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Preface

The book presents one of the most comprehensive coverages so far of VHDL and its appli-

cations to the design and simulation of real, industry-standard circuits. It does not focus

only on the VHDL language, but also on its use in building and testing digital circuits. In

other words, besides explaining VHDL in detail, it also shows why, how, and which types

of circuits are inferred from the language constructs, and how any of the four simulation

categories can be implemented, all demonstrated by means of numerous examples. A rig-

orous distinction is made between VHDL for synthesis and VHDL for simulation. In both

cases, the VHDL codes are always complete, not just partial sketches, and are accompa-

nied by circuit theory, code comments, and simulation results whenever applicable. The

book also reviews fundamental concepts of digital electronics and digital design, resulting

in a very practical, self-contained approach. A series of modern extended and advanced

designs are also presented, covering state machines, memory implementations, serial data

communications circuits, video interfaces, and more.

Main Features

1 The book focuses on the use of VHDL rather than solely on the language itself. In other

words, besides explaining VHDL in detail, it also shows why, how, and which types of cir-

cuits are inferred from the language constructs.

1 The book makes a clear distinction between the parts of VHDL that are for synthesis

versus those that are for simulation (contrary to other books, which usually mix up all

VHDL constructs).

1 The VHDL codes in all design examples are complete, not just partial sketches. Circuit

diagrams, physical synthesis in Field Programmable Gate Arrays (FPGAs), simulation

results, and explanatory comments are also included in the designs.

1 It teaches all indispensable features of VHDL in a very concise format.

1 It is the first text to also include a detailed analysis of circuit simulation with VHDL test-

benches in all four categories (nonautomated and fully automated, functional and timing



simulations), accompanied also by related tutorials (like ModelSim), which allow complete

end-to-end practical examples to be presented.

1 The book also reviews fundamental concepts of digital electronics and digital design,

resulting in a very practical, self-contained approach.

1 To ease the understanding of the language and its applications, the review and the exam-

ples are separated into combinational and sequential circuits. Further distinction is made

between logical versus arithmetic combinational circuits, as well as between regular versus

state-machine-based sequential circuits.

1 The book is divided into three parts, with circuit-level VHDL in part 1 (chapters 1–8),

system-level VHDL and simulation in part 2 (chapters 8–10), and finally extended and

advanced designs in part 3 (chapters 11–17). In summary, chapters 1–10 teach VHDL,

while chapters 11–17 show a series of extended and advanced designs using VHDL.

1 Inclusion of new, modern digital circuits, like advanced state machines, serial data com-

munications circuits, and video interfaces, all with theory, complete VHDL codes, simula-

tion, and explanatory comments, makes the lab sections much more productive.

1 All examples and exercises are named to ease the identification of the circuit/design

under analysis.

1 Finally, a series of 15 appendices show tutorials on very important design tools, such as

ISE, Quartus II, and ModelSim, plus descriptions of programmable logic devices (CPLDs/

FPGAs, in which the designs are implemented), of the DE2 development board, of stan-

dard VHDL packages, and more.

Main Di¤erences Relative to the First Edition

The book was updated, extended, and immensely improved. The VHDL language is now

covered in chapters 1–10 (including fundamental designs and simulation), while chapters

11–17 present extended and advanced designs. Below is a summary of the main improve-

ments with respect to the first edition, preceded by the total number of examples, exercises,

and figures in both editions.

Enumerated design examples: 79 (first edition); 94 (second edition)

Exercises: 96 (first edition); 231 (second edition)

Figures: 145 (first edition); 278 (second edition)

With Respect to the Language

The study of VHDL (chapters 1–10) was updated, extended, and deepened. The syntax

was improved, with better coverage and a simplified representation adapted from the

Backus-Naur Form. Features of VHDL 2008 were also included. New theoretical details
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were included in the descriptions of basically all circuits. Additionally, the number of

examples and of exercises grew substantially.

In chapters 2–4, the study of VHDL libraries/packages was extended. Numerous new

details, particularly for synthesis, were described and included in the examples and exer-

cises. The description of the code structure, in chapter 2, was modernized, including addi-

tional details about the syntax and synthesis packages as well as new introductory design

examples.

In chapter 3, the description of data types was updated and immensely expanded. A more

rigorous distinction between the several data type families was provided, including several

type classifications. A successful technique introduced in the first version, which bases any

data type on its number of bits, was again employed and extensively used in the examples.

Type conversion and the analysis of unsigned versus signed types were also deepened.

In chapter 4, the description of operators and attributes was updated and expanded. All

predefined options are now present in the text. A series of synthesis attributes, to prevent

logic or register simplifications or for automated pin assignments, were also included.

The study of concurrent code, in chapter 5, received new examples and new topics,

including recommendations for the implementation of signed systems, followed by respec-

tive examples. The use of special synthesis attributes, described in chapter 4, was also illus-

trated. Additionally, the study of sequential code, in chapter 6, was modernized. The

examples were reorganized and new examples and new exercises were provided.

In chapter 7, the study of signal versus variable was modernized, with six rules intro-

duced for the proper understanding of their di¤erences. A new topic, which introduces a

technique to allow multiple signal assignments, was also included.

Chapter 8’s description of packages and components was also updated. New examples

and exercises were included, as well as configuration declarations and multiple component

instantiations.

The study of functions and procedures, in chapter 9, was reorganized and expanded.

Additional details were presented, with more information on overloading and the inclusion

of new function implementations.

Contrary to all other chapters, which deal exclusively with synthesis, chapter 10

is completely dedicated to simulation (this did not exist in the previous edition). All four

categories of VHDL simulation with testbenches are described, and several practical exam-

ples are given. The use of text files, which are very helpful in simulations, is also described.

This chapter is a crucial distinguishing feature with respect to the previous edition (in fact,

with respect to any other VHDL book).

With Respect to the Extended and Advanced Design Examples

Chapters 11–17 are dedicated exclusively to the presentation of extended and advanced

designs, constituting another major addition to the book. Another di¤erence is that

these designs are not done without first going through the theory on the involved circuits,
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including the analysis of o‰cial standards, when applicable. This part of the book replaces

chapters 8, 9, and 12 of the previous edition. The main di¤erences are summarized below.

Chapter 11 presents detailed design techniques for finite state machines (FSMs) using

VHDL. A new technique for complex, timed machines is introduced in this new edition.

Another new topic discusses the state-bypass problem in FSMs. The result is the most

comprehensive study of FSM design using VHDL so far.

Chapter 12 is another completely new addition to the book. It presents a series of

designs involving basic displays (LEDs, SSDs, and LCDs). Because these devices provide

physical (visual) feedback to the students, lab exercises involving them are very motivating.

As in all other chapters, each design is preceded by theoretical information on the circuits

to be designed.

Chapter 13, also new, shows a study of memory implementations. This is important be-

cause basically any modern digital system requires some sort of memory.

Chapter 14 is the longest of the new chapters. It deals with a very modern topic, present

in almost all large designs, which consists of serial data communications circuits. Several

modern interfaces are described (I2C, SPI, TMDS, PS2) and subsequently used in actual

applications, driving actual ICs.

Chapters 15–17 are also new. All three deal with video circuits, again providing interest-

ing, advanced circuits for lab experiments. Chapter 15 deals with the traditional VGA in-

terface, used to connect computers to analog video monitors. Chapter 16 describes the

DVI interface, fully digital and much more complex, used to connect desktop computers

to LCD monitors. Finally, chapter 17 deals with the FPD-Link interface, which is a mod-

ern video interface for industrial and hand-held applications.

With Respect to the Exercises

The exercise sections were modernized and greatly expanded (there were 96 exercises in the

previous edition; there are now 231). A broader coverage is achieved, with numerous inter-

esting exercises for implementation and testing in FPGA boards during the lab sections.

With Respect to the Overall Presentation

The text was fully revised and expanded, with a smoother presentation and the inclusion of

many additional details, both theoretical and practical. The same occurred with the fig-

ures, with the inclusion of many new ones and the complete reconstruction of those

brought over from the first edition.

Audience

The book is mainly intended for the following:

1 electrical engineering undergraduate and graduate students,

1 computer engineering undergraduate and graduate students,
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1 computer science undergraduate and graduate students,

1 digital design professors and instructors,

1 VHDL professors and instructors,

1 digital design engineers and practitioners in the industry, and

1 digital design consultants and other practitioners at all levels.

Companion Books

The following two references are highly recommended:

1 IEEE 2008 for additional details on the VHDL language.

1 Pedroni 2008 for theoretical background on digital concepts and digital circuits.
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I CIRCUIT-LEVEL VHDL



 

1 Introduction

1.1 About VHDL

This chapter concisely describes what VHDL is and what it is used for. Popular synthesis

and simulation tools are also listed, and a typical design flow is summarized.

VHDL is a hardware description language. The code describes the behavior or structure

of an electronic circuit, from which a compliant physical circuit can be inferred by a com-

piler. Its main applications include synthesis of digital circuits onto CPLD/FPGA (Com-

plex Programmable Logic Device/Field Programmable Gate Array) chips and layout/

mask generation for ASIC (Application-Specific Integrated Circuit) fabrication.

VHDL stands for VHSIC (Very High Speed Integrated Circuits) Hardware Description

Language, and resulted from an initiative funded by the U.S. Department of Defense in the

1980s. Its first version was VHDL 87, later upgraded by VHDL 93, then VHDL 2002, and

finally VHDL 2008. It was the first hardware description language standardized by the

IEEE, through the 1076 and 1164 standards. VHDL is technology/vendor independent,

so VHDL codes are portable and reusable.

VHDL allows circuit synthesis as well as circuit simulation (both are covered in the

book). The former is the translation of a source code into a hardware structure that imple-

ments the intended functionality, while the latter is a testing procedure to ensure that such

functionality is indeed achieved by the synthesized circuit. In all chapters we will concen-

trate on VHDL constructs that are synthesizable, except for chapter 10, which deals exclu-

sively with VHDL for simulation.

1.2 VHDL Versions

The first VHDL version was released in 1987, through the IEEE 1076-1987 Standard

VHDL Language Reference Manual. Several versions followed (all listed below).

1 IEEE 1076-1987 Standard VHDL Language Reference Manual (archived)

1 IEEE 1076-1993 Standard VHDL Language Reference Manual (archived)



1 IEEE 1076-2000 Standard VHDL Language Reference Manual (archived)

1 IEEE 1076-2002 Standard VHDL Language Reference Manual (archived)

1 IEEE 1076-2008 Standard VHDL Language Reference Manual (active: released in Feb-

ruary 2009).

Other related documents, mainly with synthesis packages, are listed below.

1 IEEE 1164-1993 Standard Multivalue Logic System for VHDL Model Interoperability

(active)

1 IEEE 1076.3-1997 Standard VHDL Synthesis Packages (active)

1 IEEE 1076.6 Standard for VHDL Register Transfer Level (RTL) Synthesis (active).

Because the 2000 document was rapidly replaced with the 2002 version, it is usually con-

sidered that four VHDL versions exist: VHDL 87, VHDL 93, VHDL 2002, and VHDL

2008.

The expansions introduced in VHDL 2008 will be explained in the corresponding

chapters. The package-related additions will also be mentioned in the corresponding data

packages of appendices H–N.

Figure 1.1
Simplified VHDL design flow.
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1.3 Design Flow

A simplified view of the design flow is presented in figure 1.1. We assume that the designer

already has a set of specifications for which a compliant circuit should be generated. The

first step is to write a VHDL code that fulfills such specifications. The code must be saved

in a text file with the extension .vhd and the same name as that of its main entity. Next, the

code is compiled using a synthesis tool (a list of such tools is given in section 1.4). Several

files are generated during the compilation process. The synthesizer breaks down the code

into the hardware structures that are available within the chosen device, so during fitting

(place and route) each structure inferred by the synthesizer is assigned a specific place

inside the device. This positional information is important because it greatly influences

the resulting circuit’s timing behavior. With the timing information generated by the fitting

process, the software allows the circuit to be fully simulated. Once the specifications have

been met, the designer can proceed to the final step (implementation), during which a pro-

gramming file for the device (when using a CPLD or FPGA) or for the masks (for ASICs)

is generated. In the case of CPLDs/FPGAs, the design is concluded by downloading the

programming file from the computer to the target device.

1.4 EDA Tools

There are several EDA (Electronic Design Automation) tools available for circuit syn-

thesis and simulation using VHDL. Some tools are o¤ered by CPLD/FPGA companies

(Altera, Xilinx, etc.), while others are o¤ered by third-party software companies (Mentor

Graphics, Synopsys, Cadence, etc.). Some examples are listed below.

1 From Altera: Quartus II (for synthesis and graphical simulation)

1 From Xilinx: ISE (XST for synthesis, ISE Simulator for simulation)

1 From Mentor Graphics: Precision RTL and Leonardo Spectrum (synthesis), ModelSim

(simulation)

1 From Synopsys/Synplicity: Design Compiler Ultra and Synplify Pro/Premier (synthesis),

VCS (simulation)

1 From Cadence: NC-Sim (simulation)

1 From Aldec: Active-HDL (simulation).

The designs presented in the book were compiled and simulated using Quartus II

Web Edition 8.1 or newer, from Altera, and occasionally ISE WebPack 10.1 or newer,

from Xilinx. In the simulations with testbenches of chapter 10, ModelSim 6.3g was also

employed.
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In the tutorials, the following EDAs are described:

1 Quartus II 9.0 sp1 Web Edition (appendix B)

1 ISE 11.1 WebPack (appendix C)

1 ModelSim 6.3g Web Edition for Altera (appendix D).

1.5 Translation of VHDL Code into a Circuit

A full-adder unit is depicted in figure 1.2. In it, a and b represent the input bits to be

added, cin is the carry-in bit, sum is the sum bit, and cout the carry-out bit. As shown

in the truth table, sum must be high whenever the number of inputs that are high is odd

(odd parity function), while cout must be high when two or more inputs are high (majority

function).

A VHDL code for the full-adder of figure 1.2 is shown in figure 1.3. As can be seen, it

consists of an ENTITY, which contains a description of the circuit ports (pins), and of an

ARCHITECTURE, which describes how the circuit must function. We see in the latter

that the outputs are computed by sum ¼ al bl cin and cout ¼ a:bþ a:cinþ b:cin.

Figure 1.2
Full-adder diagram and truth table.

Figure 1.3
VHDL code for the full-adder unit of figure 1.2.
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Note: VHDL is not case sensitive, except possibly for the STD_ULOGIC symbols ('Z', 'X',

etc.). Just to make the code easier to read, throughout the book capital letters are

employed for the reserved words, while lowercase is used for the words that can be chosen

by the user.

From the VHDL code shown on the left of figure 1.3, a physical circuit is inferred.

There are, however, several ways of implementing the equations described above, so the

actual circuit will depend on the target technology as well as on the compilation setup.

Just to illustrate such possibilities, two examples are depicted in figure 1.4. In (a), sum

and cout are computed using conventional gates (this might be the case when the target is

a CPLD or FPGA), while in (b) a transistor-level implementation, utilizing CMOS logic, is

shown (proper for ASICs). Moreover, the synthesis tool can be set to optimize the layout

for area or for speed, which might also a¤ect the final circuit.

1.6 Circuit Simulation

Whatever the final circuit inferred from the code is, its operation should always be verified

by means of simulations still at the design level (after synthesis), as indicated in figure 1.1.

Of course, the physical system should eventually also be verified. However, contrary to

basically any other kind of electronic design, VHDL designs, once they pass careful EDA

simulations, are basically guaranteed to pass physical evaluation as well.

Testing using VHDL will be seen in chapter 10. For this brief introduction, let us con-

sider just simulations with graphical inputs (done directly in the Quartus II or ISE tool). In

this case, waveforms similar to those depicted in figure 1.5 will be displayed by the simula-

tor. Indeed, figure 1.5 contains the simulation results from the circuit synthesized with the

VHDL code of figure 1.3, which implements the full-adder unit of figure 1.2. In figure 1.5a,

a functional simulation is shown (propagation delays through the circuit are neglected),

while figure 1.5b shows a timing simulation (propagation delays are taken into account—

see highlighted area). Nearly all simulations presented in the book are in the latter

category.

Figure 1.4
Implementation examples for the full-adder circuit of figure 1.2: (a) With conventional gates; (b) At transistor
level (with CMOS logic).
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The input ports (characterized by an inward arrow with an "I" marked inside) and the

output ports (characterized by an outward arrow with an "O" marked inside) are those

listed in the ENTITY of figure 1.3. We can freely choose the values (waveforms) for the

input signals (a, b, and cin in this case), and the simulator will compute and plot the output

signals (sum and cout). As can be observed in figure 1.5, the outputs do behave as

expected.

1.7 VHDL Syntax

In the description of VHDL, great care was taken with respect to the syntax. In order to

make it easier to understand, some simplifications were made with respect to that in the

IEEE 1076-2008 Standard VHDL Language Reference Manual, which follows approxi-

mately the EBNF (Extended Backus-Naur Form) style. The simplifications were made

without compromising the quality of the information; indeed, additional comments and

examples were included whenever necessary to clarify the syntax as much as possible,

always emphasizing items that are synthesizable.

1.8 Number and Character Representations in VHDL

Integers

Integers are normally represented with base-10 (decimal) numbers. Their default range in

VHDL is from �ð231 � 1Þ to þð231 � 1Þ. The underscore character (_) can be used any-

where in the number to help visualize it, with no e¤ect on the synthesized value. Exponents

Figure 1.5
(a) Functional versus (b) timing simulation results obtained from the VHDL code of figure 1.3.

8 Chapter 1



are also accepted. Though unusual, any other base from 2 to 16 can also be employed, in

which case the base value must precede the number, and the number must be surrounded

by the pound (sharp) symbol (C). Examples are shown below.

1 Base 10 (decimals): 5, 32, 3250, 3_250, 3E2 (¼ 3 � 102 ¼ 300)

1 Other bases (from 2 to 16):

2C0111C (this is the integer 7, because 0 � 23 þ 1 � 22 þ 1 � 21 þ 1 � 20 ¼ 7)

5C320C (3 � 52 þ 2 � 51 þ 0 � 50 ¼ 85)

16C9FC (9 � 161 þ 15 � 160 ¼ 159)

3C201CE4 (ð2 � 32 þ 0 � 31 þ 1 � 30Þ � 34 ¼ 1539).

Binary Values

Binary values are surrounded by either single quotes (single bit) or double quotes (multi

bits). Besides the regular binary representation, multi-bit words can also be expressed in

octal or hexadecimal form. In such cases, an 'O' (for octal) or 'X' (for hexadecimal) must

precede the bit vector. For binary, an optional 'B' can also be used. Since VHDL is not

case sensitive, lowercase letters are fine too. Examples are shown below, with the equiva-

lent decimal value included between parentheses.

1 Regular binary form:

'0' (¼ 0), "0111" (¼ 7), b"0111" (¼ 7), B"11110000" (¼ 240)

1 Octal and hexadecimal forms:

O"54" (5 � 81 þ 4 � 80 ¼ 44), o"0" (0 � 80 ¼ 0), X"C2F" (12 � 162 þ 2 � 161 þ 15 � 160 ¼
3119), x"D" (13 � 160 ¼ 13)

Unsigned Values

In unsigned systems, all numbers are non-negative, hence ranging from 0 to 2N � 1, where

N is the number of bits. For example, with 8 bits, values from 0 ("00000000") up to 255

("11111111") can be encoded.

Signed Values

On the other hand, in signed systems, the numbers can be negative. With N bits, the range

of integers from �2N�1 to 2N�1 � 1 is covered. The usual representation for negative num-

bers is two’s complement. If the MSB (Most Significant Bit; by convention, the leftmost) is

'0', then the number is positive; if it is '1', it is negative. To obtain such a representation, we

start with the positive value and complement (reverse) all bits, then add '1' to the result.

Examples are shown below (note that bþ þ jb�j ¼ 2N , where bþ and b� are the positive

and negative representations for the binary number b).
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"0111" ¼ þ7

"1001" ¼ �7 (complement of þ7 is "1000"; adding '1', "1001" results)

"010000" ¼ þ16

"110000" ¼ �16 (complement of þ16 is "101111"; adding '1', "110000" results).

Characters

Characters from an extended ASCII table (appendix H) are synthesizable. Following the

same style of bit and bit vector, a single character is represented surrounded by a pair

of single quotes, while a string of characters (also synthesizable) is surrounded by a pair of

double quotes. Examples are shown below.

'A', 'a', '$', "VHDL", "mp3".
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2 Code Structure

2.1 Fundamental VHDL Units

This chapter describes the fundamental sections that comprise a piece of regular VHDL

code: Library declarations, ENTITY, and ARCHITECTURE. A few introductory design

examples are also included.

As depicted in figure 2.1a, a basic VHDL code is composed of three sections:

1 Library/package declarations: Contains a list of all libraries and respective packages

needed in the design. The most commonly used libraries are ieee, std, and work (the last

two are made visible by default).

1 ENTITY: Specifies mainly the circuit’s I/O ports, plus (optional) generic constants.

1 ARCHITECTURE: Contains the VHDL code proper, which describes how the circuit

should function, from which a compliant hardware is inferred.

LIBRARY is a collection of commonly used pieces of code. Placing them inside a li-

brary allows the code to be reused and also shared by other designs. The typical structure

of a library is illustrated in figure 2.1b. Any previously designed circuit can be part of a

library. Such circuits can then be used (instantiated) in other designs using the COMPO-

NENT keyword. Another popular option is to write commonly used pieces of code in the

form of FUNCTION or PROCEDURE (called subprograms), then place them inside a

PACKAGE, which is located in a library. General declarations of data types are also usu-

ally located in libraries.

The fundamental units of VHDL (figure 2.1a) are studied in the first part of the book

(circuit-level VHDL, chapters 1–7), while the library-related units (PACKAGE, COMPO-

NENT, FUNCTION, and PROCEDURE—figure 2.1b) plus simulation are seen in the

second part (system-level VHDL, chapters 8–10).

2.2 VHDL Libraries and Packages

The standard VHDL libraries are std and ieee, and their main packages are listed below.

Popular nonstandard packages (sharewares) are also listed.



Library std

1 Package standard (appendix H): This package, specified in the IEEE 1076 standard, is

part of VHDL since its first version (1987). Among other things, it contains several data

type definitions (BIT, INTEGER, BOOLEAN, CHARACTER, etc.) and respective logic,

arithmetic, comparison, shift, and concatenation operators. This package was expanded in

VHDL 2008.

1 Package textio (appendix M): A resource package for text and files, also specified in the

IEEE 1076 standard and also expanded in VHDL 2008.

Library ieee

1 Package std_logic_1164 (appendix I): Defines the 9-value data types STD_ULOGIC and

STD_LOGIC, whose main feature, compared to the original type BIT, is the existence

of the additional synthesizable values don’t care ('-') and high-impedance ('Z') (BIT only

allows '0' and '1'). This package is specified in the IEEE 1164 standard.

1 Package numeric_std (appendix J): Introduces the types SIGNED and UNSIGNED and

corresponding operators, having STD_LOGIC as the base type. This package is specified

in the IEEE 1076.3 standard.

1 Package numeric_bit: Same as above, but with BIT as the base type.

1 Package numeric_std_unsigned (appendix N): Introduced in VHDL 2008, this package is

expected to replace the nonstandard package std_logic_unsigned.

1 Package numeric_bit_unsigned: Also introduced in VHDL 2008, this package is similar to

that above, but operates with the type BIT_VECTOR instead of STD_LOGIC_VECTOR.

1 Package env: Introduced in VHDL 2008, it includes stop and finish procedures for com-

munication with the simulation environment.

1 Package fixed_pkg (plus associated packages): Developed by Kodak and introduced in

VHDL 2008, it defines the unsigned and signed fixed-point types UFIXED and SFIXED

and related operators.

Figure 2.1
(a) Fundamental sections of a VHDL code; (b) Fundamental parts of a library.
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1 Package float_pkg (plus associated packages): Also from Kodak and VHDL 2008, it

defines the floating-point type FLOAT and related operators.

Nonstandard Packages

1 Package std_logic_arith (appendix K): Defines the types SIGNED and UNSIGNED and

corresponding operators. This package is partially equivalent to numeric_std.

1 Package std_logic_unsigned: Introduces functions that allow arithmetic, comparison, and

some shift operations with signals of type STD_LOGIC_VECTOR operating as unsigned

numbers.

1 Package std_logic_signed (appendix L): Same as above, but operating as signed numbers.

The last two packages can be considered as complements to the package std_logic_1164,

because the latter does not contain arithmetic or comparison operators for the type

STD_LOGIC_VECTOR, while the former two do.

The packages listed will be studied in detail in chapters 3 and 4, when dealing with data

types and operators, respectively.

2.3 Library/Package Declarations

To make a package visible to the design, two declarations are needed, one for the library

where the package is located, the other a use clause pointing to the specific package. The

corresponding syntax is shown below.

LIBRARY library_name;

USE library_name.package_name.all;

The most frequently used packages are:

1 Package standard, from the library std (visible by default).

1 Library work (folder where the project files are saved; also visible by default).

1 Package std_logic_1164, from the library ieee (when needed, must be explicitly declared).

Corresponding declarations are shown below.

1 ---------------------------------------------

2 LIBRARY std; --optional declaration

3 USE std.standard.all; --optional declaration

4 LIBRARY work; --optional declaration

5 USE work.all; --optional declaration
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6 LIBRARY ieee;

7 USE ieee.std_logic_1164.all;

8 USE work.my_package.all;

9 ---------------------------------------------

The package standard (lines 2–3) is made visible by default, so there is no need to explic-

itly declare it. The same is true for the work library (lines 4–5). On the other hand, the

package std_logic_1164 (lines 6–7) needs to be declared when the STD_(U)LOGIC type

is used in the project. If an extra, user-made package is also needed, then it too must be

declared, as shown in line 8 above (line 8 does not need line 4 because the latter is already

in the default list).

Note in the declarations above that a semi-colon (;) indicates the end of a declaration or

statement, while a double dash (--) indicates a comment. VHDL code is not case sensitive

(except, possibly, for the STD_(U)LOGIC symbols). As already mentioned, other details

about libraries/packages will be given in the next two chapters.

2.4 ENTITY

The main part of an ENTITY is PORT, which is a list with specifications of all input and

output ports (pins) of the circuit. A simplified syntax is shown below (the complete syntax

will be shown shortly).

ENTITY entity_name IS

PORT (

port_name: port_mode signal_type;

port_name: port_mode signal_type;

...);

END [ENTITY] [entity_name];

The entity’s name can be basically any word, except VHDL (and a few other) reserved

words (appendix G). The same is true for the port names.

All members of the PORT field in the syntax above are signals (in contrast with vari-

ables); that is, wires that go in and out of the circuit. Their mode can be IN, OUT,

INOUT, or BUFFER. As illustrated in figure 2.2a, IN and OUT are truly unidirectional

wires, while INOUT is bidirectional and BUFFER is employed when a signal is sent out

but it must also be used (read) internally. Finally, the type can be BIT, INTEGER,

STD_LOGIC, and so on (data types will be studied in chapter 3).

The use of BUFFER can be avoided by creating internal auxiliary signals. Moreover,

the mode OUT will be available for internal reading when VHDL 2008 is implemented.
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The use of INOUT is particularly important when implementing memories, which often

employ the same data bus for writing and reading (this will be seen in chapter 13).

Example Below is a possible ENTITY for the NAND gate of figure 2.2b, under the

name nand_gate. Its meaning is the following: the circuit has three I/O ports, of which

two are inputs (a and b, mode IN) and the other is an output (x, mode OUT). The type

of all three signals is BIT.

----------------------

ENTITY nand_gate IS

PORT (a, b: IN BIT;

x: OUT BIT);

END ENTITY;

----------------------

In the previous syntax, only the PORT field was shown. However, as shown next, an

entity can contain three other fields, which are a GENERIC declarations section (before

PORT), a general declarative part (after PORT), and finally a section with passive calls

or processes (also after PORT).

ENTITY entity_name IS

[GENERIC (

const_name: const_type const_value;

...);]

[PORT (

signal_name: mode signal_type;

...);]

[entity_declarative_part]

[BEGIN

entity_statement_part]

END [ENTITY] [entity_name];

Only the PORT part of an entity is mandatory (for synthesis; for simulation, as will be

shown in chapter 10, an empty entity can be employed). The optional GENERIC part

Figure 2.2
(a) VHDL port modes; (b) NAND gate.
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(described in section 2.6) is for declaring constants that are globally visible to the design,

including to PORT.

The optional declarative part (after PORT), though rarely used, can contain the fol-

lowing: subprogram declaration, subprogram body, type declaration, subtype declaration,

constant declaration, signal declaration, shared variable declaration, file declaration, alias

declaration, attribute declaration, attribute specification, disconnection specification, use

clause, group template declaration, and group declaration.

Finally, the optional statements section, also rarely used, can contain passive calls

and/or passive processes (that is, those that do not involve any signal assignments. They

can be used, for example, to test PORT values). While the GENERIC field is often used,

the other two optional sections are seldom employed (general system declarations are

normally placed in the declarative part of the ARCHITECTURE or in a separate

PACKAGE).

Example The ENTITY below contains the first three of the four sections mentioned

above.

------------------------------------------------

ENTITY controller IS

GENERIC (N: INTEGER := 8);

PORT (a, b: IN INTEGER RANGE 0 TO 2**N-1;

x: OUT STD_LOGIC_VECTOR(N-1 DOWNTO 0));

TYPE byte IS ARRAY (7 DOWNTO 0) OF STD_LOGIC;

CONSTANT mask: byte "00001111";

END ENTITY;

------------------------------------------------

In VHDL 2008, the declarative part of the entity can also contain the following: subpro-

gram instantiation declaration, package declaration, package body, package instantiation

declaration, and PSL declarations. See other features in section 2.9.

2.5 ARCHITECTURE

ARCHITECTURE contains a description of how the circuit should function, from which

the actual circuit is inferred. A simplified syntax is shown below.

ARCHITECTURE architecture_name OF entity_name IS

[architecture_declarative_part]

BEGIN

architecture_statements_part

END [ARCHITECTURE] [architecture_name];
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As shown, an architecture has two parts: a declarative (optional) part, and the state-

ments (code) part (from BEGIN down). The former can contain the same items as the

declarative part of an entity, plus component declarations and configuration specifications

(in either VHDL 2002 or VHDL 2008). The latter is where the VHDL statements are

placed. As in the case of an entity, the name of an architecture can be basically any word,

including the same name as the entity’s.

Example Below is a possible ARCHITECTURE for the NAND gate of figure 2.2b,

under the name arch. Its meaning is the following: the circuit must perform the NAND

operation between a and b, assigning the result to x. In this example, there are no declara-

tions in the declarative part, and the code contains just a single logical statement.

---------------------------------

ARCHITECTURE arch OF nand_gate IS

BEGIN

x <= a NAND b;

END ARCHITECTURE;

---------------------------------

2.6 GENERIC

GENERIC declarations allow the specification of generic parameters (that is, generic con-

stants, which can be easily modified or adapted to di¤erent applications). Their purpose is

to parameterize a design, conferring the code more flexibility and reusability.

As seen in the syntax for ENTITY in section 2.4, GENERIC is the only declaration

allowed before the PORT clause, which causes such constants to be truly global because

they can be used even in the PORT specifications. A simplified syntax for GENERIC

declarations is shown below.

GENERIC (constant_name: constant_type := constant_value;

constant_name: constant_type := constant_value;

... );

Example The GENERIC declaration in the entity below specifies two parameters,

called m and n. The first is of type INTEGER and has value 8, while the second is of

type BIT_VECTOR and has value "0101". Therefore, whenever m and n are encountered

in the code (including in the ENTITY itself ), the values 8 and "0101" are automatically

assigned to them.
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-------------------------------------------------

ENTITY my_entity IS

GENERIC (m: INTEGER := 8;

n: BIT_VECTOR(3 DOWNTO 0) := "0101");

PORT (...);

END my_entity;

-------------------------------------------------

GENERIC MAP: If a COMPONENT containing a GENERIC declaration (like the

one above) is instantiated in another design, the values of the generic constants that appear

in the component being instantiated can be overwritten by the main design. This is done

with a GENERIC MAP declaration, which will be seen in chapter 8 while studying the

instantiation of components (section 8.4). An example illustrating the usefulness of GE-

NERIC is presented in the next section (example 2.4).

In VHDL 2008, besides the traditional generic constants, generic types and generic sub-

programs are also supported. A generic constant can be used in the specification of other

generic constants in the same generic list. The places where generics can be declared were

also expanded; besides ENTITY and BLOCK headers, it can also be done in PACKAGE

(chapter 8) and subprogram (chapter 9) headers.

2.7 Introductory VHDL Examples

In this section we present several introductory examples of VHDL code. Though we have

not yet studied the constructs that appear in the examples, they will help illustrate funda-

mental aspects regarding the overall code structure. Each example is accompanied by ex-

planatory comments and simulation results.

Example 2.1: Compare-Add Circuit

On the left of figure 2.3, a two-block circuit is shown. The inputs are two unsigned 3-bit

values (a and b, ranging from 0 to 7), while the outputs are comp (single bit) and sum (to

avoid overflow, 4 bits are needed, hence ranging from 0 to 15). The upper part must com-

Figure 2.3
Circuit of example 2.1 and respective simulation results.
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pare a to b, producing a '1' when a > b or '0' otherwise. The lower part must add a and b,

producing sum.

A VHDL code for this circuit is shown below. Note that dashed lines (lines 1, 4, 10,

16) were used to better organize the code (separating it into the three fundamental sec-

tions mentioned earlier). A library declaration appears in lines 2–3. The entity, named

comp_add, is in lines 5–9. Finally, the architecture, called circuit, appears in lines 11–15.

1 -----------------------------------------

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 -----------------------------------------

5 ENTITY comp_add IS

6 PORT (a, b: IN INTEGER RANGE 0 TO 7;

7 comp: OUT STD_LOGIC;

8 sum: OUT INTEGER RANGE 0 TO 15);

9 END ENTITY;

10 -----------------------------------------

11 ARCHITECTURE circuit OF comp_add IS

12 BEGIN

13 comp <= '1' WHEN a>b ELSE '0';

14 sum <= a + b;

15 END ARCHITECTURE;

16 -----------------------------------------

Note that the entity contains all I/O ports. The inputs are a and b (mode IN, line 6),

both of type INTEGER and ranging from 0 to 7 (3-bit unsigned values). The outputs are

comp (line 7) and sum (line 8), the former of type STD_LOGIC (single bit), the latter of

type INTEGER, ranging from 0 to 15 (4-bit unsigned value).

The architecture contains only two statements, with the first (line 13) making the com-

parison (by means of the WHEN statement), while the second (line 14) computes the sum

(by means of the "þ" operator). In this example, there are no declarations in the architec-

ture’s declarative part.

Simulation results are included in figure 2.3. Note that any input signal is preceded by

an arrow with an "I" written inside, while each output shows an arrow with an "O" inside.

A fixed value (5) was assigned to a, while b varies over the whole 3-bit range (0 to 7). The

results are comp ¼ '1' when a > b and sum ¼ aþ b (without overflow). Observe that it is a

timing simulation because internal propagation delays were taken into consideration.

Note the glitch that occurs on comp when b changes from 3 to 4. It is because in this

transition all bits of b change ("011" ! "100"), so since the bits do not all change at exactly

the same time, and moreover the actual transitions are not instantaneous (it is rather like a

ramp instead of a vertical step), for a brief moment bb a might occur, so this type of

glitch is absolutely normal.
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Example 2.2: D-type Flip-Flop (DFF)

Figure 2.4 shows a DFF (Pedroni 2008), which is one of the most fundamental storage

circuits (there are thousands of them in FPGAs). Its inputs are d (data), clk (clock), and

rst (reset), while q (stored data) is its output. In this case, the DFF is triggered at the

positive (upward) clock transition, but the opposite is also possible. The output copies the

input (q <¼ d) at the moment when clk changes from '0' to '1', remaining so until a new

upward clock edge happens. Reset is asynchronous (that is, it does not depend on clk), so

the output is immediately zeroed if rst ¼ '1' occurs.

There are several ways of implementing a DFF, one being the solution presented below.

One must remember, however, that VHDL code is inherently concurrent (contrary to

regular computer programs, which are sequential), so to implement any clocked circuit

(flip-flops, for example) we have to ‘‘force’’ VHDL to be sequential, which can be done

with a PROCESS, as shown below.

1 ----------------------------------------

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 ----------------------------------------

5 ENTITY flip_flop IS

6 PORT (d, clk, rst: IN STD_LOGIC;

7 q: OUT STD_LOGIC);

8 END ENTITY;

9 ----------------------------------------

10 ARCHITECTURE flip_flop OF flip_flop IS

11 BEGIN

12 PROCESS (clk, rst)

13 BEGIN

14 IF (rst='1') THEN

15 q <= '0';

16 ELSIF (clk'EVENT AND clk='1') THEN

17 q <= d;

Figure 2.4
Circuit of example 2.2 and respective simulation results.
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18 END IF;

19 END PROCESS;

20 END ARCHITECTURE;

21 ----------------------------------------

Comments about the code above follow.

Lines 2–3: First part (library declarations) of the code. Recall that this type of declara-

tion consists of a library name followed by a library use clause. Because the data type

STD_LOGIC is employed in this design, the package std_logic_1164 must be included.

The other two indispensable libraries (std and work) are made visible by default.

Lines 5–8: Second part (ENTITY) of the code, in this example named flip-flop.

Lines 10–20: Third part (ARCHITECTURE) of the code, here with the same name as the

entity.

Line 6: Input ports, all of type STD_LOGIC.

Line 7: Output port, also of type STD_LOGIC.

Lines 12–19: Code part of the architecture (starts after the word BEGIN). In this case,

the code contains just a PROCESS, needed because we want to implement a sequential

(clocked) circuit (code inside a process is executed sequentially).

Line 12: Note that two signals (clk, rst) are included in the process’s sensitivity list (the

process is run whenever any of these signals change).

Lines 14–15: If rst goes to '1', the flip-flop is reset, regardless of clk.

Lines 16–17: If rst is not active, plus clk has changed (an EVENT occurred on clk), and

such an event was a rising edge (clk ¼ '1'), then the input signal (d ) is stored into the flip-

flop (q <¼ d).

Lines 15 and 17: The operator "<¼" is used to assign a value to a SIGNAL (all ports are

signals by default). In contrast, ":¼" would be used for a VARIABLE.

Lines 1, 4, 9, and 21: Employed to better organize the code.

Simulation results from this code are included in figure 2.4 (note that it is again a timing

simulation). The reader is invited to check them to confirm the DFF functionality. Arrows

were included in the clock waveform to highlight the (only) points where the circuit is

‘‘transparent’’ (that is, when the output copies the input). Observe also that rst is indeed

asynchronous.

Example 2.3: Registered Comp-Add Circuit

Figure 2.5 shows a circuit that combines those seen in the previous two examples; that is,

DFFs are added at the outputs of the comp_add circuit in order to ‘‘register’’ (store) comp

and sum (then called reg_comp and reg_sum).
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A VHDL code for this circuit is presented below. The original signals (comp, sum) are

computed in the initial part of the architecture (lines 16–17). A process (lines 18–24) then

follows, needed for flip-flop inference (sequential circuit). Note that a total of five DFFs

are needed. Observe also that because comp and sum are now internal signals, they were

specified in the declarative part of the architecture (lines 13–14).

1 ----------------------------------------------

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 ----------------------------------------------

5 ENTITY registered_comp_add IS

6 PORT (clk: IN STD_LOGIC;

7 a, b: IN INTEGER RANGE 0 TO 7;

8 reg_comp: OUT STD_LOGIC;

9 reg_sum: OUT INTEGER RANGE 0 TO 15);

10 END ENTITY;

11 ----------------------------------------------

12 ARCHITECTURE circuit OF registered_comp_add IS

13 SIGNAL comp: STD_LOGIC;

14 SIGNAL sum: INTEGER RANGE 0 TO 15;

15 BEGIN

16 comp <= '1' WHEN a>b ELSE '0';

17 sum <= a + b;

18 PROCESS (clk)

19 BEGIN

20 IF (clk'EVENT AND clk='1') THEN

21 reg_comp <= comp;

Figure 2.5
Circuit of example 2.3 and respective simulation results.
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22 reg_sum <= sum;

23 END IF;

24 END PROCESS;

25 END ARCHITECTURE;

26 ----------------------------------------------

Simulation results are included in figure 2.5. Observe that now, contrary to example 2.1,

the outputs are only updated when positive clock edges occur.

Example 2.4: Generic Address Decoder

A top-level diagram for a generic N-bit address decoder is depicted in figure 2.6. The cir-

cuit has two inputs, called address (N bits) and ena (enable, one bit), and one output, called

word_line (2N bits). As shown in the truth table (for N ¼ 2), the output has only one bit

dissimilar from all the others, located in the position determined by the input value. Note

that when ena ¼ '0' all output bits must be high.

Below is a VHDL code for this circuit. Library declarations are not needed because only

data types from the package standard (visible by default) are employed in this example.

The ENTITY is in lines 2–7, containing GENERIC and PORT declarations. N is entered

as a generic parameter (line 3), so the code can be easily adapted to any address decoder

size. The input and output signals (PORT declarations, lines 4–6) are from figure 2.6.

The ARCHITECTURE is in lines 9–16. It is totally generic because no changes are

required when the size (N ) of the circuit is modified (the only change needed is in line 3).

The GENERATE statement (studied in chapter 5) is used to create a loop, which causes

all output bits to be '1' when ena ¼ '0', or produces just one bit equal to '0' (whose position

coincides with the value represented by address) when ena ¼ '1'.

1 ----------------------------------------------------

2 ENTITY address_decoder IS

3 GENERIC (N: NATURAL := 3);

4 PORT (address: IN NATURAL RANGE 0 TO 2**N-1;

5 ena: BIT;

6 word_line: OUT BIT_VECTOR(2**N-1 DOWNTO 0));

7 END address_decoder;

8 ----------------------------------------------------

Figure 2.6
Address decoder of example 2.4.
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9 ARCHITECTURE address_decoder OF address_decoder IS

10 BEGIN

11 gen: FOR i IN address'RANGE GENERATE

12 word_line(i) <= '1' WHEN ena='0' ELSE

13 '0' WHEN i=address ELSE

14 '1';

15 END GENERATE;

16 END address_decoder;

17 ----------------------------------------------------

Simulation results, for N ¼ 3, are displayed in figure 2.7. As can be seen, all outputs are

high when ena ¼ '0'. After ena is asserted, one output bit is turned low, in the position

defined by address.

2.8 Coding Guidelines

In order to save book space, the VHDL codes are generally presented with short signal

names (so statements can fit in one line) and multiple signal definitions are made in the

same line whenever possible. Additionally, in order to illustrate the usage of the di¤erent

data types, a variety of types are used in the examples. However, when writing VHDL

code for a large project, especially when more than one design team is involved, it is im-

portant to standardize the coding style (especially for the interfacing signals) as much as

possible and use more meaningful signal names. Taking figure 2.8 as an example, a space-

saving code could be the following (figure 2.8a):

Figure 2.7
Simulation results from the address decoder of example 2.4.

Figure 2.8
Multiplexer represented with (a) short and (b) more meaningful signal names.
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1 ---------------------------------------------------------

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 ---------------------------------------------------------

5 ENTITY multiplexer IS

6 PORT (x0, x1, x2, x3: IN STD_LOGIC_VECTOR(7 DOWNTO 0);

7 sel: IN NATURAL RANGE 0 TO 3;

8 y: OUT STD_LOGIC_VECTOR(7 DOWNTO 0));

9 END ENTITY;

10 ---------------------------------------------------------

11 ARCHITECTURE multiplexer OF multiplexer IS

12 BEGIN

13 y <= x0 WHEN sel=0 ELSE

14 x1 WHEN sel=1 ELSE

15 x2 WHEN sel=2 ELSE

16 x3;

17 END ARCHITECTURE;

18 ---------------------------------------------------------

On the other hand, a more spread-out code could be as follows (figure 2.8b):

1 ------------------------------------------------------

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 ------------------------------------------------------

5 ENTITY multiplexer_4x8 IS

6 GENERIC (

7 N: NATURAL := 8; --bits in in/out signals

8 M: NATURAL := 2); --bits in select

9 PORT (

10 mux_inp0: IN STD_LOGIC_VECTOR(N-1 DOWNTO 0);

11 mux_inp1: IN STD_LOGIC_VECTOR(N-1 DOWNTO 0);

12 mux_inp2: IN STD_LOGIC_VECTOR(N-1 DOWNTO 0);

13 mux_inp3: IN STD_LOGIC_VECTOR(N-1 DOWNTO 0);

14 select: IN STD_LOGIC_VECTOR(M-1 DOWNTO 0);

15 mux_outp: OUT STD_LOGIC_VECTOR(N-1 DOWNTO 0));

16 END ENTITY;

17 ------------------------------------------------------

19 ARCHITECTURE multiplexer_4x8 OF multiplexer_4x8 IS

20 BEGIN

21 mux_outp <= mux_inp0 WHEN select="00" ELSE

22 mux_inp1 WHEN select="01" ELSE

23 mux_inp2 WHEN select="10" ELSE

24 mux_inp3;
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25 END ARCHITECTURE;

26 ------------------------------------------------------

Observe the following in the above code:

1) More meaningful (normally much longer) signal names are employed (lines 5 and 10–

15.

2) Each signal in the entity is specified in a separate line (lines 6–15).

3) Values that appear often and can make the code more ‘‘generic’’ (that is, valid for other

data buses sizes) are declared using GENERIC declarations (lines 7–8)

4) STD_LOGIC(_VECTOR) is used in all ports (in/out signals, lines 10–15), which is the

usual interface in multiteam designs (industry standard).

5) Only descending indexes are used to specify the data ranges, and the final value is al-

ways zero (little endian, lines 10–15). Hence the MSB is always on the left and has the

highest index value, which is always ‘‘number of bits� 1.’’

6) Reserved words are typed using capital letters, while the other words (chosen by the

user) employ lowercase. This helps understand and debug the code (recall that VHDL is

not case sensitive). Another (but less visible) option is to employ boldface for reserved

words.

7) The use of separating lines (lines 1, 4, 17, 26) between the three fundamental code sec-

tions (library declarations, entity, and architecture) helps organize the code. The use of ad-

ditional (but shorter) separating lines within the architecture is also helpful (others might

prefer to leave a blank line instead). The use of optional labels (for PROCESS, for exam-

ple, seen later) might also be helpful.

Additional useful practices include:

8) Adopting the same name for the project, the main file, and the main entity.

9) Avoiding using the mode BUFFER. To do so, employ auxiliary signals, specified in the

architecture’s declarative part.

10) Avoiding using more than one ENTITY-ARCHITECTURE pair in the same code,

which would then require the use of CONFIGURATION or part of the code to be com-

mented out.

11) For proper results, be rigorous (obey all formalities described in chapter 11) when

designing finite state machines (FSMs). Be aware of their enormous potential, but keep in

mind the problems that a bad design might entail.

12) Finally, try to always practice with the following questions:

—Is the circuit that I am designing combinational or sequential?

—If combinational, is it logical or arithmetic?
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—If sequential, is it a regular or an FSM-based design?

—If sequential, how many flip-flops should I expect the compiler to infer? (Remember that

this can always be determined exactly.)

2.9 VHDL 2008

With respect to the material covered in this chapter, the main additions specified in VHDL

2008 are those listed below. VHDL 2008 is backward compatible with VHDL 2002.

1) The packages standard, textio, std_logic_1164, and numeric_std were expanded (details

will be given in chapters 3 and 4; see also the corresponding appendices).

2) The packages numeric_std_unsigned, numeric_bit_unsigned, env, fixed_pkg, and

float_pkg are new (details will be given in chapters 3 and 4; see also a corresponding

appendix).

3) The list of items that can be included in the declarative part of an ENTITY or

ARCHITECTURE was expanded, also allowing the following: subprogram instantiation

declaration, package declaration, package body, package instantiation declaration, and

PSL declarations.

4) The options for GENERIC declarations were also expanded. Besides the traditional

generic constants, unspecified generic types and generic subprograms can also be declared,

as indicated in the simplified syntax below.

GENERIC (CONSTANT const_name: const_type := const_value;

TYPE type_name;

FUNCTION function_name (parameter_declarations);

PROCEDURE procedure_name (parameter_declarations);

... );

5) Moreover, a generic constant can be used in the specification of other generic constants

in the same generic list, as illustrated in the example below.

GENERIC (

CONSTANT N: NATURAL := 8;

CONSTANT M: NATURAL := 2**N;

TYPE decoder_type;

FUNCTION decode (i: decoder_type) RETURN o: BIT_VECTOR(N-1 DOWNTO 0));

6) The places where generics can be declared were also expanded, including PACKAGE

and subprogram headers. A PACKAGE and a FUNCTION with generics are depicted

below.
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PACKAGE generic_type IS

GENERIC (CONSTANT words: NATURAL;

TYPE: word_type);

TYPE gen_type IS ARRAY 1 TO words OF word_type;

END PACKAGE;

FUNCTION my_function IS

GENERIC (VARIABLE word: BIT_VECTOR(15 DOWNTO 0);

BEGIN

...

END FUNCTION;

7) A package with a generic list is called an uninstantiated package, which must be instan-

tiated with a package instantiation declaration, shown in the simplified syntax below. An

example of instantiation for the package generic_type above is presented subsequently.

PACKAGE package_name IS NEW uninstant_package_name GENERIC MAP (inst_list);

LIBRARY ieee;

USE ieee.std_logic_1164;

PACKAGE memory_array IS NEW work.generic_type

GENERIC MAP (words => 256, word_type => STD_LOGIC_VECTOR(15 DOWNTO 0));

2.10 Exercises

Exercise 2.1: Multiplexer

A multiplexer is depicted in figure 2.9. According to the truth table, the output should be

equal to one of the inputs if sel ¼ "01" (x ¼ a) or sel ¼ "10" (x ¼ b), but should be zero or

high impedance if sel ¼ "00" or sel ¼ "11", respectively.

a) Complete the VHDL code below.

b) Write relevant comments regarding your solution (as in example 2.2).

c) Compile and simulate the code, checking whether it works as expected.

Figure 2.9
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Note: A solution using IF was employed in the code below, because it is more intuitive.

However, a multiplexer can also be implemented with other statements, like WHEN or

CASE (see example in section 2.8).

1 ----------------------------------------------------

2 LIBRARY ieee;

3 USE _________________________;

4 ----------------------------------------------------

5 ENTITY mux IS

6 PORT (___, ___: ___ STD_LOGIC_VECTOR(7 DOWNTO 0);

7 sel: IN ____________________________;

8 ___: OUT STD_LOGIC_VECTOR(__ DOWNTO 0));

9 END _____;

10 ----------------------------------------------------

11 ARCHITECTURE example OF _____ IS

12 BEGIN

13 PROCESS (a, b, ____)

14 BEGIN

15 IF (sel="00") THEN

16 x <= "00000000";

17 ELSIF (__________) THEN

19 x <= a;

20 _____ (sel="10") THEN

21 x <= __;

22 ELSE

23 x <= "___________";

24 END ___;

25 END __________;

26 END __________;

27 ----------------------------------------------------

Figure 2.10
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Exercise 2.2: Logic Gates

a) Show that the expression for z in the circuit of figure 2.10a is z ¼ abc 0 þ a 0.

b) Given the waveforms for a, b, and c in figure 2.10b, draw the waveforms for x, y, and z

(consider that the propagation delay is negligible ! functional analysis).

c) Write a VHDL code for this circuit. Note that only logical operators (AND, OR,

NAND, NOR, XOR, etc.) are needed.

d) Compile your code, then simulate it with the same waveforms given in figure 2.10b and

check whether the resulting waveforms coincide with your answers above.

Exercise 2.3: Registered Logic

Consider now the inclusion of a DFF at the output of the circuit designed above, produc-

ing a registered signal (reg_z), as shown in figure 2.10c.

a) Copy the waveform for z from the previous exercise to figure 2.10d, then draw the

waveform for reg_z.

b) Write a VHDL code for this circuit. Note that now a process is needed (as in example

2.3).

c) Compile your code, then simulate it with the same waveforms given for a, b, and c in

figure 2.10b and check whether the resulting waveform for reg_z matches yours.

Exercise 2.4: Basic VHDL Data Types

(Even though data types will be discussed in detail in the next chapter, introductory

analysis is proposed in this and in the next exercises.)

As mentioned in section 2.2, the library std contains a package called standard that

defines the basic VHDL data types (see appendix H). Examine it and list all the numeric

types and subtypes that it contains (do not include those that are not intended for syn-

thesis, like TIME, DELAY_LENGTH, etc., or that have reduced synthesis support, like

REAL). For each type in your list, give the values or range of values that it can assume.

Exercise 2.5: Type STD_LOGIC

As mentioned in section 2.2, a very popular data type (industry standard) that is not part

of the package standard (examined in the exercise above) is STD_LOGIC. This type is

defined in the package std_logic_1164 (appendix I). Examine it and list all the values that

a signal of type STD_LOGIC can assume.
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3 Data Types

3.1 Introduction

In order to write VHDL code e‰ciently, it is indispensable to know which data types are

allowed and how to specify and use them.

VHDL types can be divided into two categories: predefined and user-defined. The former

is standardized and is available in the libraries that accompany the VHDL compiler, while

the latter can be created by the user to handle special situations.

Both categories are described in detail in this chapter. Special emphasis is given to the

types that are synthesizable (VHDL for simulation is discussed separately in chapter 10).

Discussions on data compatibility and type conversion are also included.

3.2 VHDL Objects

Before we start describing VHDL types, let us briefly describe the VHDL objects, because

it is for them that type specifications are intended (other details about VHDL objects will

be seen in chapters 6, 7, and 10).

An object is a named item of a specific type that has a value. In other words, objects

constitute the means through which values are passed around. Such VHDL objects

are CONSTANT, SIGNAL, VARIABLE, and FILE. For example, all GENERIC and

PORT items are objects because the former are constants and the latter are signals.

SIGNAL and VARIABLE are more complex than CONSTANT, so greater attention is

needed. Their study is covered in three parts, as follows.

1 Section 3.2 (present): Concept, syntax, and examples concerning object declarations

(needed in the discussions on data types that follow in this chapter).

1 Section 6.1: Summary of their main properties (needed to explain sequential code, which

is the subject of that chapter).

1 Chapter 7: SIGNAL versus VARIABLE comparison and details regarding the main

properties, usage, and flip-flop inference.



The FILE object is also described in this section, but only briefly. Because files are

particularly important for simulation, details will be given in chapter 10, which deals spe-

cifically with the subject (simulation with testbenches).

CONSTANT

As the name says, it is an object whose value cannot be changed. A simplified syntax for

the declaration of constants is shown below.

CONSTANT constant_name: constant_type := constant_value;

The name can be essentially any word, except reserved words. The type can be any

VHDL type, either predefined or user-defined (seen in the coming sections of this chapter).

Finally, the value can be a constant or an expression involving constants.

Examples The name of the first constant below is bits, its type is INTEGER, and its

value is 16. The second constant is called words, its type is also INTEGER, and its value

is 216 ¼ 65536. The third constant is called flag, its type is BIT, and its value is '1' (a single

bit must be surrounded by a pair of single quotes). Finally, the fourth constant is named

mask, its type is BIT_VECTOR, with a total of 8 bits, indexed in ascending order from 1

to 8, and its value is "00001111" (a pair of double quotes is used with multiple bits).

------------------------------------------------

CONSTANT bits: INTEGER := 16;

CONSTANT words: INTEGER := 2**bits;

CONSTANT flag: BIT := '1';

CONSTANT mask: BIT_VECTOR(1 TO 8) := "00001111";

------------------------------------------------

CONSTANT can be declared in the declarative part of ENTITY, ARCHITECTURE,

PACKAGE, PACKAGE BODY, BLOCK, GENERATE, PROCESS, FUNCTION, and

PROCEDURE (the last two are called subprograms). When declared in a package, for

example, it is truly global because a package can be used by any design file. When declared

in an entity (after PORT), it is global only to the architectures that follow that entity.

When declared in an architecture (in its declarative part), it is global only to that particular

architecture.

Deferred constant

A constant declared without its value is said to be a deferred constant. Such a declaration

is allowed in a PACKAGE, but then the complete specification (including the value) must

appear in the corresponding PACKAGE BODY (packages will be studied in chapter 8).
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Keyword OTHERS

OTHERS is a useful keyword for making assignments. It represents all index values that

were left unspecified.

Examples

--------------------------------------------------------------

The constant below is a ¼ "000000".

CONSTANT a: BIT_VECTOR(5 DOWNTO 0) := (OTHERS=>'0');

--------------------------------------------------------------

The next constant is b ¼ "01111111" (index 7 gets '0', the others, '1').

CONSTANT b: BIT_VECTOR(7 DOWNTO 0) := (7=>'0', OTHERS=>'1');

--------------------------------------------------------------

The signal below is c ¼ "01100000" ("|" means "or").

SIGNAL c: STD_LOGIC_VECTOR(1 TO 8) := (2|3=>'1', OTHERS=>'0');

--------------------------------------------------------------

The variable below is d ¼ "1111111100000000".

VARIABLE d: BIT_VECTOR(1 TO 16) := (1 TO 8=>'1', OTHERS=>'0');

--------------------------------------------------------------

SIGNAL

SIGNAL serves to pass values in and out of the circuit, as well as between its internal

units. In other words, a signal represents circuit interconnects (wires). All ports of an entity

are signals by default.

Signal declarations can be made in the declarative part of ENTITY, ARCHITEC-

TURE, PACKAGE, BLOCK, and GENERATE. Signal declarations are not allowed in

sequential code (i.e., PROCESS and subprograms), but signals can be used there. A simpli-

fied syntax (without a resolution specification, seen in chapter 7) for signal declarations is

shown below.

SIGNAL signal_name: signal_type [range] [:= default_value];

Examples The name of the first signal below is enable, its type is BIT, and its default

(initial) value is '0'. The second signal is called temp and its type is BIT_VECTOR, with a

total of 4 bits, indexed in descending order. The third signal is called byte and its type is
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STD_LOGIC_VECTOR, with a total of 8 bits, also indexed in descending order. Finally,

the fourth signal is called count and its type is NATURAL, ranging from 0 to 255. Default

values were not specified for the last three signals.

------------------------------------------

SIGNAL enable: BIT := '0';

SIGNAL temp: BIT_VECTOR(3 DOWNTO 0);

SIGNAL byte: STD_LOGIC_VECTOR(7 DOWNTO 0);

SIGNAL count: NATURAL RANGE 0 TO 255;

------------------------------------------

A very important aspect related to SIGNAL, when used inside a section of sequential

code (PROCESS or subprogram), is that its update is not immediate. Instead, the new

value is only expected to be ready after the conclusion of the current run of the PROCESS

or subprogram.

Another important aspect concerns the case when multiple assignments are made to a

signal. In concurrent code, the compiler will issue an error message and quit compilation.

In sequential code, only the last assignment will be considered. In summary, multiple sig-

nal assignments must not be made.

To assign a value to a SIGNAL, the proper operator is "<¼", while for CONSTANT or

VARIABLE (or for default values) it is ":¼". For example, "enable <¼ '1';". As seen, the

keyword OTHERS can be helpful to make signal assignments.

VARIABLE

Contrary to CONSTANT and SIGNAL, VARIABLE represents only local information

because it can only be seen and modified inside the sequential unit (i.e., PROCESS or

subprogram) where it was created (it is slightly di¤erent for SHARED VARIABLE,

explained in section 7.3). On the other hand, its update is immediate, so the new value

can be promptly used in the next line of code. Also, because the update is immediate,

multiple assignments to the same variable are fine. A simplified syntax for variable decla-

rations is shown below.

VARIABLE variable_name: variable_type [range] [:= default_value];

Examples The name of the first variable below is flip, its type is STD_LOGIC, and

its default (initial) value is '1'. The second variable is called address and its type is

STD_LOGIC_VECTOR, with a total of 16 bits, indexed in ascending order from 0 to 15.

Finally, the third variable is called counter and its type is INTEGER, ranging from 0 to

127. Default values were not specified for the last two variables.
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--------------------------------------------

VARIABLE flip: STD_LOGIC := '1';

VARIABLE address: STD_LOGIC_VECTOR(0 TO 15);

VARIABLE counter: INTEGER RANGE 0 TO 127;

--------------------------------------------

To assign a value to a VARIABLE, the proper operator is ":¼". For example,

"flip :¼ '0';". The keyword OTHERS can be helpful to make variable assignments.

FILE

The fourth and last VHDL object is FILE. However, to declare an object of that kind, a

FILE type must first be created.

FILE type

A simplified syntax for file types is presented below. It contains the name chosen to repre-

sent the type and the type of the data contained in the file (only one type is allowed), which

can be any VHDL type, either predefined or user-defined.

TYPE type_name IS FILE OF type_in_file;

FILE object

A simplified syntax for the declaration of a file object is shown below. It contains an

identifier (name) chosen to represent that object, followed by the type name (seen above),

then the optional keyword OPEN with the corresponding file-open mode (read_mode,

write_mode, or append_mode, defined in the package standard of the library std ). The

optional expression at the end of the syntax can be, for example, a file name (between

double quotes).

FILE file_identifier: type_name [[OPEN open_mode] IS expression];

Example A file type, followed by a file object, are declared below.

TYPE bit_file IS FILE OF BIT;

FILE file01: bit_file IS "my_file.txt";

As already mentioned, details about the use of files will be seen in chapter 10.

SIGNAL versus VARIABLE

In chapter 7, a detailed discussion on the di¤erences between SIGNAL and VARIABLE,

and on the consequences of using one or the other, will be presented.
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3.3 Data-Type Libraries and Packages

As mentioned in section 2.2, VHDL contains a series of predefined data types, specified

in di¤erent packages. The fundamental packages for dealing with binary logic and with

integer numbers are:

1 Package standard (expanded in VHDL 2008)

1 Package std_logic_1164 (expanded in VHDL 2008)

1 Package numeric_bit (expanded in VHDL 2008)

1 Package numeric_std (expanded in VHDL 2008)

1 Package std_logic_arith (shareware, nonstandard)

1 Package std_logic_unsigned (shareware, nonstandard)

1 Package std_logic_signed (shareware, nonstandard)

1 Package textio (expanded in VHDL 2008)

1 Package numeric_bit_unsigned (introduced in VHDL 2008)

1 Package numeric_std_unsigned (introduced in VHDL 2008)

There are also several new packages, introduced in VHDL 2008, for dealing with fixed-

and floating-point numbers. The main ones are (see section 3.8 for details about compati-

bility with previous VHDL versions):

1 Package fixed_pkg

1 Package fixed_generic_pkg

1 Package float_pkg

1 Package float_generic_pkg

1 Package fixed_ float_types

A brief description for each package listed above is presented next.

Package standard (See Appendix H)

This package is specified in the IEEE 1076-2008 Standard VHDL Language Reference

Manual and is a member of the std library. It defines the following data types:

1 Bit-related (synthesizable): BIT, BIT_VECTOR, BOOLEAN

1 Integer-related (synthesizable): INTEGER, NATURAL, POSITIVE

1 Character-related (synthesizable): CHARACTER, STRING

1 Floating-point (limited synthesis support): REAL

1 Time-related (not for synthesis): TIME, DELAY_LENGTH
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1 File-related (not for synthesis): FILE_OPEN_KIND, FILE_OPEN_STATUS

1 Communication with the compiler: SEVERITY_LEVEL

It also includes definitions for logical, arithmetic, shift, comparison, and concatenation

operators for the types above.

In VHDL 2008 (to be implemented), the following was added to the package standard:

1) New types: BOOLEAN_VECTOR, INTEGER_VECTOR, REAL_VECTOR,

TIME_VECTOR.

2) Matching operators: ?¼, ?/¼, ?<, ?<¼, ?>, ?>¼.

3) Other functions: ??, MINIMUM, MAXIMUM, RISING_EDGE, FALLING_EDGE,

TO_STRING, TO_OSTRING, TO_HSTRING.

Package std_logic_1164 (See Appendix I)

This package, which is a member of the ieee library, is specified in the IEEE 1164 stan-

dard. It was introduced along with VHDL 93, and received additions in VHDL 2008.

Both versions (93 and 2008) are shown in appendix I. The main types defined in that pack-

age are:

1 STD_ULOGIC, STD_ULOGIC_VECTOR

1 STD_LOGIC, STD_LOGIC_VECTOR (industry standard)

It specifies also logical operators (only logical) for the types above, and includes

several type-conversion functions, such as TO_BIT, TO_BITVECTOR, TO_

STDLOGICVECTOR, and so on.

In VHDL 2008, the following was added to the package std_logic_1164 (compare part II

to part I of appendix I):

1) STD_LOGIC_VECTOR is now a subtype of STD_ULOGIC_VECTOR, hence opera-

tors defined for the latter are automatically overloaded to the former.

2) Inclusion of more logical operator options, with the XNOR operator uncommented.

3) Inclusion of some shift operators.

4) Inclusion of the matching comparison operators (?¼, ?/¼, ?<, ?<¼, ?>, ?>¼).

5) Inclusion of condition (??), to-string conversion (TO_STRING, TO_OSTRING,

TO_HSTRING) and READ/WRITE operators.

6) Inclusion of several short-hand aliases, like TO_SLV for TO_STDLOGICVECTOR.

Package numeric_bit

This package, which is also a member of the ieee library, is similar to the next package, but

has BIT as the base type instead of STD_LOGIC.
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Package numeric_std (See Appendix J)

This package, which is also a member of the ieee library, was specified in 1997, having

received additions in VHDL 2008. Both versions are shown in appendix J. The types

below are defined in it:

1 UNSIGNED (based on STD_LOGIC)

1 SIGNED (also based on STD_LOGIC)

It includes also definitions for logical, arithmetic, shift, and comparison operators for

the types above. Several type-conversion functions are included in this package, like

TO_INTEGER, TO_UNSIGNED, etc.

In VHDL 2008, the following was added to the package numeric_std (compare part II to

part I of appendix J):

1) The definitions of UNSIGNED and SIGNED were slightly modified.

2) More arithmetic operator options were included.

3) More logical operator options were included.

4) More shift operator options were included.

5) Inclusion of the matching comparison operators ?¼, ?/¼, ?<, ?<¼, ?>, ?>¼.

6) Inclusion of MINIMUM, MAXIMUM, TO_STRING, TO_OSTRING, TO_

HSTRING, READ, and WRITE functions.

Package std_logic_arith (See Appendix K)

A shareware (from Synopsis) whose new types are:

1 UNSIGNED (based on STD_LOGIC)

1 SIGNED (also based on STD_LOGIC)

It includes also arithmetic, shift, and comparison operators (logical not included) for the

types above. Several type-conversion functions are included, such as CONV_INTEGER

and CONV_STD_LOGIC_VECTOR. This package is only partially equivalent to

numeric_std.

Package std_logic_unsigned

This package is similar to the next package, but with unsigned operators instead of signed.

Package std_logic_signed (See Appendix L)

Another shareware (from Synopsis) that defines some arithmetic, comparison, and shift

operators with signals of type STD_LOGIC_VECTOR operating as signed numbers. A
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type-conversion function, called CONV_INTEGER, is also included. No new data types

are defined here.

Package textio (See Appendix M)

This package is specified in the IEEE 1076 Standard VHDL Language Reference Manual,

so it is a member of the std library. It defines types (LINE, TEXT, etc.) and procedures

(READ, WRITE) for dealing with text and files.

In VHDL 2008, the following functions were added to this package: FLUSH, MINI-

MUM, MAXIMUN, TO_STRING, JUSTIFY, TEE, and additional READ and WRITE

options.

Package numeric_bit_unsigned

This package was introduced in VHDL 2008. It is essentially similar to the following

package, but has BIT and BIT_VECTOR as the base types instead of STD_LOGIC and

STD_LOGIC_VECTOR.

Package numeric_std_unsigned

This package was also introduced in VHDL 2008. It is expected to replace the non-

standard package std_logic_unsigned in the future. It contains a large set of arithmetic,

comparison, matching, and shift operators, plus type-conversion functions for the types

STD_LOGIC and STD_LOGIC_VECTOR (see appendix N).

Packages fixed_pkg, float_pkg, and associated packages

These packages were introduced in VHDL 2008. However, compatibility files were also

provided to allow operation with VHDL 93 and 2002. The main types specified in these

packages are:

TYPE UFIXED IS ARRAY (INTEGER RANGE <>) OF STD_LOGIC;

TYPE SFIXED IS ARRAY (INTEGER RANGE <>) OF STD_LOGIC;

TYPE FLOAT IS ARRAY (INTEGER RANGE <>) OF STD_LOGIC;

Details will be given in section 3.8.

3.4 Type Classifications

Before we start describing the synthesizable data types, several classifications are presented

in this section in order to help the reader visualize their nature and extent.

Classification according to the source of the declaration

Predefined data types: Defined in the provided VHDL packages (section 3.3).

User-defined data types: Defined by the user to handle specific situations.
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Classification according to the nature of the elements

Numeric types: Consist of integer, fixed-point and floating-point types.

Examples

----------------------------------------------------------------

TYPE INTEGER IS RANGE -2147483647 TO 2147483647; --default range

TYPE grade IS RANGE 0 TO 10; --user-defined integer

----------------------------------------------------------------

Enumerated types: Values are represented by symbols, all explicitly listed.

Examples

--------------------------------------------------------------------

TYPE color IS (red, green, blue); --3 values

TYPE BIT IS ('0', '1'); --2 values

TYPE STD_ULOGIC IS ('U','X','0','1','Z','W','L','H','X'); --9 values

--------------------------------------------------------------------

Classification according to the number of values (figure 3.1)

Scalar types: Types with a single value. VHDL defines as scalar the numeric (integer,

floating-point, etc.), enumerated, and physical types. Examples of scalar types are given

in figure 3.1(a).

Composite types: This category includes two subgroups, called array (collection of ele-

ments of the same type) and record (collections of scalar and/or array elements that can

be of di¤erent types). Examples of array types are given in figure 3.1(b).

Classification according to the number of bits (figure 3.2)

This is not a usual classification, but it is introduced here because a fundamental parame-

ter from a design (hardware) perspective is the number of bits, not the number of values. As

shown later, this classification will help understand the construction of data arrays. Its six

main cases are described below.

1 Scalar: Single bit (figure 3.2(a)). Examples: '1', 'Z', FALSE.

1 1D array: A bit vector (figure 3.2(b)). Examples: "01000", "111100ZZ", 255, 'A'.

Figure 3.1
Value-based classification: (a) Scalar (single integer or enumerated) and (b) 1D (vector of values).
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1 1D� 1D array: A pile of bit vectors (figure 3.2(c)). Examples: ("0000", "0111"), (43, 5, 25, 0).

1 2D array: A matrix of bits (figure 3.2(d)). Example: (('0', '1', '0'), ('0', '0', '0'), ('Z', '1', 'Z')).

1 1D� 1D� 1D array: A block of vectors. See example in figure 3.2(e).

1 3D array: A block of bits. See example in figure 3.2(f ).

Classification according to the package of origin

This is another unusual classification, again introduced here because it helps in under-

standing the purpose and structure of the several data types.

1 Standard types: From the package standard of the std library.

1 Standard-logic types: From the package std_logic_1164 of the ieee library.

1 Unsigned/Signed types: From the package numeric_std of the ieee library or package

std_logic_arith (shareware).

1 Fixed/Floating-point types: From the packages fixed_pkg and float_pkg.

The classifications presented above will help as follows.

1) The classification according to the package of origin will help describe the predefined

data types. Standard types will be seen in section 3.5, standard-logic types in section 3.6,

unsigned/signed types in section 3.7, and fixed/floating-point types in section 3.8.

2) The classification according to the nature of the elements will help describe the scalar

(section 3.10), the array (section 3.11), and the record (section 3.14) user-defined data types.

3) Finally, the classification according to the number of bits will help understand and deal

with all sorts of data types, particularly arrays (section 3.11). Even more important, it will

help understand the hardware.

3.5 Standard Data Types

This section describes the synthesizable data types from the package standard (appendix

H). Recall that those introduced in VHDL 2008 might still be undergoing implementation.

Figure 3.2
Bit-based arrays: (a) Scalar (single bit), (b) 1D (vector of bits), (c) 1D� 1D (pile of vectors), (d) 2D (matrix of
bits), (e) 1D� 1D� 1D (block of vectors), and (f ) 3D (block of bits).
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1 BIT

1 BIT_VECTOR

1 BOOLEAN

1 BOOLEAN_VECTOR (2008)

1 INTEGER

1 NATURAL

1 POSITIVE

1 INTEGER_VECTOR (2008)

1 CHARACTER

1 STRING

As seen in section 3.3, data-type packages define essentially three things:

1) New data types;

2) Operators for them (logical, arithmetic, shift, comparison, and concatenation);

3) Type-conversion functions involving the new and other data types.

Because operators are part of the present discussion, but will only be studied in the next

chapter, a list of them is presented below.

Logical operators: NOT, AND, NAND, OR, NOR, XOR, XNOR (section 4.2.2)

Arithmetic operators: þ, �, *, /, **, ABS, REM, MOD (section 4.2.3)

Comparison (relational) operators: ¼, /¼, >, >¼, <, <¼ (section 4.2.4)

Shift operators: SLL, SRL, SLA, SRA, ROR, ROL (section 4.2.5)

Concatenation operator: & (section 4.2.6)

Matching comparison operators: ?¼, ?/¼, ?>, ?>¼, ?<, ?<¼ (section 4.2.7, from VHDL

2008).

BIT

Its definition is presented below, showing a two-value enumerated type. It supports logical

and comparison operations (see appendix H). In terms of the number of bits, it is a scalar

type (figure 3.2a).

TYPE BIT IS ('0', '1');

Example Below, the objects a, x, and y are declared as SIGNAL, all of type BIT, then

the value '1' is assigned to x, while the value "NOT a" is assigned to y.
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--------------------

SIGNAL a, x, y: BIT;

x <= '1';

y <= NOT a;

--------------------

In VHDL 2008, the following operators were added: ?¼, ?/¼, ?<, ?<¼, ?>, ?>¼, ??,

MINIMUM, MAXIMUM, RISING_EDGE, FALLING_EDGE, TO_STRING.

BIT_VECTOR

This is the vector form of BIT (1D array of figure 3.2b), as shown in the definition below.

It supports logical, comparison, shift, and concatenation operations (see appendix H).

TYPE BIT_VECTOR IS ARRAY (NATURAL RANGE <>) OF BIT;

The ‘‘NATURAL RANGE <>’’ specification (the symbol ‘‘<>’’ is called a ‘‘box’’)

indicates that the range is unconstrained, with its only limitation that it must fall within

the NATURAL range (default ¼ 0 to 231 � 1). For logical and shift operations, the vec-

tors are required to have the same length, which is not necessary for comparison.

Example In the code below, the objects a, b, x, and y are declared as 8-bit vectors with

descending index range, while v is an 8-bit vector with ascending index range and w is a

single bit. Subsequently, the value "11110000" is assigned to x, so xð7Þ ¼ xð6Þ ¼ xð5Þ ¼
xð4Þ ¼ '1' and xð3Þ ¼ xð2Þ ¼ xð1Þ ¼ xð0Þ ¼ '0'. y receives the result of a logical operation

(XOR) between a and b, while v receives the result of a shift left logical (SLL) operation

on a. Finally, w is asserted whenever a > b (comparison operation).

----------------------------------------------

SIGNAL a, b: BIT_VECTOR(7 DOWNTO 0); --8 bits

SIGNAL x, y: BIT_VECTOR(7 DOWNTO 0); --8 bits

SIGNAL v: BIT_VECTOR(1 TO 8); --8 bits

SIGNAL w: BIT; --1 bit

x <= "11110000";

y <= a XOR b;

v <= a SLL 2;

w <= '1' WHEN a>b ELSE '0';

----------------------------------------------

In VHDL 2008, the following operators were added: ?¼, ?/¼, MINIMUM, MAXIMUM,

TO_STRING, TO_OSTRING, TO_HSTRING.

BOOLEAN

Its definition is presented below, showing another two-value enumerated type. It supports

logical and comparison operations (see appendix H). In terms of the number of bits, it is a

scalar type (figure 3.2a).
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TYPE BOOLEAN IS (FALSE, TRUE);

Example The value of x below changes from "000" to "111" when ready is TRUE (¼ '1').

x<="111" WHEN ready ELSE "000";

In VHDL 2008, the following functions were added: MINIMUM, MAXIMUM,

RISING_EDGE, FALLING_EDGE, TO_STRING.

BOOLEAN_VECTOR

Introduced in VHDL 2008, this is the vector form of BOOLEAN (1D array of figure

3.2b). Must support logical, comparison, shift, and concatenation operations (see appendix

H), plus the operators ?¼, ?/¼, MINIMUM, and MAXIMUM. Its definition is shown

below.

TYPE BOOLEAN_VECTOR IS ARRAY (NATURAL RANGE <>) OF BOOLEAN;

INTEGER

Its definition is shown below. It supports arithmetic and comparison operations (see ap-

pendix H).

TYPE INTEGER IS RANGE implementation_defined;

TYPE INTEGER IS RANGE -2147483647 TO 2147483647;

The last line above shows the default range of INTEGER, which consists of a 32-bit

representation, from �ð231 � 1Þ to þð231 � 1Þ. The actual bounds are referred to as

INTEGER'LOW (on the left) and INTEGER'HIGH (on the right).

In VHDL codes for synthesis, it is important to always specify the range (as in the

examples below) for objects of type INTEGER (or its subtypes), because otherwise the

compiler will employ 32 bits to represent them.

Example In the code below, first four signals ða; b; x; yÞ are declared, then the first two

are added and also compared. The number of bits of the signals involved in either opera-

tion are not required to be equal.

--------------------------------------------

SIGNAL a: INTEGER RANGE 0 TO 15; --4 bits

SIGNAL b: INTEGER RANGE -15 TO 15; --5 bits

SIGNAL x: INTEGER RANGE -31 TO 31; --6 bits

SIGNAL y: BIT;

x <= a + b;

y <= '1' WHEN a>=b ELSE '0';

--------------------------------------------
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In VHDL 2008, the following functions were added: MINIMUM, MAXIMUM,

TO_STRING.

NATURAL

Non-negative integers. As shown in the definition below, it is a subtype of INTEGER (has

the same dimensionality and supports the same operators).

SUBTYPE NATURAL IS INTEGER RANGE 0 TO INTEGER'HIGH;

POSITIVE

Positive integers. As shown in the definition below, it is also a subtype of INTEGER (has

the same dimensionality and supports the same operators).

SUBTYPE POSITIVE IS INTEGER RANGE 1 TO INTEGER'HIGH;

INTEGER_VECTOR

Introduced in VHDL 2008, it is the vector form of INTEGER (1D� 1D array of figure

3.2c). Must support comparison and concatenation operations (see appendix H), plus the

functions MINIMUM and MAXIMUM. Its definition is shown below.

TYPE INTEGER_VECTOR IS ARRAY (NATURAL RANGE <>) OF INTEGER;

CHARACTER

A 256-symbol enumerated type. Its (partial) definition is shown below (it goes from

nul ¼ "00000000" up to €yy ¼ "11111111"). This type supports only comparison operations

(see appendix H).

TYPE CHARACTER IS (NUL, SOH, ... , '0', '1', '2', ..., 'ÿ');

The symbols are from the ISO 8859-1 character set, with the first 128 symbols compris-

ing the regular ASCII code. Because each symbol is represented by 8 bits, this type falls in

the 1D category of figure 3.2b.

Example In the code below, two signals (char1, char2) are declared of type CHARAC-

TER. Then two outputs (outp1, outp2), of type BIT, are used to compare char1 and char2

(outp2 is '1' when char1 appears in the ASCII table earlier than char2).

--------------------------------------------------

SIGNAL char1, char2: CHARACTER;

SIGNAL outp1, outp2: BIT;

outp1 <= '1' WHEN char1='a' OR char1='A' ELSE '0';

outp2 <= '1' WHEN char1<char2 ELSE '0';

--------------------------------------------------
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In VHDL 2008, the following functions were added: MINIMUM and MAXIMUM

TO_STRING.

STRING

This is the vector form of CHARACTER (1D� 1D array of figure 3.2c). Its definition

is shown below. This type supports comparison and concatenation operations (see appen-

dix H).

TYPE STRING IS ARRAY (POSITIVE RANGE <>) OF CHARACTER;

Example In the code below, str is a string with four characters (hence 4-by-8 bits).

---------------------------------------

SIGNAL str: STRING(1 TO 4);

SIGNAL output: BIT;

output <= '1' WHEN str="VHDL" ELSE '0';

---------------------------------------

In VHDL 2008, the following functions were added: MINIMUM and MAXIMUM.

Even though this section focuses on types that are fully synthesizable, REAL- and

TIME-based types are briefly described below. The first has limited synthesis support; the

second is for simulations (so it will be used in chapter 10).

REAL

Floating-point numbers, with support for arithmetic and comparison operators. Its defini-

tion is shown below.

TYPE real IS RANGE implementation_defined;

In VHDL 2008, the following functions were added: MINIMUM, MAXIMUM,

TO_STRING.

REAL_VECTOR

Introduced in VHDL 2008, this is the vector form of REAL (see appendix H). Its defini-

tion is shown below.

TYPE REAL_VECTOR IS ARRAY (NATURAL RANGE <>) OF REAL;

TIME

Represented by integers with the same range as INTEGER, with support for arithmetic

(most of them) and comparison operators. Its definition is shown below (intended for

simulation).

TYPE time IS RANGE implementation_defined;
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In VHDL 2008, the following functions were added: MINIMUM, MAXIMUM,

TO_STRING.

TIME_VECTOR

Introduced in VHDL 2008, this is the vector form of TIME (see appendix H). Its defini-

tion is shown below.

TYPE TIME_VECTOR IS ARRAY (NATURAL RANGE <>) OF TIME;

See other details about VHDL 2008 in section 3.22. See also the data-type summary in

figure 3.6.

3.6 Standard-Logic Data Types

We describe now the types STD_LOGIC and STD_LOGIC_VECTOR, which are the

industry standard. They are defined in the std_logic_1164 package, introduced along with

VHDL 93, with several new features added in VHDL 2008. Both versions (1993 and 2008)

of this package are shown in appendix I.

In fact, the type defined in that package is STD_ULOGIC (the "U" stands for unre-

solved), of which STD_LOGIC is a ‘‘resolved’’ subtype. Their definitions are as follows

(note that, like BIT, BOOLEAN, and CHARACTER, they too are enumerated data types):

TYPE STD_ULOGIC IS ('U','X','0','1','Z','W','L','H','-');

TYPE STD_LOGIC IS resolved STD_ULOGIC;

The meanings (and possible usage) for the nine STD_(U)LOGIC symbols are listed

below.

'U' Uninitialized

'X' Forcing unknown

'0' Forcing low

'1' Forcing high

'Z' High impedance

'W' Weak unknown

'L' Weak low

'H' Weak high

'-' Don’t care

The vector forms (1D bit arrays) of STD_ULOGIC and STD_LOGIC are the

following:
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TYPE STD_ULOGIC_VECTOR IS ARRAY (NATURAL RANGE <>) OF STD_ULOGIC;

TYPE STD_LOGIC_VECTOR IS ARRAY (NATURAL RANGE <>) OF STD_LOGIC;

The main feature of the STD_LOGIC type, compared to the original BIT type, is the

inclusion of the high-impedance ('Z') and don’t care ('-') values, which allow the construc-

tion of tri-state bu¤ers and a better hardware optimization for lookup tables, respectively

(illustrated ahead in examples 3.1 and 3.2).

The package std_logic_1164 defines only logical operators for the types above. However,

if the package std_logic(un)signed is also declared in the code, then some arithmetic, com-

parison, and shift operations will also be allowed.

STD_LOGIC is said to be a resolved subtype because if more than one source drives a

common node the resulting logic level is determined by a predefined resolution function.

The resolution function for STD_LOGIC (copied from the PACKAGE BODY of the

std_logic_1164 package) is shown below.

1 -------------------------------------------------------------------------

2 CONSTANT resolution_table : stdlogic_table := (

3 ---------------------------------------------------------

4 -- U X 0 1 Z W L H - | |

5 ---------------------------------------------------------

6 ( 'U', 'U', 'U', 'U', 'U', 'U', 'U', 'U', 'U' ), -- | U |

7 ( 'U', 'X', 'X', 'X', 'X', 'X', 'X', 'X', 'X' ), -- | X |

8 ( 'U', 'X', '0', 'X', '0', '0', '0', '0', 'X' ), -- | 0 |

9 ( 'U', 'X', 'X', '1', '1', '1', '1', '1', 'X' ), -- | 1 |

10 ( 'U', 'X', '0', '1', 'Z', 'W', 'L', 'H', 'X' ), -- | Z |

11 ( 'U', 'X', '0', '1', 'W', 'W', 'W', 'W', 'X' ), -- | W |

12 ( 'U', 'X', '0', '1', 'L', 'W', 'L', 'W', 'X' ), -- | L |

13 ( 'U', 'X', '0', '1', 'H', 'W', 'W', 'H', 'X' ), -- | H |

14 ( 'U', 'X', 'X', 'X', 'X', 'X', 'X', 'X', 'X' ) -- | - |);

15 ---------------------------------------------------------

16 FUNCTION resolved (s: STD_ULOGIC_VECTOR) RETURN STD_ULOGIC IS

17 VARIABLE result: STD_ULOGIC_ := 'Z'; --weakest state default

18 ATTRIBUTE synthesis_return OF result: VARIABLE IS "WIRED_THREE_STATE";

19 BEGIN

20 IF (s'LENGTH=1) THEN RETURN s(s'LOW);

21 ELSE

22 FOR i IN s'RANGE LOOP

23 result := resolution_table(result, s(i));

24 END LOOP;

25 END IF;

26 RETURN result;

27 END resolved;

28 -------------------------------------------------------------------------
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Note that the code above contains a resolution table (lines 2–14), entered as a CON-

STANT. The name of the function is resolved (line 16); it receives a parameter called s,

of type STD_ULOGIC_VECTOR (hence with any number of bits), returning a single

bit of type STD_ULOGIC. In the declarative part of the function, a VARIABLE named

result is declared (line 17), having 'Z' as its initial value (note in the resolution table that 'Z'

is the weakest value, because ‘‘anything’’ versus 'Z' is ‘‘anything’’). In the first part of the

code proper (line 20), the size of s is checked; if it is a single bit, then s itself is returned

(there is nothing to be resolved). However, if s contains more than one digit, then in part

two of the code (lines 21–25) the table is used to determine the winning value. For exam-

ple, if the competing values are '0', '1', and 'Z', then the result (according to the expression

in line 23) is 'X' (unknown) (this is because 'Z', the initial value of result, versus '0' is '0'; '0'

versus '1' is 'X'; and finally 'X' versus 'Z' is again 'X').

From a design perspective, what is essential to know is how this data type

(STD_LOGIC) is synthesized. In summary, the following occurs ( just as a remark, note

that the choice of symbol for ‘‘don’t care’’ was unfortunate, because the traditional repre-

sentation for ‘‘don’t care’’ in digital design is 'X'):

1 '0' and 'L' are both synthesized as '0' (for inputs and outputs);

1 '1' and 'H' are both synthesized as '1' (for inputs and outputs);

1 'Z' is synthesized as 'Z' (for outputs);

1 The others as synthesized as '-' (don’t’care—for outputs).

Because in regular digital designs the input specifications of interest are '0', '1', and '-'

(don’t care), while the output values of interest are '0', '1', 'Z', and '-', all values are covered

by STD_LOGIC, hence its importance. Unfortunately, even though VHDL 2002 allows

‘‘don’t care’’ outputs, it does not support ‘‘don’t care’’ inputs, a limitation that was

resolved in VHDL 2008.

Another important feature in VHDL 2008 is that STD_LOGIC_VECTOR is a subtype

of STD_ULOGIC_VECTOR (compare part I to part II in appendix I), that is:

TYPE STD_ULOGIC_VECTOR IS array (NATURAL RANGE <>) of STD_ULOGIC;

SUBTYPE STD_LOGIC_VECTOR IS (resolved) STD_ULOGIC_VECTOR;

Consequently, operators defined for the latter are automatically overloaded to the former.

Another addition made in VHDL 2008 is the package numeric_std_unsigned,

which defines unsigned operators (no new types) for the types STD_LOGIC and

STD_LOGIC_VECTOR (there is also a package called numeric_bit_unsigned, which

specifies similar operators for the types BIT and BIT_VECTOR).

See other details about VHDL 2008 in section 3.22. See also the summary in figure 3.6.

Examples illustrating its usefulness of STD_LOGIC are presented next.
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Example 3.1: Tri-state Bu¤er

As already mentioned, a fundamental synthesizable value is 'Z' (high impedance), which is

needed to create tri-state bu¤ers, like that depicted in figure 3.3 (see its truth table). Write a

VHDL code from which this circuit can be inferred.

Solution A corresponding VHDL code is shown below, with 'Z' employed in the WHEN

statement of line 12. While the enable port is asserted (ena ¼ '1'), the input is copied to the

output. However, if ena ¼ '0', the bu¤er is physically disconnected from the output node

(high-impedance state). Note that the package std_logic_1164 (lines 2–3) is needed because

it is in that package that 'Z' is defined (BIT would not do because it can only be '0' or '1').

1 -----------------------------------------

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 -----------------------------------------

5 ENTITY tri_state IS

6 PORT (input, ena: IN STD_LOGIC;

7 output: OUT STD_LOGIC);

8 END ENTITY;

9 -----------------------------------------

10 ARCHITECTURE tri_state OF tri_state IS

11 BEGIN

12 output <= input WHEN ena='1' ELSE 'Z';

13 END ARCHITECTURE;

14 -----------------------------------------

Example 3.2: Circuit with ‘Don’t Care’ Outputs

Figure 3.4a depicts a circuit whose input (x) and output (y) are 2-bit signals for which

two sets of specifications are given in the truth tables of figures 3.4b–c. In the former, all

outputs are specified with '0's and '1's, while in the latter there is a ‘‘don’t care’’ output

(y ¼ "--"). Design this circuit by hand, then write a VHDL code for each truth table and

observe the consequences of employing the logic value '-' in the code.

Solution Using Karnaugh maps (Pedroni 2008), we obtain the following optimal equa-

tions for y in figure 3.4b: y1 ¼ x 0
1 � x0, y0 ¼ x1 � x 0

0. On the other hand, for figure 3.4c, the

Figure 3.3
Tri-state bu¤er of example 3.1.
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result is simply y1 ¼ x0 and y0 ¼ x1, so the circuit requires less hardware than the previous

one (lower cost, less power consumption, higher speed).

A corresponding VHDL code is presented below (for the case of figure 3.4b, the only

change is obviously in line 15), from which similar conclusions are obtained. (Note: The

compiler does not always reach the very optimal expressions for a given combinational

circuit, so one must be careful when making this type of comparison.)

1 --------------------------------------------

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 --------------------------------------------

5 ENTITY circuit IS

6 PORT (x: IN STD_LOGIC_VECTOR(1 DOWNTO 0);

7 y: OUT STD_LOGIC_VECTOR(1 DOWNTO 0));

8 END ENTITY;

9 --------------------------------------------

10 ARCHITECTURE circuit OF circuit IS

11 BEGIN

12 y <= "00" WHEN x="00" ELSE

13 "01" WHEN x="10" ELSE

14 "10" WHEN x="01" ELSE

15 "--";

16 END ARCHITECTURE;

17 --------------------------------------------

3.7 Unsigned and Signed Data Types

As seen in section 3.3, UNSIGNED and SIGNED data types are defined in two (compet-

ing) packages called numeric_std (from the ieee library, appendix J) and std_logic_arith

(shareware, appendix K). Their definitions are as follows:

TYPE UNSIGNED IS ARRAY (NATURAL RANGE <>) OF STD_LOGIC;

TYPE SIGNED IS ARRAY (NATURAL RANGE <>) OF STD_LOGIC;

Consequently, to make use of the UNSIGNED or SIGNED data type, one of the pack-

ages above (numeric_std or std_logic_arith) must be declared in the code. Remember,

Figure 3.4
Circuit with ‘‘don’t care’’ outputs of example 3.2.
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however, that they are only partially equivalent (the former defines logical, arithmetic,

comparison, and shift operators, while the latter does not include logical operators; on

the other hand, the latter has a wider set of data-conversion functions). For obvious rea-

sons, these two packages cannot be used together, and because numeric_std is a standar-

dized package (by the IEEE), it should be preferred.

An unsigned value ranges from 0 to 2N � 1 (limited to INTEGER'HIGH), where N

is the number of bits. Then "0101" represents the decimal 5, while "1101" signifies 13.

Signed types, on the other hand, range from �2N�1 to 2N�1 � 1 (limited between

INTEGER'LOW and INTEGER'HIGH), with negative values represented in two’s com-

plement form (section 1.8). Hence "0101" still represents the decimal 5, while "1101" now

means �3.

Unfortunately, the names chosen for two other packages, std_logic_unsigned and

std_logic_signed (appendix L), might lead to confusion. These packages only define

unsigned and signed operators for STD_LOGIC_VECTOR, not the UNSIGNED and

SIGNED types.

Example Below, a, b, x, and y are declared as signals of type SIGNED, with 8 bits each,

indexed in descending order, while v and w are single bits of types STD_LOGIC and BIT,

respectively. Three of the operations that follow are legal, while one is illegal. x ¼ aþ b is

fine because the arithmetic operator "þ" is allowed for SIGNED. On the other hand, y is

fine only if numeric_std is declared, because std_logic_arith does not contain logical opera-

tors. For v, the operation is valid too because a scalar (single bit) of type STD_LOGIC is

compatible with a scalar of type SIGNED (same base type). Finally, w is illegal because

the base type of SIGNED is not BIT.

--------------------------------------------------------

SIGNAL a, b: SIGNED(7 DOWNTO 0);

SIGNAL x, y: SIGNED(7 DOWNTO 0);

SIGNAL v: STD_LOGIC;

SIGNAL w: BIT;

x <= a + b; --legal

y <= a AND b; --legal only if numeric_std is used

v <= a(7) XOR b(0); --legal because of same base type

w <= a(0); --illegal because of type mismatch

--------------------------------------------------------

Example 3.3: Unsigned/Signed Multiplier C1

Write a VHDL code to implement a circuit that computes y ¼ a*b. Keep in mind that

when the type (UN)SIGNED is used, the number of bits in the product must be equal to

the sum of bits in the operands (section 5.7).
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a) Declare all signals as UNSIGNED, with 4 bits for a and b and 8 bits for y. Compile the

code and simulate it for a ¼ "1101" and b ¼ "0010", followed by b ¼ "1110". Observe and

interpret the results.

b) Repeat the design above, now for signals of type SIGNED.

Solution

a) The code is shown below. The package numeric_std was employed (lines 2–3) and all

signals were declared as UNSIGNED (lines 6–7). In this case, the decimal values are

a ¼ 13 and b ¼ 2, followed by b ¼ 14, from which y ¼ "00011010" ¼ 26, followed by

y ¼ "10110110" ¼ 182, are obtained.

b) The only changes needed in the code are in lines 6–7 (SIGNED instead of

UNSIGNED). Now the decimal values are a ¼ "1101" ¼ �3 and b ¼ "0010" ¼ 2,

followed by b ¼ "1110" ¼ �2, from which y ¼ "11111010" ¼ �6, followed by

y ¼ "00000110" ¼ 6, are obtained.

Simulation results for both cases are depicted in figure 3.5. Note that the results do coin-

cide with the expected values.

1 ----------------------------------------

2 LIBRARY ieee;

3 USE ieee.numeric_std.all;

4 ----------------------------------------

5 ENTITY multiplier IS

6 PORT (a, b: IN UNSIGNED(3 DOWNTO 0);

7 y: OUT UNSIGNED(7 DOWNTO 0));

8 END ENTITY;

9 ----------------------------------------

10 ARCHITECTURE multiplier OF multiplier IS

11 BEGIN

12 y <= a * b;

13 END ARCHITECTURE;

14 ----------------------------------------

Figure 3.5
Unsigned (left) and signed (right) simulation results from the code of example 3.3.
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Example 3.4: Unsigned/Signed Multiplier C2

Repeat the exercise above, this time with all ports declared as STD_LOGIC_VECTOR. In

part (a), include the package std_logic_unsigned, and in part (b), the package std_logic_signed.

Solution

a) The corresponding VHDL code is shown below. The package std_logic_1164 (line 3)

is needed because it defines the type STD_LOGIC_VECTOR. The other package

(std_logic_unsigned, line 4) is also needed because it defines arithmetic functions for that

data type, which do not exist in the original (std_logic_1164) package.

b) The only change needed is in line 4, replacing the word unsigned with signed. Simula-

tion results are the same as those in figure 3.5.

1 -----------------------------------------------

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 USE ieee.std_logic_unsigned.all;

5 -----------------------------------------------

6 ENTITY multiplier IS

7 PORT (a, b: IN STD_LOGIC_VECTOR(3 DOWNTO 0);

8 y: OUT STD_LOGIC_VECTOR(7 DOWNTO 0));

9 END ENTITY;

10 -----------------------------------------------

11 ARCHITECTURE multiplier OF multiplier IS

12 BEGIN

13 y <= a * b;

14 END ARCHITECTURE;

15 -----------------------------------------------

Note: In the code of example 3.4, all ports are of type STD_LOGIC_VECTOR, which

is the industry standard. However, though correct, the approach in this example might

lead to confusion because the nature of the operation (unsigned or signed) is not explicitly

shown in the code (it depends only on the package declared in line 4). A recommended

approach is to keep all ports specified as STD_LOGIC_VECTOR, but explicitly convert

the inputs from STD_LOGIC_VECTOR to (UN)SIGNED in the code, then perform the

operation(s), finally converting the result(s) back to STD_LOGIC_VECTOR. This proce-

dure will be illustrated in example 3.9 (section 3.18) and further discussed in section 5.7.

3.8 Fixed- and Floating-Point Types

Even though the type REAL specified in the package standard has limited synthesis sup-

port, newer options for dealing with fixed- and floating-point numbers were introduced in

VHDL 2008. Their main features are described below.
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Fixed-Point Types

The main fixed-point types are the following:

TYPE UFIXED IS ARRAY (INTEGER RANGE <>) OF STD_LOGIC; --unsigned

TYPE SFIXED IS ARRAY (INTEGER RANGE <>) OF STD_LOGIC; --signed

The files needed to use such types in VHDL 2008 are (see IEEE 1076-2008 standard):

1 fixed_pkg.vhdl (contains the package fixed_pkg)

1 fixed_generic_pkg.vhdl (contains the package fixed_generic_pkg)

1 fixed_generic_pkg-body.vhdl (contains the package body of fixed_generic_pkg)

1 fixed_ float_types.vhdl (contains the package fixed_ float_types)

For previous VHDL versions (93 and 2002), compatibility files were provided (only the

two files below are needed, available at www.eda.org/fphdl):

1 fixed_pkg_c.vhd (contains a compatible package fixed_pkg)

1 fixed_ float_types_c.vhd (contains a compatible package fixed_ float_types)

To implement fixed-point circuits in these previous VHDL versions, just create a folder

called ieee_proposed in the VHDL library directory of your compiler and copy the two files

above into it.

The representation of fixed-point numbers is similar to that of STD_LOGIC_VECTOR

but now the location of a decimal point must also be provided. This is achieved by allow-

ing the index to be negative, with the decimal point located after the index-zero bit.

Examples with unsigned fixed-point numbers:

x: SIGNAL UFIXED(2 DOWNTO -3); --this is "xxx.xxx"

y: SIGNAL UFIXED(4 DOWNTO -1); --this is "yyyyy.y"

z: SIGNAL UFIXED(-2 DOWNTO -3); --this is "0.0zz"

...

x <= "100011"; --1x22+0x21+0x20+0x2-1+1x2- 2+1x2- 3=4.375

y <= "100011"; --1x24+0x23+0x22+0x21+1x20+1x2-1=17.5

z <= "10"; --1x2- 2+0x2-3=0.25

Examples with signed fixed-point numbers:

x: SIGNAL SFIXED(2 DOWNTO -3); --this is "xxx.xxx"

y: SIGNAL SFIXED(4 DOWNTO -1); --this is "yyyyy.y"

z: SIGNAL SFIXED(-2 DOWNTO -3); --this is "0.0zz"

...

x <= "100011"; --100.011 -> 2's compl=011.101 -> -3.625 (or 4.375-8=-3.625)

y <= "100011"; --10001.1 -> 2's compl=01110.1 -> -14.5 (or 17.5-32=-14.5)

z <= "10"; --0.010 = +0.25
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The reason for using fixed- and floating-point types is that they allow operation with

fractional numbers, of which numbers smaller than 1 are of particular interest. For

example, observe that the signals x, y, and z specified above, for the unsigned case, have

the following ranges and increment sizes:

x: range from 0 to 7.875 in steps of 0.125 (a total of 2bits ¼ 26 ¼ 64 values).

y: range from 0 to 31.5 in steps of 0.5 (a total of 2bits ¼ 26 ¼ 64 values).

z: range from 0 to 0.375 in steps of 0.125 (a total of 2bits ¼ 22 ¼ 4 values).

A large set of operators (details about operators are given in chapter 4) and type-

conversion functions are defined for these new types. A simplified list is presented below.

a) Operators:

Logical: NOT, AND, NAND, OR, NOR, XOR, XNOR

Arithmetic: þ, �, *, /, ABS, REM, MOD, ADD_CARRY, etc.

Comparison: ¼, /¼, >, <, >¼, <¼, MAXIMUM, MINIMUM

Shift: SLL, SRL, SLA, SRA, ROR, ROL, SHIFT_LEFT, SHIFT_RIGHT

Matching: ?¼, ?/¼, ?>, ?<, ?>¼, ?<¼
b) Type-conversion functions:

TO_UFIXED, TO_SFIXED, TO_UNSIGNED, TO_SIGNED, TO_SLV (same as

TO_STDLOGICVECTOR), TO_INTEGER, TO_REAL, TO_STRING, etc.

c) Text I/O functions:

WRITE (same as BWRITE or BINARY_WRITE), READ (same as BREAD or

BINARY_READ), OWRITE (same as OCTAL_WRITE), OREAD (same as

OCTAL_READ), HWRITE (same as HEX_WRITE), HREAD (same as HEX_READ),

etc.

d) Other functions:

RESIZE, SATURATE, FIND_LEFTMOST, FIND_RIGHTMOST, UFIXED_HIGH,

UFIXED_LOW, SFIXED_HIGH, etc.

Example:

x: SIGNAL UFIXED(4 DOWNTO -3); --"xxxxx.xxx"

y: SIGNAL SFIXED(4 DOWNTO -3); --"yyyyy.yyy"

z: SIGNAL SFIXED(5 DOWNTO -3); --"zzzzzz.zzz"

...

x <= TO_UFIXED(17.5, 4, -3); --converts 17.5 to UFIXED; result="10001100"

z <= -y; --unary "-" (only for signed); result=2's compl. of y

The arithmetic operations listed above are constructed with vector sizes such that over-

flow is always prevented. Some examples are shown below, where a and b are the inputs.
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aþ b, a� b: Range is max(a'LEFT, b'LEFT)þ 1 DOWNTO min(a'RIGHT, b'RIGHT)

a*b: Range is a'LEFTþ b'LEFTþ 1 DOWNTO a'RIGHTþ b'RIGHT

a/b unsigned: Range is a'LEFT � b'RIGHT DOWNTO a'RIGHTþ b'LEFT� 1

a/b signed: Range is a'LEFT� b'RIGHTþ 1 DOWNTO a'RIGHT þ b'LEFT

�a (unary "�", for signed only): Range is a'LEFTþ 1 DOWNTO a'RIGHT

A complete VHDL code involving fixed-point numbers is shown below. The inferred cir-

cuit adds (line 13) and multiplies (line 14) the signals a and b. Observe the ranges defined

for x and y (lines 7–8). Note also that the only extra package declaration is for fixed_pkg

(lines 2–3), available in the file fixed_pkg_c.vhd.

1 --------------------------------------

2 LIBRARY ieee_proposed;

3 USE ieee_proposed.fixed_pkg.all;

4 --------------------------------------

5 ENTITY fixed IS

6 PORT (a, b: IN SFIXED(3 DOWNTO -3);

7 x: OUT SFIXED(4 DOWNTO -3);

8 y: OUT SFIXED(7 DOWNTO -6));

9 END ENTITY;

10 --------------------------------------

11 ARCHITECTURE fixed OF fixed IS

12 BEGIN

13 x <= a + b;

14 y <= a * b;

15 END ARCHITECTURE;

16 --------------------------------------

Floating-Point Types

The main floating-point type and subtypes are the following:

TYPE FLOAT IS ARRAY (INTEGER RANGE <>) OF STD_LOGIC; --generic length

SUBTYPE FLOAT32 IS FLOAT(8 DOWNTO -23); --32-bit FP of IEEE 754

SUBTYPE FLOAT64 IS FLOAT(11 DOWNTO -52); --64-bit FP of IEEE 754

SUBTYPE FLOAT128 IS FLOAT(15 DOWNTO -112); --128-bit FP of IEEE 754

The files needed to use such types in VHDL 2008 are (see IEEE 1076-2008 Standard):

1 float_pkg.vhdl (contains the package float_pkg)

1 float_generic_pkg.vhdl (contains the package float_generic_pkg)

1 float_generic_pkg-body.vhdl (contains the package body of float_generic_pkg)

1 fixed_ float_types.vhdl. (already mentioned)
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For previous VHDL versions (93 and 2002), compatibility files were provided (only the

three files below are needed, available at www.eda.org/fphdl):

1 fixed_pkg_c.vhd (already mentioned)

1 fixed_ float_types_c.vhd (already mentioned)

1 float_pkg_c.vhd (contains a compatible package float_pkg)

To implement floating-point circuits in these previous VHDL versions, just create a folder

called ieee_proposed in the VHDL library directory of your compiler and copy the three

files above into it.

As described in Pedroni (2008), the representation of floating-point numbers in the IEEE

754 standard obeys the structure illustrated in the figure below (for the 32-bit case):

27 26 25 24 23 22 21 20 2- 1 2- 2 2- 3 2- 4 ... 2- 2 2 2- 2 3

S Exponent (E) Fraction (F)

1 bit 8 bits 23 bits

Calling x the stored number, its value is given by x ¼ ð�1ÞSð1þ FÞ2E�N , where S is the

sign (0 when positive, 1 when negative), F is the fraction, E is the exponent, and N is a

normalization factor given by N ¼ ðEmax þ 1Þ=2� 1 (for example, N ¼ 127 when the ex-

ponent has 8 bits or N ¼ 1023 when it has 11 bits).

Example (with 3-bit exponent and 4-bit fraction, hence a total of 8 bits):

x <= "10010110"; --(1)(001)(0110) = -(1+0.375)21 - 3 = -0.34375

x <= "01101000"; --(0)(110)(1000) = +(1+0.5)26 - 3 = 12.0

In VHDL, the minimum length of a floating-point number is 7 bits, with the following

distribution: 1 bit for the sign, 3 bits for the exponent, and 3 bits for the fraction.

As with fixed-point, a large set of operators and type-conversion functions are defined

for the floating-point types. A simplified list is presented below.

a) Operators:

Logical: NOT, AND, NAND, OR, NOR, XOR, XNOR

Arithmetic: þ, �, *, /, ABS, REM, MOD, MAC, SQRT, etc.

Comparison: ¼, /¼, >, <, >¼, <¼, MAXIMUM, MINIMUM

Matching: ?¼, ?/¼, ?>, ?<, ?>¼, ?<¼
b) Type-conversion functions:

TO_FLOAT, TO_FLOAT32, TO_FLOAT64, TO_FLOAT128, TO_UNSIGNED,

TO_SIGNED, TO_SLV, etc.

c) Text I/O functions:

WRITE (BWRITE, BINARY_WRITE), READ (BREAD, BINARY_READ),

OWRITE (OCTAL_WRITE), OREAD (OCTAL_READ), HWRITE (HEX_WRITE),

HREAD (HEX_READ), etc.
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d) Other functions:

RESIZE, FIND_LEFTMOST, FIND_RIGHTMOST, etc.

Examples

SIGNAL x: FLOAT(3 DOWNTO -4); --(S)(EEE)(FFFF)

SIGNAL y: FLOAT(3 DOWNTO -4);

SIGNAL z: STD_LOGIC_VECTOR(7 DOWNTO 0);

...

--Convert 12.0 to float with format (S)(EEE)(FFFF):

x <= TO_FLOAT(12.0, 3, 4); --result="01101000"

x <= TO_FLOAT(12.0, x); --same as above

--Convert std_logic_vector to float with format (S)(EEE)(FFFF):

y <= TO_FLOAT(z, 3, 4);

A complete VHDL code involving floating-point numbers is shown below. The inferred

circuit adds (line 12, which also includes a constant) and multiplies (line 13) the signals

a and b. Observe that the same range is specified for all signals (lines 6–7). Note also that

the only extra package declaration is for float_pkg (lines 2–3), available in the file

float_pkg_c.vhd.

1 ----------------------------------------

2 LIBRARY ieee_proposed;

3 USE ieee_proposed.float_pkg.all;

4 ----------------------------------------

5 ENTITY floating IS

6 PORT (a, b: IN FLOAT(3 DOWNTO -4);

7 x, y: OUT FLOAT(3 DOWNTO -4));

8 END ENTITY;

9 ----------------------------------------

10 ARCHITECTURE floating OF floating IS

11 BEGIN

12 x <= TO_FLOAT(0.34375, 3, 4) + a + b;

13 y <= a * b;

14 END ARCHITECTURE;

15 ----------------------------------------

3.9 Predefined Data Types Summary

Figure 3.6 summarizes the predefined VHDL data types that are synthesizable (the types

introduced in VHDL 2008, also included in the figure in the gray areas, might not be sup-

ported yet), showing the corresponding package of origin and dimensionality (based on the

number of bits—figure 3.2).
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3.10 User-Defined Scalar Types

In addition to the predefined data types (seen earlier), user-defined data types are also

allowed in VHDL. The creation of such types is the subject of nearly all remaining sections

of this chapter.

Like the predefined data types, the new types can be scalar (single value) or composite

(multiple values, specified using the ARRAY or RECORD keyword—see classifications

in section 3.4). The construction of the former (integer and enumerated categories) is

described in this section, while ARRAY and RECORD are described in sections 3.11 and

3.14, respectively.

Figure 3.6
Synthesizable predefined data types with corresponding package of origin and dimensionality (additions made in
VHDL 2008 are inside gray areas).
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The most common places for TYPE declarations are the main code itself (in the declar-

ative part of the ARCHITECTURE) or a PACKAGE (chapter 8). For a scalar type, such

declarations are made using the keyword TYPE, while for composite types, the keyword

ARRAY or RECORD must also be included.

Integer Types

As mentioned earlier, INTEGER is synthesizable without restrictions. All types

derived from INTEGER are referred to as integer types, and can be declared using

the simplified syntax below. The range bounds must fall between INTEGER'LOW and

INTEGER'HIGH, whose default values are �ð231 � 1Þ and ð231 � 1Þ, respectively.

TYPE type_name IS RANGE range_specifications;

Examples

-----------------------------------------

TYPE negative IS RANGE INTEGER'LOW TO -1;

TYPE temperature IS RANGE 0 TO 273;

TYPE my_integer IS RANGE -32 TO 32;

-----------------------------------------

Enumerated Types

In this case, the type values are represented by symbols, which must be explicitly listed

(enumerated). This approach was used in the creation of several of the predefined data

types (sections 3.5 to 3.7), like the examples below.

---------------------------------------------------------

TYPE BIT IS ('0', '1');

TYPE BOOLEAN IS (FALSE, TRUE);

TYPE STD_ULOGIC IS ('U','X','0','1','Z','W','L','H','X');

---------------------------------------------------------

Enumerated types are particularly useful in the creation of other logic systems and in the

design of finite state machines (chapter 11). They can be declared using the simplified

syntax below.

TYPE type_name IS (type_values_list);
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Examples

------------------------------------------------------

TYPE logic_01Z IS ('0', '1', 'Z');

TYPE state IS (A, B, C, D, E);

TYPE machine_state IS (idle, transmitting, receiving);

------------------------------------------------------

As will be shown in chapter 11, the actual encoding for enumerated data types can be

done in several ways, freely chosen by the designer. The main options are ‘‘sequential’’

(sequential binary encoding), ‘‘Gray’’ (Gray code), ‘‘Johnson’’ (Johnson encoding), and

‘‘one-hot’’ (one-hot encoding). Details will be given in section 11.4 while studying finite

state machines.

3.11 User-Defined Array Types

ARRAY is a collection of same-type elements. To create an array type, the keywords

TYPE and ARRAY must be employed, as shown in the simplified syntax below.

TYPE type_name IS ARRAY (range_specs) OF element_type;

Review of Predefined Array Types

Several of the predefined synthesizable data types described earlier are array types. Exam-

ples are shown below (note the use of both TYPE and ARRAY keywords).

Standard types (section 3.5):

TYPE BIT_VECTOR IS ARRAY (NATURAL RANGE <>) OF BIT;

TYPE BOOLEAN_VECTOR IS ARRAY (NATURAL RANGE <>) OF BOOLEAN;

TYPE INTEGER_VECTOR IS ARRAY (NATURAL RANGE <>) OF INTEGER;

TYPE STRING IS ARRAY (POSITIVE RANGE <>) OF CHARACTER;

-----------------------------------------------------------

Standard-logic types (section 3.6):

TYPE STD_ULOGIC_VECTOR IS ARRAY (NATURAL RANGE <>) OF STD_ULOGIC;

TYPE STD_LOGIC_VECTOR IS ARRAY (NATURAL RANGE <>) OF STD_LOGIC;

Or, in VHDL 2008:
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TYPE STD_ULOGIC_VECTOR IS array (NATURAL RANGE <>) of STD_ULOGIC;

SUBTYPE STD_LOGIC_VECTOR IS (resolved) STD_ULOGIC_VECTOR;

-----------------------------------------------------------------

Unsigned/Signed types (section 3.7):

TYPE UNSIGNED IS ARRAY (NATURAL RANGE <>) OF STD_LOGIC;

TYPE SIGNED IS ARRAY (NATURAL RANGE <>) OF STD_LOGIC;

-------------------------------------------------------

Because the types above are for general use, their ranges are left unconstrained (indi-

cated by the symbol "<>"), with the only condition that, when specified, the limits must

fall within the NATURAL or POSITIVE range. Their actual range limits are established

later, when they are used in a code, as shown in the examples below.

-------------------------------------------------

CONSTANT a: BIT_VECTOR(7 DOWNTO 0) := "10001000";

SIGNAL b: STD_LOGIC_VECTOR(1 TO 16);

VARIABLE c: SIGNED(15 DOWNTO 0);

-------------------------------------------------

User-Defined Integer Array Types

Here too the described data types fall in one of the following two categories: integer types

or enumerated types. Arrays of integers are described in this subsection, while arrays of

enumerated types are described in the next. A simplified syntax for the former is shown

below. For obvious reasons, the type of the elements (int_elements_type) is a subtype to

the new type.

TYPE type_name IS ARRAY (range_specs) OF int_elements_type;

Examples of 1DD1D arrays Below are two integer type arrays, called type1 and type2,

each followed by object (CONSTANT, in these examples, called const1 and const2)

assignments. The first is unconstrained (so its actual range can be anywhere from 1 to

INTEGER'HIGH), while the second is constrained. Regarding the array element range,

contrary to enumerated arrays, in integer arrays it can be left unconstrained (note that

the last word—INTEGER or NATURAL—is not accompanied by range specifications).

Note also that when the original range is unconstrained, the range bounds must be

included in the object declaration. Bitwise, both are 1D� 1D arrays (figure 3.2c).
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---------------------------------------------------

TYPE type1 IS ARRAY (POSITIVE RANGE <>) OF INTEGER;

CONSTANT const1: type1(1 TO 4) := (5, -5, 3, 0);

---------------------------------------------------

TYPE type2 IS ARRAY (0 TO 3) OF NATURAL;

CONSTANT const2: type2 := (2, 0, 9, 4);

---------------------------------------------------

Example of 1DD1DD1D array Below is another integer type array, called type3, fol-

lowed by an object (const3) declaration. Bitwise, this is a 1D� 1D� 1D array (figure

3.2e).

---------------------------------------------------------

TYPE type3 IS ARRAY (1 TO 2) OF type2; --see type2 above

CONSTANT const3: type3 := ((5, 5, 7, 99), (33, 4, 0, 0));

---------------------------------------------------------

User-Defined Enumerated Array Types

The subsection above described arrays of integers. Another option is arrays of enumerated

types, covered here. Some examples were already shown, including arrays of BIT, BOO-

LEAN, CHARACTER, and STD_(U)LOGIC symbols. Other examples are shown be-

low, using the simplified syntax that follows. The enum_elements_type (which is obviously

a subtype to the new type) is normally required to be constrained.

TYPE type_name IS ARRAY (range_specs) OF enum_elements_type;

Examples of 1D arrays Below are two enumerated type arrays, called type1 and type2,

each followed by object (CONSTANT, in these examples, called const1 and const2) decla-

rations. The first type is unconstrained, while the second is constrained. Note that when

the original range is unconstrained, the range bounds must be included in the object decla-

ration. Bitwise, both arrays below are 1D arrays (figure 3.2b).

----------------------------------------------------

TYPE type1 IS ARRAY (NATURAL RANGE <>) OF STD_LOGIC;

CONSTANT const1: type1(4 DOWNTO 1) := "Z111";

----------------------------------------------------

TYPE type2 IS ARRAY (7 DOWNTO 0) OF BIT;

CONSTANT const2: type2 := "00001111";

----------------------------------------------------

Examples of 1DD1D arrays Below are two other enumerated type arrays, called type3

and type4, each followed by object (const3 and const4) declarations. The first array is
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semi-unconstrained, while the second is constrained. Again, when the original range is

unconstrained, the range bounds must be included in the object declaration. Note that in

both cases the element array is constrained. Two equivalent representations are shown in

each case. Bitwise, both arrays are 1D� 1D arrays (figure 3.2c).

---------------------------------------------------------------------

TYPE type3 IS ARRAY (NATURAL RANGE <>) OF BIT_VECTOR(2 DOWNTO 0);

CONSTANT const3: type3(1 DOWNTO 0) := ("000", "111");

CONSTANT const3: type3(1 DOWNTO 0) := (('0','0','0'), ('1','1','1'));

---------------------------------------------------------------------

TYPE type4 IS ARRAY (1 TO 4) OF STD_LOGIC_VECTOR(2 DOWNTO 0);

CONSTANT const4: type4 := ("000", "011", "100", "100");

CONSTANT const4: type4 := (('0','0','0'), ('0','1','1'), ...);

---------------------------------------------------------------------

Example of 2D array Below is another enumerated type array, called type5, followed by

an object (const5) declaration. Bitwise, this is a 2D array (figure 3.2d).

---------------------------------------------------

TYPE type5 IS ARRAY (1 TO 3, 1 TO 4) OF BIT;

CONSTANT const5: type5 := (("0000","0000","0000"));

---------------------------------------------------

Example of 1DD1DD1D array An enumerated type array called type6 is shown below,

followed by an object (const6) declaration. Bitwise, this is a 1D� 1D� 1D array (figure

3.2e).

---------------------------------------------------------------

TYPE type6 IS ARRAY (1 TO 2) OF type4; --see type4 above

CONSTANT const6: type6 := (("000","011","100","100"), ( ... ));

---------------------------------------------------------------

Example of 3D array Below is another enumerated type array, called type7, followed by

an object (const7) declaration. Bitwise, this is a 3D array (figure 3.2f ).

--------------------------------------------------------------------------

TYPE type7 IS ARRAY (1 TO 2, 1 TO 3, 1 TO 4) OF BIT;

CONSTANT const7: type7 := (("0000","0000","0000"),("0000","0000","0000"));

--------------------------------------------------------------------------

3.12 Integer versus Enumerated Indexing

In the examples so far, the array index was always an integer. Consider, for example, the

following declaration (this is a user-defined integer type ranging from 1 to 3—section

3.10):
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TYPE int_row IS RANGE 1 TO 3;

Then the declarations below are clearly equivalent:

TYPE test IS ARRAY (1 TO 3) OF STD_LOGIC;

TYPE test IS ARRAY (int_row) OF STD_LOGIC;

But in VHDL, enumerated indexing is also allowed. For example, consider now the

enumerated type below (section 3.10):

TYPE enum_column IS ('a', 'b', 'c', 'd');

Then the type matrix below

TYPE matrix IS ARRAY (int_row, enum_column) OF STD_LOGIC;

represents a three-row by four-column array of STD_LOGIC elements, with the rows

indexed by int_row (integers from 1 to 3) and the columns by enum_column (enumerated

from 'a' to 'd'). Then if the following array is constructed:

CONSTANT my_array: matrix := ("Z101", "0011", "101Z");

its elements can be accessed as follows:

my_array(1,'a') –> 'Z',

my_array(1,'b') –> '1',

my_array(1,'c') –> '0',

...

my_array(3,'d') –> 'Z'.

Enumerated indexing is used extensively, for example, in the std_logic_1164 package

body, where it helps compute the functions NOT, AND, OR, XOR, and resolution.

Indeed, a detailed example was already shown in section 3.6 while describing the

STD_LOGIC resolution function from that package.

3.13 Array Slicing

Figure 3.7 shows three 3� 4 (in terms of the number of bits) arrays. An 1D� 1D array

with integers is shown in (a), a similar array, but with bit vectors, is presented in (b), while

a 2D array of bits appears in (c). Note that all three contain the same data; that is (in dec-

imal values), row1 ¼ 3, row2 ¼ 9, row3 ¼ 13, or, equivalently, column1 ¼ 3, column2 ¼ 1,

column3 ¼ 4, column4 ¼ 7.

The figure also shows several slices. Only horizontal slices are of interest in figure 3.7a.

In figure 3.7b, four slices are shown; slice1 is a single bit (scalar), slice2 is a section of a row

(1D), slice3 is a whole row (1D), and slice4 is a column (1D again). Finally, similar slices

are depicted in figure 3.7c.
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Slices involving only a single element (or part of it) of the array are always legal. In

figure 3.7a, the individual elements are integers, so the slice shown in the figure is legal

(slicing of larger arrays of integers might also be supported). In figure 3.7b, the individual

elements are bit vectors, so slice1 to slice3 are legal (the first two are parts of a single

element, while the last one is a whole single element). Finally, in figure 3.7c, the single ele-

ments are scalars, so only slice1 is guaranteed to be supported. In conclusion, slice4 in fig-

ure 3.7b and slice2-slice4 in figure 3.7c might not be supported.

One way to circumvent the slicing limitation is based on the fact that scalar (single bit)

slices are always supported. Therefore, if one finds a means of collecting together several of

such slices, then virtually any multi-element slice of interest can be constructed (with the

GENERATE statement, for example). Note in this discussion the importance of under-

standing and classifying the arrays according to their bit contents.

We show next how the slicing of figure 3.7 can be done. Each case is examined sepa-

rately, using a complete VHDL code, accompanied by comments and simulation results.

Example 3.5: Slicing a 1DD1D Array of Integers

This example shows how the slicing of figure 3.7a can be done. A VHDL code for that

purpose is shown below, under the name array_slice (line 2). The input is row (line 3). Fig-

ure 3.7a has three rows, here numbered 1 to 3. The output is slice (line 4), which contains

one of the array rows. An array type, called oneDoneD and containing three integers in the

0 to 15 range, was created in line 8. Next, a constant, called table, conforming with that

data type, was declared in line 9, to which three values (3, 9, 13) were assigned. In the

code proper, a slice is read from the 1D� 1D array using row as the index (line 11). Sim-

ulation results are depicted in figure 3.8, showing that, as expected, the values 3, 9, and 13

are indeed retrieved.

1 ------------------------------------------------------------

2 ENTITY array_slice IS

3 PORT (row: IN INTEGER RANGE 1 TO 3;

4 slice: OUT INTEGER RANGE 0 TO 15);

Figure 3.7
(a) 1D� 1D array of integers; (b) 1D� 1D array of bit vectors; (c) 2D array of bits. Several horizontal and ver-
tical slices are also shown.
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5 END ENTITY;

6 ------------------------------------------------------------

7 ARCHITECTURE array_slice OF array_slice IS

8 TYPE oneDoneD IS ARRAY (1 TO 3) OF INTEGER RANGE 0 TO 15;

9 CONSTANT table: oneDoneD := (3, 9, 13);

10 BEGIN

11 slice <= table(row);

12 END ARCHITECTURE;

13 ------------------------------------------------------------

Example 3.6: Slicing a 1DD1D Array of Bit Vectors

This example shows how the slicing of figure 3.7b can be done. A VHDL code for that

purpose is shown below. The inputs are row (1 to 3) and column (1 to 4—declaring as 0

to 4 guarantees that three bits are assigned to that signal), while the outputs are the four

slices of figure 3.7b. An array type, called oneDoneD and consisting of a 1D� 1D array

containing bit vectors, was created in line 12. Next, a constant, called table, conforming

with that data type, was declared in lines 13–15, to which the bit values corresponding to

1, 9, and 13 were assigned. In the code proper, the four slices were created.

Assuming that the single-element slice limitation described above applies, lines 17–19 are

still synthesizable, but line 20 is not (vertical slice). Two options to circumvent that limita-

tion are shown in lines 21 and 22–24. The case in line 21 consists simply of collecting together

the scalar slices that comprise one column using the concatenation operator "&". This obvi-

ously is awkward because this list might easily get too long. The option in lines 22–24, on the

other hand, uses the GENERATE statement, which builds a loop, so the code always con-

sists of just three lines, regardless of how many elements must be collected together. (The

study of GENERATE and all sorts of VHDL codes will start in chapter 5.) Simulation

results are depicted in figure 3.9, showing results that coincide with the expected values.

1 ----------------------------------------------------------------------

2 ENTITY array_slices IS

3 PORT (row: IN INTEGER RANGE 1 TO 3;

4 column: IN INTEGER RANGE 0 TO 4; --3 bits

5 slice1: OUT BIT;

6 slice2: OUT BIT_VECTOR(1 TO 2);

Figure 3.8
Simulation results from the code of example 3.5.
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7 slice3: OUT BIT_VECTOR(1 TO 4);

8 slice4: OUT BIT_VECTOR(1 TO 3));

9 END ENTITY;

10 ----------------------------------------------------------------------

11 ARCHITECTURE array_slices OF array_slices IS

12 TYPE oneDoneD IS ARRAY (1 TO 3) OF BIT_VECTOR(1 TO 4);

13 CONSTANT table: oneDoneD := (('0','0','0','1'), --1

14 ('1','0','0','1'), --9

15 ('1','1','0','1')); --13

16 BEGIN

17 slice1 <= table(row)(column);

18 slice2 <= table(row)(1 TO 2);

19 slice3 <= table(row)(1 TO 4);

20 --slice4 <= table(1 TO 3)(column);

21 --slice4 <= table(1)(column) & table(2)(column) & table(3)(column);

22 gen: FOR i IN 1 TO 3 GENERATE

23 slice4(i) <= table(i)(column);

24 END GENERATE;

25 END ARCHITECTURE;

26 ----------------------------------------------------------------------

27

Example 3.7: Slicing a 2D Array of Bits

This example shows how the slicing of figure 3.7c can be done. A VHDL code for that

purpose is shown below. The inputs are again row and column, while the outputs are the

four slices of figure 3.7c. An array type, called twoD and consisting of a 2D array of bits,

was created in line 12. Next, a constant, called table, conforming with that data type, was

declared in lines 13–15, to which the bit values corresponding to 1, 9, and 13 were

assigned. In the code proper, the four slices were created.

Assuming that the single-element slice limitation described above applies, only line 17 is

synthesizable. To circumvent that limitation, two techniques are again depicted, in lines 21

and 22–24. The former is awkward because the list can be too long, while the latter is fine

Figure 3.9
Simulation results from the code of example 3.6.
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because the code size (three lines) is independent from the number of elements that must be

collected together. The same technique used for slice4 can be extended to the others.

1 ----------------------------------------------------------------------

2 ENTITY array_slices IS

3 PORT (row: IN INTEGER RANGE 0 TO 3;

4 column: IN INTEGER RANGE 0 TO 4; --3 bits

5 slice1: OUT BIT;

6 slice2: OUT BIT_VECTOR(1 TO 2);

7 slice3: OUT BIT_VECTOR(1 TO 4);

8 slice4: OUT BIT_VECTOR(1 TO 3));

9 END ENTITY;

10 ----------------------------------------------------------------------

11 ARCHITECTURE array_slices OF array_slices IS

12 TYPE twoD IS ARRAY (1 TO 3, 1 TO 4) OF BIT;

13 CONSTANT table: twoD := (('0','0','0','1'),

14 ('1','0','0','1'),

15 ('1','1','0','1'));

16 BEGIN

17 slice1 <= table(row, column);

18 --slice2 <= table(row, 1 TO 2);

19 --slice3 <= table(row, 1 TO 4);

20 --slice4 <= table(1 TO 3, column);

21 --slice4 <= table(1, column) & table(2, column) & table(3, column);

22 gen: FOR i IN 1 TO 3 GENERATE

23 slice4(i) <= table(i, column);

24 END GENERATE;

25 END ARCHITECTURE;

26 ----------------------------------------------------------------------

3.14 Records

Records are collections of elements that can be of di¤erent types. Individually, the types

can be any of those discussed in this chapter, either pre- or user-defined.

Example

-----------------------------------

TYPE memory_access IS RECORD

address: INTEGER RANGE 0 TO 255;

block: INTEGER RANGE 0 TO 3;

data: BIT_VECTOR(15 DOWNTO 0);

END RECORD;

-----------------------------------
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Example A complete code is presented below. It shows a RECORD type called pair,

with two elements, both of type NATURAL. Subsequently, a type called stack is con-

structed with four such pairs. Finally, a constant called matrix is declared as type stack,

hence with four rows with two natural values each. In the code proper (after BEGIN), a

4-bit flag is produced based on the comparison between the pair values, followed by a sum

between the two elements of the first pair. The expected results are therefore flag ¼ "0001"

and sum ¼ 3. Observe, in particular, how the individual elements of the record are

accessed.

