

For your convenience Apress has placed some of the front
matter material after the index. Please use the Bookmarks

and Contents at a Glance links to access them.

v

Contents at a Glance

About the Authors���xiii

About the Technical Reviewers��� xv

Acknowledgments��� xvii

Introduction�� xix

Chapter 1: Trouble at Gemini Station■■ ��1

Chapter 2: Challenge 1: Fun Stuff to Know■■ ���9

Chapter 3: Challenge 1: Examining the Hardware■■ ��19

Chapter 4: Challenge 1: Examining the Software■■ ���31

Chapter 5: Damage Assessment■■ ���41

Chapter 6: Challenge 2: Fun Stuff to Know■■ ���47

Chapter 7: Challenge 2: Examining the Hardware■■ ��53

Chapter 8: Challenge 2: Examining the Software■■ ���65

Chapter 9: Feeling The Heat■■ ��71

Chapter 10: Challenge 3: Fun Stuff to Know■■ ���77

Chapter 11: Challenge 3: Examining the Hardware■■ ��83

Chapter 12: Challenge 3: Examining the Software■■ ���95

vi Contents at a Glance

Chapter 13: Uninvited Guest■■ ���103

Chapter 14: Challenge 4: Fun Stuff to Know■■ ���109

Chapter 15: Challenge 4: Examining the Hardware■■ ��115

Chapter 16: Challenge 4: Examining the Software■■ ���131

Chapter 17: Hide and Seek■■ ���141

Chapter 18: Challenge 5: Fun Stuff to Know■■ ���147

Chapter 19: Challenge 5: Examining the Hardware■■ ��151

Chapter 20: Challenge 5: Examining the Software■■ ���167

Chapter 21: Carousel Ride■■ ��173

Chapter 22: Challenge 6: Fun Stuff to Know■■ ���179

Chapter 23: Challenge 6: Examining the Hardware■■ ��183

Chapter 24: Challenge 6: Examining the Software■■ ���201

Chapter 25: Push the Button■■ ��211

Chapter 26: Challenge 7: Fun Stuff to Know■■ ���215

Chapter 27: Challenge 7: Examining the Hardware■■ ��219

Chapter 28: Challenge 7: Examining Software■■ ���233

Chapter 29: Off the Station■■ ���241

Chapter 30: Challenge 8: Fun Stuff to Know■■ ���247

Chapter 31: Challenge 8: Examining the Hardware■■ ��253

Chapter 32: Challenge 8: Examining Software■■ ���271

Chapter 33: Epilogue■■ ��289

Appendix A: Parts List■■ ��293

Index��303

xix

Introduction

Fun. We (your authors) wanted a word to describe our ultimate goal for this book, as well as a word
we hope you (our reader) will use to describe it, and that’s the one we chose. There are others goals,
of course, but in the end, when you’ve finished the book, we’re hoping you’ll have enjoyed the
activities described in these pages.

Many books use the Introduction to explain exactly what the book is about, what the reader will
learn, what the reader needs (a skill or maybe an item or piece of software), and what the reader
will be left with when that last page is completed. And this Introduction will do those things, but …
hopefully it’ll make you excited to get started.

So, welcome to Arduino Adventures. We won’t make you spend too much time on this
Introduction—just give us a few pages and let us tell you how this book works. You’ll find a bunch of
useful information that will help make the rest of the book more enjoyable.

What Is Arduino Adventures?
That’s an easy question to answer! First, the book is about the Arduino. Hmm … okay, well, that sort
of assumes you know what the Arduino is, right? Don’t worry, we’ll get to that. For now, just take a
look at Figure I-1. You’re going to use that little electronic device to make some fun and interesting
gizmos. Think of it as a teeny-tiny computer (of sorts) that can do some amazing things when you
add power and a few other tiny components to it. It’s called a microcontroller, and by the time you
finish this book, you’ll know how to do quite a few things with it.

xx Introduction

As for the Adventures part of the title, that we can answer right away. You’re going to learn how
to use the Arduino microcontroller by putting yourself in the shoes of the hero and heroine whose
fictional story is told throughout the book. You see, we could have just written a book that tells you
to take the particulmaxinator and plug it into the fibulonical port and then tells you to upload the
program called MaxFibV2 … snore! Did your forehead just smack the table? Boring, right? And not
the best way to learn.

We’re guessing you’ll enjoy learning about the Arduino a bit more if you feel involved in the activities.
So the storyline is used to present a particular challenge that can only be solved using the Arduino.
How many challenges? Eight of them! You’ll read a bit of the story, discover the problem our
hero and heroine are facing, and then wire up the Arduino and some other components to build a
working solution to the problem. That, in a nutshell, is what Arduino Adventures is all about—using
a fun story with unique challenges to help you gain a real understanding of how to use the Arduino
microcontroller—by actually using your hands to create things. Trust us—it’ll be fun!

Will I Be an Arduino Guru When I’m Done?
Ummm … no. With a limit of 400 pages placed on your new favorite authors, we’ll certainly try to
give you as much training as we can, but there’s only so much we can show you. But don’t stress!
As you progress through the book, we’re going to introduce you to web sites where you can go to
learn more about the Arduino. We’re going to tell you which books to seek out so you can continue
expanding your Arduino skills. And we’re going to offer plenty of tips and advice on how to avoid
reinventing the wheel—you’re going to be pleasantly surprised to find that a lot of work has already

Figure I-1.  The Arduino Uno microcontroller

xxiIntroduction

been done for you, with shortcuts and tutorials available to do just about anything you can imagine
with the Arduino.

When you finish this book, you will have moved from Arduino Novice to Arduino Explorer. You’ll have
enough of an understanding of the Arduino to feel comfortable working with it, programming it, and
tinkering with it to create your own special projects.

What we want you to walk away with when you finish this book is a sense of confidence that you
know what the Arduino is, what it can do (and what it can’t do), and how to get your own answers
and solutions using all the resources that are currently available for Arduino Novices, Arduino
Explorers, and Arduino Gurus. If your goal is to become an Arduino Guru, this book will get you
moving in the right direction quickly.

What Skills Do I Need?
While we would love to make no assumptions about the basic skills our readers will bring with them
and provide a comprehensive, start-to-finish book on everything you’d ever need to know to use the
Arduino … it’s just impossible. First, a book like that would be around 1,500 pages and weigh about
45 pounds (20 kilos for our metric friends)—and that’s not a book we’d want to carry around.
And sure … you could always get the digital ebook version, but honestly we don’t have the time to
write a 1,500 page book. So we’re going to have to make some basic assumptions about what our
readers possess, such as:

Basic computer skills with either Microsoft Windows or Mac OS. This includes
things like being able to use a mouse (or touchpad), knowing how to save files in
folders, and a good comfort level with one of the best tools around, the Internet.
Chances are good that a large percentage of our readers were handed a laptop or
smart phone almost as soon as they were born, so technology is unlikely to faze
them in the least. If, however, you are lacking in some basic computer and Internet
skills, please just ask your children or grandchildren to assist you—they’re really
good with this stuff.

A brain. For some reason, people who want to learn about the Arduino tend to do
better when they have a real brain, not a foam one that you squeeze when you get
stressed or use to play fetch with the dog. If it’s been verified that a brain does exist
inside your skull, you’re going to do well. If you don’t have a brain, please put the
book down and have someone drive you to the hospital—you’ll need to have some
tests run. Sorry.

A parent, teacher or good friend. Not only do these people make good partners
for working on the challenges in this book, but they’re also really useful when it
comes time to show off what you’ve done. Bonus points will be awarded if a look of
surprise is visible on their faces. Double bonus points are awarded if they shake their
heads and have no idea what they’re looking at and ask you to explain. Seriously …
you know you’ve made something cool when people look at you like you’re a
mega-genius or something.

xxii Introduction

How is the Book Organized?
As we mentioned, there are eight challenges in all. This means the story will be broken into eight
parts (okay, nine if you include the story’s conclusion). But the fictional story isn’t going to offer you
the information you need to solve the eight challenges. Nope! To solve those challenges, you’ll be
getting some additional instruction that, again, we hope you’ll find easy and fun to read.

The book is broken into eight parts. Each part starts with a chapter containing a piece of the overall
story. Following the fiction chapter is a theory chapter that offers information on the skills and
components needed to complete the challenge. Each theory chapter is followed by a hardware
chapter that shows how to build the Arduino-controlled solution to the challenge. A software chapter
concludes each challenge with details on how to make the solution work using what’s called a
sketch. Don’t worry, we know these may be new words to many of you, so for now just know that all
Arduino-controlled devices require both a hardware and software component. You’ll gain experience
in both areas as the book progresses. Also, at the end of each software chapter you’ll find extra
problems to solve to help you become a better Arduino tinkerer.

So, here’s a summary of how the book flows:

Fiction Chapter – You’ll read the story and discover the challenge that must be
overcome using something you’re going to build using an Arduino microcontroller.
Yes, the story is fiction, but the challenge is 100% real—and by buying this book
you PROMISE to not move forward to the next challenge until you’ve successfully
completed the current challenge. Agreed?

Theory Chapter – You’ll get a basic education on the hardware that will be used
to solve a challenge, as well as some more detailed explanations on relevant
topics involving electronics and programming. This is the kind of chapter that
would typically put us to sleep, too, so we promise to try and make it somewhat
entertaining so your eyes don’t glaze over and you start snoring.

Hardware Chapter – When you finish this chapter, you’ll have a solution to the
challenge introduced in the fiction chapter. It’ll look cool … we promise—lots of
wires and cool-looking extras you can show off to your friends and family. You’ll also
be introduced to other electronics components that we might not use in the book
but that we think you’ll find cool and fun to know about for your own projects.

Software Chapter – That gizmo you put together in the hardware chapter isn’t
finished yet. In this chapter you’ll be given basic instructions on how to make
the gizmo work using simple programs we’ll provide. But we’re not just going to
give you a program—we’ll also explain how and why it works so you’ll be able to
experiment and modify it if you like.

Do I Need to Understand Electronics?
Not at all. That’s not to say any electronics knowledge you do have won’t come in handy, but
we’ll be introducing you to the concepts you need to know about in the book, so no electronics
experience is necessary. Still, just as you won’t be an Arduino Guru when you finish this book, you
won’t be an Electronics Guru either. But we’ll make sure to point you to resources that will help you
move in that direction if that’s your desire.

xxiiiIntroduction

The challenges presented in this book involve a variety of electronics components, but we’ll go over
all of them as needed and give you the information you need to finish a challenge and understand
how it works.

Do I Need to Know How to Solder?
In case you don’t know, soldering is a method used to more permanently connect electronic
components and wires. Heat is used to melt a mixture of various metals that quickly cools and
solidifies. You can use this mixture (called solder) to make two wires stick together or make an
electronic component maintain its connection with other components.

But … no soldering is required. If you know how to solder, great! But you won’t need to do so for the
challenges in this book. And if you don’t know how to solder, we’ll point you later on to some good
tutorials that show you what’s involved. If you do decide to go deeper into electronics and Arduino
tinkering, it’s a skill you’ll definitely want to learn.

What Do I Need Besides This Book?
Appendix A includes a complete list of all items you’ll need to complete all eight challenges. You’ll also
find part numbers for the various vendors we recommend. If you prefer to get the items a little at a time,
you’ll want to read the theory chapter for each chapter to discover the specific items required for each
particular challenge. We want to be upfront and let you know that if you purchase all of the required
components for this book individually, you’ll end up spending around $175.00. But be sure to check out
the book’s web site because we’ll be telling you how to save money by buying pre-bundled packages
that contain the components at reduced prices. We’re pushing you to the web site because
this information will likely change frequently, so whatever we put in this book may well be out of
date (and higher priced) by the time you read this. So, again … check the web site for the latest
information on pricing and parts required!

The one item that’s required for all challenges, however, is the Arduino Uno. You’ll find a number of
vendors that sell the Arduino, but you’ll be happy to know that Radioshack is currently an Arduino
retailer. This means if you’ve got a Radioshack in your town, it probably carries the microcontroller. If
you prefer to purchase online, you may find an occasional sale that has Arduinos at a reduced price.
But the Arduino is already a very inexpensive microcontroller (typically between $20 and $30), so just
buy one at the best price you can find. Just one! You won’t need multiple Arduinos for the challenges
in this book.

You’ll also want Internet access as you’ll use it to download full-color wiring diagrams for the
challenges on the book’s web site, www.arduinoadventurer.com. And although it’s not required, you’ll
find when you get to the first challenge that you can download some PDFs that will make some of
the challenges a bit more fun. We call them Challenge Cards, and if you decide to use them, you’ll
want to print them out on 8.5x11 card stock (more sturdy than standard paper).

We’ll also be sending you to an occasional Arduino-related site. We’re not doing that in order to save
on typing—we just want to show you how to search for and find particular solutions that already
exist online.

www.arduinoadventurer.com

xxiv Introduction

The Arduino can be powered by either batteries or AC (wall) power. For this book, however, we’ll be
using battery power and a USB cable. This means you’ll want to purchase a number of batteries
depending on how you wish to provide power to your Arduino and a USB A male to USB B male
cable is used in some of the challenges to power the Arduino as well. Appendix A provides you with
a few options for power; choose the one you like best.

Finally, you’ll need some specialty electronics items that most likely you won’t find locally (at a
Radioshack, for example). While we’ll do our best to keep costs down, realize that learning to
use the Arduino requires you to purchase a few unique items to make the Arduino work and the
challenges successful.

What Do I Need For the First Challenge?
Well, for Chapter 1 you’re going to need to know how to read. If you’ve made it this far into the
Introduction, then it’s safe to say you’ll be okay and can move forward.

You’re also going to want to make a shopping list for the components used in the first challenge.
We’ve made this easy for you and placed the first challenge’s list of required components at
the beginning of Chapter 3. For all remaining challenges, consult Appendix A for the rest of the
components you’ll need.

Finally, you’re going to need to a pep talk. So here it is:

You’re going to have fun. And you’re going to learn some really cool things that are going to amaze
your family, friends, teachers, and pets. (Yes, even dogs and cats appreciate a well-designed gizmo.)

You can do this. There is nothing in this book that is beyond your skills. If you get confused or lost,
it’s a book—you can easily go back and reread any sections you like. And we’ll also be sharing
with you some great online resources where you can go and ask questions. You’re fully qualified to
accept the challenges in this book, so don’t get discouraged.

We (your authors) want you to enjoy this experience. Arduino Adventures was written specifically for
people like you. We promise that when you finish this book, you’ll have a LOT of reasons to smile
and be proud.

So … let’s get to it. Your first Arduino challenge awaits. All you need to do is turn the page …

1

Chapter 1
Trouble at Gemini Station

“Do you just look for ways to get us into trouble, Cade?” asked Elle. She looked back over her
shoulder to make certain no one else had followed them down the dark hallway.

“Are you telling me you actually wanted to stay with the tour group?” Cade flashed the same grin he
always used when he tried to convince Elle he could do no wrong.

Trouble Begins
Sneaking away from the rest of the class just as the tour of Gemini Station began was pure Cade.
The two students were both convinced that listening to lectures on the history of computing and
electronics during the pre-gateway period would have them yawning and looking for a quiet corner
to sleep. Mrs. Hondulora and the the other two instructors had made the mistake of being at the
head of the line, allowing Cade and Elle to drop their location beacons in the backpacks of two other
students who weren’t paying attention before sneaking away.

“No, but you just know Mrs. H. is gonna pull a pop quiz on us next week about some little bit of trivia
we’re going to miss,” replied Elle. “My grades aren’t bad, but if I fail a quiz my mom and dad’ll put
me on a drop-ship to the outer ring.”

“You’ve got the best grades in the class, Elle. Give it a rest,” said Cade. “Hey, here we go.”

Elle followed Cade’s gaze to a digital display mounted at the edge of the intersection. Colored lines
on the floor were finally given meaning as the pair read instructions color-coded to indicate which
line to follow for various exhibits.

“Pre-2050 Video Game Technology,” said Cade. “Red line. That could be interesting.”

Elle shook her head. “No, the blue line. Hologram Storage Solutions 2020–2085. I’ve always been
curious to know how they solved the distortion problem.”

Cade frowned and slowly turned his head to look at Elle. “You’re kidding, right.”

Elle tried to hold back the grin, but it lasted only a few seconds. “Almost had you.”

2 CHAPTER 1: Trouble at Gemini Station

“Well, we’ve got five or six hours to burn and an entire station turned into a technology museum,
so I thought you might be serious. You really do get into this stuff more than anyone else I know,”
said Cade.

“How about that third option?” asked Elle. “Yellow line.”

Cade looked back at the display. “History of Processors 1960–2015. Yeah, you’ve picked another
winner, Elle.”

Cade dodged just in time to avoid Elle’s hand aimed for the back of his head. “We’re running out of
options,” she replied. “We can always just go back and see what the group is doing.”

Another grin crossed Cade’s face.

“I don’t like that smile,” said Elle.

“How many levels did Mrs. H. say were on this station?”

Elle shook her head. “No way, Cade. That’ll get us banned from field trips for the rest of the
school year.”

“Come on, Elle. How many?”

On the Level, or Not?
Elle bit her lip and thought back to the small presentation the students had watched prior to the
trip. The space station had been decommissioned back in 2091. The twenty-three levels that
made up the cigar-shaped station circling M-392 were originally used for deep-space research and
provisioning of outbound ships, but the station had been literally cut in two to form Gemini Station
and Taurus Station. The latter had been towed to the opposite side of M-392 so both stations were
in geosynchronous orbits above the two largest settlements, Gemini for mining and Taurus for
energy production to power the gateway for this system. Elle had to concentrate to recall the number
of levels on Gemini Station, but then one of her memory tricks fired and she saw twelve rocks
arranged to form the letter G.

“Twelve for Gemini. Eleven for Taurus.”

Cade sighed and pointed at Elle’s forehead. “It’s really creepy how much information you store up
there, you know that? I’ll bet you a week’s worth of ’Net access tokens that you probably have the
entire station’s layout memorized, don’t you? Come on. . . admit it.”

“The map was in the data pack. It might be on a test or something,” Elle replied, her face red.

“Yeah. A test or something.”

“Shutup.”

“So, twelve levels. The shuttle dock is what, level twelve?”

“Eleven. Command and Control is level twelve,” said Elle. “Think of it as a tube standing upright.
Level twelve at the top. . .”

“And we took the elevators all the way down to the bottom. This big number one painted on all the
walls seems to be important,” asked Cade. “I’m guessing restrooms?”

“Funny,” said Elle. “But the answer is still no. I’m not getting too far from the group, Cade.”

3CHAPTER 1: Trouble at Gemini Station

Cade took a deep breath and exhaled. “Fine. You stay here. But if you’re not going to go with me, at
least do me a favor and tell me what else there is on this station that might be interesting and where
it’s located?”

Elle knew that if she didn’t offer up more details, Cade would just continue to bug her. And he could
be annoyingly persistent. She frowned for a brief moment and then nodded. “Alright. What are you
wanting to see?”

Cade looked back down the hallway they had just crossed to the set of double elevator doors.
“What’s on level two?”

Elle once again called up the data pack from memory. She had read the museum summaries of each
level numerous times, and the holographic tour of the main tourist levels were a bit dull but she’d run
it at triple-speed, listening to the AI’s high-pitched helium voice and trying not to laugh.

“Let’s see. . . level two was food court, gift shop, and a couple of holo-rooms. Basic stuff, really.
Interactive historical views of various breakthroughs in technology. Supposedly you can have lunch
and chat with some of the titans of tech. Hey, that might be fun to go and talk to those original
Google guys. . .”

“Stop. No, thank you,” said Cade. “What about level three?”

“Um. . . let me see. More exhibit space. Microcontroller antiques. The Andrew 5.0 Experience. Some
early tablet technology,” said Elle.

“Wait. . . Andrew 5.0?”

“Yeah,” said Elle. “The first AI. You like that kind of thing?”

“Absolutely!” Cade smirked and looked down the hallway, hoping his voice hadn’t carried and
alerted the teachers to their absence. “Come on, Elle. You’ve got to come with me.”

“Not a chance,” she replied. “I think I’m going back to the group. Maybe they won’t notice me trying
to blend in.”

“I’ll never find my way around up there by myself,” said Cade. “Please, please, please?”

“Lame,” said Elle. “There are signs everywhere, moron. Like that one.” She pointed at the one
directly over Cade’s head.

“If you come with me, I’ll do all your formatting work for a week.”

Elle cringed. Of all the things she hated to do, formatting her written assignments to fit Mrs. H.’s
picky standards was at the top of the list. And Cade knew it.

“A month,” she replied.

“What? No way!”

“See ya,” Elle said and turned to walk away.

“Alright,” said Cade. “One month. But you’re going to have to get me to more places than the
Andrew 5.0 location.”

“This is not going to end well for me,” said Elle.

Cade laughed. “Yes! Okay, come on. The elevators look clear.”

4 CHAPTER 1: Trouble at Gemini Station

Andrew 5.0
The elevator doors opened. “Level Three,” said a polite voice. “Be sure to visit the Andrew 5.0
Experience to hear the history of artificial intelligence from a splinter node of the original
Andrew 5.0!”

Cade poked his head out the door, looking left and then right. “All clear.”

Elle pushed him aside and walked quickly out of the elevator. “You don’t have to be all sneaky, Cade.
We’re the only ones on the station today. Come on, let’s hurry.”

Cade walked fast to catch up. “Are you sure?”

“Yep. The entire station is automated. Didn’t you notice that our two shuttles were the only
ones docked?”

“Uh, yeah. That’s right. Two shuttles.” Cade tried, and failed, to sound informed.

“We were supposed to share the tour with a group of Japanese students gating in from Earth, but
I heard that a bunch of them came down with a bug. And Gemini is pretty strict about its
quarantine rules.”

“Yuck,” said Cade, turning left at a display of old LCD screens. He stopped to look. “This is how kids
used to have to read? With a screen?”

“Would you come on?” hissed Elle.

“I’m coming,” said Cade. “Calm down.”

Elle pointed down a hallway. “This way. I assume you want to visit Andrew 5.0 first?”

Cade nodded. “Yeah, let’s go there first.”

Elle continued speed-walking, making a right turn at a large display of rectangular boxes. A sign read
“PC Case Mods 2010-2015” and Cade was tempted to stop for a quick peek, but a stern look from
Elle convinced him to keep moving.

“What’s so interesting about Andrew 5.0?” Elle asked.

“Family history,” said Cade. “My great-great-grandfather was on the original programming team
when Andrew achieved sentience.”

“Really? That’s cool.”

“Yeah, I’m curious to know if he remembers him.”

“Well, he should,” replied Elle. “It’s just a splinter node, but since we’re on a station dedicated to
technology history, I’ll bet this node has kept that stuff in local memory.”

“I hope so,” said Cade.

Boom!
Elle stopped and looked up at a sign. “Microcontroller Hands-On Exhibit in that room over there. The
Andrew 5.0 Experience is on the other side. Let’s cut through and save some time.”

“Sounds good.”

5CHAPTER 1: Trouble at Gemini Station

The door opened as Elle approached and the interior LED lights instantly awakened. Cade followed
Elle as they walked by dozens of tables. Large black toolboxes and strange equipment lay
scattered across the tables. Clear bins contained hundreds, maybe thousands, of small electronics
components that were colorful and completely alien to Elle and Cade.

“This room actually looks fun,” said Elle. “Wish we had time to play.”

“With this stuff?” asked Cade. “Really? This tech was outdated when your grandmother was
a baby.”

“Maybe, but I’ve always liked learning about how people in the early days did things.”

“I tell you what, Elle,” said Cade. “If we have time, maybe we can come ba. . .”

BOOM!

The floor shook hard enough to knock Elle and Cade off their feet.

BZZZZZT!

BZZZZZZZZZT!!!

The lights flickered off, then on, then off again. There was a small electrical pop, followed by a
whining sound that dwindled in the distance.

And then the alarm began to wail.

“Cade! Cade!”

“I’m okay,” Cade replied. “Are you alright?”

Emergency lights had turned on, not quite as bright as the standard LED lighting, but enough that
they could see that the floor was covered with dented toolboxes and small pieces of metal. A few
tables had overturned, and a red light on the wall was flashing.

“Yeah. Yeah. . . I’m fine. What was that?” yelled Elle.

Cade stood up and helped Elle to her feet. “We need to get back to the group. That felt like
an explosion.”

Elle’s eyes widened. “Are you sure? Maybe it was something else.”

“Anything else is just as bad,” said Cade. “It was enough to knock us off our feet, Elle. Let’s go.”

Elle followed Cade toward the entry door and then bumped into him as he stopped short. The
door didn’t open. Cade waved his hands in the air, hoping to set off whatever motion sensor was
supposed to trigger the door, but there was no response.

“No good,” said Elle. “Try the keypad.”

Cade pointed at the bits of melted plastic hanging from the small white rectangle mounted to the
right of the door. “You mean that bit of junk?”

“Oh, this is not good,” said Elle.

Cade turned to look to the other side of the room that led to the Andrew 5.0 Experience.
A matching burned and melted control panel hung by a few wires from the wall. “Other keypad
is damaged, too.”

6 CHAPTER 1: Trouble at Gemini Station

“Do you know how big a power surge it would take to do that?” asked Elle.

“We need to get out of this room, Elle,” said Cade. “Look for another exit.”

Escape, or Not
“All visitors, please make your way to the emergency escape pods located on levels one, six,
and ten. For other levels, ladder access tubes for visitors to reach levels one, six, and ten
are now open. Please follow the blue and yellow flashing lights to the nearest ladders and
escape pods. Visitors on levels eleven and twelve should proceed to the level eleven docks.
Repeating. . .”

“No exits on that side,” Cade reported as he joined Elle at the main entrance that was now blocked.
“The ceiling is fifteen or twenty feet up and I’m not finding any ladders or other way to climb up
there.”

“The floor is tiled, but none of the tools I found will let me pull them up,” said Elle.

“Do you know anything about electronics?” asked Cade. “Maybe we can fix the keypad?”

Elle leaned in closer to stare into the burned circuitry that made up the keypad. “I wouldn’t know
where to start.”

“Me either,” replied Cade.

“We could try yelling for help. Maybe someone will hear us.”

Cade and Elle began yelling and pounding on the door.

“HELP!”

“Let us out!”

“Anyone out there? Please help us!”

The banging slowed as the two students tired. And that’s when they heard a faint voice from the
opposite side of the room.

“What is the problem?”

Elle and Cade ran to the opposite door in the room.

“Hello? Hello? Can you help us? Who are you?” asked Elle, putting her ear to the door.

“Hello. I am Andrew. What is your name?”

A Plan
Five minutes later, Cade and Elle finished explaining the situation to Andrew 5.0. Andrew couldn’t
provide any explanation for the alarm and evacuation, but he did verify a significant amount of
damage being reported on the station via an internal damage-control network he was able to
monitor.

“Are you able to communicate with the station AI?” asked Cade. “Can you let someone know we’re
locked in this room?”

7CHAPTER 1: Trouble at Gemini Station

“I am sorry, but I am unable to communicate outside of my current location. I can pick up certain
reports traveling over the station’s communication grid, but my programming was modified to limit
my capabilities, including interfacing with other AIs.”

“Is there anyone on this level besides us?” asked Elle. “Is there any chance an emergency team will
be sent to check out the station?”

“Unknown, Elle,” replied Andrew. “There are probably protocols in place for emergencies.”

“So we just sit tight and wait,” said Cade.

“But we don’t know what’s happened,’ said Elle. “What if the station is venting oxygen? Or what if
there’s a fire?”

“Way to stay positive, Elle.”

“Sorry. I’m just saying we need to get out of here. We can’t assume anyone is coming to get us. We
did drop our personal beacons into other people’s backpacks.”

Cade’s face reddened. “That was a bad idea. Sorry.”

“Hey, I went along. I’m not blaming you. But it means we’re on our own. No one knows we’re here.”
Elle put her hand on Cade’s shoulder.

Cade nodded. “Well, not to sound cocky, but we are the two smartest kids in the class. We should
be able to figure out how to escape a locked room, right?”

Elle laughed. “And we’ve got an AI in the next room.”

“That’s right! We’re unstoppable! Andrew, we need to figure out how to get out of this room.
Any ideas?”

Andrew had remained quiet but responded instantly. “You said the two keypads are damaged. Can
you tell me if the circuit board behind the panel is also damaged?”

“The green board?” asked Cade.

“Yes.”

“Yeah, it’s toast. I see black burn marks across it.”

“Above the circuit board is a small sealed metal case with four or five wires going into it. Are the
wires still intact?”

Elle poked at the wires going into the small metal box. Each of them stayed in place. “Yeah, they’re
fine. I think.”

“Good. We’ll need to spoof the entry code, but you can easily do that with a variable resistor and
a small power source. Of course, you’ll need to do some custom programming so that will require
some processing capabilities. Do either of you have an Intellitab with you?”

Cade turned and stared at Elle. “Is he kidding?”

Elle frowned. “Andrew, we don’t have our tabs with us today. Sorry.”

There was a slight pause.

“Andrew?” asked Elle.

8 CHAPTER 1: Trouble at Gemini Station

“I was just consulting my database inventory of the station. You are in the Microcontroller Hands-On
Activity Lab Room. We’ll just use what’s available.”

Once again, Cade shook his head and stared wide-eyed at Elle. “Seriously. . . is he kidding?”

Elle held up her hand.

“Andrew, this stuff is ancient. Old-style electronics and stuff we don’t even recognize.”

Andrew’s voice changed, becoming slower and sounding much more patient. “Elle. Cade. It will be
a challenge, but I can help you get that door open using some of the components in the room. You’ll
have to listen to me carefully, but if you follow my instructions, you’ll be able to open the door. Are
you ready?”

Cade exhaled and nodded his head slowly. “Sure, I don’t think we have any other options.”

Elle grinned. “Looks like we’re going to get some hands-on time whether we like it or not. Okay,
Andrew, tell us what we need to do.”

“First, I need you to locate something called an Arduino microcontroller. My inventory tells me there
are hundreds of them in a cabinet in the room in labeled boxes. Find one now.”

9

Chapter 2
Challenge 1: Fun Stuff
to Know

We thought about calling this Challenge 1: An Arduino Applied Exercise, but that sounded too much
like going to the gym. Our second attempt was Chapter 1: Theoretical Concepts, but it caused both
of your authors to fall fast asleep. So we had a short discussion about what exactly we hoped you’d
get out of this chapter and it came down to this—the fun stuff.

As we mentioned in the Introduction, we aren’t going to be able to teach you everything there is to
know about electronics, programming, and the Arduino in general. But what we can do is point you
in the right direction to other resources that will help fill in the gaps between what we can teach you
in this book and what you’ll want to learn elsewhere to become an Arduino guru.

So, this is what we decided. First, we’re not going to flood you with tons of information about the
Arduino all at once. We’ll spread it out over the entire book so by the time you complete all the
challenges, you’ll have a good understanding of what the Arduino is, what it can do, and how it
works. Along the way you’ll pick up some good programming skills that will only improve over time
as you branch out and go crazy designing your own Arduino gizmos.

We’re inviting our favorite artificial intelligence, Andrew 5.0, to help along the way by offering
additional advice, tips, and references. Don’t think of it as homework … but yeah … it’s homework.
But we promise it’ll be interesting homework!

So, here’s the deal. After each fiction chapter that moves the story of Cade and Elle along, we’re
going to give you a Fun Stuff to Know chapter. You’re going to learn stuff, so don’t let that scare
you away, okay? The goal of this book isn’t to overwhelm you with technobabble and complicated
discussions, and we’ll do our best to keep the fun stuff really fun. So, grab a chair and a drink and
maybe your favorite snack and let’s get started helping Cade and Elle get out of that locked room
and introduce them to the Arduino. Sound fun? We agree … let’s go.

10 CHAPTER 2: Challenge 1: Fun Stuff to Know

What Is an Arduino?
Just because you have this book doesn’t automatically mean you know what an Arduino is, so we’re
going to get that over with right away. The easiest way to explain is to show you what an Arduino
looks like. Take a look at Figure 2-1 and you’ll see an actual-size Arduino Uno.

Figure 2-1.  The Arduino Uno microcontroller

That Uno part is the name given to this particular version. You’ve probably heard of the iPhone 3, 4,
and 4s and Windows XP, Windows Vista, and Windows 7 (and soon Windows 8). These are simply
various versions of products people use and the Arduino is no different. Well, that’s not completely
true. The Arduinos are typically given names instead of numbers (as well as revision numbers; the
current version of the Uno is Revision 3, or Rev 3 for short), so what you need to know is that we’ll
be using the Arduino Uno version Rev 3 for all challenges in the book.

Note  You’ll want to purchase an Arduino Uno before beginning the actual challenges, so consult Appendix
A for a list of sources where you can purchase the Arduino Uno as well as the other components you’ll need
to complete the book.

At the time that we’re writing this book, the Arduino Uno is the latest version. Without getting too
technical, the Arduino Uno and its predecessors are called microcontrollers, which is just a fancy
word for a really tiny computer. And that’s exactly what it is! A computer. And just like the computers

11CHAPTER 2: Challenge 1: Fun Stuff to Know

you’re familiar with, the Arduino can have things plugged into it: power supplies, motors, and
sensors—all sorts of components. But the Arduino can also do other things, such as calculate
4,234,876 x 5,981 or figure out how many days are left until school is over for the summer.

ANDREW 5.0

Gentlemen, I’d like to interrupt here for a moment just to let your readers know that if they have an older version of
the Arduino, it might be possible to use it instead of the Arduino Uno. They might have to do a little research to make a
non-Uno version work properly, by finding out what’s the same and what’s different between models. If you’d like to see
other versions and learn about their differences, visit http://arduino.cc/en/Main/Hardware. There’s quite a lot
of information on this web site, so don’t feel you have to understand it all right away. As you continue through the book,
many of the technical aspects of the Arduino Uno and its predecessors will begin to make more sense.

Andrew is correct. Older versions of the Arduino might work for the challenges you’ll find in this
book, but obtaining an Arduino Uno is going to be the easiest way to avoid frustration when working
through the challenges. From this point forward, however, we’ll just use the term Arduino instead of
Arduino Uno. It’s kind of like saying “My computer runs Windows” instead of “My computer runs the
Windows 7 Professional 64-bit operating system.” You won’t sound so goofy and long-winded.

The Arduino has a bunch of interesting things attached to it, but we’re not going to go over all
of them in this chapter. Instead, we’d like to point out a few key items you’ll be using for the first
challenge. Figure 2-2 shows the Arduino with some fancy arrows pointing out a few important
locations. Check them out now, we’ll wait.

USB Connector
Headers

Power
ProcessorReset Button

Power Light

Figure 2-2.  The Arduino again … but this time with fun arrows!

http://arduino.cc/en/Main/Hardware

12 CHAPTER 2: Challenge 1: Fun Stuff to Know

The Arduino can be powered using batteries or AC power, also known as an AC adapter. Or, if you
really want to be funny, call it a wall-wart. We do.

The point is that the Arduino requires power, so you’ll either need to plug it in with a wall-wart or
use a battery harness like the one shown in Figure 2-3 to hold one 9V battery. We’ll show you in
Chapter 3 how to provide power to your Arduino if you choose to use a battery harness. (We actually
recommend the battery harness because it makes your Arduino portable. Cade and Elle will be using
this method in the book.)

See those things called headers? (Refer back to Figure 2-2 if you need a reminder.) Those little black
rectangles have holes in them. You’ll be inserting wires and other items into those holes later in
the book—this is how you attach motors or sensors or other components to the Arduino. For right
now, don’t worry about all the little numbers and words printed next to the headers. We’ll explain
everything when the time comes; for now we just want you to notice that not all the holes are the
same. Some have numbers, some have words, and some are completely confusing until you know
what they’re used for. Rest assured we’ll explain it all by the end of the book.

There are many more parts of the Arduino that you’ll learn in time, but the last one we want to point
out now is that big rectangle mounted almost in the center. That’s the brains of the Arduino and it’s
called a processor—specifically, an Atmel AVR processor. That little thing is what will be running the
show once you’ve got your challenge gizmo created and ready to test. And how exactly does the
processor run the show? Glad you asked.

Giving an Arduino a Job to Do
An Arduino won’t do a lot by itself. Yes, it can perform math calculations and it keeps pretty good time
with its internal clock, but the microcontroller by itself is really just a pretty cool-looking paperweight.
(And it’s not that heavy, really, so it’s not going to function as a paperweight all that well.)

Figure 2-3. A battery harness can provide portable power to an Arduino

13CHAPTER 2: Challenge 1: Fun Stuff to Know

What makes an Arduino fun to use is plugging in all sorts of electronic components that do stuff.
Motors. LEDs. Sensors that can detect a dog barking (sound) or an intruder entering your room
(ultrasonic). Things called resistors, capacitors, transistors, and much more. It doesn’t matter if you
don’t know what all those things are or how they work yet … just be aware that when they’re connected
to the Arduino, they’re ready to do a job. By itself, of course, the Arduino doesn’t know how to control
those components and tell them what to do. For that, it needs some instructions … from you. These
instructions come in the form of written words and numbers that you type up, similar to that essay you
wrote for class titled “A History of Colonial Gardening Techniques” but much more interesting and fun.

The Arduino gets these instructions and stores them in its memory. The set of instructions is often
called a program, but Arduino users also call them sketches. No, an Arduino sketch doesn’t require
you to provide your best hand drawing of two deer running in the forest. A sketch is simply the name
given to a list of written instructions that tell the Arduino what to do, how to do it, and how to play
well with all the stuff connected to it. Why did they choose “sketches” instead of “programs”? We’re
not really sure, but we do like the sound of it: “I just loaded a sketch into my Arduino.”

ANDREW 5.0

I think an example might help your readers understand what a sketch looks like. Listing 2-1 shows a simple sketch that
makes a single white LED that has been connected to an Arduino blink on and off.

Listing 2-1.  An Arduino Sketch That Makes an LED Blink

/*
 Blink
 Turns on an LED on for one second, then off for one second, repeatedly.
 
 This example code is in the public domain.
 */
 
// Pin 13 has an LED connected on most Arduino boards.
// give it a name:
int led = 13;
 
// the setup routine runs once when you press reset:
void setup() {
 // initialize the digital pin as an output.
 pinMode(led, OUTPUT);
}
 
// the loop routine runs over and over again forever:
void loop() {
 digitalWrite(led, HIGH); // turn the LED on (HIGH is the voltage level)
 delay(1000); // wait for a second
 digitalWrite(led, LOW); // turn the LED off by making the voltage LOW
 delay(1000); // wait for a second
 
}

14 CHAPTER 2: Challenge 1: Fun Stuff to Know

You can also find this sketch at arduino.cc/en/Tutorial/Blink.

Just like you probably don’t speak ancient Greek, you’re not expected right now to totally understand what this sketch is
saying. That will come in time. Just note that this sketch uses some English words that you’ll recognize. We’ll provide the
sketches you’ll need to complete the challenges, but you’ll also learn how they work and how to create your own as you
work your way through the book. Writing sketches is fun, and this is what really gives you the power to create your own
Arduino-controller gizmos that can do whatever you can dream up.

To create sketches, you have to download and install something called the Arduino IDE. The IDE part
stands for Integrated Development Environment. Yeah, we feel the same way. Just call it the IDE and
know that it’s the software tool you’ll use to write sketches and upload them to the Arduino.

Installing the Software
We don’t know whether you’ll be using a Windows, Linux or Mac computer to create your sketches,
but you’ll be happy to know that the IDE is available for all three operating systems. You can
download the Arduino IDE by opening a web browser and visiting www.arduino.cc, then clicking
the Download button on the green menu bar running across the screen. After you download the
appropriate version for your computer, click on the Getting Started button (also on the green bar at
www.arduino.cc) and follow the instructions for installing the software for your particular operating
system; you’ll find instructions for Windows, Mac, and Linux.

Caution  Do take the time to read the install instructions for your operating system. Otherwise, it’s
all too easy to overlook key details like the need to install drivers under Windows. As with just about
anything in life, it’s good to read the instructions.

Things to Watch for on Windows
We noticed a few things while installing on Windows that we want to share with you. The Windows
install can be intimidating if you’re used to simply plugging in a device and having it work. There’s
no setup program to mindlessly click through. You must install the drivers manually. We hope what
follows is helpful. It comes from our install on Windows 7.

Tip  Scan this section first for background. Then read and follow the official install instructions found
on arduino.cc. We hope that what you read here will help and give confidence when following the
instructions provided on Arduino’s website.

When you first plug in the device, Windows will begin searching for a driver. That search will fail.
If you click to see the specific error message, you’ll probably see something like the dialog in
Figure 2-4. Do not worry! Read the install instructions from the Arduino website carefully. The error in
Figure 2-4 is an expected error. Simply click Close and follow the remaining instructions carefully.

http://www.arduino.cc
http://www.arduino.cc

15CHAPTER 2: Challenge 1: Fun Stuff to Know

Figure 2-4.  The error that really isn’t

The current install instructions on arduino.cc have you opening the Device Manager and looking
under “Ports (COM & LPT)” for a device called “Arduino UNO (COMxx)”. Figure 2-5 shows what you
really need to look for.

Figure 2-5.  The Arduino UNO listed as “Unknown device” under “Other Devices”, on the very first install

16 CHAPTER 2: Challenge 1: Fun Stuff to Know

The very first time you install the device, it shows up as “Unknown device’. If you have doubts about
what you are looking at, unplug the USB cable, wait a few seconds, and plug it in again. You will
see the “Unknown device” disappear from Device Manager listing, and then reappear again. After
you have installed the Arduino’s drivers, then the device will appear under “Ports (COM & LPT)” as
“Arduino UNO (COMxx)”. But the very first time around, the device is unknown.

The last thing we noticed in our testing is that the install instructions ask you to navigate to a driver
file named ArduinoUNO.inf. In Windows 7, we were able to navigate only to the directory containing
the file, and not to the file itself. Figure 2-6 shows where we ended up. Just click to highlight the
drivers directory, and then click the OK button. Windows will find the specific file by itself.

We hope the heads-up we gave in this section helps during your install. Keep in mind that the
instructions on the Arduino website may get corrected between now and when you read the book.
Read those instructions carefully. Follow them thoughtfully. Those are the keys to success.

The Development Environment
After installing the software and drivers, open the Arduino IDE by double-clicking the Arduino
executable; this icon may be located on your desktop or you may have to look for it in the
Applications folder (Mac) or the All Programs/Programs folder (Windows). Figure 2-7 shows what the
IDE looks like after it opens.

Figure 2-6.  The drivers directory containing the Arduino UNO driver file

17CHAPTER 2: Challenge 1: Fun Stuff to Know

Figure 2-7.  The Arduino IDE ready for action!

Note  Installing the IDE is fairly straightforward, but we’re going to point you to
http://arduino.cc/en/Guide/MacOSX and http://arduino.cc/en/Guide/Windows
(for Mac and Windows users, respectively). These guides provide additional detailed instructions for
installing the IDE so we can get on with the fun stuff. We’re not going to go over every menu, button,
and bell and whistle in the IDE interface, but if you’re just dying to know all the features and tools the
Arduino IDE offers, feel free to dig in and read it all now. It’s good stuff!

http://arduino.cc/en/Guide/MacOSX
http://arduino.cc/en/Guide/Windows

18 CHAPTER 2: Challenge 1: Fun Stuff to Know

The IDE works just like most programs. You can save a new sketch file and give it a name by using the
Save command under the File menu; you can modify an existing sketch and save it under a new name
using the Save As command; and you can open existing sketches on your hard drive by using the
Open command (under the File menu) and browsing to the location of the sketch you wish to open.

Don’t worry—we’ll give you plenty of opportunities to use the IDE, create sketches, save them, and
more. You’ll get enough hands-on experience to know your way around the IDE like a pro.

Ready to Build Something?
We promised to keep the theory short and sweet, didn’t we? Working with the Arduino should be
fun, and having to learn a whole bunch of programming theory and math equations would really
slow you down! We’re not suggesting that learning all that stuff isn’t important—it is. But we suspect
you’re dying to get your hands on the Arduino and build something, right? Elle and Cade are stuck
in that room and you’re probably squirming in your chair wanting to build a gizmo that will help get
them out. So let’s do it!

Chapter 3 is going to show you how to wire up the Arduino with a few simple components. Along the
way, we’ll give you some explanation of various parts of the Arduino that we ignored in this chapter.
And we’ll explain some concepts that are important when it comes to working with electricity. Our
goal, again, is to make this fun for you, so we hope you’ll forgive us for a bit as we ease you into the
challenges and offer up more information as we go.

Take a quick look at Appendix A now and make sure you’ve got all the items listed for Challenge 1.
If so, you’re ready to begin your adventure and put that Arduino to good use! (And if you haven’t yet
picked up all the items in Appendix A for Challenge 1, you can still read ahead and get a glimpse of
what you’ll be doing once you’ve collected everything.)

Time to build!

19

Chapter 3
Challenge 1: Examining
the Hardware

And here we are at Chapter 3, ready to get our hands on an Arduino so we can build something.
But what will we make? We’d like to tell you you’ll be building a highly technical computer system
that will control a rescue shuttle that will zoom in and rescue Elle and Cade. But like any skill you
pick up in your life, the key to success is starting slow and simple. Our first task will be to figure
out what hardware we’ll use to build the gizmo that will get Cade and Elle out of the room in which
they’re trapped. It’s not a complicated gizmo, however, as you’ll soon see. As a matter of fact, most
of the heavy work to get Cade and Elle out of the room will be done in Chapter 4 after you’ve built
the gizmo. Then, and only then, will you learn a bit about the sketch you’ll need to create to make
your gizmo work properly. All in good time. For now, let’s take a look at the short list of hardware you
need to build the gizmo that will free Cade and Elle.

Locating the Parts You’ll Need
For this first hardware chapter, we’re going to go over the list of parts for Challenge #1 in detail. We
want to show you how to go about finding the parts you need whether you use an online supplier or
a local Radio Shack store. In later chapters we may bring up an occasional new piece of electronics,
but we won’t cover parts already discussed in earlier chapters.

Be on the lookout for recommendations from Andrew! Our favorite AI has a nice selection of web
sites and books and other tips that he’ll be providing so you can do some research on the side.

Also in this chapter you’ll begin to find what we’ll call Homework Assignments. We’ll be
introducing some basic concepts as you build the various gizmos in the book, and we’ll provide
you with web sites and possibly some book suggestions should you want to go deeper into
a particular subject. (That’s the way we authors learn, by the way). We’re betting that if you’re
bitten by the Arduino bug, you’ll want to learn as much as possible—and we aim to give you the
resources to continue moving forward.

20 CHAPTER 3: Challenge 1: Examining the Hardware

Potentiometer
For Challenge #1, you’ll connect a potentiometer to the Arduino to use as a sensor. The
potentiometer is a small part with a knob you can twist back and forth. You’ll twist the knob on the
potentiometer to “dial in” and discover the positions the knob must be in to generate values between
0 and 9; these numbers will be used to mimic a code entered in a keypad to unlock a door.

Note  If you don’t yet have your potentiometer, that’s okay. Read through the rest of the part
descriptions that follow. Then check in Appendix A for the parts needed for Challenge #1. Purchase
those parts, and circle back to this chapter when you have them in hand.

Ideally you’ll always have the required parts for each challenge handy as you read the chapters that
immediately follow each fiction chapter.

What we’d like you to do right now is pick up your potentiometer. Got it? Okay, good.

It’s tiny, isn’t it? Hard to believe something so small can be so useful! Potentiometers come in
a variety of shapes and sizes but they all tend to work the same way. They have a moving part
that can be turned clockwise or counterclockwise, sometimes by hand and other times using a
small screwdriver. The one we’ll be using for Challenge #1 will have a knob. The very center of the
potentiometer is turned, left or right. Don’t try to force it to turn once it stops—this can damage
the potentiometer.

The best way to think of the turning of the potentiometer is to look at a water faucet’s Hot or Cold
handle. If you turn the handle all the way open, you allow water to flow at full speed. Likewise, if you
turn it just a little bit, you might get just a few dribbles. The handle controls how much water flows
out of the pipes. If you had a tool to measure how many gallons were flowing out of the pipe per
minute, you could experiment with different positions of the handle so you could control the flow of
water to make it flow as fast or slow as you desire. You’d be in control!

All electronic devices use electricity to function. This electricity can come from batteries or from a
source such as a wall adapter (also called an AC adapter). Electricity is simply a flow of electrons
and this flow can be controlled using a device like a potentiometer. The potentiometer adds
or removes what is called resistance to an electrical circuit. Turning it one way decreases the
resistance, allowing a greater flow of electrons (called current, just like water). Turning it the other
way increases resistance, reducing the current (or, flow of electrons).

21CHAPTER 3: Challenge 1: Examining the Hardware

You might be interested to know that a potentiometer can also be referred to as a variable resistor. We haven’t gotten
to resistors yet, so I’ll just tell you that there’s a small electronic component called a resistor that slows the flow of
electrons in a circuit. During your adventures you’ll be using resistors to help protect other electronic components from
becoming damaged, which can happen if too much electricity is applied to a component. Resistors help by reducing the
flow of electrons through components. Most resistors have a constant value for how much resistance they can provide,
but the “variable” part of a variable resistor tells you that the device can be adjusted to different values of resistance.

For much more information on potentiometers, visit Wikipedia (http://en.wikipedia.org/wiki/Potentiometer).
You may find yourself overwhelmed at the level of information provided there, but know that whenever you have questions
about electronics, a particular component, or a term such as resistance, your answers are almost always just a search away.

One final thing we’d like you to notice about your potentiometer are the three small posts on the
bottom. Do you see them? Each has a function. The posts on the left and right will be wired into
the circuit you’re going to build and the one in the center will be used to obtain a reading of the
potentiometer’s resistance (a number value) that can be displayed on a computer screen. We’ll
explain this a bit more in Chapter 4.

As Andrew 5.0 told you, resistance is an important factor to consider when assembling a circuit. The
gizmos you’ll be building in this book all require electricity. But how much? You’ve probably heard
batteries referred to as nine volt (9v) or twelve volt (12v). Voltage is simply a number that refers to
how much “force” can be applied by a battery or other power source. Think back to our discussion
of water faucets. If you open the faucet all the way, the flow is strongest, right? Well, batteries can
supply power to a circuit at slow speed or full speed, and the speed is controlled by the proper
addition of resistance to a circuit. When you wish to have control over just how much resistance can
be applied in a circuit, you use potentiometers just like the one you’re holding in your hand.
Figure 3-1 illustrates a few of the different types of potentiometers.

Potentiometers

Figure 3-1.  Some examples of potentiometers

ANDREW 5.0

http://en.wikipedia.org/wiki/Potentiometer

22 CHAPTER 3: Challenge 1: Examining the Hardware

Solderless Breadboard
Many of the various electronic components you’ll be using in this book have wires and metal posts
sticking out of them. These wires and posts are simply how the components are connected to one
another. If you want to connect the ends of two different wires together, you have many options:

	Tape: You can use electrical tape to keep two wires connected, but this is not
the best method. Wires can shift inside of the tape during bending or simply
over time and cause a break in the connection, which prevents electricity from
flowing through one wire and into the next.

	Solder: You can use a special tool called a soldering iron (or solder pencil) and
a coil of special metal called solder to connect two wires. In a nutshell, you use
the soldering iron to melt the solder over the two wire ends and when the solder
cools it makes a strong connection that’s hard to break.

	Solderless breadboard: You can use this special board, which allows you to
connect circuits without having to solder the circuits together. This is what we
are going to use.

Go ahead and pick up your solderless breadboard so you can examine it. The most obvious thing you’ll
notice about it is all those holes! What are they for? These holes are where you’ll insert wires and metal
posts from various electronic components (such as the ones on the bottom of the potentiometer).

Underneath these holes are small metal plates. Each plate typically connects five holes and makes
them “share” a connection. Any wire or post inserted into one of these shared holes will behave as if
they are soldered or taped together, forming a single connection.

Figure 3-2 illustrates a solderless breadboard. The breadboard is oriented on its side, with the top
facing to your right. You’ll notice that the holes grouped in fives can be referenced using a letter
(A, B, C, D, and E, or F, G, H, I, and J) as well as a number (1 to 30). There are 30 rows (count by
5s – Row 1, Row 5, Row 10, Row 15… all the way up to Row 30). Each row has five holes. And
each of those holes falls under a letter—A, B, C, D. E, F, G, H, I, or J. So if we tell you to insert a
wire into D-3, you’ll find that hole by locating the D column and then moving down to Row 3.

