

Michael Margolis

Make an Arduino-
Controlled Robot

ISBN: 978-1-449-34437-5

[LSI]

Make an Arduino-Controlled Robot
by Michael Margolis

Copyright © 2013 Michael Margolis. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://my.safaribooksonline.com). For more information, contact our corpo-
rate/institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editor: Brian Jepson Production Editor: Rachel Steely
Interior Designers: Nellie McKesson and Edie
Freedman

October 2012: First Edition

Revision History for the First Edition:

2012-09-12 First release

2012-10-03 Second release

See http://oreilly.com/catalog/errata.csp?isbn=9781449344375 for release details.

While every precaution has been taken in the preparation of this book, the publisher and authors assume
no responsibility for errors or omissions, or for damages resulting from the use of the information contained
herein.

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781449344375

Preface . vii

1. Introduction to Robot Building 1
Why Build a Robot? . 4
How Robots Move . 5
Tools . 6

2. Building the Electronics . 9
Hardware Required . 9
Construction Techniques . 10

Soldering . 10
Building the Motor Controller . 10
Soldering the Reflectance Sensors . 17
Making a Line Sensor Mount . 17
Next Steps . 20

3. Building the Two-Wheeled Mobile Platform . . 21
Hardware Required . 22
Mechanical Assembly . 23

Lay Out the Chassis Parts . 23
Motor Assembly . 24
Assemble the Chassis Components . 26
Attaching the Control Electronics . 37

Mounting the IR sensors . 38
Mounting the IR Sensors for Edge Detection 39
Mounting the IR Sensors for Line Following . 41

iii

Table of Contents

Next Steps . 43

4. Building the Four-Wheeled Mobile Platform . . . 45
Hardware Required . 46
Mechanical Assembly . 47

Lay Out the Chassis Parts . 47
Motor Assembly . 49
Assemble the Chassis Components . 51
Solder the Power and Motor Connections . 54
Connecting the Battery Pack and Power Switch 55
Building the Optional Trickle Charger . 56
Assemble the Chassis . 57
Mounting Arduino and Connecting Wires to the Shield 58

Mounting the IR sensors . 65
Mounting the IR Sensors for Edge Detection . 65
Mounting the IR Sensors for Line Following . 67

Next Steps . 68

5. Tutorial: Getting Started with Arduino 71
Hardware Required . 72
Arduino Software . 72
Arduino Hardware . 72
Installing the Integrated Development Environment (IDE) 74

Installing Arduino on Windows . 74
Installing Arduino on OS X . 75
Installing Arduino on Linux . 76
Driver Installation . 76

Connecting the Arduino Board . 78
Using the IDE . 78
Uploading and Running the Blink Sketch . 81
Using Tabs . 82
Installing Third-Party Libraries . 83

6. Testing the Robot’s Basic Functions 85
Hardware Required . 85
Software Prerequisites . 86
Sketches Used in This Chapter . 87
Load and Run helloRobot.ino . 88
About the Sketch . 95
Troubleshooting . 98
Making the Sketch Easy to Enhance . 99

7. Controlling Speed and Direction 103
Hardware Required . 103

iv Make an Arduino-Controlled Robot

Sketches Used in This Chapter . 103
Types of Motors . 104
Motor Controllers . 106
Controlling Motor Speed . 109

How Motor Speed Is Controlled . 109
Code for Motor Control . 110
Calibrating Rotation and Tracking . 116

Software Architecture for Robot Mobility . 119
Functions to Encapsulate Robot Movements . 123

Core Movement Code . 124
Additional Core Functions . 126
Functions to Rotate the Robot . 127
Higher-Level Movement Functions . 130

8. Tutorial: Introduction to Sensors 133
Hardware Discussed . 133
Software . 134
Infrared Reflectance Sensors . 134
Sonar Distance Sensors . 137
Maxbotix EZ1 Sonar Distance Sensor . 139
Sharp IR Distance Sensor . 141
Proximity Sensor . 142
Sound Sensor . 143
Arduino Cookbook . 146

9. Modifying the Robot to React to Edges and Lines
. 147
Hardware Required . 147
Sketches Used in This Chapter . 148
The Look Code . 149
Edge Detection . 150
Line Following . 154
Seeing Sketch Data . 160

10. Autonomous Movement . 163
Hardware Required . 163
Sketches Used in This Chapter . 164
Mounting a Ping Distance Sensor . 165

Making a Mount for the Ping Sensor . 166
Mounting the Ping Sensor in a Fixed Position 168
Mounting the Ping Sensor on a Servo . 168

Letting the Robot Wander . 170

vTable of Contents

Adding Scanning . 178

11. Remote Control . 185
Hardware Required . 185
Sketches Used in This Chapter . 186
Design of the Remote Control Code . 186
Controlling the Robot with a TV Type IR Remote 190

Installing the IR Decoder Chip . 190
The IR Remote Software . 192

Appendix A. Enhancing Your Robot 201

Appendix B. Using Other Hardware with Your Robot 205

Appendix C. Debugging Your Robot 211

Appendix D. Power Sources . 221

Appendix E. Programming Constructs 231

Appendix F. Arduino Pin and Timer Usage 235

vi Make an Arduino-Controlled Robot

Building a robot and enabling it to sense its environment is a wonderful way to
take your Arduino knowledge to the next level. In writing this book, I have brought
together my love for invention and my experience with electronics, robotics and
microcontrollers. I hope you have as much pleasure building and enhancing your
robot as I did developing the techniques contained in this book.

Arduino is a family of microcontrollers (tiny computers) and a software creation
environment that makes it easy for you to create programs (called sketches)
that can interact with the physical world. Arduino enables your robot to sense
the environment and respond in a rich variety of ways. This book helps you to
build a robot that is capable of performing a wide variety of tasks. It explains
how to assemble two of the most popular mobile platforms, a robot with two
wheels and a caster (for stability, since it’s hard to balance on two wheels), and
a robot with four wheels and motors. If you want your robot up and running
quickly, choosing one of the kits detailed in this book should speed you
through the build process and get you going with the robot projects. But
whether you prefer to design and build a platform of your own construction
or build from a kit, you will find the projects that comprise the core of this book
a practical and fun introduction to Arduino robots.

Who This Book Is For

This book is for people who want to explore robotics concepts like: movement,
obstacle detection, handling sensors, remote control, and all kinds of real world
physical computing challenges. It is for people who want to understand how
these concepts can be used to build, expand and customize your robot. See
“What Was Left Out” (page xi) for some general references for those with limited
programming or electronics experience.

vii

Preface

How This Book Is Organized

The book contains information that covers a broad range of robotics tasks. The
hardware and software is built up stage by stage, with each chapter using
concepts explained in earlier chapters. A simple “Hello Robot” sketch is intro
duced in Chapter 6, Testing the Robot’s Basic Functions and extended in subse
quent chapters. Each chapter introduces sketches that add new capabilities to
the robot. Experienced users can skip directly to the chapters of interest—full
source code for every sketch in this book is available online. However, users
who want to learn all about the techniques covered will benefit and hopefully
enjoy working with all the sketches presented in the book, as each sketch
enables the robot to perform increasingly complex tasks.

The sketches are built using functional modules. The modules are stored using
Arduino IDE tabs (see Chapter 5). Modules described in early chapters are
reused later and to avoid printing the same code over and over in the book,
only code that is new or changed is printed. Figure P-1 illustrates how the code
is enhanced from sketch to sketch. The horizontal bars represent the sketches,
the vertical bars represent functional modules that are included in the sketch
es. The initial ‘helloRobot’ sketch is transformed into the ‘myRobot’ sketch by
the moving the code for program definitions into a module named robotDe
fines.ino and reflectance sensors into a module named IrSensors.ino. These
module are included as tabs in the ‘myRobot’ sketch. Each subsequent sketch
is enhanced by adding code to an existing module or creating a new module
as a tab.

viii Make an Arduino-Controlled Robot

Figure P-1. Sketch and module family tree

All code for every sketch is available in the download for this book and you can
load the sketch being discussed into your IDE if you want a complete view of
all the code.

Chapter 1, Introduction to Robot Building provides a brief introduction to robot
hardware and software.

Chapter 2, Building the Electronics describes how to prepare the electronics for
use with the robot.

Chapter 3, Building the Two-Wheeled Mobile Platform describes how to assem
ble the 2 Wheel Drive (2WD) mobile platform.

Chapter 4, Building the Four-Wheeled Mobile Platform describes how to assem
ble the 4 Wheel Drive (4WD) mobile platform.

ixPreface

Chapter 5, Tutorial: Getting Started with Arduino introduces the Arduino envi
ronment and provides help getting the development environment and hard
ware installed and working.

Chapter 6, Testing the Robot’s Basic Functions explains the first robotics sketch.
It is used to test the robot. The code covered in this chapter is the basis of all
other sketches in the book:

• HelloRobot.ino (Arduino sketch) — Brings the robot to life so you can test
your build.

• myRobot.ino — Same functionality as above but structured into modules
to make it easy to enhance.

Chapter 7, Controlling Speed and Direction explains how you make the robot
move:

• myRobotMove.ino — Adds higher level movement capability.

• myRobotCalibrateRotation.ino — A sketch for running the robot through
a range of speeds to calibrate the robot.

Chapter 8, Tutorial: Introduction to Sensors introduces the most popular sensors
used with the 2WD and 4WD robots.

Chapter 9, Modifying the Robot to React to Edges and Lines describes techniques
for using reflectance sensors to enable your robot to gain awareness of its
environment. The robot will be able to follow lines or to avoid edges.

• myRobotEdge.ino — The robot will move about in an area bound by a non-
reflective surface (a large sheet of white paper placed on a non-reflective
surface).

• myRobotLine.ino — Repositions the sensors used above to allow the robot
to follow black lines painted or taped to a white surface. A variant of this
sketch that sends data over serial for display on an external serial device
is named myRobotLineDisplay and is included in the download code.

Chapter 10, Autonomous Movement describes how to use distance sensors to
enable the robot to see and avoid obstacles encountered as it moves around.

• myRobotWander.ino — Adds ‘eyes’ to give the robot the ability to look
around and avoid obstacles.

• myRobotScan.ino — Adds a servo so robot ‘eyes’ can scan independent of
robot movement.

x Make an Arduino-Controlled Robot

Chapter 11, Remote Control describes techniques for remotely controlling the
robot. Wired and wireless serial commands and using a TV type infrared remote
control are covered.

• myRobotSerialRemote.ino — Controls the robot using serial commands.

• myRobotRemote.ino — Controls the robot using an IR remote controller.

• LearningRemote.ino — Captures key codes from your remote control to
enable these to be added to the myRobotRemote sketch.

• myRobotWanderRemote.ino — Combines remote control with autono
mous movement.

Appendix A, Enhancing Your Robot provides tips and techniques for designing
and building complex projects.

Appendix B, Using Other Hardware with Your Robot describes some alternative
solutions for motor control.

Appendix C, Debugging Your Robot has hardware and software debugging tips.
This sections includes Arduino and Processing source code to enable real time
graphical display of robot parameters on a computer screen.

• myRobotDebug.ino — Arduino example showing how to send data to your
computer.

• ArduinoDataDisplay.pde (Processing sketch) — graphs data received from
Arduino in real time.

Appendix D, Power Sources introduces some alternatives for powering your
robot.

Appendix E, Programming Constructs provides a brief introduction to some of
the programming constructs used in the sketches for this book that may not
be familiar to some Arduino users.

Appendix F, Arduino Pin and Timer Usage summarizes the pins and Arduino
resources used by the robot.

What Was Left Out

This book explains all the code used for the robot, but it is not an introduction
to programming. If you want to learn more about programming with Arduino,
you may want to refer to the Internet or to one of the following books:

• Getting Started with Arduino, 2nd Edition by Massimo Banzi (O’Reilly)

• Arduino Cookbook, 2nd Edition by Michael Margolis (O’Reilly)

xiPreface

http://oreilly.com/catalog/0636920021414/
http://oreilly.com/catalog/0636920022244/

A good book for inspiration on more robotics projects is:

• Make: Arduino Bots and Gadgets by Tero Karvinen, Kimmo Karvinen (O’Reil
ly)

Code Style (About the Code)

The code used throughout this book has been tailored to clearly illustrate the
topic covered in each chapter. As a consequence, some common coding short
cuts have been avoided. Experienced C programmers often use rich but terse
expressions that are efficient but can be a little difficult for beginners to read.
For example, code that returns boolean values uses the somewhat verbose
explicit expressions because they are easier for beginner programmers to read,
see the example that follows, which returns true if no reflection was detected
by the robot’s sensor:

return irSensorDetect(sensor) == false;

Here is the terse version that returns the same thing (note the negation oper
ator before the function call):

return !irSensorDetect(sensor);

Feel free to substitute your preferred style. Beginners should be reassured that
there is no benefit in performance or code size in using the terse form.

One or two more advanced programming concepts have been used where
this makes the code easier to enhance. For example, long lists of sequential
constants use the enum declaration.

The enum keyword creates an enumeration; a list of constant integer values. All
the enums in this book start from 0 and increase sequentially by one.

For example, the list of constants associated with movement directions could
be expressed as:

const int MOV_LEFT = 0
const int MOV_RIGHT = 1;
const int MOV_FORWARD = 2;
const int MOV_BACK = 3;
const int MOV_ROTATE = 4;
const int MOV_STOP = 5;

The following declares the same constants with the identical values:
enum {MOV_LEFT, MOV_RIGHT, MOV_FORWARD,
 MOV_BACK, MOV_ROTATE, MOV_STOP};

xii Make an Arduino-Controlled Robot

http://oreilly.com/catalog/0636920010371/

In addition to brevity, there are many advantages to the enum version of the
code. If you want to know more about enum, an online search for c++ enum
should tell you all you need to know and more.

Good programming practice involves ensuring that values used are valid
(garbage in equals garbage out) by checking them before using them in cal
culations. However, to keep the code focused on the topic, error-checking code
has been kept to a minimum. If you expand the code, you are encouraged to
add error-checking where needed.

Arduino Hardware and Software

The examples in this book were built using the Arduino Leonardo and Uno
boards (see Chapter 5). The code has been tested with Arduino release 1.0.1
(the first release that fully supports the Leonardo board). Although many of
the sketches will run on earlier Arduino releases, this has not been tested. If
you really want to use a release older than 1.0, you need to change the exten
sion from .ino to .pde to load the sketch into a pre-1.0 IDE.

There is a website for this book where you can download code for this book;
see “How to Contact Us” (page xv).

There is also a link to errata on that site. Errata give readers a way to let us know
about typos, errors, and other problems with the book. Errata will be visible
on the page immediately, and we’ll confirm them after checking them out.
O’Reilly can also fix errata in future printings of the book in electronic books,
and on Safari® Books Online, making for a better reader experience pretty
quickly.

If you have problems getting the code to work, check the web link to see if the
code has been updated. The Arduino forum is a good place to post a question
if you need more help: http://www.arduino.cc.

If you like—or don’t like—this book, by all means, please let people know.
Amazon reviews are one popular way to share your happiness or other com
ments. You can also leave reviews at the O’Reilly site for the book.

Conventions Used in This Book

The following font conventions are used in this book:

Italic
Indicates pathnames, filenames, and program names; Internet addresses,
such as domain names and URLs; and new items where they are defined

xiiiPreface

http://www.arduino.cc

Constant width

Indicates command lines and options that should be typed verbatim;
names and keywords in programs, including method names, variable
names, and class names; and HTML element tags

Constant width bold

Indicates emphasis in program code lines

Constant width italic

Indicates text that should be replaced with user-supplied values

This icon signifies a tip, suggestion, or general note.

Using Code Examples

This book is here to help you make things with Arduino. In general, you may
use the code in this book in your programs and documentation. You do not
need to contact us for permission unless you’re reproducing a significant por
tion of the code. For example, writing a program that uses several chunks of
code from this book does not require permission. Selling or distributing a CD-
ROM of examples from this book does require permission. Answering a ques
tion by citing this book and quoting example code does not require permis
sion. Incorporating a significant amount of example code from this book into
your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes
the title, author, publisher, and ISBN. For example: “Make an Arduino Controlled
Robot by Michael Margolis (O’Reilly). Copyright 2013 Michael Margolis, ISBN
(978-1-4493-4437-5).”

If you feel your use of code examples falls outside fair use or the permission
given here, feel free to contact us at permissions@oreilly.com.

Safari® Books Online

Safari Books Online is an on-demand digital library that lets you easily search
over 7,500 technology and creative reference books and videos to find the
answers you need quickly.

With a subscription, you can read any page and watch any video from our
library online. Read books on your cell phone and mobile devices. Access new

xiv Make an Arduino-Controlled Robot

mailto:permissions@oreilly.com

titles before they are available for print, and get exclusive access to manuscripts
in development and post feedback for the authors. Copy and paste code sam
ples, organize your favorites, download chapters, bookmark key sections, cre
ate notes, print out pages, and benefit from tons of other time-saving features.

O’Reilly Media has uploaded this book to the Safari Books Online service. To
have full digital access to this book and others on similar topics from O’Reilly
and other publishers, sign up for free at http://my.safaribooksonline.com.

How to Contact Us

We have tested and verified the information in this book to the best of our
ability, but you may find that features have changed (or even that we have
made a few mistakes!). Please let us know about any errors you find, as well as
your suggestions for future editions, by writing to:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international/local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, example code, and any
additional information. You can access this page at:

http://shop.oreilly.com/product/0636920028024.do

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, courses, conferences, and news, see
our website at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments

Rob DeMartin, the business manager at Maker Media, was the driving force
behind the botkits, which inspired the writing of this book. Isaac Alexander
and Eric Weinhoffer at Maker Media ran with the concept to make it a product.
I thank them for testing the content of the book to ensure that the projects
and the hardware worked well together.

xvPreface

http://my.safaribooksonline.com/?portal=oreilly
http://shop.oreilly.com/product/0636920028024.do
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

I am grateful to the Arduino community for contributing a wealth of free soft
ware, in particular, the IrRemote library from Ken Sherriff that is used in the
remote control chapter. I would also like to express my appreciation to Limor
Fried (Ladyada) for creating the hardware, software and online build notes for
the motor shield used in this book.

Thanks also to DFRobot, the innovative company that designed the robot
platforms and provided the exploded view drawings used in the build chap
ters.

Mat Fordy at Cool Components (coolcomponents.co.uk) organized the robot
ics workshop that provided a testing ground for the book’s projects. It was
helpful and rewarding to work with the participants, each with a different level
of experience, to build the robots and see their pleasure in bringing their cre
ations to life. Their feedback helped make the book content clear, practical and
fun.

If I have achieved my goal of making the rich variety of technical topics in this
book accessible to readers with limited electronics or programming experi
ence, then much of the credit goes to Brian Jepson. Brian, who was also my
editor for the Arduino Cookbook, was with me every step of the way. I thank
him for his guidance: from his support and passion in beginning the project,
to his editorial expertise and application of his masterful communications skills
right through to using his technical knowledge to test all the projects in the
book.

I would like to thank my entire family for listening to me explain the finer points
of robotics during a week- long vacation in the early stages of preparing this
book. Four generations of my family were patient and constructive at times
when they would have preferred to be boating on the lake or walking in the
woods.

Finally, this book would not be what it is without the contributions made by
my wife, Barbara Faden. Her feedback on early drafts of the manuscript helped
shape the content. I am especially grateful for her support and patience in the
wake of disruption created as I wrangled with these two little robots to meet
the book’s deadline.

xvi Make an Arduino-Controlled Robot

This book takes you through the steps needed to build a robot capable of
autonomous movement and remote control. Build instructions are provided
for 2WD (two wheel drive) and 4WD (four wheel drive) platforms. The platforms
shown in Figure 1-1 and Figure 1-2 will make the construction a snap, but you
can build your own robot chassis if you prefer. The connection and use of the
control electronics and sensors are fully explained and the source code is in
cluded in the book and available for download online (see “How to Contact
Us” (page xv) for more information on downloading the sample code).

Figure 1-1. The assembled two wheeled robot chassis

1

Introduction to Robot
Building 1

Figure 1-2. The assembled four wheeled robot chassis

Here is a preview of the projects you can build:

• Controlling speed and direction by adding high level movement capabil
ity.

• Enabling the robot to see the ground—using IR sensors for line and edge
detection (see Figure 1-3 and Figure 1-4).

• Enabling the robot to look around—scanning using a servo so the robot
can choose the best direction to move, as shown in Figure 1-5.

• Adding remote control using a TV remote control or a wired or wireless
serial connection.

2 Make an Arduino-Controlled Robot

Introduction to Robot Building

Figure 1-3. Robot moves around but remains within the white area

Figure 1-4. Robot follows black line

3Chapter 1

Introduction to Robot Building

Figure 1-5. Two wheeled and four wheeled robots with distance scanners

Why Build a Robot?

Building a robot is different from any other project you can make with a mi
crocontroller. A robot can move and respond to its environment and exhibit
behaviors that mimic living creatures. Even though these behaviors may be
simple, they convey a sense that your creation has a will and intent of its own.
Building a machine that appears to have some spark of life has fascinated
people throughout the ages. The robots built over 60 years ago by neuro
physiologist W. Grey Walter (see http://www.extremenxt.com/walter.htm) ex
plored ways that the rich connections between a small number of brain cells
give rise to complex behaviors.

4 Make an Arduino-Controlled Robot

Why Build a Robot?

http://www.extremenxt.com/walter.htm

There are many different kinds of robots, some can crawl, or walk, or slither.
The robots described in this book are the easiest and most popular; they use
two or four wheels driven by motors.

Choosing Your Robot

The projects in this book can use either a two or four
wheeled platform, but if you are still deciding which
is right for you, here are some factors that will help
you choose:

Two Wheeled Robot
Light and very maneuverable, this is a good
choice if you want to experiment with tasks such
as line-following that require dexterous move
ment. However, the caster that balances the ro
bot requires a relatively smooth surface.

Four Wheeled Robot
This robot’s four wheel drive makes this a good
choice if you want it to roam over rougher sur
faces. This platform has a large top plate that can
be used to carry small objects. The robot is heav
ier and draws more current than the 2WD robot,
so battery life is shorter.

How Robots Move

Figure 1-6. Left and Right wheels turn forward, Robot
moves Forward

The robots covered in this book move forward,
back, left and right much like a conventional
car. Figure 1-6 shows the wheel motion to
move the robot forward.

Figure 1-7. Only Left wheels turn, Robot Turns Right

If the wheels on one side are not driven (or are
driven more slowly than the other side) the ro
bot will turn, as in Figure 1-7.

5Chapter 1

How Robots Move

Figure 1-8. Left and Right wheels turn backward, Robot
moves Backward

Figure 1-8 shows that reversing the wheel ro
tation drives the robot backward.

Figure 1-9. Left wheels turn forward, Right wheels re
verse, Robot rotates Clockwise

Unlike a car (but a little like a tank), these robots
can also rotate in place by driving the wheels
on each side in different directions. If the
wheels on each side are spinning in opposite
directions, the robot will rotate. Figure 1-9
shows clockwise rotation.

Tools

These are the tools you need to assemble the robot chassis.

Phillips Screwdriver
A small Phillips screwdriver from your local hardware store.

Small long-nose or needle-nose pliers
For example, Radio Shack 4.5-inch mini long-nose pliers, part number
64-062 (see Figure 1-10) or Xcelite 4-inch mini long-nose pliers, model L4G.

Small wire cutters
For example, Radio Shack 5” cutters, part number 64-064 (Figure 1-11) or
Jameco 161411

Soldering iron
For example, Radio Shack 640-2070 (Figure 1-12) or Jameco 2094143 are
low cost irons suitable for beginners. But if you are serious about elec
tronics, a good temperature controlled iron is worth the investment, such
as Radio Shack 55027897 or Jameco 146595.

Solder 22 AWG (.6mm) or thinner
For example, Radio Shack 640-0013 or Jameco 73605.

6 Make an Arduino-Controlled Robot

Tools

Figure 1-10. Small Pliers

Figure 1-11. Wire Cutters (Side Cutters)

Figure 1-12. Soldering Iron

7Chapter 1

Tools

This chapter guides you through the electronic systems that will control your
robot. Both the two wheeled and four wheeled platforms use the same mod
ules, a pre-built Arduino board (Arduino Uno or Leonardo), and a motor con
troller kit. The motor controller featured in this book is the AFMotor shield from
Adafruit Industries. Although other motor controllers can be used (see Ap
pendix B) the AFMotor shield provides convenient connections for the signals
and power to all the sensors and devices covered in this book. It is also capable
of driving four motors, which is required for the four wheel drive chassis.

Although the attachment of the boards to the robot differs somewhat de
pending on the chassis, the building of the AFMotor circuit board kit is the
same for both. If you don’t have much experience with soldering, you should
practice soldering on some wires before tackling the circuit board (you can
find soldering tutorials here: http://www.ladyada.net/learn/soldering/
thm.html).

Hardware Required

See http://shop.oreilly.com/product/0636920028024.do for a detailed parts list.

• Tools listed in “Tools” (page 6)

• AFMotor shield kit

• Three 6 way 0.1” female headers

• Three QTR-1A reflectance sensors

• Stripboard, three 3 way 0.1” headers for line sensor mount

• Ribbon Cable, 11-way or wider, cut with a sharp knife as follows:

— One 10 inch length of 5 conductor ribbon cable for line sensors

9

Building the Electronics 2

http://www.ladyada.net/learn/soldering/thm.html
http://www.ladyada.net/learn/soldering/thm.html
http://shop.oreilly.com/product/0636920028024.do

— Two 10 inch lengths of 3 conductor ribbon cable for edge sensors

• Optional: 3 way 0.1” female header for optional charging circuit

• Optional: 3 way 0.1” female header for optional wireless connection

Construction Techniques

This section provides an overview of the motor controller shield construction.

Soldering
Soldering is easy to do if you understand the basic principles and have a little
practice. The trick for making a good solder joint is to provide the right amount
of heat to the parts to be soldered and use the right solder. 22 AWG solder
(0.6mm or .025 inch) or thinner is a good choice for soldering printed circuit
boards. A 25-watt to 40-watt iron, ideally with temperature control, is best. The
components to be joined should be mechanically secure so they don’t move
while the solder is cooling—wires should be crimped around terminals (see
Figure 4-11 and Figure 4-12). To make the joint, the tip of the iron should have
good contact with all the components to be soldered. Feed a small amount of
solder where the iron is touching the parts to be joined. When the solder flows
around the joint, remove the solder first and then the iron. The connection
should be mechanically secure and the joint shiny.

Building the Motor Controller
The motor controller shield is the heart of this robot. As well as controlling the
motors, all the sensors are connected to Arduino through this board. The shield
is provided as a kit and is the same for use with either the 2WD and 4WD robots,
differing only in the method of connecting the motors and mounting to the
chassis (both are detailed in later chapters).

The following is an overview of the construction with some tips that you should
read through before starting to build the circuit board. You can find step by
step construction details for the shield at this site: http://ladyada.net/make/
mshield/solder.html

Figure 2-1 shows the components for the shield.

10 Make an Arduino-Controlled Robot

Construction Techniques

http://ladyada.net/make/mshield/solder.html
http://ladyada.net/make/mshield/solder.html

Figure 2-1. Parts required to build the Motor Shield

The parts to the right of (as well as below) the board are packed with
the shield, but the three 6-pin headers on the left are not supplied with
the standard shield. These headers are used to connect the sensors.
These headers are included with the Maker Shed companion kits that
go along with this book. You can also purchase female headers from
Adafruit and other suppliers.

The two Maker Shed kits can be found at http://www.makershed.com/
Bots_and_Bits_for_Bots_s/46.htm. Look for either the Rovera 2W
(Arduino-Controlled 2 Wheel Robotics Platform) or Rovera 4W (Ardu
ino Controlled 4 Wheel Robotics Platform).

Solder the smallest components first (Figure 2-2). The three small capacitors
and two resistors are not polarized so you can insert them either way around.

11Chapter 2

Construction Techniques

http://www.makershed.com/Bots_and_Bits_for_Bots_s/46.htm
http://www.makershed.com/Bots_and_Bits_for_Bots_s/46.htm

Figure 2-2. Solder the Small Components

The resistor network (the long thin component with ten pins) is polarized—
the end with the white dot goes to the left of the PCB (nearest to C1) as shown
in Figure 2-3.

Figure 2-3. Solder the resistor network the marker (circled) indicates correct orientation

The large capacitors, ICs, and LED are all polarized. The color of the components
shown in the step-by-step assembly pictures on the Adafruit site (you can find
the link at the beginning of these build notes) may not match the components
or layout for the parts you received (particularly the capacitors) so carefully

12 Make an Arduino-Controlled Robot

Construction Techniques

check that you have placed the correct value component in the correct orien
tation. Figure 2-4 shows the layout for version 1.2 of the shield PCB. The kit
includes two IC sockets for the L293D chips. As mentioned in the assembly
instructions on the Adafruit site, these are optional but if you like to play safe
and want to use the sockets, solder them so the indent indicating pin 1 matches
the outline printed on the PCB.

Figure 2-4. Solder the rest of the polarized components

Figure 2-5 shows the board with all of the standard shield components (push
button, headers, screw terminals) soldered. The final assembly step is to solder
the three 6-pin female headers near the analog input pins. These headers are
not included in the shield package or mentioned in Adafruit’s step-by-step
build instructions, but are included with the Maker Shed kits.

13Chapter 2

Construction Techniques

Figure 2-5. Everything soldered except the sensor headers

Figure 2-6 shows all components including the sensor headers soldered. Trim
the component pins (except the header pins that connect the shield to the
Arduino) on the underside of the board so they are clear of the Arduino when
the shield is plugged onto the board. Locate one of the jumpers supplied with
the shield and plug this onto the pins marked power jumper—this connects
the motor power input and the Arduino VIN (power input) together so both
are fed from the batteries that you will be wiring after you have built the robot
chassis.

14 Make an Arduino-Controlled Robot

Construction Techniques

Figure 2-6. Shield with sensor headers

Figure 2-7 shows where all of the sensors and other external devices will be
connected. The three pin female headers are not needed for some of the
projects but you will find it convenient to solder these to the shield at this time.

Figure 2-8 shows two styles of connections. On the left, you’ll find the
stripboard-based wiring scheme as described in “Making a Line Sensor
Mount” (page 17). As you’ll see in later chapters, you can experiment with a
variety of mounting methods, including the stripboard-based one. The right
side of Figure 2-8 shows the wiring for separately connected sensors. As you
read through the later chapters and experiment with various mounting tech
niques, you’ll use one or the other wiring schemes. Because you’ll be using
sockets and ribbon connectors to hook up the sensors, you won’t be locked
into any particular connection scheme; you can mix and match.

15Chapter 2

Construction Techniques

The left and right designation in the diagram refers to left and right
from the robot’s perspective, and the later chapters will explain where
to connect these.

Figure 2-7. Connections for devices covered in the chapters to come

16 Make an Arduino-Controlled Robot

Construction Techniques

Figure 2-8. Connection detail stripboard wiring is shown on the left, individual jumpers shown
on the right

Soldering the Reflectance Sensors
Each sensor package contains a small PCB and a 3-pin header. Insert the header
so the shorter length pins emerge on the side of the board with components
already soldered, see Figure 2-9. After ensuring you have the header the right
way around, solder the three pins.

Figure 2-9. QTR1A Reflectance Sensors

Making a Line Sensor Mount
The line sensing project in this book uses three reflectance sensors wired to
analog inputs. Although it is possible to wire the three connections (+5V, Gnd,
and Signal) using 9 jumpers, it is more convenient to use a small piece of

17Chapter 2

Construction Techniques

stripboard to connect the power lines together. Header sockets soldered to
the stripboard enable the sensor to be easily unplugged so you can change
configuration if you want to swap back and forth between line and edge de
tection. Figure 2-10 shows the layout of the stripboard (note the five holes
you’ll need to drill out with a hand drill). Figure 2-12 shows the wires soldered
directly to the stripboard pads. If you’d like to add some strain relief, you can
drill out a few extra holes in an unused area of the stripboard. Next, divide the
wire into two groups (one for positive and negative, and three for the analog
pins), and feed the wires through large holes in the board before you solder
them. That way, if you tug on the wires, they’ll pull against the holes before
they pull against your solder joints.

Figure 2-10. Stripboard layout for mounting QTR1A reflectance sensors for line following

To ensure that the mounting bolts don’t short the tracks, you can either cut
the tracks as shown in Figure 2-10 (you will be cutting along the third column
from the left, or the “C” column) or use insulated washers between the bolts
heads and the tracks. Figure 2-11 shows how the header sockets are connected,
and Figure 2-12 shows the completed stripboard, with the ribbon cable con
nected. A ten inch length of cable is more than ample. Figure 2-13 shows the
other end of the ribbon connected to shield pins.

18 Make an Arduino-Controlled Robot

Construction Techniques

Figure 2-11. Stripboard with three 3 pin header sockets

Figure 2-12. Stripboard with all wires soldered

19Chapter 2

Construction Techniques

Figure 2-13. Ribbon cable connections to shield pins

The method of mounting the stripboard depends on the robot chassis; see
Chapter 3, Building the Two-Wheeled Mobile Platform or Chapter 4, Building the
Four-Wheeled Mobile Platform. The three holes shown will suit either chassis
but you may prefer to wait until you have built the chassis and only drill the
holes you need.

Next Steps
The next stage in building the robot is to assemble the chassis. Chapter 3 covers
the two-wheeled robot and Chapter 4 is for the four-wheeled version.

20 Make an Arduino-Controlled Robot

Construction Techniques

This chapter provides advice on the construction of a Two Wheel Drive (2WD)
chassis with front caster, as shown in Figure 3-1. Construction is straightfor
ward; you can follow the detailed steps or improvise if you want to customize
your robot. The chapter also shows how you attach and connect sensors used
in the projects covered in later chapters.

If you prefer to build a two wheeled robot of your own design, you should read
the sections on attaching control electronics and sensors; this will prepare you to
use the code for the projects in the chapters to come. Information in this chapter
my also provide some ideas to help with the design of your own robot.

21

Building the Two-Wheeled
Mobile Platform 3

Figure 3-1. 2WD Robot Chassis

Hardware Required

See http://shop.oreilly.com/product/0636920028024.do for a detailed parts list.

• Tools listed in “Tools” (page 6)

• The assembled electronics (see Chapter 2, Building the Electronics

• 2WD Mobile Platform (two wheeled robot kit made by DFRobot)

• Two 0.1uF ceramic capacitors

• Two lengths of 3 conductor ribbon cable, two 3 way 0.1” headers for edge
sensors

• Optional: charging circuit resistors and diode, see detailed parts list

22 Make an Arduino-Controlled Robot

Hardware Required

http://shop.oreilly.com/product/0636920028024.do

Mechanical Assembly

Lay Out the Chassis Parts
Figure 3-2 shows all of the parts contained in the 2WD chassis package. The
three black brackets to the left of the figure are not needed for any of the
projects in this book.

