger mem-
bers from tinkering around and possibly putting such a critical tool out of
commission for the family. But recently mobile phone and tablet processors
have become less expensive while getting more powerful, clearing the path
for the Raspberry Pi’s leap into the world of ultra-cheap-yet-serviceable
computer boards. As the founder of Linux, Linus Torvalds, said in an interview
with BBC News, Raspberry Pi makes it possible to “afford failure.”

What Can You Do With It?
One of the great things about the Raspberry Pi is that there’s no single way
to use it. Whether you just want to watch videos and surf the web, or you want
to hack, learn, and make with the board, the Raspberry Pi is a flexible platform
for fun, utility, and experimentation. Here are just a few of the different ways
you can use a Raspberry Pi:

vii

www.it-ebooks.info

http://www.it-ebooks.info/


General purpose computing
It’s important to remember that the Raspberry Pi is a computer and you
can, in fact, use it as one. After you get it up and running in Chapter 1,
you can choose to have it boot into a graphical desktop environment with
a web browser, which is a lot of what we use computers for these days.
Going beyond the web, you can install a wide variety of free software,
such as the LibreOffice productivity suite for working with documents
and spreadsheets when you don’t have an Internet connection.

Learning to program
Since the Raspberry Pi is meant as an educational tool to encourage kids
to experiment with computers, it comes preloaded with interpreters and
compilers for many different programming languages. For the beginner,
there’s Scratch, a graphical programming language from MIT, which we
cover in Chapter 5. If you’re eager to jump into writing code, the Python
programming language is a great way to get started and we cover the
basics of it in Chapter 3. And you’re not limited to only Scratch and
Python. You can write programs for your Raspberry Pi in many different
programming languages like C, Ruby, Java, and Perl.

Project platform
The Raspberry Pi differentiates itself from a regular computer not only
in its price and size, but also because of its ability to integrate with elec-
tronics projects. Starting in Chapter 7, we’ll show you to how to use the
Raspberry Pi to control LEDs and AC devices and you’ll learn how to read
the state of buttons and switches.

Raspberry Pi for Makers
As makers, we have a lot of choices when it comes to platforms on which to
build technology-based projects. Lately, microcontroller development
boards like the Arduino have been a popular choice because they’ve become
very easy to work with. But System on a Chip platforms like the Raspberry Pi
are a lot different than traditional microcontrollers in many ways. In fact, the
Raspberry Pi has more in common with your computer than it does with an
Arduino.

This is not to say that a Raspberry Pi is better than a traditional microcon-
troller; it’s just different. For instance, if you want to make a basic thermostat,
you’re probably better off using an Arduino Uno or similar microcontroller
for purposes of simplicity. But if you want to be able to remotely access the
thermostat via the web to change its settings and download temperature log
files, you should consider using the Raspberry Pi.

Choosing between one or the other will depend on your project’s require-
ments and in fact, you don’t necessarily have to choose between the two. In
Chapter 6, we’ll show you how to use the Raspberry Pi to program the Arduino
and get them communicating with each other.

viii Preface

www.it-ebooks.info

http://www.libreoffice.org/
http://www.it-ebooks.info/


As you read this book, you’ll gain a better understanding of the strengths of
the Raspberry Pi and how it can become another useful tool in the maker’s
toolbox.

But Wait… There’s More!
There’s so much you can do with the Raspberry Pi, we couldn’t fit it all into
one book. Here are a few other ways you can use it:

Media center
Since the Raspberry Pi has both HDMI and composite video outputs, it’s
easy to connect to televisions. It also has enough processing power to
play full screen video in high definition. To leverage these capabilities,
contributors to the free and open source media player, XBMC, have por-
ted their project to the Raspberry Pi. XBMC can play many different
media formats and its interface is designed with large buttons and text
so that it can be easily controlled from the couch. XBMC makes the
Raspberry Pi a fully customizable home entertainment center compo-
nent.

“Bare metal” computer hacking
Most people who write computer programs write code that runs within
an operating system, such as Windows, Mac OS, or—in the case of
Raspberry Pi—Linux. But what if you could write code that runs directly
on the processor without the need for an operating system? You could
even write your own operating system from scratch if you were so in-
clined. The University of Cambridge’s Computer Laboratory has pub-
lished a free online course which walks you through the process of writ-
ing your own OS using assembly code.

Linux and Raspberry Pi
Your typical computer is running an operating system, such as Windows, OS
X, or Linux. It’s what starts up when you turn your computer on and it provides
your applications access to hardware functions of your computer. For in-
stance, if you’re writing a application that accesses the Internet, you can use
the operating system’s functions to do so. You don’t need to understand and
write code for every single type of Ethernet or WiFi hardware out there.

Like any other computer, the Raspberry Pi also uses an operating system
and the “stock” OS is a flavor of Linux called Raspbian. Linux is a great match
for Raspberry Pi because it’s free and open source. On one hand, it keeps the
price of the platform low, and on the other, it makes it more hackable. And
you’re not limited to just Raspbian, as there are many different flavors, or

Preface ix

www.it-ebooks.info

http://xbmc.org/
http://www.cl.cam.ac.uk/freshers/raspberrypi/tutorials/os/
http://www.it-ebooks.info/


distributions, of Linux that you can load onto the Raspberry Pi. There are even
a few non-Linux OS options available out there. Throughout this book, we’ll
be using the standard Raspbian distribution that’s available from Raspberry
Pi’s download page.

If you’re not familiar with Linux, don’t worry, Chapter 2 will equip you with
the fundamentals you’ll need to know to get around.

What Others Have Done With It
When you have access to an exciting new technology, it can be tough deciding
what to do with it. If you’re not sure, there’s no shortage of interesting and
creative Raspberry Pi projects out there to get inspiration from. As editors
for MAKE, we’ve seen a lot of fantastic uses of the Raspberry Pi come our
way and we want to share some of our favorites.

Arcade Game Coffee Table
Instructables user grahamgelding uploaded a step-by-step tutorial on
how to make a coffee table that doubles as a classic arcade game emu-
lator using the Raspberry Pi. To get the games running on the Pi, he used
MAME (Multiple Arcade Machine Emulator), a free, open source soft-
ware project which lets you run classic arcade games on modern com-
puters. Within the table itself, he mounted a 24-inch LCD screen con-
nected to the Raspiberry Pi via HDMI, classic arcade buttons, and a joy-
stick connected to the Pi’s GPIO pins to be used as inputs.

RasPod
Aneesh Dogra, a teenager in India, was one of the runners up in Rasp-
berry Pi Foundation’s 2012 Summer Coding Contest. He created Ras-
pod, a Raspberry Pi based web-controlled MP3 audio player. Built with
Python and a web framework called Tornado, Raspod lets you remotely
log into your Raspberry Pi to start and stop the music, change the vol-
ume, select songs, and make playlists. The music comes out of the
Raspberry Pi’s audio jack, so you can use it with a pair of computer
speakers or you can connect it to a stereo system to enjoy the tunes.

Raspberry Pi Supercomputer
Many supercomputers are made of clusters of standard computers
linked together and computational jobs are divided up among all the
different processors. A group of computational engineers at the Univer-
sity of Southampton in the United Kingdom linked up 64 Raspberry Pis
to create an inexpensive supercomputer. While it’s nowhere near the
computational power of the top performing supercomputers of today, it
demonstrates the principles behind engineering such systems. Best of
all, the rack system used to hold all these Raspberry Pis was built with
Lego bricks by the team leader’s 6-year-old son.

x Preface

www.it-ebooks.info

http://www.raspberrypi.org/downloads
http://www.raspberrypi.org/downloads
http://www.instructables.com/id/Coffee-Table-Pi/
https://github.com/lionaneesh/RasPod
http://www.southampton.ac.uk/mediacentre/features/raspberry_pi_supercomputer.shtml
http://www.it-ebooks.info/


If you do something interesting with your Raspberry Pi, we’d love to hear
about it. You can submit your projects to the MAKE editorial team through
our contribute form on Makezine.com.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file exten-
sions.

Constant width
Used for program listings, as well as within paragraphs to refer to pro-
gram elements such as variable or function names, databases, data
types, environment variables, statements, and keywords.

Constant width bold
Shows commands or other text that should be typed literally by the user.

Constant width italic
Shows text that should be replaced with user-supplied values or by val-
ues determined by context.

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

Using Code Examples
This book is here to help you get your job done. In general, you may use the
code in this book in your programs and documentation. You do not need to
contact us for permission unless you’re reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code
from this book does not require permission. Selling or distributing a CD-ROM
of examples from O’Reilly books does require permission. Answering a ques-
tion by citing this book and quoting example code does not require permis-
sion. Incorporating a significant amount of example code from this book into
your product’s documentation does require permission.

Preface xi

www.it-ebooks.info

http://blog.makezine.com/contribute/
http://www.it-ebooks.info/


We appreciate, but do not require, attribution. An attribution usually includes
the title, author, publisher, and ISBN. For example: “Getting Started With
Raspberry Pi by Matt Richardson and Shawn Wallace (O’Reilly). Copyright
2013, 978-1-4493-4421-4.”

If you feel your use of code examples falls outside fair use or the permission
given here, feel free to contact us at permissions@oreilly.com.

Safari® Books Online

Safari Books Online is an on-demand digital library that lets
you easily search over 7,500 technology and creative refer-
ence books and videos to find the answers you need quickly.

With a subscription, you can read any page and watch any video from our
library online. Read books on your cell phone and mobile devices. Access new
titles before they are available for print, get exclusive access to manuscripts
in development, and post feedback for the authors. Copy and paste code
samples, organize your favorites, download chapters, bookmark key sec-
tions, create notes, print out pages, and benefit from tons of other time-
saving features.

O’Reilly Media has uploaded this book to the Safari Books Online service. To
have full digital access to this book and others on similar topics from O’Reilly
and other publishers, sign up for free at http://my.safaribooksonline.com.

How to Contact Us
Please address comments and questions concerning this book to the pub-
lisher:

MAKE
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

MAKE unites, inspires, informs, and entertains a growing community of re-
sourceful people who undertake amazing projects in their backyards, base-
ments, and garages. MAKE celebrates your right to tweak, hack, and bend
any technology to your will. The MAKE audience continues to be a growing
culture and community that believes in bettering ourselves, our environ-
ment, our educational system—our entire world. This is much more than an
audience, it’s a worldwide movement that Make is leading—we call it the
Maker Movement.

xii Preface

www.it-ebooks.info

mailto:permissions@oreilly.com
http://my.safaribooksonline.com/?portal=oreilly
http://www.it-ebooks.info/


For more information about MAKE, visit us online:

MAKE magazine: http://makezine.com/magazine/
Maker Faire: http://makerfaire.com
Makezine.com: http://makezine.com
Maker Shed: http://makershed.com/

We have a web page for this book, where we list errata, examples, and any
additional information. You can access this page at:

http://shop.oreilly.com/product/0636920023371.do

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, courses, conferences, and news, see
our website at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgements
We’d like to thank a few people who have provided their knowledge, support,
advice, and feedback to Getting Started with Raspberry Pi:

Brian Jepson
Marc de Vinck
Eben Upton
Tom Igoe
Clay Shirky
John Schimmel
Phillip Torrone
Limor Fried
Kevin Townsend
Ali Sajjadi
Andrew Rossi

Preface xiii

www.it-ebooks.info

http://makezine.com/magazine/
http://makerfaire.com
http://makezine.com
http://makershed.com/
http://shop.oreilly.com/product/0636920023371.do
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia
http://www.it-ebooks.info/


www.it-ebooks.info

http://www.it-ebooks.info/


1/Getting Up and
Running

A few words come up over and over when peo-
ple talk about the Raspberry Pi: small, cheap,
hackable, education-oriented. However, it
would be a mistake to describe it as plug and
play, even though it is easy enough to plug it
into a TV set and get something to appear on
the screen. This is not a consumer device, and
depending on what you intend to do with your
Raspberry Pi you’ll need to make a number of
decisions about peripherals and software
when getting up and running.
Of course, the first step is to actually acquire a Raspberry Pi. Chances are
you have one by now, but if not, the Raspberry Pi Foundation has arrange-
ments with a few manufacturers from whom you can buy a Pi directly at the
well-known $25-$35 price. They are:

Premier Farnell/Element 14
A British electronics distributor with many subsidiaries all over the world
(such as Newark and MCM in the US).

RS Components
Another UK-based global electronics distributor (and parent of Allied
Electronics in the US)

The low price of the Raspberry Pi is obviously an important part of the story.
Enabling the general public to go directly to a distributor and order small
quantities for the same price offered to resellers is an unusual arrangement.
A lot of potential resellers were confounded by the original announcements
of the price point; it was hard to see how there could be any profit margin.
That’s why you’ll see resellers adding a slight markup to the $35 price (usu-
ally to $40 or so). Though the general public can still buy direct from the
distributors above for the original price, the retailers and resellers often can

1

www.it-ebooks.info

http://www.element14.com/community/groups/raspberry-pi/
http://www.rs-components.com/raspberrypi
http://www.it-ebooks.info/


fulfill orders faster. Both MAKE’s own Maker Shed (http://www.make
rshed.com/category_s/227.htm) as well as Adafruit (http://
www.adafruit.com/category/105) are two companies who sell Raspberry Pis
and accessories for a slight markup.

Enough microeconomic gossip; let’s start by taking a closer look at the Rasp-
berry Pi board.

A Tour of the Boards
Let’s start with a quick tour of what you’re looking at when you take it out of
the box.

It’s tempting to think of the Raspberry Pi as a microcontroller development
board like Arduino, or as a laptop replacement. In fact it is more like the ex-
posed innards of a mobile device, with lots of maker-friendly headers for the
various ports and functions. Figure 1-1 shows all the parts of the board, as
described below.

A. The Processor. At the heart of the Raspberry Pi is the same processor
you would have found in the iPhone 3G and the Kindle 2, so you can think
of the capabilities of the Raspberry Pi as comparable to those powerful
little devices. This chip is a 32 bit, 700 MHz System on a Chip, which is
built on the ARM11 architecture. ARM chips come in a variety of archi-
tectures with different cores configured to provide different capabilities
at different price points. The Model B has 512MB of RAM and the Model
A has 256 MB. (The first batch of Model Bs had only 256MB of RAM.)

B. The Secure Digital (SD) Card slot. You’ll notice there’s no hard drive on
the Pi; everything is stored on an SD Card. One reason you’ll want some
sort of protective case sooner than later is that the solder joints on the
SD socket may fail if the SD card is accidentally bent.

C. The USB port. On the Model B there are two USB 2.0 ports, but only one
on the Model A. Some of the early Raspberry Pi boards were limited in
the amount of current that they could provide. Some USB devices can
draw up 500mA. The original Pi board supported 100mA or so, but the
newer revisions are up to the full USB 2.0 spec. One way to check your
board is to see if you have two polyfuses limiting the current (see
Figure 1-2). In any case, it is probably not a good idea to charge your cell
phone with the Pi. You can use a powered external hub if you have a
peripheral that needs more power.

2 Getting Started with Raspberry Pi

www.it-ebooks.info

http://www.makershed.com/category_s/227.htm
http://www.makershed.com/category_s/227.htm
http://www.adafruit.com/category/105
http://www.adafruit.com/category/105
http://www.it-ebooks.info/


Figure 1-1. A map of the hardware interface of the Raspberry Pi

Getting Up and Running 3

www.it-ebooks.info

http://www.it-ebooks.info/


Figure 1-2. Some of the older boards came equipped with polyfuses (left)
to protect the USB hub. Some boards have the polyfuses replaced with
jumpers (center), and the latest revision of the Model B removed them and
uses the space for a mounting hole (right).

D. Ethernet port. The model B has a standard RJ45 Ethernet port. The
Model A does not, but can be connected to a wired network by a USB
Ethernet adapter (the port on the Model B is actually an onboard USB
to Ethernet adapter). WiFi connectivity via a USB dongle is another op-
tion.

E. HDMI connector. The HDMI port provides digital video and audio output.
14 different video resolutions are supported, and the HDMI signal can be
converted to DVI (used by many monitors), composite (analog video
signal usually carried over a yellow RCA connector), or SCART (a Euro-
pean standard for connecting audio-visual equipment) with external
adapters.

F. Status LEDs. The Pi has five indicator LEDs that provide visual feedback
(see Table 1-1).

Table 1-1. The five status LEDs.

ACT Green Lights when the SD card is accessed (marked OK on earlier boards)

PWR Red Hooked up to 3.3V power

FDX Green On if network adapter is full duplex

LNK Green Network activity light

100 Yellow On if the network connection is 100Mbps (some early boards have a
10M misprint)

G. Analog Audio output. This is a standard 3.5mm mini analog audio jack,
intended to drive high impedance loads (like amplified speakers). Head-
phones or unpowered speakers won’t sound very good; in fact, as of this
writing the quality of the analog output is much less than the HDMI audio
output you’d get by connecting to a TV over HDMI. Some of this has to
do with the audio driver software, which is still evolving.

4 Getting Started with Raspberry Pi

www.it-ebooks.info

http://www.it-ebooks.info/


H. Composite video out. This is a standard RCA-type jack that provides
composite NTSC or PAL video signals. This video format is extremely
low-resolution compared to HDMI. If you have a HDMI television or mon-
itor, use it rather than a composite television.

I. Power input. On of the first things you’ll realize is that there is no power
switch on the Pi. This microUSB connector is used to supply power (this
isn’t an additional USB port; it’s only for power). MicroUSB was selected
because the connector is cheap USB power supplies are easy to find.

Figure 1-3 shows all of the power and input/output (IO) pins on the Raspberry
Pi, which are explained next.

Figure 1-3. The Pins and headers on the Raspberry Pi

A. General Purpose Input and Output (GPIO) and other pins. Chapter 7 and
Chapter 8 show how to use these pins to read buttons and switches and
control actuators like LEDs, relays, or motors.

B. The Display Serial Interface (DSI) connector. This connector accepts a
15 pin flat ribbon cable that can be used to communicate with a LCD or
OLED display screen.

C. The Camera Serial Interface (CSI) connector. This port allows a camera
module to be connected directly to the board.

Getting Up and Running 5

www.it-ebooks.info

http://www.it-ebooks.info/


D. P2 and P3 headers. These two rows of headers are the JTAG testing
headers for the Broadcom chip (P2) and the LAN9512 networking chip
(P3). Because of the proprietary nature of the Broadcom chipset, these
headers probably won’t be of much use to you.

In the Fall of 2012 the Raspberry Pi Foundation released a new
revision of the board that included a few new hardware fea-
tures, including two 2.5mm mounting holes and a header for
a reset switch. There is also an unpopulated 2x4 header be-
neath the GPIO header that is intended for third-party clock
and audio boards (to be mounted beneath the main board).

The Proper Peripherals
Now that you know where everything is on the board, you’ll need to know a
few things about the proper peripherals (some are shown in Figure 1-4) to
use with the Pi. There are a bunch of prepackaged starter kits that have well-
vetted parts lists; there are a few caveats and gotchas when fitting out your
Raspberry Pi. There’s a definitive list of supported peripherals on the main
wiki.

A. A power supply. This is the most important peripheral to get right; you
should use a microUSB adapter that can provide 5V and at least 700mA
of current (500mA for the Model A). A cell phone charger won’t cut it,
even if it has the correct connector. A typical cell phone charger only
provides 400mA of current or less, but check the rating marked on the
back. An underpowered Pi may still seem to work but will be flaky and
may fail unpredictably.

With the current version of the Pi board, it is possible to power
the Pi from a USB hub that feeds power. However, there isn’t
much protection circuitry so it may not be the best idea to
power it over the USB ports. This is especially true if you’re
going to be doing electronics prototyping where you may ac-
cidentally create shorts that may draw a lot of current.

B. An SD Card. You’ll need at least 4GB, and it should be a Class 4 card.
Class 4 cards are capable of transferring at least 4MB/sec. Some of the
earlier Raspberry Pi boards had problems with Class 6 or higher cards,
which are capable of faster speeds but are less stable. A microSD card
in an adapter is perfectly usable as well.

6 Getting Started with Raspberry Pi

www.it-ebooks.info

http://elinux.org/RPi_VerifiedPeripherals
http://www.it-ebooks.info/


Figure 1-4. The basic peripherals: a microUSB power supply, cables, and
SD card. You’ll need at least a 4GB Class 4 SD Card (MicroSD cards with an
adapter are ok to use as well). Generic SD Cards are notoriously variable in
quality, so stick to a trusted model (see http://elinux.org/RPi_VerifiedPeriph
erals#SD_cards).

C. An HDMI cable. If you’re connecting to a monitor you’ll need this, or an
appropriate adapter for a DVI monitor. You can also run the Pi headless,
as described later in this chapter. HDMI cables can vary wildly in price.
If you’re just running a cable three to six feet to a monitor, there’s no
need to spend more than $3 USD on an HDMI cable. If you are running
long lengths, you should definitely research the higher quality cables and
avoid the cheap generics.

D. Ethernet cable. Your home may not have as many wired Ethernet jacks
as it did five years ago. Since everything is wireless these days, you might
find the wired port to be a bit of a hurdle; see the section “Running
Headless” (page 29) for some alternatives to plugging the Ethernet di-
rectly into the wall or a hub.

If you want to do a lot more with your Raspberry Pi there are a few other
peripherals and add ons that you’ll want, which we’ll talk about in Chap-
ter 5. You may also want to consider some of the following add ons (see
http://elinux.org/RPi_VerifiedPeripherals for a list of peripherals that are
known to work):

Getting Up and Running 7

www.it-ebooks.info

http://elinux.org/RPi_VerifiedPeripherals#SD_cards
http://elinux.org/RPi_VerifiedPeripherals#SD_cards
http://elinux.org/RPi_VerifiedPeripherals
http://www.it-ebooks.info/


A Powered USB Hub
A USB 2.0 hub is recommended.

Heatsink
A heatsink is a small piece of metal, usually with fins to create a lot of
surface area to dissipate heat efficiently. Heatsinks can be attached to
chips that get hot. The Pi’s chipset was designed for mobile applications,
so a heatsink isn’t necessary most of the time. However, as we’ll see later
there are cases where you may want to run the Pi at higher speeds, or
crunch numbers over an extended period and the chip may heat up a
bit. Some people have reported that the network chip can get warm as
well.

Real Time Clock
You may want to add a Real Time Clock chip (like the DS1307) for logging
or keeping time when offline.

Camera module
An official 5 megapixel Raspberry Pi camera module will be available in
early 2013. Until then you can use a USB web cam (see Chapter 9 for a
complete example).

LCD display
Many LCDs can be used via a few connections on the GPIO header. LCDs
that use the DSI interface will be available in 2013.

WiFi USB dongle
Many WiFi USB dongles work with the Pi; look for one that doesn’t draw
too much power.

Laptop dock
Several people have modified laptop docks intended for cell phones (like
the Atrix lapdock) to work as a display/base for the Raspberry Pi.

The Case
You’ll quickly find that you’ll want a case for your Raspberry Pi. The stiff cables
on all sides make it hard to keep flat, and some of the components like the
SD card slot can be mechanically damaged even through normal use.

The Pi contains six layers of conductive traces connecting various compo-
nents, unlike a lot of simple microcontroller PCBs that just have traces on
the top and the bottom. There are four layers of thin traces sandwiched in
between the top and bottom; if the board gets flexed too much you can break
some of those traces in a manner that is impossible to debug. The solution:
get a case.

8 Getting Started with Raspberry Pi

www.it-ebooks.info

http://www.it-ebooks.info/


Figure 1-5. The colorful Pibow case

There are a bunch of pre-made cases available, but there are also a lot of case
designs available to download and fabricate on a laser cutter or 3D printer.
In general, avoid tabbed cases where brittle acrylic is used at right angles.
The layered acrylic of the Pibow (Figure 1-5) is a colorful option.

It should probably go without saying, but it’s one of those obvious mistakes
you can make sometimes: make sure you don’t put your Raspberry Pi on a
conductive surface. Flip over the board and look at the bottom; there are a
lot of components there and a lot of solder joints that can be easily shorted.
Another reason why it’s important to case your Pi! === Choose Your Distri-
bution

The Raspberry Pi runs Linux for an operating system. Linux is technically just
the kernel, and an operating system is much more than that; the total col-
lection of drivers, services, and applications makes the OS. A variety of fla-
vors or distributions of Linux the OS have evolved over the years. Some of
the most common on desktop computers are Ubuntu, Debian, Fedora, and
Arch. Each have their own communities of users and are tuned for particular
applications.

Because the Pi is based on a mobile device chipset, it has different software
requirements than a desktop computer. The Broadcom processor has some
proprietary features that require special “binary blob” device drivers and
code that won’t be included in any standard Linux distribution. And, while
most desktop computers have gigabytes of RAM and hundreds of gigabytes
of storage, the Pi is more limited in both regards. Special Linux distributions
that target the Pi have been developed. Some of the more established dis-
tributions are:

Getting Up and Running 9

www.it-ebooks.info

http://pibow.com/
http://www.it-ebooks.info/


Figure 1-6. Raspberry Pi + Debian = Raspbian.

Raspbian
The “officially recommended” official distribution from the Foundation,
based on Debian (see Figure 1-6). Note that raspbian.org is a community
site, not operated by the Foundation. If you’re looking for the official dis-
tribution, visit the downloads page at raspberrypi.org.

Adafruit Raspberry Pi Educational Linux (Occidentalis)
This is Adafruit’s Raspbian-based distribution that includes tools and
drivers useful for teaching electronics.

Arch Linux
Arch Linux specifically targets ARM-based computers, so they support-
ed the Pi very early on.

Xbian
This is a distribution based on Raspbian for users who want to use the
Raspberry Pi as a media center (see also OpenELEC and Raspbmc).

QtonPi
A distribution based on the Qt 5 framework.

In this book we will concentrate on the official Raspbian distribution.

Flash the SD Card
Many vendors sell SD cards with the operating system pre-installed; for some
people this may be the best way to get started. Even if it isn’t the latest release
you can easily upgrade once you get the Pi booted up and on the Internet.

Raspbian also has a network installer. To use this tool, you need to put the
installer files on a SD Card (formatted as FAT32, which is typical for these
cards) and then boot up the Pi with the card inserted. The catch is that you’ll
need to be connected to the Internet for this to work.

10 Getting Started with Raspberry Pi

www.it-ebooks.info

http://raspbian.org
http://raspbian.org
http://raspberrypi.org
http://learn.adafruit.com/adafruit-raspberry-pi-educational-linux-distro
http://www.archlinux.org/
http://xbian.org/
http://openelec.tv/
http://www.raspbmc.com
http://qt-project.org/wiki/Qt-RaspberryPi
http://www.raspbian.org/RaspbianInstaller
http://www.it-ebooks.info/


The first thing you’ll need to do is download Raspbian from here the down-
loads page at raspberry pi.org. The operating system is distributed as a disk
image, which is a bit-for-bit representation of how the data should be written
to the SD card.

Note that you can’t just drag the disk image onto the SD Card; you’ll need to
make a bit-for-bit copy of the image. You’ll need a card writer and a disk image
utility; any inexpensive card writer will do. The instructions vary depending
on the OS you’re running. Unzip the image file (you should end up with
a .img file), then follow the appropriate directions, as described in Appen-
dix A.

Faster Downloads With BitTorrent
You’ll see a note on the download site about downloading a torrent file for the
most efficient way of downloading Raspbian. The torrent file is a decentral-
ized way of distributing files; it can be much faster because you’ll be pulling
bits of the download from many other torrent clients rather than a single
central server. You’ll need a BitTorrent client if you choose this route.