1 --------------------------------------------------------------

2 ENTITY record_example IS

3 PORT (flag: OUT BIT_VECTOR(1 TO 4);

4 sum: OUT NATURAL RANGE 0 TO 15);

5 END ENTITY;

6 --------------------------------------------------------------

7 ARCHITECTURE record_example OF record_example IS

8 TYPE pair IS RECORD

9 a, b: NATURAL RANGE 0 TO 7;

10 END RECORD;

11 TYPE stack IS ARRAY (1 TO 4) OF pair;

12 CONSTANT matrix: stack := ((1, 2), (3, 4), (5, 6), (7, 0));

13 BEGIN

14 gen: FOR i IN 1 TO 4 GENERATE

15 flag(i) <= '1' WHEN matrix(i).a > matrix(i).b ELSE '0';

16 END GENERATE;

17 sum <= matrix(1).a + matrix(1).b;

18 END ARCHITECTURE;

19 --------------------------------------------------------------

3.15 Subtypes

SUBTYPE is a TYPE with a constraint. The main reason for using a subtype rather than

specifying a new type is that, though operations between di¤erent data types are not

allowed, they are allowed between a subtype and the type from which it was derived

(because they have the same base type).

SUBTYPE can be declared in the same places as TYPE, but it is usually done in the

declarative part of the ARCHITECTURE or in a separate PACKAGE. Examples of sub-

type declarations are depicted below.

Example NATURAL and POSITIVE are subtypes (subsets) of INTEGER (appendix

H), and so is my_integer.

Data Types 71



----------------------------------------------------

SUBTYPE NATURAL IS INTEGER RANGE 0 TO INTEGER'HIGH;

SUBTYPE POSITIVE IS INTEGER RANGE 1 TO INTEGER'HIGH;

SUBTYPE my_integer IS INTEGER RANGE -32 TO 32;

----------------------------------------------------

Example The new type below (my_logic) is a subtype of STD_LOGIC, with values '0', '1',

and 'Z'.

-----------------------------------------------------------

TYPE STD_LOGIC IS ('X', '0', '1', 'Z', 'W', 'L', 'H', '-');

SUBTYPE my_logic IS STD_LOGIC RANGE '0' TO 'Z';

-----------------------------------------------------------

Example The subtype my_color below, of color, contains only the values green and blue.

----------------------------------------------

TYPE color IS (red, green, blue, white);

SUBTYPE my_color IS color RANGE green TO blue;

----------------------------------------------

3.16 Specifying PORT Arrays

As we have seen, there are no predefined synthesizable data types of more than one di-

mension (except for STRING and INTEGER_VECTOR—see figure 3.6). However, in

the specifications of the input and output ports of a circuit (made in the ENTITY), a

1D� 1D or 2D array might be needed. Since TYPE declarations are not allowed before

the PORT field of the ENTITY, a typical solution consists of creating such user-defined

data types in a separate PACKAGE, because this can be visible to the whole code, includ-

ing the ENTITY (packages will be studied in chapter 8).

In VHDL 2008, generic type declarations are allowed (see section 2.6), easing the con-

struction of port arrays.

Example 3.8: Multiplexer with 1DD1D PORT

Say that we need to implement the multiplexer of figure 2.6, which contains 4 inputs of 8

bits each. Write a VHDL code to solve this problem with x (the set of all inputs) declared

as a 1D� 1D signal.

Solution x can be specified as a 4� 8 array with the base type BIT or STD_LOGIC.

Since this data type is needed right in the beginning of the code (in the PORT field of the

ENTITY), and there is no predefined data type of that sort, it must be created in a sepa-

rate PACKAGE. A corresponding VHDL code is shown below, where the package, called
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my_data_types, contains a TYPE called oneDoneD (line 3) that can be used later (in the

main code) to specify the mux input.

The main code is also shown below. For the package to be visible, a USE clause was

included in line 2. This new data type is then used in line 5 to specify x. As a result, the

code proper (in the ARCHITECTURE) needs just one line (line 12) to implement

the circuit.

1 -----Package:------------------------------------------------

2 PACKAGE my_data_types IS

3 TYPE oneDoneD IS ARRAY (0 TO 3) OF BIT_VECTOR(7 DOWNTO 0);

4 END my_data_types;

5 -------------------------------------------------------------

1 -----Main code: ---------------------

2 USE work.my_data_types.all;

3 -------------------------------------------------------------

4 ENTITY mux IS

5 PORT (x: IN oneDoneD;

6 sel: INTEGER RANGE 0 TO 3;

7 y: OUT BIT_VECTOR(7 DOWNTO 0));

8 END ENTITY;

9 -------------------------------------------------------------

10 ARCHITECTURE mux OF mux IS

11 BEGIN

12 y <= x(sel);

13 END ARCHITECTURE;

14 -------------------------------------------------------------

3.17 Qualified Types and Overloading

Qualified expressions are used to resolve ambiguous situations. To declare a qualified type

(hence resulting a qualified expression), the following syntax is employed (the use of paren-

theses is mandatory):

type_name'(expression);

Example Say that we want to perform the signed sum below, where a, b, and sum are all

signed values:

sum <= a + b + "1000";
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The problem is that there are two possible values for "1000": 8 if unsigned, �8 if signed.

This conflict is resolved by the qualified expression below, which determines that "1000"

is a signed value:

sum <= a + b + SIGNED'("1000");

A more common application for qualified types is to resolve ambiguous situations in

overloaded operations. An overloaded operator is one for which more than one in-out

option exists. This is indeed the case for most predefined operators (studied in the next

chapter). Take, for example, the addition ("þ") operator defined in the numeric_std pack-

age (appendix J), which has the following six versions (L and R are the left and right

operands):

FUNCTION "+" (L, R: UNSIGNED) RETURN UNSIGNED;

FUNCTION "+" (L, R: SIGNED) RETURN SIGNED;

FUNCTION "+" (L: UNSIGNED; R: NATURAL) RETURN UNSIGNED;

FUNCTION "+" (L: NATURAL; R: UNSIGNED) RETURN UNSIGNED;

FUNCTION "+" (L: INTEGER; R: SIGNED) RETURN SIGNED;

FUNCTION "+" (L: SIGNED; R: INTEGER) RETURN SIGNED;

This means that the inputs to the adder can be ‘‘unsignedþ unsigned’’, ‘‘signedþ
signed’’, and so on. Consequently, if the compiler is not able to determine the actual input

types, the sum cannot be computed. As an example, say that the intended type for a and

b is SIGNED, but it has not been explicitly declared. Then the qualified expression below

can be used, which automatically returns a signed value (note in the list above that

SIGNED is the only output option when both inputs are SIGNED):

sum <= SIGNED'(a) + SIGNED'(b);

A detailed example using type qualification will be presented in the section below. More

about overloaded operators will be seen in sections 4.3 and 9.6.

3.18 Type Conversion

Direct type conversion falls in one of the three categories described next, in which the fol-

lowing signals are employed in the examples:

------------------------------------------------

SIGNAL b: BIT;

SIGNAL bv: BIT_VECTOR(7 DOWNTO 0);

SIGNAL sl: STD_LOGIC;

SIGNAL slv1, slv2: STD_LOGIC_VECTOR(7 DOWNTO 0);

SIGNAL unsig: UNSIGNED(7 DOWNTO 0);

SIGNAL sig: SIGNED(7 DOWNTO 0);

------------------------------------------------
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Automatic Conversion

This is the case when dealing directly with the base type. For example, BIT and

BIT_VECTOR have the same base type (BIT), so a single element of BIT_VECTOR is

automatically compatible with an element of type BIT.

Examples

-------------

bv(0) <= b;

slv(7) <= sl;

-------------

Type Casting

UNSIGNED/SIGNED have the same base type (STD_LOGIC) and indexing (NATU-

RAL) as STD_LOGIC_VECTOR, so the following direct conversions using type casting

are allowed:

1 (UN)SIGNED(arg), where the argument is STD_LOGIC_VECTOR

1 STD_LOGIC_VECTOR(arg), where the argument is SIGNED or UNSIGNED.

Examples

--------------------------------

unsig <= UNSIGNED(slv);

sig <= SIGNED(slv);

slv1 <= STD_LOGIC_VECTOR(unsig);

slv2 <= STD_LOGIC_VECTOR(sig);

--------------------------------

Type-Conversion Functions

The last option for direct type conversion is with type-conversion functions, available in

the VHDL packages. The main cases are listed in figure 3.10.

Example 3.9: Recommended Signed Multiplier Implementation (for Integers)

The code below is for a signed multiplier with inputs a and b and output prod, all of type

STD_LOGIC_VECTOR (industry standard). Knowing that the type casting expression

STD_LOGIC_VECTOR(arg) just described can convert an argument of type SIGNED

to STD_LOGIC_VECTOR when the package numeric_std is used, or from SIGNED or

STD_LOGIC_VECTOR (hence overloaded ) to STD_LOGIC_VECTOR when the pack-

age std_logic_arith is employed, analyze all three architectures below (all legal) and make

proper comments. Assume that arch1 uses the package numeric_std, while arch2 and arch3

employ std_logic_arith. Which is the recommended approach?
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Figure 3.10
Main type-conversion options (type casting and type-conversion functions).
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1 ----------------------------------------------------

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 USE ieee.numeric_std.all; --for arch1

5 --USE ieee.std_logic_arith.all; --for arch2, arch3

6 ----------------------------------------------------

7 ENTITY signed_multiplier IS

8 PORT (a, b: IN STD_LOGIC_VECTOR(3 DOWNTO 0);

9 prod: OUT STD_LOGIC_VECTOR(7 DOWNTO 0));

10 END ENTITY;

11 ----------------------------------------------------

12 ARCHITECTURE arch1 OF signed_multiplier IS

13 SIGNAL a_sig, b_sig: SIGNED(3 DOWNTO 0);

14 BEGIN

15 a_sig <= SIGNED(a);

16 b_sig <= SIGNED(b);

17 prod <= STD_LOGIC_VECTOR(a_sig * b_sig);

18 END arch1;

19 ----------------------------------------------------

12 ARCHITECTURE arch2 OF signed_multiplier IS

13 SIGNAL a_sig, b_sig: SIGNED(3 DOWNTO 0);

14 SIGNAL prod_sig: SIGNED(7 DOWNTO 0);

15 BEGIN

16 a_sig <= SIGNED(a);

17 b_sig <= SIGNED(b);

18 prod_sig <= a_sig * b_sig;

19 prod <= STD_LOGIC_VECTOR(prod_sig);

20 END arch2;

21 ----------------------------------------------------

12 ARCHITECTURE arch3 OF signed_multiplier IS

13 SIGNAL a_sig, b_sig: SIGNED(3 DOWNTO 0);

14 BEGIN

15 a_sig <= SIGNED(a);

16 b_sig <= SIGNED(b);

17 prod <= STD_LOGIC_VECTOR(SIGNED'(a_sig * b_sig));

18 END arch3;

19 ----------------------------------------------------

Solution This design is called signed_multiplier (line 7). It has two 4-bit inputs (line 8) and

one 8-bit output (line 9). In all three architectures, the inputs are explicitly converted from

STD_LOGIC_VECTOR to SIGNED (using type casting), hence following the suggestion
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in the note at the end of example 3.4. In all three, type casting is also used to return the

result to the STD_LOGIC_VECTOR type.

In arch1, the product is converted to STD_LOGIC_VECTOR in line 17. Because this

architecture uses the numeric_std package, the argument can only be SIGNED (no over-

loading), so the type for the output of the expression "a_sig * b_sig", though not explicitly

declared, is automatically assumed to be SIGNED, causing the correct transformation to

occur.

In arch2, the std_logic_arith package is employed, so two types are accepted for the

argument in the type casting of line 19. Even though the inputs to the expression "a_sig *

b_sig" were declared as SIGNED, the type for the result was never explicitly declared, so

the compiler does not know if SIGNED or STD_LOGIC_VECTOR should be considered.

This problem is avoided by evaluating the expression in line 18, and then passing prod_sig

to the transformation in line 19 instead of passing the expression itself. Because prod_sig

was explicitly declared as SIGNED (line 14), the correct transformation again occurs.

Finally, note that arch3 is similar to arch1, but because it uses the std_logic_arith pack-

age, the ambiguous situation described above again occurs, which is resolved in this case

with a qualified expression. Note the expression "SIGNED'(a_sig * b_sig)" in line 17, which

determines that the result of "a_sig * b_sig" must be SIGNED.

Because arch1 follows the suggestion in the note at the end of example 3.4, and because

it employs the standardized package numeric_std, it is the recommended approach. Addi-

tionally, if one is not sure whether a certain type casting/conversion expression is not

overloaded, then the inclusion of an explicit computation before entering the conversion

expression (as in lines 18–19 of arch2) is advisable. In summary, use arch1 and do the fol-

lowing: delete line 17 and include lines 14, 18, and 19 or arch2.

3.19 Legal versus Illegal Assignments

Below is a summary of the most common mistakes made when assigning values to array

type objects. In short, most mistakes fall in one (or more) of the causes listed below. A sub-

sequent example illustrates the occurrence of such problems.

Cause 1: Type mismatch (both sides of the assignment must be of the same type or of the

same base type). Example: One side is BIT; the other is BOOLEAN.

Cause 2: Size mismatch (both sides of the assignment must have the same number of bits

or a predefined number of bits). Example: One side has 8 bits; the other has 4.

Cause 3: Invalid value or invalid representation. Examples: BIT does not accept the

value 'Z'; an integer cannot be represented with quotes; a bit vector requires double quotes.

Cause 4: Incorrect indexing (the order and the range limits must be obeyed). Examples:

The order (ascending or descending) of the index is reversed; the index values fall outside

the actual range.
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Cause 5: Incorrect assignment operator ("<¼" for signals, ":¼" for variables, constants,

and initial/default values).

Example 3.10: Legal versus Illegal Assignments

Consider the following type definitions and signal declarations:

-----------------------------------------------------------------------

TYPE row IS ARRAY (7 DOWNTO 0) OF STD_LOGIC; --1D

TYPE matrix1 IS ARRAY (0 TO 3) OF row; --1Dx1D

TYPE matrix2 IS ARRAY (0 TO 3) OF STD_LOGIC_VECTOR(3 DOWNTO 0); --1Dx1D

TYPE matrix3 IS ARRAY (0 TO 3, 7 DOWNTO 0) OF BIT; --2D

SIGNAL u: BIT;

SIGNAL v: STD_LOGIC;

SIGNAL w: row;

SIGNAL x: matrix1;

SIGNAL y: matrix2;

SIGNAL z: matrix3;

-----------------------------------------------------------------------

Explain why the assignments below are illegal (the answers are presented in the form of

comments).

---------------------------------------------------------------------

w(0) <= u; --Cause 1 (STD_LOGIC x BIT)

w <= y(0): --Cause 1 (different types) and cause 2 (8 bits x 4 bits)

x(1) <= "11ZZ"; --Cause 2 (8 bits x 4 bits)

z(0, 0) <= 'Z'; --Cause 3 (BIT can only be '0' or '1')

z(4)(0) <= '1'; --Cause 4 (wrong index and wrong use of parentheses)

z(0, 0) <= w(0); --Cause 1 (BIT x STD_LOGIC)

w(0 TO 7) <= "11110000"; --Cause 4 (incorrect index order)

y(1, 1) <= '0'; --Cause 4 (wrong use of parentheses)

y(1)(3 DOWNTO 2) <= "111"; --Cause 2 (2 bits x 3 bits)

v <= z(3, 7); --Cause 1 (STD_LOGIC x BIT)

u := '0'; --Cause 5 (should be "<=")

w(3 DOWNTO 0) <= y(0); --Cause 1 (row x STD_LOGIC_VECTOR);

--w(0) <= y(0)(0) would be fine (scalars, same base type, STD_LOGIC).

---------------------------------------------------------------------

3.20 ACCESS Types

All data types described so far have a well-defined, known structure. However, in models

for simulation with a high level of abstraction, the data structure might sometimes not

be known in advance or might not be static (varying size). To deal with such situations,
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VHDL provides a type class called access types, which acts as a pointer to the location in

memory where the data is located rather than representing the data directly (so unknown

and dynamic data structures can be used).

Access types can only be used in sequential code, and only variables can be of that type.

In the example below, an access type called int_pointer is created, which points to objects

of type INTEGER. Next, a variable of that type, called pointer, is declared.

TYPE int_pointer IS ACCESS INTEGER;

VARIABLE pointer: int_pointer := NULL;

--------------------------------------

pointer := NEW INTEGER'(16);

pointer.ALL := 0;

The variable pointer above points to integers stored in memory. However, its initial (de-

fault) value is NULL (that is, it points nowhere), which must be modified by the code. In

the third line, the predefined function NEW is called to provide memory space for 16 inte-

gers, returning an access value (a pointer) to the allocated memory, which is assigned to

pointer. Finally, in the fourth line, a value (0, in this example) is assigned to the object

pointed to by pointer.

This description is just to give an idea on how access types work. Even though very

complex models can be built with such a pointing mechanism, its regular use is for sim-

ulation, and only for very particular data structures, so a hardware designer might never

need it.

3.21 FILE Types

File types were briefly described in section 3.2. Because files are particularly important

for simulation, further details will be given in chapter 10, which deals specifically with

that subject.

3.22 VHDL 2008

With respect to the material covered in this chapter, the main additions specified in VHDL

2008 are those seen in sections 3.3, 3.5, 3.6, and 3.8. Just as a reminder, the following

occurred with the standardized VHDL packages:

1) The following packages were expanded:

Package standard (Appendix H)

Package std_logic_1164 (Part II of Appendix I)

Package numeric_bit
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Package numeric_std (Part II of Appendix J)

Package textio (Appendix M)

2) The following new packages were introduced for integer arithmetic:

Package numeric_bit_unsigned

Package numeric_std_unsigned

3) The following new packages for fixed- and floating-point arithmetic were introduced

(compatibility packages for VHDL 93 and 2002 are also available):

Package fixed_pkg

Package fixed_generic_pkg

Package float_pkg

Package float_generic_pkg

Package fixed_ float_types

3.23 Exercises

Note: For exercise solutions, please consult the book website.

Exercise 3.1: Possible Data Types C1

Say that s1 to s4 are four VHDL signals. Based on the assignments below, list which syn-

thesizable predefined data types each of these signals can belong to.

s1 <= '0';

s2 <= 'Z';

s3 <= TRUE;

s4 <= "01000";

Exercise 3.2: Possible Data Types C2

Say that s1 to s4 below are another four VHDL signals. Based on the assignments pre-

sented, list which synthesizable predefined data types each of them can belong to.

s1 <= "0100Z";

s2 <= ('0','1','0','0', '0');

s3 <= (OTHERS => 'Z');

s4 <= 255;

Exercise 3.3: Types and Operators in the Package standard

a) List the synthesizable types defined in the package standard (appendix H). For each of

them, list the supported operators (arithmetic, logical, comparison, shift, concatenation,

matching).
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b) Compare your results against those in section 3.5 and also in figure 3.6. Do they

match?

Exercise 3.4: Types and Operators in the Package std_logic_1164

a) List the types and subtypes defined in the package std_logic_1164 (appendix I). List

also the supported operators (for example, are there arithmetic operators?).

b) Compare your results against those in section 3.6 and also in figure 3.6. Do they match?

Exercise 3.5: Types and Operators in the Package numeric_std

a) List the types defined in the package numeric_std (appendix J). List also the supported

operators.

b) Compare your results against those in section 3.7 and also in figure 3.6. Do they match?

Exercise 3.6: Types and Operators in the Package std_logic_arith

a) List the types defined in the package std_logic_arith (appendix K). List also the sup-

ported operators.

b) Compare your results against those in section 3.7 and also in figure 3.6. Do they match?

c) Finally, compare the results from this exercise with those from exercise 3.5.

Exercise 3.7: Operators in the Package std_logic_signed

Are there any new types defined in this package (appendix L)? List all operators (arithme-

tic, logical, comparison, shift, concatenation) defined in it. For which type(s) are the oper-

ators intended?

Exercise 3.8: Integer versus Enumerated Types

List which among all predefined data types in sections 3.5 to 3.7 are integer-based and

which are enumerated.

Exercise 3.9: Possible Packages

Consider the two sections of code below:

------------------------------------------------

SIGNAL a, b, x: INTEGER RANGE 0 TO 255;

SIGNAL y: BIT;

x <= (a + b)/2;

y <= '1' WHEN a>=b ELSE '0';

------------------------------------------------

SIGNAL a, b, x, y: STD_LOGIC_VECTOR(7 DOWNTO 0);

x <= a + b;

y <= ('1' & a(6 DOWNTO 0)) XOR b;

------------------------------------------------
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a) Which (if any) packages need to be explicitly included in the library/package declara-

tions for the first code above to be valid?

b) Respond the same question, with respect to the second code above.

Exercise 3.10: Subtypes

Consider the predefined data types INTEGER and STD_LOGIC_VECTOR. Consider

also the two user-defined types below. For each, write a possible SUBTYPE.

TYPE oneDoneD IS ARRAY (POSITIVE RANGE <>) OF INTEGER;

TYPE twoD IS ARRAY (POSITIVE RANGE <>, 3 DOWNTO 0) OF BOOLEAN;

Exercise 3.11: Multibit Tri-state Bu¤er

What needs to be changed in the code of example 3.1 to produce an 8-bit tri-state bu¤er

instead of a single-bit bu¤er?

Exercise 3.12: Single Bit versus Bit Vector

Two VHDL codes are shown below. The code proper is actually the same (compare the

architectures). The only di¤erence between them is in the specifications of the entities.

Draw the circuits that you expect the compiler will infer from each of these codes, then

compile them and compare the results with your predictions.

-----------------------------------

ENTITY and_gate IS

PORT (a, b: IN BIT;

x: OUT BIT);

END ENTITY;

-----------------------------------

ARCHITECTURE circuit OF and_gate IS

BEGIN

x <= a AND b;

END ARCHITECTURE;

-----------------------------------

----------------------------------------

ENTITY and_gate IS

PORT (a, b: IN BIT_VECTOR(3 DOWNTO 0);

x: OUT BIT_VECTOR(3 DOWNTO 0));

END ENTITY;

----------------------------------------

ARCHITECTURE circuit OF and_gate IS

BEGIN

x <= a AND b;

END ARCHITECTURE;

----------------------------------------

Exercise 3.13: Hardware Optimization with ‘‘Don’t Care’’ Values

Compile the code of example 3.2 and check whether the ‘‘don’t care’’ values indeed help

reduce the amount of hardware needed to build the circuit.

Exercise 3.14: 1D Array Examples

Consider the 1D array shown in figure 3.2b. Write three examples of possible array types

that fall in that category (one example is already included below; complete the list with

type2 and type3).

Data Types 83



TYPE type1 IS ARRAY (15 DOWNTO 0) OF BIT;

Exercise 3.15: 1DD1D Array Examples

Consider the 1D� 1D array shown in figure 3.2c. Write three examples of possible array

types that fall in that category (one example is already included below; complete the list

with type2 and type3).

TYPE type1 IS ARRAY (NATURAL RANGE <>) OF BIT_VECTOR(7 DOWNTO 0);

Exercise 3.16: 2D Array Examples

Consider the 2D array shown in figure 3.2d. Write three examples of possible array types

that fall in that category (one example is already included below; complete the list with

type2 and type3).

TYPE type1 IS ARRAY (NATURAL RANGE <>, NATURAL RANGE <>) OF STD_LOGIC;

Exercise 3.17: 1DD1DD1D Array Examples

Consider the 1D� 1D� 1D array shown in figure 3.2e. Write three examples of possible

array types that fall in that category (one example is already included below; complete the

list with type2 and type3).

TYPE matrix IS ARRAY (1 TO 4) OF BIT_VECTOR(7 DOWNTO 0);

TYPE type1 IS ARRAY (NATURAL RANGE <>) OF matrix;

Exercise 3.18: Resetting Arrays

Consider the data arrays of figure 3.2. Write a section of VHDL code that zeros (fills with

'0's):

a) The array of figure 3.2c;

b) The array of figure 3.2d;

c) The array of figure 3.2e.

Exercise 3.19: Type Conversion by Type Casting

Write a line of VHDL code that makes a conversion using type casting for each type con-

version listed below. In each case, indicate the package(s) (if any) that must be declared in

the code for the conversion to be valid.

a) From STD_LOGIC_VECTOR to UNSIGNED.

b) From SIGNED to STD_LOGIC_VECTOR.
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Exercise 3.20: Type Conversion by Specific Functions

Write a line of VHDL code that converts the types below using type-conversion functions.

In each case, write as many options as possible, always indicating the package of origin of

the function being used.

a) From INTEGER to STD_LOGIC_VECTOR;

b) From BIT_VECTOR to STD_LOGIC_VECTOR;

c) From STD_LOGIC_VECTOR to UNSIGNED;

d) From STD_LOGIC_VECTOR to INTEGER;

e) From SIGNED to STD_LOGIC_VECTOR.

Exercise 3.21: Overloaded Operator and Qualified Expression

Below is a code for a signed adder, whose ports are all of type STD_LOGIC_VECTOR

(industry standard). Analyze it and answer the questions below. (Suggestion: see example

3.9.)

a) This code uses the packages std_logic_1164 (line 3) and std_logic_arith (line 4). Are

both necessary? Why?

b) Would the package numeric_std be useful here? Under which conditions could it be

used?

c) There are type conversions in some lines of the code below. Which lines are they?

What kinds of conversions are they (automatic, type casting, or with a type-conversion

function)?

d) Do you expect any problems in the type conversion of line 16? Why?

e) Present a solution to remedy the problem in (d) by including additional computing steps

in the code.

f ) Present another solution for the problem in (d), this time by replacing one of the de-

clared packages.

g) Present one more solution for that problem, now using a ‘‘qualified’’ expression.

h) Finally, in your opinion, what is the recommended code for such a signed adder?

1 ------------------------------------------------

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 USE ieee.std_logic_arith.all;

5 ------------------------------------------------

6 ENTITY signed_adder IS
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7 PORT (a, b: IN STD_LOGIC_VECTOR(3 DOWNTO 0);

8 sum: OUT STD_LOGIC_VECTOR(3 DOWNTO 0));

9 END ENTITY;

10 ------------------------------------------------

11 ARCHITECTURE arch OF signed_adder IS

12 SIGNAL a_sig, b_sig: SIGNED(3 DOWNTO 0);

13 BEGIN

14 a_sig <= SIGNED(a);

15 b_sig <= SIGNED(b);

16 sum <= STD_LOGIC_VECTOR(a_sig + b_sig);

17 END ARCHITECTURE;

18 ------------------------------------------------

Exercise 3.22: Array Slices

Say that figures 3.2b to 3.2d represent the signals s1(3:0), s2(1:3)(3:0), and s3(1:3, 3:0),

respectively. Write the values corresponding to each slice below (the first one was already

answered).

a) s1(3 DOWNTO 1): "010"

b) s1(2):

c) s1:

d) s2(3)(1 DOWNTO 0):

e) s2(1):

f ) s3(2, 2):

The signals and variables below are for exercises 3.23 to 3.27.

----------------------------------------

SIGNAL s1: BIT;

SIGNAL s2: BIT_VECTOR(7 DOWNTO 0);

SIGNAL s3: STD_LOGIC;

SIGNAL s4: STD_LOGIC_VECTOR(7 DOWNTO 0);

SIGNAL s5: INTEGER RANGE -35 TO 35;

VARIABLE v1: BIT_VECTOR(7 DOWNTO 0);

VARIABLE v2: INTEGER RANGE -35 TO 35;

----------------------------------------

Exercise 3.23: Array Dimensionality

What is the dimensionality (scalar, 1D, 1D� 1D, 2D, etc.) of each signal and variable

above based on the number of bits (figure 3.2)?
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Exercise 3.24: Legal Assignments C1

Confirm that the statements below are legal (see main causes of mistakes in section 3.19).

a) s2(7) <= s1;

b) s3 <= s4(0);

c) s2 <= v1 XOR "10001000";

d) s5 <= v2/2;

Exercise 3.25: Legal Assignments C2

Confirm that the statements below are legal (see main causes of mistakes in section 3.19).

a) s3 <= 'Z';

b) s2 <= (OTHERS=>'0');

c) v2 := 35;

d) v1 := "11110000";

Exercise 3.26: Illegal Assignments C1

Explain why the assignments below are illegal (see main causes of mistakes in section

3.19).

a) s1(0) <= s2(0);

b) s3 <= s1 OR s2(2);

c) s2 <= (8=>'0', OTHERS=>'Z');

d) v2 <= -35;

Exercise 3.27: Illegal Assignments C2

Explain why the assignments below are illegal (see main causes of mistakes in section

3.19).

a) s3 := 'Z';

b) s2(7 DOWNTO 5) <= v1(3 DONWTO 0) OR "1000";

c) v1(7) <= s1 AND s2(0);

d) s4(0) <= s2(0);

The signals and their types below are for exercises 3.28 to 3.30.

s1 –> TYPE type1 IS ARRAY (7 DOWNTO 0) OF BOOLEAN;

s2 –> TYPE type2 IS ARRAY (7 DOWNTO 0) OF BIT;

s3 –> TYPE type3 IS ARRAY (1 TO 4) OF INTEGER RANGE -128 TO 127;
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s4 –> TYPE type4 IS ARRAY (NATURAL RANGE <>) OF BIT_VECTOR(7 DOWNTO 0);

s5 –> TYPE type5 IS ARRAY (NATURAL RANGE <>, NATURAL RANGE <>) OF STD_LOGIC;

s6 –> TYPE type6 IS ARRAY (1 TO 4) OF type4;

s7 –> TYPE type7 IS ARRAY (1 TO 4, 1 TO 4, 1 TO 4) OF STD_LOGIC;

Exercise 3.28: Array Dimensionality C2

a) What is the dimensionality of each type above (in term of the number of bits)?

b) To which case in figure 3.2 each type corresponds?

Exercise 3.29: Legal versus Illegal Array Slices

For each slice below, respond: to which case in figure 3.7 does it correspond? (Note that

not all are represented in figure 3.7, so make a sketch for the missing ones.) Why are the

first ten supported while the last five might not be?

a) s1(1)

b) s2(6 DOWNTO 1)

c) s3(4)

d) s4(0)

e) s4(1)(5 DOWNTO 3)

f ) s4(2)(1)

g) s5(0,0)

h) s6(1)(0)

i) s6(2)(0)(7 DOWNTO 5)

j) s6(3)(0)(7)

k) s4(0 TO 1)(7)

l) s5(1 TO 3, 3)

m) s5(1 TO 2, 1 TO 2)

n) s5(0, 2 TO 3)

o) s5 (0 TO 1, 0 TO 1, 0 TO 1)

Exercise 3.30: Illegal Assignments C3

Explain why the assignments below are illegal (see main causes of mistakes in section

3.19).

a) s4(0)(0) <= s7(1,1,1);

b) s6(1) <= s4(1);

c) s1 <= "00000000";
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d) s7(0)(0)(0) <= 'Z';

e) s2(7 DOWNTO 5) <= s1(2 DOWNTO 0);

f ) s4(1) <= (OTHERS => 'Z');

g) s6(1,1) <= s2;

h) s2 <= s3(1) AND s4(1);

i) s1(0 TO 1) <= (FALSE, FALSE);

j) s3(1) <= (3, 35, -8, 97);
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4 Operators and Attributes

4.1 Introduction

The purpose of this chapter, along with the preceding chapters, is to lay the foundations

of VHDL, so in the next chapter we can start dealing with actual circuit designs. This

sequence is very important because it is impossible—or unproductive, at least—to write

code e‰ciently without knowing data types, operators, and attributes well.

The study of operators includes:

1 All six predefined categories; namely, logical, arithmetic, comparison, shift, concatenation,

and matching operators.

1 User-defined and overloaded operators.

The study of attributes includes:

1 All four predefined categories; namely, attributes of scalar types, of array types, of sig-

nals, and of named entities.

1 User-defined and synthesis attributes.

Additionally, GROUP and ALIAS declarations are described.

4.2 Predefined Operators

VHDL provides several kinds of predefined operators:

1 Assignment operators

1 Logical operators

1 Arithmetic operators

1 Comparison (relational) operators

1 Shift operators

1 Concatenation operator



1 Matching comparison operators

1 Other operators

Each of these categories is described below.

Assignment Operators

Assignment operators are used to assign values to VHDL objects (CONSTANT, SIG-

NAL, and VARIABLE). They are:

1 Operator "<¼": Used to assign a value to a SIGNAL.

1 Operator ":¼": Used to assign a value to a VARIABLE or CONSTANT. Used also for

establishing default (initial) values for signals and variables. Because a GENERIC decla-

ration (section 2.6) is also a constant, this operator is used there too.

1 Operator "¼>": Used to assign values to array elements, either individually or with the

keyword OTHERS.

Example Three object declarations ðx; y; zÞ are shown below, followed by several assign-

ments. Comments follow each assignment.

-------------------------------------------------------

CONSTANT x: STD_LOGIC_VECTOR(7 DOWNTO 0) := "00010001";

SIGNAL y: STD_LOGIC_VECTOR(1 TO 4);

VARIABLE z: BIT_VECTOR(3 DOWNTO 0);

y(4) <= '1'; --'1' assigned to a signal using "<="

y <= "0000"; --"0000" assigned to a signal with "<="

y <= (OTHERS=>'0') --'0' assigned to all elements of y

y <= x(3 DOWNTO 0); --part of x assigned to y

z := "1000"; --"1000" assigned to a variable with ":="

z := (0=>'1', OTHERS=>'0'); --z="0001"

-------------------------------------------------------

Logical Operators

Logical operators are used to perform logical operations. They are:

1 NOT

1 AND

1 NAND

1 OR

1 NOR

1 XOR

1 XNOR
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The only operator with precedence over the others is NOT. The synthesizable pre-

defined data types that support logical operators are BIT, BIT_VECTOR, BOOLEAN,

STD_(U)LOGIC, and STD_(U)LOGIC_VECTOR. As seen in section 3.7, (UN)SIGNED

can also be included in this list if the chosen definition package is numeric_std.

In VHDL 2008, the following new types with support for logical operations were

included: BOOLEAN_VECTOR, UFIXED, SFIXED, and FLOAT.

Examples

------------------------------

x <= NOT a AND b; --x=a'.b

y <= NOT (a AND b); --x=(a.b)'

z <= a NAND b; --x=(a.b)'

------------------------------

Arithmetic Operators

The arithmetic operators are:

1 Addition (þ)

1 Subtraction (�)

1 Multiplication (*)

1 Division (/)

1 Exponentiation (**)

1 Absolute value (ABS)

1 Remainder (REM)

1 Modulo (MOD)

As defined in the original packages (see chapter 3 or appendices), the synthesizable

predefined data types that support these functions are INTEGER, NATURAL, and

POSITIVE. If one of the packages for (un)signed types (numeric_std or std_logic_arith)

is declared in the code, then (UN)SIGNED can also be used. If the package

std_logic_unsigned, std_logic_signed, or numeric_std_unsigned is also declared, then

STD_LOGIC_VECTOR can be employed as well.

In VHDL 2008, the following new types with support for arithmetic operations were

included: UFIXED, SFIXED, and FLOAT.

There are no synthesis restrictions regarding addition, subtraction, multiplication, or

division with integers. For exponentiation, expressions with static exponent are supported;

if the exponent is nonstatic, then the base might be required to be static or even a power of

2 (shift operation). The other three operators (ABS, REM, MOD) are also synthesizable

without restrictions for integers. The least obvious operators are explained below.
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1 x=y: Returns 0 when jxj < jyj,G1 when jyja jxj < 2jyj,G2 when 2jyja jxj < 3jyj, etc.,
with the sign obviously negative when the signs of x and y are di¤erent.

Examples 3=5 ¼ 0, �3=5 ¼ 0, 9=5 ¼ 1, �9=5 ¼ �1, 10=5 ¼ 2, �10=5 ¼ �2, 14=5 ¼ 2,

�14=5 ¼ �2.

1 ABS x: Returns the absolute value of x.

Examples ABS 5 ¼ 5, ABS �3 ¼ 3.

1 x REM y: Returns the remainder of x=y, with the sign of x. Its equation is x REM

y ¼ x� ðx=yÞ�y, where both operands are integers.

Examples 6 REM 3 ¼ 0, 7 REM 3 ¼ 1, 7 REM �3 ¼ 1, �7 REM 3 ¼ �1, �7 REM

�3 ¼ �1.

1 x MOD y: Returns the remainder of x=y, with the sign of y. Its equation is x MOD

y ¼ x REM yþ a�y, where a ¼ 1 when the signs of x and y are di¤erent or a ¼ 0 other-

wise. Both operands are integers.

Examples 7 MOD 3 ¼ 1, 7 MOD �3 ¼ �2, �7 MOD 3 ¼ 2, �7 MOD �3 ¼ �1.

Comparison Operators

Also called relational operators, the comparison operators are:

1 Equal to (¼)

1 Not equal to (/¼)

1 Less than (<)

1 Greater than (>)

1 Less than or equal to (<¼)

1 Greater than or equal to (>¼)

As defined in the original packages (see chapter 3 or appendices), the synthesizable

predefined data types that support comparison operators are BIT, BIT_VECTOR, BOO-

LEAN, INTEGER, NATURAL, POSITIVE, CHARACTER, and STRING. If one of

the packages for (un)signed types (numeric_std or std_logic_arith) is declared in the code,

then (UN)SIGNED can also be used. If the package std_logic_unsigned, std_logic_signed,

or numeric_std_unsigned is also declared, then STD_LOGIC_VECTOR can be employed

as well.

In VHDL 2008, the following new types with support for comparison operations

were included: BOOLEAN_VECTOR, INTEGER_VECTOR, UFIXED, SFIXED, and

FLOAT.
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Shift Operators

Introduced in VHDL93, shift operators are used for shifting data vectors. They are:

1 Shift left logic (SLL): Positions on the right are filled with '0's.

1 Shift right logic (SRL): Positions on the left are filled with '0's.

1 Shift left arithmetic (SLA): Rightmost bit is replicated on the right.

1 Shift right arithmetic (SRA): Leftmost bit is replicated on the left.

1 Rotate left (ROL): Circular shift to the left.

1 Rotate right (ROR): Circular shift to the right.

As defined in the original packages (see chapter 3 or appendices), the only synthesiz-

able data type that supports shift operators is BIT_VECTOR. If one of the packages

for (un)signed types (numeric_std or std_logic_arith) is declared in the code, then

(UN)SIGNED can also be used (though the latter package contains very few of such

operators—see appendix K). If the package std_logic_unsigned, std_logic_signed, or

numeric_std_unsigned is also declared, then STD_LOGIC_VECTOR can be employed as

well (also a very reduced set).

In VHDL 2008, the following new types with support for shift operations were included:

BOOLEAN_VECTOR, UFIXED, and SFIXED.

The syntax for shift operators is hleft_operandi hshift_operationi hright_operandi.
The left operand must be of one of the types mentioned above, while the right operand is

always an INTEGER (þ or � in front of it is allowed). However, a recommended (more

universal) approach for shifting data is with the concatenation operator (included in the

example below).

Examples Say that x is a BIT_VECTOR signal with value x ¼ "01001". Then the values

produced by the assignments below are those indicated in the comments (equivalent

expressions, using the concatenation operator, are shown between parentheses).

-----------------------------------------------------------------------

y <= x SLL 2; --y<="00100" (y <= x(2 DOWNTO 0) & "00";)

y <= x SLA 2; --y<="00111" (y <= x(2 DOWNTO 0) & x(0) & x(0);)

y <= x SRL 3; --y<="00001" (y <= "000" & x(4 DOWNTO 3);)

y <= x SRA 3; --y<="00001" (y <= x(4) & x(4) & x(4) & x(4 DOWNTO 3);)

y <= x ROL 2; --y<="00101" (y <= x(2 DOWNTO 0) & x(4 DOWNTO 3);)

y <= x SRL -2; --same as "x SLL 2"

-----------------------------------------------------------------------

Concatenation Operator

Used for grouping objects and values (useful also for shifting data, as shown in the exam-

ple above), the concatenation operator’s representation is &.
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The synthesizable predefined data types for which the concatenation operator is in-

tended are BIT_VECTOR, BOOLEAN_VECTOR (VHDL 2008), INTEGER_VECTOR

(VHDL 2008), STD_(U)LOGIC_VECTOR, (UN)SIGNED, and STRING. Recall that

the keyword OTHERS (seen in section 3.2) can also be helpful to make array assignments.

Example Four VHDL objects ðv; x; y; zÞ are declared below, then several assignments are

made utilizing the concatenation operator (&). The use of parentheses is optional.

-----------------------------------------------------------------------

CONSTANT v: BIT :='1';

CONSTANT x: STD_LOGIC :='Z';

SIGNAL y: BIT_VECTOR(1 TO 4);

SIGNAL z: STD_LOGIC_VECTOR(7 DOWNTO 0);

y <= (v & "000"); --result: "1000"

y <= v & "000"; --same as above (parentheses are optional)

z <= (x & x & "11111" & x); --result: "ZZ11111Z"

z <= ('0' & "011111" & x); --result: "0011111Z"

-----------------------------------------------------------------------

The use of OTHERS and comma to make individual-bit assignments and concatenation

is illustrated next.

Example Consider the same constants and signals above. Below is a series of individual-

bit assignments using the keyword OTHERS and comma instead of the regular concatena-

tion operator. Observe the nominal and positional mapping options. Here, parentheses are

required.

-------------------------------------------------------------------------

y <= (OTHERS=>'0'); --result: "0000"

y <= (4=>'1', OTHERS=>'0'); --result: "0001" (nominal mapping)

y <= ('1', OTHERS=>'0'); --result: "1000" (positional mapping)

y <= (4=>'1', 2=>v, OTHERS=>'0'); --result: "0101" (nominal mapping)

z <= (OTHERS=>'Z'); --result: "ZZZZZZZZ"

z <= (4=>'1', OTHERS=>'0'); --result: "00010000" (nominal mapping)

z <= (4=>x, OTHERS=>'0'); --result: "000Z0000" (nominal mapping)

z <= ('1', OTHERS=>'0'); --result: "10000000" (posit. mapping)

-------------------------------------------------------------------------

Matching Comparison Operators

1 Matching equality operator (?¼)

1 Matching inequality operator (?/¼)

1 Matching less than operator (?<)

1 Matching greater than operator (?>)
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1 Matching less than or equal to operator (?<¼)

1 Matching greater than or equal to operator (?>¼)

These operators were introduced in VHDL 2008. They include the types BIT (whole

set), BIT_VECTOR (only equality and inequality), STD_(U)LOGIC (whole set—see

part II of the package std_logic_1164 in appendix I), STD_(U)LOGIC_VECTOR (whole

set—see the new package numeric_std_unsigned in appendix N), and (UN)SIGNED

(whole set—see part II of the package numeric_std in appendix J). They also include the

new types UFIXED and SFIXED.

The purpose of this operator is to allow the comparison of logic values instead of enu-

merated symbols in STD_ULOGIC based data. For example, "IF 'H' ¼ '1' . . ." returns

FALSE because these symbols are di¤erent, while "IF 'H' ?¼ '1' . . ." returns '1' because

both 'H' and '1' are interpreted as logic value '1'. A similar reasoning is valid for 'L' and

'0'. When 'X', 'Z', or 'W' are involved in the comparison, this operator (?¼) returns 'X',

and so on. In the case of BIT, it simply returns '1' or '0' instead of TRUE or FALSE.

Other Operators

Other operators introduced in VHDL 2008 are:

1 MINIMUM and MAXIMUM operators: Return the smallest or largest value in the

given set. For example, "MAXIMUM(0, 55, 23)" returns 55. These operators were defined

for all VHDL types.

1 Condition operator ("??"): Converts a BIT or STD_(U)LOGIC value into a BOOLEAN

value. For example, "?? a AND b" returns TRUE when a AND b ¼ '1' or FALSE

otherwise.

1 TO_STRING: Converts a value of type BIT, BIT_VECTOR, STD_LOGIC_VECTOR,

and so on into STRING. For the types BIT_VECTOR and STD_LOGIC_VECTOR,

there are also the options TO_OSTRING and TO_HSTRING, which produce an octal

or hexadecimal string, respectively. This operator is useful, for example, when reporting

synthesizer or simulator information, because the ASSERT statement can only report

data of type STRING (this will be studied in section 9.2).

Examples

TO_STRING(58) ¼ "58"

TO_STRING(B"1110000) ¼ "111100000"

TO_HSTRING(B"11110000) ¼ "F0"

Operators Summary

Figure 4.1 summarizes the predefined operators and their respective synthesizable pre-

defined data types.
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4.3 Overloaded and User-Defined Operators

Overloaded operators were already described in section 3.16. The present section is just to

reinforce the idea that an operator can also be (further) overloaded by the user.

Let us consider again the addition operator ("þ"), for which numerous options already

exist in the VHDL packages. However, the addition of a single BIT to an INTEGER is

not included among them. Hence we can further overload that operator by adding such

an option, which can be accomplished with the FUNCTION below (operators are indeed

just names of functions or procedures; specific details on how to construct them will be

seen in chapter 9):

---------------------------------------------------

FUNCTION "+" (a: INTEGER, b: BIT) RETURN INTEGER IS

BEGIN

IF (b='1') THEN RETURN a+1;

ELSE RETURN a;

END IF;

END "+";

---------------------------------------------------

Figure 4.1
Predefined operators and corresponding synthesizable predefined data types (the gray area contains the operators
introduced in VHDL 2008).
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An expression using this new version of "þ" is shown below.

---------------------------------

SIGNAL a, sum: INTEGER RANGE ...;

SIGNAL b: BIT;

sum <= a + b;

---------------------------------

Recall also from section 3.16 that ambiguous situations involving overloaded operators

can be resolved with qualified expressions (see examples in that section).

4.4 Predefined Attributes

Predefined attributes retrieve information about named entities (not to be confused with

ENTITY). The IEEE 1076-2008 Standard VHDL Language Reference Manual defines

the following four categories of predefined attributes:

1 predefined attributes of scalar types (numeric, enumerated, physical)

1 predefined attributes of array types

1 predefined attributes of signals

1 predefined attributes of named entities.

The complete lists in all categories are presented below. It is important to mention that,

of all these attributes, 'EVENT (read as ‘‘tick’’ event) is by far the most frequently used.

Another note is that some of these predefined attributes might not be supported by syn-

thesis tools.

Predefined Attributes of Scalar Types

This attribute provides information regarding a scalar type (numeric, enumerated, or

physical type; recall that only the first two are synthesizable; see also the classification

according to the number of values in section 3.4). The scalar type is represented by T in

figure 4.2.

Example Consider the following two scalar types:

----------------------------------

TYPE my_integer IS RANGE 0 TO 255;

TYPE state IS (a, b, c);

----------------------------------

The values of several predefined attributes for the integer type my_integer are shown

next. Observe in the comments (and check in figure 4.2) the types required for the output

signals ðx; yÞ.
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------------------------------------------------------------------------

x1 <= my_integer'LEFT; --result=0 (type of x1 must be my_integer)

x2 <= my_integer'RIGHT; --result=255 (type of x2 must be my_integer)

x3 <= my_integer'LOW; --result=0 (type of x3 must be my_integer)

x4 <= my_integer'HIGH; --result=255 (type of x4 must be my_integer)

y <= my_integer'ASCENDING; --result=TRUE (type of y must be BOOLEAN)

------------------------------------------------------------------------

The values of several predefined attributes for the enumerated type state are also shown

below. Observe in the comments (and check in the table above) the types required for the

output signals ðx; y; zÞ. It was considered that the encoding is sequential; if one-hot had

been chosen instead, the encoding would be a ¼ "001", b ¼ "010", c ¼ "100".

-----------------------------------------------------------------

x1 <= state'LEFT; --result=a (="00") (type of x1 must be state)

x2 <= state'RIGHT; --result=c (="10") (type of x2 must be state)

x3 <= state'LOW; --result=a (="00") (type of x3 must be state)

x4 <= state'HIGH; --result=c (="10") (type of x4 must be state)

y <= state'POS(b); --result=1 (="01") (type of y is INTEGER)

z <= state'VAL(1); --result=b (="01") (type of z must be state)

-----------------------------------------------------------------

Name Result TYPE Result

T'LEFT Same as T Leftmost value of T

T'RIGHT Same as T Rightmost value of T

T'LOW Same as T Lower bound of T

T'HIGH Same as T Upper bound of T

T'ASCENDING BOOLEAN TRUE if range of T is ascending, FALSE otherwise

T'IMAGE(X) STRING String representing the value X in T

T'VALUE(X) Base type of T Value of T whose string representation is X

T'POS(X) INTEGER Position number of the value X in T

T'VAL(X) Base type of T Value whose position number in T is X

T'SUCC(X) Base type of T Value whose position number in T is Xþ 1

T'PRED(X) Base type of T Value whose position number in T is X� 1

T'LEFTOF(X) Base type of T Value on the left of the position number X in T

T'RIGHTOF(X) Base type of T Value on the right of the position number X in T

T'BASE Any (sub)type Base type of T

O'SUBTYPE Any subtype Constrained subtype of O with constraint information

Ascending range: T'LEFT ¼ T'LOW, T'RIGHT ¼ T'HIGH
Descending range: T'LEFT ¼ T'HIGH, T'RIGHT ¼ T'LOW

Figure 4.2
Attributes of scalar types.
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Example 4.1: Using Predefined Scalar Attributes

The code below contains an enumerated type called color. Several assignments to y are

made in lines 12–16. Determine the values of x that produce y ¼ '1'. (The solutions are

included as comments.)

1 -------------------------------------------------------------------

2 ENTITY example IS

3 PORT (x: IN INTEGER RANGE 0 TO 3;

4 y1, y2, y3, y4, y5: OUT BIT);

5 END example;

6 -------------------------------------------------------------------

7 ARCHITECTURE example OF example IS

8 TYPE color IS (red, green, blue); --assume seq. encoding

9 SIGNAL z: color;

10 BEGIN

11 z <= red WHEN x=0 ELSE green WHEN x=1 ELSE blue;

12 y1<='1' WHEN color'VAL(x)=blue ELSE '0'; --y1='1' for x=2

13 y2<='1' WHEN color'POS(blue)=x ELSE '0'; --y2='1' for x=2

14 y3<='1' WHEN color'RIGHTOF(z)=blue ELSE '0'; --y3='1' for x=1

15 y4<='1' WHEN color'PRED(z)=green ELSE '0'; --y4='1' for x=2,3

16 y5<='1' WHEN color'PRED(green)=z ELSE '0'; --y5='1' for x=0

17 END example;

18 -------------------------------------------------------------------

Predefined Attributes of Array Types

In figure 4.3, A represents an array type.

Name Result TYPE Result

A'LEFT [(N)] Type of the Nth
index range of A

Left bound of the Nth index range of A

A'RIGHT [(N)] Same as above Right bound of the Nth index range of A

A'LOW [(N)] Same as above Lower bound of the Nth index range of A

A'HIGH [(N)] Same as above Upper bound of the Nth index range of A

A'RANGE [(N)] Same as above Range of the Nth index range of A

A'REVERSE_RANGE [(N)] Same as above Reverse range of the Nth index range of A

A'LENGTH [(N)] INTEGER Number of values in the Nth index range

A'ASCENDING [(N)] BOOLEAN TRUE if Nth index range of A is ascending,
FALSE otherwise

A'ELEMENT Element subtype of A Element subtype of A with constraint
information

Figure 4.3
Attributes of array types.
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Example Consider the array type matrix below (note that the keyword ARRAY is

employed in its definition) and the signal test declared subsequently.

-------------------------------------------------

TYPE matrix IS ARRAY (1 TO 4, 7 DOWNTO 0) OF BIT;

SIGNAL test: matrix;

-------------------------------------------------

The values returned for several of the predefined attributes are shown below (the same

information would be returned for test).

--------------------------------------------------------------------------

x1 <= matrix'LEFT(1); --result=1 (type of x1 must be INTEGER or eq.)

x2 <= matrix'LEFT(2); --result=7 (type of x2 must be INTEGER or eq.)

x3 <= matrix'RIGHT(1); --result=4 (type of x3 must be INTEGER or eq.)

x4 <= matrix'RIGHT(2); --result=0 (type of x4 must be INTEGER or eq.)

x5 <= matrix'LENGTH(2); --result=8 (type of x5 must be INTEGER or eq.)

x6 <= matrix'ASCENDING(1); --result=TRUE (type of x6 must be BOOLEAN)

matrix'RANGE(1) -> returns 1 TO 4

matrix'REVERSE_RANGE(2) -> returns 0 TO 7

matrix'ELEMENT -> returns BIT

--------------------------------------------------------------------------

Example Consider the signal x declared below. All five LOOP statements that follow are

synthesizable and equivalent.

---------------------------------------

SIGNAL x: STD_LOGIC_VECTOR(7 DOWNTO 0);

FOR i IN 7 DOWNTO 0 LOOP ...

FOR i IN x'RANGE LOOP ...

FOR i IN x'HIGH DOWNTO x'LOW LOOP ...

FOR i IN x'LEFT DOWNTO x'RIGHT LOOP ...

FOR i IN x'LENGTH-1 DOWNTO 0 LOOP ...

---------------------------------------

Predefined Attributes of Signals

In figure 4.4, S represents a signal.

The di¤erence between an event and a transaction is that an event is a signal edge (that

is, an upward or downward transition), which might cause another signal to change. If that

is the case, then a transaction is scheduled for that signal, which will occur some time later

(at the end of the present process cycle).

As shown in figure 4.4, the time interval (t), which appears in the first three attributes,

is optional. Its default value is zero. S'STABLE(0 ns) (¼ S'STABLE) is then equivalent
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to S'EVENT. The use of these attributes and also of S'LAST_VALUE is illustrated in

example 4.2.

Example 4.2: DFF with Several Event-Based Attributes

The code below produces a D-type flip-flop (DFF), triggered at the positive edge of the

clock. To detect a positive clock edge, three equivalent synthesizable alternatives are

shown in lines 13–15.

1 -----------------------------------------------------

2 ENTITY flipflop IS

3 PORT (d, clk, rst: IN BIT;

4 q: OUT BIT);

5 END flipflop;

6 -----------------------------------------------------

7 ARCHITECTURE example OF flipflop IS

8 BEGIN

9 PROCESS(clk, rst)

10 BEGIN

11 IF (rst='1') THEN

12 q <= '0';

Figure 4.4
Attributes of signals.

Name Result TYPE Result

S'DELAYED [(t)] Base type of S Signal equivalent to signal S delayed t units of time

S'STABLE [(t)] BOOLEAN TRUE when no event has occurred on signal S for t
units of time, FALSE otherwise

S'QUIET [(t)] BOOLEAN TRUE when no transaction has been scheduled for
signal S for t units of time, FALSE otherwise

S'TRANSACTION BIT A bit that toggles in each simulation cycle in which
S becomes active (transaction scheduled)

S'EVENT BOOLEAN TRUE if an event has just occurred on S, FALSE
otherwise

S'ACTIVE BOOLEAN TRUE if a transaction has just been scheduled for S,
FALSE otherwise

S'LAST_EVENT TIME Amount of time since last event occurred on signal S

S'LAST_ACTIVE TIME Amount of time since last time signal S was active
(transaction scheduled)

S'LAST_VALUE Base type of S Value of signal S previous to the last event (if no
event occurred, returns current value of S)

S'DRIVING BOOLEAN TRUE if process is driving S, FALSE if S is
disconnected from the driver.

S'DRIVING_VALUE Base type of S Value of the driver for S in the current process
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13 ELSIF (clk'EVENT AND clk='1') THEN

14 --ELSIF (NOT clk'STABLE AND clk='1') THEN

15 --ELSIF (clk'EVENT AND clk'LAST_VALUE='0') THEN

16 q <= d;

17 END IF;

18 END PROCESS;

19 END example;

20 -----------------------------------------------------

Predefined Attributes of Named Entities

The last three predefined attributes are used to produce a string related to the name of the

declared entity (the entity is represented by E in figure 4.5).

4.5 User-Defined Attributes

Besides the predefined attributes (seen in the previous section), VHDL also allows users to

create their own attributes. Such attributes are used to decorate named entities (not to be

confused with ENTITY) with additional information/values.

To create a user-defined attribute, a declaration and a specification are needed, as shown

in the simplified syntaxes below.

Attribute declaration:

ATTRIBUTE attribute_name: attribute_type;

Attribute specification:

ATTRIBUTE attr_name OF entity_tag [signature]: entity_class IS value;

Figure 4.5
String-related attributes.

Name Result TYPE Result

E'SIMPLE_NAME STRING String representing the simple name, character literal, or
operator symbol of the named entity E

E'INSTANCE_NAME STRING String describing the hierarchical path from the top entity
or architecture down to the named entity E, including the
names of instantiated design entities

E'PATH_NAME STRING Same as above, but excluding the names of instantiated
design entities
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The following appears in the syntaxes:

1 attribute_name (same as attribute identifier): Name chosen for the attribute.

1 attribute_ type: Can be any VHDL type, either predefined or user-defined.

1 entity_tag: Name of the entity to be decorated with the attribute (can be a simple name,

a character literal, or an operator symbol). Can be replaced with OTHERS or ALL. An

optional signature can also be included (explained ahead).

1 entity_class: Essentially any VHDL entity. Namely, ENTITY, ARCHITECTURE,

CONFIGURATION, PACKAGE, COMPONENT, SIGNAL, VARIABLE, CON-

STANT, TYPE, SUBTYPE, FUNCTION, PROCEDURE, GROUP, LABEL, LIT-

ERAL, PROPERTY, SEQUENCE, UNITS, and FILE.

1 value (same as expression): Value chosen for the attribute.

Example In the first line of the code below, a SIGNAL named number_of_pins of type

POSITIVE is declared. In the second line, an ATTRIBUTE, called pins, whose type is

also POSITIVE, is declared. In the third line of code, this attribute, with a value of 4

(thus pins ¼ 4), is associated to the entity nand3, which is a COMPONENT. Finally, in

the fourth line, the attribute pins of nand3 is passed to the signal specified in the first line,

hence resulting number_of_pins ¼ 4.

------------------------------------------------------------------------

SIGNAL number_of_pins: POSITIVE; --signal declaration

ATTRIBUTE pins: POSITIVE; --attribute declaration

ATTRIBUTE pins OF nand3: COMPONENT IS 4; --attribute specification

number_of_pins <= nand3'pins; --attribute call (tick needed)

------------------------------------------------------------------------

As seen in the syntax, the specification of the entity name might include a signature,

whose purpose is to identify among entities that have the same name (overloaded) which

one is the actual target. This situation can arise when using overloaded subprograms

(FUNCTION and PROCEDURE, chapter 9).

Example Say that our entity is a PROCEDURE, whose name is sort, which assigns

the smaller and larger of a and b to x and y, respectively. However, say that two ver-

sions of sort were written, one for ports of type INTEGER, the other for ports of type

BIT_VECTOR, that is:

PROCEDURE sort (a, b: IN INTEGER; x, y: OUT INTEGER) IS ...

PROCEDURE sort (a, b: IN BIT_VECTOR; x, y: OUT BIT_VECTOR) IS ...

In this case, to clarify matters, a signature can be used, which consists of including in the

specifications the data types involved in the procedure, as shown below.
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---------------------------------------------------------------------

ATTRIBUTE sort_attribute: STRING;

ATTRIBUTE sort_attribute OF sort [INTEGER, INTEGER, INTEGER,

INTEGER]: PROCEDURE IS "sort_int";

ATTRIBUTE sort_attribute OF sort [BIT_VECTOR, BIT_VECTOR, BIT_VECTOR,

BIT_VECTOR]: PROCEDURE IS "sort_bv";

---------------------------------------------------------------------

4.6 Synthesis Attributes

We have seen predefined and user-defined VHDL attributes, which are design-related.

There are also synthesis-related attributes (normally provided by EDA vendors) whose

purpose is to communicate with the compiler. The following five are described in this

section:

1 enum_encoding attribute

1 chip_pin attribute

1 keep attribute

1 preserve attribute

1 noprune attribute.

Attribute enum_encoding

Enumerated data types are indispensable when designing finite state machines (FSMs). (In

Chapter 11, which deals exclusively with FSMs, details will be given on how to encode

such data types.) For that purpose, a very helpful attribute exists, called enum_encoding,

which allows the user to choose basically any encoding style (the only restriction is that

the encoding values must employ only STD_ULOGIC symbols) for the machine states.

The main options are (see details in section 11.4):

1 Sequential encoding

1 Gray encoding

1 Johnson encoding

1 One-hot encoding

1 User-defined encoding.

As with any other attribute, enum_encoding must contain a declaration and a specifica-

tion, as depicted in the example.

Example Say that the enumerated type state below has been created to represent an

FSM’s states. The results from several encoding options for such a type would then be

(the last one is an user-defined encoding):
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--------------------------------------------------------

TYPE state IS (A, B, C, D);

--------------------------------------------------------

ATTRIBUTE enum_encoding: STRING;

ATTRIBUTE enum_encoding OF state: TYPE IS "sequential";

--Result: A="00", B="01", C="10", D="11"

--------------------------------------------------------

ATTRIBUTE enum_encoding: STRING;

ATTRIBUTE enum_encoding OF state: TYPE IS "one-hot";

--Result: A="0001", B="0010", C="0100", D="1000"

--------------------------------------------------------

ATTRIBUTE enum_encoding: STRING;

ATTRIBUTE enum_encoding OF state: TYPE IS "11 00 10 01";

--Result: A="11", B="00", C="10", D="01"

--------------------------------------------------------

An attribute equivalent to enum_encoding is fsm_state, also used to specify the encoding

scheme for the states of a FSM. Its encoding options of greatest interest are BINARY,

GRAY, and ONE_HOT.

Attribute chip_pin

This attribute allows the user to assign device pins to the signals listed in the PORT of the

design ENTITY.

Example The section of code below causes the signal clk to be connected to pin N2 of the

chosen device.

ATTRIBUTE chip_pin: STRING;

ATTRIBUTE chip_pin OF clk: SIGNAL IS "N2";

Example 4.3: Specifying Device Pins with the chip_pin Attribute

Figure 4.6 depicts a 4-bit register, with inputs data_in and clk, and output data_out.

Design this circuit assuming that all signals must be assigned to specific, preselected pins

(shown in figure 4.6—make sure to pick pins that are available as user pins in your target

Figure 4.6
4-bit register of example 4.3.
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device). This can be done in two ways: one is to select the desired pins in the compiler set-

tings; the other is to include such assignments in the VHDL code itself. Solve this problem

adopting the latter approach.

Solution A VHDL code for this circuit is shown below. The chip_pin attribute was

placed in the declarative part of the ARCHITECTURE (lines 9–12), but could have been

installed in the declarative part of the ENTITY (between lines 5 and 6) as well.

1 --------------------------------------------------------------

2 ENTITY data_register IS

3 PORT (clk: IN BIT;

4 data_in: IN BIT_VECTOR(3 DOWNTO 0);

5 data_out: OUT BIT_VECTOR(3 DOWNTO 0));

6 END ENTITY;

7 --------------------------------------------------------------

8 ARCHITECTURE data_register OF data_register IS

9 ATTRIBUTE chip_pin: STRING;

10 ATTRIBUTE chip_pin OF clk: SIGNAL IS "N2";

11 ATTRIBUTE chip_pin OF data_in: SIGNAL IS "A3, A4, A5, A6";

12 ATTRIBUTE chip_pin OF data_out: SIGNAL IS "B3, B4, B5, B6";

13 BEGIN

14 PROCESS (clk)

15 BEGIN

16 IF (clk'EVENT AND clk='1') THEN

17 data_out <= data_in;

18 END IF;

19 END PROCESS;

20 END ARCHITECTURE;

21 --------------------------------------------------------------

Attribute keep

The purpose of the keep (also called syn_keep) attribute is to tell the compiler not to sim-

plify (suppress) the listed nodes (in other words, it prevents certain combinational logic

simplifications). Its specification must include the names of the signals (wires) that must

be preserved.

Example 4.4: Construction of a Delay Line with the keep Attribute

Write a VHDL code from which the 4-inverter delay line of figure 4.7(a) can be inferred.

Compile the code with and without the keep attribute and compare the results.

Solution A VHDL code for this problem is presented below. It makes use of the keep at-

tribute (lines 9–10) to prevent nodes a, b, and c from being simplified. Figure 4.7(b) shows
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the image produced by the RTL viewer after compiling this code (note that there are four

inverters, with the last one in the output bu¤er). The image in figure 4.7(c) is also from the

RTL viewer, but for the case when lines 9–10 are commented out. If the input (x) and out-

put (y) nodes were also included in the keep specification (line 10), two bu¤ers would be

inferred for them (one after the x pad, the other before the y pad).

1 ---------------------------------------------

2 ENTITY delay_line IS

3 PORT (x: IN BIT;

4 y: OUT BIT);

5 END ENTITY;

6 ---------------------------------------------

7 ARCHITECTURE example OF delay_line IS

8 SIGNAL a, b, c: BIT;

9 ATTRIBUTE keep: BOOLEAN;

10 ATTRIBUTE keep OF a, b, c: SIGNAL IS TRUE;

11 BEGIN

12 a <= NOT x;

13 b <= NOT a;

14 c <= NOT b;

15 y <= NOT c;

16 END ARCHITECTURE;

17 ---------------------------------------------

Attribute preserve

Two somewhat similar synthesis attributes that might be useful occasionally are preserve

and noprune, described in this section and in the next.

The preserve attribute is the ‘‘registered’’ counterpart of keep; that is, it is used to pre-

vent the removal of registers (flip-flops) instead of combinational logic. Example 4.5 illus-

trates its use.

Figure 4.7
(a) Delay line of example 4.4; RTL viewer image (b) with and (c) without the keep attribute.
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Attribute noprune

The di¤erence between this and the preserve attribute is that noprune also preserves regis-

ters that do not feed the top-level ENTITY. The use of preserve and noprune is illustrated

in the example below.

Example 4.5: Keeping Redundant Registers with preserve and noprune Attributes

Figure 4.8(a) shows a circuit with redundant registers. First, observe that the flip-flops for

a and b can be reduced to just one flip-flop, as shown in figure 4.8(b). Second, note that the

other DFF (for c) does not feed any output wire of the design ENTITY, so it can be sim-

ply removed. Write a VHDL code that implements the circuit of figure 4.8(a) (that is, that

keeps all unnecessary registers).

Solution A VHDL code for this problem is shown below. Note the presence of the

attributes described above in lines 9–12. If preserve is used (that is, lines 9–10 are included

and lines 11–12 are commented out), flip-flops a and b will be preserved, but flip-flop c will

not because it does not feed the design entity. On the other hand, if noprune is used (lines

11–12 included and lines 9–10 commented out), then even DFF c is preserved. The reader

is invited to compile this code, with and without these attributes, and check the fitter equa-

tions to confirm these results.

1 ---------------------------------------------------

2 ENTITY redundant_registers IS

3 PORT (clk, x: IN BIT;

4 y: OUT BIT);

5 END ENTITY;

6 ---------------------------------------------------

7 ARCHITECTURE arch OF redundant_registers IS

8 SIGNAL a, b, c: BIT;

Figure 4.8
(a) Circuit with redundant registers of example 4.5; (b) Equivalent simplified circuit.
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9 --ATTRIBUTE preserve: BOOLEAN;

10 --ATTRIBUTE preserve OF a, b, c: SIGNAL IS TRUE;

11 ATTRIBUTE noprune: BOOLEAN;

12 ATTRIBUTE noprune OF a, b, c: SIGNAL IS TRUE;

13 BEGIN

14 PROCESS (clk)

15 BEGIN

16 IF (clk'EVENT AND clk='1') THEN

17 a <= x;

18 b <= x;

19 c <= x;

20 END IF;

21 END PROCESS;

22 y <= a AND b;

23 END ARCHITECTURE;

24 ---------------------------------------------------

4.7 GROUP

The user-defined attributes seen in section 4.5 apply to individual named entities. To apply

an attribute to multiple entities, VHDL provides the GROUP construct. To use it, two

declarations are needed: a template declaration and a group declaration, shown in the sim-

plified syntaxes below.

Group template declaration:

GROUP template_name IS (entity_class [<>], ...);

Group declaration:

GROUP group_name: template_name (constituent_name, ...);

The following appears in the syntaxes:

1 template_name (same as template identifier): Name chosen for the template.

1 entity_class: Essentially any VHDL entity (see list in the ATTRIBUTE syntax, section

4.5). The use of a ‘‘box’’ (<>) indicates an arbitrary number (zero or more) of constituents

from the same entity class. For example, "SIGNAL <>" means any number of signals in

that position in the list.
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1 group_name (same as group identifier): Name chosen for the group.

1 constituent_name: Name chosen for each constituent in the constituents list (can be a sim-

ple name or a character literal).

Example Below, a template called test_signals is created, which contains three signals.

Next, a group called register is declared, which employs three signals called clock, reset,

and enable. Finally, the third line illustrates the use of such a group in an ATTRIBUTE

declaration.

----------------------------------------------------

GROUP test_signals IS (SIGNAL, SIGNAL, SIGNAL);

GROUP register: test_signals (clock, reset, enable);

ATTRIBUTE ... OF register: GROUP IS ...

----------------------------------------------------

4.8 ALIAS

An ALIAS declaration defines an alternate name for an existing named entity (not to be

confused with ENTITY). A simplified syntax is shown below.

ALIAS new_name [: specifications] IS original_name [signature];

ALIAS can be applied to nearly all named entities, except for labels, loop parameters,

and generate parameters. It is divided into two groups: object alias (for VHDL objects;

that is, CONSTANT, SIGNAL, VARIABLE, and FILE) and non-object alias (for all

remaining entities; that is, TYPE, COMPONENT, operators, user subprograms, etc.).

One di¤erence between these two groups is that a signature cannot be used in the former,

while in the latter it is required if the entity is a subprogram.

The most common places for ALIAS declarations are the declarative parts of architec-

tures and of subprograms, and the most commonly aliased entities are subprograms, SIG-

NAL, and TYPE.

The use of ALIAS can be seen, for example, in the package body of the package

std_logic_1164 that accompanies the VHDL compiler.

Example This example illustrates how an ALIAS declaration can be applied to a VHDL

object (a SIGNAL, in this example) to do any of the following: (i) change its name; (ii)

create a name for a section of it; (iii) change its range; (iv) create a new range for a section

of it.
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-----------------------------------------------------------------------

--This is the object to which ALIAS will be applied:

SIGNAL data_bus: STD_LOGIC_VECTOR(31 DOWNTO 0);

-----------------------------------------------------------------------

--bus1 is a new name for data_bus:

ALIAS bus1 IS data_bus;

-----------------------------------------------------------------------

--bus2 is a new name for data_bus, but with a modified range:

ALIAS bus2: STD_LOGIC_VECTOR(32 DOWNTO 1) IS data_bus;

-----------------------------------------------------------------------

--bus3 is another name for data_bus, with an ascending range:

ALIAS bus3: STD_LOGIC_VECTOR(1 TO 32) IS data_bus;

-----------------------------------------------------------------------

--upper_bus1 is a new name for the upper half of data_bus

ALIAS upper_bus1 IS data_bus(31 DOWNTO 16);

-----------------------------------------------------------------------

--upper_bus2 is a new name for the upper half of data_bus, but

--with a modified range:

ALIAS upper_bus2: STD_LOGIC_VECTOR(17 TO 32) IS data_bus(31 DOWNTO 16);

-----------------------------------------------------------------------

--lower_bus1 is a new name for the lower half of data_bus

ALIAS lower_bus1 IS data_bus(15 DOWNTO 0);

-----------------------------------------------------------------------

--lower_bus2 is a new name for the lower half of data_bus, but

--with a modified range:

ALIAS lower_bus2: STD_LOGIC_VECTOR(1 TO 16) IS data_bus(15 DOWNTO 0);

-----------------------------------------------------------------------

As indicated in the syntax of ALIAS, the specification of the original name allows the

inclusion of a signature. Its purpose is the same as that seen in the study of attributes

(section 4.5); that is, to make possible the identification among overloaded items (with the

same name). Signatures can be used in ALIAS declarations for subprograms (that is,

FUNCTION and PROCEDURE).

Example This example illustrates how an ALIAS declaration can be applied to a VHDL

subprogram (a PROCEDURE, in this case), which also includes the use of a signature.

Let us consider again the sort procedure seen at the end of section 4.5, which assigns

the smaller and larger of a and b to x and y, respectively. However, assume that two ver-

sions of sort were written, one for ports of type INTEGER, the other for ports of type

BIT_VECTOR. That is:

PROCEDURE sort (a, b: IN INTEGER; x, y: OUT INTEGER) IS ...

PROCEDURE sort (a, b: IN BIT_VECTOR; x, y: OUT BIT_VECTOR) IS ...
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The ALIAS declarations below define alternative names for sort (sort_int for the former,

sort_bv for the latter), thus allowing the procedures to be easily identified.

ALIAS sort_int IS sort [INTEGER, INTEGER, INTEGER, INTEGER];

ALIAS sort_bv IS sort [BIT_VECTOR, BIT_VECTOR, BIT_VECTOR, BIT_VECTOR];

4.9 VHDL 2008

With respect to the material covered in this chapter, the main additions specified in VHDL

2008 are those listed below.

1) Regarding the logical operators:

For the types STD_(U)LOGIC and STD_(U)LOGIC_VECTOR, additional options

were included in the package std_logic_1164 (part II of appendix I). For the types

(UN)SIGNED, additional options were included in the package numeric_std (part II of

appendix J). Unary operations were also included. Logical operators were also defined

for the new types UFIXED, SFIXED, and FLOAT.

2) Regarding the arithmetic operators:

For the types STD_(U)LOGIC and STD_(U)LOGIC_VECTOR, arithmetic operators

were defined in the new package numeric_std_unsigned (appendix N). For the types

(UN)SIGNED, additional options were included in the package numeric_std (part II

of appendix J). Arithmetic operators were also specified for the new types UFIXED,

SFIXED, and FLOAT.

3) Regarding the comparison operators:

Comparison operators were defined also for the new types BOOLEAN_VECTOR,

INTEGER_VECTOR, UFIXED, SFIXED, and FLOAT.

4) Regarding the shift operators:

For the types STD_(U)LOGIC_VECTOR, some shift operators were included in the ex-

pansion of the package std_logic_1164 (part II of appendix I). Other shift operators for

STD_(U)LOGIC_VECTOR were introduced in the new package numeric_std_unsinged

(appendix N). For the types (UN)SIGNED, additional shift operators were included in

the expansion of the package numeric_std (part II of appendix J). Shift operators were

also defined for the new types BOOLEAN_VECTOR, UFIXED, and SFIXED.

5) Regarding the matching comparison operators:

These operators (?¼, ?/¼, ?<, ?>, ?<¼, ?>¼) were all introduced in VHDL 2008.

They include the types BIT, BIT_VECTOR (partial set), BOOLEAN_VECTOR,

STD_(U)LOGIC, STD_(U)LOGIC_VECTOR (whole set if proper package used),

(UN)SIGNED, UFIXED, and SFIXED.
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6) Others:

The functions MINIMUM, MAXIMUM, TO_STRING, TO_OSTRING, and

TO_HSTRING were also introduced in VHDL 2008, with support for nearly all VHDL

types. Several new attributes for scalars, signals, etc. were included as well.

4.10 Exercises

Note: For exercise solutions, please consult the book website.

Exercise 4.1: Logical Operators and Corresponding Types

This exercise concerns the line relative to logical operators in figure 4.1. Check in the syn-

thesis packages (see list in section 3.3) if the supported predefined data types match the list

in the last column of figure 4.1.

Exercise 4.2: Arithmetic Operators and Corresponding Types

This exercise concerns the line relative to arithmetic operators in figure 4.1. Check in the

synthesis packages (see list in section 3.3) if the supported predefined data types match

the list in the last column of figure 4.1.

Exercise 4.3: Comparison Operators and Corresponding Types

This exercise concerns the line relative to comparison operators in figure 4.1. Check in the

synthesis packages (see list in section 3.3) if the supported predefined data types match the

list in the last column of figure 4.1.

Exercise 4.4: Logical Operators

Say that a(7:0) ¼ "00110011" and b(3:0) ¼ "1111". Determine the values produced by the

assignments below.

a) a(7 DOWNTO 4) NAND "0111"

b) a(7 DOWNTO 4) XOR NOT b

c) "1111" NOR b

d) b(2 DOWNTO 0) XNOR "101"

Exercise 4.5: Arithmetic Operators C1

For the integers x ¼ 65 and y ¼ 7, calculate:

a) y**2

b) x/y

c) -x/y

d) (x/y)*y
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e) (x*y)/y

f ) (x+y)y

g) (x-y)/y

h) 3*((x-y)/3)

Exercise 4.6: Arithmetic Operators C2

For the integers x ¼ 65 and y ¼ 7, calculate:

a) x REM y

b) x REM -y

c) (x+2*y) REM y

d) (x+y) REM -x

e) x MOD y

f ) x MOD -y

g) -x MOD -y

h) ABS(-y)

Exercise 4.7: Comparison Operators

Assuming that it is a signed system, and given the values v ¼ "0011", x ¼ "1100",

y ¼ "01000000", and z ¼ "11111111", determine if each assignment below is TRUE or

FALSE.

a) v < x

b) v + x <= z

c) y = (ABS(x))**3

d) (7*v) REM x = (7*v) MOD x

Exercise 4.8: Shift and Concatenation Operators

1) For x ¼ "110010", of type BIT_VECTOR(5 DOWNTO 0), determine the values of the

shift operations listed in the column on the left below.

2) In the column on the right, write an equivalent expression using the concatenation

operator (the first one was already done).

a) x SLL 3

b) x SLA -2

c) x SRA 2

d) x ROL 1

e) x ROR -3

a) x(2 DOWNTO 0) & "000"

b)

c)

d)

e)
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Exercise 4.9: Arithmetic Operators for Signed Types

Say that a is of type INTEGER, while b, c, and x are of type SIGNED. Recall that when

SIGNED is employed, either the numeric_std or the std_logic_arith package must be

included in the library/package declarations. With which (if any) of these packages are the

operations below valid? (Suggestion: Check the "þ" and "*" operators in appendices J–K.)

a) x <= a + b;

b) x <= b + c;

c) x <= 3*b;

d) x <= 3*a + b;

e) x <= a + c + "1111";

f ) x <= a + c + SIGNED'("1111");

Exercise 4.10: Attributes of an Array Type

Consider the following data type:

TYPE data IS STD_LOGIC_VECTOR(31 DOWNTO 0);

Determine the values returned by the attributes below.

a) data'LEFT

b) data'RIGHT

c) data'LOW

d) data'HIGH

e) data'RANGE

f ) data'REVERSE_RANGE

g) data'LENGTH

h) data'ASCENDING

Exercise 4.11: Attributes of an Enumerated Type C1

Consider the following enumerated data type:

TYPE state IS (stA, stB, stC, stD, stE);

Determine the values returned by the attributes below.

a) state'LEFT

b) state'RIGHT

c) state'POS(stD)

d) state'VAL(3)

Operators and Attributes 117



e) state'LEFTOF(stD)

f ) state'RIGHTOF(stA)

g) state'PRED(stB)

h) state'SUCC(stC)

Exercise 4.12: Attributes of an Enumerated Type C2

Inspect the code below, in which a series of position-related attributes were employed.

a) Determine for which values of the input (x) the outputs (y1, y2, etc.) should be '1'.

b) Compile and simulate the code to check whether the results match your predictions.

1 ----------------------------------------------------

2 ENTITY example IS

3 PORT (x: IN INTEGER RANGE 0 TO 7;

4 y1, y2, y3, y4, y5, y6, y7: OUT BIT);

5 END ENTITY;

6 ----------------------------------------------------

7 ARCHITECTURE example OF example IS

8 TYPE tag IS (a, b, c, d, e, f); --coded 0,1,...,5

9 SIGNAL test: tag;

10 BEGIN

11 test <= a WHEN x=0 ELSE

12 b WHEN x=1 ELSE

13 c WHEN x=2 ELSE

14 d WHEN x=3 ELSE

15 e WHEN x=4 ELSE

16 f;

17 y1 <= '1' WHEN tag'VAL(x)=c ELSE '0';

18 y2 <= '1' WHEN tag'POS(c)=x ELSE '0';

19 y3 <= '1' WHEN tag'RIGHTOF(temp)=c ELSE '0';

20 y4 <= '1' WHEN tag'LEFTOF(temp)=e ELSE '0';

21 y5 <= '1' WHEN tag'PRED(temp)=e ELSE '0';

22 y6 <= '1' WHEN tag'PRED(b)=temp ELSE '0';

23 y7 <= '1' WHEN tag'SUCC(a)=temp ELSE '0';

24 END ARCHITECTURE;

25 ----------------------------------------------------

Exercise 4.13: The enum_encoding Attribute

Consider the following enumerated data type:

TYPE fsm_state IS (a, b, c, d, e, f);

Determine the values assigned by the compiler to represent fsm_state in each of the follow-

ing encoding options (the first one has already been answered—see details in section 11.4):
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a) Sequential: a ¼ "000", b ¼ "001", c ¼ "010", d ¼ "011", e ¼ "100", f ¼ "101"

b) Gray

c) Johnson

d) One-hot

Exercise 4.14: The chip_pin Attribute

Using the chip_pin attribute, make the changes needed in the code of example 4.4 in order

to have its input and output ports automatically assigned to user I/O pins (check your

device’s pin list to make a proper selection).

Exercise 4.15: The keep Attribute

Figure 4.9 shows a typical circuit used for pulse-shortening in pulse-based flip-flop imple-

mentations (Pedroni 2008).

a) Explain how this circuit works, then sketch the waveforms for c and y on the right of

figure 4.9. Assume that the propagation delay in each inverter and in the AND gate is 1 ns,

which is the distance between the vertical lines in the waveform plots.

b) Write a VHDL code from which this circuit can be inferred. Do not include the keep

attribute yet. Compile the code and examine the fitter equations to verify what was indeed

inferred.

c) Repeat part (b) above, now with keep included (for a, b, c). After compiling your code

and examining the fitter equations, simulate it to observe the pulse-shortening e¤ect.

Exercise 4.16: preserve versus keep Attributes

a) If in example 4.5 we remove the preserve and noprune attributes and include the keep

attribute, what circuit do you expect will be inferred?

b) Make such a modification in the code and compile it. Then check the fitter equations to

verify whether the result matches your prediction.

Exercise 4.17: Capturing Digits from a Decimal Number

Say that abc is a three-digit decimal number between 000 and 999. Using one of the prede-

fined operators, show how each individual digit (that is, a, b, and c) can be separated from

the others. (Hint: Think of REM or MOD.)

Figure 4.9

Operators and Attributes 119



 

5 Concurrent Code

5.1 Introduction

Having finished laying out the foundations of VHDL (chapters 1 to 4), we can now con-

centrate on the design (code) proper.

A combinational logic circuit is one in which the outputs depend solely on the current

inputs, therefore exhibiting no memory, as in the feed-forward model of figure 5.1(a). In

contrast, a sequential logic circuit is one in which the outputs do depend on previous sys-

tem state(s), so storage elements are needed, along with a clock signal to control the system

evolution and possibly a reset too, as in the model of figure 5.1(b) (the storage elements are

usually D-type flip-flops (DFFs)).

VHDL code can be concurrent (parallel) or sequential. Only statements placed inside a

PROCESS, FUNCTION, or PROCEDURE (the last two are called subprograms) are exe-

cuted sequentially. However, because VHDL is inherently concurrent, a PROCESS, as a

whole, is also concurrent with respect to any other (external) statements. In other words,

a process body or a subprogram call is also a concurrent statement.

Two other concurrent statements are the BLOCK statement and COMPONENT

instantiations. These, however, can be viewed as just di¤erent ways of organizing the

code, without any new internal statements (hence they will be studied in chapter 8, which

is in the system-level part of the book).

Apart from the pieces of code mentioned above, there are three purely concurrent state-

ments (they can only be used outside sequential code—that is, outside PROCESS or sub-

programs), which are WHEN, SELECT, and GENERATE. (Note: See in section 5.10 the

new options for WHEN and SELECT specified in VHDL 2008.)

Following the same reasoning, there are four purely sequential statements (they can only

be used inside sequential code), which are IF, WAIT, LOOP, and CASE.

While concurrent code is intended only for the design of combinational circuits, sequen-

tial code can be used indistinctly to design both sequential and combinational circuits.

Statements for concurrent code (WHEN, SELECT, GENERATE) are studied in this

chapter, while statements for sequential code (IF, WAIT, LOOP, CASE) are described in

the next.



Remember that in a concurrent code the order of the statements does not matter. For

example, if a code uses three concurrent statements, called stat1, stat2, and stat3, then

any of the following sequences will render the same physical circuit: fstat1; stat2; stat3g ¼
fstat3; stat2; stat1g ¼ fstat1; stat3; stat2g.

5.2 Using Operators

Operators were discussed in section 4.2 and summarized in figure 4.1. Basically any kind

of circuit can be designed using only operators. This approach, however, is viable only for

arithmetic circuits or simple logic circuits. In example 5.1, a multiplexer is designed using

only logical operators.

Example 5.1: Multiplexer Implemented with Operators

Implement the 4� 1 (four inputs of one bit each) multiplexer of figure 5.2 using only logi-

cal operators.

Solution This multiplexer’s logical equation (Pedroni 2008) is y ¼ sel 01 � sel 00 � x0 þ
sel 01 � sel0 � x1 þ sel1 � sel 00 � x2 þ sel1 � sel0 � x3, which employs only AND, OR, and NOT

operators. Its implementation is in lines 13–16 of the code below.

1 ----------------------------------------------

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

Figure 5.2
4� 1 multiplexer of example 5.1.

Figure 5.1
Models for (a) combinational and (b) sequential logic circuits.
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4 ----------------------------------------------

5 ENTITY mux IS

6 PORT (x0, x1, x2, x3: IN STD_LOGIC;

7 sel: IN STD_LOGIC_VECTOR(1 DOWNTO 0);

8 y: OUT STD_LOGIC);

9 END mux;

10 ----------------------------------------------

11 ARCHITECTURE operators_only OF mux IS

12 BEGIN

13 y <= (NOT sel(1) AND NOT sel(0) AND x0) OR

14 (NOT sel(1) AND sel(0) AND x1) OR

15 (sel(1) AND NOT sel(0) AND x2) OR

16 (sel(1) AND sel(0) AND x3);

17 END operators_only;

19 ----------------------------------------------

5.3 The WHEN Statement

WHEN is the simplest conditional statement. It is approximately equivalent to the sequen-

tial statement IF. A simplified syntax for WHEN is presented below.

assignment_expression WHEN conditions ELSE

assignment_value WHEN conditions ELSE

...;

Examples

x <= '0' WHEN rst='0' ELSE

'1' WHEN a='0' OR b='1' ELSE

'-'; --don’t care

y <= "00" WHEN (a AND b)="01" ELSE

"11" WHEN (a AND b)="10" ELSE

"ZZ"; --high impedance

Note that multiple conditions (boolean expressions) are accepted in the WHEN state-

ment, which are grouped using AND, OR, and NOT.

The WHEN statement does not require that all input values be specified. However,

when implementing combinational circuits (truth tables), it is a good practice to always

cover all input options in order to prevent the inference of latches. For such, the keyword

OTHERS is usually helpful.

Concurrent Code 123



Another sometimes useful keyword for concurrent code is UNAFFECTED, which

should be used when no action is to take place. Note, however, that this usually causes

the inference of latches, so this keyword should only be used when memorization of the

previous system state is indeed wanted.

Example Both codes below implement a positive-level D-type latch (Pedroni 2008). The

code on the right, however, covers all possible input values, explicitly documenting the fact

that a memory is indeed wanted and the inference of a latch was not by accident.

q <= '0' WHEN rst='1' ELSE

d WHEN clk='1';

q <= '0' WHEN rst='1' ELSE

d WHEN clk='1' ELSE

UNAFFECTED;

In VHDL 2008, WHEN can also be used in sequential code and allows boolean tests.

(See details in section 5.10.)

5.4 The SELECT Statement

SELECT is another concurrent statement. It is approximately equivalent to the sequential

statement CASE. A simplified syntax for SELECT is presented below.

WITH identifier SELECT

assignment_expression WHEN values,

assignment_value WHEN values,

...;

Examples

WITH control SELECT

y <= "000" WHEN 0 | 1,

"100" WHEN 2 TO 5,

"Z--" WHEN OTHERS;

WITH (a AND b) SELECT

y <= "00" WHEN "001",

"11" WHEN "100",

UNAFFECTED WHEN OTHERS;

As shown in the first example, SELECT allows the use of multiple values (instead of

multiple conditions), which can only be grouped with "|" (means "or") or "TO" (for range),

as follows:

WHEN value1 | value2 |... --value1 or value2 or ...

WHEN value1 TO value2 --range

The SELECT statement requires that all input values be covered (complete truth table),

for which the keyword OTHERS is often helpful.
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UNAFFECTED is another sometimes useful keyword, already described in section 5.3.

See, however, the observation about the inference of latches made in that section.

As a last remark, any signal assignment (like those in this chapter, for example) can be

preceded by a label, which was omitted in the simplified syntaxes above because that is a

rarely used practice.

In VHDL 2008, SELECT can also be used in sequential code and the matching

SELECT? statement was introduced, which allows the use of don’t care inputs. (See details

in section 5.10.)

Example 5.2: Multiplexer Implemented with WHEN and SELECT

Implement the same multiplexer of example 5.1, but now with N-bit inputs instead of

single bit, as shown in figure 5.3. Specify N using GENERIC (section 2.6). Present two

solutions: with WHEN and with SELECT. Show also simulation results.

Solution A VHDL code (with two architectures) for this circuit is presented below, under

the title mux (line 5). N is entered as a generic parameter (line 6), which is used in lines

7 and 9 to establish the size of the input-output buses. Only STD_LOGIC_VECTOR

ports (industry standard) are employed in the code. In the first architecture (called

with_WHEN ), the WHEN statement is employed, while in the second architecture (called

with_SELECT ), the SELECT statement is used instead. Note that in both cases all pos-

sible input values are covered.

1 -----------------------------------------------------------

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 -----------------------------------------------------------

5 ENTITY mux IS

6 GENERIC (N: INTEGER := 8);

7 PORT (x0, x1, x2, x3: IN STD_LOGIC_VECTOR(N-1 DOWNTO 0);

8 sel: IN STD_LOGIC_VECTOR(1 DOWNTO 0);

9 y: OUT STD_LOGIC_VECTOR(N-1 DOWNTO 0));

Figure 5.3
4�N multiplexer of example 5.2 and respective simulation results.
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10 END ENTITY;

11 -----------------------------------------------------------

12 ARCHITECTURE with_WHEN OF mux IS

13 BEGIN

14 y <= x0 WHEN sel="00" ELSE

15 x1 WHEN sel="01" ELSE

16 x2 WHEN sel="10" ELSE

17 x3;

19 END ARCHITECTURE;

20 -----------------------------------------------------------

12 ARCHITECTURE with_SELECT OF mux IS

13 BEGIN

14 WITH sel SELECT

15 y <= x0 WHEN "00",

16 x1 WHEN "01",

17 x2 WHEN "10",

19 x3 WHEN OTHERS;

20 END ARCHITECTURE;

21 -----------------------------------------------------------

Simulation results (for N ¼ 8), confirming the correct circuit operation, are included in

figure 5.3. Recall that the apparent glitches in the waveform for y are expected because

multiple signals are considered at once, whose actual values neither change instantaneously

nor change all exactly at the same time.

Only one entity-architecture pair can be synthesized at a time. Therefore, if we want to

write more than one architecture for the same entity (as in the example above), we need

either to comment all but one out (with "--") or include a CONFIGURATION declaration

in the code in order to direct the compiler to the desired units. In the example above, both

architectures can be included in the same code if followed by a declaration like that below

(placed outside any entities or architectures).

---------------------------------

CONFIGURATION which_mux OF mux IS

FOR with_WHEN

END FOR;

END CONFIGURATION;

---------------------------------

This declaration causes the compiler to choose the pair mux-with_WHEN. After compil-

ing and simulating this code, just change the name of the architecture in the configuration

declaration above to test the other architecture. One (minor) disadvantage of this approach

is that it does not automatically prevent the compiler from checking the syntax in the un-

selected unit. (Details about CONFIGURATION will be seen in chapter 8.)
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Example 5.3 also uses the concurrent statement SELECT.

Example 5.3: ALU

An ALU (Arithmetic Logic Unit) is shown in figure 5.4(a), having a, b, cin (carry in), and

opcode (operation code) as inputs, and y as output. The desired functionality is expressed

in the truth table of figure 5.4(b), where each function is selected by a di¤erent value of

opcode. Note that the upper eight instructions are logical, while the lower eight are arith-

metic. Design this circuit using the concurrent statement SELECT, satisfying the following

conditions:

1) The arithmetic operations must be signed.

2) The number of bits for inputs a and b must be generic.

3) All ports must be of type STD_LOGIC(_VECTOR) (industry standard).

4) Simulation results must also be included in the solution.

Solution Figure 5.4(c) shows a possible ALU implementation (among several other

options). The circuit contains two main sections, called logic and arithmetic units, each

controlled by the same three LSBs of opcode. The MSB of opcode is employed to control

a multiplexer, letting the logic result out when low or the arithmetic result out if high.

A VHDL code for this circuit is presented below, under the title alu (line 6). The number

of bits in a and b is a generic parameter (line 7), and all ports (lines 8–11) are of type

STD_LOGIC(_VECTOR). Because the arithmetic operations were asked to be signed,

the package numeric_std (line 4) was included in the library/package declarations. The

code proper is divided according to figure 5.4(c)—that is, a logic unit (lines 22–30), an

arithmetic unit (lines 32–43), and a multiplexer (lines 45–47).

Figure 5.4
ALU of example 5.3. (a) ALU symbol; (b) truth table; (c) a possible implementation.
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The implementation of the logic unit is straightforward. However, because the arith-

metic unit must be signed, the same procedure used in the recommended solution of

example 3.9 (see also recommendations in section 5.7) is adopted here; that is, the inputs

are explicitly converted from STD_LOGIC_VECTOR to SIGNED (by type casting,

in lines 32–33), they are then processed, and finally the result is converted back to

STD_LOGIC_VECTOR (at the mux input, line 47, again by type casting).

Note also that because cin is STD_LOGIC, not SIGNED, NATURAL, or INTEGER,

it could not participate directly in the sum of line 43 (observe in the package numeric_std,

in appendix J, that the overloaded operator "þ" does not contain the SIGNEDþ
STD_LOGIC option), so a small integer (lines 19 and 34) was created to allow the sum.

1 -----------------------------------------------------

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 USE ieee.numeric_std.all;

5 -----------------------------------------------------

6 ENTITY alu IS

7 GENERIC (N: INTEGER := 8); --word bits

8 PORT (a, b: IN STD_LOGIC_VECTOR(N-1 DOWNTO 0);

9 cin: IN STD_LOGIC;

10 opcode: IN STD_LOGIC_VECTOR(3 DOWNTO 0);

11 y: OUT STD_LOGIC_VECTOR(N-1 DOWNTO 0));

12 END ENTITY;

13 -----------------------------------------------------

14 ARCHITECTURE alu OF alu IS

15 SIGNAL a_sig, b_sig: SIGNED(N-1 DOWNTO 0);

16 SIGNAL y_sig: SIGNED(N-1 DOWNTO 0);

17 SIGNAL y_unsig: STD_LOGIC_VECTOR(N-1 DOWNTO 0);

19 SIGNAL small_int: INTEGER RANGE 0 TO 1;

20 BEGIN

21 ------Logic unit:--------------

22 WITH opcode(2 DOWNTO 0) SELECT

23 y_unsig <= NOT a WHEN "000",

24 NOT b WHEN "001",

25 a AND b WHEN "010",

26 a OR b WHEN "011",

27 a NAND b WHEN "100",

28 a NOR b WHEN "101",

29 a XOR b WHEN "110",

30 a XNOR b WHEN OTHERS;

31 ------Arithmetic unit:---------

32 a_sig <= SIGNED(a);

33 b_sig <= SIGNED(b);

34 small_int <= 1 WHEN cin='1' ELSE 0;
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35 WITH opcode(2 DOWNTO 0) SELECT

36 y_sig <= a_sig WHEN "000",

37 b_sig WHEN "001",

38 a_sig + 1 WHEN "010",

39 b_sig + 1 WHEN "011",

40 a_sig - 1 WHEN "100",

41 b_sig - 1 WHEN "101",

42 a_sig + b_sig WHEN "110",

43 a_sig + b_sig + small_int WHEN OTHERS;

44 ------Mux:---------------------

45 WITH opcode(3) SELECT

46 y <= y_unsig WHEN '0',

47 STD_LOGIC_VECTOR(y_sig) WHEN OTHERS;

48 END ARCHITECTURE;

49 -----------------------------------------------------

Simulation results are depicted in figure 5.5. The upper graph is for logic instructions,

while the lower graph exhibits results from arithmetic operations. The reader is invited to

examine both to check the correct circuit operation.

5.5 The GENERATE Statement

GENERATE is another concurrent statement. In its most popular form (unconditional

GENERATE), it is equivalent to the sequential statement LOOP (chapter 6) in the sense

that it too is employed to have a section of code repeated a number of times. GENERATE

also allows the inclusion of an IF condition (conditional GENERATE), hence with some

Figure 5.5
Simulation results from the ALU of example 5.3 (logic instruction in the upper graph, arithmetic instructions in
the lower graph).
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similarity to the combination of the sequential statements LOOP and IF. Both forms can

be nested inside one another.

Unconditional GENERATE (also called FOR-GENERATE) is used to create multiple

instances of a section of code. A simplified syntax for it is shown below. Notice that a label

is required, and that the word BEGIN is only needed when declarations are made.

label: FOR identifier IN range GENERATE

[declarative_part

BEGIN]

concurrent_statements_part

END GENERATE [label];

Example Below, three signals are declared, then three equivalent sections of code utiliz-

ing the GENERATE statement are presented. In all three the label is gen, the identifier is i,

and the range is 0-to-7 or 7-downto-0.

---------------------------------------

SIGNAL a, b, x: BIT_VECTOR(7 DOWNTO 0);

---------------------------------------

gen: FOR i IN 0 TO 7 GENERATE

x(i) <= a(i) XOR b(7-i);

END GENERATE;

---------------------------------------

gen: FOR i IN a'RANGE GENERATE

x(i) <= a(i) XOR b(7-i);

END GENERATE;

---------------------------------------

gen: FOR i IN a'REVERSE_RANGE GENERATE

x(i) <= a(i) XOR b(7-i);

END GENERATE;

---------------------------------------

Conditional GENERATE (also called IF-GENERATE) includes an IF statement in the

GENERATE loop. A simplified syntax is shown below.

label: IF condition GENERATE

[declarative_part

BEGIN]

concurrent_statements_part

END GENERATE [label];

130 Chapter 5



This version of GENERATE is of limited interest. To make it more interesting, addi-

tional features were specified in VHDL 2008, allowing the use of ELSIF/ELSE, plus the

use of alternative labels and the END keyword before END GENERATE. Another

option, called CASE-GENERATE, was also introduced in VHDL 2008 (see details in

section 5.10).

Another important remark about GENERATE (and the same is true for LOOP, which

will be studied in the next chapter) is that both range limits are normally required to be

static. For example, say that in the section of code below x is an input (therefore, a non-

static parameter). Then this code might not be synthesizable.

-------------------------------

NotOK: FOR i IN 0 TO x GENERATE

...

END GENERATE;

-------------------------------

It is also important to be aware of multiply-driven signals. As will be seen in chapters 6

and 7, multiple assignments to the same VARIABLE are fine because its value is updated

immediately, but that is not allowed for SIGNAL. This problem is illustrated in the exam-

ple below. In section 7.7, a way of circumventing such a limitation will be introduced.

Example The first of the three sections of code below is fine because values are assigned

to each bit of x (a signal) only once. However, the second is not correct, because a value

is assigned to y several (up to four) times. The same applies to the third section of code,

where z might also receive up to four assignments.

-----------------------------------------------

SIGNAL a, b, x, y: BIT_VECTOR(3 DOWNTO 0);

SIGNAL z: INTEGER RANGE 0 TO 7;

-----------------------------------------------

OK: FOR i IN x'RANGE GENERATE

x(i)<='1' WHEN (a(i) AND b(i))='1' ELSE '0';

END GENERATE;

-----------------------------------------------

NotOK: FOR i IN y'LOW TO y'HIGH GENERATE

y <="1111" WHEN (a(i) AND b(i))='1' ELSE

"0000";

END GENERATE;

-----------------------------------------------

NotOK: For i IN 0 TO 3 GENERATE

z <= z + 1 WHEN a(i)='1';

END GENERATE;

-----------------------------------------------
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We conclude this section by presenting two complete design examples using

GENERATE.

Example 5.4: Generic Address Decoder with GENERATE

Redesign the generic address decoder of example 2.4, this time using only STD_LOGIC-

based ports (industry standard).

Solution A VHDL code for this problem is presented below. All ports are STD_LOGIC-

based (lines 8–10). The GENERATE statement is employed in lines 17–19, containing just

one assignment (using WHEN, line 18). Note that address was converted into an integer

in line 16 using a functions available in the package std_logic_unsigned (see figure 3.10).

Lines 14 and 16 can obviously be suppressed if we choose to write "... WHEN i=conv_

integer(address) ..." in line 18. The size of the code is fixed, regardless of the number

of input bits. Simulation results are similar to those in figure 2.7.

1 -----------------------------------------------------------

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 USE ieee.std_logic_unsigned.all;

5 -----------------------------------------------------------

6 ENTITY address_decoder IS

7 GENERIC (N: NATURAL := 3); --number of address bits

8 PORT (address: IN STD_LOGIC_VECTOR (N-1 DOWNTO 0);

9 ena: IN STD_LOGIC;

10 word_line: OUT STD_LOGIC_VECTOR(2**N-1 DOWNTO 0));

11 END ENTITY;

12 -----------------------------------------------------------

13 ARCHITECTURE decoder OF address_decoder IS

14 SIGNAL addr: NATURAL RANGE 0 TO 2**N-1;

15 BEGIN

16 addr <= conv_integer(address);

17 gen: FOR i IN word_line'RANGE GENERATE

18 word_line(i)<='0' WHEN i=addr AND ena='1' ELSE '1';

19 END GENERATE;

20 END ARCHITECTURE;

21 -----------------------------------------------------------

A very useful application for GENERATE is in the instantiation of components to build

larger, structural circuits. Even though COMPONENT will be studied in chapter 8, a pre-

liminary example is presented below in order to illustrate the usage of GENERATE in this

kind of design.
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Example 5.5: COMPONENT Instantiation with GENERATE

Figure 5.6 illustrates the construction of a larger multiplexer using multiple instances of a

basic unit. In (a), a 2� 1 (two inputs of one bit each) mux is shown, which is instantiated

three times in (b), resulting the 2� 3 mux of (c). Design this circuit using a structural

approach (that is, with COMPONENT instantiations), with GENERATE employed to

make the instantiations.

Solution A VHDL code for this circuit is shown below, consisting of two parts. The first

part builds the basic unit (mux2x1), which is then instantiated in the second part (main

code) using the GENERATE statement (lines 18–20). (Details on COMPONENT con-

struction and usage will be seen in chapter 8.)

1 -----The component (mux2x1):-----

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 ---------------------------------

5 ENTITY mux2x1 IS

6 PORT (a, b, sel: IN STD_LOGIC;

7 x: OUT STD_LOGIC);

8 END ENTITY;

9 ---------------------------------

10 ARCHITECTURE mux2x1 OF mux2x1 IS

11 BEGIN

12 x<=a WHEN sel='0' ELSE b;

13 END ARCHITECTURE;

14 ---------------------------------

1 -------Main code:--------------------------------------

2 LIBRARY ieee;

Figure 5.6
(a) A 2� 1 mux that (b) instantiated three times (c) creates a 2� 3 mux.
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3 USE ieee.std_logic_1164.all;

4 -------------------------------------------------------

5 ENTITY mux2x3 IS

6 PORT (a, b: IN STD_LOGIC_VECTOR(2 DOWNTO 0);

7 sel: IN STD_LOGIC;

8 x: OUT STD_LOGIC_VECTOR(2 DOWNTO 0));

9 END ENTITY;

10 -------------------------------------------------------

11 ARCHITECTURE mux2x3 OF mux2x3 IS

12 ---Component declaration:-----

13 COMPONENT mux2x1 IS

14 PORT (a, b, sel: IN STD_LOGIC; x: OUT STD_LOGIC);

15 END COMPONENT;

16 BEGIN

17 ---Component instantiation:---

18 generate_mux2x3: FOR i IN 0 TO 2 GENERATE

19 comp: mux2x1 PORT MAP (a(i), b(i), sel, x(i));

20 END GENERATE generate_mux2x3;

21 END ARCHITECTURE;

22 -------------------------------------------------------

5.6 Implementing Sequential Circuits with Concurrent Code

In principle, only combinational circuits should be implemented with concurrent code.

We know, however, that using only NAND or NOR gates any digital circuit can be con-

structed. Since sequential logic circuits are digital circuits, and since NAND or NOR gates

can be easily constructed with concurrent code, then sequential circuits can obviously also

be constructed with pure concurrent code. However, this approach is only viable for sim-

ple circuits, because in general the code would be much longer, more complex to write and

debug, and unnatural to follow. In conclusion, the use of concurrent code to design se-

quential circuits is in general not recommended.

Example 5.6: DFF Implemented with Concurrent Code

Figure 5.7 shows, on the left, a pair of multiplexers (combinational circuits), whose con-

nections emulate a DFF (a sequential circuit), shown on the right. Write a VHDL code

for this circuit and examine the expressions inferred by the compiler.

Solution A corresponding VHDL code is presented below. The intermediate signal p is

specified in line 8, and the multiplexers are implemented in lines 10–11 using the WHEN

statement. Looking at the compilation report (fitter equations), the expected result is the

inference of two serially connected latches, because a multiplexer with a feedback loop (as

in figure 5.7) emulates a latch. In conclusion, the resulting circuit should present the cor-
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rect functionality, but because of its construction, it is slower than an actual, prefabricated

DFF (the latter is optimized to operate specifically as a DFF).

1 --------------------------------------------

2 ENTITY concurrent_dff IS

3 PORT (d, clk: IN BIT;

4 q: BUFFER BIT);

5 END ENTITY;

6 --------------------------------------------

7 ARCHITECTURE concurrent OF concurrent_dff IS

8 SIGNAL p: BIT;

9 BEGIN

10 p <= d WHEN clk='0' ELSE p; --1st mux

11 q <= p WHEN clk='1' ELSE q; --2nd mux

12 END ARCHITECTURE;

13 --------------------------------------------

5.7 Implementing Arithmetic Circuits with Operators

Arithmetic circuits are normally constructed using only arithmetic operators (þ, �, *, /,

**, ABS, REM, and MOD, described in section 4.2). The first four in this list are by far

the most frequently used, so special attention is dedicated to them in this section.

The main interface (PORT) types for arithmetic circuits are INTEGER (should be

avoided) and STD_LOGIC_VECTOR (industry standard). On the other hand, internally,

the preferred types are UNSIGNED and SIGNED (as seen in chapter 3, these types are

defined in the packages numeric_std [preferred] and std_logic_arith).

To use such operators, it is necessary to know the size (number of bits) required for the

result as a function of the operands’ sizes. For example, below are definitions for four

functions (þ, �, *, /), copied from the package numeric_std, for the case of signed inputs

and signed output (L and R represent the left and right operands).

------------------------------------------------------------

FUNCTION "+" (L, R: SIGNED) RETURN SIGNED;

--Result SUBTYPE: SIGNED(MAX(L'LENGTH, R'LENGTH)-1 DOWNTO 0)

Figure 5.7
DFF implemented with multiplexers (example 5.7).
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------------------------------------------------------------

FUNCTION "-" (L, R: SIGNED) RETURN SIGNED;

--Result SUBTYPE: SIGNED(MAX(L'LENGTH, R'LENGTH)-1 DOWNTO 0)

------------------------------------------------------------

FUNCTION "*" (L, R: SIGNED) RETURN SIGNED;

--Result SUBTYPE: SIGNED((L'LENGTH+R'LENGTH-1) DOWNTO 0)

------------------------------------------------------------

FUNCTION "/" (L, R: SIGNED) RETURN SIGNED;

--Result SUBTYPE: SIGNED(L'LENGTH-1 DOWNTO 0)

------------------------------------------------------------

The conclusions from the definitions above are:

1) For "þ" and "�": The size of the result must be equal to the size of the largest operand.

2) For "*": The size of the result must be equal to the sum of the operands’ sizes.

3) For "/": The size of the result must be equal to the size of the numerator.

As already mentioned, a fundamental aspect of arithmetic circuits is their nature, which

can be unsigned or signed. As seen in section 1.8, the range covered with N bits in the for-

mer is from 0 to 2N � 1, while in the latter it goes from �2N�1 to 2N�1 � 1. For example,

with 4 bits, the range is from 0 to 15 when unsigned or from �8 to þ7 if signed.

Negative numbers are represented in two’s complement form. Consequently, addition

and subtraction are essentially the same function because the latter is just the former pre-

ceded by a two’s complement operation. Some examples are shown below for a 4-bit

signed system.

5þ 2 ¼ "0101"þ "0010" ¼ "0111" ¼ 7

5� 2 ¼ 5þ ð�2Þ ¼ "0101" þ "1110" ¼ "0011" ¼ 3

5� ð�2Þ ¼ 5þ 2 ¼ "0111" ¼ 7

�5þ 2 ¼ "1011"þ "0010" ¼ "1101" ¼ �3

Multiplication and division with signed numbers involve again two’s complement oper-

ations. A negative number must be two’s complemented to attain its absolute value. Then

the multiplication or division is performed, with the result two’s complemented again if the

result is to be negative (that is, if the signs of the operands are di¤erent). Some examples

are shown below, again for a signed system with 4-bit inputs.

5*3 ¼ "0101" * "0011" ¼ "00001111" ¼ 15

�5*3 ¼ �(5*3) ¼ �("0101" * "0011") ¼ �("00001111") ¼ "11110001" ¼ �15

5/3 ¼ "0101" / "0011" ¼ "0001" ¼ 1

�5/3 ¼ �(5/3) ¼ �("0101" / "0011") ¼ �("0001") ¼ "1111" ¼ �1
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Because multiplication and division are not subject to overflow (due to the number of

bits adopted in the respective functions), the corresponding VHDL code is straightfor-

ward. However, that is not the case for addition and subtraction, in which there are also

carry-in/out bits to be taken care of.

Figure 5.8 shows three diagrams for an adder/subtracter. In (a), the operands are a and b

(eight bits each), the carry-in bit is cin, the sum and its carry-out bit are sum and cout_sum,

and the subtraction and its carry-out are sub and cout_sub. An equivalent representation

appears in (b), in which the carry-out bits are combined with sum and sub (note that now

they have 9 bits; the MSB is cout). Finally, in (c), there are no carry bits, so this circuit is

subject to overflow.

Assume that it is an unsigned system. Then the sum in figure 5.8(a) can be computed as

follows:

-----------------------------------------------------

SIGNAL a_uns, b_uns, sum: UNSIGNED(7 DOWNTO 0);

SIGNAL sum_uns: UNSIGNED(9 DOWNTO 0);

SIGNAL cin, cout_sum: STD_LOGIC;

sum_uns <= ('0' & a_uns & cin) + ('0' & b_uns & '1');

sum <= sum_uns(8 DOWNTO 1);

cout_sum <= sum_uns(9);

-----------------------------------------------------

Note in the code above that the operands for sum_uns have 10 bits, attained by append-

ing cin or '1' on the right and '0' on the left. The LSB of sum_uns is discarded and its MSB

is cout_sum.

Assuming now that the system is signed, the following can be done:

---------------------------------------------------------------

SIGNAL a_sig, b_sig, sum: SIGNED(7 DOWNTO 0);

SIGNAL sum_sig: SIGNED(9 DOWNTO 0);

SIGNAL cin, cout_sum: STD_LOGIC;

sum_sig <= (a_sig(7) & a_sig & cin) + (b_sig(7) & b_sig & '1');

sum <= sum_sig(8 DOWNTO 1);

cout_sum <= sum_sig(9);

---------------------------------------------------------------

Figure 5.8
Adder/subtracter with the carry-out bits (a) separated from sum and sub, (b) grouped with sum and sub, and (c)
inexistent. The first two are equivalent and not subject to overflow, whereas in the last one overflow can occur.
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Note that the only di¤erence in this code with respect to the previous code is in the sign-

extension bit, which must now be a copy of the leftmost bit (see binary arithmetic algo-

rithms in Pedroni (2008)).

The problem with the above approaches is that the expressions do not work for subtrac-

tion, which is often necessary, especially in signed systems. Consequently, a more general

approach is needed. A solution is shown below. Note in the expression for sub_sig that all

three operands (including cin) were sign-extended (a '0' is used for cin because it is a non-

negative number), so both additions and subtractions can now be performed. A complete

design example will be shown shortly.

-----------------------------------------------------------------

SIGNAL a_sig, b_sig, sum, sub: SIGNED(7 DOWNTO 0);

SIGNAL sum_sig, sub_sig: SIGNED(8 DOWNTO 0);

SIGNAL cin, cout_sum, cout_sub: STD_LOGIC;

sum_sig <= (a_sig(7) & a_sig) + (b_sig(7) & b_sig) + ('0' & cin);

sum <= sum_sig(7 DOWNTO 0);

cout_sum <= sum_sig(8);

sub_sig <= (a_sig(7) & a_sig) - (b_sig(7) & b_sig) + ('0' & cin);

sub <= sub_sig(7 DOWNTO 0);

cout_sub <= sub_sig(8);

-----------------------------------------------------------------

Contrary to the þ and � operators for integer arithmetic, fixed-point and floating-point

arithmetic are guaranteed to be overflow free because the size of the output vector in both

þ and � operations is defined to be one unit larger than the largest input (see comments

on arithmetic operators in section 3.8). The case of integer arithmetic is further covered in

the recommendations and design example below.

Based on the above discussion, plus the note at the end of example 3.4 and the contents

of example 3.9, the following is recommended:

1) For the interfaces (PORT specifications), use only STD_LOGIC(_VECTOR) (industry

standard).

2) Internally, use only (UN)SIGNED.

3) For the type above, use the package numeric_std (standardized by IEEE).

4) Before performing any computation, explicitly convert the data from

STD_LOGIC(_VECTOR) to (UN)SIGNED. This can be done with type casting (section

3.18).

5) Make the computations.

6) Finally, return the result to STD_LOGIC(_VECTOR). Type casting can again be used.
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Example 5.7: Recommended Adder/Subtracter Implementation

Write a VHDL code that implements the adder/subtracter of figure 5.8(a) or 5.8(b) (phys-

ically, they are equal). In the design, follow the recommendations just presented. Assume

that it is part of a signed system.

Solution A VHDL code for this circuit is presented below, under the title signed_add_sub

(line 6). Because the circuit is signed, the package numeric_std was included in line 4.

The number of bits in the operands is a generic parameter (line 7). The type of all ports is

STD_LOGIC(_VECTOR) (lines 8–12). The inputs are a, b, and cin, while the outputs are

sum and sub.

The code proper (lines 20–33) is organized in four parts. In the first part (lines 21–22),

the operands are explicitly converted to SIGNED. In the second part (lines 24–25), they

are added and subtracted, with carry-in included. In the third part (lines 27–28), the sig-

nals are converted back to STD_LOGIC_VECTOR, with the carry-out bits grouped with

sum and sub, as in figure 5.8(b). The forth part (lines 30–33) is equivalent to the third, just

with the carry-out bits separated from sum and sub, as in figure 5.8(a). To have the code

resemble figure 5.8(a) instead of 5.8(b), just comment out lines 10, 27, and 28 and uncom-

ment lines 11–12 and 30–33. Simulation results are shown in figure 5.9.

1 ------------------------------------------------------------------------

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 USE ieee.numeric_std.all;

5 ------------------------------------------------------------------------

6 ENTITY signed_add_sub IS

7 GENERIC (N: INTEGER := 4); --number of input bits

8 PORT (a, b: IN STD_LOGIC_VECTOR(N-1 DOWNTO 0);

9 cin: IN STD_LOGIC;

10 sum, sub: OUT STD_LOGIC_VECTOR(N DOWNTO 0));

11 --sum, sub: OUT STD_LOGIC_VECTOR(N-1 DOWNTO 0);

12 --cout_sum, cout_sub: OUT STD_LOGIC);

Figure 5.9
Simulation results from the adder (or subtracter) of example 5.7.
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13 END ENTITY;

14 ------------------------------------------------------------------------

15 ARCHITECTURE signed_add_sub OF signed_add_sub IS

16 SIGNAL a_sig, b_sig: SIGNED(N-1 DOWNTO 0);

17 SIGNAL sum_sig, sub_sig: SIGNED(N DOWNTO 0);

19 BEGIN

20 -----convert to signed:--------------

21 a_sig <= signed(a);

22 b_sig <= signed(b);

23 -----add and subtract:---------------

24 sum_sig <= (a_sig(N-1) & a_sig) + (b_sig(N-1) & b_sig) + ('0' & cin);

25 sub_sig <= (a_sig(N-1) & a_sig) - (b_sig(N-1) & b_sig) + ('0' & cin);

26 -----output option #1:---------------

27 sum <= std_logic_vector(sum_sig);

28 sub <= std_logic_vector(sub_sig);

29 -----output option #2:---------------

30 --sum <= std_logic_vector(sum_sig(N-1 DOWNTO 0));

31 --cout_sum <= std_logic(sum_sig(N));

32 --sub <= std_logic_vector(sub_sig(N-1 DOWNTO 0));

33 --cout_sub <= std_logic(sub_sig(N));

34 END ARCHITECTURE;

35 ------------------------------------------------------------------------

5.8 Preventing Combinational-Logic Simplification

A series of synthesis attributes were described in section 4.6; namely:

1 enum_encoding attribute

1 chip_pin attribute

1 keep attribute

1 preserve attribute

1 noprune attribute.

As shown there, the keep attribute can be used to tell the compiler not to simplify (sup-

press) specific nodes that would otherwise be removed during the optimization process. Its

application was illustrated in example 4.4, in which a delay line was constructed. Another

example is included (example 5.8), followed by another (less objective) approach that does

not make use of the keep attribute.

Example 5.8: Short-Pulse Generator with the keep Attribute

Figure 5.10(a) shows a typical circuit used for pulse-shortening in pulse-based flip-flop

implementations (Pedroni 2008). Note that the delay line contains three inverters, which
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would be reduced to just one by the compiler if no measure were taken to prevent it. De-

sign this circuit using the keep attribute to preserve nodes a, b, and c. Include simulation

results in your solution. Before starting, draw in figure 5.10(b) the expected waveforms at

nodes c and short_clk. Assume that the propagation delay through each inverter and

through the AND gate is 1 ns, which is the distance between the vertical lines in the figure.

Solution It is left to the reader to fill figure 5.10(b). A VHDL code for this circuit is pre-

sented below. Note the use of keep in lines 9–10, telling the compiler to preserve nodes a,

b, and c. Observe also that the code proper is not altered by the presence of this attribute.

The RTL view produced by the compiler is shown in figure 5.11, along with simulation

results. Does the overall shape of short_clk in figure 5.11 coincide with your sketch in

figure 5.10(b)?

1 ----------------------------------------------

2 ENTITY short_pulse_gen IS

3 PORT (clk: IN BIT;

4 short_clk: OUT BIT);

5 END ENTITY;

6 ----------------------------------------------

7 ARCHITECTURE short_pulse OF short_pulse_gen IS

8 SIGNAL a, b, c: BIT;

9 ATTRIBUTE keep: BOOLEAN;

10 ATTRIBUTE keep OF a, b, c: SIGNAL IS TRUE;

Figure 5.10
Short-pulse generator of example 5.8.

Figure 5.11
RTL view and simulation results from the short-pulse generator of example 5.8.
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11 BEGIN

12 a <= NOT clk;

13 b <= NOT a;

14 c <= NOT b;

15 short_clk <= clk AND c;

16 END ARCHITECTURE;

17 ----------------------------------------------

Another (but less generic, shown here for Quartus II) solution for the problem above

can be devised with the LCELL primitive, which consists of a bu¤er that can be inserted

into the signal path. This primitive is instantiated as a COMPONENT (chapter 8), with

the following specifications:

COMPONENT LCELL

PORT (a_in: IN STD_LOGIC;

a_out: OUT STD_LOGIC);

END COMPONENT;

Example 5.9: Short-Pulse Generator with the LCELL Primitive

Redesign the circuit of example 5.8, this time employing the LCELL primitive instead of

the keep attribute.

Solution A VHDL code for this problem is shown below. The COMPONENT declara-

tion for LCELL (lines 12–15) is in the declarative part of the architecture (this megafunc-

tion is available in the altera_mf_components.vhd file). Six auxiliary signals are declared in

line 11 instead of three because the wires must be broken in order to insert the bu¤ers. In

the code proper, three COMPONENT instances of LCELL are created (lines 18, 20, 22).

The inferred circuit is similar to that in the previous example.

1 -----------------------------------------------

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 -----------------------------------------------

5 ENTITY short_pulse_gen IS

6 PORT (clk: IN STD_LOGIC;

7 short_clk: OUT STD_LOGIC);

8 END ENTITY;

9 -----------------------------------------------

10 ARCHITECTURE short_pulse OF short_pulse_gen IS

11 SIGNAL a1, a2, b1, b2, c1, c2: STD_LOGIC;

12 COMPONENT LCELL IS

13 PORT (a_in: IN STD_LOGIC;

14 a_out: OUT STD_LOGIC);

15 END COMPONENT;
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16 BEGIN

17 a1 <= NOT clk;

18 buffer_a: COMPONENT LCELL PORT MAP (a1, a2);

19 b1 <= NOT a2;

20 buffer_b: COMPONENT LCELL PORT MAP (b1, b2);

21 c1 <= NOT b2;

22 buffer_c: COMPONENT LCELL PORT MAP (c1, c2);

23 short_clk <= clk AND c2;

24 END ARCHITECTURE;

25 -----------------------------------------------

5.9 Allowing Multiple Signal Assignments

As will be seen in section 7.4, only one assignment can be made to a SIGNAL, while a

VARIABLE allows multiple assignments. One way of circumventing such a limitation

will be introduced in section 7.7. To solve some of the exercises in section 5.11, a preview

of section 7.7 might be helpful.

5.10 VHDL 2008

With respect to the material covered in this chapter, the main additions specified in VHDL

2008 are those listed below.

1) The concurrent WHEN and SELECT statements can be used also in sequential code.

For example, WHEN can replace IF or can be used inside IF, while SELECT can replace

CASE.

2) WHEN allows boolean tests (the only consequence of this is sometimes a slightly

shorter code, at the cost of reduced code clarity). For example, the two codes below are

equivalent (the traditional format is on the left).

x <= '0' WHEN rst='0' ELSE

'1' WHEN a='0' OR b='1' ELSE

'-';

x <= '0' WHEN NOT rst ELSE

'1' WHEN NOT a OR b ELSE

'-';

3) The matching "SELECT?" statement was introduced, which allows the use of don’t care

inputs. An example is shown below.

WITH interrupt SELECT?

priority <= 4 WHEN "1---",

3 WHEN "01--",

2 WHEN "001-",

1 WHEN "0001",

0 WHEN OTHERS;
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4) In the conditional IF-GENERATE statement, the use of ELSIF/ELSE is allowed. A

simplified syntax is shown below (on the left).

label: IF condition GENERATE

[declarative_part

BEGIN]

concurrent_statements_part

[ELSIF condition GENERATE

[declarative_part

BEGIN]

concurrent_statements_part]

[ELSE GENERATE

[declarative_part

BEGIN]

concurrent_statements_part]

END GENERATE [label];

label: CASE expression GENERATE

WHEN condition_1 =>

[declarative_part

BEGIN]

concurrent_statements_part

WHEN condition1_2 =>

[declarative_part

BEGIN]

concurrent_statements_part

...

END GENERATE [label];

5) A new form of conditional GENERATE, called CASE-GENERATE, was also intro-

duced. A simplified syntax is shown above (on the right).

6) The use of alternative labels for IF-GENERATE and the use of END before END

GENERATE are both allowed.

5.11 Exercises

The exercises proposed in this section are to be solved using only truly concurrent code

(that is, with WHEN, SELECT, and GENERATE, plus operators, of course). See also

the comment in section 5.9.

Note: For exercise solutions, please consult the book website.

Exercise 5.1: Circuit with ‘Don’t Care’ Outputs

Figure 5.12 shows a diagram for a combinational circuit that must compute the function

described in the accompanying truth table. Note that some outputs are marked as ‘don’t

care’.

a) Using Karnaugh maps, derive the optimal boolean expressions for both output bits (y1
and y0).

b) Which data type should be used in the VHDL code in order to take advantage of the

‘don’t care’ states?
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c) Design this circuit using WHEN or SELECT. After compiling and testing the code,

compare the equations implemented by the fitter against those obtained above.

Exercise 5.2: Dual-Edge Flip-Flop

Using concurrent code, design the dual-edge flip-flop of example 7.6 (figure 7.4).

Exercise 5.3: Generic AND and NAND Gates

Using concurrent code, solve exercises 7.12 and 7.13.

Exercise 5.4: Generic Parity Generator

The circuit in figure 5.13 has an N-bit input x, from which an ðN þ 1Þ-bit output y must

be produced. The circuit must detect the parity of x, then add an extra bit to it (on the

left) such that the final parity (number of '1's) is odd. Design this circuit using concurrent

code. Enter N as a generic parameter, so the code can be easily adjusted to any input size.

(Suggestion: see section 7.7.)

Exercise 5.5: Parity Generator with Automated Pin Allocation

Assume the case of N ¼ 4 in the exercise above (so the circuit has a total of nine ports).

Using the chip_pin attribute (section 4.6), make proper pin assignments in the code such

that all nine ports are automatically routed to the desired pins (check the target device’s

pin list to select pins that are available to the user).

Exercise 5.6: Generic Binary-to-Gray Converter

The regular binary code, which consists of code words ordered according to their increas-

ing unsigned decimal values, constitutes the most commonly used digital code. In some

Figure 5.12

Figure 5.13
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applications, however, gray code (Pedroni 2008), which is an UDC (Unit Distance Code)

because any two adjacent code words di¤er by just one bit, might be preferred (in elec-

tromechanical applications, for example). This exercise deals with the design of a circuit

capable of converting regular binary code into gray code.

a) Just to practice with gray code, make a table with two columns, placing the 16 four-bit

binary entries in the first column, and the corresponding gray values in the second column.

b) In order to implement a generic converter, find a closed-form expression for binary-to-

gray conversion. Use it to check your entries in the second column for part (a).

c) Write a VDHL code from which this converter can be inferred. Enter N (number of

bits) as a GENERIC parameter, and use the closed-form expression obtained above to do

the computations. Include simulation results in your solution.

Exercise 5.7: Hamming Weight with GENERATE

The Hamming weight of a vector is the number of '1's in it. Design a circuit that computes

that number for a generic-length vector using only concurrent code. (Suggestion: see sec-

tion 7.7.)

Exercise 5.8: Binary Sorter with GENERATE

Using concurrent code, design a circuit capable of ordering the bits of a bit vector. The

ordering should be from left to right, with all '1's coming first (for example, "00011001"

would become "11100000"). (Suggestions: solve exercise 5.7 first; see section 7.7)

Exercise 5.9: ALU with WHEN

Redesign the ALU of example 5.3 using the WHEN statement instead of SELECT.

Exercise 5.10: Arithmetic Circuit with INTEGER

Figure 5.14(a) shows an arithmetic circuit that must be designed to produce the computa-

tions specified in the truth table of figure 5.14(b) (it is a ‘‘mini-ALU’’, with just the arith-

metic unit). Write a VHDL code for this circuit under the following constraints:

Figure 5.14
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1) The code must be truly concurrent;

2) All ports must be specified as INTEGER. Note that in this case the output can have

more bits than the inputs, so no separate carry-out computation is needed. Note also that

some operations are signed.

Exercise 5.11: Arithmetic Circuit with STD_LOGIC

Figure 5.14(c) shows an arithmetic circuit similar to that in the previous exercise, the only

di¤erence being that now the output has the same number of bits as the inputs, so a sepa-

rate wire is needed for the carry-out bit. Design this circuit such that it performs the same

operations listed in figure 5.14(b), under the following constraints:

1) Again, the code must be truly concurrent;

2) All ports must be specified as STD_LOGIC(_VECTOR) (industry standard).

Exercise 5.12: Barrel Shifter with INTEGER and BIT_VECTOR

A barrel shifter (Pedroni 2008) is a circuit capable of shifting an input word to the right or

to the left by a certain number of bit positions. A top level diagram is shown in figure 5.15,

with inputs x (word to be shifted) and shift (number of positions to be shifted), and output

y (shifted word). Assuming that our shifter is unregistered (that is, does not contain mem-

ory, so it is not dependent on a clock signal) and that the empty positions must be filled

with zeros, write a VHDL code from which this circuit can be inferred. Represent the

number of bits by N in x and y and M in shift (where 2M ¼ N). These parameters must

be generic, and the total amount of shift should be allowed to be as large as N � 1. Solve

this exercise with shift declared as INTEGER and x and y as BIT_VECTOR. Are the shift

operators SLL and SRL helpful here?

Exercise 5.13: Barrel Shifter with STD_LOGIC_VECTOR

Repeat the exercise above, this time with all ports specified as STD_LOGIC_VECTOR.

Exercise 5.14: Recommended Unsigned Adder/Subtracter Implementation

Write a VHDL code that implements the adder/subtracter of figure 5.8(a) or 5.8(b) for an

unsigned system. In the design, follow the recommendations presented in section 5.7.

