

Raspberry Pi Computer Vision
Programming

Design and implement your own computer vision
applications with the Raspberry Pi

Ashwin Pajankar

BIRMINGHAM - MUMBAI

Raspberry Pi Computer Vision Programming

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: May 2015

Production reference: 1250515

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78439-828-6

www.packtpub.com

www.packtpub.com

Credits

Author
Ashwin Pajankar

Reviewers
James Allen

Arush Kakkar

Luis A. Larco

Fred Stakem

Aldo Vargas

Commissioning Editor
Amit Ghodake

Acquisition Editor
Llewellyn Rozario

Content Development Editor
Merwyn D'souza

Technical Editor
Edwin Moses

Copy Editors
Puja Lalwani

Vedangi Narvekar

Project Coordinator
Nikhil Nair

Proofreaders
Stephen Copestake

Safis Editing

Indexer
Priya Sane

Graphics
Sheetal Aute

Disha Haria

Production Coordinator
Shantanu Zagade

Cover Work
Shantanu Zagade

About the Author

Ashwin Pajankar is a Bangalore-based software professional with more than
5 years of experience in software design, development, testing, and automation.
He graduated from IIT Hyderabad with an MTech degree in computer science
and engineering. He holds multiple professional certifications from Oracle, IBM,
Teradata, and ISTQB in development, databases, and testing. Apart from work, he
enjoys serving the community. He has won several awards in college through college
outreach initiatives and at work for community service through his employers
for corporate social responsibility programs. He was introduced to the Raspberry
Pi while organizing a hackathon at his workplace, and he's been hooked on to Pi
ever since. He writes plenty of code in Bash, Python, and Java on his cluster of Pi.
Currently, he's building India's biggest cluster of the recently launched Raspberry
Pi 2. He's reviewed two other titles related to Python from Packt and is working on
another book on Raspberry Pi.

You can view Ashwin's LinkedIn profile by visiting in.linkedin.com/in/
ashwinpajankar.

I would like to thank my wife, Kavitha, for motivating me to
write this book to share my knowledge with others. I would also
like to thank Merwyn D'Souza and Llewellyn Rozario from Packt
Publishing for providing me with the opportunity, guidance, and
necessary support to write this book. Last but not least, I would like
to thank all the reviewers who helped me make the book better by
providing their precious feedback.

in.linkedin.com/in/ashwinpajankar
in.linkedin.com/in/ashwinpajankar

About the Reviewers

James Allen is a computer scientist and a teacher whose experiences run the gamut
from web and application programming to graphic design and sound engineering.
If a form of media can be produced on a computer, there is a very good chance that
he has dabbled in something along those lines.

He is very interested in the enabling factor of technology and how advancements
in personal computers and handheld devices have opened up a wide variety
of activities to a big chunk of the population. He is especially interested in
opening up these activities further. Above all, he wants to be happy and bring
happiness to others. You can read more about his (mis)adventures by visiting
http://jamesmallen.net.

Arush Kakkar is a robotics enthusiast who has experience in computer
vision, machine learning, and hardware technologies. His primary focus is
on autonomous robotics, which includes drones and self-driving cars. He has
contributed to the development of these systems in different capacities, including
computer vision and path planning. He is the electronics engineer for the solar car
team of his university, DTU Solaris. He is also interested in building commercial
solutions in robotics to reduce the manual labor required in jobs. You can contact
him through his website, www.arushkakkar.com, and read about some of his
projects on http://blog.arushkakkar.com.

www.arushkakkar.com
http://blog.arushkakkar.com

Luis A. Larco is a software engineer at GE Healthcare in Milwaukee, Wisconsin,
as well as a research associate at the Medical Imaging Research Center (MIRC) at
the Illinois Institute of Technology in Chicago, Illinois. Originally from Lima, Peru,
Luis was raised in Miami, Florida, where he attended high school and college. He
subsequently relocated to Illinois and studied at the Illinois Institute of Technology.
He received bachelor’s degrees in electrical engineering and computer engineering.
While studying for his undergraduate degree, he worked on a research project
with the Chicago Police Department on predictive policing. In his free time, he
enjoys performing with his jazz band, where he plays the bass, as well as hiking
and mountain biking.

Aldo Vargas is a mechatronics engineer who graduated from UNAM in Mexico
City. He has previously worked in the robotics industry. He is currently completing
his PhD in aerospace engineering from the University of Glasgow, United
Kingdom. He is developing GNC (guidance, navigation, and control) algorithms for
unmanned aerial systems. The research aim is to give UAS the ability to "see" using
advanced and practical computer vision algorithms programmed in Python. He has
academic and industrial experience in control systems, embedded systems, artificial
intelligence, machine learning, computer vision, robotics, and systems integration.

Aldo loves to design, build, and control drones at work and during his free time.
He also enjoys scuba diving, skydiving, and riding motorcycles. If you're interested
in knowing more about his work, you can visit http://aldux.net.

http://aldux.net

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.com
and as a print book customer, you are entitled to a discount on the eBook copy. Get in
touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print, and bookmark content
•	 On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com

[i]

Table of Contents
Preface	 v
Chapter 1: Introduction to Computer Vision and Raspberry Pi	 1

Computer vision	 1
OpenCV	 2
Single-board computers and the Raspberry Pi	 4

Raspberry Pi	 4
Operating systems	 5

Raspbian	 6
Setting up your Raspberry Pi B+	 7

Preparing your microSD card manually	 9
Booting up your Raspberry Pi for the first time	 11
Shutting down and rebooting your Pi safely	 12

Preparing your Pi for computer vision	 13
Testing OpenCV installation with Python	 15

NumPy	 16
Array creation	 16
Basic operations on arrays	 17
Linear algebra	 17

Summary	 18
Chapter 2: Working with Images, Webcams, and GUI	 19

Running Python programs with Raspberry Pi	 19
Working with images	 22

Using matplotlib	 24
Drawing geometric shapes	 26
Working with trackbar and named window	 28
Working with a webcam	 30

Creating a timelapse sequence using fswebcam	 32
Webcam video recording and playback	 34

Table of Contents

[ii]

Working with a webcam using OpenCV	 34
Saving a video and playback of a video using OpenCV	 36

Working with the Pi camera module	 37
Using raspistill and raspivid	 37
Using picamera in Python with the Pi camera module	 38
picamera and OpenCV	 39
Summary	 39

Chapter 3: Basic Image Processing	 41
Retrieving image properties	 41
Arithmetic operations on images	 42

Blending and transitioning images	 45
Splitting and merging image colour channels	 47

Creating a negative of an image	 48
Logical operations on images	 50

Exercise	 51
Summary	 52

Chapter 4: Colorspaces, Transformations, and Thresholds	 53
Colorspaces and conversions	 53
Tracking in real time based on color	 56
Image transformations	 58

Scaling	 58
Translation, rotation, and affine transformation	 59
Perspective transformation	 64

Thresholding image	 66
Otsu's method	 68

Exercise	 69
Summary	 70

Chapter 5: Let's Make Some Noise	 71
Noise	 71

Introducing noise to an image	 72
Kernels	 74
2D convolution filtering	 74
Low-pass filtering	 76

Exercise	 79
Summary	 79

Table of Contents

[iii]

Chapter 6: Edges, Circles, and Lines' Detection	 81
High-pass filters	 81
Canny Edge detector	 85
Hough circle and line transforms	 86
Exercise	 90
Summary	 90

Chapter 7: Image Restoration, Quantization, and Depth Map	 91
Restoring images using inpainting	 91
Image segmentation	 93

Mean shift algorithm based segmentation	 94
K-means clustering and image quantization 	 95

Comparison of mean shift and k-means	 98
Disparity map and depth estimation	 98
Summary	 99

Chapter 8: Histograms, Contours, Morphological
Transformations, and Performance Measurement	 101

Image histograms	 101
Image contours	 104
Morphological transformations on image	 106
OpenCV performance measurement and improvement	 107
Summary	 108

Chapter 9: Real-life Computer Vision Applications	 109
Barcode detection	 109
Motion detection and tracking	 117
Hand gesture recognition	 121
Chroma key with green screen	 126
Summary	 132

Chapter 10: Introduction to SimpleCV	 133
SimpleCV and its installation on Raspberry Pi	 133
Getting started with the camera, display, and images	 135
Binary thresholding and color distances	 137
The blur effect on a live web camera feed	 140
Histogram calculation	 141
Greyscale conversion	 142

Table of Contents

[iv]

Detecting corners and lines in an image	 143
Blob detection in images	 144
Sending Raspberry Pi on a boating vacation	 145
Exercise	 149
Summary	 150

Index	 151

[v]

Preface
Raspberry Pi was developed as a low-cost single-board computer with the
intention of promoting computer science education in schools. It also represents
a welcome return to a simple and fun yet effective way to learn computer science
and programming.

You can use Raspberry Pi to learn and implement concepts in computer vision.

With a $35 Raspberry Pi computer and a USB webcam, anyone can afford to become
a pro in computer vision in no time and build a real-life computer vision application
to impress friends and colleagues.

What this book covers
Chapter 1, Introduction to Computer Vision and Raspberry Pi, takes you through the
introduction and initial setup of Raspberry Pi and computer vision.

Chapter 2, Working with Images, Webcams, and GUI, teaches you how to work with
images, videos, and various cameras.

Chapter 3, Basic Image Processing, explores arithmetic and logical operations on images.

Chapter 4, Colorspaces, Transformations, and Thresholds, introduces you to colorspaces
and conversions, which are then followed by a simple project. This chapter also
explores geometric transformations and segmentation by thresholding.

Chapter 5, Let's Make Some Noise, teaches the basics of noise in digital images and
low-pass filters. It also discussed their usage in the removal of noise from images.

Chapter 6, Edges, Circles, and Lines' Detection, explores high-pass filters and their
applications. It also explores the detection of features like edges, circles, and lines.

Preface

[vi]

Chapter 7, Image Restoration, Quantization, and Depth Map, explores image restoration
by inpainting. It also teaches image segmentation, quantization, and depth maps.

Chapter 8, Histograms, Contours, Morphological Transformations, and Performance
Measurement, introduces the readers to histograms and plotting. It explores the
concepts of contours and morphological transformations on an image. It concludes
with the basics of performance measurement and improvement.

Chapter 9, Real-life Computer Vision Applications, implements various real-life
applications of computer vision using Raspberry Pi and a webcam.

Chapter 10, Introduction to SimpleCV, teaches the installation and usage of
SimpleCV, a powerful yet simple computer vision library, and concludes
with a few real-life projects.

What you need for this book
The following hardware is recommended for maximum enjoyment:

•	 The Raspberry Pi computer (Model B, B+, or Pi 2)
•	 SD card (8 GB minimum)
•	 5V 1A power supply
•	 HDMI or VGA monitor
•	 HDMI to VGA converter if a VGA monitor is used
•	 Wired Internet connection
•	 A keyboard and a mouse
•	 A good quality webcam
•	 A Pi Camera
•	 A Windows computer/laptop with an embedded or external card reader

Who this book is for
This book is intended for novices as well as seasoned Raspberry Pi and Python
enthusiasts who would like to explore the area of computer vision. Readers with
very little programming or coding/scripting experience can create wonderful
image processing and computer vision applications with relatively few lines
of code in Python.

Preface

[vii]

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "
We are going to learn about the linspace() function now."

A block of code is set as follows:

import picamera
import time

with picamera.PiCamera() as cam:
 cam.resolution=(1024,768)
 cam.start_preview()
 time.sleep(5)
 cam.capture('/home/pi/book/output/still.jpg')

Any command-line input or output is written as follows:

>>> a**2

array([1, 9, 36, 81])

New terms and important words are shown in bold. Words that you see on the
screen, for example, in menus or dialog boxes, appear in the text like this: "Go to
Enable Boot to Desktop/Scratch | Desktop."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

Preface

[viii]

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.
packtpub.com for all the Packt Publishing books you have purchased. If you
purchased this book elsewhere, you can visit http://www.packtpub.com/support
and register to have the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

Preface

[ix]

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

[1]

Introduction to Computer
Vision and Raspberry Pi

OpenCV is a simple yet powerful tool for any computer vision enthusiast. One can
learn computer vision in an easy way by writing OpenCV programs in Python.
The Raspberry Pi family of single-board computers uses Python as the preferred
development platform. Using a Raspberry Pi computer and Python for OpenCV
programming is one of the best ways to start your journey into the world of
computer vision. We will commence our journey with this chapter by getting
ourselves familiar with the following topics:

•	 Computer vision
•	 OpenCV
•	 Raspberry Pi
•	 Setting up Raspberry Pi
•	 Installing OpenCV and its dependencies
•	 NumPy basics

Computer vision
Computer vision is an area of computer science, mathematics, and electrical
engineering. It includes ways to acquire, process, analyze, and understand images
and videos from the real world in order to mimic human vision. Also, unlike
human vision, computer vision can also be used to analyze and process depth
and infrared images.

Introduction to Computer Vision and Raspberry Pi

[2]

Computer vision is also concerned with the theory of information extraction from
images and videos. A computer vision system can accept different forms of data as
an input, including, but not limited to, images, image sequences, and videos that can
be streamed from multiple sources to further process and extract useful information
from for decision making.

Artificial intelligence and computer vision share many topics, such as image
processing, pattern recognition, and machine learning techniques, as shown
in the following diagram:

The typical tasks of computer vision include the following:

•	 Object recognition and classification
•	 Motion detection and analysis
•	 Image and scene reconstruction

Don't worry about this jargon as of now. We will explore most of these concepts in
detail in the later chapters.

OpenCV
OpenCV (Open Source ComputerVision) is a library of programming functions
for computer vision. It was initially developed by the Intel Russia research center
in Nizhny Novgorod, and it is currently maintained by Itseez.

Chapter 1

[3]

You can read more about Itseez at http://itseez.com/.

This is a cross-platform library, which means that it can be implemented and
operated on different operating systems. It focuses mainly on image and video
processing. In addition to this, it has several GUI and event handling features for
the user's convenience.

OpenCV was released under a Berkeley Software Distribution (BSD) license and
hence, it is free for both academic and commercial use. It has interfaces for popular
programming languages, such as C/C++, Python, and Java, and it runs on a variety
of operating systems including Windows, Android, and Unix-like operating systems.

You can explore the OpenCV homepage, www.opencv.org,
for further details.

OpenCV was initially an Intel Research initiative to develop tools to analyze images.

Following is the timeline of OpenCV in brief:

In August 2012, support for OpenCV was taken over by a nonprofit foundation,
OpenCV.org, which is currently developing it further. It also maintains a developer
and user site for OpenCV.

At the time of writing this book, the stable version of
OpenCV was 2.4.10. Version 3.0 Beta is also available.

http://itseez.com/
www.opencv.org

Introduction to Computer Vision and Raspberry Pi

[4]

Single-board computers and the
Raspberry Pi
A single-board computer system is a complete computer on a single board. The
board includes processor(s), RAM, I/O, and networking ports for interfacing devices.
Unlike traditional computer systems, single-board computers are not modular and
its hardware cannot be upgraded as it's integrated on the board itself. Single-board
computers are used as low-cost computers in academic and research settings. The
use of single-board computers in embedded systems is very prevalent, and many
individuals and organizations have developed and released fully functional products
based on single-board computers.

Popular single-board computers available in the market include, but are not limited
to, Raspberry Pi, Banana Pi, BeagleBone, and Cubieboard.

Raspberry Pi
Raspberry Pi is a series of low-cost, palm-sized, single-board computers developed
by the Raspberry Pi Foundation in the UK. The intention behind the creation of
Raspberry Pi was to promote the teaching of basic computer skills in schools, and
the former serves this purpose well. Raspberry Pi has expanded its footprint well
beyond its intended purpose by penetrating into the market of embedded systems
and research.

The homepage of the Raspberry Pi Foundation is:
http://www.raspberrypi.org

Raspberry Pi models—A, A+, B, and B+—are based on SoC (system on a chip)
Broadcom BCM2835, which includes an ARM11 700 MHz CPU (which can be
overclocked). RPi generation 2 uses a quad core ARM Cortex-A7, the first multicore
Raspberry Pi. Raspberry Pi A and B use SD cards for boot and persistent storage,
whereas models A+, B+, and Pi 2 use microSD cards for the same. The models A and
A+ have 256 MB of RAM, B and B+ have 512 MB of RAM, and Pi 2 has 1 GB of RAM.

As of now, there are five major models of Raspberry Pi, which are as follows:

•	 Model A
•	 Model A+ (currently in production and available for purchase)
•	 Model B (available for purchase but not in production)

http://www.raspberrypi.org

Chapter 1

[5]

•	 Model B+ (currently in production and available for purchase)
•	 Raspberry Pi 2 (currently in production and available for purchase)

Check out the product page of Raspberry Pi at the following location:
http://www.raspberrypi.org/products/

The Raspberry Pi Foundation provides Debian and Arch variants and Linux
ARM distributions for download. Python is the main programming platform and
languages like C, C++, Java, Perl, and Ruby can be used to program Raspberry Pi.

We will use Raspberry Pi B+ for our Computer Vision learning. However, these
examples can also be executed on other Raspberry Pi Models.

The Raspberry Pi B+ specifications are as follows:

Component Specification

CPU 700 MHz ARM1176JZF-S core (ARM11 family, ARM v6 instruction set)
GPU Broadcom VideoCore IV @250 MHz
Memory 512 MB SDRAM (shared with GPU—the limit of memory used by GPU

can be set using raspi-config utility)
USB 2.0 ports 4
Video output HDMI, composite video (PAL and NTSC) via 3.5 mm TRRS jack shared

with audio out (you need to use converters for VGA type displays)
Audio output Analog via 3.5 mm phone jack; digital via HDMI port
Onboard
storage

microSD

Networking 10/100 Mbit/s Fast Ethernet, no onboard Wi-Fi or Bluetooth
Power 600 mA (3 W), 5 V via http://en.wikipedia.org/wiki/MicroUSB

or GPIO header (using MicroUSB for power is recommended)

Operating systems
Raspberry Pi primarily uses Unix-like, Linux-kernel-based operating systems,
like the variants of Debian and Fedora.

The Raspberry Pi models A, A+, B, and B+ are based on the ARM11 family chip,
which runs on the ARM v6 instruction set. The ARM v6 instruction set does not
support Ubuntu and Windows.

http://www.raspberrypi.org/products/
http://en.wikipedia.org/wiki/MicroUSB

Introduction to Computer Vision and Raspberry Pi

[6]

However, the recently launched Raspberry Pi 2 is based on ARM Cortex A7, which
is capable of running both Windows 10 and Ubuntu (Snappy Core). The following
operating systems are officially supported by all the models of Raspberry Pi and are
available for download at the download page:

•	 OpenELEC
•	 Pidora (Fedora Remix)
•	 RASPBMC
•	 RISC OS
•	 Raspbian—we will use this with a Raspberry Pi B+ throughout this book.

Windows 10 and Ubuntu are supported by only the recently
launched Pi 2.

Raspbian
Raspbian is an unofficial variant of Debian Wheezy armhf (ARM hard float)
that is compiled for hard float code that will run on Raspberry Pi computers.
It is a free operating system based on Debian that is optimized for the Raspberry Pi
hardware. Raspbian is more than a pure OS. It comes with over 35,000 packages
and precompiled software for Raspberry Pi.

To know more about Raspbian, you can visit
http://www.raspbian.org/.

http://www.raspbian.org/

Chapter 1

[7]

Setting up your Raspberry Pi B+
This is the front view of Raspberry Pi B+:

Introduction to Computer Vision and Raspberry Pi

[8]

This is the flipside of Raspberry Pi B+:

We need the following hardware to set up a Pi:

•	 Raspberry Pi B+
•	 A micro USB power supply

Considering that we are going for a bit of power-intensive usage for our Pi
B+ (like connecting picamera), a 5V 2A power supply is recommended.

•	 A standard USB keyboard
•	 A microSD card and a microSD to SD card converter

We need a microSD card of minimum 4 GB.
•	 A USB mouse
•	 A monitor

You can either use an HDMI monitor or a standard VGA monitor.
•	 A monitor connection cable and a converter

If you are using an HDMI Monitor, then an HDMI cable is sufficient.
If you are using a VGA monitor, then you need to use an HDMI to VGA
converter with a VGA cable. A few special changes should be made to
/boot/config.txt if you're using a VGA monitor, which will be
explained in the next section.

•	 A Windows computer with a microSD card reader and a wired
Internet connection

Chapter 1

[9]

Preparing your microSD card manually
This is the original way of installing an OS into a microSD card, and many users,
including me, still prefer it. It allows the SD card to be prepared manually before
it is used, and it allows you to have easier access to the configuration files like
/boot/config.txt, which might have to be modified in a few cases before booting
up the system. The default Raspbian image consists of only two partitions—boot
and system. These would fit into a 2 GB card. However, I recommend you to use a
minimum 4 GB card to be on the safe side. Choosing an 8 GB card will be adequate
for most of the applications.

Following are the instructions for the Windows users:

1.	 Download the installable file of Win32DiskImager that is available at
http://sourceforge.net/projects/win32diskimager/files/latest/
download and then install it.