Solderless Bread Board

Figure 3-2. A solderless breadboard

23CHAPTER 3: Challenge 1: Examining the Hardware

ANDREW 5.0: HOMEWORK

Solderless breadboards are very useful for experimenting with building your own circuits. Because wires and posts can
be removed easily—unlike solder, which must be re-melted to break a connection—you can quickly make changes to a
circuit and move components around.

And, by the way, if your breadboard doesn’t have the letters and numbers on it, that’s easy to fix! Just grab two Sharpie
pens, red and blue if possible, and write in the numbers 1, 5, 10, 15… all the way to the end. Write the letters A, B, C, D,
and E across the top of the groupings of 5 holes. And finally, draw a blue and red line down both sides of the breadboard
to indicate power and ground.

I also want to point you to a few tutorials on the breadboard. To see what a breadboard looks like if the top shell is
removed, visit http://eecs.vanderbilt.edu/courses/ee213/Breadboard.htm. To watch a video that discusses
various aspects of the breadboard, go to www.youtube.com/watch?v=oiqNaSPTI7w. Don’t worry if some of the
discussion doesn’t make sense to you just yet. Finally, for everything you could ever want to know about the breadboard,
head over to http://en.wikipedia.org/wiki/Breadboard.

The Arduino Uno
The Arduino Uno is the brains behind the circuits you’ll be building in this book and with it you can
perform many functions that would be almost impossible for a first-time electronics hobbyist to
accomplish; you create projects by allowing software to control the Arduino. Figure 3-3 shows the
Arduino Uno. (As noted in the previous chapter, other Arduino devices such as the Duemilanove will
also work).

But what about those holes on the left and right sides of the breadboard? (You see them at the
top and bottom in Figure 3-2, because the board is rotated sideways). They don’t have letters or
numbers, do they? Well, those holes have a very special function when building circuits. Look at
your breadboard and you should see two columns of holes sandwiched between a blue line and a
red line on one side of the breadboard, and a matching blue and red line (and more holes) running
down the other side of the breadboard. The holes closest to the red line are used to provide a
connection to power (or voltage) from the Arduino or a battery. The holes closest to the blue line are
used to connect components to ground (GND). This probably won’t make a lot of sense right now,
and we don’t want to overwhelm you with a lot of technical talk about voltage and ground, so we’re
going to put off a more detailed discussion on the uses of the voltage and GND columns for a later
chapter. But don’t worry—a lot of this stuff will begin to make more sense as you progress further
into the book.

http://eecs.vanderbilt.edu/courses/ee213/Breadboard.htm
http://www.youtube.com/watch?v=oiqNaSPTI7w
http://en.wikipedia.org/wiki/Breadboard

24 CHAPTER 3: Challenge 1: Examining the Hardware

As we said, we’re going to explain bits and pieces of the Arduino as the book progresses, allowing
you to take in the details a little at a time. By the end of the book, you’ll have a better understanding
of how the Arduino works and what many of those strange and wonderful things on its surface are
and what they do.

One of the first things we’ll show you about the Arduino, a bit later in the chapter, is how to give
it power. To deliver power to the Arduino, you’re going to need a USB cable like the one seen in
Figure 3-4, which also show some other components that are required to successfully complete
Challenge #1. It’s really not a lot of stuff, is it?

Arduino UNO Solderless Bread Board

Potentiometer
USB Cable

Figure 3-4.  All the hardware you need for Challenge #1

Arduino UNO

Figure 3-3.  This is the Arduino Uno

25CHAPTER 3: Challenge 1: Examining the Hardware

Wire
In order to connect the electronic components, the Arduino, and the breadboard all together, you’re
going to need what’s called jumper wire. You can make your own by purchasing a few spools of AWG
20 or AWG 22 wire (see Appendix A for part number suggestions; solid works best, but stranded
will work if that’s all you can find) and trimming the ends with a wire stripper (see Appendix A for
suggestions) or you can purchase pre-stripped wires of various lengths. Figure 3-5 shows a single
spool of wire as well as pre-stripped jumper wires. (Pre-stripped jumper wires are great; we highly
recommend them if you can get some.)

Spool of 20AWG Wire Jumper Wire

Figure 3-5.  Spool of wire and pre-stripped jumper wires

Let’s Build Gizmo #1
Woo hoo! Okay, time to start building. If you’ve got all the hardware shown in Figure 3-4 as well as
some wire for connecting components, you’re ready to begin. In this section we’ll create the circuit in
a step-by-step manner. Then, in Chapter 4, you’ll learn how you can give your Arduino its instructions.

As challenges go, Challenge #1 may not seem all that exciting. But there’s a lot going on here
behind the scenes. Now, assemble the items you see in Figure 3-4 and let’s get ready to build your
Challenge #1 gizmo!

1.	 Orient your Arduino Uno as shown in Figure 3-6 and look closely at its
surface near the top. You should see two small black rectangles that are
connected to the blue surface of the Arduino. These are called headers, and

26 CHAPTER 3: Challenge 1: Examining the Hardware

they each have six holes in their top. One of these holes will be labeled 5V
(for five volts) and another will be labeled GND (for ground). Now insert one
wire into the Arduino’s 5V pin header hole and insert another wire into the
header pin labeled GND. Take the other end of the 5V wire and insert it into
the breadboard at position A-17 as shown in Figure 3-6, then take the other
end of the GND wire and insert it into position A-15 on the breadboard
(also shown in Figure 3-6). You want one free row of holes on the breadboard
between where the two wires are inserted. Figure 3-7 in the next step shows
a close-up of the wires inserted into the breadboard.

A-15 A-17

Figure 3-6.  The first two wires connecting the Arduino to the breadboard

27CHAPTER 3: Challenge 1: Examining the Hardware

2.	 Next take the potentiometer and insert it into the breadboard as shown in
Figure 3-7. Make certain that the three small posts are positioned so that the
middle pin is inserted into the empty row on the breadboard between the
rows holding the 5V and GND wires. Push down carefully to make certain the
potentiometer is firmly seated in the solderless breadboard

Potentiometer

Figure 3-7.  Insert potentiometer into the breadboard

28 CHAPTER 3: Challenge 1: Examining the Hardware

ANDREW 5.0

You may have noticed in the figures that the connecting wires are different colors. A black wire is used for GND and a red
wire is used for 5V. You don’t have to use different colors, but it helps when troubleshooting. Red wire is often used to
indicate the wire that will provide power to a circuit, while black is generally used for the ground connection (GND). Green
and other colors can then be used for all other connections.

By the way, you may be wondering just what exactly is this thing called ground or GND. For more information, take a look
at the Wikipedia entry at http://en.wikipedia.org/wiki/Ground_(electricity). But don’t worry if the concept
of ground doesn’t make a lot of sense yet. You can build circuits even without knowing all the strange and confusing
terminology; that knowledge will come in time.

3.	 Next you’ll use another jumper wire (at position A-16) to connect the middle
pin of the potentiometer to the header on the Arduino labeled A0 (Analog
Input 0). Figure 3-8 shows a close-up of the new (green) wire inserted
between the GND and 5V wires that connect to the potentiometer.

http://en.wikipedia.org/wiki/Ground_(electricity

29CHAPTER 3: Challenge 1: Examining the Hardware

Figure 3-9 shows the green wire inserted into the Arduino’s header (A0). And guess what? That’s it!
The circuit is complete.

Connect
to A-16

Figure 3-8.  Connect the middle terminal of the potentiometer to the Arduino’s Analog Input 0 (A0)

30 CHAPTER 3: Challenge 1: Examining the Hardware

What’s Next?
So now you’re staring at this little circuit that makes up your Challenge #1 gizmo. And you’re
probably asking yourself, “Okay, now what?” (Or you may be asking yourself, “What’s the phone
number for the pizza shop? I’m hungry after all this tinkering!”)

Well, you’ve got three things left to do:

1.	 Create a sketch (or program) that will be downloaded to the Arduino.

2.	 Connect the Arduino to the laptop or computer.

3.	 Free Cade and Elle from the room by unlocking the door.

In Chapter 4, you’ll do all three. You’ll learn how to program the Arduino to serve as a Keypad
Repair Gizmo, and how to enter the four-digit code needed to unlock the door. You’ll use a small
slot screwdriver to fine-tune the potentiometer and find different resistance values that correspond
to different numbers on the keypad. It’s going to be fun, so turn the page and start reading – Elle and
Cade are counting on you!

A0

Figure 3-9.  The completed circuit!

31

Chapter 4
Challenge 1: Examining
the Software

Here we are at Chapter 4, ready to take the gizmo we assembled in Chapter 3 and put it to work to
free Elle and Cade. So, what’s this chapter all about? Well, you’re going to learn some basics about the
Arduino IDE and how to use it to create the sketch (program) that will be loaded into the Arduino gizmo
to help Elle and Cade get through the door to Andrew. But first you need to learn about the Arduino IDE.

The programming aspect of creating gizmos with Arduino can be daunting. Many people compare
learning to program with learning to speak a foreign language, but we’ll argue that learning to
program your Arduino is definitely not as difficult as trying to learn Japanese or French. As you’ll see
later in the chapter, you can do quite a lot with your Arduino with only a small bit of programming skill.

One thing we want you to remember as you read through this chapter, however, is that no one
expects you to understand everything about the sketches we give you. We’ll provide plenty of
references so you can go out and learn as much as you like. Our goal here is to just get you playing
with the Arduino and seeing how the sketches go hand in hand with the hardware. Along the way,
we’ll definitely introduce you to some programming information and terminology, so be sure to take
note when we do—and enjoy the challenge.

The Arduino IDE
Double-click on the Arduino IDE icon that was added to your desktop. That blank window you see in
Figure 4-1 is where all the magic happens. What do we mean by magic? Well, that blank window will
be filled with words and numbers and other text that tells the Arduino gizmo you built in Chapter 3
just how it should operate. That window is just like any other software tool you’ve used—it’s got
menus and buttons and special pop-up alerts, and all sorts of controls you’ll learn over time. The
first thing to note are the six buttons just below the File, Edit, and other menus: Verify, Upload, New,
Open, Save, and the Serial Monitor button at the far right. For right now, we’ll be using only the
Verify, Upload, and the Serial Monitor buttons.

32 CHAPTER 4: Challenge 1: Examining the Software

What do these three buttons do? Here’s the nitty-gritty:

Verify: This button lets you make sure your software is free of syntax errors. Think
of a syntax error as similar to a spelling error. If you’ve entered a command or bit of
the sketch program incorrectly, the Arduino IDE will catch it and tell you so you can
correct it.

Upload: This button can both verify and upload a sketch to the Arduino if no spelling
or formatting errors are found. To upload, however, you must connect the Arduino to
your computer with a USB cable. Once the sketch is uploaded, you can disconnect
the USB cable (though it’s often convenient to leave the Arduino connected to your
PC so you can modify the sketch or use the serial monitor feature).

Figure 4-1. The Arduino IDE window

33CHAPTER 4: Challenge 1: Examining the Software

Serial Monitor: This button lets you open the serial monitor and view the
information coming from the serial port on the Arduino. Think of the serial monitor
as a tool for “talking” to the Arduino, and you use it to view things of interest. For
example, if you had a temperature sensor attached to the Arduino, you could use
the serial monitor to watch a live (often called real-time) display of the temperature
the sensor is detecting.

Reminder  We told you back in Chapter 2 where to download the IDE and how to install it, but here’s that
information again, just in case you haven’t yet had time to get the Arduino IDE installed.

Mac version  http://arduino.cc/en/Guide/MacOSX

Windows version  http://arduino.cc/en/Guide/Windows

There’s one more thing to notice about the Arduino IDE shown in Figure 4-1—the large, white, empty
area of the screen. This is where you type in the sketch to upload to the Arduino. We’ll give you the
sketch for Challenge #1 later in this chapter, and you’ll use your keyboard to type it in exactly as we
give it to you. You may notice certain words or symbols are shown in special colors—this is how the
Arduino IDE makes it easy for you to “read” your sketch. We’ll talk more about this shortly.

The other area of the screen to note is the black rectangle at the bottom of the window. When you
are uploading a sketch to your Arduino, you’ll see all sorts of strangeness appear in this area. All
those odd words and phrases are perfectly normal. This area of the screen is most often useful to
you when you’re trying to “debug” a sketch—that is, when you’re trying to find any errors in your
program. Sometimes this part of the screen will tell you exactly where in your sketch an error is
located– very helpful!

Now that you know a bit about the Arduino IDE, you can create the program to help Elle and Cade.

The Challenge #1 Sketch
And here you are—ready to give life to the gizmo you wired up back in Chapter 3. Once you’ve got
the Arduino wired up, go ahead and open up the Arduino IDE. Place the cursor in the white space
and type in the sketch shown in Listing 4-1 below. After you’ve typed it in, we’ll go over a few
sections of the sketch in more detail.

Listing 4-1.  Arduino Software for the first Project

void setup() {
 // setup serial port
 Serial.begin(9600);
}
 

http://arduino.cc/en/Guide/MacOSX
http://arduino.cc/en/Guide/Windows

34 CHAPTER 4: Challenge 1: Examining the Software

void loop() {
 // set sensorValue to the reading on analog input 0
 int sensorValue = analogRead(A0);
 // set the mappedSensorValue to the value of the map() function
 int mappedSensorValue = map(sensorValue, 0, 1023, 0, 9);
 // send mappedSensorValue to the serial port.
 Serial.println(mappedSensorValue, DEC);
}

Note  You can also download a text file that contains the sketch from the http://arduinoadventurer.com
web site. Then, copy and paste the code into the Arduino IDE.

Okay, so after you’ve typed in the sketch, you’ve probably got some questions. Maybe a lot of
questions! Believe it or not, Listing 4-1 is actually a very short and simple sketch. Many sketches can
run pages in length, and some complex sketches can be thousands and thousands of lines long! The
sketch here consists of less than 20 lines, so let’s walk through a couple important areas. It won’t
take long, and then you’ll be ready to run the challenge!

ANDREW 5.0

My apologies for interrupting, but I’d like to point out that you can find many examples of sketches by visiting
http://arduino.cc/en/Tutorial/HomePage.

On this page, you’ll see sketches that do a variety of things. You don’t necessarily need to understand what they’re doing
right now, but you might find it useful to take a look at the examples to see the variations in length and complexity.

You may even find a sketch or two that is of interest to you and, if you like, you can follow the instructions in the tutorials
to run those sketches.

Beginning the Sketch
First, let’s start with how a sketch is created. Take a look at that first line in Listing 4-1:

void setup {

You don’t need to understand right now why the sketch uses the word void or what that strange
symbol { (often called a curly brace) is for. What you do need to know is that all of the sketches you’ll
use in this book start this way. If you forget that first line, your sketch won’t work. You’re probably
familiar with parentheses (like the ones at the beginning and end of this phrase). They’re used to
contain a bit of text, and the beginning parenthesis is always matched with an ending parenthesis.
Well, the { symbol works the same way. Anything found between { and } in a sketch is related and
works together as part of the sketch. Got it? If not, don’t worry. It will start to make sense over time.

http://arduinoadventurer.com
http://arduino.cc/en/Tutorial/HomePage

35CHAPTER 4: Challenge 1: Examining the Software

The word “setup” probably does make some sense to you, however. When the sketch is executed
(run) by your Arduino, anything that’s inserted between the opening { symbol and the closing }
symbol is part of the setup process of the sketch. The setup section simply tells the Arduino how to
prepare itself. In the case of Challenge #1, the text (also called code) you see between the { and }
symbols of the setup section tell the Arduino to listen to the variable resistor in the circuit (refer back
to Chapter 3) and to communicate with the Serial Monitor.

But how is the Arduino actually doing that listening? Good question! Let’s keep examining the
sketch.

Configuring the Serial Port
We already looked at the first line, so let’s move to the second, third and fourth lines:

// setup serial port
 Serial.begin(9600);
}

That second line is a comment line. Have you ever read an instruction manual? Well, comments
provide the instructions for deciphering a sketch. Good programmers (or coders) know that as they
write a sketch, it’s always a good idea to explain what a line of code or a section of code is doing.
And with the Arduino IDE, you specify that a bit of text is a comment by putting // marks at the front.
Your explanation goes after these marks.

So, the second line of code is //setup serial port—a comment line that says what follows will
help the Arduino communicate with the serial monitor (using what’s called a serial port—or the USB
connection).

The third line of code may look cryptic, but it’s simply telling the Arduino the speed at which it
should communicate. In this case, the serial monitor will communicate with the Arduino at a speed
of 9600 bits per second. That means 9600 ones and zeros per second.

And notice that the fourth line is the closing } symbol. That tells us we’re done with the setup section
of the sketch.

Note  Again, it may seem strange and confusing right now, but you’ll begin to pick up on bits and pieces of
programming as you work through the book, so don’t sweat it right now if none of this makes sense. Just put
on your “Guru in Training” hat and keep moving forward!

Listening on the Serial Port
Now that you’ve configured the serial port, the next step is to “listen” to what it’s telling you. Take a
look at the next part of the code:

void loop() {

36 CHAPTER 4: Challenge 1: Examining the Software

What’s that void loop() stuff? Good question. Don’t worry too much about the void part right now,
but pay attention to the loop() part. What does a loop do? It keeps going around and around and
around... forever, right? What this part of the sketch is doing is setting up a process that will keep
going and going until you choose to end it, maybe by disconnecting the Arduino from the computer,
for example.

The (and) symbols are for more advanced programming. All you really need to know now is that
some text can be tucked between the parentheses, though most often it’s simply left blank. But the
(...)sequence is required! So, the void loop() { part of the sketch is setting up another section that
will run continually. And anything between the opening { and the closing } will run and run and run... .

But what’s going to run and run and run?

That’s what makes up the next bit of the code:

// set sensorValue to the reading on analog input 0
int sensorValue = analogRead(A0);
 
Once again we see a comment: // set sensorValue to the reading on analog input 0.

ANDREW 5.0

That comment about setting the sensor value is definitely confusing, so let me try to explain. What it's saying is that the
next bit of code will tell the Arduino to take a reading of whatever is connected to one of its ports, specifically, the analog
port with the number 0. You learn about the difference between analog and digital ports later in the book, but right now
what you need to know is that the Arduino can have electronic components connected to it using both analog and digital
ports, and each of those ports has a number assigned to it. If you look closely at your Arduino, you may even notice some
of the headers (refer back to Chapter 2) are labeled A0, A1, A2... all the way up to A5. The same goes for the digital ports,
although these don't have a D in front of their number and they range in values from 0 to 13.

Okay, so what Andrew is telling you is that the variable resistor will be providing a value to the
Arduino. What that value will be is not known at the moment, and it can change with a simple turn
of the knob on the component. Remember that the variable resistor (also called a potentiometer)
will resist the flow of electrons, either with a high or low resistance depending on where the
potentiometer is set. And that resistance value will be provided by the Arduino to the serial monitor
using analog port 0.

And how does the Arduino do this? Easy! The Arduino stores the value from the variable resistor in a
special holding area called a variable. Variables are just that—variable. They can change. Think of a
variable as a pocket in the Arduino where it can place text or numbers and store them until it needs
them later. The Arduino can hold a large number of variables, and the fun thing is that you get to
name them! In this instance, we’ve created a variable called sensorValue and set it to equal whatever
value is being read for analog port 0.

37CHAPTER 4: Challenge 1: Examining the Software

You’re probably wondering about that int part, right? That stands for integer—a whole number—and
simply means that the value provided to the Arduino must be an integer value, like 1 or 5 or 1000.
No decimals! And negative numbers are okay, too. So the variable resistor will report a setting of 5
or 50 but not 5.532 or 50.89. The number will be stored as an integer, which will be easier for you to
interpret.

Translating the Input into Digits
Now, the next few lines of code also need some explanation:

// set the mappedSensorValue to the value of the map() function
int mappedSensorValue = map(sensorValue, 0, 1023, 0, 9);

In a nutshell, the comment says that the variable resistor is going to give us a value (that we know
will be large) and that we must convert it using a special tool called a function. A function performs
one specific action. You use a function by typing it into the program along with some parameters.
In this case, you’ll be using the map function, which takes a large number and divides it up in such
a way that it can be represented by a smaller set of numbers.

A variable resistor doesn’t report settings from 0 to 9. It reports values from 0 to 1023. If you could
turn the variable resistor a teeny-tiny amount, you’d increase the value from, say, 1001 to 1002 or
from 348 to 349. But this level of control is very difficult with our human fingers. Instead, we can
make it easier on ourselves by dividing up that 1024 range into 10 parts of approximate equal
length – we’ll squeeze in the leftover bits into the last part. (We have 1024 parts because we include
zero, so 0 to 1023 equals 1024 parts). When the dial is positioned from 0 to 102, we’ll say that’s
equal to 0. And from 103 to 205, we’ll say that’s a 1. Table 4-1 shows the ranges 0 through 9 based
upon the pattern we’ve just described.

Table 4-1.  Potentiometer Settings Mapped into Ten Buckets

Low High Bucket #
0 To 102 0

103 To 205 1

206 To 308 2

309 To 411 3

412 To 514 4

515 To 617 5

618 To 720 6

721 To 823 7

824 To 926 8

927 To 1023 9

38 CHAPTER 4: Challenge 1: Examining the Software

So the int mappedSensorValue = map(sensorValue, 0, 1023, 0, 9); part of the program simply
takes the value from the variable resistor stored in the sensorValue variable (between 0 and 1023)
and converts it to fit a range of 10 numbers, 0 to 9. This new value is stored in a new integer variable
called mappedSensorValue. This number will always be in the range of 0 to 9.

Remember that Elle and Cade have to provide a code to the locked door’s keypad. This four-digit
number will consist of four numbers from 0 to 9. The code could be 1234 or 8207 or 4488 or even
9999. But these nine values are what we, as humans, are used to using.

Displaying the Result
Simply turning the variable resistor to a location won’t tell us what the resulting value from 0 to 9 is,
however. We need to be able to see it! And that’s where the serial monitor comes in. We’ll include
some code in the sketch that sends the mapped potentiometer value to be displayed on the screen.
And to do that, we use this last bit of code:
 
// send mappedSensorValue to the serial port.
Serial.println(mappedSensorValue, DEC);
}

Hopefully you can now decipher these last two lines of code. The first is a comment, simply telling
anyone viewing the sketch that the next line of code will take whatever value is stored in the
mappedSensorValue variable and send it to the serial port.

The final bit of code sends the mappedSensorValue variable value to the serial monitor in decimal (DEC)
format. This simply means you’ll see numbers scrolling down the screen like those in Figure 4-2.

But what do these numbers mean and how do they help you with the challenge?

Let’s finish up Challenge #1 now by seeing how the gizmo and sketch work together.

4

39CHAPTER 4: Challenge 1: Examining the Software

Solving Challenge #1
Here’s the big secret... are you ready?

The password is 8294. Got it? 8. 2. 9. 4. You need to calibrate the variable resistor by using a small
screwdriver to turn the dial on the poteniometer so you see different values on the serial monitor.
You’ll want to make note of the position for each number (from 0 to 9) by somehow making a mark
on a piece of paper. Think of a volume control dial for music, or the numbers going around an oven
dial that represent the oven’s temperature setting.

First, download and print the Challenge #1 Challenge Card from http://arduinoadventurer.com.
Print it out on card stock that’s a bit heavier than standard printer paper and grab a pen or pencil.
Now, follow these steps to run Challenge #1.

1.	 Connect your Arduino gizmo to your computer with the USB cable.

2.	 Open the Arduino IDE and enter the sketch from Listing 4-1.

3.	 Press the Upload button on the Arduino IDE to upload the sketch to your
Arduino.

Figure 4-2.  Scrolling values give you a real-time display of the setting on the potentiometer

http://arduinoadventurer.com

40 CHAPTER 4: Challenge 1: Examining the Software

4.	 Open the serial monitor by pressing the serial monitor button at the top right
corner of the Arduino IDE. (It is the button that has an image that looks like a
magnifying glass).

5.	 Observe the values scrolling up the screen.

6.	 Turn the variable resistor dial counterclockwise all the way until it stops.
Make a small dot on the potentiometer’s moving dial with a permanent
marker or a tiny dab of paint.

7.	 Calibrate the variable resistor by marking on the Challenge Card where each
number from 0 to 9 is located. For example, after turning the variable resistor
a small amount and seeing the number 1 scrolling on the screen consistenly,
write the number 1 on the Challenge Card where the small dot or mark on the
potentiometer is located. Do this for all values from 0 to 9, creating your own
dial with numbers.

8.	 After you’ve identified all nine-digit locations on the Challenge Card, enter in
the password of 8294 by dialing in 8 first. Then dial in 2, then 9. And, finally,
dial in the last password value of 4.

Congratulations! You’ve successfully configured a variable resistor to supply values from 0 to 9, to
enable Cade and Elle to fool the keypad into accepting the passcode from the Arduino instead of the
damaged keypad.

And another congratulations for making it all the way to the end of the first challenge!

41

Chapter 5
Damage Assessment

Elle dialed in the last digit of the door’s entry code provided by Andrew. The Arduino and the variable
resistor were dangling by jumper wires, and Elle was careful not to bump the assembly Andrew had
instructed them to build.

“Okay, Andrew,” said Elle. “That should do it.” There was no buzzer or click to acknowledge that
the code had been properly submitted. Elle crossed her fingers and looked at Cade.

Cade nodded at Elle and smiled. “Nice work.”

“Okay, wave a hand in front of the door,” replied Andrew, his voice muffled slightly by the
closed door.

Cade held his hand up and waved it back and forth. The look on his face told Elle that he didn’t
believe the small circuit they’d spent the last fifteen minutes assembling had worked.

But the door opened with a loud grinding noise.

“It worked!” yelled Cade and Elle together.

Cade turned and gave Elle a hug.

Elle’s face reddened, but she gave Cade a pat on the back and then pushed him through the door
and into the Andrew 5.0 exhibition room.

The Face of Andrew
Cade and Elle both looked around at the white walls enclosing the large room. Four rows of ten
chairs were crowded slightly in the center of the room, but that was the only furniture present.
All four walls had colorful light presentations that moved and shifted randomly. It was a beautiful
pattern and almost made the students forget about their current situation.

“Andrew… is that you?” asked Cade.

42 CHAPTER 5: Damage Assessment

The colors on three of the walls shifted and then slowly morphed into a computer-generated male
face on the wall that Cade and Elle were facing. It was a face that both students recognized, having
seen it in history books, and it was smiling back at them.

“Hello, Cade. Hello, Elle. Nice to meet you both.”

Elle brushed a wisp of blond hair away from her eye, and smiled. “Nice to meet you, too, Andrew.
Thanks for your help.”

“You’re welcome. But there is little time to waste. Both you and Cade need to exit the station as
quickly as possible. I do not know what the emergency is, but a mandatory evacuation has been
ordered by the station’s AI,” replied Andrew.

Cade nodded toward another doorway, directly opposite the damaged door they had used to enter
the room. “That door looks okay. Where does it go?”

Andrew’s eyes moved to the other door and then back to Cade. “I can give you directions to the
nearest escape pods, which are on the first level. But first I need to make certain I’m not sending
you toward any danger. There are other escape pods on Level 6 and Level 10, but I’ll need to
communicate with the station’s AI and find out what has happened and determine where to send
you so you can exit the station.”

“I thought you couldn’t communicate with the station’s AI,” said Elle.

“I can’t. I will need your assistance to unlock the communication node that prevents me from
accessing the station,” said Andrew.

“Okay,” said Cade. “How do we do that?”

A loud popping sound made the students jump. Cade and Elle turned and watched as a large white
floor panel at the back of the room slowly lifted until it was perpendicular to the floor.

“One of you will need to locate my primary control unit that’s stored in the access area below the
room. There’s a safety release down there that will release controls up here and allow you access
to my communication node.”

Elle’s eyes widened as she stared at the exposed hole in the floor. “You know I hate tight spaces,
Cade,” she said.

“And I hate spiders,” Cade replied. “No problem, Elle. I’ll do it.”

Elle sighed and returned the grin. “Thanks.”

Cade walked to the rear of the room and stood looking down into the access area. “It’s a bit dark
down there, Andrew.”

“Yes, now that emergency lighting has been activated, all secondary light sources have been
disabled to conserve power. Do you or Elle have a flashlight?”

Cade looked at Elle and shook his head.

“No, Andrew, we don’t,” responded Elle. “Sorry.”

“There are a number of turns down there that Cade must make to get to my communication node.
Cade will also need to be able to see and read some identifying text on various components
down there.”

43CHAPTER 5: Damage Assessment

Elle looked around the room. “Nothing in here. What about the room we were just in? You said you
have an inventory of all the stuff stored in there—any flashlights?”

“Checking…,” replied Andrew. “No flashlights found in the inventory. But there are 2,735 light-emitting
diodes in stock, 587 of which are white.”

“Light-emitting diodes?” asked Elle. “You mean LEDs?”

“Yes. LEDs. These would be suitable for making a lighting device with an Arduino microcontroller.”

Cade smiled at Elle and then stared at the wall displaying Andrew’s digital face. “Sounds like a plan.
Let’s do it.”

An Embarrassed Cade
Ten minutes later Cade was frowning.

“Stop it,” said Elle. “No one else is going to see you.”

“If any photos of this show up at school, you will pay,” said Cade.

Elle giggled. “You should let me take one just so we’ll always remember this moment.”

“Elle...”

“Kidding.”

“Are you ready, Cade?” asked Andrew.

Cade turned to stare directly at Andrew. “No, Andrew… I think Elle needs to add more lights.”

“The room’s light sensors are detecting sufficient lumens for you to be able to navigate the access
area,” said Andrew.

“He’s being sarcastic, Andrew. He’s just a bit embarrassed at my improvised lighting solution,”
said Elle.

Cade looked down at his shirt and pants and then back to Elle. “I’ll remember this.”

Elle nodded with a laugh. “So will I.”

After Andrew told them how to connect together an Arduino, some LEDs, and a battery harness, he
gave them instructions for programming the hand-made flashlight. While Cade typed in the program
on the ancient laptop they had used earlier for the Arduino door-code gizmo, Elle had grabbed a
few more Arduinos, LEDs, and batteries to make more flashlights. She had then used a roll of duct
tape from one of the toolboxes to attach each of the new flashlights to Cade’s clothing. He had one
strapped to his chest, one on top of each wrist, and one on top of each shoulder.

Cade shook his head. “You’re going in the next tight space. No arguments.”

Elle tried to remove the smile from her face. “I’m sorry. Come on, Cade… in you go.”

Cade stepped down through the opening in the floor. The space between the floor and the bottom of
the access area was less than three feet deep, so Cade was going to have to crawl on his hands and
knees to find the communication node.

44 CHAPTER 5: Damage Assessment

“I’ll provide directions to you, Elle,” said Andrew. “You may have to yell for Cade to hear you.
Cade, you’ll need to move down approximately fifteen feet in the direction of my screen.”

“Got it,” said Cade, and he began crawling down the tight space.

“When he gets to the T-junction, tell him to turn left and go forward ten feet.”

Elle stuck her head down into the opening and repeated the instructions in Cade’s direction
in a loud voice.

“No need to yell!” replied Cade. “Everything echoes down here.”

“Sorry!” exclaimed Elle.

“Elle! No yelling!”

“Sorry,” she whispered.

“Okay, Elle… tell Cade to pull the red handle to his right that’s labeled Node Access. Another panel
should open and he should proceed down that tunnel ten feet.”

“Cade, you need to pull the red handle…”

The Unlocking
Cade followed the instructions relayed by Elle and found the safety release switch. Pulling on the
switch released a hidden panel on the wall near Andrew’s projected face—and it startled Elle when
it popped open. She was looking over at the small panel when Cade gave her another scare as he
stood up from inside the access area and said “I’m back!”

“I think it’s safe to turn off the lights, Flashlight-Man,” said Elle, walking over and holding out her
hand to help Cade exit the access space.

Cade began pulling the tape and electronic devices off his clothes. “Ha ha. You’re funny. Okay,
so I pulled the switch you told me to… anything happen?”

Elle pointed over her shoulder. “Yep. That panel opened.”

“We’re just all about secret panels today, aren’t we, Andrew?” asked Cade. “What is it? Looks like
a keyboard and screen to me.”

“When I was moved here, this interface panel was installed to limit my access to the station. It’s
basically a lock and key that prevents me from joining the station’s network,” replied Andrew.

“Why would anyone want to limit your access to the station?” asked Elle.

Cade frowned. “Yeah, that doesn’t sound so good. You’re basically trapped in this room?”

“I can receive datafeeds that allow me to stay informed about whatever is happening around the
system, but my assigned duties are to inform and educate visitors on my development,” said
Andrew. “But to answer your question, Elle, the station’s staff wishes to have only one AI monitoring
all systems. Two or more AIs monitoring the station is a waste of resources.”

“And locking you in a room is a perfectly good use of an AI?” asked Cade.

45CHAPTER 5: Damage Assessment

“It is my assigned duty,” responded Andrew.

“Well, I don’t like it,” said Elle. “When we’re off this station, I’m going to complain about it. It’s like
a prison cell.”

“I appreciate your concern, Elle, but let’s focus on the problem at hand. You both need to get off
this station as soon as possible. If you’ll help me restore my connection with the station’s AI, I’ll try
and assess the situation and get you both to safety.”

Elle frowned. “Okay, just tell us what you need us to do.”

“I simply need you to provide a password to the communication node. You can use the keyboard
to type it in.”

“Okay, what’s the password?” asked Elle.

“Please don’t tell me it’s password,” said Cade with a smirk. “Or 1-2-3-4.”

Andrew’s on-screen face smiled widely. “No, Cade. It’s actually quite complicated, and you’ll only
get three chances to enter it correctly. So please type carefully, Elle.”

“Ready,” Elle replied.

“5 – A – 7 – 9 – 4 – B – Q – 2 – T – 7 – 9….,” Andrew began reciting, with a two-second pause between
each number or letter.

Elle continued to enter the password. Thirty characters later, she was done.

“Would you like me to repeat it so you can verify your entry?” asked Andrew.

“Please,” said Elle.

“5 – A – 7 – 9 – 4 – B....” Andrew repeated the entire password once more.

“Not bad, Elle,” said Cade.

“Thanks. That’s it, Andrew. Press Enter?”

Yes, Elle.”

Elle tapped the Enter key on the keyboard, expecting some loud noise or some sudden change on
the display walls that Andrew was using. But nothing happened.

“Andrew?” asked Elle.

Andrew’s face froze on the screen. Elle gasped, thinking that something had gone wrong, but then
Andrew’s eyes shifted to look directly into Elle’s own. And he smiled.

“I have access to the entire station. Give me a moment to assess the situation, please.”

Cade looked at Elle, a worried look on his face. “How about you and I start collecting toolboxes and
Arduinos? I have a feeling we’re not done building gadgets, Elle.”

Elle nodded. “Yeah, grab whatever you can carry.”

Andrew’s voice made both of them jump. “Station assessment complete. Cade… Elle… it’s not
good. Please hurry and grab the following boxes. Box 12. Box 52. Box 31…”

47

Chapter 6
Challenge 2: Fun Stuff to Know

We thought about naming this Chapter 6: Non-Boring Stuff (We Promise!), but our editors thought
readers might just skip it and go on to Chapter 7. Our next try was calling it Chapter 6: More Details
About Arduino, but this made our editors fall asleep. So we decided to stick with what works and
keep it fun.

So now you’ve got your first Arduino gizmo built and tested. Some of you might be wanting to
build really advanced Arduino gizmos—but would you attempt to build an automobile without a
solid understanding of the engine, the doors, the wheels, the brakes, and all the hundreds of other
parts and systems that make up a running car? Okay, we might try it, too, but that’s not the point.
The point is that you’ve got to start small and understand the basics before you can accomplish
bigger projects. All of the projects we include in this book teach you bits and pieces that will get you
familiar and confident with the basics of Arduino. Then you can move on to more advanced books
that will show you, for example, how to take an Arduino and make a remote-controlled lawnmower.

As you know by now, the purpose of the chapter immediately following each piece of Cade and
Elle’s story is to give you a little bit of technical knowledge. Sometimes it will be specific to the
current challenge and sometimes it will be information you need for what you’ll be doing in the rest
of the book. So don’t skip these chapters, okay? We know you want to jump right to the building and
programming, so we’ll keep these “theory” chapters short ... promise!

Once again, Andrew 5.0 will be jumping in when he wishes to provide more assistance—he’s got
some great suggestions for books and web sites for you to check out.

And now it’s time to learn a little more about our favorite microcontroller. The information here will
help you in the next challenge, where you’ll be building your very own Arduino-Light. Okay, maybe a
little less glamorous—you’ll be building a flashlight. And an expensive flashlight at that! But the point
of building a flashlight with the Arduino is to give you more hands-on practice with wiring things up,
as well as more programming knowledge.

48 CHAPTER 6: Challenge 2: Fun Stuff to Know

Now ... let’s get started. It’s pretty dark in the tunnels beneath Andrew’s room, and Cade is going to
need a strong light to find his way around. Let’s talk about some of the things you’ll need to know to
make this flashlight work.

Let’s Look at a Battery
Your flashlight is going to be powered by a 9V battery. No doubt you’re familiar with batteries—
you’ve probably had toys all your life that relied on batteries for movement and sound. We’re not
going to go into the technical aspects of batteries here (we’ll let your chemistry teacher take that
one), but we do want to go over some important details for dealing with not just batteries but power
in general. Your Arduino is capable of providing power to connected components and it gets this
power from batteries or from an AC adapter (sometimes called a wall wart because it’s usually a big
black block that plugs into the wall).

For many of the challenges in this book, you’ll use a standard 9V battery. For others, you’ll use an
AC adapter. In either case, the Arduino is going to take the power and share it with any components
you’ve connected. What kinds of components? Light emitting diodes (LEDs) are one example. You’ll
use one in Challenge 2, actually. You can provide power to small speakers for sound, to sensors for
light or temperature detection, and even to small motors.

In just about every situation you encounter with components connecting to the Arduino, you’re going
to want to know a little bit about polarity. Take a look at Figure 6-1, which shows a 9V battery and a
1.5 AA (double-A) battery. You may never have noticed this before, but batteries are almost always
labeled with a positive (+) end (or terminal) and a negative (−) end. A 9V battery’s terminals are on the
same end of the battery, but a 1.5V battery has the terminals on opposite ends.

Note  When you’re done, you can break the flashlight down for the next challenge or take a look at the
arduinoadventurer.com web site and find a Bonus Challenge where you modify your flashlight to
add another feature.

o

49CHAPTER 6: Challenge 2: Fun Stuff to Know

We don’t want to get too deep into the technical aspects of batteries, but the one thing to take from
this discussion is that when it comes to batteries, current flows from the negative terminal to the
positive. When you connect the two terminals of a battery with a wire (but do NOT do this—it can
be very dangerous), electrons speed down the wire, leaving the negative terminal and going into
the positive terminal. The process continues until you disconnect the wire or until, eventually, all the
electrons get used up. When that happens, we say the battery is drained, or dead.

Positive

Neg
ati

ve

Figure 6-1.  Batteries have positive and negative terminals for supplying power

Alert  Please do not ever short-circuit a battery. That’s what happens when you connect the two
terminals of a battery with a wire or piece of metal. The wire gets extremely hot and the battery can
even explode! When you create a closed loop using a battery, you’ve created a circuit. But if there are
no other components in the circuit (such as an LED or a resistor or potentiometer), you’ve created a
short circuit, and that’s a big no-no.

50 CHAPTER 6: Challenge 2: Fun Stuff to Know

And Now a Circuit
Believe it or not—and please believe it—a simple wire connecting the two terminals of a battery
is considered a circuit. But it’s called a short-circuit and we’ve told you to always avoid these.
Instead, what you’ll be doing is placing electronics components into the circuit that will limit some
of the current through the circuit. But how many components must you insert? That’s an important
question and we’ll cover it in a bit more detail in Chapter 7 when you learn about the two key
electronics components used in Challenge #2—the LED and the resistor.

ANDREW 5.0

I’d like to add that the Arduino itself can be treated as a component and inserted without risk into a circuit. There is no
harm in connecting a 9V battery to the Arduino. In fact, the Arduino is designed for that purpose.

Take a look at Figure 6-2 for a moment. Don’t worry if it doesn’t make sense to you. You’re looking
at the circuit you’ll be creating for Challenge #2. What we want to point out is how the 9V battery is
connected to the power port on the end of the Arduino.

Figure 6-2.  A 9V battery connected to an Arduino to provide power

Now note the small square to the left of the Arduino. That’s a mini-breadboard into which you’ll be
inserting various electronics components to create a simple flashlight circuit.

51CHAPTER 6: Challenge 2: Fun Stuff to Know

Again, you don’t need to understand (yet) what you’re looking at; just focus on the fact that the
Arduino will be getting power from the 9V battery and distributing it via the small wires that connect
the Arduino to the mini-breadboard.

Also notice the following:

The LED on the far left. It’s a white LED that will give off a strong, white light.	

A small odd-shaped component nearby that has colored bands running around 	
its body—it’s called a resistor.

A small push-button in the direct center of the mini-breadboard	

You’ll learn how these components work together to let you create a very simple flashlight. And you’ll
learn what the Arduino brings to the party when you add a bit of programming to the mix!

ANDREW 5.0

I’d like to suggest a book your readers might like to investigate once they finish your book. Anyone interested in learning
more about the basics of batteries and other electronics components should check out Make: Electronics by Charles Platt.
It’s a must-read for everyone who wants to learn about electronics.

Let’s return to the idea of the battery’s positive and negative terminals. Why is this important to
know? As you’ll learn in Chapter 7, certain electronics components will work in a circuit only if
they are inserted so they are oriented properly with respect to the positive and negative terminals.
If they’re not added to the circuit properly, they just won’t work. And some components can even
become damaged should you not insert them properly! But don’t worry—we’ll look further at this
and explain how you can make sure you don’t ever damage a component by inserting it incorrectly.

Current Flow
Here’s one final fact to know about a circuit: any break in the circuit will keep the electricity from
flowing. Cut the wire or place something in the circuit that breaks the loop and the current stops
flowing. (Remember, electrons flow out the negative terminal and want to return to the positive
terminal, making a loop.) The switch on a real flashlight performs just this function. Turn it to on and
electricity flows out the negative terminal of the batteries inside, through the lightbulb, and then back
into the positive terminal of the batteries. Turn the switch to off and you break the loop or circuit and
the light turns off. Keep this in mind as you move into Chapter 7 and see if you can guess which
component in Figure 6-2 will be used to control the current flowing through the circuit. We’ll give you
the answer in Chapter 7.

52 CHAPTER 6: Challenge 2: Fun Stuff to Know

ANDREW 5.0

Readers might like to know that current can be measured. We use the term amperage to describe how strong a current
is, or how much force it has. We measure a current’s amperage, its strength, in units called amperes, commonly
called amps.

On a hot day, you might ask the temperature and get an answer back in degrees.•	

With a cool Arduino project, you can ask what the amperage is and get an answer back in amperes.•	

An ampere is a whole lot of electricity for such a tiny device as an Arduino. An ampere of current would melt your device.
The projects you build will use milliamps of current. A milliamp is 1/1000th of an amp. That’s right! It doesn’t take much
current to do some very fun and useful things.

Ready to Build Something?
We hope the little bit of technical discussion didn’t overwhelm you. Even if some of this stuff is still
confusing, just keep pushing forward—we promise things will start to clear up once you get your
hands involved and start building the circuit.

Before you start building, be sure to take a look at Appendix A, which contains the parts list you’ll
need to complete Challenge #2. It’s not a long list of parts, but each piece is required. Once you’ve
got the components in your hands along with the Arduino and a 9V battery, turn to Chapter 7. You’re
going to have some fun wiring up a simple flashlight circuit and you’ll learn more about various
components that will come in handy for later challenges.

Time to build!

53

Chapter 7
Challenge 2: Examining
the Hardware

Ok! We’re ready to put together a few key circuits to make a flashlight to help Cade find his way to
Andrew’s primary controls. But first we need to learn about the new hardware before we start putting
the flashlight together.

As with every project in this book, we encourage you to visit Appendix A first and make certain you have
all the components you need, purchased and ready to go. If you’re like us, you’re probably wondering
about the choice to use the Arduino to make a flashlight, and we don’t blame you! A flashlight is one of
those objects we all tend to take for granted—flip a switch and the light comes on. But what do you do
if you don’t have a flashlight? What if you only have a handful of LEDs and a battery or two?

Well, one answer is to just connect an LED to the terminals of the battery. But that isn’t a good
idea. First, the battery might supply too much current and damage the LED, so the LED won’t shine
brightly. And one LED might not be enough, but ten LEDs might be perfect. How would you connect
ten LEDs to a single battery? And how might you ensure you don’t damage all ten LEDs?

We’re going to answer those questions by showing you exactly how to connect an LED to an
Arduino. Safely. And once you know how to connect one LED to an Arduino, you can connect as
many more as you like, making a much brighter flashlight.

Let’s go see how this is done. The next few sections discuss the new pieces of hardware you’ll be
using for this challenge.

The Push Button
The push button is a very common electrical component that allows you to turn an LED (or any other
electrical device) on or off when you please, without physically connecting and disconnecting the
battery. There are many types of push buttons out there, but we’ll be focusing on the normally open
push button. That means the push button does not make a connection until the button is pressed.
Figure 7-1 illustrates various push buttons.

54 CHAPTER 7: Challenge 2: Examining the Hardware

Push Buttons

Figure 7-1.  Push buttons

ANDREW 5.0 

The term open comes from open circuit, describing a circuit in which no current is flowing. Thus, a normally open switch
is one that does not allow current to flow unless you actively press the button. Normally open switches are commonly
used on devices that you operate only briefly. A car horn is an example. Car horn switches are normally open, and only
pass current when you press the horn button.

Imagine how funny it would be for car horn switches to be normally closed! A normally closed switch allows current to
flow all the time, except when you’re pressing the button. Think of how awkward it would feel to drive all the time with
one hand on the horn to keep it quiet. Normally closed switches do have their place, though. They are often used in
burglar-alarm circuits.

The Light Emitting Diode
You can’t have a flashlight without light, and that’s precisely what a light emitting diode (LED)
provides. LEDs are special because they have a long life—providing they are properly protected. An
LED has two leads: a negative cathode (−) and a positive anode (+). The anode lead is the longer of
the two.

Tip  “You can be positive the anode lead is longer.” This is a convention followed in the industry to help
engineers avoid errors. Positive = Anode = Longer.

We will be connecting the anode of the LED to one of the digital pins on the Arduino, and the
cathode will be connected to ground. We will also be protecting the LED with a resistor because the
LED will draw too much current and if that occurs you could burn out the LED or worse you could

55CHAPTER 7: Challenge 2: Examining the Hardware

damage the Arduino. For the 5V that the Arduino supplies a 330ohm resistor works well to protect
the LED and Arduino. Figure 7-2 illustrates various LEDs.

LEDs

Figure 7-2.  LEDs

Resistors

Figure 7-3.  Resistors

The Resistor
Remember the potentiometer from the last gadget (Chapter 3)? Well, as we noted, a potentiometer is
a variable resistor. A resistor looks like a very small peanut that has a few rings of colors on it to help
identify its resistance.

What does a resistor do, you ask? A resistor impedes (blocks) the progress of current; LEDs are sensitive
to current, so if too much current passes through an LED, that LED will burn out. You need to put a
resistor in series with the LED to impede some of the current the LED will draw. (Oh, and just in case
you’re wondering, resistance is measured in units called ohms.) Figure 7-3 illustrates various resistors.

56 CHAPTER 7: Challenge 2: Examining the Hardware

Now you have the particulars of the electrical components we’ll use for this challenge. It all may
seem a bit overwhelming, but just keep moving forward. With each challenge, we’ll give you a bit
more information and things will start to fall into place. And, remember, the idea is to have fun with
these challenges!

Let’s Build Gizmo #2
Now it’s time to build the flashlight to help Cade get to Andrew’s primary controller. So, without
further ado, let’s build the circuit. Remember that all of the parts you need for this challenge can be
found in Appendix A under Challenge 2.

Here are the steps to follow:

1.	 Connect the 9V battery connector to the Arduino, as illustrated in Figure 7-4.

9V battery
connector

Figure 7-4.  Connecting the 9V battery connector to the Arduino

2.	 Connect the LED to the small solderless breadboard, as shown in Figure 7-5.
Place the longer, positive leg into E-1. Place the shorter, negative leg into F-1.

57CHAPTER 7: Challenge 2: Examining the Hardware

As you can see, the LED is inserted with one of its metal legs on one side of the mini-breadboard near
the top. The other leg is inserted into the opposite side of the mini-breadboard on the same row.

The mini-breadboard doesn’t have its columns and rows labeled (with letters and numbers,
respectively), but if it did, the LED would have its longer leg inserted into E-1 and its shorter leg
inserted into F-1. Label the columns A through J (10 columns in all) and number the rows 1 to 18
(running from top to bottom). You’ll probably need to do this lettering and numbering in your head as
there’s very little room on the mini-breadboard to write the letters and numbers.

3.	 Add a 330 ohm resistor by inserting one of its legs into D-1 and the other
leg into A-7. Figure 7-6 illustrates this process. Remember that all the pins
in Row 1 are connected inside the breadboard. The resistor leg in D-1 thus
connects to the LED leg in E-1.

E-1
F-1

Figure 7-5.  Attach the LED to the solderless breadboard

58 CHAPTER 7: Challenge 2: Examining the Hardware

4.	 Attach the push button to the solderless breadboard. One set of pins will be
inserted into E-9 and E-11. The other set of pins will be inserted into F-9
and F-11. Figure 7-7 illustrates this process.

A-7

D-1

Figure 7-6.  Attach the resistor to the solderless breadboard

59CHAPTER 7: Challenge 2: Examining the Hardware

The push button is inserted so that it straddles the center break of the breadboard. Remember that
the center of the breadboard breaks one row into two rows of five holes. Each of the five-hole rows
has a small metal plate inside the mini-breadboard that physically connects those five holes and any
components inserted into them. The push button doesn’t allow current to flow through it until the
button is pressed—this means no current flows across Row 9 or Row 11 until the button is pressed.

5.	 Attach a black wire from ground (GND) on the Arduino to G-11; this will
connect ground to one side of the push button, as shown in Figure 7-8.

F-11

F-9

Figure 7-7.  Attach the push button to the solderless breadboard

60 CHAPTER 7: Challenge 2: Examining the Hardware

When you add that wire to G-11, it’s actually sharing a connection with the pin on the push button
that’s pressed into F-11. Putting that wire into G-11 performs the same duty as if you had touched
the end of the wire to the push button’s pin. The metal plate inside the mini-breadboard allows the
wire (G-11) and the pin on the push button (F-11) to behave as if they are touching one another
because the metal plate treats F-11, G-11, H-11, I-11, and J-11 as a single connecting point.

6.	 Insert another jumper wire (we used green) from H-11 to H-1, the LED’s
shorter (Cathode) leg. Figure 7-9 illustrates this process.

GND

G- 11

Figure 7-8.  Attach the ground wire from the Arduino to the push button

61CHAPTER 7: Challenge 2: Examining the Hardware

7.	 Insert one end of another jumper wire (we used red) into digital pin 12 (D12)
on the Arduino and the other end of the jumper wire into D-9 on the
mini-breadboard. Figure 7-10 illustrates this process.

H- 11

H- 1

Figure 7-9.  Attach ground from LED to ground on push button

62 CHAPTER 7: Challenge 2: Examining the Hardware

8.	 Insert one end of another jumper wire (we used green again) into D6 on the
Arduino and the other end of the jumper wire into B-7 on the
mini-breadboard. Figure 7-11 illustrates this process.

D12

D-9

Figure 7-10.  Attach push button to digital pin 12 on the Arduino

63CHAPTER 7: Challenge 2: Examining the Hardware

By running this jumper wire to B-7, you’re actually adding the resistor to the circuit because one of
the resistor’s ends is inserted into A-7. Remember, A7 through E7 are a shared connection point.

9. This last step is optional, but you might find it fun. Make sure your wires are
lying down like those shown in Figure 7-11. Then visit our web site at
http://arduinoadventurer.com and download a PDF file to print on card
stock to create an enclosure for your gizmo.

Figure 7-12 shows a photo of the completed gizmo. Your device may look slightly different from
ours, depending upon how you routed the wires.