Figure 5.15

Concurrent Code 147



Exercise 5.15: Recommended Unsigned Multiplier Implementation

Figure 5.16(a) shows a multiplier. Write a VHDL code that implements this circuit for an

unsigned system. In the design, follow the recommendations presented in section 5.7.

Exercise 5.16: Recommended Signed Multiplier Implementation

Figure 5.16(a) shows a multiplier. Write a VHDL code that implements this circuit for an

signed system. In the design, follow the recommendations presented in section 5.7.

Exercise 5.17: Recommended Unsigned Divider Implementation

Figure 5.16(b) shows a divider. Write a VHDL code that implements this circuit for an

unsigned system. In the design, follow the recommendations presented in section 5.7.

Exercise 5.18: Recommended Signed Divider Implementation

Figure 5.16(b) shows a divider. Write a VHDL code that implements this circuit for an

signed system. In the design, follow the recommendations presented in section 5.7.

Exercise 5.19: Frequency Multiplier with the keep Attribute

Figure 5.17 shows two short-pulse generators similar to that in figure 5.10, connected in

parallel and operating with complementary versions of the clock.

a) Examine this circuit then draw the expected waveforms for c1, y1, c2, y2, and clk_out.

b) Design this circuit with concurrent code, using keep to preserve internal nodes. Does

the resulting waveform for clk_out match yours?

Figure 5.16

Figure 5.17
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Exercise 5.20: Generic Multiplexer

Consider the multiplexer implemented in example 5.2 (figure 5.3), which has four inputs

with an arbitrary number of bits (N ) per input. To make the design truly generic, consider

the case where the number of inputs is also arbitrary (M ). Redesign that circuit with M

and N declared as GENERIC constants, in the following two situations:

a) Using a 1D� 1D data array for the input (recall that the only predefined data types

with dimension 1D� 1D are STRING and INTEGER_VECTOR, which are of no inter-

est in the present example).

b) Using a predefined data type.

Exercise 5.21: INOUT bus

Solve exercise 13.1.

Exercise 5.22: INOUT versus BUFFER

Solve exercise 13.2.

Exercise 5.23: Floating-Point Adder

This exercise concerns the ‘‘backward’’ construction of a floating-point (FP) adder. (Sug-

gestion: see first the example in section 3.8.)

a) Figure 5.18 shows simulation results from a FP adder that computes x ¼ aþ b, where

all signals are expressed with 4 bits for the exponent and also 4 bits for the fraction, that

is, (S)(EEEE)(FFFF). Examine each result in the figure and check its correctness. The

non-exact values obtained in the simulation are wrong or is this something inherent of FP

numbers?

b) Design such an adder, then simulate it and check whether similar results are obtained.

Figure 5.18
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Exercise 5.24: Floating-Point Adder, Subtracter, Multiplier, Divider

This exercise concerns the design of a single-precision (32-bit option of IEEE 754) adder,

subtracter, multipler, and divider circuit. (Suggestion: see first the example in section 3.8.)

a) Among the four implementations, that is, aþ b, a� b, a*b, and a/b, which ones do you

expect to require the smallest and the largest amount of hardware?

b) Design a single-precision FP adder that computes x ¼ aþ b. Compile the circuit in a

low-cost (say, Cyclone II or Spartan 3A) and also in a high-end (say, Stratix III or Virtex 5)

device. In each case, write down the number of logic cells or LUTs or slices needed by the

circuit.

c) Simply modify the output equation to x ¼ a� b and repeat the compilations, writing

down the new amounts of hardware.

d) Repeat the procedure for x ¼ a*b.

e) Finally, do it for x ¼ a/b.

f ) Make a table with all the values obtained above. Compare the results against your

predictions in part (a).
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6 Sequential Code

6.1 Introduction

As described in section 5.1, concurrent code is intended only for the design of combina-

tional circuits, while sequential code can be used indistinctly to design both sequential and

combinational circuits.

The statements intended only for completely concurrent code, referred to as concurrent

statements, are WHEN, SELECT, and GENERATE (seen in the previous chapter), while

those for sequential code, referred to as sequential statements, are IF, WAIT, LOOP, and

CASE (described in this chapter).

In VHDL, there are three kinds of sequential code: PROCESS, FUNCTION and PRO-

CEDURE (the last two are called subprograms). Because PROCESS is intended for the

architecture body (main code, for example), it will be described in this chapter, while sub-

programs, being intended mainly for libraries, will be seen in chapter 9, which deals with

system-level code. Recall that, as a whole, a PROCESS or a subprogram call is a concur-

rent statement.

A crucial point when dealing with sequential code is to fully understand the di¤erences

between SIGNAL and VARIABLE (these are the two VHDL objects for dealing with

nonstatic values). For that reason, an entire chapter (chapter 7) will be dedicated to the

matter. Moreover, an introduction has already been made in section 3.2, needed for

the discussion on data types in chapter 3. However, for the discussions on sequential code

in this chapter, it is necessary to preview some of their fundamental properties.

Main properties of SIGNAL:

1 A signal can only be declared outside sequential code (though it can be used there).

1 A signal is not updated immediately (when a value is assigned to a signal inside sequen-

tial code, the new value will only be ready after the conclusion of that run).

1 A signal assignment, when made at the transition of another signal, will cause the infer-

ence of registers (given that the signal a¤ects the design entity).



1 Only a single assignment is allowed to a signal in the whole code (even though the com-

piler might accept multiple assignments to the same signal in PROCESS or subprograms,

only the last one will be e¤ective, so again it is just one assignment).

Main properties of VARIABLE:

1 A variable can only be declared and used inside a PROCESS or subprogram (if it is a

shared variable, then the declaration is made elsewhere, but it still should only be modified

inside a sequential unit).

1 A variable is updated immediately (hence the new value can be used/tested in the next

line of code).

1 A variable assignment, when made at the transition of another signal, will cause the in-

ference of registers (assuming that the variable’s value a¤ects a signal, which in turn a¤ects

the design entity).

1 Multiple assignments are fine.

6.2 Latches and Flip-Flops

Because flip-flops are indispensable building blocks for sequential circuits, a brief review is

made in this section. Additionally, because latches are also needed occasionally, they too

are included.

As shown in Pedroni (2008), there are two fundamental types of latches, called SR latch

(SRL) and D latch (DL), and there are four types of flip-flops, called SR flip-flop (SRFF),

D flip-flop (DFF), T flip-flop (TFF), and JK flip-flop (JKFF). DL and DFF are the most

commonly used in their categories, but overall DFF is by far the most common. For in-

stance, there are thousands of such units in FPGA devices.

The fundamental di¤erence between latches and flip-flops is that the former are level-

sensitive, while the latter are edge-sensitive. This means that a latch is transparent (input

copied to the output) during the whole time in which the clock is '1' (or '0') and opaque

(thus retaining the last value of the transparent cycle) when the clock is '0' (or '1'), while a

flip-flop is transparent only during one of the clock transitions, either from '0' to '1' (called

positive-edge DFF ) or from '1' to '0' (negative-edge DFF ).

Two DL symbols are shown in figures 6.1a–b. The first is transparent while clk is high;

the second DL is transparent while clk is low. Both have a reset input, which immediately

zeros the output when asserted.

Four DFF symbols are depicted in figures 6.1c–f. The first circuit operates at the posi-

tive clock edge, while the second copies the input at the negative clock edge. These two

circuits have a reset input (in our context, reset is always asynchronous—that is, whenever

rst ¼ '1' occurs, the output is immediately zeroed, regardless of the clock). The third and

fourth circuits are similar to the first and second, respectively, but they have a clear input

instead of reset (in our context, clear is always synchronous, meaning that after clr is
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asserted we still need to wait until the proper clock transition occurs for the output to be

zeroed). DFFs will be present in almost all designs described in the book from this point

on.

Figure 6.2 illustrates the operation of DL and DFF circuits (this is a functional analysis

because internal propagation delays were neglected). The same clock (clk) and the same

data (d ) are applied to both circuits, which respond with q. In both cases the initial state

was considered to be q ¼ '0'. To ease the analysis of figure 6.2, the portions of the clk

waveform during which the DL is transparent were marked with gray shades, while the

moments at which the DFF is transparent were marked with arrows. Note that from

the same d waveform very distinct waveforms are obtained for q.

6.3 PROCESS

PROCESS is a sequential section of VHDL code, located in the statements part of an ar-

chitecture. Inside it, only sequential statements (IF, WAIT, LOOP, CASE) are allowed. A

simplified syntax is shown below.

[label:] PROCESS [(sensitivity_list)] [IS]

[declarative_part]

BEGIN

sequential_statements_part

END PROCESS [label];

Figure 6.1
Latches and flip-flops. (a) Positive-level DL with reset; (b) Negative-level DL with reset; (c) Positive-edge DFF
with reset; (d) Negative-edge DFF with reset; (e) Positive-edge DFF with clear; (f ) Negative-edge DFF with clear.

Figure 6.2
(a) DL and (b) DFF operation examples.
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As shown in the syntax, the label, whose purpose is to improve readability in long codes,

is optional. The sensitivity list is mandatory (but is forbidden when WAIT is used), and

causes the process to be run every time a signal in the list changes (or the condition asso-

ciated with WAIT is fulfilled).

The declarative part of PROCESS can contain the following: subprogram declaration,

subprogram body, type declaration, subtype declaration, constant declaration, variable

declaration, file declaration, alias declaration, attribute declaration, attribute specification,

use clause, group template declaration, and group declaration. Signal declaration is not

allowed, while variable is by far the most common declaration (see its syntax in section

3.2).

In the statements part of PROCESS, only sequential statements are allowed (besides

operators, of course, seen in chapter 4, because these can go in any kind of code).

Example The (partial) process below is executed whenever clk or rst changes. It contains

three variable declarations ða; b; cÞ, the first two specified as INTEGER, the last one as

BIT_VECTOR. Only for c a default value (optional) was entered.

PROCESS (clk, rst)

VARIABLE a, b: INTEGER RANGE 0 TO 255;

VARIABLE c: BIT_VECTOR(7 DOWNTO 0) := "00001111";

BEGIN

...

END PROCESS;

In VHDL 2008, the following is allowed in the declarative part of PROCESS besides the

items already listed above: subprogram instantiation declaration, package declaration,

package body, and package instantiation declaration. Additionally, the keyword ALL

was introduced for the sensitivity list (to reduce errors when implementing combinational

circuits with sequential code). See other details in section 6.10.

6.4 The IF Statement

As mentioned earlier, IF, WAIT, LOOP, and CASE are the statements intended for se-

quential code (they can only be used inside a PROCESS or subprogram), of which IF is

by far the most common. Though this could, in principle, have a negative impact (because

the IF-ELSE statement might infer an unnecessary priority decoder), the synthesizer will

be able to simplify the structure, so essentially the same hardware will result as with basi-

cally any other statements. A simplified syntax for IF is shown below (‘‘conditions’’ can be

optionally surrounded by parentheses).
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[label:] IF conditions THEN

assignments;

ELSIF conditions THEN

assignments;

...

ELSE

assignments;

END IF [label];

Example

IF (x<y) THEN

temp:= "00001111";

ELSIF (x=y AND w='0') THEN

temp:= "11110000";

ELSE

temp:=(OTHERS => '0');

END IF;

In VHDL 2008, the concurrent statements WHEN and SELECT are allowed inside the IF

statement and IF allows boolean tests.

Example 6.1: DFFs with Reset and Clear

Employing the IF statement, write a code that implements the DFFs of figures 6.1c and

6.1e.

Solution A code for this circuit is shown below. The inputs are d1, clk, and rst for the first

flip-flop, and d2, clk, and clr for the second, while the outputs are q1 for the first and q2 for

the second DFF. Even though both DFFs could be designed with just one process, two

processes were employed to make the code easier to inspect (this does not a¤ect the in-

ferred circuit).

The first DFF is in the process of lines 13–20, under the (optional) label with_reset. Note

that clk and rst are in the sensitivity list (line 13), so if any of them changes the process is

run. Note also that rst has precedence over clk in the IF statement (lines 15–19). To detect

a clock edge, the 'EVENT attribute (line 17), seen in section 4.4, is used, which returns

TRUE when an event occurs on clk (clk'EVENT) and this event is an upward transition

(AND clk ¼ '1').

The second process is in lines 22–31, under the label with_clear. Only clk is in the sen-

sitivity list, so the process is run only when clk changes (in this particular example, the
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presence of clr in the sensitivity list would not a¤ect the result). The synchronism of clr is

established in the IF statements of lines 24–30, because clr is only tested (line 25) when a

positive clock edge occurs (line 24).

1 ---------------------------------------------

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 ---------------------------------------------

5 ENTITY flipflops IS

6 PORT (d1, d2, clk, rst, clr: IN STD_LOGIC;

7 q1, q2: OUT STD_LOGIC);

8 END ENTITY;

9 ---------------------------------------------

10 ARCHITECTURE flipflops OF flipflops IS

11 BEGIN

12 ---DFF of Figure 6.1(c):---

13 with_reset: PROCESS (clk, rst)

14 BEGIN

15 IF (rst='1') THEN

16 q1 <= '0';

17 ELSIF (clk'EVENT AND clk='1') THEN

18 q1 <= d1;

19 END IF;

20 END PROCESS with_reset;

21 ---DFF of Figure 6.1(e):---

22 with_clear: PROCESS (clk)

23 BEGIN

24 IF (clk'EVENT AND clk='1') THEN

25 IF (clr='1') THEN

26 q2 <= '0';

27 ELSE

28 q2 <= d2;

29 END IF;

30 END IF;

31 END PROCESS with_clear;

32 END ARCHITECTURE;

33 ---------------------------------------------

Simulation results are displayed in figure 6.3. The reader is invited to examine the plots

to check the (correct) operation of both DFFs (observe particularly the e¤ects of rst and

clr).
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Example 6.2: Basic Counter

Figure 6.4 shows, on the left, a diagram for a regular binary 0-to-9 counter. Write a

VHDL code that implements this circuit.

Solution A VHDL code for this counter is presented below, with input clk (line 3) and

output count (line 4). A PROCESS (lines 9–19), with the IF statement playing the central

role, is used to construct the circuit. In it, a VARIABLE, called temp (line 10), is em-

ployed, whose value is eventually passed to the actual output, count (line 18). Because a

variable is updated immediately, the comparison in line 14 must be against 10 instead of 9

(state 10 actually never occurs because the variable never reaches line 18 with that value),

so the actual range of the counter is from 0 to 9. Simulation results are included in figure

6.4.

1 -------------------------------------------

2 ENTITY counter IS

3 PORT (clk: IN BIT;

4 count: OUT INTEGER RANGE 0 TO 9);

5 END ENTITY;

6 -------------------------------------------

7 ARCHITECTURE counter OF counter IS

8 BEGIN

9 PROCESS(clk)

Figure 6.4
Counter (with simulation results) of example 6.2.

Figure 6.3
Simulation results from the DFFs of example 6.1.
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10 VARIABLE temp: INTEGER RANGE 0 TO 10;

11 BEGIN

12 IF (clk'EVENT AND clk='1') THEN

13 temp := temp + 1;

14 IF (temp=10) THEN

15 temp := 0;

16 END IF;

17 END IF;

18 count <= temp;

19 END PROCESS;

20 END ARCHITECTURE;

21 -------------------------------------------

Example 6.3: Shift Register

Figure 6.5 shows a shift register, which consists of a string of serially connected DFFs. The

input is din and the output is either q0 to q3 or just dout, depending on the application. For

example, the former can be used to convert data from serial to parallel form, while the lat-

ter can be used to implement a delay line. Design this circuit using VHDL. The number of

stages should be generic.

Solution A VHDL code for this circuit is presented below. The number of stages (N ) is

generic (line 6). The data input and output ports are din (line 7) and dout (line 8), respec-

tively. A process is used to implement the circuit (lines 13–22), with clk and rst in the sen-

sitivity list (line 13). Note that the shift register is obtained by simply shifting the whole

vector q one position to the right at every positive clock transition, with the rightmost

value discarded and the leftmost position taken by din. Simulation results (for N ¼ 4) are

included in figure 6.5. As can be seen, the whole data vector does move one position to the

right at every rising edge of the clock.

Figure 6.5
Shift register (with simulation results) of example 6.3.
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1 ------------------------------------------------

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 ------------------------------------------------

5 ENTITY shift_register IS

6 GENERIC (N: INTEGER := 4); --number of stages

7 PORT (din, clk, rst: IN STD_LOGIC;

8 dout: OUT STD_LOGIC);

9 END ENTITY;

10 ------------------------------------------------

11 ARCHITECTURE shift_register OF shift_register IS

12 BEGIN

13 PROCESS (clk, rst)

14 VARIABLE q: STD_LOGIC_VECTOR(0 TO N-1);

15 BEGIN

16 IF (rst='1') THEN

17 q := (OTHERS => '0');

18 ELSIF (clk'EVENT AND clk='1') THEN

19 q := din & q(0 TO N-2);

20 END IF;

21 dout <= q(N-1);

22 END PROCESS;

23 END ARCHITECTURE;

24 ------------------------------------------------

6.5 The WAIT Statement

WAIT is another sequential statement. It is available in three forms, of which two are for

synthesis and one is for simulation. When WAIT is employed, the PROCESS cannot have

a sensitivity list. Simplified syntaxes for all three forms follow.

[label:] WAIT UNTIL condition;

[label:] WAIT ON sensitivity_list;

[label:] WAIT FOR time_expression;

Sequential Code 159



WAIT UNTIL: This statement causes the process or subprogram to hold until the

expressed condition is fulfilled. In the example below, two equivalent processes for a DFF

with synchronous clear are shown, one with IF, the other with WAIT UNTIL. Note that

the process has no sensitivity list when WAIT is used.

---DFF process with IF:-----------

PROCESS (clk)

BEGIN

IF (clk'EVENT AND clk='1') THEN

IF (clr='1') THEN

q <= '0';

ELSE

q <= d;

END IF;

END IF;

END PROCESS;

----------------------------------

---DFF process with WAIT UNTIL:-------

PROCESS

BEGIN

WAIT UNTIL (clk'EVENT AND clk='1');

IF (clr='1') THEN

q <= '0';

ELSE

q <= d;

END IF;

END PROCESS;

--------------------------------------

WAIT ON: This statement causes the process or subprogram to hold until any listed sig-

nal changes. In the example below, WAIT ON monitors the clock. Since a single WAIT

ON statement at the beginning or at the end of a process is equivalent to using a process

with the same signals listed in the sensitivity list, the two processes below for a DFF with

synchronous clear are equivalent. Note again that no sensitivity list is allowed when WAIT

is used and that WAIT ON and IF are quite similar.

---DFF process with IF:-----------

PROCESS (clk)

BEGIN

IF (clk'EVENT AND clk='1') THEN

IF (clr='1') THEN

q <= '0';

ELSE

q <= d;

END IF;

END IF;

END PROCESS;

----------------------------------

---DFF process with WAIT ON:------

PROCESS

BEGIN

IF (clk'EVENT AND clk='1') THEN

IF (clr='1') THEN

q <= '0';

ELSE

q <= d;

END IF;

END IF;

WAIT ON clk;

END PROCESS;

----------------------------------

WAIT FOR: This statement is for simulations, so it will be studied in chapter 10. The

declaration below creates a clock waveform with period 80 ns.

WAIT FOR 40ns;

clk <= NOT clk;
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6.6 The LOOP Statement

As the name says, LOOP is used when a piece of code must be instantiated several times. It

is the counterpart of the concurrent statement GENERATE. Like IF, WAIT, and CASE,

LOOP also can only be used in sequential code (PROCESS and subprograms).

There are five cases involving the LOOP statements: unconditional, with FOR, with

WHILE, with EXIT, and with NEXT. To simplify matters, all five are grouped under the

LOOP designation. Simplified syntaxes for all five cases are presented below. LOOP with

FOR (also called FOR-LOOP) is by far the most frequently used.

Unconditional LOOP:

[label:] LOOP

sequential_statements

END LOOP [label];

LOOP with FOR:

[label:] FOR identifier IN range LOOP

sequential_statements

END LOOP [label];

LOOP with WHILE:

[label:] WHILE condition LOOP

sequential_statements

END LOOP [label];

LOOP with EXIT:

[loop_label:] [FOR identifier IN range] LOOP

...

[exit_label:] EXIT [loop_label] [WHEN condition];

...

END LOOP [loop_label];
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LOOP with NEXT:

[loop_label:] [FOR identifier IN range] LOOP

...

[next_label:] NEXT [loop_label] [WHEN condition];

...

END LOOP [loop_label];

Example of unconditional LOOP:

LOOP

WAIT UNTIL clk='1';

count := count + 1;

END LOOP;

Example of LOOP with FOR: In the code below, which employs the FOR-LOOP ver-

sion of LOOP, the loop is repeated unconditionally until i reaches 5 (that is, 6 times).

FOR i IN 0 TO 5 LOOP

x(i) <= a(i) AND b(5-i);

y(0, i) <= c(i);

END LOOP;

An important remark regarding FOR-LOOP (similar to that made for GENERATE in

chapter 5) is that both range bounds are normally required to be static. Thus a declaration

of the type "FOR i IN 0 TO x LOOP", where x is an input (therefore a nonstatic parame-

ter), is generally not synthesizable.

Example of LOOP with WHILE: The loop below will keep repeating while i < 10.

WHILE (i<10) LOOP

WAIT UNTIL clk'EVENT AND clk='1';

...

END LOOP;

Example of LOOP with EXIT: The loop will be terminated if a value di¤erent from '0' is

found in data.

FOR i IN data'RANGE LOOP

CASE data(i) IS

WHEN '0' => count:=count+1;

WHEN OTHERS => EXIT;

END CASE;

END LOOP;
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Example of LOOP with NEXT: NEXT will cause LOOP to skip one iteration if i ¼ skip

occurs.

FOR i IN 0 TO 15 LOOP

NEXT WHEN i=skip;

...

END LOOP;

In VHDL 2008, some tests associated with LOOP statements can be boolean. For exam-

ple, "WHILE ena LOOP" can be used instead of "WHILE ena='1' LOOP".

Example 6.4 illustrates the use of the FOR-LOOP version of LOOP, which is the most

frequently used. Additionally, it illustrates the construction of a fully combinational circuit

with sequential code.

Example 6.4: Carry-Ripple Adder

Adders are combinational circuits. The simplest multibit architecture, shown in figure 6.6,

is called carry-ripple adder (Pedroni 2008). Each individual cell, called full-adder (FA),

was seen in section 1.5 (figure 1.2). Write a VHDL code from which this adder can be in-

ferred. Employ sequential code and enter the number of bits (stages) as a generic parame-

ter, so the code can be easily adjusted to any adder size. Assume that the adder is unsigned.

Solution Each FA cell computes the sum and carry-out bits according with:

Sum: sk ¼ ak l bk l ck

Carry: ckþ1 ¼ ak � bk þ ak � ck þ bk � ck

These two expressions appear in lines 20–22 of the code below. The FOR-LOOP state-

ment (lines 19–23) is employed to instantiate the expressions N times. The number of bits

is entered using a GENERIC declaration (line 6). Simulation results, for N ¼ 8, are dis-

played in figure 6.7. As expected, whenever the sum is higher than 255, the carry-out bit

is asserted and the sum is subtracted of 256.

Figure 6.6
Carry-ripple adder.
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1 --------------------------------------------------------

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 --------------------------------------------------------

5 ENTITY carry_ripple_adder IS

6 GENERIC (N : INTEGER := 8); --number of bits

7 PORT (a, b: IN STD_LOGIC_VECTOR(N-1 DOWNTO 0);

8 cin: IN STD_LOGIC;

9 s: OUT STD_LOGIC_VECTOR(N-1 DOWNTO 0);

10 cout: OUT STD_LOGIC);

11 END ENTITY;

12 --------------------------------------------------------

13 ARCHITECTURE structure OF carry_ripple_adder IS

14 BEGIN

15 PROCESS(a, b, cin)

16 VARIABLE c: STD_LOGIC_VECTOR(N DOWNTO 0);

17 BEGIN

18 c(0) := cin;

19 FOR i IN 0 TO N-1 LOOP

20 s(i) <= a(i) XOR b(i) XOR c(i);

21 c(i+1) := (a(i) AND b(i)) OR (a(i) AND c(i)) OR

22 (b(i) AND c(i));

23 END LOOP;

24 cout <= c(N);

25 END PROCESS;

26 END ARCHITECTURE;

27 --------------------------------------------------------

Example 6.5 illustrates the use of the LOOP with EXIT version of LOOP.

Example 6.5: Leading Zeros

Design a circuit that counts the number of leading zeros in a binary vector, starting from

its left end (MSB).

Figure 6.7
Simulation results from the carry-ripple adder of example 6.4.
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Solution A VHDL code for this problem is shown below. LOOP is in lines 16–21, and

can be repeated up to N ¼ 8 times. If a '1' is found in the data vector, then EXIT (line

19) will terminate the loop. Simulation results are displayed in figure 6.8, illustrating the

correct operation of the inferred circuit.

1 ------------------------------------------------

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 ------------------------------------------------

5 ENTITY leading_zeros IS

6 PORT (data: IN STD_LOGIC_VECTOR (7 DOWNTO 0);

7 zeros: OUT INTEGER RANGE 0 TO 8);

8 END ENTITY;

9 ------------------------------------------------

10 ARCHITECTURE behavior OF leading_zeros IS

11 BEGIN

12 PROCESS (data)

13 VARIABLE count: INTEGER RANGE 0 TO 8;

14 BEGIN

15 count := 0;

16 FOR i IN data'RANGE LOOP

17 CASE data(i) IS

18 WHEN '0' => count := count + 1;

19 WHEN OTHERS => EXIT;

20 END CASE;

21 END LOOP;

22 zeros <= count;

23 END PROCESS;

24 END ARCHITECTURE;

25 ------------------------------------------------

6.7 The CASE Statement

Along with IF, WAIT, and LOOP, CASE too is only allowed inside sequential code

(PROCESS or subprogram). A simplified syntax is shown below.

Figure 6.8
Simulation results from the leading-zeros counter of example 6.5.

Sequential Code 165



[label:] CASE expression IS

WHEN value => assignments;

WHEN value => assignments;

...

END CASE;

Example

CASE control IS

WHEN "000" => x<=a; y<=b;

WHEN "000" | "111" => x<=b; y<= '0';

WHEN OTHERS => x<='0'; y<='1';

END CASE;

Like SELECT, CASE too allows the use of multiple values, which can be grouped with

"|" (means "or") or "TO" (for range), as shown.

WHEN value1 | value2 |... --value1 or value2 or ...

WHEN value1 TO value2 --range (for enumerated types only)

Like SELECT, CASE too requires that all input values be covered (complete truth

table), for which the keyword OTHERS is often helpful. Another important keyword is

NULL (the counterpart of UNAFFECTED, used with SELECT), which should be used

when no action is to take place (recall, however, the note on latch inference at the end of

section 5.3).

Even though CASE can only be used in sequential code, its fundamental role is to allow

the construction of combinational circuits (truth tables) without having to leave the PRO-

CESS or subprogram. In other words, the main application for CASE is very similar to

that of its concurrent counterpart SELECT. The use of CASE is illustrated in example 6.6.

In VHDL 2008, the concurrent statement WHEN is allowed inside the CASE statement.

Also, the matching CASE? statement was introduced to allow the use of don’t care inputs,

and the use of UNAFFECTED was extended to sequential code.

Example 6.6: Slow 0-to-9 Counter with SSD

Add an SSD (Seven-Segment Display—described in section 12.1, see figure 12.2) to the

output of the 0-to-9 counter designed in example 6.2, such that the state of the counter

can be visually inspected. This arrangement is depicted in figure 6.9. Besides the

counter and the SSD, an SSD driver is also shown, which is a combinational circuit that

converts the 4-bit output from the counter (called count) into a 7-bit signal (called ssd ) to

feed the seven segments of the display. Assume that the clock frequency is 50 MHz, which
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should be entered as a generic parameter, and that the counter must remain one second in

each state. Write a VHDL code that implements such a circuit.

Solution A VHDL code for this circuit is presented below. The inputs are clk and rst (line

4), while ssd is the output (line 5). The clock frequency, fclk, was entered using a GE-

NERIC declaration (line 3).

A process (lines 10–42) is employed to build the circuit. In its first part (lines 15–27), the

counter is built using the EVENT attribute (line 18) combined with the IF statement. Note

that in fact two counters are constructed, for which two variables (lines 11–12) are used.

The first counter sends and enable signal (lines 20–22) to the second counter after every

fclk clock pulses, which lasts just one clock period, hence allowing the second counter to

be incremented every one second. In the second part of the process (lines 29–41), the

CASE statement is employed to build the SSD driver. Note that the signal counter2 in

the code corresponds to the signal count in figure 6.9.

1 ------------------------------------------------------

2 ENTITY slow_counter IS

3 GENERIC (fclk: INTEGER := 50_000_000); --50MHz

4 PORT (clk, rst: IN BIT;

5 ssd: OUT BIT_VECTOR(6 DOWNTO 0));

6 END ENTITY;

7 ------------------------------------------------------

8 ARCHITECTURE counter OF slow_counter IS

9 BEGIN

10 PROCESS (clk, rst)

11 VARIABLE counter1: NATURAL RANGE 0 TO fclk := 0;

12 VARIABLE counter2: NATURAL RANGE 0 TO 10 := 0;

13 BEGIN

14 ------counter:---------

15 IF (rst='1') THEN

16 counter1 := 0;

17 counter2 := 0;

18 ELSIF (clk'EVENT AND clk='1') THEN

19 counter1 := counter1 + 1;

20 IF (counter1=fclk) THEN

21 counter1 := 0;

22 counter2 := counter2 + 1;

Figure 6.9
One-second-per-state 0-to-9 counter with SSD of example 6.6.
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23 IF (counter2=10) THEN

24 counter2 := 0;

25 END IF;

26 END IF;

27 END IF;

28 ------SSD driver:------

29 CASE counter2 IS

30 WHEN 0 => ssd<="0000001"; --"0" on SSD

31 WHEN 1 => ssd<="1001111"; --"1" on SSD

32 WHEN 2 => ssd<="0010010"; --"2" on SSD

33 WHEN 3 => ssd<="0000110"; --"3" on SSD

34 WHEN 4 => ssd<="1001100"; --"4" on SSD

35 WHEN 5 => ssd<="0100100"; --"5" on SSD

36 WHEN 6 => ssd<="0100000"; --"6" on SSD

37 WHEN 7 => ssd<="0001111"; --"7" on SSD

38 WHEN 8 => ssd<="0000000"; --"8" on SSD

39 WHEN 9 => ssd<="0000100"; --"9" on SSD

40 WHEN OTHERS => ssd<="0110000"; --"E"rror

41 END CASE;

42 END PROCESS;

43 END ARCHITECTURE;

44 ------------------------------------------------------

Some simulation results are presented in figure 6.10, where the digit changes after every

four clock pulses (to ease the inspection of the results). Note that this design (like many

others that will come) is interesting to be tested in an actual device (FPGA board).

6.8 CASE versus SELECT

CASE and SELECT are very similar. However, while the latter is for concurrent code, the

former is for sequential code. Their main similarities and di¤erences are summarized in fig-

ure 6.11.

Figure 6.10
Simulation results from the counter of example 6.6.
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Example The codes below are equivalent.

----With SELECT:-----------

WITH sel & ena SELECT

x <= a WHEN "00" | "11",

b WHEN "01",

c WHEN OTHERS;

WITH sel & ena SELECT

y <= "0000" WHEN "11",

"1--1" WHEN OTHERS;

---------------------------

----With CASE:--------------------

CASE sel & ena IS

WHEN "00" => x<=a; y<="1--1";

WHEN "01" => x<=b; y<="1--1";

WHEN "11" => x<=a; y<="0000";

WHEN OTHERS => x<=c; y<="1--1";

END CASE;

----------------------------------

6.9 Implementing Combinational Circuits with Sequential Code

We have already seen that sequential code can implement sequential as well as combina-

tional circuits. In the former, the inference of registers is necessary, but in the latter it

should be avoided, so the following should be observed:

1) The circuit’s truth table should always be completely specified.

2) All input signals that are used (read) in the PROCESS should appear in its sensitivity

list.

Failing to comply with (2) will cause the compiler to issue a warning saying that a cer-

tain signal is read in the process but is not in the sensitivity list. Failing to comply with (1),

however, results in a more serious consequence, because the compiler will infer (unneces-

sary) latches in order to hold previous circuit states. This fact is illustrated in example 6.7.

Example 6.7: Incomplete Combinational Design

Consider a circuit whose top-level diagram is that in figure 6.12a, for which the specifica-

tions in figure 6.12b were given, saying that x should behave as a multiplexer—that is,

Figure 6.11
Comparison between SELECT and CASE.
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should be equal to the input selected by sel, while y should be equal to '0' when sel ¼ "00"

or '1' if sel ¼ "01". Design such a circuit using VHDL.

Solution This is a combinational circuit for which only partial specifications were pro-

vided for y (figure 6.12b). Using just those specifications, the code could be as follows.

1 -------Poor design:-------------------

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 --------------------------------------

5 ENTITY poor_design IS

6 PORT (a, b, c, d: IN STD_LOGIC;

7 sel: IN INTEGER RANGE 0 TO 3;

8 x, y: OUT STD_LOGIC);

9 END ENTITY;

10 --------------------------------------

11 ARCHITECTURE example OF poor_design IS

12 BEGIN

13 PROCESS (a, b, c, d, sel)

14 BEGIN

15 IF (sel=0) THEN x<=a; y<='0';

16 ELSIF (sel=1) THEN x<=b; y<='1';

17 ELSIF (sel=2) THEN x<=c;

18 ELSE x<=d;

19 END IF;

20 END PROCESS;

21 END ARCHITECTURE;

22 --------------------------------------

After compiling this code, the compiler will report that (as expected) no registers (flip-

flops) were inferred. However, when we look at the simulation results (figure 6.13), we no-

tice something peculiar about y. Observe that, for the same value of the input (sel ¼ 3),

two di¤erent results are obtained for y (when sel ¼ 3 is preceded by sel ¼ 0, y ¼ '0' results,

while y ¼ '1' occurs when sel ¼ 3 is preceded by sel ¼ 1). This means that some sort of

Figure 6.12
(a) Top-level diagram for the circuit of example 6.7; (b) Specifications provided; (c) Implemented truth table; (d)
Correct approach.
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memory was implemented. If we now inspect the actual equations implemented by the fit-

ter, a latch will be found. In summary, extra (unnecessary) logic was inferred, resulting the

truth table of figure 6.12c. In this kind of situation, the 'don’t care' value ("-") should be

used to complete the specifications for y (see figure 6.12d).

6.10 VHDL 2008

With respect to the material covered in this chapter, the main additions specified in VHDL

2008 are those listed below.

1) In the declarative part of PROCESS, the following additional declarations are allowed:

subprogram instantiation declaration, package declaration, package body, and package

instantiation declaration.

2) The keyword ALL is allowed in the PROCESS’s sensitivity list (to reduce errors when

implementing combinational circuits with sequential code). For example:

PROCESS (ALL)

BEGIN

...

END PROCESS;

3) The concurrent statements WHEN and SELECT are allowed in sequential code (the

only consequence of this is a slightly shorter code). An example with IF and WHEN is

shown below (the traditional format is on the left).

IF (clk'EVENT AND clk='1') THEN

IF (clr='1') THEN q <= '0';

ELSE q <= d;

END IF;

END IF;

IF (clk'EVENT AND clk='1') THEN

q <= '0' WHEN clr='1' ELSE d;

END IF;

Figure 6.13
Simulation results from the circuit of example 6.7.
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4) IF allows boolean tests (the only consequence of this is sometimes a slightly shorter

code, at the cost of reduced code clarity). For example, the two lines below are equivalent

(the traditional format is in the first).

IF (a='0' AND b='0') OR c='1' THEN ...

IF (NOT a AND NOT b) OR c THEN ...

5) The matching CASE? statement was introduced, which has the same purpose of

SELECT?—that is, to allow the use of don’t care inputs. Two equivalent codes are

presented.

WITH interrupt SELECT?

priority <= 4 WHEN "1---",

3 WHEN "01--",

2 WHEN "001-",

1 WHEN "0001",

0 WHEN OTHERS;

CASE? interrupt IS

WHEN "1---" => priority <= 4;

WHEN "01--" => priority <= 3;

WHEN "001-" => priority <= 2;

WHEN "0001" => priority <= 1;

WHEN OTHERS => priority <= 0;

6) The UNAFFECTED keyword was extended to sequential code (IF and CASE

statements).

7) Some tests associated with LOOP statements can be boolean. For example, "WHILE

ena LOOP" can be used instead of "WHILE ena ¼ '1' LOOP".

6.11 Exercises

The problems in this section are to be solved with sequential VHDL code (with IF, WAIT,

LOOP, and/or CASE, always located inside a PROCESS). Recall that sequential code can

implement both sequential and combinational circuits. Simulation results should always be

included (unless they do not apply).

Note: For exercise solutions, please consult the book website.

Exercise 6.1: Latch and Flip-Flop

Figure 6.14 shows a DL and a DFF.

a) Given the waveforms for clk and d, draw the waveform for q in each case. Assume

q ¼ '0' as the initial state.

b) Write a VHDL code that implements these two units, then simulate it with the same

waveforms. Compare the actual results against your sketches.

Exercise 6.2: Gray Counter

Design a 0-to-max counter with gray-encoded outputs. Enter max as a generic parameter

(Suggestion: see exercise 5.6.)
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Exercise 6.3: Registered Multiplexer

Figure 6.15 shows an M �N (M inputs with N bits each) multiplexer, followed by an N-

flip-flop register. Write a VHDL code from which this circuit, with N ¼ 8 and M generic,

can be inferred (see example 5.2).

Exercise 6.4: Generic Registered Multiplexer

In the exercise above, M is generic, but N is not. Redesign the circuit with both parameters

declared as GENERIC (hence a truly generic mux—see exercise 5.20).

Exercise 6.5: Shift Register with Load

Figure 6.16 depicts a 4� 1 (four stages of one bit each) shift register with data-load capa-

bility (Pedroni 2008). When load ¼ '0', it operates as a regular shift register. However, if

load ¼ '1', din is loaded into the DFFs at the next positive clock transition (thus the initial

state of the flip-flops can be programmed). Design this circuit using VHDL.

Figure 6.14

Figure 6.15

Figure 6.16
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Exercise 6.6: Hamming Weight with LOOP

The Hamming weight of a vector is the number of '1's in it. Similar to exercise 5.7, design a

circuit that computes that number for a generic-length vector using sequential code.

Exercise 6.7: Binary Sorter with LOOP

Similar to exercise 5.8, design a circuit capable of ordering the bits of a bit vector, using

sequential code. The ordering should be from left to right, with all '1's coming first (for

example, "00011001" would become "11100000"). Enter the number of bits as a generic

parameter.

Exercise 6.8: Signal Generator

Given the clock waveform of figure 6.17, design a circuit capable of generating from it the

signals x and y included in the figure. Recall that in a signal generator glitches are not

acceptable.

Exercise 6.9: Switch Debouncer

Figure 6.18 shows a mechanical switch that produces a '0' (when closed) or '1' (when open)

to some circuit. Because this type of switch is subject to bounces, a debouncer is inserted

into the signal path in order to ‘‘clean’’ the signal sw produced by the switch, resulting a

bounce-free signal deb_sw (debounced switch). This procedure is illustrated in the wave-

forms included in the figure. Design this digital debouncer using VHDL. Consider that a

new value should only be assigned to deb_sw if sw stays in the new position for at least 10

ms. Enter the clock frequency ( fclk) as a generic parameter.

Exercise 6.10: Two-Digit Timer

Figure 6.19 shows a two-digit timer, which is an extension of that seen in Example 6.6.

The counter is the sequential part of the system. It must count seconds from 00 to 60, start-

Figure 6.17

Figure 6.18
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ing whenever the enable (ena) input is asserted, and stopping whenever 60 is reached or the

enable switch is turned o¤. It must also have an asynchronous reset switch that zeros the

system. If 60 is reached, besides stopping, the full_count output must be asserted. The SSD

drivers comprise the combinational part of the system. They must convert the 4-bit and 3-

bit outputs from the counters (count1, count2) into 7-bit signals (ssd1, ssd2) to feed the dis-

play (assume common-anode SSDs, as shown in the figure).

a) Write (and explain) an equation, as a function of fclk (clock frequency), for the number

of flip-flops that will be needed to implement this circuit. Note that here a decision must be

made: will be signal full_count be registered (stored) in your design? What are the pros and

cons of storing it? (Suggestion: think of glitches.)

b) Design this circuit with VHDL. Enter fclk (say, 50 MHz) using GENERIC. After com-

pilation, check whether the number of DFFs inferred by the compiler matches your predic-

tion. Test it also for other values of fclk.

c) Physically implement the circuit in your FPGA development board. Connect ena and

rst to two toggle switches (it is not necessary to debounce them), clk to the board clock,

full_count to an LED, and ssd1 and ssd2 to two SSDs (check whether they are common-

anode in your board).

Exercise 6.11: Frequency Meter (with SSDs)

Solve exercise 12.4. Note that a similar design is presented in Section 12.4, but using

an LCD instead of SSDs. Observe in lines 84–86 of that design that a function is used to

implement the display driver, which should not be employed here yet (functions will be

studied in chapter 9).

Exercise 6.12: Programmable Signal Generator

Figure 6.20 shows a signal generator that must produce, from the clock, a square wave

called sig_out with 50% duty cycle and frequency 1,000 Hz or 2,000 Hz . . . or 10,000 Hz

(every time the pushbutton switch is pressed the next frequency must be selected). Assume

that the clock frequency is fclk ¼ 50 MHz and that an error of up to e1 Hz is acceptable

in the generated frequencies. Assume also that the pushbotton has already been

debounced. Note that the frequency of the generated signal must be measured by a 5-digit

frequency meter, but that will be treated in exercis 6.13.

Figure 6.19
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a) Determine the values of the dividing coe‰cients that must be employed in the circuit

and calculate the error in each case. Should they be odd or even (or any)? Note that it

was not informed that the system clock is symmetric (50% duty cycle); if that is the case,

how can that information a¤ect your design?

b) Design the signal generator. To implement the table of dividing coe‰cients, there are

three typical approaches: (i) with the WHEN or SELECT statement, (ii) with the CASE

statement, and (iii) with a ROM memory. In the present design, use the last option (see

ROM implementations in section 13.4).

c) Simulate the design. To ease the inspection of the results, employ just the following

three dividers: 2, 4, and 6 (with fclk ¼ 50 MHz). Present just one (well chosen) set of sim-

ulation plots.

Exercise 6.13: Programmable Signal Generator with Frequency Meter

a) Using the same technique of exercise 6.11, design the frequency meter (with SSDs) of

figure 6.20.

b) Add to this design the signal generator development in exercise 6.12 (with its original

ten dividing coe‰cients) to attain the complete system.

c) Physically implement it in your FPGA development board and test its operation.

Note: See more on this in exercise 8.9.

Exercise 6.14: Digital Wall Clock (with SSDs)

Design the digital wall clock described in section 12.5. Observe that in that design a func-

tion is used to implement the display driver, which should not be employed here yet (func-

tions will be studied in chapter 9). Only after solving or trying to solve this exercise see the

solution in section 12.5.

Exercise 6.15: Data Serializer

Data serializers are described in section 14.2, with two implementations suggested in figure

14.3. The material seen so far su‰ces to implement that kind of circuit, except for the PLL

instantiation, which is explained in appendix G, and also shown in the example on page

379. After examining that material, design the data serializer of exercise 14.4.

Figure 6.20
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7 SIGNAL and VARIABLE

7.1 Introduction

VHDL provides three objects for dealing with (numeric or enumerated) values, called

CONSTANT, SIGNAL, and VARIABLE (FILE is mainly for simulation). A popular

example in the CONSTANT category is the GENERIC declaration, which allows global

constants to be specified in the ENTITY header. PORT is an example in the SIGNAL

category because all items listed in it are signals by definition.

CONSTANT and GENERIC were seen in sections 3.2 and 2.6, respectively, while SIG-

NAL and VARIABLE, also introduced in section 3.2 (because they were needed in the

discussions on data types that followed in that chapter) are described in detail here.

7.2 SIGNAL

SIGNAL serves to pass values in and out of the circuit, as well as between its internal

units. In other words, a signal represents circuit interconnects (wires). For example, all

ports of an entity are signals.

SIGNAL declarations can be made in the declarative part of ENTITY, ARCHITEC-

TURE, PACKAGE, BLOCK, and GENERATE. A simplified syntax for signal declara-

tions is repeated below.

SIGNAL signal_name: signal_type [range] [:= default_value];

Example

------------------------------------------

SIGNAL flag: STD_LOGIC := '0';

SIGNAL address: NATURAL RANGE 0 TO 2**N-1;

SIGNAL data: BIT_VECTOR(15 DOWNTO 0);

------------------------------------------



SIGNAL has important properties, like those introduced in section 6.1, described with

more detail in section 7.4.

Resolved Signals

A special feature of a signal is that a ‘‘resolution’’ function can be associated to it. Its pur-

pose is to define the resulting logic value in case multiple drivers feed it (analogous to what

was done with the STD_LOGIC type, seen in section 3.6, which is a resolved subtype of

STD_ULOGIC). A simplified syntax for signal declarations with a resolution function

included is shown below.

SIGNAL signal_name: resolution_function signal_type [:= def_value];

Example

SIGNAL x: my_resolution_function my_data_type;

Guarded Signals

When the high-impedance state ('Z') is needed, the STD_LOGIC(_VECTOR) type is

employed. However, if other types are used, VHDL still provides an indirect means for

attaining the high-impedance state, which consists of disconnecting selected drivers (using

the NULL keyword). A signal with such a feature is called a guarded signal, attained by

including the keyword REGISTER or BUS in its declaration, as follows.

SIGNAL signal_name: ... signal_type [REGISTER | BUS] [:= def_value];

Only resolved signals can be guarded. The di¤erence between the REGISTER and BUS

options is observed when all drivers are disconnected. A REGISTER signal keeps the

value that it had before the last disconnection, while a BUS signal has its value determined

by a resolution function. In large designs, the STD_LOGIC(_VECTOR) type (industry

standard) is generally employed, so guarded signals are not needed.

7.3 VARIABLE

VARIABLE is a very valuable object for use in sequential code. Because it is visible only

inside the sequential unit in which it was created, it represents just local information (the

only exception is shared variables, explained shortly). It can be declared in the declarative

part of PROCESS, FUNCTION, PROCEDURE, PACKAGE, and PACKAGE BODY,

using the simplified syntax below.
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VARIABLE variable_name: variable_type [range] [:= default_value];

Example

--------------------------------------------

VARIABLE flag: STD_LOGIC := '0';

VARIABLE address: NATURAL RANGE 0 TO 2**N-1;

VARIABLE data: BIT_VECTOR(15 DOWNTO 0);

--------------------------------------------

VARIABLE too has important properties, such as those introduced in section 6.1, and

described in more detail in section 7.4.

Shared Variable

When declared as shared, a variable can be accessed by more than one sequential code and

also by concurrent code, though only one sequential unit should modify its value. Addi-

tionally, the value of a shared variable can be passed to a signal in an assignment made

outside the sequential code. A shared variable can be declared in ENTITY, ARCHITEC-

TURE, BLOCK, GENERATE, and PACKAGE (the package must be not in a process or

subprogram). Its use is illustrated in example 7.1.

Example 7.1: Counter with SHARED VARIABLE

Design a 00-to-99 counter employing shared variables for both digits.

Solution The code below implements a circuit that counts from 00 to 99 and then auto-

matically restarts from 00. Even though a single process would do, two were employed in

order to illustrate the use of shared variables (temp1 and temp2, declared in line 8). Note

that each variable is modified by only one process ( proc1 for temp1, proc2 for temp2) and

that the passing of their values to signals can be done outside the processes (lines 35–36).

1 ------------------------------------------------------

2 ENTITY counter_with_sharedvar IS

3 PORT (clk: IN BIT;

4 digit1, digit2: OUT INTEGER RANGE 0 TO 9);

5 END ENTITY;

6 ------------------------------------------------------

7 ARCHITECTURE counter OF counter_with_sharedvar IS

8 SHARED VARIABLE temp1, temp2: INTEGER RANGE 0 TO 9;

9 BEGIN

10 ----------------------------------

11 proc1: PROCESS (clk)
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12 BEGIN

13 IF (clk'EVENT AND clk='1') THEN

14 IF (temp1=9) THEN

15 temp1 := 0;

16 ELSE

17 temp1 := temp1 + 1;

18 END IF;

19 END IF;

20 END PROCESS proc1;

21 ----------------------------------

22 proc2: PROCESS (clk)

23 BEGIN

24 IF (clk'EVENT AND clk='1') THEN

25 IF (temp1=9) THEN

26 IF (temp2=9) THEN

27 temp2 := 0;

28 ELSE

29 temp2 := temp2 + 1;

30 END IF;

31 END IF;

32 END IF;

33 END PROCESS proc2;

34 ----------------------------------

35 digit1 <= temp1;

36 digit2 <= temp2;

37 END ARCHITECTURE;

38 ------------------------------------------------------

7.4 SIGNAL versus VARIABLE

Choosing between SIGNAL and VARIABLE is not always straightforward. Their main

di¤erences and usage are summarized in the six rules that follow.

Rule 1: Local of Declaration

SIGNAL: Can be declared in the declarative part of ENTITY, ARCHITECTURE,

PACKAGE, BLOCK, or GENERATE.

VARIABLE: Can only be declared in sequential units (PROCESS and subprograms). The

only exception is for shared variables, which can be declared in the same places as

SIGNAL, but should only be modified by one sequential unit.
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Rule 2: Scope (Local of Use)

SIGNAL: Can be global (seen and modified in the whole code, including in sequential

units).

VARIABLE: Always local (seen and modified only inside the sequential unit where it was

created). To leave that unit, its value must be passed directly or indirectly to a signal. The

only exception is for a shared variable, which can be global (seen by more than one

sequential unit and also by concurrent statements, though it should be modified only by

one sequential unit).

Rule 3: Update

SIGNAL: A new value is only available after the conclusion of the present run of the pro-

cess or subprogram.

VARIABLE: Updated immediately, so its new value is ready to be used in the next line of

code.

Rule 4: Assignment Operator

SIGNAL: Values are assigned using "<¼" (example: sig <¼ 5;).

VARIABLE: Values are assigned using ":¼" (example: var :¼ 5;).

Rule 5: Multiple Assignments

SIGNAL: Only one e¤ective assignment is allowed in the whole code.

VARIABLE: Because its update is immediate, multiple assignments are fine.

Rule 6: Inference of Registers

SIGNAL: Flip-flops are inferred when an assignment to a signal occurs at the transition of

another signal.

Figure 7.1
Summary of SIGNAL versus VARIABLE comparison.
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VARIABLE: Flip-flops are inferred when an assignment to a variable occurs at the transi-

tion of another signal and this variable’s value is eventually passed directly or indirectly to

a signal.

These rules are summarized in figure 7.1. Application examples follow.

Example 7.2: SIGNAL versus VARIABLE Usage

Consider the section of code shown below, which contains a SIGNAL (sig, declared in the

declarative part of the architecture, line 4) and a VARIABLE (var, declared in the declar-

ative part of the process, line 7). Check whether any of the six rules above was violated.

1 ...

2 -----------------------------------------

3 ARCHITECTURE example OF example IS

4 SIGNAL sig: INTEGER RANGE -8 TO 7;

5 BEGIN

6 PROCESS (clock)

7 VARIABLE var INTEGER RANGE -8 TO 7;

8 BEGIN

9 sig <= 0;

10 var := 0;

11 IF (clock'EVENT AND clock='1') THEN

12 sig <= sig + 1;

13 var := var + 1;

14 IF (sig=a) THEN ...

15 ELSIF (var=b) THEN ...

16 END IF;

17 END IF;

18 ...

19 END PROCESS;

20 END example:

21 -----------------------------------------

Solution

Rule 1: Was not violated because both sig and var were declared in right places (lines 4

and 7).

Rule 2: Is fine as well because var was used only inside the process (sig can be used any-

where in the architecture code, including in the process).

Rule 3: The assignment in line 12 increments sig, but the new value will only be ready at

the conclusion of the present process cycle, so the test in line 14 indeed compares a to an

outdated value of sig. If that was not done on purpose (although not a recommended prac-

tice, one might want to actually compare sig to a� 1), then an incorrect circuit will be in-
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ferred. Regarding var, being a variable, its update is immediate, so the value assigned in

line 13 is already available to be used in line 15.

Rule 4: Was not violated because all assignments to sig and var (lines 9–10 and 12–13)

employed the proper operators.

Rule 5: Was violated because lines 9 and 12 together make multiple assignments to sig.

However, because this is a sequential code, such repetitions might be accepted by the com-

piler, but only the last assignment will survive, thus producing an incorrect circuit. Regard-

ing var, no violation occurred because for variables multiple assignments (lines 10, 13) are

fine.

Rule 6: This is not exactly a rule, but rather a consequence. In this example, sig will cause

DFFs to be inferred because a value is assigned to it (line 12) at the transition of another

signal (clk, line 11). The assignment to var in line 13 will infer registers if var a¤ects a sig-

nal that leaves the process (which is the case in regular codes).

Example 7.3: Counters with SIGNAL and VARIABLE

Write a VHDL code that implements a regular 0-to-9 binary counter. Develop two solu-

tions: with a signal and with a variable. If the same tests and assignments are made in both

codes, will the resulting counters have the same counting range?

Solution A VHDL code for these counters is presented below. Counter 1 employs a sig-

nal, while counter 2 uses a variable. Even though they could be designed with just one pro-

cess, two processes were used to make the code easier to inspect (this does not a¤ect the

inferred circuit).

The only input is clk (line 3), while the outputs are count1 and count2 (line 4), with a

range from 0 to 9. The purpose of the range is just for the compiler to know the number

of bits that it should use to represent each object, so 0-to-9 and 0-to-15, for example, are

equivalent.

The process for counter 1 is in lines 11–20, under the (optional) label with_sig. It

employs a signal named temp1, specified in the declarative part of the architecture (line

8). Every time a rising clock edge occurs (line 13), temp1 is incremented (line 14). When

temp1 reaches 10 (line 15), it is zeroed (line 16). The value of temp1 is eventually passed

to the count1 output (line 19).

The process for counter 2 is in lines 22–32, under the (optional) label with_var. Instead

of a signal, a variable, called temp2, is now used. Its specification is made in the declarative

part of the process (line 23). Every time a rising clock edge occurs (line 25), temp2 is incre-

mented (line 26). When temp2 reaches 10 (line 27), it is zeroed (line 28). The value of

temp2 is eventually passed to the count2 output (line 31).

As requested, the same assignments and tests were made in both processes, so now we

need to determine the expected results. Based on rule 3, we know that a variable is updated

immediately, while the transaction scheduled for a signal will only be concluded at the end
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of the process cycle. Consequently, temp1 ¼ 10 will only occur in the eleventh process run,

meaning that counter 1 will count from 0 to 10 instead of from 0 to 9. Counter 2, on the

other hand, will have the correct range. This can be observed in the simulation results of

figure 7.2.

1 --------------------------------------------------

2 ENTITY counter IS

3 PORT (clk: IN BIT;

4 count1, count2: OUT INTEGER RANGE 0 TO 9;

5 END ENTITY;

6 --------------------------------------------------

7 ARCHITECTURE dual_counter OF counter IS

8 SIGNAL temp1: INTEGER RANGE 0 TO 10;

9 BEGIN

10 -----counter 1: with signal:-----

11 with_sig: PROCESS(clk)

12 BEGIN

13 IF (clk'EVENT AND clk='1') THEN

14 temp1 <= temp1 + 1;

15 IF (temp1=10) THEN

16 temp1 <= 0;

17 END IF;

18 END IF;

19 count1 <= temp1;

20 END PROCESS with_sig;

21 -----counter 2: with variable:-----

22 with_var: PROCESS(clk)

23 VARIABLE temp2: INTEGER RANGE 0 TO 10;

24 BEGIN

25 IF (clk'EVENT AND clk='1') THEN

26 temp2 := temp2 + 1;

27 IF (temp2=10) THEN

28 temp2 := 0;

Figure 7.2
Simulation results from the counters of example 7.3.
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29 END IF;

30 END IF;

31 count2 <= temp2;

32 END PROCESS with_var;

33 END ARCHITECTURE;

34 --------------------------------------------------

7.5 The Inference of Registers

This section discusses the number of flip-flops inferred by the compiler for a given code.

The purpose is not only to understand which approaches require fewer registers, but also

to make sure that the code does implement the intended circuit.

As described in rule 6 of figure 7.1, a signal generates flip-flops whenever a value is

assigned to it at the transition of another signal. Such assignment, being synchronous,

should be made inside a section of sequential code (PROCESS or subprogram), usu-

ally following a declaration of the type "IF clock'EVENT . . ." or "WAIT UNTIL

clock'EVENT . . .".

A variable also generates flip-flops when a value is assigned to it at the transition of an-

other signal, and this value a¤ects a signal that a¤ects the design (which is always the case

in regular designs).

Example Assume the following object specifications:

-------------------------------------

SIGNAL clk: BIT;

SIGNAL sig1: BIT_VECTOR(7 DOWNTO 0);

SIGNAL sig2: INTEGER RANGE 0 TO 7;

VARIABLE var: BIT_VECTOR(3 DOWNTO 0);

-------------------------------------

Then in the code below all three objects would be registered (stored) because assign-

ments are made to all three at the transition of another signal (clk). A total of 8þ 3þ 4

¼ 15 DFFs would then be inferred.

-------------------------------

IF (clk'EVENT AND clk='1') THEN

sig1 <= x;

sig2 <= y;

var := z;

END IF;

-------------------------------
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In the next code, only sig2 and var would be stored (3þ 4 ¼ 7 DFFs).

----------------------------------

PROCESS (clk)

BEGIN

IF (clk'EVENT AND clk='1') THEN

sig2 <= y;

var := z;

END IF; ...

sig1 <= x;

END PROCESS;

----------------------------------

Additional (complete) examples are presented next to further illustrate when and why

registers are inferred from SIGNAL and VARIABLE assignments.

Example 7.4: DFF with q and qbar

Figure 7.3 shows four implementations involving DFFs with q and qbar outputs. The cir-

cuits in (a) and (b) are equivalent, with the only di¤erence that the latter does not have a

built-in qbar output, so an inverter is needed to construct it. On the other hand, the circuit

in (c) is only functionally equivalent to (a)–(b) and that in (d) is not equivalent at all (qbar

is one clock period behind q). Examine the codes below and determine which of these cir-

cuits each code implements. Then compile the codes and check in the RTL viewer and/or

fitter equations if the inferred circuits match you answers.

1 --------------------------------

2 ENTITY flipflop IS

3 PORT (d, clk: IN BIT;

4 q: BUFFER BIT;

5 qbar: OUT BIT);

6 END ENTITY;

7 --------------------------------

8 ARCHITECTURE arch OF flipflop IS

9 BEGIN

10 proc1: PROCESS (clk)

11 BEGIN

12 IF clk'EVENT AND clk='1' THEN

13 q <= d;

14 qbar <= NOT d;

15 END IF;

16 END PROCESS proc1;

17 END ARCHITECTURE;

18 --------------------------------

-----------------------------

10 proc2: PROCESS (clk)

11 BEGIN

12 IF clk'EVENT AND clk='1' THEN

13 q <= d;

14 qbar <= NOT q;

15 END IF;

16 END PROCESS proc2;

-----------------------------

10 proc3: PROCESS (clk)

11 BEGIN

12 IF clk'EVENT AND clk='1' THEN

13 q <= d;

14 END IF;

15 END PROCESS proc3;

16 qbar <= NOT q;

-----------------------------
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Solution From the code of proc1, DFFs are inferred for q and qbar because values are

assigned to both (lines 13–14) at the transition of another signal (clk, line 12). Since both

assignments are related to d, the circuit of figure 7.3c is expected to result. Applying the

same reasoning to proc2, again two DFFs are inferred; however, the assignment to qbar

(line 14) is related to q, thus causing the circuit of figure 7.3d to be inferred. Finally, in the

third code, the assignment to qbar (line 16) is no longer under the IF clk'EVENT . . . test,

so qbar is not registered, resulting the circuit of figure 7.3b. It is important to mention that,

depending on the compiler being used and the target CPLD/FPGA device, during the

optimization phase the compiler might be able to simplify proc1 to produce the same cir-

cuit as proc3 (but the approach of proc3 is always recommended).

Example 7.5: Over-registered Counter

Consider the counter designed in example 6.6.

a) How many flip-flops are needed to implement it?

b) What happens if line 27 (END IF;) of that code is moved to the position between lines

41 and 42?

Solution

a) To obtain the 1 Hz signal (counter1), dlog2 50Me ¼ 26 DFFs are needed. For the 0-to-9

counter (counter2), four DFFs are required. Hence the total is 30 DFFs.

b) This causes the CASE statement to be under the IF clk'EVENT . . . test, so ssd will

be registered. In summary, in figure 6.9 an extra block, containing seven DFFs, would be

included between the SSD driver block and the display (then totaling 37 flip-flops). Note

that these DFFs are not necessary because the input to the SSD driver is already registered

(this is a very popular mistake). The reader is invited to compile the code to check these

answers (exercise 7.6).

7.6 Dual-Edge Circuits

Say that in a certain application dual-edge flip-flops (that is, DFFs that store data at both

clock transitions) are needed. If the target CPLD/FPGA is equipped with only single-edge

Figure 7.3
Flip-flops of example 7.4.

SIGNAL and VARIABLE 187



DFFs (which is the case for nearly all current devices), the compiler will not be able to

synthesize a dual-edge code directly into a flip-flop.

Two attempts that one might think of are shown below. The process on the left contains

a counter that needs to be incremented at both clock edges, so clk'EVENT is invoked

twice. The process on the right tries the same thing but in a slightly di¤erent way; because

clk is in the sensitivity list, the process will execute every time clk changes, but because no

AND condition is associated with clk'EVENT, one might expect again both clock edges to

increment the counter. For single-edge technologies, both codes will cause the compiler

to halt (one exception for the second process below is the case of compilers that place a

default AND condition to go with clk'EVENT, so the code will be synthesized, but still in

a single-edge circuit).

----------Not OK:------------------------

PROCESS (clk)

VARIABLE count: INTEGER RANGE 0 TO 15;

BEGIN

IF (clk'EVENT AND clk='1') THEN

count := count + 1;

ELSIF (clk'EVENT AND clk='0') THEN

count := count + 1;

END IF;

...

END PROCESS;

-----------------------------------------

--------Not OK:----------

PROCESS (clk)

BEGIN

IF (clk'EVENT) THEN

count <= count + 1;

END IF;

...

END PROCESS;

-------------------------

This does not mean, however, that a process or subprogram cannot operate at both

clock edges. The code below, for example, is fine, because now distinct variables (could be

signals) are employed, one operating only at the positive transitions of clk and the other

only at the negative transitions.

----------OK:----------------------------------

PROCESS (clk)

VARIABLE count1, count2: INTEGER RANGE ...;

BEGIN

IF (clk'EVENT AND clk='1') THEN

count1 := count1 + 1;

ELSIF (clk'EVENT AND clk='0') THEN

count2 := count2 + 1;

END IF;

...

END PROCESS;

-----------------------------------------------
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Example 7.6: Dual-Edge Flip-Flop

Write a VHDL code from which a circuit that resembles a dual-edge flip-flop can be in-

ferred (assuming that no dual-edge DFFs are available in the target device).

Solution One alternative to construct a dual-edge DFF is shown in figure 7.4 (Pedroni

2008), which employs two D-type latches (DLs) connected in parallel, followed by a mul-

tiplexer (in figure 7.4, the DLs too are implemented with multiplexers, with a feedback

loop).

A code for this circuit is presented below, employing sequential code with the IF state-

ment (one for each mux). Note that although a flip-flop will result from this code, a fully

concurrent code could have been employed because the individual units (muxes) are com-

binational circuits, in which case the WHEN statement would render a shorter code.

1 ------------------------------------------

2 ENTITY dual_edge_dff IS

3 PORT (d, clk: IN BIT;

4 q: OUT BIT);

5 END ENTITY;

6 ------------------------------------------

7 ARCHITECTURE structure OF dual_edge_dff IS

8 SIGNAL q1, q2: BIT;

9 BEGIN

10 PROCESS(clk, d)

11 BEGIN

12 ---mux for q1:------

13 IF (clk='0') THEN q1 <= q1;

14 ELSE q1 <= d;

15 END IF;

16 ---mux for q2:------

Figure 7.4
Dual-edge DFF implemented with multiplexers (the first two operate as DLs).
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17 IF (clk='0') THEN q2 <= d;

18 ELSE q2 <= q2;

19 END IF;

20 ---mux for q:-------

21 IF (clk='0') THEN q <= q1;

22 ELSE q <= q2;

23 END IF;

24 END PROCESS;

25 END ARCHITECTURE;

26 ------------------------------------------

The RTL view produced by the compiler is shown in figure 7.5a, which matches our cir-

cuit perfectly. Simulation results are depicted in figure 7.5b, where it can be observed that

both clock transitions (highlighted) are indeed active.

7.7 Making Multiple Signal Assignments

According to rule 5 of figure 7.1, only a single assignment can be made to a signal in the

entire code. Let us consider the design of the parity detector shown in figure 7.6a, which

computes the function y ¼ x0 l x1 l x2 l � � �l xN�1, hence producing y ¼ '1' when the

number of '1's in x in odd. Two codes for this circuit are presented below.

Figure 7.5
Dual-edge DFF of example 7.6. (a) RTL view; (b) Simulation results showing that both clock edges are active.

Figure 7.6
Parity detector.
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1 ---------------------------------------

2 ENTITY parity_det IS

3 GENERIC (N: POSITIVE := 8);

4 PORT (x: IN BIT_VECTOR(N-1 DOWNTO 0);

5 y: OUT BIT);

6 END ENTITY;

7 ---------------------------------------

8 ARCHITECTURE not_ok OF parity_det IS

9 SIGNAL temp: BIT;

10 BEGIN

11 temp <= x(0);

12 gen: FOR i IN 1 TO N-1 GENERATE

13 temp <= temp XOR x(i);

14 END GENERATE;

15 y <= temp;

16 END ARCHITECTURE;

17 ---------------------------------------

7 ----------------------------

8 ARCHITECTURE not_ok OF ...

9 SIGNAL temp: BIT;

10 BEGIN

11 PROCESS (x)

12 BEGIN

13 temp <= x(0);

14 FOR i IN 1 TO N-1 LOOP

15 temp <= temp XOR x(i);

16 END LOOP;

17 y <= temp;

18 END PROCESS;

19 END ARCHITECTURE;

20 ----------------------------

The first code above is concurrent (with GENERATE), while the second is sequential

(with PROCESS and LOOP). In both, temp is a SIGNAL (line 9), and in both multiple

assignments are made to it (lines 11 and 13 in the first code, lines 13 and 15 in the second),

so neither is expected to render the correct circuit.

With the concurrent code, the compiler will normally issue an error message saying that

temp is multiply driven and then quit compilation. The sequential code, on the other hand,

is synthesizable because the assignments are made sequentially; however, because a new

value of a signal is only ready at the conclusion of the process run, only the last assignment

will actually occur—that is, y ¼ yl xN�1, thus resulting the circuit of figure 7.6b, which is

not what we wanted. Note also that when xN�1 ¼ '1' this circuit becomes a ring oscillator.

A solution for this problem is presented below, which consists of using a signal whose

dimension is one unit higher than the dimension of the signal being computed. In this

example, y is a single bit (hence a scalar, according to the definition in figure 3.2); con-

sequently, a 1D signal must be employed, shown in line 9 (so temp was replaced with

tempðN � 1 : 0Þ, which is the internal vector represented as t in figure 7.6a). Note that

Figure 7.7
Simulation results from the parity detector of figure 7.6.
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now each assignment involves a di¤erent part of temp, so rule 5 is no longer violated and

the correct circuit results. Simulation results from this code are shown in figure 7.7.

7 -----------------------------------------

8 ARCHITECTURE ok OF parity_det IS

9 SIGNAL temp: BIT_VECTOR(N-1 DOWNTO 0);

10 BEGIN

11 temp(0) <= x(0);

12 gen: FOR i IN 1 TO N-1 GENERATE

13 temp(i) <= temp(i-1) XOR x(i);

14 END GENERATE;

15 y <= temp(N-1);

16 END ARCHITECTURE;

17 -----------------------------------------

Note: It is important to remember that this kind of problem does not occur when VARI-

ABLE is used because its value is updated immediately, so multiple assignments are fine.

Example 7.7: Generic Hamming Weight with Concurrent Code

Exercise 5.7 asked to design a circuit that computes the number of '1's in a binary vector

using the GENERATE statement. Exercise 6.6 asked the same thing, but using the LOOP

statement. While the latter is simple, the former requires some additional e¤ort. That exer-

cise is an excellent opportunity to illustrate the extra dimension required in the auxiliary

signal in order to allow multiple assignments to be made to it, because now a di¤erent part

of the signal is involved in each iteration. Design such a circuit using only concurrent code

(operators, WHEN, SELECT, GENERATE).

Solution Two solutions are presented below, both with N (size of the input vector)

declared as a generic parameter (line 3). In the first solution, temp is declared as an integer

in the 0 to N range, because that is the range of y (the value of temp must be passed to y

eventually—line 15). For the reasons explained above, this solution is not fine (it contains

multiple assignments to temp—lines 11 and 13). The second solution adopts the described

approach, which increases the dimension of temp by one unit (from 1D to 1D� 1D). This

is done in lines 9–10. Now the assignments in lines 12 and 14 are no longer to the same

portions of temp. Note that y is still 1D, so only the last value of temp is passed to y (line

16).

1 -------------------------------------------------------------

2 ENTITY hamm_weight IS

3 GENERIC (N: POSITIVE := 8);

4 PORT (x: IN BIT_VECTOR(N-1 DOWNTO 0);

5 y: OUT INTEGER RANGE 0 TO N);

6 END ENTITY;

7 -------------------------------------------------------------
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8 ARCHITECTURE not_ok OF hamm_weight IS

9 SIGNAL temp: INTEGER RANGE 0 TO N;

10 BEGIN

11 temp <= 0;

12 gen: FOR i IN 1 TO N-1 GENERATE

13 temp <= temp + 1 WHEN x(i)='1' ELSE temp;

14 END GENERATE;

15 y <= temp;

16 END ARCHITECTURE;

17 -------------------------------------------------------------

8 ARCHITECTURE ok OF hamm_weight IS

9 TYPE oneDoneD is ARRAY (0 TO N-1) OF INTEGER RANGE 0 TO N;

10 SIGNAL temp: oneDoneD;

11 BEGIN

12 temp(0) <= 0;

13 gen: FOR i IN 1 TO N-1 GENERATE

14 temp(i) <= temp(i-1) + 1 WHEN x(i)='1' ELSE temp(i-1);

15 END GENERATE;

16 y <= temp(N-1);

17 END ARCHITECTURE;

18 -------------------------------------------------------------

7.8 Exercises

Note: For exercise solutions, please consult the book website.

Exercise 7.1: SIGNAL versus VARIABLE C1

Consider the two sections of code below.

a) Is count a signal or a variable? Is count the name of an actual circuit output?

b) What is the range of the counter in each code below?

c) For the code on the left, what are the consequences of declaring count as a signal versus

declaring it as a variable?

d) Make the same analysis for the code on the right.

IF (clk'EVENT AND clk='1') THEN

count := count + 1;

IF (count=25) THEN

count := 1;

END IF;

END IF;

pointer <= count;

IF (clk'EVENT AND clk='1') THEN

IF (count=25) THEN

count := 1;

ELSE

count := count + 1;

END IF;

END IF;

pointer <= count;
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Exercise 7.2: SIGNAL versus VARIABLE C2

Consider the 0-to-9 counter of example 7.3.

a) Check in the complete code the application of the 6 rules described in figure 7.1 (as in

example 7.2).

b) In each process, which lines of code are responsible for the inference of registers?

c) How many flip-flops are inferred in each process? Why?

Exercise 7.3: Latches and Flip-Flops

Examine the three codes given below.

a) Draw the circuit that you expect will be inferred in each case.

b) Compile the codes in order to verify your answers.

1 -------------------------------

2 ENTITY test IS

3 PORT (d, clk, rst: IN BIT;

4 q: OUT BIT);

5 END ENTITY;

6 -----code 1:-------------------

7 ARCHITECTURE circuit OF test IS

8 BEGIN

9 PROCESS (d, clk, rst)

10 BEGIN

11 IF (rst='1') THEN

12 q <= '0';

13 ELSIF (clk='1') THEN

14 q <= d;

15 END IF;

16 END PROCESS;

17 END ARCHITECTURE;

18 -------------------------------

-----code 2:-------------------

9 PROCESS (clk)

10 BEGIN

11 IF (clk'EVENT AND clk='1') THEN

12 IF (rst='1') THEN

13 q <= '0';

14 ELSE

15 q <= d;

16 END IF;

17 END IF;

18 END PROCESS;

----------------------------------

-----code 3:----------------------

9 PROCESS (clk)

10 BEGIN

11 IF (clk='1') THEN

12 IF (rst='1') THEN

13 q <= '0';

14 ELSE

15 q <= d;

16 END IF;

17 END IF;

18 END PROCESS;

----------------------------------

Exercise 7.4: Combinational versus Sequential Circuits C1

Consider the carry-ripple adder seen in example 6.4.

a) Is it a combinational or sequential circuit? Why?

b) Looking at the code, explain why it does not infer registers.

194 Chapter 7



Consider now the leading-zeros counter of example 6.5.

c) Is it a combinational or sequential circuit? Why?

d) Explain why this code does not infer registers.

Exercise 7.5: Combinational versus Sequential Circuits C2

Consider the counter designed in example 6.6.

a) What portions of the code generate a sequential circuit and which generate a combina-

tional circuit? Why?

b) Could the portion implemented by CASE be moved outside the process? If so, which

statement should be used? Would CASE still be OK?

Exercise 7.6: Over-registered Counter

In example 7.5, an analysis of the counter designed in example 6.6 was made. Compile the

code presented in the latter to confirm the answers presented in the former.

Exercise 7.7: Registered Circuits

a) Examine the three codes below, all involving registers, and draw the circuit that you ex-

pect will be inferred in each case. How many DFFs are needed?

b) Compile the codes in order to verify your answers.

c) Comment: Are any of these circuits functionally equivalent to each other? Which one

would you choose? Why?

1 -------------------------------------

2 ENTITY test IS

3 PORT (clk: IN BIT;

4 x: IN BIT_VECTOR(7 DOWNTO 0);

5 sel: IN INTEGER RANGE 0 TO 7;

6 y: OUT BIT);

7 END ENTITY;

8 -----code 1:-------------------------

9 ARCHITECTURE circuit OF test IS

10 BEGIN

11 PROCESS (clk)

12 VARIABLE temp: BIT;

13 BEGIN

14 temp := x(sel);

15 IF clk'EVENT AND clk='1' THEN

16 y <= temp;

17 END IF;

18 END PROCESS;

19 END ARCHITECTURE;

-------------------------------------

-----code 2:----------------------------

11 PROCESS (clk)

12 VARIABLE temp: BIT_VECTOR(7 DOWNTO 0);

13 BEGIN

14 IF clk'EVENT AND clk='1' THEN

15 temp := x;

16 END IF;

17 y <= temp(sel);

18 END PROCESS;

----------------------------------------

-----code 3:----------------------------

11 PROCESS (clk)

12 BEGIN

13 IF clk'EVENT AND clk='1' THEN

14 y <= x(sel);

15 END IF;

16 END PROCESS;

----------------------------------------
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Exercise 7.8: Shift Register

Figure 7.8 shows a 4� 1 shift register. Examine the three codes below and answer:

a) Which of these codes implement the circuit of figure 7.8?

b) Compile the codes in order to verify your answer.

Note: The recommended approach to design shift registers is that seen in example 6.3.

1 ---------------------------------

2 ENTITY test IS

3 PORT (din, clk: IN BIT;

4 dout: OUT BIT);

5 END ENTITY;

6 -----code 1:---------------------

7 ARCHITECTURE circ1 OF test IS

8 SIGNAL q0, q1, q2: BIT;

9 BEGIN

10 PROCESS (clk)

11 BEGIN

12 IF clk'EVENT AND clk='1' THEN

13 q0 <= din;

14 q1 <= q0;

15 q2 <= q1;

16 dout <= q2;

17 END IF;

18 END PROCESS;

19 END ARCHITECTURE;

20 ---------------------------------

6 -----code 2:---------------------

7 ARCHITECTURE circ2 OF test IS

8 BEGIN

9 PROCESS (clk)

10 VARIABLE q0, q1, q2, q3: BIT;

11 BEGIN

12 IF (clk'EVENT AND clk='1') THEN

13 q0 := din;

14 q1 := q0;

15 q2 := q1;

16 q3 := q2;

17 END IF;

18 dout <= q3;

19 END PROCESS;

20 END ARCHITECTURE;

21 -----------------------------------

6 -----code 3:-----------------------

7 ARCHITECTURE circ3 OF test IS

8 BEGIN

9 PROCESS (clk)

10 VARIABLE q0, q1, q2, q3: BIT;

11 BEGIN

12 IF clk'EVENT AND clk='1' THEN

13 q3 := q2;

14 q2 := q1;

15 q1 := q0;

16 q0 := din;

17 END IF;

18 dout <= q3;

19 END PROCESS;

20 END ARCHITECTURE;

21 -----------------------------------

Figure 7.8
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Exercise 7.9: Frequency Divider with VARIABLE

Figure 7.9 depicts a circuit that must divide the clock frequency by a generic integer M.

In this exercise, there are no restrictions regarding the phase of clkout (that is, it is not

required to be symmetric or with any other particular duty cycle).

a) Estimate the number of DFFs that will be needed for M ¼ 4 and M ¼ 5.

b) Write a VHDL code for this circuit. Enter M as a generic parameter and use a VARI-

ABLE to implement the counter. Compile and simulate it for M ¼ 4 and M ¼ 5, checking

also whether the numbers of registers match your predictions.

c) Assume that clkout is required to be glitch free. Check if your solution is subject to

glitches or not. If it is, provide a way of cleaning it. (Hint: Check whether clkout comes

directly from a flip-flop.)

Exercise 7.10: Frequency Divider with SIGNAL

If in the code for exercise 7.9 above the variable that implements the counter is replaced

with a signal, without changing any numeric value in the code, by which integer value will

the clock frequency be divided?

Exercise 7.11: Frequency Divider with Symmetric Phase

Redesign the frequency divider of exercise 7.9 such that it now produces an output with

symmetric phase (50% duty cycle), even when M is odd (in this case, the circuit needs to

operate at both clock transitions). Will the number of DFFs change?

Exercise 7.12: Generic AND with Concurrent Code

Figure 7.10a shows an AND gate with a generic number of inputs (N ). Design this cir-

cuit using concurrent code (chapter 5). If necessary, use the technique introduced in section

7.7.

Figure 7.9

Figure 7.10
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Exercise 7.13: Generic NAND with Concurrent Code

Figure 7.10b shows a NAND gate with a generic number of inputs (N ). Design this cir-

cuit using concurrent code (chapter 5). If necessary, use the technique introduced in section

7.7.
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8 PACKAGE and COMPONENT

8.1 Introduction

This chapter and the next deal with four VHDL units whose main purpose is to allow code

partitioning, code sharing, and code reuse: PACKAGE, COMPONENT, FUNCTION,

and PROCEDURE. Since these units can be (and often are) located outside the main

code (in libraries), we refer to them as system-level units. The first two are studied in this

chapter, while the other two will be covered in the next.

The relationship between the system-level units and the main code is illustrated in figure

8.1. If a certain library is declared in the main code, then its parts can be used in the de-

sign. A library can contain packages (with functions, procedures, and several kinds of dec-

larations) and other designs (these are instantiated in the main code using the keyword

COMPONENT). The construction and use of libraries are essential to the designs pre-

sented in this chapter and in the next.

8.2 PACKAGE

To construct a package, two sections of code might be needed, called PACKAGE and

PACKAGE BODY, shown in the simplified syntax below.

PACKAGE package_name IS

declarative_part

END [PACKAGE] [package_name];

------------------------------------

[PACKAGE BODY package_name IS

[subprogram_body]

[deferred_constant_specifications]

END [PACKAGE BODY] [package_name]];



The first part (PACKAGE) must contain only declarations, which can include sub-

program declaration, type declaration, subtype declaration, constant declaration, signal

declaration, shared variable declaration, file declaration, alias declaration, component dec-

laration, attribute declaration, attribute specification, disconnection specification, use

clause, group template declaration, and group declaration.

The second part (PACKAGE BODY) is needed only when a subprogram (FUNC-

TION or PROCEDURE) or a deferred constant (with undefined value—see section 3.2)

is declared in the upper part. In this case, the full subprogram body or the full constant

specification must be exhibited. The full subprogram header, exactly as it appears in

the PACKAGE, must be repeated in the PACKAGE BODY. The latter can contain the

same kinds of declarations as the former, with the exception of signal declaration, compo-

nent declaration, attribute declaration, attribute specification, and disconnection specifica-

tion. The former, on the other hand, can obviously not contain subprogram bodies.

Example The PACKAGE below is called my_package and contains only TYPE,

SIGNAL, and (complete) CONSTANT declarations (thus PACKAGE BODY is not

necessary).

------------------------------------------------

PACKAGE my_package IS

TYPE matrix IS ARRAY (1 TO 3, 1 TO 3) OF BIT;

SIGNAL x: matrix;

CONSTANT max1, max2: INTEGER := 255;

END PACKAGE;

------------------------------------------------

In VHDL 2008, a header was added to PACKAGE, allowing the declaration of GE-

NERIC constants. In the declarative part, the following additional declarations are

allowed: subprogram instantiation declaration, package declaration, package instantiation

declaration, and PSL declarations. PACKAGE BODY is still for constructing subprogram

bodies and for specifying deferred constants.

Figure 8.1
Relationship between the main code and the units intended mainly for system-level design (libraries).
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Example 8.1: PACKAGE with FUNCTION and Deferred CONSTANT

The code below shows, in lines 1–9, a PACKAGE called my_package, which contains

a deferred constant (called flag) and also a function (called down_edge), so in this case a

PACKAGE BODY is needed. Knowing that the constant value must be '1' and that this

function should be equivalent to "clk'EVENT AND clk ¼ '0' ", write a code for the PACK-

AGE BODY.

1 ------------------------------------------------------------

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 ------------------------------------------------------------

5 PACKAGE my_package IS

6 CONSTANT flag: STD_LOGIC;

7 FUNCTION down_edge(SIGNAL s: STD_LOGIC) RETURN BOOLEAN;

8 END my_package;

9 ------------------------------------------------------------

10 PACKAGE BODY my_package IS

11 CONSTANT flag: STD_LOGIC := '1';

12 FUNCTION down_edge(SIGNAL s: STD_LOGIC) RETURN BOOLEAN IS

13 BEGIN

14 RETURN (s'EVENT AND s='0');

15 END down_edge;

16 END my_package;

17 ------------------------------------------------------------

Solution The code was included in lines 10–16, with the deferred constant specified in line

11 and the function body in lines 12–15 (this function returns TRUE when a negative

clock edge occurs). Note that the function header (line 12) is an exact copy of the function

declaration (line 7). Observe also that the package std_logic_1164 was included in lines 2–3

because the data type STD_LOGIC was used in the code.

8.3 COMPONENT

COMPONENT is simply a conventional code (that is, library/package declarationsþ
ENTITYþARCHITECTURE). However, its declaration as COMPONENT allows

reusability and also the construction of hierarchical designs. Commonly used digital sub-

systems, like adders, multipliers, multiplexers, and the like are often compiled using this

technique. Designs based on components are referred to as structural designs.

COMPONENT can be declared in ARCHITECTURE, PACKAGE, GENERATE,

and BLOCK. To use it, two sections of code are needed: one for declaring it, the other

for instantiating it. Both are shown in the simplified syntaxes below.
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COMPONENT declaration:

COMPONENT component_name [IS]

[GENERIC (

const_name: const_type := const_value;

const_name: const_type := const_value;

...);]

PORT (

port_name: port_mode signal_type;

port_name: port_mode signal_type;

...);

END COMPONENT [component_name];

COMPONENT instantiation:

label: [COMPONENT] component_name

[GENERIC MAP (generic_list)]

PORT MAP (port_list);

The component declaration, shown in the first syntax above, must be an exact copy of

the ENTITY of the design being instantiated. The GENERIC specification only needs to

be included if the component contains a GENERIC list and one or more values in that list

must be changed by the instantiating design (done with GENERIC MAP).

The component instantiation, shown in the second syntax above, starts with a mandatory

label, followed by the optional word COMPONENT, then the component’s name (name

of the ENTITY in the design being instantiated), an optional GENERIC MAP declara-

tion (explained in section 8.4), and finally the respective PORT MAP declaration, which

associates the port names in the new design to the port names in the design being instanti-

ated. GENERIC MAP is necessary when the original component has a GENERIC speci-

fication in the ENTITY header and one or more of its values must be overwritten by the

new design.

Example Say that a 3-input NAND gate, called nand3, has been previously designed

and we now want to use it as part of a new design. This is illustrated in the code below.

The first part contains the component declaration, which must be exactly as in the original

entity. The second part shows the component instantiation, labeled nand_gate, with the cur-

rent x1, x2, x3, and y ports assigned to the original a1, a2, a3, and b ports, respectively.
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This is called positional mapping, because the first signal in one list corresponds to the first

signal in the other, the second in one to the second in the other, and so on.

-----COMPONENT declaration:--------------------------

COMPONENT nand3 IS

PORT (a1, a2, a3: IN STD_LOGIC; b: OUT STD_LOGIC);

END COMPONENT;

-----COMPONENT instantiation:-------------

nand_gate: nand3 PORT MAP (x1, x2, x3, y);

Mapping Options

PORT MAP is simply a list relating the ports of the actual circuit to the ports of the

predesigned circuit (component being instantiated). Such a mapping can be positional

or nominal, as illustrated in the example below, which employs the nand3 circuit again.

(An expansion specified in VHDL 2008 allows the use of expressions in PORT MAP

assignments.)

-------- Component instantiation: -----------------------

nand3_1: nand3 PORT MAP (x1, x2, x3, y); --positional mapping

nand3_2: nand3 PORT MAP (a1=>x1, a2=>x2, a3=>x3, b=>y); --nominal mapping

nand3_3: nand3 PORT MAP (x1, x2, x3, OPEN); --positional mapping

nand3_4: nand3 PORT MAP (a1=>x1, a2=>x2, a3=>x3, b=>OPEN); --nominal mapping

The first two instantiations are equivalent, just using distinct mapping options. The last

two instantiations are also equivalent, now with the keyword OPEN employed to indicate

that the circuit’s output must be left unconnected.

COMPONENT Declaration Options

Figure 8.2 shows two common ways of using components. In (a), the components are in a

library, with the main code including their declarations and also their instantiations. In (b),

the declarations too are in a library (in a specific package), so only the instantiations are

needed in the main code.

File/Project Assembling Options

A code employing COMPONENT can be entered into the compiling environment in sev-

eral ways.

1 Method 1: The complete code is entered in a single file, saved with the same name as the

main entity’s name. In this case, the component declarations are also normally included in

the main code (as in figure 8.2a). In summary, everything goes in just one (big) file.
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1 Method 2: Each component is previously designed in a separate project, which is com-

piled either into its own work library or into the current work library. If the former is

adopted, then USE clauses pointing to those libraries are needed in the main code. The

component declarations are placed in the main code (as in figure 8.2a).

1 Method 3: This is the same as method 2, but with the component declarations in a sep-

arate package (as in figure 8.2b). In this case, a USE clause pointing to that package is

needed in the main code.

The example below illustrates the use of method 1.

Example 8.2: Circular Shift Register with COMPONENT

Figure 8.3 shows a circular shift register with a programmable rotating sequence. The

inputs are clk, load, and d ¼ d0d1d2d3, with the latter employed to load the desired se-

quence into the flip-flops when load ¼ '1'. The output is q ¼ q0q1q2q3, which displays the

instantaneous value of the rotating sequence. Note that all cells in this circuit are alike

and composed of a multiplexer plus a DFF. Design this circuit using COMPONENT to

instantiate the multiplexers and DFFs. Adopt the following approach: use method 1 of

section 8.3 to enter the code, with positional mapping in it.

Figure 8.2
Typical COMPONENT usage: (a) With the declarations and instantiations in the main code; (b) With the decla-
rations in a separate package, thus with only the instantiations in the main code.

Figure 8.3
Programmable circular shift register of example 8.2.
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Solution A corresponding VHDL code is presented below. It consists of just one VHDL

file (called circular_shift.vhd in this example), having all component declarations included

in the main code (lines 11–17), hence complying with method 1. The labels chosen for the

component instances are mux1, mux2, and so on for the multiplexers (lines 20–23), and

d¤1, d¤2, and so on for the DFFs (lines 24–27). An internal signal called i(0:3) was

declared in line 9 to provide interface between the muxes and the flip-flops.

1 -----Multiplexer:------------------------------

2 ENTITY mux IS

3 PORT (a, b, sel: IN BIT;

4 x: OUT BIT);

5 END ENTITY;

6 -----------------------------------------------

7 ARCHITECTURE mux OF mux IS

8 BEGIN

9 x <= a WHEN sel='0' ELSE b;

10 END ARCHITECTURE;

11 -----------------------------------------------

1 -----Flip-flop:--------------------------------

2 ENTITY flipflop IS

3 PORT (d, clk: IN BIT;

4 q: OUT BIT);

5 END ENTITY;

6 -----------------------------------------------

7 ARCHITECTURE flipflop OF flipflop IS

8 BEGIN

9 PROCESS (clk)

10 BEGIN

11 IF (clk'EVENT AND clk='1') THEN

12 q <= d;

13 END IF;

14 END PROCESS;

15 END ARCHITECTURE;

16 -----------------------------------------------

1 -----Main code:--------------------------------

2 ENTITY circular_shift IS

3 PORT (clk, load: IN BIT;

4 d: IN BIT_VECTOR(0 TO 3);

5 q: BUFFER BIT_VECTOR(0 TO 3));

6 END ENTITY;

7 -----------------------------------------------

8 ARCHITECTURE structural OF circular_shift IS
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9 SIGNAL i: BIT_VECTOR(0 TO 3);

10 ----------------------

11 COMPONENT mux IS

12 PORT (a, b, sel: IN BIT; x: OUT BIT);

13 END COMPONENT;

14 ----------------------

15 COMPONENT flipflop IS

16 PORT (d, clk: IN BIT; q: OUT BIT);

17 END COMPONENT;

18 ----------------------

19 BEGIN

20 mux1: mux PORT MAP (q(3), d(0), load, i(0));

21 mux2: mux PORT MAP (q(0), d(1), load, i(1));

22 mux3: mux PORT MAP (q(1), d(2), load, i(2));

23 mux4: mux PORT MAP (q(2), d(3), load, i(3));

24 dff1: flipflop PORT MAP (i(0), clk, q(0));

25 dff2: flipflop PORT MAP (i(1), clk, q(1));

26 dff3: flipflop PORT MAP (i(2), clk, q(2));

27 dff4: flipflop PORT MAP (i(3), clk, q(3));

28 END ARCHITECTURE;

29 -----------------------------------------------

Simulation results are shown in figure 8.4. Note that the input sequence is d ¼ "0100",

which is loaded into the shift register when clk goes up with load ¼ '1', and then rotates,

moving one position to the right at every positive clock transition.

In VHDL 2008, expressions are allowed in PORT MAP assignments. See other details

in section 8.8.

8.4 GENERIC MAP

Completely generic code (for libraries, for example) can be attained using GENERIC

declarations (seen in section 2.6 and used extensively in the examples). When a COMPO-

Figure 8.4
Simulation results from the circular shift register of example 8.2.
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NENT containing such declarations is instantiated, the values originally given to the ge-

neric parameters can be overwritten by including a GENERIC MAP declaration in the

component instantiation. The corresponding syntax was already presented in section 8.3.

Example A component called and_gate is declared below, which has a generic parameter

called inputs, whose (optional) default value is 8. The two instantiations shown next (a1,

a2) are equivalent. In the first, the mapping is positional, while in the second, it is nominal.

In either case, the default value of inputs (8) is replaced with 16.

-----Component declaration:---------------------------------

COMPONENT and_gate IS

GENERIC (inputs: POSITIVE := 8); --see Note below

PORT (a: IN BIT_VECTOR(1 TO inputs);

b: OUT BIT);

END COMPONENT;

------------------------------------------------------------

-----Component instantiation:-------------------------------

a1: and_gate GENERIC MAP (16) PORT MAP (x, y);

a2: and_gate GENERIC MAP (inputs=>16) PORT MAP (a=>x, b=>y);

------------------------------------------------------------

Note: GENERIC does not need to be included in the component declaration above if

GENERIC MAP is not used in the component instantiation and the GENERIC values

specified in the main code coincide with those in the component code (this is fine even if

they do not have the same name). Also, in the component code and in the component dec-

laration, the GENERIC values can be left unspecified, but then GENERIC MAP is obvi-

ously required in order to specify them.

The use of GENERIC MAP is illustrated in example 8.3.

Example 8.3: Parity Detector with COMPONENT and GENERIC MAP

The generic N-bit parity detector of figure 8.5 must produce y ¼ '1' when the number of '1's

in x is odd, or y ¼ '0' otherwise (an implementation for this kind of circuit was seen in sec-

tion 7.7). Write a VHDL code to solve this problem, where the parity detector is entered

as a COMPONENT that employs a GENERIC declaration to define N. Include a

GENERIC MAP declaration in your code to overwrite the original value of N. Adopt

Figure 8.5
Generic parity detector of example 8.3.
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the following approach: use method 1 of section 8.3 to enter the code, with nominal map-

ping in it.

Solution A VHDL code for this circuit is presented below. First, the component ( par_

detector) is shown, which has a generic parameter called bits (line 3) that defines the size

of the input vector (left unspecified in this example). In the main code ( parity_detector),

this component is declared in lines 10–14 and then used in lines 17–18, with GENERIC

MAP (line 17) defining the actual value of bits. Note in lines 17–18 that nominal mappings

were utilized.

1 ----------The component:--------------------------

2 ENTITY par_detector IS

3 GENERIC (bits: POSITIVE);

4 PORT (input: IN BIT_VECTOR(bits-1 DOWNTO 0);

5 output: OUT BIT);

6 END par_detector;

7 --------------------------------------------------

8 ARCHITECTURE behavior OF par_detector IS

9 BEGIN

10 PROCESS(input)

11 VARIABLE temp: BIT;

12 BEGIN

13 temp := '0';

14 FOR i IN input'RANGE LOOP

15 temp := temp XOR input(i);

16 END LOOP;

17 output <= temp;

18 END PROCESS;

19 END behavior;

20 --------------------------------------------------

1 ----------Main code:------------------------------

2 ENTITY parity_detector IS

3 GENERIC (N: POSITIVE := 8);

4 PORT (x: IN BIT_VECTOR(N-1 DOWNTO 0);

5 y: OUT BIT);

6 END parity_detector;

7 --------------------------------------------------

8 ARCHITECTURE structural OF parity_detector IS

9 -----------------------------

10 COMPONENT par_detector IS

11 GENERIC (bits: POSITIVE);

12 PORT (input: IN BIT_VECTOR(bits-1 DOWNTO 0);
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13 output: OUT BIT);

14 END COMPONENT;

15 -----------------------------

16 BEGIN

17 det: par_detector GENERIC MAP (bits=>N)

18 PORT MAP(input=>x, output=>y);

19 END structural;

20 --------------------------------------------------

8.5 COMPONENT Instantiation with GENERATE

As mentioned in section 8.3, one of the places where COMPONENT can be used is in

GENERATE loops (studied in section 5.5). This method is very helpful when a large or

an arbitrary number of instantiations of the same component must be made. The typical

use is shown below, where gen and comp are the labels chosen for the GENERATE state-

ment and for the COMPONENT instantiation, respectively.

-------------------------------------------------

gen: FOR i IN 0 TO max GENERATE

comp: my_component PORT MAP (x(i), y(i), z(i));

END GENERATE gen;

-------------------------------------------------

An example of component instantiation with GENERATE was already presented in

chapter 5 (see example 5.5). Below is another example.

Example 8.4: Shift Register with COMPONENT and GENERATE

Figure 8.6 shows a truly generic M �N shift register with data-load capability (Pedroni

2008) (a related circuit was described in example 8.2). The inputs are clk, load, x, and d

(the flip-flops are synchronously loaded with the values of d when load ¼ '1'), while the

(only) output is y. As in example 8.2, design this circuit using COMPONENT to instanti-

ate the multiplexers and flip-flops. Adopt the following approach: use method 3 of section

8.3 to enter the code, with positional mapping in it.

Figure 8.6
Generic shift register of example 8.4.
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Solution Note in figure 8.6 that the circuit has M stages with N bits each, hence totaling

M �N mux-DFF pairs. A VHDL code for this circuit is presented below. The multiplexer

and flip-flop circuits are those seen in example 8.2, here compiled in separate projects (be-

cause method 3 is to be used to enter the design). As can be seen in the code below, the

component declarations are in a separate package (called my_declarations), so a USE

clause pointing to it was included in line 2 of the main code. Note that the package con-

tains also a TYPE declaration (twoD, line 3) to create a 2D array of BIT elements, which

is used in the main code to specify the d input (line 9) and also the internal signals u and v

(lines 14–15). The code proper contains two sections, both with the GENERATE state-

ment. The first section of code (lines 18–21) transfers x to the first slice of u and the last

slice of u to y (if one prefers, the transfer of y can be done in a separate section at the end

of the code). The second section of code (lines 23–28) computes the values for the internal

2D arrays u and v.

1 -----Package:-----------------------------------------------------

2 PACKAGE my_declarations IS

3 TYPE twoD IS ARRAY (NATURAL RANGE <>, NATURAL RANGE <>) OF BIT;

4 ----------------

5 COMPONENT mux IS

6 PORT (a, b, sel: IN BIT; x: OUT BIT);

7 END COMPONENT;

8 ----------------

9 COMPONENT flipflop IS

10 PORT (d, clk: IN BIT; q: OUT BIT);

11 END COMPONENT;

12 ----------------------

13 END PACKAGE;

14 ------------------------------------------------------------------

1 -----Main code:---------------------------------------------------

2 USE work.my_declarations.all;

3 ------------------------------------------------------------------

4 ENTITY shift_register IS

5 GENERIC (M: POSITIVE := 4;

6 N: POSITIVE := 8);

7 PORT (clk, load: IN BIT;

8 x: IN BIT_VECTOR(N-1 DOWNTO 0);

9 d: IN twoD(0 TO M-1, N-1 DOWNTO 0);

10 y: OUT BIT_VECTOR(N-1 DOWNTO 0));

11 END ENTITY;

12 ------------------------------------------------------------------

13 ARCHITECTURE structural OF shift_register IS
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14 SIGNAL u: twoD(0 TO M, N-1 DOWNTO 0);

15 SIGNAL v: twoD(0 TO M-1, N-1 DOWNTO 0);

16 BEGIN

17 ----Transfer x–>u and u–>y:---------

18 gen1: FOR i IN N-1 DOWNTO 0 GENERATE

19 u(0,i) <= x(i);

20 y(i) <= u(M,i);

21 END GENERATE gen1;

22 ----Update internal array:----------

23 gen2: FOR i IN 0 TO M-1 GENERATE

24 gen3: FOR j IN N-1 DOWNTO 0 GENERATE

25 mux1: mux PORT MAP (u(i,j), d(i,j), load, v(i,j));

26 dff1: flipflop PORT MAP (v(i,j), clk, u(i+1,j));

27 END GENERATE gen3;

28 END GENERATE gen2;

29 END ARCHITECTURE;

30 ------------------------------------------------------------------

Simulation results are displayed in figure 8.7 (for N ¼ 8 and M ¼ 4). Note that d is

loaded into the shift register at the first positive clock transition after load is asserted. Ob-

serve also that each individual value of d lies in the 0-to-255 range (because N ¼ 8) and

that a new input value (33, for example, in this simulation) reaches the output at the fourth

positive clock transition (because M ¼ 4).

8.6 CONFIGURATION

CONFIGURATION provides architecture-entity bindings, which can be helpful in proj-

ects with multiple architectures or in complex hierarchical designs. Simplified syntaxes for

these two cases are presented below.

Figure 8.7
Simulation results from the shift register of example 8.4.
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Direct binding:

CONFIGURATION config_name OF entity_name IS

FOR arch_name

END FOR;

END [CONFIGURATION] [config_name];

Binding in component instantiations:

CONFIGURATION config_name OF entity_name IS

FOR arch_name

FOR label: component_name

--or FOR OTHERS/ALL: component_name

USE ENTITY entity_name [(arch_name)];

END FOR;

END FOR;

END [CONFIGURATION] [config_name];

The direct ENTITY-ARCHITECTURE binding starts with the word CONFIGURA-

TION, followed by a chosen name for this configuration setup, then the name of the EN-

TITY (project name) to which the architecture will be bound. In the second line, FOR

determines the name of the ARCHITECTURE to be bound. The configuration code

must be located outside any entities or architectures.

Example The code below contains an entity (called test) and two architectures (arch1 and

arch2). The configuration declaration (called config1) defines the binding as test-arch1 (that

is, arch1 is to be used with test).

--------------------------------

ENTITY test ...

END test;

--------------------------------

ARCHITECTURE arch1 ...

END arch1;

--------------------------------

ARCHITECTURE arch2 ...

END arch2;

--------------------------------
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CONFIGURATION config1 OF test IS

FOR arch1

END FOR;

END CONFIGURATION;

--------------------------------

The second syntax above allows more complex bindings. For example, a component can

be declared and instantiated in the code using an arbitrary name, with the actual binding

between the used names and the actual entity-architecture names made later with a CON-

FIGURATION declaration.

Example The code below is from example 8.3. Note, however, that the name of the com-

ponent in the component declaration (lines 10–14) and component instantiation (line 17)

was changed to detector, which does not correspond to any entity available in our design.

However, a configuration declaration was also included in the code (lines 21–27), say-

ing the following: its name is my_config and it relates to the entity parity_detector (line 21);

the architecture named structural (line 22) of that entity must employ, for the component

instantiation labeled det of component detector (line 23), the entity par_detector with archi-

tecture behavior (line 24), both available in the current work library (project’s directory).

1 ----------The component:--------------------------

2 ENTITY par_detector IS

.. ... (see Example 8.3)

19 END behavior;

20 --------------------------------------------------

1 ----------Main code:------------------------------

2 ENTITY parity_detector IS

3 GENERIC (N: POSITIVE := 8);

4 PORT (x: IN BIT_VECTOR(N-1 DOWNTO 0);

5 y: OUT BIT);

6 END parity_detector;

7 --------------------------------------------------

8 ARCHITECTURE structural OF parity_detector IS

9 -----------------------------

10 COMPONENT detector IS

11 GENERIC (bits: POSITIVE);

12 PORT (input: IN BIT_VECTOR(bits-1 DOWNTO 0);

13 output: OUT BIT);

14 END COMPONENT;

15 -----------------------------

16 BEGIN

17 det: detector GENERIC MAP (N) PORT MAP(x, y);
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18 END structural;

19 --------------------------------------------------

20 --------------------------------------------------

21 CONFIGURATION my_config OF parity_detector IS

22 FOR structural

23 FOR det: detector

24 USE ENTITY work.par_detector(behavior);

25 END FOR;

26 END FOR;

27 END my_config;

28 --------------------------------------------------

It is important to mention that in regular codes (with just one architecture for each en-

tity, and with component instantiations fully specified using the syntax of section 8.3) there

is no need to use CONFIGURATION.

8.7 BLOCK

BLOCK is a concurrent statement whose main purpose is to provide a means for code par-

titioning (hence system-level design). BLOCK can be used in an ARCHITECTURE body

to cluster related portions of code, making the overall code more readable and more man-

ageable (which can be helpful in long designs).

Because it is a concurrent statement, BLOCK cannot be used in sequential code, but

PROCESS can be located inside BLOCK, because, as a whole, PROCESS is a concurrent

statement. A simplified syntax for BLOCK is shown below.

label: BLOCK [(guard_expression)] [IS]

[declarative_part]

BEGIN

concurrent_statements_part

END BLOCK [label];

As seen in the syntax, the label is mandatory, while the guard expression (explained

later) is optional. The declarative part can contain the following kinds of declarations: GE-

NERIC, GENERIC MAP, PORT, PORT MAP, plus all kinds of declarations allowed in

the architecture’s declarative part.

Complex block arrangements can be constructed because block statements can be nested

inside one another. The example below shows the simplest possible application for

BLOCK ( just a code partitioner).
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---------------------------

ARCHITECTURE example OF ...

BEGIN

...

controller: BLOCK

BEGIN

...

END BLOCK controller;

...

END example;

---------------------------

A guarded BLOCK is one in which the optional guard expression mentioned in the

syntax above is included. Because the statements contained in a block are only eval-

uated when the guard expression is TRUE, a disconnecting mechanism is automatically

established.

Example 8.5 illustrates how a guard expression can a¤ect a design. Note, however, that

this is just an illustrative example, not a recommended design approach for latches or

any other circuits, because the actual purpose of the guard expression is to allow the

connection/disconnection of drivers.

Example 8.5: Latch Implemented with a Guarded BLOCK

The code below implements a D-type latch. The whole architecture body is included in a

block called blk, which contains the guard expression clk ¼ '1' (line 12). When this condi-

tion is fulfilled, the block is evaluated. Because the output is defined as q ¼ GUARDED d

(line 14), q receives the value of d when the guard expression is TRUE. In other words,

q ¼ d results while clk ¼ '1', which is the logic equation for a D-type latch.

1 ------------------------------------

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 ------------------------------------

5 ENTITY latch IS

6 PORT (d, clk: IN STD_LOGIC;

7 q: OUT STD_LOGIC);

8 END ENTITY;

9 ------------------------------------

10 ARCHITECTURE block_latch OF latch IS

11 BEGIN

12 blk: BLOCK (clk='1')

13 BEGIN

14 q <= GUARDED d;

15 END BLOCK blk;

16 END ARCHITECTURE;

17 ------------------------------------
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8.8 VHDL 2008

With respect to the material covered in this chapter, the main additions specified in VHDL

2008 are those listed below.

1) The declarative part of a PACKAGE can contain these additional kinds of declara-

tions: subprogram instantiation declaration, package declaration, package instantiation

declaration, and PSL declaration.

2) The use of GENERIC (section 2.6) in the PACKAGE header is allowed, as indicated

in the simplified syntax below. An example is shown subsequently.

PACKAGE package_name IS

[GENERIC (generic_list);]

declarative_part

END [PACKAGE] [package_name];

PACKAGE generic_type IS

GENERIC (CONSTANT words: NATURAL;

TYPE: word_type);

TYPE gen_type IS ARRAY 1 TO words OF word_type;

END PACKAGE;

3) A package with a generic list is called an uninstantiated package, which must be instan-

tiated with a package instantiation declaration, shown in the simplified syntax below. An

example of instantiation for the package generic_type above is also presented below.

PACKAGE package_name IS NEW uninstantiated_package_name

GENERIC MAP (instantiation_list);

LIBRARY ieee;

USE ieee.std_logic_1164;

PACKAGE memory_array IS NEW work.generic_type

GENERIC MAP (words => 256, word_type => STD_LOGIC_VECTOR(15 DOWNTO 0);

4) Expressions are allowed in PORT MAP assignments, as in the example below.

cir: my_circuit PORT MAP(inp => a AND b, outp => c);
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8.9 Exercises

Note: For exercise solutions, please consult the book website.

Exercise 8.1: Mux with COMPONENT and GENERATE

Say that the 4� 1 (four inputs of one bit each) multiplexer on the left of figure 8.8 is avail-

able, with which we want to implement the 4�N multiplexer on the right of figure 8.8.

Write a VHDL code to solve this exercise, using GENERATE to make the COMPO-

NENT (mux) instantiations.

Exercise 8.2: Circular Shift with COMPONENT C1

Modify the code of example 8.2 such that the circuit operates with generic length (M ) and

fixed width (N ¼ 8).

Exercise 8.3: Circular Shift with COMPONENT C2

Modify the code of example 8.2 such that the circuit operates with fixed length (M ¼ 4)

and generic width (N ).

Exercise 8.4: Parity Detector with COMPONENT and GENERIC MAP

Simulate the design of example 8.3 in order to verify its (correct) operation.

Exercise 8.5: Adder with COMPONENT and GENERATE

Redesign the carry-ripple adder of example 6.4 using a structural code (that is, a code

based on components). The FA unit must be the component, which should be instantiated

N times with GENERATE.

Exercise 8.6: Synchronous Counter with COMPONENT

Figure 8.9 shows a modulo-8 synchronous counter with serial enable (Pedroni 2008). Since

it employs a standard cell, the use of COMPONENT to implement it is appropriate. Write

a VHDL code to solve this problem. Each gray cell must be entered as a component.

a) Enter the code using method 1 of section 8.3 and positional mapping.

Figure 8.8
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b) Repeat the exercise with the code entered using method 3 of section 8.3 and nominal

mapping.

Exercise 8.7: Synchronous Counter with COMPONENT and GENERATE

Suppose that the counter in the exercise above must now be a 32-bit counter instead of 3

bits. In this case, the easiest way to instantiate the standard cell (32 times) is by means of

GENERATE. Write a code that solves this problem. Enter the number of bits (N ) using

GENERIC, so the code can be easily adjusted to any counter size.

Exercise 8.8: Tapped Delay Line with COMPONENT and GENERIC MAP

A tapped delay line is shown in figure 8.10 (Pedroni 2008). Note that all cells are of the

same type (M �N shift register followed by a 2�N multiplexer). There is, however,

an interesting particularity: the value of M varies from one cell to another. Design this

circuit using COMPONENT to construct the SR and mux cells. Adopt N ¼ 1 and use

GENERIC MAP to define the values of M. Compile your code and check whether the

number of flip-flops inferred is seven. Also, simulate it to make sure that the correct func-

tionality was attained.

Exercise 8.9: Programmable Signal Generator with Frequency Meter

a) Design the programmable signal generator of exercise 6.12.

b) Design the accompanying frequency meter of exercise 6.13.

c) Using the COMPONENT construct, write a main code that instantiates these two cir-

cuits to produce the complete system.

d) Physically implement the circuit in your FPGA development board and test its opera-

tion.

Figure 8.9

Figure 8.10
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9 FUNCTION and PROCEDURE

9.1 Introduction

FUNCTION and PROCEDURE (called subprograms) are very similar to PROCESS

(studied in section 6.3), in the sense that these three are the only sections of VHDL code

that are interpreted sequentially (like regular computer programs). Consequently, only se-

quential statements (IF, WAIT, LOOP, CASE) are allowed (plus operators, of course, be-

cause these can be used in any kind of code).

On the other hand, contrary to PROCESS, which is intended for the ARCHITEC-

TURE body (regular codes), subprograms can be constructed in a PACKAGE, ENTITY,

ARCHITECTURE, or PROCESS. Because PACKAGE is the most common location,

with which the VHDL libraries are built, in our context subprograms are considered

system-level units (along with PACKAGE and COMPONENT, studied in chapter 8).

9.2 The ASSERT Statement

Before we start discussing subprograms, let us see the ASSERT statement, which is very

useful for checking subprogram inputs (it is also very helpful in simulations, as will be

shown in the next chapter).

ASSERT is a statement that can be used in both concurrent and sequential code. Its

purpose is not to create circuits, but simply to assert that certain basic requirements are

met during synthesis or simulation. Its syntax is shown below.

[label:] ASSERT boolean_expression

[REPORT string_expression]

[SEVERITY severity_level];

The string expression can be a constant or a signal of type STRING. The use of the con-

catenation operator (&) is allowed.



Example Say that s is a string whose value is idle. Then the statement below

REPORT "Attention: s=" & s & "!"

will cause the message Attention: s ¼ idle! to be printed on the screen. Other cases will be

presented ahead.

The SEVERITY level can be NOTE (to pass information from the compiler/simulator),

WARNING (to inform that something unusual has occurred), ERROR (to inform that a

serious unusual condition has been found), or FAILURE (a completely unacceptable con-

dition has occurred). The message is issued when the condition is FALSE. Generally, the

compiler/simulator is set up to halt when one of the last two (ERROR or FAILURE)

occurs, having NOTE as the default value.

Example Say that a certain function receives two vectors, called a and b, which must

have the same size. Then the following test could be done (the use of parentheses is

optional):

ASSERT (a'LENGTH=b'LENGTH)

REPORT "Signals a and b do not have the same length!"

SEVERITY FAILURE;

The option above, which is the option generally used, is called conditional ASSERT. An

unconditional version also exists, shown in the syntax below.

[label:] ASSERT FALSE

[REPORT string_expression]

[SEVERITY severity_level];

Because the message is issued when the condition is FALSE, this syntax forces the mes-

sage to be issued. Note, however, that only when this version of ASSERT is used by itself

is it truly unconditional, because if it is combined with an IF statement, for example (as in

example 9.3), a conditional test still results. The truly unconditional case is useful when the

user wants to know when the compiler/simulator has reached particular points in the de-

sign (NOTE is usually chosen as the severity level in such a case).

A helpful attribute when constructing more complex ASSERT statements is

T'IMAGE(X), seen in section 4.4. This attribute determines the STRING type representa-

tion for the value X of type T. It is useful because the REPORT section of the ASSERT

statement accepts only strings. Recall, however, that T is restricted to the numeric, enu-

merated, and physical types (TIME is the main physical type, used in simulations). An ex-

ample is presented below, which is a code for simulation (chapter 10).
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---------------------------------------------------

USE ieee.std_logic_unsigned.all;

...

SIGNAL x, y: STD_LOGIC_VECTOR(3 DOWNTO 0);

SIGNAL n: INTEGER RANGE 0 TO 255;

SIGNAL t: TIME RANGE 0ns TO 200ns;

...

ASSERT (x=y AND n=ref)

REPORT "Mismatch at t=" & TIME'IMAGE(t) &

" (for n=" & INTEGER'IMAGE(n) &

", x=" & INTEGER'IMAGE(conv_integer(x)) &

", y=" & INTEGER'IMAGE(conv_integer(y)) & ")."

SEVERITY FAILURE;

...

---------------------------------------------------

In the code above, x and y are STD_LOGIC_VECTOR signals, n is INTEGER, and t

is TIME. For them to be used in the REPORT section of ASSERT, they must first be con-

verted to the type STRING. Such conversion can be made within the REPORT statement

itself, using the T'IMAGE(X) attribute. In the first line, a direct conversion for t, from

TIME to STRING, is made. In the second line, another direct conversion is made, for n,

now from INTEGER (a numeric type) to STRING. However, in the cases of x and y, a

direct conversion is not possible because STD_LOGIC_VECTOR is not allowed in the

T'IMAGE(X) attribute. Consequently, a conversion to INTEGER is made first, using

the function conv_integer( ), available in the std_logic_unsigned package (see the package

declaration at the beginning of the code), so such integers can then be converted to

STRING. If anyone of the two boolean conditions is not satisfied, the following mes-

sage will be issued (assuming x ¼ "0011", y ¼ "1111", n ¼ 8, and t ¼ 5ns): Mismatch at

t ¼ 5000 ps (for n ¼ 8, x ¼ 3, y ¼ 15).

The use of ASSERT will be illustrated in the examples with FUNCTION in section 9.3.

It will also be used in the next chapter, which deals with simulation.

In VHDL 2008, the TO_STRING type-conversion function was introduced, which can

be used instead of the T'IMAGE(X) attribute. The advantage of TO_STRING is that

it supports a wider set of data types: BOOLEAN, BIT, BIT_VECTOR, INTEGER,

NATURAL, POSITIVE, CHARACTER, STD_(U)LOGIC_VECTOR, (UN)SIGNED,

REAL, TIME, SFIXED, UFIXED, and FLOAT.

9.3 FUNCTION

FUNCTION is a section of sequential VHDL code whose main purpose is to allow the

creation and storage in libraries of solutions for commonly encountered problems, like

data-type conversions, logical and arithmetic operations, etc.

FUNCTION and PROCEDURE 223



FUNCTION is similar to PROCESS (section 6.3) in the sense that it too is sequential

and therefore can only use the same statements (IF, WAIT, LOOP, and CASE—see ex-

pansion related to WHEN and SELECT in VHDL 2008 in section 9.7). Moreover, the

items that can be declared in its declarative part are the same as those for PROCESS (see

list in section 6.3; again, signal declarations are not allowed). A simplified syntax for the

construction of functions is shown below.

[PURE | IMPURE] FUNCTION function_name [(input_list)]

RETURN return_value_type IS

[declarative_part]

BEGIN

statement_part

[label:] RETURN expression;

END [FUNCTION] [function_name];

The syntax above starts with an optional PURE or IMPURE declaration (described

later). If left unspecified, the default value (PURE) is assumed.

The input list can contain any number of parameters (including zero), which are all of

mode IN (that is, all parameters are inputs to the function). The list can only contain the

objects CONSTANT (default), SIGNAL, and FILE (VARIABLE is not allowed),

declared as:

[CONSTANT] constant_name: constant_type;

SIGNAL signal_name: signal_type;

Regardless of the number of input parameters, a function always returns one parameter

value, whose type must be specified after the keyword RETURN in the function header.

Example The function below, named positive_edge, receives a signal called s, returning

TRUE when a positive transition occurs on s.

--------------------------------------------------------------

FUNCTION positive_edge (SIGNAL s: STD_LOGIC) RETURN BOOLEAN IS

BEGIN

RETURN (s'EVENT AND s='1');

END FUNCTION positive_edge;

--------------------------------------------------------------

A FUNCTION can be constructed (using the syntax above) in a PACKAGE, ENTITY,

ARCHITECTURE, PROCESS, BLOCK, or another subprogram, with PACKAGE as

the most common location (for libraries).
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Recall from chapter 8 that when a subprogram is constructed in a PACKAGE, a

PACKAGE BODY is required (only the subprogram declaration goes in the PACKAGE;

the subprogram body goes in the PACKAGE BODY). This situation is illustrated below.

------Package:---------------------------------------------------

PACKAGE my_subprograms IS

FUNCTION positive_edge (SIGNAL s: STD_LOGIC) RETURN BOOLEAN;

END PACKAGE;

-----Package body:-----------------------------------------------

PACKAGE BODY my_subprograms IS

FUNCTION positive_edge (SIGNAL s: STD_LOGIC) RETURN BOOLEAN IS

BEGIN

RETURN (s'EVENT AND s='1');

END FUNCTION positive_edge;

END PACKAGE BODY;

-----------------------------------------------------------------

Function Call

A function can be called basically anywhere (in combinational or sequential code, inside

subprograms, inside GENERATE, etc.). As will be shown in the examples, a function

call is always part of an expression.

Example Say that the function positive_edge seen above is part of our design. Then the

first line below, which contains a call to that function, is equivalent to the second line.

IF positive_edge(clk) THEN ...

IF clk'EVENT AND clk='1' THEN...

Positional versus Nominal Mapping

Similarly to PORT MAP in COMPONENT instantiations (section 8.3), the mapping

between a function call and the corresponding function declaration can be positional or

nominal.

Example Three equivalent function calls are shown below.

-----Function declaration:----------------------------

FUNCTION my_function (SIGNAL a, b: BIT) RETURN BIT;

-----Equivalent function calls:-----------------------

y <= my_function (x1, x2); --positional mapping

y <= my_function (a=>x1, b=>x2); --nominal mapping

y <= my_function (b=>x2, a=>x1); --nominal mapping

------------------------------------------------------
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Pure versus Impure Functions

A function is said to be pure when it can only modify its own variables. Consequently, any

call to that function passing the same parameters will receive exactly the same result. An

impure function, on the other hand, may also modify signals or variables from the archi-

tecture, process, or subprogram where it is declared, so in this case di¤erent results might

occur among calls made with the same parameters at di¤erent times. The latter option can

be helpful in some cases, but one must be very careful when declaring a function as

impure.

In VHDL 2008, a GENERIC list is allowed in a FUNCTION. See other details in sec-

tion 9.7.

Complete examples illustrating the construction and usage of functions are presented

next.

Example 9.1: FUNCTION max in an ARCHITECTURE

Write a function that returns the largest of three integers. Assume that all in/out signals

are required to have the same range (use the ASSERT statement to check this). Construct

the function directly in the ARCHITECTURE of the main code (in its declarative part).

Solution A code for this circuit is shown below, under the title comparator (line 2). The

FUNCTION, called max, is in lines 8–23, located in the declarative part of the ARCHI-

TECTURE. Note that it is divided into two parts. The first part (lines 11–14) contains an

ASSERT statement that checks whether the sizes of a, b, c, and y are all equal, printing the

message ‘‘Signal sizes are not all equal!’’ on the screen if the result of the assertion test is

FALSE, which also causes the compilation to stop (due to the chosen severity level, FAIL-

URE). The second part (lines 16–22) determines the largest of the three inputs. A function

call is made in the main code (line 25), which passes the largest input to the output (y).

Positional versus nominal mapping is illustrated in lines 25–26. Simulation results are

depicted in figure 9.1.

Figure 9.1
Simulation results from the code of example 9.1.
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1 ---------------------------------------------------------------------

2 ENTITY comparator IS

3 PORT (a, b, c: IN INTEGER RANGE 0 TO 255;

4 y: OUT INTEGER RANGE 0 TO 255);

5 END ENTITY;

6 ---------------------------------------------------------------------

7 ARCHITECTURE comparator OF comparator IS

8 FUNCTION max (in1, in2, in3: INTEGER) RETURN INTEGER IS

9 BEGIN

10 -----Check in-out signals:-----

11 ASSERT (y'LEFT=a'LEFT AND y'LEFT=b'LEFT AND y'LEFT=c'LEFT

12 AND y'RIGHT=a'RIGHT AND y'RIGHT=b'RIGHT AND y'RIGHT=c'RIGHT)

13 REPORT "Signal sizes are not all equal!"

14 SEVERITY FAILURE;

15 -----Find maximum:-------------

16 IF (in1>=in2 AND in1>=in3) THEN

17 RETURN in1;

18 ELSIF (in2>=in1 AND in2>=in3) THEN

19 RETURN in2;

20 ELSE

21 RETURN in3;

22 END IF;

23 END FUNCTION;

24 BEGIN

25 y <= max(a, b, c); --positional mapping

26 --y <= max(in1=>a, in2=>b, in3=>c); --nominal mapping

27 END ARCHITECTURE;

28 ---------------------------------------------------------------------

Example 9.2: FUNCTION order_and_ fill in a PACKAGE

Write a function that reorganizes a binary word, such that the indexing is always descend-

ing and ending in zero, regardless of the original specification (for example: a(5:2) !
b(3:0), a(1:4) ! b(3:0), a(3:0) ! b(3:0), etc.). Moreover, the vector must be filled with

zeros (on the left) until a predefined size is attained. Include the ASSERT statement in

your solution to assure that the size of the input word is not bigger than the size wanted

for the final vector (after filling). Construct your function in a PACKAGE (most common

option).

Solution The FUNCTION, called order_and_ fill, is shown below, constructed in a

PACKAGE called my_package. Recall that when a subprogram is constructed in a pack-

age, only the declaration goes in the package, because the subprogram body must go in the

PACKAGE BODY. That can be seen below, with the function declaration in lines 6–7
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and the function body in lines 11–36. The function receives two parameters, called input

(of type UNSIGNED, which is the vector to be reorganized and filled) and bits (of type

NATURAL, which is the size wanted for input after reorganization and filling). Note

that the function body (in the package body) is broken into three parts. The first part (lines

17–19) contains an ASSERT statement that checks whether the size of input is not larger

than bits, printing the message ‘‘Improper input size!’’ on the screen if the result of the

assertion test is FALSE, which also causes the compilation to stop (due to the chosen se-

verity level, FAILURE). The second part (lines 21–27) reorders the vector, such that its

indexing always becomes "input_length� 1 DOWNTO 0". Finally, the third part (lines

29–34) fills the vector with zeros (on the left) to attain a final size equal to bits. The result

is returned to the calling expression in line 35.

An example of application is also included below (main code). The function is used

(called) in line 14, causing the input vector x to be reorganized and filled with zeros, pro-

ducing an output y with a total of size bits.

1 -----------------------------------------------------------

2 LIBRARY ieee;

3 USE ieee.numeric_std.all;

4 -----------------------------------------------------------

5 PACKAGE my_package IS

6 FUNCTION order_and_fill (input: UNSIGNED; bits: NATURAL)

7 RETURN UNSIGNED;

8 END PACKAGE;

9 -----------------------------------------------------------

10 PACKAGE BODY my_package IS

11 FUNCTION order_and_fill (input: UNSIGNED; bits: NATURAL)

12 RETURN UNSIGNED IS

13 VARIABLE a: UNSIGNED(input'LENGTH-1 DOWNTO 0);

14 VARIABLE result: UNSIGNED(bits-1 DOWNTO 0);

15 BEGIN

16 -----Check input size:--------

17 ASSERT (input'LENGTH <= bits)

18 REPORT "Improper input size!"

19 SEVERITY FAILURE;

20 -----Organize input:----------

21 IF (input'LEFT>input'RIGHT) THEN

22 a := input;

23 ELSE

24 FOR i IN a'RANGE LOOP

25 a(i) := input(input'LEFT + i);

26 END LOOP;

27 END IF;
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28 -----Fill with zeros:---------

29 IF (a'LENGTH < bits) THEN

30 result(bits-1 DOWNTO a'LENGTH) := (OTHERS => '0');

31 result(a'LENGTH-1 DOWNTO 0) := a;

32 ELSE

33 result:=a;

34 END IF;

35 RETURN result;

36 END FUNCTION;

37 END PACKAGE BODY;

38 -----------------------------------------------------------

1 -----Main code:----------------------------

2 LIBRARY ieee;

3 USE ieee.numeric_std.all;

4 USE work.my_package.all;

5 -------------------------------------------

6 ENTITY organizer IS

7 GENERIC (size: NATURAL := 5);

8 PORT (x: IN UNSIGNED(2 TO 5);

9 y: OUT UNSIGNED(size-1 DOWNTO 0));

10 END ENTITY;

11 -------------------------------------------

12 ARCHITECTURE organizer OF organizer IS

13 BEGIN

14 y <= order_and_fill(x, size);

15 END ARCHITECTURE;

16 -------------------------------------------

Example 9.3: FUNCTION slv_to_integer in an ENTITY

Write a FUNCTION that converts a signal of type STD_LOGIC_VECTOR to type IN-

TEGER. Include an ASSERT statement in your code to ensure that no symbols other

than '0', 'L' (both synthesized as '0'), '1' or 'H' (both synthesized as '1') are present at the in-

put. This time, construct the function directly in the code’s ENTITY.

Solution A VHDL code that solves this problem is shown below. The FUNCTION,

called slv_to_integer, was constructed in the code’s ENTITY (after PORT, lines 7–24).

An ALIAS (section 4.8), called ss, was used in line 9 to normalize the range of s to "1 TO

s'LENGTH", which then simplifies the writing of the function. The ASSERT statement in

lines 17–20 checks if only the proper values occur at the input (if any of the other five

STD_LOGIC values occurs, an error message is issued and the compilation is interrupted).

Note that an unconditional ASSERT is employed in lines 18–20, but because it is associ-

ated to the IF statement in line 17, the overall test is still conditional.
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1 --------------------------------------------------------

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 --------------------------------------------------------

5 ENTITY ...

6 PORT (...)

7 FUNCTION slv_to_integer (SIGNAL s: STD_LOGIC_VECTOR)

8 RETURN INTEGER IS

9 ALIAS ss: STD_LOGIC_VECTOR(1 TO s'LENGTH) IS s;

10 VARIABLE result: INTEGER RANGE 0 TO 2**s'LENGTH-1;

11 BEGIN

12 result := 0;

13 FOR i IN 1 TO s'LENGTH LOOP

14 result := result * 2;

15 IF (ss(i)='1' OR ss(i)='H') THEN

16 result := result + 1;

17 ELSIF (ss(i)/='0' AND ss(i)/='L') THEN

18 ASSERT FALSE

19 REPORT "There is an invalid input!"

20 SEVERITY FAILURE;

21 END IF;

22 END LOOP;

23 RETURN result;

24 END FUNCTION slv_to_integer;

25 --------------------------------------------------------

26 ARCHITECTURE ...

27 --------------------------------------------------------

9.4 PROCEDURE

The purpose, construction, and usage of PROCEDURE are similar to those of FUNC-

TION. Their main di¤erence is that a PROCEDURE can return more than one value. A

syntax for the construction of procedures is shown below.

PROCEDURE procedure_name (input_output_list) IS

[declarative_part]

BEGIN

statement_part

END [PROCEDURE] [procedure_name]
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The input-output list can contain CONSTANT, SIGNAL, and VARIABLE. Their

mode can be IN, OUT, or INOUT; if it is IN, then CONSTANT is the default object,

while for OUT and INOUT the default is VARIABLE. Their declarations are as follows:

CONSTANT constant_name: mode constant_type;

SIGNAL signal_name: mode signal_type;

VARIABLE variable_name: mode variable_type;

Both FUNCTION and PROCEDURE are sequential codes, so only sequential state-

ments are allowed (but see the note about the extension of WHEN and SELECT in VHDL

2008 in section 9.7). They can be constructed and used in the same way, with PACKAGE

(plus the corresponding PACKAGE BODY) as the most common location (for libraries).

Like function calls, procedure calls can be made basically anywhere (in sequential as

well concurrent code, in subprograms, etc.). However, the former is called as part of an

expression, while the latter is a statement on its own. Examples of procedure calls are

shown below.