Figure 3-2. 2WD Chassis Parts

Figure 3-3 shows the contents of the bag containing the mounting hardware.
Locate the two bolts with the flat heads and put them aside for mounting the
battery case. Also identify the two thicker (M4) bolts that will be used to attach
the caster. The remaining short bolts in this pack are identical.

23Chapter 3

Mechanical Assembly

Figure 3-3. 2WD hardware pack contents

Motor Assembly
Use two long bolts with lock washers and nuts, as shown in Figure 3-5, to attach
each motor to the chassis lower plate. Tighten the nuts snugly but take care
not to stress the plastic motor housing.

Lock washers are used to prevent a nut from accidentally coming lose
due to vibration. This is particularly important for attaching the motor
and switch. These washers have a split ring or serrations that apply
extra friction when tightened.

If you find that things still come lose, don’t overtighten the nuts; an
effective solution is retighten the nut and apply a dab of nail polish to
the point where the threads emerge from the nut.

Figure 3-4 shows the motors in place with the nut seen on the upper right
ready to be tightened.

24 Make an Arduino-Controlled Robot

Mechanical Assembly

Figure 3-4. Motors mounted on the chassis lower plate

25Chapter 3

Mechanical Assembly

Figure 3-5. Motor Assembly

Assemble the Chassis Components
Push the wheels onto the motor assembly shafts, aligning the slots in the
wheels with the flat section of the motor shaft. Attach the caster with two M4
bolts and nuts. Figure 3-6 and Figure 3-7 show this.

26 Make an Arduino-Controlled Robot

Mechanical Assembly

Figure 3-6. Motor Assembly

Figure 3-7. Wheels and caster mounted

27Chapter 3

Mechanical Assembly

Attach the sensor bracket to the underside of the lower chassis plate, as seen
in Figure 3-8 and Figure 3-9.

This robot is sometimes built with the sensor plate mounted at the
opposite end of the chassis (furthest from the caster). You can build
yours however you like, but the orientation shown here enables the
servo mounted distance scanner to be attached in the front of the robot.
Also, the sensor bracket in this location maximizes the distance be
tween the wheels and the line sensors and this improves line following
sensitivity.

Figure 3-9 shows the underside of the chassis after mounting the sensor brack
et. Note that the sensor bracket is attached to the bottom of the chassis plate.

Figure 3-8. Sensor bracket viewed with the robot right
side up

Figure 3-9. Sensor bracket viewed with the robot up
side down

The battery pack is bolted to the bottom base plate with two countersunk (flat
headed) Phillips bolts as shown in Figure 3-10 and Figure 3-11. You may want
to delay this step until after the battery leads have been soldered to make it
easier to position all the wires.

28 Make an Arduino-Controlled Robot

Mechanical Assembly

Figure 3-10. Motor Assembly
Figure 3-11. Chassis with Battery Pack Attached

Cut two pieces of red/black wire, each about 7 1/2 inches long. Strip to expose
about 3/16 inch of bare wire at one end of the wires and attach to the motor
terminals. Strip 1/4 inch off the other end of the pairs of wires; these will be
connected to the motor shield. Connect a 0.1uF capacitor across each of the
motor terminals, as shown in Figure 3-12. The capacitors suppress electrical
spikes generated by the motor that could interfere with signals on the Arduino
board.

Figure 3-12. Wires and capacitors soldered to Motors

29Chapter 3

Mechanical Assembly

The DC power jack is bolted to the top plate using the large (M8) lock washer
and nut. The switch is mounted using two (M6) nuts and a lock washer. Put
one nut on the switch leaving around 3/16” of thread above the nut. Then place
the lock washer on the thread and push this through the opening in the rear
plate and secure with the second M6 nut.

Orient the switch so the toggle moves towards the jack, as shown in Figure 3-13
and Figure 3-14 (Figure 3-15 shows the view from beneath).

Figure 3-13. Switch and Jack Assembly

30 Make an Arduino-Controlled Robot

Mechanical Assembly

Figure 3-14. Top panel showing location of switch and
DC jack

Figure 3-15. Top panel underside showing orientation
of switch and jack

The battery can be wired as shown in Figure 3-16 and Figure 3-17. The power
switch will disconnect the battery when the robot is not in use. The DC jack is
not used in this configuration (other than as a junction point for the black
ground wires). The switch is off when the toggle is closer to the DC jack as
shown (the toggle is a lever; when the exposed end is up as seen in the figure,
the contact at the bottom is connected and the contact wired to the shield is
open).

Figure 3-16. Basic Switch Wiring (no trickle charger)

31Chapter 3

Mechanical Assembly

Figure 3-17. Solder the battery wires to the switch

You can build a simple trickle charger into the robot if you will be using re
chargeable NiMH batteries. The charger can be built using the circuit shown
in Figure 3-18 and Figure 3-19. See “Trickle Charging” (page 229) for information
about using the charger.

Figure 3-18. Optional Trickle Charger Wiring

32 Make an Arduino-Controlled Robot

Mechanical Assembly

Figure 3-19. Wiring of the optional charger jack

The easiest way to mount the Arduino board is with a strip of Velcro. A 2.5” x
1.5” strip is supplied with the Rovera 2W (Arduino-Controlled 2 Wheel Robotics
Platform) kit. To prevent the Arduino pins from accidentally shorting to the
chassis, apply insulating tape to the underside of the Arduino board. Gaffer
tape works well but you can use (non-conductive) duct tape or heavy duty
electrical tape. Attach the ‘hairy’ side of the Velcro to the taped Arduino board,
the hook side is fastened as shown in Figure 3-20.

33Chapter 3

Mechanical Assembly

Figure 3-20. Velcro pad in position on the 2WD chassis. Inset shows Velcro attached to the
Arduino board.

Figure 3-21 shows the mounted boards. The Velcro will hold the boards in
position when the robot is moving about, but use one hand to steady the
Arduino when you unplug the shield and take care not to use too much down
ward pressure that could push the Arduino pins through the tape when plug
ging in the shield.

34 Make an Arduino-Controlled Robot

Mechanical Assembly

Figure 3-21. Arduino board mounted using Velcro

If you prefer a more rigid mount, you can use two of the 10mm brass standoffs
supplied with the chassis and two M3 bolts and nuts (seen on the right side of
the board as shown in Figure 3-22). Use a 10mm spacer and M2.5 in the hole
near the reset switch. (The hole near the DC jack at the lower left is not used.)

The spacer is required for a Leonardo board because there is insufficient
space for an M3 bolt in the munting hole near the switch. The Uno
board has more room so you can use a another of the 10mm spacers
and M3 hardware for mounting that board.

Figure 3-23 shows the location of the mounting points viewed from the un
derside of the panel.

35Chapter 3

Mechanical Assembly

Figure 3-22. Mounting the Arduino board as viewed
from the top of the chassis

Figure 3-23. Underside showing location of the three
Arduino mounting points

Attach the top plate with four M3 bolts as shown in Figure 3-24.

Figure 3-24. Top Plate Assembly

36 Make an Arduino-Controlled Robot

Mechanical Assembly

Attaching the Control Electronics
Figure 3-25 shows where the battery and motor wires are connected. Left and
right are from the robot’s perspective (the right wheel is the one closest to the
switch). Figure 3-26 shows the main electronics in place.

Figure 3-25. Motor and battery connections

37Chapter 3

Mechanical Assembly

Figure 3-26. 2WD built and ready to mount sensors

Mounting the IR sensors

This section covers mounting of the infrared (IR) reflectance sensors for use in
edge detecting or line following. “Infrared Reflectance Sensors” (page 134) ex
plains how these sensors work and Chapter 9, Modifying the Robot to React to
Edges and Lines describes how to use IR sensors. This section explains how to
mount these to the 2WD platform and connect them to Arduino. The first
projects in this book should have the sensors mounted as shown in the section
on edge detection. When you are ready to implement the line following ap
plication in Chapter 9, refer back to the section here on positioning the sensors

38 Make an Arduino-Controlled Robot

Mounting the IR sensors

for line following. The stripboard mount described in “Making a Line Sensor
Mount” (page 17) simplifies the attachment and wiring of the sensors for line
detection and this can also be used for edge detection, but bear in mind that
the robot will perform the edge detection task best with the sensors further
apart. If the sensors are close together, the robot can have difficulty determin
ing the best angle to turn when an edge is encountered.

Mounting the IR Sensors for Edge Detection
Edge detection requires two QTR-1A sensors mounted on the front of the ro
bot. These should be spaced as widely as possible. The ideal location is with
each sensor positioned in front of a wheel so an edge can be detected before
a wheel would otherwise fall off a ‘cliff’. However, if your priority is simplicity
of construction rather than accuracy of edge detection, you can use the same
mount described in the next section covering line detection.

The side with the sensor faces the ground and the header pins face upwards.
Mount each sensor using a 2-56 bolt and nut (M2 bolts and nuts can also be
used) with a 1/2” plastic spacer so the face of the sensor is 3/8” or closer to the
ground. Figure 3-27, Figure 3-28, Figure 3-29, and Figure 3-30 show suggested
mounting.

Figure 3-27. Reflectance Sensor location for Edge Detection

39Chapter 3

Mounting the IR sensors

Figure 3-28. Edge Detection Sensor Mounting Detail

Figure 3-29. Front view showing location of the Edge
Detection Sensors

Figure 3-30. Edge sensors wired and ready to run

40 Make an Arduino-Controlled Robot

Mounting the IR sensors

Mounting the IR Sensors for Line Following
Three QTR-1a sensors are required for line following. “Making a Line Sensor
Mount” (page 17) describes how to build a stripboard mount for line sensing.
However, you can also mount and attach each sensors as described in this
section if you want to experiment with how varying the spacing of the sensors
affects line following.

The sensors can be attached using 2-56 or M2 hardware. The component side
faces down and the header pins face upwards. They are mounted in the front,
equally spaced with approximately 1/2 inch between the center and the left
and right bolts (Figure 3-31).

Figure 3-31. Reflectance Sensor location for Line Following

If you use the stripboard mount for line sensors covered in Chapter 2, Building
the Electronics, the stripboard can be mounted above or below the sensor
bracket, enabling you to experiment with sensor distance to the ground—but
use insulated washers to ensure that the tracks with sensor connections are
not shorted to the bracket. Figure 3-32 and Figure 3-33 show how the strip
board can be mounted.

41Chapter 3

Mounting the IR sensors

Figure 3-32. Reflectance Sensor location for line following

42 Make an Arduino-Controlled Robot

Mounting the IR sensors

Figure 3-33. Reflectance Sensor location for line following, alternate view

See Figure 3-27 for information on connecting the stripboard wires to the mo
tor shield.

Next Steps

Chapter 5, Tutorial: Getting Started with Arduino explains how to set up and use
the development environment that will be used to upload code to the robot.
If you are already an Arduino expert, you can skip to Chapter 6, Testing the
Robot’s Basic Functions, but first, see “Installing Third-Party Libraries” (page 83)
for advice on the libraries used with the code for this book.

If you have the libraries installed and want run a simple test to verify that the
motors are working correctly, you can run the sketch shown in Example 3-1.

Example 31. Initial motor test for 2WD
/***
* MotorTest2wd.ino
* Initial motor test for 2WD - robot rotates clockwise
* Left motor driven forward, right backward
* then counter-clockwise

43Chapter 3

Next Steps

* Michael Margolis 24 July 2012
**/
const int LED_PIN = 13;
const int speed = 60; // percent of maximum speed

#include <AFMotor.h> // adafruit motor shield library (modified my mm)
AF_DCMotor Motor_Left(1, MOTOR12_1KHZ); // Motor 1
AF_DCMotor Motor_Right(2, MOTOR12_1KHZ); // Motor 2

int pwm;

void setup()
{
 Serial.begin(9600);
 blinkNumber(8); // open port while flashing. Needed for Leonardo only

 // scale percent into pwm range (0-255)
 pwm= map(speed, 0,100, 0,255);
 Motor_Left.setSpeed(pwm);
 Motor_Right.setSpeed(pwm);
}

// run over and over
void loop()
{
 Serial.println("rotate cw");
 Motor_Left.run(FORWARD);
 Motor_Right.run(BACKWARD);
 delay(5000); // run for 5 seconds
 Serial.println("rotate ccw");
 Motor_Left.run(RELEASE); // stop the motors
 Motor_Right.run(RELEASE);
 delay(5000); // stop for 5 seconds
}

// function to indicate numbers by flashing the built-in LED
void blinkNumber(byte number) {
 pinMode(LED_PIN, OUTPUT); // enable the LED pin for output
 while(number--) {
 digitalWrite(LED_PIN, HIGH); delay(100);
 digitalWrite(LED_PIN, LOW); delay(400);
 }
}

This sketch runs the motors in opposite directions to cause the robot to rotate
clockwise for 5 seconds, then reverses direction to rotate counter-clockwise.
This will repeat until the power is switched off.

44 Make an Arduino-Controlled Robot

Next Steps

This chapter provides advice on the construction of the 4WD (4 Wheel Drive)
chassis shown in Figure 4-1. Construction is straightforward—you can follow
the detailed steps or improvise if you want to customize your robot. The chap
ter also shows how you attach and connect sensors used in the projects cov
ered in later chapters.

If you prefer to build a four wheeled robot of your own design, you should read
the sections on attaching control electronics and sensors if you want to use
the code for the projects in the chapters to come. Information in this chapter
my also provide some ideas to help with the design of your own robot.

45

Building the Four-Wheeled
Mobile Platform 4

Figure 4-1. The 4WD robot chassis

You will need a Phillips screwdriver, long-nose pliers, wire cutters, wire strip
pers, a soldering iron, and solder. If you don’t have these on hand, you can find
more information in Chapter 1, Introduction to Robot Building.

Hardware Required

See http://shop.oreilly.com/product/0636920028024.do for a detailed parts list.

• Tools listed in “Tools” (page 6)

• The assembled electronics (see Chapter 2, Building the Electronics

• 4WD Mobile Platform (four wheeled robot kit made by DFRobot)

• Four 0.1uF ceramic capacitors

• Two lengths of 3 conductor ribbon cable, two 3 way 0.1” headers for edge
sensors

• Optional: charging circuit resistors and diode, see detailed parts list

46 Make an Arduino-Controlled Robot

Hardware Required

http://shop.oreilly.com/product/0636920028024.do

Mechanical Assembly

Mechanical assembly of the 4WD chassis is straightforward and the only tools
needed are a Phillips screwdriver and pliers. Following the steps in order will
ensure that you use the correct hardware in each assembly. You will need a
soldering iron, wire cutters, and wire strippers to wire up the motor and power
leads.

Lay Out the Chassis Parts
Figure 4-2 shows all of the parts contained in the 4WD chassis package.
Figure 4-3 shows the contents of the bag containing the mounting hardware.
The three black brackets to the left of the figure are not needed for any of the
projects in this book. Locate the two bolts with the flat heads and put them
aside for mounting the battery case. The remaining short bolts in this pack are
identical.

47Chapter 4

Mechanical Assembly

Figure 4-2. 4WD chassis parts

48 Make an Arduino-Controlled Robot

Mechanical Assembly

Figure 4-3. 4WD hardware pack contents

Motor Assembly
Use four long bolts to attach two motors to each of the side plates. The motor
shaft goes through the large hole and there is a small locating stud on the
motor that fits into the smaller hole. The lock washer (the one with a raised
edge) goes between the nut and flat washer. Ensure the motor is flat against
the plate and tighten the nuts firmly but take care not to use too much force
or you will stress the plastic motor housing. Figure 4-4 and Figure 4-5 shows
the assembly.

49Chapter 4

Mechanical Assembly

Figure 4-4. Motor assembly

Figure 4-5. Motors mounted onto side plates

Lock washers are used to prevent
a nut from accidentally coming
loose due to vibration. This is crit
ical for attaching the motor and
switch. These washers have a
split ring or serrations that apply
extra friction when tightened. If
you find that things still come
loose, don’t overtighten the nuts.
Instead, retighten the nut and
apply a dab of nail polish to the
point where the threads emerge
from the nut.

50 Make an Arduino-Controlled Robot

Mechanical Assembly

Assemble the Chassis Components
The battery pack is bolted to the bottom base plate with two countersunk (flat
headed) Phillips bolts as shown in Figure 4-6 and Figure 4-7.

Figure 4-6. Battery holder assembly

51Chapter 4

Mechanical Assembly

Figure 4-7. Battery holder assembly

The DC power jack is bolted to the rear plate using the large (M8) lock washer
and nut as shown in Figure 4-8. The switch is mounted using two nuts and a
lock washer (the locating washer is not used). Put one nut on the switch, leaving
about enough thread for the nut to be attached to the other side. Place the
lock washer on the thread and push this through the opening in the rear plate
and secure with the second M6 nut. Orient the switch so the toggle moves
from side to side, as shown in the figure. Figure 4-9 and Figure 4-10 show two
views of the assembly.

52 Make an Arduino-Controlled Robot

Mechanical Assembly

Figure 4-8. Switch and power jack assembly

Figure 4-9. Rear panel switch and power jack assem
bly viewed from the front

Figure 4-10. The other side of the panel showing the
switch orientation and power jack

53Chapter 4

Mechanical Assembly

Solder the Power and Motor Connections

It is easier to solder the connections before ev
erything is bolted together. The motor con
nections use the red and black wire provided
in the kit. Cut four pieces, each three inches
long. Strip 1/4 inch off the red and black wires
on one end; this end connects to the motor
shield. The other end is connected to the motor
terminals; strip to expose about 3/16 inch of
bare wire. Connect a 0.1uF capacitor across
each of the motor terminals, as shown in
Figure 4-11. The capacitors suppress electrical
spikes generated by the motor that could in
terfere with signals on the Arduino board. Con
nect and crimp the wires as shown in
Figure 4-12, and then solder the wires and ca
pacitors to the motor terminals as shown in
Figure 4-13.

Figure 4-11. Crimp the capacitor leads to the motor
terminals

Figure 4-12. Crimp the wires Figure 4-13. Solder the motor terminals

54 Make an Arduino-Controlled Robot

Mechanical Assembly

Connecting the Battery Pack and Power Switch
The battery can be wired as shown in Figure 4-14, but you cannot charge the
battery in this configuration. The power switch will disconnect the battery
when the robot is not in use. The DC jack is not used in this configuration (other
than as a junction point for the black ground wires). The switch is off when the
toggle is closer to the DC jack as shown (the toggle is a lever, when the exposed
end is up as seen in the figure, the contact at the bottom is connected and the
contact wired to the shield is open). Figure 4-15 shows the completed circuit.

Figure 4-14. Basic switch wiring (no trickle charger)

Figure 4-15. Red wires soldered to switch

55Chapter 4

Mechanical Assembly

Building the Optional Trickle Charger
You can build a simple trickle charger into the robot if you will be using re
chargeable NiMH batteries. See “Trickle Charging” (page 229) for information
about using the charger.

The circuit is wired as shown in Figure 4-16 and Figure 4-17. The battery is
connected to both the robot and charger when it is switched on, enabling the
Arduino to monitor and display the battery voltage. The connection via the
resistor to pin 13 is required to tell the Arduino that a charger is connected so
it can monitor the voltage instead of driving the robot.

Figure 4-16. Wiring for trickle charging with Arduino voltage monitoring

56 Make an Arduino-Controlled Robot

Mechanical Assembly

Figure 4-17. Wiring for trickle charging with Arduino voltage monitoring

Assemble the Chassis
Attach the front and rear plates to the sides using eight of the M3x6 bolts
(Figure 4-18). The sides are symmetrical so it doesn’t matter which end goes
to the front or back.

Figure 4-18. Chassis assembly

Attach the bottom plate using four M3x6 bolts (Figure 4-19).

57Chapter 4

Mechanical Assembly

Figure 4-19. Bottom plate assembly

Mounting Arduino and Connecting Wires to the Shield
The easiest way to mount the Arduino board is with a strip of Velcro. A 2.5” x
1.5” strip is supplied with the Rovera 4W (Arduino-Controlled 4 Wheel Robotics
Platform) kit. To prevent the Arduino pins from accidentally shorting to the
chassis, apply insulating tape to the underside of the Arduino board. Gaffer
tape works well but you can use (non-conductive) duct tape or heavy duty
electrical tape. Attach the ‘hairy’ side of the Velcro to the taped Arduino board;
the hook side is fastened as shown in Figure 4-20. Figure 4-21 shows some
other views of this.

58 Make an Arduino-Controlled Robot

Mechanical Assembly

Figure 4-20. Velcro pad in position on the top plate

The Velcro will hold the boards in position when the robot is moving about,
but use one hand to steady the Arduino when you unplug the shield and take
care not to use too much downward pressure that could push the Arduino pins
through the tape when plugging in the shield.

59Chapter 4

Mechanical Assembly

Figure 4-21. Inset shows Velcro attached to the Arduino board.

If you prefer a more rigid mount, you can use three 3/8” or 1/4 inch (5mm)
spacers with three 1/2 inch 2-56 bolts and nuts. Figure 4-22 and Figure 4-23
show the location of the mounting hardware.

Figure 4-22. Arduino board mounted using three
spacers

Figure 4-23. Underside view showing mounting nuts

Figure 4-24 shows the motor wires and battery wires inserted through the
cutouts in the top plate ready for the connections shown in Figure 4-25 .

60 Make an Arduino-Controlled Robot

Mechanical Assembly

Figure 4-24. Wires ready to connect to shield Figure 4-25. Wires connected

Figure 4-26 shows how the motor and battery wires attach to the connectors
on the motor shield.

Figure 4-26. Motor and battery connections

61Chapter 4

Mechanical Assembly

Attach the sensor plate with two M3 bolts as shown in Figure 4-27; the top
plate is attached using four M3 bolts as seen in Figure 4-28.

Figure 4-27. Sensor plate assembly

Figure 4-28. Top plate assembly

62 Make an Arduino-Controlled Robot

Mechanical Assembly

The upper deck is bolted to four 50mm standoffs that are attached as shown
in Figure 4-29.

Figure 4-29. Attach the upper deck

63Chapter 4

Mechanical Assembly

Figure 4-30 shows the fully-assembled chassis (a side view is visible in
Figure 4-31). You can see the front and rear views in Figure 4-32 and Figure 4-33.

Figure 4-30. The assembled chassis Figure 4-31. Side view

Figure 4-32. Front view Figure 4-33. Rear view

64 Make an Arduino-Controlled Robot

Mechanical Assembly

Mounting the IR sensors

This section covers mounting of the infrared (IR) reflectance sensors for use in
edge detecting or line following. “Infrared Reflectance Sensors” (page 134) ex
plains how these sensors work and Chapter 9, Modifying the Robot to React to
Edges and Lines describes how to use IR sensors. This section explains how to
mount these sensors onto the 4WD platform and connect them to Arduino.
The first projects in this book should have the sensors mounted as shown in
the section on edge detection. When you are ready to implement the line
following application in Chapter 9, refer back to the section on positioning the
sensors for line following. The stripboard mount described in “Making a Line
Sensor Mount” (page 17) simplifies the attachment and wiring of the sensors
for line detection and this can also be used for edge detection, but bear in
mind that the robot will perform the edge detection task best with the sensors
further apart. If the sensors are close together, the robot can have difficulty
determining the best angle to turn when an edge is encountered.

Mounting the IR Sensors for Edge Detection
Edge detection requires two QTR-1A sensors mounted on the front of the ro
bot. These should be spaced as widely apart as possible. The ideal location is
with each sensor positioned in front of a wheel so an edge can be detected
before a wheel would otherwise fall off a ‘cliff’. However, if your priority is sim
plicity of construction rather than accuracy of edge detection, you can use the
same mount described in the next section covering line detection. But bear in
mind that the robot will perform the edge detection task best with the sensors
further apart. If the sensors are close together, the robot can have difficulty
determining the best angle to turn when an edge is encountered.

Mount each sensor using a 2-56 bolt and nut (M2 bolt and nut can also be
used). The component side faces the ground and the header pins face upwards.
The sensors can be angled as shown in Figure 4-34 and Figure 4-35.

65Chapter 4

Mounting the IR sensors

Figure 4-34. Reflectance sensor location for edge detection

Figure 4-35. Reflectance sensor location for edge detection

66 Make an Arduino-Controlled Robot

Mounting the IR sensors

Mounting the IR Sensors for Line Following
Three QTR-1a sensors are required for line following. “Making a Line Sensor
Mount” (page 17) describes how to build a stripboard mount for line sensing.
However, you can also mount and attach each sensors as described in this
section if you want to experiment with how varying the spacing of the sensors
affects line following. Like the edge sensors, they can be attached using 2-56
or M2 hardware. The component side faces down and the header pins face
upwards. They are mounted in the front, equally spaced with approximately
1/2 inch between the center and the left and right bolts (see Figure 4-36).
Figure 4-37 and Figure 4-38 show the sensors attached to the chassis.

Figure 4-36. Reflectance sensor location for line following

67Chapter 4

Mounting the IR sensors

Figure 4-37. Reflectance sensor location for line follow
ing, viewed from front

Figure 4-38. Reflectance sensor location for line fol
lowing, alternate view

Next Steps

Chapter 5, Tutorial: Getting Started with Arduino explains how to set up and use
the development environment that will be used to upload code to the robot.
If you are already an Arduino expert, you can skip to Chapter 6, Testing the
Robot’s Basic Functions, but first, see “Installing Third-Party Libraries” (page 83)
for advice on the libraries used with the code for this book and the steps needed
to configure the RobotMotor library for the 4WD robot.

If you have the libraries installed and want run a simple test to verify that the
motors are working correctly, you can run the following sketch:

Example 41. Initial motor test for 4WD
/***
* MotorTest4wd.ino
* Initial motor test for 4WD
* robot rotates clockwise
* (Left motors driven forward, right backward)

* Michael Margolis 24 July 2012
**/
const int LED_PIN = 13;
const int speed = 60; // percent of maximum speed

#include <AFMotor.h> // adafruit motor shield library (modified my mm)
AF_DCMotor Motor_Left_Front(4, MOTOR34_1KHZ); // Motor 4
AF_DCMotor Motor_Right_Front(3, MOTOR34_1KHZ); // Motor 3
AF_DCMotor Motor_Left_Rear(1, MOTOR12_1KHZ); // Motor 1

68 Make an Arduino-Controlled Robot

Next Steps

AF_DCMotor Motor_Right_Rear(2, MOTOR12_1KHZ); // Motor 2

int pwm;

void setup()
{
 Serial.begin(9600);
 blinkNumber(8); // open port while flashing. Needed for Leonardo only

 // scale percent into pwm range (0-255)
 pwm= map(speed, 0,100, 0,255);
 Motor_Left_Front.setSpeed(pwm);
 Motor_Right_Front.setSpeed(pwm);
 Motor_Left_Rear.setSpeed(pwm);
 Motor_Right_Rear.setSpeed(pwm);
}

// run over and over
void loop()
{
 Serial.println("rotate cw");
 Motor_Left_Front.run(FORWARD);
 Motor_Left_Rear.run(FORWARD);

 Motor_Right_Front.run(BACKWARD);
 Motor_Right_Rear.run(BACKWARD);

 delay(5000); // run for 5 seconds
 Serial.println("stopped");
 Motor_Left_Front.run(RELEASE); // stop the motors
 Motor_Right_Front.run(RELEASE);
 Motor_Left_Rear.run(RELEASE); // stop the motors
 Motor_Right_Rear.run(RELEASE);

 delay(5000); // stop for 5 seconds
}

// function to indicate numbers by flashing the built-in LED
void blinkNumber(byte number) {
 pinMode(LED_PIN, OUTPUT); // enable the LED pin for output
 while(number--) {
 digitalWrite(LED_PIN, HIGH); delay(100);
 digitalWrite(LED_PIN, LOW); delay(400);
 }
}

This sketch runs the motors in opposite directions to cause the robot to rotate
clockwise for 5 seconds, then stops for 5 seconds. This will repeat until the
power is switched off.

69Chapter 4

Next Steps

This test sketch does not use the RobotMotor library—if this test func
tions correctly but the test in Chapter 6, Testing the Robot’s Basic Func
tions does not work, the most likely cause is the configuration of the
motor library—make sure you copy the 4wd version of the library code
as described in “Installing Third-Party Libraries” (page 83).

70 Make an Arduino-Controlled Robot

Next Steps

The Arduino environment has been designed to be easy to use for beginners
who have no software or electronics experience. If you are new to Arduino, this
chapter will help you get started but you will need to consult the Arduino
online help and a good book on Arduino will be a big help (the author’s
"Arduino Cookbook” is highly recommended as reference.)

If you’re already familiar with Arduino, please feel free to skip the in
troductory material in this chapter. However, you will need to install
the libraries that are included in the download the code available from:
http://shop.oreilly.com/product/0636920028024.do. The section “In
stalling Third-Party Libraries” (page 83) has details on installing the re
quired libraries.

Arduino is best known for its hardware, but you also need software to program
that hardware. Both the hardware and the software are called “Arduino.” The
combination enables you to create projects that sense and control the physical
world. The software is free, open source, and cross-platform. The boards are
inexpensive to buy or you can build your own (the hardware designs are also
open source). In addition, there is an active and supportive Arduino commu
nity that is accessible worldwide through the Arduino forums and the wiki
(known as the Arduino Playground). The forums and the wiki offer project
development examples and solutions to problems that can provide inspiration
and assistance as you pursue your own projects.

The information in this chapter will get you started by explaining how to set
up the development environment and how to compile and run an example
sketch.

71

Tutorial: Getting Started
with Arduino 5

http://shop.oreilly.com/product/0636920028024.do

Source code containing computer instructions for controlling Arduino
functionality is usually referred to as a sketch in the Arduino commu
nity. The word sketch will be used throughout this book to refer to
Arduino program code.

The Blink sketch, which comes with Arduino, is used as an example sketch in
this chapter. If you have already assembled the robot and downloaded the
source code for this book, feel free to use the HelloRobot sketch described in
Chapter 6, Testing the Robot’s Basic Functions.

If you don’t have the Arduino software and driver installed on your
machine, wait until “Connecting the Arduino Board” (page 78) to plug
the Arduino into your computer.

Hardware Required

• Computer with Arduino 1.0.1 or later installed

• Leonardo (or Uno) Arduino board

• Motor Shield (see Chapter 2, Building the Electronics)

• USB cable

Arduino Software

Software programs, called sketches, are created on a computer using the Ar
duino integrated development environment (IDE). The IDE enables you to write
and edit code and convert this code into instructions that Arduino hardware
understands. The IDE also transfers those instructions to the Arduino board (a
process called uploading).

Arduino Hardware

The Arduino board is where the code you write is executed. The board can only
control and respond to electricity, so specific components are attached to it to
enable it to interact with the real world. These components can be sensors,
which convert some aspect of the physical world to electricity so that the board
can sense it, or actuators, which get electricity from the board and convert it
into something that changes the world. Examples of sensors include switches,
accelerometers, and ultrasound distance sensors. Actuators are things like
lights and LEDs, speakers, motors, and displays.

72 Make an Arduino-Controlled Robot

Hardware Required

There are a variety of official boards that you can run your Arduino sketches
on and a wide range of Arduino-compatible boards produced by members of
the community.

The most popular boards contain a USB connector that is used to provide
power and connectivity for uploading your software onto the board. Figure 5-1
shows the board used for the robots in this book, the Arduino Leonardo.

Figure 5-1. Basic board: the Arduino Leonardo

You can get boards that are smaller and boards with more connections. The
Leonardo is used with these robotics projects because it is inexpensive but you
can use other boards such as the Uno if you prefer.

If you want to use an Uno board (or earlier Arduino boards), you may
need to use a s slightly higher voltage (an additional battery) to power
the robot, see Appendix D).

Add-on boards that plug into Arduino to extend hardware resources are called
shields. The robots covered in this book use a shield that controls the direction
and speed of the motors, see Figure 5-2:

73Chapter 5

Arduino Hardware

Figure 5-2. Motor Shield plugged into the Arduino Leonardo

Online guides for getting started with Arduino are available at http://ardui
no.cc/en/Guide/Windows for Windows, http://arduino.cc/en/Guide/MacOSX for
Mac OS X, and http://www.arduino.cc/playground/Learning/Linux for Linux.

Installing the Integrated Development
Environment (IDE)

The Arduino software for Windows, Mac, and Linux can be downloaded from
http://arduino.cc/en/Main/Software.

Installing Arduino on Windows
The Windows download is a ZIP file. Unzip the file to any convenient directory
—Program Files/Arduino is a sensible place.

Unzipping the file will create a folder named Arduino-1.0.<nn> (where <nn> is
the version number of the Arduino release you downloaded). The directory
contains the executable file (named Arduino.exe), along with various other files
and folders. Double-click the Arduino.exe file and the splash screen should
appear (see Figure 5-3), followed by the main program window (see
Figure 5-4). Be patient, as it can take some time for the software to load.

74 Make an Arduino-Controlled Robot

Installing the Integrated Development Environment (IDE)

http://arduino.cc/en/Guide/Windows
http://arduino.cc/en/Guide/Windows
http://arduino.cc/en/Guide/MacOSX
http://www.arduino.cc/playground/Learning/Linux
http://arduino.cc/en/Main/Software

Figure 5-3. Arduino splash screen (Version 1.0 in Windows 7)

Installing Arduino on OS X
The Arduino download for the Mac is a disk image (.dmg); double-click the file
when the download is complete. The image will mount (it will appear like a
memory stick on the desktop). Inside the disk image is the Arduino application.
Copy this to somewhere convenient—the Applications folder is a sensible
place. Double-click the application once you have copied it over (it is not a
good idea to run it from the disk image). The splash screen will appear, followed
by the main program window (Figure 5-4).

75Chapter 5

Installing the Integrated Development Environment (IDE)

Figure 5-4. IDE main window (Arduino 1.0 on a Mac)

Installing Arduino on Linux
Linux installation varies depending on the Linux distribution you are using.
See the Arduino wiki for information (http://www.arduino.cc/playground/Learn
ing/Linux).

Driver Installation
To enable the Arduino development environment to communicate with the
board, the operating system needs to use the appropriate drivers for your
board.

On Windows, use the USB cable to connect your PC and the Arduino board
and wait for the Found New Hardware Wizard to appear. If you are using a
Leonardo or Uno board let the wizard attempt to find and install drivers.

76 Make an Arduino-Controlled Robot

Installing the Integrated Development Environment (IDE)

http://www.arduino.cc/playground/Learning/Linux
http://www.arduino.cc/playground/Learning/Linux

Troubleshooting the Found New Hardware Wizard

If the Found New Hardware Wizard does not appear
when you first connect a Leonardo board, open De
vice Manager as described in the next paragraph and
if you see Other device> Arduino Leonardowith
an exclamation point, right click on the entry and se
lect Update Driver Software. Choose the Browse my
computer for Driver Software option, and navigate
to the Drivers folder inside the Arduino folder you just
unzipped. Select the drivers folder and windows
should then proceed with the installation process. If
the Windows can't verify the publisher of
the driver software dialog pops up, select In
stall this software anyway.