Some popular BitTorrent clients are:

• Vuze: Integrated torrent search and download.

• Miro: open source music and video player that also handles torrents.

• MLDonkey: Windows and Linux-only filesharing tool.

• Transmission: Lightweight Mac and Linux-only client, also used in em-
bedded systems.

The operating system is distributed as a disk image, which is a bit-for-bit
representation of how the data should be written to the SD card. Because it
is an image, creating a bootable card is not as simple a process as dragging
files on or off the card on your desktop. You’ll need a card writer and a disk
image utility; any inexpensive card writer will do. The instructions vary de-
pending on the OS you’re running. Unzip the image file (you should end up
with a .img file), then follow the appropriate directions below.

Booting Up
Follow these steps to book up your Raspberry Pi for the first time:

1. Plug the SD card into the socket.

2. Plug in a USB keyboard and mouse. On the Model A, plug them into a
powered hub, then plug the hub into the Pi.

Getting Up and Running 11

www.it-ebooks.info

http://www.raspberrypi.org/downloads
http://www.raspberrypi.org/downloads
http://www.vuze.com/
http://www.getmiro.com/
http://mldonkey.sourceforge.net/Main_Page
http://www.transmissionbt.com/
http://www.it-ebooks.info/


3. Plug the HDMI output into your TV or monitor. Make sure your monitor
is on.

4. Plug in the power supply. In general, try to make sure everything else is
hooked up before connecting the power.

Getting Online
You’ve got a few different ways to connect to the Internet. If you’ve got easy
access to a router, switch (or Ethernet jack connected to a router), just plug
in using a standard Ethernet cable. If you have a WiFi USB dongle, you can
connect wirelessly; there’s an icon on the Desktop to set up your wireless
connection. Not all dongles will work; check the verified peripherals list for a
supported one.

If you’ve got a laptop nearby, or if you’re running the Pi in a headless config-
uration, you can share the WiFi on your laptop with the Pi (Figure 1-7). It is
super simple on the Mac: just enable Internet Sharing In your Sharing set-
tings, then use an Ethernet cable to connect the Pi and your Mac. In Windows,
enable “Allow other network users to connect through this computer’s In-
ternet connection” in your Internet Connection Sharing properties. The Pi
should automatically get an IP address when connected and be online.

You will probably need a cross-over cable for a Windows-based PC, but you
can use any Ethernet cable on Apple hardware as it will autodetect the type
of cable.

If all goes well, you should see a bunch of startup log entries appearing on
your screen. If things don’t go well, skip ahead to the troubleshooting section
at the end of this chapter. These log messages show all of the processes that
are launching as you boot up the Pi. You’ll see the network interface be ini-
tialized, and you’ll see all of your USB peripherals being recognized and log-
ged. You can see these log messages after you log in by typing dmesg on the
command line.

The very first time you boot up you’ll be presented with a few the raspi-config
tool (see Figure 1-8). There are a few key settings you’ll need to tweak here;
chances are good that your Raspberry Pi won’t work exactly the way you want
right out of the box. If you need to get back to this configuration tool at any
time by typing the following at the command line:

sudo raspi-config

Configuring Your Pi
Next we’ll walk through the steps and show you which configuration options
are essential and which you can come back to if you need them. When setting

12 Getting Started with Raspberry Pi

www.it-ebooks.info

http://elinux.org/RPi_VerifiedPeripherals
http://www.it-ebooks.info/


Figure 1-7. A handy trick is to share your laptop’s WiFi connection with the
Pi. You can also run the Pi headless (see “Running Headless” (page 29)),
which is convenient if you’re using your Raspberry Pi on the run.

Figure 1-8. The Raspi-config tool menu

options in the tool, use the up and down arrows to move around the list, the
space bar to select something, and tab to change fields or move the cursor
to the buttons at the bottom of the window. Let’s go in the order of the menu
options in the configuration tool:

Getting Up and Running 13

www.it-ebooks.info

http://www.it-ebooks.info/


Expand rootfs
You should always choose this option; this will enlarge the filesystem to
let you use the whole SD card.

Overscan
Leave the overscan option disabled at first. If you have a high definition
monitor you may find that text runs off the side of the screen. To fix this,
enable the overscan and change the values to fit the image to the screen.
The values indicate the amount of overscan so the display software can
correct; use positive values if the image goes off the screen, negative if
there are black borders around the edge of the display.

Keyboard
The default keyboard settings are for a generic keyboard in a UK-style
layout. If you want they keys to do what they’re labeled to do, you’ll def-
initely want to select a keyboard type and mapping that corresponds to
your setup. Luckily the keyboard list is very robust. Note that your locale
settings can affect your keyboard settings as well.

Password
It’s a good idea to change the default password from raspberry to some-
thing a little stronger.

Change Locale
If you’re outside the UK you should change your locale to reflect your
language and character encoding preferences. The default setting is for
UK English with a standard UTF-8 character encoding (en_GB.UTF-8).
Select en_US.UTF-8 if you’re in the US.

Change timezone
You’ll probably want to set this.

Memory split
This option allows you to change the amount of memory used by the
CPU and the GPU. Leave the default split for now.

Overclock
You now have the option of running the processor at speeds higher than
700MHz with this option. For your first time booting, leave the default
settings or try Medium or Modest. You may want to return to this later
(Turbo mode can run at 1000MHz).

SSH
This option turns on the Secure Shell (ssh) server, which will allow you
to login to the Raspberry Pi remotely over a network. This is really handy,
so you should turn it on.

14 Getting Started with Raspberry Pi

www.it-ebooks.info

http://www.it-ebooks.info/


Desktop Behavior
This option lets you boot straight to the graphical desktop environment
and is set to Yes by default. If you select No, you’ll get the command line
when you boot up and you’ll have to login and start the graphical inter-
face manually like this:

raspberrypi login: pi
Password: raspberry
pi@raspberrypi ~ $ startx

When you’re in the graphical desktop, your command prompt will dis-
appear. You can open a terminal program to get a command prompt
while you’re in the graphical desktop. Click the desktop menu in the lower
left, then choose Accessories→LXTerminal.

Update
Finally, if you’re connected to the Internet you’ll be able to update the
conifg utility with this option. Don’t update the OS on your first time
around; you’ll see other ways to do this in Chapter 2.

When you’re done, select Finish and you’ll be dumped back to the command
line. Type:

pi@raspberrypi ~ $ sudo reboot

and your Pi will reboot with your new settings. If all goes well (and if you chose
the option to boot straight to the graphical desktop environment) you should
see the Openbox window manager running on the Lightweight X11 Desktop
Environment (LXDE). You’re off and running!

Shutting Down
There’s no power button on the Raspberry Pi (although there is a header for
a reset switch on newer boards). The proper way to shutdown is through the
Logout menu on the graphical desktop; select Shutdown to halt the system.

You can also shut down from the command line by typing:

pi@raspberrypi ~ $ sudo shutdown -h now

Be sure to do a clean shutdown (and don’t just pull the plug). In some cases
you can corrupt the SD card if you turn off power without halting the system.

Troubleshooting
If things aren’t working the way you think they should, there are a few com-
mon mistakes and missed steps. Be sure to check all of the following sug-
gestions:

Getting Up and Running 15

www.it-ebooks.info

http://www.it-ebooks.info/


• Is the SD card in the slot, and is it making a good connection? Are you
using the correct type of SD Card?

• Was the disk image written correctly to the card? Try copying it again
with another card reader.

• Is the write protect enabled on SD card? This is a little switch on the side
that can easily get toggled the wrong way.

• Check the integrity of your original disk image. You can do this by running
a Secure Hash Algorithm (SHA) checksum utility on the disk image and
comparing the result to the 40 character hash published on the down-
load page.

• Is the Pi restarting or having intermittent problems? Check your power
supply; an underpowered board may seem to work but act flaky.

• Do you get a kernel panic on startup? A kernel panic is the equivalent of
Windows’ Blue Screen of Death; it’s most often caused by a problem with
a device on the USB hub. Try unplugging USB devices and restarting.

If that all fails, head over to the troubleshooting page on the Raspberry Hub
wiki for solutions to all sorts of problems people have had.

Which Board Do You Have?
If you’re asking for help in an email or on a forum, it can be
helpful to the helper if you know exactly what version of the
operating system and which board you’re using. To find out
the OS version, open LXTerminal and type:

cat /proc/version

To find your board version, type:

cat /proc/cpuinfo

Going Further
The Raspberry Pi Hub

Hosted by elinux.org, this is a massive Wiki of information on the Pi’s
hardware and configuration.

List of Verified Peripherals
The definitive list of peripherals known to work with the Raspberry Pi.

16 Getting Started with Raspberry Pi

www.it-ebooks.info

http://elinux.org/R-Pi_Troubleshooting
http://elinux.org/R-Pi_Troubleshooting
http://elinux.org/RPi_Hub
http://elinux.org/RPi_VerifiedPeripherals
http://www.it-ebooks.info/


2/Getting Around
Linux on the
Raspberry Pi

If you’re going to get the most out of your Rasp-
berry Pi, you’ll need to learn a little Linux. The
goal of this chapter is to present a whirlwind
tour of the operating system and give you
enough context and commands to get around
the file system, install packages from the com-
mand line or GUI, and point out the most im-
portant tools you’ll need day to day.
Raspbian comes with the Lightweight X11 Desktop Environment (LXDE)
graphical desktop environment installed. This is a trimmed-down desktop
environment for the X Window System that has been powering the GUIs of
Unix and Linux computers since the 80s. Some of the tools you see on the
Desktop and in the menu are bundled with LXDE (the Leafpad text editor and
the LXTerminal shell, for instance).

Running on top of LXDE is Openbox, a window manager that handles the look
and feel of windows and menus. If you want to tweak the appearance of your
desktop, go to the Openbox configuration tools (click the desktop menu in
the lower left, then choose Other→Openbox Configuration Manager). Unlike
OS X or Windows, it is relatively easy to completely customize your desktop
environment or install alternate window mangers. Some of the other distri-
butions for Raspberry Pi have different environments tuned for applications
like set top media boxes, phone systems or network firewalls. See http://
elinux.org/RPi_Distributions for a list.

The File Manager
If you prefer not to move files around using the command line (more on
that in a moment), select the File Manager from the Accessories menu.
You’ll be able to browse the filesystem using icons and folders the way
you’re probably used to doing.

17

www.it-ebooks.info

http://elinux.org/RPi_Distributions
http://elinux.org/RPi_Distributions
http://www.it-ebooks.info/


Figure 2-1. The graphical desktop.

The Web Browser
The default web browser is Midori, designed to work well with limited
resources. It’s easy to forget how much work web browsers do these
days. Because Raspbian is designed to be a very lightweight OS distri-
bution, there are a number of features you may expect in a web browser
that are not available. For example Flash and the Java plugin is not in-
stalled (so no YouTube), and Midori does not support HTML5 video. Later
we’ll look at how to install new software (like Java). Look for tools and
menu items in the pulldown menu in the upper right corner of the window
(see Figure 2-2). There are a couple of other browser options, notably
NetSurf and Dillo.

Video and Audio
Multimedia playback is handled by omxplayer, which is a bit experimental
as of this writing. It is only available as a command line utility. Omxplayer
is specially designed to work with the Graphics Processing Unit (GPU)
on the processor; other free software like VLC and mPlayer won’t work
well with the GPU.

18 Getting Started with Raspberry Pi

www.it-ebooks.info

http://twotoasts.de/index.php/midori/
http://www.netsurf-browser.org/
http://www.dillo.org/
http://www.it-ebooks.info/


To keep the price down, certain video licenses were not in-
cluded with the Raspberry Pi. If you want to watch recorded
TV and DVDs encoded in the MPEG-2 format (or Microsoft’s
VC-1 format), you’ll need to purchase an license key from the
Foundation’s online shop. A license for H.264 (MPEG-4) de-
coding and encoding is included with the Raspberry Pi.

Figure 2-2. The pulldown menu in the web browser.

Text Editor
Leafpad is the default text editor, which is available under the main
menu. You’ve also got Nano, which is an easy-to-learn bare bones text
editor. Traditional Unix text editors like vim or emacs are not installed by
default, but can be easily added (see “Installing New Software” (page
30)).

Copy and Paste
Copy and paste functions work between applications pretty well, al-
though you may find some oddball programs that aren’t consistent. If
you have a middle button on your mouse you can select text by high-
lighting it as you normally would (click and drag with the left mouse but-
ton) and paste it by pressing the middle button while you have the mouse
cursor over the destination window.

The Shell
A lot of tasks are going to require you to get to the command line and
run commands there. The LXTerminal program provides access to the

Getting Around Linux on the Raspberry Pi 19

www.it-ebooks.info

http://raspberrypi.com/
http://wiki.lxde.org/en/Leafpad
http://www.nano-editor.org/
http://www.it-ebooks.info/


command line or shell. The default shell on Raspbian is the Bourne Again
Shell (bash), which is very common on Linux systems. There’s also an
alternative called dash. You can change shells via the program menu, or
with the chsh command.

Using the Command Line
If it helps, you can think of using the command line as playing a text adventure
game, but with the files and the filesystem in place of Grues and mazes of
twisty passages. If that metaphor doesn’t help you, don’t worry; all the com-
mands and concepts in this section are standard Linux and are valuable to
learn.

Before you start, open up the LXTerminal program (Figure 2-3). There are
two tricks that make life much easier in the shell: autocomplete and com-
mand history. Often you will only need to type the first few characters of a
command or filename, then hit tab. The shell will attempt to autocomplete
the string based on the files in the current directory or programs in commonly
used directories (the shell will search for executable programs in places
like /bin or /usr/bin/). If you hit the up arrow on the command line you’ll be
able to step back through your command history, which is useful if you mis-
typed a character in a long string of commands.

Figure 2-3. LXTerminal gives you access to the command line (or shell).

Files and the Filesystem
Table 2-1 shows some of the important directories in the filesystem. Most of
these follow the Linux standard where files should go; a couple are specific
to the Raspberry Pi. The /sys directory is where you can access all of the
hardware on the Raspberry Pi.

20 Getting Started with Raspberry Pi

www.it-ebooks.info

http://www.gnu.org/software/bash/manual/bashref.html
http://en.wikipedia.org/wiki/Debian_Almquist_shell
http://www.it-ebooks.info/


Table 2-1. Some of the most important directories in the Raspbian filesys-
tem.

Directory Description

/

/bin Programs and commands that all users can run

/boot All the files needed at boot time

/dev Special files that represent the devices on your system

/etc Configuration files

/etc/init.d Scripts to start up services

/etc/X11 X11 configuration files

/home User home directories

/home/pi Home directory for pi user

/lib Kernel modules/drivers

/media Mount points for removable media

/proc A virtual directory with information about running processes and the
OS

/sbin Programs for system maintenance

/sys A special directory on the Raspberry Pi that represents the hardware
devices

/tmp Space for programs to create temporary files

/usr Programs and data usable by all users

/usr/bin Most of the programs in the operating system reside here

/usr/games Yes, games

/usr/lib Libraries to support common programs

/usr/local Software that may be specific to this machine goes here

/usr/sbin More system administration programs

/usr/share Things that are shared between applications like icons or fonts

/usr/src Linux is open source; here’s the source!

/var System logs and spool files

/var/backups Backup copies of all the most vital system files

/var/cache Any program that caches data (like apt-get or a web browser) stores
it here.

/var/log All of the system logs and individual service logs

/var/mail All user email is stored here, if you’re set up to handle email

/var/spool Data waiting to be processed (e.g. incoming email, print jobs)

You’ll see your current directory displayed before the command prompt. In
Linux your home directory has a shorthand notation: the tilde (~). When you
open the LXTerminal you’ll be dropped into your home directory and your
prompt will look like this:

Getting Around Linux on the Raspberry Pi 21

www.it-ebooks.info

http://www.it-ebooks.info/


pi@raspberrypi ~ $

Here’s an explanation of that prompt:

pi@ raspberrypi  ~  $

Your username, pi, followed by the at (@) symbol.

The name of your computer (raspberrypi is the default host name).

The current working directory of the shell. You always start out in your
home directory (~).

This is the shell prompt. Any text you type will appear to the right of it.
Press Enter or Return to execute each command you type.

Use the cd (change directory) command to move around the filesystem. The
following two commands have the same effect (changing to the home direc-
tory) for the pi user:

cd /home/pi/
cd ~

If the directory path starts with a forward slash it will be interpreted as an
absolute path to the directory. Otherwise the directory will be considered
relative to the current working directory. You can also use . and .. to refer to
the current directory and the current directory’s parent. For example, to
move up to the top of the filesystem:

pi@raspberrypi ~ $ cd ..
pi@raspberrypi /home $ cd ..

You could also get there with the absolute path /:

pi@raspberrypi ~ $ cd /

Once you’ve changed to a directory, use the ls command to list the files there.

pi@raspberrypi / $ ls
bin   dev   home   lost+found   mnt   proc   run   selinux   sys   usr
boot  etc   lib    media        opt   root   sbin  srv       tmp   var

Most commands have additional parameters or switches that can be used
to turn on different behaviors. For example, the -l switch will produce a more
detailed listing, showing file sizes, dates and permissions:

pi@raspberrypi ~ $ ls -l
total 8
drwxr-xr-x 2 pi pi 4096 Oct 12 14:26 Desktop
drwxrwxr-x 2 pi pi 4096 Jul 20 14:07 python_games

22 Getting Started with Raspberry Pi

www.it-ebooks.info

http://www.it-ebooks.info/


The -a switch will list all files, including invisible ones:

pi@raspberrypi ~ $ ls -la
total 80
drwxr-xr-x 11 pi   pi   4096 Oct 12 14:26 .
drwxr-xr-x  3 root root 4096 Sep 18 07:48 ..
-rw-------  1 pi   pi     25 Sep 18 09:22 .bash_history
-rw-r--r--  1 pi   pi    220 Sep 18 07:48 .bash_logout
-rw-r--r--  1 pi   pi   3243 Sep 18 07:48 .bashrc
drwxr-xr-x  6 pi   pi   4096 Sep 19 01:19 .cache
drwxr-xr-x  9 pi   pi   4096 Oct 12 12:57 .config
drwx------  3 pi   pi   4096 Sep 18 09:24 .dbus
drwxr-xr-x  2 pi   pi   4096 Oct 12 14:26 Desktop
-rw-r--r--  1 pi   pi     36 Sep 18 09:35 .dmrc
drwx------  2 pi   pi   4096 Sep 18 09:24 .gvfs
drwxr-xr-x  2 pi   pi   4096 Oct 12 12:53 .idlerc
-rw-------  1 pi   pi     35 Sep 18 12:11 .lesshst
drwx------  3 pi   pi   4096 Sep 19 01:19 .local
-rw-r--r--  1 pi   pi    675 Sep 18 07:48 .profile
drwxrwxr-x  2 pi   pi   4096 Jul 20 14:07 python_games
drwx------  4 pi   pi   4096 Oct 12 12:57 .thumbnails
-rw-------  1 pi   pi     56 Sep 18 09:35 .Xauthority
-rw-------  1 pi   pi    300 Oct 12 12:57 .xsession-errors
-rw-------  1 pi   pi   1391 Sep 18 09:35 .xsession-errors.old

Use the mv command to rename a file. The touch command can be used to
create an empty dummy file:

pi@raspberrypi ~ $ touch foo
pi@raspberrypi ~ $ ls
foo   Desktop   python_games
pi@raspberrypi ~ $ mv foo baz
pi@raspberrypi ~ $ ls
baz   Desktop   python_games

Remove a file with rm. To remove a directory you can use rmdir if the directory
if empty, or rm -r if it isn’t. The -r is a parameter sent to the rm command
that indicates it should recursively delete everything in the directory.

If you want to find out all the parameters for a particular command, use the
man command (or you can often use the --help option):

pi@raspberrypi ~ $ man curl
pi@raspberrypi ~ $ rm --help

To create a new directory, use mkdir. To bundle all of the files in a directory
into a single file, use the tar command, originally created for tape archives.
You’ll find a lot of bundles of files or source code are distributed as tar files,
and they’re usually also compressed using the gzip command. Try this:

pi@raspberrypi ~ $ mkdir myDir
pi@raspberrypi ~ $ cd myDir

Getting Around Linux on the Raspberry Pi 23

www.it-ebooks.info

http://www.it-ebooks.info/


Figure 2-4. Pipes are a way of chaining smaller programs together to ac-
complish bigger tasks.

pi@raspberrypi ~ $ touch foo bar baz
pi@raspberrypi ~ $ cd ..
pi@raspberrypi ~ $ tar -cf myDir.tar myDir
pi@raspberrypi ~ $ gzip myDir.tar

You’ll now have a .tar.gz archive of that directory that can be distributed via
email or Internet.

More Linux Commands
One of the reasons that Linux (and Unix) are so successful is that the main
design goal was to build a very complicated system out of small, simple
modular parts that can be chained together. You’ll need to know a little bit
about two pieces of this puzzle: pipes and redirection.

Pipes are simply a way of chaining two programs together, so the output of
one can serve as the input to another. All Linux programs can read data from
standard input (often referred to as stdin), write data to standard output
(stdout), and throw error messages to standard error (stderr). A pipe lets you
hook up stdout from one program to stdin of another (Figure 2-4). Use the |
operator, as in this example:

pi@raspberrypi ~ $ ls -la | less

(Press q to exit the less program.)

24 Getting Started with Raspberry Pi

www.it-ebooks.info

http://www.it-ebooks.info/


Now (for something a little more out there) try:

pi@raspberrypi ~ $ sudo cat /boot/kernel.img | aplay

You may want to turn the volume down a bit first; this command reads the
kernel image and spits all of the 1s and 0s at the audio player. That’s what
your kernel sounds like!

In some of the examples later in the book we’ll also be using redirection, where
a command is executed and the stdout output can be sent to a file. As you’ll
see later, many things in Linux are treated as ordinary files (such as the Pi’s
general purpose input and output pins), so redirection can be quite handy.
To redirect output from a program use the > operator:

pi@raspberrypi ~ $ ls > directoryListing.txt

Special Control Keys
In addition to the keys for autocomplete (tab) and command history (up ar-
row) previously mentioned, there are a few other special control keys you’ll
need in the shell. Here are a few:

Control-C
Kills the currently running program. May not work with some interactive
programs such as text editors.

Control-D
Exits the shell. You must type this at the command prompt by itself (don’t
type anything after the $ before hitting Control-D).

Control-A
Moves the cursor to the beginning of the line.

Control-E
Moves the cursor to the end of the line.

There are others but these are the core keyboard shortcuts you’ll use every
day.

Sometimes you’ll want to display the contents of a file on the screen. If it’s a
text file and you want to read it one screen at a time, use less:

pi@raspberrypi ~ $ ls > flob.txt
pi@raspberrypi ~ $ less flob.txt

If you want to just dump the entire contents of a file to standard output, use
cat (short for concatenate). This can be handy when you want to feed a file
into another program or redirect it somewhere.

Getting Around Linux on the Raspberry Pi 25

www.it-ebooks.info

http://www.it-ebooks.info/


For example, this is the equivalent of copying one file to another with a new
name (the second line concatenates the two files first):

pi@raspberrypi ~ $ ls > wibble.txt
pi@raspberrypi ~ $ cat wibble.txt > wobble.txt
pi@raspberrypi ~ $ cat wibble.txt wobble.txt > wubble.txt

To look at just the last few lines of a file (such as the most recent entry in a
log file), use tail (to see the beginning, use head). If you are searching for a
string in one or more files, use the venerable program grep:

pi@raspberrypi ~ $ grep Puzzle */*

Grep is a powerful tool because of the rich language of regular expressions
that was developed for it. Regular expressions can be a bit difficult to read,
and may be a major factor in whatever reputation Linux has for being opaque
to newcomers.

Processes
Every program on the Pi runs as a separate process; at any particular point
in time you’ll have dozens of processes running. When you first boot up, about
75 processes will start, each one handling a different task or service. To see
all these processes, run the top program, which will also display CPU and
memory usage. Top will show you the processes using the most resources;
use the ps command to list all the processes and their id numbers. Try:

pi@raspberrypi ~ $ ps -aux | less

Sometimes you may want to kill a rogue or unresponsive process. To do that,
use ps to find its id, then use kill to stop it.

pi@raspberrypi ~ $ kill 95689

In the case of some system processes, you won’t have permission to kill it
(though you’ll read about sudo in a moment).

Sudo and Permissions
Linux is a multiuser operating system; the general rule is that everyone owns
their own files and can create, modify, and delete them within their own space
on the filesystem. The root (or super) user can change any file in the filesys-
tem, which is why it is good practice to not log in as root on a day-to-day
basis.

26 Getting Started with Raspberry Pi

www.it-ebooks.info

http://www.it-ebooks.info/


As the pi user there’s not much damage you can do to the
system. As superuser you can wreak havoc, accidentally or by
design. Be careful when using sudo, especially when moving
or deleting files. Of course, if you things go badly, you can al-
ways make a new SD card image (see Appendix A).

There are some tools like sudo that allow users to act like super users for
performing tasks like installing software without the dangers (and responsi-
bilities) of being logged in as root. You’ll be using sudo a lot when interacting
with hardware directly, or when changing system-wide configurations.

Each file belongs to a particular user and a particular group. Use the chown
and chgrp commands to change the owner or group of a file. Note that you
must be root to use either of these two commands:

pi@raspberrypi ~ $ sudo chown pi garply.txt
pi@raspberrypi ~ $ sudo chgrp staff plugh.txt

Each file also has a set of permissions that show whether a file can be read,
written or executed. These permissions can be set for the owner of the file,
the group, or for everyone (see Figure 2-5).

Figure 2-5. File permissions for owner, group, and everyone.

You set the individual permissions with the chmod command. The switches
for chmod are summarized in Table 2-2.

Table 2-2. The switches that can be used with chmod.

u user

g group

o others not in the group

a all/everyone

r read permission

w write permission

x execute permission

+ add permission

- remove permission

Getting Around Linux on the Raspberry Pi 27

www.it-ebooks.info

http://www.it-ebooks.info/


Here are a few examples of how you can combine these switches :

chmod u+rwx,g-rwx,o-rwx wibble.txt 
chmod g+wx wobble.txt 
chmod -rw,+r wubble.txt 

Allow only the user to read, write, execute

Add permission to read and execute to entire group

Make read only for everyone

The only thing protecting your user space and files from other people is your
password, so you better chose a strong one. Use the passwd command to
change it, especially if you’re putting your Pi on a network.

The Network
Once you’re on a network, there are a number of Linux utilities that you’ll be
using on a regular basis. When you’re troubleshooting an Internet connec-
tion, use ifconfig, which displays all of your network interfaces and the IP
addresses associated with them (see Figure 2-6).

Figure 2-6. The ifconfig command gives you information about all of your
network interfaces.

The ping command is actually the most basic tool for troubleshooting net-
work conventions. You can use ping (think sonar) to test whether there is a
two way connection between two IP addresses on the network or Internet.
Note that many web sites block ping traffic, so you may need to ping multiple
sites to accurately test a connection:

ping yahoo.com
ping altavista.com
ping lycos.com
ping netscape.com 

28 Getting Started with Raspberry Pi

www.it-ebooks.info

http://www.it-ebooks.info/


Fail happens here.

To log in to another computer remotely (and securely, with encrypted pass-
words), you can use the Secure Shell (ssh). The computer on the remote side
needs to be running an SSH server for this to work, but the ssh client comes
built into Raspbian. In fact, this is a great way to work on your Raspberry Pi
without a monitor or keyboard, as discussed later in “Running Headless”
(page 29).

