
www.it-ebooks.info

http://www.it-ebooks.info/

Learning Python Testing

A straightforward and easy approach to testing
your Python projects

Daniel Arbuckle

BIRMINGHAM - MUMBAI

www.it-ebooks.info

http://www.it-ebooks.info/

Learning Python Testing

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: January 2010

Second edition: November 2014

Production reference: 1181114

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78355-321-1

www.packtpub.com

Cover image by Prasanna BC (prasannabc@gmail.com)

www.it-ebooks.info

www.packtpub.com
http://www.it-ebooks.info/

Credits

Author
Daniel Arbuckle

Reviewers
Tarun Behal

Johnson M. R. Chetty

Brian Escribano

Piyush Gururani

Marko Klemetti

Sean Robinson

Michael Tsai

Acquisition Editor
Owen Roberts

Content Development Editor
Arvind Koul

Technical Editor
Venu Manthena

Copy Editor
Rashmi Sawant

Project Coordinator
Priyanka Goel

Proofreaders
Stephen Copestake

Ameesha Green

Indexer
Monica Ajmera Mehta

Graphics
Sheetal Aute

Valentina D'silva

Production Coordinator
Nilesh R. Mohite

Cover Work
Nilesh R. Mohite

www.it-ebooks.info

http://www.it-ebooks.info/

About the Author

Daniel Arbuckle received his PhD. degree in Computer Science from the
University of Southern California in 2007. He is an active member of the Python
community and an avid unit tester.

I would like to thank Grig, Titus, and my family for their
companionship and encouragement along the way.

www.it-ebooks.info

http://www.it-ebooks.info/

About the Reviewers

Tarun Behal is a fervent software developer currently living in Delhi, India. After
starting his career in the field of IT, where he worked as an ERP consultant, he's now
a web application developer with interests ranging from architecture to designing
web applications delivering great user experience. He's passionate about open source
technologies and web applications, and contributes to communities.

Tarun went to Uttar Pradesh Technical University (India) and graduated with
a Bachelor of Technology degree in Information Technology. He now works for
Nagarro Software Pvt. Ltd, a leading service-based IT company.

The quickest way to reach him is via LinkedIn at https://www.linkedin.com/in/
tarunbehal.

I feel much honored to have been asked to review this book. This
was an amazing experience for me, as I learned a lot at the same
time, and I am sure you will too.

I'd like to thank my family specially my brother, Varun, and my
colleagues Shipra, Denis, Prabhansh, Prafful, Shubham, Arun,
Mansi, and Rachita for their constant support and motivation. Also,
I would like to thank all the members of the Python community.

www.it-ebooks.info

https://www.linkedin.com/in/tarunbehal
https://www.linkedin.com/in/tarunbehal
http://www.it-ebooks.info/

Johnson M. R. Chetty is an avid open data proponent. He works primarily with
Python, JavaScript, and Linux to enable end-to-end solutions.

Working with real-world data to meet objectives is something that he finds
challenging and likes to grapple with. His primary focus is on areas such as data
visualization, data analysis, Semantic Web, GIS, systems deployment and scaling
(Linux), mentoring, and project management. He has worked with Gnowledge Lab
(Homi Bhabha Centre for Science Education, TIFR), GISE Lab (IIT Bombay), NCERT,
ChaloBEST, CAMP, ZLemma, and Wishtel among others.

He was a mentor for Google Summer of Code 2012 for the GNOWSYS platform—a
GNU/Linux project.

He is interested in technology, scientific data, economics, and looking at the world to
know where it's currently headed. You will also find him keenly following advances
in Brain Science, AI, GIS, Semantic Web, and Internet of Things.

He likes to think of himself as a budding musician and a novice economist.

For more information on his work, kindly visit http://johnc.in. You can also
find his LinkedIn profile at http://johnc.in/linkedin and Google Plus profile
at http://johnc.in/gplus.

Jesus, Mr. Michael Susai Chetty, and Mrs. Regina Mary deserve a
round of applause for managing to put up with a son like me and
for giving me all the love and freedom in the world. I would like to
thank them for giving me everything I have.

Brian Escribano has over 11 years' experience working in the fields of education,
TV, and games. He builds world-class character rigs and animation pipelines for
companies such as Nickelodeon, Mirada, Spark Unlimited, and BioWare. With his
deep scripting knowledge in Python and MEL, Brian brings a wealth of expertise
and experience to any team he works with.

www.it-ebooks.info

http://johnc.in/linkedin
http://johnc.in/gplus
http://www.it-ebooks.info/

Piyush Gururani is a programmer and core developer working in Mumbai,
India. His work has revolved around making applications for large touch screens
in Qt, developing a closed source SDK to allow third-party developers to make
applications for large touch screens, and designing backend architecture for content
and real-time notification delivery in Python and Node.js. He has worked as a senior
developer and consultant to start-ups in India and UK.

I would like to acknowledge my mother and father for their efforts
in my upbringing and education.

Marko Klemetti (@mrako) is a father, leader, and developer. He is currently the
head of the leading Finnish Devops unit in Eficode (http://www.eficode.com).
With his team, he changes the way Finnish and multinational organizations
create and purchase software. He is also the founder and architect of Trail
(http://www.entertrail.com), an internationally successful solution for social
asset management.

Marko has specialized in bringing efficiency to large software production
environments by applying modern software development practices and tools, such
as Continuous Delivery (CD) and Acceptance Test-Driven Development (ATDD).
With his two decades of software development experience, he is able to engage both
executives and developers in process change. Marko is passionate about making
programming both fun and productive at the same time.

www.it-ebooks.info

http://www.eficode.com
http://www.entertrail.com
http://www.it-ebooks.info/

Sean Robinson is an award-winning graduate from the University of South Wales,
who originally trained as a game developer using C and C++. He was headhunted
out of the university to run the development arm of LexAble, a company making
assistive technology to help those with dyslexia.

As a lead engineer in the start-up, Sean embarked on an ambitious training
regime, teaching himself Mac development, software testing, leadership, coaching,
mentoring, and project management in order to best serve the company. Sean has
also been responsible for establishing many company policies, including testing,
security, code quality, a developer hiring procedure, project management, version
control, and ticket management.

Looking for a new challenge, Sean has recently joined a new team and is refocussing
his energies on web development.

Sean is a polyglot developer, completely agnostic regarding technology and
supremely passionate about learning and personal development. He spends
his time volunteering as a STEM Ambassador for Wales, Thai boxing, and scuba
diving. You can find him blogging at www.SeanTRobinson.co.uk or tweeting
at @SeanTRobinson.

Michael Tsai went to the Academy of Art University at San Francisco to study
Visual Effects. After college, he worked on Fantastic Four: Rise of the Silver Surfer,
Red Cliff II, and the stereoscopic version of G-Force. In 2012, Michael received
his Master of Entertainment Technology degree (MET) from the Entertainment
Technology Center of Carnegie Mellon University. Elysium was another feature film
he worked on before he joined Schell Games in Pittsburgh as a game/technical artist.

www.it-ebooks.info

www.SeanTRobinson.co.uk
http://www.it-ebooks.info/

www.PacktPub.com

Support files, eBooks, discount offers,
and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

TM

https://www.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.it-ebooks.info

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www.packtpub.com/books/subscription/packtlib
www.PacktPub.com
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents
Preface 1
Chapter 1: Python and Testing 5

Testing for fun and profit 6
Levels of testing 7

Unit testing 7
Integration testing 7
System testing 8

Acceptance testing 8
Regression testing 9
Test-driven development 9
You'll need Python 9
Summary 10

Chapter 2: Working with doctest 11
Where doctest performs best 11
The doctest language 12

Example – creating and running a simple doctest 12
Result – three times three does not equal ten 13
The syntax of doctests 13
Example – a more complex test 13
Result – five tests run 14

Expecting exceptions 15
Example – checking for an exception 15
Result – success at failing 16

Expecting blank lines 16
Controlling doctest behavior with directives 17
Ignoring part of the result 17

Example – ellipsis test drive 17
Result – ellipsis elides 18

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[ii]

Ignoring white space 18
Example – invoking normality 18
Result – white space matches any other white space 19

Skipping an example 19
Example – humans only 20
Result – it looks like a test, but it's not 20

The other directives 20
The execution scope of doctest tests 21
Check your understanding 22
Exercise – English to doctest 22
Embedding doctests into docstrings 23

Example – a doctest in a docstring 24
Result – the code is now self-documenting and self-testable 25

Putting it into practice – an AVL tree 26
English specification 27
Node data 29
Testing the constructor 30
Recalculating height 31
Making a node deletable 32
Rotation 33
Locating a node 34
The rest of the specification 34

Summary 35
Chapter 3: Unit Testing with doctest 37

What is unit testing? 37
The limitations of unit testing 38

Example – identifying units 39
Choosing units 40

Check your understanding 40
Unit testing during the development process 41

Design 42
Development 45
Feedback 48
Development, again 53
Later stages of the process 55

Summary 56

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[iii]

Chapter 4: Decoupling Units with unittest.mock 57
Mock objects in general 58
Mock objects according to unittest.mock 58

Standard mock objects 59
Non-mock attributes 62
Non-mock return values and raising exceptions 62
Mocking class or function details 64
Mocking function or method side effects 65

Mocking containers and objects with a special behavior 66
Mock objects for properties and descriptors 68
Mocking file objects 70
Replacing real code with mock objects 70

Mock objects in action 72
Better PID tests 72

Patching time.time 72
Decoupling from the constructor 73

Summary 74
Chapter 5: Structured Testing with unittest 75

The basics 75
Assertions 79

The assertTrue method 79
The assertFalse method 81
The assertEqual method 81
The assertNotEqual method 81
The assertAlmostEqual method 81
The assertNotAlmostEqual method 82
The assertIs and assertIsNot methods 82
The assertIsNone and assertIsNotNone methods 83
The assertIn and assertNotIn methods 83
The assertIsInstance and assertNotIsInstance methods 83
The assertRaises method 83
The fail method 84

Make sure you get it 85
Test fixtures 86

Example – testing database-backed units 86
Summary 90

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[iv]

Chapter 6: Running Your Tests with Nose 91
Installing Nose 91
Organizing tests 92

An example of organizing tests 93
Simplifying the Nose command line 97
Customizing Nose's test search 98

Check your understanding 98
Practicing Nose 99

Nose and doctest tests 99
Nose and unittest tests 100

Module fixture practice 100
Package fixture practice 102

Nose and ad hoc tests 103
Summary 105

Chapter 7: Test-driven Development Walk-through 107
Writing the specification 107

Try it for yourself – what are you going to do? 113
Wrapping up the specification 113

Writing initial unit tests 114
Try it for yourself – write your early unit tests 127
Wrapping up the initial unit tests 127

Coding planner.data 127
Using tests to get the code right 129

Try it for yourself – writing and debugging code 132
Writing the persistence tests 133
Finishing up the personal planner 135
Summary 138

Chapter 8: Integration and System Testing 139
Introduction to integration testing and system testing 139

Deciding on an integration order 140
Automating integration tests and system tests 142

Writing integration tests for the time planner 143
Check yourself – writing integration tests 156
Summary 157

Chapter 9: Other Tools and Techniques 159
Code coverage 159

Installing coverage.py 160
Using coverage.py with Nose 160

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[v]

Version control integration 163
Git 164

Example test-runner hook 164
Subversion 166
Mercurial 169
Bazaar 170

Automated continuous integration 171
Buildbot 171

Setup 172
Using Buildbot 174

Summary 175
Index 177

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Preface
In this book, you'll learn about the major tools, techniques, and skills of automated
testing in the Python 3 language. You'll learn about the tools that are included in
Python's standard library, such as doctest, unittest, and unittest.mock. You'll also learn
about useful nonstandard tools such as Nose and coverage.py. As we're talking about
these tools, we'll also be discussing the philosophy and best practices of testing, so
when you're done you'll be ready to use what you've learned in real-world projects.

This book is a successor to an earlier book, Python Testing: Beginner's Guide, Daniel
Arbuckle, Packt Publishing which only covered Python up to version 2.6. Python 3
and its related tools are just slightly too different to justify calling this book a second
edition. If you've read the earlier book and parts of this book seem familiar to you,
it's because the two books are in fact similar.

What this book covers
Chapter 1, Python and Testing, provides an introduction to formalized and automated
testing in Python.

Chapter 2, Working with doctest, teaches you to use doctest, a tool that integrates
testing and documentation.

Chapter 3, Unit Testing with doctest, helps you understand how to apply doctest to
the discipline of unit testing.

Chapter 4, Decoupling Units with unittest.mock, teaches you to create and use
mock objects.

Chapter 5, Structured Testing with unittest, helps you to build more structured test
suites with unittest.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[2]

Chapter 6, Running Your Tests with Nose, helps you run your doctests, unittests, and
more with one command.

Chapter 7, Test-driven Development Walk-through, takes you step by step through the
test-driven development process.

Chapter 8, Integration and System Testing, teaches you how to test the interactions
between units of code.

Chapter 9, Other Tools and Techniques, helps you learn about continuous integration,
version control hooks, and other useful things that are related to testing.

What you need for this book
You're going to need Python version 3.4 or later, a text editor, and Internet access to
get the most out of this book.

Who this book is for
This book is primarily for people who have a solid grasp of the Python language,
and want a boost in working with automated testing. If you do not know Python at
all, this book will still serve as an introduction to automated testing philosophy and
practices. Thanks to Python's executable pseudocode nature, though, you might find
the road a little bumpy at times.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"Mock objects are provided by the unittest.mock module in the standard library."

A block of code is set as follows:

class ClassOne:
 def __init__(self, arg1, arg2):
 self.arg1 = int(arg1)
 self.arg2 = arg2

 def method1(self, x):
 return x * self.arg1

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[3]

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

class ClassOne:
 def __init__(self, arg1, arg2):
 self.arg1 = int(arg1)
 self.arg2 = arg2

 def method1(self, x):
 return x * self.arg1

Any command-line input or output is written as follows:

$ python -m nose

New terms and important words are shown in bold.

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

www.it-ebooks.info

www.packtpub.com/authors
http://www.it-ebooks.info/

Preface

[4]

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to have
the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

www.it-ebooks.info

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
http://www.it-ebooks.info/

Python and Testing
You might be a programmer, a coder, a developer, or maybe a hacker. As such, it's
almost impossible that you haven't had to sit down with a program that you were
sure was ready for use—or possibly a program you knew was not ready—and put
together a bunch of tests to prove it. It often feels like an exercise in futility or, at its
best, a waste of time. We're going to learn about how to avoid this situation, and
make testing an easy and enjoyable process.

This book is going to show you a new way to test, a way that puts much of the
burden of testing right where it should be—on the computer. Even better, your
tests will help you to find problems early, and tell you just where they are, so that
you can fix them easily. You'll love the easy, helpful methods of automated testing,
and test-driven development.

The Python language has some of the best tools when it comes to testing, so we're
going to learn about how to make testing easy, quick, fun, and productive by taking
advantage of these tools.

This chapter provides an overview of the book, so we're going to briefly discuss the
following topics:

• The levels of tests: Unit, integration, and system
• Acceptance testing and regression testing
• Test-driven development

www.it-ebooks.info

http://www.it-ebooks.info/

Python and Testing

[6]

Testing for fun and profit
This chapter started with a lot of grandiose claims—you'll enjoy testing. You'll rely
on this to help you kill bugs early and easily. Testing will stop being a burden for
you and will become something that you want to do. How?

Think back to the last really annoying bug that you had to deal with. It could have
been anything: a database schema mismatch, a bad data structure, what have you.

Remember what caused the bug? The one line of code with the subtle logic error. The
function that didn't do what the docs said it did. Whatever it was, keep this in mind.

Imagine a small chunk of code that could have caught that bug, if it had been run at
the right time and you had been told about it.

Now imagine that all of your code is accompanied by those little chunks of test code,
and that they are quick and easy to execute.

How long would your bug have survived? Not very long at all.

This gives you a pretty basic understanding of what we'll be talking about in
this book. There are many refinements and tools to make the process quicker and
easier, but the basic idea is to tell the computer what you expect, using simple and
easily-written chunks of code, and then tell the computer to double-check your
expectations throughout the coding process. Because expectations are easy to
describe, you can write them down first, allowing the computer to shoulder much
of the burden of debugging your code. Because expectations are easy to describe,
you can write them down fast, allowing you to move on to interesting things while
the computer keeps track of the rest.

When you're done, you have a code base that is highly tested and that you can be
highly confident of. You caught your bugs early and fixed them quickly. Best of all,
your testing was done by the computer based on what you told it and what you
wanted the program to do. After all, why should you do it, when the computer can
do it for you?

I have had simple automated tests catch everything from minor typos to instances of
database access code being left dangerously out-of-date after a schema change, and
pretty much any other bug that you can imagine. The tests caught the errors quickly
and pinpointed their locations. A great deal of effort and trouble was avoided
because they were there.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[7]

Spending less time on debugging and being sure of your result makes programming
more fun. Producing a higher quality of code in a shorter amount of time makes it
more profitable. The test suite provides instant feedback, allowing you to run each
chunk of your code now instead of waiting for the program as a whole to be in a state
where you can execute it. This quick turnaround makes programming both more
satisfying and more productive.

Levels of testing
Testing is commonly divided into several categories based on how complex the
component being tested is. Most of our time will be focused on the lowest level—unit
testing—because unit tests provide the foundation for tests in the other categories.
Tests in the other categories operate on the same principles.

Unit testing
Unit testing is testing the smallest possible pieces of a program. Often, this means
individual functions or methods. The keyword here is individual: something is
a "unit" if there's no meaningful way to divide it up further.

For example, it would make sense in order to consider this function as a unit:
def quadratic(a, b, c, x):
 return a * (x ** 2) + b * x + c

The preceding function works as a unit because breaking it up into smaller pieces is
not something that can be practically or usefully done.

Unit tests test a single unit in isolation, verifying that it works as expected without
considering what the rest of the program might do. This protects each unit from
inheriting bugs from the mistakes made elsewhere, and makes it easy to narrow
down where the real problems are.

By itself, unit testing isn't enough to confirm that a complete program works
correctly, but it's the foundation on which everything else is based. You can't build
a house without solid materials, and you can't build a program without units that
work as expected.

Integration testing
In integration testing, the boundaries of isolation are pushed further back, so that
the tests encompass the interactions between related units. Each test should still be
run in isolation in order to avoid inheriting problems from outside, but now the test
checks whether the tested units behave correctly as a group.

www.it-ebooks.info

http://www.it-ebooks.info/

Python and Testing

[8]

Integration testing can be performed with the same tools as unit testing. For this
reason, newcomers to automated testing are sometimes lured into ignoring the
distinction between unit testing and integration testing. Ignoring this distinction
is dangerous because such multipurpose tests often make assumptions about the
correctness of some of the units they involve; this means that the tester loses much
of the benefit that automated testing would have granted. We're not aware of the
assumptions we make until they bite us, so we need to consciously choose to work
in a way that minimizes assumptions. That's one of the reasons why I refer to
test-driven development as a "discipline."

System testing
System testing extends the boundaries of isolation even further to the point where
they don't even exist. System tests check parts of the program after the whole thing
has been plugged together. In a sense, system tests are an extreme form of the
integration tests.

System tests are very important, but they're not very useful without the integration
tests and unit tests backing them up. You have to be sure of the pieces before you
can be sure of the whole. If there's a subtle error somewhere, system testing will tell
you that it exists, but not where it is or how to fix it. The odds are good that you've
experienced this situation before; it's probably why you hate testing. With a properly
put together test suite, system tests are almost a formality. Most of the problems
are caught by unit tests or integration tests, while the system tests simply provide
reassurance that all is well.

Acceptance testing
When a program is first specified, we decide what behavior is expected out of it.
Tests that are written to confirm that the program actually does what was expected
are called acceptance tests. Acceptance tests can be written at any of the previously
discussed levels, but most often you will see them at the integration or system level.

Acceptance tests tend to be the exception to the rule about progressing from unit
tests to integration tests and then to system tests. Many program specifications
describe the program at a fairly high level, and acceptance tests need to operate at
the same level as that of the specification. It's not uncommon for the majority of
system tests to be acceptance tests.

Acceptance tests are nice to have because they provide you with ongoing assurance
that the program you're creating is actually the program that was specified.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[9]

Regression testing
A regression is when a part of your code that once functioned correctly stops doing
so. Most often, that is a result of changes made elsewhere in the code undermining
the assumptions of the now-buggy section. When this happens, it's a good idea to
add tests to your test suite that can recognize the bug. This ensures that, if you ever
make a similar mistake again, the test suite will catch it immediately.

Tests that make sure that the working code doesn't become buggy are called regression
tests. They can be written before or after a bug is found, and they provide you with the
assurance that your program's complexity is not causing the bugs to multiply. Once
your code passes a unit test, integration test, or a system test, you don't need to delete
these tests from the test suite. You can leave them in place, and they will function as
additional regression tests, letting you know if the test stops working.

Test-driven development
When you combine all of the elements we've introduced in this chapter, you will
arrive at the discipline of test-driven development. In test-driven development, you
always write the tests first. Once you have tests for the code you're about to write,
and only then, you will write the code that makes the tests pass.

This means that the first thing you will do is write the acceptance tests. Then you figure
out which units of the program you're going to start with, and write tests—nominally,
these are the regression tests, even though the bug they're catching at first is "the code
doesn't exist"; this confirms that these units are not yet functioning correctly. Then you
can write some code that makes the unit-level regression tests pass.

The process continues until the whole program is complete: write tests, then write code
that makes the tests pass. If you discover a bug that isn't caught by an existing test, add
a test first, then add or modify the code to make the test pass. The end result is a very
solid program, thanks to all the bugs that were caught early, easily, and in less time.

You'll need Python
This book assumes that you have a working knowledge of the Python programming
language, specifically, Version 3.4 or higher of that language. If you don't have
Python already, you can download the complete language toolkit and library from
http://www.python.org/, as a single easily-installed package.

Most versions of Linux and Mac OS X already include Python,
but not necessarily a new version that will work with this book.
Run Python from the command line to check.

www.it-ebooks.info

http://www.python.org/
http://www.it-ebooks.info/

Python and Testing

[10]

You'll also require your favorite text editor, preferably one that has language support
for Python. Popular choices for editors include emacs, Vim, Geany, gedit, and
Notepad++. For those willing to pay, TextMate and Sublime are popular.

Some of these popular editors are somewhat... exotic. They
have their own operating idiom, and don't behave like any
other program you might have used. They're popular because
they are highly functional; they may be weird, though. If you
find that one editor doesn't suit you, just pick a different one.

Summary
In this chapter, we learned about what you can expect to learn from this book
as well as talking a little bit about the philosophy of automated testing and
test-driven development.

We talked about the different levels and roles of tests that combine to form a complete
suite of tests for a program: unit tests, integration tests, system tests, acceptance
tests, and regression tests. We learned that unit tests are the tests of the fundamental
components of a program (such as functions); integration tests are the tests that cover
larger swathes of a program (such as modules); system tests are the tests that cover
a program in its entirety; acceptance tests make sure that the program is what it's
supposed to be; and regression tests ensure that it keeps working as we develop it.

We talked about how automated testing can help you by moving the burden of
testing mostly onto the computer. You can tell the computer how to check your code,
instead of having to do the checks yourself. This makes it convenient to check your
code early and more often, saves you from overlooking things you would otherwise
miss, and helps you to quickly locate and fix bugs.

We talked about test-driven development, the discipline of writing your tests first,
and letting them tell you what needs to be done in order to write the code you need.
We also briefly discussed the development environment you'll require in order to
work through this book.

Now, we're ready to move on to working with the doctest testing tool, the subject
of the next chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

Working with doctest
The first testing tool we're going to look at is called doctest. The name is short for
"document testing" or perhaps a "testable document". Either way, it's a literate tool
designed to make it easy to write tests in such a way that computers and humans
both benefit from them. Ideally, doctest tests both, informs human readers, and
tells the computer what to expect.

Mixing tests and documentation helps us:

• Keeps the documentation up-to-date with reality
• Make sure that the tests express the intended behavior
• Reuse some of the efforts involved in the documentation and test creation

Where doctest performs best
The design decisions that went into doctest make it particularly well suited to
writing acceptance tests at the integration and system testing levels. This is because
doctest mixes human-only text with examples that both humans and computers can
read. This structure doesn't support or enforce any of the formalizations of testing,
but it conveys information beautifully and it still provides the computer with the
ability to say that works or that doesn't work. As an added bonus, it is about the easiest
way to write tests you'll ever see.

In other words, a doctest file is a truly excellent program specification that you
can have the computer check against your actual code any time you want. API
documentation also benefits from being written as doctests and checked alongside
your other tests. You can even include doctests in your docstrings.

The basic idea you should be getting from all this is that doctest is ideal for uses
where humans and computers will both benefit from reading them.

www.it-ebooks.info

http://www.it-ebooks.info/

Working with doctest

[12]

The doctest language
Like program source code, doctest tests are written in plain text. The doctest
module extracts the tests and ignores the rest of the text, which means that the tests
can be embedded in human-readable explanations or discussions. This is the feature
that makes doctest suitable for uses such as program specifications.

Example – creating and running a simple
doctest
We are going to create a simple doctest file, to show the fundamentals of using the
tool. Perform the following steps:

1. Open a new text file in your editor, and name it test.txt.
2. Insert the following text into the file:

This is a simple doctest that checks some of Python's arithmetic
operations.

>>> 2 + 2
4

>>> 3 * 3
10

3. We can now run the doctest. At the command prompt, change to the
directory where you saved test.txt. Type the following command:
$ python3 -m doctest test.txt

4. When the test is run, you should see output like this:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[13]

Result – three times three does not equal ten
You just wrote a doctest file that describes a couple of arithmetic operations, and
ran it to check whether Python behaved as the tests said it should. You ran the tests
by telling Python to execute doctest on the file containing the tests.

In this case, Python's behavior differed from the tests because, according to the
tests, three times three equals ten. However, Python disagrees on that. As doctest
expected one thing and Python did something different, doctest presented you with
a nice little error report showing where to find the failed test, and how the actual
result differed from the expected result. At the bottom of the report is a summary
showing how many tests failed in each file tested, which is helpful when you have
more than one file containing tests.

The syntax of doctests
You might have already figured it out from looking at the previous example:
doctest recognizes tests by looking for sections of text that look like they've been
copied and pasted from a Python interactive session. Anything that can be expressed
in Python is valid within a doctest.

Lines that start with a >>> prompt are sent to a Python interpreter. Lines that start
with a ... prompt are sent as continuations of the code from the previous line,
allowing you to embed complex block statements into your doctests. Finally, any
lines that don't start with >>> or ..., up to the next blank line or >>> prompt,
represent the output expected from the statement. The output appears as it would in
an interactive Python session, including both the return value and anything printed
to the console. If you don't have any output lines, doctest assumes it to mean that
the statement is expected to have no visible result on the console, which usually
means that it returns None.

The doctest module ignores anything in the file that isn't part of a test, which means
that you can put explanatory text, HTML, line-art diagrams, or whatever else strikes
your fancy in between your tests. We took advantage of this in the previous doctest
to add an explanatory sentence before the test itself.

Example – a more complex test
Add the following code to your test.txt file, separated from the existing code by at
least one blank line:

Now we're going to take some more of doctest's syntax for a spin.

>>> import sys

www.it-ebooks.info

http://www.it-ebooks.info/

Working with doctest

[14]

>>> def test_write():
... sys.stdout.write("Hello\n")
... return True
>>> test_write()
Hello
True

Now take a moment to consider before running the test. Will it pass or fail? Should it
pass or fail?

Result – five tests run
Just as we discussed before, run the test using the following command:

python3 -m doctest test.txt

You should see a result like this:

Because we added the new tests to the same file containing the tests from before, we
still see the notification that three times three does not equal 10. Now, though, we
also see that five tests were run, which means our new tests ran and were successful.

Why five tests? As far as doctest is concerned, we added the following three tests to
the file:

• The first one says that, when we import sys, nothing visible should happen
• The second test says that, when we define the test_write function, nothing

visible should happen
• The third test says that, when we call the test_write function, Hello and

True should appear on the console, in that order, on separate lines

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[15]

Since all three of these tests pass, doctest doesn't bother to say much about them.
All it did was increase the number of tests reported at the bottom from two to five.

Expecting exceptions
That's all well and good for testing that things work as expected, but it is just as
important to make sure that things fail when they're supposed to fail. Put another
way: sometimes your code is supposed to raise an exception, and you need to be
able to write tests that check that behavior as well.

Fortunately, doctest follows nearly the same principle in dealing with exceptions
as it does with everything else; it looks for text that looks like a Python interactive
session. This means it looks for text that looks like a Python exception report and
traceback, and matches it against any exception that gets raised.

The doctest module does handle exceptions a little differently from the way it
handles other things. It doesn't just match the text precisely and report a failure
if it doesn't match. Exception tracebacks tend to contain many details that are
not relevant to the test, but that can change unexpectedly. The doctest module
deals with this by ignoring the traceback entirely: it's only concerned with the first
line, Traceback (most recent call last):, which tells it that you expect an
exception, and the part after the traceback, which tells it which exception you expect.
The doctest module only reports a failure if one of these parts does not match.

This is helpful for a second reason as well: manually figuring out what the traceback
will look like, when you're writing your tests, would require a significant amount of
effort and would gain you nothing. It's better to simply omit them.

Example – checking for an exception
This is yet another test that you can add to test.txt, this time testing some code
that ought to raise an exception.

Insert the following text into your doctest file, as always separated by at least one
blank line:

Here we use doctest's exception syntax to check that Python is
correctly enforcing its grammar. The error is a missing) on the def
line.

>>> def faulty(:
... yield from [1, 2, 3, 4, 5]
Traceback (most recent call last):
SyntaxError: invalid syntax

www.it-ebooks.info

http://www.it-ebooks.info/

Working with doctest

[16]

The test is supposed to raise an exception, so it will fail if it doesn't raise the
exception or if it raises the wrong exception. Make sure that you have your mind
wrapped around this: if the test code executes successfully, the test fails, because
it expected an exception.

Run the tests using the following doctest:

python3 -m doctest test.txt

Result – success at failing
The code contains a syntax error, which means this raises a SyntaxError exception,
which in turn means that the example behaves as expected; this signifies that the
test passes.

When dealing with exceptions, it is often desirable to be able to use a wildcard
matching mechanism. The doctest provides this facility through its ellipsis
directive that we'll discuss shortly.

Expecting blank lines
The doctest uses the first blank line after >>> to identify the end of the expected
output, so what do you do when the expected output actually contains a blank line?

The doctest handles this situation by matching a line that contains only the text
<BLANKLINE> in the expected output with a real blank line in the actual output.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[17]

Controlling doctest behavior with
directives
Sometimes, the default behavior of doctest makes writing a particular test
inconvenient. For example, doctest might look at a trivial difference between the
expected and real outputs and wrongly conclude that the test has failed. This is
where doctest directives come to the rescue. Directives are specially formatted
comments that you can place after the source code of a test and that tell doctest
to alter its default behavior in some way.

A directive comment begins with # doctest:, after which comes a comma-separated
list of options that either enable or disable various behaviors. To enable a behavior,
write a + (plus symbol) followed by the behavior name. To disable a behavior, white
a – (minus symbol) followed by the behavior name. We'll take a look at the several
directives in the following sections.

Ignoring part of the result
It's fairly common that only part of the output of a test is actually relevant to
determining whether the test passes. By using the +ELLIPSIS directive, you can
make doctest treat the text ... (called an ellipsis) in the expected output as a
wildcard that will match any text in the output.

When you use an ellipsis, doctest will scan until it finds text matching whatever
comes after the ellipsis in the expected output, and continue matching from there.
This can lead to surprising results such as an ellipsis matching against a 0-length
section of the actual output, or against multiple lines. For this reason, it needs to
be used thoughtfully.

Example – ellipsis test drive
We're going to use the ellipsis in a few different tests to better get a feel of how it
works. As an added bonus, these tests also show the use of doctest directives.

Add the following code to your test.txt file:

Next up, we're exploring the ellipsis.

>>> sys.modules # doctest: +ELLIPSIS
{...'sys': <module 'sys' (built-in)>...}

>>> 'This is an expression that evaluates to a string'
... # doctest: +ELLIPSIS

www.it-ebooks.info

http://www.it-ebooks.info/

Working with doctest

[18]

'This is ... a string'

>>> 'This is also a string' # doctest: +ELLIPSIS
'This is ... a string'

>>> import datetime
>>> datetime.datetime.now().isoformat() # doctest: +ELLIPSIS
'...-...-...T...:...:...'

Result – ellipsis elides
The tests all pass, where they would all fail without the ellipsis. The first and last
tests, in which we checked for the presence of a specific module in sys.modules and
confirmed a specific formatting while ignoring the contents of a string, demonstrate
the kind of situation where ellipsis is really useful, because it lets you focus on the
part of the output that is meaningful and ignore the rest of the test. The middle tests
demonstrate how different outputs can match the same expected result when ellipsis
is in play.