If the Wizard starts but fails to find drivers (don’t wor
ry, this is the expected behavior with an Uno board).
To fix it you now need to go to Start Menu>Control

Panel>System and Security. Click on System, and
then open Device Manager. In the listing that is dis
played find the entry in COM and LPT named Ardui
no UNO (COM nn). nn will be the number Windows
has assigned to the port created for the board. You
will see a warning logo next to this because the ap
propriate drivers have not yet been assigned. Right
click on the entry and select Update Driver Software.
Choose the Browse my computer for Driver Software
option, and navigate to the Drivers folder inside the
Arduino folder you just unzipped. Select the Ardui
noUNO.inf file and windows should then proceed
with the installation process. If the Windows can't
verify the publisher of the driver soft
ware dialog pops up, select Install this soft
ware anyway.

If you are using an earlier board (any board that uses FTDI drivers) with Win
dows Vista or Windows 7 and are online, you can let the wizard search for drivers
and they will install automatically. On Windows XP (or if you don’t have internet
access), you should specify the location of the drivers. Use the file selector to
navigate to the FTDI USB Drivers directory, located in the directory where you
unzipped the Arduino files. When this driver has installed, the Found New
Hardware Wizard will appear again, saying a new serial port has been found.
Follow the same process as before.

On the Mac, the latest Arduino boards can be used without additional drivers.
When you first plug the board in a notification will pop up saying a new network
port has been found; you can dismiss this. If you are using earlier boards (boards
that need FTDI drivers), you will need to install driver software. There is a pack
age named FTDIUSBSerialDriver, with a range of numbers after it, inside the
Arduino installation disk image. Double-click this and the installer will take you
through the process. You will need to know an administrator password to
complete the process.

On Linux, most distributions have the driver already installed, but follow the
Linux link given in “Arduino Hardware” (page 72) for specific information for
your distribution.

77Chapter 5

Installing the Integrated Development Environment (IDE)

If the software fails to start, check the troubleshooting section of the
Arduino website, http://arduino.cc/en/Guide/Troubleshooting, for
help solving installation problems.

Connecting the Arduino Board

Plug the board into a USB port on your computer and check that the green
LED power indicator on the board illuminates. The location of the LED is indi
cated in Figure 5-5.

Figure 5-5. The Leonardo

If you have a factory fresh board, an orange LED (labeled “Pin 13 LED” in
Figure 5-5) should flash on and off when the board is powered up (boards come
from the factory preloaded with software to flash the LED as a simple check
that the board is working).

If the power LED does not illuminate when the board is connected to
your computer, the board is probably not receiving power.

Using the IDE

Use the Arduino IDE to create, open, and modify sketches that define what the
board will do. You can use buttons along the top of the IDE to perform these
actions (shown in Figure 5-6), or you can use the menus or keyboard shortcuts
(some are shown in Figure 5-7).

78 Make an Arduino-Controlled Robot

Connecting the Arduino Board

http://arduino.cc/en/Guide/Troubleshooting

Figure 5-6. Arduino IDE

The Sketch Editor area is where you view and edit code for a sketch. It supports
common text editing keys such as Ctrl-F (⌘-F on a Mac) for find, Ctrl-Z (⌘-Z on
a Mac) for undo, Ctrl-C (⌘-C on a Mac) to copy highlighted text, and Ctrl-V (⌘-
V on a Mac) to paste highlighted text.

Figure 5-7 shows how to load the Blink sketch (the sketch that comes preloaded
on a new Arduino board).

After you’ve started the IDE, go to the File→Examples menu and select 1.Ba
sics→Blink, as shown in Figure 5-7. The code for blinking the built-in LED will
be displayed in the Sketch Editor window.

79Chapter 5

Using the IDE

Figure 5-7. IDE menu (selecting the Blink example sketch)

Before the code can be sent to the board, it needs to be converted into in
structions that can be read and executed by the Arduino controller chip; this
is called compiling. To do this, click the compile button (the top-left button
with a tick inside), or select Sketch→Verify/Compile (Ctrl-R, ⌘-R on a Mac).

You should see a message that reads “Compiling sketch...” and a progress bar
in the message area below the text editing window. After a second or two, a
message that reads “Done Compiling” will appear. The black console area will
contain the following additional message:

Binary sketch size: 1026 bytes (of a 32256
byte maximum)

The exact message may differ depending on your board and Arduino version;
it is telling you the size of the sketch and the maximum size that your board
can accept.

The final message telling you the size of the sketch indicates how much pro
gram space is needed to store the controller instructions on the board. If the
size of the compiled sketch is greater than the available memory on the board,
the following error message is displayed:

80 Make an Arduino-Controlled Robot

Using the IDE

Sketch too big;
see http://www.arduino.cc/en/Guide/Troubleshooting#size for tips
on reducing it.

If this happens, you need to make your sketch smaller to be able to put it on
the board, or get a board with higher capacity. You will not have this problem
with the Blink example sketch.

If there are errors in the code, the compiler will print one or more error mes
sages in the console window. These messages can help identify the error.

As you develop and modify a sketch, you should also consider using the
File→Save As menu option and using a different name or version number reg
ularly so that as you implement each bit, you can go back to an older version
if you need to.

Uploading and Running the Blink Sketch

To transfer your compiled sketch to the Arduino board, connect your board to
your computer using the USB cable. Load the sketch into the IDE as described
in “Using the IDE” (page 78).

Next, select Tools→Board from the drop-down menu and select the name of
the board you have connected.

Now select Tools→Serial Port. You will get a drop-down list of available serial
ports on your computer. Each machine will have a different combination of
serial ports, depending on what other devices you have used with your
computer.

On Windows, they will be listed as numbered COM entries. If there is only one
entry, select it. If there are multiple entries, your board will probably be the last
entry.

On the Mac, your board will be listed twice (you can use either one):

/dev/tty.usbmodemXXXXXXX
/dev/cu.usbmodemXXXXXXX

81Chapter 5

Uploading and Running the Blink Sketch

If you have an older board, it will be listed as follows:

/dev/tty.usbserial-XXXXXXX
/dev/cu.usbserial-XXXXXXX

Each board will have different values for XXXXXXX. Select either entry.

Click on the upload button (in Figure 5-6, it’s the second button from the left),
or choose File→Upload to I/O board (Ctrl-U, ⌘-U on a Mac).

The software will compile the code, as in “Using the IDE” (page 78). After the
software is compiled, it is uploaded to the board. If you look at your board, you
will see the LED stop flashing, and two lights (labeled as Serial LEDs in
Figure 5-5) just below the previously flashing LED should flicker for a couple
of seconds as the code uploads. The original light should then start flashing
again as the code runs.

The IDE will display an error message if the upload is not successful. Problems
are usually due to the wrong board or serial port being selected or the board
not being plugged in. The currently selected board and serial port are dis
played in the status bar at the bottom of the Arduino window

If you have trouble identifying the correct port on Windows, try unplugging
the board and then selecting Tools→Serial Port to see which COM port is no
longer on the display list. Another approach is to select the ports, one by one,
until you see the lights on the board flicker to indicate that the code is
uploading.

Using Tabs

Tabs provide a convenient way to organize code when your sketch starts to
grow. It enables you to keep functionally related code together and simplifies
sharing this code across more than one sketch.

The arrow in the upper right of Figure 5-8 points to the button which invokes
a drop-down window of tab related functions. This window displays the names
of the tabs and offers a list of commands:

• New Tab creates a new tab that (you will be prompted to name the tab)

• Rename enables you to change the name of the currently selected tab

• Delete deletes the current tab (you are asked if you are sure you want to
do that)

82 Make an Arduino-Controlled Robot

Using Tabs

Figure 5-8. IDE tabs

Each tab is a separate file and when you copy these files to other sketches you
add the tab to that sketch.

Because there are many functional modules used in this book and these are
shared across most of the sketches, tabs are used extensively. Figure 5-8 shows
the myRobot sketch, discussed in the next chapter, that uses tabs for infrared
sensor code (irSensors) and for program constants and definitions (robotDe
fines.h).

Installing Third-Party Libraries

The download code for this book (see “How to Contact Us” (page xv)) contains
three libraries that are required to run all the sketches described in the book.
These libraries are in a folder called libraries in the zip. You need to copy these
so they are in a folder called libraries inside your Arduino document folder. To
find the Arduino document folder, open Preferences (Arduino→Preferences on
Mac; File→Preferences on Windows) and note the sketchbook location. Navi
gate to that directory in a file system browser (such as Windows Explorer or
the OS X Finder) or at the terminal. If no libraries folder exists, create one and
put the folder you unzipped inside it.

If the Arduino IDE is still running, quit and restart it. The IDE scans this folder
to find libraries only when it is launched. If you now go to the menu
Sketch→Import Library, at the bottom, below the gray line and the word Con
tributed, you should see the library you have added.

83Chapter 5

Installing Third-Party Libraries

Configuring the Library for Four Wheels

If your robot uses four wheel drive, you must config
ure the RobotMotor library code by modifying the
RobotMotor.h file to tell the compiler that the library
should be built for the 4WD chassis.

To modify the RobotMotor.h file to use the 4WD chas
sis, first go to Arduino’s preferences (File→Preferences
on Windows or Linux, Arduino→Preferences on Mac).
Under Sketchbook Location, you’ll find the name of
the directory that contains your sketches and libra
ries. Next:

1. Open the sketchbook folder in the Finder
(Mac) or Explorer (Windows).

2. Locate the libraries directory inside, and then
open the directory named RobotMotor .

3. Right-click the RobotMotor.h file, and open it
with a plain text editor. On Windows, you can
use Notepad. On the Mac, you can use TextE
dit. On Linux, use your favorite plain text ed
itor.

4. Change #define CHASSIS_2WD to #define
CHASSIS_4WD and save the file

A version of RobotMotor.h with the modification for
4wd preconfigured is in the libraries/RobotMotor/
RobotMotor4wd folder of the examples zip file. Copy
ing this file to the RobotMotor folder will replacing
the 2wd with the 4wd version of the file.

If the libraries provide example sketches, you can view these from the IDE
menu; click File→Examples, and the library’s examples will be under the li
brary’s name in a section between the general examples and the Arduino dis
tributed libraries example listing.

If the library examples do not appear in the Examples menu or you get a mes
sage saying “Library not found” when you try to use the library, check that the
libraries folder is in the correct place with the name spelled correctly. A library
folder named <LibraryName> (where <LibraryName> is the name for the li
brary) must contain a file named <LibraryName>.h with the same spelling and
capitalization. Check that additional files needed by the library are in the folder.

84 Make an Arduino-Controlled Robot

Installing Third-Party Libraries

In this chapter, you will upload a test sketch to the robot that will verify that
your robot is working correctly.

Hardware Required

• The assembled robot chassis.

• Motors connected to shield (see Figure 3-25 for 2WD or Figure 4-26 for
4WD).

• Example code and libraries installed, see “Installing Third-Party Libraries”
(page 83).

• 5 AA cells inserted into the battery holder (USB does not provide sufficient
power to drive the motors).

• Reflectance sensors mounted and connected (left sensor to analog input
0, right to analog 1). You can use the stripboard wiring described in “Mak
ing a Line Sensor Mount” (page 17). But to run the edge detecting project
described in Chapter 9, you need more space between the sensors.

Figure 6-1 shows the assembled two wheel robot; Figure 6-2 shows the as
sembled four wheel robot. Figure 6-3 shows the sensor and motor connections.

85

Testing the Robot’s Basic
Functions 6

Figure 6-1. Two wheeled robot with reflectance sensors Figure 6-2. Four wheeled robot with reflectance sen
sors

Figure 6-3. Reflectance sensor connections

Software Prerequisites

Although the sketch code used in this chapter is printed in the pages that
follow, you will need some libraries that are included in example code (see
“How to Contact Us” (page xv) for the URL). The sketch folders can be copied
to your Arduino sketchbook folder (if you are not familiar with the Arduino
environment, read through Chapter 5). The download files in the library folder
must be copied to your Arduino libraries folder (see “Installing Third-Party Li
braries” (page 83)).

86 Make an Arduino-Controlled Robot

Software Prerequisites

Install the AFMotor library contained in the download zip file. This library is
modified from the one on the Adafruit site to work with the Leonardo board;
the standard Adafruit library can be used with the Uno board.

Install the RobotMotor library contained in the example code download. This
library comes configured for the two wheeled robot; if you have the four
wheeled robot will need to update the library for this robot as described in the
Note below.

If your robot uses four wheel drive, you must configure the RobotMo
tor library code by modifying the RobotMotor.h file to tell the compiler
that the library should be built for the 4WD chassis. See “Installing
Third-Party Libraries” (page 83) for details on how to do this.

A third library, named IrRemote, is also included in the download. This library
won’t be needed until Chapter 11, but copying it into your libraries folder now
will save you having to do this later.

Sketches Used in This Chapter

• helloRobot.ino—A sketch that rotates the robot when triggered by a
sensor. The code uses constants to refer to sensors and motors, and con
tains functions for handling the infrared reflectance sensors. The sketch
uses the RobotMotor library to interface with the motors as shown in
Figure 6-4.

• myRobot.ino—The functionality from helloRobot.ino restructured into
modules using Arduino tabs. Program constants are moved into a tab
named robotDefines.h. Reflectance sensor code is moved into a tab named
IrSensors as shown in Figure 6-5.

Figure 6-4. HelloRobot Sketch

87Chapter 6

Sketches Used in This Chapter

Figure 6-5. myRobot Sketch

Load and Run helloRobot.ino

Example 6-1 shows the sketch you can use to test edge detection. Before you
upload the sketch, ensure the battery power switch is off (switch toggle angled
toward the DC jack) and connect your Arduino to your computer with a USB
cable. Next, upload the sketch (see Chapter 5 if you need help loading the
sketch).

Example 61. The Hello, Robot sketch
/**
HelloRobot.ino: Initial Robot test sketch

Michael Margolis 4 July 2012
***/
// include motor libraries
#include <AFMotor.h> // adafruit motor shield library
#include <RobotMotor.h> // 2wd or 4wd motor library

/***** Global Defines ****/
// defines to identify sensors
const int SENSE_IR_LEFT = 0;
const int SENSE_IR_RIGHT = 1;
const int SENSE_IR_CENTER = 2;

// defines for directions
const int DIR_LEFT = 0;
const int DIR_RIGHT = 1;
const int DIR_CENTER = 2;

const char* locationString[] = {"Left", "Right", "Center"}; // Debug labels
// http://arduino.cc/en/Reference/String for more on character string arrays

// obstacles constants
const int OBST_NONE = 0; // no obstacle detected
const int OBST_LEFT_EDGE = 1; // left edge detected
const int OBST_RIGHT_EDGE = 2; // right edge detected
const int OBST_FRONT_EDGE = 3; // edge detect at both left and right sensors

88 Make an Arduino-Controlled Robot

Load and Run helloRobot.ino

const int LED_PIN = 13;
/**** End of Global Defines ****************/

// Setup runs at startup and is used configure pins and init system variables
void setup()
{
 Serial.begin(9600);
 blinkNumber(8); // open port while flashing. Needed for Leonardo only

 motorBegin(MOTOR_LEFT);
 motorBegin(MOTOR_RIGHT);

 irSensorBegin(); // initialize sensors
 pinMode(LED_PIN, OUTPUT); // enable the LED pin for output

 Serial.println("Waiting for a sensor to detect blocked reflection");
}

void loop()
{
 // call a function when reflection blocked on left side
 if(lookForObstacle(OBST_LEFT_EDGE) == true) {
 calibrateRotationRate(DIR_LEFT,360); // calibrate CCW rotation
 }
 // as above for right sensor
 if(lookForObstacle(OBST_RIGHT_EDGE) == true) {
 calibrateRotationRate(DIR_RIGHT, 360); // calibrate CW rotation
 }
}

// function to indicate numbers by flashing the built-in LED
void blinkNumber(byte number) {
 pinMode(LED_PIN, OUTPUT); // enable the LED pin for output
 while(number--) {
 digitalWrite(LED_PIN, HIGH); delay(100);
 digitalWrite(LED_PIN, LOW); delay(400);
 }
}

/**********************
 code to look for obstacles
**********************/

// returns true if the given obstacle is detected
boolean lookForObstacle(int obstacle)
{
 switch(obstacle) {
 case OBST_FRONT_EDGE: return irEdgeDetect(DIR_LEFT) || irEdgeDetect(DIR_RIGHT);
 case OBST_LEFT_EDGE: return irEdgeDetect(DIR_LEFT);
 case OBST_RIGHT_EDGE: return irEdgeDetect(DIR_RIGHT);
 }
 return false;
}

89Chapter 6

Load and Run helloRobot.ino

/*************************************
 functions to rotate the robot
*************************************/

// return the time in milliseconds to turn the given angle at the given speed
long rotationAngleToTime(int angle, int speed)
{
int fullRotationTime; // time to rotate 360 degrees at given speed

 if(speed < MIN_SPEED)
 return 0; // ignore speeds slower then the first table entry

 angle = abs(angle);

 if(speed >= 100)
 fullRotationTime = rotationTime[NBR_SPEEDS-1]; // the last entry is 100%
 else
 {
 int index = (speed - MIN_SPEED) / SPEED_TABLE_INTERVAL; // index into speed
 // and time tables
 int t0 = rotationTime[index];
 int t1 = rotationTime[index+1]; // time of the next higher speed
 fullRotationTime = map(speed,
 speedTable[index],
 speedTable[index+1], t0, t1);
 // Serial.print("index= "); Serial.print(index); Serial.print(", t0 = ");
 // Serial.print(t0); Serial.print(", t1 = "); Serial.print(t1);
 }
 // Serial.print(" full rotation time = "); Serial.println(fullRotationTime);
 long result = map(angle, 0,360, 0, fullRotationTime);
 return result;
}

// rotate the robot from MIN_SPEED to 100% increasing by SPEED_TABLE_INTERVAL
void calibrateRotationRate(int sensor, int angle)
{
 Serial.print(locationString[sensor]);
 Serial.println(" calibration");
 for(int speed = MIN_SPEED; speed <= 100; speed += SPEED_TABLE_INTERVAL)
 {

 delay(1000);
 blinkNumber(speed/10);

 if(sensor == DIR_LEFT)
 { // rotate left
 motorReverse(MOTOR_LEFT, speed);
 motorForward(MOTOR_RIGHT, speed);
 }
 else if(sensor == DIR_RIGHT)
 { // rotate right
 motorForward(MOTOR_LEFT, speed);
 motorReverse(MOTOR_RIGHT, speed);

90 Make an Arduino-Controlled Robot

Load and Run helloRobot.ino

 }
 else
 Serial.println("Invalid sensor");

 int time = rotationAngleToTime(angle, speed);

 Serial.print(locationString[sensor]); Serial.print(": rotate ");
 Serial.print(angle); Serial.print(" degrees at speed "); Serial.print(speed);
 Serial.print(" for "); Serial.print(time); Serial.println("ms");

 delay(time);
 motorStop(MOTOR_LEFT);
 motorStop(MOTOR_RIGHT);
 delay(2000); // two second delay between speeds
 }
}

/****************************
 ir reflectance sensor code
****************************/

const byte NBR_SENSORS = 3; // this version only has left and right sensors
const byte IR_SENSOR[NBR_SENSORS] = {0, 1, 2}; // analog pins for sensors

int irSensorAmbient[NBR_SENSORS]; // sensor value with no reflection
int irSensorReflect[NBR_SENSORS]; // value considered detecting an object
int irSensorEdge[NBR_SENSORS]; // value considered detecting an edge
boolean isDetected[NBR_SENSORS] = {false,false}; // set true if object detected

const int irReflectThreshold = 10; // % level below ambient to trigger reflection
const int irEdgeThreshold = 90; // % level above ambient to trigger edge

void irSensorBegin()
{
 for(int sensor = 0; sensor < NBR_SENSORS; sensor++)
 irSensorCalibrate(sensor);
}

// calibrate thresholds for ambient light
void irSensorCalibrate(byte sensor)
{
 int ambient = analogRead(IR_SENSOR[sensor]); // get ambient level
 irSensorAmbient[sensor] = ambient;
 // precalculate the levels for object and edge detection
 irSensorReflect[sensor] = (ambient * (long)(100-irReflectThreshold)) / 100;
 irSensorEdge[sensor] = (ambient * (long)(100+irEdgeThreshold)) / 100;
}

// returns true if an object reflection detected on the given sensor
// the sensor parameter is the index into the sensor array
boolean irSensorDetect(int sensor)
{
 boolean result = false; // default value
 int value = analogRead(IR_SENSOR[sensor]); // get IR light level

91Chapter 6

Load and Run helloRobot.ino

 if(value <= irSensorReflect[sensor]) {
 result = true; // object detected (lower value means more reflection)
 if(isDetected[sensor] == false) { // only print on initial detection
 Serial.print(locationString[sensor]);
 Serial.println(" object detected");
 }
 }
 isDetected[sensor] = result;
 return result;
}

boolean irEdgeDetect(int sensor)
{
 boolean result = false; // default value
 int value = analogRead(IR_SENSOR[sensor]); // get IR light level
 if(value >= irSensorEdge[sensor]) {
 result = true; // edge detected (higher value means less reflection)
 if(isDetected[sensor] == false) { // only print on initial detection
 Serial.print(locationString[sensor]);
 Serial.println(" edge detected");
 }
 }
 isDetected[sensor] = result;
 return result;
}

The sketch tests the calibration of the robot’s speed of movement. The front
sensors are used to initiate a motor test—the motors rotate the robot 360
degrees in the direction of the sensor that was triggered. If the robot is func
tioning correctly, it will execute a complete revolution at seven speeds ranging
from slowest to fastest.

To run the test, place the robot on a reflective white surface such as a large
sheet of paper. When the robot’s up and running, Arduino’s pin 13 LED will
flash once.

Another way to test is to put the robot on something that will raise the
wheels off the ground by an inch or so. This will enable the motors to
turn without the robot skittering around.

This sketch displays debugging information to the serial console. If you’d like
to view it, you’ll need to keep the USB cable plugged into your computer and
your robot; be careful, since the robot will be moving. If you’re using an Arduino

92 Make an Arduino-Controlled Robot

Load and Run helloRobot.ino

Leonardo, wait until the robot’s LED flashes to indicate it’s ready before open
ing the Arduino Serial Monitor (the Serial Monitor is the rightmost icon on the
Arduino toolbar). When the sketch starts, you should see the following in the
Arduino Serial Monitor:

Waiting for a sensor to detect blocked reflection

Swipe something dark (a small piece of matte black paper the size of a business
card works well) near one of the sensors (panel 2 seen in Figure 6-7). The Serial
monitor should now display the output similar to that shown in Example 6-2.
The number of lines and the values displayed will vary with different robots
but you should see multiple lines showing the direction of rotation, speed and
time in milliseconds.

Example 62. Serial output from HelloRobot.ino
Left calibration
 Left: rotate 360 degrees at speed 40 for 5500ms
 Left: rotate 360 degrees at speed 50 for 3300ms
 Left: rotate 360 degrees at speed 60 for 2400ms
 Left: rotate 360 degrees at speed 70 for 2000ms
 Left: rotate 360 degrees at speed 80 for 1750ms
 Left: rotate 360 degrees at speed 90 for 1550ms
 Left: rotate 360 degrees at speed 100 for 1150ms

Motors on the left side should spin in reverse, motors on the right should spin
forward for the indicated time in milliseconds (if the robot was on the ground,
it would rotate to the left (counter-clockwise). If you don’t see the expected
results, see “Troubleshooting” (page 98) for help.

Completing this test will verify that everything (the robot motors, power
source, Arduino and motor shield) is wired up and functioning correctly. Dou
ble check that you have completed all the building steps. Take particular care
that the battery wires to the motor shield are attached to the correct polarity.

93Chapter 6

Load and Run helloRobot.ino

Figure 6-6. Robot sitting on a reflective surface

Figure 6-6 shows the robot stationary on a re
flective surface. If the robot moves when
placed on the surface, switch the power off and
then on so the robot can measure and calibrate
for the ambient light level. It should remain
motionless until a sensor detects a reduction
in the light reflected off the surface.

Figure 6-7. Nonreflective card under right sensor

The robot should rotate in the direction of the
sensor that detects the reduced reflection. In
Figure 6-7, a non-reflective card is swiped un
der the right sensor which will trigger the robot
to turn clockwise.

Figure 6-8. Robot rotates in direction of swiped sensor

Figure 6-8 shows the right motor running back
wards and the left forwards which will rotate
the robot clockwise.

94 Make an Arduino-Controlled Robot

Load and Run helloRobot.ino

About the Sketch

The code in Example 6-1 forms the nucleus of all the sketches that follow so it
is worthwhile taking a moment to look through the code to see how it works.
The purpose of the code is to drive the motors in opposite directions for a
duration that will rotate the robot one revolution at speeds ranging from the
slowest speed to the fastest. All the sketches in the book refer to speeds as a
percent of maximum speed, the next chapter, Chapter 7, Controlling Speed and
Direction explains speed control in detail.

The functions to access the Adafruit motor shield (see Chapter 2, Building the
Electronics) are included by the line shown in Example 6-3.

Example 63. #include line for Adafruit library
#include <AFMotor.h> // adafruit motor shield library

The line shown in Example 6-4 includes the library written for this book
(RobotMotor.h).

Example 64. #include line for this book’s library
#include <RobotMotor.h> // 2wd or 4wd motor library

This library provides a consistent interface for motor functions in order to iso
late the higher level logic from hardware specifics. This means that you can
use the same sketch code with (almost) any motor hardware simply by chang
ing the RobotMotor library code to suit the hardware. The motor code is ex
plained in the next chapter and you can find example code to support a dif
ferent motor controller in Appendix B, Using Other Hardware with Your Robot.

The block that begins with: /***** Global Defines ****/ contains declara
tions for constants that identify: sensors, directions and obstacles. These con
stants enable you to refer to elements in your sketch using meaningful names
instead of numbers, for example this:

calibrateRotationRate(DIR_LEFT,360);

instead of this:
motorForward(0, 360);

The setup section calls functions to initialize the motor and sensor modules
(more on these later). The loop function uses the lookForObstacle function to
determine if a reflection is detected. It waits until no reflection is detected on

95Chapter 6

About the Sketch

either sensor; the robot is not on the ground (or on a non-reflective surface).
The lookForObstacle function is checked to determine if the left or right sensor
detects a reflection, and if so, calls the calibrateRotationRate function to
rotate the robot for a short period.

The lookForObstacle function is told which obstacle to check for (the obsta
cles are identified using the defines described above). The case statement (see
http://arduino.cc/en/Reference/SwitchCase) is used to call irEdgeDetect func
tion that returns true if an object is detected on that sensor. If no object is
detected, the function returns OBST_NONE, shown in Example 6-5. See “Infrared
Reflectance Sensors” (page 134) for a detailed explanation of irEdgeDetect and
related functions.

Example 65. The lookForObstacle function
// returns true if the given obstacle is detected
boolean lookForObstacle(int obstacle)
{
 switch(obstacle) {
 case OBST_FRONT_EDGE: return irEdgeDetect(DIR_LEFT) &&
 irEdgeDetect(DIR_RIGHT);
 case OBST_LEFT_EDGE: return irEdgeDetect(DIR_LEFT);
 case OBST_RIGHT_EDGE: return irEdgeDetect(DIR_RIGHT);
 }
 return false;
}

The sensor detection is done in the function irSensorDetect, shown in
Example 6-6.

Example 66. The irSensorDetect function
// returns true if reflection level reduces below a threshold
// for example if the robot is does not sense the reflective surface
// the sensor parameter is the index into the sensor array
boolean irEdgeDetect(int sensor)
{
 boolean result = false; // default value
 int value = analogRead(IR_SENSOR[sensor]); // get IR light level
 if(value >= irSensorEdge[sensor]) {
 result = true; // edge detected (higher value means less reflection)
 if(isDetected[sensor] == false) { // only print on initial detection
 Serial.print(locationString[sensor]);
 Serial.println(" edge detected");
 }

96 Make an Arduino-Controlled Robot

About the Sketch

http://arduino.cc/en/Reference/SwitchCase

 }
 isDetected[sensor] = result;
 return result;
}

This function will return true if the reflection level is reduced. This is deter
mined through a call to analogRead to get a raw sensor reading that is com
pared to a detected/not detected threshold. Values greater than or equal to
the threshold are considered a loss of reflection (the voltage from the sensor
increases when the reflected light decreases , see “Infrared Reflectance Sen
sors” (page 134) for details on the reflectance sensors). The results from this test
is stored in an array named isDetected. The array can be used to recall the
sensor state of the most recent call to irSensorDetect and is used here to
suppress printing of the test result if a previous test already indicated that an
object was detected, as shown in Example 6-7 .

Example 67. Initial detection
if(isDetected[sensor] == false) { // only print on initial detection
 Serial.print(locationString[sensor]);
 Serial.println(" object detected");
}

The motor code commands the motor controller board to drive the motor
forwards, backwards or stop.

For example, the following will spin the right motor forward at a speed given
by the speed parameter (the parameter is the percentage of the maximum
speed):

motorForward(MOTOR_RIGHT, speed);

Motor code is explained in detail in Chapter 7, Controlling Speed and Direction.

Rotating the robot is handled by the calibrateRotationRate function. For
example. if the left sensor is triggered, the code will spin the left motor in
reverse and the right motor forward, thus rotating the robot towards the left
(counterclockwise):

if(sensor == DIR_LEFT)
{ // rotate left
 motorReverse(MOTOR_LEFT, speed);
 motorForward(MOTOR_RIGHT, speed);
}

97Chapter 6

About the Sketch

Troubleshooting

If you are having trouble getting HelloRobot working then the first thing to do
is to put the robot down, walk away from your computer screen and have a
refreshing drink. Come back and look at things with fresh eyes and check to
see if you have things wired up and connected correctly. If it looks like the
connections are okay, then the next step is to make a list of the major symp
toms:

Compile errors

• 'AF_DCMotor' does not name a type error message—this message in
dicates the AFMotor library has not been found. This library is included
with the download code for this book (see “How to Contact Us” (page xv)
for the URL). See “Installing Third-Party Libraries” (page 83) in Chapter 5,
Tutorial: Getting Started with Arduino for help with this.

• "This chip is not supported!" error message—This message is dis
played if the chip selected in the IDE is not recognized by the library. This
will occur if you select the Leonardo board and use a version of the AF
motor library that does not support this chip. Replacing your AFMotor
library with the one in the book’s example code will fix this problem.

• "expected definition: CHASSIS_2WD or CHASSIS_4WD not found" will
be displayed if you changed the defines in the RobotMotor library to an
invalid value. This library expects to find either CHASSIS_2WD or CHAS
SIS_4WD following the #define in RobotMotor.h.

Software Errors

• The Serial Monitor is not displaying the text shown at the end of “Load and
Run helloRobot.ino” (page 88)—read through Chapter 5, Tutorial: Getting
Started with Arduino and check that you have the drivers for your board
correctly installed.

• The Serial Monitor displays the initial text but then displays errors or other
unexpected text—see Appendix C, Debugging Your Robot.

Hardware symptoms

• No LEDs on the Arduino board are lit (you may need to remove the motor
shield to check this). - This usually means that either no power is being
supplied to the board. If the power switch is on, check that the batteries
have sufficient voltage and are located correctly. Check the wiring from
the battery and switch to the shield.

• Motors don’t turn—Check that the batteries are fitted correctly (USB does
not provide enough power to drive the motors). Check the motor wiring.

98 Make an Arduino-Controlled Robot

Troubleshooting

You can test each motor by disconnecting the motor wires going to the
motor terminals on the shield and connecting them directly to the battery
terminals. If the motors still do not turn but the shield LED is lit, then double
check the shield soldering.

• Two of the four motors don’t turn on the 4WD robot—Have you configured
the library for 4WD?—see “Software Prerequisites” (page 86).

• Motors run but the robot does not rotate 360 degrees—the robot rotation
does not need to be exact; anything within 20 or 30 degrees is good
enough. See Chapter 7 if you do want to adjust the rotation rate.

See Appendix C, Debugging Your Robot for more on debugging.

Making the Sketch Easy to Enhance

Although this is the simplest sketch in this book, it performs a number of dif
ferent tasks: controlling the motors, interfacing with sensors, and rotating the
robot in response to object detection. You will be adding much more func
tionality to the robot in later chapters. To help keep the various functional
elements under control, it makes sense to organize the code into modules to
keep functionally similar code together and to separate code that is not func
tionally related.

The HelloRobot sketch naturally divides into three sections: the main logic (the
loop and rotation code), sensor interface, and motor control.

Moving the sensor interface and motor control into separate modules makes
the code easier to enhance. You can change one of the modules without dis
turbing the code for the other. And you can easily copy modules into other
sketches—the tab code file has the same name as shown in the tab, with the
extension .ino. Adding this file to another sketch will automatically create the
tab for that sketch the next time the sketch is opened on the IDE.

The Arduino IDE provides tabs as a convenient mechanism for managing
modules (see Chapter 5, Tutorial: Getting Started with Arduino, “Using Tabs”
(page 82)). The following explains how sections of HelloRobot code are moved
into two new tabs, one providing an interface for IR sensors, the other an in
terface for motors. All of the code in later chapters use tabs as containers for
functional modules.

The following steps creates a sketch named myRobot derived from HelloRo
bot that contains two tabs for sensor and motor functions:

99Chapter 6

Making the Sketch Easy to Enhance

You can download the myRobot sketch from the book’s website but you
may want to go through these steps yourself to familiarize yourself with
the procedure for creating and using tabs in the IDE.

1. Load the HelloRobot sketch and use the IDE file menu to save as ‘myRobot’.

2. Create a tab by clicking the tab dropdown and selecting ‘New Tab’ (see
Figure 5-8). Name the tab ‘IrSensors’.

3. Click the myRobot tab, scroll down to the end of the sketch and cut all code
from the end up to the ir reflectance sensor code (Example 6-8) com
ment and paste it into the IrSensors tab.

Example 68. IR reflectance sensor code
/****************************
 ir reflectance sensor code
****************************/

const byte NBR_SENSORS = 3; // this version only has left and right sensors
const byte IR_SENSOR[NBR_SENSORS] = {0, 1, 2}; // analog pins for sensors

int irSensorAmbient[NBR_SENSORS]; // sensor value with no reflection
int irSensorReflect[NBR_SENSORS]; // value considered detecting an object
int irSensorEdge[NBR_SENSORS]; // value considered detecting an edge
boolean isDetected[NBR_SENSORS] = {false,false}; // set true if object detected

const int irReflectThreshold = 10; // % level below ambient to trigger reflection
const int irEdgeThreshold = 90; // % level above ambient to trigger edge

void irSensorBegin()
{
 for(int sensor = 0; sensor < NBR_SENSORS; sensor++)
 irSensorCalibrate(sensor);
}

// calibrate for ambient light
void irSensorCalibrate(byte sensor)
{
 int ambient = analogRead(IR_SENSOR[sensor]); // get ambient level
 irSensorAmbient[sensor] = ambient;
 // precalculate the levels for object and edge detection
 irSensorReflect[sensor] = (ambient * (long)(100-irReflectThreshold)) / 100;
 irSensorEdge[sensor] = (ambient * (long)(100+irEdgeThreshold)) / 100;
}

// returns true if an object reflection detected on the given sensor
// the sensor parameter is the index into the sensor array
boolean irSensorDetect(int sensor)

100 Make an Arduino-Controlled Robot

Making the Sketch Easy to Enhance

{
 boolean result = false; // default value
 int value = analogRead(IR_SENSOR[sensor]); // get IR light level
 if(value <= irSensorReflect[sensor]) {
 result = true; // object detected (lower value means more reflection)
 if(isDetected[sensor] == false) { // only print on initial detection
 Serial.print(locationString[sensor]);
 Serial.println(" object detected");
 }
 }
 isDetected[sensor] = result;
 return result;
}

boolean irEdgeDetect(int sensor)
{
 boolean result = false; // default value
 int value = analogRead(IR_SENSOR[sensor]); // get IR light level
 if(value >= irSensorEdge[sensor]) {
 result = true; // edge detected (higher value means less reflection)
 if(isDetected[sensor] == false) { // only print on initial detection
 Serial.print(locationString[sensor]);
 Serial.println(" edge detected");
 }
 }
 isDetected[sensor] = result;
 return result;
}

The myRobotOk example sketch provided in the book download code shows
the code after the code is moved into the tabs.