Related to SSH is the sftp program, which allows you to securely transfer
files from one computer to another. Rounding out the set is scp, which you
can use to copy files from one computer to another over a network or the
Internet. The key to all of these tools is that they use the Secure Sockets
Layer (SSL) to transfer files with encrypted login information. These tools
are all standard stalwart Linux tools.

Running Headless
If you want to work on the Raspberry Pi without plugging in a monitor, key-
board, and mouse, there are some ways to set it up to run headless. If all you
require is to get in to the command line, you can simply hook the Raspberry
Pi up to the network and use an ssh client to connect to it (user name: pi,
password: raspberry). The Terminal utility on the Mac will do, PuTTY on Win-
dows or Linux, or ssh on Linux. The ssh server on the Raspberry Pi is enabled
by default (run raspi-config again if for some reason it doesn’t launch at
startup).

Another way to connect to the Pi over a network connection is to run a Virtual
Network Computing Server (VNC server) on the Pi and connect to it using a
VNC client. The benefit of this is that you can run a complete working graph-
ical desktop environment in a window on your laptop or desktop. This is a
great solution for a portable development environment. See the Raspberry
Pi Hub for extensive instructions on how to install TightVNC, a lightweight
VNC server.

/etc
The /etc directory holds all of the system-wide configuration files and startup
scripts. When you ran the configuration scripts the first time you started up,
you were changing values in various files in the /etc directory. You’ll need to
invoke super user powers with sudo to edit files in /etc; if you come across
some tutorial that tells you to edit a configuration file, use a text editor to edit
and launch it with sudo:

pi@raspberrypi ~ $ sudo nano /etc/hosts

Getting Around Linux on the Raspberry Pi 29

www.it-ebooks.info

http://www.chiark.greenend.org.uk/~sgtatham/putty/
http://elinux.org/RPi_VNC_Server
http://elinux.org/RPi_VNC_Server
http://www.tightvnc.com/
http://www.it-ebooks.info/


Setting the Date and Time
A typical laptop or desktop will have additional hardware and a backup bat-
tery (usually a coin cell) to save the current time and date. The Raspberry Pi
does not, but Raspbian is configured to automatically synchronize its time
and date with an Network Time Protocol (NTP) server when plugged into a
network.

Having the correct time can be important for some applications (see the
example in Chapter 7 using cron to control a lamp). To set the time and date
manually, use the date program:

$ sudo date --set="Sun Nov 18 1:55:16 EDT 2012"

Installing New Software
One of the areas that Linux completely trounces other operating systems is
in software package management. Package managers handle the download-
ing and installation of software, and they automatically handle downloading
and installing dependencies. Keeping with the modular approach, many
software packages on Linux depend on other pieces of software. The package
manager keeps it all straight, and the package managers on Linux are re-
markably robust.

Raspbian comes with a pretty minimal set of software, so you will soon want
to start downloading and installing new programs. The examples in this book
will all use the command line for this, since it is the most flexible and quickest
way of installing software.

The program apt-get with the -install switch is used to download software.
apt-get will even download all of the other software that your package re-
quires so you don’t have to go hunting around for dependencies. Software
has to be installed with superuser permissions, so always use sudo (this
command installs the Emacs text editor):

pi@raspberrypi ~ $ sudo apt-get install emacs

Taking a Screenshot
One of the first things we needed to figure out when writing
this book was how to take screenshots on the Pi. We found a
program called scrot (an abbreviation for SCReenshOT). An-
other option to capture screenshots is to install the GNU Im-
age Manipulation Program (Gimp) or ImageMagick, but scrot
worked for us. To install scrot type:

sudo apt-get install scrot

30 Getting Started with Raspberry Pi

www.it-ebooks.info

http://www.it-ebooks.info/


Going Further
There’s much more to Linux, and many places to learn more. Some good
starting points are:

Linux Pocket Guide
Handy as a quick reference.

Linux in a Nutshell
More detailed, but still a quick reference guide.

The Debian Wiki
Raspbian is based on Debian, so a lot of the info on the Debian wiki ap-
plies to Raspbian as well.

The Jargon File
Also published as the New Hacker’s Dictionary, this collection of defini-
tions and stories is required reading on the Unix/Linux subculture.

Getting Around Linux on the Raspberry Pi 31

www.it-ebooks.info

http://shop.oreilly.com/product/0636920023029.do
http://shop.oreilly.com/product/9780596154493.do
http://wiki.debian.org/FrontPage
http://catb.org/jargon/
http://www.it-ebooks.info/


www.it-ebooks.info

http://www.it-ebooks.info/


3/Python On The Pi

Python is a great first programming language;
it’s clear and easy to get up and running. More
important, there are a lot of other users to
share code with and ask questions.
Guido van Rossum created Python, and very early on recognized its use as
a first language for computing. In 1999, van Rossum put together a widely-
read proposal called Computer Programming for Everybody that laid out a
vision for an ambitious program to teach programming in the elementary
and secondary grade schools using Python. More than a decade later, it looks
like it is actually happening with the coming of the Raspberry Pi.

Python is an interpreted language, which means that you can write a program
or script and execute it directly rather than compiling it into machine code.
Interpreted languages are a bit quicker to program with, and you get a few
side benefits. For example, in Python you don’t have to explicitly tell the
computer whether a variable is a number, a list, or a string; the interpreter
figures out the data types when you execute the script.

The Python interpreter can be run in two ways: as an interactive shell to ex-
ecute individual commands, or as a command line program to execute
standalone scripts. The integrated development environment (IDE) bundled
with Python and the Raspberry Pi is called IDLE (see Figure 3-1).

The Python Version Conundrum
The reason you see two versions of IDLE is that there are two versions of
Python installed on the Pi. This is common practice (though a bit confusing).
As of this writing, Python 3 is the newest, but changes made to the language
between versions 2 and 3 made the latter not backward compatible. Even
though Python 3 has been around for years it took a while for it to be widely
adopted, and lots of user contributed packages have not been upgraded to
Python 3. It gets even more confusing when you search the Python docu-
mentation; make sure you’re looking at the right version!

The examples in this book will work with Python 2.7 or 3.X, unless otherwise
noted.

33

www.it-ebooks.info

http://www.python.org/doc/essays/cp4e.html
http://www.it-ebooks.info/


Figure 3-1. Python options on the Raspbian Desktop: The IDLE integrated
development environment for Python 2.0 (left), IDLE for Python 3.0 (mid-
dle), and a collection of sample games implemented in Pygame from invent-
withpython.com (right).

Hello Python
The best way to start learning Python is to jump right in. Although you can
use any text editor to start scripting, we’ll start out using the IDE. Open up
the IDLE 3 application. To run IDLE, double-click the IDLE 3 icon on the desk-
top, or click the desktop menu in the lower left, and choose Program-
ming→IDLE 3.

IDLE can take several seconds to start up, but when it appears, you’ll see a
window with the interactive shell. The triple chevron (>>>) is the interactive
prompt; when you see the prompt, it means the interpreter is waiting for your
commands. At the prompt type:

>>> print("Saluton Mondo!")

And hit Enter or Return. Python executes that statement and you’ll see the
result in the shell window. Note that the print() command is one of the things
that changed in Python 3.0; if you get a syntax error, check to make sure
you’re running the 3.0 version of IDLE.

You can use the shell as a kind of calculator to test out statements or calcu-
lations:

>>> 3+4+5
12

Think of the statements executed in the interactive shell as a program that
you’re running one line at a time. You can set up variables or import modules:

>>> import math
>>> (1 + math.sqrt(5)) / 2
1.618033988749895

34 Getting Started with Raspberry Pi

www.it-ebooks.info

http://inventwithpython.com
http://inventwithpython.com
http://www.it-ebooks.info/


The import command makes all of Python’s math functions available to your
program (more about modules in “Objects and Modules” (page 38)). To set
up a variable, use the assignment operator (=):

>>> import math
>>> radius = 200
>>> radius * 2 * math.pi
125.66370614359173

If you want to clear all variables and start in a fresh state, select Shell→Re-
start Shell to start over. You can also use the interactive shell to get informa-
tion about how to use a particular statement, module, or other Python topics
with the help() command:

help("print")

To get a listing of all of the topics available, try:

help("topics")
help("keywords")
help("modules")

The Python interpreter is good for testing statements or simple operations,
but you will often want to run your Python script as you would a standalone
application. To start a new Python program, select File→New Window, and
IDLE will give you a script editing window (see Figure 3-2).

Figure 3-2. The IDLE interactive shell (left) and an editor window (right).

Try typing a line of code and selecting Run→Run Module. You’ll get a warning
that “Source Must Be Saved OK To Save?”. Save your script in your home
directory as SalutonMondo.py and you’ll see it execute in the shell.

Python On The Pi 35

www.it-ebooks.info

http://www.it-ebooks.info/


Sometimes you may not want to use the IDLE environment. To run a script
from the command line, open up the LXTerminal and type:

python SalutonMondo.py

That’s really all of the basic mechanics you need to know to get up and run-
ning with the environment. Next you’ll need to start learning the language.

Command Line vs. IDLE
One thing you will notice is that the output of IDLE is very slow when running
example code that prints to the shell. To get an idea how slow, keep IDLE open
and open a new LXTerminal alongside. Save the script as CountEvens.py in
IDLE and type the following at the command line prompt:

python CountEvens.py

Actually, before you do that, run the same script in IDLE using Run Module;
it will need the head start. You’ll quickly get an idea of the overhead from using
the IDE on the fairly limited resources of the Pi. The examples later in the
book will all be executed from the command line, but IDLE can still be used
as an editor if you like.

A Bit More Python
If you’re coming to Python from the Arduino world, you’re used to writing
programs (known as sketches in Arduino, but often called scripts in Python)
in a setup/loop format, where setup() is a function run once and loop() is a
function that executes over and over. The following example shows how to
achieve this in Python. Select New Window from the shell in IDLE 3 and type
the following:

# Setup
n = 0

# Loop
while True:
    n = n + 1
    # The % is the modulo operator
    if ((n % 2) == 0):
        print(n)

Select Run Module and give your script a name (such as EvenIntegers.py).
As it runs, you should see all even integers printed (press Control-C to inter-
rupt the output, because it will go on forever).

36 Getting Started with Raspberry Pi

www.it-ebooks.info

http://www.it-ebooks.info/


In the example above, you may not notice that each level of
indentation is four spaces, not a tab (but you can press tab in
IDLE and it will dutifully insert spaces for you). Indentation has
structural meaning in Python. This is one of the big stumbling
blocks for beginners, or when copying and pasting code. Still,
we feel that the mandatory use of whitespace makes Python
a fairly readable language. See the Python Style Guidelines for
tips on writing readable code.

It is important to watch your whitespace; Python is a highly structured lan-
guage where the whitespace determines the structure. In the next example,
everything indented one level below the loop() function is considered part
of that function. The end of a loop is determined by where the indentation
moves up a level (or end of the file). This differs from languages like C that
delimit blocks of code with brackets or other markers.

Use functions to put chunks of code into a code block that can be called from
other places in your script. To rewrite the previous example with functions,
do the following (when you go to run it, save it as CountEvens.py):

# Declare global variables
n = 0 

# Setup function
def setup(): 
    global n
    n = 100

def loop(): 
    global n
    n = n + 1
    if ((n % 2) == 0):
        print(n)

# Main 
setup()
while True:
    loop()

In this example, the output will be every even number from 102 on. Here’s
how it works:

First the variable n is defined as a global variable that can be used in
any block in the script.

Here, the setup() function is defined (but not yet executed).

Similarly, here’s the definition of the loop() function.

In the main code block, setup() is called once, then loop().

Python On The Pi 37

www.it-ebooks.info

http://www.python.org/dev/peps/pep-0008/#indentation
http://www.it-ebooks.info/


The use of the global keyword in the first line of each function is important;
it tells the interpreter to use the global variable n rather than create a second
(local, or private to that function) n variable usable only in the function.

This tutorial is too short to be a complete Python reference. To really learn
the language, you may want to start with Think Python and the Python Pocket
Reference. The rest of this chapter will give you enough context to get up and
running with the later examples and will map out the basic features and
modules available. Chapter 4 covers the PyGame framework, a good way to
create multimedia programs on the Pi.

Objects and Modules
You’ll need to understand the basic syntax of dealing with objects and mod-
ules to get through the examples in this book. Python is a clean language,
with just 34 reserved keywords (see Table 3-1). These keywords are the core
part of the language that let you structure and control the flow of activity in
your script. Pretty much everything that isn’t a keyword can be considered
an object. An object is a combination of data and behaviors that has a name.
You can change an object’s data, retrieve information from it, and even ma-
nipulate other objects.

Table 3-1. Python has just 34 reserved keywords

Conditionals Loops Built-in
Functions

Classes, Modules,
Functions

Error Handling

if for print class try

else in pass def except

elif while del global finally

not break lambda raise

or as nonlocal assert

and continue yield with

is import

True return

False from

None

In Python, strings, lists, functions, modules, and even numbers are objects.
A Python object can be thought of as an encapsulated collection of attributes
and methods. You get access to these attributes and methods using a simple
dot syntax. For example, type this at the interactive shell prompt to set up a
string object and call the method that tells it to capitalize itself:

>>> myString = "quux"
>>> myString.capitalize()
'Quux'

38 Getting Started with Raspberry Pi

www.it-ebooks.info

http://shop.oreilly.com/product/0636920025696.do
http://shop.oreilly.com/product/9780596158095.do
http://shop.oreilly.com/product/9780596158095.do
http://www.it-ebooks.info/


Or use reverse() to rearrange a list in reverse order:

>>> myList = ['a', 'man', 'a', 'plan', 'a', 'canal']
>>> myList.reverse()
>>> print(myList)
['canal', 'a', 'plan', 'a', 'man', 'a']

Both String and List are built-in modules of the standard li-
brary, which are available from any Python program. In each
case, the String and List modules have defined a bunch of
functions for dealing with strings and lists, including capital
ize() and reverse().

Some of the standard library modules are not built-in and you need to ex-
plicitly say you’re going to use them with the import command. To use the
time module from the standard library to gain access to helpful functions for
dealing with timing and timestamps, use:

import time

You may also see the use of import as to rename the module in your program:

import time as myTime

You’ll also see the use of from import to load select functions from a module:

from time import clock

Here’s a short example of a Python script using the time and datetime mod-
ules from the standard library to print the current time once every second:

from datetime import datetime
from time import sleep

while True:
    now = str(datetime.now())
    print(now)
    sleep(1)

The sleep function stops the execution of the program for one second. One
thing you will notice after running this code is that the time will drift a bit each
time. That’s for two reasons:

1. The code doesn’t take into account the amount of time it takes to cal-
culate the current time (.9 seconds would be a better choice)

Python On The Pi 39

www.it-ebooks.info

http://www.it-ebooks.info/


2. Other processes are sharing the CPU and may take cycles away from
your program’s execution. This is an important thing to remember: when
programming on the Raspberry Pi you are not executing in a real time
environment.

If you’re using the sleep() function, you’ll find that it is accurate to more then
5ms on the Pi.

Next, let’s modify the example to open a text file and periodically log some
data to it. Everything is a string when handling text files. Use the str() func-
tion to convert numbers to strings (and int() to change back to an integer).

from datetime import datetime
from time import sleep
import random

log = open("log.txt", "w")

while i in range(5):
    now = str(datetime.now())
    # Generate some random data in the range 0-1024
    data = random.randint(0, 1024)
    log.write(now + " " + str(data) + "\n")
    print(".")
    sleep(.9)
log.flush()
log.close()

In a real data logging application you’ll want to make sure
you’ve got the correct date and time set up on your Raspberry
Pi, as described in Chapter 1.

Here’s another example (ReadFile.py) that reads in a filename as an argu-
ment from the command line (run it from the shell with python3 Read
File.py filename. The program opens the file, reads each line as a string and
prints it. Note that print() acts like println() does in other languages; it
adds a newline to the string that is printed. The end argument to print()
suppresses the newline.

# Open and read a file from command line argument
import sys

if (len(sys.argv) != 2):
   print("Usage: python ReadFile.py filename")
   sys.exit()

scriptname = sys.argv[0]
filename = sys.argv[1]

file = open(filename, "r")

40 Getting Started with Raspberry Pi

www.it-ebooks.info

http://www.it-ebooks.info/


lines = file.readlines()
file.close()

for line in lines:
    print(line)

Even More Modules
One of the reasons Python is so popular is that there are a great number of
user-contributed modules that build on the standard library. The Python
Package Index (PyPI) is the definitive list of packages (or modules); some of
the more popular modules that could be particularly useful on the Raspberry
Pi are shown in Table 3-2. You’ll be using some of these modules later on,
especially the GPIO module to access the general inputs and outputs of the
Raspberry Pi.

Table 3-2. Some packages of particular interest to Pi users

Module Description URL Package
Name

RPi.GPIO Access to GPIO pins http://
code.google.com/p/
raspberry-gpio-python/

python-rpi.gpio

Pygame Gaming framework http://pygame.org python-
pygame

SimpleCV Easy API for Computer
Vision

http://simplecv.org/ No package

Scipy Scientific computing http://www.scipy.org/ python-scipy

Numpy The numerical
underpinings of Scipy

http://numpy.scipy.org/ python-numpy

Flask Microframework for web
development

http://flask.pocoo.org/ python-flask

Requests “HTTP for Humans” http://ocs.python-
requests.org

python-
requests

PIL Image processing http://www.python
ware.com/products/pil/

python-
imaging

wxPython GUI framework http://wxpython.org python-
wxgtk2.8

PySerial Access to serial port http://pyserial.source
forge.net/

python-serial

pyUSB FTDI-USB interface http://bleyer.org/pyusb No package

To use one of these you’ll need to download the code, configure the package,
and install it. The serial module can be installed this way, for example:

sudo apt-get install python-serial

Python On The Pi 41

www.it-ebooks.info

http://pypi.python.org/pypi
http://pypi.python.org/pypi
http://code.google.com/p/raspberry-gpio-python/
http://code.google.com/p/raspberry-gpio-python/
http://code.google.com/p/raspberry-gpio-python/
http://pygame.org
http://simplecv.org/
http://www.scipy.org/
http://numpy.scipy.org/
http://flask.pocoo.org/
http://ocs.python-requests.org
http://ocs.python-requests.org
http://www.pythonware.com/products/pil/
http://www.pythonware.com/products/pil/
http://wxpython.org
http://pyserial.sourceforge.net/
http://pyserial.sourceforge.net/
http://bleyer.org/pyusb
http://www.it-ebooks.info/


If a package has been bundled by its creator using the standard approach to
bundling modules (with Python’s distutils tool), all you need to do is down-
load the package, uncompress it and type:

python setup.py install

You may also want to look at the Pip package installer, a tool that makes it
quite easy to install packages from the PyPI.

Troubleshooting Errors
Inevitably you’ll run into trouble with your code and you’ll need to track down
and squash a bug. The IDLE interactive mode can be your friend; the Debug
menu provides several tools that will help you understand how your code is
actually executing. You also have the option of seeing all your variables and
stepping through the execution line by line.

Syntax errors are the easiest to deal with; usually this is just a typo or a mis-
understood aspect of the language. Semantic errors — where the program
is well formed but doesn’t perform as expected — can be harder to figure out.
That’s where the debugger can really help unwind a tricky bug. Effective de-
bugging takes years to learn, but here is a quick checklist of things to check
when programming the Pi in Python:

• Use print() to show when the program gets to a particular point.

• Use _print()+ to show the values of variables as the program executes.

• Double check whitespace to make sure blocks are defined the way you
think they are.

• When debugging syntax errors, remember that the actual error may
have been introduced well before the interpreter reports it.

• Double check all of your global and local variables

• Check for matching parentheses

• Make sure the order of operations is correct in calculations; insert paren-
theses if you’re not sure. For example, 3 + 4 * 2 and (3 + 4) * 2 yield
different results.

After you’re comfortable and experienced with Python, you may want to look
at the code and logging modules for more debugging tools.

Going Further
There is a lot more to Python, and here are some resources that you’ll find
useful:

42 Getting Started with Raspberry Pi

www.it-ebooks.info

http://www.pip-installer.org
http://www.it-ebooks.info/


Think Python by Allen Downey
This is a clear and fairly concise approach to programming (that hap-
pens to use Python).

The Python Pocket Reference
Because sometimes flipping through a book is better than clicking
through a dozen Stack Overflow posts.

Stack Overflow
That said, Stack Overflow is an excellent source of collective knowledge.
It works particularly well if you’re searching for a specific solution or error
message; chances are someone else has had the same problem and
posted here.

Learn Python the Hard Way
A great book and online resource; at the very least read the introduction
“The Hard Way Is Easier.”

Python For Kids by Jason R. Briggs
Again, more of a general programming book that happens to use Python
(and written for younger readers).

Python On The Pi 43

www.it-ebooks.info

http://shop.oreilly.com/product/0636920025696.do
http://shop.oreilly.com/product/9780596158095.do
http://stackoverflow.com/
http://learnpythonthehardway.org/
http://shop.oreilly.com/product/9781593274078.do
http://www.it-ebooks.info/


www.it-ebooks.info

http://www.it-ebooks.info/


4/Animation and
Multimedia in Python

Pygame is a lightweight framework for creating
simple games in Python. You can also think of
it as a tool for general multimedia program-
ming; it’s a convenient way to just draw graph-
ics on the screen, play sounds, or handle key-
board and mouse events.
Pygame is a software wrapper around another library called the Simple Di-
rectMedia Layer (SDL). SDL handles all of the low-level access to the Pi’s
keyboard, mouse, audio drivers and video drivers. Pygame simplifies SDL
even further.

This focus of this chapter is more on the basic multimedia capabilities of
Pygame, rather than a tutorial on game programming. Other resources for
game programming are provided at the end.

Hello Pygame
Pygame comes pre-installed on your Raspberry Pi. There’s a version of Py-
game that works with Python 3.0, but the version that comes with Raspbian
only works with version 2.7. You can either switch over to the non-3.0 version
of IDLE (just double-click the IDLE icon instead of the IDLE 3 icon), or just
run your script from the command line and the 2.7 interpreter will be used.

The following example shows the minimal number of steps to create a Py-
game program; it draws a red circle in a new window:

import pygame 

width = 640 
height = 480
radius = 100
fill = 1

pygame.init() 

window = pygame.display.set_mode((width, height)) 

45

www.it-ebooks.info

http://www.it-ebooks.info/


window.fill(pygame.Color(255, 255, 255)) 

while True: 
    pygame.draw.circle(window, 
                       pygame.Color(255, 0, 0),
                       (width/2, height/2),
                       radius, fill)
    pygame.display.update() 

Import the Pygame module, which makes all of the Pygame objects
and functions available for use.

Set up some global variables here.

Always call the init() function first; this performs some steps needed
to initialize Pygame before you use it, and will also call the init()
function for all of the Pygame submodules.

Set up the window, which is a Pygame Surface object, an area on which
to draw.

Fill the window with white.

Loop forever. You can think of each iteration of this loop as a single
frame of an infinite animation.

Draw a filled circle in red at the center of the window.

All of the drawing commands in the loop make up one frame of the
animation and are drawn into an offscreen buffer that is hidden. When
you’re done drawing the frame, call display.update() to update the
image on the screen.

In all of these examples, you’ll have to use Control-C on the
command line to kill the script when you’re done. If you want
to enable the close button on the Pygame window, add the
following code to the end of the while loop:

while True:
    if pygame.QUIT in [e.type for e in pygame.event.get()]:
        break

That will catch the event triggered when the button is pressed.
For more on events see “Handling Events and Inputs” (page 49).

Pygame consists of a collection of submodules and objects; the basics of
how they are used are described in the rest of this chapter.

46 Getting Started with Raspberry Pi

www.it-ebooks.info

http://www.it-ebooks.info/


Pygame Surfaces
A Pygame Surface is just a rectangular image; Surfaces are combined and
layered to create each scene in a frame of the game or animation. The pixels
of a Surface are represented by a sequence of three 8-bit RGB numbers; e.g.
(0, 255, 0) represents green. Add a fourth number for transparency: (0,
255, 0, 127) is 50% transparent.

The display window is the base Surface on which all other Surfaces are drawn.
The pygame.display module controls and provides information about the
display window. Use the set_mode() function to create a new display window,
and the update() function redraw the display every frame.

To load an image from a file into a Surface to be displayed, use the load()
function from the pygame.image module. Once you have a display Surface you
can add images to it by creating a new Surface object and using the blit()
function to combine them:

import pygame

pygame.init()
screen = pygame.display.set_mode((450, 450))
background = pygame.image.load("background.png") 
background.convert_alpha() 
screen.blit(background, (0, 0)) 
while True:
    pygame.display.update()

Loads a background image that needs to be in the same directory as
the Python program.

The convert_alpha() function changes the format of the Surface to
match the current display. This isn’t required, but is suggested as it
will speed image compositing.

By default the screen Surface will be black. The blit() function
combines the background Surface with a black background.

Here’s an example of combining two images (see Figure 4-1):

import pygame

pygame.init()
screen = pygame.display.set_mode((450, 450))
background = pygame.image.load("background.png").convert_alpha()
theremin = pygame.image.load("theremin.png").convert_alpha()
screen.blit(background, (0, 0))
screen.blit(theremin, (135, 50))
while True:
    pygame.display.update()

Animation and Multimedia in Python 47

www.it-ebooks.info

http://www.it-ebooks.info/


Figure 4-1. Blitting two images together.

The pygame.transform module provides functions for rotating and scaling
surfaces. You can get access to the individual pixels of a Surface using the
functions of the pygame.surfarray module.

Surfaces are always rectangular images when created; even though the
transparent areas of the previous example Surface were combined to make
it look non-rectangular, the Surface is still a rectangle. If you want a Surface
with a non-rectangular boundary (for pixel-perfect collision detection, for
example) you can set a mask from another surface with the pygame.mask
module. Masks are described in more detail in the game programming re-
sources at the end of the chapter.

Drawing on Surfaces
You saw an example of the pygame circle drawing function previously; the
pygame.draw module provides several more for drawing rectangles, lines,
arcs, and ellipses. The pygame.gfxdraw module is another way of drawing
shapes. It provides a few more options but is considered experimental and
the API may change.

To draw text on the screen you first create a new Font object (provided by the
pygame.font module), then use that to load a font and render the text. To find
a list of all of the fonts available on your Raspberry Pi, use the py
game.font.get_fonts() function:

import pygame

pygame.init()
for fontname in pygame.font.get_fonts():
    print fontname

As you can see, there are few fonts available with the base Raspbian distri-
bution. Use the SysFont object to render some text using the freeserif font:

48 Getting Started with Raspberry Pi

www.it-ebooks.info

http://www.it-ebooks.info/


import pygame

pygame.init()
screen = pygame.display.set_mode((725, 92))
font = pygame.font.SysFont("freeserif", 72, bold = 1)
textSurface = font.render("1 Theremin Per Child!", 1,
                          pygame.Color(255, 255, 255))
screen.blit(textSurface, (10, 10))
while True:
    pygame.display.update()

If you want more fonts, try:

sudo apt-get install ttf-mscorefonts-installer
sudo apt-get install ttf-liberation

Handling Events and Inputs
In Pygame, user-initiated events like pressing a key or clicking or moving the
mouse are all captured as an Event object and put in the event queue, where
they accumulate until your program does something with them. The py
game.event module provides functions for handling all the events that have
piled up since the last time you looked at the queue. You can even create your
own event types to implement a messaging system. Below is a simple ex-
ample that uses the event queue to expand on the red circle program; in each
frame, the circle is redrawn at the current mouse location and the radius gets
larger the closer it is to the edge of the window (see Figure 4-2).