Look at the last test. Can you imagine any output that wasn't an ISO-formatted time
stamp, but that would match the example anyway? Remember that the ellipsis can
match any amount of text.

Ignoring white space
Sometimes, white space (spaces, tabs, newlines, and their ilk) is more trouble than
it's worth. Maybe you want to be able to break a single line of expected output across
several lines in your test file, or maybe you're testing a system that uses lots of white
space but doesn't convey any useful information with it.

The doctest gives you a way to "normalize" white space, turning any sequence of
white space characters, in both the expected output and in the actual output, into
a single space. It then checks whether these normalized versions match.

Example – invoking normality
We're going to write a couple of tests that demonstrate how whitespace
normalization works.

Insert the following code into your doctest file:

Next, a demonstration of whitespace normalization.

>>> [1, 2, 3, 4, 5, 6, 7, 8, 9]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[19]

... # doctest: +NORMALIZE_WHITESPACE
[1, 2, 3,
 4, 5, 6,
 7, 8, 9]

>>> sys.stdout.write("This text\n contains weird spacing.\n")
... # doctest: +NORMALIZE_WHITESPACE
This text contains weird spacing.
39

Result – white space matches any other
white space
Both of these tests pass, in spite of the fact that the result of the first one has been
wrapped across multiple lines to make it easy for humans to read, and the result
of the second one has had its strange newlines and indentations left out, also for
human convenience.

Notice how one of the tests inserts extra whitespace in the expected output, while
the other one ignores extra whitespace in the actual output? When you use
+NORMALIZE_WHITESPACE, you gain a lot of flexibility with regard to how things
are formatted in the text file.

You may have noted the value 39 on the last line of the last
example. Why is that there? It's because the write() method
returns the number of bytes that were written, which in this
case happens to be 39. If you're trying this example in an
environment that maps ASCII characters to more than one byte,
you will see a different number here; this will cause the test to
fail until you change the expected number of bytes.

Skipping an example
On some occasions, doctest will recognize some text as an example to be checked,
when in truth you want it to be simply text. This situation is rarer than it might at first
seem, because usually there's no harm in letting doctest check everything it can. In
fact, usually it's very helpful to have doctest check everything it can. For those times
when you want to limit what doctest checks, though, there's the +SKIP directive.

www.it-ebooks.info

http://www.it-ebooks.info/

Working with doctest

[20]

Example – humans only
Append the following code to your doctest file:

Now we're telling doctest to skip a test

>>> 'This test would fail.' # doctest: +SKIP
If it were allowed to run.

Result – it looks like a test, but it's not
Before we added this last example to the file, doctest reported thirteen tests when
we ran the file through it. After adding this code, doctest still reports thirteen tests.
Adding the skip directive to the code completely removed it from consideration by
doctest. It's not a test that passes, nor a test that fails. It's not a test at all.

The other directives
There are a number of other directives that can be issued to doctest, should you find
the need. They're not as broadly useful as the ones already mentioned, but the time
might come when you require one or more of them.

The full documentation for all of the doctest directives can
be found at http://docs.python.org/3/library/
doctest.html#doctest-options.

The remaining directives of doctest in the Python 3.4 version are as follows:

• DONT_ACCEPT_TRUE_FOR_1: This makes doctest differentiate between
boolean values and numbers

• DONT_ACCEPT_BLANKLINE: This removes support for the
<BLANKLINE> feature

• IGNORE_EXCEPTION_DETAIL: This makes doctest only care that an exception
is of the expected type

Strictly speaking, doctest supports several other options that can be set using
the directive syntax, but they don't make any sense as directives, so we'll ignore
them here.

www.it-ebooks.info

http://docs.python.org/3/library/doctest.html#doctest-options
http://docs.python.org/3/library/doctest.html#doctest-options
http://www.it-ebooks.info/

Chapter 2

[21]

The execution scope of doctest tests
When doctest is running the tests from text files, all the tests from the same file are
run in the same execution scope. This means that, if you import a module or bind a
variable in one test, that module or variable is still available in later tests. We took
advantage of this fact several times in the tests written so far in this chapter: the sys
module was only imported once, for example, although it was used in several tests.

This behavior is not necessarily beneficial, because tests need to be isolated from each
other. We don't want them to contaminate each other because, if a test depends on
something that another test does, or if it fails because of something that another test
does, these two tests are in some sense combined into one test that covers a larger
section of your code. You don't want that to happen, because then knowing which
test has failed doesn't give you as much information about what went wrong and
where it happened.

So, how can we give each test its own execution scope? There are a few ways to
do it. One would be to simply place each test in its own file, along with whatever
explanatory text that is needed. This works well in terms of functionality, but
running the tests can be a pain unless you have a tool to find and run all of them
for you. We'll talk about one such tool (called Nose) in a later chapter. Another
problem with this approach is that this breaks the idea that the tests contribute to
a human-readable document.

Another way to give each test its own execution scope is to define each test within
a function, as follows:

>>> def test1():
... import frob
... return frob.hash('qux')
>>> test1()
77

By doing this, the only thing that ends up in the shared scope is the test function
(named test1 here). The frob module and any other names bound inside the
function are isolated with the caveat that things that happen inside imported
modules are not isolated. If the frob.hash() method changes a state inside the
frob module, that state will still be changed if a different test imports the frob
module again.

The third way is to exercise caution with the names you create, and be sure to set
them to known values at the beginning of each test section. In many ways this is the
easiest approach, but this is also the one that places the most burden on you, because
you have to keep track of what's in the scope.

www.it-ebooks.info

http://www.it-ebooks.info/

Working with doctest

[22]

Why does doctest behave in this way, instead of isolating tests from each other?
The doctest files are intended not just for computers to read, but also for humans.
They often form a sort of narrative, flowing from one thing to the next. It would
break the narrative to be constantly repeating what came before. In other words, this
approach is a compromise between being a document and being a test framework,
a middle ground that works for both humans and computers.

The other framework that we will study in depth in this book (called simply
unittest) works at a more formal level, and enforces the separation between tests.

Check your understanding
Once you've decided on your answers to these questions, check them by writing
a test document and running it through doctest:

• How does doctest recognize the beginning of a test in a document?
• How does doctest know when a test continues to further lines?
• How does doctest recognize the beginning and end of the expected output

of a test?
• How would you tell doctest that you want to break the expected output

across several lines, even though that's not how the test actually outputs it?
• Which parts of an exception report are ignored by doctest?
• When you assign a variable in a test file, which parts of the file can actually

see that variable?
• Why do we care what code can see the variables created by a test?
• How can we make doctest not care what a section of output contains?

Exercise – English to doctest
Time to stretch your wings a bit. I'm going to give you a description of a single
function in English. Your job is to copy the description into a new text file, and
then add tests that describe all the requirements in a way that the computer can
understand and check.

Try to make the doctests so that they're not just for the computer. Good doctests tend
to clarify things for human readers as well. By and large, this means that you present
them to human readers as examples interspersed with the text.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[23]

Without further ado, here is the English description:

The fib(N) function takes a single integer as its only parameter N.
If N is 0 or 1, the function returns 1. If N is less than 0, the
function raises a ValueError. Otherwise, the function returns the sum
of fib(N – 1) and fib(N – 2). The returned value will never be less
than 1. A naïve implementation of this function would get very slow as
N increased.

I'll give you a hint and point out that the last sentence about the function being slow,
isn't really testable. As computers get faster, any test you write that depends on an
arbitrary definition of "slow" will eventually fail. Also, there's no good way to test
the difference between a slow function and a function stuck in an infinite loop, so
there's not much point in trying. If you find yourself needing to do that, it's best to
back off and try a different solution.

Not being able to tell whether a function is stuck or just slow is
called the halting problem by computer scientists. We know that
it can't be solved unless we someday discover a fundamentally
better kind of computer. Faster computers won't do the trick, and
neither will quantum computers, so don't hold your breath.

The next-to-last sentence also provides some difficulty, since to test it completely
would require running every positive integer through the fib() function, which
would take forever (except that the computer will eventually run out of memory and
force Python to raise an exception). How do we deal with this sort of thing, then?

The best solution is to check whether the condition holds true for a random sample
of viable inputs. The random.randrange() and random.choice() functions in the
Python standard library make that fairly easy to do.

Embedding doctests into docstrings
It's just as easy to write doctests into docstrings as it is to write them into
documentation files.

For those who don't know, docstrings are a Python feature that
allows programmers to embed documentation directly into
their source code. The Python help() function is powered by
docstrings. To learn more about docstrings, you can start with
the Python tutorial section at https://docs.python.org/3/
tutorial/controlflow.html#documentation-strings.

www.it-ebooks.info

https://docs.python.org/3/tutorial/controlflow.html#documentation-strings
https://docs.python.org/3/tutorial/controlflow.html#documentation-strings
http://www.it-ebooks.info/

Working with doctest

[24]

When written in docstrings, doctests serve a slightly different purpose. They still let
the computer check that things work as expected, but the humans who see them will
most often be coders who use the Python interactive shell to work on an idea before
committing it to code, or whose text editor pops up docstrings as they work. In that
context, the most important thing a doctest can do is be informative, so docstrings
aren't usually a good place for checking picky details. They're a great place for a
doctest to demonstrate the proper behavior of a common case, though.

The doctests embedded in docstrings have a somewhat different execution scope than
doctests in text files do. Instead of having a single scope for all of the tests in the file,
doctest creates a single scope for each docstring. All of the tests that share a docstring
also share an execution scope, but they're isolated from tests in the other docstrings.

The separation of each docstring into its own execution scope often means that we
don't need to put much thought into isolating doctests when they're embedded
in docstrings. This is fortunate, since docstrings are primarily intended for
documentation, and the tricks required to isolate the tests might obscure the meaning.

Example – a doctest in a docstring
We're going to embed a test right inside the Python source file that it tests, by placing
it inside a docstring.

Create a file called test.py containing the following code:

def testable(x):
 r"""
 The `testable` function returns the square root of its
 parameter, or 3, whichever is larger.

 >>> testable(7)
 3.0

 >>> testable(16)
 4.0

 >>> testable(9)
 3.0

 >>> testable(10) == 10 ** 0.5
 True
 """
 if x < 9:
 return 3.0
 return x ** 0.5

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[25]

Notice the use of a raw string for the docstring (denoted by the
r character before the first triple quote). Using raw strings for
your docstrings is a good habit to get into, because you usually
don't want escape sequences—for example, \n for newline— to
be interpreted by the Python interpreter. You want them to be
treated as text, so that they are correctly passed on to doctest.

Running these tests is just as easy as running the tests in a doctest document:

python3 -m doctest test.py

Since all the tests pass, the output of this command is nothing at all. We can make it
more interesting by adding the verbose flag to the command line:

python3 -m doctest -v test.py

Result – the code is now self-documenting
and self-testable
When we run the Python file through doctest with the verbose flag, we see the
output, as shown in the the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Working with doctest

[26]

We put the doctest code right inside the docstring of the function it was testing.
This is a good place for tests that also show a programmer how to do something. It's
not a good place for detailed, low-level tests (the doctest in the docstring example
code, which was quite detailed for illustrative purposes, is perhaps too detailed),
because docstrings need to serve as API documentation—you can see the reason for
this just by looking at the example, where the doctests take up most of the room in
the docstring without telling the readers any more than they would have learned
from a single test.

Any test that will serve as good API documentation is a good candidate for including
in the docstrings of a Python file.

You might be wondering about the line that reads 1 items had no tests, and the
following line that just reads test. These lines are referring to the fact that there are
no tests written in the module-level docstring. That's a little surprising, since we didn't
include such a docstring in our source code at all, until you realize that, as far as Python
(and thus doctest) is concerned, no docstring is the same as an empty docstring.

Putting it into practice – an AVL tree
We're going to walk step-by-step through the process of using doctest to create a
testable specification for a data structure called an AVL tree. An AVL tree is a way to
organize key-value pairs so that they can be quickly located by key. In other words,
it's a lot like Python's built-in dictionary type. The name AVL references the initials
of the people who invented this data structure.

While AVL trees are similar to Python dictionaries, they have
some significantly different properties. For one thing, the keys
stored in an AVL tree can be iterated over in a sorted order with
no overhead. Another difference is that, while inserting and
removing objects in an AVL tree is slower than a Python dict
in many cases, it's faster in the worst case.

As its name suggests, an AVL tree organizes the keys that are stored in it into a tree
structure, with each key having up to two child keys —one child key that is less
than the parent key by comparison, and one that is more. In the following figure,
the Elephant key has two child keys, Goose has one, and Aardvark and Frog both
have none.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[27]

The AVL tree is special because it keeps one side of the tree from getting much
taller than the other, which means that users can expect it to perform reliably and
efficiently no matter what. In the following figure, the AVL tree will reorganize to
stay balanced if Frog gains a child:

"Frog"

"Goose"

"Elephant"

"Aardvark"

Greater

Lesser

Lesser

We're going to write tests for an AVL tree implementation here, rather than writing
the implementation itself, so we're going to gloss over the details of how an AVL tree
works, in favor of looking at what it should do when it works right.

If you want to know more about AVL trees, you will
find many good references on the Internet. Wikipedia's
entry on this subject is a good place to start with:
http://en.wikipedia.org/wiki/AVL_tree.

We're going to start with a plain-language specification, and then interject tests
between the paragraphs. You don't have to actually type all of this into a text file;
it is here for you to read and to think about.

English specification
The first step is to describe what the desired result should be, in normal language.
This might be something that you do for yourself, or it might be something that
somebody else does for you. If you're working for somebody, hopefully you and
your employer can sit down together and work this part out.

In this case, there's not much to work out, because AVL trees have been fully
described for decades. Even so, the description here isn't quite like the one you'd find
elsewhere. This capacity for ambiguity is exactly the reason why a plain-language
specification isn't good enough. We need an unambiguous specification, and that's
exactly what the tests in a doctest file can give us.

www.it-ebooks.info

http://en.wikipedia.org/wiki/AVL_tree
http://www.it-ebooks.info/

Working with doctest

[28]

The following text goes in a file called AVL.txt, (that you can find in its final form in
the accompanying code archive; at this stage of the process, the file contains only the
normal language specification):

An AVL Tree consists of a collection of nodes organized in a binary
tree structure. Each node has left and right children, each of which
may be either None or another tree node. Each node has a key, which
must be comparable via the less-than operator. Each node has a value.
Each node also has a height number, measuring how far the node is from
being a leaf of the tree -- a node with height 0 is a leaf.

The binary tree structure is maintained in ordered form, meaning that
of a node's two children, the left child has a key that compares
less than the node's key and the right child has a key that compares
greater than the node's key.

The binary tree structure is maintained in a balanced form, meaning
that for any given node, the heights of its children are either the
same or only differ by 1.

The node constructor takes either a pair of parameters representing
a key and a value, or a dict object representing the key-value pairs
with which to initialize a new tree.

The following methods target the node on which they are called, and
can be considered part of the internal mechanism of the tree:

Each node has a recalculate_height method, which correctly sets the
height number.

Each node has a make_deletable method, which exchanges the positions
of the node and one of its leaf descendants, such that the tree
ordering of the nodes remains correct.

Each node has rotate_clockwise and rotate_counterclockwise methods.
Rotate_clockwise takes the node's right child and places it where
the node was, making the node into the left child of its own former
child. Other nodes in the vicinity are moved so as to maintain
the tree ordering. The opposite operation is performed by rotate_
counterclockwise.

Each node has a locate method, taking a key as a parameter, which
searches the node and its descendants for a node with the specified
key, and either returns that node or raises a KeyError.

The following methods target the whole tree rooted at the current
node. The intent is that they will be called on the root node:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[29]

Each node has a get method taking a key as a parameter, which locates
the value associated with the specified key and returns it, or raises
KeyError if the key is not associated with any value in the tree.

Each node has a set method taking a key and a value as parameters, and
associating the key and value within the tree.

Each node has a remove method taking a key as a parameter, and
removing the key and its associated value from the tree. It raises
KeyError if no value was associated with that key.

Node data
The first three paragraphs of the specification describe the member variables of an
AVL tree node, and tell us what the valid values for the variables are. They also tell
us how the tree height should be measured and define what a balanced tree means.
It's our job now to take these ideas, and encode them into tests that the computer can
eventually use to check our code.

We can check these specifications by creating a node and then testing the values,
but that would really just be a test of the constructor. It's important to test the
constructor, but what we really want to do is to incorporate checks that the node
variables are left in a valid state into our tests of each member function.

To that end, we'll define functions that our tests can call to check that the state of
a node is valid. We'll define these functions just after the third paragraph, because
they provide extra details related to the content of the first three paragraphs:

Notice that the node data test is written as if the AVL tree
implementation already existed. It tries to import an avl_tree
module containing an AVL class, and it tries to use the AVL class
in specific ways. Of course, at the moment there is no avl_tree
module, so the tests will fail. This is as it should
be. All that the failure means is that, when the time comes
to implement the tree, we should do so in a module called avl_
tree, with contents that function as our tests assume. Part of the
benefit of testing like this is being able to test-drive your code
before you even write it.

>>> from avl_tree import AVL

>>> def valid_state(node):
... if node is None:
... return
... if node.left is not None:

www.it-ebooks.info

http://www.it-ebooks.info/

Working with doctest

[30]

... assert isinstance(node.left, AVL)

... assert node.left.key < node.key

... left_height = node.left.height + 1

... else:

... left_height = 0

...

... if node.right is not None:

... assert isinstance(node.right, AVL)

... assert node.right.key > node.key

... right_height = node.right.height + 1

... else:

... right_height = 0

...

... assert abs(left_height - right_height) < 2

... node.key < node.key

... node.value

>>> def valid_tree(node):
... if node is None:
... return
... valid_state(node)
... valid_tree(node.left)
... valid_tree(node.right)

Notice that we didn't actually call these functions yet. They aren't tests, as such, but
tools that we'll use to simplify writing tests. We define them here, rather than in the
Python module that we're going to test, because they aren't conceptually part of the
tested code, and because anyone who reads the tests will need to be able to see what
the helper functions do.

Testing the constructor
The fourth paragraph describes the constructor of the AVL class. According to
this paragraph, the constructor has two modes of operation: it can create a single
initialized node, or it can create and initialize a whole tree of nodes based on the
contents of a dictionary.

The test for the single node mode is easy. We'll add it after the fourth paragraph:

>>> valid_state(AVL(2, 'Testing is fun'))

We don't even have to write an expected result, since we wrote the function to
raise an AssertionError if there's a problem and to return None if everything is
fine. AssertionError is triggered by the assert statement in our test code, if the
expression in the assert statement produces a false value.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[31]

The test for the second mode looks just as easy, and we'll add it right after the other:

>>> valid_tree(AVL({1: 'Hello', 2: 'World', -3: '!'}))

There's a bit of buried complexity here, though. In all probability, this constructor
will function by initializing a single node and then using that node's set method
to add the rest of the keys and values to the tree. This means that our second
constructor test isn't a unit test, it's an integration test that checks the interaction
of multiple units.

Specification documents often contains integration-level and system-level tests, so
this isn't really a problem. It's something to be aware of, though, because if this test
fails it won't necessarily show you where the problem really lies. Your unit tests will
do that.

Something else to notice is that we didn't check whether the constructor fails
appropriately when given bad inputs. These tests are very important, but the English
specification didn't mention these points at all, which means that they're not really
among the acceptance criteria. We'll add these tests to the unit test suite instead.

Recalculating height
The recalculate_height() method is described in the fifth paragraph of the
specification. To test it, we're going to need a tree for it to operate on, and we don't
want to use the second mode of the constructor to create it —after all, we want this
test to be independent of any errors that might exist there. We'd really prefer to make
the test entirely independent of the constructor but, in this case, we need to make
a small exception to the rule, since it's mighty difficult to create an object without
calling its constructor in some way.

What we're going to do is define a function that builds a specific tree and returns it.
This function will be useful in several of our later tests as well:

>>> def make_test_tree():
... root = AVL(7, 'seven')
... root.height = 2
... root.left = AVL(3, 'three')
... root.left.height = 1
... root.left.right = AVL(4, 'four')
... root.right = AVL(10, 'ten')
... return root

www.it-ebooks.info

http://www.it-ebooks.info/

Working with doctest

[32]

Now that we have the make_test_tree() function, testing recalculate_height()
is easy:

>>> tree = make_test_tree()
>>> tree.height = 0
>>> tree.recalculate_height()
>>> tree.height
2

Making a node deletable
The sixth paragraph of the specification described the make_deletable() method.
You can't delete a node that has children, because that would leave the node's
children disconnected from the rest of the tree. Consider the tree with animal names
in it that we looked at earlier. If we delete the Elephant node from the bottom of the
tree, what do we do about Aardvark, Goose, and Frog? If we delete Goose, how do
we find Frog afterwards?

"Frog"

"Goose"

"Elephant"

"Aardvark"

Greater

Lesser

Lesser

The way around that is to have the node swap places with its largest leaf descendant
on the left side (or its smallest leaf descendant on the right side, but we're not doing
it that way).

We'll test this by using the same make_test_tree() function that we defined
earlier to create a new tree to work on, and then check whether make_deletable()
swaps correctly:

>>> tree = make_test_tree()
>>> target = tree.make_deletable()
>>> (tree.value, tree.height)
('four', 2)
>>> (target.value, target.height)
('seven', 0)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[33]

Rotation
The two rotate functions, described in paragraph seven of the specification, perform
a somewhat tricky manipulation of the links in a tree. You probably found the plain
language description of what they do a bit confusing. This is one of those times when
a little bit of code makes a whole lot more sense than any number of sentences.

While tree rotation is usually defined in terms of rearranging the links between
nodes in the tree, we'll check whether it worked by looking at the values rather than
by looking directly at the left and right links. This allows the implementation to swap
the contents of nodes, rather than the nodes themselves, when it wishes. After all, it's
not important to the specification which operation happens, so we shouldn't rule out
a perfectly reasonable implementation choice:

>>> tree = make_test_tree()
>>> tree.value
'seven'
>>> tree.left.value
'three'
>>> tree.rotate_counterclockwise()
>>> tree.value
'three'
>>> tree.left is None
True
>>> tree.right.value
'seven'
>>> tree.right.left.value
'four'
>>> tree.right.right.value
'ten'
>>> tree.right.left.value
'four'
>>> tree.left is None
True

>>> tree.rotate_clockwise()
>>> tree.value
'seven'
>>> tree.left.value
'three'
>>> tree.left.right.value
'four'
>>> tree.right.value
'ten'
>>> tree.right.left is None
True
>>> tree.left.left is None
True

www.it-ebooks.info

http://www.it-ebooks.info/

Working with doctest

[34]

Locating a node
According to the eighth paragraph of the specification, the locate() method is
expected to return a node, or raise a KeyError exception, depending on whether
the key exists in the tree or not. We'll use our specially built testing tree again, so
that we know exactly what the tree's structure looks like:

>>> tree = make_test_tree()
>>> tree.locate(4).value
'four'
>>> tree.locate(17) # doctest: +ELLIPSIS
Traceback (most recent call last):
KeyError: ...

Downloading the example code
You can download the example code files for all
Packt books you have purchased from your account
at http://www.packtpub.com. If you purchased
this book elsewhere, you can visit http://www.
packtpub.com/support and register to have the
files e-mailed directly to you.

The rest of the specification
The remaining paragraphs of the specification describe higher-level functions that
operate by calling the already described functions. This means that, until we learn
the tricks of mock objects in Chapter 4, Decoupling Units with unittest.mock, we're stuck
with writing integration-level tests here. As I mentioned earlier, this is not a terrible
thing to do in a specification document, so we'll go ahead and do it:

Each node has a get method taking a key as a parameter, which locates
the value associated with the specified key and returns it, or raises
KeyError if the key is not associated with any value in the tree.

>>> tree = make_test_tree()
>>> tree.get(10)
'ten'
>>> tree.get(97) # doctest: +ELLIPSIS
Traceback (most recent call last):
KeyError: ...

Each node has a set method taking a key and a value as parameters, and
associating the key and value within the tree.

www.it-ebooks.info

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.it-ebooks.info/

Chapter 2

[35]

>>> tree = make_test_tree()
>>> tree.set(10, 'foo')
>>> tree.locate(10).value
'foo'

Each node has a remove method taking a key as a parameter, and
removing the key and its associated value from the tree. It raises
KeyError if no values was associated with that key.

>>> tree = make_test_tree()
>>> tree.remove(3)
>>> tree.remove(3) # doctest: +ELLIPSIS
Traceback (most recent call last):
KeyError: ...

Summary
We learned the syntax of doctest, and went through several examples describing
how to use it. After that, we took a real-world specification for the AVL tree,
and examined how to formalize it as a set of doctests, so that we could use it
to automatically check the correctness of an implementation.

Specifically, we covered doctest's default syntax and the directives that alter it, how
to write doctests in text files, how to write doctests in Python docstrings, and what it
feels like to use doctest to turn a specification into tests.

Now that we've learned about doctest, we're ready to talk about how to use
doctest to do unit testing—the topic of the next chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Unit Testing with doctest
In the last chapter, we talked about what doctest does, how it works, and what you
can expect out of it. Why are we devoting another chapter to it?

We're not. This chapter isn't really about doctest. It's about the testing discipline
called unit testing. Since unit testing is an idea, not a piece of software, we'll be
using doctest to practice with it.

In this chapter, we're going to see:

• What unit testing actually is
• How unit testing helps
• How doctest relates to unit testing

What is unit testing?
First of all, why do we care what unit testing is? One answer is that unit testing
is a best practice that has been evolving toward its current form over most of the
time that programming has existed. Another answer is that the core principles of
unit testing are just good sense. It might actually be a little embarrassing to our
community as a whole that it took us so long to recognize this.

So what is it? Unit testing means testing the smallest meaningful pieces of code
(such pieces are called units), in such a way that guarantees that the success or
failure of each test depends only on the unit and nothing else.

www.it-ebooks.info

http://www.it-ebooks.info/

Unit Testing with doctest

[38]

There's a reason for each part of this definition:

• We test the smallest meaningful pieces of code so that failed tests tell us
where the problem is. The larger the tested chunk of code, the larger the
area where a problem might originate.

• We make sure that each test depends only on the tested unit for success or
failure because, if it invokes any code outside the unit, we can't guarantee
that the test's success or failure is actually due to that unit. When tests aren't
independent, you can't trust them to tell you what the problem is and where
to find it.

We made some efforts to write our tests in Chapter 2, Working with doctest, according
to this discipline, although we allowed ourselves some wiggle room because we
were focusing on writing a testable specification. In this chapter, we're going to be
more rigorous.

Automated testing is often associated with unit testing. Automated testing makes
it fast and easy to run unit tests, and unit tests tend to be amenable to automation.
We're certainly going to make heavy use of automated testing, both with doctest
now, and later with tools such as unittest and Nose as well. However, strictly
speaking, unit testing is not tied to automated testing. You can do unit testing with
nothing but your own code and some discipline.

The limitations of unit testing
Any test that involves more than one unit is automatically not a unit test. That
matters because the results of unit tests tend to be particularly clear about what
a problem is and where to find it.

When you test multiple units at once, the results of the various units get mixed
together. In the end, you have to wonder about both what the problem is (is the
mistake in this piece of code, or is it correctly handling bad input from some other
piece of code?), and where the problem is (this output is wrong, but how do the
involved units work together to create the error?).

Empirical scientists must perform experiments that check only one hypothesis at
a time, whether the subject at hand is Chemistry, Physics, or the behavior of a body
of program code.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[39]

Example – identifying units
Imagine for a moment that one of your coworkers has written the following code,
and it's your responsibility to test it:

class Testable:
 def method1(self, number):
 number += 4
 number **= 0.5
 number *= 7
 return number

 def method2(self, number):
 return ((number * 2) ** 1.27) * 0.3

 def method3(self, number):
 return self.method1(number) + self.method2(number)

 def method4(self):
 return 1.713 * self.method3(id(self))

Here are some things to think about: Which sections of this code are the units? Is
there only one unit consisting of the entire class? Is each method a separate unit?
What about each statement, or maybe each expression?

In some sense, the answer is subjective because part of the definition of a unit is
that it is meaningful. You can say that the whole class is a single unit, and in some
circumstances that might be the best answer. However, it is easy to subdivide most
classes into methods, and normally methods make better units because they have
well-defined interfaces and partially isolated behaviors, and because their intent
and meaning should be well understood.

Statements and expressions don't make good units because they are almost never
particularly meaningful in isolation. Furthermore, statements and expressions are
difficult to target: unlike classes and methods, they don't have names or easy ways
to focus a test on them.

Here are some things to think about: What will be the consequences of choosing
a different definition of unit for this code? If you have decided that methods are the
best units, what would be different if you had picked classes? Likewise, if you picked
classes, what would be different if you'd picked methods?

Here are some things to think about: Take a look at method4. The result of this
method depends on all of the other methods working correctly; worse, it depends on
the unique ID of the self object. Can method4 be treated as a unit? If we could change
anything except method4, what is that we have to change to allow it to be tested as
a unit and produce a predictable result?

www.it-ebooks.info

http://www.it-ebooks.info/

Unit Testing with doctest

[40]

Choosing units
You can't organize a suite of unit tests until you decide what constitutes a unit. The
capabilities of your chosen programming language affect this choice. For example,
C++ and Java make it difficult or impossible to treat methods as units (because you
can't access a method without first instantiating the class it's part of); thus, in these
languages each class is usually treated as a single unit, or metaprogramming tricks
are used to force the methods into isolation so that they can be tested as units. C, on
the other hand, doesn't support classes as language features at all, so the obvious
choice of unit is the function. Python is flexible enough that either classes or methods
can be considered as units and, of course, it has standalone functions as well; it is
also natural to think of them as units.

The smaller the units are, the more useful the tests tend to be because they narrow
down the location and nature of bugs more quickly. For example, if you choose to treat
the Testable class as a unit, tests of the class will fail if there is a mistake in any of the
methods. This tells you that there's a mistake in Testable, but not that it's in method2,
or wherever it actually is. On the other hand, there is a certain amount of rigamarole
involved in treating method4 and its like as units, to such an extent that the next chapter
of the book is dedicated to dealing with such situations. Even so, I recommend using
methods and functions as units most of the time because it pays off in the long run.

When you were thinking about method4, you probably realized that the function
calls to id and self.method3 were the problem, and that the method can be
tested as a unit if they didn't invoke other units. In Python, replacing the functions
with stand-ins at runtime is fairly easy to do, and we'll be discussing a structured
approach to this in the next chapter.

Check your understanding
Take a look at the code for this simple class, and use it to figure out the answers to
the questions. It's okay to check back through the book. This is just a way for you to
make sure you're ready to move on:

class ClassOne:
 def __init__(self, arg1, arg2):
 self.arg1 = int(arg1)
 self.arg2 = arg2

 def method1(self, x):
 return x * self.arg1

 def method2(self, x):
 return self.method1(self.arg2) * x

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[41]

Here are the questions:

1. Assuming that we're using methods as units, how many units exist in the
preceding code?
Answer: There are three units that exist in the preceding code and that are
as follows: __init__, method1, and method2. __init__ is a method, just
as method1 and method2. The fact that it's a constructor means that it's all
tangled up with the other units, but it's still a method containing code and
a possible location for bugs, and so we cannot afford to treat this as anything
other than a unit.

2. Which units make assumptions about the correct operation of other units?
In other words, which units are not independent?
Answer: Both method1 and method2 assume that __init__ works right,
and method2 makes the same assumption as that of method1.

3. How can you write a test for method2 that does not assume that other units
work correctly?
Answer: The tests for method2 will need to use a fake method1 that is a part
of the test code, and not a part of the code being tested.

Unit testing during the development
process
We're going to walk through the development of one class, treating it as a complete
programming project and integrating unit testing at each step of the process. For
something as small as a single standalone class, this may seem silly, but it illustrates
the practices that keep larger projects from getting bogged down in a tangle of bugs.

We're going to create a PID controller class. A PID controller is a tool from control
theory, a way of controlling machines so that they move smoothly and efficiently.
The robot arms that assemble cars in factories are controlled by PID controllers.
We'll be using a PID controller for this demonstration because it's a very useful,
and a very real-world idea. Many programmers have been asked to implement PID
controllers at some point in their careers. This example is meant to be read as if we
are contractors and are being paid to produce results.

If you find that the PID controllers are more interesting than
simply an example in a programming book, wikipedia's
article is a good place to begin learning about this:
http://en.wikipedia.org/wiki/PID_controller.

www.it-ebooks.info

http://en.wikipedia.org/wiki/PID_controller
http://www.it-ebooks.info/

Unit Testing with doctest

[42]

Design
Our imaginary client gives us the following specification:

We want a class that implements a PID controller for a single variable.
The measurement, setpoint and output should all be real numbers.

We need to be able to adjust the setpoint at runtime, but we want it to have
a memory, so we can easily return to the previous setpoint.

We'll take this and make it more formal, not to mention complete, by writing a set of
acceptance tests as unit tests that describe the behavior. This way we'll at least have it
set down precisely as what we believe the client intended.