2.	 Download the installable version of WinZip that is available at
http://www.winzip.com/prod_down.html%20 and install it.

3.	 Go to http://www.raspberrypi.org/downloads and download the latest
image of Raspbian. It will be a compressed file in the ZIP format, and it needs
to be extracted.

4.	 Extract the ZIP file using WinZip. The extracted file will be in the img format.
5.	 Insert your microSD card into the card reader and plug the card reader into

your computer. Nowadays, many computers have an inbuilt SD card reader.
In this case, you need to insert the microSD card into the microSD to SD card
converter and insert that into your computer's inbuilt card reader.

6.	 Run the Win32DiskImager.exe file and write the image into your SD card.

http://sourceforge.net/projects/win32diskimager/files/latest/download
http://sourceforge.net/projects/win32diskimager/files/latest/download
http://www.winzip.com/prod_down.html%20
http://www.raspberrypi.org/downloads

Introduction to Computer Vision and Raspberry Pi

[10]

7.	 If you have an HDMI monitor, then please skip this step. This additional
step is required only if you are planning to use a VGA monitor in place
of an HDMI monitor.

8.	 Browse the SD card. It will appear as a drive labeled boot in the Windows
file explorer. Open the config.txt file from the explorer. You will have to
edit the file in the following manner to enable a proper display on your
VGA monitor

°° Change #disable_overscan=1 to disable_overscan=1
°° Change #hdmi_force_hotplug=1 to hdmi_force_hotplug=1
°° Change #hdmi_group=1 to hdmi_group=2
°° Change #hdmi_mode=1 to hdmi_mode=16
°° Change #hdmi_drive=2 to hdmi_drive=2
°° Change #config_hdmi_boost=4 to config_hdmi_boost=4

9.	 Save the file.

By default, the commented options (which have # at the beginning) are disabled.
We will enable these options by uncommenting their respective lines by removing
at the beginning of these commented lines.

Chapter 1

[11]

If you are using Linux or Mac OS, then you will find the instructions
to install the OS on your Micro SD card for these operating systems
at https://www.raspberrypi.org/documentation/
installation/installing-images/.

Booting up your Raspberry Pi for the first
time
Let's boot up our Pi for the first time with the microSD card in the following way:

1.	 Insert the microSD card into the microSD card slot of Pi.
2.	 Connect the Pi to the HDMI monitor. In case you have connected the VGA

monitor, connect it using the HDMI to VGA converter.
3.	 Connect the USB mouse and USB keyboard.
4.	 Connect the Pi to the power supply with a micro USB power cable. Make

sure that the power is switched off at this point.
5.	 Check all the connections once and then switch on the power supply of Pi.

At this stage, your Pi will start booting up. You will see a green light blinking on the
Pi board. It means that it's working! Now, there are a few more things that you need
to do before you can really start using your Pi. Once it boots up, it will show the
raspi-config menu, as follows:

https://www.raspberrypi.org/documentation/installation/installing-images/
https://www.raspberrypi.org/documentation/installation/installing-images/

Introduction to Computer Vision and Raspberry Pi

[12]

Perform the following steps and reboot the Pi at the end:

You will have to use the arrow keys and the Enter key to select
options in the text-based menu.

1.	 Use Expand Filesystem.
2.	 Go to Enable Boot to Desktop/Scratch | Desktop. Log in as pi at the

graphical desktop.

If you do not enable this option, you will be asked for the
username and password every time you boot. The default
username is pi and the password is raspberry. Once you enter
the username and password, the command prompt will appear.
The default shell of Raspbian is bash. You can confirm it by typing
this in the following command:
echo $SHELL

You can always go to the graphical desktop by typing in the startx
command. To use OpenCV with Python, we are required to use the GUI of
Raspbian to display images and video.

3.	 Navigate to Internationalisation Options | Change Keyboard Layout.
Change it to US (the default is UK).

4.	 Enable Camera.
5.	 Navigate to Advanced Options | Memory Split and select 64 MB for GPU.

This option decides how much RAM is used by the Graphic Processor Unit (GPU).
The more the RAM is allocated to the GPU, the more will the processing of intensive
graphics be done. 64 MB is a good value for most graphics-related purposes.

You can always invoke this tool from the command prompt with the following
command and change the settings:

sudo raspi-config

Shutting down and rebooting your Pi safely
In the Raspbian GUI, there are options that allow you to shut down and reboot Pi.
From the command prompt, you can shut down Pi safely by issuing the following
command:

sudo shutdown –h now

Chapter 1

[13]

An alternative command is as follows:

sudo halt

You can reboot Pi by using the following command:

sudo reboot

Preparing your Pi for computer vision
Now, we have a working Pi running the Raspbian OS. Please make sure that you
have a working wired Internet connection with a reasonable speed for this activity.
Let's prepare Pi for computer vision:

1.	 Connect your Pi to an Internet modem or router with an Ethernet cable.
2.	 Run the following command to restart the networking service:

sudo service networking restart

3.	 Make sure that Raspberry Pi is connected to the Internet by typing in the
following command:
ping –c4 www.google.com

4.	 Run the following commands in a sequence:
Advanced Package Tool (apt) is the utility that can be used to install and
remove software in Debian and its variants. We need to use it to update the
Pi software.

°° sudo apt-get update

This command synchronizes the package list from the source. Indexes of all
the packages are refreshed. This command must be issued before we issue
the upgrade command.

°° sudo apt-get upgrade

This will install the newest versions of the already installed software.
Obsolete packages/utilities are not removed automatically. If the
software is up to date, then it's left as it is.

°° sudo rpi-update

This command is used to upgrade the firmware. The kernel and firmware
are installed as a Debian package, and hence, we will also get the updates.
These packages are updated infrequently after extensive testing.

Introduction to Computer Vision and Raspberry Pi

[14]

5.	 Now, we will need to install a few necessary packages and dependencies for
OpenCV. Following is a list of packages we need to install. You just need to
connect Pi to the Internet and type in sudo apt-get install <package-
name>, where <package-name> is one of following packages:

libopencv-dev libpng3 libdc1394-22-dev

build-essential libpnglite-dev libdc1394-22

libavformat-dev zlib1g-dbg libdc1394-utils

x264 zlib1g libv4l-0

v4l-utils zlib1g-dev libv4l-dev

ffmpeg pngtools libpython2.6

libcv2.3 libtiff4-dev python-dev

libcvaux2.3 libtiff4 python2.6-dev

libhighgui2.3 libtiffxx0c2 libgtk2.0-dev

python-opencv libtiff-tools libpngwriter0-dev

opencv-doc libjpeg8 libpngwriter0c2

libcv-dev libjpeg8-dev libswscale-dev

libcvaux-dev libjpeg8-dbg libjpeg-dev

libhighgui-dev libavcodec-dev libwebp-dev

python-numpy libavcodec53 libpng-dev

python-scipy libavformat53 libtiff5-dev

python-matplotlib libgstreamer0.10-0-dbg libjasper-dev

python-pandas libgstreamer0.10-0 libopenexr-dev

python-nose libgstreamer0.10-dev libgdal-dev

v4l-utils libxine1-ffmpeg python-tk

libgtkglext1-dev libxine-dev python3-dev

libpng12-0 libxine1-bin python3-tk

libpng12-dev libunicap2 python3-numpy

libpng++-dev libunicap2-dev libeigen3-dev

Chapter 1

[15]

For example, if you want to install x264, you have to type sudo apt-get
install x264. This will install the necessary package. Similarly, you can
install all of the aforementioned packages in like manner. If a package is
already installed on Pi, it will show the following message:
pi@pi02 ~ $ sudo apt-get install x264
Reading package lists... Done
Building dependency tree
Reading state information... Done
x264 is already the newest version.
0 upgraded, 0 newly installed, 0 to remove and 0 not
 upgraded.

In such cases, don't worry. The package you wanted to install has already
been installed, and it is up to date. Just proceed with the installation of all
the other packages in the list one-by-one.

6.	 Finally, install OpenCV for Python by using the following command:

sudo apt-get install python-opencv

This is the easiest way to install OpenCV for Python. However, there is a
problem with this. Raspbian repositories may not always contain the latest
version of OpenCV. For example, at the time of writing this book, Raspbian
repository contains version 2.4.1, while the latest OpenCV version is 2.4.10.
With respect to Python API, the latest version will always contain much
better support and more functionality.
Another method is to compile OpenCV from the source, which I will not
recommend for beginners as it's a bit complex and it will take a lot of time.

Testing OpenCV installation with Python
It's very easy to code for OpenCV in Python. It requires very few lines of code
compared to C/C++, and powerful libraries like NumPy can be exploited for
multidimensional data structures that are required for image processing.

On a terminal, type python, and then type the following lines:

>>> import cv2

>>> print cv2.__version__

This will show us the version of OpenCV that was installed on Pi, which, in our case
is 2.4.1.

Introduction to Computer Vision and Raspberry Pi

[16]

NumPy
NumPy is a fundamental package that can be used to scientifically compute with
Python. It is a matrix library for linear algebra. NumPy can also be used as an
efficient multidimensional container of generic data. Arbitrary data types can be
defined and used. NumPy is an extension of the Python programming language.
It adds support for large multidimensional arrays and matrices, along with a large
library of high-level mathematical functions that can be used to operate on these
arrays. We will use NumPy arrays throughout this book to represent images and
carry out complex mathematical operations. NumPy comes with many inbuilt
functions for all of these operations. So, we do not have to worry about basic array
operations. We can directly focus on the concepts and code for computer vision. All
the OpenCV array structures are converted to and from NumPy arrays. So, whatever
operations you perform in NumPy, you can combine NumPy with OpenCV.

We will use NumPy with OpenCV a lot in this book. Let's start with some simple
example programs that will demonstrate the real power of NumPy.

Open Python via the terminal. Try the following examples.

Array creation
Let's see some examples on array creation. The array() method is used very
frequently in this book. There are many ways to create different types of arrays.
We will explore these ways as and when they are needed in this book. Follow
these commands for array creation:

>>> import numpy as np

>>> x=np.array([1,2,3])

>>> x

array([1, 2, 3])

>>> y=arange(10)

>>> y

array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

Chapter 1

[17]

Basic operations on arrays
We are going to learn about the linspace() function now. It takes three
parameters—start_num, end_num, and count. This creates an array with equally
spaced points, starting from start_num and ending with end_num. You can try out
the following example:

>>> a=np.array([1,3,6,9])

>>> b=np.linspace(0,15,4)

>>> c=a-b

>>> c

array([1., -2., -4., -6.])

Following is the code that can be used to calculate the square of every element in
an array:

>>> a**2

array([1, 9, 36, 81])

Linear algebra
Let's explore some examples with regard to linear algebra. You will learn how to
use the transpose(), inv(), solve(), and dot() functions, which are useful while
performing operations related to linear algebra:

>>> a=np.array([[1,2,3],[4,5,6],[7,8,9]])

>>> a.transpose()

array([[1, 4, 7],

 [2, 5, 8],

 [3, 6, 9]])

>>> np.linalg.inv(a)

array([[-4.50359963e+15, 9.00719925e+15, -4.50359963e+15],

 [9.00719925e+15, -1.80143985e+16, 9.00719925e+15],

 [-4.50359963e+15, 9.00719925e+15, -4.50359963e+15]])

Introduction to Computer Vision and Raspberry Pi

[18]

>>> b=np.array([3,2,1])

>>> np.linalg.solve(a,b)

array([-9.66666667, 15.33333333, -6.])

>>> c=np.random.rand(3,3)

>>> c

array([[0.69551123, 0.18417943, 0.0298238],

 [0.11574883, 0.39692914, 0.93640691],

 [0.36908272, 0.53802672, 0.2333465]])

>>> np.dot(a,c)

array([[2.03425705, 2.59211786, 2.60267713],

 [5.57528539, 5.94952371, 6.20140877],

 [9.11631372, 9.30692956, 9.80014041]])

You can explore NumPy in detail at http://www.numpy.org/.

Summary
In this chapter, we learned about the background of OpenCV, Raspberry Pi, and
computer vision. We learned how to set up Raspberry Pi to program computer
vision with OpenCV. We also went through some examples on NumPy.

In the next chapter, we will learn how to work with images, videos, webcam, and the
Pi camera.

http://www.numpy.org/

[19]

Working with Images,
Webcams, and GUI

In our last chapter, we discovered how to set up Pi for OpenCV programming.
In this chapter, we will start with writing snippets of code for images and video,
GUI, and cameras. Let's take a look at the topics we will cover in this chapter:

•	 Working with images
•	 Drawing functions and trackbar
•	 Webcam and videos
•	 Picamera

Running Python programs with
Raspberry Pi
In our last chapter, we saw how to use the Python interpreter to run Python
commands. However, for the next programs, we will be running Python scripts
instead. We will have to run these programs from LXTerminal. There are three ways
to open LXTerminal:

•	 The desktop usually comes with an icon to access the LXTerminal. Click on
that icon to open it.

•	 If the icon is not on the desktop, you will find it under Accessories in Menu.
•	 As a shortcut, you can press Alt + F2 and type lxterminal. This will invoke

the program directly. This method might be useful in case you do not have a
mouse available.

Working with Images, Webcams, and GUI

[20]

Once you open LXTerminal, you will see a prompt similar to the following one:

pi@pi02 ~ $

Here, pi is the user and pi02 is the hostname. The hostname can be set by invoking
raspi-config. I have set the name as pi02 as it is the second node of my three-node
Raspberry Pi B+ cluster. For simplicity, you can set your own name as the hostname.
For example, if you set your hostname as ashwin, the prompt will appear as follows:

pi@ashwin ~ $

It is recommended that you create a new directory for the book and have
subdirectories under that to organize the code chapter-wise. I have done this
while writing this book. In the home directory of the pi user, that is /home/pi,
I have created a directory book, which has three subdirectories: code, test_set,
and output. The code subdirectory contains chapter-wise subdirectories which
have code. The test_set directory contains all the test images we will use in our
programs, and the output directory will be used to save images and videos as output
of a few programs. The directory structure diagram is as follows:

Chapter 2

[21]

We will use images from http://sipi.usc.edu/database/ and
http://www.imageprocessingplace.com/root_files_V3/
image_databases.htm. These are standard test images used for image
processing and computer vision.

Download the images (those that are in a compressed format) using your browser
and unzip them in the test_set directory. Alternatively, you can directly download
the compressed images to the test_set directory using the curl or wget utility and
then unzip those.

Use the nano editor in LXTerminal to edit files. If you type nano prog1.py, nano
will open prog1.py for editing if it already exists in the current directory; otherwise
it will create a new file with the name prog1.py.

You can find more information about nano at http://www.nano-
editor.org/.

Alternatively, you can use the Leafpad text editor. You can find it under Accessories
in Menu. Or you can invoke it from command prompt with the following command:

leafpad prog1.py

Finally, you can also use vim, but you will need to install it by running the
following command:

sudo apt-get install vim

For an interactive tutorial on vim, visit http://www.openvim.com/.

Let's write the same Python code and run it as a script. Write the following code with
nano, leafpad, or vim and save it as test.py:

import cv2

print cv2.__version__

To run the preceding script, type python test.py in the editor. You should see the
following output:

2.4.1

This is the version of OpenCV currently installed on your Pi.

http://sipi.usc.edu/database/
http://www.imageprocessingplace.com/root_files_V3/image_databases.htm
http://www.imageprocessingplace.com/root_files_V3/image_databases.htm
http://www.nano-editor.org/
http://www.nano-editor.org/
http://www.openvim.com/

Working with Images, Webcams, and GUI

[22]

Working with images
Let's get started with the basics of OpenCV's Python API. All the scripts we will
write and run will be done using the OpenCV library, which must be imported
with the line import cv2. We will import a few more libraries as needed in the
next sections and chapters.

The cv2.imread() method is used to import an image. It takes two arguments.
The first argument is the image filename. The image should either be in the same
directory where the Python script is, or the absolute path should be provided to
cv2.imread(). It reads images and saves it as a NumPy array.

The second argument is a flag which specifies the mode the image should be read in.
The flag can have following values:

•	 cv2.IMREAD_COLOR: This loads a color image. This is the default flag.
•	 cv2.IMREAD_GRAYSCALE: This loads an image in grayscale mode.
•	 cv2.IMREAD_UNCHANGED : This loads an image as it is, including the

alpha channel.

The numerical values of the preceding flags are 1, 0, and -1 respectively.

Take a look at the following code:

import cv2 #This imports opencv
#This reads and stores image in color into variable img
img = cv2.imread('/home/pi/book/test_set/
 lena_color_512.tif',cv2.IMREAD_COLOR)

Now, the last line in the preceding code is the same as the following:

img = cv2.imread('/home/pi/book/test_set/lena_color_512.tif',1)

We will be using the numeric values of this flag throughout the book.

The following code is used to display an image:

cv2.imshow('Lena',img)
cv2.waitKey(0)
cv2.destroyWindow('Lena')

The cv2.imshow() function is used to display an image. The first argument is a
string, which is the window name, and the second argument is the variable that
holds the image which is to be displayed.

Chapter 2

[23]

The cv2.waitKey() function is a keyboard function. Its argument is the time in
milliseconds. The function waits for specified milliseconds for any keyboard key
press. If 0 is passed, it waits indefinitely for a key press. It is the only method to fetch
and handle events. We must use this for using cv2.imshow() or no image will be
displayed on screen.

The cv2.destroyWindow() function takes a window name as a parameter and
destroys that window. If we want to destroy all the windows in the current program,
we can use cv2.destoyAllWindows().

We can also create a window with a specific name in advance and assign an image to
that window later. In many cases, we will have to create a window before we have
an image. This can be done using the following code:

cv2.namedWindow('Lena', cv2.WINDOW_AUTOSIZE)
cv2.imshow('Lena',img)
cv2.waitKey(0)
cv2.destroyAllWindows()

Putting it all together, we have the following script:

import cv2
img = cv2.imread('/home/pi/book/test_set/lena_color_512.tif',1)
cv2.imshow('Lena',img)
cv2.waitKey(0)
cv2.destroyWindow('Lena')

In summary, the preceding script imports an image, displays it, and waits for a
keystroke to close the window. The screenshot is as follows:

Working with Images, Webcams, and GUI

[24]

The cv2.imwrite()method is used to save an image to a specific path. The first
argument is the name of the file and the second is the variable pointing to the image
we want to save. Also, cv2.waitKey() can be used to detect specific keystrokes.
Let's test the usage of both the functions in the following code snippet:

import cv2
img = cv2.imread('/home/pi/book/test_set/lena_color_512.tif',1)
cv2.imshow('Lena',img)
keyPress = cv2.waitKey(0)
if keyPress == ord('q'):
cv2.destroyWindow('Lena')
elif keyPress == ord('s'): cv2.imwrite('/home/pi/book/
 output/chapter2_prog2_output.jpg',img)
 cv2.destroyWindow('Lena')

Here, keyPress = cv2.waitKey(0) is used to save the value of the keystroke
in the keyPress variable. Given a string of length one, ord() returns an integer
representing the Unicode code point of the character when the argument is a
Unicode object, or the value of the byte when the argument is an 8-bit string. Based
on keyPress, we are either exiting or exiting after saving an image. For example,
if the Esc key is pressed, the cv2.waitKey() function would return 27.

Using matplotlib
We can also use matplotlib to display images. It is a 2D plotting library for Python.
It provides a wide range of plotting options which we will be using in later chapters.
Let's see a basic example of matplotlib:

import cv2
import matplotlib.pyplot as plt
Program to load a color image in gray scale
 and to display using matplotlib
img = cv2.imread('/home/pi/book/test_set/lena_color_512.tif',0)
plt.imshow(img,cmap='gray')
plt.title('Lena')
plt.xticks([])
plt.yticks([])
plt.show()

Downloading the example code
You can download the example code files from your account at
http://www.packtpub.com for all the Packt Publishing books you
have purchased. If you purchased this book elsewhere, you can visit
http://www.packtpub.com/support and register to have the files
e-mailed directly to you.

http://www.packtpub.com
http://www.packtpub.com/support

Chapter 2

[25]

In this example, we are reading an image in grayscale and displaying it using
matplotlib. The following screenshot shows the plot of the image:

The plt.xticks([]) and plt.yticks([]) functions can be used to disable the x
and y axis. Run the preceding code again, and this time, comment out the two lines
with plt.xticks([]) and plt.yticks([]).

The cv2.imread() function of OpenCV reads images and saves it as a NumPy array
of Blue, Green, and Red (BGR) pixels.

However, plt.imshow() displays images in RGB format. So, if we read the image
as it is with cv2.imread() and display it using plt.imshow(), the value of the
Blue color will be treated as the value of Red and vice versa by plt.imshow(), and
it would display the image with distorted colors. Try the preceding code with the
following alterations in the respective lines to experience the concept:

img = cv2.imread('/home/pi/book/test_set/lena_color_512.tif',1)
plt.imshow(img)

To remedy this issue, we need to convert the image read in the BGR format into an
RGB array format by cv2.imread() so that plt.imshow() will be able to render it
in a way that makes sense to us. We will use the cv2.cvtColor() function for this,
which will be introduced in Chapter 3, Basic Image Processing.

Working with Images, Webcams, and GUI

[26]

To get more information about matplotlib, explore
http://matplotlib.org/.