------------------------------------------------

sort (a1, a2, a3, b1, b2, b3);

------------------------------------------------

divide (dividend, divisor, quotient, remainder);

------------------------------------------------

IF (x>y) THEN get_max (x1, x2, x3, x4, y1, y2);

------------------------------------------------

Finally, regarding the mapping between a procedure call and the corresponding proce-

dure declaration, it is similar to the mapping for functions—that is, positional or nominal

(see section 9.3).

In VHDL 2008, a GENERIC list is allowed in a PROCEDURE and the OUT mode

can be read by the containing PROCEDURE.

Example 9.4: PROCEDURE min_max in a PACKAGE

A diagram for a 3-input, 2-output circuit (called min_max) is depicted in the top-left corner

of figure 9.2. The circuit must detect the smallest and largest values among a, b, and c, and

assign them to min and max, respectively. Write a PROCEDURE capable of implement-

ing such a functionality. Construct it in a PACKAGE, then write a main code with a call

to this procedure to test it (with negative numbers allowed).

Solution A VHDL code for this problem is shown below. The procedure (called min_

max) is declared in lines 3–4 of a PACKAGE (called my_package) and its body (lines

8–30) is constructed in the corresponding PACKAGE BODY. The code is based on the

flowchart included in figure 9.2. A call to the PROCEDURE is made in line 11 of

the main code (note that it is a statement on its own).
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1 ---------Package:-----------------------------------------------

2 PACKAGE my_package IS

3 PROCEDURE min_max (SIGNAL a, b, c: IN INTEGER;

4 SIGNAL min, max: OUT INTEGER);

5 END PACKAGE;

6 ----------------------------------------------------------------

7 PACKAGE BODY my_package IS

8 PROCEDURE min_max (SIGNAL a, b, c: IN INTEGER RANGE 0 TO 255;

9 SIGNAL min, max: OUT INTEGER RANGE 0 TO 255) IS

10 BEGIN

11 IF (a>=b) THEN

12 IF (a>=c) THEN max <= a;

13 IF (b>=c) THEN min <= c;

14 ELSE min <= b;

15 END IF;

16 ELSE

17 max <= c;

18 min <= b;

19 END IF;

20 ELSE

21 IF (b>=c) THEN max <= b;

22 IF (a>=c) THEN min <= c;

23 ELSE min <= a;

24 END IF;

25 ELSE

26 max <= c;

27 min <= a;

28 END IF;

29 END IF;

30 END PACKAGE BODY;

Figure 9.2
Top-level diagram and respective flowchart for the procedure min_max of example 9.4.
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31 END my_package;

32 ----------------------------------------------------------------

1 ---------Main code:----------------------------

2 USE work.my_package.all;

3 -----------------------------------------------

4 ENTITY comparator IS

5 PORT (a, b, c: IN INTEGER RANGE -256 TO 255;

6 min, max: OUT INTEGER RANGE -256 TO 255);

7 END ENTITY;

8 -----------------------------------------------

9 ARCHITECTURE comparator OF comparator IS

10 BEGIN

11 min_max(a, b, c, min, max);

12 END ARCHITECTURE;

13 -----------------------------------------------

9.5 FUNCTION versus PROCEDURE Summary

1 Location: Both can be located in the declarative part of an ENTITY, ARCHITEC-

TURE, or of another subprogram. The most usual location, however, is in a PACKAGE

(in which case a PACKAGE BODY is also needed).

1 Call: Both can be called basically anywhere (in sequential as well concurrent code, in

subprograms, etc.). However, the first is called as part of an expression, while the second

is a statement on its own.

1 Statements: Only sequential statements are allowed (IF, WAIT, LOOP, CASE).

1 In/Out parameters for functions: Any number of input parameters are allowed, but only

(exactly) one value is returned. The in/out objects can only be CONSTANT (default) or

SIGNAL.

1 In/Out parameters for procedures: Any number of in/out parameters are allowed, which

can be CONSTANT (default for input), SIGNAL, or VARIABLE (default for output).

9.6 Overloading

As seen in section 3.17, an overloaded operator is one for which more than one in-out op-

tion exists. As an example, the numeric_std package (appendix J) has six versions of "þ",

listed below (L and R are the left and right operands, respectively).

FUNCTION "+" (L, R: UNSIGNED) RETURN UNSIGNED;

FUNCTION "+" (L, R: SIGNED) RETURN SIGNED;
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FUNCTION "+" (L: UNSIGNED; R: NATURAL) RETURN UNSIGNED;

FUNCTION "+" (L: NATURAL; R: UNSIGNED) RETURN UNSIGNED;

FUNCTION "+" (L: INTEGER; R: SIGNED) RETURN SIGNED;

FUNCTION "+" (L: SIGNED; R: INTEGER) RETURN SIGNED;

Based on the involved data types, the compiler determines which of these functions to

use (note that an operator is just a subprogram’s name).

In section 4.3, an example of overloading (done by the user) was already presented. Ex-

ample 9.5 is more detailed.

Example 9.5: Overloaded "B" Operator

According to section 4.2 and figure 4.1, arithmetic operators were not originally defined

for the type STD_LOGIC_VECTOR (see package std_logic_1164 in appendix I). Write a

FUNCTION that further overloads the "þ" (addition) operator, such that STD_LOGIC_

VECTOR inputs are also supported, returning a value of the same type.

Solution The requested "þ" function is shown below. Its declaration is in line 6 of a

PACKAGE, and its body is in lines 10–22 of the corresponding PACKAGE BODY.

ALIAS declarations (section 4.8) were employed in lines 11–12 to normalize the range of

a and b to "1 TO a'LENGTH" and "1 TO b'LENGTH", which helps write the function.

Notice that, contrary to example 9.3, invalid STD_LOGIC inputs are not tested in this ex-

ample. Note also that the logic operations in lines 17–19 require that the vector sizes be

equal, which is not tested either (see exercise 9.1). An example of call to this FUNCTION

is illustrated in line 14 of the main code succeeding the package, which adds several objects

of type STD_LOGIC_VECTOR.

1 ---------Package:-------------------------------------------------------------

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 ------------------------------------------------------------------------------

5 PACKAGE my_package IS

6 FUNCTION "+" (a, b: STD_LOGIC_VECTOR) RETURN STD_LOGIC_VECTOR;

7 END PACKAGE;

8 ------------------------------------------------------------------------------

9 PACKAGE BODY my_package IS

10 FUNCTION "+" (a, b: STD_LOGIC_VECTOR) RETURN STD_LOGIC_VECTOR IS

11 ALIAS aa: STD_LOGIC_VECTOR(1 TO a'LENGTH) IS a;

12 ALIAS bb: STD_LOGIC_VECTOR(1 TO b'LENGTH) IS b;

13 VARIABLE result: STD_LOGIC_VECTOR(1 TO a'LENGTH);

14 VARIABLE carry: STD_LOGIC := '0';

15 BEGIN

16 FOR i IN result'REVERSE_RANGE LOOP

17 result(i) := aa(i) XOR bb(i) XOR carry;
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18 carry := (aa(i) AND bb(i)) OR (aa(i) AND carry) OR (bb(i) AND carry);

19 OR (bb(i) AND carry);

20 END LOOP;

21 RETURN result;

22 END FUNCTION "+";

23 END PACKAGE BODY;

24 ------------------------------------------------------------------------------

1 ---------Main code:-----------------------------------------------------------

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 USE work.my_package.all;

5 ------------------------------------------------------------------------------

6 ENTITY add_stdlogic IS

7 PORT (x: IN STD_LOGIC_VECTOR(7 DOWNTO 0);

8 y: OUT STD_LOGIC_VECTOR(7 DOWNTO 0));

9 END ENTITY;

10 ------------------------------------------------------------------------------

11 ARCHITECTURE adder OF add_stdlogic IS

12 CONSTANT const: STD_LOGIC_VECTOR(7 DOWNTO 0) := "00001111";

13 BEGIN

14 y <= x + const + "01111111"; --overloaded "+" operator

15 END ARCHITECTURE;

16 ------------------------------------------------------------------------------

We close this chapter with a final example on the construction of functions. This exam-

ple is somehow the opposite of that above: while the above example overloads an operator

by including a new function, the next example uses a function equivalent to one that al-

ready exists, but which does not overload the corresponding operator.

Example 9.6: Non-overloaded "AND" Operator

According to section 4.2 and figure 4.1, logical operators were already defined for the type

STD_LOGIC_VECTOR in its package of origin (std_logic_1164, appendix I). Write a

FUNCTION that computes the AND function and, contrary to the previous example,

does not overload the AND operator.

Solution Not overloading an operator is trivial: just give the function a di¤erent name

(like my_and, used in the code below). The FUNCTION was again declared in a PACK-

AGE (line 6) and then constructed in the corresponding PACKAGE BODY (lines 25–34).

Note the specification of a new data type, called stdlogic_table (line 10), followed by a

CONSTANT, called and_table (lines 11–24—see the PACKAGE BODY of the std_

logic_1164 package in the VHDL libraries that accompany your VHDL compiler), which

conforms with that data type. Observe that this constant is a table that works as a resolu-

tion function for the AND function, which is accessed using enumerated indexing (section
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3.12). Two ALIAS declarations (section 4.8) appear in lines 26–27, with the purpose of

normalizing the range of a and b to "1 TO a'LENGTH" and "1 TO b'LENGTH", respec-

tively, which helps write the function. The function proper is in the LOOP statement of

lines 30–32, which accesses the and_table for each bit of aa and bb. Note that a and b

must have the same length, a condition that was not tested in this example (see exercise

9.2). A main code, with a call to this function, is also included in the code below.

1 ---------Package:-----------------------------------------------------

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 ----------------------------------------------------------------------

5 PACKAGE my_package IS

6 FUNCTION my_and (a, b: STD_LOGIC_VECTOR) RETURN STD_LOGIC_VECTOR;

7 END PACKAGE;

8 ----------------------------------------------------------------------

9 PACKAGE BODY my_package IS

10 TYPE stdlogic_table IS ARRAY(STD_ULOGIC, STD_ULOGIC) OF STD_ULOGIC;

11 CONSTANT and_table: stdlogic_table := (

12 -----------------------------------------------

13 -- U X 0 1 Z W L H -

14 -----------------------------------------------

15 ( 'U', 'U', '0', 'U', 'U', 'U', '0', 'U', 'U' ), --| U |

16 ( 'U', 'X', '0', 'X', 'X', 'X', '0', 'X', 'X' ), --| X |

17 ( '0', '0', '0', '0', '0', '0', '0', '0', '0' ), --| 0 |

18 ( 'U', 'X', '0', '1', 'X', 'X', '0', '1', 'X' ), --| 1 |

19 ( 'U', 'X', '0', 'X', 'X', 'X', '0', 'X', 'X' ), --| Z |

20 ( 'U', 'X', '0', 'X', 'X', 'X', '0', 'X', 'X' ), --| W |

21 ( '0', '0', '0', '0', '0', '0', '0', '0', '0' ), --| L |

22 ( 'U', 'X', '0', '1', 'X', 'X', '0', '1', 'X' ), --| H |

23 ( 'U', 'X', '0', 'X', 'X', 'X', '0', 'X', 'X' )); --| - |

24 -----------------------------------------------

25 FUNCTION my_and (a, b: STD_LOGIC_VECTOR) RETURN STD_LOGIC_VECTOR IS

26 ALIAS aa: STD_LOGIC_VECTOR(1 TO a'LENGTH) IS a;

27 ALIAS bb: STD_LOGIC_VECTOR(1 TO b'LENGTH) IS b;

28 VARIABLE result: STD_LOGIC_VECTOR(1 TO a'LENGTH);

29 BEGIN

30 FOR i IN result'RANGE LOOP

31 result(i) := and_table (aa(i), bb(i));

32 END LOOP;

33 RETURN result;

34 END FUNCTION;

35 END PACKAGE BODY;

36 ----------------------------------------------------------------------
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1 ---------Main code:------------------------------

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 USE work.my_package.all;

5 -------------------------------------------------

6 ENTITY myand IS

7 PORT (x1, x2: IN STD_LOGIC_VECTOR(7 DOWNTO 0);

8 y: OUT STD_LOGIC_VECTOR(7 DOWNTO 0));

9 END ENTITY;

10 -------------------------------------------------

11 ARCHITECTURE myand OF myand IS

12 BEGIN

13 y <= my_and(x1, x2);

14 END ARCHITECTURE;

15 -------------------------------------------------

9.7 VHDL 2008

With respect to the material covered in this chapter, the main additions specified in VHDL

2008 are listed below.

1) The TO_STRING type-conversion function was introduced, which eases the con-

struction of ASSERT statements because it supports a much wider set of types than

T'IMAGE(X). The types supported by TO_STRING are BOOLEAN, BIT, BIT_

VECTOR, INTEGER, NATURAL, POSITIVE, CHARACTER, STD_(U)LOGIC_

VECTOR, (UN)SIGNED, REAL, TIME, SFIXED, UFIXED, and FLOAT.

2) GENERIC lists are allowed in FUNCTION and PROCEDURE. The corresponding

syntaxes are depicted below.

[PURE | IMPURE] FUNCTION

function_name

[GENERIC (generic_list)]

[(input_list)]

RETURN return_value_type IS

[declarative_part]

BEGIN

statements_part

[label:] RETURN expression;

END [FUNCTION] [function_name];

PROCEDURE procedure_name

[GENERIC (generic_list)]

(input_output_list) IS

[declarative_part]

BEGIN

statements_part

END [PROCEDURE] [procedure_name]
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3) In PROCEDURE, an OUT mode object can be read internally.

4) Recall that in VHDL 2008 the WHEN and SELECT statements can also be used inside

sequential code.

9.8 Exercises

Exercise 9.1: ASSERT Statement C1

Include an ASSERT statement in example 9.5 to check whether the inputs have the same

size.

Exercise 9.2: ASSERT Statement C2

Include an ASSERT statement in example 9.6 to check whether the inputs have the same

size.

Exercise 9.3: Function integer_to_slv

Example 9.3 shows a function called slv_to_integer, which converts an object of type

STD_LOGIC_VECTOR to type INTEGER. Do now the opposite—write a function

that makes the conversion from INTEGER to STD_LOGIC_VECTOR, following the

same overall approach of example 9.3. The function should be constructed in an ENTITY.

Exercise 9.4: Function shift_logical_left

According to section 4.2 and figure 4.1, shift operators were not originally defined for the

type STD_LOGIC_VECTOR (see package std_logic_1164 in appendix I). Write a func-

tion that further overloads the "SLL" (shift left logical) operator such that STD_LOGIC_

VECTOR inputs are also supported, returning a value of the same type. Install your

function in a PACKAGE, then make a call to it in the main code in order to test (simu-

late) its operation.

Exercise 9.5: Function my_not

In example 9.6 we developed a function called my_and for the type STD_ULOGIC_

VECTOR, which was equivalent to the original AND operator defined in the package

std_logic_1164. Following the same reasoning, write a function called my_not that is equiv-

alent to the NOT operator defined in the same package. Also show an application for that

function in the main code. The conversion table (called not_table) needed in this case is

presented below.
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-----------------------------------------------

CONSTANT not_table: stdlogic_1d :=

-----------------------------------------------

-- U X 0 1 Z W L H -

-----------------------------------------------

( 'U', 'X', '1', '0', 'X', 'X', '1', '0', 'X');

-----------------------------------------------

Exercise 9.6: Function bcd_to_ssd

The conversion from BCD (binary coded decimal) to SSD (seven-segment display) was

needed in example 6.6 (see lines 29–41 of the code in that example) and also in other

designs in chapter 12. Write a function to perform such a conversion, which should be

located in a PACKAGE. Include an ASSERT statement to check whether the input’s

length is exactly four bits. Also include an application (main code) to test (simulate) your

converter.

Exercise 9.7: Function binary_to_gray

A binary-to-gray code converter was proposed in exercise 5.6. Write a function that imple-

ments such a converter, which should be constructed in the declarative part of the AR-

CHITECTURE (main code). In the code proper (architecture body), include a call to

that function in order to test (simulate) it.

Exercise 9.8: Procedure mean_and_median

Write a procedure that receives three 8-bit STD_LOGIC_VECTOR signals and returns

their arithmetic mean and their median, of the same type. The system should be considered

to be signed. Install your procedure in the declarative part of the ARCHITECTURE

(main code). In the code proper (architecture body), include a call to that procedure in

order to test (simulate) it.

Exercise 9.9: Procedure equal_length

Write a procedure that receives two vectors, called a and b, of type STD_LOGIC_

VECTOR, whose sizes can be di¤erent, and returns both vectors with the same size.

Only the shortest of the received vectors should be modified (filled with zeros on the left)

until its size becomes equal to the size of the other vector. Construct this procedure in a

PACKAGE.
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10 Simulation with VHDL Testbenches

10.1 Introduction

Everything in this book concerns synthesis, with the exception of chapter 10. Separating

the simulation-only code from the synthesis-only code is one of the most crucial steps for

a fast, correct, and broad understanding of the VHDL language.

Figure 10.1 (borrowed from chapter 1) shows a simplified view of the design flow with

VHDL. The synthesis steps are shown on the left, while the simulation options are

depicted on the right. Even though a design can contain more than three simulation points,

the main ones are those included in the figure.

The RTL (register transfer level) simulation is based on the VHDL code, containing no

timing or other device information; its purpose is to check the design functionalities, so it is

said to be a functional simulation. The next simulation is also functional (no timing infor-

mation yet) and is executed after synthesis; its purpose is to verify that the functionalities

hold after the synthesis process. The final simulation is after fitting and includes internal

cell and routing delays, thus representing the actual physical device; because time informa-

tion is now included, it is a timing simulation. For instance, in all designs shown in the

other chapters, the timing simulation was performed (and presented).

Time information is annotated in an SDF (standard delay format) file, which complies

with the VITAL standards. Such information allows simulations under best- and worst-

case operating conditions (temperature, voltage, etc.). For example, Xilinx calls such sce-

narios MIN, TYP, and MAX, which can be selected by the user, while Altera employs

worst-case in the regular timing simulation and best-case in what it calls fast timing

simulation.

Below is a list of well-known VHDL simulators (ModelSim, described in appendix D,

will be employed in the examples in this chapter):

1 From Altera: Quartus II graphical simulator

1 From Xilinx: ISE simulator

1 From Mentor Graphics: ModelSim

1 From Synopsys: VCS



1 From Cadence: NC-Sim

1 From Aldec: Active-HDL

We close this introduction with some simple (but very useful) simulation recommen-

dations.

1) In-system testing might not be enough to catch all design problems, so also include tim-

ing simulation, at the least.

2) Keep the projects that are for simulation separate from those that are for synthesis (in

the same way that the material in this chapter was kept apart from that in all the other

chapters).

3) Remember that the fundamental time-related statements and function are AFTER,

WAIT FOR, and NOW. The attribute 'LAST_EVENT is also helpful sometimes.

4) Never use these statements and function in code that is for synthesis.

5) Use GENERIC to enter arbitrary design/simulation parameters whenever appropriate.

6) Do not hesitate to use type-conversion functions whenever convenient (see figure 3.10).

7) To convert an INTEGER type into a TIME type, just multiply the former by one unit

of the desired time scale. For example, time_value ¼ int_value*1ns.

Figure 10.1
Simplified VHDL design flow.
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8) Make sure to feed the same clock to all units that belong to the same clock domain.

9) In the simulation of large, complex systems, use files to enter/store data (see sections

10.3, 10.4, and 10.13).

10) Do not display unimportant data.

11) Before starting a simulation, make sure that you have the correct design code and that

you have understood its functionalities.

12) Finally, always provide a means for the simulation to end. For example, close the

code with a WAIT FOR statement with an additional time interval such that the total sim-

ulation time (in the code) is larger than the total time set up in the simulation software, so

the latter will be able to close the simulation unconditionally when its time limit is reached

(this can be done, for example, with a simple ‘‘WAIT;’’ at the end of the code).

The material in this chapter is complemented by a tutorial on ModelSim in appendix D.

10.2 Simulation Types

Figure 10.2 shows six simulation interface options. On the left, the input stimuli are

depicted, entered using either a graphics interface or a VHDL code. In the center, the DUT

(design under test) is shown, always designed with VHDL (without or with propagation

Figure 10.2
Simulation interface options.
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delays included). Finally, the circuit responses are depicted on the right; these can be

graphical (visually inspected) or checked by a VHDL code (automated verification).

In figures 10.2a–b, the input and output are both graphical (the user draws the input

waveforms using a graphics interface, for which the simulator calculates and plots the cor-

responding output waveforms, which are then visually inspected by the user), so they are

referred to as graphical simulations. Because in (a) the circuit’s propagation delays are not

considered but in (b) they are, the former is a functional simulation while the latter is a

timing simulation. For example, the last of these two was the option employed to check

the designs in the previous chapters.

In figures 10.2c–d, the stimuli are produced by a VHDL code, while the output is still

graphical. Because only the stimuli are automated, they are referred to as stimulus-only

(or manual ) simulations. Again, the functional and timing options are depicted. These

two simulation options are referred to as Type I and Type II testbenches, respectively.

Finally, in figures 10.2e–f, both input and output are treated using VHDL (at the out-

put, the code provides means for comparing the obtained results against expected values).

Because now the input stimuli and the result analysis are both automated, these simula-

tions are referred to as automated simulations. Again, the functional and timing options

are depicted. They are referred to as Type III and Type IV testbenches, respectively.

The four testbench types (Pedroni 2008) are summarized below.

1 Type I testbench (manual functional simulation): The DUT’s internal delays are not con-

sidered and the output is manually verified (normally by visual inspection). This is the sim-

plest kind of VHDL code for simulation.

1 Type II testbench (manual timing simulation): The DUT’s internal delays are taken into

account, but the output is still manually verified.

1 Type III testbench (automated functional simulation): The DUT’s internal delays are not

considered, but the output is automatically verified by the simulator (the data for compar-

ison can be included, for example, in the test file itself or in a separate file).

1 Type IV testbench (automated timing simulation, also called full bench): The DUT’s in-

ternal delays are taken into account and the output is automatically verified by the simula-

tor. This is obviously the most complete and also the most complex type of simulation

with testbenches.

It is also indispensable to know which files must be provided to run a simulation. Say

that the DUT is called mydesign. To graphically simulate it (as in figures 10.2a–b), two

files are needed from the user. The first is the design file (mydesign.vhd ), containing the

VHDL code for the circuit to be tested. The second is a test file (mydesign.vwf if using

Quartus II, for example), prepared using the waveform editor (graphics interface).

Di¤erent files are needed when using VHDL testbenches to test the circuit. However,

only two need to be prepared by the user, the others being produced automatically by the

synthesizer (when under the proper setup), as listed below.
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1) For functional simulation (testbenches I and III, figures 10.2c and 10.2e):

1 Design file (prepared by the user).

1 Test file (this is the testbench, also prepared by the user).

2) For timing simulation (testbenches II and IV, figures 10.2d and 10.2f ):

1 Design file (prepared by the user—same as above).

1 Test file (testbench, also prepared by the user—same as above).

1 Postsynthesis file (generated by the synthesizer).

1 SDF file (also generated by the synthesizer).

The preparation of these files will be described later.

10.3 Writing Data to Files

Because files are very helpful for storing data used in simulations, knowing how to manage

them with VHDL is indispensable for the development of complex tests. Even though

VHDL does not allow data from files to be directly loaded into the synthesis environment,

such action is possible for simulation. Typical procedures for writing to files are described

below, accompanied by a complete working example. Procedures for reading from files

will be seen in the next section.

The main VHDL procedures (extracted from the packages textio, appendix M, and

standard, appendix H) for writing data to files are summarized below, where the following

data types are employed:

TYPE LINE IS ACCESS STRING;

TYPE TEXT IS FILE OF STRING;

TYPE SIDE IS (left, right);

SUBTYPE WIDTH IS NATURAL;

1) To open a file in ‘‘write’’ mode, where f is a file identifier (essentially, any name can be

used):

FILE f: TEXT OPEN WRITE_MODE IS "file_name";

2) To write a value val to a variable l of type LINE (two options), where data_type can

be BOOLEAN, BIT, BIT_VECTOR, INTEGER, REAL, TIME, CHARACTER, or

STRING:

PROCEDURE WRITE(l: INOUT LINE; val: IN data_type);

PROCEDURE WRITE(l: INOUT LINE; val: IN data_type;

justified: IN SIDE := right; field: IN WIDTH := 0);
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3) To write the line l to the file identified by f:

PROCEDURE WRITELINE(FILE f: TEXT; l: INOUT LINE);

4) The file modes and error flags are:

TYPE file_open_kind IS (read_mode, write_mode, append_mode);

TYPE file_open_status IS (open_ok, status_error, name_error, mode_error);

The use of these procedures is illustrated in example 10.1.

Example 10.1: Writing Values to a File

Write a VHDL code that generates a clock with a 100ns period and writes, at every posi-

tive clock transition, a value to a table in a text file containing in each line the time value at

the clock transition followed by an integer (pointer) i from 0 to 7, as shown below.

t=50ns i=0

t=150ns i=1

t=250ns i=2

t=350ns i=3

t=450ns i=4

t=550ns i=5

t=650ns i=6

t=750ns i=7

Solution A VHDL code for this exercise is presented below. Note the presence of the tex-

tio package in line 2. As with all simulation codes, the entity (lines 4–5) is empty (option-

ally, GENERIC can be used).

The declarative part of the architecture (lines 8–10) contains a constant representing the

desired clock period (100ns), a signal declaration for the clock (with initial value '0'), and

finally a file declaration for the output file. Such a file, named test_ file.txt and identified by

f, is declared to be opened in write mode.

In the code proper (lines 11–28), a process is employed to create the clock and the file.

The declarative part of the process (lines 13–17) contains two constants of type STRING

to provide the proper fixed characters for the table. It also contains a variable l, of type

LINE, to represent the file’s lines, and a variable t, or type TIME, to represent the time

(must include a time unit; ns in this case). Finally, it contains a variable i, of type NATU-

RAL, to represent the requested 0-to-7 pointer. The process body (lines 18–27) produces

the desired clock (lines 19–20 plus 25–26), the pointer (line 24), and the file (line 22 creates

a file line, which is written to the actual file in line 23). Before starting the writing proce-

dure, the file is automatically cleared.

If simulated with ModelSim (appendix D), for example, the waveform and file contents

depicted in figure 10.3 will be obtained (in the file, the time unit, ns, and the space between

246 Chapter 10



it and the time value are automatically inserted by the simulator). To perform such a sim-

ulation, follow the procedure in sections D.1 to D.3 of appendix D, but using just one file.

1 ---------------------------------------------------------------

2 USE std.textio.all;

3 ---------------------------------------------------------------

4 ENTITY write_to_file IS

5 END ENTITY;

6 ---------------------------------------------------------------

7 ARCHITECTURE write_to_file OF write_to_file IS

8 CONSTANT period: TIME := 100ns;

9 SIGNAL clk: BIT := '0';

10 FILE f: TEXT OPEN WRITE_MODE IS "test_file.txt";

11 BEGIN

12 PROCESS

13 CONSTANT str1: string(1 TO 2) := "t=";

14 CONSTANT str2: string(1 TO 3) := " i=";

15 VARIABLE l: LINE;

16 VARIABLE t: TIME RANGE 0ns TO 800ns;

17 VARIABLE i: NATURAL RANGE 0 TO 7 := 0;

18 BEGIN

19 WAIT FOR period/2;

20 clk <= '1';

21 t := period/2 + i*period;

22 WRITE(l, str1); WRITE(l, t); WRITE(l, str2); WRITE(l, i);

23 WRITELINE(f, l);

24 i := i + 1;

25 WAIT FOR period/2;

26 clk <='0';

27 END PROCESS;

28 END ARCHITECTURE;

29 ---------------------------------------------------------------

Figure 10.3
Simulation results from example 10.1.
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10.4 Reading Data from Files

The main VHDL procedures (extracted from the packages textio, appendix M, and stan-

dard, appendix H) for reading data from files are summarized below, where the following

data types are employed:

TYPE LINE IS ACCESS STRING;

TYPE TEXT IS FILE OF STRING;

TYPE SIDE IS (left, right);

SUBTYPE WIDTH IS NATURAL;

1) To open a file in ‘‘read’’ mode, where f is a file identifier (essentially any name can be

used):

FILE f: TEXT OPEN READ_MODE IS "file_name";

2) To read a line from the file identified by f and assign it to the variable l:

PROCEDURE READLINE(FILE identifier: TEXT; l: OUT LINE);

3) To read a value from the line l and assign it to the variable val (two options), where

data_type can be BOOLEAN, BIT, BIT_VECTOR, INTEGER, REAL, TIME, CHAR-

ACTER, or STRING:

PROCEDURE READ(l: INOUT LINE; val: OUT data_type);

PROCEDURE READ(l: INOUT LINE; val: OUT data_type; good: OUT BOOLEAN]);

The good test returns FALSE when the type of the value read from the file does not match

the type of the object to which such a value is being assigned.

4) Typical check for end-of-file:

WHILE NOT ENDFILE (f) LOOP ...

Even though ENDFILE is not a true VHDL command, it is supported by any VHDL

simulator.

5) Use the ASSERT statement (section 9.2) to compare design responses against expected

values and also to detect improper values when reading data from a file.

The use of these procedures is illustrated in example 10.2.

Example 10.2: Reading Values from a File

Write a VHDL code that generates a clock with a 100ns period and reads, at every positive

clock transition, one line from the file test_ file.txt written by the code of example 10.1.

Display in the waveforms the signals t (time) and i (pointer) read from that file.
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Solution A VHDL code for this example is presented below. Note again the presence of

the textio package (line 2) and that the entity (lines 4–5) is empty.

The declarative part of the architecture (lines 8–11) contains a file declaration for the

input file, followed by three signal declarations concerning the signals that must be dis-

played in the waveforms. The input file is named test_ file.txt, identified by f, now opened

in read mode.

In the code proper (lines 12–31), a process is employed to read the file and produce the

three output signals. The declarative part of the process (lines 14–18) contains essentially

the same objects seen in the previous example. The process body (lines 19–30) pro-

duces the desired clock (lines 20–21 plus 28–29) and reads the file. While it is not end-

of-file (line 22), a line is read (line 23) after every positive clock transition, with the four

parameters assigned to proper variables (line 24), of which t and i are assigned to t_out

(line 25) and i_out (line 26), respectively.

1 ---------------------------------------------------------------

2 USE std.textio.all;

3 ---------------------------------------------------------------

4 ENTITY read_from_file IS

5 END ENTITY;

6 ---------------------------------------------------------------

7 ARCHITECTURE read_from_file OF read_from_file IS

8 FILE f: TEXT OPEN READ_MODE IS "test_file.txt";

9 SIGNAL clk: BIT := '0';

10 SIGNAL t_out: TIME RANGE 0ns TO 800ns;

11 SIGNAL i_out: NATURAL RANGE 0 TO 7;

12 BEGIN

13 PROCESS

14 VARIABLE l: LINE;

15 VARIABLE str1: string(1 TO 2);

16 VARIABLE str2: string(1 TO 3);

17 VARIABLE t: TIME RANGE 0ns TO 800ns;

18 VARIABLE i: NATURAL RANGE 0 TO 7;

19 BEGIN

20 WAIT FOR 50ns;

21 clk <= '1';

22 IF NOT ENDFILE(f) THEN

23 READLINE(f, l);

24 READ(l, str1); READ(l, t); READ(l, str2); READ(l, i);

25 t_out <= t;

26 i_out <= i;

27 END IF;
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28 WAIT FOR 50ns;

29 clk <= '0';

30 END PROCESS;

31 END ARCHITECTURE;

32 ---------------------------------------------------------------

A more sophisticated code is shown below, which includes a verification for the second

parameter (t) read from the file. If its type does not match the type specified for t_out, the

message ‘‘Bad value at i ¼ 5!’’ (assuming that the previous value of i is 4) is issued and the

software quits reading the file (see details about ASSERT and IMAGE in section 9.2).

The same check could obviously also be included for the other values read from the file.

22 IF NOT ENDFILE(f) THEN

23 READ(l, str1);

24 READ(l, t, good_value);

25 ASSERT good_value

26 REPORT "Bad value at i=" & INTEGER'IMAGE(i+1) & "!"

27 SEVERITY FAILURE;

28 READ(l, str2); READ(l, i);

29 t_out <= t;

30 i_out <= i;

31 END IF;

32 WAIT FOR 50ns;

33 clk <= '0';

34 END PROCESS;

35 END ARCHITECTURE;

36 ---------------------------------------------------------------

If simulated with ModelSim (appendix D), for example, the waveforms of figure 10.4

will be obtained, which display clk, t_out, and i_out. To perform such a simulation, follow

the procedure in sections D.1 to D.3 of appendix D, but using just one file.

Figure 10.4
Simulation results from example 10.2.
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10.5 Graphical Simulation (Preparing the Design)

Figure 10.5 shows a registered 4� 4 multiplexer (note that the registered output is y, while

x is unregistered). This circuit will be used in the examples with VHDL testbenches in later

sections, so before proceeding it will be designed in this section. It will also be simulated

here using graphical simulation (no VHDL simulation yet) in both functional and timing

modes.

A VHDL code for this circuit is presented below, under the name reg_mux (line 5). Note

that all ports (lines 6–9) are of type STD_LOGIC(_VECTOR) (industry standard). The

4� 4 multiplexer (lines 15–20) constitutes the combinational part of the circuit, while

the 4-bit register (lines 21–26) is the sequential part.

1 -----------------------------------------------------

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 -----------------------------------------------------

5 ENTITY reg_mux IS

6 PORT (a, b, c, d: IN STD_LOGIC_VECTOR(3 DOWNTO 0);

7 sel: IN STD_LOGIC_VECTOR(1 DOWNTO 0);

8 clk: IN STD_LOGIC;

9 x, y: OUT STD_LOGIC_VECTOR(3 DOWNTO 0));

10 END ENTITY;

11 -----------------------------------------------------

12 ARCHITECTURE reg_mux OF reg_mux IS

13 SIGNAL mux: STD_LOGIC_VECTOR(3 DOWNTO 0);

14 BEGIN

15 mux <= a WHEN sel="00" ELSE

16 b WHEN sel="01" ELSE

17 c WHEN sel="10" ELSE

19 d;

20 x <= mux;

21 PROCESS (clk)

22 BEGIN

Figure 10.5
Registered multiplexer.
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23 IF (clk'EVENT AND clk='1') THEN

24 y <= mux;

25 END IF;

26 END PROCESS;

27 END ARCHITECTURE;

28 -----------------------------------------------------

Say that the waveforms plotted for clk, a, b, c, d and sel in figure 10.6 are the desired test

inputs, from which the simulator must determine the outputs x and y. Say also that we are

using Quartus II (the conclusions would be exactly the same with any other simulator);

then the setups for functional and timing simulations are those described below.

Functional Simulation

Select Processing > Generate Functional Simulation Netlist. After the program finishes pro-

ducing the netlist, select Assignments > Settings > Simulator Settings. In the Simulation

Mode list, choose Functional. Finally, in the Simulation Input box, enter the name of the

waveform file (reg_mux.vwf ) and click OK. Recompile the code and run the simulation.

The results for reg_mux are those displayed in figure 10.6a. Notice that there are no prop-

agation delays (the output changes immediately when the clock changes).

Figure 10.6
(a) Functional and (b) timing simulation results from the registered multiplexer of figure 10.5.

252 Chapter 10



Timing Simulation

Select Assignments > Settings > Simulator Settings. In the Simulation Mode list, choose

Timing. In the Simulation Input box, enter the name of the waveform file (reg_mux.vwf )

and click OK. Recompile the code and run the simulation. The results are now those dis-

played in figure 10.6b. Observe the propagation delay between the clock edge and the set-

tling of y.

Note: If the timing simulation is performed using a third-party software (ModelSim, for

example) instead of the Quartus II simulator, postsynthesis and SDF files specific for that

simulator must be generated by the synthesizer, hence requiring appropriate setups

(described in the ModelSim tutorial, appendix D).

In the example above, the simulation results were visually inspected. This approach

is fine for individual system units or for small systems, but not for large systems. As

described ahead, the use of VHDL testbenches allows automated verification to be per-

formed. It also allows the testing code to be reused and the testing procedure to be more

e¤ectively documented.

10.6 Stimulus Generation

Stimulus generation is a fundamental part of any testbench. As mentioned earlier,

AFTER, WAIT FOR, and NOW are usually used to construct testbenches. AFTER is a

concurrent statement, while WAIT FOR is sequential. Therefore, the former can only be

used outside sequential code, while the latter can only be used within it (that is, inside

PROCESS, FUNCTION, or PROCEDURE). Equivalent codes can be written with these

two statements.

NOW represents the present simulation time, therefore being useful for checking partic-

ular simulation points. For example, the IF statement below

IF (NOW<50ns) THEN

WAIT FOR 50ns-NOW;

y <= x;

END IF;

causes the process to wait until the time 50ns is reached before assigning the value of x to y.

The 'LAST_EVENT attribute is also helpful sometimes. It returns the time interval since

an event (change) has occurred on a signal or variable. For example,

IF (s'LAST_EVENT>20ns) THEN ...

The use of the VHDL constructs above will be illustrated in this and in the remaining

sections of this chapter.
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The stimulus generation procedure will be illustrated with the help of figure 10.7, which

exhibits five waveforms, representing common stimulus types. The waveform in (a) is reg-

ular and periodic, hence typical of clock. That in (b) has a single pulse, so is typical of

reset. The waveform in (c) is irregular and finite, while that in (d) is irregular but periodic.

Finally, (e) shows a multibit waveform. The generation of these signals, with AFTER and

with WAIT FOR, is shown below. A complete code is presented subsequently in example

10.3.

Generation of clk (figure 10.7a):

-------------------------------------------

SIGNAL clk: STD_LOGIC := '0';

---option 1:-------------------------------

clk <= NOT clk AFTER 10ns;

---option 2:-------------------------------

WAIT FOR 10ns;

clk <= NOT clk;

---option 3:-------------------------------

WAIT FOR 10ns;

clk <= '1';

WAIT FOR 10ns;

clk <= '0';

-------------------------------------------

Generation of rst (figure 10.7b):

-------------------------------------------

SIGNAL rst: STD_LOGIC := '0';

---option 1:-------------------------------

rst <= '0', '1' AFTER 10ns, '0' AFTER 20ns;

Figure 10.7
Typical stimuli: (a) Periodic signal (clock); (b) Single-pulse signal (reset); (c) Irregular finite signal; (d) Irregular
periodic signal; (e) Multibit irregular signal.
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---option 2:-------------------------------

rst <= '1' AFTER 10ns, '0' AFTER 20ns;

---option 3:-------------------------------

rst <= '0'; --optional

WAIT FOR 10ns;

rst <= '1';

WAIT FOR 10ns;

rst <= '0';

WAIT;

-------------------------------------------

Generation of x (figure 10.7c):

-------------------------------------------

SIGNAL x: STD_LOGIC := '1';

---option 1:-------------------------------

x <= '1', --optional

'0' AFTER 20ns,

'1' AFTER 30ns,

'0' AFTER 40ns,

'1' AFTER 80ns;

---option 2:-------------------------------

x <= '1'; --optional

WAIT FOR 20ns;

x <= '0';

WAIT FOR 10ns;

x <= '1';

WAIT FOR 10ns;

x <= '0';

WAIT FOR 40ns;

x <= '1';

WAIT;

---option 3:-------------------------------

CONSTANT template: STD_LOGIC_VECTOR(1 TO 9)

:= "110100001";

FOR i IN template'RANGE LOOP

x <= template(i);

WAIT FOR 10ns;

END LOOP;

WAIT;

-------------------------------------------

Generation of y (figure 10.7d): See exercise 10.1.
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Generation of z (figure 10.7e):

-------------------------------------------

SIGNAL z: NATURAL RANGE 0 TO 255 := 88;

---option 1:-------------------------------

z <= 88, --optional

5 AFTER 20ns,

32 AFTER 60ns,

27 AFTER 80ns;

---option 2:-------------------------------

z <= 88; --optional

WAIT FOR 20ns;

x <= 5;

WAIT FOR 40ns;

x <= 32;

WAIT FOR 20ns;

x <= 27;

WAIT;

-------------------------------------------

Example 10.3: Stimuli Generation

Write a complete VHDL code that generates the signals clk and rst of figure 10.7. Employ

AFTER for the former and WAIT FOR for the latter.

Solution A VHDL code for this exercise is shown below. As with all codes for simula-

tion, the entity (lines 5–6) has no PORT declarations. The declarative part of the architec-

ture (lines 9–10) contains declarations relative to the two signals to be generated, with

respective initial values. In the architecture body (lines 11–24), clk is generated using

AFTER in line 13 (outside the process, because AFTER is concurrent), while rst is created

in lines 15–22. Note that because WAIT FOR is sequential a process is needed, causing

the code to be much longer than that for clk (the whole process could be replaced with

just line 23). Simulation results from this code, compiled with ModelSim (appendix D),

are depicted in figure 10.8. To check them, follow the procedure in sections D.1 to D.3 of

appendix D, but using just one file.

1 --------------------------------------------

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 --------------------------------------------

5 ENTITY testbench IS

6 END ENTITY;

7 --------------------------------------------

8 ARCHITECTURE testbench OF testbench IS
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9 SIGNAL clk: STD_LOGIC := '0';

10 SIGNAL rst: STD_LOGIC := '0';

11 BEGIN

12 --Generation of clk with AFTER:

13 clk <= NOT clk AFTER 10ns;

14 --Generation of rst with WAIT FOR:

15 PROCESS

16 BEGIN

17 WAIT FOR 10ns;

18 rst <= '1';

19 WAIT FOR 10ns;

20 rst <= '0';

21 WAIT;

22 END PROCESS;

23 --rst <= '1' AFTER 10ns, '0' AFTER 20ns;

24 END ARCHITECTURE;

25 -------------------------------------------

10.7 General VHDL Template for Testbenches

A VHDL code for testbench generation was already seen in example 10.3. A generaliza-

tion is presented in figure 10.9. As indicated on the left of the figure, it is similar to a regu-

lar VHDL code—that is, library declarations, entity, and architecture.

The particularity in the entity is that it is empty (except for GENERIC, which can be

used optionally). The particularity in the architecture is that it is not for hardware infer-

ence (synthesis), but for simulation, so testbenches are generated and can also be, option-

ally, compared against expected values.

In the declarative part of the architecture (lines 10–18), the DUT is declared, along with

the signals needed to test it, here called a_tb, b_tb (inputs) and y_tb (output). In the archi-

tecture body (lines 19–32), first the DUT is instantiated (line 21–22), then the stimuli are

generated (lines 24–25), and finally an optional code section is shown (lines 27–31), which

Figure 10.8
Simulation results from example 10.3.
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is used when one wishes the simulator to automatically compare the values obtained for

y_tb against expected values for y (automated verification). Note that the inputs are gener-

ated using the AFTER statement (lines 24–25), but WAIT FOR could also be employed.

In some cases, the stimulus generation and the output verification codes are mixed (as in

examples 10.7 and 10.8 ahead).

The general template of figure 10.9 will be used in all remaining sections of this chapter,

in which complete designs of types I–IV testbenches are presented.

10.8 Type I Testbench (Manual Functional Simulation)

This section shows the construction of a complete Type I testbench. Recall from figure

10.2c that in this case the analysis is functional (circuit delays not included) and manual

(response checked manually, usually by visual inspection).

Figure 10.9
VHDL template for testbenches.
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Example 10.4: Type I Testbench for a Registered Mux

This example concerns the development of a manual functional simulation. The design to

be tested is that seen in section 10.5 (repeated in figure 10.10, with the stimuli and

responses highlighted). Develop a Type I testbench to test this circuit using the same wave-

forms of figure 10.6a.

Solution The design file for this circuit (reg_mux.vhd ) was already prepared in section

10.5. We need now to write the test file (to be saved as reg_mux_tb.vhd ), after which the

simulation can be performed.

A VHDL code for the test file is presented below. As usual, the entity (lines 5–6) is

empty (GENERIC was not needed in this example). The declarative part of the architec-

ture (lines 9–24) contains a declaration for the design to be tested (DUT ¼ reg_mux.vhd of

section 10.5) and for the stimuli. Finally, the architecture body (lines 25–46) contains the

DUT instantiation and the stimuli generation.

Simulation results, using ModelSim, are depicted in figure 10.11 ( just follow the proce-

dure in sections D.1 to D.3 of appendix D). Note that the waveforms are the same as those

in figure 10.6a. Just to ease the inspection, the waveforms were displayed using integers in-

stead of binary values.

Figure 10.10
Registered multiplexer of example 10.4.

Figure 10.11
Simulation results from example 10.4.
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1 --------------------------------------------------------

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 --------------------------------------------------------

5 ENTITY reg_mux_tb IS

6 END ENTITY;

7 --------------------------------------------------------

8 ARCHITECTURE testbench OF reg_mux_tb IS

9 ----DUT declaration:--------

10 COMPONENT reg_mux IS

11 PORT (a, b, c, d: IN STD_LOGIC_VECTOR(3 DOWNTO 0);

12 sel: IN STD_LOGIC_VECTOR(1 DOWNTO 0);

13 clk: IN STD_LOGIC;

14 x, y: OUT STD_LOGIC_VECTOR(3 DOWNTO 0));

15 END COMPONENT;

16 ----Signal declarations:----

17 SIGNAL a_tb: STD_LOGIC_VECTOR(3 DOWNTO 0) := "0010";

18 SIGNAL b_tb: STD_LOGIC_VECTOR(3 DOWNTO 0) := "0100";

19 SIGNAL c_tb: STD_LOGIC_VECTOR(3 DOWNTO 0) := "0110";

20 SIGNAL d_tb: STD_LOGIC_VECTOR(3 DOWNTO 0) := "1000";

21 SIGNAL sel_tb: STD_LOGIC_VECTOR(1 DOWNTO 0) := "00";

22 SIGNAL clk_tb: STD_LOGIC := '0';

23 SIGNAL x_tb: STD_LOGIC_VECTOR(3 DOWNTO 0);

24 SIGNAL y_tb: STD_LOGIC_VECTOR(3 DOWNTO 0);

25 BEGIN

26 ---DUT instantiation:-------

27 dut: reg_mux PORT MAP (

28 a => a_tb,

29 b => b_tb,

30 c => c_tb,

31 d => d_tb,

32 clk => clk_tb,

33 sel => sel_tb,

34 x => x_tb,

35 y => y_tb);

36 ---Stimuli generation:------

37 clk_tb <= NOT clk_tb AFTER 40ns;

38 a_tb <= "0011" AFTER 80ns, "0000" AFTER 640ns;

39 b_tb <= "0101" AFTER 240ns;

40 c_tb <= "0111" AFTER 400ns;

41 d_tb <= "1001" AFTER 560ns;

42 sel_tb <= "01" AFTER 160ns,

43 "10" AFTER 320ns,

44 "11" AFTER 480ns,

260 Chapter 10



45 "00" AFTER 640ns;

46 END ARCHITECTURE;

47 --------------------------------------------------------

10.9 Type II Testbench (Manual Timing Simulation)

Type II is similar to Type I, with the only exception being that now the DUT’s internal

propagation delays are taken into account. Because it involves time but the output is still

manually verified, it is a manual timing simulation.

Example 10.5: Type II Testbench for a Registered Mux

Modify the Type I simulation of example 10.4 in order to produce a Type II simulation.

Solution As explained in section 10.2, besides the two files prepared by the user (reg_

mux.vhd and reg_mux_tb.vhd ), two other files (postsynthesis and SDF), produced by the

synthesizer, are also needed now.

For example, if using Quartus II to synthesize the design and ModelSim to simulate it,

follow the procedure in sections D.1, D.2, and D.4 of appendix D. After the simulation is

finished, the waveforms of figure 10.12 will be displayed. Note that the only di¤erence with

respect to the simulation results in figure 10.11 is the inclusion of propagation delays. For

example, the cursor shows a transition at 368.34ns, in response to a clock transition at

360ns, hence with a propagation delay of 8.34ns.

10.10 Type III Testbench (Automated Functional Simulation)

Because the output values are automatically compared against expected values, but inter-

nal circuit delays are not taken into account, this is an automated functional simulation.

Figure 10.12
Simulation results from example 10.5.
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Hence in the same way that Type I is a particular case of Type II, Type III is a particular

case of Type IV. Consequently, after understanding Type IV, the Type III testbench

becomes relatively straightforward.

10.11 Type IV Testbench (Automated Timing Simulation)

Type IV is the most complete and also the most complex type of testbench. Because the

output is automatically checked against expected values and the circuit’s internal delays

are taken into account, it is an automated timing simulation, also known as full bench.

Example 10.6: Type IV Testbench for a Registered Mux

Develop a Type IV testbench to test the registered output (y) of the multiplexer seen in

section 10.5. Assume that the expected maximum propagation delay between the clock

and y (tpCQ) is 10ns. Use the same stimuli employed in the previous examples (from figure

10.6), so the expected output values are those depicted in figure 10.13, where the propaga-

tion delays are highlighted by gray shades.

Solution A VHDL code for a full bench to test this circuit is presented below. The only

major di¤erence with respect to the test file in example 10.4 is the inclusion of the optional

code section that automatically checks the output values against expected results (lines 42–

68). The expected output signal (called expected ) was declared in line 27 and then con-

structed in lines 44–52. The comparison is made in the process of lines 54–68 by means

of the ASSERT statement (see details in section 9.2), and occurs every 10ns (line 56).

Note in line 7 that the acceptable propagation delay was specified as a generic parameter.

The IF statement in lines 57–67 causes the process to be run until the time reaches

800ns. If a mismatch is detected, the first ASSERT (lines 58–62) terminates the simulation

and issues the message ‘‘Mismatch at t ¼ xxx y_tb ¼ xxx y_exp ¼ xxx’’, where xxx repre-

sents the corresponding actual value. If no errors are found, the simulation is terminated

when the time reaches 800ns, with the second ASSERT (lines 64–66) forcing the message

‘‘No error found (t ¼ 800000 ps)’’ to be issued.

Looking at the simulation results obtained in example 10.5 (figure 10.12), delays under

10ns are observed, so we do not expect this simulation to find any data mismatches. How-

ever, if the value of the parameter in line 7 is reduced, a problem will eventually occur,

which is one way of estimating the limiting speed of this circuit.

Figure 10.13
Expected output values in example 10.6.
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To simulate this design (with ModelSim), just follow the procedure in sections D.1, D.2,

and D.4 of appendix D. Try to play with tp and expected in order to better understand the

automated comparison process.

1 ----------------------------------------------------------------

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 USE ieee.std_logic_unsigned.all;

5 ----------------------------------------------------------------

6 ENTITY reg_mux_tb IS

7 GENERIC (tp: TIME := 10ns);

8 END ENTITY;

9 ----------------------------------------------------------------

10 ARCHITECTURE testbench OF reg_mux_tb IS

11 ----DUT declaration:----------

12 COMPONENT reg_mux IS

13 PORT (a, b, c, d: IN STD_LOGIC_VECTOR(3 DOWNTO 0);

14 sel: IN STD_LOGIC_VECTOR(1 DOWNTO 0);

15 clk: IN STD_LOGIC;

16 x, y: OUT STD_LOGIC_VECTOR(3 DOWNTO 0));

17 END COMPONENT;

18 ----Signal declarations:------

19 SIGNAL a_tb: STD_LOGIC_VECTOR(3 DOWNTO 0) := "0010";

20 SIGNAL b_tb: STD_LOGIC_VECTOR(3 DOWNTO 0) := "0100";

21 SIGNAL c_tb: STD_LOGIC_VECTOR(3 DOWNTO 0) := "0110";

22 SIGNAL d_tb: STD_LOGIC_VECTOR(3 DOWNTO 0) := "1000";

23 SIGNAL sel_tb: STD_LOGIC_VECTOR(1 DOWNTO 0) := "00";

24 SIGNAL clk_tb: STD_LOGIC := '0';

25 SIGNAL x_tb: STD_LOGIC_VECTOR(3 DOWNTO 0);

26 SIGNAL y_tb: STD_LOGIC_VECTOR(3 DOWNTO 0);

27 SIGNAL expected: STD_LOGIC_VECTOR(3 DOWNTO 0) := "0000";

28 BEGIN

29 ---DUT instantiation:------------

30 dut: reg_mux PORT MAP (a_tb, b_tb, c_tb, d_tb, sel_tb,

31 clk_tb, x_tb, y_tb);

32 ---Stimuli generation:-----------

33 clk_tb <= NOT clk_tb AFTER 40ns;

34 a_tb <= "0011" AFTER 80ns, "0000" AFTER 640ns;

35 b_tb <= "0101" AFTER 240ns;

36 c_tb <= "0111" AFTER 400ns;

37 d_tb <= "1001" AFTER 560ns;

38 sel_tb <= "01" AFTER 160ns,

39 "10" AFTER 320ns,

40 "11" AFTER 480ns,
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41 "00" AFTER 640ns;

42 ---Output verification:----------

43 ---(i)Generate template:

44 expected <= "0010" AFTER 40ns+tp,

45 "0011" AFTER 120ns+tp,

46 "0100" AFTER 200ns+tp,

47 "0101" AFTER 280ns+tp,

48 "0110" AFTER 360ns+tp,

49 "0111" AFTER 440ns+tp,

50 "1000" AFTER 520ns+tp,

51 "1001" AFTER 600ns+tp,

52 "0000" AFTER 680ns+tp;

53 ---(ii)Make comparison:

54 PROCESS

55 BEGIN

56 WAIT FOR tp;

57 IF (NOW<800ns) THEN

58 ASSERT (y_tb=expected)

59 REPORT "Mismatch at t=" & TIME'IMAGE(NOW) &

60 " y_tb=" & INTEGER'IMAGE(conv_integer(y_tb)) &

61 " y_exp=" & INTEGER'IMAGE(conv_integer(expected))

62 SEVERITY FAILURE;

63 ELSE

64 ASSERT FALSE

65 REPORT "No error found (t=" & TIME'IMAGE(NOW) & ")"

66 SEVERITY NOTE;

67 END IF;

68 END PROCESS;

69 END ARCHITECTURE;

70 ----------------------------------------------------------------

10.12 Testbenches with Record Types

The type RECORD is useful for testing codes whose input-output values are expressed by

means of arbitrary (but not too long) lookup tables located in the test code itself. For large

data sets, the use of files is recommended. The use of RECORD is illustrated in this sec-

tion, while the use of files is illustrated in the next.

Example 10.7: Type IV Testbench with a Record Type

This example concerns the development of a full bench for a binary-to-gray converter (fig-

ure 10.14a) with the input stimuli and expected results stored in a table in the test file itself,

constructed with the help of RECORD. Recall that a gray code is one in which neigh-
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boring words di¤er by just one bit. To ease the analysis, just three bits will be used. Their

values are listed in figure 10.14b. This exercise is divided into three parts:

1) Write a VHDL code for the design file. In it, use a closed-form expression to make the

binary-to-gray conversion.

2) Write a VHDL code for the test file. In it, to illustrate the use of tables and RECORD,

enter the data (stimuli plus expected results) using a lookup table instead of an expression.

3) Simulate the design, for timing analysis. Change the input data (bin) every 100ns, then

give some time (tp) for the output (gray) to settle. Next, make the comparison between the

actual and the expected results. This approach is illustrated in figure 10.14c, where the gray

areas highlight the output settling period (maximum propagation delay allowed).

Solution Part (1): A VHDL code for the design file, under the title bin_to_gray (line 5), is

shown below. Only concurrent code is employed (lines 13–16), with closed-form expres-

sions used to make the conversion.

1 ---------------------------------------------------

2 LIBRARY ieee;

3 USE ieee. std_logic_1164.all;

4 ---------------------------------------------------

5 ENTITY bin_to_gray IS

6 GENERIC (N: NATURAL := 3);

7 PORT (bin: IN STD_LOGIC_VECTOR(N-1 DOWNTO 0);

8 gray: OUT STD_LOGIC_VECTOR(N-1 DOWNTO 0));

9 END ENTITY;

10 ---------------------------------------------------

11 ARCHITECTURE bin_to_gray OF bin_to_gray IS

12 BEGIN

13 gray(N-1) <= bin(N-1);

14 gen: FOR i IN 1 TO N-1 GENERATE

15 gray(N-1-i) <= bin(N-i) XOR bin(N-1-i);

Figure 10.14
Binary-to-gray converter.
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16 END GENERATE;

17 END ARCHITECTURE;

18 ---------------------------------------------------

Part (2): A full testbench for the binary-to-gray converter is presented next, under the title

bin_to_gray_tb (line 5). As before, the entity (lines 5–8) has no PORT declarations; it con-

tains only generic parameters representing the distance ( period ¼ 100ns) between the data

samplings and the waiting time interval (tp ¼ 15ns) before the output is read.

The declarative part of the architecture (lines 11–26) contains a component (DUT) dec-

laration followed by signal, type, and constant declarations. A RECORD (section 3.14),

called data_pair and with two STD_LOGIC_VECTOR values named col1 and col2, is

created in lines 19–22. Next, in line 23, a type called table is declared as having eight such

pairs. Finally, a constant called templates, of type table, is specified in lines 24–26, contain-

ing the values listed in figure 10.14b.

The code proper (lines 27–45) contains two parts. The first part (line 29) consists of the

DUT instantiation, while the second part (lines 31–44) is a process responsible for gener-

ating the stimuli and also for checking the results. Observe that, contrary to the previous

example, here the stimulus generation and the output verification are done together (a

stimulus is applied in line 34, then some time is given in line 35 for the output to settle,

and finally a comparison is made by the ASSERT statement in lines 36–38). If a mismatch

is detected, the simulation is terminated and the following message is issued (assuming

i ¼ 5): ‘‘Mismatch at iteration i ¼ 5’’. On the other hand, if no mismatch occurs, the sim-

ulator eventually reaches line 41, whose ASSERT statement forces the message ‘‘No error

found!’’ to be displayed. (For details on ASSERT and the usage of IMAGE, see section

9.2.)

1 ----------------------------------------------------------------------

2 LIBRARY ieee;

3 USE ieee. std_logic_1164.all;

4 ----------------------------------------------------------------------

5 ENTITY bin_to_gray_tb IS

6 GENERIC (period: TIME := 100ns;

7 tp: TIME := 15ns);

8 END ENTITY;

9 ----------------------------------------------------------------------

10 ARCHITECTURE testbench OF bin_to_gray_tb IS

11 ----DUT declaration:--------------------

12 COMPONENT bin_to_gray IS

13 PORT (bin: IN STD_LOGIC_VECTOR(2 DOWNTO 0);

14 gray: OUT STD_LOGIC_VECTOR(2 DOWNTO 0));

15 END COMPONENT;

16 ----Signal declarations:----------------
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17 SIGNAL b: STD_LOGIC_VECTOR(2 DOWNTO 0); --binary in

18 SIGNAL g: STD_LOGIC_VECTOR(2 DOWNTO 0); --gray out

19 TYPE data_pair IS RECORD

20 col1: STD_LOGIC_VECTOR(2 DOWNTO 0);

21 col2: STD_LOGIC_VECTOR(2 DOWNTO 0);

22 END RECORD;

23 TYPE table IS ARRAY (1 TO 8) OF data_pair;

24 CONSTANT templates: table := (

25 ("000", "000"), ("001", "001"), ("010", "011"), ("011", "010"),

26 ("100", "110"), ("101", "111"), ("110", "101"), ("111", "100"));

27 BEGIN

28 ---DUT instantiation:--------------------

29 dut: bin_to_gray PORT MAP (bin => b, gray => g);

30 ---Stimuli generation and comparison:----

31 PROCESS

32 BEGIN

33 FOR i IN table'RANGE LOOP

34 b <= templates(i).col1;

35 WAIT FOR tp;

36 ASSERT g=templates(i).col2

37 REPORT "Mismatch at iteration=" & INTEGER'IMAGE(i)

38 SEVERITY FAILURE;

39 WAIT FOR period-tp;

40 END LOOP;

41 ASSERT FALSE

42 REPORT "No error found!"

43 SEVERITY NOTE;

44 END PROCESS;

45 END ARCHITECTURE;

46 ----------------------------------------------------------------------

Part (3): Since it is a timing simulation, we must include in the design the postsynthesis and

SDF files generated by the synthesizer. This procedure was already described in the previ-

ous example. If using ModelSim, just follow the procedure in sections D.1, D.2, and D.4

of appendix D. Simulation results (from ModelSim) are depicted in figure 10.15. Observe

at the cursors’ feet that the input-output propagation delay is 7.92ns (the device used in

this design was a Cyclone II FPGA).

10.13 Testbenches with Data Files

Automated data comparison often involves the examination of large data sets, in which

case the use of data files is recommended. This section illustrates how a VHDL code can
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deal with a file during a Type IV simulation. Variants of the code below can be easily

attained using the procedures described in sections 10.3 and 10.4.

Example 10.8: Type IV Testbench with a Data File

This example concerns the development of a full bench with the in-out data stored in a file.

Redo example 10.7, this time with the stimuli (bin) and expected values (gray) stored in a

file (call it template.txt). The design file is obviously still the same.

Solution A test file for a Type IV testbench for this exercise is presented below. Because a

data file will now be used, the textio package (line 4) was included in the package declara-

tions. The entity (lines 6–9) is similar to that in the previous example.

As usual, the declarative part of the architecture (lines 12–20) contains the DUT decla-

ration followed by signal declarations. In the latter, not only three signals (b, g, and gtest,

needed to represent bin and gray) are declared (lines 18–19), but also a file (line 20), called

template.txt, identified by f and opened in read mode.

Again, as in the previous design, the architecture body (lines 21–55) consists of the DUT

instantiation (line 23) followed by a process (lines 25–54) for stimulus generation plus out-

put verification. Note that the overall file-reading process is relatively similar to that seen

earlier in section 10.4.

In the declarative part of the process (lines 26–29), five variables are specified. The first

(l ) is used to store a file line during the file-read procedure. The second (good_value) is

used to check whether the type of the read value matches the type of the object to which

the value is being assigned. The third (space) is just to suppress the line space between bin

and gray. Finally, the last two (bfile, gfile) receive the values of bin and gray read from the

file.

In the process body (lines 30–54), a file line is read and assigned to l (line 32), then the

first value is separated from l and assigned to bfile (line 33), and is subsequently tested

using ASSERT (lines 34–36). Because the procedure READ does not accept the type

Figure 10.15
Simulation results from example 10.7.
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STD_LOGIC_VECTOR (see section 10.4), a type-conversion function was employed to

convert bfile (BIT_VECTOR) into b (STD_LOGIC_VECTOR) (see type-conversion func-

tions in the table of figure 3.10). If an improper value is found in the file, the message

‘‘Improper value for ‘bin’ in file!’’ is issued (line 35) and the simulation is terminated

(line 36). A similar construction is used for the value assigned to gtest. Finally, some time

is given (line 44) for the output to settle, after which the expected value, gtest, is compared

against the value attained from the circuit, g. If they do not match, the message ‘‘Data

mismatch!’’ is issued (line 46) and the simulation is terminated (line 47). Only when no

errors are found does the simulator reach line 50, where the last ASSERT forces the

message ‘‘No errors found!’’ to be issued, concluding the simulation.

A final remark regards the good_value tests. If, for example, the check in lines 34–36 is

deleted, and an improper value is found in the file, the simulator will still report the prob-

lem. But because that will cause just the loop to be terminated, lines 50–52 will still be exe-

cuted, giving the user the false information that no error was found (indeed, the circuit

might be correct; the problem is that the tests were incomplete).

Simulation results, using ModelSim, are depicted in figure 10.16. To check them, just

follow the procedure in sections D.1, D.2, and D.4 of appendix D.

1 ----------------------------------------------------

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 USE std.textio.all;

5 ----------------------------------------------------

6 ENTITY bin_to_gray_tb IS

7 GENERIC (period: TIME := 100ns;

8 tp: TIME := 15ns);

9 END ENTITY;

10 ----------------------------------------------------

11 ARCHITECTURE testbench OF bin_to_gray_tb IS

12 ----DUT declaration:----------

Figure 10.16
Simulation results from example 10.8.
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13 COMPONENT bin_to_gray IS

14 PORT (bin: IN STD_LOGIC_VECTOR(2 DOWNTO 0);

15 gray: OUT STD_LOGIC_VECTOR(2 DOWNTO 0));

16 END COMPONENT;

17 ----Signal declarations:------

18 SIGNAL b: STD_LOGIC_VECTOR(2 DOWNTO 0);

19 SIGNAL g, gtest: STD_LOGIC_VECTOR(2 DOWNTO 0);

20 FILE f: TEXT OPEN READ_MODE IS "template.txt";

21 BEGIN

22 ---DUT instantiation:-------------------

23 dut: bin_to_gray PORT MAP (bin => b, gray => g);

24 ---Output verification:-----------------

25 PROCESS

26 VARIABLE l: LINE;

27 VARIABLE good_value: BOOLEAN;

28 VARIABLE space: CHARACTER;

29 VARIABLE bfile, gfile: BIT_VECTOR(2 DOWNTO 0);

30 BEGIN

31 WHILE NOT ENDFILE (f) LOOP

32 READLINE(f, l);

33 READ(l, bfile, good_value);

34 ASSERT (good_value)

35 REPORT "Improper value for 'bin' in file!"

36 SEVERITY FAILURE;

37 b <= to_stdlogicvector(bfile);

38 READ(l, space);

39 READ(l, gfile, good_value);

40 ASSERT (good_value)

41 REPORT "Improper value for 'gray' in file!"

42 SEVERITY FAILURE;

43 gtest <= to_stdlogicvector(gfile);

44 WAIT FOR tp;

45 ASSERT (gtest=g)

46 REPORT "Data mismatch!"

47 SEVERITY FAILURE;

48 WAIT FOR period-tp;

49 END LOOP;

50 ASSERT FALSE

51 REPORT "No errors found!"

52 SEVERITY NOTE;

53 WAIT;

54 END PROCESS;

55 END ARCHITECTURE;

56 ----------------------------------------------------
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10.14 Exercises

Exercise 10.1: Generation of Periodic Stimuli

Write and simulate a VHDL code that generates the signals sig1 and sig2 of figure 10.17

and the signal y of figure 10.7d.

Exercise 10.2: Generation of Nonperiodic Stimuli

Write and simulate a VHDL code that generates the signal sig1, sig2, and sig3 of fig-

ure 10.18.

Exercise 10.3: Writing to a File

Write and simulate a VHDL code that writes the table of figure 10.19 to a file.

Figure 10.17

Figure 10.18

Figure 10.19
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Exercise 10.4: Reading from a File

Write and simulate a VHDL code that reads the table of figure 10.19 from a file. Say that

inp is INTEGER and outp is STD_LOGIC_VECTOR. Include good-value tests in your

code.

Exercise 10.5: Type I Testbench for a LUT-Based Design

This exercise concerns the design and test of a circuit that produces the signal outp speci-

fied in the table of figure 10.19 when it receives the corresponding time and inp stimuli.

a) Write a VHDL code for the design file (call it lut.vhd ) and graphically test it (as in sec-

tion 10.5).

b) Write a VHDL code for the test file (call it lut_tb.vhd ), which must consist of a Type I

testbench (as in example 10.4). Run the simulation from 0 to 400ns.

Exercise 10.6: Type II Testbench for a LUT-Based Design

a) Make the changes needed in the solution to exercise 10.5 in order to turn it into a Type

II testbench (see example 10.5). Again, run the simulation from 0 to 400ns.

b) What is the propagation delay of your design for the chosen device?

Exercise 10.7: Type III Testbench for a LUT-Based Design

Make the changes needed in the solution to exercise 10.5 in order to turn it into a Type III

testbench. Run the simulation from 0 to 400ns.

Exercise 10.8: Type IV Testbench for a LUT-Based Design with a Record

a) Make the changes needed in the solution (test file lut_tb.vhd ) to exercise 10.7 in order to

turn it into a Type IV testbench. Enter the values of figure 10.19 using a constant of type

RECORD, located in the declarative part of the architecture of the test file (as in example

10.7). Adopt 15ns as the maximum acceptable propagating delay (call it tp), which should

be entered as a generic parameter. Run the simulation from 0 to 400ns.

b) What is the propagation delay of your design for the chosen device?

c) What will eventually happen if the value of tp is gradually reduced?

Exercise 10.9: Type IV Testbench for a LUT-Based Design with a File

Redo exercise 10.8, this time with the table of figure 10.19 stored in a file (call it data_

file.txt). This procedure was illustrated in example 10.8. Again, run the simulation from 0

to 400ns.
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Exercise 10.10: Type I Testbench for a Binary-to-Gray Converter

a) Consider the solution to example 10.7, which is a Type IV testbench for a binary-to-

gray converter with the values of figure 10.14b entered by means of a constant located in

the test code. How many other options can you find for entering that data?

b) Simplify (and simulate) the solution to example 10.7 in order to turn it into a Type I

testbench. Enter the stimuli of figure 10.14b using one of the methods that you have listed

in part (a) above.

Exercise 10.11: Type I Testbench for an Address Decoder

An address decoder was designed in example 2.4. Develop a Type I testbench to test that

circuit (as in example 10.4). Use the same stimuli employed in the graphical simulation of

figure 2.7.

Exercise 10.12: Type IV Testbench for an Address Decoder

Enhance the solution to exercise 10.11 in order to turn it into a Type IV testbench (see

examples 10.6–10.8). Use again the same stimuli employed in the graphical simulation of

figure 2.7.

Exercise 10.13: Type I Testbench for a Carry-Ripple Adder

A carry-ripple adder was designed in example 6.4. Develop a Type I testbench to test that

circuit (as in example 10.4). Use the same stimuli employed in the graphical simulation of

figure 6.7.

Exercise 10.14: Type IV Testbench for a Carry-Ripple Adder

Enhance the solution to exercise 10.13 in order to turn it into a Type IV testbench (see

examples 10.6–10.8). Use again the same stimuli employed in the graphical simulation of

figure 6.7.

Exercise 10.15: Type I Testbench for a Shift Register

A 4� 1 shift register was designed in example 6.3. Develop a Type I testbench to test that

circuit (as in example 10.4). Use the same stimuli employed in the graphical simulation of

figure 6.5.

Exercise 10.16: Type IV Testbench for a Shift Register

Enhance the solution to exercise 10.15 in order to turn it into a Type IV testbench (see

examples 10.6–10.8). Use again the same stimuli employed in the graphical simulation of

figure 6.5.

Simulation with VHDL Testbenches 273



Exercise 10.17: Type I Testbench for a Fibonacci Series Generator

Figure 10.20 shows the top-level diagram of a Fibonacci series generator (the series starts

with 0 and 1, with each subsequent element obtained by summing the preceding two ele-

ments, so the following results: 0, 1, 1, 2, 3, 5, 8, . . .). The circuit must produce a new value

at every positive clock transition, starting from "000. . .0" (upon reset) and stopping when

the largest 8-bit Fibonacci value is reached (assume that fibo is an 8-bit signal, so the

largest value is 233). If rst is asserted, the output must return to zero, with the series

restarting automatically after rst returns to '0'. Assume 100ns for the clock period.

a) Write a VHDL code for the design file (call it fibonacci.vhd ) and graphically test it (as

in section 10.5).

b) Write a VHDL code for the test file (call it fibonacci_tb.vhd ), which must consist of a

Type I testbench (as in example 10.4). Make sure to observe in the simulations the main

circuit features (stop, reset, etc.).

(A VHDL code and other Fibonacci series details can be seen in Pedroni 2008.)

Exercise 10.18: Type II Testbench for a Fibonacci Series Generator

a) Make the changes needed in the solution to exercise 10.17 in order to turn it into a

Type II testbench (see example 10.5).

b) What is the propagation delay of your design for the chosen device?

Exercise 10.19: Type IV Testbench for a Fibonacci Series Generator

a) Make the changes needed in the solution to exercise 10.17 or 10.18 in order to turn it

into a Type IV testbench (see examples 10.6–10.8). Adopt 15ns as the maximum accept-

able propagation delay (tp), which should be entered as a generic parameter.

b) What is the propagation delay of your design for the chosen device?

c) What will eventually happen if the value of tp is gradually reduced?

Figure 10.20
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III EXTENDED AND ADVANCED DESIGNS



 

11VHDL Design of State Machines

11.1 Introduction

Finite state machine (FSM) is a special modeling technique for sequential logic circuits.

This approach can be very helpful in designing circuits whose tasks form a well-defined

list, containing all possible system states and the necessary conditions for the system to

move from one state to another, as well as the output values that the system must produce

in each state. Digital controllers are classical examples of circuits that fall in this category.

There are two fundamental representations for FSMs, one relative to the specifications

(called state transition diagram) and the other relative to the hardware (combinational ver-

sus sequential logic).

State Transition Diagram

The specifications of a finite state machine can be translated using a state transition dia-

gram. An example is shown in figure 11.1a, which says the following: the machine has

three states, called A, B, and C, one input (besides clock, of course, and possibly reset),

called x, and one output, called y; the system starts at state A (upon reset), progressing to

B if x ¼ 2 at the moment when a (positive) clock edge occurs, or remaining in A otherwise;

when in B, it must return to A if x ¼ 1, move to C if x ¼ 0, or remain in B otherwise; fi-

nally, when in C, it must move to A if x ¼ 1 or remain in C otherwise; the output must be

y ¼ '0' when in state A or B, or y ¼ '1' if in state C.

The three state transition diagrams in figure 11.1 are equivalent. The case in (a) explic-

itly declares all progressing conditions; the option in (b) uses ‘‘else’’ to indicate the remain-

ing conditions; finally, the case in (c) suppresses the ‘‘else’’ conditions altogether, which

then become implicit. These representations can (and will) be used interchangeably

throughout the book.

Hardware-Based Representation

An FSM representation from a hardware perspective is shown in figure 11.2a, which shows

the system divided into two sections. The lower section is sequential (contains the flip-flops,



all of type D), while the upper section is combinational (contains the combinational cir-

cuits). The signal presently stored in the flip-flops is called pr_state, while that to be stored

at the next (say, positive) clock edge is called nx_state.

One limitation of this architecture is that the output, generally produced by the combi-

national circuit (there are exceptions in which just wires connecting the flip-flop outputs

to the actual outputs su‰ce), might be subject to glitches. If in that particular application

glitches are not acceptable, then some kind of solution must be provided.

Glitches are brief voltage or current spikes that corrupt a signal. Their occurrence is

illustrated in figure 11.2c, which shows a simple AND gate. When any input is low, the

output must be low, as in the upper plot; however, depending on the propagation delays,

b might arrive after a, causing a glitch to occur in y, as shown in the second plot.

One solution to avoid glitches is presented in the FSM model of figure 11.2b. It consists

of using an extra section at the output, containing only DFFs, hence guaranteeing glitch-

free signals. It is important to note that when this approach is adopted the new output will

be one clock cycle delayed with respect to the original output when the same clock edge

Figure 11.1
Three equivalent state transition diagrams: (a) Explicitly specified; (b) Using the ‘‘else’’ keyword; (c) With implicit
‘‘else’’ conditions.

Figure 11.2
FSM representation from a hardware perspective (a) without and (b) with output register; (c) Illustration of glitch
formation.
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(say, positive) is used, or one-half of a clock cycle if opposite clock edges are employed

instead.

A last comment concerns the classification of FSMs. If, besides the stored state, the out-

put depends also on an external input, it is called a Mealy machine. Otherwise, if it

depends solely on the stored state, it is a Moore machine. The latter is obviously a partic-

ular case of the former. Conventional counters are classical examples of Moore machines,

but most implementations fall in the Mealy category.

11.2 VHDL Template for FSMs

A VHDL template for the design of FSMs is presented below, which directly resembles the

diagram of figure 11.2b. The design of the lower (sequential) section is in the process

of lines 18–25, while the upper (combinational) section is in the process of lines 27–48.

Note that only the former requires clock and reset because all flip-flops are in that section.

Recall also that the latter, being combinational, can be designed with concurrent code

(WHEN or SELECT statement) as well. The optional (sequential) output section of figure

11.2b, for glitch removal, is included in the process of lines 50–57. In line 12, an enumer-

ated data type, called state, is created, then the signals pr_state and nx_state are declared

in line 13 as conforming with that data type. An optional attribute for enumerated data

types (explained in section 11.4) appears in lines 14–15. All FSMs in the book will be

designed according with this VHDL template.

Note: An extension to this template will be presented in section 11.6 to deal with complex,

timed machines.

1 ----------------------------------------------------------

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 ----------------------------------------------------------

5 ENTITY <entity_name> IS

6 PORT (clk, rst: IN STD_LOGIC;

7 input: IN <data_type>;

8 output: OUT <data_type>);

9 END <entity_name>;

10 ----------------------------------------------------------

11 ARCHITECTURE <architecture_name> OF <entity_name> IS

12 TYPE state IS (A, B, C, ...);

13 SIGNAL pr_state, nx_state: state;

14 ATTRIBUTE ENUM_ENCODING: STRING; --optional attribute

15 ATTRIBUTE ENUM_ENCODING OF state: TYPE IS "sequential";

16 BEGIN
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17 ------Lower section of FSM:------------

18 PROCESS (clk, rst)

19 BEGIN

20 IF (rst='1') THEN

21 pr_state <= A;

22 ELSIF (clk'EVENT AND clk='1') THEN

23 pr_state <= nx_state;

24 END IF;

25 END PROCESS;

26 ------Upper section of FSM:------------

27 PROCESS (pr_state, input)

28 BEGIN

29 CASE pr_state IS

30 WHEN A =>

31 output <= <value>;

32 IF (input=<value>) THEN

33 nx_state <= B;

34 ...

35 ELSE

36 nx_state <= A;

37 END IF;

38 WHEN B =>

39 output <= <value>;

40 IF (input=<value>) THEN

41 nx_state <= C;

42 ...

43 ELSE

44 nx_state <= B;

45 END IF;

46 WHEN ...

47 END CASE;

48 END PROCESS;

49 ------Output section (optional):-------

50 PROCESS (clk, rst)

51 BEGIN

52 IF (rst='1') THEN

53 new_output <= <value>;

54 ELSIF (clk'EVENT AND clk='1') THEN --or clk='0'

55 new_output <= output;

56 END IF;

57 END PROCESS;

58 END <architecture_name>;

59 ----------------------------------------------------------
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FSM Golden Rules

Before we show design examples using the template above, it is very important to consider

three fundamental rules in writing good VHDL code for finite state machines.

Rule 1: Fully specify the truth table for the combinational part of the FSM.

The upper section of the FSM is a combinational circuit. Therefore, the complete lookup

table should be covered, or the compiler might infer latches to hold a previous value. In

other words, in the CASE statement (lines 29–47) of the template above, always specify

all conditions for each state (output values and next state). For example, if the output

value in a particular state does not matter, express it using the "don’t care" condition ('-'

or "--- . . .", same as 'X' or "XXX . . .").

Rule 2: Assignments made in the combinational part are only guaranteed while the FSM is in

the state where the assignments were made.

A common mistake is to make an assignment in the combinational part (process of lines

27–48 in the template above) and think that it will be stored. Remember, the upper section

is intended to be a purely combinational circuit. As an example, say that one specifies

"y <¼ xþ 1;" in a certain state; this does not mean that y will be incremented, but simply

that the value of y will be xþ 1 while the machine is in that state.

Rule 3: Anything that must be registered should go in the sequential section of the FSM.

For the upper section to remain purely combinational, all flip-flops must be installed in the

lower (sequential) part of the machine (except for the optional glitch-remover section). In

other words, the corresponding code should be inserted in the process of lines 18–25 of the

template above (or in a separate, complementary process). A very important example of

this practice will be seen in section 11.6, where a modification will be made to the template

in order to be able to design complex timed machines in a simple, systematic way.

Example 11.1: Vending-Machine Controller

Figure 11.3a shows the top-level diagram of a simplified controller for a vending machine

that sells candy bars for 25 cents. The inputs are nickel_in, dime_in, and quarter_in, indi-

cating the type of coin that was deposited, plus clock (clk) and reset (rst), to which the

circuit responds with the outputs candy_out, to dispense a candy bar, plus nickel_out or

dime_out, asserted when change is due. Design this circuit using the FSM approach. Also,

estimate the number of flip-flops that will be required.

Solution As mentioned earlier, digital controllers are good examples of circuits that can

be e‰ciently implemented using the FSM approach. The state transition diagram for the

present example is depicted in figure 11.3b, where the state names (st0, st5, st10, etc.)

indicate the total amount of credit (only nickels, dimes, and quarters are accepted). To

simplify the diagram, the following notation was used: ni ¼ nickel_in, di ¼ dime_in,
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qi ¼ quarter_in, no ¼ nickel_out, do ¼ dime_out, co ¼ candy_out. Note that in states st25,

st30, and st35 a candy bar is dispensed (co ¼ '1'), accompanied by a nickel or a dime in the

last two.

A VHDL code for this circuit is shown below, which obeys the template just presented.

The project’s name is vending_machine (line 5), and the input-output signals (lines 6–8) are

from figure 11.3a.

The architecture is in lines 11–123. Its declarative part (lines 12–16) contains FSM-

related declarations. An enumerated data type, called state, which contains all states of

the state transition diagram, was specified in lines 12–13, then, in line 14, the signals

pr_state and nx_state were declared as conforming with that data type. The optional

enum_encoding attribute (explained in section 11.4) for enumerated data types was used

in lines 15–16 to specify the desired encoding scheme for the machine states, which is se-

quential. Consequently, given that the machine has 10 states, dlog2 10e ¼ 4 bits (hence 4

flip-flops) are needed to represent them, following the sequence st0 ¼ "0000" (decimal 0),

st5 ¼ "0001" (decimal 1), st10 ¼ "0010" (decimal 2), . . . , st45 ¼ "1001" (decimal 9). In the

simulations, these decimal values are expected to be exhibited instead of the given state

names.

The lower (sequential) section of the FSM is in the process of lines 19–26, while the

upper (combinational) section is in the process of lines 28–122. Note that only the former

has clock and reset. Observe also that the optional output section (glitch remover) was not

employed.

1 ----------------------------------------------------------

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 ----------------------------------------------------------

5 ENTITY vending_machine IS

6 PORT (clk, rst: IN STD_LOGIC;

7 nickel_in, dime_in, quarter_in: IN BOOLEAN;

Figure 11.3
Vending machine of example 11.1: (a) Top-level circuit diagram; (b) State transition diagram.
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8 candy_out, nickel_out, dime_out: OUT STD_LOGIC);

9 END vending_machine;

10 ----------------------------------------------------------

11 ARCHITECTURE fsm OF vending_machine IS

12 TYPE state IS (st0, st5, st10, st15, st20, st25, st30,

13 st35, st40, st45);

14 SIGNAL pr_state, nx_state: state;

15 ATTRIBUTE enum_encoding: STRING; --optional attribute

16 ATTRIBUTE enum_encoding OF state: TYPE IS "sequential";

17 BEGIN

18 ----Lower section of FSM:-----------

19 PROCESS (rst, clk)

20 BEGIN

21 IF (rst='1') THEN

22 pr_state <= st0;

23 ELSIF (clk'EVENT AND clk='1') THEN

24 pr_state <= nx_state;

25 END IF;

26 END PROCESS;

27 ----Upper section of FSM:-----------

28 PROCESS (pr_state, nickel_in, dime_in, quarter_in)

29 BEGIN

30 CASE pr_state IS

31 WHEN st0 =>

32 candy_out <= '0';

33 nickel_out <= '0';

34 dime_out <= '0';

35 IF (nickel_in) THEN

36 nx_state <= st5;

37 ELSIF (dime_in) THEN

38 nx_state <= st10;

39 ELSIF (quarter_in) THEN

40 nx_state <= st25;

41 ELSE

42 nx_state <= st0;

43 END IF;

44 WHEN st5 =>

45 candy_out <= '0';

46 nickel_out <= '0';

47 dime_out <= '0';

48 IF (nickel_in) THEN

49 nx_state <= st10;

50 ELSIF (dime_in) THEN
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51 nx_state <= st15;

52 ELSIF (quarter_in) THEN

53 nx_state <= st30;

54 ELSE

55 nx_state <= st5;

56 END IF;

57 WHEN st10 =>

58 candy_out <= '0';

59 nickel_out <= '0';

60 dime_out <= '0';

61 IF (nickel_in) THEN

62 nx_state <= st15;

63 ELSIF (dime_in) THEN

64 nx_state <= st20;

65 ELSIF (quarter_in) THEN

66 nx_state <= st35;

67 ELSE

68 nx_state <= st10;

69 END IF;

70 WHEN st15 =>

71 candy_out <= '0';

72 nickel_out <= '0';

73 dime_out <= '0';

74 IF (nickel_in) THEN

75 nx_state <= st20;

76 ELSIF (dime_in) THEN

77 nx_state <= st25;

78 ELSIF (quarter_in) THEN

79 nx_state <= st40;

80 ELSE

81 nx_state <= st15;

82 END IF;

83 WHEN st20 =>

84 candy_out <= '0';

85 nickel_out <= '0';

86 dime_out <= '0';

87 IF (nickel_in) THEN

88 nx_state <= st25;

89 ELSIF (dime_in) THEN

90 nx_state <= st30;

91 ELSIF (quarter_in) THEN

92 nx_state <= st45;

93 ELSE
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94 nx_state <= st20;

95 END IF;

96 WHEN st25 =>

97 candy_out <= '1';

98 nickel_out <= '0';

99 dime_out <= '0';

100 nx_state <= st0;

101 WHEN st30 =>

102 candy_out <= '1';

103 nickel_out <= '1';

104 dime_out <= '0';

105 nx_state <= st0;

106 WHEN st35 =>

107 candy_out <= '1';

108 nickel_out <= '0';

109 dime_out <= '1';

110 nx_state <= st0;

111 WHEN st40 =>

112 candy_out <= '0';

113 nickel_out <= '1';

114 dime_out <= '0';

115 nx_state <= st35;

116 WHEN st45 =>

117 candy_out <= '0';

118 nickel_out <= '0';

119 dime_out <= '1';

120 nx_state <= st35;

121 END CASE;

122 END PROCESS;

123 END fsm;

124 ----------------------------------------------------------

Simulation results are depicted in figure 11.4. First, one nickel is deposited, causing the

system to move to state st5 (decimal 1). Then a dime is entered, moving the machine to

state st15 (decimal 3), followed by a quarter (state st40, decimal 8). In this state, a nickel

is returned to the customer (note nickel_out ¼ '1'), moving the controller automatically to

state st35 (decimal 7), where a candy and a dime are dispensed, with the system returning

then to its idle state (st0).

One important aspect of this design is that the outputs (generated by combinational cir-

cuits), depending on the chosen CPLD/FPGA and on the particular routing inside that de-

vice, are subject to glitches, which can indeed be observed in figure 11.4. Since in this type

of application (involving money) glitches are definitely not acceptable, the optional output

section seen in the FSM template must be included (see next example).
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Example 11.2: Glitch-Free Vending-Machine Controller

Add the optional output section seen in the FSM template to the vending-machine control-

ler above to guarantee that its outputs are free from glitches (see glitch in figure 11.4).

Solution First, it is important to mention that when the simulator does not show glitches

in the output signals it does not necessarily mean that the outputs are glitch-free (this can

only be determined by circuit analysis), because that depends on the cells used in the target

device—that is, it might be just a coincidence that the delays in the routings favored a

glitch-free response, which might not hold in another routing or another device.

To obtain the glitch-free solution, just add the code below to that in the previous example.

The new outputs are called new_candy_out, new_nickel_out, and new_dime_out, which are

obviously one clock cycle behind the original outputs (the delay would be one-half of a clock

cycle if the negative clock edge were employed). If the original outputs are still kept as out-

put signals in your code, remember to either declare them as BUFFER or to use auxiliary

internal signals. Corresponding glitch-free simulation results are depicted in figure 11.5.

-----Output section of FSM:-------------

PROCESS (rst, clk)

BEGIN

IF (rst='1') THEN

new_candy_out <= '0';

new_nickel_out <= '0';

new_dime_out <= '0';

ELSIF (clk'EVENT AND clk='1') THEN

new_candy_out <= candy_out;

new_nickel_out <= nickel_out;

new_dime_out <= dime_out;

END IF;

END PROCESS;

----------------------------------------

Figure 11.4
Simulation results from the vending-machine controller of example 11.1.
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Example 11.3: Zero-to-Nine Counter

Figure 11.6a shows the top-level diagram for a sequential binary 0-to-9 counter. The inputs

are clk and rst, and the output is output(3:0). Design this circuit using the FSM approach.

Solution The corresponding state transition diagram is depicted in figure 11.6b, showing

the machine’s ten states, with their names and respective output values. Note that this is a

Moore machine because there are no control inputs (besides reset, of course), so the next

state depends solely on the present state.

A VHDL code for this circuit is presented below, which is again a direct application of

the template introduced earlier. The optional output section is not needed here because the

Figure 11.5
Simulation results from the code of example 11.2.

Figure 11.6
Zero-to-nine counter of example 11.3.
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outputs come directly from flip-flops, so each bit is automatically glitch-free. Simulation

results are depicted in figure 11.6c. Recall that the glitches seen in the figure after some

of the transitions are not necessarily glitches; this is because output represents a bus, not a

single bit, and multiple bits neither change instantaneously (perfectly vertical transitions)

nor change all exactly at the same time.

1 ----------------------------------------------------------

2 ENTITY counter IS

3 PORT (clk, rst: IN BIT;

4 output: OUT NATURAL RANGE 0 TO 9);

5 END counter;

6 ----------------------------------------------------------

7 ARCHITECTURE fsm OF counter IS

8 TYPE state IS (zero, one, two, three, four, five,

9 six, seven, eight, nine);

10 SIGNAL pr_state, nx_state: state;

11 ATTRIBUTE enum_encoding: STRING; --optional attribute

12 ATTRIBUTE enum_encoding OF state: TYPE IS "sequential";

13 BEGIN

14 ----Lower section of FSM:-----------

15 PROCESS (rst, clk)

16 BEGIN

17 IF (rst='1') THEN

18 pr_state <= zero;

19 ELSIF (clk'EVENT AND clk='1') THEN

20 pr_state <= nx_state;

21 END IF;

22 END PROCESS;

23 ----Upper section of FSM:-----------

24 PROCESS (pr_state)

25 BEGIN

26 CASE pr_state IS

27 WHEN zero =>

28 output <= 0;

29 nx_state <= one;

30 WHEN one =>

31 output <= 1;

32 nx_state <= two;

33 WHEN two =>

34 output <= 2;

35 nx_state <= three;

36 WHEN three =>

37 output <= 3;
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38 nx_state <= four;

39 WHEN four =>

40 output <= 4;

41 nx_state <= five;

42 WHEN five =>

43 output <= 5;

44 nx_state <= six;

45 WHEN six =>

46 output <= 6;

47 nx_state <= seven;

48 WHEN seven =>

49 output <= 7;

50 nx_state <= eight;

51 WHEN eight =>

52 output <= 8;

53 nx_state <= nine;

54 WHEN nine =>

55 output <= 9;

56 nx_state <= zero;

57 END CASE;

58 END PROCESS;

59 END fsm;

60 ----------------------------------------------------------

11.3 Poor FSM Model

Below is a common FSM design template using VHDL. The purpose of this section is to

show that this is a poor approach, and so further illustrate the construction of state

machines.

1 --------------------------------------------------

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 --------------------------------------------------

5 ENTITY poor_template IS

6 PORT (clk, rst, input: IN STD_LOGIC;

7 output: OUT STD_LOGIC_VECTOR(2 DOWNTO 0);

8 END poor_template;

9 --------------------------------------------------

10 ARCHITECTURE poor_fsm OF poor_template IS

11 TYPE state_type IS (A, B, C, ...);

12 SIGNAL state: state_type;

13 BEGIN
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14 PROCESS (clk, rst)

15 BEGIN

16 IF (rst='1') THEN

17 state <= A;

18 ELSIF (rising_edge(clk)) THEN

19 CASE state IS

20 WHEN A=>

21 IF (input='1') THEN

22 state <= B;

23 ELSE

24 state <= A;

25 END IF;

26 WHEN B=>

27 IF (input='1') THEN

28 state <= C;

29 ELSE

30 state <= B;

31 END IF;

32 ...

33 END CASE

34 END IF;

35 END PROCESS;

36 -------------------------------

37 PROCESS (state, input)

38 BEGIN

39 CASE state IS

40 WHEN A=>

41 IF (input='1') THEN

42 output <= "001";

43 ELSE

44 output <= "000";

45 END IF;

46 WHEN B=>

47 IF (input='1') THEN

48 output <= "101";

49 ELSE

50 output <= "001";

51 END IF;

52 ...

53 END CASE;

54 END PROCESS;

55 END poor_fsm;

56 --------------------------------------------------
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Comparing the template above with that proposed in section 11.2, one verifies that while

the latter directly resembles the FSM model of figure 11.7a (copied from figure 11.2), the

former implements the model of figure 11.7b. Consequently, while the former is consistent

with the type of logic (sequential versus combinational) employed in the circuits, the other

mixes the logic types, losing essential advantages of well-established design techniques. Ad-

ditionally, there is so little left for the second process that it is then generally not worth

having a second part at all.

11.4 FSM Encoding Styles

The states of an FSM can be encoded in several ways, which are described below using the

following enumerated data type:

TYPE state IS (A, B, C, D, E);

1 Sequential encoding: The minimum number of bits is employed and the states are

encoded in ascending order of decimal values. With N bits (N flip-flops), 2N states can be

encoded. For the type above, the following would result: A ¼ "000" (¼ 0 decimal), B ¼
"001" (¼ 1), C ¼ "010" (¼ 2), D ¼ "011" (¼ 3), and E ¼ "100" (¼ 4).

1 Gray encoding: Again, the minimum number of bits is used, with the states encoded us-

ing the Gray code, so neighboring code words di¤er by just one bit. For the type above,

the following would result: A ¼ "000", B ¼ "001", C ¼ "011", D ¼ "010", and E ¼ "110".

1 Johnson encoding: Like the Gray code, neighboring words di¤er by just one bit. How-

ever, with N bits (N flip-flops), only 2N states can be encoded. Each new code word is

obtained by circularly shifting the previous one to the right by one position, with the new

MSB equal to the reverse of the previous LSB. For the type above, the following would

result: A ¼ "000", B ¼ "100", C ¼ "110", D ¼ "111", and E ¼ "011".

1 One-hot encoding: To encode N states, N flip-flops are needed. Each code word con-

tains only one bit distinct from the others (that is, all bits are '0', except one, or vice versa).

Figure 11.7
(a) Proposed versus (b) poor FSM model (from a hardware point of view).
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For the type above, the following would result: A ¼ "00001", B ¼ "00010", C ¼ "00100",

D ¼ "01000", and E ¼ "10000".

1 User-defined encoding: This includes any other encoding scheme specified by the

designer.

The one-hot style is often used in applications where flip-flops are abundant, like in

FPGAs, while in compact ASIC implementations sequential encoding is often employed.

Even though the latter requires the minimum number of flip-flops, the former requires the

least amount of combinational logic, thus generally resulting the fastest possible circuit.

In VHDL, a special attribute, called enum_encoding, is available to specify the encoding

style. Its syntax is:

ATTRIBUTE enum_encoding: STRING;

ATTRIBUTE enum_encoding OF state: TYPE IS "sequential";

The options normally synthesizable without restrictions in the attribute above are se-

quential and one-hot. For the others, it may be advisable to set up the compiler directly.

For example, if using Quartus II, the setup is the following: Assignments > Settings >

Analysis & Synthesis Settings > More Settings > State Machine Processing > (choose

encoding option). For example, the default encoding adopted by Quartus II 8.1 is sequen-

tial for up to 4 states, one-hot for 5–49 states, or gray otherwise.

To conclude, figure 11.8 illustrates how the states would be encoded with four bits, for

all four encoding options described above.

11.5 The State-Bypass Problem in FSMs

Figure 11.9a shows a simplified state transition diagram for a car alarm (Pedroni 2008). It

contains three states, called disarmed, armed, and intrusion (in the last state, siren ¼ '1'

Figure 11.8
Main FSM encoding styles and respective code words with four bits.
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causes the siren to go o¤ ). Note that there is a major flaw in this FSM because if a long

(several clock cycles) remote ¼ '1' command (from the remote control) occurs, the system

flips back and forth between the disarmed and armed states, or even between these states

and the intrusion state if sensors is high. In summary, some (or all) system states are essen-

tially bypassed (undesirable loop operation). Of course, there are applications in which this

is indeed the desired behavior (that is, to have the system stay in a certain state during only

one clock period), but in other applications (like the car alarm) this is a problem, so it

needs to be fixed.

Figures 11.9b–c show two techniques for solving the state-bypass problem, with the for-

mer employing a flag while the latter uses additional states.

The solution with a flag consists of resetting the flag when the system enters certain (or

all) states, which is then reasserted only if a predetermined condition occurs. In the exam-

ple of figure 11.9b, this condition is remote ¼ '0': that is, once the system enters a state (due

to remote ¼ '1'), it will only leave that state after remote ¼ '0' happens, thus preventing any

state from being bypassed.

The solution with additional states consists of including ‘‘wait’’ states in the paths sub-

ject to bypass. In the example of figure 11.9c, all paths are subject to bypass, so three extra

states are needed. The system enters such states when a remote ¼ '1' command is received,

leaving only after remote returns to '0'. Observe that each wait state should produce the

same output value as the next state.

In terms of hardware, there generally is not much di¤erence between these two solu-

tions. In a large system with multiple bypass points, the latter tends to require more flip-

flops (more states), while the former requires more combinational logic to produce the flag.

Both approaches are illustrated in the examples that follow.

Example 11.4: Car Alarm with Bypasses Prevented by a Flag

Design the simplified car alarm of figure 11.9 using a flag to prevent state bypasses (figure

11.9b).

Figure 11.9
(a) Simplified diagram for a car alarm, which exhibits a major flaw (state-bypass); (b) Bypasses prevented with a
flag; (c) Bypasses prevented with additional states.
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Solution A VHDL code for this FSM is presented below. Note that an additional process

was included to generate the flag, while the rest of the code still complies with the FSM

template precisely. In the new process, remote ¼ '1' causes the flag to be reset, only being

reactivated after remote ¼ '0' happens again. Simulation results from this code are shown

in figure 11.10.

1 ----------------------------------------------------------

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 ----------------------------------------------------------

5 ENTITY simple_car_alarm IS

6 PORT (clk, rst, remote, sensors: IN STD_LOGIC;

7 siren: OUT STD_LOGIC);

8 END simple_car_alarm;

9 ----------------------------------------------------------

10 ARCHITECTURE fsm OF simple_car_alarm IS

11 TYPE state IS (disarmed, armed, intrusion);

12 SIGNAL pr_state, nx_state: state;

13 ATTRIBUTE enum_encoding: STRING;

14 ATTRIBUTE enum_encoding OF state: TYPE IS "sequential";

15 SIGNAL flag: STD_LOGIC;

16 BEGIN

17 ----Flag generator:----------------

18 PROCESS (clk, rst)

19 BEGIN

20 IF (rst='1') THEN

21 flag <= '0';

22 ELSIF (clk'EVENT AND clk='1') THEN

23 IF (remote='0') THEN

24 flag <= '1';

25 ELSE

Figure 11.10
Simulation results from the code of example 11.4.
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26 flag <= '0';

27 END IF;

28 END IF;

29 END PROCESS;

30 ----Lower section of FSM:---------

31 PROCESS (clk, rst)

32 BEGIN

33 IF (rst='1') THEN

34 pr_state <= disarmed;

35 ELSIF (clk'EVENT AND clk='1') THEN

36 pr_state <= nx_state;

37 END IF;

38 END PROCESS;

39 ----Upper section of FSM:---------

40 PROCESS (pr_state, remote, sensors, flag)

41 BEGIN

42 CASE pr_state IS

43 WHEN disarmed =>

44 siren <= '0';

45 IF (remote='1' AND flag='1') THEN

46 nx_state <= armed;

47 ELSE

48 nx_state <= disarmed;

49 END IF;

50 WHEN armed =>

51 siren <= '0';

52 IF (sensors='1') THEN

53 nx_state <= intrusion;

54 ELSIF (remote='1' AND flag='1') THEN

55 nx_state <= disarmed;

56 ELSE

57 nx_state <= armed;

58 END IF;

59 WHEN intrusion =>

60 siren <= '1';

61 IF (remote='1' AND flag='1') THEN

62 nx_state <= disarmed;

63 ELSE

64 nx_state <= intrusion;

65 END IF;

66 END CASE;

67 END PROCESS;

68 END fsm;

69 ----------------------------------------------------------
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Example 11.5: Car Alarm with Bypasses Prevented by Additional States

Design the simplified car alarm of figure 11.9 using additional states to prevent bypasses

(figure 11.9c).

Solution A VHDL code for this FSM is presented below. Note the inclusion of three wait

states, so the additional process (for the flag) is no longer needed and the code once again

fully complies with the general FSM template of section 11.2. Simulation results are

depicted in figure 11.11 (note that siren in figures 11.10 and 11.11 are equal).

1 -------------------------------------------------------------------

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 -------------------------------------------------------------------

5 ENTITY simple_car_alarm IS

6 PORT (clk, rst, remote, sensors: IN STD_LOGIC;

7 siren: OUT STD_LOGIC);

8 END simple_car_alarm;

9 -------------------------------------------------------------------

10 ARCHITECTURE fsm OF simple_car_alarm IS

11 TYPE state IS (disarmed, wait1, armed, wait2, intrusion, wait3);

12 ATTRIBUTE enum_encoding: STRING; --optional attribure

13 ATTRIBUTE enum_encoding OF state: TYPE IS "sequential";

14 SIGNAL pr_state, nx_state: state;

15 BEGIN

16 ----Lower section of FSM:---------

17 PROCESS (clk, rst)

18 BEGIN

19 IF (rst='1') THEN

20 pr_state <= disarmed;

21 ELSIF (clk'EVENT AND clk='1') THEN

22 pr_state <= nx_state;

23 END IF;

Figure 11.11
Simulation results from the code of example 11.5.
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24 END PROCESS;

25 ----Upper section of FSM:---------

26 PROCESS (pr_state, remote, sensors)

27 BEGIN

28 CASE pr_state IS

29 WHEN disarmed =>

30 siren <= '0';

31 IF (remote='1') THEN

32 nx_state <= wait1;

33 ELSE

34 nx_state <= disarmed;

35 END IF;

36 WHEN wait1 =>

37 siren <= '0';

38 IF (remote='0') THEN

39 nx_state <= armed;

40 ELSE

41 nx_state <= wait1;

42 END IF;

43 WHEN armed =>

44 siren <= '0';

45 IF (sensors='1') THEN

46 nx_state <= intrusion;

47 ELSIF (remote='1') THEN

48 nx_state <= wait2;

49 ELSE

50 nx_state <= armed;

51 END IF;

52 WHEN wait2 =>

53 siren <= '0';

54 IF (remote='0') THEN

55 nx_state <= disarmed;

56 ELSE

57 nx_state <= wait2;

58 END IF;

59 WHEN intrusion =>

60 siren <= '1';

71 IF (remote='1') THEN

72 nx_state <= wait3;

73 ELSE

74 nx_state <= intrusion;

75 END IF;

76 WHEN wait3 =>
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77 siren <= '0';

78 IF (remote='0') THEN

79 nx_state <= disarmed;

80 ELSE

81 nx_state <= wait3;

82 END IF;

83 END CASE;

84 END PROCESS;

85 END fsm;

86 -------------------------------------------------------------------

11.6 Systematic Design Technique for Timed Machines

This section deals with the design of large state machines, which normally contain

embedded counters, operating as timers. Even though a counter itself is a state machine,

it can be designed very easily without the FSM approach, so the counter can be considered

as just an auxiliary circuit whose output is used as an input by the main machine, greatly

simplifying the overall design.

A systematic design technique for regular FSMs was discussed in section 11.2. Even

though the VHDL template seen there can be used to implement any machine, the adapta-

tions needed to accommodate the case of timed machines may vary in style and also in

correctness. For that reason, an extended systematic approach is proposed here, which

expands that template to also cover machines with built-in counters, hence contemplating

essentially any kind of FSM-based design.

The technique is based on observations shown in figure 11.12, which contains three

types of state transitions, identified as (a) conditional (only logic involved), (b) timed (only

time involved), and (c) hybrid (logic and time included). The upper part of figure 11.12

shows the following: in (a), the machine moves from state A to state B when x ¼ '1' occurs

(at the proper clock transition, of course); in (b), the change occurs when t (the number of

clock cycles) reaches T (a predefined positive value), regardless of the circuit’s logic values;

Figure 11.12
(a) Conditional, (b) timed, and (c) hybrid FSM transitions. Any type of FSM transition will fall in one of these
three categories.
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finally, in (c), the change only occurs if x ¼ '1' after T clock cycles (hence with logic and

time involved).

An equivalent representation is presented in the lower part of figure 11.12. Note t ¼ 1 in

(a), meaning that the condition is evaluated after one clock cycle (in other words, at every

clock cycle). In (b), x ¼ 'X' (don’t care) is evaluated after T clock cycles (so only time mat-

ters). Finally, in (c), the condition x ¼ '1' is evaluated after T clock cycles. Two important

aspects of these transformations are that in the timed cases the ‘‘else’’ condition becomes

automatically absorbed by the timer, and that any timed situation, even if the machine

looks very complex, will fall in one of these categories.

A VHDL template incorporating these conditions is shown next. Observe that in the

code for the lower section (process of lines 17–30) the only change is the inclusion of a

counter, whose final value, timer, is equal to 1 (for conditional transitions) or equal to T

(for timed or hybrid transitions). In the code for the upper section (process of lines 32–

57), the only change is the inclusion of a value for timer in each state (that is, besides out-

put and nx_ state, timer must now also be specified). Examples are presented to illustrate

the use of this technique.

1 -----------------------------------------------------

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 -----------------------------------------------------

5 ENTITY <entity_name> IS

6 PORT (clk, rst: IN STD_LOGIC;

7 input: IN <data_type>;

8 output: OUT <data_type>);

9 END <entity_name>;

10 -----------------------------------------------------

11 ARCHITECTURE <architecture_name> OF <entity_name> IS

12 TYPE state IS (A, B, C, ...);

13 SIGNAL pr_state, nx_state: state;

14 SIGNAL timer: INTEGER RANGE 0 TO max;

15 BEGIN

16 ------Lower section of FSM:------------

17 PROCESS (clk, rst)

18 VARIABLE count: INTEGER RANGE 0 TO max;

19 BEGIN

20 IF (rst='1') THEN

21 pr_state <= A;

22 count := 0;

23 ELSIF (clk'EVENT AND clk='1') THEN

24 count := count + 1;

25 IF (count>=timer) THEN --">=", not "="
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26 pr_state <= nx_state;

27 count := 0;

28 END IF;

29 END IF;

30 END PROCESS;

31 ------Upper section of FSM:------------

32 PROCESS (pr_state, input)

33 BEGIN

34 CASE pr_state IS

35 WHEN A =>

36 output <= <value>;

37 IF (input=<value>) THEN

38 timer <= <value>;

39 nx_state <= B;

40 ...

41 ELSE

42 timer <= <value>;

43 nx_state <= A;

44 END IF;

45 WHEN B =>

46 output <= <value>;

47 IF (input=<value>) THEN

48 timer <= <value>;

49 nx_state <= C;

50 ...

51 ELSE

52 timer <= <value>;

53 nx_state <= B;

54 END IF;

55 WHEN ...

56 END CASE;

57 END PROCESS;

58 ------Output section (optional):-------

59 PROCESS (clk, rst)

60 BEGIN

61 IF (rst='1') THEN

62 new_output <= <value>;

63 ELSIF (clk'EVENT AND clk='1') THEN --or clk='0'

64 new_output <= output;

65 END IF;

66 END PROCESS;

67 END <architecture_name>;

68 -----------------------------------------------------
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Example 11.6: FSM with Embedded Timer

Figure 11.13a shows a timed FSM, which operates as follows. When in state A, the ma-

chine must progress to B if x ¼ '1' occurs (at the proper clock edge, of course), or remain

in A otherwise. If in B, it must move to C after T1 clock cycles if x ¼ '0' or return to A

after T2 clock cycles otherwise (T1 < T2). Finally, when in C, it must return to A un-

conditionally after T2 clock periods. Design this FSM using the systematic approach

described. Note that state A is subject to state-bypass, which should not be considered a

problem in this exercise.

Solution First, observe that this FSM exhibits all three types of transitions seen in figure

11.12—that is, conditional (from A to B), timed (from B to A and C to A), and hybrid

(from B to C ), thus representing an excellent opportunity to illustrate the proposed design

technique.

Using the principles of figure 11.12, the diagram of figure 11.13b results, so the applica-

tion of the VHDL template is straightforward. (Even though it is obviously not necessary

to include x ¼ 'X' in the diagram, it was included in this first example for clarity.)

A VHDL code for this FSM is presented below, under the project name timed_machine

(line 5). It starts with GENERIC definitions for the time limits (T1, T2) in lines 6–8, fol-

lowed by the input-output signals in lines 9–12. The architecture is in lines 15–64. Its de-

clarative part (lines 16–20) contains the usual FSM-related specifications, in this example

including the optional enum_encoding attribute, plus a signal to build the timer. The first

process (lines 23–36) implements the lower (sequential) section of the FSM, in which the

only modification (compared to the original template of section 11.2) is the inclusion of a

counter (timer). The second process (lines 38–63) implements the upper (combinational)

part of the FSM, in which the only modification is the inclusion of time values in each

state, also according with the design technique introduced above.

In summary, with very simple and systematic modifications, the original template can be

used to build any type of timed FSM. Simulation results for T1 ¼ 3 and T2 ¼ 4 clock

pulses are depicted in figure 11.14.

Figure 11.13
(a) Timed FSM of example 11.6; (b) Version with transitions adapted to the models of figure 11.12.
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1 ----------------------------------------------------------

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 ----------------------------------------------------------

5 ENTITY timed_machine IS

6 GENERIC (

7 T1: INTEGER := 3; --time limit 1

8 T2: INTEGER := 4; --time limit 2 (T2>T1)

9 PORT (

10 clk, rst: IN STD_LOGIC;

11 x: IN STD_LOGIC;

12 y: OUT STD_LOGIC);

13 END timed_machine;

14 ----------------------------------------------------------

15 ARCHITECTURE fsm OF timed_machine IS

16 TYPE state IS (A, B, C);

17 SIGNAL pr_state, nx_state: state;

18 ATTRIBUTE enum_encoding: STRING; --optional attribute

19 ATTRIBUTE enum_encoding OF state: TYPE IS "sequential";

20 SIGNAL timer: INTEGER RANGE 0 TO T2;

21 BEGIN

22 ----Lower section of FSM:-----------

23 PROCESS (clk, rst)

24 VARIABLE count: INTEGER RANGE 0 TO T2;

25 BEGIN

26 IF (rst='1') THEN

27 pr_state <= A;

28 count := 0;

29 ELSIF (clk'EVENT AND clk='1') THEN

30 count := count + 1;

31 IF (count>=timer) THEN

32 pr_state <= nx_state;

Figure 11.14
Simulation results from the VHDL code for the FSM of figure 11.13.
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33 count := 0;

34 END IF;

35 END IF;

36 END PROCESS;

37 ----Upper section of FSM:-----------

38 PROCESS (pr_state, x)

39 BEGIN

40 CASE pr_state IS

41 WHEN A =>

42 y <= '0';

43 timer <= 1;

44 IF (x='1') THEN

45 nx_state <= B;

46 ELSE

47 nx_state <= A;

48 END IF;

49 WHEN B =>

50 y <= '0';

51 IF (x='0') THEN

52 timer <= T1;

53 nx_state <= C;

54 ELSE

55 timer <= T2;

56 nx_state <= A;

57 END IF;

58 WHEN C =>

59 y <= '1';

60 timer <= T2;

61 nx_state <= A;

62 END CASE;

63 END PROCESS;

64 END fsm;

65 ----------------------------------------------------------

Example 11.7: Tra‰c-Light Controller

This example presents another timed FSM. Figure 11.15 shows a tra‰c-light controller

(TLC), which must be designed with the following features (see the table in figure 11.15):

1) Three modes of operation: regular, test, and standby.

2) In regular mode: Four states of operation, called RG (red in direction 1 and green in

direction 2 ON), RY (red in direction 1 and yellow in direction 2 ON), GR (green in direc-

tion 1 and red in direction 2 ON), and YR (yellow in direction 1 and red in direction 2

ON), each with an independent time duration.
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3) In test mode: Allows all preprogrammed times to be overwritten (by a manual switch)

with a small value, such that the system can be easily tested during maintenance (1 second

per state).

4) In standby mode: If set (by a sensor accusing malfunctioning, for example, or by a

manual switch) the system should activate the yellow lights in both directions, remaining

so while the standby signal is active.

5) High precision is not required in this kind of application, so assume that the clock is

a 60 Hz square wave derived from the power line itself (otherwise, a regular crystal-

controlled oscillator could be employed).

Design this circuit using the extended FSM approach introduced in this section. Also, esti-

mate the number of flip-flops that will be required.

Solution As mentioned earlier, digital controllers are good examples of circuits that can

be e‰ciently implemented using the FSM approach. The state transition diagram for the

present example is shown on the right of figure 11.15, where the time values change with

the state and with the operating mode (regular or test). Note that all transitions are timed-

only. The inputs are clk, stby, and test, while the outputs are r1, y1, g1, r2, y2, and g2 (red,

yellow, and green lights in directions 1 and 2).

A VHDL code for this FSM, obeying the modified template introduced in this section, is

presented below. The time values were specified using GENERIC declarations (lines 6–

12), so they can be easily changed. The first process (lines 24–37) again implements the

FSM’s lower section, while the second process (lines 39–84) implements the upper section.

Note in line 32 that countb timer was used instead of count ¼ timer to allow the system

to switch to test mode immediately when the test switch is activated, even if count >

timeTEST at that moment. (This is indeed necessary in all machines designed with the

new template.)

The number of flip-flops depends on the counter (timer) and on the number of FSM

states. The former requires dlog2 2700e ¼ 12 flip-flops, while the latter requires dlog2 5e ¼

Figure 11.15
Tra‰c-light controller of example 11.7.
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3 if sequential encoding is used or 5 if one-hot encoding is chosen instead, hence totaling

15 or 17 registers. If, instead of a 60 Hz clock, a 40 MHz clock is employed, then the

counter will require dlog2 1800Me ¼ 31 flip-flops.

The reader is invited to compile this code and check these results. Note that this is an-

other interesting circuit to be tested in the FPGA development board (see exercises 11.16

and 11.17).

1 --------------------------------------------------------

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 --------------------------------------------------------

5 ENTITY tlc IS

6 GENERIC (

7 timeRG: POSITIVE := 1800; --30s with 60Hz clock

8 timeRY: POSITIVE := 300; --5s with 60Hz clock

9 timeGR: POSITIVE := 2700; --45s with 60Hz clock

10 timeYR: POSITIVE := 300; --5s with 60Hz clock

11 timeTEST: POSITIVE := 60; --1s with 60Hz clock

12 timeMAX: POSITIVE := 2700); --max of all above

13 PORT (

14 clk, stby, test: IN STD_LOGIC;

15 r1, r2, y1, y2, g1, g2: OUT STD_LOGIC);

16 END tlc;

17 --------------------------------------------------------

18 ARCHITECTURE fsm OF tlc IS

19 TYPE state IS (RG, RY, GR, YR, YY);

20 SIGNAL pr_state, nx_state: state;

21 SIGNAL timer: INTEGER RANGE 0 TO timeMAX;

22 BEGIN

23 ----Lower section of FSM:-----------

24 PROCESS (clk, stby)

25 VARIABLE count : INTEGER RANGE 0 TO timeMAX;

26 BEGIN

27 IF (stby='1') THEN

28 pr_state <= YY;

29 count := 0;

30 ELSIF (clk'EVENT AND clk='1') THEN

31 count := count + 1;

32 IF (count>=timer) THEN

33 pr_state <= nx_state;

34 count := 0;

35 END IF;

36 END IF;

37 END PROCESS;
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38 ----Upper section of FSM:-----------

39 PROCESS (pr_state, test)

40 BEGIN

41 CASE pr_state IS

42 WHEN RG =>

43 r1<='1'; y1<='0'; g1<='0';

44 r2<='0'; y2<='0'; g2<='1';

45 nx_state <= RY;

46 IF (test='0') THEN

47 timer <= timeRG;

48 ELSE

49 timer <= timeTEST;

50 END IF;

51 WHEN RY =>

52 r1<='1'; y1<='0'; g1<='0';

53 r2<='0'; y2<='1'; g2<='0';

54 nx_state <= GR;

55 IF (test='0') THEN

56 timer <= timeRY;

57 ELSE

58 timer <= timeTEST;

59 END IF;

60 WHEN GR =>

61 r1<='0'; y1<='0'; g1<='1';

62 r2<='1'; y2<='0'; g2<='0';

63 nx_state <= YR;

64 IF (test='0') THEN

65 timer <= timeGR;

66 ELSE

67 timer <= timeTEST;

68 END IF;

69 WHEN YR =>

70 r1<='0'; y1<='1'; g1<='0';

71 r2<='1'; y2<='0'; g2<='0';

72 nx_state <= RG;

73 IF (test='0') THEN

74 timer <= timeYR;

75 ELSE

76 timer <= timeTEST;

77 END IF;

78 WHEN YY =>

79 r1<='0'; y1<='1'; g1<='0';

80 r2<='0'; y2<='1'; g2<='0';

81 timer <= timeTEST; --to avoid latches

82 nx_state <= RY;
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83 END CASE;

84 END PROCESS;

85 END fsm;

86 --------------------------------------------------------

Example 11.8: Pushbutton Sequence Detector

Like the previous two examples, this too illustrates the construction of an FSM with an

embedded timer, designed according to the modified template introduced in this section.

Figure 11.16 shows three pushbuttons ( pb1, pb2, pb3) connected to an FPGA, along

with clock and reset signals, to which the FPGA responds with two signals (led_idle, led_

win) that feed two LEDs (see details about LEDs in chapter 12). The purpose of this circuit

is to turn led_win ON when the correct sequence of pushbuttons is pressed, whereas led_

idle must be ON when the system is in the idle state. Design this circuit with the following

specifications:

1) Turn led_idle ON when the system is in the idle state.

2) Turn led_win ON when the correct pushbutton sequence is entered.

3) The sequence must consist of exactly three key strokes, with repetitions allowed. As-

sume that the keys are already debounced.

4) After a key is pressed, only three seconds should be allowed until a new key is pressed,

otherwise the sequence must be restarted.

5) When led_idle is turned ON, the system must wait three seconds before any keystroke is

again considered.

Solution A progressive construction for the state transition diagram of this FSM is pre-

sented in figure 11.17. Initially, the core is shown. The states are idle (led_idle ON), key1

(to which the machine moves if the first keystroke is correct), key2 (is the second key is also

correct), and finally key3 (third key correct, led_win ON). The correct sequence of push-

buttons is represented as a ! b ! c, where a, b, and c can assume any of the values

"011" ( pb1 pressed), "101" ( pb2 pressed), or "110" ( pb3 pressed), with repetitions allowed

(a ¼ b, for example). When none of the pushbuttons is pressed, the input is "111".

Figure 11.16
Pushbutton sequence detector of example 11.8.
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Analyzing the diagram in figure 11.17a, one verifies that it is subject to state-bypass (sec-

tion 11.5). For example, if the machine is in state key1 and b (the next input) lasts more

than one clock cycle (which it certainly will because it comes from a mechanical switch),

the system will go to state key2 in one clock cycle and then directly back to idle in the

next. This problem is solved with wait states (section 11.5), shown in figure 11.17b (some

of the ‘‘else’’ conditions were omitted to preserve drawing clarity). Consequently, now it is

necessary to release the pushbutton before a new input can be considered.

Finally, in figure 11.17c, the complete diagram is presented, with the timed transitions

also included. If the system stays T clock cycles in any state, it will be forced back to idle

and the player loses.

A VHDL code for this FSM is presented below, which is a straight application of the

VHDL template introduced in this section. The project’s name is pb_sequence_detector

(line 5). The ‘‘password’’ (abc) and the delay (T ) were entered using GENERIC declara-

tions (lines 7–11), so they can be easily modified.

The architecture is in lines 18–125. Its declarative part (lines 19–24) contains FSM-

related and system signals. Note timer in line 24, which is used to pass to the counter the

intended delay before each transition. The code begins with a construction for x (line 27),

which reads the three pushbuttons. The two FSM processes then follow. As usual, the first

process (lines 29–42) implements the lower (sequential) part of the FSM, while the second

one (lines 44–124) implements its upper (combinational) part. Because repetitions in the

Figure 11.17
State transition diagram for the pushbutton sequence detector of example 11.8. (a) Core; (b) With wait states
included to prevent state-bypass; (c) With timed transitions also included.
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pushbutton sequence (password) must be allowed, observe that the x ¼ b test (line 69)

must come before the x ¼ a test (line 72), the same being true for the x ¼ c (line 95) and

x ¼ a (line 98) tests.

The reader is invited to compile this code and test it in the FPGA board (see exercise

11.18).

1 ---------------------------------------------------------------------

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 ---------------------------------------------------------------------

5 ENTITY pb_sequence_detector IS

6 GENERIC (

7 a: STD_LOGIC_VECTOR(2 DOWNTO 0) := "011"; --"011","101",or"110"

8 b: STD_LOGIC_VECTOR(2 DOWNTO 0) := "101"; --"011","101",or"110"

9 c: STD_LOGIC_VECTOR(2 DOWNTO 0) := "110"; --"011","101",or"110"

10 none: STD_LOGIC_VECTOR(2 DOWNTO 0) := "111"; --always "111"

11 T: INTEGER := 150_000_000); --delay=3s with 50MHz clock

12 PORT (

13 clk, rst: IN STD_LOGIC;

14 pb1, pb2, pb3: IN STD_LOGIC;

15 led_idle, led_win: OUT STD_LOGIC);

16 END pb_sequence_detector;

17 ---------------------------------------------------------------------

18 ARCHITECTURE fsm OF pb_sequence_detector IS

19 TYPE state IS (idle, wait1, key1, wait2, key2, wait3, key3);

20 SIGNAL pr_state, nx_state: state;

21 ATTRIBUTE enum_encoding: STRING;

22 ATTRIBUTE enum_encoding OF state: TYPE IS "sequential";

23 SIGNAL x: STD_LOGIC_VECTOR(2 DOWNTO 0);

24 SIGNAL timer: INTEGER RANGE 0 TO T;

25 BEGIN

26 ----Construction of x:----------------

27 x <= (pb1 & pb2 & pb3);

28 ----Lower section of FSM:-------------

29 PROCESS (clk, rst)

30 VARIABLE count: INTEGER RANGE 0 TO T;

31 BEGIN

32 IF (rst='1') THEN

33 pr_state <= idle;

34 count := 0;

35 ELSIF (clk'EVENT AND clk='1') THEN

36 count := count + 1;

37 IF (count>=timer) THEN

38 pr_state <= nx_state;
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39 count := 0;

40 END IF;

41 END IF;

42 END PROCESS;

43 ----Upper section of FSM:------------

44 PROCESS (pr_state, x)

45 BEGIN

46 CASE pr_state IS

47 WHEN idle =>

48 led_idle <= '1';

49 led_win <= '0';

50 timer <= 1;

51 IF (x=a) THEN

52 nx_state <= wait1;

53 ELSE

54 nx_state <= idle;

55 END IF;

56 WHEN wait1 =>

57 led_idle <= '0';

58 led_win <= '0';

59 IF (x=none) THEN

60 timer <= 1;

61 nx_state <= key1;

62 ELSE

63 timer <= T;

64 nx_state <= idle;

65 END IF;

66 WHEN key1 =>

67 led_idle <= '0';

68 led_win <= '0';

69 IF (x=b) THEN --x=b test must be before x=a test

70 timer <= 1;

71 nx_state <= wait2;

72 ELSIF (x=a) THEN

73 timer <= 1;

74 nx_state <= wait1;

75 ELSIF (x/=none) THEN

76 timer <= 1;

77 nx_state <= idle;

78 ELSE

79 timer <= T;

80 nx_state <= idle;

81 END IF;

82 WHEN wait2 =>
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83 led_idle <= '0';

84 led_win <= '0';

85 IF (x=none) THEN

86 timer <= 1;

87 nx_state <= key2;

88 ELSE

89 timer <= T;

90 nx_state <= idle;

91 END IF;

92 WHEN key2 =>

93 led_idle <= '0';

94 led_win <= '0';

95 IF (x=c) THEN --x=c test must be before x=a test

96 timer <= 1;

97 nx_state <= wait3;

98 ELSIF (x=a) THEN

99 timer <= 1;

100 nx_state <= wait1;

101 ELSIF (x/=none) THEN

102 timer <= 1;

103 nx_state <= idle;

104 ELSE

105 timer <= T;

106 nx_state <= idle;

107 END IF;

108 WHEN wait3 =>

109 led_idle <= '0';

110 led_win <= '1';

111 IF (x=none) THEN

112 timer <= 1;

113 nx_state <= key3;

114 ELSE

115 timer <= T;

116 nx_state <= idle;

117 END IF;

118 WHEN key3 =>

119 led_idle <= '0';

120 led_win <= '1';

121 timer <= T;

122 nx_state <= idle;

123 END CASE;

124 END PROCESS;

125 END fsm;

126 ---------------------------------------------------------------------
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11.7 FSMs with Repetitive States

Figure 11.18a shows the state transition diagram of an FSM that has a repetitive state

X. This kind of situation often arises when dealing with memories. For example, to write

data to a memory, after some data manipulations the need for a memory-write pulse is

inevitable.

Three solutions for this kind of situation are depicted in figures 11.18b–d. In the first

solution, all states are maintained, so the repetitive state must be distinctly named in each

instantiation (see X1–X4). The other two solutions avoid state repetitions. In figure 11.18c,

a radial architecture is presented, in which the repetitive state appears only once, in the

center. In figure 11.18d, a still conventional diagram is presented, but with the repetitive

state incorporated into the others.

The solution of figure 11.18b is the most straightforward, but has a larger number of

states. On the other hand, in the radial solution of figure 11.18c, when the machine goes

to X it must memorize the state to which it must go after that state; for example, if it

goes from A to X, then it must remember that B is the next state. Finally, the solution in

figure 11.18d maintains the overall FSM architecture, so it is normally relatively simple;

in it, the repetitive state is simply absorbed by the preceding state. Regardless of the option

chosen, the amount of logic is expected to be nearly the same in all three solutions (note

that, even though (b) has more states than (c)–(d), other kinds of information must be

stored in the latter, not needed in the former).

11.8 Other FSM Designs

Besides the designs already seen and those proposed in section 11.9, see also the following

designs involving finite state machines in other chapters:

Figure 11.18
(a) FSM with a repetitive state X; (b) Adjusted diagram with the repetitive state distinctly named in each instan-
tiation; (c) Reorganized radial version, which avoids state repetitions, but demands extra registers; (d) Reorga-
nized version with the repetitive state absorbed by the others, again avoiding repetitions.
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Basic LED/SSD/LCD driver (section 12.2)

Counters with SSD and LCD displays (exercises 12.1 and 12.2)

Frequency meter (section 12.4 and exercise 12.4)

I2C interface for an EEPROM memory (section 14.4)

Playing with an SSD (section 12.3 and exercise 12.3)

SPI interface for an FRAM memory (section 14.5).

11.9 Exercises

Exercise 11.1: Gray-Encoded Counter

Design a 0-to-8 counter with Gray-encoded outputs. (Suggestion: see example 11.3).

a) Draw the state transition diagram.

b) Estimate the number of flip-flops that will be needed.

c) Write the VHDL code, then compile and simulate it.

d) Check whether the number of DFFs inferred by the compiler matches your prediction.

Exercise 11.2: Johnson-Encoded Counter

Repeat exercise 11.1 for a counter with Johnson-encoded output instead of Gray-encoded.

Exercise 11.3: One-Hot-Encoded Counter

Repeat exercise 11.1 for a counter with one-hot output instead of Gray output.

Exercise 11.4: Zero-to-Nine Counter

The purpose of this exercise is to modify the counter designed in example 11.3, such that

the circuit stays in each state during T ¼ 1 s, with the output displayed by an SSD (seven-

segment display—described in section 12.1, see figure 12.2). This arrangement is depicted

in figure 11.19, which also shows an SSD driver, which is a combinational circuit that con-

verts the 4-bit output from the counter into a 7-bit signal to feed the SSD’s segments. As-

sume that the clock frequency is 50 MHz. (Suggestion: see section 11.6.)

Figure 11.19
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a) Draw the new state transition diagram for the counter.

b) Write a VHDL code for this circuit, including in it, besides the FSM, the SSD driver.

Enter T using GENERIC, so changes are easy to make. Compile and simulate your code.

c) Finally, download the design to your FPGA board and test its operation. Recall that

while rst ¼ '1' the display must remain zeroed.

Suggestion: See a related design, without the FSM approach, in example 6.6.

Exercise 11.5: Signal Generator C1

Figure 11.20a shows the output of a signal generator, which stays low during two clock

cycles and high during four cycles (hence T ¼ 6T0, where T0 is the clock period). Observe

that this machine has only six states, and recall that in a signal generator glitches are not

acceptable.

a) Draw the state transition diagram.

b) Estimate the number of DFFs that will be needed for sequential and one-hot encodings.

c) Write the VHDL code, then compile and simulate it.

d) Check whether the number of DFFs inferred by the compiler matches your prediction

for each encoding option.

Exercise 11.6: Signal Generator C2

Figure 11.20b shows the output of another signal generator, similar to that in the previous

exercise, but now the output stays low during 20 clock cycles and high during 40 cycles

(hence T ¼ 60T0), instead of two and four cycles, respectively. Note that the machine has

now 60 states. Is it fine to use exactly the same design technique employed in the previous

problem? Recall that in a signal generator glitches are not acceptable. (Suggestion: see sec-

tion 11.6.)

a) Draw the state transition diagram.

b) Estimate the number of DFFs that will be needed with sequential and one-hot

encodings.

c) Write the VHDL code, then compile and simulate it.

d) Check whether the number of DFFs inferred by the compiler matches your predictions

for both encoding options.