We need to write a set of tests that describe the constructor. After looking up what a
PID controller actually is, we have learned that they are defined by three gains and a
setpoint. The controller has three components: proportional, integral, and derivative
(this is where the name PID comes from). Each gain is a number that determines
how much effect one of the three parts of the controller has on the final result. The
setpoint determines what the goal of the controller is; in other words, to where
it's trying to move the controlled variable. Looking at all this, we decide that the
constructor should just store the gains and the setpoint along with initializing some
internal state that we know we'll need because we read about PID controllers. With
this, we know enough to write some constructor tests:

>>> import pid

>>> controller = pid.PID(P=0.5, I=0.5, D=0.5, setpoint=0)

>>> controller.gains
(0.5, 0.5, 0.5)
>>> controller.setpoint
[0.0]
>>> controller.previous_time is None
True
>>> controller.previous_error
0.0
>>> controller.integrated_error
0.0

We also need tests that describe measurement processing. This means testing the
actual use of the controller, taking a measured value as its input, and producing a
control signal that should smoothly move the measured variable toward the setpoint.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[43]

The behavior of a PID controller is based on time; we know that, so we're going to
need to be able to feed the controller time values that we choose if we expect
the tests to produce predictable results. We do this by replacing time.time with
a different function of the same signature, which produces predictable results.

Once we have that taken care of, we plug our test input values into the math that
defines a PID controller along with the gains to figure out what the correct outputs
will be, and use these numbers to write the tests:

Replace time.time with a predictable fake
>>> import time
>>> real_time = time.time
>>> time.time = (float(x) for x in range(1, 1000)).__next__

Make sure we're not inheriting old state from the constructor tests
>>> import imp
>>> pid = imp.reload(pid)

Actual tests. These test values are nearly arbitrary, having been
chosen for no reason other than that they should produce easily
recognized values.
>>> controller = pid.PID(P=0.5, I=0.5, D=0.5, setpoint=0)
>>> controller.calculate_response(12)
-6.0
>>> controller.calculate_response(6)
-3.0
>>> controller.calculate_response(3)
-4.5
>>> controller.calculate_response(-1.5)
-0.75
>>> controller.calculate_response(-2.25)
-1.125

Undo the fake
>>> time.time = real_time

We need to write tests that describe setpoint handling. Our client asked for a "memory"
for setpoints, which we'll interpret as a stack, so we write tests that ensure that the
setpoint stack works. Writing code that uses this stack behavior brings to our attention
the fact that a PID controller with no setpoint is not a meaningful entity, so we add
a test that checks that the PID class rejects this situation by raising an exception:

>>> pid = imp.reload(pid)
>>> controller = pid.PID(P = 0.5, I = 0.5, D = 0.5, setpoint = 0)

www.it-ebooks.info

http://www.it-ebooks.info/

Unit Testing with doctest

[44]

>>> controller.push_setpoint(7)
>>> controller.setpoint
[0.0, 7.0]

>>> controller.push_setpoint(8.5)
>>> controller.setpoint
[0.0, 7.0, 8.5]

>>> controller.pop_setpoint()
8.5
>>> controller.setpoint
[0.0, 7.0]

>>> controller.pop_setpoint()
7.0
>>> controller.setpoint
[0.0]

>>> controller.pop_setpoint()
Traceback (most recent call last):
ValueError: PID controller must have a setpoint

PID controllers are well-defined elsewhere, so the sparse specification that our client
gave us works pretty well over all. Still, we had to codify several assumptions when
we wrote our acceptance tests; it would probably be wise to check with the client and
make sure that we didn't go astray, which means that, before we even ran the tests,
they already helped us by pointing out questions we needed to ask them.

We took extra steps in the tests to help isolate them from each other, by forcing the
pid module to reimport before each group of test statements. This has the effect of
resetting anything that might have changed in the module, and causes it to reimport
any modules that it depends on. This is particularly important, since we replaced
time.time with a dummy function. We want to be sure that the pid module uses the
dummy time function, so we reload the pid module. If the real-time function is used
instead of the dummy, the test won't be useful because it will succeed only once.
Tests need to be repeatable.

The stand-in time function was created by making an iterator that counts through
the integers from 1 to 999 (as floating point values), and binding time.time to that
iterator's __next__ method. Once we were done with the time-dependent tests, we
replaced the original time.time.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[45]

We did get a little bit lazy, though, because we didn't bother to isolate the assorted
tests from the PID constructor. If there's a bug in the constructor, it might cause a
false error report in any of the tests that are dependent on it. We could have been
more rigorous by using a mock object instead of an actual PID object, and thus even
skipped invoking the constructor during the tests of other units but, as we aren't
talking about mock objects until the next chapter, we'll allow ourselves a bit of
laziness here.

Right now, we have tests for a module that doesn't exist. That's good! Writing the
tests was easier than writing the module, and this gives us a stepping stone towards
getting the module right, quickly and easily. As a general rule, you always want to
have tests ready before the code that the test is written for.

Note that I said "you want to have tests ready," not "you want
to have all of the tests ready." You don't want, or need, to have
every test in place before you start writing code. What you
want is to have the tests in place that define the things you
already know at the start of the process.

Development
Now that we have some tests, we can begin writing code to satisfy the tests, and thus
also the specification.

What if the code is already written? We can still write tests for
its units. This isn't as productive as writing the tests in parallel
with the code, but this at least gives us a way to check our
assumptions and make sure that we don't introduce regressions.
A test suite written late is better than no test suite at all.

The first step is to run the tests because this is always the first thing you do when
you need to decide what to do next. If all the tests pass, either you're done with the
program or you need to write more tests. If one or more tests fail, you pick one and
make it pass.

So, we run the tests as follows:

python3 -m doctest PID.txt

www.it-ebooks.info

http://www.it-ebooks.info/

Unit Testing with doctest

[46]

The first time they tell us that we don't have a pid module. Let's create one and fill it
with a first attempt at a PID class:

from time import time

class PID:
 def __init__(self, P, I, D, setpoint):
 self.gains = (float(P), float(I), float(D))
 self.setpoint = [float(setpoint)]
 self.previous_time = None
 self.previous_error = 0.0
 self.integrated_error = 0.0

 def push_setpoint(self, target):
 self.setpoint.append(float(target))

 def pop_setpoint(self):
 if len(self.setpoint) > 1:
 return self.setpoint.pop()
 raise ValueError('PID controller must have a setpoint')

 def calculate_response(self, value):
 now = time()
 P, I, D = self.gains

 err = value - self.setpoint[-1]

 result = P * err
 if self.previous_time is not None:
 delta = now - self.previous_time
 self.integrated_error += err * delta
 result += I * self.integrated_error
 result += D * (err - self.previous_error) / delta

 self.previous_error = err
 self.previous_time = now

 return result

Now, we'll run the tests again, and see how we did as follows:

python3 -m doctest PIDflawed.txt

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[47]

This immediately tells us that there's a bug in the calculate_response method:

There are more error reports in the same vein. There should be five in total. It seems
that the calculate_response method is working backwards, producing negatives
when it should give us positives, and vice-versa.

We know that we need to look for a sign error in calculate_response, and we find
it on the fourth line, where the input value should be subtracted from the setpoint
and not the other way around. Things should work better if we change this line to
the following:

err = self.setpoint[-1] - value

As expected, that change fixes things. The tests all pass, now.

We used our tests to tell us what was needed to be done, and to tell us when our
code was complete. Our first run of the tests gave us a list of things that needed to
be written; a to-do list of sorts. After we wrote some code, we ran the tests again to
see if it was doing what we expected, which gave us a new to-do list. We kept on
alternately running the tests and writing code to make one of the tests pass until they
all did. When all the tests pass, either we're done, or we need to write more tests.

Whenever we find a bug that isn't already caught by a test, the right thing to do is to
add a test that catches it, and then we need to fix the bug. This gives a fixed bug, but
also a test that covers some part of the program that wasn't tested before. Your new
test might well catch more bugs that you weren't even aware of, and it will help you
avoid recreating the fixed bug.

This "test a little, code a little" style of programming is called Test-driven
Development, and you'll find that it's very productive.

www.it-ebooks.info

http://www.it-ebooks.info/

Unit Testing with doctest

[48]

Notice that the pattern in the way the tests failed was immediately apparent. There's
no guarantee that will be the case, of course, but it often is. Combined with the ability
to narrow your attention to the specific units that are having problems, debugging is
usually a snap.

Feedback
So, we have a PID controller, it passes our tests... are we done? Maybe. Let's ask
the client.

The good news is that they mostly like it. They have a few things they'd like to
be changed, though. They want us to be able to optionally specify the current time
as a parameter to calculate_response, so that the specified time is used instead
of the current system time. They also want us to change the signature of the
constructor so that it accepts an initial measurement and optionally a measurement
time as parameters.

So, the program passes all of our tests, but the tests don't correctly describe the
requirements anymore. What to do?

First, we'll add the initial value parameter to the constructor tests, and update the
expected results as follows:

>>> import time
>>> real_time = time.time
>>> time.time = (float(x) for x in range(1, 1000)).__next__
>>> import pid
>>> controller = pid.PID(P = 0.5, I = 0.5, D = 0.5, setpoint = 0,
... initial = 12)
>>> controller.gains
(0.5, 0.5, 0.5)
>>> controller.setpoint
[0.0]
>>> controller.previous_time
1.0
>>> controller.previous_error
-12.0
>>> controller.integrated_error
0.0
>>> time.time = real_time

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[49]

Now, we'll add another test of the constructor, a test that checks the correct behavior
when the optional initial time parameter is provided:

>>> import imp
>>> pid = imp.reload(pid)
>>> controller = pid.PID(P = 0.5, I = 0.5, D = 0.5, setpoint = 1,
... initial = 12, when = 43)
>>> controller.gains
(0.5, 0.5, 0.5)
>>> controller.setpoint
[1.0]
>>> controller.previous_time
43.0
>>> controller.previous_error
-11.0
>>> controller.integrated_error
0.0

Next, we change the calculate_response tests to use the new signature for
the constructor:

>>> controller = pid.PID(P = 0.5, I = 0.5, D = 0.5, setpoint = 0,
... initial = 12)

We need to add a second calculate_response test that checks whether the function
behaves properly when the optional time parameter is passed to it:

>>> pid = imp.reload(pid)
>>> controller = pid.PID(P = 0.5, I = 0.5, D = 0.5, setpoint = 0,
... initial = 12, when = 1)
>>> controller.calculate_response(6, 2)
-3.0
>>> controller.calculate_response(3, 3)
-4.5
>>> controller.calculate_response(-1.5, 4)
-0.75
>>> controller.calculate_response(-2.25, 5)
-1.125

Finally, we adjust the constructor call in the setpoint method tests. This change looks
the same as the constructor call changes in the other tests.

www.it-ebooks.info

http://www.it-ebooks.info/

Unit Testing with doctest

[50]

When we're adjusting the tests, we discover that the behavior of the calculate_
response method has changed due to the addition of the initial value and initial
time parameters to the constructor. The tests will report this as an error but it's not
clear that if it really is wrong, so we check this with the client. After talking it over,
the client decides that this is actually correct behavior, so we change our tests to
reflect that.

Our complete specification and test document now looks like this (new or changed
lines are highlighted):

We want a class that implements a PID controller for a single
variable. The measurement, setpoint, and output should all be real
numbers. The constructor should accept an initial measurement value in
addition to the gains and setpoint.

>>> import time
>>> real_time = time.time
>>> time.time = (float(x) for x in range(1, 1000)).__next__
>>> import pid
>>> controller = pid.PID(P = 0.5, I = 0.5, D = 0.5, setpoint = 0,
... initial = 12)
>>> controller.gains
(0.5, 0.5, 0.5)
>>> controller.setpoint
[0.0]
>>> controller.previous_time
1.0
>>> controller.previous_error
-12.0
>>> controller.integrated_error
0.0
>>> time.time = real_time

The constructor should also optionally accept a parameter specifying
when the initial measurement was taken.

>>> import imp
>>> pid = imp.reload(pid)
>>> controller = pid.PID(P = 0.5, I = 0.5, D = 0.5, setpoint = 1,
... initial = 12, when = 43)
>>> controller.gains
(0.5, 0.5, 0.5)
>>> controller.setpoint
[1.0]
>>> controller.previous_time

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[51]

43.0
>>> controller.previous_error
-11.0
>>> controller.integrated_error
0.0

The calculate response method receives the measured value as input,
and returns the control signal.

>>> import time
>>> real_time = time.time
>>> time.time = (float(x) for x in range(1, 1000)).__next__
>>> pid = imp.reload(pid)
>>> controller = pid.PID(P = 0.5, I = 0.5, D = 0.5, setpoint = 0,
... initial = 12)
>>> controller.calculate_response(6)
-3.0
>>> controller.calculate_response(3)
-4.5
>>> controller.calculate_response(-1.5)
-0.75
>>> controller.calculate_response(-2.25)
-1.125
>>> time.time = real_time

The calculate_response method should be willing to accept a parameter
specifying at what time the call is happening.

>>> pid = imp.reload(pid)
>>> controller = pid.PID(P = 0.5, I = 0.5, D = 0.5, setpoint = 0,
... initial = 12, when = 1)
>>> controller.calculate_response(6, 2)
-3.0
>>> controller.calculate_response(3, 3)
-4.5
>>> controller.calculate_response(-1.5, 4)
-0.75
>>> controller.calculate_response(-2.25, 5)
-1.125

We need to be able to adjust the setpoint at runtime, but we want it
to have a memory, so that we can easily return to the previous
setpoint.

www.it-ebooks.info

http://www.it-ebooks.info/

Unit Testing with doctest

[52]

>>> pid = imp.reload(pid)
>>> controller = pid.PID(P = 0.5, I = 0.5, D = 0.5, setpoint = 0,
... initial = 12)
>>> controller.push_setpoint(7)
>>> controller.setpoint
[0.0, 7.0]
>>> controller.push_setpoint(8.5)
>>> controller.setpoint
[0.0, 7.0, 8.5]
>>> controller.pop_setpoint()
8.5
>>> controller.setpoint
[0.0, 7.0]
>>> controller.pop_setpoint()
7.0
>>> controller.setpoint
[0.0]
>>> controller.pop_setpoint()
Traceback (most recent call last):
ValueError: PID controller must have a setpoint

Our tests didn't match the requirements and so we needed to change them. That's
fine, but we don't want to change them too much because the tests we have already
help us to avoid some problems that we've previously spotted or had to fix. The last
thing we want for the computer is to stop checking for known problems. Because of
this, we very much prefer adding new tests, instead of changing old ones.

This is one reason why we added new tests to check the behavior when the
optional time parameters were supplied. The other reason is that, if we added these
parameters to the existing tests, we wouldn't have any tests of what happens when
you don't use these parameters. We always want to check every code path through
each unit.

The addition of the initial parameter to the constructor is a big deal. It not only
changes the way the constructor should behave, it also changes the way the
calculate_response method should behave in a rather dramatic way. Since there is
a change in the correct behavior (a fact that we didn't realize until the tests pointed it
out to us, which in turn allowed us to get a confirmation of what the correct behavior
should be from our clients before we started writing the code), we have no choice
but to go through and change the tests, recalculating the expected outputs and all.
Doing all that work has a benefit, though, over and above the future ability to check
whether the function is working correctly: this makes it much easier to comprehend
how the function should work when we actually write it.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[53]

When we change a test to reflect new correct behavior, we still try to change it as
little as possible. After all, we don't want the test to stop checking for old behavior
that's still correct, and we don't want to introduce a bug in the test itself.

To a certain extent, the code being tested acts as a test of
the test, so even bugs in your tests don't survive very long
when you use good testing discipline.

Development, again
Time to do some more coding. In real life, we might cycle between development and
feedback any number of times, depending on how well we're able to communicate
with our clients. In fact, it might be a good thing to increase the number of times we
go back and forth, even if this means that each cycle is short. Keeping the clients in
the loop and up-to-date is a good thing.

The first step, as always, is to run the tests and get an updated list of the things that
need to be done:

Python3 -m doctest PID.txt

There are actually a lot more errors that are reported, but the very first one gives us
a good hint about what we need to fix right off. The constructor needs to change to
match the tests' expectations.

www.it-ebooks.info

http://www.it-ebooks.info/

Unit Testing with doctest

[54]

Using the doctest error report to guide us, and rerunning the tests frequently, we
can quickly get our PID class into shape. In practice, this works best using short
development cycles where you make only a few changes to the code, and then run
the tests again. Fix one thing, and then test again.

Once we've gone back and forth between coding and testing enough times, we'll end
up with something like this:

from time import time

class PID:
 def __init__(self, P, I, D, setpoint, initial, when = None):
 self.gains = (float(P), float(I), float(D))

 if P < 0 or I < 0 or D < 0:
 raise ValueError('PID controller gains must be non-
negative')

 if not isinstance(setpoint, complex):
 setpoint = float(setpoint)

 if not isinstance(initial, complex):
 initial = float(initial)

 self.setpoint = [setpoint]

 if when is None:
 self.previous_time = time()
 else:
 self.previous_time = float(when)

 self.previous_error = self.setpoint[-1] - initial
 self.integrated_error = 0.0

 def push_setpoint(self, target):
 self.setpoint.append(float(target))

 def pop_setpoint(self):
 if len(self.setpoint) > 1:
 return self.setpoint.pop()
 raise ValueError('PID controller must have a setpoint')

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[55]

 def calculate_response(self, value, now = None):
 if now is None:
 now = time()
 else:
 now = float(now)

 P, I, D = self.gains

 err = self.setpoint[-1] - value

 result = P * err
 delta = now - self.previous_time
 self.integrated_error += err * delta
 result += I * self.integrated_error
 result += D * (err - self.previous_error) / delta

 self.previous_error = err
 self.previous_time = now

 return result

Once again, all of the tests pass including all of the revised tests from the client, and
it's remarkable how rewarding that lack of an error report can be. We're ready to see
whether the client is willing to accept delivery of the code yet.

Later stages of the process
There are later phases of development when it's your job to maintain the code, or
to integrate it into another product. Functionally, they work in the same way as the
development phase. If you're handling pre-existing code and are asked to maintain
or integrate it, you'll be much happier if it comes to you with a test suite already
written because, until you've mastered the intricacies of the code, the test suite is
the only way in which you'll be able to modify the code with confidence.

If you're unfortunate enough to be handed a pile of code with no tests, writing tests is
a good first step. Each test you write is one more unit of the code that you can honestly
say you understand, and know what to expect from. And, of course, each test you
write is one more unit that you can count on to tell you if you introduce a bug.

www.it-ebooks.info

http://www.it-ebooks.info/

Unit Testing with doctest

[56]

Summary
We've walked through the process of developing a project using unit testing and
test-driven development, paying attention to the ways that we can identify units, and
covering some of the ways in which we can isolate doctest tests for individual units.

We've also talked about the philosophy and discipline of unit testing, what it is in
detail, and why it is valuable.

In the next chapter, we'll discuss mock objects, a powerful tool for isolating units.

www.it-ebooks.info

http://www.it-ebooks.info/

Decoupling Units
with unittest.mock

Several times in the last couple of chapters, when faced with the problem of isolating
tests from each other, I told you to just keep the problem in mind and said we'd deal
with it in this chapter. Finally, it's time to actually address the problem.

Functions and methods that do not rely on the behavior of other functions, methods,
or data are rare; the common case is to have them make several calls to other
functions or methods, and instantiate at least one instance of a class. Every one of
these calls and instantiations breaks the unit's isolation; or, if you prefer to think
of it this way, it incorporates more code into the isolated section.

No matter how you look at it—as an isolation breaking or as expanding the isolated
section—it's something you want to have the ability to prevent. Mock objects let you
do this by taking the place of external functions or objects.

Using the unittest.mock package, you can easily perform the following:

• Replace functions and objects in your own code or in external packages,
as we did with time.time in Chapter 3, Unit Testing with doctest.

• Control how replacement objects behave. You can control what return values
they provide, whether they raise an exception, even whether they make any
calls to other functions, or create instances of other objects.

• Check whether the replacement objects were used as you expected: whether
functions or methods were called the correct number of times, whether
the calls occurred in the correct order, and whether the passed parameters
were correct.

www.it-ebooks.info

http://www.it-ebooks.info/

Decoupling Units with unittest.mock

[58]

Mock objects in general
All right, before we get down to the nuts and bolts of unittest.mock, let's spend
a few moments talking about mock objects overall.

Broadly speaking, mock objects are any objects that you can use as substitutes in
your test code, to keep your tests from overlapping and your tested code from
infiltrating the wrong tests. Thus, our fake time.time from Chapter 3, Unit Testing
with doctest, was a mock object. However, like most things in programming, the
idea works better when it has been formalized into a well-designed library that
you can call on when you need it. There are many such libraries available for most
programming languages.

Over time, the authors of mock object libraries have developed two major design
patterns for mock objects: in one pattern, you can create a mock object and perform
all of the expected operations on it. The object records these operations, and then
you put the object into playback mode and pass it to your code. If your code fails
to duplicate the expected operations, the mock object reports a failure.

In the second pattern, you can create a mock object, do the minimal necessary
configuration to allow it to mimic the real object it replaces, and pass it to your code.
It records how the code uses it, and then you can perform assertions after the fact to
check whether your code used the object as expected.

The second pattern is slightly more capable in terms of the tests that you can write
using it but, overall, either pattern works well.

Mock objects according to unittest.mock
Python has several mock object libraries; as of Python 3.3, however, one of them has
been crowned as a member of the standard library. Naturally that's the one we're
going to focus on. That library is, of course, unittest.mock.

The unittest.mock library is of the second sort, a record-actual-use-and-then-assert
library. The library contains several different kinds of mock objects that, between
them, let you mock almost anything that exists in Python. Additionally, the library
contains several useful helpers that simplify assorted tasks related to mock objects,
such as temporarily replacing real objects with mocks.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[59]

Standard mock objects
The basic element of unittest.mock is the unittest.mock.Mock class. Even
without being configured at all, Mock instances can do a pretty good job of
pretending to be some other object, method, or function.

There are many mock object libraries for Python; so, strictly
speaking, the phrase "mock object" could mean any object
that was created by any of these libraries. From here on in
this book, you can assume that a "mock object" is an instance
of unittest.mock.Mock or one of its descendants.

Mock objects can pull off this impersonation because of a clever, somewhat recursive
trick. When you access an unknown attribute of a mock object, instead of raising an
AttributeError exception, the mock object creates a child mock object and returns
that. Since mock objects are pretty good at impersonating other objects, returning a
mock object instead of the real value works at least in the common case.

Similarly, mock objects are callable; when you call a mock object as a function or
method, it records the parameters of the call and then, by default, returns a child
mock object.

A child mock object is a mock object in its own right, but it knows that it's connected to
the mock object it came from—its parent. Anything you do to the child is also recorded
in the parent's memory. When the time comes to check whether the mock objects were
used correctly, you can use the parent object to check on all of its descendants.

Example: Playing with mock objects in the interactive shell (try it for yourself!):

$ python3.4

Python 3.4.0 (default, Apr 2 2014, 08:10:08)

[GCC 4.8.2] on linux

Type "help", "copyright", "credits" or "license" for more information.

>>> from unittest.mock import Mock, call

>>> mock = Mock()

>>> mock.x

<Mock name='mock.x' id='140145643647832'>

>>> mock.x

<Mock name='mock.x' id='140145643647832'>

>>> mock.x('Foo', 3, 14)

<Mock name='mock.x()' id='140145643690640'>

>>> mock.x('Foo', 3, 14)

www.it-ebooks.info

http://www.it-ebooks.info/

Decoupling Units with unittest.mock

[60]

<Mock name='mock.x()' id='140145643690640'>

>>> mock.x('Foo', 99, 12)

<Mock name='mock.x()' id='140145643690640'>

>>> mock.y(mock.x('Foo', 1, 1))

<Mock name='mock.y()' id='140145643534320'>

>>> mock.method_calls

[call.x('Foo', 3, 14),

 call.x('Foo', 3, 14),

 call.x('Foo', 99, 12),

 call.x('Foo', 1, 1),

 call.y(<Mock name='mock.x()' id='140145643690640'>)]

>>> mock.assert_has_calls([call.x('Foo', 1, 1)])

>>> mock.assert_has_calls([call.x('Foo', 1, 1), call.x('Foo', 99, 12)])

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

 File "/usr/lib64/python3.4/unittest/mock.py", line 792, in assert_has_
calls

) from cause

AssertionError: Calls not found.

Expected: [call.x('Foo', 1, 1), call.x('Foo', 99, 12)]

Actual: [call.x('Foo', 3, 14),

 call.x('Foo', 3, 14),

 call.x('Foo', 99, 12),

 call.x('Foo', 1, 1),

 call.y(<Mock name='mock.x()' id='140145643690640'>)]

>>> mock.assert_has_calls([call.x('Foo', 1, 1),
... call.x('Foo', 99, 12)], any_order = True)

>>> mock.assert_has_calls([call.y(mock.x.return_value)])

>>>

There are several important things demonstrated in this interactive session.

First, notice that the same mock object was returned each time that we accessed
mock.x. This always holds true: if you access the same attribute of a mock object,
you'll get the same mock object back as the result.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[61]

The next thing to notice might seem more surprising. Whenever you call a mock
object, you get the same mock object back as the return value. The returned mock
isn't made new for every call, nor is it unique for each combination of parameters.
We'll see how to override the return value shortly but, by default, you get the same
mock object back every time you call a mock object. This mock object can be accessed
using the return_value attribute name, as you might have noticed from the last
statement of the example.

The unittest.mock package contains a call object that helps to make it easier to
check whether the correct calls have been made. The call object is callable, and takes
note of its parameters in a way similar to mock objects, making it easy to compare it
to a mock object's call history. However, the call object really shines when you have
to check for calls to descendant mock objects. As you can see in the previous example,
while call('Foo', 1, 1) will match a call to the parent mock object, if the call used
these parameters, call.x('Foo', 1, 1), it matches a call to the child mock object
named x. You can build up a long chain of lookups and invocations. For example:

>>> mock.z.hello(23).stuff.howdy('a', 'b', 'c')

<Mock name='mock.z.hello().stuff.howdy()' id='140145643535328'>

>>> mock.assert_has_calls([

... call.z.hello().stuff.howdy('a', 'b', 'c')

...])

>>>

Notice that the original invocation included hello(23), but the call specification
wrote it simply as hello(). Each call specification is only concerned with the
parameters of the object that was finally called after all of the lookups. The
parameters of intermediate calls are not considered. That's okay because they always
produce the same return value anyway unless you've overridden that behavior, in
which case they probably don't produce a mock object at all.

You might not have encountered an assertion before.
Assertions have one job, and one job only: they raise
an exception if something is not as expected. The
assert_has_calls method, in particular, raises an
exception if the mock object's history does not include the
specified calls. In our example, the call history matches,
so the assertion method doesn't do anything visible.

www.it-ebooks.info

http://www.it-ebooks.info/

Decoupling Units with unittest.mock

[62]

You can check whether the intermediate calls were made with the correct parameters,
though, because the mock object recorded a call immediately to mock.z.hello(23)
before it recorded a call to mock.z.hello().stuff.howdy('a', 'b', 'c'):

>>> mock.mock_calls.index(call.z.hello(23))

6

>>> mock.mock_calls.index(call.z.hello().stuff.howdy('a', 'b', 'c'))

7

This also points out the mock_calls attribute that all mock objects carry. If the
various assertion functions don't quite do the trick for you, you can always write
your own functions that inspect the mock_calls list and check whether things are or
are not as they should be. We'll discuss the mock object assertion methods shortly.

Non-mock attributes
What if you want a mock object to give back something other than a child mock
object when you look up an attribute? It's easy; just assign a value to that attribute:

>>> mock.q = 5

>>> mock.q

5

There's one other common case where mock objects' default behavior is wrong:
what if accessing a particular attribute is supposed to raise an AttributeError?
Fortunately, that's easy too:

>>> del mock.w

>>> mock.w

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

 File "/usr/lib64/python3.4/unittest/mock.py", line 563, in __getattr__

 raise AttributeError(name)

AttributeError: w

Non-mock return values and raising exceptions
Sometimes, actually fairly often, you'll want mock objects posing as functions or
methods to return a specific value, or a series of specific values, rather than returning
another mock object.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[63]

To make a mock object always return the same value, just change the
return_value attribute:

>>> mock.o.return_value = 'Hi'

>>> mock.o()

'Hi'

>>> mock.o('Howdy')

'Hi'

If you want the mock object to return different value each time it's called, you need
to assign an iterable of return values to the side_effect attribute instead, as follows:

>>> mock.p.side_effect = [1, 2, 3]

>>> mock.p()

1

>>> mock.p()

2

>>> mock.p()

3

>>> mock.p()

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

 File "/usr/lib64/python3.4/unittest/mock.py", line 885, in __call__

 return _mock_self._mock_call(*args, **kwargs)

 File "/usr/lib64/python3.4/unittest/mock.py", line 944, in _mock_call

 result = next(effect)

StopIteration

If you don't want your mock object to raise a StopIteration exception, you need
to make sure to give it enough return values for all of the invocations in your test.
If you don't know how many times it will be invoked, an infinite iterator such as
itertools.count might be what you need. This is easily done:

>>> mock.p.side_effect = itertools.count()

www.it-ebooks.info

http://www.it-ebooks.info/

Decoupling Units with unittest.mock

[64]

If you want your mock to raise an exception instead of returning a value, just assign
the exception object to side_effect, or put it into the iterable that you assign to
side_effect:

>>> mock.e.side_effect = [1, ValueError('x')]

>>> mock.e()

1

>>> mock.e()

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

 File "/usr/lib64/python3.4/unittest/mock.py", line 885, in __call__

 return _mock_self._mock_call(*args, **kwargs)

 File "/usr/lib64/python3.4/unittest/mock.py", line 946, in _mock_call

 raise result

ValueError: x

The side_effect attribute has another use, as well that we'll talk about.

Mocking class or function details
Sometimes, the generic behavior of mock objects isn't a close enough emulation of
the object being replaced. This is particularly the case when it's important that they
raise exceptions when used improperly, since mock objects are usually happy to
accept any usage.

The unittest.mock package addresses this problem using a technique called
speccing. If you pass an object into unittest.mock.create_autospec, the returned
value will be a mock object, but it will do its best to pretend that it's the same object
you passed into create_autospec. This means that it will:

• Raise an AttributeError if you attempt to access an attribute that the original
object doesn't have, unless you first explicitly assign a value to that attribute

• Raise a TypeError if you attempt to call the mock object when the original
object wasn't callable

• Raise a TypeError if you pass the wrong number of parameters or pass
a keyword parameter that isn't viable if the original object was callable

• Trick isinstance into thinking that the mock object is of the original
object's type

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[65]

Mock objects made by create_autospec share this trait with all of their children as
well, which is usually what you want. If you really just want a specific mock to be
specced, while its children are not, you can pass the template object into the Mock
constructor using the spec keyword.

Here's a short demonstration of using create_autospec:

>>> from unittest.mock import create_autospec

>>> x = Exception('Bad', 'Wolf')

>>> y = create_autospec(x)

>>> isinstance(y, Exception)

True

>>> y

<NonCallableMagicMock spec='Exception' id='140440961099088'>

Mocking function or method side effects
Sometimes, for a mock object to successfully take the place of a function or method
means that the mock object has to actually perform calls to other functions, or set
variable values, or generally do whatever a function can do.

This need is less common than you might think, and it's also somewhat dangerous
for testing purposes because, when your mock objects can execute arbitrary code,
there's a possibility that they stop being a simplifying tool for enforcing test isolation,
and become a complex part of the problem instead.

Having said that, there are still times when you need a mocked function to do
something more complex than simply returning a value, and we can use the
side_effect attribute of mock objects to achieve this. We've seen side_effect
before, when we assigned an iterable of return values to it.

If you assign a callable to side_effect, this callable will be called when the mock
object is called and passed the same parameters. If the side_effect function raises
an exception, this is what the mock object does as well; otherwise, the side_effect
return value is returned by the mock object.

In other words, if you assign a function to a mock object's side_effect attribute,
this mock object in effect becomes that function with the only important difference
being that the mock object still records the details of how it's used.

The code in a side_effect function should be minimal, and should not try to
actually do the job of the code the mock object is replacing. All it should do is
perform any expected externally visible operations and then return the expected
result.Mock object assertion methods

www.it-ebooks.info

http://www.it-ebooks.info/

Decoupling Units with unittest.mock

[66]

As we saw in the Standard mock objects section, you can always write code that checks
the mock_calls attribute of mock objects to see whether or not things are behaving
as they should. However, there are some particularly common checks that have
already been written for you, and are available as assertion methods of the mock
objects themselves. As is normal for assertions, these assertion methods return None
if they pass, and raise an AssertionError if they fail.

The assert_called_with method accepts an arbitrary collection of arguments and
keyword arguments, and raises an AssertionError unless these parameters were
passed to the mock the last time it was called.