Figure 4-2. Output of the Pygame events example.

Animation and Multimedia in Python 49

www.it-ebooks.info

http://www.it-ebooks.info/


import pygame
from pygame.locals import * 

width, height = 640, 640
radius = 0
mouseX, mouseY = 0, 0 

pygame.init()
window = pygame.display.set_mode((width, height))
window.fill(pygame.Color(255, 255, 255))

fps = pygame.time.Clock() 

while True: 
    for event in pygame.event.get(): 
        if event.type == MOUSEMOTION: 
            mouseX, mouseY = event.pos
        if event.type == MOUSEBUTTONDOWN: 
            window.fill(pygame.Color(255, 255, 255))
    radius = (abs(width/2 - mouseX)+abs(height/2 - mouseY))/2 + 1 
    pygame.draw.circle(window, 
                       pygame.Color(255, 0, 0),
                       (mouseX, mouseY),
                       radius, 1)
    pygame.display.update()
    fps.tick(30) 

The pygame.locals module defines a number of constants like MOUSE
MOTION. Importing it here allows us to use these constants without
prepending pygame. to them.

Variables to store the mouse coordinates.

This function initializes an object that we’ll use as a frame counter.
With this fps variable (Frames Per Second) you can wait a certain
amount in each frame to achieve a regular framerate.

Loop forever; each time through the loop is one frame.

Loop through the event queue. Each time through, the event variable
will hold the next event in the queue.

If the event is a mouse movement, update the variable holding the
mouse location.

If the event is a mouse click, clear the screen.

Vary the radius based on how far away from the center the mouse is.

Draw the circle.

Wait so that the frame rate is 30 fps.

Other modules that are handy for dealing with events and user input are:

50 Getting Started with Raspberry Pi

www.it-ebooks.info

http://www.it-ebooks.info/


pygame.time
A module for monitoring time.

pygame.mouse
A module to get information about the mouse.

pygame.key
A module to get information about the keyboard, and many constants
representing the keys.

pygame.joystick
A module for working with a joystick.

Going Full Screen
To run your program in a window that takes over the whole screen, set the
pygame.FULLSCREEN flag when you set the display mode. When in full screen
mode, make sure to have some way of getting out of the script, since you
won’t be able to kill it with Control-C:

import pygame
import random
from time import sleep

running = True
pygame.init()
screen=pygame.display.set_mode((0,0), pygame.FULLSCREEN)
while running:
    pygame.draw.circle(
        screen,
        pygame.Color(int(random.random()*255),
                     int(random.random()*255),
                     int(random.random()*255)),
        (int(random.random()*1500),
         int(random.random()*1500)),
        int(random.random()*500), 0)
    pygame.display.update()
    sleep(.1)
    for event in pygame.event.get():
        if event.type == pygame.KEYDOWN:
            running = False
pygame.quit()

The script will exit when any key on the keyboard is pressed.

Animation and Multimedia in Python 51

www.it-ebooks.info

http://www.it-ebooks.info/


Sprites
Most of the movable and controllable graphical elements of a game will be
handled as sprites. The pygame.sprite module provides all of the basic func-
tions to draw sprites on the screen and handle collisions between them.
Sprites can also be grouped to be controlled and updated together. A com-
plete working game using sprites is beyond the scope of this book (the “Fur-
ther Reading” (page 56) section has some more resources).

Sprites are best used when you’ll be creating several screen elements that
share a lot of the same code. Here is an example of how to handle creating
and updating a couple of sprites; the result is two balls that bounce off the
sides of the screen. You can add other balls by creating a new sprite with a
different starting coordinate, direction, and speed.

import pygame

class Ball(pygame.sprite.Sprite): 

    def __init__(self, x, y, xdir, ydir, speed): 
        pygame.sprite.Sprite.__init__(self)
        self.image = pygame.Surface([20, 20])
        self.image.fill(pygame.Color(255, 255, 255))
        pygame.draw.circle(self.image,
                           pygame.Color(255,0,0),
                           (10,10), 10, 0)
        self.rect = self.image.get_rect()
        self.x, self.y = x, y 
        self.xdir, self.ydir = xdir, ydir
        self.speed = speed

    def update(self): 
        self.x = self.x + (self.xdir * self.speed)
        self.y = self.y + (self.ydir * self.speed)
        if (self.x < 10) | (self.x > 490):
            self.xdir = self.xdir * -1
        if (self.y < 10) | (self.y > 490):
            self.ydir = self.ydir * -1
        self.rect.center = (self.x, self.y)

pygame.init()
fps = pygame.time.Clock()
window = pygame.display.set_mode((500, 500))
ball = Ball(100, 250, 1, 1, 5) 
ball2 = Ball(400, 10, -1, -1, 8)

while True:
    ball.update() 
    ball2.update()
    window.fill(pygame.Color(255,255, 255))

52 Getting Started with Raspberry Pi

www.it-ebooks.info

http://www.it-ebooks.info/


    window.blit(ball.image, ball.rect) 
    window.blit(ball2.image, ball2.rect)
    pygame.display.update()
    fps.tick(30)

The class statement creates a new object (a Ball) that is based on the
Sprite object. You can then define your own functions for drawing the
sprite, and how the sprite behaves each time it is updated.

This function is called when the Ball() function is called to create a
new ball.

These variables are stored as part of each instance of Ball. Each Ball
in essence carries around its own set of variables.

The update() function is called with each frame. The saved position is
moved based on the saved direction and speed, then tested to see if
it has come near the edge. If so, the direction on that particular axis is
reversed.

Create two balls with different starting locations, directions, and
speed.

Update the ball with a new location based on its saved position,
direction, and speed.

Draw the ball at its current location.

Playing Sound
In Pygame you can load sound files and play them back using the pygame.mix
er module, or you can use the pygame.midi module to send MIDI events to
other software running on the Pi or MIDI hardware hooked up to the USB
port. The following example plays back a WAV-formatted sound sample
(which you can download from the Internet Archive).

import pygame.mixer
from time import sleep

pygame.mixer.init(48000, -16, 1, 1024)

sound = pygame.mixer.Sound("WilhelmScream.wav")
channelA = pygame.mixer.Channel(1)
channelA.play(sound)
sleep(2.0)

An audio file (in the WAV format) is loaded and associated with a channel.
The mixer actually plays back each channel in a separate process, so multiple
sounds will play at the same time. The sleep() at the end is needed so the
main process doesn’t end before the sound has finished playing.

Animation and Multimedia in Python 53

www.it-ebooks.info

http://archive.org/details/WilhelmScreamSample
http://www.it-ebooks.info/


The mixer approach for playing back sound files is discussed further in
Chapter 8 in the Simple Soundboard example. The MIDI capabilities of Py-
game have intriguing possibilities; for example you can easily create a custom
MIDI controller. As of this writing, the state of software synthesizers that work
on Raspbian is kind of rough, and the analog audio output is not as good as
the HDMI audio output. That will improve, however, and you can always use
an external USB MIDI device. To find information about the MIDI devices
connected to your Raspbery Pi, use:

import pygame
import pygame.midi 

pygame.init()
pygame.midi.init() 
for id in range(pygame.midi.get_count()): 
    print pygame.midi.get_device_info(id) 

The midi module is not imported with the base pygame module.

It also must be initialized separately.

The get_count() function returns the number of MIDI-capable devices
connected to the Pi either by USB, software synthesizers, or other
virtual MIDI devices.

Prints information about the device.

If you plug in an external MIDI keyboard you’ll get something that looks like
this for output:

('ALSA', 'Midi Through Port-0', 0, 1, 0)
('ALSA', 'Midi Through Port-0', 1, 0, 0)
('ALSA', 'USB Uno MIDI Interface MIDI 1', 0, 1, 0)
('ALSA', 'USB Uno MIDI Interface MIDI 1', 1, 0, 0)

The first string tells you that you’re using the Advanced Linux Sound Archi-
tecture (ALSA), and the second tells describes each MIDI port. The last three
numbers indicate whether the port is an input device, output device, and
whether it is open or not. You can think of the example above as four different
MIDI ports labeled 0 through 3:

Midi Through Port-0 (0, 1, 0)
Port 0, an output used to talk to any software synthesizers you may have
running on the Pi.

Midi Through Port-0 (1, 0, 0)
Port 1, an input used to take MIDI controls from any software controllers
you may have running on the Pi.

54 Getting Started with Raspberry Pi

www.it-ebooks.info

http://www.it-ebooks.info/


USB Uno MIDI Interface MIDI 1 (0, 1, 0)
Port 2, an output to an external USB MIDI interface hooked up to a key-
board.

USB Uno MIDI Interface MIDI 1 (1, 0, 0)
Port 3, an input from an external USB MIDI interface hooked up to a
keyboard.

With this is mind, you can hook up an external keyboard with a USB interface
and use Pygame to control it, as in the following example:

import pygame
import pygame.midi
from time import sleep

instrument = 0 
note = 74
volume = 127

pygame.init()
pygame.midi.init()

port = 2  
midiOutput = pygame.midi.Output(port, 0)
midiOutput.set_instrument(instrument)
for note in range(0, 127):
    midiOutput.note_on(note, volume) 
    sleep(.25)
    midiOutput.note_off(note, volume)
del midiOutput
pygame.midi.quit()

These are MIDI values, typically in the range 0 to 127

Open port 2, the ouput associated with the USB MIDI controlled
keyboard.

Send a note on control signal, wait, then turn the note off.

It’s clear that the Raspberry Pi has a lot of potential as a platform for music
making.

Playing Video
Pygame can also be used to play videos using the the pygame.movie module.
Video files must be encoded in the MPEG1 format. If you have a video in a
different format, try the ffmpeg utility to convert between formats (you’ll
have to run sudo apt-get install ffmpeg first). To play it back, simply create
a new Movie object and call the play() function:

Animation and Multimedia in Python 55

www.it-ebooks.info

http://www.it-ebooks.info/


import pygame
from time import sleep
pygame.init()
screen = pygame.display.set_mode((320,240))
movie = pygame.movie.Movie("foo.mpg")
movie.play()
while True:
    if not(movie.get_busy()):
        print("rewind")
        movie.rewind()
        movie.play()
    if pygame.QUIT in [e.type for e in pygame.event.get()]:
        break

If the video has an audio track you’ll need to close Pygame’s audio mixer
before playing the movie. To tell the mixer to quit include this line before you
play:

pygame.mixer.quit()

Even More Examples
There’s a whole Pygame module dedicated to more complete
example programs: pygame.examples. You can find the source
code for these examples in the /usr/share/pyshared/pygame/
examples directory.

Further Reading
Pygame official documentation

The official documentation is a bit sparse in places, but hopefully you’ll
be able to navigate it after reading this chapter.

Making Games with Python & Pygame and Invent Your Own Computer
Games with Python by Al Sweigart

Two Creative Commons-licensed books; the games developed in these
books are bundled with the Raspberry Pi.

56 Getting Started with Raspberry Pi

www.it-ebooks.info

http://www.pygame.org/docs/
http://inventwithpython.com/
http://inventwithpython.com/
http://inventwithpython.com/
http://www.it-ebooks.info/


5/Scratch on the Pi

Scratch was developed by the MIT Media Lab’s
Lifelong Kindergarten group as a new way of
teaching programming to young people. Pro-
grams are constructed from colorful blocks,
each of which performs an operation. The self-
contained blocks eliminate the syntax prob-
lems that stymie many first timers using text-
based programming languages.
To say that Scratch is not a powerful programming language misses the
point, which is that it is a friendly environment for creating and making things
happen quickly. A young programmer can see the blocks of code highlight
as they’re executed, and blocks can be changed and the effects seen in real
time.

As you’ll see, all Scratch programs are aimed at manipulating sprites on a
stage. There’s a large community of Scratch users, and the ability to share
sprites and code with the community is baked right into the platform.

Hello Scratch
To show how easy it is to get started programming in Scratch, we’ll start right
in with a very simple “cat in the box” program. When you open up Scratch
you’ll see a single window open with several panes. The role of each pane is
labelled in Figure 5-1. You can start Scratch by double-clicking its desktop
icon, or by clicking the desktop menu in the lower left and choosing Educa-
tion→Scratch.

Every Scratch program involves Sprites interacting on the Stage. Sprites are
controlled by scripts that are built with a collection of blocks that are pulled
from the Block Palette. When you open a new document you’ll get the default
Scratch cat sprite. If you don’t want the cat, you can delete it (right click on
the sprite in the Sprite List for the menu), then draw your own or grab a ran-
dom surprise sprite created by someone else in the Scratch community.

57

www.it-ebooks.info

http://www.it-ebooks.info/


Figure 5-1. The Scratch environment; everything is contained in one win-
dow, with subpanels for the block palettes, the scripting and costume area,
the sprite list and the stage.

The Scripting Area shows the script belonging to the currently selected
sprite. Click on the cat in the sprite list and you’ll see an empty scripting area
for the sprite. You can build a script anywhere in this frame. If you create
another sprite, you’ll need to click on it to display its script.

Scripts are built up by dragging blocks from the Palette to the Scripting Area.
Many blocks can contain other blocks, and how they fit together are indicated
by their shape. There are three types of blocks in Scratch, as shown in
Figure 5-2:

Hat blocks
The when green flag clicked block is an example of a hat block, which sits
at the top of a stack of blocks and waits for an event to happen.

Stackable blocks
Blocks with an indentation on top and/or bump on the bottom fit to-
gether with other stackable blocks. The blocks are executed in top down
order.

58 Getting Started with Raspberry Pi

www.it-ebooks.info

http://www.it-ebooks.info/


Reporter blocks
Reporter blocks have rounded or pointed edges, and fit inside the input
areas of other blocks. Reporter blocks may be variables, or may provide
information like the mouse coordinates or some condition.

Figure 5-2. There are three types of blocks in Scratch: hat blocks (left),
stackable blocks (center), and reporter blocks (right).

Start a new script by selecting the Control block palette, and drag this block
to the scripting area:

The next step is to use the stackable forever block that will execute all of the
commands contained within it over and over under the script is stopped:

Be sure to practice reorganizing the blocks. When you pick up a block you
also pick up all of the blocks attached after it. To separate a block you will
often have to separate a whole stack of blocks, then grab the children of the
block you want to remove. You can also right click on a block to duplicate it
(and its children) and get help.

Scratch on the Pi 59

www.it-ebooks.info

http://www.it-ebooks.info/


Next, select the Motion palette, and drag a turn block and place it in the for-
ever loop.

At this point you can click the green flag in the upper right of the stage and
start executing the script. One of the neat things about Scratch is that you
can make changes on the fly and see them immediately take effect on stage.
This is a really good way to debug your program on the fly.

When you click the green flag, a message is sent to all scripts
in the project to start running (the stop sign sends a stop sig-
nal).

If you look at the turn block you’ll see that the number of degrees to rotate
is in a rounded rectangle shaped block. You can edit the angle directly, or you
can replace it with another block of the same shape. You can have the sprite
perform a random walk by making some changes.

First, replace the default value with the pick random block from the Operators
palette. After you place the block, change the values so they select a random
number between -10 and 10.

60 Getting Started with Raspberry Pi

www.it-ebooks.info

http://www.it-ebooks.info/


Now add a move block from the Motion palette, which will move the sprite a
number of pixels in the direction it is currently facing. The direction is shown
as a number and a blue line in the info bar above the scripting area. As soon
as you place the block the sprite will start moving in a random walk.

Finally, to keep the sprite on the stage, add a if on edge, bounce block from
the motion palette:

That’s all there is to writing a Scratch script!

The Stage
The stage is the frame in the upper right corner where all of your sprites carry
out their actions and interactions. Like sprites, the stage can have scripts
that change its appearance or behavior. You can also paint backgrounds in
the Backgrounds tab of the scripting area.

Scratch on the Pi 61

www.it-ebooks.info

http://www.it-ebooks.info/


The coordinate system in Scratch is a little different than other multimedia
environments like Pygame; it follows more of a math class model, where the
origin (0, 0) is actually in the center of the stage. The visible part of the stage
extends from (-240, 180) to (240, -180) as shown in Figure 5-3. Sprites can
continue off stage if you let them, however; if you select a sprite you’ll see
the current position at the top of the script area, and the location of the cursor
at the bottom of the stage.

Figure 5-3. The Scratch coordinate system, with the origin in the center of
the stage.

Two More Things to Know About
Sprites
There are two additional tabs in the scripting area that you’ll be using: Cos-
tumes and Sounds.

Costumes are a collection of images that the sprite can change into. Cos-
tumes can be used to create looping animations or to show different states
that the sprite is in (for example, an exploding spaceship). For example, cre-
ate a new sprite that is an open eye; we’ll use changing costumes to make it
blink. Select Paint New Sprite (it’s the icon to the right of “New sprite” in the
State area) and draw something like this, then click OK:

62 Getting Started with Raspberry Pi

www.it-ebooks.info

http://www.it-ebooks.info/


Select the Costumes tab, where you’ll see the image you just drew. Change
the name of the costume to open. Click the Copy button to create a new
costume. Click Edit to erase the pupil and draw a closed eyelid, then click OK
and change the name of this costume to shut:

Next select the Scripts tab and drag these blocks to create a script that will
blink the eye every second:

Scratch on the Pi 63

www.it-ebooks.info

http://www.it-ebooks.info/


Finally, you can add sound effects to a sprite in the Sounds tab. Just hit record
and you’ll get the built-in Sound Recorder tool. You’ll need an external USB
sound card or microphone to be able to record sound. Give the sound effect
a name and you can play it back using the play sound or play sound until
done blocks.

A Bigger Example: Astral Trespassers
In the game Astral Trespassers, the player must shoot at incoming alien
spaceships; the game is over when an alien hits the player’s planet defending
cannon. This simple game will show how all the pieces fit together.

First select File→New, then save the new game by selecting File→Save As.
Next you’ll need to create some sprites. Control-click or right click on the cat
in the Sprite list and select Delete from the menu. Then create new sprites
by painting your own or loading from an image file. I drew the 5 sprites in
Figure 5-4 and scanned them in as a PNG.

You’ll see that the sprites are added to the stage as you create them, and they
are probably not the size you want them to be. Select the Grow Sprite or
Shrink Sprite tool just above the Stage and click on the sprite to make it larger
or smaller. You’ll also want to rename the sprites to use the names shown in
Figure 5-4.

Figure 5-4. The 5 sprites for Astral Trespassers.

The aliens and the cannon each have two states; normal and exploded. We’ll
handle this by creating a costume for each state, as shown in Figure 5-5.

64 Getting Started with Raspberry Pi

www.it-ebooks.info

http://www.it-ebooks.info/


Figure 5-5. Create two costumes for each sprite, one for the normal state
and one for an explosion. Name the costumes as shown here.

Each sprite will have its own script that will determine how it acts in the game.
For clarity each action will be a complete standalone scripts that will all run
at the same time.

Appendix B shows the integrated scripts for each sprite, and
also shows how to add support for multiple repeating bullets.

Let’s start with the first alien. Select the sprite and drag the following blocks
to the scripting area:

This block will move the sprite to its starting location and make sure it is
visible and in its non-exploded state.

Scratch on the Pi 65

www.it-ebooks.info

http://www.it-ebooks.info/


Next, drag and assemble the following blocks somewhere in the scripting
area:

Hit the green flag and you’ll see this is pretty much the cat in the box example
from the beginning of the chapter. Since there are three sprites here, you’ll
need to handle what happens when the sprites collide. If two aliens collide,
one way to make sure they don’t overlap is to turn 90 degrees on collision:

66 Getting Started with Raspberry Pi

www.it-ebooks.info

http://www.it-ebooks.info/


If the bullet is touching the alien, we want it to explode:

The explosion is handled by changing to the explosion costume, applying a
special effect for a short time, then hiding the sprite which takes it off the
stage. After a few seconds, the alien will return to a random location at the
top of the screen.

That’s all the scripting we need for the alien. If you have multiple sprites that
do the same (or similar) thing, you can copy code between sprites by right
clicking on a block and selecting duplicate. Drag the duplicated blocks to the
second alien and repeat for each snippet of blocks. Now select the second
alien and change the starting location and the collision test:

Scratch on the Pi 67

www.it-ebooks.info

http://www.it-ebooks.info/


Next select the cannon sprite. First move it into position and make sure it is
visible and in the non-exploded state:

The cannon can only move left and right, controlled by the keyboard arrow
keys). Here is the code to respond to keyboard presses:

Test to see if the cannon is touching either alien with the touching block from
the sensing palette. If it is, make the cannon explode in a similar manner to
the aliens. After the explosion, the cannon will broadcast a message to all of
the other sprites that the game is over. This message will be picked up by the
Game Over sprite, which will stop all the scripts.

68 Getting Started with Raspberry Pi

www.it-ebooks.info

http://www.it-ebooks.info/


Move on to the bullet sprite and add these code blocks to move it into place.
The bullet will be hidden until the space bar is pressed:

Each time the space bar is pressed, the bullet will be moved to the cannon’s
current location, made visible, and then will move toward the top of the
screen until it touches top edge.

Scratch on the Pi 69

www.it-ebooks.info

http://www.it-ebooks.info/


Here are the blocks to handle the space bar:

The final sprite is the Game Over message. It’s role is simple; hide until it
receives the GameOver message, at which point it appears and stops all the
scripts:

That’s the end of the game; if you want to see all the blocks together, see
Appendix B.

Scratch and the Real World
If you poke around the sensing palette you’ll notice two interesting blocks:
sensor and sensor value. These blocks are used to interact with an external
sensor accessory called the PicoBoard (see Figure 5-6). The PicoBoard has
a microcontroller on board that reads the sensors and sends the values to
Scratch over a USB connection.

The PicoBoard provides a button, a slider, a sound sensor, and jacks for four
arbitrary analog inputs. Special alligator clip connectors can be used to take
analog samples from many different sources.

70 Getting Started with Raspberry Pi

www.it-ebooks.info

http://www.it-ebooks.info/


Figure 5-6. The PicoBoard is a sensor accessory that is designed to work
with Scratch.

The PicoBoard send the sensor values to Scratch using its own PicoBoard
protocol. The S4A Project (Scratch for Arduino) has implemented the same
protocol for Arduino, so you can connect to the real world that way as well.
S4A requires a custom version of Scratch that’s available on their project
page.

Sharing Your Programs
One of the really interesting aspects of Scratch is that there’s a community
built right into the program. Besides Random Sprite tool (which will grab

Scratch on the Pi 71

www.it-ebooks.info

http://seaside.citilab.eu/scratch/arduino
http://www.it-ebooks.info/


random sprites from other Scratch users), there’s also a sharing feature that
will let you package and upload your programs to MIT’s Scratch project
page. At last count there were over 1.2 million Scratch users, who have shared
over 2.8 million programs.

One reason there are so many shared projects is that it is very easy to do so.
Once you create an account at scratch.mit.edu, just select Share This Project
Online… under the Share menu. You’ll be prompted for some information
(Figure 5-7) and your project will be uploaded to the site. There’s a 10MB size
limit, so you might need to compress some of your images or sounds first
(see the options under the Edit menu). The Scratch project page is a great
place to go to see what is possible with the environment.

Figure 5-7. When you’ve got something good, share it on the MIT Scratch
project site using the built-in sharing tool. Unfortunately, the web site uses
Flash so you won’t be able to use it directly from the Raspberry Pi.

72 Getting Started with Raspberry Pi

www.it-ebooks.info

http://scratch.mit.edu/
http://scratch.mit.edu/
http://scratch.mit.edu/
http://www.it-ebooks.info/


Going Further
The main Scratch wiki

MIT’s repository for Scratch referene material.

MIT’s Scratch page
This is the Scratch community site: literally millions of projects and reg-
istered members.

Scratch on the Pi 73

www.it-ebooks.info

http://wiki.scratch.mit.edu/wiki/Scratch_Wiki
http://scratch.mit.edu/
http://www.it-ebooks.info/


www.it-ebooks.info

http://www.it-ebooks.info/


6/Arduino and the Pi

As you’ll see in the next few chapters, you can
use the GPIO pins on the Raspberry Pi to con-
nect to sensors or things like blinking LEDs and
motors. If you have experience using the Ardu-
ino microcontroller development platform, you
can also use that alongside with the Raspberry
Pi.
When the Raspberry Pi was first announced, a lot of people asked if this was
an Arduino-killer. For about the same price you can get much more process-
ing power; why use Arduino when you have a Pi? It turns out the two platforms
are actually complementary, and the Raspberry Pi makes a great host for the
Arduino. There are a few other cases where you might want to Arduino and
the Pi together:

• There are lots of libraries and sharable examples for the Arduino.

• If you already have a good working Arduino project that you want to
supplement with more processing power. For example, maybe you have
a MIDI controller that was hooked up to a synthesizer, but now you want
to upgrade to synthesizing the sound directly on the Pi.

• When you’re dealing with 5V logic levels. The Pi operates at 3.3V, and its
pins are not tolerant of 5V.

• You may be prototyping something a little out of your comfort zone and
may make some chip-damaging mistakes. I’ve seen students try to drive
motors directly from a pin on the Arduino (don’t try it); it was easy to pry
out the damaged microcontroller chip out of its socket and replace it
(less than $10 usually). No so with the Raspberry Pi.

• When you have a problem that requires exact control in real time, such
as a controller for a 3D printer. As we saw in Chapter 3 Raspbian is not
a Real Time operating system, and programs can’t necessarily depend
on the same “instruction per clock cycles” rigor of a microcontroller.

The examples in this section assume that you know at least the basics of
using the Arduino development board and Integrated Development Environ-

75

www.it-ebooks.info

http://www.it-ebooks.info/


ment (IDE). If you don’t have a good grasp of the fundamentals, Getting
Started with Arduino by Massimo Banzi is a great place to start. The official
Arduino tutorials are quite good as well, and provide a lot of opportunities to
cut and paste good working code.

Figure 6-1. Arduino and the Raspberry Pi are BFFs.

Installing Arduino in Raspbian
To program an Arduino development board you need to hook it up to a com-
puter with a USB cable, then compile and flash a program to the board using
the Arduino IDE. You can do this with any computer, or you can use your
Raspberry Pi as a host to program the Arduino.

Using the Raspberry Pi to program the Arduino will be quicker to debug, but
compiling will be a little slower on the Pi than on a modern laptop or desktop
computer. It’s not too bad though, and you’ll find that compiling will take less
time after the very first compile, as Arduino only compiles code that has
changed since the last compilation.

To install the Arduino IDE on the Raspberry Pi:

sudo apt-get update 
sudo apt-get install arduino 

Make sure you have the latest package list

Download the Arduino package

76 Getting Started with Raspberry Pi

www.it-ebooks.info

http://shop.oreilly.com/product/0636920021414.do
http://shop.oreilly.com/product/0636920021414.do
http://arduino.cc/en/Tutorial/HomePage
http://www.it-ebooks.info/


This command will install Java plus a lot of other dependencies. The Arduino
environment will appear under the Electronics section of the program menu
(don’t launch it just yet though).

If you’re running the Pi headless you can just plug the Arduino into one of the
open USB ports. If you don’t have an open USB port, you may be able to use
a free port on your keyboard, or else you’ll need a USB hub. The USB con-
nection should be able to provide enough power for the Arduino, but you
might want to power the Arduino separately for good measure.

Note that you’ll need to plug the Arduino USB cable in after
the Raspberry Pi has booted up. If you leave it plugged in at
boot time the Raspberry Pi may hang as it tries to figure out
all the devices on the USB bus.