Global Definitions

Definitions that need to be accessed across multiple
modules are called ‘global’ definitions. These are gen
erally stored in files called ‘header files’ (or ‘headers').
These files typically have a file extension of .h and
the file containing these global definitions is here
called robotDefines.h. Although the Arduino build

process will automatically make all of the functions
in each tab accessible throughout the sketch, con
stant definitions should be explicitly included at the
top of the main tab as follows:

// include the global defines
 #include "robotDefines.h"

The final step in restructuring the sketch is to move the constant definitions
at the top of the sketch into a separate tab. These constants are used by a
number of different modules and collecting these together makes it easier to
ensure that the values are accessible by all the modules:

1. Create a tab named robotDefines.h (don’t forget the .h).

101Chapter 6

Making the Sketch Easy to Enhance

2. From the top of the myRobot tab, move the defines starting from:
/**** Global Defines ****/

and ending at:
/*** End of Global Defines *******/

(Example 6-9) into the tab you just created.

3. Switch back to the myRobot tab, and add this line at the top, right after
the #includes for AFMotor.h and RobotMotor.h:

#include "robotDefines.h"

This is the code that goes into the robotDefines.h:

Example 69. Global defines
/***** Global Defines ****/

// defines to identify sensors
const int SENSE_IR_LEFT = 0;
const int SENSE_IR_RIGHT = 1;

// defines for directions
const int DIR_LEFT = 0;
const int DIR_RIGHT = 1;
const int DIR_CENTER = 2;

const char* locationString[] = {"Left", "Right", "Center"}; // Debug labels
// http://arduino.cc/en/Reference/String for more on character string arrays

// obstacles constants
const int OBST_NONE = 0; // no obstacle detected
const int OBST_LEFT_EDGE = 1; // left edge detected
const int OBST_RIGHT_EDGE = 2; // right edge detected
const int OBST_FRONT_EDGE = 3; // edge detect at both left and right sensors

const int LED_PIN = 13;

/**** End of Global Defines ****************/

102 Make an Arduino-Controlled Robot

Making the Sketch Easy to Enhance

This chapter covers the principles of robot motor control that apply to both
two wheeled and four wheeled platforms. The motor controller hardware is
explained, as is the code used to make this functionality accessible to the
sketches. The second half of this chapter (“Software Architecture for Robot
Mobility” (page 119)) describes software modules that frees the sketch logic from
a dependency on any specific motor hardware. All sketches use the library
named RobotMotor that provides a consistent interface to the hardware spe
cific motor system. An optional software module named Move provides high
level functions to move the robot that simplifies the code in the more complex
sketches that follow in chapters to come.

Hardware Required

• This chapter uses the AFMotor shield described in Chapter 2.

Sketches Used in This Chapter

• The motor control code used in Chapter 6 is explained and two new
sketches are introduced:

• MyRobotCalibrateRotation.ino—A sketch for running the robot through
a range of speeds to calibrate the robot.

103

Controlling Speed and
Direction 7

• MyRobotMove.ino—This sketch shows how to use higher level movement
functions. Constants for defining the current robot movement are added
to the robotDefines tab. A new tab named Move is added that contains
the high level movement functions. The IrSensor tab and RobotMotor li
brary are unchanged (Figure 7-1).

Figure 7-1. myRobotMove Sketch

Types of Motors

Brushed DC Motors, such as the ones used in the two wheeled and four
wheeled platforms (see Figure 7-2) are the most common type used with Ar
duino robots. These have two leads connected to brushes (contacts) that con
trol the magnetic field of the coils that drive the motor core (armature). Motor
direction can be reversed by reversing the polarity of the power source. These
motors typically rotate too fast to directly drive the robot wheels or tracks, so
gear reduction is used to reduce speed and increase torque.

104 Make an Arduino-Controlled Robot

Types of Motors

Figure 7-2. DC motor with gearbox

Other kinds of motors can be used to power robots; here are some you may
come across:

Continuous rotation servo
These motors are used on smaller robots. They have the advantage that
the motor controller, motor, and gearbox are all mounted in the same
housing, so they are easy to attach to a robot and can be driven directly
from Arduino pins. However they usually have less torque than typical
stand-alone brushed motors.

Brushless motors
These have increased torque and efficiency compared to brushed motors
but they are more expensive and complex to control. However, prices are
dropping and they are a good choice for a larger robot.

105Chapter 7

Types of Motors

Stepper motors
These motors are used on large robots when precise control is required.
These motors typically require 12 or 24 volts so they are not often used on
small battery operated robots. However they may become more popular
due to the recent availability of low cost 5 volt steppers.

Motor Controllers

The two wheel and four wheel platforms use small DC motors that are con
trolled using an H-Bridge. The H-Bridge featured in this book is part of the
AFMotor shield from Adafruit Industries. This can drive up to four motors in
dependently, although only two are used with the two wheeled robot. This
shield requires a library for interfacing sketch code with the hardware; this
library is included with the code download for this book (see “How to Contact
Us” (page xv)).

The name H-bridge derives from the characteristic shape that you can
see in these figures.

To enable the sketches to work with other H-Bridge hardware, a library named
RobotMotor is provided with the example code that provides generic control
functions that the library translates into the specific commands for the AFMo
tor shield or another shield if you have use different hardware. see “Software
Architecture for Robot Mobility” (page 119)

This library is modified from the one on the Adafruit site to work with
the Leonardo board. The standard Adafruit library can be used with
the Uno board). See “Installing Third-Party Libraries” (page 83) if you
need directions for installing a library. If you followed along with
Chapter 6, you will already have the library installed.

106 Make an Arduino-Controlled Robot

Motor Controllers

The following diagrams explain how an H-bridge works and the RobotMotor
functions used to control the motors:

Figure 7-3. HBridge with Motor Idle

Figure 7-3 is a schematic drawing that shows
how an H-bridge works. The motor is connec
ted to the positive supply voltage and ground
through four switches (in the actual H-bridge,
the switching is done with transistors). When
all the switches are open, no current flows and
the motor is stopped. The code to stop a motor
is:

motorStop(motor);

The parameter in brackets
(motor) is a constant identifying
the motor (MOTOR_LEFT or
MOTOR_RIGHT) to control. The soft
ware for the four wheeled robot
treats the two motors on the
same side as if they were a single
motor.

Figure 7-4. HBridge with Motor Running Forward

Figure 7-4 shows the two switches that when
closed will cause the motor to run forward. The
one marked A connects the positive motor ter
minal to the positive power supply. Switch D
connects the negative motor terminal to
ground. The code to run a motor forward at the
given speed is:

motorForward(motor, speed);

The constant speed is a value rep
resenting speed as a percent of
maximum speed. This is de
scribed in the section: “Control
ling Motor Speed” (page 109).

107Chapter 7

Motor Controllers

Figure 7-5. HBridge with Motor Running in Reverse

Figure 7-5 shows that the opposite switches
result in the motor reversing. Switch C con
nects the positive supply to the negative motor
terminal. Switch B connects the positive motor
terminal to ground. The code to run a motor in
reverse at the given speed is:

motorReverse(motor, speed);

Figure 7-6. HBridge with Motor Brake

Figure 7-6 shows switches B and D closed. Both
motor terminals are connected together - nei
ther terminal is connected to the positive sup
ply voltage. This is a mode supported by some
H-bridge hardware to stop the motor more
quickly than it would in the previous case
where the motor is simply disconnected from
the power. Because the motor terminals are
shorted, the motor will resist rotation. If the
motor had been spinning and then set to this
mode, it will stop more quickly than if the ter
minals were simply disconnected. The code to
brake a motor is:

motorBrake(motor);

Not all H-bridges, including the
Adafruit library, support this
mode. The RobotMotor library will
call motorStop when the motor
Brake function is called.

108 Make an Arduino-Controlled Robot

Motor Controllers

Controlling Motor Speed

How Motor Speed Is Controlled
Motor speed is controlled by a technique called Pulse Width Modulation (PWM),
which varies the proportion of the motors on-time to-off time. The higher the
proportion of on-time, the greater the motor power and the faster the robot
will move (see Figure 7-7).

Figure 7-7. Controlling motor power using Pulse Width Modulation

109Chapter 7

Controlling Motor Speed

All the code in this book uses a percent value to refer to speed. This value is
the percentage of power given to the motors (technically, its called the duty
cycle). Percent speed is used instead of the raw PWM value to isolate the sketch
logic from the low level motor code. Different motor hardware use various
techniques for controlling motor rotation speed. For example, continuous ro
tation servos can use servo angle (where 90 is stop and 0 actually rotates the
motor at full reverse speed), and stepper motors don’t use PWM to control
speed. Because the high level logic always uses percent and this is mapped to
the range needed by the hardware in the motor interface code, the same high
level code can be used with other hardware simply by swapping the appro
priate motor interface module.

Code for Motor Control
The AFMotor library that interfaces with the motor hardware expects a PWM
value ranging from 0 to 255, so the motorSetSpeed function in the RobotMotor
library converts the percent into a PWM value using the map function, as shown
in Example 7-1.

Example 71. Setting the motor speed; from RobotMotor.cpp
void motorSetSpeed(int motor, int speed)
{
 motorSpeed[motor] = speed; // save the value
 int pwm = map(speed, 0,100, 0,255); // scale to PWM range

 motors[motor].setSpeed(pwm) ;
}

map is a handy function that is used extensively throughout this book.
The function scales a value from one range to another range. For ex
ample, the following scales a value from analogRead (0-1023) to a
percent (0-100):

int toPercent = map(val, 0,1023, 0,100);

You can read more about map here: http://arduino.cc/en/Reference/
map.

Bear in mind that the speed percentage is actually controlling motor power
and this is usually not directly proportional to speed, particularly at low power.

110 Make an Arduino-Controlled Robot

Controlling Motor Speed

http://arduino.cc/en/Reference/map
http://arduino.cc/en/Reference/map

The amount of power required to get the robot moving is dependent on the
motor, gearbox, battery voltage, robot weight and the surface the robot is on.
The method to calibrate the robot will be described shortly, but first, here is
an explanation of how the software handles robot speed control.

The code fragment shown in Example 7-2 contains the constants that are used
to calculate the appropriate delays for different speeds to rotate the robot.
rotationTime stores the duration for a 360 degree rotation for all practical
speeds. Speeds less than MIN_SPEED (40%) do not provide sufficient power to
overcome friction in the drive system.

Example 72. Constants for the delays needed to rotate the robot, from RobotMotor.cpp
const int MIN_SPEED = 40; // first table entry is 40% speed
const int SPEED_TABLE_INTERVAL = 10; // each table entry is 10% faster speed
const int NBR_SPEEDS = 1 + (100 - MIN_SPEED)/ SPEED_TABLE_INTERVAL;

int speedTable[NBR_SPEEDS] = {40, 50, 60, 70, 80, 90, 100}; // speeds
int rotationTime[NBR_SPEEDS] = {5500, 3300, 2400, 2000, 1750, 1550, 1150}; // time

The table holds durations in milliseconds for speeds in intervals of 10%. The
values were derived from experimentation with the two wheeled robot using
a sketch named myRobotCalibrateRotation sketch and noting the angles for
each of the speeds as shown in Figure 7-8.

Figure 7-8. Angle that the robot rotates for one second burst at each of the supported speeds

By calculating the angle as a fraction of 360 degrees, the time to rotate the
robot one complete revolution can be determined for each speed (the calcu
lation for the value in milliseconds is: 1000*(360/angle).

111Chapter 7

Controlling Motor Speed

Figure 7-9 shows the actual times for the 2WD robot.

Figure 7-9. Time for a full rotation at various speeds

The relationship between rotation angle and speed percentage is not linear,
so interpolation is used to calculate the duration to produce a full rotation for
any speed (as long as it is as fast or faster than the minimum speed).

Example 7-3 shows the code that uses the table with times based on the data
shown in Figure 7-9.

The RobotMotor library has the code to determine how much time the robot
requires to rotate 360 degrees. This will differ between the two and four
wheeled chassis and vary as the motor speed varies. Example 7-3 shows the
values used in the RobotMotor.cpp code for the 2WD chassis.

112 Make an Arduino-Controlled Robot

Controlling Motor Speed

Example 73. Controlling rotation rate
// tables hold time in ms to rotate robot 360 degrees at various speeds
// this enables conversion of rotation angle into timed motor movement
// The speeds are percent of max speed
// Note: low cost motors do not have enough torque at low speeds so
// the robot will not move below this value
// Interpolation is used to get a time for any speed from MIN_SPEED to 100%

const int MIN_SPEED = 40; // first table entry is 40% speed
const int SPEED_TABLE_INTERVAL = 10; // each table entry is 10% faster speed
const int NBR_SPEEDS = 1 + (100 - MIN_SPEED)/ SPEED_TABLE_INTERVAL;

int speedTable[NBR_SPEEDS] = {40, 50, 60, 70, 80, 90, 100}; // speeds
int rotationTime[NBR_SPEEDS] = {5500, 3300, 2400, 2000, 1750, 1550, 1150}; // time

Example 7-4 shows the values for the 4WD chassis.

Example 74. Controlling rotation rate
const int MIN_SPEED = 60; // first table entry is 60% speed
const int SPEED_TABLE_INTERVAL = 10; // each table entry is 10% faster speed
const int NBR_SPEEDS = 1 + (100 - MIN_SPEED)/ SPEED_TABLE_INTERVAL;

int speedTable[NBR_SPEEDS] = {60, 70, 80, 90, 100}; // speeds
int rotationTime[NBR_SPEEDS] = {5500, 3300, 2400, 2000, 1750}; // time

Note that there are fewer entries in the tables for the 4WD robot because this
chassis requires a higher speed to get going. “Calibrating Rotation and Track
ing” (page 116) explains how to adjust the tables to suit your robot.

The table entries assume speed intervals of 10% so the value for MIN_SPEED
should be multiple of 10. There must be one rotation time per speed so if you
increase MIN_SPEED by 10 for example, you will also need to remove the first
element in both speedTable and rotationTime.

The code in RobotMotor.cpp that uses the data in the rotationTime table is the
same for both chassis (see Example 7-5).

113Chapter 7

Controlling Motor Speed

Modifying a Library

You know how to modify an Arduino sketch—just
edit it in the Arduino IDE. But modifying a library is a
bit more involved. You need to go into the sketch
folder, open up the library directory, and find the file.
Then you need to open it in a text editor. Here’s how
to modify the RobotMotor.h file to use the 4WD chas
sis.

First, find the sketchbook location. Go to Arduino’s
preferences (File→Preferences on Windows or Linux,
Arduino→Preferences on Mac). Under Sketchbook
Location, you’ll find the name of the directory that
contains your sketches and libraries. Next:

1. Open the sketchbook folder in the Finder
(Mac) or Explorer (Windows).

2. Locate the libraries directory inside, and then
open the directory named RobotMotor.

3. Right-click (or Control-click on the Mac) the
RobotMotor.h file, and open it with a plain text
editor. On Windows, you should use Notepad.
On the Mac, you can use TextEdit. On Linux,
use your favorite plain text editor.

4. Change #define CHASSIS_2WD to #define
CHASSIS_4WD and save the file.

Although you need to quit and restart the Arduino
IDE when you install a new library, you don’t need to
do so each time you modify a library.

Example 75. Applying the rotationTime table
// return the time in milliseconds to turn the given angle at the given speed
long rotationAngleToTime(int angle, int speed)
{
int fullRotationTime; // time to rotate 360 degrees at given speed

 if(speed < MIN_SPEED)
 return 0; // ignore speeds slower then the first table entry

 angle = abs(angle);

 if(speed >= 100)
 fullRotationTime = rotationTime[NBR_SPEEDS-1]; // the last entry is 100%
 else
 {
 int index = (speed - MIN_SPEED) / SPEED_TABLE_INTERVAL ; // index into speed
 // and time tables
 int t0 = rotationTime[index];
 int t1 = rotationTime[index+1]; // time of the next higher speed
 fullRotationTime = map(speed,
 speedTable[index],
 speedTable[index+1], t0, t1);
 // Serial.print("index= "); Serial.print(index);
 // Serial.print(", t0 = "); Serial.print(t0);
 // Serial.print(", t1 = "); Serial.print(t1);
 }

114 Make an Arduino-Controlled Robot

Controlling Motor Speed

 // Serial.print(" full rotation time = "); Serial.println(fullRotationTime);
 long result = map(angle, 0,360, 0, fullRotationTime);
 return result;
}

This code determines the index into the speedTable array that is closest to (but
not greater than) the desired speed. This index is stored in the variable t0. The
interpolated time will be between this value and the next index (t1), with the
rotation time calculated using the ratio of the rotationTime value between t0
and t1 in the same proportion as the desired speed in the speedTable. It may
be easier to understand how this works by consulting Figure 7-10.

Figure 7-10. Speed Interpolation

115Chapter 7

Controlling Motor Speed

For example, for a speed of 65%, which is halfway between the values for 60%
and 70%, the time associated with 65% speed will be 2200, which is half way
between 2400 (the 60% speed value) and 2000 (the 70% speed value). A speed
of 62.5% is 1/4 of the range between the table entries (60 and 70), so the time
will be 1/4 of the range between the speeds for that range (2400 and 2000,
which is 2300 milliseconds). The map function is used to calculate this propor
tional value:

fullRotationTime = map(speed,speedTable[index],speedTable[index+1],t0,t1);

To calculate the time to rotate an angle other than 360 degrees, the map func
tion is used again:

long result = map(angle, 0,360, 0, fullRotationTime);

Calibrating Rotation and Tracking
Motor timings do not need to be exact but if you are using the four wheeled
platform you will probably want to calibrate the values in the table because
this platform requires more rotation time than the two wheeled version. You
can calibrate your robot with the myRobotCalibrateRotation sketch. Here is
the main tab for that sketch; the actual calibration is performed in the cali
brateSpeed function shown in Example 7-6.

Example 76. Robot calibration
/**
MyRobotCalibrateRotation.ino
***/
// include motor libraries
#include <AFMotor.h> // adafruit motor shield library
#include <RobotMotor.h> // 2wd or 4wd motor library

// Setup runs at startup and is used configure pins and init system variables
void setup()
{
 motorBegin(MOTOR_LEFT);
 motorBegin(MOTOR_RIGHT);
 calibrateSpeed();
}

void loop()
{
}

void calibrateSpeed()
{
 for(int speed = MIN_SPEED; speed <= 100; speed += 10)
 {
 // rotate robot left for 1 second
 motorReverse(MOTOR_LEFT, speed);

116 Make an Arduino-Controlled Robot

Controlling Motor Speed

 motorForward(MOTOR_RIGHT, speed);
 delay(1000); // delay 1 second
 motorStop(MOTOR_LEFT);
 motorStop(MOTOR_RIGHT);

 delay(3000); // wait 3 seconds

 // rotate robot right for 1 second
 motorReverse(MOTOR_RIGHT, speed);
 motorForward(MOTOR_LEFT, speed);
 delay(1000); // delay 1 second
 motorStop(MOTOR_LEFT);
 motorStop(MOTOR_RIGHT);
 delay(3000); // wait 3 seconds
 }
}

Running this sketch will rotate the robot left (CCW) for one second, stop for
one second, then rotate the robot right (CW) for a second. If you mark the angle
of the robot after each CCW rotation, you can calculate how much longer or
shorter it would take the robot to turn 360 degrees for each speed. If your robot
does not rotate at all at the slower speeds, note the lowest speed that the robot
does move and set MIN_SPEED in RobotMotor.cpp to this value.

The RobotMotor library also supports the ability to adjust the relative power
to each motor in order to prevent the robot drifting off a straight course due
to differences in performance between the left and right motor(s). If your robot
does not track a straight line when moving forward or backward, you can
modify the motor library (see next section) to correct this.

The RobotMotor.cpp library file contains a constant that can be adjusted to
correct drift:

const int differential = 0; // % faster left motor turns compared to right

Here is how the differential constant is used in the code:
if(motor == MOTOR_LEFT
 && speed > differential)
 speed -= differential;

If your robot drifts, adjust the constant differential to compensate. Set the
value using trial and error, positive values nudge the robot to the right, nega
tive values to the left. The correct value will be the difference in speed between
the motors in percent. The drift will vary somewhat with motor speed so best
to set this when testing with the robot running at a speed midway between
the minimum and maximum speeds.

117Chapter 7

Controlling Motor Speed

Here is a modified version of the previous sketch that will drive the robot in a
straight line when the differential constant is adjusted to correct drift. You can
make differential a negative number if your right motor turns faster than
your left (the robot drifts to the left).

Example 77. Robot tracking
/**
MyRobotCalibrateTracking.ino
***/
// include motor libraries
#include <AFMotor.h> // adafruit motor shield library
#include <RobotMotor.h> // 2wd or 4wd motor library

const int TEST_SPEED = MIN_SPEED + 10; // Typical speed to run the robot
const int differential = 0; // % faster left motor turns compared to right

// Setup runs at startup and is used configure pins and init system variables
void setup()
{
 motorBegin(MOTOR_LEFT);
 motorBegin(MOTOR_RIGHT);
 calibrateDrift();
}

void loop()
{
}

void calibrateDrift()
{
 motorForward(MOTOR_LEFT, TEST_SPEED - differential);
 motorForward(MOTOR_RIGHT, TEST_SPEED);
 delay(2000); // delay 2 second
 motorStop(MOTOR_LEFT);
 motorStop(MOTOR_RIGHT);
}

118 Make an Arduino-Controlled Robot

Controlling Motor Speed

If the robot drifts the right when running this sketch, try setting differen
tial to 2. If this overcorrects (the robot now drifts to the left), decrease the
differential value. If you need more correction, increase the value. If the robot
was drifting to the left, use negative values of differential to compensate. You
should be able to get the robot running more or less straight after a little trial
and error. Don’t worry about minor deviations which are caused by small dif
ferences in the efficiency of the motors at varying battery levels.

After you have settled in a value for differential you must change this in the
RobotMotor.cpp file. Open this file with a text editor and (see “Modifying a
Library” (page 114)) and find the declaration towards the beginning of the file:

const int differential = 0; // % faster left motor turns compared to right

Replace 0 with the value determined from the calibration sketch and save the
file.

Software Architecture for Robot Mobility

This book provides software modules to minimize the coupling between the
application logic and the hardware that actually moves the robot. This mini
mizes changes that would otherwise be required if you want to use the same
logic with different hardware. A low level motor interface library named Ro
botMotor encapsulates the motor hardware functions so that the same sketch
code can be used with the two wheeled or four wheeled robot with the Adafruit
shield or with a different motor shield. A higher level module named Move is
also provided to enable the sketch logic to deal with robot movements instead
of motor power, for example, the Move module has commands to move the
robot left or right, to move backward, or rotate 90 degrees. Figure 7-11 shows
how the software and hardware is layered. The high level Move code is de
scribed in detail later in this chapter.

119Chapter 7

Software Architecture for Robot Mobility

Figure 7-11. Software architecture for motor control

Example 7-9 shows the source code for the RobotMotor library’s .cpp file. The
header file RobotMotor.h (Example 7-8) defines the constants for the left and
right motors and declares the functions for speed and direction.

120 Make an Arduino-Controlled Robot

Software Architecture for Robot Mobility

Example 78. RobotMotor.h header file
/***
 RobotMotor.h
 low level motor driver interface
 Copyright Michael Margolis May 8 2012
**/
/* if you have the 4WD chassis, change the line:
 #define CHASSIS_2WD
 to:
 #define CHASSIS_4WD
 */
#define CHASSIS_2WD // change suffix from 2WD to 4WD if using the 4WD chassis
// defines for left and right motors
const int MOTOR_LEFT = 0;
const int MOTOR_RIGHT = 1;
extern const int MIN_SPEED;
extern int speedTable[];
extern int rotationTime[];
extern const int SPEED_TABLE_INTERVAL;
extern const int NBR_SPEEDS;
void motorBegin(int motor);
// speed range is 0 to 100 percent
void motorSetSpeed(int motor, int speed);
void motorForward(int motor, int speed);
void motorReverse(int motor, int speed);
void motorStop(int motor);
void motorBrake(int motor);

Example 79. RobotMotor functions
/***
 RobotMotor.cpp // Adafruit version for 2WD and 4WD chassis
 low level motor driver for use with adafruit motor shield
 Motor constants used are defined AFMotor.h
 Copyright Michael Margolis May 8 2012
**/
#include <Arduino.h>
#include <AFMotor.h> // adafruit motor shield library
#include "RobotMotor.h"
const int differential = 0; // % faster left motor turns compared to right
// tables hold time in ms to rotate robot 360 degrees at various speeds
// this enables conversion of rotation angle into timed motor movement
// The speeds are percent of max speed
// Note: low cost motors do not have enough torque at low speeds so
// the robot will not move below this value
// Interpolation is used to get a time for any speed from MIN_SPEED to 100%
// constants for 2 wheeled robot chassis
#if defined CHASSIS_2WD
const int MIN_SPEED = 40; // first table entry is 40% speed
const int SPEED_TABLE_INTERVAL = 10; // each table entry is 10% faster speed
const int NBR_SPEEDS = 1 + (100 - MIN_SPEED)/ SPEED_TABLE_INTERVAL;

121Chapter 7

Software Architecture for Robot Mobility

int speedTable[NBR_SPEEDS] = {40, 50, 60, 70, 80, 90, 100}; // speeds
int rotationTime[NBR_SPEEDS] = {5500, 3300, 2400, 2000, 1750, 1550, 1150}; // time
AF_DCMotor motors[] = {
 AF_DCMotor(1, MOTOR12_1KHZ), // left is Motor #1
 AF_DCMotor(2, MOTOR12_1KHZ) // right is Motor #2 };
// constants for 4 wheeled robot
#elif defined CHASSIS_4WD
const int MIN_SPEED = 60; // first table entry is 60% speed
const int SPEED_TABLE_INTERVAL = 10; // each table entry is 10% faster speed
const int NBR_SPEEDS = 1 + (100 - MIN_SPEED)/ SPEED_TABLE_INTERVAL;

int speedTable[NBR_SPEEDS] = {60, 70, 80, 90, 100}; // speeds
int rotationTime[NBR_SPEEDS] = {5500, 3300, 2400, 2000, 1750}; // time
AF_DCMotor motors[] = {
 AF_DCMotor(4, MOTOR34_1KHZ), // left front is Motor #4
 AF_DCMotor(3, MOTOR34_1KHZ), // right front is Motor #3
 AF_DCMotor(1, MOTOR12_1KHZ), // left rear is Motor #1
 AF_DCMotor(2, MOTOR12_1KHZ) // right rear is Motor #2
};
#else
#error "expected definition: CHASSIS_2WD or CHASSIS_4WD not found"
#endif
int motorSpeed[2] = {0,0}; // left and right motor speeds stored here (0-100%)
void motorBegin(int motor)
{
 motorStop(motor); // stop the front motor
#if defined CHASSIS_4WD
 motorStop(motor+2); // stop the rear motor
#endif
}
// speed range is 0 to 100 percent
void motorSetSpeed(int motor, int speed)
{
 if(motor == MOTOR_LEFT && speed > differential)
 speed -= differential;
 motorSpeed[motor] = speed; // save the value
 int pwm = map(speed, 0,100, 0,255); // scale to PWM range

 motors[motor].setSpeed(pwm) ;
#if defined CHASSIS_4WD
 motors[motor+2].setSpeed(pwm) ;
#endif
}
void motorForward(int motor, int speed)
{
 motorSetSpeed(motor, speed);
 motors[motor].run(FORWARD);
#if defined CHASSIS_4WD
 motors[motor+2].run(FORWARD);
#endif
}
void motorReverse(int motor, int speed)
{

122 Make an Arduino-Controlled Robot

Software Architecture for Robot Mobility

 motorSetSpeed(motor, speed);
 motors[motor].run(BACKWARD);
#if defined CHASSIS_4WD
 motors[motor+2].run(BACKWARD);
#endif
}
void motorStop(int motor)
{
 // todo set speed to 0 ???
 motors[motor].run(RELEASE); // stopped
#if defined CHASSIS_4WD
 motors[motor+2].run(RELEASE);
#endif
}
void motorBrake(int motor)
{
 motors[motor].run(BRAKE); // stopped
#if defined CHASSIS_4WD
 motors[motor+2].run(BRAKE);
#endif
}

The RobotMotor.cpp file contains code for both the two wheel and four wheel
chassis. Conditional compilation is used to build the library for the appropriate
version. #if defined CHASSIS_2WD and #if defined CHASSIS_4WD are checks
to see which chassis has been defined in the RobotMotor.h file. code between
#if defined CHASSIS_2WD and #endif will only be compiled if CHASSIS_2WD is
defined in RobotMotor.h. See “Installing Third-Party Libraries” (page 83) for
more details on changing the define for the four wheel chassis.

This library can be modified to support different hardware. For example, see
Appendix B for the code to use the Ardumoto shield (but note that Ardumoto
only supports two motors so is not suitable for the four wheeled robot).

Functions to Encapsulate Robot Movements

You can simplify your code for controlling your robot’s behaviour by using
higher level movement functions provided in the Move module. These func
tions reference the desired movement from the robot’s perspective rather than
specific motor control. For example, to rotate the robot, rather than calling
functions to run one motor forwards and the other backwards, you can call a
single function that rotates the robot. And by calibrating the speed of rotation,
you can easily get the robot to rotate to any desired angle.

The sketch named myRobotMove has the movement code in a tab called Move.
That sketch is similar to the myRobot sketch from “Making the Sketch Easy to

123Chapter 7

Functions to Encapsulate Robot Movements

Enhance” (page 99) but uses the rotation functions in the Move tab to drive
the robot. Using the higher level functions to drive the robot not only simplifies
your code, it isolates the sketch logic from the hardware specific motor code.
The sketches in all of the following chapters control robot movement through
the functions in the Move tab.

Core Movement Code
Here is a list of the core movement functions:

Move Forward
Both motors are driven forward at the same speed

Move Backward
Both motors driven in reverse at the same speed

Move Left
Left motor stopped, right motor driven forward

Move Right
Right motor stopped, Left motor driven forward

Move Stop
Both motors stopped

Set Move Speed
Used to set the speed for future robot movements

Example 7-10 shows the code in the Move tab that provides the core move
ment functionality.

Example 710. The core movement functions
/*************************************
 Drive: mid level movement functions
*************************************/

int moveState = MOV_STOP; // what robot is doing

int moveSpeed = 0; // move speed stored here (0-100%)
int speedIncrement = 10; // percent to increase or decrease speed

void moveBegin()
{
 motorBegin(MOTOR_LEFT);
 motorBegin(MOTOR_RIGHT);
 moveStop();
}

void moveLeft()
{
 motorForward(MOTOR_LEFT, 0);

124 Make an Arduino-Controlled Robot

Functions to Encapsulate Robot Movements

 motorForward(MOTOR_RIGHT, moveSpeed);
 changeMoveState(MOV_LEFT);
}

void moveRight()
{
 motorForward(MOTOR_LEFT, moveSpeed);
 motorForward(MOTOR_RIGHT, 0);
 changeMoveState(MOV_RIGHT);
}

void moveStop()
{
 motorStop(MOTOR_LEFT);
 motorStop(MOTOR_RIGHT);
 changeMoveState(MOV_STOP);
}

void moveBrake()
{
 motorBrake(MOTOR_LEFT);
 motorBrake(MOTOR_RIGHT);
 changeMoveState(MOV_STOP);
}

void moveBackward()
{
 motorReverse(MOTOR_LEFT, moveSpeed);
 motorReverse(MOTOR_RIGHT, moveSpeed);
 changeMoveState(MOV_BACK);
}

void moveForward()
{
 motorForward(MOTOR_LEFT, moveSpeed);
 motorForward(MOTOR_RIGHT, moveSpeed);
 changeMoveState(MOV_FORWARD);
}

void moveSetSpeed(int speed)
{
 motorSetSpeed(MOTOR_LEFT, speed) ;
 motorSetSpeed(MOTOR_RIGHT, speed) ;
 moveSpeed = speed; // save the value
}

The code provides functions that combine the individual motor commands
described in “Motor Controllers” (page 106). For example, the moveForward
function calls the individual functions to rotate the left and right motors in the

125Chapter 7

Functions to Encapsulate Robot Movements

direction that moves the robot forward. The speed to move is set by the move
SetSpeed function. moveSetSpeed commands the motors to run at the desired
speed and stores the speed value so the robot can resume running at the last
set speed following an evasive action needed to avoid obstacles.

Additional Core Functions
Some additional functions are included in this tab that are not used in any of
the sketches in this book but are convenient if you want to slow down or speed
up the robot, for example with remote control. The moveSlower and moveFast
er functions can be used to command the robot to decrease or increase speed:

Example 711. Functions to speed up or slow down the robot
void moveSlower(int decrement)
{
 Serial.print(" Slower: ");
 if(moveSpeed >= speedIncrement + MIN_SPEED)
 moveSpeed -= speedIncrement;
 else moveSpeed = MIN_SPEED;
 moveSetSpeed(moveSpeed);
}

void moveFaster(int increment)
{
 Serial.print(" Faster: ");
 moveSpeed += speedIncrement;
 if(moveSpeed > 100)
 moveSpeed = 100;
 moveSetSpeed(moveSpeed);
}

int moveGetState()
{
 return moveState;
}

// this is the low level movement state.
// it will differ from the command state when the robot is avoiding obstacles
void changeMoveState(int newState)
{
 if(newState != moveState)
 {
 Serial.print("Changing move state from "); Serial.print(states[moveState]);
 Serial.print(" to "); Serial.println(states[newState]);
 moveState = newState;
 }
}

126 Make an Arduino-Controlled Robot

Functions to Encapsulate Robot Movements

The moveFaster function increases the current speed by a specified increment
and calls moveSetSpeed to make this the current speed. For example, movefast
er(10); will result in the robot moving at 85% speed if it was previously moving
at 75%.

The moveSlower function is similar but decreases rather than increases the
speed. Both functions check to ensure that the new speed is valid. If moveSlow
er(20) was called when the robot was moving at 85% speed, the robot would
slow down to run at 65% speed.

