

	

Freescale	ARM	Cortex-M	Embedded
Programming
Using	C	Language

	

	
	

Muhammad	Ali	Mazidi
Shujen	Chen
Sarmad	Naimi
Sepehr	Naimi

	
	

	
Copyright	©	2014	Mazidi	and	Naimi

All	rights	reserved
	

	
“Regard	man	as	a	mine	rich	in	gems	of	inestimable	value.
Education	can,	alone,	cause	it	to	reveal	its	treasures,	and

enable	mankind	to	benefit	therefrom.”
Baha’u’llah

	

	

Dedication
To	the	faculty,	staff,	and	students	of	BIHE	university	for	their	dedication	and

steadfastness.

	

	

	

Preface
Since	the	early	2000s,	hundreds	of	companies	have	licensed	the	ARM	CPU

and	 the	 number	 of	 licensees	 is	 growing	 very	 rapidly.	 While	 the	 licensee	 must
follow	the	ARM	CPU	architecture	and	 instruction	set,	 they	are	 free	to	 implement
peripherals	 such	 as	 I/O	ports,	ADCs,	 Timers,	DACs,	SPIs,	 I2Cs	 and	UARTs	as
they	please.	In	other	words,	while	one	can	write	an	Assembly	language	program
for	the	ARM	chip,	and	it	will	run	on	any	ARM	chip,	a	program	written	for	the	I/O
ports	of	an	ARM	chip	for	company	A	will	not	run	on	an	ARM	chip	from	company	B.
This	 is	due	 to	 the	 fact	 that	 special	 function	 registers	and	 their	 physical	 address
locations	 to	 access	 the	 I/O	 ports	 are	 not	 standardized	 and	 every	 licensee
implements	 it	differently.	We	have	dedicated	the	first	volume	in	this	series	to	the
ARM	 Assembly	 language	 programming	 and	 architecture	 since	 the	 Assembly
language	is	standard	and	runs	on	any	ARM	chip	regardless	of	who	makes	them.
Our	ARM	Assembly	book	is	called	“ARM	Assembly	Language	Programming	and
Architecture”	 and	 is	 available	 from	 Amazon	 in	 Kindle	 format.	 See	 the	 following
link:

http://www.amazon.com/Assembly-Language-Programming-Architecture-
ebook/dp/B00ENJPNTW/ref=sr_1_1

For	 the	 peripheral	 programming	 of	 the	 ARM,	 we	 had	 no	 choice	 but	 to
dedicate	 a	 separate	 volume	 to	 each	 vendor.	 This	 volume	 covers	 the	 peripheral
programming	of	the	Freescale	ARM	KL25Z	chip.	Throughout	the	book,	we	use	C
language	to	access	the	special	function	registers	and	program	the	Freescale	ARM
FRDM	peripherals.	We	have	provided	a	couple	of	Assembly	 language	programs
for	 I/O	 ports	 in	 Chapter	 2	 for	 those	 who	 want	 to	 experiment	 with	 Assembly
language	in	accessing	the	I/O	ports	and	their	special	function	registers.	These	few
Assembly	 language	programs	also	help	 to	 see	 the	 contrast	 between	 the	C	and
Assembly	versions	of	the	same	program	in	ARM.

Two	approaches	in	programming	the	ARM	chips
When	you	program	an	ARM	chip,	you	have	two	choices:

1.							Use	the	functions	written	by	the	vendor	to	access	the	peripherals.	The
vast	majority	of	 the	vendors/companies	making	 the	ARM	chip	provide	a
proprietary	device	library	of	functions	allowing	access	to	their	peripherals.
These	device	 library	 functions	are	copyrighted	and	cannot	be	used	with
another	 vendor’s	 ARM	 chip.	 For	 students	 and	 developers,	 the	 problem
with	this	approach	is	you	have	no	control	over	the	functions	and	it	is	very
hard	to	customize	them	for	your	project.

2.	 	 	 	 	 	 	The	 second	 approach	 is	 to	 access	 the	 peripheral’s	 special	 function
registers	 directly	 using	C	 language	 and	 create	 your	 own	 custom	 library
since	you	have	total	control	over	each	function.	Much	of	 these	functions
can	be	modified	and	used	with	another	vendor	if	you	decide	to	change	the
ARM	chip	vendor.	In	this	book,	we	have	taken	the	second	approach	since

http://www.amazon.com/Assembly-Language-Programming-Architecture-ebook/dp/B00ENJPNTW/ref=sr_1_1

our	primary	goal	 is	 to	 teach	how	 to	program	 the	peripherals	of	an	ARM
chip.	We	know	this	approach	is	difficult	and	tedious,	but	the	rewards	are
great.

Compilers	and	IDE	Tools
For	 programming	 the	 ARM	 chip,	 you	 can	 use	 any	 of	 the	 widely	 available

compilers	from	Keil	(www.keil.com),	IAR	(www.IAR.COM)	or	any	other	one.	Some
vendors	 also	 provide	 their	 own	 compiler	 IDE	 for	 their	 ARM	 chips.	 Freescale
provides	 Kinetis	 Software	 Development	 kit	 (SDK)
http://www.freescale.com/webapp/sps/site/prod_summary.jsp?
code=KINETIS_SDK	 free	of	 charge.	For	 this	book,	we	have	used	 the	Keil	ARM
compiler	 IDE	 to	write	and	 test	 the	programs.	They	do	work	with	other	compilers
including	the	Freescale	Kinetis	SDK.

Freescale		ARM	Trainer
The	Freescale	has	many	 inexpensive	 trainers	 for	 the	ARM	Cortex	Kinetis.

Among	them	is	Freesacle	FRDM	KL25Z	board.		Although	we	used	the	Freescale
FRDM	KL25Z	board	to	test	the	programs,	the	programs	runs	on	other	Freescale
kits	 as	 long	 as	 they	 are	 based	 on	 KL25	 Series	 ARM®	 Cortex™-M0+	 based
microcontrollers	series.

Chapters	Overview
In	Chapter	1,	we	examine	the	C	language	data	types	for	32-bit	systems.	We

also	 explore	 the	 new	 ISO	 C99	 data	 types	 since	 they	 are	 widely	 used	 in	 IDE
compilers	for	the	embedded	systems.

Chapter	 2	 examines	 the	 simple	 I/O	 port	 programming	 and	 shows	 sample
programs	 on	 how	 to	 access	 the	 special	 function	 registers	 associated	 with	 the
general	purpose	I/O	(GPIO)	ports.

Chapter	3	shows	the	interfacing	of	the	ARM	chip	with	the	real-world	devices:
LCD	and	keypad.	It	provides	sample	programs	for	the	devices.

In	 Chapter	 4,	 the	 interfacing	 and	 programming	 of	 serial	 UART	 ports	 are
examined.

Chapter	5	is	dedicated	to	the	timers	in	ARM.	It	also	shows	how	to	use	timers
as	an	event	counter.

The	Interrupt	programming	of	the	ARM	is	discussed	in	Chapter	6.

Chapter	7	examines	the	ADC	and	DAC	concepts	and	shows	how	to	program
them	 with	 the	 ARM	 chip.	 It	 also	 examines	 the	 sensor	 interfacing	 and	 signal
conditioning.

Chapter	8	covers	the	SPI	protocol	and	interfacing	with	sample	programs	in
ARM.

The	 I2C	bus	protocol	and	 interfacing	of	an	 I2C	based	RTC	 is	discussed	 in

http://www.keil.com
http://www.IAR.COM
http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=KINETIS_SDK

Chapter	9.

Chapter	10	explores	the	relay	and	stepper	motor	interfacing	with	ARM.

The	DC	motor	and	PWM	are	examined	in	Chapter	11.

The	Graphics	LCD	concepts	and	programming	are	discussed	in	Chapter	12.

Many	high-end	of	ARM	motherboards	 use	DRAM	memory.	 In	Chapter	 13,
we	examine	the	basic	concepts	of	the	DRAM	memory	chips.

The	Cache	memory	 concepts	 and	 organizations	 are	 discussed	 in	Chapter
14.	Although	many	low-end	of	ARM	microcontrollers	do	not	have	on-chip	cache,
all	the	high-performance	ARM	chips	come	with	on-chip	cache.

The	 Virtual	 memory	 and	 memory	 management	 unit	 (MMU)	 features	 are
available	 in	 the	 ARM	 R	 series.	 We	 explore	 the	 MMU	 of	 ARM	 in	 Chapter	 15.
Chapter	15	also	covers	the	memory	protection	and	MPU	(memory	protection	unit)
of	ARM.

Appendix	A	provides	an	introduction	to	IC	chip	technology	and	IC	interfacing
along	with	the	system	design	issues	and	failure	analysis	using	MTBF.	Appendix	B
provides	a	single	source	for	KL25Z	alternate	pin	functions.		The	CPU	clock	source
is	examined	in	Appendix	C.

Online	support	for	this	book
All	the	programs	in	this	book	are	available	on	our	website:

http://www.microdigitaled.com/ARM/ARM_books.htm

Many	 of	 the	 interfacing	 programs	 such	 as	 LCD	 can	 be	 tested	 using	 the
Freescale	 ARM	 FRDM	 evaluation	 connected	 to	 an	 LCD	 on	 a	 breadboard.
However,	many	courses	use	a	system	approach	to	the	embedded	course	by	using
an	ARM	trainer.	For	this	reason,	we	have	modified	the	programs	for	the	EduBase
board	 using	 Freescale	 ARM	 FRDM	 board.	 See	 the	 following	 for	 the	 sample
programs:

http://www.microdigitaled.com/ARM/ARM_books.htm

	

Where	to	buy	Freescale	ARM	FRDM	Evaluation	kit?
See	 the	 link	 below	 for	 Freescale	 ARM	 FRDM	 evaluation	 kit	 and	 KL25Z

datasheet.

http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=FRDM-
KL25Z&tid=vanFRDM-KL25Z

The	above	FRDM	board	uses	the	KL25Z128VLK4	chip.	The	KL25Z128VLK
chip	is	part	of	the	ARM	Cortex-M0	from	Freescales’	and	is	often	called	Kinetis	L
series.				

http://www.microdigitaled.com/ARM/ARM_books.htm
http://www.microdigitaled.com/ARM/ARM_books.htm
http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=FRDM-KL25Z&tid=vanFRDM-KL25Z

Where	to	buy	EduBase	board?
See	the	link	below	for	purchasing	the	EduBase	board:

http://www.microdigitaled.com/ARM/ARM_books.htm

Contact	us
	Please	contact	the	authors	if	use	this	book	for	a	university	course.

mdebooks@yahoo.com

http://www.microdigitaled.com/ARM/ARM_books.htm
mailto:mdebooks@yahoo.com

	

Table	of	Contents
Chapter	1:	C	for	Embedded	Systems

Section	1.1:	C	Data	types	for	Embedded	systems

Section	1.2:	Bit-wise	Operations	in	C

Answer	to	Review	Questions

Chapter	2:	Freescale	ARM	I/O	Programming

Section	2.1:	Freescale	Freedom	KL25Z128VLK4	Microcontroller

Section	2.2:	GPIO	(General	Purpose	I/O)	Programming	and	Interfacing

Section	2.3:	Seven-segment	LED	interfacing	and	programming

Answer	to	Review	Questions

Chapter	3:	LCD	and	Keyboard	Interfacing

Section	3.1:	Interfacing	to	an	LCD

Section	3.2:	Interfacing	the	Keyboard	to	the	CPU

Answers	to	Review	Questions

Chapter	4:	UART	Serial	Port	Programming

Section	4.1:	Basics	of	Serial	Communication

Section	4.2:	Programming	UART	Ports

Answer	to	Review	Questions

Chapter	5:		Freescale	ARM	Timer	Programming

Section	5.0:	Introduction	to	counters	and	timers

Section	5.1:	System	Tick	Timer

Section	5.2:	Delay	Generation	with	Freescale	Timers

Section	5.3:	Output	Compare	and	TPM	Channels

Section	5.4:	Using	Timer	for	Input	Edge-time	Capturing

Section	5.5:	Using	Timer	as	an	Event	Counter

Answers	to	Review	Questions

Chapter	6:	Interrupt	and	Exception	Programming

Section	6.1:	Interrupts	and	Exceptions	in	ARM	Cortex-M

Section	6.2:	ARM	Cortex-M	Processor	Modes

Section	6.3:	Freescale	I/O	Port	Interrupt	Programming

Section	6.4:	UART	Serial	Port	Interrupt	Programming

Section	6.5:	Timer	Interrupt	Programming

Section	6.6:	SysTick	Programming	and	Interrupt

Section	6.7:	Interrupt	Priority	Programming	in	Freescale	ARM

Answer	to	Review	Questions

Chapter	7:	ADC,	DAC,	and	Sensor	Interfacing

Section	7.1:	ADC	Characteristics

Section	7.2:	ADC	Programming	with	the	Freescale	KL25Z

Section	7.3:	Sensor	Interfacing	and	Signal	Conditioning

Section	7.4:	DAC	Programming

Answers	to	Review	Questions

Chapter	8:	SPI	Protocol	and	Devices

Section	8.1:	SPI	Bus	Protocol

Section	8.2:	SPI	programming	in	Freescale	ARM	KL25Z

Section	8.3:	MAX7221	SPI	7-Segment	Driver

Answers	to	Review	Questions

Chapter	9:	I2C	Protocol	and	RTC	Interfacing

Section	9.1:	I2C	Bus	Protocol

Section	9.2:	I2C	Programming	in	Freescale	ARM	KL25Z

Section	9.3:	DS1337	RTC	Interfacing	and	Programming

Answers	to	Review	Questions

Chapter	10:	Relay,	Optoisolator,	and	Stepper	Motor	Interfacing

Section	10.1:	Relays	and	Optoisolators

Section	10.2:	Stepper	Motor	Interfacing

Answers	to	Review	Questions

Chapter	11:	PWM	and	DC	Motor	Control

Section	11.1:	DC	Motor	Interfacing	and	PWM

Section	11.2:	Programming	PWM	in	Freescale	ARM	KL25Z

Answers	to	Review	Questions

Chapter	12:	Programming	Graphic	LCD

Section	12.1:	Graphic	LCDs

Section	12.2:	Displaying	Texts	on	Graphic	LCDs

Answers	to	Review	Questions

Chapter	13:	DRAM	Memory	Technology	and	DMA	Controller

Section	13.1:	Concept	of	Memory	Cycle

Section	13.2:	DRAM	Technology

Section	13.3:	Data	Integrity	in	DRAM	and	ROM

Section	13.4:	Concept	of	DMA

Answers	to	Review	Questions

Chapter	14:	Cache	Memory

Section	14.1:	Cache	Memory	Organizations

Section	14.2:	Cache	Memory	and	Multicore	Systems

Answers	to	Review	Questions

Chapter	15:	MMU,	Virtual	Memory	and	MPU	in	ARM

SECTION	15.1:	MMU	and	Virtual	Memory	in	ARM

Section	15.2:	Page	Table	Descriptors	and	Access	Permission	in	ARM

Section	15.3:	MPU	and	Memory	Protection	in	ARM

Answers	to	Review	Questions

Appendix	A:	IC	Interfacing,	System	Design,	and	Failure	Analysis

Section	A.1:	Overview	of	IC	Technology

Section	A.2:	IC	Interfacing	and	System	Design	Issues

Answers	to	Review	Questions

Appendix	B:	KL25Z	80-pin	Pinout

Appendix	C:	System	Clock	Generation

References

	

	

	

	

Chapter	1:	C	for	Embedded	Systems
In	 reading	 this	 book	we	assume	you	already	have	 some	understanding	of

how	 to	program	 in	C	 language.	 In	 this	chapter,	we	will	examine	some	 important
concepts	widely	used	 in	embedded	system	design	 that	 you	may	not	be	 familiar
with	due	to	the	fact	that	many	generic	C	programming	books	do	not	cover	them.
In	 section	 1.1,	 we	 examine	 the	 C	 data	 types	 for	 32-bit	 systems.	 The	 bit-wise
operators	are	covered	in	section	1.2.

Section	1.1:	C	Data	types	for	Embedded	systems
In	general	C	programming	textbooks	we	see	char,	short,	int,	long,	float,	and

double	data	types.	The	float	and	double	data	types	standardized	by	the	IEEE754
are	covered	 in	Volume	1	of	 this	book	series.	We	need	 to	examine	 the	size	of	C
data	types	in	the	light	of	32-bit	processors	such	as	ARM.

char
The	char	data	type	is	a	byte	size	data	whose	bits	are	designated	as	D7-D0.

It	can	be	signed	or	unsigned.	In	the	signed	format	the	D7	bit	is	used	for	the	+	or	-
sign	and	takes	values	between	-128	to	+127.	In	the	unsigned	char	we	have	values
between	0x00	to	0xFF	in	hex	or	0	to	255	in	decimal	since	there	is	no	sign	and	the
entire	8	bits	are	used	for	the	magnitude.	(See	Chapter	5	of	Volume	1.)

The	ARM	microcontrollers	use	4	bytes	of	memory	space	for	8-bit	peripheral
I/O	ports.	This	is	examined	in	the	next	chapter.

short	int
The	short	 int	 (or	usually	 referring	as	short)	 data	 type	 is	a	2-byte	 size	data

whose	bits	are	designated	as	D15-D0.	It	can	be	signed	or	unsigned.	In	the	signed
format,	the	D15	bit	is	used	for	the	+	or	-	sign	and	takes	values	between	-32,768	to
+32,767.	In	the	unsigned	short	int	we	have	values	between	0x0000	to	0xFFFF	in
hex	or	0	to	65,535	in	decimal	since	there	is	no	sign	and	the	entire	16	bits	are	used
for	the	magnitude.	See	Chapter	5	of	Volume	1.

A	32-bit	processor	such	as	 the	ARM	architecture	 reads	 the	memory	with	a
minimum	of	32	bits	on	the	4-byte	boundary	(address	ending	 in	0,	4,	8,	and	C	in
hex).	If	a	short	 int	variable	is	allocated	straddling	the	4-byte	boundary,	access	to
that	 variable	 is	 called	 an	 unaligned	 access.	Not	 all	 the	ARM	processor	 support
unaligned	 access.	 Those	 devices	 (including	 the	 TM4C123GH6PM	 used	 in	 the
Tiva	 LaunchPad)	 supporting	 unaligned	 access	 pay	 a	 performance	 penalty	 by
having	 to	 read/write	 the	 memory	 twice	 to	 gain	 access	 to	 one	 variable	 (see
Example	1-1).	Unaligned	access	can	be	avoided	by	either	padding	the	variables
with	 unused	 bytes	 (Keil)	 or	 rearranging	 the	 sequence	 of	 the	 variables	 (CCS)	 in
allocation.	By	default,	the	compilers	usually	generate	aligned	variable	allocation.

Example	1-1

Show	how	memory	is	assigned	to	the	following	variables	in	aligned	and	unaligned
allocation.	Begin	from	memory	location	0x20000000.

	

unsigned	char	a;

unsigned	short	int	b;

unsigned	short	int	c;

	
Solution:
Unaligned	allocation	of	variable	c

a b b c

c 	 	 	

	 	 	 	

	 	 	 	

	

Aligned	allocation	of	variables	by	padding	one	byte	between	variable	a	and	b

a 	 b b

c c 	 	

	 	 	 	

	 	 	 	

	

Aligned	allocation	of	variables	by	rearranging	the	variable	sequence

b b c c

a 	 	 	

	 	 	 	

	 	 	 	

	

	

int
The	int	data	type	usually	represents	for	the	native	data	size	of	the	processor.

For	example,	it	is	a	2-byte	size	data	for	a	16-bit	processor	and	a	4-byte	size	data
for	a	32-bit	processor.	This	may	cause	confusion	and	portability	 issue.	The	C99
standard	addressed	the	issue	by	creating	a	new	set	of	integer	variable	types	that
will	be	discussed	later.	For	now	we	will	stick	to	the	conventional	data	types.

The	int	data	type	of	the	ARM	processors	is	4-byte	size	and	identical	to	long
int	data	type	described	below.

long	int
The	 long	 int	 (or	 long)	 data	 type	 is	 a	 4-byte	 size	 data	 whose	 bits	 are

designated	as	D31-D0.	It	can	be	signed	or	unsigned.	In	the	signed	format	the	D31
bit	 is	 used	 for	 the	+	 or	 -	 sign	 and	 takes	 values	between	–231	 to	+231–1.	 In	 the
unsigned	long	we	have	values	between	0x00000000	to	0xFFFFFFFF	in	hex.	See
Chapter	 5	 of	 Volume	 1.	 In	 the	 32-bit	 microcontroller	 when	 we	 declare	 a	 long
variable,	 the	compiler	sets	aside	4	bytes	of	storage	 in	SRAM.	But	 it	also	makes
sure	 they	 are	 aligned,	 meaning	 it	 places	 the	 data	 in	 locations	 with	 addresses
ending	with	0,4,8	and	C	 in	hex.	This	avoids	unaligned	data	access	performance
penalty	 covered	 in	 Volume	 1.	 The	 unsigned	 long	 is	 widely	 used	 in	 ARM	 for
defining	addresses	since	ARM	address	size	is	32	bit	long.

Example	1-2

Show	how	memory	is	assigned	to	the	following	variables	in	aligned	and	unaligned
allocation.	Begin	from	memory	location	0x20000000.

	

unsigned	char	a;

unsigned	short	int	b;

unsigned	short	int	c;

unsigned	int	d;

	
Solution:
Unaligned	allocation	of	variable	c

a b b c

c d d d

d 	 	 	

	 	 	 	

	

Aligned	allocation	of	variables	by	padding	byte(s)	between	variable	a	and	b

a 	 b b

c c 	 	

d d d d

	 	 	 	

	

Aligned	allocation	of	variables	by	rearranging	the	variable	sequence

d d d d

b b c c

a 	 	 	

	 	 	 	

	

	

	

long	long
The	long	long	data	type	is	an	8-byte	size	data	whose	bits	are	designated	as

D63-D0.	It	can	be	signed	or	unsigned.	In	the	signed	format	the	D63	bit	is	used	for
the	+	or	-	sign	and	takes	values	between	–263to	+263–1.	In	the	unsigned	long	long
we	 have	 values	 between	 0x0000000000000000	 to	 0xFFFFFFFFFFFFFFFF	 in
hex.	 In	 the	 32-bit	 microcontroller,	 when	 we	 declare	 a	 long	 long	 variable,	 the
compiler	 sets	 aside	 8	 bytes	 of	 storage	 in	 SRAM	 and	 it	 makes	 sure	 they	 are
aligned,	meaning	it	places	the	data	in	locations	with	addresses	ending	with	0	and
8.	This	avoids	unaligned	data	access	performance	penalty.

Which	data	type	to	use?
It	must	be	noted	that	while	 in	 the	8-bit	microcontrollers	we	have	to	use	the

right	 data	 type	 for	 our	 variable,	 this	 is	 less	 of	 problem	 in	 32-bit	 CPUs	 such	 as
ARM.	For	example,	for	the	number	of	days	working	in	a	month	(or	number	of	hrs
in	a	day)	we	use	unsigned	char	since	it	is	less	than	255.	Using	unsigned	char	in	8-
bit	microcontroller	 is	 important	since	 it	saves	RAM	space,	memory	access	 time,
and	computation	clock	cycles.	If	we	use	int	instead,	the	compiler	allocates	2	bytes
in	 RAM	 and	 that	 is	 waste	 of	 RAM	 resource.	 The	CPU	will	 have	 to	 access	 the
additional	byte	and	perform	arithmetic	instructions	with	it	even	if	the	byte	contains
zero	and	has	no	effect	on	the	result.	This	is	a	problem	that	we	should	avoid	since
an	8-bit	microcontroller	 usually	 has	 few	RAM	bytes	with	 slower	 clock	 speed	 for
bus	and	CPU.	In	the	case	of	32-bit	systems	such	as	ARM,	1,	2,	or	4	bytes	of	data
will	result	in	the	same	memory	access	time	and	computation	time.	Most	of	the	32-
bit	systems	also	have	more	generous	amount	of	RAM	to	alleviate	the	concern	of
memory	usage	and	allow	padding	for	aligned	access.

Data	type Size Range

char 1	byte -128	to	127

unsigned	char 1	byte 0	to	255

short	int 2	bytes -32,768	to	32,767

unsigned	int 2	bytes 0	to	65,535

long 4	bytes -2,147,483,648	to	2,147,483,647

unsigned	long 4	bytes 0	to	4,294,967,295

long	long 8	bytes -9,223,372,036,854,775,808	to
9,223,372,036,854,775,807

unsigned	long	long 8	bytes 0	to	18,446,744,073,709,551,615

Table	1-1:	ANSI	C	(ISO	C89)	integer	data	types	and	their	ranges

Notes
1.	By	default	variables	are	considered	as	signed	unless	the	unsigned	keyword	is
used.	As	a	result,	signed	long	is	the	same	as	long;	the	long	long	is	the	same	as
signed	long	long,	and	so	on	with	the	exception	of	char.	Whether	char	 is	signed
or	 unsigned	 by	 default	 varies	 from	 compiler	 to	 compiler.	 In	 some	 compilers,
including	 Keil,	 there	 is	 an	 option	 to	 choose	 if	 the	 char	 variable	 should	 be
considered	as	signed	char	or	unsigned	char	by	default.	 (To	choose	this	 in	Keil,
go	 to	 Project	 menu	 and	 select	 Options.	 Then,	 in	 the	 C/C++	 tab,	 check	 or
uncheck	the	choice	Plain	char	is	signed,	as	you	desire.)	It	is	a	good	practice	to
write	out	 the	signed	 keyword	explicitly,	when	you	want	 to	define	a	 variable	as
signed	char.

2.	In	some	compilers	(including	Keil	and	IAR)	the	 int	type	is	considered	as	long
int	 while	 in	 some	 other	 compilers	 (including	 AVR	 and	 PIC	 compilers)	 it	 is
considered	as	short	int.	In	other	words,	the	int	type	is	commonly	defined	so	that
the	processor	can	handle	 it	easily.	As	we	will	see	next,	we	can	use	 int16t	and
int32t	 instead	 of	 short	 and	 long	 in	 order	 to	 prevent	 any	 kind	 of	 ambiguity	 and
make	the	code	portable	between	different	processors	and	compilers.

Data	types	in	ISO	C99	standard
While	every	C	programmer	has	used	ANSI	C	(ISO	C89)	data	types,	many	C

programmers	 are	 not	 familiar	 with	 the	 ISO	 C99	 standard.	 In	 C	 standards,	 the
sizes	of	integer	data	types	were	not	defined	and	are	up	to	the	compilers	to	decide.
By	conventions,	char	is	one	byte	and	short	is	two	byte	size.	But	int	and	long	varies
greatly	among	the	compilers.

In	 ISO	C99	standard,	a	set	of	data	 types	were	defined	with	number	of	bits
and	sign	clearly	defined	in	the	data	type	names.	(See	Table	1-2.)	The	C	ISO	C99
standard	 is	 used	 extensively	 by	 embedded	 system	 programmer	 for	RTOS	 (real
time	 operating	 system)	 and	 system	 design.	 It	 is	 also	 supported	 by	 many	 C

compilers.	Notice	the	range	is	the	same	as	ANSI	C	standard	except	it	uses	more
descriptive	syntax.

These	 integer	 data	 types	 are	 defined	 in	 a	 header	 file	 called	 stdint.h.	 You
need	to	include	this	header	file	in	order	to	use	these	data	types.

Data	type Size Range

int8_t 1	byte -128	to	127

uint8_t 1	byte 0	to	255

int16_t 2	bytes -32,768	to	32,767

uint16_t 2	bytes 0	to	65,535

int32_t 4	bytes -2,147,483,648	to	2,147,483,647

uint32_t 4	bytes 0	to	4,294,967,295

int64_t 8	bytes -9,223,372,036,854,775,808	to
9,223,372,036,854,775,807

uint64_t 8	bytes 0	to	18,446,744,073,709,551,615

Table	1-2:	ISO	C99	integer	data	types	and	their	ranges

Review	questions
1.							In	an	8-bit	system	we	use	(char,	unsigned	char)	for	the	number	of	months

in	a	year.

2.							For	a	system	with	16-bit	address,	bus	we	use	(int,	unsigned	int)	for
address	definition.

3.							For	an	ARM	system	the	address	is	_____bit	wide	and	we	use	______data
type	for	it.

4.							True	or	false.	In	C	programming	of	ARM,	compiler	makes	sure	data	are
aligned.

Section	1.2:	Bit-wise	Operations	in	C
One	 of	 the	most	 important	 and	 powerful	 features	 of	 the	C	 language	 is	 its

ability	 to	perform	bit	manipulation.	Because	many	books	on	C	do	not	cover	 this
important	topic,	it	is	appropriate	to	discuss	it	in	this	section.	This	section	describes
the	action	of	bit-wise	logic	operators	and	provides	some	examples	of	how	they	are
used.

Bit-wise	operators	in	C
While	every	C	programmer	 is	 familiar	with	 the	 logical	operators	AND	(&&),

OR	 (||),	 and	 NOT	 (!),	 many	 C	 programmers	 are	 less	 familiar	 with	 the	 bitwise
operators	AND	(&),	OR	(|),	EX-OR	(^),	 inverter	 (~),	shift	 right	 (>>),	and	shift	 left
(<<).	 These	 bit-wise	 operators	 are	 widely	 used	 in	 software	 engineering	 for
embedded	 systems	 and	 control;	 consequently,	 their	 understanding	 and	mastery
are	critical	in	microprocessor-based	system	design	and	interfacing.	See	Table 1-3.

A B
AND
(A	&	B)

OR
(A	|	B)

EX-OR
(A^B)

Invert
~B

0 0 0 0 0 1

0 1 0 1 1 0

1 0 0 1 1 1

1 1 1 1 0 0

Table	1-3:	Bit-wise	Logic	Operators	for	C

The	following	shows	some	examples	using	the	C	bit-wise	operators:

0x35	&	0x0F	results	in0x05								/*	ANDing	*/

0x04	|	0x68	results	in	0x6C							/*	ORing:			*/

0x54	^	0x78	results	in	0x2C							/*	XORing	*/

~0x55	results	in	0xAA													/*	Inverting	0x55	*/

Examples	1-3	and	1-4	show	how	the	bit-wise	operators	are	used	in	C.	Run
the	following	programs	on	your	simulator	and	examine	the	results.

Example	1-3

Run	the	following	program	on	your	simulator	and	examine	the	results.

int	main(void)

{

volatile	unsigned	char	temp;				/*	declare	volatile	otherwise

the	optimizer	will	remove	it.	*/

temp	=	0x35	&	0x0F;								/*	ANDing						:	0x35	&	0x0F	=	0x05	*/

temp	=	0x04	|	0x68;								/*	ORing										:	0x04	|	0x68	=	0x6C	*/

temp	=	0x54	^	0x78;								/*	XORing							:	0x54	|	0x78	=	0x2C	*/

temp	=	~0x55;														/*	Inverting									:	~0x55	=	0xAA	*/

while	(1);

return	0;

}

	

void	SystemInit(void)				/*	required	by	the	compiler	*/

{

}

	

Setting	and	Clearing	(masking)	bits
As	discussed	 in	Volume	1	of	 the	series,	OR	can	be	used	 to	set	a	bit,	and

AND	can	be	used	to	clear	a	bit.	If	you	exam	Table	1-3	closely,	you	will	see	that:

-										Anything	ORed	with	a	1	results	in	a	1;	anything	ORed	with	a	0	results	in
no	change.

-										Anything	ANDed	with	a	1	results	in	no	change;	anything	ANDed	with	a	0
results	in	a	zero.

-	 	 	 	 	 	 	 	 	 	Anything	EX-ORed	with	a	1	results	 in	 the	complement;	anything	EX-
ORed	with	a	0	results	in	no	change.

See	Example	1-4.

Example	1-4

The	 following	program	 toggles	only	bit	 4	of	 var1	continuously	without	disturbing
the	rest	of	the	bits.

…

int	main(void)

{

unsigned	char	var1;

while(1)

{

var1	=	var1	|	0x10;									/*	Set	bit	4	(5th	bit)	of	var1	*/

var1	=	var1	&	0xEF;									/*	Clear	bit	4	(5th	bit)	of	var1	*/

}

	

return	0;

}

…

	

Notice	that	we	can	also	toggle	the	bit	using	XOR	as	shown	below:

var1	=	var1	^	0x10;

Testing	bit	with	bit-wise	operators	in	C
In	 many	 cases	 of	 system	 programming	 and	 hardware	 interfacing,	 it	 is

necessary	to	test	a	given	bit	to	see	if	it	is	high	or	low.	For	example,	many	devices
send	a	high	signal	to	state	that	they	are	ready	for	an	action	or	to	indicate	that	they
have	data.	How	can	the	bit	(or	bits)	be	tested?	In	such	cases	the	unused	bits	are
masked	and	then	the	remaining	data	is	tested.	See	Example	1-5.

Example	1-5

Write	a	C	program	to	monitor	bit	5	of	var1.	If	it	 is	HIGH,	change	value	of	var2	to
0x55;	otherwise,	change	value	of	var2	to	0xAA.

	

Solution:
…

while(1)

{

if	(var1	&	0x20)										/*	check	bit	5	(6th	bit)	of	var1	*/

var2	=	0x55;												/*	this	statement	is	executed	if	bit	5	is	a	1	*/						

else

var2	=	0xAA;											/*	this	statement	is	executed	if	bit	5	is	a	0	*/

}

…

	

Bit-wise	shift	operation	in	C

There	are	two	bit-wise	shift	operators	in	C.	See	Table 1-4.

Operation Symbol Format	of	Shift	Operation

Shift	Right >>	 data	>>	number	of	bit-positions	to	be	shifted	right

Shift	Left <<	 data	<<	number	of	bit-positions	to	be	shifted	left

Table	1-4:	Bit-wise	Shift	Operators	for	C

The	following	shows	some	examples	of	shift	operators	in	C:

1.							0b00010000	>>	3						/*	it	equals	00000010.	Shifting	right	3	times	*/

2.							0b00010000	<<	3					/*	it	equals	10000000.	Shifting	left	3	times	*/

3.							1	<<	3																									/*	it	equals	00001000.	Shifting	left	3	times	*/		

Compound	Operators
In	C	 language,	whenever	 the	 left-hand-side	of	 the	assignment	operator	 (=)

and	the	first	operand	on	the	right-hand-side	are	identical	we	can	avoid	repeating
the	 operand	 by	 using	 the	 compound	 operands.	 As	 shown	 in	 Table	 1-5,	 in
compound	operators,	the	operators	are	mentioned	just	on	the	left-hand-side	of	the
equal	sign	and	the	first	operand	is	omitted.	

Instruction Its	equivalent	using
compound	operators

a	=	a	+	6; a	+=	6;

a	=	a	–	23; a	–=	23;

y	=	y	*	z; y	*=	z;

z	=	z	/	25; z	/=	25;

w	=	w	|	0x20; w	|=	0x20;

v	=	v	&	mask; v	&=	mask;

m	=	m	^	togBits; m	^=	togBits.

Table	1-5:	Some	Compound	Operator	Examples

	
Review	Questions

1.							What	is	result	of	0x2F	&0x27?

2.							What	is	result	of	0x2F	|	0x27?

3.							What	is	result	of	0x2F	^	0x27?

4.							What	is	result	of	0x2F	>>	3?

5.							What	is	result	of	0x27	<<	4?

6.							In	Example	1-5	what	is	stored	in	var2	if	the	value	of	var1	is	0x03?

Reading	 of	 the	 articles	 by	 Dan	 Saks	 and	 Michael	 Barr	 on	 embedded.com	 is
strongly	recommended:

http://www.embedded.com/user/Dan_Saks#

http://www.embedded.com/user/Michael.Barr

http://www.embedded.com/user/Dan_Saks
http://www.embedded.com/user/Michael.Barr

Answer	to	Review	Questions
Section	1.1:	C	Data	types	for	Embedded	systems

1.							unsigned	char

2.							unsigned	int

3.							32	–	unsigned	long	(or	uint32_t)

4.							True

Section	1.2:	Bitwise	Operations in	C
1.							0x27

2.							0x2F

3.							0x08

4.							0x05

5.							0x70

6.							0xAA

	

Chapter	2:	Freescale	ARM	I/O	Programming
In	microcontroller,	we	use	 the	general	purpose	 input	output	 (GPIO)	pins	 to

interface	with	LED,	switch	(SW),	LCD,	keypad,	and	so	on.	This	chapter	covers	the
programming	 of	 GPIO	 using	 LED,	 switches,	 and	 seven	 segment	 LEDs	 as
examples.	This	 is	a	very	 important	chapter	since	 the	vast	majority	of	embedded
products	have	some	kind	of	I/O.	More	importantly,	this	chapter	sets	the	stage	for
understanding	of	peripheral	I/O	addresses	and	how	they	are	accessed	and	used
in	ARM	processors.	Because	some	of	the	core	materials	covered	in	this	chapter
are	 widely	 used	 in	 subsequent	 chapters,	 we	 urge	 you	 to	 study	 this	 chapter
thoroughly	before	moving	on	to	other	chapters.	Section	2.1	examines	the	memory
and	 I/O	map	of	 the	Freescale	ARM	chip.	Section	2.2	 shows	how	 to	access	 the
special	function	registers	associated	with	the	GPIO	of	Freescale	ARM.	In	Section
2.2,	we	also	use	simple	LEDs	and	switches	 to	show	 the	programming	of	GPIO.
Section	 2.3	 examines	 the	 7-segment	 LED	 connection	 to	 ARM	 and	 how	 to
programming	it.

Section	2.1:	Freescale	Freedom	KL25Z128VLK4
Microcontroller

The	 FRDM-KL25Z	 is	 a	 low-cost	 development	 platform	 for	 Kinetis	 KL2x
(KL24/25)	 MCUs	 built	 on	 ARM®	 Cortex™-M0+	 processor.	 Freescale	 Freedom
board	 uses	 the	KL25Z128VLK4,	 an	 80-pin	microcontroller.	 The	 KL25Z128VLK4
chip	has	128K	bytes	(128KB)	of	on-chip	Flash	memory	for	code,	16KB	of	on-chip
SRAM	for	data,	and	a	large	number	of	on-chip	peripherals,	as	shown	in	Figures	2-
1	and	2-2.

Figure	2-1:	Freescale	KL25Z128VLK4	Microcontroller	High-Level	Block	Diagram

Figure	2-2:	Freescale	FRDM	Trainer	board

Note

For	more	information	about	this	series	see	the	following	website:

http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=KL2x#

	

As	we	stated	in	Volume	1,	the	ARM	has	4GB	(Giga	bytes)	of	memory	space.
It	 also	 uses	memory	mapped	 I/O	meaning	 the	 I/O	peripheral	 ports	 are	mapped
into	 the	4GB	memory	space.	See	Table	2-1	and	Figure	2-3	 for	memory	map	of
KL25Z128VLK4	chip.

	 Allocated	size Allocated	address

Flash 128KB 0x00000000	to	0x0001FFFF

SRAM 16KB 0x1FFFF000	to	0x20002FFF

I/O All	the	peripherals 0x400FF000	to	0x400FFFFF

Table	2-1:	Memory	Map	in	KL25Z128VLK4

Figure	2-3:	Memory	Map

Regarding	Figure	2-3,	the	following	points	must	be	noted:

1)	 	 	 	 	 	128KB	of	Flash	memory	is	used	for	program	code.	One	can	also	store	in
Flash	ROM	constant	(fixed)	data	such	as	look-up	table	if	needed.	The	Flash
memory	 is	 organized	 in	 1-KB	 block.	 Each	 block	 can	 be	 independently
erased	and	written	to.

2)	 	 	 	 	 	The	 16KB	 SRAM	 is	 for	 variables,	 scratch	 pad,	 and	 stack.	 It	 starts	 at
address	0x20000000.	Address	aliases	can	be	used	for	a	portion	of	SRAM	to
allow	 individual	 bit-access.	 This	 is	 called	 bit-banding	 and	 is	 discussed	 in
Volume	1.

3)	 	 	 	 	 	The	peripherals	 such	as	 I/Os,	Timers,	ADCs	are	mapped	 to	addresses
starting	at	 0x40000000.	 In	KL25Z128VLK4	 the	 upper	 limit	 is	 0x400FFFFF.
For	 details	 see	Table	 2-4	 in	KL25Z128VLK4	 reference	manual.	 The	 upper
limit	address	can	vary	among	the	family	members	of	ARM	chips	depending

http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=KL2x

on	the	number	of	peripherals	the	chip	supports.

GPIO
The	 general	 purpose	 I/O	 ports	 in	KL25Z128VLK4	ARM	are	 designated	 as

port	A	to	port	E.	The	following	shows	the	address	range	assigned	to	each	GPIO
port:

■		GPIO	Port	A	:	0x400F	F000	to	0x400F	F017

■		GPIO	Port	B	:	0x400F	F040	to	0x400F	F057

■		GPIO	Port	C	:	0x400F	F080	to	0x400F	F097

■		GPIO	Port	D	:	0x400F	F0C0	to	0x400F	F0D7

■		GPIO	Port	E	:	0x400F	F100	to	0x400F	F117

	

See	Figure	2-4.

Figure	2-4:	GPIO	Memory	Map

Freescale’s	naming	convention
Freescale	part	numbers	have	the	following	format:

Q	KL##	A	FFF	R	T	PP	CC	N

	
Table	2-2	 lists	 the	possible	values	for	each	field	 in	 the	part	number	(not	all

combinations	are	valid):

	
Field Description Some	Valid	Values

Q Qualification	status
•	M	=	Fully	qualified,	general	market	flow
•	P	=	Prequalification

KL## Kinetis	family •	KL25

A Key	attribute •	Z	=	Cortex-M0+

FFF Program	Flash	memory
size

•	32	=	32	KB
•	64	=	64	KB
•	128	=	128	KB

T Temperature	range	(°C) •	V	=	–40	to	105

PP Package	identifier

•	FM	=	32	QFN	(5	mm	x	5	mm)
•	FT	=	48	QFN	(7	mm	x	7	mm)
•	LH	=	64	LQFP	(10	mm	x	10	mm)
•	LK	=	80	LQFP	(12	mm	x	12	mm)

CC Maximum	CPU	frequency
(MHz) •	4	=	48	MHz

Table	2-2:	Fields	Values	Description

In	Figure	2-5	the	Kinetis	Families	and	their	features	are	shown.

Figure	2-5:	Kinetis	MCU	Portfolio

	

Review	Questions
1.							KL25Z128VLK4	has	_______KB	of	on-chip	Flash	memory.

2.							KL25Z128VLK4	has	_______KB	of	on-chip	SRAM	memory.

3.							KL25Z128VLK4	Flash	memory	is	used	mainly	for	(program	code,	data).

4.							KL25Z128VLK4	SRAM	memory	is	used	for	(program	code,	data).

5.							Give	the	address	space	assigned	to	the	Flash	memory	of	KL25Z128VLK4.

6.							Give	the	meaning	of	LK	in	KL25Z128VLK4.

	

Section	2.2:	GPIO	(General	Purpose	I/O)	Programming
and	Interfacing

While	memory	holds	code	and	data	for	the	CPU	to	process,	the	I/O	ports	are
used	by	 the	CPU	 to	access	 input	and	output	devices.	 In	 the	microcontroller,	we
have	two	types	of	I/O.	They	are:

a.							General	Purpose	I/O	(GPIO):	The	GPIO	ports	are	used	for	interfacing
devices	such	as	LEDs,	switches,	LCD,	keypad,	and	so	on.

b.						Special	purpose	I/O:	These	I/O	ports	have	designated	function	such	as
ADC	 (Analog-to-Digital),	 Timer,	 UART	 (universal	 asynchronous	 receiver
transmitter),	and	so	on.

We	have	dedicated	many	chapters	to	these	special	purpose	I/O	ports.	In	this
chapter,	 we	 examine	 the	 GPIO	 and	 its	 interfacing	 to	 LEDs,	 switches,	 and	 7-
segment	LEDs	and	show	how	to	access	them	using	C	programs.

I/O	Pins	in	Freescale	FRDM	board
In	Freescale	ARM	chips,	I/O	ports	are	named	with	alphabets	A,	B,	C,	and	so

on.	Each	port	can	have	up	 to	32	pins	and	they	are	designated	as	PTA0-PTA31,
PTB0-PTB31,	and	so	on.	 It	must	be	noted	 that	not	all	 32	pins	of	each	port	are
implemented.	The	ARM	chip	used	in	FRDM	board	is	in	Kinetis	L	series	with	part
number	KLxxZ128VLK4.	It	has	ports	A,	B,	C,	D,	and	E.	See	Figure	2-6.

Figure	2-6:	KL25Z128VLK4	Pin-out

Notice	 from	 Figure	 2-6,	 for	 each	 port	 only	 a	 limited	 number	 of	 pins	 are
implemented.	 For	 example,	 for	 Port	 A	 we	 have	 only	 PTA0-PTA5	 and	 PTA12-
PTA20	pins.

The	ARM	chips	have	two	buses:	APB	(Advanced	Peripheral	Bus)	and	AHB
(Advanced	High-Performance	Bus).	The	AHB	bus	 is	much	faster	 than	APB.	The
AHB	allows	one	clock	cycle	access	to	the	peripherals.	The	APB	is	slower	and	its
access	time	is	minimum	of	2	clock	cycles.

The	I/O	ports	addresses	assigned	to	the	PTA-PTE	for	APB	are	as	follow:
■		GPIO	Port	A	(APB):	0x400F	F000

■		GPIO	Port	B	(APB):	0x400F	F040

■		GPIO	Port	C	(APB):	0x400F	F080

■		GPIO	Port	D	(APB):	0x400F	F0C0

■		GPIO	Port	E	(APB):	0x400F	F100

	

The	Base	addresses	for	the	GPIOs	of	AHB	is	as	follow:
■		GPIO	Port	A	(AHB):	0xF80F	F000

■		GPIO	Port	B	(AHB):	0xF80F	F040

■		GPIO	Port	C	(AHB):	0xF80F	F080

■		GPIO	Port	D	(AHB):	0xF80F	F0C0

■		GPIO	Port	E	(AHB):	0xF80F	F100

	

Notice	 that	Freescale	datasheet	refers	 to	AHB	as	FGPIO	(Fast	GPIO).	For
APB,	 AHB,	 and	 single	 cycle	 access-time	 see	 Chapter	 6	 of	 “ARM	 Assembly
Language	 Programming	 and	 Architecture”	 By	 Mazidi	 and	 Naimi	 book	 in	 this
series.

There	are	many	 registers	associated	with	each	of	 the	above	 I/O	ports	and
they	have	designated	addresses	 in	 the	memory	map.	The	above	addresses	are
the	 Base	 addresses	 meaning	 that	 within	 that	 base	 address	 we	 have	 many
registers	associated	with	that	port,	as	we	will	see	next.

Direction	and	Data	Registers
Generally	 every	 microcontroller	 has	 minimum	 of	 two	 registers	 associated

with	 each	 of	 I/O	 port.	 They	 are	 Data	 Register	 and	 Direction	 Register.	 The
Direction	register	is	used	to	make	the	pin	either	input	or	output.	After	the	Direction
register	 is	properly	configured,	 then	we	use	the	Data	register	 to	actually	write	 to
the	pin	or	read	data	from	the	pin.	It	 is	the	Direction	register	(when	configured	as
output)	that	allows	the	information	written	to	the	Data	register	to	be	driven	to	the
pins	of	the	device.	See	Figure	2-7.

Figure	2-7:	The	Data	and	Direction	Registers	and	a	Simplified	View	of	an	I/O	pin

Port	Data	Output	Register	(GPIOx_PDOR)	in	Freescale	ARM
The	 Port	 Data	 Output	 Register	 (GPIOx_PDOR)	 is	 located	 at	 the	 offset

address	of	0x0000	from	the	Base	address	of	that	port.	This	is	shown	below.

Figure	2-8:	GPIOx_PDOR	(Port	Data	Output	Register)

Direction	Register	in	Freescale	ARM
In	the	case	of	Freescale	ARM	chip,	each	of	the	Direction	register	bit	needs

to	be	a	0	to	configure	the	port	pin	as	input	and	a	1	as	output.	The	address	of	the
GPIO	Direction	register	is	located	at	the	offset	address	of	0x0014	from	the	Base

address	of	that	port.	This	is	shown	below.

Figure	2-9:	GPIOx_PDDR	(Port	Data	Direction	Register)

For	 example,	 by	writing	0x03	 (00000011	 in	 binary)	 into	 the	GPIOA_PDDR
register,	 pins	 0	 and	 1	 of	 PORTA	 become	 outputs	 while	 the	 other	 pins	 become
inputs.

See	Example	2-1	and	Table	2-3.

Example	2-1

Find	 the	 physical	 address	 of	 the	 GPIO	 DATA	 and	 GPIO	 Direction	 registers	 for
PORTA	if	the	Base	address	of	the	PORTA	is	0x400F	F000.

Solution:
The	 physical	 address	 location	 of	 the	 GPIO	 Data	 Out	 for	 PORTA	 is	 0x400F
F000+0000=0x400F	F000.

The	 physical	 address	 location	 of	 GPIO	 Direction	 for	 the	 PORTA	 is	 0x400F
F000+0x0014=0x400F	F014.

	

	

Address Name Description Type
Reset
Value

0x400F
F000 GPIOA_PDOR Port	Data	Output	Register R/W 0x00000000

0x400F
F004 GPIOA_PSOR Port	Set	Output	register W	(always

reads	0) 0x00000000

0x400F
F008 GPIOA_PCOR Port	Clear	Output	Register W	(always

reads	0) 0x00000000

0x400F
F00C GPIOA_PTOR Port	Toggle	Output	Register W	(always

reads	0) 0x00000000

0x400F
F010 GPIOA_PDIR Port	Data	Input	Register R 0x00000000

0x400F
F014 GPIOA_PDDR Port	Data	Direction

Register R/W 0x00000000

Table	2-3:	Some	GPIO	Registers	for	PORTA

Table	 2-3	 shows	 some	 of	 the	 registers	 associated	 with	 PORTA.	 After	 we
configure	 the	Direction	 register	 for	output,	we	can	use	Data	Out,	Set	Out,	Clear
Out,	and	Toggle	Out	registers.	The	same	way,	after	Direction	register	is	configured
for	 input,	 the	Data	Input	register	 is	used	to	bring	data	 into	CPU	from	the	pins.	 It
must	be	noted	that	we	have	these	registers	for	all	the	ports	A	to	E	in	the	Freescale
ARM.	Now,	 to	access	 the	 I/O	pins	of	KL25Z128VLK4	ARM	chip	used	 in	FRDM
board,	we	need	to	examine	Pin	selection	and	clock	enable	registers.

Alternate	pin	functions	and	the	simple	GPIO
Each	pin	of	the	Freescale	ARM	chip	can	be	used	for	one	of	several	functions

including	 GPIO.	 We	 choose	 the	 function	 by	 programming	 a	 special	 function
register	(SFR).

Using	 a	 single	 pin	 for	 multiple	 functions	 is	 called	 pin	 multiplexing	 and	 is
widely	 used	 by	 microcontrollers.	 In	 the	 absence	 of	 pin	 multiplexing,	 a
microcontroller	 will	 need	 several	 hundred	 pins	 to	 support	 all	 of	 its	 on-chip
features.	 For	 example,	 a	 given	 pin	 can	 be	 used	 as	 simple	 digital	 I/O	 (GPIO),
analog	input,	or	I2C	pin.	Of	course	not	all	at	the	same	time.	We	must	make	sure
that	a	pin	is	assigned	to	only	one	peripheral	function	at	a	time.

The	PORTx_PCRn	(Portx	Pin	Control)	special	function	register	allows	us	to
program	a	pin	to	be	used	for	a	given	alternate	function.	It	must	be	noted	that	each
pin	of	ports	A-E	has	its	own	PORTx_PCRn	register.	The	x	is	used	for	Ports	A	to	E
and	n	is	used	for	pin	number	0	to	31.	As	we	mentioned	earlier,	each	port	of	A	to	E
can	have	up	to	32	pins.	Not	all	of	the	pins	for	a	given	port	are	implemented.	The
most	important	bits	of	PORTx_PCRn	are	D10-D8	(Mux	control).	Upon	reset,	ports
A	to	E	are	disabled.	To	use	a	pin	as	simple	digital	I/O,	we	must	choose	MUX=001
option.	See	Figure	2-10.

Figure	2-10:	Alternative	Functions	of	Pins

With	the	PORTx_PCRn	register,	not	only	we	select	the	alternate	I/O	function
of	a	given	pin,	we	can	also	control	 its	Drive	Strength	and	 its	 internal	Pull-up	 (or
Pull-down)	resistor.	See	Figure	2-11	and	Table	2-4.	The	D1	(PE,	Pull	enable)	bit	of
the	PORTx_PCRn	is	used	to	enable	the	internal	Pull	resistor	option.	If	PE=1,	then
we	use	the	D0	bit	(PS,	pull	Select)	to	enable	the	pull-up	(or	pull-down)	option.	We

can	 also	 control	 the	 drive	 capability	 (fan-out	 and	 fan-in.	 See	 Appendix	 A)	 of	 a
digital	I/O	pin	with	D6	(Drive	Strength	Enable)	bit.	These	options	are	widely	used
when	connecting	a	pin	to	a	switch	or	LED.	In	future	chapters,	we	will	see	how	to
use	PORTx_PCRn	bits	 to	choose	other	pin	 functions	when	we	examine	 the	on-
chip	peripherals	of	KL25Z	chip.

Figure	2-11:	PORTx_PCRn	Register	is	used	to	select	alternate	pin	functions	(from	Sec	11.5	of	KL25
Ref.	Man.)

	

BIT Field Description

0 Pull	Select	(PS)
If	the	PE	field	is	set,	the	field	chooses	between	pull-
up	and	pull-down	resistors.

0:	pull-down	resistor,	1:	pull-up	resistor

1 Pull	Enable	(PE)
0:	Disable	the	internal	pull	resistors

1:	Enable	the	internal	pull	resistors

2 Slew	Rate	Enable
(SRE)

0:	Fast	slew	rate

1:	Slow	slew	rate

4 Passive	Filter
Enable	(PFE)

0:	Passive	input	filter	is	disabled

1:	Passive	input	filter	is	enabled

6 Drive	Strength
Enable	(DSE)

0:	Low	drive	strength

1:	High	drive	strength

10-8 Pin	Mux	Control
(MUX)

	

value Meaning

000 Pin	disabled	(analog)

001 Alternative	1	(GPIO)

010 Alternative	2	(Chip-specific)

011 Alternative	3	(Chip-specific)

100 Alternative	4	(Chip-specific)

101 Alternative	5	(Chip-specific)

110 Alternative	6	(Chip-specific)

111 Alternative	7	(Chip-specific)

19-16
Interrupt

Configuration
(IRQC)

By	setting	the	field,	an	interrupt	(or	a	DMA	request)
is	generated	when	the	pin	is	triggered.	(See
Chapter	6)

Value Meaning

0000 Interrupt	and	DMA	request	is	disabled.

0001 DMA	request	on	rising	edge

0010 DMA	request	on	falling	edge

0011 DMA	request	on	each	edge

1000 Interrupt	when	logic	0

1001 Interrupt	on	rising	edge

1010 Interrupt	on	falling	edge

1011 Interrupt	on	either	edge

1100 Interrupt	when	logic	1

Others Reserved

24 Interrupt	Status
Flag	(ISF)

0:	interrupt	is	not	detected

1:	interrupt	is	detected	(It	is	covered	in	Chapter	6)

Others Reserved The	gray	fields	are	reserved	and	are	not	used.

Table	2-4:	PORTx_PCRn	Register

	

Pin Pin	Name Default ALT0 ALT1 ALT2 ALT3 ALT4 ALT5 ALT6

1 PTE0 DISABLED 	 PTE0 	 UART1_TX RTC_CLKOUT CMP0_OUT I2C1_SDA

2 PTE1 DISABLED 	 PTE1 SPI1_MOSI UART1_RX 	 SPI1_MISO I2C1_SCL

3 PTE2 DISABLED 	 PTE2 SPI1_SCK 	 	 	 	

4 PTE3 DISABLED 	 PTE3 SPI1_MISO 	 	 SPI1_MOSI 	

5 PTE4 DISABLED 	 PTE4 SPI1_PCS0 	 	 	 	

6 PTE5 DISABLED 	 PTE5 	 	 	 	 	

7 VDD VDD VDD 	 	 	 	 	 	

8 VSS VSS VSS 	 	 	 	 	 	

9 USB0_DP USB0_DP USB0_DP 	 	 	 	 	 	

10 USB0_DM USB0_DM USB0_DM 	 	 	 	 	 	

11 VOUT33 VOUT33 VOUT33 	 	 	 	 	 	

12 VREGIN VREGIN VREGIN 	 	 	 	 	 	

13 PTE20
ADC0_DP0/

ADC0_SE0

ADC0_DP0/

ADC0_SE0
PTE20 	 TPM1_CH0 UART0_TX 	 	

14 PTE21
ADC0_DM0/

ADC0_SE4a

ADC0_DM0/

ADC0_SE4a
PTE21 	 TPM1_CH1 UART0_RX 	 	

15 PTE22
ADC0_DP3/

ADC0_SE3

ADC0_DP3/

ADC0_SE3
PTE22 	 TPM2_CH0 UART2_TX 	 	

16 PTE23
ADC0_DM3/

ADC0_SE7a

ADC0_DM3/

ADC0_SE7a
PTE23 	 TPM2_CH1 UART2_RX 	 	

17 VDDA VDDA VDDA 	 	 	 	 	 	

18 VREFH VREFH VREFH 	 	 	 	 	 	

19 VREFL VREFL VREFL 	 	 	 	 	 	

20 VSSA VSSA VSSA 	 	 	 	 	 	

21 PTE29
CMP0_IN5/

ADC0_SE4b
	 	 	 TPM0_CH2 TPM_CLKIN0 	 	

22 PTE30

DAC0_OUT/

ADC0_SE23/

CMP0_IN4

	 	 	 TPM0_CH3 TPM_CLKIN1 	 	

23 PTE31 DISABLED 	 PTE31 	 TPM0_CH4 	 	 	

24 PTE24 DISABLED 	 PTE24 	 TPM0_CH0 	 I2C0_SCL 	

25 PTE25 DISABLED 	 PTE25 	 TPM0_CH1 	 I2C0_SDA 	

26 PTA0 SWD_CLK TSI0_CH1 PTA0 	 TPM0_CH5 	 	 	 SWD_CLK

27 PTA1 DISABLED TSI0_CH2 PTA1 UART0_RX TPM0_CH0 	 	 	

28 PTA2 DISABLED TSI0_CH3 PTA2 UART0_TX TPM2_CH1 	 	 	

29 PTA3 SWD_DIO TSI0_CH4 PTA3 I2C1_SCL TPM0_CH0 	 	 	 SWD_DIO

30 PTA4 NMI_b TSI0_CH5 PTA4 I2C1_SDA TPM0_CH1 	 	 	

31 PTA5 DISABLED 	 PTA5 USB_CLKIN TPM0_CH2 	 	 	

32 PTA12 DISABLED 	 PTA12 	 TPM1_CH0 	 	 	

33 PTA13 DISABLED 	 PTA13 	 TPM1_CH1 	 	 	

34 PTA14 DISABLED 	 PTA14 SPI0_PCS0 UART0_TX 	 	 	

35 PTA15 DISABLED 	 PTA15 SPI0_SCK UART0_RX 	 	 	

36 PTA16 DISABLED 	 PTA16 SPI0_MOSI 	 	 SPI0_MISO 	

37 PTA17 DISABLED 	 PTA17 SPI0_MISO 	 	 SPI0_MOSI 	

38 VDD VDD VDD 	 	 	 	 	 	

39 VSS VSS VSS 	 	 	 	 	 	

40 PTA18 EXTAL0 EXTAL0 PTA18 	 UART1_RX TPM_CLKIN0 	 	

41 PTA19 XTAL0 XTAL0 PTA19 	 UART1_TX TPM_CLKIN1 	 LPTMR0_ALT1

42 RESET_b RESET_b 	 PTA20 	 	 	 	 	

43
PTB0/

LLWU_P5

ADC0_SE8/

TSI0_CH0

ADC0_SE8/

TSI0_CH0
	 I2C0_SCL TPM1_CH0 	 	 	

44 PTB1
ADC0_SE9/

TSI0_CH6

ADC0_SE9/

TSI0_CH6
PTB1 I2C0_SDA TPM1_CH1 	 	 	

45 PTB2
ADC0_SE12/

TSI0_CH7

ADC0_SE12/

TSI0_CH7
PTB2 I2C0_SCL TPM2_CH0 	 	 	

46 PTB3
ADC0_SE13/

TSI0_CH8

ADC0_SE13/

TSI0_CH8
PTB3 I2C0_SDA TPM2_CH1 	 	 	

47 PTB8 DISABLED 	 PTB8 	 EXTRG_IN 	 	 	

48 PTB9 DISABLED 	 PTB9 	 	 	 	 	

49 PTB10 DISABLED 	 PTB10 SPI1_PCS0 	 	 	 	

50 PTB11 DISABLED 	 PTB11 SPI1_SCK 	 	 	 	

51 PTB16 TSI0_CH9 TSI0_CH9 PTB16 SPI1_MOSI UART0_RX TPM_CLKIN0 SPI1_MISO 	

52 PTB17 TSI0_CH10 TSI0_CH10 PTB17 SPI1_MISO UART0_TX TPM_CLKIN1 SPI1_MOSI 	

53 PTB18 TSI0_CH11 TSI0_CH11 PTB18 	 TPM2_CH0 	 	 	

54 PTB19 TSI0_CH12 TSI0_CH12 PTB19 	 TPM2_CH1 	 	 	

55 PTC0
ADC0_SE14/

TSI0_CH13

ADC0_SE14/

TSI0_CH13
PTC0 	 EXTRG_IN 	 CMP0_OUT 	

56

PTC1/

LLWU_P6/

RTC_CLKIN

ADC0_SE15/

TSI0_CH14

ADC0_SE15/

TSI0_CH14

PTC1/

LLWU_P6/

RTC_CLKIN

I2C1_SCL 	 TPM0_CH0 	 	

57 PTC2
ADC0_SE11/

TSI0_CH15

ADC0_SE11/

TSI0_CH15
PTC2 I2C1_SDA 	 TPM0_CH1 	 	

58
PTC3/

LLWU_P7
DISABLED 	

PTC3/

LLWU_P7
	 UART1_RX TPM0_CH2 CLKOUT 	

59 VSS VSS VSS 	 	 	 	 	 	

60 VDD VDD VDD 	 	 	 	 	 	

61
PTC4/

LLWU_P8
DISABLED 	

PTC4/

LLWU_P8
SPI0_PCS0 UART1_TX TPM0_CH3 	 	

62
PTC5/

LLWU_P9
DISABLED 	

PTC5/

LLWU_P9
SPI0_SCK LPTMR0_ALT2 	 	 CMP0_OUT

63
PTC6/

LLWU_P10
CMP0_IN0 CMP0_IN0

PTC6/

LLWU_P10
SPI0_MOSI EXTRG_IN 	 SPI0_MISO 	

64 PTC7 CMP0_IN1 CMP0_IN1 PTC7 SPI0_MISO 	 	 SPI0_MOSI 	

65 PTC8 CMP0_IN2 CMP0_IN2 PTC8 I2C0_SCL TPM0_CH4 	 	 	

66 PTC9 CMP0_IN3 CMP0_IN3 PTC9 I2C0_SDA TPM0_CH5 	 	 	

67 PTC10 DISABLED 	 PTC10 I2C1_SCL 	 	 	 	

68 PTC11 DISABLED 	 PTC11 I2C1_SDA 	 	 	 	

69 PTC12 DISABLED 	 PTC12 	 	 TPM_CLKN0 	 	

70 PTC13 DISABLED 	 PTC13 	 	 TPM_CLKN1 	 	

71 PTC16 DISABLED 	 PTC16 	 	 	 	 	

72 PTC17 DISABLED 	 PTC17 	 	 	 	 	

73 PTD0 DISABLED 	 PTD0 SPI0_PCS0 	 TPM0_CH0 	 	

74 PTD1 ADC0_SE5b ADC0_SE5b PTD1 SPI0_SCK 	 TPM0_CH1 	 	

75 PTD2 DISABLED 	 PTD2 SPI0_MOSI UART2_RX TPM0_CH2 SPI0_MISO 	

76 PTD3 DISABLED 	 PTD3 SPI0_MISO UART2_TX TPM0_CH3 SPI0_MOSI 	

77
PTD4/

LLWU_P14
DISABLED 	

PTD4/

LLWU_P14
SPI1_PCS0 UART2_RX TPM0_CH4 	 	

78 PTD5 ADC0_SE6b ADC0_SE6b PTD5 SPI1_SCK UART2_TX TPM0_CH5 	 	

79
PTD6/

LLWU_P15
ADC0_SE7b ADC0_SE7b

PTD6/

LLWU_P15
SPI1_MOSI UART0_RX 	 SPI1_MISO 	

80 PTD7 DISABLED 	 PTD7 SPI1_MISO UART0_TX 	 SPI1_MOSI 	

Figure	2-12:	KL25Z	Alternative	Pin	Functions	(Chapter	10	of	KL25	Ref.	Man.)

	

Example	2-2

In	a	given	FRDM	board	the	PTB18	and	PTB19	are	connected	to	LEDs	to	be	used
as	simple	I/O.

a)	Configure	the	GPIOB	Direction	register	for	pins	PTB18	and	PTB19	to	be	digital
output.

b)	Give	the	address	of	the	register	in	part	a.

c)	 Configure	 the	 PORTx_PCRn	 registers	 for	 PTB18	 and	 PTB19	 pins.	 Assume
slow	slew	rate,	high	drive,	and	no	pull-up.

d)	Give	the	address	of	each	register	in	part	C.

Solution:
a)	 For	 any	 pins	 of	 PORTB	 to	 be	 used	 as	 an	 output,	 we	 need	 to	 set	 bits	 in
GPIOB_PDDR	(PORTB	direction)	to	high.	Now,	we	have	0x000C	0000	since	D18
and	D19	bit	are	set	high.	See	Sec.	41.2.6	of	KL25	Ref.	Man.	Notice	for	the	bit	D18
(pin	18)	and	bit	D19	(pin	19)	we	have	0b0000	0000	0000	1100		0000	0000	0000
0000	in	binary	or	0x000C	0000.

b)	The	PORTB_PDDIR	register	is	located	at	address	0x4000	F054	location.	See
Section	41.2	KL25	Ref.	manual.

c)	We	have	a	PORTn_PCRx	register	for	each	implemented	pin.	Section	11.5.1	of
KL25	Ref.	Manual	gives	the	description	of	 the	each	bit	 for	PORTn_PCRx,	which
Figure	 2-12	 is	 taken	 from.	 Therefore	 for	 PTB18,	 we	 have
PORTB_PCR18=0x0000	 0144	 to	 configure	 it	 for	 I/O	 alternate,	High	Drive,	 slow
slew	rate,	no	pull	resistor.	The	same	is	for	PB19	which	is	PORTB_PCR19=0x0000
0144.

d)	Examine	memory	map	table	in	Sec.	11.5	of	KL25	Ref.	Manual.	Notice	we	have
an	address	for	a	register	(PORTn_PCRx)	to	set	the	characteristics	of	each	pin	of
each	 port.	 For	 PTB18	 pin	 we	 have	 register	 PORTB_PCR18	 and	 is	 located	 at
address	 0x4004	 A048.	 Register	 PORTB_PCR19	 for	 PTB19	 pin	 is	 located	 at
address	0x4004	A04C.

	

The	GPIO	Clock	enable	for	the	I/O	ports
The	 System	 Clock	 Gating	 Control	 Register	 5	 (SIM_SCGC5)	 is	 used	 to

enable	the	clock	source	for	the	I/O	port	circuitry	among	other	things.	If	an	I/O	port
is	not	used,	the	clock	source	to	it	can	be	disabled	in	order	to	save	power.	There	is
only	one	SIM_SCGC5	special	function	register	for	all	the	GPIO	ports	and	some	of
the	bits	of	this	register	are	used	to	enable	the	clock	source	to	Ports	A	to	E.	In	the
case	of	Freescale	KL25Z128VLK4,	since	we	have	only	ports	A	through	E,	many	of
the	bits	of	this	register	are	unused	or	used	for	other	functions.	Chapter	12	of	KL25
Ref.	Manual	shows	the	details	of	SIM_SCGC5	register.	The	register	bits	are	also
shown	in	Figure	2-13.

Figure	2-13:	SIM_SCGC5	(System	Clock	Gating	Control	Register	5)	Register

In	SIM_SCGC5,	the	Base	address	is	0x4004	7000	and	the	offset	is	0x1038;
as	a	result,	 the	physical	address	 is	0x4004	7000	+	0x1038	=	0x4004	8038.	See
Example	2-3.

Example	2-3

Show	how	a)	 to	enable	the	clock	to	PTB	and	b)	enable	the	digital	 I/O	feature	of
pins	for	PTB18	and	PTB19.

Solution:
a)						To	enable	the	clock	source	to	PTB,	we	need	to	set	HIGH	the	D10	of	the

SIM_SCGC5	register.	We	can	OR	hex	value	0x400	(0b0100	0000	0000)	with

SIM_SCGC5	register	to	make	sure	it	leaves	clock	source	to	other	ports
unchanged.	See	Figure	2-13.

b)						We	need	to	write	value	0b0001	0000	0000	(0x0100	in	hex)	to
PORTB_PCRn	register	located	at	address	0x400F	8038.	See	Table	2-4.
Also	see	SIM	memory	map	in	Chapter	12	of	KL25	Ref.	Manual.

	

This	 is	 a	 very	 important	 register.	Without	 clock	 the	 port	will	 not	work.	Any
access	 to	 the	 registers	associated	with	 the	port	 before	 the	 clock	 is	enabled	will
result	in	a	hard	fault	and	the	program	crashes.

LED	connection	in	Freescale	FRDM	board
In	the	Freescale	Freedom	board	we	have	a	tri-color	RGB	LED	connected	to

PTB18	 (red),	 PTB19	 (green),	 and	 PTD1	 (blue).	 The	 tri-color	 RGB	 (red,	 blue,
green)	LED	is	popular	in	many	trainer	kit	for	embedded	systems.

Figure	2-14:	LED	connection	to	PTB	and	PTD	Freescale	FRDM	board

Toggling	LEDs	in	Freescale	FRDM	board	in	C
To	toggle	the	green	LEDs	of	the	FRDM	board,	the	following	steps	must	be
followed.

1)						enable	the	clock	to	PORTB,	since	access	is	denied	to	the	port	registers
until	the	clock	is	enabled,

2)						configure	PortB_PCR19	(Pin	Control	Register)	to	select	GPIO	function	for
PTB19,

3)						set	the	Direction	register	bit	19	of	PTB	as	output,

4)						write	HIGH	to	PTB19	in	data	register,

5)						call	a	delay	function,

6)						write	LOW	to	PTB19	in	data	register,

7)						call	a	delay	function,

8)						Repeat	steps	4	to	7.

Program	2-1	shows	one	way	to	toggle	the	green	LED	continuously.

Program	2-1:	Toggling	Green	LED	in	C	(using	special	function	registers	by	their	addresses)
	

/*	p2_1.c	Toggling	LED	in	C	using	registers	by	addresses

	*	This	program	toggles	green	LED	for	0.5	second	ON	and	0.5	second	OFF.

	*	The	green	LED	is	connected	to	PTB19.

	*	The	LEDs	are	low	active	(a	‘0’	turns	ON	the	LED).

	*/

	

/*	System	Integration	Module	System	Clock	Gating	Control	Register	5*/

#define	SIM_SCGC5			(*((volatile	unsigned	int*)0x40048038))

/*	Port	B	Pin	Control	Register	19*/

#define	PORTB_PCR19	(*((volatile	unsigned	int*)0x4004A04C))

/*	Port	B	Data	Direction	Register	*/

#define	GPIOB_PDDR		(*((volatile	unsigned	int*)0x400FF054))

/*	Port	B	Data	Output	Register	*/

#define	GPIOB_PDOR		(*((volatile	unsigned	int*)0x400FF040))

	

	

int	main	(void)	{

void	delayMs(int	n);

SIM_SCGC5	|=	0x400;													/*	enable	clock	to	Port	B	*/

PORTB_PCR19	=	0x100;												/*	make	PTB19	pin	as	GPIO	(See	Table	2-4)	*/

GPIOB_PDDR	|=	0x80000;										/*	make	PTB19	as	output	pin	*/

while	(1)	{

GPIOB_PDOR	&=	~0x80000;					/*	turn	on	green	LED	*/

delayMs(500);

GPIOB_PDOR	|=	0x80000;						/*	turn	off	green	LED	*/

delayMs(500);

}

}

	

/*	Delay	n	milliseconds

	*	The	CPU	core	clock	is	set	to	MCGFLLCLK	at	41.94	MHz	in	SystemInit().

	*/

void	delayMs(int	n)	{

int	i;

int	j;

for(i	=	0	;	i	<	n;	i++)

for	(j	=	0;	j	<	7000;	j++)	{}

}

	

Program	2-2	shows	the	Assembly	version	of	the	Program	2-1.			

Program	2-2:	Toggling	Green	LED	in	Assembly	Language
	

;	p2_2.s	Toggling	LED	using	assembly	language

;	This	program	toggles	green	LED	for	0.5	second	ON	and	0.5	second	OFF.

;	The	green	LED	is	connected	to	PTB19.

;	The	LEDs	are	low	active	(a	‘0’	turns	ON	the	LED).

	

;	System	Integration	Module	System	Clock	Gating	Control	Register	5

SIM_SCGC5	EQU	0x40048038

;	Port	B	Pin	Control	Register	19

PORTB_PCR19	EQU	0x4004A04C

;	Port	B	Pin	Direction	Register

GPIOB_PDDR	EQU	0x400FF054

;	Port	B	Pin	Set	Output	Register

GPIOB_PDOR	EQU	0x400FF040

	

THUMB

AREA				|.text|,	CODE,	READONLY,	ALIGN=2

EXPORT		__main

	

__main

;	enable	clock	to	Port	B

LDR					R0,	=SIM_SCGC5		;	load	SCGC5	Reg	in	R1

LDR					R1,	[R0]

LDR					R2,	=0x400						;	load	bit	10	mask

ORRS				R1,	R2										;	OR	with	bit	mask

STR					R1,	[R0]								;	store	back	to	SCGC5

;	make	PTB19	pin	as	GPIO

LDR					R0,	=PORTB_PCR19

LDR					R1,	=0x100						;	pin	mux	GPIO	(See	Table	2-4)

STR					R1,	[R0]								;	store	in	PCR19

	

;	make	PTB19	as	output	pin

LDR					R0,	=GPIOB_PDDR	;	load	Dir	Reg	in	R1

LDR					R1,	[R0]

LDR					R2,	=0x80000				;	load	bit	19	mask

ORRS				R1,	R2										;	OR	with	bit	mask

STR					R1,	[R0]								;	store	back	to	Dir	Reg

	

loop

;	turn	on	green	LED

LDR					R0,	=GPIOB_PDOR	;	load	Data	Reg	in	R1

	LDR					R1,	[R0]

LDR					R2,	=0x80000				;	load	bit	19	mask

MVNS				R2,	R2										;	complement	bit	mask

ANDS				R1,	R2										;	AND	with	bit	mask

STR					R1,	[R0]								;	store	back	to	Data	Reg

;	delay	for	0.5	second

LDR					R0,	=500

BL						delayMs

	

;	turn	off	green	LED

LDR					R0,	=GPIOB_PDOR	;	load	Data	Reg	in	R1

LDR					R1,	[R0]

LDR					R2,	=0x80000				;	load	bit	19	mask

ORRS				R1,	R2										;	OR	with	bit	mask

STR					R1,	[R0]								;	store	back	to	Data	Reg

;	delay	for	0.5	second

LDR					R0,	=500

BL						delayMs

	

;	repeat	the	loop

B							loop

	

;	This	subroutine	performs	a	delay	of	N	ms

;	(for	41.94	MHz	CPU	clock).

;	N	is	the	value	in	R0.

delayMs

MOVS				R0,	R0										;	if	N	=	0,	return

BNE					L1

BX						LR

L1						LDR					R1,	=14022						;	do	inner	loop	14022	times

L2						SUBS				R1,	#1										;	inner	loop

BNE					L2

SUBS				R0,	#1										;	do	outer	loop	N	times

BNE					L1

BX						LR

	

ALIGN

END

	

In	 Program	2-1,	 notice	 how	we	 define	 the	 physical	 address	 of	 the	 special
function	registers	belonging	to	the	I/O	ports.	This	is	tedious	and	error	prone.	Often
the	manufacturer	of	the	device	will	provide	these	definitions	in	a	C	header	file.	In
fact,	there	are	two	different	header	files	available	for	KL25Z128VLK4.

Freescale	 provides	 the	 header	 file	 in	 either	 CodeWarrior	 IDE	 or	 Kinetis
Design	 Studio	 IDE.	 If	 you	 have	 downloaded	 either	 of	 them,	 you	 will	 find	 the
header	file	at:

C:\Freescale\CW	MCU	v10.5\MCU\ProcessorExpert\lib\Kinetis\iofiles\MKL25Z4.H	

or	
C:\Freescale\KDS_1.0\eclipse\ProcessorExpert\lib\Kinetis\iofiles\MKL25Z4.H

The	version	numbers	may	vary	depending	on	when	the	IDE	is	downloaded.
Program	 2-3	 is	 the	 same	 program	 as	 Program	 2-1	 except	 it	 uses	 the	 register
definitions	from	Freescale.

Program	2-3:	Toggling	LEDs	in	C	(using	special	function	registers	by	their	names	in	Freescale
header	file)	

	
/*	p2_3.c	Toggling	LED	in	C	using	Freescale	header	file	register	definitions.

	*	This	program	toggles	green	LED	for	0.5	second	ON	and	0.5	second	OFF.

	*	The	green	LED	is	connected	to	PTB19.

	*	The	LEDs	are	low	active	(a	‘0’	turns	ON	the	LED).

	*/

	

#include	“C:\Freescale\CW	MCU
v10.5\MCU\ProcessorExpert\lib\Kinetis\iofiles\MKL25Z4.H”

/*

#include
“C:\Freescale\KDS_1.0\eclipse\ProcessorExpert\lib\Kinetis\iofiles\MKL25Z4.H”

*/

	

int	main	(void)	{

void	delayMs(int	n);

SIM_SCGC5	|=	0x400;									/*	enable	clock	to	Port	B	*/

PORTB_PCR19	=	0x100;								/*	make	PTB19	pin	as	GPIO	*/

GPIOB_PDDR	|=	0x80000;						/*	make	PTB19	as	output	pin	*/

while	(1)	{

GPIOB_PDOR	&=	~0x80000;	/*	turn	on	green	LED	*/

delayMs(500);

GPIOB_PDOR	|=	0x80000;		/*	turn	off	green	LED	*/

delayMs(500);

}

}

	

/*	Delay	n	milliseconds

	*	The	CPU	core	clock	is	set	to	MCGFLLCLK	at	41.94	MHz	in	SystemInit().

	*/

void	delayMs(int	n)	{

int	i;

int	j;

for(i	=	0	;	i	<	n;	i++)

for	(j	=	0;	j	<	7000;	j++)	{}

}

	

Keil	 MDK-ARM	 uses	 a	 different	 syntax	 to	 define	 the	 registers	 to	 be	 in
compliant	with	CMSIS	 (Cortex	Microcontrollers	 Software	 Interface	Standard).	 In
this	syntax,	each	port	 is	defined	as	a	pointer	to	a	struct	with	the	registers	as	the
members	of	the	struct.	For	example,	the	Direction	Register	of	Port	B	is	referred	to
as	PTB->PDDR	and	the	Data	Register	of	Port	B	is	referred	to	as	PTB->PDOR	and	so	on.

With	 Keil	 MDK-ARM	 version	 5,	 the	 header	 file	 is	 provided	 in	 the	 Device
Family	Pack	download.	You	will	find	it	at

C:\Keil_v5\ARM\Pack\Keil\Kinetis_KLxx_DFP\1.2.0\Device\Include\MKL25Z4.h.
Program	2-1	is	rewritten	with	this	header	file	as	Program	2-4.	When	you	start

a	 Keil	 MDK-ARM	 project	 and	 choose	 a	 Freescale	 MKL25Z	 device,	 the	 project
wizard	will	add	the	location	of	this	header	file	in	the	compiler	search	path.	In	the
program,	you	only	need	to	specify	the	file	name	as:

#include	<MKL25Z4.H>

Throughout	the	rest	of	this	book,	we	will	use	the	Keil	MDK-ARM	header	file
for	the	programs.

Program	2-4:	Toggling	LEDs	in	C	(using	special	function	registers	by	their	names	in	Keil	header
file)	

	
/*	p2_4.c	Toggling	LED	in	C	using	Keil	header	file	register	definitions.

	*	This	program	toggles	green	LED	for	0.5	second	ON	and	0.5	second	OFF.

	*	The	green	LED	is	connected	to	PTB19.

	*	The	LEDs	are	low	active	(a	‘0’	turns	ON	the	LED).

	*/

	

#include	<MKL25Z4.H>

	

int	main	(void)	{

void	delayMs(int	n);

SIM->SCGC5	|=	0x400;								/*	enable	clock	to	Port	B	*/

PORTB->PCR[19]	=	0x100;					/*	make	PTB19	pin	as	GPIO		(See	Table	2-4)*/

PTB->PDDR	|=	0x80000;							/*	make	PTB19	as	output	pin	*/

while	(1)	{

PTB->PDOR	&=	~0x80000;		/*	turn	on	green	LED	*/

delayMs(500);

PTB->PDOR	|=	0x80000;			/*	turn	off	green	LED	*/

delayMs(500);

}

}

	

/*	Delay	n	milliseconds

	*	The	CPU	core	clock	is	set	to	MCGFLLCLK	at	41.94	MHz	in	SystemInit().

	*/

void	delayMs(int	n)	{

int	i;

int	j;

for(i	=	0	;	i	<	n;	i++)

for	(j	=	0;	j	<	7000;	j++)	{}

}

	

The	 Kinetis	 Family	 GPIO	 ports	 have	 three	 additional	 registers	 that	 make
turning	 a	 pin	 (or	 more)	 on	 and	 off	 easier.	 They	 are	 PSOR	 (Port	 Set	 Output
Register),	 PCOR	 (Port	 Clear	 Output	 Register),	 PTOR	 (Port	 Toggle	 Output
Register).	Writing	to	these	registers	only	affects	the	pin(s)	that	the	corresponding

bit(s)	 in	 the	value	written.	This	makes	 it	easier	 to	turn	on	or	off	a	single	pin	or	a
few	pins	without	affecting	the	other	pins.	For	example,	writing	a	value	4	(0100	in
binary)	 to	PCOR	will	 turn	off	bit	2	of	 that	port	without	modifying	any	other	pins.
See	Figures	 2-15	 through	 2-17.	 For	more	 information,	 see	Chapter	 41	 of	 KL25
reference	Manual.

Figure	2-15:	PSOR	(Port	Set	Output	Register)

	

Figure	2-16:	PCOR	(Port	Clear	Output	Register)

	

Figure	2-17:	PTOR	(Port	Toggle	Output	Register)

Program	2-5	shows	how	to	use	these	registers	to	toggle	the	green	LED	on
Freescale	FRDM	board.

Program	2-5:	Toggling	a	single	LED	using	PSOR,	PCOR,	and	PTOR	registers

	
/*	p2_5.c	Toggling	LED	in	C	using	PSOR,	PCOR,	and	PTOR	registers.

	*	This	program	toggles	green	LED	for	0.5	second	ON	and	0.5	second	OFF.

	*	The	green	LED	is	connected	to	PTB19.

	*	The	LEDs	are	low	active	(a	‘0’	turns	ON	the	LED).

	*/

	

#include	<MKL25Z4.H>

	

int	main	(void)	{

void	delayMs(int	n);

SIM->SCGC5	|=	0x400;								/*	enable	clock	to	Port	B	*/

PORTB->PCR[19]	=	0x100;					/*	make	PTB19	pin	as	GPIO	(See	Table	2-4)*/

PTB->PDDR	|=	0x80000;							/*	make	PTB19	as	output	pin	*/

while	(1)	{

PTB->PCOR	=	0x80000;				/*	turn	on	green	LED	*/

delayMs(500);

PTB->PSOR	=	0x80000;				/*	turn	off	green	LED	*/

delayMs(500);

PTB->PTOR	=	0x80000;				/*	Toggle	green	LED	*/

delayMs(500);

PTB->PTOR	=	0x80000;				/*	Toggle	green	LED	*/

delayMs(500);

}

}

	

/*	Delay	n	milliseconds

	*	The	CPU	core	clock	is	set	to	MCGFLLCLK	at	41.94	MHz	in	SystemInit().

	*/

void	delayMs(int	n)	{

int	i;

int	j;

for(i	=	0	;	i	<	n;	i++)

for	(j	=	0;	j	<	7000;	j++)	{}

}

	

Program	2-6	shows	how	to	toggle	all	three	LEDs	on	Freescale	FRDM	board.
The	three	color	LEDs	are	not	connected	to	the	same	port	of	the	microcontroller.

Program	2-6:	Toggling	all	three	LEDs	on	FRDM-KL25Z	board

	
/*	p2_6.c	Toggling	all	three	LEDs	on	FRDM-KL25Z	board.

	*	This	program	toggles	all	three	LEDs	on	the	FRDM-KL25Z	board.

	*	The	red	LED	is	connected	to	PTB18.

	*	The	green	LED	is	connected	to	PTB19.

	*	The	blue	LED	is	connected	to	PTD1.

	*	The	LEDs	are	low	active	(a	‘0’	turns	ON	the	LED).

	*/

	

#include	<MKL25Z4.H>

	

int	main	(void)	{

void	delayMs(int	n);

SIM->SCGC5	|=	0x400;								/*	enable	clock	to	Port	B	*/

SIM->SCGC5	|=	0x1000;							/*	enable	clock	to	Port	D	*/

PORTB->PCR[18]	=	0x100;					/*	make	PTB18	pin	as	GPIO	(See	Table	2-4)*/

PORTB->PCR[19]	=	0x100;					/*	make	PTB19	pin	as	GPIO	*/

PTB->PDDR	|=	0xC0000;							/*	make	PTB18,	19	as	output	pin	*/

PORTD->PCR[1]	=	0x100;						/*	make	PTD1	pin	as	GPIO	*/

PTD->PDDR	|=	0x02;										/*	make	PTD1	as	output	pin	*/

while	(1)	{

PTB->PDOR	&=	~0xC0000;		/*	turn	on	red	and	green	LED	*/

PTD->PDOR	&=	~0x02;					/*	turn	on	blue	LED	*/

delayMs(500);

PTB->PDOR	|=	0xC0000;			/*	turn	off	red	and	green	LED	*/

PTD->PDOR	|=	0x02;						/*	turn	off	blue	LED	*/

delayMs(500);

}

}

	

/*	Delay	n	milliseconds

	*	The	CPU	core	clock	is	set	to	MCGFLLCLK	at	41.94	MHz	in	SystemInit().

	*/

void	delayMs(int	n)	{

int	i;

int	j;

for(i	=	0	;	i	<	n;	i++)

for	(j	=	0;	j	<	7000;	j++)	{}

}

	

	Program	2-7	shows	how	to	generate	all	8	color	combinations	of	the	tri-color
LEDs.	An	incrementing	counter	is	used.	The	bit	0	of	the	counter	is	used	to	control
the	red	LED.	The	bit	1	of	the	counter	is	used	to	control	the	green	LED.	The	bit	2	of
the	 counter	 is	 used	 to	 control	 the	 blue	LED.	More	 colors	may	be	generated	by
using	the	PWM	(pulse	width	modulation)	but	that	is	a	subject	of	a	later	chapter.

Program	2-7:	Cycle	through	all	color	combinations	of	LEDs

	
/*	p2_7.c	Cycle	through	all	color	combinations	of	LEDs	on	FRDM-KL25Z	board.

	*	This	program	displays	all	eight	combinations	of	the

	*	three	LEDs	on	the	FRDM-KL25Z	board.

	*	The	red	LED	is	connected	to	PTB18.

	*	The	green	LED	is	connected	to	PTB19.

	*	The	blue	LED	is	connected	to	PTD1.

	*	The	LEDs	are	low	active	(a	‘0’	turns	ON	the	LED).

	*/

	

#include	<MKL25Z4.H>

	

int	main	(void)	{

void	delayMs(int	n);

int	counter	=	0;

SIM->SCGC5	|=	0x400;								/*	enable	clock	to	Port	B	*/

SIM->SCGC5	|=	0x1000;							/*	enable	clock	to	Port	D	*/

PORTB->PCR[18]	=	0x100;					/*	make	PTB18	pin	as	GPIO	*/

PTB->PDDR	|=	0x40000;							/*	make	PTB18	as	output	pin	*/

PORTB->PCR[19]	=	0x100;					/*	make	PTB19	pin	as	GPIO	*/

PTB->PDDR	|=	0x80000;							/*	make	PTB19	as	output	pin	*/

PORTD->PCR[1]	=	0x100;						/*	make	PTD1	pin	as	GPIO	*/

PTD->PDDR	|=	0x02;										/*	make	PTD1	as	output	pin	*/

while	(1)	{

if	(counter	&	1)				/*	use	bit	0	of	counter	to	control	red	LED	*/

PTB->PCOR	=	0x40000;				/*	turn	on	red	LED	*/

else

PTB->PSOR	=	0x40000;				/*	turn	off	red	LED	*/

if	(counter	&	2)				/*	use	bit	1	of	counter	to	control	green	LED	*/

PTB->PCOR	=	0x80000;				/*	turn	on	green	LED	*/

else

PTB->PSOR	=	0x80000;				/*	turn	off	green	LED	*/

if	(counter	&	4)				/*	use	bit	2	of	counter	to	control	blue	LED	*/

PTD->PCOR	=	0x02;							/*	turn	on	blue	LED	*/

else

PTD->PSOR	=	0x02;							/*	turn	off	blue	LED	*/

counter++;

delayMs(500);

}

}

	

/*	Delay	n	milliseconds

	*	The	CPU	core	clock	is	set	to	MCGFLLCLK	at	41.94	MHz	in	SystemInit().

	*/

void	delayMs(int	n)	{

int	i;

int	j;

for(i	=	0	;	i	<	n;	i++)

for	(j	=	0;	j	<	7000;	j++)	{}

}

	

CPU	clock	frequency	and	time	delay
Many	microcontrollers	have	at	least	three	clock	sources	fed	into	the	CPU.

1)						The	on-chip	RC	oscillator	circuit.	This	is	the	least	precise	clock	source	for
the	CPU.	But	it	does	not	require	additional	external	devices.

2)	 	 	 	 	 	 The	 externally	 connected	 crystal	 (XTAL)	 oscillator.	 It	 offers	 the	 most
precise	clock	but	at	high	frequencies,	such	as	above	100MHz,	crystals	are
expensive.

3)						PLL	(phase	lock	loop).	A	compromise	between	precision	and	economy	is	to
use	 an	 inexpensive	 low	 frequency	 crystal	 oscillator	 along	with	 the	 on-chip
PLL	 circuitry	 to	 generate	 a	 high	 frequency	 clock	 source	 for	 the	CPU.	This
option	is	widely	used	for	systems	with	CPU	frequency	of	20MHz	and	higher.
Another	 added	 benefit	 of	 using	 the	 PLL	 is	 that	 the	 clock	 frequency	 is
programmable.	You	may	 run	high	clock	 frequency	 for	CPU	 intensive	 tasks
and	slow	down	the	clock	in	other	times	to	conserve	energy.

Freescale	FRDM	board	is	connected	externally	to	an	8MHz	XTAL	oscillator
and	 one	 can	 program	 its	 KL25Z128VLK4	 chip	 clock	 generator	 to	 implement	 all
three	options.

When	 you	 start	 a	 new	 project	 in	 Keil	 MDK-ARM	 v5	 with	 Device	 Family
Support	Pack,	 the	Project	Wizard	automatically	add	a	file	system_MKL25Z4.c	to
the	project.	In	this	file,	there	are	three	system	clock	initialization	modes	(see	Table
2-5	below).	By	default,	clock	setup	mode	0	is	used.	This	will	be	the	clock	setup	we
use	 in	 all	 the	 examples	 throughout	 this	 book	unless	 stated	otherwise.	You	may
choose	a	different	clock	setup	mode	by	editing	the	#define	CLOCK_SETUP	in	the
system_MKL25Z4.c	file.

CLOCK_SETUP Mode Reference	clock	source Core	clock Bus	clock

0 FLL	Engaged
Internal

slow	internal	clock
32.768kHz 41.94MHz 13.98MHz

1 PLL	Engaged
External external	crystal	8MHz 48MHz 24MHz

2 Bypassed	Low
Power	External external	crystal	8MHz 8MHz 8MHz

Table	2-5:	Clock	setup	modes	in	Keil	MDK-ARM	v5	Freescale	Kinetis	KLxx	Series	Device	Family
Support	Pack

Measuring	time	delay	in	a	C	program	loop
One	simple	way	of	creating	a	time	delay	is	using	a	for	loop	in	C	language.

The	length	of	time	delay	loop	for	a	given	system	is	function	of	two	factors:	a)	the
CPU	 frequency	 and	 b)	 the	 compiler.	 It	must	 be	 noted	 that	 a	 time	 delay	C	 loop
measured	 using	 a	 given	 compiler	 (e.g.	 Keil)	 may	 not	 give	 the	 same	 result	 if	 a
different	 compiler	 such	 as	 CodeWarrior	 or	 IAR	 is	 used.	 Regardless	 of	 clock
source	to	CPU	and	the	C	compiler	used,	always	use	oscilloscope	to	measure	the
size	 of	 time	 delay	 loop	 for	 a	 given	 system	with	 a	 given	 compiler	 and	 compiler
option	setting.	Measure	the	time	delay	in	Programs	2-4	and	Program	2-5	using	an
oscilloscope.

Reading	a	switch	in	Freescale	FRDM	board
The	FRDM	KL25Z	board	does	not	come	with	any	user	programmable	push-

button	 switches.	We	 can	 connect	 an	 external	 SW	 to	 the	 board	 and	 experiment
with	 the	concept	of	 inputting	data	via	a	port.	Depending	on	how	we	connect	an
external	SW	to	a	pin,	we	need	to	enable	the	internal	pull-up	or	pull-down	resistor
for	a	pin.	See	Figure	2-18	for	connecting	external	switches	to	microcontroller.

Figure	2-18:	Connecting	External	Switches	to	the	Microcontroller

Using	 the	 PORTx_PCRn	 register,	 not	 only	 we	 select	 the	 alternate	 I/O
function	of	a	given	pin,	we	can	also	control	its	Drive	Strength	and	its	internal	Pull-

up	 (or	Pull-down)	 resistor.	 The	D1	 (PE,	 pull	 enable)	 bit	 of	 the	PORTx_PCRn	 is
used	 to	enable	 the	 internal	Pull	 resistor	option.	 If	PE=1,	 then	we	use	 the	D0	bit
(PS,	pull	select)	to	enable	the	pull-up	(or	pull-down)	option.	See	Figure	2-19	and
See	Example	2-4.

Figure	2-19:	PS	and	PE	bits

	

Example	2-4

Find	the	contents	of	the	PORTA_PCR1	register	for	PTA1	to	use	PTA1	pin	as	input
connected	to	SW.	Use	the	pull-up	resistor.

Solution:

	

	

To	read	a	switch	on	PTA1	and	display	it	on	the	LED	on	PTB19,	the	following
steps	must	be	taken.

1)						enable	the	clock	to	PORTB,

2)						configure	PTB19	as	GPIO	in	PORTB_PCR19	register,

3)						make	PTB19	output	in	PDDR	register,

4)						enable	the	clock	to	PORTA,

5)						configure	PTA1	as	GPIO	and	enable	the	pull-up	resistor	in	PORTA	PCR1
register,

6)						make	PTA1	input	in	PDDR	register,

7)						read	switch	from	PORTA,

8)						if	PTA1	is	high,	set	PTB1

9)						else	clear	PTB1

10)			Repeat	steps	7	to	9.

See	Programs	2-8.

Program	2-8:	Reading	a	switch	and	displaying	it	on	the	green	LED	

	
/*	p2_8.c	Read	a	switch	and	write	it	to	the	LED.

	

	*	This	program	reads	an	external	SW	connected	to	PTA1

	*	of	FRDM	board	and	writes	the	value	to	the	green	LED.

	*	When	switch	is	pressed,	it	connects	PTA1	to	ground.

	*	PTA1	pin	pull-up	is	enabled	so	that	it	is	high	when

	*	the	switch	is	not	pressed.																									

	*	LED	is	on	when	low.

	*/

	

#include	<MKL25Z4.H>

	

int	main	(void)	{

SIM->SCGC5	|=	0x400;								/*	enable	clock	to	Port	B	*/

PORTB->PCR[19]	=	0x100;					/*	make	PTB19	pin	as	GPIO	*/

PTB->PDDR	|=	0x80000;							/*	make	PTB19	as	output	pin	*/

SIM->SCGC5	|=	0x200;								/*	enable	clock	to	Port	A	*/

PORTA->PCR[1]	=	0x103;						/*	make	PTA1	pin	as	GPIO	and	enable	pull-up	*/

PTA->PDDR	&=	~0x02;									/*	make	PTA1	as	input	pin	*/

while	(1)	{

if	(PTA->PDIR	&	2)						/*	check	to	see	if	switch	is	pressed	*/

PTB->PSOR	=	0x80000;				/*	if	not,	turn	off	green	LED	*/

else

PTB->PCOR	=	0x80000;				/*	turn	on	green	LED	*/

}

}

	

Review	Questions
1.							KL25Z128VLK4	has	__________	GPIO	ports.

2.							True	or	false.	Every	ARM	microcontroller	must	have	minimum	of	3
memory	spaces	of	Flash	(for	code),	SRAM	(for	data),	and	I/O.

3.							Port	A	in	KL25Z128VLK4	has	____	pins.

4.							Give	the	address	location	assigned	to	Data	Output	register	of	PORTA
(GPIOA_PODR).	See	Chapter	41	of	KL25	Reference	Manual.

5.							Give	the	address	location	assigned	to	Data	Direction	register	of	PORTB
(GPIO_PDDR).	See	Chapter	41	of	KL25	Reference	Manual.

Section	2.3:	Seven-segment	LED	interfacing	and
programming

Another	popular	output	display	is	seven-segment	LED.	The	7-seg	LED	can
have	common	anode	or	common	cathode.	With	common	anode,	the	anode	of	the
LED	 is	 driven	 by	 the	 positive	 supply	 voltage	 and	 the	microcontroller	 drives	 the
individual	 cathodes	 LOW	 for	 current	 to	 flow	 through	 LEDs	 to	 light	 up.	 In	 this
configuration,	 the	 sink	 current	 capability	 of	 the	 microcontroller	 is	 critical.	 With
common	cathode,	the	cathode	of	the	LED	is	grounded	and	microcontroller	drives
the	 individual	 anodes	 HIGH	 to	 light	 up	 the	 LED.	 In	 this	 configuration,	 the
microcontroller	pins	must	provide	sufficient	source	current	for	each	LED	segment.
In	either	configurations,	if	the	microcontroller	does	not	have	sufficient	drive	or	sink
current	 capacity,	 we	 must	 add	 a	 buffer	 between	 the	 7-seg	 LED	 and	 the
microcontroller.	The	buffer	for	the	7-seg	LED	can	be	an	IC	chip	or	transistors.

The	seven	segments	of	LED	are	designated	as	a,	b,	c,	d,	e,	 f,	and	g.	See
Figure	2-20.

Figure	2-20:	Seven-Segment

A	 byte	 of	 data	 should	 be	 sufficient	 to	 drive	 all	 of	 the	 segments.	 In	 the
example	below,	segment	a	is	assigned	to	bit	D0,	segment	b	is	assigned	to	bit	D1,
and	so	on	as	shown	below:

D7 D6 D5 D4 D3 D2 D1 D0

. g F e d c b a		

Table	2-6:	Assignments	of	port	pins	to	each	segments	of	a	7-seg	LED

The	 D7	 bit	 is	 assigned	 to	 decimal	 point.	 One	 can	 create	 the	 following
patterns	for	numbers	0	to	9	for	the	common	cathode	configuration:

Num D7 D6 D5 D4 D3 D2 D1 D0 Hex
value

	 . g f e d c b a 	

0 0 0 1 1 1 1 1 1 0x3F

1 0 0 0 0 0 1 1 0 0x06

2 0 1 0 1 1 0 1 1 0x5B

3 0 1 0 0 1 1 1 1 0x4F

4 0 1 1 0 0 1 1 0 0x66

5 0 1 1 0 1 1 0 1 0x6D

6 0 1 1 1 1 1 0 1 0x7D

7 0 0 0 0 0 1 1 1 0x07

8 0 1 1 1 1 1 1 1 0x7F

9 0 1 1 0 1 1 1 1 0x6F

Table	2-7:	Segment	patterns	for	the	10	decimal	digits	for	a	common	cathode	7-seg	LED

In	 Figures	 2-21	 and	 2-22	 the	 connection	 for	 2-digit	 7-seg	 LED	 and	 the
microcontroller	is	shown.	The	Program	2-9	shows	the	code.

Figure	2-21:	Microcontroller	Connection	to	7-segment	LED

	

Figure	2-22:	Microcontroller	Connection	to	7-segment	LED	with	Buffer	Driver

Notice	since	the	same	segment	for	both	digit	1	and	digit	2	are	connected	to
the	 same	 I/O	 port	 pin,	 the	 common	 cathode	 of	 each	 digit	 must	 be	 driven
separately	 so	 that	 only	 one	 digit	 is	 on	 at	 a	 time.	 The	 two	 digits	 are	 turned	 on
alternatively.	For	example,	if	we	want	to	display	number	25	on	the	7-seg	LED,	the
following	steps	should	be	used:

1)						enable	the	system	clock	to	PORTD	and	PORTE,

2)						Configure	Port	D	as	output	port	to	drive	the	segments,

3)						Configure	Port	E	as	output	port	to	select	the	digits,

4)						Write	the	pattern	of	numeral	2	from	Table	2-7	to	Port	D,

5)						Set	the	PTE1	pin	to	HIGH	to	activate	the	tens	digit,

6)						Delay	for	some	time,

7)						Write	the	pattern	of	numeral	5	from	Table	2-7	to	Port	D,

8)						Set	the	PTE0	pin	to	HIGH	to	activate	the	ones	digit,

9)						Delay	for	some	time,

10)			Repeat	from	step	4	to	9.

At	low	frequency	of	alternating	digits,	the	display	will	appear	to	be	flickering.
To	eliminate	the	flickering	display,	each	digit	should	be	turned	on	and	off	at	least
60	 times	 each	 second.	 From	 the	 example	 above,	 the	 delay	 for	 steps	 6	 and	 9
should	be	8	milliseconds	or	less.

1	second	/	60	/	2	=	8	millisecond

See	Program	2-9.

Program	2-9:	Displaying	“25”	on	2-digit	7-segment	LED	display

	
/*	p2_9.c:	Display	number	25	on	a	2-digit	7-segment	LED.

	

	*	Two	common	cathode	7-segment	LEDs	are	used.

	*	PTD0-6	are	connected	to	segment	A-G	respectively.

	*	PTE0	is	used	to	control	right	digit	(low	for	digit	on).

	*	PTE1	is	used	to	control	left	digit	(low	for	digit	on).

	*/

	

#include	<MKL25Z4.H>

	

void	delayMs(int	n);

	

int	main(void)

{			

unsigned	char	digitPattern[]	=

{0x3F,	0x06,	0x5B,	0x4F,	0x66,	0x6D,	0x7D,	0x07,	0x7F,	0x6F};

/*from	Table	2-7	*/

	

SIM->SCGC5	|=	0x1000;							/*	enable	clock	to	Port	D	*/

SIM->SCGC5	|=	0x2000;							/*	enable	clock	to	Port	E	*/

PORTD->PCR[0]	=	0x100;						/*	make	PTD0	pin	as	GPIO	*/

PORTD->PCR[1]	=	0x100;						/*	make	PTD1	pin	as	GPIO	*/

PORTD->PCR[2]	=	0x100;						/*	make	PTD2	pin	as	GPIO	*/

PORTD->PCR[3]	=	0x100;						/*	make	PTD3	pin	as	GPIO	*/

PORTD->PCR[4]	=	0x100;						/*	make	PTD4	pin	as	GPIO	*/

PORTD->PCR[5]	=	0x100;						/*	make	PTD5	pin	as	GPIO	*/

PORTD->PCR[6]	=	0x100;						/*	make	PTD6	pin	as	GPIO	*/

PTD->PDDR	|=	0x7F;										/*	make	PTD6-0	as	output	pins	*/

PORTE->PCR[0]	=	0x100;						/*	make	PTE0	pin	as	GPIO	*/

PORTE->PCR[1]	=	0x100;						/*	make	PTE1	pin	as	GPIO	*/

PTE->PDDR	|=	0x03;										/*	make	PTE1-0	as	output	pin	*/

	

for(;;)

{

PTD->PDOR	=	digitPattern[2];				/*	drive	pattern	of	2	on	the	segments	*/

PTE->PSOR	=	0x01;															/*	turn	off	right	digit	*/

PTE->PCOR	=	0x02;															/*	turn	on	left	digit	*/

/*	delay	8	ms	will	result	in	16	ms	per	loop	or	62.5	Hz	*/

delayMs(8);

	

PTD->PDOR	=	digitPattern[5];				/*	drive	pattern	of	5	on	the	segments	*/

PTE->PCOR	=	0x01;															/*	turn	on	right	digit	*/

PTE->PSOR	=	0x02;															/*	turn	off	left	digit	*/

delayMs(8);						

}

}

	

/*	Delay	n	milliseconds

	*	The	CPU	core	clock	is	set	to	MCGFLLCLK	at	41.94	MHz	in	SystemInit().

	*/

void	delayMs(int	n)	{

int	i;

int	j;

for(i	=	0	;	i	<	n;	i++)

for	(j	=	0;	j	<	7000;	j++)	{}

}

	

Notice	in	Figure	2-21,	a	single	pin	is	used	to	select	each	digit.	That	means	if
we	want	4	digits	we	must	use	a	total	of	12	pins.	That	is	8	pins	for	the	segments	a
through	g,	decimal	point,	and	4	pins	to	select	each	digit.	This	might	not	be	feasible
in	applications	in	which	we	have	a	limited	number	of	microcontroller	pins	to	spare.
One	solution	 is	 to	use	a	decoder	 for	 the	digit	selection.	For	example	a	74LS138
decoder	can	be	used	 for	up	 to	8-digit	7-seg	LED	system	with	 three	select	pins.
Another	 approach	 is	 to	 use	 a	 7-segment	 LED	 driver	 chip	 such	 as	 MAX	 7221,
which	only	uses	 two	 interface	pins.	An	additional	advantage	of	MAX7221	 is	 that
the	 refreshing	 of	 the	 segments	 is	 handled	 by	 the	 driver	 chip	 itself	 so	 the
microcontroller	 does	 not	 have	 to	 spend	 time	 refreshing	 the	 display	 and	 can
concentrate	on	other	important	tasks.	The	MAX7221	is	an	I2C	device	and	the	vast
majority	of	microcontrollers	come	with	on-chip	 I2C	serial	communication	 feature,
which	we	will	discuss	in	a	separate	chapter.

	Review	Questions
1.							In	a	common	cathode	7-seg	LED	connection,	to	turn	on	a	segment	the

microcontroller	drives	it	(high	,	low).

2.							True	or	false.	In	connecting	the	7-seg	LED	directly	to	microcontroller,	the
refreshing	of	digits	is	done	by	microcontroller	itself.

3.							What	is	the	disadvantage	of	letting	microcontroller	to	do	the	refreshing	of
7-seg	LEDs?

4.							List	two	advantages	of	using	an	IC	chip	such	as	MAX7221	chip?

5.							In	an	application,	we	need	8	digits	of	7-seg	LED.	How	many	pins	of
microcontroller	will	be	used	if	we	connect	microcontroller	to	7-seg	directly
(similar	to	Figure	2-22)?	How	about	if	we	use	3-8	decoder	for	digit	selection?

	Answer	to	Review	Questions
Section	2-1

1.							128KB

2.							16KB

3.							Program	code

4.							Data

5.							0x0000	0000	to	0x0001	FFFF

6.							LK	is	packaging	designation	meaning	80-pin	LQFP

Section	2-2
1.							5	(A	to	E)

2.							True

3.							12

4.							0x400F	F000

5.							0x400F	F054

Section	2-3
1.							High

2.							True

3.							The	time	and	pins	of	microcontroller	is	wasted	to	scan	the	7-segments.

4.							(1)	It	refreshes	the	7-segments,	(2)	it	is	connected	to	the	microcontroller
using	I2C	which	uses	just	2	pins	of	the	microcontroller.

5.							8	pins	for	data	and	8	pins	for	selector;	8	pins	for	data	and	3	pins	for
selector.

	

	

Chapter	3:	LCD	and	Keyboard	Interfacing
In	 this	 chapter,	 we	 show	 interfacing	 to	 two	 real-world	 devices:	 LCD	 and

Keyboard.	They	are	widely	used	in	different	embedded	systems.

Section	3.1:	Interfacing	to	an	LCD
This	 section	 describes	 the	 operation	 modes	 of	 the	 LCDs,	 then	 describes

how	to	program	and	interface	an	LCD	to	the	Freescale	FRDM	board.

LCD	operation
In	 recent	 years	 the	LCD	 is	 replacing	LEDs	 (seven-segment	LEDs	or	other

multi-segment	LEDs).	This	is	due	to	the	following	reasons:

1.							The	declining	prices	of	LCDs.

2.							The	ability	to	display	numbers,	characters,	and	graphics.	This	is	in	contrast
to	LEDs,	which	are	limited	to	numbers	and	a	few	characters.	(The	new
OLED	panels	are	relatively	much	more	expensive	except	the	very	small
ones.	But	their	prices	are	dropping.	The	interface	and	programming	to	OLED
are	similar	to	graphic	LCD.)

3.							Incorporation	of	the	refreshing	controller	into	the	LCD	itself,	thereby
relieving	the	CPU	of	the	task	of	refreshing	the	LCD.

4.							Ease	of	programming	for	both	characters	and	graphics.

5.							The	extremely	low	power	consumption	of	LCD	(when	backlight	is	not
used).

LCD	module	pin	descriptions
For	many	years,	the	use	of	Hitachi	HD44780	LCD	controller	dominated	the

character	LCD	modules.	Even	today,	most	of	the	character	LCD	modules	still	use
HD44780	or	a	variation	of	it.	The	HD44780	controller	has	a	14	pin	interface	for	the
microprocessor.	We	will	discuss	this	14	pin	interface	in	this	section.	The	function
of	each	pin	 is	given	 in	Table	3-1.	Figure	3-1	shows	 the	pin	positions	 for	various
LCD	modules.

Pin Symbol I/O Description

1 VSS — Ground

2 VCC — +5V	power	supply

3 VEE — Power	supply	to	control	contrast

4 RS I
RS	=	0	to	select	command	register,

RS	=	1	to	select	data	register

5 R/W I
R/W	=	0	for	write,

R/W	=	1	for	read

6 E I Enable

7 DB0 I/O The	8-bit	data	bus

8 DB1 I/O The	8-bit	data	bus

9 DB2 I/O The	8-bit	data	bus

10 DB3 I/O The	8-bit	data	bus

11 DB4 I/O The	4/8-bit	data	bus

12 DB5 I/O The	4/8-bit	data	bus

13 DB6 I/O The	4/8-bit	data	bus

14 DB7 I/O The	4/8-bit	data	bus

Table	3-1:	Pin	Descriptions	for	LCD

Figure	3-1:	Pin	Positions	for	Various	LCDs	from	Optrex

VCC,	VSS,	and	VEE:	While	VCC	and	VSS	provide	+5V	power	supply	and
ground,	respectively,	VEE	is	used	for	controlling	the	LCD	contrast.

RS,	register	select:	There	are	two	registers	inside	the	LCD	and	the	RS	pin
is	 used	 for	 their	 selection	 as	 follows.	 If	 RS	 =	 0,	 the	 instruction	 command	 code
register	 is	selected,	allowing	the	user	to	send	a	command	such	as	clear	display,
cursor	at	home,	and	so	on	(or	query	the	busy	status	bit	of	the	controller).	If	RS	=
1,	the	data	register	is	selected,	allowing	the	user	to	send	data	to	be	displayed	on
the	LCD	(or	to	retrieve	data	from	the	LCD	controller).

R/W,	read/write:	R/W	input	allows	the	user	to	write	information	into	the	LCD
controller	or	read	 information	from	it.	R/W	=	1	when	reading	and	R/W	=	0	when
writing.

E,	enable:	The	enable	pin	is	used	by	the	LCD	to	latch	information	presented
to	its	data	pins.	When	data	is	supplied	to	data	pins,	a	pulse	(Low-to-High-to-Low)
must	be	applied	to	this	pin	in	order	for	the	LCD	to	latch	in	the	data	present	at	the
data	 pins.	 This	 pulse	must	 be	 a	minimum	of	 230	 ns	wide,	 according	 to	Hitachi
datasheet.

D0–D7:	The	8-bit	data	pins	are	used	to	send	information	to	the	LCD	or	read
the	 contents	 of	 the	 LCD’s	 internal	 registers.	 The	 LCD	 controller	 is	 capable	 of

operating	with	4-bit	data	and	only	D4-D7	are	used.	We	will	discuss	 this	 in	more
details	later.

To	display	letters	and	numbers,	we	send	ASCII	codes	for	the	letters	A–Z,	a–
z,	numbers	0–9,	and	the	punctuation	marks	to	these	pins	while	making	RS	=	1.

There	are	also	 instruction	command	codes	 that	can	be	sent	 to	 the	LCD	 in
order	to	clear	the	display,	force	the	cursor	to	the	home	position,	or	blink	the	cursor.
Table	 3-2	 lists	 some	 commonly	 used	 command	 codes.	 For	 detailed	 command
codes,	see	Table	3-4.

Code	(Hex) Command	to	LCD	Instruction	Register

1 Clear	display	screen

2 Return	cursor	home

6 Increment	cursor	(shift	cursor	to	right)

F Display	on,	cursor	blinking

80 Force	cursor	to	beginning	of	1st	line

C0 Force	cursor	to	beginning	of	2nd	line

38 2	lines	and	5x7	character	(8-bit	data,	D0	to	D7)

28 2	lines	and	5x7	character	(4-bit	data,	D4	to	D7)

Table	3-2:	Some	commonly	used	LCD	Command	Codes

	

Sending	commands	to	LCDs
To	send	any	of	the	commands	to	the	LCD,	make	pins	RS	=	0,	R/W	=	0,	and

send	a	pulse	 (L-to-H-to-L)	on	 the	E	pin	 to	enable	 the	 internal	 latch	of	 the	LCD.
The	connection	of	an	LCD	to	the	microcontroller	is	shown	in	Figure	3-2.

Figure	3-2:	LCD	Connection	to	Microcontroller

Notice	the	following	for	the	connection	in	Figure	3-2:

1.							The	LCD’s	data	pins	are	connected	to	PORTD	of	the	microcontroller.

2.							The	LCD’s	RS	pin	is	connected	to	Pin	2	of	PORTA	of	the	microcontroller.

3.							The	LCD’s	R/W	pin	is	connected	to	Pin	4	of	PORTA	of	the	microcontroller.

4.							The	LCD’s	E	pin	is	connected	to	Pin	5	of	PORTA	of	the	microcontroller.

5.							Both	Ports	D	and	A	are	configured	as	output	ports.

Sending	data	to	the	LCD
In	order	to	send	data	to	the	LCD	to	be	displayed,	we	must	set	pins	RS	=	1,

R/W	=	0,	and	also	send	a	pulse	(L-to-H-to-L)	 to	 the	E	pin	 to	enable	 the	 internal
latch	of	the	LCD.

Because	 of	 the	 extremely	 low	 power	 feature	 of	 the	 LCD	 controller,	 it	 runs
much	slower	 than	 the	microcontroller.	The	 first	 two	commands	 in	Table	3-2	 take
up	to	1.64	ms	to	execute	and	all	the	other	commands	and	data	take	up	to	40	us.
(At	the	highest	clock	speed,	MKL25Z4	can	execute	more	than	1,000	instructions
in	40	us.)	After	one	command	or	data	 is	written	 to	 the	LCD	controller,	one	must
wait	 until	 the	 LCD	 controller	 is	 ready	 before	 issuing	 the	 next	 command/data
otherwise	the	second	command/data	will	be	ignored.	An	easy	way	(not	as	efficient
though)	 is	 to	 delay	 the	microcontroller	 for	 the	maximal	 time	 it	may	 take	 for	 the
previous	 command.	We	 will	 use	 this	method	 in	 the	 following	 examples.	 All	 the
examples	in	this	chapter	use	much	more	relaxed	timing	than	the	original	HD44780
datasheet	 (See	 Table	 3-4)	 to	 accommodate	 the	 variations	 of	 different	 LCD
modules.	You	may	want	adjust	the	delay	time	for	the	LCD	module	you	use.

Program	3-1:	This	program	displays	a	message	on	the	LCD	using	8-bit	mode	and	delay.

	
/*	p3_1.c:	Initialize	and	display	“Hello”	on	the	LCD	using	8-bit	data	mode.

	

	*	Data	pins	use	Port	D,	control	pins	use	Port	A.

	*	This	program	does	not	poll	the	status	of	the	LCD.	

	*	It	uses	delay	to	wait	out	the	time	LCD	controller	is	busy.

	*	Timing	is	more	relax	than	the	HD44780	datasheet	to	accommodate	the

	*	variations	among	the	LCD	modules.

	*	You	may	want	to	adjust	the	amount	of	delay	for	your	LCD	controller.