D6

B-7

Figure 7-11. Attach resistor to digital pin 6 on the Arduino

http://arduinoadventurer.com

64 CHAPTER 7: Challenge 2: Examining the Hardware

What’s Next?
Now that we’ve built the gadget, we can move on to the next chapter and examine the sketch that
will be uploaded to the Arduino. Remember, you can’t do anything with the Arduino yet. Don’t plug a
9V battery into the 9V battery connector until Chapter 8 is completed!

Figure 7-12.  The completed gizmo

65

Chapter 8
Challenge 2: Examining
the Software

Now that you have your Arduino flashlight built, it’s time to create the sketch that will be uploaded
to the Arduino so you can actually use it. A flashlight is a fairly simple device, and the sketch is
fairly simple, too—we’ll go over the entire sketch in this chapter. And guess what? Even though
your Challenge #2 gizmo has only one LED, you can easily add more. That’s the benefit of using an
Arduino to power the LEDs. If you find that your flashlight isn’t bright enough, just add another LED!

As you saw in Chapter 7, each LED has a resistor that helps protect it from receiving too much
current (it also protects the Arduino as it can only source 24 milliamperes). Also, each LED can be
connected to its own digital pin on the Arduino so you can use the sketch to determine how many
LEDs light up. We won’t be doing it with this sketch, but it would be a simple matter to program the
Arduino to turn on one LED with one press of the button, two LEDs with another press, three LEDs
with a third press, and then turn off all LEDs with a fourth press of the button. In this manner, you
could easily choose just the amount of lighting you need and nothing more—which means longer
battery life!

Before we get to the sketch, we want to get you ready to use digital inputs and digital outputs. The
next section will explain a few new functions we’ll use for this challenge.

Functions Explained
The new functions for this chapter are digitalWrite, and digitalRead. You use them only with the digital
pins on the Arduino (D0 to D13), so this means for the Challenge #2 gizmo you could have a flashlight
with up to 12 individually controlled LEDs. (You can have more LEDs, but you’ll only have control over

66 CHAPTER 8: Challenge 2: Examining the Software

13 digital pins). Why 13 and not 14? Because one of the digital pins we’ll be using is connected to a
pushbutton. Here are the functions you’ll be using to control the LEDs in your new gizmo:

digitalWrite(pin number, state): This special function writes a HIGH or LOW to 	
a digital I/O pin on the Arduino. A HIGH signal means that power (5V) will be
applied to a pin; a LOW signal means no power (0V) will be applied to a pin. The
pin number value is represented by the digital I/O pin you use, and the state
value is represented by a HIGH or LOW value, so if you wanted to turn digital pin
5 ON, you’d use this statement: digitalWrite(5, HIGH). To turn an LED off that
is currently connected to pin 5 that is set to HIGH, you’d use digitalWrite(5, LOW)
and the LED will turn off.

digitalRead(pin number): This function reads the state of a digital device—for 	
example the input of a button. All you need to do is supply the digital pin you’re
using. So if you want to read the state of digital pin 3, all you’d have to write is:
digitalRead(3). If the button is being pressed, the digitalRead(3) will detect a
flow of voltage and read that as HIGH.

These two function will come in handy in many of the later challenges in this book, so be sure you
understand how they work in the sketch.

The Challenge 2 Sketch
And now it’s time to create the sketch we’ll upload to the Arduino. Cade will be using an Arduino
flashlight in the tunnel, and this sketch will give him the ability to turn the LED on and off with the
push of a button. Take a look at Listing 8-1, which shows the sketch for this challenge. A breakdown
of the sketch follows.

Listing 8-1.  Software for the Second Challenge

int buttonPin = 12; // Arduino pin the button is connected to.
int LEDPin = 6; // Arduino pin the LED is connected to.
 
int buttonState = 0; // Keeps track of button
 
void setup()
{
 // Set button as an input
 pinMode(buttonPin, INPUT);
 // Set LED as an output
 pinMode(LEDPin, OUTPUT);
 // Use Arduinos internal pull-up resistor
 digitalWrite(buttonPin, HIGH); 
}
void loop()
{
 // Read button value on Arduino
 buttonState = digitalRead(buttonPin);
  

67CHAPTER 8: Challenge 2: Examining the Software

 // Conditional If Statement
 if(buttonState == LOW)
 {
 // Turn ON LED when button is pressed
 digitalWrite(LEDPin, HIGH);
 } 
 else
 // Turn OFF LED when button is not pressed
 digitalWrite(LEDPin, LOW);
}
 
Now let’s take a look at some sections in more detail. The first bit of the sketch contains variables
that let the Arduino know which digital pins are connected to various components:

  
int buttonPin = 12; // Arduino pin the button is connected to.
int LEDPin = 6; // Arduino pin the LED is connected to.
 
int buttonState = 0; // Keeps track of button

Here, we’ve created an integer variable called buttonPin that contains the value 12. This means that
the push button connects to the Arduino using digital pin 12 (D12). Look at your Challenge #2 gizmo
and trace the wire from the push button on the breadboard to the Arduino; it should lead to D12. If it
doesn’t, go back to Chapter 7 and check your wiring.

Likewise, the LED we added in Chapter 7 connects to digital pin 6 (D6). We specify this in the sketch
by defining an integer variable called LEDPin and setting its value to 6. Again, look for the LED on
the breadboard and trace a connection back to D6 on the Arduino to verify this configuration.

Finally, we set the initial state of the button to 0; this means it’s not being pressed. When the button
is pressed, the variable buttonState will have its value changed to 1.  

Next, we need to look at the setup portion of the sketch:

void setup()
{
 // Set button as an input
 pinMode(buttonPin, INPUT);
 // Set LED as an output
 pinMode(LEDPin, OUTPUT);
 // Use Arduinos internal pull-up resistor
 digitalWrite(buttonPin, HIGH); 
}

Remember, anything between the first { bracket after void setup() and the last } closing bracket
after digitalWrite(buttonPin, HIGH); is part of the setup section. We start with a simple comment
// Set button as an input, and then use pinMode(buttonPin, INPU T) to define the push button
as an input on the Arduino. Keep in mind that buttonPin has a value of 12, so the Arduino will be
monitoring digital pin 12 (D12) to see whether it’s value is 0 or 1, pressed or not pressed. The INPUT
part of the sketch means that a value will be sent to digital pin 12.

68 CHAPTER 8: Challenge 2: Examining the Software

Likewise, the next bit of the sketch defines the LED as an output device: pinMode(LEDPin, OUTPUT).
Earlier, we set LEDPin to a value of 6, meaning the LED is connected to digital pin 6. The OUTPUT part
means that voltage will be applied to pin 6 by the Arduino, which will cause the LED to light up.

The setup section closes with digitalWrite(buttonPin, HIGH).This digital write function is special
because it is using the Arduino’s internal resistor as a pull-up resistor. Yep, the Arduino has its own
built-in resistor that’s different from the resistor you insert into a breadboard. A pull-up resistor is
used to make sure that a component such as our push button settles at its correct state. Push
buttons can act a little funny at times—as if they were pressed when in fact they are not. To prevent
this behavior, we’ll use the pull-up resistor to set the push button to a known state that is HIGH
so when the button is off the Arduino is reading 5V on digital pin 12 and when the push button is
pressed D12 is reading a LOW state (0V).

Next we have the loop section of the code. It starts out with this little snippet:

void loop()
{
 // Read button value on Arduino
 buttonState = digitalRead(buttonPin);

After the opening { bracket in the void loop() section, the Arduino takes a reading of the state of the
button—is it pressed or not pressed? It checks by setting the buttonState variable to either 1 or 0.
The digitalRead(buttonPin) simply looks at digital pin 12 (D12) and then sets buttonState to 0 if
the button is pressed and 1 if it is not pressed.

Once the button state has been read, the next bit of the sketch either turns on the LED or turns it off
depending on whether the buttonState is LOW (0) or HIGH (1). Here’s that bit of the sketch:

 // Conditional If Statement
 if(buttonState == LOW)
 {
 // Turn ON LED when button is pressed
 digitalWrite(LEDPin, HIGH);
 } 
 else
 // Turn OFF LED when button is not pressed
 digitalWrite(LEDPin, LOW);

As you can see, this part of the sketch simply loops over and over and over, constantly checking
the buttonState. Press the button, and the buttonState changes to LOW and the LED is turned on.
Release the button, and the buttonState goes back to HIGH and the LED turns off.

Solve Challenge #2
If you’d like to wrap your Challenge #2 gizmo with the challenge card, you can download the card
from http://arduinoadventurer.com and print it out. This challenge card wraps around the Arduino
and breadboard to create an enclosure for your project. Then you simply attach the battery to the
Arduino and press the push button to turn on the LED. Boom! You are now lighting the way with
your Arduino.

http://arduinoadventurer.com

69CHAPTER 8: Challenge 2: Examining the Software

If you want to have some fun with your Arduino flashlight, see if you can modify the sketch a
bit to allow for lighting up two or more LEDs. All you need to do is insert additional LEDs on the
breadboard, give each a resistor just as you did with the first LED, and then wire these to their
own digital pins on the Arduino. Create variables that hold the pin numbers for these new LEDs
(remember, the variables must have different names, so you could create LEDPin2 or LEDPin3 and
so on). When the button is pressed, you simply need to change the state of each LED to HIGH and
when the button is released, turn off all LEDs.

Now that the flashlight is built, Cade can get to Andrew’s primary control so he can be released and
help Elle and Cade get out of the space station.

71

Chapter 9
Feeling The Heat

Elle and Cade shuffled down the long hallway on Level 2, with Elle carrying a laptop bag over one
shoulder and both carrying a toolbox full of electronics in each hand. After they had rounded up all
of the parts and components on the shopping list Andrew had given them, they had to consolidate
everything into fewer boxes so they could carry it all.

“Do we really need all this stuff?” asked Cade.

Andrew’s voice responded over the station’s communication system, allowing Elle and Cade to hear
his instructions as he navigated them through the level. “Much of the station’s internal systems are
damaged beyond my ability to repair. I do have limited access to some of the station’s auto-repair
droids and the maintenance bots, but station-wide electrical damage has occurred. You may find
yourselves blocked again by damaged doors. And there are reports of fires in a few locations as well
as some compartments venting atmosphere. Turn left at the next junction, please.”

“Are you sure it was a satellite impact?” asked Elle, turning left and following Cade down another
dark hallway. “If it was a meteor shower, there might be more impacts coming.”

“I now have access to the planet’s communication network,” said Andrew. “There are a number of
reports that a communication satellite experienced a rupture in a thruster fuel tank. The trajectories
of the satellite fragments were not calculated in time to warn the station and begin evacuations.
Emergency vehicles are on their way, but they are still hours away. I think it is best to get both of you
off the station now rather than wait for rescue. Stop a few feet before the Holographic Exhibit door
for a moment, please.”

Cade and Elle set their cases on the floor and waited for Andrew to assess the status of the room
they were about to enter. Andrew’s directions had gotten them safely down a ladder to Level 2, but
the access panel to open the emergency exit to enter Level 1 was in ruins.

“The room is safe to enter,” said Andrew. “Please proceed through it to the next area.”

Cade sighed and picked up his two cases. “Has our school reported us missing yet?”

Elle frowned as she grabbed a case handle in each hand. “I hadn’t even thought about that,”
she said. “Mrs. Hondulora is going to be furious.”

72 CHAPTER 9: Feeling The Heat

“Checking,” said Andrew.

A few seconds of silence passed.

“Records indicate thirty-five students and two instructors checked into the station. Eight escape
pods have been launched with thirty-five seat restraints engaged. I believe it is safe to say your
absence has been noticed.”

“We’re in so much trouble,” said Elle.

On a Pedestal
Cade walked to the door, which opened automatically, and looked over his shoulder. “Look at it
this way. . . maybe we’ll get extra credit for all the new things we’re learning.” His smile was not
convincing.

Elle and Cade moved toward the center of the new room. Numerous pedestals were visible against
the walls of the round-shaped room. Cade looked closer and could see a small gold plate on each
pedestal engraved with a name.

Elle pointed at a door on the opposite side of the room. She consulted the map of the station from
memory, trying to recall what exhibit was in the next room.

“What is this room?” asked Cade. “It’s kinda creepy.”

Andrew responded immediately. “The Holographic Exhibit allows visitors to interact with various
celebrities, scientists, and politicians from the last two hundred years. The holograms are
currently disabled.”

“Oh, no,” said Elle.

Cade stopped and turned to face his friend. “Elle, I really don’t think we have time to chat with...,”
he squinted at one of the small name plates. “Bre Pettis? Who is that?”

“Bre Pettis,” said Andrew. “A key individual from the early twenty-first century, responsible for the
widespread acceptance of three-dimensional printing as a valid form of fast prototyping for small
businesses. A major breakthrough by his team in 2015 led to...”

“Yeah, yeah, smart guy,” said Cade. “Elle, we gotta move.”

Elle continued to stare at the door as she shook her head. “Andrew, you need to find us a
different route.”

“What?” asked Cade. “Elle, are you alright?”

“We can’t go this way,” she said. “There has to be a different route.”

“I’m sorry, Elle,” replied Andrew. “This is not only the fastest way to Level 1, it’s also the only one
available. There are no other routes to Level 1.”

Elle stared hard at Cade. “This way leads to the maintenance tunnels.”

Cade shook his head, not understanding. “Yeah? So? What’s wrong with that?”

“I wasn’t kidding back in Andrew’s room, Cade. I really can’t handle tight spaces.”

73CHAPTER 9: Feeling The Heat

Cade put his hand on Elle’s shoulder. “We’re in some serious danger here, Elle... could you just close
your eyes and let me lead you?”

Elle shook her head. “I’m serious. I can’t do this. I just. . .”

“Okay,” said Cade. “Let’s, uh. . . see what our options are. Andrew, how long of a crawl is it through
the maintenance tunnels?”

“Seventy-eight meters from entrance to exit,” said Andrew. “I estimate it will take you ninety-two
seconds to complete the transit.”

“Not gonna happen,” said Elle. “Find us another way, Andrew. I’m not kidding.” Ell’s voice was tense,
and Cade could tell just from her facial expression that her mind was made up.

“Elle, I understand your reluctance, but. . .”

“Find us another way, Andrew!”

Cade took a step back, shocked at Elle’s outburst. His friend was not going to be crawling through
any tunnels, that much seemed certain.

Chutes and Ladders
“Andrew, there’s got to be another way to the escape pods on Level 1,” said Cade.

“There is not, Cade,” said Andrew. “The only other option I can provide is to guide you to Level 6.
But I am unable to access the station’s video surveillance functions and most of the station’s
environmental sensors are damaged. The ones I can access I’m not certain I’m willing to trust
due to the damage to the station.”

“Is Level 6 accessible with the emergency ladder tube we used to climb down from Level 3 to 2?”
asked Cade.

“No. That tube’s access controls for moving up are damaged and I am unable to override. There
is another emergency access tube that moves from Level 2 to Level 5 that I can access, but I
can’t verify the environmental status of Levels 3 and 4. If you had emergency suits, I wouldn’t
be concerned. All breaches have been sealed, so oxygen isn’t a problem. But the station’s AI is
informing me that there is a fire on Level 4. Damage control droids haven’t yet been able to confirm
that it has been extinguished.”

“But what if there’s no fire?” asked Elle. “Then we could get to Level 5 and then to the escape pods
on Level 6, right?”

“The risk is too high,” replied Andrew. “Elle, it would be safer and faster for the two of you to attempt
to cross the access tunnels that lead to Level 1.”

Elle ignored Andrew’s request, and stared down at the heavy boxes in her hands. Something Andrew
had said about the emergency tunnels triggered a thought. “Wait, you said you could open the
hatches between levels, right?”

“That’s correct, Elle,” said Andrew.

74 CHAPTER 9: Feeling The Heat

“Well, couldn’t we put a piece of cloth or paper on Level 3 to detect a fire? We come back down to
Level 2, close the hatch, and you open up the hatch that leads to Level 4. If there’s no fire, the paper
or cloth will let us know it’s safe to proceed.”

“That won’t take into account a high temperature that would be unsafe for humans,” said Andrew.
“If there’s a fire on Level 4, the temperature in the access tunnel could still be too high for you
to cross.”

“I can’t believe this,” said Elle. “We can’t proceed because we lack a simple thermometer?” She shook
her head in frustration.

“Wait,” said Andrew.

Cade looked at Elle. “If he tells us we left a digital thermometer back in the room, I’m going to
scream.”

“I’m sorry about this,” said Elle. “I really am. But there’s no way I’d make it through the maintenance
tunnel.”

Cade smiled. “It’s okay, Elle. I trust you. If you can’t do it, we’ll find another way.”

“Please open Box 12,” said Andrew.

Cade looked at the numbers on his and Elle’s boxes. “One of mine,” he said, sitting his boxes down
and opening up Box 12. “Okay . . . what next?”

“Please verify you have part number Q91-XB-4.”

Cade dug through the boxes various trays, not finding the specified part. He lifted up the top tray
and began pulling out the bags and boxes in the bottom of the toolbox.

“Wait,” said Elle, reaching forward. “Here it is.”

Cade smiled. “Good eyes. Okay, Andrew. We’ve got it. What is it?”

“Please pack up your boxes and proceed out the Holographic Exhibit’s entry door. Turn right,
go twenty feet, and turn left. Please hurry.”

Cade and Elle began to repack Box 12.

“Keep that part safe, “said Cade. “I have a feeling it’s that part that’s gonna keep me from dragging
you kicking and screaming down the maintenance tunnels.”

Elle stood up, grabbed her stuff, and smiled at Cade. “Let’s go.”

Green-eyed Hatches
Ten minutes later, Cade and Elle stood inside a small room with a metal ladder in the center. Two
round, green-painted hatches could be seen, one on the ceiling and one on the floor, with the
vertical bars of the ladder extending up and through the hatches. The seal was tight, but Cade and
Elle could see that when a hatch opened, a person would be able to continue climbing up or down
the ladder.

“I’m going to open the hatch between Levels 2 and 3,” said Andrew.

75CHAPTER 9: Feeling The Heat

The green hatch split into two halves, each half disappearing into the ceiling. Cade and Elle looked
up into the next section of the emergency access tunnel.

“You’re okay with the size of this room?” asked Cade.

“Don’t ask me to explain,” said Elle. “This is plenty of room to move around. Those maintenance
tunnels are only two feet wide.”

“Okay,” said Cade with a nod. “Andrew, what do you need us to do now?”

“I’m going to have you create a small circuit that will test the temperature in Level 4. Part number
Q91-XB-4 is critical, but you’re also going to need some other components. Please open your boxes
and I’ll tell you which pieces you’ll need.”

Cade and Elle sat down on the smooth floor. Elle opened up the laptop bag she’d been carrying and
pulled out the antique computer.

“First, you’ll need one Arduino Uno. . .”

77

Chapter 10
Challenge 3: Fun Stuff
to Know

Are you starting to get more comfortable inserting wires into a breadboard and connecting the
Arduino Uno to your computer to upload a sketch? We hope so. The folks who design the Arduino
microcontrollers had many goals when they were developing the device, and one of those was to
make it as simple as possible for non-technical people to build things. You don’t necessarily need to
know how a resistor works or how its chemical makeup makes it do what it does. You don’t need to
understand why an LED only works when inserted in the breadboard one way and won’t work when
inserted the other way. These are things you can find out about later, with some extra research and
reading, should you decide you want a deeper understanding of electronics.

But right now . . .  what you want is more hands-on activities, right? Well, that’s what you’re going
to get with Challenge 3. This is the last challenge in the book that will have you focusing on a single
component. Challenges 4 through 8 will be more involved, and will take advantage of electronic
components you’ve already used (such as resistors, potentiometers, and LEDs), as well as some
new ones you haven’t yet examined.

So let’s get moving. Andrew now has access to all parts of Gemini Station, and he needs to get Elle
and Cade to the escape pods. But as you read in Chapter 9, the team needs to move up to Level 5
through a series of hatches, and there’s a possibility that Level 4 might be too hot for humans.
The only way they can check is to take a temperature reading, and for that they’re going to use a
new component—a temperature sensor.

Looking at the Temperature Sensor
You’re probably quite familiar with the kind of thermometer used to take your temperature—a long
glass tube filled with mercury that you stick under your tongue. The mercury moves up the tube and
indicates your body’s temperature using a bunch of small, numbered lines on the tube. Depending
on the country you live in, temperatures are given in either Celsius (C) or Fahrenheit (F).

r

78 CHAPTER 10: Challenge 3: Fun Stuff to Know

Using a glass-tube thermometer isn’t ideal when dealing with electronics, however. Sure, you could
go crazy and build a super-complicated gizmo that uses a visual sensor of some sort to actually
read the gauge on the tube, just as a human would read it. But that would probably require both
expensive hardware and advanced programming skills. Fortunately, when you need to take a
temperature with an Arduino microcontroller, there’s a much simpler way.

Take a look at Figure 10-1. It doesn’t look anything like a glass-tube thermometer but, believe it
or not, it’s a temperature sensor. It is fully capable of taking a temperature reading of its current
environment and providing that reading back. The sensor in Figure 10-1 happens to return values in
Celsius, but you can easily convert to Fahrenheit if you prefer.

Figure 10-1.  A temperature sensor is a tiny device; this is close to its actual size

If you’ve already got your temperature sensor in hand, go ahead and take a closer look at it. If you
don’t have one yet, check the parts list in Appendix A to find what you need.

The first thing to notice is how easy the three prongs are to bend. You don’t want to bend them back
and forth, over and over again, but the flexibility of the three prongs will allow you to easily insert
them into a breadboard. You can trim them down if you find the temperature sensor is too tall, and
you can bend the temperature sensor down or away from other components. And that little black
barrel? Inside is an amazingly sensitive and accurate bit of electronics that allows the sensor to
detect the temperature of its immediate surroundings. If you’re surprised about the small size of this
sensor, you’ll be even more amazed to know that there are even smaller versions!

While you’re examining your temperature sensor, let’s talk about how it provides a numeric value
that represents temperature. We mentioned that the sensor reports in Celsius, but here in the United
States, temperature is typically given in Fahrenheit. However, you’ve probably learned in school that
there’s a simple equation for converting a Celsius value to a Fahrenheit value, so this is no big deal.
But guess what? You don’t even need to worry about converting to Fahrenheit with a pen or pencil,
you can just add this requirement to the sketch and make the Arduino do the Celsius-to-Fahrenheit
conversion for you! How cool is that?

Many temperature sensors look just like the one in Figure 10-1, but they may not measure
temperature in exactly the same manner. Some temperature sensors have a wider range than others,
meaning one temperature sensor might be able to take a reading between 0 and 120 degrees
Celsius, for example, while another might only be able to read between 40 and 150 degrees
Celsius. For the purposes of Challenge 3, we’ll be looking for a safe temperature for humans, so the
recommended temperature sensor found in Appendix A should work fine.

79CHAPTER 10: Challenge 3: Fun Stuff to Know

It’s probably a bit more technical than your readers might care for, but the datasheet for the specific temperature sensor
used in Challenge 3 can be found at www.sparkfun.com/products/10988. Even I got drowsy reading over it,
so just beware that it’s full of charts and equations and other sleep-inducing content.

As long as your readers use a similar temperature sensor, they should get reasonably trustworthy readings and they won’t
be required to wire up the sensor any differently than is shown in Chapter 11.

And please warn your readers that the gizmo they’ll be building for Challenge 3 is for testing and educational purposes
only. No one should rely on this Arduino gizmo and temperature sensor for real-world use—checking your own
temperature, for example. Testing for a fever is much better performed with a thermometer designed for that purpose.
The goal here is for your readers to understand how a temperature sensor can connect to an Arduino microcontroller and
provide temperature data.

As Andrew said, it’s probably not a good idea to use this gizmo to test anything other than the
temperature of the room you’re working in. So please don’t go putting it into the oven or the
microwave or the freezer. First, your parents probably won’t like the mess this makes (melted
electronics everywhere); and second, your Arduino might not survive. There are methods for creating
real-world gizmos that can withstand high and low temperatures, but the gizmo you’ll be building in
Chapter 11 won’t be capable of dealing with temperature extremes.

We’re jumping ahead a bit, but take a look at Figure 10-2 to see what the final wired-up gizmo for
Challenge 3 looks like. (You’ll find the instructions for actually assembling it in Chapter 11.)

Figure 10-2.  An Arduino gizmo, complete with temperature sensor

ANDREW 5.0

http://www.sparkfun.com/products/10988

80 CHAPTER 10: Challenge 3: Fun Stuff to Know

There are a few things you might notice in Figure 10-2 in addition to the temperature sensor. First,
you’ll see a resistor and an LED. As you learned in Challenge 2, it’s always good to pair an LED with
a resistor to protect the LED from burnout should it receive too much power. We’ll talk about the
function of the LED is in Chapter 11, but try and make some guesses about how an LED might be
used with a gizmo that’s designed to determine the temperature in a room. Any ideas?

Notice that we’re once again using jumper wires to make some connections. In Chapter 11, we’ll be
telling you how to connect everything together. For now, Figure 10-2 should give you an idea of the
simplicity of this gizmo. Imagine it—an Arduino and a tiny temperature sensor, when connected to a
computer, can give you real-time feedback on the temperature. Can you think of any possible uses
for this combination of components?

ANDREW 5.0

Your readers might like to know some of the uses I can think of for a temperature sensor. Here are a couple suggestions
that might spark some ideas for future gizmos.

1.	 Fan controller: Use the temperature sensor to start and stop a battery-operated fan. Use the fan to
keep cool at your desk or workbench.

2.	 Automatic plant watering device: Use a temperature sensor to determine when it’s time to tip a
motor-controlled watering can to give a plant a drink of water. Even better, you could investigate a
humidity sensor and how best to integrate it into your automatic plant watering device! (You’ll start
learning about motors with Challenge 4.)

3.	 Flowerbed protection device: Tape a temperature sensor to the inside of a window to determine when
the temperature outside drops below a certain point. Program the gizmo to alert you to cover up your
plants so they’ll survive the cold night.

Andrew’s got some great ideas and we’re sure you have some of your own. As we stated earlier,
your imagination is your best source of future gizmo designs. When you finish Challenge 3, you’ll
have been introduced to the potentiometer, LED, temperature sensor, resistor, jumper wires, battery
harness, and push button. But we’re not done… not even close. In upcoming challenges, you’ll be
combining many different components you’ve experimented with individually and making some
more-complex gizmos that’ll give you an even better idea of just how far you can push your Arduino
microcontroller with some extra parts, a little bit of reading, and a fun bit of tinkering.

81CHAPTER 10: Challenge 3: Fun Stuff to Know

Ready to Build Something?
Are you starting to see some of the possibilities Arduino microcontrollers offer? Just think about
this—if you can imagine a gizmo that can perform a certain function, you can probably figure out
how to actually build it. You may have to do some more research, post some questions on a few
Web forums, and possibly burn out a few components as you try different solutions, but that’s also
part of the fun of experimenting with an Arduino—trying new things, testing them out, learning what
works and what doesn’t work, and then finally having that big breakthrough where you wow the
world (okay, maybe just your friends and family) with your new invention.

Remember to check out Appendix A for the hardware you’ll need to build the Challenge 3 gizmo.
Again, it’s not a long list, so it shouldn’t take you long to gather the parts and it shouldn’t cost you a
fortune, either. Turn to Chapter 11 when you’re ready to begin assembling the temperature sensing
gizmo.

Time to build!

83

Chapter 11
Challenge 3: Examining
the Hardware

Ready for the next hardware challenge? This time we’ll create the temperature gizmo Cade and Elle
need for checking the temperature between levels. This gizmo is extremely simple, but that doesn’t
mean it’s not important! Think about it—some of the most important things you do in life require only
one or two components—brushing your teeth, writing an essay, even riding a bike. But it’s often the
simplest things that require the most preparation.

Take riding a bike: there’s basically just one component—the bike—but you’ve got to have a good
sense of balance, two feet for the pedals, two hands to steer, and the bike needs to be assembled
properly or you risk injury. The same goes for any gizmo you build with the Arduino! You need to
understand each simple component used in the gizmo, plus how to properly program it and wire it
up on a breadboard.

So, before building the Challenge 3 gizmo, let’s learn a little bit about the temperature sensor we’re
going to use. Once that’s out of the way, we’ll start creating the circuit.

Let’s get moving!

What Is a Sensor?
As we mentioned, we’ll be using a temperature sensor for the Challenge 3 gizmo. But what is a
sensor? Well, a sensor is a component that allows you to convert values of natural phenomenon to a
readable unit, such as voltage. Think about it this way: the temperature sensor will take a reading of
the room’s temperature—that’s the natural phenomenon. Other readings could be the light level in a
room, the sound level in an auditorium, or even the water level in a flooded basement.

Sensors you use with an Arduino Uno, however, often don’t report values the way we humans read
them. For example, the temperature outside right now is 80 degrees Fahrenheit, but the temperature
value provided by a working temperature sensor won’t show up as 80.

84 CHAPTER 11: Challenge 3: Examining the Hardware

The sensor translates temperature into voltage. The Arduino Uno senses the voltage level and reports
that to you as a number. For example, 80 degrees might trigger the sensor to return 4.503 volts and
that’s the value the Arduino Uno gives you. It’s up to you to do the math to translate 4.503 into 80 to
represent degrees Fahrenheit. That math is done in software. You’ll see it in the next chapter.

For the Challenge 3 gizmo, we’ll be using the TMP36 temperature sensor. Sounds technical,
doesn’t it? Well, if you take a look at Figure 11-1, you’ll see that there’s really nothing complicated
about it at all.

+Vs Vout GND

Figure 11-1.  Pinout of TMP36

Figure 11-1 doesn’t just show what the TMP36 looks like. See how the flat side is facing up? That’s
a good reference point for you. When you use this sensor, you need to make sure to connect it
correctly or you can damage it.

85CHAPTER 11: Challenge 3: Examining the Hardware

There’s a lot going on inside the TMP36 temperature sensor, and I know you’d like to understand how that little device
works. First, the actual temperature the TMP36 detects is converted to a voltage value. As the temperature climbs, the
voltage climbs, and if the temperature drops, the voltage value is reduced. This voltage value is what’s reported using the
middle wire—the voltage-out pin.

In addition to the temperature sensor, we’ll also be using some components you already know—an
LED and a resistor. For the Challenge 3 gizmo, you’ll use the LED to indicate when the detected
temperature falls above or below a certain value. You’ll use the program to define whether you want
it light up when the temperature drops below a value (say, below 90 degrees Fahrenheit) or when the
temperature exceeds a value (above 100 degrees Fahrenheit, for example).

You’ll also need your mini breadboard, your Arduino Uno, and five jumper wires. We’re using three
black wires and two red wires, but the color isn’t all that important so use what you have.

Let’s Build Gizmo 3!
Now let’s build the circuit. Remember, you can find a list of all the hardware for this challenge, and all
of the projects, in Appendix A.

1.	 The first step is to attach the LED to the solderless bread board, as shown in
Figure 11-2. Insert the longer, positive LED lead into Row 26, Column E (E-26).
Insert the shorter, negative lead into Row 30, Column E (E-30).

ANDREW 5.0

Now take a look at the sensor’s pinout in Figure 11-1. The pinout simply shows the function of each
of the three metal legs (pins) and how they should be inserted into a breadboard circuit. As you can
see, the sensor has one pin for the input voltage (5v or 3.3v), one for ground, and one for output
voltage. The output voltage lead is going to be connected to the Arduino’s analog input, and it’s the
voltage provided by this pin that will be converted into a temperature we can all understand.

86 CHAPTER 11: Challenge 3: Examining the Hardware

2. Next, attach the 150-ohm resistor to the positive lead of the LED, as
illustrated in Figure 11-3. The 150-ohm resistor has a series of colored bands
with the pattern brown-green-red. (You may also have either a gold or a silver
band following the red one). Insert one of the resistor leads into Row 26,
Column D (D-26) and the other into Row 24, Column B (B-24).

E-26

E-30

Figure 11-2. LED attached to the solderless breadboard

87CHAPTER 11: Challenge 3: Examining the Hardware

3.	 Attach ground from the Arduino to the bottom ground strip of the solderless
bread board. Then attach the ground strip of the solderless bread board to
A-30 of the solderless bread board. Figure 11-4 illustrates this process.

B-24 D-26

Figure 11-3.  Attach the resistor to the positive lead on the LED

88 CHAPTER 11: Challenge 3: Examining the Hardware

4.	 Attach digital pin 13 of the Arduino to the other side of the resistor (E-24 of
the solderless bread board), as shown in Figure 11-5.

GND

A-30

Figure 11-4.  Attach ground from the Arduino to the solderless bread board and to the LED

89CHAPTER 11: Challenge 3: Examining the Hardware

5.	 Now you’re ready for the temperature sensor. Insert the TMP36 sensor into
the solderless bread board as shown in Figure 11-6, making sure the flat
side is facing away from the Arduino—assuming you have the two boards
oriented as we do in the figure.

E-24
D13

Figure 11-5.  Attach digital pin 13 to the LED

90 CHAPTER 11: Challenge 3: Examining the Hardware

	 You want the Vs pin (on the left when looking at the TMP36 with flat side
facing you) inserted into Row 14, Column E (E-14), the middle pin (Vout)
inserted into Row 15, Column E (E-15), and the GND pin inserted into
Row 16, Column E (E-16).

6.	 Now you’ll connect the temperature sensor to the other components. First,
connect the 5V pin on the Arduino to the +Vs pin on the TMP36 using a
jumper wire. Insert one end of the jumper wire into Row 14, Column D (D-14)
and the other end into the +5V header on the Arduino. (We used a red wire,
but any color will work.) Next, connect ground from the ground strip of the
solderless breadboard to the ground pin on the TMP36. Use another Jumper

E-14 E-15 E-16

Figure 11-6.  Attach the TMP36 to the solderless breadboard

Caution  Use care when adding the temperature sensor to the breadboard. There is some risk of
damage if you mix up the pins. Pay close attention to the next paragraph.

91CHAPTER 11: Challenge 3: Examining the Hardware

wire with one end inserted into Row 16, Column A (A-16) and the other end
going into the ground strip of the solderless bread board. (We used a black
wire but any color will work fine.) Figure 11-7 illustrates this process.

D-14 A-16

+5V

Figure 11-7.  Connect power (+5v) and ground to the TMP36 via the Arduino

7.	 Finally, you’ll use your last jumper wire to connect the Vout pin on the TMP36
to the analog 0 header on the Arduino, as shown in Figure 11-8. Insert one
end of the jumper wire into Row 15, Column D (D-15) and the other end into
the A0 header on the Arduino. (We used a green wire but any color will work.)

92 CHAPTER 11: Challenge 3: Examining the Hardware

And that’s it! You’ve got a temperature-detecting gizmo ready to be programmed! Figure 11-9 shows
the one we built.

D-15

AO

Figure 11-8.  Connect the analog input pin 0 of the Arduino to the center pin on the TMP36

93CHAPTER 11: Challenge 3: Examining the Hardware

Be sure to check that the LED is connected correctly with the negative pin (the anode) inserted
into E-30 and the positive pin (the cathode) inserted into E-26. Also, make sure you’re sending 5v
to the TMP36 and not 3.3v; this wouldn’t cause damage, but it would result in incorrect readings or
possibly a gizmo that just won’t work. If your wiring is correct you are ready to program!

Chapter 12 will provide the simple sketch that must be uploaded to your Challenge 3 gizmo to make
the detector work. So turn the page and get moving—Cade and Elle are counting on you!

Figure 11-9.  The authors’ version

95

Chapter 12
Challenge 3: Examining
the Software

If you ask a dozen students about their favorite part of designing gizmos with an Arduino, you’re
likely to get a dozen unique answers. One might like experimenting with new sensors, another might
like building motorized devices, and a third might prefer the programming portion of a design. Even
your authors have their own favorite parts of designing a gizmo. Harold, for example, enjoys the
programming part of a project, and he’s quite good at it. But James Floyd, on the other hand, prefers
laying out circuits on a breadboard instead of typing up bits of code to make a sketch.

But an Arduino gizmo requires some skill in all areas. Harold is also quite good at building circuits,
and James Floyd is getting better at programming. You’re probably already starting to identify your
strengths and weaknesses when it comes to building the gizmos in the book, right? Maybe you really
enjoy building the circuits, or maybe you’ve discovered you’ve got a special knack for programming.
Whatever you enjoy doing, keep doing it! But don’t forget that a properly working gizmo requires a
good understanding of both aspects of its design—hardware and software.

Well, we’re here in the Challenge 3 programming chapter, and that means learning a bit more
about how sketches work and control an Arduino and its various components. In the case of the
Challenge 3 gizmo, the temperature sensor is the newest element. Thankfully, it’s not a complicated
component!

Before we get into showing you the complete sketch for the Challenge 3 gizmo, we want to
introduce you to another fundamental concept of programming. Once again, don’t sweat it if
the programming doesn’t seem to come naturally to you—it doesn’t to James Floyd, either.
Programming is something you learn a little at a time, piece by piece. Over time, your brain will start
to organize all the techniques and methods you pick up as you program various gizmos and, the
next thing you know, you’re an Arduino programming guru!

But let’s just take it a step at a time. For the Challenge 3 gizmo, you’re going to want to continually
monitor the feedback from the temperature sensor. And in order to do this, you need to revisit a
concept from Chapter 4 called a loop. What does a loop do? Pick any point on a loop and start

96 CHAPTER 12: Challenge 3: Examining the Software

moving—and you’ll return to your starting position eventually. It’s the same with a programming loop.
At some point, the sketch starts doing something and, after a period of time, it starts over. It’s not
complicated, and the actual programming code required to do this is pretty short, so let’s take a look
at how we can tell the Arduino to repeat an action over and over again.

The Conditional If-Else Statement
Imagine sitting in a race car on a race track. It doesn’t matter if the track is circular or oval or some
other pattern. If you start driving, eventually you’ll come back to your starting point, which we’ll call
the Starting Line.

Now, you’ve got a few things you want to monitor. The first is your fuel level and there’s a gauge
you’re watching. A needle points to either Full or Empty. Another gauge tells you whether your tires
are Good or Need Replacing.

Punch the gas and let’s race! You finish your first lap and as you cross the Starting Line, you look
at your gauges. Gas is still Full and Tires are Good. Keep going! You go lap after lap after lap…
eventually the gas gauge says Empty. Do you head in for a pit stop and refuel? Of course! Without
fuel, you’re out of the race. After refueling, you’ll continue to monitor your gauges and make
decisions based on the conditions of your car.

Let’s think of how we might do a bit of decision making. We could make a list of conditions like this:

If Gas >= 4 gallons and Tire tread >= 40%, keep racing.	

Else make a pit stop.	

Notice that the Gas and Tire tread variables have the >= and then a number after them. Those
numbers are called limits, and limits are extremely important in all aspects of programming. For
example, the two limits used in this example are 4 and 40, but they could have been 2 and 65. It just
depends on the limits you need for your specific application.

Imagine if we replaced you (the driver) with an Arduino that could somehow drive the race car. We’d
need to create a sketch to steer, obviously, and another to press the gas pedal or hit the brakes. If
we assume that the steering and driving parts of the sketch have already been written, then what’s
left is the part of the sketch that determines when to make a pit stop and when to keep racing. To do
that, we’d need to periodically check the conditions of the gas tank and the tires.

When it comes to Arduino programming, these kinds of tests are most often performed using an
extremely easy bit of code called an If-Else statement. An If-Else statement is a kind of Conditional
Statement and it works like this:

If Gas is >= 4 gallons and Tires are >= 40% tread left—RACE!

Else MAKE A PIT STOP!

Pretty simple test, isn’t it? Based on a condition, we do one or the other! If the gas tank has 4 or
more gallons and the tires have 40% or more tread left, keep racing. But if the gas is less than 4 gallons
or the tire tread is less than 40%, or both conditions exist (gas < 4gallons, tire tread < 40%), then
we make a pit stop.

97CHAPTER 12: Challenge 3: Examining the Software

And what does an If-Else statement look like when implemented in a sketch? Take a look:

if (test condition or test conditions)
{
 // Code here
}
else
{
 // Code to run when no previous condition is a match
}

Look closely at the code. The first thing that happens is that one or more conditions—whatever’s
inside the parentheses—are tested. Suppose we want to test just for an empty gas tank. We could
use if (gastank >= 4), which basically says, “If the gastank variable is greater than or equal to
4 gallons, then perform whatever instructions we provide next between the { and } brackets.

But we’ve also got the tires to check, so we could modify our if statement as follows: if (gastank >= 4
&& tires >= 40), which essentially says “If the gastank variable is greater than or equal to 4 gallons
AND the tires variable is greater than or equal to 40%, then perform the instructions between the
{ and } brackets.

Only if both conditions (gas tank > 4 gallons and tire treads > 40%) are true will whatever code we
put in between the first set of brackets be executed. Otherwise, the sketch jumps to the else clause
and executes whatever fall-through statement is between the { and } brackets that follow the else
keyword. Here’s a modified version of the If-Else statement:

if (gastank >= 4 && tires >= 40)
{
 RACE
}
else
{
 MAKE PITSTOP
}

The key to really learning to use an If-Else statement is figuring out how to create the conditions that
are tested. We created two fake variables, gastank and tires, that would monitor the conditions of
your race car, but there is really no limit to the conditions you could place within the parentheses—if
(motiondetector <>0) or if (temperature>90), for example.

This example illustrates how to set up a loop when you want an action to repeat over and over
again, but be able to break out of it when certain conditions are met. Hopefully you are beginning to
understand the basics of the If-Else statement. We’re now going to show you how we implement an
If-Else statement in the Challenge 3 gizmo’s sketch. Things should begin to crystalize for you as you
read the next section.

The Challenge #3 Sketch
Now that you understand the If-Else statement you can use it in this next listing to control an
LED whenever the temperature reaches a certain limit. The limit for this sketch can change from

98 CHAPTER 12: Challenge 3: Examining the Software

household to household. For example, your house may be warmer than 75 degrees, so you might
have to adjust that limit when you are running the program.

Listing 12-1 is the sketch you should upload for Challenge 3 to your Arduino with a USB cable.

Listing 12-1.  The Sketch for Reading Temperature

int tempPin = 0; 
int LEDPin = 13;
  
void setup()
{
 pinMode(LEDPin, OUTPUT);
 Serial.begin(9600);
}
  
void loop()
{
 //get voltage reading from the temperature sensor
 int reading = analogRead(tempPin); 
  
 float voltage = reading * 5.0;
 voltage /= 1024.0; // short way of stating voltage = voltage / 1024.0
  
 // Convert voltage to Celsius
 float tempC = (voltage - 0.5) * 100 ; 
  
 // convert Celsius to Fahrenheit
 float tempF = (tempC * 9.0 / 5.0) + 32.0;
  
 // if Temperature is greater-than or equal to 75 turn LED on else leave
 // LED off
 if(tempF >= 75)
 {
 digitalWrite(LEDPin, HIGH);
 }
 else 
 {
 digitalWrite(LEDPin, LOW); 
 }
  
 // for debugging purposes shpow tempF data on Serial monitor
 Serial.println(tempF); //Send tempF data to serial port.
  
 delay(500); //waiting a half second
}
 
Go ahead and read through the entire sketch—it isn’t long at all. You’ll probably recognize some
parts of the sketch because of the previous gizmo sketches. But you’ll also see some new stuff.
So let’s break it down and examine some of the key parts and learn how they work.

99CHAPTER 12: Challenge 3: Examining the Software

Here’s the first part of the sketch:

int tempPin = 0; 
int LEDPin = 13;
  
void setup()
{
 pinMode(LEDPin, OUTPUT);
 Serial.begin(9600);
}

Pretty straightforward—we create two variables, tempPin and LEDPin, that define where these two
components are inserted into the Arduino. The temperature sensor has one of its pins inserted into
A0 and the LED has one of its pins connected to D13. (Refer back to Chapter 11 for details on how
the components connect to the Arduino microcontroller.)

After the variables are defined, we add a bit of code that specifies how the LEDPin will be used.
OUTPUT means voltage will be applied to pin 13 to light up the LED. We’ll also be using the serial
monitor again so we can see actual temperature feedback from the sensor.

Here’s the next piece of the sketch:

void loop()
{
 //get voltage reading from the temperature sensor
 int reading = analogRead(tempPin); 
  
 float voltage = reading * 5.0; // convert analog reading to a voltage level
 voltage /= 1024.0; // voltage = voltage / 1024.0
  
 // Convert voltage to Celsius
 float tempC = (voltage - 0.5) * 100 ; 
  
 // convert Celsius to Fahrenheit
 float tempF = (tempC * 9.0 / 5.0) + 32.0;

You’ll recognize the void loop() part as the main area of the sketch. The sketch will take a reading
from the temperature sensor by reading the data received on A0 (tempPin=0, remember?) and storing
it in a temporary integer variable called reading. The reading variable stores an analog value that we
also need to convert.

We create a temporary variable called voltage that will be calculated by taking the value stored in
the reading variable and multiplying it by 5 (because the Arduino is supplying 5V of power). The
value of the voltage variable needs to be converted to something a human can understand, so we
divide the current value by 1024 (1024 bits) to get a voltage value (from 0 to 5v).

The voltage value can then be converted into both Celsius and Fahrenheit. To calculate the Celsius
temperature, we take the voltage value and subtract .5 before multiplying by 100. If you live in a
country that uses Celsius for displaying temperature, you could stop here. But in the USA, we use
Fahrenheit, so there’s one more calculation that needs to be done. We take the Celsius value (stored
in variable tempC) and multiply it by 9 and then divide that by 5. Add 32 as the final step, and tempF
will hold the Fahrenheit value provided by the temperature sensor.

100 CHAPTER 12: Challenge 3: Examining the Software

And now let’s finish up by examining the last bit of the sketch:

// if Temperature is greater-than or equal to 75 turn LED on else leave
// LED off
if(tempF >= 75)
 {
 digitalWrite(LEDPin, HIGH);
 }
 else
 {
 digitalWrite(LEDPin, LOW); 
 }
  
 // for debugging purposes shpow tempF data on Serial monitor
 Serial.println(tempF); //Send tempF data to serial port.
  
 delay(500); //waiting a half second
}

Here’s that If-Else statement you just read about. Look at the first line: if(tempF >=75). This is a
simple test to determine if the temperature being detected by the sensor is greater than or equal to 75.
If the test is found to be true, the LED lights up because the code between the { and } brackets
below the if statement, digitalWrite(LEDPIn, HIGH), is executed.

If the test is false (maybe the temperature is 74 degrees F), then the code found between the { and }
brackets below the else statement is executed. If the temperature is 40 degrees F, for example, the
sketch executes digitalWrite(LEDPin, LOW), which simply turns off the LED.

The remaining bit of the sketch puts the current value of tempF on the screen so you can use the
serial monitor to actually read the value that the temperature sensor is detecting. You can have some
fun with this by cupping the sensor in your hands or holding a candle near (but without touching) the
sensor. You should see immediate changes in the temperature reading.

The delay(500) simply pauses for half a second between readings.

You can tweak the sketch a number of ways:

Changing to 	 if(tempF < 75) tests whether the temperature value is less than 75.

Changing to 	 if(tempC >23) tests using Celsius values.

You could test 	 if(tempF < 75) and set the LED to LOW to test the same
condition, but this time turning on the LED (LED to HIGH) in the else statement.
If the temperature is less than 75, the if statement is false and the else
statement will execute, turning on the LED.

You’ll find the If-Else statement to be very common in Arduino sketches. There’s no better method
for testing conditions and using the true or false nature of those conditions to control the actions of
a gizmo.

101CHAPTER 12: Challenge 3: Examining the Software

You should also note that if-else statements can be combined to test a much larger set of conditions. This practice is
called nesting and looks like this:

if (test condition 1)
{
 	 if (test condition 2)
		 { //Code here
		 }
 else
 { //Code here
	 }
 
}
 
else if (testcondition 3)
{
 // Code here
}
 

You can even nest another if-else statement in the original else portion of the code. This nesting can get tricky, but it’s
completely allowable and is a great way to test multiple conditions.

Solve Challenge #3
After uploading the sketch to the Arduino microcontroller, open up the serial monitor and start
watching the temperature value being returned. Carefully grab the temperature sensor between your
finger and thumb. (We like to put a finger or thumb right up against the flat portion). Your body heat
will warm the sensor. You should see the values in the serial monitor climb when you hold the sensor,
and fall back down once you let go of it.

You will notice that the LED will turn on only if the temperature is 75 degrees Fahrenheit or greater.
You can modify the code to check, for example, that the temperature is greater than 75 and less
than 95 (or whatever upper limit you want to set). We’ll leave it up to you to modify the code to test
for a lower and upper value.

Keep in mind that Cade and Elle don’t want the temperature in the emergency tube to be too low
or too high. A good challenge for you is to figure out how to modify your sketch so it will light up
the LED if the temperature is over 75 but blink the LED if it’s above a higher value (85 degrees, for
example).

Congratulations on getting your temperature sensor up and running! Now Elle and Cade can make
certain it’s safe to move between levels and that the temperature isn’t so high it’ll hurt them.

ANDREW 5.0 

103

Chapter 13
Uninvited Guest

“Temperature in the compartment is reading 74 degrees Fahrenheit,” said Cade.

Elle verified the sensor reading on the laptop screen, scooping up the Arduino gizmo she and
Cade had assembled and left sitting on the floor of Level 3. Above her head, the hatch seal between
Level 3 and Level 4 was closed.

Cade climbed up from Level 2 to join his friend, staring up at the closed hatch seal.

Andrew’s voice echoed from the small wall-mounted speaker in the compartment. “No vacuum and
no fire in the Level 4 emergency escape tube. Proceed immediately to Level 5.”

Upward
The hatch seal above the students opened quickly, allowing them to see all the way up to the
Level 5 compartment.

“You go first, Cade,” said Elle. “I’ll hand you the laptop and cases when you’re ready.”

Cade climbed the ladder and pulled himself into the Level 4 compartment. He spun around,
dropping his left arm down. “Okay, gimme…”

Elle closed the laptop, carefully placed it in its bag, and climbed up a few steps until Cade was able
to grab the strap. She repeated the process with the four toolboxes full of electronic components,
and then joined Cade on Level 4.

“Great… now we get to do that again,” complained Cade with a grin.

“Let me take a turn pulling up the stuff,” replied Elle, already climbing the ladder to Level 5.
“I know that’s got to be tiring.”

Cade didn’t argue.

104 CHAPTER 13: Uninvited Guest

Spooky?
A few minutes later, Cade and Elle peered out of the open door into the hallways of Level 5.

“Tell me again why the emergency access tube doesn’t go straight to the Level 6 escape pods,”
said Cade. “That seems like really poor design.”

“There are multiple emergency access tubes throughout the station. No one tube runs completely
through the station,” said Andrew. “The design was intentional to provide multiple locations to exit
the station using escape pods.”

Cade shook his head. “Yeah, yeah… okay. Still, would’ve been nice to have a straight shot
to the pods.”

Elle was catching her breath from the climb and pulling up the toolboxes and was too tired to voice
her complaint, but she felt the same as Cade.

“The Level 6 escape pods are still functional,” said Andrew. “The estimated time to reach them is
approximately four minutes. The emergency response team from the planet’s surface isn’t scheduled
to arrive for another three hours.”

Elle frowned. “Is the station safe, Andrew? Has it been knocked out of orbit? Are we running
out of oxygen?”

“Is there any food,” asked Cade. “I’m really hungry.”

Elle nudged Cade with her shoulder. “Bigger problems here, Cade,” she said.

“Doesn’t change the fact that I’m starving.”

“I’m running another station-wide scan,” said Andrew. “Thirty-two percent of the station’s
damage-control reporting capabilities are offline, however. And the station’s AI is still only responding
to a few of my queries, not all. One moment…”

Cade and Elle both looked down the dark hallway, lit only with emergency lighting.

“A bit spooky, isn’t it?” said Elle. She then whistled an eerie little tune from a popular horror movie.

“Stop it,” said Cade.

Elle grinned, aware that her friend did not like scary movies. “Reminds me of that Experi-Vid we saw
last year. What was the name of it? ‘What Lurks on Station Five?’ Yeah, remember that scene in the
dark hallway…?”

“Elle, I will drag you down that tunnel,,” said Cade.