The movement functions also call the function changeMoveState to store the
current movement state. These states are defined in the robotDefines.h tab
(see Example 6-9) and are used to enable the robot to make decisions with the
knowledge of what it is currently doing. For example, detecting an obstacle in
front can be handled differently depending on whether the robot is moving
forwards or backwards. The robot can check the current move state when it
encounters an object and take action if the robot is moving towards it but
ignore obstacles that are not in the direction of movement. Here are all the
move states:

enum {MOV_LEFT, MOV_RIGHT, MOV_FORWARD,
 MOV_BACK, MOV_ROTATE, MOV_STOP};

If you are unfamiliar with enum (enumerated lists), see “Code Style
(About the Code)” (page xii) in Preface or an online C or C++ reference.

To assist debugging, each state has an associated text label that can be printed
to the serial monitor to show what the robot should be doing.

const char* states[] = {"Left", "Right", "Forward",
 "Back", "Rotate", "Stop"};

The move state defines are located at the end of the robotDefines.h tab.

Functions to Rotate the Robot
Rotation is a common task as the robot is exploring and moving to avoid ob
stacles. The robots described in this book do not know the angle they are facing
or how much actual movement results from driving the motors. Commands
to rotate the robot at particular angle are implemented by timing how long to
turn the motors based on data collected during calibration. Example 7-12
shows the rotation functions from the Move tab:

Move Rotate
One motor forward, one reverse for the duration to rotate the robot to the
given angle. Positive angles rotate clockwise, negative angles counter-
clockwise

127Chapter 7

Functions to Encapsulate Robot Movements

Rotation Angle to Time
Function used to calculate the duration to rotate the robot to a given angle
at a given speed. This function is the same as listed in “Load and Run hel
loRobot.ino” (page 88)

Calibrate Rotation Rate
Function used for calibration—the robot will attempt to rotate at a given
angle at speeds from minimum speed up to 100% at intervals of 10%. This
function is the same as listed in “Load and Run helloRobot.ino” (page 88)

Example 712. Functions to rotate the robot
void moveRotate(int angle)
{
 Serial.print("Rotating "); Serial.println(angle);
 if(angle < 0)
 {
 Serial.println(" (left)");
 motorReverse(MOTOR_LEFT, moveSpeed);
 motorForward(MOTOR_RIGHT, moveSpeed);
 angle = -angle; changeMoveState(MOV_ROTATE);
 }
 else if(angle > 0)
 {
 Serial.println(" (right)");
 motorForward(MOTOR_LEFT, moveSpeed);
 motorReverse(MOTOR_RIGHT, moveSpeed);
 changeMoveState(MOV_ROTATE);
 }
 int ms = rotationAngleToTime(angle, moveSpeed);
 movingDelay(ms);
 moveBrake();
}

// return the time in milliseconds to turn the given angle at the given speed
long rotationAngleToTime(int angle, int speed)
{
int fullRotationTime; // time to rotate 360 degrees at given speed

 if(speed < MIN_SPEED)
 return 0; // ignore speeds slower then the first table entry

 angle = abs(angle);

 if(speed >= 100)
 fullRotationTime = rotationTime[NBR_SPEEDS-1]; // the last entry is 100%
 else
 {
 int index = (speed - MIN_SPEED) / SPEED_TABLE_INTERVAL; // index into speed and time tables
 int t0 = rotationTime[index];
 int t1 = rotationTime[index+1]; // time of the next higher speed
 fullRotationTime = map(speed, speedTable[index], speedTable[index+1], t0, t1);

128 Make an Arduino-Controlled Robot

Functions to Encapsulate Robot Movements

 // Serial.print("index= "); Serial.print(index); Serial.print(", t0 = "); Serial.print(t0);
 // Serial.print(", t1 = "); Serial.print(t1);
 }
 // Serial.print(" full rotation time = "); Serial.println(fullRotationTime);
 long result = map(angle, 0,360, 0, fullRotationTime);
 return result;
}

// rotate the robot from MIN_SPEED to 100% increasing by SPEED_TABLE_INTERVAL
void calibrateRotationRate(int direction, int angle)
{
 Serial.print(locationString[direction]);
 Serial.println(" calibration");
 for(int speed = MIN_SPEED; speed <= 100; speed += SPEED_TABLE_INTERVAL)
 {
 delay(1000);
 //blinkNumber(speed/10);

 if(direction == DIR_LEFT)
 { // rotate left
 motorReverse(MOTOR_LEFT, speed);
 motorForward(MOTOR_RIGHT, speed);
 }
 else if(direction == DIR_RIGHT)
 { // rotate right
 motorForward(MOTOR_LEFT, speed);
 motorReverse(MOTOR_RIGHT, speed);
 }
 else
 Serial.println("Invalid direction");

 int time = rotationAngleToTime(angle, speed);

 Serial.print(locationString[direction]);
 Serial.print(": rotate "); Serial.print(angle);
 Serial.print(" degrees at speed "); Serial.print(speed);
 Serial.print(" for "); Serial.print(time);
 Serial.println("ms");
 delay(time);
 motorStop(MOTOR_LEFT);
 motorStop(MOTOR_RIGHT);
 delay(2000); // two second delay between speeds
 }
}

129Chapter 7

Functions to Encapsulate Robot Movements

The moveRotate function will rotate a robot by the given angle. Negative angles
turn counter clockwise, positive angles turn clockwise. Rotation is achieved by
running the motors in opposite directions (see “How Robots Move” (page 5)).

Higher-Level Movement Functions
Higher level movement functions work together to provide a simple way to
instruct the robot briefly move away from one obstacle while checking to see
if it needs to avoid another obstacle encountered while taking evasive action.

Timed Move
Moves the robot in a specified direction for a specified duration.

Moving Delay
Checks for obstacles while delaying for a specified period. Uses checkMove
ment() function in the Look module to see if an obstacle is detected in the
current direction of movement.

Example 713. Higher level movement functions
/************* high level movement functions ****************/

//moves in the given direction at the current speed for the given duration in milliseconds
void timedMove(int direction, int duration)
{
 Serial.print("Timed move ");
 if(direction == MOV_FORWARD) {
 Serial.println("forward");
 moveForward();
 }
 else if(direction == MOV_BACK) {
 Serial.println("back");
 moveBackward();
 }
 else
 Serial.println("?");

 movingDelay(duration);
 moveStop();
}

// check for obstacles while delaying the given duration in ms
void movingDelay(long duration)
{
 long startTime = millis();
 while(millis() - startTime < duration) {
 // function in Look module checks for obstacle in direction of movement
 if(checkMovement() == false) {
 if(moveState != MOV_ROTATE) // rotate is only valid movement
 {
 Serial.println("Stopping in moving Delay()");
 moveBrake();

130 Make an Arduino-Controlled Robot

Functions to Encapsulate Robot Movements

 }
 }
 }
}

The timedMove and movingDelay functions work together to provide a simple
way to instruct the robot briefly move away from an obstacle. Because moving
Delay can check for obstacles while taking evasive action, it can avoid bumping
into new obstacles while moving away from another. The checkMovement
function is implemented in the Look module (see “The Look Code” (page 149)).

131Chapter 7

Functions to Encapsulate Robot Movements

Sensor information can be used by your robot to navigate and interact with
its environment. Sensors report on the world around them; measuring light,
distance, sound, movement, direction, temperature, pressure, or location. This
chapter describes how common sensors used with two wheeled and four
wheeled platforms work.

The first half of this chapter covers the primary sensors used in the chapters
that follow: IR reflective sensors and SONAR distance sensors. These are used
to determine if an object is near the robot. Reflective sensors detect nearby
objects and are used for line following and edge detection (determining if the
robot is near the edge of the surface it is moving on, such as the edge of a
table). Distance sensors are used to determine the distance to objects up to
ten feet away from the robot. The second half of the chapter covers other types
of sensors you can add to enable the robot to respond to distance, sound,
movement, or other stimuli. You should also have a look at Appendix D, Power
Sources which describes a very useful aspect to sense, the robot’s battery volt
age.

Hardware Discussed

QTR-1A reflectance sensors
Two are used for edge detection, but a third is required for line following.
Additional sensors are available from many internet shops that stock robot
parts, or direct from the manufacturer: http://www.pololu.com/catalog/
product/958/

SONAR Distance Sensor
One is used to measure the distance to obstacles (Maker Shed product
code MKPX5).

133

Tutorial: Introduction to
Sensors 8

http://www.pololu.com/catalog/product/958/
http://www.pololu.com/catalog/product/958/

Maxbotix EZ1 distance sensor
This is an optional item that can be used to measure distance.

Sharp IR
This is an optional item that can be used to measure distance.

PIR (Passive Infrared) sensor
This is an optional item that can be used to activate the robot when it
detects the presence of a ‘warm body’ (Maker Shed product code: MKPX6).

Sound Sensor
This is an optional item that can activate the robot on a sound level, such
as a hand clap. (SparkFun product code BOB-09964).

Software

The chapter contains background information on sensors that will be added
to the robot in later chapters. The reflectance sensor code is from the sketches
introduced in Chapter 6, Testing the Robot’s Basic Functions. The Ping (Sonar
distance sensor) hardware and software is covered in Chapter 10, Autonomous
Movement.

Infrared Reflectance Sensors

These sensors use reflected infrared light to detect the presence of a line for
line following, or the absence of a reflection for edge (cliff) detection.

Figure 8-1. Sensor using Infrared to detect obstacles

The robot uses a function named irSensorDetect, shown in Example 8-1 to
return true if the light level has increased sufficiently above the ambient level
indicating that a nearby object is reflecting the IR beam.

134 Make an Arduino-Controlled Robot

Software

Example 81. Detecting an obstacle that reflects light
const byte NBR_SENSORS = 3; // this version only has left and right sensors
const byte IR_SENSOR[NBR_SENSORS] = {0, 1, 2}; // analog pins for sensors

// returns true if an object is detected on the given sensor
// the sensor parameter is the index into the sensor array
int irSensorDetect(int sensor)
{
 boolean result = false; // default value
 int value = analogRead(IR_SENSOR[sensor]); // get IR light level
 if(value <= irSensorReflect[sensor]) {
 result = true; // object detected (lower value means more reflection)
 if(isDetected[sensor] == false) { // only print on initial detection
 Serial.print(locationString[sensor]);
 Serial.println(" object detected");
 }
 }
 isDetected[sensor] = result;
 return result;
}

Sensor constants determine which sensor to use: SENSE_IR_LEFT for the left
sensor, SENSE_IR_RIGHT for the right (these constants are defined in robotDe
fines.h (see “Making the Sketch Easy to Enhance” (page 99)). The irSensor
Detect function uses the sensor constant to retrieve the analog pin number
stored in the IR_SENSOR array. If the analogRead value is less than a predeter
mined threshold, the function returns true indicating that a reflection has
been detected. These functions use arrays instead of simple variables to store
pins and thresholds because arrays make it easy to extend the code to support
any number of sensors. To add a sensor, increase the NBR_SENSORS constant
and add the sensors pin number to the list of pins in the IR_SENSOR array.

The sensor voltage reduces with increased light, so lower readings
mean more reflectance. Therefore, the closer a reflecting object is to
the sensor, the lower the reading on the analog pin monitoring the
sensor.

Whereas irSensorDetect returns true when a reflection is detected, sometime
you want the opposite case—to return true if an edge (no reflection) is detec
ted, as in Example 8-2. The irEdgeDetect provides this capability; it is used to
return true when an edge is detected. In other words, when the sensor is look

135Chapter 8

Infrared Reflectance Sensors

ing downwards, no reflection from the surface is detected because a dark ob
ject is blocking the reflection or the nearest surface—probably the floor—is
many inches away! This effect is used in the examples from Chapter 6 to detect
when you’ve placed a dark object under the sensor.

Example 82. Detecting the absence of a reflection
boolean irEdgeDetect(int sensor)
{
 boolean result = false; // default value
 int value = analogRead(IR_SENSOR[sensor]); // get IR light level
 if(value >= irSensorEdge[sensor]) {
 result = true; // edge detected (higher value means less reflection)
 if(isDetected[sensor] == false) { // only print on initial detection
 Serial.print(locationString[sensor]);
 Serial.println(" edge detected");
 }
 }
 isDetected[sensor] = result;
 return result;
}

The sensors need to be calibrated to take ambient light into account. Reflec
tance sensors respond to sunlight and artificial light so a threshold is measured
with no object near the sensor. Levels above this threshold mean the light level
is above ambient, which indicates that a nearby object is reflecting the IR light
from the sensor. Ambient light calibration is done using the code shown in
Example 8-3.

Example 83. Light calibration
// calibrate thresholds for ambient light
void irSensorCalibrate(byte sensor)
{
 int ambient = analogRead(IR_SENSOR[sensor]); // get ambient level
 irSensorAmbient[sensor] = ambient;
 // precalculate the levels for object and edge detection
 irSensorReflect[sensor] = (ambient * (long)(100-irReflectThreshold)) / 100;
 irSensorEdge[sensor] = (ambient * (long)(100+irEdgeThreshold)) / 100;
}

136 Make an Arduino-Controlled Robot

Infrared Reflectance Sensors

(long) is used in the calculation to prevent overflow. Values like 95000
cannot fit into an Arduino integer (max value is 32,767) whereas a long
can store values up to 2,147,483,647.

You may come across code that performs this calculation using floating
point (ambient * 0.95). However, floating point requires more code
and memory than integer calculations.

This loads the ambient light level into the variable ambient, calculates levels
for reflectance detection (stored in the irSensorReflect array) and levels for
edge detection (stored in the iresensorEdge array). The constant irReflect
Threshold is the percentage difference in light to detect a reflecting obstacle.
The constant iredgeThreshold is the percent difference to detect an edge. The
default values for these thresholds are 10% for reflection and 90% for edge
detection.

Here is an example assuming the ambient value from analogRead was 1000
with irReflectThreshold equal to 10 :

 (1000 * 90) / 100 =
 90000 / 100 =
 900

In this example, if the ambient reading was 1000, the irSensorReflect’s thresh
old reading for object detection is 900, which is 10% below the ambient read
ing.

Sonar Distance Sensors

Sound pulses can be used to measure distance. The time it takes for a pulse to
bounce off an object and return to the sensor is proportional to the distance.

Figure 8-2. Ping Sensor using SONAR to determine distance

137Chapter 8

Sonar Distance Sensors

The speed of sound is 340 meters per second, which means it takes 29 micro
seconds for sound to travel 1 centimeter (the reciprocal of 340 metres per
second). To derive the distance in cm, the duration is divided by 29. The dura
tion is the time for the sum of outgoing and reflected pulses so the distance
to the object is microseconds / 29 / 2.

The pulse duration is measured using the Arduino pulseIn function. This
returns the a pulse duration in microseconds, see http://arduino.cc/en/Refer
ence/pulseIn.

Example 8-4 shows the code that uses the Ping sensor to return the distance
in inches. You’ll see this code in action in Chapter 10.

Example 84. The source code for the Ping sensor
/*********************************
 code for ping distance sensor
**********************************/

// Returns the distance in inches
// this returns 0 if no ping sensor is connected or the distance is greater than around 10 feet
int pingGetDistance(int pingPin)
{
 // establish variables for duration of the ping,
 // and the distance result in inches and centimeters:
 long duration, cm;

 // The PING))) is triggered by a HIGH pulse of 2 or more microseconds.
 // Give a short LOW pulse beforehand to ensure a clean HIGH pulse:
 pinMode(pingPin, OUTPUT);
 digitalWrite(pingPin, LOW);
 delayMicroseconds(2);
 digitalWrite(pingPin, HIGH);
 delayMicroseconds(5);
 digitalWrite(pingPin, LOW);

 pinMode(pingPin, INPUT);
 duration = pulseIn(pingPin, HIGH, 20000); // if a pulse does not arrive
 // in 20 ms then the ping sensor
 // is not connected
 if(duration >=20000)
 return 0;

 // convert the time into a distance
 cm = microsecondsToCentimeters(duration);
 return (cm * 10) / 25 ; // convert cm to inches
}

long microsecondsToCentimeters(long microseconds)
{
 // The speed of sound is 340 m/s or 29 microseconds per centimeter.

138 Make an Arduino-Controlled Robot

Sonar Distance Sensors

http://arduino.cc/en/Reference/pulseIn
http://arduino.cc/en/Reference/pulseIn

 // The ping travels out and back, so to find the distance of the
 // object we take half of the distance travelled.
 return microseconds / 29 / 2;
}

The pingGetDistance function returns the distance in inches as measured with
a ping sensor on the digital pin (pingPin) passed to the function. The sound
pulse used to measure the distance is triggered by sending a digital pulse that
is low for 2 microseconds and high for 5 microseconds. The pin mode is
changed from output to input and the pulseIn function is used to measure
the response from the sensor, which arrives as an incoming pulse width. The
formula described at the beginning of this section is used to convert this value
to the distance.

Maxbotix EZ1 Sonar Distance Sensor

Example 8-5 shows the code for the Maxbotix EZ1 SONAR distance sensor
(pictured in Figure 8-3).

Figure 8-3. Maxbotix EZ1 SONAR distance sensor

Example 85. Code for the EZ1 sensor
/********************************
 code for the EZ1 SONAR sensor
*********************************/
// return distance using EZ1 connected to analog pin
int ezDistanceAN(int pin) // using analog
{
 const int bitsPerInch = 2; // each bit is 0.5 inch
 int value = analogRead(pin);
 int inches = value / 2;
 return inches;
}

// return distance using EZ1 connected using PW
int ezDistancePW(int pin) //using digital pin
{
 int value = pulseIn(pin, HIGH); // timeout can be added (MAX_DISTANCE * 147L * 2)

139Chapter 8

Maxbotix EZ1 Sonar Distance Sensor

 int cm = value / 58; // pulse width is 58 ms per cm
 int inches = value / 147; // which is 147 ms per inch
 return inches;
}

The version using pulse width (ezDistancePW) will wait for one second before
giving up if no return pulse is detected (for example, if the sensor is discon
nected). You can optionally set the maximum time to wait for pulseIn; the
following example sets the timeout to the duration needed for a pulse to travel
the maximum distance detectable by the sensor:

int value = pulseIn(pin, HIGH, MAX_DISTANCE * 147L * 2);
// pulseIn with timeout

You can use the analog input version (ezDistanceAN), if you have a spare analog
input pin, but if you only have digital pins free, then use the pulse width code
(ezDistancePW). The analog version takes only as long as needed to measure
the voltage so does not need a timeout.

You can find more information on this sensor on the manufacturers web page:
http://www.maxbotix.com/Ultrasonic_Sensors/MB1010.htm .

140 Make an Arduino-Controlled Robot

Maxbotix EZ1 Sonar Distance Sensor

http://www.maxbotix.com/Ultrasonic_Sensors/MB1010.htm

Sharp IR Distance Sensor

Example 8-6 shows the code for the Sharp GP2Y0A02YK0F long range IR dis
tance sensor (pictured in Figure 8-4).

Figure 8-4. Sharp IR Distance Sensor

Example 86. Code for the Sharp IR sensor
/*********************************
 code for Sharp GP2Y0A02YK0F IR distance sensor
**********************************/
const long referenceMv = 5000; // the reference voltage in millivolts

int irGetDistance(byte pin)
{
 int val = analogRead(pin);
 int mV = map(val, 0, 1023, 0 , referenceMv);
 // or:
 //int mV = (val, * referenceMv) / 1023;

 int cm = mvToDistance(mV);
 return cm;
}

// the following is used to interpolate the distance from a table
// table entries are distances in steps of 250 millivolts
const int TABLE_ENTRIES = 11;
const int firstElement = 250; // first entry is 250 mV

141Chapter 8

Sharp IR Distance Sensor

const int INTERVAL = 250; // millivolts between each element
static int distance[TABLE_ENTRIES] = {200,130,90,64,50,41,35,30,25,20,15};

int mvToDistance(int mV)
{
 if(mV < firstElement)
 return distance[0];
 if(mV > INTERVAL * TABLE_ENTRIES)
 return distance[TABLE_ENTRIES-1];
 else
 {
 int index = mV / INTERVAL; // highest table element <= mV value
 int mV0 = index * INTERVAL; // mV value of this element
 int mV1 = mV0 + INTERVAL; // mV value of the next higher element
 int result = map(mV, mV0, mV1, distance[index-1], distance[index]);
 result = map(result, 0, 200, 0, 79); // convert from cm to inches
 return result;
 }
}

You can find lots more information on this sensor here: http://www.societyo
frobots.com/sensors_sharpirrange.shtml .

Proximity Sensor

A PIR (Passive Infrared) sensor can be used to activate your robot when it de
tects the presence of a nearby person, or even a dog or cat. The sensor acts
like a switch that sends a HIGH signal to an Arduino pin when motion is detected
(they work by detecting changes in the heat radiated from people or pets).
Figure 8-5 shows the sensor connected to analog pin 5, but you can use any
spare pin, such as A4 instead of A5.

142 Make an Arduino-Controlled Robot

Proximity Sensor

http://www.societyofrobots.com/sensors_sharpirrange.shtml
http://www.societyofrobots.com/sensors_sharpirrange.shtml

Figure 8-5. PIR Sensor Connected to Analog Pin 5

The following loop code will spin the robot when movement is detected. If you
want your robot to do this, replace the loop function in the myRobot sketch
from “Making the Sketch Easy to Enhance” (page 99) with the code shown in
Example 8-7.

Example 87. Spinning the bot
void loop()
{
 Serial.println("Waiting to detect movement from PIR sensor");
 pinMode(A5, INPUT); // configure the pin for input
 if(digitalRead(A5) == HIGH)
 {
 calibrateRotationRate(DIR_LEFT, 360); // spin robot CCW one rotation
 }
}

Sound Sensor

You can use a sound sensor to start or stop your robot in response to sound,
for example a hand clap or whistle. You will need a microphone with an am
plifier, for example, the BOB-09964 breakout board from SparkFun. Figure 8-6
shows the board connected to analog pin 4.

143Chapter 8

Sound Sensor

Figure 8-6. Sound Sensor Connected to Analog Pin 4

The code that follows is the main tab from the myRobotSound sketch available
in the download for this book. Noise level above a threshold will drive the robot
forward. The robot stops when the level drops below the threshold. If you need
to change the sensitivity, experiment with higher or lower values for the
threshold. Example 8-8 shows the code for the main tab.

Example 88. Sound sensor code
/**
MyRobotSound.ino

Robot moves when a sound level exceeds a threshold
Based on Recipe 6.7 from Arduino Cookbook

Copyright Michael Margolis 20 July 2012

***/

#include <AFMotor.h> // adafruit motor shield library
#include "RobotMotor.h" // 2wd or 4wd motor library

#include "robotDefines.h" // global defines

const int analogInPin = 5; // analog pin the sensor is connected to

144 Make an Arduino-Controlled Robot

Sound Sensor

const int middleValue = 512; //the middle of the range of analog values
const int numberOfSamples = 128; //how many readings will be taken each time

int sample; //the value read from microphone each time
long signal; //the reading once you have removed DC offset
long averageReading; //the average of that loop of readings

long runningAverage=0; //the running average of calculated values
const int averagedOver= 16; //how quickly new values affect running average
 //bigger numbers mean slower

const int threshold=400; //at what level the robot will move

int speed = 50;

// Setup runs at startup and is used configure pins and init system variables
void setup()
{
 Serial.begin(9600);
 blinkNumber(8); // open port while flashing. Needed for Leonardo only

 motorBegin(MOTOR_LEFT);
 motorBegin(MOTOR_RIGHT);
}

void loop()
{
 int level = getSoundLevel();
 if (level > threshold) //is level more than the threshold ?
 {
 motorForward(MOTOR_LEFT, speed);
 motorForward(MOTOR_RIGHT, speed);
 }else
 {
 motorStop(MOTOR_LEFT);
 motorStop(MOTOR_RIGHT);
 }
}

// function to indicate numbers by flashing the built-in LED
void blinkNumber(byte number) {
 pinMode(LED_PIN, OUTPUT); // enable the LED pin for output
 while(number--) {
 digitalWrite(LED_PIN, HIGH); delay(100);
 digitalWrite(LED_PIN, LOW); delay(400);
 }
}

int getSoundLevel()
{
 long sumOfSquares = 0;
 for (int i=0; i<numberOfSamples; i++) { //take many readings and average them
 sample = analogRead(analogInPin); //take a reading
 signal = (sample - middleValue); //work out its offset from the center

145Chapter 8

Sound Sensor

 signal *= signal; //square it to make all values positive
 sumOfSquares += signal; //add to the total
 }
 averageReading = sumOfSquares/numberOfSamples; //calculate running average
 runningAverage=(((averagedOver-1)*runningAverage)+averageReading)/averagedOver;

 return runningAverage;
}

See the Arduino Cookbook if you want a detailed description of how this code
works.

Arduino Cookbook

For descriptions of how to use lots of additional sensors with Arduino, see:
Arduino Cookbook by Michael Margolis (O’Reilly).

146 Make an Arduino-Controlled Robot

Arduino Cookbook

http://oreilly.com/catalog/0636920022244/

This chapter covers techniques that enable your robot to use sensors to gain
awareness of its environment. Using reflectance sensors, the robot will gain
the ability to follow lines or to avoid falling off the edge of the surface it is on.
Information from the sensors is abstracted so that the robot logic has a single
consistent interface and can easily be enhanced to support other sensors. The
physical mounting of the sensors varies with different platforms: see Chapter 4,
Building the Four-Wheeled Mobile Platform if you have the 4WD chassis, Chap
ter 3, Building the Two-Wheeled Mobile Platform if you have the 2WD chassis.

Hardware Required

• Two reflectance sensors are used for edge detection and a third is needed
for line following. Although you can use the stripboard mount (for the
three line following sensors) discussed in Chapter 2 to experiment with
edge detection, the robot will perform the edge detection task best with
the sensors further apart (the stripboard approach is best for line follow
ing). If the sensors are close together, the robot can have difficulty deter
mining the best angle to turn when an edge is encountered.

See Chapter 3, Building the Two-Wheeled Mobile Platform for de
tails of mounting these sensors on the 2WD chassis and Chapter 4,
Building the Four-Wheeled Mobile Platform for the 4WD chassis.
The principles of reflectance sensors are covered in “Infrared Re
flectance Sensors” (page 134) in Chapter 8, Tutorial: Introduction
to Sensors.

147

Modifying the Robot to
React to Edges and Lines 9

• A reflective surface with non-reflective edges for the edge detection
sketch (see Figure 9-2. You can use a large sheet of plain white paper with
the edges marked using a black marker pen or black electrical tape. The
border should be around 3/4 of in inch thick or so. The optimal surface
would be white, but with sufficient friction that your robot won’t slip. Lin
ing paper, often sold as unpasted wall liner, is a great surface. It’s designed
to provide an even surface or wallpapering or painting, but with enough
texture that makes it great for racing robots.

• A reflective surface with a non-reflective line approximately 3/4 inch wide,
see Figure 9-3. If your surface is at least a couple of feet wide, you can use
the same course for edge detection and line following. The sketches have
been tested using a three foot length of 27 inch wide lining paper.

Sketches Used in This Chapter

myRobotEdge.ino

The robot will move about in an area bounded by a non-reflective surface
(for example, a large sheet of white paper placed on a non-reflective sur
face. Most surfaces that reflect visible light will reflect infrared from the
sensor).

myRobotLine.ino

This repositions the sensors used in myRobotEdge.ino to allow the robot
to follow black lines painted on or taped to a white surface. The only
change to the tab code is support for the center sensor. A variant of this
sketch that sends data over serial for display on an external serial device
is named myRobotLineDisplay and is included in the example code down
load (see “How to Contact Us” (page xv)).

Figure 9-1 shows the organization of the modules for this chapter.

Figure 9-1. myRobotEdge and myRobotLine Sketches

148 Make an Arduino-Controlled Robot

Sketches Used in This Chapter

The Look Code

The code to look for an obstacle and return true if detected is implemented
in the function named lookForObstacle. You saw this function in the main tab
of the sketch described in Chapter 6, Testing the Robot’s Basic Functions. Because
this code will be extended in this and later chapters to support additional
sensors, it makes sense to extract this code into its own tab. The download
code for all sketches introduced from here on in have a tab named Look that
contains the code shown in Example 9-1.

Example 91. Code for the Look tab
/**********************
 code to look for obstacles
**********************/

void lookBegin()
{
 irSensorBegin(); // initialize sensors
}

// returns true if the given obstacle is detected
boolean lookForObstacle(int obstacle)
{
 switch(obstacle) {
 case OBST_FRONT_EDGE: return irEdgeDetect(SENSE_IR_LEFT) && irEdgeDetect(SENSE_IR_RIGHT);
 case OBST_LEFT_EDGE: return irEdgeDetect(SENSE_IR_LEFT);
 case OBST_RIGHT_EDGE: return irEdgeDetect(SENSE_IR_RIGHT);
 }
 return false;
}

// function to check if robot can continue moving when taking evasive action
// returns true if robot is not blocked when moving to avoid obstacles
// this 'placeholder' version always returns true
boolean checkMovement()
{
 return true;
}

As mentioned in Chapter 6, Testing the Robot’s Basic Functions, the lookForOb
stacle function enables you to enquire if an obstacle is detected and will return
true if so. The case statement (see http://arduino.cc/en/Reference/SwitchCase)
tries to match the obstacle variable with one of the obstacle constants (de
fined in robotDefines.h). If there is a match, the irEdgeDetect function is

149Chapter 9

The Look Code

http://arduino.cc/en/Reference/SwitchCase

called with relevant sensor and this will return true if an object is detected on
that sensor. If no object is detected, the function returns OBST_NONE. The look
functionality can be expanded by adding code to the case statement and call
ing appropriate sensor functions, as you will see later in this chapter.

But first, let’s use the existing functionality to give the robot the ability to follow
lines and detect edges.

Edge Detection

Edge detection is one of the easier behaviors to understand and program. The
robot moves until it encounters an edge; it should then change direction to
avoid moving over the edge. Edges are detected by using reflectance sensors
(see: Chapter 8, Tutorial: Introduction to Sensors). Typically, the edge is an area
that does not reflect, for example the edge of a table.

In the sketch that follows, the robot will remain within a reflective surface (for
example, a large white sheet of paper) that is bounded by a black line. Black
electrical tape (3/4 inch or wider) works well but a black line of similar width
drawn with magic marker or paint can also work as the ‘edge’. To avoid dam
aging your robot, an actual table is not recommended for early experiments
until you are sure you have everything working correctly.

Figure 9-2 shows how the robot responds to moving over an edge. In panel1,
the sensors do not detect an edge so the robot moves forward. In panel 2, the
left sensor moves off the reflective surface so the robot stops and rotates 120
degrees. In panel 3, the robot completes its rotation; panel 4, shows the robot
moving forward again.

150 Make an Arduino-Controlled Robot

Edge Detection

Figure 9-2. Robot stays within the reflective area

Example 92. Main sketch code for edge detection
/**
myRobotEdge.ino

Robot sketch to move within area bordered by a non-reflective line

Michael Margolis 7 July 2012
**/

151Chapter 9

Edge Detection

#include <AFMotor.h> // adafruit motor shield library
#include "RobotMotor.h" // 2wd or 4wd motor library

#include "robotDefines.h" // these were the global defines from myRobot

/// Setup runs at startup and is used configure pins and init system variables
void setup()
{
 Serial.begin(9600);
 blinkNumber(8); // open port while flashing. Needed for Leonardo only

 lookBegin(); /// added Look tab
 moveBegin(); /// added Move tab
 Serial.println("Ready");
}

void loop()
{
 /// code for roaming around and avoiding obstacles
 if(lookForObstacle(OBST_FRONT_EDGE) == true)
 {
 Serial.println("both sensors detected edge");
 timedMove(MOV_BACK, 300);
 moveRotate(120);
 while(lookForObstacle(OBST_FRONT_EDGE) == true)
 moveStop(); // stop motors if still over cliff
 }
 else if(lookForObstacle(OBST_LEFT_EDGE) == true)
 {
 Serial.println("left sensor detected edge");
 timedMove(MOV_BACK, 100);
 moveRotate(30);
 }
 else if(lookForObstacle(OBST_RIGHT_EDGE) == true)
 {
 Serial.println("right sensor detected edge");
 timedMove(MOV_BACK, 100);
 moveRotate(-30);
 }
 else
 {
 moveSetSpeed(MIN_SPEED);
 moveForward();
 }
}

// function to indicate numbers by flashing the built-in LED
void blinkNumber(byte number) {
 pinMode(LED_PIN, OUTPUT); // enable the LED pin for output
 while(number--) {
 digitalWrite(LED_PIN, HIGH); delay(100);

152 Make an Arduino-Controlled Robot

Edge Detection

 digitalWrite(LED_PIN, LOW); delay(400);
 }
}

The code for this sketch is derived from the myRobotMove sketch discussed
in Chapter 7, Controlling Speed and Direction. You can download the example
code, locate myRobotEdge, open the sketch and upload it to the robot. Or you
can derive the sketch yourself:

1. Open the myRobotMove sketch in the example code and do a Save As and
name it myRobotEdge.

2. Create the Look tab.

3. Locate and move the two functions at the end of the main tab starting
from the comment “code to look for obstacles” into the Look tab. This code
is listed in the section: “The Look Code” (page 149).

4. Replace the main sketch code with the code listed here: Example 9-2.

5. Compile and upload the code

Place the robot within the bounded surface and switch the power on (the robot
calibrates the sensors after it is switched on so all the sensors should be over
the reflective area). After a short delay the robot will move forward until it
detects a non-reflective edge.

The loop code checks if an edge is detected directly ahead with both sensors
(OBST_FRONT_EDGE), or on the left (OBST_LEFT_EDGE) or right (OBST_RIGHT_EDGE).
If the edge was ahead, the robot backs away for 0.3 seconds, rotates 120 de
grees and then moves forward again. If the edge was to the side, the robot
turns 30 degrees away from that side and then moves forward. Feel free to
experiment with the angles to get a behaviour that suits the area you have
defined for containing your robot.

Is Your Robot Not Moving Right?

If your robot is not rotating enough or too much
when attempting to move away from an edge, you
may need to calibrate rotation rates; see “Controlling
Motor Speed” (page 109). If the robot ’stutters’ in
stead of turning, try increasing the speed by chang
ing the loop code from moveSet
Speed(MIN_SPEED); to moveSetSpeed(MIN_SPEED
+10);.

If the robot does not detect the edge, you can make
it more sensitive by reducing the value of irE
dgeThreshold in the IrSensors tab.

153Chapter 9

Edge Detection

Line Following

Line following is a classic task for a robot. The robot uses sensors to determine
its position in relation to a line and follows this line by moving to keep its
sensors centered above the line. Figure 9-3 shows a robot moving around a
track marked with a black line on a white surface.