When you launch the Arduino IDE, it polls all the USB devices and builds a
list that is shown in the Tools→Serial Port menu. In order to access the serial
port you’ll need to make sure that the pi user has permission to do so. You
can do that by adding the pi user to the tty and dialout groups. You’ll need to
do this before running the Arduino IDE.

sudo usermod  -a -G  tty pi
sudo usermod -a -G dialout pi

usermod is a Linux program to manage users

-a -G puts the user (pi) in the specified group (tty, then dialout)

Now you can run Arduino. Click Tools→Serial Port and select the serial port
(most likely /dev/ttyACM0), then click Tools→Board select the type of Ar-
duino Board you have (e.g. Uno). Click File→Examples→01.Basics→Blink to
load a basic example sketch. Click the Upload button in the toolbar or choose
File→Upload to upload the sketch, and after the sketch loads, the Arduino
light will start blinking.

Finding the Serial Port
If, for some reason, /dev/ttyACM0 doesn’t work, you’ll need to do a little
detective work. To find the USB serial port that the Arduino is plugged into
without looking at the menu, try the following from the command line.
Without the Arduino connected, type:

ls /dev/tty*

Arduino and the Pi 77

www.it-ebooks.info

http://www.it-ebooks.info/


Plug in Arduino, then try the same command again and see what changed.
On my Raspberry Pi, at first I had /dev/ttyAMA0 listed (which is the onboard
USB hub). When I plugged in the Arduino /dev/ttyACM0 popped up in the
listing.

Improving the User Experience
While you’re getting set up, you may notice that that quality of the default
font in the Arduino editor is less than ideal. You can improve it by downloading
the open source font Inconsolata. To install, type:

sudo apt-get install ttf-inconsolata

Then edit the Arduino preferences file:

nano ~/.arduino/preferences.txt

and change the following lines to:

editor.font=Inconsolata,medium,14
editor.antialias=true

When you restart Arduino, the editor will use the new font.

Talking in Serial
To communicate between the Raspberry Pi and the Arduino over a serial
connection, you’ll use the built-in Serial library on the Arduino side, and the
Python pySerial module on the Raspberry Pi side. To install the serial module:

sudo apt-get install python-serial python3-serial

Open the Arduino IDE and upload this code to the Arduino:

void setup() {
  Serial.begin(9600);
}

void loop() {
  for (byte n = 0; n < 255; n++) {
   Serial.write(n);
   delay(50);
  }
}

This counts upward and sends each number over the serial connection.

78 Getting Started with Raspberry Pi

www.it-ebooks.info

http://pyserial.sourceforge.net/
http://www.it-ebooks.info/


Note that in Arduino Serial.write() sends the actual number;
the string “123” instead of the number 123, use the Seri
al.print() command.

Next you’ll need to know which USB serial port the Arduino is connected to
(see “Finding the Serial Port” (page 77)). Here’s the Python script; if the port
isn’t /dev/ttyACM0, change the value of port. (See Chapter 3 for more on
Python). Save it as SerialEcho.py and run it with python SerialEcho.py:

import serial

port = "/dev/ttyACM0"
serialFromArduino = serial.Serial(port,9600) 
serialFromArduino.flushInput() 
while True:
   if (serialFromArduino.inWaiting() > 0):
       input = serialFromArduino.read(1) 
       print(ord(input)) 

Open the serial port connected to the Arduino.

Clear out the input buffer.

Read one byte from the serial buffer.

Change the incoming byte into an actual number with ord().

You won’t be able to upload to Arduino when Python has the
serial port open, so make sure you kill the Python program with
Control-C before you upload the sketch again. You will be able
to upload to an Arduino Leonardo or Arduino Micro, but doing
so will break the connection with the Python script, so you’ll
need to restart it anyhow.

The Arduino is sending a number to the Python script, which interprets that
number as a string. The input variable will contain whatever character maps
to that number in the ASCII table. To get a better idea, try replacing the last
line of the Python script with this:

print(str(ord(input)) + " = the ASCII character " + input + ".")

Arduino and the Pi 79

www.it-ebooks.info

http://en.wikipedia.org/wiki/ASCII
http://www.it-ebooks.info/


Setting the Serial Port as an Argument
If you want to set the port as a command line argument, use the sys module
to grab the first argument:

import serial, sys

if (len(sys.argv) != 2):
    print("Usage: python ReadSerial.py port")
    sys.exit()
port = sys.argv[1]

After you do this, you can run the program like this: python SerialE
cho.py /dev/ttyACM0.

The first simple example just sent a single byte; this could be fine if you are
just sending a series of event codes from the Arduino. For example, if the left
button is pushed, send a 1, if the right send 2. That’s only good for 255 discrete
events, though; more often you’ll want to send arbitrarily large numbers or
strings. If you’re reading analog sensors with the Arduino, for example, you’ll
want to send numbers in the range 0 to 1023.

Parsing arbitrary numbers that come in one byte at a time can be trickier
than you might think in many languages. The way Python and PySerial han-
dles strings makes it almost trivial, however. As a simple example, update
your Arduino with the following code that counts from 0 to 1024.

void setup() {
 Serial.begin(9600);
}

void loop() {
 for (int n = 0; n < 1024; n++)
   Serial.println(n, DEC);
   delay(50);
  }
}

The key difference is in the println() command. In the previous example,
the Serial.write() function was used to write the raw number to the serial
port. With println(), the Arduino formats the number as a decimal string
and sends the ASCII codes for the string. So instead of sending the number

80 Getting Started with Raspberry Pi

www.it-ebooks.info

http://www.it-ebooks.info/


254, it sends the string "254\r\n“. The \r represents a carriage return and the
\n represents a newline (these are concepts that carried over from the type-
writer into computing: carriage return moves to the start of the line, newline
starts a new line of text).

On the Python side, you can use readline() instead of read(), which will read
all of the characters up until (and including) the carriage return and newline.
Python has a flexible set of functions for converting between the various data
types and strings. It turns out you can just use the int() function to change
the formatted string into an integer:

import serial

port = "/dev/ttyACM0"
serialFromArduino = serial.Serial(port,9600)
serialFromArduino.flushInput()
while True:
    input = serialFromArduino.readline() 
    inputAsInteger = int(input) 
    print(inputAsInteger * 10) 

Read the whole string into the input variable.

Convert to an integer.

Print it, but multiply by 10 first to prove that it is really an integer and
not a string.

Note that it is simple to adapt this example so that it will read an analog inputs
and send the result; just change the loop to:

void setup() {
 Serial.begin(9600);
}

void loop() {
  int n = analogRead(A0);
  Serial.println(n, DEC);
  delay(100);
}

Assuming you change the Python script to just print inputAsInteger instead
of inputAsInteger * 10, you should get some floating values in the 200 range
if nothing is connected to analog pin 0. With some jumper wire, connect the
pin to GND and the value should be 0. Connect it to the 3V3 pin and you’ll
see a value around 715, and 1023 when connected to the 5V pin.

Arduino and the Pi 81

www.it-ebooks.info

http://www.it-ebooks.info/


Going Further
You’ll find that the setup is almost trivial once you have the right software,
and many projects will look the same as far as the code for basic communi-
cation goes. As with any form of communication, things get tricky once you
get past “hello world”; you’ll need to create protocols (or find an existing
protocol and implement it) so that each side understands the other. The de-
tails of serial protocols is beyond the scope of this book, but there are a lot
of great examples of how other people have solved problems in the Interfac-
ing with Software section of the Arduino Playground.

Firmata
Hans-Christoph Steiner’s Firmata is an all-purpose serial protocol that
has been around for quite a while. Firmata is simple and human readable;
while it may not be great for all applications it is a good place to start.

MIDI
If your project is musical, consider using MIDI commands as your serial
protocol. Since MIDI is (basically) just serial, it should Just Work.

Arduino-compatible Raspberry Pi shields
There are a few daughterboards (or shields) on the market that connect
the GPIO pins on the Raspberry Pi with an Arduino-compatible micro-
controller. WyoLum’s A la Mode shield is a good solution, and offers a
few other accessories like a real time clock.

Talk over a network
Finally, you can ditch the serial connection all together and use talk to
the Arduino over a network. A lot of really interesting projects are using
the WebSocket protocol along with the Node.js Javascript platform. The
Noduino project is a good place to start exploring this technology.

Using the serial pins on the Raspberry Pi header
The header on the Raspberry Pi pulls out a number of input and output
pins, including two that can be used to send and receive serial data by-
passing the USB port. To do that you’ll need to first cover the material in
Chapter 8, and make sure that you have a level shifter to protect the
Raspberry Pi 3.3V pins from the Arduino’s 5V pins.

If you’re looking to get deeper into making physical devices communicate, a
good starting point is Making Things Talk by Tom Igoe.

82 Getting Started with Raspberry Pi

www.it-ebooks.info

http://www.arduino.cc/playground/Main/InterfacingWithSoftware
http://www.arduino.cc/playground/Main/InterfacingWithSoftware
http://www.arduino.cc/playground/
http://arduino.cc/en/Reference/Firmata
http://baldwisdom.com/projects/alamode/
http://www.websocket.org/
http://nodejs.org/
http://semu.github.com/noduino/
http://shop.oreilly.com/product/9780596510510.do
http://www.it-ebooks.info/


7/Basic Input and
Output

While the Raspberry Pi is, in essence, a very
inexpensive Linux computer, there are a few
things that distinguish it from laptop and desk-
top machines that we usually use for writing
email, browsing the web, or word processing.
One of the main differences is that the Rasp-
berry Pi can be directly used in electronics
projects because it has general purpose input
and output pins right on the board, shown in
Figure 7-1.

Figure 7-1. Raspberry Pi’s GPIO Pins

These GPIO pins can be accessed for controlling hardware such as LEDs,
motors, and relays, which are all examples of outputs. As for inputs, your
Raspberry Pi can read the status of buttons, switches, and dials, or it can
read sensors like temperature, light, motion, or proximity sensors (among
many others).

83

www.it-ebooks.info

http://www.it-ebooks.info/


One of the drawbacks to the Raspberry Pi is that there’s no
way to directly connect analog sensors, such as light and tem-
perature sensors. Doing so requires a chip called an analog to
digital converter or ADC. See Appendix C for how to read an-
alog sensors using an ADC.

The best part of having a computer with GPIO pins is that you can create
programs to read the inputs and control the outputs based on many different
conditions, as easily as you’d program your desktop computer. Unlike a typ-
ical microcontroller board, which also has programmable GPIO pins, the
Raspberry Pi has a few extra inputs and outputs such as your keyboard,
mouse, and monitor, as well as the Ethernet port, which can act as both an
input and an output. If you have experience creating electronics projects with
microcontroller boards like the Arduino, you have a few more inputs and out-
puts at your disposal with the Raspberry Pi. Best of all, they’re built right in;
there’s no need to wire up any extra circuitry to use them.

Having a keyboard, mouse, and monitor is not the only advantage that Rasp-
berry Pi has over typical microcontroller boards. There are a few other key
features that will help you in your electronics projects:

Filesystem
Being able to read and write data in the Linux file system will make many
projects much easier. For instance, you can connect a temperature sen-
sor to the Raspberry Pi and have it take a reading once a second. Each
reading can be appended to the end of a log file, which can be easily
downloaded and parsed in a graphing program. It can even be graphed
right on the Raspberry Pi itself!

Linux tools
Packaged in the Raspberry Pi’s Linux distribution is a set of core
command-line utilities, which let you work with files, control processes,
and automate many different tasks. These powerful tools are at your
disposal for all of your projects. And since there is an enormous com-
munity of Linux users that depend on these core utilities, getting help is
usually one web search away. For general Linux help, you can usually find
answers at Stack Overflow. If you have a question specific to Raspberry
Pi, try the Raspberry Pi Forum or the Raspberry Pi section of Stack
Overflow.

Languages
There are many programming languages out there and embedded Linux
systems like the Raspberry Pi give you the flexibility to choose whichever
language you’re most comfortable with. The examples in this book will
use shell scripting and Python but they could easily be translated to lan-
guages like C, Java, Perl, or many others.

84 Getting Started with Raspberry Pi

www.it-ebooks.info

http://stackoverflow.com
http://www.raspberrypi.org/phpBB3/
http://raspberrypi.stackexchange.com
http://raspberrypi.stackexchange.com
http://www.it-ebooks.info/


Using Inputs and Outputs
There are a few supplies that you’ll need in addition to the Raspberry Pi itself
in order to try out these basic input and output tutorials. Many of these parts
you’ll be able to find in your local RadioShack, or they can be ordered online
from stores like Maker Shed, Sparkfun, Adafruit, Mouser, or Digi-Key. Here
are a few of the basic parts:

• Solderless breadboard

• LEDs, assorted

• Male-to-male jumper wires

• Female-to-male jumper wires (These are not as common as their male-
to-male counterparts but are needed to connect the Raspberry Pi’s
GPIO pins to the breadboard.)

• Pushbutton switch

• Resistors, assorted

To make it easier to connect breadboarded components to the Raspberry
Pi’s pins, we also recommend Adafruit’s Pi Cobbler Breakout Kit. This elim-
inates the need to use female-to-male jumper wires. The kit comes unas-
sembled so it’s up to you to solder the parts onto the board, but it’s easy and
Adafruit’s tutorial walks you through the process step-by-step. The Pi Cob-
bler Breakout Kit is included, along with the other components listed above
(with the exception of the female-to-male jumper wires, which are not needed
if you have the Pi Cobbler Breakout Kit), in MAKE’s Raspberry Pi Starter Kit
(http://oreil.ly/pikit).

In Figure 7-2, we’ve labeled each pin according to its default GPIO signal
number, which is how you’ll refer to a particular pin in the commands you
execute and in the code that you write. The unlabeled pins are assigned to
other functions by default.

Basic Input and Output 85

www.it-ebooks.info

http://learn.adafruit.com/adafruit-pi-cobbler-kit/overview
http://oreil.ly/pikit
http://www.it-ebooks.info/


Figure 7-2. The default GPIO pins on the Raspberry Pi. In recent revisions
of the board, GPIO pin 21 was swapped for GPIO pin 27.

You may have noticed that one of the pins has two different
GPIO pin numbers in Figure 7-2. In recent versions of the
board, GPIO pin 21 became GPIO pin 27. To determine the ver-
sion of your board, type cat /proc/cpuinfo on the command
line. If your revision number is listed as 0002 or 0003, you have
the first version of the board. If you have a higher number, or
a letter, you have a later version of the board.

Digital Output: Lighting Up an LED
The easiest way to use outputs with the GPIO pins is by connecting an LED,
or light emitting diode. You can then use the Linux command line to turn the
LED on and off. Once you have an understanding of how these commands
work, you’re one step closer to having an LED light up to indicate when you
have new email, when you need to take an umbrella with you as you leave
your house, or when it’s time to go to bed. It’s also very easy to go beyond a
basic LED and use a relay to control a lamp on a set schedule, for instance.

Beginner’s Guide to Breadboarding
If you’ve never used a breadboard (Figure 7-3) before, it’s important to know
which terminals are connected together. In the diagram below, we’ve shaded
the terminal connections on a typical breadboard. Note that the power buses
on the left side are not connected to the power buses on the right side of the
breadboard. You’ll have to use male-to-male jumper cables to connect them
to each other if you need ground and voltage on both sides of the breadboard.

86 Getting Started with Raspberry Pi

www.it-ebooks.info

http://www.it-ebooks.info/


Figure 7-3. Breadboard

1. Using a male-to-female jumper wire, connect pin 25 on the Raspberry
Pi to the breadboard. Refer to Figure 7-2 for the location of each pin on
the Raspberry Pi’s GPIO header.

2. Using another jumper wire, connect the Raspberry Pi’s ground pin to the
negative power bus on the breadboard.

3. Now you’re ready to connect the LED (see Figure 7-4). Before you do
that, it’s important to know that LEDs are polarized: it matters which of
the LED’s wires is connected to what. Of the two leads coming off the
LED, the longer one is the anode and should be connected to a GPIO pin.
The shorter lead is the cathode and should be connected to ground.
Another way to tell the difference is by looking from the top. The flat side
of the LED indicates the cathode, the side that should be connected to
ground. Insert the anode side of the LED into the breadboard in the same
channel as the jumper wire from pin 25, which will connect pin 25 to the
LED. Insert the cathode side of the LED into the ground power bus.

Basic Input and Output 87

www.it-ebooks.info

http://www.it-ebooks.info/


Figure 7-4. Connecting an LED to the Raspberry Pi

1. With your keyboard, mouse, and monitor hooked up, power on your
Raspberry Pi and log in. If you’re at a command line, you’re ready to go.
If you’re in the X Window environment, double click on the LXTerminal
icon on your desktop. This will bring up a terminal window.

2. In order to access the input and output pins from the command line,
you’ll need to run the commands as root, the superuser account on the
Raspberry Pi. To start running commands as root, type sudo su at the
command line and press enter:

pi@raspberrypi ~ $ sudo su
root@raspberrypi:/home/pi#

You’ll notice that the command prompt has changed, indicating that
you’re now running commands as root.

The root account has administrative access to all the functions
and files on the system and there is very little protecting you
from damaging the operating system if you type a command
that can harm it, so exercise caution when running commands
as root. If you do mess something up, don’t worry about it too
much; you can always reimage the SD card with a clean Linux
install. When you’re done working within the root account,
type exit to return to working within the pi user account.

88 Getting Started with Raspberry Pi

www.it-ebooks.info

http://www.it-ebooks.info/


6. Before you can use the command line to turn the LED on pin 25 on and
off, you need to export the pin to the userspace (in other words, make
the pin available for use outside of the confines of the Linux kernel), this
way:

root@raspberrypi:/home/pi# echo 25 > /sys/class/gpio/export

The echo command writes the number of the pin you want to use (25) to
the export file, which is located in the folder /sys/class/gpio. When you
write pin numbers to this special file, it creates a new directory in /sys/
class/gpio that has the control files for the pin. In this case, it created a
new directory called /sys/class/gpio/gpio25.

7. Change to that directory with the cd command and list the contents of
it with ls:

root@raspberrypi:/home/pi# cd /sys/class/gpio/gpio25
root@raspberrypi:/sys/class/gpio/gpio25# ls
active_low  direction  edge  power  subsystem  uevent  value

The command cd stands for “change directory.” It changes the working
directory so that you don’t have to type the full path for every file. ls will
list the files and folders within that directory There are two files that
you’re going to work with in this directory: direction and value.

8. The direction file is how you’ll set this pin to be an input (like a button)
or an output (like an LED). Since you have an LED connected to pin 25
and you want to control it, you’re going to set this pin as an output:

root@raspberrypi:/sys/class/gpio/gpio25# echo out > direction

9. To turn the LED on, you’ll use the echo command again to write the num-
ber 1 to the value file:

root@raspberrypi:/sys/class/gpio/gpio25# echo 1 > value

10. After pressing enter, the LED will turn on! Turning it off is as simple as
using echo to write a zero to the value file:

root@raspberrypi:/sys/class/gpio/gpio25# echo 0 > value

Basic Input and Output 89

www.it-ebooks.info

http://www.it-ebooks.info/


Virtual Files
The files that you’re working with aren’t actually files on the Raspberry Pi’s
SD card, but rather are a part of Linux’s virtual file system, which is a system
that makes it easier to access low-level functions of the board in a simpler
way. For example, you could turn the LED on and off by writing to a particular
section of the Raspberry Pi’s memory, but doing so would require more cod-
ing and more caution.

So if writing to a file is how you control components that are outputs, how do
you check the status of components that are inputs? If you guessed “reading
a file,” then you’re absolutely right. Let’s try that now.

Digital Input: Reading a Button
Simple pushbutton switches like the one in Figure 7-5 are great for controlling
basic digital input and best of all, they’re made to fit perfectly into a bread-
board.

These small buttons are very commonly used in electronics
projects and understanding what’s going on inside of them will
help you as you prototype your project. When looking at the
button as it sits in the breadboard (see Figure 7-5): the top two
terminals are always connected to each other. The same is
true for the bottom two terminals; they’re always connected.
When you push down on the button, these two sets of termi-
nals are connected to each other.

Figure 7-5. Button

90 Getting Started with Raspberry Pi

www.it-ebooks.info

http://www.it-ebooks.info/


When you read a digital input on a Raspberry Pi, you’re checking to see if the
pin is connected to either 3.3 volts or to ground. It’s important to remember
that it must be either one or the other, and if you try to read a pin that’s not
connected to either 3.3 volts or ground, you’ll get unexpected results. Once
you understand how digital input with a pushbutton works, you can start
using components like magnetic security switches, arcade joysticks, or even
vending machine coin accepters.

1. Insert the pushbutton into the breadboard so that its leads straddle the
middle channel.

2. Using a jumper wire, connect pin 24 from the Raspberry Pi to one of the
top terminals of the button.

3. Connect the 3V3 pin from the Raspberry Pi to the positive power bus on
the breadboard.

Be sure that you connect the button to the 3V3 pin and
not the 5V pin. Using more than 3.3 volts on an input pin
will permanently damage your Raspberry Pi.

4. Connect one of the bottom terminals of the button to the power bus.
Now when you push down on the button, the 3.3 volts will be connected
to pin 24.

5. Remember what we said about how a digital input must be connected
to either 3.3 volts or ground? When you let go of the button, pin 24 isn’t
connected to either of those and is therefore floating. This condition will
cause unexpected results, so let’s fix that. Use a 10K resistor (labeled
with the colored bands: brown, black, orange, and then silver or gold) to
connect the input side of the switch to the ground rail, which you con-
nected to the Raspberry Pi’s ground in the output example. When the
switch is not pressed, the pin will be connected to ground.

Since electricity always follows the path of least resistance towards
ground, when you press the switch, the 3.3 volts will go towards the
Raspberry Pi’s input pin, which has less resistance than the 10K resistor.
When everything’s hooked up, it should look like Figure 7-6.

Basic Input and Output 91

www.it-ebooks.info

http://www.it-ebooks.info/


Figure 7-6. Connecting a button to the Raspberry Pi

6. Now that the circuit is built, let’s read the value of the pin from the com-
mand line. If you’re not already running commands as root, type sudo su.

7. As with the previous example, you need to export the input pin to user-
space:

root@raspberrypi:/sys/class/gpio/gpio25# echo 24 > /sys/class/gpio/
export

8. Let’s change to the directory that was created during the export opera-
tion:

root@raspberrypi:/sys/class/gpio/gpio25# cd /sys/class/gpio/gpio24

9. Now set the direction of the pin to input:

root@raspberrypi:/sys/class/gpio/gpio24# echo in > direction

10. To read the value of the of the pin, you’ll use the cat command, which
will print the contents of files to the terminal. The command cat gets its
name because it can also be used to concatenate, or join, files together.
It can also display the contents of a file for you.

root@raspberrypi:/sys/class/gpio/gpio24# cat value
0

92 Getting Started with Raspberry Pi

www.it-ebooks.info

http://www.it-ebooks.info/


11. The zero indicates that the pin is connected to ground. Now press and
hold the button while you execute the command again:

root@raspberrypi:/sys/class/gpio/gpio24# cat value
1

12. If you see the number one, you’ll know you’ve got it right!

To easily execute a command that you’ve previously exe-
cuted, hit the up key until you see the command that you
want to execute and hit enter.

Now that you can use the Linux command line to control an LED or read the
status of a button, let’s use a few of Linux’s built-in tools to create a very
simple project that uses digital input and output.

Project: Cron Lamp Timer
Let’s say you’re leaving for a long vacation early tomorrow morning and you
want to ward off would-be burglars from your home. A lamp timer is a good
deterrent, but hardware stores are closed for the night and you won’t have
time to get one before your flight in the morning. However, since you’re a
Raspberry Pi hobbyist, you have a few supplies lying around, namely:

• Raspberry Pi board

• Breadboard

• Jumper wires, female-to-male.

• PowerSwitch Tail II relay

• Hookup wire

With these supplies, you can make your own programmable lamp timer using
two powerful Linux tools: shell scripts and cron.

Basic Input and Output 93

www.it-ebooks.info

http://www.it-ebooks.info/


Scripting Commands
A shell script is a file that contains a series of commands (just like the ones
you’ve been using to control and read the pins). Take a look at the shell script
below and the explanation of the key lines.

#!/bin/bash # 
echo Exporting pin $1. # 
echo $1 > /sys/class/gpio/export # 
echo Setting direction to out.
echo out > /sys/class/gpio/gpio$1/direction # 
echo Setting pin high.
echo 1 > /sys/class/gpio/gpio$1/value

This line is required for all shell scripts.

“$1” refers to the first command line argument.

Instead of exporting a specific pin number, the script uses the first
command line argument.

Notice that the first command line argument replaces the pin number
here as well.

Save that as a text file called on.sh and make it executable with the chmod
command:

root@raspberrypi:/home/pi# chmod +x on.sh

You still need to be executing theses commands as root. Type
sudo su if you’re get errors like “Permission denied.”

A command line argument is a way of passing information into a program or
script by typing it in after name of the command. When you’re writing a shell
script, $1 refers to the first command line argument, $2 refers to the second,
and so on. In the case of on.sh, you’ll type in the pin number that you want
to export and turn on. Instead of hard coding pin 25 into the shell script, it’s
more universal by referring to the pin that was typed in at the command line.
To export pin 25 and turn it on, you can now type:

root@raspberrypi:/home/pi/# ./on.sh 25 
Exporting pin 25.
Setting direction to out.
Setting pin high.

The “./” before the filename indicates that you’re executing the script
in the directory you’re in.

94 Getting Started with Raspberry Pi

www.it-ebooks.info

http://www.it-ebooks.info/


If you still have the LED connected to pin 25 from earlier in the chapter, it
should turn on. Let’s make another shell script called off.sh, which will turn
the LED off. It will look like this:

#!/bin/bash
echo Setting pin low.
echo 0 > /sys/class/gpio/gpio$1/value
echo Unexporting pin $1
echo $1 > /sys/class/gpio/unexport

Now let’s make it executable and run the script:

root@raspberrypi:/home/pi/temp# chmod +x off.sh
root@raspberrypi:/home/pi/temp# ./off.sh 25
Setting pin low.
Unexporting pin 25

If everything worked, the LED should have turned off.

Connecting a Lamp
Of course, a tiny little LED isn’t going to give off enough light to fool burglars
into thinking that you’re home, so let’s hook up a lamp to the Raspberry Pi.

1. Remove the LED connected to pin 25.

2. Connect two strands of hookup wire to the breadboard, one that con-
nects to pin 25 of the Raspberry Pi and the other to the ground bus.

3. The strand of wire that connects to pin 25 should be connected to the
“+in” terminal of the PowerSwitch Tail.

4. The strand of wire that connects to ground should be connected to the
“-in” terminal of the PowerSwitch Tail. Compare your circuit to Figure 7-7.

5. Plug the PowerSwitch Tail into the wall and plug a lamp into the Power-
Switch Tail. Be sure the lamp’s switch is in the on position.

6. Now when you execute ./on.sh 25, the lamp should turn on and if you
execute ./off.sh 25, the lamp should turn off!

Inside the PowerSwitch Tail there are a few electronic compo-
nents that help you control high voltage devices like a lamp or
blender by using a low voltage signal such as the one from the
Raspberry Pi. The “click” you hear from the PowerSwitch Tail
when it’s turned on or off is the relay, the core component of
the circuit inside. A relay acts like a switch for the high voltage
device that can be turned on or off depending on whether the
low voltage control signal from the Raspberry Pi is on or off.