The assert_called_once_with method behaves like assert_called_with,
except that it also checks whether the mock was only called once and raises
AssertionError if that is not true.

The assert_any_call method accepts arbitrary arguments and keyword
arguments, and raises an AssertionError if the mock object has never been called
with these parameters.

We've already seen the assert_has_calls method. This method accepts a list of call
objects, checks whether they appear in the history in the same order, and raises an
exception if they do not. Note that "in the same order" does not necessarily mean "next
to each other." There can be other calls in between the listed calls as long as all of the
listed calls appear in the proper sequence. This behavior changes if you assign a true
value to the any_order argument. In that case, assert_has_calls doesn't care about
the order of the calls, and only checks whether they all appear in the history.

The assert_not_called method raises an exception if the mock has ever
been called.

Mocking containers and objects with a
special behavior
One thing the Mock class does not handle is the so-called magic methods that underlie
Python's special syntactic constructions: __getitem__, __add__, and so on. If you
need your mock objects to record and respond to magic methods—in other words,
if you want them to pretend to be container objects such as dictionaries or lists, or
respond to mathematical operators, or act as context managers or any of the other
things where syntactic sugar translates it into a method call underneath—you're
going to use unittest.mock.MagicMock to create your mock objects.

There are a few magic methods that are not supported even by MagicMock, due to
details of how they (and mock objects) work: __getattr__, __setattr__, __init__
, __new__, __prepare__, __instancecheck__, __subclasscheck__, and __del__.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[67]

Here's a simple example in which we use MagicMock to create a mock object
supporting the in operator:

>>> from unittest.mock import MagicMock

>>> mock = MagicMock()

>>> 7 in mock

False

>>> mock.mock_calls

[call.__contains__(7)]

>>> mock.__contains__.return_value = True

>>> 8 in mock

True

>>> mock.mock_calls

[call.__contains__(7), call.__contains__(8)]

Things work similarly with the other magic methods. For example, addition:

>>> mock + 5

<MagicMock name='mock.__add__()' id='140017311217816'>

>>> mock.mock_calls

[call.__contains__(7), call.__contains__(8), call.__add__(5)]

Notice that the return value of the addition is a mock object, a child of the original
mock object, but the in operator returned a Boolean value. Python ensures that some
magic methods return a value of a particular type, and will raise an exception if that
requirement is not fulfilled. In these cases, MagicMock's implementations of the
methods return a best-guess value of the proper type, instead of a child mock object.

There's something you need to be careful of when it comes to the in-place
mathematical operators, such as += (__iadd__) and |= (__ior__), and that is the fact
that MagicMock handles them somewhat strangely. What it does is still useful, but it
might well catch you by surprise:

>>> mock += 10

>>> mock.mock_calls

[]

What was that? Did it erase our call history? Fortunately, no, it didn't. What it did
was assign the child mock created by the addition operation to the variable called
mock. That is entirely in accordance with how the in-place math operators are
supposed to work. Unfortunately, it has still cost us our ability to access the call
history, since we no longer have a variable pointing at the parent mock object.

www.it-ebooks.info

http://www.it-ebooks.info/

Decoupling Units with unittest.mock

[68]

Make sure that you have the parent mock object set aside in a
variable that won't be reassigned, if you're going to be checking
in-place math operators. Also, you should make sure that your
mocked in-place operators return the result of the operation,
even if that just means return self.return_value, because
otherwise Python will assign None to the left-hand variable.

There's another detailed way in which in-place operators work that you should
keep in mind:

>>> mock = MagicMock()

>>> x = mock

>>> x += 5

>>> x

<MagicMock name='mock.__iadd__()' id='139845830142216'>

>>> x += 10

>>> x

<MagicMock name='mock.__iadd__().__iadd__()' id='139845830154168'>

>>> mock.mock_calls

[call.__iadd__(5), call.__iadd__().__iadd__(10)]

Because the result of the operation is assigned to the original variable, a series of
in-place math operations builds up a chain of child mock objects. If you think about
it, that's the right thing to do, but it is rarely what people expect at first.

Mock objects for properties and descriptors
There's another category of things that basic Mock objects don't do a good job of
emulating: descriptors.

Descriptors are objects that allow you to interfere with the normal variable access
mechanism. The most commonly used descriptors are created by Python's property
built-in function, which simply allows you to write functions to control getting,
setting, and deleting a variable.

To mock a property (or other descriptor), create a unittest.mock.PropertyMock
instance and assign it to the property name. The only complication is that you can't
assign a descriptor to an object instance; you have to assign it to the object's type
because descriptors are looked up in the type without first checking the instance.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[69]

That's not hard to do with mock objects, fortunately:

>>> from unittest.mock import PropertyMock

>>> mock = Mock()

>>> prop = PropertyMock()

>>> type(mock).p = prop

>>> mock.p

<MagicMock name='mock()' id='139845830215328'>

>>> mock.mock_calls

[]

>>> prop.mock_calls

[call()]

>>> mock.p = 6

>>> prop.mock_calls

[call(), call(6)]

The thing to be mindful of here is that the property is not a child of the object
named mock. Because of this, we have to keep it around in its own variable
because otherwise we'd have no way of accessing its history.

The PropertyMock objects record variable lookup as a call with no parameters,
and variable assignment as a call with the new value as a parameter.

You can use a PropertyMock object if you actually need to
record variable accesses in your mock object history. Usually
you don't need to do that, but the option exists.

Even though you set a property by assigning it to an attribute of a type, you don't
have to worry about having your PropertyMock objects bleed over into other tests.
Each Mock you create has its own type object, even though they all claim to be of the
same class:

>>> type(Mock()) is type(Mock())

False

Thanks to this feature, any changes that you make to a mock object's type object are
unique to that specific mock object.

www.it-ebooks.info

http://www.it-ebooks.info/

Decoupling Units with unittest.mock

[70]

Mocking file objects
It's likely that you'll occasionally need to replace a file object with a mock object.
The unittest.mock library helps you with this by providing mock_open, which is
a factory for fake open functions. These functions have the same interface as the real
open function, but they return a mock object that's been configured to pretend that
it's an open file object.

This sounds more complicated than it is. See for yourself:

>>> from unittest.mock import mock_open

>>> open = mock_open(read_data = 'moose')

>>> with open('/fake/file/path.txt', 'r') as f:

... print(f.read())

...

moose

If you pass a string value to the read_data parameter, the mock file object that
eventually gets created will use that value as the data source when its read methods
get called. As of Python 3.4.0, read_data only supports string objects, not bytes.

If you don't pass read_data, read method calls will return an empty string.

The problem with the previous code is that it makes the real open function
inaccessible, and leaves a mock object lying around where other tests might
stumble over it. Read on to see how to fix these problems.

Replacing real code with mock objects
The unittest.mock library gives a very nice tool for temporarily replacing objects
with mock objects, and then undoing the change when our test is done. This tool is
unittest.mock.patch.

There are a lot of different ways in which that patch can be used: it works as a
context manager, a function decorator, and a class decorator; additionally, it can
create a mock object to use for the replacement or it can use the replacement object
that you specify. There are a number of other optional parameters that can further
adjust the behavior of the patch.

Basic usage is easy:

>>> from unittest.mock import patch, mock_open

>>> with patch('builtins.open', mock_open(read_data = 'moose')) as mock:

... with open('/fake/file.txt', 'r') as f:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[71]

... print(f.read())

...

moose

>>> open

<built-in function open>

As you can see, patch dropped the mock open function created by mock_open over
the top of the real open function; then, when we left the context, it replaced the
original for us automatically.

The first parameter of patch is the only one that is required. It is a string describing
the absolute path to the object to be replaced. The path can have any number of
package and subpackage names, but it must include the module name and the name
of the object inside the module that is being replaced. If the path is incorrect, patch
will raise an ImportError, TypeError, or AttributeError, depending on what
exactly is wrong with the path.

If you don't want to worry about making a mock object to be the replacement, you
can just leave that parameter off:

>>> import io

>>> with patch('io.BytesIO'):

... x = io.BytesIO(b'ascii data')

... io.BytesIO.mock_calls

[call(b'ascii data')]

The patch function creates a new MagicMock for you if you don't tell it what to use
for the replacement object. This usually works pretty well, but you can pass the
new parameter (also the second parameter, as we used it in the first example of this
section) to specify that the replacement should be a particular object; or you can pass
the new_callable parameter to make patch use the value of that parameter to create
the replacement object.

We can also force the patch to use create_autospec to make the replacement object,
by passing autospec=True:

>>> with patch('io.BytesIO', autospec = True):

... io.BytesIO.melvin

Traceback (most recent call last):

 File "<stdin>", line 2, in <module>

 File "/usr/lib64/python3.4/unittest/mock.py", line 557, in __getattr__

 raise AttributeError("Mock object has no attribute %r" % name)

AttributeError: Mock object has no attribute 'melvin'

www.it-ebooks.info

http://www.it-ebooks.info/

Decoupling Units with unittest.mock

[72]

The patch function will normally refuse to replace an object that does not exist;
however, if you pass it create=True, it will happily drop a mock object wherever
you like. Naturally, this is not compatible with autospec=True.

The patch function covers the most common cases. There are a few related functions
that handle less common but still useful cases.

The patch.object function does the same thing as patch, except that, instead
of taking the path string, it accepts an object and an attribute name as its first two
parameters. Sometimes this is more convenient than figuring out the path to an object.
Many objects don't even have valid paths (for example, objects that exist only in a
function local scope), although the need to patch them is rarer than you might think.

The patch.dict function temporarily drops one or more objects into a dictionary
under specific keys. The first parameter is the target dictionary; the second is a
dictionary from which to get the key and value pairs to put into the target. If you
pass clear=True, the target will be emptied before the new values are inserted.
Notice that patch.dict doesn't create the replacement values for you. You'll need
to make your own mock objects, if you want them.

Mock objects in action
That was a lot of theory interspersed with unrealistic examples. Let's take a look at
what we've learned and apply it to the tests from the previous chapters for a more
realistic view of how these tools can help us.

Better PID tests
The PID tests suffered mostly from having to do a lot of extra work to patch
and unpatch time.time, and had some difficulty breaking the dependence on
the constructor.

Patching time.time
Using patch, we can remove a lot of the repetitiveness of dealing with time.time;
this means that it's less likely that we'll make a mistake somewhere, and saves us
from spending time on something that's kind of boring and annoying. All of the tests
can benefit from similar changes:

>>> from unittest.mock import Mock, patch

>>> with patch('time.time', Mock(side_effect = [1.0, 2.0, 3.0, 4.0,
5.0])):

... import pid

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[73]

... controller = pid.PID(P = 0.5, I = 0.5, D = 0.5, setpoint = 0,

... initial = 12)

... assert controller.gains == (0.5, 0.5, 0.5)

... assert controller.setpoint == [0.0]

... assert controller.previous_time == 1.0

... assert controller.previous_error == -12.0

... assert controller.integrated_error == 0.0

Apart from using patch to handle time.time, this test has been changed. We can
now use assert to check whether things are correct instead of having doctest
compare the values directly. There's hardly any difference between the two
approaches, except that we can place the assert statements inside the context
managed by patch.

Decoupling from the constructor
Using mock objects, we can finally separate the tests for the PID methods from the
constructor, so that mistakes in the constructor cannot affect the outcome:

>>> with patch('time.time', Mock(side_effect = [2.0, 3.0, 4.0, 5.0])):

... pid = imp.reload(pid)

... mock = Mock()

... mock.gains = (0.5, 0.5, 0.5)

... mock.setpoint = [0.0]

... mock.previous_time = 1.0

... mock.previous_error = -12.0

... mock.integrated_error = 0.0

... assert pid.PID.calculate_response(mock, 6) == -3.0

... assert pid.PID.calculate_response(mock, 3) == -4.5

... assert pid.PID.calculate_response(mock, -1.5) == -0.75

... assert pid.PID.calculate_response(mock, -2.25) == -1.125

What we've done here is set up a mock object with the proper attributes, and pass
it into calculate_response as the self-parameter. We could do this because we
didn't create a PID instance at all. Instead, we looked up the method's function
inside the class and called it directly, allowing us to pass whatever we wanted
as the self-parameter instead of having Python's automatic mechanisms handle it.

Never invoking the constructor means that we're immune to any errors it might
contain, and guarantees that the object state is exactly what we expect here in our
calculate_response test.

www.it-ebooks.info

http://www.it-ebooks.info/

Decoupling Units with unittest.mock

[74]

Summary
In this chapter, we've learned about a family of objects that specialize in
impersonating other classes, objects, methods, and functions. We've seen how to
configure these objects to handle corner cases where their default behavior isn't
sufficient, and we've learned how to examine the activity logs that these mock objects
keep, so that we can decide whether the objects are being used properly or not.

In the next chapter, we'll look at Python's unittest package, a more structured
testing framework that is less useful for communicating with people than doctest
is, but better able to handle the complexities of large-scale testing.

www.it-ebooks.info

http://www.it-ebooks.info/

Structured Testing
with unittest

The doctest tool is flexible and extremely easy to use but, as we've noticed, it falls
somewhat short when it comes to writing disciplined tests. That's not to say that it's
impossible; we've seen that we can write well-behaved, isolated tests in doctest.
The problem is that doctest doesn't do any of that work for us. Fortunately, we have
another testing tool on hand, a tool that requires a bit more structure in our tests, and
provides a bit more support: unittest.

The unittest module was designed based on the requirements of unit testing, but
it's not actually limited to that. You can use unit test for integration and system
testing, too.

Like doctest, unittest is a part of the Python standard library; thus, if you've got
Python, you have unit test.

In this chapter, we're going to cover the following topics:

• Writing tests within the unittest framework
• Running our new tests
• Looking at the features that make unittest a good choice for larger

test suites

The basics
Before we start talking about new concepts and features, let's take a look at how to
use unittest to express the ideas that we've already learned about. That way, we'll
have something solid on which ground our new understanding.

www.it-ebooks.info

http://www.it-ebooks.info/

Structured Testing with unittest

[76]

We're going to revisit the PID class, or at least the tests for the PID class, from
Chapter 3, Unit Testing with doctest. We're going to rewrite the tests so that they
operate within the unittest framework.

Before moving on, take a moment to refer back to the final version of the pid.txt file
from Chapter 3, Unit Testing with doctest. We'll be implementing the same tests using
the unittest framework.

Create a new file called test_pid.py in the same directory as pid.py. Notice that
this is a .py file: unittest tests are pure Python source code, rather than being plain
text with source code embedded in it. This means that the tests will be less useful
from a documentary point of view, but grants other benefits in exchange.

Insert the following code into your newly created test_pid.py file:

from unittest import TestCase, main
from unittest.mock import Mock, patch

import pid

class test_pid_constructor(TestCase):
 def test_constructor_with_when_parameter(self):
 controller = pid.PID(P = 0.5, I = 0.5, D = 0.5,
 setpoint = 1, initial = 12,
 when = 43)

 self.assertEqual(controller.gains, (0.5, 0.5, 0.5))
 self.assertAlmostEqual(controller.setpoint[0], 1.0)
 self.assertEqual(len(controller.setpoint), 1)
 self.assertAlmostEqual(controller.previous_time, 43.0)
 self.assertAlmostEqual(controller.previous_error, -11.0)
 self.assertAlmostEqual(controller.integrated_error, 0)

It has been argued, sometimes with good reason, that unit tests should not contain
more than one assertion. The idea is that each unit test should test one thing and one
thing only, to further narrow down what the problem is, when the test fails. It's a
good point but not something to be overly fanatic about, in my opinion. In cases like
the preceding code, splitting each assertion out into its own test function will not
produce any more informative error messages than we get in this way; it would just
increase our overhead.

My rule of thumb is that a test function can have any number of trivial assertions,
and at most one non-trivial assertion:

 @patch('pid.time', Mock(side_effect = [1.0]))
 def test_constructor_without_when_parameter(self):

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[77]

 controller = pid.PID(P = 0.5, I = 0.5, D = 0.5,
 setpoint = 0, initial = 12)

 self.assertEqual(controller.gains, (0.5, 0.5, 0.5))
 self.assertAlmostEqual(controller.setpoint[0], 0.0)
 self.assertEqual(len(controller.setpoint), 1)
 self.assertAlmostEqual(controller.previous_time, 1.0)
 self.assertAlmostEqual(controller.previous_error, -12.0)
 self.assertAlmostEqual(controller.integrated_error, 0)

class test_pid_calculate_response(TestCase):
 def test_with_when_parameter(self):
 mock = Mock()
 mock.gains = (0.5, 0.5, 0.5)
 mock.setpoint = [0.0]
 mock.previous_time = 1.0
 mock.previous_error = -12.0
 mock.integrated_error = 0.0

 self.assertEqual(pid.PID.calculate_response(mock, 6, 2), -3)
 self.assertEqual(pid.PID.calculate_response(mock, 3, 3), -4.5)
 self.assertEqual(pid.PID.calculate_response(mock, -1.5, 4),
-0.75)
 self.assertEqual(pid.PID.calculate_response(mock, -2.25, 5),
-1.125)

 @patch('pid.time', Mock(side_effect = [2.0, 3.0, 4.0, 5.0]))
 def test_without_when_parameter(self):
 mock = Mock()
 mock.gains = (0.5, 0.5, 0.5)
 mock.setpoint = [0.0]
 mock.previous_time = 1.0
 mock.previous_error = -12.0
 mock.integrated_error = 0.0

 self.assertEqual(pid.PID.calculate_response(mock, 6), -3)
 self.assertEqual(pid.PID.calculate_response(mock, 3), -4.5)
 self.assertEqual(pid.PID.calculate_response(mock, -1.5),
-0.75)
 self.assertEqual(pid.PID.calculate_response(mock, -2.25),
-1.125)

www.it-ebooks.info

http://www.it-ebooks.info/

Structured Testing with unittest

[78]

Now, run the tests by typing the following on the command line:

python3 -m unittest discover

You should see output similar to this:

So, what did we do there? There are several things to notice:

• First, all of the tests are their own methods of classes that inherit from
unittest.TestCase.

• The tests are named test_<something>, where <something> is a description
to help you (and others who share the code) remember what the test is actually
checking. This matters because unittest (and several other testing tools) use
the name to differentiate tests from non-test methods. As a rule of thumb, your
test method names and test module filenames should start with test.

• Because each test is a method, each test naturally runs in its own variable
scope. Right here, we gain a big advantage from keeping the tests isolated.

• We inherited a bunch of assert<Something> methods from TestCase. These
give us more flexible ways of checking whether values match, and provide
more useful error reports, than Python's basic assert statement.

• We used unittest.mock.patch as a method decorator. In Chapter 4,
Decoupling Units with unittest.mock, we used it as a context manager. Either
way, it does the same thing: it replaces an object with a mock object, and then
puts the original back. When used as a decorator, the replacement happens
before the method runs, and the original is put back after the method is
complete. That's exactly what we need when our test is a method, so we'll
be doing it in this way quite a lot.

• We didn't patch over time.time, we patched over pid.time. This is
because we're not reimporting the pid module for each test here. The pid
module contains from time import time, which means that, when it is first
loaded, the time function is referenced directly into the pid module's scope.
From then on, changing time.time doesn't have any effect on pid.time,
unless we change it and then reimport the pid module. Instead of going to
all that trouble, we just patched pid.time directly.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[79]

• We didn't tell unittest which tests to run. Instead, we told it to discover
them and it found the tests on its own and ran them automatically. This often
works well and saves effort. We'll be looking at a more elaborate tool for test
discovery and execution in Chapter 6, Running Your Tests with Nose.

• The unittest module prints out one dot for each successful test. It will give
you more information for tests that fail, or raise an unexpected exception.

The actual tests we performed are the same ones that were written in doctest.
So far, all we're seeing is a different way of expressing them.

Each test method embodies a single test of a single unit. This gives us a convenient
way to structure our tests, grouping together related tests into the same class so that
they're easier to find. You might have noticed that we used two test classes in the
example. This was for organizational purposes in this case, although there can also
be good practical reasons to separate your tests into multiple classes. We'll talk about
that soon.

Putting each test into its own method means that each test executes in an isolated
namespace, which makes it easier to keep unittest-style tests from interfering with
each other, relative to doctest-style tests. This also means that unittest knows
how many unit tests are in your test file, instead of simply knowing how many
expressions there are (you might have noticed that doctest counts each >>> line as
a separate test). Finally, putting each test in its own method means that each test has
a name, which can be a valuable feature. When you run unittest, it will include the
names of any failing tests in the error report.

Tests in unittest don't directly care about anything that isn't part of a call to one
of the TestCase assert methods. This means that we don't have to be bothered
about the return values of any functions we call or the results of any expressions we
use, unless they're important to the test. This also means that we need to remember
to write an assert describing every aspect of the test that we want to have checked.
We'll go through the various assertion methods of TestCase shortly.

Assertions
Assertions are the mechanism we use to tell unittest what the important outcomes
of the test are. By using appropriate assertions, we can tell unittest exactly what to
expect from each test.

The assertTrue method
When we call self.assertTrue(expression), we're telling unittest that the
expression must be true in order for the test to be a success.

www.it-ebooks.info

http://www.it-ebooks.info/

Structured Testing with unittest

[80]

This is a very flexible assertion, since you can check for nearly anything by writing
the appropriate Boolean expression. It's also one of the last assertions you should
consider using, because it doesn't tell unittest anything about the kind of
comparison you're making, which means that unittest can't tell you clearly
what's gone wrong if the test fails.

For example, consider the following test code containing two tests that are
guaranteed to fail:

from unittest import TestCase

class two_failing_tests(TestCase):
 def test_one_plus_one_equals_one_is_true(self):
 self.assertTrue(1 == 1 + 1)

 def test_one_plus_one_equals_one(self):
 self.assertEqual(1, 1 + 1)

It might seem that the two tests are interchangeable, since they both test the same
thing. Certainly they'll both fail (or, in the unlikely event that one equals two, they'll
both pass), so why prefer one over the other?

Run the tests and see what happens (and also notice that the tests were not executed
in the same order as we wrote them; the tests are totally independent of each other,
so that's okay, right?).

Both the tests fail, as expected, but the test that uses assertEqual tells us:

AssertionError: 1 != 2

The other one says:

AssertionError: False is not true

It's pretty clear which of these outputs is more useful in this situation. The
assertTrue test was able to correctly determine that the test should fail, but it didn't
know enough to report any useful information about why it failed. The assertEqual
test, on the other hand, knew first of all that it was checking whether the two
expressions were equal, and second it knew how to present the results so that they
would be most useful: by evaluating each of the expressions that it was comparing
and placing a != symbol between the results. It tells us both which expectation failed,
and what the relevant expressions evaluate to.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[81]

The assertFalse method
The assertFalse method will succeed when the assertTrue method will fail, and
vice versa. It has the same limits in terms of producing useful output that assertTrue
has, and the same flexibility in terms of being able to test nearly any condition.

The assertEqual method
As mentioned in the assertTrue discussion, the assertEqual assertion checks
whether its two parameters are in fact equal, and reports a failure if they are not,
along with the actual values of the parameters.

The assertNotEqual method
The assertNotEqual assertion fails whenever the assertEqual assertion would
have succeeded, and vice versa. When it reports a failure, its output indicates that
the values of the two expressions are equal, and provides you with those values.

The assertAlmostEqual method
As we've seen before, comparing floating point numbers can be troublesome. In
particular, checking whether two floating point numbers are equal is problematic,
because things that you might expect to be equal—things that, mathematically, are
equal—may still end up differing down among the least significant bits. Floating
point numbers only compare equal when every bit is the same.

To address this problem, unittest provides assertAlmostEqual, which checks
whether the two floating point values are almost the same; a small amount of
difference between them is tolerated.

Let's look at this problem in action. If you take the square root of seven, and then
square it, the result should be seven. Here's a pair of tests that check this fact:

from unittest import TestCase

class floating_point_problems(TestCase):
 def test_square_root_of_seven_squared_incorrectly(self):
 self.assertEqual((7.0 ** 0.5) ** 2.0, 7.0)

 def test_square_root_of_seven_squared(self):
 self.assertAlmostEqual((7.0 ** 0.5) ** 2.0, 7.0)

www.it-ebooks.info

http://www.it-ebooks.info/

Structured Testing with unittest

[82]

The test_square_root_of_seven_squared_incorrectly method checks that
2

2 17 7 7
2

= = , which is true in reality. In the more specialized number system available to
computers, though, taking the square root of 7 and then squaring it doesn't quite get us
back to 7, so this test will fail. We will look more closely at this in a moment.

The test_square_root_of_seven_squared method checks
2

2 17 7 7
2

= ≈ , which
even the computer will find to be true, so this test should pass.

Unfortunately, floating point numbers (the representation of real numbers used by
computers) are not precise, because the majority of numbers on the real number line
cannot be represented with a finite, non-repeating sequence of digits, much less than
a mere 64 bits. Consequently, what you get back from evaluating the mathematical
expression in the previous example is not quite seven. It's good enough for
government work though—or practically any other sort of work as well—so we
don't want our test to quibble over that tiny difference. Because of this, we should
habitually use assertAlmostEqual and assertNotAlmostEqual when we're
comparing floating point numbers with equality.

This problem doesn't generally carry over into other
comparison operators. Checking whether one floating point
number is less than the other, for example, is very unlikely
to produce the wrong result due to insignificant errors. It's
only in cases of equality that this problem bites us.

The assertNotAlmostEqual method
The assertNotAlmostEqual assertion fails whenever the assertAlmostEqual
assertion would have succeeded, and vice versa. When it reports a failure, its output
indicates that the values of the two expressions are nearly equal, and provides you
with those values.

The assertIs and assertIsNot methods
The assertIs and assertIsNot methods have the same relationship with Python's
is operator that assertEqual and assertNotEqual have to Python's == operator.
What this means is that they check whether the two operands are (or are not) exactly
the same object.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[83]

The assertIsNone and assertIsNotNone
methods
The assertIsNone and assertIsNotNone methods are like assertIs and
assertIsNot, except that they accept only one parameter that they always compare
to None, rather than accepting two parameters and comparing them to each other.

The assertIn and assertNotIn methods
The assertIn method is used for checking container objects such as dictionaries,
tuples, lists, and sets. If the first parameter is contained in the second, the assertion
passes. If not, the assertion fails. The assertNotIn method performs the inverse check.

The assertIsInstance and assertNotIsInstance
methods
The assertIsInstance method checks whether the object passed as the first
parameter is an instance of the class passed as the second parameter. The
assertNotIsInstance method performs the opposite check, ensuring that
the object is not an instance of the class.

The assertRaises method
As always, we need to make sure that our units correctly signal errors. Doing the
right thing when they receive good inputs is only half the job; they need to do
something reasonable when they receive bad inputs, as well.

The assertRaises method checks whether a callable raises a specified exception
when passed a specified set of parameters.

A callable is a function, a method, a class, or an object of
any arbitrary type that has a __call__ method.

This assertion only works with callables, which means that you don't have a way
of checking whether other sorts of expressions raise an expected exception. If that
doesn't fit the needs of your test, it's possible to construct your own test using the
fail method, described below.

To use assertRaises, first pass the expected exception to it, then the callable, and
then the parameters that should be passed to the callable when it's invoked.

www.it-ebooks.info

http://www.it-ebooks.info/

Structured Testing with unittest

[84]

Here's an example test using assertRaises. This test ought to fail, because the
callable won't raise the expected exception. '8ca2' is a perfectly acceptable input
to int, when you're also passing base = 16 to it. Notice that assertRaises will
accept any number of positional or keyword arguments, and pass them on to the
callable on invocation:

from unittest import TestCase

class silly_int_test(TestCase):
 def test_int_from_string(self):
 self.assertRaises(ValueError, int, '8ca2', base = 16)

When we run this test, it fails (as we knew it would) because int didn't raise the
exception we told assertRaises to expect. The test fails and reports this as follows:

AssertionError: ValueError not raised by int

If an exception is raised, but it's not the one you told unittest to expect, then
unittest considers that as an error. An error is different from a failure. A failure
means that one of your tests has detected a problem in the unit being tested. An error
means that there's a problem with the test itself.

The fail method
When all else fails, you can fall back on fail. When the code in your test calls fail,
the test fails.

What good does that do? When none of the assert methods do what you need, you
can instead write your checks in such a way that fail will be called if the test does
not pass. This allows you to use the full expressiveness of Python to describe checks
for your expectations.

Let's take a look at an example. This time, we're going to test on a less-than
operation, which isn't one of the operations directly supported by an assert
method. Using fail, it's easy to implement the test anyhow:

from unittest import TestCase

class test_with_fail(TestCase):
 def test_less_than(self):
 if not (2.3 < 5.6):
 self.fail('2.3 is not less than 5.6, but it should be')

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[85]

If a particular comparison gets used repeatedly in your
tests, you can write your own assert function for that
comparison, using fail to report errors just as we did
in the preceding example.

A couple of things to notice here. First of all, take note of the not in the if statement.
Since we want to run fail if the test should not pass, but we're used to describing the
circumstances when the test should succeed, a good way to write the test is to write
the success condition, and then invert it with not. That way we can continue thinking
in the way we're used to when we use fail. The second thing to note is that you can
pass a message to fail when you call it; it will be printed out in unittest report of
failed tests. If you choose your message carefully, it can be a big help.

Make sure you get it
Take a look at the following doctest. Can you work out how the equivalent
unittest would look like?

>>> try:
... int('123')
... except ValueError:
... pass
... else:
... print('Expected exception was not raised')

That doctest code tries to convert a string into an integer; if this conversion does not
raise a ValueError, it reports an error. In unittest, that looks like this:

class test_exceptions(TestCase):
 def test_ValueError(self):
 self.assertRaises(ValueError, int, '123')

How do you check whether two floating point numbers are equal in unittest? You
should use the assertAlmostEqual method, so as not to get tripped by the floating
point imprecision.

When would you choose to use assertTrue? How about fail? You would use
assertTrue if none of the more specialized assertions suit your needs. You would
use fail if you need maximum control when a test succeeds or fails.

Look back at some of the tests we wrote in the previous chapters, and translate
them from doctest into unittest. Given what you already know of unittest, you
should be able to translate any of the tests.

www.it-ebooks.info

http://www.it-ebooks.info/

Structured Testing with unittest

[86]

While you're doing this, think about the relative merits of unittest and doctest
for each of the tests that you translate. The two systems have different strengths, so
it makes sense that each will be the more appropriate choice for different situations.
When is doctest the better choice, and when is unittest?

Test fixtures
The unittest has an important and highly useful capability that doctest lacks.
You can tell unittest how to create a standardized environment for your unit tests
to run inside, and how to clean up that environment when it's done. This ability to
create and later destroy a standardized test environment is a test fixture. While test
fixtures don't actually make any tests possible that were impossible before, they can
certainly make them shorter and less repetitive.

Example – testing database-backed units
Many programs need to access a database for their operation, which means that
many of the units these programs are made of also access a database. The point
is that the purpose of a database is to store information and make it accessible in
other, arbitrary places; in other words, databases exist to break the isolation of units.
The same problem applies to other information stores as well: for example, files in
permanent storage.

How do we deal with that? After all, just leaving the units that interact with the
database untested is no solution. We need to create an environment where the
database connection works as usual, but where any changes that are made do not
last. There are a few different ways in which we can do this but, no matter what the
details are, we need to set up the special database connection before each test that
uses it, and we need to destroy any changes after each such test.

The unittest helps us do this by providing test fixtures via the setUp and tearDown
methods of the TestCase class. These methods exist for us to override, with the
default versions doing nothing.

Here's some database-using code (let's say it exists in a file called employees.py), for
which we're going to write tests:

class Employees:
 def __init__(self, connection):
 self.connection = connection

 def add_employee(self, first, last, date_of_employment):
 cursor = self.connection.cursor()
 cursor.execute('''insert into employees

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[87]

 (first, last, date_of_employment)
 values
 (:first, :last, :date_of_employment)''',
 locals())
 self.connection.commit()

 return cursor.lastrowid

 def find_employees_by_name(self, first, last):
 cursor = self.connection.cursor()
 cursor.execute('''select * from employees
 where
 first like :first
 and
 last like :last''',
 locals())

 for row in cursor:
 yield row

 def find_employees_by_date(self, date):
 cursor = self.connection.cursor()
 cursor.execute('''select * from employees
 where date_of_employment = :date''',
 locals())

 for row in cursor:
 yield row

The preceding code uses the sqlite3 database that ships with
Python. Since the sqlite3 interface is compatible with
Python's DB-API 2.0, any database backend you find yourself
using will have a similar interface to what you see here.