Figure 9-3. Robot follows a black line on a white surface

In Panel 1, the robot is approaching a corner but is still centered over the line
- the motors are both running at the same speed (indicated by the equal length
arrows), and the robot moves straight ahead. The robot has reached the left

154 Make an Arduino-Controlled Robot

Line Following

hand curve in panel 2—the right motor speed is increased, the left slowed to
turn the robot to the right. Panel 3 shows the robot completing the turn. In
Panel 4, the robot is about to reach a curve to the left where it will continue to
adjust motor speeds to keep the sensors over the line.

The illustrations that follow show what happens in more detail. Figure 9-4
shows the location of the sensor with respect to the line when the robot is
centered. The left and right sensors are above the reflective surface. Lots of
light will reflect back to the sensor and the analogRead values are low. The
center sensor is above the black line so has little reflected light, causing the
reading to be high. The difference in readings between left and right indicates
drift and is close to zero so both motors will be driven at the same speed—the
robot moves straight ahead. You can read about how to display sketch data in
real time in “Seeing Sketch Data” (page 160).

Figure 9-4. Robot centered on black line

Figure 9-5 shows the robot to the left of the line because the line is curving to
the right. The left sensor detects maximum reflection (the analogRead value is
low). As the center sensor moves towards the edge of the line, the reflection
increases (decreasing the analogRead value). The right sensor moves towards
the line so its reading increases. The drift (the difference between the left and
right) is positive so the left motor speeds up and the right motor slows down
—the robot turns to the right.

155Chapter 9

Line Following

Figure 9-5. Robot off to left of line

Figure 9-6 shows the robot to the right of the line because the line is curving
to the left. The right sensor detects maximum reflection (the analogRead value
is low). The reading from the center sensor increases as it moves towards the
edge of the line. The left sensor moves towards the line so its reading increases.
The drift is negative so the left motor slows down and the right motor speeds
up—the robot turns to the left.

Figure 9-6. Robot off to right of line

For the robot to successfully follow a curvy line, the movement must be re
sponsive enough to make sharp turns but not so responsive that it zigs and
zags its way along even straight lines. Tuning the software to get this just right
requires experimentation and patience. The code that follows uses the differ
ence value between the left and right sensors to adjust the differential motor
speed. The preceding figures display the relative signal levels from the sensors
and the difference value is indicated as ‘Drift’. Sensitivity is controlled by map
ping the drift value to the actual motor differential speed.

156 Make an Arduino-Controlled Robot

Line Following

Example 9-3 shows the line sense code that calculates the drift value (you’ll
see it again in a moment when you see the complete listing for the sketch):

Example 93. Line sense code for calculating drift
//returns drift - 0 if over line, minus value if left, plus if right
int lineSense()
{
 int leftVal = analogRead(SENSE_IR_LEFT);
 int centerVal = analogRead(SENSE_IR_CENTER);
 int rightVal = analogRead(SENSE_IR_RIGHT);

 int leftSense = centerVal - leftVal;
 int rightSense = rightVal - centerVal;
 int drift = rightVal - leftVal ;
 return drift;
}

The drift and desired speed are passed to the lineFollow function to drive the
robot. To adjust the motor’s sensitivity, drift is divided by a ‘damping’ factor -
the higher the factor, the less sensitive to drift. Decrease the damping if you
need to make the robot more sensitive, for example, if it is not turning fast
enough to follow sharp bends. Increase the damping if the robot is unneces
sarily zig-zagging on straight lines. The drift value is subtracted from the speed
for the left motor and added to the speed of the right motor to provide a
differential speed proportional to drift. The Arduino constrain function is used
to ensure the values remain within the valid range for speed (0 to 100 %).
Depending on the radius of your bends, you may not be able to completely
eliminate the zig-zags.

int lineFollow(int drift, int speed)
{
 int leftSpeed = constrain(speed - (drift / damping), 0, 100);
 int rightSpeed = constrain(speed + (drift / damping), 0, 100);

 motorForward(MOTOR_LEFT, leftSpeed);
 motorForward(MOTOR_RIGHT, rightSpeed);
}

Example 94. Complete listing for code in the myRobotLine main tab
/**
myRobotLine.ino

Robot sketch to follow lines

Michael Margolis 7 July 2012
**/

157Chapter 9

Line Following

#include <AFMotor.h> // adafruit motor shield library
#include "RobotMotor.h" // 2wd or 4wd motor library

#include "robotDefines.h" // these were the global defines from myRobot

int speed = MIN_SPEED; // speed in percent when moving along a straight line

/// Setup runs at startup and is used configure pins and init system variables
void setup()
{
 Serial.begin(9600);
 blinkNumber(8); // open port while flashing. Needed for Leonardo only

 lookBegin(); /// added Look tab
 moveBegin(); /// added Move tab
 lineSenseBegin(); // initialize sensors
 Serial.println("Ready");
}

void loop()
{
 int drift = lineSense();
 lineFollow(drift, speed);
}

// function to indicate numbers by flashing the built-in LED
void blinkNumber(byte number) {
 pinMode(LED_PIN, OUTPUT); // enable the LED pin for output
 while(number--) {
 digitalWrite(LED_PIN, HIGH); delay(100);
 digitalWrite(LED_PIN, LOW); delay(400);
 }
}

/****************************
 Line Sensor code
****************************/

int damping = 5; //1 is most sensitive, range 1 to 1023)

void lineSenseBegin()
{

}

//returns drift - 0 if over line, minus value if left, plus if right
int lineSense()
{
 int leftVal = analogRead(SENSE_IR_LEFT);
 int centerVal = analogRead(SENSE_IR_CENTER);
 int rightVal = analogRead(SENSE_IR_RIGHT);

 int leftSense = centerVal - leftVal;
 int rightSense = rightVal - centerVal;

158 Make an Arduino-Controlled Robot

Line Following

 int drift = rightVal - leftVal ;
 return drift;
}

int lineFollow(int drift, int speed)
{
 int leftSpeed = constrain(speed - (drift / damping), 0, 100);
 int rightSpeed = constrain(speed + (drift / damping), 0, 100);

 motorForward(MOTOR_LEFT, leftSpeed);
 motorForward(MOTOR_RIGHT, rightSpeed);
}

The code for this sketch is derived from the myRobotEdge sketch discussed
earlier in this chapter. You can download the example code, locate myRobot
Line, open the sketch and upload it to the robot. Or you can derive the sketch
yourself:

1. Open the myRobotEdge sketch in the example code and do a Save As and
name it myRobotLine.

2. Locate the defines for locations of sensors in the robotDefines tab and add
the center sensor following the defines for the left and right sensors: const
int SENSE_IR_CENTER = 2;.

3. Replace the main sketch code with the code listed here: Example 9-4.

4. Compile and upload the code

Place the robot on the surface with the center sensor above the line and switch
the power on. After a short delay the robot will move forward and track the
line. The robots ability to follow the line depends on many factors:

• Line thickness - the optimum thickness depends on the spacing of the
sensors. 3/4 inch works well with the robot built as described but you can
experiment with different line widths and different sensor spacing.

• Sensor height above surface - the sensors are less sensitive when further
from the surface- try using spacers to move the sensors closer to the sur
face.

• Speed - too slow and the robot may not have enough torque, too fast and
the robot will overshoot the line. Try running at a speed around 10% above
minimum speed if the robot appears to be sluggish - in the top of the main
tab, change the code to : int speed = MIN_SPEED+10;.

159Chapter 9

Line Following

• Robot over sensitive - if the robot follows the line but zig-zags excessively ,
increase the damping value in the line sensor code in the main tab. Try
larger values until you find a range that works. Note that you may need a
different damping value if you change the speed.

• Robot not sensitive enough - if the robot drifts off the line, decrease the
damping value in the line sensor code in the main tab. Try smaller values
until you find a range that works. Note that you may need a different
damping value if you change the speed.

Seeing Sketch Data

Viewing the values of variables in real time makes it much easier to tune or
debug your code. You can view values printed to the serial port on the Serial
Monitor, but that can be difficult to read if these values are changing quickly.
Appendix C describes how to use a Processing sketch to display data as bar
charts, similar to the that shown earlier in this chapter (see Figure 9-4).

Figure 9-7. Arduino Data Displayed in Processing

Here is how the line following sketch should be modified to display the sensor
value:

Add the DataDisplay tab to the sketch (the myRobotLineDisplay sketch in the
example code download (“How to Contact Us” (page xv)) has this tab added
as well as all the other code changes that follow).

160 Make an Arduino-Controlled Robot

Seeing Sketch Data

In the main sketch, add constants identifying the list of items to be displayed,
labels for each item, and the minimum and maximum values. Example 9-5
shows the constants used to produce the display in Figure 9-7.

Example 95. Constants for display labels
enum {DATA_start,DATA_LEFT,DATA_CENTER,DATA_RIGHT,
 DATA_DRIFT,DATA_L_SPEED,DATA_R_SPEED, DATA_nbrItems};

char* labels[] =
 {"", "Left Line", "Center Line", "Right Line","Drift", "Left Speed", "Right Speed"};

int minRange[] =
 {0, 0, 0, 0, -1023, 0, 0};

int maxRange[] =
 {0, 1023, 1023, 1023, 1023, 100, 100};

Add the function call shown in Example 9-6 to setup().

Example 96. Adding a call to begin the data display
 dataDisplayBegin(DATA_nbrItems, labels, minRange, maxRange);

You can then call the sendData function to send the values you want to display.
Example 9-7 shows the lineSense() function updated to send sensor data.

Example 97. lineSense now sending sensor data
//returns drift - 0 if over line, minus value if left, plus if right
int lineSense()
{
 int leftVal = analogRead(SENSE_IR_LEFT);
 int centerVal = analogRead(SENSE_IR_CENTER);
 int rightVal = analogRead(SENSE_IR_RIGHT);

 sendData(DATA_LEFT, leftVal); // send left sensor value
 sendData(DATA_CENTER, centerVal); // send center sensor value
 sendData(DATA_RIGHT, rightVal); // send right sensor values

 int leftSense = centerVal - leftVal;
 int rightSense = rightVal - centerVal;
 int drift = rightVal - leftVal ;

161Chapter 9

Seeing Sketch Data

 sendData(DATA_DRIFT, drift); // send drift sensor values

 return drift;
}

Motor speed can be displayed by adding calls to sendData in the lineFollow
function as shown in Example 9-8.

Example 98. Adding support for displaying motor speed
int lineFollow(int drift, int speed)
{
 int leftSpeed = constrain(speed - (drift / damping), 0, 100);
 int rightSpeed = constrain(speed + (drift / damping), 0, 100);

 sendData(DATA_L_SPEED, leftSpeed); // send left motor speed
 sendData(DATA_R_SPEED, rightSpeed); // send right motor speed

 motorForward(MOTOR_LEFT, leftSpeed);
 motorForward(MOTOR_RIGHT, rightSpeed);
}

162 Make an Arduino-Controlled Robot

Seeing Sketch Data

This chapter describes how to use a distance sensor to enable the robot to see
and avoid obstacles as it moves around. The first sketch, named myRobotWan
der, drives the robot forward, and if it detects an obstacle, it stops and rotates
the robot to try and find a clear path to move forward. Another sketch, named
myRobotScan, adds a servo that can rotate the sensor so the robot can look left
and right without having to twist itself around.

Hardware Required

• Ping distance sensor from Parallax; see “Sonar Distance Sensors” (page
137) in Chapter 8, Tutorial: Introduction to Sensors.

• Servo required for myRobotScan; see “Sonar Distance Sensors” (page 137)
in Chapter 8, Tutorial: Introduction to Sensors.

Connect the Ping sensor and servo the right way around; the black wires
(ground) go nearest the pin marked -, the white (or lighter color) signal wire
goes nearest the pin marked S (Figure 10-1).

Figure 10-1. Ping sensor and servo plug into pins on the motor shield

163

Autonomous Movement 10

Sketches Used in This Chapter

myRobotWander.ino

Uses a SONAR distance sensor (the Ping sensor) to enable the robot to see
and avoid obstacles as it wanders around. #defines are added for front
and rear obstacles (only the front is implemented in the sketch), the look
module has added support for distance sensing. This sketch introduces a
new tab, named Distance, which contains the Ping sensor code that you
originally saw in “Sonar Distance Sensors” (page 137).

myRobotScan.ino

Has the sensor mounted on a servo so it can scan independently of robot
movement. This code is similar to myrobotWander with the Look module
enhanced to support control of the servo to look around. A new module
named softServo is added for servo control.

The Distance tab’s code is not listed in this chapter, but it is included in
the example code (see “How to Contact Us” (page xv) for information
on downloading the example code).

Figure 10-2 shows the modules used in this chapter.

Figure 10-2. myRobotWander and myRobotScan Sketches

164 Make an Arduino-Controlled Robot

Sketches Used in This Chapter

Mounting a Ping Distance Sensor

There are various ways to mount a Ping sensor. You can buy a commercial off-
the-shelf product such as the one illustrated in Figure 10-3.

The bracket shown in Figure 10-4 and Figure 10-5 is another commercial off-
the-shelf bracket that mounts the sensor on a servo so it can be rotated to scan
for objects on either side of the robot. If you use a commercial off-the-shelf
product, follow the supplied instructions for assembly and mounting.

Figure 10-3. Parallax Ping Bracket

165Chapter 10

Mounting a Ping Distance Sensor

Figure 10-4. Parallax Ping Servo Bracket Figure 10-5. Parallax servo bracket parts

If you prefer to make a bracket, it’s easy to do, as the next section explains.

Making a Mount for the Ping Sensor
You can make a simple mount from a small piece of wood. A small mount can
be cut from 1” x 1 3/4” x 3/8” pine. You can drill holes for bolts (4-40 or M3) or
use small wood screws to attach the sensor. The holes are close to the edges,
so drill pilot holes if you use wood screws. Figure 10-6 shows a template you
can use for the mount. You can see the Ping sensor attached to the mount in
Figure 10-7 and Figure 10-8.

Figure 10-6. Dimensions for the holes for a simple mount

Figure 10-7 shows the a small block of wood cut and drilled.

166 Make an Arduino-Controlled Robot

Mounting a Ping Distance Sensor

Figure 10-7. Ping sensor with homemade wood mount,
not fully assembled

Figure 10-8. Rear view of mount; note nuts used as
spacers between PCB and mount

Figure 10-9 and Figure 10-10 show the mount attached to the robot.

Figure 10-9. Sensor can be mounted directly to the chassis or on a servo

167Chapter 10

Mounting a Ping Distance Sensor

Figure 10-10. Feel free to make your mount in a different size or shape

Mounting the Ping Sensor in a Fixed Position
The manufactured mounts are supplied with mounting hardware. If you are
using a homemade wooden mount, you can attach it to the base with two
wood screws from the underside of the top plate.

Mounting the Ping Sensor on a Servo
The wooden mounts can be hot glued or screwed onto the servo horn supplied
with the servo as shown in Figure 10-11. Figure 10-11 showed the sensor at
tached to a servo that’s attached to the 2WD. Figure 10-12 shows the sensor
on a servo attached to the 4WD.

168 Make an Arduino-Controlled Robot

Mounting a Ping Distance Sensor

Figure 10-11. Servo mount showing attachment detail

169Chapter 10

Mounting a Ping Distance Sensor

Figure 10-12. 2WD with sensor mounted onto servo

Letting the Robot Wander

The myRobotWander sketch adds support for a fixed forward-facing distance
sensor that enables the robot to move forward when no obstacle is detected
(panel 1 in Figure 10-13). The robot stops when approaching an obstacle ahead
(panel 2). It rotates left (panel 3) to see if there is an obstacle in that direction.
If no obstacle is seen, the robot will turn in that direction and move off. If the
left is obstructed, it will turn right and move off in that direction (panel 5). If
both left and right are blocked, the robot will turn around and move off in the
opposite direction.

170 Make an Arduino-Controlled Robot

Letting the Robot Wander

Figure 10-13. Ping Sensor fixed in place to look for obstacles ahead

The code to provide this behaviour is in the sketch named myrobotWander.
Example 10-1 shows the main myRobotWander tab for this sketch.

Example 101. Contents of the sketch’s main tab
/**
myRobotWander.ino

Robot wanders using forward scanning for obstacle avoidance

Michael Margolis 28 May 2012
**/

#include <AFMotor.h> // adafruit motor shield library
#include "RobotMotor.h" // 2wd or 4wd motor library

#include "robotDefines.h" // global defines

// Setup runs at startup and is used configure pins and init system variables
void setup()
{
 Serial.begin(9600);
 blinkNumber(8); // open port while flashing. Needed for Leonardo only

 lookBegin();
 moveBegin();

171Chapter 10

Letting the Robot Wander

 moveSetSpeed(MIN_SPEED + 10) ; // Run at 10% above minimum speed
 Serial.println("Ready");
}

void loop()
{
 moveForward();
 roam(); // look around
}

// function to indicate numbers by flashing the built-in LED
void blinkNumber(byte number) {
 pinMode(LED_PIN, OUTPUT); // enable the LED pin for output
 while(number--) {
 digitalWrite(LED_PIN, HIGH); delay(100);
 digitalWrite(LED_PIN, LOW); delay(400);
 }
}

This simply initializes the ‘Look’ module (“The Look Code” (page 149)) and
‘Move’ module (“Core Movement Code” (page 124)) and then calls a function
named roam that does all the hard work of looking for obstacles and moving
to avoid them. The roam function is added into code in the Look tab;
Example 10-2 replaces the entirety of the Look tab code that you saw in earlier
examples.

Example 102. The new version of the Look tab code
/**********************
 code to look for obstacles
**********************/

const int MIN_DISTANCE = 8; // robot stops when object is nearer (in inches)
const int CLEAR_DISTANCE = 24; // distance in inches considered attractive to move
const int MAX_DISTANCE = 150; // the maximum range of the distance sensor

// angles left, right, center
const int lookAngles[] = { -30, 30, 0};

const byte pingPin = 10; // digital pin 10

void lookBegin()
{
 irSensorBegin(); // initialize sensors
}

// returns true if the given obstacle is detected
boolean lookForObstacle(int obstacle)
{

172 Make an Arduino-Controlled Robot

Letting the Robot Wander

 switch(obstacle) {
 case OBST_FRONT_EDGE: return irEdgeDetect(DIR_LEFT) && irEdgeDetect(DIR_RIGHT);
 case OBST_LEFT_EDGE: return irEdgeDetect(DIR_LEFT);
 case OBST_RIGHT_EDGE: return irEdgeDetect(DIR_RIGHT);
 case OBST_FRONT: return lookAt(lookAngles[DIR_CENTER]) <= MIN_DISTANCE;
 }
 return false;
}

// returns the distance of objects at the given angle
// this version rotates the robot
int lookAt(int angle)
{
 moveRotate(angle); // rotate the robot

 int distance, samples;
 long cume;
 distance = samples = cume = 0;
 for(int i =0; i < 4; i++)
 {
 distance = pingGetDistance(pingPin);
 if(distance > 0)
 {
 // printlnValue(" D= ",distance);
 samples++;
 cume+= distance;
 }
 }
 if(samples > 0)
 distance = cume / samples;
 else
 distance = 0;

 moveRotate(-angle); // rotate back to original direction
 return distance;
}

// function to check if robot can continue moving in current direction
// returns true if robot is not blocked moving in current direction
// this version only tests for obstacles in front
boolean checkMovement()
{
 boolean isClear = true; // default return value if no obstacles
 if(moveGetState() == MOV_FORWARD)
 {
 if(lookForObstacle(OBST_FRONT) == true)
 {
 isClear = false;
 }
 }
 return isClear;
}

// Look for and avoid obstacles by rotating robot

173Chapter 10

Letting the Robot Wander

void roam()
{
 int distance = lookAt(lookAngles[DIR_CENTER]);
 if(distance == 0)
 {
 moveStop();
 Serial.println("No front sensor");
 return; // no sensor
 }
 else if(distance <= MIN_DISTANCE)
 {
 moveStop();
 //Serial.print("Scanning:");
 int leftDistance = lookAt(lookAngles[DIR_LEFT]);
 if(leftDistance > CLEAR_DISTANCE) {
 // Serial.print(" moving left: ");
 moveRotate(-90);
 }
 else {
 delay(500);
 int rightDistance = lookAt(lookAngles[DIR_RIGHT]);
 if(rightDistance > CLEAR_DISTANCE) {
 // Serial.println(" moving right: ");
 moveRotate(90);
 }
 else {
 // Serial.print(" no clearence : ");
 distance = max(leftDistance, rightDistance);
 if(distance < CLEAR_DISTANCE/2) {
 timedMove(MOV_BACK, 1000); // back up for one second
 moveRotate(-180); // turn around
 }
 else {
 if(leftDistance > rightDistance)
 moveRotate(-90);
 else
 moveRotate(90);
 }
 }
 }
 }
}

// the following is based on loop code from myRobotEdge
// robot checks for edge and moves to avoid
void avoidEdge()
{
 if(lookForObstacle(OBST_FRONT_EDGE) == true)
 {
 Serial.println("left and right sensors detected edge");
 timedMove(MOV_BACK, 300);
 moveRotate(120);
 while(lookForObstacle(OBST_FRONT_EDGE) == true)
 moveStop(); // stop motors if still over cliff

174 Make an Arduino-Controlled Robot

Letting the Robot Wander

 }
 else if(lookForObstacle(OBST_LEFT_EDGE) == true)
 {
 Serial.println("left sensor detected edge");
 timedMove(MOV_BACK, 100);
 moveRotate(30);
 }
 else if(lookForObstacle(OBST_RIGHT_EDGE) == true)
 {
 Serial.println("right sensor detected edge");
 timedMove(MOV_BACK, 100);
 moveRotate(-30);
 }
}

The roam function uses information reported by the distance sensor to detect
obstacles. The distance sensor code is described in “Sonar Distance Sensors”
(page 137), the sketches in this chapter contain the code in a new tab named
Distance.

The checkMovement function introduced in the previous chapter is enhanced
here to check for and return false if there are obstacles in front when the robot
is moving forward. checkMovement is called when the robot is taking evasive
action during a timed move. You can add additional checks into this function
if needed. For example, if you add sensors to detect an edge to the rear of the
robot and added your own code that returned true when this sensor detected
an edge, the logic shown in Example 10-3 would prevent the robot from going
over an edge when backing up to avoid an obstacle in front.

Example 103. The checkMovement function
boolean checkMovement()
{
 boolean isClear = true; // default return value if no obstacles
 if(moveGetState() == MOV_FORWARD)
 {
 if(lookForObstacle(OBST_FRONT) == true)
 {
 isClear = false;
 }
 }
 else if(moveGetState() == MOV_BACK)
 {
 if(lookForObstacle(OBST_REAR_EDGE) == true)
 {
 isClear = false;

175Chapter 10

Letting the Robot Wander

 }
 }
 return isClear;
}

In this fragment, if the robot is moving backward a call is made to lookForOb
stacle (with a new case you need to add for a rear edge sensor) that checks if
an edge is detected at that back of the robot.

The rest of the Look code is similar to the code described in Chapter 9, Modifying
the Robot to React to Edges and Lines. The lookForObstacle function has an
additional case for detecting an obstacle in front (OBST_FRONT). This case calls
a new function named lookAt that is given the angle to look towards, and
returns the distance of the nearest object detected at that angle. That distance
is compared to a minimum allowable distance and lookForObstacle returns
true if the robot is any closer (in other words, it has detected an obstacle).

The lookAt function (repeated in Example 10-4 from the previous listing) ro
tates the robot to the desired angle using the moveRotate command described
in Chapter 7, Controlling Speed and Direction.

Example 104. The lookAt function
// returns the distance of objects at the given angle
// this version rotates the robot
int lookAt(int angle)
{
 moveRotate(angle); // rotate the robot

 int distance, samples;
 long cume;
 distance = samples = cume = 0;
 for(int i =0; i < 4; i++)
 {
 distance = pingGetDistance(pingPin);
 if(distance > 0)
 {
 samples++;
 cume+= distance;
 }
 }
 if(samples > 0)
 distance = cume / samples;
 else
 distance = 0;

176 Make an Arduino-Controlled Robot

Letting the Robot Wander

 moveRotate(-angle); // rotate back to original direction
 return distance;
}

The pingGetDistance function (Example 8-4) returns the distance in inches. To
minimize spurious reflection affecting the readings, the function is called four
times to get an average distance. After taking the readings, the robot is rotated
so it is facing in the original direction. Because the robot doesn’t rotate to
exactly the angle requested (due to changes in battery voltage, friction, etc.),
the robot may not end up facing exactly the same direction and may appear
to zig-zag as it moves forward.

The #defines shown in Example 10-5 are added to the robotDefines tab.

Example 105. New constants for front and rear detection
const int OBST_FRONT = 4; // obstacle in front
const int OBST_REAR = 5; // obstacle behind

Adding Edge Detection

Unlike the earlier chapters, the sketches in this chap
ter do not try to avoid edges. This enables the robot
to wander over surfaces such as wooden floors that
could create false triggers on the edge sensors. The
edge detection code that was in the loop of the myR
obotEdge sketch has been moved to the Look tab
into a function named avoidEdge. If you want to add
edge detection capability to these sketches, add a
call to avoidEdge in loop as follows:

void loop()
{
 moveForward();
 roam(); // look around
 avoidEdge(); // avoid edges
}

177Chapter 10

Letting the Robot Wander

Adding Scanning

In the previous sketch, the robot needs to turn in order to look left and right.
Mounting the distance sensor on a servo adds the ability to rotate the sensor
so the robot can ‘turn its head’ to look around as shown in Figure 10-14.

Figure 10-14. Robot Scans using Ping Sensor Mounted on Servo

The sketch logic is the same, but the Look module has code added to command
a servo to rotate left and right for brief periods. This allows the sensor to look
to see if it can detect an obstacle (see Figure 10-15). If your distance sensor is
not centered, you can add a line in setup() that will center the servo.
Example 10-6 shows the complete setup function with the servo centering line
added.

Example 106. The new setup function
void setup()
{
 Serial.begin(9600);
 blinkNumber(8); // open port while flashing. Needed for Leonardo only

 lookBegin();
 moveBegin();

178 Make an Arduino-Controlled Robot

Adding Scanning

 moveSetSpeed(MIN_SPEED + 10) ; // Run at 10% above minimum speed
 softServoWrite(90, 2000); // Add this line to center the servo
 Serial.println("Ready");
}

The call to softServoWrite centers the servo and waits for two seconds. If your
sensor is not centered, follow these steps:

1. Switch the power off

2. Unscrew the servo shaft screw (see the instructions supplied with the Ping
bracket)

3. Lift the Ping mounting bracket and reposition so it is facing forward

4. Replace the servo shaft screw

5. Power on and recheck

Figure 10-15. Servo used to scan left, center, and right

The servo angle is controlled by adjusting the pulse width on the Arduino pin
connected to the servo. 1.5ms pulses will center the servo, and increasing or
decreasing the pulse width will turn the servo one direction or the other.

The exact relationship between pulse width and servo angle varies
across different servo products. If your servo turns right when it should
turn left, swap the right and left servo angles in the servoAngles array:

// servo angles left, right, center

const int servoAngles[] = { 150, 30, 90};

179Chapter 10

Adding Scanning

Arduino has a Servo library that can control up to 12 servos, however this is
not used in this sketch for two reasons. The Servo library enables you to send
an angle to the servo and carry on executing sketch code while the servo is
being moved in the background, but your code must wait until the servo is
facing the desired direction before requesting a reading from the distance
sensor. However, the main reason not to use the Servo library is because it
requires exclusive use of one of the Arduino chip’s hardware timers (timer 1)
and timers are in short supply on a standard Arduino chip (see Appendix F,
Arduino Pin and Timer Usage).

The code to control the servo goes in a tab named Softservo (see
Example 10-7).

Example 107. The code from the Softservo tab
/*******************************
 Softservo.ino
 software servo control without using timers
 note that these functions block until complete
*******************************/

int servoPin;

void softServoAttach(int pin)
{
 servoPin = pin;
 pinMode(pin, OUTPUT);
}

// writes given angle to servo for given delay in milliseconds
void softServoWrite(int angle, long servoDelay)
{
 int pulsewidth = map(angle, 0, 180, 544, 2400); // width in microseconds
 do {
 digitalWrite(servoPin, HIGH);
 delayMicroseconds(pulsewidth);
 digitalWrite(servoPin, LOW);
 delay(20); // wait for 20 milliseconds
 servoDelay -= 20;
 } while(servoDelay >=0);
}

The softServoAttach function stores the pin number that the servo is attached
to. The softServoWrite function converts the desired angle into a pulse width

180 Make an Arduino-Controlled Robot

Adding Scanning

and creates the pulse using digitalWrite with a pulse width determined by
a call to delayMicroseconds. The pulses are sent repeatedly for the duration of
the given servoDelay which is a period sufficient for the servo to turn to the
desired direction.

The Look code is similar to the code described at the beginning of this chapter,
but here the lookAt function calls softServoWrite to rotate the servo instead
of rotating the entire robot. Example 10-8 shows the Look tab used in the
myRobotScan sketch.

Example 108. The modified Look tab code
/**********************
 code to look for obstacles
**********************/

// servo defines
const int sweepServoPin = 9; // pin connected to servo
const int servoDelay = 500; // time in ms for servo to move

const int MIN_DISTANCE = 8; // robot stops when object is nearer (in inches)
const int CLEAR_DISTANCE = 24; // distance in inches considered attracive to move
const int MAX_DISTANCE = 150; // the maximum range of the distance sensor

// servo angles left, right, center
const int servoAngles[] = { 150, 30, 90};

const byte pingPin = 10; // digital pin 10

void lookBegin()
{
 irSensorBegin(); // initialize sensors
 softServoAttach(sweepServoPin); /// attaches the servo pin to the servo object
}

// returns true if the given obstacle is detected
boolean lookForObstacle(int obstacle)
{
 switch(obstacle) {
 case OBST_FRONT_EDGE: return irEdgeDetect(DIR_LEFT) && irEdgeDetect(DIR_RIGHT);
 case OBST_LEFT_EDGE: return irEdgeDetect(DIR_LEFT);
 case OBST_RIGHT_EDGE: return irEdgeDetect(DIR_RIGHT);
 case OBST_FRONT: return lookAt(servoAngles[DIR_CENTER]) <= MIN_DISTANCE;
 }
 return false;
}

// returns the distance of objects at the given angle
int lookAt(int angle)
{
 softServoWrite(angle, servoDelay); // wait for servo to get into position

181Chapter 10

Adding Scanning

 int distance, samples;
 long cume;
 distance = samples = cume = 0;
 for(int i =0; i < 4; i++)
 {
 distance = pingGetDistance(pingPin);
 if(distance > 0)
 {
 // printlnValue(" D= ",distance);
 samples++;
 cume+= distance;
 }
 }
 if(samples > 0)
 distance = cume / samples;
 else
 distance = 0;

 if(angle != servoAngles[DIR_CENTER])
 {
 Serial.print("looking at dir ");
 Serial.print(angle), Serial.print(" distance= ");
 Serial.println(distance);
 softServoWrite(servoAngles[DIR_CENTER], servoDelay/2);
 }
 return distance;
}

// function to check if robot can continue moving in current direction
// returns true if robot is not blocked moving in current direction
// this version only tests for obstacles in front
boolean checkMovement()
{
 boolean isClear = true; // default return value if no obstacles
 if(moveGetState() == MOV_FORWARD)
 {
 if(lookForObstacle(OBST_FRONT) == true)
 {
 isClear = false;
 }
 }
 return isClear;
}

// Look for and avoid obstacles using servo to scan
void roam()
{
 int distance = lookAt(servoAngles[DIR_CENTER]);
 if(distance == 0)
 {
 moveStop();
 Serial.println("No front sensor");
 return; // no sensor
 }

182 Make an Arduino-Controlled Robot

Adding Scanning

 else if(distance <= MIN_DISTANCE)
 {
 moveStop();
 //Serial.print("Scanning:");
 int leftDistance = lookAt(servoAngles[DIR_LEFT]);
 if(leftDistance > CLEAR_DISTANCE) {
 // Serial.print(" moving left: ");
 moveRotate(-90);
 }
 else {
 delay(500);
 int rightDistance = lookAt(servoAngles[DIR_RIGHT]);
 if(rightDistance > CLEAR_DISTANCE) {
 // Serial.println(" moving right: ");
 moveRotate(90);
 }
 else {
 // Serial.print(" no clearence : ");
 distance = max(leftDistance, rightDistance);
 if(distance < CLEAR_DISTANCE/2) {
 timedMove(MOV_BACK, 1000); // back up for one second
 moveRotate(-180); // turn around
 }
 else {
 if(leftDistance > rightDistance)
 moveRotate(-90);
 else
 moveRotate(90);
 }
 }
 }
 }
}

// the following is based on loop code from myRobotEdge
// robot checks for edge and moves to avoid
void avoidEdge()
{
 if(lookForObstacle(OBST_FRONT_EDGE) == true)
 {
 Serial.println("left and right sensors detected edge");
 timedMove(MOV_BACK, 300);
 moveRotate(120);
 while(lookForObstacle(OBST_FRONT_EDGE) == true)
 moveStop(); // stop motors if still over cliff
 }
 else if(lookForObstacle(OBST_LEFT_EDGE) == true)
 {
 Serial.println("left sensor detected edge");
 timedMove(MOV_BACK, 100);
 moveRotate(30);
 }
 else if(lookForObstacle(OBST_RIGHT_EDGE) == true)
 {

183Chapter 10

Adding Scanning

 Serial.println("right sensor detected edge");
 timedMove(MOV_BACK, 100);
 moveRotate(-30);
 }
}

The lookForObstacle and roam functions are modified from the non-scanning
version to use the appropriate servo angles for looking left, right, and center.
The servo angles are stored in the array servoAngle (swap the left and right
values if your servo turns in the wrong direction). The lookAt function now
rotates the servo to the desired angle instead of moving the entire robot.

184 Make an Arduino-Controlled Robot

Adding Scanning

This chapter describes how to remotely control robot movement. Techniques
for sending Serial commands as well as TV type infrared remote control are
both explained. The example sketches enable you to command the robot to
perform any of the higher level drive functions described in Chapter 7.

Hardware Required

• The TV remote control sketch requires an infrared decoder module.
TSOP4838 (or the equivalent PNA4602) modules (Figure 11-1) have power
and signal pins oriented to enable them to plug directly into the socket
on the motor shield.

You will also need an infrared remote control—almost any controller from
a TV or DVD player will do.

Figure 11-1. Infrared Decoder Module

185

Remote Control 11

Sketches Used in This Chapter

• myRobotSerialRemote.ino—enables the robot to be controlled by com
mands from the serial port.

• myRobotRemote.ino - uses commands from a TV type remote to control
the robot.

Figure 11-2 shows the modules used in this chapter.

Figure 11-2. Remote Control sketches

Design of the Remote Control Code

The code to handle remote control functions is contained in a module named
Remote that appears as a tab in sketches introduced in this chapter. This mod
ule:

• Defines constants that identify each command.

• Matches received data to a command.

• Executes a function associated with each command which activates the
appropriate action.