“Level 5 has very little damage,” interrupted Andrew. “I will guide you quickly to the other emergency
access tube that will take you to Level 6. I’ll continue to try to gather information about Level 6.
Please proceed down the hallway for fifty feet and then turn right…”

105CHAPTER 13: Uninvited Guest

Urgency!
“Stop!” said Andrew, surprising Elle and Cade who were now standing in front of the closed door
that would let them enter the emergency access tube for Levels 5 to 10.

“A fire?” asked Elle.

“Vacuum?” asked Cade.

“One moment…,” said Andrew.

Cade and Elle stood in silence, staring at the closed door. Only an occasional pop or creak echoing
throughout the station could be heard, and both students wondered what was giving Andrew
reservations about opening the door.

“Andrew?” asked Cade. “Is everything okay?”

Elle swallowed nervously, aware that if they were unable to gain access to Level 6 using the
emergency escape tube, their only option would be to return to the maintenance tunnels.

“A ship has docked on Level 11,” replied Andrew. “I am trying to determine the origin of the ship and
verify the identity of its passenger.”

“One passenger?” asked Elle.

“The station’s AI is providing me with only minimum details at the moment. A ship has docked, but
its configuration is not consistent with emergency vehicles from M-392. And its identification beacon
is not broadcasting. This is a violation of vehicle protocols.”

“Maybe a private ship offering help?” suggested Cade.

“I am trying to access any of the ten video feeds from the shuttle bay on Level 11. One moment....”
said Andrew.

Cade nodded and smiled at Elle. “One moment,” he mimicked.

Elle smiled. “Let Andrew check it out… be patient.”

“Bigger problems, remember,” replied Cade. “Patience isn’t on my mind right now.”

The door to the emergency access tube opened with a whoosh, making Cade and Elle jump.

“Please hurry,” said Andrew. “You need to make your way up to Level 6 right now.”

The emotion in Andrew’s voice surprised Elle. There was a sense of urgency she had never heard
before from the AI.

“Andrew? What’s going on?” Cade asked. He, too, had picked up on the change in Andrew’s
conversational tone.

“I will explain as you climb. Please, Cade… Elle… climb.”

Elle shrugged off the laptop bag and set the boxes down on the floor as the hatch above her head
opened to reveal Level 6. “Alright. One more climb,” she said.

“Let’s do this,” replied Cade. “I’m heading up.”

106 CHAPTER 13: Uninvited Guest

Danger!
“The single passenger is currently trying to access Command and Control on Level 12,” said
Andrew. “He tried to hack the control panel, but failed. The station’s AI performed an identification
check and has verified his identity. His name is Gunther Canvin. He is an ore hauler from Taurus
Station. He has a criminal record.”

Elle moved down the hallway behind Cade, carrying her toolboxes and laptop bag. “What’s he doing
here? Is he responsible for the damage to the station?”

“Intersection, Andrew,” interrupted Cade. “Left, right, or forward?”

“Left and forty feet forward to the station’s cargo hold,” replied Andrew. “Elle, I do not know what
his intentions are, but I do not believe he was responsible for the satellite’s destruction. The most
likely scenario is that he was traveling to Taurus Station and became aware of the damage to
Gemini Station.”

“Maybe he’s here to help?” asked Elle.

“Unlikely,” said Andrew. “He’s not responding to the station’s AI to identify himself or his intentions.
You need to hurry.”

Elle and Cade both increased their walking speed, but the heavy cases weren’t helping.

“Is there something you’re not telling us, Andrew?” asked Cade, giving Elle a quick glance over
his shoulder.

“Gunther is now attempting to access Command and Control using an emergency override protocol.”

Elle shook her head. “What does that mean?”

“He can’t get in using security credentials, so he’s attempting to sabotage the life support controls.”

“What?” both students yelled.

“Why would he do that?” asked Cade, stopping suddenly and causing Elle to bump into him from
behind. “Oh, man… watch your step.”

Elle stepped aside and looked in front of Cade. A fifteen-foot-wide gap ran completely from left to
right of the station’s sides, blocking Cade and Elle from the door on the far side that was labeled
Emergency Access.

“If Gunther can sabotage the life support controls, all security overrides will be lifted. The station
will unlock all secure rooms. This is to allow emergency personnel full access to the station, but
it will give him access to the station’s master control room.”

Elle took a cautious step forward and looked down. The gap was at least thirty feet deep, and she
could see cargo boxes and other items stacked or knocked over in the station’s cargo bay. On the
opposite side of the bay were two large metal grates in a raised position.

“Shouldn’t those grates be down so we can cross?” asked Cade.

“I am trying to access the controls to lower them, but the system appears to be damaged.”

“We can’t jump across that gap, Andrew,” said Elle. “It’s too wide.”

107CHAPTER 13: Uninvited Guest

Cade looked around. “Maybe there’s something we can use to throw at one and hook it?
Pull it down?”

“The motors controlling the lowering of the grates will be locked. There is no way to pull the grates
down without damaging them and possibly pulling them off their hinges,” replied Andrew.

“Whose idea was it to put both grates on the same side?” asked Cade. “Really? I’m not
believing this!”

Bucket
“There is another option for crossing the gap, but you’re going to have to listen to me carefully and
work fast,” said Andrew. “Look to your left and you’ll see a tool transfer bucket mounted to the wall.”

Elle and Cade turned and looked. Mounted on a track running along the wall was a small
rectangular box.

“You’ve got to be kidding!” said Cade.

“You want us to ride in that?” asked Elle. “It’s not big enough.”

“It’s large enough to hold one person at a time, but that’s not the problem,” replied Andrew.
“The controls for the bucket appear to be damaged. I was unable to visually verify that before
directing you to this level. I apologize.”

“So we need to head back to the maintenance tunnels,” said Cade. “Sorry, Elle. It’s our only option.”

“There’s no time,” said Andrew. “If Gunther succeeds in disabling life support, all escape pods will
automatically eject after a five-minute countdown.”

“No way!” yelled Cade. “That’s crazy!”

“There’s no time to waste. I’ll guide you through fixing the tool bucket controls so you can cross the
bay. The bucket still has power, and the motor does not appear to be damaged. You will need to
simply create your own override to instruct the motor to spin in both directions.”

Cade grinned. “Sure! All we need to do is create an override,” he said, looking at Elle while shaking
his head.

“Easy!” said Elle with a matching grin. She followed Cade as he walked over to the tool
transfer bucket.

“Good,” said Andrew. “Unpack your boxes and laptop, and let me explain what you need to do.”

“He’s not so good with sarcasm, is he?” asked Cade, dropping his boxes and sitting down on the
floor with Elle.

109

Chapter 14
Challenge 4: Fun Stuff to Know

Your brain is definitely going to get a workout with Challenge 4. Elle and Cade need to cross the
room in the tool-transfer bucket, and they’re going to need to create a controller that will allow them
to move the bucket across the gap with one of them in it. They’ll also need to reverse the bucket and
bring it back to pick up their supplies… and to carry the remaining person across. (We know Cade
will let Elle go first—he’s polite that way.)

For Challenge 3, you built a simple gizmo that could take a temperature reading. Think about it
for a moment—you took an Arduino Uno, a few wires, a sensor, and an LED and wired it all up so
it would alert you when a certain temperature value was reached. We’re betting that before you
started reading this book, you probably knew of no other way to take a temperature reading than a
thermometer, right? Could you have imagined such a tiny, little temperature sensor could make it so
easy for you to determine the temperature indoors or outdoors? And looking back at Challenge 2,
we’re guessing you’ve never actually built a flashlight before, have you?

That’s the great thing about tinkering with an Arduino Uno—there are thousands of electronic
components out there that can do all sorts of amazing things. Some of them can even do fairly
normal things, or even do boring things. But that’s the point. With your Arduino Uno, you can put
together some fairly cool gizmos of your own if you’re willing to spend some time reading, tinkering,
and testing.

And that’s what you’re going to do right now. With Challenge 4, you’re going to use a larger selection
of components that will need to work together to do something interesting. We’re going to show you
how to build the gizmo and program it, and when you’re done, you’ll see a much more complicated
gizmo than in previous challenges.

Are you nervous? Don’t be. Excited? You should be! Completely overwhelmed? If so, take a deep
breath and just know that everyone who has ever started tinkering with electronics has been in
your position. This stuff will start to make sense over time, and much of what will end up sticking
(as opposed to being forgotten) will be the stuff you do with your own hands. That’s why hands-on
experiences are so important—they engage multiple senses (touch, sound, and sight, for example.
Don’t go tasting your electronics, okay?) and this helps your brain start making sense of what you’re
doing and learning.

110 CHAPTER 14: Challenge 4: Fun Stuff to Know

The Challenge 4 gizmo is about controlling the forward and backward movement of the motor that
drives the bucket across the gap… and back. Did we just say a motor? Yes, we did. Challenge 4 will
involve a motor—a bucket-mover motor—and you’re going to have some fun with it.

Looking at the Bucket Mover
Go ahead and take a look at Appendix A if you haven’t already assembled all the parts you’ll need
for Challenge 4. It’s not a long list, but there are a couple of new items you may need to order online
if you don’t have a locally accessible parts provider.

Before we start handling these items and examining them, take a look at Figure 14-1. This is the final
circuit you’ll be building (minus the motor). If you look carefully, you should notice a few items you’ve
already experimented with, as well as some new ones.

Potentiometer

Push Buttons LEDs

2-Screw-
Terminal-Block

Figure 14-1.  The Challenge 4 gizmo wired up and ready to be connected to a motor

Let’s start with the familiar. You should see two LEDs, one red and one green. The green LED will
light up when the motor is spinning clockwise, and the red LED will light up when the motor is
spinning counter-clockwise . Just below the potentiometer (it has a dial on the top of it) are two push
buttons. Press one of the buttons and the motor will turn clockwise; press the other button and the
motor will spin in the opposite direction (counter-clockwise).

Finally, you should see a 9V battery connected to a battery harness. Because the wires of the battery
harness are thin and stranded (versus solid), they are brittle and difficult to push into the breadboard.
For that reason, you can use a two-screw terminal post, like the one in Figure 14-1, that can be

111CHAPTER 14: Challenge 4: Fun Stuff to Know

tightened down on the two wires from the battery harness. When that’s done, you simply insert the
screw terminal into the breadboard (it has its own tiny little posts that will fit into the breadboard) and
make the power from the battery available to the rest of the breadboard with some wiring that we’ll
cover in Chapter 15. Finally, there are a couple of resistors added to protect the LEDs.

But what about those other two items? Those two small black rectangular bits? They are called
ICs, short for integrated circuits. ICs are electronic components that will allow you to do some
powerful things and we’ll talk more about them shortly, but for now we’ll focus on the two used in
the Challenge 4 gizmo. One of them is called a hex inverter and the other is called an H-bridge. Feel
free to take a closer look if you have them on hand, but be careful! Those tiny little posts (legs) are
extremely delicate and can be easily bent.

ANDREW 5.0

Please remind your readers that integrated circuits are also very sensitive to static electricity. You know that little zap
you get when you walk across carpet and touch a doorknob? Well, that little bit of static electricity is more than enough
to damage an IC, so take precautions when handling ICs by discharging any static charge that might be built up on your
person. Sit down and touch a piece of metal on your desk or chair, and then you should be okay to handle the IC.

Even better, consider purchasing and wearing an anti-static wrist strap. You can read more about them at
http://en.wikipedia.org/wiki/Antistatic_wrist_strap. They usually cost less than $10.00—a good
investment if you plan on diving deeper into electronics!

Understanding the ICs
Here’s the thing about ICs… they’re powerful but somewhat complicated to explain. Think of each
IC (also commonly referred to as a chip) as a small circuit in itself. They’re not powerful enough to do
everything, so they’re often designed to do one thing—and do it well. When you insert a chip into the
breadboard, each leg is typically wired up in such a way that the chip is either receiving voltage on a
pin or sending voltage out. When no voltage is being received or sent, the voltage on a pin is said to
be low or zero. If a signal is being sent or received on a pin, we say the voltage on that pin is high or
that voltage is being provided to the circuit (such as 5 volts or 3.3 volts).

An IC uses a series of high and low voltage signals to perform calculations that are then provided
to other components—motors, LEDs, and even other ICs! ICs can be either digital or analog circuits,
but this explanation is meant to be about digital ICs as that’s what we will be using in this challenge.
As an example, one of the ICs you’ll be using in the Challenge 4 gizmo is the hex inverter. Just
as the name states, it inverts something. What does it invert? Easy—if it receives a value of
1 (5V in this case) on a particular pin, it sends out a value of 0 (0V in this case) on a different pin.
Not all that complicated-sounding, sure… but the stuff going on inside the chip is hidden from you,
so it looks uncomplicated. In reality, this IC and every other IC out there is doing some amazing
things internally so that you, the user, can worry about other parts of your circuit.

Note that ICs are way beyond what we have time to cover in this book, but we’re going to point you
to another resource later in this book that can turn you into an IC expert in no time. Our goal with the
Challenge 4 gizmo is to simply introduce you to the concepts of ICs and let you use a few simple
ones so you’ll see how powerful they can be in your own gizmos.

http://en.wikipedia.org/wiki/Antistatic_wrist_strap
http://en.wikipedia.org/wiki/Antistatic_wrist_strap

112 CHAPTER 14: Challenge 4: Fun Stuff to Know

We’ll come back to the other IC in your collection in a moment, but before we do that, take a look at
Figure 14-2. These are examples of DC motors, one of which you’ll be using for Challenge 4. In real
life, of course, motors can be much larger, but they all work basically the same.

DC Motors

Figure 14-2.  A few small DC motors with two wires

Take a close look at your own motor. Do you see two wires coming out of it? One wire will always
be connected to ground and one will be wired up to receive positive voltage. The wire that gets
the positive voltage determines which direction the motor spins. You can test this out right now by
taking your 9V battery and touching one wire from the motor to one terminal on the battery and the
other wire to the other terminal. Don’t hold the wires to the terminals for more than a few seconds—
holding them too long might damage the motor (as this motor is a 6V motor). But a few seconds of
holding should show you which direction the motor will spin.

Now, reverse the wires and touch them to the battery terminals. Can you see the motor spinning in
the opposite direction?

Tip  You can take a tiny piece of clear tape and wrap it around the motor’s axle to make a little flag on
the end. This little flag will make it easier for you to see which direction the motor is spinning.

In Challenge 4, Cade and Elle need to cross a large span in the cargo bay, but only one of them can
cross at a time. That means the bucket one of them will ride over in will need to reverse direction and
go back to pick up the other person. This is done by simply reversing the direction the motor spins.

But creating a circuit with a breadboard that can easily reverse a motor’s spin by changing which
wire provides voltage is tricky. Very tricky, and it’s also unnecessary.

113CHAPTER 14: Challenge 4: Fun Stuff to Know

That’s what the other IC is for—to provide an easier method for reversing the direction of the motor’s
spin! It’s called an H-bridge and if you want to get into robot-building and more advanced gizmos
that use motors, an H-bridge is going to be a very good IC to have in your possession.

ANDREW 5.0

An H-bridge can be tricky to explain, so just remember that it’s used to allow for a change of direction a DC motor will
spin. If you really want more details, be sure to visit http://en.wikipedia.org/wiki/H-bridge. You’ll also learn
how the H-bridge gets its name and what’s going on inside the IC.

And you’re right about needing to become familiar with its function for building robots and other motorized gadgets. An
H-bridge removes the complexity of trying to wire up a motor to spin in both directions and makes building a circuit with
a motor that can spin in either direction extremely easy. But as with all ICs, be careful when handling it and avoid static
electricity and any damage to its pins.

As Andrew stated, an H-bridge is not the easiest thing to explain, and our goal with this book isn’t to
overwhelm you with all the technical details. (A great book for learning about ICs is Make: Electronics
by Charles Platt. It’s an outstanding book for learning even more electronics skills.) For now, what
you need to know about the H-bridge IC is that you’ll be using it to easily allow the changing of the
motor’s spin direction. We’ll go into more detail on how to wire it up properly and how it actually
helps you in Chapter 15 when we show you how to build the gizmo.

Ready to Build Something?
We chose Challenge 4 as the point in the book to start ramping up the projects. We didn’t want to
overwhelm you with something like the Challenge 4 gizmo too early. Hopefully by this point, you’re
pretty comfortable using a breadboard and inserting wires and other components. As long as you
work slowly and follow our instructions in Chapters 15 and 16, you’ll do fine.

If you haven’t collected the parts for Challenge 4 yet, go ahead and make your shopping list. Again,
Appendix A contains a complete list for you, including some variations in places to purchase.

Chapter 15 is waiting for you, so grab your components, your breadboard, the battery, and your
Arduino Uno, and let’s go help Cade and Elle get across the room safely.

Time to build!

http://en.wikipedia.org/wiki/H-bridge

115

Chapter 15
Challenge 4: Examining
the Hardware

So far, you haven’t been working with complex systems of circuitry, but you’ve been building a
foundation for using circuitry with the Arduino. But things are about to change, and some of the
gizmos you’re going to create will be a bit more involved in terms of building and programming.
But that’s a good thing! You’re learning more and more about the Arduino and how other electronic
components work with it, plus you’re delving deeper into the programming aspect of gadget design.
At this point, you’ve definitely moved beyond Arduino novice, and you should congratulate yourself
on that. We also hope you’re beginning to look around and ask questions about how exactly things
work in your world—the lights, the computers, and even the vehicles and machines that these days
all have electronics inside them. Your Arduino and electronics skills will continue to improve if
you always ask questions and look for answers, and your status as an Arduino guru will become
a certainty.

Now, you’re going to take what you learned in previous challenges and apply it to this challenge,
but first we want to go over the new pieces of hardware you need to help Cade and Elle override the
controls on the tool bucket—two new components called an H-bridge and a hex inverter.

New Hardware
An H-bridge is shown in Figure 15-1. It gets its name from how it often appears in circuit diagrams
known as schematics. In a schematic, an H-bridge is represented by a shape resembling the
letter “H.”

116 CHAPTER 15: Challenge 4: Examining the Hardware

H-bridges are small and not much to look at, but they’re key components that you’ll want to get
familiar with if you want to advance your Arduino skills. They’re especially useful in building anything
involving motors. H-bridges allow you to control a DC motor (in our case) in both forward and
reverse directions, as well as to control the speed of a motor via a pulse-width modulation (PWM)
pin on the Arduino.

Pulse-width modulation uses increases and decreases in voltage to control the speed of a motor.
The pulses happen so fast that you don’t perceive them yourself. Instead, they control just how fast
a motor spins by applying bursts of power at a frequency needed to hold a given spin rate.

We mentioned that an H-bridge lets you determine the direction of spin of a motor, and it does this
by changing the wire on a motor to which it applies voltage. If a particular wire gets the voltage,
the motor spins in one direction; when another wire gets the voltage, the motor spins in the other
direction.

This isn’t the most detailed explanation, but it should give you an idea of how an H-bridge can help
you build a gizmo to control the direction of the tool bucket. Also, we don’t want Cade or Elle jolted
in the bucket too much by a sudden increase in speed, so some sort of control is necessary to
slowly build up the speed of the motor. The H-bridge solves both problems.

We also need to use an H-bridge because we can’t use the Arduino itself to control the DC motor—
the motor draws more amperage than the Arduino can handle. The solution is to have the Arduino
control the H-bridge, and then the H-bridge controls the motor.

H-bridge

1

Figure 15-1.  An H-bridge

Caution  Never try to plug a DC motor into the Arduino—it will burn up your Arduino!

117CHAPTER 15: Challenge 4: Examining the Hardware

If your readers really want to know more about pulse-width modulation, have them visit this great online video tutorial:

http://blog.makezine.com/2011/06/01/circuit-skills-pwm-pulse-width-modulation-sponsored-
by-jameco-electronics/

Collin Cunningham is one of the 21st century’s best video educators on electronic components, so be sure to search for
his other videos at makezine.com. He has videos on resistors, capacitors, and many more, and they’re easy to follow
and fun to watch.

The other new piece of hardware you’ll be using is the hex inverter, shown in Figure 15-2. This little
integrated circuit (IC chip) allows us to control the direction of the DC motor with just one pin on the
Arduino. And how does it accomplish that? Well, the hex inverter is just what its name implies: it’s an
inverter that changes a digital 1 into a digital 0, and a digital 0 into a digital 1.

1

Hex Inverter

Figure 15-2.  A Hex Inverter

ANDREW 5.0 

For example, say we have a digital signal of 1 (HIGH); we put that signal through the hex inverter and
then read the signal that comes out. The digital signal is now 0 (LOW). (We’ll explain the software
side of hex inverters in the next chapter).

How can you tell the H-bridge and the hex inverter apart? Hex inverters have only 14 pins while
H-bridges have 16 pins.

Now that you know a bit about the new hardware being used in the challenge, you can create the
gadget that will help Elle and Cade cross the gap safely using the tool bucket. Let’s get building!

http://blog.makezine.com/2011/06/01/circuit-skills-pwm-pulse-width-modulation-sponsored-by-jameco-electronics/
http://blog.makezine.com/2011/06/01/circuit-skills-pwm-pulse-width-modulation-sponsored-by-jameco-electronics/

118 CHAPTER 15: Challenge 4: Examining the Hardware

Let’s Build Gadget #4
To build the gizmo that will help Cade and Elle cross the room in the tool bucket, you’ll need some of
the electronic components you used in the previous challenges. Remember that all of the parts for
this project are listed in Appendix A. Now, let’s get started.

1.	 First, be sure your breadboard is in the correct orientation, with the blue line
at the top. Now insert the H-bridge in the breadboard, making sure the notch
on the H-bridge (it will be either a small dot or a U-shaped notch) is facing to
the left, as shown in Figure 15-3. Notice that the left side of the chip starts at
E-9 and continues to E-16. Likewise, the other side of the chip has its pins
inserted into F-9 through F-16.

Blue Line

Notch

E-9 E-16

Figure 15-3.  Attach the H-bridge to the breadboard

Notch

E-20

F-20 F-26

E-26

Figure 15-4.  Attaching the hex inverter to the breadboard

2.	 Insert the hex inverter in the breadboard as shown in Figure 15-4, making
sure the dot on the chip’s surface is facing to the left. The seven pins on one
side of the chip are inserted into E-20 through E-26, while the seven pins on
the other side are inserted into F-20 through F-26.

119CHAPTER 15: Challenge 4: Examining the Hardware

3.	 Next, attach the 9V connector to the blue two-position terminal block;
tighten down on the screws to make certain the wires are held in good
and tight. If possible, insert the red wire to the left of the black wire, as
shown in Figure 15-5, before plugging the terminal block into the solderless
breadboard so that its pins are inserted into A-32 and A-34.

A-32 A-34

Figure 15-5.  Attach the 2-position terminal block to the solderless breadboard

Now we need to attach the 5V and 9V power to the various pins on the IC’s and terminal block. We’ll
do this with a number of red jumper wires, but you can use any color wire you like.

Pins on the H-bridge and hex inverter begin at pin 1 located in the lower left corner of each chip.
So, on the H-bridge, pin 1 is inserted at E-9 and pin 8 is inserted into E-16. Numbering wraps to the
opposite side so that pin 9 is inserted into F-16, and numbering continues up the side of the chip
and ends with pin 16 inserted into F-9.

4.	 Now insert a jumper wire that connects pin 16 to the 5V power rail of the
solderless breadboard. Insert the wire into H-9 and plug the other end of the
jumper wire into any available hole next to the red line on the breadboard
(indicating +5V power that will come from the Arduino, not the 9V battery).

5.	 Connect pin 14 of the hex inverter to the 5V rail of the breadboard as well by
inserting one end of a jumper wire into H-20 and the other end of the jumper
wire into any available hole near the red line on the breadboard.

6.	 Attach the positive side of the two-position terminal block to pin 8 of the
H-bridge (this is the only place where 9V power is needed) by inserting a
jumper wire into D-32 and its other end into D-16.

7.	 Finally, connect the power rail on one side of the breadboard to the other
power rail on the opposite side of the breadboard by inserting a longer
jumper wire into two available holes, one near each of the red lines.
Figure 15-6 illustrates this process.

120 CHAPTER 15: Challenge 4: Examining the Hardware

Now it’s time to add the connections to ground for this project. We’ve used black jumper wires but,
again, you can use any color you have available.

8. First, connect a wire from pin 4 and pin 5 on the H-bridge to the closest
ground rail on the breadboard. Do this by inserting one end of a jumper
wire into D-12 and the other end into a free hole near the blue line on the
breadboard (that will be wired to GND). Insert another jumper wire into D-13
and its other end into a free hole near the blue line as well.

9. Now connect a jumper wire from a free hole near one blue line of the
breadboard to a free hole on the other side of the breadboard nearest the
blue line.

10. Connect pin 7 of the hex inverter to ground by inserting a jumper wire into
D-26 and its other end into a hole nearest the blue line on the breadboard.

11. Connect the black wire of the two-position terminal block to the ground rail on
the breadboard by inserting a jumper wire into D-34 and its other end into a free
hole nearest a blue line on the breadboard. Figure 15-7 illustrates this process.

H-9

D-16

H-20
D-32

Figure 15-6. Supply power: +5V to the circuit and 9V to the H-bridge

D-13

D-12 D-26

D-34

Figure 15-7. Attach ground to the circuit

121CHAPTER 15: Challenge 4: Examining the Hardware

12.	 Connect pin 3 of the H-bridge to an empty space on the solderless
breadboard. We used a green wire (but you can use any color you have
available), with one end plugged into C-11 and the other into C-7.

13.	 Connect pin 6 of the H-bridge to an empty space on the breadboard. We
used a green jumper wire inserted into D-14 with the other end inserted into
D-8, as shown in Figure 15-8.

D-8

D-14
C-7

C-11

Figure 15-8.  Attach wires from pins 3 and 6 to an open area on the solderless breadboard

14.	 Once again, we’ll use green jumper wires, but use whatever color you have
available. Attach pin 7 of the H-bridge to pin 1 of the hex inverter by inserting
a jumper wire into C-15 and its other end into C-20.

15.	 Attach pin 2 of the H-bridge to pin 2 of the hex inverter by inserting one end
of a jumper wire into B-10 and the other end into B-21. Figure 15-9 illustrates
this process.

B-10 B-21C-15 C-20

Figure 15-9.  Set up the hex inverter

122 CHAPTER 15: Challenge 4: Examining the Hardware

16.	 Now connect the wire from pins 3 and 6 of the H-bridge to the DC motor.
Insert one of the DC motor’s wires into E-7 and the other into E-8—it
doesn’t matter which wire you choose to insert into E-7 or E-8. Figure 15-10
illustrates this process.

E-7

E-8

Figure 15-10.  Attach the motor to the H-bridge via pins 3 and 6

G-44

G-45
G-46

Figure 15-11.  Attach the potentiometer and its power (+5V) to the solderless breadboard

17.	 Add the 3-pin potentiometer to the solderless breadboard and attach the
leftmost pin of the potentiometer to 5V power. Do this by inserting the
potentiometer so its pins are plugged into G-44 through G-46. Figure 15-11
illustrates this process.

123CHAPTER 15: Challenge 4: Examining the Hardware

18.	 Now add the two push buttons to the breadboard. Insert the first one so its pins
plug into B-40 and B-42 and E-40 and E-42. Insert the pins of the other push
button into B-47 and B-49 and E-47 and E-49. Figure 15-12 illustrates this process.

B-40

E-40 E-42 E-47 E-49

B-42 B-47 B-49

Figure 15-12.  Attach the push buttons to the solderless breadboard

19.	 Attach the red and green LEDs to the breadboard, making sure you have
enough room to attach other components. Insert the longer leg (the anode)
of the red LED into F-58 and the shorter leg (the cathode) into H-60. Insert
the longer leg of the green LED into E-58 and the shorter leg into C-60.
Figure 15-13 illustrates this process.

H-60

E-58

F-58

C-60

Figure 15-13.  Attach LEDs to the solderless breadboard

124 CHAPTER 15: Challenge 4: Examining the Hardware

20.	 Next, add a 330-ohm resistor to the anode (longer lead) of the red LED by
inserting one leg at H-58 and the other at H-54, and then attach another
330-ohm resistor to the anode of the green LED at C-58 and C-54, as
shown in Figure 15-14.

H-54 H-58

C-54 C-58

Figure 15-14.  Attach resistors to the anode (long lead) side of the LEDs

21.	 Attach grounds to one side of each of the push buttons. We used two black
jumper wires, one inserted at A-42 and the other inserted at A-49, each
connecting to a free hole nearest the blue line on the breadboard.

22.	 Insert another jumper from GND to the cathode (shorter leg) of both the red
and green LEDs by inserting two jumper wires, one at A-60 and the other at
J-60, each connecting to a free hole nearest the blue line.

23.	 Insert another jumper wire at the rightmost pin of the potentiometer at J-46
and insert its other end into a free hole nearest the blue line. Figure 15-15
illustrates this process.

125CHAPTER 15: Challenge 4: Examining the Hardware

24.	 Now it’s time to start connecting the circuit to the Arduino. First use a jumper
wire to connect digital pin 3 (D3) of the Arduino to pin 1 of the H-bridge at
B-9. Then attach digital pin 4 (D4) of the Arduino to pin 7 of the H-bridge at
A-15. Figure 15-16 illustrates this process.

J-46 J-60

A-60A-49A-42

Figure 15-15.  Attach ground to the push buttons, potentiometer, and LEDs

D3 D4

B-9

A-15

Figure 15-16.  Attach the H-bridge to the Arduino

126 CHAPTER 15: Challenge 4: Examining the Hardware

25.	 Next, use another jumper wire to connect digital pin 9 (D9) of the Arduino to
the other side of the first push button at A-40. Then connect digital pin 10
(D10) of the Arduino to the other side of the second push button at A-47.
Figure 15-17 illustrates this process.

D9 D10

A-40 A-47

Figure 15-17.  Attach the push buttons to the Arduino

26.	 Now insert another jumper wire at F-54 to connect one of the resistors
(the one that is connected to the anode of the red LED) to digital pin 12 (D12)
of the Arduino. Use another jumper wire at A-54 to connect the other resistor
(connected to the anode of the green LED) to digital pin 11 (D11) of the
Arduino. Figure 15-18 illustrates this process.

127CHAPTER 15: Challenge 4: Examining the Hardware

27.	 Now connect the middle pin of the potentiometer to analog pin 0 of the
Arduino by inserting a jumper wire into J-45 and its other end into A0, as
shown in Figure 15-19.

F-54

A-54

D11 D12

Figure 15-18.  Attach the LEDs to the Arduino

128 CHAPTER 15: Challenge 4: Examining the Hardware

28.	 Connect power (+5V) to the red side of the power strip of the breadboard by
inserting a jumper wire into a free hole nearest the red line and its other end
to the +5V on the Arduino.

29.	 Connect GND to the blue side of the power strip of the breadboard by
inserting a jumper wire into a free hole nearest the blue line and the other end
into GND on the Arduino. Figure 15-20 illustrates this process.

J-45

AO

Figure 15-19.  Attach the potentiometer to the Arduino

129CHAPTER 15: Challenge 4: Examining the Hardware

+

-

Figure 15-20.  Attach power (+5V) and ground to the Arduino

That was a lot of wiring! (Figure 15-21 shows our own final version of the gizmo). It’s always a good
idea to go through the steps a second time and make sure you have everything connected correctly.
(We sometimes go over our schematic ten times!) We suggest you review your wiring at least once.
It’s tedious, but the review will help you catch errors now and save you frustration later.

130 CHAPTER 15: Challenge 4: Examining the Hardware

Figure 15-21. The motor-control gizmo as built by the authors

When you feel your wiring is correct, you are ready to move on to the final stage of this challenge, in
which you’ll be writing code to control a motor so that Elle and Cade can get across the gap that’s
in their way.

131

Chapter 16
Challenge 4: Examining
the Software

It’s possible you’ve already skimmed through this chapter and seen the sketch you’ll be uploading
to the Challenge 4 gizmo. If you haven’t, go ahead... get it over with. Take a look at Listing 16-1 and
then come back . . . we’ll wait.

Okay . . . what did you think? Was it a bit longer than you expected? Does that make you nervous?
Well, don’t worry. Often the most scary-looking sketch is nothing more than a bunch of code
repeated over and over. Back in Chapter 12, you learned about how you can insert an If-Else
statement into the main program loop to check a condition again and again and again. But
sometimes an If-Else statement isn’t what’s needed. Sometimes what you have to do is constantly
check the status of a sensor or a motor or other component.

The sketch in Listing 16-1 is long, yes, but it’s not complicated. The reason it’s lengthy is that we’re
setting things up so our motor can spin in both directions, depending on which of two buttons are
pressed. Rather than use If-Else statements, we simply copied the code that controls the spin of the
motor counterclockwise if one button is pressed, and pasted it back in with some changes that will
make it spin the motor in the opposite direction if another button is pressed. There’s also some code
to shut the motor down when no buttons are being pressed. Understand the code for one function,
and you’ll automatically get the others as well.

We’ve also got some LEDs and a potentiometer in the mix, but you’re already quite familiar with
those so they shouldn’t trip you up when you’re examining the sketch. In any case, we’ll be going
over the various sections of the sketch so you’ll have a good understanding of how the Challenge 4
gizmo works.

You won’t need to use new functions or structures as this challenge takes advantage of all of the
things you learned in Challenge 1 through Challenge 3. We’ll be using analog inputs on the Arduino
microcontroller to read in the potentiometer values; digital outputs to turn the LEDs and motor
on; and digital inputs to read values from the two push buttons. We’ve done all of this before in
the previous challenges. The new challenge will teach you how to use these functions to create a

132 CHAPTER 16: Challenge 4: Examining the Software

system where everything works together. By the end of this chapter, you should have a working
motor controller that uses LEDs to tell you which direction the motor is turning; the motor’s direction
will be controlled by the button you press, and the speed of the motor will be controlled by the
potentiometer. Let’s get to the details.

The Challenge 4 Sketch
Let’s start with a breakdown of what we need to do in this sketch. By making a list we can be certain
we don’t miss anything, and it’ll help when we begin to explore the different sections of the sketch.
Here’s what has to happen in the sketch:

1.	 We have to determine what variables are needed to communicate with all of
the different IO (inputs and outputs).

2.	 We’ll use the setup structure to initialize the outputs, and use a few of the
Arduino’s pull-up resistors.

3.	 In the loop structure, we’ll read in the state of the push buttons.

4.	 We also need to read the state of the analog input (potentiometer).

5.	 We have to scale the potentiometer values to fall between 0 and 256. The
potentiometer will give a value between 0 and 1023, but we’ll divide by 4
to reduce that range to a more easily usable one. A smaller analog range
means you will have the full range of the potentiometer rather than ¼ of the
potentiometers range.

6.	 Next, we have to set up a conditional statement to compare the states of
each of the push buttons to ON or OFF (0 or 1). Remember, because we
chose to use the Arduino’s internal pull-up resistors (we did this in Challenge 2)
and because of the way we designed the circuit, the states for ON and OFF
are backward; that is, 1 represents OFF and 0 represents ON. Sometimes
design choices will cause you to code sketches in different ways.

7.	 Finally, we need a state that controls the condition when neither push
buttons is pressed. We don’t need to worry about both buttons being
pressed as the motor will spin clockwise in this case due to the order of the
If-Else statement.

Listing 16-1 is the final sketch for this challenge.

Listing 16-1.  Final Sketch for Challenge 4

// Initialize all of the pins variables
int LEDPin1 = 12;
int LEDPin2 = 11;
int ButtonPin1 = 10;
int ButtonPin2 = 9;

133CHAPTER 16: Challenge 4: Examining the Software

int MotorPWMPin = 3;
int MotorDirPin = 4;
int PotPin = A0;
 
// Initialize value and state variables
int ButtonState1 = 0;
int ButtonState2 = 0;
int PotValue = 0;
int MappedPotValue = 0;
 
void setup()
{
 // Set pins to be outputs
 pinMode(LEDPin1, OUTPUT);
 pinMode(LEDPin2, OUTPUT);
 pinMode(MotorPWMPin, OUTPUT);
 pinMode(MotorDirPin, OUTPUT);
 
 // use the Arduino’s internal pullup resistor for
 // the buttons so that the buttons do not float.
 digitalWrite(ButtonPin1, HIGH);
 digitalWrite(ButtonPin2, HIGH);
}
 
void loop()
{
 // Read in button values
 ButtonState1 = digitalRead(ButtonPin1);
 ButtonState2 = digitalRead(ButtonPin2);
 // Read in Potentiometer values
 PotValue = analogRead(PotPin);
 
 // Scale pot value from 0 to 256
 MappedPotValue = PotValue/4;
 
 if (ButtonState1 == 0)
 {
 // if button1 is pressed adjust speed to mapped
 // potentiometer value then turn motor on and turn
 // counterclockwise.
 analogWrite(MotorPWMPin, MappedPotValue);
 digitalWrite(MotorDirPin, HIGH);
 digitalWrite(LEDPin1, HIGH);
 digitalWrite(LEDPin2, LOW);
 }
 else if (ButtonState2 == 0)
 {
 // if button2 is pressed adjust speed to mapped
 // potentiometer value then turn motor on and turn
 // clockwise.

134 CHAPTER 16: Challenge 4: Examining the Software

 analogWrite(MotorPWMPin, MappedPotValue);
 digitalWrite(MotorDirPin, LOW);
 digitalWrite(LEDPin2, HIGH);
 digitalWrite(LEDPin1, LOW);
 }
 else
 {
 // Turn motor off
 digitalWrite(MotorPWMPin, LOW);
 digitalWrite(MotorDirPin, LOW);
 digitalWrite(LEDPin2, LOW);
 digitalWrite(LEDPin1, LOW);
 }
}
 
Now, let’s break down the sketch in Listing 16-1 into smaller sections so you can see exactly what’s
going on.

Breaking It Down
The first bit of code does nothing more than create some variables and set the initial values for them:

// Initialize all of the pins variables
int LEDPin1 = 12;
int LEDPin2 = 11;
int ButtonPin1 = 10;
int ButtonPin2 = 9;
int MotorPWMPin = 3;
int MotorDirPin = 4;
int PotPin = A0;
 
// Initialize value and state variables
int ButtonState1 = 0;
int ButtonState2 = 0;
int PotValue = 0;
int MappedPotValue = 0;

We’ve got two LEDs, so we assign them digital pins 11 and 12 on the Arduino. Analog pin (A0)
connects to the potentiometer. Buttons 1 and 2 are assigned digital pins 9 and 10, while the motor
gets two connections to the Arduino—D3 (digital pin 3 of the Arduino) and D4. The state variables
are used to assign an initial value of 0 to the button states, meaning they are unpressed. The
potentiometer’s starting position is also set to 0. As noted, we’ll use another variable to store a
scaled value of the potentiometer. Remember, the potentiometer reports a value between 0 and 1023
but we want to reduce that range to values between 0 and 256, so we’ll use the MappedPotValue to
store the scaled-down value.

135CHAPTER 16: Challenge 4: Examining the Software

The next bit of the sketch is:

void setup()
{
 // Set pins to be Outputs
 pinMode(LEDPin1, OUTPUT);
 pinMode(LEDPin2, OUTPUT);
 pinMode(MotorPWMPin, OUTPUT);
 pinMode(MotorDirPin, OUTPUT);
 
 // use the Arduino’s internal pullup resistor for
 // the buttons so that the buttons do not float.
 digitalWrite(ButtonPin1, HIGH);
 digitalWrite(ButtonPin2, HIGH);
}

Here we create the setup structure to set the LED’s and motor pins to outputs. We’re using the
Arduino’s built-in pull-up resistors so we don’t have floating switches. With a floating switch you
get intermittent on and off states. It’s like noise in the circuit that you want to filter out, and it’s really
out of your control unless you use pull-up or pull-down resistors as we’re doing here. Using the
digitalWrite function, we set both buttons HIGH. This means each button is powered but pressing
a button will cut its voltage and set its state to LOW (0).

And now we get into the last part of the sketch. This final bit involves a loop and an If statement. The
following shows the loop without the If statement. The ellipsis shows where the If statement fits.

void loop()
{
 // Read in button values
 ButtonState1 = digitalRead(ButtonPin1);
 ButtonState2 = digitalRead(ButtonPin2);
 // Read in Potentiometer values
 PotValue = analogRead(PotPin);
 
 // Scale pot value from 0 to 256
 MappedPotValue = PotValue/4;
 
...
 
}

The main program loops forever, so it’s constantly checking the states of both buttons (pressed or
not pressed). The program stores the state of each button using the code bit ButtonState1 =
digitalRead(ButtonPin1), for example.

The digitalRead command simply looks at the condition of a button (Button 1 in this example) to
determine if it’s pressed or not. Remember that we set the initial value of each button to HIGH, so
it’s got a value of 1. Pressing a button changes its state to LOW or 0, and this value (0) gets put into
the ButtonState1 variable. The same happens for Button 2—its state is constantly being checked:
pressed or not pressed?

136 CHAPTER 16: Challenge 4: Examining the Software

Now, remember back in Challenge 3 where you learned about the If-Else statement. There’s a
variation of the If-Else statement that basically allows you to add an unlimited number of else
clauses. It looks like this:

if (condition1)
{\\code here
}
else if (condition2)
{\\code here
}
else if (condition3)
{\\code here
}
else (condition4)
{\\code here
}

Notice that you can keep entering Else-If clauses. Commonly the last one is a simple Else. That’s
what’s going to happen with this sketch. We’ll enter a series of clauses to test for the following
possible conditions:

1.	 Button 1 is pressed.

2.	 Button 2 is pressed.

3.	 Neither button is pressed.

4.	 Both buttons are pressed.

Here’s the complete code, showing the loop and the If statement with all its clauses:

void loop()
{
 // Read in button values
 ButtonState1 = digitalRead(ButtonPin1);
 ButtonState2 = digitalRead(ButtonPin2);
 // Read in Potentiometer values
 PotValue = analogRead(PotPin);
 
 // Scale pot value from 0 to 256
 MappedPotValue = PotValue/4;
 
 if (ButtonState1 == 0)
 {
 // if button1 is pressed adjust speed to mapped
 // potentiometer value then turn motor on and turn
 // counterclockwise.
 analogWrite(MotorPWMPin, MappedPotValue);
 digitalWrite(MotorDirPin, HIGH);
 digitalWrite(LEDPin1, HIGH);
 digitalWrite(LEDPin2, LOW);
 }

137CHAPTER 16: Challenge 4: Examining the Software

 else if (ButtonState2 == 0)
 {
 // if button2 is pressed adjust speed to mapped
 // potentiometer value then turn motor on and turn
 // clockwise.
 analogWrite(MotorPWMPin, MappedPotValue);
 digitalWrite(MotorDirPin, LOW);
 digitalWrite(LEDPin2, HIGH);
 digitalWrite(LEDPin1, LOW);
 }
 else
 {
 // Turn motor off
 digitalWrite(MotorPWMPin, LOW);
 digitalWrite(MotorDirPin, LOW);
 digitalWrite(LEDPin2, LOW);
 digitalWrite(LEDPin1, LOW);
 }
}

The first clause, if(ButtonState1 == 0) is true, is triggered when Button 1 has been pressed.
If that’s the case, the code inside the curly braces immediately following the if clause is executed.
This happens again with the else if (ButtonState2 ==0) clause that follows. If that condition is
true, it means Button 2 has been pressed. Finally, the else clause comes last and is true if neither
Button 1 nor Button 2 have been pressed.

Now, let’s take a look inside the condition statements to see what happens when one button is
pressed or when no buttons are pressed. Here’s a snippet of code from inside that first If statement:

{
 // If button1 is pressed, adjust speed to mapped
 // potentiometer value, then turn motor on and spin
 // counterclockwise.
 analogWrite(MotorPWMPin, MappedPotValue);
 digitalWrite(MotorDirPin, HIGH);
 digitalWrite(LEDPin1, HIGH);
 digitalWrite(LEDPin2, LOW);
}

Don’t let all this code stress you out! In a nutshell, here’s how the If statement for the button works
when Button 1 is pressed (the same steps apply for Button 2, but the motor spins clockwise):

1.	 The potentiometer’s position is checked. When you press the button, you turn
the potentiometer to increase the speed of the motor. So the value will constantly
change as long as you hold down Button 1 and turn the potentiometer. Release
the button and the motor stops. Stop turning the potentiometer (while holding
Button 1) and the motor will stay at a constant speed.

2.	 The MotorDirPin value is either HIGH or LOW. When it’s HIGH, the motor
spins in one direction. When it’s LOW, it spins in the other direction. (You
can modify the sketch here and change which direction Button 1 controls

138 CHAPTER 16: Challenge 4: Examining the Software

by changing HIGH to LOW. Just remember for Button 2 to change the
MotorDirPin from LOW to HIGH.)

3.	 When you press Button 1, LED 1 lights up (its state goes to HIGH). Should
LED 2 be lit up (from pressing Button 2) it will be turned off by setting its
state to LOW.

The Else-If statement that follows the first If statement controls the motor if Button 2 is pressed.
The only difference is which direction the motor spins and which LED lights up. Otherwise, the code
inside is almost exactly the same as for a Button 1 push.

The last Else statement controls what happens when neither button is pressed. What do you think
should happen? Yep—the motor should stop spinning! Here’s the snippet of code that follows the
Else condition statement:

 else
 {
 // Turn motor off
 digitalWrite(MotorPWMPin, LOW);
 digitalWrite(MotorDirPin, LOW);
 digitalWrite(LEDPin2, LOW);
 digitalWrite(LEDPin1, LOW);
 }
}

1.	 Power is cut to the motor.

2.	 The direction pin is set to LOW.

3.	 Both LEDs are turned off (their states are set to LOW).

Then the main program continues to loop, waiting for a button press to change the motor’s condition
(spinning or not spinning as well as its direction). The potentiometer’s position is also constantly
checked as the main program loops, but it has no effect on the motor unless a button is pressed.

And that’s it! A bit of a longer sketch than you’ve seen so far, but definitely not all that complicated
when you really examine how it works.

Solve Challenge 4
Now all that’s left to do is to connect your Arduino to a computer and upload the code to your new
gizmo. After you’ve done that, you can power the Arduino either from a computer’s USB connection
or by attaching a 9V battery to it, and then attach a 9V battery to the 2-postion-terminal-block, as
shown in Figure 16-1.

139CHAPTER 16: Challenge 4: Examining the Software

To operate the gizmo, simply press one of the push buttons. You’ll notice that when you press one
button the motor spins in one direction and one of the LEDs lights up. Release that button and press
the other one. Now you should see the motor switch direction, the second LED light up, and the first
LED turn off.

You’ve now got a simple device for controlling the direction and speed of a simple motor. Elle and
Cade need a gadget like this to control the tool transfer bucket so they can take turns crossing the
gap in the cargo area. Because they can control the direction, they can send the bucket across with
one of them in it as well as return it to the original side for the other person to take a ride!

Figure 16-1.  Challenge 4 complete!

141

Chapter 17
Hide and Seek

“I have to tell you . . . I don’t exactly feel safe in this bucket,” said Cade as he crossed the halfway mark.

Cade had insisted on going first to test out the tool bucket and the override controls. Any other time,
Elle would have laughed at her friend crammed tightly into the small metal box with his knees to
his chest.

The Crossing
Elle examined the override device they had quickly assembled from Andrew’s instructions.
It appeared to be working properly and the motor was spinning in the proper direction to take Cade
to the other side of the room.

“Five more feet,” said Elle.

Cade couldn’t turn in the bucket to see his destination, and the bucket was moving at a torturously
slow speed.

“I should have just tried to run and jump. This is ridiculous,” replied Cade with a frown. “What is this
Gunther Canvin doing now, Andrew?”

“I’m having difficulty with the video surveillance system’s position relative to his current location.
He’s already removed two panels from the wall, but I can’t determine how far along he is with
shutting down life support,” replied Andrew.

The tool bucket bumped to a stop, and Cade looked down before stepping out. “Longest
five-minute ride of my life,” he said. “You’d think a tool transfer bucket would go much faster.”

Elle shook her head and pressed a button on the override device. The bucket began moving toward
her, but much faster this time. “I’m betting it’s the weight,” she said. “Look how fast it’s moving now.”

Cade stretched his back and then held his hands out wide. “Throw the boxes, Elle. We don’t have
time to send them over in the bucket.”

142 CHAPTER 17: Hide and Seek

Elle picked up one of the two component toolboxes and examined the distance between Cade and
herself. “If you don’t catch it and it falls down there, you’re going after it.”

“Just throw it.”

Elle took two spins and slung the toolbox across the divide. She held her breath for half a second as
she watched the toolbox arc across the open space before Cade reached up and caught it.
The impact knocked the wind out of Cade, and he held up a finger to tell her to give him a moment.

One minute later the transfer bucket arrived back on Elle’s side of the room just as Cade caught the
second toolbox.

“Hurry, Elle,” huffed Cade, setting the toolbox down to his left. “Grab the laptop and get in.”

Elle stepped into the transfer bucket and slung the laptop bag’s strap over her neck and shoulder.
She leaned forward and pressed the button on the override device and sat down fast.

Cade smiled. “Longest ten-second delay you’ll ever experience, Elle.”

Elle counted to ten. The jolt as the bucket began to move forward startled her.

“Forgot to warn you about the bump,” said Cade.

Elle couldn’t turn to look at him. “Just tell me when I’m getting close, okay?”

The bucket was only a third of the way across when the station’s alarm system began whooping.
It was replaced by a female voice.

“Emergency protocols have been initiated. Please proceed immediately to the evacuation
pods. Automatic launch of all pods will begin in five minutes.”

“Oh, no,” said Elle.

“Aw, come on! Really?” yelled Cade.

Five Minutes!
“Andrew, is there any chance you could turn off the alarm?” cried Elle.

The alarm sounded as if it had increased in volume and Elle worried that she and Cade wouldn’t
be able to hear Andrew. She was also worried that the bucket had only just now crossed half the
distance.

Elle listened for a response, but just as she was about to yell out to Andrew again, the alarm’s wail
stopped.

“Is that better, Elle? I have limited control over the emergency system, but I was able to eliminate the
alarm on this level only. I doubt Mr. Canvin will notice, given the other damage to the station.”

“Four minutes until automatic launch of all evacuation pods. Please proceed immediately
to the nearest evacuation compartment. Follow the lighted emergency signals on the walls
to find your nearest evacuation compartment. Three minutes, forty seconds until automatic
launch of all evacuation pods. Please proceed immediately . . .”

“Does that sound like Mrs. Kendrick to you,” asked Cade. “She never liked me.”

143CHAPTER 17: Hide and Seek

“Cade!” yelled Elle. “Focus! How close am I?”

“Almost here, Elle,” replied Cade. “Sorry.”

The emergency notice continued to repeat in the background. Elle focused on the most important
part of the message. She and Cade had less than three minutes to get to the escape pods. “Andrew,
how long will it take us to get to the pods on Level 6?” she asked.

“If you leave the electronics and laptop and run, you can reach the pods in approximately
70 seconds.”

“Plenty of time,” said Cade. “Another three feet, Elle, and you’ll clear the drop.”

Elle smiled, and then the tool bucket stopped moving. A loud grinding sound was followed by a
couple of pops and a sizzle.

“Are you kidding me?” groaned Elle.

“The motor appears to have burned out,” replied Andrew. “It was simply too much weight on
the system.”

Cade snickered. “Must be all those cheeseburgers, Elle.”

“You’ll pay for that,” said Elle, unable to turn and give Cade the look he deserved. “Are you close
enough to grab the laptop bag?” She pulled the strap over her head and held the bag behind
her back.

“Swing it,” said Cade.

Elle moved the bag forwards and backwards until she felt the swinging bag stop.

“Got it. Let go.”

“Two minutes, thirty seconds until automatic launch of all evacuation pods. Please
proceed immediately. . .”

“This isn’t good,” said Elle.

“You’re gonna have to jump, Elle. I’ll catch you,” said Cade. “I promise. Just be careful standing up.”

Elle shook her head. “This is nuts.”

“Hold onto that rail mounted on the wall, Elle,” said Andrew. “I’ve disabled the power to the bucket.
You won’t get shocked.”

Elle squeezed her fingers into the small groove where the bucket’s bearings were visible. When she
was confident her grip was good, she slowly stood in the bucket and turned to face Cade.

“Hi,” said Cade. He was only three feet from her, but the gulf between bucket and the edge of the
floor felt like a mile. “You can do this. One foot up on the edge of the bucket and jump.”