	*/

	

#include	<MKL25Z4.H>

	

#define	RS	0x04					/*	PTA2	mask	*/

#define	RW	0x10					/*	PTA4	mask	*/

#define	EN	0x20					/*	PTA5	mask	*/

	

void	delayMs(int	n);

void	LCD_command(unsigned	char	command);

void	LCD_data(unsigned	char	data);

void	LCD_init(void);

	

int	main(void)

{

LCD_init();

for(;;)

{

LCD_command(1);									/*	clear	display	*/

delayMs(500);

LCD_command(0x80);						/*	set	cursor	at	first	line	*/

LCD_data(‘H’);										/*	write	the	word	*/

LCD_data(‘e’);

LCD_data(‘l’);

LCD_data(‘l’);

LCD_data(‘o’);

delayMs(500);

}

}

	

void	LCD_init(void)

{

SIM->SCGC5	|=	0x1000;							/*	enable	clock	to	Port	D	*/

PORTD->PCR[0]	=	0x100;						/*	make	PTD0	pin	as	GPIO	*/

PORTD->PCR[1]	=	0x100;						/*	make	PTD1	pin	as	GPIO	*/

PORTD->PCR[2]	=	0x100;						/*	make	PTD2	pin	as	GPIO	*/

PORTD->PCR[3]	=	0x100;						/*	make	PTD3	pin	as	GPIO	*/

PORTD->PCR[4]	=	0x100;						/*	make	PTD4	pin	as	GPIO	*/

PORTD->PCR[5]	=	0x100;						/*	make	PTD5	pin	as	GPIO	*/

PORTD->PCR[6]	=	0x100;						/*	make	PTD6	pin	as	GPIO	*/

PORTD->PCR[7]	=	0x100;						/*	make	PTD7	pin	as	GPIO	*/

PTD->PDDR	=	0xFF;											/*	make	PTD7-0	as	output	pins	*/

SIM->SCGC5	|=	0x0200;							/*	enable	clock	to	Port	A	*/

PORTA->PCR[2]	=	0x100;						/*	make	PTA2	pin	as	GPIO	*/

PORTA->PCR[4]	=	0x100;						/*	make	PTA4	pin	as	GPIO	*/

PORTA->PCR[5]	=	0x100;						/*	make	PTA5	pin	as	GPIO	*/

PTA->PDDR	|=	0x34;										/*	make	PTA5,	4,	2	as	output	pins	*/

	

delayMs(30);																/*	initialization	sequence	*/

LCD_command(0x30);

delayMs(10);

LCD_command(0x30);

delayMs(1);

LCD_command(0x30);

LCD_command(0x38);						/*	set	8-bit	data,	2-line,	5x7	font	*/

LCD_command(0x06);						/*	move	cursor	right	*/

LCD_command(0x01);						/*	clear	screen,	move	cursor	to	home	*/

LCD_command(0x0F);						/*	turn	on	display,	cursor	blinking	*/

}

	

void	LCD_command(unsigned	char	command)

{

PTA->PCOR	=	RS	|	RW;				/*	RS	=	0,	R/W	=	0	*/

PTD->PDOR	=	command;

PTA->PSOR	=	EN;									/*	pulse	E	*/

delayMs(0);

PTA->PCOR	=	EN;

if	(command	<	4)

delayMs(4);									/*	command	1	and	2	needs	up	to	1.64ms	*/

else

delayMs(1);									/*	all	others	40	us	*/

}

	

void	LCD_data(unsigned	char	data)

{

PTA->PSOR	=	RS;									/*	RS	=	1,	R/W	=	0	*/

PTA->PCOR	=	RW;

PTD->PDOR	=	data;

PTA->PSOR	=	EN;									/*	pulse	E	*/

delayMs(0);

PTA->PCOR	=	EN;

delayMs(1);

}

	

/*	Delay	n	milliseconds

	*	The	CPU	core	clock	is	set	to	MCGFLLCLK	at	41.94	MHz	in	SystemInit().

	*/

void	delayMs(int	n)	{

int	i;

int	j;

for(i	=	0	;	i	<	n;	i++)

for(j	=	0	;	j	<	7000;	j++)	{	}

}

	

	

Checking	LCD	busy	flag
The	 above	 programs	 used	 a	 time	 delay	 before	 issuing	 the	 next	 data	 or

command.	This	allows	the	LCD	a	sufficient	amount	of	time	to	get	ready	to	accept
the	next	data.	However,	 the	LCD	has	a	busy	flag.	We	can	monitor	 the	busy	flag
and	issue	data	when	it	is	ready.	This	will	speed	up	the	process.	To	check	the	busy
flag,	we	must	read	the	command	register	(R/W	=	1,	RS	=	0).	The	busy	flag	is	the
D7	bit	of	that	register.	Therefore,	if	R/W	=	1,	RS	=	0.	When	D7	=	1	(busy	flag	=	1),
the	 LCD	 is	 busy	 taking	 care	 of	 internal	 operations	 and	will	 not	 accept	 any	new
information.	When	D7	=	0,	the	LCD	is	ready	to	receive	new	information.

Doing	so	 requires	switching	 the	direction	of	 the	port	connected	 to	 the	data
bus	 to	 input	mode	when	polling	 the	status	register	 then	switch	 the	port	direction
back	to	output	mode	to	send	the	next	command.	If	the	port	direction	is	incorrect,	it
may	damage	the	microcontroller	or	the	LCD	module.	The	next	program	example
uses	polling	of	the	busy	bit	in	the	status	register.

	

Program	3-2:	This	program	displays	a	message	on	the	LCD	using	8-bit	mode	and	polling	of	the
status	register

	
/*	p3_2.c:	Initialize	and	display	“hello”	on	the	LCD	using	8-bit	data	mode.

	

	*	Data	pins	use	Port	D,	control	pins	use	Port	A.

	*	Polling	of	the	busy	bit	of	the	LCD	status	bit	is	used	for	timing.

	*/

	

#include	<MKL25Z4.H>

	

#define	RS	0x04					/*	PTA2	mask	*/

#define	RW	0x10					/*	PTA4	mask	*/

#define	EN	0x20					/*	PTA5	mask	*/

	

void	delayMs(int	n);

void	LCD_command(unsigned	char	command);

void	LCD_command_noWait(unsigned	char	command);

void	LCD_data(unsigned	char	data);

void	LCD_init(void);

void	LCD_ready(void);

	

int	main(void)

{

LCD_init();

for(;;)

{

LCD_command(1);									/*	clear	display	*/

delayMs(500);

LCD_command(0xC0);						/*	set	cursor	at	2nd	line	*/

LCD_data(‘h’);										/*	write	the	word	on	LCD	*/

LCD_data(‘e’);

LCD_data(‘l’);

LCD_data(‘l’);

LCD_data(‘o’);

delayMs(500);

}

}

	

void	LCD_init(void)

{

SIM->SCGC5	|=	0x1000;							/*	enable	clock	to	Port	D	*/

PORTD->PCR[0]	=	0x100;						/*	make	PTD0	pin	as	GPIO	*/

PORTD->PCR[1]	=	0x100;						/*	make	PTD1	pin	as	GPIO	*/

PORTD->PCR[2]	=	0x100;						/*	make	PTD2	pin	as	GPIO	*/

PORTD->PCR[3]	=	0x100;						/*	make	PTD3	pin	as	GPIO	*/

PORTD->PCR[4]	=	0x100;						/*	make	PTD4	pin	as	GPIO	*/

PORTD->PCR[5]	=	0x100;						/*	make	PTD5	pin	as	GPIO	*/

PORTD->PCR[6]	=	0x100;						/*	make	PTD6	pin	as	GPIO	*/

PORTD->PCR[7]	=	0x100;						/*	make	PTD7	pin	as	GPIO	*/

PTD->PDDR	=	0xFF;											/*	make	PTD7-0	as	output	pins	*/

SIM->SCGC5	|=	0x0200;							/*	enable	clock	to	Port	A	*/

PORTA->PCR[2]	=	0x100;						/*	make	PTA2	pin	as	GPIO	*/

PORTA->PCR[4]	=	0x100;						/*	make	PTA4	pin	as	GPIO	*/

PORTA->PCR[5]	=	0x100;						/*	make	PTA5	pin	as	GPIO	*/

PTA->PDDR	|=	0x34;										/*	make	PTA5,	4,	2	as	output	pins	*/

	

delayMs(20);																/*	initialization	sequence	*/

LCD_command_noWait(0x30);					/*	LCD	does	not	respond	to	status	poll	*/

delayMs(5);

LCD_command_noWait(0x30);

delayMs(1);

LCD_command_noWait(0x30);

LCD_command(0x38);						/*	set	8-bit	data,	2-line,	5x7	font	*/

LCD_command(0x06);						/*	move	cursor	right	*/

LCD_command(0x01);						/*	clear	screen,	move	cursor	to	home	*/

LCD_command(0x0F);						/*	turn	on	display,	cursor	blinking	*/

}

	

/*	This	function	waits	until	LCD	controller	is	ready	to

	*	accept	a	new	command/data	before	returns.

	*/

void	LCD_ready(void)

{

char	status;

PTD->PDDR	=	0;										/*	PortD	input	*/

PTA->PCOR	=	RS;									/*	RS	=	0	for	status	*/

PTA->PSOR	=	RW;									/*	R/W	=	1,	LCD	output	*/

do	{				/*	stay	in	the	loop	until	it	is	not	busy	*/

PTA->PSOR	=	EN;					/*	raise	E	*/

delayMs(0);

status	=	PTD->PDIR;	/*	read	status	register	*/

PTA->PCOR	=	EN;

delayMs(0);															/*	clear	E	*/

}	while	(status	&	0x80);				/*	check	busy	bit	*/

PTA->PCOR	=	RW;									/*	R/W	=	0,	LCD	input	*/

PTD->PDDR	=	0xFF;							/*	PortD	output	*/

}

	

void	LCD_command(unsigned	char	command)

{

LCD_ready();																		/*	wait	until	LCD	is	ready	*/

PTA->PCOR	=	RS	|	RW;				/*	RS	=	0,	R/W	=	0	*/

PTD->PDOR	=	command;

PTA->PSOR	=	EN;									/*	pulse	E	*/

delayMs(0);

PTA->PCOR	=	EN;

}

	

void	LCD_command_noWait(unsigned	char	command)

{

PTA->PCOR	=	RS	|	RW;				/*	RS	=	0,	R/W	=	0	*/

PTD->PDOR	=	command;

PTA->PSOR	=	EN;									/*	pulse	E	*/

delayMs(0);

PTA->PCOR	=	EN;

}

	

void	LCD_data(unsigned	char	data)

{

LCD_ready();																		/*	wait	until	LCD	is	ready	*/

PTA->PSOR	=	RS;									/*	RS	=	1,	R/W	=	0	*/

PTA->PCOR	=	RW;

PTD->PDOR	=	data;

PTA->PSOR	=	EN;									/*	pulse	E	*/

delayMs(0);

PTA->PCOR	=	EN;

}

	

/*	Delay	n	milliseconds

	*	The	CPU	core	clock	is	set	to	MCGFLLCLK	at	41.94	MHz	in	SystemInit().

	*/

void	delayMs(int	n)	{

int	i,	j;

for(i	=	0	;	i	<	n;	i++)

for(j	=	0	;	j	<	7000;	j++)	{	}

}

	

LCD	4-bit	Option
To	save	the	number	of	microcontroller	pins	used	by	LCD	interfacing,	we	can

use	the	4-bit	data	option	instead	of	8-bit.	In	the	4-bit	data	option,	we	only	need	to
connect	 D7-D4	 to	 microcontroller.	 Together	 with	 the	 three	 control	 lines,	 the
interface	between	the	microcontroller	and	the	LCD	module	will	fit	in	a	single	8-bit
port.	See	Figure	3-3.

With	4-bit	data	option,	 the	microcontroller	needs	to	 issue	commands	to	put
the	LCD	controller	 in	4-bit	mode	during	initialization.	This	 is	done	with	command
0x20	in	Program	3-3.	After	that,	every	command	or	data	needs	to	be	broken	down
to	 two	 4-bit	 operations,	 upper	 nibble	 first.	 In	 Program	 3-3,	 the	 upper	 nibble	 is
extracted	using	command	&	0xF0	and	the	 lower	nibble	 is	shifted	 into	place	by
command	<<	4.

Figure	3-3:	LCD	Connection	for	4-bit	Data

Program	3-3:	This	program	uses	the	4-bit	data	option	to	show	a	message	on	the	LCD.

	
/*	p3_3.c:	Initialize	and	display	“hello”	on	the	LCD	using	4-bit	data	mode.

	

	*	All	interface	uses	Port	D.		Bit	7-4	are	used	for	data.	

	*	Bit	4,	2,	1	are	used	for	control.

	*	This	program	does	not	poll	the	status	of	the	LCD.	

	*	It	uses	delay	to	wait	out	the	time	LCD	controller	is	busy.

	*	Timing	is	more	relax	than	the	HD44780	datasheet	to	accommodate	the

	*	variations	of	the	devices.

	*	You	may	want	to	adjust	the	amount	of	delay	for	your	LCD	controller.

	*/

	

#include	<MKL25Z4.H>

	

#define	RS	1				/*	BIT0	mask	*/

#define	RW	2				/*	BIT1	mask	*/

#define	EN	4				/*	BIT2	mask	*/

	

void	delayMs(int	n);

void	delayUs(int	n);

void	LCD_nibble_write(unsigned	char	data,	unsigned	char	control);

void	LCD_command(unsigned	char	command);

void	LCD_data(unsigned	char	data);

void	LCD_init(void);

	

int	main(void)

{

LCD_init();

for(;;)

{

LCD_command(1);									/*	clear	display	*/

delayMs(500);

LCD_command(0x85);						/*	set	cursor	at	first	line	*/

LCD_data(‘h’);										/*	write	the	word	*/

LCD_data(‘e’);

LCD_data(‘l’);

								LCD_data(‘l’);

LCD_data(‘o’);

delayMs(500);

}

}

	

void	LCD_init(void)

{

SIM->SCGC5	|=	0x1000;							/*	enable	clock	to	Port	D	*/

PORTD->PCR[0]	=	0x100;						/*	make	PTD0	pin	as	GPIO	*/

PORTD->PCR[1]	=	0x100;						/*	make	PTD1	pin	as	GPIO	*/

PORTD->PCR[2]	=	0x100;						/*	make	PTD2	pin	as	GPIO	*/

PORTD->PCR[4]	=	0x100;						/*	make	PTD4	pin	as	GPIO	*/

PORTD->PCR[5]	=	0x100;						/*	make	PTD5	pin	as	GPIO	*/

PORTD->PCR[6]	=	0x100;						/*	make	PTD6	pin	as	GPIO	*/

PORTD->PCR[7]	=	0x100;						/*	make	PTD7	pin	as	GPIO	*/

PTD->PDDR	|=	0xF7;										/*	make	PTD7-4,	2,	1,	0	as	output	pins	*/

	

delayMs(30);																/*	initialization	sequence	*/

LCD_nibble_write(0x30,	0);

delayMs(10);

LCD_nibble_write(0x30,	0);

delayMs(1);

LCD_nibble_write(0x30,	0);

delayMs(1);

LCD_nibble_write(0x20,	0);		/*	use	4-bit	data	mode	*/

delayMs(1);

LCD_command(0x28);										/*	set	4-bit	data,	2-line,	5x7	font	*/

LCD_command(0x06);										/*	move	cursor	right	*/

LCD_command(0x01);										/*	clear	screen,	move	cursor	to	home	*/

LCD_command(0x0F);										/*	turn	on	display,	cursor	blinking	*/

}

	

void	LCD_nibble_write(unsigned	char	data,	unsigned	char	control)

{

data	&=	0xF0;							/*	clear	lower	nibble	for	control	*/

control	&=	0x0F;				/*	clear	upper	nibble	for	data	*/

PTD->PDOR	=	data	|	control;							/*	RS	=	0,	R/W	=	0	*/

PTD->PDOR	=	data	|	control	|	EN;		/*	pulse	E	*/

delayMs(0);

PTD->PDOR	=	data;

PTD->PDOR	=	0;

}

	

void	LCD_command(unsigned	char	command)

{

LCD_nibble_write(command	&	0xF0,	0);			/*	upper	nibble	first	*/

LCD_nibble_write(command	<<	4,	0);					/*	then	lower	nibble	*/

if	(command	<	4)

delayMs(4);									/*	commands	1	and	2	need	up	to	1.64ms	*/

else

delayMs(1);									/*	all	others	40	us	*/

}

	

void	LCD_data(unsigned	char	data)

{

LCD_nibble_write(data	&	0xF0,	RS);				/*	upper	nibble	first	*/

LCD_nibble_write(data	<<	4,	RS);						/*	then	lower	nibble		*/

delayMs(1);

}

	

/*	Delay	n	milliseconds

	*	The	CPU	core	clock	is	set	to	MCGFLLCLK	at	41.94	MHz	in	SystemInit().

	*/

void	delayMs(int	n)	{

int	i;

int	j;

for(i	=	0	;	i	<	n;	i++)

for(j	=	0	;	j	<	7000;	j++)	{	}

}

	

LCD	cursor	position
In	the	LCD,	one	can	move	the	cursor	to	any	location	in	the	display	by	issuing

an	address	command.	The	next	character	sent	will	appear	at	the	cursor	position.
For	the	two-line	LCD,	the	address	command	for	the	first	location	of	line	1	is	0x80,
and	for	line	2	it	is	0xC0.	The	following	shows	address	locations	and	how	they	are
accessed:

where	 A6A5A4A3A2A1A0=	 0000000	 to	 0100111	 for	 line	 1	 and
A6A5A4A3A2A1A0	=	1000000	to	1100111	for	line	2.	See	Table	3-3.

Table	3-3:	LCD	Addressing	Commands

	 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0

Line	1	(min) 1 0 0 0 0 0 0 0

Line	1	(max) 1 0 1 0 0 1 1 1

Line	2	(min) 1 1 0 0 0 0 0 0

Line	2	(max) 1 1 1 0 0 1 1 1

	

The	upper	address	range	can	go	as	high	as	0100111	for	 the	40-character-
wide	LCD	while	for	the	20-character-wide	LCD	the	address	of	the	visible	positions
goes	 up	 to	 010011	 (19	 decimal	 =	 10011	 binary).	 Notice	 that	 the	 upper	 range
0100111	 (binary)	 =	 39	 decimal,	 which	 corresponds	 to	 locations	 0	 to	 39	 for	 the
LCDs	 of	 40	 ×	 2	 size.	 Figure	 3-4	 shows	 the	 addresses	 of	 cursor	 positions	 for
various	sizes	of	LCDs.	All	the	addresses	are	in	hex.	Notice	the	starting	addresses
for	four	line	LCD	are	not	in	sequential	order.

Figure	3-4:	Cursor	Addresses	for	Some	LCDs

	As	an	example	of	setting	the	cursor	at	the	fourth	location	of	line	1	we	have
the	following:

LCD_command(0x83);

and	for	the	sixth	location	of	the	second	line	we	have:
LCD_command(0xC5);

Notice	that	the	cursor	location	addresses	are	in	hex	and	starting	at	0	as	the

first	location.

LCD	timing	and	data	sheet
Figures	3-5	 and	3-6	 show	 timing	diagrams	 for	 LCD	write	 and	 read	 timing,

respectively.

Figure	3-5:	LCD	Write	Timing

Figure	3-6:	LCD	Read	Timing

Notice	that	the	write	operation	happens	on	the	H-to-L	transition	of	the	E	pin.
The	microcontroller	must	have	data	ready	and	stable	on	the	data	lines	before	the
H-to-L	transition	of	E	to	satisfy	the	setup	time	requirement.

The	 read	operation	 is	activated	by	 the	L-to-H	pulse	of	 the	E	pin.	After	 the
delay	time,	the	LCD	controller	will	have	the	data	available	on	the	data	bus	if	 the
R/W	 line	 is	 high.	 The	microcontroller	 should	 read	 the	 data	 from	 the	 data	 lines
before	lowering	the	E	pulse.

Table	3-4	provides	a	more	detailed	list	of	LCD	instructions.

Instruction RS R/W DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 Description
Execution

Time

(Max)

Clear
display

0 0 0 0 0 0 0 0 0 1

Clears	entire
display	and
sets	DD	RAM
address	0	in
address
counter

1.64	ms

Return
Home 0 0 0 0 0 0 0 0 1 -

Sets	DD	RAM
address	to	0
as	address
counter.	Also
returns	display
being	shifted
to	original

positions.	DD
RAM	contents

remain
unchanged.

1.64	ms

Entry
Mode	Set 0 0 0 0 0 0 0 1 I/D S

Sets	cursor
move	direction
and	specifies
shift	of	display.

These
operations	are
performed
during	data

write	and	read.

40µs

Display
On/Off
Control

0 0 0 0 0 0 1 D C B

Sets	On/Off	of
entire	display
(D),	cursor
On/Off	(C),
and	blink	of

cursor	position
character	(B).

40µs

Cursor	or
Display
shift

0 0 0 0 0 1 S/C R/L - -

Moves	cursor
and	shifts

display	without
changing	DD
RAM	contents.

40µs

Function
Set 0 0 0 0 1 DL N F - -

Sets	interface
data	length
(DL),	number
of	display	lines

(L),	and
character	font

(F)

40µs

Set	CG
RAM

Address
0 0 0 1 AGC

Sets	CG	RAM
address.	CG
RAM	data	is
sent	and

received	after
this	setting.

40µs

Set	DD
RAM

Address
0 0 1 ADD

Sets	DD	RAM
address.	DD
RAM	data	is
sent	and

received	after
this	setting.

40µs

Read	Busy
Flag	&
Address

0 1 BF AC

Reads	Busy
flag	(BF)
indicating
internal

operation	is
being

performed	and
reads	address

counter
contents.

40µs

Write	Data
CG	or	DD
RAM

1 0 Write	Data
Writes	data

into	DD	or	CG
RAM.

40µs

Read	Data
CG	or	DD
RAM

1 1 Read	Data
Reads	data

from	DD	or	CG
RAM.

40µs

Abbreviations:

DD	RAM:	Display	data	RAM

CG	RAM:	Character	generator	RAM

AGC:	CG	RAM	address

ADD:	DD	RAM	address,	corresponds	to	cursor	address

AC:	address	counter	used	for	both	DD	and	CG	RAM	addresses

I/D:	1	=	Increment,	0:	Decrement

S	=1:	Accompanies	display	shift

S/C:	1	=	Display	shift,	0:	Cursor	move

R/L:	1:	Shift	to	the	right,	0:	Shift	to	the	left

DL:	1	=	8	bits,	0	=	4	bits

N:	1	=	2-line,	0	=	1-line

F:	1	=	5	x	10	dots,	0	=	5	x	7	dots

BF:	1	=	Internal	operation,	0	=	Can	accept	instruction

Table	3-4:	List	of	LCD	Instructions

Review	Questions
1.							The	RS	pin	is	an	_______	(input,	output)	pin	for	the	LCD.

2.							The	E	pin	is	an	________	(input,	output)	pin	for	the	LCD.

3.							The	E	pin	requires	an	_______	(H-to-L,	L-to-H)	transition	to	latch	in
information	at	the	data	pins	of	the	LCD.

4.							For	the	LCD	to	recognize	information	at	the	data	pins	as	data,	RS	must	be
set	to	_____	(high,	low).

5.							Give	the	command	codes	for	line	1,	first	character,	and	line	2,	first
character.

Section	3.2:	Interfacing	the	Keyboard	to	the	CPU
To	 reduce	 the	microcontroller	 I/O	pin	usage,	keyboards	are	organized	 in	a

matrix	of	rows	and	columns.	The	CPU	accesses	both	rows	and	columns	through
ports;	therefore,	with	two	8-bit	ports,	an	8	×	8	matrix	of	64	keys	can	be	connected
to	a	microprocessor.	When	a	key	is	pressed,	a	row	and	a	column	make	a	contact;
otherwise,	there	is	no	connection	between	rows	and	columns.	In	a	PC	keyboards,
an	 embedded	 microcontroller	 in	 the	 keyboard	 takes	 care	 of	 the	 hardware	 and
software	 interfacing	 of	 the	 keyboard.	 In	 such	 systems,	 it	 is	 the	 function	 of
programs	stored	in	the	ROM	of	the	microcontroller	to	scan	the	keys	continuously,
identify	 which	 one	 has	 been	 activated,	 and	 present	 it	 to	 the	main	 CPU	 on	 the
motherboard.	 In	 this	 section,	 we	 look	 at	 the	 mechanism	 by	 which	 the
microprocessor	 scans	 and	 identifies	 the	 key.	 For	 clarity	 some	 examples	 are
provided.

Scanning	and	identifying	the	key
Figure	 3-7	 shows	 a	 4	 ×	 4	 matrix	 connected	 to	 two	 ports.	 The	 rows	 are

connected	to	an	output	port	and	the	columns	are	connected	to	an	 input	port.	All
the	 input	 pins	 have	 pull-up	 resistor	 connected.	 If	 no	 key	 has	 been	 pressed,
reading	 the	 input	port	will	 yield	1s	 for	all	 columns.	 If	all	 the	 rows	are	driven	 low
and	 a	 key	 is	 pressed,	 the	 column	 of	 that	 key	will	 read	 back	 a	 0	 since	 the	 key
pressed	shorted	that	column	to	the	row	that	is	driven	low.	It	is	the	function	of	the
microprocessor	 to	scan	the	keyboard	continuously	 to	detect	and	 identify	 the	key
pressed.	How	it	is	done	is	explained	next.

Figure	3-7:	Matrix	Keyboard	Connection	to	Ports

Key	press	detection

To	 detect	 the	 key	 pressed,	 the	microprocessor	 drives	 all	 rows	 low	 then	 it
reads	the	columns.	If	the	data	read	from	the	columns	is	D7–D4	=	1111,	no	key	has
been	pressed	and	the	process	continues	until	a	key	press	is	detected.	However,	if
one	 of	 the	 column	 bits	 has	 a	 zero,	 this	 means	 that	 a	 key	 was	 pressed.	 For
example,	 if	 D7–D4=	 1101,	 this	 means	 that	 a	 key	 in	 the	 D5	 column	 has	 been
pressed.

The	following	program	detects	whether	any	of	the	keys	is	pressed.

Program	3-4:	This	program	turns	on	the	blue	LED	when	a	key	is	pressed.
	

/*	p3_4.c:	Matrix	keypad	detect

	

*	This	program	checks	a	4x4	matrix	keypad	to	see	whether

	*	a	key	is	pressed	or	not.		When	a	key	is	pressed,	it	turns

	*	on	the	blue	LED.

	*

	*	PortC	7-4	are	connected	to	the	columns	and	PortC	3-0	are	connected

	*	to	the	rows.

	*/

	

#include	<MKL25Z4.H>

	

void	delayUs(int	n);

	

void	keypad_init(void);

char	keypad_kbhit(void);

	

int	main(void)

{

keypad_init();

SIM->SCGC5	|=	0x1000;							/*	enable	clock	to	Port	D	*/

PORTD->PCR[1]	=	0x100;						/*	make	PTD1	pin	as	GPIO	*/

PTD->PDDR	|=	0x02;										/*	make	PTD1	as	output	pin	*/

while(1)

{

if	(keypad_kbhit()	!=	0)				/*	if	a	key	is	pressed?	*/

PTD->PCOR	|=	0x02;										/*	turn	on	blue	LED	*/

else

PTD->PSOR	|=	0x02;										/*	turn	off	blue	LED	*/

}

}

	

	

/*	this	function	initializes	PortC	that	is	connected	to	the	keypad.

	*	All	pins	are	configured	as	GPIO	input	pin	with	pullup	enabled.

	*/

void	keypad_init(void)

{

SIM->SCGC5	|=	0x0800;							/*	enable	clock	to	Port	C	*/

PORTC->PCR[0]	=	0x103;						/*	make	PTD0	pin	as	GPIO	and	enable	pullup*/

PORTC->PCR[1]	=	0x103;						/*	make	PTD1	pin	as	GPIO	and	enable	pullup*/

PORTC->PCR[2]	=	0x103;						/*	make	PTD2	pin	as	GPIO	and	enable	pullup*/

PORTC->PCR[3]	=	0x103;						/*	make	PTD3	pin	as	GPIO	and	enable	pullup*/

PORTC->PCR[4]	=	0x103;						/*	make	PTD4	pin	as	GPIO	and	enable	pullup*/

PORTC->PCR[5]	=	0x103;						/*	make	PTD5	pin	as	GPIO	and	enable	pullup*/

PORTC->PCR[6]	=	0x103;						/*	make	PTD6	pin	as	GPIO	and	enable	pullup*/

PORTC->PCR[7]	=	0x103;						/*	make	PTD7	pin	as	GPIO	and	enable	pullup*/

PTD->PDDR	=	0x0F;									/*	make	PTD7-0	as	input	pins	*/

}

	

/*	This	is	a	non-blocking	function.

	*	If	a	key	is	pressed,	it	returns	1.

	*	Otherwise,	it	returns	a	0	(not	ASCII	‘0’).	*/

char	keypad_kbhit(void)

{

int	col;

	

PTC->PDDR	|=	0x0F;										/*	enable	all	rows	*/

PTC->PCOR	=	0x0F;

delayUs(2);																	/*	wait	for	signal	return	*/

col	=	PTC->PDIR	&	0xF0;					/*	read	all	columns	*/

PTC->PDDR	=	0;														/*	disable	all	rows	*/

if	(col	==	0xF0)

return	0;															/*	no	key	pressed	*/

else

return	1;															/*	a	key	is	pressed	*/

}

	

void	delayUs(int	n)

{

int	i;	int	j;

for(i	=	0	;	i	<	n;	i++)	{

for(j	=	0;	j	<	8;	j++)	;

}

}

	

Key	identification
After	a	key	press	is	detected,	the	microprocessor	will	go	through	the	process

of	identifying	the	key.	Starting	from	the	top	row,	the	microprocessor	drives	one	row
low	at	a	time;	then	it	reads	the	columns.	If	 the	data	read	is	all	1s,	no	key	in	that
row	 is	pressed	and	 the	process	 is	moved	 to	 the	next	 row.	 It	drives	 the	next	 row
low,	reads	the	columns,	and	checks	for	any	zero.	This	process	continues	until	a
row	 is	 identified	with	 a	 zero	 in	 one	of	 the	 columns.	The	next	 task	 is	 to	 find	out
which	column	the	pressed	key	belongs	to.	This	should	be	easy	since	each	column
is	connected	to	a	separate	input	pin.	Look	at	Example	3-1.

Example	3-1

From	Figure	3-7,	 identify	the	row	and	column	of	the	pressed	key	for	each	of	the
following.

(a)	D3–D0	=	1110	for	the	row,	D7–D4=	1011	for	the	column

(b)	D3–D0	=	1101	for	the	row,	D7–D4=	0111	for	the	column

	

Solution:
	

From	Figure	3-7	the	row	and	column	can	be	used	to	identify	the	key.

(a)										The	row	belongs	to	D0	and	the	column	belongs	to	D6;	therefore,	the	key
number	2	was	pressed.

(b)										The	row	belongs	to	D1	and	the	column	belongs	to	D7;	therefore,	the	key
number	4	was	pressed.

	

Figure	 3-8	 is	 the	 flowchart	 for	 the	 detection	 and	 identification	 of	 the	 key
activation.

Figure	3-8:	The	Flowchart	for	Key	Press	Detection	and	Identification

Program	3-5	provides	an	 implementation	of	 the	detection	and	 identification
algorithm	in	C	language.	We	will	exam	it	in	details	here.	First	for	the	initialization
of	the	ports,	Port	C	pins	3-0	are	used	for	rows.	The	Port	C	pins	7-4	are	used	for
columns.	They	are	all	 configured	as	 input	digital	 pin	 to	prevent	accidental	 short
circuit	of	 two	output	pins.	 If	output	pins	are	driven	high	and	low	and	two	keys	of
the	 same	column	are	pressed	at	 the	 same	 time	by	accident,	 they	will	 short	 the
output	low	to	output	high	of	the	adjacent	pins	and	cause	damages	to	these	pins.
To	prevent	this,	all	pins	are	configured	as	input	pin	and	only	one	pin	is	configured
as	output	pin	at	a	time.	Since	only	one	pin	is	actively	driving	the	row,	shorting	two
rows	 will	 not	 damage	 the	 circuit.	 The	 input	 pins	 are	 configured	 with	 pull-up
enabled	 so	 that	when	 the	 connected	 keys	 are	 not	 pressed,	 they	 stay	 high	 and
read	as	1.

The	key	scanning	function	 is	a	non-blocking	function,	meaning	the	function
returns	 regardless	 of	 whether	 there	 is	 a	 key	 pressed	 or	 not.	 The	 function	 first
drives	all	 rows	 low	and	check	 to	see	 if	any	key	pressed.	 If	no	key	 is	pressed,	a
zero	 is	returned.	Otherwise	the	code	will	proceed	to	check	one	row	at	a	time	by
driving	only	one	row	low	at	a	time	and	read	the	columns.	If	one	of	the	columns	is
active,	 it	will	 find	out	which	column	 it	 is.	With	 the	combination	of	 the	active	 row
and	 active	 column,	 the	 code	 will	 find	 out	 the	 key	 that	 is	 pressed	 and	 return	 a
unique	numeric	code.	The	program	below	 reads	a	4x4	keypad	and	use	 the	key
code	 returned	 to	 set	 the	 tri-color	 LEDs.	 LED	program	 is	 borrowed	 from	P2-7	 in

Chapter	2.

Program	3-5:	This	program	displays	the	pressed	key	on	the	tri-color	LED.
	

/*	p3_5.c:	Matrix	keypad	scanning

	

	*	This	program	scans	a	4x4	matrix	keypad	and	returns	a	unique	number

	*	for	each	key	pressed.		The	number	is	displayed	on	the	tri-color

	*	LEDs	using	the	code	from	P2-7.

	*

	*	PortC	7-4	are	connected	to	the	columns	and	PortC	3-0	are	connected

	*	to	the	rows.

	*/

	

#include	<MKL25Z4.H>

	

void	delayMs(int	n);

void	delayUs(int	n);

void	keypad_init(void);

char	keypad_getkey(void);

void	LED_init(void);

void	LED_set(int	value);

	

int	main(void)

{

unsigned	char	key;

keypad_init();

LED_init();

	

while(1)

{

key	=	keypad_getkey();

LED_set(key);											/*	set	LEDs	according	to	the	key	code	*/

}

}

	

/*	this	function	initializes	PortC	that	is	connected	to	the	keypad.

	*	All	pins	are	configured	as	GPIO	input	pin	with	pull-up	enabled.

	*/

void	keypad_init(void)

{

SIM->SCGC5	|=	0x0800;							/*	enable	clock	to	Port	C	*/

PORTC->PCR[0]	=	0x103;						/*	make	PTD0	pin	as	GPIO	and	enable	pullup*/

PORTC->PCR[1]	=	0x103;						/*	make	PTD1	pin	as	GPIO	and	enable	pullup*/

PORTC->PCR[2]	=	0x103;						/*	make	PTD2	pin	as	GPIO	and	enable	pullup*/

PORTC->PCR[3]	=	0x103;						/*	make	PTD3	pin	as	GPIO	and	enable	pullup*/

PORTC->PCR[4]	=	0x103;						/*	make	PTD4	pin	as	GPIO	and	enable	pullup*/

PORTC->PCR[5]	=	0x103;						/*	make	PTD5	pin	as	GPIO	and	enable	pullup*/

PORTC->PCR[6]	=	0x103;						/*	make	PTD6	pin	as	GPIO	and	enable	pullup*/

PORTC->PCR[7]	=	0x103;						/*	make	PTD7	pin	as	GPIO	and	enable	pullup*/

PTD->PDDR	=	0x0F;									/*	make	PTD7-0	as	input	pins	*/

}

	

/*

	*	This	is	a	non-blocking	function	to	read	the	keypad.

	*	If	a	key	is	pressed,	it	returns	a	key	code.	Otherwise,	a	zero

	*	is	returned.

	*	The	upper	nibble	of	Port	C	is	used	as	input.	Pull-ups	are	enabled

	*	when	the	keys	are	not	pressed,	these	pins	are	pull	up	high.

	*	The	lower	nibble	of	Port	C	is	used	as	output	that	drives	the	keypad	rows.

	*	First	all	rows	are	driven	low	and	the	input	pins	are	read.	If	no

	*	key	is	pressed,	it	will	read	as	all	ones.		Otherwise,	some	key	is	pressed.

	*	If	any	key	is	pressed,	the	program	drives	one	row	low	at	a	time	and

	*	leave	the	rest	of	the	rows	inactive	(float)	then	read	the	input	pins.

	*	Knowing	which	row	is	active	and	which	column	is	active,	the	program

	*	can	decide	which	key	is	pressed.

	*/

char	keypad_getkey(void)

{

int	row,	col;

const	char	row_select[]	=	{0x01,	0x02,	0x04,	0x08};	/*	one	row	is	active	*/

	

/*	check	to	see	any	key	pressed	*/

PTC->PDDR	|=	0x0F;										/*	enable	all	rows	*/

PTC->PCOR	=	0x0F;

delayUs(2);																	/*	wait	for	signal	return	*/

col	=	PTC->PDIR	&	0xF0;					/*	read	all	columns	*/

PTC->PDDR	=	0;														/*	disable	all	rows	*/

if	(col	==	0xF0)

return	0;															/*	no	key	pressed	*/

	

/*	If	a	key	is	pressed,	it	gets	here	to	find	out	which	key.

*	It	activates	one	row	at	a	time	and	read	the	input	to	see

*	which	column	is	active.	*/

for	(row	=	0;	row	<	4;	row++)

{

PTC->PDDR	=	0;																		/*	disable	all	rows	*/

PTC->PDDR	|=	row_select[row];			/*	enable	one	row	*/

PTC->PCOR	=	row_select[row];				/*	drive	the	active	row	low	*/

delayUs(2);																					/*	wait	for	signal	to	settle	*/

col	=	PTC->PDIR	&	0xF0;									/*	read	all	columns	*/

								if	(col	!=	0xF0)	break;									/*	if	one	of	the	input	is	low,	some	key
is	pressed.	*/

}

PTC->PDDR	=	0;																						/*	disable	all	rows	*/

if	(row	==	4)

return	0;																							/*	if	we	get	here,	no	key	is	pressed	*/

	

/*	gets	here	when	one	of	the	rows	has	key	pressed,	check	which	column	it	is
*/

if	(col	==	0xE0)	return	row	*	4	+	1;				/*	key	in	column	0	*/

if	(col	==	0xD0)	return	row	*	4	+	2;				/*	key	in	column	1	*/

if	(col	==	0xB0)	return	row	*	4	+	3;				/*	key	in	column	2	*/

if	(col	==	0x70)	return	row	*	4	+	4;				/*	key	in	column	3	*/

	

return	0;			/*	just	to	be	safe	*/

}

	

/*	initialize	all	three	LEDs	on	the	FRDM	board	*/

void	LED_init(void)

{

SIM->SCGC5	|=	0x400;								/*	enable	clock	to	Port	B	*/

SIM->SCGC5	|=	0x1000;							/*	enable	clock	to	Port	D	*/

PORTB->PCR[18]	=	0x100;					/*	make	PTB18	pin	as	GPIO	*/

PTB->PDDR	|=	0x40000;							/*	make	PTB18	as	output	pin	*/

PTB->PSOR	|=	0x40000;							/*	turn	off	red	LED	*/

PORTB->PCR[19]	=	0x100;					/*	make	PTB19	pin	as	GPIO	*/

PTB->PDDR	|=	0x80000;							/*	make	PTB19	as	output	pin	*/

PTB->PSOR	|=	0x80000;							/*	turn	off	green	LED	*/

PORTD->PCR[1]	=	0x100;						/*	make	PTD1	pin	as	GPIO	*/

PTD->PDDR	|=	0x02;										/*	make	PTD1	as	output	pin	*/

PTD->PSOR	|=	0x02;										/*	turn	off	blue	LED	*/

}

	

/*	turn	on	or	off	the	LEDs	according	to	bit	2-0	of	the	value	*/

void	LED_set(int	value)

{

if	(value	&	1)				/*	use	bit	0	of	value	to	control	red	LED	*/

PTB->PCOR	=	0x40000;				/*	turn	on	red	LED	*/

else

PTB->PSOR	=	0x40000;				/*	turn	off	red	LED	*/

if	(value	&	2)				/*	use	bit	1	of	value	to	control	green	LED	*/

PTB->PCOR	=	0x80000;				/*	turn	on	green	LED	*/

				else

PTB->PSOR	=	0x80000;				/*	turn	off	green	LED	*/

if	(value	&	4)				/*	use	bit	2	of	value	to	control	blue	LED	*/

PTD->PCOR	=	0x02;							/*	turn	on	blue	LED	*/

else

PTD->PSOR	=	0x02;							/*	turn	off	blue	LED	*/

}

	

/*	delay	n	microseconds

	*	The	CPU	core	clock	is	set	to	MCGFLLCLK	at	41.94	MHz	in	SystemInit().

	*/

void	delayUs(int	n)

{

int	i;	int	j;

for(i	=	0	;	i	<	n;	i++)	{

for(j	=	0;	j	<	5;	j++)	;

}

}

	

	
Contact	Bounce	and	Debounce

When	a	mechanical	switch	is	closed	or	opened,	the	contacts	do	not	make	a
clean	transition	instantaneously,	rather	the	contacts	open	and	close	several	times
before	 they	settle.	This	event	 is	called	contact	bounce	 (see	Figure	3-9).	So	 it	 is
possible	 when	 the	 program	 first	 detects	 a	 switch	 in	 the	 keypad	 is	 pressed	 but
when	interrogating	which	key	is	pressed,	it	would	find	no	key	pressed.	This	is	the
reason	 we	 have	 a	 return	 0	 after	 checking	 all	 the	 rows.	 Another	 problem
manifested	 by	 contact	 bounce	 is	 that	 one	 key	 press	 may	 be	 recognized	 as
multiple	key	presses	by	the	program.	Contact	bounce	also	occurs	when	the	switch
is	 released.	 Because	 the	 switch	 contacts	 open	 and	 close	 several	 times	 before
they	settle,	the	program	may	detect	a	key	press	when	the	key	is	released.

Figure	3-9:	Switch	contact	bounces

For	many	applications,	it	is	important	that	each	key	press	is	only	recognized
as	one	action.		When	you	press	a	numeral	key	of	a	calculator,	you	expect	to	get
only	one	digit.		A	contact	bounce	results	in	multiple	digits	entered	with	a	single	key
press.	 	A	 simple	 software	 solution	 is	 that	when	a	 transition	 of	 the	 contact	 state
change	is	detected	such	as	a	key	pressed	or	a	key	released,	the	software	does	a
delay	 for	about	10	–	20	ms	 to	wait	out	 the	contact	bounce.	 	After	 the	delay,	 the
contacts	should	be	settled	and	stable.

There	 are	 IC	 chips	 such	 as	 National	 Semiconductor’s	 MM74C923	 that
incorporate	 keyboard	 scanning	 and	 decoding	 all	 in	 one	 chip.	 Such	 chips	 use
combinations	of	 counters	 and	 logic	 gates	 (no	microprocessor)	 to	 implement	 the
underlying	concepts	presented	in	Programs	3-4	and	3-5.

Review	Questions
1.							True	or	false.	To	see	if	any	key	is	pressed,	all	rows	are	driven	low.

2.							If	D3–D0	=	0111	is	the	data	read	from	the	columns,	which	column	does	the
key	pressed	belong	to?

3.							True	or	false.	Key	press	detection	and	key	identification	require	two
different	processes.

4.							In	Figure	3-7,	if	the	row	has	D3–D0	=	1110	and	the	columns	are	D7–D4	=
1110,	which	key	is	pressed?

5.							True	or	false.	To	identify	the	key	pressed,	one	row	at	a	time	is	driven	low.

Answers	to	Review	Questions
Section	3-1

1.							Input

2.							Input

3.							H-to-L

4.							High

5.							0x80	and	0xC0

Section	3-2
1.							True

2.							Column	3

3.							True

4.							A

5.							True

	

Chapter	4:	UART	Serial	Port	Programming
Computers	 transfer	 data	 in	 two	 ways:	 parallel	 and	 serial.	 In	 parallel	 data

transfers,	often	eight	or	more	lines	(wire	conductors)	are	used	to	transfer	data	to
another	device.	In	serial	communication,	the	data	is	sent	one	bit	at	a	time.	Years
ago,	parallel	data	transfer	was	preferred	for	short	distance	because	it	may	transfer
multiple	 bits	 at	 the	 same	 time	 and	 provides	 higher	 throughput.	 As	 technology
advances,	 the	 data	 rate	 of	 serial	 communication	 may	 exceed	 parallel
communication	while	parallel	communication	still	retains	the	disadvantages	of	the
size	and	cost	of	cable	and	connector,	the	crosstalk	between	the	data	lines	and	the
difficulty	of	synchronizing	the	arrival	time	of	data	lines	at	longer	distance.

Serial	communication	and	the	study	of	associated	chips	are	the	topics	of	this
chapter.

Section	4.1:	Basics	of	Serial	Communication
When	 a	 microprocessor	 communicates	 with	 the	 outside	 world	 it	 usually

provides	 the	 data	 in	 byte-sized	 chunks.	 For	 parallel	 transfer,	 8-bit	 data	 is
transferred	at	the	same	time.	For	serial	transfer,	8-bit	data	is	transferred	one	bit	at
a	time.	Figure	4-1	diagrams	serial	versus	parallel	data	transfers.

Figure	4-1:	Serial	vs.	Parallel	Data	Transfer

The	 fact	 that	 in	serial	communication,	a	single	data	 line	 is	used	 instead	of
the	8-bit	data	line	of	parallel	communication	not	only	makes	it	much	cheaper	but
also	 makes	 it	 possible	 for	 two	 computers	 located	 in	 two	 different	 cities	 to
communicate.

For	 serial	 data	 communication	 to	work,	 the	 byte	 of	 data	must	 be	 grabbed
from	the	8-bit	data	bus	of	the	microprocessor	and	converted	to	serial	bits	using	a
parallel-in-serial-out	 shift	 register;	 then	 it	 can	 be	 transmitted	 over	 a	 single	 data
line.	This	also	means	that	at	the	receiving	end	there	must	be	a	serial-in-parallel-
out	shift	register	to	receive	the	serial	data,	pack	it	into	a	byte,	and	present	it	to	the
system	at	the	receiving	end.	See	Figures	4-2	and	4-3.

Figure	4-2:	Parallel	In	Serial	Out

	

Figure	4-3:	Serial	In	Parallel	Out

When	the	distance	is	short,	the	digital	signal	can	be	transferred	as	it	is	on	a
simple	wire	and	requires	no	modulation.	This	is	how	PC	keyboards	transfer	data
between	 the	 keyboard	 and	 the	 motherboard.	 However,	 for	 long-distance	 data
transfers	 using	 communication	 lines	 such	 as	 a	 telephone,	 serial	 data
communication	requires	a	modem	to	modulate	(convert	 from	0s	and	1s	to	audio
tones)	 the	 data	 before	 putting	 it	 on	 the	 transmission	 media	 and	 demodulate
(convert	from	audio	tones	to	0s	and	1s)	at	the	receiving	end.

Serial	 data	 communication	 uses	 two	 methods,	 asynchronous	 and
synchronous.	The	synchronous	method	transfers	a	block	of	data	(characters)	at	a
time	while	the	asynchronous	transfers	a	single	byte	at	a	time.

It	 is	 possible	 to	 write	 software	 to	 use	 either	 of	 these	 methods,	 but	 the
programs	can	be	tedious	and	long.	For	this	reason,	special	IC	chips	are	made	by
many	manufacturers	 for	serial	data	communications.	These	chips	are	commonly
referred	 to	 as	 UART	 (universal	 asynchronous	 receiver-transmitter)	 and	 USART
(universal	synchronous-asynchronous	receiver-transmitter).	The	COM	port	 in	 the
PC	uses	 the	UART.	When	 this	 function	 	 incorporated	 into	a	microcontroller,	 it	 is
often	referred	as	SCI	(Serial	Communication	Interface).

Half-	and	full-duplex	transmission
In	data	transmission,	a	duplex	transmission	is	one	in	which	the	data	can	be

transmitted	and	 received.	This	 is	 in	contrast	 to	a	simplex	 transmissions	such	as
printers,	in	which	the	computer	only	sends	data.	Duplex	transmissions	can	be	half
or	 full	 duplex.	 If	 data	 is	 transmitted	 one	way	 at	 a	 time,	 it	 is	 referred	 to	 as	 half
duplex.	If	the	data	can	go	both	ways	at	the	same	time,	it	is	full	duplex.	Of	course,
full	duplex	requires	two	wire	conductors	for	the	data	lines	(in	addition	to	ground),
one	for	 transmission	and	one	for	reception,	 in	order	 to	 transfer	and	receive	data
simultaneously.	See	Figure	4-4.

Figure	4-4:	Simplex,	Half-,	and	Full-Duplex	Transfers

Asynchronous	serial	communication	and	data	framing
The	 data	 coming	 in	 at	 the	 receiving	 end	 of	 the	 data	 line	 in	 a	 serial	 data

transfer	is	all	0s	and	1s;	it	is	difficult	to	make	sense	of	the	data	unless	the	sender
and	receiver	agree	on	a	set	of	rules,	a	protocol,	on	how	the	data	is	packed,	how
many	bits	constitute	a	character,	and	when	the	data	begins	and	ends.

Start	and	stop	bits
Asynchronous	 serial	 data	 communication	 is	 widely	 used	 for	 character-

oriented	 transmissions.	 In	 the	 asynchronous	 method,	 each	 character,	 such	 as
ASCII	 characters,	 is	packed	between	start	and	stop	bits.	This	 is	 called	 framing.
The	start	bit	is	always	one	bit	but	the	stop	bit	can	be	one	or	two	bits.	The	start	bit
is	always	a	0	(low)	and	the	stop	bit(s)	is	1	(high).	For	example,	look	at	Figure	4-5
where	the	ASCII	character	“A”,	binary	0100	0001,	is	framed	between	the	start	bit
and	2	stop	bits.	Notice	that	the	LSB	is	sent	out	first.

Figure	4-5:	Framing	ASCII	“A”	(0x41)

In	Figure	4-5,	when	there	is	no	data	transfer,	the	signal	stays	1	(high),	which
is	 referred	 to	 as	 mark.	 The	 0	 (low)	 is	 referred	 to	 as	 space.	 Notice	 that	 the
transmission	begins	with	a	start	bit	followed	by	D0,	the	LSB,	then	the	rest	of	the
bits	 until	 the	 MSB	 (D7),	 and	 finally,	 the	 2	 stop	 bits	 indicating	 the	 end	 of	 the
character	“A”.

In	 asynchronous	 serial	 communications,	 peripheral	 chips	 can	 be
programmed	for	data	that	is	5,	6,	7,	or	8	bits	wide.	While	in	older	systems	ASCII
characters	were	7-bit,	the	modern	systems	usually	send	non-ASCII	8-bit	data.	The
old	 Baud	 code	 uses	 5-	 or	 6-bit	 characters	 but	 they	 are	 rarely	 seen	 these	 days
even	though	most	of	 the	hardware	still	supporting	them.	 In	some	older	systems,
due	to	the	slowness	of	the	receiving	mechanical	device,	2	stop	bits	were	used	to
give	 the	 device	 sufficient	 time	 to	 organize	 itself	 before	 transmission	 of	 the	 next
byte.	However,	in	modern	PCs	the	use	of	1	stop	bit	is	common.	Assuming	that	we
are	transferring	a	text	file	of	ASCII	characters	using	1	stop	bit,	we	have	a	total	of
10	bits	for	each	character	since	8	bits	are	for	the	ASCII	code,	and	1	and	2	bits	are
for	start	and	stop	bits,	 respectively.	Therefore,	 for	each	8-bit	character	 there	are
an	extra	2	bits,	or	25%	overhead.	(2/8	x100=25%)

Parity	bit
In	 some	 systems	 in	 order	 to	 maintain	 data	 integrity,	 the	 parity	 bit	 of	 the

character	byte	 is	 included	 in	 the	data	frame.	This	means	that	 for	each	character

(7-	or	8-bit,	 depending	on	 the	system)	we	have	a	single	parity	bit	 in	addition	 to
start	and	stop	bits.	The	parity	bit	may	be	odd	or	even.	In	the	case	of	an	odd-parity
the	 number	 of	 data	 bits,	 including	 the	 parity	 bit,	 has	 an	 odd	 number	 of	 1s.
Similarly,	in	an	even-parity	the	total	number	of	bits,	including	the	parity	bit,	is	even.
For	example,	the	ASCII	character	“A”,	binary	0100	0001,	has	0	for	the	even-parity
bit.	UART	chips	allow	programming	of	the	parity	bit	for	odd-,	even-,	and	no-parity
options,	 as	 we	will	 see	 in	 the	 next	 section.	 If	 a	 system	 requires	 the	 parity,	 the
parity	bit	is	transmitted	after	the	MSB,	and	is	followed	by	the	stop	bit.

Data	transfer	rate
The	rate	of	data	transfer	 in	serial	data	communication	 is	stated	in	bps	(bits

per	second).	Another	widely	used	terminology	for	bps	is	Baud	rate.	However,	the
baud	and	bps	 rates	are	not	necessarily	equal.	This	 is	due	 to	 the	 fact	 that	baud
rate	is	defined	as	number	of	signal	changes	per	second.	In	modems,	it	is	possible
for	 each	 signal	 to	 transfer	multiple	 bits	 of	 data.	 As	 far	 as	 the	 conductor	wire	 is
concerned,	the	baud	rate	and	bps	are	the	same,	and	for	this	reason	in	this	book
we	use	the	terms	bps	and	baud	interchangeably.

Example	4-1

Calculate	the	total	number	of	bits	used	in	transferring	50	pages	of	text,	each	with
80	×	25	characters.	Assume	8	bits	per	character	and	1	stop	bit.

	

Solution:
	

For	each	character	a	 total	of	10	bits	 is	used,	8	bits	 for	 the	character,	1	stop	bit,
and	1	start	bit.	Therefore,	the	total	number	of	bits	is	80	×	25	×	10	=	20,000	bits	per
page.	For	50	pages,	1,000,000	bits	will	be	transferred.

	

	

Example	4-2

Calculate	the	time	it	takes	to	transfer	the	entire	50	pages	of	data	in	Example	4-1
using	a	baud	rate	of:

(a)	9600																(b)	57,600

	
Solution:

(a)	1,000,000	/	9600	=	104	seconds

(b)	1,000,000	/	57,600	=	17	seconds

	

	

Example	4-3

Calculate	the	time	it	takes	to	download	a	movie	of	2	gigabytes	using	a	telephone
line.	Assume	8	bits,	1	stop	bit,	no	parity,	and	57,600	baud	rate.

	

Solution:
	

2	×	230	×	10	/	57,600	=	347,222	seconds	=	4	days

	

RS232	and	other	serial	I/O	standards
To	 allow	 compatibility	 among	 data	 communication	 equipment	 made	 by

various	 manufacturers,	 an	 interfacing	 standard	 called	 RS232	 was	 set	 by	 the
Electronics	Industries	Association	(EIA)	 in	1960.	 It	has	several	revisions	through
the	 years	 with	 an	 alphabet	 at	 the	 end	 to	 denote	 the	 revision	 number	 such	 as
RS232C.	RS	stands	for	recommended	standard.	It	was	finally	adopted	as	an	EIA
standard	and	renamed	EIA232,	later	on	TIA232.	In	this	book	we	refer	to	it	simply
as	RS232.	Today,	RS232	is	the	most	widely	used	serial	I/O	interfacing	standard.
However,	 since	 the	 standard	 was	 set	 long	 before	 the	 advent	 of	 the	 TTL	 logic
family,	the	input	and	output	voltage	levels	are	not	TTL	compatible.	In	the	RS232	at
the	 receiver,	 a	 1	 is	 represented	by	 –3	 to	 –25	V,	while	 the	0	 bit	 is	 +3	 to	+25	V,
making	–3	to	+3	undefined.	For	this	reason,	to	connect	any	RS232	to	a	TTL-level
chip	(microprocessor	or	UART)	we	must	use	voltage	converters	such	as	MAX232
or	MAX233	 to	convert	 the	TTL	 logic	 levels	 to	 the	RS232	voltage	 level,	and	vice
versa.	MAX232	and	MAX233	 IC	chips	are	commonly	 referred	 to	as	 line	drivers.
This	is	shown	in	Figures	4-6	and	4-7.	The	MAX232	has	two	sets	of	line	drivers	for
transferring	and	receiving	data,	as	shown	in	Figure	4-6.	The	line	drivers	used	for
TxD	are	called	T1	and	T2,	while	the	line	drivers	for	RxD	are	designated	as	R1	and
R2.	In	many	applications	only	one	of	each	is	used.	Notice	in	MAX232	that	the	T1
line	 driver	 has	 a	 designation	 of	 T1in	 and	 T1out	 on	 pin	 numbers	 11	 and	 14,
respectively.	The	T1in	pin	is	the	TTL	side	and	is	connected	to	TxD	of	the	USART,
while	T1out	is	the	RS232	side	that	is	connected	to	the	RxD	pin	of	the	RS232	DB
connector.	 The	 R1	 line	 driver	 has	 a	 designation	 of	 R1in	 and	 R1out	 on	 pin
numbers	 13	 and	 12,	 respectively.	 The	 R1in	 (pin	 13)	 is	 the	 RS232	 side	 that	 is
connected	to	the	TxD	pin	of	the	RS232	DB	connector,	and	R1out	(pin	12)	 is	the
TTL	side	that	is	connected	to	the	RxD	pin	of	the	USART.

Figure	4-6:	MAX232

Figure	4-7:	MAX233

MAX232	 requires	 four	 capacitors	 of	 1	 µF.	 To	 save	 board	 space,	 some
designers	use	the	MAX233	chip	from	Maxim.	The	MAX233	performs	the	same	job
as	the	MAX232	but	eliminates	the	need	for	capacitors.	However,	the	MAX233	chip
is	much	more	expensive	 than	 the	MAX232.	See	Figure	4-7	 for	MAX233	with	no
capacitor	used.

RS232	pins
Table	4-1	provides	the	pins	and	their	labels	for	the	RS232	cable,	commonly

referred	to	as	the	DB-9	connector.	The	x86	PC	9-pin	serial	port	is	shown	in	Figure
4-8.

Pin Description

1 Data	carrier	detect	(DCD)

2 Received	data	(RxD)

3 Transmitted	data	(TxD)

4 Data	terminal	ready
(DTR)

5 Signal	ground	(GND)

6 Data	set	ready	(DSR)

7 Request	to	send	(RTS)

8 Clear	to	send	(CTS)

9 Ring	indicator	(RI)

Table	4-1:	RS232	Pins

	

Figure	4-8:	9-Pin	Male	Connector

Data	communication	classification
Current	terminology	classifies	data	communication	equipment	as	DTE	(data

terminal	 equipment)	 or	 DCE	 (data	 communication	 equipment).	 DTE	 refers	 to
terminals	 and	 computers	 that	 send	 and	 receive	 data,	 while	 DCE	 refers	 to
communication	equipment,	 such	as	modems,	 that	 is	 responsible	 for	 transferring
the	data.	Notice	 that	all	 the	RS232	pin	 function	definitions	of	Table	4-1	are	 from
the	DTE	point	of	view.

The	 simplest	 connection	 between	 two	 PCs	 (DTE	 and	 DTE)	 requires	 a
minimum	of	three	pins,	TxD,	RxD,	and	ground,	as	shown	in	Figure	4-9.	Notice	that
the	connection	between	two	DTE	devices,	such	as	two	PCs,	requires	pins	2	and	3
to	be	interchanged	as	shown	in	Figure	4-9.	In	looking	at	Figure	4-9,	keep	in	mind
that	the	RS232	signal	definitions	are	from	the	point	of	view	of	DTE.

Figure	4-9:	DTE-DCE	and	DTE-DTE	Connections

Examining	the	RS232	handshaking	signals
To	ensure	fast	and	reliable	data	transmission	between	two	devices,	the	data

transfer	 must	 be	 coordinated.	 Some	 of	 the	 pins	 of	 the	 RS-232	 are	 used	 for
handshaking	signals.	They	are	described	below.	Due	to	the	fact	that	in	serial	data
communication	the	receiving	device	may	have	no	room	for	the	data	there	must	be
a	way	to	inform	the	sender	to	stop	sending	data.	So	some	of	these	handshaking
lines	may	be	used	for	flow	control	tool

1.							DTR	(data	terminal	ready):	When	the	terminal	(or	a	PC	COM	port)	is
turned	on,	after	going	through	a	self-test,	it	sends	out	signal	DTR	to	indicate
that	it	is	ready	for	communication.	If	there	is	something	wrong	with	the	COM
port,	this	signal	will	not	be	activated.	This	is	an	active-low	signal	and	can	be
used	to	inform	the	modem	that	the	computer	is	alive	and	kicking.	This	is	an
output	pin	from	DTE	(PC	COM	port)	and	an	input	to	the	modem.

2.							DSR	(data	set	ready):	When	a	DCE	(modem)	is	turned	on	and	has	gone
through	the	self-test,	it	asserts	DSR	to	indicate	that	it	is	ready	to
communicate.	Therefore,	it	is	an	output	from	the	modem	(DCE)	and	an	input
to	the	PC	(DTE).	This	is	an	active-low	signal.	If	for	any	reason	the	modem
cannot	make	a	connection	to	the	telephone,	this	signal	remains	inactive,
indicating	to	the	PC	(or	terminal)	that	it	cannot	accept	or	send	data.

3.							RTS	(request	to	send):	When	the	DTE	device	(such	as	a	PC)	has	a	byte
to	transmit,	it	asserts	RTS	to	signal	the	modem	that	it	has	a	byte	of	data	to
transmit.	RTS	is	an	active-low	output	from	the	DTE	and	an	input	to	the
modem.

4.							CTS	(clear	to	send):	In	response	to	RTS,	when	the	modem	has	room	for
storing	the	data	it	is	to	receive,	it	sends	out	signal	CTS	to	the	DTE	(PC)	to
indicate	that	it	can	receive	the	data	now.	This	input	signal	to	the	DTE	is	used
by	the	DTE	to	start	transmission.

5.							CD	(carrier	detect,	or	DCD,	data	carrier	detect):	The	modem	asserts
signal	DCD	to	inform	the	DTE	(PC)	that	a	valid	carrier	has	been	detected
and	that	contact	between	it	and	the	other	modem	is	established.	Therefore,
DCD	is	an	output	from	the	modem	and	an	input	to	the	PC	(DTE).

6.							RI	(ring	indicator):	An	output	from	the	modem	(DCE)	and	an	input	to	a

PC	(DTE)	indicates	that	the	telephone	is	ringing.	It	goes	on	and	off	in
synchronization	with	the	ringing	sound.	Of	the	six	handshake	signals,	this	is
the	least	often	used,	due	to	the	fact	that	modems	take	care	of	answering	the
phone.	However,	if	in	a	given	system	the	PC	is	in	charge	of	answering	the
phone,	this	signal	can	be	used.

From	 the	 above	 description,	 PC	 and	 modem	 communication	 can	 be
summarized	 as	 follows:	While	 signals	 DTR	 and	 DSR	 are	 used	 by	 the	 PC	 and
modem,	respectively,	 to	 indicate	 that	 they	are	alive	and	well,	 it	 is	RTS	and	CTS
that	actually	control	the	flow	of	data.	When	the	PC	wants	to	send	data	it	asserts
RTS,	 and	 in	 response,	 if	 the	modem	 is	 ready	 (has	 room)	 to	 accept	 the	 data,	 it
sends	back	CTS.	If,	for	lack	of	room,	the	modem	does	not	activate	CTS,	the	PC
will	deassert	DTR	and	try	again.	RTS	and	CTS	are	also	referred	to	as	hardware
control	flow	signals.	See	Figure	4-10.

Figure	4-10:	Null	Modem	Connection	with	Flow	Control	Signals

This	 concludes	 the	 description	 of	 the	 most	 important	 pins	 of	 the	 RS232
handshake	signals	plus	TxD,	RxD,	and	ground.	Ground	is	also	referred	to	as	SG
(signal	ground).	In	the	next	section	we	will	see	serial	communication	programming
for	the	microcontroller.

Review	Questions
1.							The	transfer	of	data	using	parallel	lines	is	___________	(faster,	slower)	but

________________	(more	expensive,	less	expensive).

2.							In	communications	between	two	PCs	in	New	York	and	Dallas,	we	use
___________	(serial,	parallel)	data	communication.

3.							In	serial	data	communication,	which	method	fits	block-oriented	data?

4.							True	or	false.	Sending	data	to	a	printer	is	duplex.

5.							True	or	false.	In	duplex	we	must	have	two	data	lines.

6.							The	start	and	stop	bits	are	used	in	the	___________	(synchronous,
asynchronous)	method.

7.							Assuming	that	we	are	transmitting	letter	“D”,	binary	100	0100,	with	odd-

parity	bit	and	2	stop	bits,	show	the	sequence	of	bits	transferred.

8.							In	Question	7,	find	the	overhead	due	to	framing.

9.							Calculate	the	time	it	takes	to	transfer	400	characters	as	in	Question	7	if	we
use	1200	bps.	What	percentage	of	time	is	wasted	due	to	overhead?

10.			True	or	false.	RS232	is	not	TTL-compatible.

Section	4.2:	Programming	UART	Ports
In	this	section,	we	examine	the	UART	serial	port	registers	of	Freescale	ARM

KL25Z	and	show	how	to	program	them	to	transmit	and	receive	data	serially.	Many
of	 the	 Freescale	 ARM	 chips	 come	with	 up	 to	 3	 on-chip	 UART	 ports.	 They	 are
designated	 as	 UART0-UART2.	 In	 the	 Freescale	 FRDM,	 the	 UART0	 port	 of	 the
KL25Z	 is	 connected	 to	 the	 OpenSDA	 (Open	 Serial	 Debug	 Adaptor),	 which	 is
connected	to	a	USB	connector.	The	OpenSDA	USB	is	located	below	Reset	switch
and	 is	 labeled	 as	SDA.	 It	 is	 on	 the	 left	 side	 of	 the	 board.	See	Figure	 4-11.	 This
OpenSDA	USB	connection	contains	three	distinct	functions:

a)						the	programming	(downloading)	using	OpenSDA	Programming
software,

b)						the	debugging	using	JTAG,	and

c)							the	use	as	a	virtual	COM	port.

Figure	4-11:	Freescale	FRDM	board

	

When	the	USB	cable	connects	the	PC	to	the	FRDM	board,	the	device	driver
at	the	host	PC	establishes	a	virtual	connection	between	the	PC	and	the	UART0	of
the	KL25Z	device.	On	the	FRDM,	the	connection	appears	as	UART0.	On	the	host
PC,	it	appears	as	a	COM	port	and	will	work	with	communication	software	on	the
PC	such	as	a	terminal	emulator.	It	is	called	a	virtual	connection	because	there	is
no	need	for	an	additional	cable	to	make	this	connection.

Examining	the	datasheet	of	the	KL25Z	on	FRDM	board,	we	see	the	UART0
uses	PTA1	and	PTA2	pins	as	alternate	functions	for	UART0_Tx	and	UART0_Rx,
respectively.	See	Figure	4-12.

Figure	4-12:	OpenSDA	USB	Port

	Notice	that	there	is	a	second	USB	connector	on	the	Freescale	FRDM	right
above	the	Reset	switch.	It	is	labeled	as	KL25Z	USB.	This	USB	Device	connector
is	dedicated	to	USB	functionality	and	uses	PD4	and	PD5	pins	for	USB	D-	and	D+
wires,	respectively.

As	we	mentioned	earlier,	the	Freescale	KL25Z	can	have	up	to	3	UART	ports.
They	 are	 designated	 as	 UART0	 to	 UART2.	 The	 following	 shows	 their	 Base
addresses	in	the	memory	map:

■	UART0	base:	0x4006	A000

■	UART1	base:	0x4006	B000

■	UART2	base:	0x4006	C000

	

The	exact	address	locations	for	some	of	the	UART0	registers	are	shown	below:

	

Register	Name Register	Function Register	Address

UART0_BDH Baud	Rate	High 4006	A000

UART0_BDL Baud	Rate	Low 4006	A001

UART0_C1 Control	1 4006	A002

UART0_C2 Control	2 4006	A003

UART0_S1 Status	1 4006	A004

Table	4-2:	Partial	list	of	UART0	Registers	and	their	addresses

Figure	4-13	shows	the	simplified	block	diagram	of	the	UART	units.

Figure	4-13:	a	Simplified	Block	Diagram	of	UARTn

In	all	microcontrollers,	there	are	3	groups	of	registers	in	UART	peripherals:

1.	 	 	 	 	 	 	 Configuration	 registers:	 Before	 using	 the	 UART	 peripheral	 the
configuration	registers	must	be	initialized.	This	sets	some	parameters	of	the
communication	including:	Baud	rate,	word	length,	stop	bit,	serial	interrupts	(if
needed).	 In	 Freescale	 K25Z	 microcontroller,	 some	 of	 the	 configuration
registers	are:	UARTx_BDH,	UARTx_BDL,	UARTx_C1,	and	UARTx_C2.

2.	 	 	 	 	 	 	Transmit	 and	 receive	 register:	 To	 send	 data,	 we	 simply	write	 to	 the
transmit	register.	The	UART	peripheral	sends	out	the	contents	of	the	transfer
register	 through	 the	 serial	 transmit	 pin	 (UARTx_TX).	 The	 received	 data	 is
stored	 in	 the	 receive	 register.	 In	 Freescale	 ARM,	 the	 transfer	 and	 receive
registers	are	named	as	UART_D	(UART	Data	register).

3.	 	 	 	 	 	 	Status	register:	the	status	register	contains	some	flags	which	show	the
state	of	sending	and	receiving	data	including:	the	existence	of	new	received
data,	 the	 existence	 of	 error	 in	 received	 data;	 the	 sending	 unit	 is	 ready	 for
new	 data,	 etc.	 The	 status	 register	 is	 named	 as	 UARTx_S1	 (UART	 status
register)	in	the	Freescale	ARMs.

	

There	 are	 many	 special	 function	 registers	 associated	 with	 each	 of	 the
UARTs.	 In	 this	section,	 first,	we	will	be	using	the	UART0	as	an	example	since	a
virtual	connection	is	available	on	the	Freescale	FRDM	board.

First,	we	will	examine	the	baud-rate	generator	registers.

Transmit	clock	and	receive	clock
The	transmitter	operates	on	the	clock	that	runs	at	the	Baud	rate.		For	each

clock	pulse,	one	bit	 is	transmitted.	Because	UART	is	asynchronous,	the	receiver
needs	to	detect	the	falling	edge	of	the	start	bit	so	it	has	to	run	on	a	faster	clock.
This	 is	 called	oversampling.	The	UART0	has	more	 flexible	configurations	of	 the
clocks	and	oversampling	and	is	different	from	UART1	and	UART2.

UART0	Baud	clock	and	oversampling

The	source	of	the	Baud	rate	generator	clock	for	UART0	is	programmable	in
SIM_SOPT2	register	to	select	from	the	output	of	FLL,	PLL,	the	external	oscillator,
or	 the	 internal	oscillator.	Coming	out	of	power	up	or	 reset	 the	clock	 is	disabled.
One	 must	 program	 the	 SIM_SOPT2	 register	 to	 use	 UART0.	 For	 the	 default
system	 clock	 configuration	 of	 Keil	 projects,	 the	FLL	 output	 is	 41.94	MHz	 and	 it
should	be	used.	The	internal	32.768kHz	clock	is	too	slow	for	UART	to	generate	a
precise	clock	for	higher	baud	rate.	See	Figures	4-14	and	4-15.	Also	see	Appendix
C.

Figure	4-14:	SIM_SOPT2	Register

	

Figure	4-15:	Clock	Circuit	of	UART0

Note
The	Clock	Distribution	chapter	in	KL25	reference	manual	discusses	the	clock

sources	in	detail.

UARTx_BDH	and	UARTx_BDL	Registers	and	the	SBR	Value
Two	registers	are	used	to	set	the	baud	rate:	They	are	UART	Baud	Rate	High

(UARTx_BDH)	 and	UART	Baud	Rate	 Low	 (UARTx_BDL)	 in	 which	 x=0,	 1,	 or	 2
referring	 to	 UART0,	 UART1,	 or	 UART2.	 The	 details	 of	 these	 two	 registers	 are
shown	below:

Figure	4-16:	UARTx_BDH

	

Figure	4-17:	UARTx_BDL

For	the	UART0	used	in	Freescale	FRDM	board,	their	physical	addresses	are
located	at	0x4006	A000	and	0x4006	A001,	respectively.	Notice	these	registers	are
only	8	bits	and	each	register	takes	a	single	address	location	in	the	memory	map.
Of	 the	 8-bit	 of	 the	 UARTx_BDH,	 only	 lower	 5	 bits	 are	 used	 and	 for	 the
UARTx_BDL,	all	the	8	bits	are	used.	That	gives	us	total	of	13	bits.

	

The	transmit	clock	of	UART0	is	calculated	by	the	clock	source	by	the	content
of	UART0_BDH:UART0_BDL	and	then	by	the	Over	Sampling	Ratio.	The	transmit
clock	runs	at	the	baud	rate	is

SBR	is	the	concatenation	of	UART0_BDH	and	UART0_BDL.	The	OSR	is	the
D4-D0	 of	 UART0_C4	 register	 that	 determines	 the	 oversampling	 rate.	 For
example,	if	we	set	UART0_BDH	=	0,	UART0_BDL	=	23	and	use	the	default	value
of	OSR	=	15,	then

which	is	only	1%	off	the	Baud	rate	of	115200.

The	 OSR	 can	 be	 set	 to	 values	 3	 to	 31.	 See	 Figure	 4-18.	 So,	 the	 Over
Sampling	Ratio	has	the	range	of	4–32.	See	Figure	4-18	and	Table	4-3.

Figure	4-18:	UARTx_C4	Register

Bit Field Descriptions

7 MAEN1 Match	Address	Enable	1:	In	your	programs	set	the	bit	to	0.	For
more	information	see	the	KL25	user	manual.

6 MAEN2 Match	Address	Enable	2:	In	your	programs	set	the	bit	to	0.

5 M10

10-bit	Mode	select:

		0:	Receiver	and	transmitter	use	8-bit	or	9-bit	data	characters

		1:	Receiver	and	transmitter	use	10-bit	data	characters

Over	Sampling	Ration	(the	value	can	be	between	00011	to

0-4 OSR 11111)

Table	4-3:	UARTx_C4	Register

For	OSR	less	than	7,	the	receiver	must	be	sampled	at	both	rising	edge	and
falling	edge	of	the	clock.	This	is	accomplished	by	setting	the	BOTHEDGE	(bit	1)	of
the	UART0_C5	register.	See	Example	4-4.

	

Example	4-4

(a)	Assume	the	clock	source	of	41.94	MHz	is	fed	to	UART0	Baud	rate	generator
and	OSR	is	set	to	7	in	UART0_C4.	Find	the	values	for	the	divisor	registers	of
UART0_BDH	and	UART0_BDL	for	9600	Baud.

(b)	Assume	the	clock	source	of	41.94	MHz	is	fed	to	UART0	Baud	rate	generator
and	OSR	is	set	to	15	in	UART0_C4.	Find	the	values	for	the	divisor	registers	of
UART0_BDH	and	UART0_BDL	for	115200	Baud.

(c)	Assume	the	bus	clock	is	13.98	MHz,	find	the	values	for	the	divisor	registers	of
UART2_BDH	and	UART2_BDL	for	38400	Baud.

(d)	Assume	the	bus	clock	is	13.98	MHz,	find	the	values	for	the	divisor	registers	of
UART2_BDH	and	UART2_BDL	for	115200	Baud.

	

Solution:
	

(a)	41,940,000	/	(7	+	1)	/	9600	=	546	=	0x0222,	UART0_BDH	=	0x02	and
UART0_BDL	=	0x22

(b)	41,940,000	/	(15	+	1)	/	115200	=	23	=	0x0017,	UART0_BDH	=	0x00	and
UART0_BDL	=	0x17

(c)	13,980,000	/	16	/	38400	=	23	=	0x0017,	UART2_BDH	=	0x00	and
UART2_BDL	=	0x17

(d)	13,980,000	/	16	/	115200	=	8	=	0x0008,	UART2_BDH	=	0x00	and
UART2_BDL	=	0x08

Note:	It	must	be	noted	that	we	have	rounded	up	or	rounded	down	the	value
loaded	into	the	BDL	register.	Both	registers	of	UARTx_BDH	and	UARTx_BDL
must	be	loaded,	even	if	the	UARTx_BDH	value	is	zero.

	

	

Some	 of	 the	 standard	 Baud	 rates	 are	 4,800,	 9,600,	 19,200,	 38,400,	 and

115,200.	Table	4-4	shows	the	SBR	values	for	 the	different	baud	rate	 for	UART0
using	default	OSR	=	15	and	FLL	clock	output	of	41.94	MHz.

Baud	rate SBR	(in
decimal) SBR	(in	hex)

4,800 546 0x0222

9,600 273 0x0111

19,200 137 0x0089

38,400 68 0x0044

115,200 23 0x0017

Table	4-4:	UART0	SBR	Values	for	Some	Baud	Rates	using	default	OSR=15	and	FLL	clock	output	of
41.94	MHz.

UART	Control	1	(UARTx_C1)	register
The	next	important	register	in	UART	is	the	control	register.	We	have	several

UART	 Control	 Registers.	 The	 most	 important	 among	 them	 are	 UART	 Control
Register	1	(UARTx_C1)	and	UART	Control	Register	2	(UARTx_C2).	They	are	8-
bit	registers.	The	Control	Register	1	is	used	to	select	the	data	framing	size	among
other	 things.	 See	 Figure	 4-19.	 Notice	 that	 the	 M	 bit	 (D4)	 of	 the	 C1	 register
determines	the	framing	of	data	by	specifying	the	number	of	bits	per	character.	In
this	textbook,	we	use	the	no	parity	option	with	a	data	size	of	8	bits.	The	Control
Register	2	is	used	to	enable	the	serial	port	to	send	and	receive	data,	among	other
things.	The	Control	Register	4	and	5	are	only	used	 in	UART0	for	over	sampling
ratio	and	both	edges	as	described	previously	on	Baud	rate	generation.

Control	 Register	 1	 is	 the	 register	 we	 use	 to	 set	 the	 number	 of	 bits	 per
character	(data	length)	in	a	frame	and	number	of	stop	bits	among	other	things.

	

Figure	4-19:	UART	Control	1	(UARTx_C1)	register

Field Bit Description

LOOPS D7
0	=	Normal	operation.	RX	and	TX	use	separate	pins.

1	=	LOOP	operation	enabled.	See	KL25Z	manual

DOZEEN D6

Doze	Mode	Using	this	we	can	disable	or	enable
UARTx	in	wait	mode

		0	=	UART	enabled	in	Wait	mode

		1	=	UART	disabled	in	Wait	mode

RSRC D5

Receiver	source	bit.	Used	only	when	LOOPS=1	(see
KL25Z	manual)

		0	=	for	internally	connected	loop											

		1	=	for	externally	connected	loop

M D4

Data	format	mode	bit.	We	must	use	this	to	select	8-bit
data	frame	size

		0	=	select	8-bit	data	frame,	one	stop	bit	and	one	start
bit

		1	=	Select	9-bit	data	frame,	one	stop	bit	and	one	start
bit

WAKE D3

Wake-up	condition	bit.	See	the	KL25Z	manual

		0	=	Idle	line	wakeup

		1	=	Address	mark	wake-up

ILT D2

Idle	line	type	bit.	See	the	KL25Z	manual

		0	=	Idle	character	bit	count	begins	after	start	bit

		1	=	Idle	character	bit	count	begins	after	stop	bit

PE D1

Parity	Enable	bit.	This	will	allow	us	to	insert	a	parity	bit
right	after	the	8th	(MSB)	bit.

		0	=	no	parity	bit

		1	=	parity	bit

PT D0

Parity	bit	type	(used	only	if	PE	is	one.)

		0	=	even	parity	bit

		1	=	odd	parity	bit

Note:	The	most	important	bit	in	this	register	is	the	M	bit.	The	vast	majority	of	the	applications	use	M=0	for	8-
bit	data	size.	The	rest	of	the	bits	are	for	testing	purpose	and	we	do	not	use	them	unless	we	are	writing
UART	diagnostic	test	software.	For	that	reason,	we	make	them	all	zeros	and	we	use	UARTx_C1	=	0x00.

Table	4-5:	UART	Control	1	(UARx_C1)	register

UART	Control	register	2	(UARTx_C2)
Figure	4-20	describes	various	bits	of	 the	Control	Register	2.	Several	of	 the

C2	register	bits	are	widely	used	by	the	UART.	The	TE	(transmit	enable)	and	RE
(receive	enable)	are	the	most	important	bits	in	this	register.	The	rest	of	the	bits	are
used	for	interrupt	driven	serial	communication.	In	Chapter	6	we	will	see	how	these
flags	are	used	with	interrupts	instead	of	polling.

	

Figure	4-20:	UART	Control	2	(UARTx_C2)	register

Field Bit Description

TIE D7

Transmit	Interrupt	Enable	bit.	Used	for	interrupt-driven
UART.	See	Chapter	6.

		0	=	TDRE	Interrupt	Request	is	disabled.

		1	=	TDRE	Interrupt	Request	is	enabled.

TCIE D6

Transmission	Complete	Interrupt	Enable	bit.	Used	for
interrupt-driven	UART.	See	Chapter	6.

		0	=	TC	Interrupt	Request	is	disabled.

		1	=	TC	Interrupt	Request	is	enabled.

RIE D5

Receiver	Full	Interrupt	Enable	bit.	Used	for	interrupt-driven
UART.	See	Chapter	6.

		0	=	RDRF	Interrupt	Request	is	disabled.

		1	=	RDRF	Interrupt	Request	is	enabled.

ILIE D4

Idle	Line	Interrupt	Enable	bit.	Used	for	interrupt-driven
UART.

		0	=	IDLE	Interrupt	Request	is	disabled.

		1	=	IDLE	Interrupt	Request	is	enabled.

TE D3

Transmitter	Enable	bit.	We	must	enable	this	bit	to	transmit
data.

		0	=	Transmitter	is	disabled.

		1	=	Transmitter	is	enabled.

RE D2

Receiver	Enable	bit.	We	must	enable	this	bit	to	receive
data.

		0	=	Receiver	is	disabled.

		1	=	Receiver	is	enabled.

RWU D1

Used	for	wake-up	condition	in	stand-by	mode.	See	the
KL25Z	manual.

		0	=	Normal	operation

		1	=	RWU	is	enabled.

SBK D0

Used	for	break	bit.	See	the	KL25Z	manual.

		0	=	No	break	character

		1	=	Transmit	break	character

Note:	The	most	important	bits	in	this	register	are	the	TE	and	RE	bits.	In	applications	using	the	polling
method	we	make	the	interrupt	request	bits	all	zeros.	For	the	polling	method,	we	use	UARTx_C2	=	0x0C.	The

rest	of	the	bits	are	for	testing	purposes.	To	use	interrupt-driven	UART,	see	Chapter	6.

Table	4-6:	UART	Control	2	(UARTx_C2)	register

UART	Data	Register
To	transmit	a	byte	of	data	we	must	place	it	in	UART	Data	register.	It	must	be

noted	 that	a	write	 to	 this	 register	 initiates	a	 transmission	 from	 the	UART.	 In	 the
same	way,	 the	 received	byte	 is	placed	 in	 this	 register	and	must	be	 retrieved	by
reading	 it	before	 it	 is	 lost.	Notice	 this	 is	an	8-bit	 register	and	 located	at	address
0x4000	A007	for	the	UART0.

Figure	4-21:	UART	Data	(UART_D)	register

	

Note	about	UART_D	(advanced	information)
There	 are	 in	 fact	 2	 separate	 registers	 with	 the	 same	 address	 and	 the	 same
name,	for	transmitting	and	receiving	data.	Writing	to	the	memory	address	leads
to	write	 to	 the	transmit	 register	and	reads	from	the	memory	address	return	 the
received	 data.	 (Writing	 to	 the	 receive	 register	 and	 reading	 from	 the	 transmit
register	are	meaningless	and	impossible.)

	

UART	Status	1	(UARTx_S1)	Register
We	have	two	UART	Status	Registers:	UARTx_S1	and	UARTx_S2.	They	are

8-bit	registers.	The	most	important	UART	status	register	is	the	S1	and	is	used	to
monitor	the	arrival	of	data	among	other	things.	Figure	4-22	describes	various	bits
of	 the	 S1.	 Several	 of	 the	 S1	 register	 bits	 are	 widely	 used	 by	 the	 UART.	 We
monitor	 (poll)	 the	 TC	 flag	 bit	 to	make	 sure	 that	 all	 the	 bits	 of	 the	 last	 byte	 are
transmitted.	By	the	same	logic,	we	monitor	(poll)	the	RDRF	flag	to	see	if	a	byte	of
data	 is	 received.	The	 transmitter	 is	double	buffered.	That	means	 there	 is	a	data
register	 in	 addition	 to	 the	 shift	 register	 that	 shifts	 the	 bits	 out.	 While	 the	 shift

register	is	shifting	the	last	byte	out,	the	program	may	write	another	byte	of	data	to
the	Data	Register	 to	wait	 for	 the	 shift	 register	 to	 be	 ready.	The	 transfer	 of	 data
between	the	data	register	and	the	shift	register	is	automatic	and	the	program	does
not	 have	 to	 worry	 about	 it.	 The	 TDRE	 flag	 indicates	 that	 the	 Data	 Register	 is
empty	and	 ready	 to	accept	another	byte.	The	TC	 flag	mentioned	above	actually
indicates	 whether	 the	 shift	 register	 is	 empty	 or	 not.	 When	 the	 shift	 register	 is
empty,	 the	 Data	 Register	 must	 be	 empty	 too	 and	 the	 UART	 has	 no	 data	 to
transmit.	 In	 Chapter	 6,	 we	 will	 see	 how	 these	 flags	 are	 used	 with	 interrupts
instead	of	polling.	The	UART	Status	Register	2	 is	used	 for	single-wire	operation
and	is	discussed	in	the	KL25Z	manual.	We	do	not	cover	it	in	this	textbook.

Figure	4-22:	UART	Status	Register	(UARTx_S1)

Field Bit Description

TDRE D7

Transmit	Data	Register	Empty

		0	=	The	shift	register	is	loaded	and	shifting.	An	additional
byte	is	waiting	in	the	Data	Register.

		1	=	The	Data	Register	is	empty	and	ready	for	the	next
byte.

TC D6

Transmit	Complete	flag

		0	=	Transmission	is	in	progress	(shift	register	is
occupied)

		1	=	No	transmission	in	progress	(both	shift	register	and
Data	Register	are	empty)

RDRF D5

Receive	Data	Register	Full	flag.	This	indicates	a	byte	has
been	received	and	is	sitting	in	UART	Data	Register	and
ready	to	be	picked	up.

		0	=	No	data	is	available	in	UART	Data	Register.

		1	=	Data	is	available	in	UART	Data	Register	and	ready
to	be	picked	up.

IDLE D4 Idle	line	flag.	See	the	KL25Z	manual.

OR D3

D3	Overrun	error

		0	=	No	overrun

		1	=	Overrun	error

NF D2

Noise	Flag	error	bit

		0	=	No	noise

		1	=	Noise	error

FE D1

Framing	Error	bit

		0	=	No	framing	error

		1	=	Framing	error

PF D0

Parity	flag	error	bit

		0	=	No	parity	error

		1	=	Parity	error

Table	4-7:	UART	Status	Register	(UARTx_S1)

The	importance	of	the	TDRE
To	transmit	a	byte	of	data	serially	via	the	TXD	pin,	we	must	write	it	 into	the

UART	Data	Register	(UARTx_D).	The	transmit	shift	register	is	an	internal	register
whose	 job	 is	 to	get	 the	data	 from	the	UART	Data	Register	 (UARTx_D),	 frame	 it
with	 the	start	and	stop	bits,	and	send	 it	out	one	bit	at	a	 time	via	 the	UARTx_TX
pin.	Notice	 that	 the	 transmit	 shift	 register	 is	 a	parallel-in-serial-out	 shifter	 and	 is
not	accessible	to	the	programmer.	We	can	only	write	to	the	UART	Data	Register.
Whenever	the	shifter	is	empty,	it	gets	its	new	data	from	the	UART	Data	Register
and	clears	the	UART	Data	Register	immediately,	so	it	does	not	send	out	the	same
data	 twice.	When	 the	 shifter	 fetches	 the	 data	 from	 the	 UART	 Data	 Register,	 it
clears	the	TDRE	flag	to	indicate	it	is	empty	and	the	UART	Data	Register	is	ready
for	the	next	character.	We	must	check	the	TDRE	flag	before	we	write	another	byte
to	the	UART	Data	Register.

The	importance	of	the	TC
The	TC	flag	 indicates	that	both	the	Data	Register	and	the	shift	register	are

empty	and	there	is	no	data	left	for	the	transmitter	to	send.	This	bit	 is	used	when
the	program	needs	to	know	that	all	the	data	is	sent	before	starting	the	next	task.
When	TDRE	flag	is	set,	the	Data	Register	is	empty	but	the	last	byte	of	data	may
still	be	in	the	shift	register.	If	the	program	is	to	shut	down	the	transmitter,	the	last
byte	of	data	will	be	lost.	Checking	TC	ensures	that	all	the	data	written	to	the	UART
is	transmitted	already.

The	importance	of	the	RDRF
The	 internal	 serial-in-parallel-out	 receive	 register	 receives	 data	 via	 the

UARTx_RX	pin.	It	gets	rid	of	the	start	and	stop	bits	and	writes	the	received	byte	to
the	UART	Data	Register	and	makes	RDRF	high.	We	must	check	the	RDRF	flag	to
see	if	we	need	to	pick	up	the	received	byte.

Enabling	clock	to	UART
As	we	mentioned	 in	Chapter	2,	 to	conserve	power	 the	on-chip	peripherals

have	no	clock	coming	out	of	Reset.	The	System	Clock	Gating	Control	register	4

(SIM_SCGC4)	register	is	used	to	enable	the	clock	to	the	UARTs.	In	this	register,
there	 is	a	bit	 for	each	of	 the	UART0	to	UART2	modules.	 If	a	given	UART	 is	not
used,	we	should	disable	the	clock	to	 it	 to	save	power.	To	use	UART0,	we	set	 to
high	 the	 D10	 bit	 of	 this	 register.	 The	 other	 bits	 of	 this	 register	 are	 used	 for
enabling	the	clock	to	other	on-chip	peripherals.	See	Figure	4-23.

Figure	4-23:	SIM_SCGC4	(System	Clock	Gating	Control)	Register

The	GPIO	pins	used	for	UART	TxD	and	RxD
In	addition	to	the	UART	registers	setup,	we	must	also	configure	the	I/O	pins

used	for	UART	for	their	alternate	functions.	In	the	case	of	UART,	we	need	to	set
up	 I/O	 pins	 for	 the	 alternate	 functions	 of	 TxD	 and	RxD	 signals.	 In	 the	 last	 two
chapters	we	used	GPIO	as	simple	I/O.	We	showed	the	minimum	configuration	for
each	port	as	simple	I/O	and	provided	the	Clock	to	it.	When	I/O	pins	are	used	for
their	alternate	peripheral	 functions	such	as	UART,	Timer,	and	ADC,	we	need	 to
use	the	PORTx_PCRn	(Portx	Pin	Control)	special	function	register.	As	we	showed
in	the	last	two	chapters,	each	pin	of	ports	A-E	has	its	own	PORTx_PCRn	register.
The	x	 is	used	 for	Ports	A	 to	E	and	n	 is	used	 for	pin	number	0	 to	31.	The	most
important	bits	of	PORTx_PCRn	are	D10-D8	(MUX	control).	Upon	reset,	ports	A	to
E	are	disabled	(default).	To	use	a	pin	as	simple	 I/O,	we	must	choose	MUX=001
option	or	ALT1	 in	 the	PORTx_PCRn	register.	The	ALT2	option	allows	PTA1	and
PTA2	 pins	 to	 be	 used	 for	UART0_Rx	 and	UART0_Tx	 signals,	 respectively.	 For
others	pin	and	UART	combination,	other	ALT	numbers	should	be	used	according
to	Table	4-8.	Appendix	B	shows	the	pin	 function	selection	for	all	 the	alternate	of
ALT0	to	ALT7.	In	the	case	of	PTA1,	we	must	use	the	PORTA_PCR1	register	and
for	PTA2	we	use	the	PORTA_PCR2	register.

Figure	4-24:	PORTx_PCRn	Alternate	Function	Selection	register

	

FRDM	I/O
Pin KL25Z	Pin ALT2 ALT3 ALT4

J1	02 PTA1 UART0_RX 	 	

J1	04 PTA2 UART0_TX 	 	

― PTA14 	 UART0_TX 	

― PTA15 	 UART0_RX 	

― PTA18 	 UART1_RX 	

― PTA19 	 UART1_TX 	

― PTB16 	 UART0_RX 	

― PTB17 	 UART0_TX 	

J1	05 PTC3 	 UART1_RX 	

J1	07 PTC4 	 UART1_TX 	

J2	08 PTD2 	 UART2_RX 	

J2	10 PTD3 	 UART2_TX 	

J1	06 PTD4 	 UART2_RX 	

J2	04 PTD5 	 UART2_TX 	

J2	17 PTD6 	 UART0_RX 	

J2	19 PTD7 	 UART0_TX 	

J2	20 PTE0 	 UART1_TX 	

J2	18 PTE1 	 UART1_RX 	

J10	01 PTE20 	 	 UART0_TX

J10	03 PTE21 	 	 UART0_RX

J10	05 PTE22 	 	 UART2_TX

J10	07 PTE23 	 	 UART2_RX

Table	4-8:	Pins	available	for	UARTs

Steps	for	transmitting	data
Here	are	 the	steps	 to	configure	 the	UART0	and	transmit	a	byte	of	data	 for

Freescale	FRDM	board:

1)						Provide	clock	to	UART0	by	writing	a	1	to	D10	bit	of	SIM_SCGC4	register.

2)						Select	FLL	as	UART0	clock	source	by	setting	bit	27-26	to	01	and	bit	16	to	0
in	SIM_SOPT2.

3)						Turn	off	the	UART0	before	changing	configurations	by	clearing	UART0_C2
register.

4)						Set	the	baud	rate	for	UART0	by	using	UART0_BDH	and	UART0_BDL
registers.

5)						Writing	0x0F	to	UART0_C4	register	to	select	16	for	Over	Sampling	Ratio.

6)						Configure	the	control	register	value	for	1	stop	bit,	no	parity,	and	8-bit	data
size	by	writing	0x00	for	the	UART0_C1	register.

7)						Write	0x08	to	UART0_C2	register	to	enable	the	transmitter	of	UART0.

8)						Set	bit	9	of	SIM_SCGC5	to	1	to	enable	clock	to	PORTA.

9)						Select	the	alternate	functions	2	for	PA2	(UART0_Tx)	pins	using	the
PORTA_PCR2.

10)			Monitor	the	TDRE	bit	of	the	Status	Register	1	(UART0_S1)	and	wait	for
UART0	transmit	buffer	empty.

11)			Write	a	byte	to	UART0	Data	Register	to	be	transmitted.

12)			To	transfer	the	next	character,	go	to	step	10.
	

Program	4-1	sends	 the	characters	 “YES”	 to	 the	 terminal	emulator	program
(TeraTerminal)	 on	 a	 PC.	 You	 need	 to	 install	 TeraTerminal	 (or	 other	 terminal
program	such	as	HyperTerminal	or	Putty)	on	your	PC	 to	 receive	 the	output.	For
TeraTerminal	download	and	tutorial	see:

http://microdigitaled.com/tutorials/Tera_Terminal.pdf

	

Program	4-1:	UART0	Transmit

	
/*	p4_1.c	UART0	transmit

	

	*	Sending	“YES”	to	UART0	on	Freescale	FRDM-KL25Z	board.

	*	UART0	is	connected	to	openSDA	debug	agent	and	has

	*	a	virtual	connection	to	the	host	PC	COM	port.

	*	Use	TeraTerm	to	see	the	message	“YES”	on	a	PC.

	

	*	By	default	in	SystemInit(),	FLL	clock	output	is	41.94	MHz.

	*	Setting	BDH=0,	BDL=0x17,	and	OSR=0x0F	yields	115200	Baud.

	*/

	

#include	<MKL25Z4.H>

	

void	UART0_init(void);

void	delayMs(int	n);

	

int	main	(void)	{

UART0_init();

while	(1)	{

				while(!(UART0->S1	&	0x80))	{

}			/*	wait	for	transmit	buffer	empty	*/

http://microdigitaled.com/tutorials/Tera_Terminal.pdf

UART0->D	=	‘Y’;	/*	send	a	char	*/

while(!(UART0->S1	&	0x80))	{	}

UART0->D	=	‘e’;	/*	send	a	char	*/

while(!(UART0->S1	&	0x80))	{	}

UART0->D	=	‘s’;	/*	send	a	char	*/

delayMs(2);	/*	leave	a	gap	between	messages	*/

}

}

	

/*	initialize	UART0	to	transmit	at	115200	Baud	*/

void	UART0_init(void)	{

SIM->SCGC4	|=	0x0400;			/*	enable	clock	for	UART0	*/

SIM->SOPT2	|=	0x04000000;				/*	use	FLL	output	for	UART	Baud	rate	generator
*/

UART0->C2	=	0;										/*	turn	off	UART0	while	changing	configurations	*/

UART0->BDH	=	0x00;

UART0->BDL	=	0x17;						/*	115200	Baud	*/

UART0->C4	=	0x0F;							/*	Over	Sampling	Ratio	16	*/

UART0->C1	=	0x00;							/*	8-bit	data	*/

UART0->C2	=	0x08;							/*	enable	transmit	*/

	

SIM->SCGC5	|=	0x0200;			/*	enable	clock	for	PORTA	*/

PORTA->PCR[2]	=	0x0200;	/*	make	PTA2	UART0_Tx	pin	*/

}

	

/*	Delay	n	milliseconds	*/

/*	The	CPU	core	clock	is	set	to	MCGFLLCLK	at	41.94	MHz	in	SystemInit().	*/

	

void	delayMs(int	n)	{

int	i;

int	j;

for(i	=	0	;	i	<	n;	i++)

for	(j	=	0;	j	<	7000;	j++)	{}

}

	

Importance	of	the	TDRE	(Transmit	Data	Register	Empty)	flag
To	 understand	 the	 importance	 of	 the	 role	 of	 TDRE,	 look	 at	 the	 following

sequence	 of	 steps	 that	 the	 KL25Z	 goes	 through	 in	 transmitting	 a	 character	 via
TXD:

1.							The	byte	character	to	be	transmitted	is	written	into	the	UARTx	Data
Register.

2.							The	TDRE	flag	is	set	to	0	internally	to	indicate	that	the	UARTx	Data
Register	has	a	byte	and	will	not	accept	another	byte	until	this	one	is
transmitted.

3.							The	transmit	shift	register	reads	the	byte	from	the	UARTx	Data	Register
and	begins	to	transfer	the	byte	starting	with	the	start	bit.

4.							The	TDRE	flag	is	set	to	1	to	indicate	that	the	last	byte	is	being	transmitted
and	the	UARTx	Data	Register	is	ready	to	accept	another	byte.

5.							The	8-bit	character	is	transferred	one	bit	at	a	time.

By	monitoring	the	TDRE	flag,	we	make	sure	that	we	are	not	overloading	the
UARTx	 Data	 Register.	 If	 we	 write	 another	 byte	 into	 the	 UARTx	 Data	 Register
before	the	shifter	has	fetched	the	last	one,	the	old	byte	could	be	lost	before	 it	 is
transmitted.

Notice	that	we	can	also	check	the	TC	(transmit	complete)	flag	before	loading
the	UARTx	data	register	with	a	new	byte.

Steps	for	receiving	data
Here	are	 the	steps	 to	 receive	a	byte	of	data	 for	UART0	 in	Freescale	ARM

FRDM	board:

Provide	clock	to	UART0	by	writing	a	1	to	D10	bit	of	SIM_SCGC4	register.

Select	FLL	as	UART0	clock	source	by	setting	bit	27-26	to	01	and	bit	16	to	0	in
SIM_SOPT2.

Turn	off	the	UART0	before	changing	configurations	by	clearing	UART0_C2
register.

Set	the	baud	rate	for	UART0	by	using	UART0_BDH	and	UART0_BDL
registers.

Writing	0x0F	to	UART0_C4	register	to	select	16	for	Over	Sampling	Ratio.

Configure	the	control	register	value	for	1	stop	bit,	no	parity,	and	8-bit	data	size
by	writing	0x00	for	the	UART0_C1	register.

Write	0x04	to	UART0_C2	register	to	enable	the	receiver	of	UART0.

Set	bit	9	of	SIM_SCGC5	to	1	to	enable	clock	to	PORTA.

Select	the	alternate	functions	2	for	PA1	(UART0_Rx)	pins	using	the
PORTA_PCR1.

Monitor	the	RDRE	(receive	data	register	full)	bit	of	the	Status	Register	1

(UART0_S1)	and	wait	for	UART0	receive	buffer	full.
When	RDRE	is	set,	read	a	byte	of	data	from	UART0_D	register	and	use	it	to

set	the	tri-color	LEDs.

To	receive	another	character,	go	to	step	10.
	

Note
The	 configuration	 steps	 (steps	 1	 to	 6)	 are	 identical	 for	 receiving	 and	 sending
data.

	

Program	4-2	receives	the	bytes	of	data	via	UART0	and	displays	it	on	the	tri-
color	LEDs.

	

Program	4-2:	UART0	Receive

	
/*	p4_2.c	UART0	Receive

	

	*	Receiving	any	key	from	terminal	emulator	(TeraTerm)	of	the

	*	host	PC	to	the	UART0	on	Freescale	FRDM-KL25Z	board.

	*	UART0	is	connected	to	openSDA	debug	agent	and	has

	*	a	virtual	connection	to	the	host	PC	COM	port.

	*	Launch	TeraTerm	on	a	PC	and	hit	any	key.

	*	The	LED	program	from	P2_7	of	Chapter	2	is	used	to	turn

	*	on	the	tri-color	LEDs	according	to	the	key	received.

	*

	*	By	default	in	SystemInit(),	FLL	clock	output	is	41.94	MHz.

	*	Setting	BDH=0,	BDL=0x17,	and	OSR=0x0F	yields	115200	Baud.

	*/

	

#include	<MKL25Z4.H>

	

void	UART0_init(void);

void	delayMs(int	n);

void	LED_init(void);

void	LED_set(int	value);

	

int	main	(void)	{

char	c;

	

UART0_init();

LED_init();

while	(1)	{

while(!(UART0->S1	&	0x20))	{

}			/*	wait	for	receive	buffer	full	*/

c	=	UART0->D;	/*	read	the	char	received	*/

LED_set(c);

}

}

	

/*	initialize	UART0	to	receive	at	115200	Baud	*/

void	UART0_init(void)	{

SIM->SCGC4	|=	0x0400;			/*	enable	clock	for	UART0	*/

SIM->SOPT2	|=	0x04000000;				/*	use	FLL	output	for	UART	Baud	rate	generator
*/

UART0->C2	=	0;										/*	turn	off	UART0	while	changing	configurations	*/

UART0->BDH	=	0x00;

UART0->BDL	=	0x17;						/*	115200	Baud	*/

UART0->C4	=	0x0F;							/*	Over	Sampling	Ratio	16	*/

UART0->C1	=	0x00;							/*	8-bit	data	*/

UART0->C2	=	0x04;							/*	enable	receive	*/

	

SIM->SCGC5	|=	0x0200;			/*	enable	clock	for	PORTA	*/

PORTA->PCR[1]	=	0x0200;	/*	make	PTA1	UART0_Rx	pin	*/

}

	

/*	initialize	all	three	LEDs	on	the	FRDM	board	*/

void	LED_init(void)

{

SIM->SCGC5	|=	0x400;								/*	enable	clock	to	Port	B	*/

SIM->SCGC5	|=	0x1000;							/*	enable	clock	to	Port	D	*/

PORTB->PCR[18]	=	0x100;					/*	make	PTB18	pin	as	GPIO	*/

PTB->PDDR	|=	0x40000;							/*	make	PTB18	as	output	pin	*/

PTB->PSOR	=	0x40000;								/*	turn	off	red	LED	*/

PORTB->PCR[19]	=	0x100;					/*	make	PTB19	pin	as	GPIO	*/

PTB->PDDR	|=	0x80000;							/*	make	PTB19	as	output	pin	*/

PTB->PSOR	=	0x80000;								/*	turn	off	green	LED	*/

PORTD->PCR[1]	=	0x100;						/*	make	PTD1	pin	as	GPIO	*/

PTD->PDDR	|=	0x02;										/*	make	PTD1	as	output	pin	*/

PTD->PSOR	=	0x02;											/*	turn	off	blue	LED	*/

}

	

/*	turn	on	or	off	the	LEDs	according	to	bit	2-0	of	the	value	*/

void	LED_set(int	value)

{

if	(value	&	1)				/*	use	bit	0	of	value	to	control	red	LED	*/

PTB->PCOR	=	0x40000;				/*	turn	on	red	LED	*/

else

	PTB->PSOR	=	0x40000;				/*	turn	off	red	LED	*/

if	(value	&	2)				/*	use	bit	1	of	value	to	control	green	LED	*/

PTB->PCOR	=	0x80000;				/*	turn	on	green	LED	*/

else

PTB->PSOR	=	0x80000;				/*	turn	off	green	LED	*/

if	(value	&	4)				/*	use	bit	2	of	value	to	control	blue	LED	*/

PTD->PCOR	=	0x02;							/*	turn	on	blue	LED	*/

else

PTD->PSOR	=	0x02;							/*	turn	off	blue	LED	*/

}

	

Importance	of	the	RDRF	(Receive	Data	Register	Full)	flag	bit
In	receiving	bits	via	its	RXD	pin,	the	KL25Z	goes	through	the	following	steps:

1.							The	receiver’s	shift	register	receives	the	start	bit	indicating	that	the	next
bit	is	the	first	bit	of	the	character	byte	it	is	about	to	receive.

2.							The	8-bit	character	is	received	one	bit	at	time.	When	the	last	bit	is
received,	a	byte	is	formed	and	placed	in	UARTx	Data	Register
(UARTx_D)	and	the	KL25Z	makes	RDRF	=	1,	indicating	that	an	entire
character	byte	has	been	received	and	must	be	picked	up	before	it	gets
overwritten	by	another	incoming	character.

3.							By	checking	the	RDRF	flag	bit	when	it	is	raised,	we	know	that	a
character	has	been	received	and	is	sitting	in	the	UARTx	Data	Register.
We	copy	the	UARTx	Data	register	contents	to	a	safe	place	in	some	other
register	or	memory	before	it	is	lost.	Notice	that	for	receiving	data	we	use
the	same	register	as	when	sending	data.

Using	UART1	or	UART2	port
The	 previous	 two	 programs	 showed	 how	 to	 use	 the	UART0	 on	 Freescale

FRDM	 board,	 which	 is	 connected	 to	 the	 host	 computer	 through	 the	 OpenSDA
USB	cable.	Now,	you	can	buy	a	USB-to-Serial	module	(or	cable)	and	connect	to
either	UART1	or	UART2	port.	One	 side	of	 the	USB-to-Serial	module	 should	 be
3.3V	logic	level	signals	for	TxD	and	RxD	and	is	connected	to	the	UARTx	pins	on
Freescale	ARM	FRDM	board.	The	other	 side	 is	USB	port	 connected	 to	 the	PC
USB	port.	See	these	links:

https://www.sparkfun.com/products/9893,
https://www.sparkfun.com/products/9717,

http://www.adafruit.com/products/284	or	http://www.adafruit.com/products/70.

Make	sure	you	are	using	a	3.3V	logic	level	converter.	Many	TTL	level	serial
to	USB	converters	produce	output	higher	than	3.6V.	They	may	appear	functional
but	will	damage	the	KL25Z	input	pins.

UART1	and	UART2	Baud	clock	and	oversampling
Compared	to	UART0,	the	other	two	UART	modules	have	simpler	Baud	rate

generator	clock	scheme.	Their	clock	source	is	connected	to	the	system	bus	clock,
which	is	configured	to	13.98MHz	by	Keil	default	startup	code.	The	Over	Sampling
Ratio	is	fixed	to	16.

So	if	we	set	UART0_BDH	=	0	and	UART0_BDL	=	91,	then

Table	4-9	shows	the	SBR	values	for	the	different	baud	rate	for	UART1	using
bus	clock	of	13.98	MHz.

Baud	rate SBR	(in	decimal) SBR	(in	hex)

4,800 182 0x00B6

9,600 91 0x005B

19,200 46 0x002E

38,400 23 0x0017

Table	4-9:	UART1	and	UART2	SBR	Values	for	Some	Baud	Rates	using	bus	clock	of	13.98	MHz

	

Program	4-3	is	modified	from	Program	4-1	to	use	UART1.	Comparing	them
you	will	 find	 that	 the	 initialization	of	 the	associated	port	 is	changed.	Besides	 the
change	of	UART	module	and	the	port	pin	assignments,	the	Baud	rate	generation

https://www.sparkfun.com/products/9893
https://www.sparkfun.com/products/9717
http://www.adafruit.com/products/284
http://www.adafruit.com/products/70

configuration	 is	 different	 from	 UART0.	 Program	 4-3	 also	 demonstrates	 how	 to
initialize	an	array	of	characters	and	send	the	message	string	to	UART.

	

Program	4-3:	Sending	“Hello”	to	TeraTerm	via	UART2

	
/*	p4_3.c	Sending	“Hello”	through	UART2

	

	*	This	program	sends	a	message	“Hello”	through	UART2.

	*	The	bus	clock	is	set	to	13.98	MHz	in	SystemInit().

	*	Baud	rate	=	bus	clock	/	BDH:BDL	/	16	=	9600

	*	A	terminal	emulator	(TeraTerm)	should	be	launched

	*	on	the	host	PC	to	display	the	message.

	*	The	UART2	transmit	line	is	connected	to	PTD5.

	*/

	

#include	<MKL25Z4.H>

	

void	UART2_init(void);

void	delayMs(int	n);

	

int	main	(void)	{

char	message[]	=	“Hello\r\n”;

int	i;

	

UART2_init();

while	(1)	{

for	(i	=	0;	i	<	7;	i++)	{

while(!(UART2->S1	&	0x80))	{

}			/*	wait	for	transmit	buffer	empty	*/

UART2->D	=	message[i];	/*	send	a	char	*/

}

delayMs(10);	/*	leave	a	gap	between	messages	*/

}

}

	

/*	initialize	UART2	to	transmit	at	9600	Baud	*/

void	UART2_init(void)	{

SIM->SCGC4	|=	0x1000;			/*	enable	clock	to	UART2	*/

UART2->C2	=	0;										/*	disable	UART	during	configuration	*/

UART2->BDH	=	0x00;

UART2->BDL	=	0x5B;						/*	9600	Baud	*/

UART2->C1	=	0x00;							/*	normal	8-bit,	no	parity	*/

UART2->C3	=	0x00;							/*	no	fault	interrupt	*/

UART2->C2	=	0x08;							/*	enable	transmit,	no	interrupt	*/

SIM->SCGC5	|=	0x1000;			/*	enable	clock	to	PORTD	*/

PORTD->PCR[5]	=	0x300;		/*	PTD5	for	UART2	transmit	*/

}

	

/*	Delay	n	milliseconds	*/

/*	The	CPU	core	clock	is	set	to	MCGFLLCLK	at	41.94	MHz	in	SystemInit().	*/

	

void	delayMs(int	n)	{

int	i;

int	j;

for(i	=	0	;	i	<	n;	i++)

	for	(j	=	0;	j	<	7000;	j++)	{}

}

	

Program	4-4	combines	the	UART	transmit	with	UART	receive.	When	a	key
on	 the	PC	 is	 pressed	with	 a	 terminal	 emulator	 program,	 the	 keyed	 character	 is
sent	 to	FRDM	board.	The	 received	character	 is	sent	back	out	 through	UART	 to
the	terminal	emulator.

Program	4-4:	Echoing	the	received	data	from	UART2

	
/*	p4_4.c	UART2	echo

	

	*	This	program	receives	a	character	from	UART2	receiver

	*	then	sends	it	back	through	UART2.

	*	The	bus	clock	is	set	to	13.98	MHz	in	SystemInit().

	*	Baud	rate	=	bus	clock	/	BDH:BDL	/	16	=	9600

	*	A	terminal	emulator	(TeraTerm)	should	be	launched

	*	on	the	host	PC.	Typing	on	the	PC	keyboard	sends

	*	characters	to	the	FRDM	board.	The	FRDM	board	echoes

	*	the	character	back	to	the	terminal	emulator.

	*	The	UART2	transmit	line	is	connected	to	PTD5.

	*	The	UART2	receive	line	is	connected	to	PTD4.

	*/

	

#include	<MKL25Z4.H>

	

void	UART2_init(void);

void	delayMs(int	n);

	

int	main	(void)	{

char	c;

UART2_init();

while	(1)	{

while(!(UART2->S1	&	0x20))	{

}			/*	wait	for	receive	buffer	full	*/

c	=	UART2->D	;	/*	read	the	char	received	*/

	

while(!(UART2->S1	&	0x80))	{

}			/*	wait	for	transmit	buffer	empty	*/

UART2->D	=	c;	/*	send	the	char	received	*/

				}

}

	

/*	initialize	UART2	to	transmit	and	receive	at	9600	Baud	*/

void	UART2_init(void)	{

SIM->SCGC4	|=	0x1000;			/*	enable	clock	to	UART2	*/

UART2->C2	=	0;										/*	disable	UART	during	configuration	*/

UART2->BDH	=	0x00;

UART2->BDL	=	0x5B;						/*	9600	Baud	*/

UART2->C1	=	0x00;							/*	normal	8-bit,	no	parity	*/

UART2->C3	=	0x00;							/*	no	fault	interrupt	*/

UART2->C2	=	0x0C;							/*	enable	transmit	and	receive	*/

SIM->SCGC5	|=	0x1000;			/*	enable	clock	to	PORTD	*/

PORTD->PCR[5]	=	0x300;		/*	PTD5	for	UART2	transmit	*/

PORTD->PCR[4]	=	0x300;		/*	PTD5	for	UART2	receive	*/

}

	

Baud	rate	error	calculation
In	 calculating	 the	 baud	 rate,	 we	 have	 used	 the	 integer	 number	 for	 the

UARTx_BDH:UARTx_BDL	register	(SBR)	values	because	KL25Z	microcontrollers
can	 only	 use	 integer	 values.	 By	 dropping	 the	 decimal	 fraction	 portion	 of	 the
calculated	values	we	run	the	risk	of	introducing	error	into	the	baud	rate.	One	way
to	calculate	this	error	is	to	use	the	following	formula.

Error	=	(Calculated	value	for	the	SBR	–	Integer	part)	/	Integer	part

See	Example	4-5.

Example	4-5

Calculate	the	baud	rate	error	for	Example	4-4.

Solution:
(a)	SBR	=	41,940,000	/	(7	+	1)	/	9600	=	546.094

Error	=	(546.094	–	546)	/	546	x	100	=	0.02%

(b)	SBR	=	41,940,000	/	(15	+	1)	/	115200	=	22.754

Error	=	(22.754	–	23)	/	23	x	100	=	-1.07%

(c)	SBR	=	13,980,000	/	16	/	38400	=	22.754

Error	=	(22.754	–	23)	/	23	x	100	=	-1.07%

(d)	SBR	=	41,940,000	/	(7	+	1)	/	9600	=	7.5846

Error	=	(7.5846	–	8)	/	8	x	100	=	-5.19%

	

	

Interrupt-based	data	transfer
By	now	you	might	have	noticed	that	it	is	a	waste	of	the	microcontroller’s	time

to	poll	the	TDRE	and	RDRF	flags.	In	order	to	avoid	wasting	the	microcontroller’s
time	we	use	 interrupts	 instead	of	polling.	 In	Chapter	6,	we	will	show	how	to	use
interrupts	to	program	the	KL25Z’s	serial	communication	port.

Idle	and	break	characters
In	the	KL25Z	manual	we	see	the	mention	of	some	terminology	such	as	idle

and	break.	The	idle	is	when	the	UART	output	is	high	with	no	start	bit.	That	is	ten
ones	when	 the	data	 frame	size	 is	8-bit.	The	break	character	 is	when	 the	UART
sends	out	a	 low	signal	much	 longer	 than	one	 frame,	 that	 is	 ten	zeros	when	 the
data	 size	 is	 8-bit.	 The	 break	 character	 is	 used	 to	 force	 a	 framing	 error	 at	 the
receiver	for	the	testing	purpose	and	writing	diagnostic	software.

Review	Questions

1.							The	Freescale	FRDM	comes	with	maximum	of	_____	on-chip	UARTs.

2.							In	Freescale	FRDM-KL25Z	board,	pins	___	and	___	are	used	for	TxD	and
RxD	of	UART0.

3.							Which	register	is	used	to	set	the	data	size	and	number	of	stop	bits?

4.							How	do	we	know	if	the	transmit	buffer	is	not	full	before	we	load	in	another
byte?

5.							How	do	we	know	if	a	new	byte	has	been	received?

Answer	to	Review	Questions
Section	4-1

1.							False,	more	expensive

2.							Serial

3.							Synchronous

4.							False;	it	is	simplex.

5.							True

6.							Asynchronous

7.							With	100	0100	binary	we	have	1	as	the	odd-parity	bit.	The	bits	as
transmitted	in	the	sequence	are:

(a)	0	(start	bit)																			(b)	0																							(c)	0																							(d)	1						

(e)	0																																							(f)	0																								(g)	0																							(h)	1						

(i)	1	(parity)																								(j)	1	(first	stop	bit)																											(k)	1	(second
stop	bit)	

8.							4	bits

9.							400	×	11	=	4400	bits	total	bits	transmitted.	4400/1200	=	3.667	seconds,	4/7
=	58%.

10.			True

Section	4-2
1.							3

2.							PTA0	and	PTA1

3.							UARTx_C1

4.							The	TDRE	flag	from	the	UART0_S1	register	goes	low.

5.							The	RDRE	flag	from	the	UART0_S1	register	goes	low.

	

Chapter	5:		Freescale	ARM	Timer
Programming

In	 Section	 5-0,	 the	 counter	 and	 timer	 concepts	 are	 reviewed.	 Section	 5-1
covers	 the	 System	 Tick	 Timer	 which	 is	 available	 in	 all	 ARM	 Cortex
microcontrollers.	 In	Section	5-2,	delays	are	made	using	16-bit	Freescale	 timers.
Section	5-3	shows	Output	Compare	mode.	In	Section	5-4,	input	edge-time	mode
is	 discussed	 and	 the	 pulse	 width	 and	 frequency	 measuring	 are	 covered.	 The
event	counter	feature	is	studied	in	Section	5-5.

Section	5.0:	Introduction	to	counters	and	timers
In	the	digital	design	course	you	connected	many	flip	flops	(FFs)	together	to

create	up	counter/down	counter.	For	example,	connecting	3	FFs	together	we	can
count	up	to	7	(000-111	 in	binary).	This	 is	called	3-bit	counter.	The	same	way,	 to
create	a	4-bit	counter	(counting	up	to	15,	or	0000-1111	in	binary)	we	need	4	FFs.
For	16-bit	counter,	we	need	16	FFs	and	it	counts	up	to	216	–	1.	Figure	5-1	shows
the	T	flip	flop	connection	and	pulse	outputs	for	all	three	flip	flops.

Figure	5-1:	A	3-bit	Counter

Regarding	Figure	5-1,	notice	the	following	points:

1)						The	Q	outputs	give	the	down	counter.

2)						The	 	(Q	not)	outputs	give	us	up	counter.

3)						The	frequency	on	Q3	is	 	of	the	Clock	fed	to	FF1.