Basic Input and Output 95

www.it-ebooks.info

http://www.it-ebooks.info/


Figure 7-7. Connecting a PowerSwitch Tail II to the Raspberry Pi

Scheduling Commands with cron
So now you’ve packaged up a few different commands into two simple com-
mands that can turn a pin on or off. And with the lamp connected to the
Raspberry Pi through the PowerSwitch Tail, you can turn the lamp on or off
with a single command. Now you can use cron to schedule the light to turn
on and off at different times of day. cron is Linux’s job scheduler. With it, you
can set commands to execute on specific times and dates, or you can have
jobs run on a particular period (for example, once an hour). You’re going to
schedule two jobs; one of them will turn the light on at 8:00pm and the other
will turn the light off at 2:00 am.

As with other time-dependent programs, you’ll want to make
sure you’ve got the correct date and time set up on your Rasp-
berry Pi, as described in Chapter 1.

To add these jobs, you’ll have to edit the cron table (a list of commands that
Linux executes at specified times):

96 Getting Started with Raspberry Pi

www.it-ebooks.info

http://www.it-ebooks.info/


root@raspberrypi:/home/pi/# crontab -e

This will launch a text editor to change root’s cron table. At the top of the file,
you’ll see some information about how to modify the cron table. Use your
arrow keys to get to the bottom of the file and add these two entries at the
end of the file.

0 20 * * * /home/pi/on.sh 25
0 2 * * * /home/pi/off.sh 25

cron will ignore any lines that start with the hash mark. If you
want to temporarily disable a line without deleting it or add a
comment to the file, put a hash mark in front of the line.

Type Control-X to exit, type y to save the file when it prompts you, and hit
enter to accept the default file name. When the file is saved and you’re back
at the command line, it should say installing new crontab to indicate that
the changes you’ve made are going to be executed by cron.

More About Cron
Cron will let you schedule jobs for specific dates and times or on intervals.
There are five time fields (or six if you want to schedule by year), each sepa-
rated by a space followed by another space then the command to execute.
Asterisks indicate that the job should execute each period. For example:

Table 7-1. Cron Entry for Turning Light On at 8:00pm Every Day

0 20 * * * /home/pi/on.sh 25

Minute (:
00)

Hour
(8pm)

Every
Day

Every
Month

Every Day
of Week

path to command

Let’s say you only wanted the lamp to turn on every weekday. Here’s what
the crontab entry would look like:

Table 7-2. Cron Entry for Turning Light On at 8:00pm Every Weekday

0 20 * * 1-5 /home/pi/on.sh 25

Minute (:
00)

Hour
(8pm)

Every
Day

Every
Month

Monday to
Friday

path to command

Let’s say you have a shell script that checks if you have new mail and emails
you if you do. Here’s how you’d get that script to run every five minutes:

Basic Input and Output 97

www.it-ebooks.info

http://www.it-ebooks.info/


Table 7-3. Cron Entry for Checking for Mail Every Five Minutes

*/5 * * * * /home/pi/
checkMail.sh

Every five
minutes

Every
Hour

Every
Day

Every
Month

Every Day
of Week

path to command

The */5 indicates a period of every five minutes.

As you can see, cron is a powerful tool that’s at your disposal for scheduling
jobs for specific dates or times and scheduling jobs to happen on a specific
interval.

Going Further
eLinux’s Raspberry Pi GPIO Reference Page

This is the most comprehensive reference guide to the Raspberry Pi’s
GPIO pins.

Adafruit: MCP230xx GPIO Expander on the Raspberry Pi
If you don’t have enough pins to work with, Adafruit offers this guide to
using the MCP23008 chip for 8 extra GPIO pins and the MCP23017 for
16 extra GPIO pins.

98 Getting Started with Raspberry Pi

www.it-ebooks.info

http://elinux.org/RPi_Low-level_peripherals
http://learn.adafruit.com/mcp230xx-gpio-expander-on-the-raspberry-pi
http://www.it-ebooks.info/


8/Programming Inputs
and Outputs with

Python

At the end of Chapter 7, you did a little bit of
programming with the Raspberry Pi’s GPIO
pins using a shell script. In this chapter, you’re
going to learn how to use Python to do the same
thing… and a little more. Much like with the shell
script, Python will let you access the pins by
writing code to read and control the pins auto-
matically.
The advantage that Python has over shell scripting is that the code is easier
to write and is more readable. There’s also a whole slew of Python modules
that make it easy for you to do some complex stuff with basic code. See
Table 3-2 for a list of a few modules that might be useful in your projects. Best
of all, there’s a Python module called raspberry-gpio-python that makes it
easy to read and control the GPIO pins. You’re going to learn how to use that
module in this chapter.

Installing and Testing GPIO in Python
On the most recent versions of the Raspbian distribution of Linux, the GPIO
module is already installed. If you’re using an older version of Raspbian, you
may need to install it. To check if you have it, you’ll use Python’s interactive
interpreter (as you learned in Chapter 3, the interactive interpreter lets you
type lines of Python code to be evaluated immediately, as opposed to writing
the code into a file and executing the file).

99

www.it-ebooks.info

http://code.google.com/p/raspberry-gpio-python/
http://www.it-ebooks.info/


1. Go into the Python interactive interpreter as root from the terminal
prompt. (Since raspberry-gpio-python requires root access to read and
control the pins, you need to go into the Python interactive interpreter
as root with the sudo command.)

pi@raspberrypi ~ $ sudo python
Python 2.7.3rc2 (default, May  6 2012, 20:02:25)
[GCC 4.6.3] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>>

2. When you’re at the >>> prompt, try importing the module:

>>> import RPi.GPIO as GPIO

3. If you don’t get an error, you’re all set.

Otherwise, if you do get an error when you try to import the GPIO module,
the installation can be done in a few simple steps thanks to apt-get, the
package manager on the Raspberry Pi.

So, if you don’t already have raspberry-gpio-python installed, here’s how to
install it:

1. Exit out of the interpreter (press Control-D or type exit() and press Re-
turn), update the apt-get package indexes, and issue the installation
command for raspberry-gpio-python:

>>> exit()
pi@raspberrypi ~ $ sudo apt-get update
pi@raspberrypi ~ $ sudo apt-get install python-rpi.gpio

2. When that’s done, go back into the Python interactive interpreter and
import the module.

pi@raspberrypi ~ $ sudo python
Python 2.7.3rc2 (default, May  6 2012, 20:02:25)
[GCC 4.6.3] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> import RPi.GPIO as GPIO
>>>

100 Getting Started with Raspberry Pi

www.it-ebooks.info

http://www.it-ebooks.info/


In this chapter, we’ll be using Python 2.7 instead of Python 3
since one of the modules we’ll be using is only installed for
Python 2.x on the Raspberry Pi. When you type python at the
command prompt on the Raspberry Pi, it currently runs
Python 2.7 by default. This behavior could change in the future
(you can run Python 2.7 explicitly by typing python2.7 instead
of python).

One important difference between the two versions is how you
print text to the console. You’ll use print "Hello, World!" in
Python 2.x but you’d use print("Hello, World!") in Python 3.

If you don’t get any errors after entering the import command, you know
you’re ready to try it out for the first time.

1. Before you can use the pins, you must tell the GPIO module how your
code will refer to them. In Chapter 7, the pin numbers we used didn’t
correlate to the way that they’re arranged on the board. You were actually
using the on-board Broadcom chip’s signal name for each pin. With this
Python module, you can choose to refer to the pins either way. To use
the numbering from the physical layout, use GPIO.set
mode(GPIO.BOARD). But let’s stick with the pin numbering that you used
in Chapter 7 (GPIO.setmode(GPIO.BCM)), which is what Adafruit’s Pi Cob-
bler and similar breakout boards use for labels:

>>> GPIO.setmode(GPIO.BCM)

2. Set the direction of pin 25 to output:

>>> GPIO.setup(25, GPIO.OUT)

3. Connect an LED to pin 25 like you did in “Beginner’s Guide to Bread-
boarding” (page 86).

4. Turn on the LED:

>>> GPIO.output(25, GPIO.HIGH)

5. Turn off the LED:

>>> GPIO.output(25, GPIO.LOW)

6. Exit the Python interactive interpreter:

>>> exit()
pi@raspberrypi ~ $

Programming Inputs and Outputs with Python 101

www.it-ebooks.info

http://www.it-ebooks.info/


In Chapter 7, you learned that digital input and output signals
on the Raspberry Pi must be either 3.3 volts or ground. In dig-
ital electronics, we refer to these signals as high or low re-
spectively. Keep in mind that not all hardware out there uses
3.3 volts to indicate high; some use 1.8 volts or 5 volts. If you
plan on connecting your Raspberry Pi to digital hardware
through its GPIO pins, it’s important that they also use 3.3
volts.

Those steps gave you a rough idea of how to control the GPIO pins by typing
in Python statements directly into the interactive interpreter. Just like how
you created a shell script to turn the pins on and off in Chapter 7, you’re going
to create a Python script to read and control the pins automatically.

Blinking an LED
To blink an LED on and off with Python, you’re going to use the statements
that you already tried in the interactive interpreter in addition to a few others.
For the next few steps, we’ll assume you’re using desktop environment, but
feel free to use the command line to write and execute these Python scripts
if you prefer.

Figure 8-1. Creating a new file in the home directory

1. Open the File Manager by clicking its icon in the task bar.

2. Be sure you’re in the home directory, the default being /home/pi. If not,
click on the home icon under the Places listing.

102 Getting Started with Raspberry Pi

www.it-ebooks.info

http://www.it-ebooks.info/


3. Create a file in your home directory called blink.py. Do this by right click-
ing in the home directory window, going to “Create New…” and then
clicking “Blank File.” Name the file blink.py.

4. Double click on blink.py to open it in Leafpad, the default text editor.

5. Enter the following code and save the file:

import RPi.GPIO as GPIO 
import time 

GPIO.setmode(GPIO.BCM) 
GPIO.setup(25, GPIO.OUT) 

while True: 
   GPIO.output(25, GPIO.HIGH) 
   time.sleep(1) 
   GPIO.output(25, GPIO.LOW) 
   time.sleep(1) 

Import the code needed for GPIO control

Import the code needed for for the sleep function

Use the chip’s signal numbers

Set pin 25 as an output

Create an infinite loop consisting of the indented code below it

Turn the LED on

Wait for one second

Turn the LED off

Wait for one second

Don’t forget that indentation matters in Python.

6. Open LXTerminal, then use these commands to make sure the working
directory is your home directory, and execute the script:

pi@raspberrypi ~/Development $ cd ~
pi@raspberrypi ~ $ sudo python blink.py

7. Your LED should now be blinking!

8. Hit Ctrl+C to stop the script and return to the command line.

Programming Inputs and Outputs with Python 103

www.it-ebooks.info

http://www.it-ebooks.info/


Try modifying the script to make the LED blink faster by using decimals in
the time.sleep() functions. You can also try adding a few more LEDs and
getting them to blink in a pattern. You can use any of the dedicated GPIO pins:
4, 17, 18, 21, 22, 23, 24, or 25 as shown in Figure 7-2.

Reading a Button
If you want something to happen when you press a button, one way to do
that is to use a technique called polling. Polling means continually checking
over and over again for some condition. In this case, it will be polling whether
the button is connecting the input pin to 3.3 volts or to ground. To learn about
polling, you’ll create a new Python script that will display text on screen when
the user pushes a button.

1. Connect a button the same way as in “Digital Input: Reading a Button”
(page 90), using pin 24 as the input. Don’t forget the pull-down resistor,
which goes between ground and the input pin.

2. Create a file in your home directory called button.py and open it in the
editor.

3. Enter the following code:

import RPi.GPIO as GPIO
import time

GPIO.setmode(GPIO.BCM)
GPIO.setup(24, GPIO.IN) 

count = 0 

while True:
   inputValue = GPIO.input(24) 
   if (inputValue == True): 
      count = count + 1 
      print("Button pressed " + str(count) + " times.") 
   time.sleep(.01) 

Set pin 24 as an input

Create a variable called count and store 0 in it.

Save the value of pin 24 into inputValue

Check if that value is True (when the button is pressed)

If it is, increment the counter

Print the text to the terminal

Wait briefly, but let other programs have a chance to run by not
hogging the processor’s time

104 Getting Started with Raspberry Pi

www.it-ebooks.info

http://www.it-ebooks.info/


4. Go back to LXTerminal and execute the script:

pi@raspberrypi ~ $ sudo python button.py

5. Now press the button. If you’ve got everything right, you’ll see a few lines
of “The button has been pressed” for each time you press the button.

The code above checks for the status of the button 100 times per second,
which is why you’ll see more than one sentence printed (unless you have
incredibly fast fingers). The Python statement time.sleep(.01) is what con-
trols how often the button is checked.

But why not continually check the button? If you were to remove the
time.sleep(.01) statement from the program, the loop would indeed run
incredibly fast, so you’d know much more quickly when the button was
pressed. This comes with a few drawbacks: you’d be using the processor on
the board constantly, which will make it difficult for other programs to func-
tion and it would increase the Raspberry Pi’s power consumption. Since
button.py has to share resources with other programs, you have to be careful
that it doesn’t hog them all up.

Now add a few lines to the code to make it a little bit better at registering a
single button press:

import RPi.GPIO as GPIO
import time

GPIO.setmode(GPIO.BCM)
GPIO.setup(24, GPIO.IN)

count = 0

while True:
   inputValue = GPIO.input(24)
   if (inputValue == True):
      count = count + 1
      print("Button pressed " + str(count) + " times.")
      time.sleep(.3) 
   time.sleep(.01)

Helps a button press register only once

This additional line of code will help to ensure that each button press is reg-
istered only once. But it’s not a perfect solution. Try holding down the button.
Another count will be registered and displayed three times a second, even
though you’re holding the button down. Try pushing the button repeatedly
very quickly. It doesn’t register every button press because it won’t recognize
distinct button presses more frequently than three times a second.

Programming Inputs and Outputs with Python 105

www.it-ebooks.info

http://www.it-ebooks.info/


These are challenges that you’ll face when you’re using polling to check the
status of a digital input. One way to get arround these challenges is to use an
interrupt, which is a way of setting a specified block of code to run when the
hardware senses a change in the state of the pin. There is currently experi-
mental support for interrupts in RPi.GPIO and you can read about how to use
this feature in the library’s documentation.

Project: Simple Soundboard
Now that you know how to read the inputs on the Raspberry Pi, you can use
the Python module Pygame’s sound functions to make a soundboard. A
soundboard lets you play small sound recordings when you push its buttons.
To make your own soundboard, you’ll need the following in addition to your
Raspberry Pi:

• 3 pushbutton switches

• Female-to-male jumper wires

• Standard jumper wires or hookup wire, cut to size

• Solderless breadboard

• 3 resistors, 10K ohm

• Computer speakers, or an HDMI monitor that has built-in speakers

You’ll also need a few uncompressed sound files, in .wav format. For purposes
of testing, there are a few sound files preloaded on the Raspberry Pi that you
can use. Once you get the soundboard working, it’s easy to replace those files
with any sounds you want, though you may have to convert them to .wav from
other formats. Start off by building the circuit:

1. Using a female-to-male jumper wire, connect the Raspberry Pi’s ground
pin to the negative rail on the breadboard.

2. Using a female-to-male jumper wire, connect the Raspberry Pi’s 3.3V
pin to the positive rail on the breadboard.

3. Insert the three pushbutton switches in the breadboard, all straddling
the center trench.

4. Using standard jumper wires or small pieces of hookup wire, connect
the positive rail of the breadboard to the top pin of each button.

5. Now add the pulldown resistors. Connect the bottom pin of each button
to ground with a 10K resistor.

6. Using female-to-male jumper wires, connect each button’s bottom pin
(the one with the 10K resistor) to the Raspberry Pi’s GPIO pins. For this
project, we used pins 23, 24, and 25.

106 Getting Started with Raspberry Pi

www.it-ebooks.info

http://pypi.python.org/pypi/RPi.GPIO
http://www.it-ebooks.info/


Figure 8-2 shows the completed circuit. We created this diagram with Fritz-
ing, an open source tool for creating hardware designs.

Figure 8-2. Completed circuit for the soundboard project

Now that you have the circuit breadboarded, it’s time to work on the code.

1. Create a new directory in your home directory called soundboard.

2. Open that folder and create a file there called soundboard.py.

Programming Inputs and Outputs with Python 107

www.it-ebooks.info

http://fritzing.org
http://fritzing.org
http://www.it-ebooks.info/


3. Open soundboard.py and type in the following code:

import pygame.mixer
from time import sleep
import RPi.GPIO as GPIO
from sys import exit

GPIO.setmode(GPIO.BCM)
GPIO.setup(23, GPIO.IN)
GPIO.setup(24, GPIO.IN)
GPIO.setup(25, GPIO.IN)

pygame.mixer.init(48000, -16, 1, 1024) 

soundA = pygame.mixer.Sound("/usr/share/sounds/alsa/Front_Center.wav") 
soundB = pygame.mixer.Sound("/usr/share/sounds/alsa/Front_Left.wav")
soundC = pygame.mixer.Sound("/usr/share/sounds/alsa/Front_Right.wav")

soundChannelA = pygame.mixer.Channel(1) 
soundChannelB = pygame.mixer.Channel(2)
soundChannelC = pygame.mixer.Channel(3)

print "Soundboard Ready." 

while True:
   try:
      if (GPIO.input(23) == True): 
         soundChannelA.play(soundA) 
      if (GPIO.input(24) == True):
         soundChannelB.play(soundB)
      if (GPIO.input(25) == True):
         soundChannelC.play(soundC)
      sleep(.01) 
   except KeyboardInterrupt: 
      exit()

Initialize pygame’s mixer

Load the sounds

Set up three channels, one for each sound so that we can play different
sounds concurrently

Let the user know the soundboard is ready (using Python 2 syntax)

If the pin is high, execute the following line

Play the sound

Don’t “peg” the processor by checking the buttons faster than we
need to

This will let us exit the script cleanly when the user hits CTRL+C, without
showing the traceback message

108 Getting Started with Raspberry Pi

www.it-ebooks.info

http://www.it-ebooks.info/


4. Go to the command line and navigate to the folder where you’ve saved
soundboard.py and execute the script with Python 2:

pi@raspberrypi ~/soundboard $ sudo python soundboard.py

5. After you see “Soundboard Ready,” start pushing the buttons to play the
sound samples.

While Pygame is available for Python 3, on the Raspberry Pi’s
default installation, it’s only installed for Python 2.

Depending on how your Raspberry Pi is set up, your sound might be sent via
HDMI to your display, or it may be sent to the 3.5mm analog audio output
jack on the board. To change that, exit out of the script by typing Control+C
and executing the following command to use the analog audio output:

pi@raspberrypi ~/soundboard $ sudo amixer cset numid=3 1

To send the audio through HDMI to the monitor, use:

pi@raspberrypi ~/soundboard $ sudo amixer cset numid=3 2

Of course, the stock sounds aren’t very interesting, but you can replace them
with any of your own sounds: applause, laughter, buzzers, and dings. Add
them to the soundboard directory and update the code to point to those files.
If you want to use more sounds on your soundboard, add additional buttons
and update the code as necessary.

Going Further
RPi.GPIO

Since the RPi.GPIO library is still under active development, you may
want to check the homepage for the project to find the latest updates.

Using the MCP3008
Adafruit has an excellent tutorial on how to use the MCP3008 analog to
digital converter to add analog sensors to your Raspberry Pi project.

Programming Inputs and Outputs with Python 109

www.it-ebooks.info

http://code.google.com/p/raspberry-gpio-python/
http://learn.adafruit.com/reading-a-analog-in-and-controlling-audio-volume-with-the-raspberry-pi/overview
http://www.it-ebooks.info/


www.it-ebooks.info

http://www.it-ebooks.info/


9/Working with
Webcams

One of the advantages to using a platform like
the Raspberry Pi for DIY technology projects is
that it supports a wide range of USB devices.
Not only can you hook up a keyboard and
mouse, but you can also connect peripherals
like printers, WiFi adapters, thumb drives, ad-
ditional memory cards, cameras, and hard
drives. In this chapter, we’re going to show a
few ways that you can use a USB webcam in
your Raspberry Pi projects.
While not quite as common as a keyboard and mouse, the webcam has al-
most become a standard peripheral for today’s modern computers. Luckily
for all of us, this means that a webcam from a well-known brand can be pur-
chased for as little as $25. You can even find webcams for much less if you
take a chance on an unknown brand. Best of all, many USB webcams are
recognized by Linux without the need for installing additional drivers.

In Chapter 1, you may have noticed that one of the components on the board
is a connector for something called the The Camera Serial Interface (CSI),
pictured in Figure 9-1. Since the Broadcom chip at the core of the Raspberry
Pi is meant for mobile phones and tablets, the CSI connection is how a mobile
device manufacturer would connect a camera to the chip. Unfortunately, CSI
cameras aren’t something that consumers like us can typically buy “off the
shelf” as they can with a USB webcam. At the time of press, the Raspberry
Pi Foundation is developing a camera that uses the CSI connection on the
board. Until that camera becomes available, we recommend using a USB
webcam (Figure 9-2).

111

www.it-ebooks.info

http://www.it-ebooks.info/


Figure 9-1. Raspberry Pi’s Camera Serial Interface

Figure 9-2. A typical USB webcam

Testing Webcams
With all the different models of webcams out there, there’s no guarantee that
a camera will work right out of the box. If you’re purchasing a webcam for use
with the Raspberry Pi, search online to make sure that others have had suc-
cess with the model that you’re purchasing. You can also check the webcam
section of eLinux.org’s page of peripherals that have been verfied to work
with the Raspberry Pi.

Be aware that you’ll need to connect a powered USB hub to your Raspberry
Pi so that you can connect your webcam in addition to your keyboard and
mouse. The hub should be powered because the Raspberry Pi only lets a
limited amount of electrical current through its USB ports and it’s likely it will

112 Getting Started with Raspberry Pi

www.it-ebooks.info

http://elinux.org/RPi_VerifiedPeripherals#USB_Webcams
http://elinux.org/RPi_VerifiedPeripherals#USB_Webcams
http://www.it-ebooks.info/


be unable to provide enough power for your keyboard, mouse, and webcam.
A powered USB hub plugs into the wall and provides electrical current to the
peripherals that connect to it so that they don’t max out the power on your
Raspberry Pi.

If you have a webcam that you’re ready to test out with the Raspberry Pi, use
apt-get in the terminal to install a simple camera viewing application called
luvcview:

pi@raspberrypi ~ $ sudo apt-get install luvcview

After apt-get finishes the installation, run the application by typing luvc
view in a terminal window while you’re in the desktop environment. A window
will open showing the view of the first video source it finds in the /dev folder,
likely /dev/video0. Note the frame size that is printed in the terminal window.
If the video seems a little choppy, you can fix this by reducing the default size
of the video. For example, if the default video size is 640 by 480, close luvc-
view and reopen it at half the video size by typing the following at the com-
mand line:

pi@raspberrypi ~ $ luvcview -s 320x240

If you don’t see video coming through, you’ll want to troubleshoot here before
moving on. One way to see what’s wrong is by disconnecting the webcam,
reconnecting it, and running the command dmesg, which will output diagnos-
tic messages that might give you some clues.

Installing and Testing SimpleCV
In order to access the webcam with Python code we’ll use SimpleCV
(Figure 9-3), which is a feature-packed open source computer vision library.
SimpleCV makes it really easy to get images from the webcam, display them
on screen, or save them as files. But the best part of SimpleCV are its com-
puter vision algorithms, which can do some pretty amazing things. Besides
basic image transformations, it can also track, detect and recognize objects
in an image or video. Later on this chapter, we’ll try basic face detection with
SimpleCV (“Face Detection” (page 120)).

Working with Webcams 113

www.it-ebooks.info

http://www.it-ebooks.info/


Figure 9-3. SimpleCV logo

To install SimpleCV for Python you’ll need to start by installing the other li-
braries it depends on. For those, you can use apt-get:

pi@raspberrypi ~ $ sudo apt-get install python-opencv python-scipy python-
numpy python-pip

It’s a big install and it may take a while before the process is complete. Next,
you’ll install the actual SimpleCV library with the following command:

pi@raspberrypi ~ $ sudo pip install https://github.com/ingenuitas/SimpleCV/
zipball/master

When it’s done, check that the installation worked by going into the Python
interactive interpreter and importing the library:

pi@raspberrypi ~ $ python
Python 2.7.3rc2 (default, May  6 2012, 20:02:25)
[GCC 4.6.3] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> import SimpleCV
>>>

If you get no errors after importing the library, you know you’re ready to start
experimenting with computer vision on the Raspberry Pi.

Displaying an Image
For many of the examples in this chapter, you’ll need to work in the desktop
environment so that you can display images on screen. You can work in IDLE,
or save your code as .py files from Leafpad and execute them from the ter-
minal window.

114 Getting Started with Raspberry Pi

www.it-ebooks.info

http://www.it-ebooks.info/


We’re going to start you off with some SimpleCV basics using image files,
and then you’ll work your way up to reading images from the webcam. Once
you’ve got images coming in from the webcam, it will be time to try some
face detection.

1. Create a new directory within your home directory called simplecv-test.

2. Open Midori, search for an image that interests you. We decided to use
a photograph of raspberries from Wikipedia.and renamed it to raspber-
ries.jpg.

3. Right-click on the image and click “Save Image.”

4. Save the image within the simplecv-test folder.

5. In the file manager (on the Accessories menu), open the simplecv-test
folder and right-click in the folder. Choose Create New → Blank File.

6. Name the file image-display.py.

7. Double click on the newly created image-display.py file to open it in Leaf-
pad.

8. Enter the code in Example 9-1.

9. Save the image-display.py file and run it from the terminal window. If
you’ve got everything right, you’ll see a photo in a new window as in
Figure 9-4. You can close the window itself, or type Control-C in the ter-
minal to end the script.

Figure 9-4. The raspberry photo displayed in a window

Working with Webcams 115

www.it-ebooks.info

http://www.it-ebooks.info/


Example 9-1. Source code for image-display.py
from SimpleCV import Image, Display 
from time import sleep

myDisplay = Display() 

raspberryImage = Image("raspberries.jpg") 

raspberryImage.save(myDisplay) 

while not myDisplay.isDone(): 
   sleep(0.1)

Import SimpleCV’s image and display functions

Creates a new window object

Loads the image file raspberries.jpg into memory as the object image

Display the image in the window

Prevent the script from ending immediately after displaying the image

Modifying an Image
Now that you can load an image into memory and display it on the screen,
the next step is to modify the image before displaying it. Doing this does not
modify the image file itself, it simply modifies the copy of the image that’s
held in memory.

1. Save the image-display.py file as superimpose.py.

2. Make the enhancements to the code that are shown in Example 9-2.

3. Save the file and run it from the command line.

4. You should see the same image, but now superimposed with the shape
and the text.

Example 9-2. Source code for superimpose.py
from SimpleCV import Image, Display, DrawingLayer, Color 
from time import sleep

myDisplay = Display()

raspberryImage = Image("raspberries.jpg")

myDrawingLayer = DrawingLayer((raspberryImage.width, raspberryImage.height)) 

myDrawingLayer.rectangle((50,20), (250, 60), filled=True) 
myDrawingLayer.setFontSize(45)
myDrawingLayer.text("Raspberries!", (50, 20), color=Color.WHITE) 

116 Getting Started with Raspberry Pi

www.it-ebooks.info

http://www.it-ebooks.info/


raspberryImage.addDrawingLayer(myDrawingLayer) 
raspberryImage.applyLayers() 

raspberryImage.save(myDisplay)

while not myDisplay.isDone():
   sleep(0.1)

Import SimpleCV’s drawing layer, and color functions in addition to
the image and display functions you imported in the previous example

Create a new drawing layer that’s the same size as the image

On the layer, draw a rectangle from the coordinates 50, 20 to 250, 60
and make it filled

On the layer, write the text “Raspberries!” at 50, 20 in the color white

Add myDrawingLayer to raspberryImage

Merge the layers that have been added into raspberryImage
(Figure 9-5 shows the new image)

Figure 9-5. The modified raspberry photo

Instead of displaying the image on screen, if you wanted to simply save your
modifications to a file, Example 9-3 shows how the code would look.