Figure 11.20
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Exercise 11.7: Signal Generator C3

This exercise deals with the design of a two-output signal generator, depicted in figure

11.21. Recall that in a signal generator glitches are not acceptable.

a) Draw the state transition diagram.

b) Write the VHDL code, then compile and simulate it.

c) Examine your solution to determine whether it is subject to glitches. If it is, include the

optional output section seen in the FSM template of section 11.2.

Exercise 11.8: ASCII Sequence Detector

Using the FSM approach, design a circuit that receives a serial data stream of ASCII char-

acters and asserts a flag when the sequence "VHDL" occurs. Recall that ASCII characters

are synthesizable.

a) Draw the state transition diagram.

b) Estimate the number of DFFs that will be needed with sequential encoding. Note that a

flag might also be stored.

c) Write the VHDL code, then compile and simulate it.

d) Check whether the number of DFFs inferred by the compiler matches your prediction.

Exercise 11.9: Preventing State-Bypass with a Flag C1

Figure 11.22a shows the state transition diagram for an FSM subject to state-bypass (note

that when a long x ¼ '1' occurs the system flips back and forth between A and B). Design

the corresponding circuit using a flag to prevent such a problem.

Exercise 11.10: Preventing State-Bypass with Additional States C1

Repeat the exercise above, now using additional (wait) states to prevent the state-bypass

problem.

Exercise 11.11: Preventing State-Bypass with a Flag C2

Figure 11.22b shows the state transition diagram for another FSM subject to state-bypass

(note that when the system is in state A and x ¼ '1' occurs, lasting two or more clock

Figure 11.21
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cycles, the machine goes directly to C (it stays in B during only one clock period)). Design

the corresponding circuit using a flag to prevent such a problem.

Exercise 11.12: Preventing State-Bypass with Additional States C2

Repeat the exercise above, now using additional (wait) states to prevent the state-bypass

problem.

Exercise 11.13: Timed FSM C1

A certain machine has two states, called A and B. If in A and x ¼ '1' occurs, and x ¼ '1'

lasts T1 clock cycles, then the machine must move to B (x triggers the transition and

must remain high during the whole time interval). When in B, it must return to A uncon-

ditionally after T2 clock cycles. Recall that, as in any other design, it might be necessary to

add to the original states (A, B) other states (wait states, for example) in order to fulfill the

specifications.

a) Draw the corresponding state transition diagram.

b) Classify each transition as logic, timed, or hybrid (see figure 11.12).

c) Design this circuit using VHDL.

Exercise 11.14: Timed FSM C2

Design the FSM of figure 11.23a knowing that time1 ¼ 3 and time2 ¼ 5 clock pulses. The

possible values for x are '0' and '1'.

Exercise 11.15: FSM with Embedded Timer C2

Design the FSM of figure 11.23b knowing that time1 ¼ 3 and time2 ¼ 5 clock pulses. The

possible values for x are 0, 1, and 2.

Exercise 11.16: Tra‰c-Light Controller C1

This exercise concerns the TLC designed in example 11.7.

a) Compile that code and check if the estimated numbers of flip-flops match the

predictions.

b) If fclk ¼ 50 MHz, can the code be compiled directly? (Hint: think about the range of

integers.) If there is a problem, how can it be solved? How many flip-flops are now needed?

Figure 11.22
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c) To make the code truly generic, the following could be done in the generics declaration

list (lines 7–12): include fclk (in Hz) and specify all the times in seconds instead of in num-

ber of clock pulses. Why would it be now truly generic? Make such modifications in the

code.

d) Physically implement that circuit in your FPGA board. The overall arrangement is

shown in figure 11.24, which exhibits three inputs (clk plus two toggle switches for test

and stby) and six outputs (an LED for each light in the two directions). Test its operation

for all three operating modes (regular, test, and standby).

Exercise 11.17: Tra‰c-Light Controller C2

In continuation to the exercise above, modify the design presented in example 11.7 such

that the yellow lights, when in standby mode, blink with a 2 Hz frequency instead of

remaining statically ON. Download then the design to your FPGA board to test this new

feature.

Exercise 11.18: Pushbutton Sequence Detector

This exercise regards the pushbutton sequence detector designed in example 11.8.

a) Estimate the number of flip-flops that will be needed to implement that circuit for a

50MHz clock and sequential FSM encoding.

b) What is the number of flip-flops if one-hot encoding is used instead?

Figure 11.23

Figure 11.24
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c) Compile the code and check whether the inferred numbers of registers match your pre-

dictions (note that the only change needed in the code from one case to the other is in line

22).

d) Physically implement the circuit in your FPGA board and check its operation. Try it

with several values for a, b, and c (lines 7–9), including repetitions.

e) Modify your design by including one LED for each state, then retest it in the FPGA

board.

Exercise 11.19: Car Speed Monitor

The speed of an automobile is generally measured by a Hall e¤ect sensor installed near the

transmission. The signal provided by this sensor has a frequency fpulse proportional to

the car’s speed, normally of about 500–2,000 Hz per miles/hour (assume 1 kHz). This ex-

ercise concerns the design of a speed monitor, taking fpulse as input, with the following

features (a possible view is shown in figure 11.25):

1) Speed selection pushbutton (speed ): Every time it is pressed, the next speed to be moni-

tored is selected, in miles/hour (35 ! 45 ! 55 ! 60 ! 65 ! 70 ! 75 ! 80 ! 35 . . . ).

2) LEDs: Total of eight (one for each speed), with only one lit at a time, indicating the

speed being monitored. All LEDs must be turned OFF when the power switch is turned

OFF.

3) Numeric display: 3-digit display (LCD or SSD) that shows the car’s actual speed (based

on fpulse).

4) Buzzer: Must emit a sound when the car approaches the selected speed. Adopt a 2Hz

signal when the speed is 3 miles/hour or less from the selected speed, or a continuous signal

when at or above the selected speed. Consider that it is a buzzer with internal oscillator, so

only a 2Hz square wave is needed in the former case and a continuous DC voltage in the

latter.

a) Draw the state transition diagram.

b) Write the VHDL code, then compile and simulate it.

c) Physically implement the circuit in your FPGA board. Use a signal generator or the

board’s clock to emulate fpulse.

Figure 11.25
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12 VHDL Designs with Basic Displays

12.1 Introduction

Because feedback is always wanted, designs that include a visual device (thus providing a

simple physical response) are very attractive, helping immensely to motivate students. For

that reason, a series of design examples using VHDL and basic displays are included in

this chapter, continuing with other, more complex displays in chapters 15–17.

By ‘‘basic displays’’ we mean LEDs, SSDs, and alphanumeric LCDs.

LED (Light Emitting Diode)

Figure 12.1a shows examples of commercial LEDs. The most common material employed

in their fabrication is gallium arsenide, which emits a radiation in the infrared spectrum

(a typical application for this is in remote controls for TVs, sound, etc.). To have an LED

emit a radiation in the visible spectrum, other materials must be added to gallium arsenide,

such as aluminum or phosphorous to yield red LEDs, for example. Many other materials

are used to attain higher-frequency radiations, like indium gallium nitride and zinc selenide

for blue LEDs.

An LED emits light when traversed by an electric current, so it needs to be forward

biased, as illustrated in figure 12.1b, which also includes a current limiting resistor (LEDs

normally operate under 20mA).

SSD (Seven Segment Display)

SSDs are just special 7-LED arrangements (8 if a decimal point is also included). This kind

of device is illustrated in figure 12.2. In (a), an example of commercial SSD (two digits

with decimal points) is shown. In (b), a typical notation for the segment names (abcdefg)

is included. In (c), the common-anode configuration is presented. Finally, the table in (d)

shows which segments must be lit to attain 0-to-F characters (note that it was considered a

common-anode SSD, so a low voltage must be applied to light a segment).



Alphanumeric LCD (Liquid Crystal Display)

Figure 12.3 shows a popular alphanumeric LCD, which contains two lines of 16 characters

each. A picture of the display is shown in (a). The corresponding pinout is exhibited in (b).

The internal display layout is illustrated in (c), showing 16� 2 dot arrays of size 8� 5

each. In (d), its most frequent exhibition mode is depicted, consisting of 8� 5-dot arrays,

for 7� 5 characters. Finally, in (e), its other predefined exhibition mode is depicted, con-

sisting of 11� 5-dot arrays, for 10� 5 characters.

On the back of the LCD there is a controller (generally HD44780U, from Hitachi, or an

equivalent device) that acts as the interface between the LCD and the external world. This

controller can be accessed through 16 pins, listed in figure 12.3b, which include power,

contrast, control, and data lines.

The predefined characters, stored in the LCD controller’s CGROM (character generator

ROM) are shown in figure 12.4, consisting of 192 7� 5 characters. The system contains

also 32 characters of size 10� 5. When using the former (hence with 8� 5-dot blocks) the

LCD can operate with two lines, while in the latter (11� 5-dot blocks) only single-line op-

eration is possible. User-defined characters are also allowed, so other exhibition modes are

possible, like full-height (16� 5-dot) characters.

Figure 12.2
(a) Example of commercial SSD; (b) Segment names (abcdefg); (c) Common-anode configuration; (d) Segments
that must be lit to attain 0-to-F characters.

Figure 12.1
(a) Examples of commercial LEDs; (b) Typical usage.
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Figure 12.3
(a) Picture of a 16� 2 alphanumeric LCD; (b) LCD controller’s pinout; (c) Internal layout (16� 2 8� 5-dot
blocks); (d) Standard 8� 5-dot exhibition mode (two lines of 7� 5 characters); (e) Standard 11� 5-dot configu-
ration (single line of 10� 5 characters).

Figure 12.4
Predefined characters available in the LCD controller’s ROM.



Other details on the operation of this type of display, like controller’s instructions, initi-

alization procedure, state-machine diagram, and corresponding VHDL code, can be seen

in Pedroni (2008), which was used as a reference for all codes for LCDs presented in this

chapter.

A series of designs, using the three basic displays described, are presented next.

12.2 Basic LED/SSD/LCD Driver

This first design concerns the multiple driver of figure 12.5. The input consists of four tog-

gle switches (plus clock), hence encoding values from "0000" to "1111". These values must

be exhibited at the output by four LEDs, one SSD, and one alphanumeric LCD. In the last

two, hexadecimal representation (0 to F) must be used.

As depicted in figure 12.5, the LED driver is just a bu¤er, because led0 ¼ sw0, led1 ¼
sw1, and so on (note that the input switches convey a '0' when open and a '1' when closed).

The second driver (SSD) is a fully combinational circuit (so clock is not needed) that sim-

ply converts a 4-bit signal from the switches into a 7-bit signal for the SSD, according with

the table in figure 12.2d. Finally, the LCD driver is more complex because it must commu-

nicate with the LCD controller, to which it provides eight data bits (DB7-DB0) and three

Figure 12.5
Basic LED/SSD/LCD driver designed in section 12.2.
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control bits (RS, RW, E ), plus two additional signals (LCD_ON, BKL_ON ) to turn the

LCD and its backlight ON. Figure 12.5 also shows the FPGA pins that can be used if

implementing this design in Altera’s DE2 development board. A VHDL code for this cir-

cuit is presented next (divided into two parts).

Part 1: Package with Conversion Functions

To ease the conversion to SSD and LCD characters, two functions were created in the

package below, called my_ functions, which are then used in lines 27 and 30 of the main

code. Values in lines 38–53 are from figure 12.4.

1 -----Package with functions:-----------------------------------------------

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 PACKAGE my_functions IS

5 FUNCTION integer_to_ssd (SIGNAL input: NATURAL) RETURN STD_LOGIC_VECTOR;

6 FUNCTION integer_to_lcd (SIGNAL input: NATURAL) RETURN STD_LOGIC_VECTOR;

7 END my_functions;

8 ---------------------------------------------------------------------------

9 PACKAGE BODY my_functions IS

10 FUNCTION integer_to_ssd (SIGNAL input: NATURAL) RETURN STD_LOGIC_VECTOR

11 IS VARIABLE output: STD_LOGIC_VECTOR(6 DOWNTO 0);

12 BEGIN

13 CASE input IS

14 WHEN 0 => output:="0000001"; --"0" on SSD

15 WHEN 1 => output:="1001111"; --"1" on SSD

16 WHEN 2 => output:="0010010"; --"2" on SSD

17 WHEN 3 => output:="0000110"; --"3" on SSD

18 WHEN 4 => output:="1001100"; --"4" on SSD

19 WHEN 5 => output:="0100100"; --"5" on SSD

20 WHEN 6 => output:="0100000"; --"6" on SSD

21 WHEN 7 => output:="0001111"; --"7" on SSD

22 WHEN 8 => output:="0000000"; --"8" on SSD

23 WHEN 9 => output:="0000100"; --"9" on SSD

24 WHEN 10 => output:="0001000"; --"A" on SSD

25 WHEN 11 => output:="1100000"; --"b" on SSD

26 WHEN 12 => output:="0110001"; --"C" on SSD

27 WHEN 13 => output:="1000010"; --"d" on SSD

28 WHEN 14 => output:="0110000"; --"E" on SSD

29 WHEN OTHERS=>output:="0111000"; --"F" on SSD

30 END CASE;

31 RETURN output;

32 END integer_to_ssd;
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33 ------------------------------------------------------------------------

34 FUNCTION integer_to_lcd (SIGNAL input: NATURAL) RETURN STD_LOGIC_VECTOR

35 IS VARIABLE output: STD_LOGIC_VECTOR(7 DOWNTO 0);

36 BEGIN

37 CASE input IS

38 WHEN 0 => output:="00110000"; --"0" on LCD

39 WHEN 1 => output:="00110001"; --"1" on LCD

40 WHEN 2 => output:="00110010"; --"2" on LCD

41 WHEN 3 => output:="00110011"; --"3" on LCD

42 WHEN 4 => output:="00110100"; --"4" on LCD

43 WHEN 5 => output:="00110101"; --"5" on LCD

44 WHEN 6 => output:="00110110"; --"6" on LCD

45 WHEN 7 => output:="00110111"; --"7" on LCD

46 WHEN 8 => output:="00111000"; --"8" on LCD

47 WHEN 9 => output:="00111001"; --"9" on LCD

48 WHEN 10 => output:="01000001"; --"A" on LCD

49 WHEN 11 => output:="01000010"; --"B" on LCD

50 WHEN 12 => output:="01000011"; --"C" on LCD

51 WHEN 13 => output:="01000100"; --"D" on LCD

52 WHEN 14 => output:="01000101"; --"E" on LCD

53 WHEN OTHERS=>output:="01000110"; --"F" on LCD

54 END CASE;

55 RETURN output;

56 END integer_to_lcd;

57 END my_functions;

58 ---------------------------------------------------------------------------

Part 2: Main Code

The main code is shown below, under the project name led_ssd_lcd_driver (line 6). The

inputs are clk and switches (lines 9–10), while the outputs are leds (line 11 for the LED

driver) and ssd (line 12 for the SSD driver), plus RS, RW, LCD_ON, BK_LIGHT, E, and

DB (lines 13–15 for the LCD driver).

The architecture is divided into three parts: LED driver (line 25), SSD driver (line 27),

and LCD driver (rest of the code). The first driver requires just one assignment, while the

second is implemented with just a function call (integer_to_ssd ), which converts 4-bit dec-

imal values into 7-bit values for the SSD. The third driver is more complex because the

LCD can only be reached through its microcontroller. The corresponding code is in lines

28–95, based on the state machine developed in Pedroni (2008). As with the SSD driver,

a special function (integer_to_lcd, line 30) was written, which simplifies the access to the

LCD ROM (the function provides an address from which the corresponding character is

retrieved and used—see figure 12.4).
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1 ------Main code:---------------------------------------------------------

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 USE work.my_functions.all;

5 -------------------------------------------------------------------------

6 ENTITY led_ssd_lcd_driver IS

7 GENERIC (clk_divider: POSITIVE := 50_000); --50MHz to 500Hz

8 PORT (

9 clk: IN STD_LOGIC;

10 switches: IN NATURAL RANGE 0 TO 15;

11 leds: OUT NATURAL RANGE 0 TO 15;

12 ssd: OUT STD_LOGIC_VECTOR(6 DOWNTO 0);

13 RS, RW, LCD_ON, BKL_ON: OUT STD_LOGIC;

14 E: BUFFER STD_LOGIC;

15 DB: OUT STD_LOGIC_VECTOR(7 DOWNTO 0));

16 END led_ssd_lcd_driver;

17 -------------------------------------------------------------------------

18 ARCHITECTURE led_ssd_lcd_driver OF led_ssd_lcd_driver IS

19 TYPE state IS (FunctionSet1, FunctionSet2, FunctionSet3, FunctionSet4,

20 ClearDisplay, DisplayControl, EntryMode, WriteData, ReturnHome);

21 SIGNAL pr_state, nx_state: state;

22 SIGNAL input_lcd: STD_LOGIC_VECTOR(7 DOWNTO 0);

23 BEGIN

24 -----Part 1: LED driver:----------------------

25 leds <= switches;

26 -----Part 2: SSD driver:----------------------

27 ssd <= integer_to_ssd(switches);

28 -----Part 3: LCD driver (FSM-based):----------

29 --Get LCD character:

30 input_lcd <= integer_to_lcd(switches);

31 --Turn LCD and its backlight ON:

32 LCD_ON <= '1'; BKL_ON <= '1';

33 --Clock generator for LCD(E=500Hz):

34 PROCESS (clk)

35 VARIABLE count: INTEGER RANGE 0 TO clk_divider;

36 BEGIN

37 IF (clk'EVENT AND clk='1') THEN

38 count := count + 1;

39 IF (count=clk_divider) THEN

40 E <= NOT E;

41 count := 0;

42 END IF;

43 END IF;
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44 END PROCESS;

45 --Lower section of FSM:

46 PROCESS (E)

47 BEGIN

48 IF (E'EVENT AND E='1') THEN

49 pr_state <= nx_state;

50 END IF;

51 END PROCESS;

52 --Upper section of FSM:

53 PROCESS (pr_state, input_lcd)

54 BEGIN

55 CASE pr_state IS

56 ---Initialize LCD:

57 WHEN FunctionSet1 =>

58 RS<='0'; RW<='0';

59 DB <= "0011XX00";

60 nx_state <= FunctionSet2;

61 WHEN FunctionSet2 =>

62 RS<='0'; RW<='0';

63 DB <= "0011XX00";

64 nx_state <= FunctionSet3;

65 WHEN FunctionSet3 =>

66 RS<='0'; RW<='0';

67 DB <= "0011XX00";

68 nx_state <= FunctionSet4;

69 WHEN FunctionSet4 =>

70 RS<='0'; RW<='0';

71 DB <= "00111000";

72 nx_state <= ClearDisplay;

73 WHEN ClearDisplay =>

74 RS<='0'; RW<='0';

75 DB <= "00000001";

76 nx_state <= DisplayControl;

77 WHEN DisplayControl =>

78 RS<='0'; RW<='0';

79 DB <= "00001100";

80 nx_state <= EntryMode;

81 WHEN EntryMode =>

82 RS<='0'; RW<='0';

83 DB <= "00000110";

84 nx_state <= WriteData;

85 ---Write data to LCD:

86 WHEN WriteData =>
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87 RS<='1'; RW<='0';

88 DB <= input_lcd;

89 nx_state <=ReturnHome;

90 WHEN ReturnHome =>

91 RS<='0'; RW<='0';

92 DB <= "10000000";

93 nx_state <= WriteData;

94 END CASE;

95 END PROCESS;

96 END led_ssd_lcd_driver;

97 -------------------------------------------------------------------------

12.3 Playing with a Seven-Segment Display

Figure 12.6a shows a finite state machine, called little-game, which feeds an SSD. The cir-

cuit has three inputs (clk, stop, rst) and one output (ssd(6:0)). It must be designed in such

a way to produce a continuous clockwise rotating movement of the display segments. To

make the movement more realistic, a momentary overlap of neighboring segments should

occur—that is, a ! ab ! b ! bc ! c ! � � � ! fa ! a . . . , with the overlapping states

(ab, bc, etc.) lasting less (T2 ¼ 40ms) than the others (T1 ¼ 120ms). The stop switch must

interrupt the movement when asserted, with the movement resumed from the same posi-

tion when stop returns to zero. The reset switch, on the other hand, must cause the ma-

chine to go to state a when asserted, resuming from there when rst returns to zero.

The state transition diagram for this FSM is presented in figure 12.6b, with the state

names indicating which SSD segments should be ON in each state. The corresponding out-

put (ssd ) values are shown between parentheses (for a common-anode SSD, as in figure

12.2c).

A VHDL code for this circuit is presented below, which is a direct application of the

FSM template for timed machines studied in section 11.6. The clock frequency ( fclk) and

the time delays (T1, T2) were entered using GENERIC declarations (lines 3–5), so they

Figure 12.6
Playing with an SSD. (a) Top-level circuit diagram; (b) State transition diagram.
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can be easily modified. The pin names (lines 6–7) obey the diagram in figure 12.6a. A user-

defined type for the state machine was created in line 14 and then used in line 15. The low-

er (sequential) section of the FSM is in the process of lines 18–32, while the upper (combi-

national) section is in the process of lines 34–96. Note that library declarations were not

needed because only data types defined in the package standard were employed, which is

visible by default. Additional features are added to this machine in exercise 12.3.

1 ------------------------------------------------------------

2 ENTITY little_game IS

3 GENERIC (fclk: INTEGER := 50_000; --clk frequency (kHz)

4 T1: INTEGER := 120; --long delay (ms)

5 T2: INTEGER := 40); --short delay (ms)

6 PORT (clk, stop, rst: IN BIT;

7 ssd: OUT BIT_VECTOR(6 DOWNTO 0));

8 END little_game;

9 ------------------------------------------------------------

10 ARCHITECTURE fsm OF little_game IS

11 CONSTANT time1: INTEGER := fclk*T1;

12 CONSTANT time2: INTEGER := fclk*T2;

13 SIGNAL delay: INTEGER RANGE 0 TO time1;

14 TYPE state IS (a, ab, b, bc, c, cd, d, de, e, ef, f, fa);

15 SIGNAL pr_state, nx_state: state;

16 BEGIN

17 -------Lower section of FSM:------------

18 PROCESS (clk, stop, rst)

19 VARIABLE count: INTEGER RANGE 0 TO time1;

20 BEGIN

21 IF (rst='1') THEN

22 pr_state <= a;

23 ELSIF (clk'EVENT AND clk='1') THEN

24 IF (stop='0') THEN

25 count := count + 1;

26 IF (count=delay) THEN

27 count := 0;

28 pr_state <= nx_state;

29 END IF;

30 END IF;

31 END IF;

32 END PROCESS;

33 -------Upper section of FSM:------------

34 PROCESS (pr_state)

35 BEGIN

36 CASE pr_state IS
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37 WHEN a =>

38 ssd <= "0111111"; --decimal 63

39 delay <= time1;

40 nx_state <= ab;

41 WHEN ab =>

42 ssd <= "0011111"; --decimal 31

43 delay <= time2;

44 nx_state <= b;

45 WHEN b =>

46 ssd <= "1011111"; --decimal 95

47 delay <= time1;

48 nx_state <= bc;

49 WHEN bc =>

50 ssd <= "1001111"; --decimal 79

51 delay <= time2;

52 nx_state <= c;

53 WHEN c =>

54 ssd <= "1101111"; --decimal 111

55 delay <= time1;

56 nx_state <= cd;

57 WHEN cd =>

58 ssd <= "1100111"; --decimal 103

59 delay <= time2;

60 nx_state <= d;

71 WHEN d =>

72 ssd <= "1110111"; --decimal 119

73 delay <= time1;

74 nx_state <= de;

75 WHEN de =>

76 ssd <= "1110011"; --decimal 115

77 delay <= time2;

78 nx_state <= e;

79 WHEN e =>

80 ssd <= "1111011"; --decimal 123

81 delay <= time1;

82 nx_state <= ef;

83 WHEN ef =>

84 ssd <= "1111001"; --decimal 121

85 delay <= time2;

86 nx_state <= f;

87 WHEN f =>

88 ssd <= "1111101"; --decimal 125

89 delay <= time1;
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90 nx_state <= fa;

91 WHEN fa =>

92 ssd <= "0111101"; --decimal 61

93 delay <= time2;

94 nx_state <= a;

95 END CASE;

96 END PROCESS;

97 END fsm;

98 ------------------------------------------------------------

12.4 Frequency Meter (with LCD)

The purpose of this section is to design a frequency meter that measures frequencies in the

00.0 to 99.9 kHz range, displaying the result on an alphanumeric LCD, which is updated

once per second. A circuit diagram is suggested in figure 12.7a, with the system divided

into two portions: frequency meter and LCD driver (synchronizer not included yet).

The frequency meter receives input, which is the signal whose frequency we want to mea-

sure, and produces at the output the decimal digits output1, output2, and output3, contain-

ing the result of the measurement. These three signals are then passed to the LCD driver,

which converts them into the proper form for LCD exhibition. The other input to both

blocks is obviously clk.

Two construction techniques for frequency meters were introduced in Pedroni (2008),

which depend on the frequency being measured and the refresh rate (see also the notes

Figure 12.7
(a) Frequency meter of section 12.4; (b) Suggested timing diagram; (c) Flip-flop setup and hold times; (d) Syn-
chronizer to prevent metastable states.
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after the code below regarding a test procedure and synchronization). The technique that is

appropriate in the present problem is summarized by the timing diagram of figure 12.7b,

which consists of creating a one-second time window and then counting the number of in-

put pulses during that time interval, with the result stored by output registers at the end of

that time period (see one_sec and input waveforms in figure 12.7b; the pulses counted in the

one-second period are those in the dark area).

A VHDL code for this problem is presented below. Again, to make it easier to retrieve

the character codes from the LCD controller’s ROM, a function was used. The function,

called integer_to_lcd, was written in section 12.2 and located in a package named my_

functions (see package declaration in line 6 and function calls in lines 84–86 of the code

below). Consequently, that file must be included in the project.

The project’s name is frequencimeter (line 8) and the input-output port names (lines 13–

17) are from figure 12.7a. Two generic parameters were also included in order to make the

code easy to adapt to any other clock frequency. In the declarative part of the architecture

(lines 21–30), a series of signals were created, including an enumerated data type (lines 27–

30) for a state machine, which will be used to implement the LCD driver.

The code proper (lines 31–164) was divided into two parts (again following the diagram

of figure 12.7a), with the frequency meter in lines 32–81 and the LCD driver in lines 82–

163. The former follows the diagram of figure 12.7b, while the latter employs the same

structure seen in a previous code. Recall that the next character entered in an LCD display

is shifted to the right, not the one already entered, so the most significant character must

be entered first (see the sequence in lines 144, 148, 152, and 156). To test this circuit, see

the suggestion after the code below.

Observe in lines 59–74 how the input pulses are counted and the technique used to

achieve the proper rounding. Whenever count1 reaches 50 (line 61), count2 is incremented,

which can cause the other variables to be incremented as well; however, count1 is only

zeroed when it reaches 100 (line 71). To test this circuit and to add a synchronizer, see

the suggestions after the code.

1 -------------------------------------------------------------------

2 --Remember to include the function "integer-to-lcd" in the project.

3 -------------------------------------------------------------------

4 LIBRARY ieee;

5 USE ieee.std_logic_1164.all;

6 USE work.my_functions.all;

7 -------------------------------------------------------------------

8 ENTITY frequencimeter IS

9 GENERIC (

10 fclk: POSITIVE := 50_000_000; --clock frequency

11 clk_divider: POSITIVE := 50_000); --for E=500Hz @LCD

12 PORT (

VHDL Designs with Basic Displays 331



13 clk: IN STD_LOGIC; --system clock

14 input: IN STD_LOGIC; --signal to measure

15 RS, RW, LCD_ON, BKL_ON: OUT STD_LOGIC; --LCD signals

16 E: BUFFER STD_LOGIC; --LCD signal

17 DB: OUT STD_LOGIC_VECTOR(7 DOWNTO 0)); --LCD signal

18 END frequencimeter;

19 -------------------------------------------------------------------

20 ARCHITECTURE frequencimeter OF frequencimeter IS

21 SIGNAL one_sec: STD_LOGIC;

22 SIGNAL output1, output2, output3: INTEGER RANGE 0 TO 9;

23 SIGNAL input1_lcd: STD_LOGIC_VECTOR(7 DOWNTO 0);

24 SIGNAL input2_lcd: STD_LOGIC_VECTOR(7 DOWNTO 0);

25 SIGNAL input3_lcd: STD_LOGIC_VECTOR(7 DOWNTO 0);

26 --SIGNAL input: STD_LOGIC;

27 TYPE state IS (FunctionSet1, FunctionSet2, FunctionSet3,

28 FunctionSet4, ClearDisplay, DisplayControl, EntryMode,

29 WriteData1, WriteData2, WriteData3, WriteData4, ReturnHome);

30 SIGNAL pr_state, nx_state: state;

31 BEGIN

32 --------Part 1: Freq. meter:-----------------

33 ---Create 1-second time window:

34 PROCESS (clk)

35 VARIABLE count: INTEGER RANGE 0 TO fclk+1;

36 BEGIN

37 IF (clk'EVENT AND clk='1') THEN

38 count := count + 1;

39 IF (count=fclk+1) THEN

40 one_sec <= '1';

41 count := 0;

42 ELSE

43 one_sec <= '0';

44 END IF;

45 END IF;

46 END PROCESS;

47 ---Count input pulses in 1sec and store result:

48 PROCESS (input, one_sec)

49 VARIABLE count1: INTEGER RANGE 0 TO 100;

50 VARIABLE count2: INTEGER RANGE 0 TO 10;

51 VARIABLE count3: INTEGER RANGE 0 TO 10;

52 VARIABLE count4: INTEGER RANGE 0 TO 10;

53 BEGIN

54 IF (one_sec='1') THEN

55 count1 := 0;
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56 count2 := 0;

57 count3 := 0;

58 count4 := 0;

59 ELSIF (input'EVENT AND input='1') THEN

60 count1 := count1 + 1;

61 IF (count1=50) THEN

62 count2 := count2 + 1;

63 IF (count2=10) THEN

64 count2 := 0;

65 count3 := count3 + 1;

66 IF (count3=10) THEN

67 count3 := 0;

68 count4 := count4 + 1;

69 END IF;

70 END IF;

71 ELSIF (count1=100) THEN

72 count1 := 0;

73 END IF;

74 END IF;

75 ---Store meter outputs:

76 IF (one_sec'EVENT AND one_sec='1') THEN

77 output1 <= count2;

78 output2 <= count3;

79 output3 <= count4;

80 END IF;

81 END PROCESS;

82 --------Part 2: LCD driver:------------------

83 ---Get LCD characters:

84 input1_lcd <= integer_to_lcd(output1);

85 input2_lcd <= integer_to_lcd(output2);

86 input3_lcd <= integer_to_lcd(output3);

87 ---Turn LCD and its backlight ON:

88 LCD_ON <= '1'; BKL_ON <= '1';

89 ---Generate clock for LCD(E=500Hz):

90 PROCESS (clk)

91 VARIABLE count: INTEGER RANGE 0 TO clk_divider;

92 BEGIN

93 IF (clk'EVENT AND clk='1') THEN

94 count := count + 1;

95 IF (count=clk_divider) THEN

96 E <= NOT E;

97 count := 0;

98 END IF;
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99 END IF;

100 END PROCESS;

101 ---Lower section of FSM:

102 PROCESS (E)

103 BEGIN

104 IF (E'EVENT AND E='1') THEN

105 pr_state <= nx_state;

106 END IF;

107 END PROCESS;

108 ---Upper section of FSM:

109 PROCESS (pr_state, input1_lcd, input2_lcd, input3_lcd)

110 BEGIN

111 CASE pr_state IS

112 ---Initialize LCD:

113 WHEN FunctionSet1 =>

114 RS<='0'; RW<='0';

115 DB <= "0011XX00";

116 nx_state <= FunctionSet2;

117 WHEN FunctionSet2 =>

118 RS<='0'; RW<='0';

119 DB <= "0011XX00";

120 nx_state <= FunctionSet3;

121 WHEN FunctionSet3 =>

122 RS<='0'; RW<='0';

123 DB <= "0011XX00";

124 nx_state <= FunctionSet4;

125 WHEN FunctionSet4 =>

126 RS<='0'; RW<='0';

127 DB <= "00111000";

128 nx_state <= ClearDisplay;

129 WHEN ClearDisplay =>

130 RS<='0'; RW<='0';

131 DB <= "00000001";

132 nx_state <= DisplayControl;

133 WHEN DisplayControl =>

134 RS<='0'; RW<='0';

135 DB <= "00001100";

136 nx_state <= EntryMode;

137 WHEN EntryMode =>

138 RS<='0'; RW<='0';

139 DB <= "00000110";

140 nx_state <= WriteData1;

141 ---Write data to LCD:

334 Chapter 12



142 WHEN WriteData1 =>

143 RS<='1'; RW<='0';

144 DB <= input3_lcd; --left digit

145 nx_state <= WriteData2 ;

146 WHEN WriteData2 =>

147 RS<='1'; RW<='0';

148 DB <= input2_lcd; --central digit

149 nx_state <= WriteData3;

150 WHEN WriteData3 =>

151 RS<='1'; RW<='0';

152 DB <= "00101110"; --point

153 nx_state <= WriteData4;

154 WHEN WriteData4 =>

155 RS<='1'; RW<='0';

156 DB <= input1_lcd; --right digit

157 nx_state <= ReturnHome;

158 WHEN ReturnHome =>

159 RS<='0'; RW<='0';

160 DB <= "10000000";

161 nx_state <= WriteData1;

162 END CASE;

163 END PROCESS;

164 END frequencimeter;

165 -------------------------------------------------------------------

Testing the Frequency Meter

A simple way of testing the code above is by creating an input signal derived from the sys-

tem clock itself. To do so, comment out line 14 and uncomment line 26, causing input to be

an internal signal. Now add the code below to your code (for example, between lines 81–

82). Since in our example fclk ¼ 50 MHz, any test parameter test_par > 250 can create

a useful test signal (because 50MHz/(2*250) ¼ 100 kHz). For example, with test ¼ 2041,

the resulting input frequency is fclk/(2*2041) ¼ 12.249 kHz, while test ¼ 2040 gives fclk/

(2*2040) ¼ 12.255 kHz; consequently, after rounding, the former must produce 12.2 kHz

on the display, while the latter must produce 12.3 kHz. The reader is now invited to test

this code in the FPGA board. If the DE2 board is used, then the FPGA pins listed on the

right-hand part of the table in figure 12.5 can be used.

-----Test signal:-------------------------

PROCESS (clk)

VARIABLE test: INTEGER RANGE 0 TO fclk;

BEGIN

IF (clk'EVENT AND clk='0') THEN
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test := test + 1;

IF (test=2040) THEN --or 2041

input <= NOT input;

test := 0;

END IF;

END IF;

END PROCESS;

------------------------------------------

Observe that the test code above does not bother with the fact that during one clock pe-

riod after every 50M clock periods the counter is inactive (while one_sec ¼ '1'). This can be

a problem when generating small frequencies because one of the pulses might fall occasion-

ally in that time interval, so the actual number of pulses in the dark area of figure 12.7b is

one less than the expected number. In summary, when generating low frequencies, partic-

ularly around the smallest sensitive value, which is 50 Hz (because for 49 Hz the output

must be 00.0 KHz, while for 50 Hz it has to be 0.01 kHz), one must know the exact num-

ber of pulses being generated between two consecutive one_sec pulses in order to conduct a

proper test. The generation of such a precise signal can be easily achieved with some mod-

ifications in the above test code (exercise 12.11).

Including a Synchronizer in the Design

The design shown in this section has two circuits operating with di¤erent clocks: input is

the clock for the counter that counts the input pulses, while the system clock, clk, pro-

duces the signal one_sec responsible for storing the output of the counter into a register for

display exhibition.

Because these signals are asynchronous with respect to each other, the output of the

counter may change during the evaluation window of the output register (that is, during

the setup plus hold time interval of its flip-flops), in which case there is no guarantee

that the correct value will be stored by the register. For example, a metastable state (some-

where between '0' and '1') can occur.

The operation of a DFF is illustrated in figure 12.7c. Observe that the data must remain

stable during tsetup seconds before and thold seconds after the clock edge to guarantee that

the correct value will be stored.

To (practically) eliminate the occurrence of metastable states, a synchronizer is normally

employed, which provides a means for synchronization between the two circuits. Note that

in the present example, even though we want to prevent the counter output from changing

its value while that value is being evaluated (stored) by the output register, that point (in-

terface between the counter and the register) is not the only point where the synchronizer

can be inserted.

A popular synchronizer implementation is shown in figure 12.7d, which consists simply

of a two-stage shift register. A metastable state can only occur in the first stage; if its dura-
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tion is less than the system clock period, a valid value ('0' or '1') will then be passed ahead

by the second flip-flop.

For more on this, please refer to exercise 12.12. And for another alternative to reduce

errors during the flip-flops’ evaluation window, which employs a Gray counter, please refer

to exercise 12.13.

12.5 Digital Clock (with SSDs)

Figure 12.8a shows a digital clock that displays hours, minutes, and seconds. The purpose

of this section is to design that clock, using SSDs as displays, and four control pushbuttons

as follows.

Reset: When asserted, must zero the display, with precedence over any other button.

Seconds: When asserted, must increase the speed of the counter by a factor of 8.

Minutes: When asserted, must increase the speed of the counter by a factor of 256.

Hours: When asserted, must increase the speed of the counter by a factor of 8,192.

Note that powers of two (shifts) were chosen to optimize the amount of hardware. It will

be assumed that the clock frequency is 50 MHz, entered using GENERIC, so changing it

is easy. The SSDs will be assumed to be of common-anode type (figure 12.2).

In figure 12.8b, a diagram, with the circuit broken into two sections (clock and SSD

driver), is suggested, which also includes signal names.

A corresponding VHDL code is shown below. To avoid writing the code for the SSD

driver six times (one for each digit), a function named integer_to_ssd was constructed (lines

Figure 12.8
(a) Digital clock designed in section 12.5 (with six SSD digits and four pushbuttons); (b) Circuit diagram.
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31–48). However, unlike a previous design, this time the function was located in the main

code (in the declarative part of the architecture) instead of in a package. The project’s

name is clock_with_ssds (line 5) and fclk was entered using a GENERIC declaration (line

6). The input and output signals, obeying the names in figure 12.8b, are declared in lines

8–18. The code proper (architecture) is in lines 21–125, with the clock designed in the first

part (lines 50–117) and the SSD driver, using the function mentioned earlier, in the sec-

ond part (lines 118–124). The reader is again invited to test the design in the FPGA board.

1 --------------------------------------------------------------------------

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 --------------------------------------------------------------------------

5 ENTITY clock_with_ssds IS

6 GENERIC (fclk: INTEGER := 50_000_000); --50MHz clock

7 PORT (

8 clk: IN STD_LOGIC;

9 rst: IN STD_LOGIC;

10 sec: IN STD_LOGIC; --fast adjustment for seconds

11 min: IN STD_LOGIC; --fast adjustment for minutes

12 hour: IN STD_LOGIC; --fast adjustment for hours

13 ssd_secU: OUT STD_LOGIC_VECTOR(6 DOWNTO 0); --units of seconds

14 ssd_secT: OUT STD_LOGIC_VECTOR(6 DOWNTO 0); --tens of seconds

15 ssd_minU: OUT STD_LOGIC_VECTOR(6 DOWNTO 0); --units of minutes

16 ssd_minT: OUT STD_LOGIC_VECTOR(6 DOWNTO 0); --tens of minutes

17 ssd_hourU: OUT STD_LOGIC_VECTOR(6 DOWNTO 0); --units of hours

18 ssd_hourT: OUT STD_LOGIC_VECTOR(6 DOWNTO 0)); --tens of hours

19 END clock_with_ssds;

20 --------------------------------------------------------------------------

21 ARCHITECTURE clock_with_ssds OF clock_with_ssds IS

22 ---Signals needed because variables cannot be passed to functions

23 SIGNAL secUnits: NATURAL RANGE 0 TO 10;

24 SIGNAL secTens: NATURAL RANGE 0 TO 6;

25 SIGNAL minUnits: NATURAL RANGE 0 TO 10;

26 SIGNAL minTens: NATURAL RANGE 0 TO 6;

27 SIGNAL hourUnits: NATURAL RANGE 0 TO 10;

28 SIGNAL hourTens: NATURAL RANGE 0 TO 3;

29 SIGNAL limit: INTEGER RANGE 0 TO fclk;

30 ---Function for SSD driver:

31 FUNCTION integer_to_ssd (SIGNAL input: NATURAL) RETURN STD_LOGIC_VECTOR

32 IS VARIABLE output: STD_LOGIC_VECTOR(6 DOWNTO 0);

33 BEGIN

34 CASE input IS

35 WHEN 0 => output:="0000001"; --"0" on SSD
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36 WHEN 1 => output:="1001111"; --"1" on SSD

37 WHEN 2 => output:="0010010"; --"2" on SSD

38 WHEN 3 => output:="0000110"; --"3" on SSD

39 WHEN 4 => output:="1001100"; --"4" on SSD

40 WHEN 5 => output:="0100100"; --"5" on SSD

41 WHEN 6 => output:="0100000"; --"6" on SSD

42 WHEN 7 => output:="0001111"; --"7" on SSD

43 WHEN 8 => output:="0000000"; --"8" on SSD

44 WHEN 9 => output:="0000100"; --"9" on SSD

45 WHEN OTHERS => output:="0110000"; --"E" on SSD

46 END CASE;

47 RETURN output;

48 END integer_to_ssd;

49 BEGIN

50 --------Part 1: Clock----------------------

51 ---Speed-up factors:

52 limit <= fclk/8192 WHEN hour='1' ELSE

53 fclk/256 WHEN min='1' ELSE

54 fclk/8 WHEN sec='1' ELSE

55 fclk;

56 ---Clock design:

57 PROCESS (clk, rst)

58 VARIABLE one_sec: NATURAL RANGE 0 TO fclk;

59 VARIABLE secU: NATURAL RANGE 0 TO 10;

60 VARIABLE secT: NATURAL RANGE 0 TO 6;

71 VARIABLE minU: NATURAL RANGE 0 TO 10;

72 VARIABLE minT: NATURAL RANGE 0 TO 6;

73 VARIABLE hourU: NATURAL RANGE 0 TO 10;

74 VARIABLE hourT: NATURAL RANGE 0 TO 3;

75 BEGIN

76 IF (rst='1') THEN

77 one_sec := 0; secU := 0; secT := 0;

78 minU := 0; minT := 0;

79 hourU := 0; hourT := 0;

80 ELSIF (clk'EVENT AND clk='1') THEN

81 one_sec := one_sec + 1;

82 IF (one_sec=limit) THEN

83 one_sec := 0;

84 secU := secU + 1;

85 IF (secU=10) THEN

86 secU := 0;

87 secT := secT + 1;

88 IF (secT=6) THEN
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89 secT := 0;

90 minU := minU + 1;

91 IF (minU=10) THEN

92 minU := 0;

93 minT := minT + 1;

94 IF (minT=6) THEN

95 minT := 0;

96 hourU := hourU + 1;

97 IF ((hourT/=2 AND hourU=10) OR

98 (hourT=2 AND hourU=4)) THEN

99 hourU := 0;

100 hourT := hourT + 1;

101 IF (hourT=3) THEN

102 hourT := 0;

103 END IF;

104 END IF;

105 END IF;

106 END IF;

107 END IF;

108 END IF;

109 END IF;

110 END IF;

111 secUnits <= secU;

112 secTens <= secT;

113 minUnits <= minU;

114 minTens <= minT;

115 hourUnits <= hourU;

116 hourTens <= hourT;

117 END PROCESS;

118 --------Part 2: SSD driver-----------------

119 ssd_secU <= integer_to_ssd(secUnits);

120 ssd_secT <= integer_to_ssd(secTens);

121 ssd_minU <= integer_to_ssd(minUnits);

122 ssd_minT <= integer_to_ssd(minTens);

123 ssd_hourU <= integer_to_ssd(hourUnits);

124 ssd_hourT <= integer_to_ssd(hourTens);

125 END clock_with_ssds;

126 --------------------------------------------------------------------------

12.6 Quick-Finger Game (with LEDs and SSDs)

Figure 12.9a shows the top-level diagram for the quick-finger game to be designed in this

section. Its inputs are four pushbutton-type switches (sw3, . . . , sw0) that will be activated
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by the player and two toggle-type switches (level1, level0) to set the game’s level of di‰-

culty, plus clk and rst. The outputs are a set of four LEDs (led3, . . . , led0), plus a pair of

SSDs to display the score.

Figure 12.9b depicts the clock waveform needed for the game (game_clk), which stays

high during a fixed amount of time T1 and low during a geometrically decreasing time in-

terval a iT2 (a < 1, i ¼ 0; 1; 2; . . .). The player must press, within the time interval a iT2, the

switch corresponding to the LED that has been lit during the preceding time interval T1.

This obviously becomes harder as the game progresses, and the player will win when 15

consecutive correct key presses occur. If the player makes an incorrect choice or does not

make any choice within the given time interval, the game must end, so all LEDs must be

turned ON indefinitely and the final score must be kept by the SSDs. The same must hap-

pen when the player wins the game (score ¼ 15), though having the LEDs blinking in this

case would be more interesting (exercise 12.6).

The level of di‰culty increases when a smaller a is chosen (level switches). The values to

be adopted should be such that the reduction of T2 from one interval to the next falls ap-

proximately in the 3% to 10% range. This geometric clock has the advantage of reducing

the time interval more in the beginning and less at the end, but a linear clock could also be

used, in which case the time reduction from one time interval to the next would be con-

stant (exercise 12.7).

A VHDL code for this circuit is shown below, under the name quick_ finger (line 2). The

clock frequency ( fclk, line 3) and the desired value for T1 (0.2s, line 4) were specified using

GENERIC so they can be easily changed. The pin names (lines 5–9) are based on figure

12.9a. Note that library declarations were not needed because only data types defined in

the package standard were employed (visible by default).

The code proper is in lines 15–140, and is organized in four sections. The first section

(lines 17–49) generates the waveform game_clk depicted in figure 12.9b. Note that a ¼
factor/128 ( factor is defined in lines 23–28, while the denominator, 128, is in the equation

of line 40). The way this expression is organized is important for two reasons. First, 128 is

a power of two, so only shifting is needed to produce this division (inexpensive hardware);

Figure 12.9
(a) Top-level diagram for the quick-finger game; (b) Geometric game clock.
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second, recall that factor*(time_low/128) is di¤erent from ( factor*time_low)/128, because

we are dealing with integers. Note also that the values of factor are never a multiple

of four (the ‘‘random’’ counter has four states, needed to feed the four LEDs). With the

values given in lines 24–27, the reduction rates are 1� 123/128 ¼ 0.039 (3.9%), 5.5%, 7%,

and 8.6%.

The second portion is in lines 51–77. It is responsible for obtaining a ‘‘random’’ number

between 0 and 3 to feed the LEDs, then storing that value during a whole period of

game_clk. Such a number is produced by the free-running (no reset) counter in lines 55–

57. Because fclk ¼ 50 MHz, a whole counter cycle takes only 80 ns. Given that the human

finger takes at least a few milliseconds to react, and considering that the results of trying to

turn the reset switch ON and OFF with the same time duration is Gaussian, its standard

deviation is expected to be also at least in the ms range. Therefore, within a 80 ns interval

about the mean, the probability distribution is approximately constant, so the chance of

getting any state when the reset switch is turned OFF is approximately uniform (@25%).

There is a problem though, because the randomness discussed above only applies to the

starting value. Since the sampling is done in a predetermined fashion (at the rising edge of

game_clk—see line 59), the sequence that follows is deterministic. To avoid having it re-

peat itself after only a few draws, it is important that the reduction factor of T2 be not a

multiple of 4, which is the reason why only odd values were chosen in lines 24–27, result-

ing in a randomness just good enough for the present experiment (more sophisticated tech-

niques can include the use of a linear feedback shift register [Pedroni 2008] and other

random values, like the duration of the reset signal).

The third part, responsible for feeding the LEDs, is in lines 79–88. It simply turns all

LEDs ON when the game is over, turns just one LED ON according to the random num-

ber drawn during T1 ¼ 0.2 s (observation time), or turns all of them OFF while game_clk

is low (betting time).

The final part, in lines 90–139, is responsible for reading the pushbutton pressed by the

player and displaying the result. It checks for a hit (lines 95–103), updates the score (lines

105–117), and finally sends the score to the SSDs (lines 119–138). As with all previous

designs, the reader is now invited to test this code in the FPGA board.

1 --------------------------------------------------------------

2 ENTITY quick_finger IS

3 GENERIC (fclk: POSITIVE := 50_000_000; --50MHz clock

4 time_high: POSITIVE := 10_000_000); --T1=0.2s

5 PORT (clk, rst: IN BIT;

6 level: IN BIT_VECTOR(1 DOWNTO 0);

7 switches: IN BIT_VECTOR(3 DOWNTO 0);

8 leds: OUT BIT_VECTOR(3 DOWNTO 0);

9 ssd1, ssd2: OUT BIT_VECTOR(6 DOWNTO 0));

10 END quick_finger;
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11 --------------------------------------------------------------

12 ARCHITECTURE quick_finger OF quick_finger IS

13 SIGNAL game_clk, game_over: BIT;

14 SIGNAL leds_memory: BIT_VECTOR(3 DOWNTO 0);

15 BEGIN

16 ---------Generate game clock:---------------

17 PROCESS (clk, rst, level)

18 VARIABLE count: INTEGER RANGE 0 TO fclk;

19 VARIABLE time_low: INTEGER RANGE 0 TO fclk;

20 VARIABLE factor: INTEGER RANGE 0 TO 128;

21 BEGIN

22 --Specify difficulty factor:

23 CASE level IS

24 WHEN "00" => factor:=123; --3.9%

25 WHEN "01" => factor:=121; --5.5%

26 WHEN "10" => factor:=119; --7%

27 WHEN OTHERS => factor:=117; --8.6%

28 END CASE;

29 --Generate game_clk:

30 IF (rst='1') THEN

31 count := 0;

32 game_clk <= '0';

33 time_low := fclk;

34 ELSIF (clk'EVENT AND clk='1') THEN

35 count := count + 1;

36 IF (game_clk='0') THEN

37 IF (count=time_low) THEN

38 count := 0;

39 game_clk <= '1';

40 time_low := factor*(time_low/128);

41 END IF;

42 ELSE

43 IF (count=time_high) THEN

44 count := 0;

45 game_clk <= '0';

46 END IF;

47 END IF;

48 END IF;

49 END PROCESS;

50 ---------Get random value:------------------

51 PROCESS (clk, rst, game_clk)

52 VARIABLE random: INTEGER RANGE 0 TO 3;

53 BEGIN
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54 --Get value (no reset here):

55 IF (clk'EVENT AND clk='0') THEN

56 random := random + 1;

57 END IF;

58 --Store value:

59 IF (game_clk'EVENT AND game_clk='1') THEN

60 CASE random IS

71 WHEN 0 => leds_memory <= "0001";

72 WHEN 1 => leds_memory <= "0010";

73 WHEN 2 => leds_memory <= "0100";

74 WHEN OTHERS => leds_memory <= "1000";

75 END CASE;

76 END IF;

77 END PROCESS;

78 ---------Activate LEDs:---------------------

79 PROCESS (game_clk, game_over, leds_memory)

80 BEGIN

81 IF (game_over='1') THEN

82 leds <= "1111";

83 ELSIF (game_clk='0') THEN

84 leds <= "0000";

85 ELSE

86 leds <= leds_memory;

87 END IF;

88 END PROCESS;

89 -----Read pushbuttons & display result:-----

90 PROCESS (clk, rst, game_clk)

91 VARIABLE count: INTEGER RANGE 0 TO 16;

92 VARIABLE hit: BIT;

93 BEGIN

94 --Check for a hit:

95 IF (rst='1') THEN

96 hit := '0';

97 ELSIF (clk'EVENT AND clk='0') THEN --inverted switches:

98 IF (game_clk='0' AND switches=NOT leds_memory) THEN

99 hit := '1';

100 ELSIF (game_clk='1') THEN

101 hit := '0';

102 END IF;

103 END IF;

104 --Increase score or end game:

105 IF (rst='1') THEN

106 count := 0;
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107 game_over <= '0';

108 ELSIF (game_clk'EVENT AND game_clk='1') THEN

109 IF (hit='1') THEN

110 count := count + 1;

111 IF (count=16) THEN

112 game_over <= '1';

113 END IF;

114 ELSE

115 game_over <= '1';

116 END IF;

117 END IF;

118 --Display result (SSD driver):

119 CASE count IS

120 WHEN 0 => ssd2<="0000001"; ssd1<="0000001"; --"00"

121 WHEN 1 => ssd2<="0000001"; ssd1<="0000001"; --"00"

122 WHEN 2 => ssd2<="0000001"; ssd1<="1001111"; --"01"

123 WHEN 3 => ssd2<="0000001"; ssd1<="0010010"; --"02"

124 WHEN 4 => ssd2<="0000001"; ssd1<="0000110"; --"03"

125 WHEN 5 => ssd2<="0000001"; ssd1<="1001100"; --"04"

126 WHEN 6 => ssd2<="0000001"; ssd1<="0100100"; --"05"

127 WHEN 7 => ssd2<="0000001"; ssd1<="0100000"; --"06"

128 WHEN 8 => ssd2<="0000001"; ssd1<="0001111"; --"07"

129 WHEN 9 => ssd2<="0000001"; ssd1<="0000000"; --"08"

130 WHEN 10 => ssd2<="0000001"; ssd1<="0000100"; --"09"

131 WHEN 11 => ssd2<="1001111"; ssd1<="0000001"; --"10"

132 WHEN 12 => ssd2<="1001111"; ssd1<="1001111"; --"11"

133 WHEN 13 => ssd2<="1001111"; ssd1<="0010010"; --"12"

134 WHEN 14 => ssd2<="1001111"; ssd1<="0000110"; --"13"

135 WHEN 15 => ssd2<="1001111"; ssd1<="1001100"; --"14"

136 WHEN 16 => ssd2<="1001111"; ssd1<="0100100"; --"15"

137 WHEN OTHERS=> ssd2<="0110000"; ssd1<="0110000";--"EE"

138 END CASE;

139 END PROCESS;

140 END quick_finger;

141 --------------------------------------------------------------

12.7 Other Designs with Basic Displays

See also the following designs using basic displays in other chapters:

Car speed monitor (exercise 11.19).

I2C interface for an EEPROM memory (section 14.4.3).
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PS2 keyboard interface (section 14.3 and exercises 14.8).

Pushbutton sequence detector (example 11.8 and exercise 11.18).

SPI interface for a FRAM memory (section 14.5).

Timer (example 6.6 and exercise 6.10).

Tra‰c-light controller (example 11.7 and exercises 11.16 and 11.17).

Zero-to-nine counter (example 6.6 and exercise 11.4).

12.8 Exercises

Exercise 12.1: Counter with SSD Display

Design the 0-to-F counter depicted in figure 12.10 using an SSD to display the result. It

must count upward when up ¼ '1' or downward otherwise, remaining in each state for 0.5

seconds and stopping when F or 0 is reached. If rst is activated, then it must return to zero

(if counting upward) or F (if counting downward) and resume counting from there (when

rst is deactivated, of course).

Exercise 12.2: Counter with LCD Display

Repeat the design in exercise 12.1, this time with an LCD displaying the result.

Exercise 12.3 Playing with a Seven-Segment Display

Consider the design developed in section 12.3. Redesign it with the three pushbuttons as

shown in figure 12.11, which add the following features to the circuit:

1) The stop button, when pressed, must cause the movement to stop if running, or resume

running if stopped. If pressed for longer than 2 s, it must reset the system (that is, return to

state a).

2) The dir button must reverse the direction of the movement (counterclockwise if going

clockwise or vice versa) every time it is pressed.

3) The speed button must change the speed of the movement every time it is pressed, with

the following sequence of four values for T1 (T2 must remain at 40ms): 80ms ! 140ms !
200ms ! 260ms ! 80ms . . . .

Figure 12.10
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Exercise 12.4: Frequency Meter (with SSDs)

Modify the design of section 12.4 for the circuit to operate with SSDs instead of an LCD.

Exercise 12.5: Digital Clock (with LCD)

Modify the design of section 12.5 for the circuit to operate with an LCD instead of SSDs.

Include colons to separate the pairs of digits, as shown in figure 12.12.

Exercise 12.6: Quick-Finger Game with Blinking LEDs

Modify the design of section 12.6 such that the LEDs, instead of being just ON, blink with

a frequency of 2 Hz when the player wins the game.

Exercise 12.7: Quick-Finger Game with Linear Time Reduction

Modify the design of section 12.6 such that the game clock (game_clk) has T2 reduced lin-

early instead of geometrically (keep T1 ¼ 0.2 s). Consider the initial value as T2 ¼ 1 s and

adopt the following reduction values: level ¼ "00" ! 25ms, "01" ! 35ms, "10" ! 45ms,

and "11" ! 55ms.

Exercise 12.8: Timer (with LED and SSDs)

Design the timer of figure 12.13, with the following features:

1) The circuit must operate with two SSD displays, which display seconds in the 00 to 60

range.

Figure 12.11

Figure 12.12
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2) The timer must count downward, from an adjustable initial value (max ¼ 60) down

to 00.

3) A pushbutton (time) must be included to adjust the starting value, which should occur

in steps of one second every time the button is pressed. If the pushbutton remains pressed

for a long time, it should not be interpreted as more than one command.

4) Another pushbutton (stop) must cause the timer to stop when pressed (and released). If

pressed again, the timer should resume counting.

5) If pressed for longer than 2 seconds, stop must reset the counter (00).

6) Finally, an LED must be included, which remains lit while the timer is down counting.

If the timer is stopped, the LED must be turned OFF, returning to the ON state when the

timer resumes counting. When the timer reaches its final state (00), the LED must blink

with a frequency of 2 Hz. Only after the reset button is pressed the LED should be turned

OFF.

Exercise 12.9: Timer (with LED and LCD)

Repeat the design in exercise 12.8, this time with an LCD instead of SSDs.

Exercise 12.10: Genius Game (with LEDs and SSDs)

The purpose of this exercise is to design the well-known genius game. The top-level dia-

gram is shown in figure 12.14, containing at the input four pushbutton-type switches

(sw3, . . . , sw0) that will be activated by the player and two toggle-type switches (level1,

Figure 12.13

Figure 12.14
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level0) to set the game’s level of di‰culty, plus clk and rst. The outputs are a set of four

LEDs (led3, . . . , led0), plus a pair of SSDs to display the score. The game consists of the

following: a random number (between 0 and 3) is drawn and the corresponding LED is lit

momentarily, after which the player must press the corresponding pushbutton. If the result

is correct, the score is incremented and a new round starts, which consists of lighting the

same LED, followed by a new one (repetitions are allowed), so the player is required to

make two correct key presses this time. The game ends when the player either makes a mis-

take or reaches a predefined sequence size (say, 12). Here are some suggestions for the tim-

ing: light each LED for 0.3s; the time separation between LEDs must be set by the level

switches, say "00" ! 0.8s, "01" ! 0.7s, "10" ! 0.6s, and "11" ! 0.5s. After the sequence

of LEDs is finished, allow a maximum of about 2s between pushbutton depressions.

Exercise 12.11: Frequency Meter Testing Procedure

For the frequency meter designed in section 12.4 or for that in exercise 12.4, do the

following:

a) Add to the original code the test code shown at the end of section 12.4, and check

whether the results for the two values of test (2040 and 2041) match those presented in

the text.

b) Modify the test code as needed in order to test the circuit with frequencies as close as

possible to 49 Hz (00.0 kHz on the display) and 50 Hz (00.1 kHz on the display).

c) Further test the circuit by including a frequency where the increment of the other digits

can also be verified (for example, for the following pair of points: 00.9 and 01.0; 09.9 and

10.0; 89.9 and 90.0).

Exercise 12.12: Frequency Meter with a Synchronizer

For the frequency meter designed in section 12.4 or for that in exercise 12.4, do the

following:

a) Draw a more detailed block diagram (as in figure 22.9a of Pedroni [2008]) and briefly

explain how it works.

b) In which points of this circuit can a synchronizer be included? Which one requires fewer

flip-flops?

c) Draw the new circuit, with the synchronizer included.

d) Design this new circuit using VHDL and repeat the tests of exercise 12.11 to check if

the same results are obtained.

Exercise 12.13: Frequency Meter with Gray Counter

The frequency meter of section 12.4 (or of exercise 12.4) operates with two asynchronous

signals (input and clk). One way of preventing the output register from storing an incorrect
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value was shown in section 12.4 and further discussed in exercise 12.12. Another way is to

use a Gray counter (that is, a counter whose output value follows the Gray code) instead

of a regular sequential counter.

a) Explain why a Gray counter can be helpful (Hint: Think of how many bits change at a

time.)

b) Is this solution less expensive (in terms of hardware) than that with the synchronizer?
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13 VHDL Design of Memory Circuits

13.1 Introduction

Figure 13.1 shows the most basic ROM (read-only memory) and RAM (random access

memory) configurations. The ROM has as input the signal address (M bits) and as output

the signal data_out (N bits), with the latter exhibiting the contents in the specified memory

address. Contrary to a ROM, the contents of a RAM can be modified freely, so the RAM

has two additional inputs, called data_in (data to be stored in the memory) and we (write

enable); the latter, when asserted, causes data_in to be stored in the specified address. This

RAM arrangement is called read-on-write, because during the writing process the output

reads the value that is being stored in the memory. Both circuits in figure 13.1 have

depth ¼ 2M (number of words) and width ¼ N (number of bits in each word).

Several variations of the architectures above exist. For example, in high-performance

systems, memories are normally synchronous to allow the system clock to control their op-

eration. This means that the memory inputs and/or outputs are registered (that is, the ad-

dress and/or the data buses are stored by flip-flops).

An aspect that is sometimes relevant when writing VHDL code to implement memory in

CPLD/FPGA devices is the location where such memories will be built. Because FPGAs

normally have built-in user SRAM blocks, ROMs and RAMs can be implemented in

them. But because logic cells and LUTs (lookup tables) can also emulate memory, that is

another possible location for such memories. Consequently, if one wants, for example, to

force the compiler to use the SRAM blocks, special synthesis attributes or special functions

must be used. Moreover, when using such built-in SRAM blocks, one must remember that

they usually already have flip-flops at all inputs and, optionally, also at the outputs, so no

additional flip-flops are needed to turn the memory into a synchronous one ( just make

sure that the proper setup is chosen when instantiating these blocks). On the other hand,

when using CPLDs, such user SRAM blocks normally do not exist, so regular logic cells

will be used to implement the desired memory functionality.

In the sections that follow, several of the cases described above will be examined and

designed. Additionally, the design of memory interfaces, needed when the memory is not

located inside the FPGA but rather in an external memory chip, will also be discussed.



13.2 Implementing Bidirectional Buses

Before we start discussing memory implementations, let us see how the INOUT mode

works (recall from section 2.4 that the VHDL modes are IN, OUT, BUFFER, and

INOUT). The reason for this analysis is that many memories operate with a single data

bus, which must allow data to be entered (written) into the memory as well as data to be

retrieved (read) from the memory, being therefore bidirectional.

As an example, consider the situation depicted in figure 13.2a, which shows an FPGA

providing interface between an external memory and an application circuit that uses data

stored in that memory (only the data bus is shown; the address bus and the control signals

are not relevant for the present discussion). Because this memory is assumed to have just

one data bus (signal c), such a bus has to be bidirectional. The FPGA must be able to store

data in the memory and also to retrieve data from it, passing the data to the application

circuit (signal d ). A tristate bu¤er, with input a and control b, is also employed in these

operations.

A VHDL code for the bidirectional part of the memory interface above is shown below.

Note in the entity (lines 5–9) that the inputs are a and b, while c is bidirectional and d is an

output, all of type STD_LOGIC (single-bit was assumed for simplicity).

Two equivalent architectures are presented. The first (arch1, lines 11–15) employs con-

current code (WHEN statement), while the second (arch2, lines 17–26) uses sequential

code (IF statement, in a process). Recall from section 8.6 that to compile this code a

CONFIGURATION declaration is needed or one of the architectures must be commented

out.

Figure 13.1
Basic asynchronous ROM and RAM configurations.

Figure 13.2
(a) System with a bidirectional data bus; (b) Synthesis result.
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1 ------------------------------

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 ------------------------------

5 ENTITY bidir IS

6 PORT (a, b: IN STD_LOGIC;

7 c: INOUT STD_LOGIC;

8 d: OUT STD_LOGIC);

9 END ENTITY;

10 ------------------------------

11 ARCHITECTURE arch1 OF bidir IS

12 BEGIN

13 c <= a WHEN b='1' ELSE 'Z';

14 d <= c;

15 END ARCHITECTURE;

16 ------------------------------

17 ARCHITECTURE arch2 OF bidir IS

18 BEGIN

19 PROCESS (a, b)

20 BEGIN

21 d <= c;

22 IF (b='1') THEN c <= a;

23 ELSE c <= 'Z';

24 END IF;

25 END PROCESS;

26 END ARCHITECTURE;

27 ------------------------------

The crucial points to be observed in either architecture are:

1) d is always equal to c (line 14 or 21);

2) c is equal to a when sending data to the memory, or equal to 'Z' when receiving data

from it (line 13 or 22–23).

The RTL view produced by the compiler (from either code) is shown in figure 13.2b,

which resembles the circuit of figure 13.2a. The points mentioned will be useful later,

when designing interfaces for single data bus memories.

13.3 Memory Initialization Files

Another important topic to be examined before we start discussing memory implementa-

tions is memory initialization files. The following three file formats are described in this

section:
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1 MIF (memory initialization file), from Altera.

1 COE (derived from CGF—core generator file), from Xilinx.

1 HEX (Intel hexadecimal file), with general support.

Another standard file format is RIF (RAM initialization file), used in other vendors’

EDA software.

MIF File

MIF is a file format that can be used to initialize ROM, RAM, and CAM contents in

Altera devices. Four equivalent examples are presented in figure 13.3. The file starts with

a declaration regarding the width (number of bits) of the stored words, followed by the

memory depth (number of words). The address radix can be binary (BIN), octal (OCT),

hexadecimal (HEX), or unsigned decimal (UNS), while the memory radix can also be

signed decimal (DEC). The default for both is HEX. "%" is used for comments. Note

that in the last case of figure 13.3 the entire memory was initialized to 00h, then some of

the values were overwritten.

COE File

COE is a Xilinx file format whose main purpose is the same as Altera’s MIF format (mem-

ory initialization). To create a COE file, a CGF (core generator file) must be entered by the

user in the memory editor, from which ISE automatically creates the corresponding COE

file. Multiple memory blocks can be entered in a single CGF, from which multiple COEs

result (one for each memory block).

Figure 13.3
Four equivalent representations for a MIF file.
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An example of CGF is shown below (called example.cgf ). The block depth can be any

value in the 1 to 1,048,575 range (default ¼ 256). The default for the data width is 16. The

pad bit (used to fill the provided words when they are shorter than the specified data

width) can be '0' (default) or '1'. The padding direction can be left (default) or right. The

data radix can be 2, 8, 10 signed, 10 unsigned, or 16 (default). Finally, the address radix

can be 2, 8, 10 (default), or 16. The symbol "@" indicates the initial address of a memory

segment. All unspecified words are automatically filled with the default word.

--------------------------------------

#CGF file "example.cgf"

#memory_block_name=block1

#block_depth=8

#data_width=8

#default_word=0

#default_pad_bit_value=0

#pad_direction=left

#data_radix=2

#address_radix=10

#coe_radix=MEMORY_INITIALIZATION_RADIX

#coe_data=MEMORY_INITIALIZATION_VECTOR

#data=

@0

18

3

@5

11

255

#end

--------------------------------------

The COE file (block1.coe) generated from this CGF file is shown below. For example, at

address ¼ 0, the data is 18, which is "10010" in binary form, resulting in "00010010" after

left padding. Likewise, at address ¼ 1, the data is 3, which is "11" in binary form, resulting

in "00000011" after left padding, and so on.

---------------------------------------------------

#COE file "block1.coe" generated from "example.cgf"

MEMORY_INITIALIZATION_RADIX=2;

MEMORY_INITIALIZATION_VECTOR=

00010010,

00000011,

00000000,
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00000000,

00000000,

00001011,

11111111,

00000000;

---------------------------------------------------

HEX File

HEX files (Intel format) can also be used for memory initialization. As figure 13.4 shows,

each data line is divided into six fields, which contain the following:

Field 1 (1 byte): Always contains a colon, indicating the beginning of a line.

Field 2 (1 byte): Number of (data) bytes in field 5. Usually, n ¼ 16 or 32 bytes.

Field 3 (2 bytes): Initial memory address.

Field 4 (1 byte): Record type, with the following options:

00 ¼ Data line (usual case). A regular data line then is ": xx xxxx 00 xx . . . xx".

01 ¼ End-of-file (indicates that it is the last line). The last line then is ": 00 0000 01 FF".

02 to 05 ¼ Additional addressing modes.

Field 5 (n bytes): Data field (usually, n ¼ 16 or 32).

Field 6 (1 byte): Check sum, obtained by adding all hexa values in fields 2 to 5, then taking

the two’s complement of this sum’s least significant byte.

An example is shown below whose first line contains the same data as the MIF file in

figure 13.3. Because the sum of fields 2 to 5 is 23F, C1 (two’s complement of 3F, which is

the sum’s LSByte) was entered as the check sum (field 6). The last line is always ": 00 0000

01 FF".

: 10 0000 00 00 00 FF 1A 05 50 B0 00 00 00 00 00 00 00 00 11 C1

: ...

: 00 0000 01 FF

Figure 13.4
Line structure in HEX files.
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13.4 ROM Design

Figure 13.5 shows four classic ROM architectures. The circuits in (a) and (b) are similar,

both being single-ported (see the note below), but while the former is asynchronous, the

latter is synchronous, with registers (D-type flip-flops (DFFs)) installed at the input and

also, optionally, at the output. The clocks in (b) are separated, so two clocking options

are available (see caption of figure 13.5b). The circuits in (c) and (d) are also similar, both

being dual-ported, but while the former is asynchronous, the latter is again synchronous,

with registers at the inputs and, optionally, at the outputs. The clocks in (d) are again sep-

arated, with three clocking options shown in the figure. Several design techniques for

ROMs are described in the sections that follow.

Note: There are several (confusing) ways of determining the number of ports of a memory.

Two are described below.

Criterion 1 (cr1): The number of ports is equal to the number of address buses.

Criterion 2 (cr2): A pair composed of read plus write addresses is a simple (simple, not

single) dual port, while two of such pairs is a true dual port.

Figure 13.5
ROM configurations.
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Examples

Memory with just one address (for reading and writing): Single port (by both criteria).

Memory with one address for reading and another for writing: Dual port (cr1), simple dual

port (cr2).

Memory with two addresses for reading and another for writing: Tree ports (cr1), no

equivalent in cr2.

Memory with two addresses for reading and two for writing: Four ports (cr1), true dual

port (cr2).

ROM Implemented with Regular VHDL Code

In this case, straight VHDL code is used. There is no concern regarding particular encod-

ing styles to help the compiler understand that memory is wanted, as there are no synthesis

attributes or special functions to force the compiler to adopt, for example, on-chip SRAM

memory blocks (if available). This means that the compiler might use them or not (in gen-

eral, regular logic cells will be used) and memory will be created independently from the

existence or not of such blocks.

An example is shown below whose contents are those of figure 13.3, entered using CON-

STANT (lines 14–21). Note that a process (lines 24–29) was used to register the address,

so the inferred circuit is that in figure 13.5b, without the output register. Simulation results

are depicted in figure 13.6 (compare the memory contents against those in figure 13.3).

1 ------------------------------------------------------------------

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 ------------------------------------------------------------------

5 ENTITY rom IS

6 PORT (clk: IN STD_LOGIC;

7 address: IN INTEGER RANGE 0 TO 15;

8 data_out: OUT STD_LOGIC_VECTOR(7 DOWNTO 0));

9 END rom;

10 ------------------------------------------------------------------

11 ARCHITECTURE rom OF rom IS

Figure 13.6
Simulation results from the ROM implemented with regular VHDL code in section 13.4.
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12 SIGNAL reg_address: INTEGER RANGE 0 TO 15;

13 TYPE memory IS ARRAY (0 TO 15) OF STD_LOGIC_VECTOR(7 DOWNTO 0);

14 CONSTANT myrom: memory := (

15 2 => "11111111", --255

16 3 => "00011010", --26

17 4 => "00000101", --5

18 5 => "01010000", --80

19 6 => "10110000", --176

20 15=> "00010001", --17

21 OTHERS => "00000000");

22 BEGIN

23 --Register the address:----------

24 PROCESS (clk)

25 BEGIN

26 IF (clk'EVENT AND clk='1') THEN

27 reg_address <= address;

28 END IF;

29 END PROCESS;

30 --Get unregistered output:-------

31 data_out <= myrom(reg_address);

32 END rom;

33 ------------------------------------------------------------------

Altera proposes, in its VHDL templates for ROMs in Quartus II, the following code

(only the part needed here is shown):

1 ----------------------------------------------------------

2 ENTITY single_port_rom IS

3 ...

4 PORT (clk: IN STD_LOGIC;

5 addr: IN NATURAL RANGE 0 TO 2**ADDR_WIDTH - 1;

6 q: OUT STD_LOGIC_VECTOR(DATA_WIDTH -1 DOWNTO 0));

7 END single_port_rom;

8 ----------------------------------------------------------

9 ARCHITECTURE rtl OF single_port_rom IS

10 ...

11 BEGIN

12 PROCESS(clk)

13 BEGIN

14 IF (rising_edge(clk)) THEN

15 q <= rom(addr);

16 END IF;

17 END PROCESS;

18 END rtl;

19 ----------------------------------------------------------
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Note that this code di¤ers from that just presented with respect to the location of the

register. The reader is invited to determine which ROM of figure 13.5 (if any) this code

will implement (exercise 13.4).

ROM Implemented with an Initialization File

In the previous example, the ROM was initialized using CONSTANT, which is fine only

for small memories. Data for a large memory is often stored in a file, so the VHDL code

must be able to read it.

Taking Altera as an example, files of type MIF and HEX are supported without restric-

tions. To read them, the synthesis attribute ram_init_ file (also called syn_ram_init_ file)

can be used. Consequently, if the file in figure 13.3 is saved under the name rom_contents

.mif, for example, the only changes needed in the previous code are in the architecture dec-

larations, replacing the original text (which employed CONSTANT) with that below (see

also exercise 13.5).

------------------------------------------------------------------

ARCHITECTURE rom OF rom IS

SIGNAL reg_address: INTEGER RANGE 0 TO 15;

TYPE memory IS ARRAY (0 TO 15) OF STD_LOGIC_VECTOR(7 DOWNTO 0);

SIGNAL rom: memory;

ATTRIBUTE ram_init_file: STRING;

ATTRIBUTE ram_init_file OF rom: SIGNAL IS "rom_contents.mif";

BEGIN...

------------------------------------------------------------------

Another option, even simpler but asynchronous, is shown below.

1 ------------------------------------------------------------------

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 ------------------------------------------------------------------

5 ENTITY rom IS

6 PORT (address: IN INTEGER RANGE 0 TO 15;

7 data_out: OUT STD_LOGIC_VECTOR(7 DOWNTO 0));

8 END rom;

9 ------------------------------------------------------------------

10 ARCHITECTURE rom OF rom IS

11 SIGNAL reg_address: INTEGER RANGE 0 TO 15;

12 TYPE memory IS ARRAY (0 TO 15) OF STD_LOGIC_VECTOR(7 DOWNTO 0);

13 SIGNAL myrom: memory;

14 ATTRIBUTE ram_init_file: STRING;

15 ATTRIBUTE ram_init_file OF myrom: SIGNAL IS "rom_contents.mif";

16 BEGIN
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17 data_out <= myrom(address);

18 END rom;

19 ------------------------------------------------------------------

ROM Implemented with a Vendor-Specific Function

In this case, a prewritten VHDL code is employed. Again taking Altera as an example,

prebuilt units, for either HDL or graphical entry, are called macrofunctions. The parame-

terized code to be used here is part of a subset of the macrofunction collection, called

library of parameterized modules (LPM). Any LPM cell can be easily instantiated in the

main code using the MegaWizard Plug-In Manager unit of Quartus II (see appendix

F) (another option is to edit the LPM file directly, making the proper selection of

parameters).

The LPM component of interest in this example is lpm_rom, which is simply a VHDL

code for a ROM similar to that in figure 13.5b, whose parameters (number of data and

address bits plus the use or not of registers) can be specified by the user. This component

is used in the code below.

Note in the library/package declarations (lines 2–5) the inclusion of the package

lpm_components from the library lpm (from Altera), so the component does not need to

be declared in the main code. In the entity, a clock was included because the input was

chosen to be registered (the output is not). Observe that all I/Os (lines 8–10) are of type

STD_LOGIC(_VECTOR). Finally, in the architecture, the component lpm_rom is instan-

tiated (lines 16–22) under the label myrom. The same file used before (rom_contents.mif )

was employed to initialize the memory (line 20). The HEX file in section 13.3 (only two

lines) would produce the same results (exercise 13.6).

1 -------------------------------------------------------------

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 LIBRARY lpm;

5 USE lpm.lpm_components.all;

6 -------------------------------------------------------------

7 ENTITY rom IS

8 PORT (clk: IN STD_LOGIC;

9 address: IN STD_LOGIC_VECTOR(3 DOWNTO 0);

10 data_out: OUT STD_LOGIC_VECTOR(7 DOWNTO 0));

11 END rom;

12 -------------------------------------------------------------

13 ARCHITECTURE rom OF rom IS

14 --Component declaration not needed

15 BEGIN

16 myrom:lpm_rom

17 GENERIC MAP (lpm_widthad => 4,
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18 lpm_outdata => "UNREGISTERED",

19 lpm_address_control => "REGISTERED",

20 lpm_file => "rom_contents.mif",

21 lpm_width => 8)

22 PORT MAP (inclock=>clk, address=>address, q=>data_out);

23 END rom;

24 -------------------------------------------------------------

Simulation results and the diagram produced by the RTL viewer are presented in figure

13.7. Note that the values stored in this memory do coincide with those in figure 13.3.

13.5 RAM Design

To better understand the construction of RAMs, a RAM model based on DFF blocks is

presented in figure 13.8. The memory-write address (wr_address) is processed by the ad-

Figure 13.7
RTL view and simulation results from the ROM implemented with a vendor-specific function in section 13.4.

Figure 13.8
Flip-flop-based RAM model.
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dress decoder, which produces only one output high, corresponding to the present address

value. If write-enable (we) is high, then the corresponding DFF block is enabled to store

data_in at the next positive clock transition. The output is controlled by a multiplexer,

which allows only the DFF block selected by the memory-read address (rd_address) to be

connected to data_out.

In the model above, the input and output addresses are not registered, and multiple si-

multaneous accesses are not included. Consequently, several extensions of this model can

be obtained if such alternatives are also considered.

The main cases (besides that in figure 13.8) are depicted in figure 13.9. The case in (a) is

asynchronous and equivalent to the model in figure 13.8 (but with a single address) or to

the RAM in figure 13.1 The circuit in (b) is the synchronous counterpart of that in (a),

with registers at all inputs and optionally also at the output; its separate clocks allow two

clocking alternatives. Another asynchronous implementation is shown in (c), which em-

ploys a bidirectional bus. A more elaborate access is shown in (d), with separate read/write

and in/out addresses, so it is a dual port (cr1) or simple dual port (cr2) RAM. Finally, a

circuit with two complete access sections is depicted in (e), again with separate read/write

and in/out addresses, so it is a four port (cr1) or true dual port (cr2) RAM. See the clock-

ing options for all cases in figure 13.9.

RAM Implemented with Regular VHDL Code

Straight VHDL code is used here, with no concerns regarding particular encoding styles or

synthesis attributes to help the compiler understand that memory is wanted. This means

that the compiler might use on-chip SRAM blocks (if available) or might not (in general,

regular logic cells are used).

An example is shown below. Because regular code is used, a regular circuit (equivalent

to that in figure 13.8) is expected, hence with 8� 16 ¼ 128 flip-flops. After compiling this

code, the reader is invited to check that fact in the compilation reports. Recall also that

a RAM does not need to be initialized, but if one wants to do so, the same procedure

seen for ROMs implemented with an initialization file can be used, which employs the

ram_init_ file attribute (this attribute is used in the code below to load a file called ram_

contents.mif, containing again the data of figure 13.3). The RTL view obtained from this

code is shown in figure 13.10.

1 ------------------------------------------------------------------

2 ENTITY ram IS

3 PORT (clk: IN STD_LOGIC;

4 we: IN STD_LOGIC;

5 address: IN INTEGER RANGE 0 TO 15;

6 data_in: IN STD_LOGIC_VECTOR(7 DOWNTO 0);

7 data_out: OUT STD_LOGIC_VECTOR(7 DOWNTO 0));

8 END ram;
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Figure 13.9
RAM configurations.

Figure 13.10
RTL view relative to the RAM implemented with regular VHDL code in section 13.5.
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9 ------------------------------------------------------------------

10 ARCHITECTURE ram OF ram IS

11 TYPE memory IS ARRAY (0 to 15) OF STD_LOGIC_VECTOR(7 DOWNTO 0);

12 SIGNAL myram: memory;

13 ATTRIBUTE ram_init_file: STRING;

14 ATTRIBUTE ram_init_file OF myram: SIGNAL IS "ram_contents.mif";

15 BEGIN

16 PROCESS (clk)

17 BEGIN

18 IF (clk'EVENT AND clk='1') THEN

19 IF (we='1') THEN

20 myram(address) <= data_in;

21 END IF;

22 END IF;

23 END PROCESS;

24 data_out <= myram(address);

25 END ram;

26 ------------------------------------------------------------------

RAM Implemented with a Vendor-Specific Function

Here a prewritten VHDL code is employed. Taking again Altera as an example, prebuilt

units, for either HDL or graphical entry, are called macrofunctions, of which the LPM is

part. The LPM component used in this example is called RAM:2-PORT, accessed using

the MegaWizard Plug-In Manager unit of Quartus II (Tools > MegaWizard Plug-In

Manager > Installed Plug-Ins > Memory Compiler > RAM:2-PORT). While generating

this component, one can choose its location in logic cells or in SRAM blocks.

The corresponding VHDL code is shown below. Note that, because the name chosen for

the component (ram2port) does not coincide with any of the component names declared

in the package lpm_components, an explicit component declaration is needed in the main

code (lines 14–22). Again, though optional, the RAM was initialized using the ram_init_

file attribute (lines 25–26), which loads the contents of ram_contents.mif. Observe that all

I/Os are of type STD_LOGIC(_VECTOR) (lines 6–10). The RTL view obtained from this

code is shown in figure 13.11.

Figure 13.11
RTL view relative to the RAM implemented with a vendor-specific function in section 13.5.
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1 ------------------------------------------------------------------

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 ------------------------------------------------------------------

5 ENTITY ram IS

6 PORT (wrclk, rdclk: IN STD_LOGIC;

7 we: IN STD_LOGIC;

8 wr_address, rd_address: STD_LOGIC_VECTOR(3 DOWNTO 0);

9 data_in: IN STD_LOGIC_VECTOR(7 DOWNTO 0);

10 data_out: OUT STD_LOGIC_VECTOR(7 DOWNTO 0));

11 END ram;

12 ------------------------------------------------------------------

13 ARCHITECTURE ram OF ram IS

14 COMPONENT ram2port IS

15 PORT(data: IN STD_LOGIC_VECTOR (7 DOWNTO 0);

16 rdaddress: IN STD_LOGIC_VECTOR (3 DOWNTO 0);

17 rdclock: IN STD_LOGIC ;

18 wraddress: IN STD_LOGIC_VECTOR (3 DOWNTO 0);

19 wrclock: IN STD_LOGIC ;

20 wren: IN STD_LOGIC := '1';

21 q: OUT STD_LOGIC_VECTOR (7 DOWNTO 0));

22 END COMPONENT;

23 TYPE memory IS ARRAY (0 to 7) OF STD_LOGIC_VECTOR(3 DOWNTO 0);

24 SIGNAL myram: memory;

25 ATTRIBUTE ram_init_file: STRING;

26 ATTRIBUTE ram_init_file OF myram: SIGNAL IS "ram_contents.mif";

27 BEGIN

28 dual_port_ram: ram2port PORT MAP (

29 data => data_in,

30 rdaddress => rd_address,

31 rdclock => rdclk,

32 wraddress => wr_address,

33 wrclock => wrclk,

34 wren => we,

35 q => data_out);

36 END ram;

37 ------------------------------------------------------------------

RAM Implemented in a User SRAM Block

If the designer wants to force the compiler to implement a RAM with SRAM blocks, a

special synthesis attribute should be used. Altera, for example, calls such an attribute ram-

style (or syn_ramstyle), whose allowed SRAM block options are "M512", "M4K", "M-

RAM", "M9K", "M144K", and "MLAB". However, this attribute is only recognized if

the code is written in a certain predefined style (style options are available in the proper
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documentation, with one example given below). Another way of specifying SRAM blocks

is during the instantiation of LPM cells with the MegaWizard Plug-In Manager.

The code below is for a RAM with separate buses for reading and writing and with reg-

istered output (thus complying with figure 13.9d, operating with a single clock). The Cy-

clone II FPGA available in the DE2 board was employed in this design, which contains

105 SRAM blocks of type M4K (@4k bits per block), so "M4K" was declared as the string

value.

After compiling this code, the reader is invited to check in the resource section of the

fitter whether M4K blocks were indeed used to construct this RAM. Also observe in

the code that, as before, the RAM can be optionally initialized using the ram_init_ file at-

tribute. The RTL view obtained from this code is shown in figure 13.12.

1 ---------------------------------------------------------------------

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 ---------------------------------------------------------------------

5 ENTITY ram IS

6 PORT (clk: IN STD_LOGIC;

7 we: IN STD_LOGIC;

8 wr_address: IN INTEGER RANGE 0 TO 15;

9 rd_address: IN INTEGER RANGE 0 TO 15;

10 data_in: IN STD_LOGIC_VECTOR(7 DOWNTO 0);

11 data_out: OUT STD_LOGIC_VECTOR(7 DOWNTO 0));

12 END ram;

13 ---------------------------------------------------------------------

14 ARCHITECTURE ram OF ram IS

15 TYPE memory IS ARRAY (0 to 15) OF STD_LOGIC_VECTOR(7 DOWNTO 0);

16 SIGNAL myram: memory;

17 --ATTRIBUTE ram_init_file: STRING;

18 --ATTRIBUTE ram_init_file OF my_ram: SIGNAL IS "ram_contents.mif";

19 ATTRIBUTE ramstyle: STRING;

20 ATTRIBUTE ramstyle OF myram: SIGNAL IS "M4K";

21 BEGIN

Figure 13.12
RTL view relative to the RAM implemented in a user SRAM block in section 13.5.
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22 PROCESS (clk)

23 BEGIN

24 IF (clk'EVENT AND clk='1') THEN

25 IF (we='1') THEN

26 myram(wr_address) <= data_in;

27 END IF;

28 data_out <= myram(rd_address);

29 END IF;

30 END PROCESS;

31 END ram;

32 ---------------------------------------------------------------------

As a final note, it is important to mention that a synthesis attribute called romstyle also

exists, which is equivalent to ramstyle, but for ROM implementation (see exercise 13.8).

13.6 External Memory Interfaces

All memory circuits designed so far in this chapter are for memories implemented inside

the FPGA. A di¤erent situation is examined in this section, which consists of having an

external memory chip so the FPGA does not have to provide memory circuits, but rather

an interfacing circuit between such a memory and an application circuit that makes use of

data stored in the memory. Besides reading data from the memory, the interface must also

be able to write data to the memory.

The memory chosen to illustrate this type of design is depicted in figure 13.13a. It is the

IS61LV25616 SRAM device from ISSI (available, for example, in Altera’s DE2 board),

Figure 13.13
(a) 256k� 16 SRAM chip; (b) Corresponding truth table; (c) Simplified model; (d) Waveforms for the
experiments.
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which can store 256 kwords of 16 bits each, hence requiring a 18-bit address bus (A(17:0)

in the figure) and a 16-bit data bus (D(15:0) in the figure). It also contains five control

signals, all active low, called nCE (chip enable), nWE (write enable), nOE (output enable),

nLB (lower byte enable), and nUB (upper byte enable). The corresponding truth table is

shown in figure 13.13b.

Because this memory has just one data bus, that bus must be bidirectional. Conse-

quently, the analysis presented in section 13.2 will now be helpful.

A simplified diagram (based on section 13.2) for the interface designed in this section is

shown in figure 13.13c, where only nWE is used (the other four control inputs are enabled

permanently with a '0'—see truth table in figure 13.13b). When nWE ¼ '0', D is written

into the memory, while nWE ¼ '1' causes data to be read from it. The data read from the

memory is passed to the application circuit (signal test in the figure).

The experiment is as follows. A ROM is created inside the FPGA containing just eight

8-bit vectors. This data is copied to the first eight addresses of the SRAM, with the upper

byte filled with '0's. Next, the data from these eight addresses is read and passed continu-

ously to the test circuit, which displays the received data in eight LEDs, with each data

vector lasting 0.5 seconds. Additionally, nWE is also displayed by an LED, producing a

low brightness while nWE is pulsing or full brightness when nWE ¼ '1'.

This sequence of events can be observed in the waveforms of figure 13.13d. A control

signal called wr_done is created, which stays low during eight clock cycles, then is raised

permanently to '1'. Writing (that is, nWE ¼ '0' pulses) must only occur while wr_done ¼ '0'.

A VHDL code for this interface is presented below. Note in the entity (lines 6–14) that

the frequency of the system clock was entered using a GENERIC declaration (so the

code can be easily adjusted to any clock frequency) and that all ports are of type STD_

LOGIC(_VECTOR) (industry standard). In the declarative part of the architecture (lines

17–26), an array type is created, then a ROM conforming with that data type is produced,

with a total of eight 8-bit vectors.

The code proper (after line 27) is divided into several small sections. In line 29, static

values (¼ '0') are created for four SRAM control pins. In the first part of the subsequent

process, two counters (count and i) are used in order to produce the memory address (A);

count reduces the actual clock frequency (50 MHz, in this example) down to 2 Hz, while

i is a 0-to-7 counter that produces the actual address. Note that A (line 53) uses a type-

conversion function to convert i from INTEGER to STD_LOGIC_VECTOR, with 18 bits

(see this function in figure 3.10), so the proper package must be declared in the code

(std_logic_arith, line 4).

The next part of the process (lines 55–61) creates the nWE signal (and also we_test), fol-

lowing exactly the waveforms in figure 13.13d. Finally, the last part (lines 63–68) creates

the bidirectional bus (D) between the FPGA and the memory, and the output bus (test)

between the FPGA and the test circuit. Note that this part obeys the two recommenda-

tions introduced in section 13.2. Extensions to this design will be seen in the exercises

section.
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1 -----------------------------------------------------------------

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 USE ieee.std_logic_arith.all;

5 -----------------------------------------------------------------

6 ENTITY sram IS

7 GENERIC (fclk: NATURAL := 50_000_000);

8 PORT (clk, rst: IN STD_LOGIC;

9 nCE, nWE, nOE, nUB, nLB: OUT STD_LOGIC;

10 A: OUT STD_LOGIC_VECTOR(17 DOWNTO 0);

11 D: INOUT STD_LOGIC_VECTOR(15 DOWNTO 0);

12 test: OUT STD_LOGIC_VECTOR(7 DOWNTO 0);

13 we_test: OUT STD_LOGIC);

14 END ENTITY;

15 ------------------------------- ---------------------------------

16 ARCHITECTURE sram OF sram IS

17 TYPE memory IS ARRAY (0 TO 7) OF STD_LOGIC_VECTOR(7 DOWNTO 0);

18 CONSTANT rom: memory := (

19 0 => "00000000",

20 1 => "00000001",

21 2 => "00000011",

22 3 => "00000111",

23 4 => "00001111",

24 5 => "00011111",

25 6 => "00111111",

26 7 => "01111111");

27 BEGIN

28 --Feed SRAM static pins:--------------

29 nCE<='0'; nOE<='0'; nUB<='0'; nLB<='0';

30 --------------------------------------

31 PROCESS (clk, rst)

32 VARIABLE wr_enable: STD_LOGIC;

33 VARIABLE wr_done: STD_LOGIC;

34 VARIABLE count: NATURAL RANGE 0 TO fclk;

35 VARIABLE i: NATURAL RANGE 0 TO 15;

36 BEGIN

37 --Create address and wr_done:-----

38 IF (rst='1') THEN

39 count := 0;

40 i := 0;

41 wr_done := '0';

42 ELSIF (clk'EVENT AND clk='1') THEN

43 count := count + 1;

44 IF (count=fclk/2) THEN
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45 count := 0;

46 i := i + 1;

47 IF (i=8) THEN

48 i := 0;

49 wr_done := '1';

50 END IF;

51 END IF;

52 END IF;

53 A <= conv_std_logic_vector(i, 18);

54 --Create nWE:---------------------

55 IF (wr_done='0') THEN

56 wr_enable := clk;

57 ELSE

58 wr_enable := '1';

59 END IF;

60 nWE <= wr_enable;

61 we_test <= wr_enable;

62 --Bidirectional bus:--------------

63 test <= D(7 DOWNTO 0);

64 IF (wr_enable='0') THEN

65 D <= "00000000" & rom(i);

66 ELSE

67 D <= (OTHERS => 'Z');

68 END IF;

69 END PROCESS;

70 END ARCHITECTURE;

71 -----------------------------------------------------------------

Two other, modern interfaces, called I2C and SPI, will be described in the next chapter.

These are serial data interfaces for communication with memories and a variety of other

chip families.

13.7 Exercises

Exercise 13.1: Bidirectional Bus

A circuit with a bidirectional (INOUT) bus is shown in figure 13.14. Following the proce-

dure seen in section 13.2, write a VHDL code from which this circuit is inferred. Check the

RTL view and also the equations produced by the compiler.

Exercise 13.2: INOUT versus BUFFER Mode

The BUFFER mode is rarely used in VHDL code (an auxiliary internal signal can be used

instead, so the actual signal, which goes out of the design, can be declared as OUT instead

VHDL Design of Memory Circuits 371



of BUFFER). Just as an exercise, consider that line 7 in the code in section 13.2 has the

word INOUT replaced with BUFFER.

a) Draw the circuit (as in figure 13.2a) that you believe the compiler will infer.

b) Compile the code and check the circuit (as in figure 13.2b) that the compiler actually

implemented.

Exercise 13.3: COE versus MIF Files

Write a CGF and then a COE file with the same contents as the MIF file of figure 13.3.

Exercise 13.4: Synchronous ROM

a) Analyze the code presented in section 13.4 for Altera’s ROM template and determine

which ROM of figure 13.5 (if any) this code will implement.

b) Compile this code using your synthesis tool and check if the inferred circuit coincides

with your prediction.

Exercise 13.5: ROM Implemented with a HEX File C1

Repeat the design of ROM implemented with an initialization file in section 13.4, entering

the data with a HEX file instead of a MIF file. Use the HEX file of section 13.3.

Exercise 13.6: ROM Implemented with a HEX File C2

Repeat the design of ROM implemented with a vendor-specific function in section 13.4,

entering the data using a HEX file instead of a MIF file. Use the HEX file of section 13.3.

Exercise 13.7: RAM Implemented with a HEX File

Repeat the design of RAM implemented with regular VHDL code in section 13.5, but

enter the data using an HEX file instead of a MIF file. Use the HEX file of section 13.3.

Exercise 13.8: ROM Implemented in an User SRAM Block

Make the changes needed for the code of RAM implemented in a user SRAM block in

section 13.5 to produce a ROM in an M4K user SRAM block instead of a RAM. Recall

that the counterpart of the synthesis attribute ramstyle is romstyle.

Figure 13.14

372 Chapter 13



Exercise 13.9: Synchronous RAM

Figure 13.15 shows a synchronous DFF-based RAM with a bidirectional data bus. Design

this circuit using VHDL. Enter the number of address bits (M ) and the number of bits per

word (N ) as GENERIC declarations.

Exercise 13.10: External Memory Interface

Devise an experiment similar to that in section 13.6, but with the data located in a file

rather than in a ROM memory in the FPGA.

Figure 13.15
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14 VHDL Design of Serial Communications Circuits

14.1 Introduction

Figure 14.1 shows a typical arrangement for the physical layer of a modern serial data

communications system that employs a high-performance line encoder/decoder plus a

high-speed I/O circuit. This structure is employed in basically all high-speed serial data

transmission media, like internet connections (through twisted pairs of wires or optical fi-

ber) and DVI (digital visual interface) cables connecting computers to LCD monitors.

The purpose of a line code is to modify the data sequence (either in terms of shape or in

terms of content) in order to produce a more robust physical data stream (less noise and

EMI e¤ects and better DC balance). On the other hand, the purpose of the I/O circuit is to

provide adequate voltage (or current) levels to further improve the physical signal’s robust-

ness (using low-swing di¤erential voltages, for example, instead of large, regular voltages).

Manchester, MLT-3, 8B/10B, and 4D-PAM5 are examples of line codes, while TTL,

LVCMOS, PECL, CML, and LVDS are examples of I/Os (Pedroni 2008).

The communication in figure 14.1 can be classified as synchronous or asynchronous. In

the most general definition, it is said to be synchronous when Rx and Tx operate with the

same clock, so the clock signal is either transmitted in a separate wire (assuming that it is

a wired channel) or the transmitted data contains enough transitions or some kind of

embedded bit pattern that allows the receiving end to retrieve the actual clock from the

received data. On the other hand, the communication is said to be asynchronous when no

clock information is transmitted, in which case start and stop bits are inserted before and

after short bit streams (typically, one byte), allowing the receiving end to correctly decode

the received data even if the Tx and Rx clock frequencies (phases) are not exactly equal

(some of the synchronous interfaces also employ start/stop bits). I2C, SPI, and TMDS

(described later) are examples of synchronous interfaces, while the RS232 UART is truly

asynchronous. Most modern high-performance interfaces are synchronous.



14.2 Data Serializers/Deserializers

Several interfaces for serial data communications are described in this and in following

chapters. In some cases, the transformation of data from its usual form (parallel) to serial

(time-multiplexed single bits) is part of the interface itself (as in the video interfaces DVI

and FPD-Link, studied in chapters 16 and 17). The circuit responsible for such a transfor-

mation is the serializer, while the circuit that returns the data to its original format is a

deserializer.

Figure 14.2a symbolically illustrates the data serializing principle. The circuit contains a

receiving (Rx) and a transmitting (Tx) section. Rx receives din (from some other circuit) in

parallel, and passes it to Tx, which sends it out serially, producing dout.

Observe in figure 14.2a the presence of two clocks, where clkTx must be faster than

clkRx by a factor N (for unbu¤ered, constant-speed systems), where N is the number of

bits in din.

In figure 14.2b, clock details are included. It is assumed that the transmission clock’s fre-

quency is higher than the system clock’s, so a PLL (Pedroni 2008) is needed. In summary,

the low-frequency clock (clkRx) is derived from the system clock, and is then multiplied by

N to get the high-frequency clock (clkTx).

An important consideration about serializers is that some kind of synchronism between

clkRx and clkTx is needed, because if the system does not possess any provision for reset

or content initialization, the states of its flip-flops on power up are uncertain, so the

Figure 14.1
Typical high-performance serial data communications link (line encoder plus high-speed I/O).

Figure 14.2
Data serializers. (a) General principle; (b) With a single clock; (c) With a single clock and provision for
synchronism.
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counter that indexes the transmissions of din might start from an arbitrary position rather

than from the LSB or MSB. Consequently, unless one knows precisely the phase relation-

ship in the PLL (which, by the way, can vary), this arrangement must be improved.

A solution is depicted in figure 14.2c, where the same clock feeds both sections. The role

of clkRx is performed by an enable (ena) signal, which stays high during only one out of N

clock periods. This single clock (clkTx) will be represented by sclk (serializer clock) in the

design ahead.

Serializer Circuits

Figure 14.3 shows two options for implementing a serializer. Note the PLL at the clock

input in each case, which is necessary when the required transmission frequency (sclk,

same as clkTx) is higher than that of the system clock (clk).

Figure 14.3
Data serializer circuits.
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The option in figure 14.3a is constructed with a shift register with data-load capability

(Pedroni 2008), plus a counter to generate the load-enable (ena) signal and a PLL, if nec-

essary. As shown in the timing diagram, ena stays high during only one out of every N

clock periods, allowing din to be loaded into the shift register, which shifts the data out

bit by bit subsequently. The counter can operate either at the same clock edge as the shift

register or at the other edge.

The option in figure 14.3b is constructed with an input register and a multiplexer, plus a

counter to generate the register-enable (ena) and port-select (sel ) signals, and a PLL, if nec-

essary. The output flip-flop is optional; it can be removed if glitches during multiplexer

transitions are not a problem in that particular application. As shown again in the timing

diagram, ena stays high during only one out of every N clock periods, allowing din to be

loaded into the input register (N flip-flops), being then passed to the output register (single

flip-flop) one bit at a time by the multiplexer.

The two options in figure 14.3 are relatively similar in terms of hardware size, but the

latter might be advantageous if din has already been stored elsewhere, so the input register

can be removed. However, due to the slightly higher propagation delay of its larger multi-

plexer (N inputs, against two inputs in the former), the latter might be slightly slower.

Deserializer Circuit

Once one knows how to construct a serializer, building a deserializer is straightforward be-

cause one is just the opposite of the other. An example is depicted in figure 14.4, showing a

shift register followed by an (optional) output register. Note that again a single clock (sclk,

same as clkTx) is used, with the slow section controlled by a store-enable (ena) signal

derived from that clock. (See more on this in exercise 14.5.)

Figure 14.4
Deserializer circuit.
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Design of a Fast Serializer

The code below implements the serializer in figure 14.3b, under the project name fast_

serializer (line 5). It was assumed that N ¼ 4 bits, that the system clock frequency is 10

MHz, and that the serializer must operate at full speed—that is, with din produced at a

rate of 10 MHz. Consequently, a PLL is required in order to generate the actual serializer

clock (sclk) of 40 MHz. N was entered using a GENERIC declaration (line 6), so the code

can be easily adjusted to any serializer size (of course, then the PLL multiply and divide

factors must also be adjusted). The PLL (see note below) is declared in lines 15–20, then

used in line 23.

The code proper is in lines 21–39. In its first part (line 23), it infers the PLL, thus pro-

ducing sclk. In its second part (process of lines 26–38), the serializer is built, based on the

diagram in figure 14.3b.

Note: The PLL cell can be instantiated, for example, with the MegaWizard Plug-In Man-

ager of Quartus II (for Altera devices), which was the case in the code below. This creates

the additional file altera_pll.vhd, which must be included in the project. Further details can

be seen in appendix G.

1 ------------------------------------------------------------

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 ------------------------------------------------------------

5 ENTITY fast_serializer IS

6 GENERIC (N: INTEGER := 4); --number of bits

7 PORT (clk: IN STD_LOGIC; --10MHz system clock

8 din: IN STD_LOGIC_VECTOR(N-1 DOWNTO 0);

9 dout, sclk_test: OUT STD_LOGIC);

10 END ENTITY;

11 ------------------------------------------------------------

12 ARCHITECTURE fast_serializer OF fast_serializer IS

13 SIGNAL sclk: STD_LOGIC;

14 SIGNAL internal: STD_LOGIC_VECTOR(N-1 DOWNTO 0);

15 COMPONENT altera_pll IS

16 PORT(areset: IN STD_LOGIC := '0';

17 inclk0: IN STD_LOGIC := '0';

18 c0: OUT STD_LOGIC;

19 locked: OUT STD_LOGIC);

20 END COMPONENT;

21 BEGIN

22 -----Get sclk (with PLL):------------

23 pll_circuit: altera_pll PORT MAP ('0', clk, sclk, OPEN);

24 sclk_test <= sclk;
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25 -----Build serializer:---------------

26 PROCESS (sclk)

27 VARIABLE count: INTEGER RANGE 0 TO N;

28 BEGIN

29 IF (sclk'EVENT AND sclk='1') THEN

30 count := count + 1;

31 IF (count=N-1) THEN --enabled to update "internal"

32 internal <= din;

33 ELSIF (count=N) THEN --counter is 0-to-(N-1)

34 count := 0;

35 END IF;

36 dout <= internal(count); --continuous serial output

37 END IF;

38 END PROCESS;

39 END ARCHITECTURE;

40 ------------------------------------------------------------

Simulation results are depicted in figure 14.5, with several values highlighted. It is im-

portant to remember that the circuit must be simulated with a clock frequency equal to or

near that entered in the PLL file (altera_pll.vhd, 10 MHz in this example). Note that in this

case the LSB is transmitted first (see exercise 14.2).

14.3 PS2 Interface

The PS2 interface was introduced by IBM in 1987 for connecting computers to keyboard

and mouse devices. Even though it is now giving place to the USB (universal serial bus)

interface, its study helps understand how computers communicate with peripherals, also

allowing interesting designs to be developed in the lab sections.

PS2 (or PS/2, personal system version 2) is a serial, 8-bit oriented bus for communica-

tion between a computer and its mouse and keyboard peripherals. As illustrated in figure

Figure 14.5
Simulation results from the fast_serializer code (circuit of figure 14.3b).
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14.6, a PS2 code word consists of one data byte, to which start, (odd) parity, and stop bits

are added. In this example, the make code (explained later) for the "P" keyboard key is

shown (this code word is for both "p" and "P", which are di¤erentiated by including or

not including the SHIFT key in the operation). The transmission starts from the left, so

the code word is 4Dh (hexadecimal form, from right to left). As will be seen, several such

code words are required each time a PS2 mouse or keyboard needs to communicate with

the host computer.

Host-Device Communication

PS2 devices are normally connected using 6-pin mini-DIN (Deutsches Institut für Nor-

mung) connectors. Its female part is depicted in figure 14.7a, along with the respective pin

functions. Note the presence of clock in pin 5, so this is a synchronous interface.

Even though the transmission protocol (figure 14.6) is the same for mouse and keyboard

communications, the data packets are assembled di¤erently. So to avoid confusion (that is,

a mouse connected into a keyboard receptacle or vice versa), di¤erent colors are employed

in the fabrication of this connector, with green used for the mouse and purple for the

keyboard.

Figure 14.7b shows a simplified view of a PS2 host-device physical connection. Both

lines ( ps2clk and ps2data) are open-drain, so pull-up resistors are needed, and when

Figure 14.6
PS2 code word, showing the make code for the "p" key (4Dh, from right to left).

Figure 14.7
(a) Six-pin mini-DIN connector (female part) for PS2 devices; (b) Internal interface details.
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these lines are inactive their logic level is '1'. Control always belongs to the host, which can

inhibit the communication at any time by pulling the clock line low (see the request signal

on the host side). On the other hand, the clock is always generated by the device, with a

period in the range 60–100 ms, hence a frequency between 10 and 16.7 kHz. Power (VDD)

is supplied by the host.

A timing diagram for the device-to-host communication is depicted in figure 14.8a. The

device sends new data at the positive clock edge, so the receiver (host) samples it at the neg-

ative clock transition. The communication starts with the device lowering the data line

(this line must have been high for at least 50ms), which constitutes the start bit, so the

host gets ready to receive the subsequent bit stream. The system is busy from the moment

when the device lowers the ps2data wire to '0' until when ps2clk stays high for more than

one-half of its time period (recall that this period is in the 60–100 ms range).

A timing diagram for the host-to-device communication is depicted in figure 14.8b.

The host lowers the clock line for at least 100ms (see request signal in figure 14.7b),

informing the device that it wants to send data. The device then releases the clock and

data transfer proceeds until the stop bit is received, when the device produces a '0' bit in

acknowledgement.

At power up, a relatively complex sequence of communications between the host and

the devices (mouse and keyboard) takes place, during which the devices inform their IDs,

run a self-test (called BAT—basic assurance test) whose result is communicated to the

host, and also set up some default parameters.

Two such parameters in the case of a keyboard are called typematic delay and typematic

rate. These parameters establish how the host must behave when a key is pressed during

a long time. The typematic delay determines the time interval that the host must wait until

it considers a long press to be a sequence of key presses rather than just a single press. Its

default value is 0.5 seconds. The typematic rate is the number of characters per second

produced after the typematic delay has occurred, with a default value normally of 10.

Figure 14.8
(a) Device to host communication; (b) Host to device communication.
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PS2 Keyboard Encoding

When a key is pressed, the keyboard processor issues a make code, while a break code is

issued when the key is released (these codes have nothing to do with the ASCII table; if

ASCII outputs are needed, the translation must be performed by the host).

The set of make/break code words constitutes a Scan Code Set. Even though there are

three of such sets, Scan Code Set 2 is practically the only one used (a portion of it is

depicted in figure 14.9). Note that the break code is the same as the make code, just pre-

ceded by F0h. Observe also that even though most keys are represented (make code) with

one byte, some are represented with two bytes. Finally, note that the code corresponding

to the "P" key (4Dh) is indeed that used in the example of figure 14.6.

As an example, say that one wants to type the letter "a" (recall that the keyboard shows

only capital letters, so to get "A" one of the SHIFT keys would need to be pressed too).

The following code words are transmitted by the keyboard controller to the host computer

(start, parity, and stop bits not included yet):

First code word: 1Ch when the key is pressed (make code for "a").

Second code word: F0h when the key is released (first part of the break code).

Third code word: 1Ch right after F0h (second part of the break code for "a").

Other cases are treated in exercise 14.6.

PS2 Mouse Encoding

One of the most common mouse constructions is with three pushbuttons and a scrolling

wheel. In this case, the data packet transmitted from the mouse to the host when they com-

municate contains four bytes, as shown in figure 14.10 (hence a 44-bit packet results after

PS2 encoding). Note that nine bits are used to represent the X movement (eight bits in byte

2 plus the sign bit in bit4 of byte 1), hence encompassing the �255 to þ255 interval. The

same is true for the Y movement, represented in byte 3 and bit5 of byte 1. The scrolling

Figure 14.9
A portion of the Scan Code Set 2 for keyboard encoding (in hexadecimal form).

VHDL Design of Serial Communications Circuits 383



wheel (called Z) takes only eight bits (byte 4). The other bits in byte 1 represent the status

of the three pushbuttons and possible overflow in X and Y.

Design of a PS2 Keyboard Interface

We conclude this section with the design (using VHDL) of a simplified keyboard interface.

The system is depicted in figure 14.11, which shows a PS2 keyboard connected to an

FPGA, which in turn feeds an SSD. We want to design a circuit capable of reading the

numeric (0, 1, . . . , 9) keyboard keys and display them on the SSD when such keys are

pressed. If any other keyboard key is pressed, then "e" (error) must be displayed. On the

other hand, if the error occurs in the read key (that is, if the start bit is not '0', the stop bit

is not '1', or if the parity is not odd), then "E" must be displayed.

A VHDL code for this problem is presented below. Because both signals from the key-

board ( ps2clk and ps2data) will be debounced, a debouncing period (deb_cycles) was speci-

fied in line 4, using a GENERIC declaration, so this value can be easily changed. The

same occurs with the time interval for detection of the idle state (idle_cycles, line 5), which

has to be larger than one-half the period of ps2clk (since this is a100 ms, 60 ms was

adopted). The input and output signal names (lines 7–10) are from figure 14.11.

The keyboard signals, ps2clk and ps2data, are debounced in the processes of lines 21–35

and 37–51, respectively. The idle state is detected in the process of lines 53–69; the system

is considered busy (not idle) from the moment when the device lowers the voltage of

ps2data until when ps2clk stays high for at least 60 ms.

The data from the keyboard is recorded in the process of lines 71–86. Note that the se-

rial data is stored sequentially by data (line 78), then passed in parallel to dout (line 82), so

the output to the SSD will not be disturbed while the next character is being received.

Figure 14.10
PS2 mouse encoding (for three buttons plus scroll).

Figure 14.11
Experiment with a PS2 keyboard.
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Because each character is composed of at least three code words (make code plus break

code, figure 14.9), it is important to observe that the VHDL code below sequentially

detects all such codewords. For example, if "0" is pressed, 45h will be transmitted when

the key is pressed, then F0h and 45h will follow when the key is released, all of which are

detected by the circuit. The (interesting) consequence of this is discussed in exercise 14.7.

Errors are checked in the process of lines 88–98. Note that this is a purely combina-

tional circuit, so concurrent code (with WHEN) could have been used. Finally, the SSD

driver is in lines 102–122, which is a MAKE/BREAK-to-SSD code conversion (again,

purely combinational). ssd does not need to be stored because dout has already been

registered.

The reader is now invited to test this design with the FPGA board. For instance, what is

expected to happen if line 116 is commented out (exercise 14.7)?

1 ----------------------------------------------------------------------

2 ENTITY ps2_keyboard IS

3 GENERIC (

4 deb_cycles: INTEGER := 200; --4us for debouncer (@50 MHz)

5 idle_cycles: INTEGER := 3000); --60us (>1/2 period ps2_clk)

6 PORT (

7 clk: IN BIT; --system clock (50 MHz)

8 ps2clk: IN BIT; --clk from keyboard (10–17 kHz)

9 ps2data: IN BIT; --data from keyboard

10 ssd: OUT BIT_VECTOR(6 DOWNTO 0));--data out to SSD

11 END ps2_keyboard;

12 ----------------------------------------------------------------------

13 ARCHITECTURE ps2_keyboard OF ps2_keyboard IS

14 SIGNAL deb_ps2clk: BIT; --debounced ps2_clk

15 SIGNAL deb_ps2data: BIT; --debounced ps2_data

16 SIGNAL data, dout: BIT_VECTOR(10 DOWNTO 0);

17 SIGNAL idle: BIT; --'1' means data line is idle

18 SIGNAL error: BIT; --'1' when start, stop, or parity wrong

19 BEGIN

20 ---------Debouncer for ps2clk:---------------

21 PROCESS (clk)

22 VARIABLE count: INTEGER RANGE 0 TO deb_cycles;

23 BEGIN

24 IF (clk'EVENT AND clk='1') THEN

25 IF (deb_ps2clk=ps2clk) THEN

26 count := 0;

27 ELSE

28 count := count + 1;

29 IF (count=deb_cycles) THEN
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30 deb_ps2clk <= ps2clk;

31 count := 0;

32 END IF;

33 END IF;

34 END IF;

35 END PROCESS;

36 ---------Debouncer for ps2data:--------------

37 PROCESS (clk)

38 VARIABLE count: INTEGER RANGE 0 TO deb_cycles;

39 BEGIN

40 IF (clk'EVENT AND clk='1') THEN

41 IF (deb_ps2data=ps2data) THEN

42 count := 0;

43 ELSE

44 count := count + 1;

45 IF (count=deb_cycles) THEN

46 deb_ps2data <= ps2data;

47 count := 0;

48 END IF;

49 END IF;

50 END IF;

51 END PROCESS;

52 ---------Detection of idle state:-----------

53 PROCESS (clk)

54 VARIABLE count: INTEGER RANGE 0 TO idle_cycles;

55 BEGIN

56 IF (clk'EVENT AND clk='0') THEN

57 IF (deb_ps2data='0') THEN

58 idle <= '0';

59 count := 0;

60 ELSIF (deb_ps2clk='1') THEN

61 count := count + 1;

62 IF (count=idle_cycles) THEN

63 idle <= '1';

64 END IF;

65 ELSE

66 count := 0;

67 END IF;

68 END IF;

69 END PROCESS;

70 ---------Receiving data from keyboard:-------

71 PROCESS (deb_ps2clk)

72 VARIABLE i: INTEGER RANGE 0 TO 15;
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73 BEGIN

74 IF (deb_ps2clk'EVENT AND deb_ps2clk='0') THEN

75 IF (idle='1') THEN

76 i:=0;

77 ELSE

78 data(i) <= deb_ps2data;

79 i := i + 1;

80 IF (i=11) THEN

81 i:=0;

82 dout <= data;

83 END IF;

84 END IF;

85 END IF;

86 END PROCESS;

87 ---------Checking for errors:----------------

88 PROCESS (dout)

89 BEGIN

90 IF (dout(0)='0' AND dout(10)='1' AND (dout(1) XOR

91 dout(2) XOR dout(3) XOR dout(4) XOR dout(5)

92 XOR dout(6) XOR dout(7) XOR dout(8)

93 XOR dout(9))='1') THEN

94 error <= '0';

95 ELSE

96 error <= '1';

97 END IF;

98 END PROCESS;

99 ---------SSD driver:-------------------------

100 --This process is a MAKE-code to SSD-code conversion.

101 --No need to store "ssd" because "dout" is already registered.

102 PROCESS (dout, error)

103 BEGIN

104 IF (error='0') THEN

105 CASE dout(8 DOWNTO 1) IS

106 WHEN "01000101" => ssd <= "0000001"; --"0" on SSD

107 WHEN "00010110" => ssd <= "1001111"; --"1" on SSD

108 WHEN "00011110" => ssd <= "0010010"; --"2" on SSD

109 WHEN "00100110" => ssd <= "0000110"; --"3" on SSD

110 WHEN "00100101" => ssd <= "1001100"; --"4" on SSD

111 WHEN "00101110" => ssd <= "0100100"; --"5" on SSD

112 WHEN "00110110" => ssd <= "0100000"; --"6" on SSD

113 WHEN "00111101" => ssd <= "0001111"; --"7" on SSD

114 WHEN "00111110" => ssd <= "0000000"; --"8" on SSD

115 WHEN "01000110" => ssd <= "0000100"; --"9" on SSD
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116 WHEN "11110000" => ssd <= "1111111"; -- blank

117 WHEN OTHERS => ssd <= "0010000"; --"e" on SSD

118 END CASE;

119 ELSE

120 ssd <= "0110000"; --"E" on SSD

121 END IF;

122 END PROCESS;

123 END ps2_keyboard;

124 ----------------------------------------------------------------------

14.4 I2C Interface

I2C (inter integrated circuit) is a synchronous 8-bit-oriented serial bus for communication

between integrated circuits installed next to each other (normally on the same board). It

employs just two wires (plus a common GND) and has four standardized speed modes,

called standard (100 kbps), fast (400 kbps), fast-plus (1 Mbps), and high-speed (3.3

Mbps), though in practice other, higher speeds are also used.

The original document was released by Philips in 1982, followed by versions 1.0 (1992),

2.0 (1998), 2.1 (2000), and 3.0 (2007).

As depicted in figure 14.12, the I2C bus consists of two wires, called SCL (serial clock)

and SDA (serial data), which interconnect a master unit to a number of slave units. A

common ground wire (not shown) is obviously also needed for the system to function.

The clock (SCL) is unidirectional, always generated by the master (often a microcontrol-

ler), while data (SDA) is bidirectional. Examples of IC families currently fabricated with

I2C support are also shown in figure 14.12; these include microcontrollers, EEPROM and

Flash memories, A/D and D/A converters, RTC (real time clock) circuits, and tempera-

ture sensors.

The SCL and SDA chip outputs are open-drain, so external pull-up resistors (RPU), typ-

ically in the 1.5 to 33 kW range, are connected between them and VDD. The value of RPU

depends on the total node capacitance; if it is large (long bus, with many slaves), then the

resistor must be small to achieve the minimum rise time defined in the I2C specifications.

Figure 14.12
I2C bus (two-wire, synchronous, 8-bit oriented, master-slave type).
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The value of VDD was 5V in initial I2C-driven devices, but voltages as low as 1.8V are now

common.

The number of devices sharing the same bus can be up to 128 (7-bit address) or 1024

(10-bit address). More than one master is allowed, in which case the I2C protocol provides

bus arbitration (the first master to lower the voltage of SDA is the current master). I2C

provides also other advanced features, such as clock stretching, general call, and reset by

software.

Operation of the I2C Interface

The overall operation of the I2C interface is illustrated in figure 14.13. Figure 14.13a

shows details of the start and stop sequences, plus the construction of the 9-bit block. A

high-to-low transition of SDA while SCL is high constitutes a start condition, while a

low-to-high transition of SDA while SCL is high is a stop condition. Each transmission

consists of an 8-bit block, followed by an acknowledgement bit (ACK ¼ '0') issued by the

corresponding receiver when proper data is identified. Because SDA is a bidirectional line,

during the ACK bit the transmitter must free the line (that is, go into the high-impedance

state, 'Z') to allow the receiver to place a '0' on that wire. The specifications require that the

data remain stable while SCL is high, so changes in SDA are only allowed when the clock

is low. (Strictly speaking, this specification might not be precise, because flip-flops are used

to build these circuits, and they are transparent only at the clock transitions, so the data

only need to remain stable during the setup plus hold times of the flip-flops).

Figures 14.3b–c show a simplified view of communications over the I2C bus. The white

rectangles correspond to transmissions made by the master, while the gray ones represent

transmissions made by the slave (because they share a single data line, while one is trans-

mitting the output of the other must be 'Z').

In figure 14.13b, the master sends data to the slave. It begins with a start sequence (S), to

which the first 9-bit block follows, consisting of a slave address (seven bits, in general) plus

Figure 14.13
I2C communications: (a) Details of start and stop sequences plus 9-bit block construction; (b) Master writing to
slave; (c) Master reading from slave.
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a read/write bit ('0' for writing), causing the corresponding slave to respond with ACK ¼ '0'

if that address is identified. The next blocks contain eight bits of data (can also be a mem-

ory address, for example), to which the slave again responds with ACK ¼ '0'. When the

master is done transmitting, it executes the stop sequence (P).

In figure 14.13c, the master reads data from the slave. The initial two 9-bit blocks are

exactly the same as those described above (sometimes referred to as ‘‘dummy write’’), fol-

lowed by another start operation and slave address, but now with R/W ¼ '1' (read), so in

the next blocks the slave transmits data to the master, so now the master issues the ACK

bit. When the master is done receiving all the data that it wanted, it issues a ‘‘no acknowl-

edge’’ bit (NoACK ¼ '1'), followed by the stop sequence.

The design of an actual circuit using the I2C bus is illustrated next, which deals with

an EEPROM memory. It is important to mention, however, that for each device category

(EEPROM, Flash, ADC, etc.) with I2C support, specific data sequences and address

values are employed, so it is indispensable to study the device’s datasheets.

Design of an I2C Interface for an EEPROM Memory

As shown in figure 14.12, EEPROM memories are among the several IC categories fabri-

cated with I2C support. The purpose of this exercise is to design a circuit capable of writ-

ing data to and reading data from an EEPROM that communicates using the I2C bus.

Hence our circuit will play the role of master, while the memory will be its (only) slave.

The chosen device is AT24C02B, from Atmel, which is a 256-byte memory (hence both

address and data are eight bits wide).

The experiment is depicted in figure 14.14. The inputs are data (4-bit data, from four

toggle switches), address (4-bit address, from other four switches), clk (system clock,

assumed to be 50 MHz), plus rst (optional reset), rd (read), and wr (write) commands (the

last three are also from switches). The outputs are the I2C signals (SCL and SDA—

the latter is in fact bidirectional), with the respective pull-up resistors, plus ssd, which feeds

Figure 14.14
I2C interface for an EEPROM (FPGA implements the master, having the memory as its only slave). The figure
on the right shows how the EEPROM was wired.
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an SSD display (chapter 12) to exhibit the data retrieved from the EEPROM, and ack_

error, which checks whether the three acknowledgement bits (ACK ) issued during writing

are all correct ('0').

Figure 14.14 also shows how the device was wired. Note that besides SCL and SDA it

has also four other programmable pins, labeled A0, A1, A2, and WP. The device is fabri-

cated with seven address bits, of which four (the MSBs) are fixed and equal to "1010",

hence leaving only three (A2A1A0) to be programmed by the designer. For example, if

A2A1A0 are hardwired to GND, then the device’s address is "1010000". The other pin,

WP (write protect), serves to either block (when '1') or allow (if '0') writing to the device.

There are two options for writing data to this EEPROM, called byte write and page

write. In the former, a single byte is written to the chosen address, while in the latter a set

of eight bytes are written sequentially, starting from the given address.

To read from this memory, there are three options, called current address read, random

read, and sequential read. In current address read, the last accessed address is read. In ran-

dom read, any address can be chosen. Finally, in sequential read, it will keep reading until

the master stops it with a NoACK ¼ '1' bit (followed by a stop sequence). Additional

details are available in the device’s datasheets.

The recommended approach to solve this type of problem is to use the finite state ma-

chine (FSM) model (chapter 11). However, since this is not a trivial circuit, detailed infor-

mation is needed before we draw the machine’s state transition diagram. Two ways of

gathering such information are to draw the circuit’s flowcharts or to draw its timing dia-

grams (the former is more behavioral, while the latter is more hardware oriented). Both of

these approaches are illustrated below.

Studying the device’s datasheets, we get the sequence of events for writing to this mem-

ory depicted in figure 14.15a, where the white rectangles represent transmissions made by

the master, while the dark ones represent responses issued by the slave. It begins with the

master executing the start operation (if a write command, wr ¼ '1', is received), followed by

the device address with a R/W ¼ '0' bit ('0' is for writing, '1' is for reading), which consti-

tutes the first byte, to which the receiver responds with ACK ¼ '0' (if the address is correct).

Next, the master sends the intended memory address (again, eight bits), to which the slave

again responds with ACK ¼ '0'. The third byte contains the data to be stored at the address

just sent, followed again by ACK ¼ '0' from the slave. If byte write is the intended mode,

then the dashed arrow in figure 14.15a is the right path; that is, the master simply executes

the stop sequence and returns to the idle state. On the other hand, if page write is the in-

tend mode, then wr must remain at '1' for seven more data cycles. Upon returning to the

idle state, the wr and rd inputs are checked, and a new procedure will start if one or both

are asserted. In the present example, byte write will be implemented.

The same type of reasoning, now for reading, leads to the flowchart of figure 14.15b.

To read data, the initial part of the sequence is the same as that for writing (start, device

address, memory address). In the second part, the start operation is repeated and the
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device address is transmitted, but now with R/W ¼ '1', to which the slave responds with

ACK ¼ '0'. After this point, the slave is who transmits the data, with the master then

responding with ACK ¼ '0'. If the intended mode is random read, then the dashed arrow

is the right path—that is, the master sends NoACK ¼ '1', followed by the stop sequence,

causing the system to return to the idle state. On the other hand, if sequential read is the

desired mode, then the solid arrow on the left represents the proper path, which is only

interrupted when rd ¼ '0', after which NoACK ¼ '1' and stop are provided by the master.

In figure 14.15c, the combined procedure (writeþ read) is presented.

As mentioned earlier, another way of gathering information for the state transition dia-

gram is by drawing the system’s timing diagram. Based on the datasheets, the timings of

figure 14.16 result. The advantage of timing diagrams is that they convey more detailed

Figure 14.15
Flowcharts for (a) writing to and (b) reading from the EEPROM. The combined procedure is shown in (c).
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information than the flowcharts, but with the drawback that multiple alternatives cannot

be expressed (or are di‰cult to express) (the diagrams of figure 14.16 are for byte write and

random read ).

We can now turn to the state transition diagram. Using the information in figure 14.15

or 14.16 (or both), the machine of figure 14.17 results. The upper branch represents the six

states common for writing and reading. The central branch represents the continuation for

writing and the lower branch is the continuation for reading. The two start sequences are

equal, so to di¤erentiate them in the diagram they were called start_wr (for writing) and

start_rd (for reading). The device address is also issued twice, but with the eighth bit

(LSB) equal to '0' for writing and '1' for reading, so the corresponding states were named

dev_addr_wr and dev_addr_rd. ACK is another state that appears multiple times, so they

were called ACK1, ACK2, and so on. Recall that this machine outputs are the I2C signals

(SCL, SDA), so their values were listed under every state. Because this is an FSM with an

embedded timer, the value for timer was also listed in each state (see details on how to de-

sign this type of machine in section 11.6).

A VHDL code for this FSM is presented below, under the project name eeprom_i2c

(line 8). Initially, GENERIC was used to enter time-related parameters (lines 10–12), so

the code can be easily adapted to any clock frequency, desired speed, and EEPROM write

latency. In the present example, the system clock is 50MHz, the desired data rate is

100kbps (standard mode), and the maximum device’s write time (twr) is 5ms (see data-

sheets). The pin names (lines 13–23) are from figure 14.14.

The code proper (architecture) is in lines 26–199. It starts with a series of signal declara-

tions, which include the device addresses for writing and reading (lines 30–31) and also the

Figure 14.16
EEPROM (a) writing and (b) reading timing diagrams.
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FSM-related declarations (lines 40–42). The device’s address, with A2A1A0 connected to

GND (figure 14.14), is "1010000", to which the R/W bit is appended to the right. Note in

line 38 that i was declared as a shared variable, so it can be used by more than one process.

Before the processes start, general input-output signals are configured in lines 45–48. Be-

cause each memory location is eight bits wide, we can store the SSD value (seven bits) cor-

responding to each data input value (data) directly into the memory, with a '0' appended to

its left (line 45). To do so, note in line 45 that, as in previous designs, a function called

integer_to_ssd (seen in section 12.2, for example) is employed to make the conversion

from a 4-bit integer (data) to the SSD format (this function was assumed to be in a pack-

age called my_ functions, declared in line 6; the corresponding file must obviously be

included in the project). Because the memory addresses are also eight bits wide, four zeros

were appended to the left of address (line 46). The SSD output (line 47) is a signal read

from the memory (data_in), with the MSB discarded. Finally, the acknowledge error

(ack_error, line 48) checks whether the three ACK bit received from the slave during the

memory-write procedure are correct.

The first process (lines 51–61) derives, from clk, an auxiliary clock (aux_clk) whose fre-

quency is four times that of the desired data rate. This signal is then used in the next pro-

cess (lines 64–79) to construct the two clocks seen in the timing diagrams of figure 14.16

(bus_clk, data_clk), which have phases 90 degrees apart. bus_clk is used to create SCL,

while data_clk controls SDA.