Drawing geometric shapes
Let's get some hands on geometric shapes using OpenCV drawing functions. We are
going to use NumPy here.

Import the necessary libraries with the following lines:

import cv2
import numpy as np

The following code creates a three-dimensional array of zeros, which is a black image
with dimensions 200 x 200, as (0,0,0) represents the color black:

image = np.zeros((200,200,3), np.uint8)

The np.zeros() method makes an array with all elements equal to zero.

Now we will begin with a simple geometric shape that is a line. The following code
draws a line with coordinates (0,199) and (199,0) in red color [(0,0,255) for BGR] with
a thickness of 2:

cv2.line(image,(0,199),(199,0),(0,0,255),2)

Most of the OpenCV geometric functions have following common parameters:

•	 img: This refers to the image on which we need to draw shapes.
•	 color: This is passed as (B,G,R) where the value of each color ranges from 0

to 255.

That's why we use uint8 as the color value and it has
to be unsigned.

•	 thickness: The default value is 1. For all closed shapes such as a circle,
ellipse and rectangle, -1 will fill the shape with a specified color in that
drawing function.

http://matplotlib.org/

Chapter 2

[27]

•	 LineType: It can have any one of following three values:

°° 8: Eight connected lines (default value)
°° 4: Four connected lines
°° cv2.LINE_AA: Anti-aliasing (great option for geometric shapes with

curves, such as a circle and ellipse)

The following code draws a blue rectangle with (20,20) and (60,60) as diagonally
opposite vertices:

cv2.rectangle(image,(20,20),(60,60),(255,0,0),1)

The following code draws a green filled circle with (80,80) as center and 10 as radius:

cv2.circle(image,(80,80),10,(0,255,0),-1)

The following code draws a full ellipse without any rotation with a center at (99,99)
and major and minor axis lengths of 40 and 20 respectively:

cv2.ellipse(image,(99,99),(40,20),0,0,360,(128,128,128),-1)

The following code draws a polygon with four points:

points = np.array([[100,5],[125,30],[175,20],[185,10]], np.int32)
points = points.reshape((-1,1,2))
cv2.polylines(image,[points],True,(255,255,0))

If you pass False as the third argument in the polylines() function, it would join
all the points and would not print a closed shape.

We can also print text in the image with cv2.putText(). The following code
adds text to the image with (80,180) as the bottom-left corner of the text and
HERSHEY_DUPLEX as the font with the size of 1 and color pink:

cv2.putText(image,'Test',(80,180), cv2.FONT_HERSHEY_DUPLEX ,
 1, (255,0,255))

The cv2.putText() function supports the following fonts:

•	 FONT_HERSHEY_SIMPLEX

•	 FONT_HERSHEY_PLAIN

•	 FONT_HERSHEY_DUPLEX

Working with Images, Webcams, and GUI

[28]

•	 FONT_HERSHEY_COMPLEX

•	 FONT_HERSHEY_TRIPLEX

•	 FONT_HERSHEY_COMPLEX_SMALL

•	 FONT_HERSHEY_SCRIPT_SIMPLEX

•	 FONT_HERSHEY_SCRIPT_COMPLEX

The final image is shown with our usual piece of code:

cv2.imshow('Shapes',image)
cv2.waitKey(0)
cv2.destroyAllWindows()

The output will be as follows:

Note that the overlapping pixels are overwritten with values
assigned by the most recent geometric function.

Now, try meddling with the values passed to all the functions and study the changes
in output.

Working with trackbar and named
window
In an earlier part of this book, we discussed the explicit creation of named
window using cv2.namedWindow(). We will also see how to create a trackbar using
cv2.CreateTrackbar() and how to use those to create a color palette for our use.

Chapter 2

[29]

Take a look at the following code:

import numpy as np
import cv2

def empty(z):
 pass

Create a black background
image = np.zeros((300,512,3), np.uint8)
cv2.namedWindow('Palette')

create trackbars for colors and associate those with Pallete
cv2.createTrackbar('B','Palette',0,255,empty)
cv2.createTrackbar('G','Palette',0,255,empty)
cv2.createTrackbar('R','Palette',0,255,empty)

while(True):
 cv2.imshow('Palette',image)
 if cv2.waitKey(1) == 27:
 break

 # fetch the color value
 blue = cv2.getTrackbarPos('B','Palette')
 green = cv2.getTrackbarPos('G','Palette')
 red = cv2.getTrackbarPos('R','Palette')

 image[:] = [blue,green,red]

cv2.destroyWindow('Pallete')

In the preceding code, we are first creating a black background and a named window
with the name Palette. The cv2.createTrackbar() method creates a trackbar and
takes the following parameters:

•	 Name: This refers to the name of the trackbar to be created.
•	 Window_name: This specifies the name of the named window to be

associated with.
•	 Value: This refers to the initial value of the slider when created.
•	 Count: This is the maximum value of the slider—the minimum is always 0.
•	 Onchange(): This function is called when the slider changes position.

Working with Images, Webcams, and GUI

[30]

We have created an empty() function as we are not performing any activity when
the slider is changed, and we're passing this function to cv2.createTrackbar().
The cv2.getTrackbarPos() function returns the current position of the specified
trackbar. We check the position of the trackbars and create a color palette based on
the positions selected repeatedly until a key is pressed, ending the infinite loop and
stopping the program.

Working with a webcam
USB webcams are great to capture images and videos. Raspberry Pi supports most
USB webcams.

To be on the safe side, go through the list of supported webcams by Pi at
http://elinux.org/RPi_USB_Webcams.

I am using a Logitech HD c310 USB webcam.

http://elinux.org/RPi_USB_Webcams

Chapter 2

[31]

You can purchase this webcam from Amazon, and you can find the
product details at http://www.logitech.com/en-in/product/hd-
webcam-c310.

Attach your USB webcam to Raspberry Pi through the USB port on Pi and run the
lsusb command in the terminal. This command lists all the USB devices connected
to the computer. The output should be similar to the following output, depending on
which port is used to connect the USB webcam:

pi@pi02 ~/book/code/chapter02 $ lsusb
Bus 001 Device 002: ID 0424:9514 Standard Microsystems Corp.
Bus 001 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub
Bus 001 Device 003: ID 0424:ec00 Standard Microsystems Corp.
Bus 001 Device 007: ID 046d:081b Logitech, Inc. Webcam C310
Bus 001 Device 016: ID 1a2c:0c21
Bus 001 Device 006: ID 1c4f:0003 SiGma Micro HID controller

Then, install the fswebcam utility with the sudo apt-get install fswebcam
command. Once the installation is done, you can use the following command to
capture the image:

fswebcam -r 1280x960 --no-banner ~/book/output/camtest.jpg

This will capture an image with a resolution of 1280 x 960. The --no-banner
parameter will disable the timestamp banner, and the image will be saved with
the filename mentioned. If you run this command multiple times with the same
filename, each time the image file will be overwritten. So, make sure that you change
the filename if you want to save earlier captured images. The output of the command
should be similar to the following:

--- Opening /dev/video0...
Trying source module v4l2...
/dev/video0 opened.
No input was specified, using the first.
--- Capturing frame...
Corrupt JPEG data: 1 extraneous bytes before marker 0xd0
Captured frame in 0.00 seconds.
--- Processing captured image...
Disabling banner.
Writing JPEG image to '/home/pi/book/output/camtest.jpg'.

http://www.logitech.com/en-in/product/hd-webcam-c310
http://www.logitech.com/en-in/product/hd-webcam-c310

Working with Images, Webcams, and GUI

[32]

Creating a timelapse sequence using
fswebcam
Timelapse photography means capturing photographs at a regular interval and
playing those images at a higher frequency than in the time they were shot. For
example, if you captured images with a frequency of 1 image per minute for 10
hours, you would get 600 images. If you combined all those images in a video
with 30 images per second, you would get 10 hours of timelapse, compressed in
20 seconds. You can use your USB webcam with Raspberry Pi to achieve this. We
already know how to use Raspberry Pi with a webcam and the fswebcam utility to
capture an image. The trick is to write a script which captures images with different
names and then to add this script in crontab to run at regular intervals. Cron is a
time-based job scheduler in Unix-like computer operating systems. It is driven by
a crontab (cron table) file, a configuration file that specifies shell commands to run
periodically on a given schedule.

Open an editor of your choice and write the following code and save it as
timelapse.sh:

#!/bin/bash

DATE=$(date +"%Y-%m-%d_%H%M")

fswebcam -r 1280x960 --no-banner
/home/pi/book/output/timelapse/garden_$DATE.jpg

Make the script executable using chmod +x timelapse.sh.

This shell script captures the image and saves it with the current timestamp in
its name. Thus, we get an image with a new filename every time. Run this script
manually once and make sure that the image is saved in the /home/pi/book/
output/timelapse directory with the name garden_<timestamp>.jpg.

To run this script at regular intervals, we need to schedule it in crontab.
Easy-to-remember crontab syntax is as follows:

1 2 3 4 5 /location/command

In this syntax:

•	 1: Minute (0-59)
•	 2: Hours (0-23)
•	 3: Day (0-31)

Chapter 2

[33]

•	 4: Month (0-12 [1 for January])
•	 5: Day of the week (0-7 [7 or 0 for Sunday])
•	 /location/command: Script or command name to schedule

So, the crontab entry to run the script every minute is as follows:

* * * * * /home/pi/book/code/chapter02/timelapse.sh 2>&1

Open crontab of the Pi user with crontab –e. It will open crontab with nano as
editor. Add the preceding line to crontab and save and exit it.

Once you exit crontab, it will show following message:

crontab: installing new crontab

Our timelapse webcam setup is live. If you want to change the image capture
frequency, you have to change the crontab settings. To set it for every 5 minutes,
change it to */5 * * * *. To set it for every 2 hours, use 0 */2 * * *. Make sure
that your microSD card has enough free space to store all the images for the time
duration you need to keep your timelapse setup.

Once you capture all the images, the next part is to encode them all in a fast-playing
video, preferably 20 to 30 frames per second. Raspberry Pi is a slow machine to do
all this encoding. It is recommended to transfer the images to a faster machine for
encoding. For Linux machines, the MEncoder utility is recommended. Following are
the steps required to create a timelapse video with MEncoder on Raspberry Pi or any
Debian machine:

1.	 Install MEncoder using sudo apt-get install mencoder.
2.	 Navigate to the output directory by issuing cd /home/pi/book/output/

timelapse.
3.	 Create a list of your timelapse sequence images using ls garden_*.jpg >

timelapse.txt.
4.	 Finally, use the following command to create a video:

mencoder -nosound -ovc lavc -lavcopts
 vcodec=mpeg4:aspect=16/9:vbitrate=8000000 -vf
 scale=1280:960 -o timelapse.avi -mf type=jpeg:fps=30
 mf://@timelapse.txt

This will create a video with the name timelapse.avi in the current directory with
all the images listed in timelapse.txt with 30 fps framerate. We will see how to
play a video shortly.

Working with Images, Webcams, and GUI

[34]

Webcam video recording and playback
We can use the webcam to record live videos using avconv. Install avconv using
sudo apt-get install avconv. Use the following command to record a
video—you can terminate the recording sequence by pressing Ctrl + C:

avconv -f video4linux2 -r 25 -s 544x288 -i /dev/video0
 ~/book/output/VideoStream.avi

We can play the video using omxplayer. It comes with latest Raspbian, so there is no
need to install it. To play a file with the name vid.mjpg, use the following command:

omxplayer vid.mjpg

It will show output similar to the following:

Video codec omx-h264 width 1920 height 1080 profile 100 fps
 25.000000
Subtitle count: 0, state: off, index: 1, delay: 0
V:PortSettingsChanged: 1920x1080@25.00 interlace:0 deinterlace:0
 anaglyph:0 par:1.00 layer:0
have a nice day ;)

Try playing timelapse and recorded videos using omxplayer.

Working with a webcam using OpenCV
OpenCV has a functionality to work with standard USB webcams. Let's see an
example of capturing an image from a webcam using OpenCV:

import cv2

initialize the camera
cam = cv2.VideoCapture(0)
ret, image = cam.read()

if ret:
 cv2.imshow('SnapshotTest',image)
 cv2.waitKey(0)
 cv2.destroyWindow('SnapshotTest')
 cv2.imwrite('/home/pi/book/output/SnapshotTest.jpg',image)
cam.release()

Chapter 2

[35]

In the preceding code, cv2.VideoCapture() creates a video capture object. The
argument for it could either be a video device or a file. In this case, we are passing
the device index which is 0. If we have more cameras, we can pass the appropriate
device index based on what camera to choose. If you have one camera, just pass 0.

You can find out the number of cameras and associated device indexes by using the
ls -l /dev/video* command.

Once cam.read() returns a Boolean value ret and the frame, which is the image
it captured. If the image capture is successful, then return will be True; otherwise,
it will be false. The preceding code captures an image with the camera device
/dev/video0, displays it and then saves it. The cam.release() method releases
the device.

The same code could be used with slight modifications to display a live video stream
from a webcam:

import cv2

cam = cv2.VideoCapture(0)
print 'Default Resolution is ' + str(int(cam.get(3))) + 'x' +
 str(int(cam.get(4)))
w=1024
h=768
cam.set(3,w)
cam.set(4,h)
print 'Now resolution is set to ' + str(w) + 'x' + str(h)

while(True):
 # Capture frame-by-frame
 ret, frame = cam.read()

 # Display the resulting frame
 cv2.imshow('Video Test',frame)

 # Wait for Escape Key	
 if cv2.waitKey(1) == 27 :
 break

When everything done, release the capture
cam.release()
cv2.destroyAllWindows()

Working with Images, Webcams, and GUI

[36]

You can access the features of the video device with cam.get(propertyID). 3
stands for width and 4 stands for height. These properties could be set with cam.
set(propertyID, value).

The preceding code first displays the default resolution and then sets it to 1024 x 768,
displaying the live video stream until the Esc key is pressed. This is the basic skeleton
logic for all live video processing with OpenCV. We will make use of this regularly
throughout this book.

Saving a video and playback of a video using
OpenCV
We use the cv2.VideoWriter() function to write a video to a file. Take a look at
following code:

import cv2

cam = cv2.VideoCapture(0)

output = cv2.VideoWriter('/home/pi/book/output/
 VideoStream.avi',cv2.cv.CV_FOURCC(*'WMV2'),40.0,(640,480))

while (cam.isOpened()):
 ret, frame = cam.read()
 if ret == True:
 output.write(frame)
 cv2.imshow('VideoStream', frame)
 if cv2.waitKey(1) == 27 :
 break
 else:
 break

cam.release()
output.release()
cv2.destroyAllWindows()

In the preceding code, cv2.VideoWriter() accepts the following parameters:

•	 Filename: This refers to the name of the video file.
•	 FourCC: This stands for Four Character Code. We use the cv2.cv.CV_

FOURCC() function for this. This function accepts FourCC in *'code' format.
This means for DIVX, we need to pass *'DIVX' and so on. A few supported
formats are DIVX, XVID, H264, MJPG, WMV1, and WMV2. You can read
more about FourCC at www.fourcc.org.

www.fourcc.org

Chapter 2

[37]

•	 Framerate: This refers to the rate of frames to be captured per second.
•	 Resolution: This specifies the resolution of the video to be captured.

The preceding code records the video until the Esc key is pressed and saves it in the
specified file.

Working with the Pi camera module
This camera module is specially manufactured for Raspberry Pi and works with
all the available models. You will need to connect the camera module to the
CSI port, located behind the Ethernet port, and activate the camera using the
raspi-config utility.

You can find video instructions to connect the camera module to
Raspberry Pi at http://www.raspberrypi.org/help/camera-
module-setup/.
The types of camera modules available are listed at http://www.
raspberrypi.org/products/.

Using raspistill and raspivid
To capture images and videos using the Raspberry Pi camera module, we need to
use the raspistill and raspivid utilities.

To capture an image, run following command:

raspistill -o cam_module_pic.jpg

This will capture and save the image with the name cam_module_pic.jpg.

To capture a 20-second video with the camera module, run the following command:

Raspivid –o test.avi –t 20000

Unlike fswebcam and avconv, raspistill and raspivid do not write anything
to the console. So you need to check the current directory for the output. Also,
one can run the echo $? command to check if these commands have been
executed successfully.

Just like fswebcam, raspistill can be used to record a timelapse sequence. In our
timelapse shell script, replace the line which contains fswebcam with the appropriate
raspistill command to capture a timelapse sequence and use MEncoder again to
create the video.

http://www.raspberrypi.org/help/camera-module-setup/
http://www.raspberrypi.org/help/camera-module-setup/
http://www.raspberrypi.org/products/
http://www.raspberrypi.org/products/

Working with Images, Webcams, and GUI

[38]

Using picamera in Python with the Pi camera
module
picamera is a python package which provides a programming interface to the
Pi camera module. The most recent version of Raspbian has picamera installed.
If you do not have it installed, you can install it using sudo apt-get install
python-picamera.

The following program quickly demonstrates the basic usage of the picamera
module to capture a picture:

import picamera
import time

with picamera.PiCamera() as cam:
 cam.resolution=(1024,768)
 cam.start_preview()
 time.sleep(5)
 cam.capture('/home/pi/book/output/still.jpg')

We have to import time and picamera modules first. The cam.start_preview()
method starts the preview and time.sleep(5) waits for 5 seconds before cam.
capture() captures and saves the image in the specified file.

There is an inbuilt function in picamera for timelapse photography. Let's see its
usage using the following program:

import picamera
import time

with picamera.PiCamera() as cam:
 cam.resolution=(640,480)
 cam.start_preview()
 time.sleep(3)
 for count, imagefile in enumerate(cam.capture_continuous(
 '/home/pi/book/output/image{counter:02d}.jpg')):
 print 'Capturing and saving ' + imagefile
 time.sleep(1)
 if count == 10:
 break

In the preceding code, cam.capture_continuous() is used to capture the timelapse
sequence using the Pi camera module.

Chapter 2

[39]

Find more examples and API reference for the Pi camera module
at http://picamera.readthedocs.org/.

picamera and OpenCV
The following code demonstrates the use of picamera with OpenCV; it shows
a preview for 3 seconds, captures an image, and displays it on screen using
cv2.imshow():

import picamera
import picamera.array
import time
import cv2

with picamera.PiCamera() as camera:
 rawCap=picamera.array.PiRGBArray(camera)
 camera.start_preview()
 time.sleep(3)
 camera.capture(rawCap,format="bgr")
 image=rawCap.array
cv2.imshow("Test",image)
cv2.waitKey(0)
cv2.destroyAllWindows()

Summary
In this chapter, we explored how to work with images and videos, and how to
implement basic GUIs. We also saw how to use a webcam in OpenCV and how to
use a webcam and picamera for timelapse setup. We will be reusing all the code
examples we studied in this chapter throughout the book.

In the next chapter, we will get our hands on basic image processing operations,
such as mathematical and logical operators on images. We will also take a look
at topics such as splitting an image color channel and inverting an image.

http://picamera.readthedocs.org/

[41]

Basic Image Processing
In the previous chapter, we learned how to work with images and videos, create a
basic GUI, and use cameras to capture images and videos. In this chapter, we will
study the basic image processing in OpenCV. We will do this with the help of the
following topics:

•	 Retrieving the properties of an image
•	 Image arithmetic operations—adding, subtracting, and blending images
•	 Splitting color channels in an image
•	 Negating an image
•	 Performing logical operations on an image

This chapter is very short and easy to code with plenty of hands-on activities.

Retrieving image properties
We can retrieve and use many properties of an image with OpenCV functions.
Have a look at the following code:

import cv2
img = cv2.imread('/home/pi/book/test_set/lena_color_512.tif',1)
print img.shape
print img.size
print img.dtype

Basic Image Processing

[42]

The img.shape function returns the shape of an image, that is, its dimensions and
the number of color channels. The output of the preceding code is as follows:

pi@pi02 ~/book/code/chapter03 $ python prog1.py
(512, 512, 3)
786432
uint8

If the image is colored, then img.shape returns a triplet containing the number of
rows, columns, and channels in the image. Usually, the number of channels is three,
representing the red, green, and blue channels. If the image is grayscale, then img.
shape only returns the number of rows and columns. Try modifying the preceding
code to read the image in grayscale mode and observe the output of img.shape.

The img.size function returns the total number of pixels and img.dtype returns the
image data type.

Arithmetic operations on images
In this section, we will have a look at the various arithmetic operations that can be
performed on images. Images are represented as matrices in OpenCV. So, arithmetic
operations on images are similar to the arithmetic operations on matrices. Images
must be of the same size for you to perform arithmetic operations on the images,
and these operations are performed on individual pixels.

•	 cv2.add(): This function is used to add two images, where the images are
passed as parameters.

•	 cv2.subtract(): This function is used to subtract an image from another.

We know that the subtraction operation is not commutative.
So, cv2.subtract(img1,img2) and cv2.(img2,img1)
will yield different results, whereas cv2.add(img1,img2)
and cv2.add(img2,img1) will yield the same result as the
addition operation is commutative. Both the images have to be
of same size and type, as explained before.