We'll start off by importing the needed modules and introducing our
TestCase subclass:

from unittest import TestCase
from sqlite3 import connect, PARSE_DECLTYPES
from datetime import date
from employees import Employees

class test_employees(TestCase):

www.it-ebooks.info

http://www.it-ebooks.info/

Structured Testing with unittest

[88]

We need a setUp method to create the environment that our tests depend on. In this
case, that means creating a new database connection to an in-memory-only database,
and populating that database with the needed tables and rows:

 def setUp(self):
 connection = connect(':memory:',
 detect_types = PARSE_DECLTYPES)
 cursor = connection.cursor()

 cursor.execute('''create table employees
 (first text,
 last text,
 date_of_employment date)''')

 cursor.execute('''insert into employees
 (first, last, date_of_employment)
 values
 ("Test1", "Employee", :date)''',
 {'date': date(year = 2003,
 month = 7,
 day = 12)})

 cursor.execute('''insert into employees
 (first, last, date_of_employment)
 values
 ("Test2", "Employee", :date)''',
 {'date': date(year = 2001,
 month = 3,
 day = 18)})

 self.connection = connection

We need a tearDown method to undo whatever the setUp method did, so that each
test can run in an untouched version of the environment. Since the database is only
in memory, all we have to do is close the connection, and it goes away. The tearDown
method may end up being much more complicated in other scenarios:

 def tearDown(self):
 self.connection.close()

Finally, we need the tests themselves:

 def test_add_employee(self):
 to_test = Employees(self.connection)
 to_test.add_employee('Test1', 'Employee', date.today())

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[89]

 cursor = self.connection.cursor()
 cursor.execute('''select * from employees
 order by date_of_employment''')

 self.assertEqual(tuple(cursor),
 (('Test2', 'Employee', date(year = 2001,
 month = 3,
 day = 18)),
 ('Test1', 'Employee', date(year = 2003,
 month = 7,
 day = 12)),
 ('Test1', 'Employee', date.today())))

 def test_find_employees_by_name(self):
 to_test = Employees(self.connection)

 found = tuple(to_test.find_employees_by_name('Test1',
'Employee'))
 expected = (('Test1', 'Employee', date(year = 2003,
 month = 7,
 day = 12)),)

 self.assertEqual(found, expected)

 def test_find_employee_by_date(self):
 to_test = Employees(self.connection)

 target = date(year = 2001, month = 3, day = 18)
 found = tuple(to_test.find_employees_by_date(target))

 expected = (('Test2', 'Employee', target),)

 self.assertEqual(found, expected)

We just used a setUp method in our TestCase, along with a matching tearDown
method. Between them, these methods made sure that the environment in which
the tests were executed was the one they needed (that was setUp's job) and that
the environment of each test was cleaned up after the test was run, so that the tests
didn't interfere with each other (this was the job of tearDown). The unittest made
sure that setUp was run once before each test method, and that tearDown was run
once after each test method.

www.it-ebooks.info

http://www.it-ebooks.info/

Structured Testing with unittest

[90]

Because a test fixture—as defined by setUp and tearDown—gets wrapped around
every test in a TestCase class, the setUp and tearDown methods for the TestCase
classes that contain too many tests can get very complicated and waste a lot of time
dealing with details that are unnecessary for some of the tests. You can avoid this
problem by simply grouping together those tests that require specific aspects of the
environment into their own TestCase classes. Give each TestCase an appropriate
setUp and tearDown, only dealing with those aspects of the environment that are
necessary for the tests it contains. You can have as many TestCase classes as you
want, so there's no need to skimp on them when you're deciding which tests to
group together.

Notice how simple the tearDown method we used was. That's usually a good sign:
when the changes that need to be undone in the tearDown method are simple to
describe, it often means that you can be sure of doing this perfectly. Since any
imperfection of the tearDown method makes it possible for the tests to leave behind
stray data that might alter how other tests behave, getting it right is important. In
this case, all of our changes were confined inside the database, so getting rid of the
database does the trick.

We could have used a mock object for the database connection, instead. There's
nothing wrong with that approach, except that, in this case, it would have been more
effort for us. Sometimes mock objects are the perfect tool for the job, sometimes test
fixtures save effort; sometimes you need both to get the job done easily.

Summary
This chapter contained a lot of information about how to use the unittest
framework to write your tests.

Specifically, we covered how to use unittest to express concepts you were already
familiar with from doctest; differences and similarities between unittest and
doctest; how to use test fixtures to embed your tests in a controlled and temporary
environment; and how to use the unittest.mock patch to decorate test methods to
further control the environment the test executes inside.

In the next chapter, we'll look at a tool called Nose that is capable of finding and
running doctest tests, unittest tests, and ad hoc tests all in the same test run
and of providing you with a unified test report.

www.it-ebooks.info

http://www.it-ebooks.info/

Running Your Tests
with Nose

In the last chapter, we saw the unittest discover tool find our tests without being told
explicitly where they were. That was pretty handy, compared to the way doctest had
been making us tell it exactly where to find the tests it should run, particularly, when
we're talking about a large source tree that has tests in many locations.

Nose is a tool that expands on this idea. It's capable of finding unittest tests,
doctest tests, and ad hoc tests throughout a source tree, and running them all. It
then presents you with a unified report of test successes and failures. In other words,
Nose lets you pick the right testing tool for any given test, integrating them simply
and conveniently.

Nose also provides a few new testing features, such as module-level fixtures and
some new assert functions.

Installing Nose
Nose is not a part of the Python standard library, which means that you'll need to
install it yourself. You can install Nose with a single command:

python3 -m pip install --user nose

www.it-ebooks.info

http://www.it-ebooks.info/

Running Your Tests with Nose

[92]

If the command reports that no module named pip was found,
you need to run the following command to install the pip module:
python3 -m ensurepip --user

The ensurepip module is part of the standard library as of
Python 3.4, so you can count on it being available. You probably
won't need this, though, because, even though pip isn't part of the
standard library, it is bundled with Python releases.

The --user command-line switch in the previous command tells the tool to install
into your personal Python package folder. If you leave that out of the command, it
will try to install Nose for all users.

That's it. Nose is ready to go.

Organizing tests
All right, we've got Nose installed, so what's it good for? Nose looks through a
directory structure, finds the test files, sorts out the tests that they contain, runs the
tests, and reports the results back to you. That's a lot of work that you don't have to
do each time you want to run your tests—which should be often.

Nose recognizes the test files based on their names. Any file or directory whose
name contains test or Test either at the beginning or following any of the characters
_ (underscore), . (dot), or – (dash) is recognized as a place where the tests might be
found. So are Python source files and package directories. Any file that might contain
tests is checked for unittest TestCases as well as any functions whose names
indicate that they're tests. Nose can find and execute the doctest tests, as well, that
are either embedded in docstrings or written in separate test files. By default, it won't
look for the doctest tests unless we tell it to. We'll see how to change the default
settings shortly.

Since Nose is so willing to go looking for our tests, we have a lot of freedom with
respect to how we can organize them. It often turns out to be a good idea to separate
all of the tests into their own directory, or larger projects into a whole tree of
directories. A big project can end up having many thousands of tests, so organizing
them for easy navigation is a big benefit. If doctests are being used as documentation
as well as testing, it's probably a good idea to store them in yet another separate
directory with a name that communicates that they are documentary. For a
moderately-sized project, this recommended structure might look like the following:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[93]

Project

package
__init__.py
module1.py
module2.py
...

tests
test_module1.py
test_module2.py
...

docs_with_tests
module1.txt
module2.txt
...

This structure is only a recommendation... it's for your benefit, not for Nose. If you
feel that a different structure will make things easier for you, go ahead and use it.

An example of organizing tests
We're going to take some of our tests from the previous chapters and organize them
into a tree of directories. Then, we're going to use Nose to run them all.

The first step is to create a directory that will hold our code and tests. You can call it
whatever you like, but I'll refer to is as project here.

Copy the pid.py, avl_tree.py, and employees.py files from the previous chapters
into the project directory. Also place test.py from Chapter 2, Working with doctest,
here, but rename it to inline_doctest.py. We want it to be treated as a source file,
not as a test file, so you can see how Nose handles source files with doctests in their
docstrings. Modules and packages placed in the project directory will be available
for tests no matter where the test is placed in the tree.

Create a subdirectory of project called test_chapter2, and place the AVL.txt and
test.txt files from Chapter 2, Working with doctest, into it.

Create a subdirectory of project called test_chapter3, and place PID.txt into it.

Create a subdirectory of project called test_chapter5, and place all of the test_*
modules from Chapter 5, Structured Testing with unittest, into it.

www.it-ebooks.info

http://www.it-ebooks.info/

Running Your Tests with Nose

[94]

Now, we're ready to run our tests using the following code:

python3 -m nose --with-doctest --doctest-extension=txt -v

You can leave off the -v if you want. It just tells Nose
to provide a more detailed report.

All of the tests should run. We expect to see a few failures, since some of the tests
from the previous chapters were intended to fail, for illustrative purposes. There's
one failure, as shown in the following screenshot, though, that we need to consider:

The first part of this error report can be safely ignored: it just means that the whole
doctest file is being treated as a failing test by Nose. The useful information
comes in the second part of the report. It tells us that where we were expecting to
get a previous time of 1.0, instead we're getting a very large number (this will be
different, and larger, when you run the test for yourself, as it represents the time
in seconds since a point several decades in the past). What's going on? Didn't we
replace time.time for that test with a mock? Let's take a look at the relevant part
of pid.txt:

>>> import time
>>> real_time = time.time
>>> time.time = (float(x) for x in range(1, 1000)).__next__
>>> import pid
>>> controller = pid.PID(P = 0.5, I = 0.5, D = 0.5, setpoint = 0,
... initial = 12)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[95]

>>> controller.gains
(0.5, 0.5, 0.5)
>>> controller.setpoint
[0.0]
>>> controller.previous_time
1.0

We mocked time.time, sure enough (although it would be better to use the
unittest.mock patch function). How is it that from time import time in pid.py
is getting the wrong (which is to say, real) time function? What if pid.py had already
been imported before this test ran? Then from time import time would already
have been run before our mock was put in place, and it would never know about
the mock. So, was pid.py imported by some thing else, before pid.txt imported
it? As it happens, it was: Nose itself imported it, when it was scanning for tests to
be executed. If we're using Nose, we can't count on our import statements actually
being the first to import any given module. We can fix the problem easily, though,
by using patch to replace the time function where our test code finds it:

>>> from unittest.mock import Mock, patch
>>> import pid
>>> with patch('pid.time', Mock(side_effect = [1.0, 2.0, 3.0])):
... controller = pid.PID(P = 0.5, I = 0.5, D = 0.5, setpoint = 0,
... initial = 12)
>>> controller.gains
(0.5, 0.5, 0.5)
>>> controller.setpoint
[0.0]
>>> controller.previous_time
1.0

Note that we're only looking at the first test in the file here. There
is another test that would be better written in the same way,
although it does pass. Can you spot that test and improve it?

Don't get confused: we switched to using unittest.mock for this test because it's a
better tool for mocking objects, not because it solves the problem. The real solution
is that we switched from replacing time.time to replacing pid.time. Nothing in
pid.py refers to time.time, except for the import line. Every other place in the code
that references time looks it up in the module's own global scope. That means it's
pid.time that we really need to mock, and it always was. The fact that pid.time
is another name for time.time is irrelevant; we should mock the object where it's
found, not where it came from.

www.it-ebooks.info

http://www.it-ebooks.info/

Running Your Tests with Nose

[96]

Now, when we run the tests again, the only failures are the expected ones. Your
summary report (that we get because we passed -v to Nose on the command line)
should look like this:

We just saw how hidden assumptions can break tests, just as they can break the
code being tested. Until now, we've been assuming that, when one of our tests
imports a module, that's the first time the module has been imported. Some of our
tests relied on this assumption to replace library objects with mocks. Now that we're
dealing with running many tests aggregated together, with no guaranteed order
of execution, this assumption isn't reliable. On top of that, the module that we had
trouble with actually had to be imported to search it for tests, before any of our tests
were run. A quick switch of the affected tests to use a better approach, and we were
good to go.

So, we just ran all of these tests with a single command, and we can spread our
tests across as many directories, source files, and documents as we need to keep
everything organized. That's pretty nice. We're getting to the point where testing is
useful in the real world.

We can store our tests in a separate and well-organized directory structure, and run
them all with a single, quick, and simple command. We can also easily run a subset
of our tests by passing the filenames, module names, or directories containing the
tests we want to run as command-line parameters.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[97]

Simplifying the Nose command line
The python3 -m nose command that we used earlier was not hard to understand,
but it's longer than we'd like if we're going to be typing it all the time. Instead of the
following command:

python3 -m nose --with-doctest --doctest-extension=txt -v

We'd really prefer just the following command:

python3 -m nose

or, even more simply:

nosetests

Fortunately, it's simple to tell Nose that we want it to use different defaults for the
values of these command-line switches. To do this, just create a configuration file
called nose.cfg or .noserc (either name will work) in your home directory, and
place the following inside it:

[nosetests]
with-doctest=1
doctest-extension=txtIf you're a Windows user, you might not be
sure what the phrase "home directory" is supposed to denote in
this context. As far as Python is concerned, your home directory is
defined by your environment variables. If HOME is defined, that's
your home directory. Otherwise, if USERPROFILE is defined (it usually
is, pointing at C:\Documents and Settings\USERNAME) then that is
considered to be your home directory. Otherwise, the directory
described by HOMEDRIVE and HOMEPATH (often C:\)is your home directory.

Setting the options in the configuration file takes care of all the extraneous command-
line arguments. From now on, whenever you run Nose, it will assume these options,
unless you tell it otherwise. You don't have to type them on the command line
any more. You can use the same trick for any option that Nose can accept on the
command line.

For the second refinement, Nose installs a script called nosetests when it's installed.
Typing nosetests is exactly the same as typing python3 -m nose, except that you
might have to add the directory that contains nosetests to your PATH environment
variable before it will work. We'll continue using python3 -m nose in the examples.

www.it-ebooks.info

http://www.it-ebooks.info/

Running Your Tests with Nose

[98]

Customizing Nose's test search
We've said before that Nose uses names of directories, modules, and functions to
inform its search for tests. Directories and modules whose names start with test or
Test, or contain a _, ., or – followed by test or Test will be included in the search,
in addition to any other places that Nose decides it should search. This is by default,
but it's not actually the whole story.

If you know about regular expressions, you can customize the pattern that Nose uses
to look for tests. You can do this by passing the --include=REGEX command line
option, or by putting include=REGEX in your nose.cfg or .noserc.

For example, run the following command:

python3 -m nose --include="(?:^[Dd]oc)"

Now Nose will, in addition to looking for names using the word test, also look for
names that start with doc or Doc. This means that you can call the directory containing
your doctest files as docs, Documentation, doctests, and so on, and Nose will still
find and run those tests. If you use this option often, you'll almost certainly want to
add it to your configuration file, as described under the previous heading.

The full syntax and use of regular expressions is a subject
itself, and has been the topic of many books; but you can find
everything that you need to do in the Python documentation
at https://docs.python.org/3/library/re.html.

Check your understanding
By running python3 -m nose --processes=4, Nose can be made to launch
four testing processes simultaneously, which can be a big gain, if you're running
the tests on a quad-core system. How would you make Nose always launch four
testing processes, without being told on the command line? The answer is just put
processes=4 in your Nose configuration file.

If some of your tests were stored in a directory called specs, how would you tell Nose
that it should search that directory for tests? You need to add --include="specs" to
the Nose command line.

Which of the following will be recognized by Nose as possibly containing the
UnitTests, unit_tests, TestFiles, test_files, and doctests tests by default?
The answer is that unit_tests, TestFiles, and test_files will be recognized
by Nose's default configuration.

www.it-ebooks.info

https://docs.python.org/3/library/re.html
http://www.it-ebooks.info/

Chapter 6

[99]

Practicing Nose
Write some doctest and unittest tests for the following specification, and create a
directory tree to contain them and the code that they describe. Write the code using
the test-driven methodology, and use Nose to run the tests:

The graph module contains two classes: Node and Arc. An Arc is a
connection between two Nodes. Each Node is an intersection of an
arbitrary number of Arcs.

Arc objects contain references to the Node objects that the Arc
connects, a textual identification label, and a "cost" or "weight",
which is a real number.

Node objects contain references to all of the connected Arcs, and a
textual identification label.

Node objects have a find_cycle(self, length) method which returns a
list of Arcs making up the lowest cost complete path from the Node
back to itself, if such a path exists with a length greater than 2
Arcs and less than or equal to the length parameter.

Node and Arc objects have a __repr__(self) method which returns a
representation involving the identification labels assigned to the
objects.

Nose and doctest tests
Nose doesn't just support doctest, it actually enhances it. When you're using Nose,
you can write test fixtures for your doctest files.

If you pass --doctest-fixtures=_fixture on the command line, Nose will go
looking for a fixture file whenever it finds a doctest file. The name of the fixture file
is based on the name of the doctest file, and is calculated by appending the doctest
fixture suffix (in other words, the value of doctest-fixtures) to the main part of
the doctest filename, and then adding .py to the end. For example, if Nose found a
doctest file called PID.txt, and had been told to find doctest-fixtures=_fixture,
it would try to find the test fixture in a file called PID_fixture.py.

The test fixture file for a doctest is very simple: it's just a Python module that
contains a setup() or setUp() function, and a teardown() or tearDown() function.
The setup function is executed before the doctest file, and the teardown function is
executed after the doctest file.

www.it-ebooks.info

http://www.it-ebooks.info/

Running Your Tests with Nose

[100]

The fixture operates in a different namespace from the doctest file, so none of the
variables that get defined in the fixture module are visible in the actual tests. If you
want to share the variables between the fixture and the test, you'll probably want to
do it by making a simple little module to hold the variables, which you can import
into both the fixture and the test.

Nose and unittest tests
Nose enhances unittest by providing test fixtures at the package and module
levels. The package setup function is run before any of the tests in any of the
modules in a package, while the teardown function is run after all of the tests in all
of the modules in the package have completed. Similarly, the module setup function
is run before any of the tests in a given module have been executed, and the module
teardown function is executed after all of the tests in the module have been executed.

Module fixture practice
We're going to build a test module with a module-level fixture. In the fixture, we'll
replace the datetime.date.today function, which normally returns an object
representing the current date. We want it to return a specific value, so that our tests
can know what to expect. Perform the following steps:

1. Create a directory called tests.
2. Within the tests directory, create a file called module_fixture_tests.py

containing the following code:
from unittest import TestCase
from unittest.mock import patch, Mock
from datetime import date

fake_date = Mock()
fake_date.today = Mock(return_value = date(year = 2014,
 month = 6,
 day = 12))

patch_date = patch('module_fixture_tests.date', fake_date)

def setup():
 patch_date.start()

def teardown():
 patch_date.stop()

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[101]

class first_tests(TestCase):
 def test_year(self):
 self.assertEqual(date.today().year, 2014)

 def test_month(self):
 self.assertEqual(date.today().month, 6)

 def test_day(self):
 self.assertEqual(date.today().day, 12)

class second_tests(TestCase):
 def test_isoformat(self):
 self.assertEqual(date.today().isoformat(), '2014-06-12')

3. Notice that there are two TestCase classes in this module. Using pure
unittest, we'd have to duplicate the fixture code in each of these classes.
Nose lets us write it once and use it in both the places.

4. Go ahead and run the tests by moving to the directory that contains the tests
directory and type python -m nose.

5. Nose will recognize tests as a directory that might contain tests (because of
the directory name), find the module_fixtures_tests.py file, run the setup
function, run all of the tests, and then run the teardown function. There won't
be much to see, though, aside from a simple report of how many tests passed.

You might have noticed yet another way of using unittest.mock.patch in the
previous example. In addition to being usable as a decorator or a context manager,
you can also use the patch function as a constructor, and call start and stop on
the object it returns. Of all the ways you can use the patch function, this is the one
to avoid in most cases, because this requires you to be careful to remember to call
the stop function. The preceding code would have been better using patch_date as
a class decorator on each of the TestCase classes, except that the point here was to
demonstrate what module-level fixtures look like.

Normally, rather than creating mock objects, setup and teardown will do things
such as handle, create, and destroy temporary files, or so on.

We can save ourselves some time and effort by using a second layer of test fixtures that
wrap around the entire test modules instead of single test methods. By doing this, we
save ourselves from duplicating the fixture code inside every test class in the module;
but this comes with a cost. The setup and teardown functions aren't run before and
after each test, as normal test fixtures are. Instead, all of the tests in the module happen
between a single module-level setup/teardown pair, which means that, if a test does
something that affects the environment created by the setup function, it won't be
undone before the next test runs. In other words, the isolation of tests is not guaranteed
with respect to the environment created by a module-level fixture.

www.it-ebooks.info

http://www.it-ebooks.info/

Running Your Tests with Nose

[102]

Package fixture practice
Now, we're going to create a fixture that wraps around all the test modules in an
entire package. Perform the following steps:

1. Add a new file called __init__.py to the tests directory that we created
in the last practice section. (That's two underscores, the word init and two
more underscores). The presence of this file tells Python that the directory
is a package.

2. In module_fixture_tests.py, change:
patch_date = patch('module_fixture_tests.date', fake_date)

with the following:

patch_date = patch('tests.module_fixture_tests.date', fake_date)

3. Place the following code inside __init__.py in the tests directory:
from os import unlink

def setup():
 with open('test.tmp', 'w') as f:
 f.write('This is a test file.')

def teardown():
 unlink('test.tmp')

It's fairly common that the __init__.py files are completely
empty, but they're the canonical source for the package object;
so that's where Nose looks for a package-level fixture.

4. Add a new file called package_fixtures_tests.py to the tests directory,
with the following contents:
from unittest import TestCase
from glob import glob

class check_file_exists(TestCase):
 def test_glob(self):
 self.assertIn('test.tmp', glob('*.tmp'))

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[103]

5. Go ahead and run the tests again. You won't see much output, but that just
means the tests passed. Notice that the test_glob function can't succeed
unless test.tmp exists. Since this file is created in the package setup and
destroyed in the package teardown (and it no longer exists), we know that
the setup was run before the test, and teardown was run after the test. If we
added a test to module_fixture_tests.py that depended on test.tmp,
they too would pass, because the setup function is called before any test in
the package, and teardown is called after every test in the package has run.

The glob module provides the ability to expand command-line -
style wildcards into a list of filenames. The glob.glob function
is one of several globbing functions available.

We worked with yet another layer of test fixture, this time wrapping around all of
the test modules in the tests directory. As you can see from looking at the code we
just wrote, the environment created by the package-level test fixture is available in
every test in every module in the package.

Like module-level test fixtures, package-level test fixtures can be a big labor-saving
shortcut, but they don't provide you with the protection against communication
between tests that real test-level fixtures do.

Why did we change 'module_fixture_tests.date' into
'tests.module_fixture_tests.date' when we added
the package-level fixture? Well, when we added __init__.
py to the tests directory, in Python's view, we changed that
directory into a Python package. As a Python package, its
name is part of the absolute name of any variable inside it,
which indirectly includes our imported date class. We have
to pass an absolute variable name to patch, so we have to start
with the containing package name.

Nose and ad hoc tests
Nose supports two new kinds of tests: standalone test functions, and non-TestCase
test classes. It finds these tests by using the same pattern matching that it uses to find
test modules. When looking through a module whose name matches the pattern, any
functions or classes whose names also match the pattern are assumed to be tests.

We're going to write a few tests that demonstrate Nose's support for test functions
and non-TestCase test classes.

www.it-ebooks.info

http://www.it-ebooks.info/

Running Your Tests with Nose

[104]

Let's create a new test file in the tests directory, called nose_specific_tests.py.
Inside the file, put the following code:

import sys
from sqlite3 import connect
from imp import reload

class grouped_tests:
 def setup(self):
 self.connection = connect(':memory:')
 cursor = self.connection.cursor()
 cursor.execute('create table test (a, b, c)')
 cursor.execute('''insert into test (a, b, c)
 values (1, 2, 3)''')
 self.connection.commit()

 def teardown(self):
 self.connection.close()

 def test_update(self):
 cursor = self.connection.cursor()
 cursor.execute('update test set b = 7 where a = 1')

 def test_select(self):
 cursor = self.connection.cursor()
 cursor.execute('select * from test limit 1')
 assert cursor.fetchone() == (1, 2, 3)

def platform_setup():
 sys.platform = 'test platform'

def platform_teardown():
 global sys
 sys = reload(sys)

def standalone_test():
 assert sys.platform == 'test platform'

standalone_test.setup = platform_setup
standalone_test.teardown = platform_teardown

Running Nose now doesn't print out very much, but the fact that the tests were run
and didn't fail tells us a lot.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[105]

The grouped_tests class contains a test fixture (the setup and teardown methods)
and two tests; but it's not a unittest TestCase class. Nose recognized it as a test
class because its name follows the same pattern that Nose looks for when it checks
module names to find test modules. It then looks through the class for a test fixture
and any test methods, and runs them appropriately.

Since the class isn't a TestCase class, the tests don't have access to any of the
unittest assert methods; Nose considers such a test to pass unless it raises an
exception. Python has an assert statement that raises an exception if its expression
is false, which is helpful for just this sort of thing. It's not as nice as assertEqual,
but it does the job in many cases.

We wrote another test in the standalone_test function. Like grouped_tests,
standalone_test is recognized as a test by Nose because its name matches the same
pattern that Nose uses to search for test modules. Nose runs standalone_test as
a test, and reports a failure if it raises an exception.

We were able to attach a test fixture to standalone_test by setting its setup and
teardown attributes to a pair of functions that we defined for that purpose. As usual,
the setup function runs before the test function and the teardown function runs after
the test function.

Summary
We learned a lot in this chapter about the Nose testing meta-framework. Specifically,
we covered how Nose finds files that contain tests, and how you can adapt the
process to fit into your organization scheme; how to run all of your tests with Nose,
whether they are doctest, unittest, or ad hoc; how Nose enhances the other
frameworks with additional support for test fixtures; and how to use Nose's support
for standalone test functions and non-TestCase test classes.

Now that we've learned about Nose and running all of our tests easily, we're ready
to tackle a complete test-driven project, which is the topic of the next chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Test-driven Development
Walk-through

In this chapter, we're not going to talk about new techniques of testing in Python,
and we're not going to spend much time talking about the philosophy of testing.
Instead, what we're going to do is a step-by-step walk-through of an actual
development process. Your humble and sadly fallible author has commemorated his
mistakes—and the ways that testing helped him fix them—while developing part
of a personal scheduling program.

In this chapter, we'll cover the following topics:

• Writing a testable specification
• Writing unit tests that drive the development process
• Writing code that complies with the specification and unit tests
• Using the testable specification and unit tests to help debug

You'll be prompted to design and build your own module as you read through this
chapter, so that you can walk through your own process as well.

Writing the specification
As usual, the process starts with a written specification. The specification is a
doctest that we learned in Chapter 2, Working with doctest, and Chapter 3, Unit Testing
with doctest, so the computer can use it to check the implementation. The specification
isn't strictly a set of unit tests, though the discipline of unit testing has been sacrificed
(for the moment) in exchange for making the document more accessible to a human
reader. That's a common trade-off, and it's fine as long as you make up for it by also
writing unit tests covering the code.

www.it-ebooks.info

http://www.it-ebooks.info/

Test-driven Development Walk-through

[108]

The goal of the project in this chapter is to make a Python package capable of
representing personal time management information.

The following code goes in a file called docs/outline.txt:

This project is a personal scheduling system intended to keep track of
a single person's schedule and activities. The system will store and
display two kinds of schedule information: activities and statuses.
Activities and statuses both support a protocol which allows them to
be checked for overlap with another object supporting the protocol.

>>> from planner.data import Activity, Status
>>> from datetime import datetime

Activities and statuses are stored in schedules, to which they can be
added and removed.

>>> from planner.data import Schedule
>>> activity = Activity('test activity',
.. datetime(year = 2014, month = 6, day = 1,
.. hour = 10, minute = 15),
.. datetime(year = 2014, month = 6, day = 1,
.. hour = 12, minute = 30))
>>> duplicate_activity = Activity('test activity',
.. datetime(year = 2014, month = 6, day = 1,
.. hour = 10, minute = 15),
.. datetime(year = 2014, month = 6, day = 1,
.. hour = 12, minute = 30))
>>> status = Status('test status',
... datetime(year = 2014, month = 7, day = 1,
... hour = 10, minute = 15),
... datetime(year = 2014, month = 7, day = 1,
... hour = 12, minute = 30))
>>> schedule = Schedule()
>>> schedule.add(activity)
>>> schedule.add(status)
>>> status in schedule
True
>>> activity in schedule
True
>>> duplicate_activity in schedule
True
>>> schedule.remove(activity)
>>> schedule.remove(status)
>>> status in schedule

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[109]

False
>>> activity in schedule
False

Activities represent tasks that the person must actively engage in,
and they are therefore mutually exclusive: no person can have two
activities that overlap the same period of time.

>>> activity1 = Activity('test activity 1',
... datetime(year = 2014, month = 6, day = 1,
... hour = 9, minute = 5),
... datetime(year = 2014, month = 6, day = 1,
... hour = 12, minute = 30))
>>> activity2 = Activity('test activity 2',
... datetime(year = 2014, month = 6, day = 1,
... hour = 10, minute = 15),
... datetime(year = 2014, month = 6, day = 1,
... hour = 13, minute = 30))
>>> schedule = Schedule()
>>> schedule.add(activity1)
>>> schedule.add(activity2)
Traceback (most recent call last):
ScheduleError: "test activity 2" overlaps with "test activity 1"

Statuses represent tasks that a person engages in passively, and so
can overlap with each other and with activities.

>>> activity1 = Activity('test activity 1',
... datetime(year = 2014, month = 6, day = 1,
... hour = 9, minute = 5),
... datetime(year = 2014, month = 6, day = 1,
... hour = 12, minute = 30))
>>> status1 = Status('test status 1',
... datetime(year = 2014, month = 6, day = 1,
... hour = 10, minute = 15),
... datetime(year = 2014, month = 6, day = 1,
... hour = 13, minute = 30))
>>> status2 = Status('test status 2',
... datetime(year = 2014, month = 6, day = 1,
... hour = 8, minute = 45),
... datetime(year = 2014, month = 6, day = 1,
... hour = 15, minute = 30))
>>> schedule = Schedule()
>>> schedule.add(activity1)

www.it-ebooks.info

http://www.it-ebooks.info/

Test-driven Development Walk-through

[110]

>>> schedule.add(status1)
>>> schedule.add(status2)
>>> activity1 in schedule
True
>>> status1 in schedule
True
>>> status2 in schedule
True

Schedules can be saved to a sqlite database, and they can be reloaded
from that stored state.

>>> from planner.persistence import file
>>> storage = File(':memory:')
>>> schedule.store(storage)
>>> newsched = Schedule.load(storage)
>>> schedule == newsched
True

This doctest will serve as a testable specification for my project, which means that
it will be the foundation stone for all of my tests and my program code that will be
built on. Let's look at each section in more detail:

This project is a personal scheduling system intended to keep track of
a single person's schedule and activities. The system will store and
display two kinds of schedule information: activities and statuses.
Activities and statuses both support a protocol which allows them to
be checked for overlap with another object supporting the protocol.

>>> from planner.data import Activity, Status
>>> from datetime import datetime

The preceding code consists of some introductory English text, and a couple of
import statements that bring in code that we need for these tests. By doing so, they
also tell us about some of the structure of the planner package. It contains a module
called data that defines Activity and Status.

Activities and statuses are stored in schedules, to which they can be
added and removed.

>>> from planner.data import Schedule
>>> activity = Activity('test activity',
.. datetime(year = 2014, month = 6, day = 1,
.. hour = 10, minute = 15),
.. datetime(year = 2014, month = 6, day = 1,

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[111]

.. hour = 12, minute = 30))
>>> duplicate_activity = Activity('test activity',
.. datetime(year = 2014, month = 6, day = 1,
.. hour = 10, minute = 15),
.. datetime(year = 2014, month = 6, day = 1,
.. hour = 12, minute = 30))
>>> status = Status('test status',
... datetime(year = 2014, month = 7, day = 1,
... hour = 10, minute = 15),
... datetime(year = 2014, month = 7, day = 1,
... hour = 12, minute = 30))
>>> schedule = Schedule()
>>> schedule.add(activity)
>>> schedule.add(status)
>>> status in schedule
True
>>> activity in schedule
True
>>> duplicate_activity in schedule
True
>>> schedule.remove(activity)
>>> schedule.remove(status)
>>> status in schedule
False
>>> activity in schedule
False

The preceding tests describe some of the desired behavior of the Schedule instances
when interacting with the Activity and Status objects. According to these tests, a
Schedule instance must accept an Activity or Status object as the parameter of its
add and remove methods; once added, the in operator must return True for an object
until it is removed. Furthermore, the two Activity instances that have the same
parameters must be treated as the same object by Schedule:

Activities represent tasks that the person must actively engage in,
and they are therefore mutually exclusive: no person can have two
activities that overlap the same period of time.