Elle looked down. Fifteen feet below her was a large metal container. “I don’t think I’ll bounce if I hit
that,” she said.

“Jump, Elle! Come on!”

Elle took a deep breath, put her right foot on the top edge of the bucket and pushed. Cade reached
out, circling his arms around her shoulders, and leaned back. The two tumbled to the floor.

144 CHAPTER 17: Hide and Seek

“Gotcha!”

Elle looked down at Cade. She thought he might actually be blushing.

“Another thing we never talk about, right?” she said.

Elle rolled to the left and she and Cade stood up. He had a smirk spreading across his face.

“Elle. . . Cade. . . run! Now!” said Andrew. “Follow the red arrows on the walls. Hurry.”

Run!
“One minute, forty five seconds until automatic launch of all evacuation pods. Please
proceed immediately. . . ”

Cade raced down the hallways of Level 5, turning left, then right, then left again as he followed the
glowing red arrows on the walls.

“There!” he yelled, as the emergency escape tube came into view. He could see the ladder that
would take them to Level 6.

“Forty five seconds until automatic launch of all evacuation pods. Please proceed immediately. . .”

“Climb, climb,” said Cade, stepping aside and letting Elle go up the ladder first.

“Never would have made it carrying the equipment,” Elle huffed.

Cade nodded, out of breath, as he followed Elle up the ladder. Just as Cade reached the top of
Level 5, his left hand slipped from the rung and he fell back, smacking his head against the circular
hole between Levels 5 and 6. His vision flared and he lost his footing, falling to the floor.

“Cade!”

Cade rolled on the floor, holding his head.

Elle put her feet back on the ladder and began to climb down.

“No!” yelled Cade, staring up at Elle. “Get to the escape pods. Go, Elle!”

“Thirty seconds until automatic launch of all evacuation pods. Please proceed immediately. . .”

Elle reached the bottom of the ladder and kneeled down next to Cade. She reached out and looked
at his head.

“No blood. Can you climb? Did you break anything?” she asked.

Cade shook his head. “Don’t think so. Go, Elle. Hurry.”

Elle helped Cade to stand and then put his hands on the ladder. “Climb.”

“Too dizzy,” he replied, but climbed anyway.

“Fifteen seconds until automatic launch of all evacuation pods.”

“Andrew?” said Elle.

“I’m sorry, Elle,” Andrew said.

145CHAPTER 17: Hide and Seek

“Ten seconds until automatic launch of all evacuation pods.”

“Nine.”

“Eight.”

Cade jumped down from the ladder and stared at Elle. “Sorry, Elle. It’s all my fault.”

“Six.”

“Five.”

“Elle and Cade, I need you to return to the cargo area right now,” said Andrew.

Cade looked at Elle, his eyebrows shooting up.

Elle looked at Cade and shook her head. “I will never sneak away on a field trip with you again.”

“Three.”

“Two.”

“One.”

“Evacuation pods launching.”

A slight shudder could be felt under the students’ feet as dozens of escape pods launched and sped
away from the station.

“Let’s go,” said Cade. “I’m guessing you have a backup plan, Andrew?”

“I’ll give you instructions on the way. Please return to the cargo bay. Hurry,” said Andrew.

Walk
Cade wanted to run, but Elle could tell he was still hurting from the fall. She kept an eye on him,
worried he might fall again or even lose consciousness.

“There’s only one other way off the station,” said Andrew. “Unfortunately, it’s going to require you to
climb up additional levels.”

Elle frowned, trying to think about the layout of the station. All of the escape pods were gone, and as
far as she could remember, the station had no backup shuttles. What other options did they have to
leave the station?

Cade must have been wondering about the same thing, because they both stopped walking and
looked at one another.

“Is he serious?” asked Cade.

Elle nodded. “I think so.”

“It’s the only way,” interrupted Andrew. “You’re going to have to get on board Mr. Canvin’s shuttle to
get away.”

“Uh, Andrew,” said Cade. “I don’t think he’s going let us do that. Criminal record, right?”

“He’s definitely up to no good,” added Elle. “I’m not sure we should even be moving in his direction.”

146 CHAPTER 17: Hide and Seek

“There are no other options, Elle. The station’s life support is disabled, and there’s less than ten
hours of oxygen. Emergency vehicles will be here within three hours, but the temperature on the
station is going to drop fast. You’ve got less than two hours to get to the shuttle and get away.”

“What if we run into him?” asked Cade.

“The station’s AI and security system controls are now offline, so I can’t use the video
security system.”

“Great,” interrupted Cade. “So we don’t even know where he is right now.”

“After you retrieve your equipment, I’m going to have you assemble a few devices that will help me
monitor Mr. Canvin’s activities and movement. He has to use the emergency escape tubes to move
between levels, so I will track him there.”

Elle pulled on Cade. “Come on. We’ve got to hurry. You alright now?”

Cade nodded. “Yeah. I’m feeling better. Let’s go.”

Andrew began to recite the list of components he wanted Elle and Cade to retrieve from their
toolboxes. As he began to describe the components, Elle smiled.

“Kinda scary, but I think I’m actually beginning to understand this wiring and programming stuff,”
said Elle.

“Me, too. I wonder if we’ll get extra credit for learning all this stuff,” said Cade.

“Not unless you can build a gizmo to get us out of detention. We’re going to be in so much trouble
when this is over.”

The students turned a corner and entered the cargo bay.

“There it is,” said Elle, pointing at the laptop bag and toolboxes. “Time to start building.”

“Motion detector, huh?” asked Cade. “These might come in handy on the next field trip.”

“Cade!”

“Sorry.”

147

Chapter 18
Challenge 5: Fun Stuff to Know

So, how did you like Challenge 4? Pretty cool, huh? Motors are always fun, and we promise you’re
not done working with them yet. And if those ICs (integrated circuits) are still confusing you, don’t
worry—we still get confused by them, too. The thing about working with ICs is that they start to
make sense the more you actually use them, so we’ll go ahead and let you know you’ll be working
with ICs again later in the book.

But let’s talk about the current challenge. Elle and Cade are going to have to be a bit sneaky if they
want to get off Gemini Station. With the bad guy’s current location unknown, they don’t want to
cross paths with him, so Andrew has a great idea to build some motion detectors to scatter around
the station. (It’s worth mentioning that the PIR sensor itself is not a motion detector, but it can be
used as one.)

Let’s think about this for a moment. There are a lot of ways to detect motion. You can visually see
someone walking towards you, but if you’re not around, how would you know if a little brother or
sister entered your room without permission? In spy movies, you often see the spy sticking a small
hair or a piece of rice on the top of a door as he leaves. When he returns to the room, if the rice or
hair is no longer on top of the door or has shifted position, there was likely an intruder.

A dog makes a great motion detector, too, but a dog requires dog food, walking, bathing, and other
care. Let’s skip the dog and keep thinking more along the lines of a gizmo.

First, we’d like our gizmo to be small, right? If it’s big, an intruder might see it and be able to quickly
think of a way to get around it. So we want to keep the gizmo small so we can hide it. It also needs
to be portable—connecting it to a laptop would work, but what if we quickly need to shift its
position or move it to a completely different room in a hurry? Forget the laptop and let’s make it
battery-powered. And we want to make a bunch of them, so they need to be inexpensive, right? We
can’t really control the price of the official Arduino, but we can try and locate electronic components
that are inexpensive. (You can buy Arduino-compatible boards, by the way, and they often can be as
low as $10, but we prefer using the official Arduino product.)

And what should happen when the gizmo detects motion? Do we want it to let out a piercing alarm
that will wake the neighborhood or would we like a silent alarm that doesn’t alert the intruder but lets
us know that someone is where he doesn’t belong?

148 CHAPTER 18: Challenge 5: Fun Stuff to Know

These are all great questions, and they also leave open a lot of opportunities for you to tinker and
modify the gizmo we’re going to have you build for Challenge 5. But before we build it, you know
what we need to do first, right?

Yep, we need to go over a teeny-tiny bit of theory (did you just yawn???) and explain how the
components you’ll be using for Challenge 5 work.

But trust us… Challenge 5 is cool. Build it properly and you’ll have a great little gizmo to scare that
little brother or sister with a nice loud buzzer!

Let’s Look at the Challenge 5 Gizmo
Once again, we want you to examine Appendix A and make sure you’ve gathered all the parts you’ll
need for Challenge 5. Don’t let this short list of items fool you—it doesn’t always take much to build
a really cool gizmo.

Would you like to see just how simple your little motion-detecting gizmo really is? Take a look at
Figure 18-1. That’s the final circuit, and you should easily be able to pick out the two new items.

Figure 18-1.  The Challenge 5 gizmo wired up and ready for security duty!

149CHAPTER 18: Challenge 5: Fun Stuff to Know

They’re those two larger-than-usual items sticking out of the breadboard. And if you’re wondering
about them, well, let’s clear up the mystery right now. In Figure 18-1, the square-shaped item in the
upper left corner of the breadboard is the PIR sensor.

If you’ve already purchased the part and have it close by, pick it up and take a look. PIR stands for
Passive Infrared. Yes, you’d think they could pick a better name for it. Well the passive part of the
PIR sensor means that the PIR sensor does not send out any signals, it only reads in a signal. What
signal does the PIR sensor read in? Simple—it reads in infrared light or heat, which is where the IR in
PIR comes from. The PIR sensor then detects changes in infrared light (for example, when you wave
your hand in front of it) and thus can detect motion of objects.

Look underneath the PIR sensor and you’ll see three short pins. Just like the temperature sensor
from Challenge 3, each of those pins will be wired into your final circuit. (You’ll learn more about the
function of each pin in Chapter 19, so stay tuned.) They’re short, so you’ll need to use what’s called
a 6-pin header to connect it to the breadboard. If you don’t already have the 6-pin header, you’ll
need to get one so you can properly connect the PIR sensor to the breadboard.

ANDREW 5.0

One way to think of the PIR sensor is this: when the PIR sensor detects motion, what it’s really detecting is changes in
infrared light. All forms of matter give off infrared light because all forms of matter give off heat.

Andrew’s right. There are a lot of different PIR sensors, but the one you’ll be using is suitable for
you to monitor a room or hallway. Just keep in mind that the dome on the PIR sensor must be able
to “see” the room it’s monitoring. You can’t put it under a blanket or behind a book. Still, it’s pretty
small. Unless someone is actively looking for it, chances are it’ll never be seen! Let’s hope so—Elle
and Cade aren’t going to want the bad guy to know he’s being monitored.

There’s one additional new device you’ll be using with Challenge 5. That’s the item you’ll see to the
right of the PIR sensor in Figure 18-1—a buzzer. And just as you’d imagine, a buzzer does one thing
and does it well… it buzzes.

The buzzer makes its noise when you supply current to the small disk inside the buzzer. The more
current you supply, the higher the frequency of the noise. There is no plastic ball or metal ball
bearing to rattle around. The volume of the buzzer is increased or decreased by changing a value in
the sketch (program) that you’ll learn about in Chapter 20.

Now it’s time to collect the other things you need—your Arduino Uno, 8 jumper wires (we used two
green, three red, and three black, but you can use any colors you like), a 9V battery harness and a
9V battery.

ANDREW 5.0

I’d like to make one last comment about the motion-detecting gizmo. While the authors are using a buzzer for their version
of the Challenge 5 gizmo, I’m going to have Cade and Elle build their motion detectors with LEDs. I don’t want Mr. Canvin
hearing the loud buzzers and wondering who scattered these little gizmos around the space station. I’ve instructed Cade
and Elle to modify the program to light up an LED that hopefully I’ll be able to detect. Feel free to modify your gizmo to light
up an LED if you like, but I think the buzzer option will be much more fun, especially if you want to scare an intruder.

150 CHAPTER 18: Challenge 5: Fun Stuff to Know

Yes, we’re going to have you use a buzzer instead of an LED. You already know how to use an LED
with the Arduino and breadboard, so feel free to add one if you like. You may even feel confident
enough to trigger a number of LEDs with a modified sketch, so go right ahead!

Other possibilities could include using the PIR sensor to trigger a spinning motor—maybe you want
to design a small, rolling robot that runs away if it detects movement in the area. Or maybe you
could use a sound sensor that picks up noise! Imagine designing a gizmo that detects movement
or sound or both. You’ve got lots of possibilities when it comes to modifying the motion detector, so
think about how you might want to expand the gizmo and give it more features.

Ready to Build Something?
Challenge 5 will have you building a gizmo that might offer a real-life function you’ll use. You’ve
tinkered with enough components in earlier challenges that you might be gaining some confidence
to mix and match various components, such as resistors, LEDs, a temperature sensor, and even a
motor. (Imagine the noise that little motor will make if it’s set to turn on when a PIR or light or sound
sensor is triggered!)

Well, it’s time to actually go and build the Challenge 5 gizmo. If you haven’t got the parts for
Challenge 5 collected yet, turn to Appendix A for the complete parts list. Chapter 19 will give you
the building instructions and Chapter 20 will provide the program (sketch). Time to help Cade and
Elle create some motion-detecting gizmos they can scatter around the station to alert Andrew to
Mr. Canvin’s presence.

Time to build!

151

Chapter 19
Challenge 5: Examining
the Hardware

You’ve crossed the halfway point! Congratulations. You now have four gizmos under your belt and
you’re about ready to begin building the fifth. Hopefully at this point you’re starting to gain some
confidence in your hardware skills. Patience is always a good idea when building gizmos, and so is
carefully observing where components are inserted and where the wires go that are used to connect
everything.

One of the most common errors we experience when building circuits is simply connecting
something improperly. Remember the LED and its short leg and long leg? We can’t tell you how
many times we’ve made the mistake of inserting an LED into the breadboard with the long leg
(Anode) connected to the negative voltage side of the circuit and the short leg (Cathode) connected
to the positive. While resistors don’t care which way you insert them, most components do! You
haven’t used a transistor yet, but trust us—insert a transistor the wrong way and you could get a tiny
little fizzle (the transistor could get really hot) when you apply power. So, always check your circuit
before applying power, and double- and triple-check that you’ve got all the components inserted
correctly and wired up properly.

Now let’s start building the Challenge 5 gizmo. As you learned in Chapter 18, this little gizmo will use
two new components (three if you count the 6-pin header)—a PIR sensor and a buzzer.

The PIR sensor is not a true motion detector, but it can be adapted to act as one. This challenge
shows you how to use the sensor to detect changes in heat that you can interpret as being caused
by the movement of a human into the sensor’s field of view.

152 CHAPTER 19: Challenge 5: Examining the Hardware

Let me interrupt to say that no motion detector detects motion directly. Passive infrared sensors detect body heat and
interpret changing heat levels as indicating motion. Ultrasonic motion detectors interpret changing sound waves as
representing motion. Microwave-based detectors function similarly to a police radar gun in detecting the time from
sending a ping to its being received back. In all cases, it’s not motion that’s directly being detected, but something else
that is interpreted as indicating motion.

Even humans can’t directly detect motion! When you “see” motion, what your eyes really detect are changing patterns
of light. Your brain interprets those patterns and you perceive that motion is occurring. When you touch something you
perceive is moving, you are interpreting changing patterns of pressure and perhaps the reciprocal motion of your own
body as an indication that what you are touching is moving.

No need to get too metaphysical. For our purposes, it is sufficient to treat changing patterns of heat as indicating that
human motion is occurring.

OUT
5V

GND

Figure 19-1.  A PIR sensor with its pinout

ANDREW 5.0

Once again, Andrew is correct. We could apply all sorts of technology to the problem of detecting
motion. It’s often best, however, to choose the simplest approach that will solve the problem. Elle
and Cade don’t have time to spare. A passive infrared sensor is reliable in their situation, and can be
built swiftly using the parts available. It is a good choice that will save the day.

A Closer Look at the PIR Sensor
One of the new pieces of hardware for Challenge 5 is the passive infrared (PIR) sensor shown in
Figure 19-1. This PIR sensor detects changes in infrared (heat) radiation, which makes it very easy
to adapt it to motion detecting as every object has some form of heat radiation. All forms of matter
produce heat, especially people! The PIR sensor can detect the body heat given off by a person.

153CHAPTER 19: Challenge 5: Examining the Hardware

Notice in Figure 19-1 that the PIR sensor has three pins (just like the temperature sensor
you’ve already used). The 5V pin (in the center) is where you’ll provide 5 volts; this will come
from the Arduino.

Buzzer

Figure 19-2.  A buzzer

ANDREW 5.0

You’re probably already shaking your heads and saying “Wait—that’s a 9-volt battery connected to the Arduino!”
And you’re correct. The Arduino Uno itself receives 9 volts from the battery, but it can provide either 5V or 3.3V to
the electronics connected to it. For this circuit, you’ll be connecting a wire from the Arduino header labeled 5V to the
breadboard. That’s how the PIR sensor will get its 5V!

We’ll be connecting the GND pin on the PIR sensor to GND. You could run a wire from the GND
header on the Arduino to this pin, but we’re going to show you a different method. And, of course,
the Out pin is how the PIR sensor will alert the Arduino (and the sketch that you’ll upload to the
Arduino in Chapter 20) that it has detected motion.

The other major component you’ll be using with the Challenge 5 gizmo is the buzzer. A buzzer
creates a noise by applying a current to a piezoelectric disk. This disk can increase or decrease its
volume depending on a frequency you’ll specify in the program. Figure 19-2 shows the buzzer you’ll
be adding to your circuit.

The only other new component you need is the 6-pin header. This functions as an extender because
the pins on the PIR sensor are very short—too short to be inserted properly into a breadboard. You
insert the header into the breadboard and then you’ll insert the PIR into the header.

Now, let’s build this thing!

154 CHAPTER 19: Challenge 5: Examining the Hardware

Let’s Build The Challenge 5 Gizmo
For this circuit, we need to connect all the digital pins on the PIR sensor and on the buzzer to the
Arduino.

Jumper

Figure 19-3.  Make sure the jumper is on the right setting

Note  We won’t keep reminding you about the rows and columns on the breadboard. For the steps
below, we’ll just tell you in which row (a number) and column (a letter) to insert components. If your
breadboard isn’t numbered and/or lettered, you can use a Sharpie to add your own letters and numbers.
Or you can simply keep track of where we insert wires and components and how they’re connected.

1.	 Make sure that the jumper on the PIR sensor is set to the L setting.
Figure 19-3 illustrates this process.

2.	 Your first step is to attach the 6-pin-female-stackable-header to the
solderless breadboard (J-5 through J-10), as illustrated in Figure 19-4.

155CHAPTER 19: Challenge 5: Examining the Hardware

3.	 Next, insert the PIR sensor into the far right pins of the 6-pin-female-
stackable-header. This corresponds to J5, J6, and J7. Be sure the Out pin
is inserted into J5, as shown in Figure 19-5. The PIR sensor you purchased
may be difficult to fit on the 6-pin-female-stackable-header. What you can
do is bend (gently) the capacitors that are in the way just enough to allow the
PIR sensors header fit into the 6-pin-female-stackable-header.

J-10 J-5

Figure 19-4.  Attach the 6-pin-female-stackable-header to the solderless breadboard

156 CHAPTER 19: Challenge 5: Examining the Hardware

4.	 Now connect the 5V pin on the PIR sensor to what will become the 5V power
source on the breadboard. In Figure 19-6, this corresponds to the column of
holes that runs right next to the red line on the breadboard. We connected a
red wire from I-6 to the power column at row 12. We connected a black wire
from I-7 to the GND column at row 19.

J-7
J-6 J-5

Figure 19-5.  Attach the PIR sensor to the 6-pin-female-stackable-header

157CHAPTER 19: Challenge 5: Examining the Hardware

If your breadboard doesn’t have the blue and red lines on it, you can add
your own or just remember which column (column because it runs parallel to
the lettered columns) you are going to use for power and which you’ll use for
GND (ground).

5.	 Remember, I-6 shares the same electrical connection as F-6, G-6, H-6, and
J-6. So when you added the wire at I-6, it’s just as if you wrapped the wire
around the middle pin (5V) on the PIR sensor.

6.	 Now it’s time to attach the buzzer. Insert the buzzer into the breadboard
so that one of the buzzers pins goes into H-19 and the other pin into H-22.
Figure 19-7 illustrates this process. If you’re not sure which pin is which, take
a close look because they are labeled.

I-7 I-6

Figure 19-6.  Attach power and ground to the PIR sensor

158 CHAPTER 19: Challenge 5: Examining the Hardware

7.	 Now it’s time to wire up the buzzer. Connect the buzzer (J-19) to the ground
rail on the solderless bread board by adding a black wire from J-19 to the
GND column row 19. Figure 19-8 illustrates this process.

H-22

H-19

Figure 19-7.  Attach the buzzer to the solderless breadboard

159CHAPTER 19: Challenge 5: Examining the Hardware

8.	 You don’t want to connect a buzzer directly to 5V, so we’re going to add a
resistor in there to protect the component from receiving too much voltage.
Insert one end of a 100-ohm resistor to the positive lead of the buzzer at
F-22 and insert the other end of the resistor into H-25. Figure 19-9 illustrates
this process.

J-19

Figure 19-8.  Connect ground to the buzzer

Note  As we have done in previous challenges we will be using both sides of the solderless bread
board’s power and ground rails this makes sure that the circuit is neat and easy to follow.

160 CHAPTER 19: Challenge 5: Examining the Hardware

9.	 Now, before we forget, let’s make sure the power and GND columns on
the breadboard are connected so that both sides can provide voltage and
ground. Simply run a wire (we used red) from one of the power holes (the
hole nearest to the top or bottom of the breadboard is always easiest) to a
power hole on the other side of the breadboard. Do the same for the GND
(we used a black wire). Insert one end of the wire into a hole on the GND
column and the other end to a hole in the GND column on the other side of
the breadboard, as shown in Figure 19-10.

F-22

H-25

Figure 19-9.  Attach the 100-ohm resistor to the positive side of the buzzer

161CHAPTER 19: Challenge 5: Examining the Hardware

10. Now let’s bring the Arduino into the circuit. Connect the Out pin (refer to
Figure 19-1) of the PIR sensor to the Arduino by running a wire (we used
green) from I-5 to D6 (digital pin 6) on the Arduino. Figure 19-11 illustrates
this process.

Figure 19-10. Connect the power and ground rail from one side to the other

162 CHAPTER 19: Challenge 5: Examining the Hardware

11.	 Next, connect digital pin 9 (D9) of the Arduino to F-25. This connects D9 to
the 100-ohm resistor. Figure 19-12 illustrates this process.

D6

I-5

Figure 19-11.  Connect the OUT pin of the PIR sensor to digital pin 6 of the Arduino

163CHAPTER 19: Challenge 5: Examining the Hardware

D9

F-25

Figure 19-12.  Connect the 100-ohm resistor to digital pin 9 of the Arduino

12.	 Now we need to connect both power and GND to the breadboard, which
is done via the Arduino. The Arduino will get power from the 9V battery and
then provide it to the breadboard using a wire (we used red) running from
the +5V pin to the power column on the breadboard. Connect the wire to
any free hole on the power column (power column row 13). Insert the end
of another wire (we used black) into the GND header on the Arduino and
the other end into the GND column (ground column row 12). Figure 19-13
illustrates this process.

164 CHAPTER 19: Challenge 5: Examining the Hardware

GND

GND

5V

+5V

Figure 19-13.  Connect power (+5V) and ground from the Arduino to the solderless breadboard

165CHAPTER 19: Challenge 5: Examining the Hardware

Figure 19-14.  Connect the power cord to the Arduino

13.	 Finally, connect the 9V battery harness to the Arduino as shown in Figure 19-14.

That’s it! Don’t connect a battery just yet—you’ll do that after you get the sketch uploaded to the
Arduino. And Chapter 20 is all about programming the Challenge 5 gizmo, so keep reading and get
that motion detector finished!

167

Chapter 20
Challenge 5: Examining
the Software

Well, you’ve crossed the halfway point in the book and now you’re ready to tackle the sketch for the
Challenge 5 gizmo. At this point you should have the Challenge 5 gizmo all wired up and ready to be
placed in a secure location so it can detect intruders.

We have a specific device here with one specific duty—to detect motion by using the PIR sensor to
detect changes in infrared radiation. What is infrared radiation? Well, to put it simply, it’s heat. And all
forms of matter give off heat. As matter (such as a person) moves in front of the sensor, the precise
amount of heat reaching the sensor will vary.

We’re going to give you the actual sketch to upload to your Arduino, but let’s take just a moment and
talk about how you might go about deciding how to structure this sketch if you were going to create
it all on your own.

ANDREW 5.0 

Don’t let the idea of writing your own sketch scare you! On the book’s website, the authors provide dozens of resources
you can use to continue your education. Some of those resources will supply much more detail and explanation about
programming an Arduino gizmo than you’ll see in this book. There’s a wealth of information out there, just waiting for you!

Thinking Through the Solution
Take a second and think about this little device (the PIR gadget), and what its sketch might look like
in rough form. What does our device really need to do? Well, first, the sketch needs to have the PIR
sensor and buzzer identified so the Arduino knows which pins to monitor, right? So we start off our
sketch by initializing the pins that are connected most directly to the buzzer and the PIR sensor.

168 CHAPTER 20: Challenge 5: Examining the Software

We also need to know which of these devices acts as an input and which acts as an output. That’s
pretty easy, isn’t it? The buzzer makes noise, so it makes sense that it will be the output device.
And the PIR sensor is always checking for infrared radiation—it waits for a change in radiation and
then triggers the buzzer to sound. So the PIR sensor is our input device! The next part of the sketch
simply defines the buzzer as an output device and the PIR sensor as an input device.

Now we get to the main part of the program, where the gizmo keeps checking for motion. This
is something that will continue as long as the device is powered, so whatever code we add to
the sketch will run and run and run, over and over and over, until power is disconnected from the
Arduino. Can you guess where this bit of code will go? Of course! Inside the void loop(). You’ve
seen this often enough in earlier sketches, haven’t you?

This part of the sketch is where the PIR sensor decides whether it has detected any motion this
happens thousands of times per second. Wait for change … nothing? Do it again. Wait for change …
nothing? Do it again. Wait for change … HEY! Motion. Now what?

When the PIR sensor detects a change in radiation, we interpret that change as movement and want
to trigger the buzzer, right? The buzzer has the ability to provide a range of sounds, so we will also
instruct the buzzer on how loud and at what frequency and for what duration it should alert us to
an intruder.

To control the buzzer, we’ll use a special built-in feature called the tone function. The tone function
keeps us from having to do extremely complicated programming to control the buzzer’s volume,
speed, and duration. Instead, we simply define these items with numbers. This means it’s simple to
tinker with the gizmo and tweak these values until we are happy with the volume and the duration of
the buzzer.

When the buzzer stops, the PIR sensor starts over, waiting for changes in infrared radiation. If a
change in infrared radiation (that is, an intruder’s movement) is continually detected, the buzzer will
never stop! The loop where it checks for movement and triggers the buzzer will happen over and
over again—until the the PIR sensor no longer sees a change in infrared radiation. Simple!

Now, before we delve into the real sketch, let’s take a quick look at that tone function we just
mentioned so you understand how the values you provide can tweak the buzzer to do different things.

Understanding the Tone Function
The Arduino tone function isn’t complicated. You simply embed it into the sketch, followed by
parentheses containing three variables or values. Here’s what the tone function looks like:

tone(pin, frequency, duration)

The pin argument is easy—it’s the digital pin on the Arduino that’s connected to the buzzer. In our
case, it’s pin 9, but in the sketch we’ll use a variable, buzzerPin, to hold that value of 9. By using a
variable such as buzzerPin, if you need to change the pin number on the Arduino that connects to
the buzzer, you only have to change that value at the beginning of the sketch where it’s assigned
to the buzzerPin variable. If you used the actual value in the tone function, you’d also have to change
it there. With the buzzerPin variable, you can always reference the connection to the buzzer anywhere
in a sketch by simply using the variable name. No need to change the value in multiple locations!

169CHAPTER 20: Challenge 5: Examining the Software

The second setting is frequency, which is defined in units called hertz, or cycles per second;
1000 hertz=1 kilohertz (kHz). A higher frequency results in a higher-pitch tone, a lower frequency in
a lower-pitch tone. You can play around with this setting to find the sound you want the buzzer to
produce. Just remember that the human ear can only hear sounds from 20Hz to 20kHz. We’re going
to set it initially to 5000 (5kHz) to get a nice, loud buzz. Increase it (try 7000) or decrease it (try 2000)
to see what happens!

Finally, the duration value is provided in milliseconds. Remember, 1000 milliseconds is equal to
1 second. If you want the buzzer to ring for two seconds, set the duration value to 2000. Do you
want seven seconds? Then set the duration to 7000. You can specify in-between values such as
2500 for 2½ seconds. However many seconds buzz you want, multiply that number by 1000.

Although we won’t do it in this sketch, you can also leave off the duration in the tone function and
the buzzer will stay on forever. Well, not actually forever. You can easily turn it off by adding the
function noTone into your sketch at any point where you want the buzzer to turn off.

Think you’ve got the tone function figured out? Don’t worry if it’s still a little confusing because
next you’ll see it in action inside the actual sketch. Let’s take a look at the Challenge 5 sketch in its
entirety and then we’ll break it down and discuss in more detail.

The Challenge #5 Sketch
Listing 20-1 shows the complete sketch for the Challenge 5 gizmo. Read it all the way through
and see if you can see the structure we described earlier. Do you see the pin initializations at the
beginning? And then the buzzer and PIR sensor being defined as output and input devices? You
should also note the looping part of the sketch that has the PIR sensor constantly checking for
movement. Finally, you’re already familiar with If-Else statements and we use one again here to
decide which action to take—trigger the buzzer or keep it quiet.

Listing 20-1.  Motion Detection

// Initalize buzzer and PIR sensor pins
int buzzerPin = 9;
int PIRPin = 6;
 
// Initialize PIR sensor state
int PIRState = 0;
 
void setup()
{
 // Set PIR sensor to an Input and the buzzer to an Output
 pinMode(PIRPin, INPUT);
 pinMode(buzzerPin, OUTPUT);
}
 
void loop()
{
 // Read in PIR state (0 or 1)
 PIRState = digitalRead(PIRPin);
  

170 CHAPTER 20: Challenge 5: Examining the Software

 // If PIRState detects motion?
 if (PIRState == 1)
 {
 // Buzzer makes noise
 tone(buzzerPin, 5000, 1000);
 }
 else
 {
 // Buzzer makes no noise
 digitalWrite(buzzerPin, LOW);
 }
}

Let’s break down this sketch into smaller sections and take a look at what’s happening. First, here
are the pin initializations:

// Initalize buzzer and PIR sensor pins
int buzzerPin = 9;
int PIRPin = 6;
 
// Initialize PIR sensor state
int PIRState = 0;
 
Just as expected, we’ve got the buzzer connected to the Arduino using digital pin 9. If you built the
gizmo exactly as described in Chapter 19, your buzzer should also be connected to pin 9, but feel
free to trace it out—look at digital pin 9 on the Arduino and follow the wire to its final destination.
Does it end with the buzzer’s output pin? If not, you’ll need to fix that! Go back to Chapter 19 if
necessary or just move the connection for the buzzer’s output pin so it makes a connection to the
Arduino’s pin 9.

The same goes for the PIR sensor. The sketch has it connected to digital pin 6, so you’ll want to
confirm on your own gizmo that pin 6 on your Arduino is making a connection to the PIR sensor’s left
pin, which is sometimes labeled OUT.

Finally, we need to set the PIRState so that when the Arduino is powered up the buzzer doesn’t
automatically sound when there’s no change in infrared radiation. We do this by setting PIRState to 0.
When it’s 0, no motion is detected. When it changes to 1, that means motion is detected. If you
set the initial state to 1 by accident, when the gizmo is powered up, the buzzer would immediately
trigger. We’ll explain why in just a moment, but feel free to try it out—change the PIRState variable’s
initial value to 1 and turn on the gizmo and see what happens!

Here’s the next bit of the sketch we want to examine:

void setup()
{
 // Set PIR sensor to an Input and the buzzer to an Output
 pinMode(PIRPin, INPUT);
 pinMode(buzzerPin, OUTPUT);
}

This is pretty simple, really. We want to define each pin that’s being used on the Arduino as either an
input or output pin—will it receive a signal or send a signal? If it receives a signal, we set it to INPUT.

171CHAPTER 20: Challenge 5: Examining the Software

That would be the PIR sensor. We want it detecting changes in infrared radiation (so we can detect
when anything with heat enters the room or moves around the room) and we want the Arduino to
receive a signal from the PIR sensor.

The flip side is the buzzer. We want the Arduino to send the buzzer a signal, so that makes the pin
connected to the buzzer an output pin. We use the pinMode function and define whether a pin is set
to INPUT or OUTPUT. Notice in this bit of code we have two pinMode functions—one for PIRPin, which
holds the pin value 6, and the other for buzzerPin, which holds a value of 9. During the setup part
of the sketch, the pinMode function simply says, whatever is connected to pin 6, make it an input
device. And whatever is connected to pin 9, make it an output device.

Here’s the final bit of the sketch we’ll discuss:

void loop()
{
 // Read in PIR state (0 or 1)
 PIRState = digitalRead(PIRPin);
  
 // If PIRState detects motion?
 if (PIRState == 1)
 {
 // Buzzer makes noise
 tone(buzzerPin, 5000, 1000);
 }
 else
 {
 // Buzzer makes no noise
 digitalWrite(buzzerPin, LOW);
 }
}

Let’s break this portion of the sketch down a bit further. The first bit of the code simply examines
PIRState. If the voltage of the PIR sensor is high (5V), PIRState will be set to 1, but if the voltage is
low (0V), PIRState will be set to 0. The PIR sensor sends a 0 (or 0 volts) to pin 6 as long as it doesn’t
detect any changes in infrared radiation; if it does detect a change in infrared radiation, the PIR
sensor will output a high signal (5V) to digital pin 6 on the Arduino. The digitalRead command just
keeps looking at the value of pin 6 (or whatever value is stored in the PIRPin variable). It does this
thousands of times per second. And whatever value it finds, it puts that in the PIRState variable.

Next we come to the If-Else statement. We’ve got two things that can happen here: the buzzer can
buzz or it can remain silent. Using the If-Else statement, we can make these two states happen by
saying If the PIRState value is 1 (motion detected), trigger the buzzer. Otherwise (Else) the PIRState
value is 0 (motion not detected), so do not trigger the buzzer.

If the expression (PIRState == 1) is true, the code will run what’s inside the next set of brackets—
tone(buzzerPin, 5000, 1000). This sets the tone to 5kHz and triggers the alarm for one second
(1000 milliseconds).

Otherwise, the sketch executes the digitalWrite(buzzerPin, LOW) function in the else clause. That
function turns off the buzzer. If the buzzer wasn’t buzzing, this simply keeps it in that state.

And that’s it! That’s the sketch for creating a super-simple motion detector that will trigger a brief,
one-second-long burst of noise when it detects motion. It’s up to you to experiment with different

172 CHAPTER 20: Challenge 5: Examining the Software

values, such as the frequency and duration. You might even do a little research and then experiment
by removing the buzzer and replacing it with an LED that lights up when motion is detected.
Remember, in some instances, you might not want to alert the intruder that his or her presence has
been detected with an audible alert!

Solve Challenge #5
Figure 20-1 illustrates the completed gizmo. Go ahead and connect your gizmo to your computer
and upload the sketch. After the sketch is uploaded, attach a 9V battery to the Arduino as we did in
Challenge 2. After you hook up the battery to the Arduino; stay still for about 30 seconds as the PIR
sensor is calibrating.

Once the calibration period is completed, the PIR sensor will detect your motion by noticing a
change in infrared radiation. Your gizmo will then make a loud noise everytime you move.

Elle and Cade built a bunch of these sensors and placed them all over the station at Andrew’s
request. Andrew will monitor them in areas where it’s difficult for his sensors to detect motion, and in
areas that are damaged. With these sensors working, Elle and Cade can get a warning that Gunther
Canvin is approaching!

It’s not just human bodies that give off heat; other objects do as well. We found we could wave
a notepad back and forth in front of our gizmo. The changing heat patterns from the notepad’s
movement triggered the motion alarm.

Have some fun experimenting to see how sensitive your gizmo is and what motion it can detect. Will
it detect your dog? Your cat? Movement of a window curtain in the breeze? Brainstorming and trying
out different ideas is part of the fun of Arduino.

Figure 20-1. Completed Challenge 5 motion detector

173

Chapter 21
Carousel Ride

“That’s the last one,” said Cade, placing a motion detector in the far corner of the emergency
tube on Level 8. “If someone comes through here, you’re sure you’ll be able to hear it, Andrew?
One beep?”

“There does not appear to be any degradation in the quality of the station’s sound sensors. I should
be able to determine the source of a single beep of any of the motion detectors you and Elle have
placed,” replied. Andrew. “A single beep is unlikely to make Mr. Canvin suspect his movements are
being tracked.”

Elle frowned. “I hope so. And how are you so certain he’ll be moving into the lower levels? What’s he
here to steal?”

Cade began climbing the ladder to Level 9 and paused halfway up, curious about Andrew’s
response.

“There are hundreds of antique devices on this station that would each fetch a substantial amount
of e-credits, Elle. I’ve looked at the station’s access logs and determined that Mr. Canvin has made
eight trips to this station in the last 232 days. Though I’m unable to determine where he went on
the station during those visits, my best guess is that he has done some research and knows exactly
what he wants. The most valuable items are down on Levels 2 and 3, and the station’s sensors are
telling me he is moving quickly down to Level 10. So the two of you need to get up to Level 9 now.”

“Let’s go,” said Cade, quick-stepping up the ladder. He disappeared for a moment and then dropped
his head down through the hole between levels and extended his left arm. “Laptop?”

Elle grabbed the laptop case by the handle and climbed up two rungs to hand the bag off to Cade.
As soon as the bag was gone, Elle finished climbing, reminding herself that only two more levels lay
between them and the getaway shuttle.

Close Call
“Do you hear that?” whispered Cade, pushing Elle a few steps backwards into a small alcove.

“I didn’t hear anything,” said Elle.

174 CHAPTER 21: Carousel Ride

Cade put his fingers to his lips.

BANG!

The sound of metal hitting metal was unmistakable. The echo made it difficult to determine how far
away the sound originated, but it was definitely on the same level.

“Hurry,” Cade murmured. “This way.”

Cade pulled Elle by the elbow, retracing their steps on Level 9 and heading back in the direction
of the emergency tube. Elle tried to keep the laptop bag from bumping into the toolbox she was
carrying, but Cade didn’t seem to be worried about the slight noise.

“Do you think it’s him?” asked Elle.

Cade stopped and looked left … then right. “It’s gotta be, right? No one else is on the station.”

“I wish Andrew could talk to us,” whispered Elle.

“Behind here,” Cade said, nodding at a large collection of machines and tools. Most of it looked
damaged or extremely old. Andrew had told them that Level 9 served as the maintenance and
engineering section of the station, and Cade was pleased to see that the pile was deep enough that
the rear wall wasn’t visible.

Elle stepped over a few devices she didn’t recognize and squeezed under a large plastic box that
had a series of menacing grippers and claws. One of the claws caught on the laptop bag’s strap and
Elle was about to pull hard on the strap but Cade grabbed her shoulder and pointed up. The plastic
box held a smaller box of miscellaneous metal pieces that was wobbling back and forth.

“Oh, no,” said Elle.

Just as the box tipped over the edge, Cade reached up and blocked it from falling with his hand. He
pushed hard and the box settled back in place. He grinned at Elle. “That was close.” He unhooked
the bag and followed her as she climbed deeper into the collection of machines.

Elle crouched down, unable to see the hallway they had just left. She leaned towards Cade and
whispered. “Do you think we’re far enough in? What if he starts looking through this pile of stuff?”

Cade shook his head. “This stuff is broken. He’s looking for operational stuff. Let’s just wait a few
minutes and see what happens.”

Elle nodded and gave a weak smile.

A loud clang was heard again, this time much closer. Cade and Elle both held their breath and waited.

Nothing To See Here
Elle and Cade were certain they’d be discovered. They were unable to see Gunther Canvin from
behind the pile when he began sorting through the front few machines. Cade had picked up a short
metal rod somewhere during the climb into the pile, and he was clinching it tightly as he prepared to
defend his friend.

But the thief must have lost interest because he tossed something on the floor that landed with
a loud clang, then grumbled unintelligibly as he walked away, banging something metal on the
station’s wall panels.

175CHAPTER 21: Carousel Ride

Cade stared at Elle. She had a look of relief that matched his own. “Let’s wait one more minute,”
he whispered.

“Okay. One more minute,” Elle replied, her voice shaky as she realized just how close Gunther
Canvin had been to discovering their hiding spot.

Three minutes later, Elle and Cade moved slowly and carefully through the boxes and stacks of
parts. Cade grabbed the laptop bag and sat it down as Elle finished climbing out.

“What are you doing?” asked Elle, seeing Cade creeping down the hallway in the direction of
Gunther Canvin.

“We need to make sure he went this way,” replied Cade.

“There’s no time. It’s the only logical direction to go. He came from this direction,” Elle said, pointing
towards the emergency tube that would take them up to Level 10. “And the stuff he wants to steal is
in that direction.”

Cade hesitated, and then nodded.

“Andrew said we needed to get to engineering on Level 10. He can’t talk to us until we get there.
Come on. This way.”

Elle led Cade down the dark hallway. The flashing lights served as a reminder that life support was
failing, and Elle noticed her breath for the first time as she realized the temperature on the station
had dropped enough to cause her to shiver.

An Engineering Problem
“Level 10,” said Cade, pulling Elle up from the ladder in the emergency tube. “I think we’ve seen
more of this station than we have our actual school.”

“No kidding,” replied Elle. “You wanna stick around and see some more?”

Cade snickered. “Nope. I’m definitely ready to get outta here.”

Elle grinned at her friend and then nodded behind Cade. “Engineering is down that hall.”

“And I’m betting I know why Andrew told us not to lose the laptops or toolboxes,” said Cade with
a frown. “More homework.”

“I feel like I’ve become an expert at electronics and programming,” said Elle, glancing behind her to
make certain they weren’t being followed.

“It’s kinda fun,” replied Cade. “Except for the whole our lives are in danger thing.”

“Maybe all our teachers should make homework a life-or-death assignment?” Elle smiled at Cade.
“I’ll bet your grades would improve.”

“Hey!”

Before Cade could respond, Elle waved her hand in front of a large door. “Here we are.”

Cade followed Elle through the door, looking forward to hearing Andrew’s familiar voice. Even with
the danger, Andrew had a calming effect and took his mind off of the facts that life support was

176 CHAPTER 21: Carousel Ride

failing, a criminal was sharing the station with them, and their only way off the station seemed to
require even more tinkering with electronics.

“It’s good to see the two of you,” said Andrew, his voice a slight echo in the large room that
contained dozens of workstations surrounding a large circular compartment in the center of the
room. The compartment consisted of a single piece of traspara-steel that wrapped around an
enclosed machine. The transpara-steel also ran from floor to ceiling, with no apparent way to enter.

“Hi, Andrew!” said Elle and Cade together.

“You’ll be happy to know that Gunther Canvin has triggered the motion detector you placed on
Level 7 and I believe he is about to enter Level 6. You’re not out of danger, but once he gets to
Levels 2 or 3 I’ll be able to monitor his activity visually.”

Elle pointed at the circular compartment. “Can you really see us? Where’s the camera?”

“I heard your approach. Two sets of footsteps. I know your pace and the sound of your steps.”

Cade nodded. “Of course.”

Elle grinned.

“No offense, Andrew, but I’m ready to get off this station. Please tell me we’re good to go.”

There was a slight pause. “I’m sorry, Elle. The damage done to this station is extensive, and power
outages continue to occur as well as some small fires. You’ve got another important bit of work to
do here, I’m afraid.”

Cade pointed to the transparent compartment in the center of the room. “I’m guessing it has to do
with the fact I can see that machine in there twitching back and forth, right?”

“That device is the power connect between the station’s micro-fusion drive and all the control
systems that are still operational. It went offline when the station was hit, and Gunther Canvin
attempted to make the reconnection. He was unsuccessful and got frustrated.”

Elle was confused. “Frustrated?”

“He smashed the workstation with a large wrench,” replied Andrew.

“Ah,” said Elle. “But why was he trying to reconnect it?”

“It would have allowed him to more easily access other levels because the elevators would be back
online. But the damage he did made things much worse.”

“How?” asked Cade. “It’s not like things can get much worse than losing life support.”

“The power connect must be fixed or the shuttle will be unable to undock.”

Elle nodded. “Apparently it can get much worse.”

Cade looked at toolbox in his hands and the one Elle was carrying. And then he smiled.

“We give up too easily, don’t we, Andrew?” he asked, nodding at the toolbox in Elle’s hand. “You’re
going to tell us how to fix it, aren’t you?”

“It’s an easy fix,” said Andrew. “The controller inside the compartment relies on nothing more than a
simple servo. If you can gain control of the servo, the controller will automatically perform the power

177CHAPTER 21: Carousel Ride

reconnect on the five switches inside. You just have to get the controller to the thirty, sixty, ninety,
one-hundred-twenty, and one-hundred-fifty degree positions. The controller will do the rest.”

“Too easy,” said Cade.

“And people say you’re sarcastic. I completely disagree,” said Elle.

Cade looked at Elle. “Uh … ”

Elle grinned. “Let’s do this. I want to go home.”

“Please find and locate the parts I describe. I’m going to instruct you on creating a small circuit that
will allow you to fine-tune the movement of the servo inside the power compartment,” said Andrew.

Elle and Cade opened their toolboxes and began pulling out small boxes.

“People say I’m sarcastic?” asked Cade.

“No,” replied Elle. “I was totally kidding.”

“Oh.”

Elle laughed.

“Wait a minute!”

“Get your parts!”

179

Chapter 22
Challenge 6: Fun Stuff to Know

With only three challenges left in the book, are you feeling like you’re moving from Arduino newbie
to Arduino guru? Okay, maybe you’re not quite that far along on the skills chart yet, but you have
to admit you’ve learned quite a bit! Temperature sensor … PIR sensor … DC motor … and even
integrated circuits. You’ve handled resistors and LEDs and you’ve developed a good understanding
of how power and ground relate to building circuits. Give yourself a big pat on the back, because
you’ve now learned more about the Arduino and a bunch of other electronic components than most
people can claim to know. That Arduino guru status has your name all over it.

So, now you’re probably wondering about what you’ll learn next, huh? You know that Elle and Cade
need to create a small controller to move what’s called a servo. But what’s a servo? It turns out that
a servo is simply a type of motor, and you already had some hands-on time with a DC motor back
in Challenge 4. Servo motors aren’t all that different from standard DC motors, but there are certain
improvements that can add some real power and functionality to future gizmos you design. What
kind of functionality? Well, we can tell you that a certain favorite gizmo called a robot often relies
heavily on servos. Yep … we said robot. We thought that would get your attention.

But we’re not there yet. (Yes, that’s a BIG hint we’ve dropped about an upcoming challenge.)

Right now, Cade and Elle need to be able to rotate a device that will perform various actions at
different positions in a room. And in order to build that controller, they’re going to need to be able to
control a servo motor. And that’s what we’ll be covering in this chapter.

Let’s Look at the Challenge 6 Gizmo
Be sure to flip back to Appendix A and verify you’ve got all the parts you’ll need for Challenge 6. You
already have some of the parts from previous challenges, so the servo motor is the big one here.

Take a look at Figure 22-1 and you’ll see what the final circuit will look like when you’re done with
Chapter 23. The servo motor is the big, dark object in the upper left. Look carefully and you’ll see
four arms that rotate.

180 CHAPTER 22: Challenge 6: Fun Stuff to Know

If you’ve got your servo motor, go ahead and pick it up and inspect it. You can rotate the shaft,
clockwise or counterclockwise—spin it as much as you like! You never want to rotate the shaft with
your hands with power applied, though. Keep that in mind after you build this circuit, okay? A servo
motor doesn’t like to be turned once it’s powered up—forcing a turn with power applied can damage
the motor.

Notice that the servo motor has a special connector for its wires. These pins can be inserted easily
enough into a breadboard, but you’re going to want to pay careful attention to how power (V+) and
ground are connected in Chapter 23. There’s only one way to connect a servo motor to power and
ground so it rotates properly.

Servo

Potentiometer

Figure 22-1.  The Challenge 6 gizmo, complete with servo motor!

181CHAPTER 22: Challenge 6: Fun Stuff to Know

ANDREW 5.0 

You probably received a small bag of parts with the servo you purchased. This bag usually contains a variety of small
plastic or metal pieces in various shapes. These are used as connecting pieces and you’ll often find them used to connect
non-electronic parts, such as legs on a robot or metal rods to open and close switches.

Don’t throw these parts away! If you’re not going to use them right away, put them away for later. You never know when
you’ll need that servo for a robot or other gizmo that requires a connector. You can always purchase the connectors
individually, but sometimes it’s difficult to get an exact match. The ones that come with the servo are the best match, so
put them somewhere safe and be sure to label them so you’ll know which servo motor they belong to. As your collection
of electronics parts grows, you may build a large servo collection of various sizes. Get in the habit of labeling parts and
putting them in small baggies or in envelopes.

You’ll also see a potentiometer in the mix of parts. You’ll use that potentiometer to control the
direction and the number of degrees the servo motor rotates. Turn it to the left and the servo motor
rotates counterclockwise. Turn it to the right, and the servo rotates clockwise. Simple!

The LED will perform a very necessary function for this challenge. Elle and Cade need to be able to
control the servo so it stops at the 30-degree position, the 60-degree position, and the 90-, 120-,
and 150-degree positions. As the servo rotates counterclockwise (starting at the 0-degree mark),
the LED will light up briefly when it’s within plus 5 degrees of these targets. That means when you
dial the servo to 30 degrees, the LED will light up when the servo is somewhere between 25 and
35 degrees.

Elle and Cade don’t need to get the servo lined up exactly at the 30-degree mark, but servos are
capable of this level of accuracy. You’ll control the level of accuracy using the sketch (program).
Humans can have a difficult time fine-tuning a servo (especially a small servo) to hit an exact point …
that’s why we’ll be lighting up the LED when you’re as close to the target as needed.

ANDREW 5.0 

Some servos can rotate in fractions of degrees, meaning they have extremely accurate rotational capabilities. This level of
control can be important when performing dangerous or sensitive duties. Think about a surgeon using a Da Vinci surgical
robot. You wouldn’t want a robot that moves its arms plus or minus 5 degrees, would you? You want that robot to perform
as accurately as possible, and this means expensive servo motors that can detect when a motor is at the exact spot the
doctor specifies.

The same goes for robots in manufacturing. Would you want to ride in a car where the robot placed a bolt or welded a bit
of metal in “roughly” the right spot or in “exactly” the right spot?

As the accuracy and control of servo motors increases, so does the price. For small servos like you need for
Challenge 6, accuracy really isn’t an issue. Just keep in mind that accuracy comes with a price, so if you ever start
building a robot or special gizmo that requires a fine level of movement and accuracy, you may have to spend a bit more
on your servo motor.

182 CHAPTER 22: Challenge 6: Fun Stuff to Know

If you look carefully at Figure 22-1, you may notice something about the power for this gizmo.
First, you’ll see the 9V battery harness that will plug into a 9V battery. But you’ll also notice that the
Arduino itself is powered by an AC adapter. Why do you need both?

A servo motor, even a small one, requires a good bit of power—and that power can’t always be
provided by a battery. In this instance, all of the power requirements for this circuit can be provided
by the AC adapter. Tinker with the gizmo for a bit and you’ll find that the 9V battery will also work
just fine. We’re giving you the option to use one or the other, but do wire the gizmo to use both just
in case the 9V battery is low on power. If the battery gets too low on power, the servo motor will
stop turning.

Ready to Build Something?
A good understanding of servo motors in Challenge 6 will pay off later in the book. Add the servo
motor to the list of parts you now have experience using, and we hope you’re starting to see just
how far you’ve come in understanding how an Arduino can control various components.

The Challenge 6 gizmo isn’t all that complicated, but once again we’ll tell you how important it is
to understand individual components by themselves before adding in more parts. Gizmos can get
complicated quickly, but once you know how individual components work alone, it’s not a big jump
to start adding more components to construct a more complex circuit.

Chapter 23 will give you the steps you need to build the Challenge 6 gizmo. Take your time, examine
the photos, read the instructions, and put it all together. Once it’s done, you’ll move on to Chapter 24
for the programming steps.