The other two processes are for the FSM and are direct applications of the general tem-

plate studied in chapter 11 (see timed FSMs in section 11.6). The lower (sequential) section

Figure 14.17
Complete finite state machine for EEPROM writing and reading.
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is in the process of lines 81–113, while the upper (combinational) section is in the process

of lines 115–198.

Note: Writing to an EEPROM cell is slow (a few ms/word). For that reason, the chip ini-

tially places the data in a regular register (which is fast), to subsequently store it in the

EEPROM array. During this operation, the memory ignores any input event. In exercise

14.9, an interesting aspect concerning this latency and the VDHL code below is explored.

1 -----------------------------------------------------------------------

2 --Remember to include function "integer_to_ssd" in the project.

3 -----------------------------------------------------------------------

4 LIBRARY ieee;

5 USE ieee.std_logic_1164.all;

6 USE work.my_functions.all; --package with "integer_to_ssd" function.

7 -----------------------------------------------------------------------

8 ENTITY eeprom_i2c IS

9 GENERIC (

10 fclk: POSITIVE := 50_000; --Freq. of system clock (in kHz)

11 data_rate: POSITIVE := 100; --Desired I2C bus speed (in kbps)

12 write_time: POSITIVE := 5); --EEPROM max write time (in ms)

13 PORT (

14 --System signals:

15 clk, rst: IN STD_LOGIC;

16 rd, wr: IN STD_LOGIC;

17 data: IN INTEGER RANGE 0 TO 15;

18 address: IN STD_LOGIC_VECTOR(3 DOWNTO 0);

19 ssd: OUT STD_LOGIC_VECTOR(6 DOWNTO 0);

20 ack_error: OUT STD_LOGIC;

21 --I2C signals:

22 SCL: OUT STD_LOGIC;

23 SDA: INOUT STD_LOGIC);

24 END eeprom_i2c;

25 -----------------------------------------------------------------------

26 ARCHITECTURE fsm OF eeprom_i2c IS

27 --General constants and signals:

28 CONSTANT divider: INTEGER := (fclk/8)/data_rate;

29 CONSTANT delay: INTEGER := write_time*data_rate;

30 CONSTANT dev_addr_write: STD_LOGIC_VECTOR(7 DOWNTO 0):= "10100000";

31 CONSTANT dev_addr_read: STD_LOGIC_VECTOR(7 DOWNTO 0) := "10100001";

32 SIGNAL aux_clk, bus_clk, data_clk: STD_LOGIC;

33 SIGNAL data_in, data_out: STD_LOGIC_VECTOR(7 DOWNTO 0);

34 SIGNAL wr_flag, rd_flag: STD_LOGIC;

35 SIGNAL mem_addr: STD_LOGIC_VECTOR(7 DOWNTO 0);

36 SIGNAL ack: STD_LOGIC_VECTOR(2 DOWNTO 0);
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37 SIGNAL timer: NATURAL RANGE 0 TO delay;

38 SHARED VARIABLE i: NATURAL RANGE 0 TO delay;

39 --State machine signals:

40 TYPE state IS (idle, start_wr, start_rd, dev_addr_wr, dev_addr_rd,

41 wr_addr, wr_data, rd_data, stop, no_ack, ack1, ack2, ack3, ack4);

42 SIGNAL pr_state, nx_state: state;

43 BEGIN

44 -------General signals:----------------------

45 data_out <= '0' & integer_to_ssd(data);

46 mem_addr <= "0000" & address;

47 ssd <= data_in(6 DOWNTO 0);

48 ack_error <= ack(0) OR ack(1) OR ack(2);

49 -------Auxiliary clock:----------------------

50 --freq=4*data_rate=400kHz for given parameters

51 PROCESS (clk)

52 VARIABLE count: INTEGER RANGE 0 TO divider;

53 BEGIN

54 IF (clk'EVENT AND clk='1') THEN

55 count:= count + 1;

56 IF (count=divider) THEN

57 aux_clk <= NOT aux_clk;

58 count := 0;

59 END IF;

60 END IF;

61 END PROCESS;

62 -------Bus & data reference clocks:----------

63 --freq=data_rate=100kHz for given parameters

64 PROCESS (aux_clk)

65 VARIABLE count: INTEGER RANGE 0 TO 3;

66 BEGIN

67 IF (aux_clk'EVENT AND aux_clk='1') THEN

68 count:= count + 1;

69 IF (count=0) THEN

70 bus_clk <= '0';

71 ELSIF (count=1) THEN

72 data_clk <= '1';

73 ELSIF (count=2) THEN

74 bus_clk <= '1';

75 ELSE

76 data_clk <= '0';

77 END IF;

78 END IF;

79 END PROCESS;
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80 -------Lower section of FSM:-----------------

81 PROCESS (data_clk, rst)

82 BEGIN

83 IF (rst='1') THEN

84 pr_state <= idle;

85 i := 0;

86 --Enter data for I2C bus:

87 ELSIF (data_clk'EVENT AND data_clk='1') THEN

88 IF (i=timer-1) THEN

89 pr_state <= nx_state;

90 i := 0;

91 ELSE

92 i := i + 1;

93 END IF;

94 ELSIF (data_clk'EVENT AND data_clk='0') THEN

95 --Store write/read flags:

96 IF (pr_state=idle) THEN

97 wr_flag <= wr;

98 rd_flag <= rd;

99 END IF;

100 --Store ACK signals during writing:

101 IF (pr_state=ack1) THEN

102 ack(0)<=SDA;

103 ELSIF (pr_state=ack2) THEN

104 ack(1)<=SDA;

105 ELSIF (pr_state=ack3) THEN

106 ack(2)<=SDA;

107 END IF;

108 --Store data read from memory:

109 IF (pr_state=rd_data) THEN

110 data_in(7-i) <= SDA;

111 END IF;

112 END IF;

113 END PROCESS;

114 -------Upper section of FSM:-----------------

115 PROCESS (pr_state, bus_clk, data_clk, wr_flag,

116 rd_flag, data_out, mem_addr, SDA)

117 BEGIN

118 CASE pr_state IS

119 WHEN idle =>

120 SCL <= '1';

121 SDA <= '1';

122 timer <= delay; --max write time=5ms
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123 IF (wr_flag='1' OR rd_flag='1') THEN

124 nx_state <= start_wr;

125 ELSE

126 nx_state <= idle;

127 END IF;

128 WHEN start_wr =>

129 SCL <= '1';

130 SDA <= data_clk;

131 timer <= 1;

132 nx_state <= dev_addr_wr;

133 WHEN dev_addr_wr =>

134 SCL <= bus_clk;

135 SDA <= dev_addr_write(7-i);

136 timer <= 8;

137 nx_state <= ack1;

138 WHEN ack1 =>

139 SCL <= bus_clk;

140 SDA <= 'Z';

141 timer <= 1;

142 nx_state <= wr_addr;

143 WHEN wr_addr =>

144 SCL <= bus_clk;

145 SDA <= mem_addr(7-i);

146 timer <= 8;

147 nx_state <= ack2;

148 WHEN ack2 =>

149 SCL <= bus_clk;

150 SDA <= 'Z';

151 timer <= 1;

152 IF (wr_flag='1') THEN

153 nx_state <= wr_data;

154 ELSE

155 nx_state <= start_rd;

156 END IF;

157 WHEN wr_data =>

158 SCL <= bus_clk;

159 SDA <= data_out(7-i);

160 timer <= 8;

161 nx_state <= ack3;

162 WHEN ack3 =>

163 SCL <= bus_clk;

164 SDA <= 'Z';

165 timer <= 1;
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166 nx_state <= stop;

167 WHEN start_rd =>

168 SCL <= '1';

169 SDA <= data_clk;

170 timer <= 1;

171 nx_state <= dev_addr_rd;

172 WHEN dev_addr_rd =>

173 SCL <= bus_clk;

174 SDA <= dev_addr_read(7-i);

175 timer <= 8;

176 nx_state <= ack4;

177 WHEN ack4 =>

178 SCL <= bus_clk;

179 SDA <= 'Z';

180 timer <= 1;

181 nx_state <= rd_data;

182 WHEN rd_data =>

183 SCL <= bus_clk;

184 SDA <= 'Z';

185 timer <= 8;

186 nx_state <= no_ack;

187 WHEN no_ack =>

188 SCL <= bus_clk;

189 SDA <= '1';

190 timer <= 1;

191 nx_state <= stop;

192 WHEN stop =>

193 SCL <= '1';

194 SDA <= NOT data_clk;

195 timer <= 1;

196 nx_state <= idle;

197 END CASE;

198 END PROCESS;

199 END fsm;

200 -----------------------------------------------------------------------

14.5 SPI Interface

SPI (serial peripheral interface) is another synchronous serial bus for communication be-

tween integrated circuits (installed next to each other, normally on the same board). Like

I2C, it operates in a master-slave architecture, but is simpler to implement and generally

operates at higher speeds.

VHDL Design of Serial Communications Circuits 399



SPI was developed by Motorola for its 68HC family of microcontrollers, now in wide-

spread use. Compared to I2C, it has the advantages of requiring a simpler hardware be-

cause there is no bidirectional line and making the device selection with a separate wire

for each slave rather than a transmitted address, in general operating at higher speeds

(multi-MHz range), allowing also duplex mode and flexible message formats. On the other

hand, SPI demands more I/O pins, can operate with only one master, has no message ac-

knowledgement, and because there is no standard message format, validation would be

more di‰cult. SPI is said to be a four-wire bus (though that is indeed the least number of

wires), while I2C is truly two wires. In some applications, a bidirectional line is used for

MOSI and MISO together, resulting in a three-wire bus.

The SPI bus is illustrated in figure 14.18. In (a), a single slave is shown (normally, the

master is a microcontroller), so four wires are needed, called SCK (serial clock, always

generated by the master), MOSI (master out slave in), MISO (master in slave out), and

SS (slave select). When SS is low, the slave is selected, to/from which the master sends/

receives messages through the MOSI/MISO wire. In (b), a multislave system is depicted,

so multiple SS wires are needed. Examples of ICs with SPI support are also shown in the

figure, which are essentially the same categories as for I2C—that is, microcontrollers,

EEPROM and Flash memories, A/D and D/A converters, RTCs, and so on.

Operation of the SPI Interface

Figure 14.19 shows the SPI operating modes, which are determined by the clock phase

(CPHA) and clock polarity (CPOL). They are called mode 00 (CPHA ¼ 0, CPOL ¼ 0),

mode 01 (CPHA ¼ 0, CPOL ¼ 1), mode 10 (CPHA ¼ 1, CPOL ¼ 0), and mode 11

(CPHA ¼ 1, CPOL ¼ 1). In modes 00 and 01, the receiver samples the data at the first

clock edge following the lowering of SS, so the data must be ready before the first clock

transition. In modes 10 and 11, the data is sampled at the second clock edge after SS is

lowered, so the preceding transition can be used to enter the data. Modes 00 and 11 (pos-

itive clock edge) are the most common.

Part of the communication between master and slaves is ruled by information stored in

8-bit registers at both ends. These registers are not standardized, neither in number (a 5)

nor in content. For example, the SPI in the Motorola MC68HC908GT microcontroller

Figure 14.18
SPI bus with (a) single and (b) multiple slaves.
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contains three registers (for status, called SPSCR, for control, SPCR, and for data,

SPDR), while the SPI in the Maxim DS1306 RTC has two registers (for status and con-

trol), and the SPI in the Ramtron FM25L512 FRAM memory contains only one (for

status).

To illustrate the use of SPI, the FRAM will be used as an example. It is a 512 kbyte

nonvolatile memory with serial access through an SPI bus. Its pinout, contents of the sta-

tus register, timing for the WREN command, and the set of SPI commands are shown in

figure 14.20. An important feature of this new technology (FRAM [Pedroni 2008]) is that

data can be written to it at high speed (20MHz in the present example), contrasting with

EEPROM (previous section), which generally takes a few ms/word.

Note in figure 14.20 that besides the SPI pins (SCK, MOSI, MISO, and SS), the chip

contains also two other control pins, called WP (write protect) and HOLD. The purpose

of WP is, together with bits 7 (WPEN ), 3 (BP1), and 2 (BP0) of the status register, to al-

low several protection options against writings to both the memory and the status register.

Figure 14.19
SPI operating modes (based on clock phase, CPHA, and clock polarity, CPOL).

Figure 14.20
SPI-driven FM25L512 FRAM memory (pinout, contents of the status register, timing for the WREN command,
and list of SPI commands).
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For example, with WP high (note that WP is active low—we are relaxing the notation,

suppressing the negation symbol in the pin names) and WPEN ¼ BP1 ¼ BP0 ¼ '0', all

writings are allowed (see other protection options in the device’s datasheets). The role of

HOLD (also active low) is to handle interrupts.

There is another programmable bit in the status register, called WEL (write enable

latch), which determines whether writing is allowed (when '1') or not (when '0'). Only

when WEL ¼ '1' are the protection options mentioned earlier in place (any writing is for-

bidden while WEL ¼ '0'). Because this bit is automatically cleared at power up or at the

upward transition of SS after a WRITE, WRSR, or WRDI command, any write action

must start with the WREN command, because that is the only way of setting WEL to '1'

(writing to the status register does not a¤ect this bit). Such a command is also illustrated in

figure 14.20 (for mode 00), which consists of transmitting the byte "00000110" to the slave

(through the MOSI port). Note that the slave is selected (SS ¼ '0') before the command

starts and must be unselected (SS ¼ '1') after it ends. During the command, the slave main-

tains its output (MISO) at high impedance ('Z'). Any SPI communication must start with

the MSB.

Additional details about SPI are shown below, where an actual SPI interface is designed

using VHDL.

Design of an SPI Interface for an FRAM Memory

The purpose of this exercise is to design a circuit capable of writing data to and reading

data from a FRAM that communicates using the SPI bus. Hence our circuit (in the

FPGA) will play the role of master, while the memory will be its (only) slave. The chosen

device is the FM25L512 FRAM, which supports modes 00 and 11 (automatically

selected).

Figure 14.21 shows the setup for the experiment, which is similar to that in the previous

section for the I2C bus and an EEPROM. The inputs are data (4-bit data, from four toggle

switches), address (4-bit address, from another four switches), and clk (system clock,

Figure 14.21
SPI interface for a FRAM memory (FPGA implements the master, having the memory as its only slave). The
figure on the right shows how the FRAM was wired.
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assumed to be 50 MHz), plus rst (optional reset), rd (read), and wr (write) commands (the

last three are also from switches). The outputs are the SPI signals (SCK, MOSI, MISO,

and SS—MISO is in fact an input), connected to the slave, plus ssd, which feeds an SSD

display (chapter 12) to exhibit the data retrieved from the FRAM. The figure also shows

how the device was wired.

Contrary to EEPROMs (previous section), FRAMs can operate in sequential write

mode because writing to them is fast (20 Mbps in the present example, against a few ms/

word for EEPROMs). In summary, both sequential write and sequential read are allowed.

The recommended approach to solve this type of problem is the same as that in the pre-

vious section—the finite state machine (FSM) model (chapter 11). However, because this

too is not a trivial circuit, detailed information is needed before we draw its state transition

diagram. As seen before, two ways of gathering such information are to draw the circuit’s

flowcharts or to draw its timing diagrams. Both of these approaches are illustrated below.

Studying the device’s datasheets, the sequence of events that we get for writing is that

depicted in figure 14.22a (note that all transmissions are made by the master). It consists

of a WREN command (to set WEN ¼ '1'), followed by a write enable (WRITE) com-

mand, then the memory address, and finally the data to be written to that address. The

dashed line in figure 14.22a indicates two options for writing: if the solid arrow is used,

then data keeps being written until wr returns to zero (sequential write; the address is incre-

mented automatically by the slave); otherwise, if the dashed arrow is used, then only one

byte is written at a time, with the system again returning to the idle state after wr ¼ '0'

occurs. The latter will be implemented here.

Figure 14.22
Flowcharts for (a) writing to and (b) reading from the FRAM. The combined procedure is shown in (c).
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The same type of reasoning, now for reading, leads to the flowchart of figure 14.22b.

To read data, first the read enable command (READ) is applied, followed by the intended

address, after which the slave responds (through the MISO wire) with the data stored at

that address (the dark rectangle indicates a transmission made by the slave). Here too the

dashed arrow indicates two options for reading; sequential read if the solid arrow is

adopted, or single word reading if the dashed arrow is used instead (the latter will be

implemented here). By combining this flowchart with the previous one, the complete

write-read process results (figure 14.22c).

As mentioned earlier, another way of gathering information for the state transition dia-

gram is by drawing the system’s timing diagram. Based on the datasheets, the timings of

figure 14.23 result. The advantage of timing diagrams is that they convey more detailed

information than the flowcharts, but with the drawback that multiple alternatives cannot

be expressed (or are di‰cult to express).

We can now turn to the state transition diagram. Using the information in figure 14.22

or 14.23 (or both), the machine of figure 14.24 results, where the upper branch is for writ-

Figure 14.23
FRAM (a) writing and (b) reading timing diagrams.

Figure 14.24
Complete finite state machine for FRAM writing and reading.
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ing and the lower one is for reading. The states for writing are wr_latch (WREN com-

mand), unselect (SS ¼ '1' to end the WREN command), wr_enable (WRITE command),

wr_addr (memory address where data must be written), wr_data (data to be written), and

wait_wr (waits for wr to return to zero). The states for reading are rd_enable (READ com-

mand), rd_addr (memory address from which data must be read), rd_data (data read), and

finally wait_rd (waits for rd to return to zero). Recall that this machine must output the

master’s SPI signals (SS, SCK, MOSI ), so their values were listed under every state. Be-

cause this is an FSM with an embedded timer, the value for timer was also listed in each

state (see details on how to design this type of machine in section 11.6).

A VHDL code for this FSM is presented below, under the project name fram_spi (line

8). The pin names (lines 9–20) are from figure 14.21. The code proper (architecture) is

in lines 23–162. It starts with a series of signal declarations, which include the WREN,

WRITE, and READ opcodes (lines 25–27), followed by the FSM-related declarations

(lines 29–31), then other system signals (lines 33–37). Note that a shared variable was

declared in line 37, so it can be used by more than one process.

Before the processes start, general input-output signals are configured in lines 40–42.

Note in line 40 that, as in previous designs, a function called integer_to_ssd (seen in section

12.2, for example) was employed to make the conversion from a 4-bit integer (data) to the

SSD format (this function was assumed to be in a package called my_ functions, declared

in line 6; the corresponding file must obviously be included in the project).

The first process (lines 44–54) derives, from clk (50 MHz), an auxiliary clock (aux_clk)

whose frequency is 1 MHz (the frequency chosen for the present design is 1 Mbps, though

this FRAM can be written to at 20 Mbps). As seen in figure 14.23, this clock will define the

pace of the SPI signals.

The other two processes are for the FSM and are direct applications of the general tem-

plate studied in chapter 11 (see timed FSMs in section 11.6) to the diagram of figure 14.24.

The lower (sequential) section is in the process of lines 56–75, while the upper (combina-

tional) section is in the process of lines 77–161.

Finally, note that, contrary to the design in the previous section, in the code below there

are no GENERIC parameters, which were left out intentionally (see exercise 14.14)

1 -----------------------------------------------------------------

2 --Remember to include function "integer_to_ssd" in the project.

3 -----------------------------------------------------------------

4 LIBRARY ieee;

5 USE ieee.std_logic_1164.all;

6 USE work.my_functions.all; --package w/"integer_to_ssd" function.

7 -----------------------------------------------------------------

8 ENTITY fram_spi IS

9 PORT (

10 --System signals:
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11 clk, rst: IN STD_LOGIC;

12 rd, wr: IN STD_LOGIC;

13 data: IN INTEGER RANGE 0 TO 15;

14 address: IN STD_LOGIC_VECTOR(3 DOWNTO 0);

15 ssd: OUT STD_LOGIC_VECTOR(6 DOWNTO 0);

16 --SPI signals:

17 SCK: OUT STD_LOGIC;

18 MOSI: OUT STD_LOGIC;

19 MISO: IN STD_LOGIC;

20 SS: OUT STD_LOGIC);

21 END fram_spi;

22 -----------------------------------------------------------------

23 ARCHITECTURE fsm OF fram_spi IS

24 --SPI commands:

25 CONSTANT WREN: STD_LOGIC_VECTOR(7 DOWNTO 0) := "00000110";

26 CONSTANT WRITEx: STD_LOGIC_VECTOR(7 DOWNTO 0) := "00000010";

27 CONSTANT READx: STD_LOGIC_VECTOR(7 DOWNTO 0) := "00000011";

28 --State machine signals:

29 TYPE state IS (idle, wr_latch, unselect, wr_ena, wr_addr,

30 wr_data, wait_wr, rd_ena, rd_addr, rd_data, wait_rd);

31 SIGNAL pr_state, nx_state: state;

32 --General signals:

33 SIGNAL data_out, data_in: STD_LOGIC_VECTOR(7 DOWNTO 0);

34 SIGNAL mem_addr: STD_LOGIC_VECTOR(15 DOWNTO 0);

35 SIGNAL aux_clk: STD_LOGIC;

36 SIGNAL timer: NATURAL RANGE 0 TO 16;

37 SHARED VARIABLE i: NATURAL RANGE 0 TO 16;

38 BEGIN

39 ------Address, data, and control:--------

40 data_out <= '0' & integer_to_ssd(data);

41 mem_addr <= "000000000000" & address;

42 ssd <= data_in(6 DOWNTO 0);

43 ------Auxiliary clock (1MHz):------------

44 PROCESS (clk)

45 VARIABLE count: NATURAL RANGE 0 TO 25;

46 BEGIN

47 IF (clk'EVENT AND clk='1') THEN

48 count := count + 1;

49 IF (count=25) THEN

50 aux_clk <= NOT aux_clk;

51 count := 0;

52 END IF;

53 END IF;
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54 END PROCESS;

55 ------Lower section of FSM:--------------

56 PROCESS (aux_clk, rst)

57 BEGIN

58 IF (rst='1') THEN

59 pr_state <= idle;

60 i := 0;

61 --Send data to SPI bus:

62 ELSIF (aux_clk'EVENT AND aux_clk='1') THEN

63 IF (i=timer-1) THEN

64 pr_state <= nx_state;

65 i := 0;

66 ELSE

67 i := i + 1;

68 END IF;

69 --Read data from SPI bus:

70 ELSIF (aux_clk'EVENT AND aux_clk='0') THEN

71 IF (pr_state=rd_data) THEN

72 data_in(7-i) <= MISO;

73 END IF;

74 END IF;

75 END PROCESS;

76 -----Upper section of FSM:----------

77 PROCESS (pr_state, aux_clk, wr, rd, data_out, mem_addr)

78 BEGIN

79 CASE pr_state IS

80 WHEN idle =>

81 SS <= '1';

82 SCK <= '0';

83 MOSI <= 'X';

84 timer <= 1;

85 IF (wr='1') THEN

86 nx_state <= wr_latch;

87 ELSIF (rd='1') THEN

88 nx_state <= rd_ena;

89 ELSE

90 nx_state <= idle;

91 END IF;

92 WHEN wr_latch =>

93 SS <= '0';

94 SCK <= NOT aux_clk;

95 MOSI <= WREN(7-i);

96 timer <= 8;
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97 nx_state <= unselect;

98 WHEN unselect =>

99 SS <= '1';

100 SCK <= '0';

101 MOSI <= 'X';

102 timer <= 1;

103 nx_state <= wr_ena;

104 WHEN wr_ena =>

105 SS <= '0';

106 SCK <= NOT aux_clk;

107 MOSI <= WRITEx(7-i);

108 timer <= 8;

109 nx_state <= wr_addr;

110 WHEN wr_addr =>

111 SS <= '0';

112 SCK <= NOT aux_clk;

113 MOSI <= mem_addr(15-i);

114 timer <= 16;

115 nx_state <= wr_data;

116 WHEN wr_data =>

117 SS <= '0';

118 SCK <= NOT aux_clk;

119 MOSI <= data_out(7-i);

120 timer <= 8;

121 nx_state <= wait_wr;

122 WHEN wait_wr =>

123 SS <= '1';

124 SCK <= '0';

125 MOSI <= 'X';

126 timer <= 1;

127 IF (wr='0') THEN

128 nx_state <= idle;

129 ELSE

130 nx_state <= wait_wr;

131 END IF;

132 WHEN rd_ena =>

133 SS <= '0';

134 SCK <= NOT aux_clk;

135 MOSI <= READx(7-i);

136 timer <= 8;

137 nx_state <= rd_addr;

138 WHEN rd_addr =>

139 SS <= '0';

408 Chapter 14



140 SCK <= NOT aux_clk;

141 MOSI <= mem_addr(15-i);

142 timer <= 16;

143 nx_state <= rd_data;

144 WHEN rd_data =>

145 SS <= '0';

146 SCK <= NOT aux_clk;

147 MOSI <= 'X';

148 timer <= 8;

149 nx_state <= wait_rd;

150 WHEN wait_rd =>

151 SS <= '1';

152 SCK <= '0';

153 MOSI <= 'X';

154 timer <= 1;

155 IF (rd='0') THEN

156 nx_state <= idle;

157 ELSE

158 nx_state <= wait_rd;

159 END IF;

160 END CASE;

161 END PROCESS;

162 END fsm;

163 -----------------------------------------------------------------

14.6 TMDS Interface

TMDS (transition minimized di¤erential signaling) is a modern line code for the serial

transmission of video signals. It is used as part of the DVI (digital visual interface) video

interface employed for interconnecting desktop computers to LCD monitors, and also

as part of the HDMI (high-definition multimedia interface) circuit that connects high-

definition camcorders, videogame consoles, set-top boxes, and the like to HDTV (high-

definition television) monitors and video projectors. In chapter 16, TMDS will be used as

part of a complete DVI circuit designed using VHDL.

The TMDS interface was created by Silicon Image in 1999 with the purpose of connect-

ing computers to flat panel (LCD, in general) monitors. The work was done as part of

DDWG (Digital Display Working Group), an industry consortium responsible for the cre-

ation of DVI (studied in chapter 16), with TMDS also extended to the HDMI interface.

Its general architecture is depicted in figure 14.25. The TMDS transmitter contains a

type of 8B/10B encoder (converts 8 bits into 10 bits, described ahead), followed by a serial-

izer (section 14.2) and a CML (current-mode logic, also described ahead) I/O circuit. The

TMDS receiver must then have a CML I/O, a deserializer, and a 10B/8B decoder.
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It is important to mention that the 8B/10B code used in TMDS is not equal to the orig-

inal 8B/10B code introduced by IBM in 1983 (Pedroni 2008). Moreover, in this particular

standard (TMDS) the type of I/O logic, which is CML (a type of di¤erential signaling),

was also included in the specifications, so the "TM" part of the title is due to the encoder/

decoder, while the "DS" part relates to the I/O circuit.

Circuit Details

As mentioned, TMDS is used, for example, as part of the DVI interface between a com-

puter and its LCD monitor. This situation is depicted in figure 14.26.

Figure 14.25
TMDS interface.

Figure 14.26
TMDS transmitter-receiver used as part of DVI (digital visual interface) to connect a desktop computer to an
LCD monitor.
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DVI can contain one or two links, called link0 (mandatory) and link1 (optional), with

each link formed by three TMDS channels. Moreover, each channel can transmit two

kinds of data, called pixel data (R ¼ red, G ¼ green, and B ¼ blue colors) and control

data (synchronism and other control signals). The former occurs most of the time and is

responsible for creating the images on the screen, while the latter serves to control the

monitor, occurring only during the blanking/retrace intervals.

As shown in figure 14.26, the pixel data is eight bits wide, while the control data is just

two bits wide. Since the TMDS encoder must produce 10-bit words from 8-bit words, the

regular encoding procedure described in figure 14.28 occurs only for pixel data. For con-

trol data, fixed 10-bit words are generated (there are only four 10-bit words in this case,

because there are only four 2-bit combinations). The resulting 10-bit control words have

at least seven transitions, while the 10-bit pixel words have at most five transitions, allow-

ing for safe synchronization.

Note also in figure 14.26 that the typical clock (pixel) frequency is 165 MHz, so because

for each pixel a 10-bit vector must be transmitted serially, the transmission clock must be

1.65 GHz. This frequency is produced by a PLL, which multiplies the clock frequency by

ten. A similar procedure occurs at the receiving end (obviously a single PLL at each end

would su‰ce).

Observe in figure 14.26 that the I/O circuit is di¤erential, so two wires (plus a global

GDN) are required for each channel. This I/O is called CML (current-mode logic) and

normally operates with VDD ¼ 3:3 V.

A CML Tx-Rx pair is shown in figure 14.27a. The TMDS specifications determine that

the two output voltages delivered to the pair of wires that go to the monitor must be VDD

(high) and VDD � 0:4 V (low). There are 50 W resistors at both ends of the wires, so given

that only one transistor in the di¤erential pair that composes the CML transmitter is ON

at a time, its output voltage is (50//50)16m ¼ 0.4 V below VDD, while the other remains at

VDD.

Because CML I/Os are not available in FPGAs, in the design examples to come (DVI

interface, chapter 16), the circuit of figure 14.27b will be used. In this case, only a pair of

Figure 14.27
(a) CML circuits; (b) CML transmitter emulated with regular 3.3V LVCMOS pads plus resistors.
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external resistors (R2) is needed to emulate a CML pad when regular 3.3V LVTTL or 3.3V

LVCMOS I/Os are used instead of CML.

In figure 14.27b, Vhigh and Vlow represent the '1' and '0' logic voltages produced by the

output pad, respectively, while VIþ and VI� represent the voltages that actually reach

the CML receiver. Assuming that the upper pin is high (Vhigh ¼ VDD), then VIþ ¼ VDD,

which obeys the specifications. However, the situation with VI� needs to be examined

more closely. Given the arrangement of figure 14.27b, VI� ¼ ðVDD � VlowÞR2=ðR1 þ R2Þ
þVlow results. Therefore, R2 ¼ ½ðVI� � VlowÞ=ðVDD � VI�Þ�R1. For VDD ¼ 3:3 V, VI� ¼
2:9 V, Vlow ¼ 0:8 V (worst case; see [Pedroni 2008]), and R1 ¼ 50 W, R2A270 W is

obtained (closest commercial value). As already mentioned, this circuit will be needed in

chapter 16.

The TMDS Encoding Algorithm

TMDS coverts an 8-bit word into a 10-bit word with fewer (or at most the same number

of ) internal transitions, thus reducing high-frequency emissions (less interference between

adjacent channels). It also provides a near-perfect DC balance on the communication

wires, thus improving the noise margin. However, it is important to remember that a long

period without any transitions must be avoided, because it would make clock recovery (for

synchronization) more di‰cult. Even though most TMDS code words have at least one

transition, the rare cases when no transitions occur are compensated automatically by the

DC balancing technique, which forces transitions to happen (shown later).

The 8/10 encoder of TMDS is depicted in figure 14.28. The first stage is an XOR/

XNOR operator and the second stage is an inverter/noninverter operator. The former

minimizes the number of transitions (less EMI), while the latter minimizes the disparity

(for DC balance). (Disparity is the total number of '1's minus the total number of '0's trans-

mitted in a certain time period, which should remain as near zero as possible.)

The input data byte, din(7:0), is passed through an XOR or XNOR gate, producing

x(7:0). The gate that produces fewer transitions in x(7:0) is chosen, and a ninth bit, x(8),

is added to indicate the choice made ('0' for XNOR, '1' for XOR). Next, x(7:0) is inverted

or not, producing dout(7:0), to which a tenth bit, dout(9), is also added to indicate the

Figure 14.28
The 8B/10B encoder of TMDS.
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new choice ('1' when inverted, '0' otherwise). This choice is a function of the accumulated

disparity, and it is made as to minimize it. The ninth bit is not a¤ected—that is,

dout(8) ¼ x(8). Even though there are only 256 possible values for the pixel data, a total

of 460 distinct 10-bit words can result, because some inputs can produce two distinct code

words, depending on the disparity.

In the case of video systems using DVI or HDMI (of which TMDS is part), during the

transmission of pixel data, dena (display enable) is asserted, whereas during the transmis-

sion of control data it is unasserted. In summary:

For pixel data: Input ¼ 8 bits, 256 possible values; Output ¼ 10 bits, 460 possible values;

dena ¼ '1'.

For control data: Input ¼ 2 bits, 4 possible values; Output ¼ 10 bits, 4 possible values;

dena ¼ '0'.

A detailed flowchart for the TMDS algorithm is presented in figure 14.29. This is indeed

a modified (by the author) version relative to that from DDWG, introduced here to pro-

vide a more hardware-oriented flow, thus helping and optimizing the implementation. The

following is employed in the figure (see inset on the upper left corner):

din(7:0) ¼ Input vector with pixel data (eight bits)

contol(1:0) ¼ Input vector with control data (two bits), which can be any of the following

pairs: {Hsync, Vsync}, {C0, C1}, . . . , {C8, C9}.

x(8:0) ¼ Internal vector after XOR or XNOR (x(8) ¼ '0' for XNOR, or '1' for XOR)

dout(9:0) ¼ Output word (10 bits), which encodes either din(7:0) or control(1:0)

dena ¼ Display enable (when '1', din is encoded; when '0', control is encoded)

zerosD ¼ Number of '0's in din(7:0)

onesD ¼ Number of '1's in din(7:0)

zerosX ¼ Number of '0's in x(7:0) (x(8) not included)

onesX ¼ Number of '1's in x(7:0) (x(8) not included)

disp ¼ Accumulated disparity (] of '1's minus ] of '0's transmitted in a certain period)

Obviously, zerosDþ onesD ¼ 8, so testing onesD > zerosD is the same as testing

onesD > 4.

A series of examples are shown in figure 14.30. Note that most inputs can produce two

distinct outputs (depending on the disparity), but some can only produce one. Note also

that all ten output bits are considered when computing the accumulated disparity.

From figure 14.30, we conclude, for example, that when a long transitionless series

occurs (a long series of zeros or of ones), transitions are automatically introduced by the

encoder, as shown in the table below.
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input –> 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111

disparity –> 0 -8 -2 +4 -4 +2

output –> 10 0000 0000 00 1111 1111 00 1111 1111 10 0000 0000 00 1111 1111 10 0000 0000

Design of a TMDS Encoder

Figure 14.31 shows, on the left, a single TMDS channel (for video applications), and on

the right its encoding portion (plus the input multiplexer). This is the circuit that will be

designed in this section, using VHDL, then used later (chapter 16) to implement a com-

plete DVI interface.

Figure 14.29
Detailed TMDS encoding algorithm.
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A VHDL code for this circuit is presented below, under the title tmds (line 5). The input-

output signals (lines 7–11) are from figure 14.31. Several test ports were also included

(lines 13–16). The code is divided into four parts. The first part (process of lines 26–37)

counts the number of '1's in din. Based on this value, the second part (process of lines 39–

62) determines x(8:0). The third part (process of lines 64–75) computes the number of '1's

in x(7:0), so the last part (process of lines 78–126) can complete the algorithm. Note that

the overall code follows the algorithm of figure 14.29. Simulation results are depicted in

figure 14.32.

1 -------------------------------------------------------------------

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 -------------------------------------------------------------------

5 ENTITY tmds IS

Figure 14.30
Examples of TMDS encodings for several input values and several disparity values.

Figure 14.31
Single TMDS channel and its encoding portion (plus mux).
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6 PORT (

7 tmds_clk: IN STD_LOGIC; --TMDS clock

8 dena: IN STD_LOGIC; --display enable

9 din: IN STD_LOGIC_VECTOR(7 DOWNTO 0); --pixel data

10 control: IN STD_LOGIC_VECTOR(1 DOWNTO 0);--control data

11 dout: OUT STD_LOGIC_VECTOR(9 DOWNTO 0); --output data

12 ----------------------

13 onesD_test: OUT INTEGER RANGE 0 TO 8; --test onesD

14 x_test: OUT STD_LOGIC_VECTOR(8 DOWNTO 0);--test x

15 onesX_test: OUT INTEGER RANGE 0 TO 8; --test onesX

16 disp_test: OUT INTEGER RANGE -16 TO 15); --test disp

17 END tmds;

18 -------------------------------------------------------------------

19 ARCHITECTURE tmds OF tmds IS

20 SIGNAL x: STD_LOGIC_VECTOR(8 DOWNTO 0); --internal vector

21 SIGNAL onesX: INTEGER RANGE 0 TO 8; --# of '1's in x(7:0)

22 SIGNAL onesD: INTEGER RANGE 0 TO 8; --# of '1's in din(7:0)

23 SIGNAL disp: INTEGER RANGE -16 TO 15; --disparity

24 BEGIN

25 ---Compute number of '1's in din:----------

26 PROCESS (din)

27 VARIABLE counterD: INTEGER RANGE 0 TO 8;

28 BEGIN

29 counterD := 0;

30 FOR i IN 0 TO 7 LOOP

31 IF (din(i)='1') THEN

32 counterD := counterD + 1;

33 END IF;

34 END LOOP;

Figure 14.32
Simulation results from the VHDL code for the TMDS encoder. Note that some of the values are identical to
those in figure 14.30.
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35 onesD <= counterD;

36 onesD_test <= counterD;

37 END PROCESS;

38 ---Produce internal vector x:--------------

39 PROCESS (din, onesD)

40 BEGIN

41 x(0) <= din(0);

42 IF (onesD>4 OR (onesD=4 AND din(0)='0')) THEN

43 x(1) <= din(1) XNOR x(0);

44 x(2) <= din(2) XNOR x(1);

45 x(3) <= din(3) XNOR x(2);

46 x(4) <= din(4) XNOR x(3);

47 x(5) <= din(5) XNOR x(4);

48 x(6) <= din(6) XNOR x(5);

49 x(7) <= din(7) XNOR x(6);

50 x(8) <= '0';

51 ELSE

52 x(1) <= din(1) XOR x(0);

53 x(2) <= din(2) XOR x(1);

54 x(3) <= din(3) XOR x(2);

55 x(4) <= din(4) XOR x(3);

56 x(5) <= din(5) XOR x(4);

57 x(6) <= din(6) XOR x(5);

58 x(7) <= din(7) XOR x(6);

59 x(8) <= '1';

60 END IF;

61 x_test <= x;

62 END PROCESS;

63 ---Compute number of '1's in x:------------

64 PROCESS (x)

65 VARIABLE counterX: INTEGER RANGE 0 TO 8;

66 BEGIN

67 counterX := 0;

68 FOR i IN 0 TO 7 LOOP

69 IF (x(i)='1') THEN

70 counterX := counterX + 1;

71 END IF;

72 END LOOP;

73 onesX <= counterX;

74 onesX_test <= counterX;

75 END PROCESS;

76 ---Produce output and new disparity:-------

77 ---(note that only disp requires storage)--

78 PROCESS (disp, x, onesX, dena, control, tmds_clk)
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79 VARIABLE disp_new: INTEGER RANGE -31 TO 31;

80 BEGIN

81 IF (dena='1') THEN

82 dout(8) <= x(8);

83 IF (disp=0 OR onesX=4) THEN

84 dout(9) <= NOT x(8);

85 IF (x(8)='0') THEN

86 dout(7 DOWNTO 0) <= NOT x(7 DOWNTO 0);

87 disp_new := disp - 2*onesX + 8;

88 ELSE

89 dout(7 DOWNTO 0) <= x(7 DOWNTO 0);

90 disp_new := disp + 2*onesX - 8;

91 END IF;

92 ELSE

93 IF ((disp>0 AND onesX>4) OR (disp<0 AND onesX<4)) THEN

94 dout(9) <= '1';

95 dout(7 DOWNTO 0) <= NOT x(7 DOWNTO 0);

96 IF (x(8)='0') THEN

97 disp_new := disp - 2*onesX + 8;

98 ELSE

99 disp_new := disp - 2*onesX + 10;

100 END IF;

101 ELSE

102 dout(9) <= '0';

103 dout(7 DOWNTO 0) <= x(7 DOWNTO 0);

104 IF (x(8)='0') THEN

105 disp_new := disp + 2*onesX - 10;

106 ELSE

107 disp_new := disp + 2*onesX - 8;

108 END IF;

109 END IF;

110 END IF;

111 ELSE

112 disp_new := 0;

113 IF (control="00") THEN

114 dout <= "1101010100";

115 ELSIF (control="01") THEN

116 dout <= "0010101011";

117 ELSIF (control="10") THEN

118 dout <= "0101010100";

119 ELSE

120 dout <= "1010101011";

121 END IF;

122 END IF;
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123 IF (tmds_clk'EVENT AND tmds_clk='1') THEN

124 disp <= disp_new;

125 END IF;

126 END PROCESS;

127 disp_test <= disp;

128 END tmds;

129 -------------------------------------------------------------------

14.7 Video Interfaces: VGA, DVI, and FPD-Link

Special attention will be given in successive chapters to video interfaces. Even though that

material also belongs to the overall serial data communications category, the length of

the material calls for each video interface to be treated in a specific chapter, as follows.

VGA Video Interface: chapter 15.

DVI Video Interface: chapter 16.

FPD-Link Video Interface: chapter 17.

14.8 Exercises

Note: For exercise solutions, please consult the book website.

Exercise 14.1: Synchronous versus Asynchronous Communication

Based on the definition of synchronous versus asynchronous communication in section 14.1,

in which of them (if any) can the communication be stopped during the idle intervals (that

is, while there is no data to be sent)? Why?

Exercise 14.2: Generic Serializer

a) The serializer designed in section 14.2 starts the transmissions with the LSB. What

needs to be changed in that code for it to start with the MSB?

b) That code has already a GENERIC parameter (called N ) that specifies the number of

bits in the input word. To make the code even more generic, add a control input to specify

from which end of the input word the data transmissions should start (LSB-first when

direction ¼ '0', MSB-first otherwise).

c) How many flip-flops do you expect this circuit to need (as a function of N )?

Exercise 14.3: FSM-Based Serializer

Design a serializer using the finite state machine approach (chapter 11). Assume that sclk is

already available. Include in it a direction control, as in exercise 14.2.
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Exercise 14.4: Design of a Shift-Register-Based Serializer

a) The serializer designed in section 14.2 was based on the circuit of figure 14.3b. Develop

a similar design (with the same frequencies), now based on the circuit of figure 14.3a.

b) How many flip-flops do you expect this circuit will need (for N ¼ 4)?

Exercise 14.5: Deserializer

a) Describe the operation of the deserializer of figure 14.4. Pay particular attention to the

clock and enable signals (describe the relationship between them and how they can be

obtained).

b) Design this circuit using VHDL. Assume that sclk is already available.

Exercise 14.6: Code Words for PS2 Keyboard

What are the code words transmitted by a PS2 keyboard controller to the host computer to

encode the following information:

a) Lowercase "b"

b) Uppercase "B"

c) Page Down key.

Exercise 14.7: Analysis of PS2 Keyboard Interface

In the design of a PS2 keyboard interface in section 14.3, the circuit detects all serial code

words related to the same key press. In such a case, line 116 of the code, though not indis-

pensable, is highly desirable. Explain why, then test the code with and without that line to

confirm your answer.

Exercise 14.8: PS2 Keyboard Interface with LCD

Redo the design of a PS2 keyboard interface in section 14.3, this time with an LCD display

instead of an SSD.

Exercise 14.9: Measuring EEPROM Latency with I2C Interface

In section 14.4, an I2C interface for an EEPROM was constructed. In it, acknowledge-

ment error (ack_error) was also included, which checks whether all three ACK bits issued

by the memory during the data-write operation are low.

a) What actually happens if the write time (line 12) is lowered to, say, 0.5 ms?

b) How can this bit be used to measure the actual value of the EEPROM’s write time

(twr)?

c) Can you do it by changing just one value (number) in the VHDL code given?
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Exercise 14.10: I2C Interface for an RTC

Design an application for a circuit capable of interfacing using the I2C bus with a RTC

(real time clock). The device can be, for example, IPCA8563, from NXP, or DS3231,

from Maxim.

Exercise 14.11: I2C Interface for an ADC

Design an application for a circuit capable of interfacing using the I2C bus with an ADC.

The device can be, for example, AD7991, from Analog Devices, or PCF8591, from NXP.

Exercise 14.12: I2C Interface for a Temperature Sensor

Design an application for a circuit capable of interfacing using the I2C bus with a temper-

ature sensor. The device can be, for example, LM75A, from NXP, or AD7416, from Ana-

log Devices.

Exercise 14.13: I2C versus SPI

a) Make a table comparing the main features of the I2C and SPI interfaces. Include (at

least) the following topics in your analysis: synchronous or asynchronous, number of

wires, duplex or simplex, single- or multimaster, with data acknowledgement or not, which

hardware is simpler and why, who generates clock and data, and who operates at higher

speed.

b) Make a list of device categories (EEPROM, ADC, DAC, etc.) of ICs currently fabri-

cated with I2C support. For each category, include at least one commercial part number.

c) Repeat part (b) above for SPI.

Exercise 14.14: Generic SPI Interface for a FRAM

Contrary to other designs, the code for an SPI interface in section 14.5 does not contain

generic parameters. Improve that code by making it as generic as possible (see, for exam-

ple, the design of an I2C interface for an EEPROM memory in section 14.4).

Exercise 14.15: SPI Interface for a Flash Memory

Design an application for a circuit capable of interfacing using the SPI bus with a Flash

memory. The device can be, for example, S25FL008A, from Spansion.

Exercise 14.16: SPI Interface for an ADC

Design an application for a circuit capable of interfacing using the SPI bus with an ADC.

The device can be, for example, MAX1242, from Maxim.
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Exercise 14.17: SPI Interface for an RTC

Design an application for a circuit capable of interfacing using the SPI bus with an RTC.

The device can be, for example, DS1306, from Maxim.

Exercise 14.18: TMDS Encoder

a) Can the disparity value during TMDS encoding be odd?

b) Apply the values shown in the first column of figure 14.30, along with the assumed dis-

parity, to the algorithm of figure 14.29 and check whether the values listed in figure 14.30

indeed result.
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15 VHDL Design of VGA Video Interfaces

15.1 Introduction

VGA (video graphics array) is a standard interface introduced by IBM in 1987 for con-

necting computers to analog video monitors (figure 15.1a). The circuits responsible for

generating, processing, and storing the video signals are called graphics controller (com-

puter side) and display controller (monitor side) (figure 15.1b).

VGA monitors are CRTs (cathode ray tubes). Their current most basic resolution is

640� 480� 60Hz VGA; it consists of 640 columns by 480 lines of pixels (picture ele-

ments), refreshed 60 times per second (see list in figure 15.2b). It employs three colors

(R ¼ red, G ¼ green, B ¼ blue) per pixel, with the intensity of each color determined by

an analog voltage in the 0V-to-0.7V range (indeed, for green, it can be either the regular

0V-to-0.7V range or 0.3 V higher; that is, 0.3V-to-1V when sync-on-green is used—

explained later). To generate the colors, six bits per color were initially employed, thus

allowing a total of ð26Þ3 ¼ 266,144 distinct colors or shades (though only 16 or 256 of

them were made available in the original VGA palette).

Other, higher-resolution standards succeeded VGA, such as SVGA (super VGA), XGA

(extended graphics array), SXGA (super extended graphics array), and more (see their

resolutions in figure 15.2). Such analog interfaces are collectively referred to as VGA

modes, with the original 640� 480� 60Hz version still being the default mode for most

analog computer monitors (that is the mode in which PCs operate at the beginning of the

start-up sequence).

VGA monitors are now being replaced with LCDs (liquid crystal displays), which

operate di¤erently from CRTs. They are fully digital, and their standard interface is

called DVI (digital visual interface). Despite its digital behavior, in many cases the

graphics controller also contains a VGA section, so VGA monitors can still be used. This

option (analogþ digital) is called DVI-I (integrated DVI), while the digital-only version

is called DVI-D. Details on the theory and design of DVI systems will be given in chap-

ter 16.



As in chapters 16 and 17, which also deal with video interfaces, here we focus on the

following fundamental aspects:

1) Operation of the VGA interface.

2) How the circuit should be divided to make the design as simple and as standard as

possible.

3) How the control signals operate and how they should be generated.

4) How images can be generated (from local hardware, external memory, file, etc.), rather

than focusing on images themselves (software).

15.2 VGA Connector

Figure 15.3 shows a VGA connector, which is a 15-pin connector called DB15. The figure

also shows the corresponding pinout, defined by the VESA (Video Electronics Standards

Association) through a document called DDC (display data channel).

Observe the following in figure 15.3:

1) The table is separated into two parts, with the upper part containing the standard sig-

nals and the lower part containing the signals used for monitor identification.

2) In the upper part, three wires are employed for the colors ðR;G;BÞ, which are analog

voltages between 0 V and 0.7 V on two parallel 75 W resistors (¼ 37:5 W). As already men-

tioned, G can be 0.3 V higher.

Figure 15.1
(a) Computer connected to an analog VGA monitor; (b) Circuits responsible for the video signals (graphics con-
troller on the host side, display controller on the device side).

Figure 15.2
(a) Pixel count; (b) Examples of display resolutions (collectively called VGA modes).
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3) Still in the upper part, two wires are employed for the horizontal and vertical synchro-

nization signals (Hsync, Vsync), which consist of 0V/5V digital waveforms.

4) The remaining six wires in the upper part of the table are either for ground or for an

optional þ5V supply voltage.

5) Finally, the lower part of the table shows the signals used for monitor identification. In

modern monitors, the DDC standard is used (described later). Note that the pins’ func-

tionalities change with the DDC version.

15.3 DDC and EDID

The lower part of the table in figure 15.3 shows three alternatives for monitor identification

(parameter passing), identified as non-DDC, DDC1, and DDC2B.

In the case of non-DDC (obsolete), the monitor is identified by means of three wires,

called ID0, ID1, and ID2 (ID3 was added later). Each of these wires has a pull-up resistor

connected to VCC on the computer side, so the default logic value on these pins is '1'. For a

'0' to occur, the display controller must provide a short circuit to GND. A typical monitor

Figure 15.3
The most common VGA connector, called DB15, with respective pinout. The function of some pins depends on
the DDC version. The last column shows the simplest possible connection ( just five active wires plus ground).
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identification using ID2-ID1-ID0 (in this order) is the following: "111" ! no monitor,

"101" ! monochrome monitor with resolution under 1024� 768, "110" ! color monitor

with resolution under 1024� 768, and "010" ! color monitor with the 1024� 768 resolu-

tion included.

DDC (display data channel) is a standard procedure for computer-monitor communica-

tion developed by VESA. With the introduction of DDC, such communication was greatly

improved because it allowed much more room for the display to tell its parameters to the

graphics controller. Such information is stored in a ROM on the monitor side, and obeys

a standard format called EDID (extended display identification data), also defined by

VESA. Up to 128 bytes can be stored in the ROM, containing the manufacturer’s name,

supported resolutions, and other information. Such information is made available every

time a pulse occurs in Vsync (in other words, Vsync acts as the memory-read clock). ID3

and the þ5V supply were also included in DDC1, though monitor identification through

ID pins became rapidly obsolete, with the EDID structure (accessed through pin 12) pre-

ferred instead.

DDC1 was rapidly superseded by DDC2B, which introduced an important change in

the DDC channel—it determined that the EDID data should be transmitted using the

I2C bus (section 14.4). I2C is a robust serial interface consisting of just two wires, called

SDA (serial data) and SCL (serial clock), plus the power supply rails (VCC and GND).

Consequently, the EDID information must be stored in a ROM that supports I2C access.

The SDA and SCL lines are pulled-up to VCC (5 V or 3.3 V) by 15 kW resistors installed

on the computer side. Since SDA is bidirectional, with DDC2B data can now not only be

read from the monitor, but can also be sent to it, thus allowing, for example, the graphics

controller to change the display’s setup. The 128-byte EDID structure was eventually

expanded to 256 bytes.

As already mentioned, EDID is a standard data format for storing display-related infor-

mation in a ROM at the monitor. Like DDC, EDID was also specified by VESA. Cur-

rently, the EDID ROM is accessed using the I2C bus. Indeed, this combination of EDID

with I2C constitutes the monitor-identification part of the DDC2B standard. There are

several versions of EDID (1.1, 1.2, 1.3, 2, 3), encompassing 128 and 256 bytes of display

information.

15.4 Circuit Diagram

Figure 15.4 shows a block diagram for a VGA system, with the graphics controller on the

left and the display controller on the right. The VGA interface is the circuit used in

the physical layer that interconnects these two controllers (see figure 15.1b). As shown

in figure 15.4, the computer-side circuit can be divided into four sections: image generator,

control generator, EDID interface, and finally the DACs (digital to analog converters).
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The pixel signals are generated digitally (normally with 10 bits), then converted to ana-

log by the three DACs. These analog voltages constitute the image that will be displayed

by the VGA monitor.

Contrary to the pixel signals, the control signals have a fixed constitution (for a given

VGA mode, of course). The whole sequence is controlled by pixel_clk, whose frequency,

for the original (default) VGA, is 25.175 MHz. Five control signals are generated (though

in many cases not all are needed): Hsync (horizontal synchronism), Vsync (vertical syn-

chronism), Hactive (portion of Hsync during which pixels are displayed), Vactive (portion

of Vsync during which lines of pixels are displayed), and dena (display enable).

Hsync and Vsync are responsible for determining when a new line or new frame should

start, with their timings also determining the VGA mode. Hactive and Vactive represent

the time intervals during which an image is actually being drawn on the screen. Finally,

dena is responsible for turning the pixel signals OFF during retrace (that is, while the elec-

tron beam returns to the beginning of a new line or of a new frame), so it can be obtained

by simply ANDing Hactive and Vactive. Note that only two of the five control signals are

transmitted to the monitor.

As already mentioned, the EDID circuit is responsible for retrieving the monitor specifi-

cations, stored in the EDID ROM. Note that all signals in the VGA cable are generated

by the host (computer) and transmitted to the device (monitor), with the exception of

SDA, which is bidirectional (reads display parameters and can also adjust them).

Figure 15.4
VGA interface circuit diagram.
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15.5 Control Signals

As we have seen, the control signals are Hsync, Vsync, Hactive, Vactive, and dena, and

their timings define the VGA mode. Several such modes are listed in figure 15.5, where

the first line corresponds to the original (default) VGA. Note that in this case the fre-

quency of pixel_clk is 25.175 MHz.

Figure 15.5 also shows the waveforms for Hsync and Hactive (based on pixel_clk),

which consist of four parts (all measured in number of pixels; i.e., number of clock cycles),

called Hpulse (width of the horizontal synchronization pulse), HBP (horizontal back

porch), Hactive (active line display interval), and HFP (horizontal front porch).

The vertical timing diagram is depicted in figure 15.6, also consisting of four parts

(all measured in number of lines or number of Hsync cycles), called Vpulse (width of the

vertical synchronization pulse), VBP (vertical back porch), Vactive (active column display

interval), and VFP (vertical front porch).

For example, in the 640� 480� 60Hz VGA option, the drawing of one line takes 800

clock cycles (figure 15.5), while one frame requires a time equivalent to 525 lines (figure

15.6). Consequently, to be able to generate 60 frames per second, the clock frequency

must be 800� 525� 60 ¼ 25:175 MHz, which is the value listed in the figures (indeed,

this clock frequency is for a refresh rate of 59.94 Hz, a value inherited from the NTSC tele-

vision system).

The final control signal is dena, which must be low during the blanking intervals (re-

trace), so it can be easily obtained by ANDing Hactive and Vactive.

As already mentioned, some monitors support also a form of composite sync called

sync-on-green, which consists of combining both horizontal and vertical synchronization

Figure 15.5
Examples of VGA modes and corresponding horizontal timing parameters.
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pulses with the green signal, thus eliminating the need for the Hsync and Vsync wires. In

this case, the voltage range of G is made 0.3 V higher (0.3V-to-1V), so the downward

pulses (toward 0 V) of Hsync and Vsync can be easily detected by the display controller,

which can also distinguish Hsync from Vsync because the latter is much longer.

15.6 Pixel Signals

In the last section we described the control signals, which are application-independent

(fixed). In this section we discuss the pixel signals, which vary with the application.

Figure 15.7a shows additional details regarding the DACs (pixel signals). Thanks to the

AND gates, R, G, and B are turned OFF when dena ¼ '0'. Note that pixel_clk is needed to

control the data sequence that is applied to the triple DAC. Finally, observe the presence

of two new control signals, called nblank and nsync, which are specifically for the DACs.

An example of DAC for video applications is shown in figure 15.7b, which is the

ADV7123 chip from Analog Devices, containing a triple 10-bit converter. The R and B

DACs provide output voltages in the 0V-to-0.7V range, while the G DAC includes also a

0.3 V higher (0.3V-to-1V) range, needed when sync-on-green is used. Since the DACs drive

dual 75 W loads, the output currents from R and B must be in the 0mA-to-18.7mA range

(because 0.7V/(75W//75W) ¼ 18:7 mA). The additional current source for G (which can be

turned ON and OFF by nsync) is 8 mA (because 0.3V/(75W//75W) ¼ 8 mA).

The purpose of nsync is to cause G to operate in the regular (when low) or composite

sync (when high) range. The purpose of nblank is to blank the screen (when low) by

Figure 15.6
Examples of VGA modes and corresponding vertical timing parameters.
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bringing R, G, and B to their lowest levels: 0 mA (thus 0 V) for R and B and 0 mA (if

operating in the regular range), or 8 mA (hence 0.3 V, if using composite sync) for G.

15.7 Setup for the Experiments

Having described all signals involved in the operation of the VGA interface, we present

in figure 15.8a a block diagram for the circuit to be used in the experiments (borrowed

from figure 15.4). Since the original VGA mode (640� 480� 60Hz) will be used, there is

no need to read the EDID ROM because support for the original mode is compulsory.

Figure 15.8b repeats the plots of figures 15.5 and 15.6, again for the particular case of

640� 480� 60Hz VGA. The physical setup of figure 15.8a and the values of figure 15.8b

will be employed in the experiments that follow, in which the host-side VGA interface will

be designed using VHDL.

15.8 Comments on VHDL Code for VGA Systems

All remaining sections of this chapter deal with actual VGA circuits designed using

VHDL. Based on figure 15.8a, such circuits will be divided into two parts: control genera-

tor, which is always the same (for a given VGA mode), hence application-independent,

and image generator, responsible for generating the images used in the examples, hence

application-dependent.

The generation/processing of images can be done in a number of ways. For example,

images can be built by the VHDL code itself (local hardware, proper only for very simple,

geometric images), or can be retrieved from some kind of memory (SRAM, file, etc.), or

can be real-time images produced by a video camera. The purpose of the designs presented

Figure 15.7
(a) Details regarding the DACs; (b) ADV7123 triple DAC.
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in the following sections is to illustrate some of these methods (in other words, the designs

are hardware-oriented instead of software-oriented).

15.9 Hardware-Generated Image

The main purpose of this first design is to illustrate how the control signals can be con-

structed. To keep the focus on that, a very simple image was chosen, so it can be generated

by the local hardware (FPGA) without the need for external data (the designs in the next

sections will take care of external data). The image consists of just four horizontal stripes

of solid colors, with widths 1, 2, 3, and 474 pixels. The first three are red, green, and blue,

respectively, while the last one (wide) is determined by three toggle switches, hence allow-

ing eight colors.

Figure 15.8
(a) Circuit diagram showing the indispensable VGA signals; (b) Horizontal and vertical sync signals for the basic
(480� 640) VGA mode.
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red_switch ¼ '0' ! no red (R ¼ "0000000000" ! 0V).

red_switch ¼ '1' ! maximum red intensity (R ¼ "1111111111" ! 0.7V).

green_switch ¼ '0' ! no green (G ¼ "0000000000" ! 0V).

green_switch ¼ '1' ! maximum green intensity (G ¼ "1111111111" ! 0.7V).

blue_switch ¼ '0' ! no blue (B ¼ "0000000000" ! 0V).

blue_switch ¼ '1' ! maximum blue intensity (B ¼ "1111111111" ! 0.7V).

A 50 MHz clock and a triple 10-bit DAC (as in Altera’s DE2 board) will be used. The

DAC’s control signals, nblank and nsync, must be kept at '1' and '0', respectively.

A VHDL code for this VGA interface is presented below. The control signal parameters

of figure 15.8b were entered using GENERIC declarations (lines 7–14), so the code can be

easily adjusted to other VGA modes. The signal names (lines 16–21) are from figure 15.8a.

Note that because only two (Hsync, Vsync) of the five control signals are transmitted to the

monitor (figure 15.8a), the other three were declared internally (line 25).

The code proper (lines 26–116) was separated into two parts. Part 1 (lines 30–77) imple-

ments the control generator (figure 15.8a). Note that the code for each signal obeys the tim-

ing diagrams of figure 15.8b.

Part 2 of the code (lines 81–115) implements the image generator. In lines 85–91, a

counter is used to construct a pointer (called line_counter) to the image rows. If it points

to row 1 (lines 93–96), the color is red. If it points to rows 2–3 (lines 97–100), the color

is green. When pointing to rows 4–6 (lines 101–104), it is blue. Finally, when pointing to

rows 7–480 (lines 105–108), the color is determined by the three toggle switches. In lines

110–113, dena ¼ '0' is used to turn the image OFF during retrace.

This design could obviously have been done using a structural approach, with each of

these parts implemented using the COMPONENT construct (such an approach will be

illustrated in the next chapter). The reader is invited to compile the code below and ob-

serve what happens on the VGA display while playing with the RGB switches.

1 ----------------------------------------------------------

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 ----------------------------------------------------------

5 ENTITY vga IS

6 GENERIC (

7 Ha: INTEGER := 96; --Hpulse

8 Hb: INTEGER := 144; --Hpulse+HBP

9 Hc: INTEGER := 784; --Hpulse+HBP+Hactive

10 Hd: INTEGER := 800; --Hpulse+HBP+Hactive+HFP

11 Va: INTEGER := 2; --Vpulse

12 Vb: INTEGER := 35; --Vpulse+VBP

13 Vc: INTEGER := 515; --Vpulse+VBP+Vactive
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14 Vd: INTEGER := 525); --Vpulse+VBP+Vactive+VFP

15 PORT (

16 clk: IN STD_LOGIC; --50MHz in our board

17 red_switch, green_switch, blue_switch: IN STD_LOGIC;

18 pixel_clk: BUFFER STD_LOGIC;

19 Hsync, Vsync: BUFFER STD_LOGIC;

20 R, G, B: OUT STD_LOGIC_VECTOR(9 DOWNTO 0);

21 nblanck, nsync : OUT STD_LOGIC);

22 END vga;

23 ----------------------------------------------------------

24 ARCHITECTURE vga OF vga IS

25 SIGNAL Hactive, Vactive, dena: STD_LOGIC;

26 BEGIN

27 -------------------------------------------------------

28 --Part 1: CONTROL GENERATOR

29 -------------------------------------------------------

30 --Static signals for DACs:

31 nblanck <= '1'; --no direct blanking

32 nsync <= '0'; --no sync on green

33 --Create pixel clock (50MHz->25MHz):

34 PROCESS (clk)

35 BEGIN

36 IF (clk'EVENT AND clk='1') THEN

37 pixel_clk <= NOT pixel_clk;

38 END IF;

39 END PROCESS;

40 --Horizontal signals generation:

41 PROCESS (pixel_clk)

42 VARIABLE Hcount: INTEGER RANGE 0 TO Hd;

43 BEGIN

44 IF (pixel_clk'EVENT AND pixel_clk='1') THEN

45 Hcount := Hcount + 1;

46 IF (Hcount=Ha) THEN

47 Hsync <= '1';

48 ELSIF (Hcount=Hb) THEN

49 Hactive <= '1';

50 ELSIF (Hcount=Hc) THEN

51 Hactive <= '0';

52 ELSIF (Hcount=Hd) THEN

53 Hsync <= '0';

54 Hcount := 0;

55 END IF;

56 END IF;
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57 END PROCESS;

58 --Vertical signals generation:

59 PROCESS (Hsync)

60 VARIABLE Vcount: INTEGER RANGE 0 TO Vd;

61 BEGIN

62 IF (Hsync'EVENT AND Hsync='0') THEN

63 Vcount := Vcount + 1;

64 IF (Vcount=Va) THEN

65 Vsync <= '1';

66 ELSIF (Vcount=Vb) THEN

67 Vactive <= '1';

68 ELSIF (Vcount=Vc) THEN

69 Vactive <= '0';

70 ELSIF (Vcount=Vd) THEN

71 Vsync <= '0';

72 Vcount := 0;

73 END IF;

74 END IF;

75 END PROCESS;

76 ---Display enable generation:

77 dena <= Hactive AND Vactive;

78 -------------------------------------------------------

79 --Part 2: IMAGE GENERATOR

80 -------------------------------------------------------

81 PROCESS (Hsync, Vsync, Vactive, dena, red_switch,

82 green_switch, blue_switch)

83 VARIABLE line_counter: INTEGER RANGE 0 TO Vc;

84 BEGIN

85 IF (Vsync='0') THEN

86 line_counter := 0;

87 ELSIF (Hsync'EVENT AND Hsync='1') THEN

88 IF (Vactive='1') THEN

89 line_counter := line_counter + 1;

90 END IF;

91 END IF;

92 IF (dena='1') THEN

93 IF (line_counter=1) THEN

94 R <= (OTHERS => '1');

95 G <= (OTHERS => '0');

96 B <= (OTHERS => '0');

97 ELSIF (line_counter>1 AND line_counter<=3) THEN

98 R <= (OTHERS => '0');

99 G <= (OTHERS => '1');
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100 B <= (OTHERS => '0');

101 ELSIF (line_counter>3 AND line_counter<=6) THEN

102 R <= (OTHERS => '0');

103 G <= (OTHERS => '0');

104 B <= (OTHERS => '1');

105 ELSE

106 R <= (OTHERS => red_switch);

107 G <= (OTHERS => green_switch);

108 B <= (OTHERS => blue_switch);

109 END IF;

110 ELSE

111 R <= (OTHERS => '0');

112 G <= (OTHERS => '0');

113 B <= (OTHERS => '0');

114 END IF;

115 END PROCESS;

116 END vga;

117 ----------------------------------------------------------

15.10 Image Generation with a File and On-Chip Memory

In chapter 13 we saw several ways of implementing ROM and RAM memory. It was also

described how data from a file can be loaded into such memories. The purpose of the de-

sign presented here is to show how an image can be read from a file and loaded into a

ROM (or RAM) memory, and from there be sent to a VGA display. A simple image will

again be used, which eases the comparison between the actual and the expected result.

Figure 15.9 shows the image to be produced in this design, along with the corresponding

data file (of type MIF—see chapter 13). The 480 lines are broken into eight 60-line

Figure 15.9
Image to be produced in the design of section 15.10 and corresponding MIF file.
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portions (shown on the left) and the 10-bit intensity (with 10-bit DACs) is broken into

eight linearly spaced values (shown in the center). Toggle switches will again be employed

for R, G, and B.

A VHDL code for this circuit is presented below. In the library declarations (lines

2–6), note the inclusion of the packages std_logic_arith, which contains the function

conv_std_logic_vector (used in line 60), and lpm_components, which specifies the lpm_rom

cell (used in lines 40–48).

The control signal parameters of figure 15.8b were entered using GENERIC declara-

tions (lines 10–17), so the code can be easily adjusted to other VGA modes. The signal

names (lines 19–24) are from figure 15.8a. Because only two (Hsync, Vsync) of the five

control signals are transmitted to the monitor (figure 15.8a), the other three were declared

internally (line 28). Two other internal signals were declared in lines 29–30 to deal with the

ROM.

The code proper (lines 31–66) was broken into two parts, with part 1 implementing the

control generator and part 2 implementing the image generator. Because the former is ex-

actly the same as that in the previous design, it was omitted in the code below.

The image generator (lines 39–66) is divided into three subsections. The first subsection

implements the ROM (lines 40–48). The second (lines 50–61) builds a pointer (called

line_counter) that is used in line 48 as an address to retrieve data from the ROM, which is

assigned to the signal intensity. Finally, in the third subsection (lines 63–65), intensity

is assigned or not to the system colors ðR;G;BÞ, depending on the positions of the toggle

switches.

As in the previous design, a structural code could have been used, with the control gen-

erator in one code and the image generator in another, both then instantiated in the main

code by means of the COMPONENT construct.

1 ----------------------------------------------------------------------

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 USE ieee.std_logic_arith.all;

5 LIBRARY lpm;

6 USE lpm.lpm_components.all;

7 ----------------------------------------------------------------------

8 ENTITY vga IS

9 GENERIC (

10 Ha: INTEGER := 96; --Hpulse

11 Hb: INTEGER := 144; --Hpulse+HBP

12 Hc: INTEGER := 784; --Hpulse+HBP+Hactive

13 Hd: INTEGER := 800; --Hpulse+HBP+Hactive+HFP

14 Va: INTEGER := 2; --Vpulse

15 Vb: INTEGER := 35; --Vpulse+VBP
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16 Vc: INTEGER := 515; --Vpulse+VBP+Vactive

17 Vd: INTEGER := 525); --Vpulse+VBP+Vactive+VFP

18 PORT (

19 clk: IN STD_LOGIC; --50MHz in our board

20 red_switch, green_switch, blue_switch: IN STD_LOGIC;

21 pixel_clk: BUFFER STD_LOGIC;

22 Hsync, Vsync: BUFFER STD_LOGIC;

23 R, G, B: OUT STD_LOGIC_VECTOR(9 DOWNTO 0);

24 nblanck, nsync : OUT STD_LOGIC);

25 END vga;

26 ----------------------------------------------------------------------

27 ARCHITECTURE vga OF vga1 IS

28 SIGNAL Hactive, Vactive, dena: STD_LOGIC;

29 SIGNAL address: STD_LOGIC_VECTOR(8 DOWNTO 0);

30 SIGNAL intensity: STD_LOGIC_VECTOR(9 DOWNTO 0);

31 BEGIN

32 ------------------------------------------------

33 --Part 1: CONTROL GENERATOR

34 ------------------------------------------------

35 ... (same as in previous design)

36 ------------------------------------------------

37 --Part 2: IMAGE GENERATOR

38 ------------------------------------------------

39 --ROM instantiation:

40 myrom: lpm_rom

41 GENERIC MAP (

42 lpm_widthad => 9, --address width

43 lpm_outdata => "UNREGISTERED",

44 lpm_address_control => "REGISTERED",

45 lpm_file => "stripes.mif", --data file

46 lpm_width => 10) --data width

47 PORT MAP (

48 inclock=>NOT pixel_clk, address=>address, q=>intensity);

49 --Create address (row number):

50 PROCESS (Vsync, Hsync)

51 VARIABLE line_counter: INTEGER RANGE 0 TO Vd;

52 BEGIN

53 IF (Vsync='0') THEN

54 line_counter := 0;

55 ELSIF (Hsync'EVENT AND Hsync='1') THEN

56 IF (Vactive='1') THEN

57 line_counter := line_counter + 1;

58 END IF;
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59 END IF;

60 address <= conv_std_logic_vector(line_counter, 9);

61 END PROCESS;

62 --Assign color values to R/G/B:

63 R<=intensity WHEN red_switch='1' AND dena='1' ELSE (OTHERS=>'0');

64 G<=intensity WHEN green_switch='1' AND dena='1' ELSE (OTHERS=>'0');

65 B<=intensity WHEN blue_switch='1' AND dena='1' ELSE (OTHERS=>'0');

66 END vga;

67 ----------------------------------------------------------------------

15.11 Arbitrary Image Generation with a File and O¤-Chip Memory

The setup for this experiment is depicted in figure 15.10a, which shows the VGA interface

(implemented in the FPGA and followed by DACs) retrieving the video data from an

external memory (SRAM, in this example). We will assume that the data, possibly from a

bitmap file, has already been stored in the SRAM, so our job is to retrieve the data, pro-

cess it, and send it to the VGA monitor.

There are several ways of loading data from a file into an SRAM (like the methods seen

in chapter 13), but such procedures are normally dependent on the tools being used in the

project. For example, if using Altera’s DE2 board, a bitmap file containing the target pic-

ture can be converted to a raw format using the ImgConv.exe program that accompanies

the DE2 board (see tutorial in appendix D), which is the method adopted in this design.

A VHDL code that solves this problem is presented below. Since the actual image size

must be 640� 480 ¼ 307,200 pixels, a color image could not be used because the SRAM

available in the DE2 board (ISSI IS61LV25616-10) can only store 256k 16-bit words.

To circumvent this limitation, a monochromatic image was employed (obtained with

ImgConv.exe), with eight bits per pixel, hence allowing 256 shades of gray. To be able to

fit this file into the SRAM, two pixels were stored at each address, so the picture occupied

153,600 16-bit words (@60% of the total SRAM space).

The memory-read timing is depicted in figure 15.10b. The SRAM mentioned above is a

10 ns read cycle memory, with tOHA (output hold time) ¼ 3 ns and tAA (address access

Figure 15.10
(a) Setup for the design of section 15.11 (data read from an external memory); (b) Memory-read timing.
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time) ¼ 10 ns. Since our circuit will operate in the basic VGA mode (640� 480� 60Hz),

its clock is 25 MHz. Given that each memory address contains two pixels, the memory-

read operation only needs to be executed once every two pixel clock cycles—that is, at

12.5 MHz, well under the maximum speed of this memory. Note in the code that the five

memory-control signals, nWE (write enable, active low), nCE (chip enable, active low),

nOE (output enable, active low), nLB (lower byte enable, active low), and nUB (upper

byte enable, active low) are all held at fixed values (line 39), proper for memory-reading

only.

The architecture (lines 26–75) contains again two parts: control generator and image

generator. The former is exactly the same as that in the previous designs, so it was omitted.

The latter is in lines 38–75, and was further divided into three subsections. The first of

them assigns the static values to the five memory-control pins mentioned above (line 39).

The second subsection (lines 41–55) reads the memory and stores the result (16 bits ¼ 2

pixels) locally. Finally, the third subsection (lines 57–74) assigns such bits to the R, G,

and B signals.

1 -------------------------------------------------------------

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 -------------------------------------------------------------

5 ENTITY vga IS

6 GENERIC (

7 Ha: INTEGER := 96; --Hpulse

8 Hb: INTEGER := 144; --Hpulse+HBP

9 Hc: INTEGER := 784; --Hpulse+HBP+Hactive

10 Hd: INTEGER := 800; --Hpulse+HBP+Hactive+HFP

11 Va: INTEGER := 2; --Vpulse

12 Vb: INTEGER := 35; --Vpulse+VBP

13 Vc: INTEGER := 515; --Vpulse+VBP+Vactive

14 Vd: INTEGER := 525); --Vpulse+VBP+Vactive+VFP

15 PORT (

16 clk: IN STD_LOGIC; --50MHz

17 pixel_clk: BUFFER STD_LOGIC; --25MHz

18 Hsync, Vsync: BUFFER STD_LOGIC; --control

19 R, G, B: OUT STD_LOGIC_VECTOR(9 DOWNTO 0); --to DACs

20 nblanck, nsync: OUT STD_LOGIC; --to DACs

21 nWE, nCE, nOE, nLB, nUB: OUT STD_LOGIC; --to SRAM

22 address: OUT INTEGER RANGE 0 TO 262143; --to SRAM

23 data: IN STD_LOGIC_VECTOR(15 DOWNTO 0)); --from SRAM

24 END vga;

25 -------------------------------------------------------------

26 ARCHITECTURE vga OF vga IS
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27 SIGNAL Hactive, Vactive, dena: STD_LOGIC;

28 SIGNAL registered_data: STD_LOGIC_VECTOR(15 DOWNTO 0);

29 SIGNAL flag: STD_LOGIC;

30 BEGIN

31 ------------------------------------------------

32 --Part 1: CONTROL GENERATOR

33 ------------------------------------------------

34 ... (same as in previous design)

35 ------------------------------------------------

36 --Part 2: IMAGE GENERATOR

37 ------------------------------------------------

38 --Static signals for SRAM:

39 nWE<='1'; nCE<='0'; nOE<='0'; nLB<='0'; nUB<='0';

40 --Read SRAM and register its data:

41 PROCESS (pixel_clk, Vsync)

42 VARIABLE pixel_counter: INTEGER RANGE 0 TO 262143;

43 BEGIN

44 IF (Vsync='0') THEN

45 pixel_counter := 0;

46 flag <= '0';

47 ELSIF (pixel_clk'EVENT AND pixel_clk='1') THEN

48 IF (dena='1' AND flag='1') THEN

49 registered_data <= data;

50 pixel_counter := pixel_counter + 1;

51 END IF;

52 flag <= NOT flag;

53 END IF;

54 address <= pixel_counter;

55 END PROCESS;

56 --Create image:

57 PROCESS (dena, flag, registered_data)

58 BEGIN

59 IF (dena='1') THEN

60 IF (flag='1') THEN

61 R <= (registered_data(15 DOWNTO 8) & "00");

62 G <= (registered_data(15 DOWNTO 8) & "00");

63 B <= (registered_data(15 DOWNTO 8) & "00");

64 ELSE

65 R <= (registered_data(7 DOWNTO 0) & "00");

66 G <= (registered_data(7 DOWNTO 0) & "00");

67 B <= (registered_data(7 DOWNTO 0) & "00");

68 END IF;

69 ELSE
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70 R <= (OTHERS => '0');

71 G <= (OTHERS => '0');

72 B <= (OTHERS => '0');

73 END IF;

74 END PROCESS;

75 END vga;

76 -------------------------------------------------------------

15.12 Image Equalization with Gamma Expansion

CRT monitors introduce a nonlinear luminance distortion known as gamma compression,

because it compresses the input values (x) according to the function xg, where 0a xa 1

and gA2:2. Consequently, for a ‘‘linear’’ reproduction, the inputs must be gamma ex-

panded; that is, x1=g must be entered instead of x (as in the NTSC television system).

To illustrate this phenomenon, we can display the same image of section 15.10, now

with gamma expanded values at the input (see figure 15.11). Note that, because the image

is stored in an external (memory initialization) file, nothing in the code of section 15.10

needs to be changed. The reader is invited to compile the code with this new MIF file and

compare the resulting image (on a VGA monitor) against that produced in section 15.10.

15.13 Exercises

Note: For exercise solutions, please consult the book website.

Exercise 15.1: 800D 600D 75Hz SVGA Interface

a) Say that our monitor supports other modes besides the default VGA mode. What needs

to be done for it to change from one mode to the other?

Figure 15.11
Gamma expanded input values for approximately ‘‘linear’’ image reproduction.
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b) Say that we want it to operate in the 800� 600� 75Hz mode. Draw the corresponding

horizontal and vertical timing diagrams (as in figure 15.8b).

c) Modify the code in section 15.9 in order to display the same image but operating in the

75 Hz SVGA mode.

Exercise 15.2: Image Generation with Hardware C1 (Banner)

Design a circuit capable of producing the image of figure 15.12a on a VGA monitor. The

color on the left half must be determined by three toggle switches (for R, G, B), with

the complementary color ðR 0;G 0;B 0Þ automatically assigned to the right half of the ban-

ner. The figure must be generated by local hardware (FPGA cells, as in section 15.9).

Exercise 15.3: Image Generation with Hardware C2 (Sun in the Sky)

Design a circuit capable of producing the image of figure 15.12b on a VGA monitor. The

color outside the circle must be determined by three toggle switches (for R, G, B). The fig-

ure must be generated by local hardware (FPGA cells, as in section 15.9).

Exercise 15.4: Image Generation with Hardware C3 (Filling with Green)

Design a circuit capable of producing the image of figure 15.12c on a VGA monitor, which

must be generated by local hardware (FPGA cells, as in section 15.9). It consists of filling

the screen with green, from top to bottom, with the base color determined by three toggle

switches (for R, G, and B). When the filling is completed, the base color should start filling

the screen, also from top to bottom, until green starts filling it again, and so on. The speed

of the filling should be one line per frame (with 60 frames/second, a total of 480/60 ¼ 8

seconds will be needed to fill one screen).

Exercise 15.5: Image Generation with Hardware C4 (Rotating Bar)

Design a circuit capable of producing the image of figure 15.12d on a VGA monitor,

which must be generated by local hardware (FPGA cells, as in section 15.9). Each bar

must be 100 pixels wide. As soon as the green bar reaches the bottom of the screen it

Figure 15.12
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must start reentering at the top, the same occurring with the red bar in the horizontal di-

rection. The speed of the green bar must be one line per frame (with 60 frames/second, 8

seconds will be needed for a full bar rotation). Choose for the red bar a speed such that it

takes the same time as the green bar to cover one screen.

Exercise 15.6: Image Generation with Hardware C5 (Digital Clock)

Design a circuit that implements the clock of figure 15.13 on a VGA monitor. The posi-

tions of the digits on the screen, for the monitor operating in the basic 640� 480 VGA

mode, are given in the figure. The image must be generated by local hardware (FPGA

cells, as in section 15.9). (Hint: See a related design in chapter 17.)

Exercise 15.7: Image Generation with Hardware C6 (Arcade Game)

Design a circuit capable of generating the elementary game illustrated in figure 15.14. The

player must be able to move the racket horizontally using two pushbuttons. If a clear ball

is collected by the racket, the player wins a point; otherwise, if the ball reaches the bottom

of the screen, the computer gets a point. A few black balls also fall along with clear balls,

which must be avoided by the player. The game ends when a certain score is reached or a

black ball hits the racket. The score must be kept on the screen (upper left and right cor-

ners). The speed of the balls (four levels of di‰culty) must be set by two toggle switches.

The image must be generated by local hardware (FPGA cells, as in section 15.9).

Figure 15.13

Figure 15.14
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Exercise 15.8: Image Generation with a File and On-Chip Memory C1 (Banner)

Following the procedure in section 15.10, design a circuit capable of generating the image

of figure 15.12a. The image must first be prepared in a standard text file (MIF, for exam-

ple), from which it should be read and transferred to the FPGA SRAM memory, then

finally displayed on the monitor. The file should contain only '0's (for the left half of the

banner) and '1's (for the right half ). When reading this file, '0' should be interpreted as

green and '1' as red. It is left to the reader to find a way of preparing the text file (with

Excel, for example, among several other possibilities).

Exercise 15.9: Image Generation with a File and On-Chip Memory C2 (Sun in the Sky)

Develop a design similar to that in exercise 15.8 for the image of figure 15.12b.

Exercise 15.10: Image Generation with a File and O¤-Chip Memory (Arbitrary Picture)

Find a picture that you consider interesting. Following the procedure in section 15.11,

design a circuit capable of displaying that picture on a VGA monitor.
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16 VHDL Design of DVI Video Interfaces

16.1 Introduction

DVI (digital visual interface) is a digital video interface developed by DDWG (Digital

Display Working Group) in 1999 for connecting uncompressed video from computers to

LCD monitors. Its core consists of TMDS (transition minimized di¤erential signaling) cir-

cuits, studied in chapter 14.

Figure 16.1 illustrates the use of DVI. In (a), the previous technology is shown, which

consists of a CRT-based monitor, with which a computer communicates using a VGA

(analog) interface (seen in chapter 15). Current technology is depicted in (b), where an

LCD monitor is shown, with which a computer communicates using the DVI (digital)

interface. Finally, (c) shows the way pixels are counted (from top left to bottom right).

Typical specifications for current LCD monitors are also included in figure 16.1. In this

case, the display’s native (fixed) resolution is 1280 pixels per row, with a total of 1024 rows,

refreshed 60 times per second. The required pixel rate then is 1280� 1024 � 60A79 Mpps

(the actual pixel rate is indeed higher because of the blanking/retrace intervals). This par-

ticular resolution (1280� 1024) is called SXGA (super extended graphics array). We will

see more on display resolutions in section 16.3.

As in chapters 15 and 17, which also deal with video interfaces, the following fundamen-

tal aspects will be focused on here:

1) Operation of the DVI interface.

2) How the circuit should be divided to make the design as simple and as standard as

possible.

3) How the control signals operate and how they should be generated.

4) How images can be generated (from local hardware, external memory, file, etc.), rather

than focusing on the images themselves (software).



16.2 Circuit Diagram

Figure 16.2 shows a general diagram for the DVI circuit. It contains three parts, called

TMDS (transition minimized di¤erential signaling), DDC (display data channel), and

VGA (video graphics array). TMDS is a line encoder/decoder (studied in chapter 14),

DDC is how the monitor tells the computer its characteristics (chapter 15), and VGA

(chapter 15) is an optional section whose purpose is to maintain compatibility with analog

VGA monitors.

Note that the TMDS part of DVI can contain one or two links, called link0 (mandatory)

and link1 (optional). Each link consists of three TMDS channels (highlighted in a white

box at the top of figure 16.2), which transmit alternately pixel data (R, G, and B colors,

with eight bits each) or control data (two bits per channel, with the horizontal and vertical

synchronization signals, Hsync and Vsync, in the first channel, plus up to five pairs of

reserved control bits, C0-C1; . . . ;C8-C9, in the other channels). The decision between

transmitting pixel or control data is made by a signal called dena (display enable), which

remains high during the time intervals in which pixels must be e¤ectively written onto the

display, and remains low during the blanking/retrace intervals. Note that because a pixel is

represented by 8 bits, a total of 2563 ¼ 16:8 million distinct colors or shades result.

The clock frequency in DVI systems must lie in the range from 25 MHz (minimum res-

olution; that is, basic 640� 480� 60Hz VGA) up to 165 MHz (default, which allows max-

imum resolution). A minimum is necessary in order to detect when the DVI cable is idle

(22.5 MHz is the actual nominal minimum). Moreover, when a pixel rate above 165 Mpps

is required (with blanking included), dual link must be used. However, both links must

Figure 16.1
(a) VGA interface (analog) between a computer and a CRT monitor; (b) DVI interface (digital) between a com-
puter and an LCD monitor (typical specifications also shown); (c) Pixel count.
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operate at the same speed. Then, if for example 200 Mpps are required, it must not be

165 Mpps in link0 and 35 Mpps in link1, but rather 100 Mpps in each link.

Note that the bit rate through the DVI cable is independent from the type of data

(pixel or control) being transmitted, because in either case 10 bits are produced by the

TMDS encoder. Consequently, when operating at full speed (165 Mpps for single link or

330 Mpps for dual link), a bit rate of 1.65 Gbps is needed through the DVI cable.

Note also that a fast serializer (chapter 14) is needed because the output clock must

be ten times faster than the TMDS clock. This additional 1.65 GHz transmission clock is

obtained with a PLL circuit (Pedroni 2008). Transmissions start with the LSB. For further

details on the TMDS transmitter, see section 14.6.

DVI has also a DDC channel, through which the computer reads the display’s features

(supported resolutions, timings, etc.) stored in a ROM on the monitor side (the type of in-

terface used in this channel is called I2C, also studied in chapter 14). The ROM’s data for-

mat is called EDID (extended display identification data). For example, since any LCD

monitor has a fixed (called native) resolution, in order for it to display other formats it

Figure 16.2
DVI circuit, which consists of three parts: TMDS, DDC, and VGA (optional). A complete DVI connector has 29
pins, corresponding to the 25 wires shown above plus 4 grounded shields.
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must possess an image scaler. Consequently, the native resolution plus those supported by

the scaler are the resolutions reported by EDID to the host computer. In case the monitor

is not equipped with a scaler, then only the native resolution is reported, but the mon-

itor should still be able to display a legible image for low-pixel format (640� 480 resolu-

tion), needed at computer startup. Other details about DDC and EDID can be found in

chapter 15.

There is also an HPD (hot plug detect) wire, kept at '1' by the device when plugged in, so

the host can know when a monitor is connected to the DVI cable.

Finally, in the lowest part of figure 16.2, which is optional, the analog signals needed to

drive a VGA monitor (chapter 15) are shown. The purpose of this analog section, with six

wires (R, G, B, Vsync, Hsynk, and GND for RGB), is to allow compatibility with the pre-

vious monitor generation.

16.3 Display Resolutions

To analyze figure 16.3, recall that a DVI controller can operate with one or two links and

with a clock frequency between 25 and 165 MHz.

Examples of standardized computer monitor resolutions are shown in figure 16.3. For

illustration purposes, it is assumed that the display is refreshed 60 times per second, with

a blanking period that adds just 10% of overhead (other refresh rates also exist, such as

17 Hz, 33 Hz, 75 Hz, 85 Hz, etc.; the same is true for the blanking overhead, which can

be larger, particularly if GTF [generalized timing formula, used to calculate the blanking

intervals of VGA monitors] is adopted, in which case the overhead is generally over 30%).

Figure 16.3
Examples of computer display resolutions, along with minimum DVI specifications needed to support them. For
illustrative purposes, a refresh rate of 60Hz and an overhead of 10% (blanking period) were assumed.
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16.4 DVI Types and DVI Connectors

Regarding compatibility, there are two types of DVI, called DVI-I and DVI-D.

1 DVI-I (I ¼ Integrated; i.e., digitalþ analog): Contains the actual DVI signals, which are

digital, plus the analog VGA signals, thus providing backward compatibility with the pre-

vious monitor technology. This is the case in figure 16.2.

1 DVI-D (D ¼ digital): This option contains only the true-DVI signals.

Regarding the number of links, there are again two DVI categories, called single-link

and dual-link.

1 Single-link DVI: Employs one pair of wires per color (R, G, B), which can transmit up to

165 Mpps to an LCD monitor.

1 Dual-link DVI: Employs two pairs of wires per color, being therefore capable of trans-

mitting 330 Mpps to an LCD monitor. This is the case in figure 16.2.

Finally, regarding the DVI connectors, there are five fundamental types, depicted in

figure 16.4. The first pair of male connectors is for single- and dual-link DVI-I; the second

pair is for single- and dual-link DVI-D; and the last male connector is for the case when

just the analog signals of a DVI-I board are indeed communicated to a VGA monitor. A

complete DVI female connector and a DVI cable are also shown.

The pinout of a complete DVI connector is shown in figure 16.5, which also shows a

female DVI with the respective pin numbers. Observe that the connector contains all 25

wires seen in figure 16.2 plus four pins connected to the seven shielding covers of TMDS

signals and TMDS clock. The pins’ functions are summarized below.

1 There are three pairs of wires, called TMDS0 (pins 18–17, signal B), TMDS1 (pins 10–9,

signal G ), and TMDS2 (pins 2–1, signal R), to transmit RGB in the first link (link0) of the

DVI system.

1 There are three pairs of wires, called TMDS3 (pins 13–12, signal B), TMDS4 (pins 5–4,

signal G ), and TMDS5 (pins 21–20, signal R), to transmit RGB in the second link (link1)

of the DVI system.

Figure 16.4
Types of DVI connectors and a DVI cable.
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1 There is one pair of wires, called TMDS clock (pins 23–24), for transmitting the DVI

clock from the host to the device.

1 Each of the seven pairs of wires above has a shielding cover, connected to pins 3, 11, 19,

or 22.

1 There are also two DDC wires (SCL, pin 6, and SDA, pin 7), needed for the host to read

the device’s features, stored in the EDID ROM.

1 There is a pair of wires for the power supply (þ5V, pin 14, and GND, pin 15) that feeds

the EDID ROM when the monitor is o¤.

1 The connector also shows an HPD wire, which allows the host to know when a device is

connected to the DVI cable.

1 Finally, the remaining six wires (R, G, B, Vsync, Hsynk, and GND for R/G/B) are for

compatibility with VGA (analog) monitors.

16.5 DVI versus HDMI

While DVI is a video interface for computer-display communication, HDMI (high defini-

tion multimedia interface) is a video plus audio interface for communication between

consumer electronics products and HDTV (high definition television) sets. Such products

include, for example, DVD players, camcorders, cable/satellite boxes, video game con-

soles, and video projectors.

The transmission/reception portions of HDMI and DVI are similar in the sense that

both use a TMDS transmitter/receiver pair and data serializer/deserializer circuits. The

data contents, however, exhibit important di¤erences, because HDMI also transmits audio

(up to eight channels) and supports YCbCr (luminance plus chrominance) video format. It

Figure 16.5
DVI connector pinout.
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also allows more than eight bits per pixel color and a higher clock frequency (340 instead

of 165 MHz). However, only one TMDS link is used in HDMI. Dual-link HDMI,

compatible with DVI-D, is expected to be used in the future for very high resolution (e.g.

3840� 2400) displays.

The HDMI connector is also di¤erent from the DVI connector, as can be observed in

figure 16.6 (there are indeed three connector sizes/shapes, called types A, B, and C; type

A is shown here). Because HDMI uses only one link, it contains 19 wires, against 29 of

DVI. As mentioned above, a dual-link version compatible with DVI is expected to be

used in the future, then with a DVI-compatible (type B) connector. Because the signals

in both systems are electrically compatible, a cable adapter can be used to convert one to

another (so a computer can be connected to an HDMI display, for example).

There are so far four HDMI versions, which allow the following maximum display res-

olutions:

Versions 1.0 and 1.2 (165 MHz single link, 24 bits/pixel, 60 Hz scan): up to 1920� 1200

Version 1.3 (340 MHz single link, 48 bits/pixel, 75 Hz scan): up to 2560� 1600

Version 1.4 (340 MHz single link, ethernet, 48 bits/pixel, 24 Hz scan): up to 4096� 2160.

16.6 Setup for the Experiments

Figure 16.7 shows a complete single-link DVI interface. As in chapter 15, the circuit was

broken into subsections, here called image generator, control generator, and tmds trans-

mitter. This division is very important because not all subsections change from one

application to another, so the fixed ones only need to be designed once (only the image

generator portion is application-dependent in figure 16.7).

Figure 16.6
HDMI connector and respective pinout.
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Another peculiarity of figure 16.7 is the pair of 270 ohm resistors at each TMDS output,

which allow regular 3.3V LVCMOS pins to emulate CML I/Os (see details in section

14.6).

We will use an FPGA (Cyclone II, available in the Altera DE2 board) whose highest

frequency is too low for full-speed DVI operation (1.65 Gbps at the output), making the

problem even more interesting from an engineering perspective. Thus we have now two

limitations to overcome: the lack of CML I/Os (dealt with in section 14.6) and the speed

limit.

To overcome the speed limitation, the system of figure 16.7 will operate in its lowest

resolution (basic 640� 480� 60Hz VGA mode), thus requiring a 25 MHz clock and

producing 250 Mbps in the DVI cable. The system clock is assumed to be 50 MHz, hence

called clk50, while the TMDS and line clocks, derived from clk50, are called clk25

(25 MHz) and clk250 (250 MHz), respectively.

16.7 Hardware-Generated Image

We turn now to the design of DVI circuits using VHDL. As in chapter 15, the main pur-

pose of this first design is to illustrate how the control signals, the TMDS encoder, and the

serializer (which are the invariant parts of DVI) can be constructed. To keep the focus on

that, the same simple image of section 15.9 will be generated here, using local hardware

(FPGA), consisting of just four horizontal stripes of solid colors, with widths 1, 2, 3, and

474 pixels. The first three are red, green, and blue, respectively, while the last one (wide) is

determined by three toggle switches, hence allowing eight colors.

Figure 16.7
Complete single-link DVI interface.
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A structural approach will be adopted in the design, which consists of designing each of

the subsections of figure 16.7 separately, then bringing them together in the main code

using the COMPONENT construct. Note that the TMDS transmitter is constructed with

TMDS encoders plus serializers, both of which were studied in chapter 14 (sections 14.6

and 14.2, respectively).

Part 1: Image Generator

The coder for the image generator is shown below. The inputs are the three toggle switches

(line 7) plus the control signals (line 8), while the outputs are the RGB colors (line 9), with

eight bits each. The code proper is divided into two subsections; in the first of them (lines

18–24), a pointer (address) to the display rows is implemented, which is then used in the

second subsection (lines 26–48) to build the four-stripe image. Recall that there are always

five control signals (Hsync, Vsync, Hactive, Vactive, dena) produced by the control gener-

ator, but not all are always needed by the image generator (in this example, Hactive was

not required).

1 -----Image generator:-------------------------------------------------

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 ----------------------------------------------------------------------

5 ENTITY image_generator IS

6 PORT (

7 red_switch, green_switch, blue_switch: IN STD_LOGIC;

8 Hsync, Vsync, Vactive, dena: IN STD_LOGIC;

9 R, G, B: OUT STD_LOGIC_VECTOR(7 DOWNTO 0));

10 END image_generator;

11 ----------------------------------------------------------------------

12 ARCHITECTURE image_generator OF image_generator IS

13 BEGIN

14 PROCESS (Hsync, Vsync, dena, red_switch, green_switch, blue_switch)

15 VARIABLE line_counter: INTEGER RANGE 0 TO 480;

16 BEGIN

17 -----Create pointer to LCD rows:-----

18 IF (Vsync='0') THEN

19 line_counter := 0;

20 ELSIF (Hsync'EVENT AND Hsync='1') THEN

21 IF (Vactive='1') THEN

22 line_counter := line_counter + 1;

23 END IF;

24 END IF;

25 -----Create image:-------------------

26 IF (dena='1') THEN

27 IF (line_counter=1) THEN
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28 R <= (OTHERS => '1');

29 G <= (OTHERS => '0');

30 B <= (OTHERS => '0');

31 ELSIF (line_counter=2 OR line_counter=3) THEN

32 R <= (OTHERS => '0');

33 G <= (OTHERS => '1');

34 B <= (OTHERS => '0');

35 ELSIF (line_counter>3 AND line_counter<=6) THEN

36 R <= (OTHERS => '0');

37 G <= (OTHERS => '0');

38 B <= (OTHERS => '1');

39 ELSE

40 R <= (OTHERS => red_switch);

41 G <= (OTHERS => green_switch);

42 B <= (OTHERS => blue_switch);

43 END IF;

44 ELSE

45 R <= (OTHERS => '0');

46 G <= (OTHERS => '0');

47 B <= (OTHERS => '0');

48 END IF;

49 END PROCESS;

50 END image_generator;

51 ----------------------------------------------------------------------

Part 2: Control Generator

A VHDL code for the control generator is presented below. The parameters for the origi-

nal 640� 480 VGA mode were adopted (from figure 15.8b), entered using the GENERIC

attribute (lines 6–14), so they can be easily modified to implement other video modes.

Note that this code is similar to that seen in chapter 15 for the VGA display, with the

only particularity that an additional high-frequency clock (clk250), for the serializers, is

also inferred here (with a PLL). The PLL is declared in lines 27–33, then instantiated in

line 36. Other details about the PLL will be given in part 3.

Because we want the circuit to produce 60 frames/second, a 25 MHz clock (clk25)

is needed (see chapter 15). Hence the system must operate with two clocks: clk250

(250 MHz, for the serializer) and clk25 (25 MHz, which is the new system clock). In this

kind of situation, and assuming that the system clock might be used to build also other

circuits (as parts of the same system), it is important to know the phase relationship be-

tween these two clocks. For example, if clk50 and clk250 are in phase (every five clock

cycles, of course), which is generally the case, then clk25 can be derived from either one;

otherwise, if their relative phases are unknown or too far apart, then it is advisable to

divide clk250 down to get clk25. Both cases are included in the code below (see options 1

and 2 in lines 39–44 and 46–56, respectively).
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1 -----Control generator:--------------------------------------

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 -------------------------------------------------------------

5 ENTITY control_generator IS

6 GENERIC (

7 Ha: INTEGER := 96; --Hpulse

8 Hb: INTEGER := 144; --Hpulse+HBP

9 Hc: INTEGER := 784; --Hpulse+HBP+Hactive

10 Hd: INTEGER := 800; --Hpulse+HBP+Hactive+HFP

11 Va: INTEGER := 2; --Vpulse

12 Vb: INTEGER := 35; --Vpulse+VBP

13 Vc: INTEGER := 515; --Vpulse+VBP+Vactive

14 Vd: INTEGER := 525); --Vpulse+VBP+Vactive+VFP

15 PORT (

16 clk50: IN STD_LOGIC; --System clock (50MHz)

17 clk25: BUFFER STD_LOGIC; --TMDS clock (25MHz)

18 clk250: BUFFER STD_LOGIC; --Tx clock (250MHz)

19 Hsync: BUFFER STD_LOGIC; --Horizontal sync

20 Vsync: OUT STD_LOGIC; --Vertical sync

21 Hactive: BUFFER STD_LOGIC; --Active portion of Hsync

22 Vactive: BUFFER STD_LOGIC; --Active portion of Vsync

23 dena: OUT STD_LOGIC); --Display enable

24 END control_generator;

25 -------------------------------------------------------------

26 ARCHITECTURE control_generator OF control_generator IS

27 COMPONENT altera_pll IS

28 PORT (

29 areset: IN STD_LOGIC;

30 inclk0: IN STD_LOGIC;

31 c0: OUT STD_LOGIC;

32 locked: OUT STD_LOGIC);

33 END COMPONENT;

34 BEGIN

35 -----Generation of clk250:-------------

36 pll: altera_pll PORT MAP ('0', clk50, clk250, OPEN);

37 -----Generation of clk25:--------------

38 ---Option 1: From clk50

39 PROCESS (clk50)

40 BEGIN

41 IF (clk50'EVENT AND clk50='1') THEN

42 clk25 <= NOT clk25;

43 END IF;

44 END PROCESS;
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45 ---Option 2: From clk250

46 --PROCESS (clk250)

47 -- VARIABLE count: INTEGER RANGE 0 TO 5;

48 --BEGIN

49 -- IF (clk250'EVENT AND clk250='1') THEN

50 -- count := count + 1;

51 -- IF (count=5) THEN

52 -- clk25 <= NOT clk25;

53 -- count := 0;

54 -- END IF;

55 -- END IF;

56 --END PROCESS;

57 ---Horizontal signals generation:----

58 PROCESS (clk25)

59 VARIABLE Hcount: INTEGER RANGE 0 TO Hd;

60 BEGIN

61 IF (clk25'EVENT AND clk25='1') THEN

62 Hcount := Hcount + 1;

63 IF (Hcount=Ha) THEN

64 Hsync <= '1';

65 ELSIF (Hcount=Hb) THEN

66 Hactive <= '1';

67 ELSIF (Hcount=Hc) THEN

68 Hactive <= '0';

69 ELSIF (Hcount=Hd) THEN

70 Hsync <= '0';

71 Hcount := 0;

72 END IF;

73 END IF;

74 END PROCESS;

75 -----Vertical signals generation:------

76 PROCESS (Hsync)

77 VARIABLE Vcount: INTEGER RANGE 0 TO Vd;

78 BEGIN

79 IF (Hsync'EVENT AND Hsync='0') THEN

80 Vcount := Vcount + 1;

81 IF (Vcount=Va) THEN

82 Vsync <= '1';

83 ELSIF (Vcount=Vb) THEN

84 Vactive <= '1';

85 ELSIF (Vcount=Vc) THEN

86 Vactive <= '0';

87 ELSIF (Vcount=Vd) THEN

88 Vsync <= '0';
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89 Vcount := 0;

90 END IF;

91 END IF;

92 END PROCESS;

93 -----Display-enable generation:--------

94 dena <= Hactive AND Vactive;

95 END control_generator;

96 -------------------------------------------------------------

Part 3: PLL

If using Altera Quartus II, for example, the file for PLL instantiation is obtained with the

MegaWizard Plug-In Manager. Part of such a file is shown below (this portion shows

the main parameters, which can even be adjusted directly in the file; notice the divider,

multiplier, duty cycle, phase, and input clock period). See other details in appendix F.

1 -----PLL:----------------------------------------------------

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 -------------------------------------------------------------

5 ENTITY altera_pll IS

6 PORT (areset: IN STD_LOGIC := '0';

7 inclk0: IN STD_LOGIC := '0';

8 c0: OUT STD_LOGIC;

9 locked: OUT STD_LOGIC);

10 END altera_pll;

11 -------------------------------------------------------------

12 ARCHITECTURE SYN OF altera_pll IS

13 ...

14 clk0_divide_by => 1, --divider

15 clk0_duty_cycle => 50, --duty cycle

16 clk0_multiply_by => 5, --multiplier

17 clk0_phase_shift => "0",

18 compensate_clock => "CLK0",

19 gate_lock_signal => "NO",

20 inclk0_input_frequency => 20000, --input clk period in ps

21 intended_device_family => "Cyclone II",

22 ...

23 END ARCHITECTURE;

24 -------------------------------------------------------------

Part 4: TMDS Encoder

The TMDS encoder was studied in section 14.6. A corresponding VHDL code is shown

below, based directly on the algorithm of figure 14.29 and on the design in section 14.6.

VHDL Design of DVI Video Interfaces 457



As mentioned there, the flowchart of figure 14.29 is in fact a modified version of that from

DDWG, exhibiting a more hardware-oriented flow, which helps organize and optimize the

implementation.

1 -----TMDS encoder:------------------------------------------------

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 ------------------------------------------------------------------

5 ENTITY tmds_encoder IS

6 PORT (

7 din: IN STD_LOGIC_VECTOR(7 DOWNTO 0); --pixel data

8 control: IN STD_LOGIC_VECTOR(1 DOWNTO 0);--control data

9 clk25: IN STD_LOGIC; --clock

10 dena: IN STD_LOGIC; --display enable

11 dout: OUT STD_LOGIC_VECTOR(9 DOWNTO 0)); --output data

12 END tmds_encoder;

13 ------------------------------------------------------------------

14 ARCHITECTURE tmds_encoder OF tmds_encoder IS

15 SIGNAL x: STD_LOGIC_VECTOR(8 DOWNTO 0); --internal vector

16 SIGNAL onesX: INTEGER RANGE 0 TO 8; --# of '1's in x

17 SIGNAL onesD: INTEGER RANGE 0 TO 8; --# of '1's in din

18 SIGNAL disp: INTEGER RANGE -16 TO 15; --disparity

19 BEGIN

20 -----Computes number of '1's in din:--------

21 PROCESS (din)

22 VARIABLE counterD: INTEGER RANGE 0 TO 8;

23 BEGIN

24 counterD := 0;

25 FOR i IN 0 TO 7 LOOP

26 IF (din(i)='1') THEN

27 counterD := counterD + 1;

28 END IF;

29 END LOOP;

30 onesD <= counterD;

31 END PROCESS;

32 -----Produces the internal vector x:-------

33 PROCESS (din, onesD)

34 BEGIN

35 x(0) <= din(0);

36 IF (onesD>4 OR (onesD=4 AND din(0)='0')) THEN

37 x(1) <= din(1) XNOR x(0);

38 x(2) <= din(2) XNOR x(1);

39 x(3) <= din(3) XNOR x(2);
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40 x(4) <= din(4) XNOR x(3);

41 x(5) <= din(5) XNOR x(4);

42 x(6) <= din(6) XNOR x(5);

43 x(7) <= din(7) XNOR x(6);

44 x(8) <= '0';

45 ELSE

46 x(1) <= din(1) XOR x(0);

47 x(2) <= din(2) XOR x(1);

48 x(3) <= din(3) XOR x(2);

49 x(4) <= din(4) XOR x(3);

50 x(5) <= din(5) XOR x(4);

51 x(6) <= din(6) XOR x(5);

52 x(7) <= din(7) XOR x(6);

53 x(8) <= '1';

54 END IF;

55 END PROCESS;

56 -----Computes the number of '1's in x:-----

57 PROCESS (x)

58 VARIABLE counterX: INTEGER RANGE 0 TO 8;

59 BEGIN

60 counterX := 0;

61 FOR i IN 0 TO 7 LOOP

62 IF (x(i)='1') THEN

63 counterX := counterX + 1;

64 END IF;

65 END LOOP;

66 onesX <= counterX;

67 END PROCESS;

68 -----Produces output vector and new disparity:--

69 PROCESS (disp, x, onesX, dena, control, clk25)

70 VARIABLE disp_new: INTEGER RANGE -31 TO 31;

71 BEGIN

72 IF (dena='1') THEN

73 dout(8) <= x(8);

74 IF (disp=0 OR onesX=4) THEN

75 dout(9) <= NOT x(8);

76 IF (x(8)='0') THEN

77 dout(7 DOWNTO 0) <= NOT x(7 DOWNTO 0);

78 disp_new := disp - 2*onesX + 8;

79 ELSE

80 dout(7 DOWNTO 0) <= x(7 DOWNTO 0);

81 disp_new := disp + 2*onesX - 8;

82 END IF;
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83 ELSE

84 IF ((disp>0 AND onesX>4) OR (disp<0 AND onesX<4)) THEN

85 dout(9) <= '1';

86 dout(7 DOWNTO 0) <= NOT x(7 DOWNTO 0);

87 IF (x(8)='0') THEN

88 disp_new := disp - 2*onesX + 8;

89 ELSE

90 disp_new := disp - 2*onesX + 10;

91 END IF;

92 ELSE

93 dout(9) <= '0';

94 dout(7 DOWNTO 0) <= x(7 DOWNTO 0);

95 IF (x(8)='0') THEN

96 disp_new := disp + 2*onesX - 10;

97 ELSE

98 disp_new := disp + 2*onesX - 8;

99 END IF;

100 END IF;

101 END IF;

102 ELSE

103 disp_new := 0;

104 IF (control="00") THEN

105 dout <= "1101010100";

106 ELSIF (control="01") THEN

107 dout <= "0010101011";

108 ELSIF (control="10") THEN

109 dout <= "0101010100";

110 ELSE

111 dout <= "1010101011";

112 END IF;

113 END IF;

114 IF (clk25'EVENT AND clk25='1') THEN

115 disp <= disp_new;

116 END IF;

117 END PROCESS;

118 END tmds_encoder;

119 ------------------------------------------------------------------

Part 5: Serializer

Serializers were also studied in chapter 14. The code below was borrowed from section

14.2, with the only di¤erence that the PLL is no longer present, because in the current de-

sign it was moved to the control generator block.
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1 -----Serializer:---------------------------------

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 -------------------------------------------------

5 ENTITY serializer IS

6 PORT (clk250: IN STD_LOGIC;

7 din: IN STD_LOGIC_VECTOR(9 DOWNTO 0);

8 dout: OUT STD_LOGIC);

9 END serializer;

10 -------------------------------------------------

11 ARCHITECTURE serializer OF serializer IS

12 SIGNAL internal: STD_LOGIC_VECTOR(9 DOWNTO 0);

13 BEGIN

14 PROCESS (clk250)

15 VARIABLE count: INTEGER RANGE 0 TO 10;

16 BEGIN

17 IF (clk250'EVENT AND clk250='1') THEN

18 count := count + 1;

19 IF (count=9) THEN

20 internal <= din;

21 ELSIF (count=10) THEN

22 count := 0;

23 END IF;

24 dout <= internal(count);

25 END IF;

26 END PROCESS;

27 END serializer;

28 -------------------------------------------------

Part 6: Main Code

The main code is presented next, under the project name dvi_stripes (line 5). Observe in the

ENTITY (lines 5–13) that the inputs are clk50 (50 MHz clock available in our FPGA

board) and three toggle switches (for color selection), while the outputs are the TMDS

signals that feed the LCD monitor. Each output consists of a pair of wires, identified as

tmds0a (¼ TMDS0þ) plus tmds0b (¼ TMDS0�), tmds1a (¼ TMDS1þ) plus tmds1b

(¼ TMDS1�), and so on. As explained in section 14.6, this is due to the fact that FPGAs

do not have CML I/Os, so a pair of conventional 3.3V LVTTL or LVCMOS pins, each

with a series 270 W resistor, can be used to emulate such type of logic (see details in section

14.6 and figure 16.7).

The declarative part of the architecture contains general signal declarations in lines 17–

21, followed by five COMPONENT declarations in lines 23–56 (notice that the PLL is not
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included in this list because it was used by the control generator, so its declaration was

already included in that code).

The code proper (lines 58–81) simply assembles the circuit of figure 16.7 using the

components just described. It employs one instance of image_generator (lines 63–65) and

control_generator (lines 67–68), plus three instances of tmds_encoder (lines 70–72)

and serializer (lines 73–75). The remaining lines (76–80) are for the complementary

TMDS values.

The reader is invited to compile this design and download it to the FPGA board,

observing what happens on the screen (of a DVI-driven LCD monitor) while playing with

the toggle switches.

1 -----Main code:------------------------------------------------------

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 ---------------------------------------------------------------------

5 ENTITY dvi_stripes IS

6 PORT (

7 clk50: IN STD_LOGIC; --50MHz system clock

8 red_switch, green_switch, blue_switch: IN STD_LOGIC;

9 tmds0a, tmds0b: BUFFER STD_LOGIC; --TMDS0+, TMDS0-

10 tmds1a, tmds1b: BUFFER STD_LOGIC; --TMDS1+, TMDS1-

11 tmds2a, tmds2b: BUFFER STD_LOGIC; --TMDS2+, TMDS2-

12 tmds_clka, tmds_clkb: OUT STD_LOGIC); --TMDS_clk+,TMDS_clk-

13 END dvi_stripes;

14 ---------------------------------------------------------------------

15 ARCHITECTURE dvi OF dvi_stripes IS

16 -----Signal declarations:--------------

17 SIGNAL clk25, clk250: STD_LOGIC;

18 SIGNAL Hsync, Vsync, Hactive, Vactive, dena: STD_LOGIC;

19 SIGNAL R, G, B: STD_LOGIC_VECTOR(7 DOWNTO 0);

20 SIGNAL control0, control1, control2: STD_LOGIC_VECTOR(1 DOWNTO 0);

21 SIGNAL data0, data1, data2: STD_LOGIC_VECTOR(9 DOWNTO 0);

22 -----1st component declaration:--------

23 COMPONENT image_generator IS

24 PORT (

25 red_switch, green_switch, blue_switch: IN STD_LOGIC;

26 Hsync, Vsync, Vactive, dena: IN STD_LOGIC;

27 R, G, B: OUT STD_LOGIC_VECTOR(7 DOWNTO 0));

28 END COMPONENT;

29 -----2nd component declaration:--------

30 COMPONENT control_generator IS

31 PORT (
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32 clk50: IN STD_LOGIC;

33 clk25: BUFFER STD_LOGIC;

34 clk250: OUT STD_LOGIC;

35 Hsync: BUFFER STD_LOGIC;

36 Vsync: OUT STD_LOGIC;

37 Hactive: BUFFER STD_LOGIC;

38 Vactive: BUFFER STD_LOGIC;

39 dena: OUT STD_LOGIC);

40 END COMPONENT;

41 -----3rd component declaration:--------

42 COMPONENT tmds_encoder IS

43 PORT (

44 din: IN STD_LOGIC_VECTOR(7 DOWNTO 0);

45 control: IN STD_LOGIC_VECTOR(1 DOWNTO 0);

46 clk25: IN STD_LOGIC;

47 dena: IN STD_LOGIC;

48 dout: OUT STD_LOGIC_VECTOR(9 DOWNTO 0));

49 END COMPONENT;

50 -----4th component declaration:--------

51 COMPONENT serializer IS

52 PORT (

53 clk250: IN STD_LOGIC;

54 din: IN STD_LOGIC_VECTOR(9 DOWNTO 0);

55 dout: OUT STD_LOGIC);

56 END COMPONENT;

57 ---------------------------------------

58 BEGIN

59 control0 <= Vsync & Hsync;

60 control1 <= "00";

61 control2 <= "00";

62 -----Image generator:------------------

63 image_gen: image_generator PORT MAP (

64 red_switch, green_switch, blue_switch, Hsync, Vsync,

65 Vactive, dena, R, G, B);

66 -----Control generator:----------------

67 control_gen: control_generator PORT MAP (

68 clk50, clk25, clk250, Hsync, Vsync, OPEN, Vactive, dena);

69 -----TMDS transmitter:-----------------

70 tmds0: tmds_encoder PORT MAP (B, control0, clk25, dena, data0);

71 tmds1: tmds_encoder PORT MAP (G, control1, clk25, dena, data1);

72 tmds2: tmds_encoder PORT MAP (R, control2, clk25, dena, data2);

73 serial0: serializer PORT MAP (clk250, data0, tmds0a);

74 serial1: serializer PORT MAP (clk250, data1, tmds1a);
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75 serial2: serializer PORT MAP (clk250, data2, tmds2a);

76 tmds0b <= NOT tmds0a;

77 tmds1b <= NOT tmds1a;

78 tmds2b <= NOT tmds2a;

79 tmds_clka <= clk25;

80 tmds_clkb <= NOT clk25;

81 END dvi;

82 ---------------------------------------------------------------------

16.8 Other DVI Designs

Once one knows how to deal with the control signals, TMDS encoder, and serializer, gen-

erating images for a DVI-driven LCD monitor becomes essentially the same problem

as generating images for a VGA monitor. Consequently, the material seen in chapter 15

applies here too, so the following is recommended:

1 For generating regular images with dedicated hardware, follow the procedure of section

15.9 (equivalent to section 16.7).

1 For generating regular images with a file and on-chip memory, follow the procedure of

section 15.10.

1 For generating arbitrary images with a file and o¤-chip memory, follow the procedure of

section 15.11.

For the same reason, all examples and exercises seen there can also be used here.

16.9 Exercises

Note: For exercise solutions, please consult the book website.

Exercise 16.1: TMDS Encoder

a) What are the purposes (benefits) of the TMDS circuit?

b) Why is it called an 8B/10B encoder? Is it the same as the regular 8B/10B?

c) Why is it called a serial data transmission encoder?

d) Why is a PLL generally needed to construct it?

e) What is the nominal maximum e¤ective pixel rate with single link?

f ) Why was the circuit of figure 14.27b used in the experiments?

Exercise 16.2: Image Generation with Hardware C1 (Banner)

Solve exercise 15.2 for a DVI monitor.
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Exercise 16.3: Image Generation with Hardware C2 (Sun in the Sky)

Solve exercise 15.3 for a DVI monitor.

Exercise 16.4: Image Generation with Hardware C3 (Filling with Green)

Solve exercise 15.4 for a DVI monitor.

Exercise 16.5: Image Generation with Hardware C4 (Rotating Bar)

Solve exercise 15.5 for a DVI monitor.

Exercise 16.6: Image Generation with Hardware C5 (Wall Clock)

Solve exercise 15.6 for a DVI monitor.

Exercise 16.7: Image Generation with Hardware C6 (Arcade Game)

Solve exercise 15.7 for a DVI monitor.

Exercise 16.8: Image Generation with a File and On-Chip Memory C1 (Banner)

Solve exercise 15.8 for a DVI monitor.

Exercise 16.9: Image Generation with a File and On-Chip Memory C2 (Sun in the Sky)

Solve exercise 15.9 for a DVI monitor.

Exercise 16.10: Image Generation with a File and O¤-Chip Memory (Arbitrary Picture)

Solve exercise 15.10 for a DVI monitor.
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17 VHDL Design of FPD-Link Video Interfaces

17.1 Introduction

FPD (flat panel display)-Link, along with its extended version, LDI (LVDS Display Inter-

face), are other modern video interfaces, used to drive laptop displays and other small

LCDs located at short distances from the driving circuit, particularly in automotive,

medical, and industrial applications.

The study of FPD-Link (introduced by National Semiconductor in 1992) in this chapter

concludes the series of video interfaces, which included also VGA (chapter 15) and DVI

(chapter 16) circuits. In summary, while the TMDS circuit (chapter 16) is used in the phys-

ical interface between desktop computers and LCD monitors (by means of the DVI con-

troller) or between computers and other video systems, like video projectors and HDTV

(by means of the HDMI controller), FPD-Link and LDI are used in the physical interface

between notebooks and their LCD displays and in other applications where the display

cable is very short. Other standard interfaces, like Camera Link, also employ the FPD-

Link encoder.

FPD-Link normally operates with a pixel clock in the 25 to 85 MHz range. The main

di¤erences with respect to LDI are that the latter can operate in dual-data-rate mode

(active at both clock edges) and also with dual data channels (two 8-bit inputs for each

color).

As will be seen, there are also important di¤erences between FPD-Link and TMDS, like

the type of I/O and the use or not of DC-balancing techniques. Because FPD-Link is

intended only for short cables, a slightly simpler I/O is employed (LVDS, versus CML in

TMDS) and DC-balance is omitted, rendering a simpler, lower cost, and lower power

video interface.

In the design examples, the 10.4 00 LCD of figure 17.1 will be used. Note that the display

is connected to two other units: FPD-Link interface (in the FPGA) and a high-voltage

generator for the display’s backlight. Typical specifications for this type of display follow.



1 Diagonal size: 10.4 00

1 Manufacturers: LG-Philips (model LB104S01), Suntai (model SFA-104A), Samsung, etc.

1 Typical native resolution: SVGA (800� 600).

1 Pixel clock: 25 to 85 MHz.

1 Color encoding: RGB, six bits per color.

1 Monitor cable: Flat 20-wire cable (see figure 17.1).

1 Physical interface: FPD-Link.

1 Physical interface supply voltage: 3.3 V.

1 Backlight type: Dual cold cathode fluorescent lamps (2� CCFL).

1 Backlight supply:@500V/6mA RMS, 60 kHz (see figure 17.1).

As in chapters 15 and 16, which also deal with video interfaces, the following fundamen-

tal aspects will be focused on here:

1) Operation of the DVI interface.

2) How the circuit should be divided to make the design as simple and as standard as

possible.

3) How the control signals operate and how they should be generated.

4) How images can be generated (from local hardware, external memory, file, etc.), rather

than focusing on the images themselves (software).

17.2 FPD-Link Encoder

The top-level diagram of an FPD link is shown in figure 17.2. The encoder, shown on the

left, transmits typical VGA video signals (seen in chapter 15)—that is, the three fundamen-

Figure 17.1
10.4 00 LCD used in the experiments (flat 20-wire FPD-Link cable and FPGA board shown on the left, high-
voltage generator for the backlight shown on the right).

468 Chapter 17



tal colors (R, G, and B, each represented by eight bits), the pixel clock ( pixel_clk), and the

corresponding control signals (horizontal synchronism, Hsync, vertical synchronism,

Vsync, and display enable, dena). The output consists of five LVDS channels, with four of

them (lvdsA to lvdsD) conveying data, while the last one (lvds_clk) transmits a modified

version of pixel_clk. The decoder, shown on the right, recovers the original data.

Figure 17.2 also indicates the type of circuit used in the I/Os, which is LVDS (Pedroni

2008). This is a standard di¤erential circuit that operates with a small voltage di¤erence

(0.35 V nominal), resulting in fast, low-power, and low-EMI data transmissions.

A timing diagram is shown in figure 17.3a. Observe that the four serial LVDS outputs

contain all three colors (R, G, B) and three control signals (Hsync, Vsync, dena). Note also

that the transmission clock (internal to the circuit) is seven times faster than the LVDS

Figure 17.2
FPD-Link interface.

Figure 17.3
(a) Complete FPD-Link encoder (8-bit colors, five LVDS channels) and its timing diagram. (b) Simplified FPD-
Link encoder (6-bit colors, four LVDS channels) and corresponding timing diagram.
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clock, with the latter consisting of the "1100011" pattern (see uppermost plot). The trans-

mission starts with the MSB.

A 6-bit-per-color version is depicted in figure 17.3b, which requires only four LVDS

channels (three for data, one for the clock). This is a popular implementation in industrial

applications, for example.

17.3 Setup for the Experiments

Figure 17.4 shows a complete 6-bit-per-color video circuit to be used in the experiments

with FPD-Link. Besides the FPD-Link interface block, it contains also a control generator,

responsible for generating all control signals (SVGA signals Hsync, Vsync, Hactive, Vac-

tive, and dena, plus the high-frequency clock for the serializer) and an image generator

(responsible for providing the pixel-related signals, R, G, and B).

A typical resolution for small-display applications based on FPD-Link is SVGA

(800� 600 pixels—see SVGA parameters in figures 15.5 and 15.6), operating with a pixel

clock in the 25 to 85 MHz range. With this resolution, 1056� 628 ¼ 663,168 clock cycles

are needed to complete one screen, so the refresh rate with 85 MHz is 128 frames/s. To

attain 60 frames/s, a pixel clock of 40 MHz is su‰cient. We will assume that the clock

available in our FPGA board is 50 MHz (hence n ¼ 1, or 75 frames/s), so the serializer

clock must be 350 MHz. To ease their identifications, pixel_clk and clkTx (for the serial-

izers) are here called clk50 and clk350, respectively.

In summary, the following parameters will be used in the control generator:

1 System clock (clk50): 50 MHz.

1 Pixel clock ( pixel_clk ¼ clk50): 50 MHz.

Figure 17.4
6-bit-per-color FPD-Link interface used in the experiments.
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1 Clock for serializer receiver (clkRx ¼ clk50): 50 MHz.

1 Clock for serializer transmitter (clkTx ¼ clk350): 350 MHz.

1 LVDS clock (lvds_clk): 50 MHz, with "1100011" pattern.

1 Horizontal timing (SVGA, figure 15.5): Hpulse ¼ 128, HBP ¼ 88, Hactive ¼ 800,

HFP ¼ 40 (total ¼ 1056 pixels).

1 Vertical timing (SVGA, figure 15.6): Vpulse ¼ 4, VBP ¼ 23, Vactive ¼ 600, VFP ¼ 1

(total ¼ 628 lines).

Figure 17.5 shows the pinout of a 20-pin connector used in the 6-bit/color FPD-Link

interface (see flat cable on the left of figure 17.1). Note that only the wires relative to the

four LVDS pairs are indeed used, with all the other pins at VDD or GND (compare this

to the cable on the right of figure 17.4).

A final comment regarding the LVDS I/Os: To make the problem even more interesting,

let us assume that our CPLD or FPGA device does not have LVDS pins (or that a di¤er-

ent VCCIO was used, such that the 2.5V LVDS standard is no longer available). As

described in Pedroni (2008), LVDS receivers must be able to operate with di¤erential

voltages as low as 100 mV (350 mV nominal), with a common-mode voltage in the 0.1V-

to-2.4V range. Consequently, traditional 3.3V LVTTL/LVCMOS pins can be used. The

corresponding arrangement is shown in figure 17.6, which produces a di¤erential voltage

of 0.32 V and a common-mode voltage of 1.65 V.

Figure 17.5
Pinout of a 20-pin 6-bit FPD-Link connector.

Figure 17.6
LVDS transmitter emulated with 3.3V LVTTL/LVCMOS pads and resistors.
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17.4 Hardware-Generated Image

We turn now to the design of actual FPD-Link-driven applications. Similar to what was

done in the previous two chapters, the main purpose of this first design is to illustrate

how the control signals and the FPD-Link interface can be constructed. To keep the focus

on that, a simple image was chosen, which consists of just four horizontal stripes of solid

colors with widths 1, 2, 3, and 594 pixels. The first three are red, green, and blue, respec-

tively, while the color of the last one is determined by three toggle switches. SVGA resolu-

tion (800� 600) and a 50 MHz clock (clk50) will be employed.

A corresponding VHDL code is presented below. It is a structural code, which follows

figure 17.4 exactly. The circuit is broken into three subcircuits, called image_generator,

control_generator, and FPDLink_interface. The first one is application-dependent, whereas

the other two exhibit a fixed structure. As indicated in figure 17.4, FPDLink_interface is

further divided using the serializer block. Notice that once the circuit is well understood

and then properly divided into blocks (as in figure 17.4), designing it becomes relatively

simple.

Part 1: Image Generator

The code below implements the four-stripe image. In the PORT declarations (lines 6–9),

all five control signals are included (line 8), making this a kind of generic entity, even

though not all five are always needed. The code in the architecture is divided into two

parts; the first part (lines 19–25) implements a pointer (address) to the image rows, while

the second part (lines 27–49) builds the image proper, which is partially controlled by three

toggle switches.

1 -----Image generator:-------------------------------------

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 ----------------------------------------------------------

5 ENTITY image_generator IS

6 PORT (

7 red_switch, green_switch, blue_switch: IN STD_LOGIC;

8 Hsync, Vsync, Hactive, Vactive, dena: IN STD_LOGIC;

9 R, G, B: OUT STD_LOGIC_VECTOR(5 DOWNTO 0));

10 END image_generator;

11 ----------------------------------------------------------

12 ARCHITECTURE image_generator OF image_generator IS

13 BEGIN

14 PROCESS (Hsync, Vsync, Vactive, dena, red_switch,

15 green_switch, blue_switch)

16 VARIABLE line_counter: INTEGER RANGE 0 TO 600;

17 BEGIN
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18 -----Create pointer to LCD rows:----

19 IF (Vsync='0') THEN

20 line_counter := 0;

21 ELSIF (Hsync'EVENT AND Hsync='1') THEN

22 IF (Vactive='1') THEN

23 line_counter := line_counter + 1;

24 END IF;

25 END IF;

26 -----Create image:------------------

27 IF (dena='1') THEN

28 IF (line_counter=1) THEN

29 R <= (OTHERS => '1');

30 G <= (OTHERS => '0');

31 B <= (OTHERS => '0');

32 ELSIF (line_counter>1 AND line_counter<=3) THEN

33 R <= (OTHERS => '0');

34 G <= (OTHERS => '1');

35 B <= (OTHERS => '0');

36 ELSIF (line_counter>3 AND line_counter<=6) THEN

37 R <= (OTHERS => '0');

38 G <= (OTHERS => '0');

39 B <= (OTHERS => '1');

40 ELSE

41 R <= (OTHERS => red_switch);

42 G <= (OTHERS => green_switch);

43 B <= (OTHERS => blue_switch);

44 END IF;

45 ELSE

46 R <= (OTHERS => '0');

47 G <= (OTHERS => '0');

48 B <= (OTHERS => '0');

49 END IF;

50 END PROCESS;

51 END image_generator;

52 ----------------------------------------------------------

Part 2: Control Generator

The code below implements the control generator, which produces the signals Hsync,

Vsync, Hactive, Vactive, and dena, plus the fast clock (clk350) for the serializers. Recall

that this circuit has a fixed structure because it is application-independent.

The SVGA parameters are specified using GENERIC declarations (lines 6–14), so they

can be easily changed to any other display resolution. The only input is clk50 (line 16),

while the outputs are the signals just mentioned (lines 17–22).
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The architecture contains, in its declarative part, a component declaration (a PLL, lines

26–31), which is then instantiated in line 72 to create clk350. The process in lines 34–50

creates the horizontal control signals (in accordance with figure 15.5), while that in lines

52–68 creates the vertical control signals (in accordance with figure 15.6). Note that, ex-

cept for the fast clock, this code is similar to that for the control generator in chapter 15.