4)						We	can	use	the	circuit	in	Figure	5-1	to	divide	clock	frequency.

5)						We	can	use	the	circuit	in	Figure	5-1	to	count	the	number	of	pulses	fed	to
CLK	pin	of	FF1.

An	up	counter	begins	counting	from	0	and	its	value	increases	on	each	clock
until	it	reaches	its	maximum	value.	Then,	it	overflows	and	rolls	over	to	zero	in	the
next	 clock.	 The	 following	 figure	 shows	 the	 stages	 which	 an	 8-bit	 counter	 goes
through.

Figure	5-2:	an	8-bit	Up-Counter	Stages

A	down	counter	begins	counting	from	its	maximum	value	and	decreases	on
each	clock	until	it	reaches	to	0.	Then,	it	underflows	and	rolls	over	to	its	maximum
value	in	the	next	clock.	The	following	figure	shows	the	stages	which	an	8-bit	down
counter	goes	through.

Figure	5-3:	an	8-bit	Down-Counter	Stages

Counter	Usages
Counters	have	different	usages.	Some	of	them	are:

1.							Counting	events

2.							Making	delays	(Using	Counter	as	a	Timer)

3.							Measuring	the	time	between	2	events

1.	Counting	events
You	might	need	 to	count	 the	number	of	 cars	going	 through	a	street	or	 the

number	 of	 spaghetti	 packages	 which	 produced	 in	 a	 factory.	 To	 do	 so,	 you	 can
connect	the	output	of	a	sensor	to	a	counter,	as	shown	in	the	following	figure.

Figure	5-4:	Counting	Events	Using	a	Counter

2.	Making	delays	(Using	Counter	as	a	timer)
While	controlling	devices,	it	is	a	common	practice	to	start	or	terminate	a	task

when	a	desired	amount	of	time	elapsed.	For	example,	a	washing	machine	or	an
oven	do	each	task	for	a	determined	amount	of	time.	To	do	timing,	we	can	connect
a	clock	generator	 to	a	counter,	and	wait	until	a	desired	amount	of	 time	elapses.
For	example,	in	the	following	picture,	the	clock	generator	makes	a	1	Hz	signal	and
the	counter	increasing	every	second.	The	counter	reaches	to	60	after	60	seconds.

Figure	5-5:	Using	Counter	as	a	Timer

3.	Measuring	the	time	between	2	events
You	might	 need	 to	measure	 the	 time	between	2	 events.	 For	 example,	 the

amount	of	time	it	takes	a	marathon	runner	to	go	from	the	start	to	the	finish	point.
In	such	cases	we	can	use	a	circuit	similar	to	the	following:

Figure	5-6:	Capturing

The	counter	 is	cleared	at	 the	start.	Then,	 it	 increases	on	each	clock	pulse.
The	value	of	 the	counter	 is	 loaded	into	another	register	when	the	runner	passes
the	finish	line.

Counters	and	Timers	in	microcontrollers
Nowadays,	all	 the	microcontrollers	come	with	on-chip	Timer/Counter.	 If	 the

clock	to	the	Timer	comes	from	internal	source	such	as	PLL,	XTAL,	and	RC,	then	it
is	called	a	Timer.	If	the	clock	source	comes	from	external	source,	such	as	pulses
fed	 to	 the	 CPU	 pin,	 then	 it	 is	 called	 a	Counter.	 By	 Counter	 it	 is	 meant	 event-
counter	 since	 it	 counts	 the	 event	 happening	 outside	 the	 CPU.	 In	 many
microcontrollers,	the	Timers	can	be	used	as	Timer	or	Counter.

Review	Questions
With	5	FFs	we	can	get	maximum	of	________	count.

With	5	FFs	we	can	divide	the	frequency	by	maximum	of	________.

When	pulses	are	fed	to	a	timer	from	the	outside	it	is	called	________.

When	clocks	pulses	are	fed	to	a	timer	from	inside	it	is	called	________.

If	we	need	to	divide	a	frequency	by	500,	we	need	______	flip	flops.

Section	5.1:	System	Tick	Timer
Every	 ARM	 Cortex-M	 comes	 with	 a	 System	 tick	 timer.	 System	 tick	 timer

allows	the	system	to	initiate	an	action	on	a	periodic	basis.	This	action	is	performed
internally	 at	 a	 fixed	 rate	 without	 external	 signal.	 For	 example,	 in	 a	 given
application	we	can	use	SysTick	to	read	a	sensor	every	200	msec.	SysTick	is	used
widely	 by	 operating	 systems	 so	 that	 the	 system	 software	 may	 interrupt	 the
application	software	periodically	(often	10	ms	interval)	to	monitor	and	control	the
system	 operations.	 The	 SysTick	 is	 a	 24-bit	 down	 counter	 driven	 by	 either	 the
system	clock	or	 the	 internal	 oscillator.	 It	 counts	 down	 from	an	 initial	 value	 to	 0.
When	 it	 reaches	 0,	 in	 the	 next	 clock,	 it	 underflows	 and	 it	 raises	 a	 flag	 called
COUNT	 and	 reloads	 the	 initial	 value	 and	 starts	 all	 over.	We	 can	 set	 the	 initial
value	to	a	value	between	0x000000	to	0xFFFFFF.	See	the	following	figure.

Figure	5-7:	System	Tick	Timer	Internal	Structure

The	down	counter	 is	named	as	STCURRENT	(SysTick->VAL)	 in	Freescale
ARM	 products.	 The	 counter	 can	 receive	 clock	 from	 2	 different	 sources:	 the
System	clock	(the	clock	which	the	CPU	and	all	the	peripherals	work	with	it)	or	the
external	clock	provided	 to	 the	PIOSC	pin.	The	clock	source	 is	chosen	using	 the
CLK_SRC	bit	of	STCTRL	(SysTick->CTRL)	register.	The	clock	is	ANDed	with	the
ENABLE	bit	of	STCTRL	register.	So,	it	counts	down	when	the	ENABLE	bit	is	set.
The	STCTRL	register	is	shown	in	Figure	5-8.

SysTick	Registers
Next,	we	will	describe	the	SysTick	registers.	There	are	three	registers	in	the

SysTick	 module:	 SysTick	 Control	 and	 Status	 register,	 SysTick	 Reload	 Value
register,	and	SysTick	Current	Value	register.

The	 STCTRL	 (SysTick	 Control	 and	 Status)	 register	 is	 located	 at
0xE000E010.	We	use	it	to	start	the	SysTick	counter	among	other	things.

Figure	5-8:	STCTRL	(System	Tick	Control)

ENABLE	(D0):	enables	or	disables	the	counter.	When	the	ENABLE	bit	is	set
the	counter	initializes	the	STCURRENT	with	the	value	of	the	STRELOAD	register
and	it	counts	down	until	 it	reaches	to	zero.	Then,	in	the	next	clock,	 it	underflows
which	 sets	 the	COUNT	 Flag	 to	 high	 and	 the	 counter	 reloads	 the	STCURRENT
with	the	value	of	the	STRELOAD	register	and	then	the	process	is	repeated.	See
the	following	figure.

Figure	5-9:	System	Tick	Counting

INTEN	 (Interrupt	 Enable,	 D1):	 If	 INTEN=1,	 an	 interrupt	 occurs	 when	 the
COUNT	flag	is	set.	See	Chapter	6.

CLK_SRC	 (Clock	Source	D2):	We	have	 the	 choice	of	 clock	 coming	 from
System	 clock	 or	 Precision	 Internal	 Oscillator	 (PIOSC).	 If	 CLK_SRC=0	 then	 the
clock	comes	 from	PIOSC/4.	 If	CLK_SRC=1,	 then	 the	system	clock	provides	 the
clock	source	to	SysTick	down	counter.

COUNT	 (D16):	 Counter	 counts	 down	 from	 the	 initial	 value	 and	 when	 it
reaches	0,	 in	 the	next	 clock	 it	underflows	and	 the	COUNT	 flag	 is	set	high.	See
Figure	5-9.	The	flag	remains	high	until	 it	 is	cleared	by	software.	The	flag	can	be
cleared	by	reading	the	STCTRL	register	or	writing	to	the	CTCURRENT	register.

SysTick	Reload	Value	Register	(STRELOAD),	offset	0x014
	The	STRELOAD	(SysTick	Reload	Value)	register	is	located	at	0xE000E014.

This	 is	 used	 to	 program	 the	 start	 value	 of	 SysTick	 down	 counter,	 the
STCURRENT	 register.	 The	STRELOAD	 should	 contain	 the	 value	N	 –	 1	 for	 the
COUNT	to	 fire	every	N	clock	cycles	because	the	counter	counts	down	to	0.	For

example,	 if	we	need	1000	clocks	of	 interval,	 then	we	make	STRELOAD	=	999.
Although	this	is	a	32-bit	register,	only	the	lower	24	bits	are	used.	That	means	the
highest	 value	 that	 can	 be	 loaded	 into	 this	 register	 is	 0xFFFFFF	 or	 16,777,216
decimal.	See	Figures	5-7	and	5-10.

Figure	5-10:	STRELOAD	vs.	STCURRENT

Program	5-1	 loads	the	 initial	value	to	the	maximum	and	dumps	the	current
value	 of	 the	 SysTick	 on	 LEDs	 of	 PORTB	 as	 it	 counts	 down.	 The	 value	 of
STCURRENT	 (SysTick->VAL)	 is	 shifted	 4	 places	 to	 the	 right	 so	 that	 the	 most
significant	 bit	 is	 aligned	 with	 PTB19,	 which	 is	 connected	 to	 the	 green	 LED.	
SysTick	is	configured	to	use	default	system	clock	at	41.94	MHz.	The	STRELOAD
(SysTick->LOAD)	 register	 has	 24	 bits	 and	 is	 set	 to	 the	 maximal	 value.	 So	 the
counter	has	the	frequency	of

And	 that	 is	 the	 frequency	of	 the	green	LED.	The	 red	LED	 is	 connected	 to
PTB18	therefore	runs	twice	as	fast	as	the	green	LED	at	PTB19.

Program	5-1:	Monitoring	the	value	of	STCURRENT	on	LEDs

	
/*	p5_1.c	Toggling	LEDs	using	SysTick	counter

	

	This	program	let	the	SysTick	counter	run	freely	and	dumps	the	counter	values
to	the	tri-color	LEDs	continuously.

	The	counter	value	is	shifted	4	places	to	the	right	so	that	the	changes	of	LEDs
will	be	slow	enough	to	be	visible.

	SysTick	counter	has	24	bits.

	The	red	LED	is	connected	to	PTB18.

	The	green	LED	is	connected	to	PTB19.

	*/

	

#include	<MKL25Z4.H>

	

int	main	(void)	{

int	c;

SIM->SCGC5	|=	0x400;								/*	enable	clock	to	Port	B	*/

PORTB->PCR[18]	=	0x100;					/*	make	PTB18	pin	as	GPIO	*/

PORTB->PCR[19]	=	0x100;					/*	make	PTB19	pin	as	GPIO	*/

PTB->PDDR	|=	0xC0000;							/*	make	PTB18,	19	as	output	pin	*/

/*	Configure	SysTick	*/

SysTick->LOAD	=	0xFFFFFF;			/*	reload	reg.	with	max	value	*/

SysTick->CTRL	=	5;										/*	enable	it,	no	interrupt,	use	system	clock	*/

while	(1)	{

c	=	SysTick->VAL;							/*	read	current	value	of	down	counter	*/

PTB->PDOR	=	c	>>	4;					/*	line	up	counter	MSB	with	LED	*/

}

}

	

See	the	following	examples.

Example	5-1

In	 an	ARM	microcontroller	 system	clock	=	 8	MHz.	Calculate	 the	 delay	which	 is
made	by	the	following	function.
void	delay()	{

			SysTick->LOAD	=	9;

			SysTick->CTRL	=	5;				/*Enable	the	timer	and	choose	system	clock	as	the	clock
source	*/

	

			while((SysTick->CTRL	&0x10000)	==	0)	/*wait	until	the	Count	flag	is	set	*/

			{	}

			SysTick->CTRL	=	0;	/*Stop	the	timer	(Enable	=	0)	*/

}

Solution:
The	timer	is	initialized	with	9.	So,	it	goes	through	the	following	10	stages:

Since	 the	 system	 clock	 is	 chosen	 as	 the	 clock	 source,	 each	 clock	 lasts	

So,	the	program	makes	a	delay	of	 .

Note:	 the	 function	call	and	the	 instructions	execution	take	a	 few	clock	cycles	as
well.	 If	you	want	 to	calculate	 the	exact	amount	of	delay,	you	should	 include	 this
overhead,	as	well.	But,	in	this	book	we	do	not	consider	it	since	most	of	the	time	it
is	negligible.

	

	

Example	5-2

In	an	ARM	microcontroller	the	system	clock	is	chosen	as	the	clock	source	for	the
System	 tick	 timer.	 Calculate	 the	 delay	 which	 is	 made	 by	 the	 timer	 if	 the
STRELOAD	register	is	loaded	with	N.

Solution:
The	timer	is	initialized	with	N.	So,	it	goes	through	N+1	stages.

Since	the	system	clock	is	chosen	as	the	clock	source,	each	clock	lasts	1	/	sysclk

So,	the	program	makes	a	delay	of	(N	+	1)	×	(1	/	sysclk)	=	(N	+	1)	/	sysclk.

	

	

Example	5-3

Using	the	System	Tick	timer,	write	a	function	that	makes	a	delay	of	1	ms.	Assume
sysclk	=	41.94	MHz.

Solution:
From	the	equation	derived	in	Example	5-2

delay	=	(N	+	1)	/	sysclk

(N	+	1)	=	delay	×	sysclk	=	0.001	sec	×	41.94	MHz	=	41,940	==>	N	=	41,940	–	1	=
41939									
void	delay1ms(void)	{

			SysTick->LOAD	=	41939;

			SysTick->CTRL	=	0x5;				/*	Enable	the	timer	and	choose	sysclk	as	the	clock
source	*/

	

			while((SysTick->CTRL	&	0x10000)	==	0)	/*	wait	until	the	COUNT	flag	is	set	*/

			{	}

			SysTick->CTRL	=	0;	/*	Stop	the	timer	(Enable	=	0)	*/

}

	

The	 Program	 5-2	 uses	 the	 SysTick	 to	 toggle	 the	 PTB18	 every	 200
milliseconds.	We	need	the	RELOAD	value	of	8,387,999	since	0.200	sec	*	41.94

MHz	 =	 8,388,000.	 We	 assume	 the	 system	 clock	 is	 41.94	 MHz.	 Notice,	 every
8,388,000	clocks	 the	down	counter	 reaches	0,	and	COUNT	 flag	 is	 raised.	Then
the	RELOAD	register	is	loaded	with	8,388,000	automatically.	The	COUNT	flag	is
clear	when	the	STCTRL	(SysTick->CTRL)	register	is	read.

Program	5-2:	Toggle	red	LED	at	5	Hz	using	the	SysTick	Counter

	
/*	p5_2.c	Toggling	red	LED	at	5	Hz	using	SysTick

	

	*	This	program	uses	SysTick	to	generate	200	ms	delay	to

	*	toggle	the	red	LED.

	*	System	clock	is	running	at	41.94	MHz.	SysTick	is	configure

	*	to	count	down	from	8387999	to	give	a	200	ms	delay.

	*	The	red	LED	is	connected	to	PTB18.

	*/

	

#include	<MKL25Z4.H>

	

int	main	(void)	{

SIM->SCGC5	|=	0x0400;							/*	enable	clock	to	Port	B	*/

PORTB->PCR[18]	=	0x100;					/*	make	PTB18	pin	as	GPIO	*/

PTB->PDDR	|=	0x040000;						/*	make	PTB18	as	output	pin	*/

/*	Configure	SysTick	*/

SysTick->LOAD	=	8388000	-	1;	/*	reload	with	number	of	clocks	per	200	ms	*/

SysTick->CTRL	=	5;					/*	enable	it,	no	interrupt,	use	system	clock	*/

	

while	(1)

{

if	(SysTick->CTRL	&	0x10000)				/*	if	COUNT	flag	is	set	*/

PTB->PTOR	=	0x040000;							/*	toggle	red	LED	*/

}

}

	

In	Program	5-3,	SysTick	is	used	to	generate	multiple	of	1	millisecond	delay.
RELOAD	value	of	41,939	is	used	since	0.001	sec	*	41.94	MHz	=	41,940.

Program	5-3:	Making	delays	using	SysTick

	
/*	p5_3.c	Toggling	green	LED	using	SysTick	delay

	

	*	This	program	uses	SysTick	to	generate	one	second	delay	to

	*	toggle	the	green	LED.

	*	System	clock	is	running	at	41.94	MHz.	SysTick	is	configure

	*	to	count	down	from	41939	to	give	a	1	ms	delay.

	*	For	every	1000	delays	(1	ms	*	1000	=	1	sec),	toggle	the

	*	green	LED	once.		The	green	LED	is	connected	to	PTB19.

	*/

	

#include	<MKL25Z4.H>

	

int	main	(void)	{

void	delayMs(int	n);

SIM->SCGC5	|=	0x400;								/*	enable	clock	to	Port	B	*/

PORTB->PCR[19]	=	0x100;					/*	make	PTB19	pin	as	GPIO	*/

PTB->PDDR	|=	0x080000;						/*	make	PTB19	as	output	pin	*/

while	(1)	{

delayMs(1000);										/*	delay	1000	ms	*/

PTB->PTOR	=	0x080000;			/*	toggle	green	LED	*/

}

}

	

void	delayMs(int	n)	{

int	i;

SysTick->LOAD	=	41940	-	1;

SysTick->CTRL	=	0x5;	/*	Enable	the	timer	and	choose	sysclk	as	the	clock
source	*/

	

for(i	=	0;	i	<	n;	i++)	{

while((SysTick->CTRL	&	0x10000)	==	0)	/*	wait	until	the	COUTN	flag	is	set	*/

{	}

}

SysTick->CTRL	=	0;		/*	Stop	the	timer	(Enable	=	0)	*/

}

	

The	System	Tick	Timer	has	a	very	simple	structure	and	is	the	same	across
all	 the	ARM	Cortex	chips	 regardless	of	who	makes	 them.	 In	contrast,	Freescale
has	its	own	timers	which	are	covered	in	the	next	section.

Review	Questions
True	or	false.	The	highest	number	we	can	place	in	RELOAD	register	is

___________.

Assume	CPU	frequency	of	16MHz.	Find	the	value	for	RELOAD	register	if	we
want	5	ms	elapsed	time.

The	SysTick	is	_____-bit	wide.

Which	bit	of	STCTRL	is	used	to	enable	the	SysTick.

The	SysTick	is	(down	or	up)	counter.

Section	5.2:	Delay	Generation	with	Freescale	Timers
In	 this	 section	we	examine	 the	 timers	 for	Freescale	KL25Z	ARM	chip.	We

will	use	KL25Z	timer	to	create	time	delay	on	Freescale	FRDM	board.

Timer	Registers
In	 Freescale	 KL25Z	 microcontrollers,	 the	 timers	 are	 called	 Timer/	 PWM

Module	(TPM).	There	are	3	Timer	Modules	in	the	KL25Z,	each	supporting	up	to	6
channels.	The	Timer	modules	support	Output	Compare,	Input	capture,	and	PWM.
The	 Input	Capture	and	event	counter	are	covered	 in	 the	next	section	and	PWM
(pulse	width	module)	feature	is	covered	in	Chapter	11.

The	Timer	Modules	in	KL25Z	are	designated	as	TPMx	in	which	x	=	0,	1,	or
2.	 In	 other	words,	 there	are	TPM0,	TPM1,	and	TPM2.	The	 following	 shows	 the
base	addresses	for	the	Timer	modules:

■		TPM0	base:	0x4003	8000

■		TPM1	base:	0x4003	9000

■		TPM2	base:	0x4003	A000

Enabling	Clock	to	TPMx
Before	we	can	use	any	of	the	Timer	Modules,	we	must	enable	the	clock	to	it.

This	is	done	with	the	System	Clock	Gating	Register	6	(SIM_SCGC6	register),	as
shown	below:

Figure	5-11:	SIM_SCGC6	(SIM	Clock	Gating	Control	Register	6)

The	SIM_SCGC6	is	part	of	the	SIM	(System	Integration	Module).	The	details
of	SIM	are	shown	in	Chapter	12	of	KL25Z	reference	manual.	Just	like	GPIO	and
UART,	we	must	 enable	 the	 clock	 to	TPM0	–TPM2	modules	 before	we	 can	 use
them.	Notice,	in	SIM_SCGC6	registers,	bit	D24	is	for	TPM0	module,	bit	D25	is	for
TPM1	module,	and	bit	D26	is	for	TPM2	module.

This	clock	is	used	to	operate	the	timer	module	circuit.	The	core	of	the	timer
is	a	counter,	which	receives	a	different	clock.

Enable	Timer	Counter	Clock
The	clock	that	drives	the	timer	counter	is	selected	by	the	TPMSRC	bits	and

the	PLLFLLSEL	bit	of	SIM_SOPT2	register	in	System	Integration	Module.

Figure	5-12:	SIM_SOPT2	(System	Options	2)

Upon	reset,	the	timer	counter	clock	is	disabled.	The	possible	clock	sources
are	MCGFLLCLK,	MCGPLLCLK/2,	OSCERCLK	and	MCGIRCLK	(KL25Z	Ref	Man
Section	5.7.5).	The	clock	source	availability	depends	on	 the	configuration	of	 the
MCG	(Multiple	Clock	Generation)	Module.	The	Keil	MDK-ARM	v5	supports	three
MCG	configurations	in	the	startup	code	of	system_MKL25Z4.c	file	and	is	default
to	 Mode	 0.	 The	 available	 clock	 sources	 and	 frequency	 for	 FRDM‑MKL25Z	 are
shown	in	the	table	below.

MCG	Mode MCGFLLCLK MCGPLLCLK/2 OSCERCLK MCGIRCLK

0 41.94	MHz N.A. N.A. 32.768	kHz

1 N.A. 48.0	MHz 8.0	MHz N.A.

2 N.A. 	 8.0	MHz N.A.

Note:				N.A.:	Not	Applicable

Table	5-1:	Clock	Sources	in	FRDM-MKL25Z

TPM	COUNT	Register	(TPMx_CNT)
Each	of	 the	Timer	modules	has	a	16-bit	counter.	 It	 is	called	TPMx_CNT	 in

which	 x	 =	 0,	 1,	 or	 2.	 That	 means	 we	 have	 TPM0_CNT,	 TPM1_CNT,	 and
TPM2_CNT.	 When	 the	 clock	 is	 fed	 to	 TPMx_CNT,	 it	 keeps	 counting	 up	 (or
counting	down).	TPMx_CNT	is	a	16-bit	counter	register.	Although	the	TPMx_CNT
is	 a	 32-bit	 register	 only	 16-bits	 are	 used.	We	 can	 read	 its	 content	 as	 it	 counts.
Upon	Reset	TPMx_CNT=0000.	See	Figure	5-13.	The	discussion	about	TPM0	also
applies	equally	to	TPM1	and	TPM2.

Figure	5-13:	TPMx_CNT	Register

	

TPM	Modulo	Register	(TPMx_MOD)
Each	TPM	has	a	Modulo	(TPMx_MOD)	register.	It	is	a	16-bit	register	whose

value	 is	 continuously	 compared	with	 the	TPMx_CNT	 register.	See	Figures	5-14
and	5-15.

Figure	5-14:	TPMx_CNT	and	TPMX_MOD	registers

	

Figure	5-15:	The	TPM_CNT	and	TPM_MOD	register	and	TOF	flag

When	TPMx_CNT	 counter	 register	 is	 counting	 up,	 it	 is	 compared	with	 the
contents	 of	 this	 register.	 Whenever	 the	 contents	 of	 free-running	 TPMx_CNT
counter	and	TPMx_MOD	register	are	equal,	the	TOF	flag	(Timer	Over	Flow	flag)
goes	up	indicating	there	is	a	match	and	TPMx_CNT	rolls	over	to	zero.	See	Figure
5-16.	A	smaller	value	of	the	TPMx_MOD	register	leads	the	timer	times	out	faster
and	the	TOF	flag	sets	sooner.	In	other	words,	delays	can	be	made	by	setting	the
TPMx_MOD	register	and	monitoring	the	TOF	flag.

Figure	5-16:	The	role	of	TPMx_MOD

	

Example	5-4

Assume	TPM0_MOD	=	5	and	TPM0_CNT	is	counting	up.	Explain	when	the	TOF
flag	is	raised.

Solution:
The	timer	counts	up	with	the	passing	of	each	clock	provided	by	the	oscillator.	As
the	timer	counts	up,	it	goes	through	the	states	of	0,	1,	2,	3,	4,	and	5.	Now	since
TPM0_MOD=TPM0_CNT	match	it	raises	the	TOF	flag.

	

	

The	D7	bit	of	TPMx_SC	(TPMx	Status	Control)	register	belongs	to	the	TOF
flag,	as	we	will	see	soon.	Although	the	Timer	Modulo	is	a	32-bit	register,	only	the
lower	 16	 bits	 are	 used.	We	 can	 initialize	 this	 register	 with	 values	 ranging	 from
0x0000	to	0xFFFF.	It	must	be	noted	that	upon	Reset	TPMx_MOD=0xFFFF.	That
means,	 if	 we	 do	 not	 initialize	 the	 TPMx_MOD	 register,	 the	 TPMx_CNT	 keeps
counting	up	to	0xFFFF	and	rolls	over	to	zero	when	it	reaches	0xFFFF.

Note
In	Freescale	ARM	KL25Z	microcontroller,	all	the	timer	registers	begin	with	TPM.
So,	for	simplicity,	just	consider	the	letters	which	come	after	TPM.	For	example,
consider	TPMx_CNT	as	CNT	(Counter).	That	means,	TPM0_CNT	is	Counter

register	for	TPM0	and	TPM0_MOD	is	Modulus	register	for	TPM0.

TPMx	Status	Control	(TPMx_SC)	register
Each	of	the	TPMx	has	its	own	Status	Control	register.	It	is	called	TPMx_SC

in	which	x	=	0,	1,	or	2.	During	the	initialization	of	the	timers	we	must	disable	them.
Modifying	the	configurations	of	a	running	timer	may	cause	unpredictable	results.
We	use	D4:D3	(CMOD)	bits	of	TPMx_SC	(TPM	Status	Control)	register	to	disable
or	 enable	 the	 Counter.	 This	 must	 be	 done	 in	 addition	 to	 allowing	 clock	 to	 the
TPMx	module	using	the	SIM_SCGC6	register	and	selecting	the	clock	source	for
timer	 counter	 using	 SIM_SOPT2	 register.	 See	 Figures	 5-17	 and	 5-18.	 Among
other	 important	 bits	 of	 this	 register	 are	 TOF	 (Timer	 Over	 Flow	 flag),	 PS
(Prescaler),	and	TOIE.	The	TOIE	(Timer	Overflow	Interrupt	Enable)	is	covered	in
Chapter	 6	 when	 we	 cover	 interrupts.	 Next,	 we	 examine	 the	 major	 bits	 of	 the
TPMx_SC	register.

Figure	5-17:	CMOD	and	PS	(Prescaler)	bits

	

Figure	5-18:	Timer	Status	and	Control	(TPMx_SC)	Register

	

Field Bits Description

PS 0–2

In	the	prescaler,	the	clock	is	divided	by	2PS.

PS
value 000 001 010 011 100 101 110 111

Division 1 2 4 8 16 32 64 128

CMOD 3–4

Clock	Mode	Selection

CMOD	value Selected	clock

00
Timer	stopped	(No	clock	selected):	In	the
mode,	the	TPM_CNT	register	receives	no
clock	and	it	is	stopped.

01

Timer	mode	(clock	selected	at
SIM_SOPT2):	This	mode	can	be	used	to
generate	delays,	periodic	interrupts,	or
PWM.

10
Counter	mode	(clocked	by
LPTPM_EXTCLK	pin):	This	mode	is	used
to	count	an	external	event.

11 Reserved

CPWMS 5
Center-aligned	PWM	select	(0:	Up	counter	mode,	1:	up-down
counter	mode).	For	generating	delays	use	the	Up	counter
mode.

TOIE 6 Time	Overflow	Interrupt	Enable	(0:	Disabled,	1:	Enabled).	It	is
discussed	in	Chapter	6.

TOF 7 Timer	Overflow	Flag

DMA 8 DMA	Enable	(0:	Disabled,	1:	Enabled)

Table	5-2:	Timer	Status	and	Control	(TPMx_SC)	Register

TOF	flag	bit
The	TOF	(Timer	Overflow	Flag)	is	bit	D7	of	the	TPM_SC	register.		When	the

CNT	register	counts	up	and	matches	 the	value	 in	TPMx_MOD,	TOF	 is	set	 to	1.
We	can	monitor	this	flag	and	perform	an	action	such	as	turning	on	a	port	bit.	See
Program	5-4.	In	order	to	clear	the	TOF	bit	for	the	next	round	we	need	to	write	a	1
to	 it.	 In	 other	words,	writing	0	 to	TOF	has	no	effect.	 Indeed	 this	 rule	 applies	 to
many	flags	of	the	KL25Z	chip.	We	can	also	use	the	TOF	in	conjunction	with	TOIE
to	generate	an	interrupt.	This	will	be	covered	in	Chapter	6.

Making	delays	using	the	TPM	timer

The	steps	to	program	the	timer	for	TPMx_CNT	are:

1)						enable	the	clock	to	TPMx	module	in	SIM_SCGC6,

2)						select	the	clock	source	for	timer	counter	in	SIM_SOPT2,

3)						disable	timer	while	the	configuration	is	being	modified,

4)						set	the	mode	as	up-counter	timer	mode	with	TPMx_SC	register,

5)						load	TPMx_MOD	register	with	proper	value,

6)						clear	TOF	flag,

7)						enable	timer,

8)						wait	for	TOF	flag	to	go	HIGH.

	

Program	5-4:	Toggle	blue	LED	(PTD1	pin)	every	320	times	TPM0_CNT	matches	the	TPM0_MOD.
	

/*	p5_4.c	Toggling	blue	LED	using	TPM0	delay

	

	This	program	uses	TPM0	to	generate	maximal	delay	to	toggle	the	blue	LED.

	MCGFLLCLK	(41.94	MHz)	is	used	as	timer	counter	clock.

	The	Modulo	register	is	set	to	65,535.	The	timer	counter	overflows	at

	41.94	MHz	/	65,536	=	640	Hz

	We	put	the	time	out	delay	in	a	for	loop	and	repeat	it	for	320	times	before	we
toggle	the	LED.	This	results	in	the	LED	flashing	at	half	second	on	and	half
second	off.

	The	blue	LED	is	connected	to	PTD1.

	*/

	

#include	<MKL25Z4.H>

	

int	main	(void)	{

int	i;

SIM->SCGC5	|=	0x1000;							/*	enable	clock	to	Port	D	*/

PORTD->PCR[1]	=	0x100;						/*	make	PTD1	pin	as	GPIO	*/

PTD->PDDR	|=	0x02;										/*	make	PTD1	as	output	pin	*/

SIM->SCGC6	|=	0x01000000;			/*	enable	clock	to	TPM0	*/

SIM->SOPT2	|=	0x01000000;			/*	use	MCGFLLCLK	as	timer	counter	clock	*/

TPM0->SC	=	0;															/*	disable	timer	while	configuring	*/

TPM0->MOD	=	0xFFFF;									/*	max	modulo	value	*/

TPM0->SC	|=	0x80;											/*	clear	TOF	*/

TPM0->SC	|=	0x08;											/*	enable	timer	free-running	mode	*/

while	(1)	{

for(i	=	0;	i	<	320;	i++)	{		/*	repeat	timeout	for	320	times	*/

while((TPM0->SC	&	0x80)	==	0)	{	}/*	wait	until	the	TOF	is	set	*/

TPM0->SC	|=	0x80;			/*	clear	TOF	*/

}

PTD->PTOR	=	0x02;							/*	toggle	blue	LED	*/

}

}

	

	

Example	5-5

(a)				Show	time	delay	calculation	for	Program	5-4,

(b)			Find	the	TPMx_MOD	value	to	make	a	delay	of	142	ms.

	

Solution:
	

a)	1	/	41.94MHz	=	23.84ns	since	the	FRDM	board	working	clock	is	41.94MHz.

	23.84ns	x	65,536	=	1.56	msec

The	timer	overflows	every	1.56	msec.	The	delay	contains	320	timer	overflows	in
the	for-loop:

1.56msec	x	320	=	0.5	second

b)	1	/	41.94MHz	=	23.84ns	since	the	FRDM	board	working	clock	is	41.94MHz.

142	ms	/	23.84ns	=	5956.	Thus	TPMx_MOD	=	5955

	

Prescaler	options	of	timer
The	 clock	 source	 of	 the	 timer	 counter	 is	 selected	 in	 SIM_SOPT2	 register.

The	 prescaler	 sits	 between	 the	 clock	 source	 and	 the	 timer	 counter.	 It	 can	 be
configured	 to	divide	 the	clock	source	by	a	number	before	 feeding	 it	 to	 the	 timer
counter.	The	lowest	3	bits	of	the	TPMx_SC	register	give	the	options	of	the	number
we	can	divide	by.	As	shown	in	Figures	5-17	and	5-18,	and	Table	5-2,	this	number
can	be	1,	2,	4,	8,	16,	32,	64,	and	128.	Notice	that	the	lowest	factor	 is	1	and	the
highest	 factor	 is	 128.	 That	 means	 at	 the	 lowest	 number	 1,	 the	 clock	 source
bypasses	 the	 prescaler	 and	 feed	 into	 the	 timer	 counter	 directly.	 Next,	 we	 will
examine	how	the	prescaler	options	are	programmed.

Prescaler	register	for	TPMx
Because	TPM	Modulo	register	has	only	16	bits,	the	time	interval	is	limited	to

1.56	ms	with	41.94	MHz	clock	as	seen	in	Program	5-4.	For	longer	delay,	we	will
need	 to	 incorporate	 prescaler.	 The	 Program	 5-5	 below	 sets	 the	 prescalers	 to
divide	by	128	that	will	extend	the	period	to	200	ms.

Program	5-5:	Toggle	PTD1	pin	on	FRDM	board	every	time	register	TPM0_CNT	matches	the
TPM0_MOD	register.	Make	TPM0_MOD=65,535	and	set	prescaler	to	128.

	

/*	p5_5.c	Toggling	blue	LED	using	TPM0	delay	(prescaler)

	

	*	This	program	uses	TPM0	to	generate	maximal	delay	to

	*	toggle	the	blue	LED.

	*	MCGFLLCLK	(41.94	MHz)	is	used	as	timer	counter	clock.

	*	Prescaler	is	set	to	divided	by	128	and	the	Modulo	register

	*	is	set	to	65,535.	The	timer	counter	overflows	at

	*	41.94	MHz	/	128	/	65,536	=	5.0	Hz

	*

	*	The	blue	LED	is	connected	to	PTD1.

	*/

	

#include	<MKL25Z4.H>

	

int	main	(void)	{

SIM->SCGC5	|=	0x1000;							/*	enable	clock	to	Port	D	*/

PORTD->PCR[1]	=	0x100;						/*	make	PTD1	pin	as	GPIO	*/

PTD->PDDR	|=	0x02;										/*	make	PTD1	as	output	pin	*/

SIM->SCGC6	|=	0x01000000;			/*	enable	clock	to	TPM0	*/

SIM->SOPT2	|=	0x01000000;			/*	use	MCGFLLCLK	as	timer	counter	clock	*/

TPM0->SC	=	0;															/*	disable	timer	while	configuring	*/

TPM0->SC	=	0x07;												/*	prescaler	/128	*/

TPM0->MOD	=	0xFFFF;									/*	max	modulo	value	*/

TPM0->SC	|=	0x80;											/*	clear	TOF	*/

TPM0->SC	|=	0x08;											/*	enable	timer	free-running	mode	*/

while	(1)	{

while((TPM0->SC	&	0x80)	==	0)	{	}	/*	wait	until	the	TOF	is	set	*/

TPM0->SC	|=	0x80;							/*	clear	TOF	*/

PTD->PTOR	=	0x02;							/*	toggle	blue	LED	*/

}

}

	

	

Example	5-6

(a)				Show	time	delay	calculation	for	Program	5-5,

(b)			calculate	the	largest	delay	size	without	prescaler

(c)	 	 	 	Find	 the	TPMx_MOD	value	 to	generate	a	delay	of	 0.1	 second.	Use	 the
prescaler	of	128.

	

Solution:
	

(a)				41.94	MHz	/	128	=	327,656	Hz	with	prescaler	of	128.

1	/	327,656	Hz	=	3.05	µsec

3.05	µsec	x	65,535	=	200	ms

(b)			41.94	MHz	/	1	=	41.94	MHz	with	no	prescaler.

1	/	41.94	MHz	=	23.84	ns.

The	largest	possible	delay	is	TPMx_MOD=65,535=0xFFFF.

Now,	65,536	×	23.84	ns	=	1,562,613	ns	=	1.56	ms	=	0.00156	sec.

(c)				41.94	MHz	/	128	=	327,656	Hz	with	prescaler	of	128.

1	/	327,656	Hz	=	3.05	µsec

0.1	sec	/	3.05	µsec	=	32766.	TPMx_MOD	is	32,766	–	1	=	32,765.

	

	

Prescaler	internal	circuit	(Case	study)
The	 prescaler	 is	 made	 of	 a	 7-bit	 counter	 and	 a	 multiplexer,	 as	 shown	 in	 the
following	figure.

	

Using	TPM1	and	TPM2
Program	5-6	shows	 the	Timer1	version	of	Program	5-5.	The	only	changes

required	are	enabling	the	clock	in	SIM->SCGC6	and	replacing	all	 the	references
to	TPM0	by	TPM1.

Program	5-6:	Delay	using	Timer1

	
/*	p5_6.c	Toggling	blue	LED	using	TPM1	delay

	

	*	This	program	uses	TPM1	to	generate	maximal	delay	to

	*	toggle	the	blue	LED.	It	is	the	same	as	p5_5	except

	*	a	different	timer	is	used.

	*

	*	MCGFLLCLK	(41.94	MHz)	is	used	as	timer	counter	clock.

	*	Prescaler	is	set	to	divided	by	128	and	the	Modulo	register

	*	is	set	to	65,535.	The	timer	counter	overflows	at

	*	41.94	MHz	/	128	/	65,536	=	5.0	Hz

	*

	*	The	blue	LED	is	connected	to	PTD1.

	*/

	

#include	<MKL25Z4.H>

	

int	main	(void)	{

SIM->SCGC5	|=	0x1000;							/*	enable	clock	to	Port	D	*/

PORTD->PCR[1]	=	0x100;						/*	make	PTD1	pin	as	GPIO	*/

PTD->PDDR	|=	0x02;										/*	make	PTD1	as	output	pin	*/

SIM->SCGC6	|=	0x02000000;			/*	enable	clock	to	TPM1	*/

SIM->SOPT2	|=	0x01000000;			/*	use	MCGFLLCLK	as	timer	counter	clock	*/

TPM1->SC	=	0;															/*	disable	timer	while	configuring	*/

TPM1->SC	=	0x07;												/*	prescaler	/128	*/

TPM1->MOD	=	0xFFFF;									/*	max	modulo	value	*/

TPM1->SC	|=	0x80;											/*	clear	TOF	*/

TPM1->SC	|=	0x08;											/*	enable	timer	free-running	mode	*/

while	(1)	{

while((TPM1->SC	&	0x80)	==	0)	{	}	/*	wait	until	the	TOF	is	set	*/

TPM1->SC	|=	0x80;							/*	clear	TOF	*/

PTD->PTOR	=	0x02;							/*	toggle	blue	LED	*/

}

}

	

TPM0	and	TPM1	 run	 independently.	We	may	have	both	delay	 functions	 in
the	same	program	and	use	them	to	flash	different	LEDs.	Even	though	the	timers
are	 independent,	 the	 software	 is	 not.	 When	 the	 program	 calls	 the	 delay	 using
TPM0,	 it	 is	difficult	 to	monitor	TPM1	at	 the	same	time.	One	solution	to	 that	 is	 to
use	timer	interrupt,	which	is	discussed	in	the	next	chapter.

TPMx	Registers	and	their	addresses
Table	below	shows	the	addresses	of	major	 registers	 for	TPM0,	TPM1,	and

TPM2	modules.

Absolute	address Register	Name

4003	8000 Status	and	Control	(TPM0_SC)

4003	8004 Counter	(TPM0_CNT)

4003	8008 Modulo	(TPM0_MOD)

4003	800C Channel	0	Status	and	Control	(TPM0_C0SC)

4003	8010 Channel	0	Value	(TPM0_C0V)

4003	8014 Channel	1	Status	and	Control	(TPM0_C1SC)

4003	8018 Channel	1	Value	(TPM0_C1V)

4003	801C Channel	2	Status	and	Control	(TPM0_C2SC)

4003	8020 Channel	2	Value	(TPM0_C2V)

4003	8024 Channel	3	Status	and	Control	(TPM0_C3SC)

4003	8028 Channel	3	Value	(TPM0_C3V)

4003	802C Channel	4	Status	and	Control	(TPM0_C4SC)

4003	8030 Channel	4	Value	(TPM0_C4V)

4003	8034 Channel	5	Status	and	Control	(TPM0_C5SC)

4003	8038 Channel	5	Value	(TPM0_C5V)

4003	8050 Capture	and	Compare	Status	(TPM0_STATUS)

4003	9000 Status	and	Control	(TPM1_SC)

4003	9004 Counter	(TPM1_CNT)

4003	9008 Modulo	(TPM1_MOD)

4003	900C Channel	0	Status	and	Control	(TPM1_C0SC)

4003	9010 Channel	0	Value	(TPM10_C0V)

4003	9014 Channel	1	Status	and	Control	(TPM1_C1SC)

4003	9018 Channel	1	Value	(TPM1_C1V)

4003	901C Channel	2	Status	and	Control	(TPM1_C2SC)

4003	9020 Channel	2	Value	(TPM1_C2V)

4003	9024 Channel	3	Status	and	Control	(TPM1_C3SC)

4003	9028 Channel	3	Value	(TPM1_C3V)

4003	902C Channel	4	Status	and	Control	(TPM1_C4SC)

4003	9030 Channel	4	Value	(TPM1_C4V)

4003	9034 Channel	5	Status	and	Control	(TPM1_C5SC)

4003	9038 Channel	5	Value	(TPM1_C5V)

4003	9050 Capture	and	Compare	Status	(TPM1_STATUS)

4003	A000 Status	and	Control	(TPM2_SC)

4003	A004 Counter	(TPM2_CNT)

4003	A008 Modulo	(TPM2_MOD)

4003	A00C Channel	0	Status	and	Control	(TPM2_C0SC)

4003	A010 Channel	0	Value	(TPM2_C0V)

4003	A014 Channel	1	Status	and	Control	(TPM2_C1SC)

4003	A018 Channel	1	Value	(TPM2_C1V)

4003	A01C Channel	2	Status	and	Control	(TPM2_C2SC)

4003	A020 Channel	2	Value	(TPM2_C2V)

4003	A024 Channel	3	Status	and	Control	(TPM2_C3SC)

4003	A028 Channel	3	Value	(TPM2_C3V)

4003	A02C Channel	4	Status	and	Control	(TPM2_C4SC)

4003	A030 Channel	4	Value	(TPM2_C4V)

4003	A034 Channel	5	Status	and	Control	(TPM2_C5SC)

4003	A038 Channel	5	Value	(TPM2_C5V)

4003	A050 Capture	and	Compare	Status	(TPM2_STATUS)

Table	5-3:	TPM	Registers	and	their	addresses

Longer	Timer	Interval
As	shown	 in	Program	5-5	and	Program	5-6,	with	41.94	MHz	system	clock

the	 longest	 time	 interval	 we	 could	 get	 was	 200	 ms.	 To	 achieve	 a	 longer	 time
interval,	we	may	repeat	the	short	time	interval	multiple	times	as	we	have	done	in
Program	5-4.	An	alternative	is	to	drive	the	timer	with	a	slower	clock.	The	benefit	of
slow	clock	is	that	the	circuit	consumes	much	less	power	when	it	is	switching	fewer
times.	 This	 is	 important	 if	 it	 is	 used	 in	 mobile	 device	 when	 battery	 charge	 is
precious.

The	Freescale	ARM	KL25Z	has	an	 internal	 reference	clock	at	 32.768	kHz
that	may	be	used	as	the	clock	source	for	the	timers.	Recall	the	timer	clock	source
selection	 is	made	in	SIM->SOPT2	register.	Program	5-7	uses	the	32.768	kHz	to
generate	5	second	 timeout	 interval.	The	 longest	 timeout	 interval	 from	 the	 timers
with	the	32.768	kHz	clock	is	32.768	kHz	/	128	/	65536	=	0.0039	Hz	or	256	second.

Program	5-7:	Toggling	blue	LED	every	five	seconds

	
/*	p5_7.c	Toggling	blue	LED	using	TPM0	delay

	

	*	This	program	uses	TPM0	to	generate	long	delay	to

	*	toggle	the	blue	LED.

	*	MCGIRCLK	(32.768	kHz)	is	used	as	timer	counter	clock.

	*	Prescaler	is	set	to	divided	by	4	and	the	Modulo	register

	*	is	set	to	40,959.	The	timer	counter	overflows	at

	*	32,768	Hz	/	40,960	/	4	=	0.2	Hz

	*

	*	The	blue	LED	is	connected	to	PTD1.

	*/

	

#include	<MKL25Z4.H>

	

int	main	(void)	{

SIM->SCGC5	|=	0x1000;							/*	enable	clock	to	Port	D	*/

PORTD->PCR[1]	=	0x100;						/*	make	PTD1	pin	as	GPIO	*/

PTD->PDDR	|=	0x02;										/*	make	PTD1	as	output	pin	*/

SIM->SCGC6	|=	0x01000000;			/*	enable	clock	to	TPM0	*/

SIM->SOPT2	|=	0x03000000;			/*	use	MCGIRCLK	as	timer	counter	clock	*/

TPM0->SC	=	0;															/*	disable	timer	while	configuring	*/

TPM0->SC	=	0x02;												/*	prescaler	/4	*/

TPM0->MOD	=	40960	-	1;						/*	modulo	value	*/

TPM0->SC	|=	0x80;											/*	clear	TOF	*/

TPM0->SC	|=	0x08;											/*	enable	timer	free-running	mode	*/

while	(1)	{

while((TPM0->SC	&	0x80)	==	0)	{	}	/*	wait	until	the	TOF	is	set	*/

TPM0->SC	|=	0x80;							/*	clear	TOF	*/

PTD->PTOR	=	0x02;							/*	toggle	blue	LED	*/

}

}

	

For	even	longer	timeout	interval,	the	Freescale	ARM	KL25Z	has	a	low	power
timer	(LPTMR)	that	may	use	the	32.768	kHz	clock	or	a	1	kHz	clock.	The	LPTMR
has	a	prescaler	that	will	divide	up	to	65,536	and	a	16-bit	counter	that	will	count	up
to	65,536.	The	longest	timeout	interval	for	LPTMR	is	4,294,967	seconds	or	about
50	days.	We	will	leave	the	programing	of	the	LPTMR	to	the	readers.

Review	Questions
1.							True	or	false.	We	can	use	only	16	bits	of	the	TPMx_CNT	even	though	the

register	is	32-bit.

2.							We	have	_____	Timer	Module	in	KL25Z	and	they	are	designated	as
______.

3.							True	or	false.	Each	of	the	TPM0,	TPM1,	and	TPM2	has	its	own
TPMx_CNT.

4.							Which	register	is	used	to	enable	the	clock	to	the	TPM0?

5.							Which	register	is	used	to	select	the	clock	source	for	timer	counters?

6.							In	Freescale	ARM	KL25Z,	each	Timer	has	_______	channels.

Section	5.3:	Output	Compare	and	TPM	Channels
In	the	last	section,	we	showed	how	to	use	timers	to	generate	time	delay.	In

this	and	following	sections,	we	will	examine	the	use	of	timers	with	the	I/O	pins.	In
this	section,	we	will	study	the	Output	Compare	feature	of	the	KL25Z	Timers.	We
examine	the	channels	of	TPMs,	as	well.

Programming	Output	Compare	option
In	some	applications	we	need	to	control	the	digital	pin	output	transition	with

precision	timing.	To	do	that,	we	use	the	Output	Compare	function	of	the	timer.	In
the	KL25Z,	 each	 of	 the	 TPMx	module	 has	 6	 channels	 for	 the	Output	Compare
function.	See	Figure	5-19.

Figure	5-19:	The	Channels	of	TPMx

Each	 channel	 has	 its	 own	 16-bit	 register	 for	 the	 compare	 purpose.	 The
registers	 are	 called	 TPMx	 Channel	 Value	 (TPMx_CnV)	 and	 are	 designated	 as
TPMxC0V	to	TPMxC5V.	See	Figure	5-20.

Figure	5-20:	TPMx_CnV	(TPMx	Channel	Value)	Register

The	16-bit	registers	of	TPMx_CnV	are	readable	and	writable,	which	means	we
can	initialize	them	to	a	desired	value.	After	the	initialization,	the	TPMx_CnV
content	is	compared	with	the	value	in	TPMx_CNT	after	each	clock	cycle	as
TPM_CNT	is	counting	up.	When	the	value	of	the	CNT	register	and	CnV	register
match,	the	CHF	flag	is	set	high.	See	Figure	5-21.	It	can	also	perform	some
actions	such	as	toggling	a	pin,	making	a	pin	to	go	Low	or	High.	We	choose	one	of
these	options	using	the	Channel	Status	and	Control	Register	(TPMx_CnSC),
which	is	discussed	next.

Figure	5-21:	Output	Circuit

	

Channel	Status	and	Control	Selection	(TPMx_CnSC)	register
As	 we	 just	 stated,	 each	 TPM	 module	 has	 six	 channels.	 There	 are	 two

registers	 associated	 with	 each	 channel.	 They	 are	 the	 Channel	 Value	 register
(TPMxCnV)	and	Channel	Status	and	Control	register	(TPMxCnSC).	Notice	the	x
can	be	0,	1,	or	2	for	Timer	modules	of	0,	1,	and	2.	The	n	can	be	0	to	5	for	one	of
the	six	channels	 inside	each	Timer	module.	Now,	the	mode	and	edge	selections
for	Output	Compare	of	a	given	channel	are	done	with	TPMx	Channel	Status	and
Control	(TPMxCnSC).	Bits	D5:D4	is	used	to	choose	the	Output	Compare	option	of
the	timer.	See	Figure	5-22	and	Table	5-4.

Figure	5-22:	TPMxCnSC	(TPMx	Channel	Status	and	Control)

	

Field Bit Description

CHF 7 Channel	Flag

CHIE 6 Channel	interrupt	enable

MSB	and
MSA 5-4

Channel	mode	select

D5:D4	(MSB:MSA) Output	mode

00 Channel	disabled

01 Output	compare

10 PWM

11 Output	compare

ELSB	and
ELSA 3-2 Edge	or	Level	Select

DMA 0 DMA	enable	(0:	Disabled,	1:	Enabled)

Table	5-4:	TPMxCnSC	Register

After	selecting	the	Output	Compare	with	D5:D4=01,	we	use	the	D3:D2	bits
to	choose	the	following	action	for	a	given	channel:

D5:D4
(MSB:MSA)

D3
(ELSB)

D2
(ELSA)

Output	Action

01 0 1 Toggle	Output	on	Match

01 1 0 Clear	Output	on	Match	(make	it	Low)

01 1 1 Set	Output	on	Match	(make	output
High)

11 1 0 Pulse	Output	Low	on	Match

11 X 1 Pulse	Output	High	on	Match

Table	5-5:	Mode	Selection	for	Output	Compare

Output	Compare	mode
If	a	timer	channel	is	in	the	output	compare	mode,	when	the	timer	is	counting

up,	 the	TPMx_CNT	counter	begins	counting	from	0	and	goes	up	until	 it	 reaches
the	TPMx_CnV	value.	Then,	the	Channel	Flag	(CHF)	for	that	channel	 is	set	and
the	channel	output	is	changed.	The	timer	continues	counting	until	it	reaches	to	the
TPMx_MOD	value	and	rolls	over.	Figures	5-23	through	5-25	show	the	output	pin
in	toggle,	set,	and	clear	modes.

Figure	5-23:	In	Toggle	Mode

	

Figure	5-24:	In	Set	Mode

	

Figure	5-25:	Clear	Mode

Upon	 reset,	 all	 bits	 of	 the	 TPMxCnV	 register	 are	 initialized	 to	 0s.	 But	 the
software	can	change	the	value	of	TPMx_CnV.

Channel	pins
There	are	CH0	to	CH5	for	each	TPMx.	Each	channel	has	its	own	designated

output	pins.	For	example,	Channel	0	of	TPM0	may	be	connected	to	PTA3,	PTC1,
PTD0,	or	PTE24	for	output	and	Channel	1	of	TPM0	may	use	PTA4,	PTC2,	PTD1
or	PTE25	as	output	pin.	The	choices	of	 the	output	pin	designations	are	made	in
the	alternate	function	of	 the	pin	control	register	(PORTx_PCR)	of	each	port.	 It	 is
possible	to	have	multiple	output	pins	connected	to	a	single	channel	at	 the	same
time.	Table	5-5	shows	the	pin	designations	for	all	Timer	modules.

Selecting	alternate	function	for	Timers	pin
Upon	Reset,	the	PORTx_PCRn	register	has	all	0s	meaning	the	I/O	pins	are

not	defined	yet.	To	use	an	alternate	function,	we	first	must	configure	the	bits	in	the
PORTx_PCRn	register	 for	 that	pin.	As	we	mentioned	 in	previous	chapters,	each
pin	has	its	own	PORTx_PCRn	register.		For	example,	for	the	PTB18	to	be	used	by
TPM2_CH1,	 we	 need	 to	 write	 0x0300	 (0000	 0011	 0000	 0000	 in	 binary)	 to
PORTB_PCR18	 register.	 See	 Tables	 5-5.	 To	 do	 that,	 we	 need	 to	 use	 the
information	in	Section	10.3.1	of	Freescale	KL25Z	Ref.	Manual.	Table	5-6	provides
the	summary	for	the	Timers	pins.

	
Using	ALT3	pin	options	for	TPM0	Channel	Output

TPM0	Channels Pins Pin	Control	Register

TPM0	 CH0	 Output

Pins PTA3 PORTA_PCR3=0x0300

	 PTE24 PORTE_PCR24=0x0300

TPM0	 CH1	 Output
Pins PTA4 PORTA_PCR4=0x0300

	 PTE25 PORTE_PCR25=0x0300

TPM0	 CH2	 Output
Pins PTA5 PORTA_PCR5=0x0300

	 PTE29 PORTE_PCR29=0x0300

TPM0	 CH3	 Output
Pins PTE30 PORTE_PCR30=0x0300

TPM0	 CH4	 Output
Pins PTC8 PORTC_PCR8=0x0300

	 PTE31 PORTE_PCR31=0x0300

TPM0	 CH5	 Output
Pins PTA0 PORTA_PCR0=0x0300

	 PTC9 PORTC_PCR9=0x0300

	
Using	ALT4	pin	options	for	TPM0	Channel	Output

TPM0	 CH0	 Output
Pins PTC1 PORTC_PCR1=0x0400

	 PTD0 PORTD_PCR0=0x0400

TPM0	 CH1	 Output
Pins PTC2 PORTC_PCR2=0x0400

	 PTD1 PORTD_PCR1=0x0400

TPM0	 CH2	 Output
Pins PTC3 PORTC_PCR3=0x0400

	 PTD2 PORTD_PCR2=0x0400

TPM0	 CH3	 Output
Pins PTC4 PORTC_PCR4=0x0400

	 PTD3 PORTD_PCR3=0x0400

TPM0	 CH4	 Output PTD4 PORTD_PCR4=0x0400

Pins

TPM0	 CH5	 Output
Pins PTD5 PORTD_PCR5=0x0400

	
Using	ALT3	pin	options	for	TPM1	Channel	Output

TPM1
Channels															 Pins Pin	Control	Register

TPM1	 CH0	 Output
Pins PTA12		 PORTA_PCR12=0x0300

	 PTB0 PORTB_PCR0=0x0300

	 PTE20 PORTE_PCR20=0x0300

TPM1	 CH1	 Output
Pins PTA13 PORTA_PCR13=0x0300

	 PTB1 PORTB_PCR1=0x0300

	 PTE21 PORTE_PCR21=0x0300

	
Using	ALT3	pin	options	for	TPM2	Channel	Output

TPM2	Channels Pins Pin	Control	Register

TPM2	 CH0	 Output
Pins PTA1 PORTA_PCR1=0x0300

	 PTB18 PORTB_PCR18=0x0300

	 PTE22 PORTE_PCR22=0x0300

TPM2	 CH1	 Output
Pins PTA2 PORTA_PCR2=0x0300

	 PTB3 PORTB_PCR3=0x0300

	 PTB19 PORTB_PCR19=0x0300

	 PTE23 PORTE_PCR23=0x0300

Table	5-6:	Timers	Channel	Output	alternate	pin	assignment

See	Example	5-7.

Example	5-7

Write	the	code	to	provide	the	TPM0_CH1	function	on	PTD1.

Solution:
PTD1	uses	the	ALT4,	as	shown	in	Table	5-6.	The	I/O	pin	is	used	for	an	alternate
peripheral	function	pin	by	setting	the	PORTx_PCRn	register	of	PORTx:

PORTD->PCR[1]	|=	0x0400;

	

	

Toggling	a	pin	using	output	compare
The	steps	to	program	the	timer	for	Output	Compare	are:

enable	the	clock	to	the	output	pin	GPIO	port,

select	the	alternate	function	for	the	output	pin,

enable	the	clock	to	TPMx	module,

Select	the	clock	source	for	timer	counter,

disable	timer	while	the	configuration	is	being	modified,

select	prescaler	value	with	TPMx_SC	register,

set	modulo	value	in	TPMx_MOD	register,set	the	CnSC	register	to	toggle	mode
(MSA	=	1,	MSB	=	0,	ELSA	=	1,	ELSB	=	0),

clear	CHFn	(channel	n	flag)	flag,

set	TPMx_CnV	register	based	on	its	current	value	with	the	interval	count
added,

enable	timer

See	Program	 5-8.	 This	 program	 uses	 output	 compare	mode	 to	 toggle	 the
PTD1	pin,	which	 is	connected	 to	 the	blue	LED	on	 the	FRDM	board.	Every	 time
there	is	match	between	TPM0_CNT	and	TPM0_C1V	registers,	the	CHF	bit	is	set
in	 the	 TPM0_C1SC	 register	 and	 the	 output	 is	 toggled.	 The	 program	 reads	 the
TPM0_C1V	 value	 and	 adds	 32766	 to	 it	 that	 scheduled	 the	 next	 match	 to	 be
32,766	clock	cycles	later.	The	timer	counter	clock	is	running	at	41.94	MHz	and	the
prescaler	is	set	to	divide	the	clock	source	by	128	so	the	timer	counter	is	counting
at	 41.94	MHz	 /	 128	=	 367,656	Hz	 and	 the	 period	 is	 3.05	 µs.	 To	 schedule	 next
output	compare	match	for	32,766	clock	cycles	results	in

3.05	µs	×	32,766	=	0.1	sec.

	

Program	5-8:	Toggling	blue	LED	using	Timer	0	Channel	1	in	Output	Compare	mode

	

/*	p5_8.c	using	TPM0	Output	Compare

	

	*	This	program	uses	TPM0	CH1	OC	to	generate	periodic	output.

	*	MCGFLLCLK	(41.94	MHz)	is	used	as	timer	counter	clock.

	*	Prescaler	is	set	to	divided	by	128.

	*	Timer0	Channel	1	is	configured	as	Output	Compare	Toggle	mode

	*	and	the	output	is	on	PTD1	(blue	LED).	Every	time	there	is	a

	*	match	between	TPM0_CNT	and	TPM0_C1V,	the	output	is	toggled	and

	*	the	value	in	TPM0_C1V	is	incremented	by	2097	that	schedules

	*	the	next	match	to	be	in	(1	/	41.94	MHz)	*	128	*	32766	=	100	ms.

	*	The	output	will	toggle	every	100	ms	or	5	Hz.

	*/

	

#include	<MKL25Z4.H>

	

int	main	(void)	{

SIM->SCGC5	|=	0x1000;							/*	enable	clock	to	Port	D	*/

PORTD->PCR[1]	=	0x400;						/*	set	PTD1	pin	for	TPM0CH1	*/

SIM->SCGC6	|=	0x01000000;			/*	enable	clock	to	TPM0	*/

SIM->SOPT2	|=	0x01000000;			/*	use	MCGFLLCLK	as	timer	counter	clock	*/

TPM0->SC	=	0;															/*	disable	timer	while	configuring	*/

TPM0->SC	=	0x07;												/*	prescaler	/128	*/

TPM0->MOD	=	0xFFFF;									/*	max	modulo	value	*/

TPM0->CONTROLS[1].CnSC	=	0x14;		/*	OC	toggle	mode	*/

TPM0->CONTROLS[1].CnSC	|=	0x80;	/*	clear	CHF	*/

TPM0->CONTROLS[1].CnV	=	TPM0->CNT	+	32766;			/*	schedule	next	transition	*/

TPM0->SC	|=	0x08;											/*	enable	timer	*/

	

while	(1)	{

while(!(TPM0->CONTROLS[1].CnSC	&	0x80))	{	}	/*	wait	until	the	CHF	is	set	*/

TPM0->CONTROLS[1].CnSC	|=	0x80;													/*	clear	CHF	*/

TPM0->CONTROLS[1].CnV	=	TPM0->CNT	+	32766;			/*	schedule	next	transition	*/

}

}

	

Channel	Status	for	each	timer	module	(TPMx_STATUS)	register
As	we	 just	stated	 that,	each	TPM	module	has	six	channels.	There	are	 two

registers	 associated	 with	 each	 channel.	 They	 are	 the	 Channel	 Value	 register
(TPMxCnV)	and	Channel	Status	and	Control	register	(TPMxCnSC).	However,	we
also	 have	 a	 single	 status	 register	 for	 all	 the	 channels.	 This	 is	 called
TPMx_STATUS.	This	allows	us	to	monitor	the	status	of	all	the	6	channels	with	a
single	read	of	 the	registser	to	see	whether	any	given	CHF	flag	has	been	raised.
Notice	 from	Figure	 5-26,	 that	we	have	D5	bit	 for	Channel	 5	 flag	 and	D0	bit	 for
Channel	0	 flag.	Also	notice	 that,	 in	addition	 to	 the	CHF	 (Channel	 flag)	 for	each
channel,	we	also	have	the	TOF	belonging	to	the	TPMx_CNT	and	TPMx_MOD	all
of	them	in	one	register.	The	D8	bit	of	the	TPMx_STATUS	register	is	for	TOF.	

Figure	5-26:	TPMx_STATUS	Register

Review	Questions
1.							True	or	false.	Each	Channel	has	its	own	designated	pins.

2.							True	or	false.	Upon	Reset,	all	the	pins	are	designated	as	simple	I/O.

3.							True	or	false.	We	have	a	single	register	for	selection	of	the	alternate
function	for	all	the	I/O	ports.

4.							True	or	false.	Each	pin	has	its	own	PCRn	register.

Section	5.4:	Using	Timer	for	Input	Edge-time	Capturing
Input	edge-time	mode

In	 input	edge-time	mode,	an	I/O	pin	 is	used	to	capture	the	signal	 transition
events.	When	 an	 event	 occurs,	 the	 content	 of	 the	 TPMx_CNT	 timer	 counter	 is
captured	and	saved	in	a	register	while	the	counter	keeps	counting.	

To	 configure	 TPM	 as	 Input	 Capture	 mode,	 bits	 MSnB:MSnA	 of	 the
TPMx_CnSC	 	 should	 be	 00	 (binary).	We	 use	ELSnB:ELSnA	bits	 to	 choose	 the
rising	or	falling	edge.	See	Figure	5-22.	In	this	mode,	the	counter	value	is	stored	in
the	 Channel	 register	 (TPMx_CnV)	 whenever	 the	 input	 pin	 is	 triggered	 by	 an
external	 event	 (falling	 or	 rising	 edge-triggered)	 fed	 to	 the	 TPM_CHn	 pin.	 See
Figure	5-27.

Figure	5-27:	Input	Edge	Time	Capturing

Notice	 that	 the	Channel	 can	 be	 configured	 to	 capture	 on	 the	 falling	 edge,
rising	 edge,	 or	 both.	 To	 determine	 the	 type	 of	 edge	 that	 is	 captured,	 the
ELSn:BLELSnA		bits	of	the	TPMx_CnSC	register	should	be	initialized.	See	Table
5-7.	Also	 notice	 that	 capturing	 has	 no	 effect	 on	 counting	 and	 the	 timer	 counter
continues	counting	when	the	capture	event	takes	place.

ELSB ELSA Capture	mode

0 0 Channel	disabled

0 1 Capture	on	rising
edge

1 0 Capture	on	falling
edge

1 1 Capture	on	both
edges

Table	5-7:	Choosing	the	Capture	Edge

Pin	Selection	for	Input	Capture
To	measure	 the	edge	 time	we	must	 feed	 the	pulse	 into	 the	TPM_CHn	pin.

The	input	capture	timer	channel-pin	designation	is	identical	to	the	output	compare

timer	channel-pin	designation	in	Table	5-6.	So	we	will	not	repeat	it	here.

On	the	FRDM-KL25Z	board,	the	power	supply	is	regulated	at	3.3V	when	it	is
powered	 by	 the	 OpenSDA	 USB	 cable	 (J7).	 Input	 signal	 shall	 not	 exceed	 3.6V
otherwise	 damage	 to	 the	 pin	 or	 device	may	 happen.	 For	 an	 input	 signal	 to	 be
recognized	by	the	input	pin,	a	high	signal	should	be	above	2.31V	and	below	3.6V,
a	low	signal	should	be	below	1.15V	and	above	0V.	For	more	details,	check	out	the
KL25	datasheet.

Input	edge-time	mode	usages
The	 input	 edge	 time	 capturing	 can	 be	 used	 for	 many	 applications;	 e.g.

recording	the	arrival	time	of	an	event,	measuring	the	frequency	and	pulse	width	of
a	signal.

Steps	to	program	the	Input	Capture	function
Perform	 the	 following	 steps	 to	measure	 the	period	of	 a	 periodic	waveform

based	on	the	edge	arrival	time	of	the	Input	Capture	function.

1)						Enable	the	clock	to	the	input	pin	GPIO	port,

2)						select	the	alternate	function	for	the	input	pin	at	the	PORTX_PCR
register,

3)						enable	the	clock	to	TPMx	module,

4)						select	the	clock	source	for	timer	counter,

5)						disable	timer	while	the	configuration	is	being	modified,

6)						select	prescaler	value	with	TPMx_SC	register,

7)						set	modulo	value	in	TPMx_MOD	register,

8)						set	the	CnSC	register	to	capture	rising	edge,

9)						enable	timer,

10)			wait	until	the	CHF	bit	is	set	in	CnSC	register,

11)			read	the	current	counter	value	captured,

12)			calculate	the	current	counter	value	difference	from	the	last	value,

13)			save	the	current	value	for	next	calculation,

14)			repeat	from	step	10.
As	 shown	 in	 Figure	 5-28,	 to	 measure	 the	 period	 of	 a	 signal	 we	 must

measure	 the	 time	 between	 two	 falling	 edges	 or	 two	 rising	 edges.	 Program	 5-9
measures	the	period	of	the	square	wave.

Figure	5-28:	Measuring	Period	and	Pulse	Width

	

Program	5-9:	Functions	to	initialize	Channel	0	of	Timer0	for	edge-time	capture	mode	to	measure	the
period	of	a	square	wave	input	signal

	

/*	p5_9.c	Using	TPM2	Channel	0	to	measure	input	period.

	

	*	This	program	uses	TPM2	CH1	Input	Edge-time	Capture	to	measure

	*	the	period	of	a	periodic	waveform.

	*	MCGFLLCLK	(41.94	MHz)	is	used	as	timer	counter	clock.

	*	Prescaler	is	set	to	divided	by	128.	So	the	timer	counter	is

	*	counting	at	41.94	MHz	/	128	=	327,656	Hz.

	*	Timer	2	Channel	0	is	configured	as	Input	Edge-time	Capture	mode.

	*	and	the	input	is	using	PTA1.

	*	When	a	rising	edge	occurs	at	PTA1,	the	timer	counter	value	is

	*	copied	to	TPM2_C0V	and	the	CHF	is	set.

	*	The	program	waits	for	CHF	flag	to	set	then	calculates	the

	*	difference	of	the	current	value	to	the	previous	recorded	value.

	*	Bit	11-9	are	used	to	control	the	tri-color	LEDs.

	*	The	LED	should	change	color	when	the	input	frequency	is	changing

	*	below	642	Hz.	Above	642	Hz,	the	number	of	clock	cycles	between

	*	rising	edges	is	too	small	to	reach	bit	9.

	*/

	

#include	<MKL25Z4.H>

	

int	main	(void)	{

unsigned	short	then	=	0;

unsigned	short	now	=	0;

unsigned	short	diff;

/*	Initialize	GPIO	pins	for	tri-color	LEDs	*/

SIM->SCGC5	|=	0x400;								/*	enable	clock	to	Port	B	*/

SIM->SCGC5	|=	0x1000;							/*	enable	clock	to	Port	D	*/

PORTB->PCR[18]	=	0x100;					/*	make	PTB18	pin	as	GPIO	*/

PTB->PDDR	|=	0x40000;							/*	make	PTB18	as	output	pin	*/

PORTB->PCR[19]	=	0x100;					/*	make	PTB19	pin	as	GPIO	*/

PTB->PDDR	|=	0x80000;							/*	make	PTB19	as	output	pin	*/

PORTD->PCR[1]	=	0x100;						/*	make	PTD1	pin	as	GPIO	*/

PTD->PDDR	|=	0x02;										/*	make	PTD1	as	output	pin	*/

/*	end	GPIO	pin	initialization	for	LEDs	*/

/*	Start	of	Timer	code	*/

SIM->SCGC5	|=	0x0200;							/*	enable	clock	to	Port	A	*/

PORTA->PCR[1]	=	0x0300;					/*	set	PTA1	pin	for	TPM2CH0	*/

SIM->SCGC6	|=	0x04000000;			/*	enable	clock	to	TPM2	*/

SIM->SOPT2	|=	0x01000000;			/*	use	MCGFLLCLK	as	timer	counter	clock	*/

TPM2->SC	=	0;															/*	disable	timer	while	configuring	*/

TPM2->SC	=	0x07;												/*	prescaler	/128	*/

	TPM2->MOD	=	0xFFFF;									/*	max	modulo	value	*/

TPM2->CONTROLS[0].CnSC	=	0x04;		/*	IC	rising	edge	*/

TPM2->SC	|=	0x08;											/*	enable	timer	*/

while	(1)	{

while(!(TPM2->CONTROLS[0].CnSC	&	0x80))	{	}	/*	wait	until	the	CHF	is	set	*/

TPM2->CONTROLS[0].CnSC	|=	0x80;													/*	clear	CHF	*/

now	=	TPM2->CONTROLS[0].CnV;

diff	=	now	-	then;	/*	you	may	put	a	breakpoint	here	and	examine	the	values
*/

then	=	now;									/*	save	the	current	counter	value	for	next	calculation
*/

/*	change	LEDs	according	to	bit	11-9	of	the	value	of	diff	*/

diff	=	diff	>>	9;

if	(diff	&	1)				/*	use	bit	0	of	diff	to	control	red	LED	*/

PTB->PCOR	=	0x40000;				/*	turn	on	red	LED	*/

else

PTB->PSOR	=	0x40000;				/*	turn	off	red	LED	*/

if	(diff	&	2)				/*	use	bit	1	of	diff	to	control	green	LED	*/

PTB->PCOR	=	0x80000;				/*	turn	on	green	LED	*/

else

PTB->PSOR	=	0x80000;				/*	turn	off	green	LED	*/

if	(diff	&	4)				/*	use	bit	2	of	diff	to	control	blue	LED	*/

PTD->PCOR	=	0x02;							/*	turn	on	blue	LED	*/

else

PTD->PSOR	=	0x02;							/*	turn	off	blue	LED	*/

/*	end	of	LED	code	*/

}

}

	

Review	Questions
1.							True	or	false.	To	capture	the	input	edge	time,	the	TPM_CnSC	register

must	be	configured	for	Input	Capture	mode.

2.							True	or	false.	To	measure	the	frequency	of	a	signal,	the	time	interval
between	a	falling	edge	and	a	rising	edge	are	needed.

3.							True	or	false.	If	the	time	interval	between	two	consecutive	falling	edges	is
measured,	the	frequency	of	the	periodic	signal	can	be	calculated.

4.							True	or	False.	The	Freescale	ARM	KL25Z	supports	both	rising	and	falling
edge	detection.

5.							A	Timer	must	be	disabled	(before,	after)	it	is	initialized.

Section	5.5:	Using	Timer	as	an	Event	Counter
TPMx	works	as	a	 counter	when	 the	CMOD	 field	of	TPMx_SC	 is	 set	 to	10

(binary).	 In	 this	 mode,	 the	 timer	 counts	 the	 rising	 edges	 at	 the	 input	 pin
synchronized	to	the	timer	counter	clock.	See	Figure	5-29.	For	 the	timer	to	count
the	external	edges	the	timer	counter	clock	must	be	present	and	the	external	signal
at	the	input	pin	should	have	the	frequency	half	of	the	timer	counter	clock	or	lower.
The	 timer	 counter	 in	 event	 counter	 mode	 operates	 the	 same	 as	 the	 counter
described	 in	 Section	 5.2.	When	 the	 counter	 value	 reaches	 the	Modulo	 register
value,	the	TOF	bit	is	set	in	TPMx_SC	register	and	the	TPMx_CNT	value	restarts
from	zero	again.	As	shown	 in	Figure	5-29,	 the	external	clock	signal	also	passes
through	the	prescaler.	If	the	prescaler	is	set	to	divide	by	a	number	greater	than	1,
the	external	pulses	are	divided	by	the	prescaler	before	incrementing	the	counter.

Figure	5-29:	Counter	Diagram

Pin	Selection	for	Event	Counter
There	are	eight	pins	available	to	be	used	for	external	event	counter.	These

pins	are	grouped	as	TPM_CLKIN0	and	TPM_CLKIN1.	The	available	pins	for	each
group	are	listed	in	Table	5-8.	The	selected	pin	should	have	the	clock	enabled	and
the	alternate	port	pin	function	set	to	4	in	PORTx_PCR	register.	Each	timer	module
in	 event	 counter	 mode	 may	 select	 one	 input	 pin	 from	 either	 TPM_CLKIN0	 or
TPM_CLKIN1.	 The	 selection	 is	 made	 in	 SIM_SOPT4	 register.	 Bit	 26	 of
SIM_SOPT4	 is	 used	 for	TPM2,	 bit	 25	 is	 used	 for	TPM1,	 and	bit	 24	 is	 used	 for
TPM0.	When	the	bit	is	0,	TPM_CLKIN0	is	used.	When	the	bit	is	1,	TPM_CLKIN1
is	used.

Figure	5-30:	SIM_OPT4

On	the	FRDM-KL25Z	board,	the	power	supply	is	regulated	at	3.3V	when	it	is
powered	 by	 the	 OpenSDA	 USB	 cable	 (J7).	 Input	 signal	 shall	 not	 exceed	 3.6V
otherwise	 damage	 to	 the	 pin	 or	 device	may	 happen.	 For	 an	 input	 signal	 to	 be
recognized	by	the	input	pin,	a	high	signal	should	be	above	2.31V	and	below	3.6V,
a	low	signal	should	be	below	1.15V	and	above	0V.	For	more	details,	check	out	the
KL25	datasheet.

	 Pins Pin	Control	Register

TPM_CLKIN0	Pins

PTA18 PORTA_PCR18=0x0400

PTB16 PORTB_PCR16=0x0400

PTC12 PORTC_PCR12=0x0400

PTE29 PORTE_PCR29=0x0400

TPM_CLKIN1	Pins

PTA19 PORTA_PCR19=0x0400

PTB17 PORTB_PCR17=0x0400

PTC13 PORTC_PCR13=0x0400

PTE30 PORTE_PCR30=0x0400

Table	5-8:	Input	Clock	Pins

Program	5-10	uses	Timer	0	to	count	the	pulses	present	at	PTC12.	The	least
significant	three	bits	of	the	counter	value	is	displayed	on	the	tri-color	LEDs.

Program	5-10:	Use	Timer0	to	count	external	pulse	rising	edges
	

/*	p5_10.c	Counting	pulses	from	PTC12.

	*	This	is	used	as	the	base	for	P5_10.

	*	This	program	uses	TPM0	to	count	the	number	of	pulses

	*	from	PTC12.

	*	The	tri-color	LEDs	are	used	to	display	bit2-0	of

	*	the	counter.	At	low	frequency	input,	the	change	of

	*	LED	color	should	be	visible.

	*	Although	the	counter	is	counting	pulses	from	PTC12,

	*	timer	counter	clock	must	be	present.

	*/

	

#include	<MKL25Z4.H>

#include	<stdio.h>

	

int	main	(void)	{

	

unsigned	short	count;

	

/*	Initialize	GPIO	pins	for	tri-color	LEDs	*/

SIM->SCGC5	|=	0x400;								/*	enable	clock	to	Port	B	*/

SIM->SCGC5	|=	0x1000;							/*	enable	clock	to	Port	D	*/

PORTB->PCR[18]	=	0x100;					/*	make	PTB18	pin	as	GPIO	*/

PTB->PDDR	|=	0x40000;							/*	make	PTB18	as	output	pin	*/

PORTB->PCR[19]	=	0x100;					/*	make	PTB19	pin	as	GPIO	*/

PTB->PDDR	|=	0x80000;							/*	make	PTB19	as	output	pin	*/

PORTD->PCR[1]	=	0x100;						/*	make	PTD1	pin	as	GPIO	*/

PTD->PDDR	|=	0x02;										/*	make	PTD1	as	output	pin	*/

/*	end	GPIO	pin	initialization	for	LEDs	*/

/*	Start	of	Timer	code	*/

SIM->SCGC5	|=	0x0800;							/*	enable	clock	to	Port	C	*/

PORTC->PCR[12]	=	0x400;					/*	set	PTC12	pin	for	TPM0	*/

SIM->SOPT4	&=	~0x01000000;		/*	use	TPM_CLKIN0	as	timer	counter	clock	*/

SIM->SCGC6	|=	0x01000000;			/*	enable	clock	to	TPM0	*/

SIM->SOPT2	|=	0x01000000;			/*	counter	clock	must	be	present	*/

TPM0->SC	=	0;															/*	disable	timer	while	configuring	*/

TPM0->SC	=	0x80;												/*	prescaler	/1	and	clear	TOF	*/

TPM0->MOD	=	0xFFFF;									/*	max	modulo	value	*/

TPM0->CNT	=	0;														/*	clear	counter	*/

TPM0->SC	|=	0x10;											/*	enable	timer	and	use	LPTPM_EXTCLK	*/

while	(1)	{

count	=	TPM0->CNT;

/*	change	LEDs	according	to	bit	2-0	of	the	value	of	count	*/

if	(count	&	1)				/*	use	bit	0	of	count	to	control	red	LED	*/

PTB->PCOR	=	0x40000;				/*	turn	on	red	LED	*/

else

PTB->PSOR	=	0x40000;				/*	turn	off	red	LED	*/

if	(count	&	2)				/*	use	bit	1	of	count	to	control	green	LED	*/

PTB->PCOR	=	0x80000;				/*	turn	on	green	LED	*/

else

PTB->PSOR	=	0x80000;				/*	turn	off	green	LED	*/

if	(count	&	4)				/*	use	bit	2	of	count	to	control	blue	LED	*/

PTD->PCOR	=	0x02;							/*	turn	on	blue	LED	*/

else

PTD->PSOR	=	0x02;							/*	turn	off	blue	LED	*/

/*	end	of	LED	code	*/

}

}

	

Review	Questions
1.							True	or	false.	The	Timer	can	also	be	used	as	event	counter.

2.							True	or	false.	The	Freescale	KL25Z	timer	can	only	count	the	falling	edges.

3.							True	or	false.	In	edge	count	mode	the	incoming	pulses	must	be	minimum
of	3.3V	to	5V	to	be	detected.

4.							True	or	false.	With	prescaler,	we	can	divide	the	incoming	pulses	by
prescaler	value.

5.							True	or	false.	To	use	the	timer	as	even-counter,	we	must	configure	it	in
capture	mode.

Answers	to	Review	Questions
Section	5-0

1.							31

2.							32

3.							event	counter

4.							Timer

5.							9

Section	5.1
1.							0xFFFFFF

2.							1/16MHz=62.5	nsec.	Now,	5	msec/62.5nsec=80,000.	Therefore,
RELOAD=80,000	–	1	=79,999

3.							24

4.							The	D0	of	STCTRL	(the	Enable)

5.							Down	counter

Section	5.2
1.							True

2.							3,	Timer0	to	Timer2

3.							True

4.							SIM_SCGC6

5.							SIM_SOPT2

6.							6

Section	5.3
1.							True

2.							False

3.							False

4.							True

Section	5.4
1.							True

2.							False

3.							True

4.							True

5.							before

Section	5.5
1.							True

2.							False

3.							False,	a	high	signal	should	be	above	2.31V	but	never	exceed	3.6V	and	a
low	signal	should	be	below	1.15V.

4.							True

5.							False

	

	

Chapter	6:	Interrupt	and	Exception
Programming

This	 chapter	 examines	 the	 interrupts	 in	ARM.	We	also	discuss	 sources	of
hardware	 interrupts	 in	 the	 Freescale	 ARM	 KL25Z	 device.	 In	 Section	 6.1	 we
discuss	 the	 concept	 of	 interrupts	 in	 the	 ARM	 CPU,	 and	 then	 we	 look	 at	 the
interrupt	 assignment	 of	 the	 ARM	 Cortex-M.	 Section	 6.2	 examines	 the	 NVIC
interrupt	controller	and	discusses	the	Thread	and	Handler	mode	in	ARM	Cortex-
M.	The	interrupt	for	I/O	ports	are	discussed	in	Section	6.3.	Section	6.4	examines
the	interrupt	for	UART.	Timers	interrupts	are	explored	in	Section	6.5.	The	SysTick
interrupt	 is	 covered	 in	Section	6.6.	The	 interrupt	priority	 is	discussed	 in	Section
6.7.

Section	6.1:	Interrupts	and	Exceptions	in	ARM	Cortex-
M

In	this	section,	first	we	examine	the	difference	between	polling	and	interrupt
and	then	describe	the	various	interrupts	of	the	ARM	Cortex.

Interrupts	vs.	polling
A	single	microprocessor	can	serve	several	devices.	There	are	 two	ways	 to

do	that:	interrupts	or	polling.	In	the	interrupt	method,	whenever	any	device	needs
service,	 the	 device	 notifies	 the	 CPU	 by	 sending	 it	 an	 interrupt	 signal.	 Upon
receiving	an	 interrupt	signal,	 the	CPU	 interrupts	whatever	 it	 is	doing	and	serves
the	 device.	 The	 program	 associated	 with	 the	 interrupt	 is	 called	 the	 interrupt
service	 routine	 (ISR)	 or	 interrupt	 handler.	 In	 polling,	 the	 CPU	 continuously
monitors	the	status	of	a	given	device;	when	the	status	condition	is	met,	it	performs
the	service.	After	 that,	 it	moves	on	 to	monitor	 the	next	device	until	 each	one	 is
serviced.	See	Figure	6-1.

Figure	6-1:	Polling	vs.	Interrupts

Although	polling	can	monitor	the	status	of	several	devices	and	serve	each	of
them	as	certain	conditions	are	met,	it	is	not	an	efficient	use	of	the	CPU	time.	The
polling	method	wastes	much	of	 the	CPU’s	 time	by	polling	devices	when	they	do
not	need	service.	So	 in	order	 to	avoid	 tying	down	the	CPU,	 interrupts	are	used.
For	example,	 in	Timer	we	might	wait	until	a	determined	amount	of	 time	elapses,
and	while	we	were	waiting	we	 cannot	 do	 anything	 else.	 That	 is	 a	waste	 of	 the
CPU’s	time	that	could	have	been	used	to	perform	some	useful	tasks.	In	the	case
of	 the	Timer,	 if	we	use	 the	 interrupt	method,	 the	CPU	can	go	about	doing	other
tasks,	and	when	the	COUNT	flag	is	raised	the	Timer	will	interrupt	the	CPU	to	let	it
know	that	the	time	is	elapsed.	See	Figure	6-1.

Interrupt	service	routine	(ISR)
For	 every	 interrupt	 there	must	 be	 a	 program	 associated	 with	 it.	When	 an

interrupt	 occurs	 this	 program	 is	 executed	 to	 perform	 certain	 service	 for	 the
interrupt.	 This	 program	 is	 commonly	 referred	 to	 as	 an	 interrupt	 service	 routine

(ISR).	The	 interrupt	service	routine	 is	also	called	the	 interrupt	handler.	When	an
interrupt	occurs,	 the	CPU	runs	 the	 interrupt	service	routine.	Now	the	question	 is
how	the	ISR	gets	executed?

As	shown	in	Figure	6-2,	in	the	ARM	CPU	there	are	pins	that	are	associated
with	hardware	 interrupts.	They	are	 input	signals	 into	 the	CPU.	When	the	signals
are	 triggered,	 CPU	 pushes	 the	 PC	 register	 onto	 the	 stack	 and	 loads	 the	 PC
register	with	 the	address	of	 the	 interrupt	service	 routine.	This	causes	 the	 ISR to
get	executed.

Figure	6-2:	NVIC	in	ARM	Cortex-M

As	can	be	 seen	 from	Table	6-1,	 for	 every	 interrupt	 there	are	 four	 bytes	of
memory	 allocated	 in	 the	 interrupt	 vector	 table.	 These	 four	 memory	 locations
provide	the	addresses	of	the	interrupt	service	routine	for	which	the	interrupt	was
invoked.

Interrupt	Vector	Table
Since	 there	 is	 a	 program	 (ISR)	 associated	 with	 every	 interrupt	 and	 this

program	resides	in	memory	(RAM	or	ROM),	there	must	be	a	look-up	table	to	hold
the	addresses	of	these	ISRs.	This	look-up	table	is	called	interrupt	vector	table.	 In
the	ARM,	the	lowest	1024	bytes	(256	×	4	=	1024)	of	memory	space	are	set	aside
for	the	interrupt	vector	table	and	must	not	be	used	for	any	other	function.	Table	6-
1	provides	a	 list	of	 interrupts	and	 their	designated	 functions	as	defined	by	ARM
Cortex-M	products.	Of	 the	256	 interrupts,	some	are	used	 for	software	 interrupts
and	some	are	for	hardware	IRQ	interrupts.

NVIC	(nested	vector	interrupt	controller)	In	ARM	Cortex-M
In	 the	 ARM	 Cortex	 series	 we	 have	 Cortex-A,	 Cortex-R	 and	 Cortex-M.

Currently	 only	 the	 Cortex-M	 has	 an	 on-chip	 interrupt	 controller	 called	 NVIC
(Nested	Vector	Interrupt	Controller).	See	Figure	6-2.	This	allows	some	degree	of
standardization	 among	 the	 ARM	 Cortex-Mx	 (M0,	 M1,	 M3,	 and	 M4)	 family
members.	 The	 classical	 ARM	 chips	 and	 Cortex-A	 and	 Cortex-R	 series	 do	 not
have	this	NVIC interrupt	controller,	therefore	ARM	manufacturers’	implementation
of	 the	 interrupt	 handling	 varies.	 This	 chapter	 focuses	on	 the	 interrupts	 for	ARM
Cortex-M	series.	 It	must	be	noted	that	 there	are	substantial	differences	between
the	ARM	Cortex-M	series	and	classical	ARM	versions	as	far	as	interrupt	handling
are	 concerned.	 The	 study	 of	 classical	 ARM	 and	 ARM	 Cortex	 A	 and	 R	 series

interrupts	are	left	to	the	reader	since	they	are	used	for	high	performance	systems
using	complex	OS	and	real-time	system.

Interrupt	and	Exception	assignments	in	ARM	Cortex-M
The	NVIC	of	the	ARM	Cortex-M	has	room	for	the	total	of	255	interrupts	and

exceptions.	The	interrupt	numbers	are	also	referred	to	INT	type	(or	INT	#)	in	which
the	type	can	be	from	1	to	255	or	0x01	to	0xFF.	That	is	INT	01	to	INT	255	(or	INT
0x01	to	INT	0xFF.)	The	NVIC	in	ARM	Cortex-M	assigns	the	first	15	interrupts	for
internal	use.	The	memory	locations	0-3	are	used	to	store	the	value	to	be	loaded
into	the	stack	pointer	when	the	device	is	coming	out	of	reset.	See	Table	6-1.

Interrupt	# Interrupt Memory	Location
(Hex)

	 Stack	Pointer	initial	value 0x00000000

1 Reset 0x00000004

2 NMI 0x00000008

3 Hard	Fault 0x0000000C

4 Memory	Management	Fault 0x00000010

5 Bus	Fault 0x00000014

6 Usage	Fault	(undefined	instructions,	divide	by	zero,
unaligned	memory	access,	…) 0x00000018

7 Reserved 0x0000001C

8 Reserved 0x00000020

9 Reserved 0x00000024

10 Reserved 0x00000028

11 SVCall 0x0000002C

12 Debug	Monitor 0x00000030

13 Reserved 0x00000034

14 PendSV 0x00000038

15 SysTick 0x0000003C

16 IRQ	for	peripherals 0x00000040

17 IRQ	for	peripherals 0x00000044

… … …

255 IRQ	for	peripherals 0x000003FC

Table	6-1:	Interrupt	Vector	Table	for	ARM	Cortex-M

	

The	predefined	Interrupts	(INT	0	to	INT	15)
The	followings	are	the	first	15	interrupts	in	ARM	Cortex-M:

Reset

Figure	6-3:	Going	from	Reset	to	Boot	Program

The	ARM	devices	have	a	reset	pin.	 It	 is	usually	 tied	 to	a	circuit	 that	keeps
the	pin	low	for	a	while	when	the	power	is	coming	on.	This	is	the	power-up	reset	or
power-on	 reset	 (POR).	On	 the	ARM	 trainer	 board,	 there	 is	 often	 a	 push-button
switch	to	lower	the	signal	too.	The	reset	signal	is	normally	high	after	the	power	is
on	 and	 when	 reset	 is	 activated	 during	 power-on	 or	 when	 the	 reset	 button	 is
pressed,	 it	 goes	 low	 and	 the	CPU	 goes	 to	 a	 known	 state	with	 all	 the	 registers
loaded	with	 the	predefined	values.	When	 the	device	 is	 coming	out	of	 reset,	 the
ARM	Cortex-M	loads	the	program	counter	from	memory	location	0x00000004.	In
ARM	Cortex-M	system	we	must	place	the	starting	address	of	the	program	at	the
0x00000004	 to	 get	 the	 program	 running.	 Notice	 in	 Table	 6-1,	 the	 addresses
0x00000000	to	0x00000003	are	set	aside	 for	 the	 initial	stack	pointer	value.	This
ensures	that	the	ARM	has	access	to	stack	immediately	coming	out	of	the	reset.

Non-maskable	interrupt
As	shown	in	Figure	6-2,	there	are	pins	in	the	ARM	chip	that	are	associated

with	 hardware	 interrupts.	 They	 are	 IRQs	 (interrupt	 request)	 and	 NMI
(nonmaskable	 interrupt).	 IRQ	 is	 an	 input	 signal	 into	 the	 CPU,	 which	 can	 be
masked	 (ignored)	 and	 unmasked	 through	 the	 use	 of	 software.	 However,	 NMI,
which	is	also	an	input	signal	into	the	CPU,	cannot	be	masked	by	software,	and	for

this	 reason	 it	 is	 called	 a	 nonmaskable	 interrupt.	 ARM	 Cortex-M	 NVIC	 has
embedded	 “INT	02”	 into	 the	ARM	CPU	 to	be	used	only	 for	NMI.	Whenever	 the
NMI	pin	 is	activated,	 the	CPU	will	 go	 to	memory	 location	0x0000008	 to	get	 the
address	 of	 the	 interrupt	 service	 routine	 (ISR)	 associated	 with	 NMI.	 Memory
locations	0x00000008,	0x00000009,	0x0000000A,	and	0x0000000B	contain	the	4
bytes	of	address	associated	with	the	ISR	belonging	to	NMI.

Exceptions	(Faults)
There	is	a	group	of	interrupts	belongs	to	the	category	referred	to	as	fault	or

exception	interrupts.	Internally,	they	are	invoked	by	the	microprocessor	whenever
there	 are	 conditions	 (exceptions)	 that	 the	 CPU	 is	 unable	 to	 handle.	 One	 such
situation	 is	 an	 attempt	 to	 execute	 an	 instruction	 that	 is	 not	 implemented	 in	 this
CPU.	 Since	 the	 result	 is	 undefined,	 and	 the	CPU	 has	 no	way	 of	 handling	 it,	 it
automatically	invokes	the	invalid	instruction	exception	interrupt.	This	is	commonly
referred	 to	 as	 exception	 or	 fault	 in	 the	 ARM	 literature.	 Whenever	 an	 invalid
instruction	is	executed,	the	CPU	will	go	to	memory	location	0x00000018	to	get	the
address	of	the	ISR	to	handle	the	situation.	The	undefined	instruction	fault	 is	part
of	the	Usage	Fault	exceptions.	Another	exception	is	an	attempt	to	divide	a	number
by	zero.	Since	the	result	of	dividing	a	number	by	zero	is	undefined,	and	the	CPU
has	 no	 way	 of	 handling	 such	 a	 result,	 it	 automatically	 invokes	 the	 divide	 error
exception	interrupt.	As	we	discussed	in	Chapter	6	of	Volume	1,	the	unaligned	data
memory	 access	 for	 word	 or	 half-word	 can	 cause	 an	 exception	 too.	 There	 are
many	exceptions	in	the	ARM	Cortex.	See	Table	6-1.	They	are:

Hard	Fault
The	hard	fault	 is	an	exception	that	occurs	when	the	CPU	having	difficulties

executing	the	ISR	for	any	of	the	exceptions.	One	common	cause	of	hard	fault	 is
trying	to	write	to	the	registers	of	a	peripheral	before	the	clock	is	enabled	for	that
peripheral.

Memory	Management	Fault
The	 memory	 manager	 unit	 fault	 is	 used	 for	 protection	 of	 memory	 from

unwanted	access.	An	example	of	memory	management	exception	 fault	 is	when
the	access	permission	 in	MPU	 is	violated	by	attempting	 to	write	 into	a	 region	of
memory	designated	as	read-only.	In	an	ARM	chip	with	an	on-chip	MMU,	the	page
fault	can	also	be	mapped	into	the	memory	management	fault.	See	Chapter	15.

Bus	Fault
The	bus	fault	is	an	exception	that	occurs	when	there	is	an	error	in	accessing

the	buses.	This	can	be	due	to	memory	access	problem	during	the	fetch	stage	of
an	 instruction	or	 reading	and	writing	 to	data	section	of	memory.	For	example,	 if
you	 try	 to	 access	 memory	 address	 location	 that	 has	 not	 been	 mapped	 to	 a
memory	chip	or	peripheral	device	the	Bus	Fault	exception	will	occur.

Usage	Fault

The	 ARM	 Cortex-M	 chip	 has	 implemented	 the	 divide-by-zero,	 unaligned
memory	 access,	 undefined	 instruction,	 and	 so	 on	 as	 part	 of	 the	 Usage	 Fault
exception.	See	your	ARM	Cortex-M	data	sheet.

SVCall
An	ISR	can	be	called	upon	as	a	result	of	the	execution	of	SVC	(supervisor

call)	 instruction.	 This	 is	 referred	 to	 as	 a	 software	 interrupt	 since	 it	was	 invoked
from	 software,	 not	 from	 a	 fault	 exception,	 external	 hardware,	 or	 any	 peripheral
IRQ	 interrupt.	 Whenever	 the	 SVC	 instruction	 is	 executed,	 the	 CPU	 will	 go	 to
memory	location	0x0000002C	to	get	the	address	of	the	ISR	associated	with	SVC.
The	SVC	is	widely	used	by	the	operating	system	to	call	 the	OS	kernel	 functions
and	services	that	can	be	provided	only	by	the	privileged	access	mode	of	the	OS.
In	many	systems,	the	API	and	function	calls	needed	by	various	User	applications
are	handled	by	the	SVCall	to	make	sure	the	OS	is	protected.	In	the	classical	ARM
literature,	 SVC	was	 called	SWI	 (software	 interrupt),	 but	 the	ARM	Cortex-M	 has
renamed	 it	 as	SVC.	Again	 it	must	 be	 noted	 that	 the	SVC	 is	 an	ARM	Cortex-M
instruction	and	can	be	used	like	any	other	ARM	instruction.

PendSV	(pendable	service	call)
The	PendSV	 (pendable	service	call)	 can	be	used	 to	do	 the	same	 thing	as

the	 SVC	 to	 get	 the	 OS	 services.	 However,	 the	 SVC	 is	 an	 instruction	 and	 is
executed	right	away	just	like	all	ARM	instructions.	The	PendSV	is	an	interrupt	and
can	 wait	 until	 NVIC	 has	 time	 to	 service	 it	 when	 other	 urgent	 higher	 priority
interrupts	 are	 being	 taken	 care.	 Examine	 the	 concept	 of	 nested	 interrupt	 and
pending	 interrupts	 at	 end	 of	 this	 section	 to	 see	 how	 NVIC	 handles	 multiple
pending	interrupts.

Debug	Monitor
In	 executing	 a	 sequence	 of	 instructions,	 there	 is	 a	 need	 to	 examine	 the

contents	 of	 the	 CPU’s	 registers	 and	 system	 memory.	 This	 is	 often	 done	 by
executing	the	program	one	instruction	at	a	time	and	then	inspecting	registers	and
memory.	This	 is	commonly	 referred	 to	as	single-stepping,	or	performing	a	 trace.
ARM	 has	 designated	 INT	 12,	 debug	 monitor,	 specifically	 for	 implementation	 of
single-stepping.

SysTick
In	the	multitasking	OS	we	need	a	real	time	interrupt	clock	to	notify	the	CPU

that	it	needs	to	service	the	task.	The	clock	tick	happens	at	a	regular	interval	and	is
used	mainly	by	 the	OS	system.	The	SysTick	 in	ARM	Cortex	 is	designed	for	 this
purpose.

IRQ	Peripheral	interrupts
An	 ISR	can	be	 launched	as	a	 result	 of	 an	event	at	 the	peripheral	 devices

such	as	 timer	 timeout	or	analog-to-digital	converter	 (ADC)	conversion	complete.

The	 largest	 number	 of	 the	 interrupts	 in	 the	 ARM	 Cortex-M	 belongs	 to	 this
category.	Notice	 from	Table	6-1	 that	ARM	Cortex-M	NVIC	has	set	aside	the	first
15	interrupts	(INT	1	to	INT	15)	for	internal	use	and	exceptions	and	is	not	available
to	 chip	designer.	The	Reset,	NMI,	 undefined	 instructions,	 and	so	on	are	part	 of
this	group	of	exceptions.	The	 rest	of	 the	 interrupts	 can	be	used	 for	peripherals.
Many	of	the	INT	16	to	INT	255	are	used	by	the	chip	manufacturer	to	be	assigned
to	 various	 peripherals	 such	 as	 timers,	 ADC,	 Serial	 COM,	 external	 hardware
interrupts,	and	so	on.	There	is	no	standard	in	assigning	the	INT	16	to	INT	255	to
the	 peripherals.	 Different	 manufacturers	 assign	 different	 interrupts	 to	 different
peripherals	and	you	need	to	examine	the	data	sheet	for	your	ARM	Cortex-M	chip.
Each	peripheral	device	has	a	group	of	special	function	registers	that	must	be	used
to	 access	 the	 device	 for	 configuration.	 For	 a	 given	 peripheral	 interrupt	 to	 take
effect,	 the	 interrupt	 for	 that	 peripheral	 must	 be	 enabled.	 The	 special	 function
registers	for	that	device	provide	the	way	to	enable	the	interrupts.

Fast	context	saving	in	task	switching
Most	of	the	interrupts	are	asynchronous,	that	means	they	may	happen	any

time	in	the	middle	of	program	execution.	When	the	interrupt	is	acknowledged	and
the	 interrupt	 service	 routine	 is	 launched,	 the	 interrupt	 service	 routine	 will	 need
some	CPU	resource,	mainly	the	CPU	registers,	to	execute	the	code.	In	order	not
to	 corrupt	 the	 register	 content	 of	 the	 program	 that	was	 running	 before	 interrupt
occurs,	 these	 CPU	 registers	 need	 to	 be	 preserved.	 This	 saving	 of	 the	 CPU
contents	 before	 switching	 to	 interrupt	 handler	 is	 called	 context	 switching	 (or
context	 saving).	The	use	of	 the	stack	as	a	place	 to	save	 the	CPU’s	contents	 is
tedious	and	time	consuming.	It	takes	time	to	save	all	the	registers.	In	executing	an
interrupt	service	 routine,	each	 task	generally	needs	some	key	 registers	such	as
PC	 (R15),	 LR	 (R14),	 and	 CPSR	 (flag	 register),	 in	 addition	 to	 some	 working
registers.	For	that	reason	the	ARM	Cortex-M	automatically	saves	the	registers	of
CPSR,	 PC,	 LR,	 R12,	 R3,	 R2,	 R1,	 and	 R0	 on	 stack	 when	 an	 interrupt	 is
acknowledged.	See	Figure	6-4.	If	the	interrupt	service	routine	needs	to	use	more
registers	than	those	preserved,	the	program	has	to	save	the	content	before	using
the	other	registers.	The	choice	of	the	registers	automatically	saved	adheres	to	the
ARM	Architecture	Procedure	Call	Standard	(AAPCS)	so	that	an	interrupt	handler
may	be	written	as	a	plain	C	function	without	the	need	of	any	special	provision.

When	 floating-point	 coprocessor	 is	 present,	 the	 FPU	 registers	 need	 to	 be
saved	too.	If	the	interrupt	handler	does	not	use	floating	point	coprocessor,	saving
FPU	 registers	 is	 a	 waste	 of	 time.	 The	 KL25Z	 ARM	 chip	 allows	 enabling	 lazy
stacking	of	 the	FPU	 registers.	When	 lazy	stacking	 is	enabled,	 the	stack	pointer
will	be	moved	as	 if	 the	FPU	registers	are	saved	 for	compatibility	 reason	but	 the
content	 of	 the	 FPU	 registers	 are	 not	 actually	 saved.	 This	 is	 very	 useful	 if	 no
floating	point	instructions	are	used	in	the	interrupt	handler.	Even	with	lazy	stacking
enabled,	the	interrupt	handler	still	has	the	option	to	save	the	FPU	registers	before
performing	floating	point	instructions.

Figure	6-4:	ARM	Cortex-M	Stack	Frame	upon	Interrupt

Processing	interrupts	in	ARM	Cortex-M
When	 the	 ARM	 Cortex-M	 processes	 any	 interrupt	 (from	 either	 Fault

Exceptions	or	peripheral	IRQs),	it	goes	through	the	following	steps:

1.							The	Current	processor	status	register	(CPSR)	is	pushed	onto	the	stack
and	SP	is	decremented	by	4,	since	CPSR	is	a	4-byte	register.

2.							The	current	PC	(R15)	is	pushed	onto	the	stack	and	SP	is	decremented	by
4.

3.							The	current	LR	(R14)	is	pushed	onto	the	stack	and	SP	is	decremented	by
4.

4.							The	current	R12	is	pushed	onto	the	stack	and	SP	is	decremented	by	4.

5.							The	current	R3	is	pushed	onto	the	stack	and	SP	is	decremented	by	4.

6.							The	current	R2	is	pushed	onto	the	stack	and	SP	is	decremented	by	4.

7.							The	current	R1	is	pushed	onto	the	stack	and	SP	is	decremented	by	4.

8.							The	current	R0	is	pushed	onto	the	stack	and	SP	is	decremented	by	4.

9.							Save	Floating	point	coprocessor	registers	or	move	SP	if	lazy	stacking	is
enabled.

10.			The	CPU	goes	into	the	Handler	Mode	(details	will	be	described	later).	LR	is
loaded	with	a	number	with	bit	31-5	all	1s.

11.			The	INT	number	(type)	is	multiplied	by	4	to	get	the	address	of	the	location
within	the	vector	table	to	fetch	the	program	counter	of	the	interrupt	service
routine	(interrupt	handler).

12.			From	the	memory	locations	pointed	to	by	this	new	PC,	the	CPU	starts	to
fetch	and	execute	instructions	belonging	to	the	ISR	program.

13.			When	one	of	the	return	instructions	is	executed	in	the	interrupt	service
routine,	the	CPU	recognizes	that	it	is	in	the	Handler	Mode	from	the	value	of
the	LR.	It	then	restores	the	registers	saved	when	entering	ISR	including	the

program	counter	from	the	stack	and	makes	the	CPU	run	the	code	where	it
left	off	when	interrupt	occurred.	See	Figure	6-5.

Figure	6-5:	Main	Program	gets	Interrupted

Difference	between	interrupt	and	a	subroutine	call
If	 the	execution	of	 an	 interrupt	 saves	 the	program	counter	of	 the	 following

instruction	 and	 jumps	 indirectly	 to	 the	 subroutine	 associated	 with	 the	 interrupt,
what	 is	 the	 difference	 between	 that	 and	 a	 BL	 instruction,	which	 also	 saves	 the
program	 counter	 and	 jumps	 to	 the	 desired	 subroutine	 (procedure)?	 The
differences	can	be	summarized	as	follows:

1.							A	“BL”	instruction	can	take	an	argument	and	jump	to	any	location	within	the
4-gigabyte	 address	 range	 of	 the	 ARM	 CPU,	 but	 “INT”	 goes	 to	 a	 fixed
memory	 location	 in	 the	 interrupt	 vector	 table	 to	 get	 the	 address	 of	 the
interrupt	service	routine.

2.	 	 	 	 	 	 	 A	 “BL”	 instruction	 is	 used	 by	 the	 programmer	 in	 the	 sequence	 of
instructions	in	the	program	but	an	externally	activated	hardware	interrupt	can
come	in	at	any	time,	requesting	the	attention	of	the	CPU.

3.	 	 	 	 	 	 	A	“BL”	 instruction	cannot	be	masked	(disabled),	but	“INT#”	belonging	to
externally	activated	hardware	interrupts	can	be	masked.

4.	 	 	 	 	 	 	A	“BL”	 instruction	automatically	saves	only	PC	of	the	next	 instruction	on
the	 stack,	 while	 “INT#”	 saves	 SP,	 R12,	 R3–R0,	 CPSR	 (flag	 register)	 in
addition	to	PC	of	the	next	instruction.

5.	 	 	 	 	 	 	An	interrupt	puts	the	CPU	in	the	Handler	Mode	while	the	“BL”	instruction
does	not	change	the	CPU	execution	mode.

6.							When	returning	from	the	end	of	the	subroutine	that	has	been	called	by	the
“BL”	instruction,	the	PC	is	restored	to	the	address	of	the	next	instruction	after
the	“BL”	instruction.	When	returning	from	the	interrupt	handler,	the	CPU	will
restore	the	registers	saved	when	the	CPU	entered	into	ISR	(the	CPSR,	R15,

R14,	R12,	R3–R0	registers)	from	the	top	of	stack.

Interrupt	priority
The	 next	 topic	 in	 this	 section	 is	 the	 concept	 of	 priority	 for	 exceptions	 and

IRQs.	What	happens	if	 two	interrupts	want	the	attention	of	the	CPU	at	the	same
time?	Which	has	priority?	 In	 the	ARM	Cortex-M	 the	Reset,	NMI	and	Hard	Fault
exceptions	have	fixed	priority	levels	and	are	set	by	the	ARM	itself	and	not	subject
to	 change.	 Among	 the	 Reset,	 NMI	 and	 Hard	 Fault,	 the	 Reset	 has	 the	 highest
priority.	As	we	can	see	from	Table	6-2,	the	NMI	and	Hard	Fault	have	lower	priority
than	Reset,	meaning	if	all	three	of	them	are	activated	at	the	same	time,	the	Reset
will	be	executed	first.	If	both	NMI	and	an	IRQ	are	activated	at	the	same	time,	NMI
is	 responded	 to	 first	 since	 NMI	 has	 a	 higher	 priority	 than	 IRQ.	 The	 rest	 of	 the
exceptions	 and	 IRQs	 have	 lower	 priority	 and	 are	 configurable,	 meaning	 their
priority	 levels	 can	 be	 set	 by	 the	 programmer.	 Programmable	 priority	 levels	 are
values	between	0	and	3	with	3	has	the	lowest	priority.

Interrupt	# Interrupt Priority	Level

0 Stack	Pointer	initial	value 	

1 Reset -3	Highest

2 NMI -2

3 Hard	Fault -1

4 Memory	Management	Fault Programmable

5 Bus	Fault Programmable

6 Usage	Fault	(undefined	instructions,	divide	by	zero,
unaligned	memory	access,	….) Programmable

7 Reserved Programmable

8 Reserved Programmable

9 Reserved Programmable

10 Reserved Programmable

11 SVCall Programmable

12 Debug	Monitor Programmable

13 Reserved Programmable

14 PendSV Programmable

15 SysTick Programmable

16 IRQ	for	peripherals Programmable

17 IRQ	for	peripherals Programmable

… … Programmable

255 IRQ	for	peripherals Programmable

Table	6-2:	Interrupt	Priority	for	ARM	Cortex-M

	

Table	 6-2	 shows	 standard	 interrupt	 assignment	 for	 ARM	 Cortex.	 Not	 all
Cortex-M	 chips	 have	 all	 the	 first	 15	 interrupts.	 In	 some	ARM	Cortex-M	 chips	 if
there	is	no	memory	management	unit	then	its	interrupt	is	reserved.	Make	sure	you
examine	your	ARM	Cortex-M	chip	manual	before	you	start	using	it.	Again	it	must
be	 emphasized	 that	 for	 the	 hardware	 IRQs	 coming	 through	 NVIC,	 the	 NVIC
resolves	priority	depending	on	the	way	the	NVIC	is	programmed.	Also,	no	all	the
interrupts	are	used	in	all	the	chips.		The	Freescale	KL25Z	uses	only	interrupt	#1-
#47	(or	up	to	IRQ31).

Interrupt	latency
The	time	from	the	moment	 the	event	 that	 triggers	an	 interrupt	signal	 to	 the

moment	 the	CPU	starts	 to	 execute	 the	 ISR	 code	 is	 called	 the	 interrupt	 latency.
This	 latency	depends	on	whether	 the	source	of	 the	 interrupt	 is	an	 internal	 (e.g.,
exceptions)	 or	 external	 hardware	 (e.g.,	 peripheral	 hardware	 IRQ)	 interrupt.	 The
duration	 of	 interrupt	 latency	 can	 also	 be	 affected	 by	 the	 type	 of	 the	 instruction
which	the	CPU	was	executing	when	the	interrupt	occurs.	It	takes	longer	in	cases
where	the	 instruction	being	executed	 lasts	for	many	instruction	cycles	compared
to	the	instructions	that	last	for	only	one	instruction	cycle	time.	In	the	ARM	Cortex-
M,	we	also	have	extra	clocks	added	to	the	latency	due	to	the	fact	that	it	saves	the
content	 of	 registers	 CPSR,	 PC,	 LR,	 R12,	 and	R0-R3	 on	 stack.	 See	 your	 ARM
Cortex-M	manual	for	the	timing	data	sheet.

Another	source	of	the	interrupt	latency	is	the	interrupt	priority.	As	mentioned
earlier,	 when	 several	 interrupts	 occur	 at	 the	 same	 time,	 the	 interrupt	 with	 the
highest	priority	is	acknowledged	first.	All	other	interrupts	have	to	wait.

Interrupt	inside	an	interrupt	handler	(nested	interrupt)
What	happens	if	the	ARM	is	executing	an	ISR	belonging	to	an	interrupt	and

another	 interrupt	 is	 activated?	 In	 such	 cases,	 a	 higher	 priority	 interrupt	 can
preempt	a	 lower	priority	 interrupt.	The	higher	priority	 interrupt	will	stop	 the	 lower
priority	 interrupt	 handler	 and	 launch	 the	 higher	 priority	 interrupt	 handler.	 In	 the
ARM	Cortex-M	systems,	it	is	up	to	the	software	engineer	to	configure	the	priority
level	 for	 each	 exception	 and	 IRQ	 device	 and	 set	 the	 policy	 of	 how	 to	 support
nested	 interrupt.	 In	 many	 older	 CPUs	 when	 an	 interrupt	 service	 routine	 is
launched,	 all	 other	 interrupts	 are	 masked.	 All	 interrupts	 happened	 at	 this	 time

have	 to	wait.	 If	 the	 interrupt	 service	 routine	 runs	 too	 long,	 there	 is	 a	 risk	 some
interrupts	may	be	 lost.	The	 interrupt	 service	 routine	may	unmask	 the	 interrupts.
But	in	doing	so,	it	will	allow	all	the	interrupts	to	preempt	itself.

The	ARM	Cortex-M	allows	only	the	higher	priority	 interrupts	to	preempt	the
lower	priority	 interrupt	 service	 routine.	The	programmer	 is	 responsible	 to	assign
the	proper	priority	to	each	IRQ	to	determine	whether	an	interrupt	may	preempt	the
other’s	interrupt	handler.	The	NVIC	in	ARM	Cortex-M	has	the	ability	to	capture	the
pending	interrupts	and	keeps	track	of	each	one	until	all	are	serviced.

Review	Questions
1.							True	or	false.	When	any	interrupt	is	activated,	the	CPU	jumps	to	a	fixed

and	unique	address.

2.							There	are	_____	bytes	of	memory	in	the	interrupt	vector	table	for	each
interrupt.

3.							How	many	K	bytes	of	memory	are	used	by	the	interrupt	vector	table,	and
what	are	the	beginning	and	ending	addresses	of	the	table	for	the	first	256
interrupts?

4.							The	program	associated	with	an	interrupt	is	also	referred	to	as
___________.

5.							What	is	the	function	of	the	interrupt	vector	table?

6.							What	memory	locations	in	the	interrupt	vector	table	hold	the	address	for
INT	16	ISR?

7.							The	ARM	Cortex-M	has	assigned	INT	2	to	NMI.	Can	that	be	changed?

8.							Which	interrupt	is	assigned	to	divide	error	exception	handling?

Section	6.2:	ARM	Cortex-M	Processor	Modes
In	this	section	we	examine	various	operation	modes	in	ARM	Cortex-M.

ARM	Cortex	Thread	(application)	and	Handler	(exception)
modes

In	comparing	the	traditional	ARM7	with	ARM	Cortex-M	series	we	see	some
major	 changes	 in	 the	 ARM	Cortex-M	 series.	 Among	 the	 changes	 are	 the	CPU
modes,	 stack,	 interrupt	 processing	 and	many	 new	 instructions.	 These	 changes
are	meant	to	make	the	ARM	Cortex-M	systems	to	run	programs	faster	and	more
efficiently.	We	 have	 examined	 some	of	 these	 changes	 in	 this	 chapter	 since	 the
vast	majority	 of	 them	are	 related	 to	 the	 interrupt	 execution.	The	ARM	Cortex-M
can	 run	 in	 one	 of	 the	 two	 modes	 at	 any	 given	 time.	 They	 are:	 (1)	 Thread
(Application)	 mode	 and	 (2)	 Handler	 (Exception)	 mode.	 The	 differences	 can	 be
stated	as	follows:

1.	 	 	 	 	 	 	 When	 the	 ARM	 Cortex-M	 is	 powered	 on	 and	 coming	 out	 of	 reset,	 it
automatically	 goes	 to	 the	 Thread	mode.	 The	 Thread	mode	 is	 the	mode	 that
vast	majority	of	 the	applications	programs	are	executed	 in.	The	CPU	spends
most	of	 its	 time	 in	Thread	mode	and	gets	 interrupted	only	 to	execute	 ISR	 for
exception	faults	or	peripheral	IRQs.

2.	 	 	 	 	 	 	The	ARM	Cortex-M	switches	to	Handler	mode	only	when	an	exception	fault
(of	 course	 other	 than	 the	 Reset)	 or	 an	 IRQ	 interrupt	 from	 a	 peripheral	 is
activated	to	get	the	attention	of	the	CPU	to	execute	an	ISR	(interrupt	handler).
Upon	returning	from	ISR,	 the	CPU	automatically	changes	from	Handler	mode
back	to	Thread	mode.	It	must	be	noted	that	of	all	 the	exceptions	and	IRQs	in
the	Table	6-1,	only	the	Reset	forces	the	CPU	into	Thread	mode	and	the	rest	are
executed	in	Handler	mode.

A	big	advantage	of	having	Handler	mode	is	that	when	returning	from	Handler
mode,	the	CPU	will	pop	the	stack	and	restore	the	registers	saved	during	entry	to
Handler	 mode.	 With	 this	 an	 interrupt	 handlers	 are	 written	 just	 like	 any	 other
functions	as	we	will	see	in	the	examples	soon.

There	are	two	Stacks	in	ARM	Cortex
The	classical	ARM	has	a	single	stack	pointer	 (R13)	 to	be	used	 to	point	 to

RAM	area	for	the	purpose	of	stack.	With	a	multi-threaded	operating	system,	every
thread	should	have	their	own	stack	so	does	the	operating	system	itself.	It	is	much
more	efficient	to	have	separate	stack	pointers	for	the	system	and	the	thread.	The
ARM	Cortex-M	has	 two	stack	pointer	 registers.	They	are	called	PSP	(processor
stack	 pointer)	 and	MSP	 (main	 stack	 pointer).	 Threads	 running	 in	 Thread	mode
should	use	the	process	stack	and	the	kernel	and	exception	handlers	should	use
the	main	stack.

The	bit	1,	ASP	(active	stack	pointer),	of	 the	special	 function	register	called
CONTROL	 register	 gives	 the	 option	 of	 choosing	MSP	or	PSP	 for	 stack	 pointer.

Upon	Reset	the	ASP=0,	meaning	that	R13	is	the	Main	Stack	pointer	(MSP)	and	its
value	 come	 from	 the	 first	 4	 bytes	 of	 the	 interrupt	 vector	 table	 starting	 at
0x00000000	 address	 location.	 By	making	 the	 ASP=1,	 the	 R13	 is	 the	 same	 as
PSP	 (processor	 stack	 pointer).	 Next,	 we	 examine	 the	 privilege	 levels	 in	 ARM
Cortex-M.

	

nPRIV	(Privilege):																												Defines	the	Thread	mode	privilege	level
0:												Privileged

1:												Unprivileged

Active	Stack	Pointer	(ASP):									Defines	the	currently	active	stack	pointer	(ASP	=
SPSEL)

0:												MSP	is	the	current	stack	pointer.