Time to build!

183

Chapter 23
Challenge 6: Examining
the Hardware

You are quickly becoming a knowledgable Arduino tinkerer! With five gizmos done and the sixth
almost complete, you should be feeling pretty good about how far you’ve come. At this point, you
should be starting to develop a methodology of your own for how you might tackle any electronics
problem that is put in front of you.

The first thing to do is identify the problem or the goal you wish to accomplish. For Challenge 6, the
goal is simply to move a set of tools mounted on a large motor from one location to another. The
tools are fixed in place, so you’ve got to rotate the tools so they go to the very specific spots where
they are needed. But that’s this challenge, and you’re likely to encounter many more as you continue
your Arduino education.

When you encounter a problem you want to tackle with an electronics solution, the second thing
to do (after identifying the goal) is to make a list of those items you think might be useful or that are
absolutely required. Let’s think back to the motion detector for a moment. Even if you didn’t know
about the PIR sensor before you encountered the need for a motion detecting gizmo, you might
be at least able to determine that you needed some sort of device to detect motion. That would
take you to an Internet search or maybe to ask someone with more knowledge about electronics.
A PIR sensor certainly isn’t the only way to detect changes in infrared radiation or motion (there
are options that involve lasers or pressure sensors, for example), but it’s definitely an inexpensive
method, and it’s simple. Always go for the least complex solution when you can. The PIR sensor is
straightforward—it sends a signal of 0 volts when all is quiet and a signal of 1 to indicate it detects
motion. Pretty easy!

Now let’s think about Challenge 6. The controls have been damaged or destroyed, and Elle and
Cade need to find a simple method for rotating a motor—specifically, a servo motor. We’ll talk about
servo motors in just a moment, but think back to all the small electronics components you’ve used
so far. Are there any that might be helpful in rotating a motor clockwise and counterclockwise until
it’s tuned to a specific location?

184 CHAPTER 23: Challenge 6: Examining the Hardware

Well, let’s take a look. How about buttons? We could use two push buttons—one to make the motor
move clockwise and another to move it counterclockwise. A single push might rotate the motor only
a tiny amount, but humans are slow compared to computers. You might think you’re pushing that
button for only half a second, but that could spin the motor dozens or hundreds of degrees in that
short time frame. One option that might be helpful is using the Serial Monitor to watch the motor’s
rotation and then use keyboard input—actually typing in the number of degrees you want the motor
to rotate. That’s a very good option, too, but it might not be the easiest solution to implement in
terms of programming. We want something a human can immediately use and get visual results—so
we can actually see the motor rotate based on a control we are using.

What about a potentiometer? It has a small dial that can be turned left or right that perfectly
designed for human fingers. What’s even better about this device is that we can use a program to
control how much a small turn of the potentiometer rotates the motor. We could easily program it so
it takes a full turn of the potentiometer to rotate the motor just a few degrees. That’s pretty accurate,
isn’t it!

There are plenty of other options, but they’re a bit out there. We could use a sound sensor and
program it to listen to the volume of a voice, but that’s not going to be very accurate. How about a
light sensor that we’d shine a flashlight on and use the brightness to move the motor? Again, pretty
difficult to fine-tune the light level (called lumens) so that it accurately controls a motor.

Nope … let’s try the potentiometer. We can rotate it left or right so we can make the motor rotate in
such a way that we can visually verify its location. It’s pretty simple to use a protractor and a piece
of paper to measure the number of degrees in a circle. We can mark out 0, 30, 60, 90, 120, 150, and
180 degrees and check to see when a spot on the motor’s arm is pointing at these specific locations.
The tools that Elle and Cade need to control only need to be within 5 degrees of the target, and a
potentiometer definitely seems like it can give us that level of accuracy. Let’s give it a try!

A Closer Look at a Servo Motor
Before we get to the actual assembly of the Challenge 6 gizmo, we really need to take a closer look
at the key element we’ll be using to test our new controls. It’s called a servo motor, and a big one
works just like a small one so we can test our controls on a small servo and feel confident that when
the controls are hooked up to a larger servo, the controls will still work.

But what is a servo motor? Well, a servo motor is a very special type of motor that provides
(in this case) a microcontroller with feedback. The microcontroller uses the feedback to dictate the
servo motor’s current location. Sometimes this is a potentiometer reporting to the microcontroller,
and other times it’s a rotary encoder. Whoa, techy word alert! Rotary encoder? Yep. Rotary sounds
like rotation, doesn’t it? So we know it has something to do with rotation. A rotory encoder is a
digital circuit (unlike a potentiometer, which is analog) that can report rotation information to a
microcontroller (the Arduino).This isn’t a simple value like 0 or 90 or 180 (degrees). It’s encoded
in a language that machines understand: 1s and 0s. So a servo motor uses rotation encoding to
report information, such as how far it’s turned or how fast it’s turning. This is stuff that might be
important to you later, but for now all you need to know is that a servo motor can be told to rotate
a specific number of degrees (clockwise or counterclockwise). With that level of control, we just
need to figure out how to use a potentiometer that, when turned, tells the motor how far to turn,
and in which direction.

185CHAPTER 23: Challenge 6: Examining the Hardware

One other bit of info about a servo motor you should know is that there are different types of servos.
The one we use for Challenge 6 has a range of 0 to 180 degrees, but there are servos that will
continuously turn for 360 degrees.

How does a servo know how far to rotate? Well, you first need to send the servo a pulse train from a
digital pin (on the Arduino) to move it to a particular position. (A pulse train is similar to a square wave
but doesn’t have a distinct pulse pattern.) The different types of servos all basically work the same,
and it’s the pulse train’s duty cycle that determines how much the servo moves. The Arduino team
created a library for servos that lets us control up to 12 servos at a time; we’ll use this library in the
next chapter. Just keep in mind that a library works like a cheat sheet, meaning the Arduino is already
designed to send the proper types of signals to servos, so all you have to do is configure the sketch for
the servo you’re using. If you change the servo, only a slight tweak in the sketch (which we’ll cover in
Chapter 24) is needed. All other things (such as using the potentiometer) stay the same and you don’t
need to modify other parts of the sketch! In short think of a servo as a dc motor with a potentiometer
attached to the DC motor that is constently telling the micro-controller the DC motors position.

ANDREW 5.0

One other bit of information your readers need to know about the servo motor has to do with its wiring. The hobby servo
motor we are going use has 3 wires, typically black for ground, red for power, and yellow, white, or orange for the pulse
or signal. The ground wire will connect to the ground pin on the Arduino; the signal wire will connect to a digital pin on the
Arduino, and the power wire will connect to an external power source. (Don’t connect a servo to the Arduino’s 5V power
supply as it is not powerful enough for a servo. Use a separate power supply for the servo(s) instead.)

Figure 23-1 shows two different sizes of servo motors. Notice that even though the size may be
different, the wiring works the same.

186 CHAPTER 23: Challenge 6: Examining the Hardware

Now we know what a servo is and how it works. This will help us create the servo controller we’ll use
to help Elle and Cade. Let’s see how to build the circuit for this challenge.

Let’s Build the Challenge 6 Gizmo
The servo for this project should have come with an arm that’s shaped like a plus sign. Attach that
arm to the servo with a screw and screw driver. Hopefully you’ve taken a good look at Appendix A
and bought all the parts you’ll need to build the Challenge 6 gizmo. You should be ready to build
now, so let’s get started.

1.	 First attach the potentiometer to the solderless bread board at F-14 through
F-16, as shown in Figure 23-2.

Servos

Figure 23-1.  A few servos motors that use the same wiring

187CHAPTER 23: Challenge 6: Examining the Hardware

2.	 Next, attach the two-position terminal block to the solderless bread board
at J-31 and J-33, making sure you have the 9V battery harness attached
to the terminal block (though you won’t be connecting a 9V battery to this
connector; you’ll be connecting 6V to the servo in the next chapter). Be sure
to know which row on the breadboard will provide power (red wire) and which
row is ground (black wire). In Figure 23-3, our red wire is on row 33 and our
black wire is on row 31.

F-16 F-15 F-14

Figure 23-2.  Attach the 10K-ohm potentiometer to the solderless bread board

J-33 J-31

Figure 23-3.  Attach the terminal block to the breadboard

3.	 Now attach the red LED to the breadboard; the positive anode (long leg)
should be connected to B-35 and the negative cathode (short leg) should be
connected to B-32. Figure 23-4 illustrates this process.

188 CHAPTER 23: Challenge 6: Examining the Hardware

B-35 B-32

Figure 23-4.  Attach the LED to the breadboard

4.	 Next, attach the 3-pin male stackable header to the servo. Simply push it on
to the end of the wire connector coming out of the servo motor. Figure 23-5
illustrates this process.

Servo Connector

Attached Male
Header

Figure 23-5.  Attach the male stackable header to the servo connector

5.	 Now connect the servo to the breadboard. Be certain the signal wire (white,
yellow, or orange) is inserted into A-52, the power wire (red) into A-51, and
the ground wire (black) into A-50. Figure 23-6 illustrates this process.

189CHAPTER 23: Challenge 6: Examining the Hardware

A-52 A-51 A-50

Figure 23-6.  Attach the servo to the breadboard

6.	 Now attach a black jumper wire from one side of the breadboard to
the ground strip on the other side, as shown in Figure 23-7. Notice that
we’ve connected both ground columns, indicated by the blue line. If your
breadboard doesn’t have the color strip, just make a note of which two
columns on your breadboard you’ve designated as ground.

Ground Strip

Figure 23-7.  Attach the ground strips to one another

190 CHAPTER 23: Challenge 6: Examining the Hardware

7.	 Connect the 9V connector to the Arduino, as shown in Figure 23-8.

9V connector for
Arduino

Figure 23-8.  Attach the 9V connector to the Arduino

8.	 Run a wire (we used black) from ground on the Arduino to the ground column
on the breadboard. Notice in Figure 23-9 that this wire is connected on the
row closest to the blue line. If your breadboard doesn’t have the blue line,
make certain this wire is on the same column as the jumper wire you ran from
one side of the breadboard to the other (to connect the ground columns).

191CHAPTER 23: Challenge 6: Examining the Hardware

9.	 Now attach the grounds of each of the components. First, use a jumper
wire to connect the potentiometer ground to the ground column of the
breadboard—just insert a wire into the ground column (closest to the blue
line) and then insert the other end of the wire into J-14. The LED ground (the
cathode) will have a wire running from the ground column (closest to blue line)
to C-32. The servo ground (black wire) will go from the ground column (closest
to blue line) to B-50. Finally, the two-position terminal block will have a wire
running from the ground column to H-31. Figure 23-10 illustrates this process.

GND

Figure 23-9.  Connect the Arduino’s ground to the ground strip on the solderless breadboard

192 CHAPTER 23: Challenge 6: Examining the Hardware

10.	 Add the 330-ohm resistor to the breadboard at C-35 and C-40, as shown in
Figure 23-11.

J-14

H-31C-32B-50

Figure 23-10.  Attach ground to all components

193CHAPTER 23: Challenge 6: Examining the Hardware

11. Next, connect the power side of the two-position terminal block (H-33) to the
servo power (B-51). We used a red wire. Figure 23-12 illustrates this process.

C-40 C-35

Figure 23-11. Attach the resistor to the solderless breadboard

194 CHAPTER 23: Challenge 6: Examining the Hardware

12.	 Connect the Arduino’s 5V power to the other side of the potentiometer by
adding a jumper wire from +5V on the Arduino to J-16. We used a red wire,
but any color is fine. Figure 23-13 illustrates this process.

B-51

H-33

Figure 23-12.  Connect power from the two-position terminal block to the servo

195CHAPTER 23: Challenge 6: Examining the Hardware

13.	 Connect analog pin 0 (A0) on the Arduino to the wiper, the middle pin of the
potentiometer, at J-15. We used a green wire here, but any color will work.
Figure 23-14 illustrates this process.

J-16

5V

Figure 23-13.  Connect the Arduino’s 5v power to the potentiometer

196 CHAPTER 23: Challenge 6: Examining the Hardware

14.	 Connect digital pin 11 (D11) on the Arduino to the signal wire of the servo
at B-52. Again, we used a green wire, but you can use any color you like.
Figure 23-15 illustrates this process.

J-15

AO

Figure 23-14.  Attach analog pin 0 from the Arduino to the potentiometer

197CHAPTER 23: Challenge 6: Examining the Hardware

15.	 Now connect digital pin 7 (D7) on the Arduino to the resistor on the
breadboard at E-40. We used a green wire once again. Figure 23-16
illustrates this process.

B-52

D11

Figure 23-15.  Attach digital pin 11 from the Arduino to the signal wire of the servo

198 CHAPTER 23: Challenge 6: Examining the Hardware

16.	 And that’s it! The Challenge 6 gizmo is completed, and Figure 23-17 shows
how the final circuit should look.

E-40

D7

Figure 23-16.  Connect digital pin 7 from the Arduino to the resistor attached to the LED

199CHAPTER 23: Challenge 6: Examining the Hardware

Wow! You just created a servo controller that will help Elle and Cade control the robotic arm. It might
look complicated, but if you take a moment and examine where all the wires go, it’ll start to make
sense. Every component must be connected to ground, so you see a lot of black wires connected to
one of the two ground columns that run parallel to the blue line on the breadboard. Try and see if you
can find all the power wires!

Don’t connect power to the Arduino or motor yet. You have to upload the sketch before you give
power to the gizmo, so be sure to follow along in Chapter 24 before attaching the 9V battery.

Figure 23-17.  The finished circuit

201

Chapter 24
Challenge 6: Examining
the Software

With the Challenge 6 gizmo, you’ve got a small controller (consisting of the Arduino and a
potentiometer) that can control the movement of a servo motor. Most 6V hobby servo motors work in
an identical manner, no matter their size, which means you can test your controller on a small servo.
Once you’ve determined that the controller works, you simply connect it to a larger servo motor (with
a larger power supply, of course).

You have the Challenge 6 gizmo built, so hopefully you have a good sense of how it’s wired up—and
that means it’s time for the sketch that will control the hardware. We’re going to walk you through the
short sketch that will let you tune the servo so it can alert you when it reaches specific locations—
30 degrees, for example.

The sketch could be enhanced by giving it the ability to save these positions and “replay” them at a
later time. But for now, what we want you to get out of this challenge is an understanding of how to
gain basic control over a servo motor.

Let’s think about what we expect from this sketch. First, we obviously need to define how all the
various connections are made to the Arduino. This means defining some variables to hold values
that correspond to the pins on the Arduino where connections are made.

We’re going to tell you something about programming libraries, and specifically about one called the
servo library, a built-in bit of programming that provides a substantial amount of control of servos—
while saving you a lot of typing. This library is like a pre-programmed set of commands that tell the
servo how to operate. And because it’s pre-programmed, your sketch is shorter in length and much
less complicated.

We also want to use the serial monitor to view the actual values (in degrees) that the servo has
rotated. (Remember, the serial monitor lets you write or read data to or from the Arduino so you can
interface with the Arduino from a computer.) If we always start at 0 degrees, it would be nice to be
able to turn the potentiometer a bit slower as we approach the first target of 30 degrees. The serial

202 CHAPTER 24: Challenge 6: Examining the Software

monitor provides visual feedback that will help you tune your controller to get it as close as possible
to the desired locations.

We’ll add a bit of code that will light up an LED when we’re close—when the servo motor is within
5 degrees of the correct angle. That means when you’re aiming for the servo to hit the 30 degree
target, the LED will light up when it points between 30 and 35 degrees. This is accurate enough for
our needs, but you may want to do some research on your own to determine methods for getting the
accuracy of the servos even closer to the actual desired target.

Don’t worry, we’ll break down the sketch a bit more in a moment and explain each part in some
detail. But before we go over the complete sketch, let’s take a quick look at the servo library.

Servo Library Explained
The servo library lets you control up to 12 servos at a time. It includes two functions you can
add to a sketch that save you from having to type up even more code: Servo.attach(pin) and
Servo.write(value). Think of a library as a collection of smaller sketches that are bundled together
and can be used in your own sketches simply by inserting their name and some other information.

ANDREW 5.0 

Libraries can be confusing, but think of it like this: Imagine if you wrote down directions to your house and saved it on
your computer as a file called DirectionsHouse.txt. When someone e-mails you and asks for directions to your house, you
could either type it all up again or simply attach the file to the e-mail. Libraries are like inserting attachments into your
sketches; they contain code that’s already been written so you don’t have to recreate it.

Now imagine a folder called DIRECTIONS that contains three files—DirectionsHouse.txt, DirectionsSchool.txt, and
DirectionsMall.txt. You could e-mail the folder to your friends and tell them which of the three documents to open
depending on where you want them to go. In a sense, these three files inside the folder are like the functions you’ll use
in your own sketch: each function does one specific task and you can choose which of the tasks to use. The folder is the
library and the three documents inside it are the functions.

There are a few more functions in the servo library but you won’t be using them for this challenge. To find out more about
these functions, visit http://arduino.cc/en/Reference/Servo.

But how do you use an Arduino library? First you need to include the library in your sketch by simply
typing #include <Servo.h> at the beginning of your sketch. Here, we’ve specified the servo library
by adding <Servo.h>, and that’s how you’d add any library that exists in the Libraries folder within
the Arduino 1.0 folder).

Next, you need to create an instance of the servo class. Think of an instance as a copy. You don’t
send your friends your original folder; instead, you create a copy (which can even have different
attributes) and send that to them. Here you are creating an instance of the servo object so you can
use it to control the servo’s attributes. For example, you control where the Arduino sees the servo
by using the function myServo.attach(int pin). The process is like naming a variable—you type the
name of the library (Servo) and then follow it with the name you wish to use (such as myServo).

http://arduino.cc/en/Reference/Servo

203CHAPTER 24: Challenge 6: Examining the Software

The following declaration is how the instance is created in our sketch: Servo myServo. This will then
be called everytime you call a servo function. Let’s say you want to call the function that powers up
the servo, which is connected to digital pin 11 on the Arduino. To do so, you’d add the attach(pin)
function like this: myServo.attach(11). Here’s what the two functions we use in the Challenge 6
sketch actually do:

	Servo.attach(int pin) tells the Arduino which pin the servo is connected to. All
you have to do is attach the servo’s signal wire to a digital pin of your choosing
and assign that pin to the argument within the parentheses. For example, if the
servo is connected to digital pin 11 of the Arduino, you’d use Servo.attach(11).

	Servo.write(int value) sends a value (in degrees) to the servo ranging from
0-180 degrees. The servo then moves to the degree specified. For example,
if you wanted to move a servo to 90 degrees, you’d use Servo.write(90).

Now that you have a basic understanding of the servo library, let’s put it to use by creating a sketch
that will control a robotic arm.

The Challenge #6 Sketch
In this challenge we’ll use the servo library you just learned about. We’ll also use the analogRead
function (as we have in previous challenges) to read a value from a potentiometer. We then have to
scale down the range of values from the potentiometer from 0-1024 to 0-180, which will give Elle
and Cade the ability to control the servo motor completely by turning the dial and rotating the servo
in 1-degree increments. Listing 24-1 is the sketch for this challenge.

Listing 24-1.  The Challenge 6 Sketch

// include the servo library
#include <Servo.h>
 
// create an instance of the servo class
Servo myservo;
 
// setup the pins for the project
int potpin = 0;
int LEDPin = 7;
int servoPin = 11;
 
// give pins an initial value
int potVal = 0;
int modVal = 0;
  
void setup()
{
 // attach the servo to digital pin 11 of the Arduino
 myservo.attach(servoPin);
 // begin Serial communication
 Serial.begin(9600);
}
  

204 CHAPTER 24: Challenge 6: Examining the Software

void loop()
{
 // read in the potentiometers value and store that value in the
 // potVal variable
 potVal = analogRead(potpin);
 // map the potVal variable between 0 and 180
 potVal = map(potVal, 0, 1023, 0, 180);
 // write potVal to the servo 0-180 degrees
 myservo.write(potVal);
 // store the remainder of potVal / 30 into modVal
 modVal = potVal % 30;
 // if modVal is less-than-or-equal-too turn LED on.
 if(modVal <= 5)
 {
 digitalWrite(LEDPin, HIGH);
 }
 // if modVal is greater-than 5 the LED will turn off.
 else
 {
 digitalWrite(LEDPin, LOW);
 }
 // print potVal to the serial monitor for debugging
 Serial.println(potVal);
 delay(15);
}

Now that you’ve seen the entire sketch, let’s break it down into smaller chunks to see what’s going on.

The first bit of code concerns the library we will be using. As you just learned, the #include
<Servo.h> line simply lets the Arduino know that the sketch will be using functions in the servo
library. In the next line of code, Servo myservo, we define the instance we want to use.

// include the servo library
#include <Servo.h>

// create an instance of the servo class
Servo myservo;

Next we initialize the various pins and variables:

// setup the pins for the project
int potpin = 0;
int LEDPin = 7;
int servoPin = 11;

// give pins an initial value
int potVal = 0;
int modVal = 0;

Instead of using the Arduino pin numbers—such as digital pin 7—we create variables to hold these
values so they can be used in our sketch. For example, here we create the variable potpin and set
it equal to 0. This declaration allows us to use potpin throughout the sketch instead of using 0.

205CHAPTER 24: Challenge 6: Examining the Software

The same goes for LEDPin except we initialize the LEDPin variable to digital pin 7, and servoPin is
initialized to pin 11. Now we can use LEDPin instead of 7. The next part initializes potVal and modVal
to 0; which means we are storing 0 in the modVal and potVal variables.

The next bit of code is the setup structure for the sketch:

void setup()
{
 // attach the servo to digital pin 11 of the Arduino
 myservo.attach(servoPin);
 // begin Serial communication
 Serial.begin(9600);
}
  
Here we simply tell the Arduino to expect to find a servo at digital pin 11. We’ve used the myservo.
attach function as described earlier, but we’ve also specified that we’ll be using the serial monitor to
view feedback from the gizmo.

And now comes the main portion of the sketch—the loop structure. We’ll break this into a few
pieces; here’s the first:

void loop()
{
 // read in the potentiometer's value and store that value in the
 // potVal variable
 potVal = analogRead(potpin);
 // map the potVal variable between 0 and 180
 potVal = map(potVal, 0, 1023, 0, 180);
 // write potVal to the servo 0-180 degrees
 myservo.write(potVal);
 // store the remainder of potVal / 30 into modVal
 modVal = potVal % 30;

When the sketch is executed, the position of the potentiometer is initially set to 0 (using the potpin
variable). But when power is supplied to the gizmo, the potentiometer may not necessarily be dialed
in to the 0-degree position. Don’t worry about that—the sketch’s analogRead function will determine
the position of the potentiometer and the servo will rotate quickly to match its location. This is okay,
because you’re going to use the potentiometer to move the servo back to the 0 position if it doesn’t
start there initially.

Note  You can download a small gauge at http://arduinoadventurer.com that you can use to see
where the 0, 30, 60, 90, 120, 150, and 180 degree positions are located. Attach a small piece of tape or put a
drop of nail polish on the arm of the servo that points to the 0 degree position.

Next, we scale potVal from 0 to 180 degrees using the map function we used in previous challenges. The
potentiometer actually returns values from 0 to 1023, but we don’t need that wide a range. We need 0 to
180, so we use the map function to force the 0–1023 range to squeeze down and become 0–180.

http://arduinoadventures.com

206 CHAPTER 24: Challenge 6: Examining the Software

Remember that the loop portion of the sketch just keeps repeating and repeating until you kill the
power to the Arduino or hit the reset button. Because it keeps looping, it’s always checking the
position of the potentiometer. When you first turn the gizmo on, that position is set to 0 (potpin = 0)
and the servo won’t turn until you turn the potentiometer.

Once you start turning the potentiometer, its position is stored in the potVal variable. The turning of
the servo occurs because the write function is called and is given the value stored in potVal. The
line of code is myservo.write(potVal). This write function is what actually rotates the servo.

Remember that we want the servo to point at specific locations (such as 60 degrees), so we’ve created
a variable called modVal. The modVal variable is named after the modulo symbol (%); this symbol is
actually a very usful tool in programming because it returns the remainder of one variable divided by
a second variable. Our sketch uses the line modVal = potVal % 30. This means take whatever value is
stored in potVal and divide by 30 and then store the remainder in the modVal variable.

Suppose we’ve rotated the potentiometer so that the servo is pointing at the 98 degree mark. This
line of code will divide 98 by 30, giving us remainder of 8 (98 divided by 30 = 3 remainder 8). The
value of modVal will equal 8 in this instance, and that remainder value will help us fine-tune the
servo’s rotations. Here’s the code that shows you how that is done:

 // if modVal is less-than-or-equal-too turn LED on.
 if(modVal <= 5)
 {
 digitalWrite(LEDPin, HIGH);
 }
 // if modVal is greater-than 5 the LED will turn off.
 else
 {
 digitalWrite(LEDPin, LOW);
 }
 // print potVal to the serial monitor for debugging
 Serial.println(potVal);
 delay(15);
}

It’s an If-Else statement just as you’ve used in previous challenges. If the value stored in the modVal
variable is less than or equal to 5, we’re right where we want to be. Remember, when we want the
servo to be pointing at 30 degrees, we’ll take anything between 30 and 35. So if the servo is pointing
at 34 degrees, the modVal will be holding a value of 4 (34 divided by 30 equals 1 remainder 4). This
value is less than or equal to 5, so the line digitalWrite(LEDPin, HIGH) is executed, turning on the
LED and letting us know we’ve hit our target.

What happens if we dial in the servo so it’s pointing at the 29-degree position? Well, 29 divided by
30 is 0 remainder 29, and 29 is greater than 5. When this happens, the Else portion of the sketch is
executed—digitalWrite(LEDPin, LOW) keeps the LED turned off, alerting us to the fact we need to
tweak the potentiometer a bit and get it closer to 30-35 degree range. (And the same pattern follows
for the 60, 90, 120, 150, and 180 locations.)

207CHAPTER 24: Challenge 6: Examining the Software

Finally, we send the value stored in the potVal variable to the serial monitor so we can see the
actual servo location on the computer screen. A delay(15) means there is a slight pause (only 15
milliseconds) before the sketch loops again and takes a reading of the potentiometer’s position. This
delay is used just to free up some processing time so that the mircocontroller has time to do other
things (such as reading data from sensors, or writing to the serial monitor).

Solve Challenge #6
Ok let’s use this gizmo! First upload Listing 24-1 to your Arduino, then attach a 9V battery to the
Arduino and a 6V battery holder to the other power connector, as shown in Figure 24-1. After you
have attached both of the battery packs to the Arduino and servo power source, your project
should start right up. Turn the potentiometer all the way to the right; the servo should move
unless the potentiometer is already at the rightmost position. Now all you need to do is turn the
potentiometer to each of the following values (all of the values have a tolerance of 5 degrees)
0,30,60,90,120,150,180. At each of these values the LED should light up. If you are having problems
targeting the specified angles, you can use the serial monitor to track your servo’s location.
Figure 24-2 illustrates this process. Figure 24-3 shows the finished challenge.

Figure 24-1.  9V connector connected to servo power

208 CHAPTER 24: Challenge 6: Examining the Software

Figure 24-2.  The serial monitor is used in this challenge to debug the servo’s position

209CHAPTER 24: Challenge 6: Examining the Software

Congratulations! Now you’ve got a controller that will help Cade and Elle dial in the tool robot so it
can perform its duties at the 30, 60, 90, 120, 150, and 180 positions. And now that they’ve got the
power restored to the shuttle bay, they’re one step closer to getting off the station.

Figure 24-3.  The finished gizmo for Challenge #6

211

Chapter 25
Push the Button

Elle and Cade had watched in amazement as the tools whirled from station to station inside the
small transparent room, re-engaging the various power connections and safety switches that had
been disabled. Their small controller unit had managed to successfully rotate the large servo motor
at the base of the tool station in thirty-degree increments. It was a high-five moment, and Cade
slapped Elle’s hand as the final switch was thrown.

“Power has been successfully restored to the station,” said Andrew. “Nice work.”

“Thanks,” Cade and Elle replied together.

“It’s time to get to the shuttle,” Andrew added. “I’m detecting Mr. Canvin on Level 3, and I believe he’s
moving to Level 4 now. You need to hurry. I’ll instruct you on the shuttle’s controls as you walk. Just
follow the emergency arrows on the walls; I’ve set them to lead you to the shuttle bay on Level 11.”

Backup Plan
“Do we need our supplies?” asked Cade, nodding at the two toolboxes and the laptop bag.

“Take them,” replied Andrew. “Just in case.”

Elle nodded. “Might as well be prepared, right?”

“Let’s go,” said Cade, heading to the opposite side of the engineering room where a large red arrow
was flashing at the door.

Elle slung the laptop bag over her shoulder and picked up her toolbox. “Andrew, when we leave in
the shuttle, what will happen to Gunther?”

“Once you are safely away, I’ll tell him where to go to find an environmental suit that will provide
oxygen and heat. The suit should give him enough time before an emergency team arrives.”

“But what if they’re late? Or what if they have trouble reaching him in time?” asked Elle, following
Cade out the door and into another hallway.

“There’s a risk he’ll run out of oxygen. He won’t be able to change suits quickly enough, but I’ll do
my best to assist him in moving to the safest parts of the station. It’s the best I can do, Elle.”

212 CHAPTER 25: Push the Button

Elle shook her head. “I don’t like it. Maybe we should just tell him we’re on the shuttle and give him
some time to get there and leave with us.”

“Too dangerous, Elle,” said Andrew. “I don’t know Mr. Canvin’s intentions, but he’s here without
permission and he is currently in possession of some valuable antique equipment. I would not trust
him with your safety.”

“Well, something’s got to be done, Andrew. I don’t want him running out of oxygen or freezing to
death,” replied Elle.

“Elle, I understand your hesitation, but….,”

Elle interrupted Andrew. “I’m not leaving him in the same situation Cade and I would be in if he were
to leave in the shuttle, Andrew. End of discussion.”

Control Center
Cade had only been listening in on the conversation, but his friend was right. He didn’t like the idea
of leaving anyone in a life-threatening situation either, even the thief. He stopped and turned to face
Elle. “Maybe we don’t have to leave him in danger.”

Elle gave Cade a confused look. “We take him with us, right?”

Cade shook his head. “No way. I agree with Andrew there… I don’t trust this guy at all.”

“So what do we do?” asked Elle.

“Andrew, can we turn life support back on? Is it possible?”

There was a slight pause before Andrew responded. “Yes, it is possible, Cade. But it would
require the two of you going to the Control Center on Level 12. And Mr. Canvin is quickly making
his way up the levels. I don’t think there’s enough time.”

“Well, if he gets off the station before us, we’ll at least have life support,” said Elle.

“But the station is still dangerous, Elle. There are small fires and I can’t predict further damage to the
station that might impact life support. A breach in the hull could cause a vacuum and loss of oxygen.
There might be another…”

“We’re going to the Control Center, Andrew. Right?” said Elle, looking at Cade.

Cade grinned. “Sounds like a plan.”

Crazy Plan
Cade sighed and leaned against a control panel in the Control Center. “This is crazy. You’re telling
me we can re-enable life support, but when we do, Gunther will be notified and know that someone
else is on the station?”

“That is correct, Cade,” replied Andrew. “A station-wide message will be broadcast over all the
communication channels. Mr. Canvin is smart enough to know what he did in the Control Center and
that it can only be overridden by a human user.”

“So we enable it and get to the shuttle as fast as we can,” said Elle. “Where is he right now?”

213CHAPTER 25: Push the Button

“He just triggered one of your motion sensors on Level 6.”

“So he’s got five levels to get to the shuttle and we have one level to deal with. I think we win,
Andrew,” said Cade.”

“Yes, but you’re going to need time to prep the shuttle for launch. What happens if you encounter a
problem along the way or on the shuttle? He could still reach the shuttle before you can launch.”

“This is so frustrating,” said Elle. “Can’t you do something to slow him down? Maybe close some
doors on him?”

“That is actually not a bad idea,” replied Andrew. “You can access the shuttle bay directly from the
Control Center using the dedicated emergency tube located in the far corner of the room.”

Elle and Cade both turned to stare into the emergency tube behind them. A single ladder was visible,
running from the ceiling and down into the opening in the floor.

“So, go ahead and do it,” said Cade. “Lock him in.”

“It requires pressing a manual override button on the station to your left, Cade,” said Andrew. “But
the override will lock down all doors, including the door to the emergency tube. It’ll close and lock in
less than one second.”

“So we can lock all the doors, but we’ll also be locked in the Control Center?” asked Elle.

“Yes,” said Andrew.

“You’re right, Cade. This is crazy,” said Elle. “We’ve come this far, this close to the shuttle, and our
only solution is to trap ourselves?”

Cade pulled on Elle’s arm. “Come on, Elle. You get to the shuttle. I’ll stay and deal with the override.”

Elle pulled away. “No way! You go… I’ll stay.”

“Elle, come on! I’ll be okay. You get out of here and let the rescue team know I’m locked in here.”

“And what happens if Gunther finds a way to override the door locks and finds his shuttle missing?
He might not be too happy with anyone he finds left on the station.”

“Well, one of us has to stay behind and one has to go. Unless you’ve got some psychic powers and
can press the button with your mind,” said Cade with a smirk. “You want to flip a coin?”

“Do you have one?”asked Elle.

“We’ll spin a battery,” said Cade. “We’ve got plenty of those. The battery will point to the person who
stays, deal?”

Elle thought for a moment. “Okay, deal.”

Cade began digging through his toolbox for a battery.

“Elle and Cade, I have a solution,” said Andrew. “But you’ve got to hurry. See the flashlight mounted
to the side of the control panel? Take it and make certain it works.”

214 CHAPTER 25: Push the Button

The Flashlight
Cade picked up the flashlight stuck to the side of the panel and slid the power button. The flashlight
turned on instantly. “Works!”

Elle smiled. “Okay. We have a working flashlight. How does that help us?”

“I’m going to have you assemble a small device that will push the button for you.”

Cade grinned. “Nice! We can program it to wait a few seconds to let us get into the emergency
tube!”

Elle smiled back at her friend. “It’s not that far… maybe a 10- or 20-second delay?”

“A time delay is too risky,” said Andrew. “If there’s an error in your program related to the time delay,
the locks could engage before you have time to get in the tube.”

“So, no timer,” said Cade. “What do we use to trigger the button press?”

“A simple photoresistor should work,” replied Andrew. “Elle, please get your laptop open and ready
for the program I’ll give you. Cade, please open your toolboxes and retrieve the following parts…”

Andrew began reciting a small list of parts that Cade was able to locate quickly. Meanwhile, Elle
opened the laptop and waited for Andrew to finish instructing Cade in the hardware assembly.

Cade looked over at Elle with a smile. “I’d sure like to see Gunther’s face when the doors lock.”

“Me, too,” said Elle. “But I’d much rather see the inside of that shuttle.”

Cade nodded. “Yeah, you’re right. Okay, Andrew… what do I do?”

215

Chapter 26
Challenge 7: Fun Stuff
to Know

You’re probably quite familiar with the concept of remote control. Anyone who has ever pointed
a remote control at a television to change the channel knows the benefits of not having to get up off
the couch! Some of you might have used a remote control device to steer a small car around a room,
and maybe you’ve even had the good fortune to pilot a small plane or helicopter using a handheld
controller. These are examples of performing a task on an object without actually having to touch
that object.

Well, Cade and Elle have found themselves in a not-so-fun situation that also involves needing to
perform a task remotely. In order for them to get to the emergency tube safely so they can finally
make their way to the shuttle bay, they need to push a certain button that will close and lock all the
doors. The only problem is that the doors will close so fast they won’t have time to get into the tube!
That’s why they want to build a gizmo that can press that button for them.

The Arduino by itself can do many things, but you’ll see its true power when you begin attaching
additional components to it, such as motors and buzzers and even more complex electronics. For
this challenge, we could add a simple motor and then program the Arduino to count to 10 or 20
before triggering the motor. On the axle of the motor we’d glue or tape a popsicle stick that would
substitute for a finger. Place the motor properly, run the program, and 10 or 20 seconds later the
motor would spin and the “finger” would press the button.

The motor plus popsicle stick approach is a decent solution, but there are some drawbacks. What if
Cade or Elle were running for the door and tripped? If the timer ran out, the door might close on one
of them before they could stand and run the remaining distance. And what if they needed the door
to close as soon as they entered the emergency tube? What if there was a danger that might reach
them before the timer ran out?

What we can do here is add an extra component that will allow Elle and Cade to decide when to
trigger the motor. A sound sensor could work, but any loud noise (such a Cade dropping his toolbox)
might trigger the motor too soon.

216 CHAPTER 26: Challenge 7: Fun Stuff to Know

What about some sort of light sensor? Could we use a special sensor that detects when light is
being shone on it and then detects when that light is turned off? Or maybe vice versa? The sensor
might detect the normal level of lighting in a room and then trigger the motor when the light gets
brighter—maybe when you shine a flashlight on it?

That might work! And that’s exactly what we’re going to test with Challenge 7.

Yes, by giving Cade and Elle a gizmo that will press the button only when a special sensor triggers
the motor, we can give them the time to make it across the room safely and into the emergency tube
before locking down the station.

Let’s take a look at what will be involved in building this gizmo. And you’ll build it in Chapter 27 and
program it in Chapter 28.

Let’s Look at the Challenge 7 Gizmo
You’ll want to turn to Appendix A and make certain you’ve collected all the parts you’ll need to build
the Challenge 7 gizmo. In the list of parts for Challenge 7, you’ll see one new component called a
photoresistor. This is just fancy-speak for a sensor that can detect light.

Figure 26-1 shows the photoresistor as well as the remaining components, all assembled into the
Challenge 7 gizmo.

Figure 26-1.  The Challenge 7 gizmo—the photoresistor is sticking up on two legs near the top of the breadboard

217CHAPTER 26: Challenge 7: Fun Stuff to Know

In addition to the photoresistor, you’ll also be adding a servo motor. Why a servo motor and not a
regular motor? Well, remember that with a servo motor you can control the rotation of the motor,
giving it a specific number of degrees to rotate. This will be extremely helpful when testing the motor
to simulate the motion of a finger pressing a button. We could probably use a standard DC motor,
but there might be a concern about the motor turning too far too fast. Still, feel free to substitute
a DC motor if you like, but it will require some additional testing as well as a modification to the
hardware and software you’ll see in Chapters 27 and 28.

The circuit shown in Figure 26-1 looks pretty simple, doesn’t it? A motor, a terminal block, the
photoresistor, an Arduino Uno, and a solderless breadboard, plus a bunch of jumper wire. You’re
already familiar with all of these items except the photoresistor, so let’s examine it for just a moment.

Go ahead and pick up your photoresistor and take a close look. The first thing you’re likely to notice
is that it looks similar to a standard resistor with its two legs. It has the word “resistor” in its name,
so you may be wondering if it works like a basic resistor.

It does behave in a similar manner to a standard resistor in that it resists the flow of electrons.
The photoresistor is a high-resistance device when it is dark, but as light is introdueced to the
photoresistor the resistance drops so that more voltage can be detected (by the Arduino or other
micro-controller). It’s a cool little device that can be inserted into gizmos in such a way that current is
reduced until a specific level of light is detected on its surface!

Your readers might want more detailed information on a photoresistor. Be sure to point them to LadyAda’s tutorials over at
http://learn.adafruit.com/photocells.

Along the left side of the screen are a number of links that explain how to use photoresistors as well as some additional
projects that can be assembled using them. (LadyAda refers to photoresistors as photocells, but both terms refer to the
same type of component.)

By the way, Limor Fried (LadyAda) is one of the owners of AdaFruit Industries. Her web site, adafruit.com, is a great
source of information and special projects for electronics beginners. Be sure to check out the web site and click on the
Tutorials option to view over 100 different projects explained in great detail. Many of these are perfect for your readers
because they teach even more beginning Arduino skills.

ANDREW 5.0

If we know how the photoresistor works, can we come up with a way to use it in a gizmo to trigger a
servo motor? Sure!

Think about it. The Arduino will detect more voltage as light is applied to the photoresistor. We can
wire up a gizmo that will power a motor—but only let the motor spin when the Arduino detects a
certain voltage level. One option would be to connect the photoresistor to a pin (analog input) on
the Arduino and have the Arduino test to see how much voltage is detected on the analog input.
If it doesn’t detect enough voltage, the program on the Arduino wouldn’t trigger the servo motor.
But if enough voltage is detected (meaning the photoresistor detects light), the Arduino will trigger
the servo motor to rotate!

Easy!

http://learn.adafruit.com/photocells

218 CHAPTER 26: Challenge 7: Fun Stuff to Know

ANDREW 5.0

You could create two variations of this gizmo, if you think about it for a moment. For example:

The first variation would power up the gizmo and wait for the photoresistor to detect a flashlight being shone on its
surface. If this happens, the servo motors spins.

The second variation would power up the gizmo while shining the flashlight on the photoresistor surface. For this
approach to work, you’d have to design the circuit so the motor spins only when the light is turned off. When that
happens, the Arduino detects a drop in voltage on the analog input pin it’s monitoring (that’s connected to the
photoresistor), and triggers the motor to rotate.

Which do you think is a better option?

As Andrew just explained, we can build this gizmo using two different methods. We can either build
it so that once Elle and Cade are in the emergency tube they shine a light on the photoresistor or we
can build it so they are shining a light on the photoresistor as they walk to the emergency tube and
then turn it off once they are inside.

The first option seems like the safest bet – it allows Elle and Cade to enter the emergency tube and
then, once they’re ready, turn on a flashlight and hit the photoresistor with the beam.

The second option would work, but there’s a risk—what if Cade or Elle accidentally gets bumped
and the flashlight’s beam moves off the photoresistor? That would trigger the motor too early,
wouldn’t it? And then there’s the issue of what happens if the batteries in the flashlight choose the
wrong moment to die.

Yep… we agree with you. Let’s go with the first option and let Cade and Elle get into the emergency
tube before they trigger the photoresistor with the flashlight.

Ready to Build Something?
We’re hoping you’re starting to come up with some ideas for your own gizmos. You’ve got quite
a collection of components in your toolbox now, and you’ve also learned how to integrate them into
a circuit with an Arduino.

Resistors, servo and DC motors, LEDs, buzzers, potentiometers, push buttons, a temperature
sensor, and now a photoresistor… you’ve got enough components to build some really cool things!
Hey, you might even have enough parts and knowledge to build something that could operate all on
its own, impress your family and friends, and be a great example of just how far you’ve come with
your Arduino skills! But what might that final gizmo be?

Well, let’s get through Challenge 7 first. Once Cade and Elle are in the shuttle bay, all that remains is
getting them on the shuttle and off the station. And to do that, they need to trap Gunther Canvin and
turn the station’s life support back on. So, let’s help them out by building the Challenge 7 gizmo so
we can press that button and lock down the doors of the station.

Time to build!

219

Chapter 27
Challenge 7: Examining
the Hardware

Well, it’s time to tackle another challenge. Can you think back to when you began reading this book
and remember how you felt about the eight challenges in front of you? Were you nervous? Did you
think the Arduino was going to be just too complicated for you to figure out? Or were you excited
and eager to get moving?

However you felt about the experience that faced you, we’d like you to know just how impressed
we are that you’ve made it this far! You’ve learned a lot, and you’ve still got to finish building and
programming the Challenge 7 gizmo as well as the ultra-cool and impressive Challenge 8 we’re so
anxious to introduce to you.

We’ve talked previously about how to tackle problems … how to look at both the hardware and
software requirements. We hope you’re starting to develop your own methodology for examining
a problem and thinking over just what will be involved in solving it. Don’t doubt yourself—if you’ve
made it this far, you’ve absorbed a lot of techniques and knowledge that can be applied to gizmos
you’ll be building on your own … and soon!

But let’s talk about that Arduino and the electronics information you’ve got stored in your head.
Are you worried that you might forget some of it? Well, we forget bits and pieces all the time!
It happens. But we have some very good news for you.

In school, you’re often given tests where you have to memorize large amounts of information.
(What year was the Magna Carta signed? What are the three types of Greek columns? Argh.) If your
teachers are anything like ours, they don’t often let you take open-book tests. We had to memorize,
memorize, memorize. But when it comes to electronics and Arduino information, we encourage you
to always use any book you can get your hands on. As a matter of fact, we have our own libraries
of books we reference all the time. James has a couple dozen electronics books and Harold has
even more!

220 CHAPTER 27: Challenge 7: Examining the Hardware

I guess what we’re trying to say is that whenever you need a piece of information, you just need to
know where to go to find it. The Internet is a great resource. Open up a Google search page and
type in your question and you’re likely to get dozens of possibilities to check out. And, of course,
there are some great Arduino discussion forums where beginners can search for solutions and,
if they don’t find one, post a question for others to answer.

The same goes for books. We’ll be providing you with a list of some great Arduino and electronics
books on the book’s website – arduinoadventurer.com (as well as some web sites). Often, all you
have to do is flip to the index of a book to find the page number that has your answer!

And here’s some advice we’ve heard our entire lives and you probably have as well—don’t reinvent
the wheel. If you need to figure out how to wire up a simple buzzer, take a look out there to see
what others have done and how they’ve implemented their own circuits. You’ll likely find numerous
variations, but one of them might be exactly what you’re looking for because it uses the same
components you’ve got in your components collection.

And speaking of your collection … you’re about to add a brand-new component to it—the
photoresistor. The photoresistor has some really cool applications, and you’re about to build a gizmo
that is a perfect example of how it can be used.

Right now, Cade and Elle need to get into the emergency tube before the station’s doors are
closed and locked. To do this, they’ll be using a gizmo that will press a button when one of them
triggers it. And they’ll trigger the gizmo with a simple flashlight! Let’s take a look at the gizmo that
will allow Cade and Elle to trigger the button remotely and let them get to the shuttle bay without
getting trapped.

A Closer Look at a Photoresistor
We explained in Chapter 26 that the photoresistor works by allowing more current to flow through
it when a sufficient level of light is detected on the surface. Take a look at your photoresistor. See
those squiggly lines on its surface? Those lines are photosensitive (they react to light). As light hits
the surface, the lines react and allow more current to flow (triggering an increase in voltage).

The way we use a photoresistor with the Arduino is by connecting it to one of the Arduino’s analog
input pins. The analog pin can’t detect resistance, but it can be configured to detect voltage.
That’s what we want! Photoresistors are photoconductive. This means that a photoresistor will
become more electrically conductive as more light is applied to it. So when we apply light to our
photoresistor, we are allowing more current through the photoresistor. In turn that greater current
results in more voltage across the 10K Ohm resistor, which is read by the analog pin of the Arduino.
In the sketch we can add a bit of code that basically says “Did the voltage go up to a certain level?
Yes? Then execute the code that controls the servo motor!”

Take a look at Figure 27-1. This photoresistor should look like the one you’re holding. It’s got two
legs (like a standard resistor) but it doesn’t matter how you insert it into the breadboard. Unlike an
LED (with a short and long leg), you can insert the photoresistor without worrying which metal leg is
connected to ground and which is connected to an analog pin on the Arduino.

221CHAPTER 27: Challenge 7: Examining the Hardware

The rest of the components you’re already familiar with—servo motor, two-position terminal block,
jumper wires, resistor, 9V battery connector, and Arduino. All that’s needed to get this gizmo built is
to follow the instructions below, so let’s get started!

Let’s Build the Challenge 7 Gizmo
Once again, be sure to check Appendix A to make certain you’ve got all the parts you need to build
this gizmo. Once you’re satisified you’ve got them all assembled, you’re ready to go!

1.	 First attach the photoresistor to the solderless breadboard at positions J-25
and J-28. Figure 27-2 illustrates this process.

Photoresistor

Figure 27-1.  The photoresistor used in the Challenge 7 gizmo

J-25 J-28

Figure 27-2.  Attach photoresistor to solderless bread board

2.	 Next, attach the 3-pin male stackable header to the servo. Figure 27-3
illustrates this process.

222 CHAPTER 27: Challenge 7: Examining the Hardware

3.	 Now connect the servo to the breadboard at positions J-12 through J-14, where
J-12 is the ground (black wire) of the servo. Figure 27-4 illustrates this process.

Servo
Connector

Male Header

Figure 27-3.  Attach the 3-pin stackable header to the servo

J-12 J-13 J-14

Figure 27-4.  Attach the servo to the breadboard

4.	 Now insert the wires of the battery connector into the two-position terminal
block. (Take a look at Figure 27-6 to see how we did it.) Also, make certain
to connect the jumper wires for +6V to the row that matches the red wire,
and the jumper wires for ground to the row that matches the black wire.
Figure 27-5 illustrates this process.

223CHAPTER 27: Challenge 7: Examining the Hardware

5.	 Push the two-position terminal block into the breadboard. Power (red wire)
should be connected to A-5 and ground (black wire) should be connected
to A-7. Figure 27-6 illustrates this process.

9V Connector

2-position
terminal block

Figure 27-5.  Attach the battery connect to the two-position terminal block

A-5 A-7

Figure 27-6.  Attach the two-position terminal block to the breadboard

224 CHAPTER 27: Challenge 7: Examining the Hardware

6.	 Now run a jumper wire from the +5V pin on the Arduino to I-25 of the
breadboard. (We used a red wire, but any color will work.) Figure 27-7
illustrates this process.

I-25

5V

Figure 27-7.  Connect 5V power from the Arduino to the photoresistor

7.	 Add in a 10K (10,000-ohm) resistor from I-28 to I-34 of the breadboard.
Figure 27-8 illustrates this process.

225CHAPTER 27: Challenge 7: Examining the Hardware

8. Run a jumper wire (we used black) from a GND pin on the Arduino to the
ground rail (the column running parallel to the blue line) of the breadboard.
Figure 27-9 illustrates this process.

I-28 I-34

Figure 27-8. Attach the 10K-ohm resistor to the breadboard

226 CHAPTER 27: Challenge 7: Examining the Hardware

9.	 Connect the two ground columns (running parallel to the blue lines on either
side of the breadboard) using a jumper wire (we used black). Figure 27-10
illustrates this process.

Ground Strip

GND

Figure 27-9.  Attach ground from the Arduino to the ground rail on the breadboard

227CHAPTER 27: Challenge 7: Examining the Hardware

Connect Ground
Strips

Figure 27-10.  Attach the ground rails of the breadboard to one another

10.	 Run a jumper wire (we used black) from the ground rail of the breadboard
to D-7. Run another jumper wire (black) from the other ground rail of the
breadboard to J-34. Another jumper wire (black) needs to connect I-12 to the
ground rail of the breadboard. Figure 27-11 illustrates this process.

228 CHAPTER 27: Challenge 7: Examining the Hardware

11.	 Next, run a jumper wire (we used red) from D-5 of the breadboard to F-13.
Figure 27-12 illustrates this process.

I-12 J-34

D-7

Figure 27-11.  Attach ground to the servo, two-position terminal block, and the 10K-ohm resistor

229CHAPTER 27: Challenge 7: Examining the Hardware

12.	 Run a jumper wire (we used green) from analog pin 0 (A0) on the Arduino to
H-28 on the breadboard. Figure 27-13 illustrates this process.

D-5

F-13

Figure 27-12.  Attach the power side of the battery connector to the power of the servo

230 CHAPTER 27: Challenge 7: Examining the Hardware

13.	 Use another jumper wire (we used green) to connect digital pin 3 (D3) on the
Arduino to G-14 of the breadboard. Figure 27-14 illustrates this process.

H-28

AO

Figure 27-13.  Connect analog pin 0 of the Arduino to the photoresistor

231CHAPTER 27: Challenge 7: Examining the Hardware

14.	 Figure 27-15 shows the final gizmo (minus the battery power or USB cable
being connected).

D3

G-14

Figure 27-14.  Connect digital pin 3 of the Arduino to the servo’s signal pin

f

232 CHAPTER 27: Challenge 7: Examining the Hardware

Done!

Let’s take a quick look. We’ll add in a 6V battery pack after the program that powers the servo motor
is uploaded to the Arduino. When theArduino detects a certain level of voltage from the photoresistor
it will trigger the motor to rotate a certain number of degrees. Look carefully at your circuit and
notice how the photoresistor is wired in—it basically connects with two pins on the Arduino. One pin
is is attached to an analog input pin of the arduino so that the Arduino can detect the photoresisters
voltage level and the other is connected to ground. If a bright-enough light hits the photoresistor, an
increase in voltage will flow in the loop and voltage will be detected on A0 on the Arduino!