Chapter 3

[43]

Check out the following code:

import cv2
img1 = cv2.imread('/home/pi/book/test_set/4.2.03.tiff',1)
img2 = cv2.imread('/home/pi/book/test_set/4.2.04.tiff',1)
cv2.imshow('Image1',img1)
cv2.waitKey(0)
cv2.imshow('Image2',img2)
cv2.waitKey(0)
cv2.imshow('Addition',cv2.add(img1,img2))
cv2.waitKey(0)
cv2.imshow('Image1-Image2',cv2.subtract(img1,img2))
cv2.waitKey(0)
cv2.imshow('Image2-Image1',cv2.subtract(img2,img1))
cv2.waitKey(0)
cv2.destroyAllWindows()

The preceding code demonstrates the usage of arithmetic functions on images. Image
2 is the same Lena image that we experimented with in the previous chapter. So I am
not going to include its output window. Here's the output window of Image1:

Basic Image Processing

[44]

Here is the output window of Addition:

The output window of Image1-Image2 looks like this:

Chapter 3

[45]

Here is the output window of Image2-Image1:

Blending and transitioning images
The cv2.addWeighted() function calculates the weighted sum of two images.
Because of the weight factor, it provides a blending effect to the images. Add the
following lines of code before destroyAllWindows() in the previous code listing to
see this function in action:

cv2.addWeighted(img1,0.5,img2,0.5,0)
cv2.waitKey(0)

Basic Image Processing

[46]

In the preceding code, we passed the following five arguments to the
addWeighted() function:

•	 Img1: This is the first image.
•	 Alpha: This is the weight factor for the first image (0.5 in the example).
•	 Img2: This is the second image.
•	 Beta: This is the weight factor for the second image (0.5 in the example).
•	 Gamma: This is the scalar value (0 in the example).

The output image value is calculated with the following formula:

Output (alpha*img1) + (beta*img 2) + gamma=

This operation is performed on every individual pixel.

Here is the output of the preceding code:

Chapter 3

[47]

We can create a film-style transition effect on the two images by using the same
function. Check out the output of the following code that creates a smooth image
transition from an image to another image:

import cv2
import numpy as np
import time

img1 = cv2.imread('/home/pi/book/test_set/4.2.03.tiff',1)
img2 = cv2.imread('/home/pi/book/test_set/4.2.04.tiff',1)

for i in np.linspace(0,1,40):
 alpha=i
 beta=1-alpha
 print 'ALPHA ='+ str(alpha)+' BETA ='+str (beta)
 cv2.imshow('Image Transition',
 cv2.addWeighted(img1,alpha,img2,beta,0))
 time.sleep(0.05)
 if cv2.waitKey(1) == 27 :
 break

cv2.destroyAllWindows()

Splitting and merging image colour
channels
On several occasions, we may be interested in working separately with the red,
green, and blue channels. For example, we might want to build a histogram for
every channel of an image.

We will work separately with the different channels
in Chapter 8, Histograms, Contours, Morphological
Transformations, and Performance Measurement.

Here, cv2.split() is used to split an image into three different intensity arrays for
each color channel, whereas cv2.merge() is used to merge different arrays into a
single multi-channel array, that is, a color image.

Basic Image Processing

[48]

The following example demonstrates this:

import cv2
img = cv2.imread('/home/pi/book/test_set/4.2.03.tiff',1)
b,g,r = cv2.split (img)
cv2.imshow('Blue Channel',b)
cv2.imshow('Green Channel',g)
cv2.imshow('Red Channel',r)
img=cv2.merge((b,g,r))
cv2.imshow('Merged Output',img)
cv2.waitKey(0)
cv2.destroyAllWindows()

The preceding program first splits the image into three channels (blue, green, and
red) and then displays each one of them. The separate channels will only hold the
intensity values of the particular color and the images will essentially be displayed as
grayscale intensity images. Then, the program merges all the channels back into an
image and displays it.

Creating a negative of an image
In mathematical terms, the negative of an image is the inversion of colors. For
a grayscale image, it is even simpler! The negative of a grayscale image is just
the intensity inversion, which can be achieved by finding the complement of the
intensity from 255. A pixel value ranges from 0 to 255, and therefore, negation
involves the subtracting of the pixel value from the maximum value, that is, 255.
The code for the same is as follows:

import cv2
img = cv2.imread('/home/pi/book/test_set/4.2.07.tiff')
grayscale = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
negative = abs(255-grayscale)
cv2.imshow('Original',img)
cv2.imshow('Grayscale',grayscale)
cv2.imshow('Negative',negative)
cv2.waitKey(0)
cv2.destroyAllWindows()

Chapter 3

[49]

Here is the output window of Greyscale:

Here's the output window of Negative:

Basic Image Processing

[50]

The negative of a negative will be the original grayscale image. Try this
on your own by taking the image negative of the negative again.

Logical operations on images
OpenCV provides bitwise logical operation functions for images. We will have a look
at the functions that provide the bitwise logical AND, OR, XOR (exclusive OR), and
NOT (inversion) functionality. These functions can be better demonstrated visually
with grayscale images. I am going to use barcode images in horizontal and vertical
orientation for demonstration. Let's have a look at the following code:

import cv2
import matplotlib.pyplot as plt

img1 = cv2.imread('/home/pi/book/test_set/Barcode_Hor.png',0)
img2 = cv2.imread('/home/pi/book/test_set/Barcode_Ver.png',0)
not_out=cv2.bitwise_not(img1)
and_out=cv2.bitwise_and(img1,img2)
or_out=cv2.bitwise_or(img1,img2)
xor_out=cv2.bitwise_xor(img1,img2)

titles = ['Image 1','Image 2','Image 1 NOT','AND','OR','XOR']
images = [img1,img2,not_out,and_out,or_out,xor_out]

for i in xrange(6):
 plt.subplot(2,3,i+1)
 plt.imshow(images[i],cmap='gray')
 plt.title(titles[i])
 plt.xticks([]),plt.yticks([])
plt.show()

We first read the images in grayscale mode and calculated the NOT, AND, OR, and
XOR, functionalities and then with matplotlib, we displayed those in a neat way.
We leveraged the plt.subplot() function to display multiple images. Here in the
preceding example, we created a grid with two rows and three columns for our
images and displayed each image in every part of the grid. You can modify this line
and change it to plt.subplot(3,2,i+1) to create a grid with three rows and two
columns. We will use this technique heavily throughout the book to display images
side-by-side or in a grid.

Chapter 3

[51]

Also, we can use the technique without a loop in the following way. For each image,
you have to write the following statements. I will write the code for the first image
only. Go ahead and write it for the rest of the five images:

plt.subplot(2,3,1) , plt.imshow(img1,cmap='gray') ,
 plt.title('Image 1') , plt.xticks([]),plt.yticks([])

Finally, use plt.show() to display. This technique is to avoid the loop when a very
small number of images, usually 2 or 3 in number, have to be displayed. The output
of this is as follows:

Make a note of the fact that the logical NOT operation is the
negative of the image.

Exercise
You may want to have a look at the functionality of cv2.copyMakeBorder().
This function is used to create the borders and paddings for images, and many of
you will find it useful for your projects. We won't use this function in the remainder
of our book. So, the exploring of this function is left as an exercise for the readers.

Basic Image Processing

[52]

You can check the python OpenCV API documentation at the
following location:
http://docs.opencv.org/modules/refman.html

Summary
In this chapter, we learned how to perform arithmetic and logical operations on
images and split images by their channels. We also learned how to display multiple
images in a grid by using matplotlib.

In the next chapter, we will learn about color spaces, the transformations on images,
and the various gradients of images.

http://docs.opencv.org/modules/refman.html

[53]

Colorspaces,
Transformations, and

Thresholds
In our previous chapter, we saw how to perform basic mathematical and logical
operations on images. We also saw how to use these operations to create a film-style
smooth image transitioning effect. In this chapter, we will continue to explore a few
more intriguing computer vision concepts and their applications in the real world.
We will explore the following topics:

•	 Colorspaces and conversions
•	 Real-time object tracking based on color value
•	 Geometric transformations on images
•	 Thresholding an image

Colorspaces and conversions
A colorspace is a mathematical model used to represent colors. Usually, colorspaces
are used to represent the colors in a numerical form and to perform mathematical
and logical operations with them. In this book, the colorspaces we mostly use are
BGR (OpenCV's default colorspace), RGB, HSV, and grayscale. BGR stands for
blue, green, and red. HSV represents colors in Hue, Saturation, and Value format.
OpenCV has a function cv2.cvtColor(img,conv_flag) that allows us to change
the colorspace of an image (img), while the source and target colorspaces are
indicated on the conv_flag parameter.

Colorspaces, Transformations, and Thresholds

[54]

If you remember, in Chapter 2, Working with Images, Webcams, and GUI, we discovered
that OpenCV loads images in BGR format and matplotlib uses the RGB format for
images. So, before displaying an image with matplotlib, we need to convert an image
from BGR to RGB colorspace.

Take a look at the following code. The program reads the image in color mode using
cv2.imread(), which imports the image in the BGR colorspace. Then, it converts it
to RGB using cv2.cvtColor(), and finally, it uses matplotlib to display the image:

import cv2
import matplotlib.pyplot as plt

img = cv2.imread('/home/pi/book/test_set/4.2.07.tiff',1)
img = cv2.cvtColor (img , cv2.COLOR_BGR2RGB)
plt.imshow (img) , plt.title ('COLOR IMAGE'),
 plt.xticks([]) , plt.yticks([])
plt.show()

Another way to convert an image from BGR to RGB is to first split the image into
three separate channels (B, G, and R channels) and merge them in BGR order.
However, this takes more time as split and merge operations are inherently
computationally costly, making them slower and inefficient. So, for the remainder
of this book, we will use the first method. The following code shows this method:

import cv2
import matplotlib.pyplot as plt
img = cv2.imread('/home/pi/book/test_set/4.2.07.tiff',1)
b,g,r = cv2.split (img)
img=cv2.merge((r,g,b))
plt.imshow (img) , plt.title ('COLOR IMAGE'), plt.xticks([]) , plt.
yticks([])
plt.show()

Chapter 4

[55]

The output of both the programs is the same as shown in the following image:

If you need to know the colorspace conversion flags, then the following snippet of
code will assist you in finding the list of available flags for your current OpenCV
installation:

import cv2
j=0
for filename in dir(cv2):
 if filename.startswith('COLOR_'):
 print filename
 j=j+1

print 'There are ' + str(j) + ' Colorspace Conversion
 flags in OpenCV'

Colorspaces, Transformations, and Thresholds

[56]

The last few lines of the output will be as follows (I am not including the complete
output due to space limitation):

.

.

.
COLOR_YUV420P2BGRA
COLOR_YUV420P2GRAY
COLOR_YUV420P2RGB
COLOR_YUV420P2RGBA
COLOR_YUV420SP2BGR
COLOR_YUV420SP2BGRA
COLOR_YUV420SP2GRAY
COLOR_YUV420SP2RGB
COLOR_YUV420SP2RGBA
There are 176 Colorspace Conversion flags in OpenCV

The following code converts a color from BGR to HSV and prints it:

>>> import cv2
>>> import numpy as np
>>> c = cv2.cvtColor(np.uint8[[[255,0,0]]]),cv2.COLOR_BGR2HSV)
>>> print c
[[[120 255 255]]]

The preceding snippet of code prints the HSV value of the color blue represented
in BGR.

Hue, Saturation, Value, or HSV is a color model that describes colors (hue or tint)
in terms of their shade (saturation or amount of gray) and their brightness (value or
luminance). Hue is expressed as a number representing hues of red, yellow, green,
cyan, blue, and magenta. Saturation is the amount of gray in the color. Value works
in conjunction with saturation and describes the brightness or intensity of the color.

Tracking in real time based on color
Let's study a real-life application of this concept. In HSV format, it's much easier
to recognize the color range. If we need to track a specific color object, we will
have to define a color range in HSV, then convert the captured image in the HSV
format, and then check whether the part of that image falls within the HSV color
range of our interest. We can use the cv2.inRange() function to achieve this. This
function takes an image, the upper and lower bounds of the colors, and then checks
the range criteria for each pixel. If the pixel value falls in the given color range, the
corresponding pixel in the output image is 0; otherwise it is 255, thus creating a
binary mask.

Chapter 4

[57]

We can use bitwise_and() to extract the color range we're interested in using this
binary mask thereafter. Take a look at the following code to understand this concept:

import numpy as np
import cv2

cam = cv2.VideoCapture(0)

while (True):
 ret, frame = cam.read()

 hsv=cv2.cvtColor(frame,cv2.COLOR_BGR2HSV)

 image_mask=cv2.inRange(hsv,np.array([40,50,50]),
 np.array([80,255,255]))

 output=cv2.bitwise_and(frame,frame,mask=image_mask)

 cv2.imshow('Original',frame)
 cv2.imshow('Output',output)

 if cv2.waitKey(1) == 27:
 break

cv2.destroyAllWindows()
cam.release()

We're tracking the green colored objects in this program. The output should be
similar to the following one. I used green tea bag tags as the test object.

Colorspaces, Transformations, and Thresholds

[58]

The mask image is not included in the preceding image. You can see it yourself by
adding cv2.imshow('Image Mask',image_mask) to the code. It would be a binary
(pure black and white) image.

We can also track multiple colors by tweaking this code a bit. We need to modify
the preceding code by creating a mask for another color range. Then, we can use
cv2.add() to get the combined mask for two distinct color ranges, as follows:

blue=cv2.inRange(hsv,np.array([100,50,50]),np.array([140,255,255]))
green=cv2.inRange(hsv,np.array([40,50,50]),np.array([80,255,255]))	
image_mask=cv2.add(blue,green)
output=cv2.bitwise_and(frame,frame,mask=image_mask)

Try this code and check the output for yourself.

Image transformations
In this section, we will see the various transformations on an image, and how to
implement them in OpenCV.

Scaling
Scaling is the resizing of the image, which can be accomplished by the cv2.resize()
function. It takes image, scaling factor, and interpolation method as inputs.

The interpolation method parameter can have any one of the following values:

•	 INTER_LINEAR: This deals with bilinear interpolation (default value)
•	 INTER_NEAREST: This deals with the nearest-neighbor interpolation
•	 INTER_AREA: This is associated with resampling using pixel area relation

(preferred for shrinking)
•	 INTER_CUBIC : This deals with bicubic interpolation over 4 x 4 pixel

neighborhood (preferred for zooming)
•	 INTER_LANCZOS4: This deals with Lanczos interpolation over 8 x 8 pixel

neighbourhood

The following example shows the usage for upscaling and downscaling:

import cv2
img = cv2.imread('/home/pi/book/test_set/house.tiff',1)
upscale = cv2.resize(img,None,fx=1.5,fy=1.5,
 interpolation=cv2.INTER_CUBIC)

Chapter 4

[59]

downscale = cv2.resize(img,None,fx=0.5,fy=0.5,
 interpolation=cv2.INTER_AREA)
cv2.imshow('upscale',UpScale)
cv2.waitKey(0)
cv2.imshow('downscale',DownScale)
cv2.waitKey(0)
cv2.destroyAllWindows()

In the preceding code, we upscale the image in the x and y axes with a factor
of 1.5 and downscale in x and y axes with a factor of 0.5. Run the code and see
the output for yourself.

Translation, rotation, and affine
transformation
The cv2.warpAffine() function can be used to perform translation, rotation,
and affine transformation. It takes an input image, transformation matrix,
and size of the output image as inputs, and returns the transformed image.

You can read more about affine transformations at http://
mathworld.wolfram.com/AffineTransformation.html.

The following examples show different types of transformations which can be
implemented with cv.warpAffine().

Translation means shifting the location of the image. The shifting factor in (x,y)
can be denoted with the transformation matrix, as follows:

The following code shifts the location of the image with (-50,50):

import numpy as np
import cv2
import matplotlib.pyplot as plt

img = cv2.imread('/home/pi/book/test_set/house.tiff',1)
input=cv2.cvtColor(img,cv2.COLOR_BGR2RGB)

http://mathworld.wolfram.com/AffineTransformation.html
http://mathworld.wolfram.com/AffineTransformation.html

Colorspaces, Transformations, and Thresholds

[60]

rows,cols,channel = img.shape

T = np.float32([[1,0,-50],[0,1,50]])
output = cv2.warpAffine(input,T,(cols,rows))

plt.imshow (output) , plt.title ('Shifted Image')
plt.show()

The output is shown as follows:

Some parts of the image will be cropped as the size of the output is the same
as the input.

Similarly, we can use cv2.warpAffine() to apply scaled rotation to an image. For
this, we need to define a rotation matrix with the use of cv2.getRotationMatrix2D(),
which accepts the center of the rotation, the angle of anti-clockwise rotation
(in degrees), and the scale as parameters, and provides a rotation matrix,
which can be specified as the parameter to cv2.warpAffine().

Chapter 4

[61]

The following example rotates the image by 45 degrees with the center of the image
as the center of rotation, and scales it down to 50% of the original image:

import cv2
import matplotlib.pyplot as plt

img = cv2.imread('/home/pi/book/test_set/house.tiff',1)
input=cv2.cvtColor(img,cv2.COLOR_BGR2RGB)
rows,cols,channel = img.shape

R = cv2.getRotationMatrix2D((cols/2,rows/2),45,0.5)
output = cv2.warpAffine(input,R,(cols,rows))

plt.imshow (output) , plt.title ('Rotated and Downscaled Image')
plt.show()

The output will be as follows:

Colorspaces, Transformations, and Thresholds

[62]

We can create some animation / visual effects by changing the rotation angle at
regular intervals and then displaying it in a continuous loop till the Esc key is
pressed. Following is the code for this (check the output yourself):

import cv2
from time import sleep

image = cv2.imread('/home/pi/book/test_set/house.tiff',1)
rows,cols,channels = image.shape

angle = 0
while(1):

 if angle == 360:
 angle=0

 M = cv2.getRotationMatrix2D((cols/2,rows/2),angle,1)
 rotated = cv2.warpAffine(image,M,(cols,rows))
 cv2.imshow('Rotating Image',rotated)
 angle=angle+1
 sleep(0.2)
 if cv2.waitKey(1) == 27 :
 break

cv2.destroyAllWindows()

Try implementing this on the live cam for more fun.

Next, we will see how to implement an affine transformation on any image.
An affine transformation is a function between affine spaces. After applying the
affine transformation on an image, the parallelism between the lines in an image is
preserved. This means that the parallel lines in original images remain parallel even
after transformation. The affine transformation needs any three non-collinear points
(points which are not on the same line) in the original image and the corresponding
points in the transformed image. These points are passed as arguments to cv2.
getAffineTransform() to get the transformation matrix, and that matrix, in turn, is
passed to cv2.warpAffine() as an argument. Take a look at the following example:

import cv2
import numpy as np
from matplotlib import pyplot as plt

Chapter 4

[63]

image = cv2.imread('/home/pi/book/test_set/2.1.11.tiff',1)

#changing the colorspace from BGR->RGB
input = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)

rows,cols,channels = input.shape

points1 = np.float32([[100,100],[300,100],[100,300]])
points2 = np.float32([[200,150],[400,150],[100,300]])

A = cv2.getAffineTransform(points1,points2)

output = cv2.warpAffine(input,A,(cols,rows))

plt.subplot(121),plt.imshow(input),plt.title('Input')
plt.subplot(122),plt.imshow(output),plt.title('Affine Output')
plt.show()

The output will appear as follows:

Colorspaces, Transformations, and Thresholds

[64]

Perspective transformation
In perspective transformation, we provide four points from the input image and
corresponding four points in the output image. The condition is that any three
of these points should not be collinear (again, not in the same line). Like affine
transformation, in perspective transformation, a straight line will remain straight.
However, the parallelism between the lines will not be preserved. A real-life example
of perspective transformation would be the zooming and angled zoom functionality
in software. The degree and angle of zoom depends on the transformation matrix,
which is defined by a set of four input and four output points. Let's see an example
of the simple zoom functionality with the following code, where we use cv2.
getPerspectiveTransform() to generate the transformation matrix and
cv2.warpPerspective() to get the transformed output:

import cv2
import numpy as np
from matplotlib import pyplot as plt

image = cv2.imread('/home/pi/book/test_set/ruler.512.tiff',1)

#changing the colorspace from BGR->RGB
input = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)

rows,cols,channels = input.shape

points1 = np.float32([[0,0],[400,0],[0,400],[400,400]])
points2 = np.float32([[0,0],[300,0],[0,300],[300,300]])

P = cv2.getPerspectiveTransform(points1,points2)

output = cv2.warpPerspective(input,P,(300,300))

plt.subplot(121),plt.imshow(input),plt.title('Input')
plt.subplot(122),plt.imshow(output),plt.title('Perspective
 Transform')
plt.show()

Chapter 4

[65]

The output will appear as follows:

Try passing various combination of the parameters to see how the resultant
image changes. In the preceding example, parallelism between the lines is preserved
because of the combination of the parameters we used. You might want to try
different combinations of the parameters to see that the parallelism between the
lines is not preserved.