Working with Webcams 117

www.it-ebooks.info

http://www.it-ebooks.info/


Example 9-3. Source code for superimpose-save.py
from SimpleCV import Image, DrawingLayer, Color
from time import sleep

raspberryImage = Image("raspberries.jpg")

myDrawingLayer = DrawingLayer((raspberryImage.width, raspberryImage.height))

myDrawingLayer.rectangle((50,20), (250, 60), filled=True)
myDrawingLayer.setFontSize(45)
myDrawingLayer.text("Raspberries!", (50, 20), color=Color.WHITE)

raspberryImage.addDrawingLayer(myDrawingLayer)
raspberryImage.applyLayers()

raspberryImage.save("raspberries-titled.jpg") 

Save the modified image in memory to a new filed called raspberries-
titled.jpg

Since the code above doesn’t even open up a window, you can use it from the
command line without the desktop environment running. You could even
modify the code to watermark batches of images with a single command.

And you’re not limited to text and rectangles. Here are a few of the other
drawing functions available to you with SimpleCV. Their full documentation
is available at http://simplecv.org/doc/SimpleCV.html#i/SimpleCV.Drawin
gLayer.DrawingLayer

• circle

• ellipse

• line

• polygon

• bezier curve

Accessing the Webcam
Luckily, getting a webcam’s video stream into SimpleCV isn’t much different
than accessing image files and loading them into memory. To try it out, you
can make your own basic webcam viewer.

1. Create a new file named basic-camera.py and save the code shown in
Example 9-4 in it.

2. With your webcam plugged in, run the script. You should see a window
pop up with a view from the webcam as in Figure 9-6.

118 Getting Started with Raspberry Pi

www.it-ebooks.info

http://simplecv.org/doc/SimpleCV.html#i/SimpleCV.DrawingLayer.DrawingLayer
http://simplecv.org/doc/SimpleCV.html#i/SimpleCV.DrawingLayer.DrawingLayer
http://www.it-ebooks.info/


3. To close the window, type Control-C in the terminal.

Example 9-4. Source code for basic-camera.py
from SimpleCV import Camera, Display
from time import sleep

myCamera = Camera(prop_set={'width': 320, 'height': 240}) 

myDisplay = Display(resolution=(320, 240)) 

while not myDisplay.isDone(): 
   myCamera.getImage().save(myDisplay) 
   sleep(.1) 

Create a new camera object and set the height and width of the image
to 320x240 for better performance

Set the size of the window to be 320x240 as well

Loop the indented code below until the window is closed

Get a frame from the webcam and display it in the window

Wait one tenth of a second between each frame

Figure 9-6. Outputting webcam input to the display

You can even combine the code from the last two examples to make a Python
script that will take a picture from the webcam and save it as a .jpg file:

from SimpleCV import Camera
from time import sleep

Working with Webcams 119

www.it-ebooks.info

http://www.it-ebooks.info/


myCamera = Camera(prop_set={'width':320, 'height': 240})

frame = myCamera.getImage()
frame.save("camera-output.jpg")

Face Detection
One of the powerful functions that comes along with SimpleCV is called
findHaarFeatures. It’s an algorithm that lets you search within an image for
patterns that match a particular profile, or cascade. There are a few cascades
included with SimpleCV such as face, nose, eye, mouth, and full body. Alter-
natively, you can download or generate your own cascade file if need be.
findHaarFeatures analyzes an image for matches and if it finds at least one,
the function returns the location of those matches within the image. This
means that you can detect objects like cars, animals, or people within an
image file or from the webcam. To try out findHaarFeatures, you can do some
basic face detection:

1. Create a new file in the simplecv-test directory called face-detector.py.

2. Enter the code shown in Example 9-5.

3. With your webcam plugged in and pointed at a face, run the script from
the command line.

4. In the terminal window, you’ll see the location of the faces that findHaar
Features finds. Try moving around and watching these numbers change.
Try holding up a photo of a face to the camera to see what happens.

Example 9-5. Source code for face-detector.py
from SimpleCV import Camera, Display
from time import sleep

myCamera = Camera(prop_set={'width':320, 'height': 240})

myDisplay = Display(resolution=(320, 240))

while not myDisplay.isDone():
   frame = myCamera.getImage()
   faces = frame.findHaarFeatures('face') 
   if faces: 
      for face in faces: 
         print "Face at: " + str(face.coordinates())
   else:
      print "No faces detected."
   frame.save(myDisplay)
   sleep(.1)

Look for faces in the image frame and save them into a faces object

120 Getting Started with Raspberry Pi

www.it-ebooks.info

http://www.it-ebooks.info/


If findHaarFatures detected at least one face, execute the indented
code below

For each face in faces, execute the code below (the print statement)
with face as an individual face

If your mug is on screen but you still get the message “No faces detected,”
try a few troubleshooting steps:

• Do you have enough light? If you’re in a dark room, it may be hard for the
algorithm to make out your face. Try adding more light.

• This particular Haar cascade is meant to find faces that are in their nor-
mal orientation. If you tilt your head too much or the camera isn’t level,
this will affect the algorithm’s ability to find faces.

Project: Raspberry Pi Photobooth
You can combine different libraries together to make Python a powerful tool
to do some fairly complex projects. With the GPIO library you learned about
in Chapter 8 and SimpleCV, you can make your own Raspberry Pi-based
photobooth that’s sure to be a big hit at your next party (see Figure 9-7). And
with the findHaarFeatures function in SimpleCV, you can enhance your pho-
tobooth with a special extra feature, the ability to automatically superimpose
fun virtual props like hats, monocles, beards, and mustaches on the people
in the photo booth. The code in this project is based on the Mustacheinator
project in Practical Computer Vision with SimpleCV by Kurt Demaagd, An-
thony Oliver, Nathan Oostendorp, and Katherine Scott.

Figure 9-7. Output of the Raspberry Pi Photobooth

Working with Webcams 121

www.it-ebooks.info

http://shop.oreilly.com/product/0636920024057.do
http://www.it-ebooks.info/


Here’s what you’ll need to turn your Raspberry Pi into a photobooth:

• A USB webcam

• A monitor

• A button, any kind you like

• Hookup wire, cut to size

• 1 resistor, 10K ohm

Before you get started, make sure that both the RPi.GPIO and SimpleCV
Python libraries are installed and working properly on your Raspberry Pi. See
“Installing and Testing GPIO in Python” (page 99) and “Installing and Testing
SimpleCV” (page 113) for more details.

1. Like you did in Chapter 8, connect pin 24 to the button. One side of the
button should be connected to 3.3V, the other to pin 24. Don’t forget to
use a 10K pulldown resistor between ground and the side of the switch
that connects to pin 24.

2. Find or create a small image of a black mustache on a white background
and save it as mustache.png in a new folder on your Raspberry Pi. You
can also download our pre-made mustache file in the ch09 subdirectory
of the downloads (see “How to Contact Us” (page xii)).

3. In that folder, create a new file called photobooth.py, type in the code
listed in Example 9-6 and save the file.

Example 9-6. Source code for photobooth.py
from time import sleep, time
from SimpleCV import Camera, Image, Display
import RPi.GPIO as GPIO

myCamera = Camera(prop_set={'width':320, 'height': 240})
myDisplay = Display(resolution=(320, 240))
stache = Image("mustache.png")
stacheMask = \
  stache.createBinaryMask(color1=(0,0,0), color2=(254,254,254)) 
stacheMask = stacheMask.invert() 

GPIO.setmode(GPIO.BCM)
GPIO.setup(24, GPIO.IN)

def mustachify(frame): 
   faces = frame.findHaarFeatures('face')
   if faces:
      for face in faces:
         print "Face at: " + str(face.coordinates())
         myFace = face.crop() 
         noses = myFace.findHaarFeatures('nose')
         if noses:

122 Getting Started with Raspberry Pi

www.it-ebooks.info

http://www.it-ebooks.info/


            nose = noses.sortArea()[-1] 
            print "Nose at: " + str(nose.coordinates())
            xmust = face.points[0][0] + nose.x - (stache.width/2) 
            ymust = face.points[0][1] + nose.y + (stache.height/3) 
         else:
            return frame 
      frame = frame.blit(stache, pos=(xmust, ymust), mask=stacheMask) 
      return frame 
   else:
      return frame 

while not myDisplay.isDone():
   inputValue = GPIO.input(24)
   frame = myCamera.getImage()
   if inputValue == True:
      frame = mustachify(frame) 
      frame.save("mustache-" + str(time()) + ".jpg") 
      frame = frame.flipHorizontal() 
      frame.show()
      sleep(3) 
   else:
      frame = frame.flipHorizontal() 
      frame.save(myDisplay)
   sleep(.05)

Create a mask of the mustache, selecting all but black to be
transparent (the two parameters, color1 and color2 are the range of
colors as RGB values from 0 to 255)

Invert the mask so that only the black pixels in the image are displayed
and all other pixels are transparent

Create a function that takes in a frame and outputs a frame with a
superimposed mustache if it can find the face and nose

Create a subimage of the face so that searching for a nose is quicker

If there are multiple nose candidates on the face, choose the largest
one

Set the x coordinates of the mustache

Set the y coordinates of the mustache

If no nose is found, just return the frame

Use the blit function (short for BLock Image Transfer) to superimpose
the mustache on the frame

Return the “mustachified” frame

If no face is found, just return the frame

Pass the frame into the mustachify function

Save the frame as a JPG with the current time in the filename

Before showing the image, flip it horizontally so that it’s a mirror image
of the subject

Working with Webcams 123

www.it-ebooks.info

http://www.it-ebooks.info/


Hold the saved image on screen for 3 seconds

If the button isn’t pressed, simply flip the live image and display it.

Now you’re ready to give it a try. Make sure your webcam is connected. Next,
go to the terminal, and change to the directory where the mustache illustra-
tion and photobooth.py are and then run the script:

pi@raspberrypi ~ $ sudo photobooth.py

The output of the webcam will appear on screen. When the button is pressed,
it will identify any faces, add a mustache, and save the image. (All the images
will be saved in the same folder with the script).

Going Further
Practical Computer Vision with SimpleCV

This book by Kurt Demaagd, Anthony Oliver, Nathan Oostendorp, and
Katherine Scott is a comprehensive guide to using SimpleCV. It includes
plenty of example code and projects to further learn about working with
images and computer vision in Python.

124 Getting Started with Raspberry Pi

www.it-ebooks.info

http://shop.oreilly.com/product/0636920024057.do
http://www.it-ebooks.info/


10/Python and The
Internet

Python has a very active community of devel-
opers who often share their work in the form of
open source libraries which simplify complex
tasks. Some of these libraries make it relatively
easy for us to connect our projects to the In-
ternet to do things like get data about the
weather, send an email or text message, follow
trends on Twitter, or act as a web server.
In this chapter, we’re going to take a look at a few ways to create Internet-
connected projects with the Raspberry Pi. We’ll start off by showing you how
to fetch data from the Internet and then move into how you can create your
own Raspberry Pi-based web server.

Download Data from a Web Server
When you type an address into your web browser and hit enter, your browser
is the client. It establishes a connection with the server, which responds with
a web page. Of course, a client doesn’t have to be a web browser, it can also
be a mail application, a weather widget on your phone or computer, or a game
that uploads your high score to a global leader board. In the first part of this
chapter, we’re going to focus on projects that use the Raspberry Pi to act as
a client. The code you’ll be using will connect to internet servers to get in-
formation. Before you can do that, you’ll need to install a popular Python
library called Requests that is used for connecting to web servers via hyper-
text transfer protocol, or HTTP. From the terminal, here’s how you install it:

pi@raspberrypi ~ $ sudo apt-get install python-requests

To confirm that Requests is installed:

pi@raspberrypi ~ $ python
Python 2.7.3rc2 (default, May  6 2012, 20:02:25)

125

www.it-ebooks.info

http://www.it-ebooks.info/


[GCC 4.6.3] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> import requests
>>>

If you don’t get an error message, you’ll know Requests has been installed
properly and is now imported in this Python session. Now you can try it out:

>>> r = requests.get('http://www.google.com/')
>>>

You may be a bit disappointed at first since it seems like nothing happened.
But actually, all the data from the request has been stored in the object r.
Here’s how you can display the status code:

>>> r.status_code
200

The HTTP status code 200 means that the request succeeded. There are a
few other HTTP status codes in Table 10-1.

Table 10-1. Common HTTP status codes

Code Meaning

200 OK

301 Moved permanently

307 Moved temporarily

401 Unauthorized

404 Not found

500 Server error

If you want to see the contents of the response (what the server sends back
to you), try the following:

>>> r.text

If everything worked correctly, what will follow is a large block of text; you
may notice some human-readable bits in there, but most of it will be hard to
understand. This is the HTML of Google’s landing page, which is meant to be
interpreted and rendered on screen by a web browser.

However, not all HTTP requests are meant to be rendered by a web browser.
Sometimes only data is transmitted, with no information about how it should
be displayed. Many sites make these data protocols available to the public
so that we can use them to fetch data from and send data to their servers

126 Getting Started with Raspberry Pi

www.it-ebooks.info

http://www.it-ebooks.info/


without using a web browser. Whether it’s public or not, a data protocol
specification is commonly called an application programming interface or
API. API’s let different pieces of software talk to each other and are popular
for sending data from one site to another over the Internet.

For example, let’s say you want to make a project that will sit by your door
and remind you to take your umbrella with you when rain is expected that
day. Instead of setting up your own weather station and figuring out how to
forecast the precipitation, you can get the day’s forecast from one of many
weather APIs out there.

Fetching the Weather Forecast
In order to determine whether or not it will rain today, we’ll show you how to
use the API from Weather Underground.

Keep in mind that not all APIs are created equal and you’ll have
to review their documentation to determine if it’s the right one
for your project. Also, most APIs limit the amount of requests
you can make and some even charge you to use their services.
Many times, the API providers have a free tier for a small
amount of daily requests, which is perfect for experimentation
and personal use.

1. In a web browser, go to Weather Underground’s API homepage and enter
in your information to sign up.

2. After you’ve logged into your account, click Key Settings.

3. Notice that there’s a long string of characters in the API key field
(Figure 10-1). This is a unique identifier for your account that you’ll need
to provide in each request. If you abuse their servers by sending too
many requests, they can simply shut off this API key and refuse to com-
plete any further requests until you pay for a higher tier of service.

4. Click Documentation and then Forecast so you can see what kind of data
you get when you make a forecast request. At the bottom of the page is
an example URL for getting the forecast for San Francisco, CA. Notice
that in the URL is your API key:

http://api.wunderground.com/api/YourAPIkey/forecast/q/CA/
San_Francisco.json

Python and The Internet 127

www.it-ebooks.info

http://www.wunderground.com/
http://www.wunderground.com/weather/api/
http://www.it-ebooks.info/


Figure 10-1. Matt’s Weather Underground API account, with the API key in
the upper right.

5. To make sure it works, go to this URL into your web browser and you
should see the weather forecast data in a format called JSON, or Java-
Script Object Notation (see Example 10-1). Notice how the data is struc-
tured hierarchically.

Even though the J stands for JavaScript, JSON is used in many
programming languages, especially for communicating be-
tween applications via an API.

6. To start off, try to get today’s local text forecast from within this data
structure. Change the URL so that it matches your state and town and
put it in a new Python script called text-forecast.py (Example 10-2).

7. As you see from the code, in order to get the text forecast for today, we’ll
have to fetch the right field from the hierarchy of the data structure (see
Example 10-1). The text forecast can be found in forecast → txt_fore
cast → forecastday → 0 (the first entry, which is today’s forecast) →
fcttext

8. When you run the script from the command line, the output should be
your local weather forecast for today, such as this: “Clear. High of 47F.
Winds from the NE at 5 to 10 mph.”

Example 10-1. Partial JSON response from Weather
Underground’s API
"response": {
  "version": "0.1",

128 Getting Started with Raspberry Pi

www.it-ebooks.info

http://www.it-ebooks.info/


  "termsofService":
    "http://www.wunderground.com/weather/api/d/terms.html",
  "features": {
    "forecast": 1
  }
},
"forecast":{ 
  "txt_forecast": { 
    "date":"10:00 AM EST",
    "forecastday": [ 
      {
      "period":0,
      "icon":"partlycloudy",
      "icon_url":"http://icons-ak.wxug.com/i/c/k/partlycloudy.gif",
      "title":"Tuesday",
      "fcttext":
        "Partly cloudy. High of 48F. Winds from the NNE at 5 to 10 mph.", 
      "fcttext_metric":
        "Partly cloudy. High of 9C. Winds from the NNE at 10 to 15 km/h.",
      "pop":"0"
      },

Forecast is the top-level parent of the data we want to access

Within forecast, we want the text forecast

Within the text forecast dataset, we want the daily forecasts

fcttext, the text of the day’s forecast

Example 10-2. Source code for text-forecast.py
import requests

key = 'YOUR KEY HERE' 
ApiUrl = \
  'http://api.wunderground.com/api/' + key + '/forecast/q/NY/New_York.json'

r = requests.get(ApiUrl) 
forecast = r.json 
print forecast['forecast']['txt_forecast']['forecastday'][0]['fcttext'] 

Replace this with your API key.

Get the New York City forecast from Weather Underground (replace
with your own state and city)

Take the text of the JSON response and parse it into a Python
dictionary object

“Reach into” the data hierarchy to get today’s forecast text.

So you now have a Python script that will output the text forecast whenever
you need it. But how can your Raspberry Pi determine whether or not it’s

Python and The Internet 129

www.it-ebooks.info

http://www.it-ebooks.info/


supposed to rain today? On one hand, you could parse the forecast text to
search for words like “rain,” “drizzle,” “thunderstorms,” “showers,” and so on,
but there’s actually a better way. One of the fields in the data from Weather
Underground API is labeled pop, which stands for probability of precipita-
tion. With values ranging from 0 to 100%, it will give you a sense of how likely
it will be raining or snowing.

For a rain forecast indicator, let’s say that any probability of precipitation
value over 30% is a day that we want to have an umbrella handy.

1. Connect an LED to pin 25 as you did in Figure 7-4.

2. Create a new file called umbrella-indicator.py and use the code in
Example 10-3. Don’t forget to put in your own API key and the location
in the Weather Underground API URL.

3. Run the script as root with the command sudo python umbrella-
indicator.py.

Example 10-3. Source code for umbrella-indicator.py
import requests
import RPi.GPIO as GPIO
import time

GPIO.setmode(GPIO.BCM)
GPIO.setup(25, GPIO.OUT)

key = 'YOUR KEY HERE' 
ApiUrl = \
  'http://api.wunderground.com/api/' + key + '/forecast/q/NY/New_York.json'

while True:
   r = requests.get(ApiUrl)
   forecast = r.json
   popValue = forecast['forecast']['txt_forecast']['forecastday'][0]['pop'] 
   popValue = int(popValue) 

   if popValue >= 30: 
      GPIO.output(25, GPIO.HIGH)
   else: 
      GPIO.output(25, GPIO.LOW)

   time.sleep(180) # 3 minutes 

As before, change this to your API key

Get today’s probability of precipitation and store it in popValue

Convert popValue from a string into an integer so that we can evaluate
it as a number

If the value is greater than 30, then turn the LED on

130 Getting Started with Raspberry Pi

www.it-ebooks.info

http://www.it-ebooks.info/


Otherwise, turn the LED off

Wait three minutes before checking again so that the script stays
within the API limit of 500 requests per day.

Press Control-C to quit the program when you’re done.

The Weather Underground API is one of a plethora of different APIs that you
can experiment with. Table 10-2 lists a few other sites and services that have
APIs.

Table 10-2. Popular Application Programming Interfaces

Site API Reference URL

Facebook https://developers.facebook.com/

Flickr http://www.flickr.com/services/api/

Foursquare https://developer.foursquare.com/

Reddit https://github.com/reddit/reddit/wiki/API

Twilio http://www.twilio.com/

Twitter https://dev.twitter.com/

YouTube https://developers.google.com/youtube/

Serving Pi (Be a Web Server)
Not only can you use the Raspberry Pi to get data from servers via the inter-
net, but your Pi can also act as a server itself. There are many different web
servers that you can install on the Raspberry Pi. Traditional web servers, like
Apache or lighttpd, serve the files from your board to clients. Most of the
time, servers like these are sending HTML files and images to make web pa-
ges, but they can also serve sound, video, executable programs, and much
more.

However, there’s a new breed of tools that extend programming languages
like Python, Ruby, and JavaScript to create web servers that dynamically
generate the HTML when they receive HTTP requests from a web browser.
This is a great way to trigger physical events, store data, or check the value
of a sensor remotely via a web browser. You can even create your own JSON
API for an electronics project!

Python and The Internet 131

www.it-ebooks.info

https://developers.facebook.com/
http://www.flickr.com/services/api/
https://developer.foursquare.com/
https://github.com/reddit/reddit/wiki/API
http://www.twilio.com/
https://dev.twitter.com/
https://developers.google.com/youtube/
http://www.it-ebooks.info/


Flask Basics
We’re going to use a Python web framework called Flask to turn the Rasp-
berry Pi into a dynamic web server. While there’s a lot you can do with Flask
“out of the box,” it also supports many different extensions for doing things
such as user authentication, generating forms, and using databases. You also
have access to the wide variety of standard Python libraries that are available
to you.

In order to install Flask, you’ll need to have pip installed. If you haven’t already
installed pip, it’s easy to do:

pi@raspberrypi ~ $ sudo apt-get install python-pip

After pip is installed, you can use it to install Flask and its dependencies:

pi@raspberrypi ~ $ sudo pip install flask

To test the installation, create a new file called hello-flask.py with the code
from Example 10-4. Don’t worry if it looks a bit overwhelming at first, you
don’t need to understand what every line of code means right now. The block
of code that’s most important is the one that contains the string “Hello
World!”

Example 10-4. Source code for hello-flask.py
from flask import Flask
app = Flask(__name__) 

@app.route("/") 
def hello():
   return "Hello World!" 

if __name__ == "__main__": 
   app.run(host='0.0.0.0', port=80, debug=True) 

Create a Flask object called app

Run the code below when someone accesses the root URL of the
server

Send the text “Hello World!” to the client

If this script was run directly from the command line

Have the server listen on port 80 and report any errors.

132 Getting Started with Raspberry Pi

www.it-ebooks.info

http://flask.pocoo.org/
http://www.it-ebooks.info/


Before you run the script, you need to know your Raspberry
Pi’s IP address (see “The Network” (page 28)). An alternative
is to install avahi-daemon (run sudo apt-get install avahi-
daemon from the command line). This lets you access the Pi on
your local network through the address http://raspberry
pi.local. If you’re accessing the Raspberry Pi web server from
a Windows machine, you may need to put Bonjour Services on
it for this to work.

Now you’re ready to run the server, which you’ll have to do as root:

pi@raspberrypi ~ $ sudo python hello-flask.py
 * Running on http://0.0.0.0:80/
 * Restarting with reloader

From another computer on the same network as the Raspberry Pi, type your
Raspberry Pi’s IP address into a web browser. If your browser displays “Hello
World!”, you know you’ve got it configured correctly. You may also notice that
a few lines appear in the terminal of the Raspberry Pi:

10.0.1.100 - - [19/Nov/2012 00:31:31] "GET / HTTP/1.1" 200 -
10.0.1.100 - - [19/Nov/2012 00:31:31] "GET /favicon.ico HTTP/1.1" 404 -

The first line shows that the web browser requested the root URL and our
server returned HTTP status code 200 for “OK.” The second line is a request
that many web browsers send automatically to get a small icon called a fa-
vicon to display next to the URL in the browser’s address bar. Our server
doesn’t have a favicon.ico file, so it returned HTTP status code 404 to indicate
that the URL was not found.

If you want to send the browser a site formatted in proper HTML, it doesn’t
make a lot of sense to put all the HTML into your Python script. Flask uses a
template engine called Jinja2 so that you can use separate HTML files with
placeholders for spots where you want dynamic data to be inserted.

If you’ve still got hello-flask.py running, press Control-C to kill it.

To try that out, create a new file called hello-template.py with the code from
Example 10-5. In the same directory with hello-template.py, create a subdir-
ectory called templates. In the templates subdirectory, create a file called
main.html and insert the code from Example 10-6. Anything in double curly
braces within the HTML template is interpreted as a variable that would be
passed to it from the Python script via the render_template function.

Python and The Internet 133

www.it-ebooks.info

http://raspberrypi.local
http://raspberrypi.local
http://support.apple.com/kb/DL999
http://jinja.pocoo.org/docs/templates/
http://www.it-ebooks.info/


Example 10-5. Source code for hello-template.py
from flask import Flask, render_template
import datetime
app = Flask(__name__)

@app.route("/")
def hello():
   now = datetime.datetime.now() 
   timeString = now.strftime("%Y-%m-%d %H:%M") 
   templateData = {
      'title' : 'HELLO!',
      'time': timeString
      } 
   return render_template('main.html', **templateData) 

if __name__ == "__main__":
   app.run(host='0.0.0.0', port=80, debug=True)

Get the current time and store it in now

Create a formatted string using the date and time from the now object

Create a dictionary of variables (a set of keys, such as title that are
associated with values, such as HELLO!) to pass into the template

Return the main.html template to the web browser using the variables
in the templateData dictionary

Example 10-6. Source code for templates/main.html
<!DOCTYPE html>
   <head>
      <title>{{ title }}</title> 
   </head>

   <body>
      <h1>Hello, World!</h1>
      <h2>The date and time on the server is: {{ time }}</h2> 
   </body>
</html>

Use the title variable in the HTML title of the site.

Use the time variable on the page.

Now, when you run hello-template.py (as before, you need to use sudo to run
it) and pull up your Raspberry Pi’s address in your web browser, you should
see a formatted HTML page with the title “HELLO!” and the Raspberry Pi’s
current date and time.

134 Getting Started with Raspberry Pi

www.it-ebooks.info

http://www.it-ebooks.info/


While it’s dependent on how your network is set up, it’s unlikely
that this page is accessible from outside your local network via
the Internet. If you’d like to make the page available from out-
side your local network, you’ll need to configure your router
for port forwarding. Refer to your router’s documentation for
more information about how to do this.

Connecting the Web to the Real World
You can use Flask with other Python libraries to bring additional functionality
to your site. For example, with the RPi.GPIO Python module (see Chapter 8),
you can create a website that interfaces with the physical world. To try it out,
hook up a three buttons or switches to pins 23, 24, and 25 in the same way
as the Simple Soundboard project in Figure 8-2.

The following code expands the functionality of hello-template.py, so copy it
to a new file called hello-gpio.py. Add the RPi.GPIO module and a new route
for reading the buttons, as we’ve done in Modified source code for hello-
gpio.py. The new route will take a variable from the requested URL and use
that to determine which pin to read.