Here are the commands used in the remote control example:
const char MOVE_FORWARD = 'f'; // move forward
const char MOVE_BACK = 'b'; // move backward
const char PIVOT_CCW = 'C'; // rotate 90 degrees CCW
const char PIVOT_CW = 'c'; // rotate 90 degrees CW
const char PIVOT = 'p'; // rotation angle (minus rotates CCW)
const char HALT = 'h'; // stop moving

These constants are used to switch program execution to a function associated
with each command:

void processCommand(int cmd, int val)
{
 switch(cmd)
 {

186 Make an Arduino-Controlled Robot

Sketches Used in This Chapter

 case MOVE_FORWARD : changeCmdState(MOV_FORWARD); moveForward(); break;
 case MOVE_BACK : changeCmdState(MOV_BACK); moveBackward(); break;
 case PIVOT_CCW : changeCmdState(MOV_ROTATE); moveRotate(-90); break;
 case PIVOT_CW : changeCmdState(MOV_ROTATE); moveRotate(90); break;
 case PIVOT : changeCmdState(MOV_ROTATE); moveRotate(val); break;
 case HALT : changeCmdState(MOV_STOP); moveStop(); break;
 }
}

Before calling a movement function, a function named changeCmdState is
called to store the current command state. This enables the robot logic to be
aware of what it was last asked to do so it can make decisions if it encounters
obstacles while trying to execute the commanded movement.

To get this code working with serial commands, all that is needed is to add a
function that passes serial data to the processCommand function. Example 11-1
shows the code for the Remote tab that supports simple serial remote control.

Example 111. Remote tab code for simple serial remote control
// robot remote commands
// This version is for serial commands

// Command constants

const char MOVE_FORWARD = 'f'; // move forward
const char MOVE_BACK = 'b'; // move backward
const char MOVE_LEFT = 'l'; // move left
const char MOVE_RIGHT = 'r'; // move right
const char PIVOT_CCW = 'C'; // rotate 90 degrees CCW
const char PIVOT_CW = 'c'; // rotate 90 degrees CW
const char PIVOT = 'p'; // rotation angle (minus rotates CCW)
const char HALT = 'h'; // stop moving

// not used in this example
const char MOVE_SPEED = 's';
const char MOVE_SLOWER = 'v'; // reduce speed
const char MOVE_FASTER = '^'; // increase speed

int commandState = MOV_STOP; // what robot is told to do

void remoteService()
{
 if(Serial.available())
 {
 int cmd = Serial.read();
 processCommand(cmd);
 }
}

void changeCmdState(int newState)

187Chapter 11

Design of the Remote Control Code

{
 if(newState != commandState)
 {
 Serial.print("Changing Cmd state from "); Serial.print(states[commandState]);
 Serial.print(" to "); Serial.println(states[newState]);
 commandState = newState;
 }
}

void processCommand(int cmd)
{
 int val = 0;
 if(cmd == PIVOT || cmd == SPEED) {
 val = Serial.parseInt();
 }
 processCommand(cmd, val);
}

void processCommand(int cmd, int val)
{
 byte speed;
 Serial.write(cmd); // echo
 switch(cmd)
 {
 case MOVE_LEFT : changeCmdState(MOV_LEFT); moveLeft(); break;
 case MOVE_RIGHT : changeCmdState(MOV_RIGHT); moveRight(); break;
 case MOVE_FORWARD : changeCmdState(MOV_FORWARD); moveForward(); break;
 case MOVE_BACK : changeCmdState(MOV_BACK); moveBackward(); break;
 case PIVOT_CCW : changeCmdState(MOV_ROTATE); moveRotate(-90); break;
 case PIVOT_CW : changeCmdState(MOV_ROTATE); moveRotate(90); break;
 case PIVOT : changeCmdState(MOV_ROTATE); moveRotate(val); break;
 case HALT : changeCmdState(MOV_STOP); moveStop(); break;
 case SPEED : speed = val; moveSetSpeed(speed); break;
 }
}

This code adds a function named remoteService that is called from the main
sketch to check if any remote commands have been received. The remoteSer
vice function will be exanded later in this chapter to support other remote
control inputs.

You may have noticed that there are two functions named processCommand.
The one that takes a single parameter tests if a second parameter is required
(as in the case of the PIVOT command) and if so gets this using the Serial Stream
parseInt function.

Example 11-2 shows the main sketch code from the example, myRobotSerial
Remote that responds to the serial commands.

188 Make an Arduino-Controlled Robot

Design of the Remote Control Code

Example 112. Main sketch code
/**
myRobotSerialRemote.ino

Robot sketch with serial remote commands

Created by Michael Margolis 10 June 2012
**/

#include <AFMotor.h> // adafruit motor shield library
#include "RobotMotor.h" // 2wd or 4wd motor library

#include "robotDefines.h" // global defines

// Setup runs at startup and is used configure pins and init system variables
void setup()
{
 Serial.begin(9600);
 while(!Serial); // only needed for leonardo

 moveBegin();
 moveSetSpeed(MIN_SPEED + 10) ; // Run at 10% above minimum speed
}

void loop()
{
 remoteService(); // wait for serial commands
}

// function to check if robot can continue moving when taking evasive action
// returns true if robot is not blocked when moving to avoid obstacles
// this 'placeholder' version always returns true
boolean checkMovement()
{
 return true;
}

If you have a wireless device that passes serial data such as a Bluetooth module,
you can wirelessly control the robot by connecting the serial output of the
adapter to the Arduino serial input and wiring up the power leads. If you are
using a Leonardo, note that the TX/RX pins (digital 1 and 0) are accessed
through Serial1 rather than Serial, so modify your code accordingly (you’ll
need to replace all instances of Serial with Serial1 in all the tabs of your sketch).

189Chapter 11

Design of the Remote Control Code

Controlling the Robot with a TV Type IR Remote

The remote code can be expanded to support the decoding of IR remote con
trols. To do this, an IR module is used to receive and condition the IR pulses so
they can be decoded by Arduino.

Installing the IR Decoder Chip
The IR receiver module looks something like a three pin transistor with a bulge
for the IR sensor lens. The module is plugged into the shield as shown in
Figure 11-3 and Figure 11-4. It is polarized, so make sure it is facing the direction
shown or you can damage the module.

Figure 11-3. IR Receiver Module

190 Make an Arduino-Controlled Robot

Controlling the Robot with a TV Type IR Remote

Figure 11-4. IR Receiver Module plugged into the motor shield

If the receiver module does not plug securely into the socket, use a long-nose
pliers to twist the ends of each of the three leads 90 degrees, as shown in
Figure 11-5.

Figure 11-5. IR Receiver Module with leads twisted to for better fit into socket

191Chapter 11

Controlling the Robot with a TV Type IR Remote

The IR Remote Software
The low level decoding of the infrared signal is handled by an Arduino library
named IRremote that is included with the book’s download code.

If you need help installing a library, see “Installing Third-Party Libraries” (page
83).

You don’t need to understand how the library works in order to use it, but if
you are curious, the following is an overview of how the library works.

The IRremote library uses an irrecv object to decode the pulses from the IR
Receiver.

The IRremote Library and Pin Assignments

The code to create the irrecv object is:

IRrecv irrecv(irReceivePin);

The irReceivePin is the pin that the module is con
nected to. This pin is defined at the top of the main
sketch tab:

const byte irReceivePin = A3;
// analog pin 3

The Arduino analog input pins can also be used as
digital pins, but the pin numbers are not the same—

analog pin 3 is not digital pin 3! The A3 constant is the
Arduino way of referring to the digital pin number
associated with the analog input (the irrecv object
expects the digital pin number). On Leonardo, analog
input 3 is used as digital input 21; on a standard AT
mega328 board like the Uno, A3 is digital pin 17. If
you use Arduino constants to refer to the digital pin
assignments for the analog input pins, the correct
values will automatically be assigned.

A numeric value is provided for each remote keypress detected. The specific
key values decoded will depend on the remote controller you use.
Example 11-3 shows code for the Remote tab with support for the IR receiver.

Example 113. The Remote tab code
// robot remote commands

#include <IRremote.h> // IR remote control library

IRrecv irrecv(irReceivePin);

decode_results results;

// Command constants

const char MOVE_FORWARD = 'f'; // move forward
const char MOVE_BACK = 'b'; // move backward
const char MOVE_LEFT = 'l'; // move left
const char MOVE_RIGHT = 'r'; // move right
const char PIVOT_CCW = 'C'; // rotate 90 degrees CCW
const char PIVOT_CW = 'c'; // rotate 90 degrees CW

192 Make an Arduino-Controlled Robot

Controlling the Robot with a TV Type IR Remote

const char PIVOT = 'p'; // rotation angle (minus rotates CCW)
const char HALT = 'h'; // stop

// not used in this example
const char MOVE_SPEED = 's';
const char MOVE_SLOWER = 'v'; // reduce speed
const char MOVE_FASTER = '^'; // increase speed

//IR remote keycodes:replace this with codes for your remote
// See text for procedure for obtaining codes.
const long IR_MOVE_FORWARD = 1064;
const long IR_MOVE_BACK = 3112;
const long IR_MOVE_LEFT = 1128;
const long IR_MOVE_RIGHT = 2152;
const long IR_PIVOT_CW = 136;
const long IR_PIVOT_CCW = 1160;
const long IR_HALT = 2216;

int commandState = MOV_STOP; // what robot is told to do

void remoteBegin(byte irPin)
{
 irrecv.enableIRIn(); // Start the receiver
}

void remoteService()
{
 if (irrecv.decode(&results))
 {
 if (results.decode_type != UNKNOWN)
 {
 //Serial.println(results.value); // uncomment to see raw result
 convertIrToCommand(results.value);
 }
 irrecv.resume(); // Receive the next value
 }
 // additional support for serial commands
 if(Serial.available())
 {
 int cmd = Serial.read();
 processCommand(cmd);
 }
}

void convertIrToCommand(long value)
{
 {
 switch(value)
 {
 case IR_MOVE_LEFT : processCommand(MOVE_LEFT); break;
 case IR_MOVE_RIGHT : processCommand(MOVE_RIGHT); break;
 case IR_MOVE_FORWARD : processCommand(MOVE_FORWARD); break;
 case IR_MOVE_BACK : processCommand(MOVE_BACK); break;
 case IR_PIVOT_CCW : processCommand(PIVOT_CCW); break;

193Chapter 11

Controlling the Robot with a TV Type IR Remote

 case IR_PIVOT_CW : processCommand(PIVOT_CW); break;
 case IR_HALT : processCommand(HALT); break;
// case IR_SLOWER : processCommand(SLOWER); break;
// case IR_FASTER : processCommand(FASTER); break;
 }
 }
}

void changeCmdState(int newState)
{
 if(newState != commandState)
 {
 Serial.print("Changing Cmd state from "); Serial.print(states[commandState]);
 Serial.print(" to "); Serial.println(states[newState]);
 commandState = newState;
 }
}

void processCommand(int cmd)
{
 int val = 0;
 if(cmd == MOVE_SPEED) {
 val = Serial.parseInt();
 }
 else if(cmd == PIVOT) {
 val = Serial.parseInt();
 }
 processCommand(cmd, val);
}

void processCommand(int cmd, int val)
{
 byte speed;
 //Serial.write(cmd); // uncomment to echo
 switch(cmd)
 {
 case MOVE_LEFT : changeCmdState(MOV_LEFT); moveLeft(); break;
 case MOVE_RIGHT : changeCmdState(MOV_RIGHT); moveRight(); break;
 case MOVE_FORWARD : changeCmdState(MOV_FORWARD); moveForward(); break;
 case MOVE_BACK : changeCmdState(MOV_BACK); moveBackward(); break;
 case PIVOT_CCW : changeCmdState(MOV_ROTATE); moveRotate(-90); break;
 case PIVOT_CW : changeCmdState(MOV_ROTATE); moveRotate(90); break;
 case PIVOT : changeCmdState(MOV_ROTATE); moveRotate(val); break;
 case HALT : changeCmdState(MOV_STOP); moveStop(); break;
 case MOVE_SPEED : speed = val; moveSetSpeed(speed); break;
// case SLOWER : moveSlower(speedIncrement); break;
// case FASTER : moveFaster(speedIncrement); break;
 case '\r' : case '\n': break; // ignore cr and lf
 default : Serial.print('['); Serial.write(cmd); Serial.println("] Ignored"); break;
 }
}

194 Make an Arduino-Controlled Robot

Controlling the Robot with a TV Type IR Remote

Timers and IRremote Library

The standard IRremote library uses Timer 2 and, at
the time of writing, did not support the Leonardo
board. However, Timer 1 is the only available timer
when using the 4WD with the Leonardo board. The
version of this library included with the example code
(see “How to Contact Us” (page xv)) supports the
Leonardo board and is modified to use Timer 1.

“Pin and Timer Tables” (page 237) shows how the
sketches in this book use the timers. These timers

were selected so the same code can be used with the
2 motor and 4 motor robots with either the Arduino
Uno or Arduino Leonardo boards. If you want to use
a timer other than Timer 1 and you are sure that an
other timer is free, then the information on “Modify
ing a Library to Change Timer Allocation” (page 236) will
help you modify the library for use with a different
Timer.

To use this code with your remote, you need to replace the IR commands with
the ones your remote controller sends. Figure 11-6 shows a typical controller
with a suggested key assignment but you can choose any keys you want.

Figure 11-6. Remote Controller Command Buttons

You can use the sketch shown in Example 11-4 to display the actual IR codes
that are sent. After you upload and run the sketch, it will prompt you to press
a key for each command to be learned. These are: forward, reverse, left, right,
pivot counterclockwise, pivot clockwise, and stop. The decoded value will be
displayed for each recognized keypress. After all the keys are learned, the codes
are written to the Serial Monitor in a format that you can copy into the Re
mote tab below the comment line that reads: //IR remote keycodes:replace
this with codes for your remote.

Example 114. Learning remote sketch
/*
 * LearningRemote.cpp

195Chapter 11

Controlling the Robot with a TV Type IR Remote

 */

#include <IRremote.h> // IR remote control library

const int irPin = A3; // analog input pin 3 (digital 17)
const long NO_KEY = -1;
const long TIMEOUT = 5000; //max number of milliseconds to wait for a key (5 secs)
const int KEYCOUNT = 7; // the number of key codes supported

long irKeyCodes[KEYCOUNT]; // this will store raw codes for all keys
char * remoteKeyNames[KEYCOUNT] =
 {"Forward", "Back", "Left", "Right", "PivotCW", "PivotCCW", "Halt" };
// not used: Slower, Faster

IRrecv irrecv(irPin); // create the IR receive object
decode_results results; // ir data goes here

void setup()
{
 Serial.begin(9600);
 while(!Serial); // only needed for leonardo

 irrecv.enableIRIn(); // Start the ir receiver
 learnKeycodes();
 printConstants();
 Serial.println();
 Serial.println("Now press the remote keys to verify correct detection");
}

void loop()
{
 long key = getIrKeycode(TIMEOUT);
 if(key!= NO_KEY)
 {
 int index = findKey(key);
 if(index != NO_KEY)
 {
 Serial.println(remoteKeyNames[index]);
 }
 }
}

// get remote control codes
// the key map should be set to zero before calling this
void learnKeycodes()
{
 Serial.println("Ready to learn remote codes");
 for(int i = 0; i < KEYCOUNT;)
 {
 //delay(100);
 Serial.println();
 Serial.print("press remote key for ");
 Serial.print(remoteKeyNames[i]);
 long key = getIrKeycode(TIMEOUT);

196 Make an Arduino-Controlled Robot

Controlling the Robot with a TV Type IR Remote

 if(key > 0)
 {
 Serial.println(", release key ...");
 long temp;
 do {
 temp = getIrKeycode(200);
 }
 while(temp == key);
 if(findKey(key) == NO_KEY)
 {
 Serial.print(" -> using code ");
 Serial.print(key);
 Serial.print(" for ");
 Serial.println(remoteKeyNames[i]);
 irKeyCodes[i] = key;
 i++;
 }
 else
 {
 Serial.println("key already assigned");
 }
 }
 else continue;
 }
 Serial.println("Done\n");
}

// wait up to timeout milliseconds for a key
long getIrKeycode(long timeout)
{

 flushKeys();

 long key = NO_KEY;
 unsigned long startTime = millis();
 while(millis() - startTime < timeout)
 {
 if(irrecv.decode(&results)) {
 key = results.value;
 //Serial.println(key, HEX);
 irrecv.resume(); // Receive the next value
 if(key != NO_KEY) {
 break;
 }
 }
 }
 return key;
}

//clear the buffer
void flushKeys()
{
 while(irrecv.decode(&results))

197Chapter 11

Controlling the Robot with a TV Type IR Remote

 irrecv.resume();
 results.value = -1;
}

// returns the index for the given key code if found
// returns NO_KEY if code is not found
int findKey(long code)
{
 for(int i=0; i < KEYCOUNT; i++)
 {
 if(irKeyCodes[i] == code)
 return i;
 }
 return NO_KEY;
}

void printConstants()
{
 int i = 0;
 Serial.println("//IR remote keycodes:");
 Serial.print("const long IR_MOVE_FORWARD = "); Serial.print(irKeyCodes[i++]);
 Serial.println(";");
 Serial.print("const long IR_MOVE_BACK = "); Serial.print(irKeyCodes[i++]);
 Serial.println(";");
 Serial.print("const long IR_MOVE_LEFT = "); Serial.print(irKeyCodes[i++]);
 Serial.println(";");
 Serial.print("const long IR_MOVE_RIGHT = "); Serial.print(irKeyCodes[i++]);
 Serial.println(";");
 Serial.print("const long IR_PIVOT_CW = "); Serial.print(irKeyCodes[i++]);
 Serial.println(";");
 Serial.print("const long IR_PIVOT_CCW = "); Serial.print(irKeyCodes[i++]);
 Serial.println(";");
 Serial.print("const long IR_HALT = "); Serial.print(irKeyCodes[i++]);
 Serial.println(";");

 Serial.println(); Serial.println("Copy the above lines to the Remote tab");
}

The IR remote example sketch shown in Example 11-5 is similar to the example
earlier in this chapter with some additional lines for the IR remote.

Example 115. IR remote sketch code
/**
myRobotRemote.ino

Robot sketch with remote commands
Note: if motors don't turn, check that irRemoteInt.h uses Timer1, not Timer2

Michael Margolis 28 May 2012

198 Make an Arduino-Controlled Robot

Controlling the Robot with a TV Type IR Remote

**/

#include <AFMotor.h> // adafruit motor shield library
#include "RobotMotor.h" // 2wd or 4wd motor library

#include "robotDefines.h" // global defines

const byte irReceivePin = A3; /// analog pin 3

// Setup runs at startup and is used configure pins and init system variables
void setup()
{
 Serial.begin(9600);
 blinkNumber(8); // open port while flashing. Needed for Leonardo only

 lookBegin();
 moveBegin();
 remoteBegin(irReceivePin); /// added Remote tab

 moveSetSpeed(MIN_SPEED + 10) ; // Run at 10% above minimum speed
 Serial.println("Ready");
}

void loop()
{
 remoteService();
}

// function to indicate numbers by flashing the built-in LED
void blinkNumber(byte number) {
 pinMode(LED_PIN, OUTPUT); // enable the LED pin for output
 while(number--) {
 digitalWrite(LED_PIN, HIGH); delay(100);
 digitalWrite(LED_PIN, LOW); delay(400);
 }
}

The remoteBegin(irReceivePin); function called in setup initializes the IR
decode library. ireReceivePin is the pin the ir decoder module is connected
to, in this case, analog pin 3. Because the library expects a digital pin number,
the Arduino constant A3 is used.

199Chapter 11

Controlling the Robot with a TV Type IR Remote

Experienced software engineers use a variety of techniques to help manage
complex projects. This section provides a list of useful tips for designing and
building complex robotics projects.

Planning

Think Before You Code
It helps to think about your project and be clear on what you want it to achieve
before you start coding. Tinkering around without a plan is a good way to learn
and to have fun, but it can make a large project too cumbersome to manage.

Avoid Feature Bloat
Don’t add features that you don’t need. Features added ‘just in case’ may seem
like a good way to save time later on, but nine times out of ten, the features
you actually need will require changes to the code you wrote that are usually
more troublesome than writing the feature from scratch after you are clear on
what you really need.

Don’t Reinvent the Wheel
See what’s out there that you can reuse. The Arduino community has made
available a vast collection of useful software. Even if you don’t end up using
something off the shelf, seeing how others have solved problems similar to
yours can inform your own solutions.

201

Enhancing Your Robot A

Structure to Reflect Functionality
Think about functional associations when organizing your code. Grouping
similar functionality together enables you to create modules which can be
tested in isolation from the rest of your code, simplifying debugging and re
ducing the likelihood that adding functionality later will have side effects on
other parts of your sketch.

Use Clear Names for Functions and Variables
Each function should have a single clear purpose. Choose a name that reflects
that purpose so when you later need to debug, add or change functionality, it
will be clear what each function or variable is doing. A few extra seconds spent
finding evocative names when you are coding can save hours later on when
you are trying to figure out what a piece of code is intended to do.

Implementing a Complex Project

Test Often
Testing after each major addition or change in code saves time because you
will find and fix problems more quickly. It may seem more efficient to wait until
you have lots of code completed before stopping to test, but when the inevi
table bugs arise, you can waste a huge amount of time just trying to locate
which part of the code is causing the problem.

Simplify
Spending time simplifying code will be repaid in reduced debug time. Complex
code can be difficult to debug or enhance, particularly when you come back
to it after a while. Looking at each completed function with an eye to seeing
if there is a simpler way of achieving the functionality can result in cleaner code
that is easier to maintain.

If It Is Awkward, Start Over
Don’t be afraid to throw away prototype code that becomes a burden. Some
times you need to tinker to get things working, but if this ends up making your
code a tangled mess, use what you have learned to rethink your structure and
start over.

Don’t Confuse Activity with Progress
If you are not making progress, stop and take a break and come back fresh. It
is easier taking in the big picture after a break, particularly if you pause to get
a clear picture in your mind of the problem you are trying to solve and a list of
the assumptions you are making about what is standing in your way.

202 Make an Arduino-Controlled Robot

Implementing a Complex Project

Experiment
If what you have tried isn’t working, try something new. Software problems
may actually be a hardware issue (and vice versa).

Be Tenacious
Interesting projects usually come with difficult problems—overcoming these
is part of the reward for a job well done.

Have Fun
Isn’t that why you started this project in the first place?

203Appendix A

Implementing a Complex Project

You may want to add more capability to your robot or perhaps substitute dif
ferent hardware than the items covered in the text. This chapter describes how
to use some common alternative components.

Alternative Motor Controllers

Ardumoto
This popular H-bridge can be used instead of the Adafruit shield described in
the text if you have a two wheeled robot (the shield only supports two motors).
It also lacks the convenient layout for the analog sensors and you will need to
add two 3 pin headers for the servo and distance sensor connections. The
Motor code for Ardumoto is shown in Example B-1.

Continuous Rotation Servos
Continuous rotation servos are hobby servos modified to rotate continuously
with a speed and rotation direction controlled by the Servo library that comes
with Arduino. The servo rotates in one direction as the angle written to the
servo is increased from 90 degrees; it rotates in the other direction when the
angle is decreased from 90 degrees. The actual direction forward or backward
depends on how you have the servos attached. Continuous rotation servos
may not stop rotating when writing exactly 90 degrees. Some servos have a
small potentiometer you can trim to adjust for this, or you can add or subtract
a few degrees to the motorStopAngle element to stop the servo. This version
uses digital pins 7 and 8 but you can change this by altering the elements of
the servoPins array (the first element for all the arrays is the left servo, the
second is the right servo). See Example B-2.

205

Using Other Hardware with
Your Robot B

These functions convert requests to set the motor speed into servo angles that
are written to the continuous rotation servos. The conversion is performed
using the Arduino map function.

This code uses the Servo library. If you want to build the infrared remote
control project with continuous rotation servos, you will need to ensure
that the IRremote library is configured to use a timer other than Timer
1) because the Servo library requires Timer 1. See “Modifying a Library
to Change Timer Allocation” (page 236) for timer usage and details on
how to configure timers for the IRremote library.

Example B1. RobotMotor library code for the Ardumoto shield
/***
 RobotMotor.cpp // Ardumoto version
 low level motor driver for use with ardumoto motor shield and 2WD robot

 Michael Margolis May 8 2012
**/

#include <Arduino.h>
#include "RobotMotor.h"

const int differential = 0; // % faster left motor turns compared to right

/****** motor pin defines *************/
// Pins connected to the motor driver. The PWM pins control the speed, and the
// other pins are select forward and reverse

// Motor uses pins : 3,11,12,13
const byte M_PWM_PIN[2] = {11,3}; // ardumoto v13
const byte M_DIR_PIN[2] = {13,12};
/* end of motor pin defines */

int motorSpeed[2] = {0,0}; // motor speed stored here (0-100%)

// tables hold time in ms to rotate robot 360 degrees at various speeds
// this enables conversion of rotation angle into timed motor movement
// The speeds are percent of max speed
// Note: low cost motors do not have enough torque at low speeds so
// the robot will not move below this value
// Interpolation is used to get a time for any speed from MIN_SPEED to 100%

const int MIN_SPEED = 40; // first table entry is 40% speed
const int SPEED_TABLE_INTERVAL = 10; // each table entry is 10% faster speed
const int NBR_SPEEDS = 1 + (100 - MIN_SPEED)/ SPEED_TABLE_INTERVAL;

int speedTable[NBR_SPEEDS] = {40, 50, 60, 70, 80, 90, 100}; // speeds
int rotationTime[NBR_SPEEDS] = {5500, 3300, 2400, 2000, 1750, 1550, 1150}; // time

206 Make an Arduino-Controlled Robot

Alternative Motor Controllers

void motorBegin(int motor)
{
 pinMode(M_DIR_PIN[motor], OUTPUT);
 motorStop(motor);
}

// speed range is 0 to 100
void motorSetSpeed(int motor, int speed)
{
 motorSpeed[motor] = speed; // save the value
 speed = map(speed, 0,100, 0,255); // scale to PWM range
 analogWrite(M_PWM_PIN[motor], speed); // write the value
}

void motorForward(int motor, int speed)
{
 digitalWrite(M_DIR_PIN[motor], HIGH);
 motorSetSpeed(motor, speed);
}

void motorReverse(int motor, int speed)
{
 digitalWrite(M_DIR_PIN[motor], LOW);
 motorSetSpeed(motor, speed);
}

void motorStop(int motor)
{
 analogWrite(M_PWM_PIN[motor], 0);
}

void motorBrake(int motor)
{
 // Ardumoto does not support brake, so just stop the motor
 analogWrite(M_PWM_PIN[motor], 0);
}

Example B2. RobotMotor library header for continuous rotation servos
/***
 RobotMotor.cpp // continuous rotation servo version
 low level motor driver for use with continuous rotation servos and 2WD robot

 Copyright Michael Margolis May 8 2012
**/

#include <Arduino.h>
#include <Servo.h>
#include "RobotMotor.h"

Servo myservo[2]; // create instances for two servos

207Appendix B

Alternative Motor Controllers

const int MAX_ANGLE = 60; // number of degrees that motor driven at max speed
const int servoPins[2] = {7,8}; // digital pins connected to servos:(left,right)

 // change sign to reverse direction of the motor
int motorSense[2] = {1,-1}; // 1 increases angle for forward, -1 decreaes

int motorStopAngle[2] = {90,90}; // inc or dec so motor stops when motorStop is called

int motorSpeed[2] = {0,0}; // left and right motor speeds stored here (0-100%)

// tables hold time in ms to rotate robot 360 degrees at various speeds
// this enables conversion of rotation angle into timed motor movement
// The speeds are percent of max speed
// Note: low cost motors do not have enough torque at low speeds so
// the robot will not move below this value
// Interpolation is used to get a time for any speed from MIN_SPEED to 100%

const int MIN_SPEED = 40; // first table entry is 40% speed
const int SPEED_TABLE_INTERVAL = 10; // each table entry is 10% faster speed
const int NBR_SPEEDS = 1 + (100 - MIN_SPEED)/ SPEED_TABLE_INTERVAL;

int speedTable[NBR_SPEEDS] = {40, 50, 60, 70, 80, 90, 100}; // speeds
int rotationTime[NBR_SPEEDS] = {5500, 3300, 2400, 2000, 1750, 1550, 1150}; // time

void motorBegin(int motor)
{
 myservo[motor].attach(servoPins[motor]);
}

// speed range is 0 to 100
void motorSetSpeed(int motor, int speed)
{
 motorSpeed[motor] = speed; // save the value
}

void motorForward(int motor, int speed)
{
 motorSetSpeed(motor, speed);
 int stopAngle = motorStopAngle[motor];
 int maxSpeedAngle = stopAngle + (MAX_ANGLE * motorSense[motor]);
 int angle = map(speed, 0,100, stopAngle, maxSpeedAngle);
 myservo[motor].write(angle);
}

void motorReverse(int motor, int speed)
{
 motorSetSpeed(motor, speed);
 int stopAngle = motorStopAngle[motor];
 int maxSpeedAngle = stopAngle - (MAX_ANGLE * motorSense[motor]);
 int angle = map(speed, 0,100, stopAngle, maxSpeedAngle);
 myservo[motor].write(angle);
}

208 Make an Arduino-Controlled Robot

Alternative Motor Controllers

void motorStop(int motor)
{
 myservo[motor].write(motorStopAngle[motor]);
}

void motorBrake(int motor)
{
 myservo[motor].write(motorStopAngle[motor]);
}

209Appendix B

Alternative Motor Controllers

Complex projects inevitably throw up obstacles in the form of bugs. As these
arise, you can congratulate yourself for choosing such a challenging project
and bear in mind the satisfaction you will feel when all the problems have been
overcome. Here is some software that should help you find and fix problems
you may encounter.

Identify the Symptoms and Localize the problem

Seeing What the Robot Is Doing
Visualizing data from the sensors in real time can be tremendous help in un
derstanding what is actually happening in your sketch. Figure C-1 shows the
screen from a Processing sketch that enables you to easily view Arduino values.

211

Debugging Your Robot C

Figure C-1. Arduino Data Displayed in Processing

Figure C-1 depicts the analogRead values from left, center and right and sen
sors used in line detection. The grey numbers in parentheses on the right in
dicate the possible range of values, the following number is the numeric value
sent from Arduino.

The figure shows the values when the robot is straying slightly to the right of
a dark line it is trying to follow (the values increase when the sensor is over the
line). The Position value goes positive when straying right and negative when
left. The Position value is used in the line following sketch to adjust the robot
direction so it stays on the line. The Distance value is in inches and is obtained
from the ping distance sensor.

The Processing sketch expects data in the following format; fields are separated
by commas:

• The string: Data

• The row to display; the first row is row 1

• The value to display

• The newline character “\n”

For example, sending "Data,2,680\n" will display a bar with a value of 680 on
the second line.

You can send labels for each line by sending a string such as: "Label,2,Center
Line\n", which will tag the second row with the label “Center Line”.

The data range can be sent using a string such as "Range,5,0,144\n" which
will set the range of the fifth line from 0 to 144.

212 Make an Arduino-Controlled Robot

Identify the Symptoms and Localize the problem

The easiest way to send this data is to add the DataDisplay tab to your sketch
and call the functions to format and send the data:

• sendData(row, value); sends the specified value for display on the given
row

• sendLabel(row, label); sends the specified label for display on the given
row

• sendRange(row, minimum, maximum); sends the minimum and maximum
values for the specified row

The sketch named myRobotDebug contains the DataDisplay tab and provides
an example of how to send data to the Processing. Example C-1 shows the
main sketch code.

Example C1. myRobotDebug main sketch code
/**
MyRobotDebug.ino

Simple debug example using Processing debug monitor
This version displays values from the line and distance sensors

***/
#include "robotDefines.h" // global defines

const byte pingPin = 10; // Distance sensor connected to digital pin 10

enum {DATA_start, DATA_LEFT, DATA_CENTER, DATA_RIGHT,DATA_DRIFT,DATA_DISTANCE,
 DATA_nbrItems};

char* labels[]= {"","Left Line","Center Line","Right Line","Drift","Distance"};
int minRange[]= { 0, 0, 0, 0, -1023, 0 };
int maxRange[]= { 0, 1023, 1023, 1023, 1023, 144};

// Setup runs at startup and is used configure pins and init system variables
void setup()
{
 Serial.begin(9600);
 while(!Serial); // only needed for leonardo

 dataDisplayBegin(DATA_nbrItems, labels, minRange, maxRange);
 Serial.println("Ready");
}

void loop()
{
 lineSense();
 int distance = pingGetDistance(pingPin);
 sendData(DATA_DISTANCE, distance); // send distance

213Appendix C

Identify the Symptoms and Localize the problem

}

/****************************
 Line Sensor code
****************************/
// defines for locations of sensors
const int SENSE_LINE_LEFT = 0;
const int SENSE_LINE_RIGHT = 1;
const int SENSE_LINE_CENTER = 2;

//returns drift - 0 if over line, minus value if left, plus if right
int lineSense()
{
 int leftVal = analogRead(SENSE_LINE_LEFT);
 int centerVal = analogRead(SENSE_LINE_CENTER);
 int rightVal = analogRead(SENSE_LINE_RIGHT);

 sendData(DATA_LEFT, leftVal); // send left sensor value
 sendData(DATA_CENTER, centerVal); // send center sensor value
 sendData(DATA_RIGHT, rightVal); // send right sensor values

 int leftSense = centerVal - leftVal;
 int rightSense = rightVal - centerVal;
 int drift = leftVal- rightVal ;

 sendData(DATA_DRIFT, drift); // send drift sensor values

 return drift;
}

// Returns the distance in inches
// this will return 0 if no ping sensor is connected or
// the distance is greater than around 10 feet
int pingGetDistance(int pingPin)
{
 long duration, cm;

 pinMode(pingPin, OUTPUT);
 digitalWrite(pingPin, LOW);
 delayMicroseconds(2);
 digitalWrite(pingPin, HIGH);
 delayMicroseconds(5);
 digitalWrite(pingPin, LOW);

 pinMode(pingPin, INPUT);
 duration = pulseIn(pingPin, HIGH, 20000); // if a pulse does not arrive in 20 ms then
 // the ping sensor is not connected
 if(duration >=20000)
 return 0;

214 Make an Arduino-Controlled Robot

Identify the Symptoms and Localize the problem

 // convert the time into a distance
 cm = duration / 29 / 2;
 return (cm * 10) / 25 ; // convert cm to inches
}

The Arduino code that sends the data is in the tab named DataDisplay
(Example C-2), you can copy the code into any sketch you want to debug, or
you can simply add the tab to the sketch.