Still regarding the PLL, the file that is automatically generated during its instantiation

must be included among the project files. For example, if using Altera’s Quartus II to syn-

thesize the circuit, then the MegaWizard Plug-In Manager tool can be employed to attain

the PLL (that is the case in the example below, where the name chosen for the generated

file is altera_pll.vhd ). Further details can be seen in appendix G.

1 -----Control generator:-------------------------------------

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 ------------------------------------------------------------

5 ENTITY control_generator IS

6 GENERIC ( --SVGA parameters

7 Ha: INTEGER := 128; --Hpulse

8 Hb: INTEGER := 216; --Hpulse+HBP

9 Hc: INTEGER := 1016; --Hpulse+HBP+Hactive

10 Hd: INTEGER := 1056; --Hpulse+HBP+Hactive+HFP

11 Va: INTEGER := 4; --Vpulse

12 Vb: INTEGER := 27; --Vpulse+VBP

13 Vc: INTEGER := 627; --Vpulse+VBP+Vactive

14 Vd: INTEGER := 628); --Vpulse+VBP+Vactive+VFP

15 PORT (

16 clk50: IN STD_LOGIC; --50MHz system clock

17 clk350: OUT STD_LOGIC; --350MHz serializer clock

18 Hsync: BUFFER STD_LOGIC; --Horizontal sync

19 Vsync: OUT STD_LOGIC; --Vertical sync

20 Hactive: BUFFER STD_LOGIC; --Horiz. display interval

21 Vactive: BUFFER STD_LOGIC; --Vert. display interval

22 dena: OUT STD_LOGIC); --Display enable

23 END control_generator;

24 ------------------------------------------------------------

25 ARCHITECTURE control_generator OF control_generator IS

26 COMPONENT altera_pll IS

27 PORT (areset: IN STD_LOGIC;

28 inclk0: IN STD_LOGIC;

29 c0: OUT STD_LOGIC;

30 locked: OUT STD_LOGIC);

31 END COMPONENT;
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32 BEGIN

33 ---Horizontal signals:-----------

34 PROCESS (clk50)

35 VARIABLE Hcount: INTEGER RANGE 0 TO Hd;

36 BEGIN

37 IF (clk50'EVENT AND clk50='1') THEN

38 Hcount := Hcount + 1;

39 IF (Hcount=Ha) THEN

40 Hsync <= '1';

41 ELSIF (Hcount=Hb) THEN

42 Hactive <= '1';

43 ELSIF (Hcount=Hc) THEN

44 Hactive <= '0';

45 ELSIF (Hcount=Hd) THEN

46 Hsync <= '0';

47 Hcount := 0;

48 END IF;

49 END IF;

50 END PROCESS;

51 ---Vertical signals:-------------

52 PROCESS (Hsync)

53 VARIABLE Vcount: INTEGER RANGE 0 TO Vd;

54 BEGIN

55 IF (Hsync'EVENT AND Hsync='0') THEN

56 Vcount := Vcount + 1;

57 IF (Vcount=Va) THEN

58 Vsync <= '1';

59 ELSIF (Vcount=Vb) THEN

60 Vactive <= '1';

61 ELSIF (Vcount=Vc) THEN

62 Vactive <= '0';

63 ELSIF (Vcount=Vd) THEN

64 Vsync <= '0';

65 Vcount := 0;

66 END IF;

67 END IF;

68 END PROCESS;

69 ---Display enable:----------------

70 dena <= Hactive AND Vactive;

71 ---Serializer clock (350MHz):-----

72 pll: altera_pll PORT MAP ('0', clk50, clk350, OPEN);

73 END control_generator;

74 ------------------------------------------------------------
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Part 3: Serializer

Serializers were studied and also designed in section 14.2, based on which the code below

was assembled. The only di¤erence is that here the PLL, which multiplies the system clock

(50 MHz) by 7 (resulting a 350 MHz clock for the serializers), is implemented in another

block (control_generator).

1 -----Serializer:---------------------------------

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 -------------------------------------------------

5 ENTITY serializer IS

6 PORT (clk350: IN STD_LOGIC;

7 din: IN STD_LOGIC_VECTOR(6 DOWNTO 0);

8 dout: OUT STD_LOGIC);

9 END serializer;

10 -------------------------------------------------

11 ARCHITECTURE serializer OF serializer IS

12 SIGNAL internal: STD_LOGIC_VECTOR(6 DOWNTO 0);

13 BEGIN

14 PROCESS (clk350)

15 VARIABLE count: INTEGER RANGE 0 TO 7 := 0;

16 BEGIN

17 IF (clk350'EVENT AND clk350='1') THEN

18 count := count + 1;

19 IF (count=6) THEN

20 internal <= din;

21 ELSIF (count=7) THEN

22 count := 0;

23 END IF;

24 dout <= internal(6-count); --MSB first

25 END IF;

26 END PROCESS;

27 END serializer;

28 -------------------------------------------------

Part 4: FPD-Link Interface

The code below is a direct implementation of the FPD-Link interface circuit shown in

figure 17.4. It contains only two types of blocks: mapper and serializer. The former is just

a wiring, while the latter was designed in the code above, so it enters here as a subcircuit

(COMPONENT).
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1 ----FPDlink interface:------------------------------------------------

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 ----------------------------------------------------------------------

5 ENTITY FPDlink_interface IS

6 PORT (

7 clk350: IN STD_LOGIC; --350MHz serializer clock

8 Hsync, Vsync, dena: IN STD_LOGIC;

9 R, G, B: IN STD_LOGIC_VECTOR(5 DOWNTO 0);

10 lvdsA: OUT STD_LOGIC;

11 lvdsB: OUT STD_LOGIC;

12 lvdsC: OUT STD_LOGIC;

13 lvds_clk: OUT STD_LOGIC);

14 END FPDlink_interface;

15 ----------------------------------------------------------------------

16 ARCHITECTURE FPDlink_interface OF FPDlink_interface IS

17 SIGNAL dataA, dataB, dataC, data_clk: STD_LOGIC_VECTOR(6 DOWNTO 0);

18 COMPONENT serializer IS

19 PORT (clk350: IN STD_LOGIC;

20 din: IN STD_LOGIC_VECTOR(6 DOWNTO 0);

21 dout: OUT STD_LOGIC);

22 END COMPONENT;

23 BEGIN

24 -----Mapper:-----------------------------

25 dataA <= G(0) & R(5 DOWNTO 0);

26 dataB <= B(1 DOWNTO 0) & G(5 DOWNTO 1);

27 dataC <= dena & Vsync & Hsync & B(5 DOWNTO 2);

28 data_clk <= "1100011";

29 -----Serializers:------------------------

30 serialA: serializer PORT MAP (clk350, dataA, lvdsA);

31 serialB: serializer PORT MAP (clk350, dataB, lvdsB);

32 serialC: serializer PORT MAP (clk350, dataC, lvdsC);

33 serial_clk: serializer PORT MAP (clk350, data_clk, lvds_clk);

34 END FPDlink_interface;

35 ----------------------------------------------------------------------

Part 5: Main Code

Finally, the main code is shown below, under the project name FPDLink_stripes (line 5). It

simply joins the subcircuits designed above to create the complete FPD-Link driver and

the intended image. Note in lines 77–80 that complementary signals are created in order

to be able to use the arrangement of figure 17.6, which emulates LVDS pads. The reader

is invited to compile this code and test it in the FPGA board, checking what happens on

the LCD screen while playing with the R, G, and B switches.
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1 -----Main code:-------------------------------------------------------

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 ----------------------------------------------------------------------

5 ENTITY FPDlink_stripes IS

6 PORT (

7 clk50: IN STD_LOGIC; --50MHz system clock

8 red_switch, green_switch, blue_switch: IN STD_LOGIC;

9 lvdsA1: BUFFER STD_LOGIC;

10 lvdsA2: OUT STD_LOGIC;

11 lvdsB1: BUFFER STD_LOGIC;

12 lvdsB2: OUT STD_LOGIC;

13 lvdsC1: BUFFER STD_LOGIC;

14 lvdsC2: OUT STD_LOGIC;

15 lvds_clk1: BUFFER STD_LOGIC;

16 lvds_clk2: OUT STD_LOGIC);

17 END FPDlink_stripes;

18 ----------------------------------------------------------------------

19 ARCHITECTURE FPDlink_stripes OF FPDlink_stripes IS

20 ----Signal declarations:--------------

21 SIGNAL clk350: STD_LOGIC;

22 SIGNAL Hsync, Vsync, Hactive, Vactive, dena: STD_LOGIC;

23 SIGNAL R, G, B: STD_LOGIC_VECTOR(5 DOWNTO 0);

24 SIGNAL dataA, dataB, dataC, data_clk: STD_LOGIC_VECTOR(6 DOWNTO 0);

25 ----1st component declaration:--------

26 COMPONENT image_generator IS

27 PORT (

28 red_switch, green_switch, blue_switch: IN STD_LOGIC;

29 Hsync, Vsync, Hactive, Vactive, dena: IN STD_LOGIC;

30 R, G, B: OUT STD_LOGIC_VECTOR(5 DOWNTO 0));

31 END COMPONENT;

32 ----2nd component declaration:--------

33 COMPONENT control_generator IS

34 GENERIC (

35 Ha: INTEGER := 128;

36 Hb: INTEGER := 216;

37 Hc: INTEGER := 1016;

38 Hd: INTEGER := 1056;

39 Va: INTEGER := 4;

40 Vb: INTEGER := 27;

41 Vc: INTEGER := 627;

42 Vd: INTEGER := 628);

43 PORT (

44 clk50: IN STD_LOGIC;
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45 clk350: OUT STD_LOGIC;

46 Hsync: BUFFER STD_LOGIC;

47 Vsync: OUT STD_LOGIC;

48 Hactive: OUT STD_LOGIC;

49 Vactive: OUT STD_LOGIC;

50 dena: OUT STD_LOGIC);

51 END COMPONENT;

52 ----3rd component declaration:--------

53 COMPONENT FPDlink_interface IS

54 PORT (

55 clk350: IN STD_LOGIC;

56 Hsync, Vsync, dena: IN STD_LOGIC;

57 R, G, B: IN STD_LOGIC_VECTOR(5 DOWNTO 0);

58 lvdsA: OUT STD_LOGIC;

59 lvdsB: OUT STD_LOGIC;

60 lvdsC: OUT STD_LOGIC;

61 lvds_clk: OUT STD_LOGIC);

62 END COMPONENT;

63 --------------------------------------

64 BEGIN

65 ----Image_generator:-----------------

66 stripes: image_generator PORT MAP (

67 red_switch, green_switch, blue_switch,

68 Hsync, Vsync, Hactive, Vactive, dena, R, G, B);

69 ----Control signals:-----------------

70 control: control_generator PORT MAP (

71 clk50, clk350, Hsync, Vsync, Hactive, Vactive, dena);

72 ----FPDlink interface:---------------

73 fpd_link: FPDlink_interface PORT MAP (

74 clk350, Hsync, Vsync, dena, R, G, B,

75 lvdsA1, lvdsB1, lvdsC1, lvds_clk1);

76 -------------------------------------

77 lvdsA2 <= NOT lvdsA1;

78 lvdsB2 <= NOT lvdsB1;

79 lvdsC2 <= NOT lvdsC1;

80 lvds_clk2 <= NOT lvds_clk1;

81 END FPDlink_stripes;

82 ----------------------------------------------------------------------

17.5 Hardware-Generated Image with Characters

This design is for a circuit that implements a digital clock to be displayed on an FPD-Link

driven LCD (a similar design was presented in section 12.5, with SSDs). As shown in
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figure 17.7, it must exhibit hours, minutes, and seconds, separated by colons, and must

have four control buttons that provide the features below.

Reset: When asserted, must zero the display, with precedence over any other button.

Seconds: When asserted, must increase the speed of the counter by a factor of 8 (fast

adjustment of seconds).

Minutes: When asserted, must increase the speed of the counter by a factor of 252 (fast

adjustment of minutes).

Hours: When asserted, must increase the speed of the counter by a factor of 8,192 (fast

adjustment of hours).

As before, powers of two were used in the speed-up factors above to minimize the

amount of hardware (these dividers are just shifters).

As in the previous section, a structural design will be developed. A circuit diagram is

suggested in figure 17.8, where the overall system is broken into four subcircuits, called

clock, image_generator, control_generator, and FPDlink_interface. As before, the last

Figure 17.7
Clock to be designed in section 17.5.

Figure 17.8
Circuit for the wall clock in section 17.5.
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two exhibit a fixed structure, while the first two, which together are responsible for

generating the pixels, vary according to the application. As indicated in the figure, the

FPDlink_interface subcircuit is further divided using the serializer block.

Observe also in figure 17.8 the circuit’s global inputs and outputs. The inputs consist of

clk50 (50 MHz system clock) plus four pushbuttons to control the clock. The outputs are

four LVDS channels, directly connected to the cable that goes to the display. As already

seen, each LVDS output consists of two wires, which in our case are obtained with the

setup of figure 17.6, so for each LVDS output a pair of signals are indeed needed.

As in the previous design, only the image generator needs to be changed. To ease its

construction, such a part was assembled with two subcircuits (clock and image_generator)

in the present design. Therefore, all that is needed is to replace image_generator in the pre-

vious design with clock plus the new image_generator in the present design (followed, of

course, by the respective adjustments in the SIGNAL and COMPONENT declarations in

the main code).

The representation used for the digits in the image generator is depicted in figure 17.9,

which also shows the positions of the digits on the screen. The ":" (colon) symbol was

employed to separate the pairs of digits.

Part 1: Clock

A VHDL code for the clock is shown below. It does not contain pixel signals yet (convert-

ing the signals below into image signals is left to the image_generator). The inputs are

clk50 (system clock) plus the four control pushbuttons, from which the electrical signals

for the clock digits are provided. The code is divided into two parts; the first part (lines

25–28) defines the speed-up factors for clock adjustment, while the second part (lines 30–

80) builds the clock proper.

Figure 17.9
Digit representations and digit positions on the screen for the design in section 17.5.
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1 -----Clock:----------------------------------------------------

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 ---------------------------------------------------------------

5 ENTITY clock IS

6 GENERIC (fclk: INTEGER := 50_000_000); --system clock freq.

7 PORT (

8 clk50: IN STD_LOGIC; --system clock

9 rst: IN STD_LOGIC; --clock reset

10 seconds: IN STD_LOGIC; --fast adjustment for seconds

11 minutes: IN STD_LOGIC; --fast adjustment for minutes

12 hours: IN STD_LOGIC; --fast adjustment for hours

13 secUnits: OUT NATURAL RANGE 0 TO 9; --units of seconds

14 secTens: OUT NATURAL RANGE 0 TO 5; --tens of seconds

15 minUnits: OUT NATURAL RANGE 0 TO 9; --units of minutes

16 minTens: OUT NATURAL RANGE 0 TO 5; --tens of minutes

17 hourUnits: OUT NATURAL RANGE 0 TO 9; --units of hours

18 hourTens: OUT NATURAL RANGE 0 TO 2); --tens of hours

19 END clock;

20 ---------------------------------------------------------------

21 ARCHITECTURE clock OF clock IS

22 SIGNAL limit: INTEGER RANGE 0 TO fclk;

23 BEGIN

24 ---Define speed-up factors:-----------

25 limit <= fclk/8192 WHEN hours='1' ELSE

26 fclk/252 WHEN minutes='1' ELSE

27 fclk/8 WHEN seconds='1' ELSE

28 fclk;

29 ---Design the clock:------------------

30 PROCESS (clk50, rst)

31 VARIABLE one_second: NATURAL RANGE 0 TO fclk;

32 VARIABLE secU: NATURAL RANGE 0 TO 10;

33 VARIABLE secT: NATURAL RANGE 0 TO 6;

34 VARIABLE minU: NATURAL RANGE 0 TO 10;

35 VARIABLE minT: NATURAL RANGE 0 TO 6;

36 VARIABLE hourU: NATURAL RANGE 0 TO 10;

37 VARIABLE hourT: NATURAL RANGE 0 TO 3;

38 BEGIN

39 IF (rst='1') THEN

40 one_second := 0; secU := 0; secT := 0;

41 minU := 0; minT := 0; hourU := 0; hourT := 0;

42 ELSIF (clk50'EVENT AND clk50='1') THEN

43 one_second := one_second + 1;
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44 IF (one_second=limit) THEN

45 one_second := 0;

46 secU := secU + 1;

47 IF (secU=10) THEN

48 secU := 0;

49 secT := secT + 1;

50 IF (secT=6) THEN

51 secT := 0;

52 minU := minU + 1;

53 IF (minU=10) THEN

54 minU := 0;

55 minT := minT + 1;

56 IF (minT=6) THEN

57 minT := 0;

58 hourU := hourU + 1;

59 IF ((hourT/=2 AND hourU=10) OR

60 (hourT=2 AND hourU=4)) THEN

61 hourU := 0;

62 hourT := hourT + 1;

63 IF (hourT=3) THEN

64 hourT := 0;

65 END IF;

66 END IF;

67 END IF;

68 END IF;

69 END IF;

70 END IF;

71 END IF;

72 END IF;

73 ---Pass values to output:---------

74 secUnits <= secU;

75 secTens <= secT;

76 minUnits <= minU;

77 minTens <= minT;

78 hourUnits <= hourU;

79 hourTens <= hourT;

80 END PROCESS;

81 END clock;

82 ---------------------------------------------------------------

Part 2: Image Generator

A VHDL code for the image generator is presented below. The digits are represented

by means of constants (specified in lines 23–77). Note that a FUNCTION, called
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bcd_to_digit6x8, was created in lines 79–93 to make the data conversion from BCD

(binary coded decimal) format to the proper display format (defined by the constants).

This function is then called six times in lines 101–106. In lines 108–118, horizontal (x)

and vertical (y) pointers (addresses) are created, which are then used in lines 120–140 to

build the image.

1 -----Image generator:-------------------------------------------------

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 ----------------------------------------------------------------------

5 ENTITY image_generator IS

6 PORT (

7 clk50, Hsync, Hactive, Vactive, dena: IN STD_LOGIC;

8 secUnits: IN NATURAL RANGE 0 TO 9;

9 secTens: IN NATURAL RANGE 0 TO 5;

10 minUnits: IN NATURAL RANGE 0 TO 9;

11 minTens: IN NATURAL RANGE 0 TO 5;

12 hourUnits: IN NATURAL RANGE 0 TO 9;

13 hourTens: IN NATURAL RANGE 0 TO 2;

14 R, G, B: OUT STD_LOGIC_VECTOR(5 DOWNTO 0));

15 END image_generator;

16 ----------------------------------------------------------------------

17 ARCHITECTURE image_generator OF image_generator IS

18 ---Type/signal/constant declarations:---

19 TYPE digit6x8 IS ARRAY (1 TO 8, 1 TO 6) OF STD_LOGIC;

20 SIGNAL digit_secU, digit_secT: digit6x8;

21 SIGNAL digit_minU, digit_minT: digit6x8;

22 SIGNAL digit_hourU, digit_hourT: digit6x8;

23 CONSTANT zero: digit6x8 := (

24 ('0','1','1','1','0','0'), ('1','0','0','0','1','0'),

25 ('1','0','0','1','1','0'), ('1','0','1','0','1','0'),

26 ('1','1','0','0','1','0'), ('1','0','0','0','1','0'),

27 ('0','1','1','1','0','0'), ('0','0','0','0','0','0'));

28 CONSTANT one: digit6x8 := (

29 ('0','0','1','0','0','0'), ('0','1','1','0','0','0'),

30 ('0','0','1','0','0','0'), ('0','0','1','0','0','0'),

31 ('0','0','1','0','0','0'), ('0','0','1','0','0','0'),

32 ('0','1','1','1','0','0'), ('0','0','0','0','0','0'));

33 CONSTANT two: digit6x8 := (

34 ('0','1','1','1','0','0'), ('1','0','0','0','1','0'),

35 ('0','0','0','1','0','0'), ('0','0','1','0','0','0'),

36 ('0','1','0','0','0','0'), ('1','0','0','0','0','0'),

37 ('1','1','1','1','1','0'), ('0','0','0','0','0','0'));
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38 CONSTANT three: digit6x8 := (

39 ('1','1','1','1','1','0'), ('0','0','0','1','0','0'),

40 ('0','0','1','0','0','0'), ('0','0','0','1','0','0'),

41 ('0','0','0','0','1','0'), ('1','0','0','0','1','0'),

42 ('0','1','1','1','0','0'), ('0','0','0','0','0','0'));

43 CONSTANT four: digit6x8 := (

44 ('0','0','0','1','0','0'), ('0','0','1','0','0','0'),

45 ('0','1','0','0','0','0'), ('1','0','0','1','0','0'),

46 ('1','1','1','1','1','0'), ('0','0','0','1','0','0'),

47 ('0','0','0','1','0','0'), ('0','0','0','0','0','0'));

48 CONSTANT five: digit6x8 := (

49 ('1','1','1','1','1','0'), ('1','0','0','0','0','0'),

50 ('1','0','0','0','0','0'), ('1','1','1','1','0','0'),

51 ('0','0','0','0','1','0'), ('1','0','0','0','1','0'),

52 ('0','1','1','1','0','0'), ('0','0','0','0','0','0'));

53 CONSTANT six: digit6x8 := (

54 ('0','1','1','1','0','0'), ('1','0','0','0','0','0'),

55 ('1','0','0','0','0','0'), ('1','1','1','1','0','0'),

56 ('1','0','0','0','1','0'), ('1','0','0','0','1','0'),

57 ('0','1','1','1','0','0'), ('0','0','0','0','0','0'));

58 CONSTANT seven: digit6x8 := (

59 ('1','1','1','1','1','0'), ('0','0','0','0','1','0'),

60 ('0','0','0','1','0','0'), ('0','0','1','0','0','0'),

61 ('0','0','1','0','0','0'), ('0','0','1','0','0','0'),

62 ('0','0','1','0','0','0'), ('0','0','0','0','0','0'));

63 CONSTANT eight: digit6x8 := (

64 ('0','1','1','1','0','0'), ('1','0','0','0','1','0'),

65 ('1','0','0','0','1','0'), ('0','1','1','1','0','0'),

66 ('1','0','0','0','1','0'), ('1','0','0','0','1','0'),

67 ('0','1','1','1','0','0'), ('0','0','0','0','0','0'));

68 CONSTANT nine: digit6x8 := (

69 ('0','1','1','1','0','0'), ('1','0','0','0','1','0'),

70 ('1','0','0','0','1','0'), ('0','1','1','1','1','0'),

71 ('0','0','0','0','1','0'), ('0','0','0','0','1','0'),

72 ('0','1','1','1','0','0'), ('0','0','0','0','0','0'));

73 CONSTANT colon: digit6x8 := (

74 ('0','0','0','0','0','0'), ('0','0','1','0','0','0'),

75 ('0','0','1','0','0','0'), ('0','0','0','0','0','0'),

76 ('0','0','1','0','0','0'), ('0','0','1','0','0','0'),

77 ('0','0','0','0','0','0'), ('0','0','0','0','0','0'));

78 ---Function construction:----------------

79 FUNCTION bcd_to_digit6x8 (SIGNAL input: INTEGER) RETURN digit6x8 IS

80 BEGIN
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81 CASE input IS

82 WHEN 0 => return zero;

83 WHEN 1 => return one;

84 WHEN 2 => return two;

85 WHEN 3 => return three;

86 WHEN 4 => return four;

87 WHEN 5 => return five;

88 WHEN 6 => return six;

89 WHEN 7 => return seven;

90 WHEN 8 => return eight;

91 WHEN OTHERS => return nine;

92 END CASE;

93 END bcd_to_digit6x8;

94 -------------------------------------------

95 BEGIN

96 PROCESS (clk50, Hsync, dena)

97 VARIABLE x: INTEGER RANGE 0 TO 800; --horiz. coordinate

98 VARIABLE y: INTEGER RANGE 0 TO 600; --vert. coordinate

99 BEGIN

100 ---Make BCD to digit6x8 conversion:----

101 digit_secU <= bcd_to_digit6x8(secUnits);

102 digit_secT <= bcd_to_digit6x8(secTens);

103 digit_minU <= bcd_to_digit6x8(minUnits);

104 digit_minT <= bcd_to_digit6x8(minTens);

105 digit_hourU <= bcd_to_digit6x8(hourUnits);

106 digit_hourT <= bcd_to_digit6x8(hourTens);

107 ---Create horizontal coordinate:-------

108 IF (clk50'EVENT AND clk50='1') THEN

109 IF (Hactive='1') THEN x := x + 1;

110 ELSE x := 0;

111 END IF;

112 END IF;

113 ---Create vertical coordinate:---------

114 IF (Hsync'EVENT AND Hsync='1') THEN

115 IF (Vactive='1') THEN y := y + 1;

116 ELSE y := 0;

117 END IF;

118 END IF;

119 ---Create image (w/ digits in red):----

120 G <= (OTHERS => '0');

121 B <= (OTHERS => '0');

122 IF (x>=700 AND x<706)AND (y>=550 AND y<558) THEN

123 R <= (OTHERS => digit_hourT(y-550, x-700));
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124 ELSIF (x>=706 AND x<712)AND (y>=550 AND y<558) THEN

125 R <= (OTHERS => digit_hourU(y-550, x-706));

126 ELSIF (x>=712 AND x<718)AND (y>=550 AND y<558) THEN

127 R <= (OTHERS => colon(y-550, x-712));

128 ELSIF (x>=718 AND x<724)AND (y>=550 AND y<558) THEN

129 R <= (OTHERS => digit_minT(y-550, x-718));

130 ELSIF (x>=724 AND x<730)AND (y>=550 AND y<558) THEN

131 R <= (OTHERS => digit_minU(y-550, x-724));

132 ELSIF (x>=730 AND x<736)AND (y>=550 AND y<558) THEN

133 R <= (OTHERS => colon(y-550, x-730));

134 ELSIF (x>=736 AND x<742)AND (y>=550 AND y<558) THEN

135 R <= (OTHERS => digit_secT(y-550, x-736));

136 ELSIF (x>=742 AND x<748)AND (y>=550 AND y<558) THEN

137 R <= (OTHERS => digit_secU(y-550, x-742));

138 ELSE

139 R <= (OTHERS => '0');

140 END IF;

141 END PROCESS;

142 END image_generator;

143 ----------------------------------------------------------------------

Part 3: Control Generator

Same as part 2 of the previous design (section 17.4).

Part 4: Serializer

Same as part 3 of the previous design (section 17.4).

Part 5: FPD-Link Interface

Same as part 4 of the previous design (section 17.4).

Part 6: Main Code

Finally, the main code is shown below, under the project name fpdlink_clock (line 5). It

simply combines the subcircuits designed above to create the complete FPD-Link driver

plus the intended image. The components are declared in lines 34–91, then instantiated in

lines 95–108. Note in lines 110–113 that complementary signals are again created in order

to be able to use the arrangement of figure 17.6 to emulate LVDS pins.

1 -----------------------------------------------------------------

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 -----------------------------------------------------------------

5 ENTITY fpdlink_clock IS
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6 PORT (

7 clk50: IN STD_LOGIC;

8 rst: IN STD_LOGIC;

9 seconds: IN STD_LOGIC;

10 minutes: IN STD_LOGIC;

11 hours: IN STD_LOGIC;

12 lvdsA1: BUFFER STD_LOGIC;

13 lvdsA2: OUT STD_LOGIC;

14 lvdsB1: BUFFER STD_LOGIC;

15 lvdsB2: OUT STD_LOGIC;

16 lvdsC1: BUFFER STD_LOGIC;

17 lvdsC2: OUT STD_LOGIC;

18 lvds_clk1: BUFFER STD_LOGIC;

19 lvds_clk2: OUT STD_LOGIC);

20 END fpdlink_clock;

21 -----------------------------------------------------------------

22 ARCHITECTURE fpdlink_clock OF fpdlink_clock IS

23 ----Signal declarations:-------------

24 SIGNAL clk350: STD_LOGIC;

25 SIGNAL Hsync, Vsync, Hactive, Vactive, dena: STD_LOGIC;

26 SIGNAL R, G, B: STD_LOGIC_VECTOR(5 DOWNTO 0);

27 SIGNAL secUnits: NATURAL RANGE 0 TO 9;

28 SIGNAL secTens: NATURAL RANGE 0 TO 5;

29 SIGNAL minUnits: NATURAL RANGE 0 TO 9;

30 SIGNAL minTens: NATURAL RANGE 0 TO 5;

31 SIGNAL hourUnits: NATURAL RANGE 0 TO 9;

32 SIGNAL hourTens: NATURAL RANGE 0 TO 2;

33 ----1st component declaration:-------

34 COMPONENT clock IS

35 GENERIC (fclk: INTEGER := 50_000_000);

36 PORT (

37 clk50: IN STD_LOGIC;

38 rst: IN STD_LOGIC;

39 seconds: IN STD_LOGIC;

40 minutes: IN STD_LOGIC;

41 hours: IN STD_LOGIC;

42 secUnits: OUT NATURAL RANGE 0 TO 9;

43 secTens: OUT NATURAL RANGE 0 TO 5;

44 minUnits: OUT NATURAL RANGE 0 TO 9;

45 minTens: OUT NATURAL RANGE 0 TO 5;

46 hourUnits: OUT NATURAL RANGE 0 TO 9;

47 hourTens: OUT NATURAL RANGE 0 TO 2);
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48 END COMPONENT;

49 ----2nd component declaration:-------

50 COMPONENT image_generator IS

51 PORT (

52 clk50, Hsync, Hactive, Vactive, dena: IN STD_LOGIC;

53 secUnits: IN NATURAL RANGE 0 TO 9;

54 secTens: IN NATURAL RANGE 0 TO 5;

55 minUnits: IN NATURAL RANGE 0 TO 9;

56 minTens: IN NATURAL RANGE 0 TO 5;

57 hourUnits: IN NATURAL RANGE 0 TO 9;

58 hourTens: IN NATURAL RANGE 0 TO 2;

59 R, G, B: OUT STD_LOGIC_VECTOR(5 DOWNTO 0));

60 END COMPONENT;

61 ----3rd component declaration:-------

62 COMPONENT control_generator IS

63 GENERIC (

64 Ha: INTEGER := 128;

65 Hb: INTEGER := 216;

66 Hc: INTEGER := 1016;

67 Hd: INTEGER := 1056;

68 Va: INTEGER := 4;

69 Vb: INTEGER := 27;

70 Vc: INTEGER := 627;

71 Vd: INTEGER := 628);

72 PORT (

73 clk50: IN STD_LOGIC;

74 clk350: OUT STD_LOGIC;

75 Hsync: BUFFER STD_LOGIC;

76 Vsync: OUT STD_LOGIC;

77 Hactive: BUFFER STD_LOGIC;

78 Vactive: BUFFER STD_LOGIC;

79 dena: OUT STD_LOGIC);

80 END COMPONENT;

81 ----4th component declaration:-------

82 COMPONENT FPDlink_interface IS

83 PORT (

84 clk350: IN STD_LOGIC;

85 Hsync, Vsync, dena: IN STD_LOGIC;

86 R, G, B: IN STD_LOGIC_VECTOR(5 DOWNTO 0);

87 lvdsA: OUT STD_LOGIC;

88 lvdsB: OUT STD_LOGIC;

89 lvdsC: OUT STD_LOGIC;
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90 lvds_clk: OUT STD_LOGIC);

91 END COMPONENT;

92 --------------------------------------

93 BEGIN

94 ----Clock:---------------------------

95 timing: clock PORT MAP (

96 clk50, rst, seconds, minutes, hours,

97 secUnits, secTens, minUnits, minTens, hourUnits, hourTens);

98 ----Image_generator:-----------------

99 image: image_generator PORT MAP (

100 clk50, Hsync, Hactive, Vactive, dena, secUnits, secTens,

101 minUnits, minTens, hourUnits, hourTens, R, G, B);

102 ----Control signals:-----------------

103 control: control_generator PORT MAP (

104 clk50, clk350, Hsync, Vsync, Hactive, Vactive, dena);

105 ----FPDlink interface:---------------

106 fpd_link: FPDlink_interface PORT MAP (

107 clk350, Hsync, Vsync, dena, R, G, B,

108 lvdsA1, lvdsB1, lvdsC1, lvds_clk1);

109 -------------------------------------

110 lvdsA2 <= NOT lvdsA1;

111 lvdsB2 <= NOT lvdsB1;

112 lvdsC2 <= NOT lvdsC1;

113 lvds_clk2 <= NOT lvds_clk1;

114 END fpdlink_clock;

115 -----------------------------------------------------------------

17.6 Other Designs

Once one knows how to deal with the control signals, FPD-Link encoder, and serializer,

generating images for an FPD-Link-driven LCD monitor becomes essentially the same

problem as generating images for a VGA monitor. Consequently, the material seen in

chapter 15 applies here too, so the following is recommended:

1 For generating regular images with dedicated hardware, follow the procedure of section

15.9.

1 For generating regular images with a file and on-chip memory, follow the procedure of

section 15.10.

1 For generating arbitrary images with a file and o¤-chip memory, follow the procedure of

section 15.11.

For the same reason, all examples and exercises seen there can also be used here.
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17.7 Exercises

Note: For exercise solutions, please consult the book website.

Exercise 17.1: FPD-Link Encoder

a) What are the purposes (benefits) of the FPD-Link circuit?

b) Does it have redundant bits (like 8B/10B in TMDS)?

c) Why is it called a serial data transmission encoder?

d) Why is a PLL generally needed to construct it?

e) What is the nominal maximum pixel rate?

f ) Why was the circuit of figure 17.6 used in the experiments?

Exercise 17.2: Image Generation with Hardware C1 (Banner)

Solve exercise 15.2 for an FDP-Link-driven display operating with SVGA resolution.

Adjust the horizontal values to 100, 600, 100.

Exercise 17.3: Image Generation with Hardware C2 (Sun in the Sky)

Solve exercise 15.3 for an FDP-Link-driven display operating with SVGA resolution.

Adjust the horizontal values to 250, 300, 250, and the vertical values to 150, 300, 150.

Exercise 17.4: Image Generation with Hardware C3 (Filling with Green)

Solve exercise 15.4 for an FDP-Link-driven display operating with SVGA resolution.

Exercise 17.5: Image Generation with Hardware C4 (Rotating Bar)

Solve exercise 15.5 for an FDP-Link-driven display operating with SVGA resolution.

Exercise 17.6: Image Generation with Hardware C5 (Digital Clock)

Compile the code for the clock in section 17.5 and physically test it in your FPGA board

using an FDP-Link-driven LCD display.

Exercise 17.7: Image Generation with Hardware C6 (Arcade Game)

Solve exercise 15.7 for an FDP-Link-driven display operating with SVGA resolution.

Exercise 17.8: Image Generation with a File and On-Chip Memory C1 (Banner)

Solve exercise 15.8 for an FDP-Link-driven display operating with SVGA resolution.

Adjust the image as in exercise 17.2.
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Exercise 17.9: Image Generation with a File and On-Chip Memory C2 (Sun in the Sky)

Solve exercise 15.9 for an FDP-Link-driven display operating with SVGA resolution.

Adjust the image as in exercise 17.3.

Exercise 17.10: Image Generation with a File and O¤-Chip Memory (Arbitrary Picture)

Solve exercise 15.10 for an FDP-Link-driven display operating with SVGA resolution.
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A
Programmable Logic Devices

A.1 Introduction

The purpose of programmable logic devices (PLDs) is to attain integrated circuits whose

hardware is programmable. Therefore, di¤erent from microcontrollers, whose tasks are

programmable but their hardware is fixed, the hardware itself is programmable in a PLD,

so with the same device a huge selection of di¤erent circuits—including microprocessors—

can be implemented.

The first PLDs were called PLA (programmable logic array) and PAL (programmable

array logic), introduced by Signetics and Monolithic Memories, respectively, in the mid-

1970s. A major limitation of these first PLDs was the fact that they employed only tradi-

tional logic gates (no flip-flops), so they were adequate only for the implementation of

combinational circuits.

A major advancement occurred in the early 1980s, when Lattice introduced GAL

(generic array logic), which included at each device output what they called a macrocell.

Besides containing a flip-flop, each macrocell had also several multiplexers to allow data

to the routed to the output, to a neighboring cell, or back to the programmable array itself,

thus conferring the device not only the capability of implementing sequential circuits (due

to the flip-flops), but also a much greater flexibility (due to data routing).

These devices (PLA, PAL, GAL, and other variants) are now collectively referred to as

SPLDs (simple PLDs), of which GAL is the only one still manufactured in a stand-alone

package.

In the mid-1980s, several GAL devices were fabricated in the same chip, using a more

sophisticated routing scheme, more advanced silicon technology, and several additional

features (like JTAG support and interface to several logic standards). Such approach be-

came known as CPLD (complex PLD). CPLDs are currently very popular due to their

high density, high performance, low cost (CPLDs can be found for less than a dollar),

and more recently even relatively low power consumption (for example, Altera Max IIZ

and Xilinx CoolRunner II series).



Still in the mid-1980s, FPGAs (field programmable gate arrays) were introduced.

FPGAs di¤er from CPLDs in architecture, technology, built-in features, and cost. They

aim mainly at the implementation of large, complex, high-performance systems.

A last comment regards the programming scheme of PLDs. In SPLDs and CPLDs,

nonvolatile memory (EEPROM in older devices, Flash in newer ones) is employed, so

the configuration is not lost when the power is turned o¤. FPGAs, on the other hand, nor-

mally employ volatile memory (SRAM), so they must be reprogrammed every time the

power is turned back on. In order to do so, special nonvolatile configuration memories

are sold by FPGA companies to hold the configuration data, which can be automatically

retrieved and loaded by the FPGA when the power is turned on.

A.2 PAL and PLA Devices

Figure A.1 shows the general architecture employed in PAL and PLA devices. In (a), pro-

grammable AND gate arrays are connected to nonprogrammable OR gate arrays, while in

(b) both arrays are programmable (the little circles indicate programmable connections).

These implementations are based on the fact that any Boolean function can be expressed

as an SOP (sum-of-products), that is, if a1; a2; . . . ; aN are the logic inputs, then an output

x can be computed as x ¼ m1 þm2 þ � � � þmM , where mi ¼ fiða1; a2; . . . ; aNÞ are the min-

terms of the function x. For example, x ¼ a1a2 þ a2a3a4 þ a1a2a3a4a5. Consequently, the

products (minterms) are computed by the AND gates, while the sums are computed by

the OR gates.

Due to the programmable OR array, with the same number of gates the PLA circuit can

compute more Boolean functions than the PAL circuit. These programmable cells, how-

Figure A.1
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ever, raised the capacitive load of the lines departing from the AND gates, making these

gates slower; they also caused the circuit to occupy a larger silicon space, increasing its

cost. For these reasons, the PAL architecture was more successful.

The early technology employed in the fabrication of these devices was bipolar, with

5 V supply and current consumption (with open outputs) around 200 mA. The maximum

frequency was on the order of 100 MHz, and the programmable cells were generally of

EPROM type, later improved to EEPROM and MOS transistors (see inset in figure A.1).

The PAL architecture was employed in the fabrication of GALs, while PLAs became

essentially obsolete. However, in spite of the GAL (hence PAL) architecture being used in

most CPLDs, the PLA architecture reappeared in the Xilinx CoolRunner II family of low-

power CPLDs. Thus, indirectly, both PAL and PLA are still present in current devices.

A.3 GAL Devices

GAL caused a major advancement in the acceptance of PLDs. It employed the PAL archi-

tecture, to which a macrocell was added at each output. This new arrangement provided

two major advantages: the inclusion of flip-flops allowed the construction of sequential

circuits and the inclusion of programmable routing, by means of several multiplexers,

allowed the output signal to be registered or unregistered, to be sent to a neighboring cell,

and also to be fed back to the programmable AND array, enormously enhancing the

device’s functionalities.

A then-popular GAL device, called GAL16V8, is depicted in figure A.2. It has 16 inputs

and 8 outputs in a 20-pin package (note that eight pins are actually bidirectional). Note

that a macrocell is present at each output. Even though GAL devices are still manufac-

tured, their main use is as building blocks in CPLDs.

A.4 CPLD Devices

The basic approach to the construction of CPLDs is illustrated in figure A.3. It consists of

several PLDs (in general of GAL type) fabricated on a single chip, with a sophisticated

switching array used to interconnect them and to the I/O pins. Moreover, CPLDs nor-

mally exhibit a few additional features, like JTAG support and interface to other logic

standards (for example, LVTTL/LVCMOS [Pedroni 2008]).

Figure A.4 shows the main CPLDs from Altera and Xilinx. Observe the building block,

which is GAL in two families and PLA in another; in Altera’s Max II series, a ‘‘simplified’’

FPGA architecture is indeed used, so if that becomes the tendency, the time of true

CPLDs might be nearing its end.

Also inspect (and compare) the other parameters in Figure A.4, such as the CMOS tech-

nology, the core and I/O voltages, the type of memory used to store the configuration, the

number of flip-flops available, and so on.
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Figure A.2

Figure A.3
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A.5 FPGA Devices

The general approach to the construction of FPGAs is depicted in figure A.5a. Note that it

consists of a matrix of special cells, called CLBs (configurable logic blocks) by Xilinx or

LABs (logic array blocks) by Altera. The top-performance FPGAs from these two compa-

nies (at the time of this writing) are Virtex 6 and Stratix IV, both fabricated with state-of-

the-art 40 nm CMOS technology.

Just to illustrate what goes inside these blocks (CLB, LAB), the contents of an ALM

(adaptive logic module) are depicted in figure A.5b (each CLB consists of 2 slices, while

Figure A.4

Figure A.5
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Figure A.6

Figure A.7
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each LAB consists of 10 ALMs). Note the existence of an 8-input LUT (look-up table),

responsible for the combinational logic (the LUT replaces the ANDþOR arrangement

of PAL or PLA), plus two dedicated adders, two flip-flops, and finally some data routers

(multiplexers).

The top FPGAs from Altera and Xilinx are briefly described in figure A.6 and A.7,

respectively. Compare them with each other and also with the CPLDs of figure A.4.

Observe, among other things, the following in FPGAs:

1 Their core voltage is much lower than that of CPLDs.

1 The technology is state-of-the-art (40 nm).

1 The traditional resources (logic cells and flip-flops) are much more abundant.

1 There are also extra resources, like user SRAM, multipliers, and PLLs.

1 They support a much wider, much more complex set of I/Os.

1 Transceivers are among the most modern I/O additions.

1 The configuration memory is SRAM instead of EEPROM or Flash.
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B Altera Quartus II Tutorial

This tutorial briefly describes Quartus II, from Altera, a design software for CPLD/

FPGA-based circuits. The description is based on Quartus II 9.0 sp1 Web Edition, avail-

able free of charge at www.altera.com. The registered multiplexer of figure B.1 will be used

as an example. Only VHDL input will be considered.

The tutorial is divided into eight parts:

B.1 Introduction

B.2 Starting a New Project

B.3 Synthesizing the Design

B.4 Inspecting Synthesis Results

B.5 Simulating the Circuit

B.6 Making Pin Assignments

B.7 Physically Implementing the Circuit

B.8 Interpreting the Fitter Equations

B.1 Introduction

Quartus II 9.0 allows integrated synthesis and simulation as follows.

Synthesis: Synthesis with the Quartus II synthesizer.

Simulation: Manual graphical simulation with the Quartus II simulator (VHDL test-

benches not allowed).

Note: Unfortunately, Altera has decided to no longer o¤er its simulator after version 9.1 of

Quartus II (@2011).

Because Quartus II does not support automated verification (simulation with VHDL

testbenches), an Altera edition of ModelSim is provided, which is described in appendix D.

The registered multiplexer studied in section 10.5 (repeated in figure B.1a, without

the unregistered output) will be used in this tutorial. The corresponding design file



(reg_mux.vhd ) is shown in figure B.1b. For the simulations, the same stimuli used in sec-

tion 10.5 (figure 10.6) will be employed.

B.2 Starting a New Project

a) Launch Quartus II.

b) Create a new project by selecting File > New Project Wizard. The dialog of figure B.2

will be opened.

c) In the working directory field of figure B.2, select the directory where all project files

should be located (reg_mux, in this tutorial). If the directory does not exist yet, just type

in the desired name (with the proper path, of course) and Quartus II will create it for

you. Preferably, use the same name for the directory, the project, and the main VHDL

entity.

d) In the project name field of figure B.2, enter the desired project name (reg_mux). Note

that the entity name field is automatically filled with the same name. Click Finish until the

Project Navigator (figure B.3a) is displayed.

e) Now enter the VHDL code. If the code of figure B.1b was already typed and saved in

the work directory, proceed to section B.3. Otherwise, open the VHDL editor by clicking

or selecting File > New, which calls up the dialog box of figure B.3b. Select VHDL

File and click OK. A blank page will be presented. Type the VHDL code and save it as

reg_mux.vhd.

Figure B.1
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Figure B.2

Figure B.3
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B.3 Synthesizing the Design

a) Define the device in which the circuit should be implemented by selecting

Assignments > Device, then in the Family field select Cyclone II, and in the Target Device

field either select Auto device selected by the Fitter (in this case the compiler will pick a

device from the Cyclone II family for you) or mark Specific device selected in ‘Available

devices’ list and select, for example, the chip used in the DE2 board (EP2C35F672C6).

b) Compile the design by clicking or selecting Processing > Start Compilation.

For a faster compilation, particularly useful while the VHDL code is still being

debugged, click or select Processing > Start > Start Analysis and Synthesis. In this

case, no timing information is recorded. After the code is working properly, full compila-

tion ( ) should then be performed.

c) When the compilation ends, the Compilation Report of figure B.4 is exhibited, which

contains several pieces of valuable information, some of which are described below.

B.4 Inspecting Synthesis Results

This section describes some of the results produced by the compiler.

a) Device type and number of pins: Check in figure B.4 if the device type is the intended

one (Cyclone II EP2C35F672C6, in this example). Check also if the total number of pins is

as expected (4� 4þ 2þ 1 ¼ 19 inputsþ 4 outputs ¼ 23 pins).

Figure B.4
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b) Number of logic elements: Figure B.4 also shows the amount of logic needed to imple-

ment the circuit. In this case, eight logic elements were needed, out of@33k LEs available

in the chosen device.

c) Number of registers: Since y is a 4-bit signal (figure B.1a), four flip-flops are expected to

be inferred by the synthesizer. This too can also be checked in the flow summary of figure

B.4, which shows a total of four registers.

d) RTL View: This tool shows how the code was interpreted by the compiler (before opti-

mization and fitting). Select Tools > Netlist Viewers > RTL Viewer, which exhibits the cir-

cuit of figure B.5 (or similar). Observe that because 2-input multiplexers are available in

the device, a total of three units were used to implement the 4-input mux (the other three

blocks at the input are for processing sel ). Note also the 4-bit register at the output.

e) Equations: They represent the actual circuit implemented by the compiler. In the

compilation report, select Fitter > Equations (if this option is not available, go to Tools >

Options > General > Processing and mark Automatically generate equation file during com-

pilation, then recompile the code). To interpret the equations, see first section B.8. For

example, ‘‘A1L41Q ¼ DFFEAS(A1L60, GLOBAL(A1L2), . . . );’’ means that the internal

signal A1L41Q is produced by a D-type flip-flop (DFF) whose data input comes from

A1L60 and whose clock input is fed by the global signal A1L2. Confirm in the equations

that the total number of DFFs is indeed four.

f ) Timing analysis: In the compilation report, select Timing Analyzer > Summary and

check the worst-case values for the three time delays below (these parameters are used,

for example, to determine the circuit’s maximum clock frequency).

tco (clock to output delay): Time necessary to obtain a valid output after a clock

transition.

tsu (clock setup time): Time during which the data and/or enable inputs must be stable

before a clock transition occurs.

Figure B.5

Altera Quartus II Tutorial 507



th (clock hold time): Time during which the data and/or enable inputs must remain stable

after a clock transition has occurred.

g) Pin assignments: In section B.6, it will be shown how to make or change pin assign-

ments. For now, we want to simply check the assignments made automatically by the com-

piler. In the Compilation Report, select Fitter > Resource Section > Input Pins. This leads

to the table on the left of figure B.6. Next, select Fitter > Resource Section > Output Pins to

see the output pins, shown on the right of figure B.6.

B.5 Simulating the Circuit

a) To perform manual graphical simulation, we need first to create (draw) the input wave-

forms, based on which the simulator will calculate and plot the output waveform. Click

or select File > New, which will lead again to the dialog of figure B.3b.

b) Select Vector Waveform File and click OK. The wave pane of figure B.7a will then be

exhibited.

b) Select View > Fit in Window (or press CtrlþW) to have the complete plot exhibited in

the waveforms window.

c) The time axis in figure B.7 goes from 0 to 1 us. If a di¤erent end time is needed, select

Edit > End Time and enter the desired value. Press CtrlþW again to see the whole time

axis.

Figure B.6
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d) The grid can also be adjusted as needed. Select Edit > Grid Size and enter 40 ns.

e) Now add the signals to the waveform editor. Press the right mouse button in the white

area under Name and select Insert > Insert Node or Bus, which leads to the dialog of figure

B.7b.

f ) In the Radix field select Unsigned Decimal, then click Node Finder. The dialog box of

figure B.8 (but empty) will be presented.

g) In the Filter field, select Pins: All (another useful option is Pins: All & Registers: Post-

Fitting) then click List. The window will be filled with the signals (partially) shown in the

left column of figure B.8. Select the desired signals, which can be copied to the column on

the right with (individually), with (all), or by simply double-clicking the left mouse

Figure B.7

Figure B.8

Altera Quartus II Tutorial 509



button on the name of the desired signal. Click OK twice, which will fill the waveforms

window with the signals of figure B.9.

h) To change the position (order) of a signal in figure B.9, just select its name, then press

and hold the mouse button on it, dragging it to the desired position. Note in figure B.9 that

all input signals come first, with the clock at the top.

i) Now we need to draw the input waveforms (clk, a, b, c, d, sel ), after which the simulator

will compute and draw the output waveform (y). The stimuli of figure B.10 will be

adopted.

1) Draw the waveform for clk: Select line clk and click the clock icon . Enter 80 ns for

the period and '0' for the initial value. Click OK.

2) Draw the waveform for a: Highlight line a from 0 to 80 ns, click the arbitrary value

icon , enter 2, and click OK. Repeat the operation entering 3 for the interval from 80 ns

up to the end of the simulation (1 us).

3) Draw the waveforms for for b, c, d: Repeat the process above, entering the values

shown in figure B.10.

4) Draw the waveform for sel: Select line sel and click the counter icon . Enter Start

value ¼ 0, Increment ¼ 1, and Count every ¼ 160 ns. Click OK.

5) Save the file with the same name as the entity’s and with extension .vwf (vector wave-

form file)—that is, reg_mux.vwf. Recall that the last waveform (y) will be filled by the

simulator.

j) Now we must choose between functional or timing (default) simulation. The former

checks only the design functionalities, while the latter also includes the device’s internal

propagation delays, thus representing the actual circuit. For functional simulation, con-

tinue to step (k) below. For timing simulation, go to step (l).

k) Functional simulation: Select Processing > Generate Functional Simulation Netlist. After

the program finishes producing the netlist, select Assignments > Settings > Simulator Set-

Figure B.9
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tings. In the Simulation Mode list, choose Functional. Finally, in the Simulation input field,

enter the name of the waveform file (reg_mux.vwf ) and click OK. When done, go to step

(m).

l) Timing simulation (default settings): Select Assignments > Settings > Simulator Settings.

In the Simulation Mode list, choose Timing. In the Simulation input field, enter the name

of the waveform file (reg_mux.vwf ) and click OK.

m) Recompile the code in case the setup in (k) or (l) was modified, then proceed to step

(n). Otherwise, go directly to (n).

n) Run the simulation by clicking or selecting Processing > Start Simulation. The sim-

ulator will draw the waveform for y in figure B.10a if it is a functional simulation (note

that there are no delays between the transitions of clk and y) or in figure B.10b if it is a

timing simulation (note the propagation delay between positive clock transitions and the

settling of y).

o) Examine the results: When the simulation ends, Quartus II displays the results in a

separate window. Instead of examining that window, click the tab related to the original

waveforms window (vwf plots), to which the new results will then be automatically copied.

If the results are not copied to the original waveforms window, select Assignments >

Settings > Simulator Settings > Simulation Output Files and mark Overwrite Simulation Input

File with Simulation Results, then rerun the simulation.

Figure B.10
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B.6 Making Pin Assignments

Below are three ways of making or changing pin assignments:

1) With Pin Planner (click or select Assignments > Pins or Assignments > Pin Planner)

2) With Assignment Editor (click or select Assignments > Assignment Editor)

3) With a CSV (comma separated value) file.

The first two are manual and equivalent, while the third is an automated (imported) as-

signment. The second and third methods are described below. To delete pin assignments,

select Assignments > Remove Assignments.

Manual Pin Assignments with Assignment Editor

a) Click or select Assignments > Assignment Editor, which opens the window of figure

B.11. In the Category field, select Pin. If the pin names are not shown, click (Show All

Known Pin Names).

b) As an example, the pin for clk is assigned in figure B.11. Double-click the left mouse

button in the white area under Location. A pin number can be selected from the pull-

down menu, or its name can be typed in (for example, for PIN_N2, only N2 or n2 needs

to be typed). Since the clock is a special signal, a specific type of pin should be assigned to

it, identified as Dedicated Clock in the pin list. Select, for example, N2.

c) Repeat this process for each of the circuit pins.

d) Finally, recompile the design.

Figure B.11
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Importing Pin Assignments with a CSV File

Pin assignments can be exported to and imported from a file, saved with the extension .csv.

The initial pin assignments, made automatically by the compiler, cannot be exported.

a) Select Assignments > Assignment Editor.

b) Select Assignments > Import Assignments. As an example, try to import the pin assign-

ments for the DE2 board, available in a file called DE2_pin_assignments.csv.

c) Recompile the code.

d) To export a pin assignment, select Assignments > Pin Planner, then File > Export, and

save the file with the extension .csv.

B.7 Physically Implementing the Circuit

a) Connect the board containing the CPLD or FPGA device to an USB port of your com-

puter and turn the power on the board on. If this is the first time that you are using a

board that interfaces using an USB port, execute section E.2 of appendix E: Installing the

USB-Blaster Driver (this is needed only once).

b) In Quartus II, click the Programmer icon or select Tools > Programmer. Figure B.12

will be displayed. Note the following in the figure: the programmer file is reg_mux.sof; the

Program/Configure box is checked; the driver is USB-Blaster; finally, the mode is JTAG.

c) Click Start, and the device will be programmed.

B.8 Interpreting the Fitter Equations

Below are the main symbols used in the Fitter equations.

a) Logic operators: ! (NOT), & (AND), # (OR), $ (XOR)

Figure B.12
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b) Flip-flops:

DFF (D, CLK, CLRN, PRN) (DFF with reset and preset, both active low)

DFFE (D, CLK, CLRN, PRN, ENA) (DFF above plus enable input)

DFFEA (D, CLK, CLRN, PRN, ENA, ADATA, ALOAD) (DFF above plus asynchronous data

load)

DFFEAS (D, CLK, CLRN, PRN, ENA, ADATA, ALOAD) (DFF above with synchronous clear)

TFFE (T, CLK, CLRN, PRN, ENA) (TFF with reset, preset, and enable)

Note: Recall that in the context of this book an output-zeroing command is called reset

when it is asynchronous or clear if it is synchronous.
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C Xilinx ISE Tutorial

This tutorial briefly describes the ISE synthesis/simulation suite from Xilinx, a design soft-

ware for CPLD/FPGA-based circuits. The description is based on ISE 11.1 WebPack,

available free of charge at www.xilinx.com. The registered multiplexer of figure C.1 will

be used as an example. Only VHDL input will be considered.

The tutorial is divided into eight parts:

C.1 Introduction

C.2 Starting a New Project

C.3 Synthesizing the Design

C.4 Inspecting Synthesis Results

C.5 Simulating the Circuit with ISim

C.6 Simulating the Circuit with ModelSim

C.7 Making Pin Assignments

C.8 Physically Implementing the Design

C.1 Introduction

ISE 11.1 allows integrated synthesis and simulation as follows.

Synthesis: With XST (Xilinx Synthesis Technology), Precision RTL (from Mentor Graph-

ics), or Synplify (from Synopsys).

Simulation: With ISim (ISE Simulator, from Xilinx), ModelSim (from Mentor Graphics),

NC-Sim (from Cadence), or VCS (from Synopsys)

Note: Unfortunately, Xilinx has decided, starting in version 11.1 of ISE to remove the

waveform generator from its simulator. This means that manual graphical inputs (which

can be very helpful in the classroom, particularly in the beginning of VHDL/Verilog

courses) are no longer possible (only stimuli from testbench files can now be entered into

the simulator).



To compensate for the limitation above, we have included in the ModelSim tutorial

(appendix D) some Tcl commands to construct script files so the user can still employ

that kind of simulation (though it would be much simpler with a properly designed GUI,

as in Quartus II, up to version 9.1).

The registered multiplexer studied in section 10.5 (repeated in figure C.1) will be used in

this tutorial. Its design and test files are the following:

Design file: reg_mux.vhd, seen in section 10.5.

Testbench file: reg_mux_tb.vhd, with one option (without automated verification) seen in

example 10.4 and another (with automated verification) seen in example 10.6. The former

will be employed here.

C.2 Starting a New Project

a) Create a directory where all the design files should be located (work library). Copy the

files reg_mux.vhd and reg_mux_tb.vhd mentioned earlier to that directory. If they were not

typed yet, the ISE text editor can be used (step (f ) ahead).

b) Launch ISE.

c) Select File > New Project, which will open the Create New Project dialog of figure C.2a.

Enter the project name and location (note that the project name is automatically copied to

the project location). Click Next, which opens the dialog of figure C.2b.

d) In the Device Properties dialog (figure C.2b), select the device, the synthesizer (XST),

the simulator (ISim—we will deal with ModelSim later), and the language (VHDL). Click

Next and Finish until the Project Navigator (figure C.3) is opened.

e) Observe the Project Navigator’s four windows: Sources, Processes, Transcript, and

Workspace. Make sure that Sources is set to Implementation.

f ) Open the design (reg_mux.vhd ) and testbench (reg_mux_tb.vhd ) files (they will be

displayed in the Workspace window). If they were not typed yet, click or select

File > New > Text File to enter each file.

Figure C.1
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Figure C.3

Figure C.2
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C.3 Synthesizing the Design

a) First, we must define the project ‘‘sources,’’ which are the two files prepared above.

Select Project > Add Source, highlight reg_mux.vhd and click Open. This opens the dialog

of figure C.4a. In the Association field, select All. Do the same for reg_mux_tb.vhd, now

selecting Simulation in the Association field, as shown in figure C.4b.

Note: The first of the files above is the source for synthesis, while the second is the source

for simulation. Consequently, if one prefers, the latter can be included later (in section C.5

or C.6).

Note: If at any point you need to remove sources from the project, proceed as follows.

To remove a design file: In the Source for field of the Sources window, select Implementa-

tion. Right-click the file name and select Remove.

To remove a testbench file: In the Source for field of the Sources window, select Behavioral

Simulation. Right-click the file name and select Remove.

b) Next, set the synthesis e¤ort. Select Project > Design Goals & Strategies and choose

Balanced.

c) The design is now ready to be synthesized. At this point, the Processes window will look

like that in figure C.5. Note that under the synthesis process there are four possible actions.

For example, if the input files are still being debugged, one might prefer to run just the

Check Syntax module. To synthesize the circuit, double-click Synthesize—XST. Some of

the results from the synthesis process will be examined in the next section.

d) At any point you can restart the whole process by selecting Project > Cleanup Project

Files, which will delete the files created by ISE (but not the design and testbench files).

Figure C.4
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C.4 Inspecting Synthesis Results

The synthesis reports contain several pieces of valuable information, some of which are

examined below.

a) Design parameters: On the upper left corner of the Workspace window select Design

Overview > Summary. The result is partially shown in figure C.6. Observe in the Project

Status table the name of the design, the device used, and the design goal (Balanced).

b) Device utilization: In the Device Utilization Summary table of figure C.6 observe that

four slices were used (out of 768 available in the chosen device), four flip-flops were

inferred (as expected), and that the circuit requires 27 pins (expected: 4� 4þ 2þ 1

inputsþ 2� 4 outputs ¼ 27).

c) RTL view: Double-click View RTL Schematic in figure C.5 or select Tools > Schematic

Viewer > RTL. The Create RTL Schematic dialog will be opened. Click the "þ" icon next

Figure C.5

Figure C.6
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to Signal, select all signals in the list, then click Add to copy the signals to the column on

the right. Finally, click Create Schematic. The result is shown in figure C.7a. Note that this

circuit coincides with that in figure C.1. This is how our circuit was understood by the syn-

thesizer (after optimization and place & route it might look a little di¤erent, but obviously

still has the same functionalities).

d) Technology view: Double-click View Technology Schematic in figure C.5 or select

Tools > Schematic Viewer > Technology, then proceed as in step (c) above, which will

cause the final circuit to be exhibited (figure C.7b).

e) Timing analysis: Select Tools > Timing Analyzer > Post-Place & Route. After the process

is concluded, check in the Report Navigation the time values in Setup/Hold to clock clk and

in Pad to pad (a few ns are generally reported), which help give an initial rough idea about

the design’s maximum speed.

C.5 Simulating the Circuit with ISim

a) If not done yet, enter the source file for simulation (in this tutorial, it was done in step

(a) of sections C.2 and C.3.

b) We must choose between functional or timing simulation. The former checks only the

design functionalities, while the latter includes also the device’s internal propagation

delays, thus representing the actual circuit.

1 For functional simulation, continue in step (c) below.

1 For timing simulation, go to step (d).

Figure C.7
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c) Functional simulation: In the Sources window of the Project Navigator, select Behav-

ioral Simulation in the Sources for field (as shown in the upper part of figure C.8a). Then

highlight the testbench file, which will cause the ISim menu to be exhibited in the Processes

window (lower part of figure C.8a). Double-click Simulate Behavioral Model in the Pro-

cesses window. This will start ISim, which displays the waveforms window of figure C.8b.

When done, go to step (e).

d) Timing simulation: In the Sources window of the Project Navigator, select Post-Route

Simulation in the Sources for field (as shown in the upper part of figure C.8c). Then high-

light the testbench file, which will cause the ISim menu to be exhibited in the Processes

window (lower part of figure C.8c). Double-click Simulate Post-Place & Route Model in

the Processes window. This will start ISim, which displays the waveform window of figure

C.8d.

e) In figure C.8b or C.8d (depending on the simulation type), select all signals but clk

and change their radix to unsigned decimal (right-click a signal name and select Radix >

Unsigned Decimal).

f ) Click the Zoom to Full View icon to see the whole plot. Note that the simulation

time interval (0.8 us in this example) can be changed to any other value.

g) Examine the results in figure C.8. Note particularly the following:

Figure C.8
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1 They coincide with the results in example 10.4.

1 If it is a functional simulation (figure C.8b), there are no time delays between input and

output transitions.

1 If it is a timing simulation (figure C.8d), then there are time delays between input and

output transitions. For example, the marker and cursor in the figure show a 6.2 ns time

delay between the clock transition and the change in y.

h) To get acquainted with ISim, practice with the Run and Zoom controllers. For exam-

ple, click the Run for the Time Specified icon , followed by the Zoom to Full View

icon , to see that the simulation advances another 0.8 us. Now click the Restart icon

, followed by and .

i) Also practice with:

1 Previous/Next Transition icons (for example, select x and then click one of these

icons and observe the corresponding time value at the cursor foot).

1 Go to Time 0 and Go to the Latest Time icons .

1 Cursor and time markers .

C.6 Simulating the Circuit with ModelSim

a) If not done yet, enter the source file for simulation (in this tutorial, it was done in step

(a) of sections C.2 and C.3.

b) In the simulation above, ISim was used. To change to ModelSim, right-click anywhere

in the Sources window and select Design Properties, which opens a dialog similar to that in

figure C.2b. In the Simulator field, select the ModelSim version available.

c) Now proceed as in section C.5 to run either functional or timing simulation. When

ModelSim is started, follow the ModelSim tutorial of appendix D.

Note: If ISE is unable to find the ModelSim executable file, select Edit > Preferences and

enter the full path to the executable file in the Model Tech Simulator field.

C.7 Making Pin Assignments

a) Start the PlanAhead component of ISE by selecting Tools > PlanAhead > I/O Pin Plan-

ning (PlanAhead) Post-Synthesis, which opens the PlanAhead navigator of figure C.9.

b) To have the I/O pins placed automatically, select Tools > Auto-Place I/O Ports. Click

Next and Finish. Observe that device pins are assigned to all 27 circuit ports. To remove

all pin assignments, select Tools > Clear Placement Constraints and just follow the dialogs.

c) In the I/O Ports window of the PlanAhead navigator (figure C.9), click any port name

and observe that it is highlighted in both the Device and the Package floorplan windows.
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d) To change pin assignments, again use the I/O Ports window. Double-click the port

name (say, a[0]) or any other position in that line, which will cause that specific port to be

displayed in the I/O Port Properties window. In the Site field, enter the desired pin name,

then click Apply. If that pin is available, the assignment will be accepted.

e) When done making manual pin assignments, run Tools > DRC to check (fix) any incon-

sistencies, then recompile the design.

C.8 Physically Implementing the Design

a) Connect the development board containing the target CPLD or FPGA device to your

computer and turn the power on the board on.

b) In the Sources for field of the Sources window select Implementation.

c) Still in the Sources window, highlight the design file (reg_mux.vhd ), which will cause the

menu shown in the Processes window of figure C.5 to be displayed.

d) In the Processes window, double-click Implement Design.

e) Next, double-click Generate Programming File.

f ) Finally, double-click Configure Target Device, which starts the iMPACT tool re-

sponsible for configuring the device (iMPACT requires some setups, like the chain type—

Boundary Scan, for example; details about iMPACT are available at the Xilinx website).

Figure C.9
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D ModelSim Tutorial

This tutorial briefly describes ModelSim, from Mentor Graphics, a simulator for VHDL-

based (and other) designs. This tutorial is a complement to chapter 10, which deals exclu-

sively with simulation, and is based on ModelSim 6.3g (web edition for Altera devices

available free of charge at www.altera.com).

The tutorial is divided into six parts:

D.1 Introduction

D.2 Preparing the Simulation Environment

D.3 Running a Functional Simulation

D.4 Running a Timing Simulation

D.5 Running Manual Graphical Simulations

D.6 Running ModelSim with Tcl Commands and DO File

D.7 Using Breakpoints

D.8 Creating a Project

D.1 Introduction

The circuit used in this tutorial is shown in figure D.1a, which is a four-stage single-bit

shift register. Simulation results obtained with the Quartus II simulator are included in fig-

ure D.1b. In the tutorial, the same input waveforms will be generated, so the same output

values are expected.

To perform the simulations, two files must be created by the user: a design file (here

called mydesign.vhd ) and a test file containing the testbench (here called mydesign_tb.vhd ).

Both are shown in figure D.2. Note that the stimuli created by the latter are based on fig-

ure D.1b.

For functional simulations, only these two files are needed. However, for timing simula-

tions, two additional files are required, both generated by the synthesizer when under the



proper setup. One is a post synthesis file, while the other is a file with annotated propaga-

tion delays in SDF format. Both types of simulations are described in this appendix.

D.2 Preparing the Simulation Environment

a) Create a directory where all files should be located.

b) Copy both files of figure D.2 to that directory. If the files were not typed yet, the

ModelSim editor can be used (see step f below).

Figure D.2

Figure D.1
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c) Launch ModelSim and adopt the following setup:

For the windows: In View, mark Workspace and unmark any other options.

For the tools bar: Click the right mouse button on any empty space in the tools bar, which

will cause the pull-down menu shown on the right of figure D.3a to be exhibited. Only five

tools need to be selected: Standard, Compile, Simulate, Cursor, and Zoom (the correspond-

ing tool menus can be dragged to any desired position). Details regarding three of these

tools are shown in figure D.3b.

d) Select File > Change Directory and change to the directory created in step a.

e) If the files mydesign.vhd and mydesign_tb.vhd already exist, open them. Otherwise, type

them following the procedure below.

f ) To type the files, select File > New > Source > VHDL, which opens the VHDL editor.

Type the files and save them in the directory created in step a.

g) Create now the work library by selecting File > New > Library. This opens the dialog of

figure D.4. If the word ‘‘work’’ was not entered automatically in both fields (as in the

figure), type it in. Click OK. This concludes the preparation for the simulation.

Figure D.3

ModelSim Tutorial 527



D.3 Running a Functional Simulation

For functional simulation, proceed below. For timing simulation, go to section D.4.

a) Compile the files by clicking or by selecting Compile > Compile. This opens the

Compile Source Files dialog of figure D.5a. Select both files (as in the figure) and click

Compile. When finished, click Done. If you are debugging a file, you can compile it sepa-

rately until the problems are fixed.

b) To simulate the design, start by left double-clicking mydesign_tb in the Workspace

(see figure D.5b). Alternatively, you can select Simulate > Start Simulation, which opens

Figure D.4

Figure D.5
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the Start Simulation dialog. In it, click the "þ" icon to expand the work library, select

mydesign_tb and click OK. (For timing simulation, the latter option must be employed.)

c) When the process ends, figure D.5c is displayed in the sim tab of the Workspace. Right

click mydesign_tb and select Add > Add to Wave. The wave pane of figure D.6 will then be

exhibited (but without the waveforms). Any signal in the wave list can be dragged up or

down (normally reset and clock are wanted at the top). To do so, press and hold the left

mouse button on the signal’s name and move it to the desired position.

d) We must now display the waveforms. First, set the simulation time interval by selecting

Simulate > Runtime Options. Enter 720 ns.

e) To run the simulation, click . Alternatively, you can select Simulate > Run > Run

100. The waveforms of figure D.6 will then be exhibited.

f ) Click the Zoom Full icon (see figure D.3b) to have the complete plot displayed in

the window.

g) Repeat steps e–f a few times and observe that the plot grows 720 ns each time.

h) Clean the waveforms window by clicking the Restart icon (see figure D.3b), then

repeat steps e–f. Finally, inspect the results (note that they coincide with those in figure

D.1b).

D.4 Running a Timing Simulation

To run a timing simulation, two additional files are needed: post synthesis and SDF. These

files are generated by the synthesizer when the proper setup is in place (the synthesizer

must know which simulator will be employed and that it is a timing simulation). For

example, in the case of Quartus II, these files are saved with the extensions .vho (VHDL

output) and _vhd.sdo (SDF output). To illustrate how it is done, the case of Quartus II is

described below.

Figure D.6

ModelSim Tutorial 529



a) Get the additional files

1 In Quartus II, select Assignments > Settings > Simulator Settings and choose Timing in

the Simulation Mode list. Click OK.

1 Select Assignments > EDA Tools Settings > Simulator and choose ModelSim-Altera in the

Tool Name list. Click OK.

1 Compile the design (mydesign.vhd ). In the work directory, a simulation/modelsim (de-

fault name) subdirectory is automatically created, containing the files mydesign.vho and

mydesign_vhd.sdo.

1 Copy these two files to the ModelSim work directory and return to the ModelSim

software.

b) Back to ModelSim, compile the design by clicking or by selecting Compile >

Compile. This opens the Compile Source Files dialog of figure D.7. Select the postsynthesis

file (mydesign.vho) and the test file (mydesign_tb.vhd ), as shown in the figure, and click

Compile. When finished, click Done.

c) Now we can simulate the design. Select Simulate > Start Simulation, which opens the

Start Simulation dialog of figure D.8a. In it, select mydesign_tb (as in the figure) and click

the SDF tab, leading to the dialog of figure D.8b. In the SDF File field, enter the address

to the SDF file. In the Apply to Region field, type /mydesign_tb/DUT ). Click OK in both

dialogs, which will cause the simulation to start.

d) When the process is finished, go to step c of section D.3 and continue from there. Ob-

serve that the waveforms obtained in the timing simulation are similar to those in figure

Figure D.7

530 Appendix D



D.6, but now with time delays included (note, for example, that dout does not change

immediately when a clock transition occurs).

D.5 Running Manual Graphical Simulations

In the simulations shown in the previous sections, the input waveforms were provided by a

VHDL code (testbench file) and the simulator was controlled using ModelSim’s GUI.

ModelSim also allows manual graphical simulation (that is, with the input waveforms

drawn by the user, as in Quartus II). In this case, only the design file (mydesign.vhd ) is

required, as summarized below.

For functional simulation: Proceed as in section D.3, but use only the design file

(mydesign.vhd ) in the compilation step.

For timing simulation: Proceed as in section D.4, but use only the post synthesis file

(mydesign.vho) in the compilation step.

Once the Add > Add to Wave step is reached, the waveforms must be drawn. This can be

done using either the GUI or the command line (Tcl commands, described below). Be-

cause the options in the former are very limited, the latter is a better choice. Such a proce-

dure is described in the next section.

D.6 Running ModelSim with Tcl Commands and DO File

Tcl (tool command language) is a scripting language. Like any other EDA software,

ModelSim too can be run using Tcl commands (this is called command-line mode, as

Figure D.8
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opposed to GUI mode, employed in the previous sections). The main commands for the

present purpose are described below.

1) Add wave command: Adds a new wave to the wave pane. For example,

add wave clk

2) Run command: Below are popular options for the run command. The first run com-

mand causes the simulation to be run until the time reaches the time limit set in the simu-

lator. The other two cause the simulation to advance 300ns (ps is the default time unit).

run, run 300ns, run 300000

3) Restart command: Causes the waveforms to be cleared, with the simulator returning to

time zero.

restart

4) Force command: Allows the construction of waveforms. Two popular options are

shown here.

The syntax below is for generating clocks (-r stands for ‘‘repeat’’ and -freeze is the default

value, so it can be omitted):

force -freeze <signal_name> <value> <time>, <value> <time> -r <time>

Example: Below is a clock with initial value '0', 150ns period, and 50% duty cycle.

force clk 0 0ns, 1 75ns -r 150ns

The next syntax is for generating arbitrary waveforms:

force -freeze <signal_name> <value> [<time>] [, <value>] [<time>] ...

Example: Below is a reset with initial value '1' during 50ns, then '0' forever. When leaving a

space between the time value and the time unit, enclose them with braces (for example,

50ns ¼ {50 ns}).

force rst 1 run 50ns force rst 0 run

5) Do command: Runs a DO file. For example,

do mydesign.do

A DO file is a script file consisting of Tcl commands. It constitutes a very e¤ective way of

documenting and reusing test sequences.

An example of DO file is shown in figure D.9b, which produces the signals clk, rst, and

din depicted in figure D.9a. If we run any of the previous simulations up to the Add > Add
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to Wave step, the rest can be performed with this file. Save it with the extension .do and run

it with the command "do mydesign.do". The resulting waveform (dout) is shown in the last

plot of figure D.9a; note that it coincides with that in figure D.1b.

If the add wave commands that are commented out in the DO file are included, then the

step Add > Add to Wave does not need to be executed.

D.7 Using Breakpoints

Breakpoints are useful for code analysis and debugging. In the description below, we will

assume that functional simulation has just been executed.

a) Include the Objects window in the design navigator by selecting View > Objects. The

result is in figure D.10 (dark area).

b) Open the design file (mydesign.vhd ) in the main window (figure D.10).

c) The red lines accept breakpoints. Click, for example, the BP column in the direction of

lines 18 and 20, which introduces breakpoints (red balls, figure D.10) for q and dout in

those lines.

d) Click on a red ball to deactivate it (black ball), then click it again to reactivate it.

e) Click (Restart) to clean the wave pane.

f ) Perform the simulation by clicking (Run-All), which causes the simulator to pro-

ceed until a breakpoint is found (a blue pointer will indicate the present simulation point).

g) Observe that the signal values are updated in the Objects window. Another way of

verifying a signal’s value is by selecting it, then right-clicking the mouse and selecting

Examine.

h) Click several other times to see how the values of q and dout progress.

Figure D.9
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i) Remove the breakpoints by clicking the right mouse button on them and selecting

Remove Breakpoint.

j) Finally, sweep the code one step at a time by clicking . This causes the simulator to

go from one red line to the next, successively.

D.8 Creating a Project

In the simulations above, the files were entered directly into the simulation environment. In

this section, we show how a project can be created first. A project saves the simulation

status, easing its continuation. It also helps organize and document the simulations.

Preparing the Project

a) Create a directory for the Project.

b) Start ModelSim (adopt the setup suggested in section D.2).

c) Select File > New > Project, which opens the Create Project dialog of figure D.11a.

Choose a name for the project, provide the directory location, leave work as the default

library, and click OK. This opens the Add Items to the Project dialog of figure D.11b.

d) In the dialog of figure D.11b, click Add Existing File, which leads to the Add File to

Project dialog of figure D.11c. Enter each file name, mark Copy to Project Directory, and

click OK.

Figure D.10
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Compilation

e) Select Compile > Compile Order, which opens the Compile Order dialog.

f ) The design file must come first. If it does not, select it and use the arrows on the right-

hand side to move it to the desired position. Click Auto Generate. When finished, click OK

twice.

g) In the Workspace, select both files and click (or select Compile > Compile All) to

compile the project.

Simulation

h) From this point on the procedure is the same as before. Therefore, go to section D.3 for

functional simulation or D.4 for timing simulation.

Figure D.11
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E Altera DE2 Board Tutorial

Due to its wide set of modern features, the DE2 board is very helpful in the teaching of

digital design and VHDL. In this tutorial, only its most fundamental aspects are presented,

which include also the DE2 Control Panel. Further details can be seen at www.altera.com.

It is important to mention that several other helpful boards are available in the market,

from Altera, Xilinx, and other CPLD/FPGA companies.

The tutorial is divided into six parts:

E.1 Board Features

E.2 Installing the USB-Blaster Driver

E.3 The DE2 Control Panel (DE2-CP)

E.4 Configuring the FPGA

E.5 Starting the DE2-CP

E.6 Introductory Exercises with the DE2 Board and its Control Panel

E.1 Board Features

The DE2 board is shown in figure E.1a and its features are summarized in figure E.1b. It

includes several types of switches, displays, memories, serial ports, and video and audio

circuits, plus two clock generators, the USB-Blaster driver, configuration memory and ex-

tension headers.

As indicated in figure E.1b, the USB-Blaster driver is used to program the FPGA, with

two options available.

1) Directly from Quartus II: In this case, the switch must be in the RUN position, so the

configuration data goes directly to the FPGA's internal SRAM configuration memory.

The type of file used in this case is called SOF (SRAM object file). Since the SRAM is

volatile, the configuration is lost when the board is powered o¤.



2) With an external configuration memory: In this case, the switch must be in the PROG

position, so the configuration data is sent to an external nonvolatile memory. The power

must then be turned o¤ and back on to cause the configuration data to be automatically

retrieved from that memory by the FPGA controller. The type of file used in this case is

called POF (programmer object file).

E.2 Installing the USB-Blaster Driver

Contrary to previous Altera boards, such as UP1 and UP2, which were connected to a PC

through its parallel port and were configured using the Byte-Blaster driver, the DE2 board

connects via an USB port and is configured using the USB-Blaster driver. Hence, before

using the board, that driver must be installed.

The first time you plug the DE2 board to an USB port on your computer, the New

Hardware Wizard will be opened. Just follow the dialogs and respond as follows.

Figure E.1
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First dialog: Can Windows connect to Windows Update to search for the software? No,

not this time.

Second dialog: What do you want the wizard to do? Install from a list or specific location

(advanced).

Third dialog: Now select the usb-blaster folder in the Quartus directory and just proceed

until the installation is completed.

E.3 The DE2 Control Panel (DE2-CP)

The DE2 board is shipped with a software called Control Panel, which allows the user to

interact, via a computer, with several of its parts, as follows.

1 26 LEDs (18 red, 8 green)

1 8 SSDs (seven-segment displays)

1 1 LCD (liquid crystal display, 16� 2 alphanumeric)

1 1 PS2 keyboard

1 1 SRAM memory chip (ISSI IS61LV25616 ! 256k� 16b, 10ns)

1 1 SDRAM memory chip (PSC A2V64S4 ! 2M� 8b� 4banks, 10ns)

1 1 Flash memory chip (Spansion S29AL032D ! 4M� 8b, 70ns)

1 1 VGA video interface, with 10-bit DACs

The following sections describe how to install and use the DE2-CP.

E.4 Configuring the FPGA

In this part, the SOF file named DE2_USB_API.sof must be downloaded to the FPGA. Its

purpose is to configure the FPGA as needed to interface with the several chips available on

the DE2 board, after which the board can be controlled by the DE2-CP.

a) Prepare the DE2 board (connect the power and USB cables, turn the power on, and

place the RUN/PROG switch in RUN).

b) Start Quartus II. No project needs to be created here.

c) Open the Programmer (click or select Tools > Programmer), which will open the

window of figure E.2. In case Quartus II was already open, delete any files that might

appear in the programmer, then click Add File to add the file DE2_USB_API.sof (as in

the figure).

d) Make sure that the selected hardware is USB-Blaster (upper left corner of figure E.2).
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e) Mark the Program/Configure box and click Start. During programming, only two blue

LEDs will remain lit on the board.

E.5 Starting the DE2-CP

Once the FPGA has been configured, its utilization can commence.

a) Start the DE2-CP program by running DE2_Control_Panel.exe. The user interface of

figure E.3 will be displayed.

b) Check in the DE2-CP (figure E.3) the presence of all peripherals listed in section E.3.

Figure E.2

Figure E.3
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c) Open the USB connection by selecting Open > Open USB Port 0.

d) Select the TOOLS tab. In all three pull-down menus select Host USB Port, then click

Configure.

e) Now the DE2-CP is ready to be used. Some exercises are presented next, but first

observe the note below.

Note: When done, close the USB connection by selecting Open > Close USB Port. If you

intend to return to Quartus II for some other project, close the control panel of figure E.3.

E.6 Introductory Exercises with the DE2 Board and its Control Panel

Exercise E.1: LEDs and LCD

a) Make sure that sections E.4–E.5 were executed.

b) Select the LED & LCD tab.

c) Mark some of the LEDs and click Set. Observe that the corresponding LEDs are lit.

d) Now write some text in the LCD box and click Set. Observe that the text is displayed in

the LCD.

e) When done, proceed to exercise E.2 or close the DE2-CP (see Note in section E.5).

Exercise E.2: SSDs

a) Make sure that sections E.4–E.5 were executed.

b) Select the PS2 & 7-SEG tab.

c) Write any hexadecimal value in the 0-to-F range (it can be picked from the pull down

menu) in any of the SSDs.

d) Click Set and observe that the digit is displayed in the corresponding SSD.

e) When done, proceed to exercise E.3 or close the DE2-CP (see Note in section E.5).

Exercise E.3: Loading Data from HEX and TXT Files into the SDRAM Chip

a) Make sure that sections E.4–E.5 were executed.

b) Select the SDRAM tab.

c) In the Random Access field, enter a value in wDATA and click Write, then click Read

to see in rDATA whether the value was indeed stored in that memory address. Repeat the

procedure for other addresses.

d) Using a text editor, type a file containing only hexadecimal symbols (for example,

0123456789ABCDEF0000) and save it with the extension .hex (not to be confused with

the Intel HEX format seen in chapter 13).
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e) In the Sequential Write box, mark File Length and then click Write a File to SDRAM.

f ) Now in the Sequential Read part, copy to the Length field the same address obtained in

the Length box of the Sequential Write part.

g) Click Load SDRAM Content to a File. Enter the desired file name and save it with the

extension .hex.

h) Open the file in a text editor and check whether it matches that loaded into the

SDRAM.

i) Repeat the procedure above using a file with a di¤erent extension (.txt, for example),

and include in it nonhexadecimal symbols (other ASCII characters). What happens in this

case?

j) Repeat the procedure once again, using the same file (with nonhexadecimal symbols)

but saved with the extension .hex. What happens now?

Exercise E.4: Loading Data from a BMP File into the SRAM Chip

Before doing this exercise, read appendix F: BMP-to-RAW File Converter Tutorial.

a) Make sure that sections E.4–E.5 were executed.

b) Locate in the DE2 material a bitmap file called picture.bmp (see figure E.4), which is a

640� 480 color image. Suppose that we want to load it into the SRAM chip available on

the DE2 board for subsequent display on a VGA monitor.

c) Using the file converter ImgConv.exe (appendix F), make the conversion of

picture.bmp. Choose the following conversion parameters: color ¼ red, output file name ¼
picture. Four files will then be generated: picture_BW.txt, picture_BW.dat, picture_GRAY

.dat, and picture_RGB.dat. The file picture_GRAY.dat will be used in this exercise. It con-

tains 640� 480 ¼ 307,200 pixels of 8 bits each (256 shades of gray).

d) As mentioned in the introduction, the SRAM is organized as 256 kwords of 16 bits

each. Therefore, for the 307,200 bytes that represent the image to fit in the SRAM, they

have to be loaded as 153,600 16-bit words (two pixels/word).

e) Observe also that this SRAM’s access time is 10 ns, so the access speed when reading

this memory must stay below 100 MHz.

f ) In the DE2-CP (figure E.3), select the SRAM tab. In Sequential Write, mark File

Length, then click Write a File to SRAM.

g) You can now test whether some kind of data has actually been stored in the SRAM by

entering an address in Random Access and then clicking Read. Observe the result in

rDATA, which is expected to be (in general) di¤erent from 0000.

h) Next, view the data stored in the SRAM with a VGA video monitor. Plug the monitor

to the DE2 VGA connector.
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i) Select the TOOLS tab in the DE2-CP. In SRAM Multiplexer, select Asynchronous 1

and click Configure. This causes the SRAM chip to be directly connected to the VGA con-

troller implemented by the file DE2_USB_API.sof loaded in section E.4.

j) Finally, select the VGA tab and unmark Default Image. The new image, stored in the

SRAM, should be displayed by the monitor.

Figure E.4
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F BMP-to-RAW File Converter Tutorial

ImgConv.exe is another software program provided by Altera along with the DE2 board.

Its purpose is to convert picture files of type bitmap into a raw data format (nonstan-

dardized format, consisting of a listing of pixel values) that can be understood by the

DE2 Control Panel software, for subsequent storage in the external memory chips avail-

able on that board.

F.1 The File Converter (ImgConv.exe)

Figure F.1 shows the window that is opened when ImgConv.exe is run. The screen exhibits

the bmp image to be converted, whose size must be 640� 480 (generally with 256 colors).

The conversion controls (along with explanations) are shown on the right.

Say that the input file is called test.bmp. ImgConv.exe will then produce the following

four files:

a) test_BW.txt: Text file with black-and-white data (only 00 ¼ black and FF ¼ white

values), helpful when MIF and HEX files are subsequently wanted. The threshold and

the reference color for this conversion are established in fields (1) and (2) of figure F.1. If

the color intensity is above the threshold, FF is produced; otherwise, the result is 00.

b) test_BW.dat: Raw data file for the black-and-white picture.

c) test_GRAY.dat: Raw data file for the gray image (each pixel is represented by a single

8-bit value, thus allowing 256 shades of gray). The reference color for this conversion is

established in field (2) of figure F.1. Note that this is a very simplified converter, because

it takes into account the intensity of only one of the image colors. For example, if red is

chosen, only the intensity of the red component will matter.

d) test_RGB.dat: Raw data file for the color image.



F.2 File Preparation

a) The input file can be bmp, jpg, or similar, while the output file must be 640� 480 bmp.

If the file’s type and size are bmp and 640� 480, respectively, proceed to section F.3.

Otherwise, continue below.

b) Open your file in a picture editor (say, Microsoft Paint).

c) Select Image > Attributes and enter Width ¼ 640, Height ¼ 480.

d) Save the resized image as a 256-color bmp picture.

F.3 File Conversion (input must be 640D480 bmp)

a) Start ImgConv.exe.

b) Click Open Bitmap (button (5) in figure F.1) to load the file to be converted.

c) Choose the conversion parameters (fields (1) and (2) in figure F.1).

d) Choose a name for the output file (field (4) in figure F.1).

e) Click Save Raw Data (button (6) in figure F.1) to run the conversion.

Figure F.1
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G Using Macrofunctions

Microfunctions include LPM (library of parameterized modules) units and IP (intellectual

property) units among others. They are special I/O drivers, PLLs, memory blocks, and so

on. The purpose of this tutorial is to show how such units can be instantiated in a VHDL

code. Quartus II will be used as an example, but equivalent procedures exist for other

VHDL compilers.

G.1 Preparing the Design

The circuit of figure G.1 will be used as an example. It contains a DFF, which can obvi-

ously be inferred by the code, and also a PLL (phase locked loop), which is a semi-analog

unit, and so cannot be implemented directly by the code. In this example, the PLL is

employed to multiply a 50 MHz clock by 2.5, producing a 125 MHz clock.

There are several application examples in the book in which clock multiplication is

required (see, for example, chapters 16 and 17). This, of course, can only be done if the

target device contains user PLLs.

A code for the circuit of figure G.1 is shown below, without the PLL. The project name

is clock_multiplier (line 5). It produces the upper part (DFF) of figure G.1. The lower part

(PLL) will be provided in section G.2.

1 ----------------------------------------------------

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 ----------------------------------------------------

5 ENTITY clock_multiplier IS

6 PORT (clk, din: IN STD_LOGIC;

7 clkout, dout: OUT STD_LOGIC);

8 END ENTITY;

9 ----------------------------------------------------

10 ARCHITECTURE clock_multiplier OF clock_multiplier IS

11 BEGIN



12 PROCESS (clk)

13 BEGIN

14 IF (clk'EVENT AND clk='1') THEN

15 dout <= din;

16 END IF;

17 END PROCESS;

18 END ARCHITECTURE;

19 ----------------------------------------------------

G.2 Instantiating the PLL

The next step is to instantiate the PLL into the clock_multiplier code seen in section G.1. If

one knows the PLL code well, then the file can be copied from the corresponding Altera

library and edited directly. A more usual approach is to use the MegaWizard Plug-In

Manager to make the instantiation.

a) With the project open in Quartus II, select Tools > MegaWizard Plug-In Manager, which

will open the dialog of figure G.2a. Mark the option as shown and click Next, which will

open the menu of figure G.2b.

Figure G.1

Figure G.2
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b) Expand the I/O list in figure G.2b and select ALTPLL. This will open the dialog of

figure G.3a. Enter the speed grade of your device and the frequency of the input clock.

c) In the dialog of figure G.3b and a few more that follow, enter 5 and 2 for the clock

multiplication and division factors, c0 for the output, and altera_pll.vhd as the name for

the resulting file (could be any other name). When finished, the file altera_pll.vhd is auto-

matically included in the project’s folder (work library). A declaration file is also created to

ease the instantiation of the PLL in the main code, but that file will not be used here.

d) Open the altera_pll.vhd file and copy its entity. Take it to the main code, where it must

be entered as a COMPONENT. The result is shown in lines 12–17 of the new code below.

Finally, create an instantiation for that component, as in line 27 of the code below (under

the label mypll ). Now the project is complete, ready to be compiled and simulated.

1 -------------------------------------------------------

2 LIBRARY ieee;

3 USE ieee.std_logic_1164.all;

4 -------------------------------------------------------

5 ENTITY clock_multiplier IS

6 PORT (clk, din: IN STD_LOGIC;

7 clkout, dout: OUT STD_LOGIC);

8 END ENTITY;

9 -------------------------------------------------------

10 ARCHITECTURE clock_multiplier OF clock_multiplier IS

11 ---PLL declaration:---------

12 COMPONENT altera_pll IS

13 PORT (areset: IN STD_LOGIC;

14 inclk0: IN STD_LOGIC;

15 c0: OUT STD_LOGIC;

16 locked: OUT STD_LOGIC);

Figure G.3
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17 END COMPONENT;

18 BEGIN

19 ---Flip-flop:--------------

20 PROCESS (clk)

21 BEGIN

22 IF (clk'EVENT AND clk='1') THEN

23 dout <= din;

24 END IF;

25 END PROCESS;

26 ---PLL instantiation:-------

27 mypll: altera_pll PORT MAP ('0', clk, clkout, OPEN);

28 END ARCHITECTURE;

29 -------------------------------------------------------

e) Compile the code.

f ) Before proceeding to the simulation, select Tools > Netlist Viewers > RLT Viewer. The

circuit of figure G.4a will be exhibited. Note that it matches the intended design of figure

G.1.

g) Finally, simulate the design. With the stimuli clk and din of figure G.4b applied to the

circuit, the dout and clkout responses are produced. Note that dout is as expected. Like-

wise, after the locking period, clkout is a 125 MHz signal.

Figure G.4
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H Package standard (2002 and 2008)

The VHDL 2008 version of the package standard is specified in section 16.3 of the IEEE

1076-2008 Standard VHDL Language Reference Manual, and is presented below. The new

features (to be implemented) are explicitly identified in the code. The order of the text was

rearranged to show related types near each other.

-----------------------------------------------------------------------------

PACKAGE standard IS

TYPE BIT IS ('0', '1');

-- "and", "or", "nand", "nor", "xor", "xnor", "not"

-- "=", "/=", "<", "<=", ">", ">="

-- "?=", "?/=", "?<", "?<=", "?>", "?>=" (VHDL 2008)

-- "??", MINIMUM, MAXIMUM, RISING_EDGE, FALLING_EDGE, TO_STRING (VHDL 2008)

TYPE BIT_VECTOR IS ARRAY (NATURAL RANGE <>) OF BIT;

-- "and", "or", "nand", "nor", "xor", "xnor", "not"

-- "=", "/=", "<", "<=", ">", ">="

-- "sll", "srl", "sla", "sra", "rol", "ror"

-- "&"

-- "?=", "?/=" (VHDL 2008)

-- MINIMUM, MAXIMUM, TO_STRING, TO_OSTRING, TO_HSTRING (VHDL 2008)

TYPE BOOLEAN IS (FALSE, TRUE);

-- "and", "or", "nand", "nor", "xor", "xnor", "not"

-- "=", "/=", "<", "<=", ">", ">="

-- MINIMUM, MAXIMUM, RISING_EDGE, FALLING_EDGE, TO_STRING (VHDL 2008)

TYPE BOOLEAN_VECTOR IS ARRAY (NATURAL RANGE <>) OF BOOLEAN; --VHDL 2008

-- "and", "or", "nand", "nor", "xor", "xnor", "not"

-- "=", "/=", "<", "<=", ">", ">="

-- "sll", "srl", "sla", "sra", "rol", "ror"

-- "&"

-- "?=", "?/="

--MINIMUM, MAXIMUM



TYPE INTEGER IS RANGE implementation_defined;

-- "+", "-", "*", "/", "**", "abs", "rem", "mod"

-- "=", "/=", "<", "<=", ">", ">="

-- MINIMUM, MAXIMUM, TO_STRING (VHDL 2008)

-- Default range -2147483647 TO 2147483647

--TYPE UNIVERSAL_INTEGER IS RANGE implementation_defined;

-- "+", "-", "*", "/", "abs", "rem", "mod"

-- "=", "/=", "<", "<=", ">", ">="

-- MINIMUM, MAXIMUM, TO_STRING (VHDL 2008)

SUBTYPE NATURAL IS INTEGER RANGE 0 TO INTEGER'HIGH;

-- Same operators as INTEGER

SUBTYPE POSITIVE IS INTEGER RANGE 1 TO INTEGER'HIGH;

-- Same operators as INTEGER

TYPE INTEGER_VECTOR IS ARRAY (NATURAL RANGE <>) OF INTEGER; --VHDL 2008

-- "=", "/=", "<", "<=", ">", ">="

-- "&"

-- MINIMUM, MAXIMUM

TYPE CHARACTER IS (

nul, soh, stx, etx, eot, enq, ack, bel,

bs, ht, lf, vt, ff, cr, so, si,

dle, dc1, dc2, dc3, dc4, nak, syn, etb,

can, em, sub, esc, fsp, gsp, rsp, usp,

' ', '!', '"', '#', '$', '%', '&', ''',

'(', ')', '*', '+', ',', '-', '.', '/',

'0', '1', '2', '3', '4', '5', '6', '7',

'8', '9', ':', ';', '<’, '=’, '>’, '?',

'@', 'A', 'B', 'C', 'D', 'E', 'F', 'G',

'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O',

'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W',

'X', 'Y', 'Z', '[’, '\', ']', '^', '_',

'‘', 'a', 'b', 'c', 'd', 'e', 'f', 'g',

'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o',

'p', 'q', 'r', 's', 't', 'u', 'v', 'w',

'x', 'y', 'z', '{’, '|', '}', '~', del,

c128, c129, c130, c131, c132, c133, c134, c135,

c136, c137, c138, c139, c140, c141, c142, c143,

c144, c145, c146, c147, c148, c149, c150, c151,

c152, c153, c154, c155, c156, c157, c158, c159,

' ', '¡', '¢', '£', '¤', '¥', ' |
| ', '§',
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'¨', '6', 'a', '«', 's', '-', '2', '¯',

'˚', '±', '2', '3', '´', 'm', '{', '�',
'¸', '1', '0', '»', '¼', '½', '3/4', '¿',

'À', 'Á', 'Â', 'Ã', 'Ä', 'Å', 'Æ', 'Ç',

'È', 'É', 'Ê', 'Ë', 'Ì', 'Í', 'Î', 'Ï',

'Ð', 'Ñ', 'Ò', 'Ó', 'Ô', 'Õ', 'Ö', '�',

'Ø', 'Ù', 'Ú', 'Û', 'Ü', 'Ý', 'Þ', 'ß',

'à', 'á', 'â', 'ã', 'ä', 'å', 'æ', 'ç',

'è', 'é', 'ê', 'ë', 'ı̀', 'ı́', 'ı̂', 'ı̈',

'ð', 'ñ', 'ò', 'ó', 'ô', 'õ', 'ö', 'o',

'ø', 'ù', 'ú', 'û', 'ü', 'ý', 'þ', 'ÿ');

-- "=", "/=", "<", "<=", ">", ">="

-- MINIMUM, MAXIMUM, TO_STRING (VHDL 2008)

TYPE STRING IS ARRAY (positive RANGE <>) OF CHARACTER;

-- "=", "/=", "<", "<=", ">", ">="

-- "&"

-- MINIMUM, MAXIMUM (VHDL 2008)

TYPE REAL IS RANGE implementation_defined;

-- "=", "/=", "<", "<=", ">", ">="

-- "+", "-", "*", "/", "**", "abs"

-- MINIMUM, MAXIMUM, TO_STRING (VHDL 2008)

--TYPE UNIVERSAL_REAL IS RANGE implementation_defined;

-- "=", "/=", "<", "<=", ">", ">="

-- "+", "-", "*", "/", "abs"

-- MINIMUM, MAXIMUM, TO_STRING (VHDL 2008)

TYPE REAL_VECTOR IS ARRAY (NATURAL RANGE <>) OF REAL; --VHDL 2008

-- "=", "/="

-- "&"

-- MINIMUM, MAXIMUM

TYPE TIME IS RANGE implementation_defined;

UNITS

fs;

ps = 1000 fs;

ns = 1000 ps;

us = 1000 ns;

ms = 1000 us;

sec = 1000 ms;

min = 60 sec;

hr = 60 min;

END UNITS;
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-- "=", "/=", "<", "<=", ">", ">="

-- "+", "-", "*", "/", "rem", "mod"

-- MINIMUM, MAXIMUM, TO_STRING (VHDL 2008)

SUBTYPE DELAY_LENGTH IS TIME RANGE 0 fs TO TIME'HIGH;

TYPE TIME_VECTOR IS ARRAY (NATURAL RANGE <>) OF TIME; --VHDL 2008

-- "=", "/="

-- "&"

-- MINIMUM, MAXIMUM

IMPURE FUNCTION NOW RETURN DELAY_LENGTH;

TYPE SEVERITY_LEVEL IS (NOTE, WARNING, ERROR, FAILURE);

-- "=", "/=", "<", "<=", ">", ">="

-- MINIMUM, MAXIMUM, TO_STRING (VHDL 2008)

TYPE FILE_OPEN_KIND IS (READ_MODE, WRITE_MODE, APPEND_MODE);

-- "=", "/=", "<", "<=", ">", ">="

-- MINIMUM, MAXIMUM, TO_STRING (VHDL 2008)

TYPE FILE_OPEN_STATUS IS (OPEN_OK, STATUS_ERROR, NAME_ERROR, MODE_ERROR);

-- "=", "/=", "<", "<=", ">", ">="

-- MINIMUM, MAXIMUM, TO_STRING (VHDL 2008)

ATTRIBUTE FOREIGN: STRING;

-- TO_STRING (VHDL 2008)

END standard;

-----------------------------------------------------------------------------
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I Package std_logic_1164 (1993 and 2008)

This appendix is divided into two parts.

Part I: Contains the first (active) version of the std_logic_1164 package, specified in the

IEEE 1164 standard of 1993, used as part of all VHDL versions since then, previous to

VHDL 2008.

Part II: Contains the expanded version (new features still to be implemented) of

std_logic_1164, which is part of VHDL 2008.

The order of the text was rearranged slightly to improve readability.

Part I: Package std_logic_1164 in VHDL 93

Note the following particularities in the code below:

1) The main types and subtypes are STD_ULOGIC, STD_ULOGIC_VECTOR,

STD_LOGIC, and STD_LOGIC_VECTOR (the last two are industry standards).

2) Only logical operators are defined for them (there are no arithmetic, comparison, or

shift operators).

3) Type-conversion and edge-detection functions are also included.

-------------------------------------------------------------------------------

PACKAGE std_logic_1164 IS

-----Types and subtypes:---------------------------

TYPE STD_ULOGIC IS (

'U', -- Uninitialized

'X', -- Forcing Unknown

'0', -- Forcing 0

'1', -- Forcing 1

'Z', -- High Impedance

'W', -- Weak Unknown



'L', -- Weak 0

'H', -- Weak 1

'-' -- Don’t care

);

TYPE STD_ULOGIC_VECTOR IS ARRAY (NATURAL RANGE <>) OF STD_ULOGIC;

FUNCTION resolved (s : STD_ULOGIC_VECTOR) RETURN STD_ULOGIC;

SUBTYPE STD_LOGIC IS resolved STD_ULOGIC;

TYPE STD_LOGIC_VECTOR IS ARRAY (NATURAL RANGE <>) OF STD_LOGIC;

SUBTYPE X01 IS resolved STD_ULOGIC RANGE 'X' TO '1'; --('X','0','1')

SUBTYPE X01Z IS resolved STD_ULOGIC RANGE 'X' TO 'Z'; --('X','0','1','Z')

SUBTYPE UX01 IS resolved STD_ULOGIC RANGE 'U' TO '1'; --('U','X','0','1')

SUBTYPE UX01Z IS resolved STD_ULOGIC RANGE 'U' TO 'Z'; --('U','X','0','1','Z')

-----Logical operators:---------------------------

FUNCTION "and" (l : STD_ULOGIC; r : STD_ULOGIC) RETURN UX01;

FUNCTION "and" (l, r : STD_LOGIC_VECTOR) RETURN STD_LOGIC_VECTOR;

FUNCTION "and" (l, r : STD_ULOGIC_VECTOR) RETURN STD_ULOGIC_VECTOR;

FUNCTION "nand" (l : STD_ULOGIC; r : STD_ULOGIC) RETURN UX01;

FUNCTION "nand" (l, r : STD_LOGIC_VECTOR) RETURN STD_LOGIC_VECTOR;

FUNCTION "nand" (l, r : STD_ULOGIC_VECTOR) RETURN STD_ULOGIC_VECTOR;

FUNCTION "or" (l : STD_ULOGIC; r : STD_ULOGIC) RETURN UX01;

FUNCTION "or" (l, r : STD_LOGIC_VECTOR) RETURN STD_LOGIC_VECTOR;

FUNCTION "or" (l, r : STD_ULOGIC_VECTOR) RETURN STD_ULOGIC_VECTOR;

FUNCTION "nor" (l : STD_ULOGIC; r : STD_ULOGIC) RETURN UX01;

FUNCTION "nor" (l, r : STD_LOGIC_VECTOR) RETURN STD_LOGIC_VECTOR;

FUNCTION "nor" (l, r : STD_ULOGIC_VECTOR) RETURN STD_ULOGIC_VECTOR;

FUNCTION "xor" (l : STD_ULOGIC; r : STD_ULOGIC) RETURN UX01;

FUNCTION "xor" (l, r : STD_LOGIC_VECTOR) RETURN STD_LOGIC_VECTOR;

FUNCTION "xor" (l, r : STD_ULOGIC_VECTOR) RETURN STD_ULOGIC_VECTOR;

FUNCTION "not" (l : STD_ULOGIC) RETURN UX01;

FUNCTION "not" (l : STD_LOGIC_VECTOR) RETURN STD_LOGIC_VECTOR;

FUNCTION "not" (l : STD_ULOGIC_VECTOR) RETURN STD_ULOGIC_VECTOR;

--FUNCTION "xnor" (l : STD_ULOGIC; r : STD_ULOGIC) RETURN UX01;

--FUNCTION "xnor" (l, r : STD_LOGIC_VECTOR) RETURN STD_LOGIC_VECTOR;

--FUNCTION "xnor" (l, r : STD_ULOGIC_VECTOR) RETURN STD_ULOGIC_VECTOR;

-----Type conversion and strength strippers:---------

FUNCTION TO_BIT (s : STD_ULOGIC; xmap : BIT := '0') RETURN BIT;

FUNCTION TO_BITVECTOR (s : STD_LOGIC_VECTOR ; xmap : BIT := '0') RETURN

BIT_VECTOR;

FUNCTION TO_BITVECTOR (s : STD_ULOGIC_VECTOR; xmap : BIT := '0') RETURN

BIT_VECTOR;

FUNCTION TO_STDULOGIC (b : BIT ) RETURN STD_ULOGIC;

FUNCTION TO_STDLOGICVECTOR (b : BIT_VECTOR) RETURN STD_LOGIC_VECTOR;
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FUNCTION TO_STDLOGICVECTOR (s : STD_ULOGIC_VECTOR) RETURN STD_LOGIC_VECTOR;

FUNCTION TO_STDULOGICVECTOR (b : BIT_VECTOR) RETURN STD_ULOGIC_VECTOR;

FUNCTION TO_STDULOGICVECTOR (s : STD_LOGIC_VECTOR) RETURN STD_ULOGIC_VECTOR;

FUNCTION TO_X01 (s : STD_LOGIC_VECTOR) RETURN STD_LOGIC_VECTOR;

FUNCTION TO_X01 (s : STD_ULOGIC_VECTOR) RETURN STD_ULOGIC_VECTOR;

FUNCTION TO_X01 (s : STD_ULOGIC) RETURN X01;

FUNCTION TO_X01 (b : BIT_VECTOR) RETURN STD_LOGIC_VECTOR;

FUNCTION TO_X01 (b : BIT_VECTOR) RETURN STD_ULOGIC_VECTOR;

FUNCTION TO_X01 (b : BIT) RETURN X01;

FUNCTION TO_X01Z (s : STD_LOGIC_VECTOR) RETURN STD_LOGIC_VECTOR;

FUNCTION TO_X01Z (s : STD_ULOGIC_VECTOR) RETURN STD_ULOGIC_VECTOR;

FUNCTION TO_X01Z (s : STD_ULOGIC) RETURN X01Z;

FUNCTION TO_X01Z (b : BIT_VECTOR) RETURN STD_LOGIC_VECTOR;

FUNCTION TO_X01Z (b : BIT_VECTOR) RETURN STD_ULOGIC_VECTOR;

FUNCTION TO_X01Z (b : BIT) RETURN X01Z;

FUNCTION TO_UX01 (s : STD_LOGIC_VECTOR) RETURN STD_LOGIC_VECTOR;

FUNCTION TO_UX01 (s : STD_ULOGIC_VECTOR) RETURN STD_ULOGIC_VECTOR;

FUNCTION TO_UX01 (s : STD_ULOGIC) RETURN UX01;

FUNCTION TO_UX01 (b : BIT_VECTOR) RETURN STD_LOGIC_VECTOR;

FUNCTION TO_UX01 (b : BIT_VECTOR) RETURN STD_ULOGIC_VECTOR;

FUNCTION TO_UX01 (b : BIT) RETURN UX01;

-----Object contains an unknown:-------------------

FUNCTION IS_X (s : STD_ULOGIC_VECTOR) RETURN BOOLEAN;

FUNCTION IS_X (s : STD_LOGIC_VECTOR) RETURN BOOLEAN;

FUNCTION IS_X (s : STD_ULOGIC) RETURN BOOLEAN;

-----Edge detection:-------------------------------

FUNCTION RISING_EDGE (SIGNAL s : STD_ULOGIC) RETURN BOOLEAN;

FUNCTION FALLING_EDGE (SIGNAL s : STD_ULOGIC) RETURN BOOLEAN;

END std_logic_1164;

-------------------------------------------------------------------------------

Part II: Package std_logic_1164 in VHDL 2008

Note the following particularities in the code below:

1) STD_LOGIC_VECTOR is now a subtype of STD_ULOGIC_VECTOR, hence opera-

tors defined for the latter are automatically overloaded to the former.

2) More logical operator options.

3) The XNOR operator was uncommented.

4) Inclusion of matching operators ("?¼", "?/¼", "?<", "?<¼", "?>", "?>¼", "??").
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5) Some shift operators were also included.

6) Inclusion of string-conversion, read, and write operations.

7) Plus a number of aliases for type-conversion and other functions.

-------------------------------------------------------------------------------

USE std.textio.all;

PACKAGE std_logic_1164 IS

-----Types and SUBTYPEs:--------------------------

TYPE STD_ULOGIC IS (

'U', -- Uninitialized

'X', -- Forcing Unknown

'0', -- Forcing 0

'1', -- Forcing 1

'Z', -- High Impedance

'W', -- Weak Unknown

'L', -- Weak 0

'H', -- Weak 1

'-' -- Don't care

)

TYPE STD_ULOGIC_VECTOR IS array (NATURAL RANGE <>) of STD_ULOGIC;

FUNCTION resolved (s : STD_ULOGIC_VECTOR) RETURN STD_ULOGIC;

SUBTYPE STD_LOGIC IS resolved STD_ULOGIC;

SUBTYPE STD_LOGIC_VECTOR IS (resolved) STD_ULOGIC_VECTOR;

SUBTYPE X01 IS resolved STD_ULOGIC RANGE 'X' TO '1'; -- ('X','0','1')

SUBTYPE X01Z IS resolved STD_ULOGIC RANGE 'X' TO 'Z'; -- ('X','0','1','Z')

SUBTYPE UX01 IS resolved STD_ULOGIC RANGE 'U' TO '1'; -- ('U','X','0','1')

SUBTYPE UX01Z IS resolved STD_ULOGIC RANGE 'U' TO 'Z'; -- ('U','X','0','1','Z')

-----Logical operators:---------------------------

FUNCTION "and" (l, r : STD_ULOGIC_VECTOR) RETURN STD_ULOGIC_VECTOR;

FUNCTION "and" (l : STD_ULOGIC; r : STD_ULOGIC) RETURN UX01;

FUNCTION "and" (l : STD_ULOGIC_VECTOR; r : STD_ULOGIC) RETURN

STD_ULOGIC_VECTOR;

FUNCTION "and" (l : STD_ULOGIC; r : STD_ULOGIC_VECTOR) RETURN

STD_ULOGIC_VECTOR;

FUNCTION "and" (l : STD_ULOGIC_VECTOR) RETURN STD_ULOGIC;

FUNCTION "nand" (l : STD_ULOGIC; r : STD_ULOGIC) RETURN UX01;

FUNCTION "nand" (l, r : STD_ULOGIC_VECTOR) RETURN STD_ULOGIC_VECTOR;

FUNCTION "nand" (l : STD_ULOGIC_VECTOR; r : STD_ULOGIC) RETURN

STD_ULOGIC_VECTOR;

FUNCTION "nand" (l : STD_ULOGIC; r : STD_ULOGIC_VECTOR) RETURN

STD_ULOGIC_VECTOR;
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FUNCTION "nand" (l : STD_ULOGIC_VECTOR) RETURN STD_ULOGIC;

FUNCTION "or" (l : STD_ULOGIC; r : STD_ULOGIC) RETURN UX01;

FUNCTION "or" (l, r : STD_ULOGIC_VECTOR) RETURN STD_ULOGIC_VECTOR;

FUNCTION "or" (l : STD_ULOGIC_VECTOR; r : STD_ULOGIC) RETURN

STD_ULOGIC_VECTOR;

FUNCTION "or" (l : STD_ULOGIC; r : STD_ULOGIC_VECTOR) RETURN

STD_ULOGIC_VECTOR;

FUNCTION "or" (l : STD_ULOGIC_VECTOR) RETURN STD_ULOGIC;

FUNCTION "nor" (l : STD_ULOGIC; r : STD_ULOGIC) RETURN UX01;

FUNCTION "nor" (l, r : STD_ULOGIC_VECTOR) RETURN STD_ULOGIC_VECTOR;

FUNCTION "nor" (l : STD_ULOGIC_VECTOR; r : STD_ULOGIC) RETURN

STD_ULOGIC_VECTOR;

FUNCTION "nor" (l : STD_ULOGIC; r : STD_ULOGIC_VECTOR) RETURN

STD_ULOGIC_VECTOR;

FUNCTION "nor" (l : STD_ULOGIC_VECTOR) RETURN STD_ULOGIC;

FUNCTION "xor" (l : STD_ULOGIC; r : STD_ULOGIC) RETURN UX01;

FUNCTION "xor" (l, r : STD_ULOGIC_VECTOR) RETURN STD_ULOGIC_VECTOR;

FUNCTION "xor" (l : STD_ULOGIC_VECTOR; r : STD_ULOGIC) RETURN

STD_ULOGIC_VECTOR;

FUNCTION "xor" (l : STD_ULOGIC; r : STD_ULOGIC_VECTOR) RETURN

STD_ULOGIC_VECTOR;

FUNCTION "xor" (l : STD_ULOGIC_VECTOR) RETURN STD_ULOGIC;

FUNCTION "xnor" (l : STD_ULOGIC; r : STD_ULOGIC) RETURN UX01;

FUNCTION "xnor" (l, r : STD_ULOGIC_VECTOR) RETURN STD_ULOGIC_VECTOR;

FUNCTION "xnor" (l : STD_ULOGIC_VECTOR; r : STD_ULOGIC) RETURN

STD_ULOGIC_VECTOR;

FUNCTION "xnor" (l : STD_ULOGIC; r : STD_ULOGIC_VECTOR) RETURN

STD_ULOGIC_VECTOR;

FUNCTION "xnor" (l : STD_ULOGIC_VECTOR) RETURN STD_ULOGIC;

FUNCTION "not" (l : STD_ULOGIC) RETURN UX01;

FUNCTION "not" (l : STD_ULOGIC_VECTOR) RETURN STD_ULOGIC_VECTOR;

-----Shift operators:-----------------------------

FUNCTION "sll" (l : STD_ULOGIC_VECTOR; r : INTEGER) RETURN STD_ULOGIC_VECTOR;

FUNCTION "srl" (l : STD_ULOGIC_VECTOR; r : INTEGER) RETURN STD_ULOGIC_VECTOR;

FUNCTION "rol" (l : STD_ULOGIC_VECTOR; r : INTEGER) RETURN STD_ULOGIC_VECTOR;

FUNCTION "ror" (l : STD_ULOGIC_VECTOR; r : INTEGER) RETURN STD_ULOGIC_VECTOR;

--------Matching comparison operators:------------

--The following operations are predefined:

--FUNCTION "?=" (l, r : STD_ULOGIC) RETURN STD_ULOGIC;

--FUNCTION "?=" (l, r : STD_ULOGIC_VECTOR) RETURN STD_ULOGIC;

--FUNCTION "?/=" (l, r : STD_ULOGIC) RETURN STD_ULOGIC;

--FUNCTION "?/=" (l, r : STD_ULOGIC_VECTOR) RETURN STD_ULOGIC;
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--FUNCTION "?<" (l, r : STD_ULOGIC) RETURN STD_ULOGIC;

--FUNCTION "?<=" (l, r : STD_ULOGIC) RETURN STD_ULOGIC;

--FUNCTION "?>" (l, r : STD_ULOGIC) RETURN STD_ULOGIC;

--FUNCTION "?>=" (l, r : STD_ULOGIC) RETURN STD_ULOGIC;

FUNCTION "??" (l : STD_ULOGIC) RETURN BOOLEAN;

-----Type conversion:-----------------------------

FUNCTION TO_BIT (s: STD_ULOGIC; xmap : BIT := '0') RETURN BIT;

FUNCTION TO_BITVECTOR (s: STD_ULOGIC_VECTOR; xmap: BIT := '0') RETURN

BIT_VECTOR;

FUNCTION TO_STDULOGIC (b: BIT) RETURN STD_ULOGIC;

FUNCTION TO_STDLOGICVECTOR (b: BIT_VECTOR) RETURN STD_LOGIC_VECTOR;

FUNCTION TO_STDLOGICVECTOR (s: STD_ULOGIC_VECTOR) RETURN STD_LOGIC_VECTOR;

FUNCTION TO_STDULOGICVECTOR (b: BIT_VECTOR) RETURN STD_ULOGIC_VECTOR;

FUNCTION TO_STDULOGICVECTOR (s: STD_LOGIC_VECTOR) RETURN STD_ULOGIC_VECTOR;

ALIAS TO_BIT_VECTOR IS TO_BITVECTOr[STD_ULOGIC_VECTOR, BIT RETURN

BIT_VECTOR];

ALIAS TO_BV IS TO_BITVECTOR[STD_ULOGIC_VECTOR, BIT RETURN BIT_VECTOR];

ALIAS TO_STD_LOGIC_VECTOR IS TO_STDLOGICVECTOR[BIT_VECTOR RETURN

STD_LOGIC_VECTOR];

ALIAS TO_SLV IS TO_STDLOGICVECTOr[BIT_VECTOR RETURN STD_LOGIC_VECTOR];

ALIAS TO_STD_LOGIC_VECTOR IS TO_STDLOGICVECTOR[STD_ULOGIC_VECTOR RETURN

STD_LOGIC_VECTOR];

ALIAS TO_SLV IS TO_STDLOGICVECTOR[STD_ULOGIC_VECTOR RETURN STD_LOGIC_VECTOR];

ALIAS TO_STD_ULOGIC_VECTOR IS TO_STDULOGICVECTOR[BIT_VECTOR RETURN

STD_ULOGIC_VECTOR];

ALIAS TO_SULV IS TO_STDULOGICVECTOR[BIT_VECTOR RETURN STD_ULOGIC_VECTOR];

ALIAS TO_STD_ULOGIC_VECTOR IS TO_STDULogicVector[STD_LOGIC_VECTOR RETURN

STD_ULOGIC_VECTOR];

ALIAS TO_SULV IS TO_STDULOGICVECTOR[STD_LOGIC_VECTOR RETURN

STD_ULOGIC_VECTOR];

FUNCTION TO_01 (s : STD_ULOGIC_VECTOR; xmap : STD_ULOGIC := '0') RETURN

STD_ULOGIC_VECTOR;

FUNCTION TO_01 (s : STD_ULOGIC; xmap : STD_ULOGIC := '0') RETURN STD_ULOGIC;

FUNCTION TO_01 (s : BIT_VECTOR; xmap : STD_ULOGIC := '0') RETURN

STD_ULOGIC_VECTOR;

FUNCTION TO_01 (s : BIT; xmap : STD_ULOGIC := '0') RETURN STD_ULOGIC;

FUNCTION TO_X01 (s : STD_ULOGIC_VECTOR) RETURN STD_ULOGIC_VECTOR;

FUNCTION TO_X01 (s : STD_ULOGIC) RETURN X01;

FUNCTION TO_X01 (b : BIT_VECTOR) RETURN STD_ULOGIC_VECTOR;

FUNCTION TO_X01 (b : BIT) RETURN X01;

FUNCTION TO_X01Z (s : STD_ULOGIC_VECTOR) RETURN STD_ULOGIC_VECTOR;

FUNCTION TO_X01Z (s : STD_ULOGIC) RETURN X01Z;

FUNCTION TO_X01Z (b : BIT_VECTOR) RETURN STD_ULOGIC_VECTOR;

560 Appendix I



FUNCTION TO_X01Z (b : BIT) RETURN X01Z;

FUNCTION TO_UX01 (s : STD_ULOGIC_VECTOR) RETURN STD_ULOGIC_VECTOR;

FUNCTION TO_UX01 (s : STD_ULOGIC) RETURN UX01;

FUNCTION TO_UX01 (b : BIT_VECTOR) RETURN STD_ULOGIC_VECTOR;

FUNCTION TO_UX01 (b : BIT) RETURN UX01;

-----String conversion:---------------------------

--Predefined: FUNCTION TO_STRING (value : STD_ULOGIC) RETURN STRING;

--Predefined: FUNCTION TO_ STRING (value : STD_ULOGIC_VECTOR) RETURN STRING;

FUNCTION TO_OSTRING (value : STD_ULOGIC_VECTOR) RETURN STRING;

FUNCTION TO_HSTRING (value : STD_ULOGIC_VECTOR) RETURN STRING;

ALIAS TO_BSTRING IS TO_STRING [STD_ULOGIC_VECTOR RETURN STRING];

ALIAS TO_BINARY_STRING IS TO_STRING [STD_ULOGIC_VECTOR RETURN STRING];

ALIAS TO_OCTAL_STRING IS TO_OSTRING [STD_ULOGIC_VECTOR RETURN STRING];

ALIAS TO_HEX_STRING IS TO_HSTRING [STD_ULOGIC_VECTOR RETURN STRING];

-----Read operations:-----------------------------

PROCEDURE READ (l : INOUT LINE; value : OUT STD_ULOGIC; GOOD : OUT BOOLEAN);

PROCEDURE READ (l : INOUT LINE; value : OUT STD_ULOGIC);

PROCEDURE READ (l : INOUT LINE; value : OUT STD_ULOGIC_VECTOR; GOOD : OUT

BOOLEAN);

PROCEDURE READ (l : INOUT LINE; value : OUT STD_ULOGIC_VECTOR);

PROCEDURE OREAD (l : INOUT LINE; value : OUT STD_ULOGIC_VECTOR; GOOD : OUT

BOOLEAN);

PROCEDURE OREAD (l : INOUT LINE; value : OUT STD_ULOGIC_VECTOR);

PROCEDURE HREAD (l : INOUT LINE; value : OUT STD_ULOGIC_VECTOR; GOOD: OUT

BOOLEAN);

PROCEDURE HREAD (l : INOUT LINE; value : OUT STD_ULOGIC_VECTOR);

ALIAS BREAD IS READ [LINE, STD_ULOGIC_VECTOR, BOOLEAN];

ALIAS BREAD IS READ [LINE, STD_ULOGIC_VECTOR];

ALIAS BINARY_READ IS READ [LINE, STD_ULOGIC_VECTOR, BOOLEAN];

ALIAS BINARY_READ IS READ [LINE, STD_ULOGIC_VECTOR];

ALIAS OCTAL_READ IS OREAD [LINE, STD_ULOGIC_VECTOR, BOOLEAN];

ALIAS OCTAL_READ IS OREAD [LINE, STD_ULOGIC_VECTOR];

ALIAS HEX_READ IS HREAD [LINE, STD_ULOGIC_VECTOR, BOOLEAN];

ALIAS HEX_READ IS HREAD [LINE, STD_ULOGIC_VECTOR];

-----Write operations:----------------------------

PROCEDURE WRITE (l : INOUT LINE; value: IN STD_ULOGIC;

JUSTIFIED: IN SIDE := RIGHT; FIELD : IN WIDTH := 0);

PROCEDURE WRITE (l : INOUT LINE; value: IN STD_ULOGIC_VECTOR;

JUSTIFIED : IN SIDE := RIGHT; FIELD : IN WIDTH := 0);

PROCEDURE OWRITE (l : INOUT LINE; value : IN STD_ULOGIC_VECTOR;

JUSTIFIED : IN SIDE := RIGHT; FIELD : IN WIDTH := 0);
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PROCEDURE HWRITE (l : INOUT LINE; value : IN STD_ULOGIC_VECTOR;

JUSTIFIED : IN SIDE := RIGHT; FIELD : IN WIDTH := 0);

ALIAS BWRITE IS WRITE [LINE, STD_ULOGIC_VECTOR, SIDE, WIDTH];

ALIAS BINARY_WRITE IS WRITE [LINE, STD_ULOGIC_VECTOR, SIDE, WIDTH];

ALIAS OCTAL_WRITE IS OWRITE [LINE, STD_ULOGIC_VECTOR, SIDE, WIDTH];

ALIAS HEX_WRITE IS HWRITE [LINE, STD_ULOGIC_VECTOR, SIDE, WIDTH];

-----Object contains an unknown:------------------

FUNCTION IS_X (s : STD_ULOGIC_VECTOR) RETURN BOOLEAN;

FUNCTION IS_X (s : STD_ULOGIC) RETURN BOOLEAN;

-----Edge detection:------------------------------

FUNCTION RISING_EDGE (SIGNAL s : STD_ULOGIC) RETURN BOOLEAN;

FUNCTION FALLING_EDGE (SIGNAL s : STD_ULOGIC) RETURN BOOLEAN;

END std_logic_1164;

-------------------------------------------------------------------------------
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J Package numeric_std (1997 and 2008)

The previous version of this package was specified in the IEEE 1076.3-1997 Standard

VHDL Synthesis Packages document, which includes also another package, called

numeric_bit. The di¤erence between numeric_std and numeric_bit is that the base type in

the former is STD_LOGIC, while in the latter it is BIT.

This appendix is divided into two parts, as follows:

Part I: Contains the 1997 version of the numeric_std package.

Part II: Contains the expanded version (to be implemented) of numeric_std, which is part

of VHDL 2008.

The order of the text was rearranged slightly to improve readability.

Part I: Package numeric_std in the 1997 Specification

Note the following particularities in the code below:

1) It defines the types UNSIGNED and SIGNED, which have STD_LOGIC as their base

type (subtype).

2) Large operator sets are specified, including arithmetic, logical, comparison, and shift.

3) The shift operators do not include arithmetic shift (SLA, SRA).

4) Several type-conversion and other functions are also included in the package.