Colorspaces, Transformations, and Thresholds

[66]

Thresholding image
Thresholding is the simplest way to segment images. Although thresholding
methods and algorithms are available for colored images, it works best on
grayscale images. Thresholding usually (but not always) converts grayscale images
into binary images (in a binary image, each pixel can only have one of two possible
values: white or black). Thresholding the image is usually the first step in many
image processing applications.

The way thresholding works is very simple. We define a threshold value. For a pixel
in a grayscale image, if the value of grayscale intensity is greater than the threshold,
we assign a value to the pixel (for example, white), else we assign a black value to the
pixel. This is the simplest form of thresholding and there are many other variations
of this method, which we will see now.

In OpenCV, the cv2.threshold() function is used to threshold images. It takes
as input, grayscale image, threshold value, maxVal, and threshold method as
parameters, and returns the thresholded image as output. The maxVal parameter
is the value assigned to the pixel if the pixel intensity is greater (or less in some
methods) than the threshold. There are five threshold methods available in OpenCV;
in the beginning, the simplest form of thresholding we saw is cv2.THRESH_BINARY.
Let's see the mathematical representation of all the threshold methods.

Say (x,y) is the input pixel; then, operations by threshold methods are as follows:

•	 cv2.THRESH_BINARY

If intensity(x,y) > thresh, then set intensity(x,y) = maxVal; else set
intensity(x,y) = 0.

•	 cv2.THRESH_BINARY_INV

If intensity(x,y) > thresh, then set intensity(x,y) = 0; else set
intensity(x,y) = maxVal.

•	 cv2.THRESH_TRUNC

If intensity(x,y) > thresh, then set intensity(x,y)=threshold; else leave
intensity(x,y) as it is.

Chapter 4

[67]

•	 cv2.THRESH_TOZERO

If intensity(x,y)> thresh; then leave intensity(x,y) as it is; else set
intensity(x,y) = 0.

•	 cv2.THRESH_TOZERO_INV

If intensity(x,y) > thresh, then set intensity(x,y) = 0; else leave
intensity(x,y) as it is.

The demonstration of the threshold functionality usually works best on grayscale
images with a gradually increasing gradient. In the following example, we chose
the value of the threshold as 127, so the image is segmented into two sets of pixels
depending on the value of their intensity:

import cv2
import matplotlib.pyplot as plt

img = cv2.imread('/home/pi/book/test_set/gray21.512.tiff',0)
th=127
max_val=255
ret,o1 = cv2.threshold(img,th,max_val,cv2.THRESH_BINARY)
ret,o2 = cv2.threshold(img,th,max_val,cv2.THRESH_BINARY_INV)
ret,o3 = cv2.threshold(img,th,max_val,cv2.THRESH_TOZERO)
ret,o4 = cv2.threshold(img,th,max_val,cv2.THRESH_TOZERO_INV)
ret,o5 = cv2.threshold(img,th,max_val,cv2.THRESH_TRUNC)

titles = ['Input Image','BINARY','BINARY_INV','TOZERO','TOZERO_
INV','TRUNC']
output = [img, o1, o2, o3, o4, o5]

for i in xrange(6):
 plt.subplot(2,3,i+1),plt.imshow(output[i],cmap='gray')
 plt.title(titles[i])
 plt.xticks([]),plt.yticks([])
plt.show()

Colorspaces, Transformations, and Thresholds

[68]

The output of the code will appear as follows:

Otsu's method
Otsu's method for thresholding automatically determines the value of the threshold
for the images, which have two peaks in their histogram (bi-modal histograms). This
usually means the image has background and foreground pixels, and Otsu's method
is the best way to separate these two sets of pixels automatically without specifying
the threshold value.

Chapter 4

[69]

Otsu's method is not the best way for images which are not in the background
+ foreground model, and they may provide improper output if applied. This
method is applied in addition to other methods and the threshold is passed
as 0. Try implementing the following code:

ret,output=cv2.threshold(image,0,255,cv2.
 THRESH_BINARY+cv2.THRESH_OTSU)

The output of this will be as follows. This is an image of a tank in a desert:

Exercise
Explore cv2.adaptiveThreshold(), which is used for adaptive thresholding of
images based on uneven lighting conditions (some parts of the image are more
illuminated than others).

Colorspaces, Transformations, and Thresholds

[70]

Summary
In this chapter, we explored colorspaces and its applications in image tracking
with one color and multiple colors. Then, we applied transformations on images.
Finally, we saw how to threshold an image.

In the next chapter, we will go over the basics of noise and filtering the noise,
as well as smoothening/blurring images with Low Pass Filters.

[71]

Let's Make Some Noise
In the previous chapter, we learned about colorspace conversion, transformations,
and threshold. In this chapter, we will learn about the basics of noise in images and
low-pass filtering techniques. Here are the topics that we will explore in this chapter:

•	 The basics of noise and the introducing of salt-and-pepper noise to an image
•	 Kernel and low-pass filters
•	 Low-pass filtering techniques

Noise
Noise means any unwanted signal. Image/video noise signifies unwanted variations
in the intensity (for grayscale image) or color (for color images) that is not present in
the real object that was photographed or recorded. Image noise is a form of electronic
disruption, and it can come from many sources, such as camera sensors and circuitry
in digital or analog cameras. Noise in digital cameras is the equivalent of the film
grain of analog cameras. Though some noise is always present in any output of
electronic devices, a high amount of image noise considerably degrades the overall
image quality, making it useless for the intended purpose. To represent the quality of
electronic output (in our case, digital images), the mathematical term signal-to-noise
ratio (SNR) is very useful. Mathematically, it's defined as follows:

A higher signal-to-noise ratio translates into a better
quality image.

Let's Make Some Noise

[72]

Introducing noise to an image
As we have seen earlier, noise can be introduced from many components in a
camera, which include the lens, sensors, or the circuitry itself. We can simulate
the noise by introducing it ourselves. Salt-and-pepper noise means the random
appearance of black (pepper) and white (salt) pixels in the image. The following
example shows how to add salt-and-pepper noise into the Lena image:

import numpy as np
import cv2
import random
import matplotlib.pyplot as plt

img = cv2.imread('/home/pi/book/test_set/lena_color_512.tif',1)
input = cv2.cvtColor(img,cv2.COLOR_BGR2RGB)
output = np.zeros(input.shape,np.uint8)
p = 0.05 # probablity of noise
for i in range (input.shape[0]):
 for j in range(input.shape[1]):
 r = random.random()
 if r < p/2:
 output[i][j] = 0,0,0
 elif r < p:
 output[i][j] = 255,255,255
 else:
 output[i][j] = input[i][j]

plt.imshow(output), plt.title('Salt and Pepper Sprinkled')
plt.xticks([]),plt.yticks([])
plt.show()

In the preceding program, we set the noise density (p) to 0.05 and generated a
random number for each pixel. If the random number is less than p/2, we set the
pixel to black (pepper), if it's greater than p/2 but less than p, we set it to white (salt).
Otherwise, we leave the pixel untouched. Finally, we used matplotlib to display the
image with noise.

Chapter 5

[73]

The output image will be different every time we run the code since the noise is
added randomly using the random.random() function. The following screenshot
is of one of the outputs:

Let's Make Some Noise

[74]

Kernels
In the following concepts and their implementations, we are going to use kernels.
Kernels are square matrices used in some image processing operations. We can
apply a kernel to an image to get different results, such as blurring, smoothing, edge
detection, and sharpening of an image. One of the main uses of kernels is to apply
a low-pass filter to an image. Low-pass filters average out the rapid changes in the
intensity of image pixels. This basically smoothens or blurs the image. A simple
averaging kernel can be mathematically represented as follows:

For row = cols = 3, K will be as follows:

The value of rows and columns is always odd.

We can use the following NumPy code to create this kernel:

K=np.ones((3,3),np.uint32)/9

2D convolution filtering
The cv2.filter2D() function convolves the aforementioned kernel with the image,
thus applying a linear filter to the image. This function accepts the source image
and the depth of the destination image (-1 in our case; -1 means the same depth as
the source image) and a kernel. Have a look at the following code. It applies a 7x7
averaging filter to an image:

import cv2
import numpy as np
from matplotlib import pyplot as plt

img = cv2.imread('/home/pi/book/test_set/4.2.03.tiff',1)

input = cv2.cvtColor(img,cv2.COLOR_BGR2RGB)
output = cv2.filter2D(input,-1,np.ones((7,7),np.float32)/49)

Chapter 5

[75]

plt.subplot(121),plt.imshow(input),plt.title('Input')
plt.xticks([]), plt.yticks([])
plt.subplot(122),plt.imshow(output),plt.title('Output')
plt.xticks([]), plt.yticks([])
plt.show()

The output will be a filtered image, as follows:

You can find interactive tutorials on convolution at the following URL:
http://micro.magnet.fsu.edu/primer/java/
digitalimaging/processing/kernelmaskoperation/

http://micro.magnet.fsu.edu/primer/java/digitalimaging/processing/kernelmaskoperation/
http://micro.magnet.fsu.edu/primer/java/digitalimaging/processing/kernelmaskoperation/

Let's Make Some Noise

[76]

Low-pass filtering
As discussed in the section on kernels, low-pass filters are excellent if you wish to
remove sharp components (high-frequency information), such as edges and noise,
and retain low-frequency information (the so-called low-pass filters), thus blurring
or smoothening them.

Let's explore the low-pass filtering functions available in OpenCV. We do not have to
create and pass the kernel as an argument to these functions. Instead, these functions
create the kernel, based on the size of the kernel that we pass as a parameter.

The cv2.boxFilter() function takes the image, ddepth, and size of the kernel as
inputs and blurs the image. We can specify normalize as either true or false. If it's
True, the matrix in the kernel will have 1

rows cols∗ as it's coefficient, and hence, the matrix
is called a normalized box filter. If normalize is set to False, then the coefficient will
be 1, and it will be called an unnormalized box filter. An unnormalized box filter is
useful if you want to compute the various integral characteristics over each pixel
neighborhood, such as the covariance matrices of image derivatives (used in dense
optical flow algorithms and many other instances).The following code demonstrates
the normalized box filter:

output=cv2.boxFilter(input,-1,(3,3),normalize=True)

The output of the preceding code will be as follows, and it will have a lesser amount
of smoothing than the previous one due to the size of the kernel matrix:

Chapter 5

[77]

The cv2.blur() function directly provides the normalized box filter by accepting
the input image and kernel size as parameters without the need to specify the
normalize parameter. The output for the following code will be exactly the
same as the preceding output:

output = cv2.blur(input,(3,3))

As an exercise, try passing normalize as False for an unnormalised box filter to
cv2.boxFilter() and see the output.

The cv2.GaussianBlur() function uses the Gaussian kernel in place of a box filter
to apply. This filter is highly effective against Gaussian noise. The following is the
code that you can use to implement this function:

output = cv2.GaussianBlur(input,(3,3),0)

You may want to read more about Gaussian Noise at http://
homepages.inf.ed.ac.uk/rbf/HIPR2/noise.htm.

The following is the output of the preceding code where the input is an image with
Gaussian noise and the output is the image with the Gaussian noise removed:

http://homepages.inf.ed.ac.uk/rbf/HIPR2/noise.htm
http://homepages.inf.ed.ac.uk/rbf/HIPR2/noise.htm

Let's Make Some Noise

[78]

The cv2.medianBlur() function is used for the median blurring of an image using
the median filter. It calculates the median of all the values under the kernel, and
the centre pixel in the kernel is replaced with the calculated medium. In this filter, a
window slides along the image, and the median intensity value of the pixels within
the window becomes the output intensity of the pixel being processed. It's highly
effective against salt-and-pepper noise. We need to pass an input image and an odd
positive integer (not the rows, columns tuple like the previous two functions) to this
function. The following code introduces salt-and-pepper noise in the image and then
applies the cv2.medianBlur() function to that to remove the noise:

import cv2
import numpy as np
import random
from matplotlib import pyplot as plt

img = cv2.imread('/home/pi/book/test_set/lena_color_512.tif',1)

input = cv2.cvtColor(img,cv2.COLOR_BGR2RGB)

output = np.zeros(input.shape,np.uint8)
p = 0.2 # probablity of noise
for i in range (input.shape[0]):
 for j in range(input.shape[1]):
 r = random.random()
 if r < p/2:
 output[i][j] = 0,0,0
 elif r < p:
 output[i][j] = 255,255,255
 else:
 output[i][j] = input[i][j]

noise_removed = cv2.medianBlur(output,3)

plt.subplot(121),plt.imshow(output),plt.title('Noisy Image')
plt.xticks([]), plt.yticks([])
plt.subplot(122),plt.imshow(noise_removed),plt.title('Median
Filtering')
plt.xticks([]), plt.yticks([])
plt.show()

Chapter 5

[79]

You will find out that the salt-and-pepper noise has been drastically reduced and the
image is much more comprehensible to the human eye:

Exercise
As an exercise for this chapter, explore cv2.sepFilter2D(), which is used for
separable linear filtering. Also, explore the cv2.BilateralFilter() filter function
that filters noise while keeping the edges sharp. You may want to find out the
mathematics behind the Gaussian noise.

Summary
In this chapter, we learned about noise as well as low-pass filtering techniques used
to smooth images. In the next chapter, we will study high-pass filtering techniques
and the detection of edges using the Canny Edge detection algorithm. We will also
write programs to detect circles and lines using Hough's Transforms in a live video
from a webcam.

[81]

Edges, Circles,
and Lines' Detection

In the last chapter, you learned about noise and how you can introduce it in an
image. Then, you studied kernels, low-pass filters, and the applications of these
filters in the blurring, smoothening, and denoising of images. In this chapter, you
will study the different types of high-pass filters and their applications. You will also
see how to use the Canny Edge detection method on images. Finally, we will cover
how one can identify circles and lines in a live webcam feed. The following topics
will be covered in this chapter:

•	 High-pass filters
•	 Laplacian, Sobel, and Scharr methods for high-pass filtering
•	 The Canny Edge detection algorithm and implementation
•	 Circle tracking and line tracking in a live video

High-pass filters
High-pass filtering (HPF) is exactly the opposite of low-pass filtering. In low-pass
filtering, an image is usually blurred, whereas after applying high-pass filtering, an
image is sharpened. All high-pass filters will let high-frequency information like
edges to enhance, while restricting low-frequency information (hence, they are called
high-pass filters). These filters are also called derivative masks and are widely used
in edge detection and extraction algorithms. Edge is an important type of feature in
an image. We will study three derivative functions available in OpenCV and see how
these are useful in the extracting of edges.

Edges, Circles, and Lines' Detection

[82]

OpenCV provides the Sobel(), Laplacian(), and Scharr() functions for
high-pass filtering.

You can read more about mathematics behind these functions on the web
at the following URLs:
http://www.tutorialspoint.com/dip/Sobel_operator.htm

http://www.tutorialspoint.com/dip/Laplacian_Operator.
htm

The following are the most common parameters used in the functions
mentioned before:

•	 src: This is the source image.
•	 ddepth: This is the depth of the target image. -1 stands for the same depth

of target as that of the source. The following combinations of source image
depth and target image depth are supported by Laplacian(), Sobel(), and
Scharr() derivatives.

Source image depth Target image depth
CV_8U -1/CV_16S/CV_32F/CV_64F

CV_16U/CV_16S -1/CV_32F/CV_64F

CV_32F -1/CV_32F/CV_64F

CV_64F -1/CV_64F

•	 dx: This is the order of the x derivative (not required for Laplacian()).
•	 dy: This is the order of the y derivative (not required for Laplacian()).
•	 ksize: This is the kernel size (1,3,5,7 for sobel(), a positive odd number for

Laplacian(), and is not required for Scharr()).
•	 scale: This is the optional scale for computed derivative values.

http://www.tutorialspoint.com/dip/Sobel_operator.htm
http://www.tutorialspoint.com/dip/Laplacian_Operator.htm
http://www.tutorialspoint.com/dip/Laplacian_Operator.htm

Chapter 6

[83]

•	 delta: This is the optional delta value that is added to the results prior to
storing them in the output.

•	 borderType: This is the pixel extrapolation method for boundary pixels.

Let's see the code in action for Sobel(), Laplacian(), and Scarr(). In the
following code, we will compute the Laplacian of the image as well as the
first-order x derivative, using the Scarr() and Sobel() functions:

import cv2
import matplotlib.pyplot as plt

img = cv2.imread('/home/pi/book/test_set/1.3.12.tiff',0)

laplacian = cv2.Laplacian(img,ddepth=cv2.CV_32F,
 ksize=17,scale=1,delta=0,borderType=cv2.BORDER_DEFAULT)

sobel = cv2.Sobel(img,ddepth=cv2.CV_32F,dx=1,dy=0,
 ksize=11,scale=1,delta=0,borderType=cv2.BORDER_DEFAULT)

scharr = cv2.Scharr(img,ddepth=cv2.CV_32F,dx=1,dy=0,scale=1,
 delta=0,borderType=cv2.BORDER_DEFAULT)

images=[img,laplacian,sobel,scharr]

titles=['Original','Laplacian','Sobel','Scharr']

for i in xrange(4):
 plt.subplot(2,2,i+1)
 plt.imshow(images[i],cmap = 'gray')
 plt.title(titles[i]),
 plt.xticks([]), plt.yticks([])
plt.show()

Edges, Circles, and Lines' Detection

[84]

The following screenshot depicts the output of the code. As you can see,
the calculation of the x derivative of the image with Sobel() and Scharr()
gives us the vertical borders of the original image:

As an exercise, compute the first-order y derivatives of the image using the Sobel
and Scharr functions. Then, use the cv2.add() function to add the Sobel x
derivative to the Sobel y derivative. In the same way, add the Scharr x derivative
to the Scharr y derivative of the same image and compare the results.

Chapter 6

[85]

Canny Edge detector
The Canny Edge detector is a multistage edge detection method developed by
John Canny.

The following links explain the Canny Edge detection in detail:
http://dasl.mem.drexel.edu/alumni/bGreen/www.
pages.drexel.edu/_weg22/can_tut.html

http://homepages.inf.ed.ac.uk/rbf/HIPR2/canny.htm

OpenCV implements it using cv2.Canny(). It works in the following stages:

1.	 A Gaussian kernel is applied to filter out any noise. A 5x5 kernel is used.
2.	 The intensity gradient of the image is calculated. If L2gradient is true,

then the L2 norm is used, and if it's false, then the L1 norm is used.
3.	 Non-maximum suppression is applied to the output of step 2 and the

candidate edges are identified.
4.	 The final step involves hysteresis. The values of threshold1 and threshold2

are passed to the function. Anything with a gradient below threshold1
is excluded and anything with a gradient that is more than threshold2 is
included in the edge set. For the points in which the gradient lies between
two thresholds, only the pixels that are connected to the pixels that lie above
threshold2 are accepted as part of the final edge set.

The following parameters are usually passed to cv2.Canny():

•	 img: This is the input image.
•	 threshold1: This is the lower threshold.
•	 threshold2: This is the upper threshold.
•	 L2gradient: This is a Boolean value. If it's True, then the L2 norm is used.

Otherwise, the L1 norm is used to calculate the gradient. Usually, the L2
norm is more accurate than the L1 norm, but the former requires more time
for computation.

The function will return a set with the detected edges.

http://dasl.mem.drexel.edu/alumni/bGreen/www.pages.drexel.edu/_weg22/can_tut.html
http://dasl.mem.drexel.edu/alumni/bGreen/www.pages.drexel.edu/_weg22/can_tut.html
http://homepages.inf.ed.ac.uk/rbf/HIPR2/canny.htm

Edges, Circles, and Lines' Detection

[86]

The following code will compute and display the edges with the help of the
Canny detector:

import cv2
import matplotlib.pyplot as plt

img = cv2.imread('/home/pi/book/test_set/house.tif',0)
edges1 = cv2.Canny(img,50,300,L2gradient=False)
edges2 = cv2.Canny(img,100,150,L2gradient=True)

images = [img,edges1,edges2]
titles = ['Original','L1 Gradient','L2 Gradient']

for i in xrange(3):
 plt.subplot(1,3,i+1)
 plt.imshow(images[i],cmap = 'gray')
 plt.title(titles[i]),
 plt.xticks([]), plt.yticks([])
plt.show()

The output will be as follows:

As an exercise, try to run the above program with different combinations
of parameters.

Hough circle and line transforms
OpenCV has cv2.HoughCircles() to detect the circle feature in an image, and it
returns the circles in the images in the form of a vector (x, y, radius).

Chapter 6

[87]

You can find the details with regard to the mathematics behind the
Hough circle transform at the following URL:
http://docs.opencv.org/doc/tutorials/imgproc/imgtrans/
hough_circle/hough_circle.html

It accepts the following parameters as arguments:

•	 An image: This is an 8-bit single-channel grayscale.
•	 The detection method: This is the method for circle detection. As of now,

only one method, cv2.cv.CV_HOUGH_GRADIENT, has been implemented.
•	 dp: This is the inverse ratio of resolution. This is the formula:

•	 minDist: This is the minimum distance between the centers of the
detected circles.

•	 param1 and param2: These are the method-specific parameters. The param1
method is the highest threshold of the underlying Canny method, and the
param2 method is the accumulator threshold for CV_HOUGH_GRADIENT.

•	 minRadius and maxRadius: These are the respective parameters for the
minimum and maximum radius of the circles for detection.