1:												PSP	is	the	current	stack	pointer.

Floating	Point	Context	Active	(FPCA)
0:												No	floating	point	context	active.

1:												Floating	point	context	active.

Figure	6-6:	CONTROL	Register	in	ARM	Cortex-M4

Processor	Mode Software Privilege	level

Thread Applications Privileged	and	Unprivileged

Handler ISR	for	Exceptions	and
IRQs Always	Privileged

In	Thread	mode,	use	bit	0	of	the	CONTROL	register	to	select	Privileged	or	Unprivileged

Table	6-3:	Privileged	level	Execution	and	Processor	Modes	in	ARM	Cortex-M

	

Privileged	and	Unprivileged	levels	in	ARM	Cortex-M
The	 ARM	 Cortex-M	 series	 has	 a	 new	 feature	 that	 did	 not	 exist	 in	 the

previous	ARM	products.	This	new	feature	is	called	privileged	level.	There	are	two
privilege	 levels	 in	 ARM	Cortex-M.	 They	 are	 called	 Privileged	 and	 Unprivileged.
The	Privileged	 level	 in	 ARM	Cortex-M	 can	 be	 used	 to	 limit	 the	CPU	 access	 to
special	 registers	and	protected	memory	area	 to	prevent	 the	system	from	getting
corrupted	 due	 to	 error	 in	 coding	 or	 malicious	 user.	 Here	 are	 summary	 of	 the
Privileged	level	software:

1.	 	 	 	 	 	 	Privileged	level	software	has	access	to	all	registers	including	the	special
function	registers	for	interrupts.

2.							Privileged	level	software	has	access	to	every	region	of	memory.

3.	 	 	 	 	 	 	Privileged	level	software	has	access	to	system	timer,	NVIC,	and	system
resources.

4.	 	 	 	 	 	 	 The	 Privileged	 level	 software	 can	 execute	 all	 the	 ARM	 Cortex-M
instructions	including	the	MRS,	MSR,	and	CPS.

5.	 	 	 	 	 	 	The	 Handlers	 for	 fault	 exceptions	 and	 IRQs	 can	 be	 executed	 only	 in
Privileged	level.

6.	 	 	 	 	 	 	Only	 the	Privileged	software	can	access	 the	CONTROL	register	 to	see
whether	 execution	 is	 in	 Privileged	 or	 Unprivileged	 mode.	 In	 Unprivileged
mode	 one	 can	 switch	 from	 Unprivileged	 level	 to	 Privileged	 level	 by	 using
SVC	instruction.

Processor	Mode Software Stack	Usage

Thread Applications MSP	or	PSP

Handler ISR	for	Exceptions	and
IRQs MSP

Note:	In	Thread	mode,	use	bit	1	of	the	Control	register	to	select	MSP	or	PSP	for	stack	pointer.

Table	6-4:	Processor	Modes	and	Stack	Usage	in	ARM	Cortex-M

	

Here	are	summary	of	the	Unprivileged	level	software:

1.	 	 	 	 	 	 	Unprivileged	 level	 software	 has	 no	 access	 to	 some	 registers	 such	 the
special	function	registers	for	interrupts.

2.							Unprivileged	level	software	has	limited	access	to	some	regions	of	memory.

3.							Unprivileged	level	software	is	blocked	from	accessing	system	timer,	NVIC,
and	system	control	block	and	resources.

4.	 	 	 	 	 	 	 The	 Unprivileged	 level	 software	 cannot	 execute	 some	 of	 the	 ARM
instructions	 such	 as	 CPS.	 It	 has	 limited	 access	 to	 the	 MRS	 and	 MSR
instructions.

5.							While	Handler	mode	is	always	executed	in	the	Privileged	level,	the	Thread
mode	software	can	be	executed	in	Privileged	or	Unprivileged	level.	The	bit	0
of	the	special	a	function	register	called	CONTROL	register	gives	the	option
of	running	the	software	in	Privileged	or	Unprivileged	mode.	

6.							In	Unprivileged	mode,	one	can	use	SVC	instruction	to	make	a	supervisor
call	to	switch	from	Unprivileged	level	to	Privileged	level.

Mode Privilege Stack	Pointer Typical	Example	usage

Handler Privileged Main Exception	Handling

Handler Unprivileged Any Reserved	since	Handler
is	always	Privileged

Thread Privileged Main Operating	system	kernel

Thread Privileged Process 	

Thread Unprivileged Main 	

Thread Unprivileged Process Application	threads

Table	6-5:	Processor	Mode,	Privilege,	and	Stack	in	ARM	Cortex

Special	Function	register	in	ARM	Cortex
Beside	the	traditional	general	purpose	registers	of	R0–R15,	the	ARM	Cortex

has	 many	 new	 special	 function	 registers.	 These	 registers	 are	 widely	 used	 in
programs	written	for	the	Cortex-M	based	embedded	systems.	See	Figure	6-7.

Figure	6-7:	ARM	Cortex-M	Registers

While	the	general	purpose	registers	of	R0–R15	can	be	accessed	using	the
MOV,	 LDR,	 and	 STR	 instructions,	 these	 new	 special	 function	 registers	 can	 be

accessed	only	with	the	two	new	instructions	MSR	and	MRS.	To	manipulate	(clear
or	set)	 the	bits	of	special	 function	registers,	 first	we	must	use	 the	MSR	to	move
them	 to	 a	 general	 purpose	 register	 and	 after	 changing	 their	 values	 they	 are
moved	back	by	using	MRS	instruction.	Table	6-6	shows	special	function	registers.

Register	name Privilege	Usage

MSP	(main	stack	pointer) Privileged

PSP	(processor	stack	pointer) Privileged	or	Unprivileged

PSR	(Processor	status	register)				 Privileged

APSR	(application	processor	status
register) Privileged	or	Unprivileged

ISPR	(interrupt	processor	status
register) Privileged

EPSR	(execution	processor	status
register) Privileged

PRIMASK	(Priority	Mask	register) Privileged

FAULTMASK	(fault	mask	register)				 Privileged

BASEPRI	(base	priority	register)							 Privileged

CONTROL	(control	register)								 Privileged							

Note:	We	must	use	MSR	and	MRS	instructions	to	access	the	above	registers

Table	6-6:	Special	function	registers	of	ARM	Cortex-M

Review	Questions
1.	 	 	 	 	 	 	True	or	false.	When	a	Reset	pin	is	activated,	the	ARM	CPU	wakes	up	in

Thread	mode.

2.	 	 	 	 	 	 	There	are	only	_____	processor	modes	 in	 the	ARM	Cortex.	Give	 their
names

3.	 	 	 	 	 	 	How	many	bytes	of	data	are	fetched	into	CPU	from	interrupt	vector	table
when	ARM	Cortex-M	is	Reset,	and	what	are	they?

4.							Another	name	for	ISR	is	___________.

5.							True	or	false.	When	an	interrupt	comes	in	from	exception	fault	or	IRQ,	the
ARM	CPU	switches	to	Handler	mode	automatically.

Section	6.3:	Freescale	I/O	Port	Interrupt	Programming
Freescale	KL25Z	is	an	ARM	Cortex-M	chip.	In	Chapter	2,	we	showed	how	to

use	GPIO	ports	for	simple	I/O.	We	also	showed	a	simple	program	getting	(polling)
an	 input	switch	and	placing	 it	on	LED.	 In	 this	section,	we	show	how	to	program
the	interrupt	capability	of	the	I/O	ports	in	KL25Z	chip.

PORTA	and	PORTD	Interrupt	Registers
In	this	section,	we	will	use	a	switch	to	show	an	example	of	external	interrupt

programming	using	GPIO	pins.	However,	before	we	do	that,	we	need	to	examine
the	 interrupt	vector	 table	 for	 the	Freescale	KL25Z	microcontroller.	For	Freescale
KL25Z,	only	PORTA	and	PORTD	are	capable	of	generating	interrupts.	Table	6-7
shows	 interrupt	assignment	 in	KL25Z	used	by	FRDM	board.	See	Section	3.3	of
KL25Z	reference	manual.

INT# IRQ# Vector	location Device

1-15 None 0000	0000	to	0000
003C CPU	Exception	(set	by	ARM)

16 0 0000	0040 DMA

17 1 0000	0044 DMA

18 2 0000	0048 DMA

19 3 0000	004C DMA

20 4 0000	0050 –-

21 5 0000	0054 FTFA

22 6 0000	0058 PMC

23 7 0000	005C LLWU

24 8 0000	0060 I2C0

25 9 0000	0064 I2C1

26 10 0000	0068 SPI0

27 11 0000	006C SPI1

28 12 0000	0070 UART0

29 13 0000	0074 UART1

30 14 0000	0078 UART2

31 15 0000	007C ADC0

32 16 0000	0080 CMP0

33 17 0000	0084 TPM0

34 18 0000	0088 TPM1

35 19 0000	008C TPM2

36 20 0000	0090 RTC

37 21 0000	0094 RTC

38 22 0000	0098 PIT

39 23 0000	009C –

40 24 0000	00A0 USB	OTG

41 25 0000	00A4 DAC0

42 26 0000	00A8 TSI0

43 27 - MCG

44 28 0000	00B0 LPTMR0

45 29 0000	00B4 –—l

46 30 0000	00B8 I/O	PORTA

47 31 0000-00BC I/O	PORTD

Table	6-7:	IRQ	assignment	in	KL25Z	of	FRDM	board

This	 can	 be	 found	 in	 the	 start-up	 header	 file	 of	 your	 C	 compiler.	 Notice
interrupt	 numbers	 16	 to	 255	 are	 assigned	 to	 the	 peripherals.	 In	 the	 Freescale
KL25Z,	the	INT	46	is	assigned	to	the	I/O	port	of	PORTA	and	INT47	to	I/O	PORTD.
See	 Table	 6-7.	 Although	 PORTA	 has	 many	 pins,	 we	 have	 only	 one	 interrupt
assigned	to	the	entire	PORTA.	This	is	common	in	many	microcontrollers.	In	other
words,	when	any	of	the	PORTA	pins	trigger	an	interrupt,	 they	all	go	to	the	same
address	location	in	the	interrupt	vector	table.	It	 is	the	job	of	our	interrupt	Service
Routine	(ISR	or	interrupt	Handler)	to	find	out	which	pin	caused	the	interrupt.	Next,
we	examine	the	registers	associated	with	the	PORTA	interrupt.

Upon	Reset,	 all	 the	 interrupts	 are	 disabled	 at	 the	 peripheral	modules	 and
NVIC	but	enabled	globally.	To	enable	any	interrupt	we	need	these	steps:

1)						Enable	the	interrupt	for	a	specific	peripheral	module.

2)						Enable	the	interrupts	at	the	NVIC	module.	

Next,	we	look	at	the	details	of	each	one.

1)	 	 	 	 	 	We	need	to	enable	the	interrupt	capability	of	a	given	peripheral	at	the
module	 level.	 This	 should	 be	 done	 after	 other	 configurations	 of	 that
peripheral	are	done.	In	the	case	of	I/O	ports,	each	pin	can	be	used	as	a
source	of	external	hardware	interrupt.	This	is	done	with	the	PORTx_PCR
register,	as	we	will	see	soon.

Figure	6-8:	Interrupt	enabling	with	all	3	levels

	

Figure	6-9:	PORTx_PCRn	register

Notice	that,	the	IRQC	field	(bits	D19-D16)	of	PORTx_PCR	register	are	used
to	enable	the	interrupt	capability	of	each	pin	of	the	I/O	port.		They	allow	you
to	select	the	trigger	of	interrupt	by	an	edge	or	a	level	(which	we	will	describe
in	more	details	later).		For	example,	to	enable	the	interrupts	for	PTA1	on	the
falling	edge,	we	will	need	the	following:

PORTA->PCR[1]	&=	~0xF0000;		/*	clear	interrupt	selection	*/

PORTA->PCR[1]	|=		0xA0000;			/*	enable	falling	edge	interrupt	*/

2)						In	ARM	Cortex,	there	is	an	interrupt	enable	for	each	entry	in	the	interrupt
vector	table.	These	enable	bits	are	in	the	registers	in	NVIC.	Each	register
covers	32	IRQ	interrupts.	For	example,	register	EN0	controls	the	enable
the	interrupts	for	IRQ0	to	IRQ31,	EN1	for	IRQ32	to	IRQ63,	and	so	on.
See	Figure	6-10.

Figure	6-10:	Interrupts	0–31	Set	Enable	(EN0)

Notice,	these	registers	are	called	Interrupt	Set	Enable	and	we	have	an	array

for	all	of	them.	The	array	is	referred	to	as	ISER[0],	ISER[1],	and	so	on.	The
KL25Z	has	a	total	of	32	IRQs	and	only	ISER[0]	is	used.

As	we	can	see	in	the	interrupt	vector	table	in	Table	6-7,	the	PORTA	interrupt
is	 assigned	 to	 IRQ30.	 Therefore,	 to	 enable	 the	 interrupt	 associated	 with
PORTA	in	Vector	table,	we	need	the	following:

NVIC->ISER[0]	|=	0x40000000;				/*	enable	INT30	(bit	30	of	ISER[0])	*/

The	interrupts	can	be	enabled	using	the	following	function,	as	well:

void	NVIC_EnableIRQ(IRQn_Type	IRQn);

The	function	is	defined	in	the	core_cm0plus.h	file	which	is	included	in	the
MKL25Z4.h	header	file.	To	enable	an	interrupt	using	this	function,	the	IRQ
number	of	the	interrupt	should	be	passed	as	the	argument	to	the	function.
For	example,	the	following	statement	enables	PORTA	interrupt:

NVIC_EnableIRQ(30);

Since	the	IRQ	numbers	of	all	the	interrupts	are	defined	in	the	MKL25Z4.h,
we	can	use	their	names	instead	of	their	numbers.	For	example,	to	enable
PORTA	interrupt	the	following	can	be	used	as	well:

NVIC_EnableIRQ(PORTA_IRQn);

For	 more	 information,	 open	 the	 MKL25Z4.h	 file	 and	 find	 “typedef	 enum
IRQn”	in	the	file.

To	disable	interrupts	there	are	other	registers:	ICER0	to	ICER3.	Again
because	KL25Z	device	has	32	IRQs,	only	ICER0	is	used.	See	the	Figure	6-
11.

Figure	6-11:	Interrupts	0–31	Clear	Enable	(DIS0)

Each	interrupt	can	be	disabled	by	writing	a	1	to	the	corresponding	bit	in	the
ICER	registers.	Writing	0	to	the	ICER	registers	has	no	effect	on	their	values.
For	example,	the	following	instruction	disables	UART0	interrupt,	keeping	the
other	interrupts	unchanged:

NVIC->ICER[0]	=	0x1000;			/*disable	UART0	Interrupt	*/

The	interrupts	can	be	disabled	using	the	following	function,	as	well:

void	NVIC_DisableIRQ(IRQn_Type	IRQn);

For	example,	the	following	instruction	disables	the	UART0	interrupt:

NVIC_DisableIRQ(UART0_IRQn);

In	fact,	each	bit	of	the	ISER	register	together	with	its	peer	in	the	ICER
register	is	connected	to	a	J‑K	Flip‑Flop,	as	shown	below:

Figure	6-12:	Enabling	and	Disabling	an	Interrupt

3)	 	 	 	 	 	Global	 interrupt	 enable/disable	 allows	 us	with	 a	 single	 instruction	 to
mask	 all	 interrupts	 during	 the	 execution	 of	 some	 critical	 task	 such	 as
manipulating	 a	 common	 pointer	 shared	 by	 multiple	 threads.	 In	 ARM
Cortex	 M,	 we	 do	 the	 global	 enable/disable	 of	 interrupts	 with	 assembly
language	 instructions	 of	 CPSID	 I	 (Change	 processor	 state-disable
interrupts)	and	CPSIE	I	(Change	processor	state-enable	interrupts).	In	C
language	we	use	pseudo-functions:

__enable_irq();				/*	Enable	interrupt	Globally	*/

and

__disable_irq();				/*	Disable	interrupt	Globally	*/

It	 is	 a	 good	 idea	 to	 disable	 all	 interrupts	 during	 the	 initialization	 of	 the
program	and	enable	interrupts	after	all	the	initializations	are	complete.	Now,
using	the	following	lines	of	code,	we	enable	the	interrupts	for	PTA1	pin	at	all
three	levels:

PORTA->PCR[1]	&=	~0xF0000;		/*	clear	interrupt	selection	*/

PORTA->PCR[1]	|=		0xA0000;			/*	enable	falling	edge	interrupt	*/

NVIC->ISER[0]	|=	0x40000000;				/*	enable	INT30	(bit	30	of	ISER[0])	*/

__enable_irq();				/*	global	enable	IRQs	*/

IRQ	Priority
As	describe	earlier,	since	ARM	Cortex-M	supports	higher	priority	interrupt	to

preempt	the	lower	interrupt	handler,	it	is	important	that	each	interrupt	be	assigned
a	 proper	 priority	 before	 they	 are	 enabled.	 The	 IRQ	 interrupt	 priorities	 are
controlled	 by	 the	 NVIC	 IPR	 registers.	 For	 each	 IRQ	 number,	 there	 is	 one	 byte
corresponding	 to	 that	 IRQ	 to	 assign	 its	 priority.	 The	 allowed	 priority	 levels	 are
ranging	from	0	to	3	in	a	KL25Z	device	and	they	are	defined	by	two	bits	left	justified
in	 that	 byte.	 There	 are	 eight	 IPR	 registers	 to	 hold	 the	 priority	 of	 32	 IRQs.	One
needs	to	identify	the	byte	and	the	register	to	set	the	IRQ	priority.	We	will	describe
it	in	more	details	in	Section	6.7.

Interrupt	trigger	point
When	 an	 input	 pin	 is	 connected	 to	 an	 external	 device	 to	 be	 used	 for

interrupt,	we	have	5	choices	for	trigger	point.	They	are:

1)						low-level	trigger	(active	Low	level),

2)						high-level	trigger	(active	High	level),

3)						rising-edge	trigger	(positive-edge	going	from	Low	to	High),

4)						falling-Edge	trigger	(negative-edge	going	from	High	to	Low),

5)						Both	edge	(rising	and	falling)	trigger.

In	Freescale	KL25Z,	we	must	use	PORTX_PCRn	register	to	decide	the	level
or	edge	for	I/O	interrupts.

Figure	6-13:	PORTx_PCR	Interrupt	activation	bits

From	above	 figure,	we	see	 the	D19-D16	bits	are	used	 to	decide	 low-level,
high-level,	falling-edge,	rising-edge,	or	both-edge	activation.

	

D19 D18 D17 D16 	

1 0 0 0 Interrupt	when	logic	zero	(Active	Low-
level).

1 0 0 1 Interrupt	on	rising	edge.

1 0 1 0 Interrupt	on	falling	edge.

1 0 1 1 Interrupt	on	either	edge.

1 1 0 0 Interrupt	when	logic	one	(Active	High-
level)

Table	6-8:	I/O	Interrupt	Trigger

Now,	 the	 following	 lines	 of	 code	make	 the	 PTA1	 interrupt	 trigger	 on	 logic
zero.

PORTA->PCR[1]	&=	~0xF0000;		/*	clear	interrupt	selection	*/

PORTA->PCR[1]	|=		0x80000;				/*	enable	low-level	interrupt	*/

We	can	also	do	both	negative	and	positive	edge	trigger	too,	as	we	will	see
soon.

In	 program	 6-1,	 the	 main	 program	 toggles	 the	 red	 LED	 on	 PTB18
continuously.	When	an	interrupt	comes	from	an	external	SW	connected	to	PTA1,	it
toggles	the	green	LED	on	PTB19	for	a	short	period	of	time	then	it	returns	back	to
the	main.	 The	 delay	 function	 is	 called	 several	 times	 in	 the	 interrupt	 handler	 to

make	the	LED	blink.	This	is	done	only	for	demonstration	purpose.	It	is	generally	a
poor	 practice	 to	 do	 delay	 or	 to	 wait	 for	 some	 event	 to	 happen	 in	 the	 interrupt
service	routine	because	when	interrupt	service	routine	is	active,	the	main	program
is	halted	as	you	can	see	that	when	the	green	LED	is	blinking,	the	red	LED	ceases
to	blink.

With	 Keil	 µVision	 IDE,	 a	 new	 project	 will	 get	 an	 assembly	 startup	 code
startup_MKL25Z4.s	created	by	 the	project	wizard.	For	each	 interrupt,	 there	 is	a
dummy	 interrupt	 handler	written	 that	 does	 not	 perform	any	 thing	 and	will	 never
return	from	the	handler.	The	addresses	of	these	interrupt	handlers	are	listed	in	the
interrupt	vector	 table	named	__Vectors	 in	 the	 file.	To	write	an	 interrupt	handler,
one	has	to	find	out	the	name	of	the	dummy	interrupt	handler	in	the	interrupt	vector
table	and	reuse	the	name	of	the	dummy	interrupt	handler.	The	linker	will	overwrite
the	interrupt	vector	table	with	the	address	of	the	new	interrupt	handler.	In	the	case
of	 PORTA	 interrupt,	 the	 interrupt	 handler	 name	 is	 PORTA_IRQHandler.	 The
interrupt	handler	is	written	with	a	format	of	a	function	in	C	language.

It	is	critical	that	the	interrupt	handler	clears	the	interrupt	flag	before	returning
from	interrupt	handler.	Otherwise	the	interrupt	appears	as	if	it	is	still	pending	and
the	 interrupt	handler	will	 be	executed	again	and	again	 forever	and	 the	program
hangs.	The	GPIO	pin	interrupt	posts	an	interrupt	flag	at	its	corresponding	bit	in	the
Interrupt	Status	Flag	Register	(PORTx_ISFR).	For	example,	PTA1	interrupt	posts
the	interrupt	flag	in	bit	1	of	PORTA_ISFR.		To	clear	the	interrupt	flag,	the	program
writes	a	1	to	the	location	of	the	flag.	Writing	a	zero	to	the	flag	has	no	effect.	So	to
clear	the	interrupt	flag	of	PTA1,	the	following	statement	is	used:

PORTA->ISFR	|=	0x00000002;

The	following	program	configures	PTA1	and	PTA2	pins	as	external	interrupt
source.	The	pins	are	set	to	trigger	on	the	falling	edge	of	the	signal	and	the	internal
pull-up	 is	 enabled.	 A	 push	 button	 switch	 should	 be	 connected	 between	 either
PTA1	pin	or	PTA2	pin	to	ground.	Pressing	the	push	button	switch	will	generate	a
falling	edge	and	trigger	a	PORTA	interrupt.	The	interrupt	handler	blinks	the	green
LED	 three	 times.	 The	 infinite	 loop	 in	main	 blinks	 the	 red	 LED	 continuously	 but
when	the	interrupt	is	acknowledged	and	the	green	LED	is	blinking,	the	blinking	of
the	red	LED	is	halted.

	

Program	6-1:	PORTA	interrupt	from	a	switch

	

/*	p6_1:	PORTA	interrupt	from	a	switch	*/

/*	Upon	pressing	a	switch	connecting	either	PTA1	or	PTA2	to	ground,	the	green
LED	will	toggle	for	three	times.	*/

	/*	Main	program	toggles	red	LED	while	waiting	for	interrupt	from	switches.	*/

	

#include	“MKL25Z4.h”

	

void	delayMs(int	n);

	

int	main(void)	{

__disable_irq();												/*	disable	all	IRQs	*/

SIM->SCGC5	|=	0x400;								/*	enable	clock	to	Port	B	*/

PORTB->PCR[18]	=	0x100;					/*	make	PTB18	pin	as	GPIO	*/

PORTB->PCR[19]	=	0x100;					/*	make	PTB19	pin	as	GPIO	*/

PTB->PDDR	|=	0xC0000;							/*	make	PTB18,	19	as	output	pin	*/

PTB->PDOR	|=	0xC0000;							/*	turn	off	LEDs	*/

SIM->SCGC5	|=	0x200;								/*	enable	clock	to	Port	A	*/

/*	configure	PTA1	for	interrupt	*/

PORTA->PCR[1]	|=		0x00100;		/*	make	it	GPIO		*/

PORTA->PCR[1]	|=		0x00003;		/*	enable	pull-up	*/

PTA->PDDR	&=	~0x0002;							/*	make	pin	input	*/

PORTA->PCR[1]	&=	~0xF0000;		/*	clear	interrupt	selection	*/

PORTA->PCR[1]	|=		0xA0000;		/*	enable	falling	edge	interrupt	*/

//	configure	PTA2	for	interrupt

PORTA->PCR[2]	|=		0x00100;		/*	make	it	GPIO		*/

PORTA->PCR[2]	|=		0x00003;		/*	enable	pull-up	*/

PTA->PDDR	&=	~0x0004;							/*	make	pin	input	*/

PORTA->PCR[2]	&=	~0xF0000;		/*	clear	interrupt	selection	*/

PORTA->PCR[2]	|=		0xA0000;		/*	enable	falling	edge	interrupt	*/

NVIC->ISER[0]	|=	0x40000000;				/*	enable	INT30	(bit	30	of	ISER[0])	*/

__enable_irq();													/*	global	enable	IRQs	*/

	

/*	toggle	the	red	LED	continuously	*/

while(1)	{

				PTB->PTOR	|=	0x40000;			/*	toggle	red	LED	*/

delayMs(500);

}

}

	

/*	A	pushbutton	switch	is	connecting	either	PTA1	or	PTA2	to	ground	to	trigger
PORTA	interrupt	*/

void	PORTA_IRQHandler(void)	{

int	i;

	

/*	toggle	green	LED	(PTB19)	three	times	*/

for	(i	=	0;	i	<	3;	i++)	{

PTB->PDOR	&=	~0x80000;		/*	turn	on	green	LED	*/

delayMs(500);

PTB->PDOR	|=	0x80000;			/*	turn	off	green	LED	*/

delayMs(500);

}

PORTA->ISFR	=	0x00000006;		/*	clear	interrupt	flag	*/

}

	

/*	Delay	n	milliseconds

	*	The	CPU	core	clock	is	set	to	MCGFLLCLK	at	41.94	MHz	in	SystemInit().

	*/

void	delayMs(int	n)	{

int	i;

int	j;

for(i	=	0	;	i	<	n;	i++)

for	(j	=	0;	j	<	7000;	j++)	{}

}

	

Notice	 in	 Program	 6-1,	 if	 we	 have	 two	 switches	 connected	 to	 PTA1	 and
PTA2,	 the	program	does	not	make	any	distinction	which	switch	 is	pressed.	The
reason	is	that	only	one	interrupt	(IRQ30)	is	associated	with	the	entire	PORTA.	In

other	words,	whichever	 pin	 of	PORTA	 interrupt	 is	 activated	 it	 goes	 to	 the	 same
interrupt	 handler	 belonging	 to	PORTA.	Now,	we	can	modify	 the	Program	6‑1	 to
distinguish	 between	 various	 pins	 of	 PORTA.	 That	 means,	 by	 pressing	 SW1
(PTA1)	we	can	toggle	the	green	LED	(PTB19)	and	when	SW2	(PTA2)	is	pressed
blue	 LED	 (PTD1)	 is	 toggled.	 Each	 of	 the	 PORTA	 pin	 interrupt	 sets	 a	 bit	 in	 the
PORTA_ISFR.	The	 interrupt	handler	 reads	 the	PORTA_ISFR	register	 to	 find	out
which	 interrupt	 flag	 bit	 is	 posted	 and	 which	 pin	 is	 requesting	 interrupt.	 See
Program	 6-2.	 This	 is	 like	 using	 a	 port	 for	 security	 system	 in	 which	 each	 pin	 is
assigned	to	a	window	or	a	door.	A	different	message	can	be	produced	depending
on	which	door	or	window	is	opened.	Notice	when	both	switches	are	pressed	and
released,	both	interrupts	will	be	served	sequentially.	The	sequence	the	interrupts
are	 served	 depends	 on	 the	 sequence	 their	 interrupt	 flags	 are	 checked	 in	 the
interrupt	handler.	For	example	in	Program	6-2,	PTA1	interrupt	flag	is	checked	first
therefore	PTA1	interrupt	is	serviced	before	PTA2	interrupt.

Program	6-2:	Rewrite	of	the	interrupt	handler	in	Program	6-1	to	distinguish	the	interrupt	pin

	

/*	p6_2:	PORTA	interrupt	from	one	of	the	two	switches	*/

/*	Upon	pressing	a	switch	connecting	PTA1	to	ground,	the	green	LED	will	toggle
for	three	times.	If	a	switch	between	PTA2	and	ground	is	pressed,	the	blue	LED
will	toggle	for	three	times.	*/

	/*	Main	program	toggles	red	LED	while	waiting	for	interrupt	from	switches.

	*/

	

#include	“MKL25Z4.h”

	

void	delayMs(int	n);

	

int	main(void)

{

__disable_irq();												/*	disable	all	IRQs	*/

SIM->SCGC5	|=	0x400;								/*	enable	clock	to	Port	B	*/

SIM->SCGC5	|=	0x1000;							/*	enable	clock	to	Port	D	*/

PORTB->PCR[18]	=	0x100;					/*	make	PTB18	pin	as	GPIO	*/

PORTB->PCR[19]	=	0x100;					/*	make	PTB19	pin	as	GPIO	*/

PTB->PDDR	|=	0xC0000;							/*	make	PTB18,	19	as	output	pin	*/

PORTD->PCR[1]	=	0x100;						/*	make	PTD1	pin	as	GPIO	*/

PTD->PDDR	|=	0x02;										/*	make	PTD1	as	output	pin	*/

PTB->PDOR	|=	0xC0000;							/*	turn	off	red/green	LEDs	*/

PTD->PDOR	|=	0x02;										/*	turn	off	blue	LED	*/

SIM->SCGC5	|=	0x200;								/*	enable	clock	to	Port	A	*/

//	configure	PTA1	for	interrupt

PORTA->PCR[1]	|=		0x00100;		/*	make	it	GPIO		*/

PORTA->PCR[1]	|=		0x00003;		/*	enable	pull-up	*/

PTA->PDDR	&=	~0x0002;							/*	make	pin	input	*/

PORTA->PCR[1]	&=	~0xF0000;		/*	clear	interrupt	selection	*/

PORTA->PCR[1]	|=		0xA0000;		/*	enable	falling	edge	interrupt	*/

//	configure	PTA2	for	interrupt

PORTA->PCR[2]	|=		0x00100;		/*	make	it	GPIO		*/

PORTA->PCR[2]	|=		0x00003;		/*	enable	pull-up	*/

PTA->PDDR	&=	~0x0004;							/*	make	pin	input	*/

PORTA->PCR[2]	&=	~0xF0000;		/*	clear	interrupt	selection	*/

PORTA->PCR[2]	|=		0xA0000;		/*	enable	falling	edge	interrupt	*/

NVIC->ISER[0]	|=	0x40000000;				/*	enable	INT30	(bit	30	of	ISER[0])	*/

__enable_irq();													/*	global	enable	IRQs	*/

	

/*	toggle	the	red	LED	continuously	*/

while(1)

{

PTB->PTOR	|=	0x40000;			/*	toggle	red	LED	*/

delayMs(500);

}

}

	

/*	A	pushbutton	switch	is	connected	to	PTA1	pin	to	trigger	PORTA	interrupt	*/

void	PORTA_IRQHandler(void)

{

int	i;

	

while	(PORTA->ISFR	&	0x00000006)	{

if	(PORTA->ISFR	&	0x00000002)	{

/*	toggle	green	LED	(PTB19)	three	times	*/

for	(i	=	0;	i	<	3;	i++)	{

PTB->PDOR	&=	~0x80000;		/*	turn	on	green	LED	*/

delayMs(500);

PTB->PDOR	|=	0x80000;			/*	turn	off	green	LED	*/

delayMs(500);

}

PORTA->ISFR	=	0x00000002;		/*	clear	interrupt	flag	*/

}

if	(PORTA->ISFR	&	0x00000004)	{

/*	toggle	blue	LED	(PTD1)	three	times	*/

for	(i	=	0;	i	<	3;	i++)	{

PTD->PDOR	&=	~0x02;		/*	turn	on	blue	LED	*/

delayMs(500);

PTD->PDOR	|=	0x02;			/*	turn	off	blue	LED	*/

delayMs(500);

}

PORTA->ISFR	=	0x00000004;		/*	clear	interrupt	flag	*/

}

}

}

	

/*	Delay	n	milliseconds

	*	The	CPU	core	clock	is	set	to	MCGFLLCLK	at	41.94	MHz	in	SystemInit().

	*/

void	delayMs(int	n)	{

int	i;

int	j;

for(i	=	0	;	i	<	n;	i++)

for	(j	=	0;	j	<	7000;	j++)	{}

}

Interrupting	on	both	edge
The	next	example	Program	6-3	is	to	connect	a	square	wave	of	3	V	to	PTD4

pin	and	 let	an	LED	toggle	at	 the	same	rate	as	 the	 input	 frequency.	The	PORTD
interrupt	 is	 configured	 to	 trigger	 on	 both	 rising	 edge	 and	 falling	 edge.	 Because
there	 is	 no	delay	 in	 the	 interrupt	 handler	 and	 the	 interrupt	 is	 triggered	by	 rising
edge	 and	 falling	 edge,	 it	 is	 necessary	 to	 trigger	 the	 interrupts	 using	 a	 function
generator.	 If	you	connect	PTD4	to	a	switch	to	the	ground,	the	program	does	not
work	 well	 because	 of	 contact	 bounce	 (as	 described	 in	 Chapter	 3).	 During	 the
contact	 bounce,	 it	 may	 trigger	 interrupt	 several	 times.	 The	 interrupt	 handler
supposed	to	toggle	the	blue	LED.	If	even	numbers	of	interrupts	are	acknowledged
when	the	switch	is	pressed	or	released	because	of	contact	bounce,	the	LED	will
not	change.	Also	notice	in	Table	6-7,	IRQ31	is	assigned	to	PORTD.

Program	6-3:	External	interrupt	on	both	edges

	

/*	p6_3:	Toggle	blue	LED	by	PTD4	interrupt	on	both	edges	*/

	

/*	PTD4	is	configured	to	interrupt	on	both	rising	edge	and	falling	edge.	In	the
interrupt	handler,	the	blue	LED	(PTD1)	is	toggled.	*/

	

#include	“MKL25Z4.h”

	

int	main(void)

{

__disable_irq();												/*	disable	all	IRQs	*/

SIM->SCGC5	|=	0x1000;							/*	enable	clock	to	Port	D	*/

PORTD->PCR[1]	=	0x100;						/*	make	PTD1	pin	as	GPIO	*/

PTD->PDDR	|=	0x02;										/*	make	PTD1	as	output	pin	*/

PTD->PDOR	|=	0x02;										/*	turn	off	blue	LED	*/

	

//	configure	PTD4	for	interrupt

PORTD->PCR[4]	|=		0x00100;		/*	make	it	GPIO		*/

PORTD->PCR[4]	|=		0x00003;		/*	enable	pull-up	*/

PTD->PDDR	&=	~0x0010;							/*	make	pin	input	*/

PORTD->PCR[4]	&=	~0xF0000;		/*	clear	interrupt	selection	*/

PORTD->PCR[4]	|=		0xB0000;		/*	enable	both	edge	interrupt	*/

NVIC->ISER[0]	|=	0x80000000;				/*	enable	INT31	(bit	31	of	ISER[0])	*/

__enable_irq();													/*	global	enable	IRQs	*/

	

while(1)

{

}

}

	

/*	A	pushbutton	switch	is	connected	to	PTD4	pin	to	trigger	PORTD	interrupt	*/

void	PORTD_IRQHandler(void)

{

	if	(PORTD->ISFR	&	0x00000010)	{

/*	toggle	blue	LED	(PTD1)	*/

PTD->PTOR	|=	0x0002;			/*	toggle	blue	LED	*/

PORTD->ISFR	=	0x0010;		/*	clear	interrupt	flag	*/

}

}

	

Review	Questions
1.							IRQ0	is	assigned	to	INT	number____.

2.							True	or	false.	There	is	an	interrupt	assigned	to	each	pin	of	every	GPIO.

3.							True	or	false.	The	I/O	ports	in	Freescale	KL25Z	support	both	level	and
edge	trigger	interrupts.

4.							We	use	___________in	C	to	enable	the	interrupts	globally.

5.							Show	3	levels	of	interrupt	enabling	we	must	go	through	before	we	start
using	it.

Section	6.4:	UART	Serial	Port	Interrupt	Programming
In	 Chapter	 4,	 we	 showed	 the	 programming	 of	 UART0	 in	 Freescale	 ARM

KL25Z	using	polling.	This	chapter	shows	how	to	do	the	same	thing	using	interrupt.
Using	interrupt	frees	up	the	CPU	from	having	to	poll	the	status	of	UART.

UART0	Interrupt	Programming	to	receive	data
Program	4-2	showed	how	UART0	receives	data	by	polling	the	RDRF	status

flag.	The	disadvantage	with	that	program	is	that	it	ties	down	the	CPU	while	polling
the	status	flag.	We	can	modify	it	to	make	it	an	interrupt	driven	program.	Examining
the	UARTx_C2	(UARTx	Control	2)	register,	we	see	bit	5	allows	us	to	enable	the
receiver	 interrupt.	 If	 the	 receiver	 interrupt	 for	 UART	 is	 enabled	 when	 a	 byte	 is
received,	the	receiver	RDRF	flag	is	directed	to	NVIC	and	that	causes	the	interrupt
handler	 associated	 with	 the	 UART0	 to	 be	 executed.	 In	 the	 UART0	 handler	 we
must	 read	 the	received	character.	Reading	 the	 received	character	 from	the	data
register	clears	the	RDRF	flag.

Figure	6-14:	UARTx_Control2	(UARTx_C2)

	

Field Bit Description

TIE D7

Transmit	Interrupt	Enable	bit.	Used	for	interrupt-driven
UART.

		0	=	TDRE	Interrupt	Request	is	disabled.

		1	=	TDRE	Interrupt	Request	is	enabled.

TCIE D6

Transmission	Complete	Interrupt	Enable	bit.	Used	for
interrupt-driven	UART.

		0	=	TC	Interrupt	Request	is	disabled.

		1	=	TC	Interrupt	Request	is	enabled.

RIE D5

Receiver	Full	Interrupt	Enable	bit.	Used	for	interrupt-driven
UART.

		0	=	RDRF	Interrupt	Request	is	disabled.

		1	=	RDRF	Interrupt	Request	is	enabled.

ILIE D4

Idle	Line	Interrupt	Enable	bit.	Used	for	interrupt-driven
UART.

		0	=	IDLE	Interrupt	Request	is	disabled.

		1	=	IDLE	Interrupt	Request	is	enabled.

Transmitter	Enable	bit.	We	must	enable	this	bit	to	transmit

TE D3 data.

		0	=	Transmitter	is	disabled.

		1	=	Transmitter	is	enabled.

RE D2

Receiver	Enable	bit.	We	must	enable	this	bit	to	receive
data.

		0	=	Receiver	is	disabled.

		1	=	Receiver	is	enabled.

RWU D1

Used	for	wake-up	condition	in	stand-by	mode.	See	the
KL25Z	manual.

		0	=	Normal	operation

		1	=	RWU	is	enabled.

SBK D0

Used	for	break	bit.	See	the	KL25Z	manual.

		0	=	No	break	character

		1	=	Transmit	break	character

Table	6-9:	UART	Control	2	(UARTx_C2)	register

From	 Table	 6-7	 we	 see	 IRQ12	 is	 assigned	 to	 UART0.	 We	 enable	 the
receiver	interrupt	in	UART0	as	follow:

UART0->C2	=	0x24;							/*	enable	receive	and	receive	interrupt*/

NVIC->ISER[0]	|=	0x00001000;				/*	enable	INT12	(bit	12	of	ISER[0])	*/

__enable_irq();					/*	global	enable	IRQs	*/

In	Program	6-4,	pressing	a	key	at	the	terminal	emulator	causes	the	PC	to	send
the	ASCII	code	of	the	key	to	the	FRDM	board.	When	the	character	is	received	by
UART0,	the	interrupt	handler	reads	the	character	and	writes	it	on	the	LEDs.

Program	6-4:	Using	the	UART0	interrupt

	

/*	p6_4.c	UART0	Receive	using	interrupt	*/

	

/*	This	program	modifies	p4_2.c	to	use	interrupt	to	handle	the	UART0	receive.

Receiving	any	key	from	terminal	emulator	(TeraTerm)	of	the	host	PC	to	the
UART0	on	Freescale	FRDM-KL25Z	board.

UART0	is	connected	to	openSDA	debug	agent	and	has	a	virtual	connection	to
the	host	PC	COM	port.

Launch	TeraTerm	on	a	PC	and	hit	any	key.

The	LED	program	from	P2_7	of	Chapter	2	is	used	to	turn	on	the	tri-color	LEDs

according	to	the	key	received.

By	default	in	SystemInit(),	FLL	clock	output	is	41.94	MHz.

Setting	BDH=0,	BDL=0x17,	and	OSR=0x0F	yields	115200	Baud.	*/

	

#include	<MKL25Z4.H>

	

void	UART0_init(void);

void	delayMs(int	n);

void	LED_init(void);

void	LED_set(int	value);

	

int	main	(void)	{

__disable_irq();								/*	global	disable	IRQs	*/

UART0_init();

LED_init();

__enable_irq();									/*	global	enable	IRQs	*/

	

while	(1)	{

/*	UART0	receive	is	moved	to	interrupt	handler*/

}

}

	

/*	UART0	interrupt	handler	*/

void	UART0_IRQHandler(void)	{

char	c;

	

c	=	UART0->D;											/*	read	the	char	received	*/

LED_set(c);													/*	and	use	it	to	set	LEDs	*/

}

	

/*	initialize	UART0	to	receive	at	115200	Baud	*/

void	UART0_init(void)	{

SIM->SCGC4	|=	0x0400;				/*	enable	clock	for	UART0	*/

SIM->SOPT2	|=	0x04000000;			/*	use	FLL	output	for	UART	Baud	rate
generator	*/

UART0->C2	=	0;										/*	turn	off	UART0	while	changing	configurations	*/

UART0->BDH	=	0x00;

UART0->BDL	=	0x17;						/*	115200	Baud	*/

UART0->C4	=	0x0F;							/*	Over	Sampling	Ratio	16	*/

UART0->C1	=	0x00;							/*	8-bit	data	*/

UART0->C2	=	0x24;							/*	enable	receive	and	receive	interrupt*/

NVIC->ISER[0]	|=	0x00001000;				/*	enable	INT12	(bit	12	of	ISER[0])	*/

	

SIM->SCGC5	|=	0x0200;				/*	enable	clock	for	PORTA	*/

PORTA->PCR[1]	=	0x0200;	/*	make	PTA1	UART0_Rx	pin	*/

}

	

/*	initialize	all	three	LEDs	on	the	FRDM	board	*/

void	LED_init(void)

{

SIM->SCGC5	|=	0x400;								/*	enable	clock	to	Port	B	*/

SIM->SCGC5	|=	0x1000;							/*	enable	clock	to	Port	D	*/

PORTB->PCR[18]	=	0x100;					/*	make	PTB18	pin	as	GPIO	*/

PTB->PDDR	|=	0x40000;							/*	make	PTB18	as	output	pin	*/

PTB->PSOR	|=	0x40000;							/*	turn	off	red	LED	*/

PORTB->PCR[19]	=	0x100;					/*	make	PTB19	pin	as	GPIO	*/

PTB->PDDR	|=	0x80000;							/*	make	PTB19	as	output	pin	*/

PTB->PSOR	|=	0x80000;							/*	turn	off	green	LED	*/

PORTD->PCR[1]	=	0x100;						/*	make	PTD1	pin	as	GPIO	*/

PTD->PDDR	|=	0x02;										/*	make	PTD1	as	output	pin	*/

PTD->PSOR	|=	0x02;										/*	turn	off	blue	LED	*/

}

	

/*	turn	on	or	off	the	LEDs	according	to	bit	2-0	of	the	value	*/

void	LED_set(int	value)

{

if	(value	&	1)				/*	use	bit	0	of	value	to	control	red	LED	*/

PTB->PCOR	=	0x40000;				/*	turn	on	red	LED	*/

else

PTB->PSOR	=	0x40000;				/*	turn	off	red	LED	*/

if	(value	&	2)				/*	use	bit	1	of	value	to	control	green	LED	*/

PTB->PCOR	=	0x80000;				/*	turn	on	green	LED	*/

else

PTB->PSOR	=	0x80000;				/*	turn	off	green	LED	*/

				if	(value	&	4)				/*	use	bit	2	of	value	to	control	blue	LED	*/

PTD->PCOR	=	0x02;							/*	turn	on	blue	LED	*/

else

PTD->PSOR	=	0x02;							/*	turn	off	blue	LED	*/

}

	

Also	 notice	 that,	 in	 Program	 6-4	 there	 is	 only	 a	 single	 interrupt	 for	 both
receiver	and	transmitter	of	UART0.	If	we	want	to	implement	both	transmitter	and
receiver	 interrupts,	 then	 we	 have	 to	 test	 the	 TDRE	 and	 RDRF	 bits	 in	 register
UART0_S1	to	see	which	one	caused	the	interrupt.	

Review	Questions
1.							In	Freescale	KL25Z,	Which	IRQ	is	assigned	to	UART0?

2.							True	or	false.	There	is	only	one	interrupt	for	both	Receiver	and	Transmitter.

3.							Which	pins	are	assigned	to	UART0_TX	and	UART0_RX	of	FRDM	board?

4.							We	use	register	__________	to	enable	the	interrupt	associated	with
UART0.

5.							True	or	false.	Upon	Reset,	UART0	is	enabled	and	ready	to	go.

Section	6.5:	Timer	Interrupt	Programming
In	Chapter	5,	we	showed	how	to	program	the	timers.	In	those	programming

examples,	we	used	polling	to	see	if	a	timeout	event	occurred.	In	this	section,	we
give	interrupt-based	version	of	those	programs.

Examine	 the	 programs	 in	 Section	 5.2	 of	 Chapter	 5.	 Notice,	 we	 could	 run
those	 programs	 only	 one	 at	 a	 time	 since	 we	 have	 to	 monitor	 the	 timer	 flag
continuously.	By	using	 interrupt,	we	can	run	several	of	 timer	programs	all	at	 the
same	 time.	 To	 do	 that,	 we	 need	 to	 enable	 the	 timer	 interrupt	 using	 the	 TOIE
(Timer	Overflow	Interrupt	Enable)	in	TPMx_SC	register.

Figure	6-15:	TOIE	in	TPMx_SC	(Timer	Status	Control)	register

From	 Table	 6-7,	 notice	 that	 IRQ17,	 IRQ18,	 and	 IRQ19	 are	 assigned	 to
TPM0,	TPM1,	and	TPM2,	 respectively.	The	 following	will	enable	 these	 timers	 in
NVIC:

NVIC->ISER[0]	|=	0x0020000;				/*	enable	IRQ17	(D17	of	ISER[0])	*/

NVIC->ISER[0]	|=	0x0040000;				/*	enable	IRQ18	(D18	of	ISER[0])	*/

NVIC->ISER[0]	|=	0x0080000;				/*	enable	IRQ19	(D19	of	ISER[0])	*/

In	 Program	 6-5,	 the	 main	 program	 toggles	 the	 blue	 LED	 of	 PTD1
continuously.	Using	interrupts,	TPM0	Toggles	red	LED	(PTB18)	and	TPM1	toggles
green	LED	(PTB19),	every	so	often.

Program	6-5:	Toggling	the	green	LED	using	the	Timer	interrupt

	

/*	p6_5.c	Toggling	red	and	green	LED	using	TPM0	and	TPM1	interrupts

	

	This	program	is	modified	from	p5-5	and	p5-6	but	instead	of	using	polling,	the
timeout	interrupts	are	used.

	TPM1	is	configured	to	run	twice	the	frequency	of	TPM0.

	The	infinite	loop	in	main	blinks	the	blue	LED.	The	TPM0	interrupt	handler
toggles	the	red	LED	and	the	TPM1	green	LED.	*/

	

#include	<MKL25Z4.H>

	

void	delayMs(int	n);

	

int	main	(void)	{

__disable_irq();								/*	global	disable	IRQs	*/

	

SIM->SCGC5	|=	0x400;								/*	enable	clock	to	Port	B	*/

SIM->SCGC5	|=	0x1000;							/*	enable	clock	to	Port	D	*/

PORTB->PCR[18]	=	0x100;					/*	make	PTB18	pin	as	GPIO	*/

PTB->PDDR	|=	0x40000;							/*	make	PTB18	as	output	pin	*/

PORTB->PCR[19]	=	0x100;					/*	make	PTB19	pin	as	GPIO	*/

PTB->PDDR	|=	0x80000;							/*	make	PTB19	as	output	pin	*/

PORTD->PCR[1]	=	0x100;						/*	make	PTD1	pin	as	GPIO	*/

PTD->PDDR	|=	0x02;										/*	make	PTD1	as	output	pin	*/

SIM->SOPT2	|=	0x01000000;			/*	use	MCGFLLCLK	as	timer	counter	clock	*/

SIM->SCGC6	|=	0x01000000;			/*	enable	clock	to	TPM0	*/	

TPM0->SC	=	0;															/*	disable	timer	while	configuring	*/

TPM0->SC	=	0x07;												/*	prescaler	/128	*/

TPM0->MOD	=	0xFFFF;									/*	max	modulo	value	*/

TPM0->SC	|=	0x80;											/*	clear	TOF	*/

TPM0->SC	|=	0x40;											/*	enable	timeout	interrupt	*/

TPM0->SC	|=	0x08;											/*	enable	timer	*/

NVIC->ISER[0]	|=	0x00020000;				/*	enable	IRQ17	(bit	17	of	ISER[0])	*/

	

SIM->SCGC6	|=	0x02000000;			/*	enable	clock	to	TPM1	*/

TPM1->SC	=	0;															/*	disable	timer	while	configuring	*/

TPM1->SC	=	0x07;												/*	prescaler	/128	*/

TPM1->MOD	=	0x7FFF;									/*	half	of	the	max	modulo	value	*/

TPM1->SC	|=	0x40;											/*	enable	timeout	interrupt	*/

TPM1->SC	|=	0x08;											/*	enable	timer	*/

NVIC->ISER[0]	|=	0x00040000;				/*	enable	IRQ18	(bit	18	of	ISER[0])	*/

__enable_irq();									/*	global	enable	IRQs	*/

	

while	(1)	{

PTD->PTOR	=	0x02;							/*	toggle	blue	LED	*/

delayMs(1500);

}

}

	

void	TPM0_IRQHandler(void)	{

PTB->PTOR	=	0x40000;								/*	toggle	red	LED	*/

TPM0->SC	|=	0x80;											/*	clear	TOF	*/

}

	

void	TPM1_IRQHandler(void)	{

PTB->PTOR	=	0x80000;								/*	toggle	green	LED	*/

TPM1->SC	|=	0x80;											/*	clear	TOF	*/

}

	

/*	Delay	n	milliseconds

	*	The	CPU	core	clock	is	set	to	MCGFLLCLK	at	41.94	MHz	in	SystemInit().

	*/

void	delayMs(int	n)	{

int	i;

int	j;

for(i	=	0	;	i	<	n;	i++)

for	(j	=	0;	j	<	7000;	j++)	{}

}

	

	Review	Questions
1.							For	KL25Z	chip,	which	IRQ	is	assigned	to	TPM0?

2.							True	or	false.	There	is	only	one	interrupt	for	all	the	TPM0	through	TPM2.

3.							We	use	register	__________to	enable	the	interrupt	associated	with	TPM0.

4.							Show	the	contents	of	EN0	register	for	enabling	TPM0.

5.							True	or	false.	Upon	Reset,	TPM0	is	enabled	and	ready	to	go.

Section	6.6:	SysTick	Programming	and	Interrupt
Another	 useful	 interrupt	 in	 ARM	 is	 the	 SysTick.	 The	 SysTick	 timer	 was

discussed	 in	Chapter	 5.	 Next,	 you	 learn	 how	 to	 use	 the	 SysTick	 interrupt.	 See
Figure	6-16.

Figure	6-16:	SysTick	Internal	Structure

If	INTEN=1,	when	the	COUNT	flag	is	set,	it	generates	an	interrupt.	INTEN	is
D1	of	the	STCTRL	register,	as	shown	in	Figure	6-17.

Figure	6-17:	SysTick	Control	and	Status	Register	(STCTRL)

The	SysTick	 interrupt	can	be	used	to	 initiate	an	action	on	a	periodic	basis.
This	 action	 is	 performed	 internally	 at	 a	 fixed	 rate	 without	 external	 signal.	 For
example,	 in	a	given	application	we	can	use	SysTick	 to	read	a	sensor	every	200
msec.	SysTick	is	used	widely	for	an	operating	system	so	that	the	system	software
may	 interrupt	 the	 application	 software	 periodically	 (often	 at	 10	 ms	 interval)	 to
monitor	and	control	the	system	operations.	See	Figure	6-18.

Figure	6-18:	SysTick	Counting

Using	SysTick	with	Interrupt
Examining	interrupt	vector	table	for	ARM	Cortex,	we	see	the	SysTick	is	the

interrupt	#15.

The	Program	6-6	uses	 the	SysTick	 to	 toggle	 the	 red	LED	of	PTB18	every
second.	We	 need	 the	 RELOAD	 value	 of	 41,940,000/16-1.	 The	 system	 clock	 is
running	at	41.94	MHz.	The	CLK_SRC	bit	of	CTRL	register	 is	cleared	so	system
clock/16	is	used	as	the	clock	source	of	SysTick.	The	COUNT	flag	is	raised	every
41,940,000	clocks	and	an	interrupt	occurs.	Then	the	RELOAD	register	 is	 loaded
with	41,940,000/16-1	automatically.	 (41,940,000-1	 is	 too	 large	a	number	 to	 fit	 in
the	24-bit	counter	of	SysTick	so	the	system	clock	is	divided	by	16	first.)

Notice	the	interrupt	is	enabled	in	SysTick	Control	register.	Because	SysTick
is	 an	 interrupt	 below	 interrupt	 #	 16,	 the	 enable/disable	 and	 the	 priority	 are	 not
managed	 by	 the	 registers	 in	 the	 NVIC.	 Its	 priority	 is	 controlled	 in	 the	 most
significant	byte	of	System	Handler	Priority	3	register	(SHPR3)	of	System	Control
Block	 (SCB->SHP[1]).	 There	 is	 no	 need	 to	 clear	 interrupt	 flag	 in	 the	 interrupt
handler	for	SysTick.

Program	6-6:	SysTick	interrupt

	

/*	p6_6.c:	Toggle	the	red	LED	using	the	SysTick	interrupt

	

	*	This	program	sets	up	the	SysTick	to	interrupt	at	1	Hz.

	*	The	system	clock	is	running	at	41.94	MHz.

	*	In	the	interrupt	handler,	the	red	LED	is	toggled.

	*/

	

#include	<MKL25Z4.H>

	

int	main	(void)	{

__disable_irq();												/*	global	disable	IRQs	*/

	

SIM->SCGC5	|=	0x400;								/*	enable	clock	to	Port	B	*/

PORTB->PCR[18]	=	0x100;					/*	make	PTB18	pin	as	GPIO	*/

PTB->PDDR	|=	0x40000;							/*	make	PTB18	as	output	pin	*/

	

SysTick->LOAD	=	41940000/16-1;	/*	reload	with	number	of	clocks	per	second
*/

SysTick->CTRL	=	3;										/*	enable	SysTick	interrupt,	use	system	clock/16	*/

	

__enable_irq();													/*	global	enable	interrupt	*/

while	(1)	{	/*wait	here	for	interrupt	*/

}

}

	

void	SysTick_Handler(void)	{

PTB->PTOR	=	0x40000;								/*	toggle	red	LED	*/

}

	

Review	Questions
1.							Which	interrupt	is	assigned	to	SysTick	in	KL25Z	chip?

2.							The	highest	number	we	can	place	in	TPMx_MOD	register	is
______________.

3.							We	use	register	__________to	enable	the	interrupt	associated	with
SysTick.

4.							True	or	false.	We	use	EN0	register	to	enable	SysTick	interrupt.

5.							Assume	TPM1	clock	source	frequency	of	32.768	kHz.	Find	the	value	for
TPM1_MOD	register	if	we	want	4	msec	elapsed	time.

Section	6.7:	Interrupt	Priority	Programming	in
Freescale	ARM

The	 implementation	 of	 interrupt	 varies	 from	 vendor	 to	 vendor.	While	 ARM
Holdings	Co.	has	control	over	 the	standardization	of	 the	 first	3	 interrupts	 (INT0,
INT1,	and	INT2),	the	ARM	licensees	are	free	to	implement	the	interrupts	of	INT3-
INT255.	The	first	three	interrupts	are	Reset,	NMI,	and	Hard	Fault.	For	these	three
interrupts,	Reset	has	the	highest	priority	(with	-3	priority	number),	then	NMI	(with
-2),	 and	Hard	Fault	 (with	 -1),	 in	 that	 order.	 In	ARM,	 the	 lower	 value	has	higher
priority.	All	other	 interrupts	have	 the	priority	number	0	meaning	 they	have	 lower
priority	 than	Reset,	NMI,	 and	Hard	Fault.	 In	 the	 case	of	ARM	Cortex,	 it	 groups
several	interrupts	together	with	specific	interrupt	priority.	There	are	several	special
function	registers	dealing	with	the	interrupts	belonging	to	system	exceptions	of	4
to	 15.	 You	 can	 explore	 them	 by	 reading	 the	 ARM	 Cortex	 data	 sheet.	 In	 this
section,	we	deal	with	the	priority	of	peripheral	interrupts	of	INT16	(IRQ0)	to	INT47
(IRQ31).

IRQ0	to	IRQ31	in	Freescale	ARM	KL25Z
The	INT16	is	assigned	to	IRQ0	since	the	first	16	interrupts	(INT0-INT15)	are

used	by	the	ARM	core	itself.	Not	all	the	IRQs	are	implemented	in	all	ARM	chips.
For	 example,	 The	 Freescale	 ARM	 KL25Z	 chip	 implements	 up	 to	 IRQ31	 (or
INT47).	 In	other	words,	KL25Z	has	 IRQ0	 to	 IRQ31.	Notice	 that	 if	we	add	16	 to
IRQ#	we	get	its	INT#.	We	learned	in	Section	6.1	that,	by	multiplying	the	INT#	by	4
we	 get	 its	 address	 in	 the	 interrupt	 vector	 table.	 Now,	 as	 far	 as	 peripherals	 are
concerned,	we	must	 pay	 special	 attention	 to	 the	 IRQ#	 since	 this	 is	 used	 in	 the
priority	 scheme	 used	 by	 the	 NVIC.	 According	 to	 ARM	 Cortex	 data	 sheet,	 an
interrupt	(exception)	can	be	in	one	of	the	following	four	states:

Inactive.	The	exception	is	not	active	and	not	pending.
Pending.	The	exception	is	waiting	to	be	serviced	by	the	processor.	An

interrupt	request	from	a	peripheral	or	from	software	can	change	the	state	of
the	corresponding	interrupt	to	pending.

Active.	An	exception	that	is	being	serviced	by	the	processor	but	has	not
completed.

Note:	An	exception	handler	can	interrupt	the	execution	of	another
exception	handler.	In	this	case,	both	exceptions	are	in	the	active	state.

Active	and	Pending.	The	exception	is	being	serviced	by	the	processor,
and	there	is	a	pending	exception	from	the	same	source.”

When	 more	 than	 one	 interrupts	 is	 pending,	 the	 interrupt	 with	 the	 highest
priority	 is	 acknowledged	 first.	 While	 an	 interrupt	 handler	 is	 running,	 another
interrupt	with	higher	priority	will	interrupt	the	current	interrupt	handler	and	start	its
own	interrupt	handler	(nested	interrupts).

The	IPR	registers	and	Priority	Grouping	in	ARM	Cortex
The	 priority	 of	 an	 IRQ	 is	 assigned	 in	 one	 of	 the	 interrupt	 priority	 registers

called	IPRx	(Interrupt	PRorityx)	in	NVIC.	If	we	do	not	assign	a	priority	to	an	IRQ,
by	default,	it	has	priority	0.	Each	IRQ	uses	one	byte	in	an	interrupt	priority	register.
Therefore,	 each	 interrupt	 priority	 register	 holds	 priorities	 for	 four	 IRQ.	 For
example,	IPR0	(IPR	zero)	holds	the	priorities	of	IRQ0,	IRQ1,	IRQ2	and	IRQ3.	In
the	same	way,	the	priorities	of	IRQ4,	IRQ5,	IRQ6	and	IRQ7	are	assigned	in	IPR1.
For	32	 IRQs,	eight	 interrupt	priority	 registers	are	used.	The	KL25Z	device	uses
only	the	two	most	significant	bits	of	the	byte	in	the	interrupt	priority	register.	With
two	bits,	 there	can	be	 four	different	priorities,	0	 to	3.	The	 lower	 the	number	 the
higher	the	priority	is.	See	Figure	6-19.

Figure	6-19:	IPRn	Registers

Notice,	there	is	a	pattern	in	the	IPR#	and	IRQ#	assignments.	It	follows	the
following	formula:

IPRn							IRQ(4n),	IRQ(4n+1),	IRQ(4n+2),	and	IRQ(4n+3)
	In	other	words,	we	multiply	the	IPR#	number	by	4	(#x4)	to	get	the	first	IRQ

and	from	there	we	add	1,	2,	and	3	to	get	all	 the	three	IRQs	it	supports.	To	ease
the	calculation	of	finding	the	correct	bits	of	the	correct	register	to	set	the	priority,
the	 CMSIS	 has	 a	 macro	 NVIC_SetPriority	 defined	 in	 core_cm0plus.h	 for
programmers	to	set	the	priority	of	an	IRQ.

For	example,	if	we	want	to	set	the	Timer	2	interrupt	priority	to	2,	first	we	need
to	find	out	the	IRQ	number	of	Timer	2	interrupt,	which	is	19.	To	locate	the	register
for	IRQ19,	we	will	divide	19	by	4,	which	results	in	a	quotient	of	4	and	remainder	of
3.	The	byte	that	holds	the	priority	of	Timer	2	is	byte	3	of	IPR4.	To	get	to	byte	3,	we
need	 to	 shift	 the	 priority	 24	 bits	 (8	 x	 3)	 to	 the	 left	 and	 to	 get	 the	 two	 most
significant	bits,	we	need	to	shift	 it	6	more	bits	to	the	left.	The	statement	will	 look
like:

NVIC->IP[IRQn]	|=	PRIO	<<	(8	*	(IRQn	%	4)	+	6);

or

NVIC->IP[4]	|=	2	<<	(8	*	3	+	6);

This	is	tedious	and	error	prone.	I	would	be	easier	to	use	the	macro:

NVIC_SetPriority	(TPM2_IRQn,	2);

TPM2_IRQn	is	defined	in	MKL25Z4.h.

Program	6-7	 illustrates	two	interrupts	with	different	priority.	 In	 this	example,
delay	function	is	called	in	the	interrupt	handler	to	demonstrate	the	preemption	by
higher	priority	 interrupt.	(In	real	work,	 it	 is	a	bad	practice	to	call	delay	function	in
interrupt	handler.)	TPM0	 is	programmed	 to	 interrupt	at	1	second	 interval.	 In	 the
interrupt	handler,	 the	red	LED	is	 turned	on	 for	500	ms.	TPM1	 is	programmed	to
interrupt	at	100	ms	interval	and	in	its	interrupt	handler,	the	green	LED	is	turned	on
for	20	ms.	Since	TPM0	has	higher	priority,	you	will	observe	that	the	green	LED	is
not	 blinking	 when	 TPM1	 interrupt	 is	 running	 (when	 the	 red	 LED	 is	 on).	 Now
change	the	priority	of	 the	TPM1	to	be	higher	 than	TPM0	by	changing	the	 line	 in
TPM1_init()	from

NVIC->IP[23]	=	5	<<	5;						/*	set	timer2A	interrupt	priority	to	5	*/

to

NVIC->IP[23]	=	3	<<	5;						/*	set	timer2A	interrupt	priority	to	3	*/

You	will	 see	 that	 the	 green	LED	 is	 blinking	 all	 the	 time	 so	 is	 the	 red	 LED
because	the	TPM1	(green	LED)	preempts	TPM0	interrupt	handler	(red	LED).

Program	6-7:	Interrupt	priority	demonstration

	

/*	P6_7.c	Testing	nested	interrupts

	

	*	Timer1	is	setup	to	interrupt	at	1	Hz.

	*	In	timer	interrupt	handler,	the	red	LED	is	turned	on	and	a	delay	function	of	350
ms	is	called.	The	LED	is	turned	off	at	the	end	of	the	delay.

	*

	*	Timer2	is	setup	to	interrupt	at	10	Hz.

	*	In	timer	interrupt	handler,	the	blue	LED	is	turned	on	and	a	delay	function	of	20
ms	is	called.		The	LED	is	turned	off	at	the	end	of	the	delay.

	*

	*	When	Timer1	has	higher	priority,	the	Timer2	interrupts	are	blocked	by	Timer1
interrupt	handler.	You	can	see	that	when	the	red	LED	is	on,	the	blue	LED	stops
blinking.

	*	When	Timer2	has	higher	priority,	the	Timer1	interrupt	handler	is	preempted	by
Timer2	interrupts	and	the	blue	LED	is	blinking	all	the	time.

	*	Timer2	interrupt	handler	also	turns	PD2	low	and	high	so	that	it	may	be	probed
by	the	scope.

	*/

	

#include	“MKL25Z4.h”

	

void	Timer1_init(void);

void	Timer2_init(void);

void	delayMs(int	n);

	

int	main	(void)

{

__disable_irq();

SIM->SCGC5	|=	0x400;								/*	enable	clock	to	Port	B	*/

SIM->SCGC5	|=	0x1000;							/*	enable	clock	to	Port	D	*/

PORTB->PCR[18]	=	0x100;					/*	make	PTB18	pin	as	GPIO	*/

PTB->PDDR	|=	0x40000;							/*	make	PTB18	as	output	pin	*/

PORTD->PCR[1]	=	0x100;						/*	make	PTD1	pin	as	GPIO	*/

PTD->PDDR	|=	0x02;										/*	make	PTD1	as	output	pin	*/

PORTD->PCR[2]	=	0x100;						/*	make	PTD2	pin	as	GPIO	*/

PTD->PDDR	|=	0x04;										/*	make	PTD2	as	output	pin	*/

Timer1_init();

Timer2_init();

__enable_irq();

	

while(1)	/*wait	here	for	interrupt	*/

{

}

}

	

void	TPM1_IRQHandler(void)

{

PTD->PCOR	|=	0x02;						/*	turn	on	blue	LED	*/

delayMs(350);

PTD->PSOR	|=	0x02;						/*	turn	off	blue	LED	*/

TPM1->SC	|=	0x80;							/*	clear	TOF	*/

}

	

void	TPM2_IRQHandler(void)

{

PTB->PCOR	|=	0x40000;			/*	turn	on	red	LED	*/

PTD->PCOR	|=	0x04;						/*	make	PTD2	low	*/

delayMs(50);

PTB->PSOR	|=	0x40000;			/*	turn	off	red	LED	*/

PTD->PSOR	|=	0x04;						/*	make	PTD2	high	*/

TPM2->SC	|=	0x80;							/*	clear	TOF	*/

}

	

/*	priority	of	TPM1	and	TPM2	should	be	between	0	and	3	*/

#define	PRIOTPM1	2U

#define	PRIOTPM2	3U

	

void	Timer1_init(void)

{

SIM->SCGC6	|=	0x02000000;			/*	enable	clock	to	TPM1	*/

SIM->SOPT2	|=	0x03000000;			/*	use	MCGIRCLK	as	timer	counter	clock	*/

TPM1->SC	=	0;															/*	disable	timer	while	configuring	*/

TPM1->SC	=	0x02;												/*	prescaler	/4	*/

TPM1->MOD	=	8192	-	1;	//16384	-	1;						/*	modulo	value	*/

TPM1->SC	|=	0x80;											/*	clear	TOF	*/

TPM1->SC	|=	0x48;											/*	enable	timer	free-running	mode	and	interrupt	*/

	

/*	set	interrupt	priority	for	TPM1	*/

/*	NVIC->IP[TPM1_IRQn	/	4]	|=	PRIOTPM1	<<	((TPM1_IRQn	%	4)	*	8	+	6);	*/

/*	NVIC->IP[4]	|=	PRIOTPM1	<<	22;	*/

NVIC_SetPriority(TPM1_IRQn,	PRIOTPM1);

NVIC_EnableIRQ(TPM1_IRQn);		/*	enable	Timer1	interrupt	in	NVIC	*/

}

	

void	Timer2_init(void)

{

SIM->SCGC6	|=	0x04000000;			/*	enable	clock	to	TPM2	*/

SIM->SOPT2	|=	0x03000000;			/*	use	MCGIRCLK	as	timer	counter	clock	*/

TPM2->SC	=	0;															/*	disable	timer	while	configuring	*/

TPM2->SC	=	0x02;												/*	prescaler	/4	*/

TPM2->MOD	=	819	-	1;								/*	modulo	value	*/

TPM2->SC	|=	0x80;											/*	clear	TOF	*/

TPM2->SC	|=	0x48;											/*	enable	timer	free-running	mode	and	interrupt	*/

	

/*	set	interrupt	priority	for	TMP2	*/

/*	NVIC->IP[TPM2_IRQn	/	4]	|=	PRIOTPM2	<<	((TPM2_IRQn	%	4)	*	8	+	6);	*/

/*	NVIC->IP[4]	|=	PRIOTPM2	<<	30;	*/

NVIC_SetPriority(TPM2_IRQn,	PRIOTPM2);

NVIC_EnableIRQ(TPM2_IRQn);		/*	enable	Timer2	interrupt	in	NVIC	*/

}

	

//	delay	n	milliseconds	(16	MHz	CPU	clock)

void	delayMs(int	n)

{

int32_t	i,	j;

for(i	=	0	;	i	<	n;	i++)

for(j	=	0;	j	<	7000;	j++)

{}		/*	do	nothing	for	1	ms	*/

}

	

Review	Questions
1.							In	ARM,	which	interrupt	has	the	highest	priority?

2.							True	or	false.	Upon	Reset,	all	the	IRQs	have	the	same	priority.

3.							We	use	register	__________	to	modify	the	interrupt	priority	of	IRQ8.

4.							To	assign	priority	to	IRQ21,	we	need	to	program	the	IPR__	register.

Answer	to	Review	Questions
Section	6.1

1.							True

2.							4

3.							1K	byte	beginning	at	00000000	and	ending	at	000003FFH

4.							Interrupt	service	routine	(ISR)	or	interrupt	handler

5.							To	hold	the	starting	address	of	each	ISR

6.							0x00000040,	41,	42,	and	43

7.							No;	it	is	internally	embedded	into	the	NVIC.

8.							INT	6

Section	6.2
1.							True

2.							2.	Thread	and	Handler

3.							8	bytes.	4	bytes	for	the	address	of	the	stack	and	4	bytes	for	the	address	of
boot	ROM

4.							Interrupt	handler

5.							True

Section	6.3
1.							INT16

2.							False

3.							True

4.							__enable_irq();

5.							(a)	on	the	peripheral	device	level.	(b)	on	the	system	level	with	ISER
register	in	NVIC.	(c)	on	the	global	level	with	the	__enable_irq();	statement.

Section	6.4
1.							IRQ12

2.							True

3.							PTA0	and	PTA1

4.							NVIC_SER0

5.							False

Section	6-5

1.							IRQ17

2.							False

3.							NVIC_SER0

4.							IRQ17	is	assigned	to	TPM0.	Therefore,	EN0=0x0020000

5.							False	

Section	6-6
1.							INT15

2.							0xFFFFFF

3.							STCTRL

4.							False.	NVIC_EN0	register	is	used	for	IRQs	(external	interrupts)	and
SysTick	is	not	part	of	them

5.							1	/	32.768	kHz	=	30.52	µsec.	Now,	4	msec	/	30.52	µsec	=	131.	Therefore,
TPM1_MOD	=	130.

Section	6-7
1.							Reset

2.							False

3.							IPR2

4.							IPR5

	

Chapter	7:	ADC,	DAC,	and	Sensor	Interfacing
This	 chapter	 explores	 more	 real-world	 devices	 such	 as	 ADCs	 (analog-to-

digital	converters),	DACs	(digital-to-analog	converters),	and	sensors.	We	will	also
explain	how	to	 interface	 the	Freescale	ARM	KL25Z	 to	 these	devices.	 In	Section
7.1,	 we	 describe	 analog-to-digital	 converter	 (ADC)	 chips.	 We	 will	 program	 the
ADC	 module	 of	 the	 KL25Z	 chip	 in	 Section	 7.2.	 In	 Section	 7.3,	 we	 show	 the
interfacing	 of	 sensors	 and	 discuss	 the	 issue	 of	 signal	 conditioning.	 The
characteristics	and	programming	of	DAC	chips	are	discussed	in	Section	7.4.

Section	7.1:	ADC	Characteristics
This	 section	 will	 explore	 ADC	 generally.	 First,	 we	 describe	 some	 general

aspects	of	the	ADC	itself,	then	focus	on	the	functionality	of	some	important	pins	in
ADC.

ADC	devices
Analog-to-digital	 converters	 are	 among	 the	 most	 widely	 used	 devices	 for

data	acquisition.	Digital	computers	use	binary	(discrete)	values,	but	in	the	physical
world	 everything	 is	 analog	 (continuous).	 Temperature,	 pressure	 (wind	 or	 liquid),
humidity,	and	velocity	are	a	few	examples	of	physical	quantities	that	we	deal	with
every	day.	A	physical	quantity	 is	converted	to	electrical	(voltage,	current)	signals
using	 a	 device	 called	 a	 transducer.	 Transducers	 used	 to	 generate	 electrical
outputs	 are	 also	 referred	 to	 as	 sensors.	 Sensors	 for	 temperature,	 velocity,
pressure,	light,	and	many	other	natural	physical	quantities	produce	an	output	that
is	 voltage	 (or	 current).	 Therefore,	 we	 need	 an	 analog-to-digital	 converter	 to
translate	the	analog	signals	to	digital	numbers	so	that	the	microcontroller	can	read
and	process	the	numbers.	See	Figures 7-1	and	7-2.

Figure	7-1:	Microcontroller	Connection	to	Sensor	via	ADC

	

Figure	7-2:	An	8-bit	ADC	Block	Diagram

Some	of	the	major	characteristics	of	the	ADC
Resolution

The	ADC	has	n-bit	resolution,	where	n	can	be	8,	10,	12,	16,	or	even	24	bits.
Higher-resolution	 ADCs	 provide	 a	 smaller	 step	 size,	 where	 step	 size	 is	 the
smallest	change	that	can	be	discerned	by	an	ADC.	Some	widely	used	resolutions
for	 ADCs	 are	 shown	 in	 Table 7-1.	 Although	 the	 resolution	 of	 an	 ADC	 chip	 is
decided	at	the	time	of	its	design	and	cannot	be	changed,	we	can	control	the	step
size	with	the	help	of	what	is	called	Vref.	This	is	discussed	below.

n-bit Number	of	steps Step	size

8 256 5V	/256	=	19.53	mV

10 1024 5V	/1024	=	4.88	mV

12 4096 5V	/4096	=	1.2	mV

16 65,536 5V	/65,536	=	0.076
mV

Note:	Vref	=	5V

Table	7-1:	Resolution	versus	Step	Size	for	ADC	(Vref	=	5V)

Vref
Vref	 is	 an	 input	 voltage	 used	 for	 the	 reference	 voltage.	 The	 voltage

connected	 to	 this	 pin,	 along	with	 the	 resolution	 of	 the	ADC	chip,	 determine	 the
step	size.	For	an	8-bit	ADC,	the	step	size	is	Vref	/	256	because	it	is	an	8-bit	ADC,
and	2	 to	 the	power	of	8	gives	us	256	steps.	See	Table	7-1.	For	example,	 if	 the
analog	 input	 range	 needs	 to	 be	 0	 to	 4	 volts,	 Vref	 is	 connected	 to	 4	 volts.	 That
gives	4	V	/	256	=	15.62	mV	for	the	step	size	of	an	8-bit	ADC.	In	another	case,	if
we	need	a	step	size	of	10	mV	for	an	8-bit	ADC,	then	Vref	=	2.56	V,	because	2.56	V
/	256	=	10	mV.	For	the	10-bit	ADC,	if	the	Vref	=	5V,	then	the	step	size	is	4.88	mV
as	shown	in	Table	7-1.	Tables	7-2	and	7-3	show	the	relationship	between	the	Vref
and	step	size	 for	 the	8-	and	10-bit	ADCs,	respectively.	 In	some	applications,	we
need	the	differential	reference	voltage	where	Vref	=	Vref	(+)	–	Vref	(–).	Often	the	Vref
(–)	pin	is	connected	to	ground	and	the	Vref	(+)	pin	is	used	as	the	Vref.

Vref	(V) Vin	in	Range	(V) Step	Size	(mV)

5.00 0	to	5 5	/	256	=	19.53

4.00 0	to	4 4	/	256	=	15.62

3.00 0	to	3 3	/	256	=	11.71

2.56 0	to	2.56 2.56	/	256	=	10

2.00 0	to	2 2	/	256	=	7.81

1.28 0	to	1.28 1.28	/	256	=	5

1.00 0	to	1 1	/	256	=	3.90

Note:	In	an	8-bit	ADC,	step	size	is	Vref/256

Table	7-2:	Vref	Relation	to	Vin	Range	for	an	8-bit	ADC

	

Vref	(V) Vin	Range	(V) Step	Size	(mV)

5.00 0	to	5 5	/	1024	=	4.88

4.96 0	to	4.096 4.096	/	1024	=	4

3.00 0	to	3 3	/	1024	=	2.93

2.56 0	to	2.56 2.56	/	1024	=	2.5

2.00 0	to	2 2	/	1024	=	2

1.28 0	to	1.28 1.28	/	1024	=	1.25

1.024 0	to	1.024 1.024	/	1024	=	1

Note:	In	a	10-bit	ADC,	step	size	is	Vref/1024

Table	7-3:	Vref	Relation	to	Vin	Range	for	an	10-bit	ADC

Conversion	time
In	addition	to	resolution,	conversion	time	is	another	major	factor	in	selecting

an	ADC.	Conversion	time	 is	defined	as	the	time	 it	 takes	the	ADC	to	convert	 the
analog	 input	 to	 a	 digital	 number.	 The	 conversion	 time	 is	 dictated	 by	 the	 clock
source	connected	to	the	ADC	in	addition	to	the	method	used	for	data	conversion
and	technology	used	in	the	fabrication	of	the	ADC.

Digital	data	output
In	an	8-bit	ADC	we	have	an	8-bit	digital	data	output	of	D0–D7,	while	in	the

10-bit	ADC	the	data	output	is	D0–D9.	To	calculate	the	output	voltage,	we	use	the
following	formula:

DOUT	=	VIN	/	StepSize

where	Dout	=	digital	data	output	(in	decimal),	Vin	=	analog	input	voltage,	and
step	size	(resolution)	is	the	smallest	change,	which	is	Vref/256	for	an	8-bit	ADC.

Figure	 7-3	 shows	 a	 simple	 2-bit	 ADC.	 In	 the	 circuit,	 the	 voltage	 between
Vref(+)	 and	Vref(-)	 is	 divided	 into	4	 since	 resistors	have	 the	 same	values.	As	a
result,	the	step	size	is	(Vref(+)	-	Vref(-))	/	4.

Figure	7-3:	A	Simultaneous	2-bit	ADC

If	 Vin	 is	 below	 step	 size	 all	 the	 comparators	 send	 out	 zeros.	When	 Vin	 is
between	step	size	and	step	size	×	2,	the	lowest	comparator	sends	out	1	and	the
encoder	gives	01.

If	Vin	is	between	step	size	×	2	and	step	size	×	3,	the	second	comparator	and
the	first	comparator	sends	out	1.	Since	the	encoder	is	hierarchical	priority,	it	sends
out	the	highest	value	in	cases	that	more	than	1	input	is	high.	As	a	result,	2	(10	in
binary)	will	be	sent	out.

When	Vin	 is	bigger	 than	step	size	×	3,	 the	 third	comparator	becomes	high
and	3	will	be	sent	out.

See	Example 7-1.	This	data	is	brought	out	of	the	ADC	chip	either	one	bit	at	a
time	(serially),	or	in	one	chunk,	using	a	parallel	line	of	outputs.	This	is	discussed
next.

Example	7-1

For	a	given	8-bit	ADC	(e.g.	ADC0848),	we	have	Vref	=	2.56	V.	Calculate	the	D0–
D7	output	if	the	analog	input	is:	(a)1.7	V,	and	(b)	2.1	V.

	

Solution:
	

Since	the	step	size	is	2.56/256	=	10	mV,	we	have	the	following.

	(a)DOUT	=	1.7V/10	mV	=	170	 in	decimal,	which	gives	us	10101011	in	binary	for
D7–D0.

	(b)DOUT	=	2.1V/10	mV	=	210	 in	decimal,	which	gives	us	11010010	 in	binary	for
D7–D0.		

	

Parallel	versus	serial	ADC
The	ADC	chips	are	either	parallel	 or	 serial.	 In	parallel	ADC,	we	have	8	or

more	pins	dedicated	 to	bringing	out	 the	binary	data,	but	 in	 serial	ADC	we	have
only	one	pin	for	data	out.	The	D0–D7	data	pins	of	the	8-bit	ADC	provide	an	8-bit
parallel	data	path	between	the	ADC	chip	and	the	CPU.	In	the	case	of	 the	16-bit
parallel	ADC	chip,	we	need	16	pins	for	the	data	path.	In	order	to	save	pins,	many
12-	and	16-bit	ADCs	use	pins	D0–D7	to	send	out	the	upper	and	lower	bytes	of	the
binary	data.	In	recent	years,	for	many	applications	where	space	is	a	critical	issue,
using	such	a	large	number	of	pins	for	data	is	not	feasible.	For	this	reason,	serial
devices	such	as	the	serial	ADC	are	becoming	widely	used.	While	the	serial	ADCs
use	 fewer	pins	and	 their	smaller	packages	 take	much	 less	space	on	 the	printed
circuit	board,	more	CPU	time	is	needed	to	get	the	converted	data	from	the	ADC
because	 the	CPU	must	get	data	one	bit	at	a	 time,	 instead	of	 in	one	single	 read
operation	as	with	the	parallel	ADC.	ADC0848	is	an	example	of	a	parallel	ADC	with
8	pins	for	the	data	output,	while	the	MAX1112	is	an	example	of	a	serial	ADC	with
a	 single	pin	 for	Dout.	 Figures 7-4	 and 7-5	 show	 the	 block	 diagram	 for	ADC0848
and	MAX1112,	respectively.

Figure	7-4:	ADC0848	Parallel	ADC	Block	Diagram

Figure	7-5:	MAX1112	Serial	ADC	Block	Diagram

	

Analog	input	channels
Many	 data	 acquisition	 applications	 need	 more	 than	 one	 analog	 input	 for

ADC.	For	this	reason,	we	see	ADC	chips	with	2,	4,	8,	or	even	16	channels	on	a
single	chip.	Multiplexing	of	analog	inputs	is	widely	used	as	shown	in	the	ADC848
and	MAX1112.	In	these	chips,	we	have	8	channels	of	analog	inputs,	allowing	us	to
monitor	 multiple	 quantities	 such	 as	 temperature,	 pressure,	 flow,	 and	 so	 on.
Nowadays,	some	ARM	microcontroller	chips	come	with	16-channel	on-chip	ADC.

Start	conversion	and	end-of-conversion	signals
For	 the	 conversion	 to	 be	 controlled	 by	 the	CPU,	 there	 are	 needs	 for	 start

conversion	(SC)	and	end-of-conversion	(EOC)	signals.	When	SC	is	activated,	the
ADC	 starts	 converting	 the	 analog	 input	 value	 of	 Vin	 to	 a	 digital	 number.	 The
amount	 of	 time	 it	 takes	 to	 convert	 varies	 depending	on	 the	 conversion	method.
When	 the	data	conversion	 is	complete,	 the	end-of-conversion	signal	notifies	 the
CPU	that	the	converted	data	is	ready	to	be	picked	up.

Successive	Approximation	ADC
Successive	Approximation	is	a	widely	used	method	of	converting	an	analog

input	 to	 digital	 output.	 It	 has	 three	 main	 components:	 (a)	 successive
approximation	register	(SAR),	(b)	comparator,	and	(c)	control	unit.	See	the	figure
below.

Figure	7-6:	Successive	Approximation	ADC

	

The	 successive	 approximation	 register	 is	 loaded	 with	 only	 the	 most
significant	bit	set	at	 the	start.	An	 internal	digital-to-analog	converter	converts	 the
value	of	SAR	to	an	analog	voltage	which	is	used	to	compare	to	the	input	voltage.
If	 the	 input	 voltage	 is	 higher,	 the	 bit	 is	 kept.	 If	 the	 voltage	 is	 lower,	 the	 bit	 is
cleared.	 The	 next	 bit	 is	 tried	 and	 the	 DAC	 and	 compare	 are	 exercised.	 This
process	is	repeated	for	all	bits	of	the	SAR.	Assuming	a	step	size	of	10	mV,	the	8-
bit	successive	approximation	ADC	will	go	 through	 the	 following	steps	 to	convert
an	input	of	1	Volt:

(1)	It	starts	with	binary	number	10000000.	Since	128	×	10	mV	=	1.28	V	is	greater
than	the	1	V	input,	bit	7	is	cleared	(dropped).

(2)	01000000	gives	us	64	×	10	mV	=	640	mV	and	bit	6	is	kept	since	it	is	smaller
than	the	1	V	input.

(3)	01100000	gives	us	96	×	10	mV	=	960	mV	and	bit	5	is	kept	since	it	is	smaller
than	the	1	V	input,

(4)	01110000	gives	us	112	×	10	mV	=	1120	mV	and	bit	4	 is	dropped	since	 it	 is
greater	than	the	1	V	input.

(5)	01101000	gives	us	108	×	10	mV	=	1080	mV	and	bit	3	 is	dropped	since	 it	 is
greater	than	the	1	V	input.

(6)	01100100	gives	us	100	×	10	mV	=	1000	mV	=	1	V	and	bit	2	is	kept	since	it	is
equal	to	input.	Even	though	the	answer	is	found	it	does	not	stop.

(7)	011000110	gives	us	102	×	10	mV	=	1020	mV	and	bit	1	is	dropped	since	it	 is
greater	than	the	1	V	input.

(8)	01100101	gives	us	101	×	10	mV	=	1010	mV	and	bit	0	 is	dropped	since	 it	 is
greater	than	the	1	V	input.

Notice	that	the	Successive	Approximation	method	goes	through	all	the	steps
even	 if	 the	 answer	 is	 found	 in	 one	 of	 the	 earlier	 steps.	 The	 advantage	 of	 the
Successive	Approximation	method	is	that	the	conversion	time	is	fixed	since	it	has
to	go	through	all	the	steps.

Review	Questions
1.							Give	two	factors	that	affect	the	step	size	calculation.

2.							The	ADC0848	is	a(n)	_______-bit	converter.

3.							True	or	false.	While	the	ADC0848	has	8	pins	for	Dout,	the	MAX1112	has
only	one	Dout	pin.

4.							Find	the	step	size	for	an	8-bit	ADC,	if	Vref	=	1.28	V.

5.							For	question	4,	calculate	the	output	if	the	analog	input	is:	(a)	0.7	V,	and	(b)
1	V.

Section	7.2:	ADC	Programming	with	the	Freescale
KL25Z

Because	 the	 ADC	 is	 widely	 used	 in	 data	 acquisition,	 in	 recent	 years	 an
increasing	number	of	microcontrollers	have	on-chip	ADC	modules.	In	this	section,
we	 discuss	 the	 ADC	 feature	 of	 the	 Freescale	 KL25Z	 and	 show	 how	 it	 is
programmed.

The	 Freescale	 KL25Z	 ARM	 chip	 has	 a	 single	 ADC	 module	 which	 can
support	up	to	31	ADC	channels.	These	ADC	channels	have	16-bit	resolution.	To
program	 them,	we	 need	 to	 understand	 some	 of	 the	major	 registers.	 Figure	 7-7
shows	a	simplified	block	diagram	of	a	KL25Z	chip.

Figure	7-7:	Simplified	Block	Diagram	of	a	Freescale	KL25Z	chip

	

In	 this	 section,	 we	 examine	 some	 of	 these	 registers	 and	 show	 how	 to
program	 the	 ADC.	 Below	 is	 some	 major	 registers	 of	 KL25Z	 ADC	 from	 KL25Z
reference	manual.

Absolute	Address Register

4003	B000 ADC	Status	and	Control	Registers	1
(ADC0_SC1A)

ADC	Status	and	Control	Registers	1

4003	B004 (ADC0_SC1B)

4003	B008 ADC	Configuration	Register	1	(ADC0_CFG1)

4003	B00C ADC	Configuration	Register	2	(ADC0_CFG2)

4003	B010 ADC	Data	Result	Register	(ADC0_RA)

4003	B014 ADC	Data	Result	Register	(ADC0_RB)

Table	7-4:	KL25Z	ADC	Registers

	

Enabling	Clock	to	ADC
First	thing	we	need	to	do	is	to	enable	the	clock	to	the	ADC0	module.	Bit	D27

of	 SIM_SCGC6	 register	 is	 used	 to	 enable	 the	 clock	 to	 ADC0	 module.	 The
SIM_SCGC6	 is	 part	 of	 the	 System	 Integration	 Module	 and	 located	 at	 physical
address	0x4004	7000	+	103C	=	0x4000	803C.	See	Figure	7-8.

Figure	7-8:	SIM_SCGC6	register	t	for	Enableing	to	ADC0

	

Start	Conversion	trigger	options
There	are	 two	start-conversion	 (trigger)	options.	They	are	hardware	 trigger

and	software	trigger.	The	selection	of	hardware	or	software	trigger	for	conversion
is	done	via	the	bit	D6	(ADTRG,	ADC	Trigger)	of	ADC0_SC2	(ADC0	Status	Control
2)	 register.	 The	 hardware	 trigger	 may	 be	 external	 pin,	 comparator,	 or	 timers
(TPMx,	 LPTMR0,	 PIT,	 or	 RTC).	 The	 selection	 of	 hardware	 trigger	 is	 done	 in
SIM_SOPT7	register.	The	default	trigger	is	software	and	that	is	what	we	will	use	in
this	section.

Figure	7-9:	ADCx_SC2	Register

Bit Field Descriptions

7 ADACT
Conversion	active:	Indicates	that	the	ADC	is	converting	data

(0:	Conversion	not	in	progress,	1:	Conversion	in	progress)

6 ADTRG
ADC	conversion	trigger	select	(0:	software	trigger,	1:	hardware
trigger)

5 ACFE Compare	Function	Enable	(0:	compare	function	disabled,	1:
enabled)

4 ACFGT Compare	Function	Greater	Than	Enable

3 ACREN Compare	range	Enable

2 DMAEN DMA	Enable

1-0 REFSEL

Voltage	Reference	Select

REFSEL Voltage	Reference

00
The	VREFH	and	VREFL	pins	are	used	as	VREF(+)
and	VREF(-),	respectively.

01 VALTH	and	VALTL	pair	is	used	as	references.

Others Reserved

Table	7-5:	ADCx_SC2	Register

Choosing	Vin	input	channel
	The	channel	selection	 is	done	 through	 the	ADC0_SC1A	(ADC	Status	and

Control	 1A)	 register.	 	 (There	 are	 more	 ADC0_SC1n	 registers	 but	 only
ADC0_SC1A	 can	 be	 used	 for	 software	 trigger.	 The	 other	 registers	 are	 for
hardware	 trigger	 only	 and	 will	 not	 be	 discussed	 here.)	 The	 lowest	 5	 bits	 of
ADC0_SC1A	register	are	used	 to	select	one	of	 the	31	single-ended	channels	 to
be	converted.	See	Figure	7-10.

Figure	7-10:	ADCx_SC1A	Register

	

Bit Field Descriptions

7 COCO

Conversion	Complete	Flag:

(0:	Conversion	is	not	completed,	1:	Conversion	is
completed)

The	COCO	is	cleared	when	the	ADCx_SC1n	register	is
written	or	the	ADCx_Rn	register	is	read.

6 AIEN

Interrupt	Enable:	The	ADC	interrupt	is	enabled	by
setting	the	bit	to	HIGH.	If	the	interrupt	enable	is	set,	an

interrupt	is	triggered	when	the	COCO	flag	is	set.

5 DIFF Differential	mode	(0:	Single-ended	mode,	1:	Differential
mode)

4-0 ADCH

ADC	input	channel:	The	field	selects	the	input	channel
as	shown	in	Figure	7-7.

When	DIFF	=	0	(single-ended	mode),	values	0	to	23
choose	between	the	24	input	channels	(ADC_SE0	to
ADC_SE23).

When	DIFF	=	1	(Differential	mode),	values	0	to	3	select
between	the	4	differential	channels.	See	the	reference
manual	for	more	information.

When	ADCH	=	11111,	the	module	is	disabled.

Table	7-6:	ADCx_SC1	Register

Not	 all	 the	 channels	 are	 connected	 to	 the	 input	 pins.	 The	 number	 of
available	channels	in	the	Freescale	KL25Z	varies	among	the	family	members.	In
the	 case	 of	 KL25Z128VLK4	 ARM	 chip	 used	 in	 FRDM	 board,	 there	 are	 14
channels	 connected	 to	 the	 input	 pins	 and	 additional	 4	 channels	 are	 connected
internally.	See	Table	7-7.

Pin	Name Description Pin

ADC_SE0 ADC	input	0 PTE20

ADC_SE3 ADC	input	3 PTE22

ADC_SE4 ADC	input	4 PTE21,
PTE29

ADC_SE5 ADC	input	5 PTD1

ADC_SE6 ADC	input	6 PTD5

ADC_SE7 ADC	input	7 PTD6,
PTE23

ADC_SE8 ADC	input	8 PTB0

ADC_SE9 ADC	input	9 PTB1

ADC_SE11 ADC	input	11 PTC2

ADC_SE12 ADC	input	12 PTB2

ADC_SE13 ADC	input	13 PTB3

ADC_SE14 ADC	input	14 PTC0

ADC_SE15 ADC	input	15 PTC1

ADC_SE23 ADC	input	23,	DAC0
output PTE30

ADC_SE26 Temperature	sensor 	

ADC_SE27 Bandgap	reference 	

ADC_SE29 VREFH 	

ADC_SE30 VREFL 	

ADC_SE31 Module	disabled 	

Table	7-7:	Analog	input	pin	assignment	in	Freescale	KL25Z
	

Polling	or	interrupt
The	 end-of-conversion	 is	 indicated	 by	 a	 flag	 bit	 in	 the	 ADC0_SC1A	 (ADC

Status	 Control	 1A)	 register.	 Upon	 the	 completion	 of	 conversion,	 the	 D7	 bit
Conversion	Complete	(COCO)	flag	goes	high.	By	polling	this	flag,	we	know	if	the
conversion	 is	 complete	 and	 we	 can	 read	 the	 value	 in	 ADC0_R0	 data	 result
register.	We	can	also	use	an	interrupt	to	inform	us	that	the	conversion	is	complete
but	 that	 will	 require	 us	 to	 set	 the	 AIEN	 (Interrupt	 Enable)	 bit	 (bit	 6)	 high	 in
ADC0_SC1A	register.	By	default,	the	interrupt	is	not	enabled.

ADC	Data	result
Upon	 the	 completion	 of	 conversion,	 the	 binary	 result	 is	 placed	 in	 the

ADC0_RA	 register.	 (There	 are	 many	 ADC0_Rn	 registers	 corresponding	 to	 the
ADC0_SC1n	 registers.	 Because	 we	 can	 only	 use	 ADC0_SC1A	 for	 software
trigger,	the	data	will	be	in	ADC0_RA	register.	This	is	a	32-bit	register	but	only	the
lower	16	bits	are	used.		For	the	ADC,	we	have	the	options	of	8-,	10-,	12-,	and	16-
bit	for	single-ended	unsigned	result.	In	any	case,	always	the	result	is	right-justified
and	the	rest	of	the	bits	up	to	bit	D15	are	unused.		If	the	result	is	in	2’s	complement
for	 differential,	 then	 it	 is	 signed-extended	 to	 bit	 D15.	 	 For	 the	 concept	 of	 sign-
extend,	see	the	“ARM	Assembly	Language	Programming”	volume	in	this	series.

Figure	7-11:	ADC	Result	Reister	(ADCx_Rn)	See	Table	28-43	in	KL25Z	Ref	man

	

Clearing	conversion	complete	flag
The	conversion	complete	(COCO)	flag	bit	in	ADCx_SC1n	register	is	cleared

automatically	when	the	data	from	the	respective	ADCx_Rn	register	is	read.

Differential	versus	Single-Ended
In	some	applications,	our	 interest	 is	 in	 the	differences	between	 two	analog

signal	 voltages	 (the	 differential	 voltages).	 Rather	 than	 converting	 two	 channels
and	 calculate	 the	 differences	 between	 them,	 the	 KL25Z	 has	 the	 option	 of
converting	 the	differential	voltages	of	 two	analog	channels.	The	bit	D5	(DIFF)	of
ADC0_SC1A	register	allows	us	to	enable	the	differential	option.	Upon	Reset,	the
default	 is	 the	 single-ended	 input	 and	 we	 will	 leave	 it	 at	 that	 for	 the	 discussion
here.	 See	 the	 KL25Z	 reference	 manual	 for	 further	 information	 on	 differential
options.

Selection	Bit	Resolution
We	use	ADCx_CFG1	(ADC	configuration	1)	 register	 to	select	8,	10,	12,	or

16-bit	ADC	resolution.	This	register	 is	also	used	to	select	the	speed	of	the	clock
source	to	the	ADC.

Figure	7-12:	ADCx_CFG1	Register

	

Bit Field Descriptions

7 ADLPC Low-Power	Configuration

6-5 ADIV Clock	Divide	Select:	The	clock	is	divided	by	2ADIV	as	shown	in
Figure	7-7.

4 ADLSMP Sample	time	configuration	(0:	Short	sample	time,	1:	Long
sample	time)

3-2 MODE

Conversion	mode	selection

MODE In	single-ended
mode	(DIFF	=	0)

In	differential	mode
(DIFF	=	1)

00 8-bit	conversion 9-bit	conversion	with	2’s
complement	output

01 12-bit	conversion 13-bit	conversion	with	2’s
complement	output

10 10-bit	conversion 11-bit	conversion	with	2’s
complement	output

11 16-bit	conversion 16-bit	conversion	with	2’s
complement	output

	

	

1-0 ADICLK

Input	Clock	Select

ADICLK Clock	source

00 Bus	clock

01 (Bus	clock)/2

10 Alternate	clock	(ALTCLK)

11 Asynchronous	clock	(ADACK)

Table	7-8:	ADCx_CFG1	Register

Notice	 in	ADCx_CFG1,	the	MODE	bits	(D3:D2)	selects	the	resolution.	Also
notice,	if	we	use	the	Low	Power	option	with	D7	bit,	then	the	conversion	speed	is
limited.

ADC	Conversion	Time
The	conversion	time	for	the	ADC	has	three	parts.	They	are	as	follows:

1)						In	the	first	phase,	a	sample	amplifier	of	unity	gain	samples	the	analog
input	for	a	total	of	n	clock	cycles.	This	buffering	of	the	analog	input
charges	the	sample	capacitor	up	to	the	input	potential.

2)						In	the	second	phase,	the	sample	buffer	is	disconnected	and	connected
to	the	storage	node	for	a	certain	number	of	clock	cycles.	The	number	of
clock	cycles	can	be	4,	6,	10,	16,	or	24.	We	program	this	number	via	the
ADLSMP	bit	in	ADCx_CFG1	register	and	the	ADLSTS	bits	in
ADCx_CFG2	register.	Longer	sampling	time	ensures	that	the	voltage	of
the	sample	capacitor	is	brought	closer	to	the	input	voltage.	This	is
important	when	the	input	voltage	differs	significantly	from	sample	to
sample.	But	it	prolongs	the	conversion	time	of	each	sample.

3)						In	the	third	phase,	the	analog	input	is	converted	to	binary	numbers	using
the	successive	approximation	method.	In	this	phase,	the	number	of	clocks
used	depends	on	how	many	bits	are	in	the	binary	output.	For	each	bit	we
need	one	clock.	That	means	we	need	8	clocks	for	the	8-bit	output,	10
clocks	for	the	10-bit	output,	and	so	on.	We	choose	the	n-bit	resolution
option	using	the	MODE	bits	of	ADCx_CFG1	register.

The	ADCx_CFG1	gives	us	many	options	for	the	clock	fed	to	ADC	module.	
We	 can	 choose	 the	 Bus	Clock	 or	 a	 fraction	 of	 it.	 Using	 the	 ADICLK	 (AD	 input
Clock)	 and	 ADIV	 (AD	 divide)	 bits	 of	 ADCx_CFG1	 registers	 we	 can	 control	 the
speed	 of	 clock	 source	 fed	 to	 the	 ADC.	 These	 bits	 along	 with	 the	 bits	 in
ADCx_CFG2,	we	can	control	the	conversion	time.	

Figure	7-13:	ADCx_CFG2	Register

	

Vref	in	FRDM	board
	In	the	Freescale	ARM	KL25Z	chip,	the	pin	for	Vref	(+)	is	called	VREFH	(Vref

High)	and	Vref	(-)	pin	is	called	VREFL	(Vref	Low).	In	the	FRDM	board,	the	VREFH
pin	 is	connected	to	3.3V,	the	same	supply	voltage	as	the	digital	part	of	 the	chip.
The	circuit	may	be	altered	to	use	the	AREF	pin	for	an	external	reference	voltage.
Even	if	we	connect	the	VREFH	to	an	external	reference	other	than	the	VDD	of	the
chip,	it	cannot	go	beyond	the	VDD	voltage.	With	VREFH=3.3V,	we	have	the	step
size	of	3.3V	/	65,536=	0.05	mV	since	the	maximum	ADC	resolution	for	KL25Z	is
16	bits.	See	Example	7-2.

Example	7-2

Give	 the	 digital	 converted	 output	 if	 the	 analog	 input	 voltage	 is	 1.2V	 for	 the
Freescale	FRDM	board.

Solution:
Since	the	step	size	is	3.3V	/	65,536	=	0.05	mV,	we	have	1.2V	/	0.05	mV	=	23,831
=	0x5D17	as	ADC	output.

	

Configuring	ADC	and	reading	ADC	channel
In	using	ADC,	we	must	also	configure	the	GPIO	pins	to	allow	the	connection

of	an	analog	signal	through	the	input	pin.	In	this	regard,	it	is	the	same	as	all	other
peripherals.	We	need	to	take	the	following	steps	to	configure	the	ADC:

1.							Enable	the	clock	to	I/O	pin	used	by	the	ADC	channel.	Table	7-7	shows
the	I/O	pins	used	by	various	ADC	channels.

2.							Set	the	PORTX_PCRn	MUX	bit	for	ADC	input	pin	to	0	to	use	the	pin	for
analog	input	channel.	This	is	actually	the	power-on	default.

3.							Enable	the	clock	to	ADC0	modules	using	SIM_SCGC6	register.

4.							Choose	the	software	trigger	using	the	ADC0_SC2	register.

5.							Choose	clock	rate	and	resolution	using	ADC0_CFG1	register.

6.	 	 	 	 	 	 	Select	 the	ADC	input	channel	using	the	ADC0_SC1A	register.	Make
sure	 to	use	Table	7-7	 to	choose	 the	 right	pin	and	channel.	Also	makes
sure	 interrupt	 is	not	enabled	and	single-ended	option	 is	used	when	you

select	the	channel	with	this	register.

7.	 	 	 	 	 	 	Keep	monitoring	 the	 end-of-conversion	COCO	 flag	 in	ADC0_SC1A
register.

8.	 	 	 	 	 	 	When	 the	 COCO	 flag	 goes	 HIGH,	 read	 the	 ADC	 result	 from	 the
ADC0_RA	and	save	it.

9.							Repeat	steps	6	through	8	for	the	next	conversion.

Program	7-1	 illustrates	 the	steps	 for	ADC	conversion	shown	above.	Figure
7-14	shows	the	hardware	connection	of	Program	7-1.

Program	7-1:
	Using	ADC0	to	convert	input	from	channel	0

	

/*	p7_1.c:	A	to	D	conversion	of	channel	0

	

	*	This	program	converts	the	analog	input	from	channel	0	(PTE20)

	*	using	software	trigger	continuously.

	*	Bits	10-8	are	used	to	control	the	tri-color	LEDs.	LED	code	is

	*	copied	from	p2_7.		Connect	a	potentiometer	between	3.3V	and

	*	ground.	The	wiper	of	the	potentiometer	is	connected	to	PTE20.

	*	When	the	potentiometer	is	turned,	the	LEDs	should	change	color.

	*/

	

#include	“MKL25Z4.h”

	

void	ADC0_init(void);

void	LED_set(int	s);

void	LED_init(void);

	

int	main	(void)

{

short	int	result;

LED_init();																					/*	Configure	LEDs	*/

ADC0_init();																				/*	Configure	ADC0	*/

while	(1)	{

ADC0->SC1[0]	=	0;											/*	start	conversion	on	channel	0	*/

while(!(ADC0->SC1[0]	&	0x80))	{	}	/*	wait	for	conversion	complete	*/

result	=	ADC0->R[0];								/*	read	conversion	result	and	clear	COCO	flag	*/

LED_set(result	>>	7);							/*	display	result	on	LED	*/

}

}

	

void	ADC0_init(void)

{

SIM->SCGC5	|=	0x2000;							/*	clock	to	PORTE	*/

PORTE->PCR[20]	=	0;									/*	PTE20	analog	input	*/

	

SIM->SCGC6	|=	0x8000000;				/*	clock	to	ADC0	*/

ADC0->SC2	&=	~0x40;									/*	software	trigger	*/

/*	clock	div	by	4,	long	sample	time,	single	ended	12	bit,	bus	clock	*/

ADC0->CFG1	=	0x40	|	0x10	|	0x04	|	0x00;

}

	

void	LED_init(void)	{

SIM->SCGC5	|=	0x400;								/*	enable	clock	to	Port	B	*/

SIM->SCGC5	|=	0x1000;							/*	enable	clock	to	Port	D	*/

PORTB->PCR[18]	=	0x100;					/*	make	PTB18	pin	as	GPIO	*/

PTB->PDDR	|=	0x40000;							/*	make	PTB18	as	output	pin	*/

PORTB->PCR[19]	=	0x100;					/*	make	PTB19	pin	as	GPIO	*/

PTB->PDDR	|=	0x80000;							/*	make	PTB19	as	output	pin	*/

PORTD->PCR[1]	=	0x100;						/*	make	PTD1	pin	as	GPIO	*/

PTD->PDDR	|=	0x02;										/*	make	PTD1	as	output	pin	*/

}

	

void	LED_set(int	s)	{

if	(s	&	1)				/*	use	bit	0	of	s	to	control	red	LED	*/

PTB->PCOR	=	0x40000;				/*	turn	on	red	LED	*/

else

PTB->PSOR	=	0x40000;				/*	turn	off	red	LED	*/

if	(s	&	2)				/*	use	bit	1	of	s	to	control	green	LED	*/

PTB->PCOR	=	0x80000;				/*	turn	on	green	LED	*/

else

PTB->PSOR	=	0x80000;				/*	turn	off	green	LED	*/

if	(s	&	4)				/*	use	bit	2	of	s	to	control	blue	LED	*/

PTD->PCOR	=	0x02;							/*	turn	on	blue	LED	*/

else

PTD->PSOR	=	0x02;							/*	turn	off	blue	LED	*/

}

	

	

Figure	7-14:	ADC	Connection	for	Program	7-1

	

Temperature	sensor
There	are	several	internal	analog	channels	as	seen	in	Table	7-7.	The	next
program	shows	how	to	convert	the	internal	temperature	sensor	output.	In	the	ADC
initialization,	there	is	no	need	to	initialize	the	input	pin	because	the	channel	is
connected	internally.

Program	7-2:
	Converting	the	on-chip	temperature	sensor	with	timer	trigger

	

/*	p7_2.c:	A	to	D	conversion	of	internal	temperature

	

	*	This	program	converts	the	analog	input	from	channel	26

	*	(internal	temperature	sensor)	using	software	trigger	continuously.

	*	Bits	2-0	are	used	to	control	the	tri-color	LEDs.	LED	code	is

	*	copied	from	p2_7.		Put	your	finger	on	the	target	MCU	and	watch

	*	LEDs	change	color.

	*/

	

#include	“MKL25Z4.h”

	

void	ADC0_init(void);

void	LED_set(int	s);

void	LED_init(void);

	

int	main	(void)

{

short	int	result;

LED_init();																					/*	Configure	LEDs	*/

ADC0_init();																				/*	Configure	ADC0	*/

while	(1)	{

ADC0->SC1[0]	=	26;										/*	start	conversion	on	channel	26	temperature	*/

while(!(ADC0->SC1[0]	&	0x80))	{	}	/*	wait	for	COCO	*/

result	=	ADC0->R[0];								/*	read	conversion	result	and	clear	COCO	flag	*/

LED_set(result);												/*	display	result	on	LED	*/

}

}

	

void	ADC0_init(void)

{

SIM->SCGC6	|=	0x8000000;				/*	clock	to	ADC0	*/

ADC0->SC2	&=	~0x40;									/*	software	trigger	*/

/*	clock	div	by	4,	long	sample	time,	single	ended	12	bit,	bus	clock	*/

ADC0->CFG1	=	0x40	|	0x10	|	0x04	|	0x00;

}

	

void	LED_init(void)	{

SIM->SCGC5	|=	0x400;								/*	enable	clock	to	Port	B	*/

SIM->SCGC5	|=	0x1000;							/*	enable	clock	to	Port	D	*/

PORTB->PCR[18]	=	0x100;					/*	make	PTB18	pin	as	GPIO	*/

PTB->PDDR	|=	0x40000;							/*	make	PTB18	as	output	pin	*/

PORTB->PCR[19]	=	0x100;					/*	make	PTB19	pin	as	GPIO	*/

PTB->PDDR	|=	0x80000;							/*	make	PTB19	as	output	pin	*/

PORTD->PCR[1]	=	0x100;						/*	make	PTD1	pin	as	GPIO	*/

PTD->PDDR	|=	0x02;										/*	make	PTD1	as	output	pin	*/

}

	

void	LED_set(int	s)	{

if	(s	&	1)				/*	use	bit	0	of	s	to	control	red	LED	*/

	PTB->PCOR	=	0x40000;				/*	turn	on	red	LED	*/

else

PTB->PSOR	=	0x40000;				/*	turn	off	red	LED	*/

if	(s	&	2)				/*	use	bit	1	of	s	to	control	green	LED	*/

PTB->PCOR	=	0x80000;				/*	turn	on	green	LED	*/

else

PTB->PSOR	=	0x80000;				/*	turn	off	green	LED	*/

if	(s	&	4)				/*	use	bit	2	of	s	to	control	blue	LED	*/

PTD->PCOR	=	0x02;							/*	turn	on	blue	LED	*/

else

PTD->PSOR	=	0x02;							/*	turn	off	blue	LED	*/

}

	

Analog	Comparator	unit
Many	 microcontrollers	 come	 with	 analog	 comparator	 for	 monitoring	 an

analog	 input	 voltage.	 Using	 the	 analog	 comparator,	 we	 can	 monitor	 an	 analog
input	against	two	threshold	values	to	determine	whether	the	analog	input	value	is
above	 the	 high	 threshold,	 between	 the	 two	 threshold	 values,	 or	 below	 the	 low
threshold.	When	the	analog	input	falls	in	the	selected	region,	the	comparator	may
generate	 an	 interrupt	 or	 trigger	 an	 A-to-D	 conversion	 and	 let	 the	 conversion
completion	generate	an	interrupt.	Using	analog	comparator,	the	software	does	not
have	to	continuously	monitor	the	analog	input.

For	example,	we	may	program	the	comparator	 for	 the	on-chip	 temperature
sensor.	 When	 the	 temperature	 exceeds	 a	 preset	 threshold,	 the	 cooling	 fan	 is
turned	 on.	When	 the	 temperature	 drops	 below	 the	 threshold,	 the	 cooling	 fan	 is
turned	off.	The	software	only	has	to	set	the	threshold	and	handle	the	interrupt.	It
does	not	have	to	use	the	ADC	to	monitor	the	temperature	continuously.

For	the	details	of	programming	the	analog	comparator	unit,	we	will	leave	it	to
the	reader.

Review	Questions
1.							The	ADC	in	Freescale	ARM	KL25Z	is	_______bit.

2.							In	KL25Z,	the	highest	number	we	can	get	for	the	ADC	output
is__________	in	hex.

3.							Assume	VREFH	=	3.3V.	Find	the	ADC	output	in	decimal	and	hex	if	Vin	of
analog	input	is	1.9V.	Assume	10-bit	resolution.

4.							In	ARM	KL25Z,	which	register	provides	the	ADC	output	converted	data?

5.							In	KL25Z,	we	have	resolution	choices	of	__________.

Section	7.3:	Sensor	Interfacing	and	Signal	Conditioning
This	 section	will	 show	how	 to	 interface	 sensors	 to	 the	microcontroller.	We

examine	some	popular	temperature	sensors	and	then	discuss	the	issue	of	signal
conditioning.	 Although	 we	 concentrate	 on	 temperature	 sensors,	 the	 principles
discussed	in	this	section	are	the	same	for	other	types	of	sensors	such	as	light	and
pressure	sensors.

Temperature	sensors
Transducers	convert	physical	data	such	as	temperature,	light	intensity,	flow,

and	speed	to	electrical	signals.	Depending	on	the	transducer,	the	output	produced
is	 in	 the	 form	 of	 voltage,	 current,	 resistance,	 or	 capacitance.	 For	 example,
temperature	 is	 converted	 to	 electrical	 signals	 using	 a	 transducer	 called	 a
thermistor.	A	thermistor	responds	to	temperature	change	by	changing	resistance,
but	its	response	is	not	linear,	as	seen	in	Table 7-9	and	Figure	7-15.

Temperature	(‘C) Tf	(K	ohms)

0 29.490

25 10.000

50 3.893

75 1.700

100 0.817

Table	7-9:	Thermistor	Resistance	vs.	Temperature

	

Figure	7-15:	Thermistor	(Copied	from	http://www.maximintegrated.com)

The	 resistance	 of	 a	 thermistor	 is	 typically	 modeled	 by	 Steinhart-Hart
equation	 and	 requires	 a	 logarithmic	 amplifier	 to	 produce	 a	 linear	 output.	 The
complexity	 associated	with	 the	 circuit	 for	 such	 nonlinear	 devices	 has	 led	many
manufacturers	 to	 market	 a	 linear	 temperature	 sensor.	 Simple	 and	 widely	 used

linear	 temperature	 sensors	 include	 the	 LM34	 and	 LM35	 series	 from	 National
Semiconductor	(now	part	of	TI	Corp.)	They	are	discussed	next.

LM34	and	LM35	temperature	sensors
The	sensors	of	the	LM34	series	are	precision	integrated-circuit	temperature

sensors	 whose	 output	 voltage	 is	 linearly	 proportional	 to	 the	 Fahrenheit
temperature.	See	Figure	7-16.	The	LM34	requires	no	external	calibration	because
it	 is	 internally	 calibrated.	 It	 outputs	 10	 mV	 for	 each	 degree	 of	 Fahrenheit
temperature.

Figure	7-16:	LM34	and	LM35

	

The	LM35	series	sensors	are	similar	to	LM34	series	sensors	except	that	the
output	 voltage	 is	 linearly	proportional	 to	 the	Celsius	 (centigrade)	 temperature.	 It
outputs	10	mV	for	each	degree	of	centigrade	temperature.	See	Figure	7-16.

Signal	conditioning
The	common	transducers	produce	an	output	in	the	form	of	voltage,	current,

charge,	 capacitance,	 or	 resistance.	 In	 order	 to	 perform	 A-to-D	 conversion	 on
these	signals,	they	need	to	be	converted	to	voltage	unless	the	transducer	output
is	 already	 voltage.	 In	 addition	 to	 the	 conversion	 to	 voltage,	 the	 signal	may	also
need	gain	 and	 offset	 adjustment	 to	 achieve	 optimal	 dynamic	 range.	A	 low-pass
analog	filter	is	often	incorporated	in	the	signal	conditioning	circuit	to	eliminate	the
high	frequency	to	avoid	aliasing.	Figure	7-17	shows	a	block	diagram	of	the	input
of	a	data	acquisition	system.

Figure	7-17:	Getting	Data	to	the	CPU

	

Interfacing	the	LM34	to	the	Freescale	ARM	Microcontroller
	 The	 A/D	 of	 Freescale	 ARM	 Microcontroller	 has	 16-bit	 resolution	 with	 a

maximum	of	 65,536	 steps,	 and	 the	 LM34	 produces	 10	mV	 for	 every	 degree	 of
temperature	 change.	 The	 maximum	 operating	 temperature	 of	 the	 LM34	 is	 300
degrees	F,	so	the	highest	output	will	be	3000	mV	(3.00	V),	which	is	below	3.3V	of
Vref.	The	LM34/35	can	be	connected	to	the	microcontroller	as	shown	in	Figure	7-
18.

Figure	7-18:	LM34/35	Connection	to	ARM	and	Its	Pin	Configuration

To	 convert	 the	 ADC	 result	 to	 temperature	 in	 degree,	 use	 the	 following
equation:

temperature	=	result	*	330.0	/	65536;

Reading	and	displaying	temperature
Programs 7-3	 shows	 code	 for	 reading	 and	 displaying	 temperature	 in	 C.

Notice	that	in	Figure	7-18,	the	LM34	(or	LM35)	is	connected	to	channel	0	(ADC0
pin).	 16-bit	 conversion	 is	 used	 to	 enhance	 the	 precision.	 At	 16-bit,	 the	 noise	 is
much	more	apparent	so	we	turn	on	the	hardware	averaging	to	reduce	the	output
fluctuation.

Program	7-3:	Reading	Temperature	Sensor	in	F
	

	

/*	p7_3.c:	A	to	D	conversion	of	channel	0

	

	*	This	program	converts	the	analog	input	from	channel	0	(PTE20)

	*	using	software	trigger	continuously.	PTE20	is	connected	to

	*	an	LM34	Fahrenheit	temperature	sensor.	The	conversion	result

	*	is	displayed	as	temperature	through	UART0	virtual	serial	port.

	*	16-bit	precision	is	used	for	conversion.	At	higher	precision,

	*	the	noise	is	more	significant	so	32	samples	averaging	is	used.

	*	The	LM34	output	voltage	is	10mV/degreeF.	The	ADC	of	FRDM-KL25Z

	*	uses	3.3V	as	Vref	so:

	*	temperature	=	result	*	330.0	/	65536

	*	Open	a	terminal	emulator	at	115200	Baud	rate	at	the	host	PC	and

	*	observe	the	output.