But the gizmo won’t work yet! As you already know, the hardware is only half of the solution. We still
need to take a look at the sketch that will make this gizmo work. So, let’s move on to Chapter 28 and
learn how the sketch will help Cade and Elle trigger the servo motor so that Gunther Canvin can be
safely trapped on the station while they make their getaway!

Figure 27-15.  The final Challenge 7 gizmo!

233

Chapter 28
Challenge 7: Examining Software

We’ve now reached the programming portion of Challenge #7. You’re going to need to upload
a sketch to your gizmo to help Elle and Cade turn life support back on for Gemini Station and
close and lock the doors on the station to trap Mr. Canvin. You’ll recognize one key component
in this gizmo already—the servo motor. And since you’re already familiar with how to program it
(including using the Servo Library from Chapter 24), there’s only one new piece of hardware you’re
going to need to learn to integrate into the sketch—the photoresistor.

We will be using the photoresistor just as we used the potentiometer in previous challenges; we’ll
use the analogRead function to read in the value that the photoresistor is detecting or “sensing.”
With no functions or libraries to explain in this chapter, let’s get straight to the sketch we need for
the Challenge #7 gizmo.

The Challenge #7 Sketch
We’ll be using analogRead for the photoresistor and the Servo Library for the servo that will press
the button to turn life support back on in Gemini Station and close and lock all the doors on the
station. Listing 28-1 shows the sketch for Challenge #7. You can either copy and paste this code
into the Arduino IDE or you can type it in yourself. We’ll also break it down into smaller sections for
discussion.

Listing 28-1.  Controlling a Servo with Light

// include the servo library so this sketch can use it
#include <Servo.h>
 
// create an instance of the servo type
Servo myServo;
 
// initialize the photoresistor pin
int photoPin = 0;
int servoPin = 3;
 

234 CHAPTER 28: Challenge 7: Examining Software

// create a variable to store the photoresistors value
int photoVal = 0;
int lightLimit = 900;
 
void setup()
{
 // attach the servo to digital pin 3 of the Arduino
 myServo.attach(servoPin);
  
 // begin serial communication
 Serial.begin(9600);
  
 // set the servo to the 0 degree position
 myServo.write(0);
}
 
void loop()
{
 // set photoVal to the reading on analog pin 0
 photoVal = analogRead(photoPin);
  
 // if the photoresistor reads a value of 900 or higher
 // set the servo to 0 degree position
 // wait for a second, then set the
 // servo to 70 degrees, then wait half a second and return
 // the servo back to the 0 degree position
 if (photoVal >= lightLimit)
 {
 myServo.write(0);
 delay(1000);
 myServo.write(70);
 delay(500);
 myServo.write(0);
 delay(500);
 }
 else
 {
 // do nothing or add your own code here
 }
 // write the photoVal to the serial port for debugging purposes
 Serial.println(photoVal);
  
 delay(500);
}

The sketch starts off by including the servo library:

#include <Servo.h>

235CHAPTER 28: Challenge 7: Examining Software

The #include<servo.h> command lets us use the Servo Library for the entire sketch, but first we
need to create an instance of the Servo class, which is exactly what this next line does:

Servo myServo;

That’s just what you did for the Challenge #6 gizmo—remember? By creating an instance of the
Servo class, you can now use the Servo Library.

Next, we’ll create a few variables. The first variable defines where the photoresistor is connected.
This variable is called photoPin and is set to 0 because the photoresistor is connected to analog
pin 0 of the Arduino. The next variable, servoPin, defines the servo pin location at 3. The variable
photoVal comes next and it’s also initialized to 0; this variable will be used later in the sketch to store
the value the photoresistor senses. Finally, the very important lightLimit variable stores the value
that controls the If-Else statement that’s used later. Here’s the code that relates to the variables:

// initialize the photoresistor pin
int photoPin = 0;
int servoPin = 3;

// create a variable to store the photoresistors value
int photoVal = 0;
int lightLimit = 900;

Now it’s time for the setup structure. First we attach the servo to digital pin 3 of the Arduino:

void setup()
{
 // attach the servo to digital pin 3 of the Arduino
 myServo.attach(servoPin);

Then we start serial communication:

 // begin serial communication
 Serial.begin(9600);

To finish, we set the initial position of the servo to 0 degrees and end the setup section with a
closing } bracket:

 // set the servo to the 0 degree position
 myServo.write(0);
}

The next part of the sketch starts the loop structure where the real action takes place. We create the
loop and set photoVal to the reading on analog pin 0 of the Arduino:

void loop()
{
 // set photoVal to the reading on analog pin 0
 photoVal = analogRead(photoPin);

236 CHAPTER 28: Challenge 7: Examining Software

In case you’re wondering, the photoVal variable is simply going to hold a voltage reading taken from
the photoresistor. That’s done using the analogRead command that corresponds to the pin number
stored in the photoPin variable (analog pin 0).

Next comes a conditional If-Else statement. With this statement, if the photoresistor has a value
greater than or equal to 900 (the lightLimit variable), the servo will move from the 0-degree position
to the 70-degree position, then back to the 0-degree position. How do we set the position of the
servo? By using few well-placed statements:

// if the photoresistor reads a value of 900 or higher
// set the servo to 0-degree position
// wait for a second, then set the
// servo to 70 degrees, then wait half a second and return
// the servo back to the 0-degree position
if (photoVal >= lightLimit)
{
 myServo.write(0);
 delay(1000);
 myServo.write(70);
 delay(500);
 myServo.write(0);
 delay(500);
}

The first myServo.write function sets the servo to the 0-degree position. The sketch then waits for one
second (1000 milliseconds). The next myServo.write function sets the servo’s position to 70 degrees
for half a second, and the third myServo.write function sets the servo back to the 0-degree position.

Note  This gadget simulates a finger pushing a button. Depending on the servo motor you’ve chosen,
you may need to experiment with changing the values that make the servo motor rotate to more
realistically simulate a human finger.

If the photoresistor doesn’t detect a bright light, the Else statement is executed and, as you’d
expect, it’s blank. There’s no action for the servo motor to take because we don’t want to trigger it
when there’s no light. The empty Else statement is shown here:

else
 {
 // do nothing or add your own code here
 }

Here’s the last bit of code inside the loop section:

 // write the photoVal to the serial port for debugging purposes
 Serial.println(photoVal);
  
 delay(500);
}

237CHAPTER 28: Challenge 7: Examining Software

This code sends the value stored in the photoVal variable to the serial port so you can view the data
on the screen. There’s also a delay that lasts for a half a second (500 milliseconds).

The reason we send photoVal to the serial port is so we can debug and calibrate to the surrounding
light. For example, if your house has more light then mine, you can increase the lightLimit variable
at the beginning of the sketch to, say, 950 instead of 900. This modification will allow you to tweak
the photoresistors limit so it doesn’t just allow the servo motor to run continuously. We want the
servo to run only when we apply a flashlight or some other intense light to the photoresistor.

Now you can upload the sketch to the Arduino using a USB cable, and then you’re ready to run
the challenge.

Solve Challenge #7
After you’ve uploaded the sketch to the Arduino, you need to attach a 6V battery holder to the
servo’s power connector as shown in Figure 28-1.

Figure 28-1.  A 6V connector connected to servo power

When you’re done, you can apply light to the photoresistor using a flashlight or any other device that
can create an intense light. Figure 28-2 illustrates the completed challenge.

238 CHAPTER 28: Challenge 7: Examining Software

Figure 28-2.  The completed challenge

ANDREW 5.0

If you’d like to recreate Elle and Cade’s challenge completely, you’ll want to find something to attach to the arm of the
servo that can serve as a finger. You may also find that you need to secure the servo to the surface—when the servo’s
axle rotates, it produces a lot of torque that might actually move the servo!

Securing a Popsicle stick to the servo’s arm with some tape will work, or you can try a pencil. The trick is to convert the
servo’s axle into something that will simulate a human finger capable of pushing a button on a keyboard.

Figure 28-3 illustrates what the Serial Monitor looks like when this challenges device is connected
to the computer. Notice that the light around the photoresistor is only 5 values short of triggering
the servo to move; its value in normal lighting conditions is between 889 and 891, just below the
threshold we set of 900 that would trigger the If statement in the sketch. As soon as we apply
direct light to the photoresistor, the servo starts moving. You can see what happens when the light is
turned on and pointed at the photoresistor in Figure 28-3—the displayed values jump over 900.

239CHAPTER 28: Challenge 7: Examining Software

Way to go! You just built a gizmo that can press a keyboard button when a strong light source
shines on the photoresistor. Now Cade and Elle can safely press the button while they are inside
the emergency access tube. Life support will be turned back on and the doors on the station will
all close and lock. Mr. Canvin will be trapped, but Cade and Elle will have an unblocked path to the
shuttle bay.

Figure 28-3.  Here are some values that were recorded from the Challenge #7 project

241

Chapter 29
Off the Station

Cade followed Elle down the ladder that led directly into the shuttle bay on level eleven. He was
about to jump the few remaining feet to the gridded floor grating, but he paused, taking in the large
open bay around him.

“It looks different,” Cade said, handing his toolbox down to Elle.

Elle nodded. “It’s the same bay we landed on hours ago, but yeah… it does look different.” She took
the toolbox and set it on the floor. “Tell me again why we brought the toolboxes and laptop? They
don’t belong to us.”

Cade jumped down and smiled. “We’ll return them, but I want some sort of proof just in case Mrs. H
asks what we’ve been doing all day. And is that really what we’re going to get on? I think we’d be safer
putting on some EV suits and just floating away from the station.”

The Hulk
Elle turned to look in the direction of Cade’s nod. Sitting alone in Bay Seven was nothing less than a
shoebox with irregular strips of graphene-reinforced alumiplast, all of different colors, nano bonded
over so many locations that the actual shape of the original shuttle could only be imagined. Cooling
vapors still floated up and away from the shuttle’s rear thrusters, giving Elle the only clue as to the
front and rear of the shuttle.

“What a piece of junk!” said Cade, waiting for Elle to get the reference, but only getting a nod of
agreement.

“That piece of junk is your only way off the station,” replied Andrew over the bay’s speaker system.
“And she may not look like much, kid, but she’s got it where it counts.”

Cade laughed out loud. “Andrew, you just got a million bonus points for that response.”

Elle was confused and raised her eyebrows at Cade.

Cade shook his head. “Movie night at my house next week. Too long to explain.” He picked up the
two toolboxes and began walking to the shuttle.

242 CHAPTER 29: Off the Station

Elle threw the laptop bag over her shoulder and followed. “Andrew, are we good to go?”

“That’s an Audi-Timmis Mark IV lander. Based on the configuration of the engines, it’s sixteen years
old. Unless Gunther has modified the controls, they should be the standard configuration specified
by the Isogawa Convention. Emergency entry code on file with the station’s AI is 55842. You both
have level one pilot licenses?”

“Since age seven,” responded Cade. “And I’m up for my level two next month!”

“You forget,” said Elle, “that that exam is a heavy written exam and focuses less on hands-on testing.”

“Your point?” asked Cade, setting the toolboxes on the floor and tapping in the emergency code into
the touchpanel just behind the cockpit’s side window.

“I’m just saying that you might want to start reading up on the standard bouy navigation section,”
replied Elle.

The shuttle’s port-side entry panel did not open.

“Not good,” said Cade. “I thought all docked shuttles had to provide their emergency codes to the
station AI in order to dock.”

“One moment,” replied Andrew, followed by a five second pause. “I believe you typed it in wrong,
Cade. Please try again.”

Cade tapped in the code once again, but this time his finger moved slower and he spoke each digit
as he tapped each number. The shuttle’s entry panel slid open.

“Really?” asked Elle, giving Cade a disapproving look.

“My hands were shaking,” he replied. “It’s cold in here.”

Elle frowned. “Uh huh.”

“Just get in,” said Cade, grabbing the toolboxes and following Elle into the shuttle.

Launch Problem
Andrew was patched into the shuttle’s communication system and was instructing Cade on the
pre-flight configurations that needed to be made while Elle buckled herself into the co-pilot’s chair.
The chair was soft, but Elle noticed that well over half of its surface was covered in duct-tape
patches. She was also a bit concerned with the large globs of foam-sealant used around the edge
of the synthetic diamond viewport.

“I’m wondering if we wouldn’t be safer staying on the station,” Elle muttered.

Cade flipped two switches and looked across at Elle with a grin. “After all we’ve been through today,
you’re worried about the shuttle?”

“Have you looked around?” asked Elle.

Cade laughed. “My uncle Gavin’s shuttle makes this one look like the Governor’s private solar-sailer.
Relax… I’ve always been told the more beat up a shuttle looks the safer it is. All the bugs have been
worked out.”

243CHAPTER 29: Off the Station

“Cade, I believe that statement to be in error. Statistically speaking, the quality control found in the
manufacturing centers for today’s shuttles is much more likely to be of higher quality than that of a
shuttle being self-maintained,” said Andrew.

“Okay, I want off,” said Elle, beginning to unbuckle. “Right now. I’ll take my chances on the station.”

“Thanks, Andrew,” said Cade. “Elle… come on. We’re all set. It’ll be fine. And look. Two emergency
suits.” Cade pointed at two adjustable suits strapped to the starboard hull plating.

Elle looked at the suits, noticed something similar to duct-tape stuck across the chest and arms of
both suits, and shook her head. “Who is this guy? Every launch has to be a gamble!”

“Ready to launch, Andrew,” said Cade. “Buckle up, Elle.”

The low whine of the engines grew in volume, and a slight shudder in the shuttle was passed to the
two students through the metal framed chairs. Elle buckled herself in again, shaking her head. Cade
tapped a small blue button on the panel facing him and put the single headphone over his left ear,
bending the microphone down in front of his mouth.

“Gemini Station, this is shuttle 77-A9 requesting emergency departure from Bay Seven. We have
cleared all docking clamps and engines are at quarter power. Request entry into Bay Seven airlock.”

The voice that responded was completely new to Elle and Cade. “Shuttle 77-A9, request for
emergency departure acknowledged. Respond affirmative for takeover controls by station
AI for airlock entry.”

“Affirmative for takeover controls,” replied Cade with a glance at Elle. “Here we go.”

The shuttle began to move backwards, and Cade and Elle could see the airlock door behind the
shuttle opening on a small monitor mounted between them. They watched as the second airlock
door that would open and expose the shuttle to the vacuum of space moved closer. Twenty seconds
later, the shuttle came to a hard stop, pressing Cade and Elle into their seats.

“Shuttle 77-A9, closing inner airlock door. Depressurization will begin in fifteen seconds.”

Elle clinched the armrests on her chair. “Andrew?”

“Yes, Elle.”

“Thank you. For everything.”

“You are welcome, Elle. You and Cade will be fine. Emergency response teams are less than an hour
out. Everything will be okay.”

“What about you? What’s going to….?”

Elle’s question was interrupted by a wailing alarm. She looked across at Cade who was punching
a series of buttons that were all flashing red.

“Gemini Station, what is the emergency?” asked Cade.

“Obstruction detected. Inner airlock door will not seal. Attempting to re-open airlock door.”

A loud grinding sound was followed by a pause and then another grinding sound.

“Unable to re-open airlock door. Sealing shuttle bay now. Emergency opening of outer airlock
door to commence in fifteen seconds.”

244 CHAPTER 29: Off the Station

Cade looked across at Elle, his usual smiling face replaced by one of real concern. “What’s
happening?”

“The station AI has determined it is safe to open the outer airlock door. There are no other shuttles
in the bay, so the loss of pressure in the shuttle bay is acceptable,” replied Andrew. “When the outer
airlock door opens, exit the station, Cade.”

“No arguments from me,” said Cade.

Watching the rear view from the small monitor, Elle could see the outer airlock door open. She held
her breath the ten seconds it took for the door to fully open.

“Full reverse on the engines, Cade,” said Andrew.

Cade flipped a switch and grabbed a small handle to his right and pushed it forward. The sound of
the engines rotating in place were replaced as the thrust increased and the shuttle began to shake,
but there was no reverse movement. Cade pushed the handle all the way forward and watched as
the thrusters mounted on the front of the shuttle glowed bright against the inner airlock door.

“Power down, Cade. Do it now,” said Andrew.

Caded pulled the handle down, and the shaking of the shuttle decreased. Cade shook his head,
examining all the readouts on the panel in front of him. “Why weren’t we moving?” he yelled.

“Shuttle 77-A9, this is Gemini Station awaiting your departure from Bay Seven.”

Elle stared at Cade. “We just cannot catch a break, can we?”

Cade frowned. “Everything looks normal on the shuttle’s systems.”

“I am receiving more information from the station AI,” said Andrew. “One moment.”

“If he says that one more time…,” said Cade.

The Final Fix
“He did what?” yelled Cade. “That’s idiotic!”

“Most shuttles do anchor themselves to any asteroids they are mining, but I believe Mr. Canvin did
this to prevent someone from doing exactly what you and Cade are doing now.”

“Stealing his shuttle,” said Cade.

“Borrowing,” replied Elle. “But he won’t need it in jail.”

Gunther Canvin had deployed an anchoring cable underneath the shuttle when he docked. The
cable, hidden from view until the shuttle backed out of Bay Seven, was now visible to Andrew using
the shuttle bay’s surveillance system. Cade and Elle both stared at the small monitor, seeing the
thick steel cable extend from the front of the shuttle and under the inner airlock door.

“We can fix this, right?” asked Cade. “One of us just needs to exit the shuttle and cut the line.”

“It’s too dangerous, Cade. It’s supposed to be cut with zero tension. If the inner airlock door wasn’t
caught on the cable, the station AI could open it and allow the shuttle to dock again.”

“So, we can’t move forward and we can’t move backward,” said Elle.

245CHAPTER 29: Off the Station

“That is correct,” said Andrew. “The anchoring cable must be cut.”

“But you just said we can’t cut it,” replied Cade.

“That is correct. You cannot cut it. But there is a wheeled hand-boring unit in the shuttle’s inventory.
That tool can easily cut through the cable.”

“Great!” yelled Cade. “So one of us just takes it out there, turns it on, and pushes it against the cable
and runs. Let’s get this done!”

Elle was beginning to suspect the solution would require a bit more work. “Andrew, it’s not that easy,
is it?”

“No, Elle. I’m sorry. The tool is not automated and it’s big. The only area it would be able to fit in to
cut the cable is inaccessible to you.”

“So how does this hand-boring unit help us?” asked Cade.

“It is motor driven.”

Cade shook his head. “Okay, it has motors. I’m still not following.”

Elle smiled. “We can send it to where we need it to go, Cade.” She pointed behind her at the laptop
and toolboxes.

Cade grinned. “I’ll bet you’re glad I insisted we take those, huh?”

“Borrowed,” replied Elle, unbuckling her harness. “Let’s hurry.”

247

Chapter 30
Challenge 8: Fun Stuff
to Know

Robots.

Technically speaking, that one word should be enough for Chapter 30’s introduction, but just in case
you need more information, we’re happy to provide it.

Who hasn’t dreamed of owning his/her own robot? We’ve seen them in movies and TV shows for
years, and today we see them everywhere in real life! There’s the Roomba robot that can vacuum
your floors, the Da Vinci robot system that can assist surgeons with delicate operations, and let’s not
forget the walking Honda robot named ASIMO. (If you’re not familiar with these robots, a fast Google
search will give you all the information you need.)

While there are hundreds of different types of robots available for purchase these days, there’s
nothing like building your own. And with the low price of electronics components and the Arduino
microcontroller, there’s never been a better time to build a robot of your own. You’ve already seen in
previous challenges just how powerful a device the Arduino Uno is, with its ability to communicate
with motors and sensors. Just imagine what your robot can be programmed to do given the right
components and a well-written sketch to upload!

So, we’d like to give you a teaser look at what’s coming. Take a look at Figure 30-1 and you’ll see
the robot you’ll be building for Challenge #8!

248 CHAPTER 30: Challenge 8: Fun Stuff to Know

The Basic Components
Challenge 8 is all about getting you started on the robot-building track. Honestly, once you start building
robots, you’re going to find it hard to stop. There’s always one more feature to add, one more tweak to
the motors, and one more trick to implement in a sketch that will give your robot even more capabilities.

But building your own robot all starts with the most basic of components. So let’s talk about those
for a moment.

The three most basic components your robot will need (besides a brain—the Arduino) are a body,
motors, and wheels. The body is where everything—batteries, motors, sensors, and so forth—are
attached. The motors will spin to give the robot the ability to move. And the wheels are needed
because a robot won’t go far on just a motor’s spinning axles. Throw in the Arduino Uno as the
brains of the robot, and you’ve got something that has the potential to move and perform tasks.
Extras such as sensors or grabbers or missile launchers (okay, maybe not missile launchers) will
attach to the body and be controlled by the Arduino.

And that’s what you’re going to build for Challenge 8! A robot with basic functionality that you can
modify and upgrade with whatever your imagination and electronics skills can make a reality.

Figure 30-1.  The finished robot for this challenge

249CHAPTER 30: Challenge 8: Fun Stuff to Know

So let’s take a look at what’s involved in building your basic robot. You’ll actually assemble your
robot in Chapter 31 and then learn how to program it for movement in Chapter 32.

Let’s Look at the Challenge 8 Chassis
What’s involved in building your first robot? Glad you asked.

First, your robot needs a body. The most widely used term for this is chassis (pronounced chas-sey
and rhymes with that famous dog, Lassie). Your robot needs something that will hold the motors, the
wheels, the batteries, and all the electronics you’ll add to it. If the chassis is too small, you won’t have
enough space to add all the cool sensors and some decent motors. If the chassis is too big, you’ll
find you need to spend more on batteries and motors that can handle the extra weight (not to mention
the fact that a large robot chassis can be difficult to maneuver around furniture or go under obstacles,
such as chairs). So picking a chassis is a very important task when you set out to build a robot.

Next, there’s the method of movement. You’ve probably seen some robots that use tracks like a
tank. While tracks are great (especially for outdoor use like rolling over grass), they often come with
an increased cost. They can also sometimes be tricky to program when it comes to adding accuracy
to turns. Track-style robots can also drain batteries faster since they are often heavier. We’re not
trying to discourage you from selecting a track-style robot chassis, but we do believe it’s much
easier to dive into robot building using simple and inexpensive motors.

Using simple motors not only reduces the cost of the robot, it also makes programming a bit easier.
And if you purchase a good chassis, you’ll often find that the chassis is designed to accommodate
different sized motors. This means that if you wish to upgrade your robot to bigger, faster, and
stronger motors, it’s a simple matter of removing the old set and connecting the new ones.

And when it comes to motors, you’ll find that the minimum number of motors you need to make
turns is two. Spin just the right motor forward and the robot will turn left. Spin just the left motor
forward and the robot will turn right. You can make sharp turns or gradual turns based on how much
power you apply to a specific motor.

You’re probably thinking “two motors mean two wheels . . . how will this thing roll smoothly on only two
wheels?” While you can easily add extra wheels (without motors) to the robot chassis, a favorite solution
is to use something called a caster. It’s a small ball bearing or marble or tiny wheel that’s attached
behind the motors to form a triangle. Because the caster can rotate in any direction, it makes a great
third-wheel; two wheels and a caster are all that’s needed for a robot to move itself across the floor.

If you’ve already ordered your chassis and have it available, follow the instructions to put it together.
It’s not difficult at all if you go slow and pay careful attention to what goes where. When you’re done,
you’ll have two red plastic boards with a gap between them that holds the battery harness. Underneath
is a silver ball caster, and two yellow-hub rubber wheels are mounted, one per side, with the motors
attached to the lower of the two plastic boards. Figure 30-2 shows the final assembled robot chassis.

250 CHAPTER 30: Challenge 8: Fun Stuff to Know

When you’re building this chassis, make sure you don’t attach the top plate to the bottom plate as
you’ll be modifying both of these plates in the next chapter. See all those holes on the surface of the
top red plastic piece? That’s where you attach all sorts of other stuff—sensors, probes, grabbers,
and so on. You’ll also attach the Arduino Uno to the surface (although it’s possible to mount it
between the two red plastic pieces) and there’ll even be room for a small breadboard. Notice
that we’ve taken the motors’ wires and run them up through the small holes. Once the Arduino is
attached to the chassis, you’ll be able to attach the wires either to the pins on the Arduino or into
holes on a breadboard.

Figure 30-2.  The Challenge 8 robot chassis fully assembled

ANDREW 5.0

This particular chassis from SparkFun (sparkfun.com) is called the Magician Chassis. It’s a great little kit, and it’s got a lot
of potential for upgrades. While it comes with two 65mm wheels, these can be swapped out for larger (or smaller) wheels.
The motors can also be replaced should you want a pair with a bit more power, but you’ll want to make certain the new
motors have mounting holes that are properly spaced to allow them to be bolted or screwed into the chassis body.

By the way, if you want to see what someone else has already done with the Magician Chassis, be sure to check out
Mark Szulc’s version, complete with ultrasonic sensor on the front that can detect obstacles such as walls and chairs. The
ultrasonic sensor looks like a pair of eyes, but they don’t actually see like your eyes do. Instead, they use a radio wave

251CHAPTER 30: Challenge 8: Fun Stuff to Know

that is shot out of one “eye,” bounces off an object, and returns to the other “eye.” The speed of the radio wave bounce
lets the microcontroller determine the distance to the object or obstacles.

Here’s the link to Mark’s version:
http://www.markszulc.com/blog/2012/01/29/building-a-robot-dagu-magician-chassis-arduino/

Keep in mind that Mark’s robot has some more-advanced features than the one you’ll be building, but hopefully his
version will inspire you to look for ways to upgrade your own.

After you’ve got your chassis assembled, it still needs a few things. The most important component
should be pretty obvious to you by now . . . it needs an Arduino to act as the brains of the robot.

We’ll show you how and where to best attach the Arduino in Chapter 31, but for now you might
want to take your Arduino Uno and look at all the various places it might be attached. The Arduino
has small holes in its circuit board that are used for mounting. These holes can’t be moved, so that
means you’ve got to find a set of holes on the top red plastic piece that match up to the holes in
the Arduino. Again, we’ll deal with this in Chapter 31, but feel free to experiment and see if you can
come up with a suitable location!

ANDREW 5.0

You should mention to your readers that many different shapes, colors, and sizes are available for their robot chassis.
If they don’t purchase the Magician Chassis, they can still follow along with Chapters 31 and 32 because most of the
variations will still have a place to attach an Arduino, sensors, and all the rest.

As a matter of fact, tell them to visit sparkfun.com and type “robot chassis” in the search field. They’ll see a few different
chassis options there. Even better, go to pololu.com and search—there are dozens of different chassis types available,
with colors and shapes that are quite interesting.

Andrew is correct—you’re not limited to the robot chassis we’ll be using for Challenge 8. You may
want to consider purchasing the parts needed on an individual basis. You can find just the plastic or
metal body pieces that make up the frame where you’ll attach motors and sensors. You can buy the
motors you like (in terms of size and power) as well as the exact look of the wheels you desire. The main
thing to keep in mind is to check out any data sheets or measurements that specify the size motor
that can be attached. Some body parts will specify exact motor sizes or shapes that can be attached,
while others can be a bit vague. Be careful if you’ll be assembling your own chassis from multiple
parts, and always ask the seller if you have questions.

Once you’ve got your basic chassis assembled, you’re ready to start attaching the other pieces of
hardware you’ll need. In addition to the Arduino, you might want to consider options such as a push
button to start and stop your robot. This functionality will be defined in the sketch, of course. Other
options include adding a potentiometer that controls the speed of the motors. While you can specify
a change in speed in the sketch, you can always give yourself manual control of the motors by
throwing in a potentiometer that lets you dial the speed up or down.

http://www.markszulc.com/blog/2012/01/29/building-a-robot-dagu-magician-chassis-arduino/
http://www.markszulc.com/blog/2012/01/29/building-a-robot-dagu-magician-chassis-arduino/

252 CHAPTER 30: Challenge 8: Fun Stuff to Know

Cade and Elle have access to a small robot that has wheels as well as a tool for cutting the steel
cable. Everything they’ll need to do for their robot is exactly what you’ll be doing with yours, namely
getting it from A to B with some programmed movements.

Ready to Build Something?
This is it! You’re ready to assemble the remaining bits of your robot in Chapter 31 and then you’ll
program it in Chapter 32. And, once you’re done with Challenge 8, you’ll have a robot chassis
with Arduino controller ready for further experiments. You’ll want to dig around your collection of
electronic parts and sensors and push your robot to do even more tasks. Think about how you might
integrate that temperature sensor or maybe the PIR sensor into the chassis, for example.

But right now . . . it’s time to build!

253

Chapter 31
Challenge 8: Examining
the Hardware

Congratulations on making it this far into the book—you’re almost done! In this chapter, you’re going
to learn about the basic hardware required to construct a robot that’s built on a chassis and has
three wheels, two of which are controlled by 6V DC motors.

You’ll need to control the robot’s DC motors with an H-bridge, just as you did in Challenge 4. The only
difference is that we’ll use both sides of the H-bridge this time, because we have two motors to control.

Robots are fun, aren’t they? Who hasn’t wanted to build his/her own? You’ll find building robots is a
skill like any other. You begin simple, and you learn. Your hardware skills will improve. Your software
skills will improve. After this robot project is done, you’re going to be ready to break out on your own
and investigate any areas of electronics that interest you. Maybe it will be building bigger, faster,
more advanced robots … or maybe something else.

New Hardware
Figure 31-1 shows the finished chassis for this challenge, which carries the Arduino, circuitry, and
batteries. The chassis uses two DC motors to control the direction the robot will move. Think about
it this way—if the right wheel turns and the left wheel doesn’t move, the robot rotates to the left.
And if the left wheel turns and the right wheel doesn’t move, the robot will turn to the right. Slight
movements to the left or right involve spinning both wheels at different speeds—this gives the robot
the ability to rotate in place or make small or large turns to the left or right.

254 CHAPTER 31: Challenge 8: Examining the Hardware

Use Figure 31-1 as a reference for what your final chassis will look like, but follow the assembly
instructions that came with your chassis kit before finishing the rest of this chapter. We’ll show you
how to connect all the necessary electronics to the robot chassis, but we’re leaving it to you to put
the chassis together.

We do have one recommendation, however. When assembliing the chassis, don’t attach the top
plate yet because you’ll be modifying it in the next section.

Let’s Build Gizmo #8
First we’ll modify the chassis, then we’ll create the circuit that will drive the robot. So let’s get
building!

1.	 Attach two of the standoffs that came with your chassis to the Arduino.
Standoffs are small metal posts that act as spacers between the robot
chassis top plate and the Arduino. It’s always a good idea to mount the
Arduino so it sits slightly above a surface it will be attached to. Figure 31-2
illustrates this process. The standoffs we’re using consist of a long nut
threaded at both ends to accept screws.

Figure 31-1.  The chassis for this challenge

255CHAPTER 31: Challenge 8: Examining the Hardware

2.	 Decide where the Arduino will be placed on the top plate of the chassis.
Figure 31-3 illustrates this process. You don’t have to actually write on your
top plate, but we’ve done so to indicate where we’ll be placing our Arduino’s
two standoffs.

Standoffs

Figure 31-2.  Attach the standoffs to the Arduino

Add standoffs here

Figure 31-3.  Mark where the Arduino will be attached to the top plate of the chassis

256 CHAPTER 31: Challenge 8: Examining the Hardware

3.	 Attach the Arduino to the top plate of the chassis. Figure 31-4 illustrates this
process. You may find that the Arduino is sitting at a small angle with respect
to the edges of the top plate—this is perfectly normal. Not all chassis plates
allow for perfect mounting of components, so you’ll sometimes have to
rotate a component to make the standoffs fit into the spaces of a plate.

Figure 31-4.  Attach the Arduino to the top plate of the chassis

4.	 Attach Velcro to the 4-AA battery holder (this is not the 4-AA battery holder
that comes with the chassis). Then attach Velcro to the bottom plate of the
chassis. (The top plate will cover the battery holders, which is why we had
you hold off on attaching the top plate.) Figure 31-5 illustrates this process.

257CHAPTER 31: Challenge 8: Examining the Hardware

5. Attach the AA battery holder to the Velcro on the bottom plate of the chassis.
Figure 31-6 illustrates this process. (There should now be two 4-AA battery
holders. If you followed the instructions that came with the chassis, you added
the first one as you built the chassis.)

Figure 31-5. Add Velcro to the battery holder and the chassis

258 CHAPTER 31: Challenge 8: Examining the Hardware

6.	 Attach the solderless breadboard to the top plate of the chassis (you will
notice that the breadboard has an adhesive bottom). Figure 31-7 illustrates
this process. Make certain that the breadboard does not cover the small hole
in the center of the top plate because you may need to use that hole later.

Figure 31-6.  Attach the 4-AA battery holder to the chassis

259CHAPTER 31: Challenge 8: Examining the Hardware

OK, now that the chassis has been modified, let’s create the circuit for this project. We’ll switch to
diagrams to make it easier for you to see how to plug in and connect the different components.

Make sure this
hole is not
covered up

Figure 31-7.  Attach breadboard to the top plate of the chassis

Caution  It is important to note the orientation of the breadboard; make sure you have it as Figure 31-7
illustrates. As you build the project, you will notice the images are mirrored. That mirroring is not a problem.
Just keep following the instructions.

7.	 Attach the H-bridge and the hex inverter to the breadboard. The H-bridge
starts with pin 1 (of 16) inserted at E-4, and the pins on its other side start at
F-4. The hex inverter starts with pin 1 (of 14) at E-14 and the pins on the other
side at F-14. Figure 31-8 illustrates this process. Notice in Figure 31-8 that
the notch on the chips is pointing to the right and pin 1 is on the lower left.

260 CHAPTER 31: Challenge 8: Examining the Hardware

8.	 Be sure you connect the H-bridge and hex inverter as displayed; connecting
otherwise could damage the part. If you do connect either of these ICs
incorrectly, disconnect power and wait for a few minutes before handling
either IC as they may be hot!

9.	 Attach the two-position terminal block to the breadboard (at A-26 and A-28).
Figure 31-9 illustrates this process.

H-Bridge
Notch

Hex Inverter
Notch

Figure 31-8.  Attach the H-bridge and hex inverter to the breadboard

261CHAPTER 31: Challenge 8: Examining the Hardware

10.	 Now let’s attach both the power and ground connections. First connect
ground to D-7, D-8, G-7, G-8, D-20, and C-28. We used black jumper wire,
but feel free to use any color you have available.

Now connect the ground side rail from one end of the breadboard to the
other side rail by running one jumper wire (black) from one side to the other
as shown in Figure 31-10.

A-28

A-26

Figure 31-9.  Attach the two-position terminal block to the breadboard

262 CHAPTER 31: Challenge 8: Examining the Hardware

Connect power to I-14 and G-4; we used red jumper wires but use whatever
you have. Next, connect the power side rail from one end of the breadboard
to the other power side rail with a jumper wire. Also, connect a red wire from
C-26 to D-11. Figure 31-10 illustrates this process.

11.	 Now connect the hex inverter to the H-bridge. We’ve used green jumper
wires but use what you have available. First connect B-5 to B-15; then
connect C-10 to C-14. Next, connect G-10 to G-15 and H-5 to H-16.
Figure 31-11 illustrates the process.

G-4

G-7 G-8
I-14

C-28

C-26D-20D-11D-8D-7

Figure 31-10.  Connect power and ground to the circuit

263CHAPTER 31: Challenge 8: Examining the Hardware

12.	 Connect the 5V pin of the Arduino to the power side rail of the breadboard.
Then connect the GND pin of the Arduino to the ground side rail. Figure 31-12
illustrates this process.

H-5

B-5

G-10 G-15 H-16

C-10 C-14 B-15

Figure 31-11.  Attach the Hex inverter to the H-bridge

264 CHAPTER 31: Challenge 8: Examining the Hardware

13.	 Connect digital pin 5 on the Arduino to D-4 on the breadboard. Figure 31-13
illustrates this process.

GND +5V

Figure 31-12.  Connect 5V power and ground to the power and ground strips of the breadboard

265CHAPTER 31: Challenge 8: Examining the Hardware

14.	 Connect digital pin 4 on the Arduino to D-10 of the breadboard. Figure 31-14
illustrates this process.

D-4

D5

Figure 31-13.  Connect the Arduino’s digital pin 5 to D-4 of the breadboard

266 CHAPTER 31: Challenge 8: Examining the Hardware

15.	 Connect digital pin 6 on the Arduino to J-11 of the breadboard. Figure 31-15
illustrates this process.

D-10

D4

Figure 31-14.  Connect digital pin 4 to D-10

267CHAPTER 31: Challenge 8: Examining the Hardware

16. Connect digital pin 7 of the Arduino to I-10 of the breadboard. Figure 31-16
illustrates this process.

J-11
D6

Figure 31-15. Connect digital pin 6 on the Arduino to J-11 of the breadboard

268 CHAPTER 31: Challenge 8: Examining the Hardware

Guess what? You’re done! Figure 31-17 shows how our own build came out. Yours should
look similar.

I-10
D7

Figure 31-16.  Connect digital pin 7 on the Arduino to I-10 of the breadboard

269CHAPTER 31: Challenge 8: Examining the Hardware

Well, you’re done wiring up your robot. You’ve still got to upload a program to control the robot’s
behavior, but that’s what Chapter 32 is all about. You’ll learn about the program, upload it, and then
attach the top plate to the chassis and prepare your robot to LIVE!

Figure 31-17.  The authors’ final wiring

271

Chapter 32
Challenge 8: Examining
Software

We’d like to congratulate you on making it all the way to the end of the book. You’ve got seven
challenges behind you, and the eighth and final challenge is here—programming the robot you
assembled in Chapter 31. You’re ready for this! You’ve accomplished so much, and the robot is
waiting for you to put the finishing touches on the program that will bring it to life.

But first, we want you to take a look at a very important programming fundamental that you’ll carry
with you as you move forward and create your own Arduino projects. In this chapter, we’re going to
explain how you can program and use your own functions in an Arduino sketch. After you understand
this important programming concept, we will walk you through the sketch for this final challenge.

Remember—do not attach the top plate of the chassis to the chassis until you are told to do so later
in the chapter.

Now, let’s program that robot!

Functions Explained
Functions are very important when you are programming with the Arduino, and for any other type of
programming for that matter. A function is a set of instructions that are pre-programmed so that you
can reuse them in your code. Up until now you have been using functions that have already been
created, These functions are not only good for code reuse but also it makes reading your code
more simplified. An example of a popular function we have used so far would be the map( ) function
used in Challenge 1. Functions perform calculations or do special things, all without you having
to create the function from scratch. But not everything you wish to do is always available as a
pre-programmed function. Sometimes you’ve got to actually write the function yourself, but once
you do you can reuse it over and over again in future programs that you write.

272 CHAPTER 32: Challenge 8: Examining Software

In this chapter you are going to create a few functions that will give your robot movement
capabilities. They are: Forward(int), Reverse(int), turnLeft(int), turnRight(int), and
Stop(int). Notice that each of these functions have an int type variable (an integer value) within the
parentheses. This is a value that will be passed to the function, so that you can control how long the
motor(s) stay on or off.

Listing 32-1 is an example of a function that we will write in the sketch for this project:

Listing 32-1.  Forward Function for the robot sketch

void Forward(int tdelay)
{
 digitalWrite(DirPin1, HIGH);
 analogWrite(PWMPin1, 220);
 digitalWrite(DirPin2, HIGH);
 analogWrite(PWMPin2, 255);
 delay(tdelay);
}

You will notice the “void” in front of the name of the function, Forward. What this is saying is that
there will be no return for this function. In other words we will not be asking for any information back
from this function. An integer number will be given to the function and something will happen (the
robot will move forward for a certain duration), but when the movement is ended, it will not pass any
information back to the function that started the movement.

Note  An example of a function that returns a value would be the digitalRead() function; this
function returns a 0 or 1.

After the name of the function, you’ll notice inside the parenthesis that there is an int tdelay; this
is a value (stored in a variable called tdelay) that will be passed through this function. You will notice
that the tdelay argument is not used until the very end of the function delay(tdelay);.

This tdelay argument simply passes an integer variable to a delay function that will make the
Forward function wait for whatever value you place between the (parentheses).

In order to use a function of your own creation you will need to initialize the function at the beginning
of your sketch this is called a function prototype and it looks like this:

void Forward(int);

All you need to know is that this function prototype goes at the very beginning of your sketch. Now that
we have gone over some software fundementals on how to create functions we can use this knowledge
in the next section of this chapter. In the next section we will be discussing the sketch for challenge 8.

273CHAPTER 32: Challenge 8: Examining Software

The Challenge #8 Sketch
The Challenge #8 sketch needs to allow Elle and Cade move the robot in all directions, and it will
require us to use four different digital pins to control the 2 DC motors’ speed and direction.
Listing 32-2 is the completed sketch used to accomplish these tasks. We’ll break down the sketch
for you into more easy-to-follow sections later.

Listing 32-2.  Challenge 8 sketch

// initailize the two PWM pins to control speed for two motors
int PWMPin1 = 5;
int PWMPin2 = 6;
 
// initailize direction pins
int DirPin1 = 4;
int DirPin2 = 7;
 
// function prototypes for the 5 function we need to create
void Forward(int);
void Reverse(int);
void turnRight(int);
void turnLeft(int);
void Stop(int);
 
void setup()
{
 // set the pin mode for each of the digital pins of the Arduino
 // that are used to control speed and direction.
 pinMode(PWMPin1, OUTPUT);
 pinMode(PWMPin2, OUTPUT);
 pinMode(DirPin1, OUTPUT);
 pinMode(DirPin2, OUTPUT);
}
 
void loop()
{
  
 // move forward for 1500ms
 Forward(1500);
 // turn right for 500ms
 turnRight(500);
 // move forward for 2000ms
 Forward(2000);
 // turn left for 750ms
 turnLeft(750);
 // reverse for 2500ms
 Reverse(2500);
 // stop bo th motors for 2500ms
 Stop(2500);
  
}
 

274 CHAPTER 32: Challenge 8: Examining Software

// this is the Forward function
void Forward(int tdelay)
{
 /*
 sets DirPin1 to HIGH and PWMPin1 to 220 out of 255.
 I tweeked the PWMPin1 value to 220 rather then 255
 because the robot was turning left when it should be going
 straight. You may need to do the same to either PWMPin
 value.
 */
 digitalWrite(DirPin1, HIGH);
 analogWrite(PWMPin1, 220);
 // sets DirPin2 to HIGH and PWMPin2 to 255 out of 255.
 digitalWrite(DirPin2, HIGH);
 analogWrite(PWMPin2, 255);
 // delay for what ever integer value is passed into the
 // Forward function.
 delay(tdelay);
}
 
// this is the Reverse function
void Reverse(int tdelay)
{
 // sets DirPin1 to LOW and PWMPin1 to 220 out of 255.
 digitalWrite(DirPin1, LOW);
 analogWrite(PWMPin1, 220);
 // sets DirPin2 to LOW and PWMPin2 to 255 out of 255.
 digitalWrite(DirPin2, LOW);
 analogWrite(PWMPin2, 255);
 // delay for what ever integer value is passed into the
 // Reverse function.
 delay(tdelay);
}
 
// this is the turnRight function
void turnRight(int tdelay)
{
 // sets DirPin1 to LOW and PWMPin1 to 220 out of 255.
 digitalWrite(DirPin1, LOW);
 analogWrite(PWMPin1, 220);
 // sets DirPin2 to HIGH and PWMPin2 to 255 out of 255.
 digitalWrite(DirPin2, HIGH);
 analogWrite(PWMPin2, 255);
 // delay for what ever integer value is passed into the
 // turnRight function.
 delay(tdelay);
}
 
// this is the turnLeft function
void turnLeft(int tdelay)

275CHAPTER 32: Challenge 8: Examining Software

{
 // sets DirPin1 to HIGH and PWMPin1 to 220 out of 255.
 digitalWrite(DirPin1, HIGH);
 analogWrite(PWMPin1, 220);
 // sets DirPin2 to LOW and PWMPin2 to 255 out of 255.
 digitalWrite(DirPin2, LOW);
 analogWrite(PWMPin2, 255);
 // delay for what ever integer value is passed into the
 // turnLeft function.
 delay(tdelay);
}
 
// this is the stop function
void Stop(int tdelay)
{
 // sets DirPin1 to LOW and PWMPin1 to 0 out of 255.
 digitalWrite(DirPin1, LOW);
 analogWrite(PWMPin1, 0);
 // sets DirPin2 to LOW and PWMPin2 to 0 out of 255.
 digitalWrite(DirPin2, LOW);
 analogWrite(PWMPin2, 0);
 // delay for what ever integer value is passed into the
 // Stop function.
 delay(tdelay);
}

Quite a program, huh? Yes, it’s a bit long, but don’t let that bother you. Some of the most powerful
programs can be quite short, and some of the simplest programs can be very long. We know this
program might look a little intimidating, so we’re going to break it into parts and explain each part.
When we’re done, you should be quite comfortable with the program and understand how it works.

The Challenge #8 sketch starts out with the following bit of code:

// initailize the two PWM pins to control speed for two motors
int PWMPin1 = 5;
int PWMPin2 = 6;
 
// initailize direction pins
int DirPin1 = 4;
int DirPin2 = 7;
 
// function prototypes for the 5 function we need to create
void Forward(int);
void Reverse(int);
void turnRight(int);
void turnLeft(int);
void Stop(int);

First, we’ll define the digital pins that will be used to control the motors’ speed and their direction. As
you can see, we’ll be using four variables that all store integer values (whole numbers like 1, 2, 3, …).
PWMPin1 will control the speed of Motor 1 using digital pin 5 and PWMPin2 will control the speed

276 CHAPTER 32: Challenge 8: Examining Software

of Motor 2 using digital pin 6. Likewise, DirPin1 will control the spin direction of Motor 1 using digital
pin 4 and DirPin2 will control the spin direction of Motor 2 using digital pin 7.

Next are the functions that we need to create. Earlier we told you that you must first define the
names and the type of variable that will be passed (if any) using a function. So the first one we create
is the Forward function and it will hold an integer variable value. The other four functions we need to
create are Reverse, turnRight, turnLeft, and Stop. Each of these will also be defined as passing an
integer value to their respective functions.

Here’s the next bit of code we need to examine:

void setup()
{
 // set the pin mode for each of the digital pins of the Arduino
 // that are used to control speed and direction.
 pinMode(PWMPin1, OUTPUT);
 pinMode(PWMPin2, OUTPUT);
 pinMode(DirPin1, OUTPUT);
 pinMode(DirPin2, OUTPUT);
}
 
You should be really familiar with the void setup() bit of programming by now. All we’re doing here is
including the code that will tell the Arduino to use four digital pins (4, 5, 6, and 7) to send voltage to
the DC motors for either speed or spin direction. Notice again that all of this code is contained inside
the opening bracket { and the closing bracket }.

Up next is the part of the program that will constantly be running; again, you’re already familiar with
the use of the void loop() section of a program:

void loop()
{
  
 // move forward for 1500ms
 Forward(1500);
 // turn right for 500ms
 turnRight(500);
 // move forward for 2000ms
 Forward(2000);
 // turn left for 750ms
 turnLeft(750);
 // reverse for 2500ms
 Reverse(2500);
 // stop both motors for 2500ms
 Stop(2500);
  
}

Look at this carefully. Inside the opening and closing brackets you’ll see the functions you created
earlier in the program, but this time they all have a value inside the parenthesis. This is how a
function works! Look at the first one – Forward(1500). When the program is run, the first thing you’ll
see the robot do is move forward. That’s because the Forward function is called here.

277CHAPTER 32: Challenge 8: Examining Software

When you upload the program to your Arduino, all of the code you’ve typed up is loaded. This
means the Forward function is stored in the Arduino, along with the other four functions. When that
first Forward function is executed, the program doesn’t really jump to the point in the program where
the Forward function is stored. Instead, the Arduino simply “knows” what the Forward function
should do and it does it – it sends the proper voltage signals (using the digital pins) to the motors
telling them how fast they should spin and in what direction. The value in the parenthesis simply tells
the Forward function how long to wait (in milliseconds) before moving to the next function (which
happens to be turnRight – take a look to confirm this).

We’ll show you the actual programming of all of the functions shortly, but just know that after the
Forward function is executed, the next thing the program does is call the turnRight function.
The program passes a value of 500 to the turnRight function.

Follow down the bit of programming found inside the void loop(section) and you’ll see that the next
function to be called is another forward movement. That’s followed by a left turn, then a reverse, and
then a stop. If you are watching the robot it will move forward a bit, turn right, move forward a small
amount again, turn left, and then reverse itself for a moment before coming to a stop. Easy!

What we want you to learn from the void loop() section is this – you can easily program in whatever
movements you wish for your robot by simply inserting calls to the five functions in the order you
wish the movements to occur. For example, another programmed movement might be this:

Forward, Turn Left, Forward, Turn Left, Forward, Turn Left, Forward, Stop

If you place the function calls in the void loop() section in the order shown here, and with proper
delay values, your robot will move in the shape of a square! (Don’t believe us? Try it and see!)

ANDREW 5.0

Yes, you can program your robot to move wherever you wish, but there’s a catch. Each of the functions that James and
Harold are about to show you are programmed to rotate the motors for a certain length of time and at a certain speed.
The speed isn’t the real problem when programming a robot to navigate. The real problem how long to spin the motors.
Think about it – if you spin both motors for two seconds, it might move forward one meter. This means if you spin both
motors for four seconds, your robot will move forward two meters.

So as you learn how to program the functions, keep in mind that programming your robot to navigate a room with chairs
and furniture and other obstacles will require a lot of trial and error as you determine how long of a delay to program in
before the next movement (a left turn, for example) is started. That’s where those values stored between the parenthesis
after each function in the void loop( ) section come into play.

The next bit of the program we’ll examine is the first of the five functions. Here’s the bit of code we’ll
be looking at:

// this is the Forward function
void Forward(int tdelay)
{
 /*
 sets DirPin1 to HIGH and PWMPin1 to 220 out of 255.
 I tweeked the PWMPin1 value to 220 rather then 255

278 CHAPTER 32: Challenge 8: Examining Software

 because the robot was turning left when it should be going
 straight. You may need to do the same to either PWMPin
 value.
 */
 digitalWrite(DirPin1, HIGH);
 analogWrite(PWMPin1, 220);
 // sets DirPin2 to HIGH and PWMPin2 to 255 out of 255.
 digitalWrite(DirPin2, HIGH);
 analogWrite(PWMPin2, 255);
 // delay for what ever integer value is passed into the
 // Forward function.
 delay(tdelay);
}

ANDREW 5.0

You’ll notice that most of the actual code seen here are comments! (The // is useful for comments that only need a single
line, but you’ll also see the /* and */ symbols – anything between the /* and the */ symbols is also a comment. The /*
and */ are useful for adding comments that need more than a single line to type in.)

Let’s start with the first line: void Forward(int tdelay). All this does is take the value stored in the
parenthesis when the function was called (earlier in the void loop() section) and store it in the variable
called tdelay.

Next comes the comment that explains how to tweak the values so the robot drives in a straight line.
Then after that you’ll see the actual five lines of code mixed in with other comments.

The function call digitalWrite(DirPin1, HIGH) sends voltage over digital pin 4 that is connected to
Motor 1 to control the spin direction. At the same time, the analogWrite(PWMPin1,220) sends its own
signal over digital pin 5 which controls the speed of the motor. Next, you’ll see an almost identical bit
of code that does the same for Motor 2. The call digitalWrite(DirPin2,HIGH) sends voltage over digital
pin 7 to control the spin direction, and the call to analogWrite(PWMPin2, 255) controls the speed.

ANDREW 5.0

Why aren’t both motors speeds set to the same value (220 or 255)? Every motor is different, and that means that
identical looking motors don’t always spin at exactly the same speed. So you’ll have to tweak these two values until you
find two values (one for Motor 1 and one for Motor 2) that will get the robot moving in a relatively straight line. You might
get lucky and find that the value of 220 or 255 works perfectly for both motors, but our experience has been that every
motor is unique and will require a little testing to dial in the right value for the motor speed.

The final bit of code – delay(tdelay) is how long the program will wait or pause before returning
to the void loop() section to grab the next bit of code. In this case, the robot will roll forward for
approximately 1.5 seconds before the rightTurn is executed (using the turnRight function that will
be called next).