The following program accepts the feed from the webcam and then smoothens the
image by blurring it, before passing it to cv2.HoughCircles(). The detected circles
are drawn using cv2.Circle(), which is something that we have already seen in
Chapter 2, Working with Images, Webcams, and GUI:

import cv2

cam = cv2.VideoCapture(0)

while (True):
 ret , frame = cam.read()

 grey = cv2.cvtColor(frame,cv2.COLOR_BGR2GRAY)
 blur = cv2.blur(grey,(5,5))

http://docs.opencv.org/doc/tutorials/imgproc/imgtrans/hough_circle/hough_circle.html
http://docs.opencv.org/doc/tutorials/imgproc/imgtrans/hough_circle/hough_circle.html

Edges, Circles, and Lines' Detection

[88]

 circles = cv2.HoughCircles(blur,
 method=cv2.cv.CV_HOUGH_GRADIENT,dp=1,minDist=200,
 param1=50,param2=13,minRadius=30,maxRadius=175)

 if circles is not None:
 for i in circles [0,:]:
 cv2.circle(frame,(i[0],i[1]),i[2],(0,255,0),2)
 cv2.circle(frame,(i[0],i[1]),2,(0,0,255),3)

 cv2.imshow('Detected',frame)
 if cv2.waitKey(5) == 27:
 break

cv2.destroyAllWindows()
cam.release()

I used this program on two coins and a round magnet placed on my desk.
The program works very well and detects all the round objects. The output
is as follows:

Chapter 6

[89]

OpenCV also has a cv2.HoughLines() function to find the lines. Let's see how we
can detect lines in a live video feed.

In the following example, cv2.HoughLines() accepts the following parameters:

•	 An image: This is an 8-bit single-channel grayscale image
•	 The rho value: This is the distance accuracy of an accumulator
•	 The theta value: This is the angle accuracy of an accumulator
•	 The threshold: This is the accumulator threshold parameter

This function returns lines in the (rho,theta) vector that we need to convert to the
(x1,y1),(x2,y2) system:

import numpy as np
import cv2

cam = cv2.VideoCapture(0)

while (1):

 ret, img = cam.read()
 gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
 edges = cv2.Canny(gray,50,250,apertureSize=5,L2gradient=True)

 lines = cv2.HoughLines(edges,1,np.pi/180,200)

 if lines is not None:
 for rho,theta in lines[0]:
 a = np.cos(theta)
 b = np.sin(theta)
 x0 = a*rho
 y0 = b*rho
 pts1 = (int(x0 + 1000*(-b)) , int(y0 + 1000*(a)))
 pts2 = (int(x0 - 1000*(-b)) , int(y0 - 1000*(a)))
 cv2.line(img,pts1,pts2,(0,0,255),2)

 cv2.imshow('Detected Lines',img)
 if cv2.waitKey(1) == 27:
 break

cv2.destroyAllWindows()
cam.release()

Edges, Circles, and Lines' Detection

[90]

Run the preceding program and check the output yourself. The Hough transform
functions have to be tuned for the given sample set. So, if you cannot see any circles
and lines in your video or if there are a lot of false positives (that is, the programs
detect circles and lines even when they are not present in the input frame), you
might want to play a bit with the parameters to tune them according to your
sample input to get the desired results.

Exercise
OpenCV has a cv2.HoughLinesP method that uses probabilistic
Hough line transform to find the lines. The cv2.cornerHarris(), cv2.
goodFeaturesToTrack(), and cv2.FastFeatureDetector() methods are used to
detect the corners in an image. Explore these functions by yourself in more detail.

Summary
In this chapter, we saw how to apply high-pass filters to an image. We also explored
and implemented the algorithms for the detection of features like edges, lines, and
circles in OpenCV.

In our next chapter, we will explore image restoration, segmentation, quantization,
and depth map in detail and write programs to implement these topics.

[91]

Image Restoration,
Quantization, and Depth Map

In the previous chapter, we explored how to use high-pass filters to detect
high-frequency features like edges in an image. We also explored its application
in the Canny Edge detecting algorithm. In this chapter, we will explore a few
more diverse techniques on images, including the following topics:

•	 Image restoration using inpainting
•	 Image segmentation
•	 Image quantization
•	 Depth estimation in stereo images

Restoring images using inpainting
Image restoration is the process of reconstructing the damaged parts of an image.
There are different reasons as to why parts of an image can get damaged. For
example, a photograph taken with a film camera and developed on photographic
paper can get damaged over the years due to the deterioration of the storage media
(in this case, the photographic paper). Small errors may be introduced in an image
due to faulty sensors. In digital images, data errors can be introduced in an image
during the transmission and reception. For example, when images are transmitted
byte by byte (instead of packets), it is not feasible to use modern error checking and
corrective networking protocols, which increase the probability of getting erroneous
data. Many of these degraded images can be restored using the image inpainting
technique. There are several algorithms available for the same, and OpenCV offers
two of these with its cv2.inpaint() function.

Image Restoration, Quantization, and Depth Map

[92]

It accepts a source image, an inpaint mask that is a grayscale image representation of
the damaged area where the nonzero (white) pixels denote the area to be inpainted,
an inpaint neighborhood side, and an algorithm that has to be applied as parameters.
The function then returns the inpainted image. The following code demonstrates
the implementation of both of these methods that are available in OpenCV for
inpainting. The results are almost the same in both the algorithms. I manually
created the damage and the corresponding mask (by inverting the damage pixels)
in one of the paint software:

import cv2
import matplotlib.pyplot as plt

image = cv2.imread('/home/pi/book/test_set/DamagedImage.tiff')
mask = cv2.imread('/home/pi/book/test_set/Mask.tiff',0)

input = cv2.cvtColor (image , cv2.COLOR_BGR2RGB)

output_TELEA = cv2.inpaint(input,mask,5,cv2.INPAINT_TELEA)
output_NS = cv2.inpaint(input,mask,5,cv2.INPAINT_NS)

plt.subplot(221),plt.imshow(input),plt.title('Damaged
 Image'),plt.xticks([]),plt.yticks([])
plt.subplot(222),plt.imshow(mask,cmap='gray'),
 plt.title('Mask'),plt.xticks([]),plt.yticks([])
plt.subplot(223),plt.imshow(output_TELEA),plt.title
 ('Telea Method'),plt.xticks([]),plt.yticks([])
plt.subplot(224),plt.imshow(output_NS),plt.title
 ('Navier Stokes Method'),plt.xticks([]),plt.yticks([])
plt.show()

In the preceding code, cv2.INPAINT_TELEA is based on a paper, An Image Inpainting
Technique Based on the Fast Marching Method by Alexandru Telea that was published
in 2004, and cv2.INPAINT_NS is based on a paper, Navier-Stokes, Fluid Dynamics, and
Image and Video Inpainting, by Bertalmio, Marcelo, Andrea L. Bertozzi, and Guillermo
Sapiro that was published in 2001.

Chapter 7

[93]

The following is the output of the preceding code:

You can find more details about image inpainting here:
http://www.math.ucla.edu/~imagers/htmls/inp.html

Image segmentation
Image segmentation is the process of dividing images into multiple, relevant
sections or parts based on some criteria. Thresholding the image can be considered
the simplest form of segmentation, which we have already explored in Chapter 4,
Colorspaces, Transformations, and Thresholds. We will cover two more segmentation
methods in this chapter.

http://www.math.ucla.edu/~imagers/htmls/inp.html

Image Restoration, Quantization, and Depth Map

[94]

Mean shift algorithm based segmentation
The mean shift algorithm and its C++ implementation were developed by Chris
M. Christoudias and Bogdan Georgescu. PyMeanShift is the Python extension to this
algorithm. It uses NumPy arrays, making it compatible with OpenCV and other
image processing extensions in Python like PIL/pillow.

You can find out more information about this on the project website,
https://code.google.com/p/pymeanshift/. A link to the one
of the forks of PyMeanShift on GitHub is https://github.com/
clememic/pymeanshift.

As of now, no binary package is available for Unix, Linux, and their variants. So,
we have to build and install it from the source. Download the latest version from
https://code.google.com/p/pymeanshift/downloads/list using the wget
utility. The file downloaded will be a tar.gz file. Copy it to the home folder and
extract it. Then, navigate to the directory where you extracted the source code using
the LXTerminal and run the following commands to build and install it:

sudo ./setup.py build
sudo ./setup.py install

Once the installation succeeds without any errors, input the following statement in
the python interactive shell to test it:

import pymeanshift as pms

The PyMeanShift module provides the pms.segment() function, which is used for
image segmentation. It takes the image to be segmented, and spatial radius, range
radius, and minimum density as parameters, and it returns a segmented image, a
segmented and color labeled image, and a number of regions. The following code
demonstrates the use of this function:

import cv2
import numpy as np
import pymeanshift as pms
from matplotlib import pyplot as plt

image = cv2.imread('/home/pi/book/test_set/coins1.png',1)

#changing the colorspace from BGR->RGB
input = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)

https://code.google.com/p/pymeanshift/
https://github.com/clememic/pymeanshift
https://github.com/clememic/pymeanshift
https://code.google.com/p/pymeanshift/downloads/list

Chapter 7

[95]

(segmented_image, labels_image, number_regions) = pms.segment(
 input,spatial_radius=2,range_radius=2,min_density=300)

plt.subplot(131),plt.imshow(input),plt.title('Input')
plt.xticks([]),plt.yticks([])
plt.subplot(132),plt.imshow(segmented_image),plt.title(
 'Segmented Output')
plt.xticks([]),plt.yticks([])
plt.subplot(133),plt.imshow(labels_image),plt.title(
 'Labeled Output')
plt.xticks([]),plt.yticks([])
plt.show()

I took a picture of some coins of different denominations with picamera and used the
same image as an input for this program. The output of the program is as follows:

As an exercise, try changing the value of the parameters and compare the
different outputs.

K-means clustering and image
quantization
The k-means clustering algorithm is a quantization algorithm that maps sets of
values within a range into a cluster determined by a value (mean). It basically
divides a given set of n values into k partitions. This is called clustering when it's
applied on data with two or more dimensions. OpenCV has cv2.kmeans() for the
implementation of the k-means algorithm. It accepts the following parameters:

•	 Data: This is the data that has to be clustered. If we provide an image,
the output will be a quantized (segmented) image. This has to be in the
float format.

Image Restoration, Quantization, and Depth Map

[96]

•	 K: This is the number of partitions in the output set (it is the number of colors
in the output if the input is an image).

•	 Criteria: This is the algorithm termination criteria that includes a number of
iterations and/or the desired accuracy.

•	 Attempts: This is the number of times the algorithms will be executed using
a different initial labeling.

•	 Flags: These specify the initial centers of the clusters, which can have any of
the following values:

cv2.KMEANS_RANDOM_CENTERS
cv2.KMEANS_PP_CENTERS
cv2.KMEANS_USE_INITIAL_LABELS

The following code is an example of the application of the k-means clustering
algorithm on an image with k sizes as 2, 4, and 8:

import cv2
import numpy as np
import matplotlib.pyplot as plt

image=cv2.imread('/home/pi/book/test_set/4.2.05.tiff')
input = cv2.cvtColor(image,cv2.COLOR_BGR2RGB)

Z=input.reshape((-1,3))
Z=np.float32(Z)

criteria=(cv2.TERM_CRITERIA_EPS+ cv2.TERM_CRITERIA_MAX_ITER,10,1.0)

K=2
ret,label1,center1=cv2.kmeans(Z,K,criteria,10,cv2.KMEANS_RANDOM_
CENTERS)
center1=np.uint8(center1)
res1=center1[label1.flatten()]
output1=res1.reshape((image.shape))

K=4
ret,label2,center2=cv2.kmeans(Z,K,criteria,10,cv2.KMEANS_RANDOM_
CENTERS)
center2=np.uint8(center2)
res2=center2[label2.flatten()]
output2=res2.reshape((image.shape))

K=8
ret,label3,center3=cv2.kmeans(Z,K,criteria,10,cv2.KMEANS_RANDOM_
CENTERS)

Chapter 7

[97]

center3=np.uint8(center3)
res3=center3[label3.flatten()]
output3=res3.reshape((image.shape))

titles=['Original','K=2','K=4','K=8']
output=[input,output1,output2,output3]

for i in xrange(4):
 plt.subplot(2,2,i+1),plt.imshow(output[i]),plt.title(titles[i])
 plt.xticks([]),plt.yticks([])
plt.show()

We initially assigned random centers to all the clusters with the cv2.KMEANS_
RANDOM_CENTERS flag. The output of the preceding program will be the original
image with the quantized and segmented images, with 2, 4, and 8 colors,
as follows:

As an exercise, try using the algorithm with different sets and combinations of inputs
and compare the results.

Image Restoration, Quantization, and Depth Map

[98]

Comparison of mean shift and k-means
The k-means algorithm runs O(n), while the mean shift algorithm runs O(n^2).
This time, the complexity difference is mainly due to the fact that the k-means
algorithm already knows the number of clusters (which is provided when the
method is called). However, the mean shift has to come up with the number of
clusters itself. In applications where the number of clusters is not known, it is better
to use the mean shift algorithm. However, when we do know in advance the number
of clusters, it is better to use the k-means algorithm since it runs faster.

Disparity map and depth estimation
Disparity refers to the difference in the location of an object in the corresponding
two (left and right) images as seen by the left and right eye, which is created due to
a parallax. Our brain uses this disparity to estimate the depth information from the
pair of two-dimensional images. We can calculate the disparity between the two
images by applying this principle to every pixel in the pair of images. Once we have
the disparity information, we can leverage it to estimate the depth just the way our
brain uses it to estimate depth. In biology, this is called stereoscopic vision. OpenCV
provides the cv2.StereoBM.compute() function, which takes the left image and
the right image as a parameter and returns the disparity map of the image pair. The
cv2.StereoBM() function is the constructor that initializes the stereo state. It accepts
a preset, the number of disparities (which is a multiple of 16), and SADWindowSize,
which is a linear block size for comparison. This stereo state is implicitly used to
compute disparity map by cv2.StereoBM.compute().

The following program demonstrates the usage of both the functions. For this, you
will need two images corresponding to the input from the left camera and the input
from the right camera:

import cv2
import numpy as np
import matplotlib.pyplot as plt

Right= cv2.imread('/home/pi/book/test_set/tsukuba-r.tif',0)
Left = cv2.imread('/home/pi/book/test_set/tsukuba-l.tif',0)

stereo_BM_state=cv2.StereoBM(preset=cv2.STEREO_BM_BASIC_PRESET,ndispar
ities=32,SADWindowSize=27)
output_map=stereo_BM_state.compute(Left,Right)

titles=['Left','Right','Depth Map']
output=[Left,Right,output_map]

Chapter 7

[99]

for i in xrange(3):
 plt.subplot(1,3,i+1),plt.imshow(output[i],cmap='gray'),
 plt.title(titles[i])
 plt.xticks([]),plt.yticks([])
plt.show()

The output will be as follows:

A smaller SADWindowSize value will provide a detailed but distorted map, and
a higher value will provide a smoother map, as seen in the preceding output.
As an exercise, try out different values of ndisparities and SADWindowSize.
SADWindowSize has to be an odd positive value.

In the preceding image, the brighter areas denote more disparity, which means
that the objects in the input images corresponding to the brighter areas in the output
image are closer to the cameras. In the same way, the darker colors in the disparity
map mean that the corresponding objects in the images are farther from the camera.

Summary
In this chapter, we explored the concepts of image inpainting, segmentation,
and depth estimation.

In the next chapter, we will learn and implement a few more advanced concepts
such as histograms, contours, and morphological operators.

[101]

Histograms, Contours,
Morphological

Transformations, and
Performance Measurement

Having learned the basics and intermediate topics of computer vision and image
processing, we will now move on to the more advanced topics with this chapter,
which will also prepare us for the next chapter on real-life applications. We will
explore the following topics in this chapter:

•	 Image histograms
•	 Contours in an image
•	 Morphological transformations on an image
•	 The performance measurement of OpenCV

Image histograms
A histogram is a way to graphically represent the distribution of data. An
image histogram is the representation of an image array. It represents the tonal
distribution of the digital image. Basically, the histogram of an image is a graphical
representation of the distribution of color or luminance variance in an image. In
an image histogram, the x axis represents the variation of colors, and the y axis
represents the total number of pixels for a particular color tone. If we were to plot
a histogram for a grayscale image, the x axis will represent the different intensity
values (0 to 255, for example), and the y axis will represent the number of pixels that
have such values.

Histograms, Contours, Morphological Transformations, and Performance Measurement

[102]

In a similar way, we can plot the histogram for color images by plotting the image
histogram for each channel (red, green, and blue, for example).

Let's get started by plotting a histogram of a grayscale image. We will use the hist()
function that belongs to the matplotlib library. Run the following code:

import cv2
import matplotlib.pyplot as plt

img = cv2.imread('/home/pi/book/test_set/4.1.08.tiff',0)
plt.hist(img.ravel(),256,[0,256])
plt.show()

In the preceding code, we passed an image, the number of vertical edges in the
histogram, and a range as an argument to the plt.hist() function. You can pass
more arguments to this function.

See the documentation of this function for more information here:
http://matplotlib.org/api/pyplot_api.html

The output of the preceding code is as follows:

http://matplotlib.org/api/pyplot_api.html

Chapter 8

[103]

OpenCV also has a function to plot histograms for color images. The cv2.
calcHist() function accepts an image, channel, mask, size, and range as
arguments. The following example shows its usage by plotting a histogram
for each channel (red, green, and blue):

import cv2
from matplotlib import pyplot as plt

img = cv2.imread('/home/pi/book/test_set/4.2.03.tiff',1)

input=cv2.cvtColor(img,cv2.COLOR_RGB2BGR)
histr_RED = cv2.calcHist([input],[0],None,[256],[0,256])
histr_GREEN = cv2.calcHist([input],[1],None,[256],[0,256])
histr_BLUE = cv2.calcHist([input],[2],None,[256],[0,256])

plt.subplot(221),plt.imshow(input),plt.title('Original
 Image'),plt.xticks([]),plt.yticks([])
plt.subplot(222),plt.plot(histr_RED,color='r'),
 plt.title('Red'), plt.xlim([0,256]), plt.yticks([])
plt.subplot(223),plt.plot(histr_GREEN,color='g'), plt.title('Green'),
plt.xlim([0,256]), plt.yticks([])
plt.subplot(224),plt.plot(histr_BLUE,color='b'), plt.title('Blue'),
plt.xlim([0,256]), plt.yticks([])
plt.show()

The following is the output of the code. You can enable the display of the values on
the y axis by omitting the plt.yticks([]) code for the plt.plot() statement:

Histograms, Contours, Morphological Transformations, and Performance Measurement

[104]

The NumPy library also has an np.histogram() histogram function that can be used
to plot the histogram of an image. Check the details of this function and implement a
program to plot a histogram as an exercise for this section.

You can refer to http://docs.scipy.org/doc/numpy/reference/
generated/numpy.histogram.html for more details for this exercise.

Image contours
A contour is a curve joining all the continuous points along the boundary with the
same color value. The detecting of contours in an image is very useful if you want to
detect the boundaries in images. In an image, the edges are computed as points that
are the extremes of the image gradient in the direction of the gradient. Contours are
often obtained from edges, but they are aimed to be object contours. Thus, they need
to be closed curves and are different from edges.

It is helpful to threshold an image before extracting contours to increase the accuracy
of the image.

OpenCV has cv2.findContours() to find the contours in an image. It takes
an image, a contour retrieval mode, and a contour approximation method as
arguments and returns the contours of the image. Contour retrieval mode can be
CV_RETR_EXTERNAL, CV_RETR_LIST, CV_RETR_CCOMP, or CV_RETR_TREE. The contour
approximation method can be CV_CHAIN_APPROX_NONE, CV_CHAIN_APPROX_SIMPLE,
CV_CHAIN_APPROX_TC89_L1, or CV_CHAIN_APPROX_TC89_KCOS.

•	 CV_CHAIN_APPROX_NONE: This stores absolutely all the contour points
•	 CV_CHAIN_APPROX_SIMPLE: This compresses horizontal, vertical, and

diagonal segments and leaves only their end points
•	 CV_CHAIN_APPROX_TC89_L1, CV_CHAIN_APPROX_TC89_KCOS: These apply to

one of the flavors of the Teh-Chin chain approximation algorithm

Once all the contours are identified using the preceding function, it can be plotted
using cv2.drawContours(). It works like most of the drawing functions that we saw
in Chapter 2, Working with Images, Webcams, and GUI. The function takes as arguments
the image where the contours are to be drawn, the contours detected from the cv2.
findContours() function, the index of the contour to be drawn (-1 for drawing all
of them), and the color and the thickness of the contour. The following code identifies
and draws all the contours in an image with a blue line that has a thickness of 2:

import cv2
import matplotlib.pyplot as plt

http://docs.scipy.org/doc/numpy/reference/generated/numpy.histogram.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.histogram.html

Chapter 8

[105]

img = cv2.imread('/home/pi/book/test_set/4.2.07.tiff')
input = cv2.cvtColor(img,cv2.COLOR_BGR2RGB)
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
ret,thresh = cv2.threshold(gray,127,255,0)
contours, hierarchy = cv2.findContours(
 thresh,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)

cv2.drawContours(input, contours, -1, (0,0,255), 2)

plt.imshow(input),plt.title('Contours')
plt.xticks([]),plt.yticks([])
plt.show()

In the preceding code, cv2.drawContours(input, contours, -1, (0,0,255),
2) is used to draw all the contours. If you need to draw a specific contour, then you
can use a function such as cv2.drawContours(input, contours, 2, (0,0,255),
2) by specifying the contour index.