	*/

	

#include	“MKL25Z4.h”

#include	<stdio.h>

	

void	ADC0_init(void);

void	delayMs(int	n);

void	UART0_init(void);

void	UART0Tx(char	c);

void	UART0_puts(char*	s);

	

int	main	(void)	{

int	result;

float	temperature;

char	buffer[16];

	

ADC0_init();																				/*	Configure	ADC0	*/

UART0_init();																			/*	initialize	UART0	for	output	*/

while	(1)	{

ADC0->SC1[0]	=	0;											/*	start	conversion	on	channel	0	*/

while(!(ADC0->SC1[0]	&	0x80))	{	}	/*	wait	for	COCO	*/

result	=	ADC0->R[0];								/*	read	conversion	result	and	clear	COCO	flag	*/

temperature	=	result	*	330.0	/	65536;		/*	convert	voltage	to	temperature	*/

sprintf(buffer,	“\r\nTemp	=	%6.2fF”,	temperature);	/*	convert	to	string	*/

UART0_puts(buffer);									/*	send	the	string	through	UART0	for	display	*/

delayMs(1000);

}

}

	

void	ADC0_init(void)

{

SIM->SCGC5	|=	0x2000;							/*	clock	to	PORTE	*/

PORTE->PCR[20]	=	0;									/*	PTE20	analog	input	*/

	

SIM->SCGC6	|=	0x8000000;				/*	clock	to	ADC0	*/

ADC0->SC2	&=	~0x40;									/*	software	trigger	*/

ADC0->SC3	|=	0x07;										/*	32	samples	average	*/

/*	clock	div	by	4,	long	sample	time,	single	ended	16	bit,	bus	clock	*/

ADC0->CFG1	=	0x40	|	0x10	|	0x0C	|	0x00;

}

	

/*	initialize	UART0	to	transmit	at	115200	Baud	*/

void	UART0_init(void)	{

SIM->SCGC4	=	0x0400;				/*	enable	clock	for	UART0	*/

SIM->SOPT2	=	0x04000000;				/*	use	FLL	output	for	UART	Baud	rate	generator
*/

UART0->C2	=	0;										/*	turn	off	UART0	while	changing	configurations	*/

UART0->BDH	=	0x00;

UART0->BDL	=	0x17;						/*	115200	Baud	*/

UART0->C4	=	0x0F;							/*	Over	Sampling	Ratio	16	*/

UART0->C1	=	0x00;							/*	8-bit	data	*/

UART0->C2	=	0x08;							/*	enable	transmit	*/

	

SIM->SCGC5	=	0x0200;				/*	enable	clock	for	PORTA	*/

PORTA->PCR[2]	=	0x0200;	/*	make	PTA2	UART0_Tx	pin	*/

}

	

	

void	UART0Tx(char	c)	{

while(!(UART0->S1	&	0x80))	{

}			/*	wait	for	transmit	buffer	empty	*/

UART0->D	=	c;	/*	send	a	char	*/

}

	

void	UART0_puts(char*	s)	{

while	(*s	!=	0)									/*	if	not	end	of	string	*/

UART0Tx(*s++);						/*	send	the	character	through	UART0	*/

}

	

/*	Delay	n	milliseconds

	*	The	CPU	core	clock	is	set	to	MCGFLLCLK	at	41.94	MHz	in	SystemInit().

	*/

void	delayMs(int	n)	{

int	i;

int	j;

for(i	=	0	;	i	<	n;	i++)

for	(j	=	0;	j	<	7000;	j++)	{}

}

	

Review	Questions
1.							True	or	false.	The	transducer	must	be	connected	to	signal	conditioning

circuitry	before	its	signal	is	sent	to	the	ADC.

2.							The	LM35	provides	____	mV	for	each	degree	of	______	(Fahrenheit,
Celsius)	temperature.

3.							The	LM34	provides	____	mV	for	each	degree	of	______	(Fahrenheit,
Celsius)	temperature.

4.							What	is	the	temperature	if	the	ADC	output	is	0000	0011	1110?

Section	7.4:	DAC	Programming
This	 section	 will	 discuss	 the	 fundamentals	 of	 a	 DAC	 (digital-to-analog

converter).	Then	we	demonstrate	how	 to	generate	a	sawtooth	wave	and	a	sine
wave.	The	analog	conversion	output	can	be	observed	on	the	oscilloscope	at	DAC
output	pin	PTE30.

Digital-to-analog	(DAC)	converter
The	 digital-to-analog	 converter	 (DAC)	 is	 a	 device	 widely	 used	 to	 convert

digital	signals	to	analog	signals.	In	this	section	we	discuss	the	basics	of	a	DAC.

Recall	from	your	digital	electronics	book	the	two	methods	of	making	a	DAC:
binary	weighted	 and	R/2R	 ladder.	 The	 vast	majority	 of	 integrated	 circuit	 DACs,
including	the	DAC0808	discussed	in	this	section	use	the	R/2R	method	since	it	can
achieve	a	much	higher	degree	of	precision.	The	first	criterion	for	selecting	a	DAC
is	its	resolution,	which	is	a	function	of	the	number	of	bits	of	the	digital	input.	The
common	ones	are	8,	10,	and	12	bits.	The	number	of	digital	input	bits	decides	the
resolution	 of	 the	DAC	 since	 the	 number	 of	 analog	 output	 levels	 is	 equal	 to	 2n,
where	n	is	the	number	of	digital	 input	bits.	Therefore,	the	8-bit	DAC	such	as	the
DAC0808	provides	256	discrete	voltage	(or	current)	 levels	of	output.	See	Figure
7-19.

Figure	7-19:	DAC	Block	Diagram

	

Similarly,	 the	 12-bit	 DAC	 provides	 4096	 discrete	 voltage	 levels.	 Although
there	are	16-bit	DACs,	they	are	much	more	expensive.

DAC0808
In	 the	 DAC0808,	 the	 digital	 inputs	 are	 converted	 to	 current	 (IOUT).	 By

connecting	a	resistor	to	the	IOUT	pin,	we	convert	 the	conversion	result	current	 to
voltage.	The	total	current	provided	by	the	IOUT	is	a	function	of	the	binary	numbers
at	 the	D0–D7	 inputs	 of	 the	DAC0808	and	 the	 reference	 current	 (Iref),	 and	 is	as
follows:

IOUT	=	Iref	×	(D7	/	2	+	D6	/	4	+	D5	/	8	+	D4	/	16	+	D3	/	32	+	D2	/	64	+	D1	/	128	+	D0
/	256)	=	Iref	×	Data	/	256

where	D0	is	the	LSB,	D7	is	the	MSB	for	the	inputs,	and	Iref	is	the	reference
input	current	that	must	be	applied	to	pin	14.	The	Iref	current	is	generally	set	to	2.0
mA.	Figure	7-20	shows	the	generation	of	current	reference	(setting	Iref	=	2	mA)	by
using	the	standard	5-V	power	supply	and	5K	ohm	resistors.

Figure	7-20:	Microcontroller	Connection	to	DAC0808

Some	 also	 use	 the	 Zener	 diode	 reference	 voltage	 device	 (LM336),	 which
overcomes	fluctuations	associated	with	the	power	supply	voltage.	Now	assuming
that	 Iref	 =	 2	mA,	 if	 all	 the	 input	 bits	 to	 the	 DAC	 are	 high,	 the	maximum	 output
current	is	1.99	mA	(verify	this	for	yourself).

Converting	Iout	to	voltage	in	DAC0808
We	connect	the	output	pin	IOUT	to	a	resistor,	convert	this	current	to	voltage,

and	 monitor	 the	 output	 on	 the	 scope.	 However,	 in	 real	 life	 this	 can	 cause
inaccuracy	since	 the	 input	 resistance	of	 the	 load	where	 it	 is	connected	will	also
affect	 the	 output	 voltage.	 For	 this	 reason,	 the	 Iref	 current	 output	 is	 buffered	 by
connecting	it	 to	an	op	amp	such	as	the	741	with	Rf	=	5K	ohms	for	the	feedback
resistor.	 Assuming	 that	 R	 =	 5K	 ohms,	 by	 changing	 the	 binary	 input,	 the	 output
voltage	changes	as	shown	in	Example	7-3.

Example	7-3

Assuming	 that	 R	 =	 5K	 and	 Iref	 =	 2	 mA,	 calculate	 Vout	 for	 the	 following	 binary
inputs:

(a)	10011001	binary	(0x99)											(b)	11001000	(0xC8)

	

Solution:

	

(a)	Iout	=	2	mA	(153/255)	=	1.195	mA	and	Vout	=	1.195	mA	×	5K	=	5.975	V

(b)	Iout	=	2	mA	(200/256)	=	1.562	mA	and	Vout	=	1.562	mA	×	5K	=	7.8125	V

	

	
DAC	Features	of	KL25Z

The	Freescale	KL25Z	comes	with	an	on-chip	DAC.	The	on-chip	DAC	is	12-
bit	string	converter.	A	string	DAC	uses	a	resistor	ladder	and	an	analog	multiplexer.
See	Figure	7-21.

Figure	7-21:	Simplified	Block	Diagram	of	KL25Z	on-chip	DAC

Below	is	a	list	of	the	major	registers	of	KL25Z	DAC	from	KL25Z	ref.	manual.

Absolute	Address Register

4003	F000 DAC	Data	Low	Register	(DAC0_DAT0L)

4003	F001 DAC	Data	High	Register	(DAC0_DAT0H)

4003	F002 DAC	Data	Low	Register	(DAC0_DAT1L)

4003	F003 DAC	Data	High	Register	(DAC0_DAT1H)

4003	F020 DAC	Status	Register	(DAC0_SR)

4003	F021 DAC	Control	Register	(DAC0_C0)

Table	7-10:	DAC	Registers

Next,	 we	 will	 examine	 some	 of	 the	 registers	 and	 use	 them	 to	 create

staircase	ramp	and	sine	wave	signals.		First,	we	must	provide	clock	to	the	DAC.
This	 is	done	with	SIM_SCGC6	register.	 In	Figure	7-22,	notice	bit	D31	is	used	to
provide	the	clock	to	on-chip	DAC0.

Figure	7-22:	SIM_SCGC6	register	to	provide	clock	to	DAC

DAC	Control	0	register
We	also	need	 to	enable	 the	DAC	 itself	before	we	can	use	 it.	This	 is	done

with	bit	D7	of	DAC	Control	0	(DAC0_C0)	register.

Figure	7-23:	DAC0_C0	Register	to	enable	on-chip	DAC

Bit Field Descriptions

7 DACEN DAC	Enable	(0:	DAC	is	disabled,	1:	DAC	is	enabled)

6 DACRFS DAC	Reference	Select	(0:	DACREF_1,	1:	DACREF_2)

5 DACTRGSEL DAC	Trigger	Select	(0:	hardware	trigger,	1:	software	trigger)

4 DACSWTRG DAC	Software	Trigger

3 LPEN DAC	Low	Power	Control	(0:	High-Power	mode,	1:	Low-Power
mode)

1 DACBTIEN DAC	Buffer	read	pointer	Top	flag	Interrupt	Enable

0 DACBBIEN DAC	Buffer	read	pointer	Bottom	flag	Interrupt	Enable

Table	7-11:	DAC0_C0	Register	to	enable	on-chip	DAC

Other	 important	 bits	 in	 DAC_C0	 registers	 are	 D5	 (DACTRGSEL:	 DAC
Trigger	select)	and	D6	(DAC0_DACRFS:	DAC	Reference	Select).	The	choices	of
reference	voltages	are	DACREF_1	for	VREFH	and	DACREF_2	for	VDDA.	In	the
FRDM_KL25Z	board,	VREFH	 is	 tied	 to	VDDA	so	 there	 is	no	difference	 is	using
either	reference.	We	will	use	software	trigger.	

DAC	Buffer	register
The	 data	 registers	 DAC0_DATnH:DAC0_DATnH	 hold	 the	 12-bit	 digital

(binary)	value	needed	to	be	converted	to	the	analog.	The	DAC0_DATnL	register	is
used	 for	 the	 lower	 8	 bits	 and	 DAC0_DATnH	 for	 the	 upper	 4	 bits	 of	 the	 12-bit
binary	value.	See	Figures	7-24	and	7-25.	For	KL25Z,	there	are	two	sets	of	buffer
data	registers,	DAC0_DAT0	and	DAC0_DAT1.	The	use	of	buffer	register	is	more

meaningful	when	hardware	trigger	is	used.	When	buffer	is	disabled	in	DAC0_C1,
only	DAC0_DAT0	is	used.

Figure	7-24:	DAC0_DAT0L	Register

	

Figure	7-25:	DAC0_DAT0H	Register

Generating	a	staircase	Ramp
In	 order	 to	 generate	 a	 staircase	 ramp,	 you	 can	 run	 Program	 7-4	 on	 the

KL25Z	 microcontroller.	 To	 see	 the	 result	 waveform,	 connect	 the	 output	 (pin
PTE30)	to	an	oscilloscope.	Table	7-7	shows	pin	designation	for	DAC.	Figure	7-26
shows	the	output	for	Program	7-4.

Program	7-4:	Generating	Saw	Tooth	Wave
	

/*	p7_4.c:	Use	DAC	to	generate	sawtooth	waveform

	

	*	The	DAC	is	initialized	with	no	buffer	and	use	software	trigger,

	*	so	every	write	to	the	DAC	data	registers	will	change	the	analog	output.

	*	The	loop	count	i	is	incremented	by	0x0010	every	loop.	The	12-bit	DAC

	*	has	the	range	of	0-0x0FFF.	Divide	0x1000	by	0x0010	yields	0x0100	or	256.

	*	The	sawtooth	has	256	steps	and	each	step	takes	1	ms.	The	period	of	the

	*	waveform	is	256	ms	and	the	frequency	is	about	3.9	Hz.

	*/

	

#include	“MKL25Z4.h”

	

void	DAC0_init(void);

void	delayMs(int	n);

	

int	main	(void)	{

int	i;

DAC0_init();				/*	Configure	DAC0	*/

while	(1)	{

for	(i	=	0;	i	<	0x1000;	i	+=	0x0010)	{

/*	write	value	of	i	to	DAC0	*/

DAC0->DAT[0].DATL	=	i	&	0xff;							/*	write	low	byte	*/

DAC0->DAT[0].DATH	=	(i	>>	8)	&	0x0f;/*	write	high	byte	*/

delayMs(1);									/*	delay	1ms	*/

}

}

}

	

void	DAC0_init(void)	{

SIM->SCGC6	|=	0x80000000;			/*	clock	to	DAC	module	*/

DAC0->C1	=	0;															/*	disable	the	use	of	buffer	*/

DAC0->C0	=	0x80	|	0x20;					/*	enable	DAC	and	use	software	trigger	*/

}

	

/*	Delay	n	milliseconds

	*	The	CPU	core	clock	is	set	to	MCGFLLCLK	at	41.94	MHz	in	SystemInit().

	*/

void	delayMs(int	n)	{

int	i;

int	j;

for(i	=	0	;	i	<	n;	i++)

for	(j	=	0;	j	<	7000;	j++)	{}

}

	

Figure	7-26:	Saw	Tooth	WaveForm

Generating	a	sine	wave
To	generate	a	sine	wave,	we	first	need	a	table	whose	values	represent	the

magnitude	of	the	sine	of	angles	between	0	and	360	degrees.	The	values	for	the
sine	 function	 vary	 from	 -1.0	 to	 +1.0	 for	 0	 to	 360	 degree	 angles.	 Therefore,	 the
table	values	are	positive	integer	numbers	representing	the	voltage	magnitude	for
the	Sine	of	the	angle.	This	method	ensures	that	only	positive	integer	numbers	are
output	to	the	DAC	by	the	processor.	Table	7-12	shows	the	angles,	the	sine	values,
the	 voltage	 magnitudes,	 and	 the	 integer	 values	 representing	 the	 voltage
magnitude	for	each	angle	with	30-degree	increments.

Angle	Ɵ
(degrees)

Sin	Ɵ
VOUT	(Voltage	Magnitude)

(1.5V	×	sin	Ɵ)	+	1.5V

Values	Sent	to	DAC
(decimal)

(Voltage	Mag.	÷
0.000806	V)

0 0.000 1.500 1862

30 0.500 2.250 2793

60 0.866 2.799 3474

90 1.000 3.000 3724

120 0.866 2.799 3474

150 0.500 2.250 2793

180 0.000 1.500 1862

210 -0.500 0.750 931

240 -0.866 0.201 249

270 -1.000 0.000 0

300 -0.866 0.201 249

330 -0.500 0.750 931

360 0.000 1.500 1862

Table	7-12:	Angle	vs.	Voltage	Magnitude	for	Sine	Wave

To	generate	Table	7-12,	we	assumed	 the	 full-scale	 voltage	of	3.3V	 for	 the
DAC	output.	Full-scale	output	of	the	DAC	is	achieved	when	all	the	data	input	bits
of	the	DAC	are	high.	We	will	generate	a	sine	wave	with	amplitude	of	3.0V.	Since
DAC	only	accepts	positive	 integers,	the	values	of	sine	wave	shall	be	1.5V±1.5V.
Therefore,	to	achieve	the	output	amplitude	of	3.0V,	we	use	the	following	equation:

VOUT	=	1.5V	+	(1.5V	×	sin	ϴ)

The	DAC	is	12	bit	and	the	VREFH	is	3.3V,	so	the	step	size	if	3.3V	/	4096	=
0.000806V.	 To	 find	 the	 values	 sent	 to	 the	 DAC	 for	 various	 angles,	 we	 simply
divide	the	VOUT	voltage	by	0.000806V.	To	further	clarify	this,	look	at	Example	7-4.

Example	7-4

Verify	the	values	of	Table	7-12	for	the	following	angles:	(a)	30			(b)	60.

	

Solution:

	

(a)	VOUT	=	1.5	V	+	(1.5	V	×	sin	Ɵ)	=	1.5	V	+	1.5	V	×	sin	30	=	1.5	V	+	1.5	V	×	0.5	=
2.25	V

DAC	input	values	=	2.25	V	÷	0.000806	V	=	2793	(decimal)	
(b)		VOUT	=	1.5	V	+	(1.5	V	×	sin	Ɵ)	=	1.5	V	+	1.5	V	×	sin	60	=	1.5	V	+	1.5	V	×
0.866	=	2.799	V

DAC	input	values	=	2.799	V	÷	0.000806	V	=	3474	(decimal)

	

The	following	program	sends	the	values	of	Table	7-12	to	the	DAC.	See	Figure	7-
26.

	Program	7-5:	Generating	Sine	Wave

	
/*	p7_5.c:	Use	DAC	to	generate	sine	wave	with	look-up	table

	

	*	This	program	uses	a	pre-calculated	lookup	table	to	generate	a

	*	sine	wave	output	through	DAC.

	*/

	

#include	“MKL25Z4.h”

	

void	DAC0_init(void);

void	delayMs(int	n);

	

int	main	(void)	{

int	i;

const	static	int	sineWave[]	=

{1862,	2793,	3474,	3724,	3474,	2793,

1862,		931,		249,				0,		249,		931};

	

DAC0_init();																				/*	Configure	DAC0	*/

while	(1)	{

for	(i	=	0;	i	<	12;	i++)	{

/*	write	value	to	DAC0	*/

DAC0->DAT[0].DATL	=	sineWave[i]	&	0xff;							/*	write	low	byte	*/

DAC0->DAT[0].DATH	=	(sineWave[i]	>>	8)	&	0x0f;/*	write	high	byte	*/

delayMs(1);									/*	delay	1ms	*/

}

}

}

	

void	DAC0_init(void)	{

SIM->SCGC6	|=	0x80000000;							/*	clock	to	DAC	module	*/

DAC0->C1	=	0;																			/*	disable	the	use	of	buffer	*/

DAC0->C0	=	0x80	|	0x20;									/*	enable	DAC	and	use	software	trigger	*/

}

	

/*	Delay	n	milliseconds

	*	The	CPU	core	clock	is	set	to	MCGFLLCLK	at	41.94	MHz	in	SystemInit().

	*/

void	delayMs(int	n)	{

int	i;

int	j;

for(i	=	0	;	i	<	n;	i++)

for	(j	=	0;	j	<	7000;	j++)	{}

}

	

Figure	7-27:	Angle	vs.	Voltage	Magnitude	for	Sine	Wave

	

Program	7-6	uses	the	C	math	library	functions	to	generate	sine	wave	lookup
table.

Program	7-6:	Generating	Sine	Wave	Using	Math	Functions

	
/*	p7_6.c:	Use	DAC	to	generate	sine	wave

	

	*	The	program	calculates	the	lookup	table	to	generate

	*	sine	wave.

	*/

	

#include	“MKL25Z4.h”

#include	<math.h>

	

void	DAC0_init(void);

#define	WAVEFORM_LENGTH	256

int	sinewave[WAVEFORM_LENGTH];

	

int	main(void)	{

void	delayMs(int	n);

int	i;

float	fRadians;

const	float	M_PI	=	3.1415926535897;

	

/*	construct	data	table	for	a	sine	wave	*/

fRadians	=	((2	*	M_PI)	/	WAVEFORM_LENGTH);

for	(i	=	0;	i	<	WAVEFORM_LENGTH;	i++)	{

sinewave[i]	=	2047	*	(sinf(fRadians	*	i)	+	1);

}

DAC0_init();																				/*	Configure	DAC0	*/

	

while	(1)	{

for	(i	=	0;	i	<	WAVEFORM_LENGTH;	i++)	{

/*	write	value	to	DAC0	*/

DAC0->DAT[0].DATL	=	sinewave[i]	&	0xff;							/*	write	low	byte	*/

DAC0->DAT[0].DATH	=	(sinewave[i]	>>	8)	&	0x0f;/*	write	high	byte	*/

delayMs(1);									/*	delay	1ms	*/

}

}

}

	

void	DAC0_init(void)	{

SIM->SCGC6	|=	0x80000000;							/*	clock	to	DAC	module	*/

DAC0->C1	=	0;																			/*	disable	the	use	of	buffer	*/

DAC0->C0	=	0x80	|	0x20;									/*	enable	DAC	and	use	software	trigger	*/

}

	

/*	Delay	n	milliseconds

	*	The	CPU	core	clock	is	set	to	MCGFLLCLK	at	41.94	MHz	in	SystemInit().

	*/

void	delayMs(int	n)	{

int	i;

int	j;

for(i	=	0	;	i	<	n;	i++)

for	(j	=	0;	j	<	7000;	j++)	{}

}

	

Review	Questions
1.							In	a	DAC,	input	is	______ (digital,	analog)	and	output	is	_____	(digital,

analog).

2.							DAC0808	is	a(n)	____-bit	D-to-A	converter.

3.							The	output	of	DAC808	is	in	______	(current,	voltage).

4.							The	on-chip	DAC	for	KL25Z	is	______	bit.

Answers	to	Review	Questions
Section	7.1

1.							Number	of	steps	and	Vref	voltage

2.							8

3.							True

4.							1.28	V	/	256	=	5	mV

5.								

(a)	0.7	V	/	5	mV	=	140	in	decimal	and	D7–D0	=	10001100	in	bin

(b)	1	V	/	5	mV	=	200	in	decimal	and	D7–D0	=	11001000	in	binary.

Section	7.2
1.							16

2.							0xFFFF

3.							Step	size	is	3.3V	/	4096	=	0.8057	mV	and	1.9V	/	0.809mv	=	2,358	in
decimal	or	0x936.

4.							ADC0_Rn

5.							8-,10-,12-,and	16-bit.

Section	7.3
1.							True

2.							10,	Celsius

3.							10,	Fahrenheit

4.							00111110	(binary)	=	62	è	Temperature	=	62	×	330	/	4096	=	5

Section	7.4
1.							Digital,	analog

2.							8

3.							current

4.							12-bit

	

	

Chapter	8:	SPI	Protocol	and	Devices
The	SPI	(serial	peripheral	interface)	is	a	bus	interface	incorporated	in	many

devices	such	as	ADC		and	EEPROM.	In	Section	8.1	we	will	examine	the	signals
of	 the	 SPI	 bus	 and	 show	 how	 the	 read	 and	 write	 operations	 in	 the	 SPI	 work.
Section	8.2	examines	the	Freescale	ARM	KL25Z	SPI	registers.	In	Section	8.3	we
show	7-LED	driver	interfacing	to	ARM	using	SPI	bus.

Section	8.1:	SPI	Bus	Protocol
The	 SPI	 bus	 was	 originally	 started	 by	 Motorola	 (now	 Freescale),	 but	 in

recent	years	has	become	a	widely	used	by	many	semiconductor	chip	companies.
SPI	devices	use	only	2	pins	 for	data	 transfer,	called	SDI	 (Din)	and	SDO	(Dout),
instead	of	the	8	or	more	pins	used	in	traditional	buses.	This	reduction	of	data	pins
reduces	the	package	size	and	power	consumption	drastically,	making	them	ideal
for	many	applications	 in	which	 space	 is	 a	major	 concern.	 The	SPI	 bus	 has	 the
SCLK	(serial	clock)	pin	 to	synchronize	the	data	 transfer	between	two	chips.	The
last	pin	of	the	SPI	bus	is	CE	(chip	enable),	which	is	used	to	initiate	and	terminate
the	data	transfer.	These	four	pins,	SDI,	SDO,	SCLK,	and	CE,	make	the	SPI	a	4-
wire	interface.	See	Figure	8-1.

Figure	8-1:	SPI	Bus	vs.	Traditional	Parallel	Bus	Connection	to	Microcontroller

	 In	 many	 chips,	 the	 SDI,	 SDO,	 SCLK,	 and	 CE	 signals	 are	 alternatively
named	 as	 MOSI,	 MISO,	 SCK,	 and	 SS	 as	 shown	 in	 Figure	 8-2	 (compare	 with
Figure	8-1).	There	is	also	a	widely	used	standard	called	a	3-wire	interface	bus.	In
a	 3-wire	 interface	 bus,	 we	 have	 SCLK	 and	 CE,	 and	 only	 a	 single	 pin	 for	 data
transfer.	 The	SPI	 4-wire	 bus	 can	 become	 a	 3-wire	 interface	when	 the	SDI	 and
SDO	 data	 pins	 are	 tied	 together.	 However,	 there	 are	 some	 major	 differences
between	the	SPI	and	3-wire	devices	in	the	data	transfer	protocol.	For	that	reason,
a	device	must	support	the	3-wire	protocol	internally	in	order	to	be	used	as	a	3-wire
device.	Many	devices	support	both	SPI	and	3-wire	protocols.

How	SPI	works
SPI	consists	of	two	shift	registers,	one	in	master	and	the	other	in	the	slave

side.	Also	there	is	a	clock	generator	in	the	master	side	that	generates	the	clock	for
the	shift	registers.

Figure	8-2:	SPI	Architecture

As	 you	 can	 see	 in	 Figure	 8-2,	 serial-out	 pin	 of	 the	master	 shift	 register	 is
connected	 to	 the	 serial-in	 pin	 of	 the	 slave	 shift	 register	 by	 MOSI	 (Master	 Out
Slave	 In)	 and	 the	 serial-in	 pin	 of	 the	 master	 shift	 register	 is	 connected	 to	 the
serial-out	 pin	 of	 the	 slave	 shift	 register	 by	 MISO	 (Master	 In	 Slave	 Out).	 The
master	 clock	generator	provides	clock	 to	 shift	 register	 in	both	master	and	slave
shift	 registers.	The	clock	 input	of	 the	shift	 registers	can	be	falling-	or	rising-edge
triggered.	This	will	be	discussed	shortly.

In	SPI,	the	shift	registers	are	8	bits	long.	It	means	that	after	8	clock	pulses,
the	contents	of	the	two	shift	registers	are	interchanged.	When	the	master	wants	to
send	a	byte	of	data,	 it	places	 the	byte	 in	 its	shift	 register	and	generates	8	clock
pulses.	 After	 8	 clock	 pulses,	 the	 byte	 is	 transmitted	 to	 the	 slave	 shift	 register.
When	the	master	wants	to	receive	a	byte	of	data,	the	slave	side	should	place	the
byte	 in	 its	shift	 register	and	after	8	clock	pulses	the	data	will	be	received	by	the
master	shift	register.	It	must	be	noted	that	SPI	is	full	duplex	meaning	that	it	sends
and	receives	data	at	the	same	time.

Clock	polarity	and	phase	in	SPI	device
In	 SPI	 communication,	 both	 master	 and	 slave	 use	 the	 same	 clock.	 The

master	must	choose	a	clock	rate	that	can	be	handled	by	the	slave.	If	the	master	is
driving	 the	clock	 faster	 than	 the	slave	can	handle,	 the	 transmission	will	 fail.	The
master	and	slave(s)	must	agree	on	 the	clock	polarity	and	phase	with	 respect	 to
the	data.	Freescale	names	these	two	options	as	CPOL	(clock	polarity)	and	CPHA
(clock	 phase)	 respectively.	 CPOL	 determines	 the	 idle	 state	 of	 the	 clock.	When
CPOL=	0	the	idle	value	of	the	clock	is	zero	while	at	CPOL=1	the	idle	value	of	the
clock	 is	one.	CPHA	determines	when	 to	sample	 the	data.	CPHA=0	means	data
should	be	sampled	on	 the	 leading	(first)	clock	edge,	while	CPHA=1	means	data
should	be	sampled	on	the	trailing	(second)	clock	edge.	Notice	that	if	the	idle	value
of	 the	 clock	 is	 zero	 the	 leading	 (first)	 clock	edge	 is	 a	 rising	edge	but	 if	 the	 idle

value	of	the	clock	is	one,	the	leading	(first)	clock	edge	is	a	falling	edge.	See	Table
8-1	and	Figure	8-3.

Figure	8-3:	SPI	Clock	Polarity	and	phase

	

CPOL CPHA Data	Read	and	change	time							 SPI	Mode	

0 0 read	on		rising	edge,	changed	on	a
falling	edge 0

0 1 read	on		falling	edge,	changed	on	a
rising	edge 1

1 0 read	on		falling	edge,	changed	on	a
rising	edge 2

1 1 read	on		rising	edge,	changed	on	a
falling	edge 3

Table	8-1:	SPI	Clock	Polarity	and	phase

Review	Questions
1.							True	or	false.	SPI	is	an	Asynchronous	protocol.

2.							True	or	false.	In	the	SPI	protocol,	the	clock	is	always	generated	by	the
master	device.

Section	8.2:	SPI	programming	in	Freescale	ARM	KL25Z
The	Freescale	ARM	KL25Z	chip	comes	with	two	on-chip	SPI	modules.	The

SPI	modules	are	located	at	the	following	base	addresses:

SSI	Module Base	Address

SPI0 0x4007	6000

SPI1 0x4007	7000

Table	8-2:	SPI	Module	Base	Address

SPI	Register	addresses
The	 following	 table	 shows	some	of	 the	 registers	 in	SPI	modules	with	 their

addresses.

Absolute	Address Register

4007	6000 SPI	control	register	1	(SPI0_C1)

4007	6001 SPI	control	register	2	(SPI0_C2)

4007	6002 SPI	baud	rate	register	(SPI0_BR)

4007	6003 SPI	status	register	(SPI0_S)

4007	6005 SPI	data	register	(SPI0_D)

4007	7000 SPI	control	register	1	(SPI1_C1)

4007	7001 SPI	control	register	2	(SPI1_C2)

4007	7002 SPI	baud	rate	register	(SPI1_BR)

4007	7003 SPI	status	register	(SPI1_S)

4007	7005 SPI	data	register	(SPI1_D)

Table	8-3:	Some	of	the	KL25Z	SPI	Registers

	
Enabling	Clock	to	SPI

To	enable	 and	use	any	of	 the	 peripheral	modules	 in	 the	Freescale	KL25Z
chip,	we	must	enable	the	clock	to	it.	We	use	SIM_SCGC4	register	to	enable	the
clock	 to	SPI	modules.	 	Writing	a	one	to	D22	or	D23,	enables	 the	corresponding
SPI	module.	 	Notice,	 in	 addition	 to	 providing	 the	Clock	 to	SPI	module	we	must
also	enable	 the	SPI	module.	We	enable	SPI	using	 the	SPIx_C1	 register,	as	we
will	see	next.

Figure	8-4:	SIM_SCGC4	register	for	enabling	Clock	to	SPI

SPI	Control	1	register
The	 SPIx_C1	 (SPI	 Control	 1)	 register	 sets	 SPI	 configuration.	 Figure	 8-5

shows	the	bits	of	SPIx_C1.		We	must	use	SPI_C1	register	to	select	the	SPI	mode
operation	of	the	KL25Z.	Notice	that	the	SPE	bit	 in	the	SPIx_C1	register	must	be
set	 to	HIGH	 to	 allow	 the	 use	 of	 the	KL25Z	 pins	 for	 SPI	 data	 bus	 protocol.	We
choose	 the	 SPI	Master	mode	 by	 using	 the	MSTR	 bit	 of	 SPIx_C1	 register.	 The
CPOL	bit	is	used	for	selecting	an	inverted	or	non-inverted	SPI	clock.	In	the	active-
HIGH	(non-inverted)	SCK,	it	 is	low	in	the	idle	state.	We	must	make	sure	that	the
SPI	slave	device	has	 the	same	SCK	polarity	as	 the	KL25Z	master.	We	use	 the
CPHA	bit	in	the	SPIx_C1	register	to	select	the	rising	or	falling	edge	of	the	SCK	for
sampling	of	 data.	We	also	have	 the	option	of	 sending	out	 the	LSB	or	 the	MSB
first.

Figure	8-5:	SPIx_C1	Control	1	Register

Field Bit Descriptions

SPIE D7

SPI	Interrupt	Enable.	This	bit	enables	SPI	interrupt	request	for
SPRF	and	MODF.

1	=	SPRF	and	MODF	interrupts	enabled

0	=	SPRF	and	MODF	interrupts	disabled

SPE D6

SPI	System	Enable	bit

1	=	Enables	SPI	port	and	configures	pins	as	serial	port	pins

0	=	Disables	SPI	port	and	configures	these	pins	as	I/O	ports

SPTIE D5

SPI	Transmit	Interrupt	Enable.	This	bit	enables	the	SPI	interrupt
request	if	SPTEF	=	1.

1	=	SPTEF	interrupt	enabled

0	=	SPTEF	interrupt	disabled

MSTR D4

SPI	Master/Slave	mode	Select	bit.	This	bit	selects	master	or	slave
mode.

1	=	SPI	in	master	mode

0	=	SPI	in	slave	mode

CPOL D3

SPI	Clock	Polarity	bit

1	=	Active-LOW	clocks	selected.	In	idle	state	SCK	is	high.

0	=	Active-HIGH	clocks	selected.	In	idle	state	SCK	is	low.

CPHA D2

SPI	Clock	Phase	bit

1	=	Sampling	of	data	occurs	at	even	edges	of	the	SCK	clock.

0	=	Sampling	of	data	occurs	at	odd	edges	of	the	SCK	clock.

SSOE D1 Slave	Select	Output	Enable.	See	the	KL25Z	manual.

LSBFE D0

LSB	First	Enable

1	=	Data	is	transferred	least	significant	bit	first.

0	=	Data	is	transferred	most	significant	bit	first.

Table	8-4:	SPIx_C1	Control	1	Register

SPI	Control	2	register
With	the	options	available	in	SPIx_C2	(SPI	Control	Register	2),	many	other

features	of	the	SPI	module,	such	as	bidirectional	data	transfer,	can	be	used.	See
the	KL25Z	manual.

Figure	8-6:	SPIxC2	(SPI	Control	2)	Register

	

Field Bit Descriptions

MODFEN D4

Mode	Fault	Enable	Bit.	See	the	KL25Z	reference	manual.

1	=	SS	port	pin	with	MODF	feature

0	=	SS	port	pin	is	not	used	by	the	SPI	(default)

BIDIROE D3

Bidirectional	Output	Enable.	Used	in	bidirectional	mode.

1	=	Output	Buffer	enabled.	See	the	HCS12	manual.

0	=	Output	Buffer	enabled.	(default)

SPC0 D0

Serial	Pin	Control	bit	0.	Used	in	bidirectional	mode.

1	=	Bidirectional.	See	the	KL25Z	reference	manual.

0	=	Normal	(default)

Table	8-5:	SPIxC2	(SPI	Control	2)	Register

Setting	Bit	Rate
We	use	the	SPIx_BR	(SPI	Baud	Rate)	register	to	set	the	SCLK	rate	for	data

transfer	and	receive.	See	Figure	8-7.

Figure	8-7:	SPI	Baud	Rate	Generation

Module	clock	source	is	generally	Bus	Clock.	The	selected	frequency	is	fed	to
prescaler	before	it	 is	used	by	the	Bit	Rate	circuitry.	The	prescaler	and	divisor	for
SPIx_BR	register	are	shown	in	Figures	8-7	and	8-8	and	Tables	8-6	and	8-7.

Figure	8-8:	SPIx_BR	Register

Field Bit Description

SPPR2–
SPPR0 D6–D4 SPI	Baud	Rate	Prescaler	Divisor	bits

SPR3–SPR0 D3–D0

SPI	Baud	Rate	Divisor	bits

These	bits	specify	the	SPI	baud	rates	as	shown	in	the
following	two	equations:

BaudRateDivisor	=	(SPPR	+	1)	×	2	(SPR	+	1)

Baud	Rate	=	BusClock	/	BaudRateDivisor

Table	8-6:	SPIx_BR	Register

																															

SPPR2	SPPR1
SPPR0 SPR3	-	SPR0 SPIx_BR

(Hex) BaudRateDivisor

0	0	0 0	0	0	0 00 2

0	0	0 0	0	0	1 01 4

0	0	0 0	0	1	0 02 8

0	0	0 0	0	1	1 03 16

0	0	0 0	1	0	0 04 32

0	0	0 0	1	0	1 05 64

…	…	.	. …	…	.	. …	. …	…	.	.

1	1	0 0	1	1	1 67 1792

1	1	1 0	0	0	0 70 16

1	1	1 0	0	0	1 71 32

1	1	1 0	0	1	0 72 64

1	1	1 0	0	1	1 73 128

1	1	1 0	1	0	0 74 256

1	1	1 0	1	0	1 75 512

1	1	1 0	1	1	0 76 1024

1	1	1 0	1	1	1 77 2048

Note:	The	highest	Baud	Rate	=	BusFreq/2	and	the	lowest	Baud	Rate	is	BusFreq/2048

Table	8-7:	Some	possible	Values	for	SPIx_BR	Register

See	Examples	8-1	and	8-2.

Example	8-1

Using	BusFreq	=	2	MHz,	find	the	value	for	the	SPI	Baud	Rate	(SPIx_BR)	register
for	the	following	bit	rates:	a)	1	MHz,			b)	500	kHz			c)	7,812.5Hz

	
Solution:
	

(a)	For	2	MHz/1	MHz	=	2,	we	have	SPIx_BR	=	0000	0000	=	00	hex.

(b)	For	2	MHz/500	kHz	=	4,	we	have	SPIx_BR	=	0000	0001=	01	hex.

(c)	For	2	MHz/7,812.5	Hz	=	256,	we	have	SPIx_BR	=	0111	0100	=	74	hex.

	

Example	8-2

In	 a	 given	 program,	 we	 have	 SPIx_BR=0x72.	 Find	 baud	 rate	 if	 Bus	 Clock
frequency	is	13.98MHz.

Solution:
From	 Table	 8-7,	 we	 have	 0x72	 for	 baud	 rate	 divisor	 of	 64.	 Now,	 the
BR=13.98MHz/64=218,437	Hz.

	

	

Example	8-3

Find	the	value	for	the	control	register	SPIx_C1	register.	Assume	no	interrupt,	SPI
enabled,	SPI	master,	active-HIGH	clock,	sampling	data	on	rising	edge,	and	MSB
first.

Solution:
SPIx_C1	=	0101	0100	or	0x54.

	

	
Data	Register

The	 data	 is	 placed	 in	 SPIx_D	 (SPIx	 Data)	 register	 for	 transmission.	 The
SPIx_D	register	is	also	used	for	the	received	data	buffer.

Figure	8-9:	SPIx_D	Register

	

Figure	8-10:	SPI	Data	(SPIx_D)	Register

Status	Flag	Register
We	use	 the	SPI	Status	 register	 (SPIx_S)	 to	monitor	 to	see	whether	a	byte

has	been	 received	or	 if	 the	 transmission	buffer	 is	empty	and	 ready	 for	 the	next
byte	to	be	transmitted.	See	Figure	8-11	and	Table	8-8.

Figure	8-11:	SPI	Status	(SPIx_S)	Register

Field Bit Descriptions

SPI	read	buffer	full	Flag.	This	bit	is	set	after	a	received	byte	of

SPRF D7

data	has	been	placed	into	the	SPI	Data	Register.	This	bit	is
cleared	by	reading	the	SPI	Status	Register	(SPIx_S)	followed	by	a
read	from	the	SPI	Data	Register.

1	=	New	data	has	been	received	and	placed	in	SPIx_D.

0	=	Transfer	not	yet	complete

	

SPTEF D5

SPI	Transmit	Buffer	Empty	Flag.	If	set,	this	bit	indicates	that	the
transmit	data	register	is	empty	and	ready	for	a	new	byte	of	data.

1	=	SPI	Data	Register	empty

0	=	SPI	Data	Register	not	empty

	

MODF D4

Mode	Fault	flag	is	used	for	mode	selection	error.	See	the	KL25Z
manual.

1	=	Mode	fault	has	occurred.

0	=	Mode	fault	has	not	occurred.

	

Table	8-8:	SPI	Status	(SPIx_S)	Register

	

Configuring	GPIO	for	SPI
In	using	SPI,	we	must	also	configure	the	GPIO	pins	to	allow	the	connection

of	the	CPU	pins	to	SPI	device	pins.	See	Table	8-9.	In	this	regard,	it	is	the	same	as
all	other	peripherals.	The	steps	are	as	follow:

1.								Enable	the	clock	to	GPIO	pin	using	SIM_SCGC5.

2.								Assign	the	SPI	signals	to	specific	pins	using	ALT	option	in	PORTx_PCR
register.

SPI	Module	Pin I/O	Pin Other	Alternate	pins

SPI0_PCS0 PTC4	(ALT2) PTD0(ALT2)

SPI0_SCK PTC5	(ALT2) PTD1(ALT2)

SPI0_MOSI PTC6	(ALT2 PTD2(ALT2)

SPI0_MISO PTC5	(ALT2) PTD3(ALT2)

SPI1_PCS0 PTB10	(ALT2) PTD4(ALT2)

SPI1_SCK PTB11	(ALT2) PTD5(ALT2)

SPI1_MOSI PTB16	(ALT2) PTD6(ALT2)

SPI1_MISO PTB17	(ALT2) PTD7(ALT2)

Note:	Some	of	the	SPI	signals	use	ALT5	option	in	PORTx_PCR	register.	See	KL25Z	Ref.	Manual.

Table	8-9:	I/O	Pin	Assignment	for	both	SPI0	and	SPI1	Modules

	
Configuring	SPI	for	data	transmission

After	the	I/O	configuration,	we	need	to	take	the	following	steps	to	transmit	a
byte	of	data	using	the	SPI	protocol:

1.							Enable	the	clock	to	SPI	module	using	SIM_SCGC4	register.

2.							Disable	the	SPI	via	SPIx_C1	register	before	initialization.

3.							Set	the	Bit	Rate	with	the	SPIx_BR	registers.

4.							Also	select	the	SPI	mode,	phase,	master,	and	polarity	in	SPIx_C1	control
register.	Make	sure	the	master	mod	in	SPIx_C1	register.

5.							Enable	SPI	using	SPIx_C1	register.

6.							Assert	slave	select	signal.

7.							Monitor	the	SPTEF	flag	(SPI	Transmit	buffer	empty	flag)	in	SPIx_S	(SPIx
status)	register	until	it	goes	high.	Then,	load	a	byte	of	data	into	SPIx_D	(SPI
data)	register	to	be	transmitted.

8.							Wait	until	SPRF	(SPI	read	buffer	full	flag)	bit	in	SPIx_S	register	is	set
signaling	that	the	transmission	is	complete.	Read	the	SPIx_D	register	to
clear	the	SPRF.

9.							Repeat	step	6-7	above	until	all	the	data	are	transferred.

10.			Deassert	slave	select	signal.

Figure	8-12:	Initialization	Flowchart	for	SPI	Master	Device

	

Program	8-1:	sending	‘A’	to	‘Z’	characters	via	SPI0

	
/*P8_1.c:	Send	‘A’	to	‘Z’	via	SPI0

	

	*	PTD1	pin	as	SPI	SCK

	*	PTD2	pin	as	SPI	MOSI

	*	PTD0	pin	as	SPI	SS

	*/

	

#include	“MKL25Z4.h”

	

void	SPI0_init(void);

void	SPI0_write(unsigned	char	data);

	

int	main(void)	{

unsigned	char	c;

SPI0_init();																	/*	enable	SPI0	*/

while(1)	{

for(c	=	‘A’;	c	<=	‘Z’;	c++)	{

SPI0_write(c);

}

}

}

	

void	SPI0_init(void)	{

SIM->SCGC5	|=	0x1000;							/*	enable	clock	to	Port	D	*/

PORTD->PCR[1]	=	0x200;						/*	make	PTD1	pin	as	SPI	SCK	*/

PORTD->PCR[2]	=	0x200;						/*	make	PTD2	pin	as	SPI	MOSI	*/

PORTD->PCR[0]	=	0x100;						/*	make	PTD0	pin	as	GPIO	*/

PTD->PDDR	|=	0x01;										/*	make	PTD0	as	output	pin	for	/SS	*/

PTD->PSOR	=	0x01;											/*	make	PTD0	idle	high	*/

SIM->SCGC4	|=	0x400000;					/*	enable	clock	to	SPI0	*/

SPI0->C1	=	0x10;												/*	disable	SPI	and	make	SPI0	master	*/

SPI0->BR	=	0x60;												/*	set	Baud	rate	to	1	MHz	*/

SPI0->C1	|=	0x40;											/*	Enable	SPI	module	*/

}

	

void	SPI0_write(unsigned	char	data)	{

volatile	char	dummy;

PTD->PCOR	=	1;																		/*	assert	/SS	*/

while(!(SPI0->S	&	0x20))	{	}				/*	wait	until	tx	ready	*/

SPI0->D	=	data;																	/*	send	data	byte	*/

while(!(SPI0->S	&	0x80))	{	}				/*	wait	until	tx	complete	*/

dummy	=	SPI0->D;																/*	clear	SPRF	*/

PTD->PSOR	=	1;																		/*	deassert	/SS	*/

}

	

Review	Questions
1.							True	or	false.	The	Freescale	ARM	KL25Z	does	not	support	SPI	protocol.

2.							True	or	false.	The	Prescaler	register	of	SPI_BR	can	have	any	odd	or	even
number	between	1	and	255.

3.							In	Freescale	ARM	KL25Z,	which	register	is	used	to	enable	the	clock	to	SPI
module?

4.							In	Freescale	ARM	KL25Z,	which	register	is	used	to	set	the	SPI	baud	rate?

Section	8.3:	MAX7221	SPI	7-Segment	Driver
Chapter	2	examined	7-seg	concepts.	To	save	pins	we	can	use	MAX7219/21

chip.	In	this	section	we	show	an	SPI-based	7-seg	driver	and	its	interfacing	to	ARM
KL25Z.	MAX7221	 is	 an	SPI	 serial	 7-segment	 driver	 from	Maxim	Corporation.	 It
can	support	up	to	8-digit	seven-segment	display.

There	are	two	types	of	7-segments,	common	anode	and	common	cathode.
The	MAX7221	supports	common	cathode	only.	See	Figure	8-13.

Figure	8-13:	Common	Cathode	Connections	in	a	7-Segment	Display

In	many	applications	you	need	to	connect	two	or	more	7-segment	LEDs	to	a
microcontroller.	For	example,	if	you	want	to	connect	four	7-segment	LEDs	directly
to	a	microcontroller	you	need	4	×	8	=	32	pins.	This	is	costly.	The	MAX7221	IC	is
an	ideal	chip	for	such	applications	since	it	supports	up	to	eight	7-segment	LEDs.
We	 can	 connect	 the	 MAX7221	 to	 the	 microcontroller	 using	 SPI	 protocol	 and
control	up	to	eight	7-segment	LEDs.	The	MAX7221	contains	an	internal	decoder
that	can	be	used	to	convert	binary	numbers	to	7-segment	codes.	It	activates	the
digits	one	at	a	time.	That	means	the	CPU	does	not	need	to	refresh	the	7-segment
LEDs.	All	 you	need	 to	do	 is	 to	send	a	binary	number	 to	 the	MAX7221,	and	 the
chip	 decodes	 the	 binary	 data	 and	 displays	 the	 number.	 The	 device	 includes
analog	 and	 digital	 brightness	 control,	 an	 8×8	 static	RAM	 that	 stores	 each	 digit,
and	a	test	mode	that	forces	all	LEDs	on.	Next,	we	will	show	how	to	interface	an
MAX7221	to	the	KL25Z	and	program	it	using	SPI protocol.

MAX7221	pins	and	connections
The	 MAX7221	 is	 a	 24-pin	 DIP	 chip.	 It	 can	 be	 directly	 connected	 to	 the

microcontroller	 and	 control	 up	 to	 eight	 7-segment	 LEDs.	 A	 resistor	 or	 a
potentiometer	is	the	only	external	component	that	you	need.	Next,	we	will	discuss
the	pins	of	the	MAX7221.	See	Figure	8-14.

Figure	8-14:	MAX7219	and	MAX7221

GND
Pin	4	and	pin	9	are	the	ground.	Notice	that	both	of	the	ground	pins	should	be

connected	to	system	ground	and	you	cannot	leave	any	of	them	unconnected.

VCC
Pin	19	is	the	VCC	and	should	be	connected	to	the	+5	V	power	supply.	Notice

that	this	pin	also	supplies	the	power	to	drive	the	7-segments	and	the	connecting
wire	to	this	pin	should	be	able	to	handle	100–300	mA.

ISET
Pin	18	is	ISET	and	sets	the	maximum	segment	current.	This	pin	should	be

connected	 to	VCC	through	a	resistor.	A	10	kΩ	resistor	can	be	connected	 to	 this
pin.	If	you	want	to	manually	control	the	segments’	light	intensity,	you	can	replace
the	resistor	with	a	50K	potentiometer.	For	more	details	about	how	to	calculate	the
value	of	the	resistor	you	can	look	at	the	datasheet	of	the	chip.

CS
Pin	 12	 is	 the	 chip	 select	 pin	 and	 should	 be	 connected	 to	 the	 SS	 (slave

select)	pin	of	 the	microcontroller.	Serial	data	 is	 loaded	 into	 the	chip	while	CS	 is
low,	and	the	last	16	bits	of	the	serial	data	are	latched	on	the	rising	edge	of	CS.

DIN
Pin	1	is	the	serial	data	input	and	should	be	connected	to	the	MOSI	pin	of	the

microcontroller.	On	CLK’s	rising	edge,	data	on	this	pin	 is	 loaded	into	the	internal
shift	register.	Notice	that	the	MAX7221	reads	the	bit	on	rising	edge.

CLK
Pin	13	 is	 the	serial	clock	 input	and	should	be	connected	to	 the	SCK	pin	of

the	microcontroller.	On	MAX7221	the	clock	input	is	inactive	when	CS	is	high.

DOUT

Pin	 24	 is	 the	 serial	 data	 output	 and	 is	 used	 to	 connect	 more	 than	 one
MAX7221	to	a	single	SPI	bus.

DIG0–DIG7
The	DIG	pins	are	 the	7-segment	selector	pins	and	should	be	connected	to

the	7-segments’	common	cathode	pin.	The	MAX7221	chip	can	control	up	to	eight
7-segment	 LEDs.	 These	 eight	 7-segment	 displays	 are	 designated	 as	 DIG0	 to
DIG7.

SEGA–SEGG	and	DP
These	pins	select	each	segment	and	should	be	connected	 to	segments	of

each	 7-segment	 accordingly.	 Figure	 8-15	 shows	 the	 connection	 for	 two	 7-
segments.	You	can	connect	up	to	eight	7-segments	to	MAX7221.

Figure	8-15:	MAX7221	Connections	to	the	Microcontroller

MAX7221	data	packet	format
In	 MAX7221,	 data	 packets	 are	 16	 bits	 long	 (two	 bytes).	 You	 should	 first

make	 CS	 low	 before	 transmitting;	 then	 you	 transmit	 two	 bytes	 of	 data	 and
terminate	the	transmission	by	making	CS	high.

The	first	byte	(MSBs)	of	each	packet	contains	the	command	control	bits,	and
the	second	byte	is	the	data	to	be	displayed.	See	Figure	8-16.

Figure	8-16:	MAX7221	Packet	Format

The	upper	 four	bits	 (D15–D12)	of	 the	command	byte	are	 “don’t	cares”	and
the	lower	four	bits	(D11–D8)	are	used	to	identify	the	meaning	of	the	data	byte	that

follows.	The	second	byte	(D7–D0)	of	 the	two-byte	packet	 is	called	the	data	byte
and	 is	 the	actual	data	to	be	displayed	or	control	 the	7-segment	driver.	Table	8-9
shows	 the	 binary	 and	 hex	 values	 of	 each	 command.	 Next,	 we	 will	 discuss	 the
commands	in	more	detail.

Command D15-12 D11 D10 D9 D8 Hex	Code

No	operation X 0 0 0 0 X0

Set	value	of	digit	0 X 0 0 0 1 X1

Set	value	of	digit	1 X 0 0 1 0 X2

Set	value	of	digit	2 X 0 0 1 1 X3

Set	value	of	digit	3 X 0 1 0 0 X4

Set	value	of	digit	4 X 0 1 0 1 X5

Set	value	of	digit	5 X 0 1 1 0 X6

Set	value	of	digit	6 X 0 1 1 1 X7

Set	value	of	digit	7 X 1 0 0 0 X8

Set	decoding	mode X 1 0 0 1 X9

Set	intensity	of	light X 1 0 1 0 XA

Set	scan	limit X 1 0 1 1 XB

Turn	on/off X 1 1 0 0 XC

Display	test X 1 1 1 1 XF

Notes:

1)							X	means	don’t	care.

2)							Digits	are	designated	as	0-7	to	drive	total	of	eight	7-segment	LEDs.

Table	8-10:	List	of	Commands	in	MAX7221/MAX7219

Set	value	of	digit	0–digit	7	(commands	X1–X8)
These	commands	set	what	 is	to	be	displayed	on	each	7-segment.	You	can

either	send	a	binary	number	to	the	chip	decoder	and	let	it	turn	on/off	the	segments
accordingly,	or	you	may	decide	to	turn	on/off	each	segment	of	the	7-segment	by
yourself.	The	 first	way	 is	useful	when	you	do	not	want	 to	deal	with	converting	a
binary	number	to	7-segment	codes.	The	second	way	is	useful	when	you	want	to
show	a	 character	 or	 any	 other	 thing	 that	 is	 not	 predefined.	For	 example,	 if	 you
want	to	show	letter	‘U’,	you	should	use	the	second	way	and	turn	on/off	segments
yourself.	 Next,	 you	 will	 see	 how	 to	 enable	 or	 bypass	 the	 decoder	 for	 each	 7-

segment.

Set	decoding	mode	(command	X9)
This	command	lets	you	enable	or	bypass	the	binary	to	7-segment	decoding

function	 for	 each	 7-segment	 digit.	 Each	 bit	 in	 the	 data	 byte	 (second	 byte)	 is
assigned	to	one	digit	of	7-segment.	D0	 is	assigned	to	Digit	0,	D1	 is	assigned	to
Digit	 1,	 and	 so	 on.	 If	 you	 want	 to	 enable	 the	 decoding	 function	 for	 a	 digit	 you
should	 set	 to	 one	 the	 bit	 assigned	 to	 that	 digit,	 and	 if	 you	 want	 to	 disable	 the
decoding	 function	 you	 should	 clear	 the	 bit	 for	 that	 digit.	 Figure	 8-17	 shows	 the
structure	of	the	set	decoding	mode	command.	See	Examples	8-4	and	8-5.

Figure	8-17:	Set	Decoding	Mode	Command	Format

	

Example	8-4

What	sequence	of	bytes	should	be	sent	 to	 the	MAX7221	 in	order	 to	enable	 the
decoding	 function	 for	 digit	 0	 and	 digit	 2,	 and	 disable	 the	 decoding	 function	 for
other	digits?

	

Solution:	
	

The	first	byte	should	be	xxxx	1001	(X9	hex)	to	execute	the	“Set	decoding	mode”
command,	 	 and	 the	 second	 byte	 (argument	 of	 the	 command)	 should	 be	 0000
0101	to	enable	the	decoding	function	for	digit	0	and	digit	2.

	

	

Example	8-5

After	 running	 Example	 8-4,	 what	 sequence	 of	 numbers	 should	 be	 sent	 to	 the
MAX7221	in	order	to	write	5	on	digit	2?

	

Solution:	
	

The	first	byte	should	be	xxxx	0011	(X3	hex)	to	execute	the	“Set	value	of	digit	2”
command,	and	the	second	byte	(argument	of	the	command)	should	be	0000	0101
(05	hex)	to	write	5	on	digit	2.	Notice	that	the	decoding	function	for	digit	2	has	been
enabled	before.

	

If	you	want	to	turn	on/off	each	segment	by	yourself	to	display	a	specific	letter
on	a	7-segment,	you	should	bypass	the	decoding	function	and	then	use	the	“Set
value	 of	 digit	 x”	 command	 to	 turn	 on/off	 each	 bit	 of	 a	 segment.	 As	 you	 see	 in
Figure	8-18,	each	bit	of	the	data	bits	is	assigned	to	a	segment	of	the	7-segment.
For	example,	D0	is	assigned	to	the	G	segment,	D1	is	assigned	to	the	F	segment,
and	 so	 on.	 If	 you	 want	 to	 turn	 on	 a	 segment,	 you	 should	 write	 one	 to	 the
corresponding	bit,	and	if	you	want	to	turn	off	a	segment,	you	should	write	zero	to
its	bit.	Figure	8-18	shows	the	bit	assigned	to	each	segment.	See	Example	8-6.

Figure	8-18:	Bits	Assigned	to	Segments

Example	8-6

After	 running	 Example	 8-4,	 what	 sequence	 of	 numbers	 should	 be	 sent	 to	 the
MAX7221	in	order	to	write	U	on	digit	1?

Solution:	
	

The	decoding	 function	 for	digit	1	has	been	disabled	before	 in	Example	8-4,	and
we	have	to	turn	on/off	each	segment	manually.	As	you	see	in	the	figure,	segments
B,	C,	D,	E,	and	F	should	be	turned	on.	To	turn	on	these	segments	of	digit	1,	we
should	send	the	first	byte	xxxx	0010	(X2	hex)	to	execute	the	“Set	value	of	digit	1”
command	 and	 then	 we	 should	 send	 0011	 1110	 (3E	 hex)	 to	 write	 U	 on	 digit	 1.
Notice	that	the	decoding	function	for	digit	1	has	been	enabled	before.	The	figure
below	shows	the	bits.

	

Set	Intensity	of	Light	(command	XA)
This	command	sets	the	light	intensity	of	the	segments.	The	intensity	can	be

any	value	between	0	and	16	(0F	hex).	0	is	the	minimum	value	of	intensity,	and	16
is	 the	maximum	value	of	 intensity.	Notice	 that	 0	does	not	mean	off	 but	 it	 is	 the
minimum	 intensity.	 As	 we	 mentioned	 before,	 you	 can	 also	 change	 the	 light
intensity	of	segments	by	changing	the	resistor	that	connects	the	ISET	pin	to	VCC.

Set	Scan	Limit	(command	XB)
This	 command	 sets	 the	 number	 of	 7-segments	 that	 are	 connected	 to	 the

chip.	This	number	can	vary	from	1	to	8.

Turn	On/	Off	(command	XC)
This	command	 turns	 the	display	on	or	off.	1	 (01	hex)	 turns	 the	display	on,

while	0	(00	hex)	turns	off	 the	display.	This	command	is	useful	when	you	want	to
reduce	the	power	consumption	of	your	device.

Display	Test	(command	XF)
This	 command	 is	 used	 to	 test	 the	 display.	 If	 you	 send	 1	 (01	 hex)	 after

sending	 the	 display	 test	 command	 to	 the	 chip,	 it	 enters	 display-test	 mode	 and
turns	on	all	segments.	This	 lets	you	check	 to	see	 if	all	 segments	work	properly.
When	 you	 want	 to	 return	 to	 normal	 operation	 mode,	 you	 should	 execute	 the
command	but	send	0	(00	hex)	as	data	to	the	chip.

MAX7221	programming	in	the	KL25Z
To	 program	 MAX7221	 in	 the	 KL25Z	 you	 should	 do	 the	 following	 steps.

Notice	that	step	4	is	optional	and	can	be	ignored:

1.							Initialize	the	SPI	to	operate	in	master	mode	so	that	data	is	stable	on
rising	edge	and	changes	on	falling	edge.

2.							Enable	or	disable	decoding	mode	by	executing	command	9	(x9	hex).

3.							Set	the	scan	limit.

4.							Set	the	intensity	of	light	(optional).

5.							Disable	test	mode

6.							Turn	on	the	display.

7.							Set	the	values	of	each	digit.

See	Programs	8-2	and	8-3.	Program	8-2	shows	how	to	display	57	on	the	7-
segment	display	of	Figure	8-15	using	the	decoding	function.

Program	8-2:	Displaying	57	on	the	7-segment

	
/*P8_2.c:	Programming	MAX7219	via	SPI	with	FRDM-KL25Z

	

	*	MAX7219	is	connected	to	a	two-digit	seven-segment	LED

	*	The	program	displays	“57”	on	the	seven-segment	LED

	*	PTD1	pin	as	SPI	SCK

	*	PTD2	pin	as	SPI	MOSI

	*	PTD0	pin	as	chip	select

	*/

	

#include	“MKL25Z4.h”

	

void	SPI0_init(void);

void	SPI0_write(unsigned	char	data);

void	max7219_write(unsigned	char	command,	unsigned	char	data);

	

#define	DECODE	9

#define	INTENSITY	10

#define	SCANLIMIT	11

#define	SHUTDOWN	12

#define	TEST	15

	

int	main(void)	{

SPI0_init();																	/*	enable	SPI0	*/

max7219_write(DECODE,	3);				/*	enable	decode	for	digit	1,	0	*/

max7219_write(SCANLIMIT,	2);	/*	scan	two	digits	*/

max7219_write(INTENSITY,	4);	/*	set	1/4	intensity	*/

max7219_write(TEST,	0);						/*	disable	test	mode	*/

max7219_write(SHUTDOWN,	1);		/*	enable	device	*/

max7219_write(0x02,	5);						/*	display	5	*/

max7219_write(0x01,	7);						/*	display	7	*/

	

while(1)	{

}

}

	

void	SPI0_init(void)	{

SIM->SCGC5	|=	0x1000;							/*	enable	clock	to	Port	D	*/

PORTD->PCR[1]	=	0x200;						/*	make	PTD1	pin	as	SPI	SCK	*/

PORTD->PCR[2]	=	0x200;						/*	make	PTD2	pin	as	SPI	MOSI	*/

PORTD->PCR[0]	=	0x100;						/*	make	PTD0	pin	as	GPIO	*/

PTD->PDDR	|=	0x01;										/*	make	PTD0	as	output	pin	for	CS	*/

PTD->PSOR	=	0x01;											/*	make	PTD0	idle	high	*/

SIM->SCGC4	|=	0x400000;					/*	enable	clock	to	SPI0	*/

SPI0->C1	=	0x10;												/*	disable	SPI	and	make	SPI0	master	*/

SPI0->BR	=	0x60;												/*	set	Baud	rate	to	1	MHz	*/

SPI0->C1	|=	0x40;											/*	Enable	SPI	module	*/

}

	

void	max7219_write(unsigned	char	command,	unsigned	char	data)	{

volatile	char	dummy;

PTD->PCOR	=	1;																		/*	assert	/CS	*/

	

while(!(SPI0->S	&	0x20))	{	}				/*	wait	until	tx	ready	*/

SPI0->D	=	command;														/*	send	command	byte	first	*/

while(!(SPI0->S	&	0x80))	{	}				/*	wait	until	tx	complete	*/

dummy	=	SPI0->D;																/*	clear	SPRF	*/

while(!(SPI0->S	&	0x20))	{	}				/*	wait	until	tx	ready	*/

SPI0->D	=	data;																	/*	send	data	byte	*/

while(!(SPI0->S	&	0x80))	{	}				/*	wait	until	tx	complete	*/

dummy	=	SPI0->D;																/*	clear	SPRF	*/

PTD->PSOR	=	1;																		/*	de-assert	/CS	*/

}

	

Program	 8-3	 shows	 how	 to	 display	 “2U”	 on	 the	 7-segment	 of	 Figure	 8-15
without	using	the	decoding	function	for	letter	‘U’.

Program	8-3:	Displaying	2U	on	the	7-segment

	
/*P8_3.c:	Programming	MAX7219	via	SPI	with	FRDM-KL25Z

	

	*	MAX7219	is	connected	to	a	two-digit	seven-segment	LED

	*	Display	“2U”	on	the	seven-segment	LED

	*	PTD1	pin	as	SPI	SCK

	*	PTD2	pin	as	SPI	MOSI

	*	PTD0	pin	as	chip	select

	*/

	

#include	“MKL25Z4.h”

	

void	SPI0_init(void);

void	SPI0_write(unsigned	char	data);

void	max7219_write(unsigned	char	command,	unsigned	char	data);

	

#define	DECODE	9

#define	INTENSITY	10

#define	SCANLIMIT	11

#define	SHUTDOWN	12

#define	TEST	15

	

int	main(void)	{

SPI0_init();

max7219_write(DECODE,	2);				/*	enable	decode	for	digit	1	*/

max7219_write(SCANLIMIT,	2);	/*	scan	two	digits	*/

max7219_write(INTENSITY,	4);	/*	set	1/4	intensity	*/

max7219_write(TEST,	0);						/*	disable	test	mode	*/

max7219_write(SHUTDOWN,	1);		/*	enable	device	*/

max7219_write(0x02,	0x02);			/*	display	2	*/

max7219_write(0x01,	0x3E);			/*	display	U	(see	Example	8-6)	*/

	

while(1)	{

}

}

	

void	SPI0_init(void)	{

SIM->SCGC5	|=	0x1000;							/*	enable	clock	to	Port	D	*/

PORTD->PCR[1]	=	0x200;						/*	make	PTD1	pin	as	SPI	SCK	*/

PORTD->PCR[2]	=	0x200;						/*	make	PTD2	pin	as	SPI	MOSI	*/

PORTD->PCR[0]	=	0x100;						/*	make	PTD0	pin	as	GPIO	*/

PTD->PDDR	|=	0x01;										/*	make	PTD0	as	output	pin	for	CS	*/

PTD->PSOR	=	0x01;											/*	make	PTD0	idle	high	*/

SIM->SCGC4	|=	0x400000;					/*	enable	clock	to	SPI0	*/

SPI0->C1	=	0x10;												/*	disable	SPI	and	make	SPI0	master	*/

SPI0->BR	=	0x60;												/*	set	Baud	rate	to	1	MHz	*/

SPI0->C1	|=	0x40;											/*	Enable	SPI	module	*/

}

	

void	max7219_write(unsigned	char	command,	unsigned	char	data)	{

volatile	char	dummy;

PTD->PCOR	=	1;																		/*	assert	/CS	*/

	

while(!(SPI0->S	&	0x20))	{	}				/*	wait	until	tx	ready	*/

SPI0->D	=	command;														/*	send	command	byte	first	*/

while(!(SPI0->S	&	0x80))	{	}				/*	wait	until	tx	complete	*/

dummy	=	SPI0->D;																/*	clear	SPRF	*/

while(!(SPI0->S	&	0x20))	{	}				/*	wait	until	tx	ready	*/

SPI0->D	=	data;																	/*	send	data	byte	*/

while(!(SPI0->S	&	0x80))	{	}				/*	wait	until	tx	complete	*/

dummy	=	SPI0->D;																/*	clear	SPRF	*/

PTD->PSOR	=	1;																		/*	de-assert	/CS	*/

}

	

Review	Questions
1.							How	many	7-segments	can	be	controlled	by	MAX7221?

2.							What	would	happen	if	you	do	not	set	the	scan	limit?

3.							True	or	False.	If	you	want	to	show	P	on	a	7-segment	you	can	use	the
decoding	function.

4.							Which	segments	should	be	on	to	display	P	on	a	7-segment?

5.							What	is	the	recommended	value	of	the	ISET	resistor?

Answers	to	Review	Questions
Section	8.1

1.							False

2.							True

Section	8.2
1.							False

2.							False

3.							SIM_SCGC4

4.							SPIx_BR

Section	8.3
1.							8																													

2.							The	scan	limit	would	be	0	and	nothing	would	be	shown	on	the	7-segment.

3.							False

4.							A,	B,	E,	F,	G								

5.							10	kΩ

	

Chapter	9:	I2C	Protocol	and	RTC	Interfacing
This	 chapter	 covers	 I2C	 bus	 interfacing	 and	 programming.	 Section	 9.1

examines	 the	 I2C	 bus	 protocol.	 Section	 9.2	 shows	 the	 inner	 working	 of	 I2C
module	 in	 Freescale	 ARM	 KL25Z	 devices.	 The	 DS1337	 RTC	 and	 its	 I2C
interfacing	and	programming	are	covered	in	Section	9.3.

Section	9.1:	I2C	Bus	Protocol
The	 IIC	(Inter-Integrated	Circuit)	 is	a	bus	 interface	connection	 incorporated

into	many	devices	such	as	sensors,	RTC,	and	EEPROM.	The	IIC	is	also	referred
to	as	I2C	or	I	square	C	in	many	technical	literatures.	In	this	section,	we	examine
the	signals	of	the	I2C	bus	and	focus	on	I2C	terminology	and	protocols.

I2C	Bus
The	 I2C	 bus	 was	 originally	 started	 by	 Philips,	 but	 in	 recent	 years	 has

become	a	widely	used	standard	adopted	by	many	semiconductor	companies.	I2C
is	ideal	to	attach	low-speed	peripherals	to	a	motherboard	or	embedded	system	or
anywhere	that	a	reliable	communication	over	a	short	distance	is	required.	As	we
will	 see	 in	 this	 chapter,	 I2C	provides	a	 connection	oriented	 communication	with
acknowledgement.	I2C	devices	use	only	2	pins	for	data	transfer,	instead	of	the	8
or	more	pins	used	in	traditional	parallel	buses.	These	two	signals	are	called	SCL
(Serial	Clock)	which	synchronize	 the	data	 transfer	between	 two	chips,	and	SDA
(Serial	Data).	This	reduction	of	communication	pins	reduces	the	package	size	and
power	consumption	drastically,	making	them	ideal	for	many	applications	in	which
space	is	a	major	concern.	These	two	pins,	SDA,	and	SCK,	make	the	I2C	a	2-wire
interface.	 In	 some	 application	 notes,	 I2C	 is	 referred	 to	 as	 Two-Wire	 Serial
Interface	(TWI).

I2C	line	electrical	characteristics
I2C	devices	use	only	2	bidirectional	open-drain	pin	for	data	communication.

To	implement	I2C,	a	4.7k	ohm	pull-up	resistor	for	each	of	bus	lines	is	needed	(see
Figure	 9-1).	 This	 implements	 a	 wired-AND	 which	 is	 needed	 to	 implement	 I2C
protocols.	It	means	that	if	one	or	more	devices	pull	the	line	to	low	(zero)	level,	the
line	state	is	zero.	The	level	of	line	will	be	1	only	if	none	of	devices	pull	the	line	to
low	level.

Figure	9-1:	I2C	Bus	Characteristics

I2C	Nodes
In	I2C	protocol,	more	than	100	devices	can	share	an	I2C	bus.	Each	of	these

devices	 is	 called	 a	node.	 In	 I2C	 terminology,	 each	 node	 can	 operate	 as	 either
master	or	slave.	Master	is	a	device	that	generate	the	Clock	for	the	system,	it	also
initiate	and	terminate	a	transmission.	Slave	is	a	node	that	receives	the	clock	and
is	addressed	by	the	master.	In	I2C,	both	master	and	slave	can	receive	or	transmit

data.	 So	 there	 are	 4	 modes	 of	 operation	 for	 each	 node.	 They	 are:	 master
transmitter,	master	receiver,	slave	transmitter	and	slave	receiver.	Notice	that	each
node	can	have	more	than	one	mode	of	operation	at	different	times	but	it	has	only
one	mode	of	operation	at	any	given	time.	See	Example	9-1

Example	9-1

Give	an	example	to	show	how	a	device	(node)	can	use	more	than	one	mode	of
operation.

Solution:

If	you	connect	a	microcontroller	to	an	EEPROM	with	I2C,	the	microcontroller	does
master	transmit	operation	to	write	to	EEPROM	and	master	receive	operation	to
read	from	EEPROM

	

In	next	sections,	you	will	see	that	a	node	can	do	the	operations	of	master	and
slave	at	different	time.

Bit	Format
I2C	 is	a	synchronous	serial	protocol;	each	data	bit	 transferred	on	 the	SDA

line	is	synchronized	by	a	high	to	low	pulse	of	clock	on	SCL	line.	According	to	I2C
protocols	 the	data	 line	cannot	change	when	the	clock	 line	 is	high,	 it	can	change
only	when	the	clock	line	is	 low.	See	Figure	9-2.	STOP	and	START	condition	are
the	only	exceptions	to	this	rule.

Figure	9-2:	I2C	Bit	Format

START	and	STOP	conditions
As	 we	 mentioned	 before,	 I2C	 is	 a	 connection	 oriented	 communication

protocol,	it	means	that	each	transmission	is	initiated	by	a	START	condition	and	is
terminated	by	STOP	condition.	Remember	that	the	START	and	STOP	conditions
are	generated	by	the	master.

STOP	and	START	conditions	must	be	distinguished	from	bits	of	address	or
data	 and	 that	 is	 why	 they	 do	 not	 obey	 the	 bit	 format	 rule	 that	 we	 mentioned
before.

START	and	STOP	conditions	are	generated	by	keeping	the	level	of	the	SCL
line	 to	 high	 and	 then	 changing	 the	 level	 of	 the	 SDA	 line.	 START	 condition	 is
generated	by	a	high-to-low	change	in	SDA	line	when	SCL	is	high.	STOP	condition

is	generated	by	a	low-to-high	change	in	SDA	line	when	SCL	is	high.	See	Figure	9-
3.

Figure	9-3:	START	and	STOP	Conditions

The	 bus	 is	 considered	 busy	 between	 each	 pair	 of	 START	 and	 STOP
conditions	and	no	other	master	tries	to	take	control	of	the	bus	when	it	is	busy.	If	a
master,	 which	 has	 the	 control	 of	 the	 bus,	 wishes	 to	 initiate	 a	 new	 transfer	 and
does	not	want	to	release	the	bus	before	starting	the	new	transfer,	it	issues	a	new
START	 condition	 between	 a	 pair	 of	 START	 and	 STOP	 condition.	 It	 is	 called
REPEATED	START	condition	or	simply	RESTART	condition.	See	Figure	9-4.

Figure	9-4:	REPEATED	START	Condition

Example	9-2	shows	why	REPEATED	START	condition	is	necessary.

Example	9-2

Give	an	example	to	show	when	a	master	must	use	REPEATED	START	condition.
What	will	happen	if	the	master	does	not	use	it?

	

Solution:

If	you	connect	 two	microcontrollers	(uA	and	uB)	and	an	EEPROM	with	 I2C,	and
the	 uA	wants	 to	 display	 the	 sum	 of	 the	 contents	 at	 address	 0x34	 and	 0x35	 of
EEPROM,	it	has	to	use	REPEATED	START	condition.	Let’s	see	what	may	happen
if	 the	 uA	 does	 not	 use	 REPEATED	 START	 condition.	 uA	 transmit	 a	 START
condition,	 reads	 the	content	of	address	0x34	of	EEPROM	and	 transmit	a	STOP
condition	 to	release	 the	bus.	Before	uA	reads	 the	contents	of	address	0x35,	 the
uB	 seize	 the	 bus	 and	 change	 the	 contents	 of	 address	 0x34	 and	 0x35	 of
EEPROM.	Then	uA	reads	the	content	of	address	0x35,	adds	it	 to	 last	content	of
address	0x34	and	display	the	result	to	LCD.	The	result	on	the	LCD	is	neither	the
sum	of	old	values	of	address	0x34	and	0x35	nor	 the	sum	of	 the	new	values	of
address	0x34	and	0x35	of	EEPROM!

Message	format	in	I2C
In	I2C,	each	address	or	data	to	be	transmitted	must	be	framed	in	9	bit	long.

The	 first	 8	 bits	 are	 put	 on	 SDA	 line	 by	 the	 transmitter	 and	 the	 9th	 bit	 is	 the
acknowledgement	 by	 the	 receiver	 or	 it	 may	 be	 NACK	 (negative	 acknowledge).
Notice	 that	 the	 clock	 is	 always	 generated	 by	 the	master,	 regardless	 of	 it	 being
transmitter	or	receiver.	To	allow	acknowledge,	the	transmitter	release	the	SDA	line
during	the	9th	clock	so	the	receiver	can	pull	the	SDA	line	low	to	indicate	an	ACK.
If	the	receiver	doesn’t	pull	the	SDA	line	low,	it	is	considered	as	NACK.	See	Figure
9-5.

Figure	9-5:	Byte	Format	in	I2C

In	 I2C,	 each	 byte	 may	 contain	 either	 address	 or	 data.	 Also	 notice	 that:
START	 condition	 +	 slave	 address	 byte	 +	 one	 or	 more	 data	 byte	 +	 STOP
condition	 together	 form	 a	 complete	 data	 transfer.	 Next	 we	 will	 study	 slave
address	 and	 data	 byte	 formats	 and	 how	 to	 combine	 them	 to	make	 a	 complete
transmission.

Address	Byte	Format
Like	any	other	bytes,	all	address	bytes	transmitted	on	the	I2C	bus	are	nine

bits	 long.	It	consists	of	seven	address	bits,	one	READ/WRITE	control	bit	and	an
acknowledge	bit.	(See	Figure	9-6)

Figure	9-6:	Address	Byte	Format	in	I2C

	Slave	address	bits	are	used	to	address	a	specific	slave	device	on	the	bus.	7
bit	 address	 let	 the	 master	 to	 address	 maximum	 of	 128	 slaves	 on	 the	 bus.
Although	 address	 0000	 000	 is	 reserved	 for	 general	 call	 and	 all	 address	 of	 the
format	 1111	 xxx	 are	 reserved	 in	 many	 devices.	 There	 are	 8	 more	 reserved
addresses.	That	means	111	=	 (128-1-8-8)	 device	 can	 share	an	 I2C	bus.	 In	 I2C
bus	the	MSB	of	the	address	is	transmitted	first.	The	I2C	bus	also	supports	10-bit
address	 where	 the	 address	 is	 split	 into	 two	 frames	 at	 the	 beginning	 of	 the
transmission.	For	the	rest	of	the	discussion,	we	will	focus	on	7	bit	address	only.

The	8th	bit	in	the	address	byte	is	READ/WRITE	control	bit.	If	this	bit	is	set,
the	master	will	read	the	next	byte	from	the	slave,	otherwise,	the	master	will	write
the	next	byte	on	 the	bus	 to	 the	slave.	When	a	slave	detects	 its	address	on	 the
bus,	 it	 knows	 that	 it	 is	 being	addressed	and	 it	 should	 acknowledge	 in	 the	ninth

clock	cycle	by	pulling	SDA	to	 low.	 If	 the	addressed	slave	 is	not	ready	or	 for	any
reason	does	not	want	to	respond	to	the	master,	it	should	leave	the	SDA	line	high
in	the	9th	clock	cycle.	It	is	considered	as	NACK.	In	case	of	NACK,	the	master	can
transmit	a	STOP	condition	to	terminate	the	transmission,	or	a	REPEATED	START
condition	to	initiate	a	new	transmission.

Example	9-3	shows	how	a	master	says	that	it	wants	to	write	to	a	slave.

Example	9-3

Show	how	a	master	initiates	a	write	to	a	slave	with	address	1001101?

Solution:
	

The	following	actions	are	performed	by	the	master:

1)						The	master	put	a	high	to	low	pulse	on	SDA	while	SCL	is	high	to	generate	a
start	condition	to	start	the	transmission

2)						The	master	transmit	1001101	0	into	the	bus.	The	first	seven	bits	(1001101)
indicates	the	slave	address	and	the	8th	bit	(0)	indicates	Write	operation	and
the	master	will	write	the	next	byte	(data)	into	the	slave.

	

	An	address	byte	consisting	of	a	slave	address	and	a	READ	is	called	SLA+R
while	 an	 address	 byte	 consisting	 of	 a	 slave	 address	 and	 a	 WRITE	 is	 called
SLA+W.

As	we	mentioned	before,	address	0000	000	 is	 reserved	 for	general	 call.	 It
means	 that	 when	 a	 master	 transmit	 address	 0000	 000	 all	 slaves	 respond	 by
changing	the	SDA	line	to	zero	for	one	clock	cycle	for	an	ACK	and	wait	to	receive
the	data	byte.	It	is	useful	when	a	master	want	to	transmit	the	same	data	byte	to	all
slaves	in	the	system.	Notice	that	the	general	call	address	cannot	be	used	to	read
data	from	slaves	because	no	more	than	one	slave	is	able	to	write	to	the	bus	at	a
given	time.	Also	not	all	the	devices	respond	to	a	general	call.

Data	Byte	Format
Like	other	bytes,	data	bytes	are	9	bits	long	too.	The	first	8	bits	are	a	byte	of

data	to	be	transmitted	and	the	9th	bit,	is	for	ACK.	If	the	receiver	has	received	the
last	byte	of	data	and	does	not	wish	to	receive	more	data,	it	may	signal	a	NACK	by
leaving	 the	SDA	 line	high.	The	master	should	 terminate	 the	 transmission	with	a
STOP	 after	 a	 NACK	 appears.	 In	 data	 bytes,	 like	 address	 bytes,	 MSB	 is

transmitted	first.

Combining	Address	and	Data	Bytes	into	a	Transmission
In	I2C,	normally,	a	transmission	is	started	by	a	START	condition,	followed	by

an	 address	 byte	 (SLA+R/W),	 one	 or	more	 data	 bytes	 and	 finished	 by	 a	 STOP
condition.	Figure	9-7	shows	a	 typical	data	 transmission.	Try	 to	understand	each
element	in	the	figure.	(See	Example	9-4)

Figure	9-7:	Typical	Data	Transmission

Example	9-4

Show	how	a	master	writes	data	value	1111	0000	to	a	slave	with	an	address	1001
101?

Solution:
	

The	following	actions	are	performed	by	the	master:

1)	 	 	 	 	 	The	master	 put	 a	 high	 to	 low	 transition	 on	 SDA	 while	 SCL	 is	 high	 to
generate	a	START	condition	to	start	the	transmission

2)						The	master	transmit	1001	101	0	on	the	bus.	The	first	seven	bits	(1001	101)
indicates	 the	 slave	address	and	 the	8th	 bit	 (0)	 indicates	a	Write	 operation
and	say	that	the	master	will	write	the	next	byte	(data)	into	the	slave.

3)						The	slave	pulls	the	SDA	line	low	at	the	9th	clock	pulse	to	signal	an	ACK	to
say	that	it	is	ready	to	receive	data

4)						After	receiving	the	ACK,	the	master	will	transmit	the	data	byte	(1111	0000)
on	the	SDA	line.	(MSB	first)

5)	 	 	 	 	 	When	 the	slave	device	 receives	 the	data	 it	 leaves	 the	SDA	 line	high	 to
signal	NACK	and	inform	the	master	that	the	slave	received	the	last	data	byte
and	does	not	need	any	more	data

6)	 	 	 	 	 	After	receiving	the	NACK,	the	master	will	know	that	no	more	data	should
be	transmitted.	The	master	changes	the	SDA	line	when	the	SCL	line	is	high
to	transmit	a	STOP	condition	and	then	releases	the	bus.

	

Clock	stretching
One	of	 the	 features	of	 the	 I2C	protocol	 is	 clock	 stretching.	 It	 is	 used	by	a

slow	slave	device	to	synchronize	with	the	master.	If	an	addressed	slave	device	is
not	 ready	 to	process	more	data	 it	will	stretch	 the	clock	by	holding	 the	clock	 line
(SCL)	low	after	receiving	(or	sending)	a	bit	of	data	so	the	master	will	not	be	able
to	 raise	 the	 clock	 line	 (because	devices	are	wire-ANDed)	and	will	wait	 until	 the
slave	 releases	 the	SCL	 line	 to	show	 it	 is	 ready	 for	 the	next	bit.	See	Figure	9-8.
Clock	stretching	can	be	used	to	slow	down	the	clock	for	each	bit	or	it	can	be	used
to	temporarily	halt	the	clock	at	the	end	of	a	byte	while	the	receiver	is	processing
the	data.

Figure	9-8:	Clock	Stretching

Arbitration
I2C	protocol	 supports	multi-master	 bus	 system.	 It	 doesn’t	mean	 that	more

than	 one	master	 can	 use	 the	 bus	 at	 the	 same	 time.	Each	master	waits	 for	 the
current	transmission	to	finish	and	then	start	to	use	the	bus.	But	it	is	possible	that
two	or	more	masters	 initiate	a	transmission	at	about	the	same	time.	In	this	case
the	arbitration	happens.

Each	master	has	to	check	the	level	of	the	bus	and	compare	it	with	the	levels
it	 is	 driving;	 if	 it	 doesn’t	 match,	 that	 master	 has	 lost	 the	 arbitration,	 and	 will
switches	to	slave	mode.	In	the	case	of	arbitration,	the	winning	master	will	continue
the	transmission.	Notice	that	neither	the	bus	is	corrupted	nor	the	data	is	lost.	See
Example	9-5

Example	9-5

If	 two	master	A	 and	B	 start	 at	 about	 the	 same	 time,	what	 happens	 if	master	A
wants	to	write	to	slave	0010	000	and	master	B	wants	to	write	to	slave	0001	111?

Solution:
Master	A	will	lose	the	arbitration	in	the	third	clock	because	the	SDA	line	is	different
from	output	of	master	A	at	the	third	clock.	Master	A	switches	to	slave	mode	and
stops	driving	the	bus	after	losing	the	arbitration.

	

Multi-byte	burst	write
Burst	mode	writing	 is	 an	 effective	means	 of	 loading	 data	 into	 consecutive

memory	locations.	It	is	supported	in	I2C,	SPI,	and	many	other	serial	protocols.	In
burst	mode,	we	provide	the	address	of	the	first	memory	location,	followed	by	the
data	for	that	location.	From	then	on,	consecutive	bytes	are	written	to	consecutive
memory	locations.	In	this	mode,	the	I2C	device	internally	increments	the	address
location	as	long	as	STOP	condition	is	not	detected.	The	following	steps	are	used
to	send	(write)	multiple	bytes	of	data	in	burst	mode	for	I2C	devices.

1.							The	master	generates	a	START	condition.

2.							The	master	transmits	the	slave	address	followed	by	a	zero	bit	(for	write).

3.							The	master	transmits	the	memory	address	of	the	first	location.

4.							The	master	transmits	the	data	for	the	first	memory	location	and	from	then
on,	the	master	simply	provides	consecutive	bytes	of	data	to	be	placed	in
consecutive	memory	locations	in	the	slave.

5.							The	master	generates	a	STOP	condition.

Figure	 9-9	 shows	 how	 to	 write	 0x05,	 0x16,	 and	 0x0B	 to	 3	 consecutive
locations	starting	from	location	00001111	of	slave	1111000.

Figure	9-9:	Multi-byte	Burst	Write

Multi-byte	burst	read

Burst	 mode	 reading	 is	 an	 effective	means	 of	 bringing	 out	 the	 contents	 of
consecutive	memory	locations.	In	burst	mode,	we	provide	the	address	of	the	first
memory	 location	only.	From	then	on,	contents	are	brought	out	 from	consecutive
memory	locations.	In	this	mode,	the	I2C	device	internally	increments	the	address
location	as	long	as	STOP	condition	is	not	detected.	The	following	steps	are	used
to	get	(read)	multiple	bytes	of	data	using	burst	mode	for	I2C	devices.

1.							The	master	generates	a	START	condition.

2.							The	master	transmits	the	slave	address	followed	by	a	zero	bit	(for	writing
the	memory	address).

3.							The	master	transmits	the	memory	address	of	the	first	memory	location.

4.							The	master	generates	a	RESTART	condition	to	switch	the	bus	direction
from	write	to	read.

5.							The	master	transmits	the	slave	address	followed	by	a	one	bit	(for	read).

6.							The	master	clocks	the	bus	8	times	and	the	slave	device	provides	the	data
for	the	first	location.

7.							The	master	provides	an	ACK.

8.							The	master	reads	the	consecutive	locations	and	provides	an	ACK	for	each
byte.

9.							The	master	gives	a	NACK	for	the	last	byte	received	to	signal	the	slave	that
the	read	is	complete.

10.			The	master	generates	a	STOP	condition.

Figure	 9-10	 shows	 how	 to	 read	 three	 consecutive	 locations	 starting	 from
location	00001111	of	slave	number	1111000.

Figure	9-10:	Multi-byte	Burst	Read

Review	Questions
1.							True	or	false.	I2C	protocol	is	ideal	for	short	distance.

2.							How	many	bits	are	there	in	a	frame?	Which	bit	is	for	acknowledgement?

3.							True	or	false.	START	and	STOP	conditions	are	generated	when	the	SDA	is
high.

4.							What	is	the	name	of	the	procedure	a	slow	slave	device	uses	to
synchronize	with	a	fast	master?

5.							True	or	false.	After	arbitration	of	two	masters,	both	of	them	must	start
transmission	from	beginning.

Section	9.2:	I2C	Programming	in	Freescale	ARM	KL25Z
The	 Freescale	 KL25Z	 chip	 comes	 with	 two	 on-chip	 I2C	 modules.	 In	 this

section,	we	examine	the	registers	and	features	of	I2C	module.	The	I2C	modules
are	located	at	the	following	base	addresses:

SSI	Module Base	Address

I2C0 0x4006	6000

I2C1 0x4006	7000

Table	9-1:	I2C	Module	Base	Address	for	KL25Z

Enabling	Clock	to	I2C	Module
To	enable	and	use	any	of	the	peripherals,	we	must	enable	the	clock	to	it.	We

use	SIM_SCGC4	register	to	enable	the	clock	to	I2C	modules.	We	need	to	set	bit
D6	for	I2C0	and	bit	D7	for	I2C1	to	enable	the	clock	to	I2C	module.	See	Figure	9-
11	and	Table	9-2.

Figure	9-11:	SIM_SCGC4	register	bits	for	enabling	I2C	clock

Bits Name Function Description

6 I2C0 I2C	0	Clock	Gating	Control 1	to	enable	and	0	to	disable

7 I2C1 I2C	1	Clock	Gating	Control 1	to	enable	and	0	to	disable

Table	9-2:	SIM_SCGC4	Description

I2C	Clock	speed
The	I2Cx_F	(I2C	Frequency	divider)	register	allows	us	to	set	the	clock	rate

for	 the	SCL.	 The	SCL	 clock	 comes	 from	 the	 bus	 clock	 and	 goes	 through	 clock
divider	circuit	controlled	by	this	register.	The	I2C	provides	a	prescaler	for	the	SCL.
It	does	divide	by	1,	divide	by	2,	or	divide	by	4.	The	upper	2	bits	(D7:D6)	of	I2Cx_F
register	are	used	to	select	the	above	three	options.	See	Figure	9-12	and	Table	9-
3.

Figure	9-12:	I2C_F	Register	to	Set	I2C	Baud	Rate

Bits Field Descriptions

This	field	defines	the	multiply	factor	to	the	SCL	divider.

6-7 MULT

MULT	value Description

00 Multiply	by	1

01 Multiply	by	2

10 Multiply	by	4

11 Reserved

0-5 ICR I2C	Clock	Rate:	this	field	defines	the	prescaler	value.

Table	9-3:	I2C_F	Register

We	use	the	following	formula	to	set	the	I2C	baud	rate:

I2C	Baud	Rate	=	Bus	Clock/	(MUL	×	SCL	divider)

In	 the	 above	 formula,	 I2C	 baud	 rate	 gives	 us	 the	 I2C	 clock	 rate	 for	 SCL,
MUL	 is	1,	2,	or	4,	and	 the	SCL	divider	 is	decided	by	 the	 lower	6	bits	of	 I2Cx_F
register.	See	Figure	9-12.	The	SCL	divider	 is	 indexed	by	 ICR	bits	of	 the	 I2Cx_F
register.	The	indexed	values	can	be	found	in	the	following	table.

ICR
(Hex)

SCL
divider

ICR
(Hex)

SCL
divider

ICR
(Hex)

SCL
divider

ICR
(Hex)

SCL
divider

00 20 10 48 20 160 30 640

01 22 11 56 21 192 31 768

02 24 12 64 22 224 32 896

03 26 13 72 23 256 33 1024

04 28 14 80 24 288 34 1152

05 30 15 88 25 320 35 1280

06 34 16 104 26 384 36 1536

07 40 17 128 27 480 37 1920

08 28 18 80 28 320 38 1280

09 32 19 96 29 384 39 1536

0A 36 1A 112 2A 448 3A 1792

0B 40 1B 128 2B 512 3B 2048

0C 44 1C 144 2C 576 3C 2304

0D 48 1D 160 2D 640 3D 2560

0E 56 1E 192 2E 768 3E 3072

0F 68 1F 240 2F 960 3F 3840

Table	9-4:	ICR	and	SCL	Divider	(From	KL25Z	Reference	Manual)

The	I2C	baud	rate	can	go	up	to	100	kHz	for	Standard	Mode,	up	to	400	kHz
for	Fast	Mode,	and	up	to	3.4	MHz	for	High-speed	Mode.	The	smallest	SCL	divider
value	is	20	so	the	highest	speed	for	KL25Z	I2C	module	is	(bus	clock	/	20).

See	Examples	9-6	and	9-7.

Example	9-6

Assume	the	Bus	Clock	frequency	is	8MHz.	Find	the	values	for	the	I2C_F	register
if	we	want	I2C	clock	of	(a)	100Kbps,	(b)	400Kbps,	and	(c)	1Mbps.

	
Solution:
	

Using	8MHz	for	the	Bus	Frequency,	we	have:

I2C	Baud	Rate	=	(Bus_Freq)	/	(MUL	x	SCL	Divider)

(a)	100,000	=	(8MHz)	/	(1	x	80)

That	means	the	D7:D6=00	for	MUL	of	1	and	D5-D0	=	0x14	for	ICR	to	get	SCL
divider	of	80.	See	Table	9-4.	Now,	I2Cx_F=0001	0100

(b)	400,000	=	(8MHz)	/	(1	x	20)

That	means	the	D7:D6=00	for	MUL	of	1	and	D5-D0=	0x00	for	ICR	to	get	SCL
divider	of	20.	Now,	I2Cx_F=0000	0000

(c)	1,000,000	=	(8MHz)	/	(1	x	8)

The	smallest	SCL	divider	value	possible	is	20.	With	8MHz	bus	clock,	it	cannot
achieve	1	MHz	I2C	clock.

	

	

Example	9-7

	Find	the	values	for	the	I2C_F	for	the	(a)	the	lowest	and	(b)	the	Highest	I2C	baud
rate	if	Bus	Clock=13.98MHz.

	

Solution:
	

I2C	Baud	Rate	=	(Bus_Freq)	/	(MUL	x	SCL	divider)

	

(a)	I2C	Baud	Rate	=	13.98MHz	/	(4	x	3840)	=	910	bps.	Therefore,	I2Cx_F	=	1011
1111	=	0xBF

(b)	 I2C	 Baud	 Rate	 =	 13.98MHz	 /	 (1	 x	 20)	 =	 699	 kbps.	 Therefore,	 I2Cx_F	 =
00000000	=	0x00

	

Master	or	Slave
The	 I2C	Module	 inside	 the	KL25Z	 device	 can	 be	 either	 the	Master	 or	 the

Slave.	We	use	I2Cx_C1	(I2C	Control	1	register)	to	designate	the	KL25Z	device	as
master	or	slave.	Setting	bit	D5	to	1	makes	the	I2C	of	KL25Z	device	as	Master.	We
also	need	to	make	bit	D7	=	1	to	enable	the	I2C	module.	The	D6	bit	is	used	if	we
want	 to	 use	 Interrupt.	 D4	 =	 1	 for	 Transmit.	 If	 we	 want	 to	 send	 an
acknowledgement	after	the	byte	is	received,	then	we	make	D3	=	1.	Therefore,	we
need	I2Cx_C1	=	10111000	=	0xB8	for	Master.	See	Figure	9-13	and	Table	9-5.

Figure	9-13:	I2Cx_C1	Control	register

Bits Name Function Description

7 I2CEN I2C	Enable 0:	Disable,	1:	Enable

5 MST I2C	Master	Mode	Select 1:	Enable	Master	mode,	0:	Slave
mode

4 TX I2C	Transmit	Mode	Select 1:	Transmit,	0:	Receive

3 TXAK Transmit	Acknowledge	Enable 1:	Enable	ACK,	0:	Disable	ACK

Table	9-5:	I2Cx_C1	register	bit	Description

Slave	Address
When	the	KL25Z	device	is	designated	as	a	slave,	it	needs	to	have	a	calling

address	so	that	it	can	be	addressed	by	the	master	by	its	slave	address.	We	use
I2Cx_A1	(I2C	Address	1)	register	to	hold	the	address	as	the	slave	device.	Notice,
the	addresses	 in	 I2C	are	only	7	bits	 (maximum	of	127	devices).	 In	 the	 I2Cx_A1
register,	 the	 D7-D1	 bits	 are	 used	 for	 the	 slave	 address	 and	 the	 LSB	 of	 D0	 is
unused	and	is	0	by	default.	(The	KL25Z	has	the	option	of	10-bit	address,	as	well.
See	the	KL25Z	reference	manual	for	more	information.)

Figure	9-14:	I2C_A1	slave	address	register

Data	Register
In	 Master	 transmit	 mode,	 we	 place	 a	 byte	 of	 data	 in	 I2Cx_D	 (I2C	 Data)

register	for	transmission.	This	is	an	8-bit	register.

Figure	9-15:	I2Cx_D	Data	register

Status	Register
We	 use	 the	 I2Cx_S	 (I2C	 Status)	 register	 for	 status.	 Upon	 reading	 this

register,	we	get	the	status	to	see	if	a	byte	has	been	transmitted	and	ready	for	the
next	byte.

Figure	9-16:	I2Cx_S	Register

Bit Field Description

7 TCF

Transfer	Complete	Flag	(0:	Transfer	in	progress,	1:	Transfer
complete)

Note:	The	flag	is	cleared	by	reading	the	I2C_D	register	in	receive
mode	and	writing	to	the	I2C_D	register	in	transmit	mode.

6 IAAS
Addressed	As	A	Slave:	The	flag	is	set	if	the	microcontroller	is
addressed	by	another	device	on	the	I2C	bus.	(0:	Not	addressed,
1:	Addressed	as	a	slave)

5 BUSY Bus	Busy	(0:	Bus	is	idle,	1:	Bus	is	busy)

4 ARBL
Arbitration	Lost	(0:	Standard	bus	operation,	1:	Loss	of	arbitration)

Note:	The	bit	must	by	be	cleared	by	software,	by	writing	a	1	to	it.

3 RAM
Range	Address	Match:	The	flag	is	set	if	the	received	calling
address	matches	the	address	range	of	the	microcontroller.	(0:
Not	addressed,	1:	Addressed	as	a	slave)

2 SRW
Slave	Read/Write:	When	the	microcontroller	is	called	on	the	bus,
the	bit	indicates	the	R/W	bit.	(0:	the	microcontroller	must	receive,
1:	microcontroller	must	transmit.)

1 IICIF I2C	Interrupt	Flag	(0:	No	interrupt	pending,	1:	interrupt	pending)

0 RXAK Receive	Acknowledge	(0:	acknowledge	signal	was	received,	1:
No	acknowledge	signal	was	received)

Table	9-6:	I2Cx_R	Register

After	a	START	occurs	on	 the	bus,	 the	bus	goes	busy	 (BUSY	bit	 5)	until	 a
STOP	is	sent.	Unless	you	are	the	one	that	sent	the	START	and	the	slave	address
was	sent	without	Arbitration	Lost	(ARBL	bit	4),	you	should	stay	away	from	the	bus
because	some	other	 I2C	 is	 the	bus	master.	 If	 you	do	not	own	 the	bus	and	you
start	 sending	data,	 a	 bus	 collision	will	 result	 in	 the	 transmission	 failure.	So	 it	 is
important	 to	 monitor	 the	 BUSY	 bit	 in	 the	 I2Cx_S	 register	 before	 sending	 the
START	and	slave	address.	Also,	check	ARBL	bit	after	 the	slave	address	 is	sent
before	sending	more	data.

After	writing	to	the	data	register,	the	transmission	starts	and	the	TCF	(bit	7)
of	I2Cx_S	register	will	change	to	0.	It	stays	at	0	until	the	byte	is	transmitted.	The
program	should	check	IICIF	(bit	1)	of	I2Cx_S	register.	The	IICIF	bit	is	set	when	the
transmission	is	terminated	whether	it	 is	complete	or	not.	Upon	the	termination	of
the	transmission,	the	program	should	check	the	RXAK	(bit	0)	of	I2Cx_S	register	to
see	whether	 the	receiver	acknowledged	the	reception	of	 the	data.	 If	RXAK	bit	 is
set	after	a	transmission,	an	error	occurred.

Addresses	for	I2C	modules
Below	are	the	addresses	for	some	of	the	major	registers	of	I2C	modules:

Address Register

4006	6000 I2C	Address	Register	1	(I2C0_A1)

4006	6001 I2C	Frequency	Divider	register	(I2C0_F)

4006	6002 I2C	Control	Register	1	(I2C0_C1)

4006	6003 I2C	Status	register	(I2C0_S)

4006	6004 I2C	Data	I/O	register	(I2C0_D)

4006	6005 I2C	Control	Register	2	(I2C0_C2)

4006	7000 I2C	Address	Register	1	(I2C1_A1)

4006	7001 I2C	Frequency	Divider	register	(I2C1_F)

4006	7002 I2C	Control	Register	1	(I2C1_C1)

4006	7003 I2C	Status	register	(I2C1_S)

4006	7004 I2C	Data	I/O	register	(I2C1_D)

4006	7005 I2C	Control	Register	2	(I2C1_C2)

Table	9-7:	Addresses	of	some	I2C	Registers

	

Enabling	Open	Drain
Most	of	the	digital	output	pins	are	configured	as	totem-pole	output	(because

the	 transistors	of	 the	output	driver	are	stacked	up	 like	as	 totem-pole).	The	other
name	for	this	configuration	is	push-pull	because	it	is	pushing	the	current	out	when
high	 and	 pulling	 the	 current	 in	 when	 low.	 This	 configuration	 allows	 for	 faster
transition	when	the	output	 is	switching	from	high	to	 low	or	 from	low	to	high.	The
problem	 with	 a	 totem-pole	 output	 is	 when	 more	 than	 one	 output	 is	 connected
together	and	one	output	is	high	the	other	is	low,	the	high	outputs	push	the	current
out	and	 the	 low	outputs	pull	 in	 the	current.	A	 large	amount	of	current	could	 flow
between	the	outputs	and	damages	the	circuit.

One	common	solution	to	allow	multiple	outputs	connected	together	is	to	use
the	 open-drain	 output	 (open-drain	 for	 CMOS	 devices	 or	 open-collector	 for	 TTL
devices).	 In	 this	output	configuration,	 the	output	pin	 is	connected	 to	 the	drain	of
the	 output	 transistor	 while	 the	 source	 of	 that	 transistor	 is	 grounded.	When	 the
transistor	 is	 on,	 the	 output	 pin	 is	 grounded	 and	 when	 the	 transistor	 is	 off,	 the
output	pin	(the	drain)	is	open.	The	open-drain	outputs	may	be	connected	together.
A	pull-up	resistor	is	added	so	that	the	signal	 is	high	when	none	of	the	outputs	is
active.	When	any	one	of	the	outputs	is	active,	the	signal	is	low.	It	forms	a	“wired-
AND”	logic	and	is	exactly	what	is	required	for	the	I2C	bus.	See	Appendix	A.

Figure	 9-1	 in	 the	 last	 section	 showed	 the	 physical	 connection	 of	 the	 I2C
buses.	For	the	I2C	Module	inside	the	Freescale	KL25Z	ARM,	we	must	enable	the
open-drain	 option	 for	 the	 I/O	 pins	 used	 by	 the	 I2C	 buses.	 The	 I2C	 pins	 are
configured	as	open-drain	output	when	the	pins	are	assigned	to	an	I2C	module	as
described	next.

Configuring	GPIO	for	I2C
In	using	 I2C,	we	must	configure	 the	GPIO	pins	 to	allow	the	connections	of

the	I2C	SCL	and	SDA	functions	to	two	GPIO	pins	of	the	device.	In	this	regard,	it	is
same	as	all	other	peripherals.	The	steps	are	as	follow:

1.							Enable	the	clock	to	GPIO	pins	using	SIM_SCGC5.

2.							Assign	the	I2C	signals	to	specific	pins	using	PORTx_PCR	register.	See
Table	9-8.

I2C	Module I/O
Pin(ALTx) I/O	pin(ALTx)

I/O
pin(ALTx)

Pin

I2C0SCL PTE24(ALT4) PTA3(ALT2) PTC8(ALT2)

I2C0SDA PTE25(ALT4) PTA4(ALT2) PTC9(ALT2)

I2C1SCL PTE1(ALT6) PTC1(ALT2) PTC10(ALT2)

I2C1SDA PTE0(ALT6) PTC2(ALT2) PTC11(ALT2)

Table	9-8:	I2C	Pin	Assignment

Configuring	I2C	for	data	transmission
After	 the	 GPIO	 configuration,	 we	 need	 to	 take	 the	 following	 steps	 to

configure	the	I2C	and	send	a	byte	of	data	to	an	I2C	slave	device.

1.							Enable	the	clock	to	I2C	module	using	SIM_SCGC4.

2.							Disable	the	I2C	module	by	writing	a	0	to	the	I2Cx_C1	register.

3.							Set	the	I2C	clock	speed	using	I2Cx_F	frequency	divider	register.

4.							Enable	I2C	module	by	setting	IICEN	(bit	7)	of	I2Cx_C1	register.

Send	a	byte	of	data	to	a	slave	device
1.							Poll	the	BUSY	bit	of	I2Cx_S	register	until	the	bus	is	not	busy.

2.							Set	TX	(bit	4)	of	I2Cx_C1	register	for	transmitting.

3.							Set	MST	(bit	5)	of	I2Cx_C1	register	to	put	the	I2C	module	in	master	mode
and	generate	a	START	on	the	bus.

4.							Write	the	Slave	address	+	W	to	I2Cx_D	register	to	send	the	slave	address.

5.							Poll	IICIF	(bit	1)	of	I2Cx_S	until	the	transmission	is	terminated.

6.							Clear	IICIF	bit	by	writing	a	1	to	it.

7.							Check	ARBL	(bit	4)	of	I2Cx_S	to	see	whether	the	arbitration	was	lost.	If
yes,	clear	ARBL	bit	by	writing	a	1	to	it	and	abort	the	transmission.

8.							Check	RXAK	(bit	0)	of	I2Cx_S	to	see	whether	the	slave	sent	an	ACK.	If
not,	abort	the	transmission.

9.							Write	the	data	byte	to	I2Cx_D	register	to	send	the	data.

10.			Poll	IICIF	(bit	1)	of	I2Cx_S	until	the	transmission	is	complete.

11.			Clear	IICIF	bit	by	writing	a	1	to	it.

12.			Check	RXAK	(bit	0)	of	I2Cx_S	to	see	whether	the	slave	sent	an	ACK.

13.			Clear	MST	(bit	5)	and	TX	(bit	4)	of	I2Cx_C1	register	to	generate	a	STOP
on	the	bus.	See	figure	below.

Figure	9-17:	Master	Single	Transmit

Review	Questions
1.							True	or	false.	The	I2C	module	in	Freescale	ARM	KL25Z	supports	speed

up	to	Bus	speed.

2.							True	or	false.	The	I2Cx_C1	is	used	to	enable	the	I2Cx	module.

3.							True	or	false.	There	is	no	CS	(chip	select)	pin	in	I2C.

4.							In	Freescale	ARM	KL25Z,	which	register	is	used	to	enable	the	clock	to	I2C
module?

5.							In	Freescale	ARM	KL25Z,	which	register	is	used	to	set	the	I2C	baud	rate?

Section	9.3:	DS1337	RTC	Interfacing	and	Programming
The	 real-time	 clock	 (RTC)	 is	 a	 widely	 used	 device	 that	 provides	 accurate

time	and	date	 information	 for	many	applications.	Many	systems	such	as	 the	PC
come	with	such	a	chip	on	the	motherboard.	The	RTC	chip	in	the	PC	provides	the
time	components	of	hour,	minute,	and	second,	in	addition	to	year,	month,	and	day.
Many	RTC	 chips	 use	 an	 external	 battery,	 which	 keeps	 the	 time	 and	 date	 even
when	 the	power	of	 the	system	 is	off.	Although	some	microcontrollers	come	with
the	RTC	already	embedded	into	the	chip,	we	have	to	interface	the	vast	majority	of
them	to	an	external	RTC	chip.	The	DS1337	is	a	serial	RTC	with	an	I2C	bus.	In	this
section,	we	 interface	 and	 program	 the	DS1337	RTC.	 According	 to	 the	DS1337
data	 sheet	 from	Maxim,	 ”The	 clock/calendar	 provides	 seconds,	minutes,	 hours,
day,	 date,	 month,	 and	 year	 information.	 The	 end	 of	 the	 month	 date	 is
automatically	adjusted	for	months	with	 fewer	 than	31	days,	 including	corrections
for	 leap	 year.	 The	 clock	 operates	 in	 either	 the	 24-hour	 or	 12-hour	 format	 with
AM/PM	 indicator.	 The	 DS1337	 has	 a	 built-in	 power-sense	 circuit	 that	 detects
power	 failures	 and	 automatically	 switches	 to	 the	 battery	 supply.”	 The	 DS1337
does	not	support	the	Daylight	Savings	Time	option.	Next,	we	describe	the	pins	of
the	DS1337.	See	Figure	9-18.

Figure	9-18:	DS1337	Pins

The	DS1337	is	used	as	replacement	for	popular	DS1307	if	system	voltage	is
3.3V.

X1–X2
These	are	input	pins	that	allow	the	DS1337	connection	to	an	external	crystal

oscillator	 to	 provide	 the	 clock	 source	 to	 the	 chip.	 We	 must	 use	 a	 32.768	 kHz
quartz	 crystal.	 The	 accuracy	 of	 the	 clock	 depends	 on	 the	 quality	 of	 this	 crystal
oscillator.

VCC
Pin	8	is	used	as	the	primary	voltage	supply	to	the	chip.	The	voltage	source

can	 be	 between	 1.3	 V	 to	 5.5	 V.	When	 Vcc	 is	 above	 1.3	 V,	 the	 DS1337	 starts
working	and	keeps	 the	 time.	But	 the	 I2C	 interface	 is	disabled	unless	 the	Vcc	 is
above	1.8	V.

Vcc	can	be	connected	to	an	external	battery,	thereby	providing	the	power	source
to	the	chip	when	the	external	supply	voltage	is	not	available.

GND

Pin	4	is	the	ground.

SDA	(Serial	Data)
Pin	5	is	the	SDA	pin	and	must	be	connected	to	the	SDA	line	of	the	I2C	bus.

SCL	(Serial	Clock)
Pin	6	is	the	SCL	pin	and	must	be	connected	to	the	SCL	line	of	the	I2C	bus.

INTA#	(Interrupt	A)
The	DS1337	has	two	Alarms:	Alarm	1	and	Alarm	2.	If	the	alarm	1	is	enabled,

the	 INTA	pin	 is	asserted	when	 the	current	 time	and	date	matches	 the	values	of
Alarm	1	registers.

SWQ/INTB
Pin	7	is	an	output	pin	providing	1	kHz,	4	kHz,	8	kHz,	or	32	kHz	frequency	if

enabled.	 This	 pin	 needs	 an	 external	 pull-up	 resistor	 to	 generate	 the	 frequency
because	 it	 is	 open	 drain.	 If	 you	 do	 not	 want	 to	 use	 this	 pin	 you	 can	 omit	 the
external	pull-up	resistor.	The	pin	can	be	used	as	the	output	for	INTB,	as	well.	For
more	information,	see	the	DS1337	datasheet.

Figure	9-19:	DS1337	Connections

Address	map	of	the	DS1337
The	DS1337	has	a	total	of	64	bytes	of	RAM	space	with	addresses	00–3FH.

The	first	seven	locations,	00–06,	are	set	aside	for	RTC	values	of	 time	and	date.
Locations	 07H-0DH	 are	 set	 aside	 for	 Alarm	 1	 and	 Alarm	 2	 registers.	 The	 next
bytes	are	used	for	control	and	status	registers.	Table	9-9	shows	the	address	map
of	 the	DS1337.	Next,	we	study	the	control	register,	and	time	and	date	access	 in
DS1337.

Address Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 Function Range

00H 0 10	Seconds Seconds Seconds 00-59

01H 0 10	Minutes Minutes Minutes 00-59

02H 0 12/24
10
hour

PM/AM
10hour Hours Hours

1-12

0-23

03H 0 0 0 0 0 Day Day 0-7

04H 0 0 10	Date Date Date 01-31

05H Century 0 0 10Mnt Month
Month

Century

1-12+

Century

06H 10	Year Year Year 00-99

07H A1M1 10	Seconds Seconds Alarm	1
Seconds 00-59

08H A1M2 10	Minutes Minutes Alarm	1
Minutes 00-59

09H A1M3 12/24

AM/PM
10
Hour Hour Alarm	1	Hours

1-12

00-2310
Hour

0AH A1M4 DY/DT 10	Date
Day Alarm	1	Day 1-7

Date Alarm	1	Date 01-31

0BH A2M2 10	Minutes Minutes Alarm	2
Minutes 00-59

0CH A2M3 12/24

AM/PM
10
Hour Hour Alarm	2	Hours

1-12

00-2310
Hour

0DH A2M4 DY/DT 10	Date
Day Alarm	2	Day 1-7

Date Alarm	2	Date 01-31

0EH EOSC 0 0 RS2 RS1 INTCN A2IE A1IE Control -

0FH OSF 0 0 0 0 0 A2F A1F Status -

Table	9-9:	DS1337	Address	Map

Time	and	date	address	locations	and	modes
The	byte	addresses	0–6	are	 set	 aside	 for	 the	 time	and	date,	 as	 shown	 in

Table	9-9.	The	DS1337	provides	data	in	BCD	format	only.	Notice	the	data	range
for	 the	hour	mode.	We	can	select	12-hour	or	24-hour	mode	with	bit	 6	of	Hours
register	at	location	02.	When	bit	6	is	1,	the	12-hour	mode	is	selected,	and	bit	6	=	0
provides	us	the	24-hour	mode.	In	the	12-hour	mode,	bit	5	 indicates	whether	 it	 is
AM	or	PM.	If	bit	5	=	0,	it	is	AM;	and	if	bit	5	=	1,	it	is	PM.	See	Example	9-8.

Example	9-8

What	value	should	be	placed	at	location	02	to	set	the	hour	to:	(a)	21,	(b)	11AM,	(c)
12	PM.

Solution:

(a)	For	24-hour	mode,	we	have	D6	=	0.	Therefore,	we	place	0010	0001	(or	0x21)
at	location	02,	which	is	21	in	BCD.

(b)	For	12-hour	mode,	we	have	D6	=	1.	Also,	we	have	D5	=	0	for	AM.	Therefore,
we	place	0101	0001	at	location	02,	which	is	51	in	BCD.

(c)	For	12-hour	mode,	we	have	D6	=	1.	Also,	we	have	D5	=	1	for	PM.	Therefore,
we	place	0111	0010	at	location	02,	which	is	72	in	BCD.

The	DS1337	control	register
As	shown	 in	Table	9-9,	 the	control	 register	has	an	address	of	0EH.	 In	 the

DS1337	control	register,	the	bits	control	the	function	of	the	SQW/INTB	and	INTA
pins.	Figure	9-20	shows	the	simplified	diagram	for	SQW/INTB	pin.

Figure	9-20:	Simplified	Structure	of	SQW/INTB	Pin

The	SQW/INTB	pin	can	be	used	as	a	square	wave	generator	or	an	interrupt
generator.	When	the	 INTCN	bit	of	control	 register	 is	0,	 the	pin	works	as	a	wave
generator.	Using	 the	RS2	and	RS1	bits,	 the	 frequency	of	 the	generated	wave	 is
chosen.	RS2-RS1	(rate	select)	bits	select	 the	output	 frequency	of	 the	generated
wave	according	to	Table	9-10.

RS2 RS1 Output
Frequency

0 0 1	Hz

0 1 4.096	kHz

1 0 8.192	kHz

1 1 32.768	kHz

Table	9-10:	RS	bits

When	INTCN	=	1,	the	SQW/INTB	works	as	an	interrupt	generator.	Locations
0BH-0DH	of	DS1337	memory	are	related	to	Alarm	2.	The	contents	of	the	Alarm	2

registers	are	compared	with	the	values	current	time	and	date	(locations	00H-06H).
When	 the	 current	 date	 and	 time	 matches	 the	 alarm	 2	 values,	 the	 A2F	 flag	 of
status	register	(location	0FH)	goes	high.	If	the	A2IE	(Alarm2	Interrupt	Enable)	bit
of	the	control	register	is	set,	the	INTB	becomes	0.	The	pin	remains	0	until	the	A2F
flag	is	cleared	by	software.	To	clear	the	A2F	flag,	write	0	into	it.

It	can	make	an	interrupt	every	minute,	hour,	day,	or	date.	The	bit	7	of	alarm
registers,	are	mask	registers.	If	 it	 is	0,	the	value	of	the	register	is	compared	with
the	timekeeping	registers;	otherwise,	it	is	masked.	Table	9-11	shows	how	to	make
interrupts	every	minute,	hour,	day,	or	date.

DY/DT A2M4 A2M3 A2M2 Alarm	Rate

X 1 1 1 Alarm	once	per	minute

X 1 1 0 Alarm	when	minutes	match

X 1 0 0 Alarm	when	hours	and	minutes	match

0 0 0 0 Alarm	when	date,	hours,	and	minutes	match

1 0 0 0 Alarm	when	day,	hours,	and	minutes	match

Table	9-11:	Alarm	2	Register	Mask	Bits

The	bit	7	of	 the	control	 register	 is	EOSC	(Enable	Oscillator)	bit.	This	bit	 is
active	low.	If	it	is	0,	the	oscillator	works.