279CHAPTER 32: Challenge 8: Examining Software

By the way – the actual programming portions for each function can be added to the end of the
program in any order. If you look at the complete program earlier in the chapter, you’ll notice that
the next function we’ve put in the program is the Reverse function, not the rightTurn function. (Don’t
get the function call mixed up with the actual Function – the function call is made in the void loop( )
section and the actual Functions (Forward, Reverse, etc.) and their respective programming are near
the end of the program.

Since the next function call to be made is turnRight, we’re going to skip over the code for the
Reverse function momentarily and show you the turnRight code here:

// this is the turnRight function
void turnRight(int tdelay)
{
 // sets DirPin1 to LOW and PWMPin1 to 220 out of 255.
 digitalWrite(DirPin1, LOW);
 analogWrite(PWMPin1, 220);
 // sets DirPin2 to HIGH and PWMPin2 to 255 out of 255.
 digitalWrite(DirPin2, HIGH);
 analogWrite(PWMPin2, 255);
 // delay for what ever integer value is passed into the
 // turnRight function.
 delay(tdelay);
}

You should be able to figure this one out based on what you just learned about the Forward function.
Look carefully and you’ll see that the voltage to Motor 1 is turned to LOW while the voltage to
Motor 2 is turned to HIGH. This means that Motor 2 will spin in one direction while Motor 1 spins in
the reverse direction – this will cause the robot to turn to the right!

You’ll still need to play around with the values for PWMPin1 and PWMPin2 until you’re happy with
the right turn. Tweak the values by increasing or decreasing them until you are satisfied with the
speed and direction of the turn.

Can you guess what the leftTurn function looks like? If you guessed that Motor 1 will be set to HIGH
and Motor 2 will be turned to LOW, then you’re right! Here’s the code for the leftTurn function:

// this is the turnLeft function
void turnLeft(int tdelay)
{
 // sets DirPin1 to HIGH and PWMPin1 to 220 out of 255.
 digitalWrite(DirPin1, HIGH);
 analogWrite(PWMPin1, 220);
 // sets DirPin2 to LOW and PWMPin2 to 255 out of 255.
 digitalWrite(DirPin2, LOW);
 analogWrite(PWMPin2, 255);
 // delay for what ever integer value is passed into the
 // turnLeft function.
 delay(tdelay);
}
 
Yep! Look closely and you’ll see that the only difference is in the digitalWrite commands for Motors 1
and 2. Everything else (the analogWrite statements) stays the same.

280 CHAPTER 32: Challenge 8: Examining Software

Here’s the code for the Reverse function:

// this is the Reverse function
void Reverse(int tdelay)
{
 // sets DirPin1 to LOW and PWMPin1 to 220 out of 255.
 digitalWrite(DirPin1, LOW);
 analogWrite(PWMPin1, 220);
 // sets DirPin2 to LOW and PWMPin2 to 255 out of 255.
 digitalWrite(DirPin2, LOW);
 analogWrite(PWMPin2, 255);
 // delay for what ever integer value is passed into the
 // Reverse function.
 delay(tdelay);
}

If you think about it, you’ll probably be able to figure out how the Reverse function works. Both of the
digitalWrite statements are set to LOW. This will force Motor 1 and Motor 2 to spin in the opposite
direction for a length of 2500 milliseconds (2.5 seconds) before calling the next function, Stop.

And here’s the Stop function:

// this is the stop function
void Stop(int tdelay)
{
 // sets DirPin1 to LOW and PWMPin1 to 0 out of 255.
 digitalWrite(DirPin1, LOW);
 analogWrite(PWMPin1, 0);
 // sets DirPin2 to LOW and PWMPin2 to 0 out of 255.
 digitalWrite(DirPin2, LOW);
 analogWrite(PWMPin2, 0);
 // delay for what ever integer value is passed into the
 // Stop function.
 delay(tdelay);
}

Look closely and you’ll see that the values for PWMPin1 and PWMPin2 are set to zero. This means
no voltage applied to the motors, stopping the robot in its tracks. The robot will stop for 2.5 seconds
(the 2500 integer value passed to the Stop function for the delay) and then the void loop( ) section
will start over and the program will begin its programmed movements all over.

You’ve learned a lot of programming in this book! Can you think of how you might modify the
program to flash some LEDs at various points in the robot’s movement? And consider the PIR
sensor – you can probably figure out how to call a special Run-and-Hide function that only triggers
when the PIR sensor detects changes in infrared heat. There’s a lot you can do in terms of modifying
this program, and it’s really only limited by your imagination and the programming techniques that
you know and that you can learn.

You’re almost done. Open up the Arduino IDE and enter in the program, because next you’ll be
uploading the program to the Arduino, putting the top plate back on the robot chassis, attaching the
motors, and then running the sketch.

281CHAPTER 32: Challenge 8: Examining Software

Solve Challenge #8
After you’ve typed up the program, go ahead and upload the sketch to the Arduino. Once you have
successfully uploaded the Arduino sketch to the Arduino, you can disconnect the USB from the
Arduino.You’re also going to need to add 4 AA’s to the Arduino battery holder and 4 AA’s to the
circuit battery holder as show in Figure 32-1.

Figure 32-1.  Add batteries to both of the battery holders (at this point no motors are connected)

After adding the batteries, you can attach the top plate of the chassis to the rest of the chassis as
Figure 32-2 illustrates. If you use just two screws on opposite corners, it’ll be easier to remove the
top plate should you need to troubleshoot the circuit. You can use all screws later once you’re happy
that the circuit is correct and the robot is working properly.

y

282 CHAPTER 32: Challenge 8: Examining Software

When we reference the front of the robot we are talking about the part of the chassis that is round;
this is how we destinguish whether the motor is moving forward, reverse, right, or left.

Now this next part is very important; connect the black wire from the motor nearest the top of
Figure 32-2 to H-9 of the solderless bread board. Use your best judgement to find a suitable hole to
route this wire and all other wires through to keep your robot tidy.

Then connect the red wire from the motor nearest the top of the robot shown in Figure 32-2 to I-6 of
the solderless bread board. Next connect the black wire from the motor at the bottom of Figure 32-2
to B-9 of the solderless bread board. Then connect the red wire of the motor nearest the bottom in
Figure 32-2 to C-6 of the solderless bread board. All of these connections are shown in Figure 32-3.

Figure 32-2.  Attach the top plate of the chassis to the rest of the chassis

283CHAPTER 32: Challenge 8: Examining Software

Next, make certain your Arduino is disconnected from power (USB or 6V).

Now, connect the power (red wire) from the AA battery holder nearest the front end of the robot
(rounded end) to the power side of the 2-position-terminal-block. Then connect the ground from the
same AA battery holder to the ground side of the 2-position-terminal-block. Figure 32-4 illustrates
this process.

H-9

I-6

B-9

C-6

Figure 32-3.  Attach the motors to the solderless bread board

284 CHAPTER 32: Challenge 8: Examining Software

Note  Both of these connection are critical and getting these connection wrong can hurt the circuitry.
If you do put these connections in wrong, quickly disconnect each of the wires from the 2-position-
terminal-block and wait about 2 minutes before connecting the power and ground wires correctly as
the circuit could be hot!).

6V Power

Ground

Figure 32-4.  Connect the 6V power from the battery holder to the 2-position-terminal-block

Now connect the other AA battery holder (the one on the non-rounded side of the chassis) to the
Arduino. Make sure you are not holding the wheels of the robot at this time as they will start to move.
Figure 32-5 illustrates this process.

285CHAPTER 32: Challenge 8: Examining Software

If everything is working you should have a completed robot ready to help Elle and Cade. Figure 32-6
illustrates the completed challenge. Elle and Cade can tweak their program to drive the robot to the
proper location in the docking bay to free the ship and let them escape. You can tweak your program
to drive your robot anywhere you wish!

Figure 32-5.  Attach 6V power from the Arduino battery holder to the Arduino

286 CHAPTER 32: Challenge 8: Examining Software

Consider modifying the sketch and rearranging the order that you call the movement functions.
We showed you the order earlier to have your robot make a complete movement in the shape of a
square, but what other movements can you figure out? How many and which functions would be
needed to make your robot drive in a complete circle? (Here’s a hint: one!)

If you want some more challenges, consider modifying the program so that it can perform reverse left
turns and reverse right turns! More suggestions include adding push buttons to your robot that, when
pushed, will cause your robot to perform specific movement patterns. These may sound tricky, but trust
us – you have the programming knowledge and the hardware required to perform these upgrades.

You’re Not Done!
Yes, that’s it for the eight challenges in the book, but you’re by no means done with your Arduino
Adventure! We only had room in the book to give you eight challenges, but hundreds, maybe even
thousands, more challenges await you. There are plenty of books, websites, magazines, etc… that
you can use to find more projects and more gizmos to build!

All you have to do is search for Arduino projects online and you will find more projects than you
could ever imagine. And be sure to check out the companion website to this book for more projects
based off of the circuitry you already have purchased. We’ll do our best to update it here and there
with additional projects or updates/upgrades to the projects in this book.

If we can leave you with one bit of closing advice, it would be this: Never stop learning.

Figure 32-6.  The completed challenge

287CHAPTER 32: Challenge 8: Examining Software

Always be on the lookout for new programming techniques, new sensors, and new bits of electronic
hardware that can be integrated into new and fun gizmos. Read more electronics and Arduino
books, check out the pages of magazines like Make or Popular Mechanics, and never forget that a
Google search can provide you with an endless supply of projects to tackle. Share your gizmos with
your family and friends. And always have fun.

Thanks for joining us on the adventure!

James Floyd Kelly

Harold Timmis

289

Chapter 33
Epilogue

Three Weeks Later
Cade and Elle walked out of the detention room with big smiles on their faces. They had just
completed their after-school detention, and both students knew that the punishment could have
been much worse.

“We better hurry,” said Cade, pulling on Elle’s arm. “The presentation is going to start in ten minutes.”

“From detention to ceremony,” said Elle. “Seems strange, doesn’t it?”

“Hey, it’s an award. And my parents told me if I was late to the event they’d tell Mrs. H to put me in
detention for two more weeks. So come on!”

The students ran down the hall, turning left and right at various intersections. A few of their fellow
students milled about it in the hallways, pointing and smiling at the two young heroes. For a few
days after Elle and Cade were picked up, no one was aware of the activities that had occurred on
Gemini Station, but now the students were system-wide heroes. And the story was continuing to
make its way across the News Net. Sim-movie deals were already being offered, interviews were
given, and both students already had fan clubs asking for them to make an appearance on several
planets. It was going to be a busy summer once school ended.

Cade and Elle almost bumped into Mrs. Hondulora as they turned the corner leading to the school
gymnasium. The tall woman turned and smiled at her students.

“All done with detention, I believe?” she asked.

“Yes, ma’am,” replied both students together.

“So … no more sneaking away during field trips?” the teacher asked with a mischievous smile.

Elle nodded and looked at Cade who appeared to actually be thinking about his response. Elle
jammed her elbow into Cade’s arm.

“Oh, uh … no more sneaking,” said Cade, his face red.

290 CHAPTER 33: Epilogue

“That’s good to hear. And you’re right on time, too. They’re about to introduce you. Follow me,”
Mrs. H added as she hurried the students through a set of doors.

“ … so I hope you’ll stand with me and give a big round of applause for Cade and Elle!”

Principal Wakefield motioned in the direction of Cade and Elle, gesturing for the students to join him
on the small stage.

Cade smiled at Elle and followed her up the small stairs to stand next to their school principal. The
roomful of students, teachers, and visiting officials stood and clapped loudly. Elle and Cade were still
not used to the attention the adventure on Gemini Station had brought to their lives, but they smiled
graciously, their faces only reddening a little.

The applause died down, and Principal Wakefield asked the audience to take their seats. “We have a
few updates I believe Elle and Cade are going to enjoy, and I’ve been saving these all morning.”

Elle looked at Cade with a questioning look. She checked the status on Gunther Canvin and Gemini
Station every morning, but there had been no news over the past few days. She had started a
campaign on Andrew’s behalf, but it was growing slowly and there were not yet enough supporters
to make a noise and request a change in the AI’s current situation.

Cade responded with a shrug.

Principal Wakefield looked at his Intellitab and began to read. “First, Gunther Canvin has been found
guilty of trespassing and theft of property. The authorities claim the locked room where they found
him and dozens of expensive antiques covered with his fingerprints did help the prosecution.”

The audience laughed and clapped until the principal put up his hand to indicate there was more.

“Second, the curators of Gemini Station have announced they have signed a deal with Holos-sim
Experience to create a real-time adventure on the station that will let visitors follow Elle and Cade on
their experience in the museum.”

Elle smiled at Cade as the audience once again stood up and applauded.

“And last, but most important …”

The principal looked at Elle and Cade with a smile before continuing.

“We have a very special guest with us today who wishes to say something to Elle and Cade. Andrew,
are you with us?”

Cade and Elle both gasped, turning to look at the audience. This was something that neither of them
had ever expected.

“Yes, Principal Wakefield. I am here. Hello, Elle. Hello, Cade. It is good to speak to you again.”

Tears came to Elle’s eyes and she tried to say hello. Cade put his hand on Elle’s shoulder and smiled.
“Hello, Andrew. Elle and I have really missed you. So … what’s up?”

Cade’s question got another laugh from the audience and gave Elle time to wipe her eyes and speak.
“Hi, Andrew. I’ve been working really hard to try and get your current situation changed.”

“I know, Elle, and I am grateful. But I believe you are going to be extremely happy when you hear
what has just happened,” replied Andrew. “The station AI is being relocated and I will be given
full access and control of all day-to-day activities. I will no longer be limited to the Andrew 5.0
Experience exhibit.”

291CHAPTER 33: Epilogue

Elle hugged Cade tight as the audience stood and clapped and cheered. Principal Wakefield gave
up trying to calm the group and took a few steps back to let the two students have their moment
of celebration.

“It’s going to be okay, Elle,” said Cade. “Andrew is going to be okay.”

Elle nodded as the audience’s clapping and cheering slowly dwindled.

“Elle and Cade,” said Andrew. “I have one other announcement I think you’ll enjoy.”

Cade and Elle shared a glance, wondering how the news could get any better.

“A partnership between your school and Gemini Station has been created. I will be teaching two
classes next year—an introductory electronics course and a technology history class. I hope both
of you will consider signing up for one or both of them,” Andrew added.

“I don’t know,” said Cade. “A class in electronics sounds a bit dull.”

Elle gasped, staring at Cade in shock.

Cade tried to hold back a smile, but soon the grin appeared and Elle shoved his shoulder.

“Consider us your first students,” said Elle, as the audience began clapping again.

“You were my first students,” added Andrew. “And you both earned A’s.”

“Thanks, Andrew,” said Cade. “You were a good teacher, too.”

“Oh, and Cade … one more thing,” said Andrew.

“Yeah?” asked Cade.

“I’m going to need the laptop and toolboxes back now. It would be a shame if you had to
join Mr. Canvin for theft of property.”

Cade looked at Elle in surprise. “I think Andrew’s sense of humor is developing, don’t you?”

Elle smiled and shook her head. “Let’s not test him, okay?”

Cade grinned. “I’ll bring it all back to you tomorrow, Andrew.”

“And I’ll come with him,” added Elle.

“Excellent,” said Andrew. “And while you’re here, I’ve got a few more things that need repairing.”

“Sounds good,” said Elle.

“Yep,” said Cade. “I’m in, too.”

“You’re all dismissed,” said Principal Wakefield. “See you all back here on Monday!”

293

Appendix A
Parts List

In this appendix you’ll find the name of each challenge, followed by a short list of the components
used to complete that challenge. In most cases, we’ve used the following format to help you locate
the proper components:

Company, Description of Part, Part Number, Price

We will be maintaining an up-to-date list of the challenges and components on the book’s web site.
Visit www.arduinoadventurer.com and follow the link for Challenge Components. We will update that
online list as new parts become available and old parts are phased out of manufacture. Be sure to
check it regularly for updates or corrections.

At the time this book is going to the printer, we are trying to work with some electronics retailers to
create a parts pack for the book. We envision a collection of all the components you’ll need bundled
together to save on overall costs and shipping, as well as to simply make things easier. Once again,
be sure to visit www.arduinoadventurer.com for more information.

If parents or teachers don’t want younger readers to use wire strippers or wire cutters, a wire kit
is available from RadioShack. The kit is called the Solderless Breadboard Jumper Wire Kit and its
current URL is www.radioshack.com/product/index.jsp?productId=2103801.

Finally, if a part has an asterisk next to its listing, it means you should be able to substitute a
compatible product for the challenge. For example, you can obtain a suitable servo motor from any
local hobby shop.

Challenge 1: Potentiometer
Here are the parts needed to build the potentiometer gizmo in Challenge 1:

SparkFun, Arduino Uno R3, DEV-11021, $29.95	

RadioShack, medium solderless breadboard, 276–003, 9.99	

http://amqp.org/
http://amqp.org/
http://amqp.org/

294 APPENDIX A: Parts List

Sparkfun, 10K-ohm trimpot, COM-09806, 0.95	

RadioShack, 20AWG solid-core hookup wire, 278–1222, 8.99	

USB cable (to power Arduino, not pictured)	

Figure A-1 shows all these parts except for the USB cable.

Figure A-1.  Parts for the potentiometer challenge

Challenge 2: LED Flashlight
Here are the parts needed to build the LED flashlight gizmo in Challenge 2:

SparkFun, Arduino Uno R3, DEV-11021, 29.95	

RadioShack, 20AWG solid-core hookup wire, 278–1222, 8.99	

SparkFun, 9V connector with barrel jack, PRT-09518, 2.95	

SparkFun, mini solderless breadboard, PRT-07916, 3.95	

SparkFun, mini push buttons, COM-00097, 0.35	

RadioShack, 10mm LED, 276–005, 3.19	

SparkFun, 330-ohm resistor, COM-08377, 0.25	

9V battery (to power Arduino, not pictured)	

295APPENDIX A: Parts List

Figure A-2 shows all these parts except for the battery.

Figure A-2.  Parts for the LED flashlight challenge

Challenge 3: Temperature Detector
Here are the parts needed to build the temperature detector gizmo in Challenge 3:

SparkFun, Arduino Uno R3, DEV-11021, 29.95	

RadioShack, 20AWG solid-core hookup wire, 278–1222, 8.99	

RadioShack, medium solderless breadboard, 276–003, 9.99	

RadioShack, 10mm LED, 276–005, 3.19	

SparkFun, 330-ohm resistor, COM-08377, 0.25	

SparkFun, TMP36 temperature sensor, SEN-10988, 1.50	

USB cable (to power Arduino, not pictured)	

Figure A-3 shows all these parts except for the USB cable.

296 APPENDIX A: Parts List

Challenge 4: Motor Control
Here are the parts needed to build the motor control gizmo in Challenge 4:

SparkFun, Arduino Uno R3, DEV-11021, 29.95	

RadioShack, 20AWG solid-core hookup wire, 278–1222, 8.99	

RadioShack, 9V snap connector, 270–324, 2.69	

RadioShack, 4 AA battery holder with snap connector, 270–383, 2.29	

RadioShack, 2-position terminal block, 276–1388, 3.99	

MPJA, large solderless breadboard, 4443 TE, 4.95	

SparkFun, mini push buttons, COM-00097, 0.35 x 2	

SparkFun, 10K-ohm trimpot, COM-09806, 0.95	

SparkFun, 330-ohm resistor, COM-08377, 0.25 x 2	

SparkFun, green LED, COM-09592, 0.35	

SparkFun, red LED, COM-09590, 0.35	

Adafruit, 6V DC motor, 711, 1.95	

Adafruit, H-bridge L293D, 807, 2.50	

Figure A-3.  Parts for the temperature detector challenge

297APPENDIX A: Parts List

DigiKey, hex inverter, 296-3542-5-ND, 0.63	

4 AA batteries (to power motor, not pictured)	

USB cable (to power Arduino, not pictured)	

Figure A-4 shows all these parts except for the USB cable and batteries.

Figure A-4.  Parts for the motor control challenge

Challenge 5: Motion Detector
Here are the parts needed to build the motion detector gizmo in Challenge 5:

SparkFun, Arduino Uno R3, DEV-11021, 29.95	

RadioShack, 20AWG solid-core hookup wire, 278–1222, 8.99	

SparkFun, 9V connector with barrel jack, PRT-09518, 2.95	

RadioShack, medium solderless breadboard, 276–003, 9.99	

SparkFun, 6-pin female stackable header, PRT-09280, 0.50	

Maker Shed, PIR sensor, MKPX6, 9.99	

Adafruit, buzzer, 160, 1.50	

298 APPENDIX A: Parts List

RadioShack, 100-ohm resistor, 271–1108, 1.19	

9V battery (to power Arduino, not pictured)	

Figure A-5 shows all these parts except for the battery.

Figure A-5.  Parts for the motion detector challenge

Challenge 6: Servo Motor Control
Here are the parts needed to build the servo motor control gizmo in Challenge 6:

SparkFun, Arduino Uno R3, DEV-11021, 29.95	

SparkFun, 9V connector with barrel jack, PRT-09518, 2.95	

RadioShack, 9V snap connector, 270–324, 2.69	

RadioShack, 4 AA battery holder with snap connector, 270–383, 2.29	

RadioShack, 2-position terminal block, 276–1388, 3.99	

RadioShack, 20AWG solid-core hookup wire, 278–1222, 8.99	

Adafruit, break-away male headers, 400, 3.00	

MPJA, large solderless breadboard, 4443 TE, 4.95	

SparkFun, 10K-ohm trimpot, COM-09806, 0.95	

299APPENDIX A: Parts List

SparkFun, 330-ohm resistor, COM-08377, 0.25 x 2	

SparkFun, red LED, COM-09590, 0.35	

Adafruit, servo, 169, 5.95	 *

4 AA batteries (to power servo, not pictured)	

9V battery (to power Arduino, not pictured)	

Figure A-6 shows all these parts except for the batteries.

Figure A-6.  Parts for the servo motor control challenge

Challenge 7: Light-Sensing Motor Control
Here are the parts needed to build the light-sensing motor control gizmo in Challenge 7:

SparkFun, Arduino Uno R3, DEV-11021, 29.95	

RadioShack, 9V snap connector, 270–324, 2.69	

RadioShack, 4 AA battery holder with snap connector, 270–383, 2.29	

RadioShack, 2-position terminal block, 276–1388, 3.99	

RadioShack, 20AWG solid-core hookup wire, 278–1222, 8.99	

Adafruit, break-away male headers, 400, 3.00	

300 APPENDIX A: Parts List

MPJA, large solderless breadboard, 4443 TE, 4.95	

Adafruit, servo, 169, 5.95	 *

RadioShack, 10K-ohm resistor, 271–1335, 1.19	

SparkFun, mini photocell, SEN-09088, 1.50	

Flashlight	

4 AA batteries (to power servo, not pictured)	

USB cable (to power Arduino, not pictured)	

Figure A-7 shows all these parts except for the flashlight, the USB cable, and the batteries.

Figure A-7. Parts for the Light Sensing Motor Control challenge

Challenge 8: Build Your Own Robot
Here are the parts needed to build the robot gizmo in Challenge 8:

SparkFun, Arduino Uno R3, DEV-11021, 29.95	

SparkFun, Magician Chassis, ROB-10825, 14.95	

RadioShack, 20AWG solid-core hookup wire, 278–1222, 8.99	

RadioShack, medium solderless breadboard, 276–003, 9.99	

301APPENDIX A: Parts List

RadioShack, 4 AA battery holder, 270–391, 2.19	

RadioShack, 2-position terminal block, 276–1388, 3.99	

Adafruit, H-bridge L293D, 807, 2.50	

DigiKey, hex inverter, 296-3542-5-ND, 0.63	

4 x 4 in. Velcro with adhesive backing	

8 AA batteries (to power Arduino and motors, not pictured)	

Figures A-8 and A-9 shows all these parts except for the batteries.

Figure A-8.  Parts for the build-your-own robot challenge

302 APPENDIX A: Parts List

Tools
Two tools are also recommended—a wire cutter and a wire stripper, both shown in Figure A-10.

Figure A-9.  The robot chassis for the build-your-own robot challenge

Figure A-10.  Wire cutter (right) and wire stripper (left)

303

■ A, B
Amperage, 52
Andrew

Bay Seven, 244
bay’s speaker system, 241
million bonus points, 241
shuttle bay’s surveillance system, 244
shuttle’s communication system, 242

Andrew 5.0, 4, 11, 113, 149
challenge 3 gizmo, 85
gizmo #1, 28
homework, 23
potentiometer, 21

Arduino, 215, 217
AC adapter, 12
battery harness, 12
challenges, 11
colonial gardening techniques, 13
definition, 10
headers, 12
IDE, 14
LED blink, 13
math calculations, 12
processor, 12
program, 13
sketches, 13
software installation, 14
Uno microcontroller, 10
uses, 13

Arduino flashlight
Challenge #2 gizmo

buttonPin, 67
challenge card, 68
digital pin 6 (D6), 67
digital pin 12 (D12), 67
digital pins, 67
software, 66

LEDs, 69
pull-up resistor, 68

functions, 65
Arduino gizmo, 79
Arduino IDE

Andrew 5.0, 34
Challenge #1 sketch

beginning of, 34
listening, 35
potentiometer settings, 37
result, 38
scrolling values, 39
sensorValue, 36
serial port configuration, 35
variable resistor, 36

software, 33
window

black rectangle, 33
serial monitor, 33
special colors, 33
upload button, 32
verify button, 32

Arduino microcontrollers, 8, 81
Arduino Uno, 23, 75
Audi-Timmis Mark IV lander, 242
Automatic plant watering device, 80

■ C
Cade

airlock door, 243
docked shuttles, 242
Gemini Station, 243
panel facing, 243
pre-flight configurations, 242
starboard hull plating, 243
toolbox, 241
zero tension, 244

Index

Index304

Cade and Elle
adventure, Gemini Station, 290
after-school detention, 289
campaign, Andrew’s behalf, 290
celebration moments, 291
electronics and history courses, 291
gymnasium, 289
laptop and toolboxes, 291
museum experience, 290
system-wide heroes, 289

Challenge 3 gizmo
LED

Arduino, solderless bread board, 88
attach digital pin 13, 89
positive lead resistor, 87
solderless breadboard, 86

sensor
Arduino Uno, 83
LED, 85
temperature sensor, 83
TMP36 pinout, 84

TMP36
analog input pin 0, 92
Connect power (+5v) and ground, 91
solderless breadboard, 90

Challenge 4, 131
gizmo, 139
LED

analog pin, 134
button state, 138
ellipsis, 135
initial value, 134

sketch, 134
Circuitry

Arduino
H-bridge, 125
LEDs, 127
potentiometer, 128
push buttons, 126
5V power and ground, 129

H-bridge
breadboard, 118
DC motor, 122
ground strip, 120
motors, 116
pins 3 and 6, 121
16 pins, 117
PWM, 116

supply power, 120
tool bucket, 116
voltage, 116

hex inverter
14 pins, 117
breadboard, 118
integrated circuit, 117
set up, 121

LEDs, 123
motor-control gizmo, 130
330-ohm resistor, 124
2-position terminal block, 119
potentiometer and 5V power, 122
push buttons, 123

Circuits
Arduino, 161
buzzer

ground rail, 159
100-ohm resistor, 160
piezoelectric disk, 153
solderless breadboard, 158

motion detector, 152
6-pin-female-stackable-header, 155
PIR sensor

GND pin, 153
L setting, jumper, 154
6-pin-female-stackable-header, 156
5V power and ground, 157

power cord, 165
power holes and ground column, 161

Communication satellite, 71

■ D
Damage assessment

communication node, 42
data feeds, 44
door’s entry code, 41
hand-made flashlight, 43
interface panel, 44
labeled node access, 44
LEDs, 43
mandatory evacuation, 42
password, 45
primary control unit, 42

digitalRead, 66
Digital thermometer, 74
digitalWrite, 66
Duct-tape patches, 242

Index 305

■ E
Elle

airlock door, 243
co-pilot’s chair, 242
duct-tape stuck, 243
exam, 242
laptop bag, 242
shuttle, 242
toolbox, 241

Elle and Cade
chutes and ladders, 73–74
emergency protocols, 142
evacuation pods, 142–145
green-painted hatches, 74
holographic exhibit door, 71
Level 2 hallway, 71
motion detector, 145–146
override device, 141
pedestal, 72–73
satellite impact, 71

Emergency ladder tube, 73
Emergency protocols, 142

■ F
Fan controller, 80
Flashlight battery

AC adapter, 48
current flow, 51
electronics components, 51
LEDs, 48
positive and negative terminals, 49
short-circuit, 50
9V battery, 48

Flowerbed protection device, 80

■ G
Gemini Station

Andrew 5.0, 4
Arduino microcontroller, 8
computing and electronics, 1
damage-control network, 6
distortion problem, 1
escape pods, 6
levels, 2
Microcontroller Hands-On Exhibit, 4
plan, 6

Pre-2050 Video Game Technology, 1
and Taurus Station, 2
trouble, 1

Gizmo, 219
Arduino Uno, 8, 149
ANDREW 5.0, 149
black rectangular bits, 111
build-your-own robot, 301
buzzer, 149
DC motor, 217
emergency tube, 216, 218
flashlight, 218
H-bridge, 111
hex inverter, 111
ICs, 111
internet, 220
kit, 293
LadyAda, 217
LEDs, 110, 294
light-sensing motor control, 299
light sensor, 216
motion detector, 297–298
motor connection, 110
motor control, 296–297
passive infrared sensor, 149
photoresistor, 216–217, 220–232

analog pin 0, 229–230
Arduino, 221
breadboard positions, 222
ground rail, 225–227
jumper wire, 224, 228
10K-ohm resistor, 224–225
metal leg, 220–221
photoconductive, 220
3-pin male stackable header, 221–222
potentiometer, 293–294
power, 228–229
servo’s signal pin, 230–231
two-position terminal block, 222–223
USB cable, 231–232
6V battery pack, 232

resistor, 217
robot, 300, 302
security duty, 148
servo motor control, 217, 298–299
sound sensor, 215
square-shaped item, 149
temperature detector, 295–296

Index306

trigger, 220
variations, 218
9V battery connection, 110
wire cutter and stripper, 302

Gizmo #1
ANDREW 5.0, 28
Arduino’s Analog Input 0 (A0), 29
Arduino Uno, 25
completed circuit, 30
insert potentiometert, breadboard, 27

Gizmo #2
completed gizmo, 64
ground wire, 60
jumper wire

digital pin 6, 63
digital pin 12, 62
H-11 to H-1, 60

solderless breadboard
LED, 57, 59
resistor, 58

9V battery connector, 56
Green-painted hatches, 74

■ H
Hardware

Arduino Uno, 23
chassis

AA battery holder, 257
Arduino placement, 255–256
breadboard, 258
D-4, 265
D-10, 265
DC motors, 253
final wiring, 269
green jumper wires, 262
H-bridge and Hex inverter, 259
I-10, breadboard, 267
J-11, 266
power and ground connections, 261
standoffs, 254
two-position terminal

block, 261
Velcro attachment, 256
5V pin, 263

electricity, 20
Gizmo #1, 25
potentiometer, 20–21

solderless breadboard, 22
wire, 25

Hex inverter, 111
Holographic exhibit door, 71

■ I, J, K
Intellitab, 7

■ L
LadyAda, 217
Light emitting diodes (LEDs), 43, 54, 294–295
Light-sensing motor control, 299–300

■ M, N, O
Maintenance tunnels, 72
Motion detector, 146

antique devices, 173
circular compartment, 176
elevators, 176
emergency tube, 174
flashing lights, 175
life support, 175
maintenance and engineering section, 174
parts, 297–298
power compartment, 177
station’s sound sensors, 173
transpara-steel, 176

Motor control
parts, 296–297
motor plus popsicle stick approach, 215

■ P, Q
Passive infrared (PIR) sensor, 152

ANDREW 5.0, 149
breadboard, 149
buzzer, output device, 168
If-Else statement, 171
infrared light changes, 149
infrared radiation, 168
input device, 168
motion detection, 169
motion detector, 172
pin initializations, 170
pinMode function, 171
PIRState, 170
room or hallway mointoring, 149

Gizmo (cont.)

Index 307

spinning motor, 150
tone function, 168
9V battery, Arduino, 172

Photoresistor, 220
Potentiometer, 20, 293–294
Power button

communication channels, 212
control center, 212
emergency tube, 213
flashlight, 214
photoresistor, 214
shuttle’s controls, 211

Pre-2050 Video Game Technology, 1
Pulse-width modulation (PWM), 116
Push button

closed switches, 54
electrical component, 53
Gizmo #2

completed gizmo, 64
digital pin jumper wire, 6, 12, 62–63
ground wire, 60
LED, solderless breadboard, 57
resistor, solderless breadboard, 58
9V battery connector, 56

light emitting diode, 54
open switches, 54
resistor, 55

■ R
Remote control, 215
Robots

basic components
body, 248
motors and wheels, 248

Chassis
Andrew, 251
Arduino, 251
cost of, 249
fully assembled, 250
method of movement, 249
Spin, 249

parts, 300–301

■ S
Servo library

final gizmo, 209
instance, 202

modVal variable, 206
potentiometer, 205
potVal variable, 207
serial monitor, 201, 208
Servo.attach(int pin), 203
Servo.write(int value), 203
structure, 205
9V connector, 207
visual feedback, 202
write function, 206

Servo motor
AC adapter, 182
Arduino

analog pin 0, 196
digital pin 7, 198
digital pin 11, 197
5v power, 195
9V connector, 190

DC motor, 185
final circuit, 179, 198
ground strips, 189
individual components, 182
LED, 181
light sensor, 184
male stackable header, 188
microcontroller, 184
non-electronic parts, 181
potentiometer, 181, 184
rotational capabilities, 181
rotory encoder, 184
serial monitor, 184
solderless bread board

10K-ohm potentiometer, 187
LED, 188
resistor, 193
terminal block, 187

two-position terminal block, 194
9V battery harness, 182
wiring works, 185

Servo motor control, 298–299
Shuttle 77-A9, 243
Shuttle’s communication system, 242
Software examination

functions, 272
Serial Monitor, 238
sketch

AA battery holder, 284
analogRead, 233

Index308

battery holders, 281
black wire, H-9, 282
closing } bracket:, 235
Controlling a Servo with Light, 233–234
delay(tdelay), 278
digitalWrite(DirPin1, HIGH), 278
Else statement, 236
Forward function, 277
If-Else statement, 236
// function prototypes, 273
#include<servo.h> command, 235
// initailize direction pins, 273
leftTurn function, 279
loop structure, 235
myServo.write function, 236
motors attachment, 283
photoPin variable, 236
photoVal variable, 237
PWMPin1, 275
PWM pins, 273
Reverse function, 280
screws, 281
Stop function:, 280
turnRight function, 277, 279
variables, 235
variables name and type, 276
void Forward(int tdelay), 274, 278
void loop(), 273, 276
void Reverse(int tdelay), 274
void setup(), 273, 276
void Stop(int tdelay), 275
void turnLeft(int tdelay), 274
void turnRight(int tdelay), 274
6V power, 284

6V battery holder attachment, 237
Solderless breadboard, 22

■ T, U
Temperature

control panel, 106
emergency access tube, 104
escape pods, 104
Gemini Station, 106
hatch seal, 103
life support controls, 106
maintenance tunnels, 105
Taurus Station, 106
tool transfer bucket, 107
vehicle protocols, 105

Temperature detector, 295–296
Temperature sensor

Arduino gizmo, 79
Celsius-to-Fahrenheit

conversion, 78
Challenge #3 Sketch

reading temperature, 98
tempPin and LEDPin, 99
voltage value, 99

conditional If-Else statement, 96
flexibility, 78
glass-tube thermometer, 78
LED, 101
nesting, 101
serial monitor, 101

Three-dimensional printing, 72

■ V, W, X, Y, Z
9V battery

Arduino power port, 50
same end terminals, 48

Video surveillance system, 73, 141

Software examination (cont.)

Arduino Adventures
Escape from Gemini Station

James Floyd Kelly
Harold Timmis

Arduino Adventures: Escape from Gemini Station

Copyright © 2013 by James Floyd Kelly and Harold Timmis

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material
is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval,
electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.
Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material
supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the
purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the
Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from
Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are
liable to prosecution under the respective Copyright Law.

ISBN-13 (pbk): 978-1-4302-4605-3

ISBN-13 (electronic): 978-1-4302-4606-0

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an editorial fashion
and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified
as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication, neither
the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may
be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

President and Publisher: Paul Manning
Lead Editor: Jonathan Gennick
Technical Reviewers: Jeff Gennick and Andreas Wischer
Editorial Board: Steve Anglin, Ewan Buckingham, Gary Cornell, Louise Corrigan, Morgan Ertel,

Jonathan Gennick, Jonathan Hassell, Robert Hutchinson, Michelle Lowman, James Markham,
Matthew Moodie, Jeff Olson, Jeffrey Pepper, Douglas Pundick, Ben Renow-Clarke, Dominic Shakeshaft,
Gwenan Spearing, Matt Wade, Tom Welsh

Coordinating Editor: Kevin Shea
Copy Editor: Sharon Terdeman
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or visit
www.springeronline.com.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Special Bulk Sales–eBook
Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary materials referenced by the author in this text is available to readers
at www.apress.com. For detailed information about how to locate your book’s source code, go to
www.apress.com/source-code.

orders-ny@springer-sbm.com
orders-ny@springer-sbm.com
orders-ny@springer-sbm.com
orders-ny@springer-sbm.com
orders-ny@springer-sbm.com
orders-ny@springer-sbm.com
orders-ny@springer-sbm.com

To all those who aspire to learn, and teach, for the betterment of society

—Harold Timmis

This book is for Decker and Sawyer – my two little inspirations.

—James Floyd Kelly

vii

Contents

About the Authors���xiii

About the Technical Reviewers��� xv

Acknowledgments��� xvii

Introduction�� xix

Chapter 1: Trouble at Gemini Station■■ ��1

Trouble Begins��1

On the Level, or Not?��2

Andrew 5.0���4

Boom!���4

Escape, or Not��6

A Plan���6

Chapter 2: Challenge 1: Fun Stuff to Know■■ ���9

What Is an Arduino?���10

Giving an Arduino a Job to Do��12

Installing the Software���14

Things to Watch for on Windows�� 14

The Development Environment��� 16

Ready to Build Something?��18

viii Contents

Chapter 3: Challenge 1: Examining the Hardware■■ ��19

Locating the Parts You’ll Need��19

Potentiometer��� 20

Solderless Breadboard��� 22

The Arduino Uno��� 23

Wire�� 25

Let’s Build Gizmo #1���25

What’s Next?��30

Chapter 4: Challenge 1: Examining the Software■■ ���31

The Arduino IDE��31

The Challenge #1 Sketch��33

Beginning the Sketch��� 34

Configuring the Serial Port��� 35

Listening on the Serial Port�� 35

Translating the Input into Digits�� 37

Displaying the Result�� 38

Solving Challenge #1��39

Chapter 5: Damage Assessment■■ ���41

The Face of Andrew��41

An Embarrassed Cade��43

The Unlocking���44

Chapter 6: Challenge 2: Fun Stuff to Know■■ ���47

Let’s Look at a Battery���48

And Now a Circuit���50

Current Flow���51

Ready to Build Something?��52

Chapter 7: Challenge 2: Examining the Hardware■■ ��53

The Push Button���53

The Light Emitting Diode��54

ixContents

The Resistor���55

Let’s Build Gizmo #2���56

What’s Next?��64

Chapter 8: Challenge 2: Examining the Software■■ ���65

Functions Explained���65

The Challenge 2 Sketch��66

Solve Challenge #2���68

Chapter 9: Feeling The Heat■■ ��71

On a Pedestal���72

Chutes and Ladders���73

Green-eyed Hatches���74

Chapter 10: Challenge 3: Fun Stuff to Know■■ ���77

Looking at the Temperature Sensor���77

Ready to Build Something?��81

Chapter 11: Challenge 3: Examining the Hardware■■ ��83

What Is a Sensor?��83

Let’s Build Gizmo 3!��85

Chapter 12: Challenge 3: Examining the Software■■ ���95

The Conditional If-Else Statement��96

The Challenge #3 Sketch��97

Solve Challenge #3���101

Chapter 13: Uninvited Guest■■ ���103

Upward���103

Spooky?��104

Urgency!���105

Danger!���106

Bucket��107

x Contents

Chapter 14: Challenge 4: Fun Stuff to Know■■ ���109

Looking at the Bucket Mover���110

Understanding the ICs��111

Ready to Build Something?��113

Chapter 15: Challenge 4: Examining the Hardware■■ ��115

New Hardware��115

Let’s Build Gadget #4���118

Chapter 16: Challenge 4: Examining the Software■■ ���131

The Challenge 4 Sketch��132

Breaking It Down��134

Solve Challenge 4���138

Chapter 17: Hide and Seek■■ ���141

The Crossing��141

Five Minutes!��142

Run!��144

Walk���145

Chapter 18: Challenge 5: Fun Stuff to Know■■ ���147

Let’s Look at the Challenge 5 Gizmo��148

Ready to Build Something?��150

Chapter 19: Challenge 5: Examining the Hardware■■ ��151

A Closer Look at the PIR Sensor���152

Let’s Build The Challenge 5 Gizmo���154

Chapter 20: Challenge 5: Examining the Software■■ ���167

Thinking Through the Solution���167

Understanding the Tone Function���168

The Challenge #5 Sketch��169

Solve Challenge #5���172

xiContents

Chapter 21: Carousel Ride■■ ��173

Close Call��173

Nothing To See Here���174

An Engineering Problem���175

Chapter 22: Challenge 6: Fun Stuff to Know■■ ���179

Let’s Look at the Challenge 6 Gizmo��179

Ready to Build Something?��182

Chapter 23: Challenge 6: Examining the Hardware■■ ��183

A Closer Look at a Servo Motor��184

Let’s Build the Challenge 6 Gizmo��186

Chapter 24: Challenge 6: Examining the Software■■ ���201

Servo Library Explained���202

The Challenge #6 Sketch��203

Solve Challenge #6���207

Chapter 25: Push the Button■■ ��211

Backup Plan���211

Control Center��212

Crazy Plan��212

The Flashlight���214

Chapter 26: Challenge 7: Fun Stuff to Know■■ ���215

Let’s Look at the Challenge 7 Gizmo��216

Ready to Build Something?��218

Chapter 27: Challenge 7: Examining the Hardware■■ ��219

A Closer Look at a Photoresistor��220

Let’s Build the Challenge 7 Gizmo��221

Chapter 28: Challenge 7: Examining Software■■ ���233

The Challenge #7 Sketch��233

Solve Challenge #7���237

xii Contents

Chapter 29: Off the Station■■ ���241

The Hulk���241

Launch Problem���242

The Final Fix���244

Chapter 30: Challenge 8: Fun Stuff to Know■■ ���247

The Basic Components���248

Let’s Look at the Challenge 8 Chassis��249

Ready to Build Something?��252

Chapter 31: Challenge 8: Examining the Hardware■■ ��253

New Hardware��253

Let’s Build Gizmo #8���254

Chapter 32: Challenge 8: Examining Software■■ ���271

Functions Explained���271

The Challenge #8 Sketch��273

Solve Challenge #8���281

You’re Not Done!���286

Chapter 33: Epilogue■■ ��289

Three Weeks Later��289

Appendix A: Parts List■■ ��293

Challenge 1: Potentiometer��293

Challenge 2: LED Flashlight��294

Challenge 3: Temperature Detector��295

Challenge 4: Motor Control���296

Challenge 5: Motion Detector���297

Challenge 6: Servo Motor Control���298

Challenge 7: Light-Sensing Motor Control��299

Challenge 8: Build Your Own Robot��300

Tools���302

Index��303

xiii

About the Authors

James Floyd Kelly has degrees in English and engineering, the perfect
combination for writing about science and technology. He lives in
Atlanta with his wife and two young boys, and he always loves to learn
new skills. He has written books that teach readers how to build their
own CNC machines and 3D printers, books for kids that teach them
how to build and program LEGO robotics, and books on many other
topics. He loves to tinker in his workshop and is hard at work on
more books.

Harold Timmis studied computer engineering at the Florida Institute
of Technology in Melbourne, Florida. He has been working as a test
engineer for the past four years at several corporations, including
General Electric, Mercury Marine, and Avidyne. He also enjoys
integrating hardware and software into complex robotic systems.

xv

About the Technical
Reviewers

Jeff Gennick is an avid gamer and all-around technology enthusiast.
He is a high school junior from Munising, in Michigan’s Upper
Peninsula. Jeff lives six blocks from Lake Superior, in a snow belt
though he is decidedly not a snow person and prefers to spend a cold
winter’s evening huddled around a hot, Steam-powered game on the
gaming rig he spec’d, paid for, and assembled himself. Jeff enjoys
technology and sometimes helps his father test the projects in
hands-on books, such as the one you’re holding now.

Andreas Wischer lives in Paderborn, Germany. While reading about
Gemini Station in this book he found astonishing similarities to the
world’s biggest computer museum located in his home town. Andreas
holds a degree in electronics and has worked as a software consultant
throughout Europe for more than 10 years. He currently works as an IT
professional for a big electronic supplier.

xvii

Acknowledgments

First, my heartfelt thanks go to my wonderful wife, Alexandria. Without her support, I could not
have written this book. I would also like to thank my family and friends who supported me on this
adventure: Mom, Dad, George, Amanda, you guys always help me believe in myself. And a special
thank you to my Aunt Sue, who inspired me to write for the rest of my life.

I am also grateful to the Arduino team for developing the incredible piece of hardware known as
the Arduino, and to all of the venders that distribute such high-quality components—SparkFun,
RadioShack, Adafruit, and MakerSHED.

This book would have never have sounded half as impressive without the great editing skills of
Jonathan Gennick, Kevin Shea, and the entire Apress team.

Finally, a very special thanks to our technical reviewers, Jeff Gennick and Andreas Wischer, who did
a great job giving Jim and me feedback on this book.

Harold Timmis

Getting this book written, edited, and in your hands required a lot of hard work. I’d like to offer a very
big thank you to Kevin Shea at Apress for his patience, hard work, and tenacity in keeping his two
authors on track. If you like this book, Kevin had a big part to play in that.

Another thanks goes to Jonathan Gennick at Apress. I’ve been writing for Jonathan for quite a few
years now and I consider him a good friend. Most readers are unaware of the hard work that goes on
in just getting a book approved; Jonathan believed in our idea and made it happen.

This book also had some great technical reviewers, Jeff and Andreas. They caught our errors and
helped make this book that much better. Any errors you may find are those of the authors. Just be
sure to check our web site, arduinoadventurer.com, for any updates or fixes to problems we discover
later. A special thanks goes to Jeff, who has been with us since the first few chapters and provided
some great feedback that helped us improve the book from the start. His suggestions on how we
could better explain wiring up the hardware are much appreciated.

arduinoadventurer.com

xviii Acknowledgments

Of course, my family has been completely supportive as I’ve worked on this book. My wife, Ashley,
has always encouraged my career, and my two boys are my daily inspiration as I see their wide eyes
taking in all the cool gadgets in my office. It’s hard not to be excited about a book when the end
result is something that will almost certainly benefit my sons once they’re a bit older.

James Floyd Kelly

	Arduino Adventures
	Contents at a Glance
	Contents
	About the Authors
	About the Technical Reviewers
	Acknowledgments
	Introduction
	Chapter 1: Trouble at Gemini Station
	Trouble Begins
	On the Level, or Not?
	Andrew 5.0
	Boom!
	Escape, or Not
	A Plan

	Chapter 2: Challenge 1: Fun Stuff to Know
	What Is an Arduino?
	Giving an Arduino a Job to Do
	Installing the Software
	Things to Watch for on Windows
	The Development Environment

	Ready to Build Something?

	Chapter 3: Challenge 1: Examining the Hardware
	Locating the Parts You’ll Need
	Potentiometer
	Solderless Breadboard
	The Arduino Uno
	Wire

	Let’s Build Gizmo #1
	What’s Next?

	Chapter 4: Challenge 1: Examining the Software
	The Arduino IDE
	The Challenge #1 Sketch
	Beginning the Sketch
	Configuring the Serial Port
	Listening on the Serial Port
	Translating the Input into Digits
	Displaying the Result

	Solving Challenge #1

	Chapter 5: Damage Assessment
	The Face of Andrew
	An Embarrassed Cade
	The Unlocking

	Chapter 6: Challenge 2: Fun Stuff to Know
	Let’s Look at a Battery
	And Now a Circuit
	Current Flow
	Ready to Build Something?

	Chapter 7: Challenge 2: Examining the Hardware
	The Push Button
	The Light Emitting Diode
	The Resistor
	Let’s Build Gizmo #2
	What’s Next?

	Chapter 8: Challenge 2: Examining the Software
	Functions Explained
	The Challenge 2 Sketch
	Solve Challenge #2

	Chapter 9: Feeling The Heat
	On a Pedestal
	Chutes and Ladders
	Green-eyed Hatches

	Chapter 10: Challenge 3: Fun Stuff to Know
	Looking at the Temperature Sensor
	Ready to Build Something?

	Chapter 11: Challenge 3: Examining the Hardware
	What Is a Sensor?
	Let’s Build Gizmo 3!

	Chapter 12: Challenge 3: Examining the Software
	The Conditional If-Else Statement
	The Challenge #3 Sketch
	Solve Challenge #3

	Chapter 13: Uninvited Guest
	Upward
	Spooky?
	Urgency!
	Danger!
	Bucket

	Chapter 14: Challenge 4: Fun Stuff to Know
	Looking at the Bucket Mover
	Understanding the ICs
	Ready to Build Something?

	Chapter 15: Challenge 4: Examining the Hardware
	New Hardware
	Let’s Build Gadget #4

	Chapter 16: Challenge 4 : Examining the Software
	The Challenge 4 Sketch
	Breaking It Down
	Solve Challenge 4

	Chapter 17: Hide and Seek
	The Crossing
	Five Minutes!
	Run!
	Walk

	Chapter 18: Challenge 5: Fun Stuff to Know
	Let’s Look at the Challenge 5 Gizmo
	Ready to Build Something?

	Chapter 19: Challenge 5: Examining the Hardware
	A Closer Look at the PIR Sensor
	Let’s Build The Challenge 5 Gizmo

	Chapter 20: Challenge 5: Examining the Software
	Thinking Through the Solution
	Understanding the Tone Function
	Solve Challenge #5

	Chapter 21: Carousel Ride
	Close Call
	Nothing To See Here
	An Engineering Problem

	Chapter 22: Challenge 6: Fun Stuff to Know
	Let’s Look at the Challenge 6 Gizmo
	Ready to Build Something?

	Chapter 23: Challenge 6: Examining the Hardware
	A Closer Look at a Servo Motor
	Let’s Build the Challenge 6 Gizmo

	Chapter 24: Challenge 6: Examining the Software
	Servo Library Explained
	The Challenge #6 Sketch
	Solve Challenge #6

	Chapter 25: Push the Button
	Backup Plan
	Control Center
	Crazy Plan
	The Flashlight

	Chapter 26: Challenge 7: Fun Stuff to Know
	Let’s Look at the Challenge 7 Gizmo
	Ready to Build Something?

	Chapter 27: Challenge 7: Examining the Hardware
	A Closer Look at a Photoresistor
	Let’s Build the Challenge 7 Gizmo

	Chapter 28: Challenge 7: Examining Software
	Solve Challenge #7

	Chapter 29: Off the Station
	The Hulk
	Launch Problem
	The Final Fix

	Chapter 30: Challenge 8: Fun Stuff to Know
	The Basic Components
	Let’s Look at the Challenge 8 Chassis
	Ready to Build Something?

	Chapter 31: Challenge 8: Examining the Hardware
	New Hardware
	Let’s Build Gizmo #8

	Chapter 32: Challenge 8: Examining Software
	Functions Explained
	The Challenge #8 Sketch
	Solve Challenge #8
	You’re Not Done!

	Chapter 33: Epilogue
	Three Weeks Later

	Appendix A: Parts List
	Challenge 1: Potentiometer
	Challenge 2: LED Flashlight
	Challenge 3: Temperature Detector
	Challenge 4: Motor Control
	Challenge 5: Motion Detector
	Challenge 6: Servo Motor Control
	Challenge 7: Light-Sensing Motor Control
	Challenge 8: Build Your Own Robot
	Tools

	Index