The output of the preceding code is as follows:

As an exercise to this section, try to use cv2.findContours() with different
combinations of method and mode and compare the output.

Histograms, Contours, Morphological Transformations, and Performance Measurement

[106]

Morphological transformations on image
Morphological operations are based on the shape of an image, and they work best
on binary images. We can use these to do away with a lot of unwanted information,
such as noise in an image. Any morphological operation requires two inputs—an
image and a kernel. In this section, we will explore the erosion, dilation, and gradient
of an image. Since binary images are the most suitable for the explanation of this
concept, we will use a binary image (black and white) to study the concepts.

Erosion removes the boundaries in an image and slims it. In a binary image, white
is the foreground and black is the background. All the pixels at the boundary of the
white foreground image are made zero, thus slimming the image and eroding away
the boundary. Dilation is exactly the opposite of erosion. It expands the foreground
image boundary and flattens it. The extent of erosion and dilation depends on the
kernel and the number of iterations. The morphological gradient of an image is the
difference between the dilatation and erosion. It will return the outline of an image.
Check out the following code for the basic usage of these operations in OpenCV.
We will use these in our next chapter to refine our image for a better output:

import numpy as np
import cv2
from matplotlib import pyplot as plt

img = cv2.imread('/home/pi/book/test_set/morphological.tif',0)
kernel = np.ones((5,5),np.uint8)
erosion = cv2.erode(img,kernel,iterations = 2)
dilation = cv2.dilate(img,kernel,iterations = 2)
gradient = cv2.morphologyEx(img, cv2.MORPH_GRADIENT, kernel)

titles=['Original','Erosion','Dilation','Gradient']
output=[img,erosion,dilation,gradient]

for i in xrange(4):
 plt.subplot(2,2,i+1),plt.imshow(output[i],cmap='gray')
 plt.title(titles[i]),plt.xticks([]),plt.yticks([])
plt.show()

Chapter 8

[107]

The output will be as follows:

In our example, we created the 5x5 kernel of all the images and applied it to the
image. OpenCV provides the cv2.getStructuringElement() function that returns
a kernel with the given shape and size. The size is an odd positive integer and the
shape can be one of cv2.MORPH_RECT, cv2.MORPH_ELLIPSE, or cv2.MORPH_CROSS.

As an exercise to this section, apply the custom kernels on the image for
morphological operations.

OpenCV performance measurement and
improvement
In Python, we can use the time library to obtain the current time. This allows us to
measure how long a piece of code takes to run, as shown in the following code:

t1 = time.time()
Image Processing code goes here
t2 = time.time()
print (t2-t1)

Histograms, Contours, Morphological Transformations, and Performance Measurement

[108]

OpenCV also provides cv2.getTickCount() and cv2.getTickFrequency(), which
can be used for the same purpose. The cv2.getTickCount() function returns the
number of clock cycles and cv2.getTickFrequency() returns the clock frequency.
We can use these functions in the following manner to get the time required to
execute the code:

c1=cv2.getTickCount()
Image processing code goes here
c2=cv2.getTickCount()
print ((c2-c1)/cv2.getTickFrequency())

We can optimize the OpenCV functions by using cv2.setUseOptimized(), which
accepts a Boolean value as a parameter to set the optimization mode. It's set to true
by default after installation. You can check whether the optimization is enabled with
cv2.useOptimized(), which returns a Boolean value (True stands for enabled, and
False for disabled).

Summary
In this chapter, we covered histograms, image contours, and morphological
operations, which will be used in the next chapter for real-life applications.

Our next chapter will be a culmination of the image processing techniques that we
have learned and explored so far. We will build some real-life applications, such as
a movement detector, green screen effect, gesture recognition, and barcode detection
in images.

[109]

Real-life Computer Vision
Applications

Until now, we have studied a wide variety of concepts in computer vision and their
implementations in OpenCV. Now it's time to build some real-life applications.
In this chapter, we will implement the following basic applications:

•	 Barcode detection
•	 Motion detection and tracking
•	 Hand gesture detection
•	 Chroma key with green screen in the live video

Barcode detection
A barcode is a machine-readable 2D image (data) format. It is usually used to store
information about a product. Originally, a barcode was represented by parallel lines
of varying width and separated by spaces. Later, it evolved into multiple formats.

Real-life Computer Vision Applications

[110]

In this section, we will see how to detect a single basic parallel line barcode from an
image. What follows is an example of an image with a barcode:

Let's read the image using the following code:

import numpy as np
import cv2

image=cv2.imread('/home/pi/book/test_set/test5.png',1)
input = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

A barcode always has a very high horizontal gradient and a very low vertical
gradient. So, in our image, we need to search for a region that fulfills this property.
The best way to accomplish this is to compute the Sobel derivatives of the first order
in horizontal and vertical directions, and then subtract the vertical derivative from
the horizontal derivative:

hor_der = cv2.Sobel(input, ddepth = -1 , dx = 1, dy = 0,
 ksize = 5)
ver_der = cv2.Sobel(input, ddepth = -1 , dx = 0, dy = 1,
 ksize = 5)

diff = cv2.subtract(hor_der, ver_der)

Chapter 9

[111]

Then, we need to convert the output in 8-bit unsigned integer format using this code:

diff = cv2.convertScaleAbs(diff)

This will yield the following image:

This output highlights the regions that have a high gradient in the horizontal
direction and a low gradient in the vertical direction. We can apply Gaussian
blur to this using the following code:

blur = cv2.GaussianBlur(diff, (3, 3),0)

Real-life Computer Vision Applications

[112]

The output of this is a blurred and smoothened image, as seen here:

Then, we will apply a binary threshold to this blurred image with 255 as the
threshold value, with the following code:

ret, th = cv2.threshold(blur, 225, 255, cv2.THRESH_BINARY)

Chapter 9

[113]

This will yield a binary image, as follows:

Now, we have the binary image of a barcode in this output. We can fill in the gaps
between the bars of the barcode by dilating it:

dilated = cv2.dilate(th, None, iterations = 10)

Real-life Computer Vision Applications

[114]

The output will contain a big rectangle-like box corresponding to the barcode region
in the original image with some other white regions that we are not interested in.

We can eliminate the other region that we're not interested in with the
erosion operation:

eroded = cv2.erode(dilated, None, iterations = 15)

This will eliminate most of the unwanted white regions and will also shrink the
white rectangle-like region which corresponds to the barcode.

Chapter 9

[115]

The next task is very simple. We can find out the list of contours in this binary image
with the following code:

(contours, hierarchy) = cv2.findContours(eroded,
 cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)

The biggest contour in this image would be the contour corresponding to the barcode
region. We can find out the biggest contour with this code:

areas = [cv2.contourArea(temp) for temp in contours]
max_index = np.argmax(areas)
largest_contour=contours[max_index]

Real-life Computer Vision Applications

[116]

We can get the coordinates of the bounding rectangle for the contour with
cv2.boundingRect(), an OpenCV function, and draw it as follows:

x,y,width,height = cv2.boundingRect(largest_contour)
cv2.rectangle(image,(x,y),(x+width,y+height),(0,255,0),2)

cv2.imshow('Detected Barcode',image)
cv2.waitKey(0)
cv2.destroyAllWindows()

This will draw the bounding rectangle over the area corresponding to the barcode,
as seen here:

In this manner, we have detected the barcode in the image. Now, this code may not
work for all sample images, and you might want to alter the values of the parameters
with the following lines of code to suit your sample:

blur = cv2.GaussianBlur(diff, (3, 3),0)

You can also use other blurring functions and adjust the kernel to suit your sample.

Chapter 9

[117]

Furthermore, in the dilation and erosion operation, you can play with a number
of iterations:

dilated = cv2.dilate(th, None, iterations = 10)
eroded = cv2.erode(dilated, None, iterations = 15)

You might want to extend this program to build a live webcam barcode detector.
Our next real-life applications will be based on live videos and we will use a
webcam to capture live videos.

Motion detection and tracking
We will now build a sophisticated motion detection and tracking system with a
very simple logic of finding the difference between subsequent frames from a
video feed, like a webcam stream, and plotting contours around the area where
the difference is detected.

Let's import the required libraries and initialize the webcam:

import cv2
import numpy as np

cap = cv2.VideoCapture(0)

We will need a kernel for the dilation operation, which we will create in advance,
rather than creating it every time in the loop:

k=np.ones((3,3),np.uint8)

The following code will capture and store subsequent frames:

t0 = cap.read()[1]
t1 = cap.read()[1]

Now, we will initiate the while loop and calculate the difference between both
frames, and then convert the output to grayscale for further processing:

while(True):

 d=cv2.absdiff(t1,t0)

 grey = cv2.cvtColor(d, cv2.COLOR_BGR2GRAY)

Real-life Computer Vision Applications

[118]

The output will be as follows, showing the difference of pixels between the frames:

This image may contain some noise, so we will blur it first:

 blur = cv2.GaussianBlur(grey,(3,3),0)

We use the binary threshold to convert this noise-removed output into a binary
image with the following code:

 ret, th = cv2.threshold(blur, 15, 255, cv2.THRESH_BINARY)

The final operation is to dilate the image so that it is easier for us to find the
boundary clearly:

 dilated=cv2.dilate(th,k,iterations=2)

Chapter 9

[119]

The output of the preceding step is the following:

Then, we will find and draw the contours for the preceding image with the
following code:

 contours, hierarchy = cv2.findContours(
 dilated,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)

 t2=t0
 cv2.drawContours(t2, contours, -1, (0,255,0), 2)

 cv2.imshow('Output', t2)

Finally, we will assign the latest frame to the older frame and capture the next frame
with a webcam:

 t0=t1
 t1=cap.read()[1]

Real-life Computer Vision Applications

[120]

We will terminate the loop once we detect the Esc keypress, as usual:

 if cv2.waitKey(5) == 27 :
 break

Once the loop is terminated, we will release the camera and destroy the
display window:

cap.release()
cv2.destroyAllWindows()

This will draw the contour roughly around the area where the movement is detected,
as seen in the following image:

This code works very well for slow movements. You can make the output
more interesting by drawing contours with different colors. Also, you can
find out the centroid of the contours and draw crosshairs or circles
corresponding to the centroids.

Chapter 9

[121]

Hand gesture recognition
Gesture recognition denotes the interpretation of human gestures by a computer
to perform a specific task. Gesture recognition systems try to interpret the gestures
originating from hands, faces, body posture, or movements of the eye. Gesture
recognition can employ one of the wide varieties of specialized input devices, such
as gloves, depth stereo cameras, or body sensors. However, the simplest form of
gesture recognition can be implemented using a simple camera as an input device
(for example, our webcam). We are going to implement code to count the number of
fingers in the hand held in front of the camera. This application will make use of the
concept of convex hull, which we will see when coding.

Let's get started with importing the libraries and reading the frame:

import numpy as np
import cv2

cap = cv2.VideoCapture(0)

while(True) :
ret , frame = cap.read()

Once we capture the frame, let's convert it to grayscale and remove the noise by
blurring it:

 gray=cv2.cvtColor(frame,cv2.COLOR_BGR2GRAY)

 blur=cv2.GaussianBlur(gray,(3,3),0)

The output will be as follows, containing a hand with some background:

Real-life Computer Vision Applications

[122]

Now, the next task is to extract the area of the hand from the background, so that
we could use it to recognize gestures. The best way to achieve this is to segment
the image by binarizing it. We can use the thresholding mechanism to achieve this.
However, if we use simple binary thresholding, then we need to adjust the threshold
parameter every time there is a change in background. If you recall Chapter 4,
Colorspaces, Transformations, and Thresholds, we have already explored Otsu's method,
which is suitable for an image that is bimodal (an image that has an object and a
background). Our captured grayscale image fits this model very well, so we will
use Otsu's method to binarize the image. The method will work fine as long as the
background color is not the same as the color of the skin:

 ret , th = cv2.threshold(
 blur,0,255,cv2.THRESH_BINARY_INV+cv2.THRESH_OTSU)

This will result in a binary image with hand pixels as white and background as
black, as seen in the following image:

This really makes it easy for us to find the contours in the image:

 (contours, hierarchy) = cv2.findContours(th,
 cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)

As we have seen in the last two applications, the following code will find the largest
contour; in case there are multiple contours, due to other objects in the background,
the largest contour will always be the hand, as it is relatively nearer to the camera:

 areas = [cv2.contourArea(temp) for temp in contours]
 max_index = np.argmax(areas)
 largest_contour=contours[max_index]

Chapter 9

[123]

You might want to draw the intermediate output largest_contour on the image
for better understanding. This output would be a polygon curve with many vertices,
which will not be very useful for our application. We can approximate it with the
use of cv2.approxPolyDP() to a polygon with fewer vertices. This function uses the
Douglas-Peucker algorithm. This line of code does the trick:

 approx=cv2.approxPolyDP(largest_contour,
 0.01*cv2.arcLength(largest_contour,True),True)

Again, you might want to draw the approx value on the original image and compare
it with the shape of the hand.

We are done with most of the difficult parts in the logic, and the remainder is
straightforward. The last step before we use this input for gesture recognition is to
determine the convex hull of this polygon.

Let's try to understand the idea of convex hull in the simplest way. Imagine a plain
board hammered with a few nails on it. If we try to put an elastic band around it, it
will stretch and create a convex shape, which is nothing but the convex hull of all the
nails hammered into the plain board.

For our application, we will use the vertices of the approximated polygon contour of
the hand to determine the convex hull:

 hull = cv2.convexHull(approx,returnPoints=True)

This will return a set of points that can be used to draw the convex hull of the hand
boundary. We can use len(hull) to determine the number of fingers in the hand
held before the camera:

 cv2.putText(frame,'Number of Fingers ' + str (len(hull)-2),
 (10,30),cv2.FONT_HERSHEY_COMPLEX_SMALL,1,(255,0,0))

The following code draws the convex hull around the hand:

 cv2.drawContours(frame,[hull],0,(0,0,255),1)

And the following code draws concentric circles around the vertices of the
convex hull:

 for i in range (len (hull)):
 [x , y]= hull[i][0].flatten()
 cv2.circle(frame,(int(x),int(y)),2,(0,255,0),-1)
 cv2.circle(frame,(int(x),int(y)),5,(255,255,0),1)
 cv2.circle(frame,(int(x),int(y)),8,(255,0,0),1)

Real-life Computer Vision Applications

[124]

 print "Number of Fingers " + str ((len(hull)-2))
 cv2.imshow('Gestures',frame)

 if cv2.waitKey(5) == 27:
 break

cv2.destroyAllWindows()
cap.release()

You must have noticed that we are subtracting 2 from the total number of vertices to
adjust the two extra vertices that we get at the edge of the image, as follows:

In the preceding example, we have detected five fingers. If we bend a finger, then we
will get the following output:

Chapter 9

[125]

Similarly, if we bend two fingers, then the output would be something like this:

Real-life Computer Vision Applications

[126]

This program does not always guarantee the correct output. For example, for a single
finger, it would never show the correct output. This program can be improved by
using the concept of convexity defects to count the number of fingers. Once we have
determined the number of fingers, we can use that number to perform a variety of
operations based on the value of the number. The simplest application would be a
hand gesture-based video recording system.

Chroma key with green screen
Chroma key is a special effect and a post-production technique in which multiple
images can be combined together. This technique is widely used to replace green
or blue backgrounds in an image with another image or live video to create special
effects in live action or animation movies and weather forecasting. The logic on
which the chroma key technique is based is very simple. We use a uniform-colored
background, usually bright green or blue, and then replace that with an image or
another live video.

Let's get started by importing the needed packages and by initializing the capture:

import numpy as np
import cv2

cam = cv2.VideoCapture(0)

For better results, we can set the camera resolution to 640 x 480, as at this resolution
we will get a better frame rate:

cam.set(3,640)
cam.set(4,480)

Next, we read the background image with the same resolution (640 x 480), which
is an image of earth from space. The camera resolution and the background image
resolution must be the same as all logical and arithmetic functions on the image that
we need to use will require all the input images to be of the same resolution:

bg = cv2.imread('/home/pi/book/test_set/space.jpg',1)

Then, we initialize the loop and read the frames from the camera:

while (True):
 ret, frame = cam.read()

Chapter 9

[127]

We will use a green cloth or paper for the background and a Raspberry Pi 2 box as
the object. The original frame is as follows:

As we have seen in Chapter 4, Colorspaces, Transformations, and Thresholds, the HSV
color format is the most appropriate format for any type of activity that involves
operation on a range of colors; we will convert the image into the HSV format and
calculate the mask for the green background, as follows:

 hsv=cv2.cvtColor(frame,cv2.COLOR_BGR2HSV)

 image_mask=cv2.inRange(hsv,np.array([40,50,50]),
 np.array([80,255,255]))

Real-life Computer Vision Applications

[128]

The image mask will appear as seen here, where green pixels are replaced by the
color white and others are assigned the color black:

Once we have obtained the background image mask, we can easily apply it on the
background image to obscure the foreground object with black pixels as follows:

 bg_mask=cv2.bitwise_and(bg,bg,mask=image_mask)

Chapter 9

[129]

The result will replace all the white pixels with the background image and the
foreground area will still have the black pixels, as seen here:

Now, we need to extract only the foreground image from our camera feed. This can
be accomplished by using the following code:

 fg_mask=cv2.bitwise_and(frame,
 frame,mask=cv2.bitwise_not(image_mask))

Real-life Computer Vision Applications

[130]

This will extract all the non-green objects, while assigning the color black to the
pixels corresponding to the green background.

Finally, we will add our last two image outputs, which will provide us with the
required chroma key effect, by replacing the green screen with the earth image
in space:

 cv2.imshow('Output',cv2.add(bg_mask,fg_mask))

 if cv2.waitKey(1) == 27:
 break

cv2.destroyAllWindows()
cam.release()

Chapter 9

[131]

The desired visual effect will appear as follows:

You have achieved a Hollywood-style chroma key effect with a green screen. You
must have noticed that in the preceding output, the green leaves in the Raspberry
Pi 2 log on the box are also replaced by the background image, as it falls under the
color range we specified in the inRange() function. You can achieve better results
by replacing the green screen with a blue screen and changing the color range
from green to blue in the inRange() function. The key rule is that the object in the
foreground should not have the color of the background screen. So, if you are using
a green screen, make sure that the foreground object does not include the color green
(the same applies to blue screen too).

Real-life Computer Vision Applications

[132]

Summary
In this chapter, we have seen how to leverage the computer vision techniques we
previously studied to implement real-life applications. From here onwards, you can
explore OpenCV in more detail and create more real-life applications, which will
suit your project requirements by combining various techniques together. In the next
chapter, we will explore another powerful, yet simple, computer vision library for
Python: SimpleCV, and we will implement the chroma key effect again along with
few other real-life applications.

[133]

Introduction to SimpleCV
We explored image and video processing techniques in OpenCV from chapters
1 to 8. In Chapter 9, Real-life Computer Vision Applications, we implemented quite
a few real-life applications with OpenCV on Raspberry Pi. There are some other
libraries that allow you to perform tasks that are specific to computer vision, such
as SimpleCV. In this chapter, we will go through the basics of SimpleCV and build
a few basic applications for image/video processing. We will cover the following
topics in this chapter:

•	 SimpleCV and its installation on Raspberry Pi
•	 The basics of image processing in SimpleCV
•	 The blurring effect on live video
•	 The green screen effect for still images

SimpleCV and its installation on
Raspberry Pi
SimpleCV is an open source framework for Computer Vision applications. While
using SimpleCV, you do not really have to worry about image formats, bit depths,
and color spaces. You can get started with computer vision with SimpleCV with
fewer lines of code as compared to OpenCV. SimpleCV is written in Python, and it's
free to use. It runs on Mac, Windows, and Ubuntu Linux, and it is licensed under the
BSD license.

Let's start our journey with the installation of SimpleCV on Pi.

Run the following command to install the necessary dependencies. You may have
most of them installed on your Pi already:

sudo apt-get install ipython python-opencv python-scipy
python-numpy python-setuptools python-pip

Introduction to SimpleCV

[134]

Now, run the following command to install SimpleCV:

sudo pip install https://github.com/
 sightmachine/SimpleCV/zipball/master

Finally, run the following command to install the svgwrite dependency:

sudo pip install svgwrite

Pi is now ready for SimpleCV Programming. You can launch SimpleCV by typing
simplecv on the terminal, as follows:

pi@pi02 ~ $ simplecv

This will take you to the SimpleCV interface, which is a line-oriented
command interpreter:

+---+
 SimpleCV 1.3.0 [interactive shell] - http://simplecv.org
+---+

Commands:
 "exit()" or press "Ctrl+ D" to exit the shell
 "clear()" to clear the shell screen
 "tutorial()" to begin the SimpleCV interactive tutorial
 "example()" gives a list of examples you can run
 "forums()" will launch a web browser for the help forums
 "walkthrough()" will launch a web browser with a walkthrough

Usage:
 dot complete works to show library
 for example: Image().save("/tmp/test.jpg") will dot complete
 just by touching TAB after typing Image().