>>> activity1 = Activity('test activity 1',
... datetime(year = 2014, month = 6, day = 1,
... hour = 9, minute = 5),
... datetime(year = 2014, month = 6, day = 1,
... hour = 12, minute = 30))
>>> activity2 = Activity('test activity 2',
... datetime(year = 2014, month = 6, day = 1,

www.it-ebooks.info

http://www.it-ebooks.info/

Test-driven Development Walk-through

[112]

... hour = 10, minute = 15),

... datetime(year = 2014, month = 6, day = 1,

... hour = 13, minute = 30))
>>> schedule = Schedule()
>>> schedule.add(activity1)
>>> schedule.add(activity2)
Traceback (most recent call last):
ScheduleError: "test activity 2" overlaps with "test activity 1"

The preceding test code describes what should happen when overlapping activities
are added to a schedule. Specifically, a ScheduleError exception should be raised:

Statuses represent tasks that a person engages in passively, and so
can overlap with each other and with activities.

>>> activity1 = Activity('test activity 1',
... datetime(year = 2014, month = 6, day = 1,
... hour = 9, minute = 5),
... datetime(year = 2014, month = 6, day = 1,
... hour = 12, minute = 30))
>>> status1 = Status('test status 1',
... datetime(year = 2014, month = 6, day = 1,
... hour = 10, minute = 15),
... datetime(year = 2014, month = 6, day = 1,
... hour = 13, minute = 30))
>>> status2 = Status('test status 2',
... datetime(year = 2014, month = 6, day = 1,
... hour = 8, minute = 45),
... datetime(year = 2014, month = 6, day = 1,
... hour = 15, minute = 30))
>>> schedule = Schedule()
>>> schedule.add(activity1)
>>> schedule.add(status1)
>>> schedule.add(status2)
>>> activity1 in schedule
True
>>> status1 in schedule
True
>>> status2 in schedule
True

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[113]

The preceding test code describes what should happen when overlapping statuses
are added to a schedule: the schedule should accept them. Furthermore, if a status
and an activity overlap, they can still both be added:

Schedules can be saved to a sqlite database, and they can be reloaded
from that stored state.

>>> from planner.persistence import file
>>> storage = File(':memory:')
>>> schedule.store(storage)
>>> newsched = Schedule.load(storage)
>>> schedule == newsched
True

The preceding code describes how schedule storage should work. It also tells us
that the planner package needs to contain a persistence module that, in turn,
should contain File. It also tells us that Schedule instances should have load
and store methods, and that the == operator should return True when they
contain the same data.

Try it for yourself – what are you going to do?
It's time for you to come up with a project of your own, something you can work on
for yourself. We step through the development process:

1. Think of a project of approximately the same complexity as the one described
in this chapter. It should be a single module or a few modules in a single
package. It should also be something that interests you, which is why
I haven't given you a specific assignment here.
Imagine that the project is already done, and you need to write a description of
what you've done, along with a little bit of demonstration code. Then go ahead
and write your description and demo code in the form of a doctest file.

2. As you're writing the doctest file, watch out for places where your original
idea has to change a little bit to make the demo easier to write or work better.
When you find such cases, pay attention to them! At this stage, it's better to
change the idea a little bit and save yourself effort all through the process.

Wrapping up the specification
We've now got testable specifications for a couple of moderately-sized projects—yours
and mine. These will help us to write unit tests and code, and they'll give us a sense of
how complete each project is as a whole.

www.it-ebooks.info

http://www.it-ebooks.info/

Test-driven Development Walk-through

[114]

In addition, the process of writing code into the doctest gave us a chance to
test-drive our ideas. We've probably improved on our projects a little bit by
using them in a concrete manner, even though the project implementation is
still merely imaginary.

Once again, it's important that we have these tests written before writing the code
that they will test. By writing the tests first, we give ourselves a touchstone that we
can use in order to judge how well our code conforms to what we intended. If we
write the code first, and then the tests, all we end up doing is enshrining what the
code actually does—as opposed to what we meant for it to do—into the tests.

Writing initial unit tests
Since the specification doesn't contain unit tests, there's still a need for unit tests
before the coding of the module can begin. The planner.data classes are the first
target for the implementation, so they're the first ones to get the tests.

Activities and statuses are defined to be very similar, so their test modules are also
similar. They're not identical, though, and they're not required to have any particular
inheritance relationship; so the tests remain distinct.

The following tests are in tests/test_activities.py:

from unittest import TestCase
from unittest.mock import patch, Mock
from planner.data import Activity, TaskError
from datetime import datetime

class constructor_tests(TestCase):
 def test_valid(self):
 activity = Activity('activity name',
 datetime(year = 2012, month = 9, day = 11),
 datetime(year = 2013, month = 4, day = 27))

 self.assertEqual(activity.name, 'activity name')
 self.assertEqual(activity.begins,
 datetime(year = 2012, month = 9, day = 11))
 self.assertEqual(activity.ends,
 datetime(year = 2013, month = 4, day = 27))

 def test_backwards_times(self):
 self.assertRaises(TaskError,
 Activity,
 'activity name',

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[115]

 datetime(year = 2013, month = 4, day = 27),
 datetime(year = 2012, month = 9, day = 11))

 def test_too_short(self):
 self.assertRaises(TaskError,
 Activity,
 'activity name',
 datetime(year = 2013, month = 4, day = 27,
 hour = 7, minute = 15),
 datetime(year = 2013, month = 4, day = 27,
 hour = 7, minute = 15))

class utility_tests(TestCase):
 def test_repr(self):
 activity = Activity('activity name',
 datetime(year = 2012, month = 9, day = 11),
 datetime(year = 2013, month = 4, day = 27))

 expected = "<activity name 2012-09-11T00:00:00 2013-04-
27T00:00:00>"

 self.assertEqual(repr(activity), expected)

class exclusivity_tests(TestCase):
 def test_excludes(self):
 activity = Mock()

 other = Activity('activity name',
 datetime(year = 2012, month = 9, day = 11),
 datetime(year = 2012, month = 10, day = 6))

 # Any activity should exclude any activity
 self.assertTrue(Activity.excludes(activity, other))

 # Anything not known to be excluded should be included
 self.assertFalse(Activity.excludes(activity, None))

class overlap_tests(TestCase):
 def test_overlap_before(self):
 activity = Mock(begins = datetime(year = 2012, month = 9,
 day = 11),
 ends = datetime(year = 2012, month = 10,
 day = 6))

www.it-ebooks.info

http://www.it-ebooks.info/

Test-driven Development Walk-through

[116]

 other = Mock(begins = datetime(year = 2012, month = 10,
 day = 7),
 ends = datetime(year = 2013, month = 2, day = 5))

 self.assertFalse(Activity.overlaps(activity, other))

 def test_overlap_begin(self):
 activity = Mock(begins = datetime(year = 2012, month = 8,
 day = 11),
 ends = datetime(year = 2012, month = 11,
 day = 27))

 other = Mock(begins = datetime(year = 2012, month = 10,
 day = 7),
 ends = datetime(year = 2013, month = 2, day = 5))

 self.assertTrue(Activity.overlaps(activity, other))

 def test_overlap_end(self):
 activity = Mock(begins = datetime(year = 2013, month = 1,
 day = 11),
 ends = datetime(year = 2013, month = 4,
 day = 16))

 other = Mock(begins = datetime(year = 2012, month = 10,
 day = 7),
 ends = datetime(year = 2013, month = 2, day = 5))

 self.assertTrue(Activity.overlaps(activity, other))

 def test_overlap_inner(self):
 activity = Mock(begins = datetime(year = 2012, month = 10,
 day = 11),
 ends = datetime(year = 2013, month = 1,
 day = 27))

 other = Mock(begins = datetime(year = 2012, month = 10,
 day = 7),
 ends = datetime(year = 2013, month = 2, day = 5))

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[117]

 self.assertTrue(Activity.overlaps(activity, other))

 def test_overlap_outer(self):
 activity = Mock(begins = datetime(year = 2012, month = 8,
 day = 12),
 ends = datetime(year = 2013, month = 3,
 day = 15))

 other = Mock(begins = datetime(year = 2012, month = 10,
 day = 7),
 ends = datetime(year = 2013, month = 2, day = 5))

 self.assertTrue(Activity.overlaps(activity, other))

 def test_overlap_after(self):
 activity = Mock(begins = datetime(year = 2013, month = 2,
 day = 6),
 ends = datetime(year = 2013, month = 4,
 day = 27))

 other = Mock(begins = datetime(year = 2012, month = 10,
 day = 7),
 ends = datetime(year = 2013, month = 2, day = 5))

 self.assertFalse(Activity.overlaps(activity, other))

Let's take a look at the following code, step-by-step:

 def test_valid(self):
 activity = Activity('activity name',
 datetime(year = 2012, month = 9,
 day = 11),
 datetime(year = 2013, month = 4,
 day = 27))

 self.assertEqual(activity.name, 'activity name')
 self.assertEqual(activity.begins,
 datetime(year = 2012, month = 9, day = 11))
 self.assertEqual(activity.ends,
 datetime(year = 2013, month = 4, day = 27))

www.it-ebooks.info

http://www.it-ebooks.info/

Test-driven Development Walk-through

[118]

The test_valid method checks whether the constructor works correctly when all of
the parameters are correct. This is an important test, because it defines what correct
behavior should be normally. We need more tests, though, to define correct behavior
in abnormal situations:

 def test_backwards_times(self):
 self.assertRaises(TaskError,
 Activity,
 'activity name',
 datetime(year = 2013, month = 4, day = 27),
 datetime(year = 2012, month = 9, day = 11))

Here, we're making sure that you can't create an activity that ends before it begins.
That doesn't make any sense, and can easily throw off assumptions made during
the implementation:

 def test_too_short(self):
 self.assertRaises(TaskError,
 Activity,
 'activity name',
 datetime(year = 2013, month = 4, day = 27,
 hour = 7, minute = 15),
 datetime(year = 2013, month = 4, day = 27,
 hour = 7, minute = 15))

We don't want extremely short activities, either. In the real world, an activity that
takes no time is meaningless, so we have a test here to make sure that such things
are not allowed:

class utility_tests(TestCase):
 def test_repr(self):
 activity = Activity('activity name',
 datetime(year = 2012, month = 9,
 day = 11),
 datetime(year = 2013, month = 4,
 day = 27))

 expected = "<activity name 2012-09-11T00:00:00 2013-04-
27T00:00:00>"

 self.assertEqual(repr(activity), expected)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[119]

While repr(activity) isn't likely to be used in any production code paths, it's handy
during development and debugging. This test defines how the text representation of
an activity ought to look, to make sure that it contains the desired information.

The repr function is often useful during debugging, because it
attempts to take any object and turn it into a string that represents
that object. This is distinct from the str function, because str
tries to turn the object into a string that is convenient for humans
to read. The repr function, on the other hand, tries to create
a string containing code that will recreate the object. That's a
slightly tough concept, so here's an example contrasting str
and repr:

>>> from decimal import Decimal
>>> x = Decimal('123.45678')
>>> str(x)
'123.45678'
>>> repr(x)

"Decimal('123.45678')"

class exclusivity_tests(TestCase):
 def test_excludes(self):
 activity = Mock()

 other = Activity('activity name',
 datetime(year = 2012, month = 9, day = 11),
 datetime(year = 2012, month = 10, day = 6))

 # Any activity should exclude any activity
 self.assertTrue(Activity.excludes(activity, other))

 # Anything not known to be excluded should be included
 self.assertFalse(Activity.excludes(activity, None))

It's up to the objects stored in a schedule to decide whether they are exclusive with
other objects they overlap. Specifically, activities are supposed to exclude each other,
so we check this here. We're using a mock object for the main activity, but we're
being a bit lazy and use a real Activity instance to compare it against, trusting that
there won't be a problem in this case. We don't expect that Activity.excludes will
do much more than apply the isinstance function to its parameter, so there's not
much that an error in the constructor can do to mess things up.

class overlap_tests(TestCase):
 def test_overlap_before(self):

www.it-ebooks.info

http://www.it-ebooks.info/

Test-driven Development Walk-through

[120]

 activity = Mock(begins = datetime(year = 2012, month = 9,
 day = 11),
 ends = datetime(year = 2012, month = 10,
 day = 6))

 other = Mock(begins = datetime(year = 2012, month = 10,
 day = 7),
 ends = datetime(year = 2013, month = 2, day = 5))

 self.assertFalse(Activity.overlaps(activity, other))

 def test_overlap_begin(self):
 activity = Mock(begins = datetime(year = 2012, month = 8,
 day = 11),
 ends = datetime(year = 2012, month = 11,
 day = 27))

 other = Mock(begins = datetime(year = 2012, month = 10,
 day = 7),
 ends = datetime(year = 2013, month = 2, day = 5))

 self.assertTrue(Activity.overlaps(activity, other))

 def test_overlap_end(self):
 activity = Mock(begins = datetime(year = 2013, month = 1,
 day = 11),
 ends = datetime(year = 2013, month = 4,
 day = 16))

 other = Mock(begins = datetime(year = 2012, month = 10,
 day = 7),
 ends = datetime(year = 2013, month = 2, day = 5))

 self.assertTrue(Activity.overlaps(activity, other))

 def test_overlap_inner(self):
 activity = Mock(begins = datetime(year = 2012, month = 10,
 day = 11),
 ends = datetime(year = 2013, month = 1,
 day = 27))

 other = Mock(begins = datetime(year = 2012, month = 10,
 day = 7),
 ends = datetime(year = 2013, month = 2, day = 5))

 self.assertTrue(Activity.overlaps(activity, other))

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[121]

 def test_overlap_outer(self):
 activity = Mock(begins = datetime(year = 2012, month = 8,
 day = 12),
 ends = datetime(year = 2013, month = 3,
 day = 15))

 other = Mock(begins = datetime(year = 2012, month = 10,
 day = 7),
 ends = datetime(year = 2013, month = 2, day = 5))

 self.assertTrue(Activity.overlaps(activity, other))

 def test_overlap_after(self):
 activity = Mock(begins = datetime(year = 2013, month = 2,
 day = 6),
 ends = datetime(year = 2013, month = 4,
 day = 27))

 other = Mock(begins = datetime(year = 2012, month = 10,
 day = 7),
 ends = datetime(year = 2013, month = 2, day = 5))

 self.assertFalse(Activity.overlaps(activity, other))

These tests describe the behavior of the code that checks whether activities overlap in
the cases where the first activity:

• Comes before the second activity
• Overlaps the beginning of the second activity
• Overlaps the end of the second activity
• Begins and ends within the range of the second activity
• Begins before the second activity and ends after it
• Comes after the second activity

This covers the domain of possible relationships between the tasks.

www.it-ebooks.info

http://www.it-ebooks.info/

Test-driven Development Walk-through

[122]

No actual activities were used in these tests, just Mock objects that had been given the
attributes that the Activity.overlaps function should look for. As always, we're
doing our best to keep the code in different units from being able to interact during
the tests.

You might have noticed that we used a shortcut to create the
mock objects, by passing the attributes, we wanted them to
have as keyword parameters for the constructor. Most of the
time, that's a handy way to save a little work, but it does have
the problem that it only works for attribute names that don't
happen to be used as actual parameters to the Mock constructor.
Notably, attributes called name can't be assigned in this way,
because that parameter has a special meaning for Mock.

The code in tests/test_statuses.py is almost the same, except that it uses the
Status class instead of the Activity class. There is one significant difference, though:

 def test_excludes(self):
 status = Mock()

 other = Status('status name',
 datetime(year = 2012, month = 9, day = 11),
 datetime(year = 2012, month = 10, day = 6))

 # A status shouldn't exclude anything
 self.assertFalse(Status.excludes(status, other))
 self.assertFalse(Status.excludes(status, None))

The defining difference between a Status and an Activity is that a status does
not exclude other tasks that overlap with it. The tests, naturally, should reflect
that difference.

The following code goes in tests/test_schedules.py. We define several mock
objects that behave as if they were statuses or activities, and in which they support
the overlap and exclusion protocol. We'll use these mock objects in several tests,
to see how the schedule deals with the various combinations of overlapping and
exclusive objects:

from unittest import TestCase
from unittest.mock import patch, Mock
from planner.data import Schedule, ScheduleError
from datetime import datetime

class add_tests(TestCase):
 overlap_exclude = Mock()

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[123]

 overlap_exclude.overlaps = Mock(return_value = True)
 overlap_exclude.excludes = Mock(return_value = True)

 overlap_include = Mock()
 overlap_include.overlaps = Mock(return_value = True)
 overlap_include.excludes = Mock(return_value = False)

 distinct_exclude = Mock()
 distinct_exclude.overlaps = Mock(return_value = False)
 distinct_exclude.excludes = Mock(return_value = True)

 distinct_include = Mock()
 distinct_include.overlaps = Mock(return_value = False)
 distinct_include.excludes = Mock(return_value = False)

 def test_add_overlap_exclude(self):
 schedule = Schedule()
 schedule.add(self.distinct_include)
 self.assertRaises(ScheduleError,
 schedule.add,
 self.overlap_exclude)

 def test_add_overlap_include(self):
 schedule = Schedule()
 schedule.add(self.distinct_include)
 schedule.add(self.overlap_include)

 def test_add_distinct_exclude(self):
 schedule = Schedule()
 schedule.add(self.distinct_include)
 schedule.add(self.distinct_exclude)

 def test_add_distinct_include(self):
 schedule = Schedule()
 schedule.add(self.distinct_include)
 schedule.add(self.distinct_include)

 def test_add_over_overlap_exclude(self):
 schedule = Schedule()
 schedule.add(self.overlap_exclude)
 self.assertRaises(ScheduleError,
 schedule.add,
 self.overlap_include)

 def test_add_over_distinct_exclude(self):
 schedule = Schedule()
 schedule.add(self.distinct_exclude)

www.it-ebooks.info

http://www.it-ebooks.info/

Test-driven Development Walk-through

[124]

 self.assertRaises(ScheduleError,
 schedule.add,
 self.overlap_include)

 def test_add_over_overlap_include(self):
 schedule = Schedule()
 schedule.add(self.overlap_include)
 schedule.add(self.overlap_include)

 def test_add_over_distinct_include(self):
 schedule = Schedule()
 schedule.add(self.distinct_include)
 schedule.add(self.overlap_include)

class in_tests(TestCase):
 fake = Mock()
 fake.overlaps = Mock(return_value = True)
 fake.excludes = Mock(return_value = True)

 def test_in_before_add(self):
 schedule = Schedule()
 self.assertFalse(self.fake in schedule)

 def test_in_after_add(self):
 schedule = Schedule()
 schedule.add(self.fake)
 self.assertTrue(self.fake in schedule)

Let's take a closer look at some sections of the following code:

 overlap_exclude = Mock()
 overlap_exclude.overlaps = Mock(return_value = True)
 overlap_exclude.excludes = Mock(return_value = True)

 overlap_include = Mock()
 overlap_include.overlaps = Mock(return_value = True)
 overlap_include.excludes = Mock(return_value = False)

 distinct_exclude = Mock()
 distinct_exclude.overlaps = Mock(return_value = False)
 distinct_exclude.excludes = Mock(return_value = True)

 distinct_include = Mock()
 distinct_include.overlaps = Mock(return_value = False)
 distinct_include.excludes = Mock(return_value = False)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[125]

These lines create mock objects as attributes of the add_tests class. Each of these
mock objects has mocked overlaps and excludes methods that will always return
either True or False when called. This means that each of these mock objects
considers itself as overlap ping either everything or nothing, and excludes either
everything or nothing. Between the four mock objects, we have covered all the
possible combinations. In the following tests, we'll add various combinations of
these mock objects to a schedule, and make sure that it does the right things:

 def test_add_overlap_exclude(self):
 schedule = Schedule()
 schedule.add(self.distinct_include)
 self.assertRaises(ScheduleError,
 schedule.add,
 self.overlap_exclude)

 def test_add_overlap_include(self):
 schedule = Schedule()
 schedule.add(self.distinct_include)
 schedule.add(self.overlap_include)

 def test_add_distinct_exclude(self):
 schedule = Schedule()
 schedule.add(self.distinct_include)
 schedule.add(self.distinct_exclude)

 def test_add_distinct_include(self):
 schedule = Schedule()
 schedule.add(self.distinct_include)
 schedule.add(self.distinct_include)

The preceding four tests are covering cases where we add a nonoverlapping object
to a schedule. All of them are expected to accept the nonoverlapping object, except
the first. In this test, we've previously added an object that claims that it does indeed
overlap; furthermore, it excludes anything it overlaps. This test shows that, if either
the object being added or an object already in the schedule believes that there's an
overlap, the schedule must treat it as an overlap.

 def test_add_over_overlap_exclude(self):
 schedule = Schedule()
 schedule.add(self.overlap_exclude)
 self.assertRaises(ScheduleError,
 schedule.add,
 self.overlap_include)

www.it-ebooks.info

http://www.it-ebooks.info/

Test-driven Development Walk-through

[126]

In this test, we're making sure that if an object already in the schedule overlaps a new
object and claims exclusivity, then adding the new object will fail.

 def test_add_over_distinct_exclude(self):
 schedule = Schedule()
 schedule.add(self.distinct_exclude)
 self.assertRaises(ScheduleError,
 schedule.add,
 self.overlap_include)

In this test, we're making sure that, even though the object already in the schedule
doesn't think that it overlaps with the new object, it excludes the new object because
the new object thinks that there's an overlap.

 def test_add_over_overlap_include(self):
 schedule = Schedule()
 schedule.add(self.overlap_include)
 schedule.add(self.overlap_include)

 def test_add_over_distinct_include(self):
 schedule = Schedule()
 schedule.add(self.distinct_include)
 schedule.add(self.overlap_include)

These tests are making sure that the inclusive objects don't somehow interfere with
adding each other to a schedule.

class in_tests(TestCase):
 fake = Mock()
 fake.overlaps = Mock(return_value = True)
 fake.excludes = Mock(return_value = True)

 def test_in_before_add(self):
 schedule = Schedule()
 self.assertFalse(self.fake in schedule)

 def test_in_after_add(self):
 schedule = Schedule()
 schedule.add(self.fake)
 self.assertTrue(self.fake in schedule)

These two tests describe the schedule behavior with respect to the in operator.
Specifically, it should return True when the object in question is actually in
the schedule.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[127]

Try it for yourself – write your early unit tests
A specification—even a testable specification written in doctest—still hosts a lot of
ambiguities that can be ironed out with good unit tests. Add that to the fact that the
specification doesn't maintain separation between different tests, and you can see that
it's time for your project to gain some unit tests. Perform the following steps:

1. Find some element of your project that is described in (or implied by)
your specification.

2. Write a unit test that describes the behavior of that element when given the
correct input.

3. Write a unit test that describes the behavior of that element when given the
incorrect input.

4. Write unit tests that describe the behavior of the element at the boundaries
between correct and incorrect input.

5. Go back to step 1 if you can find another untested part of your program.

Wrapping up the initial unit tests
This is where you really take what was an ill-defined idea and turn it into a precise
description of what you're going to do.

The end result can be quite lengthy, which shouldn't come as much of a surprise.
After all, your goal at this stage is to completely define the behavior of your
project; even without concerning yourself with the details of how that behavior
is implemented, that's a lot of information.

Coding planner.data
It's time to write some code using the specification document and the unit tests as
guides. Specifically, it's time to write the planner.data module, which contains
Status, Activity, and Schedule.

To create this package, I made a directory called planner and, within this
directory, created a file called __init__.py. There's no need to put anything
inside __init__.py, but the file itself needs to exist to tell Python that the
planner directory is a package.

The following code goes in planner/data.py:

from datetime import timedelta

class TaskError(Exception):

www.it-ebooks.info

http://www.it-ebooks.info/

Test-driven Development Walk-through

[128]

 pass

class ScheduleError(Exception):
 pass

class Task:
 def __init__(self, name, begins, ends):
 if ends < begins:
 raise TaskError('The begin time must precede the end
time')
 if ends - begins < timedelta(minutes = 5):
 raise TaskError('The minimum duration is 5 minutes')

 self.name = name
 self.begins = begins
 self.ends = ends

 def excludes(self, other):
 return NotImplemented

 def overlaps(self, other):
 if other.begins < self.begins:
 return other.ends > self.begins
 elif other.ends > self.ends:
 return other.begins < self.ends
 else:
 return True

 def __repr__(self):
 return '<{} {} {}>'.format(self.name,
 self.begins.isoformat(),
 self.ends.isoformat())

class Activity(Task):
 def excludes(self, other):
 return isinstance(other, Activity)

class Status(Task):
 def excludes(self, other):
 return False

class Schedule:
 def __init__(self):
 self.tasks = []

 def add(self, task):
 for contained in self.tasks:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[129]

 if task.overlaps(contained):
 if task.exclude(contained) or contained.exclude(task):
 raise ScheduleError(task, containeed)

 self.tasks.append(task)

 def remove(self, task):
 try:
 self.tasks.remove(task)
 except ValueError:
 pass

 def __contains__(self, task):
 return task in self.tasks

The Task class here contains most of the behavior that is needed for both the
Activity class and the Status class. Since so much of what they do is common to
both, it makes sense to write the code once and reuse it. Only the excludes method
needs to be different in each of the subclasses. That makes the classes for activities
and statuses very simple. The Schedule class turns out to be pretty easy, too. But is
it right? Our tests will tell us.

We used the timedelta class and the datetime.isoformat
method in the preceding code. Both are useful but somewhat
obscure features of the datetime module. A timedelta
instance represents the duration between two points in time.
The isoformat method returns a string representing the
datetime module in ISO 8601 standard format.

Using tests to get the code right
All right, so that code looks fairly good. Unfortunately, Nose tells us that there are
a few problems. Actually, Nose reports quite a large number of problems, but a lot
of them seem to be related to a few root causes.

First, let's address the problem that, though the Activity and Status classes don't
seem to have the exclude methods, some of our code tries to call that method. A
typical report of this problem from the Nose output looks like a traceback followed by:

AttributeError: 'Activity' object has no attribute 'exclude'

Looking at our code, we see that it is properly called excludes. The tracebacks
included in the Nose error report tell us that the problem is on line 51 of
planner/data.py, and it looks like a quick fix.

www.it-ebooks.info

http://www.it-ebooks.info/

Test-driven Development Walk-through

[130]

We'll just change line 51 from the following:

if task.exclude(contained) or contained.exclude(task):

to:

if task.excludes(contained) or contained.excludes(task):

and run Nose again.

Similarly, several of our tests report the following output:

NameError: name 'containeed' is not defined

This is clearly another typo. That one's on line 52 of planner/data.py. Oops!! We'll
fix that one, too, and run Nose again to see what else is wrong.

Continuing our trend of picking the low-hanging fruit first, let's clear up the problem
reported as the following:

SyntaxError: unexpected EOF while parsing

This is yet another typo, this time in docs/outline.txt. This time, it's not a problem
with the code being tested, but with the test itself. It still needs to be fixed.

The problem is that, when originally entering the tests, I apparently only typed in
two dots at the beginning of several lines, instead of the three that tell doctest that
an expression continues onto that line.

After fixing that, things are starting to get less obvious. Let's pick on this one next:

File "docs/outline.txt", line 36, in outline.txt

Failed example:

 duplicate_activity in schedule

Expected:

 True

Got:

 False

Why isn't the activity being seen as a member of the schedule? The previous example
passed, which shows that the in operator works for the activity we actually added
to the schedule. The failure shows up when we try to use an equivalent activity;
once we realize that, we know what we need to fix. Either our __eq__ method isn't
working, or (as is the actual case) we forgot to write it.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[131]

We can fix this bug by adding the __eq__ and __ne__ methods to Task, which will
be inherited by Activity and Status.

 def __eq__(self, other):
 return (self.name == other.name and
 self.begins == other.begins and
 self.ends == other.ends)

 def __ne__(self, other):
 return (self.name != other.name or
 self.begins != other.begins or
 self.ends != other.ends)

Now, two tasks that have the same name, start time, and end time will compare
as equivalent even if one is a Status and the other is an Activity. The last isn't
necessarily right, but it doesn't cause any of our tests to fail, so we'll leave it for
now. If it becomes a problem later, we'll write a test that checks it, and then fix it.

What's the deal with this one?

File "docs/outline.txt", line 61, in outline.txt

Failed example:

 schedule.add(activity2)

Expected:

 Traceback (most recent call last):

 ScheduleError: "test activity 2" overlaps with "test activity 1"

Got:

 Traceback (most recent call last):

 File "/usr/lib64/python3.4/doctest.py", line 1324, in __run

 compileflags, 1), test.globs)

 File "<doctest outline.txt[20]>", line 1, in <module>

 schedule.add(activity2)

 File "planner/data.py", line 62, in add

 raise ScheduleError(task, contained)

 planner.data.ScheduleError: (<test activity 2 2014-06-01T10:15:00
2014-06-01T13:30:00>, <test activity 1 2014-06-01T09:05:00 2014-06-
01T12:30:00>)

Well, it looks ugly but, if you look at it, you'll see that doctest is just complaining
that the raised exception doesn't print out as expected. It's even the right exception;
it's just a question of formatting.

www.it-ebooks.info

http://www.it-ebooks.info/

Test-driven Development Walk-through

[132]

We can fix this on line 62 of planner/data.py, by changing the line to read:

raise ScheduleError('"{}" overlaps with "{}"'.format(task.name,
contained.name))

There's one more problem with this doctest example, which is that we wrote the
name of the expected exception as ScheduleError, and that was how Python
2 printed out exceptions. Python 3 prints out exceptions with a qualified name,
though, so we need to change it to planner.data.ScheduleError on line 63 of
the doctest file.

Now, if you've been following along, all of the errors should be fixed, except for
some of the acceptance tests in docs/outline.txt. Basically, these failing tests
tell us that we haven't written the persistence code yet, which is true.

Try it for yourself – writing and
debugging code
The basic procedure, as we've discussed before, is to write some code, then run the
tests to find problems with the code, and repeat. When you happen to come across
an error that isn't covered by an existing test, you need to write a new test and
continue the process. Perform the following steps:

1. Write code that ought to satisfy at least some of your tests.
Run your tests. If you've used the tools we talked about in the previous
chapters, you should be able to run everything simply by executing:
$ python3 -m nose

2. If there are errors in the code you've already written, use the test output to
help you locate and identity them. Once you understand the bugs, try to fix
them and then go back to step 2.

3. Once you've fixed all the errors in the code you've written, and if your project
isn't complete, choose some new tests to concentrate on and go back to step 1.

Enough iterations on this procedure lead you to have a complete and tested project.
Of course, the real task is more difficult than simply saying "it will work" but, in the
end, it will work. You will produce a codebase that you can be confident in. It will
also be an easier process than it would have been without the tests.

Your project might be done, but there's still more to do on the personal scheduler. At
this stage of the chapter, I haven't finished going through the writing and debugging
process. It's time to do that.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[133]

Writing the persistence tests
Since I don't have any actual unit tests for the persistence code yet, I'll start off by
making some. In the process, I have to figure out how persistence will actually work.
The following code goes in tests/test_persistence.py:

from unittest import TestCase
from planner.persistence import File

class test_file(TestCase):
 def test_basic(self):
 storage = File(':memory:')
 storage.store_object('tag1', ('some object',))
 self.assertEqual(tuple(storage.load_objects('tag1')),
 (('some object',),))

 def test_multiple_tags(self):
 storage = File(':memory:')

 storage.store_object('tag1', 'A')
 storage.store_object('tag2', 'B')
 storage.store_object('tag1', 'C')
 storage.store_object('tag1', 'D')
 storage.store_object('tag3', 'E')
 storage.store_object('tag3', 'F')

 self.assertEqual(set(storage.load_objects('tag1')),
 set(['A', 'C', 'D']))

 self.assertEqual(set(storage.load_objects('tag2')),
 set(['B']))

 self.assertEqual(set(storage.load_objects('tag3')),
 set(['E', 'F']))

Looking at each of the important sections of the test code, we see the following:

 def test_basic(self):
 storage = File(':memory:')
 storage.store_object('tag1', ('some object',))
 self.assertEqual(tuple(storage.load_objects('tag1')),
 (('some object',),))

www.it-ebooks.info

http://www.it-ebooks.info/

Test-driven Development Walk-through

[134]

The test_basic test creates File, stores a single object under the name 'tag1', and
then loads that object back from storage and checks whether it is equal to the original
object. It really is a very basic test, but it covers the simple use case.

We don't need a test fixture here because we're not actually
working with an on-disk file that we need to create and delete.
The special filename ':memory:' tells SQLite to do everything
in memory. This is particularly handy for testing.

 def test_multiple_tags(self):
 storage = File(':memory:')

 storage.store_object('tag1', 'A')
 storage.store_object('tag2', 'B')
 storage.store_object('tag1', 'C')
 storage.store_object('tag1', 'D')
 storage.store_object('tag3', 'E')
 storage.store_object('tag3', 'F')

 self.assertEqual(set(storage.load_objects('tag1')),
 set(['A', 'C', 'D']))

 self.assertEqual(set(storage.load_objects('tag2')),
 set(['B']))

 self.assertEqual(set(storage.load_objects('tag3')),
 set(['E', 'F']))

The test_multiple_tags test creates a storage, and then stores multiple objects
in it, some with duplicate tags. It then checks whether the storage keeps all of the
objects with a given tag, and returns all of them on request.

In other words, all these tests define the persistence file as a multimap from string
keys to object values.