Example C2. the DataDisplay tab code
// DataDisplay

void dataDisplayBegin(int nbrItems, char* labels[], int minRange[], int maxRange[])
{
 for(int i = 1; i < nbrItems; i++)
 {
 sendLabel(i, labels[i]);
 sendRange(i, minRange[i], maxRange[i]);
 }
}

void sendLabel(int row, char *label)
{
 sendString("Label"); sendValue(row); sendString(label); Serial.println();
}

void sendRange(int row, int min, int max)
{
 sendString("Range"); sendValue(row); sendValue(min); sendValue(max); Serial.println();
}

void sendData(int row, int val)
{
 sendString("Data"); sendValue(row); sendValue(val); Serial.println();
}

void sendValue(int value)
{
 Serial.print(value); Serial.print(",");
}

void sendString(char *string)
{
 Serial.print(string); Serial.print(",");
}

215Appendix C

Identify the Symptoms and Localize the problem

The Processing sketch is called ArduinoDataDisplay and is located in the Pro
cessing folder of the example code download (see “How to Contact Us” (page
xv) for the download location). Example C-3 shows the code.

Example C3. Processing sketch for displaying data
/*
 * ArduinoDataDisplay
 * based on Arduino Cookbook code from Recipe 4.4
 *
 * Displays bar graphs of sensor data sent as CSV from Arduino
 * in all cases, N is the Row to be associated with the given message
 * Labels sent as: "Label,N,the label\n" // "the label" is used for Row N
 * Range sent as : "Range,N,Min, Max\n" // Row N has a range from min to max
 * if Min is negative then the bar grows from the midpoint of Min and Max,
 * else the bar grows from Min
 * Data sent as: "Data,N,val\n" // val is plotted for row N
 */

short portIndex = 1; // select the com port, 0 is the first port

int maxNumberOfRows = 12;
int graphWidth = 600;
int displayWidth = 1024;
int displayHeight = 800;

int fontSize = 12;
PFont fontA;

int windowWidth;
int windowHeight;

int graphHeight;
int rectCenter;
int rectLeft;
int rectRight;
int topMargin;
int bottomMargin;
int leftMargin = 50;
int rightMargin = 80;

int textHeight;

ArrayList<String> labelList = new ArrayList<String>();
int [] values = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
int [] rangeMin = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
int [] rangeMax = { 0, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024};

float lastMsgTime;
float displayRefreshInterval = 20; // min time between screen draws

void setup() {
 String os=System.getProperty("os.name");

216 Make an Arduino-Controlled Robot

Identify the Symptoms and Localize the problem

 println(os);
 initComms();
 fontA = createFont("Arial.normal", fontSize);
 textFont(fontA);
 textHeight = (int)textAscent();
 for (int i = 0; i <= maxNumberOfRows; i++)
 labelList.add(Integer.toString(i));
 adjustSize();
 drawGrid();
}

void adjustSize()
{
 topMargin = 3 * textHeight;
 bottomMargin = 0;
 if (displayWidth > 800) {
 windowWidth = 800;
 windowHeight = topMargin + bottomMargin + yPos(maxNumberOfRows);
 size(windowWidth, windowHeight);
 }
 else {
 windowWidth = displayWidth;
 windowHeight = displayHeight;
 }
 //leftMargin = getleftMarginLen() ;
 graphHeight = windowHeight - topMargin - bottomMargin;
 rectCenter = leftMargin + graphWidth / 2;
 rectLeft = leftMargin;
 rectRight = leftMargin + graphWidth;
}

void drawGrid() {
 fill(0);
 String Title = "Arduino Data" + commsPortString() ;

 int xPos = (int)(rectCenter - textWidth(Title)/2) ;
 text(Title, xPos, fontSize*2); // Title

 line(rectLeft, topMargin + textHeight,
 rectLeft, yPos(maxNumberOfRows) + 2); // left vertical line

 line(rectRight, topMargin + textHeight, rectRight, yPos(maxNumberOfRows)+ 2); // right line
 line(rectCenter, topMargin+textHeight, rectCenter, yPos(maxNumberOfRows) + 2); // center line

 for (int i=1; i <= maxNumberOfRows; i++) {
 fill(0);
 text(labelList.get(i), 2, yPos(i)); // row labels
 fill(150);
 String rangeCaption = "(" + rangeMin[i] + "~" + rangeMax[i] + ")";
 text(rangeCaption, rectRight + textWidth(" "), yPos(i)); // range caption
 }
}

int yPos(int index) {

217Appendix C

Identify the Symptoms and Localize the problem

 return topMargin + ((index) * textHeight * 2);
}

void drawBar(int rowIndex) {
 fill(204);
 if (rangeMin[rowIndex] < 0) {
 if (values[rowIndex] < 0) {
 int width = int(map(values[rowIndex], 0, rangeMin[rowIndex], 0, graphWidth/2));
 rect(rectCenter-width, yPos(rowIndex)-fontSize, width, fontSize);
 }
 else {
 int width = int(map(values[rowIndex], 0, rangeMax[rowIndex], 0, graphWidth/2));
 rect(rectCenter, yPos(rowIndex)-fontSize, width, fontSize);
 }
 }
 else {
 int width=int(map(values[rowIndex], rangeMin[rowIndex], rangeMax[rowIndex], 0,graphWidth));
 rect(rectLeft, yPos(rowIndex)-fontSize, width, fontSize); //draw the value
 }
 fill(0);
 text(values[rowIndex],
 rectRight + (int)textWidth(" (-1000~1000) "), yPos(rowIndex)); // print the value
}

void processMessages() {
 while(true) {
 String message = commsGetMessage();
 if (message.length() > 0)
 {
 int row = 0;

 String [] data = message.split(","); // Split the CSV message
 if (data[0].equals("Data")) { // check for data header
 row = Integer.parseInt(data[1]);
 values[row] = Integer.parseInt(data[2]);
 checkRefresh();
 }
 else if (data[0].equals("Label")) { // check for label header
 row = Integer.parseInt(data[1]);
 labelList.set(row, data[2]);
 if ((int)textWidth(data[2]) > leftMargin) {
 leftMargin = (int)(textWidth(data[2]) + textWidth(" ") + 2) ;
 adjustSize();
 }
 checkRefresh();
 }
 else if (data[0].equals("Range")) { // check for Range header
 row = Integer.parseInt(data[1]);
 rangeMin[row] = Integer.parseInt(data[2]);
 rangeMax[row] = Integer.parseInt(data[3]);
 checkRefresh();
 }
 else
 println(message) ;

218 Make an Arduino-Controlled Robot

Identify the Symptoms and Localize the problem

 }
 else
 break; // finish processing when the message length is 0
 }
 }

 void checkRefresh()
 {
 if (lastMsgTime < 1)
 lastMsgTime = millis(); // update the time if it was reset by the last display refresh
 }

void draw() {
 processMessages();
 if (millis() - lastMsgTime > displayRefreshInterval)
 {
 background(255);
 drawGrid();
 for (int i=1; i <= maxNumberOfRows; i++)
 {
 drawBar(i);
 }
 lastMsgTime = 0;
 }
}

/******************************
 code for Serial port
*****************************/

import processing.serial.*;

Serial myPort; // Create object from Serial class

void initComms(){
 String portName = Serial.list()[portIndex];
 println(Serial.list());
 println(" Connecting to -> " + portName) ;
 myPort = new Serial(this, portName, 9600);

}

String commsPortString() {
 return " (" + Serial.list()[portIndex] + ")" ;
}

String message;

String commsGetMessage() {

 if (myPort.available() > 0) {
 try {
 message = myPort.readStringUntil(10);
 if (message != null) {

219Appendix C

Identify the Symptoms and Localize the problem

 // print(message);
 return message;
 }
 }
 catch (Exception e) {
 e.printStackTrace(); // Display whatever error we received
 }
 }
 return "";
}

This sketch talks to Arduino using the serial port and you need to ensure that
the Processing sketch is using the same port that is connected to your robot.
The port Arduino uses is displayed on in the Arduino IDE. You set the Processing
port by changing the value of the variable portIndex. When starting the Pro
cessing sketch, you will see a list of the ports on your computer. portIndex is
the position of the Arduino port in this list, but note that the index starts from
0, so the default value of 1 for portIndex is for the second port in the list.

A robot tethered via USB is not very convenient when you want to see what
the robot is doing while moving. Adding a wireless serial device such as Blue
tooth or XBee can be a big help when debugging or tuning your robot. If you
are using a Leonardo, note that the TX/RX pins (digital 1 and 0) are accessed
through Serial1 rather than Serial, so modify your code accordingly (you’ll
need to replace all instances of Serial with Serial1 in all the tabs of your sketch).

A standard board like the Uno uses the same Serial object as USB and al
though you don’t need to modify the example code, you will need to discon
nect the wireless device from the pins when uploading code. This is because
the wireless device uses the same pins (digital 1 and 0) as USB.

220 Make an Arduino-Controlled Robot

Identify the Symptoms and Localize the problem

Monitoring Battery Voltage

The battery voltage can be monitored using an Arduino analog input, but you
can’t directly connect the battery to an input pin because a fully charged bat
tery can exceed the maximum voltage that the Arduino chip can tolerate.

Another factor to be aware of is that the default voltage reference for analog
Read is the 5 volt output from the regulator on the Arduino board. This regulator
requires more than 6 volts to produce a stable 5 volt output. When the voltage
difference between the regulator input and output (referred to in the regulator
datasheet as the dropout voltage) is less than a volt, the output voltage will
drop below the required 5 volt level. Because this voltage is used as the default
Arduino reference for analog conversion, the analog readings will no longer
be accurate. In short, you shouldn’t rely on the battery voltage as a reference
to measure the battery voltage. So you need a reliable voltage reference that
is not dependent on the output from the regulator.

The solution is to use an internal voltage reference that is built into the Arduino
chip. This provides a 1.1 volt reference that is stable for any voltage that is
sufficient to power the Arduino chip. Because the reference is 1.1 volts, the
voltage being measured must not exceed this value, so a voltage divider to
drop battery voltage down to an acceptable range is required (Figure D-1).

221

Power Sources D

Figure D-1. Resistors used as a voltage divider

To support a wide range of battery choices (including 8.4 volt LiPo batteries),
resistor values of 18k ohms for R1 and 2.2k ohms for R2 provide a voltage range
of up to 10 volts.

Here is the voltage divider formula for these resistor values: R2 / R1 +
R2. Substituting the chosen values results in:

2200/(18000 + 2200)

= 0.109

Therefore the voltage on the terminal will be the battery voltage times
0.109. For example, 10 volts at the battery will be dropped to just under
the 1.1 volt range of the internal reference.

The resistors can be attached to the battery terminals as shown in Figure D-2,
but a more permanent solution is to solder the resistors to the shield as shown
in Figure D-3 and Figure D-4.

222 Make an Arduino-Controlled Robot

Monitoring Battery Voltage

Figure D-2. Resistors added to shield to monitor battery

Figure D-3. Voltage Divider Resistors soldered to Vin and Gnd pins

223Appendix D

Monitoring Battery Voltage

Figure D-4. Voltage Divider Resistors soldered to Vin and Gnd pins

The code to read and interpret the voltage is in the Battery tab (Example D-1).
This code reads the output of the voltage divider using analogRead and con
verts this into the battery voltage expressed in millivolts. This is compared to
preset thresholds levels so an LED can be flashed to indicate low and critical
battery levels. The code can also detect if the optional charger plug is con
nected to stop robot movement while being recharged.

Example D1. Battery tab code
// code to monitor battery voltage

/**
 * LED starts flashing when volage drops below warning level
 * mark space ratio increses from 10% to 50% as voltage decreses from warning to critical
 * robot shuts down when battery below critical and led flashes SOS
 *
 * LED mark space ratio changes from 10% to 90% as voltage increases to full
 ***/

// thresholds are the cell millivolts times number of cells

224 Make an Arduino-Controlled Robot

Monitoring Battery Voltage

const int batteryFull = 1500 * 5; // threshold for battery is low warning
const int batteryWarning = 1100 * 5; // threshold for battery is low warning
const int batteryCritical= 1000 * 5; // threshold to shut down robot

int batteryMonitorPin; // analog pin to monitor
int chargerDetectPin =-1; // pin goes open circuit when charger connected, default is no pin
int blinkPin; // led pin to flash

void batteryBegin(int monitorPin, int ledPin)
{
 batteryMonitorPin = monitorPin;
 blinkPin = ledPin;
 pinMode(blinkPin, OUTPUT);
}

// version for charger detection
void batteryBegin(int monitorPin, int ledPin, int chargerPin)
{
 batteryBegin(monitorPin, ledPin);
 chargerDetectPin = chargerPin;
 pinMode(chargerDetectPin, INPUT_PULLUP); // connect pull-up resistor
}

// indicates battery status using the given LED
void batteryCheck()
{
 int mv = batteryMv(batteryMonitorPin); // get battery level in millivolts
 Serial.print("mv="); Serial.print(mv);
 if(chargerDetectPin >=0 && digitalRead(chargerDetectPin) == HIGH)
 {
 // here if charger detect is enabled and charger plugged in
 while(digitalRead(chargerDetectPin) == HIGH) // while charger is plugged in
 {
 moveStop();
 mv = batteryMv(batteryMonitorPin); // get battery level in millivolts
 Serial.print(", charger detected, voltage=");
 Serial.println(mv); Serial.println(", percent=");
 int percent = map(mv, batteryCritical, batteryFull, 50, 100);
 percent = constrain(percent, 0, 100);
 Serial.println(percent);
 flash(percent, blinkPin);
 }
 }
 else
 {

 if(mv < batteryCritical)
 {
 Serial.println("Critical");
 // shut down the robot
 moveStop();
 while(1) {
 flashCritical(blinkPin);

225Appendix D

Monitoring Battery Voltage

 // check of the charger is plugged in
 if(chargerDetectPin >=0 && digitalRead(chargerDetectPin) == HIGH)
 return; // exit if charging

 delay(5000);
 }
 }
 else if (mv < batteryWarning)
 {
 int percent = map(mv, batteryCritical, batteryWarning, 10, 50);
 flash(percent, blinkPin);
 }
 }
 delay(1000);
 Serial.println();
}

// return the voltge on the given pin in millivolts
// see text for voltage divider resistor values
int batteryMv(int pin)
{
#if defined(__AVR_ATmega32U4__) // is this a Leonardo board?
 const long INTERNAL_REFERENCE_MV = 2560; // leo reference is 2.56 volts
#else
 const long INTERNAL_REFERENCE_MV = 1100; // ATmega328 is 1.1 volts
#endif
 const float R1 = 18.0; // voltge dividier resistors values, see text
 const float R2 = 2.2;
 const float DIVISOR = R2/(R1+R2);

 analogReference(INTERNAL); // set reference to internal (1.1V)
 analogRead(pin); // allow the ADC to settle
 delay(10);

 int value = 0;
 for(int i=0; i < 8; i++) {
 value = value + analogRead(pin);
 }
 value = value / 8; // get the average of 8 readings
 int mv = map(value, 0,1023, 0, INTERNAL_REFERENCE_MV / DIVISOR);

 analogReference(DEFAULT); // set the reference back to default (Vcc)
 analogRead(pin); // just to let the ADC settle ready for next reading
 delay(10); // allow reference to stabalise

 return mv;
}

// flashes SOS in morse code
void flashCritical(int pin)
{
 for(int i=0; i< 3; i++)
 flash(20, pin);
 for(int i=0; i< 3; i++)

226 Make an Arduino-Controlled Robot

Monitoring Battery Voltage

 flash(60, pin);
 for(int i=0; i< 3; i++)
 flash(20, pin);
}

// percent is the percent of on time time (duty cycle)
void flash(int percent, int pin)
{
 Serial.print(", flash percent="); Serial.println(percent);
 const int duration = 1000;
 // Blink the LED
 digitalWrite(pin, HIGH);
 int onTime = map(percent, 0, 100, 0, duration);
 delay(onTime);
 digitalWrite(pin, LOW);
 delay(duration - onTime);
}

There are two versions of the batteryBegin function. Use the one with three
parameters if you have wired up the trickle charger circuit. The three param
eters passed to the function are: the pin that the voltage divider is connected
to, the LED pin, and the pin that detects the charger plug. Here is the function:

 batteryBegin(alogBatteryPin, ledPin, chargerDetectPin)

If you have not wired the robot to use a charger, then call batteryBegin with
two parameters: the pin that the voltage divider is connected to and the LED
pin:

 batteryBegin(alogBatteryPin, ledPin)

The checking is done in the batteryCheck function. This gets the battery level
in millivolts by calling batteryMv and compares this to the warning and critical
thresholds. The LED is flashed when the level drops below the warning level
with a flash ratio (blink on time to off time) that changes as the voltage drops.
If the voltage drops below the critical level, the robot movement is stopped,
and the LED flashes a distress signal (SOS in morse code) every 5 seconds. When
this happens, the batteries must be replaced or recharged before the robot
will reactivate.

The myrobotBatteryMonitor example sketch (Example D-2) in the download
shows how to use the battery monitor function.

Example D2. Battery monitor example sketch
/**
myRobotBatteryMonitor.ino

227Appendix D

Monitoring Battery Voltage

sketch to demonstrate battery voltage monitoring
based on myRobotWander

Robot wanders using forward scanning for obstacle avoidance
LED blinks when battery runs low, robot goes to sleep when battery is critical.

Created by Michael Margolis 22 July 2012
**/
#include "robotDefines.h" // global defines

#include <AFMotor.h> // adafruit motor shield library
#include "RobotMotor.h" // 2wd or 4wd motor library

const int ledPin = 13; // onboard LED
const int alogBatteryPin = 5; // input on analog 5
const int chargerDetectedPin = 2; // digital pin 2

// Setup runs at startup and is used configure pins and init system variables
void setup()
{
 Serial.begin(9600);
 blinkNumber(8); // open port while flashing. Needed for Leonardo only

 lookBegin();
 moveBegin();
 //batteryBegin(alogBatteryPin, ledPin);
 batteryBegin(alogBatteryPin, ledPin, chargerDetectedPin);

 pinMode(ledPin, OUTPUT);
 Serial.println("Ready");
}

void loop()
{
// roam();
 batteryCheck();
}

// function to indicate numbers by flashing the built-in LED
void blinkNumber(byte number) {
 pinMode(LED_PIN, OUTPUT); // enable the LED pin for output
 while(number--) {
 digitalWrite(LED_PIN, HIGH); delay(100);
 digitalWrite(LED_PIN, LOW); delay(400);
 }
}

228 Make an Arduino-Controlled Robot

Monitoring Battery Voltage

Trickle Charging

The build chapters in the beginning of the book described a simple trickle
charger that you can use to recharge NiMH batteries. This section describes
how to use the charger as well as some important points to ensure that you
don’t damage your batteries.

Trickle charging is a method of recharging NiMH batteries that provides a slow
but steady charging current which should fully recharge 5 AA cells in around
14 to 16 hours. The charger has been designed for cells with a rated capacity
of 2000 to 2500 mAh (milliampere hours). Cells with a higher rating can be
used but they will require a longer charging period.

Do not try to charge non-rechargeable batteries.

The batteries start charging when a DC power supply is plugged into the
charging socket and the power switch is turned on. The charging circuit is
designed for use with a 12 volt supply with a 2.1mm plug (positive on the
center connector). Cells with the suggested rating should handle the trickle
charge current for long periods, however it is good practice to keep your charge
session to 24 hours or less, particularly if your DC supply could be delivering a
little more than the recommended 12 volts.

229Appendix D

Trickle Charging

The code in this book takes advantage of a number of Arduino functions that
are summarized in this appendix. See the online Arduino reference for each
function if you want more detail.

Digital I/O

pinMode(pin, mode);

Configures a digital pin to read (input) or write (output) a digital value; see
http://arduino.cc/en/Reference/PinMode

digitalRead(pin);

Reads a digital value (HIGH or LOW) on a pin set for input; see http://ardu
ino.cc/en/Reference/DigitalRead

digitalWrite(pin, value);

Writes the digital value (HIGH or LOW) to a pin set for output; see http://
arduino.cc/en/Reference/DigitalWrite

pulseIn(pin, pulseType, timeout);

Returns the pulse width in microseconds of a changing digital signal on
the given pin. pulseType (either HIGH or LOW) determines if duration is
for a high or low pulse. timout is an optional value indicating how long to
wait for a pulse (the default is one second); see http://arduino.cc/en/Refer
ence/PulseIn

231

Programming Constructs E

http://arduino.cc/en/Reference/PinMode
http://arduino.cc/en/Reference/DigitalRead
http://arduino.cc/en/Reference/DigitalRead
http://arduino.cc/en/Reference/DigitalWrite
http://arduino.cc/en/Reference/DigitalWrite
http://arduino.cc/en/Reference/PulseIn
http://arduino.cc/en/Reference/PulseIn

Analog I/O

analogRead(pin);

Reads a value from the specified analog pin. The value ranges from 0 to
1023 for voltages that range from 0 to the reference voltage (5 volts by
default, but can be changed by using analogReference; see http://ardui
no.cc/en/Reference/AnalogRead

analogReference(type);

Configures the reference voltage used for analog input. This is used in the
battery monitor code discussed in Appendix D, Power Sources; see http://
arduino.cc/en/Reference/AnalogReference

Math functions

min(x,y);

Returns the smaller of two numbers; see http://arduino.cc/en/
Reference/Min

max(x,y);

Returns the larger of two numbers; see http://arduino.cc/en/Reference/Max

constrain(x,lower,upper);

Constrains the value of x to be between the lower and upper range; see
http://arduino.cc/en/Reference/Constrain

map(x,fromLow,fromHigh,destLow,destHigh);

Scales a value from one range to another range. The result will have the
same proportion within the destination range as in the source range. The
following code scales the analogRead value to a percentage of the full
scale reading:

int val = analogRead(0);
int percent = map(val, 0,1023, 0,100)

The following code scales an analogRead value to its value in millivolts
(refMv is the reference voltage expressed in millivolts):

int mV = map(val, 0,1023, 0, refMv);

See http://arduino.cc/en/Reference/Map

Other Functions and Constructs

switch / case statements

Controls program flow by testing if a number matches one of a number of
alternative values. Here is a simplified example from the remote control
sketch that uses switch to execute the appropriate function associated
with each command:

232 Make an Arduino-Controlled Robot

Analog I/O

http://arduino.cc/en/Reference/AnalogRead
http://arduino.cc/en/Reference/AnalogRead
http://arduino.cc/en/Reference/AnalogReference
http://arduino.cc/en/Reference/AnalogReference
http://arduino.cc/en/Reference/Min
http://arduino.cc/en/Reference/Min
http://arduino.cc/en/Reference/Max
http://arduino.cc/en/Reference/Constrain
http://arduino.cc/en/Reference/Map

void processCommand(int command)
{
 switch(command)
 {
 case MOVE_LEFT : moveLeft(); break;
 case MOVE_RIGHT : moveRight(); break;
 case MOVE_FORWARD : moveForward(); break;
 case MOVE_BACK : moveBackward(); break;
 case PIVOT_CCW : moveRotate(-90); break;
 case PIVOT_CW : moveRotate(90); break;
 case HALT : moveStop(); break;
 }
}

The break statement is necessary to prevent execution falling through to
the following case statement. See http://arduino.cc/en/Reference/Switch
Case

array

An array is a collection of variables accessed using an index number. The
first element of an Arduino array is accessed using an index of 0. An array
can be initialized when it is declared by placing values in curly brackets.
The following declares an array named motorSpeed with two elements that
will store the speed for the left and right motors and initialize the speed
values to 0:

const int NUMBER_OF_MOTORS = 2;
int motorSpeed[NUMBER_OF_MOTORS] = {0,0}; // motor speed stored here (0-100%)

see: http://arduino.cc/en/Reference/Array

#include "header.h"

This makes functions and variables declared in the specified file available
to your sketch. See http://arduino.cc/en/Reference/Include

233Appendix E

Other Functions and Constructs

http://arduino.cc/en/Reference/SwitchCase
http://arduino.cc/en/Reference/SwitchCase
http://arduino.cc/en/Reference/Array
http://arduino.cc/en/Reference/Include

The tables in this section show the pin and timer resources used by the projects
in this book. You can use the same pin assignments for the Leonardo boards
or the standard ATmega328 boards such as the Uno. However, there are subtle
low level differences between these boards, so if you are adding capabilities
that use additional pins or resources beyond those described in this book, then
check the documentation on pin and resource usage for your board.

Handling Resource Conflicts

The Arduino chip has a rich collection of hardware resources, but you can run
up against a conflict if a feature you are adding requires a hardware resource
that some other feature is already using. A resource conflict occurs when a
function reconfigures or requires exclusive access to some hardware capability.
Running out of analog or digital pins is one kind of resource conflict, usually
easy to spot.

More subtle is a conflict caused by a library that requires a resource such a
hardware timer that is already used by some other function. For example, a
motor shield uses PWM to control motor speed and each motor requires a
timer component. Arduino tries to hide the underlying hardware (one of the
things that makes it easy to use) but this can result in things going wrong when
a resource conflict does occur. Sometimes the compiler will report a problem
with an error message about a resource conflict. But sometimes the sketch will
compile without an error message even though a resource conflict is prevent
ing the code from functioning as expected.

For example, the infrared remote control library uses a timer to decode pulses
in the background. If this is the same timer used by some other function, say

235

Arduino Pin and Timer
Usage F

the Arduino Servo library, one or both of these libraries will malfunction. The
solution is to either reassign one of the libraries to use a different timer, or to
find an alternative way to perform one of the functions without a timer. Both
of these approaches will be discussed in this appendix.

Modifying a Library to Change Timer Allocation
Modifying a library is not a task for a beginner, but some libraries are designed
to allow configuration. For example, the irRemote library used in Chapter 11,
Remote Control has a file named irRemoteInt.h that can be edited to change
the timer used by this library. Here are fragments of this file that determines
the timer used by the library:

// Leonardo or Teensy 2.0
#elif defined(__AVR_ATmega32U4__)
 //#define IR_USE_TIMER1 // tx = pin 14
 // #define IR_USE_TIMER3 // tx = pin 9
 #define IR_USE_TIMER4_HS // tx = pin 10

And further down the file:
// Arduino Duemilanove, Diecimila, LilyPad, Mini, Fio, etc
#else
 //#define IR_USE_TIMER1 // tx = pin 9
 #define IR_USE_TIMER2 // tx = pin 3
#endif

The first code fragment determines the timer to be used with a Leonardo board
(the Arduino build process will use the code in this fragment if the chip is an
ATmega32U4). The uncommented line contains: #define IR_USE_TIMER4_HS
which results in the library using Timer 4. However, Timer 4 is also used to
control one of the motors in the 4WD robot. If you have the 4WD robot and
want to use the infrared remote control library, you need to find a free timer
to use. You can’t easily change the motor library because the pin for Timer 4 is
hard wired to the motor controller chip. But you can change the remote timer
by commenting out the line for Timer 4 and uncommenting a line that enables
a free timer. The Leonardo has 5 timers but as shown in Table F-2, only Timer
1 is available. The code to disable Timer 4 and enable Timer 1 is as follows:

// Leonardo or Teensy 2.0
#elif defined(__AVR_ATmega32U4__)
 #define IR_USE_TIMER1 // tx = pin 14
 // #define IR_USE_TIMER3 // tx = pin 9
 // #define IR_USE_TIMER4_HS // tx = pin 10

Using your text editor to make and save that change in irRemoteInt.h will
eliminate the conflict by using Timer 1 instead of Timer 4.

If your 4WD robot uses an Arduino Uno, then the change is to remove the //
comment characters before the IR_USE_TIMER1 line and add the comment
characters before IR_USE_TIMER2

236 Make an Arduino-Controlled Robot

Handling Resource Conflicts

// Arduino Duemilanove, Diecimila, LilyPad, Mini, Fio, etc
#else
 #define IR_USE_TIMER1 // tx = pin 9
 //#define IR_USE_TIMER2 // tx = pin 3
#endif

Writing Code That Avoids the Use of a Timer
Sometimes there is a conflict but no alternative resource to use. An example
of this is if your infrared remote library is using Timer 1 (see previous section)
and you also want to use the Servo library, which also uses Timer 1. If you have
the 2WD robot with a Uno, then you could use Timer 2 for the remote library
so the Servo library can remain on timer 1. There are no free timers available
if you have a 4WD robot or the 2WD robot with a Leonardo board, but you can
solve this conflict by adding some code that controls the servo without using
a timer. See “Adding Scanning” (page 178) for an example of how this can be
done.

Pin and Timer Tables

The best way to handle hardware conflicts is to plan in advance by familiarizing
yourself with the resources currently in use and the resources needed by the
function you are adding. The tables in this appendix show the chip pins and
timers used by the projects in this book. Although you will have some pins free
after connecting up all the projects presented in this book, there may not be
enough pins to connect all the optional sensors mentioned in Chapter 8, Tu
torial: Introduction to Sensors along with some of the suggestions in the ap
pendices. Use Table F-1 and Table F-2 to keep track of your pin and timer allo
cations.

Table F1. Pin Usage

Pin Usage Comment

Digital 0 Serial Receive

Digital 1 Serial Transmit

Digital 2 Unused Leonardo can use this for I2C

Digital 3 Motor 2 PWM Timer 2b on Uno, Timer 0b on Leo (Leo uses this for I2C)

Digital 4 Motor control

Digital 5 Motor 4 PWM Timer 0b on Uno, Timer 3a on Leo

Digital 6 Motor 3 PWM Timer 0a on Uno, Timer 4d on Leo

Digital 7 Motor control

Digital 8 Motor control

Digital 9 Scan Servo used in Chapter 10, Autonomous Movement

Digital 10 Distance Sensor used in Chapter 10, Autonomous Movement

237Appendix F

Pin and Timer Tables

Pin Usage Comment

Digital 11 Motor 1 PWM Timer 2a on Uno, Timer 0a or 1c on Leo

Digital 12 Motor control

Digital 13 On-board LED This can be used as a digital pin if LED not needed

Analog 0 Left Reflectance Sensor

Analog 1 Right Reflectance Sensor

Analog 2 Center Reflectance Sensor

Analog 3 IR Remote Decoder used in Chapter 11, Remote Control

Analog 4 Optional Battery Monitor Uno can use this for I2C

Analog 5 Optional sound or proximity sensor Uno can use this for I2C

Table F2. Timer Usage

Timer Uno 2WD Uno 4WD Leo 2WD Leo 4WD

Timer 0 PWM for motors 3 & 4 PWM for motor 1 & 2 PWM for motor 1 & 2

Timer1 IR Remote IR Remote IR Remote IR Remote

Timer2 PWM for motors 1 &2 PWM for motors 1 &2 Not available Not available

Timer3 Not available Not available PWM for motor 4

Timer4 Not available Not available PWM for motor 3

238 Make an Arduino-Controlled Robot

Pin and Timer Tables

	Copyright
	Table of Contents
	Who This Book Is For

	Preface
	How This Book Is Organized
	What Was Left Out
	Code Style (About the Code)
	Arduino Hardware and Software
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgments

	Chapter 1. Introduction to Robot Building
	Why Build a Robot?
	How Robots Move
	Tools

	Chapter 2. Building the Electronics
	Hardware Required
	Construction Techniques
	Soldering
	Building the Motor Controller
	Soldering the Reflectance Sensors
	Making a Line Sensor Mount
	Next Steps

	Chapter 3. Building the Two-Wheeled Mobile Platform
	Hardware Required
	Mechanical Assembly
	Lay Out the Chassis Parts
	Motor Assembly
	Assemble the Chassis Components
	Attaching the Control Electronics

	Mounting the IR sensors
	Mounting the IR Sensors for Edge Detection
	Mounting the IR Sensors for Line Following

	Next Steps

	Chapter 4. Building the Four-Wheeled Mobile Platform
	Hardware Required
	Mechanical Assembly
	Lay Out the Chassis Parts
	Motor Assembly
	Assemble the Chassis Components
	Solder the Power and Motor Connections
	Connecting the Battery Pack and Power Switch
	Building the Optional Trickle Charger
	Assemble the Chassis
	Mounting Arduino and Connecting Wires to the Shield

	Mounting the IR sensors
	Mounting the IR Sensors for Edge Detection
	Mounting the IR Sensors for Line Following

	Next Steps

	Chapter 5. Tutorial: Getting Started with Arduino
	Hardware Required
	Arduino Software
	Arduino Hardware
	Installing the Integrated Development Environment (IDE)
	Installing Arduino on Windows
	Installing Arduino on OS X
	Installing Arduino on Linux
	Driver Installation

	Connecting the Arduino Board
	Using the IDE
	Uploading and Running the Blink Sketch
	Using Tabs
	Installing Third-Party Libraries

	Chapter 6. Testing the Robot’s Basic Functions
	Hardware Required
	Software Prerequisites
	Sketches Used in This Chapter
	Load and Run helloRobot.ino
	About the Sketch
	Troubleshooting
	Making the Sketch Easy to Enhance

	Chapter 7. Controlling Speed and Direction
	Hardware Required
	Sketches Used in This Chapter
	Types of Motors
	Motor Controllers
	Controlling Motor Speed
	How Motor Speed Is Controlled
	Code for Motor Control
	Calibrating Rotation and Tracking

	Software Architecture for Robot Mobility
	Functions to Encapsulate Robot Movements
	Core Movement Code
	Additional Core Functions
	Functions to Rotate the Robot
	Higher-Level Movement Functions

	Chapter 8. Tutorial: Introduction to Sensors
	Hardware Discussed
	Software
	Infrared Reflectance Sensors
	Sonar Distance Sensors
	Maxbotix EZ1 Sonar Distance Sensor
	Sharp IR Distance Sensor
	Proximity Sensor
	Sound Sensor
	Arduino Cookbook

	Chapter 9. Modifying the Robot to React to Edges and Lines
	Hardware Required
	Sketches Used in This Chapter
	The Look Code
	Edge Detection
	Line Following
	Seeing Sketch Data

	Chapter 10. Autonomous Movement
	Hardware Required
	Sketches Used in This Chapter
	Mounting a Ping Distance Sensor
	Making a Mount for the Ping Sensor
	Mounting the Ping Sensor in a Fixed Position
	Mounting the Ping Sensor on a Servo

	Letting the Robot Wander
	Adding Scanning

	Chapter 11. Remote Control
	Hardware Required
	Sketches Used in This Chapter
	Design of the Remote Control Code
	Controlling the Robot with a TV Type IR Remote
	Installing the IR Decoder Chip
	The IR Remote Software

	Appendix A. Enhancing Your Robot
	Planning
	Think Before You Code
	Avoid Feature Bloat
	Don’t Reinvent the Wheel
	Structure to Reflect Functionality
	Use Clear Names for Functions and Variables

	Implementing a Complex Project
	Test Often
	Simplify
	If It Is Awkward, Start Over
	Don’t Confuse Activity with Progress
	Experiment
	Be Tenacious
	Have Fun

	Appendix B. Using Other Hardware with Your Robot
	Alternative Motor Controllers
	Ardumoto
	Continuous Rotation Servos

	Appendix C. Debugging Your Robot
	Identify the Symptoms and Localize the problem
	Seeing What the Robot Is Doing

	Appendix D. Power Sources
	Monitoring Battery Voltage
	Trickle Charging

	Appendix E. Programming Constructs
	Digital I/O
	Analog I/O
	Math functions
	Other Functions and Constructs

	Appendix F. Arduino Pin and Timer Usage
	Handling Resource Conflicts
	Modifying a Library to Change Timer Allocation
	Writing Code That Avoids the Use of a Timer

	Pin and Timer Tables