Documentation:
 help(Image), ?Image, Image?, or Image()? all do the same
 "docs()" will launch webbrowser showing documentation

SimpleCV:1>

You can exit the interface by typing the exit() command, which will bring you back
to the OS command line. You can also follow the instructions under the commands
section and explore it on your own. Rather than using SimpleCV in the interactive
mode as shown previously, we will import SimpleCV into our Python scripts.

Chapter 10

[135]

Getting started with the camera, display,
and images
The following program will get us started with the camera and display. Make sure
that a webcam is connected to Raspberry Pi before running the code:

Program to take a picture using Webcam and display it on screen
from SimpleCV import Camera,Image,Display
import time
#Initialize the Display and Camera
disp=Display()
cap=Camera()

#Take a picture
image=cap.getImage()
#Show the picture on screen
image.save(disp)
time.sleep(5)

This simple program initialized the camera and display by using cap=Camera()
and disp=Display() respectively. The cap.getImage() function captures an
image from the camera and image.save(disp) displays it on the screen.
The time.sleep(5) function waits for 5 seconds before the program
terminates. The output of the preceding code is as follows:

Introduction to SimpleCV

[136]

The following program captures a live stream from the webcam and displays it on
the screen:

from SimpleCV import *
cap=Camera()
cap.live()

If the camera is pointed to the display, you will see an interesting mirror effect,
as follows:

SimpleCV also has functions to read and display images from a specific location,
just like OpenCV. It also contains inbuilt images within its library. The following
program demonstrates these functionalities:

from SimpleCV import Image
import time

img= Image('/home/pi/book/test_set/1.5.01.tiff')
img.show()

Chapter 10

[137]

time.sleep(5)

img=Image('logo')
img.show()
time.sleep(5)

img=Image('logo_inverted')
img.show()
time.sleep(5)

img=Image('lenna')
img.show()
time.sleep(5)

In the preceding program, img= Image('/home/pi/book/test_set/1.5.01.
tiff') is used to read an image from a particular location, while Image('logo'),
img=Image('logo_inverted'), and img=Image('lenna') are used to read the
inbuilt images within the SimpleCV library. Run the preceding code and check out
its output.

Binary thresholding and color distances
SimpleCV comes with the binarize() function, which converts an image into black
and white (that is, it binarizes it). If we pass a numeric value between 0 and 255 to
the binarize() function, then the value acts as a threshold. Otherwise, it uses Otsu's
method for binarization. The following code demonstrates the usage of this function:

from SimpleCV import Image
import time
img = Image('logo')
otsu = img.binarize()
otsu.show()
time.sleep(5)
bin = img.binarize(127)
bin.show()
time.sleep(5)

Next, we will have a look at how to use the preceding function for image
segmentation along with colorDistance(). The colorDistance() function
calculates the distance between every pixel in an image and a given RGB color
value. This function takes the RGB color as an argument, and it returns an image
representing the distance from the specified color.

Introduction to SimpleCV

[138]

Let's have a step-by-step look at the code to retrieve a segment with a specific color
from the image. The following code loads and displays the source image:

from SimpleCV import Image
import time

img1 = Image('/home/pi/book/test_set/4.1.03.tiff')
img1.show()
time.sleep(5)

The source image will be displayed as follows:

We want to extract the green segment from the image. We will use the
colorDistance() function for this purpose, as follows (we will pass the
RGB value of the green color in the image to this function):

greendist=img1.colorDistance((108,139,133))

Let's binarize and invert the preceding output, as follows:

greendistbin=greendist.binarize(30).invert()
greendistbin.show()
time.sleep(5)

Chapter 10

[139]

The output will be as follows:

If we subtract this from the original image, we will be able to extract the green
segment from the image:

onlygreen = img1 - greendistbin
onlygreen.show()
time.sleep(5)

The output will be as follows:

Introduction to SimpleCV

[140]

The blur effect on a live web camera feed
Let's write some code for visual effects. We can introduce a movie type blur effect
to the live camera feed by a weighted addition of current and subsequent frames,
as follows:

from SimpleCV import Camera, Display

cam=Camera()
WeightFactor=0.5
t0=cam.getImage()

disp=Display((t0.size()))

while not disp.isDone():
 t1=cam.getImage()
 img= (t1*WeightFactor)+(t0*(1-WeightFactor))
 img.save(disp)
 t0=t1

In the preceding code, we multiplied the current image with WeightFactor and
multiplied the previous frame with (1- WeightFactor). Then, we added and
displayed these weighted frames. This code works best against a still background
and a single moving object. The output is as follows:

Chapter 10

[141]

As an exercise, try changing the weights of the frames and compare the output.

Histogram calculation
The following example shows how to split an image into the individual RGB color
channels and calculate the channel-wise color histogram:

from SimpleCV import Image
from matplotlib import pyplot as plt

img = Image('/home/pi/book/test_set/4.2.06.tiff')

(r,g,b)=img.splitChannels(False)

plt.subplot(311)
plt.plot(r.histogram(255),color='r')
plt.title('Red Histogram')
plt.xlim([0,256]), plt.yticks([])

plt.subplot(312)
plt.plot(g.histogram(255),color='g')
plt.title('Green Histogram')
plt.xlim([0,256]), plt.yticks([])

plt.subplot(313)
plt.plot(b.histogram(255),color='b')
plt.title('Blue Histogram')
plt.xlim([0,256]), plt.yticks([])

plt.show()

Introduction to SimpleCV

[142]

The color channel-wise histogram will be as follows:

Greyscale conversion
An image can be converted to grayscale, as follows:

from SimpleCV import Image
import time
img=Image('/home/pi/book/test_set/4.2.05.tiff')
img.show()
time.sleep(5)
img.grayscale().show()
time.sleep(5)

Chapter 10

[143]

Detecting corners and lines in an image
SimpleCV has the findCorners() and findLines() functions to detect the corners
and lines in an image.

The following code is an example that demonstrates the usage of the findCorners()
function:

from SimpleCV import Image
import time
img=Image('/home/pi/book/test_set/1.5.01.tiff')
img.grayscale().findCorners().show()
time.sleep(5)

The following code is an example that illustrates the usage of the findLines()
function:

img=Image('/home/pi/book/test_set/1.5.01.tiff')
lines=img.findLines()
lines.draw(width=3)
img.show()

The output of the two preceding code will be as follows:

Introduction to SimpleCV

[144]

Blob detection in images
SimpleCV has functions to detect blobs in an image. The following code uses the
findBlobs() function to detect blobs in the image:

from SimpleCV import Image
import time
img=Image('/home/pi/book/test_set/7.1.02.tiff')
imgBin=img.binarize()
blobs=imgBin.findBlobs()
blobs.show(width=5)
time.sleep(5)

The input image (an aerial photograph of a plane in a hanger) and the detected blobs
are as follows:

SimpleCV also has a findSkintoneBlobs() function that automatically
finds skin-toned blobs from an image. The following program uses the
findSkintoneBlobs() function on the live stream that is received from
the camera:

from SimpleCV import Image, Camera

cam = Camera()

Chapter 10

[145]

while 1:
 img=cam.getImage()
 skin =img.findSkintoneBlobs()

 if skin:
 for i in skin:
 print i.centroid()
 skin.draw(), skin.show()
 else:
 print "No Skin detected"

In the preceding program, we printed the centroids of the detected skin-toned blobs.
However, the output is highly dependent on the skin tone of the subject person and
the lighting conditions.

Sending Raspberry Pi on a boating
vacation
We made Pi work a lot until now. Let's send it on a well-deserved boating vacation.
We are going to achieve it by applying a chroma key (green screen) effect to a picture
of Pi with a scenic image as a background. First, we will load and display Pi with a
green background:

from SimpleCV import *
import time

print 'Displaying Candidate Image'
candidate = Image ('/home/pi/book/test_set/mypy.png')
candidate.show()
time.sleep(3)

Introduction to SimpleCV

[146]

This image is as follows:

Then, we will load and display the scenic lake background by using the
following code:

print 'Displaying Background Image'
lake = Image ('/home/pi/book/test_set/lake.tif')
lake.show()
time.sleep(7)

Chapter 10

[147]

The scenic lake background will be displayed as follows:

Then, we will calculate the hue distance with hueDistance(), and green as the hue
color, and binarize it with the following code:

print 'Apply and display mask'
mask=candidate.hueDistance(color=Color.GREEN).binarize()
mask.show()
time.sleep(7)

Introduction to SimpleCV

[148]

This will create a binary mask with Raspberry Pi as a black area and the remainder
as the white area, as follows:

Finally, the following piece of code will create the necessary chroma key effect and
send Pi on a boating vacation:

print 'Chroma Key Effect'
output=(lake - mask.invert()) + (candidate-mask)
output.show()
time.sleep(7)

Chapter 10

[149]

For a better understanding, you may want to check the output of (lake - mask.
invert()) and (candidate-mask) individually. The final output will be as follows:

You might want to implement the same on a live camera feed, just like we did in the
previous chapter with OpenCV.

Exercise
You can visit http://simplecv.org/, the SimpleCV homepage, to explore the
SimpleCV library in detail.

http://simplecv.org/

Introduction to SimpleCV

[150]

Summary
In this chapter, we explored the SimpleCV library for computer vision and wrote a
few sample programs that demonstrated its power.

Congratulations! You have now completed reading the book.

While exploring the complex image processing and computer vision concepts, you
discovered that Pi is an amazing little platform that can bring your ideas to life.
Working through several challenging projects, you incrementally developed your
expertise as a Computer Vision enthusiast by using open source tools, applications,
and scripts.

Now, the real road lies ahead. You can use the knowledge and skills you acquired to
build innovative project designs with high complexity and functionality.

[151]

Index
A
affine transformations

about 59-62
URL 59

arguments, addWeighted() function 46
arithmetic operations, on images

about 42-45
cv2.add() 42
cv2.subtract() 42
images, blending 45-47
images, transitioning 45-47

armhf (ARM hard float) 6
avconv

using 34

B
barcode

about 109
detecting 109-116

Berkeley Software Distribution (BSD) 3
binarize() function 137
Blue, Green, and Red (BGR) pixels 25
boot and system 9

C
camera modules

URL 37
Canny Edge detector

about 85
URL 85
working 85, 86

chroma key
about 126
using, with green screen 126-131

colorDistance() function 137-139
colorspaces 53-56
commands, Raspberry Pi

sudo apt-get update 13
sudo apt-get upgrade 13
sudo rpi-update 13

computer vision
about 1, 2
Raspberry Pi, preparing for 13-15
tasks 2

conversions 53-56
convolution

URL 75
crontab (cron table) file 32
cv2.createTrackbar() method

parameters 29
cv2.destroyWindow() function 23
cv2.drawContours() function 104
cv2.filter2D() function 74
cv2.findContours() function 104
cv2.GaussianBlur() function 77
cv2.getStructuringElement() function 107
cv2.HoughLines() function 89
cv2.imread() method 22
cv2.imshow() function 22
cv2.imwrite()method 24
cv2.inpaint() function 92
cv2.medianBlur() function 78
cv2.putText() function

fonts 27
cv2.StereoBM() function 98
cv2.VideoWriter() function

parameters 36
cv2.waitKey() function 23

[152]

D
depth

estimating 98, 99
Disparity map 98, 99

F
findBlobs() function 144
findCorners() function 143
findSkintoneBlobs() function 144
FourCC

URL 36
fswebcam

used, for creating timelapse sequence 32, 33

G
Gaussian Noise

URL 77
geometric shapes

drawing 26-28
Graphic Processor Unit (GPU) 12

H
hand gesture

recognizing 121-126
high-pass filtering (HPF)

about 81-84
borderType function 83
ddepth function 82
delta function 83
dx function 82
dy function 82
functions 82
ksize function 82
scale function 82
src function 82

histogram
calculating 141, 142

Hough circle
about 87-90
detection method 87
dp 87
image 87
maxRadius 87

minDist 87
minRadius 87
param1 87
param2 87

HSV 53
hueDistance() function 147
Hue, Saturation, and Value. See HSV

I
image

blob, detecting 144
converting, to grayscale 142
matplotlib, using 24, 25
morphological transformations 106, 107
restoring, inpainting used 91-93
thresholding 66, 67
working with 22-24

image color channels
merging 47
splitting 47

image contours 104, 105
image histograms 101-104
image negative

creating 48-50
image processing and computer vision

URL 21
image properties

retrieving 41, 42
image quantization 95-97
image segmentation

about 93
mean shift algorithm 94, 95

image transformations
about 58
rotation 59-62
scaling 58
translation 59-63

inpainting
URL 93
used, for restoring images 91, 92

interpolation method parameter
INTER_AREA 58
INTER_CUBIC 58
INTER_LANCZOS4 58
INTER_LINEAR 58

[153]

INTER_NEAREST 58
Itseez

URL 2

K
kernels

using 74
k-means clustering algorithm

about 95-97
comparing, with mean shift algorithm 98

k-means clustering algorithm, parameters
attempts 96
criteria 96
data 95
flags 96
K 96

L
line transforms 86-90
logical operations, on images 50, 51
low-pass filtering 76-78
LXTerminal

opening 19

M
matplotlib

URL 26
using 24, 25

mean shift algorithm
about 94
comparing, with k-means clustering

algorithm 98
morphological transformations,

image 106, 107
motion detection and tracking system

building 117-120

N
named window

working with 28, 29
nano

URL 21

noise
2D convolution filtering 74, 75
about 71
introducing, to image 72
kernels, using 74
low-pass filtering 76-78
signal-to-noise ratio (SNR) 71

NumPy
about 16
array creation 16
basic operations, on arrays 17
linear algebra 17
URL 18

O
OpenCV

about 1-3, 39
improvement 107, 108
performance measurement 107, 108
timeline 3
URL 3
used, for working with webcam 34-36

OpenCV API documentation
URL 52

OpenCV geometric functions
parameters 26, 27

OpenCV installation
testing, with Python 15

Open Source ComputerVision. See OpenCV
operating systems, Raspberry Pi

about 5
Raspbian 6

Otsu's method 68, 69

P
performance measurement,

OpenCV 107, 108
perspective transformation 64, 65
Pi camera module

about 38, 39
OpenCV 39
picamera 39
picamera, using in Python 38
raspistill, using 37

[154]

raspivid, using 37
working with 37

products, Raspberry Pi
URL 5

PyMeanShift
URL 94

Python
OpenCV installation, testing with 15

Python programs
running, with Raspberry Pi 19-21

R
random.random() function 73
Raspberry Pi

about 4
models 4
OpenCV installation,

testing with Python 15
preparing, for computer vision 13-15
Python programs, running with 19-21
sending, on boating vacation 145-149
SimpleCV, installing 133, 134
URL 4, 37

Raspberry Pi B+
microSD card, preparing manually 9, 10
Raspberry Pi, booting 11, 12
Raspberry Pi, rebooting 12
Raspberry Pi, shutting down 12
setting up 7, 8
specifications 5

Raspbian
about 6
URL 6

real time
tracking, based on color 56-58

rotation 59-62

S
scaling 58
signal-to-noise ratio (SNR) 71
SimpleCV

about 133, 134
binary thresholding 137-139
blur effect, introducing to live

web camera feed 140, 141
camera 135-137
color distances 137-139
corners, detecting 143
display 135-137
grayscale conversion 142
histogram calculation 141, 142
image lines 143
images, blob detection 144
installing, on Raspberry Pi 133, 134
URL 149

single-board computers
about 4
operating systems 5
Raspberry Pi 4, 5

T
thresholding

defining 66, 67
Otsu's method 68, 69

threshold methods
mathematical representation 66

timelapse sequence
creating, fswebcam used 32, 33

timelapse video
creating 33

trackbar
working with 28, 29

translation 59-62

[155]

V
vim

URL 21

W
webcam

defining, OpenCV used 34-36
playback 34
timelapse sequence creating,

fswebcam used 32, 33

URL 30
video playback, OpenCV used 36
video recording 34
video, saving 36
working with 30, 31

Win32DiskImager
URL 9

WinZip
URL 9

Thank you for buying
Raspberry Pi Computer

Vision Programming

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.packtpub.com

Learning Raspberry Pi
ISBN: 978-1-78398-282-0 Paperback: 258 pages

Unlock you creative programming potential
by creating web technologies, image processing,
electronics- and robotics-based projects using the
Raspberry Pi

1.	 Learn how to create games, web, and desktop
applications using the best features of the
Raspberry Pi.

2.	 Discover the powerful development tools
that allow you to cross-compile your software
and build your own Linux distribution for
maximum performance.

Raspberry Pi Cookbook for
Python Programmers
ISBN: 978-1-84969-662-3 Paperback: 402 pages

Over 50 easy-to-comprehend tailor-made recipes
to get the most out of the Raspberry Pi and unleash
its huge potential using Python

1.	 Install your first operating system,
share files over the network, and run
programs remotely.

2.	 Unleash the hidden potential of the
Raspberry Pi's powerful Video Core
IV graphics processor with your own
hardware accelerated 3D graphics.

Please check www.PacktPub.com for information on our titles

Raspberry Pi for Secret Agents
Second Edition
ISBN: 978-1-78439-790-6 Paperback: 206 pages

Turn your Raspberry Pi into your very own secret
agent toolboox with this set of exciting projects

1.	 Turn your Raspberry Pi into a multipurpose
secret agent gadget for audio/video
surveillance, Wi-Fi exploration, or playing
pranks on your friends.

2.	 Detect an intruder on camera and set off
an alarm and also find out what the other
computers on your network are up to.

Raspberry Pi Blueprints
ISBN: 978-1-78439-290-1 Paperback: 284 pages

Design and build your own hardware projects
that interact with the real world using the
Raspberry Pi

1.	 Interact with a wide range of additional
sensors and devices via Raspberry Pi.

2.	 Create exciting, low-cost products
ranging from radios to home security
and weather systems.

Please check www.PacktPub.com for information on our titles

	Cover

	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Introduction to Computer Vision and Raspberry Pi

	Computer vision
	OpenCV
	Single-board computers and the Raspberry Pi
	Raspberry Pi
	Operating systems
	Raspbian

	Setting up your Raspberry Pi B+
	Preparing your microSD card manually
	Booting up your Raspberry Pi for the first time
	Shutting down and rebooting your Pi safely

	Preparing your Pi for computer vision
	Testing OpenCV installation with Python

	NumPy
	Array creation
	Basic operations on arrays
	Linear algebra

	Summary

	Chapter 2
: Working with Images, Webcams, and GUI
	Running Python programs with Raspberry Pi
	Working with images
	Using matplotlib

	Drawing geometric shapes
	Working with trackbar and named window
	Working with a webcam
	Creating a timelapse sequence using fswebcam
	Webcam video recording and playback

	Working with a webcam using OpenCV
	Saving a video and playback of a video using OpenCV

	Working with the Pi camera module
	Using raspistill and raspivid
	Using picamera in Python with the Pi camera module
	picamera and OpenCV
	Summary

	Chapter 3
: Basic Image Processing
	Retrieving image properties
	Arithmetic operations on images
	Blending and transitioning images

	Splitting and merging image colour channels
	Creating a negative of an image
	Logical operations on images

	Exercise
	Summary

	Chapter 4
: Colorspaces, Transformations, and Thresholds
	Colorspaces and conversions
	Tracking in real time based on color
	Image transformations
	Scaling
	Translation, rotation, and affine transformation
	Perspective transformation

	Thresholding image
	Otsu's method

	Exercise
	Summary

	Chapter 5
: Let's Make Some Noise
	Noise
	Introducing noise to an image
	Kernels
	2D convolution filtering
	Low-pass filtering

	Exercise
	Summary

	Chapter 6
: Edges, Circles,
and Lines' Detection
	High-pass filters
	Canny Edge detector
	Hough circle and line transforms
	Exercise
	Summary

	Chapter 7
: Image Restoration, Quantization, and Depth Map
	Restoring images using inpainting
	Image segmentation
	Mean shift algorithm based segmentation

	K-means clustering and image quantization
	Comparison of mean shift and k-means

	Disparity map and depth estimation
	Summary

	Chapter 8
: Histograms, Contours, Morphological Transformations, and Performance Measurement
	Image histograms
	Image contours
	Morphological transformations on image
	OpenCV performance measurement and improvement
	Summary

	Chapter 9
: Real-Life Computer Vision Applications
	Barcode detection
	Motion detection and tracking
	Hand gesture recognition
	Chroma key with green screen
	Summary

	Chapter 10
: Introduction to SimpleCV
	SimpleCV and its installation on Raspberry Pi
	Getting started with the camera, display, and images
	Binary thresholding and color distances
	The blur effect on a live web camera feed
	Histogram calculation
	Greyscale conversion
	Detecting corners and lines in an image
	Blob detection in images
	Sending Raspberry Pi on a boating vacation
	Exercise
	Summary

	Index