A multimap is a mapping between single keys and any number
of values. In other words, each individual key might be
associated with one value, of fifty.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[135]

Finishing up the personal planner
Now that there are at least basic unit tests covering the persistence mechanism,
it's time to write the persistence code itself. The following goes in planner/
persistence.py:

import sqlite3
from pickle import loads, dumps

class File:
 def __init__(self, path):
 self.connection = sqlite3.connect(path)

 try:
 self.connection.execute("""
 create table objects (tag, pickle)
 """)
 except sqlite3.OperationalError:
 pass

 def store_object(self, tag, object):
 self.connection.execute('insert into objects values (?, ?)',
 (tag, dumps(object)))

 def load_objects(self, tag):
 cursor = self.connection.execute("""
 select pickle from objects where tag like ?
 """, (tag,))
 return [loads(row['pickle']) for row in cursor]

The store_object method runs a short SQL statement to store the object into
a database field. The object serialization is handled by the dumps function from
the pickle module.

The pickle module, as a whole, deals with storing and
retrieving Python objects. The dumps function in particular
transforms Python objects into byte strings that can be
transformed back into a Python object via the loads function.

The load_object method uses SQL to query the database for the serialized version
of every object stored under a given tag, and then uses pickle.loads to transform
these serializations into real objects for it to return.

www.it-ebooks.info

http://www.it-ebooks.info/

Test-driven Development Walk-through

[136]

Now I run Nose to find out what's broken:

ERROR: test_multiple_tags (test_persistence.test_file)

--

Traceback (most recent call last):

 File "tests/test_persistence.py", line 21, in test_multiple_tags

 self.assertEqual(set(storage.load_objects('tag1')),

 File "planner/persistence.py", line 23, in load_objects

 return [loads(row['pickle']) for row in cursor]

 File "planner/persistence.py", line 23, in <listcomp>

 return [loads(row['pickle']) for row in cursor]

TypeError: tuple indices must be integers, not str

Ah, yes. The sqlite3 module returns the query rows as tuples, unless you tell it
otherwise. I want to use column names as indexes, so I need to set the row factory.
We'll add the following line to the File constructor:

self.connection.row_factory = sqlite3.Row

Now when I run Nose, the only problems it tells me about are that I haven't
implemented Schedule.load and Schedule.store yet. Furthermore, there aren't
any unit tests that check these methods. The only error comes from the specification
doctest. It's time to write some more unit tests in tests/test_schedules.py:

class store_load_tests(TestCase):
 def setUp(self):
 fake_tasks = []
 for i in range(50):
 fake_task = Mock()
 fake_task.overlaps = Mock(return_value = False)
 fake_task.name = 'fake {}'.format(i)

 self.tasks = fake_tasks

 def tearDown(self):
 del self.tasks

 def test_store(self):
 fake_file = Mock()

 schedule = Schedule('test_schedule')

 for task in self.tasks:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[137]

 schedule.add(task)

 schedule.store(fake_file)

 for task in self.tasks:
 fake_file.store_object.assert_any_call('test_schedule',
task)

 def test_load(self):
 fake_file = Mock()

 fake_file.load_objects = Mock(return_value = self.tasks)

 schedule = Schedule.load(fake_file, 'test_schedule')

 fake_file.load_objects.assert_called_once_with('test_
schedule')

 self.assertEqual(set(schedule.tasks),
 set(self.tasks))

Now that I have some tests to check against, it's time to write the store and load
methods of the Schedule class in planner/data.py:

 def store(self, storage):
 for task in self.tasks:
 storage.store_object(self.name, task)

 @staticmethod
 def load(storage, name = 'schedule'):
 value = Schedule(name)

 for task in storage.load_objects(name):
 value.add(task)

 return value

These changes also imply a change to the Schedule constructor:

 def __init__(self, name = 'schedule'):
 self.tasks = []
 self.name = name

www.it-ebooks.info

http://www.it-ebooks.info/

Test-driven Development Walk-through

[138]

Okay, now, I run Nose, and... something's still broken::

File "docs/outline.txt", line 101, in outline.txt

Failed example:

 schedule == newsched

Expected:

 True

Got:

 False

Looks like schedules need to compare equal based on their contents, too.
That's easily done:

 def __eq__(self, other):
 return self.tasks == other.tasks

Just like last time we wrote a comparison function; this one has some unusual
behavior, in that it only considers two schedules equal if the tasks were added to
them in the same order. Again, though this smells a little funny, it doesn't make
any tests fail, and it's not clearly wrong; so we'll leave it until it matters.

Summary
In this chapter, we learned about how the skills that we covered in earlier parts of
this book are applied in practice. We did this by stepping through a recording of
your humble author's actual process in writing a package. At the same time, you had
the chance to work through your own project, make your own decisions, and design
your own tests. You've taken the lead in a test-driven project, and you should be able
to do it again whenever you want.

Now that we've covered the heart of Python testing, we're ready to talk about testing
at the integration and system levels, which we'll do in the next chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

Integration and
System Testing

With all of the tools, techniques, and practices we've discussed so far, we've still
only been been thinking about testing units: the smallest, meaningfully testable
pieces of code. It's time to expand the focus, and start testing code that incorporates
multiple units.

That means we need to:

• Think about what integration testing and system testing actually are
• Learn how to identify testable multi-unit segments of a program
• Use the tools we've learned in order to create tests for these segments

Introduction to integration testing and
system testing
Integration testing is the process of checking whether the units of our program work
together properly. At this stage, thanks to our unit tests, we can assume that each
unit works as expected in isolation, and we're kicking the tests up to a new level of
complexity. It's not practical to start the process with integration testing because, if
the units don't work, the integration won't work either, and it will be harder to track
down the problems. Once the units are solid, though, it's necessary to test that the
things we build out of them also work. The interactions can be surprising.

While you're doing integration testing, you'll be putting the units together into
bigger and bigger collections, and testing these collections. When your integration
tests expand to cover the entirety of your program, they become system tests.

www.it-ebooks.info

http://www.it-ebooks.info/

Integration and System Testing

[140]

The trickiest part of integration testing is choosing which units to integrate into each
test, so that you always have a solid base of code that you can believe in: a place to
stand, while you pull in more code.

Deciding on an integration order
We're going to work through an exercise that will help you with the process of
deciding where to put the boundaries of integration tests:

1. Using a piece of paper or a graphics program, write down names or
representations for each of the units in the time planner project from
Chapter 7, Test-driven Development Walk-through. Group the methods of
each class together. Being part of the same class is an obvious relationship
between units, and we'll take advantage of this. The == symbol here
represents the Python == operator, which invokes the __eq__ method
on an object:

activities
excludes
overlaps
==

statuses
excludes
overlaps
==

schedules
add
remove
store

load

in

==

file
store_object
load_object

2. Now draw arrows between units that are supposed to directly interact with
each other, from the caller to the callee. Laying everything out in an orderly
fashion, as in step 1, can actually make this harder, so feel free to move the
classes around to help the lines make sense:

schedules
add
remove
store

load

in

==

statuses
excludes
overlaps
==

activities
excludes
overlaps
==

file
store_object
load_object

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[141]

3. Draw circles around each class and each pair of classes connected by at least
one line:

schedules
add
remove
store

load

in

==

statuses
excludes
overlaps
==activities

excludes
overlaps
==

file

store_object

load_object

4. Continue the process by drawing circles around overlapping pairs of circles,
until there are only three circles left. Circle a pair of them, and then put one
more big circle around the whole mess:

schedules
add
remove
store

load

in

==

statuses
excludes
overlaps
==activities

excludes
overlaps
==

file

store_object

load_object

www.it-ebooks.info

http://www.it-ebooks.info/

Integration and System Testing

[142]

5. Now, to decide which integration tests to write first, we just have to look at
the number of circles surrounding all parts of it. The more deeply nested the
circle that contains every unit involved in an integration test is, the sooner we
write that test.

What we just did is a way to visualize and solidify the process of building integration
tests. While it's not critical to actually draw the lines and circles, it's useful to follow
the process in your head. For larger projects, a lot can be gained from actually drawing
the diagrams. When you see the diagram, the next correct step tends to jump right out
at you—especially if you use multiple colors to render the diagram—where it might
otherwise be hidden behind the complexity of the program.

Automating integration tests and
system tests
The only real difference between an integration test and a unit test is that, in an
integration test, you can break the code being tested into smaller meaningful chunks;
in a unit test, however, if you divided the code any more, it wouldn't be meaningful.
For this reason, the same tools that help you automate unit testing can be applied
to integration testing. Since system testing is really the highest level of integration
testing, the tools can be used for that as well.

The role of doctest in integration testing tends to be fairly limited: doctest's real
strengths are in the early part of the development process. It's easy for a testable
specification to stray into integration testing—as said before, that's fine as long as
there are unit tests as well, but after that it's likely that you'll prefer unittest and
Nose for writing your integration tests.

Integration tests need to be isolated from each other. Even though they contain
multiple interacting units within themselves, you still benefit from knowing that
nothing outside the test is affecting it. For this reason, unittest is a good choice
for writing automated integration tests.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[143]

Writing integration tests for the time planner
The integration diagram only provides a partial ordering of the integration tests, and
there are several tests that could be the first one we write. Looking at the diagram,
we can see that the Status and Activity classes are at the end of a lot of arrows, but
not at the beginning of any. This makes them particularly good places to start writing
integration tests, because it means that they don't call on anything outside themselves
to operate. Since there's nothing to distinguish one of them as a better place to start
than the other, we can choose between them arbitrarily. Let's start with Status, and
then do Activity. We're going to write tests that exercise the whole class. At this low
level, the integration tests will look a lot like the unit tests for the same class, but we're
not going to use mock objects to represent other instances of the same class. We will
use real instances. We're testing whether the class correctly interacts with itself.

Here is the test code for Status:

from unittest import TestCase
from planner.data import Status
from datetime import datetime

class statuses_integration_tests(TestCase):
 def setUp(self):
 self.A = Status('A',
 datetime(year = 2012, month = 7, day = 15),
 datetime(year = 2013, month = 5, day = 2))

 def test_repr(self):
 self.assertEqual(repr(self.A), '<A 2012-07-15T00:00:00 2013-
05-02T00:00:00>')

 def test_equality(self):
 self.assertEqual(self.A, self.A)
 self.assertNotEqual(self.A, Status('B',
 datetime(year = 2012, month = 7, day = 15),
 datetime(year = 2013, month = 5, day = 2)))
 self.assertNotEqual(self.A, Status('A',
 datetime(year = 2011, month = 7, day = 15),
 datetime(year = 2013, month = 5, day = 2)))
 self.assertNotEqual(self.A, Status('A',
 datetime(year = 2012, month = 7, day = 15),
 datetime(year = 2014, month = 5, day = 2)))

 def test_overlap_begin(self):
 status = Status('status name',
 datetime(year = 2011, month = 8, day = 11),
 datetime(year = 2012, month = 11, day = 27))

www.it-ebooks.info

http://www.it-ebooks.info/

Integration and System Testing

[144]

 self.assertTrue(status.overlaps(self.A))

 def test_overlap_end(self):
 status = Status('status name',
 datetime(year = 2012, month = 1, day = 11),
 datetime(year = 2014, month = 4, day = 16))

 self.assertTrue(status.overlaps(self.A))

 def test_overlap_inner(self):
 status = Status('status name',
 datetime(year = 2011, month = 10, day = 11),
 datetime(year = 2014, month = 1, day = 27))

 self.assertTrue(status.overlaps(self.A))

 def test_overlap_outer(self):
 status = Status('status name',
 datetime(year = 2012, month = 8, day = 12),
 datetime(year = 2012, month = 9, day = 15))

 self.assertTrue(status.overlaps(self.A))

 def test_overlap_after(self):
 status = Status('status name',
 datetime(year = 2015, month = 2, day = 6),
 datetime(year = 2019, month = 4, day = 27))

 self.assertFalse(status.overlaps(self.A))

Here is the test code for Activity:

from unittest import TestCase
from planner.data import Activity, TaskError
from datetime import datetime

class activities_integration_tests(TestCase):
 def setUp(self):
 self.A = Activity('A',
 datetime(year = 2012, month = 7, day = 15),
 datetime(year = 2013, month = 5, day = 2))

 def test_repr(self):
 self.assertEqual(repr(self.A), '<A 2012-07-15T00:00:00 2013-
05-02T00:00:00>')

 def test_equality(self):
 self.assertEqual(self.A, self.A)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[145]

 self.assertNotEqual(self.A, Activity('B',
 datetime(year = 2012, month = 7, day = 15),
 datetime(year = 2013, month = 5, day = 2)))
 self.assertNotEqual(self.A, Activity('A',
 datetime(year = 2011, month = 7, day = 15),
 datetime(year = 2013, month = 5, day = 2)))
 self.assertNotEqual(self.A, Activity('A',
 datetime(year = 2012, month = 7, day = 15),
 datetime(year = 2014, month = 5, day = 2)))

 def test_overlap_begin(self):
 activity = Activity('activity name',
 datetime(year = 2011, month = 8, day = 11),
 datetime(year = 2012, month = 11, day = 27))

 self.assertTrue(activity.overlaps(self.A))
 self.assertTrue(activity.excludes(self.A))

 def test_overlap_end(self):
 activity = Activity('activity name',
 datetime(year = 2012, month = 1, day = 11),
 datetime(year = 2014, month = 4, day = 16))

 self.assertTrue(activity.overlaps(self.A))
 self.assertTrue(activity.excludes(self.A))

 def test_overlap_inner(self):
 activity = Activity('activity name',
 datetime(year = 2011, month = 10, day = 11),
 datetime(year = 2014, month = 1, day = 27))

 self.assertTrue(activity.overlaps(self.A))
 self.assertTrue(activity.excludes(self.A))

 def test_overlap_outer(self):
 activity = Activity('activity name',
 datetime(year = 2012, month = 8, day = 12),
 datetime(year = 2012, month = 9, day = 15))

 self.assertTrue(activity.overlaps(self.A))
 self.assertTrue(activity.excludes(self.A))

 def test_overlap_after(self):
 activity = Activity('activity name',
 datetime(year = 2015, month = 2, day = 6),
 datetime(year = 2019, month = 4, day = 27))

 self.assertFalse(activity.overlaps(self.A))

www.it-ebooks.info

http://www.it-ebooks.info/

Integration and System Testing

[146]

Looking at our diagram, we can see that the next level out from either Status or
Activity represents the integration of these classes with the Schedule class. Before
we write this integration, we ought to write any tests that involve the Schedule class
interacting with itself, without using mock objects:

from unittest import TestCase
from unittest.mock import Mock
from planner.data import Schedule
from datetime import datetime

class schedule_tests(TestCase):
 def test_equality(self):
 A = Mock(overlaps = Mock(return_value = False))
 B = Mock(overlaps = Mock(return_value = False))
 C = Mock(overlaps = Mock(return_value = False))

 sched1 = Schedule()
 sched2 = Schedule()

 self.assertEqual(sched1, sched2)

 sched1.add(A)
 sched1.add(B)

 sched2.add(A)
 sched2.add(B)
 sched2.add(C)

 self.assertNotEqual(sched1, sched2)

 sched1.add(C)

 self.assertEqual(sched1, sched2)

Now that the interactions within the Schedule class have been tested, we can
write tests that integrate Schedule with either Status or Activity. Let's start
with Status, then do Activity.

Here are the tests for Schedule and Status:

from planner.data import Schedule, Status
from unittest import TestCase
from datetime import datetime, timedelta

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[147]

class test_schedules_and_statuses(TestCase):
 def setUp(self):
 self.A = Status('A',
 datetime.now(),
 datetime.now() + timedelta(minutes = 7))
 self.B = Status('B',
 datetime.now() - timedelta(hours = 1),
 datetime.now() + timedelta(hours = 1))
 self.C = Status('C',
 datetime.now() + timedelta(minutes = 10),
 datetime.now() + timedelta(hours = 1))

 def test_usage_pattern(self):
 sched = Schedule()

 sched.add(self.A)
 sched.add(self.C)

 self.assertTrue(self.A in sched)
 self.assertTrue(self.C in sched)
 self.assertFalse(self.B in sched)

 sched.add(self.B)

 self.assertTrue(self.B in sched)

 self.assertEqual(sched, sched)

 sched.remove(self.A)

 self.assertFalse(self.A in sched)
 self.assertTrue(self.B in sched)
 self.assertTrue(self.C in sched)

 sched.remove(self.B)
 sched.remove(self.C)

 self.assertFalse(self.B in sched)
 self.assertFalse(self.C in sched)

www.it-ebooks.info

http://www.it-ebooks.info/

Integration and System Testing

[148]

Here are the tests for the interactions between real Schedule and Activity
instances. Due to the similarity between Activity and Status, the tests are,
not surprisingly, structured similarly:

from planner.data import Schedule, Activity, ScheduleError
from unittest import TestCase
from datetime import datetime, timedelta

class test_schedules_and_activities(TestCase):
 def setUp(self):
 self.A = Activity('A',
 datetime.now(),
 datetime.now() + timedelta(minutes = 7))
 self.B = Activity('B',
 datetime.now() - timedelta(hours = 1),
 datetime.now() + timedelta(hours = 1))
 self.C = Activity('C',
 datetime.now() + timedelta(minutes = 10),
 datetime.now() + timedelta(hours = 1))

 def test_usage_pattern(self):
 sched = Schedule()

 sched.add(self.A)
 sched.add(self.C)

 self.assertTrue(self.A in sched)
 self.assertTrue(self.C in sched)
 self.assertFalse(self.B in sched)

 self.assertRaises(ScheduleError, sched.add, self.B)

 self.assertFalse(self.B in sched)

 self.assertEqual(sched, sched)

 sched.remove(self.A)

 self.assertFalse(self.A in sched)
 self.assertFalse(self.B in sched)
 self.assertTrue(self.C in sched)

 sched.remove(self.C)

 self.assertFalse(self.B in sched)
 self.assertFalse(self.C in sched)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[149]

All right, it's finally time to put Schedule, Status, and Activity together in the
same test:

from planner.data import Schedule, Status, Activity, ScheduleError
from unittest import TestCase
from datetime import datetime, timedelta

class test_schedules_activities_and_statuses(TestCase):
 def setUp(self):
 self.A = Status('A',
 datetime.now(),
 datetime.now() + timedelta(minutes = 7))
 self.B = Status('B',
 datetime.now() - timedelta(hours = 1),
 datetime.now() + timedelta(hours = 1))
 self.C = Status('C',
 datetime.now() + timedelta(minutes = 10),
 datetime.now() + timedelta(hours = 1))

 self.D = Activity('D',
 datetime.now(),
 datetime.now() + timedelta(minutes = 7))

 self.E = Activity('E',
 datetime.now() + timedelta(minutes = 30),
 datetime.now() + timedelta(hours = 1))

 self.F = Activity('F',
 datetime.now() - timedelta(minutes = 20),
 datetime.now() + timedelta(minutes = 40))

 def test_usage_pattern(self):
 sched = Schedule()

 sched.add(self.A)
 sched.add(self.B)
 sched.add(self.C)

 sched.add(self.D)

 self.assertTrue(self.A in sched)
 self.assertTrue(self.B in sched)
 self.assertTrue(self.C in sched)
 self.assertTrue(self.D in sched)

 self.assertRaises(ScheduleError, sched.add, self.F)
 self.assertFalse(self.F in sched)

www.it-ebooks.info

http://www.it-ebooks.info/

Integration and System Testing

[150]

 sched.add(self.E)
 sched.remove(self.D)

 self.assertTrue(self.E in sched)
 self.assertFalse(self.D in sched)

 self.assertRaises(ScheduleError, sched.add, self.F)

 self.assertFalse(self.F in sched)

 sched.remove(self.E)

 self.assertFalse(self.E in sched)

 sched.add(self.F)

 self.assertTrue(self.F in sched)

The next thing we need to pull in is the File class but, before we integrate it with
the rest of the system, we need to integrate it with itself and check its internal
interactions without using mock objects:

from unittest import TestCase
from planner.persistence import File
from os import unlink

class test_file(TestCase):
 def setUp(self):
 storage = File('file_test.sqlite')

 storage.store_object('tag1', 'A')
 storage.store_object('tag2', 'B')
 storage.store_object('tag1', 'C')
 storage.store_object('tag1', 'D')
 storage.store_object('tag3', 'E')
 storage.store_object('tag3', 'F')

 def tearDown(self):
 try:
 unlink('file_test.sqlite')
 except OSError:
 pass

 def test_other_instance(self):
 storage = File('file_test.sqlite')

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[151]

 self.assertEqual(set(storage.load_objects('tag1')),
 set(['A', 'C', 'D']))

 self.assertEqual(set(storage.load_objects('tag2')),
 set(['B']))

 self.assertEqual(set(storage.load_objects('tag3')),
 set(['E', 'F']))

Now we can write tests that integrate Schedules and File. Notice that, for this step,
we still aren't involving Status or Activity, because they're outside the oval. We'll
use mock objects in place of them, for now:

from unittest import TestCase
from unittest.mock import Mock
from planner.data import Schedule
from planner.persistence import File
from os import unlink

def unpickle_mocked_task(begins):
 return Mock(overlaps = Mock(return_value = False), begins =
begins)

class test_schedules_and_file(TestCase):
 def setUp(self):
 A = Mock(overlaps = Mock(return_value = False),
 __reduce__ = Mock(return_value = (unpickle_mocked_
task, (5,))),
 begins = 5)

 B = Mock(overlaps = Mock(return_value = False),
 __reduce__ = Mock(return_value = (unpickle_mocked_
task, (3,))),
 begins = 3)

 C = Mock(overlaps = Mock(return_value = False),
 __reduce__ = Mock(return_value = (unpickle_mocked_
task, (7,))),
 begins = 7)

 self.A = A
 self.B = B
 self.C = C

www.it-ebooks.info

http://www.it-ebooks.info/

Integration and System Testing

[152]

 def tearDown(self):
 try:
 unlink('test_schedules_and_file.sqlite')
 except OSError:
 pass

 def test_save_and_restore(self):
 sched1 = Schedule()

 sched1.add(self.A)
 sched1.add(self.B)
 sched1.add(self.C)

 store1 = File('test_schedules_and_file.sqlite')
 sched1.store(store1)

 del sched1
 del store1

 store2 = File('test_schedules_and_file.sqlite')
 sched2 = Schedule.load(store2)

 self.assertEqual(set([x.begins for x in sched2.tasks]),
 set([3, 5, 7]))

We've built our way up to the outermost circle now, which means it's time to write
tests that involve the whole system with no mock objects anywhere:

from planner.data import Schedule, Status, Activity, ScheduleError
from planner.persistence import File
from unittest import TestCase
from datetime import datetime, timedelta
from os import unlink

class test_system(TestCase):
 def setUp(self):
 self.A = Status('A',
 datetime.now(),
 datetime.now() + timedelta(minutes = 7))
 self.B = Status('B',
 datetime.now() - timedelta(hours = 1),
 datetime.now() + timedelta(hours = 1))
 self.C = Status('C',
 datetime.now() + timedelta(minutes = 10),
 datetime.now() + timedelta(hours = 1))

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[153]

 self.D = Activity('D',
 datetime.now(),
 datetime.now() + timedelta(minutes = 7))

 self.E = Activity('E',
 datetime.now() + timedelta(minutes = 30),
 datetime.now() + timedelta(hours = 1))

 self.F = Activity('F',
 datetime.now() - timedelta(minutes = 20),
 datetime.now() + timedelta(minutes = 40))

 def tearDown(self):
 try:
 unlink('test_system.sqlite')
 except OSError:
 pass

 def test_usage_pattern(self):
 sched1 = Schedule()

 sched1.add(self.A)
 sched1.add(self.B)
 sched1.add(self.C)
 sched1.add(self.D)
 sched1.add(self.E)

 store1 = File('test_system.sqlite')
 sched1.store(store1)

 del store1

 store2 = File('test_system.sqlite')
 sched2 = Schedule.load(store2)

 self.assertEqual(sched1, sched2)

 sched2.remove(self.D)
 sched2.remove(self.E)

 self.assertNotEqual(sched1, sched2)

 sched2.add(self.F)

 self.assertTrue(self.F in sched2)
 self.assertFalse(self.F in sched1)

www.it-ebooks.info

http://www.it-ebooks.info/

Integration and System Testing

[154]

 self.assertRaises(ScheduleError, sched2.add, self.D)
 self.assertRaises(ScheduleError, sched2.add, self.E)

 self.assertTrue(self.A in sched1)
 self.assertTrue(self.B in sched1)
 self.assertTrue(self.C in sched1)
 self.assertTrue(self.D in sched1)
 self.assertTrue(self.E in sched1)
 self.assertFalse(self.F in sched1)

 self.assertTrue(self.A in sched2)
 self.assertTrue(self.B in sched2)
 self.assertTrue(self.C in sched2)
 self.assertFalse(self.D in sched2)
 self.assertFalse(self.E in sched2)
 self.assertTrue(self.F in sched2)

We've just integrated our whole code base, progressively constructing larger tests
until we had tests encompassing the whole system. The whole time, we were careful
to test one thing at a time. Because we took care to go step-by-step, we always knew
where the newly discovered bugs originated, and we were able to fix them easily.

Speaking of which, if you were to run the tests for yourself while building this code
structure, you would notice that some of them fail. All three of the failures point
to the same problem: there's something wrong with the persistence database. This
error doesn't show up in the unit tests for the File class, because it's only visible on
a larger scale, when the database is used to communicate information between units.

Here's the error reported by the test_file.py tests:

Traceback (most recent call last):

 File "integration/integration_tests/test_file.py", line 26, in test_
other_instance

 set(['A', 'C', 'D']))

AssertionError: Items in the second set but not the first:

'A'

'D'

'C'

The changes to the database aren't being committed to the file, and so they aren't
visible outside the transaction where they were stored. Not testing the persistence
code in separate transactions was not an oversight, but that's exactly the sort of
mistake that we expect integration testing to catch.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[155]

We can fix the problem by altering the store_object method of the File class in
persistence.py as follows:

 def store_object(self, tag, object):
 self.connection.execute('insert into objects values (?, ?)',
 (tag, dumps(object)))
 self.connection.commit()

Another point of interest is the interaction between pickle and mock objects.
There are a lot of things that mock objects do well, but accepting pickling is not
one of them. Fortunately, that's relatively easy to work around is demonstrated
in test integrating Schedule and File:

def unpickle_mocked_task(begins):
 return Mock(overlaps = Mock(return_value = False), begins =
begins)

class test_schedules_and_file(TestCase):
 def setUp(self):
 A = Mock(overlaps = Mock(return_value = False),
 __reduce__ = Mock(return_value = (unpickle_mocked_
task, (5,))),
 begins = 5)

 B = Mock(overlaps = Mock(return_value = False),
 __reduce__ = Mock(return_value = (unpickle_mocked_
task, (3,))),
 begins = 3)

 C = Mock(overlaps = Mock(return_value = False),
 __reduce__ = Mock(return_value = (unpickle_mocked_
task, (7,))),
 begins = 7)

The trick here is not really very tricky. We've just told the mock objects what return
value to use for calls to the __reduce__ method. It so happens that the pickle
dumping functions call __reduce__ to find out whether an object needs special
handling when being pickled and unpickled. We told it that it did, and that it should
call the unpickle_mocked_task function to reconstitute the mock object during
unpickling. Now, our mock objects can be pickled and unpickled as well as the
real objects can.

www.it-ebooks.info

http://www.it-ebooks.info/

Integration and System Testing

[156]

Another point of interest in the tests for Schedule and File is the tearDown test
fixture method. The tearDown method will delete a database file, if it exists, but
won't complain if it doesn't. The database is expected to be created within the test
itself, and we don't want to leave it lying around; however, if it's not there, it's not
a test fixture error:

 def tearDown(self):
 try:
 unlink('test_schedules_and_file.sqlite')
 except OSError:
 pass

A lot of the test code in this chapter might seem redundant to you. That's because, in
some sense, it is. Some things are repeatedly checked in different tests. Why bother?

The main reason for the redundancy is that each test is supposed to stand alone.
We're not supposed to care what order they run in, or whether any other tests even
exist. Each test is self-contained; thus, if it fails, we know exactly what needs to be
fixed. Because each test is self-contained, some foundational things end up getting
tested multiple times. In the case of this simple project, redundancy is even more
pronounced than it would normally be.

Whether it's blatant or subtle, though, the redundancy isn't a problem. The so-called
Don't Repeat Yourself (DRY) principle doesn't particularly apply to tests. There's
not much downside to having something tested multiple times. This is not to say
that it's a good idea to copy and paste tests, because it's very much not. Don't be
surprised or alarmed to see similarities between your tests, but don't use that as an
excuse. Every test that checks a particular thing is a test that needs to be changed if
you change that thing, so it's still best to minimize redundancy where you can.

Check yourself – writing integration tests
Try answering the following questions to check about integration tests yourself:

1. Which integration tests do you write first?
Answer: The ones in the smallest circles, especially if they don't have any
lines pointing from themselves to other circles. Put another way, write the
most independent tests first.

2. What happens when you have a large chunk of integrated code, but the next
section you need to pull in doesn't have any integration tests at all?
Answer: Start from the smallest circles involving that code, and build up
step-by-step until you're ready to integrate it with your earlier code.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[157]

3. What's the point of writing tests that check the integration of a chunk of
code with itself?
Answer: When we were doing unit testing, even other instances of the
same class were mocked, as were other methods of the same instance when
it was reasonable to do so; we were concerned that this code did what it
was supposed to, without involving anything else. Now that we're doing
integration testing, we need to test the instances of the same class that
interact correctly with each other, or with themselves when they're allowed
to retain a state from one operation to the next. The two kinds of tests cover
different things, so it makes sense that we would need both.

4. What is a system test and how do system tests relate to integration tests?
Answer: A system test is the final stage of integration testing. It's a test that
involves the whole code base.

Summary
In this chapter, we learned about the process of building from a foundation of unit
tests into a set of tests that cover the whole system.

Specifically, we covered how to draw an integration diagram. We learned how to
interpret an integration diagram to decide in what order to build the tests and also
learned which tools to use and how to use them to write the integration tests.

Now that we've learned about integration testing, we're ready to introduce a number
of other useful testing tools and strategies, which is the topic of the next chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Other Tools and Techniques
We've covered the core elements of testing in Python, but there are a number
of peripheral methods and tools that will make your life easier. In this chapter,
we're going to go through several of them in brief.

In this chapter, we're going to:

• Discuss code coverage and how to get a code coverage report from Nose
• Discuss continuous integration and Buildbot
• Learn how to integrate automated testing with Git, Mercurial, Bazaar,

and Subversion

Code coverage
Tests tell you when the code you're testing doesn't work the way you thought it
would, but they don't tell you a thing about the code you're not testing. They don't
even tell you that the code you're not testing isn't being tested.

Code coverage is a technique to address that shortcoming. A code coverage tool
watches while your tests are running, and keeps track of which lines of code are
(and aren't) executed. After the tests have run, the tool will give you a report
describing how well your tests cover the whole body of code.

It's desirable to have the coverage approach 100 percent, as you probably figured out
already. Be careful not to focus on the coverage number too intensely, though, because
it can be a bit misleading. Even if your tests execute every line of code in the program,
they can easily not test everything that needs to be tested. This means that you can't
take 100 percent coverage as certain proof that your tests are complete. On the other
hand, there are times when some code really, truly doesn't need to be covered by
the tests—some debugging support code, for example, or code generated by a user
interface builder—and so less than 100 percent coverage is often completely acceptable.

www.it-ebooks.info

http://www.it-ebooks.info/

Other Tools and Techniques

[160]

Code coverage is a tool to give you an insight into what your tests are doing, and
what they might be overlooking. It's not the definition of a good test suite.

Installing coverage.py
We're going to be working with a module called coverage.py, which
is—unsurprisingly—a code coverage tool for Python.

Since coverage.py isn't built in to Python, we're going to need to download and
install it. You can download the latest version from the Python Package Index at
http://pypi.python.org/pypi/coverage, but it will probably be easier simply
to type the following from the command line:

python3 -m pip install --user coverage

We're going to walk through the steps of using coverage.py here, but if you
want more information you can find it on the coverage.py home page at
http://nedbatchelder.com/code/coverage/.

Using coverage.py with Nose
We're going to create a little toy code module with tests, and then apply
coverage.py to find out how much of the code the tests actually use.

Put the following test code into test_toy.py. There are several problems with these
tests, which we'll discuss later, but they ought to run:

from unittest import TestCase
import toy

class test_global_function(TestCase):
 def test_positive(self):
 self.assertEqual(toy.global_function(3), 4)

 def test_negative(self):
 self.assertEqual(toy.global_function(-3), -2)

 def test_large(self):
 self.assertEqual(toy.global_function(2**13), 2**13 + 1)

class test_example_class(TestCase):
 def test_timestwo(self):
 example = toy.Example(5)
 self.assertEqual(example.timestwo(), 10)

www.it-ebooks.info

http://pypi.python.org/pypi/coverage
http://nedbatchelder.com/code/coverage/
http://www.it-ebooks.info/

Chapter 9

[161]

What we have here is a couple of TestCase classes with some very basic tests in
them. These tests wouldn't be of much use in a real-world situation, but all we need
them for is to illustrate how the code coverage tool works.