------------------------------------------------------------------------

LIBRARY ieee;

USE ieee.std_logic_1164.all;

PACKAGE numeric_std IS

--------Types:-------------------------------------

TYPE UNSIGNED IS ARRAY (NATURAl range <>) of STD_LOGIC;

TYPE SIGNED IS ARRAY (NATURAl range <>) of STD_LOGIC;



--------Arithmetic operators:----------------------

FUNCTION "+" (l, r: UNSIGNED) RETURN UNSIGNED;

FUNCTION "+" (l, r: SIGNED) RETURN SIGNED;

FUNCTION "+" (l: UNSIGNED; r: NATURAL) RETURN UNSIGNED;

FUNCTION "+" (l: NATURAL; r: UNSIGNED) RETURN UNSIGNED;

FUNCTION "+" (l: INTEGER; r: SIGNED) RETURN SIGNED;

FUNCTION "+" (l: SIGNED; r: INTEGER) RETURN SIGNED;

FUNCTION "-" (arg: SIGNED) RETURN SIGNED; --minus operation

FUNCTION "-" (l, r: UNSIGNED) RETURN UNSIGNED;

FUNCTION "-" (l, r: SIGNED) RETURN SIGNED;

FUNCTION "-" (l: UNSIGNED;r: NATURAL) RETURN UNSIGNED;

FUNCTION "-" (l: NATURAL; r: UNSIGNED) RETURN UNSIGNED;

FUNCTION "-" (l: SIGNED; r: INTEGER) RETURN SIGNED;

FUNCTION "-" (l: INTEGER; r: SIGNED) RETURN SIGNED;

FUNCTION "*" (l, r: UNSIGNED) RETURN UNSIGNED;

FUNCTION "*" (l, r: SIGNED) RETURN SIGNED;

FUNCTION "*" (l: UNSIGNED; r: NATURAL) RETURN UNSIGNED;

FUNCTION "*" (l: NATURAL; r: UNSIGNED) RETURN UNSIGNED;

FUNCTION "*" (l: SIGNED; r: INTEGER) RETURN SIGNED;

FUNCTION "*" (l: INTEGER; r: SIGNED) RETURN SIGNED;

FUNCTION "/" (l, r: UNSIGNED) RETURN UNSIGNED;

FUNCTION "/" (l, r: SIGNED) RETURN SIGNED;

FUNCTION "/" (l: UNSIGNED; r: NATURAL) RETURN UNSIGNED;

FUNCTION "/" (l: NATURAL; r: UNSIGNED) RETURN UNSIGNED;

FUNCTION "/" (l: SIGNED; r: INTEGER) RETURN SIGNED;

FUNCTION "/" (l: INTEGER; r: SIGNED) RETURN SIGNED;

FUNCTION "abs" (arg: SIGNED) RETURN SIGNED;

FUNCTION "rem" (l, r: UNSIGNED) RETURN UNSIGNED;

FUNCTION "rem" (l, r: SIGNED) RETURN SIGNED;

FUNCTION "rem" (l: UNSIGNED; r: NATURAL) RETURN UNSIGNED;

FUNCTION "rem" (l: NATURAL; r: UNSIGNED) RETURN UNSIGNED;

FUNCTION "rem" (l: SIGNED; r: INTEGER) RETURN SIGNED;

FUNCTION "rem" (l: INTEGER; r: SIGNED) RETURN SIGNED;

FUNCTION "mod" (l, r: UNSIGNED) RETURN UNSIGNED;

FUNCTION "mod" (l, r: SIGNED) RETURN SIGNED;

FUNCTION "mod" (l: UNSIGNED; r: NATURAL) RETURN UNSIGNED;

FUNCTION "mod" (l: NATURAL; r: UNSIGNED) RETURN UNSIGNED;

FUNCTION "mod" (l: SIGNED; r: INTEGER) RETURN SIGNED;

FUNCTION "mod" (l: INTEGER; r: SIGNED) RETURN SIGNED;

--------Logical operators:-------------------------

FUNCTION "not" (l: UNSIGNED) RETURN UNSIGNED;

FUNCTION "and" (l, r: UNSIGNED) RETURN UNSIGNED;

FUNCTION "or" (l, r: UNSIGNED) RETURN UNSIGNED;
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FUNCTION "nand" (l, r: UNSIGNED) RETURN UNSIGNED;

FUNCTION "nor" (l, r: UNSIGNED) RETURN UNSIGNED;

FUNCTION "xor" (l, r: UNSIGNED) RETURN UNSIGNED;

FUNCTION "xnor" (l, r: UNSIGNED) RETURN UNSIGNED;

FUNCTION "not" (l: SIGNED) RETURN SIGNED;

FUNCTION "and" (l, r: SIGNED) RETURN SIGNED;

FUNCTION "or" (l, r: SIGNED) RETURN SIGNED;

FUNCTION "nand" (l, r: SIGNED) RETURN SIGNED;

FUNCTION "nor" (l, r: SIGNED) RETURN SIGNED;

FUNCTION "xor" (l, r: SIGNED) RETURN SIGNED;

FUNCTION "xnor" (l, r: SIGNED) RETURN SIGNED;

-------Comparison operators:-----------------------

FUNCTION ">" (l, r: UNSIGNED) RETURN BOOLEAN;

FUNCTION ">" (l, r: SIGNED) RETURN BOOLEAN;

FUNCTION ">" (l: NATURAL; r: UNSIGNED) RETURN BOOLEAN;

FUNCTION ">" (l: INTEGER; r: SIGNED) RETURN BOOLEAN;

FUNCTION ">" (l: UNSIGNED; r: NATURAL) RETURN BOOLEAN;

FUNCTION ">" (l: SIGNED; r: INTEGER) RETURN BOOLEAN;

FUNCTION "<" (l, r: UNSIGNED) RETURN BOOLEAN;

FUNCTION "<" (l, r: SIGNED) RETURN BOOLEAN;

FUNCTION "<" (l: NATURAL; r: UNSIGNED) RETURN BOOLEAN;

FUNCTION "<" (l: INTEGER; r: SIGNED) RETURN BOOLEAN;

FUNCTION "<" (l: UNSIGNED; r: NATURAL) RETURN BOOLEAN;

FUNCTION "<" (l: SIGNED; r: INTEGER) RETURN BOOLEAN;

FUNCTION "<=" (l, r: UNSIGNED) RETURN BOOLEAN;

FUNCTION "<=" (l, r: SIGNED) RETURN BOOLEAN;

FUNCTION "<=" (l: NATURAL; r: UNSIGNED) RETURN BOOLEAN;

FUNCTION "<=" (l: INTEGER; r: SIGNED) RETURN BOOLEAN;

FUNCTION "<=" (l: UNSIGNED; r: NATURAL) RETURN BOOLEAN;

FUNCTION "<=" (l: SIGNED; r: INTEGER) RETURN BOOLEAN;

FUNCTION ">=" (l, r: UNSIGNED) RETURN BOOLEAN;

FUNCTION ">=" (l, r: SIGNED) RETURN BOOLEAN;

FUNCTION ">=" (l: NATURAL; r: UNSIGNED) RETURN BOOLEAN;

FUNCTION ">=" (l: INTEGER; r: SIGNED) RETURN BOOLEAN;

FUNCTION ">=" (l: UNSIGNED; r: NATURAL) RETURN BOOLEAN;

FUNCTION ">=" (l: SIGNED; r: INTEGER) RETURN BOOLEAN;

FUNCTION "=" (l, r: UNSIGNED) RETURN BOOLEAN;

FUNCTION "=" (l, r: SIGNED) RETURN BOOLEAN;

FUNCTION "=" (l: NATURAL; r: UNSIGNED) RETURN BOOLEAN;

FUNCTION "=" (l: INTEGER; r: SIGNED) RETURN BOOLEAN;

FUNCTION "=" (l: UNSIGNED; r: NATURAL) RETURN BOOLEAN;

FUNCTION "=" (l: SIGNED; r: INTEGER) RETURN BOOLEAN;

FUNCTION "/=" (l, r: UNSIGNED) RETURN BOOLEAN;
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FUNCTION "/=" (l, r: SIGNED) RETURN BOOLEAN;

FUNCTION "/=" (l: NATURAL; r: UNSIGNED) RETURN BOOLEAN;

FUNCTION "/=" (l: INTEGER; r: SIGNED) RETURN BOOLEAN;

FUNCTION "/=" (l: UNSIGNED; r: NATURAL) RETURN BOOLEAN;

FUNCTION "/=" (l: SIGNED; r: INTEGER) RETURN BOOLEAN;

--------Shift operators:---------------------------

FUNCTION "sll" (arg: UNSIGNED; count: INTEGER) RETURN UNSIGNED;

FUNCTION "sll" (arg: SIGNED; count: INTEGER) RETURN SIGNED;

FUNCTION "srl" (arg: UNSIGNED; count: INTEGER) RETURN UNSIGNED;

FUNCTION "srl" (arg: SIGNED; count: INTEGER) RETURN SIGNED;

FUNCTION "rol" (arg: UNSIGNED; count: INTEGER) RETURN UNSIGNED;

FUNCTION "rol" (arg: SIGNED; count: INTEGER) RETURN SIGNED;

FUNCTION "ror" (arg: UNSIGNED; count: INTEGER) RETURN UNSIGNED;

FUNCTION "ror" (arg: SIGNED; count: INTEGER) RETURN SIGNED;

FUNCTION SHIFT_LEFT (arg: UNSIGNED; count: NATURAL) RETURN UNSIGNED;

FUNCTION SHIFT_RIGHT (arg: UNSIGNED; count: NATURAL) RETURN UNSIGNED;

FUNCTION SHIFT_LEFT (arg: SIGNED; count: NATURAL) RETURN SIGNED;

FUNCTION SHIFT_RIGHT (arg: SIGNED; count: NATURAL) RETURN SIGNED;

FUNCTION ROTATE_LEFT (arg: UNSIGNED; count: NATURAL) RETURN UNSIGNED;

FUNCTION ROTATE_RIGHT (arg: UNSIGNED; count: NATURAL) RETURN UNSIGNED;

FUNCTION ROTATE_LEFT (arg: SIGNED; count: NATURAL) RETURN SIGNED;

FUNCTION ROTATE_RIGHT (arg: SIGNED; count: NATURAL) RETURN SIGNED;

--------Type conversion:---------------------------

FUNCTION TO_INTEGER (arg: UNSIGNED) RETURN NATURAL;

FUNCTION TO_INTEGER (arg: SIGNED) RETURN INTEGER;

FUNCTION TO_UNSIGNED (arg: INTEGER; size: NATURAL) RETURN UNSIGNED;

FUNCTION TO_SIGNED (arg: INTEGER; size: NATURAL) RETURN SIGNED;

FUNCTION TO_01 (S: UNSIGNED; xmap: STD_LOGIC := '0') RETURN UNSIGNED;

FUNCTION TO_01 (S: SIGNED; xmap: STD_LOGIC := '0') RETURN SIGNED;

--------Resize functions:--------------------------

FUNCTION RESIZE (arg: SIGNED; new_size: NATURAL) RETURN SIGNED;

FUNCTION RESIZE (arg: UNSIGNED; new_size: NATURAL) RETURN UNSIGNED;

--------Match functions:---------------------------

FUNCTION STD_MATCH (l, r: STD_ULOGIC) RETURN BOOLEAN;

FUNCTION STD_MATCH (l, r: UNSIGNED) RETURN BOOLEAN;

FUNCTION STD_MATCH (l, r: SIGNED) RETURN BOOLEAN;

FUNCTION STD_MATCH (l, r: STD_LOGIC_VECTOR) RETURN BOOLEAN;

FUNCTION STD_MATCH (l, r: STD_ULOGIC_VECTOR) RETURN BOOLEAN;

END numeric_std;

------------------------------------------------------------------------
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Part II: Package numeric_std in VHDL 2008

Note the following particularities in the code below (with respect to the previous version):

1) The definitions of UNSIGNED and SIGNED are slightly di¤erent.

2) All operator sets were expanded as well as the type-conversion functions list.

3) Several new functions were included, for matching operators, string conversion, read,

write, and so on.

-------------------------------------------------------------------------------

USE std.textio.all;

LIBRARY ieee;

USE ieee.std_logic_1164.all;

PACKAGE numeric_std IS

CONSTANT CopyRightNotice: STRING := "Copyright 6 2008 IEEE. All rights

reserved.";

-----Types and subtypes:------------------------------

TYPE UNRESOLVED_UNSIGNED IS ARRAY (NATURAl range <>) of STD_ULOGIC;

TYPE UNRESOLVED_SIGNED IS ARRAY (NATURAl range <>) of STD_ULOGIC;

SUBTYPE UNSIGNED IS (resolved) UNRESOLVED_UNSIGNED;

SUBTYPE SIGNED IS (resolved) UNRESOLVED_SIGNED;

ALIAS U_UNSIGNED IS UNRESOLVED_UNSIGNED;

ALIAS U_SIGNED IS UNRESOLVED_SIGNED;

-----Arithmetic operators:---------------------------

FUNCTION "+" (l, r : UNRESOLVED_UNSIGNED) RETURN UNRESOLVED_UNSIGNED;

FUNCTION "+"(l : UNRESOLVED_UNSIGNED; r : STD_ULOGIC) RETURN

UNRESOLVED_UNSIGNED;

FUNCTION "+"(l : STD_ULOGIC; r : UNRESOLVED_UNSIGNED) RETURN

UNRESOLVED_UNSIGNED;

FUNCTION "+" (l, r : UNRESOLVED_SIGNED) RETURN UNRESOLVED_SIGNED;

FUNCTION "+"(l : UNRESOLVED_SIGNED; r : STD_ULOGIC) RETURN UNRESOLVED_SIGNED;

FUNCTION "+"(l : STD_ULOGIC; r : UNRESOLVED_SIGNED) RETURN UNRESOLVED_SIGNED;

FUNCTION "+" (l : UNRESOLVED_UNSIGNED; r : NATURAL) RETURN

UNRESOLVED_UNSIGNED;

FUNCTION "+" (l : NATURAL; r : UNRESOLVED_UNSIGNED) RETURN

UNRESOLVED_UNSIGNED;

FUNCTION "+" (l : INTEGER; r : UNRESOLVED_SIGNED) RETURN UNRESOLVED_SIGNED;

FUNCTION "+" (l : UNRESOLVED_SIGNED; r : INTEGER) RETURN UNRESOLVED_SIGNED;

FUNCTION "-" (arg : UNRESOLVED_SIGNED) RETURN UNRESOLVED_SIGNED;

FUNCTION "-" (l, r : UNRESOLVED_UNSIGNED) RETURN UNRESOLVED_UNSIGNED;
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FUNCTION "-"(l : UNRESOLVED_UNSIGNED; r : STD_ULOGIC) RETURN

UNRESOLVED_UNSIGNED;

FUNCTION "-"(l : STD_ULOGIC; r : UNRESOLVED_UNSIGNED) RETURN

UNRESOLVED_UNSIGNED;

FUNCTION "-" (l, r : UNRESOLVED_SIGNED) RETURN UNRESOLVED_SIGNED;

FUNCTION "-"(l : UNRESOLVED_SIGNED; r : STD_ULOGIC) RETURN UNRESOLVED_SIGNED;

FUNCTION "-"(l : STD_ULOGIC; r : UNRESOLVED_SIGNED) RETURN UNRESOLVED_SIGNED;

FUNCTION "-" (l : UNRESOLVED_UNSIGNED; r : NATURAL) RETURN

UNRESOLVED_UNSIGNED;

FUNCTION "-" (l : NATURAL; r : UNRESOLVED_UNSIGNED) RETURN

UNRESOLVED_UNSIGNED;

FUNCTION "-" (l : UNRESOLVED_SIGNED; r : INTEGER) RETURN UNRESOLVED_SIGNED;

FUNCTION "-" (l : INTEGER; r : UNRESOLVED_SIGNED) RETURN UNRESOLVED_SIGNED;

FUNCTION "*" (l, r : UNRESOLVED_UNSIGNED) RETURN UNRESOLVED_UNSIGNED;

FUNCTION "*" (l, r : UNRESOLVED_SIGNED) RETURN UNRESOLVED_SIGNED;

FUNCTION "*" (l : UNRESOLVED_UNSIGNED; r : NATURAL) RETURN

UNRESOLVED_UNSIGNED;

FUNCTION "*" (l : NATURAL; r : UNRESOLVED_UNSIGNED) RETURN

UNRESOLVED_UNSIGNED;

FUNCTION "*" (l : UNRESOLVED_SIGNED; r : INTEGER) RETURN UNRESOLVED_SIGNED;

FUNCTION "*" (l : INTEGER; r : UNRESOLVED_SIGNED) RETURN UNRESOLVED_SIGNED;

FUNCTION "/" (l, r : UNRESOLVED_UNSIGNED) RETURN UNRESOLVED_UNSIGNED;

FUNCTION "/" (l, r : UNRESOLVED_SIGNED) RETURN UNRESOLVED_SIGNED;

FUNCTION "/" (l : UNRESOLVED_UNSIGNED; r : NATURAL) RETURN

UNRESOLVED_UNSIGNED;

FUNCTION "/" (l : NATURAL; r : UNRESOLVED_UNSIGNED) RETURN

UNRESOLVED_UNSIGNED;

FUNCTION "/" (l : UNRESOLVED_SIGNED; r : INTEGER) RETURN UNRESOLVED_SIGNED;

FUNCTION "/" (l : INTEGER; r : UNRESOLVED_SIGNED) RETURN UNRESOLVED_SIGNED;

FUNCTION "abs" (arg : UNRESOLVED_SIGNED) RETURN UNRESOLVED_SIGNED;

FUNCTION "rem" (l, r : UNRESOLVED_UNSIGNED) RETURN UNRESOLVED_UNSIGNED;

FUNCTION "rem" (l, r : UNRESOLVED_SIGNED) RETURN UNRESOLVED_SIGNED;

FUNCTION "rem" (l : UNRESOLVED_UNSIGNED; r : NATURAL) RETURN

UNRESOLVED_UNSIGNED;

FUNCTION "rem" (l : NATURAL; r : UNRESOLVED_UNSIGNED) RETURN

UNRESOLVED_UNSIGNED;

FUNCTION "rem" (l : UNRESOLVED_SIGNED; r : INTEGER) RETURN UNRESOLVED_SIGNED;

FUNCTION "rem" (l : INTEGER; r : UNRESOLVED_SIGNED) RETURN UNRESOLVED_SIGNED;

FUNCTION "mod" (l, r : UNRESOLVED_UNSIGNED) RETURN UNRESOLVED_UNSIGNED;

FUNCTION "mod" (l, r : UNRESOLVED_SIGNED) RETURN UNRESOLVED_SIGNED;

FUNCTION "mod" (l : UNRESOLVED_UNSIGNED; r : NATURAL) RETURN

UNRESOLVED_UNSIGNED;

FUNCTION "mod" (l : NATURAL; r : UNRESOLVED_UNSIGNED) RETURN

UNRESOLVED_UNSIGNED;
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FUNCTION "mod" (l : UNRESOLVED_SIGNED; r : INTEGER) RETURN UNRESOLVED_SIGNED;

FUNCTION "mod" (l : INTEGER; r : UNRESOLVED_SIGNED) RETURN UNRESOLVED_SIGNED;

FUNCTION FIND_LEFTMOST (arg : UNRESOLVED_UNSIGNED; y : STD_ULOGIC) RETURN

INTEGER;

FUNCTION FIND_LEFTMOST (arg : UNRESOLVED_SIGNED; y : STD_ULOGIC) RETURN

INTEGER;

FUNCTION FIND_RIGHTMOST (arg : UNRESOLVED_UNSIGNED; y : STD_ULOGIC) RETURN

INTEGER;

FUNCTION FIND_RIGHTMOST (arg : UNRESOLVED_SIGNED; y : STD_ULOGIC) RETURN

INTEGER;

-----Logical operators:------------------------------

FUNCTION "not" (l : UNRESOLVED_UNSIGNED) RETURN UNRESOLVED_UNSIGNED;

FUNCTION "not" (l : UNRESOLVED_SIGNED) RETURN UNRESOLVED_SIGNED;

FUNCTION "and" (l, r : UNRESOLVED_UNSIGNED) RETURN UNRESOLVED_UNSIGNED;

FUNCTION "and" (l, r : UNRESOLVED_SIGNED) RETURN UNRESOLVED_SIGNED;

FUNCTION "and" (l : STD_ULOGIC; r : UNRESOLVED_UNSIGNED) RETURN

UNRESOLVED_UNSIGNED;

FUNCTION "and" (l : UNRESOLVED_UNSIGNED; r : STD_ULOGIC) RETURN

UNRESOLVED_UNSIGNED;

FUNCTION "and" (l : STD_ULOGIC; r : UNRESOLVED_SIGNED) RETURN

UNRESOLVED_SIGNED;

FUNCTION "and" (l : UNRESOLVED_SIGNED; r : STD_ULOGIC) RETURN

UNRESOLVED_SIGNED;

FUNCTION "and" (l : UNRESOLVED_SIGNED) RETURN STD_ULOGIC;

FUNCTION "and" (l : UNRESOLVED_UNSIGNED) RETURN STD_ULOGIC;

FUNCTION "or" (l, r : UNRESOLVED_UNSIGNED) RETURN UNRESOLVED_UNSIGNED;

FUNCTION "or" (l, r : UNRESOLVED_SIGNED) RETURN UNRESOLVED_SIGNED;

FUNCTION "or" (l : STD_ULOGIC; r : UNRESOLVED_UNSIGNED) RETURN

UNRESOLVED_UNSIGNED;

FUNCTION "or" (l : UNRESOLVED_UNSIGNED; r : STD_ULOGIC) RETURN

UNRESOLVED_UNSIGNED;

FUNCTION "or" (l : STD_ULOGIC; r : UNRESOLVED_SIGNED) RETURN

UNRESOLVED_SIGNED;

FUNCTION "or" (l : UNRESOLVED_SIGNED; r : STD_ULOGIC) RETURN

UNRESOLVED_SIGNED;

FUNCTION "or" (l : UNRESOLVED_SIGNED) RETURN STD_ULOGIC;

FUNCTION "or" (l : UNRESOLVED_UNSIGNED) RETURN STD_ULOGIC;

FUNCTION "nand" (l, r : UNRESOLVED_UNSIGNED) RETURN UNRESOLVED_UNSIGNED;

FUNCTION "nand" (l, r : UNRESOLVED_SIGNED) RETURN UNRESOLVED_SIGNED;

FUNCTION "nand" (l : STD_ULOGIC; r : UNRESOLVED_UNSIGNED) RETURN

UNRESOLVED_UNSIGNED;

FUNCTION "nand" (l : UNRESOLVED_UNSIGNED; r : STD_ULOGIC) RETURN

UNRESOLVED_UNSIGNED;
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FUNCTION "nand" (l : STD_ULOGIC; r : UNRESOLVED_SIGNED) RETURN

UNRESOLVED_SIGNED;

FUNCTION "nand" (l : UNRESOLVED_SIGNED; r : STD_ULOGIC) RETURN

UNRESOLVED_SIGNED;

FUNCTION "nand" (l : UNRESOLVED_SIGNED) RETURN STD_ULOGIC;

FUNCTION "nand" (l : UNRESOLVED_UNSIGNED) RETURN STD_ULOGIC;

FUNCTION "nor" (l, r : UNRESOLVED_UNSIGNED) RETURN UNRESOLVED_UNSIGNED;

FUNCTION "nor" (l, r : UNRESOLVED_SIGNED) RETURN UNRESOLVED_SIGNED;

FUNCTION "nor" (l : STD_ULOGIC; r : UNRESOLVED_UNSIGNED) RETURN

UNRESOLVED_UNSIGNED;

FUNCTION "nor" (l : UNRESOLVED_UNSIGNED; r : STD_ULOGIC) RETURN

UNRESOLVED_UNSIGNED;

FUNCTION "nor" (l : STD_ULOGIC; r : UNRESOLVED_SIGNED) RETURN

UNRESOLVED_SIGNED;

FUNCTION "nor" (l : UNRESOLVED_SIGNED; r : STD_ULOGIC) RETURN

UNRESOLVED_SIGNED;

FUNCTION "nor" (l : UNRESOLVED_SIGNED) RETURN STD_ULOGIC;

FUNCTION "nor" (l : UNRESOLVED_UNSIGNED) RETURN STD_ULOGIC;

FUNCTION "xor" (l : UNRESOLVED_SIGNED) RETURN STD_ULOGIC;

FUNCTION "xor" (l, r : UNRESOLVED_UNSIGNED) RETURN UNRESOLVED_UNSIGNED;

FUNCTION "xor" (l, r : UNRESOLVED_SIGNED) RETURN UNRESOLVED_SIGNED;

FUNCTION "xor" (l : STD_ULOGIC; r : UNRESOLVED_UNSIGNED) RETURN

UNRESOLVED_UNSIGNED;

FUNCTION "xor" (l : UNRESOLVED_UNSIGNED; r : STD_ULOGIC) RETURN

UNRESOLVED_UNSIGNED;

FUNCTION "xor" (l : STD_ULOGIC; r : UNRESOLVED_SIGNED) RETURN

UNRESOLVED_SIGNED;

FUNCTION "xor" (l : UNRESOLVED_SIGNED; r : STD_ULOGIC) RETURN

UNRESOLVED_SIGNED;

FUNCTION "xor" (l : UNRESOLVED_UNSIGNED) RETURN STD_ULOGIC;

FUNCTION "xnor" (l, r : UNRESOLVED_UNSIGNED) RETURN UNRESOLVED_UNSIGNED;

FUNCTION "xnor" (l, r : UNRESOLVED_SIGNED) RETURN UNRESOLVED_SIGNED;

FUNCTION "xnor" (l : STD_ULOGIC; r : UNRESOLVED_UNSIGNED) RETURN

UNRESOLVED_UNSIGNED;

FUNCTION "xnor" (l : UNRESOLVED_UNSIGNED; r : STD_ULOGIC) RETURN

UNRESOLVED_UNSIGNED;

FUNCTION "xnor" (l : STD_ULOGIC; r : UNRESOLVED_SIGNED) RETURN

UNRESOLVED_SIGNED;

FUNCTION "xnor" (l : UNRESOLVED_SIGNED; r : STD_ULOGIC) RETURN

UNRESOLVED_SIGNED;

FUNCTION "xnor" (l : UNRESOLVED_SIGNED) RETURN STD_ULOGIC;

FUNCTION "xnor" (l : UNRESOLVED_UNSIGNED) RETURN STD_ULOGIC;

570 Appendix J



-----Comparison operators:---------------------------

FUNCTION ">" (l, r : UNRESOLVED_UNSIGNED) RETURN BOOLEAN;

FUNCTION ">" (l, r : UNRESOLVED_SIGNED) RETURN BOOLEAN;

FUNCTION ">" (l : NATURAL; r : UNRESOLVED_UNSIGNED) RETURN BOOLEAN;

FUNCTION ">" (l : INTEGER; r : UNRESOLVED_SIGNED) RETURN BOOLEAN;

FUNCTION ">" (l : UNRESOLVED_UNSIGNED; r : NATURAL) RETURN BOOLEAN;

FUNCTION ">" (l : UNRESOLVED_SIGNED; r : INTEGER) RETURN BOOLEAN;

FUNCTION "<" (l, r : UNRESOLVED_UNSIGNED) RETURN BOOLEAN;

FUNCTION "<" (l, r : UNRESOLVED_SIGNED) RETURN BOOLEAN;

FUNCTION "<" (l : NATURAL; r : UNRESOLVED_UNSIGNED) RETURN BOOLEAN;

FUNCTION "<" (l : INTEGER; r : UNRESOLVED_SIGNED) RETURN BOOLEAN;

FUNCTION "<" (l : UNRESOLVED_UNSIGNED; r : NATURAL) RETURN BOOLEAN;

FUNCTION "<" (l : UNRESOLVED_SIGNED; r : INTEGER) RETURN BOOLEAN;

FUNCTION "<=" (l, r : UNRESOLVED_UNSIGNED) RETURN BOOLEAN;

FUNCTION "<=" (l, r : UNRESOLVED_SIGNED) RETURN BOOLEAN;

FUNCTION "<=" (l : NATURAL; r : UNRESOLVED_UNSIGNED) RETURN BOOLEAN;

FUNCTION "<=" (l : INTEGER; r : UNRESOLVED_SIGNED) RETURN BOOLEAN;

FUNCTION "<=" (l : UNRESOLVED_UNSIGNED; r : NATURAL) RETURN BOOLEAN;

FUNCTION "<=" (l : UNRESOLVED_SIGNED; r : INTEGER) RETURN BOOLEAN;

FUNCTION ">=" (l, r : UNRESOLVED_UNSIGNED) RETURN BOOLEAN;

FUNCTION ">=" (l, r : UNRESOLVED_SIGNED) RETURN BOOLEAN;

FUNCTION ">=" (l : NATURAL; r : UNRESOLVED_UNSIGNED) RETURN BOOLEAN;

FUNCTION ">=" (l : INTEGER; r : UNRESOLVED_SIGNED) RETURN BOOLEAN;

FUNCTION ">=" (l : UNRESOLVED_UNSIGNED; r : NATURAL) RETURN BOOLEAN;

FUNCTION ">=" (l : UNRESOLVED_SIGNED; r : INTEGER) RETURN BOOLEAN;

FUNCTION "=" (l, r : UNRESOLVED_UNSIGNED) RETURN BOOLEAN;

FUNCTION "=" (l, r : UNRESOLVED_SIGNED) RETURN BOOLEAN;

FUNCTION "=" (l : NATURAL; r : UNRESOLVED_UNSIGNED) RETURN BOOLEAN;

FUNCTION "=" (l : INTEGER; r : UNRESOLVED_SIGNED) RETURN BOOLEAN;

FUNCTION "=" (l : UNRESOLVED_UNSIGNED; r : NATURAL) RETURN BOOLEAN;

FUNCTION "=" (l : UNRESOLVED_SIGNED; r : INTEGER) RETURN BOOLEAN;

FUNCTION "/=" (l, r : UNRESOLVED_UNSIGNED) RETURN BOOLEAN;

FUNCTION "/=" (l, r : UNRESOLVED_SIGNED) RETURN BOOLEAN;

FUNCTION "/=" (l : NATURAL; r : UNRESOLVED_UNSIGNED) RETURN BOOLEAN;

FUNCTION "/=" (l : INTEGER; r : UNRESOLVED_SIGNED) RETURN BOOLEAN;

FUNCTION "/=" (l : UNRESOLVED_UNSIGNED; r : NATURAL) RETURN BOOLEAN;

FUNCTION "/=" (l : UNRESOLVED_SIGNED; r : INTEGER) RETURN BOOLEAN;

FUNCTION MINIMUM (l, r : UNRESOLVED_UNSIGNED) RETURN UNRESOLVED_UNSIGNED;

FUNCTION MINIMUM (l, r : UNRESOLVED_SIGNED) RETURN UNRESOLVED_SIGNED;

FUNCTION MINIMUM (l : NATURAL; r : UNRESOLVED_UNSIGNED) RETURN

UNRESOLVED_UNSIGNED;

FUNCTION MINIMUM (l : INTEGER; r : UNRESOLVED_SIGNED) RETURN

UNRESOLVED_SIGNED;
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FUNCTION MINIMUM (l : UNRESOLVED_UNSIGNED; r : NATURAL) RETURN

UNRESOLVED_UNSIGNED;

FUNCTION MINIMUM (l : UNRESOLVED_SIGNED; r : INTEGER) RETURN

UNRESOLVED_SIGNED;

FUNCTION MAXIMUM (l, r : UNRESOLVED_UNSIGNED) RETURN UNRESOLVED_UNSIGNED;

FUNCTION MAXIMUM (l, r : UNRESOLVED_SIGNED) RETURN UNRESOLVED_SIGNED;

FUNCTION MAXIMUM (l : NATURAL; r : UNRESOLVED_UNSIGNED) RETURN

UNRESOLVED_UNSIGNED;

FUNCTION MAXIMUM (l : INTEGER; r : UNRESOLVED_SIGNED) RETURN

UNRESOLVED_SIGNED;

FUNCTION MAXIMUM (l : UNRESOLVED_UNSIGNED; r : NATURAL) RETURN

UNRESOLVED_UNSIGNED;

FUNCTION MAXIMUM (l : UNRESOLVED_SIGNED; r : INTEGER) RETURN

UNRESOLVED_SIGNED;

-----Comparison matching operators:------------------

FUNCTION "?>" (l, r : UNRESOLVED_UNSIGNED) RETURN STD_ULOGIC;

FUNCTION "?>" (l, r : UNRESOLVED_SIGNED) RETURN STD_ULOGIC;

FUNCTION "?>" (l : NATURAL; r : UNRESOLVED_UNSIGNED) RETURN STD_ULOGIC;

FUNCTION "?>" (l : INTEGER; r : UNRESOLVED_SIGNED) RETURN STD_ULOGIC;

FUNCTION "?>" (l : UNRESOLVED_UNSIGNED; r : NATURAL) RETURN STD_ULOGIC;

FUNCTION "?>" (l : UNRESOLVED_SIGNED; r : INTEGER) RETURN STD_ULOGIC;

FUNCTION "?<" (l, r : UNRESOLVED_UNSIGNED) RETURN STD_ULOGIC;

FUNCTION "?<" (l, r : UNRESOLVED_SIGNED) RETURN STD_ULOGIC;

FUNCTION "?<" (l : NATURAL; r : UNRESOLVED_UNSIGNED) RETURN STD_ULOGIC;

FUNCTION "?<" (l : INTEGER; r : UNRESOLVED_SIGNED) RETURN STD_ULOGIC;

FUNCTION "?<" (l : UNRESOLVED_UNSIGNED; r : NATURAL) RETURN STD_ULOGIC;

FUNCTION "?<" (l : UNRESOLVED_SIGNED; r : INTEGER) RETURN STD_ULOGIC;

FUNCTION "?<=" (l, r : UNRESOLVED_UNSIGNED) RETURN STD_ULOGIC;

FUNCTION "?<=" (l, r : UNRESOLVED_SIGNED) RETURN STD_ULOGIC;

FUNCTION "?<=" (l : NATURAL; r : UNRESOLVED_UNSIGNED) RETURN STD_ULOGIC;

FUNCTION "?<=" (l : INTEGER; r : UNRESOLVED_SIGNED) RETURN STD_ULOGIC;

FUNCTION "?<=" (l : UNRESOLVED_UNSIGNED; r : NATURAL) RETURN STD_ULOGIC;

FUNCTION "?<=" (l : UNRESOLVED_SIGNED; r : INTEGER) RETURN STD_ULOGIC;

FUNCTION "?>=" (l, r : UNRESOLVED_UNSIGNED) RETURN STD_ULOGIC;

FUNCTION "?>=" (l, r : UNRESOLVED_SIGNED) RETURN STD_ULOGIC;

FUNCTION "?>=" (l : NATURAL; r : UNRESOLVED_UNSIGNED) RETURN STD_ULOGIC;

FUNCTION "?>=" (l : INTEGER; r : UNRESOLVED_SIGNED) RETURN STD_ULOGIC;

FUNCTION "?>=" (l : UNRESOLVED_UNSIGNED; r : NATURAL) RETURN STD_ULOGIC;

FUNCTION "?>=" (l : UNRESOLVED_SIGNED; r : INTEGER) RETURN STD_ULOGIC;

FUNCTION "?=" (l, r : UNRESOLVED_UNSIGNED) RETURN STD_ULOGIC;

FUNCTION "?=" (l, r : UNRESOLVED_SIGNED) RETURN STD_ULOGIC;

FUNCTION "?=" (l : NATURAL; r : UNRESOLVED_UNSIGNED) RETURN STD_ULOGIC;

FUNCTION "?=" (l : INTEGER; r : UNRESOLVED_SIGNED) RETURN STD_ULOGIC;
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FUNCTION "?=" (l : UNRESOLVED_UNSIGNED; r : NATURAL) RETURN STD_ULOGIC;

FUNCTION "?=" (l : UNRESOLVED_SIGNED; r : INTEGER) RETURN STD_ULOGIC;

FUNCTION "?/=" (l, r : UNRESOLVED_UNSIGNED) RETURN STD_ULOGIC;

FUNCTION "?/=" (l, r : UNRESOLVED_SIGNED) RETURN STD_ULOGIC;

FUNCTION "?/=" (l : NATURAL; r : UNRESOLVED_UNSIGNED) RETURN STD_ULOGIC;

FUNCTION "?/=" (l : INTEGER; r : UNRESOLVED_SIGNED) RETURN STD_ULOGIC;

FUNCTION "?/=" (l : UNRESOLVED_UNSIGNED; r : NATURAL) RETURN STD_ULOGIC;

FUNCTION "?/=" (l : UNRESOLVED_SIGNED; r : INTEGER) RETURN STD_ULOGIC;

-----Shift operators:--------------------------------

FUNCTION "sll" (arg : UNRESOLVED_UNSIGNED; count : INTEGER) RETURN

UNRESOLVED_UNSIGNED;

FUNCTION "sll" (arg : UNRESOLVED_SIGNED; count : INTEGER) RETURN

UNRESOLVED_SIGNED;

FUNCTION "srl" (arg : UNRESOLVED_UNSIGNED; count : INTEGER) RETURN

UNRESOLVED_UNSIGNED;

FUNCTION "srl" (arg : UNRESOLVED_SIGNED; count : INTEGER) RETURN

UNRESOLVED_SIGNED;

FUNCTION "rol" (arg : UNRESOLVED_UNSIGNED; count : INTEGER) RETURN

UNRESOLVED_UNSIGNED;

FUNCTION "rol" (arg : UNRESOLVED_SIGNED; count : INTEGER) RETURN

UNRESOLVED_SIGNED;

FUNCTION "ror" (arg : UNRESOLVED_UNSIGNED; count : INTEGER) RETURN

UNRESOLVED_UNSIGNED;

FUNCTION "ror" (arg : UNRESOLVED_SIGNED; count : INTEGER) RETURN

UNRESOLVED_SIGNED;

FUNCTION "sla" (arg : UNRESOLVED_UNSIGNED; count : INTEGER) RETURN

UNRESOLVED_UNSIGNED;

FUNCTION "sla" (arg : UNRESOLVED_SIGNED; count : INTEGER) RETURN

UNRESOLVED_SIGNED;

FUNCTION "sra" (arg : UNRESOLVED_UNSIGNED; count : INTEGER) RETURN

UNRESOLVED_UNSIGNED;

FUNCTION "sra" (arg : UNRESOLVED_SIGNED; count : INTEGER) RETURN

UNRESOLVED_SIGNED;

FUNCTION SHIFT_LEFT (arg : UNRESOLVED_UNSIGNED; count : NATURAL) RETURN

UNRESOLVED_UNSIGNED;

FUNCTION SHIFT_RIGHT (arg : UNRESOLVED_UNSIGNED; count : NATURAL) RETURN

UNRESOLVED_UNSIGNED;

FUNCTION SHIFT_LEFT (arg : UNRESOLVED_SIGNED; count : NATURAL) RETURN

UNRESOLVED_SIGNED;

FUNCTION SHIFT_RIGHT (arg : UNRESOLVED_SIGNED; count : NATURAL) RETURN

UNRESOLVED_SIGNED;

FUNCTION ROTATE_LEFT (arg : UNRESOLVED_UNSIGNED; count : NATURAL) RETURN

UNRESOLVED_UNSIGNED;
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FUNCTION ROTATE_RIGHT (arg : UNRESOLVED_UNSIGNED; count : NATURAL) RETURN

UNRESOLVED_UNSIGNED;

FUNCTION ROTATE_LEFT (arg : UNRESOLVED_SIGNED; count : NATURAL) RETURN

UNRESOLVED_SIGNED;

FUNCTION ROTATE_RIGHT (arg : UNRESOLVED_SIGNED; count : NATURAL) RETURN

UNRESOLVED_SIGNED;

-----Type conversion:-----------------------------

FUNCTION TO_INTEGER (arg : UNRESOLVED_UNSIGNED) RETURN NATURAL;

FUNCTION TO_INTEGER (arg : UNRESOLVED_SIGNED) RETURN INTEGER;

FUNCTION TO_UNSIGNED (arg, size : NATURAL) RETURN UNRESOLVED_UNSIGNED;

FUNCTION TO_SIGNED (arg : INTEGER; size : NATURAL) RETURN UNRESOLVED_SIGNED;

FUNCTION TO_UNSIGNED (arg : NATURAL; size_res : UNRESOLVED_UNSIGNED) RETURN

UNRESOLVED_UNSIGNED;

FUNCTION TO_SIGNED (arg : INTEGER; size_res : UNRESOLVED_SIGNED) RETURN

UNRESOLVED_SIGNED;

FUNCTION TO_01 (s : UNRESOLVED_UNSIGNED; xmap : STD_ULOGIC := '0') RETURN

UNRESOLVED_UNSIGNED;

FUNCTION TO_01 (s : UNRESOLVED_SIGNED; xmap : STD_ULOGIC := '0') RETURN

UNRESOLVED_SIGNED;

FUNCTION TO_X01 (s : UNRESOLVED_UNSIGNED) RETURN UNRESOLVED_UNSIGNED;

FUNCTION TO_X01 (s : UNRESOLVED_SIGNED) RETURN UNRESOLVED_SIGNED;

FUNCTION TO_X01Z (s : UNRESOLVED_UNSIGNED) RETURN UNRESOLVED_UNSIGNED;

FUNCTION TO_X01Z (s : UNRESOLVED_SIGNED) RETURN UNRESOLVED_SIGNED;

FUNCTION TO_UX01 (s : UNRESOLVED_UNSIGNED) RETURN UNRESOLVED_UNSIGNED;

FUNCTION TO_UX01 (s : UNRESOLVED_SIGNED) RETURN UNRESOLVED_SIGNED;

FUNCTION IS_X (s : UNRESOLVED_UNSIGNED) RETURN BOOLEAN;

FUNCTION IS_X (s : UNRESOLVED_SIGNED) RETURN BOOLEAN;

-----Resize functions:-------------------------------

FUNCTION RESIZE (arg : UNRESOLVED_SIGNED; new_size : NATURAL) RETURN

UNRESOLVED_SIGNED;

FUNCTION RESIZE (arg : UNRESOLVED_UNSIGNED; new_size : NATURAL) RETURN

UNRESOLVED_UNSIGNED;

FUNCTION RESIZE (arg, size_res : UNRESOLVED_UNSIGNED) RETURN

UNRESOLVED_UNSIGNED;

FUNCTION RESIZE (arg, size_res : UNRESOLVED_SIGNED) RETURN UNRESOLVED_SIGNED;

-----Match functions:--------------------------------

FUNCTION STD_MATCH (l, r : STD_ULOGIC) RETURN BOOLEAN;

FUNCTION STD_MATCH (l, r : UNRESOLVED_UNSIGNED) RETURN BOOLEAN;

FUNCTION STD_MATCH (l, r : UNRESOLVED_SIGNED) RETURN BOOLEAN;

FUNCTION STD_MATCH (l, r : STD_ULOGIC_VECTOR) RETURN BOOLEAN;
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-----String conversion:---------------------------

--Predefined: FUNCTION to_string (value : UNRESOLVED_UNSIGNED) RETURN STRING;

--Predefined: FUNCTION to_string (value : UNRESOLVED_SIGNED) RETURN STRING;

FUNCTION TO_OSTRING (value : UNRESOLVED_UNSIGNED) RETURN STRING;

FUNCTION TO_OSTRING (value : UNRESOLVED_SIGNED) RETURN STRING;

FUNCTION TO_HSTRING (value : UNRESOLVED_UNSIGNED) RETURN STRING;

FUNCTION TO_HSTRING (value : UNRESOLVED_SIGNED) RETURN STRING;

ALIAS TO_BSTRING IS TO_STRING [UNRESOLVED_UNSIGNED RETURN STRING];

ALIAS TO_BSTRING IS TO_STRING [UNRESOLVED_SIGNED RETURN STRING];

ALIAS TO_BINARY_STRING IS TO_STRING [UNRESOLVED_UNSIGNED RETURN STRING];

ALIAS TO_BINARY_STRING IS TO_STRING [UNRESOLVED_SIGNED RETURN STRING];

ALIAS TO_OCTAL_STRING IS TO_OSTRING [UNRESOLVED_UNSIGNED RETURN STRING];

ALIAS TO_OCTAL_STRING IS TO_OSTRING [UNRESOLVED_SIGNED RETURN STRING];

ALIAS TO_HEX_STRING IS TO_HSTRING [UNRESOLVED_UNSIGNED RETURN STRING];

ALIAS TO_HEX_STRING IS TO_HSTRING [UNRESOLVED_SIGNED RETURN STRING];

-----Read operations:-----------------------------

PROCEDURE READ(l : INOUT LINE; value : OUT UNRESOLVED_UNSIGNED; GOOD : OUT

BOOLEAN);

PROCEDURE READ(l : INOUT LINE; value : OUT UNRESOLVED_UNSIGNED);

PROCEDURE READ(l : INOUT LINE; value : OUT UNRESOLVED_SIGNED; GOOD : OUT

BOOLEAN);

PROCEDURE READ(l : INOUT LINE; value : OUT UNRESOLVED_SIGNED);

PROCEDURE OREAD (l : INOUT LINE; value : OUT UNRESOLVED_UNSIGNED; GOOD : OUT

BOOLEAN);

PROCEDURE OREAD (l : INOUT LINE; value : OUT UNRESOLVED_SIGNED; GOOD : OUT

BOOLEAN);

PROCEDURE OREAD (l : INOUT LINE; value : OUT UNRESOLVED_UNSIGNED);

PROCEDURE OREAD (l : INOUT LINE; value : OUT UNRESOLVED_SIGNED);

PROCEDURE HREAD (l : INOUT LINE; value : OUT UNRESOLVED_UNSIGNED; GOOD : OUT

BOOLEAN);

PROCEDURE HREAD (l : INOUT LINE; value : OUT UNRESOLVED_SIGNED; GOOD : OUT

BOOLEAN);

PROCEDURE HREAD (l : INOUT LINE; value : OUT UNRESOLVED_UNSIGNED);

PROCEDURE HREAD (l : INOUT LINE; value : OUT UNRESOLVED_SIGNED);

ALIAS BREAD IS READ [LINE, UNRESOLVED_UNSIGNED, BOOLEAN];

ALIAS BREAD IS READ [LINE, UNRESOLVED_SIGNED, BOOLEAN];

ALIAS BREAD IS READ [LINE, UNRESOLVED_UNSIGNED];

ALIAS BREAD IS READ [LINE, UNRESOLVED_SIGNED];

ALIAS BINARY_READ IS READ [LINE, UNRESOLVED_UNSIGNED, BOOLEAN];

ALIAS BINARY_READ IS READ [LINE, UNRESOLVED_SIGNED, BOOLEAN];

ALIAS BINARY_READ IS READ [LINE, UNRESOLVED_UNSIGNED];

ALIAS BINARY_READ IS READ [LINE, UNRESOLVED_SIGNED];
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ALIAS OCTAL_READ IS OREAD [LINE, UNRESOLVED_UNSIGNED, BOOLEAN];

ALIAS OCTAL_READ IS OREAD [LINE, UNRESOLVED_SIGNED, BOOLEAN];

ALIAS OCTAL_READ IS OREAD [LINE, UNRESOLVED_UNSIGNED];

ALIAS OCTAL_READ IS OREAD [LINE, UNRESOLVED_SIGNED];

ALIAS HEX_READ IS HREAD [LINE, UNRESOLVED_UNSIGNED, BOOLEAN];

ALIAS HEX_READ IS HREAD [LINE, UNRESOLVED_SIGNED, BOOLEAN];

ALIAS HEX_READ IS HREAD [LINE, UNRESOLVED_UNSIGNED];

ALIAS HEX_READ IS HREAD [LINE, UNRESOLVED_SIGNED];

-----Write operations:----------------------------

PROCEDURE WRITE (l : INOUT LINE; value : IN UNRESOLVED_UNSIGNED;

JUSTIFIED : IN SIDE := RIGHT; field : IN WIDTH := 0);

PROCEDURE WRITE (l : INOUT LINE; value : IN UNRESOLVED_SIGNED;

JUSTIFIED : IN SIDE := RIGHT; field : IN WIDTH := 0);

PROCEDURE OWRITE (l : INOUT LINE; value : IN UNRESOLVED_UNSIGNED;

JUSTIFIED : IN SIDE := RIGHT; field : IN WIDTH := 0);

PROCEDURE OWRITE (l : INOUT LINE; value : IN UNRESOLVED_SIGNED;

JUSTIFIED : IN SIDE := RIGHT; field : IN WIDTH := 0);

PROCEDURE HWRITE (l : INOUT LINE; value : IN UNRESOLVED_UNSIGNED;

JUSTIFIED : IN SIDE := RIGHT; field : IN WIDTH := 0);

PROCEDURE HWRITE (l : INOUT LINE; value : IN UNRESOLVED_SIGNED;

JUSTIFIED : IN SIDE := RIGHT; field : IN WIDTH := 0);

ALIAS BWRITE IS WRITE [LINE, UNRESOLVED_UNSIGNED, SIDE, WIDTH];

ALIAS BWRITE IS WRITE [LINE, UNRESOLVED_SIGNED, SIDE, WIDTH];

ALIAS BINARY_WRITE IS WRITE [LINE, UNRESOLVED_UNSIGNED, SIDE, WIDTH];

ALIAS BINARY_WRITE IS WRITE [LINE, UNRESOLVED_SIGNED, SIDE, WIDTH];

ALIAS OCTAL_WRITE IS OWRITE [LINE, UNRESOLVED_UNSIGNED, SIDE, WIDTH];

ALIAS OCTAL_WRITE IS OWRITE [LINE, UNRESOLVED_SIGNED, SIDE, WIDTH];

ALIAS HEX_WRITE IS HWRITE [LINE, UNRESOLVED_UNSIGNED, SIDE, WIDTH];

ALIAS HEX_WRITE IS HWRITE [LINE, UNRESOLVED_SIGNED, SIDE, WIDTH];

END PACKAGE numeric_std;

-------------------------------------------------------------------------------
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K Package std_logic_arith

This package, introduced by Synopsys, has the same purposes as numeric_std, to which it

is partially equivalent.

Observe the following particularities in the code below:

1) The main types are UNSIGNED and SIGNED, which have STD_LOGIC as the base

type (subtype).

2) There are no logical operators.

3) The arithmetic operators do not include /, **, REM, MOD.

4) The shift operators do not include arithmetic shift and rotation.

5) Several type-conversion functions are included in the package.

------------------------------------------------------------------------------

LIBRARY ieee;

USE ieee.std_logic_1164.all;

PACKAGE std_logic_arith IS

--------Types and subtype:-------------------------

TYPE UNSIGNED IS ARRAY (NATURAL RANGE <>) OF STD_LOGIC;

TYPE SIGNED IS ARRAY (NATURAL RANGE <>) OF STD_LOGIC;

SUBTYPE SMALL_INT IS INTEGER RANGE 0 TO 1;

--------Arithmetic operators:----------------------

FUNCTION "+"(l: UNSIGNED; r: UNSIGNED) RETURN UNSIGNED;

FUNCTION "+"(l: SIGNED; r: SIGNED) RETURN SIGNED;

FUNCTION "+"(l: UNSIGNED; r: SIGNED) RETURN SIGNED;

FUNCTION "+"(l: SIGNED; r: UNSIGNED) RETURN SIGNED;

FUNCTION "+"(l: UNSIGNED; r: INTEGER) RETURN UNSIGNED;

FUNCTION "+"(l: INTEGER; r: UNSIGNED) RETURN UNSIGNED;

FUNCTION "+"(l: SIGNED; r: INTEGER) RETURN SIGNED;

FUNCTION "+"(l: INTEGER; r: SIGNED) RETURN SIGNED;



FUNCTION "+"(l: UNSIGNED; r: STD_ULOGIC) RETURN UNSIGNED;

FUNCTION "+"(l: STD_ULOGIC; r: UNSIGNED) RETURN UNSIGNED;

FUNCTION "+"(l: SIGNED; r: STD_ULOGIC) RETURN SIGNED;

FUNCTION "+"(l: STD_ULOGIC; r: SIGNED) RETURN SIGNED;

FUNCTION "+"(l: UNSIGNED; r: UNSIGNED) RETURN STD_LOGIC_VECTOR;

FUNCTION "+"(l: SIGNED; r: SIGNED) RETURN STD_LOGIC_VECTOR;

FUNCTION "+"(l: UNSIGNED; r: SIGNED) RETURN STD_LOGIC_VECTOR;

FUNCTION "+"(l: SIGNED; r: UNSIGNED) RETURN STD_LOGIC_VECTOR;

FUNCTION "+"(l: UNSIGNED; r: INTEGER) RETURN STD_LOGIC_VECTOR;

FUNCTION "+"(l: INTEGER; r: UNSIGNED) RETURN STD_LOGIC_VECTOR;

FUNCTION "+"(l: SIGNED; r: INTEGER) RETURN STD_LOGIC_VECTOR;

FUNCTION "+"(l: INTEGER; r: SIGNED) RETURN STD_LOGIC_VECTOR;

FUNCTION "+"(l: UNSIGNED; r: STD_ULOGIC) RETURN STD_LOGIC_VECTOR;

FUNCTION "+"(l: STD_ULOGIC; r: UNSIGNED) RETURN STD_LOGIC_VECTOR;

FUNCTION "+"(l: SIGNED; r: STD_ULOGIC) RETURN STD_LOGIC_VECTOR;

FUNCTION "+"(l: STD_ULOGIC; r: SIGNED) RETURN STD_LOGIC_VECTOR;

FUNCTION "-"(l: UNSIGNED; r: UNSIGNED) RETURN UNSIGNED;

FUNCTION "+"(l: UNSIGNED) RETURN UNSIGNED;

FUNCTION "+"(l: SIGNED) RETURN SIGNED;

FUNCTION "+"(l: UNSIGNED) RETURN STD_LOGIC_VECTOR;

FUNCTION "+"(l: SIGNED) RETURN STD_LOGIC_VECTOR;

FUNCTION "-"(l: SIGNED; r: SIGNED) RETURN SIGNED;

FUNCTION "-"(l: UNSIGNED; r: SIGNED) RETURN SIGNED;

FUNCTION "-"(l: SIGNED; r: UNSIGNED) RETURN SIGNED;

FUNCTION "-"(l: UNSIGNED; r: INTEGER) RETURN UNSIGNED;

FUNCTION "-"(l: INTEGER; r: UNSIGNED) RETURN UNSIGNED;

FUNCTION "-"(l: SIGNED; r: INTEGER) RETURN SIGNED;

FUNCTION "-"(l: INTEGER; r: SIGNED) RETURN SIGNED;

FUNCTION "-"(l: UNSIGNED; r: STD_ULOGIC) RETURN UNSIGNED;

FUNCTION "-"(l: STD_ULOGIC; r: UNSIGNED) RETURN UNSIGNED;

FUNCTION "-"(l: SIGNED; r: STD_ULOGIC) RETURN SIGNED;

FUNCTION "-"(l: STD_ULOGIC; r: SIGNED) RETURN SIGNED;

FUNCTION "-"(l: UNSIGNED; r: UNSIGNED) RETURN STD_LOGIC_VECTOR;

FUNCTION "-"(l: SIGNED; r: SIGNED) RETURN STD_LOGIC_VECTOR;

FUNCTION "-"(l: UNSIGNED; r: SIGNED) RETURN STD_LOGIC_VECTOR;

FUNCTION "-"(l: SIGNED; r: UNSIGNED) RETURN STD_LOGIC_VECTOR;

FUNCTION "-"(l: UNSIGNED; r: INTEGER) RETURN STD_LOGIC_VECTOR;

FUNCTION "-"(l: INTEGER; r: UNSIGNED) RETURN STD_LOGIC_VECTOR;

FUNCTION "-"(l: SIGNED; r: INTEGER) RETURN STD_LOGIC_VECTOR;

FUNCTION "-"(l: INTEGER; r: SIGNED) RETURN STD_LOGIC_VECTOR;

FUNCTION "-"(l: UNSIGNED; r: STD_ULOGIC) RETURN STD_LOGIC_VECTOR;

FUNCTION "-"(l: STD_ULOGIC; r: UNSIGNED) RETURN STD_LOGIC_VECTOR;

FUNCTION "-"(l: SIGNED; r: STD_ULOGIC) RETURN STD_LOGIC_VECTOR;
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FUNCTION "-"(l: STD_ULOGIC; r: SIGNED) RETURN STD_LOGIC_VECTOR;

FUNCTION "-"(l: SIGNED) RETURN STD_LOGIC_VECTOR;

FUNCTION "*"(l: UNSIGNED; r: UNSIGNED) RETURN UNSIGNED;

FUNCTION "*"(l: SIGNED; r: SIGNED) RETURN SIGNED;

FUNCTION "*"(l: SIGNED; r: UNSIGNED) RETURN SIGNED;

FUNCTION "*"(l: UNSIGNED; r: SIGNED) RETURN SIGNED;

FUNCTION "*"(l: UNSIGNED; r: UNSIGNED) RETURN STD_LOGIC_VECTOR;

FUNCTION "*"(l: SIGNED; r: SIGNED) RETURN STD_LOGIC_VECTOR;

FUNCTION "*"(l: SIGNED; r: UNSIGNED) RETURN STD_LOGIC_VECTOR;

FUNCTION "*"(l: UNSIGNED; r: SIGNED) RETURN STD_LOGIC_VECTOR;

FUNCTION "ABS"(l: SIGNED) RETURN SIGNED;

FUNCTION "ABS"(l: SIGNED) RETURN STD_LOGIC_VECTOR;

--------Comparison operators:----------------------

FUNCTION "<"(l: UNSIGNED; r: UNSIGNED) RETURN BOOLEAN;

FUNCTION "<"(l: SIGNED; r: SIGNED) RETURN BOOLEAN;

FUNCTION "<"(l: UNSIGNED; r: SIGNED) RETURN BOOLEAN;

FUNCTION "<"(l: SIGNED; r: UNSIGNED) RETURN BOOLEAN;

FUNCTION "<"(l: UNSIGNED; r: INTEGER) RETURN BOOLEAN;

FUNCTION "<"(l: INTEGER; r: UNSIGNED) RETURN BOOLEAN;

FUNCTION "<"(l: SIGNED; r: INTEGER) RETURN BOOLEAN;

FUNCTION "<"(l: INTEGER; r: SIGNED) RETURN BOOLEAN;

FUNCTION "<="(l: UNSIGNED; r: UNSIGNED) RETURN BOOLEAN;

FUNCTION "<="(l: SIGNED; r: SIGNED) RETURN BOOLEAN;

FUNCTION "<="(l: UNSIGNED; r: SIGNED) RETURN BOOLEAN;

FUNCTION "<="(l: SIGNED; r: UNSIGNED) RETURN BOOLEAN;

FUNCTION "<="(l: UNSIGNED; r: INTEGER) RETURN BOOLEAN;

FUNCTION "<="(l: INTEGER; r: UNSIGNED) RETURN BOOLEAN;

FUNCTION "<="(l: SIGNED; r: INTEGER) RETURN BOOLEAN;

FUNCTION "<="(l: INTEGER; r: SIGNED) RETURN BOOLEAN;

FUNCTION ">"(l: UNSIGNED; r: UNSIGNED) RETURN BOOLEAN;

FUNCTION ">"(l: SIGNED; r: SIGNED) RETURN BOOLEAN;

FUNCTION ">"(l: UNSIGNED; r: SIGNED) RETURN BOOLEAN;

FUNCTION ">"(l: SIGNED; r: UNSIGNED) RETURN BOOLEAN;

FUNCTION ">"(l: UNSIGNED; r: INTEGER) RETURN BOOLEAN;

FUNCTION ">"(l: INTEGER; r: UNSIGNED) RETURN BOOLEAN;

FUNCTION ">"(l: SIGNED; r: INTEGER) RETURN BOOLEAN;

FUNCTION ">"(l: INTEGER; r: SIGNED) RETURN BOOLEAN;

FUNCTION ">="(l: UNSIGNED; r: UNSIGNED) RETURN BOOLEAN;

FUNCTION ">="(l: SIGNED; r: SIGNED) RETURN BOOLEAN;

FUNCTION ">="(l: UNSIGNED; r: SIGNED) RETURN BOOLEAN;

FUNCTION ">="(l: SIGNED; r: UNSIGNED) RETURN BOOLEAN;

FUNCTION ">="(l: UNSIGNED; r: INTEGER) RETURN BOOLEAN;

FUNCTION ">="(l: INTEGER; r: UNSIGNED) RETURN BOOLEAN;
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FUNCTION ">="(l: SIGNED; r: INTEGER) RETURN BOOLEAN;

FUNCTION ">="(l: INTEGER; r: SIGNED) RETURN BOOLEAN;

FUNCTION "="(l: UNSIGNED; r: UNSIGNED) RETURN BOOLEAN;

FUNCTION "="(l: SIGNED; r: SIGNED) RETURN BOOLEAN;

FUNCTION "="(l: UNSIGNED; r: SIGNED) RETURN BOOLEAN;

FUNCTION "="(l: SIGNED; r: UNSIGNED) RETURN BOOLEAN;

FUNCTION "="(l: UNSIGNED; r: INTEGER) RETURN BOOLEAN;

FUNCTION "="(l: INTEGER; r: UNSIGNED) RETURN BOOLEAN;

FUNCTION "="(l: SIGNED; r: INTEGER) RETURN BOOLEAN;

FUNCTION "="(l: INTEGER; r: SIGNED) RETURN BOOLEAN;

FUNCTION "/="(l: UNSIGNED; r: UNSIGNED) RETURN BOOLEAN;

FUNCTION "/="(l: SIGNED; r: SIGNED) RETURN BOOLEAN;

FUNCTION "/="(l: UNSIGNED; r: SIGNED) RETURN BOOLEAN;

FUNCTION "/="(l: SIGNED; r: UNSIGNED) RETURN BOOLEAN;

FUNCTION "/="(l: UNSIGNED; r: INTEGER) RETURN BOOLEAN;

FUNCTION "/="(l: INTEGER; r: UNSIGNED) RETURN BOOLEAN;

FUNCTION "/="(l: SIGNED; r: INTEGER) RETURN BOOLEAN;

FUNCTION "/="(l: INTEGER; r: SIGNED) RETURN BOOLEAN;

--------Shift operators:---------------------------

FUNCTION SHL(arg: UNSIGNED; count: UNSIGNED) RETURN UNSIGNED;

FUNCTION SHL(arg: SIGNED; count: UNSIGNED) RETURN SIGNED;

FUNCTION SHR(arg: UNSIGNED; count: UNSIGNED) RETURN UNSIGNED;

FUNCTION SHR(arg: SIGNED; count: UNSIGNED) RETURN SIGNED;

--------Type conversion:---------------------------

FUNCTION CONV_INTEGER(arg: INTEGER) RETURN INTEGER;

FUNCTION CONV_INTEGER(arg: UNSIGNED) RETURN INTEGER;

FUNCTION CONV_INTEGER(arg: SIGNED) RETURN INTEGER;

FUNCTION CONV_INTEGER(arg: STD_ULOGIC) RETURN SMALL_INT;

FUNCTION CONV_UNSIGNED(arg: INTEGER; size: INTEGER) RETURN UNSIGNED;

FUNCTION CONV_UNSIGNED(arg: UNSIGNED; size: INTEGER) RETURN UNSIGNED;

FUNCTION CONV_UNSIGNED(arg: SIGNED; size: INTEGER) RETURN UNSIGNED;

FUNCTION CONV_UNSIGNED(arg: STD_ULOGIC; size: INTEGER) RETURN UNSIGNED;

FUNCTION CONV_SIGNED(arg: INTEGER; size: INTEGER) RETURN SIGNED;

FUNCTION CONV_SIGNED(arg: UNSIGNED; size: INTEGER) RETURN SIGNED;

FUNCTION CONV_SIGNED(arg: SIGNED; size: INTEGER) RETURN SIGNED;

FUNCTION CONV_SIGNED(arg: STD_ULOGIC; size: INTEGER) RETURN SIGNED;

FUNCTION CONV_STD_LOGIC_VECTOR(arg: INTEGER; size: INTEGER) RETURN

STD_LOGIC_VECTOR;

FUNCTION CONV_STD_LOGIC_VECTOR(arg: UNSIGNED; size: INTEGER) RETURN

STD_LOGIC_VECTOR;

FUNCTION CONV_STD_LOGIC_VECTOR(arg: SIGNED; size: INTEGER) RETURN

STD_LOGIC_VECTOR;
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FUNCTION CONV_STD_LOGIC_VECTOR(arg: STD_ULOGIC; size: INTEGER) RETURN

STD_LOGIC_VECTOR;

--------Resize functions:--------------------------

FUNCTION EXT(arg: STD_LOGIC_VECTOR; size: INTEGER) RETURN STD_LOGIC_VECTOR;

FUNCTION SXT(arg: STD_LOGIC_VECTOR; size: INTEGER) RETURN STD_LOGIC_VECTOR;

END std_logic_arith;

------------------------------------------------------------------------------
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L Package std_logic_signed

This package was introduced by Synopsys with the purpose of defining signed operators

(arithmetic, comparison, and some shift) for the type STD_LOGIC_VECTOR. Note that

it does not specify any new data types. A similar package, called std_logic_unsigned, also

exists, which defines unsigned operators (arithmetic, comparison, and some shift) for the

same data type (STD_LOGIC_VECTOR).

---------------------------------------------------------------------------

LIBRARY ieee;

USE ieee.std_logic_1164.all;

USE ieee.std_logic_arith.all;

PACKAGE std_logic_signed IS

--------Arithmetic operators:----------------------

FUNCTION "+"(l: STD_LOGIC_VECTOR; r: STD_LOGIC_VECTOR) RETURN

STD_LOGIC_VECTOR;

FUNCTION "+"(l: STD_LOGIC_VECTOR; r: INTEGER) RETURN STD_LOGIC_VECTOR;

FUNCTION "+"(l: INTEGER; r: STD_LOGIC_VECTOR) RETURN STD_LOGIC_VECTOR;

FUNCTION "+"(l: STD_LOGIC_VECTOR; r: STD_LOGIC) RETURN STD_LOGIC_VECTOR;

FUNCTION "+"(l: STD_LOGIC; r: STD_LOGIC_VECTOR) RETURN STD_LOGIC_VECTOR;

FUNCTION "+"(l: STD_LOGIC_VECTOR) RETURN STD_LOGIC_VECTOR;

FUNCTION "-"(l: STD_LOGIC_VECTOR; r: STD_LOGIC_VECTOR) RETURN

STD_LOGIC_VECTOR;

FUNCTION "-"(l: STD_LOGIC_VECTOR; r: INTEGER) RETURN STD_LOGIC_VECTOR;

FUNCTION "-"(l: INTEGER; r: STD_LOGIC_VECTOR) RETURN STD_LOGIC_VECTOR;

FUNCTION "-"(l: STD_LOGIC_VECTOR; r: STD_LOGIC) RETURN STD_LOGIC_VECTOR;

FUNCTION "-"(l: STD_LOGIC; r: STD_LOGIC_VECTOR) RETURN STD_LOGIC_VECTOR;

FUNCTION "-"(l: STD_LOGIC_VECTOR) RETURN STD_LOGIC_VECTOR;

FUNCTION "*"(l: STD_LOGIC_VECTOR; r: STD_LOGIC_VECTOR) RETURN

STD_LOGIC_VECTOR;

FUNCTION "abs"(l: STD_LOGIC_VECTOR) RETURN STD_LOGIC_VECTOR;



-------Comparison operators: ----------------------

FUNCTION "<"(l: STD_LOGIC_VECTOR; r: STD_LOGIC_VECTOR) RETURN BOOLEAN;

FUNCTION "<"(l: STD_LOGIC_VECTOR; r: INTEGER) RETURN BOOLEAN;

FUNCTION "<"(l: INTEGER; r: STD_LOGIC_VECTOR) RETURN BOOLEAN;

FUNCTION "<="(l: STD_LOGIC_VECTOR; r: STD_LOGIC_VECTOR) RETURN BOOLEAN;

FUNCTION "<="(l: STD_LOGIC_VECTOR; r: INTEGER) RETURN BOOLEAN;

FUNCTION "<="(l: INTEGER; r: STD_LOGIC_VECTOR) RETURN BOOLEAN;

FUNCTION ">"(l: STD_LOGIC_VECTOR; r: STD_LOGIC_VECTOR) RETURN BOOLEAN;

FUNCTION ">"(l: STD_LOGIC_VECTOR; r: INTEGER) RETURN BOOLEAN;

FUNCTION ">"(l: INTEGER; r: STD_LOGIC_VECTOR) RETURN BOOLEAN;

FUNCTION ">="(l: STD_LOGIC_VECTOR; r: STD_LOGIC_VECTOR) RETURN BOOLEAN;

FUNCTION ">="(l: STD_LOGIC_VECTOR; r: INTEGER) RETURN BOOLEAN;

FUNCTION ">="(l: INTEGER; r: STD_LOGIC_VECTOR) RETURN BOOLEAN;

FUNCTION "="(l: STD_LOGIC_VECTOR; r: STD_LOGIC_VECTOR) RETURN BOOLEAN;

FUNCTION "="(l: STD_LOGIC_VECTOR; r: INTEGER) RETURN BOOLEAN;

FUNCTION "="(l: INTEGER; r: STD_LOGIC_VECTOR) RETURN BOOLEAN;

FUNCTION "/="(l: STD_LOGIC_VECTOR; r: STD_LOGIC_VECTOR) RETURN BOOLEAN;

FUNCTION "/="(l: STD_LOGIC_VECTOR; r: INTEGER) RETURN BOOLEAN;

FUNCTION "/="(l: INTEGER; r: STD_LOGIC_VECTOR) RETURN BOOLEAN;

--------Shift operators:---------------------------

FUNCTION SHL(arg:STD_LOGIC_VECTOR; count:STD_LOGIC_VECTOR) RETURN

STD_LOGIC_VECTOR;

FUNCTION SHR(arg:STD_LOGIC_VECTOR; count:STD_LOGIC_VECTOR) RETURN

STD_LOGIC_VECTOR;

--------Type conversion:---------------------------

FUNCTION CONV_INTEGER(arg: STD_LOGIC_VECTOR) RETURN INTEGER;

--remove this since it is already in STD_LOGIC_arith:

--FUNCTION CONV_STD_LOGIC_VECTOR(arg:INTEGER; size:INTEGER) RETURN

STD_LOGIC_VECTOR;

END std_logic_signed;

---------------------------------------------------------------------------
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M Package textio (2002 and 2008)

The package textio is specified in section 16.4 of the IEEE 1076-2008 Standard VHDL

Language Reference Manual. The expansion introduced in VHDL 2008 includes flush,

minimum, maximum, to_string, justify, tee, and additional read and write operations, plus

a number of aliases.

-------------------------------------------------------------------------------

PACKAGE textio IS

------Type definitions for text I/O:---------------

TYPE LINE IS ACCESS STRING;

--"=", "/=", deallocate

TYPE TEXT IS FILE OF STRING;

--file_open, file_close, read, write, endfile, flush

TYPE SIDE IS (RIGHT, LEFT);

--"=", "/=", "<", "<=", ">", ">=", minimum, maximum, to_string

SUBTYPE WIDTH IS NATURAL;

FUNCTION JUSTIFY (value:STRING; JUSTIFIED:SIDE:=RIGHT; field:WIDTH:=0) RETURN

STRING;

------Standard text files:-------------------------

FILE INPUT : TEXT OPEN READ_MODE IS "STD_INPUT";

FILE OUTPUT : TEXT OPEN WRITE_MODE IS "STD_OUTPUT";

------Input routines for standard types:-----------

PROCEDURE READLINE(FILE f: TEXT; l: OUT LINE);

PROCEDURE READ(l: INOUT LINE; value: OUT BIT; good: OUT BOOLEAN);

PROCEDURE READ(l: INOUT LINE; value: OUT BIT);

PROCEDURE READ(l: INOUT LINE; value: OUT BIT_VECTOR; good: OUT BOOLEAN);

PROCEDURE READ(l: INOUT LINE; value: OUT BIT_VECTOR);

PROCEDURE READ(l: INOUT LINE; value: OUT BOOLEAN; good: OUT BOOLEAN);



PROCEDURE READ(l: INOUT LINE; value: OUT BOOLEAN);

PROCEDURE READ(l: INOUT LINE; value: OUT CHARACTER; good: OUT BOOLEAN);

PROCEDURE READ(l: INOUT LINE; value: OUT CHARACTER);

PROCEDURE READ(l: INOUT LINE; value: OUT INTEGER; good: OUT BOOLEAN);

PROCEDURE READ(l: INOUT LINE; value: OUT INTEGER);

PROCEDURE READ(l: INOUT LINE; value: OUT REAL; good: OUT BOOLEAN);

PROCEDURE READ(l: INOUT LINE; value: OUT REAL);

PROCEDURE READ(l: INOUT LINE; value: OUT STRING; good: OUT BOOLEAN);

PROCEDURE READ(l: INOUT LINE; value: OUT STRING);

PROCEDURE READ(l: INOUT LINE; value: OUT TIME; good: OUT BOOLEAN);

PROCEDURE READ(l: INOUT LINE; value: OUT TIME);

PROCEDURE SREAD(l: INOUT LINE; value: OUT STRING; STRLEN: OUT NATURAL);

PROCEDURE OREAD (l: INOUT LINE; value: OUT BIT_VECTOR; good: OUT BOOLEAN);

PROCEDURE OREAD (l: INOUT LINE; value: OUT BIT_VECTOR);

PROCEDURE HREAD (l: INOUT LINE; value: OUT BIT_VECTOR; good: OUT BOOLEAN);

PROCEDURE HREAD (l: INOUT LINE; value: OUT BIT_VECTOR);

ALIAS STRING_READ IS SREAD [LINE, STRING, NATURAL];

ALIAS BREAD IS READ [LINE, BIT_VECTOR, BOOLEAN];

ALIAS BREAD IS READ [LINE, BIT_VECTOR];

ALIAS BINARY_READ IS READ [LINE, BIT_VECTOR, BOOLEAN];

ALIAS BINARY_READ IS READ [LINE, BIT_VECTOR];

ALIAS OCTAL_READ IS OREAD [LINE, BIT_VECTOR, BOOLEAN];

ALIAS OCTAL_READ IS OREAD [LINE, BIT_VECTOR];

ALIAS HEX_READ IS HREAD [LINE, BIT_VECTOR, BOOLEAN];

ALIAS HEX_READ IS HREAD [LINE, BIT_VECTOR];

------Output routines for standard types:----------

PROCEDURE WRITELINE(FILE F : TEXT; L : INOUT LINE);

PROCEDURE TEE (FILE f: TEXT; l: INOUT LINE);

PROCEDURE WRITE(l: INOUT LINE; value: IN BIT;

JUSTIFIED: IN SIDE := RIGHT; field: IN WIDTH := 0);

PROCEDURE WRITE(l: INOUT LINE; value : IN BIT_VECTOR;

JUSTIFIED: IN SIDE := RIGHT; field: IN WIDTH := 0);

PROCEDURE WRITE(l: INOUT LINE; value: IN BOOLEAN;

JUSTIFIED: IN SIDE := RIGHT; field: IN WIDTH := 0);

PROCEDURE WRITE(l: INOUT LINE; value: IN CHARACTER;

JUSTIFIED: IN SIDE := RIGHT; field: IN WIDTH := 0);

PROCEDURE WRITE(l: INOUT LINE; value: IN INTEGER;

JUSTIFIED: IN SIDE := RIGHT; field: IN WIDTH := 0);

PROCEDURE WRITE(l: INOUT LINE; value: IN REAL;

JUSTIFIED: IN SIDE := RIGHT; field: IN WIDTH := 0; DIGITS: IN NATURAL := 0);

PROCEDURE WRITE(l: INOUT LINE; value: IN REAL; FORMAT: IN STRING;

PROCEDURE WRITE(l: INOUT LINE; value: IN STRING;

JUSTIFIED: IN SIDE := RIGHT; field: IN WIDTH := 0);
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PROCEDURE WRITE(l: INOUT LINE; value: IN TIME;

JUSTIFIED: IN SIDE := RIGHT; field: IN WIDTH := 0; UNIT: IN TIME := ns);

PROCEDURE OWRITE (l: INOUT LINE; value: IN BIT_VECTOR;

JUSTIFIED: IN SIDE := RIGHT; field: IN WIDTH := 0);

PROCEDURE HWRITE (l: INOUT LINE; value: IN BIT_VECTOR;

JUSTIFIED:IN SIDE := RIGHT; field: IN WIDTH := 0);

ALIAS SWRITE IS WRITE [LINE, STRING, SIDE, WIDTH];

ALIAS STRING_WRITE IS WRITE [LINE, STRING, SIDE, WIDTH];

ALIAS BWRITE IS WRITE [LINE, BIT_VECTOR, SIDE, WIDTH];

ALIAS BINARY_WRITE IS WRITE [LINE, BIT_VECTOR, SIDE, WIDTH];

ALIAS OCTAL_WRITE IS OWRITE [LINE, BIT_VECTOR, SIDE, WIDTH];

ALIAS HEX_WRITE IS HWRITE [LINE, BIT_VECTOR, SIDE, WIDTH];

END textio;

-------------------------------------------------------------------------------
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N Package numeric_std_unsigned (2008)

This package was introduced in VHDL 2008. It is expected to replace std_logic_unsigned

in the future. A similar package, called numeric_bit_unsigned, also exists, which defines

almost the same operators for the data types BIT and BIT_VECTOR instead of

STD_LOGIC and STD_LOGIC_VECTOR. It too was introduced in VHDL 2008.

-------------------------------------------------------------------------------

LIBRARY ieee;

USE ieee.std_logic_1164.all;

PACKAGE numeric_std_unsigned is

CONSTANT CopyRightNotice : STRING := "Copyright 2008 IEEE. All rights

reserved.";

-----Arithmetic operators:------------------------

FUNCTION "+" (l, r: STD_ULOGIC_VECTOR) RETURN STD_ULOGIC_VECTOR;

FUNCTION "+" (l: STD_ULOGIC_VECTOR; r: STD_ULOGIC) RETURN STD_ULOGIC_VECTOR;

FUNCTION "+" (l: STD_ULOGIC; r: STD_ULOGIC_VECTOR) RETURN STD_ULOGIC_VECTOR;

FUNCTION "+" (l: STD_ULOGIC_VECTOR; r: NATURAL) RETURN STD_ULOGIC_VECTOR;

FUNCTION "+" (l: NATURAL; r: STD_ULOGIC_VECTOR) RETURN STD_ULOGIC_VECTOR;

FUNCTION "-" (l, r: STD_ULOGIC_VECTOR) RETURN STD_ULOGIC_VECTOR;

FUNCTION "-" (l: STD_ULOGIC_VECTOR; r: STD_ULOGIC) RETURN STD_ULOGIC_VECTOR;

FUNCTION "-" (l: STD_ULOGIC; r: STD_ULOGIC_VECTOR) RETURN STD_ULOGIC_VECTOR;

FUNCTION "-" (l: STD_ULOGIC_VECTOR; r: NATURAL) RETURN STD_ULOGIC_VECTOR;

FUNCTION "-" (l: NATURAL; r: STD_ULOGIC_VECTOR) RETURN STD_ULOGIC_VECTOR;

FUNCTION "*" (l, r: STD_ULOGIC_VECTOR) RETURN STD_ULOGIC_VECTOR;

FUNCTION "*" (l: STD_ULOGIC_VECTOR; r: NATURAL) RETURN STD_ULOGIC_VECTOR;

FUNCTION "*" (l: NATURAL; r: STD_ULOGIC_VECTOR) RETURN STD_ULOGIC_VECTOR;

FUNCTION "/" (l, r: STD_ULOGIC_VECTOR) RETURN STD_ULOGIC_VECTOR;

FUNCTION "/" (l: STD_ULOGIC_VECTOR; r: NATURAL) RETURN STD_ULOGIC_VECTOR;

FUNCTION "/" (l: NATURAL; r: STD_ULOGIC_VECTOR) RETURN STD_ULOGIC_VECTOR;

FUNCTION "rem" (l, r: STD_ULOGIC_VECTOR) RETURN STD_ULOGIC_VECTOR;



FUNCTION "rem" (l: STD_ULOGIC_VECTOR; r: NATURAL) RETURN STD_ULOGIC_VECTOR;

FUNCTION "rem" (l: NATURAL; r: STD_ULOGIC_VECTOR) RETURN STD_ULOGIC_VECTOR;

FUNCTION "mod" (l, r: STD_ULOGIC_VECTOR) RETURN STD_ULOGIC_VECTOR;

FUNCTION "mod" (l: STD_ULOGIC_VECTOR; r: NATURAL) RETURN STD_ULOGIC_VECTOR;

FUNCTION "mod" (l: NATURAL; r: STD_ULOGIC_VECTOR) RETURN STD_ULOGIC_VECTOR;

FUNCTION find_leftmost (arg: STD_ULOGIC_VECTOR; y: STD_ULOGIC) RETURN

INTEGER;

FUNCTION find_rightmost (arg: STD_ULOGIC_VECTOR; y: STD_ULOGIC) RETURN

INTEGER;

-----Comparison operators:------------------------

FUNCTION ">" (l, r: STD_ULOGIC_VECTOR) RETURN BOOLEAN;

FUNCTION ">" (l: NATURAL; r: STD_ULOGIC_VECTOR) RETURN BOOLEAN;

FUNCTION ">" (l: STD_ULOGIC_VECTOR; r: NATURAL) RETURN BOOLEAN;

FUNCTION "<" (l, r: STD_ULOGIC_VECTOR) RETURN BOOLEAN;

FUNCTION "<" (l: NATURAL; r: STD_ULOGIC_VECTOR) RETURN BOOLEAN;

FUNCTION "<" (l: STD_ULOGIC_VECTOR; r: NATURAL) RETURN BOOLEAN;

FUNCTION "<=" (l, r: STD_ULOGIC_VECTOR) RETURN BOOLEAN;

FUNCTION "<=" (l: NATURAL; r: STD_ULOGIC_VECTOR) RETURN BOOLEAN;

FUNCTION "<=" (l: STD_ULOGIC_VECTOR; r: NATURAL) RETURN BOOLEAN;

FUNCTION ">=" (l, r: STD_ULOGIC_VECTOR) RETURN BOOLEAN;

FUNCTION ">=" (l: NATURAL; r: STD_ULOGIC_VECTOR) RETURN BOOLEAN;

FUNCTION ">=" (l: STD_ULOGIC_VECTOR; r: NATURAL) RETURN BOOLEAN;

FUNCTION "=" (l, r: STD_ULOGIC_VECTOR) RETURN BOOLEAN;

FUNCTION "=" (l: NATURAL; r: STD_ULOGIC_VECTOR) RETURN BOOLEAN;

FUNCTION "=" (l: STD_ULOGIC_VECTOR; r: NATURAL) RETURN BOOLEAN;

FUNCTION "/=" (l, r: STD_ULOGIC_VECTOR) RETURN BOOLEAN;

FUNCTION "/=" (l: NATURAL; r: STD_ULOGIC_VECTOR) RETURN BOOLEAN;

FUNCTION "/=" (l: STD_ULOGIC_VECTOR; r: NATURAL) RETURN BOOLEAN;

FUNCTION MINIMUM (l, r: STD_ULOGIC_VECTOR) RETURN STD_ULOGIC_VECTOR;

FUNCTION MINIMUM (l: NATURAL; r: STD_ULOGIC_VECTOR) RETURN STD_ULOGIC_VECTOR;

FUNCTION MINIMUM (l: STD_ULOGIC_VECTOR; r: NATURAL) RETURN STD_ULOGIC_VECTOR;

FUNCTION MAXIMUM (l, r: STD_ULOGIC_VECTOR) RETURN STD_ULOGIC_VECTOR;

FUNCTION MAXIMUM (l: NATURAL; r: STD_ULOGIC_VECTOR) RETURN STD_ULOGIC_VECTOR;

FUNCTION MAXIMUM (l: STD_ULOGIC_VECTOR; r: NATURAL) RETURN STD_ULOGIC_VECTOR;

-----Matching comparison operators:---------------

FUNCTION "?>" (l, r: STD_ULOGIC_VECTOR) RETURN STD_ULOGIC;

FUNCTION "?>" (l: NATURAL; r: STD_ULOGIC_VECTOR) RETURN STD_ULOGIC;

FUNCTION "?>" (l: STD_ULOGIC_VECTOR; r: NATURAL) RETURN STD_ULOGIC;

FUNCTION "?<" (l, r: STD_ULOGIC_VECTOR) RETURN STD_ULOGIC;

FUNCTION "?<" (l: NATURAL; r: STD_ULOGIC_VECTOR) RETURN STD_ULOGIC;

FUNCTION "?<" (l: STD_ULOGIC_VECTOR; r: NATURAL) RETURN STD_ULOGIC;

FUNCTION "?<=" (l, r: STD_ULOGIC_VECTOR) RETURN STD_ULOGIC;
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FUNCTION "?<=" (l: NATURAL; r: STD_ULOGIC_VECTOR) RETURN STD_ULOGIC;

FUNCTION "?<=" (l: STD_ULOGIC_VECTOR; r: NATURAL) RETURN STD_ULOGIC;

FUNCTION "?>=" (l, r: STD_ULOGIC_VECTOR) RETURN STD_ULOGIC;

FUNCTION "?>=" (l: NATURAL; r: STD_ULOGIC_VECTOR) RETURN STD_ULOGIC;

FUNCTION "?>=" (l: STD_ULOGIC_VECTOR; r: NATURAL) RETURN STD_ULOGIC;

FUNCTION "?=" (l, r: STD_ULOGIC_VECTOR) RETURN STD_ULOGIC;

FUNCTION "?=" (l: NATURAL; r: STD_ULOGIC_VECTOR) RETURN STD_ULOGIC;

FUNCTION "?=" (l: STD_ULOGIC_VECTOR; r: NATURAL) RETURN STD_ULOGIC;

FUNCTION "?/=" (l, r: STD_ULOGIC_VECTOR) RETURN STD_ULOGIC;

FUNCTION "?/=" (l : NATURAL; r: STD_ULOGIC_VECTOR) RETURN STD_ULOGIC;

FUNCTION "?/=" (l : STD_ULOGIC_VECTOR; r: NATURAL) RETURN STD_ULOGIC;

-----Shift operators:-----------------------------

FUNCTION "sla" (arg: STD_ULOGIC_VECTOR; count: INTEGER) RETURN

STD_ULOGIC_VECTOR;

FUNCTION "sra" (arg: STD_ULOGIC_VECTOR; count: INTEGER) RETURN

STD_ULOGIC_VECTOR;

FUNCTION SHIFT_LEFT (arg: STD_ULOGIC_VECTOR; count: NATURAL) RETURN

STD_ULOGIC_VECTOR;

FUNCTION SHIFT_RIGHT (arg: STD_ULOGIC_VECTOR; count: NATURAL) RETURN

STD_ULOGIC_VECTOR;

FUNCTION ROTATE_LEFT (arg: STD_ULOGIC_VECTOR; count: NATURAL) RETURN

STD_ULOGIC_VECTOR;

FUNCTION ROTATE_RIGHT (arg: STD_ULOGIC_VECTOR; count: NATURAL) RETURN

STD_ULOGIC_VECTOR;

-----Resize functions:----------------------------

FUNCTION RESIZE (arg: STD_ULOGIC_VECTOR; new_size: NATURAL) RETURN

STD_ULOGIC_VECTOR;

FUNCTION RESIZE (arg, size_res: STD_ULOGIC_VECTOR) RETURN STD_ULOGIC_VECTOR;

-----Type conversion:-----------------------------

FUNCTION TO_INTEGER (arg: STD_ULOGIC_VECTOR) RETURN NATURAL;

FUNCTION TO_STDLOGICVECTOR (arg, size: NATURAL) RETURN STD_LOGIC_VECTOR;

FUNCTION TO_STDLOGICVECTOR (arg: NATURAL; size_res: STD_ULOGIC_VECTOR) RETURN

STD_LOGIC_VECTOR;

FUNCTION TO_STDULOGICVECTOR (arg, size: NATURAL) RETURN STD_ULOGIC_VECTOR;

FUNCTION TO_STDULOGICVECTOR (arg: NATURAL; size_res: STD_ULOGIC_VECTOR)

RETURN STD_ULOGIC_VECTOR;

ALIAS TO_STD_LOGIC_VECTOR IS TO_STDLOGICVECTOR[NATURAL, NATURAL RETURN

STD_LOGIC_VECTOR];

ALIAS TO_SLV IS TO_STDLOGICVECTOR[NATURAL, NATURAL RETURN STD_LOGIC_VECTOR];

ALIAS TO_STD_LOGIC_VECTOR IS TO_STDLOGICVECTOR[NATURAL, STD_ULOGIC_VECTOR

RETURN STD_LOGIC_VECTOR];
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ALIAS TO_SLV IS TO_STDLOGICVECTOR[NATURAL, STD_ULOGIC_VECTOR RETURN

STD_LOGIC_VECTOR];

ALIAS TO_STD_ULOGIC_VECTOR IS TO_STDULOGICVECTOR[NATURAL, NATURAL RETURN

STD_ULOGIC_VECTOR];

ALIAS TO_SULV IS TO_STDULOGICVECTOR[NATURAL, NATURAL RETURN

STD_ULOGIC_VECTOR];

ALIAS TO_STD_ULOGIC_VECTOR IS TO_STDULOGICVECTOR[NATURAL, STD_ULOGIC_VECTOR

RETURN STD_ULOGIC_VECTOR];

ALIAS TO_SULV IS TO_STDULOGICVECTOR[NATURAL, STD_ULOGIC_VECTOR RETURN

STD_ULOGIC_VECTOR];

END PACKAGE numeric_std_unsigned;

-------------------------------------------------------------------------------
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O Reserved Words in VHDL 2008

ABS

ACCESS

AFTER

ALIAS

ALL

AND

ARCHITECTURE

ARRAY

ASSERT

ASSUME

ASSUME_GUARANTEE

ATTRIBUTE

BEGIN

BLOCK

BODY

BUFFER

BUS

CASE

COMPONENT

CONFIGURATION

CONSTANT

CONTEXT

COVER

DEFAULT

DISCONNECT

DOWNTO

ELSE

ELSIF

END

ENTITY

EXIT

FAIRNESS

FILE

FOR

FORCE

FUNCTION

GENERATE

GENERIC

GROUP

GUARDED

IF

IMPURE

IN

INERTIAL

INOUT

IS

LABEL

LIBRARY

LINKAGE

LITERAL

LOOP

MAP

MOD

NAND

NEW

NEXT

NOR

NOT

NULL

OF

ON

OPEN

OR

OTHERS

OUT

PACKAGE

PARAMETER

PORT

POSTPONED

PROCEDURE

PROCESS

PROPERTY

PROTECTED

PURE

RANGE

RECORD

REGISTER

REJECT

RELEASE

REM

REPORT

RESTRICT

RESTRICT_GUARANTEE

RETURN

ROL

ROR

SELECT

SEQUENCE

SEVERITY

SIGNAL

SHARED

SLA

SLL

SRA

SRL

STRONG

SUBTYPE

THEN

TO

TRANSPORT

TYPE

UNAFFECTED

UNITS

UNTIL

USE

VARIABLE

VMODE

VPROP

VUNIT

WAIT

WHEN

WHILE

WITH

XNOR

XOR
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� (see Arithmetic operators)
& (see Concatenation operator)
* (see Arithmetic operators)
** (see Arithmetic operators)
/ (see Arithmetic operators)
/¼ (see Comparison operators)
:¼ (see Assignment operators)
?/¼ (see Matching operators)
?< (see Matching operators)
?<¼ (see Matching operators)
?¼ (see Matching operators)
?> (see Matching operators)
?>¼ (see Matching operators)
j in CASE, 166
j in SELECT, 124
þ (see Arithmetic operators)
< (see Comparison operators)
<¼ (see Assignment operators)
<¼ (see Comparison operators)
¼ (see Comparison operators)
¼> (see Assignment operators)
> (see Comparison operators)
>¼ (see Comparison operators)

1D array, 40, 41, 64
1D� 1D array, 41, 64, 67–69
1D� 1D� 1D array, 41, 45
2D array, 40, 41, 65, 69–70
3D array, 41, 65
4D-PAM5, 375
8B/10B, 375, 409, 410, 412

About VHDL, 3
ABS (see Arithmetic operators)
ACCESS, 245, 248
'ACTIVE (see Attributes)
Active-HDL (see EDA tools)
AD7416 temperature sensor, 421
AD7991 ADC, 421
ADC, 390, 421
Adders
ALU, 127

Carry-ripple adder, 163
Compare-add circuits, 18, 21
Fixed point, 55–57
Floating point, 57–59, 149
General, 135–140
Overloaded "þ" operator, 234
Recommended fixed-point implementation, 55–57
Recommended floating-point implementation, 57–
59
Recommended std-logic implementation, 139
Address decoders
Generic, 23
Generic with GENERATE, 132
AFTER, 242, 253–258, 260, 263–264
Aldec, 5
ALIAS, 112–114
ALL, 171
Allowing multiple signal assignments, 143, 190–
193

Alphanumeric, LCD (see LCD)
Altera, 5, 495, 499, 500, 503, 525, 537, 545, 548
Altera DE2 board (see Tutorials)
Altera Quartus II (see Quartus II)
ALU, 127–129, 146
AND (see Logical operators)
APPEND_MODE, 246
ARCHITECTURE, 11, 16–17, 19–27
Arithmetic operators (see Operators)
ARRAY (see Data types)
Array 1D, 40, 41, 64
Array 1D� 1D, 41, 64, 67–69
Array 1D� 1D� 1D, 41, 45
Array 2D, 40, 41, 65, 69–70
Array 3D, 41, 65
Array slicing
Slicing a 1D� 1D array of bit vectors, 68
Slicing a 1D� 1D array of integers, 67
Slicing a 2D array of bits, 69
'ASCENDING (see Attributes)
ASSERT
ASSERT statement, 221–223, 238
ERROR, 222



ASSERT (cont.)
FAILURE, 222, 223
NOTE, 222
REPORT, 221–223
SEVERITY, 221–223
WARNING, 222
Assignment operators (see Operators)
Assignment rules (see Objects)
Attributes of named entities
E'INSTANCE_NAME, 104
E'PATH_NAME, 104
E'SIMPLE_NAME, 104
Attributes of scalar types
O'SUBTYPE, 100
T'ASCENDING, 100
T'BASE, 100
T'HIGH, 100
T'IMAGE, 100, 222–223, 237
T'LEFT, 100
T'LEFTOF, 100
T'LOW, 100
T'POS, 100
T'PRED, 100
T'RIGHT, 100
T'RIGHTOF, 100
T'SUCC, 100
T'VAL, 100
T'VALUE, 100
Attributes of signals
S'ACTIVE, 103
S'DELAYED, 103
S'DRIVING, 103
S'DRIVING_VALUE, 103
S'EVENT, 103
S'LAST_ACTIVE, 103
S'LAST_EVENT, 103
S'LAST_VALUE, 103
S'QUIET, 103
S'STABLE, 103
S'TRANSACTION, 103
Attributes of synthesis
chip_pin, 106, 107–108
enum_encoding, 106–107, 279, 292
Keep, 106, 108–109, 140–142, 148
Noprune, 106, 110–111
Preserve, 106, 109
Attributes, predefined, 99–104, 106–111
Attributes, user-defined, 104–106

'BASE (see Attributes)
BEGIN
In ARCHITECTURE, 16
In ENTITY, 15
In FUNCTION, 224
In GENERATE, 130
In PROCEDURE, 230
In PROCESS, 153
Bibliography, 595

Bidirectional bus
Implementations, 352
INOUT (see PORT modes)
Tri-state bu¤er, 50, 352
BIT (see Data types)
BIT_VECTOR (see Data types)
BLOCK, 216–217
BMP-to-RAW file converter (see Tutorials)
BOOLEAN (see Data types)
BOOLEAN_VECTOR (see Data types)
Break code (see PS2)
BUFFER (see PORT modes)

Cadence, 5
Camera link, 467
Car alarm
With bypasses prevented by additional states, 296
With bypasses prevented by flag, 293
Car speed monitor, 318
CASE
j in CASE, 166
CASE statement, 151, 165–168
CASE? statement, 172
In GENERATE (see GENERATE statement)
OTHERS in CASE, 166
TO in CASE, 166
Versus SELECT, 168–169
WHEN in CASE, 166
CGF (see Memory initialization files)
CHARACTER (see Data types)
Character representations, 8–10
CHIP_PIN (see Attributes)
Circuit with ‘‘don’t care’’ outputs, 50
CML, 375, 409–412
Code structure, 11–24
Coding guidelines, 24–27
COE (see Memory initialization files)
Combinational versus sequential circuits, 121
Comparison operators (see Operators)
COMPONENT
Declaration, 204–205
Declaration options, 205–206
Description, 203–213
File/project assembling, 205–208
GENERIC MAP, 18, 208–211
Instantiation, 204–205
Instantiation with GENERATE, 211–213
PORT MAP, 204–205, 209, 218
Composite types (see Data types)
Concatenation operator (see Operators)
Concurrent statements I
GENERATE (see GENERATE)
SELECT (see SELECT)
WHEN (see WHEN)
Concurrent statements II
ASSERT (see ASSERT)
BLOCK (see BLOCK)
COMPONENT inst. (see COMPONENT)
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PROCEDURE call (see PROCEDURE)
PROCESS (see PROCESS)
SIGNAL assignment (see Objects)
CONFIGURATION, 26, 126, 213–216
CONSTANT (see Objects)
Conversion functions (see Type conversion)
conv_integer (see Type conversion)
conv_signed (see Type conversion)
conv_std_logic_vector (see Type conversion)
conv_unsigned (see Type conversion)
CoolRunner II (see CPLDs)
Counters
Basic, 157
Count leading zeros, 164
Gray counter, 337, 349
Johnson counter, 313
One-hot counter, 313
Over registered, 187
With SHARED VARIABLE, 179
With SIGNAL and VARIABLE, 183
Zero-to-nine, 287
Zero-to-nine slow with SSD, 166
CPLDs
CoolRunner II, 495, 497, 499
CPLD devices, 495, 497, 503
MAX II, 495, 497, 499
MAX 3000, 499
XC9500, 499

DAC, 421
Data conversion (see Type conversion)
Data serializer (see Serializer)
Data types
ACCESS, 79–80
ARRAY, 62–70
Array 1D, 40, 41, 64
Array 1D� 1D, 41, 64, 67–69
Array 1D� 1D� 1D, 41, 45
Array 2D, 40, 41, 65, 69, 70
Array 3D, 41, 65
Array slicing, 66–70
Array types, 62–65
BIT, 42, 60
BIT_VECTOR, 43, 60, 76
BOOLEAN, 43–44, 60
BOOLEAN_VECTOR, 44, 60
CHARACTER, 46, 60
Composite types, 40
Enumerated array types, 64–65
Enumerated types, 61–62, 64–65
FILE (see FILE)
Fixed-point types, 54–57
FLOAT, 57–60
FLOAT32, 57
FLOAT64, 57
FLOAT128, 57
Floating-point types, 54, 57–60
INTEGER, 44–45, 60, 61, 63–64, 76

Integer array types, 63–64
Integer types, 61
INTEGER_VECTOR, 45, 60
Integer versus enumerated indexing, 65–66
NATURAL, 45, 60
POSITIVE, 45, 60
Predefined types, 41–60
Qualified types, 73–74
REAL, 46
REAL_VECTOR, 46
RECORD, 70–71
Scalar types, 61–62
SFIXED, 54–57, 60
SIGNED, 51–54, 60, 128, 135–140
Signed types, 51–54, 60, 76
Standard-logic types, 47–51, 60, 76
Standard types, 41–47, 60, 76
STD_LOGIC, 37, 47–51, 60
STD_LOGIC_VECTOR, 37, 47–51, 60, 76
STD_ULOGIC, 37, 47–51, 60
STD_ULOGIC values ('U', 'X', '0', '1', 'Z', 'W', 'L',
'H', '–'), 47
STD_ULOGIC_VECTOR, 37, 47–51, 60
STRING, 46, 60, 222–223, 237, 245–249
SUBTYPE, 71–72
Summary, 60
TIME, 242, 245, 246, 247
TIME_VECTOR, 47
TYPE, 61–66
Type classifications, 39–41
Type conversion, 74–78
UFIXED, 55–57, 60, 76
UNSIGNED, 51–54, 60, 128, 135–140
Unsigned types, 51–54, 60
User-defined array types, 62–65
User-defined enumerated array types, 64–65
User-defined integer array types, 63–64
User-defined scalar types, 60–62
User-defined types, 60–70
DDC (see VGA and DVI)
DDWG, 445
DE2 board (see Tutorials)
Dealing with files (see Simulation)
Debouncer, 174
Deferred CONSTANT (see Objects)
'DELAYED (see Attributes)
Delay line
With KEEP, 108, 140
With LCELL, 142
Deserializer (see Serializer)
Design Compiler Ultra (see EDA tools)
Design/simulation flow, 5
Design of state machines (see FSM)
Development board (see DE2 board)
DFF (see Flip-flops)
Digital (wall) clock
With LCD screen, 479
With SSDs, 337
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DIN connector, 381
Disparity, 412–417
Display resolutions
Full HD, 448
QSXGA, 448
QUXGA, 448
QXGA, 448
SVGA, 423–424, 441, 448
SXGA, 423–424, 448
UXGA, 448
VGA, 423–424, 448
WQUXGA, 448
WUXGA, 448
XGA, 423–424, 448
Divider
Division operators (see Operators)
Floating point, 149
Don’t care, 47, 50–51, 144, 172
DOWNTO/TO, 43
'DRIVING (see Attributes)
'DRIVING_VALUE (see Attributes)
DS1306 RTC, 422
DS3231 RTC, 421
D-type flip-flop (see Flip-flops)
Dual-edge DFF (see Flip-flops)
DVI
Circuit diagram, 446–448
DDC and EDID, 446–448, 450
Description, 445–465
Display resolutions, 448
DVI connectors, 449–450
DVI types, 449–450
HDMI, 450–451
HPD, 448, 450
Image generation with file and o¤-chip memory,
438–441, 444
Image generation with file and on-chip memory,
435–438, 444
Image generation with hardware, 431–435, 442–443
Image scaler, 448
PLL, 447, 454–455, 457
Serializer, 447, 460–461
Setup for the experiments, 451–452
TMDS encoder, 457–460

EDA tools
Active-HDL, 5, 242
Altera Quartus II (see Quartus II)
Design Compiler Ultra, 5
ISE/XST, 5, 241, 515–523
ISE/XST tutorial (see Tutorials)
Leonardo Spectrum, 5
ModelSim, 5, 241, 525–535
ModelSim tutorial (see Tutorials)
NC-Sim, 5, 242
Precision RTL, 5
Quartus II, 5, 241, 503–514
Quartus II tutorial (see Tutorials)

Synplify Pro/Premier, 5
VCS, 5, 241
Xilinx ISE (see ISE/XST)
EDID (see VGA and DVI)
EEPROM memory (see I2C)
'ELEMENT (see Attributes)
ELSE
In GENERATE, 144
In IF, 155
In WHEN, 123
ELSIF
In GENERATE, 144
In IF, 155
Encoding styles (see FSM encoding)
END
In ARCHITECTURE, 16
In CASE, 166
In COMPONENT, 204
In CONFIGURATION, 214
In ENTITY, 14
In FUNCTION, 224
In GENERATE, 130
In IF, 155
In LOOP, 161
In PACKAGE/BODY, 201
In PROCEDURE, 230
In PROCESS, 153
ENDFILE, 248–250, 270
ENTITY, 11, 14–16, 19–25
ENUM_ENCODING (see Attributes of synthesis)
Enumerated types (see Data types)
env (see Packages)
ERROR (see ASSERT)
'EVENT (see Attributes)
Examples
2.1 Compare-add circuit, 18
2.2 D-type flip-flop (DFF), 20
2.3 Registered comp-add circuit, 21
2.4 Generic address decoder, 23
3.1 Tri-state bu¤er, 50
3.2 Circuit with ‘don’t care’ outputs, 50
3.3 Unsigned/signed multiplier #1, 52
3.4 Unsigned/signed multiplier #2, 54
3.5 Slicing a 1D� 1D array of integers, 67
3.6 Slicing a 1D� 1D array of bit vectors, 68
3.7 Slicing a 2D array of bits, 69
3.8 Multiplexer with 1D� 1D PORT, 72
3.9 Recommended signed multiplier implementation
(for integers), 75

3.10 Legal versus illegal assignments, 79
4.1 Using Predefined Scalar Attributes, 101
4.2 DFF with several event-based attributes, 103
4.3 Specifying device pins with the chip_pin attribute,
107

4.4 Construction of a delay line with the keep
attribute, 108

4.5 Keeping redundant registers with preserve and
noprune attributes, 110
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5.1 Multiplexer implemented with operators, 122
5.2 Multiplexer implemented with WHEN and
SELECT, 125

5.3 ALU, 127
5.4 Generic address decoder with GENERATE, 132
5.5 COMPONENT instantiation with GENERATE,
133

5.6 DFF implemented with concurrent code, 134
5.7 Recommended adder/subtracter implementation,
139

5.8 Short-pulse generator with the keep attribute, 140
5.9 Short-pulse generator with the LCELL primitive,
142

6.1 DFFs with reset and clear, 155
6.2 Basic counter, 157
6.3 Shift register, 158
6.4 Carry-ripple adder, 163
6.5 Leading zeros, 164
6.6 Slow 0-to-9 counter with SSD, 166
6.7 Incomplete combinational design, 169
7.1 Counter with SHARED VARIABLE, 179
7.2 SIGNAL versus VARIABLE usage, 182
7.3 Counters with SIGNAL and VARIABLE, 183
7.4 DFF with q and qbar, 186
7.5 Over-registered counter, 187
7.6 Dual-edge flip-flop, 189
7.7 Generic Hamming weight with concurrent code,
192

8.1 PACKAGE with FUNCTION and deferred
CONSTANT, 203

8.2 Circular shift register with COMPONENT, 206
8.3 Parity detector with COMPONENT and
GENERIC MAP, 209

8.4 Shift register with COMPONENT and
GENERATE, 211

8.5 Latch implemented with a guarded BLOCK, 217
9.1 Function max in ARCHITECTURE, 226
9.2 Function order_and_ fill in PACKAGE, 227
9.3 Function slv_to_integer in ENTITY, 229
9.4 Procedure min_max in PACKAGE, 231
9.5 Overloaded "þ" operator, 234
9.6 Non-overloaded "AND" operator, 235
10.1 Writing values to a file, 236
10.2 Reading values from a file, 248
10.3 Stimuli generation, 256
10.4 Type I testbench for a registered mux, 259
10.5 Type II testbench for a registered mux, 261
10.6 Type IV testbench for a registered mux, 262
10.7 Type IV testbench with a record type, 264
10.8 Type IV testbench with a data file, 268
11.1 Vending-machine controller, 281
11.2 Glitch-free vending-machine controller, 286
11.3 Zero-to-nine counter, 287
11.4 Car alarm with bypasses prevented by a flag,
293

11.5 Car alarm with bypasses prevented by
additional states, 296

11.6 FSM with embedded timer, 301

11.7 Tra‰c-light controller, 303
11.8 Pushbutton sequence detector, 307
12.2 Basic LED/SSD/LCD driver, 322
12.3 Playing with a seven-segment display, 327
12.4 Frequency meter (with LCD), 330
12.5 Digital clock (with SSDs), 337
12.6 Quick-finger game (with LEDs and SSDs), 340
12.7 Other designs with basic displays, 345
13.2 Implementing bidirectional buses, 352
13.4a ROM implemented with regular VHDL code,
358
13.4b ROM implemented with an initialization file,
360
13.4c ROM implemented with a vendor-specific
function, 361
13.5a RAM implemented with regular VHDL code,
363
13.5b RAM implemented with a vendor-specific
function, 365
13.5c RAM implemented in a user SRAM block, 366
13.6 External memory interfaces, 368
14.2a Design of a fast serializer, 379
14.3a Design of a PS2 keyboard interface, 384
14.4a Design of an I2C interface for an EEPROM
memory, 390
14.5a Design of an SPI interface for an FRAM
memory, 402
14.6a Design of a TMDS encoder, 414
15.9 Hardware-Generated Image, 431
15.10 Image Generation with a File and On-Chip
Memory, 435
15.11 Arbitrary Image Generation with a File and
O¤-Chip Memory, 438
15.12 Image Equalization with Gamma Expansion,
441
16.7 Hardware-Generated Image, 452
17.4 Hardware-Generated Image, 472
17.5 Hardware-Generated Image with Characters,
479

EXIT (see LOOP)

FAILURE (see ASSERT)
FILE, 35, 80, 245–249
FILE_OPEN_KIND, 246
FILE_OPEN_STATUS, 246
Finite state machines (see FSM)
fixed_float_types (see Packages)
fixed_generic_pkg (see Packages)
fixed_pkg (see Packages)
Fixed-point adder/multiplier, 56–57
Fixed-point types (see Data types)
Flash memory, 421
Flip-flops
Basic DFF, 20–21
DFF, 20–22, 103–104, 110, 134–135, 152–153, 155–
160, 181–182, 185–190, 206–208, 211–213, 278,
313–315
DFF with clear, 153, 160
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Flip-flops (cont.)
DFF with q and qbar, 186
DFF with reset, 153
DFF with several event-based attributes, 103–104
Dual-edge, 187–190
From concurrent code, 134–135
Inference of flip-flops, 181–182, 185–188, 313–315
Keeping redundant registers with PRESERVE and
NOPRUNE, 110
Number of flip-flops, 281, 292, 304, 313, 317, 313–315
Setup/hold times, 330, 336
FLOAT (see Data types)
float_generic_pkg (see Packages)
Floating-point adder/multiplier, 57–59
Floating-point adder/subtracter/multiplier/divider, 150
Floating-point types (see Data types)
float_pkg (see Packages)
FOR
In CONFIGURATION, 214
In GENERATE, 130
In LOOP, 161
In WAIT, 159
FPD-Link
Description, 467–492
Digital clock on LCD screen, 479–490
Display LB104S01, 468
Display resolutions, 424, 448
Display SFA-104A, 468
FPD-Link encoder, 468–470
Image generation with file and o¤-chip memory, 492
Image generation with file and on-chip memory,
491–492
Image generation with hardware, 472–490, 491
Image with characters, 479–490
LCD display, 467–468
LDI, 467
LVDS, 467, 469, 471
Native display resolution, 468
PLL, 474–476
Serializer, 470, 476
Setup for the experiments, 470–471
FPGAs
ALM, 499
CLB, 499
FPGA devices, 496, 499–501, 503, 538
LAB, 499
Slice, 499
Stratix IV, 500
Virtex, 6 500
FRAM memory (see SPI)
Frequency divider, 197
Frequency meter, 175, 220, 330–337, 347
FSM (see specific FSM field)
FSM design
Design of basic FSMs, 279–289
Design of complex/timed FSMs, 292–298, 298–312
Encoding styles (see FSM encoding)
FSM block diagram, 278

FSMs with repetitive states, 312
Glitch-free FSMs, 278–279, 281–282, 286, 288, 314,
315

Golden design rules, 281
Hardware representation (see FSM models)
Models (see FSM models)
State-bypass problem in FSMs, 292–298, 301, 308,
315, 316

State transition diagram (see FSM models)
VHDL template for basic FSMs, 279–280
VHDL template for complex/timed FSMs, 299–300
FSM encoding
ENUM_ENCODING (see Attributes of synthesis)
Gray encoding, 291–292, 313
Johnson encoding, 291, 313
One-hot encoding, 291–292, 304, 313, 314, 317
Sequential encoding, 291–292, 294, 296, 301, 304,
309

User-defined encoding, 292
FSM models
Conditional-only FSMs, 298–299
Conditional-timed FSMs, 298–299
Model for the hardware, 277–278
Poor FSM model, 289–291
State transition diagram, 277–278, 282, 287
Timed-only FSMs, 298–299
Full HD (see Display resolutions)
FUNCTION
Call, 225
Construction, 224–225, 238–239
Description, 223–230, 237
Function slv_to_integer, 229–230
IMPURE, 224, 226
In ARCHITECTURE, 226–227
In ENTITY, 229–230
In PACKAGE, 227–229
integer_to_lcd, 323–325, 331, 333
integer_to_ssd, 323–325, 337–340
max, 226–227
Non-overloaded "AND" operator, 235–237
order_and_fill, 227–229
Overloaded "þ" operator, 234–235
Overloading, 233–237
PURE, 224, 226
RETURN, 224
Versus PROCEDURE, 233
Fundamental VHDL units, 11–12

GAL (see SPLDs)
GENERATE
CASE in GENERATE, 144
Conditional, 130
ELSE/ELSIF in GENERATE, 144
FOR, 130
GENERATE statement, 129–134, 144, 146
IF in GENERATE, 130, 144
IN in GENERATE, 130
Unconditional, 130
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GENERIC, 15–16, 17–18, 25–28, 132, 204, 209
GENERIC MAP (see COMPONENT)
Geometric game clock, 341
Glitch-free state machines (see FSM design)
Gray code (see FSM encoding)
Gray counter, 337, 349–350
GROUP, 111–112
Guarded BLOCK, 217
Guarded SIGNAL (see Objects)

Hamming weight calculator, 192
HD44780U microcontroller, 320
HDMI (see DVI)
HEX (see Memory initialization files)
'HIGH (see Attributes)
HPD (see DVI)

I2C
Description, 388–399
EEPROM AT24C02B, 390
Interface design for EEPROM, 390–399
Interface for ADC, 421
Interface for RTC, 421
Interface for temperature sensor, 421
IEEE library, 12–13
IF
ELSE/ELSIF, 155
IF statement, 151, 154–159
In GENERATE (see GENERATE statement)
THEN, 155
Illegal assignments, 78–79
'IMAGE (see Attributes)
Image generators
For DVI (see DVI)
For FPD-Link (see FPD-Link)
For VGA (see VGA)
Image scaler (see DVI)
Implementing arithmetic circuits with operators, 135–

140
Implementing bidirectional buses, 352
Implementing combinational circuits with sequential

code, 169–171
Implementing sequential circuits with concurrent code,

134–135
IMPURE (see FUNCTION)
IN
In GENERATE, 130
In LOOP, 161
In PORT (see PORT modes)
In subprograms (see PORT modes)
Inference of flip-flops (see Flip-flops)
Inference of registers (see Flip-flops)
INOUT (see PORT modes)
'INSTANCE_NAME (see Attributes)
INTEGER (see Data types)
integer_to_lcd (see FUNCTION)
integer_to_ssd (see FUNCTION)
Integer types (see Data types)

INTEGER_VECTOR (see Data types)
IPCA8563 RTC, 421
IS
In ARCHITECTURE, 16
In COMPONENT, 204
In CONFIGURATION, 214
In ENTITY, 14
In FUNCTION, 224
In PACKAGE (BODY), 201
In PROCEDURE, 230
In PROCESS, 154
ISE/XST (see EDA tools)
ISE/XST tutorial (see Tutorials)

Johnson code (see FSM encoding)
Johnson counter, 313

KEEP (see Attributes of synthesis)
Keyboard encoding (see PS2)

'LAST_ACTIVE (see Attributes)
'LAST_EVENT (see Attributes)
'LAST_VALUE (see Attributes)
Latches, 152–153, 166, 169, 172
LCD alphanumeric
Alphanumeric display, 320–321
Frequency meter with LCD, 330–337
HD44780U microcontroller, 320
LCD, 319–327, 330–335, 346–348
LCD driver, 322–327
LCD screen
Designs with LCD screen (see DVI and FPD-Link)
Digital clock on LCD screen (see FPD-Link)
LB104S01 display, 468
LCD monitor, 445–446, 467–468
Monitor resolutions (see Display resolutions)
Native display resolution, 468
SFA-104A display, 468
LCELL primitive, 142
LDI (see FPD-Link)
LED
Description, 319–320
LED driver, 322
Pushbutton sequence detector (with LED), 307–311
Quick-finger game (with LED), 340–345
Tra‰c-light controller (with LED), 303
'LEFT (see Attributes)
'LEFTOF (see Attributes)
Legal assignments, 78–79
Legal versus illegal assignments, 78–79
'LENGTH (see Attributes)
Leonardo Spectrum (see EDA tools)
Libraries
ieee, 12–13
std, 12
work, 13
Library declarations, 13–14
Light emitting diode (see LED)
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LINE, 245–250
Line codes, 375, 409
Liquid crystal display (see LCD)
LM75A temperature sensor, 421
Logical operators (see Operators)
LOOP
LOOP statement, 151, 161–165
LOOP with EXIT, 161–162, 165
LOOP with FOR, 161–164
LOOP with NEXT, 162–163
LOOP with WHILE, 161–162, 172
Unconditional, 162
'LOW (see Attributes)
Low-pixel format, 448
LVCMOS, 375, 411, 452
LVDS, 375, 467, 469, 471

Macrofunctions (see Tutorials)
Main properties of SIGNAL, 151–152
Main properties of VARIABLE, 152
Make code (see PS2)
Making multiple signal assignments, 190–193
Matching operators (see Operators)
MAX II (see CPLDs)
MAX1242 ADC, 421
MAX 3000 (see CPLDs)
MAXIMUM (see Operators)
Memory
EEPROM (see I2C)
Flash, 421
FRAM (see SPI)
RAM (see RAM)
ROM (see ROM)
SRAM (see RAM)
Memory initialization files
CGF file, 354–355, 372
COE file, 354–355, 372
HEX file, 354, 356, 360–361, 372
MIF file, 354, 360–362, 372
Mentor Graphics, 5, 525
Metastable states, 330, 336
MIF (see Memory initialization files)
MINIMUM (see Operators)
MLT-3, 375
MOD (see Arithmetic operators)
ModelSim (see EDA tools)
ModelSim tutorial (see Tutorials)
Mouse encoding (see PS2)
Multiple ENTITY-ARCHITECTURE pairs (see
CONFIGURATION)

Multiple signal assignments, 143, 190–193
Multiplexers
With 1D� 1D PORT, 72
With COMPONENTand GENERATE, 133
With operators, 122
With WHEN and SELECT, 125
Multipliers
Fixed point, 55–57

Floating point, 57–59, 150
Recommended signed, 75, 148
Recommended unsigned, 148
Unsigned/signed, 52–54, 75, 148

NAND (see Logical operators)
Native display resolution, 468
NATURAL (see Data types)
NC-Sim (see EDA tools)
NEW, 80, 218
NEXT (see LOOP)
Non-overloaded AND operator (see FUNCTION)
NOPRUNE (see Attributes)
NOR (see Logical operators)
NOT (see Logical operators)
NOTE (see ASSERT)
NOW, 242, 253, 264
NULL, 80, 166, 169
Number of flip-flops (see Flip-flops)
Number representations, 8–10
numeric_bit (see Packages)
numeric_bit_unsigned (see Packages)
numeric_std (see Packages)
numeric_std_unsigned (see Packages)

Objects
Assignment operators (see Operators)
Assignment rules, 78–79
CONSTANT, 32
Deferred CONSTANT, 32–33, 203
FILE (see FILE)
Guarded SIGNAL, 178
Inference of registers, 181–182, 185–190
Legal versus illegal assignments, 78–79
Multiple signal assignments, 190–193
Properties of SIGNAL, 151–152, 180–182
Properties of VARIABLE, 152, 180–182
Resolved SIGNAL, 178
SHARED VARIABLE, 179–180
SIGNAL, 33–34, 151–152, 177–178, 180–190
SIGNAL versus VARIABLE, 180–190
VARIABLE, 34–35, 152, 178–190
OF
In ARCHITECTURE, 16
In ARRAY, 43–48, 62–63
In ATTRIBUTE, 104–107
In CONFIGURATION, 214
In FILE, 35
ON (see WAIT)
One-hot code (see FSM encoding)
One-hot counter, 313
Operators
Arithmetic operators (þ, �, *, /, **, ABS, MOD,
REM), 93–94, 114

Assignment operators (<¼, :¼, ¼>), 92
Comparison operators (¼, /¼, <, >, <¼, >¼), 94,
114

Concatenation operator (&), 96
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Logical operators (NOT, AND, NAND, OR, NOR,
XOR, XNOR), 92–93, 114

Matching operators (?¼, ?/¼, ?<, ?>, ?<=, ?>¼),
96–97, 114

MAXIMUM, 97, 115
MINIMUM, 97, 115
Overloaded operators, 74, 98, 233–237
Overloading, 74, 98, 233–237
Predefined operators, 91–98
Shift operators (SLL, SRL, SLA, SRA, ROL, ROR),
95, 114

Summary, 97–98
TO_HSTRING, 97, 115
TO_OSTRING, 97, 115
TO_STRING, 97, 115
User-defined operators, 98
Using operators, 122–123
OR (see Logical operators)
OTHERS
Description, 33, 92, 96, 124, 166
In CASE, 166
In SELECT, 124
OUT (see PORT modes)
Overloaded "þ" operator (see FUNCTION)
Overloaded operators (see Operators)
Overloading (see Operators)
Over-registered counter, 187

PACKAGE
Declarations, 13–14
Description, 201–203, 206, 212, 218
With FUNCTION, 323–324
PACKAGE BODY, 201–203, 218
Packages
env, 12
fixed_float_types, 36, 55, 57, 58
fixed_generic_pkg, 36, 55
fixed_pkg, 12, 36, 39, 55, 58, 60
fixed_pkg compatible, 55
float_generic_pkg, 36, 57
float_pkg, 13, 36, 39, 57, 58, 60
float_pkg compatible, 58
numeric_bit, 12, 36, 60
numeric_bit_unsigned, 12, 36, 39, 60
numeric_std, 12, 36, 38, 60, 563–576
numeric_std_unsigned, 12, 36, 39, 60, 589–592
standard, 12, 36–37, 60, 551–554
std_logic_1164, 12, 36, 37, 60, 555–562
std_logic_arith, 13, 36, 38, 60, 577–581
std_logic_signed, 13, 36, 38, 60, 583–584
std_logic_unsigned, 13, 36, 38, 60
textio, 12, 36, 39, 585–587
PAL (see SPLDs)
Parity bit, 381, 383
Parity detector, 209
Parity generator, 145
'PATH_NAME (see Attributes)
PCF8591 ADC, 421

PECL, 375
PLA (see SPLDs)
Playing with an SSD, 327–330
PLL, 376–380, 447, 454, 474, 547–550
PORT, 14–16, 19–25
PORT arrays, 72–73
PORT MAP (see COMPONENT)
PORT modes
BUFFER, 14–15
IN, 14–15
INOUT, 14–15
OUT, 14–15
'POS (see Attributes)
POSITIVE (see Data types)
Precision RTL (see EDA tools)
'PRED (see Attributes)
Predefined attributes, 99–104, 106–111
Predefined operators (see Operators)
Predefined types (see Data types)
PRESERVE (see Attributes)
Preventing combinational-logic simplification, 140–
143

PROCEDURE
Description, 230–233, 237–238
In PACKAGE, 223–231
min_max, 231–233
Versus FUNCTION, 233
PROCESS, 151, 153–154, 156–161, 164–171
Properties of SIGNAL (see Objects)
Properties of VARIABLE (see Objects)
PS2
Break code, 383, 385
Design of keyboard interface, 384–388
Keyboard encoding, 383
Make code, 381, 383, 385, 387
Mouse encoding, 383–384
PS2 interface, 380–388, 420
Scan code set, 383
PURE (see FUNCTION)
Pushbutton sequence detector, 307, 317

QSXGA (see Display resolutions)
Qualified types (see Data types)
Quartus II (see EDA tools)
Quartus II tutorial (see Tutorials)
Quick-finger game (with LEDs/SSDs), 340–345, 347
'QUIET (see Attributes)
QUXGA (see Display resolutions)
QXGA (see Display resolutions)

RAM
Description, 351–352, 362–371
Implemented in user SRAM blocks, 366–368
Implemented with regular code, 363–365
Implemented with vendor-specific function, 365–366
IS61LV25616 SRAM, 368
SRAM blocks, 351, 363, 365–368
SRAM interface, 368–371
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'RANGE (see Attributes)
READ, 248–250, 268, 270
Reading files (see Simulation)
READ_MODE, 246, 248, 270
REAL (see Data types)
Real time clock (see RTC)
REAL_VECTOR (see Data types)
RECORD (see Data types)
REM (see Arithmetic operators)
REPORT (see ASSERT)
Representations for numbers and characters, 8–10
Reserved VHDL words, 593
Resolved SIGNAL (see Objects)
RETURN (see FUNCTION)
'REVERSE_RANGE (see Attributes)
'RIGHT (see Attributes)
'RIGHTOF (see Attributes)
ROL (see Shift operators)
ROM
Description, 351–352, 354, 357–362, 370, 372
Implemented with initialization file, 360–361
Implemented with regular code, 358–360
Implemented with vendor-specific function, 361–362
ROR (see Shift operators)
RTC, 388, 400, 401, 421
Running disparity, 412–417

Scalar types (see Data types)
Scan code set (see PS2)
SDF file, 241, 245, 253, 261, 267
SELECT
j in SELECT, 124
OTHERS in SELECT, 124
SELECT statement, 124–129, 143, 168–169
SELECT? statement, 143
TO in SELECT, 124
Versus CASE, 168–169
WHEN in SELECT, 124
WITH in SELECT, 124
Sensitivity list (see PROCESS)
Sequential encoding (see FSM encoding)
Serializers
Data deserializers, 378, 420
Data serializers, 376–380, 419–420, 447, 460, 470,
476
Deserializer circuit, 378
Design of fast serializer, 379–380
Serializer circuits, 376–380
Setup/hold times (see Flip-flops)
Seven segment display (see SSD)
SEVERITY (see ASSERT)
SFIXED (see Data types)
SHARED VARIABLE (see Objects)
Shift operators (see Operators)
Shift registers
Basic, 158
With COMPONENT, 206
With COMPONENT and GENERATE, 211

Short-pulse generators
With KEEP, 140
With LCELL, 142
SIDE, 245, 248
SIGNAL (see Objects)
Signal generator, 174, 175, 176, 220, 314, 315
SIGNAL versus VARIABLE (see Objects)
SIGNED (see Data types)
signed (see Type conversion)
Signed types (see Data types)
'SIMPLE_NAME (see Attributes)
Simulation
Automated functional simulation (see Type III
testbench)

Automated timing simulation (see Type IV
testbench)

Dealing with files, 245–250
Design file (for simulation), 244–245, 259, 265, 268
Full-bench (see Type IV testbench)
Functional simulation, 252
Graphical simulation, 243–244, 251–253
Manual functional simulation (see Type I testbench)
Manual timing simulation (see Type II testbench)
Postsynthesis file, 245
Reading data from files, 248–250
RTL, 4, 241, 242
SDF file (see SDF)
Simulation with testbenches, 241–275
Stimulus generation, 253–257
Template for testbenches, 257–258
Testbenches with data files, 267–270
Testbenches with record types, 264–267
Test file (for simulation), 244, 245, 259, 262, 264–
265, 268

Timing simulation, 253
Tools (see EDA tools)
Type I testbenches, 243–245, 258–261
Type II testbenches, 243–245, 261
Type III testbenches, 243–245, 261–262
Type IV testbenches, 243–245, 262–270
Writing data to files, 245–247
SLA (see Shift operators)
SLL (see Shift operators)
Softwares (see EDA tools)
SPI
Description, 399–409
FRAM FM25L512, 401
Interface design for FRAM, 402–409
Interface for ADC, 421
Interface for flash memory, 421
Interface for FRAM, 421
Interface for RTC, 422
SPLDs
GAL devices, 495, 497
PAL devices, 495–497
PLA devices, 495–497
SPLD devices, 495–496
SRA (see Shift operators)
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SRAM (see RAM memory)
SRL (see Shift operators)
SSD
Description, 319–320
Digital clock (with SSD), 337–340
One-digit timer (with SSD), 166–168
Playing with an SSD, 327–330
Quick finger game (with SSD), 340–345
SSD driver, 322
Two-digit timer (with SSD), 174
'STABLE (see Attributes)
standard (see Packages)
Standard-logic types (see Data types)
Standard types (see Data types)
Start bit, 375, 381–385
State machines (see FSM)
State transition diagram (see FSM models)
std library, 12
STD_LOGIC (see Data types)
std_logic_1164 (see Packages)
std_logic_arith (see Packages)
std_logic_signed (see Packages)
std_logic_unsigned (see Packages)
STD_LOGIC_VECTOR (see Data types)
std_logic_vector (see Type conversion)
STD_ULOGIC (see Data types)
STD_ULOGIC_VECTOR (see Data types)
Stimulus generation (see Simulation)
Stop bit, 375, 381–385
Stratix IV (see FPGAs)
STRING (see Data types)
Subtracter (see Adders)
SUBTYPE (see Data types)
'SUBTYPE (see Attributes)
'SUCC (see Attributes)
SVGA (see Display resolutions)
SXGA (see Display resolutions)
Synchronizer, 330, 336, 349
Synopsys/Synplicity, 5
Synplify Pro/Premier (see EDA tools)
Synthesis attributes (see Attributes)
Synthesis tools (see EDA tools)

Tapped delay line, 220
Temperature sensor, 388, 421
Templates for state machines (see FSM design)
Testbenches (see Simulation)
TEXT, 245–249, 270
textio (see Packages)
THEN (see IF)
TIME (see Data types)
Timer, 166, 174, 347–348
TIME_VECTOR (see Data types)
TMDS
Description, 409–419, 422
Disparity, 412–417
Encoding algorithm, 412–414
Implementation, 414–419

TO
In CASE, 166
In GENERATE, 131
In LOOP, 162
In SELECT, 124
In type ranges (TO/DOWNTO), 32, 33, 44
to_bitvector (see Type conversion)
to_ float (see Type conversion)
TO_HSTRING (see Operators)
to_integer (see Type conversion)
Tools (see EDA tools)
TO_OSTRING (see Operators)
to_sfixed (see Type conversion)
to_signed (see Type conversion)
to_slv (see Type conversion)
to_stdlogicvector (see Type conversion)
TO_STRING (see Operators)
to_ufixed (see Type conversion)
to_unsigned (see Type conversion)
Tra‰c-light controller, 303
'TRANSACTION (see Attributes)
Tri-state bu¤er
Basic, 50
Bidirectional bus, 352
INOUT (see PORT modes)
TTL 375
Tutorials
BMP-to-RAW file converter, 545–546
DE2 board, 537–543
ISE/XST, 515–523
Macrofunctions, 547–550
ModelSim, 525–535
Quartus II, 503–514
TYPE (see Data types)
Type casting (see Type conversion)
Type classifications (see Data types)
Type conversion
Automatic conversion, 75
conv_integer, 76
conv_signed, 76
conv_std_logic_vector, 76
conv_unsigned, 76
signed, 75–78
std_logic_vector, 75–78
Summary, 76
to_bitvector, 76
to_float, 76
to_integer, 76
to_sfixed, 76
to_signed, 76
to_slv, 76
to_stdlogicvector, 76
to_ufixed, 76
to_unsigned, 76
Type casting, 75
unsigned, 76
Type I testbenches (see Simulation)
Type II testbenches (see Simulation)
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Type III testbenches (see Simulation)
Type IV testbenches (see Simulation)
Types (see Data types)
Types summary (see Data types)

UFIXED (see Data types)
UNAFFECTED, 124–125, 169, 172
UNSIGNED (see Data types)
unsigned (see Type conversion)
UNTIL (see WAIT)
User-defined attributes, 104–106
User-defined encoding (see FSM encoding)
User-defined operators (see Operators)
User-defined types, 61–70
Using operators (see Operators)
UXGA (see Display resolutions)

'VAL (see Attributes)
'VALUE (see Attributes)
VARIABLE (see Objects)
VCS (see EDA tools)
Vending machine
Basic, 281
Glitch free, 286
Versions (see VHDL versions)
VESA, 424
VGA
Circuit diagram, 426–427
Control signals, 428–429
DDC and EDID, 425–426
Description, 423–444
Display resolutions, 424, 448
Gamma expansion, 441
Image generation with file and o¤-chip memory,
438–441, 444
Image generation with file and on-chip memory,
435–438, 444
Image generation with hardware, 431–435, 442–443
Setup for the experiments, 430
Sync-on-green, 423
VGA connector, 424–425
VGA monitor, 423–424
VHDL
2008, 27, 80, 114, 143, 171, 218, 237, 551, 557, 567,
585, 589, 592, 595
Attributes (see Attributes)
Code structure, 11–24
Libraries (see Libraries)
Objects (see Objects)
O‰cial documents, 3–4
Operators (see Operators)
Packages (see Packages)
For simulation (see Simulation)
Softwares (see EDA tools)
Syntax, 8
Template for state machines (see FSM design)
Types (see Data types)
Versions, 3–4

Video interfaces (see VGA, DVI, FPD-Link)
Virtex 6 (see FPGAs)

WAIT
WAIT FOR, 159–160, 242, 253–257
WAIT ON, 159–160
WAIT statement, 151, 159–160
WAIT UNTIL, 159–160
Wall clock (see Digital clock)
WARNING (see ASSERT)
WHEN
In CASE (see CASE statement)
ELSE in WHEN, 123
In SELECT (see SELECT statement)
WHEN statement, 121, 123–124, 125–126, 143
WHILE (see LOOP)
WIDTH, 245, 248
WITH (see SELECT)
work library, 13
WQUXGA (see Display resolutions)
WRITE, 245, 247
WRITELINE, 246–247
WRITE_MODE, 245–247
Writing to files (see Simulation)
WUXGA (see Display resolutions)

XC9500 (see CPLDs)
XGA (see Display resolutions)
Xilinx, 5, 495, 499, 500, 515
Xilinx ISE (see ISE/XST)
XNOR (see Logical operators)
XOR (see Logical operators)
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