Register	pointer
In	 DS1337,	 there	 is	 a	 register	 pointer	 that	 specifies	 the	 byte	 that	 will	 be

accessed	in	the	next	read	or	write	command.	The	first	read	or	write	operation	sets
the	 value	 of	 the	 pointer.	 After	 each	 read	 or	 write	 operation,	 the	 content	 of	 the
register	pointer	 is	automatically	 incremented	to	point	 to	the	next	 location.	This	 is
useful	 in	 multi-byte	 read	 or	 write.	 When	 it	 points	 to	 location	 0x0F,	 in	 the	 next
read/write	it	rolls	over	to	0.

Writing	to	DS1337
To	set	the	value	of	the	register	pointer	and	write	one	or	more	bytes	of	data	to

DS1337,	you	can	use	the	following	steps:

1.	 	 	 	 	 	 	To	 access	 the	 DS1337	 for	 a	 write	 operation,	 after	 sending	 a	 START
condition,	 you	should	 transmit	 the	address	of	DS1337	 (1101	000)	 followed
by	0	to	indicate	a	write	operation.

2.							The	first	byte	of	data	in	the	write	operation	will	set	the	register	pointer.	For
example,	if	you	want	to	write	to	the	control	register	you	should	send	0x07.

3.							Check	the	acknowledge	bit	to	be	sure	that	DS1337	responded.

4.	 	 	 	 	 	 	If	you	want	to	write	one	or	more	bytes	of	data,	you	should	transmit	them

one	byte	at	a	 time	and	check	 the	acknowledge	bit	at	 the	end	of	each	byte
sent.	Remember	 that	 the	 register	pointer	 is	automatically	 incremented	and
you	can	simply	transmit	bytes	of	data	to	consecutive	locations	in	a	multi-byte
burst	write.

5.							Transmit	a	STOP	bit	condition.

Reading	from	DS1337
Notice	that	before	reading	a	byte,	you	should	load	the	address	of	the	byte	to

the	register	pointer	by	doing	a	write	operation	as	mentioned	before.

To	read	one	or	more	bytes	of	data	from	the	DS1337	you	should	do	the	following
steps:

1.	 	 	 	 	 	 	To	access	the	DS1337	for	a	read	operation,	you	need	to	set	the	register
pointer	 first.	 After	 sending	 a	 START	 condition,	 you	 should	 transmit	 the
address	 of	DS1337	 (1101	 000)	 followed	by	 0	 to	 indicate	 a	write	 operation
(writing	the	register	pointer).

2.							Check	the	acknowledge	bit	to	be	sure	that	DS1337	responded.

3.	 	 	 	 	 	 	The	byte	of	data	 in	 the	write	operation	will	 set	 the	 register	pointer.	For
example,	if	you	want	to	read	from	the	control	register	you	should	send	0x07.
Check	the	acknowledge	bit	to	be	sure	that	DS1337	responded.

4.							Now	you	need	to	change	the	bus	direction	from	a	transmit	to	receive.	Send
a	 START	 condition	 (a	 REPEATED	 START),	 then	 transmit	 the	 address	 of
DS1337	 (1101	 000)	 followed	by	 1	 to	 indicate	 a	 read	 operation.	Check	 the
acknowledge	bit	to	be	sure	that	DS1337	responded.

5.	 	 	 	 	 	 	You	 can	 read	 one	 or	more	 bytes	 of	 data.	Remember	 that	 the	 register
pointer	 indicates	 which	 location	 will	 be	 read.	 The	 ACK	 bit	 in	 the	 I2CMCS
register	should	be	set	for	the	master	to	acknowledge	the	data	received.	Also
notice	 that	 the	 register	 pointer	 is	 automatically	 incremented	 and	 you	 can
simply	receive	consecutive	bytes	of	data	in	a	multi-byte	burst	read.

6.							Before	reading	the	last	byte,	clear	the	ACK	bit	in	the	I2CMCS	register.	The
last	byte	read	will	have	a	NACK	to	signal	the	DS1337	that	the	burst	read	is
complete.

7.							Transmit	a	STOP	bit	condition.

Setting	the	Time	of	DS1337
Program	9-1	initializes	the	clock	at	16:58:55	using	the	24-hour	clock	mode.	It

uses	the	single-byte	operation	for	writing	seconds,	minutes,	and	hours.	Notice	that
in	this	program	we	assume	that	there	is	only	one	master	on	the	bus	and	we	do	not
deal	with	checking	the	BUSBSY	bit	or	arbitration.

Program	9-1:
	Setting	the	time	of	DS1337	using	single	byte	write

	
/*	p9_1:	I2C	single	byte	write	to	DS1337

	

This	program	communicates	with	the	DS1337	Real-time	Clock	via	I2C.

			DS1337	is	a	newer	version	of	DS1307.	It	operates	from	1.8V	to	5.5V.

			It	has	century	and	alarms	added.

The	time	day	(of	the	week),	date,	month	and	year	are	written	using	single
byte	write.	It	sets	the	date	to	Monday	Oct.	19th,	2009.

	

			DS1337	I2C	parameters:

fmax	=	100	kHz,	SCL	PTE1,	SDA	PTE0

	*/

	

#include	“MKL25Z4.h”

	

#define	SLAVE_ADDR	0x68					/*	1101	000.	*/

#define	ERR_NONE	0

#define	ERR_NO_ACK	0x01

#define	ERR_ARB_LOST	0x02

#define	ERR_BUS_BUSY	0x03

	

void	I2C1_init(void);

int	I2C1_byteWrite(unsigned	char	slaveAddr,	unsigned	char	memAddr,	unsigned
char	data);

void	delayUs(int	n);

	

int	main(void)

{

unsigned	char	timeDateToSet[]	=	{0x55,	0x58,	0x16,	0x01,	0x19,	0x10,	0x09};

int	rv;

int	i;

	

I2C1_init();

	

for	(i	=	0;	i	<	7;	i++)	{

rv	=	I2C1_byteWrite(SLAVE_ADDR,	0,	timeDateToSet[0]);

if	(rv	!=	ERR_NONE)

for(;;)	;			/*	replace	with	error	handling	*/

}

	

for	(;;)

{

}

}

	

/*	initialize	I2C1	and	the	port	pins	*/

void	I2C1_init(void)	{

	

SIM->SCGC4	|=	0x80;									/*	turn	on	clock	to	I2C1	*/

SIM->SCGC5	|=	0x2000;							/*	turn	on	clock	to	PortE	*/

PORTE->PCR[1]	=	0x0600;					/*	PTE1	I2C1	SCL	*/

PORTE->PCR[0]	=	0x0600;					/*	PTE0	I2C1	SDA	*/

	

I2C1->C1	=	0;															/*	stop	I2C1	*/

I2C1->S	=	2;																/*	Clear	interrupt	flag	*/

I2C1->F	=	0x1C;													/*	set	clock	to	97.09KHz	@13.981MHz	bus	clock	*/

					/*	See	Table	9-4.	*/

I2C1->C1	=	0x80;												/*	enable	I2C1	*/

}

	

/*	Write	a	single	byte	to	slave	memory.

	*	write:	S-(saddr+w)-ACK-maddr-ACK-data-ACK-P

	*/

int	I2C1_byteWrite(unsigned	char	slaveAddr,	unsigned	char	memAddr,	unsigned
char	data)	{

int	retry	=	1000;

	

while	(I2C1->S	&	0x20)	{				/*	wait	until	bus	is	available	*/

if	(—retry	<=	0)

return	ERR_BUS_BUSY;

delayUs(100);

}

	

/*	send	start	*/

I2C1->C1	|=	0x10;											/*	Tx	on	*/

I2C1->C1	|=	0x20;											/*	become	master	*/

	

/*	send	slave	address	and	write	flag	*/

I2C1->D	=	slaveAddr	<<	1;

while(!(I2C1->S	&	0x02));			/*	wait	for	transfer	complete	*/

I2C1->S	|=	0x02;												/*	clear	IF	*/

if	(I2C1->S	&	0x10)	{							/*	arbitration	lost	*/

I2C1->S	|=	0x10;								/*	clear	IF	*/

return	ERR_ARB_LOST;

}

if	(I2C1->S	&	0x01)									/*	got	NACK	from	slave	*/

return	ERR_NO_ACK;

	

/*	send	memory	address	*/

I2C1->D	=	memAddr;

while(!(I2C1->S	&	0x02));			/*	wait	for	transfer	complete	*/

I2C1->S	|=	0x02;												/*	clear	IF	*/

if	(I2C1->S	&	0x01)									/*	got	NACK	from	slave	*/

return	ERR_NO_ACK;

	

/*	send	data	*/

I2C1->D	=	data;

while(!(I2C1->S	&	0x02));			/*	wait	for	transfer	complete	*/

I2C1->S	|=	0x02;												/*	clear	IF	*/

if	(I2C1->S	&	0x01)									/*	got	NACK	from	slave	*/

return	ERR_NO_ACK;

	

/*	stop	*/

I2C1->C1	&=	~0x30;

	

return	ERR_NONE;

}

	

/*	delay	n	microseconds

	*	The	CPU	core	clock	is	set	to	MCGFLLCLK	at	41.94	MHz	in	SystemInit().

	*/

void	delayUs(int	n)

{

int	i;	int	j;

for(i	=	0	;	i	<	n;	i++)	{

for(j	=	0;	j	<	7;	j++)	;

}

}

	

Setting	the	date	of	DS1337	in	KL25Z
Program	9-2	shows	how	 to	set	 the	date	 to	Monday	October	19th,	2009.	 It

uses	multi-byte	burst	mode	for	writing	day	(of	 the	week),	date,	month,	and	year.
As	 you	 can	 see	 in	 the	 program,	 to	 access	 the	 locations	 of	 the	 day,	 you	 should
write	0x03	into	the	register	pointer	and	then	you	can	use	multi-byte	burst	write	to
write	values	of	date,	month	and	year	in	the	consecutive	locations.	Also,	notice	that
in	this	code	we	assume	that	there	is	only	one	master	on	the	bus	and	we	do	not
deal	with	checking	the	BUSBSY	bit	and	arbitration.

Program	9-2:
	Setting	the	date	of	DS1337	using	burst	write

	
/*	p9_2:	I2C	burst	write	to	DS1337	*/

	

/*	This	program	communicates	with	the	DS1337	Real-time	Clock	via	I2C.	The	time,
day	(of	the	week),	date,	month	and	year	are	written	using	burst	write.	It	sets
the	date	to	Monday	Oct.	19th,	2009.

	

		DS1337	I2C	parameters:

		fmax	=	100	kHz,	SCL	PTE1,	SDA	PTE0

*/

	

#include	“MKL25Z4.h”

	

#define	SLAVE_ADDR	0x68					/*	1101	000.	*/

#define	ERR_NONE	0

#define	ERR_NO_ACK	0x01

#define	ERR_ARB_LOST	0x02

#define	ERR_BUS_BUSY	0x03

	

void	I2C1_init(void);

int	I2C1_burstWrite(unsigned	char	slaveAddr,	unsigned	char	memAddr,	int
byteCount,	unsigned	char*	data,	int*	cnt);

void	delayUs(int	n);

	

int	main(void)

{

unsigned	char	timeDateToSet[]	=	{0x55,	0x58,	0x16,	0x01,	0x19,	0x10,	0x09};

int	count;

int	rv;

	

I2C1_init();

	

/*	use	burst	write	to	write	day,	date,	month,	and	year	*/

rv	=	I2C1_burstWrite(SLAVE_ADDR,	0,	7,	timeDateToSet,	&count);

if	(rv)

for(;;)	;			/*	replace	with	error	handling	*/

	

for	(;;)

{

}

}

	

/*	initialize	I2C1	and	the	port	pins	*/

void	I2C1_init(void)	{

	

SIM->SCGC4	|=	0x80;									/*	turn	on	clock	to	I2C1	*/

SIM->SCGC5	|=	0x2000;							/*	turn	on	clock	to	PortE	*/

PORTE->PCR[1]	=	0x0600;					/*	PTE1	I2C1	SCL	*/

PORTE->PCR[0]	=	0x0600;					/*	PTE0	I2C1	SDA	*/

	

I2C1->C1	=	0;															/*	stop	I2C1	*/

I2C1->S	=	2;																/*	Clear	interrupt	flag	*/

I2C1->F	=	0x1C;													/*	set	clock	to	97.09KHz	@13.981MHz	bus	clock	*/

I2C1->C1	=	0x80;												/*	enable	I2C1	*/

}

	

/*	Use	burst	write	to	write	multiple	bytes	to	consecutive	memory	locations.

	*	Burst	write:	S-(saddr+w)-ACK-maddr-ACK-data-ACK-data-ACK-…-data-ACK-P

	*/

int	I2C1_burstWrite(unsigned	char	slaveAddr,	unsigned	char	memAddr,	int
byteCount,	unsigned	char*	data,	int*	cnt)	{

int	retry	=	1000;

*cnt	=	0;

	

				while	(I2C1->S	&	0x20)	{				/*	wait	until	bus	is	available	*/

if	(—retry	<=	0)

return	ERR_BUS_BUSY;

delayUs(100);

}

	

/*	send	start	*/

I2C1->C1	|=	0x10;											/*	Tx	on	*/

I2C1->C1	|=	0x20;											/*	become	master	*/

	

/*	send	slave	address	and	write	flag	*/

I2C1->D	=	slaveAddr	<<	1;

while(!(I2C1->S	&	0x02));			/*	wait	for	transfer	complete	*/

I2C1->S	|=	0x02;												/*	clear	IF	*/

if	(I2C1->S	&	0x10)	{							/*	arbitration	lost	*/

I2C1->S	|=	0x10;								/*	clear	IF	*/

return	ERR_ARB_LOST;

}

if	(I2C1->S	&	0x01)									/*	got	NACK	from	slave	*/

return	ERR_NO_ACK;

	

/*	send	memory	address	*/

I2C1->D	=	memAddr;

while(!(I2C1->S	&	0x02));			/*	wait	for	transfer	complete	*/

I2C1->S	|=	0x02;												/*	clear	IF	*/

if	(I2C1->S	&	0x01)									/*	got	NACK	from	slave	*/

return	ERR_NO_ACK;

	

/*	send	data	*/

while	(byteCount—	>	0)	{

I2C1->D	=	*data++;

while(!(I2C1->S	&	0x02));			/*	wait	for	transfer	complete	*/

I2C1->S	|=	0x02;												/*	clear	IF	*/

if	(I2C1->S	&	0x01)									/*	got	NACK	from	slave	*/

return	ERR_NO_ACK;

(*cnt)++;

}

	

/*	stop	*/

I2C1->C1	&=	~0x30;

	

return	ERR_NONE;

}

	

/*	delay	n	microseconds	*/

/*	The	CPU	core	clock	is	set	to	MCGFLLCLK	at	41.94	MHz	in	SystemInit().	*/

	

void	delayUs(int	n)

{

int	i;	int	j;

for(i	=	0	;	i	<	n;	i++)	{

for(j	=	0;	j	<	7;	j++)	;

}

}

	

Reading	the	date	and	time	of	DS1337	in	KL25Z
Program	9-3	shows	how	to	read	the	date	and	time	from	DS1337	using	multi-

byte	burst	mode	for	reading.	As	you	can	see	in	the	program,	the	register	pointer	is
set	to	0	and	then	you	can	use	multi-byte	burst	read	to	read	the	values	of	second,
minute,	hour,	day,	date,	month	and	year	in	the	consecutive	locations.	Also,	notice
that	in	this	code	we	assume	that	there	is	only	one	master	on	the	bus	and	we	do
not	deal	with	checking	the	BUSBSY	bit	and	arbitration.

Program	9-3:
Reading	date	time	of	DS1337	using	burst	read

	

/*	p9_3:	I2C	burst	read	from	DS1337	*/

	

/*

		This	program	communicates	with	the	DS1337	Real-time	Clock	via	I2C.

		The	time,	day	(of	the	week),	date,	month	and	year	are	read	using	burst	read.

	

		DS1337	I2C	parameters:

		fmax	=	100	kHz,	SCL	PTE1,	SDA	PTE0	*/

	

#include	“MKL25Z4.h”

#include	<stdio.h>

#include	“UART.h”

	

#define	SLAVE_ADDR	0x68					/*	1101	000.	*/

#define	ERR_NONE	0

#define	ERR_NO_ACK	0x01

#define	ERR_ARB_LOST	0x02

#define	ERR_BUS_BUSY	0x03

	

void	I2C1_init(void);

int	I2C1_burstRead(unsigned	char	slaveAddr,	unsigned	char	memAddr,	int
byteCount,	unsigned	char*	data,	int*	cnt);

void	delayUs(int	n);

	

int	main(void)

{

unsigned	char	timeDateReadback[7];

int	count;

int	rv;

	

I2C1_init();

	

rv	=	I2C1_burstRead(SLAVE_ADDR,	0,	7,	timeDateReadback,	&count);

if	(rv)

for(;;)	;			/*	replace	with	error	handling	*/

	

for	(;;)

{

}

}

	

/*	initialize	I2C1	and	the	port	pins	*/

void	I2C1_init(void)	{

	

SIM->SCGC4	|=	0x80;									/*	turn	on	clock	to	I2C1	*/

SIM->SCGC5	|=	0x2000;							/*	turn	on	clock	to	PortE	*/

PORTE->PCR[1]	=	0x0600;					/*	PTE1	I2C1	SCL	*/

PORTE->PCR[0]	=	0x0600;					/*	PTE0	I2C1	SDA	*/

	

I2C1->C1	=	0;															/*	stop	I2C1	*/

I2C1->S	=	2;																/*	Clear	interrupt	flag	*/

I2C1->F	=	0x1C;													/*	set	clock	to	97.09KHz	@13.981MHz	bus	clock	*/

I2C1->C1	=	0x80;												/*	enable	I2C1	*/

}

	

/*	Use	burst	read	to	read	multiple	bytes	from	consecutive	memory	locations.

		Burst	read:	S-(saddr+w)-ACK-maddr-ACK-R-(saddr+r)-data-ACK-data-ACK-…-data-
NACK-P

	*/

int	I2C1_burstRead(unsigned	char	slaveAddr,	unsigned	char	memAddr,	int
byteCount,	unsigned	char*	data,	int*	cnt)	{

int	retry	=	100;

volatile	unsigned	char	dummy;

*cnt	=	0;

	

while	(I2C1->S	&	0x20)	{				/*	wait	until	bus	is	available	*/

if	(—retry	<=	0)

return	ERR_BUS_BUSY;

delayUs(100);

}

	

/*	start	*/

I2C1->C1	|=	0x10;											/*	Tx	on	*/

I2C1->C1	|=	0x20;											/*	become	master	*/

	

/*	send	slave	address	and	write	flag	*/

I2C1->D	=	slaveAddr	<<	1;

while(!(I2C1->S	&	0x02));			/*	wait	for	transfer	complete	*/

I2C1->S	|=	0x02;												/*	clear	IF	*/

if	(I2C1->S	&	0x10)									/*	arbitration	lost	*/

return	ERR_ARB_LOST;

if	(I2C1->S	&	0x01)									/*	got	NACK	from	slave	*/

return	ERR_NO_ACK;

	

/*	send	address	of	target	register	in	slave	*/

I2C1->D	=	memAddr;

while(!(I2C1->S	&	0x02));			/*	wait	for	transfer	complete	*/

I2C1->S	|=	0x02;												/*	clear	IF	*/

if	(I2C1->S	&	0x01)									/*	got	NACK	from	slave	*/

return	ERR_NO_ACK;

	

/*	restart	*/

I2C1->C1	|=	0x04;											/*	send	Restart	*/

	

/*	send	slave	address	and	read	flag	*/

I2C1->D	=	(slaveAddr	<<	1)	|	1;

while(!(I2C1->S	&	0x02));			/*	wait	for	transfer	complete	*/

I2C1->S	|=	0x02;												/*	clear	IF	*/

if	(I2C1->S	&	0x01)									/*	got	NACK	from	slave	*/

return	ERR_NO_ACK;

	

/*	change	bus	direction	to	read	*/

I2C1->C1	&=	~0x18;										/*	Tx	off,	prepare	to	give	ACK	*/

if	(byteCount	==	1)

I2C1->C1	|=	0x08;							/*	prepare	to	give	NACK	*/

dummy	=	I2C1->D;												/*	dummy	read	to	initiate	bus	read	*/

	

/*	read	data	*/

while	(byteCount	>	0)	{

if	(byteCount	==	1)

I2C1->C1	|=	0x08;							/*	prepare	to	give	NACK	for	last	byte	*/

while(!(I2C1->S	&	0x02));			/*	wait	for	transfer	complete	*/

I2C1->S	|=	0x02;												/*	clear	IF	*/

if	(byteCount	==	1)	{

I2C1->C1	&=	~0x20;						/*	stop	the	bus	before	reading	last	byte	*/

}

data++	=	I2C1->D;										/	read	received	data	*/

byteCount—;

(*cnt)++;

}

	

return	ERR_NONE;

}

	

/*	delay	n	microseconds	*/

/*	The	CPU	core	clock	is	set	to	MCGFLLCLK	at	41.94	MHz	in	SystemInit().	*/

	

void	delayUs(int	n)

{

int	i;	int	j;

for(i	=	0	;	i	<	n;	i++)	{

for(j	=	0;	j	<	7;	j++)	;

}

}

	

Review	Questions

1.							True	or	false.	All	of	the	RAM	contents	of	the	DS1337	are	nonvolatile.

2.							How	many	bytes	of	RAM	in	the	DS1337	are	set	aside	for	the	clock	and
date?

(a)	7	bytes

(b)	8	bytes

(c)	56	bytes

(d)	64	bytes

3.							How	many	bytes	of	RAM	in	the	DS1337	are	set	aside	for	general-purpose
applications?

(a)	7	bytes

(b)	8	bytes

(c)	56	bytes

(d)	64	bytes

4.							True	or	false.	The	DS1337	has	a	single	pin	for	data.

5.							Which	pin	of	the	DS1337	is	used	for	clock	in	I2C	connection?

6.							What	is	the	common	voltage	for	Vbat	in	the	DS1337?

7.							True	or	false.	The	value	of	the	CH	bit	is	zero	at	power-up	time.

8.							What	is	the	address	location	for	the	control	register?

(a)	07H

(b)	08H

(c)	56H

(d)	64H

Answers	to	Review	Questions
Section	9-1

1.							True

2.							9,	the	9th	bit	is	for	acknowledge

3.							False,	START	and	STOP	conditions	are	generated	when	the	SCL	is	high.

4.							Clock	stretching.

5.							False,	the	master	who	won	the	arbitration	will	continue.

Section	9-2
1.							False

2.							True

3.							True

4.							SIM_SCGC4

5.							I2Cx_F

Section	9-3
1.							True																						

2.							a																													

3.							c	(64	–	8	=	56	bytes)

4.							True

5.							SCL

6.							3V

7.							False

8.							a

	

	

	

Chapter	10:	Relay,	Optoisolator,	and	Stepper
Motor	Interfacing

Microcontrollers	 are	widely	 used	 in	motor	 control.	We	also	use	 relays	and
optoisolators	 in	motor	 control.	 This	 chapter	 discusses	motor	 control	 and	 shows
ARM	interfacing	with	relays,	optoisolators,	and	stepper	motors.

Section	10.1:	Relays	and	Optoisolators
This	 section	 begins	 with	 an	 overview	 of	 the	 basic	 operations	 of

electromechanical	 relays,	 solid-state	 relays,	 reed	 switches,	 and	 optoisolators.
Then	we	 describe	 how	 to	 interface	 them	 to	 the	 ARM.	We	 use	 the	 C	 language
programs	to	demonstrate	their	control.

Electromechanical	relays
A	relay	is	an	electrically	controllable	switch	widely	used	in	industrial	controls,

automobiles,	and	appliances.	It	allows	the	isolation	of	two	separate	sections	of	a
system	with	 two	different	 voltage	 sources.	For	 example,	 a	+5	V	 system	can	be
isolated	from	a	120	V	system	by	placing	a	relay	between	them.	One	such	relay	is
called	an	electromechanical	(or	electromagnetic)	relay	(EMR)	as	shown	in	Figure
10-1.	The	EMRs	have	three	components:	the	coil,	spring,	and	contacts.

Figure	10-1:	Relay	Diagrams

In	Figure	10-1,	a	digital	+5	V	on	the	left	side	can	control	a	12	V	motor	on	the
right	side	without	any	physical	contact	between	them.	When	current	flows	through
the	coil,	a	magnetic	field	 is	created	around	the	coil	(the	coil	 is	energized),	which
causes	the	armature	to	be	attracted	to	the	coil.	The	armature’s	contact	acts	like	a
switch	and	closes	or	opens	 the	circuit.	When	 the	coil	 is	not	energized,	a	spring
pulls	the	armature	to	its	normal	state	of	open	or	closed.	In	the	block	diagram	for
electromechanical	 relays	 (EMR)	 we	 do	 not	 show	 the	 spring,	 but	 it	 does	 exist
internally.	There	are	all	types	of	relays	for	all	kinds	of	applications.	In	choosing	a
relay	the	following	characteristics	need	to	be	considered:

1.	 	 	 	 	 	 	The	contacts	can	be	normally	open	(NO)	or	normally	closed	(NC).	In	the

NC	type,	the	contacts	are	closed	when	the	coil	 is	not	energized.	In	the	NO
type,	the	contacts	are	open	when	the	coil	is	unenergized.

2.	 	 	 	 	 	 	There	can	be	one	or	more	contacts.	For	example,	we	can	have	SPST
(single	 pole,	 single	 throw),	 SPDT	 (single	 pole,	 double	 throw),	 and	 DPDT
(double	pole,	double	throw)	relays.

3.							The	voltage	and	current	needed	to	energize	the	coil.	The	voltage	can	vary
from	a	few	volts	 to	50	volts,	while	 the	current	can	be	from	a	few	mA	to	20
mA.	 The	 relay	 has	 a	 minimum	 voltage,	 below	 which	 the	 coil	 will	 not	 be
energized.	 This	 minimum	 voltage	 is	 called	 the	 “pull-in”	 voltage.	 In	 the
datasheets	 for	 relays	we	might	 not	 see	 current,	 but	 rather	 coil	 resistance.
The	V/R	will	give	you	the	pull-in	current.	For	example,	if	the	coil	voltage	is	5
V,	 and	 the	 coil	 resistance	 is	 500	 ohms,	we	 need	 a	minimum	of	 10	mA	 (5
V/500	ohms	=	10	mA)	pull-in	current.

4.	 	 	 	 	 	 	The	maximum	DC/AC voltage	 and	 current	 that	 can	 be	 handled	 by	 the
contacts.	This	 is	 in	 the	range	of	a	 few	volts	 to	hundreds	of	volts,	while	 the
current	can	be	 from	a	 few	amps	 to	40	A	or	more,	depending	on	 the	 relay.
Notice	 the	 difference	 between	 this	 voltage/current	 specification	 and	 the
voltage/current	 needed	 for	 energizing	 the	 coil.	 The	 fact	 that	 one	 can	 use
such	a	small	amount	of	voltage/current	on	one	side	to	handle	a	large	amount
of	voltage/current	on	the	other	side	is	what	makes	relays	so	widely	used	in
industrial	controls.	Examine	Table	10-1	for	some	relay	characteristics.

Part	No. Contact
Form Coil	Volts Coil	Ohms Contact

Volts Current

106462CP SPST-NO 5	VDC 500 100	VDC 0.5	A

138430CP SPST-NO 5	VDC 500 100	VDC 0.5	A

106471CP SPST-NO 12	VDC 1000 100	VDC 0.5	A

138448CP SPST-NO 12	VDC 1000 100	VDC 0.5	A

129875CP DPDT 5	VDC 62.5 30	VDC 1	A

Table	10-1:	Selected	DIP Relay	Characteristics	(www.Jameco.com)

Driving	a	relay
Digital	 systems	and	microcontroller	 pins	 lack	 sufficient	 current	 to	 drive	 the

relay.	 While	 the	 relay’s	 coil	 needs	 around	 10	 mA	 to	 be	 energized,	 the
microcontroller’s	pin	can	provide	a	maximum	of	8	mA	current.	For	this	reason,	we
place	a	driver,	such	as	the	ULN2803,	or	a	transistor	between	the	microcontroller
and	the	relay	as	shown	in	Figure	10-2.	In	the	circuit	we	can	turn	the	lamp	on	and
off	by	setting	and	clearing	the	PTD1.

Figure	10-2:	ARM	Connection	to	Relay

Program	10-1	turns	the	lamp	shown	in	Figure	10-2	on	and	off	by	energizing
and	de-energizing	the	relay	every	second.

Program	10-1

	
/*	p10_1:	Relay	control

	

	*	This	program	turns	the	relay	connected	to	PTD1	on	and	off	every	second.

	*/

	

#include	<MKL25Z4.H>

	

int	main	(void)	{

void	delayMs(int	n);

SIM->SCGC5	|=	0x1000;							/*	enable	clock	to	Port	D	*/

PORTD->PCR[1]	=	0x100;						/*	make	PTD1	pin	as	GPIO	*/

PTD->PDDR	|=	0x02;										/*	make	PTD1	as	output	pin	*/

while	(1)	{

PTD->PSOR	=	0x02;							/*	turn	on	PTD1	output	*/

delayMs(1000);										/*	wait	for	1	second	*/

PTD->PCOR	=	0x02;							/*	turn	off	PTD1	output	*/

delayMs(1000);										/*	wait	for	1	second	*/

}

}

	

/*	Delay	n	milliseconds

	*	The	CPU	core	clock	is	set	to	MCGFLLCLK	at	41.94	MHz	in	SystemInit().

	*/

void	delayMs(int	n)	{

int	i;

int	j;

for(i	=	0	;	i	<	n;	i++)

for	(j	=	0;	j	<	7000;	j++)	{}

}

	

Solid-state	relay
	Another	widely	used	relay	is	the	solid-state	relay.	See	Table	10-2.

Part	No. Contact	Style Control	Volts Contact	Volts Contact
Current

143058CP SPST 4-32	VDC 240	VAC 3	A

139053CP SPST 3-32	VDC 240	VAC 25	A

162341CP SPST 3-32	VDC 240	VAC 10	A

172591CP SPST 3-32	VDC 60	VAC 2	A

175222CP SPST 3-32	VDC 60	VAC 4	A

176647CP SPST 3-32	VDC 120	VAC 5	A

Table	10-2:	Selected	Solid-State	Relay	Characteristics	(www.Jameco.com)

In	this	relay,	there	is	no	coil,	spring,	or	mechanical	contact	switch.	The	entire
relay	 is	made	out	of	semiconductor	materials.	Because	no	mechanical	parts	are
involved	 in	 solid-state	 relays,	 their	 switching	 response	 time	 is	much	 faster	 than
that	of	electromechanical	relays.	Another	advantage	of	the	solid-state	relay	is	 its
greater	 life	 expectancy.	 The	 life	 cycle	 for	 the	 electromechanical	 relay	 can	 vary
from	a	 few	hundred	 thousand	 to	a	 few	million	operations.	Wear	and	 tear	on	 the
contact	points	can	cause	the	relay	to	malfunction	after	a	while.	Solid-state	relays,
however,	 have	 no	 such	 limitations.	 Extremely	 low	 input	 current	 and	 small
packaging	 make	 solid-state	 relays	 ideal	 for	 microcontroller	 and	 logic	 control
switching.	 They	 are	 widely	 used	 in	 controlling	 pumps,	 solenoids,	 alarms,	 and
other	 power	 applications.	 Some	 solid-state	 relays	 have	 a	 phase	 control	 option,
which	is	ideal	for	motor-speed	control	and	light-dimming	applications.	Figure	10-3
shows	control	of	a	fan	using	a	solid-state	relay	(SSR).

Figure	10-3:	ARM	Connection	to	a	Solid-State	Relay

Reed	switch
Another	popular	switch	is	the	reed	switch.	When	the	reed	switch	is	placed	in

a	magnetic	 field,	 the	contact	 is	closed.	When	the	magnetic	 field	 is	 removed,	 the
contact	is	forced	open	by	its	spring.	See	Figure	10-4.	The	reed	switch	is	ideal	for
moist	and	marine	environments	where	it	can	be	submerged	in	fuel	or	water.	Reed
switches	are	also	widely	used	 in	dirty	and	dusty	atmospheres	because	 they	are
tightly	sealed.

Figure	10-4:	Reed	Switch	and	Magnet	Combination

Optoisolator
In	 some	 applications	 we	 use	 an	 optoisolator	 (also	 called	 optocoupler)	 to

isolate	two	parts	of	a	system.	An	example	is	driving	a	motor.	Motors	can	produce
what	 is	called	back	EMF,	a	high-voltage	spike	produced	by	a	sudden	change	of
current	as	indicated	in	the	formula	V	=	Ldi/dt.	In	situations	such	as	printed	circuit
board	 design,	 we	 can	 reduce	 the	 effect	 of	 this	 unwanted	 voltage	 spike	 (called
ground	bounce)	by	using	decoupling	capacitors	(see	Appendix	A).	In	systems	that
have	inductors	(coil	winding),	such	as	motors,	a	decoupling	capacitor	or	a	diode
will	 not	 do	 the	 job.	 In	 such	 cases	we	use	 optoisolators.	An	 optoisolator	 has	 an
LED	(light-emitting	diode)	transmitter	and	a	photosensor	receiver,	separated	from
each	other	by	a	gap.	When	current	flows	through	the	diode,	 it	 transmits	a	signal

light	 across	 the	 gap	 and	 the	 receiver	 produces	 the	 same	 signal	 with	 the	 same
phase	but	a	different	 current	and	amplitude.	See	Figure	10-5.	Optoisolators	are
also	 widely	 used	 in	 communication	 equipment	 such	 as	 modems.	 This	 device
allows	 a	 computer	 to	 be	 connected	 to	 a	 telephone	 line	 without	 risk	 of	 damage
from	high	voltage	of	telephone	line.	The	gap	between	the	transmitter	and	receiver
of	optoisolators	prevents	the	electrical	voltage	surge	from	reaching	the	system.

Figure	10-5:	Optoisolator	Package	Examples

Interfacing	an	optoisolator
The	optoisolator	comes	in	a	small	IC	package	with	four	or	more	pins.	There

are	 also	 packages	 that	 contain	 more	 than	 one	 optoisolator.	 When	 placing	 an
optoisolator	between	two	circuits,	we	must	use	two	separate	voltage	sources,	one
for	 each	 side,	 as	 shown	 in	 Figure	 10-6.	 Unlike	 relays,	 no	 drivers	 need	 to	 be
placed	between	the	microcontroller/digital	output	and	the	optoisolators.

Figure	10-6:	Controlling	a	Lamp	via	an	Optoisolator

Review	Questions
1.							Give	one	application	where	would	you	use	a	relay.

2.							Why	do	we	place	a	driver	between	the	microcontroller	and	the	relay?

3.							What	is	an	NC	relay?

4.							Why	are	relays	that	use	coils	called	electromechanical	relays?

5.							What	is	the	advantage	of	a	solid-state	relay	over	EMR?

6.							What	is	the	advantage	of	an	optoisolator	over	an	EMR?

Section	10.2:	Stepper	Motor	Interfacing
	 This	 section	 begins	 with	 an	 overview	 of	 the	 basic	 operation	 of	 stepper

motors.	Then	we	describe	how	to	 interface	a	stepper	motor	 to	 the	ARM.	Finally,
we	 use	C	 language	 programs	 to	 demonstrate	 control	 of	 the	 rotation	 of	 stepper
motor.

Stepper	motors
A	stepper	motor	is	a	widely	used	device	that	translates	electrical	pulses	into

mechanical	movement.	 In	 applications	 such	as	dot	matrix	 printers	 and	 robotics,
the	stepper	motor	 is	used	for	position	control.	Stepper	motors	commonly	have	a
permanent	magnet	rotor	(also	called	the	shaft)	surrounded	by	a	stator	(see	Figure
10-7).

Figure	10-7:	Rotor	Alignment

There	 are	 also	 steppers	 called	variable	 reluctance	 stepper	motors	 that	 do

not	have	a	permanent	magnet	rotor.	The	most	common	stepper	motors	have	four
stator	windings	that	are	paired	with	a	center-tapped	common	as	shown	in	Figure
10-8.

Figure	10-8:	Stator	Winding	Configuration

This	 type	 of	 stepper	 motor	 is	 commonly	 referred	 to	 as	 a	 four-phase	 or
unipolar	 stepper	 motor.	 The	 center	 tap	 allows	 a	 change	 of	 current	 direction	 in
each	 of	 two	 coils	 when	 a	 winding	 is	 grounded,	 thereby	 resulting	 in	 a	 polarity
change	of	the	stator.	Notice	that	while	a	conventional	motor	shaft	runs	freely,	the
stepper	 motor	 shaft	 moves	 in	 a	 fixed	 repeatable	 increment,	 which	 allows	 it	 to
move	to	a	precise	position.	This	repeatable	fixed	movement	is	possible	as	a	result
of	 basic	 magnetic	 theory	 where	 poles	 of	 the	 same	 polarity	 repel	 and	 opposite
poles	 attract.	 The	 direction	 of	 the	 rotation	 is	 dictated	 by	 the	 stator	 poles.	 The
stator	 poles	 are	 determined	 by	 the	 current	 sent	 through	 the	 wire	 coils.	 As	 the
direction	 of	 the	 current	 is	 changed,	 the	 polarity	 is	 also	 changed	 causing	 the
reverse	motion	of	 the	rotor.	The	stepper	motor	discussed	here	has	a	 total	of	six
leads:	four	 leads	representing	the	four	stator	windings	and	two	commons	for	the
center-tapped	leads.	As	the	sequence	of	power	is	applied	to	each	stator	winding,
the	rotor	will	rotate.	There	are	several	widely	used	sequences,	each	of	which	has
a	different	degree	of	precision.	Table	10-3	shows	a	two-phase,	four-step	stepping
sequence.

Clockwise
Step	# Winding	A Winding	B Winding	C Winding	D Counter

Clockwise1 1 0 0 1

2 1 1 0 0

3 0 1 1 0

4 0 0 1 1

Table	10-3:	Normal	Four-Step	Sequence

Note	 that	 although	we	 can	 start	with	 any	 of	 the	 sequences	 in	 Table	 10-3,
once	we	start	we	must	continue	in	the	proper	order.	For	example,	if	we	start	with
step	3	(0110),	we	must	continue	in	the	sequence	of	steps	4,	1,	2,	and	so	on.

Step	angle

How	much	movement	is	associated	with	a	single	step?	This	depends	on	the
internal	construction	of	 the	motor,	 in	particular	 the	number	of	 teeth	on	 the	stator
and	the	rotor.	The	step	angle	is	the	minimum	degree	of	rotation	associated	with	a
single	 step.	Various	motors	 have	 different	 step	 angles.	 Table	 10-4	 shows	 some
step	angles	for	various	motors.	In	Table	10-4,	notice	the	term	steps	per	revolution.
This	 is	 the	 total	number	of	steps	needed	 to	 rotate	one	complete	 rotation	or	360
degrees	(e.g.,	180	steps	×	2	degrees	=	360).

Step	Angle Step	per
Revolution

0.72 500

1.8 200

2.0 180

2.5 144

5.0 72

7.5 48

15 24

Table	10-4:	Stepper	Motor	Step	Angles

It	must	be	noted	that	perhaps	contrary	to	one’s	initial	impression,	a	stepper
motor	does	not	need	more	terminal	leads	for	the	stator	to	achieve	smaller	steps.
All	 the	 stepper	 motors	 discussed	 in	 this	 section	 have	 four	 leads	 for	 the	 stator
winding	and	two	COM	wires	for	the	center	tap.	Although	some	manufacturers	set
aside	only	one	lead	for	the	common	signal	instead	of	two,	they	always	have	four
leads	 for	 the	 stators.	 See	 Example	 10-1.	 Next	 we	 discuss	 some	 associated
terminology	in	order	to	understand	the	stepper	motor	further.

Example	10-1

Describe	 the	 ARM	 connection	 to	 the	 stepper	motor	 of	 Figure	 10-9	 and	 code	 a
program	to	rotate	it	continuously.

	

Solution:
The	 following	 steps	 show	 the	 ARM	 connection	 to	 the	 stepper	 motor	 and	 its
programming:

	

1.							Use	an	ohmmeter	to	measure	the	resistance	of	the	leads.	This	should
identify	which	COM	leads	are	connected	to	which	winding	leads.

2.							The	common	wire(s)	are	connected	to	the	positive	side	of	the	motor’s
power	supply.	In	many	motors,	+5	V	is	sufficient.

3.							The	four	leads	of	the	stator	winding	are	controlled	by	four	bits	of	the	ARM
port	(PB0–PB3).	Because	the	microcontroller	lacks	sufficient	current	to	drive
the	stepper	motor	windings,	we	must	use	a	driver	such	as	the	ULN2003	(or
ULN2803)	 to	 energize	 the	 stator.	 Instead	 of	 the	ULN2003,	we	 could	 have
used	transistors	as	drivers,	as	shown	in	Figure	10-11.	However,	notice	that	if
transistors	 are	 used	 as	 drivers,	 we	 must	 also	 use	 diodes	 to	 take	 care	 of
inductive	 current	 generated	 when	 the	 coil	 is	 turned	 off.	 One	 reason	 that
using	 the	ULN2003	 is	preferable	 to	 the	use	of	 transistors	as	drivers	 is	 that
the	ULN2003	has	an	internal	diode	to	take	care	of	back	EMF.

	

Figure	10-9:	ARM	Connection	to	Stepper	Motor

Steps	per	second	and	RPM	relation
The	 relation	 between	 RPM	 (revolutions	 per	 minute),	 steps	 per	 revolution,

and	steps	per	second	is	as	follows.

The	4-step	sequence	and	number	of	teeth	on	rotor
The	 switching	 sequence	 shown	 earlier	 in	 Table	 10-3	 is	 called	 the	 4-step

switching	sequence	because	after	four	steps	the	same	two	windings	will	be	“ON”.
How	much	movement	is	associated	with	these	four	steps?	Therefore,	in	a	stepper
motor	with	200	steps	per	revolution,	the	rotor	has	50	teeth	because	4	×	50	=	200
steps	are	needed	to	complete	one	revolution.	This	leads	to	the	conclusion	that	the
minimum	step	angle	 is	always	a	 function	of	 the	number	of	 teeth	on	 the	 rotor.	 In
other	 words,	 the	 smaller	 the	 step	 angle,	 the	 more	 teeth	 the	 rotor	 has.	 See

Example	10-2.

Example	10-2

Give	the	number	of	times	the	four-step	sequence	in	Table	10-3	must	be	applied	to
a	 stepper	motor	 to	make	 an	 80-degree	move	 if	 the	motor	 has	 a	 2-degree	 step
angle.

	

Solution:
A	motor	with	a	2-degree	step	angle	has	the	following	characteristics:

Step	angle:																																									2	degrees											

Steps	per	revolution:																							180

Number	of	rotor	teeth:																	45																										

Movement	per	4-step	sequence:	8	degrees

To	move	the	rotor	80	degrees,	we	need	to	send	10	consecutive	4-step	sequences,
because	10	×	4	steps	×	2	degrees	=	80	degrees.

	

Looking	 at	 Example	 10-2,	 one	might	 wonder	 what	 happens	 if	 we	 want	 to
move	 45	 degrees,	 because	 the	 steps	 are	 2	 degrees	 each.	 To	 provide	 finer
resolutions,	all	stepper	motors	allow	what	is	called	an	8-step	switching	sequence.
The	8-step	sequence	is	also	called	half-stepping,	because	in	the	8-step	sequence
each	step	is	half	of	the	normal	step	angle.	For	example,	a	motor	with	a	2-degree
step	angle	can	be	used	as	a	1-degree	step	angle	if	the	sequence	of	Table	10-5	is
applied.

Clockwise
Step	# Winding	A Winding	B Winding	C Winding	D Counter

Clockwise1 1 0 0 1

2 1 0 0 0

3 1 1 0 0

4 0 1 0 0

5 0 1 1 0

6 0 0 1 0

7 0 0 1 1

8 0 0 0 1

Table	10-5:	Half-Step	8-Step	Sequence

Motor	speed
The	motor	speed,	measured	 in	steps	per	second	 (steps/s),	 is	a	 function	of

the	switching	rate.	Notice	in	Example	10-1	that	by	changing	the	length	of	the	time
delay	loop,	we	can	achieve	various	rotation	speeds.

Holding	torque
The	 following	 is	 a	 definition	 of	 holding	 torque:	 “With	 the	 motor	 shaft	 at

standstill	 or	 zero	 rpm	condition,	 the	amount	 of	 torque,	 from	an	external	 source,
required	to	break	away	the	shaft	from	its	holding	position.	This	is	measured	with
rated	voltage	and	current	applied	 to	 the	motor.”	The	unit	of	 torque	 is	ounce-inch
(or	kg-cm).	

Wave	drive	4-step	sequence
In	addition	to	the	8-step	and	the	4-step	sequences	discussed	earlier,	there	is

another	sequence	called	the	wave	drive	4-step	sequence.	It	is	shown	in	Table	10-
6.

Clockwise
Step	# Winding	A Winding	B Winding	C Winding	D Counter

Clockwise1 1 0 0 0

2 0 1 0 0

3 0 0 1 0

4 0 0 0 1

Table	10-6:	Wave	Drive	4-Step	Sequence

Notice	 that	 the	8-step	sequence	of	Table	10-5	 is	simply	 the	combination	of
the	wave	drive	4-step	and	normal	4-step	normal	sequences	shown	in	Tables	10-6
and	10-3,	respectively.	Experimenting	with	the	wave	drive	4-step	sequence	is	left
to	the	reader.

Unipolar	versus	bipolar	stepper	motor	interface
There	 are	 three	 common	 types	 of	 stepper	 motor	 interfacing:	 universal,

unipolar,	and	bipolar.	They	can	be	identified	by	the	number	of	connections	to	the
motor.	 A	 universal	 stepper	motor	 has	 eight,	 while	 the	 unipolar	 has	 six	 and	 the
bipolar	 has	 four.	 The	 universal	 stepper	 motor	 can	 be	 configured	 for	 all	 three
modes,	while	the	unipolar	can	be	either	unipolar	or	bipolar.	Obviously	the	bipolar
cannot	be	configured	for	universal	nor	unipolar	mode.	Table	10-7	shows	selected
stepper	motor	characteristics.

Part	No. Step	Angle Drive
System Volts Phase

Resistance Current

151861CP 7.5 unipolar 5	V 9	ohms 550	mA

171601CP 3.6 unipolar 7	V 20	ohms 350	mA

164056CP 7.5 bipolar 5	V 6	ohms 800	mA

Table	10-7:	Selected	Stepper	Motor	Characteristics	(www.Jameco.com)

Figure	 10-10	 shows	 the	 basic	 internal	 connections	 of	 all	 three	 types	 of
configurations.

Figure	10-10:	Common	Stepper	Motor	Types

Unipolar	stepper	motors	can	be	controlled	using	the	basic	interfacing	shown
in	Figure	10-11,	whereas	 the	bipolar	 stepper	 requires	H-Bridge	 circuitry.	Bipolar
stepper	 motors	 require	 a	 higher	 operational	 current	 than	 the	 unipolar;	 the
advantage	of	this	is	a	higher	holding	torque.

Figure	10-11:	Using	Transistors	for	Stepper	Motor	Driver

Using	transistors	as	drivers

Figure	 10-11	 shows	 an	 interface	 to	 a	 unipolar	 stepper	 motor	 using
transistors.	Diodes	are	used	to	reduce	the	back	EMF	spike	created	when	the	coils
are	 energized	 and	 de-energized,	 similar	 to	 the	 electromechanical	 relays
discussed	 earlier.	 TIP	 transistors	 can	 be	 used	 to	 supply	 higher	 current	 to	 the
motor.	 Table	 10-8	 lists	 the	 common	 industrial	 Darlington	 transistors.	 These
transistors	can	accommodate	higher	voltages	and	currents.

NPN PNP VCEO	(volts) IC	(amps) hfe	(common)

TIP110 TIP115 60 2 1000

TIP111 TIP116 80 2 1000

TIP112 TIP117 100 2 1000

TIP120 TIP125 60 5 1000

TIP121 TIP126 80 5 1000

TIP122 TIP127 100 5 1000

TIP140 TIP145 60 10 1000

TIP141 TIP146 80 10 1000

TIP142 TIP147 100 10 1000

Table	10-8:	Darlington	Transistor	Listing

Controlling	stepper	motor	via	optoisolator
In	the	first	section	of	this	chapter	we	examined	the	optoisolator	and	its	use.

Optoisolators	 are	 widely	 used	 to	 isolate	 the	 stepper	 motor’s	 EMF	 voltage	 and
keep	it	from	damaging	the	digital/microcontroller	system.	This	is	shown	in	Figure
10-12.

Figure	10-12:	Controlling	Stepper	Motor	via	Optoisolator

See	Program	10-2.

Program	10-2:	Controlling	a	stepper	motor

	
/*	p10_2.c:	Stepper	motor	control

/*	This	program	controls	a	unipolar	stepper	motor	using	PTD	3,	2,	1,	0.	*/

	

#include	<MKL25Z4.H>

	

int	delay	=	100;

int	direction	=	0;

	

int	main	(void)	{

void	delayMs(int	n);

const	char	steps[]	=	{0x9,	0x3,	0x6,	0xC};

int	i	=	0;			

/*	PTD	3,	2,	1,	0	for	motor	control	*/

SIM->SCGC5	|=	0x1000;							/*	enable	clock	to	Port	D	*/

PORTD->PCR[0]	=	0x100;						/*	make	PTD0	pin	as	GPIO	*/

PORTD->PCR[1]	=	0x100;						/*	make	PTD1	pin	as	GPIO	*/

PORTD->PCR[2]	=	0x100;						/*	make	PTD2	pin	as	GPIO	*/

PORTD->PCR[3]	=	0x100;						/*	make	PTD3	pin	as	GPIO	*/

PTD->PDDR	|=	0x0F;										/*	make	PTD3-0	as	output	pin	*/

	

for	(;;)	{

if	(direction)

PTD->PDOR	=	(steps[i++	&	3]);

else

PTD->PDOR	=	(steps[i—	&	3]);

delayMs(delay);

}

}

	

/*	Delay	n	milliseconds	*/

/*	The	CPU	core	clock	is	set	to	MCGFLLCLK	at	41.94	MHz	in	SystemInit().	*/

	

void	delayMs(int	n)	{

int	i;

int	j;

for(i	=	0	;	i	<	n;	i++)

for	(j	=	0;	j	<	7000;	j++)	{}

}

	

Review	Questions
1.							Give	the	4-step	sequence	of	a	stepper	motor	if	we	start	with	0110.

2.							A	stepper	motor	with	a	step	angle	of	5	degrees	has	____	steps	per
revolution.

3.							Why	do	we	put	a	driver	between	the	microcontroller	and	the	stepper
motor?

Answers	to	Review	Questions
Section	10.1

1.							With	a	relay	we	can	use	a	5	V	digital	system	to	control	12	V–120	V	devices
such	as	horns	and	appliances.

2.							Because	microcontroller/digital	outputs	lack	sufficient	current	to	energize
the	relay,	we	need	a	driver.

3.							When	the	coil	is	not	energized,	the	contact	is	closed.

4.							When	current	flows	through	the	coil,	a	magnetic	field	is	created	around	the
coil,	which	causes	the	armature	to	be	attracted	to	the	coil.

5.							It	is	faster	and	needs	less	current	to	get	energized.

6.							It	is	smaller	and	can	be	connected	to	the	microcontroller	directly	without	a
driver.

Section	10.2
1.							1100,	0110,	0011,	1001	for	clockwise;	and	1001,	0011,	0110,	1100	for

counterclockwise

2.							72

3.							The	microcontroller	pins	do	not	provide	sufficient	current	to	drive	the
stepper	motor.

	

	

	

Chapter	11:	PWM	and	DC	Motor	Control
This	 chapter	 discusses	 the	 topic	 of	 PWM	 (pulse	 width	 modulation)	 and

shows	 ARM	 interfacing	 with	 DC	 motors.	 The	 characteristics	 of	 DC	 motors	 are
discussed	 along	 with	 their	 interfacing	 to	 the	 ARM.	 We	 use	 C	 programming
examples	to	create	PWM	pulses.

Section	11.1:	DC	Motor	Interfacing	and	PWM
This	 section	 begins	 with	 an	 overview	 of	 the	 basic	 operation	 of	 the	 DC

motors.	Then	we	describe	how	 to	 interface	a	DC	motor	 to	 the	ARM.	Finally,	we
use	C	language	programs	to	demonstrate	the	concept	of	pulse	width	modulation
(PWM)	and	show	how	to	control	the	speed	and	direction	of	a	DC	motor.

DC	motors
A	direct	current	(DC)	motor	is	a	widely	used	device	that	translates	electrical

current	into	mechanical	movement.	In	the	DC	motor	we	have	only	+	and	–	leads.
Connecting	 them	 to	 a	DC	voltage	 source	moves	 the	motor	 in	 one	direction.	By
reversing	the	polarity,	the	DC	motor	will	rotate	in	the	opposite	direction.	One	can
easily	experiment	with	the	DC	motor.	For	example,	some	small	fans	used	in	many
motherboards	 to	 cool	 the	 CPU	 are	 run	 by	 DC	 motors.	 While	 a	 stepper	 motor
moves	in	discrete	steps	of	1	to	15	degrees,	the	DC	motor	moves	continuously.	In
a	stepper	motor,	if	we	know	the	starting	position	we	can	easily	count	the	number
of	steps	the	motor	has	moved	and	calculate	the	final	position	of	the	motor.	This	is
not	possible	 in	a	DC	motor.	The	maximum	speed	of	a	DC	motor	 is	 indicated	 in
RPM	and	is	given	in	the	data	sheet.	The	DC	motor	has	two	types	of	RPM:	no-load
and	loaded.	The	manufacturer’s	data	sheet	gives	the	no-load	RPM.	The	no-load
RPM	 can	 be	 from	 a	 few	 thousand	 to	 tens	 of	 thousands.	 The	 RPM	 is	 reduced
when	moving	a	load	and	it	decreases	as	the	load	is	increased.	For	example,	a	drill
turning	 a	 screw	 has	 a	 much	 lower	 RPM	 speed	 than	 when	 it	 is	 in	 the	 no-load
situation.	DC	motors	also	have	voltage	and	current	ratings.	The	nominal	voltage	is
the	voltage	for	 that	motor	under	normal	conditions,	and	can	be	from	1	to	150	V,
depending	 on	 the	 motor.	 As	 we	 increase	 the	 voltage,	 the	 RPM	 goes	 up.	 The
current	rating	is	the	current	consumption	when	the	nominal	voltage	is	applied	with
no	load,	and	can	be	from	25	mA	to	a	few	amps.	As	the	load	increases,	the	RPM	is
decreased,	unless	the	current	or	voltage	provided	to	the	motor	is	increased,	which
in	 turn	 increases	 the	 torque.	 With	 a	 fixed	 voltage,	 as	 the	 load	 increases,	 the
current	(power)	consumption	of	a	DC	motor	is	increased.	If	we	overload	the	motor
it	 will	 stall,	 and	 that	 can	 damage	 the	motor	 due	 to	 the	 heat	 generated	 by	 high
current	consumption.

Unidirectional	control
Figure	 11-1	 shows	 the	 DC	 motor	 clockwise	 (CW)	 and	 counterclockwise

(CCW)	rotations.

Figure	11-1:	DC Motor	Rotation	(Permanent	Magnet	Field)

See	Table	11-1	for	selected	DC	motors.

Part	No. Nominal
Volts Volt	Range Current RPM Torque

154915CP 3	V 1.5–3	V 0.070	A 5,200 4.0	g-cm

154923CP 3	V 1.5–3	V 0.240	A 16,000 8.3	g-cm

177498CP 4.5	V 3–14	V 0.150	A 10,300 33.3	g-cm

181411CP 5	V 3–14	V 0.470	A 10,000 18.8	g-cm

Table	11-1:	Selected	DC	Motor	Characteristics	(http://www.Jameco.com)

Bidirectional	control
With	the	help	of	relays,	transistor	circuit	or	some	specially	designed	chips	we

can	 change	 the	 direction	 of	 the	 DC	 motor	 rotation.	 Figures	 11-2	 through	 11-4
show	the	basic	concepts	of	the	H-Bridge	control	of	DC motors.

Figure	11-2:	H-Bridge	Motor	Configuration

Figure	11-2	shows	the	connection	of	an	H-Bridge	using	simple	switches.	All

the	switches	are	open,	which	does	not	allow	the	motor	to	turn.

Figure	 11-3	 shows	 the	 switch	 configuration	 for	 turning	 the	 motor	 in	 one
direction.	When	switches	1	and	4	are	closed,	current	 is	allowed	to	pass	through
the	motor.

Figure	11-3:	H-Bridge	Motor	Clockwise	Configuration

Figure	11-4:	H-Bridge	Motor	Counterclockwise	Configuration

Figure	 11-4	 shows	 the	 switch	 configuration	 for	 turning	 the	 motor	 in	 the
opposite	direction	 from	the	configuration	of	Figure	11-3.	When	switches	2	and	3
are	closed,	current	is	allowed	to	pass	through	the	motor.

Figure	11-5	shows	an	invalid	configuration.	Current	flows	directly	to	ground,
creating	a	short	circuit.	The	same	effect	occurs	when	switches	1	and	3	are	closed
or	switches	2	and	4	are	closed.

Figure	11-5:	H-Bridge	in	an	Invalid	Configuration

Table	11-2	shows	some	of	the	logic	configurations	for	the	H-Bridge	design.

Motor	Operation SW1 SW2 SW3 SW4

Off				 Open Open Open Open

Clockwise Closed Open Open Closed

Counterclockwise Open Closed Closed Open

Invalid Closed Closed Closed Closed

Table	11-2:	Some	H-Bridge	Logic Configurations	for	Figure	11-2
	

H-Bridge	 control	 can	 be	 created	 using	 relays,	 transistors,	 or	 a	 single	 IC
solution	such	as	 the	L298.	When	using	 relays	and	 transistors,	you	must	ensure
that	invalid	configurations	do	not	occur.

Although	we	 do	 not	 show	 the	 relay	 control	 of	 an	H-Bridge,	 Example	 11-1
shows	a	simple	program	to	operate	a	basic	H-Bridge.

Example	11-1

A	switch	is	connected	to	pin	PTD7.	Using	relays	make	the	H-Bridge	in	Table	11-2
and	write	the	proper	program.	We	must	perform	the	following:

(a)	If	PTD7	=	0,	the	DC	motor	moves	clockwise.

(b)	If	PTD7	=	1,	the	DC	motor	moves	counterclockwise.

	

Solution	1	(Using	SPST	Relays):

int	main	(void)	{

void	delayMs(int	n);

PORTD->PCR[0]	=	0x100;						/*	make	PTD0	pin	as	GPIO	*/

PORTD->PCR[1]	=	0x100;						/*	make	PTD1	pin	as	GPIO	*/

PORTD->PCR[2]	=	0x100;						/*	make	PTD2	pin	as	GPIO	*/

PORTD->PCR[3]	=	0x100;						/*	make	PTD3	pin	as	GPIO	*/

PORTD->PCR[7]	=	0x103;						/*	make	PTD7	pin	as	GPIO	and	enable	pullup	*/

PTD->PDDR	|=	0x0F;										/*	make	PTD0-3	as	output	pin	*/

PTD->PDDR	&=	~0x80;									/*	make	PTD7	as	input	pin	*/

if((PTD->PDIR	&	0x80)	==	0)

{			/*	PTD7	==	0	*/

PTD->PDOR	&=	~0x0F;					/*	open	all	switches	*/

delayMs(100);											/*	wait	0.1	second	*/

PTD->PDOR	|=	0x09;						/*	close	SW1	&	SW4	*/

	

while((PTD->PDIR	&	0x80)	==	0)	;				/*PTD7	==	0	*/

}

else

{			/*	PTD7	==	1	*/

PTD->PDOR	&=	~0x0F;					/*	open	all	switches	*/

delayMs(100);											/*	wait	0.1	second	*/

PTD->PDOR	|=	0x06;						/*	close	SW2	&	SW3	*/

while((PTD->PDIR	&	0x80)	!=	0)	;				/*PTD7	==	0	*/

}

}

	

Solution	2	(Using	SPDT	Relays):
The	H-bridge	can	also	be	made	using	two	SPDT	relays	as	shown	in	the	following
figure.

int	main	(void)	{

PORTD->PCR[0]	=	0x100;						/*	make	PTD0	pin	as	GPIO	*/

PORTD->PCR[1]	=	0x100;						/*	make	PTD1	pin	as	GPIO	*/

PORTD->PCR[7]	=	0x103;						/*	make	PTD7	pin	as	GPIO	and	enable	pullup	*/

PTD->PDDR	|=	0x03;										/*	make	PTD0-1	as	output	pin	*/

PTD->PDDR	&=	~0x80;									/*	make	PTD7	as	input	pin	*/

if((PTD->PDIR	&	0x80)	==	0)

{			/*	PTD7	==	0	*/

PTD->PDOR	&=	~0x02;					/*	Relay	2	=	Off	*/

PTD->PDOR	|=	0x01;						/*	Relay	1	=	On	*/

}

else

{			/*	PTD7	==	1	*/

PTD->PDOR	&=	~0x01;					/*	Relay	1	=	0ff	*/

PTD->PDOR	|=	0x02;						/*	Relay	2	=	0n	*/

}

}

Figure	 11-6	 shows	 the	 connection	 of	 the	 L298N	 to	 the	microcontroller.	 Be
aware	that	the	L298N	will	generate	heat	during	operation.	For	sustained	operation
of	the	motor,	use	a	heat	sink.

Figure	11-6:	Bidirectional	Motor	Control	Using	an	L298	Chip

	

Pulse	width	modulation	(PWM)
The	speed	of	the	motor	depends	on	three	factors:	(a)	load,	(b)	voltage,	and

(c)	 current.	 For	 a	 given	 fixed	 load	we	 can	maintain	 a	 steady	 speed	 by	 using	 a
method	called	pulse	width	modulation	(PWM).	By	changing	(modulating)	the	width
of	the	pulse	applied	to	the	DC	motor	we	can	increase	or	decrease	the	amount	of
power	provided	to	 the	motor,	 thereby	 increasing	or	decreasing	the	motor	speed.
Notice	 that,	 although	 the	 voltage	 has	 a	 fixed	 amplitude,	 it	 has	 a	 variable	 duty
cycle.	That	means	 the	wider	 the	pulse,	 the	higher	 the	speed.	PWM	is	so	widely
used	in	DC	motor	control	that	many	microcontrollers	come	with	an	on-chip	PWM
circuitry.	 In	 such	microcontrollers	 all	 we	 have	 to	 do	 is	 load	 the	 proper	 registers
with	the	values	of	the	high	and	low	portions	of	the	desired	pulse,	and	the	rest	 is
taken	 care	 of	 by	 the	microcontroller.	 This	 allows	 the	microcontroller	 to	 do	 other
things.	 For	 microcontrollers	 without	 on-chip	 PWM	 circuitry,	 we	 must	 create	 the
various	duty	cycle	pulses	using	software,	which	prevents	the	microcontroller	from
doing	other	things.	The	ability	to	control	the	speed	of	the	DC	motor	using	PWM	is
one	 reason	 that	DC	motors	 are	 preferable	 over	AC	motors.	AC	motor	 speed	 is
dictated	 by	 the	 AC	 frequency	 of	 the	 voltage	 applied	 to	 the	 motor	 and	 the
frequency	 is	generally	 fixed.	As	a	result,	we	cannot	control	 the	speed	of	 the	AC
motor	when	the	load	is	increased.	As	will	be	shown	later,	we	can	also	change	the
DC	motor’s	direction	and	torque.	See	Figure	11-7	for	PWM	comparisons.

Figure	11-7:	Pulse	Width	Modulation	Comparison

DC	motor	control	with	optoisolator
The	optoisolator	is	indispensable	in	many	motor	control	applications.	Figures

11-8	and	11-9	show	the	connections	to	a	simple	DC motor	using	a	bipolar	and	a
MOSFET	transistor.	Notice	that	the	microcontroller	is	protected	from	EMI	created
by	motor	brushes	by	using	an	optoisolator	and	a	separate	power	supply.

Figure	11-8:	DC Motor	Connection	Using	a	Darlington	Transistor

Figures	11-8	and	11-9	show	optoisolators	for	single	directional	motor	control,
and	 the	 same	principle	 should	 be	used	 for	most	motor	 applications.	Separating
the	power	supplies	of	the	motor	and	logic	will	reduce	the	possibility	of	damage	to
the	 control	 circuit.	Figure	11-8	 shows	 the	 connection	of	 a	bipolar	 transistor	 to	a
motor.	Protection	of	 the	control	circuit	 is	provided	by	 the	optoisolator.	The	motor
and	 the	microcontroller	 use	 separate	 power	 supplies.	 The	 separation	 of	 power
supplies	 also	 allows	 the	 use	 of	 high-voltage	 motors.	 Notice	 that	 we	 use	 a
decoupling	capacitor	across	the	motor;	this	helps	reduce	the	EMI	created	by	the
motor.	The	motor	is	switched	on	by	clearing	bit	PTD0.

Figure	11-9:	DC Motor	Connection	Using	a	MOSFET	Transistor

Figure	11-9	shows	the	connection	of	a	MOSFET	transistor.	The	optoisolator
protects	 the	 microcontroller	 from	 EMI.	 The	 Zener	 diode	 is	 required	 for	 the
transistor	to	reduce	gate	voltage	below	the	rated	maximum	value.

Review	Questions
1.							True	or	false.	The	permanent	magnet	field	DC	motor	has	only	two	leads	for

+	and	–	voltages.

2.							True	or	false.	As	with	a	stepper	motor,	one	can	control	the	exact	angle	of	a
DC	motor’s	move.

3.							Why	do	we	put	a	driver	between	the	microcontroller	and	the	DC	motor?

4.							How	do	we	change	a	DC	motor’s	rotation	direction?

5.							What	is	stall	in	a	DC	motor?

6.							The	RPM	rating	given	for	the	DC	motor	is	for	__________	(no-load,
loaded).

Section	11.2:	Programming	PWM	in	Freescale	ARM
KL25Z

In	 Freescale	 ARM	 KL25Z,	 the	 PWM	 (Pulse	 Width	 Modulation)	 is
incorporated	into	the	Timer.	As	we	saw	in	Chapter	5,	the	Timer	in	KL25Z	is	called
TPM	 (Timer/PWM	Module).	 To	 program	 the	 PWM	 features	 of	 the	 ARM	 KL25Z
chip,	we	must	understand	 the	Timer	 topics	covered	 in	Chapter	5	 since	PWM	 is
subset	of	the	Timer.	In	this	section,	we	examine	the	PWM	features	and	show	how
to	program	them.

PWM	Clock	source
The	Clock	source	to	the	TPM	module	is	enabled	using	the	SIM_SCGC6

register.	See	Figure	11-10.

Figure	11-10:	SIM_SCGC6	Register

CPWMS	bit	and	the	TPM	counting
As	 discussed	 in	 Chapter	 5,	 the	 TPMx_SC	 register	 has	 control	 on	 the

counting	of	the	timer.	See	Figure	11-11,	Table	11-3,	and	Figure	11-12.

Figure	11-11:	Timer	Status	and	Control	(TPMx_SC)	Register

	

Field Bits Description

PS 0–2

In	the	prescaler,	the	clock	is	divided	by	2PS.

PS
value 000 001 010 011 100 101 110 111

Division 1 2 4 8 16 32 64 128

Clock	Mode	Selection

CMOD	value Selected	clock

00
Timer	stopped	(No	clock	selected):	In	the
mode,	the	TPM_CNT	register	receives	no

CMOD 3–4

clock	and	it	is	stopped.

01

Timer	mode	(clock	selected	at
SIM_SOPT2):	This	mode	can	be	used	to
generate	delays,	periodic	interrupts,	or
PWM.

10
Counter	mode	(clocked	by
LPTPM_EXTCLK	pin):	This	mode	is	used
to	count	an	external	event.

11 Reserved

CPWMS 5 Center-aligned	PWM	select	(0:	Up	counter	mode,	1:	up-down
counter	mode).

TOIE 6 Time	Overflow	Interrupt	Enable	(0:	Disabled,	1:	Enabled).

TOF 7 Timer	Overflow	Flag

DMA 8 DMA	Enable	(0:	Disabled,	1:	Enabled)

Table	11-3:	Timer	Status	and	Control	(TPMx_SC)	Register

	

Figure	11-12:	CMOD	and	PS	(Prescaler)	bits

	

The	CPWMS	bit	can	be	set	as	up-counter	(CPWMS=0)	or	up-down	counter
(CPWMS=1).	The	counter	has	two	modes:

1)						Count	Up:	The	TPMx_CNT	counts	up	from	the	0	value	until	it	reaches
the	value	of	MOD	register.	Upon	matching	the	MOD,	the	CNT	is	cleared
to	 zero	 and	 count-up	 starts	 again.	 This	 is	 the	 default	 option	 for

CPWMS=0.

2)						Count	Up-Down:	counts	up	from	0	until	it	reaches	the	MOD	value.	After
reaching	the	MOD	value,	it	turns	around	and	counts	down	to	0.	And	upon
reaching	0,	it	repeats	the	process.	We	must	make	CPWMS=1	to	get	this
option.	See	Figure	11-13.

Figure	11-13:	Up/Down-Counter	and	Up-Counter

	

In	Chapter	5,	we	used	TPMx_CnSC	(TPMx	Channel	n	Status	and	Control)
register	 to	 program	 the	Output	 Control	 or	 Input	 Capture	 features	 of	 the	 KL25Z
Timer.	As	it	was	shown,	the	MSnB:MSnA	bits	along	with	the	ELSnB:ELSnA	bits	of
TPMx_CnSC	register	gave	us	the	choices	of	Input	Capture	and	Output	Compare.
We	use	the	same	bits	 to	choose	the	PWM	features	of	KL25Z.	See	Figure	11-14
and	 Table	 11-4.	 For	 PWM,	we	 can	 use	 the	 options	 of	Center-aligned	 (up-down
counting)	or	Edge-aligned	(up	counting).	Each	is	discussed	next.

Figure	11-14:	TPMxCnSC	(TPMx	Channel	Status	and	Control)

Field Bit Description

CHF 7 Channel	Flag

CHIE 6 Channel	interrupt	enable

MSB	and
MSA 5-4

Channel	mode	select

D5:D4	(MSB:MSA) Output	mode

00 Channel	disabled

01 Output	compare

10 PWM

11 Output	compare

ELSB	and
ELSA 3-2 Edge	or	Level	Select

DMA 0 DMA	enable	(0:	Disabled,	1:	Enabled)

Table	11-4:	TPMxCnSC	Register

	

Edge-Aligned	PWM
In	 the	 Edge-aligned	 PWM,	 the	 leading	 edge	 of	 the	 pulse	 starts	 at	 the

beginning	of	 the	period.	See	Figure	11-15.	The	pulse	period	 is	set	by	 the	MOD
register	 value	 (actually	 MOD+1)	 and	 the	 pulse	 width	 value	 is	 set	 by	 the	 CnV
register.	When	ELSnB:ELSnA	 =	 10,	 it	 produces	 high-true	 pulses.	 The	 output	 is
high	at	 the	beginning	of	 the	pulse	when	the	counter	 is	 reloaded	and	 it	goes	 low
when	 the	 counter	 value	 matches	 CnV	 register.	 When	 ELSnB:ELSnA	 =	 x1,	 it
produces	 low-true	pulses.	The	output	 is	 low	at	 the	beginning	of	 the	pulse	when
the	 counter	 is	 reloaded	 and	 it	 goes	 high	when	 the	 counter	 value	matches	CnV
register.	See	Figure	11-15	and	Table	11-5.

Figure	11-15:	Edge-Aligned	PWM

CPWMS															 MSnB:MSnA ELSnB:ELSnA Mode Configuration

0 10 10

Edge-Aligned
PWM Set	output	on	reload,

clear	output	on

(non-
inverted)

match

0 10 01	or	11
Edge-Aligned
PWM

(inverted)

Clear	output	on
reload,	set	output	on
match

Table	11-5:	Edge-Aligned	PWM	(notice	bit	CPWMS=0)

The	PWM	output	duty	cycle	and	frequency
The	pulse	period	is	set	by	the	MOD	register.	Using	the	CnV	register	we	set

the	pulse	width	(duty	cycle)	 	Now,	 if	CnV	=	0,	 then	Channel	output	has	0%	duty
cycle.	The	same	way,	if	CnV	greater	than	or	equal	to	MOD,	the	duty	cycle	is	100%
since	there	is	never	a	match.	

Figure	 11-16	 shows	 the	 output	 waveform	 when	 ELSB:ELSA	 =	 10	 (non-
inverted),	MOD	=	8,	and	CnV	=	5.	The	output	is	set	on	counter	overflow	(reload)
and	 it	 is	cleared	on	compare	match.	The	CNT	is	reloaded	with	0	after	MOD	+	1
clocks	and	 the	output	 is	set	 to	HIGH	 for	CnV	clocks.	So,	 the	duty	cycle	can	be
calculated	using	the	following	formula:

Figure	11-16:	The	PWM	output	for	MOD	=	8,	CnV	=	5,	ELSB:ELSA	=	10	(non-inverted)

When	ELSB:ELSA	=	01,	the	output	is	inverted	and	the	duty	cycle	is:

In	edge-aligned	PWM	mode,	the	timer	counts	from	0	to	MOD	and	then	rolls
over.	 So,	 the	 frequency	 of	 the	 output	 is	 1	 /	 (MOD+1)	 of	 the	 frequency	 of	 timer
clock.	The	frequency	of	 the	 timer	clock	can	be	selected	using	 the	prescaler.	So,
the	frequency	of	the	output	can	be	calculated	as	follows:

See	Examples	11-2	through	11-5.

Example	11-2

Find	 the	period	(T),	 frequency	(F)	and	pulse	width	(DC,	duty	cycle)	of	a	PWM	if
TPMx_MOD=999	and	TMPx_CnV=250.	Assume	ELSB:ELSA	=	10,	no	prescaler,

and	TPMx	Module	clock	frequencies	of	(a)	8MHz,	(b)	2MHz,	and	(c)	1MHz.

	
Solution:
	

(a)	1/8MHz	=	125ns.	Now	T=	(MOD+1)	×	125ns	=	(999+1)	x	125ns	=	125ms.
		Frequency=1/125ms=8000Hz.

	 	 The	Duty	Cycle	 is	 [TPMx_CnV/(TPMx_MOD+1)]	 ×	 100	 =	 (250/1000)	×	 100	 =
25%.

(b)	1/2MHz=	500ns.	Now	T=	(MOD+1)	×	500ns	=	(999+1)	×	500ns	=	5ms.
		Frequency=1/5ms=2000Hz.

	 	 The	Duty	Cycle	 is	 [TPMx_CnV/(TPMx_MOD+1)]	×	 100	 =	 (250/1000)	×	 100	 =
25%.

(c)	1/1MHz=	1000ns.	Now	T=	(MOD+1)	x	1000ns	=	(999+1)	x	1000ns	=	1ms.

		Frequency	=	1/1ms=1000Hz.

	 	 The	Duty	Cycle	 is	 [TPMx_CnV/(TPMx_MOD+1)]	×	 100	 =	 (250/1000)	×	 100	 =
25%.

	

	

Example	11-3

Assume	the	TPMx	Module	clock	 frequency	 is	8MHz.	Find	the	value	of	 the	MOD
register	 if	we	want	 the	PWM	output	Frequency	of	 (a)	5KHz,	 (b)	10KHz,	and	 (c)
25KHz.

Solution:
The	clock	period	for	TPM	Module	is	1/8MHz=0.125µs	(micro	second).

(a)	 The	 PWM	 output	 period	 is	 1/5KHz	 =	 200µs.	 Now,	 TPMx_MOD	 =
(200µs/0.125µs)	–	1	=	1600	–	1	=	1599.

(b)	 The	 PWM	 output	 period	 is	 1/10KHz	 =	 100µs.	 Now,	 TPWM_MOD	 =
(100µs/0.125µs)	–	1	=	800	–	1	=	799.

(c)	The	PWM	output	period	is	1/25KHz	=	40µs.	TPMx_MOD	=	(40µs/0.125µs)	–	1
=	320	–	1	=	319.

	

	

Example	11-4

In	a	given	PWM	application,	we	need	the	PWM	output	frequency	of	60Hz.	Using
the	TPMx	Module	 frequency	of	41.98MHz,	 find	out	 the	value	of	 the	TPMx_MOD
register.

Solution:
TPMx_MOD	 =	 (41.98MHz	 /	 60Hz)	 –	 1	 =	 699,666	 –	 1	 =	 699,665.	 This	 is	 not
acceptable	 since	 it	 is	 larger	 than	 65,535,	 the	 maximum	 value	 the	 TPMx_MOD
register	can	hold.		Now,	699,666/128	–	1	=	5,465	is	acceptable	if	we	use	prescaler
of	 128.	 The	 lowest	 prescaler	 value	 we	 can	 use	 is	 16	 since	 699,666/16	 –	 1	 =
43,728.	 Notice,	 the	 prescaler	 of	 8	 is	 not	 acceptable	 since	 699,666	 /	 8	 –	 1	 =
87,457.

	

	

	

Example	11-5

Assume	 the	 TPM0	 Module	 clock	 frequency	 after	 prescaler	 is	 16MHz	 and
ELSB:ELSA	 =	 10	 (non-inverted).	 Find	 the	 value	 of	 the	 TPMx_MOD	 and
TPMx_CnV	registers	for	the	following	PWM	output	frequencies	and	duty	cycles:

(a)	 1KHz	with	 25%,	 (b)	 5KHz	with	 60%,	 (c)	 20KHz	with	 80%,	 and	 (d)	 2KHz	 of
50%.

	
Solution:
	

The	System	Clock	period	for	PWM0	Module	is	1/16MHz	=	62.5ns	(nano	second).

(a)	The	PWM	output	period	is	1	/	1KHz	=	1msec.	Now,	MOD	=	(1ms	/	62.5ns)	–	1
=	16,000	–	1	=	15,999.

TPM0_CnV	=	(TPM0_MOD	+	1)	×	Duty	Cycle	/	100	=	16000	×	25%=	4,000

(b)	The	PWM	output	period	is	1	/	5KHz	=	0.2msec.	Now,	MOD	=	(2ms	/	62.5ns)	–
1	=	3200	–	1	=	3,199

TPM0_CnV	=	3,200	×	60	/	100	=	40%	×	3,200	=	1920

(c)	 The	 PWM	 output	 period	 is	 1	 /	 20KHz	 =	 0.05msec.	 Now,	MOD	 =	 (0.05ms	 /
62.5ns)	–	1	=	800	–	1	=	799

TPM0_CnV	=	800	×	80	/	100	=	640

(d)	The	PWM	output	period	is	1	/	2KHz	=	0.5msec.	Now,	MOD	=	(0.5ms	/	62.5ns)
–	1	=	8000	–	1	=	7,999

TPM0_CnV	=	8000	×	50	/	100	=	4000

	

Configuring	GPIO	pin	for	PWM
In	 using	PWM,	we	must	 configure	 the	GPIO	pins	 for	 TPMx	output.	 In	 this

regard,	it	is	same	as	all	other	peripherals.	The	steps	are	as	follow:

1.							Enable	the	clock	to	GPIO	pin.

2.							Assign	the	TPMx	signals	to	specific	pins	using	PORTx_PCRn	register.	See
Appendix	B.

Configuring	PWM	generator	to	create	pulses
After	 the	 GPIO	 configuration,	 we	 need	 to	 take	 the	 following	 steps	 to

configure	the	PWM:

1.							Enable	clock	to	TPMx	module	in	SIM_SCGC6	register

2.							Select	counter	clock	source	in	SIM_SOPT2	register

3.							Disable	timer	while	the	configuration	is	being	done.

4.							Set	the	mode	for	Edge-Aligned	PWM	with	TPMx_SC.

5.							Load	the	value	into	TPMx_MOD	register	to	set	the	desired	output
frequency.

6.							Load	the	value	into	TPMx_CnV	register	to	set	the	desired	duty	cycle.

7.							Enable	timer.

See	the	next	few	programming	examples.	Program	11-1	uses	TPM0,	which
is	wired	to	the	blue	LED	on	the	Freescale	KL25Z	FRDM	board.	When	the	program
is	running,	the	blue	LED	will	light	up.	You	do	need	an	oscilloscope	on	PTD1	pin	of
the	FRDM	board	 to	observe	 the	waveform.	The	register	values	of	Program	11-1
are	from	Example	11-4.

Program	11-1:	Using	TPM0	to	create	60Hz	with	33%	duty	cycle	on	PTD1	pin	(blue	LED)
	

/*	p11_1.c	Generate	60Hz	33%	PWM	output

	

	*	TPM0	uses	MCGFLLCLK	which	is	41.94	MHz.

	*	The	prescaler	is	set	to	divide	by	16.

	*	The	modulo	register	is	set	to	43702	and	the	CnV

	*	register	is	set	to	14568.	See	Example	11-4	for

	*	the	calculations	of	these	values.

	*/

	

#include	<MKL25Z4.H>

	

int	main	(void)	{

SIM->SCGC5	|=	0x1000;							/*	enable	clock	to	Port	D	*/

PORTD->PCR[1]	=	0x0400;					/*	PTD1	used	by	TPM0	*/

	

SIM->SCGC6	|=	0x01000000;			/*	enable	clock	to	TPM0	*/

SIM->SOPT2	|=	0x01000000;			/*	use	MCGFLLCLK	as	timer	counter	clock	*/

TPM0->SC	=	0;															/*	disable	timer	*/

TPM0->CONTROLS[1].CnSC	=	0x20	|	0x08;			/*	edge-aligned,	pulse	high	*/

TPM0->MOD	=	43702;										/*	Set	up	modulo	register	for	60	kHz	*/

TPM0->CONTROLS[1].CnV	=	14568;		/*	Set	up	channel	value	for	33%	dutycycle	*/

TPM0->SC	=	0x0C;												/*	enable	TPM0	with	prescaler	/16	*/

while	(1)	{

}

}

	

Program	11-2	is	based	on	Program	11-1	but	in	the	infinite	loop,	the	value	of
CnV	is	incremented	by	100	every	20	ms.	The	increasing	CnV	value	lengthens	the
duty	cycle	and	increase	the	LED	intensity.

Program	11-2:	Use	PWM	to	control	LED	intensity			
	

/*	p11_2.c	Generate	60Hz	with	varying	duty	cycle	PWM	output

	

	*	This	program	is	setup	identical	to	p11_1.	But	in	the

	*	infinite	loop,	the	CnV	register	value	is	incremented

	*	by	437	(1%)	every	20ms.	Because	the	LED	is	low	active,

	*	the	longer	the	duty	cycle	results	in	lower	light	intensity.

	*/

	

#include	<MKL25Z4.H>

void	delayMs(int	n);

	

int	main	(void)	{

int	pulseWidth	=	0;

SIM->SCGC5	|=	0x1000;							/*	enable	clock	to	Port	D	*/

PORTD->PCR[1]	=	0x0400;					/*	PTD1	used	by	TPM0	*/

	

SIM->SCGC6	|=	0x01000000;			/*	enable	clock	to	TPM0	*/

SIM->SOPT2	|=	0x01000000;			/*	use	MCGFLLCLK	as	timer	counter	clock	*/

TPM0->SC	=	0;															/*	disable	timer	*/

TPM0->CONTROLS[1].CnSC	=	0x20	|	0x08;			/*	edge-aligned,	pulse	high	*/

TPM0->MOD	=	43702;										/*	Set	up	modulo	register	for	60	kHz	*/

TPM0->CONTROLS[1].CnV	=	14568;		/*	Set	up	channel	value	for	33%	dutycycle	*/

TPM0->SC	=	0x0C;												/*	enable	TPM0	with	prescaler	/16	*/

while	(1)	{

pulseWidth	+=	437;

if	(pulseWidth	>	43702)

pulseWidth	=	0;

TPM0->CONTROLS[1].CnV	=	pulseWidth;

delayMs(20);

}

}

	

/*	Delay	n	milliseconds

	*	The	CPU	core	clock	is	set	to	MCGFLLCLK	at	41.94	MHz	in	SystemInit().

	*/

void	delayMs(int	n)	{

int	i;

int	j;

for(i	=	0	;	i	<	n;	i++)

for	(j	=	0;	j	<	7000;	j++)	{}

}

	

Program	11-3	uses	the	slow	32kHz	clock	for	timer	counter	clock.	This	is	slow
enough	that	the	duty	cycle	changes	can	be	observed	with	naked	eyes.

Program	11-3:	Based	on	Program	11-2	but	slow	down	the	PWM	frequency	so	that	the	duty	cycle
change	can	be	observed	with	naked	eyes

	

/*	p11_3.c	Generate	slow	varying	duty	cycle	PWM	output

	

	*	This	program	is	setup	similar	to	p11_2.	The	slow

	*	32kHz	clock	is	used	for	timer	counter	clock	so	that

	*	the	pulse	width	change	is	visible	by	the	blue	LED.

	*/

	

#include	<MKL25Z4.H>

void	delayMs(int	n);

	

int	main	(void)	{

int	pulseWidth	=	0;

SIM->SCGC5	|=	0x1000;							/*	enable	clock	to	Port	D	*/

PORTD->PCR[1]	=	0x0400;					/*	PTD1	used	by	TPM0	*/

	

SIM->SCGC6	|=	0x01000000;			/*	enable	clock	to	TPM0	*/

SIM->SOPT2	|=	0x03000000;			/*	use	32KHz	MCGIRCLK	as	timer	counter	clock	*/

TPM0->SC	=	0;															/*	disable	timer	*/

TPM0->CONTROLS[1].CnSC	=	0x20	|	0x08;			/*	edge-aligned,	pulse	high	*/

TPM0->MOD	=	20000;										/*	Set	up	modulo	register	for	30Hz	*/

TPM0->SC	=	0x08;												/*	enable	TPM0	*/

while	(1)	{

pulseWidth	+=	1000;

if	(pulseWidth	>	20000)

pulseWidth	=	0;

TPM0->CONTROLS[1].CnV	=	pulseWidth;

delayMs(1000);

}

}

	

/*	Delay	n	milliseconds

	*	The	CPU	core	clock	is	set	to	MCGFLLCLK	at	41.94	MHz	in	SystemInit().

	*/

void	delayMs(int	n)	{

int	i;

int	j;

for(i	=	0	;	i	<	n;	i++)

for	(j	=	0;	j	<	7000;	j++)	{}

}

	

Center-Aligned	PWM
If	we	 set	 the	CPWMS	bit	 in	TPMx_SC	 register	 to	High,	 then	 the	output	 is

Center-Aligned	 PWM.	 The	 counter	 will	 count	 up	 from	 0	 to	 the	 value	 in	 MOD
register	 then	 turn	 around	 and	 count	 down	 to	 0.	 That	 means,	 the	 period	 of	 the
pulse	is	2	×	MOD.	The	same	way,	 the	pulse	width	=	2	×	CnV.	At	 the	same	time
whenever	the	CnV=MOD,	the	output	pin	is	forced	High	or	Low	depending	on	the
ELSnB:ELSnA	bits	and	whether	 the	counter	 is	counting	up	or	down.	See	Figure
11-17	and	Table	11-6.

Figure	11-17:	Center-Aligned	PWM

	

CPWMS MSnB:MSnA ELSnB:ELSnA Mode Configuration

1 10 10 Center-Aligned
PWM

Clear	output	on	match-up,
set	output	on	match-down

1 10 X1 Center-Aligned
PWM

Set	output	on	match-up,
clear	output	on	match-down

Table	11-6:	Center-Aligned	PWM	(notice	CPWMMS=1)

The	PWM	output	duty	cycle	and	frequency
Figure	11-18	shows	the	output	when	MOD	=	7	and	CnV	=	4.	The	output	 is

set	 on	 compare	match	when	 counting	 down,	 and	 is	 cleared	 on	 compare	match
when	 counting	 up.	 The	output	 is	HIGH	 for	CnV×2	 clocks	 and	 each	 cycle	 takes
MOD	×	2	clocks.	As	a	result,	the	duty	cycle	is:

Figure	11-18:	The	PWM	output	for	MOD	=	7,	CnV	=	4,	ELSB:ELSA	=	10	(non-inverted)

When	ELSB:ELSA	=	01,	the	output	is	inverted	and	the	duty	cycle	is:

The	frequency	of	the	generated	wave	is:

	
	

Example	11-6

Find	 the	period	(T),	 frequency	(F)	and	pulse	width	(DC,	duty	cycle)	of	a	PWM	if
TPMx_MOD=400	and	TMPx_CnV=250.	Assume	ELSB:ELSA	=	10	(non-inverted),
no	prescaler,	and	TPWx	Module	clock	frequencies	of	(a)	8MHz,	(b)	2MHz,	and	(c)
1MHz.

	
Solution:
	

(a)	1/8MHz	=	125ns.	Now	T	=	MOD	×	2	×	125ns	=	400	×	2	×	125ns	=	100µs.

		Frequency	=	1	/	100µs	=	10	kHz.

	 	 The	 Duty	 Cycle	 is	 (TPMx_CnV	 /	 TPMx_MOD)	 ×	 100	 =	 (250	 /	 400)	 ×	 100	 =
62.5%.

(b)	1/2MHz=	500ns.	Now	T=400	×	2	×	500ns	=	400µs.

		Frequency	=	1	/	400µs	=	2500Hz.

		The	Duty	Cycle	is	(TPMx_CnV	/	TPMx_MOD)	×	100	=	(250/400)	×	100	=	62.5%.

(c)	1/1MHz	=	1µs.	Now	T	=	400	×	2	×	1µs	=	800µs.

		Frequency	=	1	/	800µs	=	1250Hz.

		The	Duty	Cycle	is	(TPMx_CnV	/	TPMx_MOD)	×	100	=	(250/400)	×	100	=	62.5%.

	

Program	 11-4	 generates	 a	 waveform	with	 duty	 cycle	 of	 40%	 using	 center
aligned	PWM	mode.

Program	11-4:	Generate	30Hz	40%	center-aligned	PWM

	
/*	p11_1.c	Generate	30Hz	40%	center-aligned	PWM

	

	*	TPM0	uses	MCGFLLCLK	which	is	41.94	MHz.

	*	The	prescaler	is	set	to	divide	by	16.

	*	The	modulo	register	is	set	to	43703	and	the	CnV

	*	register	is	set	to	17481.	TPM0	channel	1	is

	*	configured	to	be	center-aligned	pulse	high.

	*/

	

#include	<MKL25Z4.H>

	

int	main	(void)	{

SIM->SCGC5	|=	0x1000;							/*	enable	clock	to	Port	D	*/

PORTD->PCR[1]	=	0x0400;					/*	PTD1	used	by	TPM0	*/

	

SIM->SCGC6	|=	0x01000000;			/*	enable	clock	to	TPM0	*/

SIM->SOPT2	|=	0x01000000;			/*	use	MCGFLLCLK	as	timer	counter	clock	*/

TPM0->SC	=	0;															/*	disable	timer	*/

TPM0->CONTROLS[1].CnSC	=	0x20	|	0x08;			/*	center-aligned,	pulse	high	*/

TPM0->MOD	=	43703;										/*	Set	up	modulo	register	for	1	kHz	*/

TPM0->CONTROLS[1].CnV	=	17481;		/*	Set	up	channel	value	for	40%	duty	cycle
*/

	TPM0->SC	=	0x0C	|	0x20;	/*	enable	TPM0	with	prescaler	/16,	center-aligned
*/

while	(1)	{

}

}

	

Edge-aligned	vs.	center-aligned	mode
See	Figure	 11-19.	 In	 both	 figures	 the	bold	 vertical	 blue	 lines	 are	 repeated

periodically.	In	the	edge-aligned	mode,	the	left	edge	of	the	pulse	is	always	on	the
bold	blue	line	while	in	center-aligned	mode,	the	center	of	the	pulse	is	always	fixed
on	the	bold	line.	In	other	words,	in	edge-aligned	mode,	the	phase	of	the	wave	is
different	for	different	duty	cycles,	while	it	remains	unchanged	in	the	center-aligned
mode.	For	driving	motors,	it	is	preferable	to	use	center-aligned	rather	than	edge-
aligned.

In	edge-aligned	mode,	the	frequency	of	the	generated	wave	is	twice	that	of
the	center-aligned	mode.	Thus,	edge-aligned	mode	is	preferable	when	we	need	to
generate	waves	with	higher	frequencies.

Figure	11-19:	Edge-aligned	vs.	Center-aligned	Mode

	

Dead-band	generation	(Case	Study)
One	 application	 of	 center-aligned	 PWM	 is	 to	 generate	 outputs	 with

deadband.	Review	Example	11-1,	when	we	switched	the	direction	of	the	H-bridge
circuit,	 we	 opened	 all	 switches	 and	 delayed	 for	 a	 period	 of	 time.	 That	 was
deadband,	a	period	of	time	when	all	switches	are	open	to	avoid	the	possibility	of
overlapping	 time	when	 both	 switches	 on	 the	 same	 leg	 of	 the	H-bridge	 are	 one
which	may	cause	a	short	circuit.	The	same	problem	exists	with	transistor	circuits
because	transistors	are	faster	to	turn	on	and	slower	to	turn	off.	If	we	turn	one	on
and	the	other	off,	there	will	be	a	short	time	that	both	transistors	are	on.

To	 generate	 deadband,	 we	 use	 two	 center-aligned	 channels	 on	 the	 PWM
module.	 One	 of	 the	 channels	 has	 positive	 pulse	 and	 the	 other	 negative	 pulse.
Assuming	the	circuit	is	active	high,	now	we	have	one	channel	centered	at	the	time
when	the	timer	counter	reaches	the	value	in	MOD	register	and	the	other	channel
centered	at	the	time	when	the	timer	counter	reaches	0	so	they	will	be	180	degree
out	 of	 phase.	 For	 each	 channel	 we	 program	 them	 to	 have	 less	 than	 50%	 duty
cycle	therefore	deadbands	are	created	between	the	two	channels.	See	Figure	11-
20.

Figure	11-20:	Deadband

Program	11-5	generates	 two	40%	duty	cycle	outputs	with	10%	deadbands
between	them	using	center	aligned	PWM	mode.

Program	11-5:	Deadband	generation

	
/*	p11_5.c	Deadband	generation	with	center-aligned	PWM

	

	*	TPM0	uses	MCGFLLCLK	which	is	41.94	MHz.	The	prescaler

	*	is	set	to	divide	by	16.	The	modulo	register	is	set	to	43703.

	*	The	timer	is	configured	for	center-aligned	PWM.

	*	channel	0	is	configured	for	60%	duty	cycle	pulse	low.

	*	channel	1	is	configured	for	40%	duty	cycle	pulse	high.

	*	This	creates	a	10%	deadband	between	channel	0	high	and

	*	channel	1	high.

	*/

	

#include	<MKL25Z4.H>

	

int	main	(void)	{

SIM->SCGC5	|=	0x1000;							/*	enable	clock	to	Port	D	*/

PORTD->PCR[0]	=	0x0400;					/*	PTD0	used	by	TPM0	*/

PORTD->PCR[1]	=	0x0400;					/*	PTD1	used	by	TPM0	*/

	

SIM->SCGC6	|=	0x01000000;			/*	enable	clock	to	TPM0	*/

SIM->SOPT2	|=	0x01000000;			/*	use	MCGFLLCLK	as	timer	counter	clock	*/

TPM0->SC	=	0;															/*	disable	timer	*/

TPM0->CONTROLS[0].CnSC	=	0x20	|	0x04;			/*	center-aligned,	pulse	low	*/

TPM0->CONTROLS[1].CnSC	=	0x20	|	0x08;			/*	center-aligned,	pulse	high	*/

TPM0->MOD	=	43703;										/*	Set	up	modulo	register	for	30Hz	*/

TPM0->CONTROLS[0].CnV	=	26221;		/*	Set	up	channel	value	for	60%	duty	cycle
*/

TPM0->CONTROLS[1].CnV	=	17481;		/*	Set	up	channel	value	for	40%	duty	cycle
*/

TPM0->SC	=	0x0C	|	0x20;	/*	enable	TPM0	with	prescaler	/16,	center-aligned	*/

while	(1)	{

}

}

	

	

Review	Questions
1.							To	enable	the	clock	to	TPM0	modules,	we	use	register___________.

2.							If	the	clock	to	TPMx	is	16MHz,	what	is	lowest	and	highest	clock	frequency
that	PWM	Module	can	use	after	going	to	prescale?

3.							We	use	________register	to	set	the	PWM	output	Period/Frequency.

4.							We	use	________register	to	set	the	PWM	output	pulse	width.

5.							True	or	false.	In	Freescale	ARM	KL25Z,	the	PWM	module	uses	the	timer
registers	to	set	the	frequency	and	duty	cycle.

Answers	to	Review	Questions
Section	11.1

1.							True						

2.							False					

3.							Because	microcontroller/digital	outputs	lack	sufficient	current	to	drive	the
DC	motor.

4.							By	reversing	the	polarity	of	voltages	connected	to	the	motor	leads

5.							The	DC	motor	is	stalled	if	the	load	is	beyond	what	it	can	handle.

6.							No-load

Section	11.2
1.							SIM_SCGC6.		

2.							16MHz/128	=	125	KHz	and	16	MHz.

3.							TPMx_MOD

4.							TPMx_CnV

5.							True.

	

	

Chapter	12:	Programming	Graphic	LCD
Chapter	3	used	the	character	LCD.	In	this	chapter,	we	examine	the	graphic

LCDs	and	 show	some	programming	examples,	 although	an	entire	 book	 can	be
dedicated	to	graphic	LCD	and	its	programming.	Section	12.1	covers	some	basic
concepts	of	graphic	LCDs.	In	Section	12.2,	we	give	some	programming	examples
of	graphic	LCD.

Section	12.1:	Graphic	LCDs
The	screen	of	graphic	LCDs	is	made	of	pixels.	The	pictures	and	the	texts	are

created	 using	 pixels	 and	 the	 programmers	 have	 control	 over	 each	 and	 every
individual	pixel.	See	Figures	12-1	and	12-2.

Figure	12-1:	A	picture	on	a	Mono-color	LCD

	

Figure	12-2:	A	Zoomed	Picture	on	a	Mono-color	LCD

The	graphic	LCDs	can	be	mono-colored	(monochorme)	or	colored.	In	mono-
colored	LCDs	each	pixel	can	be	on	or	off	or	different	shades	of	gray;	in	contrast	in
colored	LCDs	each	pixel	can	have	different	colors.	In	fact	the	colored	pixels	can
display	red,	green,	and	blue;	using	the	3	primary	color	 lights	they	make	different
colors.

Some	LCD	Characteristics
Resolution

The	total	number	of	pixels	(dots)	per	screen	is	a	major	factor	in	assessing	an
LCD	and	is	shown	below:

Resolution	=	Pixels	per	line	×	number	of	lines
For	 example,	when	 the	 resolution	 of	 an	 LCD	 is	 720	 ×	 350,	 there	 are	 720

pixels	per	line	and	350	lines	per	screen,	giving	a	total	of	252,000	pixels.	The	total
number	of	 pixels	per	 screen	 is	 determined	by	 the	 size	of	 the	pixel	 and	how	 far
apart	the	pixels	are	spaced.	For	this	reason,	one	must	 look	at	what	 is	called	the
dot	pitch	in	LCD	specifications.

Dot	pitch
Dot	 pitch	 is	 the	 distance	 between	 adjacent	 pixels	 (dots)	 and	 is	 given	 in

millimeters.	 For	 example,	 a	 dot	 pitch	 of	 0.31	means	 that	 the	 distance	 between
pixels	 is	0.31	mm.	Consequently,	 the	smaller	 the	size	of	 the	pixel	 itself	 and	 the
smaller	 the	 space	 between	 them,	 the	 higher	 the	 total	 number	 of	 pixels	 and	 the
better	the	resolution.	Dot	pitch	varies	from	0.6	inch	in	some	low-resolution	LCDs

to	0.2	inch	in	higher-resolution	LCDs.	Figure	12-3	shows	Dot	Pitch	and	Dot	Size
parameters.

Figure	12-3:	Dot	Pitch	and	Dot	Size

	

The	specifications	of	a	sample	mono-colored	LCD	are	shown	in	Figure	12-4.

Figure	12-4:	Mechanical	specifications	of	a	GDM12864	128x64	LCD

In	 some	LCD	specifications,	 it	 is	given	 in	 terms	of	 the	number	of	dots	per
square	inch,	which	is	the	same	way	it	is	given	for	laser	printers,	for	example,	300
DPI	(dots	per	inch).

Dot	pitch	and	LCD	size
LCDs,	 like	 televisions,	 are	 advertised	 according	 to	 their	 diagonal	 size.	 For

example,	 a	14-inch	monitor	means	 that	 its	 diagonal	measurement	 is	 14	 inches.
There	 is	a	 relation	between	 the	number	of	horizontal	and	vertical	pixels,	 the	dot
pitch,	and	the	diagonal	size	of	the	image	on	the	screen.	The	diagonal	size	of	the
image	must	 always	 be	 less	 than	 the	 LCD’s	 diagonal	 size.	 The	 following	 simple
equation	can	be	used	to	relate	these	three	factors	to	the	diagonal	measurement.	It
is	derived	from	the	Pythagorean	Theorem:

(image	diagonal	size)2	=	(number	of	horizontal	pixels	×	dot	pitch)2

+	(number	of	vertical	pixels	×	dot	pitch)2

Since	 the	dot	 pitch	 is	 in	millimeters,	 the	 size	given	by	 the	equation	 above
would	be	in	mm,	so	it	must	be	multiplied	by	0.039	to	get	the	size	of	the	monitor	in
inches.	See	Example	12-1.

Example	12-1

A	manufacturer	has	advertised	a	14-inch	monitor	of	1024	×	768	resolution	with	a
dot	pitch	of	0.28.

Calculate	 the	diagonal	size	of	 the	 image	on	 the	screen.	 It	must	be	 less	 than	14
inches.

	

Solution:
	

The	calculation	is	as	follows:

(image	diagonal	size)2	=	 (number	of	horizontal	pixels	×	dot	pitch)2	+	(number	of
vertical	pixels	×	dot	pitch)2

(diagonal	size)2	=	(1024	×	0.28	mm)2	+	(768	×	0.28	mm)2	=	358.4	mm

diagonal	size	(inches)	=	358.4	mm	×	0.039	inch	per	mm	=	13.98	inches

In	the	LCD	the	diagonal	size	of	the	image	area	is	13.98	inches	while	the	diagonal
size	of	the	viewing	area	is	14	inches.

	

Displaying	on	the	graphic	LCDs
To	display	a	picture	on	the	screen,	a	distinct	color	must	be	shown	on	each

pixel	of	the	LCD.	To	do	so,	there	is	a	display	memory	(frame	buffer)	that	retrieves
the	 attributes	 (colors)	 of	 the	 entire	 pixels	 of	 the	 screen	 and	 there	 is	 an	 LCD
controller	which	 displays	 the	 contents	 of	 the	 frame	 buffer	memory	 on	 the	 LCD.
See	Figure	12-5.

Figure	12-5:	The	Relationship	between	CPU	and	LCD

Graphic	 LCDs	 might	 come	 with	 or	 without	 frame	 buffer	 and	 the	 LCD
controller.	In	cases	that	the	LCD	does	not	have	frame	buffer	memory	or	controller
they	 must	 be	 provided	 externally.	 Some	 new	 microcontrollers	 have	 the	 LCD
controllers	internally	which	can	directly	drive	the	LCDs.	To	display	a	picture	on	the
screen	the	microcontroller	writes	it	to	the	frame	buffer	memory.

Since	the	attributes	(colors)	of	the	entire	pixels	are	stored	in	the	frame	buffer

memory,	the	higher	the	number	of	pixels	and	colors	options,	the	larger	the	amount
of	memory	is	needed	to	store	them.	In	other	words,	the	memory	requirement	goes
up	as	 the	 resolution	and	 the	number	of	 supported	colors	go	up.	The	number	of
colors	displayed	at	one	time	is	always	2n	where	n	is	the	number	of	bits	set	aside
for	the	color.	For	example,	when	4	bits	are	assigned	for	the	color	of	the	pixel,	this
allows	16	combinations	of	 colors	 to	be	displayed	at	one	 time	because	24	 =	 16.
The	 number	 of	 bits	 used	 for	 a	 pixel	 color	 is	 called	 color	 depth	 or	 bits	 per	 pixel
(BPP).	See	Table	12-1.

BPP Colors

1 on	or	off	(monochrome)

2 4

4 16

8 256

16 65,536

24 16,777,216

Table	12-1:	BPP	(bit	per	pixel)	vs.	color

In	Table	12-1,	notice	that	in	a	monochrome	LCD	a	single	bit	is	assigned	for
the	color	of	the	pixel	and	it	is	for	“on”	or	“off”.

Mixing	RGB	(Red,	Green,	Blue)	colors
We	can	get	other	colors	by	mixing	the	 three	primary	colors	of	Red,	Green,

and	Blue.	The	 intensity	(proportion)	of	 the	colors	mixed	can	also	affect	 the	color
we	get.	 In	many	high-end	graphics	systems,	an	8	bit	value	 is	used	 to	 represent
the	 intensity.	 Its	value	can	be	between	0	and	255	 (0	 to	0xFF)	 representing	high
intensity	(255)	and	zero	intensity.	See	Table	12-2.	Using	three	primary	colors	and
intensity,	we	can	make	many	colors	we	want.	See	Figure	12-6.

Figure	12-6:	Making	New	Light	Colors	by	Mixing	the	3	Primary	Light	Colors

	

I R G B Color

0 0 0 0 Black

0 0 0 1 Blue

0 0 1 0 Green

0 0 1 1 Cyan

0 1 0 0 Red

0 1 0 1 Magenta

0 1 1 0 Brown

0 1 1 1 Light	Gray

1 0 0 0 Dark	Gray

1 0 0 1 Light	blue

1 0 1 0 Light	green

1 0 1 1 Light	cyan

1 1 0 0 Light	red

1 1 0 1 Light	Magenta

1 1 1 0 Yellow

1 1 1 1 White

Table	12-2:	The	16	Possible	Colors

	

Example	12-2

In	a	certain	graphic	LCD,	a	maximum	of	256	colors	can	be	displayed	at	one	time.
How	many	bits	are	set	aside	for	the	color	of	the	pixels?

	

Solution:
	

To	display	256	colors	at	once,	we	must	have	8	bits	set	for	color	since	28	=	256.

	

LCD	Buffer	memory	size	and	color
	In	discussing	the	graphics,	we	need	to	clarify	the	relationship	between	pixel

resolution,	the	number	of	colors	supported,	and	the	amount	of	frame	buffer	RAM
needed	 to	 store	 them.	 There	 are	 two	 facts	 associated	 with	 every	 pixel	 on	 the
screen:

1.							The	location	of	the	pixel

2.							Its	attributes:	color	and	intensity

These	 two	 facts	must	 be	 stored	 in	 the	 frame	 buffer	 RAM.	 The	 higher	 the
number	 of	 pixels	 and	 colors	 options,	 the	 larger	 the	 amount	 of	 memory	 that	 is
needed	 to	 store	 them.	 In	other	words,	 the	memory	 requirement	goes	up	as	 the
resolution	and	the	number	of	colors	supported	goes	up.	As	we	just	mentioned,	the
number	of	colors	displayed	at	one	time	is	always	2n	where	n	is	the	number	of	bits
set	aside	for	the	color.	For	example,	when	4	bits	are	assigned	for	the	color	of	the
pixel,	this	allows	16	combinations	of	colors	to	be	displayed	at	one	time	because	24
=	16.	The	commonly	used	graphics	 resolutions	are	176	x	144	 (QCIF),	352x288
(CIF),	 320x240	 (QVGA),	 480x272	 (WQVGA),	 640x480	 (VGA)	 and	 800x480
(WVGA).	You	may	find	the	definitions	of	these	abbreviations	on	the	Internet.

We	use	the	following	formula	to	calculate	the	minimum	frame	buffer	memory
requirement	for	a	graphic	LCD:

Example	 12-3	 shows	 how	 to	 calculate	 the	 memory	 need	 for	 various
resolutions	and	color	depth.

Example	12-3

Find	the	frame	buffer	RAM	needed	for	(a)	176x144	with	4	BPP	and	(b)	640x480
resolution	with	256	colors.

Solution:
(a)	For	this	resolution,	there	are	a	total	of	25,344	pixels	(176	columns	×	144	rows
=	25,344).	With	4	bits	for	the	color	of	each	pixel,	we	need	total	of	(25,344	×	4)/8=
16,672	bytes	of	frame	buffer	RAM.	These	4	bits	give	rise	to	16	colors.

(b)	For	this	resolution,	there	are	a	total	of	640	×	480=307200	pixels.	With	256
colors,	we	need	8	bits	for	color	of	each	pixel.	Now,	total	of	(640	×	480	×	8)	/	8	=
307200	bytes	of	frame	buffer	RAM	needed.

	

In	VGA,	640	x	480	 resolution	with	support	 for	256	colors	displayed	at	one
time	 requires	 a	minimum	of	 640	×	 480	×	 8	 =	 2,457,600	 bits	 =307,200	 bytes	 of
memory,	but	due	to	the	memory	organization	used,	the	amount	of	memory	used	is
higher.

Storing	pixels	in	the	memory	of	mono-color	LCDs

In	 mono-colored	 LCDs	 each	 pixel	 can	 be	 on	 or	 off.	 Therefore,	 1	 bit	 can
preserve	 the	 state	 of	 1	 pixel	 and	 a	 byte	 preserves	 8	 adjacent	 pixels.	 In	 some
LCDs,	e.g.	GDM12864A	and	PCD8544,	pixels	are	stored	vertically	in	the	bytes,	as
shown	in	Figure	12-7,	while	in	some	other	LCDs,	e.g.	T6963,	the	pixels	are	stored
horizontally.

Figure	12-7:	Storing	Data	in	the	LCD	Memory	of	Mono-colored	LCDs

	

Review	Questions
1.							As	the	number	of	pixels	goes	up,	the	size	of	display	memory	_______

(increases,	decreases).

2.							If	a	total	of	24	bits	is	set	aside	for	color,	how	many	colors	are	available?

3.							Calculate	the	total	video	memory	needed	for	1024	×	768	resolution	with	16
colors	displayed	at	the	same	time.

4.							With	BPP	of	16,	we	get	________colors.

Section	12.2:	Displaying	Texts	on	Graphic	LCDs
As	shown	in	Figure	12-8	each	character	can	be	made	by	putting	pixels	next

to	each	other.

Figure	12-8:	Pixel	Patterns	of	Characters	Happy	Face	and	Letter	A

To	display	characters	on	the	screen,	we	must	have	the	pixel	patterns	of	the
entire	 characters.	Whenever	 we	 want	 to	 display	 a	 character	 on	 the	 screen	 we
copy	its	pixel	pattern	into	the	display	memory.	See	Figure	12-9.

Figure	12-9:	A	Sample	Text

The	pixel	patterns	are	stored	in	an	array	in	the	same	way	that	they	should	be
stored	in	the	LCD	memory.	This	means	that	for	horizontal	LCDs	the	bits	are	stored
horizontally	 and	 for	 vertical	 LCDs	 the	 pixels	 are	 stored	 vertically.	 Figure	 12-8
shows	the	way	patterns	are	stored	for	horizontal	LCDs.	In	Figure	12-10	the	same
patterns	are	stored	for	vertical	LCDs.

Figure	12-10:	Pixel	Patterns	of	Happy	Face	and	Character	A	and	its	Font	for	Vertical	LCD

To	 get	 better-looking	 characters,	 the	 font	 resolution	 must	 be	 increased,
which	translates	to	more	pixels	horizontally	and	vertically.	See	Figure	12-11.

Figure	12-11:	A	Bigger	Font	vs.	a	Smaller	Font

See	Program	12-1.	A	 lookup	table	of	 the	pixel	patterns	of	the	characters	 is
made	using	an	array.	The	GLCD_putchar	 function	accesses	 the	 lookup	array	 to
display	characters	on	the	LCD.	The	connection	between	the	PCD8544	LCD	and
the	 microcontroller	 is	 shown	 in	 Figure	 12-12.	 For	 more	 information	 about	 the
PCD8544	see	its	datasheet	on	the	Web.

Figure	12-12:	The	PCD8544	LCD	connection	to	the	FRDM-KL25Z

	

Program	12-1:	Displaying	a	text	on	the	PCD8544	GLCD
	

/*P12_1.c:	Programming	PCD8544	GLCD	via	SPI	with	FRDM-KL25Z

	

	*	PTD1	pin	as	SPI	SCK

	*	PTD2	pin	as	SPI	MOSI

	*	PTC8	reset	pin

	*	PTD0	register	select	pin

	*	PTC9	chip	select

	*/

	

#include	“MKL25Z4.h”

	

#define	RESET	0x0100				/*	PTC8	reset	pin	*/

#define	DC				0x0001				/*	PTD0	register	select	pin	*/

#define	CE				0x0200				/*	PTC9	chip	select	*/

	

/*	define	the	pixel	size	of	display	*/

#define	GLCD_WIDTH		84

#define	GLCD_HEIGHT	48

	

void	GLCD_setCursor(unsigned	char	x,	unsigned	char	y);

void	GLCD_clear(void);

void	GLCD_init(void);

void	GLCD_data_write(unsigned	char	data);

void	GLCD_command_write(unsigned	char	data);

void	SPI0_init(void);

void	SPI0_write(unsigned	char	data);

void	GLCD_putchar(int	c);

	

/*	sample	font	table	*/

const	char	font_table[][6]	=	{

{0x7e,	0x11,	0x11,	0x11,	0x7e,	0},		/*	A	*/

{0x7f,	0x49,	0x49,	0x49,	0x36,	0},		/*	B	*/

{0x3e,	0x41,	0x41,	0x41,	0x22,	0}};	/*	C	*/

int	main(void)	{

GLCD_init();				/*	initialize	the	GLCD	controller	*/

GLCD_clear();			/*	clear	display	and	home	the	cursor	*/

	

GLCD_putchar(0);				/*	display	letter	A	*/

GLCD_putchar(1);				/*	display	letter	B	*/

GLCD_putchar(2);				/*	display	letter	C	*/

while(1)	{	}

}

	

void	GLCD_putchar(int	c)	{

int	i;

for	(i	=	0;	i	<	6;	i++)

GLCD_data_write(font_table[c][i]);

}

	

void	GLCD_setCursor(unsigned	char	x,	unsigned	char	y)	{

GLCD_command_write(0x80	|	x);		/*	column	*/

GLCD_command_write(0x40	|	y);		/*	bank	(8	rows	per	bank)	*/

}

	

/*	clears	the	GLCD	by	writing	zeros	to	the	entire	screen	*/

void	GLCD_clear(void)	{

int32_t	index;

for	(index	=	0	;	index	<	(GLCD_WIDTH	*	GLCD_HEIGHT	/	8)	;	index++)

GLCD_data_write(0x00);

GLCD_setCursor(0,	0);	/*After	we	clear	the	display,	return	to	the	home
position	*/

}

	

void	SPI0_init(void)	{

SIM->SCGC5	|=	0x1000;							/*	enable	clock	to	Port	D	*/

SIM->SCGC5	|=	0x0800;							/*	enable	clock	to	Port	C	*/

PORTD->PCR[1]	=	0x200;						/*	make	PTD1	pin	as	SPI	SCK	*/

PORTD->PCR[2]	=	0x200;						/*	make	PTD2	pin	as	SPI	MOSI	*/

PORTD->PCR[0]	=	0x100;						/*	make	PTD0	pin	as	DC	*/

PORTC->PCR[8]	=	0x100;						/*	make	PTC8	pin	as	RST	*/

PORTC->PCR[9]	=	0x100;						/*	make	PTC9	pin	as	CE	*/

PTD->PDDR	|=	0x01;										/*	make	PTD0	as	output	pin	for	DC	*/

PTC->PDDR	|=	0x0200;								/*	make	PTC9	as	output	pin	for	/CE	*/

PTC->PSOR	=	CE;													/*	deassert	/CE	*/

PTC->PDDR	|=	0x0100;								/*	make	PTC8	as	output	pin	for	RESET	*/

PTC->PCOR	=	RESET;										/*	assert	reset	*/

SIM->SCGC4	|=	0x400000;					/*	enable	clock	to	SPI0	*/

SPI0->C1	=	0x10;												/*	disable	SPI	and	make	SPI0	master	*/

SPI0->BR	=	0x60;												/*	set	Baud	rate	to	1	MHz	*/

SPI0->C1	|=	0x40;											/*	Enable	SPI	module	*/

}

	

/*	send	the	initialization	commands	to	PCD8544	GLCD	controller	*/

void	GLCD_init(void)	{

SPI0_init();

	

/*	hardware	reset	of	GLCD	controller	*/

PTC->PSOR	=	RESET;										/*	deassert	reset	*/

	

GLCD_command_write(0x21);			/*	set	extended	command	mode	*/

GLCD_command_write(0xB0);			/*	set	LCD	Vop	for	contrast	*/

GLCD_command_write(0x04);			/*	set	temp	coefficient	*/

GLCD_command_write(0x14);			/*	set	LCD	bias	mode	1:48	*/

GLCD_command_write(0x20);			/*	set	normal	command	mode	*/

GLCD_command_write(0x0C);			/*	set	display	normal	mode	*/

}

	

/*	write	to	GLCD	controller	data	register	*/

void	GLCD_data_write(unsigned	char	data)	{

/*	select	data	register	*/

PTD->PSOR	=	DC;													/*	set	DC	*/

/*	send	data	via	SSI	*/

SPI0_write(data);

}

	

/*	write	to	GLCD	controller	command	register	*/

void	GLCD_command_write(unsigned	char	data)	{

/*	select	command	register	*/

PTD->PCOR	=	DC;													/*	clear	DC	*/

/*	send	data	via	SSI	*/

SPI0_write(data);

}

	

void	SPI0_write(unsigned	char	data)	{

volatile	char	dummy;

PTC->PCOR	=	CE;																	/*	assert	/CE	*/

	

while(!(SPI0->S	&	0x20))	{	}				/*	wait	until	tx	ready	*/

SPI0->D	=	data;																	/*	send	register	address	*/

while(!(SPI0->S	&	0x80))	{	}				/*	wait	until	tx	complete	*/

dummy	=	SPI0->D;																/*	clear	SPRF	*/

PTC->PSOR	=	CE;																	/*	deasssert	/CE	*/

}

	

Review	Questions
1.							True	or	false.	The	same	font	can	be	used	for	vertical	and	horizontal	LCDs.

2.							True	or	false.	To	display	a	character	on	the	LCD,	its	pixel	pattern	should	be
copied	onto	the	LCD	display	memory.

Answers	to	Review	Questions
Section	12-1:

1.							increases

2.							224	=	16.7	million

3.							1024	×	768	×	4	=	3,145,728	bits	=	384K	bytes,	but	it	uses	512	KB	due	to
bit	planes.

4.							216	=	65,536

Section	12-2:
1.							False

2.							True

	

Chapter	13:	DRAM	Memory	Technology	and
DMA	Controller

Many	ARM	chips	 come	with	 on-chip	DRAM	controllers.	 These	ARM	chips
allow	the	connection	of	external	DRAM	memory	to	the	CPU.	As	the	ARM-based
motherboard	 becomes	 widely	 available	 for	 the	 Microsoft	 Windows,	 Linux	 and
Android	operating	systems,	the	issue	of	DRAM	interfacing	becomes	as	important
as	 the	 x86-based	PCs.	 In	 this	 chapter,	we	 examine	DRAM	memory.	 In	Section
13.1	we	 look	at	memory	cycle	of	 the	CPU	and	 introduce	some	concepts	such	a
burst	 access	 and	 banking.	 In	 the	 first	 part	 of	 Section	 13.2	 we	 discuss	 various
types	of	DRAMs,	such	as	 fast	page	mode	and	static	column.	Then	we	examine
the	 newer	 and	 faster	 DRAMs	 of	 EDO	 and	 SDRAM	 technologies.	 Section	 13.3
explores	the	 issue	of	data	 integrity	 in	DRAM	and	ROM.	You	may	wish	to	review
DRAM	 organization	 and	 capacity,	 covered	 in	 Chapter	 0
(http://www.microdigitaled.com/ARM/ARM_books.htm).	 In	Section	13.4	 the	direct
memory	access	(DMA)	concept	is	discussed.

Section	13.1:	Concept	of	Memory	Cycle
When	 interfacing	a	microprocessor	 to	memory,	 the	 first	 issue	 is	how	much

time	is	provided	by	the	CPU	for	one	complete	read	or	write	cycle.	In	other	words,
what	is	the	memory	cycle	time	of	the	CPU?	In	early	microprocessors,	the	memory
cycle	time	consisted	of	4	clocks,	which	leaves	plenty	of	time	to	access	memory.	In
those	CPUs,	with	a	working	frequency	of	10	MHz,	it	had	a	400-ns	memory	cycle
(4	×	100	ns	=	400,	T	=	1/10	MHz	=	100	ns).	A	memory	cycle	of	400	ns	means	that
the	CPU	can	access	memory	every	400	ns,	and	not	faster.	This	is	enough	time	to
access	 even	 the	 slow	and	 inexpensive	DRAMs.	However,	 for	 the	 newer	CPUs,
memory	 cycle	 time	 consists	 of	 only	 two	 clocks.	 This	 makes	 memory	 design	 a
challenging	task,	especially	when	the	speed	of	the	CPU	goes	beyond	100	MHz.

Memory	cycle	time	and	inserting	wait	states
To	access	an	external	device	such	as	memory	or	 I/O,	 the	CPU	provides	a

fixed	amount	of	time	called	a	bus	cycle	time.	During	this	bus	cycle	time,	the	read
and	 write	 operation	 of	 memory	 or	 I/O	must	 be	 completed.	 Here,	 we	 cover	 the
memory	 bus	 cycle	 time.	 For	 the	 sake	 of	 clarity	 we	 will	 concentrate	 on	 reading
memory,	but	 the	concepts	apply	 to	write	operations	as	well.	The	bus	cycle	 time
used	for	accessing	memory	is	often	referred	to	as	MC	(memory	cycle)	time.	The
time	from	when	the	CPU	provides	the	addresses	at	its	address	pins	to	when	the
data	is	expected	at	its	data	pins	is	called	memory	read	cycle	time.	While	in	older
processors	the	memory	cycle	time	takes	4	clocks,	in	the	newer	CPUs	the	memory
cycle	time	is	2	clocks.	If	memory	is	slow	and	its	access	time	does	not	match	the
MC	 time	of	 the	CPU,	 extra	 time	 can	be	 requested	 from	 the	CPU	 to	 extend	 the
read	cycle	time.	This	extra	time	is	called	a	wait	state	(WS).	In	the	1980s,	the	clock
speed	 for	 memory	 cycle	 time	 was	 the	 same	 as	 the	 CPU’s	 clock	 speed.	 For
example,	in	the	20	MHz	processors,	the	buses	were	working	at	the	same	speed	of
20	MHz.	This	resulted	in	2	×	50	ns	=	100	ns	for	the	memory	cycle	time	(1/20	MHz
=	 50	 ns).	 When	 the	 CPU’s	 speed	 was	 under	 100	 MHz,	 the	 bus	 speed	 was
comparable	to	the	CPU	speed.	In	the	1990s	the	CPU	speed	exploded	to	1	GHz
(gigahertz)	while	the	bus	speed	maxed	out	at	around	133	MHz.	The	gap	between
the	CPU	speed	and	the	bus	speed	is	one	of	the	biggest	problems	in	the	design	of
high-performance	 computers.	 To	 avoid	 the	 use	 of	 too	 many	 wait	 states	 in
interfacing	 memory	 to	 CPU,	 cache	 memory	 and	 high-speed	 DRAMs	 were
invented.

It	must	be	noted	 that	memory	access	 time	 is	not	 the	only	 factor	 in	slowing
down	 the	CPU,	 even	 though	 it	 is	 the	 largest	 one.	 The	 other	 factor	 is	 the	 delay
associated	 with	 signals	 going	 through	 the	 data	 and	 address	 path.	 Delay
associated	 with	 reading	 data	 stored	 in	 memory	 has	 the	 following	 three
components:

1.	 	 	 	 	 	 	The	time	taken	for	address	signals	to	go	from	CPU	pins	to	memory	pins,
going	 through	memory	 decoding	 logic	 circuitry	 and	 address	 and	 data	 bus
buffers.

2.							The	time	it	takes	for	the	data	to	travel	from	memory	to	CPU	going	through
any	logic	gates	on	the	pathway.	This	is	referred	to	as	a	path	delay.	The	path
delay	 is	 large	 in	 the	motherboards	and	very	small	 in	 the	SOC	(system-on-
chip)	since	the	chip-to-chip	delay	is	eliminated.

3.	 	 	 	 	 	 	The	memory	access	time	to	get	the	data	out	of	the	memory	chip.	This	is
the	largest	of	the	three	components.

The	 total	 sum	 of	 these	 three	 must	 equal	 the	 memory	 read	 cycle	 time
provided	by	the	CPU.	Memory	access	time	is	the	largest	and	takes	about	90%	of
the	 read	 cycle	 time.	See	Examples	 13-1	 through	 13-3	 for	 further	 clarification	 of
these	points.	These	concepts	are	critical	 in	 the	design	of	microprocessor-based
products.	As	we	have	seen,	wait	states	degrade	computer	performance,	as	shown
in	 Example	 13-3.	 It	 does	 not	 make	 sense	 to	 buy	 a	 high-frequency	 CPU,	 then
interface	it	with	slow	memory.

Example	13-1

Calculate	the	memory	cycle	time	of	a	100-MHz	bus	system	with

(a)	0	WS,

(b)	1	WS,	and

(c)	2	WS.

	

Solution:
	

1/100	MHz	=	10	ns	is	the	bus	clock	period.	Since	the	bus	cycle	time	of	zero	wait
states	is	2	clocks,	we	have:

	 100	MHz	bus	speed

Memory	cycle	time	with	0	WS 2	×	10	=	20	ns

Memory	cycle	time	with	1	WS 20	+	10	=	30	ns

Memory	cycle	time	with	2	WS 20	+	10	+	10	=	40	ns

	

It	is	preferred	that	all	bus	activities	be	completed	with	0	WS.	However,	if	the	read
and	write	operations	cannot	be	completed	with	0	WS,	we	request	an	extension	of
the	bus	cycle	time.	This	extension	is	in	the	form	of	an	integer	number	of	WS.	That
is,	we	can	have	1,	2,	3,	and	so	on	WS,	but	not	1.25	WS.

Example	13-2

A	100-MHz	bus	system	 is	using	ROM	of	50	ns	speed.	Calculate	 the	number	of
wait	states	needed	if	the	path	delay	is	5	ns.

	

Solution:
	

If	 ROM	 access	 time	 is	 50	 ns	 and	 the	 path	 delay	 is	 5	 ns,	 every	 time	 the	 CPU
accesses	ROM	it	must	spend	a	total	of	55	ns	to	get	data	into	the	CPU.	A	100-MHz
bus	with	zero	WS	provides	only	20	ns	(2	×	10	ns	=	20	ns)	 for	 the	memory	read
cycle	 time.	 To	match	 the	CPU	bus	 speed	with	 this	ROM	we	must	 insert	 4	wait
states.	This	makes	the	cycle	time	60	ns	(20	+	10	+	10	+	10	+	10	=	60	ns).	Notice
that	we	cannot	ask	for	3.5	WS	since	the	number	of	WS	must	be	an	integer.	That
would	be	 like	going	to	 the	store	and	wanting	to	buy	half	an	apple.	You	must	get
one	or	more	complete	WS	or	none	at	all.

	

	

Example	13-3

Find	 the	 effective	 memory	 performance	 of	 a	 50-MHz	 bus	 speed	 with	 one	 wait
state.

	

Solution:
	

Since	the	0	WS	memory	cycle	is	40	ns	(1/50	MHz	=	20	ns	and	20	ns	×	2	=	40	ns),
for	1	WS	we	have	a	memory	cycle	 time	of	60	ns.	That	means	 that	 the	memory
performance	is	the	same	as	that	of	a	33.33	MHz	bus	speed	(60	ns/2	=	30	ns,	then
1/30	 ns	 =	 33.33	 MHz)	 as	 far	 as	 memory	 access	 is	 concerned.	 This	 is	 67%
performance	of	the	CPU	with	zero	wait	states.

	

Burst	Cycle
Some	CPUs	have	the	burst	cycle.	The	memory	cycle	time	of	the	CPU	with

the	normal	zero	wait	states	 is	2	clocks.	 In	other	words,	 it	 takes	a	minimum	of	2
clocks	to	write	to	external	memory.	To	increase	the	bus	performance	of	the	CPU,
designer	 provides	 an	 additional	 option	 of	 implementing	 what	 is	 called	 a	 burst
cycle.	The	CPUs	have	two	types	of	memory	cycles,	non-burst	(which	is	2	clocks)
and	burst	mode.	In	the	burst	cycle,	the	CPU	can	perform	4	memory	cycles	in	just
5	clocks.	The	way	the	CPU	performs	the	burst	cycle	read	is	as	follows.	The	initial
read	is	performed	in	a	normal	2-clock	memory	cycle	time,	but	the	next	three	reads

are	performed	each	with	only	one	clock.	Therefore,	 four	 reads	are	performed	 in
only	5	clocks.	This	is	commonly	referred	to	as	2-1-1-1	read,	which	means	2	clocks
for	 the	 first	 read	 and	 1	 clock	 for	 each	 of	 the	 following	 three	 reads.	 This	 is	 in
contrast	 to	 traditional	 CPUs,	 which	 was	 2-2-2-2	 for	 reading	 4	 words	 of	 aligned
data.	Of	course,	burst	cycle	reading	is	most	efficient	if	the	data	and	codes	are	in	4
consecutive	 locations.	 In	 other	 words,	 the	 burst	 cycle	 can	 be	 used	 to	 fetch	 a
maximum	of	4	words	of	 information	 into	 the	CPU	 in	only	5	clocks,	provided	 that
they	 are	 aligned	 on	 word	 boundaries.	 See	 Figure	 13-1.	 In	 many	 DRAM
controllers,	one	can	set	the	number	of	cycles	to	match	the	cache	line	refill.	In	the
next	 section	 we	 will	 see	 how	 the	 static	 column	 DRAMs	 extend	 the	 burst	 cycle
concept	to	read	a	large	number	of	words.

Figure	13-1:	Burst	Cycle	Read	in	CPU

DRAM memory	banks
	 In	 Chapter	 0	 we	 examined	 the	 DRAM	 organization	 and	 capacity.	 The

arrangement	of	DRAM	chips	on	 the	system	or	memory	module	boards	such	as
DIMM	(dual	 in-line	memory	module)	 is	often	 referred	 to	as	a	memory	bank.	For
example,	the	8M	bytes	of	DRAM can	be	arranged	as	one	bank	of	8	chips	of	1M	×
1	organization,	or	4	banks	of	256M	×	8	organization.	Figures	13-2	and	13-3	show
the	memory	banks	for	8-bit	and	16-bit	systems.	Notice	the	use	of	an	extra	bit	for
every	 8-bit	 of	 data	 to	 store	 the	 parity	 bit.	 With	 the	 extra	 parity	 bit,	 every	 bank
requires	an	extra	chip	of	×1	organization	for	parity	check.

Figure	13-2:	A	Possible	Memory	Configuration	for	640M	DRAM

	

Figure	13-3:	DRAM	Banks	for	16-bit	systems

	

Memory	cycle	in	ARM
Memory	transfer	cycle	in	ARM	is	one	of	these	categories:

1.							Non-sequential	cycle:	in	non-sequential	cycle,	a	location	of	memory	is
accessed	which	is	not	the	same	or	near	the	last	accessed	memory	location

2.							Sequential	cycle:	in	sequential	cycle,	a	memory	location	is	accessed	from
either	the	same	location	or	the	memory	location	after	the	location	of
preceding	memory	access.

In	 ARM	 documents	 Non-sequential	 cycle	 is	 referred	 to	 as	 N-cycle	 and
Sequential	 cycle	 is	 referred	 to	 as	S-cycle.	Notice	 that	N-cycle	 is	 longer	 than	S-
cycle	to	allow	for	the	DRAM	precharge	and	row	access	time.

	We	stretch	 the	processor	clock	by	 lowering	 the	nWAIT	signal	 to	generate
wait	 state	 in	 ARM.	See	Example	 13-4	 to	 see	S	 and	N-cycles	 and	wait	 state	 in
ARM.

Example	13-4

Analyze	the	following	waveform	of	two	read	cycle	in	ARM

Solution:
T1:	 Address	 of	 memory	 location	 A+4	 is	 put	 on	 the	 address	 bus.	 It	 is	 S-cycle
because	 the	 new	 address	 is	 one	word	 after	 the	 last	 accessed	 location	 (A)	 and
nWAIT	is	high	because	no	wait	state	is	needed.

T2:	 Address	 of	 memory	 location	 A+8	 is	 put	 on	 the	 address	 bus.	 It	 is	 S-cycle
because	the	new	address	is	a	word	after	the	last	accessed	location	and	nWAIT	is
high	because	no	WS	is	needed.

T3:	Address	of	memory	location	B	is	put	on	the	address	bus.	It	is	start	of	N-cycle
because	the	new	address	is	not	related	to	the	last	accessed	location	and	nWAIT
is	low	because	one	wait	state	is	needed	to	access	the	data.

T4:	 Address	 of	memory	 location	B	 is	 still	 on	 the	 address	 bus.	Now	 the	 data	 is
available	on	 the	bus	and	nWAIT	 is	 returned	high	because	no	more	wait	state	 is
needed.

T5:	 Address	 of	 memory	 location	 B+4	 is	 put	 on	 the	 address	 bus.	 It	 is	 S-cycle
because	the	new	address	is	a	word	after	the	last	accessed	location	and	nWAIT	is
high	because	no	WS	is	needed.

T6:	The	same	as	T5

	

In	the	next	section	we	will	study	more	about	DRAM	technology.

Review	Questions
1.							Find	the	read/write	cycle	time	of	the	following	bus	systems

(a)	40-MHz	with	0	WS					(b)	50-MHz	with	1	WS

(c)	66-MHz	with	1	WS

2.							A	given	CPU	has	a	read/write	cycle	time	of	50	ns.	What	does	this	mean?

3.							Find	the	effective	working	frequency	for	memory	access	in	each	of	the
following.

(a)	40-MHz	with	1	WS					(b)	50-MHz	with	1	WS

4.							If	a	given	CPU	has	a	read	cycle	time	of	60	ns	and	10	ns	is	used	for	the
decoder	and	address/data	path	delay,	how	much	is	for	memory	access
time?

5.							If	a	given	system	is	designed	with	1	WS	and	has	a	90-ns	memory	cycle
time,	find	the	CPU’s	frequency	if	the	read/write	cycle	time	of	this	CPU	is	2
clocks.

Section	13.2:	DRAM	Technology
To	 learn	 interfacing	 memory	 to	 high-performance	 computers,	 the	 different

types	of	available	RAM	must	first	be	understood.	Although	SRAMs	are	fast,	they
are	 expensive	 and	 consume	 a	 lot	 of	 space	 due	 to	 the	 use	 of	 flip-flops	 in	 the
design	of	the	memory	cell.	At	the	opposite	end	of	the	spectrum	is	DRAM,	which	is
cheaper	 but	 is	 slow	 (compared	 to	 CPU	 speed)	 and	 needs	 to	 be	 refreshed
periodically.	The	refreshing	overhead	together	with	the	long	access	time	of	DRAM
is	a	major	issue	in	the	design	of	high-performance	computers.	The	problem	of	the
time	taken	for	refreshing	DRAM	is	minimal	since	it	uses	only	a	small	percentage
of	bus	 time,	but	 the	solution	 to	 the	slow	access	 time	of	DRAM	 is	very	 involved.
One	common	solution	is	using	a	combination	of	a	small	amount	of	SRAM,	called
cache	 (pronounced	 “cash”),	 along	 with	 a	 large	 amount	 of	 DRAM,	 thereby
achieving	the	goal	of	near	zero	wait	states.	We	discuss	cache	memory	in	Chapter
14.	 But	 we	must	 understand	what	 resources	 are	 available	 to	 high-performance
system	 designers.	 To	 this	 end,	 the	 different	 types	 of	 available	 DRAM	 will	 be
discussed.	First	we	clarify	some	widely	used	terminology	such	as	memory	cycle
time	 vs.	 memory	 access	 time.	 Then	 we	 describe	 different	 types	 of	 DRAMs.
SDRAM	which	 is	most	common	 type	of	DRAM	 in	ARM	systems	 is	discussed	 in
the	last	part	of	this	section.

Memory	timing
Memory	 access	 time	 is	 defined	 as	 the	 time	 interval	 from	 the	moment	 the

addresses	are	applied	 to	 the	memory	 chip	 address	pins	 to	 the	 time	 the	data	 is
available	at	 the	memory’s	 data	pins.	The	memory	data	 sheets	 refer	 to	 it	 as	 tAA
(address	access	time).	Another	commonly	used	time	 interval	 is	 tCA	 (access	time
from	 CS),	 which	 is	 measured	 from	 the	 time	 the	 chip	 select	 pin	 of	 memory	 is
activated	to	the	time	the	data	is	available.	In	some	cases,	notably	EEPROM,	tOE	is
the	time	interval	between	the	moment	OE	(READ)	is	activated	to	the	time	the	data
is	available.	However,	memory	access	time	tAA	is	the	one	most	often	advertised.

Memory	 cycle	 time	 is	 the	 shortest	 time	 interval	 between	 two	 consecutive
accesses	to	the	same	memory	chip.	For	example,	a	memory	chip	of	100	ns	cycle
time	can	be	accessed	no	faster	than	100	ns,	which	means	that	two	back-to-back
reads	can	be	performed	no	faster	than	200	ns,	and	3	back-to-back	reads	will	take
300	ns,	and	so	on.	It	must	be	noted	that	while	in	SRAM	the	memory	cycle	time	is
equal	to	memory	access	time,	this	is	not	so	in	DRAM	memory,	as	discussed	later.

Types	of	DRAM
There	are	different	types	of	DRAM,	which	are	categorized	according	to	their

mode	of	data	access.	The	most	widely	used	is	SDRAM	which	is	discussed	at	the
end	of	this	section.	Other	classic	modes	include	standard,	fast	page	mode	(FPM),
and	extended	data	out	(EDO)	DRAM.	Static	column	mode	is	a	variant	of	FPM	that
will	be	discussed	shortly.

DRAM	(standard	mode)
Standard	mode	(also	called	random	access)	DRAM,	which	has	the	 longest

memory	 cycle	 time,	 requires	 the	 row	 address	 to	 be	 provided	 first	 and	 then	 the
column	 address	 for	 each	 cell.	 Each	 group	 of	 address	 is	 latched	 in	 by	 the
activation	of	RAS	(row	address	select)	and	CAS	(column	address	select)	 inputs,
respectively.	See	Figure	13-4.

Figure	13-4:	The	Internal	Structure	of	a	16×1	DRAM

The	access	time	is	from	the	time	that	the	row	address	is	provided	to	the	time
that	 the	 data	 is	 available	 at	 the	 output	 data	 pin	 of	 the	 DRAM	 chip.	 This	 is	 the
access	time	that	is	commonly	advertised	and	is	called	tRAC	(RAS	access	time,	the
access	 time	 from	 the	 moment	 RAS	 is	 provided).	 This	 is	 acceptable	 if	 we	 are
accessing	a	random	cell	within	DRAM.	However,	since	most	of	the	time	data	and
code	processed	by	 the	CPU	are	 in	consecutive	memory	 locations	and	 the	CPU
does	 not	 jump	 around	 to	 random	 locations	 (unless	 there	 is	 a	 branch	 or	 call
instruction),	 the	 DRAM	 will	 be	 accessed	 with	 back-to-back	 read	 operations.
Unfortunately,	 DRAM	 cannot	 provide	 the	 code	 (or	 data)	 in	 the	 amount	 of	 time
called	 tRAC	 if	 there	 is	 a	 back-to-back	 read	 from	 the	 same	DRAM	 chip	 because
DRAM	needs	a	precharge	time	(tRP)	after	each	RAS	has	been	deactivated	to	get
ready	for	the	next	access.	This	leads	us	back	to	the	concept	of	memory	cycle	time
for	 DRAM	 memory	 chips.	 The	 memory	 cycle	 time	 for	 memory	 chips	 is	 the
minimum	time	interval	between	two	back-to-back	read/write	operations.	In	SRAM
and	ROM,	the	access	time	and	memory	cycle	time	are	always	equal,	but	 that	 is
not	the	case	for	DRAMs.	In	DRAM,	after	RAS	makes	the	transition	to	the	inactive

state	 (going	 from	 low	 to	 high),	 it	 must	 stay	 high	 for	 a	 minimum	 of	 tRP	 (RAS
precharge)	 to	 precharge	 the	 internal	 device	 circuitry	 for	 the	 next	 active	 cycle.
Therefore,	in	DRAM	we	have	the	following	approximate	relationship	between	the
memory	access	time	and	memory	cycle	time.

tRC	=	tRAC	+	tRP						(This	is	for	standard	mode)

read	cycle	time	=	RAS	access	time	+	RAS	precharge	time

For	example,	if	DRAM	has	an	access	time	of	100	ns,	the	memory	cycle	time
is	really	about	190	ns	(100	ns	access	time	plus	90	ns	precharge	time).	To	access
a	single	location	in	such	a	DRAM,	100	ns	is	enough,	but	to	access	more	than	one
successively,	190	ns	is	required	for	each	access	due	to	the	precharge	time	that	is
needed	internally	by	DRAM	to	get	ready	to	access	the	next	capacitor	cell.	Tables
13-1	and	13-2	show	DRAM	and	SRAM	memory	cycle	times,	respectively.

DRAM RAS	Access	(tRAC)
(ns)

Read	Cycle	(tRC)
(ns)

RAS	Precharge
(tRP)	(ns)

MCM44100-60 60 110 45

MCM44100-70 70 130 50

MCM44100-80 80 150 60

Table	13-1:	DRAM	Access	Time	vs.	Cycle	Time	(4M	×	1)

SRAM	(IDT	Product) Address	Access	(tAA)	(ns) Read	Cycle	(tRC)	(ns)

IDT71258S25 25 25

IDT71258S35 35 35

IDT71258S45 45 45

IDT71258S70 70 70

Table	13-2:	SRAM	Access	Time	vs.	Cycle	Time

The	read	cycle	time	not	being	equal	to	the	access	time	is	one	of	the	major
differences	between	SRAM	and	DRAM.	Although	in	SRAM	the	write	cycle	time	is
equal	to	the	access	time,	in	DRAM	of	standard	mode	the	write	cycle	time	is	about
twice	the	access	time	normally	advertised	(tACC).	This	could	make	a	difference	in
the	 total	 time	spent	by	 the	CPU	to	access	memory.	Look	at	Examples	13-5	and
13-6.

Example	13-5

Compare	the	minimum	CPU	time	needed	to	read	150	random	memory	locations
of	a	given	bank	in	each	of	the	following.

(a)	DRAM	with	TACC	=	100	ns	and	TRC	=	190	ns							

(b)	SRAM	of	TACC	=	100	ns

Solution:
(a)	DRAM	requires	190	ns	to	access	each	location.	Therefore,	a	total	of	150	×	190
=	 28,500	 ns	 would	 be	 spent	 by	 the	 CPU	 to	 access	 all	 those	 150	 memory
locations.

(b)	In	the	case	of	SRAM,	the	CPU	spends	only	150	×	100	ns	=	15,000.	This	would
have	been	needed	since	T	access	=	T	read	cycle	(tACC	=	tRC).

	

	

Example	13-6

Calculate	the	time	to	access	1024	random	bits	of	a	1M	×	1	chip	if	tRC	=	85	ns	and
tRAC	=	165	ns.

Solution:
For	standard	mode	(also	called	random)	we	have	the	 following	for	reading	1024
bits:

time	to	read	1024	random	bits	=	1024	×	tRC	=	1024	×	165	ns	=	168,960	ns		

	

From	the	above	discussion	and	Example	13-5	we	can	conclude	that	for
successive	accesses	of	random	locations	inside	the	DRAM	the	CPU	must	spend
a	minimum	of	tRC	time	on	each	access.	See	Figure	13-5	for	DRAM	and	SRAM
timing.

Figure	13-5:	DRAM	vs.	SRAM	Timing

Fast	Page	Mode	(FPM)	DRAM
The	storage	cells	 inside	DRAM	are	organized	 in	a	matrix	of	N	rows	and	N

columns.	In	reading	a	given	cell,	the	address	for	the	row	(A1–An)	is	provided	first
and	RAS	 is	activated;	 then	 the	address	 for	 the	column	(A1–An)	 is	provided	and
CAS	is	activated.	In	DRAM	literature	the	term	page	refers	to	a	number	of	column
cells	in	a	given	row.	See	Figure	13-4	and	Examples	13-7	and	13-8.

Example	13-7

Show	 how	memory	 storage	 cells	 are	 organized	 in	 each	 of	 the	 following	DRAM

chips.

(a)	256K	×	1																									(b)	1M	×	1											(c)	4M	×	1

	

Solution:
	

(a)	The	256K	×	1	has	9	address	pins	(A0–A8);	therefore,	cells	are	organized	in	a
matrix	of	29	×	29	=	512	×	512,	giving	512	rows,	each	consisting	of	512	columns	of
cells.

(b)	1024	×	1024

(c)	2048	×	2048

	

	

Example	13-8

Assuming	 that	 the	DRAMs	 in	Example	13-7	are	of	page	mode,	show	how	each
chip	 is	organized	 into	pages.	Find	 the	number	of	 columns	per	page	 for	 (a),	 (b),
and	(c).

	

Solution:
	

(a)	For	1M	×	1	we	have	512	pages,	where	each	page	has	512	columns	of	cells.

(b)	1024	pages,	where	each	page	has	1024	bits	(columns).

(c)	2048	pages	each	of	2048	bits

	

	The	 idea	behind	page	mode	 is	 that	since	memory	 locations	are	accessed
consecutively	 in	most	 situations,	 there	 is	 no	 need	 to	 provide	 both	 the	 row	 and
column	address	for	each	location,	as	was	the	case	in	DRAM	with	standard	timing.
Instead,	in	page	mode,	first	the	row	address	is	provided,	RAS	latches	in	the	row
address,	and	then	the	column	addresses	are	provided	and	CAS	toggles	back	and
forth,	 latching	 in	 the	 column	addresses	until	 the	 last	 column	of	 a	 given	page	 is
accessed.	Then	the	address	of	the	next	row	(page)	is	provided	and	the	process	is
repeated.	While	the	access	time	of	the	first	cell	is	the	standard	access	time	using
both	row	and	column	(tRAC),	the	access	time	in	accessing	the	second	cell	on	the
last	cell	of	the	same	page	(row)	is	much	shorter.	In	page	mode	DRAM	when	we
are	 in	 a	 given	 page,	 each	 successive	 cell	 can	 be	 accessed	 no	 faster	 than	 tPC

(page	cycle	time).	See	Figure	13-6.

Figure	13-6:	DRAM	Fast	Page	Mode	and	Standard	Mode	Comparison

Table	 13-3	 gives	 page	 mode	 timing	 parameters.	 In	 DRAM	 of	 page	 mode
both	the	standard	mode	and	page	mode	are	supported.	See	Example	13-9.

Page	Mode
DRAM

Access	Time
from	RAS,	tRAC

(ns)

Read	Cycle
Time,	tRC	(ns)

Access	Time
from	CAS,	tCAC

(ns)

Page	Cycle
Time,	tPC	(ns)

MCM44100-60 60 110 15 40

MCM44100-70 70 130 20 45

MCM44100-80 80 150 20 50

Table	13-3:	Page	Mode	DRAM	Timing	Parameters	(4M	x	1)

	

Example	13-9

Calculate	the	total	time	spent	by	the	CPU	to	access	an	entire	page	of	memory	if
the	memory	banks	are	page	mode	DRAM	of	1M	×	1	with	tRC	=165	ns,	tRAC	=	85
ns,	and	tPC	=	50	ns.

	

Solution:
	

For	page	mode	we	have	the	following	for	reading	1024	bits:

	

Time	to	read	1024	bits	of	the	same	page	=	tRAC	+	1023	×	tPC	=	85	ns	+	1023	×	50
ns	=	51,235	ns

	

Static	column	mode
Static	column	mode	 is	a	variant	of	page	mode.	 It	makes	accessing	all	 the

columns	 of	 a	 given	 row	much	 simpler	 by	 eliminating	 the	 need	 for	 CAS.	 In	 this
mode,	 the	 first	 location	 is	 accessed	 with	 a	 standard	 read	 cycle	 where	 the	 row
address	is	latched	by	RAS	followed	by	the	column	address	and	CS	(chip	select).
As	 long	as	RAS	and	CS	remain	 low,	 the	contents	of	successive	cells	appear	at
the	data	output	pin	of	DRAM	until	the	last	column	of	a	given	row	is	accessed.	This
means	 that	 the	 initial	 access	 time	 of	 the	 first	 cell	 is	 the	 standard	 access	 time
(tRAC),	but	each	subsequent	column	 in	 that	 row	 is	accessed	 in	a	 time	called	 tAA
(access	time	from	column	address).

In	static	column	mode	where	the	 initial	standard	access	time	 is	 tRAC,	when
we	are	in	a	given	page,	any	cell	can	be	accessed	with	the	access	time	of	tAA,	but
all	 the	 successive	 bits	 can	be	 accessed	no	 faster	 than	 tSC	 (static	 column	 cycle
time).	See	Figure	13-7.	Table	13-4	gives	static	column	mode	timing	parameters.

Figure	13-7:	DRAM	Static	Column	Mode	Timings

	

Static	Column
DRAM

T	RAS
Access	Time,

tRAC	(ns)

T	Read	Cycle,
tRC	(ns)

T	Column
Access	Time,

tAA	(ns)

Cycle	Time,	tSC
(ns)

MCM54102A-60 60 110 30 35

MCM54102A-70 70 130 35 45

35MCM54102A-
80 80 150 40 45

Table	13-4:	Static	Column	DRAM	Timing	Parameters	(4M	×	1)

	

Comparing	Examples	13-9	and	13-10,	 if	 the	 time	spent	by	 the	CPU	 is	 the
same	for	both	the	page	mode	and	static	column	mode,	what	is	the	advantage	of
static	 column	 mode?	 The	 answer	 is	 that	 static-column-mode	 DRAM	 design	 is
simpler	since	 there	 is	no	circuit	or	 timing	requirement	 for	 the	CAS	pin.	Notice	 in
Figure	13-7	that	we	need	to	keep	both	RAS	and	CS	(chip	select)	low	in	order	to
access	successive	cells.	Table	13-5	compares	cycle	 time	of	standard,	 fast	page
mode,	and	static	column	DRAMs.

Example	13-10

Calculate	the	total	time	spent	by	the	CPU	to	access	the	entire	page	of	memory	if
the	memory	banks	are	static-column-mode	DRAMs	of	1M	×	1	with	tRC	=	165	ns,
tRAC	=	85	ns,	and	tSC	=	50	ns.

	

Solution:
	

For	static	column	mode	we	have	the	following	for	reading	1024	bits:

time	to	read	1024	bits	of	the	same	page																=	tRAC	+	1023	×	tSC	=	85	ns	+
1023	×	50	ns	=	51,235	ns

	

Name
Standard

Notation,	time
FPM

Notation,	time
Static	Column
Notation,	time

Access	time	from	row tRAC	=	85ns tRAC	=	85ns tRAC	=	85ns

Access	time	from
column 	 	 tAA	=	45ns

Cycle	time tRC	=	165ns tPC	=	50ns tSC	=	50ns

Table	13-5:	Timing	comparison	of	FPM,	Static	Column	and	Standard	Mode	DRAM

EDO	DRAM:	origin	and	operation

	 We	 discussed	 standard	 and	 fast	 page	 mode	 DRAM.	 The	 following
describes	the	operation	and	limitations	of	fast	page	DRAM	and	how	it	led	to	EDO
DRAM.

1.	 	 	 	 	 	 	The	row	address	is	provided	and	latched	in	when	RAS	falls.	This	opens
the	page.

2.							The	column	address	is	latched	in	when	CAS	falls	and	data	shows	up	after
tCAC	has	elapsed.	However,	the	next	column	of	the	same	row	(page)	cannot
be	accessed	 faster	 than	 tPC	 (page	cycle	 time).	This	means	 that	 accessing
consecutive	columns	of	opened	pages	 is	 limited	by	 the	 tPC.	The	 tPC	 timing
itself	is	influenced	by	how	long	CAS	has	to	stay	low	before	it	goes	high.	Why
don’t	DRAM	designers	pull	 up	 the	CAS	 faster	 in	order	 to	 shorten	 the	 tPC?
This	seems	like	a	very	logical	suggestion.	However,	there	is	a	problem	with
this	approach	in	fast	page	mode:	When	the	CAS	goes	high,	the	data	output
is	turned	off.	So	if	CAS	is	pulled	high	too	fast	(to	shorten	the	tPC),	the	CPU
does	not	have	enough	time	to	catch	the	data.	One	solution	is	to	change	the
internal	circuitry	of	fast	page	DRAM	to	allow	the	data	to	be	available	longer
(even	if	CAS	goes	high).	This	is	exactly	what	happened.	As	a	result	of	this
change,	 the	 name	EDO	 (extended	data-out)	was	given	 to	 avoid	 confusion
with	 fast	 page	 mode	 DRAM.	 This	 is	 the	 reason	 that	 EDO	 is	 sometimes
called	hyper-page	since	it	is	the	hyper	version	of	fast	page	DRAM.	Table	13-
6	shows	a	comparison	of	FPM	and	EDO	DRAM	timing.	Notice	in	both	cases
that	 all	 the	 parameters	 are	 the	 same	 except	 tPC.	 For	 the	 EDO	 version	 of
page	mode,	the	tPC	is	10	ns	less	than	fast	page	mode.

	 FPM EDO

tRAC(ns) 60 60

tRC(ns) 110 110

tPC(ns) 35 25

Table	13-6:	60ns	4M	DRAM	Timing

In	 examining	 tPC	 timing	 in	 Figure	 13-8,	 notice	 that	 tPC	 (page	 cycle	 time)
consists	of	 two	portions:	 tCP	 (CAS	precharge	 time)	and	 tCAS	 (CAS	pulse	width).
The	tCP	is	similar	across	70	ns,	60	ns,	and	50	ns	DRAMs	of	FPM	and	EDO	(about
10	ns).	It	is	tCAS	that	varies	among	these	DRAMs.	In	EDO	this	portion	is	made	as
small	as	possible.	Figure	13-8	compares	FPM	and	EDO	timing.

Figure	13-8:	FPM	and	EDO	Comparison

SDRAM	(Synchronous	DRAM)
When	 the	 CPU	 bus	 speed	 goes	 beyond	 75	 MHz,	 even	 EDO	 is	 not	 fast

enough.	SDRAM	is	a	memory	for	such	systems.	First,	 let	us	see	why	it	 is	called
synchronous	 DRAM.	 In	 all	 the	 traditional	 DRAMs	 (standard,	 FPM,	 and	 EDO),
CPU	 timing	 is	 not	 synchronized	 with	 DRAM	 timing,	 meaning	 that	 there	 is	 no
common	clock	between	the	CPU	and	DRAM	for	reference.	In	those	systems	it	is
said	 that	 the	 DRAM	 is	 asynchronous	 with	 the	 microprocessor	 since	 the	 CPU
presents	the	address	to	DRAM	and	memory	provides	the	data	in	the	master/slave
fashion.	 If	 data	 cannot	 be	 provided	 on	 time,	 the	 CPU	 is	 notified	 and	 the	 CPU
inserts	a	wait	state	into	its	bus	timing	and	waits	until	the	DRAM	is	ready.	In	other
words,	 the	CPU	bus	timing	 is	dependent	upon	the	DRAM	speed.	This	 is	not	 the
case	 in	synchronous	DRAM.	 In	systems	with	SDRAM,	 there	 is	a	common	clock
(called	the	system	clock,	main	clock,	or	master	clock)	that	runs	between	the	CPU
and	 SDRAM.	 All	 bus	 activities	 (address,	 data,	 control)	 between	 the	 CPU	 and
SDRAM	are	synchronized	with	this	common	clock.	That	 is,	 the	common	clock	 is
the	 point	 of	 reference	 for	 both	 the	CPU	 and	SDRAM	and	 there	 is	 no	 deviation
from	 it	and	hence	no	waiting	by	 the	CPU.	As	you	examine	 the	 timing	 figures	 in
EDO	and	page	mode,	you	will	not	find	such	a	clock.

Active	and	precharge	command	in	SDRAM
To	 select	 a	 row	 (page)	we	 should	 activate	 it	 by	making	 the	RAS	 low	 at	 a

rising	 edge	 of	 clock	 signal.	 Active	 command	 is	 used	 to	 activate	 a	 row	 for
subsequent	access.	In	SDRAM	a	page	remains	active	for	both	of	read	and	write
operations	until	we	make	 it	 inactive	by	using	a	precharge	command.	Notice	 that
we	 have	 to	 issue	 a	 precharge	 command	 before	 activating	 another	 row.	 A
precharge	 command	 can	 be	 issued	 by	making	 both	 of	RAS	 and	WE	 low	while
holding	CAS	high	at	a	rising	edge	of	clock	signal.	Figure	13-9	shows	a	simplified
write	 command	 followed	 by	 precharge.	 Table	 13-7	 shows	 the	 timings	 of
MT48LC16M16	which	is	a	256Mb	SDRAM	from	the	Micron	Corp.

Figure	13-9:	SDRAM	Simple	Write	Command

Name Description Time

tRCD Active	to	read	or	write	delay 15ns

tWR Write	recovery	time 7ns	+	1	CLK

tRP Precharge	command	period 15ns

tRAS
Active	to	precharge

command
37ns	and	not	more	than

120ms

tRC
Active	to	active	command

period 60ns

Table	13-7:	SDRAM	Timings

NOP	and	Inhibit	in	SDRAM
When	 the	 CPU	 is	 faster	 than	 SDRAM,	 no	 operation	 (NOP)	 or	 command

inhibit	can	be	issued	to	an	SDRAM	device	to	prevent	unwanted	commands	from
being	registered	during	wait	states.	Notice	that	the	operation	already	in	progress
are	not	affected	by	NOP	or	command	inhibit.	According	to	Table	13-7,	the	tWR	is
7ns	+	1CLK.	 It	means	 that	 there	must	be	at	 least	one	NOP	or	command	 inhibit
after	any	write	operation.	To	calculate	 the	number	of	NOPs	needed	 for	a	 timing
parameter,	we	should	divide	it	by	the	clock	period	and	then	rounded.	Figure	13-10
shows	a	write	command	 followed	by	precharge	 for	a	100MHz	clock.	Notice	 that
nop1	is	added	to	make	tRCD	more	than	15ns.	nop2	and	nop3	are	added	to	make
tRAS	more	 than	 37ns	 and	 nop4	 and	 nop5	 are	 added	 to	make	 tRC	more	 than
60ns.

Figure	13-10:	SDRAM	Write	Operation	with	NOPs

SDRAM	and	burst	mode
The	presence	of	 the	common	system	clock	between	the	CPU	and	SDRAM

lends	 itself	 to	what	 is	 called	burst	 I/O.	Although	burst	 I/O	will	 do	both	 read	and
write,	we	will	discuss	the	read	operation	for	the	sake	of	simplicity.

In	burst	read,	the	address	of	the	first	location	is	provided	as	normal.	RAS	is
first,	 followed	 by	 CAS.	 However,	 most	 of	 the	 times,	 we	 need	 to	 read	 several
consecutive	locations	in	a	page	and	there	is	no	need	to	provide	the	full	address	of
each	column	and	pay	the	timing	penalty	for	address	setup	and	hold	time.	Why	not
simply	program	the	burst	SDRAM	to	let	it	know	how	many	consecutive	locations
are	needed?	That	is	exactly	the	idea	behind	many	SDRAMs.	They	are	capable	of
being	programmed	to	output	up	to	256	consecutive	 locations	inside	one	page	of
DRAM.	 In	other	words,	 the	number	of	burst	 reads	can	be	1,	2,	4,	8,	16,	or	256,
and	burst	SDRAM	can	be	programmed	in	advance	for	any	number	of	these	reads.
The	number	of	burst	reads	is	referred	to	as	burst	length.	In	many	recent	SDRAMs,
the	burst	 length	 can	be	as	high	as	a	whole	page.	Burst	 read	 shortens	memory
access	time	substantially.	For	example,	if	burst	length	is	programmed	for	8,	for	the
first	location	we	need	the	full	address	of	RAS	followed	by	CAS.	However,	for	the
second,	third,	…,	eighth,	we	can	get	the	data	out	of	the	SDRAM	with	a	minimum
delay,	limited	only	by	the	internal	circuitry	of	DRAM.	See	Figure	13-11.

Figure	13-11:	SDRAM	Burst	Write	Operation

SDRAM	banks	and	interleaving
One	 of	 the	 methods	 used	 to	 overcome	 the	 problem	 of	 precharge	 time	 in

DRAMs	is	the	interleaving.	In	this	method,	each	SDRAM	chip	has	two	or	four	sets
of	 banks	 and	 the	CPU	 accesses	 each	 set	 of	 banks	 alternately.	 In	 this	way	 the
precharge	time	of	one	set	of	banks	is	hidden	behind	the	access	time	of	the	other
one.	This	means	that	while	the	CPU	is	accessing	one	set	of	banks,	the	other	set
is	 being	 precharged.	 Assume	 that	 a	CPU	 has	 a	memory	 cycle	 time	 of	 100	 ns.
Using	DRAM	with	access	time	of	70	ns	and	the	precharge	of	65	ns	gives	a	DRAM
cycle	 time	 of	 135	 ns	 (70	 +	 65	 =	 135).	 This	 is	 much	 longer	 than	 the	 100	 ns
provided	by	the	CPU.	Using	interleaved	memory	design	can	solve	this	problem.	In
this	case	when	 the	CPU	accesses	bank	set	A,	 it	goes	on	 to	access	bank	set	B
while	set	A	takes	care	of	its	precharge	time.	Similarly,	when	the	CPU	accesses	set
A,	the	set	B	banks	will	have	time	to	precharge.	Notice	that	SDRAM	chip	has	one
or	two	extra	pins	called	BA0	and	BA1	to	select	a	memory	bank.	Look	at	Figure	13-
12.	By	incorporating	both	the	burst	mode	and	interleaving	concepts	into	SDRAM,
it	is	used	by	many	ARM-based	systems	for	external	memory	connection.

Figure	13-12:	SDRAM	with	Four	Banks

CAS	Latency
In	read	operation	it	can	be	programmed	that	how	many	clocks	after	CAS	will

the	data	appear	at	the	data	pins.	It	is	called	CAS	latency	or	read	latency	and	can
be	1,	2,	or	3	clocks.	Figure	13-13	shows	data	for	CAS	latency	(CL)	=	2	and	CL	=	3
.

Figure	13-13:	SDRAM	CAS	Latency

Double	data	rate	(DDR)
DDR	(Double	Data	Rate)	DRAMs	are	the	same	as	SDRAM	but	use	a	double

rate	 interface	 to	 transfer	data	on	both	 rising	edge	and	 falling	edge	of	 the	clock.
DDR2	and	DDR3	increased	this	factor	by	×4	and	×8.

This	concludes	the	discussion	of	DRAM	operation	modes.	It	must	be	noted
that	 in	 many	 systems	 one	 of	 the	 above	 modes	 is	 implemented	 in	 order	 to
eliminate	the	need	for	the	wait	state	to	access	every	bit	of	DRAM.	As	seen	from
the	above	discussion,	even	the	best	of	any	of	these	modes	still	cannot	eliminate
the	need	 for	 the	wait	state	entirely	unless	SRAM	 is	used	 for	 the	entire	memory,
which	 is	 prohibitively	 expensive.	 The	 best	 solution	 is	 to	 use	 a	 combination	 of
SRAM	and	DRAM	and	using	cache	memory.	See	the	next	chapter.

Review	Questions
1.							In	which	type(s)	of	memory	is	the	read	cycle	time	equal	to	the	memory

access	time?

2.							A	given	DRAM	is	advertised	to	have	an	access	time	of	50	ns.	What	is	the
approximate	memory	cycle	time	for	this	DRAM?

3.							A	given	DRAM	has	a	120-ns	memory	read	cycle	time.	What	is	its	access
time	(tRAC)?

4.							In	DRAM,	a	read	cycle	consists	of	___________	and	____________.

5.							Assume	an	ARM	system	of	interleaved	memory	with	2M	bytes	initial
DRAM	for	each	of	the	following.

(a)	Show	how	the	banks	are	organized.

(b)	What	is	the	minimum	memory	addition?

6.							True	or	false.	In	page	mode,	the	initial	read	takes	tRAC.

7.							For	page	mode	DRAM,	while	we	are	in	a	given	page,	we	can	access
successive	memory	locations	no	faster	than	____________	.

8.							Calculate	the	time	the	CPU	must	spend	to	access	100	locations	all	within
the	same	page	if	tRAC	=	60	ns	and	tPC	=	30	ns.

9.							The	higher	the	system	frequency,	the	less	noise	can	be	tolerated	in	the
system.	Which	is	preferable	in	a	20-MHz	system,	static	column	or	page
mode	DRAM?

10.			A	200-MHz	ARM	has	a	bus	frequency	of	________.

11.			A	100-MHz	ARM	has	a	bus	frequency	2/3	of	the	CPU.	What	is	the	read
cycle	time	for	this	processor?

12.			When	a	page	is	opened,	what	limits	us	in	accessing	consecutive	columns?

13.			True	or	false.	In	EDO,	when	CAS	goes	up	the	data	output	is	turned	off.

14.			Which	of	the	following	DRAMs	has	a	common	synchronous	clock	with	the
CPU?

(a)	FPM																(b)	EDO																(c)	SDRAM										(d)	all	of	the	above

15.			True	or	false.	SDRAM	incorporates	interleaved	memory	internally.

Section	13.3:	Data	Integrity	in	DRAM	and	ROM
In	this	section	we	examine	the	methods	used	in	checking	the	data	integrity	in

ROM	and	RAM.

Using	checksum	byte	in	ROM
To	ensure	the	integrity	of	the	contents	of	ROM,	every	system	must	perform	a

checksum	calculation.	The	process	of	checksum	will	detect	any	corruption	of	the
contents	of	ROM.	One	of	 the	causes	of	ROM	corruption	 is	current	surge,	either
when	the	system	is	turned	on	or	during	operation.	The	checksum	method	uses	a
checksum	byte.	This	checksum	byte	is	an	extra	byte	that	is	tagged	to	the	end	of	a
series	 of	 bytes	 of	 data.	 To	 calculate	 the	 checksum	byte	 of	 a	 series	 of	 bytes	 of
data,	the	following	steps	can	be	taken.

1.							Add	the	bytes	together	and	drop	the	carries.

2.							Take	the	2’s	complement	of	the	total	sum,	and	that	is	the	checksum	byte,
which	becomes	the	last	byte	of	the	stored	information.

To	 perform	 the	 checksum	 operation,	 add	 all	 the	 bytes,	 including	 the
checksum	byte.	The	 result	must	be	zero.	 If	 it	 is	not	 zero,	one	or	more	bytes	of
data	 have	 been	 changed	 (corrupted).	 To	 clarify	 these	 important	 concepts,	 see
Examples	13-11	and	13-12.	These	two	examples	show	the	check-sum	byte	since
the	 system	ROM	 is	 assumed	 to	 be	byte-wide.	 In	 the	16-bit	 systems	 the	 check-
sum	 value	 is	 calculated	 by	 adding	 the	 16-bit	 values.	 In	 the	 ARM	 systems	 the
check-sum	is	calculated	by	adding	the	32-bit	words	since	the	instructions	size	is
32-bit	wide.

Example	13-11

Assume	that	we	have	4	bytes	of	hexadecimal	data:	0x25,	0x62,	0x3F,	and	0x52.

(a)	Find	the	checksum	byte.

(b)	Perform	the	checksum	operation	to	ensure	data	integrity.

(c)	 If	 the	 second	 byte	 62H	 had	 been	 changed	 to	 22H,	 show	 how	 checksum
detects	the	error.

	

Solution:
	

(a)										The	checksum	is	calculated	by	first	adding	the	bytes.

															

25

+	62

	+	3F

	+	52

																1	18

	

	

	

The	sum	is	0x118,	and	dropping	the	carry,	we	get	0x18.	The	checksum	byte	is
the	2’s

complement	of	0x18,	which	is	0xE8.

	

(b)				 	 	 	 	 	 	Adding	the	series	of	bytes	including	the	checksum	byte	must	result	 in
zero.	This

indicates	that	all	the	bytes	are	unchanged	and	no	byte	is	corrupted.

	

25

+	62

+	3F

+	52

+	E8

2	00

	

	

	

	

	

(dropping	the	carry)

	

(c)											Adding	the	series	of	bytes	including	the	checksum	byte	shows	that	the
result	is	not	zero,

which	indicates	that	one	or	more	bytes	have	been	corrupted.

25

	+	22

	+	3F

	+	52

	+	E8

	1	C0	

	

	

	

	

	

dropping	the	carry,	we	get	0xC0.

	

	

Example	13-12

Assuming	 that	 the	 last	 byte	 of	 the	 following	 data	 is	 the	 checksum	 byte,	 show
whether	the	data	has	been	corrupted	or	not:	0x28,	0xC4,	0xBF,	0x9E,	0x87,	0x65,
0x83,	0x50,	0xA7,	and	0x51.	

Solution:
The	sum	of	the	bytes	plus	the	checksum	byte	must	be	zero;	otherwise,	the	data	is
corrupted

28	+	C4	+	BF	+	9E	+	87	+	65	+	83	+	50	+	A7	+	51	=	500

By	 dropping	 the	 accumulated	 carries	 (the	 5),	 we	 get	 00.	 The	 data	 is	 not
corrupted.		

	

Checksum	program
When	the	system	is	turned	on,	one	of	the	first	things	the	ROM	boot	does	is

to	 test	 the	 system	ROM.	 In	 the	 16-bit	 systems	 such	 as	 Thumb	 the	 check-sum
value	 is	calculated	by	adding	 the	16-bit	values.	 In	 the	ARM	systems	 the	check-
sum	is	calculated	by	adding	the	32-bit	words	since	the	 instructions	size	 is	32-bit
wide.	Program	13-1	shows	the	program	using	the	checksum	method.	Notice	in	the
code	how	all	 the	words	are	added	 together	without	keeping	 the	 track	of	carries.
Then,	the	total	sum	is	tested	to	see	if	it	is	zero.	The	zero	flag	is	expected	to	be	set
to	high	if	there	is	no	corruption	of	data.	If	it	is	not,	the	ROM	is	corrupted.

Program	13-1
	

;	CHECK-SUM	PROGRAM	TEST

LDR					R0,=ROM_ADDRESS					;	pointer	to	data	ROM

LDR					R2,=ROM_SIZE								;	data	size

MOV					R1,#0															;	R1	is	used	to	hold	the	sum

;	add	the	words	including	the	check-sum	word

OVER				LDR					R3,[R0]													;	load	the	word

ADD					R1,R3															;	add	the	word

ADD					R0,R0,#4												;	point	to	next	one

SUBS				R2,R2,#1												;	decrement	counter

BNE					OVER																;	until	all	is	done

;	test	it

TST					R1,R1															;	see	if	the	sum	is	zero

BEQ					NO_ER															;	if	it	is,	go	display	the	message

;	display	the	message	for	error

B							.																			;	stay	here

	

NO_ER

;display	the	message	for	no	error																																						

	

Hard	and	soft	error	detection	in	DRAM
There	are	two	types	of	errors	that	can	occur	in	DRAM	chips:	soft	error	and

hard	error.	In	a	hard	error,	some	bits	or	an	entire	row	of	memory	cells	inside	the
memory	chip	get	stuck	to	high	or	low	permanently,	thereafter	always	producing	1
or	 0	 regardless	 of	what	 you	write	 into	 the	 cell(s).	 In	 a	 soft	 error,	 a	 single	 bit	 is
changed	from	1	to	0	or	from	0	to	1	due	to	current	surge	or	certain	kinds	of	particle
radiation	 in	 the	air.	Parity	 is	used	 to	detect	 such	errors.	 Including	a	parity	bit	 to
ensure	 data	 integrity	 in	 RAM	 is	 the	 most	 widely	 used	 method	 since	 it	 is	 the
simplest	and	cheapest.	See	Figure	13-14.	This	method	can	only	indicate	if	there	is
a	difference	between	the	data	that	was	written	to	memory	and	the	data	that	was
read.	 It	 cannot	 correct	 the	 error	 as	 is	 the	 case	 with	 some	 high-performance
computers.	 In	those	computers	the	EDC	(error	detection	and	correction)	method
is	used	to	detect	and	correct	the	error	bit.	There	are	many	parity	bit	generator	and
checker	 chips	 and	 ASIC	 circuits.	 These	 chips	 have	 9	 inputs	 and	 2	 outputs.
Depending	on	whether	an	even	or	odd	number	of	ones	appears	in	the	input,	the
even	or	odd	output	is	activated.	If	all	9	inputs	have	an	even	number	of	1	bits,	the
even	output	goes	high.	 If	 the	9	 inputs	have	an	odd	number	of	high	bits,	 the	odd
output	goes	high.	When	a	byte	of	information	is	written	to	a	given	memory	location
in	DRAM,	the	even-parity	bit	is	generated	and	saved	on	the	ninth	DRAM	chip	as	a
parity	 bit.	When	 a	 byte	 of	 data	 is	 read	 from	 the	 same	 location,	 the	 parity	 bit	 is
generated	 again.	 If	 there	 is	 a	 difference	 between	 the	 data	written	 and	 the	 data
read	 the	 parity	 bit	 checker	 (using	 an	 Exclusive-OR)	 is	 activated	 indicating	 that
there	is	a	parity	bit	error,	meaning	that	the	data	read	is	not	the	same	as	the	data
written.

Figure	13-14:	A	Possible	Memory	Configuration	for	2G	DRAM

Review	Questions
1.							Find	the	checksum	byte	for	the	following	bytes:	0x24,	0x76,	0xF5,	0x98,

0x89,	0x7A,	0x61,	0xC2.

2.							To	detect	corruption	of	information	stored	in	RAM	and	ROM	memories,
system	designers	use	the	____________	method	for	RAM	and	the
_________	method	for	ROM.

3.							Assume	that	due	to	slight	current	surge	in	the	power	supply,	a	byte	of	RAM

has	been	corrupted	while	the	computer	is	on.	Can	the	system	detect	the
corruption	while	the	computer	is	on?	Is	this	also	the	case	for	ROM?

Section	13.4:	Concept	of	DMA
In	 computers	 there	 is	 often	 a	 need	 to	 transfer	 a	 large	 amount	 of	 data

between	 memory	 or	 between	 memory	 and	 peripherals	 such	 as	 disk	 drives.	 In
such	 cases,	 using	 the	CPU	 to	 transfer	 the	 data	 is	 too	 slow	 since	 the	 data	 first
must	 be	 fetched	 into	 the	 CPU	 and	 then	 sent	 to	 its	 destination.	 In	 addition,	 the
process	 of	 fetching	 and	 decoding	 the	 instructions	 themselves	 adds	 to	 the
overhead	 and	 also	 stops	 the	 CPU	 from	 processing	 other	 tasks.	 For	 these
reasons,	in	most	computers	and	microcontrollers	there	is	a	DMAC	(direct	memory
access	 controller),	 whose	 function	 is	 to	 bypass	 the	 CPU	 and	 provide	 a	 direct
connection	between	peripherals	and	memory,	thus	transferring	the	data	as	fast	as
possible.

One	problem	with	using	DMA	is	that	there	is	only	one	set	of	buses	(one	set
of	each	bus:	data	bus,	address	bus,	control	bus)	in	a	given	computer	and	no	bus
can	serve	 two	masters	at	 the	same	 time.	The	buses	can	be	used	either	by	 the
main	CPU	or	the	DMA.	Since	the	CPU	has	primary	control	over	the	buses,	it	must
give	permission	 to	DMA	to	use	 them.	How	 is	 this	done?	The	answer	 is	 that	any
time	 the	DMA	needs	 to	 use	 the	buses	 to	 transfer	 data,	 it	 sends	a	 signal	 called
HLDR	(hold	request)	 to	 the	CPU	and	the	CPU	will	 respond	by	sending	back	the
signal	HLDA	(hold	acknowledge)	to	indicate	to	the	DMA	that	it	can	go	ahead	and
use	 the	 buses.	While	 the	DMA	 is	 using	 the	 buses	 to	 transfer	 data,	 the	CPU	 is
sitting	idle,	and	conversely,	when	the	CPU	is	using	the	bus,	the	DMA	is	sitting	idle.
After	DMA	finishes	its	job	it	will	make	HOLD	go	low	and	then	the	CPU	will	regain
control	over	the	buses.	See	Figure	13-15.	When	a	cache	is	added	to	the	system,
while	the	DMA	controller	has	the	bus,	the	CPU	may	still	execute	programs	out	of
cache	without	stopping.

Figure	13-15:	DMA	Usage	of	System	Bus

For	example,	if	the	DMA	is	to	transfer	a	block	of	data	from	memory	to	an	I/O

device	 such	 as	 a	 disk,	 it	must	 know	 the	 address	 of	 the	 beginning	 of	 the	 block
(address	 of	 the	 first	 byte	 of	 data)	 and	 the	 number	 of	 bytes	 (count)	 it	 needs	 to
transfer.	Then	it	will	go	through	the	following	steps:

1.							The	peripheral	device	(such	as	the	disk	controller)	will	request	the	service
of	DMA	by	pulling	DREQ	(DMA	request)	high.

2.	 	 	 	 	 	 	The	DMA	will	put	a	high	on	 its	HLDR	(hold	request),	signaling	 the	CPU
through	its	HOLD	pin	that	it	needs	to	use	the	buses.

3.							The	CPU	will	finish	the	present	bus	cycle	and	respond	to	the	DMA	request
by	 putting	 high	 on	 its	 HLDA	 (hold	 acknowledge),	 thus	 telling	 the	 DMA
controller	that	it	can	go	ahead	and	use	the	buses	to	perform	its	task.	HLDR
must	remain	active	high	as	long	as	DMA	is	performing	its	task.

4.	 	 	 	 	 	 	DMA	will	activate	DACK	(DMA	acknowledge),	which	 tells	 the	peripheral
device	that	it	will	start	to	transfer	the	data.

5.	 	 	 	 	 	 	DMA	starts	to	transfer	the	data	from	memory	to	the	peripheral	by	putting
the	address	of	 the	first	byte	of	 the	block	on	the	address	bus	and	activating
MEMR,	 thereby	 reading	 the	 byte	 from	 memory	 into	 the	 data	 bus;	 it	 then
activates	 IOW	 (I/O	 Write)	 to	 write	 the	 data	 to	 the	 peripheral.	 Then	 DMA
decrements	the	counter	and	increments	the	address	pointer	and	repeats	this
process	until	the	count	reaches	zero	and	the	task	is	finished.

6.	 	 	 	 	 	 	After	 the	DMA	has	 finished	 its	 job	 it	will	deactivate	HLDR,	signaling	 the
CPU	that	it	can	regain	control	over	its	buses.

This	 above	 discussion	 indicates	 that	 DMA	 can	 only	 transfer	 information;
unlike	the	CPU,	it	cannot	decode	and	execute	instructions.	One	could	look	at	the
DMA	as	a	kind	of	CPU	without	the	instruction	decoder/executer	logic	circuitry.	For
the	DMA	to	be	able	to	transfer	data	it	is	equipped	with	the	address	bus,	data	bus,
and	control	bus	signals.

Review	Questions
1.							True	or	false.	When	the	DMA	is	working,	the	CPU	is	sitting	idle.

2.							True	or	false.	When	the	CPU	is	working,	the	DMA	is	sitting	idle.

3.							True	or	false.	No	bus	can	serve	two	masters	at	the	same	time.

Answers	to	Review	Questions
Section	13.1:	CPU	Memory	Cycle	Time

1.								

(a)	1/40	MHz	=	25	ns;	therefore,	2	×	25	=	50	ns;

(b)	1/50	MHz	=	20	ns;	therefore,	2	×	20	(for	0	WS)	+	20	(1	WS)	=	60	ns;

(c)	2	×	15	ns	+	15	=	45	ns

2.							It	means	that	the	CPU	cannot	access	memory	faster	than	every	50	ns.

3.								

(a)	The	 read	cycle	 time	 is	75	ns;	 therefore,	 the	effective	working	 frequency	 is
the	same	as	26.6	MHz	of	0	WS	(1/37.5	ns	=	26.6	MHz).

(b)	The	 read	cycle	 time	 is	60	ns;	 therefore,	 the	effective	working	 frequency	 is
the	same	as	33	MHz	(1/30	ns	=	33	MHz).

4.							A	total	of	50	ns	is	left	for	the	memory	access	time.

5.							Since	2	+	1	WS	=	3	clocks	for	each	read	cycle	time,	30	ns	(90/3	=	30)	for
the	CPU	clock	duration;	therefore,	the	CPU	frequency	is	33	MHz	(1/30	ns	=
33	MHz).

Section	13.2:	DRAM	Technology
1.							SRAM	and	ROM

2.							100	ns																																		

3.							60	ns

4.							tRAC	(RAS	access	time),	tRP	(RAS	precharge	time)

5.							(a)	There	are	two	sets	of	1M	byte;	therefore,	each	set	consists	of	4	banks
of	256K	×	9	memory	where	each	bank	belongs	to	1	byte	of	the	D31–D0	data
bus.

(b)	2M

6.							True

7.							tPC

8.							Total	time	=	tRAC	+	99	×	tPC	=	60	+	99	×	30	=	3030	ns

9.							Static	column

10.			Often	less	than	100	MHz;	many	times	it	is	only	66	MHz.

11.			2/3	×	100	MHz	=	66	MHz.	Now	1/66	MHz	=	15	ns.	2	×	15	ns	=	30	ns	read
cycle	time.

12.			The	tPC	(page	cycle	time)

13.			False

14.			SDRAM

15.			True

Section	13.3:	Data	Integrity	in	RAM	and	ROM
1.							Adding	the	bytes:	24	+	76	+	F5	+	98	+	89	+	7A	+	61	+	C2	=	44D.	Dropping

the	carries,	we	get	4D,	and	taking	the	2’s	complement,	we	have	B3	for	the
checksum	byte.

2.							Parity	bit	generation/checker,	checksum

3.	 	 	 	 	 	 	While	 the	 computer	 is	 on,	 any	 corruption	 in	 the	 contents	 of	 RAM	 is
detected	by	the	parity	bit	error	checking	circuitry	when	that	data	is	accessed
(read)	 again.	 However,	 the	 ROM	 corruption	 is	 not	 detected	 since	 the
checksum	detection	is	performed	only	when	the	system	is	booted.

Section	13.4:	Concept	of	DMA
1.							True

2.							True

3.							True

	

Chapter	14:	Cache	Memory
There	 are	 different	 memories	 in	 a	 computer.	 Among	 them	 are	 hard	 disk,

RAM	 and	 Cache.	 The	 hard	 disk	 has	 a	 huge	 space	 that	 accommodates	 all
programs	 and	 files.	 But	 it	 is	 too	 slow	 to	 provide	 data	 directly	 to	 the	 CPU.	 In
contrast,	cache	works	as	fast	as	the	CPU	but	has	a	small	amount	of	memory.

As	 an	 analogy,	 you	 have	 different	 spaces	 in	 your	 house;	 storeroom,
bookcase	 and	 cupboards,	 and	 your	 desk.	 You	 work	 on	 your	 desk	 but	 it	 has	 a
small	 space.	 In	 contrast,	 storeroom	has	a	huge	space	but	 takes	 you	a	while	 to
bring	tools	from	it.	If	you	are	using	your	desk	to	make	a	circuit,	you	put	the	needed
tools	on	your	desk	and	when	the	work	is	finished	you	free	up	your	desk	to	use	for
another	purpose.	See	Figure	14-1.

Figure	14-1:	Memory	Hierarchy

In	the	same	way,	there	is	a	huge	amount	of	data	in	your	hard	disk,	CDs,	and
DVDs.	When	you	click	on	a	program,	the	OS	(Operating	System)	brings	it	into	the
RAM	and	a	small	amount	of	 it	 is	brought	 into	 the	Cache	 to	be	executed	by	 the
CPU.	When	you	run	a	program,	e.g.	the	Keil	IDE,	you	do	not	use	the	whole	parts
of	 the	 program	all	 at	 the	 same	 time.	 So,	 just	 a	 small	 portion	 of	 the	 program	 is
brought	to	the	Cache	to	be	executed.	See	Figure	14-2.

Figure	14-2:	a	Program	Moving	in	the	Memory	Hierarchy

The	potential	power	of	high-performance	microprocessors	can	be	exploited
only	 if	memory	 is	 fast	enough	 to	 respond	 to	 the	microprocessor’s	need	 to	 fetch
code	and	data.	There	is	no	use	in	choosing	a	fast	processor	and	then	interfacing	it
with	 slow	 memory.	 Many	 of	 the	 ARM	 chips	 come	 with	 on-chip	 cache.	 In	 this
chapter,	we	deal	with	issue	of	cache	memory.	In	Section	14.1,	the	cache	memory
organizations	 are	 discussed.	 In	Section	 14.2,	 some	 concepts	 and	 terminologies
related	 to	 cache	 memory	 are	 examined.	 The	 cache	 memory	 of	 ARM	 and	 its
multicore	features	are	examined,	as	well.

Section	14.1:	Cache	Memory	Organizations
The	 most	 widely	 used	 memory	 design	 for	 high-performance	 CPUs

implements	DRAMs	for	main	memory	along	with	a	small	amount	(compared	to	the
size	of	main	memory)	of	SRAM	for	cache	memory.	This	 takes	advantage	of	 the
speed	of	SRAM	and	the	high	density	and	cheapness	of	DRAM.	To	implement	the
entire	memory	of	the	computer	with	SRAM	is	too	expensive	and	to	use	all	DRAM
degrades	 performance.	 Cache	 memory	 is	 placed	 between	 the	 CPU	 and	 main
memory.	See	Figure	14-3.

Figure	14-3:	CPU	and	Its	Relation	to	Various	Memories

When	 the	 CPU	 initiates	 a	 memory	 access,	 it	 first	 asks	 cache	 for	 the
information	(data	or	code).	If	the	requested	data	is	there,	it	is	provided	to	the	CPU
with	zero	wait	states	(WS),	but	 if	 the	data	is	not	 in	cache,	the	memory	controller
circuitry	will	transfer	the	data	from	main	memory	to	the	CPU	while	giving	a	copy	of
it	 to	 cache	memory.	 In	 other	words,	 at	 any	 given	 time	 the	 cache	 controller	 has
knowledge	of	which	 information	 (code	or	data)	 is	kept	 in	cache;	 therefore,	upon
request	for	a	given	piece	of	code	or	data	by	the	CPU	the	address	issued	by	the
CPU	is	compared	with	the	addresses	of	data	kept	by	the	cache	controller.	If	they
match	 (hit)	 they	 are	 presented	 to	 the	 CPU	 with	 zero	 WS,	 but	 if	 the	 needed
information	 is	 not	 in	 cache	 (miss)	 the	 cache	 controller	 along	 with	 the	 memory
controller	will	 fetch	 the	 data	 and	 present	 it	 to	 the	CPU	 in	 addition	 to	 keeping	 a
copy	 of	 it	 in	 cache	 for	 future	 reference.	 The	 reason	 a	 copy	 of	 data	 (or	 code)
fetched	from	main	memory	is	kept	in	the	cache	is	to	allow	any	subsequent	request
for	the	same	information	to	result	in	a	hit	and	provide	it	to	the	CPU	with	zero	wait
states.	 If	 the	 requested	 data	 is	 available	 in	 cache	 memory,	 it	 is	 called	 a	 hit;
otherwise,	if	the	data	must	be	brought	in	from	main	memory,	it	is	a	miss.

It	must	be	noted	 that	when	 the	CPU	accesses	memory,	 it	 is	most	 likely	 to
access	 the	 information	 in	 the	vicinity	of	 the	same	addresses,	at	 least	 for	a	 time.
This	is	called	the	principle	of	locality	of	reference.	In	other	words,	even	for	a	short
program	 of	 50	 bytes,	 the	 CPU	 is	 accessing	 those	 50	 memory	 locations	 from
cache	with	zero	wait	states.	If	it	were	not	for	this	principle	of	locality	and	the	fact
that	the	CPU	accesses	memory	randomly,	the	idea	of	cache	would	not	work.	This
implies	 that	 branch	 and	 call	 instructions	 are	 bad	 for	 the	 performance	 of	 cache-
based	 systems.	 The	 hit	 rate,	 the	 number	 of	 hits	 divided	 by	 the	 total	 number	 of
tries,	depends	on	the	size	of	the	cache,	how	it	is	organized	(cache	organization),

and	the	nature	of	the	program.

Cache	organization
There	are	three	types	of	cache	organization:

1.							fully	associative

2.							direct	mapped

3.							set	associative

The	 following	 is	a	discussion	of	each	organization	with	 its	advantages	and
disadvantages.	For	the	sake	of	clarity	and	simplicity,	an	8-bit	data	bus	and	a	16-bit
address	bus	are	assumed.

Fully	associative	cache
In	fully	associative	cache,	only	a	limited	number	of	bytes	from	main	memory

are	held	by	cache	along	with	their	addresses.	The	SRAMs	holding	data	are	called
data	cache	and	the	SRAMs	holding	addresses	of	 the	data	are	called	tag	cache.
This	discussion	assumes	 that	 the	microprocessor	 is	sending	a	16-bit	address	 to
access	a	memory	location	that	has	8	bits	of	data	and	that	the	cache	is	holding	128
of	the	possible	65,536	(216)	 locations.	This	means	that	the	width	of	the	tag	is	16
bits	 since	 it	must	 hold	 the	 address,	 and	 that	 the	 depth	 is	 128.	When	 the	CPU
sends	out	 the	16-bit	address,	 it	 is	compared	with	all	128	addresses	kept	by	 the
tag.	 If	 the	address	of	 the	requested	data	matches	one	of	 the	addresses	held	by
the	tags,	the	data	is	read	and	is	provided	to	the	CPU	(a	hit).	If	it	is	not	in	the	cache
(a	miss),	 the	 requested	data	must	be	brought	 in	 from	main	memory	 to	 the	CPU
while	a	copy	of	 it	 is	given	to	cache.	When	the	 information	is	brought	 into	cache,
the	contents	of	the	memory	locations	and	their	associated	addresses	are	saved	in
the	cache	(tag	cache	holds	the	address	and	data	cache	holds	the	data).

In	fully	associative	cache,	the	more	data	that	is	kept,	the	higher	the	hit	rate.
An	analogy	is	that	the	more	books	you	have	on	a	table,	the	better	the	chance	of
finding	the	book	you	want	on	the	table	before	you	look	for	it	on	the	book	shelf.	The
problem	with	fully	associative	is	that	if	the	depth	is	increased	to	raise	the	hit	rate,
the	number	of	comparisons	 is	 inefficient.	For	example,	a	 fully	associative	cache
with	a	depth	of	1024	requires	1024	comparisons,	and	that	is	too	time	consuming
or	needs	a	huge	circuit	to	compare	them	all	in	parallel.	On	the	other	hand,	with	a
depth	 of	 16	 the	 CPU	 ends	 up	 waiting	 for	 data	 too	 often.	 This	 is	 because	 the
operating	system	is	swapping	information	in	and	out	of	cache,	since	its	size	is	too
small.	 This	 replacement	 policy	 is	 discussed	 later.	 In	 the	 above	 example	 of	 128
depth,	the	amount	of	SRAM	for	tag	is	128	×	16	bits	and	128	×	8	for	data,	that	is,
256	bytes	for	tag	and	128	bytes	for	data	cache	for	a	total	of	384	bytes.	Although
the	above	example	used	a	total	of	384	bytes	of	SRAM,	it	 is	said	that	the	system
has	128	bytes	of	cache.	In	other	words,	the	data	cache	size	is	what	is	advertised.
The	SRAM	inside	the	cache	controller	provides	the	space	for	storing	the	tag	bits.
Tag	 bits	 are	 not	 included	 in	 cache	 size.	 In	 Figure  14-4,	 DRAM	 location	 F992

contains	data	0x85.	The	left	portion	of	the	figure	shows	when	the	data	is	moved
from	DRAM	to	cache.

Figure	14-4:	a	128-Byte	Fully	Associative	Cache	for	a	16-bit	System

Direct-mapped	cache
Direct-mapped	cache	is	the	opposite	extreme	of	fully	associative.	It	requires

only	one	comparison.	 In	 this	cache	organization,	 the	address	 is	divided	 into	 two
parts:	the	 index	and	the	tag.	The	index	is	the	lower	part	of	the	address,	which	is
directly	mapped	into	SRAM,	while	the	upper	part	of	the	address	is	held	by	the	tag
SRAM.

To	provide	a	1024	byte	direct-mapped	cache	to	a	16-bit	system,	A0	to	A10
are	the	index	and	A11	to	A15	are	the	tag.	Assuming	that	CPU	addresses	location
0xF7A9,	 the	7A9	goes	to	 the	 index	but	 the	data	 is	not	read	until	 the	contents	of
tag	location	7A9	is	compared	with	11110B.	If	it	matches	(its	content	is	11110),	the
data	 is	 read	 to	 the	 CPU;	 otherwise,	 the	 microprocessor	 must	 wait	 until	 the
contents	 of	 location	 F7A9	 are	 brought	 from	main	memory	DRAM	 into	 the	CPU
while	a	copy	of	it	is	issued	to	cache	for	future	reference.	There	is	only	one	unique
location	with	 index	address	of	7A9,	but	32	possible	tags	(25	=	32).	Any	of	 these
possibilities,	such	as	C7A9,	27A9,	or	57A9,	could	be	in	tag	cache.	In	such	a	case,
when	the	tag	of	a	requested	address	does	not	match	the	tag	cache,	a	cache	miss
occurs.	 Although	 the	 number	 of	 comparisons	 has	 been	 reduced	 to	 one,	 the
problem	of	accessing	information	from	locations	with	the	same	index	but	different
tag,	 such	 as	 F7A9	 and	 27A9,	 is	 a	 drawback.	 The	 SRAM	 requirement	 for	 this
cache	 is	shown	below.	While	 the	data	cache	 is	2K	bytes,	 the	 tag	requirement	 is
2K	×	5	=	10K	bits	or	about	1.25K	bytes.	See	Figure	14-5.

Figure	14-5:	a	2KB	Direct-Mapped	Cache	for	a	16-bit	System

Set	associative
This	cache	organization	is	in	between	the	extremes	of	fully	associative	and

direct	mapped.	While	in	direct	mapped	there	is	only	one	tag	for	each	index,	in	set
associative,	 the	 number	 of	 tags	 for	 each	 index	 is	 increased,	 thereby	 increasing
the	hit	rate.	In	2-way	set	associative,	there	are	two	tags	for	each	index,	and	in	4-
way	there	are	4	tags	for	each	index.	See	Figures	14-6	and	14-7.

Figure	14-6:	a	2KB	Two-way	Set	Associative	Cache	for	a	16-bit	System

	

Figure	14-7:	a	2KB	Four-way	Set	Associative	Cache	for	a	16-bit	System

Comparing	direct-mapped	and	2-way	set	associative,	one	can	see	that	with
only	 a	 small	 amount	 of	 extra	 SRAM,	 a	 better	 hit	 rate	 can	 be	 achieved.	 In	 this
organization,	if	the	microprocessor	is	requesting	the	contents	of	memory	location
0x41E6,	 there	 are	 2	 possible	 tags	 that	 could	 hold	 it,	 since	 cache	 circuitry	 will
access	index	0x1E6	and	compare	the	contents	of	both	tags	with	“0100	00”.	If	any
of	them	matches	it,	the	data	of	index	location	1E6	is	read	to	the	CPU,	and	if	none
of	the	tags	matches	“0100	00”,	the	miss	will	force	the	cache	controller	to	bring	the
data	from	DRAM	to	cache,	while	a	copy	of	it	is	provided	to	the	CPU	at	the	same
time.	In	4-way	set	associative,	the	search	for	the	block	of	data	starting	at	41E6	is
initiated	by	comparing	the	4	tags	with	“0100	000”,	which	will	increase	the	chance
of	having	the	data	in	the	cache	by	50%,	compared	with	2-way	set	associative.	As
seen	 in	 the	 above	 example,	 the	 number	 of	 comparisons	 in	 set	 associative
depends	on	the	degree	of	associativity.	 It	 is	2	for	2-way	set	associative,	4	 for	4-
way	set	associative,	8	for	8-way,	n	for	n-way	set	associative,	and	in	the	thousands
for	 fully	 set	 associative.	The	higher	 the	 set,	 the	better	 the	performance,	but	 the
amount	of	SRAM	required	for	tag	cache	is	also	increased,	making	the	8-way	and
16-way	associatives’	increased	costs	unjustifiable	compared	to	the	small	increase
in	hit	rate.	The	increase	in	the	set	also	increases	the	number	of	tag	comparisons.
Most	 cache	 systems	 that	 use	 this	 organization	 are	 implemented	 in	 4-way	 set
associative.

From	 a	 comparison	 of	 these	 two	 cache	 organizations,	 the	 difference
between	them	in	organization	and	SRAM	requirements	can	be	seen.	In	2-way,	the
tag	of	1K	×	6	and	data	of	1K	×	8	for	each	set	gives	a	total	of	14K	bits	[2	×	(1K	×	6
+	1K	×	8)	=	28K	bits].	In	4-way,	there	is	512	×	7	for	the	tag	and	512	×	8	for	data,
giving	 a	 total	 of	 32K	 bits	 [(512  ×  7	 +	 512	 ×	 8)	 ×	 4	 =	 32K	 bits]	 of	 SRAM
requirement.	Only	with	an	extra	4K	bits	the	hit	rate	improves	substantially.	As	the
degree	of	associativity	is	increased,	the	size	of	the	index	is	reduced	and	added	to

the	tag	and	this	increases	the	tag	cache	SRAM	requirement,	but	the	size	of	data
cache	 remains	 the	 same	 for	 all	 cases	 of	 direct	 map,	 2-way,	 and	 4-way
associative.	These	concepts	are	clarified	further	in	Examples	14-1,	14-2,	and	14-
3.

Example	14-1

This	example	shows	directed-mapped	cache	for	16M	main	memory.

	

	

Example	14-2

This	example	shows	2-way	set	associative	mapped	cache	for	16M	main	memory.

	

	

Example	14-3

This	example	shows	4-way	set	associative	mapped	cache	for	16M	main	memory.

Review	Questions
1.							Cache	is	made	of	_________	(DRAM,	SRAM).

2.							From	which	does	the	CPU	asks	for	data	first,	cache	or	main	memory?

3.							Rank	the	following	from	fastest	to	slowest	as	far	as	the	CPU	is	concerned.

(a)	main	memory													(b)	register									(c)	cache	memory

4.							In	fully	associative	cache	of	512	depth,	there	will	be	____	comparisons	for
each	data	request.

5.							Which	cache	organization	requires	the	least	number	of	comparisons?

6.							A	4-way	set	associative	organization	requires	_____	comparisons.

Section	14.2:	Cache	Memory	and	Multicore	Systems
In	systems	with	cache	memory,	 there	must	be	a	way	to	make	sure	 that	no

data	is	lost	and	that	no	stale	data	is	used	by	the	CPU,	since	there	could	be	copies
of	data	in	two	places	associated	with	the	same	address,	one	in	main	memory	and
one	 in	cache.	A	sound	policy	on	how	to	update	main	memory	will	ensure	 that	a
copy	 of	 any	 new	 data	 written	 into	 cache	 will	 also	 be	 written	 to	 main	 memory
before	it	is	lost	since	the	cache	memory	is	nothing	but	a	temporary	buffer	located
between	 the	 CPU	 and	 main	 memory.	 To	 prevent	 data	 inconsistency	 between
cache	 and	 main	 memory,	 there	 are	 two	 major	 methods	 of	 updating	 the	 main
memory:	(1)	write-through	and	(2)	write-back.	The	difference	has	to	do	with	main
memory	traffic.

Write-through
In	write-through,	the	data	will	be	written	to	cache	and	to	main	memory	at	the

same	time.	Therefore,	at	any	given	time,	main	memory	has	a	copy	of	valid	data
contained	 in	 cache.	 At	 the	 cost	 of	 increasing	 bus	 traffic	 to	 main	 memory,	 this
policy	will	make	sure	that	main	memory	always	has	valid	data,	and	if	the	cache	is
overwritten,	the	copy	of	the	latest	valid	data	can	be	accessed	from	main	memory.
See	Figure	14-8.

Figure	14-8:	Method	of	Updating	Main	Memory

	

Write-back	(copy-back)
In	the	write-back	(sometimes	called	copy-back)	policy,	a	copy	of	the	data	is

written	 to	 cache	 by	 the	 processor	 and	 not	 to	 main	 memory.	 The	 data	 will	 be
written	to	main	memory	by	the	cache	controller	only	if	cache’s	copy	is	about	to	be
replaced	with	another	data.	The	cache	has	an	extra	bit	 called	 the	dirty	bit	 (also
called	the	altered	bit).	If	data	is	written	to	cache,	the	dirty	bit	is	set	to	1	to	indicate
that	the	cache	data	is	new	data	that	exists	only	in	cache	and	not	in	main	memory.
At	 a	 later	 time,	 the	 cache	 data	 is	 written	 to	 main	 memory	 and	 the	 dirty	 bit	 is
cleared.	In	other	words,	when	the	dirty	bit	is	high	it	means	that	the	data	in	cache
has	 changed	 and	 is	 different	 from	 the	 corresponding	 data	 in	 main	 memory;
therefore,	the	cache	controller	will	make	sure	that	before	erasing	the	new	data	in

cache,	a	copy	of	it	is	given	to	main	memory.	Getting	rid	of	information	in	cache	is
often	 referred	 to	 as	 cache	 flushing.	 This	 updating	 of	 the	 main	 memory	 at	 a
convenient	 time	 can	 reduce	 the	 traffic	 to	 main	 memory	 so	 that	 main	 memory
buses	are	used	only	 if	 cache	has	been	altered.	 If	 the	cache	data	has	not	been
altered	and	 is	 the	same	as	main	memory,	 there	 is	no	need	 to	write	 it	again	and
thereby	 increase	 the	 bus	 traffic	 as	 is	 the	 case	 in	 the	 write-through	 policy.	 See
Figure	14-8.

Cache	coherency
In	systems	in	which	main	memory	is	accessed	by	more	than	one	processor

(DMA	 or	multiprocessors),	 it	 must	 be	 ensured	 that	 cache	 always	 has	 the	most
recent	data	and	 is	not	 in	possession	of	old	(or	stale)	data.	 In	other	words,	 if	 the
data	 in	 main	 memory	 has	 been	 changed	 by	 one	 processor,	 the	 cache	 of	 that
processor	will	 have	 the	 copy	 of	 the	 latest	 data	 and	 the	 stale	 data	 in	 the	 cache
memory	is	marked	as	dirty	(stale)	before	the	processor	uses	it.	In	this	way,	when
the	processor	 tries	 to	use	 the	stale	data,	 it	 is	 informed	of	 the	situation.	 In	cases
where	 there	 is	more	 than	one	processor	and	all	 share	a	common	set	of	data	 in
main	memory,	there	must	be	a	way	to	ensure	that	no	processor	uses	stale	data.
This	is	called	cache	coherency.

Cache	replacement	policy
What	happens	if	there	is	no	room	for	the	new	data	in	cache	memory	and	the

cache	controller	needs	to	make	room	before	it	brings	data	in	from	main	memory?
This	depends	on	the	cache	replacement	policy	adopted.	In	the	LRU	(least	recently
used)	algorithm,	the	cache	controller	keeps	account	of	which	block	of	cache	has
been	accessed	(used)	the	least	number	of	times,	and	when	it	needs	room	for	the
new	data,	this	block	will	be	swapped	out	to	main	memory	or	flushed	if	a	copy	of	it
already	 exists	 in	 main	 memory.	 This	 is	 similar	 to	 the	 relation	 between	 virtual
memory	and	main	memory.	The	other	 replacement	policies	are	 to	overwrite	 the
blocks	of	data	in	cache	sequentially	or	randomly,	or	use	the	FIFO	(first	in,	first	out)
policy.	Depending	on	the	computer’s	design	objective	and	its	intended	use,	any	of
these	replacement	policies	can	be	adopted.

Cache	fill	block	size
If	 the	 information	 asked	 for	 by	 the	 CPU	 is	 not	 in	 cache	 and	 the	 cache

controller	must	bring	it	in	from	main	memory,	how	many	bytes	of	data	are	brought
in	whenever	there	is	a	miss?	If	the	block	size	is	too	large	(let’s	say	5000	bytes),	it
will	be	too	slow	since	the	main	memory	is	accessed	normally	with	1	or	2	WS.	At
the	other	extreme,	if	the	block	is	too	small,	there	will	be	too	many	cache	misses.
There	must	 be	 a	middle-of-the-road	 approach.	 The	 block	 size	 transfer	 from	 the
main	 memory	 to	 CPU	 (and	 simultaneous	 copy	 to	 cache)	 varies	 in	 different
computers,	 anywhere	 between	 32	 and	 512	 bytes.	 If	 the	 block	 size	 is	 32	 bytes,
then	it	is	called	the	8-line	cache	refill	policy,	where	each	line	is	4	bytes	of	the	32-
bit	data	bus.

Moore’s	Law
In	 the	 mid	 1960s,	 Intel	 cofounder	 Gordon	 Moore	 made	 the	 following

astounding	prediction:	“The	number	of	transistors	that	would	be	incorporated	on	a
silicon	die	would	double	every	18	months	for	the	next	several	years.”	Examining
some	of	 the	chips	on	the	market	shows	how	this	prediction	has	come.	 In	recent
years	 the	number	of	gates	on	a	single	chip	has	 reached	 to	over	a	billion	gates.
Many	vendors	of	ARM	are	using	a	large	number	of	gates	to	incorporate	features
such	 as	 cache	 and	 multicore	 into	 a	 single	 chip.	 In	 this	 part	 we	 will	 examine
modern	CPUs	and	their	caches.

Level	1,	Level	2,	and	Level	3	caches
In	many	new	CPUs,	the	concept	of	level	2	(L2)	cache	is	being	introduced.	In

such	processors,	we	have	few	K	bytes	of	cache	for	code	(instruction)	and	another
few	K	 bytes	 of	 cache	 for	 data,	 feeding	 code	 and	 data	 to	 the	 fetch	 unit.	 This	 is
called	level	1	(L1)	cache.	See	Figure	14-9.	Many	of	the	new	CPUs	also	have	L2
cache.	 While	 L1	 cache	 feeds	 code	 (instruction)	 and	 data	 into	 the	 fetch	 and
execution	units	and	is	part	of	the	inner	working	of	the	CPU,	the	Level	2	cache	is
sitting	outside	the	CPU	die	but	still	on	the	same	package	as	the	CPU	itself.	Since
the	L1	cache	is	on	the	same	die	as	the	CPU,	it	works	at	the	same	clock	speed	as
the	CPU.	For	example,	if	a	given	ARM	has	clock	speed	of	800	MHz,	then	the	L1
cache	 feeds	 the	CPU	 information	at	 that	speed.	L2	cache	works	at	a	 fraction	of
the	CPU	speed.	For	example,	if	a	given	ARM	has	clock	speed	of	1	GHz,	then	the
L2	cache	feeds	 the	CPU	information	at	200	MHz.	When	an	ARM	with	L2	cache
brings	in	code	and	data	from	externally	located	DRAM	memory,	it	places	them	in
L2	 cache.	 Then	 the	 memory	 management	 unit	 of	 the	 core	 CPU	 brings	 in	 the
information	from	the	L2	cache	and	separates	the	code	and	data,	placing	each	in
data	or	code	L1	caches	(Harvard	architecture).	See	Figure	14-9.

Figure	14-9:	L2	Cache	Feeding	Code	and	Data	to	L1	Caches

Notice	 that	code	and	data	caches	are	separate,	which	 is	not	 the	case	with
the	L2	cache.	L2	cache	is	unified	cache	meaning	that	the	cache	is	used	for	both
code	 and	 data.	 The	 amount	 allocated	 to	 data	 and	 code	 varies	 dynamically,
depending	 on	 the	 nature	 of	 the	 program	being	 run.	 If	 the	 program	being	 run	 is
more	data	 intensive,	 then	more	of	 the	L2	 cache	 is	allocated	 to	data.	With	CPU
speed	rising	above	1	GHz,	the	biggest	problem	is	external	(that	is,	external	to	the
CPU	chip)	memory	access	time.	For	that	reason,	in	some	high-performance	ARM-
base	 systems	 for	 Windows	 and	 Linux	 the	 designers	 place	 level	 3	 (L3)	 cache
outside	 the	CPU	on	 the	motherboard	 to	speed	up	 the	external	memory	access.
This	L3	cache	is	sitting	between	the	CPU	chip	and	DRAM	memory	module	on	the
motherboard.	See	Figures	14-10.

Figure	14-10:	L1,	L2,	and	L3	Cache

In	some	new	ARM	processors	with	multiple	cores	there	is	L2	cache	on	the
same	package	as	the	CPU,	but	located	outside	the	CPU	die.	In	such	a	processor
one	can	summarize	the	role	of	L1–L3	caches	as	follows:

1.							The	speed	of	the	L1	cache	is	the	same	as	the	CPU	speed,	since	it	must

feed	the	CPU	as	fast	as	the	instructions	are	executed.

2.							L2	cache	works	at	the	a	fraction	of	the	CPU	since	it	is	on	the	same
package	as	the	CPU.

3.							L3	cache	works	at	a	fraction	of	the	speed	of	the	bus	since	it	is	located
outside	the	CPU	package.

Hyper-Threading
In	 the	 new	 CPUs,	 the	 concept	 of	 multithreaded	 execution	 is	 being

introduced.	First,	 the	definition	of	 thread:	 It	 is	 a	 series	of	 parallel	 programs	 that
can	 run	 on	 different	 CPUs	 simultaneously.	 In	 the	 multiprocessor	 environment,
each	program	 is	given	 its	own	CPU	and	memory.	Vendors	place	multiple	CPUs
into	a	single	chip	and	called	 it	hyper-threading.	Therefore,	hyper-threading	 in	 its
simplest	 form	 is	 to	allow	a	single	CPU	 to	execute	 two	or	more	 threads	of	 code
simultaneously.	Of	course,	to	do	that	the	CPU	must	be	equipped	with	internal	logic
and	resources	 to	execute	 the	 threads.	The	early	ARM	CPUs	were	not	equipped
with	hyper-threaded	 technology,	since	 it	 requires	 large	amounts	of	 transistors	 to
duplicate	many	of	the	resources	inside	the	CPU.	As	far	as	the	operating	system	is
concerned,	the	CPU	with	hyper-threaded	capability	appears	to	be	multiple	logical
CPUs	 inside	a	 single	physical	CPU.	Therefore,	 to	 take	 full	 advantage	of	 hyper-
threading	 technology,	 both	 the	 operating	 system	 and	 the	 application	 must	 be
rewritten	 (or	 reconfigured)	 to	make	 them	 threaded-aware.	 The	 ideal	 situation	 in
the	multithreaded	environment	is	to	write	the	application	programs	so	that	threads
can	execute	independently	of	each	other.	However,	that	is	not	the	case	in	the	real
world.	Since	both	logical	processors	inside	the	hyper-threaded	CPU	use	the	same
bus	to	access	memory,	they	can	get	in	each	other’s	way	and	slow	down	program
execution.	Figure	12-11	shows	the	system	bus	access	for	the	threaded	CPU	and
multiprocessing.	Note	 that	 in	 threaded	CPUs,	 internal	 logical	CPUs	must	 share
the	system	bus	access.	This	 is	 in	contrast	 to	using	multiple	processors	 in	which
each	CPU	has	its	own	access	to	the	system	bus.

Figure	14-11:	Hyper-threaded	CPU	vs.	Multiple	Processors

In	 computer	 architecture	 literature	 the	 words	 threads	 and	 tasks	 are	 used
interchangeably.	However,	 there	 is	a	difference	between	a	 task	and	a	 thread.	 In
multitasking	you	are	 running	multiple	 tasks	such	as	playing	music,	 typing	 into	a
word	processor,	and	running	a	virus	scan	all	on	a	single	CPU.	In	multitasking	the
CPU	switches	from	one	task	to	another	in	a	round	robin	(circular)	fashion,	giving
each	 task	a	slice	of	 the	CPU’s	 time.	 In	contrast,	 true	multithreading	attempts	 to
parallelize	the	execution	of	a	single	program	in	order	to	speed	up	the	execution	of
that	program.	Not	all	applications	lend	themselves	to	parallelization	and	that	is	the
reason	that	not	all	programs	benefit	equally	 from	multithreaded	CPUs.	For	more
discussion	of	multithreading	and	multitasking,	see	the	following	article:

http://arstechnica.com/articles/paedia/cpu/hyperthreading.ars

Multicore	Technology
Many	newer-generation	of	CPUs	have	what	 is	called	multicore	 technology.

Multicore	 packs	 two	or	more	 independent	microprocessors	 (called	 cores)	 into	 a
single	chip.	At	this	time,	many	vendors	are	introducing	the	ARM	chips	with	dual-
core	 and	 quad-core	 features.	 Many	 of	 them	 are	 working	 on	 processors	 with	 8
cores.	 In	 the	dual-core	CPU,	almost	everything	 is	doubled,	which	 is	 like	putting
two	 physical	 CPUs	 into	 a	 single	 chip.	 The	 difference	 between	 multicore	 and
multiprocessor	 CPUs	 is	 that	 in	 the	multicore	 CPU	 there	 is	 one	 pathway	 to	 the
system	memory	 for	 the	CPU	while	 in	 the	multiprocessor	CPUs	 each	 processor
has	its	own	memory	space	independent	of	the	others.	See	Figure 14-12.

http://arstechnica.com/articles/paedia/cpu/hyperthreading.ars

Figure	14-12:	An	Example	of	Dual-Core	Processor

Review	Questions
1.							What	does	write-through	refer	to?

2.							Which	one	increases	the	bus	traffic,	write-through	or	write-back?

3.							What	does	LRU	stand	for,	and	how	is	it	used?

4.							What	does	cache	refill	policy	of	4	lines	refer	to?

5.							True	or	false.	Some	ARM	chips	come	with	on-chip	L1	cache.

6.							True	or	false.	All	ARM	chips	come	with	on-chip	L2	cache.

7.							True	or	false.	All	ARM	chips	have	the	hyper-threading	feature.

8.							What	is	the	difference	between	multicore	and	multiprocessor?

Answers	to	Review	Questions
Section	14.1

1.							SRAM																																																																			

2.							Cache																			

3.							Register,	cache,	and	main	memory

4.							512

5.							Direct	map

6.							4

Section	14.2
1.							The	CPU	writes	to	cache	and	main	memory	at	the	same	time	when

updating	main	memory.

2.							Write-through

3.							LRU	(least	recently	used)	is	a	cache	replacement	policy.	When	there	is	a
need	for	room	in	the	cache	memory	the	cache	controller	flushes	the	LRU
data	to	make	room	for	new	data.

4.							When	the	cache	is	filled	with	new	data,	it	is	done	a	minimum	of	4	lines	(4	×
4	=	16	bytes)	at	a	time.

5.							True

6.							False

7.							False

8.							In	multicore,	we	have	several	CPUs	inside	a	single	chip	accessing	the
same	main	memory	space,	while	in	multiprocessor,	each	CPU	has	its	own
memory	space.

	

Chapter	15:	MMU,	Virtual	Memory	and	MPU
in	ARM

Many	 of	 the	 ARM	 chips	 come	 with	 on-chip	 MMU	 (memory	 management
unit).	The	MMU	is	responsible	for	the	virtual	memory.	Using	the	ARM	for	operating
systems	 such	 as	 Linux	 and	Microsoft	Windows,	 one	 needs	 the	 virtual	memory.
This	chapter	examines	the	concepts	of	virtual	memory.	Section	15.1	provides	an
introduction	to	virtual	memory	of	the	ARM	and	its	MMU.	In	Section	15.2,	some	of
the	 registers	 of	 MMU	 responsible	 for	 operation	 and	 access	 permission	 are
discussed.	An	overview	of	MPU	(memory	protection	unit)	of	ARM	 is	provided	 in
Section	15.3.

SECTION	15.1:	MMU	and	Virtual	Memory	in	ARM
Some	of	 the	high	end	of	ARM	microprocessors	 such	as	ARM9	come	with

on-chip	MMU	allowing	to	implement	virtual	memory	for	operating	systems	such	as
Linux	 and	 Microsoft	 Windows.	 Due	 to	 complexity	 associated	 with	 the	 virtual
memory	 many	 chapters	 are	 dedicated	 to	 it	 in	 operating	 system	 books.	 In	 this
chapter,	we	simply	provide	an	overview	of	the	resources	available	in	ARM	for	the
implementation	of	virtual	memory	and	memory	protection.	

What	is	virtual	memory?
A	CPU	with	 virtual	memory	 is	 fooled	 into	 thinking	 that	 it	 has	access	 to	an

unlimited	amount	of	physical	memory.	DRAM	primary	memory	is	also	called	main
memory	or	physical	memory.	In	this	scheme,	every	time	the	CPU	looks	for	certain
information	 (code	 or	 data),	 the	 operating	 system	 will	 first	 search	 for	 it	 in	 main
DRAM	 memory	 and	 if	 it	 is	 not	 there,	 it	 will	 bring	 it	 into	 RAM	 from	 secondary
memory	(hard	disk	or	flash	memory).	What	happens	if	there	is	no	room	in	RAM?	It
is	the	job	of	the	operating	system	to	swap	information	out	of	RAM	and	make	room
for	 new	 data.	 Which	 data	 will	 be	 swapped	 out	 depends	 on	 how	 the	 operating
system	 is	designed.	Some	operating	systems	use	 the	LRU	(least	 recently	used)
algorithm	 to	 swap	 data	 in	 and	 out	 of	 primary	 memory	 (DRAM).	 In	 the	 LRU
method,	 the	 operating	 system	 keeps	 account	 of	which	 data	 has	 been	 used	 the
least	number	of	times	in	a	certain	period,	and	when	there	is	need	for	room	it	will
swap	out	the	least	recently	used	data	to	hard	disk	to	make	room	for	the	new	data.
The	total	amount	of	RAM	on	an	ARM-based	computer	could	be	maximum	of	4G
with	a	hard	disk	capacity	of	500G	bytes,	but	the	CPU	is	fooled	into	thinking	that	it
has	access	to	all	500G	of	memory	(or	just	the	amount	of	the	swap	space	allocated
on	the	disk.)	Among	 the	operating	systems,	Microsoft	Windows	2000,	XP,	Vista,
Windows	 7	 and	 8,	 all	 the	 variations	 of	Unix	 and	 Linux	 (including	Android),	 Sun
Microsystems’	Solaris,	and	Apple	Mac	OS	X	use	the	capability	of	the	CPU’s	virtual
memory.

In	systems	without	virtual	memory,	only	one	task	can	be	active	at	a	time	and
all	other	tasks	are	sitting	idle	(dormant).	In	multitasking	operating	systems	such	as
Microsoft	Windows	and	Linux	each	 task	 is	given	a	slice	of	 the	CPU’s	 time,	and
many	 tasks	 can	 be	 active	 concurrently.	 For	 example,	 a	word	 processor	 can	 be
used	while	 the	web	 browser	 is	 receiving	 and	 sending	 data	 via	 network	 card,	 a
spreadsheet	program	 is	doing	 some	calculations,	 and	an	MP3	player	 is	 playing
music.	Of	course,	since	there	is	only	one	microprocessor	taking	care	of	all	these
tasks,	it	is	the	job	of	the	multitasking	operating	system	to	slice	the	CPU	time	and
assign	each	 task	 time	on	a	circular	 rotational	basis.	 If	 there	are	 too	many	 tasks
and	 all	 are	 active,	 they	 all	 seem	 to	 be	 slow	 since	 each	 task	 gets	 less	 time
(attention)	 from	 the	 CPU.	Of	 course,	 one	 way	 to	 solve	 this	 slowness	 is	 to	 use
high-performance	CPUs	with	GHz	speed.	The	multitasking	operating	system	can
be	 cooperative	 or	 preemptive.	 In	 cooperative	 multitasking,	 two	 or	 more
applications	cooperate	with	each	other	in	taking	turns	to	use	the	CPU	alternately.

If	one	application	misbehaves,	it	can	cause	the	whole	system	to	be	unstable	and
crash.	 In	preemptive	multitasking,	a	 task	can	be	 interrupted	preemptively	at	any
point	by	another	program.	If	a	task	is	interrupted	by	another	task,	its	present	state
will	be	saved	by	the	operating	system	and	it	will	be	serviced	after	the	new	task	is
given	a	chance	to	use	the	CPU.	In	the	multitasking	operating	system	it	is	the	job
of	 the	 OS	 to	 make	 sure	 the	 tasks	 are	 available	 in	 the	 DRAM	 for	 the	 CPU	 to
execute	them.	Since	we	have	limited	DRAM	space	and	lots	of	tasks	in	hard	disk,	it
is	 the	OS	 that	makes	sure	 the	 tasks	are	swapped	 in	and	out	of	DRAM	when	 it
runs	out	of	 the	space	 in	DRAM.	To	make	 the	 job	of	OS	easier	 in	 implementing
virtual	memory,	the	CPUs	have	what	is	called	memory	management	unit	(MMU).
This	on-chip	MMU	is	available	only	 in	high-end	CPUs.	Many	ARM	chips	used	in
embedded	 products	 do	 not	 have	 the	 on-chip	 MMU	 for	 the	 virtual	 memory
implementation.	The	ARM9	chips	have	on-chip	MMU.

Segmentation	vs.	paging
To	 implement	 virtual	 memory,	 two	 methods	 are	 used:	 segmentation	 and

paging.	 In	segmentation,	 the	size	of	 the	data	swapped	 in	and	out	can	vary	 from
few	hundred	bytes	 to	a	 few	megabytes.	 In	paging,	 the	size	 is	a	multiple	of	one
page.	 Although	 the	 page	 can	 be	 1K,	 4K,	 64K,	 or	 1M	 bytes,	 but	 unlike
segmentation,	its	size	is	fixed.	We	use	4K	bytes	page	for	sake	of	simplicity.

In	segmentation	 the	whole	segment	of	a	program	goes	 to	memory	next	 to
each	 other.	When	 the	 segmentation	 is	 used	 after	 some	memory	 allocation	 and
deletion,	the	available	memory	becomes	fragmented	into	small	sections	of	varied
sizes;	 and	 the	 operating	 system	 must	 continuously	 move	 contents	 of	 memory
around	 to	make	 room	 for	 the	new	segment,	which	could	be	any	size.	Paging	 is
used	widely	since	it	prevents	memory	fragmentation.	Paging	makes	the	job	of	the
operating	 system	much	 easier	 since	 all	 the	 processes	 will	 be	 a	 multiple	 of	 4K
bytes.	If	the	size	of	a	process	is	not	a	multiple	of	4K	bytes	(which	is	the	case	most
of	 the	 time),	 the	 operating	 system	will	 leave	 the	 unused	 portion	 empty	 and	 the
next	 file	 will	 be	 placed	 on	 a	 4K	 boundary.	 This	 is	 similar	 to	 the	 cluster	 in	 hard
disks.	The	disk	allocates	memory	to	each	file	in	clusters.	For	example,	if	4	sectors
are	used	for	each	cluster,	each	cluster	can	store	2048	(4	×	512)	bytes	per	sector.
If	a	given	file	is	12,249	bytes,	the	operating	system	will	assign	a	total	of	7	clusters
or	14,168	 (7	×	2024	=	14,168)	bytes.	All	bytes	between	12,249	and	14,168	are
unused.	This	results	in	wasting	some	memory	space	on	the	disk	but	at	the	same
time	makes	 the	design	of	 the	disk	controller	and	operating	system	much	easier.
This	concept	applies	as	well	to	the	paging	method	of	virtual	memory	as	far	as	the
allocation	of	main	memory	 (DRAM)	 to	 data	 and	 code	 is	 concerned.	See	Figure
15-1.	 One	 can	 briefly	 define	 the	 segmentation	 and	 paging	 virtual	 memory
mechanisms	 in	 the	 following	 statement.	 In	 segmentation	 virtual	 memory,	 the
process	can	be	any	byte	size,	 located	anywhere	 it	 can	 fit	 into	main	memory.	 In
paging	virtual	memory,	the	process	is	always	a	multiple	of	4096	bytes	and	located
on	a	4K-byte	boundary	in	main	memory.

	

Figure	15-1:	Paging	vs.	Segmentation

All	 high-performance	 RISC	 microprocessors	 such	 as	 ARM	 have	 paging
virtual	memory	 and	 very	 few	 use	 the	 segmentation	method	 any	more.	 The	 x86
has	 both	 segmentation	 and	 paging	 options.	 The	 reason	 that	 x86	 Pentium
processors	supports	segmentation	(in	addition	to	paging)	is	that	they	had	to	stay
compatible	with	the	80286	microprocessor.

Paging	sizes	in	ARM
In	paging	virtual	memory,	main	memory	is	divided	into	fixed	4K-byte	chunks.

The	ARM	supports	the	page	sizes	1K	(tiny),	4K	(small),	64K(large),	or	1M(section)
bytes.	Some	recent	ARM	chips	no	longer	support	the	1K	(tiny)	page	size.	The	1M
byte	 page	 size	 is	 available	 for	 use	 in	 graphics	 intensive	 applications.	 In	 this
chapter	 we	 only	 examine	 the	 4K(small)	 and	 1M(section)	 page	 sizes.	 If	 a	 given
piece	of	code	or	data	is	not	present	in	main	memory,	the	operating	system	brings
it	 into	main	memory	from	the	hard	disk,	4Kbyte	at	a	time.	Next,	the	terms	virtual
address	and	physical	address	in	the	ARM	are	contrasted.

Physical	and	virtual	address
As	discussed	 in	previous	chapters,	physical	addresses	 for	an	 instruction	 in

the	ARM	 is	 the	 value	held	 by	 the	program	counter	 (R15)	 register.	 The	physical
memory	is	the	Flash	ROM,	SRAM,	I/O	ports,	and	DRAM	memory	accessed	by	the
CPU.	 As	 we	 have	 seen,	 the	 4GB	 memory	 has	 addresses	 in	 the	 range	 of
0x00000000	to	0xFFFFFFFF.	In	virtual	memory,	however,	the	physical	address	of
blocks	of	data	or	code	 is	held	by	 look-up	 tables.	Among	the	 information	held	by
this	 look-up	 table,	 in	 addition	 to	 the	 physical	 address	 of	 the	 code	 or	 data,	 is
access	 permission	 (AP).	 This	 provides	 the	 ARM	 system	 with	 a	 protection
mechanism.	The	lack	of	protection	of	the	operating	system	or	users’	programs	is
one	of	 the	weaknesses	of	CPUs	such	as	8088/8086	used	 in	 the	 first	 IBM	PC	in
1981.	This	weakness	 is	due	to	 the	 inability	of	 these	processors	 to	block	general
instructions	 from	 accessing	 the	 core	 (kernel)	 of	 the	 operating	 system.	 In	 these
CPUs,	 any	 program	 can	 access	 and	 go	 from	 any	 code	 section	 to	 any	 code

section,	 so	 it	 is	 easy	 to	 crash	 the	 system.	 In	 contrast,	 the	 ARM	 with	 virtual
memory	 capability	 provides	 resources	 to	 the	 operating	 system	 that	 prevent	 the
user	 from	 either	 accidentally	 or	maliciously	 taking	 over	 the	 core	 (kernel)	 of	 the
operating	 system	 and	 forcing	 the	 system	 to	 crash.	 Of	 course,	 this	 idea	 of
protection	 is	 nothing	new;	 it	 is	 commonly	 used	 in	mainframes,	where	 it	 is	 often
referred	to	as	user	and	supervisor	mode.	We	will	discuss	the	access	permission	in
next	 section.	 In	 the	 ARM	 system	 with	 virtual	 memory	 implemented,	 the	 virtual
address	 is	 the	 address	 shown	 by	 a	 given	 register	 of	 ARM	 as	 seen	 by	 the
compiler/assembler.	The	physical	address	is	32-bit	address	that	is	placed	on	the
32	pin	of	 the	CPU	 to	 locate	an	actual	physical	 location	such	as	a	RAM,	 I/O,	or
ROM	 location.	This	physical	address	allows	access	 to	any	4G	bytes	of	memory
locations	 of	 ARM	 memory	 space.	 We	 must	 be	 reminded	 that	 to	 access	 any
memory	location	in	the	4G	bytes	address	space	of	ARM,	we	need	the	entire	32-bit
addresses	of	A31-A0.

Going	from	a	virtual	address	to	a	physical	address	in	4K	page
size

In	paging,	the	virtual	address	is	divided	into	three	parts.	They	are:

a)	 	 	 	 	 	The	upper	12	bits	(A31–A20)	are	used	for	an	entry	 into	what	 is	called	a
translation	table	or	page	directory.	There	is	a	32-bit	register	inside	the	ARM
MMU	that	holds	this	physical	base	address	of	the	translation	table.	Since	the
upper	12	bits	of	the	virtual	address	point	to	the	entry	in	the	translation	table,
there	can	be	4,096	entries	(212	=	4096).	Each	entry	in	the	translation	table	is
4	bytes	and	the	pointer	to	each	entry	should	be	word	aligned.	Note	that	the
two	LSB	bits	 of	 the	pointer	 to	 an	entry	 in	 the	 translation	 table	are	 zeroes.
Figure	15-2	shows	how	bits	A31	to	A20	of	virtual	address	and	bits	31	to	14
of	Translation	Table	Base	Register	are	concatenated	to	produce	a	pointer	to
an	entry	in	the	translation	table.

Figure	15-2:	Accessing	Translation	Table

Each	entry	in	the	translation	table	is	4	bytes	and	called	descriptor.	Of	the	4
bytes,	 the	 upper	 22	 bits	 are	 used	 to	 point	 to	 a	 second	 table	 called	page
table.	This	second	 table	holds	 the	physical	address	of	 the	4K	page	 frame.
The	next	step	shows	how	the	correct	entry	in	the	second	table	(page	table)
is	located.

b)						A19–A12	(8	bits	total)	of	the	virtual	address	are	used	to	point	to	one	of	the
page	table	entries.	Since	the	middle	8	bits	of	the	virtual	address	point	to	the
entry	 in	 the	 second-level	 page	 table	 directory,	 there	 can	 be	 256	 page
directories	(28	=	256).	Figure	15-3	shows	how	A19–A12	(8	bits	total)	of	the
virtual	 address	 and	 the	 upper	 22	 bits	 of	 translation	 table	 descriptor	 are
concatenated	to	produce	pointer	to	an	entry	in	the	page	table.

Figure	15-3:	Accessing	Page	Table

Again,	each	entry	 in	page	 table	 (second	 table)	has	4	bytes.	The	upper	20
bits	are	for	A31–A12	of	the	physical	address	of	where	data	is	located.

c)							The	lower	12	bits	of	the	physical	address	are	the	lower	12	bits	of	the	virtual
address	(A11-A0).	See	Figure	15-4.	In	other	words,	only	the	lower	12	bits	of
the	virtual	address	match	the	 lower	12	bits	of	 the	physical	 location	 in	RAM
(or	ROM)	where	data	is	located,	and	the	upper	20	bits	of	the	virtual	address
must	 go	 through	 two	 levels	 of	 translation	 tables	 to	 get	 the	 actual	 physical
address	of	the	beginning	page	where	the	data	is	held.

Figure	15-4:	4K	Paging	Mechanism	in	ARM

The	above	scheme	seems	like	a	very	long	and	inefficient	procedure	for	each
memory	access,	and	it	is.	This	is	the	reason	for	the	existence	of	TLB	(translation
lookaside	buffer)	inside	the	CPU	itself.	Next,	we	examine	how	TLB	works.

TLB	and	paging
	 The	 ARM	 keeps	 a	 table	 for	 the	 32	most	 recently	 used	 pages	 present	 in

main	memory.	 This	 table	 is	 called	 the	 translation	 lookaside	 buffer	 (TLB)	 and	 is
kept	 inside	 the	 ARM.	 The	 TLB	 holds	 (caches)	 the	 list	 of	 the	 most	 recently
(commonly)	used	physical	addresses	of	the	page	frames.	When	the	CPU	wants	to
access	a	piece	of	 information	 (data	or	 code)	by	providing	 the	 virtual	 address,	 it
first	compares	the	20-bit	upper	address	with	the	TLB	to	see	if	 the	table	entry	for
the	desired	page	is	already	inside	theMMU.	This	results	in	two	possibilities:

(1)				If	it	matches	(TLB	hit),	it	picks	the	20-bit	physical	address	(A31-A12)	of	the
page	and	combines	it	with	the	lower	12	bits	of	the	virtual	address	(A11-A0)
to	make	a	32-bit	physical	address	(A31-A0)	to	put	on	the	32	address	pins	to
fetch	the	data	(or	code);

(2)	 	 	 	 If	 it	 does	 not	match	 (TLB	miss),	 the	 CPU	walks	 through	 the	 table	 and
replaces	 the	 TLB	 entry.	 This	 will	 take	 several	 extra	 memory	 cycle	 times
since	it	must	go	through	2	levels	of	translation.	The	ARM	literature	refers	to
this	 translation	 as	 table-walking.	 In	 the	 4K	 page,	 there	 are	 two	 levels	 of
table-walking	 level	1	and	 level	2.	The	goal	 is	 to	have	minimum	page	faults
(TLB	misses)	and	avoid	table-walking.	To	do	that	we	can	increase	the	TLB
size.	Next,	we	discuss	the	pros	and	cons	of	bigger	TLBs.	See	Figure	15-5.

Figure	15-5:	Translation	Look	Aside	Buffer	in	ARM

	

The	bigger	the	TLB,	the	better
Let’s	assume	an	ARM	chip	has	the	TLB	with	64	entries.	That	means	the	TLB

inside	the	CPU	keeps	the	list	of	addresses	for	the	64	most	recently	used	pages,
which	allows	the	CPU	to	have	instant	access	to	256K	bytes	(64	×	4K	=	256K)	of
code	and	data	at	any	time	without	going	through	the	time-consuming	process	of
converting	the	virtual	address	to	a	physical	address	(two	levels	of	table-walking).
See	 Figure	 15-3.	 The	 64	 TLB	 entries	 use	 64	 ×	 32-bit	 of	 SRAM	 since	 the
addresses	are	32-bit	in	ARM.	Therefore,	one	way	to	avoid	the	process	of	virtual-
to-physical	address	translation	(to	maximize	TLB	hit)	is	to	increase	the	number	of
pages	held	by	the	TLB.	Then,	the	question	is	why	not	have	1024	entries	for	TLB
and	have	 instant	 access	 to	 4M	bytes	 (1024	×	 4K	=	 4,096K	=	 4M)	 of	 code	 and
data?	The	problem	is	searching	for	the	1024	entries	takes	time	even	if	we	have	a
very	 fast	 comparators	 and	 that	 defeats	 the	 purpose	 of	 TLB.	 Also	 using	 1024
entries	TLB	needs	1024	×	4	bytes	=4096	bytes	of	SRAM	inside	the	ARM.	With	64
entries	TLB	we	only	need	64	×	4	bytes	=	256	bytes	of	SRAM.	Obviously	 larger
TLB	is	more	expensive.	So	some	vendor	of	ARM	CPUs	might	use	2-way	or	4-way
set	associative	with	32	entries	 to	 reduce	 the	occurrence	of	page	 fault,	 that	 is	 to
reduce	 virtual-to-physical	 address	 translation	 time	 (table-walking).	 See	 the
reference	manual	for	vendor	of	your	ARM	chip	for	TLB	size	and	its	associativity.
Also	 see	 cache	 memory	 chapter	 for	 explanation	 of	 n-way	 set	 associative
concepts.	See	Example	15-1

Example	15-1

Assume	a	given	ARM	chip	has	32	entries	for	TLB.	After	caching	in	the	addresses
of	32	most	recently

used	pages	calculate	how	much	physical	memory	it	has	instant	access	to	before
using	table-walking

translation	for:

a)							4K	page														

b)							1M	section(page)

Solution:
a)						with	32	entries	TLB,	the	CPU	has	instant	access	to	128K	bytes	(32	×	4K	=

128K)	 of	 code	 and	 data	 at	 any	 time	 without	 going	 through	 the	 time-
consuming	process	of	two	levels	of	table-walking.

b)						with	32	entries	TLB,	the	CPU	has	instant	access	to	32M	bytes	(32	×	1M	=
32M)	 of	 code	 and	 data	 at	 any	 time	 without	 going	 through	 the	 time-
consuming	process	of	one	level	of	table-walking.

	

Going	from	a	virtual	address	to	a	physical	address	in	1M	page
size

Using	4K	bytes	page	size	can	result	in	too	many	page	faults	in	applications
such	as	graphics	where	the	files	are	large.	The	ARM	has	also	1M	page	size	but
the	ARM	literature	calls	it	section	instead	of	page.	In	section	size	of	1M	bytes,	the
virtual	address	is	divided	into	two	parts.	They	are:

a)	 	 	 	 	 	The	upper	12	bits	(A31–A20)	are	used	for	an	entry	into	translation	table,
just	like	the	4K	bytes	page.	A	32-bit	master	register	inside	the	ARM	holds	the
physical	 base	 address	 of	 the	 translation	 table,	 just	 like	 the	 4K	 paging
(actually	they	are	the	same	as	we	will	see	in	next	section).	Since	the	upper
12	bits	of	the	virtual	address	point	to	the	entry	in	the	translation	table,	there
can	be	4096	entries	 in	the	translation	table	(212	=	4096).	Each	entry	 in	 the
translation	table	is	4	bytes	and	is	called	section	descriptor.	Of	the	4	bytes	of
each	 section	 descriptor,	 the	 upper	 12	 bits	 are	 used	 for	 the	 upper	 12-bit
physical	address	(A31-A20)	of	the	1M	section	memory	section	frame.

b)	 	 	 	 	 		The	lower	20	bits	of	the	virtual	address	are	used	for	the	lower	20	bits	of
the	 physical	 address	 (A19-A0).	 See	 Figure	 15-6.	 In	 other	 words,	 only	 the
lower	20	bits	of	 the	virtual	address	match	 the	 lower	20	bits	of	 the	physical
block	 location	 (A19-A0)	 in	 RAM	 or	 ROM	 where	 data	 is	 located,	 and	 the
upper	 12	 bits	 of	 the	 virtual	 address	 must	 go	 through	 only	 one	 level	 of
translation	tables	to	get	the	actual	physical	address	of	the	beginning	memory
section	where	the	data	is	held.

Figure	15-6:	One	Level	Virtual-to-Physical	Address	Translation	for	1M	Page	in	ARM

	

As	 we	 can	 see	 from	 above	 scheme	 this	 is	 less	 time	 consuming	 going
through	one	level	of	table-walking	and	updating	TLB	instead	of	2	levels	of	table-
walking	 used	 for	 4K	 paging.	 The	 only	 problem	 is	 to	 bring	 in	 1M	 bytes	 of
information	 from	 hard	 drive	 into	 DRAM	 can	 be	 time	 consuming	 and	 it	 works
efficiently	if	the	files	are	large.

4	Gigabytes	of	virtual	memory
As	seen	in	Figure	15-6,	the	12	bits	of	virtual	address	pointing	to	translation

table,	 can	 have	 4,096	 (212)	 possible	 combinations.	 Each	 possible	 value	 can
access	 a	 1M	 bytes	 of	 physical	 memory.	 Therefore,	 we	 have	 212	 ×	 220	 =	 4
gigabytes	of	virtual	memory	for	the	ARM.	That	is	why	we	do	not	need	two	level	of
table	walking	when	we	use	1	MB	pages.	With	a	TLB	of	64	entries,	the	TLB	inside
the	CPU	can	have	64	 (out	 of	 the	4096)	1	MB	pages	of	 the	most	 recently	 used
sections,	which	allows	the	CPU	to	have	instant	access	to	64M	bytes	(64	×	1M	=
64M)	 of	 code	 and	 data	 at	 any	 time	 without	 going	 through	 the	 time-consuming
process	 of	 converting	 the	 virtual	 address	 to	 a	 physical	 address	 (1-level	 table-
walking).	Again,	it	must	be	emphasized	that	the	virtual	memory	and	its	protection
mechanism	is	not	available	in	all	ARM	products	such	as	ARM	Cortex-M	series.

Review	Questions
1.							True	or	false.	If	an	ARM	does	not	have	MMU,	then	physical	address	is	the

same	as	virtual	address.

2.							Virtual	memory	refers	to	___________	(main	DRAM,	hard	disk)	memory.

3.							How	does	the	operating	system	decide	which	code	(or	data)	should	be
abandoned	to	make	room	for	new	code?

4.							True	or	false.	ARM	supports	both	segmentation	and	paging.

5.							What	are	the	page	sizes	supported	by	the	ARM	MMU?

6.							True	or	false.	The	TLB	is	held	by	the	DRAM	main	memory.

7.							With	64	entries	for	TLB,	the	CPU	must	make	_____comparison	to	see	if	it
already	has	the	physical	address.

Section	15.2:	Page	Table	Descriptors	and	Access
Permission	in	ARM

In	this	section	we	examine	some	of	the	registers	used	in	the	MMU.	We	also
explore	access	permission	bits	in	the	page	descriptor	and	see	how	they	are	used
to	protect	memory	from	unwanted	access.	First,	we	examine	the	steps	the	system
goes	through	upon	power-up.

The	operating	system	role	in	multitasking	system
	 Upon	 powering	 a	 computer	 system	 with	 operating	 systems	 such	 as

Windows	and	Linux	it	goes	through	the	following	steps:

1)	 	 	 	 	 	Upon	 applying	 power,	 the	 CPU	 wakes	 up	 at	 an	 address	 held	 by	 the
program	counter.	This	address	is	assigned	to	ROM	chip.	The	ROM	chip	has
a	program	called	boot	program.	In	the	x86	PC	it	is	called	BIOS	(basic	input
output	system).

2)						The	boot	program	residing	in	ROM	tests	everything	in	the	system	including
the	CPU,	ROM,	DRAM	and	peripherals.	One	way	to	test	the	CPU	itself	is	by
writing	 a	 fixed	 value	 to	 a	 register	 and	 then	 moving	 the	 contents	 of	 that
register	to	another	register	until	the	value	has	gone	through	all	the	registers.
At	 the	 end	 if	 the	 original	 value	 is	 still	 the	 same,	 that	 means	 the	 CPU	 is
working	fine.	That	is	what	the	BIOS	of	x86	PC	does	upon	turning	the	system
on.	To	 test	 the	ROM	boot,	one	can	use	the	check-sum	byte	(or	check-sum
word)	to	make	sure	the	ROM	is	not	corrupted.	Another	important	job	of	the
boot	 program	 is	 to	 test	 the	 DRAMs	 and	 provides	 the	 amount	 of	 DRAM
installed	in	the	system	to	the	operating	system.	The	CMOS	chip	in	x86	PC
keeps	the	account	of	the	total	amount	of	DRAM	installed	and	other	system
information	that	OS	needs.

3)						The	last	thing	the	boot	program	does	is	it	loads	the	operating	system	from
hard	disk	into	DRAM	and	the	control	of	the	system	is	handed	over	to	the	OS.
The	OS	occupies	a	portion	of	DRAM	as	long	as	the	system	is	on.

4)	 	 	 	 	 	From	 then	on	any	 time	 the	user	activates	an	application	 (Web	browser,
word	processor,	…)	 the	OS	brings	 the	application	program	residing	 in	disk
into	DRAM	and	allocate	a	portion	of	DRAM	to	it.	The	scheduler	in	OS	runs
the	applications.	As	we	activate	more	and	more	applications,	 the	OS	 runs
out	 of	 space	 in	DRAM.	 This	 is	when	 the	memory	management	 of	 the	OS
kernel	starts	to	swap	the	applications	out	of	the	DRAM	back	into	hard	disk	to
create	 room	 in	 DRAM	 for	 new	 application	 programs.	 If	 we	 have	 small
amount	of	DRAM,	most	of	the	OS	time	(and	for	that	matter	the	CPU	time)	is
spent	 swapping	 files	 back	 and	 forth	 between	DRAM	and	 disk.	 That	 is	 the
reason	many	OSes	require	certain	minimum	amount	of	DRAM.	The	DRAM
must	be	large	enough	that	not	only	it	take	care	of	the	portion	of	OS	residing
in	DRAM	 (this	 portion	 called	 the	 kernel),	 but	 also	 to	 take	 care	 of	memory
needs	 of	 enough	 applications	 being	 run	 by	 the	 OS.	 And	 that	 is	 also	 the

reason	 the	 more	 DRAM	 you	 have	 in	 a	 systems	 the	 better	 the	 system
performance	 since	 the	CPU	 is	 running	 the	 applications	 instead	 of	 running
the	memory	management	part	 of	OS	kernel	 to	 swap	 information	back	and
forth	between	DRAM	and	hard	disk.	Next,	we	examine	the	resources	in	the
MMU	of	ARM	to	help	it	to	manage	virtual	memory.

The	Control	register	in	ARM
Many	 ARM	 chips	 used	 in	 embedded	 systems	 do	 not	 have	 MMU	 for	 the

virtual	memory.	Therefore	for	ARM	chips	without	MMU,	there	is	only	the	physical
address	as	we	have	seen	 in	previous	chapters.	The	ARM9	chip	has	an	on-chip
MMU.	There	 are	 16	 registers	 in	 a	 group	 of	 registers	 called	CP15	 and	 they	 are
designated	 as	 c0	 to	 c15.	 According	 to	 ARM	 manual	 “The	 system	 control
coprocessor	 (CP15)	 is	 used	 to	 configure	 and	 control	 the	ARM9	 processor.	 The
caches,	 Tightly-Coupled	 Memories	 (TCMs),	 Memory	 Management	 Unit	 (MMU),
and	most	other	system	options	are	controlled	using	CP15	registers.	You	can	only
access	 CP15	 registers	 with	 MRC	 and	 MCR	 instructions	 in	 a	 privileged	 mode.”
Next,	 we	 examine	 the	 role	 the	 major	 registers	 of	 c1,	 c2,	 and	 c3	 play	 in	 MMU
operation.

The	c1	Control	register	in	ARM
The	most	important	of	the	CP15	registers	is	the	c1	register.	The	c1	register

is	used	to	turn	on	the	MMU	of	ARM	among	other	things.	See	Figure	15-7.

Figure	15-7:	c1	Bits

We	 examine	 some	 of	 the	 bits	 of	 the	 c1	 register.	 Meanwhile	 examine	 the
other	 bits	 of	 c1	 register	 to	 see	 how	 it	 can	 be	 used	 to	 enable	 and	 disable	 the
caches.	See	Table	15-1.

Bits Name Function

0 M MMU	enable/disable:	0	=	disabled,	1	=	enabled.

1 A
Alignment	fault	enable/disable:

	0	=	Data	address	alignment	fault	checking	disabled,	1	=
enabled.

2 C Cache	enable/disable:	0	=	Cache	disabled	1	=	Cache	enabled.

7 B Endianness:	0	=	Little-endian,	1	=	Big-endian.

8 S System	protection.	It	modifies	the	MMU	protection	system.

9 R ROM	protection.	This	bit	modifies	the	ROM	protection	system.

12 I
ICache	enable/disable:	0	=	ICache	disabled	1	=	ICache
enabled.

13 V Location	of	exception	vectors:0	=	Normal,	1	=	High	exception
vectors.

14 RR
Replacement	strategy	for	ICache	and	DCache:

	0	=	Random	replacement	1	=	Round-robin	replacement.

15 L4
Determines	if	the	T	bit	is	set	when	load	instructions	change	the
PC:

0	=	loads	to	PC	set	the	T	bit,	1	=	loads	to	PC	do	not	set	T	bit

Table	15-1:	Bits	of	c1	Control	Register	in	ARM

M	bit
The	bit	 0	 of	 c1	 register	 is	 used	 to	 turn	 on	 the	MMU	since	upon	power-on

Reset	the	MMU	is	disabled.	

R	(read)	bit
This	bit	allows	code	or	data	to	be	write-protected.	For	example,	the	core	of

the	 operating	 system	 can	 be	 write-protected	 to	 prevent	 from	writing	 into	 it	 and
crashing	the	system.	In	the	case	of	old	DOS,	any	program	could	alter	the	core	of
the	operating	system	residing	in	main	memory	(DRAM),	thereby	crashing	the	PC.

S	(system)	bit
This	 bit	 allows	 a	 section	 of	 memory	 to	 be	 designated	 as	 system.	 For

example,	 the	core	of	 the	operating	system	can	be	designated	as	both	R	and	S,
which	prevents	the	user	program	from	writing	to	it	and	crashing	the	system.

c2	(Translation	Table	Base	Address)	register
Another	 important	CP15	register	 is	c2	 register.	As	we	can	see	 from	Figure

15-8,	the	lower	14-bits	of	32-bit	of	the	Translation	Table	Base	register	is	not	used.
The	CPU	uses	the	upper	18	bits	of	the	Translation	Table	Base	register	to	 locate
the	 starting	 address	 of	 the	 DRAM	 in	 which	 the	 first-level	 descriptor	 tables	 are
located.	We	will	see	more	about	this	soon.

Figure	15-8:	c2	Translation	Table	Base	register

c3	(Domain	access	control)	register
The	 ARM	 MMU	 uses	 register	 c3	 to	 divide	 the	 memory	 into	 16	 domains.

Since	the	c3	register	is	32-bit	we	can	get	total	of	16	domains	using	2	bits	for	each
domain.	See	Figure	15-9.	The	2-bits	for	each	Domain	are	used	to	assign	access

permission	to	a	given	block	of	memory.	They	are	as	follow:

00:	No	Access

01:	Client

10:	Reserved

11:	Manager

Figure	15-9:	c3	Domain	register

ARM	 provides	 protection	 mechanism	 by	 allowing	 any	 memory	 page
belonging	 to	data	or	 code	 to	be	assigned	Client	 (user)	 or	Manager	 (supervisor)
access	 levels.	While	operating	systems	are	always	assigned	 the	Manager	 level,
the	user	and	applications	such	as	word	processors	are	assigned	the	Client	level.
Using	this	mechanism	any	attempt	by	the	Client	to	take	over	the	operating	system
(Manager)	is	blocked.	As	we	see	next,	the	page	table	descriptor	uses	4	bits	(0000
to	1111)	to	select	one	of	the	16	Domains.	This	domain	selection	levels	of	Manager
and	Client	 along	with	 some	 bits	 in	 page	 table	 descriptor	 provides	 protection	 to
various	memory	pages	belonging	 to	kernel	and	various	 tasks.	Again,	 it	must	be
noted	 that	memory	page	access	permission	are	primarily	 controlled	 through	 the
use	of	domains	bits.	The	MMU	first	checks	the	domain	access	permission	before
it	uses	the	page	table	descriptor	to	see	if	it	is	allowed	to	access	the	memory.

The	physical	Locations	of	descriptor	Table
As	 we	 saw	 in	 c2	 register	 (Figure	 15-8),	 the	 lower	 14-bits	 of	 32-bit	 of	 the

Translation	Table	Base	Address	register	is	not	used.	The	CPU	uses	the	upper	18
bits	of	the	Translation	Table	Base	Address	register	to	find	the	starting	address	of
the	 DRAM	 in	 which	 it	 should	 find	 all	 the	 first-level	 descriptor	 tables.	 Since	 the
lower	14-bits	of	Translation	Table	Base	Address	register	is	not	used,	it	can	give	us
total	of	212	=	4096	possibilities.	That	means	we	have	Maximum	of	4096	entries.
Since	 each	 entry	 is	 4	 bytes,	 the	 table	 entries	 can	 take	maximum	 of	 16K	 bytes
(4096	x	4	bytes)	of	DRAM	if	all	the	table	entries	are	created.	See	Example	15-2.

Example	15-2

Assume	the	Translation	Table	Base	Address	register	(c2	of	CP15)	has	the	value
of	0x98A24000.	Give	the	beginning	and	end	memory	address	of	the	descriptor
table	if	a	given	OS	builds	all	possible	entries	for	table.

Solution:
Each	descriptor	table	uses	4	bytes	of	memory.	So	if	a	system	builds	all	the
possible	4096	descriptor	entries	it	uses	4096	×	4	bytes	=	16,384	=	16K	bytes.	The
OS	builds	table	starting	at	DRAM	address	0x98A24000	and	goes	to	98A27FFF

since	0x98A27FFF	-	0x98A24000=	3FFF	=	16,383.	Now	16,384	+	1	=	16384
since	the	first	location	starts	at	0.

	

Examining	the	descriptor	table	for	1M	section	size
The	4	bytes	of	the	page	table	descriptor	gives	us	information	about	the	type

of	page,	 its	 location	 in	DRAM,	and	 it	access	permission.	See	Figure	15-10.	The
upper	12	bits	of	the	virtual	address	are	used	to	locate	one	of	4096	entries	of	the
first-level	 descriptor	 table	 entry.	 The	 lowest	 2-bits	 of	 first-level	 page	 table
descriptor	tells	us	page	size	selection.	The	01	is	for	1M	section	size	and	10	is	for
4K	 page	 size.	 In	 the	 case	 of	 1M	 page	 size,	 the	 upper	 12	 bits	 of	 the	 first-level
descriptor	are	used	as	the	upper	12	bits	address	of	the	1M	section.	The	lower	20
bit	address	comes	from	the	virtual	address,	as	we	mentioned	in	the	last	section.
That	shows	why	we	have	only	first-level	descriptor	for	1M	section	size.

Figure	15-10:	1M	page(section)	descriptor

In	 the	 first-level	section	descriptor	 table	 there	are	several	bits	dedicated	 to
domain	selection	and	access	permission.	The	4-bits	 for	domain	selection	comes
from	one	of	the	16	possibilities	of	the	c2	register.	As	mentioned	earlier,	the	domain
selection	 gives	 us	 the	 options	 of	 designating	 a	 memory	 page	 as	 no	 access,
manager,	 or	 client.	 The	 C	 and	 B	 in	 descriptor	 table	 are	 for	 cacheable	 and
bufferable,	 respectively.	 This	 allows	 making	 the	 section	 of	 virtual	 memory
cacheable	and	bufferable.	The	2	bits	of	the	first-level	descriptor	is	designed	for	the
AP	(access	permission).	After	examining	the	descriptor	table	for	4K	page	size,	we
look	at	the	access	permission.

Examining	the	descriptor	for	4K	(small)	page	size

The	4	bytes	of	each	entry	in	the	translation	table	(first	level	descriptor)	gives
us	information	about	the	type	of	page	it	is	pointing	to,	its	location	in	DRAM,	and	its
access	permission.	See	Figure	15-11.

Figure	15-11:	4K	page	descriptor

Just	like	the	1M	bytes	section,	the	upper	12	bits	of	virtual	address	are	used
to	locate	one	of	4096	entries	of	the	first-level	descriptor	table	entry.	The	lowest	2-
bits	of	first-level	descriptor	table	tells	us	page	size	selection.	The	01	is	for	4K	page
size.	The	4-bits	for	domain	selection	in	the	first-level	descriptor	table	comes	from
one	 of	 the	 16	 possibilities	 of	 the	 c2	 register.	 As	 mentioned	 earlier,	 domain
selection	 gives	 us	 the	 options	 of	 designating	 a	 memory	 page	 as	 no	 access,
manager,	or	client.	This	is	just	like	the	1M	section.	In	the	case	of	4K	page	size,	the
upper	22	bits	of	the	first-level	descriptor	table	are	used	as	a	base	address	into	the
second-level	descriptor	table.	Now,	total	of	8	bits	(bits	19-12)	of	virtual	address	is
used	 to	select	one	of	 the	256	entries	 for	second-level	descriptor.	Notice	since	8
plus	22	gives	us	30	bits,	the	lower	2	bits	of	the	second-level	descriptor	table	entry
are	always	00.	The	upper	20	bits	address	of	the	4K	page	is	located	in	this	second-
level	descriptor	table.	Now,	combining	the	lower	12	bits	of	the	virtual	address	and
the	 upper	 20-bits	 from	 the	 second-level	 descriptor	 table	 we	 have	 the	 32	 bit
address	we	need	for	physical	address.

In	the	second-level	page	descriptor	table	entry	there	are	total	of	8	bits	(bits	4
to	11)	for	access	permission	(AP3-AP0).	See	Figure	15-12.

Figure	15-12:	Second	Level	Descriptor

Each	 2	 bits	 are	 used	 to	 assign	 access	 permission	 to	 1K	 bytes	 of	 the	 4K
page.	 The	 C	 and	 B	 in	 second-level	 descriptor	 table	 are	 for	 cacheable	 and
bufferable,	respectively.

Access	permission
The	ARM	MPU	provides	protection	for	virtual	memory	by	allowing	a	memory

page	 to	be	assigned	a	permission	 level.	The	permission	 levels	are:	No	Access,
Read	only,	and	Read/Write.	We	use	the	AP	bits	to	set	the	access	permission	for	4
K	page	or	1	M	section.	Next,	we	will	examine	the	AP	bits.

No	Access
If	a	memory	page	is	designated	as	No	Access,	any	attempt	by	a	program	to

access	it	is	aborted	and	will	result	in	memory	access	fault	(exception).	In	a	given
system,	 one	 can	 designate	 a	 section	 of	 the	 operating	 system	 as	 No	 Access

permission	 level,	 therefore	 any	 attempt	 by	 the	 user	 program	 to	 take	 over	 the
operating	system	is	blocked.	

Read	Only
This	 allows	 a	 code	 or	 data	 region	 to	 be	 write	 protected	 (read	 only).	 For

example,	the	core	of	the	operating	system	can	be	write	protected,	which	prevents
the	user	from	writing	into	it	and	crashing	the	system.	In	earlier	processor	such	as
8086,	any	program	could	alter	 the	core	of	 the	operating	system	residing	 in	main
memory,	 thereby	 crashing	 the	 system.	 The	 Read	 Only	 option	 block	 such	 an
attempt.	 In	most	cases,	we	make	 the	code	 (instructions)	 region	a	Read	Only	 to
prevent	the	program	overwrite.

R/W	(read/write)
This	 allows	 a	 data	 region	 to	 be	 readable	 and	writeable.	 For	 example,	 the

pages	belonging	to	RAM	for	scratch	pad	and	stack	memory	must	be	assigned	the
R/W	access	permission.	The	same	way	the	memory	region	belonging	to	I/O	ports
also	must	be	designated	as	R/W.

Privileged	and	User	(Unprivileged)	modes
As	we	saw	in	the	interrupt	chapter,	we	have	two	levels	of	Privileged	permission
and	User	(Unprivileged)	permission.	According	to	ARM	manual	“code	can	execute
as	privileged	or	unprivileged.	Unprivileged	execution	limits	or	excludes	access	to
some	resources.	Privileged	execution	has	access	to	all	resources.”	It	must	be
noted	that	some	of	the	ARM	manual	refer	to	Unprivileged	as	User.	See	Table	15-
2.

AP Function Privileged
permission User	permission

00 No	Access No	access No	access

01 Privileged	Access	Only Read/write No	access

10 write	by	user	will	generate	fault Read/write Read-only

11 Full	Access	by	both Read/write Read/write

Table	15-2:	AP	(access	permission)	bits	options

The	 interrupt	 chapter	 gives	 more	 information	 about	 the	 Privileged	 and
Unprivileged	modes.

The	4-bits	of	domain	selection	along	with	the	2-bit	of	AP	(access	permission)
in	the	first-level	descriptor	and	S	and	R	bits	of	c1	register	can	gives	us	all	kinds	of
memory	access	permission	for	the	virtual	memory.	See	Table	15-3.

AP S R Privileged	permission User
permission

00 0 0 No	access No	access

00 1 0 Read-only No	access

00 0 1 Read-only Read-only

00 1 1 Reserved reserved

01 x x Read/write No	access

10 x x Read/write Read-only

11 x x Read/write Read/write

Table	15-3:	Using	AP	bits	with	S	and	R	bits

Cacheable	and	bufferable	memory	regions
Many	 of	 the	 ARM	 chips	 come	 with	 on-chip	 cache	 and	 buffers.	 The	 ARM

MPU	allows	the	designation	of	a	memory	region	as	cacheable	and	bufferable.

C	(cacheable)
This	allows	designating	a	memory	region	as	cacheable	or	non-cacheable.	In

the	case	of	code	residing	in	the	Flash	ROM,	one	can	designate	it	as	cacheable	if
the	ARM	chip	has	on-chip	cache.	By	doing	this,	the	code	is	brought	into	the	cache
and	speed	up	 the	program	execution.	 If	 the	ARM	chip	has	 separate	 caches	 for
code	 (instruction)	 and	 data,	 then	 we	 can	 designate	 the	 data	 region	 also	 as
cacheable	 allowing	 the	CPU	 to	 bring	 the	 data	 into	 the	 data	 cache.	 Bit	 3	 (C)	 in
section	descriptor	 indicate	whether	 the	area	of	memory	mapped	by	 this	page	 is
treated	as	cacheable	or	non-cacheable.

B	(bufferable)
This	allows	designating	a	memory	region	as	bufferable	or	non-bufferable.	Bit

2	(B) 	in	section	descriptor	indicates	whether	the	area	of	memory	mapped	by	this
page	 is	 treated	 as	 bufferable	 or	 non-bufferable.	 Remember	 that	 bit	 7	 of	 c1	 is
endianness.	Do	not	confuse	bufferable	bit	of	 section	descriptor	with	endianness
bit	of	c1.

Bit	 C	 along	 with	 bit	 B	 in	 section	 descriptor	 indicate	 whether	 the	 area	 of
memory	mapped	by	 this	 page	 is	 treated	as	write-back	 cacheable,	write-through
cacheable,	noncached	buffered,	or	noncached	nonbuffered.	See	Example	15-3.

Example	15-3

Assume	 we	 have	 c2=0x6000000	 for	 Translation	 Table	 Base	 Address,
c3=000000EB00	for	domain	selection.	and	S=1	and	R=1	 in	 the	c1	register.	Find
the	following:

a)						Location	of	descriptor	table	if	virtual	address	for	the	desired	section	is

0x00900400.

b)						The	contents	of	descriptor	table	if	we	are	using	the	7th	domain	and	1M
byte	section	page	size	occupying	address	range	of	0xC0000000	–
0xC00FFFFF	in	DRAM.	Assume	that	B	and	C	bits	are	zero.

c)							The	exact	physical	address	of	the	information	we	are	accessing.

Solution:
a)						Ignoring	the	lowest	20	bits	of	the	virtual	address	of	0x00900400	and	using

the	upper	12	bits	we	get	0x009.	That	means	the	9th	entries	in	the	translation
table.	Since	Translation	Table	Base	Address	register	c2	has	0x6000000	the
address	of	the	descriptor	is	located	at	0x600000000	+	(9	×	4)	=	0x60000024
since	each	descriptor	 table	entry	uses	4	bytes	of	RAM.	Notice	9	×	4	=	36
=0x24.

b)	 	 	 	 	 	The	9th	descriptor	 table	content	 is	0b1100	0000	0000	0000	0000	0XX0
1111	0010.

c)	 	 	 	 	 	 	The	 exact	 physical	 address	 of	 the	 of	 information	we	 are	 accessing	 is
0xC0000400	in	which	bits	0	to	19	(0x00400)	are	the	same	as	20	rightmost
bits	of	the	virtual	address	(0x00900400)	and	bits	20	to	31	(0xC00)	are	from
section	base	address	field	in	the	section	descriptor.

	

Using	 the	 MMU	 along	 with	 the	 MPU,	 one	 can	 provide	 some	 powerful
protection	mechanism	for	the	ARM	software.	We	examine	some	of	the	features	of
MPU	in	the	next	section.

Dirty	bit	and	Access	bit
Many	operating	systems	implement	what	is	called	the	A	bit	for	accessed	bit

by	the	way	of	software	since	some	descriptor	tables	do	not	have	it.	If	the	data	or
instruction	code	 in	 the	main	memory	 is	accessed,	A	=	1;	otherwise,	A	=	0.	This
allows	the	operating	system	to	monitor	the	A	bit	periodically	to	see	if	the	CPU	is
using	this	piece	of	code	or	data.	If	a	piece	of	code	or	data	has	not	been	accessed
recently,	the	next	time	the	operating	system	needs	to	make	room	in	main	memory
for	new	pieces	of	code	(or	data),	it	can	move	this	code	(or	data)	back	to	the	hard
disk.	 The	 A	 bit	 also	 allows	 the	 operating	 system	 to	 decide	 if	 a	 given	 piece	 of
information	(code	or	data)	needs	to	be	saved.	For	example,	if	a	piece	of	data	has

not	 been	 accessed,	 the	 operating	 system	 can	 trash	 it	 and	 avoid	 wasting	 time
saving	it	on	the	hard	disk.	On	the	other	hand,	if	the	data	was	accessed	and	it	was
written	into,	the	operating	system	must	save	a	copy	of	it	on	the	hard	disk	before	it
abandons	it	to	create	room	in	main	memory	for	some	other	data	or	code.	Another
bit	that	can	be	implemented	by	way	of	software	is	called	dirty	bit	(D).	Assume	that
there	 is	some	memory	that	can	be	written	 into.	The	accessed	(A)	bit	 indicates	 if
the	data	has	been	accessed	but	does	not	indicate	if	any	new	data	was	written	into
it.	Why	should	the	operating	system	care	whether	the	memory	is	altered	(written
into)?	If	the	data	is	altered,	it	 is	the	job	of	the	operating	system	to	save	it	on	the
disk	to	make	sure	that	the	hard	disk	always	has	the	latest	data.	If	 the	dirty	bit	 is
zero	(D	=	0),	it	means	that	the	data	has	not	been	altered	and	the	operating	system
can	abandon	it	when	it	needs	room	for	new	data	(or	code)	since	the	original	copy
is	still	on	the	hard	disk.	This	will	save	time	for	the	operating	system.	If	the	dirty	bit
is	one	(D	=	1),	the	operating	system	must	save	the	data	before	it	is	overwritten	or
abandoned.

Review	Questions
1.							In	4K	page	size,	where	is	the	physical	address	of	the	desired	code	or	data

located?

2.							Of	the	4	bytes	of	the	first-level	descriptor	table	entry	for	1M	byes	section
size,	which	bits	of	the	virtual	address	are	the	same	as	the	physical	address?

3.							True	or	false.	In	1M	bytes	section	size,	the	virtual	and	physical	addresses
are	the	same.

4.							To	get	the	physical	address	in	ARM	4K	bytes	page	size,	the	virtual	address
must	go	through	___	(1,	2)	stage(s)	of	translation.

5.							Of	the	4	bytes	of	the	second-level	descriptor	table	entry	for	4K	bytes	page
size,	which	bits	of	the	virtual	address	are	the	same	as	the	physical	address?

6.							Which	register	holds	the	start	of	the	DRAM	address	in	which	the	first-level
descriptor	table	is	located?

7.							What	is	the	maximum	number	of	table	entries	for	the	first-level	descriptor
table?

Section	15.3:	MPU	and	Memory	Protection	in	ARM
The	MPU	(memory	protection	unit)	allows	the	protection	of	any	portion	of	4G

bytes	of	physical	memory	from	unwanted	access.	Not	all	ARM	chips	have	an	on-
chip	MMU	since	many	microcontroller-based	systems	do	not	use	virtual	memory.
However,	most	of	 the	ARM	chips	have	an	on-chip	MPU.	While	MMU	 is	used	 to
implement	 the	 virtual	memory	 for	 systems	with	mass	 storage	 such	 as	 disk,	 the
MPU	is	used	for	the	protection	of	the	physical	memory.	The	MPU	is	disabled	upon
power-on	Reset.	That	means	 in	order	 to	use	 the	ARM	MPU	one	must	enable	 it
before	it	is	used.	If	for	some	reason	an	ARM	chip	lacks	the	on-chip	MPU	feature
or	we	do	not	enable	 it,	 the	4G	bytes	of	 the	memory	space	can	be	accessed	by
any	program	regardless	of	having	Privileged	(Supervisor)	or	Unprivileged	(User)
permission.	 According	 to	 ARM	 manual	 “Code	 can	 execute	 as	 privileged	 or
unprivileged.	Unprivileged	execution	limits	or	excludes	access	to	some	resources.
Privileged	execution	has	access	to	all	resources.”	 It	must	be	noted	that	some	of
the	ARM	manuals	refer	to	Unprivileged	as	User.	The	interrupt	chapter	gives	more
information	 about	 the	 Privileged	 and	 Unprivileged	 modes.	 Much	 of	 the	 ARM
memory	protection	concepts	discussed	in	this	section	applies	to	all	MPUs	of	the
ARM	family	regardless	of	the	version	or	the	maker.

Region	size	for	MPU
The	 MPU	 of	 ARM	 allows	 us	 to	 divide	 the	 physical	 (RAM,	 ROM,	 or	 I/O

Peripherals)	 memory	 space	 into	 regions	 and	 assign	 access	 permission,	 size,
location,	 and	memory	 attributes	 to	 each	 region.	 If	 a	 program	 tries	 to	 access	 a
memory	 region	which	 is	not	allowed	 to	access,	 the	protection	unit	will	abort	 the
access	and	causes	 the	MemManage	 fault	 exception.	 It	 is	 the	 job	of	 the	system
designer	 (or	operating	system)	 to	set	 (or	update)	 the	 region	setting.	The	size	of
the	region	can	vary	from	4K	bytes	to	4	Giga	bytes	as	long	as	they	are	power	of	2.
The	allowed	region	sizes	start	with	the	4KB	size	and	it	is	doubled	as	we	go	up	in
size.	They	are	4KB,	8KB,	16KB,	32KB,	64KB,	128KB,	256KB,	512KB,	1MB,	2MB,
4MB,	and	so	on.

	The	following	compares	and	contrasts	the	MPU	and	MMU	in	ARM

1.							The	protection	mechanism	of	MPU	can	be	used	only	when	the	MPU	is
enabled.	In	this	regard	it	is	just	like	MMU.

2.							Upon	Reset	both	MMU	and	MPU	are	disabled.

3.							While	MMU	page	sizes	are	limited	to	choices	of	1K,	4K,	64K,	and	1M
bytes,	the	MPU	regions	sizes	can	vary	from	4K	to	4G	as	long	as	it	is	power
of	2.

4.							While,	the	MMU	must	use	one	or	two	levels	of	page	translation	to	access
the	physical	memory,	there	is	no	need	for	translation	table	in	MPU.

5.							Although	both	MMU	and	MPU	use	four	levels	of	access	permission,	each
has	its	own	set	of	registers	to	set	the	access	permission.

	

The	ARM	Cortex	series	have	enhanced	the	MPU	greatly.	Next,	we	describe
some	of	the	registers	and	how	they	are	used.	

MPU	Type	Register
We	 can	 assign	 separate	 regions	 to	 instruction	 (IREGION)	 and	 data

(DREGION).	The	D0	bit	of	 the	ARM	MPU_TYPE	register	tells	us	 if	 this	option	is
supported.	If	D0=0,	it	means	the	memory	is	unified	and	does	not	support	separate
regions	for	code	and	data.	In	that	case,	the	DREGION	is	used	for	both	code	and
data	and	there	 is	no	 IREGION	designation.	See	Figure	15-13	and	Table	15-4.	 It
also	 means	 we	 use	 the	 DREGION	 part	 of	 the	 MPU_TYPE	 register	 to	 see	 the
number	of	regions	the	ARM	Cortex	support.	In	many	cases	this	is	set	to	8	which	is
the	 maximum	 number	 of	 regions	 support	 by	 a	 given	 ARM	 chip.	 We	 have	 no
control	over	it	since	it	is	read	only	(RO)	register.

Figure	15-13:	MPU_TYPE	register

	

Bits Name Function

0 SEPARATE Indicates	support	for	unified	or	separate	instruction	and	date
memory	maps.	(0:	unified)

7-1 RESERVED 	

15-8 DREGION
Indicates	the	number	of	supported	MPU	data	regions:

0x08=	Eight	MPU	regions.

15-8 RESERVED 	

23-
16 IREGION

Indicates	the	number	of	supported	MPU	instruction	regions.
Always	contains	0x00.	The	MPU	memory	map	is	unified	and	is
described	by	the	DREGION	field.

Table	15-4:	MPU_TYPE	Register

How	to	enable	MPU?
The	D0	bit	of	the	MPU_CTRL	register	allows	us	to	enable	the	MPU	option	if

there	is	an	on-chip	MPU.	See	Figure	15-14.	The	other	bits	of	this	register	allow	us
to	 use	 MPU	 during	 the	 execution	 of	 Interrupt	 Service	 Routine	 (ISR).	 See	 the
manual	of	your	ARM	chip.

Figure	15-14:	MPU_CTRL	Register

How	to	select	a	region?
We	 use	 D7-D0	 bits	 of	MPU_RNR	 register	 to	 select	 one	 of	 the	 8	 regions.

Although	D7-D0	 can	 take	 values	 of	 0x00-0xFF,	 we	 can	 use	maximum	 value	 of
0x07	 for	 it	 since	 the	 ARM	 Cortex	 does	 not	 support	 more	 than	 8	 regions.	 This
register	is	very	important	since	it	is	used	by	both	the	MPU	address	(MPU_RBAR)
register	 and	 MPU	 attributes	 (MPU_RASR)	 register.	 In	 other	 words,	 we	 do	 not
have	8	MPU	address	registers	and	8	MPU	attribute	registers,	one	for	each	region.
We	must	always	set	the	value	of	this	register	first	before	we	can	access	the	MPU
address	and	MPU	attribute	registers.	

Choosing	region	address
To	 set	 the	 region	 physical	 address,	 we	 use	 bits	 D31-D5	 of	 MPU_RBAR

(Region	Base	Address)	register.	Of	course	this	is	done	after	we	have	loaded	the
region	number	into	the	MPU_RNR	register.	Notice	this	is	only	27	bits	since	D4-D0
bits	are	not	available.	This	also	means	the	smallest	region	size	we	can	choose	is
32	bytes	(25=32)	since	lowers	5	bits	are	not	used	for	region	address.

Figure	15-15:	MPU_RBAR	(MPU	region	Base	Address)	Register

	Now,	we	use	this	register	to	set	the	region	address.	How	does	it	know	which
of	the	8	regions	it	is	referring	to?	Whenever	this	register	is	accessed	it	is	assumed
that	the	MPU_RNR	register	holds	the	desired	region	number.	This	is	a	clever	way
of	accessing	regions	without	having	to	set	aside	hundreds	of	registers	for	regions.

Choosing	region	attributes	and	size
We	 set	 the	MPU	 region	 size	 and	 attribute	 register	 using	 the	MPU_RASR

(Region	Attribute	and	Size)	register.	Now,	 let’s	 look	at	the	allowed	size.	The	D5-
D1	 bits	 are	 used	 to	 set	 the	memory	 region	 size.	Although	 the	 value	 can	 range
from	00000	 to	 11111	 (0	 to	 31),	 the	 lowest	 value	 it	 can	 take	 is	 00100	 or	 4.	 The
region	size	in	bytes	is	set	as	follow:

Region	size	in	Byte	=	2(size	+1)

Since	the	size	bits	cannot	be	lower	than	00100	means	2(4+1)	=	25=32	byte

is	the	smallest	memory	region	size	the	MPU	supports.	This	also	matches	the	fact
that	 the	 lower	 5	 bits	 of	 MPU	 address	 region,	 MPU_RBAR,	 is	 not	 available,	 as
shown	 in	Figure	15-15.	The	highest	 region	size	 is	4GB	 if	we	set	 the	size	bits	 to
11111	 (31	 in	 decimal)	 since	 2(31+1)	 =	 232=	 4G.	 In	 this	 case	 the	 region	 Base
address	is	0x00000000.	See	Table	15-5.	Also	see	Example	15-4.

N	Bits 2(N+1) Bytes

00100 2(4+1) 32

00101 2(5+1) 64

00110 2(6+1) 128

00111 2(7+1) 256

01000 2(8+1) 512

01001 2(9+1) 1K

…. …. ….

11101 2(29+1) 1G

11110 2(30+1) 2G

11111 2(31+1) 4G

Table	15-5:	Allowed	region	size	for	ARM	Cortex	MPU

	

Example	15-4

Verify	the	region	size	calculation	for	(a)	1KB,	(b)	64KB,	(c)	1GB,	and	(d)	4GB

Solution:

(a)	With	N=01001	we	have	2(9+1)	=1KB

(b)	With	N=01111	we	have	2(15+1)	=64KB

(c)	With	N=11101	we	have	2(29+1)	=1GB

(d)	With	N=11111	we	have	2(31+1)	=4GB

	

	

Figure	15-16:	MPU_RASR	(MPU	Region	Attribute	and	Size	Register)

Notice	 from	the	Figure	15-16,	 the	D0	bit	 is	used	 to	enable	 the	 region.	The
D5-D1	bits	are	used	to	set	the	region	size.	We	can	also	have	sub	region	within	a
region.	D8-D15	are	set	aside	for	that.	We	set	the	region	attributes	using	the	upper
16	bits	of	MPU_RASR	register.	Notice	the	XN	bit	of	the	MPU_RASR.	The	XN	bit
is	used	to	designate	a	region	as	Executable	Only.	XN=0	if	 the	region	belongs	to
program	code.	See	Tables	15-6	to	15-9.

Bits Name Function

0 Enable Region	enable	bit

5-1 SIZE Specifies	the	size	of	the	MPU	protection	region.
The	minimum	permitted	value	is	3	(0b00010).

7-6 Reserved 	

15-8 SRD

Subregion	disable	bits.	For	each	bit	in	this	field:

0	=	corresponding	sub-region	is	enabled

1	=	corresponding	sub-region	is	disabled

Region	sizes	of	128	bytes	and	less	do	not
support	subregions.	When	writing	the	attributes
for	such	a	region,	write	the	SRD	field	as	0x00.

18 S Shareable	bit,	see	Table	15-8

16 B

Memory	access	attributes,	see	Table	15-817 C

21-19 TEX

26-24 AP Access	permission	field,	see	Table	15-7

28 XN

Instruction	access	disable	bit:

0	=	instruction	fetches	enabled

1	=	instruction	fetches	disabled.

Table	15-6:	MPU_RASR	(MPU	Region	Attribute	and	Size	Register)

	

AP Privileges
permissions

Unprivileged
permissions Description

000 No	access No	access All	accesses	generate	a	permission	fault

001 RW No	access Access	from	privileged	software	only

010 RW RO Writes	by	unprivileged	software	generate	a
permission	fault

011 RW RW Full	access

100 Unpredictable Unpredictable Reserved

101 RO No	access Reads	by	privileged	software	only

110 RO RO Read	only,	by	privileged	or	unprivileged
software

111 RO RO Read	only,	by	privileged	or	unprivileged
software

Table	15-7:	AP	(Access	Permission)	Encoding

	

TEX C B S Memory	type Shareability Other	attributes

000 0 0 X Strongly-ordered Shareable -

000 0 1 X Device Shareable -

000 1 0 0 Normal Not	shareable Outer	and	inner	write-
through.	No	write	allocated000 1 0 1 Normal Shareable

000 1 1 0 Normal Not	shareable Outer	and	inner	write-back.
No	write	allocated000 1 1 1 Normal Shareable

001 0 0 0 Normal Not	shareable Outer	and	inner	non-
cacheable001 0 0 1 Normal Shareable

001 0 1 X Reserved	encoding - -

001 1 0 X Implementation
defined	attributes - -

001 1 1 0 Normal Not	shareable Outer	and	inner	write-back.
Write	and	read	allocate001 1 1 1 Normal Shareable

010 0 0 X Device Not	shareable Nonshared	Device

010 0 1 X Reserved	encoding - -

010 1 X X Reserved	encoding - -

1B1B0 A1 A0 0 Normal Not	shareable Cached	memory,

B1	and	B0	define	the	outer
policy,	while	the	inner	policy
is	defined	by	A1	and	A0	bits.
See	Table	15-9.

1B1B0 A1 A0 1 Normal Shareable

Table	15-8:	TEX,	C,	B,	and	S	encoding

A1 A0 Corresponding	cache	policy

0 0 Non-cacheable

0 1 Write	back,	write	and	read	allocate

1 0 Write	through,	no	write	allocate

1 1 Write	back,	no	write	allocate

Caution:	B1	and	B0	define	the	outer	policy,	in	the	same	way.

Table	15-9:	Cache	policy	for	memory	attribute	encoding

	

Example	15-5

Show	the	register	values	for	the	following	regions:

(a)	region	0	with	starting	address	of	0x00000000	and	region	size	of	64KB.

(b)	region	1	with	starting	address	of	0x0100000	and	region	size	of	32KB.

Solution:
(a)

MPU_CTRL=0x00000001;														/*	Enable	on-chip	MPU	*/

	MPU_RNR=0x00000000;														/*	region	number	0	*/

	MPU_RBAR=0x00000000													/*	region	0	address	*/

MPU_RASR=0x00000001F												/*	size	for	64KB	and	enable	region	*/

	(b)

MPU_CTRL=0x00000001;														/*	Enable	on-chip	MPU	*/

	MPU_RNR=0x00000001;														/*	region	number	1	*/

	MPU_RBAR=0x0010000															/*	region	1	address,	32KB	aligned	*/

MPU_RASR=0x00000001F												/*	size	for	32KB	and	enable	region	*/

	

	In	above	examples	the	upper	16-bit	attributes	are	not	shown.	We	leave	it	to
the	 reader	 to	 explore	 them.	 Also	 notice	 that	 we	 must	 use	 D0	 of	 size/attribute
register	to	enable	the	region.

Review	Questions
1.							True	or	false.	All	the	ARM	chips	come	with	MPU

2.							True	or	false.	Upon	Power-on	Reset,	the	MPU	is	enabled	and	ready	to	go.

3.							True	or	false.	If	an	MPU	is	not	enabled,	the	4G	bytes	of	the	memory	space
can	be	accessed	by	any	program	regardless	of	having	Privileged	or
Unprivileged	(User)	permission.

4.								The	I/O	peripherals	such	as	GPIO	(general	purpose	I/O)	region	must	be
assigned	the	______access	permission

5.							In	ARM,	the	_______	(Privileged,	Unprivileged)	is	assigned	to	Operating
System.

	
Answers	to	Review	Questions
Section	15.1

1.							True

2.							Hard	disk

3.							According	to	rule	of	the	least	recently	used

4.							False

5.							1K,	4K,	64K,	and	1M	bytes

6.							False

7.							64

Section	15.2
1.							In	the	second-level	descriptor	table

2.							The	lower	20	bits

3.							False

4.							2	stages

5.							The	lower	12	bits

6.							The	c2	of	CP15

7.							4096	since	12	bits	are	used

Section	15.3
1.							False

2.							False

3.				True

4.				32

5.				N=13	(or	1101	in	binary)	since	2(13+1)	=	214=32KB.

	

	

Appendix	A:	IC	Interfacing,	System	Design,
and	Failure	Analysis

The	 invention	 of	 the	 transistor	 and	 the	 subsequent	 advent	 of	 integrated
circuit	(IC)	technology	is	believed	by	many	to	be	the	start	of	the	second	industrial
revolution.	 In	 this	 chapter	 we	 provide	 an	 overview	 of	 IC	 technology	 and
interfacing.	In	addition,	we	look	at	the	computer	system	as	a	whole	and	examine
some	 general	 considerations	 in	 system	 design.	 In	 Section	 A.1	 we	 provide	 an
overview	of	 IC	 technology.	 IC	 interfacing	 and	 system	design	 considerations	 are
examined	 in	 Section	 A.2.	 In	 Section	 A.2	 we	 also	 discuss	 failure	 analysis	 in
systems.

Section	A.1:	Overview	of	IC	Technology
In	 this	section	we	provide	an	overview	of	 IC	 technology	and	discuss	some

developments	in	logic	families.

The	transistor	was	invented	in	1947	by	three	scientists	at	Bell	Laboratories.
In	 the	 1950s,	 transistors	 replaced	 vacuum	 tubes	 in	 many	 electronics	 systems,
including	 computers.	 It	was	not	 until	 in	 1959	 that	 the	 first	 integrated	 circuit	was
successfully	fabricated	and	tested	by	Jack	Kilby	of	Texas	Instruments.	Prior	to	the
invention	of	 the	 IC,	 the	use	of	 transistors,	along	with	other	discrete	components
such	 as	 capacitors	 and	 resistors,	 was	 common	 in	 computer	 design.	 Early
transistors	 were	 made	 of	 germanium,	 which	 was	 later	 abandoned	 in	 favor	 of
silicon.	This	was	due	to	 the	fact	 that	 the	slightest	 rise	 in	 temperature	resulted	 in
massive	current	flows	in	germanium-based	transistors.	In	semiconductor	terms,	it
is	 because	 the	 band	 gap	 of	 germanium	 is	 much	 smaller	 than	 that	 of	 silicon,
resulting	 in	a	massive	flow	of	electrons	from	the	valence	band	to	the	conduction
band	when	the	temperature	rises	even	slightly.	By	the	late	1960s	and	early	1970s,
the	 use	 of	 the	 silicon-based	 IC	 was	 widespread	 in	 mainframes	 and
minicomputers.	Transistors	and	ICs	were	based	on	P-type	materials.	Due	 to	 the
fact	that	the	speed	of	electrons	is	much	higher	(about	two	and	a	half	times)	than
the	 speed	 of	 the	 holes,	 N-type	 devices	 replaced	 P-type	 devices.	 By	 the	 mid-
1970s,	 NPN	 and	 NMOS	 transistors	 had	 replaced	 the	 slower	 PNP	 and	 PMOS
transistors	 in	 every	 sector	 of	 the	 electronics	 industry,	 including	 in	 the	 design	 of
microprocessors	and	computers.	Since	 the	early	1980s,	CMOS	(complementary
MOS)	 has	 become	 the	 dominant	 method	 of	 IC	 design.	 Next	 we	 provide	 an
overview	of	differences	between	MOS	and	bipolar	transistors.

MOS	vs.	bipolar	transistors
There	 are	 two	 type	 of	 transistors:	 bipolar	 and	 MOS	 (metal-oxide

semiconductor).	Both	have	three	leads.	In	bipolar	transistors,	the	three	leads	are
referred	to	as	the	emitter,	base,	and	collector,	while	 in	MOS	transistors	 they	are
named	source,	gate,	and	drain.	In	bipolar,	the	carrier	flows	from	the	emitter	to	the
collector	and	the	base	is	used	as	a	flow	controller.	In	MOS,	the	carrier	flows	from
the	source	to	the	drain	and	the	gate	is	used	as	a	flow	controller.	See	Figure	A-1.

Figure	A-1:	Bipolar	vs.	MOS	Transistors

In	NPN-type	bipolar	transistors,	the	electron	carrier	leaving	the	emitter	must

overcome	 two	 voltage	 barriers	 before	 it	 reaches	 the	 collector.	 One	 is	 the	 N-P
junction	of	the	emitter-base	and	the	other	is	the	P-N	junction	of	the	base-collector.
The	voltage	barrier	of	the	base-collector	is	the	most	difficult	one	for	the	electrons
to	 overcome	 (since	 it	 is	 reversed	 biased)	 and	 it	 causes	 the	 most	 power
dissipation.	This	led	to	the	design	of	the	unipolar	type	transistor	called	MOS.	In	N-
channel	 MOS	 transistors,	 the	 electrons	 leave	 the	 source	 reaching	 the	 drain
without	going	 through	any	voltage	barrier.	The	absence	of	any	voltage	barrier	 in
the	path	of	the	carrier	 is	one	reason	why	MOS	dissipates	much	less	power	than
bipolar	 transistors.	 The	 low	 power	 dissipation	 of	MOS	 allows	 putting	millions	 of
transistors	on	a	single	 IC	chip.	 In	 today’s	million-transistor	microprocessors	and
DRAM	memory	chips,	 the	use	of	MOS	 technology	 is	 indispensable.	Without	 the
MOS	transistor,	 the	advent	of	desktop	personal	computers	would	not	have	been
possible,	at	least	not	so	soon.	The	use	of	bipolar	transistors	in	both	the	mainframe
and	minicomputer	 of	 the	 1960s	 and	 1970s	 required	 expensive	 cooling	 systems
and	 large	 rooms	 due	 to	 their	 bulkiness.	 MOS	 transistors	 do	 have	 one	 major
drawback:	They	are	slower	than	bipolar	transistors.	This	is	due	partly	to	the	gate
capacitance	of	the	MOS	transistor.	For	MOS	to	be	turned	on,	the	input	capacitor
of	the	gate	takes	time	to	charge	up	to	the	turn-on	(threshold)	voltage,	leading	to	a
longer	propagation	delay.

Overview	of	logic	families
Logic	 families	are	 judged	according	to	(1)	speed,	(2)	power	dissipation,	 (3)

noise	 immunity,	 (4)	 input/output	 interface	 compatibility,	 and	 (5)	 cost.	 Desirable
qualities	are	high	speed,	low	power	dissipation,	and	high	noise	immunity	(since	it
prevents	 the	 occurrence	 of	 false	 logic	 signals	 during	 switching	 transition).	 In
interfacing	logic	families,	the	more	inputs	that	can	be	driven	by	a	single	output,	the
better.	This	means	 that	high-driving-capability	outputs	are	desired.	This	plus	 the
fact	that	the	input	and	output	voltage	levels	of	MOS	and	bipolar	transistors	are	not
compatible	means	that	one	must	be	concerned	with	the	ability	of	one	logic	family
driving	the	other	one.	In	terms	of	the	cost	of	a	given	logic	family,	it	is	high	during
the	early	years	of	its	introduction	and	prices	decline	as	production	and	use	rise.

The	case	of	inverters
As	 an	 example	 of	 logic	 gates,	 we	 look	 at	 a	 simple	 inverter.	 In	 a	 one-

transistor	 inverter,	while	 the	transistor	plays	the	role	of	a	switch,	R	 is	 the	pull-up
resistor.	See	Figure	A-2.

Figure	A-2:	One-Transistor	Inverter	with	Pull-up	Resistor

However,	 for	 this	 inverter	 to	work	 effectively	 in	 digital	 circuits,	 the	R	 value
must	 be	 high	 when	 the	 transistor	 is	 “on”	 to	 limit	 the	 current	 flow	 from	 VCC	 to
ground	 in	order	 to	have	 low	power	dissipation	(P	=	VI,	where	V	=	5	V).	 In	other
words,	the	lower	the	I,	the	lower	the	power	dissipation.	On	the	other	hand,	when
the	transistor	is	“off”,	R	must	be	a	small	value	to	limit	the	voltage	drop	across	R,
thereby	making	sure	that	VOUT	is	close	to	VCC.	These	are	opposing	demands	on
the	 value	 of	 R.	 This	 is	 one	 reason	 that	 logic	 gate	 designers	 use	 active
components	(transistors)	instead	of	passive	components	(resistors)	to	implement
the	pull-up	resistor	R.

The	case	of	a	TTL	inverter	with	totem	pole	output	is	shown	in	Figure	A-3.	In
Figure	A-3,	Q3	plays	the	role	of	a	pull-up	resistor.

Figure	A-3:	TTL	Inverter	with	Totem-Pole	Output

CMOS	inverter
In	 the	 case	 of	 CMOS-based	 logic	 gates,	 PMOS	 and	 NMOS	 are	 used	 to

construct	a	CMOS	(complementary	MOS)	inverter	as	shown	in	Figure	A-4.

Figure	A-4:	CMOS	Inverter

In	CMOS	inverters,	when	the	PMOS	transistor	is	off,	it	provides	a	very	high
impedance	 path,	making	 leakage	 current	 almost	 zero	 (about	 10	 nA);	 when	 the
PMOS	 is	on,	 it	 provides	a	 low	 resistance	on	 the	path	of	VDD	 to	 load.	Since	 the
speed	of	the	hole	is	slower	than	that	of	the	electron,	the	PMOS	transistor	is	wider
to	 compensate	 for	 this	 disparity;	 therefore,	 PMOS	 transistors	 take	 more	 space
than	NMOS.

Input,	output	characteristics	of	some	logic	families
In	1968	the	first	logic	family	made	of	bipolar	transistors	was	marketed.	It	was

commonly	referred	to	as	the	standard	TTL	(transistor-transistor	logic)	family.	The
first	MOS-based	logic	family,	the	CD4000/74C	series,	was	marketed	in	1970.	The
addition	 of	 the	 Schottky	 diode	 to	 the	 base-collector	 of	 bipolar	 transistors	 in	 the
early	 1970s	 gave	 rise	 to	 the	 S	 family.	 The	 Schottky	 diode	 shortens	 the
propagation	 delay	 of	 the	 TTL	 family	 by	 preventing	 the	 collector	 from	 going	 into
what	is	called	deep	saturation.	Table	A-1	lists	major	characteristics	of	some	logic
families.	In	Table	A-1,	note	that	as	the	CMOS	circuit’s	operating	frequency	rises,
the	power	dissipation	also	increases.	This	is	not	the	case	for	bipolar-based	TTL.

Characteristic STD	TTL LSTTL ALSTTL HCMOS

VCC 5V 5V 5V 5V

VIH 2.0V 2.0V 2.0V 3.15V

VIL 0.8V 0.8V 0.8V 1.1V

VOH 2.4V 2.7V 2.7V 3.7V

VOL 0.4V 0.5V 0.4V 0.4V

IIL -1.6	mA -0.36	mA -0.2	mA -1	µA

IIH 40	µA 20	µA 20	µA 1	µA

IOL 16	mA 8	mA 4	mA 4	mA

IOH -400	µA -400	µA -400	µA 4	mA

Propagation
delay 10	ns 9.5	ns 4	ns 9	ns

Static	power
dissipation

(f=0)
10	mW 2	mW 1	mW 0.0025	nW

Dynamic
power

dissipation	at	f
=	100	kHz

10	mW 2	mW 1	mW 0.17	mW

Table	A-1:	Characteristics	of	Some	Logic	Families

History	of	logic	families
Early	logic	families	and	microprocessors	required	both	positive	and	negative

power	voltages.	In	the	mid-1970s,	5V	VCC	became	standard.	For	example,	Intel’s
4004,	 8008,	 and	 8080	 all	 used	 negative	 and	 positive	 voltages	 for	 the	 power
supply.	In	the	late	1970s,	advances	in	IC	technology	allowed	combining	the	speed
and	drive	of	 the	S	 family	with	 the	 lower	power	of	LS	 to	 form	a	new	 logic	 family
called	 FAST	 (Fairchild	 Advanced	 Schottky	 TTL).	 In	 1985,	 AC/ACT	 (Advanced
CMOS	Technology),	 a	much	 higher	 speed	 version	 of	 HCMOS,	was	 introduced.
With	the	introduction	of	FCT	(Fast	CMOS	Technology)	in	1986,	at	last	the	speed
gap	 between	 CMOS	 and	 TTL	 was	 closed.	 Since	 FCT	 is	 the	 CMOS	 version	 of
FAST,	 it	has	 the	 low	power	consumption	of	CMOS	but	 the	speed	 is	comparable
with	TTL.	Table	A-2	provides	an	overview	of	logic	families	up	to	FCT.

Product Year
Introduced Speed	(ns) Static	Supply

Current	(mA)

High/Low
Family	Drive

(mA)

Std	TTL 1968 40 30 -2/32

CD4K/74C 1970 70 0.3 -0.48/6.4

LS/S 1971 18 54 -15/24

HC/HCT 1977 25 0.08 -6/-6

FAST 1978 6.5 90 -15/64

AS 1980 6.2 90 -15/64

ALS 1980 10 27 -15/64

AC/ACT 1985 10 0.08 -24/24

FCT 1986 6.5 1.5 -15/64

Reprinted	by	permission	of	Electronic	Design	Magazine,	c.	1991.

Table	A-2:	Logic	Family	Overview

Recent	advances	in	logic	families
As	the	speed	of	high-performance	microprocessors	such	as	the	386	and	486

reached	25	MHz,	it	shortened	the	CPU’s	cycle	time,	leaving	less	time	for	the	path
delay.	 Designers	 normally	 allocate	 no	 more	 than	 25%	 of	 a	 CPU’s	 cycle	 time
budget	 to	 path	 delay.	 Following	 this	 rule	 means	 that	 there	 must	 be	 a
corresponding	 decline	 in	 the	 propagation	 delay	 of	 logic	 families	 used	 in	 the
address	 and	 data	 path	 as	 the	 system	 frequency	 is	 increased.	 In	 recent	 years,
many	 semiconductor	 manufacturers	 have	 responded	 to	 this	 need	 by	 providing
logic	families	that	have	high	speed,	low	noise,	and	high	drive.	Table	A-3	provides
the	characteristics	of	high-performance	logic	families	introduced	in	recent	years.

Family Year Number
Suppliers

Tech
Base I/O	Level Speed

(ns)
Static
Current IOH/IOL

ACQ 1989 2 CMOS CMOS/CMOS 6.0 80	µA -24/24
mA

ACTQ 1989 2 CMOS TTL/CMOS 7.5 80	µA -24/24
mA

FCTx 1987 3 CMOS TTL/CMOS 4.1–4.8 1.5	mA -15/64
mA

FCTxT 1990 2 CMOS TTL/TTL 4.1–4.8 1.5	mA -15/64
mA

FASTr 1990 1 Bipolar TTL/TTL 3.9 50	mA -15/64
mA

BCT 1987 2 BICMOS TTL/TTL 5.5 10	mA -15/64
mA

Reprinted	by	permission	of	Electronic	Design	Magazine,	c.	1991.

Table	A-3:	Advanced	Logic	General	Characteristics

ACQ/ACTQ	 are	 the	 second-generation	 advanced	 CMOS	 (ACMOS)	 with
much	lower	noise.	While	ACQ	has	the	CMOS	input	level,	ACQT	is	equipped	with

TTL-level	 input.	 The	 FCTx	 and	 FCTx-T	 are	 second-generation	 FCT	 with	 much
higher	speed.	The	x	in	the	FCTx	and	FCTx-T	refers	to	various	speed	grades,	such
as	A,	B,	 and	C,	where	 the	A	 designation	means	 low	 speed	 and	C	means	 high
speed.	For	designers	who	are	well	versed	in	using	the	FAST	logic	family,	the	use
of	 FASTr	 is	 an	 ideal	 choice	 since	 it	 is	 faster	 than	 FAST,	 has	 higher	 driving
capability	(IOL,	IOH),	and	produces	much	lower	noise	than	FAST.	At	the	time	of	this
writing,	next	 to	ECL	and	gallium	arsenide	 logic	gates,	FASTr	 is	 the	 fastest	 logic
family	in	the	market	(with	the	5V	VCC),	but	the	power	consumption	is	high	relative
to	other	logic	families,	as	shown	in	Table	A-3.	Since	early	2000,	a	3.3V	VCC	with
higher	speed	and	lower	power	consumption	has	become	standard.	The	combining
of	 high-speed	bipolar	TTL	and	 the	 low	power	 consumption	of	CMOS	has	given
birth	to	what	is	called	BICMOS.	Although	BICMOS	seems	to	be	the	future	trend	in
IC	design,	at	this	time	it	is	expensive	due	to	the	extra	steps	required	in	BICMOS
IC	 fabrication,	 but	 in	 some	 cases	 there	 is	 no	 other	 choice.	 For	 example,	 Intel’s
Pentium	 microprocessor,	 a	 BICMOS	 product,	 had	 to	 use	 high-speed	 bipolar
transistors	 to	 speed	 up	 some	 of	 the	 internal	 functions	 in	 order	 to	 keep	 up	with
RISC	processor	performance.	Table	A-3	provides	advanced	logic	characteristics.
Table	A-4	shows	logic	families	used	in	systems	with	different	speeds.	The	x	is	for
the	different	speeds	where	A,	B,	and	C	are	used	for	designation.	A	is	the	slowest
one	while	C	is	the	fastest	one.	The	above	data	is	for	the	‘LS244	buffer.

System	Clock	Speed
(MHz) Clock	Period	(ns) Predominant	Logic	for

Path

2	–	10 100	–	500 HC,	LS

10	–	30 33	–	100 ALS,	AS,	FAST,	FACT

30	–	66 15	–	33 FASTr,	BCT,	FCTA

Table	A-4:	Importance	of	Speed

Review	Questions
1.							State	the	main	advantages	of	MOS	and	bipolar	transistors.

2.							True	or	false.	In	logic	families,	the	higher	the	noise	margin,	the	better.

3.							True	or	false.	Generally,	high-speed	logic	consumes	more	power.

4.							Power	dissipation	increases	linearly	with	the	increase	in	frequency	in
___________	(CMOS,	TTL).

5.							In	a	CMOS	inverter,	indicate	which	transistor	is	on	when	the	input	is	high.

6.							For	system	frequencies	of	10–30	MHz,	which	logic	families	are	used	for
the	address	and	data	path?

Section	A.2:	IC	Interfacing	and	System	Design	Issues
There	 are	 several	 issues	 to	 be	 considered	 in	 designing	 a	microprocessor-

based	 system.	 They	 are	 IC	 fan-out,	 capacitance	 derating,	 ground	 bounce,	 VCC
bounce,	crosstalk,	transmission	lines,	power	dissipation,	and	chip	failure	analysis.
This	 section	 provides	 an	 overview	 of	 these	 design	 issues	 in	 order	 to	 provide	 a
sampling	of	what	is	involved	in	high-performance	system	design.

IC	fan-out
In	 IC	 interfacing,	 fan-out/fan-in	 is	 a	major	 issue.	How	many	 inputs	 can	 an

output	signal	drive?	This	question	must	be	addressed	for	both	logic	“0”	and	logic
“1”	outputs.	Fan-out	for	low	and	fan-out	for	high	are	as	follows:

Fan-out	(of	low) 																																Fan-out	(of	high)

Of	 the	 above	 two	 values	 the	 lower	 number	 is	 used	 to	 ensure	 the	 proper
noise	margin.	Figure	A-5	shows	the	sinking	and	sourcing	of	current	when	ICs	are
connected.

Figure	A-5:	Current	Sinking	and	Sourcing	in	TTL

In	Figure	A-5,	as	the	number	of	inputs	connected	to	the	output	increases,	IOL
rises,	which	causes	VOL	to	rise.	If	this	continues,	the	rise	of	VOL	makes	the	noise
margin	smaller,	and	this	results	in	the	occurrence	of	false	logic	due	to	the	slightest
noise.

In	designing	the	system,	very	often	an	output	is	connected	to	various	kinds
of	inputs.	See	Examples	A-1	and	A-2.

Example	A-1

Find	how	many	unit	loads	(UL)	can	be	driven	by	the	output	of	the	LS	logic	family.

	

Solution:
	

The	unit	load	is	defined	as	IIL	=	1.6	mA	and	IIH	=	40	µA.	Table	A-1	shows	IOL	=	8
mA	and	IOH	=	400	µA	for	the	LS	family.	Therefore,	we	have

	

fan-out	(low)	=	IOL/IIL	=	8	mA	/	1.6	mA	=	5

fan-out	(high)	=	IOH/IIH	=	400	µA	/	40	µA	=	10	

This	 means	 that	 the	 fan-out	 is	 5.	 In	 other	 words,	 the	 LS	 output	 must	 not	 be
connected	to	more	than	5	inputs	with	unit	load	characteristics.

	

	

Example	A-2

An	 address	 pin	 needs	 to	 drive	 5	 standard	 TTL	 loads	 in	 addition	 to	 10	 CMOS
inputs	 of	 DRAM	 chips.	 Calculate	 the	minimum	 current	 to	 drive	 these	 inputs	 for
both	logic	“0”	and	“1”.

Solution:
	

The	standard	load	for	TTL	is	IIH	=	40	µA	and	IIL	=	1.6	mA,	and	for	CMOS,	IIL	=	IIH
=	10	µA.
minimum	current	for	“0”	=	total	of	all	IIL	=	5	×	1.6	mA	+	10	×	10	µA	=	8.1	mA

minimum	current	for	“1”	=	total	of	all	IIH	=	5	×	40	µA	+	10	×	10	µA	=	300	µA

	

The	total	 IIL	and	IIH	 requirement	of	all	 the	 loads	on	a	given	output	must	be
less	than	the	driver’s	maximum	IOL	and	IOH.	This	is	shown	in	Example	A-3.

Example	A-3

Assume	 that	 the	microprocessor	address	pin	 in	Example	A-2	has	 specifications
IOH	=	400	µA	and	IOL	=	2	mA.	Do	the	input	and	output	current	needs	match?

	
Solution:
For	a	high	output	state,	there	is	no	problem	since	IOH	>	IIH.	However,	the	number
of	 inputs	exceeds	the	 limit	 for	 IOL	since	an	IIL	of	8.1	mA	is	much	 larger	 than	the
maximum	IOL	allowed	by	the	microprocessor.

	

In	 cases	 such	 as	 Example	 A-3	 where	 the	 receiver	 current	 requirements
exceed	 the	 drivers’	 capability,	 we	 must	 use	 a	 buffer	 (booster),	 such	 as	 the
74xx245	and	74xx244.	The	74xx245	is	used	for	bidirectional	and	the	74xx244	for
unidirectional	signals.	See	current	74LS244	and	74LS245	characteristics	in	Table
A-5.

Buffer IOH	(mA) IOL	(mA) IIH	(µA) IIL	(mA)

74LS244 3 12 20 0.2

74LS254 3 12 20 0.2

Note:	VOL	=	0.4	V	and	VOH	=	2.4V	are	assumed.

Table	A-5:	Electrical	Specifications	for	Buffers

Capacitance	derating
Next	we	study	what	is	called	capacitance	derating	and	its	impact	in	system

design.	A	pin	of	an	IC	has	an	 input	capacitance	of	5	 to	7	pF.	This	means	that	a
single	 output	 that	 drives	 many	 inputs	 sees	 a	 large	 capacitance	 load	 since	 the
inputs	 are	 in	 parallel	 and	 therefore	 added	 together.	 Look	 at	 the	 following
equations.

Q	=	CT																			(A-1)

Q	/	T	=	CV	/	T							(A-2)

F	=	1	/	T																	(A-3)

I	=	CVF																		(A-4)

In	 Equation	 (A-4),	 I	 is	 the	 driving	 capability	 of	 the	 output	 pin,	 C	 is	CIN	 as

seen	 by	 the	 output,	 and	 V	 is	 the	 voltage.	 The	 equation	 indicates	 that	 as	 the
number	of	CIN	 loads	goes	up,	 there	must	be	a	corresponding	 increase	 in	IO,	 the
driving	capability	of	the	output.	In	other	words,	outputs	with	high	values	of	IOL	and
IOH	are	desirable.	Although	there	have	been	some	logic	families	with	IOL	=	64	mA
and	IOH	=	15	mA,	their	power	consumption	is	high.	Equation	(A-4)	indicates	that	if
I	 =	 constant,	 as	C	 goes	 up,	 F	must	 come	 down,	 resulting	 in	 lower	 speed.	 The
most	widely	accepted	solution	 is	 the	use	of	a	 large	number	of	drivers	 to	 reduce
the	 load	 capacitance	 seen	 by	 a	 given	 output.	 Assume	 that	 we	 have	 a	 single
address	bus	line	driving	16	banks	of	32-bit-wide	memory.	Each	bank	has	4	chips
of	64K	×	8	organization,	which	results	in	16	×	4	=	64	memory	chips,	or	16	×	64K	×
32	=	32M	bytes	of	SRAM.	Depending	on	how	many	244s	are	used	 to	drive	 the
memory	 addresses,	 the	 delay	 due	 to	 the	 address	 path	 varies	 substantially.	 To
understand	this	we	examine	three	cases.

Case	1:	Two	244	drivers
This	option	uses	 two	244	drivers,	 one	 for	A0–A7	and	one	 for	A8–A15.	An

output	of	the	244	drives	16	banks	of	memory,	each	with	4	inputs.	Assuming	that
each	memory	input	has	5	pF	capacitance,	this	results	in	a	total	of	4	×16	×	5	=	320
pF	capacitance	load	seen	by	the	244	output.	However,	the	244	output	can	handle
no	more	than	50	pF.	As	a	result,	the	delay	due	to	this	extra	capacitance	must	be
added	to	the	address	path	delay.	For	each	50	to	100	pF	of	capacitance,	an	extra	3
ns	delay	 is	added	 to	 the	address	path	delay.	 In	our	calculation,	we	use	3	ns	 for
each	100	pF	of	capacitance.	Figure	A-6	shows	driving	memory	inputs	by	two	244
chips.	See	Example	A-4.

Figure	A-6:	Case	1,	Two	244	Address	Drivers

Example	A-4

Calculate	the	following	for	Figure	A-6,	assuming	a	memory	access	time	of	25	ns
and	a	propagation	delay	of	10	ns	for	the	244.

(a)	delay	due	to	capacitance	derating	on	the	address	path

(b)	the	total	address	path	delay	for	case	1

	

Solution:
	

(a)	Of	the	320	pF	capacitance	seen	by	the	244,	only	50	pF	is	taken	care	of;	the
rest,	which	is	270	(320	–	50	=	270),	causes	a	delay.	Since	there	are	3	ns	for	each
extra	100	pF,	we	have	the	following	delay	due	to	capacitance	derating,	(270/100)
×	3	ns	=	8.1	ns.

(b)	 Address	 path	 delay	 =	 244	 buffer	 propagation	 delay	 +	 capacitance	 derating
delay	+	memory	access	time	=	10	ns	+	8.1	ns	+	25	ns	=	43.1	ns.

	

Case	2:	Doubling	the	number	of	244	buffers
Doubling	 the	 number	 of	 244	 buffers	will	 reduce	 the	 address	 path	 delay.	A

single	244	drives	only	8	banks,	or	a	total	of	32	inputs,	since	there	are	4	inputs	in
each	bank.	As	a	result,	a	244	output	will	see	a	capacitance	load	of	32	×	5	=	160
pF.	 In	 this	case,	we	use	only	 four	244	buffer	chips,	as	shown	 in	Figure	A-7	and
Example	A-5.

Figure	A-7:	Case	2,	Four	244	Address	Drivers

	

Example	A-5

Calculate	(a)	delay	due	to	capacitance	derating	on	the	address	path,	and	(b)	total
address	 path	 delay	 for	 case	2.	Assume	a	memory	 access	 time	of	 25	 ns	 and	a
propagation	delay	of	10	ns	for	the	244.

	

Solution:
	

(a)	Of	the	160	pF	capacitance	seen	by	the	244,	only	50	pF	is	taken	care	of;	 the
rest,	which	is	110	pF,	causes	a	delay.	Since	there	are	3	ns	for	each	extra	100	pF,
we	have	(110/100)	×	3	ns	=	3.1	ns	delay	due	to	capacitance	derating.

(b)	The	address	path	delay	=	244	buffer	propagation	delay	+	capacitance	derating
delay	+	memory	access	time	=	10	ns	+	3.1	ns	+	25	ns	=	28.1	ns.

	

Case	3:	Doubling	again
In	this	case,	we	double	the	number	of	244	buffers	again,	so	that	an	output	of

the	244	drives	four	banks,	each	with	4	 inputs.	This	results	 in	a	total	capacitance
load	of	4	×	4	×	5	=	80	pF.	Only	50	pF	of	it	is	taken	care	of	by	the	244,	leaving	30
pF,	causing	a	delay.	See	Figure	A-8.

Figure	A-8:	Case	3,	A	Single	244	Address	Driver	for	Each	Bank

Examining	cases	1	 through	3	shows	that	 for	high-speed	system	design	we
must	accept	a	higher	cost	due	to	extra	parts	and	higher	power	consumption.

Power	dissipation	considerations
Power	 dissipation	 of	 a	 system	 is	 a	 major	 concern	 of	 system	 designers,

especially	 for	 laptop	 and	 hand-held	 systems.	 Although	 power	 dissipation	 is	 a
function	 of	 the	 total	 current	 consumption	 of	 all	 components	 of	 a	 system,	 the
impact	of	VCC	 is	much	more	pronounced,	as	 shown	next.	Earlier	we	showed	 in
Equation	 (26-4)	 that	 I	 =	 CFV.	 Substituting	 this	 in	 equation	 P	 =	 VI	 yields	 the
following:

F	=	VI	=	CFV2						(A-5)					

In	 Equation	 (A-5),	 the	 effects	 of	 frequency	 and	 VCC	 voltage	 should	 be
noted.	While	the	power	dissipation	goes	up	linearly	with	frequency,	the	impact	of
the	power	supply	voltage	is	much	more	pronounced	(squared).	See	Example	A-6.

Example	A-6

Prove	that	a	3.3	V	system	consumes	56%	less	power	than	a	system	with	a	5	V
power	supply.

	

Solution:
	

Since	P	=	VI,	by	substituting	I	=	V/R,	we	have	P	=	V2/R.	Assuming	that	R	=	1,	we
have	P	(3.3)2	=	10.89	W	and	P	=	(5)2	=	25	W.	This	results	in	using	14.11	W	less
(25	–	10.89	=	14.11),	which	means	a	56%	power	saving	(14.11	W/25	W	×	100	=
56%).

	

Dynamic	and	static	currents
There	are	 two	major	 types	of	currents	 flowing	 through	an	 IC:	dynamic	and

static.	 A	 dynamic	 current	 is	 a	 function	 of	 the	 frequency	 under	 which	 the
component	 is	 working,	 as	 seen	 in	 Equation	 (A-4).	 This	 means	 that	 as	 the
frequency	goes	up,	 the	dynamic	current	and	power	dissipation	go	up.	The	static
current,	 also	 called	 dc,	 is	 the	 current	 consumption	 of	 the	 component	when	 it	 is
inactive	(not	selected).

Power-down	option
The	popularity	of	 laptops	and	tablets	have	 led	microprocessor	designers	to

make	an	all-out	effort	to	conserve	battery	power.	Today	processors	have	what	 is
called	system	management	mode	(SMM),	which	reduces	energy	consumption	by
turning	off	peripherals	or	the	entire	system	when	not	in	use.	The	SMM	can	put	the
entire	system,	 including	the	monitor,	 into	sleep	mode	during	periods	of	 inactivity,
thereby	reducing	“power	from	250	watts	to	less	than	30	watts.”	The	effects	on	the
3.3	 V	 power	 supply	 alone	 translate	 into	 a	 power	 savings	 of	 up	 to	 56%	 over
systems	with	a	5	V	power	supply,	as	was	shown	in	Example	A-6.

Ground	bounce
One	 of	 the	 major	 issues	 that	 designers	 of	 high-frequency	 systems	 must

grapple	with	is	ground	bounce.	Before	we	define	ground	bounce,	we	will	discuss
lead	inductance	of	IC	pins.	There	is	a	certain	amount	of	capacitance,	resistance,
and	 inductance	associated	with	 each	pin	 of	 the	 IC.	The	 size	 of	 these	elements
varies	 depending	 on	many	 factors	 such	 as	 length,	 area,	 and	 so	 on.	 Figure	A-9
shows	the	lead	inductance	and	capacitance	of	the	24	pins	of	a	DIP	IC.

Figure	A-9:	Inductance	and	Capacitance	of	24-pin	DIP

The	inductance	of	the	pins	is	commonly	referred	to	as	self-inductance	since
there	is	also	what	is	called	mutual	inductance,	as	we	will	show	below.	Of	the	three
components	 of	 capacitance,	 resistance,	 and	 inductance,	 self-inductance	 is	 the
one	that	causes	the	most	problems	in	high-frequency	system	design	since	it	can
result	 in	 ground	 bounce.	 Ground	 bounce	 is	 caused	 when	 a	 large	 amount	 of
current	 flows	 through	 the	ground	pin	when	multiple	outputs	change	 from	high	 to
low	all	at	the	same	time.	The	voltage	relation	to	the	inductance	of	the	ground	lead
follows:

V	=	L	di	/	dt									(A-6)

As	we	 increase	 the	system	frequency,	 the	rate	of	dynamic	current,	di/dt,	 is
also	 increased,	 resulting	 in	an	 increase	 in	 the	 inductance	voltage	L	(di/dt)	of	 the
ground	 pin.	 Since	 the	 low	 state	 (ground)	 has	 a	 small	 noise	 margin,	 any	 extra
voltage	 due	 to	 the	 inductance	 voltage	 can	 cause	 a	 false	 signal.	 To	 reduce	 the
effect	of	ground	bounce,	the	following	steps	must	be	taken	where	possible.

	

1.							The	VCC	and	ground	pins	of	the	chip	must	be	located	in	the	middle	rather
than	at	the	opposite	ends	of	the	IC	chip	(the	14-pin	TTL	logic	IC	uses	pins
14	 and	 7	 for	 ground	 and	 VCC).	 This	 is	 exactly	 what	 we	 see	 in	 high-
performance	 logic	 gates	 such	 as	 Texas	 Instrument’s	 advanced	 logic
AC11000	and	ACT11000	 families.	For	example,	 the	ACT11013	 is	a	14-pin

DIP	chip	where	pins	4	and	11	are	used	for	the	ground	and	VCC	instead	of	7
and	14	as	 in	 the	TTL.	We	can	also	use	surface	mount	 technology	such	as
the	SOIC	packages	instead	of	DIP.	Surface	mount	devices	have	much	small
size	and	shorter	leads.	The	self-inductance	of	the	leads	is	shown	in	Table	A-
6.

Pins DIP	(nH) SOIC	(nH)

1,	10,	11,	20 13.7 4.2

2,	9,	12,	19 11.1 3.8

3,	8,	13,	18 8.6 3.3

4,	7,	14,	17 6.0 2.9

5,	6,	15,	16 3.4 2.4

Courtesy	of	Texas	Instruments

Table	A-6:	20-Pin	DIP	and	SOIC	Lead	Inductance

2.							Use	logics	with	a	minimum	number	of	outputs.	For	example,	a	4-output	is
preferable	 to	 an	 8-output.	 This	 explains	 why	 many	 designers	 of	 high-
performance	systems	avoid	using	memory	chips	or	the	drivers	and	buffers	of
16-	or	32-bit-wide	outputs	since	all	 the	outputs	switching	at	 the	same	 time
will	 cause	 a	 massive	 flow	 of	 current	 in	 the	 ground	 pin,	 and	 hence	 cause
ground	bounce	(see	Figure	A-10).

3.							Use	as	many	pins	for	the	ground	and	VCC	as	possible	to	reduce	the	lead
length,	since	the	self-inductance	of	a	wire	with	length	l	and	a	cross	section	of
B	×	C	is:

L=0.002	ln	[2l	/	(B	+	C)	+	l	/	2]																							(A-7)

As	 seen	 in	 Equation	 (A-7),	 the	 wire	 length,	 l,	 contributes	 more	 to	 self-
inductance	 than	does	 the	cross	section.	This	explains	why	all	high-performance
microprocessors	and	logic	families	use	several	pins	for	the	VCC	and	ground.	For
example,	 in	 the	case	of	 Intel’s	Pentium	processor	 there	are	over	50	pins	 for	 the
ground	and	another	50	pins	for	the	VCC.				

The	 discussion	 of	 ground	 bounce	 is	 also	 applicable	 to	 VCC	 when	 a	 large
number	of	outputs	changes	 from	the	 low	to	high	state	and	 is	 referred	 to	as	VCC
bounce.	However,	 the	effect	of	VCC	 bounce	 is	not	as	severe	as	ground	bounce
since	the	high	(“1”)	state	has	wider	noise	margin	than	the	low	(“0”)	state.

Filtering	the	transient	currents	using	decoupling	capacitors
In	the	TTL	family,	the	change	of	the	output	from	low	to	high	can	cause	what

is	called	transient	current.	In	totem-pole	output,	when	the	output	is	low,	Q4	is	on

and	 saturated,	whereas	Q3	 is	 off.	 By	 changing	 the	 output	 from	 the	 low	 to	 high
state,	Q3	becomes	on	and	Q4	becomes	off.	It	is	faster	to	turn	a	transistor	on	than
turn	a	 transistor	off.	This	means	 that	 there	 is	a	 time	 that	both	 transistors	are	on
and	drawing	currents	 from	the	VCC.	The	amount	of	current	depends	on	 the	RON
values	of	the	two	transistors,	and	that,	in	turn,	depends	on	the	internal	parameters
of	the	transistors.	However,	the	net	effect	of	this	is	a	large	amount	of	current	in	the
form	of	a	spike	for	the	output	current,	as	shown	in	Figure	A-10.

Figure	A-10:	(a)	Ground	Bounce	(b)	Transient	Current

To	filter	the	transient	current,	a	0.01	F	or	0.1	F	ceramic	disk	capacitor	can	be
placed	between	the	VCC	and	ground	for	each	TTL	IC.	However,	 the	 lead	for	 this
capacitor	should	be	as	small	as	possible	since	a	long	lead	results	in	a	large	self-
inductance	and	that	results	in	a	spike	on	the	VCC	line	[V	=	L	(di/dt)].	This	is	also
called	 VCC	 bounce.	 The	 ceramic	 capacitor	 for	 each	 IC	 is	 referred	 to	 as	 a
decoupling	 capacitor.	 There	 is	 also	 a	 bulk	 decoupling	 capacitor,	 as	 described
next.

Bulk	decoupling	capacitor
As	many	 IC	 chips	 change	 state	 at	 the	 same	 time,	 the	 combined	 currents

drawn	from	the	board’s	VCC	power	supply	can	be	massive	and	cause	a	fluctuation
of	VCC	on	the	board	where	all	the	ICs	are	mounted.	To	eliminate	this,	a	relatively
large	(relative	to	an	IC	decoupling	capacitor)	tantalum	capacitor	is	placed	between
the	VCC	 and	ground	 lines.	The	size	and	 location	of	 this	 tantalum	capacitor	 vary
depending	on	the	number	of	ICs	on	the	board	and	the	amount	of	current	drawn	by
each	IC,	but	 it	 is	common	to	have	a	single	22	µF	to	47	µF	capacitor	 for	each	of

the	16	devices,	placed	between	 the	VCC	and	ground	 lines.	See	Technical	Notes
TN0006	and	TN4602	from	Micron	Technology.

http://www.micron.com/products/support/technical-notes

	

Crosstalk
Crosstalk	is	due	to	mutual	inductance.	See	Figure	A-11.

Figure	A-11:	Crosstalk	(EMI)

Previously,	 we	 discussed	 self-inductance,	 which	 is	 inherent	 in	 a	 piece	 of
conductor.	Mutual	 inductance	 is	 caused	 by	 two	 electric	 lines	 running	 parallel	 to
each	other.	It	is	calculated	as	follows:

M	=	0.002l	×	ln	(2l	/	d)	–	ln	(K	–	1	+	d/l	–	d/2l)2								(A-8)
where	 l	 is	 the	 length	 of	 two	 conductors	 running	 in	 parallel,	 and	 d	 is	 the

distance	 between	 them,	 and	 the	medium	material	 placed	 in	 between	 affects	 K.
Equation	(A-8)	indicates	that	the	effect	of	crosstalk	can	be	reduced	by	increasing
the	distance	between	the	parallel	or	adjacent	lines	(in	printed	circuit	boards,	these
will	be	 traces).	 In	many	cases,	such	as	printer	and	disk	drive	cables,	 there	 is	a
dedicated	 ground	 for	 each	 signal.	 Placing	 ground	 lines	 (traces)	 between	 signal
lines	reduces	the	effect	of	crosstalk.	This	method	is	used	even	in	some	ACT	logic
families	where	VCC	and	GND	pins	are	next	to	each	other.	Crosstalk	is	also	called
EMI	 (electromagnetic	 interference).	 This	 is	 in	 contrast	 to	 ESI	 (electrostatic
interference),	 which	 is	 caused	 by	 capacitive	 coupling	 between	 two	 adjacent
conductors.

Transmission	line	ringing
The	 square	 wave	 used	 in	 digital	 circuits	 is	 in	 reality	 made	 of	 a	 single

fundamental	pulse	and	many	harmonics	of	various	amplitudes.	When	this	signal
travels	 on	 the	 line,	 not	 all	 the	 harmonics	 respond	 the	 same	 way	 to	 the
capacitance,	 inductance,	 and	 resistance	 of	 the	 line.	 This	 causes	what	 is	 called
ringing,	which	depends	on	the	thickness	and	the	length	of	the	line	driver,	among
other	 factors.	 To	 reduce	 the	 effect	 of	 ringing,	 the	 line	 drivers	 are	 terminated	 by
putting	a	resistor	at	the	end	of	the	line.	See	Figure	A-12.

http://www.micron.com/products/support/technical-notes

Figure	A-12:	Reducing	Transmission	Line	Ringing

There	are	three	major	methods	of	line	driver	termination:	parallel,	serial,	and
Thevenin.	 In	many	 systems	 resistors	 of	 30–50	 ohms	 are	 used	 to	 terminate	 the
line.	The	parallel	and	Thevenin	methods	are	used	in	cases	where	there	is	a	need
to	 match	 the	 impedance	 of	 the	 line	 with	 the	 load	 impedance.	 This	 requires	 a
detailed	analysis	 of	 the	 signal	 traces	and	 load	 impedance,	which	 is	 beyond	 the
scope	of	 this	book.	 In	high-frequency	systems,	wire	 traces	on	 the	printed	circuit
board	(PCB)	behave	like	transmission	lines,	causing	ringing.	The	severity	of	 this
ringing	depends	on	 the	speed	and	 the	 logic	 family	used.	Table	A-7	provides	 the
length	of	the	traces,	beyond	which	the	traces	must	be	looked	at	as	transmission
lines.

Logic	Family Line	Length	(in.)

LS 25

S,	AS 11

F,	ACT 8

AS,	ECL 6

FCT,	FCTA 5

(Reprinted	by	permission	of	Integrated	Device	Technology,	copyright	IDT	1991)

Table	A-7:	Line	Length	Beyond	Which	Traces	Behave	Like	Transmission	Lines

FIT	and	failure	analysis
Chip	 manufacturers	 provide	 a	 parameter	 called	 FIT	 (failure	 in	 time)	 to

measure	the	reliability	for	a	single	chip.	The	FIT	of	a	single	chip	is	the	number	of
expected	failures	in	a	billion	(109)	hours	of	operation.	If	a	chip	has	FIT	of	300,	then
there	 will	 be	 300	 failures	 per	 billion	 device	 hours	 of	 operation.	 To	 reduce	 the
number	 of	 device	 failures,	 manufacturers	 use	 burn-in	 to	 eliminate	 the	 early
failures	before	the	product	is	shipped	to	the	customer.	This	is	commonly	referred

to	as	infant	mortality	since	the	failure	rate	starts	high	and	eventually	levels	off	to	a
constant	level.	See	Figure	A-13.

Figure	A-13:	Bathtub	Failure	Rate

Although	 we	 can	 eliminate	 the	 early	 failures	 using	 burn-in,	 we	 can	 never
reduce	the	failure	rate	to	zero	due	to	wear	out	and	other	factors	such	as	soft	error.
This	is	discussed	next.

Soft	error	and	hard	error
In	memory	there	are	two	kinds	of	errors	that	can	cause	a	bit	to	change:	soft

error	and	hard	error.	If	the	cell	bit	gets	stuck	permanently	in	a	“high”	or	“low”	state,
this	 is	 referred	 to	 as	 a	hard	 error.	 Hard	 error	 is	 due	 to	 deterioration	 of	 the	 cell
caused	by	wear-out	(see	Figure	A-13).	There	is	no	remedy	for	hard	error	except
to	replace	the	defective	RAM	chip	since	the	damage	is	permanent.	The	other	kind
of	error,	a	soft	error,	alters	the	cell	bit	from	1	to	0	or	from	0	to	1,	even	though	the
cell	is	perfectly	fine	(no	hard	error).	Soft	error	is	caused	by	alpha	particle	radiation
and	power	surges.	The	sources	of	the	alpha	particles	are	the	radiation	in	the	air	or
the	materials	in	the	plastic	package	enclosing	the	RAM	die.	The	occurrence	of	a
soft	 error	 as	 a	 result	 of	 alpha	 particles	 ionizing	 the	 charges	 in	 a	RAM	 cell	 is	 a
greater	 source	of	 concern	since	 it	 is	5	 times	more	 likely	 to	happen	 than	a	hard
error.	As	the	density	of	RAM	chips	 increases	and	the	size	of	 the	RAM	cell	goes
down,	the	probability	of	a	soft	error	for	a	given	cell	goes	up,	but	the	relation	is	not
linear.

Mean	time	between	failures	(MTBF)	for	system
Reliability	of	system	depends	directly	on	 two	 factors:	a)	 the	FIT	 (failures	 in

time)	 value	of	 a	 single	part,	 and	b)	 the	number	 of	 parts	 in	 the	 system.	We	use
these	two	factors	to	calculate	what	is	called	MTBF	(mean	time	between	failures).
The	MTBF	predicts	 the	average	 time	between	 the	 two	consecutive	 failures.	The
MTBF	for	a	single	chip	is	calculated	using	the	FIT	as	follows:

MTBF	=	1,000,000,000	hours	/	FIT														(A-9)						(A-9)

To	get	the	MTBF	rate	for	the	system,	we	must	divide	the	single-chip	MTBF
by	the	number	of	chips	in	the	system.

MTBF	of	system	=	MTBF	of	one	chip	/	number	of	chips	in	system														(A-10)		

(A-10)

See	Examples	A-7	and	A-8.

Example	A-7

Assuming	that	the	FIT	for	a	single	chip	is	252,	calculate	the	MTBF	for:

(a)	a	single	chip

(b)	a	system	with	512	chips

	

Solution:
	

(a)	The	MTBF	for	a	single	chip	is	as	follows:	MTBF	for	1	chip	=	1,000,000,000	hr	/
252	=	3,968,254	hr	=	453	years				

(b)	The	MTBF	for	512	chips	is	=	453	years	/	512	chips	=	0.884	year	=	323	days

	

	

Example	A-8

Calculate	the	system	MTBF	for	the	system	in	Example	A-7	if	FIT	=	745.

	

Solution:
	

MTBF	 for	 a	 single	 chip	 =	 109	 /	 745	 hrs.	 =	 153	 years.	 For	 the	 system	 it	 is	 153
years	/	512	=	109	days.

	

See	Technical	Notes	TN-00-14	and	TN-00-18	on	the	http://www.micron.com
website.

http://www.micron.com/products/support/technical-notes

	

There	 is	 a	 paper	 called	 “Testing	 RAM	 for	 Embedded	 Systems”	 by	 Jack
Ganssle	and	available	from	the	following	website:

http://www.ganssle.com/testingram.pdf

Also	see	 the	article	 “Thirteen	 feet	of	 concrete	won’t	 shield	your	RAM	 from
the	 perils	 of	 cosmic	 rays.	What’s	 the	 solution?”	 by	 Jack	Ganssle	 in	 Dr.	 Dobb’s

http://www.micron.com
http://www.micron.com/products/support/technical-notes
http://www.ganssle.com/testingram.pdf

Journal.	It	is	available	from	the	following	website:

http://www.ddj.com/dept/debug/196800160

ECL	and	gallium	arsenide	(GaAs)	chips
The	use	of	L3	cache	and	EDC	(Error	Detection	and	Correction)	 in	systems

with	speeds	of	200	MHz	and	higher	is	adding	to	the	data	and	address	path	delay.
This	is	forcing	designers	to	resort	to	using	ECL	and	GaAs	chips.	Due	to	the	fact
that	ECL	chips	have	a	very	high	power	dissipation,	they	are	not	used	in	low-cost
x86	design.	However,	GaAs	chips	are	showing	up	 in	high-speed	x86	and	RISC-
based	 computers.	 This	 is	 especially	 the	 case	 for	 the	 GaAs	 EDC	 and	 cache
controller	chips.	The	mass	of	electrons	in	GaAs	is	lighter	than	in	silicon,	due	to	its
quantum	mechanics	 structure.	 As	 a	 result,	 the	 electrons	 in	GaAs	 have	 a	much
higher	speed.	This	means	that	GaAs	chips	can	achieve	a	much	higher	speed	than
silicon.	The	power	dissipation	of	the	GaAs	transistor	is	comparable	to	the	silicon-
based	MOS	 transistor.	Therefore,	GaAs	 technology	might	appear	 to	provide	 the
ideal	chip	since	it	has	the	speed	of	ECL	(it	is	even	faster	than	ECL)	and	the	power
dissipation	of	CMOS.	However,	it	has	the	following	disadvantages.

1.							Unlike	silicon,	of	which	there	is	a	plentiful	supply	in	nature	in	the	form	of
sand,	GaAs	is	a	rare	commodity,	and	therefore	more	expensive.

2.							GaAs	is	a	compound	made	of	two	elements,	Ga	and	As,	and	therefore	is
unstable	at	high	temperatures.

3.							It	is	very	brittle,	making	it	impossible	to	have	large	wafers.	As	a
consequence,	at	this	time	no	more	than	100,000	transistors	can	be	placed
on	a	single	chip.	Contrast	this	to	the	millions	of	transistors	for	silicon-based
chips.

4.							The	GaAs	yields	are	much	lower	than	for	silicon,	making	the	cost	per	chip
much	more	expensive	than	for	silicon	chips.

These	problems	make	the	building	of	an	entire	computer	based	on	GaAs	a
visionary	 project,	 if	 not	 an	 impossible	 one.	 This	 was	 the	 case	 for	 the	 CRAY	 III
supercomputer,	 which	 was	 based	 on	 GaAs,	 and	 the	 buses	 ran	 at	 speeds	 of
multiple	GHz;	but	the	project	was	also	several	years	behind	and	millions	of	dollars
over	 budget,	 so	 it	 was	 eventually	 abandoned	 and	 the	 company	 went	 out	 of
business.

Review	Questions
1.							What	is	the	fan-out	of	the	“0”	state?

2.							If	the	fan-out	of	“low”	and	“high”	are	10	and	15,	respectively,	what	is	the
fan-out?

3.							If	IOL	=	12	mA,	IOH	=	3	mA	for	the	driver,	and	IIL	=	1.6	mA,	IIH	=	40	A	for
the	load,	find	the	fan-out.

http://www.ddj.com/dept/debug/196800160

4.							Why	do	IIL	and	IOH	have	negative	signs	in	many	TTL	books?

5.							What	are	the	74xx244	and	74xx245	used	for?

6.							What	is	capacitive	derating?

7.							Ground	bounce	happens	when	the	output	makes	a	transition	from
_______	to	_______.

8.							Give	one	way	to	reduce	ground	bounce.

9.							Transient	current	is	due	to	transition	of	output	from	_______	to	_______.

10.			Why	do	high-speed	logic	gates	using	DIP	packaging	put	the	VCC	and
ground	pins	in	the	middle	instead	of	the	corners?

11.			True	or	false.	Soft	error	is	permanent.

12.			True	or	false.	Hard	error	is	permanent.

13.			Alpha	particle	radiation	causes	____________	(soft,	hard)	errors.

14.			FIT	is	in	________	(hours,	months,	years)	of	device	operation.

15.			What	is	the	MTBF	for	512	megabytes	of	memory	if	DRAM	chips	used	are
16M	×	8	with	FIT	=	252?

16.			What	is	the	MTBF	for	512	megabytes	of	memory	if	DRAM	chips	used	are
16M	×	8	with	FIT	=	1000?

Answers	to	Review	Questions
Section	A.1

1.							MOS	is	more	power	efficient,	while	bipolar	is	faster.

2.							True																																																						

3.							True

4.							CMOS																																																		

5.							NMOS

6.							In	the	lower	end,	ALS,	and	in	the	higher	end,	FAST

Section	A.2
1.							It	is	the	number	of	loads	that	the	driver	can	support	and	it	is	calculated	by

IOL/IIL.

2.							10

3.							IOL/IIL	=	12	mA/1.6	mA	=	7	and	IOH/IIH	=	3	mA/40	µA	=	75.	Fan-out	is	7,	a
lower	number.

4.							The	negative	sign	indicates	that	these	currents	are	flowing	out	of	the	IC
(conventional	current	flow).

5.							They	are	used	for	the	line	driver:	the	74xx244	for	unidirectional	and
74xx245	for	bidirectional	lines.

6.							It	is	signal	delay	caused	by	excessive	load	capacitance.

7.							High,	low

8.							Make	the	ground	pin	length	as	small	and	short	as	possible.

9.							Low,	high

10.			To	make	the	self-inductance	of	pins	VCC	and	GND	small	in	order	to	reduce
the	ground	and	VCC	bounce

11.			False																																																					

12.			True

13.			Soft																																																							

14.			Hours

15.			453/32	=	14.1	years	since	we	have	512M	×	8/16M	×	8	=	32	chips

16.			3.56	years	(114.15	years	for	one	DRAM	divided	by	32	chips)

	

Appendix	B:	KL25Z	80-pin	Pinout
Pin Pin	Name Default ALT0 ALT1 ALT2 ALT3 ALT4 ALT5 ALT6

1 PTE0 DISABLED 	 PTE0 	 UART1_TX RTC_CLKOUT CMP0_OUT I2C1_SDA

2 PTE1 DISABLED 	 PTE1 SPI1_MOSI UART1_RX 	 SPI1_MISO I2C1_SCL

3 PTE2 DISABLED 	 PTE2 SPI1_SCK 	 	 	 	

4 PTE3 DISABLED 	 PTE3 SPI1_MISO 	 	 SPI1_MOSI 	

5 PTE4 DISABLED 	 PTE4 SPI1_PCS0 	 	 	 	

6 PTE5 DISABLED 	 PTE5 	 	 	 	 	

7 VDD VDD VDD 	 	 	 	 	 	

8 VSS VSS VSS 	 	 	 	 	 	

9 USB0_DP USB0_DP USB0_DP 	 	 	 	 	 	

10 USB0_DM USB0_DM USB0_DM 	 	 	 	 	 	

11 VOUT33 VOUT33 VOUT33 	 	 	 	 	 	

12 VREGIN VREGIN VREGIN 	 	 	 	 	 	

13 PTE20
ADC0_DP0/

ADC0_SE0

ADC0_DP0/

ADC0_SE0
PTE20 	 TPM1_CH0 UART0_TX 	 	

14 PTE21
ADC0_DM0/

ADC0_SE4a

ADC0_DM0/

ADC0_SE4a
PTE21 	 TPM1_CH1 UART0_RX 	 	

15 PTE22
ADC0_DP3/

ADC0_SE3

ADC0_DP3/

ADC0_SE3
PTE22 	 TPM2_CH0 UART2_TX 	 	

16 PTE23
ADC0_DM3/

ADC0_SE7a

ADC0_DM3/

ADC0_SE7a
PTE23 	 TPM2_CH1 UART2_RX 	 	

17 VDDA VDDA VDDA 	 	 	 	 	 	

18 VREFH VREFH VREFH 	 	 	 	 	 	

19 VREFL VREFL VREFL 	 	 	 	 	 	

20 VSSA VSSA VSSA 	 	 	 	 	 	

21 PTE29
CMP0_IN5/

ADC0_SE4b
	 	 	 TPM0_CH2 TPM_CLKIN0 	 	

22 PTE30

DAC0_OUT/

ADC0_SE23/

CMP0_IN4

	 	 	 TPM0_CH3 TPM_CLKIN1 	 	

23 PTE31 DISABLED 	 PTE31 	 TPM0_CH4 	 	 	

24 PTE24 DISABLED 	 PTE24 	 TPM0_CH0 	 I2C0_SCL 	

25 PTE25 DISABLED 	 PTE25 	 TPM0_CH1 	 I2C0_SDA 	

26 PTA0 SWD_CLK TSI0_CH1 PTA0 	 TPM0_CH5 	 	 	 SWD_CLK

27 PTA1 DISABLED TSI0_CH2 PTA1 UART0_RX TPM0_CH0 	 	 	

28 PTA2 DISABLED TSI0_CH3 PTA2 UART0_TX TPM2_CH1 	 	 	

29 PTA3 SWD_DIO TSI0_CH4 PTA3 I2C1_SCL TPM0_CH0 	 	 	 SWD_DIO

30 PTA4 NMI_b TSI0_CH5 PTA4 I2C1_SDA TPM0_CH1 	 	 	

31 PTA5 DISABLED 	 PTA5 USB_CLKIN TPM0_CH2 	 	 	

32 PTA12 DISABLED 	 PTA12 	 TPM1_CH0 	 	 	

33 PTA13 DISABLED 	 PTA13 	 TPM1_CH1 	 	 	

34 PTA14 DISABLED 	 PTA14 SPI0_PCS0 UART0_TX 	 	 	

35 PTA15 DISABLED 	 PTA15 SPI0_SCK UART0_RX 	 	 	

36 PTA16 DISABLED 	 PTA16 SPI0_MOSI 	 	 SPI0_MISO 	

37 PTA17 DISABLED 	 PTA17 SPI0_MISO 	 	 SPI0_MOSI 	

38 VDD VDD VDD 	 	 	 	 	 	

39 VSS VSS VSS 	 	 	 	 	 	

40 PTA18 EXTAL0 EXTAL0 PTA18 	 UART1_RX TPM_CLKIN0 	 	

41 PTA19 XTAL0 XTAL0 PTA19 	 UART1_TX TPM_CLKIN1 	 LPTMR0_ALT1

42 RESET_b RESET_b 	 PTA20 	 	 	 	 	

43
PTB0/

LLWU_P5

ADC0_SE8/

TSI0_CH0

ADC0_SE8/

TSI0_CH0
	 I2C0_SCL TPM1_CH0 	 	 	

44 PTB1
ADC0_SE9/

TSI0_CH6

ADC0_SE9/

TSI0_CH6
PTB1 I2C0_SDA TPM1_CH1 	 	 	

45 PTB2
ADC0_SE12/

TSI0_CH7

ADC0_SE12/

TSI0_CH7
PTB2 I2C0_SCL TPM2_CH0 	 	 	

46 PTB3
ADC0_SE13/

TSI0_CH8

ADC0_SE13/

TSI0_CH8
PTB3 I2C0_SDA TPM2_CH1 	 	 	

47 PTB8 DISABLED 	 PTB8 	 EXTRG_IN 	 	 	

48 PTB9 DISABLED 	 PTB9 	 	 	 	 	

49 PTB10 DISABLED 	 PTB10 SPI1_PCS0 	 	 	 	

50 PTB11 DISABLED 	 PTB11 SPI1_SCK 	 	 	 	

51 PTB16 TSI0_CH9 TSI0_CH9 PTB16 SPI1_MOSI UART0_RX TPM_CLKIN0 SPI1_MISO 	

52 PTB17 TSI0_CH10 TSI0_CH10 PTB17 SPI1_MISO UART0_TX TPM_CLKIN1 SPI1_MOSI 	

53 PTB18 TSI0_CH11 TSI0_CH11 PTB18 	 TPM2_CH0 	 	 	

54 PTB19 TSI0_CH12 TSI0_CH12 PTB19 	 TPM2_CH1 	 	 	

55 PTC0
ADC0_SE14/

TSI0_CH13

ADC0_SE14/

TSI0_CH13
PTC0 	 EXTRG_IN 	 CMP0_OUT 	

56

PTC1/

LLWU_P6/

RTC_CLKIN

ADC0_SE15/

TSI0_CH14

ADC0_SE15/

TSI0_CH14

PTC1/

LLWU_P6/

RTC_CLKIN

I2C1_SCL 	 TPM0_CH0 	 	

ADC0_SE11/ ADC0_SE11/

57 PTC2 TSI0_CH15 TSI0_CH15 PTC2 I2C1_SDA 	 TPM0_CH1 	 	

58
PTC3/

LLWU_P7
DISABLED 	

PTC3/

LLWU_P7
	 UART1_RX TPM0_CH2 CLKOUT 	

59 VSS VSS VSS 	 	 	 	 	 	

60 VDD VDD VDD 	 	 	 	 	 	

61
PTC4/

LLWU_P8
DISABLED 	

PTC4/

LLWU_P8
SPI0_PCS0 UART1_TX TPM0_CH3 	 	

62
PTC5/

LLWU_P9
DISABLED 	

PTC5/

LLWU_P9
SPI0_SCK LPTMR0_ALT2 	 	 CMP0_OUT

63
PTC6/

LLWU_P10
CMP0_IN0 CMP0_IN0

PTC6/

LLWU_P10
SPI0_MOSI EXTRG_IN 	 SPI0_MISO 	

64 PTC7 CMP0_IN1 CMP0_IN1 PTC7 SPI0_MISO 	 	 SPI0_MOSI 	

65 PTC8 CMP0_IN2 CMP0_IN2 PTC8 I2C0_SCL TPM0_CH4 	 	 	

66 PTC9 CMP0_IN3 CMP0_IN3 PTC9 I2C0_SDA TPM0_CH5 	 	 	

67 PTC10 DISABLED 	 PTC10 I2C1_SCL 	 	 	 	

68 PTC11 DISABLED 	 PTC11 I2C1_SDA 	 	 	 	

69 PTC12 DISABLED 	 PTC12 	 	 TPM_CLKN0 	 	

70 PTC13 DISABLED 	 PTC13 	 	 TPM_CLKN1 	 	

71 PTC16 DISABLED 	 PTC16 	 	 	 	 	

72 PTC17 DISABLED 	 PTC17 	 	 	 	 	

73 PTD0 DISABLED 	 PTD0 SPI0_PCS0 	 TPM0_CH0 	 	

74 PTD1 ADC0_SE5b ADC0_SE5b PTD1 SPI0_SCK 	 TPM0_CH1 	 	

75 PTD2 DISABLED 	 PTD2 SPI0_MOSI UART2_RX TPM0_CH2 SPI0_MISO 	

76 PTD3 DISABLED 	 PTD3 SPI0_MISO UART2_TX TPM0_CH3 SPI0_MOSI 	

77
PTD4/

LLWU_P14
DISABLED 	

PTD4/

LLWU_P14
SPI1_PCS0 UART2_RX TPM0_CH4 	 	

78 PTD5 ADC0_SE6b ADC0_SE6b PTD5 SPI1_SCK UART2_TX TPM0_CH5 	 	

79
PTD6/

LLWU_P15
ADC0_SE7b ADC0_SE7b

PTD6/

LLWU_P15
SPI1_MOSI UART0_RX 	 SPI1_MISO 	

80 PTD7 DISABLED 	 PTD7 SPI1_MISO UART0_TX 	 SPI1_MOSI 	

	

Figure	B-1:	KL25Z	80-pin	Pinout

	

Appendix	C:	System	Clock	Generation
Multipurpose	Clock	Generator

The	Freescale	KL25Z	microcontroller	has	a	 rich	set	of	options	 to	generate
core	 clock,	 bus	 clock	 and	 clocks	 for	 the	 peripherals	 by	 the	Multipurpose	Clock
Generator	(MCG).	The	MCG	of	KL25Z	supports	nine	different	modes	of	operation.

Figure	C-1:	Clocking	Diagram	(Copied	from	KL25Z	Ref.	Man.)

The	MCG	has	two	clock	sources:	an	internal	32.768kHz	clock	or	an	external
reference	 clock.	 The	 external	 reference	 clock	 could	 be	 from	 an	 external	 clock
source	or	using	 the	system	oscillator	 in	conjunction	with	an	external	crystal	or	a
ceramic	resonator.	The	FRDM-KL25Z	comes	with	an	8MHz	crystal	connected	to
the	 system	 oscillator.	 If	 higher	 clock	 stability	 is	 desired,	 the	 external	 crystal
provides	better	stability	over	the	internal	clock	source.

The	MCG	 also	 has	 an	 FLL	 (Frequency-Locked	 Loop)	 and	 a	 PLL	 (Phase-
Locked	 Loop)	 to	 modify	 the	 frequency	 of	 the	 clock	 source.	 The	 FLL	 may	 use
either	internal	or	external	clock	source.	The	PLL	can	be	connected	to	the	external
clock	 only.	 Although	 FLL	 and	PLL	 provide	 flexibility	 of	 clock	 frequency,	 they	 do
have	some	period	jitter.	Both	FLL	and	PLL	can	be	bypassed	and	the	MCG	clock
output	will	be	derived	from	the	external	reference	clock.

Coming	 out	 of	 reset,	 KL25Z	 MCG	 has	 internal	 clock	 enabled	 and	 FLL
engaged	 (FEI	 mode).	 The	 FLL	 factor	 is	 default	 to	 640	 so	 the	 core	 clock	 (the
system	 clock	 running	 the	 ARM	 core	 including	 the	 CPU)	 is	 32.768kHz	 *	 640	 =
20.97	MHz.

In	the	normal	run	mode,	the	core	clock	may	run	up	to	48	MHz	and	the	bus
clock	24	MHz.

Clock	Generator	Programming
The	MCG	configuration	procedures	are	complex	and	we	will	not	attempt	 to

cover	them	here.

When	 the	Device	Family	Support	Pack	 is	used	with	Keil	MDK-ARM	v5.11,
the	 startup	 code	 in	 system_MKL25Z4.c	 file	 supports	 three	 MCG	 configurations
and	is	default	to	Configuration	0.

Configuration MCG	Mode Clock
Source

Clock
Modifier Core	Clock Bus	Clock

0 FEI Internal FLL 41.94	MHz 13.98	MHz

1 PEE External PLL 48.00	MHz 24.00	MHz

2 BLPE External bypass 8.0	MHz 8.0	MHz

Table	C-1:	Clock	generator	configurations	available	for	FRDM-KL25Z	in	Keil	MDK-ARM	Device	Family
Support	Pack

To	select	a	clock	configuration	other	 than	 the	default,	 you	need	 to	edit	 the
system_MKL25Z4.c	file	and	change	the	definition	of	CLOCK_SETUP.

PLL	Programming
If	 you	 need	 a	 clock	 frequency	 that	 is	 different	 from	 the	 available

configurations,	the	easiest	way	is	to	modify	the	second	configuration	in	PEE	mode
since	the	PLL	has	the	most	flexibility.

When	in	PEE	mode,	the	external	clock	frequency	is	divided	by	PRDIV0	(bits
4-0	 of	MCG_C5	Register)	 before	 feeding	 to	 the	PLL.	 The	VCO	divider	 (VDIV0,
bits	4-0	of	MCG_C6	Register)	divides	 the	output	of	VCO	before	 feeding	back	 to
the	phase	detector	which	acts	as	a	multiplier	to	the	frequency.	Lastly,	the	output	of
PLL	 is	 divided	 by	 OUTDIV1	 (bits	 31-28	 of	 SIM_CLKDIV1	 Register)	 before
connected	to	the	core	clock.	The	core	clock	is	divided	by	OUTDIV4	(bits	18-16	of
SIM_CLKDIV1	Register)	before	 it	 is	used	as	the	bus	clock.	 	For	example,	 in	the
startup	code,

the	PRDIV0	is	set	to	1	(divide	by	2),

the	VDIV0	is	set	to	0	(multiply	by	24),

the	OUTDIV1	is	set	to	1	(divide	by	2),	and

the	OUTDIV4	is	set	to	1	(divide	by	2)

The	external	clock	is	running	at	8	MHz	so	the	core	clock	is:	8	MHz	/	2	*	24	/
2	=	48	MHz.	The	bus	clock	is	48	MHz	/	2	=	24	MHz.

For	 the	 details	 of	 the	 divide	 and	 multiply	 factors,	 please	 refer	 to	 the
Reference	Manual.	The	next	example	will	set	the	core	clock	to	28	MHz.

the	PRDIV0	is	set	to	1	(divide	by	2),

the	VDIV0	is	set	to	0x19	(multiply	by	49),	and

the	OUTDIV1	is	set	to	6	(divide	by	7)

The	core	clock	will	be	8	MHz	/	2	*	49	/	7	=	28	MHz.

	

References
For	this	book,	the	following	references	have	been	used:

1.							KL25	Sub-Family	Reference	Manual	(KL25P80M48SF0RM)

2.							FRDM-KL25Z	Trainer	User’s	Manual	(FRDMKL25ZUM)

3.							Kinetis	L	Series	MCUs	(KLSRSPRDSUMMAP)

The	 background	 picture	 of	 the	 cover	 is	 downloaded	 from	 the	 following
website:

http://creativity103.com/collections/Technology/slides/circuit_board.html

	

http://cache.freescale.com/files/32bit/doc/ref_manual/KL25P80M48SF0RM.pdf
http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=FRDM-KL25Z&tid=vanFRDM-KL25Z
http://cache.freescale.com/files/32bit/doc/brochure/KLSRSPRDSUMMAP.pdf
http://creativity103.com/collections/Technology/slides/circuit_board.html

	Chapter 1: C for Embedded Systems
	Section 1.1: C Data types for Embedded systems
	Section 1.2: Bit-wise Operations in C
	Answer to Review Questions
	Chapter 2: Freescale ARM I/O Programming
	Section 2.1: Freescale Freedom KL25Z128VLK4 Microcontroller
	Section 2.2: GPIO (General Purpose I/O) Programming and Interfacing
	Section 2.3: Seven-segment LED interfacing and programming
	Answer to Review Questions
	Chapter 3: LCD and Keyboard Interfacing
	Section 3.1: Interfacing to an LCD
	Section 3.2: Interfacing the Keyboard to the CPU
	Answers to Review Questions
	Chapter 4: UART Serial Port Programming
	Section 4.1: Basics of Serial Communication
	Section 4.2: Programming UART Ports
	Answer to Review Questions
	Chapter 5: Freescale ARM Timer Programming
	Section 5.0: Introduction to counters and timers
	Section 5.1: System Tick Timer
	Section 5.2: Delay Generation with Freescale Timers
	Section 5.3: Output Compare and TPM Channels
	Section 5.4: Using Timer for Input Edge-time Capturing
	Section 5.5: Using Timer as an Event Counter
	Answers to Review Questions
	Chapter 6: Interrupt and Exception Programming
	Section 6.1: Interrupts and Exceptions in ARM Cortex-M
	Section 6.2: ARM Cortex-M Processor Modes
	Section 6.3: Freescale I/O Port Interrupt Programming
	Section 6.4: UART Serial Port Interrupt Programming
	Section 6.5: Timer Interrupt Programming
	Section 6.6: SysTick Programming and Interrupt
	Section 6.7: Interrupt Priority Programming in Freescale ARM
	Answer to Review Questions
	Chapter 7: ADC, DAC, and Sensor Interfacing
	Section 7.1: ADC Characteristics
	Section 7.2: ADC Programming with the Freescale KL25Z
	Section 7.3: Sensor Interfacing and Signal Conditioning
	Section 7.4: DAC Programming
	Answers to Review Questions
	Chapter 8: SPI Protocol and Devices
	Section 8.1: SPI Bus Protocol
	Section 8.2: SPI programming in Freescale ARM KL25Z
	Section 8.3: MAX7221 SPI 7-Segment Driver
	Answers to Review Questions
	Chapter 9: I2C Protocol and RTC Interfacing
	Section 9.1: I2C Bus Protocol
	Section 9.2: I2C Programming in Freescale ARM KL25Z
	Section 9.3: DS1337 RTC Interfacing and Programming
	Answers to Review Questions
	Chapter 10: Relay, Optoisolator, and Stepper Motor Interfacing
	Section 10.1: Relays and Optoisolators
	Section 10.2: Stepper Motor Interfacing
	Answers to Review Questions
	Chapter 11: PWM and DC Motor Control
	Section 11.1: DC Motor Interfacing and PWM
	Section 11.2: Programming PWM in Freescale ARM KL25Z
	Answers to Review Questions
	Chapter 12: Programming Graphic LCD
	Section 12.1: Graphic LCDs
	Section 12.2: Displaying Texts on Graphic LCDs
	Answers to Review Questions
	Chapter 13: DRAM Memory Technology and DMA Controller
	Section 13.1: Concept of Memory Cycle
	Section 13.2: DRAM Technology
	Section 13.3: Data Integrity in DRAM and ROM
	Section 13.4: Concept of DMA
	Answers to Review Questions
	Chapter 14: Cache Memory
	Section 14.1: Cache Memory Organizations
	Section 14.2: Cache Memory and Multicore Systems
	Answers to Review Questions
	Chapter 15: MMU, Virtual Memory and MPU in ARM
	SECTION 15.1: MMU and Virtual Memory in ARM
	Section 15.2: Page Table Descriptors and Access Permission in ARM
	Section 15.3: MPU and Memory Protection in ARM
	Answers to Review Questions
	Appendix A: IC Interfacing, System Design, and Failure Analysis
	Section A.1: Overview of IC Technology
	Section A.2: IC Interfacing and System Design Issues
	Answers to Review Questions
	Appendix B: KL25Z 80-pin Pinout
	Appendix C: System Clock Generation
	References