Put the following code into toy.py. Notice the if __name__ == '__main__' clause
at the bottom; we haven't dealt with one of these in a while, so I'll remind you that
the code inside that block runs doctest if we were to run the module with Python
toy.py:

def global_function(x):
 r"""
 >>> global_function(5)
 6
 """
 return x + 1

class Example:
 def __init__(self, param):
 self.param = param

 def timestwo(self):
 return self.param * 2

 def __repr__(self):
 return 'Example({!r})'.format(self.param)

if __name__ == '__main__':
 import doctest
 doctest.testmod()

Here, we have the code that satisfies the tests we just wrote. Like the tests
themselves, this code wouldn't be of much use, but it serves as an illustration.

Go ahead and run Nose. It should find the tests, run them, and report that all is well.
The problem is that some of the code isn't ever tested. Let's run the tests again, only
this time we'll tell Nose to use coverage.py to measure coverage while it's running
the tests:

python -m nose --with-coverage --cover-erase

This should give us an error report that looks like this:

.....

Name Stmts Miss Cover Missing

www.it-ebooks.info

http://www.it-ebooks.info/

Other Tools and Techniques

[162]

toy 12 3 75% 16, 19-20

--

Ran 5 tests in 0.053s

OK

The dots at the top indicate passing tests, and the OK at the bottom says that the
testing procedure worked as expected, but the part in between is new. That's our
coverage report. Apparently, our tests only cover three quarters of our code: out of
the 12 statement lines in toy.py, three didn't get executed. These lines were 16 and
19 through 20.

The range 19-20 isn't any more useful than writing 19, 20
would have been, but larger contiguous groups of lines are
reported in the same way. That's a lot easier to parse, visually,
than a soup of separate line numbers would be, especially
when it's a range like 361-947.

When we passed --with-coverage and --cover-erase as command-line parameters
to Nose, what did they do? Well, --with-coverage is pretty straightforward: it
told Nose to look for coverage.py and to use it while the tests get executed. That's
just what we wanted. The second parameter, --cover-erase, tells Nose to forget
about any coverage information that was acquired during previous runs. By default,
coverage information is aggregated across all of the uses of coverage.py. This allows
you to run a set of tests using different testing frameworks or mechanisms, and then
check the cumulative coverage. You still want to erase the data from previous test runs
at the beginning of this process, though, and the --cover-erase command line is how
you tell Nose to tell coverage.py that you're starting a new.

Nose, being an integrated testing system, often renders the
need to aggregate coverage information that is negligible.
You'll almost always want --cover-erase when you
invoke Nose with coverage enabled, so you should consider
adding cover-erase=1 to your Nose configuration file, as
discussed in previous chapters.

Another useful Nose command-line option is --cover-package=PACKAGE, which
limits the coverage report to the specific package you're interested in. It didn't
show up in our toy because we didn't import anything, but normally the coverage
report includes every module or package that has code executed while your tests
are running. The percentage of the standard library that is covered by your tests is
usually not useful information. It can be convenient to limit the report to the things
you actually want to know.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[163]

So, back to our coverage report. The missing lines were line 16 and lines 19 through
20. Looking back at our code, we see that line 16 is the __repr__ method. We really
should have tested that, so the coverage check has revealed a hole in our tests that
we should fix. Lines 19 and 20 are just code to run doctest, though. They're not
something that we ought to be using under production conditions, so we can just
ignore that coverage hole.

Code coverage can't detect problems with the tests themselves, in most cases. In the
previous test code, the test for the timestwo method violates the isolation of units
and invokes two different methods of example_class. Since one of the methods is
the constructor, this might be acceptable, but the coverage checker isn't in a position
to even see that there might be a problem. All it saw was more lines of code being
covered. That's not a problem—it's how a coverage checker ought to work—but it's
something to keep in mind. Coverage is useful, but high coverage doesn't equal
good tests.

Version control integration
Most version control systems have the ability to run a program you've written in
response to various events, as a way of customizing the version control system's
behavior. These programs are commonly called hooks.

You can do all kinds of things by installing the right hook programs, but we're
only going to focus on one use. We can make the version control program
automatically run our tests, when we commit a new version of the code to the
version control repository.

This is a fairly nifty trick, because this makes it difficult for test-breaking bugs to
get into the repository unnoticed. Somewhat like code coverage, though, there's
potential for trouble if it becomes a matter of policy rather than simply being a tool
to make your life easier.

In most systems, you can write the hooks so that it's impossible to commit code
that breaks tests. This might sound like a good idea at first, but it's really not.
One reason for this is that one of the major purposes of a version control system
is communication between developers, and interfering with that tends to be
unproductive in the long run. Another reason is that it prevents anybody from
committing partial solutions to problems, which means that things tend to get
dumped into the repository in big chunks. Big commits are a problem because they
make it hard to keep track of what changed, which adds to the confusion. There are
better ways to make sure that you always have a working code base socked away
somewhere, such as version control branches.

www.it-ebooks.info

http://www.it-ebooks.info/

Other Tools and Techniques

[164]

Git
Git has become the most widely used distributed version control system, so we'll
start there. By virtue of its being distributed, and thus decentralized, each Git user
can control their own hooks. Cloning a repository will not clone the hooks for
that repository.

If you don't have Git installed and don't plan to use it, you can skip this section.

Git hooks are stored in the .git/hooks/ subdirectory of the repository, each in
its own file. The ones that we're interested in are the pre-commit hook and the
prepare-commit-msg hook, either of which would potentially be suitable to
our purposes.

All Git hooks are programs that Git executes automatically at a specific time.
If a program named pre-commit exists in the hooks directory, it is run before
a commit happens to check whether the commit is valid. If a program named
prepare-commit-msg exists in the hooks directory, it is run to modify the
default commit message that is presented to the user.

So, the pre-commit hook is the one we want if we want the failed tests to abort the
commit (which is acceptable with Git, though I still don't recommend it because
there's a command-line option, --no-verify, that allows the user to commit even
if the tests fail). We can also run the tests from pre-commit and print the error
report to the screen, while allowing the commit, regardless of the result, by simply
producing a zero result code after we invoke Nose, instead of passing on the Nose
result code.

If we want to get fancier and add the test report to the commit message, or include
it in the commit message file that will be shown to the user without actually adding
it to the commit message, we need the prepare-commit-msg hook instead. This is
what we're going to do in our example.

Example test-runner hook
As I mentioned, Git hooks are programs, which means that we can write them in
Python. If you place the following code in a file named .git/hooks/prepare-
commit-msg (and make it executable) within one of your Git repositories, your Nose
test suite will be run before each commit, and the test report will be presented to
you when you are prompted for a commit message, but commented out so as to
not actually end up in the Git log. If the tests convince you that you don't want to
commit yet, all you have to do is leave the message blank to abort the commit.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[165]

In Windows, a file named prepare-commit-msg won't
be executable. You'll need to name the actual hook program
prepare-commit-msg.py and create a batch file named
prepare-commit-msg.bat containing the following
(assuming you have Python's program directory in the PATH
environment variable):

@echo off
pythonw prepare-commit-msg.py

This is the first time I've mentioned the pythonw command.
It's a Windows-specific version of the Python interpreter
with only one difference from the normal Python program: it
does not open a terminal window for text-mode interactions.
When a program is run via pythonw on Windows, nothing
is visible to the user unless the program intentionally creates
a user interface.

So, without further ado, here is the Python program for a Git prepare-commit-msg
hook that integrates Nose:

#!/usr/bin/env python3
from sys import argv
from subprocess import check_output, CalledProcessError, STDOUT

PYTHON = ['pythonw', 'python']
NOSE = ['-m', 'nose', '--with-coverage', '--cover-erase']

lines = ['', '# Nose test report:']

report = None

try:
 for command in PYTHON:
 try:
 report = check_output([command] + NOSE,
 stderr=STDOUT,
 universal_newlines=True)
 except FileNotFoundError:
 pass
 else:
 break
except CalledProcessError as x:
 report = x.output

www.it-ebooks.info

http://www.it-ebooks.info/

Other Tools and Techniques

[166]

if report is None:
 lines.append('# Unable to run Python.')
else:
 for line in report.splitlines():
 if not line:
 lines.append('')
 else:
 lines.append('# ' + line)

with open(argv[1], 'r') as f:
 lines.append(f.read())

with open(argv[1], 'w') as f:
 f.write('\n'.join(lines))

Now, whenever you run a Git commit command, you'll get a Nose report:

git commit -a

Subversion
Subversion is the most popular freely available centralized version control system.
There is a single server tasked with keeping track of everybody's changes, and this
server also handles running hooks. This means that there is a single set of hooks that
applies to everybody, probably under the control of a system administrator.

If you don't have Subversion installed and don't plan on using it, you can skip
this section.

Subversion hooks are stored in files in the hooks subdirectory of the server's
repository. Because Subversion operates on a centralized, client-server architecture,
we're going to need both a client and a server setup for this example. They can both
be on the same computer, but they'll be in different directories.

Before we can work with concrete examples, we need a Subversion server. You
can create one by making a new directory called svnrepo, and executing the
following command:

$ svnadmin create svnrepo/

Now, we need to configure the server to accept commits from us. To do this, we open
the file called conf/passwd, and add the following line at the bottom:

testuser = testpass

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[167]

Then we need to edit conf/svnserve.conf, and change the line reading:

password-db = passwd

into the following:

password-db = passwd

The Subversion server needs to be running before we can interact with it. This is
done by making sure that we're in the svnrepo directory and then run the command:

svnserve -d -r ..

Next, we need to import some test code into the Subversion repository. Make
a directory and place the following (simple and silly) code into it in a file called
test_simple.py:

from unittest import TestCase

class test_simple(TestCase):
 def test_one(self):
 self.assertNotEqual("Testing", "Hooks")

 def test_two(self):
 self.assertEqual("Same", "Same")

You can perform the import by executing the following command:

$ svn import --username=testuser --password=testpass svn://localhost/
svnrepo/

Subversion needs to know which text editor you want to use. If the
preceding command fails, you probably need to tell it explicitly.
You can do this by setting the SVN_EDITOR environment variable
to the program path of the editor you prefer.

That command is likely to print out a gigantic, scary message about remembering
passwords. In spite of the warnings, just say yes.

Now that we've got the code imported, we need to check out a copy of it to work on.
We can do this with the following command:

$ svn checkout --username=testuser --password=testpass svn://localhost/
svnrepo/ svn

www.it-ebooks.info

http://www.it-ebooks.info/

Other Tools and Techniques

[168]

From here on, in this example, we're going to be assuming
that the Subversion server is running in a Unix-like
environment (the clients might be running on Windows, but
that doesn't matter for our purposes). The reason for this is
that the details of the post-commit hook are significantly
different on systems that don't have a Unix style shell
scripting language, although the concepts remain the same.

The following code goes into a file called hooks/post-commit inside the Subversion
server's repository. The svn update and svn checkout lines have been wrapped
around to fit on the page. In actual use, this wrapping should not be present:

#!/bin/sh
REPO="$1"

if /usr/bin/test -e "$REPO/working"; then
 /usr/bin/svn update --username=testuser --password=testpass
"$REPO/working/";
else
 /usr/bin/svn checkout --username=testuser --password=testpass
svn://localhost/svnrepo/ "$REPO/working/";
fi

cd "$REPO/working/"

exec /usr/bin/nosetests

Use the chmod +x post-commit command to make the hook executable.

Change to the svn checkout directory and edit test_simple.py to make one of the
tests fail. We do this because, if all the tests pass, Subversion won't show us anything
to indicate that they were run at all. We only get feedback if they fail:

from unittest import TestCase

class test_simple(TestCase):
 def test_one(self):
 self.assertNotEqual("Testing", "Hooks")

 def test_two(self):
 self.assertEqual("Same", "Same!")

Now commit the changes using the following command:

$ svn commit --username=testuser --password=testpass

Notice that the commit triggered the execution of Nose, and that, if any of the tests
fail, Subversion shows us the errors.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[169]

Because Subversion has one central set of hooks, they can be applied automatically to
anybody who uses the repository.

Mercurial
Like Git, Mercurial is a distributed version control system with hooks that are
managed by each user individually. Mercurial's hooks themselves, though, take
a rather different form.

If you don't have Mercurial installed and don't plan to use it, you can skip
this section.

Mercurial hooks can go in several different places. The two most useful are in your
personal configuration file and in your repository configuration file.

Your personal configuration file is ~/.hgrc on Unix-like systems, and
%USERPROFILE%\Mercurial.ini (which usually means C:\Documents and
Settings\<username>\Mercurial.ini) on Windows-based systems.

Your repository configuration file is stored in a subdirectory of the repository,
specifically, .hg/hgrc, on all systems.

We're going to use the repository configuration file to store the hook, which means
that the first thing we have to do is have a repository to work with. Make a new
directory somewhere convenient, and execute the following command in it:

$ hg init

One side-effect of this command is that a .hg subdirectory gets created. Change to
this directory, and then create a text file called hgrc containing the following text:

[hooks]
commit = python3 -m nose

In the repository directory (that is, the parent of the .hg directory), we need some
tests for Nose to run. Create a file called test_simple.py containing the following,
admittedly silly, tests:

from unittest import TestCase

class test_simple(TestCase):
 def test_one(self):
 self.assertNotEqual("Testing", "Hooks")

 def test_two(self):
 self.assertEqual("Same", "Same")

www.it-ebooks.info

http://www.it-ebooks.info/

Other Tools and Techniques

[170]

Run the following commands to add the test file and commit it to the repository:

$ hg add

$ hg commit

Notice that the commit triggered a run-through of the tests. Since we put the hook in
the repository configuration file, it will only take effect on commits to this repository.
If we'd instead put it into your personal configuration file, it would be called when
you committed to any repository.

Bazaar
Like Git and Mercurial, Bazaar is a distributed version control system, and the
individual users can control the hooks that apply to their own repositories. If you
don't have Bazaar installed and don't plan to use it, you can skip this section.

Bazaar hooks go in your plugins directory. On Unix-like systems, that's ~/.bazaar/
plugins/, while on Windows, it's C:\Documents and Settings\<username>\
Application Data\Bazaar\<version>\plugins\. In either case, you might have
to create the plugins subdirectory, if it doesn't already exist.

Bazaar hooks are always written in Python, which is nice but, as I write this, they're
always written in Python 2, not Python 3. This means that the hook code presented
in this section is Python 2 code. Place the following code into a file called run_nose.
py in the plugins directory:

from bzrlib import branch
from os.path import join, sep
from os import chdir
from subprocess import call

def run_nose(local, master, old_num, old_id, new_num, new_id):
 try:
 base = local.base
 except AttributeError:
 base = master.base

 if not base.startswith('file://'):
 return

 try:
 chdir(join(sep, *base[7:].split('/')))
 except OSError:
 return

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[171]

 call(['nosetests'])

branch.Branch.hooks.install_named_hook('post_commit',
 run_nose,
 'Runs Nose after each commit')

Bazaar hooks are written in Python, so we've written our hook as a function called
run_nose. Our run_nose function checks in order to make sure that the repository
we're working on is local, and then it changes directories into the repository and
runs Nose. We registered run_nose as a hook by calling branch.Branch.hooks.
install_named_hook.

From now on, any time you commit to a Bazaar repository, Nose will search for and
run whatever tests it can find within that repository. Note that this applies to any and
all local repositories, as long as you're logged in to the same account on your computer.

Automated continuous integration
Automated continuous integration tools are a step beyond using a version control
hook to run your tests when you commit code to the repository. Instead of running
your test suite once, an automated continuous integration system compiles your code
(if need be) and runs your tests many times, in many different environments.

An automated continuous integration system might, for example, run your tests under
Python versions 3.2, 3.3, and 3.4 on each of Windows, Linux, and Mac OS X. This not
only lets you know about errors in your code, but also about the unexpected problems
caused by the external environment. It's nice to know when that last patch broke the
program on Windows, even though it worked like a charm on your Linux box.

Buildbot
Buildbot is a popular automated continuous integration tool. Using Buildbot,
you can create a network of "build slaves" that will check your code each time
you commit it to your repository. This network can be quite large, and it can be
distributed around the Internet, so Buildbot works even for projects with lots of
developers spread around the world.

Buildbot's home page is at http://buildbot.net/. By following links from this site,
you can find the manual and download the latest version of the tool. At the time of
writing, installing Buildbot with Python 3.x was slightly more complicated than just
pip install buildbot buildbot-slave; thanks to some of the install files being
targeted at Python 2.x. It's actually completely fine to install it with Python 2.x, and
probably easier to deal with. Even if it's installed in Python 2.x, Buildbot can run
your Python 3.x code inside the Python 3.x interpreter.

www.it-ebooks.info

http://buildbot.net/
http://www.it-ebooks.info/

Other Tools and Techniques

[172]

Buildbot operates in one of two modes, buildmaster and buildslave.
A buildmaster mode manages a network of buildslaves, while the buildslave
mode run the tests in their assorted environments.

Setup
To set up a buildmaster mode, create a directory for it to operate in and then run
the following command:

$ buildbot create-master <directory>

In the preceding command, <directory> is the directory you just created for
buildbot to work in.

Similarly, to set up a buildslave mode, create a directory for it to operate in and
then run the command:

$ buildslave create-slave <directory> <host:port> <name> <password>

In the preceding command, <directory> is the directory you just created for
the buildbot to work in, <host:port> is the Internet host and port where the
buildmaster can be found, and <name> and <password> are the login information
that identifies this buildslave to the buildmaster. All of this information (except
the directory) is determined by the operator of the buildmaster.

You should edit <directory>/info/admin and <directory>/info/host to contain
the e-mail address you want associated with this buildslave and a description of
the buildslave operating environment, respectively.

On both the buildmaster and the buildslave, you'll need to start up the buildbot
background process. To do this, use the command:

$ buildbot start <directory>

In the preceding command, the directory is the directory you set up as
the buildmaster.

Configuring a buildmaster is a significant topic in itself, and one that we're not
going to address in detail. It's fully described in Buildbot's own documentation. We
will provide a simple configuration file, though, for reference and quick setup. This
particular configuration file assumes that you're using Git, but it is not significantly
different for other version control systems. The following code goes in the master's
<directory>/master.cfg file:

-*- python -*-
ex: set syntax=python:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[173]

c = BuildmasterConfig = {}

c['projectName'] = "<replace with project name>"
c['projectURL'] = "<replace with project url>"
c['buildbotURL'] = "http://<replace with master url>:8010/"

c['status'] = []
from buildbot.status import html
c['status'].append(html.WebStatus(http_port=8010,
 allowForce=True))

c['slavePortnum'] = 9989

from buildbot.buildslave import BuildSlave
c['slaves'] = [
 BuildSlave("bot1name", "bot1passwd"),
]

from buildbot.changes.pb import PBChangeSource
c['change_source'] = PBChangeSource()

from buildbot.scheduler import Scheduler
c['schedulers'] = []
c['schedulers'].append(Scheduler(name="all", branch=None,
 treeStableTimer=2 * 60,
 builderNames=["buildbot-full"]))

from buildbot.process import factory
from buildbot.steps.source.git import Git
from buildbot.steps.shell import Test
f1 = factory.BuildFactory()
f1.addStep(Git(repourl="<replace with repository url>"))
f1.addStep(Test(command = ['python3', '-m' 'nose']))

b1 = {'name': "buildbot-full",
 'slavename': "bot1name",
 'builddir': "full",
 'factory': f1,
 }
c['builders'] = [b1]

We just set up Buildbot to run our tests whenever it notices that our source code has
been unchanged for two hours.

www.it-ebooks.info

http://www.it-ebooks.info/

Other Tools and Techniques

[174]

We told it to run the tests by adding a build step that runs nose:

f1.addStep(Test(command = ['python3', '-m' 'nose']))

We told it to wait for the source code to be unchanged for two hours by adding
a build scheduler:

c['schedulers'].append(Scheduler(name="all", branch=None,
 treeStableTimer=2 * 60,
 builderNames=["buildbot-full"]))

To make effective use of this Buildbot configuration, you also need to install
a version control hook that notifies Buildbot of changes. Generically, this can
be done by calling the buildbot sendchange shell command from the hook.

Once you have buildmaster and buildslave configured, have hooked buildbot
into your version control system, and have started buildmaster and buildslave,
you're in business.

Using Buildbot
You'll be able to see a report of the Buildbot status in your web browser, by
navigating to the buildbotURL that you configured in the master.cfg file. One
of the most useful reports is the so-called waterfall view. If the most recent commit
passes the tests, you should see something similar to the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[175]

On the other hand, when the commit fails to pass the tests, you'll see the screenshot
as follows:

Either way, you'll also see a history of earlier versions, whether or not they passed
the tests as well as who made the changes and when, and what the output of the test
command looked like.

You'll see similar information for each of the buildslaves, which means that, when
the tests pass on some systems and fail on others, you'll know which system
configurations are having the problem.

Summary
We learned a lot in this chapter about code coverage and plugging our tests into the
other automation systems we use while writing software.

Specifically, we covered what code coverage is and what it can tell us about our
tests. We learned how to run Nose automatically when our version control software
detects changes in the source code, and how to set up the Buildbot automated
continuous integration system.

Now that we've learned about code coverage, version control hooks, and
automated continuous integration, you're ready to tackle more or less
anything. Congratulations!

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Index
A
acceptance testing 8
ad hoc test

and Nose test 103-105
assert_any_call method 66
assert_called_once_with method 66
assert_called_with method 66
assert_has_calls method 66
assertions

about 79
assertAlmostEqual method 81, 82
assertEqual method 81
assertFalse method 81
assertIn and assertNotIn methods 83
assertIs and assertIsNot methods 82
assertIsInstance and assertNotIsInstance

methods 83
assertIsNone and assertIsNotNone

methods 83
assertNotAlmostEqual method 82
assertNotEqual method 81
assertRaises method 83, 84
assertTrue method 79, 80
fail method 84, 85

assert_not_called method 66
AVL tree, doc test

about 26, 27
constructor, testing 30
English specification 27, 28
height, recalculating 31, 32
higher-level functions 34
node data 29, 30
node, locating 34
node, making deletable 32

rotation 33
URL 27

B
Bazaar 170, 171
blank lines

expecting 16
Buildbot

about 171
setup 172-174
URL 171
using 174, 175

C
class

description 40, 41
code

debugging 132
writing 132

code coverage
about 159
coverage.py, installing 160
coverage.py, using with Nose 160-163

command line, Nose
simplifying 97

constructor
decoupling from 73
testing 30

containers
mocking, with special behavior 66-68

continuous integration, automated
about 171
Buildbot 171, 172

www.it-ebooks.info

http://www.it-ebooks.info/

[178]

coverage.py
installing 160
URL 160
using, with Nose 160-163

D
database-backed units

testing 86-90
descriptors

mock objects for 68, 69
directives

about 20
used, for controlling doctest 17

docstrings
doctest 24, 25
doctest, embedding 23, 24

doctest
about 11, 85, 86
and Nose test 99
controlling, with directives 17
creating 12
embedding, into docstrings 23, 24
English to doctest 22, 23
example 13
execution scope 21, 22
in docstring 24, 25
in docstring, result 25, 26
language 12
performance 11
result 13, 14
running 12
syntax 13
tool 75

doctest directives
DONT_ACCEPT_BLANKLINE 20
DONT_ACCEPT_TRUE_FOR_1 20
IGNORE_EXCEPTION_DETAIL 20
URL 20

Don't Repeat Yourself (DRY) principle 156
dumps function 135

E
ellipsis elides

result 18
ellipsis test drive

example 17

English to doctest 22, 23
ensurepip module 92
example

humans only 20
result 20
skipping 19

exceptions
checking for 15
expecting 15
result 16

execution scope
of doctest tests 21, 22

F
fail method 84, 85
file objects

mocking 70

G
Git 164

H
height

recalculating 31, 32
hooks 163

I
integration testing

about 7, 8, 139
automating 142
order, deciding on 140-142
writing 156, 157
writing, for time planner 143-156

L
load_object method 135

M
Mercurial 169, 170
method

side effects 65, 66

www.it-ebooks.info

http://www.it-ebooks.info/

[179]

mocking
containers, with special behavior 66-68
file objects 70
function 65, 66
objects, with special behavior 66-68

mocking class 64
mock objects

as per unittest.mock 58
for descriptors 68, 69
for properties 68, 69
in action 72
in general 58
PID tests 72
real code, replacing with 70-72
standard 59-62

mock objects, standard
about 59-62
exceptions, raising 62-64
function details 64
method, side effects 65, 66
mocking class 64
mocking function 65, 66
non-mock attributes 62
non-mock return values 62-64

module fixture practice 100, 101

N
node

locating 34
making, deletable 32

node data 29, 30
non-mock attributes 62
non-mock return values 62-64
Nose

coverage.py, using with 160-163
installing 91

Nose command line
simplifying 97

Nose test
and ad hoc test 103-105
and doctest test 99
and unittest test 100
organizing 92, 93
organizing, example 93-96
practicing 99

search, customizing 98
understanding, checking 98

O
objects

mocking, with special behavior 66-68

P
package fixture practice 102, 103
patch function 71
persistence tests

writing 133, 134
personal planner

finishing up 135-138
pickle module 135
PID 41
PID tests

about 72
constructor, decoupling from 73
time.time, patching 72, 73

pid.time 95
planner.data

coding 127-129
pre-commit hook 164
properties

mock objects for 68, 69
Python

about 9, 10
documentation, URL 98
test-driven development 9
URL 9

R
recalculate_height() method 31
regression testing 9
repr function 119
result

part, ignoring 17
rotation 33

S
speccing 64
Subversion 166-169

www.it-ebooks.info

http://www.it-ebooks.info/

[180]

system testing
about 8, 139
automating 142

T
testable specification

about 113
wrapping up 113
writing 107-113

test document
writing 22

test-driven development 9, 47
test fixtures, unittest module 86
testing

about 6
acceptance testing 8
integration testing 7, 8
levels 7
persistence tests, writing 133, 134
regression testing 9
system testing 8
unit testing 7
using 129-132

test-runner hook 164
test search, Nose

customizing 98
practicing 99
understanding, checking 98

tests, Nose
organizing 92, 93
organizing, example 93-96

test_valid method 118
timedelta instance 129
time planner

integration tests, writing for 143-156
time.time

about 95
patching 72, 73

U
units

identifying 39
selecting 40

unit testing
about 7, 37, 38
class description 40, 41
development process 41
example 39
limitations 38
units, selecting 40

unit testing, development process
about 41, 53-55
design 42-45
development 45-48
feedback 48-53
later stages 55

unittest.mock
about 57
mock objects, as per 58

unittest module
about 75
basics 75-79
test fixtures 86

unit tests, initial
early unit tests, writing 127
wrapping up 127
writing 114-126

unittest test, and Nose test
module fixture practice 100, 101
package fixture practice 102, 103

V
version control integration

about 163
Bazaar 170, 171
Git 164
Mercurial 169, 170
Subversion 166-169
test-runner hook, example 164-166

W
white space

example 18
ignoring 18
result 19

www.it-ebooks.info

http://www.it-ebooks.info/

Thank you for buying
Learning Python Testing

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around Open Source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each Open Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would like
to discuss it first before writing a formal book proposal, contact us; one of our commissioning
editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.it-ebooks.info

www.packtpub.com
http://www.it-ebooks.info/

Python Testing Beginner's Guide
ISBN: 978-1-84719-884-6 Paperback: 256 pages

An easy and convenient approach to testing your
Python projects

1. Covers everything you need to test your
code in Python.

2. Easiest and enjoyable approach to learn
Python testing.

3. Write, execute, and understand the result
of tests in the unit test framework.

4. Packed with step-by-step examples and
clear explanations.

Python Testing Cookbook
ISBN: 978-1-84951-466-8 Paperback: 364 pages

Over 70 simple but incredibly effective recipes for
taking control of automated testing using powerful
Python testing tools

1. Learn to write tests at every level using
a variety of Python testing tools.

2. The first book to include detailed screenshots
and recipes for using Jenkins continuous
integration server (formerly known as Hudson).

3. Explore innovative ways to introduce
automated testing to legacy systems.

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

Mastering Object-oriented Python
ISBN: 978-1-78328-097-1 Paperback: 634 pages

Grasp the intricacies of object-oriented programming
in Python in order to efficiently build powerful
real-world applications

1. Create applications with flexible logging,
powerful configuration and command-line
options, automated unit tests, and good
documentation.

2. Use the Python special methods to integrate
seamlessly with built-in features and the
standard library.

3. Design classes to support object persistence
in JSON, YAML, pickle, CSV, XML, shelve,
and SQL.

Python Tools for Visual Studio
ISBN: 978-1-78328-868-7 Paperback: 122 pages

Leverage the power of the Visual Studio IDE to
develop better and more efficient Python projects

1. Learn how you can take advantage of IDE for
debugging and testing Python applications.

2. Enhance your efficiency in Django development
with Visual Studio IntelliSense.

3. Venture into the depths of Python programming
concepts, presented in a detailed and
clear manner.

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Python and Testing
	Testing for fun and profit
	Levels of testing
	Unit testing
	Integration testing
	System testing

	Acceptance testing
	Regression testing
	Test-driven development
	You'll need Python
	Summary

	Chapter 2: Working with doctest
	Where doctest performs best
	The doctest language
	Example – creating and running a simple doctest
	Result – three times three does not equal ten
	The syntax of doctests
	Example – a more complex test
	Result – five tests run?

	Expecting exceptions
	Example – checking for an exception
	Result – success at failing

	Expecting blank lines
	Controlling doctest behavior with directives
	Ignoring part of the result
	Example – ellipsis test drive
	Result – ellipsis elides

	Ignoring white space
	Example – invoking normality
	Result – white space matches any other
white space

	Skipping an example
	Example – humans only
	Result – it looks like a test, but it's not

	The other directives
	The execution scope of doctest tests
	Check your understanding
	Exercise – English to doctest
	Embedding doctests into docstrings
	Example – a doctest in a docstring
	Result – the code is now self-documenting and self-testable

	Putting it into practice – an AVL tree
	English specification
	Node data
	Testing the constructor
	Recalculating height
	Making a node deletable
	Rotation
	Locating a node
	The rest of the specification

	Summary

	Chapter 3: Unit Testing with doctest
	What is unit testing?
	The limitations of unit testing
	Example – identifying units
	Choosing units

	Check your understanding
	Unit testing during the development process
	Design
	Development
	Feedback
	Development, again
	Later stages of the process

	Summary

	Chapter 4: Decoupling Units
with unittest.mock
	Mock objects in general
	Mock objects according to unittest.mock
	Standard mock objects
	Non-mock attributes
	Non-mock return values and raising exceptions
	Mocking class or function details
	Mocking function or method side effects

	Mocking containers and objects with a
special behavior
	Mock objects for properties and descriptors
	Mocking file objects
	Replacing real code with mock objects

	Mock objects in action
	Better PID tests
	Patching time.time
	Decoupling from the constructor

	Summary

	Chapter 5: Structured Testing
with unittest
	The basics
	Assertions
	The assertTrue method
	The assertFalse method
	The assertEqual method
	The assertNotEqual method
	The assertAlmostEqual method
	The assertNotAlmostEqual method
	The assertIs and assertIsNot methods
	The assertIsNone and assertIsNotNone methods
	The assertIn and assertNotIn methods
	The assertIsInstance and assertNotIsInstance methods
	The assertRaises method
	The fail method

	Make sure you get it
	Test fixtures
	Example – testing database-backed units

	Summary

	Chapter 6: Running Your Tests
with Nose
	Installing Nose
	Organizing tests
	An example of organizing tests

	Simplifying the Nose command line
	Customizing Nose's test search
	Check your understanding
	Practicing Nose

	Nose and doctest tests
	Nose and unittest tests
	Module fixture practice
	Package fixture practice

	Nose and ad hoc tests
	Summary

	Chapter 7: Test-driven Development Walk-through
	Writing the specification
	Try it for yourself – what are you going to do?
	Wrapping up the specification

	Writing initial unit tests
	Try it for yourself – write your early unit tests
	Wrapping up the initial unit tests

	Coding planner.data
	Using tests to get the code right
	Try it for yourself – writing and
debugging code

	Writing the persistence tests
	Finishing up the personal planner
	Summary

	Chapter 8: Integration and
System Testing
	Introduction to integration testing and system testing
	Deciding on an integration order

	Automating integration tests and
system tests
	Writing integration tests for the time planner

	Check yourself – writing integration tests
	Summary

	Chapter 9: Other Tools and Techniques
	Code coverage
	Installing coverage.py
	Using coverage.py with Nose

	Version control integration
	Git
	Example test-runner hook

	Subversion
	Mercurial
	Bazaar

	Automated continuous integration
	Buildbot
	Setup
	Using Buildbot

	Summary

	Index