You’ll also need to create a new template called pin.html. It’s not very different
from main.html, so you may want to copy main.html to pin.html and make
the appropriate changes as in Example 10-7.

Modified source code for hello-gpio.py. 

from flask import Flask, render_template
import datetime
import RPi.GPIO as GPIO
app = Flask(__name__)

GPIO.setmode(GPIO.BCM)

@app.route("/")
def hello():
   now = datetime.datetime.now()
   timeString = now.strftime("%Y-%m-%d %H:%M")
   templateData = {
      'title' : 'HELLO!',
      'time': timeString
      }
   return render_template('main.html', **templateData)

@app.route("/readPin/<pin>") 
def readPin(pin):
   try: 
      GPIO.setup(int(pin), GPIO.IN) 
      if GPIO.input(int(pin)) == True: 
         response = "Pin number " + pin + " is high!"

Python and The Internet 135

www.it-ebooks.info

http://www.it-ebooks.info/


      else: 
         response = "Pin number " + pin + " is low!"
   except: 
      response = "There was an error reading pin " + pin + "."

   templateData = {
      'title' : 'Status of Pin' + pin,
      'response' : response
      }

   return render_template('pin.html', **templateData)

if __name__ == "__main__":
   app.run(host='0.0.0.0', port=80, debug=True)

Add a dynamic route with pin number as a variable.

If the code indented below raises an exception, run the code in the
except block

Take the pin number from the URL, convert it into an integer and set
it as an input

If there pin is high, set the response text to say that it’s high

Otherwise, set the response text to say that it’s low

If there was an error reading the pin, set the response to indicate that

Example 10-7. Source code for templates/pin.html
<!DOCTYPE html>
   <head>
      <title>{{ title }}</title> 
   </head>

   <body>
      <h1>Pin Status</h1>
      <h2>{{ response }}</h2> 
   </body>
</html>

Insert the title provided from hello-gpio.py into the page’s title

Place the response from hello-gpio.py on the page inside HTML
heading tags

With the above script running, when you point your web browser to your
Raspberry Pi’s IP address, you should see the standard “Hello World!” page

136 Getting Started with Raspberry Pi

www.it-ebooks.info

http://www.it-ebooks.info/


we created before. But add /readPin/24 to the end of the URL, so that it looks
something like http://10.0.1.103/readPin/24. A page should display show-
ing that the pin is being read as low. Now hold down the button connected to
pin 24 and refresh the page; it should now show up as high!

Try the other buttons as well by changing the URL. The great part about this
code is that we only had to write the function to read the pin once and create
the HTML page once, but it’s almost as though there are separate webpages
for each of the pins!

Project: WebLamp
In Chapter 7, we showed you how to use Raspberry Pi as a simple AC outlet
timer in “Project: Cron Lamp Timer” (page 93). Now that you know how to
use Python and Flask, you can now control the state of a lamp over the web.
This basic project is simply a starting point for creating Internet-connected
devices with the Raspberry Pi.

And just like how the previous Flask example showed how you can have the
same code work on multiple pins, you’ll set up this project so that if you want
to control more devices in the future, it’s easy to add.

1. The hardware setup for this project is exactly the same as the “Project:
Cron Lamp Timer” (page 93) so all the parts you need are listed there.

2. Connect the PowerSwitch Tail II relay to the pin 25, just as you did with
in the Cron Lamp Timer project.

3. If you have another PowerSwitch Tail II relay, connect it to pin 24 to con-
trol a second AC device. Otherwise, just connect an LED to pin 24. We’re
simply using it to demonstrate how multiple devices can be controlled
with the same code.

4. Create a new directory in your home directory called WebLamp.

5. In WebLamp, create a file called weblamp.py and put in the code from
Example 10-8

6. Create a new directory within WebLamp called templates.

7. Inside templates, create the file main.html. The source code of this file
can be found in Example 10-9

In terminal, navigate to the WebLamp directory and start the server (be sure
to use Control-C to kill any other Flask server you have running first):

pi@raspberrypi ~/WebLamp $ sudo python weblamp.py

Python and The Internet 137

www.it-ebooks.info

http://www.it-ebooks.info/


Example 10-8. Source code for weblamp.py
import RPi.GPIO as GPIO
from flask import Flask, render_template, request
app = Flask(__name__)

GPIO.setmode(GPIO.BCM)

pins = {
   24 : {'name' : 'coffee maker', 'state' : GPIO.LOW},
   25 : {'name' : 'lamp', 'state' : GPIO.LOW}
   } 

for pin in pins: 
   GPIO.setup(pin, GPIO.OUT)
   GPIO.output(pin, GPIO.LOW)

@app.route("/")
def main():
   for pin in pins:
      pins[pin]['state'] = GPIO.input(pin) 
   templateData = {
      'pins' : pins 
      }
   return render_template('main.html', **templateData) 

@app.route("/<changePin>/<action>") 
def action(changePin, action):
   changePin = int(changePin) 
   deviceName = pins[changePin]['name'] 
   if action == "on": 
      GPIO.output(changePin, GPIO.HIGH) 
      message = "Turned " + deviceName + " on." 
   if action == "off":
      GPIO.output(changePin, GPIO.LOW)
      message = "Turned " + deviceName + " off."
   if action == "toggle":
      GPIO.output(changePin, not GPIO.input(changePin)) 
      message = "Toggled " + deviceName + "."

   for pin in pins:
      pins[pin]['state'] = GPIO.input(pin) 

   templateData = {
      'message' : message,
      'pins' : pins
   } 

   return render_template('main.html', **templateData)

if __name__ == "__main__":
   app.run(host='0.0.0.0', port=80, debug=True)

138 Getting Started with Raspberry Pi

www.it-ebooks.info

http://www.it-ebooks.info/


Create a dictionary called pins to store the pin number, name, and pin
state

Set each pin as an output and make it low

For each pin, read the pin state and store it in the pins dictionary

Put the pin dictionary into the template data dictionary

Pass the template data into the template main.html and return it to
the user

The function below is executed when someone requests a URL with
the pin number and action in it

Convert the pin from the URL into an int

Get the device name for the pin being changed

If the action part of the URL is “on,” execute the code indented below

Set the pin high

Save the status message to be passed into the template

Read the pin and set it to whatever it isn’t (that is, toggle it)

For each pin, read the pin state and store it in the pins dictionary

Along with the pin dictionary, put the message into the template data
dictionary

Example 10-9. Source code for templates/main.html
<!DOCTYPE html>
<head>
   <title>Current Status</title>
</head>

<body>
   <h1>Device Listing and Status</h1>

   {% for pin in pins %} 
   <p>The {{ pins[pin].name }} 
   {% if pins[pin].state == true %} 
      is currently on (<a href="/{{pin}}/off">turn off</a>)
   {% else %} 
      is currently off (<a href="/{{pin}}/on">turn on</a>)
   {% endif %}
   </p>
   {% endfor %}

   {% if message %} 
   <h2>{{ message }}</h2>
   {% endif %}

</body>
</html>

Python and The Internet 139

www.it-ebooks.info

http://www.it-ebooks.info/


Run through each pin in the pins dictionary

Print the name of the pin

If the pin is high, print that the device is on and link to URL to turn it
off

Otherwise, print that the device is off and link to the URL to turn it on

If a message was passed into the template, print it.

Figure 10-2. The device interface, as viewed through a phone’s web brows-
er

The best part about writing the code in this way is that you can very easily
add as many devices that the hardware will support. Simply add the infor-
mation about the device to the pins dictionary. When you restart the server,
the new device will appear in the status list and its control URLs will work
automatically.

140 Getting Started with Raspberry Pi

www.it-ebooks.info

http://www.it-ebooks.info/


There’s another great feature built in: if you want to be able to flip the switch
on a device with a single tap on your phone, you can create a bookmark to
the address http://ipaddress/pin/toggle. That URL will check the pin’s cur-
rent state and switch it.

Going Further
Requests

The homepage for Requests includes very comprehensive documenta-
tion complete with easy to understand examples.

Flask
There’s a lot more to Flask that we didn’t cover. The official site outlines
Flask’s full feature set.

Flask Extensions
Flask extensions make it easy to add functionality to your site.

Python and The Internet 141

www.it-ebooks.info

http://ipaddress/pin/toggle
http://docs.python-requests.org/en/latest/
http://flask.pocoo.org/
http://flask.pocoo.org/extensions/
http://www.it-ebooks.info/


www.it-ebooks.info

http://www.it-ebooks.info/


A/Writing an SD Card
Image

While this book has focused on the Raspbian
operating system, there are many other distri-
butions that can run on the Raspberry Pi. With
any of them, you need to simply download the
disk image and then not-so-simply copy the
disk image onto the SD card. Here’s how to
create an SD Card from a disk image on OS X,
Windows, and Linux.

Writing an SD card from OS X
1. Open your Terminal utility (it’s in /Applications/Utilities) to get a com-

mand line prompt

2. Without the card in your computer’s SD card reader, type df -h. The df
program shows your free space, but it also shows which disk volumes
are mounted.

3. Now insert the SD card and run df -h again.

4. Look at the list of mounted volumes and determine which one is the SD
card by comparing it to the previous output. For example, an SD card
mounts on our computer as /Volumes/Untitled, and the device name
is /dev/disk3s1. Depending on the configuration of your computer, this
name may vary. Names are assigned as devices are mounted, so you
may see a higher number if you have other devices or disk images moun-
ted in the Finder. Write the card’s device name down.

5. To write to the card you’ll have to unmount it first. Unmount it by typing
sudo diskutil unmount /dev/disk3s1 (using the device name you got
from the previous step instead of /dev/disk3s1). Note that you must use

143

www.it-ebooks.info

http://www.it-ebooks.info/


the command line or Disk Utility to unmount. If you just eject it from the
Finder you’ll have to take it out and reinsert it (and you’ll still need to
unmount it from the command line or Disk Utility). If the card fails to
unmount, make sure to close any Finder windows that might be open on
the card.

6. Next you’ll need to figure out the raw device name of the card. Take your
device name and replace disk with rdisk and leave off the s1 (which is
the partition number). For example, the raw device name for the de-
vice /dev/disk3s1 is /dev/rdisk3.

It is really important that you get the raw device name correct!
You can overwrite your hard drive and lose data if you start
writing to your hard drive instead of the SD card. Use df again
to double check before you continue.

7. Make sure that the downloaded image is unzipped and sitting in your
home directory. You’ll be using the Unix utility dd to copy the image bit
by bit to the SD card. Below is the command; just replace the name of
the disk image with the one you downloaded, and replace /dev/rdisk3
with the raw device name of the SD card from step 6.

You can learn more about the command line in Chapter 3, but you’re
essentially telling dd to run as root and copy the input file (if) to the
output file (of).

sudo dd bs=1m if=~/2012-09-18-wheezy-raspbian.img of=/dev/rdisk3

8. It will take a few minutes to copy the whole disk image. Unfortunately dd
does not provide any visual feedback, so you’ll just have to wait. When
it’s done it will show you some statistics; eject the SD card and you’re
ready to try it on the Pi.

Writing an SD card from Windows
1. Download the Win32DiskImager program.

2. Insert the SD card in your reader and note the drive letter that pops up
in Windows Explorer.

3. Open Win32DiskImager and select the Raspbian disk image.

4. Select the SD card’s drive letter, then click Write. If Win32DiskImager
has problems writing to the card, try reformatting it in Windows Explorer.

5. Eject the SD card and put it in your Raspberry Pi; you’re good to go!

144 Appendix A

www.it-ebooks.info

https://launchpad.net/win32-image-writer
http://www.it-ebooks.info/


Writing an SD card from Linux
The instructions for Linux are similar to those for the Mac:

1. Open your a new shell and without the card in the reader, type df -h to
see which disk volumes are mounted.

2. Now insert the SD card and run df -h again.

3. Look at the list of mounted volumes and determine which one is the SD
card by comparing it to the previous output. Find the device name, which
should be something like /dev/sdd1. Depending on the configuration of
your computer, this name may vary. Write the card’s device name down.

4. To write to the card you’ll have to unmount it first. Unmount it by typing
umount /dev/sdd1 (using the device name you got from the previous step
instead of /dev/sdd1). If the card fails to unmount, make sure it is not the
current working directory in any open shells.

5. Next you’ll need to figure out the raw device name of the card, which is
the device name without the partition number. For example, if your de-
vice name was /dev/sdd1, the raw device name is /dev/sdd.

It is really important that you get the raw device name correct!
You can overwrite your hard drive and lose data if you start
writing to your hard drive instead of the SD card. Use df again
to double check before you continue.

7. Make sure that the downloaded image is unzipped and sitting in your
home directory. You’ll be using the Unix utility dd to copy the image bit
by bit to the SD card. Below is the command; just replace the name of
the disk image with the one you downloaded, and replace /dev/rdisk3
with the raw device name of the SD card from step 6.

sudo dd bs=1M if=~/2012-09-18-wheezy-raspbian.img of=/dev/sdd

This command tells dd to run as root and copy the input file (if) to the
output file (of).

8. It will take a few minutes to copy the whole disk image. Unfortunately dd
does not provide any visual feedback, so you’ll just have to wait.

When it’s done it will show you some statistics. It should be ok to eject
the disk, but just to make sure it is safe, run sudo sync, which will flush
the filesystem write buffers.

9. Eject the card and insert it in your Raspberry Pi. Good to go!

Appendix A 145

www.it-ebooks.info

http://www.it-ebooks.info/


BerryBoot
A second way to get the OS on to an SD Card under is to use the BerryBoot
utility. BerryBoot is part of the BerryTerminal thin client project, and will let
you put multiple operating systems on a single card. You put the BerryBoot
image on an SD card, boot it up on the Raspberry Pi and an interactive in-
staller allows you to select an OS from a list. Note that you’ll have to be con-
nected to a network for BerryBoot to work.

146 Appendix A

www.it-ebooks.info

http://www.berryterminal.com/doku.php/berryboot
http://www.berryterminal.com/doku.php/berryboot
http://www.it-ebooks.info/


B/Astral Trespassers
Complete

This appendix contains the complete Scratch
scripts for all the sprites in the Astral Tress-
passers game described in Chapter 5. The ex-
amples are complete in that chapter as well,
but since Scratch is a visual programming lan-
guage it may be helpful to see them all together
in one place. The costume tabs for each sprite
are also highlighted.

Figure B-1. The sprite list and the five sprites.

147

www.it-ebooks.info

http://www.it-ebooks.info/


Figure B-2. The alien1 sprite’s costume tab (left) and complete script
(right).

148 Appendix B

www.it-ebooks.info

http://www.it-ebooks.info/


Figure B-3. The alien2 sprite’s costume tab and complete script.

Appendix B 149

www.it-ebooks.info

http://www.it-ebooks.info/


Figure B-4. The cannon sprite’s costume tab and complete script.

150 Appendix B

www.it-ebooks.info

http://www.it-ebooks.info/


Figure B-5. The bullet sprite’s costume tab and complete script.

Figure B-6. The gameover sprite’s costume tab and complete script.

Appendix B 151

www.it-ebooks.info

http://www.it-ebooks.info/


www.it-ebooks.info

http://www.it-ebooks.info/


C/Analog Input

In this book, you learned about digital inputs
and outputs with buttons, switches, LEDs and
relays. Each of these components were always
either on or off, never anything in between.
However, you might want to sense things in the
world that are not necessarily one or the other,
for instance: temperature, distance, light lev-
els, or the status of a dial.
Unfortunately, you can’t read these types of sensors directly on the Rasp-
berry Pi since there are only digital inputs on the board. But you’re not totally
out of luck; there are a few different ways of using additional components to
read analog sensors using the Pi’s digital inputs.

Converting Analog to Digital
To convert from analog to digital, this appendix will show you how to use an
ADC, or analog to digital converter. There are a few different models of ADC’s
out there, but we’ll be using the ADS1015 from Texas Instruments. The pack-
age of the ADS1015 chip is too small for your standard breadboard, so Ada-
fruit Industries has created a breakout board for it (http://www.adafruit.com/
products/1083), shown in Figure C-1. Once you’ve soldered header pins to
the breakout board, you can prototype with this chip in your breadboard. The
chip uses a protocol called I2C for transmitting the analog readings. Luckily,
we don’t need to understand the protocol in order to use it. Adafruit provides
an excellent open source Python library to read the values from the ADS1015
and its big brother, the ADS1115, via I2C.

153

www.it-ebooks.info

http://www.adafruit.com/products/1083
http://www.adafruit.com/products/1083
http://www.it-ebooks.info/


Figure C-1. The ADS1015 analog to digital converter breakout from Ada-
fruit

To connect the ADS1015 breakout to your Raspberry Pi:

1. Connect the 3.3 volt pin from the Raspberry Pi to the positive rail of the
breadboard. Refer to Figure 7-2 for pin locations on the Raspberry Pi’s
GPIO header.

2. Connect the ground pin from the Raspberry Pi to the negative rail of the
breadboard.

3. Insert the ADS1015 into the breadboard and use jumper wires to connect
its VDD pin to the positive rail and its GND pin to the negative rail.

4. Connect the SCL pin on the ADS1015 to the SCL pin on the Raspberry
Pi. The SCL pin on the Pi is the one paired with the ground pin on the
GPIO header.

5. Connect the SDA pin on the ADS1015 to the SDA pin on the Raspberry
Pi. The SDA pin is in between the the SCL pin and the 3.3 volt pin.

154 Appendix C

www.it-ebooks.info

http://www.it-ebooks.info/


Now you’ll need to connect an analog sensor to the ADS1015. There are many
to choose from, but for this walk-through, we’ll use a 2K potentiometer so
that we can have a dial input for our Raspberry Pi. A potentiometer, or pot,
is essentially a variable resistor and can come in the form of a dial or slider.
To connect a potentiometer to the ADS1015:

1. Insert the potentiometer into the breadboard.

2. The pot has three pins. Connect the middle pin to pin A0 in on the
ADS1015.

3. One of the outside pins should connect to the positive rail of the bread-
board. For now, it doesn’t matter which.

4. Connect the other outside pin to the negative rail of the breadboard.

The connections should look as shown in Figure C-2.

Figure C-2. Using the ADS1015 to connect a potentiometer to the Raspber-
ry Pi

Before you can read the potentiometer, you’ll need to enable I2C and install
a couple libraries:

Appendix C 155

www.it-ebooks.info

http://www.it-ebooks.info/


1. On the command line, open up the raspi-blacklist.conf file as root:

pi@raspberrypi ~ $ sudo nano /etc/modprobe.d/raspi-blacklist.conf

In order to remove I2C from this blacklist, put a hash mark in front of the
line that says blacklist i2c-bcm2708. It should look like this:

# blacklist spi and i2c by default (many users don't need them)

blacklist spi-bcm2708
#blacklist i2c-bcm2708

2. Type Control-X to exit and then y to save the file.

3. Next, open /etc/modules:

pi@raspberrypi ~ $ sudo nano /etc/modules

4. Add i2c-dev to the end of the file, on its own line. The file should look like
this:

# /etc/modules: kernel modules to load at boot time.
#
# This file contains the names of kernel modules that should be loaded
# at boot time, one per line. Lines beginning with "#" are ignored.
# Parameters can be specified after the module name.

snd-bcm2835
i2c-dev

5. Type Control-X to exit and then y to save the file.

6. Update your list of packages:

pi@raspberrypi ~ $ sudo apt-get update

7. Install i2c-tools tools and python-smbus:

pi@raspberrypi ~ $ sudo apt-get install i2c-tools python-smbus

8. Restart your Raspberry Pi.

9. After you’ve restarted your Raspberry Pi, test that the Raspberry Pi can
detect the ADS1015. On revision 1 boards, use the command:

pi@raspberrypi ~ $ sudo i2cdetect -y 0

On revision 2 boards, use the command:

pi@raspberrypi ~ $ sudo i2cdetect -y 1

156 Appendix C

www.it-ebooks.info

http://www.it-ebooks.info/


10. If the board is recognized, you’ll see the number in the grid that is dis-
played:

     0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f
00:          -- -- -- -- -- -- -- -- -- -- -- -- --
10: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
20: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
30: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
40: -- -- -- -- -- -- -- -- 48 -- -- -- -- -- -- --
50: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
60: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
70: -- -- -- -- -- -- -- --

11. Now that we know that the device is connected and is recognized by our
Pi, it’s time to start reading the potentiometer. To do so, download the
Raspberry Pi Python libraries from Adafruit’s code repository into your
home folder. Type the following command at the shell prompt, all on one
line with no spaces in the URL:

wget https://github.com/adafruit/Adafruit-Raspberry-Pi-Python-Code/
archive/master.zip

12. Unzip it:

pi@raspberrypi ~ $ unzip master.zip

13. Change to the library’s ADS1x15 directory:

$ cd Adafruit-Raspberry-Pi-Python-Code-master/Adafruit_ADS1x15

14. Run the example file:

$ sudo python ads1015_example.py
Channel 0 = 2.067 V
Channel 1 = 3.309 V

15. Turn the potentiometer all the way in one direction and run it again. No-
tice the change in the value for channel 0:

$ sudo python ads1015_example.py
Channel 0 = 3.306 V
Channel 1 = 3.309 V

16. Turn the potentiometer all the way in the other direction and run it one
more time:

$ sudo python ads1015_example.py
Channel 0 = 0.000 V
Channel 1 = 3.309 V

Appendix C 157

www.it-ebooks.info

http://www.it-ebooks.info/


As you can see, turning the dial on the potentiometer changes the voltage
coming into channel 0 of the ADS1015. The code in ads1015_example.py does
a little bit of math to determine the voltage value from the data coming from
the ADC. Of course, your math will vary depending on what kind of sensor
you want use.

Try creating a new file in the same directory with the following code:

from Adafruit_ADS1x15 import ADS1x15 
from time import sleep

adc = ADS1x15() 

while True:
   result = adc.readADCSingleEnded(0) 
   print result
   sleep(.5)

Import Adafruit’s ADS1x15 library

Create a new ADS1x15 object called adc.

Get a reading from channel A0 on the ADS1015 and store it in result.

When you run this code as root, it will output out raw numbers for each read-
ing twice a second. Turning the potentiometer will make the values go up or
down.

Once you get it all set up, the Adafruit ADS1x15 library does all the hard work
for you and makes it easy to use analog sensors in your projects. For instance,
if you want to make your own Pong-like game, you could read two potenti-
ometers and then use Pygame to draw on the game on screen. For more
information about using Pygame, see Chapter 4.

158 Appendix C

www.it-ebooks.info

http://www.it-ebooks.info/


Adafruit’s Educational Linux Distro
Adafruit Industries created a fork of the main Raspbian/Wheezy Linux dis-
tribution and added drivers and software that make electronics prototyping
easier right out of the box. The result is the Adafruit Raspberry Pi Educational
Linux Distro, codenamed Occidentalis from the species name of the black
raspberry.

Occidentalis is an interesting example of the open source model in action;
the Linux ecosystem has a long history of forked distributions that are spe-
cially tuned for a particular application. Often these forks are proving grounds
for targeted improvements that can be merged back into other distributions.

Many of the improvements and additions in the distribution are aimed at
supporting popular sensors and some Adafruit products without having to
install additional software. There are also some low-level improvements that
make it easier to perform Pulse Width Modulation and control servo motors
directly from the Raspberry Pi.

See the overview page for a list of features, and the Adafruit tutorials for
examples of how to use Occidentalis.

Appendix C 159

www.it-ebooks.info

http://learn.adafruit.com/adafruit-raspberry-pi-educational-linux-distro
http://learn.adafruit.com/adafruit-raspberry-pi-educational-linux-distro
http://learn.adafruit.com/adafruit-raspberry-pi-educational-linux-distro
http://learn.adafruit.com/category/raspberry-pi
http://www.it-ebooks.info/


www.it-ebooks.info

http://www.it-ebooks.info/


The cover and body font is BentonSans, the heading font is Serifa, and the
code font is Bitstreams Vera Sans Mono.

About the Authors
Matt Richardson is a Brooklyn-based creative technologist and video pro-
ducer. He’s a contributor to MAKE magazine and Makezine.com. Matt is also
the owner of Awesome Button Studios, a technology consultancy. Highlights
from his work include the Descriptive Camera, a camera which outputs a text
description of a scene instead of a photo. He also created The Enough Al-
ready, a DIY celebrity-silencing device. Matt’s work has garnered attention
from The New York Times, Wired, New York Magazine and has also been fea-
tured at The Nevada Museum of Art and at the Santorini Bienniele. He is
currently a Master’s candidate at New York University’s Interactive Telecom-
munications Program.

Shawn Wallace is an editor at O’Reilly and lives in Providence, RI. He is also
a member of the Fluxama artist collective responsible for new iOS musical
instruments such as Noisemusick and Doctor Om. He designed open hard-
ware kits at Modern Device and taught the Fab Academy at the Providence
Fab Lab. For years he was the managing director of the AS220 art space and
is a cofounder of the SMT Computing Society.

www.it-ebooks.info

http://www.it-ebooks.info/

	Copyright
	Table of Contents
	Preface
	What Can You Do With It?
	Raspberry Pi for Makers
	Linux and Raspberry Pi
	What Others Have Done With It
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgements

	Chapter 1. Getting Up and Running
	A Tour of the Boards
	The Proper Peripherals
	The Case
	Flash the SD Card
	Booting Up
	Configuring Your Pi
	Shutting Down
	Troubleshooting
	Going Further

	Chapter 2. Getting Around Linux on the Raspberry Pi
	Using the Command Line
	Files and the Filesystem

	More Linux Commands
	Processes
	Sudo and Permissions
	The Network

	/etc
	Setting the Date and Time
	Installing New Software
	Going Further

	Chapter 3. Python On The Pi
	Hello Python
	A Bit More Python
	Objects and Modules
	Even More Modules
	Troubleshooting Errors
	Going Further

	Chapter 4. Animation and Multimedia in Python
	Hello Pygame
	Pygame Surfaces
	Drawing on Surfaces
	Handling Events and Inputs
	Sprites
	Playing Sound
	Playing Video
	Further Reading

	Chapter 5. Scratch on the Pi
	Hello Scratch
	The Stage
	Two More Things to Know About Sprites
	A Bigger Example: Astral Trespassers
	Scratch and the Real World
	Sharing Your Programs
	Going Further

	Chapter 6. Arduino and the Pi
	Installing Arduino in Raspbian
	Finding the Serial Port

	Talking in Serial
	Going Further

	Chapter 7. Basic Input and Output
	Using Inputs and Outputs
	Digital Output: Lighting Up an LED
	Digital Input: Reading a Button

	Project: Cron Lamp Timer
	Scripting Commands
	Connecting a Lamp
	Scheduling Commands with cron

	Going Further

	Chapter 8. Programming Inputs and Outputs with Python
	Installing and Testing GPIO in Python
	Blinking an LED
	Reading a Button
	Project: Simple Soundboard
	Going Further

	Chapter 9. Working with Webcams
	Testing Webcams
	Installing and Testing SimpleCV
	Displaying an Image
	Modifying an Image
	Accessing the Webcam
	Face Detection
	Project: Raspberry Pi Photobooth
	Going Further

	Chapter 10. Python and The Internet
	Download Data from a Web Server
	Fetching the Weather Forecast

	Serving Pi (Be a Web Server)
	Flask Basics

	Connecting the Web to the Real World
	Project: WebLamp
	Going Further

	Appendix A. Writing an SD Card Image
	Writing an SD card from OS X
	Writing an SD card from Windows
	Writing an SD card from Linux

	Appendix B. Astral Trespassers Complete
	Appendix C. Analog Input
	Converting Analog to Digital

	About the Authors


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice




