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Preface 

This book deals with the crucial issue of implementing Finite State Machines (FSMs) 
in hardware, which has become increasingly important in the development of modern, 
complex digital systems. 

 Because FSM is a modeling technique for synchronous digital circuits, a detailed 
review of synchronous circuits in general is also presented, to enable in-depth and 
broad coverage of the topic. 

 A new classifi cation for FSMs from a hardware perspective is introduced, which 
places any state machine under one of three categories:  regular machines ,  timed machines , 
or  recursive machines . The result is a clear, precise, and  systematic  approach to the con-
struction of FSMs in hardware. 

 Many examples are presented in each category, from datapath controllers to pass-
word readers, from car alarms to multipliers and dividers, and from triggered circuits 
to serial data communications interfaces. 

 Several of the state machines, in all three categories, are subsequently implemented 
using VHDL and SystemVerilog. It starts with a review of these hardware description 
languages, accompanied by new, detailed templates. The subsequent designs are always 
complete and are accompanied by comments and simulation results, illustrating the 
design ’ s main features. 

 Numerous exercises are also included in the chapters, providing an invaluable 
opportunity for students to play with state machines, VHDL and SystemVerilog lan-
guages, compilation and simulation tools, and FPGA development boards. 

 In summary, the book is a complete, modern, and interesting guide on the theory 
and physical implementation of synchronous digital circuits, particularly when such 
circuits are modeled as FSMs. 
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1   The Finite State Machine Approach 

1.1   Introduction 

This chapter presents fundamental concepts and introduces new material on the fi nite 
state machine (FSM) approach for the modeling and design of sequential digital 
circuits. 

 A summary of the notation used in the book is presented in   table 1.1 .   

 1.2   Sequential Circuits and State Machines 

 Digital circuits can be classifi ed as  combinational  or  sequential . A combinational circuit 
is one whose output values depend solely on the present input values, whereas a 
sequential circuit has outputs that depend on previous system states. Consequently, 
the former is memoryless, whereas the latter requires some sort of memory (generally, 
D-type fl ip-fl ops [DFFs], reviewed in section 2.2). 

 An example of a combinational circuit is presented in   fi gure 1.1a , which shows 
an  N -bit adder; because the present sum is not affected by previous sums computed 
by the circuit, it is combinational. An example of sequential circuit is depicted in 
  fi gure 1.1b , which shows a synchronous three-bit counter (it counts from 0 to 7); 
because its output depends on the system state (for example, if the current output is 
5, then the next will be 6), it is a sequential circuit. Note the presence of a clock signal 
in the latter.   

 An often advantageous model for sequential circuits is presented in   fi gure 1.2a , 
which consists of a combinational logic block in the forward path and a memory 
(DFFs) in the feedback loop. When this architecture is used, a  fi nite state machine  (FSM) 
results. Note that the state presently stored in the memory is called  pr_state , and 
the state to be stored by the DFFs at the next (positive) clock transition is called 
 nx_state .  

   An example of such a modeling technique is depicted in   fi gure 1.2b , which shows 
the same circuit of   fi gure 1.1b , now reorganized according to the architecture of 
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Figure 1.1 
Examples of (a) combinational and (b) sequential circuits. 

Table 1.1
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fi gure 1.2a . Note that the lower section contains only fl ip-fl ops, whereas the upper 
section is purely combinational. 

Concept 
In short, a state machine is a  modeling / design  technique for sequential circuits. At any 
time, the machine sits in one of a fi nite number of possible states. For each state, both 
the output values and the transition conditions into other states are fully defi ned. The 
state is stored by the FSM, and the transition conditions are usually reevaluated at 
every (positive) clock edge, so the state-change procedure is always synchronous 
because the machine can only move to another state when the clock ticks. (Note: 
There has been some effort to develop asynchronous FSMs as well.) 

 Benefi ts 
 The FSM model provides a  systematic  approach (a  method ) for designing sequential 
circuits, which can lead to optimal or near-optimal implementations. Moreover, the 
method does not require any prior knowledge or specifi cs on how the general circuit 
(solution) for the problem at hand should look like. 

 When to Use the FSM Approach 
 This will be discussed in section 1.10. 

Figure 1.2 
(a) Sequential circuit with a registered feedback loop (a fi nite state machine). (b) Counter of   fi gure 

1.1b  rearranged according to   fi gure 1.2a . 
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Hardware- versus Software-Implemented State Machines 
Designing and implementing correct state machines in hardware is generally (much) 
more complex than doing it in software. Some of the reasons for that are listed below. 

1)   It is physically impossible for the clock signal to arrive at all chip locations at 
exactly the same time (this is called clock skew), so some fl ip-fl ops will be activated 
before others, a concern that simply does not exist in software. 
2)   A naive design in hardware might lead to the inference of latches, which impair 
the time response. It might also lead to the other extreme, which consists of reregister-
ing one or more signals, causing unwanted latency. 
3)   In hardware, signals might be subject to glitches, another concern that does not 
occur in software. 
4)   Contrary to software, hardware allows no abstraction. For example, if a state 
machine must produce in the next state the same output value produced in the current 
state, in software we can simply omit the corresponding expression; or if it requires 
an incrementer, we can simply write  x  =  x  + 1. In either case, an explicit expression 
would be required in hardware ( x  =  x  or  x  =  x  + 1), which can only be evaluated if the 
value of  x  is available, so the machine itself must provide a means for storing (and 
properly retrieving)  x . 
 5)   In hardware, signals represent physical wires, so we cannot assign a signal source 
to an interconnection now and simply assign another later. 
 6)   Many machines have asynchronous inputs, so the use of synchronizers (to avoid 
fl ip-fl op metastability) must be considered, another concern that does not occur in 
software-implemented FSMs. 
 7)   Some circuits need a special clock, obtained by  “ gating ”  the main clock. Depending 
on how it is done, the resulting clock might be subject to glitches, another issue that 
simply does not exist in software. 
 8)   Several other concerns, such as  “ reset generation, ”   “ capturing the fi rst bit, ”   “ keeping 
the fi nal result stable, ”  and  “ stretching the decision pulse ” , are also not a problem in 
software-implemented machines. 

 1.3   State Transition Diagrams 

 The  state transition diagram  (or simply  state diagram ) of a sequential circuit is a graphi-
cal representation of its functional specifi cations. Such a diagram must obey three 
fundamental principles: 

 1)   It must include all possible system states. 
 2)   All state transition conditions must be specifi ed (unless a transition is uncondi-
tional) and must be truly complementary. 
 3)   The list of output signals must be exactly the same in all states (for a standard 
architecture implementation). 
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To employ the FSM approach to design a sequential digital circuit, all three requisites 
listed above must be fulfi lled, and also the list of states must not be too long. All sorts 
of controllers (including control units for datapath-based designs) are typical examples 
of circuits well suited for this design technique, as will become clear through the many 
examples presented in the book. 

 State machines can be of Moore or Mealy type. Both are described below. 

Moore-Type State Machines 
An FSM is said to be of Moore type when its output depends solely on the machine ’ s 
present state. In other words, the output is not affected directly by the input (the input 
can only affect the machine ’ s next state). The result is a fully synchronous circuit 
because the output can only change when the clock ticks. 

 An example of Moore FSM is presented in   fi gure 1.3b . The circuit ports are shown in 
  fi gure 1.3a , consisting of a data input,  x  (8-bit extended ASCII character), a data output, 
 y  (single bit), plus the conventional operational inputs of clock and reset. The circuit must 
produce  y  =  ‘ 1 ’  when the sequence  “  abc  ”  occurs in  x , that is, when  x  =  “ 01100001 ”  (ASCII 
code for  a ), followed by  x  =  “ 01100010 ”  (=  b ), then  x  =  “ 01100011 ”  (=  c ) occur.    

 The Moore-type state transition diagram of   fi gure 1.3b  contains four states, called 
 idle ,  char1 ,  char2 , and  char3 . Each state tells the value that must be produced at the 
output ( y ) while the machine is in that state; note that only  char3  produces  y  =  ‘ 1 ’  
because the machine only reaches that state if the correct sequence ( abc ) is detected. 
Finally, the transition conditions (on  x , the input) are shown along the arrows. 

 The meaning of the state diagram of   fi gure 1.3b  is as follows. Say that the circuit is in 
the  idle  state; if  x  =  a  is received, it moves from  idle  to  char1 , otherwise it remains in  idle ; 
if it is in  char1  and  b  is received, it moves to state  char2 , otherwise it remains in  char1  if 
 a  was received or returns to  idle  if neither  a  nor  b  was received; and so on. Note in   fi gure 
1.3b  that, because this is a Moore machine, the output depends only on the state in 
which the machine is, so the output values can be written inside the state circles. 

 Figure 1.3 
 A fi nite state machine that detects the ASCII sequence  “  abc  ” . (a) Circuit ports. Corresponding (b) 

Moore and (c) Mealy state transition diagrams. 
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It is important to mention that the state transitions are always synchronous (gov-
erned by a clock signal). For example, if the machine is in the  idle  state and the condi-
tion  x  =  a  is true  at the moment when a (positive) clock edge occurs , then the circuit moves 
to state  char1 . A machine can operate either at the positive or negative clock edge, or 
even at both clock edges if dual-edge fl ip-fl ops are employed. Unless specifi ed other-
wise, it will be assumed (default) that it is a positive-edge machine. 

 Mealy-Type State Machines 
 An FSM is said to be of Mealy type when its input can affect the output directly. In 
other words, the output now does not depend solely on the machine ’ s state but also 
depends on the input value. The resulting circuit is no longer truly synchronous 
because the output might now change independently of the clock. 

 A Mealy-type solution for the same problem of   fi gure 1.3a  is depicted in   fi gure 1.3c . 
Because the output can now exhibit more than one value for the same state (because 
the output also depends on the input value), the output values can no longer be written 
inside the state circles. Note that they are indeed marked on the arrows, along with 
the input (transition condition) values. Additionally, to simplify the notation, in the 
Mealy machine the signal names are generally omitted (they are indicated separately, 
as in the small rectangle of   fi gure 1.3c ). In this example the Mealy parameters are  x / y , 
meaning  “ if  x  = value, then  y  = value ” ; for example,  a / ‘ 0 ’  means  “ if  x  =  a , then  y  =  ‘ 0 ’ . ”  

 The meaning of the state diagram of   fi gure 1.3c  is as follows. If the circuit is in state 
A and the input is  x  =  a , the output is  y  =  ‘ 0 ’ , and the next state (at the next positive 
clock edge) will be B; otherwise, the output is still  y  =  ‘ 0 ’ , but the next state will be A. 
Likewise, if the machine is in state C and the input is  x  =  a , then the output is  y  =  ‘ 0 ’ , 
and the next state will be B; otherwise, if the input is  x  =  c , the output is  y  =  ‘ 1 ’ , and 
the next state will be A; else, the output is  y  =  ‘ 0 ’ , but the next state will still be A. A 
similar reasoning can easily be applied to state B. The direct dependence of the output 
on the input can easily be observed in the state diagram; for example, note that in state 
C the value of  y  varies with  x , resulting in  y  =  ‘ 1 ’  when  x  =  c  or  y  =  ‘ 0 ’  otherwise. 

 Because modern designs are generally synchronous, the Moore option tends to be 
preferred whenever the application permits. 

 Further details on Moore and Mealy constructions are seen in sections 1.7 and 1.8, 
in which the conversion from one to the other is described. 

 1.4   Equivalent State Transition Diagram Representations 

 Unconditional and equivalent representations for the state transition diagram are 
shown in   fi gure 1.4 , where a 1-to-5 counter is used as an example. Two cases are con-
sidered. The case in   fi gure 1.4a  has only clock and reset as inputs and as output has the 
3-bit signal  outp  that encodes the counting. The case in   fi gure 1.4c  has an additional 
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input, called  ena , which enables the counter when asserted ( ena  =  ‘ 1 ’ ) or causes it to 
stop otherwise.    

   Figure 1.4b  shows the FSM corresponding to the counter in   fi gure 1.4a . Because 
there are no inputs in this circuit (except for the operational inputs, clock and reset), 
it can only be a Moore machine. Note that all possible states are included and that 
the value that must be produced at the output in each state is specifi ed. However, 
there are no specifi cations for the transition conditions, which means that the transi-
tions are  unconditional , that is, they must occur at every (positive) clock edge. 

 Observe that a special (simplifi ed) representation is reserved for the reset signal (not 
only in this example, but in all state transition diagrams). The reset signal is repre-
sented by a single arrow pointing to the state to which the machine is forced when 
 rst  =  ‘ 1 ’  occurs. 

Figure 1.4 
(a, b) A 1-to-5 counter with only clock and reset as inputs (the transitions are unconditional). 

(c – g) The counter has an additional input ( ena ), which either enables the counter or causes it to 

stop. The representations in d – g are equivalent. 
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Figures 1.4d – g  show equivalent representations for the FSM corresponding to the 
counter in   fi gure 1.4c . Because now an external nonoperational input is present ( ena , 
which lets the counter run when high or stops it when low), it can be modeled as 
either a Moore or a Mealy machine. However, because counters are inherently syn-
chronous, the Moore approach is the natural choice. 

 The diagram in   fi gure 1.4d  is the most detailed, expressing, both by name and 
numerically, all transition conditions and output values. The representation in   fi gure 
1.4e  expresses the transition conditions in Boolean form instead of numeric form. 
The representation in   fi gure 1.4f  assumes that  else  is implicit. Finally, the extreme 
simplifi cation of   fi gure 1.4g  includes just the numeric output values inside the state 
circles, assuming again that  else  is implicit. The advantage of the fi rst representation 
(  fi gure 1.4d ) is that it forces the designer to go over all possibilities more closely, 
whereas the advantage of the other representations is a simpler, neater diagram. To 
help the reader visualize small details, the fi rst representation is used here more often 
than the others, but these representations are all equivalent and can be used 
interchangeably. 

 1.5   Under- and Overspecifi ed State Transition Diagrams 

 This section describes a relatively frequent mistake that occurs while one is preparing 
the state transition diagram for a given problem, which consists of either under- or 
overspecifying it. An underspecifi cation occurs when not all combinations of the 
transition control signals are covered, whereas an overspecifi cation occurs when one 
or more combinations are included more than once. 

   Figure 1.5a  shows an example of underspecifi cation. Because the transition control 
signals are  a  and  b , which are single-bit signals, the possible transition conditions are 
 ab  = { “ 00 ” ,  “ 01 ” ,  “ 10 ” ,  “ 11 ” }. In state A, the AA transition is governed by the condi-
tion  a  =  ‘ 0 ’ ; because this is independent of  b , it is the same as writing  a  =  ‘ 0 ’   &   b  = 
 ‘  −  ’ , thus covering the cases  ab  =  “ 0 −  ”  = { “ 00 ” ,  “ 01 ” }. The AB transition is governed by 
the condition  a  =  ‘ 1 ’   &   b  =  ‘ 1 ’ , thus covering the case  ab  =  “ 11 ” . Since there is no 

Figure 1.5 
(a) Example of underspecifi ed state transition diagram and (b, c) examples of possible solutions. 

In c, the  else  condition is implicit. 
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other outward transition in state A, we conclude that the condition  ab  =  “ 10 ”  was not 
covered in the state diagram. A similar analysis for state B shows that the transition 
condition  ab  =  “ 10 ”  was again not covered. Therefore, in this example, both states are 
underspecifi ed. If the machine faces one of the unspecifi ed combinations, it will either 
get stuck there or will proceed as defi ned (probably unconsciously) in the correspond-
ing VHDL or SystemVerilog code.    

   Figure 1.5b  shows a corrected version for the underspecifi ed machine of   fi gure 1.5a . 
It was considered that the missing condition for state A ( ab  =  “ 10 ” ) should be associ-
ated to the AA transition, and the missing condition for state B ( ab  =  “ 10 ” ) should be 
associated to the BA transition. Note that the latter caused the BA transition to become 
independent from  a . 

 Another corrected version for the underspecifi ed machine of   fi gure 1.5a  is 
present ed in   fi gure 1.5c . In this case the missing conditions for states A and B were 
associated to the AA and BB transitions, respectively. The representation with implicit 
 else  was used. 

   Figure 1.6a  shows an example of overspecifi cation. Again,  a  and  b  are the transition 
control signals. The AB transition is governed by the condition  a  =  ‘ 1 ’ , thus covering 
the cases  ab  =  “ 1 −  ”  = { “ 10 ” ,  “ 11 ” }. The AC transition is governed by the condition  b  
=  ‘ 1 ’ , thus covering the cases  ab  =  “  − 1 ”  = { “ 01 ” ,  “ 11 ” }. Note that  ab  =  “ 11 ”  appears in 
both AB and AC transitions, thus causing a confl ict. To solve the problem, we must 
establish  priorities .    

Figure 1.6 
(a) Example of overspecifi ed state transition diagram and (b) a possible solution. (c) Another 

overspecifi ed machine and (d) a possible solution. 
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A corrected version for the overspecifi ed machine of   fi gure 1.6a  is presented in 
  fi gure 1.6b . In this example the following priority list was adopted (from highest to 
lowest): AB, AC, AA. 

   Figure 1.6c  shows another example of overspecifi cation. The transition control 
signals now are  a ,  b , and  c . The AB transition is governed by the condition  a  =  ‘ 1 ’  and 
thus covers the cases  abc  =  “ 1 −   −  ”  = { “ 100 ” ,  “ 101 ” ,  “ 110 ” ,  “ 111 ” }. The AC transition 
is governed by the condition  b  =  ‘ 1 ’  and thus covers the cases  abc  =  “  − 1 −  ”  = { “ 010 ” , 
 “ 011 ” ,  “ 110 ” ,  “ 111 ” }. Similarly, the AD transition is governed by the condition  c  =  ‘ 1 ’  
and thus covers the cases  abc  =  “  −   − 1 ”  = { “ 001 ” ,  “ 011 ” ,  “ 101 ” ,  “ 111 ” }. Note that several 
conditions are repeated, causing confl icts. To solve the problem, we must again estab-
lish priorities. 

 A corrected version for the overspecifi ed machine of   fi gure 1.6c  is presented in 
  fi gure 1.6d . In this example the following priority list was adopted (from highest to 
lowest): AB, AC, AD, AA. 

 In summary, the outward transition conditions must be  exactly fully complementary . 
In other words, they must include all possible combinations of the transition control 
signals, but without any repetitions. 

 In regard to underspecifi cation, another example is shown in   fi gure 1.7 , in which 
an integer  t , produced by a counter to represent time, is the transition control signal. 
The machine must stay in state A during  T  clock periods, moving then to state B. 
Because the timer ’ s initial value is zero, it must count from 0 to  T   −  1 in order to span 
 T  clock cycles, which is the reason why  t  =  T   −  1 (instead of  t  =  T ) appears in the transi-
tion control conditions (specifi c details on timed transitions are given in chapter 8). 

 Note in   fi gure 1.7a  that the outward transition conditions from state A are not truly 
complementary because the  t   >   T   −  1 condition is not covered. It was fi xed in   fi gure 
1.7b  with the  t   >   T   −  1 condition associated with the AB transition. Another corrected 
option is shown in   fi gure 1.7c , this time with the  t   >   T   −  1 condition associated with 
the AA transition.    

 There are two main reasons for not using non – truly complementary conditions. 
First, the machine can go into an undesirable state, even get deadlocked (for example, 
if the initial state is A and the timer is not properly reset, starting with  t   >   T   −  1, 

 Figure 1.7 
 Noncomplementary transition conditions. (a) Condition  t   >   T   −  1 not covered. (b, c) Corrected 

versions with  t   >   T   −  1 associated with the AB and AA transitions, respectively. 
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depending on how this timer is controlled by the FSM, the machine can get stuck in 
state A forever). Second, it is more costly (in terms of hardware) to compute non – fully 
complementary conditions than otherwise. For example, if VHDL is used, the follow-
ing sections of code could be employed for the three cases in   fi gure 1.7 :  

For figure 1.7a:  

if t=T-1 then  

     nx_state  < = B  

  elsif t < T-1 then  

     nx_state  < = A;  

  end if;  

  For figure 1.7b:  

  if t > =T-1 then  

     nx_state  < = B  

  else  

     nx_state  < = A;  

  end if;  

  For figure 1.7c:  

  if t=T-1 then  

     nx_state  < = B  

  else  

     nx_state  < = A;  

  end if;  

Note that  else  was used to close the  if  statement in the last two codes, which means 
that all conditions are covered and only one comparison is needed. On the other 
hand, in the fi rst code  elsif  was used instead, so an additional comparison is required; 
moreover, it does not cover all input combinations, so latches might be inferred by 
the compiler. In summary, the option in   fi gure 1.7a  produces an inferior circuit, and 
we still have to pay more for it. 

 Other common mistakes and problems that can occur while one is designing FSMs 
in hardware are described in chapter 4. 

 1.6   Transition Types 

 A very important classifi cation for the transitions, from a hardware perspective, is 
introduced in this section. In section 3.6 this classifi cation is used to separate any state 
machine into one of three categories, immensely easing its hardware-based design. 

 The state machine of   fi gure 1.8a  is used to describe the transition types, where  x  is 
the actual input,  t  is an auxiliary input generated by a timer, and  y  is the actual output. 
This machine contains all four possible types of transitions.    

 Transition AB  (conditional transition)  depends only on the actual input,  x . If the machine 
is in state A, it must move to state B at the fi rst (positive) clock edge that fi nds  x  =  x  1 . 

 Transition BC  (timed transition)  depends only on the timer,  t . The machine must 
stay in state B during exactly  T  1  clock cycles, moving then to state C. An auxiliary 
circuit (a timer, which is simply a counter, operating from 0 to  T  1   −  1 in this transition) 
must be included in the design. By default, the timer is zeroed every time the FSM 
changes state; moreover, the timer is kept stopped at zero in states where it is not 
needed (states A and D of   fi gure 1.8a , for example). 

 Transition CD  (conditional-timed transition)  is more complex because it depends on 
the actual input,  x , and also on the timer,  t . The machine must move to state D at 
the fi rst (positive) clock edge that fi nds  x  =  x  2  after staying in state C during  T  2  clock 
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cycles. This implies that it will remain in state C during  at least T  2  clock cycles, not 
necessarily during exactly  T  2  clock cycles. 

 Transition DA  (unconditional transition)  is the simplest type of transition. The 
machine must move from state D to state A at the next (positive) clock edge, regard-
less of  x  and  t , thus staying in D during exactly one clock period. 

 Note that even though  t  denotes time in the description above, it is not expressed 
in seconds but rather in  “ number of clock cycles. ”  For example, if we want the 
machine to stay in a certain state during  t state   = 2 ms, and the clock frequency is  f clk
= 50 MHz, we simply adopt  T state   =  t state    ×   f clk   = 2 · 10  – 3   ×  50 · 10 6  = 100,000 clock cycles. 

 A special time-dependent transition is shown in fi gure 1.8b. Note that the 
conditional-timed transition CD in   fi gure 1.8a  only checks if  x  =  x  2  after  T  2  clock cycles. 
Say, however, that we want the machine to move from C to D only if  x  =  x  2  has 
occurred  during the whole time  (i.e., during all  T  2  clock cycles). To cover this case, a 
 compound  transition is needed that results from the combination of three pure transi-
tions, as shown in   fi gure 1.8b . This arrangement works well because the timer is zeroed 
every time the machine changes its state. Note that  T  2   −  1 clock cycles are needed in 
the XD transition (so the timer must count from 0 to  T  2   −  2) because one clock cycle 
is spent in the CX transition. Even though in many applications this  “  − 2 ”  factor in  t 
 =  T  2   −  2 is not relevant, it is maintained here for the sake of accuracy. Much more on 
time-dependent transitions is presented in chapter 8. 

In section 3.6, the transition types described above are used to classify any hardware-
implemented FSM into one of the following three categories:  regular machines ,  timed 
machines , or  recursive machines . Two fundamental decisions must then be made when 
developing an actual design in hardware: the machine category (just listed) and the 
machine type (Moore or Mealy). 

 1.7   Moore-to-Mealy Conversion 

 Moore machines can be converted into corresponding Mealy machines. The latter will 
have the same number of states as the former if state merging is not possible, or fewer 
states otherwise. 

 Figure 1.8 
 (a) State machine containing all four types of transitions (from a hardware perspective):  condi-

tional ,  timed ,  conditional-timed , and  unconditional . (b) A special  compound  transition, which checks 

whether a condition has been true  during the whole time . 



The Finite State Machine Approach 13

When merging is not possible, the conversion is trivial, consisting simply of a 
change of notation (from Moore to Mealy style). To do so, just bring outside the output 
values marked inside the state circles and associate them with the corresponding  pre-
ceding  (inward) transitions. An example is presented in   fi gure 1.9 . 

The merging of two states is possible when they fulfi ll the following two requisites: 

 1)   Their sets of  outward  transitions are exactly equal. 
 2)   The pairs of equal outward transitions (one from each state) go to the same states. 

 An example is presented in   fi gures 1.10a – c . The original Moore FSM, with four 
states, is presented in   fi gure 1.10a . Note that states A and B have the same set of 
 outward  transitions ( x  =  x  1 ,  x  =  x  2 ) and that the equal transitions go to the same states 
(from both A and B, the transitions governed by  x  =  x  1  go to state C, while those 
governed by  x  =  x  2  go to state D). Therefore, A and B can be merged. To do so, fi rst 

Figure 1.9 
Moore-to-Mealy conversion when state merging is not possible (just a change of notation). 

Figure 1.10 
Moore-to-Mealy conversion principle. (a) Original Moore machine. (b) Moore-to-Mealy notation 

change. (c) Merging of states A and B. (d – f) Another example, following the same procedure. 
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the notation is changed from Moore to Mealy style, as shown in   fi gure 1.10b , and 
then the merging is done in   fi gure 1.10c . 

    Another example is presented in   fi gures 1.10d – f  following the same procedure. The 
analysis of this example is left to the reader. The reader is also invited to apply this 
procedure to the Moore machine of   fi gure 1.3b  and see if the Mealy machine of   fi gure 
1.3c  results. 

 As expected, because of the highly restricting requirements for state merging 
(described above), in practical engineering problems the number of additional states 
in a Moore machine compared to its Mealy counterpart is generally very small. 

 1.8   Mealy-to-Moore Conversion 

 Mealy machines, too, can be converted into corresponding Moore machines. As seen 
above, the former can be smaller than the latter, although the difference (in number 
of states) in useful engineering applications is generally negligible. 

 The conversion principle consists again of two steps, illustrated in   fi gures 1.11a – c . 
A Mealy FSM with three states is presented in   fi gure 1.11a . The fi rst step, shown in 
  fi gure 1.11b , consists of changing the notation from Mealy to Moore style. Because in 
a Mealy machine the same state can exhibit more than one output value, the resulting 
Moore diagram might have states with  conditional  outputs, such as state A in the fi gure. 
The next step is to split each state into as many states as the possible output values. 

Figure 1.11 
Mealy-to-Moore conversion principle. (a) Original Mealy machine. (b) Mealy-to-Moore notation 

change. (c) Splitting of state A into A ′  and A ″ . (d – f) Another example, following the same procedure. 
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This is shown in   fi gure 1.11c , where only state A was split because it is the only state 
with multiple output values. Another example is presented in   fi gures 1.11d – f , follow-
ing the same procedure. The analysis of this example is left to the reader. 

    Just as a check, note in   fi gure 1.11c  that the outward transitions of states A ′  and 
A ″  are alike and that the equal transitions go to the same state, so A ′  and A ″  can be 
merged. Observe in   fi gure 1.11f  that the pairs A ′ -A ″  and B ′ -B ″  also fulfi ll the merging 
requirements, so they too can be merged. 

 A fi nal example is presented in   fi gure 1.12 . In   fi gure 1.12a , the same Mealy machine 
of   fi gure 1.3c  is shown (just reorganized horizontally). Note that there are four possible 
transitions into state A, of which the fi rst three must produce  y  =  ‘ 0 ’  while the last 
one must produce  y  =  ‘ 1 ’  (hence with two possible values for the output). On the other 
hand, note that the transitions into states B and C must all produce a single output 
value ( y  =  ‘ 0 ’ ). The resulting intermediate diagram, with Moore notation, is shown in 
  fi gure 1.12b . Because only state A has more than one output value (two values), only 
A needs to be decomposed (into two states), resulting in the Moore machine shown 
in   fi gure 1.12c . The reader is invited to compare it against that presented earlier, in 
  fi gure 1.3b . 

    1.9   Algorithmic State Machine Chart 

 An algorithmic state machine (ASM) chart is another way of representing a state 
machine instead of using a state transition diagram. An ASM chart is a fl owchart-like 
diagram containing information equivalent to that of the state diagram but generally 
in a more textual, algorithm-like form. 

Figure 1.12 
Example of Mealy-to-Moore conversion ( “  abc  ”  detector of   fi gure 1.3c ). 
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As in fl owcharts, the main elements of ASM charts are rectangles (representing the 
machine ’ s states) and diamonds (representing condition checks). An example is pre-
sented in   fi gure 1.13 , which is equivalent to the  “  abc  ”  detector of   fi gure 1.3b . 

    In large and/or complex designs, ASM charts tend to be cumbersome. Moreover —
 and more importantly — they do not convey the hardware aspects as clearly as state 
transition diagrams. For these reasons, they are generally of limited use to hardware-
based designs. 

 1.10   When to Use the FSM Approach 

 Even though any sequential circuit can be modeled/designed using the FSM approach, 
it is not always advantageous or necessary to do so. For example, if the circuit has 
too many states (say, over 100), it might be not viable to represent it as a state ma -
chine. Also, if it has very few states (say two or three), it might happen that a direct 
(experience-based) solution is straightforward. The number of control signals and the 
number of transitions are also determinant factors in the decision on whether or not 
to use the FSM approach. 

 Four candidates for the FSM approach are depicted in   fi gure 1.14 . The fi rst candi-
date, in   fi gure 1.14a , has only one (big) loop, with perhaps one control input. This is 
the case, for example, of regular counters (possibly with an enable input), which, as 
already mentioned, constitute a classical example of circuits for which the FSM tech-
nique is not needed. 

 The second candidate, in   fi gure 1.14b , has few states, but proportionally more con-
nections than the previous case due to more control inputs, which might even include 

Figure 1.13 
ASM chart for the  “  abc  ”  detector of   fi gure 1.3b . 
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time (as will be shown in chapter 8, dealing with time-dependent transitions is more 
complex than dealing with regular transitions), so this candidate is not as weak as the 
previous one. 

 The candidate in   fi gure 1.14c  has more states and more control inputs than the 
previous one, resulting in a relatively strongly interconnected diagram. Consequently, 
this is a strong candidate for the FSM approach. 

 The fi nal candidate, in   fi gure 1.14d , has many states and several control inputs, 
resulting in a highly interconnected diagram. For this kind of candidate, the FSM 
approach is indispensable.    

 1.11   List of Main Machines Included in the Book 

  — Arbiter (bus access) 
  — Blinking light (with special features) 
  — Car alarms (basic and with chirps) 
  — Counters 
  — Datapath controller for a greatest common divisor 
  — Datapath controller for a largest-value detector 
  — Datapath controller for a sequential divider 
  — Datapath controller for a sequential multiplier 
  — Datapath controller for a square root calculator 
  — Datapath controller for an accumulator 
  — Debouncers (single and multiple, without and with one-shot conversion and memory) 

Figure 1.14 
Weak and strong candidates for the FSM approach. 
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— Divider 
— Factorial calculator 
— Flag monitor 
— Garage door controller 
— Greatest common divisor 
— Hamming-weight calculator 
— I 2 C (inter-integrated circuits) interface 
  — Keypad encoder 
  — LCD (liquid crystal display) driver 
  — Leading-ones counter 
  — Light rotator 
  — Manchester encoders (regular and differential) 
  — Memory interfaces (SRAM and EEPROM) 
  — Multiplier 
  — One-shot circuits 
  — Parity detectors 
  — Password detector 
  — Pulse shifters 
  — Pulse stretchers 
  — Reference-value defi ners 
  — RTC (real-time clock) interface 
  — Serial data receivers 
  — Serial data transmitters 
  — SPI (serial peripheral interface) 
  — String detectors 
  — Strings comparators (short and long, with and without overlap) 
  — Temperature controller 
  — Traffi c light controller 
  — Triggered circuits (bistable and monostable) 
  — Vending machine controller 

 1.12   Exercises 

 Exercise 1.1: FSM Architecture 
 Two sequential circuits are given in   fi gure 1.15 . Rearrange each of them according to 
the FSM architecture of   fi gure 1.2 . 

    Exercise 1.2:  “  aabb  ”  Detector 
 Draw the state transition diagram for an FSM capable of detecting the sequence  “  aabb  ”  
(see example in   fi gure 1.3 ) for the following cases: 
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 Figure 1.15 

a)   Using a Moore machine. 
b)   Using a Mealy machine. 

Exercise 1.3: Equivalent State Transition Diagrams 
a)   Present a simplifi ed version (see   fi gure 1.4 ) for the detailed state transition diagram 
of fi gure 5.4b. 
 b)   Present fully detailed versions for the semidetailed state transition diagrams of 
fi gures 5.7c and 8.16c. 

 Exercise 1.4: Under- and Overspecifi ed State Diagrams 
 a)   Why is the state transition diagram of   fi gure 1.16a  said to be underspecifi ed? Fix it. 
 b)   Why is that of   fi gure 1.16b  said to be overspecifi ed? Fix it. 

    Exercise 1.5: Transition Types 
 List the types (conditional, timed, etc.) of all transitions in the following FSMs: 

 a)   Figure 8.12c. 
 b)   Figure 8.14b. 

 Exercise 1.6: Moore-to-Mealy Conversion #1 
 Consider the Moore machine of fi gure 3.4a. 

 a)   Are there states that can be merged in the Moore-to-Mealy conversion? Explain. 
 b)   Do the conversion. After fi nishing it, compare your result to fi gure 3.6a. 

Figure 1.16 
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Exercise 1.7: Moore-to-Mealy Conversion #2 
Consider the Moore machine of   fi gure 1.17a . 

 a)   Are there states that can be merged in the Moore-to-Mealy conversion? Explain. 
 b)   Do the conversion. Does your result have any relationship with   fi gure 1.17b ? 

    Exercise 1.8: Mealy-to-Moore Conversion #1 
 Consider the Mealy machine of fi gure 3.6a. 

 a)   Are there any states that must be split in the Mealy-to-Moore conversion? Explain. 
 b)   Do the conversion. After fi nishing it, compare your result to fi gure 3.4a. 

 Exercise 1.9: Mealy-to-Moore Conversion #2 
 Consider the Mealy machine of   fi gure 1.17b . 

 a)   Are there any states that must be split in the Mealy-to-Moore conversion? Explain. 
 b)   Do the conversion. Does your result have any relationship with   fi gure 1.17a ? 

 

 
 

Figure 1.17  
 



2   Hardware Fundamentals — Part I 

2.1   Introduction 

This chapter and the one that follows discuss fundamental hardware-related aspects 
and introduce new material essential to fully understand and correctly design fi nite 
state machines in hardware. This chapter deals mainly with registers, and the next 
deals with the complete state machine structure. 

 The topics seen in these two chapters are used, reinforced, and expanded as the 
subsequent chapters unfold, particularly in chapters 5 (theory for category 1 machines), 
8 (theory for category 2 machines), and 11 (theory for category 3 machines). 

2.2   Flip-Flops 

Flip-fl ops are available in four versions: SR (set-reset), D (data), T (toggle), and JK. The 
D-type fl ip-fl op (DFF) is a general-purpose fl ip-fl op and therefore the most commonly 
used. However, because counters are among the most common digital circuits, and 
counters are implemented with T-type fl ip-fl ops (TFFs), the TFF is also very popular. 
Nevertheless, because a TFF can be obtained from a DFF by simply connecting an 
inverted version of its output back to its input, the DFF is essentially the only fl ip-fl op 
needed in most designs, no matter how big or how complex. For instance, the DFF is 
the only fl ip-fl op fabricated in fi eld programmable gate array (FPGA) devices. 

 The DFF is the fl ip-fl op used to build the  state register  (that is, the memory that 
stores the machine ’ s state) in hardware-implemented fi nite state machines (see fi gure 
1.2). It is also the fl ip-fl op used to build any other additional (optional or compulsory) 
register that the machine might require. Consequently, it is important to review its 
operation well. 

   Figure 2.1a  shows the symbol and truth table for a basic positive-edge-triggered 
DFF. The inputs are  d  (data in) and  clk  (clock), while the output is  q  (data out). As can 
be seen in the truth table,  q + (which represents the next value of  q ) receives the value 
of  d  when a positive clock transition occurs (gray table line) but remains unchanged 
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under any other condition. For this reason, it is said that a positive-edge-triggered (or 
simply positive-edge) DFF is  “ transparent ”  during positive clock transitions and 
 “ opaque ”  elsewhere.    

   Figure 2.1b  shows the symbol and truth table for a basic negative-edge-triggered 
(or simply negative-edge) DFF (note the little circle at the clock input). This DFF is 
 “ transparent ”  during negative clock transitions (see last table line) and  “ opaque ”  
elsewhere. 

 The behavior of any digital circuit can be expressed by means of its  functional  and 
 timing  responses. The former takes into account only the circuit ’ s logical functions, 
thus conveying only its functional behavior, whereas the latter also takes into account 
the propagation delays as the signals travel through the circuit, thus expressing the 
circuit ’ s actual behavior. Both types of responses (functional and timing) are illustrated 
next for fl ip-fl ops. 

   Figure 2.2  shows (on the left) two DFFs, the fi rst having a reset ( rst ) input, and the 
second a clear ( clr ) input. In the context of this book the difference between reset and 
clear is that the former is asynchronous (it forces the output to zero regardless the 
clock value), whereas the latter is synchronous (the output is forced to zero when the 
proper clock transition occurs). It is important to mention, however, that these des-

Figure 2.1 
Symbol and truth table for basic (a) positive-edge and (b) negative-edge DFFs. 

Figure 2.2 
DFF symbol with (a) reset or (b) clear, followed by examples of  functional  response. (c) Diagram 

showing how clear can be implemented. 
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Figure 2.3 
(a) Time-related parameters of a DFF. (b) Example of  timing  response with  t pCQ(HL)   =  t pCQ(LH)   = 2 ns 

and  t pRQ   = 1 ns. 

ignations for reset and clear are not universal; for instance, FPGA companies usually 
call both  “ clear. ”  The diagram in   fi gure 2.2c  shows how clear can be implemented; 
note that when  clr  =  ‘ 1 ’ ,  d  is forced to  ‘ 0 ’ , so at the next positive clock edge this  ‘ 0 ’  
will be copied to  q , clearing the output. 

 Examples of functional response for both cases are included in   fi gure 2.2 . Arrows 
were placed on the clock waveforms to highlight the only moments at which the DFFs 
are transparent. As can be seen, the value of  d  is copied to  q  at each of these clock 
transitions. Note, however, that when  rst  is asserted (  fi gure 2.2a ), the output is forced 
to zero immediately, whereas when  clr  is asserted (  fi gure 2.2b ), the output is forced to 
zero at the next positive clock transition.    

 The  timing  response (with propagation delays taken into account) of a DFF is illus-
trated in   fi gure 2.3 . A DFF with reset, similar to that of   fi gure 2.2a , was considered. 
The propagation delays are defi ned in   fi gure 2.3a , where  t pCQ(HL)   and  t pCQ(LH)   represent 
the propagation delays from  clk  to  q  (time interval between the clock edge and the 
settling of  q  in the high-to-low and low-to-high transitions, respectively) and  t pRQ   is 
the propagation delay between  rst  and  q . In the example of   fi gure 2.3b , the following 
values were assumed:  t pCQ(HL)   =  t pCQ(LH)   = 2 ns and  t pRQ   = 1 ns (note the gray shades in 
the  q  waveform; the distance between the vertical lines is 1 ns).    

 A fi nal pair of time-related parameters defi ne the DFF ’ s  forbidden  region (also called 
 aperture  or  transparency window ). As shown in   fi gure 2.4 , such parameters are called 
 t setup   and  t hold  , which specify, respectively, how long before and after the clock edge the 

Figure 2.4 
DFF ’ s forbidden region ( d  must remain stable within the aperture window). 
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Figure 2.5 
Examples of actual DFF constructions. (a, b) Very popular implementations (dynamic and static 

versions, master-slave approach). (c, d) Two other commercial implementations (pulsed-latch 

approach). 

input signal must remain stable. If  d  changes within the transparency window, the 
output value might be undetermined (further details on this are seen in the next 
section).    

 We conclude this section by presenting some examples of DFF constructions. The 
cases in   fi gures 2.5a,b  are among the most commonly used, consisting of dynamic 
and static versions for the same transmission-gate-based master-slave implementation. 
Two other commercial cases are shown in   fi gures 2.5c,d , both based on the short-clock 
(pulsed latch) principle rather than on the master-slave approach.    

 2.3   Metastability and Synchronizers 

 Because many FSMs have control inputs that are asynchronous (that is, not related to 
the FSM ’ s clock), such inputs can change during the state machine ’ s DFFs ’  forbidden 
(aperture) window. This section describes what can happen in such cases and how its 
effect can be reduced. 

 This fact is illustrated in   fi gure 2.6a , in which  d  changes precisely within the forbid-
den time interval (gray area). When this occurs, the output can go into an undeter-
mined (metastable) state that lasts a relatively long time before fi nally resolving for 
 ‘ 1 ’  (path 1) or  ‘ 0 ’  (path 2). If the metastable state resolves within one clock period (as 
in the fi gure), at the next (positive) clock edge a valid value will be available (even 
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though it might be different from the expected value); otherwise, an undetermined 
value will be read.    

 Synchronizers are circuits used to cope with metastability. The most common alter-
native is shown in   fi gure 2.6b , consisting simply of a 2-stage shift register. In well-
designed DFFs the probability of metastability is very small so the probability of having 
such a rare event going through both DFFs is extremely small. The obvious drawback 
is the two-clock-period latency imposed by this circuit (exercise 2.2). When the (multi-
bit) data is accompanied by a control signal (data ready,   fi gure 2.6c ), only the control 
signal should be synchronized. 

 Another strategy to reduce the impact of having the input of a DFF change during 
its forbidden time window, applicable to counters, consists in using Gray counters 
instead of regular sequential counters (as reviewed in section 3.7, in a Gray counter 
only one bit changes from one codeword to the next — this applies also to Johnson 
counters). An example is depicted in   fi gure 2.7a , which shows a partial diagram for 
a frequency meter. Because the system must measure the frequency  fx  of  x ,  x  acts 
as the clock to the corresponding counter; however,  x  and  clk  are uncorrelated, so a 
two-clock-domain situation results. The value of  fx  must be stored into the output 

Figure 2.6 
Illustration of fl ip-fl op metastability and the use of synchronizers. 

Figure 2.7 
Partial diagram for a frequency meter (two clock domains). (a) Solution with a Gray counter. (b) 

Solution with a synchronizer (so a regular counter can be employed). 
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register periodically (every 1 s, for example, resulting in a reading in Hz), and at the 
same time the counter must be reset in order to start a new counting. Because  x  and 
clk  are uncorrelated, the storage of  fx  into the register might occur while  fx  is changing 
its value. If a sequential counter is used, several bits (or even all) can change from one 
codeword to the next, but because in a Gray counter only one bit changes, the value 
actually stored into the register cannot be off by more than one unit.    

 For comparison, a solution with a synchronizer (so a regular counter can be used) 
is included in   fi gure 2.7b . Note that the synchronizer ’ s output must be a short pulse 
(lasting only one clock period,  T clk  ); otherwise the counter could be incremented mul-
tiple times for the same pulse of  x . Additionally, if a pulse in  x  might last less than 
 T clk  , then an edge detector must also be included. (One-shot and edge-detecting circuits 
are described in the next section.) 

 A last class of circuits still involving the synchronous-asynchronous issue is pre-
sented in   fi gure 2.8 . They are  clock gaters , needed in applications where the clock signal 
must be stopped (gated) during one or more clock periods (the I 2 C and SPI serial data 
communications interfaces, studied in chapter 14, are examples where clock gating is 
necessary). The purpose here should not be confused with clock gating for power-
saving reasons. 

   Figures 2.8a – f  relate to  positive -edge-triggered FSMs. Figure 2.8a highlights the facts 
that the machine operates at the positive clock edge and also that the clock-enabling 
signal  ena  is just one of its outputs. This signal ( ena ) must stop the clock when low, 
replacing the clock signal with a static-low value (analogous solutions can be easily 
derived for a static-high value).  

 The fi rst solution, shown in   fi gure 2.8b , is asynchronous and requires just an AND 
gate, where  clk  represents the main clock and  gclk  represents its gated version. The 
advantage of this solution is that the clock is interrupted at the same time that  ena  = 
 ‘ 0 ’  occurs (see gray shades in   fi gures 2.8c – d ). However, as depicted in the timing dia-
grams of   fi gures 2.8c – d , the output is fi ne (glitch-free) only if the edge of  ena  reaches 
the gater  before  the edge of  clk  does, a situation that, though possible (due to long, 
unbalanced routings inside the chip), is very unlikely. Moreover, glitches in  ena  can 
propagate to the output. For these reasons, the clock gater of   fi gure 2.8b  is not recom-
mended when the clock must be replaced with a static-low value. 

 The second solution, shown in   fi gure 2.8e , is fully synchronous, so occasional 
glitches in  ena  are automatically fi ltered out. Also, note in   fi gure 2.8f  that the output 
is fi ne regardless of the delay (positive or negative) between  clk  and  ena . For these 
reasons, the clock gater of   fi gure 2.8e  is recommended when the clock must be inter-
rupted and replaced with a zero. Its drawback is that now  ena  =  ‘ 0 ’  must be produced 
in the  previous  clock cycle (previous FSM state — see gray shades in   fi gure 2.8f ), being 
therefore more error prone (requiring greater attention when preparing the corre-
sponding state transition diagram).    
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Figure 2.8 
Clock gating circuits. (a – f) For positive-edge-triggered FSMs. (g – l) For negative-edge-triggered 

FSMs. Asynchronous (good and bad) solutions are shown in (b) and (h), and synchronous solu-

tions (usually recommended) are presented in (e) and (k), all accompanied by illustrative timing 

diagrams. 
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Figures 2.8g – l  relate to  negative -edge triggered FSMs.   Figure 2.8g  highlights the facts 
that the machine operates at the negative clock edge and that  ena  is just one of its 
outputs. Again,  ena  must stop the clock when low, replacing it with a zero. 

 The fi rst solution, shown in   fi gure 2.8h , is the same as that in   fi gure 2.8b . However, 
as depicted in the timing diagrams of   fi gures 2.8i – j , the output is now fi ne (glitch-free) 
when the edge of  ena  reaches the gater  after  the edge of  clk  does, which is what nor-
mally occurs, so this solution is generally fi ne. Recall, however, that  ena  must be 
glitch-free. 

 The second solution, shown in   fi gure 2.8k , is fully synchronous, so occasional 
glitches in  ena  are automatically fi ltered out. Also, note that in   fi gure 2.8l  the output 
is fi ne regardless of the delay (positive or negative) between  clk  and  ena  (two DFFs are 
needed here to guarantee that condition). This solution has the same drawback as that 
of   fi gure 2.8e ; that is,  ena  =  ‘ 0 ’  must be produced in the  previous  clock cycle (see gray 
shades in   fi gure 2.8l ), thus requiring a greater attention when developing the state 
transition diagram. 

 As a fi nal comment, it is important to mention that in many applications the 
occurrence of metastability is not a problem, either because the metastable state 
cannot cause a malfunctioning or because the application itself is not critical. 

 2.4   Pulse Detection 

 Because many FSMs have asynchronous inputs, the duration of such inputs must be 
considered in the design. If an input pulse lasts at least one clock period ( T pulse    ≥   T clk  ), 
its detection by the machine is guaranteed because at least one (positive) clock edge 
will occur while the pulse is present. On the other hand, if the pulse might last less 
than that, its detection is no longer guaranteed. Both cases are illustrated in   fi gure 
2.9a , where only the fi rst of the two pulses is detected by the circuit. Note the small 

Figure 2.9 
(a) Only input pulses with duration  T pulse    ≥   T clk   are guaranteed to be detected, and the output 

duration is proportional to the input duration. (b) Any pulse is detected, and the output duration 

is always  T clk  . 
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propagation delays left intentionally between the clock transitions and the corre-
sponding responses in  outp  in order to portray a more realistic situation. 

 In some cases, the pulse (of any duration) must be detected and converted into a 
pulse whose duration is one clock period. This is illustrated in   fi gure 2.9b , where both 
pulses are detected, and each produces an output pulse with duration  T clk  .    

 A circuit that shortens the output pulse down to a predefi ned length ( T clk   in the 
present case) is called a  one-shot  circuit, whereas one that detects short pulses is called 
an  edge detector . Both are present in the example of   fi gure 2.10 , so pulses of any length 
can be detected and converted into pulses with one-clock-period duration. 

 The fi rst circuit in   fi gure 2.10  is the edge detector, which consists simply of a DFF 
plus a reset mechanism. Note that to be able to detect short pulses,  inp  is connected 
to the clock port instead of the data port. Because the data input is connected to  V DD

( ‘ 1 ’ ), the output goes immediately to  ‘ 1 ’  when a positive edge occurs in  inp . Some time 
later (see exercise 2.4), this  ‘ 1 ’  reaches  inp sync  , resetting the input DFF, which will remain 
so until a new positive transition occurs in  inp .    

 The second circuit in   fi gure 2.10  is the synchronizer, already seen in the previous 
section. 

 The third and fi nal circuit before the application is the one-shot circuit. Because 
of the AND gate, as soon as  inp sync   goes to  ‘ 1 ’ ,  outp  goes to  ‘ 1 ’ . However, at the next 
(positive) clock edge, this value of  inp sync   crosses the DFF, bringing  outp  back to  ‘ 0 ’ , 
which it will remain until another pulse occurs at the input and the whole procedure 
is repeated. This one-shot circuit, however, works well only when the input is syn-
chronous (see exercise 2.3), which is the case here. 

 Another circuit with the same purposes as that in   fi gure 2.10  is discussed in exercise 
2.5. In the chapters ahead, examples employing this kind of circuit are seen. 

 2.5   Glitches 

 Glitches are short voltage (or current) pulses produced involuntarily by combinational 
circuits. It is said that a hazard exists when the possibility of glitches in the circuit exists. 

Figure 2.10 
Circuit capable of detecting pulses of any width, producing a pulse with fi xed length (one clock 

period) at the output ( outp ). 
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Even though glitches are not a problem in many designs, it is important to be aware 
of their existence and understand how they can be eliminated when that is necessary. 
An example in which glitches can be disastrous is when a signal is used as a clock 
because then the associated fl ip-fl ops can be (improperly) triggered by the glitches. 

   Figure 2.11  shows the glitch types, which can be static (single pulse) or dynamic 
(multiple transitions). A static glitch is said to be of type static-0 when the signal 
should remain stable at  ‘ 0 ’  but a pulse toward  ‘ 1 ’  occurs. The meaning of static-1 
glitches is analogous.    

 An example of a circuit subject to glitches is presented in   fi gure 2.12a , which imple-
ments the function  y  =  a  ⋅  c  +  b  ⋅  c  ′ . The corresponding Karnaugh map is shown in   fi gure 
2.12b , where two prime implicants can be observed. Although the value of  y  is  ‘ 1 ’  for 
both  abc  =  “ 111 ”  and  abc  =  “ 110 ” , when the input transitions from the former to the 
latter, the involved propagation delays can produce a glitch at the output. This is 
illustrated in   fi gure 2.12c , with  a  and  b  fi xed at  ‘ 1 ’  and  c  changing from  ‘ 1 ’  to  ‘ 0 ’  (for 
simplicity, it was considered that the propagation delays of all gates are equal).   Figure 
2.12e  shows a solution for this problem, which consists of including a redundant 
implicant covering the transition mentioned above, thus resulting in the circuit of 
  fi gure 2.12d .    

Figure 2.11 
Glitch types. 

Figure 2.12 
(a) Combinational circuit implementing the function  y  =  a  ⋅  c  +  b  ⋅  c  ′ . (b) Corresponding Karnaugh 

map. (c) Glitch generation when moving from  abc  =  “ 111 ”  to  abc  =  “ 110 ” . (d, e) Glitch eliminated 

by the addition of a redundant implicant. 
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The problem with the solution above is that it covers only transitions in which just 
one input value changes. Because in actual designs multiple inputs can change 
(approximately) at the same time, this approach is of little practical interest. 

An example in which more than one input can change is depicted in   fi gure 2.13 , 
which consists of a Manchester encoder.   Figure 2.13a  shows the circuit ports, and 
  fi gure 2.13b  shows the waveform that must be produced at the output ( dout  must be 
a  ‘ 1 ’ -to- ‘ 0 ’  pulse when  din  =  ‘ 0 ’  or a  ‘ 0 ’ -to- ‘ 1 ’  pulse if  din  =  ‘ 1 ’ ). Looking at the wave-
forms, we verify that  dout  =  clk  when  din  =  ‘ 0 ’  or  dout  =  clk  ′  when  din  =  ‘ 1 ’ , so this 
encoder can be implemented with a simple multiplexer, as depicted in   fi gure 2.13c . 
Observe, however, in   fi gure 2.13b , that  clk  and  din  can change at the same time, so 
unfi xable glitches are potentially expected. Indeed, the last plot for  dout  in   fi gure 2.13b  
takes into account such a possibility (due to different propagation delays), resulting 
in a series of glitches. Just for completeness, note that the trivial multiplexer of   fi gure 
2.13c , having the equation  dout  =  clk  ⋅  din  ′  +  clk  ′  ⋅  din , can be implemented using just an 
XOR gate for  din  and  clk , as shown in   fi gure 2.13d .    

 If the combinational circuit is part of a synchronous system (as in state machines), 
then there is a simple — and, more importantly, systematic and guaranteed — solution 
for glitch elimination, which consists of passing the noisy signal through a DFF. 
Because glitches in a synchronous signal can only appear right after a clock edge, when 
such a signal is passed through a DFF the resulting output will be automatically free 
from glitches. This procedure is illustrated in   fi gure 2.14 , where  d  (synchronous) has 
glitches but  q  has not. Note that there is a price to pay, however, which is one clock 
cycle (if the same clock edge that produces  d  is used in the DFF) or one-half of a clock 
cycle (if the opposite clock edge is employed) of delay with respect to the original 

Figure 2.13 
A circuit (Manchester encoder) in which multiple inputs can change at the same time, subjecting 

the output to glitches that cannot be prevented with a combinational circuit. 

Figure 2.14 
Glitch elimination with a fl ip-fl op. 
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signal. As a fi nal remark, observe that this technique is not OK when there are signal 
transitions at both clock edges, as in   fi gure 2.13b , but that is not the case in state 
machines, so for FSMs this technique is fi ne. 

    We conclude this section by calling attention to a confusion that often occurs in 
inspecting simulation or measurement results. This is illustrated in   fi gure 2.15 , which 
shows a timing diagram for a three-bit counter. Because  count  is formed by more than 
one bit, it might exhibit glitch-like information. This, however, does not mean that 
actual glitches have occurred. Recall that two physical signals, due to different propa-
gation delays, will never change exactly at the same time (and they are not perfect 
voltage steps anyway), so the value of  count  is expected to go through intermediate 
values before reaching the fi nal value. As an example, in the inset of   fi gure 2.15   count  
goes through 3  →  2  →  0  →  4 instead of moving straight from 3 to 4, even though 
glitches have not occurred. In conclusion, to inspect glitches, we must examine  only 
one bit  at a time.    

 2.6   Pipelined Implementations 

   Figure 2.16a  shows a common architecture for high-speed synchronous systems. Each 
circuit — possibly designed by a different team or from an IP (intellectual property) 
cell — is constructed in RTL (register transfer logic) fashion, resulting in a pipelined 
implementation. In other words, combinational logic blocks (L 1 , L 2 , etc.) are followed/
separated by registers (R 1 , R 2 , etc.) (registers are just DFF banks). The advantage of 
having a register as the fi nal stage element is that the time behavior of DFFs is well 
known, so the overall timing response can be safely predicted, allowing the clock speed 
to be maximized.    

 To illustrate this, say that circuit 2 is constructed using only L 2 -R 2 -L 3 . In this case, 
after a clock edge occurs, the total output propagation delay will be that through R 2
( t pCQ   of   fi gure 2.3a ) plus that through L 3 . However, contrary to R 2 , whose construction 
and parameters are known in advance, L 3  varies from one design to another and with 
the routing, making the time response more diffi cult to predict. Because the absence 
of R 2  increases the stage ’ s propagation delay, the maximum clock speed gets reduced. 

Figure 2.15 
Glitch interpretation (bits must be examined individually). 
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On the downside, pipelining increases the latency (number of clock cycles needed 
for a signal to travel though the system), which is not always acceptable. Conse-
quently, both approaches (with and without the output register) are needed, and the 
choice of one or the other will be determined by the application. 

The example in   fi gure 2.16a  contains only loopless stages, but looped circuits can 
also be found (generally, more diffi cult to design), as in circuit 4 in   fi gure 2.16b . FSMs 
fall in the looped category. 

 To conclude this section, let us look at the order (input – output latency) of the 
synchronous circuits just described (  fi gure 2.16 ). Circuits 1 and 3 are order-1 synchro-
nous because the input – output transfer takes one clock cycle. Circuit 2 is order-2 
synchronous because the transfer takes two clock cycles. Finally, circuit 4 is order-1 
synchronous because its input affects L 2  directly, so its effect shows up at the output 
after just one clock cycle (L 2 -R 2  pair). 

 2.7   Exercises 

 Exercise 2.1: DFF Response 
   Figure 2.17  shows waveforms for the clock, reset, and data inputs to the DFF of   fi gure 
2.2a . 

Figure 2.16 
RTL pipeline (a) with loopless circuits only and (b) with a looped circuit. 

Figure 2.17 
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a)   Sketch, on the left, the DFF ’ s functional response. 
 b)   Sketch, on the right, the timing response. Assume  t pCQ(LH)   = 2 ns,  t pCQ(HL)   = 3 ns, and 
t pRQ   = 1 ns (the vertical lines are 1 ns apart).    

 Exercise 2.2: Metastability and Synchronizers 
 A popular synchronizer was presented in   fi gure 2.6b  and repeated in   fi gure 2.18  along 
with an illustrative timing diagram. 

 a)   What do the gray areas in   fi gure 2.18b  represent? 
 b)   Which time parameters defi ne the aperture window ’ s width? 
 c)   Is it desirable that the aperture window be as narrow as possible or as wide as 
possible? 
 d)   Why must  d  remain stable during that time interval? What is metastability? 
 e)   Why can synchronizers reduce the effect of metastability? 
 f)   Given the asynchronous input  d  shown in the fi gure, draw the waveforms for  q 0
and  d sync  . (The initial part of  q 0   was already drawn; the delay included between the 
clock edge and the signal edge is  t pCQ(LH)  .) 
g)   At which positive clock edge (fi rst, second, etc.) after  d  goes up does the signal 
actually delivered to the FSM ( d sync  ) go up? 
 h)   Two short pulses (lasting less than one clock period) are included in the  d  wave-
form. Are they always detected? Explain.    

 Exercise 2.3: Basic One-Shot Circuit 
   Figure 2.19a  shows the same elementary one-shot circuit seen in   fi gure 2.10 , which 
must produce at the output a pulse with a fi xed (one clock period) duration every 
time the input goes up. 

Figure 2.18 

Figure 2.19 



Hardware Fundamentals—Part I 35

a)   It is said in section 2.4 that this circuit is fi ne only if the input is synchronous. 
In   fi gure 2.19b , two illustrative pulses are shown for  x , the fi rst assumed to be 
synchronous (produced by the same clock that commands this DFF; the delays 
between the clock edges and the pulse edges are just  t pCQ  ) but the second not. 
Draw the waveforms for  q  and  y , and confi rm what was said about the output 
pulse duration. 
 b)   It is also said that the input must last at least one clock period. Why? 
 c)   Why is this circuit called a  “ one-shot ”  circuit? Does  x  need to return to  ‘ 0 ’  for it to 
produce the intended pulse?    

 Exercise 2.4: Fast Synchronized One-Shot Circuit #1 
   Figure 2.20a  shows the same arrangement of   fi gure 2.10 , implementing a fast one-
shot circuit with asynchronous, and possibly short, input. This circuit is capable of 
detecting input pulses shorter (and also longer, of course) than the clock period, 
producing at the output a pulse whose duration is always one clock period.   Figure 
2.20b  shows the main signals involved in this circuit, with the plots for the clock 
and for the input ( x ) already completed (some helping arrows are also included in 
the fi gure). 

 a)   Draw the waveforms for the internal ( i  1  to  i  4 ) and output ( y ) signals. Do not forget 
to leave a little delay between a signal transition and the corresponding response. 
 b)   What are the minimum and maximum durations of  i  1  (in clock periods)? Why is 
the initial (edge detector) DFF also called a  “ stretcher ” ? 
 c)   What are the durations of  i  2 ,  i  3 ,  i  4 , and  y  (in clock periods)? 
 d)   At which clock edge (fi rst, second, etc.) after  x  goes up does  y  go up? 

Figure 2.20 
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e)   Note that the second pulse of  x  is shorter than one clock period and does not 
coincide with any positive clock transition. Is the overall circuit able to capture this 
pulse? 
 f)   Is  y  subject to glitches? Explain.    

 Exercise 2.5: Fast Synchronized One-Shot Circuit #2 
 This exercise is an extension to the previous one.   Figure 2.21a  shows another synchro-
nized one-shot circuit capable of detecting short pulses at the input while still produc-
ing a one-clock-period-long pulse at the output. All involved signals are included in 
  fi gure 2.21b , with the plots for the clock and for the input ( x ) already completed (some 
helping arrows were also included in the fi gure). 

 a)   Draw the waveforms for  q ,  q  0 , and  y . Do not forget to leave a little delay between 
a signal transition and the corresponding response. 
 b)   What are the minimum and maximum durations (in clock periods) of  q ? 
 c)   What are the durations (in clock periods) of  q  0  and  y ? 
 d)   At which clock edge (fi rst, second, etc.) after  x  goes up does  y  go up? 
 e)   Note that the second pulse of  x  is shorter than one clock period and does not coin-
cide with any positive clock transition. Is the overall circuit able to capture this pulse? 
 f)   Is  y  subject to glitches? Explain. 
 g)   Compare this circuit to that in   fi gure 2.20  and comment on the respective advan-
tages and disadvantages.    

 Exercise 2.6: Pipelined Construction 
   Figure 2.22  shows a complete two-stage pipeline, with L  i   and R  i   representing the logical 
blocks and the registers (DFFs), respectively. The propagation delays are also included 
in the fi gure, with low-to-high and high-to-low delays considered to be equal. 

Figure 2.21 
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a)   Draw the corresponding timing response in the lower part of the fi gure, where  i 1
and  i 2   represent internal signals. Consider that the vertical lines are 1 ns apart and, 
for sketching purposes, that L 1  and L 2  are just buffers. 
 b)   After how many positive clock edges does the input pulse reach each output? 
 c)   Which output ( outp1  or  outp2 ) is fully pipelined? Which has superior time predict-
ability? Why?    

 Exercise 2.7: Glitch-free Clock Gater 
 All four possible clock-gating cases are depicted in fi gure 2.23. Cases 1 and 2 relate to 
FSMs operating at the positive clock edge, whereas cases 3 and 4 are related to FSMs 
operating at the negative clock edge. In cases 1 and 3, the clock, when interrupted, is 
replaced with a zero, whereas in cases 2 and 4, it is replaced with a one.  

 a)   Asynchronous and synchronous solutions were discussed/developed for cases 1 and 
3 (see fi gure 2.8). Do the same for cases 2 and 4. 
 b)   Can you devise other solutions (different from those presented in the book) for 
cases 1 and 3?                   
 

 

 

 

Figure 2.22 

Figure 2.23 





3   Hardware Fundamentals — Part II 

3.1   Introduction 

This chapter is a continuation of the previous chapter. It completes the study of fun-
damental hardware-related aspects that are essential to fully understand and correctly 
design fi nite state machines in hardware. Whereas chapter 2 dealt mainly with regis-
ters, chapter 3 deals with the complete state machine structure. 

 The topics seen in these two chapters are used, reinforced, and expanded as the 
subsequent chapters unfold, particularly in chapters 5 (theory for category 1 machines), 
8 (theory for category 2 machines), and 11 (theory for category 3 machines). 

3.2   Hardware Architectures for State Machines 

State machines are looped circuits, as already illustrated in fi gure 1.2a. They can be of 
Moore or Mealy type, depending on how the input is connected to the combinational 
logic blocks. We want to verify here how FSMs are related to the pipeline models 
described in section 2.6. 

   Figure 3.1a  shows a Moore machine, characterized by the fact that the input is 
connected only to block L 1  (recall that L 1  and L 2  represent logic blocks and that R 1
and R 2  are registers). Note the feedback loop from R 1  to L 1 , which is the most funda-
mental characteristic of any FSM. Observe also that the machine itself contains only 
the L 1 -R 1 -L 2  stages, so if a full pipeline is desired, the optional register R 2  must be added. 
An equivalent representation is shown in   fi gure 3.1b ; the purpose of this arrangement 
is to emphasize the feedback loop.    

   Figure 3.1c  shows a Mealy machine, characterized by the fact that the input is 
now also connected to block L 2 . Note that again the machine itself contains only the 
L 1 -R 1 -L 2  stages. An equivalent representation is shown in   fi gure 3.1d , again emphasiz-
ing the feedback loop. 

 The optional output register can be used to obtain a fully pipelined implementation 
with better time predictability and higher clock speed or for glitch removal, as seen 
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in section 2.5. The consequence of this extra register is that the new output will be 
delayed with respect to the original output by either one clock cycle (if all registers 
operate at the same clock edge) or by one-half of a clock cycle (if they operate at 
opposite clock edges). If it is a Moore machine, and this extra delay is a problem in 
the application, the Mealy option should be considered. Obviously, if the extra register 
is being added to obtain a pipelined construction, such a latency increase is probably 
not a problem. 

 The state machine diagram of   fi gure 3.1d  is shown with additional details in   fi gure 
3.2 . The original machine is depicted in fi gure 3.2a, while fi gure 3.2b shows the 
machine plus the optional output register (identifi ed as  out-registered FSM  or  pipelined 
FSM ). Note the following in   fi gure 3.2a : 

 1)   The lower section is purely sequential (contains only DFFs) and comprises the state 
register (it stores the state of the FSM). Therefore, clock and reset signals are connected 
only to that section. 
 2)   The signal stored in the DFFs is called  pr_state  (present state), whereas the signal 
to be stored in the DFFs at the next clock tick is called  nx_state  (next state). 
 3)   The upper section is purely combinational (hence memoryless). 
 4)   The upper section is divided into two parts, one producing the actual (outward) 
output, the other producing the circuit ’ s next state. 

Figure 3.1 
Pipelined hardware representations for (a) Moore and (c) Mealy machines. (b, d) Equivalent 

representations highlighting the feedback loop. 
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5)   The upper section has two inputs. That called  input  is external and, depending on 
the application, might not exist (as in the example of fi gure 1.2b). That called  pr_state
is internal and mandatory. 
6)   There are three input options (  fi gure 3.2c ): with no external input (Moore); with 
the input connected only to the  nx_state  logic block (connection 1; Moore); and with 
the input connected to both logic blocks (connections 1 and 2; Mealy). 
7)   Finally, note the extra register at the output (  fi gure 3.2b ) for glitch removal or 
pipelined implementation.    

3.3   Fundamental Design Technique for Moore Machines 

This section describes a fundamental design technique for Moore machines. It is a  “ by 
hand ”  design; in the succeeding chapters, the designs are developed with VHDL and 
SystemVerilog. 

 As seen above, from a hardware perspective a Moore machine can be represented 
as in   fi gures 3.2a,b , but having only connection 1 or no external input at all (except, 
of course, for clock and reset). The corresponding design procedure, consisting of fi ve 
steps, is summarized below. The fi rst four steps relate to the FSM proper, and the last 
step regards the optional output register. 

Step 1:    Draw the state transition diagram. 
Step 2:    Based on the state diagram, write two truth tables, one for the next state 
and the other for the output. Then rearrange the truth tables, replacing the state 
names with signal names ( q  for fl ip-fl op outputs,  d  for fl ip-fl op inputs) and using 
corresponding binary values. To do this, choose fi rst the encoding style (described in 
section 3.7). 

Figure 3.2 
FSM architectures and input connection options. 
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Step 3:    Extract, from the rearranged truth tables, the optimal Boolean expressions for 
nx_state  and for the output. 
Step 4:    Draw the corresponding circuit, placing all fl ip-fl ops (DFFs only) in the lower 
section and the combinational logic for the expressions derived above in the upper 
section (as in   fi gure 3.2a ). 
  Step 5 (optional):    Analyze the application and include the extra register (for glitch 
removal or pipelining) if you conclude that it is necessary. 

 To illustrate this design technique, let us consider the circuit of   fi gure 3.3a , which 
must detect the sequence  “ 010 ”  in the single-bit data stream x, producing y =  ‘ 1 ’  at 
the output when such a sequence occurs. As depicted in   fi gure 3.3b , overlaps are not 
allowed (if they were allowed, the trivial solution of   fi gure 3.3c  could be used).    

  Step 1:    The corresponding Moore diagram is presented in   fi gure 3.4a . 
  Step 2:    The truth tables for  nx_state  and  y  are in   fi gures 3.4b,c . To make the procedure 
clearer, the tables were written fi rst using the state names, based directly on the 
diagram of   fi gure 3.4a ; then they were rearranged using signal names ( q  for fl ip-fl op 
outputs,  d  for fl ip-fl op inputs) and binary values. Reset is connected directly to the 
fl ip-fl ops, so it does not appear here. 
  Step 3:    From the truth tables, the Karnaugh maps of   fi gure 3.4d  are drawn, from 
which the expressions for  d  1 ,  d  0 , and  y  are obtained. Note that because this is a Moore 
machine, the input should not affect the output directly, which can be confi rmed in 
the expression for  y  (=  q  1  ⋅  q  0 ), which does not contain  x . 
  Step 4:    Based on the expressions obtained above, the circuit is drawn (  fi gure 3.4e ).    
  Step 5:    If glitches are not acceptable in this application, we must analyze the circuit 
to check whether the implementation is subject to glitches. In the present example, 
we saw that  y  =  q  1  ⋅  q  0 . Moreover, we know that  q  1  and  q  0  can both change at the same 
time (see in   fi gure 3.4c  that the transition between states  one  and  two  requires both 
to change, but the output must remain low in both cases; depending on the routing 
inside the chip,  q  1  might go to  ‘ 1 ’  before  q  0  comes down to  ‘ 0 ’ , so the AND gate will 
produce a momentary  ‘ 1 ’  — a glitch). The output DFF of   fi gure 3.2b  can then be added 

Figure 3.3 
FSM that detects the sequence  “ 010 ” . (a) Circuit ports. (b) Operation example (overlaps not 

allowed). (c) Trivial solution if overlaps were allowed. 
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Figure 3.4 
Moore machine for a nonoverlapping  “ 010 ”  detector. (a) State transition diagram. (b, c) Truth 

tables for next state and output. (d) Corresponding Karnaugh maps and minimal Boolean expres-

sions. (e) Resulting circuit. 
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to render a glitch-free  y . (Recall the comments made earlier on increased latency and 
possible use of a Mealy machine in this kind of situation.) 

 Simulation results from the circuit of   fi gure 3.4e , without the extra DFF, synthesized 
using VHDL, are shown in   fi gure 3.5 . Note the following (expected) results: 

1)   The output changes only at (positive) clock edges (Moore machines are 
synchronous). 
2)   The output goes to  ‘ 1 ’  at the fi rst (positive) clock edge after the sequence  “ 010 ”  
occurs. 
 3)   Overlaps do not cause the output to go to  ‘ 1 ’ . 
 4)   Without the optional output DFF, glitches do occur at the output.    

 3.4   Fundamental Design Technique for Mealy Machines 

 This section describes a fundamental design technique for Mealy machines. It is a  “ by 
hand ”  design; in the succeeding chapters, the designs are developed with VHDL and 
SystemVerilog. 

 As seen above, from a hardware perspective a Mealy machine can be represented 
as in   fi gures 3.2a,b  with both input connections (1 and 2). The corresponding design 
procedure is the same seen for Moore machines, with just one difference, in step 2, 
as follows. 

  Step 2:    Based on the state diagram,  write a single truth table , including both the next 
state and the output. Then rearrange the truth table . . . etc. 

 If the Moore-to-Mealy conversion technique introduced in section 1.7 is applied to 
the Moore diagram of   fi gure 3.4a , the Mealy diagram of   fi gure 3.6a  results. Its truth 
table (including both  nx_state  and  y ) is shown in   fi gure 3.6b . From this table, the 

Figure 3.5 
Simulation results from the nonoverlapping  “ 010 ”  detector of   fi gure 3.4e  (Moore type). 
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Karnaugh maps and optimal Boolean expressions of   fi gure 3.6c  result. Finally, the 
corresponding Mealy circuit is presented in   fi gure 3.6d .    

 Note that, contrary to the Moore case (previous section), here the expression for 
the output ( y ) does include the input ( x ); that is, it is now  y  =  q  1  ⋅  x  ′ , whereas in the 
Moore case it was  y  =  q  1  ⋅  q  0 . This means that  y  can change asynchronously (that is, as 
soon as  x  changes, independently from the clock), which occurs when  q  1  =  ‘ 1 ’ , because 
then  y  =  x  ′ . 

 The decision on using or not using the extra register (step 5) is similar to that for 
Moore machines. However, because Mealy machines are asynchronous, if a project 
accepts this type of circuit, glitches are generally of no relevance. An interesting use 
for out-registered (pipelined) Mealy machines is to implement glitch-free Moore-like 
circuits (details are shown in the next section). 

Figure 3.6 
Mealy machine for a nonovelapping  “ 010 ”  detector. (a) State transition diagram. (b) Truth table 

for both next state and output. (c) Corresponding Karnaugh maps and minimal Boolean expres-

sions. (d) Resulting circuit. 
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3.5   Moore versus Mealy Time Behavior 

It is very important to understand the differences between Moore and Mealy solutions 
well. To do that, let us compare the timing responses of the Moore and Mealy 
circuits designed above for the nonoverlapping  “ 010 ”  detector (  fi gures 3.4e and 3.6d , 
respectively). 

 An example of timing response for the Moore circuit is presented in   fi gure 3.7a . 
The input sequence is  x  = { ‘ 0 ’ ,  ‘ 1 ’ ,  ‘ 0 ’ ,  ‘ 1 ’ ,  ‘ 0 ’ ,  ‘ 1 ’ ,  ‘ 0 ’ ,  ‘ 0 ’ }. Following the state transition 
diagram of   fi gure 3.4a , the sequence obtained for the present state is  pr_state  = { one , 
 two ,  three ,  zero ,  one ,  two ,  three ,  one }, shown in the corresponding plot of   fi gure 3.7a . 
Because  y  is  ‘ 1 ’  when the machine is in state  three  and  ‘ 0 ’  elsewhere, the resulting 
output sequence (after a small propagation delay) is  y  = { ‘ 0 ’ ,  ‘ 0 ’ ,  ‘ 1 ’ ,  ‘ 0 ’ ,  ‘ 0 ’ ,  ‘ 0 ’ ,  ‘ 1 ’ ,  ‘ 0 ’ }. 
Note that  y  is indeed synchronous because it can change only when the clock ticks 
(at positive clock transitions in this example), and then remains fi xed during the whole 
clock period. Because  y  is synchronous, glitches in  y  can happen only right after (posi-
tive) clock transitions (as already illustrated in   fi gure 3.5 ). If the optional output 
register is used (to remove glitches, for example), then a registered output  y_reg  results, 
which is simply a (clean) shifted version of  y . In other words,  y  goes to  ‘ 1 ’  at the next 
clock edge after the condition  “ 010 ”  occurs, while  y_reg  goes to  ‘ 1 ’  at the second clock 
edge after that sequence happens.   

Figure 3.7 
Time behavior of the nonoverlapping  “ 010 ”  detector. (a) For the Moore circuit of   fi gure 3.4e.  (b) 

For the Mealy circuit of   fi gure 3.6d . 
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A similar analysis is presented for the Mealy circuit in   fi gure 3.7b . The input 
sequence is again  x  = { ‘ 0 ’ ,  ‘ 1 ’ ,  ‘ 0 ’ ,  ‘ 1 ’ ,  ‘ 0 ’ ,  ‘ 1 ’ ,  ‘ 0 ’ ,  ‘ 0 ’ }. Following the state transition 
diagram of   fi gure 3.6a , the sequence obtained for the present state is  pr_state  = {B, 
C, A, A, B, C, A, B}. As shown in the state diagram, the output is  ‘ 0 ’  in states A and 
B, and it is  x  ′  in state C, thus resulting (after a small propagation delay) in the output 
sequence  y  = { ‘ 0 ’ ,  x  ′ ,  ‘ 0 ’ ,  ‘ 0 ’ ,  ‘ 0 ’ ,  x  ′ ,  ‘ 0 ’ ,  ‘ 0 ’ }. Note that  x  appears in the list for  y , 
which was expected because in a Mealy machine the input can affect the output 
directly. For the same reason, this machine is asynchronous (note that in state C,  y  
changes independently of the clock). Observe also that, because it is asynchronous, 
the shape of  y  can be quite strange, with values lasting less than one clock period. 
On the other hand, observe the interesting shape of  y_reg , which is exactly the same 
as the shape of  y  in the Moore case. This means that when we want to get rid of 
glitches and the consequent extra delay of an out-registered (pipelined) Moore 
machine is not acceptable in the application, an out-registered (pipelined) Mealy 
machine can be used. 

 Another drawback of the original Mealy machine is that input glitches can propa-
gate to the output, as depicted in the plot for  y  in   fi gure 3.7b . 

 3.6   State Machine Categories 

 We have already seen that state machines can be classifi ed into two types, based on 
their  input connections , as follows. 

 1)    Moore machines:    The input, if it exists, is connected only to the logic block that 
computes the next state. 
 2)    Mealy machines:    The input is connected to both logic blocks, that is, for the next 
state and for the actual output. 

 In this section we introduce a new classifi cation, into three categories, based on 
the  transition types  and  nature of the outputs . 

 As mentioned in section 1.2 (see Hardware- versus Software-Implemented State 
Machines), designing a hardware-implemented FSM is generally (much) more complex 
than designing a software-implemented FSM. To ease such a task, a very important 
new classifi cation, from a hardware perspective and covering  any  state machine, is 
introduced here (this classifi cation dictates the organization of the subsequent chap-
ters).   Figure 3.8  is used as an illustration.    

  Category 1: Regular (pure) state machines  (studied in chapters 5 – 7):   This category, illus-
trated in   fi gure 3.8a , is the simplest. It consists of machines with only untimed transi-
tions and outputs that do not depend on previous (past) output values. 
  Category 2: Timed state machines  (studied in chapters 8 – 10):   These consist of machines 
with one or more transitions that depend on time, but still having only outputs that 
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do not depend on previous (past) output values. In the example of   fi gure 3.8b , the 
fi rst transition is conditional, but the second is conditional-timed. Recall that, by 
default, the timer is zeroed every time the FSM changes state and is kept stopped at 
zero in the states where it is not needed (states A and C in   fi gure 3.8b ). Category 2 
machines can have all four types of transitions (conditional, timed, conditional-timed, 
and unconditional). 
Category 3: Recursive state machines  (studied in chapters 11 – 13):   In this case, illus-
trated in   fi gure 3.8c , the transitions can be timed, as in category 2, but now one or 
more outputs depend on previous (past) output values. Such dependency is usually 
expressed by means of recursive equations (the output is a function of itself). In this 
example the output must keep in state B the same value that it had when the 
machine left state A, whereas in state C the output must present the incremented 
version of the value that it had when the machine left state B. This implies that 
some sort of extra memory is required because the expressions  y = y  and  y = y +  1 
can only be evaluated if the value of  y  is available somewhere. Because this is a 
hardware implementation, such auxiliary memory must be provided along with the 
state machine. 

 As will be seen in coming chapters, the classifi cation presented above will ease 
immensely the design of hardware-based state machines (and no other classifi cation 
is needed). The two fundamental decisions before starting a design are then the 
following: 

1)   First, the state machine category (regular, timed, or recursive); 
2)   Second, the state machine type (Moore or Mealy). 

Figure 3.8 
State machine categories. 
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3.7   State-Encoding Options 

This section describes the main codes used for encoding the states of an FSM. 
The most common encoding alternatives are  sequential  (also called  binary ),  Gray , 
 Johnson , and  one-hot , all illustrated in   fi gure 3.9a  for an eight-state FSM. Note that 
the fi rst two require three bits, the third requires four bits, and the last one requires 
eight bits.    

 To illustrate the encoding options further, let us consider a machine with the fol-
lowing fi ve states (using VHDL notation): 

  type  state  is  (A, B, C, D, E); 

 3.7.1   Sequential Binary Encoding 
 The states are encoded using the conventional binary code (increasing order of cor-
responding decimal values; see   fi gure 3.9a ). For the type  state  above, three bits would 
be needed, resulting A =  “ 000 ”  (decimal value = 0), B =  “ 001 ”  (= 1), C =  “ 010 ”  (= 2), 
D =  “ 011 ”  (= 3), and E =  “ 100 ”  (= 4). 

 The advantage of this encoding is that it requires the smallest number of fl ip-fl ops; 
with  N  fl ip-fl ops ( N  bits), up to 2  N   states can be encoded. The disadvantage is that it 
might require more combinational logic than other encoding options (illustrated in 
exercises 3.2 and 3.3), so the resulting circuit might be slightly slower. 

Figure 3.9 
(a) Main encoding options for an eight-state machine. (b) Regular sequential binary counter with 

outputs converted to Gray code. (c) Johnson counter. (d) One-hot counter. 
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3.7.2   One-Hot Encoding 
At the other extreme is the one-hot code, in which only one bit is high in each code-
word, so with  N  fl ip-fl ops only  N  states can be encoded (see   fi gure 3.9a ). For the type 
state  above, fi ve bits would be needed, resulting in A =  “ 00001 ” , B =  “ 00010 ” , C = 
 “ 00100 ” , D =  “ 01000 ” , and E =  “ 10000 ” . 

 This code demands the largest number of fl ip-fl ops, but the amount of combi-
national logic tends to be smaller than that of other encodings (illustrated in 
exercise 3.2), often leading to a slightly faster implementation. For big machines 
(say, over 40 or 50 states), the hardware for this type of encoding tends to be 
prohibitively large. 

 Just to illustrate the one-hot code,   fi gure 3.9d depicts  a one-hot counter, which 
consists simply of a shift register with a direct feedback loop. Note that the initial state 
is  q  3  q  2  q  1  q  0  =  “ 0001 ”  because the reset signal is connected to the reset port of three DFFs 
and to the preset port of the other. 

 3.7.3   Johnson Encoding 
 This is an implementation in between the two above. With  N  fl ip-fl ops, 2 N  states can 
be encoded (see   fi gure 3.9a ). It does not require much more combinational logic than 
the one-hot alternative, but it can encode twice the number of states. Each codeword 
is obtained by circularly shifting the previous codeword to the left and inverting the 
incoming bit. For the type  state  above, three bits would be needed, resulting A =  “ 000 ” , 
B =  “ 001 ” , C =  “ 011 ” , D =  “ 111 ” , and E =  “ 110 ” . 

 Just to illustrate the Johnson code, a Johnson counter is depicted in   fi gure 3.9c , 
which consists simply of a shift register with an inverter in the feedback loop. 

 An important property of this code is that the Hamming distance (number of bits 
that are different) between any two adjacent codewords is just 1 (see   fi gure 3.9a ), so 
it can be useful in the same applications as the Gray code, described below. 

 3.7.4   Gray Encoding 
 Gray code is similar to the sequential code in the sense that it too requires the least 
number of fl ip-fl ops (with  N  fl ip-fl ops, up to 2  N   states can be encoded), but the amount 
of combinational logic can be slightly larger (illustrated in exercise 3.3) and the speed 
slightly lower. 

 This code too exhibits the property of unitary Hamming distance between any 
two adjacent codewords, useful in certain implementations involving multiple 
clock domains (recall comments of section 2.3). Because of this property, a Gray 
 counter  is free from glitches during state transitions (except when returning to the 
initial state if the counter ’ s modulo is not a power of 2); consequently, if a Gray-
encoded FSM has a long path without branching, transitions along that path are 
glitch-free. 
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In a Gray code, each codeword is obtained by modifying the value of the rightmost 
bit in the previous codeword such that a new codeword results (see   fi gure 3.9a ). For 
the type  state  above, three bits would be needed, resulting in A =  “ 000 ” , B =  “ 001 ” , C 
=  “ 011 ” , D =  “ 010 ” , and E =  “ 110 ” . 

 Just to illustrate the Gray code, a Gray counter is presented in   fi gure 3.9b , which 
consists simply of a regular sequential counter whose output is converted into Gray 
code by means of the following expressions (see XOR gates in   fi gure 3.9b ):  q(N  − 1 ) Gray

=  q(N  − 1 ) Seq  ;  q(i) Gray   =  q(i +1 ) Seq    ⊕   q(i) Seq   for  i  =  N   −  2 to  i  = 0. 

 3.7.5   Modifi ed One-Hot Encoding with All-Zero State 
   Figure 3.10a  shows an example using the true one-hot code described above for a 
four-bit system (a four-state FSM). As expected, the bits of  pr_state  are { “ 0001 ” ,  “ 0010 ” , 
 “ 0100 ” ,  “ 1000 ” }. A modifi ed version, with bit zero inverted, is depicted in   fi gure 3.10b . 
The encoding is now { “ 0000 ” ,  “ 0011 ” ,  “ 0101 ” ,  “ 1001 ” }, thus containing the all-zero 
codeword. This code has the same properties as the true one-hot code in the sense 
that it too has a Hamming distance of 2 between any two codewords, and all code-
words can be identifi ed based on a single bit.    

 The alternative of   fi gure 3.10b  is used, for example, by Altera ’ s Quartus II compiler 
when synthesizing state machines using the one-hot option. The reason for doing so 
is that all DFFs in Altera ’ s FPGAs (and Xilinx ’ s as well for that matter) are initialized 
to a low output on power-up, so if an explicit reset port was not included in the design, 
the machine will still be able to start from a specifi c state, avoiding improper initial-
ization and deadlock. More details on this are seen in sections 3.8 and 3.9, which 
discuss the importance of reset in FSMs and how to implement safe FSMs. 

Figure 3.10 
(a) True one-hot encoding. (b) Modifi ed one-hot encoding (bit zero inverted), containing the 

all-zero codeword. 
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3.7.6   Other Encoding Schemes 
Besides the encoding schemes described above, VHDL and SystemVerilog synthesis 
compilers have at least two other options, known as  user  and  auto . The former is a 
user-defi ned encoding (the codeword for each state is specifi ed by the user), whereas 
the latter is used to let the compiler choose the best encoding scheme based on the 
target device. Typically,  auto  employs sequential encoding for small machines (for 
example, up to four or fi ve states), then one-hot for medium-sized machines (for 
example, up to 40 or 50 states), and fi nally sequential again (or an equivalent, such 
as Gray) for larger machines. In general,  auto  is the compiler ’ s default option. 

 The one-hot style is common in applications where fl ip-fl ops are abundant, such 
as fi eld programmable gate arrays (FPGAs), whereas minimal-bit encodings (such as 
sequential and Gray) are common in complex programmable logic devices (CPLDs) 
and in compact, low-cost application-specifi c integrated circuits (ASICs). 

 Chapters 6 and 7 show how to select the encoding scheme when using VHDL or 
SystemVerilog, respectively. 

 3.8   The Need for Reset 

 If no reset signal is provided and no intentional circuit asymmetry exists (such that 
a specifi c output state is favored), the initial state (output either low or high) of a 
fl ip-fl op, on power-up, might be arbitrary. Because fl ip-fl ops are used to construct 
the state register, the machine ’ s initial state would then also be arbitrary. In this 
case, one of two situations will result: either the initial state is  internal  (that is, 
belongs) to the machine or is  external  (does not belong) to it. Of course, if  N  bits 
are used to encode a machine that has 2  N   states, then the initial state can only 
belong to the machine. 

 When the initial state is internal, deadlock can still happen, but only in rare cases, 
so the usual main consequence is a possibly undesirable sequence of events during 
the fi rst few state transitions. If the initial state is external, however, deadlock is much 
more likely, obviously in addition to the possibly undesirable sequence of events 
during the fi rst few state transitions after the system converges to one of the FSM 
states (assuming that deadlock has not occurred). 

 To further illustrate this discussion, let us consider the four-state counter of   fi gure 
3.11a , whose states are encoded using one-hot code (the corresponding  pr_state  = 
 q  3  q  2  q  1  q  0  vectors are shown below the state circles). The equations for  nx_state  =  d  3  d  2  d  1  d  0
can be easily obtained using the method described in section 3.3, resulting  d  3  =  q  2 ,  d  2
=  q  1 ,  d  1  =  q  0 , and  d  0  =  q  3 . Consequently, if the initial state is  q  3  q  2  q  1  q  0  =  “ 0000 ” , for 
example,  d  3  d  2  d  1  d  0  =  “ 0000 ”  results; because  nx_state  =  pr_state , a deadlock then occurs. 
Indeed, based on the equations above, note that with one-hot encoding any time the 
initial state falls outside the FSM the machine gets deadlocked.    
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Another example is shown in   fi gure 3.11b , now using regular sequential encoding. 
Because the number of states is a power of two, all possible two-bit values belong to 
the machine; since all internal states are deadlock-free, the whole machine is deadlock-
free. It is important to mention, however, that with sequential or Gray encoding full 
code usage is not needed for an outside initial state to eventually converge to one of 
the actual machine states, thus without deadlock. 

 Deadlock prevention is necessary in any FSM, but in many applications it is also 
required that the FSM start from a specifi c state and with proper transition control 
conditions. For example, one might want the FSM used to implement a traffi c light 
controller to start from a state that keeps the lights red in all directions for a few 
seconds (on power-up, after an energy failure, for example) before it proceeds to its 
regular operation. This requires an explicit reset signal if the DFFs initial state is 
arbitrary. 

 It is important to mention that there are devices (such as Altera ’ s and Xilinx ’ s 
FPGAs) whose DFFs are automatically reset to  ‘ 0 ’  on power-up. In that case, if the all-
zero codeword belongs to the code and is assigned to the intended initial state, the 
FSM will be reset automatically. 

 Still regarding the FPGAs mentioned above, whose DFFs ’  initial state is  ‘ 0 ’ , note 
that that does not reset the machine automatically when one-hot encoding is 
used (see in   fi gure 3.11a  that  “ 0000 ”  is not part of the codewords list). However, 
contrary to Xilinx ’ s XST synthesis compiler (of the ISE suite), which uses true 
one-hot code, Altera ’ s Quartus II synthesis compiler uses the modifi ed one-hot 
code seen in   fi gure 3.10b , which does include the all-zero codeword, thus allowing 
automatic reset. 

   Figure 3.12  shows typical sources for the reset signal. In   fi gure 3.12a  it is generated 
by a resistor-capacitor (RC) circuit; when the power is turned on, the voltage on C is 
zero, so the full  V DD   voltage is applied to the  rst  input, resetting the circuit; the voltage 
on C then grows (with a time constant R ⋅ C = 0.1 s), thus eventually reducing the 
voltage on R ( rst ) to zero and so freeing the circuit from the reset command. In   fi gure 
3.12b , a specialized integrated circuit is used to generate the reset signal; if  V DD   falls 
below a predefi ned threshold voltage,  rst  =  ‘ 1 ’  is produced, resetting the target circuit. 
Finally, in   fi gure 3.12c , the reset signal is produced by another circuit that might 
belong to the same system as the FSM (for example, another FSM to which this one 

Figure 3.11 
Four-state counter encoded with (a) one-hot and (b) sequential code. 
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works as a secondary machine, or a watchdog circuit). The fi rst two cases are related 
to the power supply, so they are power-related resets, whereas the last one can be 
produced at any time.    

 As a fi nal comment, it is important to mention that there are applications in which 
reset is not necessary, either because the initial state is not important or because it is 
set automatically by another signal (assuming that the machine is not subject to 
deadlock). However, that is rarely the case, so the exclusion of reset should only be 
done after very careful design analysis. 

 Additional details on FSMs ’  initial state and deadlock are given in the next section. 

 3.9   Safe State Machines 

 The concept of safe state machines concerns deadlock-proof implementations. 
   Figure 3.13  shows an FSM with fi ve states (A1 – A5), assumed to be encoded with 

three-bit values, thus resulting in three states (B1 – B3)  outside  the machine. The machine 
can start from or move to an external state when no proper reset is provided (when 
the DFFs ’  initial state is arbitrary) or because of noise during regular operation (which 
might fl ip one or more encoding bits). In this example the machine is able to auto-
matically recover when state B1 or B2 occurs (converging to state A1 or A3, respec-
tively), but it gets deadlocked if state B3 happens.    

Figure 3.13 
FSM with a nonconvergent external state (B3 causes deadlock). 

Figure 3.12 
Reset options (a) generated by an RC circuit, (b) generated by a specialized reset chip, and (c) 

generated by another circuit possibly belonging to the same system as the FSM. 
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Figure 3.14 
Safe-machine analysis. (a) Example with three states and sequential encoding. (b) Corresponding 

truth table for  nx_state . (c) Resulting Karnaugh maps. (d – f) Three compositions for the critical 

(free-fi lling) columns. (g) Resulting system if the option in f is used. (h) Optimal expressions for 

 nx_state , which coincide with the (bad) case of e. 

Note that the use of an explicit reset signal only prevents the fi rst possibility, not 
the effect of noise. Consequently, for a truly safe FSM, the external states must also 
be considered when the expressions for  nx_state  are developed. Other, less usual 
mechanisms also exist, including the use of a watchdog that resets the machine in 
case it remains in the same state longer than a predefi ned time limit, but this 
would obviously be applicable only if the machine were expected to change its 
state periodically. 

 A detailed example is presented in   fi gure 3.14 . The actual machine states are A1 – A3. 
Because sequential encoding is used (note the codewords below the state circles in 
  fi gure 3.14a ), two bits are needed, resulting in one external state (B). We want to 
examine the conditions needed for this machine to be able to recover in case state B 
happens.    

 By the method of section 3.3, the truth table for  nx_state  shown in   fi gure 3.14b  is 
obtained, from which the Karnaugh maps of   fi gure 3.14c  result. Note in the latter that 
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the column  q  1  q  0  =  “ 11 ”  is the critical column because all elements in that column can 
be fi lled indifferently with  ‘ 0 ’  or  ‘ 1 ’ , so a number of different equations can be used 
for  d  1  and  d  0 . We have to make certain that the condition  nx_state  =  pr_state  (i.e.,  d  1  d  0
=  q  1  q  0 ) never happens, either directly or through a loop in the external states, because 
then deadlock will occur. 

The maps of   fi gure 3.14c  were repeated in   fi gures 3.14d – f  for three different com-
positions of the critical columns. In   fi gure 3.14d , all positions were fi lled with  ‘ 1 ’ s, so 
 d  1  d  0  =  “ 11 ”  results when  q  1  q  0  =  “ 11 ”  (i.e.,  nx_state  =  pr_state ) for both  x  =  ‘ 0 ’  (upper 
row) and  x  =  ‘ 1 ’  (lower row), causing deadlock. In   fi gure 3.14e ,  d  1  d  0  =  “ 11 ”  for  x  =  ‘ 0 ’  
(upper row) and  d  1  d  0  =  “ 10 ”  for  x  =  ‘ 1 ’  (lower row), so a deadlock would occur in the 
former, and a convergence to state A3 would occur in the latter. Finally, the case in 
  fi gure 3.14f  has  d  1  d  0  =  “ 00 ”  for  x  =  ‘ 0 ’  and  d  1  d  0  =  “ 10 ”  for  x  =  ‘ 1 ’ , so both would con-
verge (to A1 and A3, respectively). 

   Figure 3.14g  shows the complete resulting state diagram (internal plus external 
states) in case the encoding of   fi gure 3.14f  is adopted. As seen above, B converges to 
A1 if  x  =  ‘ 0 ’  or to A3 if  x  =  ‘ 1 ’ , so this is a truly safe implementation. 

 To conclude, the Karnaugh maps are repeated in   fi gure 3.14h , in which the optimal 
(minimal) expressions were adopted for  nx_state  (i.e.,  d  1  and  d  0 ). Note that the result-
ing situation is that of   fi gure 3.14e , subject, therefore, to deadlock. In summary, in 
this example the optimal implementation from a hardware-saving perspective is not 
the best implementation from a safety point of view. 

 We conclude this section by showing, in   fi gure 3.15 , a simple solution that is appli-
cable to FSMs that employ sequential encoding.  M  is the machine ’ s number of states. 
If  M  = 20, for example, fi ve bits are needed, and the state values will range from 0 to 
19. If at any moment (either at initialization or during regular operation)  pr_state  
happens to be above 19, it means that an  external  state has occurred, so a reset pulse 
is produced (this reset can be combined with the original reset signal, if it exists, by 
means of an OR gate). The fl ip-fl op in   fi gure 3.15  is needed because the comparator 
can have glitches at the output during state transitions (see, for example, fi gure 2.15).    

 3.10   Capturing the First Bit 

 This section discusses a common hardware need that occurs, for example, when data 
is processed serially. In such cases there is often an input bit (here called  dv , for data 

Figure 3.15 
A simple solution for truly safe state machines when using sequential encoding. 
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valid) that is asserted during one clock cycle to inform that the data is ready (to be 
stored, processed, etc.). In many cases the fi rst data bit (or vector) is made available 
at the same time that  dv  is asserted, so one must be very careful not to miss that fi rst 
bit (or vector). 

 An example is shown in   fi gure 3.16a , which consists of a serial data receiver. The 
FSM must store the input data  x  in a register  y . Note that it is a timed machine, which 
must stay in state B during  T  clock cycles, where  T  is the number of bits of  x  to be 
stored in  y . This fi rst solution is of Moore type and employs the default clocking 
scheme (everybody clocked at the same clock edge — positive by default — as indicated 
in the rectangle in the upper part of the fi gure).    

 An illustrative timing diagram for the FSM of   fi gure 3.16a  is presented in   fi gure 
3.16b , for  x  =  “ 1011 ”  (see the shaded area on the  x  waveform). The problem with this 
solution is that it misses the fi rst bit of  x  because the machine only moves to state B 
at the fi rst (positive) clock edge after  dv  =  ‘ 1 ’  occurs (note in the fi gure that when the 

Figure 3.16 
Techniques for capturing the fi rst bit when it coincides with  dv . (a, b) Bad Moore solution. (c, d) 

Fine Moore solution. (e, f) Fine Mealy solution. 
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fi rst clock edge occurs  after  the machine is in state B, bit 2 is captured by  y (0) instead 
of bit 1). 

 The same FSM is used in   fi gure 3.16c . However, even though the data ( dv  and  x ) 
and the auxiliary register (for  y ) are still updated at the positive clock edge, the FSM 
and its timer operate now at the negative clock transition. Note in the accompanying 
timing diagram in   fi gure 3.16d  that again the proper values are produced for  t  (recall 
that, by default, the timer is zeroed every time the FSM changes state, and here it is 
kept stopped at zero in the states where it is not needed — state A in this example), 
but now all bits are captured properly, resulting, in the end,  y (3:0) =  “ 1101 ” . 

 A fi nal solution is shown in   fi gure 3.16e , which consists of using a Mealy machine 
instead of a Moore machine. Note in the accompanying timing diagram, in   fi gure 
3.16f , that this machine too works well, and now the default clocking scheme (every-
body operating at the same clock edge) is employed. 

 Both solutions above require an auxiliary register (for  y ). This kind of FSM will be 
studied in detail in chapter 11. 

 3.11   Storing the Final Result 

 This section discusses another need that sometimes arises in hardware imple-
mentations. It consists of wanting the fi nal result from one run of a process to 
remain stable (constant, exhibited on a display, for example) until another run 
is completed, with the new result replacing the old one and also remaining 
unchanged until the next value is produced, and so on. It is also common in such 
cases to have a control signal ( dv , data-valid) that indicates when the input data 
is ready, so data processing should commence. The  dv  signal, which generally 
lasts one clock period but can also last for the entire process, can help produce the 
desired feature. 

   Figures 3.17a,b  illustrate the case of  dv  lasting for the entire process (as usual, a 
small propagation delay was included between a clock edge and its response in order 
to portray a realistic situation). Note that in   fi gure 3.17a ,  dv  is updated at the positive 
clock edge, which is the same edge at which the circuit operates (see the waveform 
for  output ), whereas in   fi gure 3.17b ,  dv  is updated at the negative clock edge. As shown 
in   fi gure 3.17c , the negative edge of  dv  is used to store the fi nal result (assumed to be 
 output = e ; see gray shade) into an auxiliary register. This result will obviously remain 
unchanged until a new result overwrites it.    

 The problem with the alternative in   fi gure 3.17a  is that the output value is unlikely 
to have had enough time to settle, so an incorrect value will probably be registered. 
This alternative would be unsafe even if  dv  lasted an extra clock period because of the 
time delay between the edges of  clk  and  dv . 
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Figure 3.17 
Storing the fi nal result. (a – c)  dv  lasts the entire process, so its falling edge is used to activate the 

output register. (d – f)  dv  lasts only one clock period, so the falling edge of  busy  is used to activate 

the register. 

The alternative in   fi gure 3.17b  is obviously safe, but using the negative edge implies 
that the output value has to be ready within  T clk  /2, which might reduce the circuit ’ s 
maximum speed. 

   Figures 3.17d,e  illustrate the more usual case in which  dv  lasts only one clock cycle, 
so an auxiliary signal (called  busy  in the fi gures) is needed to activate the register in 
  fi gure 3.17f . To produce  busy  from  dv , a pulse stretcher (studied in section 8.11.10) 
can be used. However, because  busy  behaves exactly like  dv  in   fi gures 3.17a,b , the same 
limitations apply here. 

 A completely different approach is presented in   fi gure 3.18 . Note that, contrary to 
the alternatives in   fi gure 3.17 , which do not employ the actual clock to store the fi nal 
result,  clk  itself is used to activate the output register in   fi gure 3.18b , with  dv  used 
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simply to produce an enable ( ena ) signal. The result is a truly synchronous, safe imple-
mentation. Two versions of  ena  are shown, updated either at the positive ( ena +) or 
negative ( ena  – ) clock edge, which can be selected according to the application. This 
kind of circuit (pulse shifter) is studied in section 8.11.9.    

 3.12   Multimachine Designs 

 State machine decomposition, also called state machine factoring, refers to FSMs 
that are split into two or more machines to ease the design or to take advantage 
of machines that have been designed previously. In more general terms, two or more 
smaller FSMs are associated in order to produce the same results as a larger, more 
complex machine. 

 Typical associations/decompositions are depicted in   fi gures 3.19a – c . A series 
(cascade) association is illustrated in fi gure 3.19a; a parallel association is shown in 
fi gure 3.19b; fi nally, an internal association (one machine is called as part of the other) 
is depicted in fi gure 3.19c.    

 An actual example is depicted in   fi gure 3.19d , which shows an association that falls 
in the case of   fi gure 3.19c . The main FSM is a factorial ( f  =  n !) calculator (details can 
be seen in exercise 11.9), so a multiplier is needed; because a multiplier can also be 
implemented using the FSM approach (see section 11.7.5), the latter is called as part 
of the former. 

 Another interesting example is presented in   fi gure 3.20a , which shows a machine 
with a pair of states that need to be repeated a number of times. If  T  is large (say 
64; therefore, 130 states), it is impractical to represent this circuit as a regular FSM. 
A solution for this problem is presented in   fi gure 3.20b , with the original circuit 
decomposed into two machines, the fi rst with three states, the other with two states, 
regardless of the value of  T . Note that the main machine has a  “ superstate ”  (SS) 
that simply enables the secondary machine to run. When  ena  =  ‘ 0 ’ , the secondary 
machine remains in the reset state, whereas  ena  =  ‘ 1 ’  causes it to fl ip back and forth 
between states B and C during 2 T  clock cycles (recall that the timer ’ s initial value 

Figure 3.18 
Truly synchronous alternative for storing the fi nal result, which consists of producing an enable 

signal, so the actual clock is responsible for activating the register. 
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is zero, so it runs from 0 to 2 T  − 1 in this case), after which the machine moves to 
state D.    

 An example where this arrangement can be useful is in serial data communications, 
as in the I 2 C interface (chapter 14), because a data vector must be transmitted (state 
B) by the master, then an acknowledgment bit must be received from the slave (state 
C), with these operations repeated until all data vectors have been sent out. 

 Another area in which the use of multiple machines is relatively common is in 
control units for CPUs, in which simpler instructions (e.g.,  load  and  store ) are part of 

 Figure 3.19 
 Multimachine implementations with the FSMs associated (a) in series, (b) in parallel, or (c) with 

one machine called as part of the other. (d) Example showing a factorial calculator, which needs 

a multiplier, so the latter is called as part of the former. 

Figure 3.20 
(a) FSM with a repetitive pair of states. (b) Solution with FSM decomposition where the secondary 

machine operates as a  “ superstate ”  to the main machine. 
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more elaborate CPU instructions. Several examples with multiple machines are seen 
in chapters 8 and 11. 

3.13   State Machines for Datapath Control 

The purposes of this section are to review datapath-related concepts and to describe 
how state machines can be used to build the  control unit  that controls a datapath. 
Because the control unit is generally the most complex circuit to design in this kind 
of application, and the FSM approach is employed to do it, a study of state machines 
for datapath control is indispensable. 

 A popular datapath is that of microprocessors and microcontrollers, needed to 
construct the CPU, write/read data to/from memory, communicate with peripherals, 
and so on. Fundamental components for datapath construction are depicted in   fi gure 
3.21 . Note that they all have some type of control input ( sel ,  ALUop ,  wrR ,  rdM ,  wrM , 
 wrPC ,  wrIR ).    

 Multiplexers are digital switches used to route data from one location to another; 
in the case of   fi gure 3.21 , when the selection ( sel ) input is  ‘ 0 ’ , the upper input is passed 
to the output, whereas a  ‘ 1 ’  causes the lower input to be passed to the output. The 
arithmetic logic unit (ALU), as the name says, is responsible for executing arithmetic 
(+,  − , *, /,  … ) and logic (AND, OR, XOR,  … ) operations; the operation is selected by 
the ALU ’ s operational code,  ALUop . Registers are simply DFF banks: for example, a 
32-bit register is simply a set of 32 parallel DFFs; note the write-register ( wrR ) input, 
which must be asserted for the input data to be stored into the DFFs (at the next posi-
tive clock edge). The data memory is used to store data during datapath operations; 
it contains two control inputs, for reading from ( rdM ) or writing into ( wrM ) the 

Figure 3.21 
Main datapath components. 
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memory. The program counter (PC) is a counter that keeps the instruction address; 
observe the write-PC ( wrPC ) control input. Finally, the instruction register is respon-
sible for storing and decoding the instructions; note the write-instruction-register 
( wrIR ) control input. 

 The control unit, shown in the lower part of the fi gure, is responsible for producing 
all control signals. Its main input (besides clock and reset) is an opcode, based on 
which the whole sequence of events needed for the datapath to perform the desired 
computations is provided. An important aspect to observe is that the control unit, 
although responsible for sequencing all of the computations, does not access the 
data directly (except for some occasional trivial data monitoring). Instead, it just 
makes the proper path manipulations such that the datapath itself produces the 
intended results. 

 A simple datapath is depicted in   fi gure 3.22a , containing an ALU, two registers (A, 
B), and a multiplexer. Four control signals are involved:  selA  (selects the data source 
for register A),  wrA  and  wrB  (enable writing into registers A and B, respectively — at the 
next positive clock edge), and  ALUop  (some of the ALU operations are listed in   fi gure 
3.22b ). These four control signals must be generated by the control unit, based on 
 opcode . For simplicity, clock and reset are generally omitted in datapath representations 
(as in   fi gure 3.22a ), but they are obviously needed.    

 As an example, say that the following computation must be performed by the data-
path of   fi gure 3.22a : When an external input, called  dv  (data-valid bit), is asserted 

Figure 3.22 
(a) Datapath example. (b) Partial ALU ’ s opcode table. (c) Illustrative timing diagram for the fol-

lowing computation: inputs are stored into A and B, then added, with the result then stored into 

A. (d) Corresponding Moore machine. 
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(during one clock cycle),  inpA  and  inpB  must be added and the result stored in register 
A (so we can assume  opcode  =  dv ). 

 The overall datapath operation is illustrated in the timing diagram of   fi gure 3.22c 
(as usual, small propagation delays were left between the clock transitions and the 
corresponding responses to portray a more realistic situation), which shows the 
system clock ( clk ), the data-valid bit ( dv ), the four signals to be produced by the FSM 
( selA ,  wrA ,  wrB ,  ALUop ), and, fi nally, the machine ’ s state ( pr_state ) after every positive 
clock transition. 

 A very important aspect to observe, which often causes confusion and leads to 
incorrect designs, is how data is stored in datapaths. Because the control unit does 
not access the data directly but just provides the proper path for it, the storage occurs 
 at the end  of any write-enabling state. For example, note in   fi gure 3.22c  that  wrA  =  wrB  
=  ‘ 1 ’  in the  load  state, which means that at the  next  clock edge (thus, at the  end  of the 
 load  state) the inputs will be stored in A and B (see comments at the bottom of the 
fi gure). The same is true in the  store  state; because  wrA  =  ‘ 1 ’  in it, at the  next  clock 
edge ( end  of that state), the sum will be stored in A. 

 A corresponding Moore-type solution is presented in   fi gure 3.22d , which is a direct 
translation of   fi gure 3.22c  (compare the values in the plots against those in the state 
transition diagram). Note also in   fi gure 3.22d  that the list of outputs is  exactly the same  
in all three states, as required for hardware-implemented (as opposed to software-
implemented) FSMs, otherwise latches would be inferred (unless the optional output 
register is included). 

 The next example (  fi gure 3.23 ) shows a relatively complete CPU datapath (based 
on MIPS [Patterson  &  Hennessy, 2011]). It contains an ALU, four multiplexers (memory 
address source, register data source, ALU source A, and ALU source B), several registers 
(instruction register — IR, memory data register — MDR, general purpose register fi le, 

Figure 3.23 
A CPU datapath (based on the MIPS architecture). 
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general purpose A and B registers, and the ALU register — ALUreg), plus a general 
purpose data memory.    

 As usual, a control unit (FSM) is needed to control the datapath, which produces 
nine signals:  AddrSource  (to control the memory address source mux),  DataSource  (to 
control the register data source mux),  ALUSourceA  (to control the ALU input-A mux), 
 ALUSourceB  (to control the ALU input-B mux),  PCWr  (to enable writing into the 
program counter register),  MemWr  (to enable writing into the memory),  MemRd  (to 
enable reading the memory),  RegWr  (to enable writing into the register fi le), and  ALUop  
(to defi ne the ALU operation). The control unit produces these signals based on the 
opcode received from the instruction register/decoder. 

 Each CPU instruction is broken down into a series of clock cycles, with each cycle 
limited to one ALU operation plus storage or one memory/register access plus storage, 
such that at the end of each cycle the data needed in the next cycle will be available 
in one of the registers or in memory. For example, note in   fi gure 3.23  that the data 
read from the memory is stored in MDR, the data from the register fi le is stored in A 
or B, and the ALU result is stored in ALUreg. 

 Two partial examples of instructions executed by the CPU of   fi gure 3.23  are depicted 
in   fi gure 3.24 , concerning the store word (SW) and load word (LW) instructions. As 
shown in   fi gure 3.24a , SW is composed of two main parts: SetAddr, in which the 
memory address to which data will be written is set, and WriteMem, which causes 
the data to be effectively stored (at the end of that state, as explained earlier). Note 
the following in the SetAddr state:  ALUSourceA  =  ‘ 0 ’ , so port A of the ALU is fed by 
register A;  ALUSourceB  =  ‘ 1 ’ , so port B of the ALU is fed by the IR; and  ALUop  = add, 
meaning that the actual opcode will cause the ALU to add its inputs, thereby pro-
ducing the intended memory address stored in ALUreg. Note the following in the 
WriteMem state:  AddrSource  =  ‘ 1 ’ , so the address comes from the ALU register (as 
expected); and  MemWr  =  ‘ 1 ’ , so writing is enabled and will occur at the next (posi-
tive) clock edge. As a fi nal remark, note that the list of outputs is not the same in 
both states (it should be for hardware-based implementations), which was done here 
just for simplicity.    

Figure 3.24 
Partial state machines implementing memory access using the datapath of   fi gure 3.23.  Recall 

that in an actual design the list of outputs has to be exactly the same in all states of an FSM. 
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The LW instruction, depicted in   fi gure 3.24b , is composed of three main parts: 
SetAddr, responsible for setting the memory address from which data must be read; 
ReadMem, which causes the data to be effectively read (at the end of this state); and 
WriteReg, which causes the read data to be stored in one of the IR registers (again, at 
the end of the state). The SetAddr state is similar to the previous case. Note the fol-
lowing in the ReadMem state:  AddrSourceA  =  ‘ 1 ’ , so the address comes from the ALU 
register (as expected); and  MemRd  =  ‘ 1 ’ , so reading is enabled and the data will be 
stored in MDR at the next (positive) clock edge. Finally, note the following in the 
WriteReg state:  DataSourceA  =  ‘ 0 ’ , so the data must come from MDR (as expected); and 
 RegWr  =  ‘ 1 ’ , so the data will be written into the register pointed to by the IR at the 
next (positive) clock edge. 

 The reasoning used in the instructions above can be extended to all instructions 
of a CPU, resulting in a generally large set of small state machines, collectively respon-
sible for implementing all of a CPU ’ s instructions. 

 Points to Remember when Designing a Control Unit 
 We close this section with some comments that can be helpful for the proper under-
standing and correct design of FSMs for datapath control. 

 1)    Sequential circuit and Moore machine:    The control unit is normally the only sequen-
tial circuit in a datapath-based design (except for the PC, but this is just a basic counter; 
registers are also clocked and so can be memories, but these act just as data storage 
elements), and its design is normally based on the FSM approach. Moreover, because 
control units are inherently synchronous, the Moore approach is generally preferred 
(over Mealy). In the comments that follow, it is assumed that the Moore model was 
adopted. 
 2)    No direct data access:    Even though the control unit is responsible for sequencing 
all datapath computations, it normally does not access the actual data directly (except 
for occasional trivial data monitoring). 
 3)    Late data storage:    Data storage in a datapath-based design is controlled by a write-
enable signal produced by the control unit. Because such a signal will be ready only 
 after  the clock edge that causes the machine to enter the write-enabling state, the 
actual writing will only occur at the  next  clock edge, that is,  at the end  of that state (in 
other words, it will occur just prior the moment at which the machine  leaves  the 
write-enabling state). 
 4)    Dependency on input data:    In some applications the machine must read/write data 
and, based on the data value, make a decision on which state to go to next. Because 
the data will be available only when the machine  leaves  the read/write state, the deci-
sion can obviously not be made yet. In such cases, a wait state must be included before 
the decision can be made. This is illustrated in   fi gure 3.25 . Assume that we are using 
a datapath similar to that in   fi gure 3.22a , where the inputs must be stored in registers 
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A and B and then compared to decide where the machine should go next. In   fi gure 
3.25a  the data-valid bit causes the machine to move from the  idle  state to the  load
state; in the latter,  wrA  =  wrB  =  ‘ 1 ’ , so when the machine  leaves  that state, the proper 
data will be available for comparison. Therefore, in this machine the comparison will 
actually be between the data values previously stored in A and B (a mistake). This was 
fi xed in   fi gure 3.25b  with the inclusion of a wait state. (Recall that in a Mealy machine 
the wait state is not needed, but the Mealy approach is rarely adopted in datapath-
related applications.) 

    3.14   Exercises 

 Exercise 3.1: Moore and Mealy Circuits 
 a)   Just by looking at the circuit of   fi gure 3.4e , how can you tell that it is a Moore 
machine? 
 b)   How can you tell that the circuit of   fi gure 3.6d  is a Mealy machine? 

 Exercise 3.2: By-Hand Design of a Moore Machine #1 
 We saw in section 3.7 that the number of DFFs and the amount of combinational 
logic needed to build an FSM can vary substantially with the encoding style chosen. 
In the  “ by-hand ”  design of section 3.3, sequential binary encoding was employed (e.g., 
 pr_state  =  “ 00 ”  for state  zero ,  “ 01 ”  for state  one ,  “ 10 ”  for state  two , and  “ 11 ”  for state 
three ). 

a)   Redo that design, again  “ by hand, ”  using Gray code (state  zero   →   “ 00 ” ,  one   →   “ 01 ” , 
 two   →   “ 11 ” ,  three   →   “ 10 ” ). 
 b)   Redo it again, now using true one-hot code (state  zero   →   “ 0001 ” ,  one   →   “ 0010 ” , 
 two   →   “ 0100 ” ,  three   →   “ 1000 ” ). 
 c)   Compare these three solutions (sequential, Gray, and one-hot). Which requires the 
fewest DFFs? Which requires the least combinational logic? Which has the best time 
predictability for the output? 

Figure 3.25 
Input-data-dependent decision in a Moore-type control unit. (a) Incorrect. (b) correct. 
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Exercise 3.3: By-Hand Design of a Moore Machine #2 
Consider the Moore machine of fi gure 5.7c, which implements a short-pulse 
generator. 

a)   Design it  “ by hand ”  using sequential encoding. Show that  y  =  q 0  . 
 b)   Design it using Gray encoding. Show that  y  =  q 1   ′  ·  q 0  . 
 c)   Design it using the following user-defi ned encoding: A =  “  − 0 ” , B =  “ 01 ” , C =  “ 11 ” . 
Show that  d  0  =  x ,  d  1  =  q  0 , and  y  =  q 1   ′  ·  q 0  . 
d)   Draw all three circuits and show that the last one is the simplest. 
e)   Which of these circuits is/are guaranteed to have a glitch-free output, with better 
time predictability? Explain. 

Exercise 3.4: By-Hand Design of a Mealy Machine 
a)   Draw a Mealy-type state transition diagram for the parity detector of fi gure 5.5. 
b)   Design a circuit that implements this machine, with sequential encoding. 

Exercise 3.5: Time Behavior of a Moore Machine 
Say that the parity detector of fi gure 5.4b operates with the clock signal of   fi gure 3.26 , 
receiving at the input the signal  x  also included in the fi gure. Draw the other two 
waveforms (machine ’ s present state and output; the initial part of  pr_state  was already 
fi lled). Does the output change only when the state changes?    

 Exercise 3.6: Time Behavior of a Mealy Machine 
 This exercise is a continuation of the one above. 

 a)   Draw a Mealy-type solution for the parity detector of fi gure 5.4. 
 b)   Say that this machine is operating with the clock of   fi gure 3.27 , receiving the signal 
 x  also included in the fi gure. Draw the other two waveforms (machine ’ s present state 
and output). Does the output change only when the state changes? 
 c)   Compare the time behavior of this Mealy solution against that of the Moore coun-
terpart developed in the previous exercise. Which is different ( pr_state  or  y  or both) 
from one solution to the other?    

Figure 3.26 
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Exercise 3.7: State Machine Categories 
What is the category of the machines in   fi gures 1.3b, 1.3c, 3.4a, and 3.6a ? 
 Why are the machines of fi gures 8.12c and 8.14b said to be of category 2? 
 Why are the machines of fi gures 11.5b and 11.7b said to be of category 3? 

 Exercise 3.8: State Encoding 
 List the codewords used to encode the states of the garage door controller of fi gure 
5.9c in the following cases: 

 a)   With sequential encoding. 
 b)   With Gray encoding. 
 c)   With Johnson encoding. 
 d)   With one-hot encoding. 

 Exercise 3.9: Number of Flip-Flops 
 Calculate the number of DFFs needed to encode an FSM with  M  = 8 or  M  = 33 states, 
in the following cases: 

 a)   With sequential encoding. 
 b)   With Gray encoding. 
 c)   With Johnson encoding. 
 d)   With one-hot encoding. 

 Exercise 3.10: Need for Reset #1 
 Say that the FSM of fi gure 5.4b, which implements a basic parity detector, is encoded 
using regular sequential encoding (so  pr_state  =  ‘ 0 ’  in state  zero  and  pr_state  =  ‘ 1 ’  in 
state  one ). 

 a)   Are there any states  outside  the machine (i.e., unused codewords)? 
 b)   Is an explicit reset signal needed when this machine is implemented in an FPGA 
(fl ip-fl ops reset automatically on power-up)? Can deadlock occur in this case? 
 c)   Answer the questions of part b when the fl ip-fl ops ’  initial state is arbitrary. 

Figure 3.27 
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Exercise 3.11: Need for Reset #2 
This exercise concerns the parity detector of fi gure 5.5c, which has a data-valid ( dv ) 
input. Assume that a reset input is not provided and that the circuit is implemented 
in a device whose fl ip-fl ops ’  initial state (on power-up) is arbitrary. 

 a)   If the initial state falls  inside  the machine (in state  zero ,  one , or  hold_one ), will the 
circuit operate properly? Does this answer depend on the encoding scheme? 
 b)   Answer the same questions above for the case when the initial state falls  outside  
the machine. 
 c)   Prove that this FSM works well in both cases mentioned above if sequential encod-
ing is used and optimal (minimal) expressions are used for  nx_state  ( d  1 ,  d  0 ). 
d)   Prove that it also works well in both cases mentioned above if one-hot encoding 
is used and optimal (minimal) expressions are used for  nx_state  ( d  2 ,  d  1 ,  d  0 ). 
 e)   Consider that sequential encoding is used. Show that if the  “ don ’ t care ”  bits are all 
fi lled with  ‘ 0 ’ s the machine is not subject to deadlock, but if they are all fi lled with 
 ‘ 1 ’ s then deadlock can occur. 
 f)   Consider now that one-hot encoding is used. Show that in both cases ( “ don ’ t care ”  
bits all fi lled with  ‘ 0 ’ s or all fi lled with  ‘ 1 ’ s) deadlock can occur. 

 Suggestion to solve parts c and d: First, review sections 3.8 and 3.9; next, use the 
method seen in section 3.3 to fi nd the machine ’ s optimal expressions for  nx_state ; 
then apply the values of  pr_state  (i.e.,  q  1  and  q  0  in c or  q  2 ,  q  1 , and  q  0  in d) and of the 
transition conditions ( dv  and  x ) for the cases not used in the FSM encoding (states 
 outside  the machine) to the expressions derived to show that the results always con-
verge to states  inside  the machine. 

 Exercise 3.12: Capturing the First Bit 
 Two options for processing data correctly when the fi rst data bit is made available at 
the same time that the data-valid ( dv ) bit is asserted were presented in   fi gure 3.16 . 
Show that the option in   fi gure 3.16c  will no longer work if the auxiliary register that 
stores  x  operates at the falling clock edge. 

 Exercise 3.13: Storing the Final Result 
 Explain why the option in   fi gure 3.18  is better than any of the options in   fi gure 3.17  
for registering a process ’ s fi nal result. 

 Exercise 3.14: Multimachine Design 
 In   fi gure 3.20a,  an FSM with a repetitive pair of states is shown, for which a solution 
using two FSMs was presented in   fi gure 3.20b . Complete the timing diagrams of   fi gure 
3.28  for the machines of   fi gure 3.20b , assuming that  T  = 3.    



Hardware Fundamentals—Part II 71

Figure 3.28 

Exercise 3.15: Datapath Control 
Assume that the datapath of   fi gure 3.22a  must operate as an add-and-accumulate 
circuit (ACC), accumulating in A four consecutive values of  inpB . The data-valid pulse 
( dv ), lasting only one clock period, must again start the four-iteration procedure, after 
which the resulting value must remain displayed at  ALUout  until another  dv  pulse 
occurs. In summary, the operations are: 0+B → A, A+B → A, A+B → A, and A+B → A. 

 a)   Draw an illustrative timing diagram (as in   fi gure 3.22c ) for an FSM that controls 
this datapath. 
 b)   Draw a corresponding state transition diagram (as in   fi gure 3.22d ) for this machine. 

 After solving the problem, check section 5.4.7. 
 
 
           
 
 
 





4   Design Steps and Classical Mistakes 

4.1   Introduction 

This chapter presents a list of classical problems and mistakes that might occur in the 
design of hardware-based fi nite state machines. Subsequently, a summary regarding 
the main design steps is also presented. 

4.2   Classical Problems and Mistakes 

4.2.1   Skipping the State Transition Diagram 
Probably the most error-prone step in the design of a circuit based on the state 
machine approach is to think that it is fi ne to go straight from the specifi cations to 
the design without sketching the state transition diagram (students sometimes believe 
that they can  “ see ”  the state diagram in their minds). With this approach, states can 
be missed, or, more likely, output values and state transitions may be ill specifi ed. This 
step is critical because any error in the state transition diagram will invalidate the 
whole effort, no matter how well the rest is done. 

4.2.2   Wrong Architecture 
Once one has been convinced that sketching the state transition diagram is indispens-
able, the next step is not to draw it but fi rst to decide which type the machine archi-
tecture should be used (a major mistake is to think that all machines are  “ just the 
same ” ). A great effort has been made in this book to show that, when one is using 
hardware (as opposed to software) to implement an FSM, the circuit architecture can 
vary substantially from one problem to another. For that reason, a classifi cation into 
three categories, which covers  any  state machine, was introduced in section 3.6 (see 
fi gure 3.8 ), as follows: category 1 for regular state machines; category 2 for timed state 
machines; and category 3 for recursive state machines. 

 The fi rst decision is to select correctly in which of these categories the machine to 
be designed falls. That not only will lead to the right circuit (optimal resources usage) 
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but will also immensely reduce the design effort. The second important decision is to 
choose between the corresponding Moore and Mealy architectures. The third and fi nal 
architectural decision is whether to include or not in the FSM the optional output 
register (  fi gure 3.2b ). 

4.2.3   Incorrect State Transition Diagram Composition 
As seen in section 1.3, the state diagram must obey three fundamental principles: 

1)   It must include all possible system states. 
2)   All state transition conditions must be specifi ed (unless a transition is uncondi-
tional), and such conditions must be truly complementary. 
 3)   The list of output signals must be exactly the same in all states (standard 
architecture). 

 Failing to comply with requisite 1 above will lead inevitably to an incorrect circuit. 
Even though this seems an obvious step, there are situations in which subtle details 
are involved, such as the inclusion of wait states to hold until the data to be inspected 
is ready (as in fi gure 3.25, for example) or to suppress state bypass (as in   fi gure 4.2 , 
for example). 

 Condition 2 above requires that the complete set of transition conditions be neither 
under- nor overspecifi ed; otherwise, a poor or incorrect circuit will again result. This 
is a relatively common error that can be avoided by following the material seen in 
section 1.5. 

 Finally, requisite 3 determines that, for hardware implementations, the list of 
outputs must be exactly the same in all states; otherwise, latches will be inferred, 
wasting resources and making the time response less predictable. Because this is 
by far the most common mistake, an example is provided in   fi gure 4.1 . In   fi gure 4.1a , 
 y  is not specifi ed in state B. If this lack of specifi cation is the result of careless 
analysis, an incorrect circuit will probably be implemented; otherwise, if the missing 
specifi cation is because  y  should keep in state B the same value that it had when 
the FSM left state A, then  y  =  y  should be entered, as depicted in   fi gure 4.1b , making 
the list of outputs exactly the same in all states and also clarifying what is indeed 
wanted for  y .    

Figure 4.1 
(a) State diagram with incomplete output specifi cations. (b) Corrected state diagram. 
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4.2.4   Existence of State Bypass 
The state-bypass problem occurs when the transition conditions for entering a state 
coincide with the transition conditions for leaving that same state, and such condi-
tions are true during more than one clock cycle. 

 As an example, consider the car alarm of   fi gure 4.2a . If the alarm is in the  disarmed  
state and a command from the remote control ( remote  =  ‘ 1 ’ ) is received, the machine 
passes to the  armed  state, ready to detect any intrusions. However, if the  remote  =  ‘ 1 ’  
command lasts several clock cycles (as is generally the case) and the intrusion sensor 
is off ( sensor  =  ‘ 0 ’ ), the circuit goes back to  disarmed , then returns to  armed , and so on, 
producing a kind of state bypass (in fact, the states are not exactly bypassed, but rather, 
the machine remains in each state for just one clock period instead of staying there). 
Note that in this example state bypass occurs even when  sensor  =  ‘ 1 ’ .    

 This problem can be solved with some kind of fl ag or, more clearly, with wait states, 
as in   fi gure 4.2b  (white circles). Note that the  wait1  and  wait2  states wait until  remote  
returns to zero before allowing any other action to take place. 

 The failure to prevent state bypass can lead to a circuit with occasional malfunc-
tioning that is very diffi cult to locate later. This is especially true when the state bypass 
can only occur in very particular situations, which might have been overlooked in the 
simulations and therefore remained undetected during the design phase. 

 4.2.5   Lack of Reset 
 In the design of any FSM the need for reset must always be considered (only few cases 
are fi ne without an explicit reset port). Failing to do so can cause incorrect machine 
initialization or even deadlock. A detailed analysis on the use of reset and its conse-
quences was presented in sections 3.8 and 3.9. 

Figure 4.2 
Car alarm (a) with and (b) without state bypass. 
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4.2.6   Lack of Synchronizers 
Many FSMs have asynchronous inputs, so metastability can occur if synchronizers are 
not employed. Failing to analyze whether asynchronous signals are involved in the 
design and the possible consequences of metastability to that particular application 
can compromise the entire project. Material on the use and construction of synchro-
nizers and their consequences was presented in section 2.3. 

4.2.7   Incorrect Timer Construction 
Many engineering problems include timed decisions, leading to state machines 
with time as a transition condition (see fi gure 1.8). Because timers are just counters 
(therefore sequential circuits, which can then also be modeled as state machines), 
one might be tempted to use the FSM approach to design them. There are two main 
reasons for not doing so in general. The fi rst is that counters are standard circuits, 
easily designed without the FSM approach. The second is that a counter might 
have thousands of states and therefore would be impractical to represent as a  regular  
state machine. 

 The recommended approach in such cases is to consider the timer (counter) as an 
auxiliary circuit, implemented separately and acting as an  input  to the (main) state 
machine. However, the state machine itself must be responsible for clearing the timer 
at the proper moments as well as for stopping it or letting it run as needed. Such fi ne 
details, sometimes overlooked, are fundamental to attain a correct and optimized 
design. Such aspects are studied in chapter 8, which deals specifi cally with timed state 
machines, and are reinforced in chapters 9 and 10, which show VHDL and System-
Verilog implementions for timed FSMs. 

 4.2.8   Incomplete VHDL/SystemVerilog Code 
 Once the state transition diagram has been correctly and completely constructed, we 
can write a corresponding VHDL or SystemVerilog code to synthesize the circuit. The 
problem is that here too the coverage of specifi cations might not be complete, even 
if the state diagram is complete. Two common mistakes are described below, both 
related to the combinational logic section of the FSM (more precisely, related to req-
uisites 2 and 3 listed in section 4.2.3). 

 The fi rst mistake regards incomplete  output  specifi cations. One might believe that 
when something was said in a previous state and nothing occurred there is no need 
to say it again. For example, consider that we are using VHDL and the  case  statement 
to implement the combinational logic section of an FSM as follows (do not worry 
about code details for now; they are seen in chapter 6):  

  --Bad:    --Good:  
  case pr_state is    case pr_state is  

  when A = >     when A = >   
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  output1  < = “0000”;    output1  < = “0000”;  
  output2  < = “01”;    output2  < = “01”;  
  nx_state  < = B;    nx_state  < = B;  

  when B = >     when B = >   
  output2  < = “10”;    output1  < = “0000”;  
  nx_state  < = C;    output2  < = “10”;  

  when C = >     nx_state  < = C;  
  output1  < = “1111”;    when C = >   
  output2  < = “11”;    output1  < = “1111”;  
  nx_state  < = A;    output2  < = “11”;  

  end case;    nx_state  < = A;  
  end case;  

 Note in the code on the left that from state A the machine can only go to state B. 
If the desired value for  output1  while in B is the same as that in A, one might be 
tempted to omit it in state B. Recall, however, that the upper section of an FSM is 
combinational  (thus memoryless), so there is nothing to prevent its output from chang-
ing when the machine leaves a state. For cases like the code above, the compiler will 
generally infer latches, guessing that the designer wanted the machine to keep the 
same value that it had in the previous state, which can produce an unsafe behavior 
because the timing response of latches (built with regular gates) is diffi cult to predict 
and is subject to race conditions. 

 In summary, it is important to remember what was said earlier: the list of outputs 
must be  exactly the same  in all states (so in this example it must contain  output1  and 
output2  in all states, as shown in the code on the right). 

 The second mistake regards incomplete  transition conditions  specifi cations. For 
example, consider again that we are using VHDL and the  case  statement to implement 
the combinational logic section of an FSM as follows: 
 

  --Moore machine:    --Mealy machine:  
  case pr_state is    case pr_state is  

  when A = >     when A = >   
  output  < =  < value > ;    if  < condition >  then   
  if  < condition >  then     output  < =  < value > ;  

  nx_state  < = B;    nx_state  < = B;  
  elsif...    elsif...  

  ...     ...  
  else    else  

  nx_state  < = A;    output  < =  < value > ;  
  end if;    nx_state  < = A;  

  when B = >     end if;  
  ...    when B = >   

  end case;    ...  
  end case;  

  
 Both codes above are correct. Note that in both the  if  statement includes an  else  
part, which takes care of  all  remaining options. If this  else  were omitted, an 
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underspecifi cation would occur, and the compiler might again infer unnecessary (and 
undesirable) latches. 

4.2.9   Overregistered VHDL/SystemVerilog Code 
This is another common mistake. It is very important to be aware of the code sections 
that infer registers and close such sections as soon as registers are no longer needed. 

 An example is shown below, using VHDL. Any signal to which a value is assigned 
under the  if rising_edge(clk)  statement will be registered, so that  if  must be closed 
as soon as possible. The code on the left is constructed correctly. Note that the only 
assignment under the  if rising_edge(clk)  statement is  pr_state  < = nx_state , so only 
the machine state gets registered. Because the  case  statement used for the upper 
section is outside that  if  statement, no fl ip-fl ops will be inferred for that part of the 
machine, resulting in a truly combinational circuit for the upper section, which is 
how it should be. 

 The code on the right, on the other hand, is an example of an error-prone design. 
Note that now the  case  statement is inside the  if rising_edge(clk)  statement, so the 
output will also be registered. As we have already seen, there are cases in which the 
optional output register is needed, but that is a case-by-case decision, not a forced 
condition as it is in this code. Probably the worst aspect of this code is that the designer 
might be completely unaware of what is actually happening. (Note that  pr_state  has 
no effect in this process ’  sensitivity list.) 
 

  --Good:    --Error prone:  
  --lower section of FSM:    process (clk, pr_state)  
  process (clk)    begin  
  begin    if rising_edge(clk) then  

  if rising_edge(clk)then    --lower section of FSM:  
  pr_state  < = nx_state;    pr_state  < = nx_state;  

  end if;    --upper section of FSM:  
  end process;    case pr_state is  
  --upper section of FSM:    when A = >   
  process (all)    output  < =  < value > ;  
  begin      if  < condition >  then   

  case pr_state is    nx_state  < = B;  
  when A = >     else  

  output  < =  < value > ;    nx_state  < = A;  
  if  < condition >  then     end if;  

  nx_state  < = B;    when B = >   
  else    ...  

  nx_state  < = A;    end case;  
  end if;    end if;  

  when B = >     end process;  
  ...  

  end case;  
  end process;  
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4.3   Design Steps Summary 

We close this chapter by summarizing the main steps that should be observed in 
designing sequential circuits using the FSM approach. 

1)    Specifi cations analysis:    Study the problem specifi cations carefully. As a fi nal step, 
decide: 

 a)   The FSM category (regular, timed, or recursive) to be adopted. 
 b)   The FSM type (Moore or Mealy) to be used. 
 c)   Whether the optional output register should be included. 

2)    State transition diagram:    Based on your analysis and conclusions above, carefully 
draw the state transition diagram. The use of a detailed diagram (as in fi gure 1.4d) is 
particularly recommended in complex designs or for beginners because it helps visual-
ize and assure that all transition conditions have been completely and correctly 
covered. 
3)    Encoding style and resources usage:    Decide which state-encoding option (e.g., 
sequential, Gray, Johnson, one-hot) will be employed in the design. After that, the 
exact number of DFFs that will be needed to build the FSM can be calculated. Do it, 
so your estimate can be compared later against the actual number reported by the 
VHDL/SystemVerilog compiler (this is a very important checkpoint). 
 4)    Reset signal:    Analyze your FSM and decide whether an explicit reset port is needed. 
Recall that, as seen in sections 3.8 and 3.9, only occasionally is a state machine guar-
anteed to work properly without a dedicated reset signal. 
 5)    Input signals:    Two fundamental features must be observed with respect to the 
input signals. The fi rst regards the aspect of such signals. For example, they might 
have glitches, or they might be too short or too long, so proper signal conditioning 
might be required. The second regards synchronism. If any input is asynchronous with 
respect to the FSM, analyze if metastability (section 2.3) can be critical to the applica-
tion. If that is the case, and no other part of the circuit is taking care of metastability, 
add a synchronizer for each asynchronous input from which the machine must be 
protected. Do not forget to take into account the latency that this will cause. 
 6)    Code and compilation:    Write the corresponding VHDL/SystemVerilog code and 
synthesize it (design by hand is viable only for very simple circuits). Compare the 
number of fl ip-fl ops inferred by the compiler against your prediction. 
 7)    Simulation:    Fully simulate your design (graphically or, preferably, with VHDL/
SystemVerilog testbenches). If the simulation is too time consuming, do functional 
simulation fi rst until the design is debugged; then do timing simulation. 
 8)    Physical implementation:    Finally, download the resulting FPGA programming fi le 
(.pof or .sof) into the physical device in order to program it and proceed to the physi-
cal tests. 





5   Regular (Category 1) State Machines 

5.1   Introduction 

We know that, from a hardware perspective, state machines can be classifi ed into two 
types, based on their  input connections , as follows. 

 1)    Moore machines:    The input, if it exists, is connected only to the logic block that 
computes the next state. 
 2)    Mealy machines:    The input is connected to both logic blocks, that is, for the next 
state and for the actual output. 

 In Section 3.6 we introduced a new classifi cation, also from a hardware point of view, 
based on the  transition types  and  nature of the outputs , as follows (see   fi gure 5.1 ). 

 1)    Regular (category 1) state machines:    This category, illustrated in   fi gure 5.1a  and 
studied in chapters 5 to 7, consists of machines with only untimed transitions and 
outputs that do not depend on previous (past) output values. 
 2)    Timed (category 2) state machines:    This category, illustrated in   fi gure 5.1b  and 
studied in chapters 8 to 10, consists of machines with one or more transitions that 
depend on time (so they can have all four transition types: conditional, timed, 
conditional-timed, and unconditional). However, all outputs are still independent 
from previous (past) output values.  
 3)    Recursive (category 3) state machines:    This category is illustrated in   fi gure 5.1c  and 
studied in chapters 11 to 13. It can have all four types of transitions, but one or more 
outputs depend on previous (past) output values. Recall that the outputs are produced 
by the FSM ’ s  combinational  logic block, so the current output values are  “ forgotten ”  
after the machine leaves that state; consequently, to implement a recursive (recurrent) 
machine, some sort of extra memory is needed.     

 As seen in this and in upcoming chapters, the classifi cations mentioned above 
(no other classifi cation is needed) will immensely ease the design of hardware-based 
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state machines. The two fundamental decisions before starting a design are then the 
following: 

1)   Decide the state machine category (regular, timed, or recursive). 
2)   Next, decide the state machine type (Moore or Mealy). 

 It is important to recall, however, that regardless of the machine category and type, 
the state transition diagram must fulfi ll three fundamental requisites (seen in section 
1.3): 

 1)   It must include all possible system states. 
 2)   All state transition conditions must be specifi ed (unless a transition is uncondi-
tional) and must be truly complementary. 
 3)   The list of outputs must be exactly the same in all states (standard architecture). 

 5.2   Architectures for Regular (Category 1) Machines 

 The architectures for category 1 machines are summarized in   fi gure 5.2 . These repre-
sentations follow the style of fi gures 3.1b,d, but the style of fi gures 3.1a,c could be 
used equivalently. The output register (  fi gure 5.2c ) is optional. The four possible con-
structions, listed in   fi gure 5.2d , are summarized below.    

  Regular Moore machine  (  fi gure 5.2a ):   In this case, the input (if it exists) is connected 
only to the logic block for the next state. Consequently, the output depends only on 
the state in which the machine is (in other words, for each state, the output value in 
unique), resulting a synchronous behavior (see details in section 3.5). Because modern 
designs are generally synchronous, this implementation is preferred whenever the 
application permits. 

Figure 5.1 
State machine categories (from a hardware perspective). 
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Regular Mealy machine  (  fi gure 5.2b ):   In this case, the input is connected to both 
logic blocks, so it can affect the output directly, resulting an asynchronous behavior. 
Therefore, the machine can have more than one output value for the same state 
(section 3.5). 
Out-registered (pipelined) Moore machine:    This consists of connecting the register of 
fi gure 5.2c  to the output of the Moore machine of   fi gure 5.2a . As seen in sections 2.5 
and 2.6, two fundamental reasons for doing so are glitch removal and pipelined con-
struction. As a result, the fi nal circuit ’ s output will be delayed with respect to the 
original machine ’ s output by either one clock period (if the same clock edge is 
employed in the state register and in the output register) or by one-half of a clock 
period (if different clock edges are used). Note that the resulting circuit is order-2 
synchronous because the original Moore machine was already a registered circuit (in 
other words, the input – output transfer occurs after two clock edges — see details in 
section 3.5). If in a given application this extra register is needed but its consequent 
extra delay is not acceptable, the next alternative can be used. 
  Out-registered (pipelined) Mealy machine:    This consists of connecting the register of 
  fi gure 5.2c  to the output of the Mealy machine of   fi gure 5.2b . The reasons for 
doing so are the same as for Moore machines. The resulting circuit is order-1 synchro-
nous because the original Mealy machine is asynchronous. Consequently, the overall 

Figure 5.2 
Regular (category 1) state machine architectures for (a) Moore and (b) Mealy types. (c) Optional 

output register. (d) Resulting circuits. 
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behavior (with the output register included) is similar to that of a pure Moore machine 
(without the output register — see details in section 3.5). 

5.3   Number of Flip-Flops 

In general, and particularly in large designs, it is diffi cult to estimate the number of 
logic gates that will be needed to implement the desired solution. However, it is always 
possible to determine, and  exactly , the number of fl ip-fl ops. 

 In the case of sequential circuits implemented as category 1 state machines, there 
are two demands for DFFs, as follows (see state-encoding options in section 3.7). 

 1)   For the state register (see  nx_state  and  pr_state  in   fi gure 5.2a , which are the state 
memory fl ip-fl ops ’  input and output, respectively; below,  M FSM   is the number of states): 

 For sequential or Gray encoding:  N FSM   =   log 2  M FSM    . Example:  M FSM   = 25  →   N FSM   = 5. 
 For Johnson encoding:  N FSM   =    M FSM  /2  . Example:  M FSM   = 25  →   N FSM   = 13. 
 For one-hot encoding:  N FSM   =  M FSM  . Example:  M FSM   = 25  →   N FSM   = 25. 

 2)   For the output register (  fi gure 5.2c , optional, with  b output   bits): 
  N output   =  b output  . Example:  b output   = 16  →   N output   = 16. 

 Hence, the total is  N total   =  N FSM   +  N output  . In the examples that follow, as well as in the 
actual designs with VHDL and SystemVerilog, the number of fl ip-fl ops will be often 
examined. 

 5.4   Examples of Regular (Category 1) Machines 

 A series of regular FSMs are presented next. Several of these examples are designed 
later using VHDL (chapter 6) and SystemVerilog (chapter 7). 

 5.4.1   Small Counters 
 Counters are well-known circuits easily designed without the FSM approach using 
VHDL or SystemVerilog. Moreover, a counter might have thousands of states, render-
ing it impractical for representation as a regular state machine. Nevertheless, for 
designing counters without the help of any EDA tool (as done in sections 3.3 and 3.4), 
the FSM model can be very helpful, particularly if the counter is not too big and has 
several control inputs such as enable and up-down. Moreover, the implementation of 
such counters can be very illustrative of the FSM approach. For these reasons, an 
example is included in this section. 

 A 1-to-5 counter with enable and up-down controls is presented in   fi gure 5.3  (just 
to practice, equivalent detailed and simplifi ed representations are shown — recall fi gure 
1.4). The circuit counts if  ena  =  ‘ 1 ’ , or stops (and holds its last output value) otherwise. 
If  up  =  ‘ 1 ’ , the circuit counts from 1 to 5, restarting then automatically from 1; oth-
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erwise, it counts from 5 down to 1, restarting then automatically from 5. Because 
counters are inherently synchronous, the Moore model is the natural choice for 
their implementations.    

 Because this machine has  M FSM   = 5 states, and the optional output register is gener-
ally not needed in counters, the number of fl ip-fl ops required to implement it (see 
section 5.3) is  N FSM   = 3 if sequential, Gray, or Johnson encoding is used, or 5 for one-hot 
encoding. 

 VHDL and SystemVerilog implementations for this counter are presented in sec-
tions 6.6 and 7.5, respectively. 

 5.4.2   Parity Detector 
 This example concerns a circuit that detects the parity of a serial data stream. As 
depicted in   fi gure 5.4a ,  x  is the serial data input, and  y  is the circuit ’ s response. The 
output must be  y  =  ‘ 1 ’  when the number of  ‘ 1 ’ s in  x  is odd. 

 A basic solution for the case when a reset pulse is applied before every calculation 
starts is presented in   fi gure 5.4b . In this case the parity value is the value of  y  after 
the last bit has been presented to the circuit (before a new reset pulse is applied). Note 

Figure 5.3 
Detailed (a) and simplifi ed (b) representations for a 1-to-5 counter with enable and up-down 

controls. 

Figure 5.4 
Parity detector. (a) Circuit ports. (b) State transition diagram. (c) Hardware block diagram. 
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the arrangement in   fi gure 5.4c , based on the material seen in section 3.11; when the 
reset pulse goes up (which subsequently resets the FSM), it causes the value of  y  to be 
stored in the auxiliary register, producing  y_reg , which stays stable (constant) until a 
new calculation is completed (i.e., a new reset pulse occurs).    

 A slightly different parity detection problem is depicted in   fi gure 5.5 , which has 
to be reset only at power-up (thus a more usual situation). A data-valid ( dv ) bit indi-
cates the extension of the data vector whose parity must be calculated (when  dv  goes 
up, a new vector begins, fi nishing when  dv  returns to zero). It is assumed that after a 
calculation (data stream) is completed, the machine must keep displaying the fi nal 
parity value until a new vector is presented, as depicted in the illustrative timing 
diagram of   fi gure 5.5b , which shows two vectors of size 5 bits each, with fi nal parity 
y  =  ‘ 1 ’  for vector 1 and  y  =  ‘ 0 ’  for vector 2. 

 A Moore machine that complies with these specifi cations is presented in   fi gure 5.5c  
(note that in this example  dv  and  x  are updated at the negative clock edge). Because 
of  dv , this machine does not need to be reset before a new calculation starts. Indeed, 
depending on the encoding scheme (sequential or Gray, for example), this circuit 
might not need a reset signal at all because deadlock cannot occur (the unused code-
word will converge back to one of the machines ’  states) and  dv  will cause the compu-
tations to be correct even if the initial state is arbitrary (see exercise 3.11).    

 5.4.3   Basic One-Shot Circuit 
 One-shot circuits are circuits that, when triggered, generate a single voltage or current 
pulse, possibly with a fi xed time duration. This section discusses the particular case 
in which the time duration of the output is exactly one clock period. In this example 
it will be considered that the input lasts at least one clock period; generic cases are 
studied in sections 8.11.8 to 8.11.10, which deal specifi cally with triggered circuits. 

Figure 5.5 
Another parity detector. (a) Circuit ports. (b) Illustrative time behavior. (c) State transition 

diagram. 
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In fact, a one-shot circuit (not employing the FSM approach) was already seen in 
chapter 2 (fi gure 2.10), with its schematic repeated in   fi gure 5.6a . This option, however, 
is fi ne only if the triggering input ( x ) is synchronous; otherwise, the output pulse could 
last less than  T clk  . For it to work with asynchronous inputs, another DFF is needed, as 
shown in   fi gure 5.6b . A version with a full synchronizer (section 2.3) is shown in   fi gure 
5.6c .    

 The general operating principle is illustrated in   fi gure 5.7 . The circuit ports are 
shown in   fi gure 5.7a , where  x  is the triggering input and  y  is the one-shot output. An 
illustrative timing diagram is presented in   fi gure 5.7b , with  x  having an arbitrary dura-
tion and  y  lasting exactly one clock period. Pulse 1 lasts less than  T clk   but happened 
to fall under a positive clock edge, so it was detected. This is obviously not guaranteed 
to happen, as illustrated for pulse 2. Only if the duration is  T clk   or longer, as for pulse 
3, is the triggering of  y  guaranteed. Note that  x  and  y  are uncorrelated (mutually 
asynchronous) if  x  and  clk  are uncorrelated.    

 A solution using a regular (category 1) Moore machine is presented in   fi gure 5.7c . 
Note that it stays in state B during only one clock period; because  y  =  ‘ 1 ’  occurs only 
in that state, the desired pulse results. An inferior solution is presented in   fi gure 5.7d  
(see exercise 5.5). 

Figure 5.6 
Trivial one-shot circuits. (a) Basic version, for synchronous input only. (b) Preceded by a 

synchronizing DFF, so the input can be asynchronous. (c) With a two-stage synchronizer. 

Figure 5.7 
One-shot state machine. (a) Circuit ports. (b) Example of expected behavior. (c) State transition 

diagram. (d) An inferior solution (exercise 5.5). 
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As a fi nal comment, let us consider the circuit of   fi gure 5.6b , which is a kind of 
optimized synchronous version of the one-shot circuit. Because the solution in   fi gure 
5.7c  is also synchronous (all Moore machines are), would you expect the circuit that 
implements this state machine to be equal or at least similar to that of   fi gure 5.6b ? 
(See exercise 5.5.) 

 5.4.4   Temperature Controller 
   Figure 5.8a  shows a circuit diagram for a temperature controller of an air conditioning 
system. In the upper branch, the room temperature is sensed by some type of tem-
perature sensor and converted to digital format by the ADC (analog-to-digital con-
verter), producing the signal  T room  . In the lower branch, the user, by means of two 
pushbuttons ( up ,  dn ), selects the reference (desired) temperature, producing the signal 
 T ref  . Depending on the values of these two signals, the controller core decides whether 
to heat the room ( h  =  ‘ 1 ’ ), to cool it ( c  =  ‘ 1 ’ ), or to stay in the idle state.    

 Because mechanical switches are subject to bounces before they fi nally settle in 
the proper position, the pushbuttons must be debounced. However, debouncers are 
timed circuits, thus requiring a timed (category 2) machine to be implemented. Such 
machines are seen in chapter 8, so for now let us just consider that the proper value 
is produced for  T ref   (the design of this block is treated in section 8.11.4). For example, 
 T ref   could be selected in the 60 ° F to 90 ° F range with an initial value (on power-up, 
defi ned by the reset signal) of 73 ° F, if degrees Fahrenheit are used, or in the 15 ° C to 
30 ° C range with a default value of 23 ° C, if degrees centigrade are employed instead. 

 An important addition to the system is depicted in   fi gure 5.8b , which consists of 
a display accessed by means of a multiplexer. The display shows the room temperature 
while the selection pushbutton ( sel , with no need for debouncing, not shown in the 
fi gure) is at rest ( sel  =  ‘ 0 ’ ) or the reference temperature while it is pressed ( sel  =  ‘ 1 ’ ). 

 A state machine for the controller core, using the Moore approach, is depicted in 
  fi gure 5.8c .   Δ T  represents the system hysteresis, which is generally a fi xed circuit 

Figure 5.8 
Temperature controller. (a) Overall circuit diagram. (b) Display driver. (c) State machine for the 

controller core block. 
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parameter. For example, if   Δ T  = 1 ° F, the room temperature will be kept within  T ref    ±
1 ° F. By comparing  T room   to  T ref   and taking into account the hysteresis, the machine will 
be able to produce the proper values for  h  and  c . 

 Finally, note that the inputs from the pushbuttons are asynchronous with respect 
to the system clock, which could, in principle, cause metastability (see section 2.3). 
This, however, is prevented here by the debouncer (section 8.11.3). 

 5.4.5   Garage Door Controller 
 This example presents a garage door controller that operates as follows. If the door is 
completely closed or completely open and the remote is activated, the motor is turned 
on in the direction to open or close it, respectively. If the door is opening or closing 
and the remote is activated, the door stops. If the remote is activated again, the motor 
is turned on to move the door in the opposite direction. 

 The circuit ports are depicted in   fi gure 5.9a , where  remt  (command from the remote 
control),  sen1  (door-open sensor), and  sen2  (door-closed sensor) are the inputs (plus 
the conventional  clk  and  rst  signals), and  ctr  (control) is the output. Note that  ctr  has 
two bits;  ctr (1) turns the motor on ( ‘ 1 ’ ) or off ( ‘ 0 ’ ), whereas  ctr (0) defi nes its direction, 
opening ( ‘ 0 ’ ) or closing ( ‘ 1 ’ ) the door (thus the value of the latter does not matter 
when the former is  ‘ 0 ’ ).    

 A preliminary state diagram is shown in   fi gure 5.9b . The transition control signals 
are  remt ,  sen1 , and  sen2 . Note that this machine complies with all three requisites of 

Figure 5.9 
Garage door controller. (a) Circuit ports. (b) Bad solution (with state-bypass). (c) Good 

solution. 
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section 1.3. However, it exhibits a major problem, which is state bypass (see section 
4.2.4). For example, if the door is closed and a long (lasting several clock cycles)  remt  
=  ‘ 1 ’  command is received, the machine goes around the entire loop. Of course, if a 
one-shot circuit (section 5.4.3) is used to reduce the duration of  remt  to a single clock 
period, then this machine is fi ne. 

 A corrected diagram is presented in   fi gure 5.9c , containing additional states that 
wait for  remt  to return to zero before proceeding, thus eliminating the state-bypass 
problem. This is a Moore machine because there is no reason to employ an asynchro-
nous solution in this kind of application. Glitches at the output are not a problem 
here, so the optional output register is not needed. 

 A good practice in this kind of application is to include debouncers for the signals 
coming from the remote control and from the sensors, which not only eliminate the 
need for synchronizers but also prevent short input glitches (due to lightning or the 
switching of large electric currents, for example) from activating the machine (in this 
case, it has to be a full debouncer, like that in section 8.11.3, for example). 

 Because the machine of   fi gure 5.9c  has  M FSM   = 8 states, the required number of DFFs 
is  N FSM   = 3 if sequential or Gray encoding is used, 4 for Johnson, or 8 for one-hot. 

 VHDL and SystemVerilog implementations for this garage door controller are pre-
sented in sections 6.7 and 7.6, respectively. 

 5.4.6   Vending Machine Controller 
 This example deals with a controller for a vending machine. It is assumed that it sells 
candy bars for the single price of $0.40, accepting nickel, dime, and quarter coins. 

 The circuit ports are depicted in   fi gure 5.10a . The inputs  nickel_in ,  dime_in , and 
 quarter_in  are generated by the coin collector, informing the type of coin that was 
deposited by the customer. The inputs  nickel_out  and  dime_out  are generated by the 
coin dispenser mechanism, informing the type of coin that was returned to the cus-
tomer. The last nonoperational input is  candy_out , produced by the candy dispenser 
mechanism, informing that a candy was delivered to the customer. The outputs 
 disp_nickel  and  disp_dime  tell the coin dispenser mechanism that a nickel or a dime 
must be returned to the customer, while the output  disp_candy  tells the candy bar 
dispenser mechanism that a candy bar must be delivered to the customer.    

 A corresponding Moore machine is presented in   fi gure 5.10b . To simplify the nota-
tion, numbers were used instead of names (see other examples of equivalent state 
diagram representations in section 1.4). The state names correspond to the accumu-
lated amount ( credit ). The transition conditions refer to the last coin entered, with 
negative values indicating change returned to the customer. In the coin-return opera-
tions it was opted to deliver the largest coins possible. After the machine reaches the 
state 40 (thick circle), the only way to return to the initial state is by receiving a 
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candy_out  =  ‘ 1 ’  command from the candy-delivering mechanism confi rming that a 
candy bar was dispensed or a reset pulse. 

 Note that the machine of   fi gure 5.10b  is subject to state bypass (section 4.2.4) if 
the inputs last longer than one clock period (which is generally the case in this kind 
of application), so wait states (or a fl ag or one-shot conversion) must be added (exercise 
5.11). 

 Because glitches are defi nitely not acceptable in this application, the optional 
output register should be used here. In regard to the inputs, we can assume that 
they are produced by other circuits that process the actual inputs and hence 
operate with the same clock as our state machine, dispensing with the use of debounc-
ers and/or synchronizers (although they might be needed at the inputs of preceding 
circuits). 

 If we assume that all control inputs to this machine last exactly one clock period 
(due to one-shot circuits, for example), so state bypass cannot occur and additional 
states are not needed, the number of DFFs required to build it (with  M FSM   = 13 states) 
is  N FSM   = 4 if sequential or Gray encoding is used, 7 for Johnson, or 13 for one-hot, 
plus  N output   = 3 for the output register. 

 5.4.7   Datapath Control for an Accumulator 
 Before we examine this example, a review of section 3.13 is suggested. 

 In this example we assume that the datapath of fi gure 3.22a must operate as an 
add-and-accumulate circuit (ACC), accumulating in register A four consecutive values 

Figure 5.10 
Controller for a vending machine that sells candy bars for $0.40, accepting nickels, dimes, and 

quarters. (a) Circuit ports. (b) Corresponding Moore machine (state-bypass prevention not 

included). 
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of  inpB . The data-valid bit ( dv ), when asserted (during just one clock period), will again 
be responsible for starting the computations, after which the resulting value must 
remain displayed at  ALUout  until another pulse occurs in  dv . In summary, the opera-
tions are: 0 + B  →  A, A + B  →  A, A + B  →  A, and A + B  →  A. 

 Recall that in a datapath-based design the FSM is not responsible for implementing 
the whole computation but just the  control unit  (shown on the left in fi gure 3.22a), 
which controls the datapath. In other words, the FSM must produce the signals  selA  
(selects the data source for register A),  wrA  and  wrB  (enable writing into registers A 
and B), and  ALUop  (produces the ALU opcode, defi ning its operations, according to 
the table in fi gure 3.22b). 

 An illustrative timing diagram (similar to what was done in fi gure 3.22c) for an 
FSM that controls this datapath such that the desired accumulator results is presented 
in   fi gure 5.11a . Note that the computations take fi ve steps (called  start ,  acc1 ,  acc2 , 
acc3 , and  acc4 ), after which the control unit (FSM) returns to the  idle  state (so the 
machine has six states). The corresponding state transition diagram, which is a direct 
translation of the timing diagram (compare the values in the timing diagram against 
those in the state transition diagram), is exhibited in   fi gure 5.11b . Observe that this 
control unit is indeed a category 1 machine.    

 Because this machine has  M FSM   = 6 states, and the optional output register is gener-
ally not needed in control units, the number of fl ip-fl ops required to implement it 
(see section 5.3) is  N FSM   = 3 if sequential, Gray, or Johnson encoding is used or 6 for 
one-hot. 

Figure 5.11 
(a) Illustrative timing diagram for the datapath of fi gure 3.22a operating as an accumulator. (b) 

Corresponding Moore machine. 
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5.4.8   Datapath Control for a Greatest Common Divisor Calculator 
Before we examine this example, a review of section 3.13 is suggested. Particular 
attention should be paid to comment number 4 at the end of that section, which is 
helpful here. 

 This section shows another example of a datapath-based circuit. The datapath must 
compute the GCD (greatest common divisor) between two integers. The corresponding 
algorithm is shown in   fi gure 5.12 ; the largest value is substituted with the difference 
between it and the other value until the values become equal, which is then declared 
to be the GCD. A corresponding fl owchart is also included in   fi gure 5.12 . As in the 
previous example, a  dv  bit, when asserted (during one clock period), must start the 
computations.    

 The datapath to be used in this example is depicted in   fi gure 5.13a . The ALU ’ s 
opcode table is shown in   fi gure 5.13b . The ALU has also an auxiliary output ( sign ) that 
indicates whether its output ( ALUout ) is zero ( “ 00 ” ), positive ( “ 01 ” ), or negative ( “ 10 ” ), 
as listed in   fi gure 5.13c .    

 As shown, the datapath ’ s control signals are  selA  and  selB  (select the data sources 
for registers A and B),  wrA  and  wrB  (enable writing into registers A and B), and  ALUop  
(produces the ALU opcode, defi ning its operations, according to the table in   fi gure 
5.13b ). The control unit (FSM) is responsible for generating all control signals. 

 An illustrative timing diagram for an FSM that controls this datapath such that the 
desired computations occur is presented in   fi gure 5.13d . Dashed lines indicate  “ don ’ t 
care ”  values. Because  inpA  = 9 and  inpB  = 15 were adopted, the following computations 
are expected: Iteration 1, 9  →  A, 15  →  B; Iteration 2, B  >  A, then 15  −  9 = 6  →  B; Itera-
tion 3, A  >  B, then 9  −  6 = 3  →  A; Iteration 4, B  >  A, so 6  −  3 = 3  →  B. Because A = B, 
GCD = A = 3. 

 Observe in   fi gure 5.13d  that the time slots are identifi ed as  idle  (waiting for a  dv  
bit),  load  ( inpA  and  inpB  are stored in A and B),  writeA  ( ALUout  is stored in A), and 

Figure 5.12 
GCD algorithm and fl owchart. 
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Figure 5.13 
(a) Datapath and control unit for a GCD calculator. (b) ALU ’ s opcode table. (c) ALU ’ s sign table. 

(d) Illustrative timing diagram, for  inpA  = 9 and  inpB  = 15. (e) Corresponding state machine. 
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writeB  ( ALUout  is stored in B). Observe also the presence of a  wait  time slot after every 
data storage, which is needed for the data to be effectively ready for comparison before 
an actual comparison occurs (recall comment 4 of section 3.13). 

 A corresponding state transition diagram is presented in   fi gure 5.13e , which is a 
direct translation of the timing diagram (compare the values in the plots against those 
in the state transition diagram). Note that after each write-enabling state ( load ,  writeA , 
and  writeB ) the machine goes unconditionally to the  wait  state. In the  idle  state,  wrA  = 
wrB  =  ‘ 0 ’ , so nothing can be written into the registers, and because  ALUop  = 0, the output 
is  ALUout  = A, so the computed GCD value is kept unchanged until  dv  is asserted again. 

 VHDL and SystemVerilog implementations for this control unit are presented in 
sections 6.8 and 7.7, respectively. 

 5.4.9   Generic Sequence Detector 
 This is another interesting example from a conceptual point of view. Say that we want 
to design a signature detector that searches for the string  “  abc  ”  in a sequential data 
stream, examining one character at a time (a character here represents a bit vector 
with any number of bits). So this is exactly the same problem presented in the very 
fi rst state transition diagram of the book (fi gure 1.3, repeated in   fi gure 5.14a) . In this 
example it was assumed that  a   ≠   b   ≠   c , so this machine works well. But let us consider 
now a completely generic situation, in which  a ,  b , and  c  are  programmable , so we can 
no longer assume that they are all different. Will this machine still work?    

Figure 5.14 
Generic string detection. (a) Nongeneric case (requires  a   ≠   b   ≠   c ). (b) Completely generic imple-

mentation due to the inclusion of priorities in the transition conditions. (c) Example for the case 

of  a  =  b  =  c . 
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To answer this question, let us assume that  a  =  b , so  b  can be replaced with  a  in 
  fi gure 5.14a . Consequently, state B (for example) has the following transition condi-
tions:  a  in the BB transition;  a  also in the BC transition; and  ≠  a   &   ≠  b  =  ≠  a  in the BA 
transition. This shows that state B is now  overspecifi ed  because both BB and BC transi-
tions are governed by the same condition ( a ). Therefore, this machine is not fi ne for 
generic values of  a ,  b , and  c . 

 The new question then is  “ How do we fi x overspecifi cations? ”  We do it in the way 
explained in section 1.5, that is, with the establishment of  priorities . This is done in 
  fi gure 5.14b . For state B, the BC transition must have priority over the BB transition, 
so the transition condition in the former remains just  b , while that in the latter 
becomes  a   &   ≠  b . Likewise, for state C, the CD transition must have priority over the 
CB transition; thus, the transition condition in the former remains  c , whereas that in 
the latter becomes  a   &   ≠  c . 

 As an example,   fi gure 5.14c  shows the extreme case in which  a  =  b  =  c . Then  ≠  a   &  
 ≠  b  =  ≠  a ,  ≠  a   &   ≠  c  =  ≠  a ,  a   &   ≠  b  = null (so the BB transition disappears), and  a   &   ≠  c  = 
null (the CB transition also disappears). 

 The only restriction of this generic string detector is that it detects only nonover-
lapping strings. 

 5.4.10   Transparent Circuits 
 We close this chapter with the description of a special (although uncommon) type of 
circuit for FSMs, which consists of sequential circuits that are required to be  “ transpar-
ent ”  (i.e., the output must  “ see ”  the input; in other words, if the input changes, so 
should the output). If implemented using an FSM, the circuit must provide outputs 
that are capable of changing when the input changes, even if the machine remains 
in the same state. 

 As an example, consider the case in   fi gure 5.15a , with inputs  a  and  b  and output 
 y . The output must be  y  =  a  during one clock period,  y  =  a  ⋅  b  during the next period, 
and fi nally  y = b  during the third clock cycle, with this sequence repeated indefi nitely. 
Corresponding Moore and Mealy diagrams are included in   fi gures 5.15b,c . Note that 
because the machine must go to the next state at every clock cycle, its transitions are 
unconditional.    

 Because in this case the output depends solely on the machine ’ s state, a Moore 
machine seems to be the natural choice. However, because the output must change 
when the input changes, a Mealy machine, being asynchronous, would be recom-
mended. In fact, both are fi ne. 

 In the Moore case the transparency problem is circumvented by associating the 
machine with switches such as the multiplexer in   fi gure 5.15d , in which case the 
machine plays just the role of mux selector (in this example, the resulting machine 
is clearly just a 0-to-2 counter), so even though the machine is not transparent, the 
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overall circuit is (this is typically what a VHDL/SystemVerilog compiler would do). In 
the Mealy case the implementation is straightforward, but the output will be one clock 
cycle ahead of the desired sequence (compare   fi gures 5.15b and 5.15c ). 

5.4.11   LCD, I 2 C, and SPI Interfaces 
 Three special additional design examples are presented in chapter 14, consisting of 
circuits for interfacing with alphanumeric LCD displays and for implementing I 2 C or 
SPI serial interfaces. Depending on the application, any of the three FSM categories 
might be needed in these circuits; for instance, in the LCD driver example of section 
14.1, a category 1 FSM is employed, whereas in the I 2 C and SPI serial interfaces of 
sections 14.2 and 14.3, categories 2 and 3 are used. 

 5.5   Exercises 

 Exercise 5.1: Machine Category and Number of Flip-Flops 
 a)   Why are the state machines in   fi gures 5.3, 5.9c, and 5.13e  (among others) said to 
be of category 1? 
 b)   How many DFFs are needed to implement each of these FSMs using ( i ) sequential 
encoding, ( ii ) Gray encoding, or ( iii ) one-hot encoding? 

 Exercise 5.2: Metastability and Synchronizer 
 a)   Solve exercise 2.2 if not done yet. 
 b)   Consider now the garage door controller of   fi gure 5.9 . ( i ) Which inputs are asyn-
chronous? ( ii ) If no debouncing circuits (which are synchronous) are adopted for the 
asynchronous inputs, are synchronizers indispensable in this application? 

 Exercise 5.3: Need for Reset 
 a)   Solve exercise 3.10 if not done yet. 
 b)   Solve exercise 3.11 if not done yet. 

Figure 5.15  
A  “ transparent ”  circuit. (a) Circuit ports. (b) Moore and (c) Mealy state transition diagrams. 

(d) Typical implementation based on the Moore model. 



98 Chapter 5

Exercise 5.4: Truly Complementary Transition Conditions 
In section 1.5 the importance of having the state transition diagram neither under- nor 
overspecifi ed was discussed. What happens if, in the garage door controller of   fi gure 
5.9c,  the condition  sen1  =  ‘ 0 ’  is removed from the  opening1 - opening2  transition, or the 
condition  sen2  =  ‘ 0 ’  is removed from the  closing1 - closing2  transition? 

 Exercise 5.5: One-Shot Circuits Analysis 
 a)   It is said in section 5.4.3 that the solution in   fi gure 5.7d  is inferior to that in   fi gure 
5.7c . Why? (Suggestion: fi ll in the last two plots of   fi gure 5.16  and you will see the 
answer.) 
 b)   Is reset indispensable in these two solutions? 
 c)   In order to answer the question posed at the end of section 5.4.3, solve exercise 3.3 
if not done yet.    

 Exercise 5.6: Two-Signal-Triggered One-Shot Circuit 
   Figure 5.17  shows an illustrative timing diagram for a one-shot circuit that is not trig-
gered by a single signal but rather by a pair of signals. The triggering condition is the 
following: the one-shot pulse (in  y ) must be generated if the control signal  x  lasts at 
least as long as the  dv  pulse (this is obviously checked only at positive clock transi-
tions). Note in the fi gure that only the fi rst pulse of  x  fulfi lls this requirement, so the 
one-clock-period pulse in  y  has to be produced only in that case. Draw the state transi-
tion diagram for a state machine capable of implementing this circuit.    

 Exercise 5.7: Arbiter 
 Arbiters are used to manage access to shared resources. An example is depicted 
in   fi gure 5.18 , which shows three peripherals (P1 to P3) that use a common bus 

Figure 5.16 

Figure 5.17 
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to access common resources. Obviously, only one of them can use the bus at a 
time; for example, if P1 wants to use the bus, it issues a request ( r  1  =  ‘ 1 ’ ) to the 
arbiter, which grants ( g  1  =  ‘ 1 ’ ) access only if the bus is idle at that moment. If 
multiple requests are received by the arbiter, access is granted based on preestablished 
priorities. Assuming that the priorities are P1  >  P2  >  P3, draw a state transition 
diagram for a machine capable of implementing this arbiter. The machine ’ s input 
and output are the vectors  r  =  r  1  r  2  r  3  and  g  =  g  1  g  2  g  3 , respectively (besides clock and 
reset, of course).    

 Exercise 5.8: Manchester Encoder 
 An IEEE Manchester encoder produces a low-to-high transition when the input is  ‘ 1 ’  
or a high-to-low transition when it is  ‘ 0 ’ , as illustrated in   fi gure 5.19  for the sequence 
 “ 01001 ” . Note that each input value lasts two clock periods. Observe also the presence 
of a  dv  bit, which defi nes the extent of the vector to be encoded (dashed lines in  y  
indicate  “ don ’ t care ”  values). To be more realistic,  dv  is produced at the same time 
that the fi rst valid bit is presented; additionally, a small propagation delay is included 
between clock transitions and corresponding responses. Assume that the machine too 
must operate at the positive clock edge. 

 a)   Draw a state transition diagram for a Moore machine capable of implementing this 
encoder. 
 b)   Redraw the illustrative timing diagram of   fi gure 5.19  for your Moore machine, 
including in it a plot for  pr_state . Does the Moore circuit behave exactly as in   fi gure 
5.19,  or is  y  one clock cycle delayed? 
 c)   Redo the design, this time employing a Mealy machine. 

Figure 5.18 

Figure 5.19 
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d)   Repeat part b now for your Mealy solution. 
e)   Say that we want the output to be completely clean. Are any of the solutions above 
guaranteed to be glitch-free? If not, how can glitches be removed? What happens then 
with the time response?    

Exercise 5.9: Differential Manchester Encoder 
Figure 5.20  illustrates the operation of a differential Manchester encoder for the 
sequence  “ 01001 ” . Note that the shape of the output pulse remains unchanged when 
the input is  ‘ 0 ’  but gets inverted when it is  ‘ 1 ’ . For example, if the last pulse was a 
 ‘ 1 ’ -to- ‘ 0 ’  pulse, the next pulse must be  ‘ 1 ’ -to- ‘ 0 ’  if the input is  ‘ 0 ’  or  ‘ 0 ’ -to- ‘ 1 ’  if it is 
 ‘ 1 ’ . Observe the presence of a  dv  bit, which defi nes the extent of the vector to be 
encoded (dashed lines in  y  indicate  “ don ’ t care ”  values). To be more realistic,  dv  is 
produced at the same time that the fi rst valid bit is presented; additionally, a small 
propagation delay has been included between the clock transitions and the corre-
sponding responses. Assume that the machine too must operate at the positive clock 
edge. 

 a)   Draw a state transition diagram for a Moore machine capable of implementing this 
encoder. 
 b)   Redraw the illustrative timing diagram of   fi gure 5.20  for your solution, including 
in it a plot for  pr_state . Does the Moore circuit behave exactly as in   fi gure 5.20,  or is 
 y  one clock cycle delayed?    

 Exercise 5.10: Time-Ordered  “ 111 ”  Detector 
 Draw the state transition diagram for an FSM that detects the sequence  abc  =  “ 111 ”  
under the constraint that it must be time ordered; that is,  a  =  ‘ 1 ’  must occur (and 
hold), then  b  =  ‘ 1 ’  must also occur (and hold), and fi nally,  c  =  ‘ 1 ’  must happen. The 
circuit ports are shown in   fi gure 5.21a . The circuit operation is illustrated in   fi gure 
5.21b , where  x  =  ‘ 1 ’  occurs when  abc  =  “ 111 ” , but in a time-ordered fashion.    

 Exercise 5.11: Vending Machine 
 It was seen that the vending machine controller of   fi gure 5.10b  must be improved 
to avoid state bypass. Present a solution for this problem. Is it better to include wait 

Figure 5.20 
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states or a fl ag or to convert the inputs into one-shot signals with one-clock-period 
duration? 

Exercise 5.12: Time Behavior of a String Detector 
Consider the Moore-type state machine of   fi gure 5.14a , which detects the sequence 
“  abc  ”  for the case of  a   ≠   b   ≠   c , where  x  and  y  represent the input and output, 
respectively. 

 a)   Complete the timing diagram of   fi gure 5.22  for the given values of  x . Note that a 
little propagation delay was included between the clock transitions and the respective 
changes in the present state; do the same for  y . 
 b)   Does the output go up immediately when the sequence  “  abc  ”  occurs or only at the 
next (positive) clock edge? Is this result as you expected? (Recall that Moore machines 
are fully synchronous.)    

 Exercise 5.13: Generic Overlapping String Detector 
 We saw in section 5.4.9 a generic approach for the implementation of nonoverlapping 
string detectors. In that case, if the sequence to be detected were  “  aba  ” , for example, 
the response to the serial bit stream  “  abababab  …  ”  would be  “ 00100010001 …  ” , whereas 
here, because overlaps must be allowed, it should be  “ 0010101 …  ” . Can you fi nd a 
generic solution (with or without a state machine) for this case? 

 Exercise 5.14: Keypad Encoder 
   Figure 5.23a  shows a 12-key keypad for which we need to design an encoder (and 
possibly also a debouncer — debouncers are discussed in chapter 8). The actual push-
button connections can be seen in   fi gure 5.23b , where  r (3:0) and  c (2:0) represent the 
keypad ’ s rows and columns, respectively. Note that because of the pull-up resistors, 

Figure 5.21 

Figure 5.22 
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the rows ’  voltages are all high when no switch is pressed. The keypad encoder must 
connect the bottom of one column at a time to ground ( ‘ 0 ’ ), then read the resulting 
row values, converting them into the respective codeword, as listed in   fi gure 5.23c  
(n stands for  “ none ” ); for example, if  c  =  “ 011 ” , which means that the leftmost column 
is being inspected, and the reading is  r  =  “ 1011 ” , then we know that pushbutton 4 is 
pressed. Present a solution for this encoder. (A possible solution for the debouncer is 
treated in exercise 8.11.)    

 Exercise 5.15: Datapath Controller for a Largest-Value Detector 
 Say that you are given the datapath of   fi gure 5.13a , with  inpB  monitoring a serial data 
stream, of which the largest value must be determined (placed at the ALU output, 
 ALUout ). The monitoring should start when a  dv  bit is asserted, ending when  dv  returns 
to zero. 

a)   Develop a state transition diagram (as in   fi gure 5.13e ) for an FSM capable of imple-
menting the corresponding control unit. Include in it  “ nop ”  (no operation) states if 
necessary to have the number of clock cycles be the same in all iterations. 
 b)   Present an illustrative timing diagram for your machine (as in   fi gure 5.13d ), assum-
ing that the values presented to the circuit (while  dv  =  ‘ 1 ’ ) are 5  →  8  →  4  →  0. (If you 
prefer, do part b before part a.) 

 Exercise 5.16: Datapath Controller for a Square Root Calculator 
 To calculate  z  = ( x  2  +  y  2 ) 1/2 , where  x ,  y , and  z  are unsigned integers, the expression  z  = 
max( a   −   a /8 +  b /2,  a ) can be used, where  a  = max( x ,  y ) and  b  = min( x ,  y ). Recall that 
to divide an integer by 8 or by 2 all that is needed is to shift it to the right three posi-
tions or one position, respectively. Make the adjustments that you fi nd necessary in 
the datapath of   fi gure 5.13a  (for example, include a shift-right option in one of the 
existing registers or in a new register at the ALU output), then devise a state machine 
that computes the square root above using that datapath. 

Figure 5.23 
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Exercise 5.17: Flag Monitor 
Develop an FSM for a circuit that monitors a fl ag such that, if the fl ag remains constant 
within a given time window, the output copies the measured (constant) fl ag value. 
This is illustrated in   fi gure 5.24 ; if  fl ag_in  has no transitions at all while  window  is high, 
then  fl ag_out  gets the value of  fl ag_in ; otherwise, it keeps the same value that it had 
when the time window started. 
 

  

Figure 5.24 





6   VHDL Design of Regular (Category 1) State Machines 

6.1   Introduction 

This chapter presents several VHDL designs of category 1 state machines. It starts by 
presenting two VHDL templates, for Moore- and Mealy-based implementations, which 
are used subsequently to develop a series of designs related to the examples introduced 
in chapter 5. 

 The codes are always complete (not only partial sketches) and are accompanied by 
comments and simulation results, illustrating the design ’ s main features. All circuits 
were synthesized using Quartus II (from Altera) or ISE (from Xilinx). The simulations 
were performed with Quartus II or ModelSim (from Mentor Graphics). The default 
encoding scheme for the states of the FSMs was regular sequential encoding (see 
encoding options in section 3.7; see ways of selecting the encoding scheme at the end 
of section 6.3). 

 The same designs will be presented in chapter 7 using SystemVerilog, so the reader 
can make a direct comparison between the codes. 

  Note:  See suggestions of VHDL books in the bibliography. 

 6.2   General Structure of VHDL Code 

 A typical structure of VHDL code for synthesis, with all elements that are needed in 
this and in coming chapters, is depicted in   fi gure 6.1 . It is composed of three funda-
mental sections, briefl y described below.    

 Library/Package Declarations 
 As the name says, it contains the libraries and corresponding packages needed in the 
design. The most common package is  std_logic_1164 , from the IEEE library, which 
defi nes the types  std_logic  (for single bit) and  std_logic_vector  (for multiple bits), which 
are the industry standard. 
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Entity 
The entity is divided into two main parts, called  generic  and  port . 

  Generic:    This portion is optional. It is used for the declaration of global parameters, 
which can be easily modifi ed to fulfi ll different system specifi cations or, more impor-
tantly, can be overridden during instantiations (using the  component  construct) into 
other designs. 
  Port:    This part of the code is mandatory for synthesis. It is just a list with specifi -
cations of all circuit ports (I/Os), including their name, mode ( in ,  out ,  inout , or  buffer ), 
and type (plus range). 

 Architecture 
 The architecture too is divided into two parts, called  declarative part  and  statements part . 

  Declarative part:    This section precedes the keyword  begin  and is optional. It is used 
for all sorts of local declarations, including  type ,  signal , and  component . It also allows 
the construction of  function  and  procedure . These declarations and functions/
procedures can also be placed outside the main code, in a  package . 
  Statements part:    This portion, which starts at the keyword  begin , constitutes the 
code proper. As shown in   fi gure 6.1 , its main elements (in no particular order) are 
the following: basic expressions using operators (for simple combinational circuits); 
expressions using concurrent statements ( when ,  select ,  generate ), generally for simple 

Figure 6.1 
Typical VHDL code structure for synthesis. 
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to midcomplexity combinational circuits; sequential code using  process , which is 
constructed using sequential statements ( if ,  case ,  loop ,  wait ), for sequential as well 
as (complex) combinational circuits;  function / procedure  calls; and, fi nally,  compo-
nent  (that is, other design) instantiations, resulting in structural designs. 

 6.3   VHDL Template for Regular (Category 1) Moore Machines 

 The template is based on   fi gure 6.2  (derived from fi gure 5.2), which shows three pro-
cesses: 1) for the FSM state register; 2) for the FSM combinational logic; and 3) for the 
optional output register. Note the asterisk on one of the input connections; as we 
know, if that connection exists it is a Mealy machine, else it is a Moore machine.    

 There obviously are other ways of breaking the code instead of using the three 
processes indicated in   fi gure 6.2 . For example, the combinational logic section, being 
not sequential, could be implemented without a process (using purely concurrent 
code). At the other extreme the combinational logic section could be implement ed 
with two processes, one with the logic for  output , the other with the logic for  nx_
state . 

 The VHDL template for the design of category 1 Moore machines, based on   fi gures 
6.1 and 6.2 , is presented below. Observe the following: 

 1)   To improve readability, the three fundamental code sections (library/package dec-
larations, entity, and architecture) are separated by dashed lines (lines 1, 4, 14, 76). 
 2)   The library/package declarations (lines 2 – 3) show the package  std_logic_1164 , 
needed because the types used in the ports of all designs will be  std_logic  and/or  std_
logic_vector  (industry standard). 
 3)   The entity, called  circuit , is in lines 5 – 13. As seen in   fi gure 6.1 , it usually contains 
two parts:  generic  (optional) and  port  (mandatory for synthesis). The former is 
employed for the declaration of generic parameters (if they exist), as illustrated in lines 
6 – 8. The latter is a list of all circuit ports, with respective specifi cations, as illustrated 

Figure 6.2 
State machine architecture depicting how the VHDL code was broken (three processes). 
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in lines 9 – 12. Note that the type used for all ports (lines 10 – 12) is indeed  std_logic  or 
 std_logic_vector . 
 4)   The architecture, called  moore_fsm , is in lines 15 – 75. It too is divided into two parts: 
declarative part (optional) and statements part (code proper, so mandatory). 
 5)   The declarative part of the architecture is in lines 16 – 19. In lines 16 – 17 a special 
enumerated type, called  state , is created, and then the signals  pr_state  and  nx_state  are 
declared using that type. In lines 18 – 19 an optional attribute called  enum_encoding  is 
shown, which defi nes the type of encoding desired for the machine ’ s states (e.g., 
 “ sequential ” ,  “ one-hot ” ). Another related attribute is  fsm_encoding . See a description 
for both attributes after the template below. The encoding scheme can also be chosen 
using the compiler ’ s setup, in which case lines 18 – 19 can be removed. 
 6)   The statements part (code proper) of the architecture is in lines 20 – 75 (from  begin  
on). In this template it is composed of three  process  blocks, described below. 
 7)   The fi rst process (lines 23 – 30) implements the state register (process 1 of   fi gure 6.2 ). 
Because all of the machine ’ s DFFs are in this section, clock and reset are only con-
nected to this block (plus to the optional output register, of course, but that is not 
part of the FSM proper). Note that the code for this process is essentially standard, 
simply copying  nx_state  to  pr_state  at every positive clock transition (thus inferring 
the DFFs that store the machine ’ s state). 
 8)   The second process (lines 33 – 61) implements the entire combinational logic section 
of the FSM (process 2 of   fi gure 6.2 ). This part must contain all states (A, B, C, . . .), 
and for each state two things must be declared: the output values/expressions and the 
next state. Observe, for example, in lines 36 – 46, relative to state A, the output declara-
tions in lines 37 – 39 and the next-state declarations in lines 40 – 46. A very important 
point to note here is that there is no  if  statement associated with the outputs because 
in a Moore machine the outputs depend solely on the state in which the machine is, 
so for a given state each output value/expression is unique. 
 9)   The third and fi nal process (lines 64 – 73) implements the optional output register 
(process 3 of   fi gure 6.2 ). Note that it simply copies each original output to a new 
output at every positive clock edge (it could also be at the negative edge), thus infer-
ring the extra register. If this register is used, then the names of the new outputs must 
obviously be the names used in the corresponding port declarations (line 12). If the 
initial output values do not matter, reset is not required in this register. 
 10)   To conclude, observe the completeness of the code and the correct use of registers 
(as requested in sections 4.2.8 and 4.2.9, respectively), summarized below. 

 a)   Regarding the use of registers: The circuit is not overregistered. This can be 
observed in the  elsif rising_edge(clk)  statement of line 27 (responsible for the infer-
ence of fl ip-fl ops), which is closed in line 29, guaranteeing that only the machine 
state (line 28) gets registered. The circuit outputs are in the next process, which is 
purely combinational. 
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b)   Regarding the outputs: The list of outputs ( output1 ,  output2 , . . .) is the same in 
all states (see lines 37 – 39, 48 – 50, . . .), and the output values (or expressions) are 
always declared. 
 c)   Regarding the next state: Again, the coverage is complete because all states (A, B, 
C, . . .) are included, and in each state the declarations are fi nalized with an  else  
statement (lines 44, 55, . . .), guaranteeing that no condition is left unchecked. 

  Note 1:    See also the comments in sections 6.4, which show some template variations. 

  Note 2:    The VHDL 2008 review of the VHDL standard added the keyword  all  as a replace-
ment for a process ’  sensitivity list, so  process (all)  is now valid. It also added boolean 
tests for  std_logic  signals and variables, so  if x= ‘ 1 ’  then . . .  can be replaced with  if x 
then. . . .  Both are supported by the current version (12.1) of Altera ’ s Quartus II compiler 
but not yet by the current version (14.2) of Xilinx ’ s ISE suite (XST compiler). 

  Note 3:    Another implementation approach, for simple FSMs, will be seen in chapter 15.    

  1   -------------------------------------------------------------  
  2    library ieee;  
  3    use ieee.std_logic_1164.all;  
  4    -------------------------------------------------------------  
  5    entity circuit is  
  6    generic (   
  7    param1: std_logic_vector(...) :=  < value > ;  
  8    param2: std_logic_vector(...) :=  < value > );  
  9    port (  
  10    clk, rst: in std_logic;  
  11    input1, input2, ...: in std_logic_vector(...);  
  12    output1, output2, ...: out std_logic_vector(...);   
  13    end entity;  
  14    -------------------------------------------------------------  
  15    architecture moore_fsm of circuit is   
  16    type state is (A, B, C, ...);   
  17    signal pr_state, nx_state: state;  
  18    attribute enum_encoding: string; --optional, see comments   
  19    attribute enum_encoding of state: type is "sequential";  
  20    begin  
  21  
  22    --FSM state register:  
  23    process (clk, rst)  
  24    begin  
  25    if rst='1' then  --see Note 2 above on boolean tests  
  26    pr_state  < = A;      
  27    elsif rising_edge(clk) then  
  28    pr_state  < = nx_state;  
  29    end if;  
  30    end process;  
  31  
  32    --FSM combinational logic:  
  33    process (all) --see Note 2 above on "all" keyword  
  34    begin        
  35    case pr_state is  
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  36    when A = >   
  37    output1  < =  < value > ;  
  38    output2  < =  < value > ;  
  39    ...  
  40    if  < condition >  then   
  41    nx_state  < = B;  
  42    elsif  < condition >  then  
  43    nx_state  < = ...;  
  44    else  
  45    nx_state  < = A;  
  46    end if;  
  47    when B = >   
  48    output1  < =  < value > ;  
  49    output2  < =  < value > ;  
  50    ...  
  51    if  < condition >  then   
  52    nx_state  < = C;  
  53    elsif  < condition >  then  
  54    nx_state  < = ...;  
  55    else  
  56    nx_state  < = B;  
  57    end if;  
  58    when C = >   
  59    ...  
  60    end case;  
  61    end process;  
  62  
  63    --Optional output register:  
  64    process (clk, rst)  
  65    begin  
  66    if rst='1' then  --rst generally optional here  
  67    new_output1  < = ...;  
  68    ...  
  69    elsif rising_edge(clk) then  
  70    new_output1  < = output1;  
  71    ...  
  72    end if;  
  73    end process;  
  74  
  75    end architecture;  
  76    -------------------------------------------------------------  

Final Comments 

1)   On the need for a reset signal: Note in the template above that the sequential 
portion of the FSM (process of lines 23 – 30) has a reset signal. As seen in sections 3.8 
and 3.9, that is the usual situation. However, as also seen in those sections, if the 
circuit is implemented in an FPGA (so the fl ip-fl ops are automatically reset on power-up) 
and the codeword assigned to the intended initial (reset) state is the all-zero codeword, 
then reset will occur automatically. 
 2)   On the  enum_encoding  and  fsm_encoding  attributes: As mentioned earlier, these 
attributes can be used to select the desired encoding scheme ( “ sequential ” ,  “ one-hot ” , 
 “ 001 011 010 ” , and others — see options in section 3.7), overriding the compiler ’ s 
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setup. It is important to mention, however, that support for these attributes varies 
among synthesis compilers. For example, Altera ’ s Quartus II has full support for 
enum_encoding , so both examples below are fi ne (where  “ sequential ”  can also be  “ one-
hot ” ,  “ gray ” , and so on):  

attribute enum_encoding: string;  

attribute enum_encoding of state: type is "sequential";  

attribute enum_encoding: string;  

attribute enum_encoding of state: type is "001 100 101"; --user defined  

Xilinx ’ s XST (from the ISE suite), on the other hand, only supports  enum_encoding  
for user-defi ned encoding; for the others ( “ sequential ” ,  “ one-hot ” , etc.),  fsm_encoding  
can be used. Two valid examples are shown below:  

attribute enum_encoding: string;  

attribute enum_encoding of state: type is "001 100 101";  

attribute fsm_encoding: string;  

attribute fsm_encoding of pr_state: signal is "sequential";  

6.4   Template Variations 

The template of section 6.3 can be modifi ed in several ways with little or no effect on 
the fi nal result. Some options are described below. These modifi cations are extensible 
to the Mealy template treated in the next section. 

6.4.1   Combinational Logic Separated into Two Processes 
A variation sometimes helpful from a didactic point of view is to separate the FSM 
combinational logic process into two processes: one for the output, another for the 
next state. Below, the process for the output logic is in lines 33 – 47, and that for the 
next state logic is in lines 50 – 69.  

  32   --FSM combinational logic for output:  
  33   process (all)  
  34    begin    
  35    case pr_state is  
  36    when A = >   
  37    output1  < =  < value > ;  
  38    output2  < =  < value > ;  
  39    ...  
  40    when B = >   
  41    output1  < =  < value > ;  
  42    output2  < =  < value > ;  
  43    ...  
  44    when C = >   
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  45    ...  
  46    end case;  
  47    end process;  
  48  
  49    --FSM combinational logic for next state:  
  50    process (all)  
  51    begin    
  52    case pr_state is  
  53    when A = >   
  54    if  < condition >  then   
  55    nx_state  < = B;  
  56    elsif  < condition >  then  
  57    nx_state  < = ...;  
  58    else  
  59    nx_state  < = A;  
  60    end if;  
  61    when B = >   
  62    if  < condition >  then   
  63    nx_state  < = C;  
  64    ...  
  65    end if;  
  66    when C = >   
  67    ...  
  68    end case;  
  69    end process;  

6.4.2   State Register Plus Output Register in a Single Process 
A variation in the other direction (reducing the number of processes from three to 
two instead of increasing it to four) consists of joining the process for the state register 
with that for the output register. This is not recommended for three reasons. First, in 
most projects the optional output register is not needed. Second, having the output 
register in a separate process helps remind the designer that the need or not for such 
a register is an important case-by-case decision. Third, one might want to have the 
output register operating at the other (negative) clock edge, which is better emphasized 
by using separate processes. 

6.4.3   Using Default Values 
When the same signal or variable value appears several times inside the  same  process, 
a default value can be entered at the beginning of the process. An example is shown 
below for the process of the combinational logic section, with default values for the 
outputs included in lines 36 – 38. In lines 40 – 45 only the values that disagree with 
these must then be typed in. An example in which default values are used is seen in 
section 12.4.  

  32   --FSM combinational logic:  
  33   process (all)  
  34    begin   
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  35    --Default values:  
  36    output1  < =  < value > ;  
  37    output2  < =  < value > ;  
  38    ...  
  39    --Code:  
  40    case pr_state is  
  41    when A = > ;  
  42    ...  
  43    when B = >   
  44    ...  
  45    end case;  
  46    end process;  

6.4.4   A Dangerous Template 
A tempting template is shown next. Note that the entire FSM is in a single process 
(lines 17 – 43). Its essential point is that the  elsif rising_edge(clk)  statement encloses 
the whole circuit (it opens in line 21 and only closes in line 42), thus registering it 
completely (that is, not only the state is stored in fl ip-fl ops — this has to be done 
anyway — but also all the outputs). 

 This template has several  apparent  advantages. One is that a shorter code results 
(for instance, we can replace  pr_state  and  nx_state  with a single name —  fsm_state , for 
example; also, only one process is needed). Another apparent advantage is that the 
code will work (no latches inferred) when the list of outputs is not exactly the same 
in all states. Such features, however, might hide serious problems. 

 One of the problems is precisely the fact that the outputs are always registered, so 
the resulting circuit is never the FSM alone but the FSM plus the optional output 
register of fi gure 5.2c, which many times is unwanted. 

 Another problem is that, even if the optional output register were needed, we do 
not have the freedom to choose in which of the clock edges to operate it because the 
same edge is used for the FSM and for the output register in this template, reducing 
the design fl exibility. 

 A third problem is the fact that, because the list of outputs does not need to be the 
same in all states (because they are registered, latches will not be inferred when an 
output value is not specifi ed), the designer is prone to overlook the project 
specifi cations. 

 Finally, it is important to remember that VHDL (and SystemVerilog) is not a 
program but a code, and a shorter code  does not mean  a smaller or better circuit. In 
fact, longer, better-organized codes tend to ease the compiler ’ s work, helping to opti-
mize the fi nal circuit. 

 In summary, the template below is a  particular case  of the general template intro-
duced in section 6.3. The general template gets reduced to this one only when all 
outputs must be registered and the same clock edge must operate both the state register 
and the output register.  
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  1    --Dangerous template (particular case of the general template)  
  2    library ieee;  
  3    use ieee.std_logic_1164.all;  
  4   ---------------------------------------------------------------  
  5    entity circuit is  
  6    generic (...);  
  7    port (  
  8    clk, rst: in std_logic;  
  9    input, ...: in std_logic_vector(...);  
  10    output, ...: out std_logic_vector(...);   
  11    end entity;  
  12    ---------------------------------------------------------------  
  13    architecture moore_fsm of circuit is   
  14    type state is (A, B, C, ...);   
  15    signal fsm_state: state;  
  16    begin  
  17    process (clk, rst)  
  18    begin  
  19    if rst then  
  20    fsm_state  < = A;  
  21    elsif rising_edge(clk) then  
  22    case fsm_state is  
  23    when A = >   
  24     output  < =  < value > ;  
  25    if  < condition >  then   
  26    fsm_state  < = B;  
  27     elsif  < condition >  then  
  28    fsm_state  < = ...;  
  29     else  
  30    fsm_state  < = A;  
  31     end if;  
  32    when B = >   
  33     output  < =  < value > ;  
  34    if  < condition >  then   
  35    ...  
  36     else  
  37    fsm_state  < = B;  
  38     end if;  
  39    when C = >   
  40    ...  
  41    end case;  
  42    end if;  
  43    end process;  
  44    ---------------------------------------------------------------  

6.5   VHDL Template for Regular (Category 1) Mealy Machines 

This template, also based on   fi gures 6.1 and 6.2 , is presented below. The only differ-
ence with respect to the Moore template just presented is in the process for the com-
binational logic because the output is specifi ed differently now. Recall that in a Mealy 
machine the output depends not only on the FSM ’ s state but also on its input, so  if  
statements are expected for the output in one or more states because the output values 
might not be unique. This is achieved by including the output  within  the conditional 
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statements for  nx_state . For example, observe in lines 20 – 36, relative to state A, that 
the output values are now conditional. Compare these lines against lines 36 – 46 in the 
template of section 6.3. 

 Please review the following comments, which can easily be adapted from the Moore 
case to the Mealy case: 

  — On the Moore template for category 1, in section 6.3, especially comment 10. 
  — On the  enum_encoding  and  fsm_encoding  attributes, also in section 6.3. 
  — On possible code variations, in section 6.4. 

  1   -------------------------------------------------------------  
  2    library ieee;  
  3    use ieee.std_logic_1164.all;  
  4    -------------------------------------------------------------  
  5    entity circuit is  
  6    (same as for category 1 Moore, section 6.3)    
  7    end entity;  
  8    -------------------------------------------------------------  
  9    architecture mealy_fsm of circuit IS   
  10    (same as for category 1 Moore, Section 6.3)  
  11    begin  
  12  
  13    --FSM state register:  
  14    (same as for category 1 Moore, section 6.3)  
  15  
  16    --FSM combinational logic:  
  17    process (all) --list proc. inputs if  “ all ”  not supported  
  18    begin    
  19    case pr_state is  
  20    when A = >   
  21    if  < condition >  then   
  22     output1  < =  < value > ;  
  23     output2  < =  < value > ;  
  24     ...  
  25     nx_state  < = B;  
  26    elsif  < condition >  then  
  27     output1  < =  < value > ;  
  28     output2  < =  < value > ;  
  29     ...  
  30     nx_state  < = ...;  
  31    else  
  32     output1  < =  < value > ;  
  33     output2  < =  < value > ;  
  34     ...  
  35     nx_state  < = A;  
  36    end if;  
  37    when B = >   
  38    if  < condition >  then   
  39     output1  < =  < value > ;  
  40     output2  < =  < value > ;  
  41    ...  
  42    nx_state  < = C;  
  43    elsif  < condition >  then  
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  44     output1  < =  < value > ;  
  45     output2  < =  < value > ;  
  46    ...  
  47     nx_state  < = ...;  
  48    else  
  49     output1  < =  < value > ;  
  50     output2  < =  < value > ;  
  51     ...  
  52     nx_state  < = B;  
  53    end if;  
  54    when C = >   
  55    ...  
  56    end case;  
  57    end process;  
  58  
  59    --Optional output register:  
  60    (same as for category 1 Moore, section 6.3)  
  61  
  62    end architecture;  
  63    -------------------------------------------------------------  

6.6   Design of a Small Counter 

This section presents a VHDL-based design for the 1-to-5 counter with enable and 
up-down controls introduced in section 5.4.1 (fi gure 5.3). 

 Because counters are inherently synchronous, the Moore approach is the natural 
choice for their implementation, so the VHDL template of section 6.3 is used. Because 
possible glitches during (positive) clock transitions are generally not a problem in 
counters, the optional output register shown in the last process of the template is not 
employed. 

 The entity, called  counter , is in lines 5 – 9. All ports are of type  std_logic  or  std_logic_
vector  (industry standard). 

 The architecture, called  moore_fsm , is in lines 11 – 88. As usual, it contains a declara-
tive part (before the keyword  begin ) and a statements part (from  begin  on). 

 In the declarative part of the architecture (lines 12 – 13), the enumerated type  state  
is created to represent the machine ’ s present and next states. Recall that when neither 
the  enum_encoding  nor the  fsm_encoding  attribute is used, the encoding scheme must 
be selected in the compiler ’ s setup. 

 The fi rst process (lines 17 – 24) in the statements part implements the state register. 
As in the template, this is a standard code with clock and reset present only in this 
process. 

 The second and fi nal process (lines 27 – 86) implements the entire combinational 
logic section. It is just a list of all states, each containing the output value and the 
next state. Note that in each state the output value is unique because in a Moore 
machine the output depends only on the state in which the machine is. 
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Observe the correct use of registers and the completeness of the code, as described 
in comment 10 of section 6.3. Note in particular the following: 

 1)   Regarding the use of registers: The circuit is not overregistered. This can be observed 
in the  elsif rising_edge(clk)  statement of line 21 (responsible for the inference of 
fl ip-fl ops), which is closed in line 23, guaranteeing that only the machine state (line 
22) gets stored. The output ( outp ) is in the next process, which is purely combinational 
(thus not registered). 
 2)   Regarding the outputs: The list of outputs (just  outp  in this example) is exactly the 
same in all states (see lines 31, 42, 53, 64, 75), and the corresponding output values 
are always properly declared. 
 3)   Regarding the next state: Again, the coverage is complete because all states are 
included (see lines 30, 41, 52, 63, 74), and in each state the conditional declarations 
for the next state are always fi nalized with an  else  statement (lines 38, 49, 60, 71, 82), 
guaranteeing that no condition is left unchecked. 

  1   -------------------------------------------------------------  
  2    library ieee;  
  3    use ieee.std_logic_1164.all;  
  4    -------------------------------------------------------------  
  5    entity counter is  
  6    port (  
  7    ena, up, clk, rst: in std_logic;  
  8    outp: out std_logic_vector(2 downto 0));   
  9    end entity;  
  10    -------------------------------------------------------------  
  11    architecture moore_fsm of counter is   
  12    type state is (one, two, three, four, five);   
  13    signal pr_state, nx_state: state;  
  14    begin  
  15  
  16    --FSM state register:  
  17    process (clk, rst)  
  18    begin  
  19    if rst='1' then  
  20    pr_state  < = one;  
  21    elsif rising_edge(clk) then  
  22    pr_state  < = nx_state;  
  23    end if;  
  24    end process;  
  25  
  26    --FSM combinational logic:  
  27    process (all) --list proc. inputs if "all" not supported  
  28    begin   
  29    case pr_state is  
  30    when one = >   
  31    outp  < = "001";  
  32    if ena='1' then  
  33     if up='1' then  
  34    nx_state  < = two;  
  35     else  
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  36    nx_state  < = five;  
  37     end if;  
  38    else  
  39     nx_state  < = one;  
  40    end if;  
  41    when two = >   
  42    outp  < = "010";  
  43    if ena='1' then  
  44     if up='1' then  
  45    nx_state  < = three;  
  46     else  
  47    nx_state  < = one;  
  48     end if;  
  49    else  
  50     nx_state  < = two;  
  51    end if;  
  52    when three = >   
  53    outp  < = "011";  
  54    if ena='1' then  
  55    if up='1' then  
  56    nx_state  < = four;  
  57    else  
  58    nx_state  < = two;  
  59     end if;  
  60    else  
  61    nx_state  < = three;  
  62    end if;  
  63    when four = >   
  64    outp  < = "100";  
  65    if ena='1' then  
  66     if up='1' then  
  67    nx_state  < = five;  
  68     else  
  69    nx_state  < = three;  
  70     end if;  
  71    else  
  72     nx_state  < = four;  
  73    end if;  
  74    when five = >   
  75    outp  < = "101";  
  76    if ena='1' then  
  77     if up='1' then  
  78    nx_state  < = one;  
  79     else  
  80    nx_state  < = four;  
  81     end if;  
  82    else  
  83     nx_state  < = five;  
  84    end if;  
  85    end case;  
  86    end process;  
  87  
  88    end architecture;  
  89    -------------------------------------------------------------  

Synthesis results using the VHDL code above are presented in   fi gure 6.3 . The cir-
cuit ’ s structure can be seen in the RTL view of   fi gure 6.3a , while the FSM can be seen 
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 Figure 6.3 
 Results from the VHDL code for the 1-to-5 counter with enable and up-down controls of fi gure 

5.3. (a) RTL view. (b) State machine view. (c) Simulation results. 

in   fi gure 6.3b . As expected, the latter coincides with the intended state transition 
diagram (fi gure 5.3). Simulation results are exhibited in   fi gure 6.3c . Note that the 
output changes only at positive clock transitions, counting up when  up  =  ‘ 1 ’ , down 
when  up  =  ‘ 0 ’ , and stopping if  ena  =  ‘ 0 ’ . 

 The number of fl ip-fl ops inferred by the compiler after synthesizing the code above 
was three for sequential, Gray, or Johnson encoding and fi ve for one-hot, matching 
the predictions made in section 5.4.1.    

  Note:  As smentioned in section 5.4.1, counters can be designed very easily without 
employing the FSM approach when using VHDL or SystemVerilog. The design above 
was included, nevertheless, because it illustrates well the construction of VHDL code 
for category 1 machines. A similar counter, but without the up-down control, results 
from the code below, where the FSM technique is not employed. Moreover, it is fi ne 
for any number of bits.  

  1    ------------------------------------------------------  
  2    library ieee;  
  3    use ieee.std_logic_1164.all;  
  4    use ieee.std_logic_arith.all;  
  5    ------------------------------------------------------  
  6    entity counter is  
  7    generic (  
  8    bits: natural := 3;   
  9    xmin: natural := 1;   
  10    xmax: natural := 5);   
  11    port (  
  12    clk, rst, ena: in std_logic;  
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  13    x_out: out std_logic_vector(bits-1 downto 0));  
  14    end entity;  
  15    ------------------------------------------------------  
  16    architecture direct_counter of counter is  
  17    signal x: natural range 0 to xmax;  
  18    begin  
  19    process (clk, rst)  
  20    begin  
  21    if rst='1' then  
  22    x  < = xmin;  
  23    elsif rising_edge(clk) and ena='1' then  
  24    if x < xmax then  
  25    x  < = x + 1;  
  26    else  
  27    x  < = xmin;  
  28    end if;  
  29    end if;  
  30    end process;  
  31    x_out  < = conv_std_logic_vector(x, bits);  
  32   end architecture;  
  33    ------------------------------------------------------  

6.7   Design of a Garage Door Controller 

This section presents a VHDL-based design for the garage door controller introduced 
in section 5.4.5. The Moore template of section 6.3 is employed to implement the 
FSM of fi gure 5.9c. 

 The entity, called  garage_door_controller , is in lines 5 – 9. All ports are of type  std_logic  
or  std_logic_vector  (industry standard). 

 The architecture, called  moore_fsm , is in lines 11 – 94. As usual, it contains a declara-
tive part (before the keyword  begin ) and a statements part (from  begin  on). 

 In the declarative part of the architecture (lines 12 – 14), the enumerated type  state  
is created to represent the machine ’ s present and next states. 

 The fi rst process (lines 18 – 25) in the statements part implements the state register. As 
in the template, this is a standard code with clock and reset present only in this process. 

 The second and fi nal process (lines 28 – 92) implements the entire combinational 
logic section. It is just a list of all states, each containing the output value and the 
next state. Note that in each state the output value is unique because in a Moore 
machine the output depends only on the state in which the machine is. 

 Observe the correct use of registers and the completeness of the code as described 
in comment number 10 of section 6.3. Note in particular the following: 

 1)   Regarding the use of registers: The circuit is not overregistered. This can be observed 
in the  elsif rising_edge(clk)  statement of line 22 (responsible for the inference of 
fl ip-fl ops), which is closed in line 24, guaranteeing that only the machine state (line 
23) gets stored. The output ( ctr ) is in the next process, which is purely combinational 
(thus not registered). 
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2)   Regarding the outputs: The list of outputs (just  ctr  in this example) is exactly the 
same in all states (see lines 32, 39, 46,  … ), and the corresponding output value is 
always properly declared. 
3)   Regarding the next state: Again, the coverage is complete because all states are 
included (see lines 31, 38, 45,  … ), and in each state the conditional declarations for 
the next state are always fi nalized with an  else  statement (lines 35, 42, 51,  … ), guar-
anteeing that no condition is left unchecked.  

  1   --------------------------------------------------------  
  2    library ieee;  
  3    use ieee.std_logic_1164.all;  
  4   --------------------------------------------------------  
  5    entity garage_door_controller is  
  6    port (  
  7    remt, sen1, sen2, clk, rst: in std_logic;  
  8    ctr: out std_logic_vector(1 downto 0));   
  9    end entity;  
  10    --------------------------------------------------------  
  11    architecture moore_fsm of garage_door_controller is   
  12    type state is (closed1, closed2, opening1, opening2,   
  13    open1, open2, closing1, closing2);   
  14    signal pr_state, nx_state: state;  
  15    begin  
  16  
  17    --FSM state register:  
  18    process (clk, rst)  
  19    begin  
  20    if rst='1' then  
  21    pr_state  < = closed1;  
  22    elsif rising_edge(clk) then  
  23    pr_state  < = nx_state;  
  24    end if;  
  25    end process;  
  26  
  27    --FSM combinational logic:  
  28    process (all) --or (pr_state, remt, sen1, sen2)  
  29    begin    
  30    case pr_state is  
  31    when closed1 = >   
  32    ctr  < = "0-";  
  33    if remt='0' then  
  34     nx_state  < = closed2;  
  35    else  
  36     nx_state  < = closed1;  
  37    end if;  
  38    when closed2 = >   
  39    ctr  < = "0-";  
  40    if remt='1' then   
  41     nx_state  < = opening1;  
  42    else  
  43     nx_state  < = closed2;  
  44    end if;  
  45    when opening1 = >   
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  46    ctr  < = "10";  
  47    if sen1='1' then   
  48     nx_state  < = open1;  
  49    elsif remt='0' then  
  50    nx_state  < = opening2;  
  51    else  
  52     nx_state  < = opening1;  
  53    end if;  
  54    when opening2 = >   
  55    ctr  < = "10";  
  56    if remt='1' or sen1='1' then   
  57    nx_state  < = open1;  
  58    else  
  59     nx_state  < = opening2;  
  60    end if;  
  61    when open1 = >   
  62    ctr  < = "0-";  
  63    if remt='0' then  
  64     nx_state  < = open2;  
  65    else  
  66    nx_state  < = open1;  
  67    end if;  
  68    when open2 = >   
  69    ctr  < = "0-";  
  70    if remt='1' then  
  71     nx_state  < = closing1;  
  72    else  
  73     nx_state  < = open2;  
  74    end if;  
  75    when closing1 = >   
  76    ctr  < = "11";  
  77    if sen2='1' then   
  78     nx_state  < = closed1;  
  79    elsif remt='0' then  
  80     nx_state  < = closing2;  
  81    else  
  82    nx_state  < = closing1;  
  83    end if;  
  84    when closing2 = >   
  85    ctr  < = "11";  
  86    if remt='1' or sen2='1' then   
  87     nx_state  < = closed1;  
  88    else  
  89     nx_state  < = closing2;  
  90    end if;  
  91    end case;  
  92    end process;  
  93  
  94    end architecture;  
  95   ---------------------------------------------------------  

The number of fl ip-fl ops inferred by the compiler after synthesizing the code above 
was three for sequential or Gray encoding, four for Johnson, and eight for one-hot, 
matching the predictions made in section 5.4.5. 
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Figure 6.4 
Simulation results from the VHDL code for the garage door controller of fi gure 5.9c. 

Simulation results are depicted in   fi gure 6.4 . The encoding chosen for the states 
was  sequential  (section 3.7). The states are enumerated from 0 to 7 (there are eight 
states), in the order in which they were declared in lines 12 – 13. Be aware, however, 
that some compilers reserve the value zero for the reset state; because the reset (initial) 
state in the present example is  closed1  (see lines 20 – 21), which is the fi rst state in the 
declaration list, that is not a concern here. 

 In this simulation the sequence  closed1 – closed2 – opening1 – opening2 – open1 – open2 –
 closing1 – closed1  (see state names in the lower part of   fi gure 6.4 ) was tested. Note that 
pulses of various widths were used to illustrate the fact that their width has no effect 
beyond the fi rst positive clock edge.    

 6.8   Design of a Datapath Controller for a Greatest Common Divisor Calculator 

 This section presents a VHDL-based design for the control unit introduced in sec-
tion 5.4.8, which controls a datapath to produce a greatest common divisor (GCD) 
calculator. The Moore template of section 6.3 is employed to implement the FSM of 
fi gure 5.13e. 

 The entity, called  control_unit_for_GCD , is in lines 5 – 11. All ports are of the type 
 std_logic  or  std_logic_vector  (industry standard). 

 The architecture, called  moore_fsm , is in lines 13 – 80. As usual, it contains a declara-
tive part (before the keyword  begin ) and a statements part (from  begin  on). 

 In the declarative part of the architecture (lines 14 – 15), the enumerated type  state  
is created to represent the machine ’ s present and next states. 

 The fi rst process (lines 19 – 26) in the statements part implements the state register. 
As in the template, this is a standard code with clock and reset present only in this 
process. 
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The second and fi nal process (lines 29 – 78) implements the entire combinational 
logic section. It is just a list of all states, each containing the output values and the 
next state. Note that in each state the output values are unique because in a Moore 
machine the outputs depend only on the state in which the machine is. 

 Observe the correct use of registers and the completeness of the code, as described 
in comment 10 of section 6.3. Note in particular the following: 

 1)   Regarding the use of registers: The circuit is not overregistered. This can be observed 
in the  elsif rising_edge(clk)  statement of line 23 (responsible for the inference of 
fl ip-fl ops), which is closed in line 25, guaranteeing that only the machine state (line 
24) gets stored. The outputs are in the next process, which is purely combinational 
(thus not registered). 
 2)   Regarding the outputs: The list of outputs ( selA ,  selB ,  wrA ,  wrB ,  ALUop ) is exactly 
the same in all states (see lines 33 – 37, 44 – 48, 51 – 55, . . .), and the corresponding 
output values are always properly declared. 
 3)   Regarding the next state: Again, the coverage is complete because all states are 
included (see lines 32, 43, 50, . . .), and in each state any conditional declarations for 
the next state are fi nalized with an  else  statement (lines 40 and 60), guaranteeing that 
no condition is left unchecked.  

  1   -----------------------------------------------------  
  2    library ieee;  
  3    use ieee.std_logic_1164.all;  
  4   -----------------------------------------------------  
  5    entity control_unit_for_GCD is  
  6    port (  
  7    dv, clk, rst: in std_logic;  
  8    sign: in std_logic_vector(1 downto 0)  
  9    selA, selB, wrA, wrB: out std_logic;  
  10    ALUop: out std_logic_vector(1 downto 0));  
  11    end entity;  
  12    -----------------------------------------------------  
  13    architecture moore_fsm of control_unit_for_GCD is   
  14    type state is (idle, load, waitt, writeA, writeB);   
  15    signal pr_state, nx_state: state;  
  16    begin  
  17  
  18    --FSM state register:  
  19    process (clk, rst)  
  20    begin  
  21    if rst='1' then  
  22    pr_state  < = idle;  
  23    elsif rising_edge(clk) then  
  24    pr_state  < = nx_state;  
  25    end if;  
  26    end process;  
  27  
  28    --FSM combinational logic:  
  29    process (all)  --or (pr_state, dv, sign)  
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  30    begin   
  31    case pr_state is  
  32    when idle = >   
  33    selA  < = '-';   
  34    selB  < = '-';   
  35    wrA  < = '0';   
  36    wrB  < = '0';   
  37    ALUop  < = "00";  
  38    if dv='1' then  
  39     nx_state  < = load;  
  40    else  
  41    nx_state  < = idle;  
  42    end if;  
  43    when load = >   
  44    selA  < = '1';   
  45    selB  < = '1';   
  46    wrA  < = '1';   
  47    wrB  < = '1';   
  48    ALUop  < = "00";  
  49    nx_state  < = waitt;  
  50    when waitt = >   
  51    selA  < = '-';   
  52    selB  < = '-';   
  53    wrA  < = '0';   
  54    wrB  < = '0';   
  55    ALUop  < = "10";  
  56    if sign="01" then  
  57     nx_state  < = writeA;  
  58    elsif sign="10" then  
  59     nx_state  < = writeB;  
  60    else  
  61    nx_state  < = idle;  
  62    end if;  
  63    when writeA = >   
  64    selA  < = '0';   
  65    selB  < = '-';   
  66    wrA  < = '1';   
  67    wrB  < = '0';   
  68    ALUop  < = "10";  
  69    nx_state  < = waitt;   
  70    when writeB = >   
  71    selA  < = '-';   
  72    selB  < = '0';   
  73    wrA  < = '0';   
  74    wrB  < = '1';   
  75    ALUop  < = "11";  
  76    nx_state  < = waitt;  
  77    end case;  
  78    end process;  
  79  
  80   end architecture;  
  81    -----------------------------------------------------  

Simulation results are presented in   fi gure 6.5 . The encoding chosen for the states 
was  sequential  (section 3.7). The states are enumerated from 0 to 4 (there are fi ve states) 
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Figure 6.5 
Simulation results from the VHDL code for the control unit of fi gure 5.13e, which controls a 

datapath for GCD calculation. 

in the order in which they were declared in line 14 (be aware, however, that some 
compilers reserve the value zero for the reset state). The stimuli are exactly as in fi gure 
5.13d (GCD for 9 and 15). The reader is invited to inspect these results and compare 
them against the waveforms in fi gure 5.13d.    

 6.9   Exercises 

 Exercise 6.1: Parity Detector 
 This exercise concerns the parity detector of fi gure 5.5c. 

 a)   How many fl ip-fl ops are needed to implement it with sequential and one-hot 
encoding? 
 b)   Implement it using VHDL. Check whether the number of DFFs inferred by the 
compiler matches each of your predictions. 
 c)   Simulate it using the same stimuli of fi gure 5.5b and check if the same waveform 
results for  y . 

 Exercise 6.2: One-Shot Circuits 
 This exercise concerns the one-shot circuits of fi gures 5.7c,d. 

 a)   Solve exercise 5.5 if not done yet. 
 b)   How many fl ip-fl ops are needed to implement each FSM with sequential 
encoding? 
 c)   Implement both circuits using VHDL. Check whether the number of DFFs inferred 
by the compiler matches each of your predictions. 
 d)   Simulate each circuit using the same stimuli of exercise 5.5 (fi gure 5.16) and check 
whether the same results are obtained here. 
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Exercise 6.3: Manchester Encoder 
This exercise concerns the Manchester encoder treated in exercise 5.8. 

a)   Solve exercise 5.8 if not done yet. 
b)   Implement the Moore machine relative to part a of that exercise using VHDL. 
Simulate it using the same stimuli of part b, checking if the results match. 
c)   Implement the Mealy machine relative to part c of that exercise using VHDL. Simu-
late it using the same stimuli of part d, checking if the results match. 

Exercise 6.4: Differential Manchester Encoder 
This exercise concerns the differential Manchester encoder treated in exercise 5.9. 

a)   Solve exercise 5.9 if not done yet. 
b)   Implement the FSM relative to part a of that exercise using VHDL. Simulate it using 
the same waveforms of part b, checking if the results match. 

Exercise 6.5: String Detector 
This exercise concerns the string detector of fi gure 5.14a, which detects the sequence 
“  abc  ” . 

a)   Solve exercise 5.12 if not done yet. 
b)   Implement the FSM of fi gure 5.14a using VHDL. Simulate it using the same stimuli 
of exercise 5.12, checking if the same results are obtained here. 

Exercise 6.6: Generic String Detector 
This exercise concerns the generic string detector of fi gure 5.14b. Implement it using 
VHDL and simulate it for the following cases: 

 a)   To detect the sequence  “  abc  ” . 
 b)   To detect the sequence  “  aab  ” . 
 c)   To detect the sequence  “  aaa  ” . 

 Exercise 6.7: Keypad Encoder 
 This exercise concerns the keypad encoder treated in exercise 5.14. It is repeated 
in   fi gure 6.6 , with a seven-segment display (SSD — see fi gure 8.13) at the output, 
which must display the last key pressed (use the characters  “ A ”  and  “ b ”  for * 
and #, respectively). (A deboucer is generally needed in this kind of design; see 
exercise 8.9.) 

a)   Solve exercise 5.14 if not done yet. 
b)   Implement the FSM obtained above using VHDL. Instead of encoding  r (3:0) accord-
ing to the table in fi gure 5.23c, encode it as an SSD driver, using the table in fi gure 
8.13d (so  key  is now a 7-bit signal). 
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c)   Physically test your design by connecting an actual keypad (or an arrangement of 
pushbuttons) to the FPGA in your development board, with  key  displayed by one of 
the board ’ s SSDs.  

   Exercise 6.8: Datapath Controller for a Largest-Value Detector 
 This exercise concerns the control unit treated in exercise 5.15. 

 a)   Solve exercise 5.15 if not done yet. 
 b)   Implement the FSM obtained above using VHDL. Present meaningful simulation 
results. 

Figure 6.6 



7   SystemVerilog Design of Regular (Category 1) State Machines 

7.1   Introduction 

This chapter presents several SystemVerilog designs of category 1 state machines. It 
starts by presenting two SystemVerilog templates, for Moore- and Mealy-based imple-
mentations, which are used subsequently to develop a series of designs related to the 
examples introduced in chapter 5. 

 The codes are always complete (not only partial sketches) and are accompanied by 
comments and simulation results illustrating the design ’ s main features. All circuits 
were synthesized using Quartus II (from Altera) or ISE (from Xilinx). The simulations 
were performed with Quartus II or ModelSim (from Mentor Graphics). The default 
encoding scheme for the states of the FSMs was regular sequential encoding (see 
encoding options in section 3.7). 

 The same designs were developed in chapter 6 using VHDL, so the reader can make 
a direct comparison between the codes.  

  Note:  See suggestions of SystemVerilog books in the bibliography. 

 7.2   General Structure of SystemVerilog Code 

 A typical structure of SystemVerilog code for synthesis, with all elements that will be 
needed in this and in coming chapters, is depicted in   fi gure 7.1 . It is composed of 
three fundamental sections, briefl y described below.    

 Module Header 
 The  module  header is similar to  entity  in VHDL (section 6.2), also divided into two 
parts, called  parameter declarations  and  port declarations . 

  Parameter declarations:    This portion, similar to  generic  in VHDL, is optional. It 
is used for the declaration of global parameters, which can be easily modifi ed to 
fulfi ll different system specifi cations or, more importantly, can be overridden during 
instantiations into other designs (structural code). 
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  Port declarations:    This portion, similar to  port  in VHDL, is mandatory for syn-
thesis. It is just a list with specifi cations of all circuit ports (I/Os), including their 
mode ( input ,  output , or  inout ), type (plus range), and name. 

 Declarations Part 
 The declarations part of a SystemVerilog code is similar to the declarative part of 
 architecture  in VHDL (section 6.2). It too is optional and allows all sorts of local 
declarations (e.g., local parameters, data types, variables) as well as  function  (and  task ) 
constructions. 

 Statements Part 
 The statements part of a SystemVerilog code is similar to the statements part of  archi-
tecture  in VHDL (section 6.2). As shown in   fi gure 7.1 , its main elements (in no par-
ticular order) are the following:  assign  statements, normally using operators, for 
simple combinational circuits;  always  blocks, constructed using sequential statements 
( if ,  case ,  for ,  while ,  repeat ), for both sequential as well as (complex) combinational 
circuits;  function  (and  task ) calls; and, fi nally,  module  (that is, other design) 
instantiations. 

 7.3   SystemVerilog Template for Regular (Category 1) Moore Machines 

 The template is based on   fi gure 7.2  (derived from fi gure 5.2), which shows three 
 always  blocks: 1) for the FSM state register; 2) for the FSM combinational logic; and 

Figure 7.1 
Typical SystemVerilog code structure for synthesis. 
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3) for the optional output register. Note the asterisk on one of the input connections; 
as we know, if that connection exists it is a Mealy machine, else it is a Moore machine. 

 There obviously are other ways of breaking the code instead of using the three 
 always  blocks indicated in   fi gure 7.2 . For example, the combinational logic section 
could be implemented with two  always  blocks, one with the logic for  output , the other 
with the logic for  nx_state . 

 The SystemVerilog template for the design of category 1 Moore machines is pre-
sented below. Observe the following: 

 1)   To improve readability, the three fundamental code sections were separated by 
dashed lines (lines 1, 11, 17, 61). 
 2)   The fi rst part of the code is the module header, in lines 1 – 9. It contains two sec-
tions: global parameter declarations (optional, lines 3 – 5) and circuit ports (mandatory 
for synthesis, lines 7 – 9). Note that all ports are of type  logic , with one or more bits. 
 3)   The second part of the code is the declarations part, in lines 11 – 15. A special enu-
merated type, called  state , is created in line 14, then the signals  pr_state  and  nx_state  
are declared using that type in line 15. 
 4)   The third part of the code is the statements part (code proper), in lines 17 – 60. In 
this template, it contains three  always  blocks, described next. 
 5)   The fi rst  always  block (lines 20 – 22) is an  always_ff  because we want fl ip-fl ops to 
be inferred. It implements the machine ’ s state register (always 1 block of   fi gure 7.2 ). 
This register is reset when  rst = ‘ 1 ’  occurs; if  rst = ‘ 0 ’ , the input is copied to the output at 
every positive clock edge. 
 6)   The second  always  block (lines 25 – 47) is an  always_comb  because we want a 
purely combinational circuit to be inferred (see always 2 block in   fi gure 7.2 ). This part 
must contain all states (A, B, C, . . .), and for each state two things must be declared: 
the output values/expressions and the next state. Note, for example, in lines 27 – 34, 
relative to state A, the output declarations in lines 28 – 30 and the next state declara-
tions in lines 31 – 33. A very important point to observe here is that there is no  if  

Figure 7.2 
State machine architecture depicting how the SystemVerilog code was broken (three  always

blocks). 
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statement associated with the outputs because in a Moore machine the outputs depend 
solely on the state in which the machine is, so for a given state each output value/
expression is unique. 
7)   The third and fi nal  always  block (lines 50 – 58) implements the optional output 
register (always 3 block of   fi gure 7.2 ). Note that it simply copies each original output 
to a new output at every positive clock edge (it could also be at the negative edge), 
thus inferring the extra register. If this register is used, then the names of the new 
outputs must obviously be the names used in the corresponding port declarations (line 
9). If the initial output values do not matter, reset is not required in this register. 
 8)   To conclude, observe the completeness of the code and the correct use of registers 
(as requested in sections 4.2.8 and 4.2.9, respectively), summarized below. 

 a)   Regarding the use of registers: The circuit is not overregistered. This can be 
observed in the  always_ff  statement of line 20 (responsible for the inference of 
fl ip-fl ops), which is closed in line 22, guaranteeing that only the machine state 
(line 22) gets registered. The output is in the  always_comb  block, which is purely 
combinational. 
 b)   Regarding the outputs: The list of outputs ( outp1 ,  outp2 ,  … ) is exactly the same 
in all states (see lines 28 – 30, 36 – 38, . . .), and the output values/expressions are 
always declared. 
 c)   Regarding the next state: Again, the coverage is complete because all states (A, 
B, C, . . .) are included and in each state the conditional declarations are fi nalized 
with an  else  statement (lines 33, 41, . . .), guaranteeing that no condition is left 
unchecked. 

  Note:  Another implementation approach, for simple FSMs, will be seen in chapter 15. 
 

  1    //Part 1: Module header:-----------------------------  
  2   module module_name  
  3    #(parameter   
  4    param1 =  < value > ,  
  5    param2 =  < value > )  
  6    (  
  7    input logic clk, rst, ...  
  8    input logic [7:0] inp1, inp2, ...  
  9    output logic [15:0] outp1, outp2, ...);  
  10  
  11    //Part 2: Declarations:------------------------------  
  12  
  13    //FSM states type:  
  14    typedef enum logic [2:0] {A, B, C, ...} state;  
  15    state pr_state, nx_state;  
  16  
  17    //Part 3: Statements:--------------------------------  
  18  
  19    //FSM state register:  
  20    always_ff @(posedge clk, posedge rst)  
  21    if (rst) pr_state  < = A;  
  22    else pr_state  < = nx_state;  
  23  
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  24    //FSM combinational logic:  
  25    always_comb    
  26    case (pr_state)  
  27    A: begin  
  28    outp1  < =  < value > ;  
  29    outp2  < =  < value > ;  
  30    ...  
  31    if (condition) nx_state  < = B;  
  32    else if (condition) nx_state  < = ...;  
  33    else nx_state  < = A;   
  34    end  
  35    B: begin  
  36    outp1  < =  < value > ;  
  37    outp2  < =  < value > ;  
  38    ...  
  39    if (condition) nx_state  < = C;  
  40    else if (condition) nx_state  < = ...;  
  41    else nx_state  < = B;   
  42    end     
  43    C: begin  
  44    ...  
  45    end  
  46    ...  
  47    endcase  
  48  
  49    //Optional output register:  
  50    always_ff @(posedge clk, posedge rst)  
  51    if (rst) begin  //rst might be not needed here  
  52    new_outp1  < = ...;  
  53    new_outp2  < = ...; ...  
  54    end  
  55    else begin  
  56    new_outp1  < = outp1;  
  57    new_outp2  < = outp2; ...  
  58    end  
  59  
  60    endmodule  
  61    //---------------------------------------------------  

7.4   SystemVerilog Template for Regular (Category 1) Mealy Machines 

This template, also based on   fi gures 7.1 and 7.2 , is presented below. The only differ-
ence with respect to the Moore template just presented is in the  always_comb  block 
for the combinational logic because the output is specifi ed differently now. Recall that 
in a Mealy machine the output depends not only on the FSM ’ s state but also on its 
input, so  if  statements are expected for the output in one or more states because the 
output values might not be unique. This is achieved by including the output  within
the conditional statements for  nx_state . For example, observe in lines 15 – 33, relative 
to state A, that the output values are now conditional. Compare these lines against 
lines 27 – 34 in the previous template. 

 Please read all comments made for the Moore template in section 7.3 because, 
except for the difference mentioned above, they all apply to the Mealy template below 
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as well. Particular attention should be paid to the recommendations in comment 8, 
which can be easily adapted from the Moore case to the Mealy case. 

  1    //Part 1: Module header:----------------------------------  
  2    (same as for category 1 Moore, section 7.3)  
  3  
  4    //Part 2: Declarations:-----------------------------------  
  5    (same as for category 1 Moore, section 7.3)  
  6  
  7    //Part 3: Statements:-------------------------------------  
  8  
  9    //FSM state register:  
  10    (same as for category 1 Moore, section 7.3)  
  11  
  12    //FSM combinational logic:  
  13    always_comb    
  14    case (pr_state)  
  15    A:  
  16    if (condition) begin  
  17    outp1  < =  < value > ;  
  18    outp2  < =  < value > ;  
  19    ...  
  20    nx_state  < = B;  
  21    end  
  22    else if (condition) begin   
  23    outp1  < =  < value > ;  
  24    outp2  < =  < value > ;  
  25    ...  
  26    nx_state  < = ...;  
  27    end  
  28    else begin  
  29    outp1  < =  < value > ;  
  30    outp2  < =  < value > ;  
  31    ...  
  32    nx_state  < = A;   
  33    end  
  34    B:  
  35    if (condition) begin  
  36    outp1  < =  < value > ;  
  37    outp2  < =  < value > ;  
  38    ...  
  39    nx_state  < = C;  
  40    end  
  41    else if (condition) begin   
  42    outp1  < =  < value > ;  
  43    outp2  < =  < value > ;  
  44    ...  
  45    nx_state  < = ...;  
  46    end  
  47    else begin  
  48    outp1  < =  < value > ;  
  49    outp2  < =  < value > ;  
  50    ...  
  51    nx_state  < = B;   
  52    end  
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  53    C: ...  
  54    ...  
  55    endcase  
  56  
  57    //Optional output register:  
  58    (same as for category 1 Moore, section 7.3)  
  59  
  60    endmodule  
  61    //--------------------------------------------------------  

7.5   Design of a Small Counter 

This section presents a SystemVerilog-based design for the 1-to-5 counter with enable 
and up-down controls introduced in section 5.4.1 (fi gure 5.3). 

 Because counters are inherently synchronous, the Moore approach is the natural 
choice for their implementation, so the SystemVerilog template of section 7.3 is used. 
Because possible glitches at (positive) clock transitions are generally not a problem in 
counters, the optional output register shown in the fi nal portion of the template is 
not employed. 

 The fi rst part of the code ( module header ) is in lines 1 – 4. The module ’ s name is 
 counter . Note that all ports are of type  logic , with one bit for each input and three bits 
for the output. 

 The second part of the code ( declarations ) is in lines 6 – 9. The enumerated type  state  
is created in it to represent the machine ’ s present and next states. 

 The third and fi nal part of the code ( statements ) is in lines 11 – 57. It contains two 
 always  blocks, described next. 

 The fi rst  always  block (lines 13 – 15) is an  always_ff , which implements the 
machine ’ s state register. This is a standard code, similar to the template. 

 The second  always  block (lines 18 – 55) is an  always_comb , which implements the 
entire combinational logic section. It is just a list of all states, each containing the 
output value and the next state. Note that in each state the output value is unique 
because in a Moore machine the output depends only on the state in which the 
machine is. 

 Finally, and very importantly, observe the correct use of registers and the complete-
ness of the code, as described in comment 8 of section 7.3. Observe in particular the 
following: 1) all states are included; 2) the list of outputs (only  outp  in this case) is 
exactly the same in all states, and the corresponding values are always included; 3) 
the specifi cations for  nx_state  are always fi nalized with an  else  statement, so no condi-
tion is left unchecked. 
 

  1    //Module header:-----------------------------------------------  
  2   module counter (  
  3    input logic up, ena, clk, rst,  
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  4    output logic [2:0] outp);  
  5  
  6    //Declarations:-------------------------------------------------  
  7    //FSM states type:  
  8    typedef enum logic [2:0] {one, two, three, four, five} state;  
  9    state pr_state, nx_state;  
  10  
  11    //Statements:---------------------------------------------------  
  12    //FSM state register:  
  13    always_ff @(posedge clk, posedge rst)  
  14    if (rst) pr_state  < = one;  
  15    else pr_state  < = nx_state;  
  16  
  17    //FSM combinational logic:  
  18    always_comb    
  19    case (pr_state)  
  20    one: begin  
  21    outp  < = 1;  
  22    if (ena)  
  23    if (up) nx_state  < = two;  
  24    else nx_state  < = five;  
  25    else nx_state  < = one;   
  26    end  
  27    two: begin  
  28    outp  < = 2;  
  29    if (ena)  
  30    if (up) nx_state  < = three;  
  31    else nx_state  < = one;  
  32    else nx_state  < = two;   
  33    end  
  34    three: begin  
  35    outp  < = 3;  
  36    if (ena)  
  37    if (up) nx_state  < = four;  
  38    else nx_state  < = two;  
  39    else nx_state  < = three;    
  40    end  
  41    four: begin  
  42    outp  < = 4;  
  43    if (ena)  
  44    if (up) nx_state  < = five;  
  45    else nx_state  < = three;  
  46    else nx_state  < = four;   
  47    end  
  48    five: begin  
  49    outp  < = 5;  
  50    if (ena)  
  51    if (up) nx_state  < = one;  
  52    else nx_state  < = four;  
  53    else nx_state  < = five;   
  54    end  
  55    endcase  
  56  
  57   endmodule  
  58   //--------------------------------------------------------------  
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Simulation results from the code above are exhibited in   fi gure 7.3 . Note that the 
output changes only at positive clock transitions, counting up when  up = ‘ 1 ’ , down 
when  up = ‘ 0 ’ , and stopping if  ena = ‘ 0 ’ . 

 The number of fl ip-fl ops inferred by the compiler was three for sequential, Gray, 
or Johnson encoding and fi ve for one-hot, matching the predictions made in section 
5.4.1.    

 7.6   Design of a Garage Door Controller 

 This section presents a SystemVerilog-based design for the garage door controller 
introduced in section 5.4.5. The Moore template of section 7.3 is employed to imple-
ment the FSM of fi gure 5.9c. 

 The fi rst part of the code ( module header ) is in lines 1 – 4. The module ’ s name is 
 garage_door_controller . Note that all ports are of type  logic . 

 The second part of the code ( declarations ) is in lines 6 – 10. The enumerated type 
 state  is created in it to represent the machine ’ s present and next states. 

 The third and fi nal part of the code ( statements ) is in lines 12 – 65. It contains two 
 always  blocks, described next. 

 The fi rst  always  block (lines 14 – 16) is an  always_ff , which implements the 
machine ’ s state register. This is a standard code, similar to the template. 

 The second  always  block (lines 19 – 63) is an  always_comb , which implements the 
entire combinational logic section. It is just a list of all states, each containing the 
output value and the next state. Note that in each state the output value is unique 
because in a Moore machine the output depends only on the state in which the 
machine is. 

 Finally, and very importantly, observe the correct use of registers and the complete-
ness of the code, as described in comment 8 of section 7.3. Observe in particular the 

Figure 7.3 
Simulation results from the SystemVerilog code for the 1-to-5 counter with enable and up-down 

controls of fi gure 5.3. 
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following: 1) all states are included; 2) the list of outputs (only  ctr  in this case) is 
exactly the same in all states, and the corresponding values are always included; 3) 
the specifi cations for  nx_state  are always fi nalized with an  else  statement, so no condi-
tion is left unchecked. 
 

  1    //Module header:-----------------------------------------  
  2   module garage_door_controller (  
  3    input logic remt, sen1, sen2, clk, rst,  
  4    output logic [1:0] ctr);  
  5  
  6    //Declarations:------------------------------------------  
  7    //FSM states type:  
  8    typedef enum logic [2:0] {closed1, closed2, opening1,   
  9    opening2, open1, open2, closing1, closing2} state;  
  10    state pr_state, nx_state;  
  11  
  12    //Statements:--------------------------------------------  
  13    //FSM state register:  
  14    always_ff @(posedge clk, posedge rst)  
  15    if (rst) pr_state  < = closed1;  
  16    else pr_state  < = nx_state;  
  17  
  18    //FSM combinational logic:  
  19    always_comb    
  20    case (pr_state)  
  21    closed1: begin  
  22    ctr  < = 2'b0x;  
  23    if (~remt) nx_state  < = closed2;  
  24    else nx_state  < = closed1;   
  25    end  
  26    closed2: begin  
  27    ctr  < = 2'b0x;  
  28    if (remt) nx_state  < = opening1;  
  29    else nx_state  < = closed2;   
  30    end   
  31    opening1: begin  
  32    ctr  < = 2'b10;  
  33    if (sen1) nx_state  < = open1;  
  34    else if (~remt) nx_state  < = opening2;  
  35    else nx_state  < = opening1;   
  36    end  
  37    opening2: begin  
  38    ctr  < = 2'b10;  
  39    if (remt | sen1) nx_state  < = open1;  
  40    else nx_state  < = opening2;   
  41    end  
  42    open1: begin  
  43    ctr  < = 2'b0x;  
  44    if (~remt) nx_state  < = open2;  
  45    else nx_state  < = open1;   
  46    end  
  47    open2: begin  
  48    ctr  < = 2'b0x;  
  49    if (remt) nx_state  < = closing1;  
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  50    else nx_state  < = open2;   
  51    end  
  52    closing1: begin  
  53    ctr  < = 2'b11;  
  54    if (sen2) nx_state  < = closed1;  
  55    else if (~remt) nx_state  < = closing2;  
  56    else nx_state  < = closing1;   
  57    end  
  58    closing2: begin  
  59    ctr  < = 2'b11;  
  60    if (remt | sen2) nx_state  < = closed1;  
  61    else nx_state  < = closing2;   
  62    end        
  63    endcase  
  64  
  65    endmodule  
  66    //-------------------------------------------------------  

 The number of fl ip-fl ops inferred by the compiler after synthesizing the code above 
was three for sequential or Gray encoding, four for Johnson, and eight for one-hot, 
matching the predictions made in section 5.4.5. 

 Simulation results are depicted in   fi gure 7.4 . The encoding chosen for the states 
was  sequential  (section 3.7). The states are enumerated from 0 to 7 (there are eight 
states) in the order in which they were declared in lines 8 – 9. Be aware, however, that 
some compilers reserve the value zero for the reset state; because the reset (initial) 
state in the present example is  closed1  (see line 15), which is the fi rst state in the 
declaration list, that is not a concern here. 

 In this simulation the sequence  closed1 — closed2 — opening1 — opening2 — open1 —
 open2 — closing1 — closed1  (see state names in the lower part of   fi gure 7.4 ) was tested. 
Note that pulses of various widths were used to illustrate the fact that their width has 
no effect beyond the fi rst positive clock edge.    

Figure 7.4 
Simulation results from the SystemVerilog code for the garage door controller of fi gure 5.9c. 
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7.7   Design of a Datapath Controller for a Greatest Common Divisor Calculator 

This section presents a SystemVerilog-based design for the control unit introduced in 
section 5.4.8, which controls a datapath to produce a greatest common divisor (GCD) 
calculator. The Moore template of section 7.3 is employed to implement the FSM of 
fi gure 5.13e. 

 The fi rst part of the code ( module header ) is in lines 1 – 6. The module ’ s name is 
 control_unit_for_GCD . Note that all ports are of type  logic . 

 The second part of the code ( declarations ) is in lines 8 – 11. The enumerated type 
 state  is created in it to represent the machine ’ s present and next states. 

 The third and fi nal part of the code ( statements ) is in lines 13 – 67. It contains two 
always  blocks, described next. 

 The fi rst  always  block (lines 15 – 17) is an  always_ff , which implements the 
machine ’ s state register. This is a standard code, similar to the template. 

 The second  always  block (lines 20 – 65) is an  always_comb , which implements the 
entire combinational logic section. It is just a list of all states, each containing the 
output values and the next state. Note that in each state the output values are unique 
because in a Moore machine the outputs depend only on the state in which the 
machine is. 

 Finally, and very importantly, observe the correct use of registers and the complete-
ness of the code, as described in comment 8 of section 7.3. Observe in particular the 
following: 1) all states are included; 2) the list of outputs is exactly the same in all 
states, and the corresponding values are always included; 3) the conditional specifi ca-
tions for  nx_state  are always fi nalized with an  else  statement, so no condition is left 
unchecked. 
 

  1    //Module header:--------------------------------------------------  
  2    module control_unit_for_GCD (  
  3    input logic dv, clk, rst,  
  4    input logic [1:0] sign,  
  5    output logic selA, selB, wrA, wrB,  
  6    output logic [1:0] ALUop);  
  7  
  8    //Declarations:---------------------------------------------------  
  9    //FSM states type:  
  10    typedef enum logic [2:0] {idle, load, waitt, writeA, writeB} state;  
  11    state pr_state, nx_state;  
  12  
  13    //Statements:-----------------------------------------------------  
  14    //FSM state register:  
  15    always_ff @(posedge clk, posedge rst)  
  16    if (rst) pr_state  < = idle;  
  17    else pr_state  < = nx_state;  
  18  
  19    //FSM combinational logic:  
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  20    always_comb    
  21    case (pr_state)  
  22    idle: begin  
  23    selA  < = 1'bx;   
  24    selB  < = 1'bx;   
  25    wrA  < = 1'b0;   
  26    wrB  < = 1'b0;   
  27    ALUop  < = 0;  
  28    if (dv) nx_state  < = load;  
  29    else nx_state  < = idle;   
  30    end  
  31    load: begin  
  32    selA  < = 1'b1;   
  33    selB  < = 1'b1;   
  34    wrA  < = 1'b1;   
  35    wrB  < = 1'b1;   
  36    ALUop  < = 0;  
  37    nx_state  < = waitt;  
  38    end     
  39    waitt: begin  
  40    selA  < = 1'bx;   
  41    selB  < = 1'bx;   
  42    wrA  < = 1'b0;   
  43    wrB  < = 1'b0;   
  44    ALUop  < = 2;  
  45    if (sign==1) nx_state  < = writeA;  
  46    else if (sign==2) nx_state  < = writeB;  
  47    else nx_state  < = idle;   
  48    end  
  49    writeA: begin  
  50    selA  < = 1'b0;   
  51    selB  < = 1'bx;   
  52    wrA  < = 1'b1;   
  53    wrB  < = 1'b0;   
  54    ALUop  < = 2;  
  55    nx_state  < = waitt;   
  56    end   
  57    writeB: begin  
  58    selA  < = 1'bx;   
  59    selB  < = 1'b0;   
  60    wrA  < = 1'b0;   
  61    wrB  < = 1'b1;   
  62    ALUop  < = 3;  
  63    nx_state  < = waitt;   
  64    end          
  65    endcase  
  66  
  67   endmodule  
  68   //----------------------------------------------------------------  

7.8   Exercises 

Exercise 7.1: Parity Detector 
Solve exercise 6.1 using SystemVerilog instead of VHDL. 
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Exercise 7.2: One-Shot Circuits 
Solve exercise 6.2 using SystemVerilog instead of VHDL. 

Exercise 7.3: Manchester Encoder 
Solve exercise 6.3 using SystemVerilog instead of VHDL. 

Exercise 7.4: Differential Manchester Encoder 
Solve exercise 6.4 using SystemVerilog instead of VHDL. 

Exercise 7.5: String Detector 
Solve exercise 6.5 using SystemVerilog instead of VHDL. 

Exercise 7.6: Generic String Detector 
Solve exercise 6.6 using SystemVerilog instead of VHDL. 

Exercise 7.7: Keypad Encoder 
Solve exercise 6.7 using SystemVerilog instead of VHDL. 

Exercise 7.8: Datapath Controller for a Largest-Value Detector 
Solve exercise 6.8 using SystemVerilog instead of VHDL. 



8   Timed (Category 2) State Machines 

8.1   Introduction 

We know that state machines can be classifi ed into two types, based on their  input 
connections , as follows.  

 1)    Moore machines : The input, if it exists, is connected only to the logic block that 
computes the next state. 
 2)    Mealy machines : The input is connected to both logic blocks, that is, for the next 
state and for the actual output. 

 In section 3.6 we introduced a new, additional classifi cation, also from a hardware 
point of view, based on the  transition types  and  nature of the outputs , as follows (see 
  fi gure 8.1 ). 

 1)    Regular (category 1) state machines : This category, illustrated in   fi gure 8.1a  and 
studied in chapters 5 to 7, consists of machines with only untimed transitions and 
outputs that do not depend on previous (past) values, so none of the outputs need to 
be registered for the machine to function. 
 2)    Timed (category 2) state machines : This category, illustrated in   fi gure 8.1b  and studied 
in chapters 8 to 10, consists of machines with one or more transitions that depend 
on time (so they can have all four transition types: conditional, timed, conditional-
timed, and unconditional). However, all outputs are still independent from previous 
(past) values. 
 3)    Recursive (category 3) state machines : This category is illustrated in   fi gure 8.1c  and 
studied in chapters 11 to 13. It can have all four types of transitions, but one or more 
outputs depend on previous (past) values, so such outputs must be stored in auxiliary 
registers for the machine to function.  

    The two fundamental decisions before starting a design in hardware are then the 
following: 

 1)   The state machine category (regular, timed, or recursive). 
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2)   The state machine type (Moore or Mealy). 

 It is important to recall, however, that regardless of the machine category and type, 
the state transition diagram must fulfi ll three fundamental requisites (seen in section 
1.3): 

 1)   It must include all possible system states. 
 2)   All state transition conditions must be specifi ed (unless a transition is uncondi-
tional) and must be truly complementary. 
 3)   The list of outputs must be exactly the same in all states (standard architecture). 

 8.2   Architectures for Timed (Category 2) Machines 

 The general architecture for category 2 machines is summarized in   fi gure 8.2a . This 
representation follows the style of fi gures 3.1b and 3.1d, but the style of fi gures 3.1a 
and 3.1c could be used equivalently. The output register (  fi gure 8.2b ) is still optional, 
but the timer (in   fi gure 8.2a ) is compulsory.  

 Note that the timer operates as an auxiliary circuit, producing the signal  t , needed by 
the state machine. However, the FSM itself is responsible for controlling the timer, as 
represented symbolically by the control signal  ctr  in the fi gure. In other words, the 
machine is who decides when the timer should run or stop and when it should be zeroed. 

    The four possible constructions, listed in   fi gure 8.2c , are summarized below. 

  Timed Moore machine : The circuit of   fi gure 8.2a  is used with the input (if it exists) con-
nected only to the logic block for the next state, as in fi gure 5.2a. Consequently, it 
behaves exactly as a pure Moore machine, just with an auxiliary timer operating as 

Figure 8.1 
State machine categories (from a hardware perspective). 
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an extra input. Because the output depends only on the state in which the machine 
is, this circuit is synchronous (see details in section 3.5). Because modern designs are 
generally synchronous, this option is preferred over any other timed implementation 
whenever the application permits. 
Timed Mealy machine : Again, the circuit of   fi gure 8.2a  is used, but this time with the 
input connected to both logic blocks (for output and for next state), as in fi gure 5.2b. 
Consequently, it behaves exactly as a pure Mealy machine, just with an auxiliary timer 
operating as an extra input. Because the input – output transfer is asynchronous, this 
machine can have more than one output value for the same state (see details in section 
3.5). 
  Out-registered (pipelined) timed Moore machine : The extra register of   fi gure 8.2b  is con-
nected to the output of the timed Moore machine. As seen in sections 2.5 and 2.6, 
two fundamental reasons for doing so are glitch removal and pipelined construction. 
The new output will be one or one-half of a clock cycle (depending on the selected 
clock edge) behind the original output. The resulting circuit is order-2 synchronous 
because the original Moore machine was already a registered circuit (in other words, 
the input – output transfer occurs after two clock edges — see details in section 3.5). If 
in a given application this extra register is needed but its consequent extra delay is 
not acceptable, the next alternative can be considered. 
  Out-registered (pipelined) timed Mealy machine : The extra register of   fi gure 8.2b  is 
connected to the output of the timed Mealy machine. The reasons for doing so 
are the same as for Moore machines. The resulting circuit is order-1 synchronous 
because the input – output relationship in the original Mealy machine can be asyn-
chronous. Consequently, the overall behavior (with the output register included) is 
similar to that of a timed Moore machine without the output register (see details in 
section 3.5). 

Figure 8.2 
Timed (category 2) state machine architectures. (a) Moore or Mealy type (depending on input 

connections). (b) Optional output register. (c) Resulting circuits. 
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8.3   Timer Interpretation 

It is very important to interpret the timer correctly. The analysis below and that in 
the section that follows are based on the state machine of fi gure 8.3, where  x  is the 
actual input,  t  is an auxiliary input generated by a timer (see the timer in fi gure 8.2a), 
and  y  is the actual output. Note that this FSM contains all four possible transition 
types (see section 1.6).   

 8.3.1   Time Measurement Unit 
 The time in timed machines ( t  and  T  in fi gure 8.3, for example) is not expressed in 
seconds but rather in  “ number of clock cycles. ”  For example, if we want the machine 
to stay in a certain state during  t state   = 2 ms, and the clock frequency is  f clk   = 50 MHz, 
we simply adopt  T  =  t state    ×   f clk   = 2 · 10  – 3   ×  50 · 10 6  = 100,000 clock cycles. 

 8.3.2   Timer Range 
 If a regular sequential counter with initial value zero is used to build the timer, the 
counter ’ s range for the timer to span  T  clock periods is then from  t  = 0 to  t  =  T   −  1 
(so  t max   =  T   −  1).  

 If the machine has multiple timed transitions, requiring it to stay  T  1  clock cycles 
in state S 1 ,  T  2  clock cycles in state S 2 , and so on, then the value of  T  can be determined 
using the expression  T  = max { T  1 ,  T  2 , . . .}. The same is true if multiple values of  T  are 
required in the same state. 

 Note that indeed a counter running up to any value above  t max   would also do. For 
example, one could choose to use a timer that runs up to the next power-of-two, in 
which case only the counter ’ s MSB would need to be monitored, simplifying the circuit 
construction (at the expense of an extra DFF; also, the transition conditions should 
be changed from  t  =  t max   to  t   ≥   t max   in the conditional-timed cases).  

 8.3.3   Number of Bits 
 The number of bits needed to implement the timer is  N  =   log 2  T   . In other words,  N  
must satisfy  T   ≤  2  N  . For example, if we want  T  1  = 25 and  T  2  = 8,  T  = max {25, 8} = 25 

 Figure 8.3 
 State machine with all four possible transition types. 
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results, so a fi ve-bit counter is needed to build the timer (thus able to run from 0 up 
to 31). The ranges of interest in this case are 0-to-24 in state S 1  and 0-to-7 in state S 2 . 

8.4   Transition Types and Timer Usage 

The state machine of fi gure 8.3, which contains all four possible transition types, is 
again used in the analysis that follows.  

 Transition AB is time independent, so the timer is not needed. Consequently, we 
can let the timer run freely (for example, from 0 to 2  N    −  1, restarting then automati-
cally from 0), or let it run up to a certain value and then stop it, or simply keep it 
stopped (at zero, for example). Keeping the timer stopped saves power but can 
increase the complexity of the comparator. However, if the timer runs up to a certain 
value and then stops (remaining so until the machine changes its state), the addi-
tional power consumption will generally be negligible. In case one decides to keep 
the timer stopped at zero,  T  = 1 should be used (timer running from 0 to  t max   =  T 
−  1 = 0). 

 Transition BC is timed, so the timer is needed. The machine must stay in state B 
during  exactly   T  clock periods, moving then to state C. Consequently, we can stop the 
timer when the monitored value ( t max   =  T   −  1) is reached or we can simply let it run 
freely (for example, from 0 to 2  N    −  1, restarting then automatically from 0) because 
the machine will change its state anyway after  t  =  t max   occurs. 

 Transition CD is conditional-timed, so the timer is again needed. The machine must 
move to state D at the fi rst (positive) clock edge that fi nds  x  =  ‘ 0 ’  after staying in state 
C during  T  clock periods (so it will stay in C during  at least T  clock periods). In this 
case we cannot let the timer run freely because then if  x  =  ‘ 0 ’  is not satisfi ed when 
the timer reaches the monitored value ( t max   =  T   −  1) the condition  x  =  ‘ 0 ’  will only be 
effective again when the timer passes through that value once more. A possible solu-
tion here is to stop the timer when the monitored value is reached (indeed, any value 
 ≥  t max   would do — see comments in section 8.3.2). 

 Finally, transition DA is unconditional, so the same comments made for transition 
AB apply here. 

 In the next section, the possible timer usages described above will be considered 
in order to develop systematic strategies for designing the timer. 

 8.5   Timer Control Strategies 

 We can now develop systematic strategies for controlling the timer. Figure 8.4 is used 
to illustrate the discussions that follow. Note that all four machines are timed. The 
timed states (states that need the timer) are represented with a darker shade of gray. 
A simplifi ed representation was employed for the transition conditions; for example, 
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‘ 1 ’  means  x  =  ‘ 1 ’  and  T   −  1 means  t  =  T   −  1. As usual, it is assumed that a regular 
sequential counter running from  t  = 0 up to  t  =  T   −  1 is employed to build the timer. 

8.5.1   Preliminary Analysis 
A  “ tentative ”  strategy is assumed in this preliminary analysis, which consists of zeroing 
the timer after it reaches the monitored value ( t max   =  T   −  1), with  t max   = 0 adopted in 
the untimed states. 

 The machine in fi gure 8.4a has only conditional and timed transitions, so the timer 
always runs exactly up to  t max  , after which the machine changes its state. Since it is 
assumed here that the timer is always zeroed after  t max   occurs, the timer will always 
be cleared when the FSM enters a new state, causing it to work properly. 

 The machine in fi gure 8.4b has a conditional-timed transition. If  x  =  ‘ 0 ’  occurs 
before  t  =  t max  , the machine moves from A to B with the timer at an unknown ( <  t max  ) value. 
Consequently, the timer will not be zeroed here. However, because state B is untimed, 
so  t max   = 0, the timer will be zeroed at the end of the fi rst clock period after entering 
state B. As a result, the timer will be ready to operate properly even if state C is timed. 

 The case in fi gure 8.4c is similar to that in fi gure 8.4b, but state B is now timed. 
Because the machine will enter state B with  t     <   t max  , the timer will span in state B only 
the number of clock cycles needed to complete state B ’ s  t max  . In summary, our tentative 
timer control strategy is not appropriate for this machine. 

Figure 8.4 
Four timed machines. (a) With only conditional and timed transitions. (b) With conditional and 

conditional-timed transitions but with state B untimed. (c) Same as b but with state B timed. (d) 

Same as b but with conditional values ( “ 01 ”  and  “ 10 ” ) that might require the machine to remain 

in state A longer than  T  clock periods. 
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The case in fi gure 8.4d is also similar to that in fi gure 8.4b, with state B again 
untimed. However, note that there are values of  x  ( “ 01 ”  and  “ 10 ” ) that might cause 
the machine to stay in state A even if  t max   is reached. Because the timer is zeroed 
after  t max   occurs, our tentative strategy does not work here either. A possible solution 
in this case is to stop the timer at  t max  , zeroing it only when the machine changes 
state. 

 Based on the analysis above and that in section 8.4, two timer control strategies 
are proposed next. 

 8.5.2   Timer Control Strategy #1 (Generic) 
 A strategy that complies with all conditions described in section 8.4 and, consequently, 
with all conditions in the examples of fi gure 8.4, is summarized below.  

  For stopping the timer:  Stop the timer when it reaches the monitored value (or a pre-
defi ned value above that). Keep it so until the machine changes its state.  
  For zeroing the timer:  Zero the timer whenever the machine changes state. 

 To apply the timer-zeroing technique above, we can compare  pr_state  to  nx_state . 
If they are different, it means that the FSM will change its state at the next clock edge, 
so a fl ip-fl op clearing command can be produced to zero the timer when such a transi-
tion occurs. 

 The advantages of this strategy are that it is generic, simple to understand, and 
simple to implement. The construction of state transition diagrams using it is simple 
and direct as well. Additionally, the timer does not need to be controlled in the 
untimed states because it will run only up to a certain value and will stop anyway, so 
power consumption is generally not a problem. Also, if one wants, a value greater 
than  t max   can be employed (see comments in section 8.3.2), which can simplify the 
 t -to- t max   comparator (recall that this comparator can be large; for example, to produce 
a 1 s delay from a 100 MHz clock, a 27-bit counter is needed); for instance, if  T  (=  t max

+ 1) is a power of 2, only a single bit (the MSB) needs to be monitored. 
 Its main disadvantage is that the  pr_state -to- nx_state  comparator can be a large 

circuit, because the number of bits in these two signals can be large, particularly when 
the number of states is high and one-hot encoding is employed (sequential or gray 
encoding is suggested when using strategy #1). 

 The following procedure is recommended: Use strategy #1, which is generic, to 
draw the state transition diagram. After completing it, check whether it complies with 
condition 1 or 2 described below for strategy #2. If it does, strategy #2 too can be used 
to build the timer. 

 There are only few cases in which strategy #1 cannot be applied completely, but 
the required adjustments are simple to handle. Such cases will be illustrated in sections 
8.7 and 8.11.8. 
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When using VHDL or SystemVerilog, one of the following codes can be used to 
implement the timer using strategy #1. Note the use of  t   ≠   t max  , which can be a slightly 
smaller comparator circuit than  t   <   t max  , but either one is fi ne.  

--Timer for strategy #1-------------------------  

  --VHDL------------------------------------------  
  process (clk, rst)  
  begin  

  if rst=’1’ then  
  t  < = 0;  

  elsif rising_edge(clk) then  
  if pr_state /= nx_state then  

  t  < = 0;  
  elsif t /= tmax then  – -see comment  

  t  < = t + 1;  
  end if;  

  end if;  
  end process;  
  ------------------------------------------------  

  --SystemVerilog---------------------------------  
  always_ff @(posedge clk, posedge rst)  

  if (rst) t  < = 0;  
  else if (pr_state != nx_state) t  < = 0;  
  else if (t != tmax) t  < = t + 1;  – -see comment  

  ------------------------------------------------  

8.5.3   Timer Control Strategy #2 (Nongeneric) 
This strategy is not generic because it cannot be employed in any timed machine. For 
example, it only works properly for machines a and b of fi gure 8.4. The procedure is 
summarized below.  

For stopping the timer:  Do not stop the timer.  
  For zeroing the timer:  Zero the timer after it reaches  t max   =  T   −  1. In the untimed states, 
adopt  t max   = 0 (timer stopped at zero). 

 This strategy can be applied in the following cases:  

 1) To any timed machine without conditional-timed transitions (fi gure 8.4a, for 
example). 
 2) To timed machines with conditional-timed transitions but only if no state has more 
than one value for  T , if no state can last longer than  T  clock periods, and if any transi-
tion that might last less than  T  clock cycles goes to an untimed state (fi gure 8.4b, for 
example). 

 The advantage of this strategy is that it avoids the  pr_state -to- nx_state  comparator, 
which can be a large circuit. 
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The disadvantages are that it is not generic and that the resulting circuit is not 
guaranteed to be smaller than that for strategy #1. Because here the value of  t max   must 
be specifi ed in all states (with  t max   = 0 in the untimed states) when the machine has 
conditional-timed transitions, the  t -to- t max   comparator (which also can be large) is 
more complex. 

 Since strategy #2 is not generic, the suggested procedure is to draw the state transi-
tion diagram using strategy #1, checking next if it complies with condition 1 or 2 
above in order to determine whether strategy #2 can be used as well. 

 When using VHDL or SystemVerilog, one of the codes below can be used to imple-
ment the timer for strategy #2. Note the use of  t   <   t max   instead of  t   ≠   t max  , needed to 
guarantee that the timer will be zeroed if the FSM leaves a timed state before the timer 
has reached  t max   (entering therefore an untimed state). However, such a situation can 
only occur if the machine has conditional-timed transitions (fi gure 8.4b, for example); 
if the machine does not have conditional-timed transitions (fi gure 8.4a, for example), 
then  t   ≠   t max   is fi ne, too. 

--Timer for strategy #2------------------------  

--VHDL------------------------------------------  
  process (clk, rst)  
  begin  

  if rst=’1’ then  
  t  < = 0;  

  elsif rising_edge(clk) then  
  if t  <  tmax then  – -see comment  

  t  < = t + 1;  
  else  

  t  < = 0;  
  end if;  

  end if;  
  end process;  
  ------------------------------------------------  

  --SystemVerilog---------------------------------  
  always_ff @(posedge clk, posedge rst)  

  if (rst) t  < = 0;  
  else if (t  <  tmax) t  < = t + 1;  – -see comment  
  else t  < = 0;  

  ------------------------------------------------  

8.5.4   Time Behavior of Strategies #1 and #2 
Figure 8.5 shows an example of FSM that in spite of having a conditional-timed transi-
tion can be implemented using any of the timer control strategies proposed above 
(note that this machine falls in the category depicted in fi gure 8.4b). The purpose of 
this example is to illustrate the differences in terms of time behavior between strate-
gies #1 and #2. 
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The machine must implement a triggered circuit with input  x  and output  y . The 
intended behavior is depicted in fi gure 8.5a. In this case,  y  must go up as soon as (i.e., 
at the next positive clock edge)  x  goes up, returning to zero  T  clock cycles (more pre-
cisely,  T  clock  edges ) after  x  returns to zero. Observe in the fi nal part of the plot that 
when  x  comes down but goes up again before the time  T  has ended the circuit is 
retriggered.  

   A solution is shown in fi gure 8.5b.  t max   =  T   −  2 is used in the CA transition, thus 
spanning  T   −  1 clock periods (in fact,  T   −  1 clock edges, as indicated by the black dots), 
because one period is spent in the BC transition.  

 When strategy #1 is used the overall behavior is objective and very simple to under-
stand, as can be observed in fi gure 8.5c, which shows an illustrative timing diagram 
for  T  = 4. It is assumed that the timer stops as soon as  t max   is reached (though not 
required for strategy #1,  t max   = 0 was used in the untimed states). 

 Figure 8.5 
 (a) Desired circuit behavior for a triggered circuit. (b) A solution, which can be implemented 

directly with either strategy #1 or #2. (c) Timing diagram for strategy #1. (d) Timing diagram for 

strategy #2. 
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Strategy #2 is a little more diffi cult to examine. This is due to the CB transition, 
which can only happen with  t   <   t max  , causing the FSM to enter state B without any 
command to zero the timer at the next clock edge. Observe in the B-to-C transition 
in the timing diagram of fi gure 8.5d that  t  is still incremented when the FSM enters 
state B, being only zeroed at the next clock pulse. However, in spite of this detail, the 
machine operates adequately, as can be seen in the plot for  y , which is exactly the 
same as that in fi gure 8.5c. 

 The reader is invited to examine these two timing diagrams carefully to fully under-
stand and appreciate the differences between these two timer control strategies. 

 8.6   Truly Complementary Time-Based Transition Conditions 

 As discussed in Section 3.8, when a circuit does not have any sort of reset mechanism, 
the initial state (either  ‘ 0 ’  or  ‘ 1 ’ ) of its fl ip-fl ops upon power-up might be undeter-
mined. Say that that is the case and that our machine has a timed transition that must 
span 10 clock periods, thus requiring a 4-bit counter, where 0-to-9 is the range of 
interest. Since a 4-bit counter is capable of counting from 0 to 15, the initial (random) 
state might fall in the 10-to-15 range. Recall from section 1.5 that the outward transi-
tion conditions in any state must be  truly complementary  (i.e., they must include all 
possible combinations of the transition control signals, and obviously all just once), 
so the 10-to-15 range must also be considered. 

 Figure 8.6a shows an example of timed machine with under-specifi ed transition 
conditions, which falls in the situation described above because the  t   >   T   −  1 range is 
not covered. The problem in fi xed in fi gure 8.6b by assigning that range to the AB 
transition. Another alternative is presented in fi gure 8.6c, with the missing range 
assigned to the AA transition. Either one of the last two options should be used. The 
decision between one or the other depends on the application; more specifi cally, it 
depends on where we want the machine to be in case  t   >   T   −  1 happens (at power-up, 
for example).  

Figure 8.6 
(a) Under-specifi ed transition conditions ( t   >   T   −  1 range not covered). (b)  t   >   T   −  1 range assigned 

to the AB transition. (c)  t   >   T   −  1 range assigned to the AA transition. 
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Note, however, that the problem described above can only happen before the fi rst 
run of the timer, after which the FSM has full control over the timer.  

   Another timed machine with incorrect transition conditions is shown in fi gure 8.7. 
However, contrary to the previous example, this machine is over-specifi ed, because 
more than one transition can be true at the same time ( ‘ 0 ’  and  T   −  1 can occur at the 
same time). As seen in section 1.5, overspecifi cation can be resolved by establishing 
priorities. AB was considered to have priority over AC in the solution of fi gure 8.7b, 
whereas the opposite was assumed in fi gure 8.7c.    

 8.7   Repetitively Looped State Machines 

 This section discusses the particular case of repetitively looped state machines, found, 
for example, in serial data communications circuits (serial data receiver/transmitter, 
I 2 C interface, SPI interface, etc.). An equivalent implementation will be seen in section 
11.5 using the category 3 approach. 

 The fi rst case is shown in fi gure 8.8a, where a pair of states is repeated  T  times (this 
kind of problem was in fact introduced in section 3.12). If  T  is large, it is obviously 
impractical to represent this circuit as a regular FSM.  

 An equivalent representation for this problem is shown in fi gure 8.8b, with a loop 
replacing the repeated states. This loop must be repeated  T  times in the AB direction 
(in the BA direction the total is  T   −  1 times). Consequently, by converting the category 
1 machine of fi gure 8.8a into the category 2 machine of fi gure 8.8b, the FSM repre-
sentation becomes viable and the problem can be easily solved.  

 A possible implementation is depicted in fi gure 8.8c, with the timer incremented 
in both directions (AB and BA), therefore being not zeroed in any of them (note the 
thick circles and the different arrows; a thick circle means that there is at least one 
transition into that state in which the timer should not be zeroed, while the different 
arrow with a dot at its origin identifi es which that transition is). 

Figure 8.7 
(a) Overspecifi ed transition conditions ( ‘ 0 ’  and  T   −  1 can happen at the same time). (b) Solution 

with priority given to transition AB. (c) Solution with priority given to transition AC.  
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    A more general case is presented in fi gure 8.9. Here, not only the loop must be 
repeated  T  times, but the machine must also stay  T  A  clock periods in A and  T  B  clock 
periods in B. The problem is stated in fi gure 8.9a, with an equivalent representation 
shown in fi gure 8.9b. A possible solution is shown in fi gure 8.9c, using two timers. 
While timer  t  1  controls the time the machine stays in state A or state B, timer  t  2  mea-
sures the number of loop repetitions. Consequently, only timer  t  2  is not zeroed in the 
state transitions.    

 8.8   Time Behavior of Timed Moore Machines 

 In section 3.5 an analysis of the general time behavior of Moore and Mealy machines 
was presented. This section and the next present extensions to that analysis for the 
case when timed transitions are also involved.  

 Figure 8.8 
 (a) FSM with a pair of states repeated  T  times. (b) Equivalent looped representation. (c) An alter-

native for the timer, counting in both directions, thus being not zeroed in any of them. 

 Figure 8.9 
 Generalization of the case seen in fi gure 8.8. Not only the loop is repeated  T  times but also the 

machine stays  T  A  clock periods in A and  T  B  clock periods in B. 
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The Moore machine of   fi gure 8.10a , which includes three transition types, is used 
to illustrate the analysis. It is assumed that the timer control strategy #1 is adopted 
to build the timer. Observe the following in the accompanying timing diagram of 
  fi gure 8.10b : 

 1)    T  B  = 3 and  T  C  = 2 clock cycles. 
 2)   When  x  changes, the output does not change. This is expected because in a Moore 
machine the output is synchronous, thus changing only when the state changes. 
 3)   The stay in state A depends only on  x , so the machine moves to state B at the fi rst 
(positive) clock edge that fi nds  x  =  ‘ 1 ’ . 
 4)   Because  T  B  = 3, state B lasts exactly three clock cycles (the timer counts from 
0 to 2). 
 5)   Because  T  C  = 2 but the CA transition is conditional-timed, state C lasts at least two 
clock cycles (the timer counts from 0 to 1). The  “ at least ”  restriction is due to the  x  = 
 ‘ 0 ’  condition, which might not be true when the timer reaches the monitored 
( T  C   −  1 = 1) value. In this example  x  =  ‘ 0 ’  was already available, so state C did last 
only two clock periods. 
 6)   In the states where the timer is not needed (only state A in this example), the timer 
was kept stopped at zero. 

 In conclusion, in a Moore machine the output and the state are in perfect sync, 
changing at the same time. Each output value then has the same duration as its associ-
ated state.    

 8.9   Time Behavior of Timed Mealy Machines 

 The Mealy machine of   fi gure 8.11a , which is the Mealy counterpart of the Moore 
machine of   fi gure 8.10a , is used to illustrate the analysis. Observe the following in the 
accompanying timing diagram of   fi gure 8.11b : 

 1)    T  B  = 3 and  T  C  = 2 clock cycles. 
 2)   Contrary to the Moore case,  y  can change when  x  changes. This is expected because 
Mealy machines are asynchronous. 

Figure 8.10 
(a) A Moore machine and (b) a corresponding timing diagram.  
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3)   The output value while in state A depends on  x , so two different values can occur: 
y  = 5 if  x  =  ‘ 0 ’  or  y  = 6 if  x  =  ‘ 1 ’ . 
 4)   Because  T  B  = 3, state B lasts exactly three clock cycles (the timer counts from 
0 to 2). 
 5)   Because  T  C  = 2 but the CA transition is conditional-timed, state C lasts at least two 
clock cycles (the timer counts from 0 to 1). The  “ at least ”  restriction is due to the  x  = 
 ‘ 0 ’  condition, which might not be true when the timer reaches the monitored 
( T  C   −  1 = 1) value. In this example  x  =  ‘ 0 ’  was already available, so state C did last 
only two clock periods. 
 6)   In the states where the timer is not needed (only state A in this example), the timer 
was kept stopped at zero. 
 7)   The states and the timer operate exactly as in the Moore case, but that is not true 
for the output. 
 8)   As already seen, contrary to the Moore case, the output value is not unique in 
all states. 
 9)   Contrary to the Moore case, the output does not change together with the state. 
It changes earlier. 
 10) Contrary to the Moore case, the output values do not necessarily last as long 
as the states. They last less than the associated state if the transition condition into 
that state is asynchronous, or they last exactly the same as the associated state 
if the transition condition into that state is synchronous (a timed transition, for 
example). Note that the output value  y  = 6 lasts less than three clock periods (the 
transition control signal into state B is  x , which is asynchronous), but  y  = 7 lasts 
exactly two clock periods (the transition control signal into state C is  t , which is 
synchronous). 

 In conclusion, in a Mealy machine the output changes earlier than the state, 
either by a fraction of a clock period (if the transition condition into that state 
is asynchronous) or by a full clock period (for synchronous conditions, such as 
time). The duration of each output value can then be different from that of its 
associated state.    

Figure 8.11 
(a) Mealy counterpart of the Moore machine of fi gure 8.10a. (b) A corresponding timing diagram. 
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8.10   Number of Flip-Flops 

Having understood the timer, we pass now to the last analysis before the presentation 
of timed (category 2) FSM examples. The analysis regards the number of fl ip-fl ops 
needed to implement the intended circuit. As mentioned earlier, in general, and par-
ticularly in large designs, it is diffi cult to estimate the number of logic gates that will 
be needed to implement the desired solution, but it is always possible to determine, 
and exactly, the number of fl ip-fl ops. 

 In the particular case of sequential circuits implemented as category 2 state 
machines, there are three demands for DFFs, as follows. 

 1)   For the state register (see  nx_state  and  pr_state  in   fi gure 8.2a , which are the 
state memory fl ip-fl ops ’  input and output, respectively; below,  M FSM   is the number of 
states): 

 For sequential or Gray encoding,  N FSM   =   log 2   M FSM    . For example,  M FSM   = 25  →   N FSM

= 5. 
 For Johnson encoding,  N FSM   =    M FSM  /2  . For example,  M FSM   = 25  →   N FSM   = 13. 
 For one-hot encoding,  N FSM   =  M FSM  . For example,  M FSM   = 25  →   N FSM   = 25. 

 2)   For the output register (  fi gure 8.2b , optional, with  b output   bits):  
  N output   =  b output  . For example,  b output   = 16  →   N output   = 16. 

 3)   To build the timer (  fi gure 8.2a , compulsory):  
  N timer   =   log 2   T max    , where  T max   is the largest transition time, expressed in  “ number 
of clock cycles, ”  that is,  T max   =  t state_max    ×   f clk  , where  t state_max   is the largest transition 
time, in seconds, and  f clk   is the clock frequency, in hertz. For example, for the 
machine to be able to stay  t state_max   = 8  μ s in the state with longest duration, and 
assuming that  f clk   = 50 MHz,  T max   = 8 · 10  – 6   ×  50 · 10 6  = 400 clock cycles must be used, 
from which  N timer   = 9 results.  

 Therefore, the total number of DFFs is  N total   =  N FSM   +  N output   +  N timer  . In the examples 
that follow, as well as in the actual designs with VHDL and SystemVerilog, the number 
of fl ip-fl ops will be often examined. 

 8.11   Examples of Timed (Category 2) Machines 

 A series of timed FSMs are presented next. To draw the corresponding state transition 
diagrams, strategy #1 (section 8.5.2) is considered as the default strategy for controlling 
the timer. If the resulting machine fulfi lls condition 1 or 2 for strategy #2 (section 
8.5.3), then that strategy too can be used to control the timer. 

 Several of the examples described in this chapter will be implemented later using 
VHDL (chapter 9) and SystemVerilog (chapter 10). 
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8.11.1   Blinking Light 
This example is simple enough and yet very illustrative of the general behavior of 
timed FSMs. It concerns a circuit that must turn a light on and off, remaining on 
during  T  1  clock periods and off during  T  2  clock periods. An important desired feature 
is that when the circuit is enabled it must start from a state with the light on (to 
prevent the user from thinking that the circuit is not working when large transition 
times are involved). 

 The circuit ports are depicted in   fi gure 8.12a . The input comes from a switch called 
 ena , which enables the circuit when asserted. The output is a port called  light  that 
feeds a light-emitting diode (LED). 

   Figure 8.12b  shows examples of commercial LEDs and their typical usage. An LED 
consists of a PN junction fabricated, for example, with gallium arsenide (GaAs). It 
emits light when forward biased, as shown on the right of   fi gure 8.12b , which also 
shows a current-limiting resistor,  R . The emitted radiation can be in the infrared spec-
trum (used, for example, in remote controls) or in the visible spectrum (used, for 
example, in alphanumeric displays and as signaling lamps in all sorts of equipment). 
To radiate in the visible spectrum, other materials must be added to GaAs, such as 
aluminum, in AlGaAs (red light), or phosphorus, in GaAsP (red or yellow light). Other 
materials are used to obtain radiations at higher frequencies, such as zinc selenide 
(ZnSe) for blue LEDs.    

 A Moore-type solution is presented in   fi gure 8.12c . It has three states, called  stop  
(not blinking, with light off),  on  (circuit enabled, with light on), and  off  (circuit 
enabled, with light off). Note that while the switch is closed ( ena  =  ‘ 1 ’ ) the circuit fl ips 
back and forth between states  on  and  off , staying  T  1  clock periods in the former and 
 T  2  clock periods in the latter. Note also that when  ena  is asserted the machine moves 
immediately (at the next positive clock edge) from state  stop  to state  on ; likewise, when 
enable is turned off, the machine moves immediately to state  stop .  

 This machine falls in the situation depicted in fi gure 8.4b, so it can be implemented 
with either timer control strategy (#1, section 8.5.2, or #2, section 8.5.3).  

 An interesting aspect of this machine is that it might not need a reset signal at all, 
depending on the chosen encoding scheme (for example, sequential or Gray) and on 

 Figure 8.12 
 Circuit that feeds a blinking light (an LED, in this case). (a) Circuit ports. (b) Commercial LEDs 

and typical usage. (c) Moore-type solution. 
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the equations used to implement the next state (see exercise 8.5). Also, despite  ena  
being an asynchronous input and being produced by a mechanical switch, neither a 
synchronizer (section 2.3) nor a debouncer (section 8.11.3) is needed because of the 
nature of this application. 

 Based on section 8.10, the number of fl ip-fl ops needed to implement this circuit is 
as follows. For the state register:  M FSM   = 3 states; therefore,  N FSM   = 2 if sequential, Gray, 
or Johnson encoding is used, or 3 for one-hot. For the optional output register: not 
needed in this application, so  N output   = 0. For the timer: assuming 0.5 s for  T  1  and 1 s 
for  T  2 , with  f clk   = 50 MHz,  T max   = 5  ⋅  10 7  clock cycles results, so  N timer   = 26. Therefore, 
 N total   = 28 or 29. 

 8.11.2   Light Rotator 
 This example shows another simple and yet very illustrative application for timed 
machines. It consists of a circuit that produces a rotating movement in a seven-
segment display (SSD). 

 SSDs are just special seven-LED arrangements (eight if a decimal point is also 
included). This kind of device is illustrated in   fi gure 8.13 . In   fi gure 8.13a  an exam ple 
of a commercial SSD device (two digits with decimal points) is shown. In   fi gure 8.13b  
a typical notation for the segment names ( abcdefg ) is shown. In fi gure 8.13c the 
common-anode confi guration is presented, in which a  ‘ 0 ’  turns a segment on and a 
 ‘ 1 ’  turns it off. Finally, the table in fi gure 8.13d shows the logic values that must be 
used to obtain the traditional 0-to-F hexadecimal characters.    

 The circuit ports for the current example are presented in   fi gure 8.14a . The inputs 
are a stop switch ( stp ), clock ( clk ), and reset ( rst ), and the output is a seven-bit signal 
( ssd ) that feeds the seven segments of the SSD.    

 Figure 8.13 
 (a) A commercial seven-segment display (SSD) device. (b) Segment names ( abcdefg ). (c) Common-

anode confi guration (a  ‘ 0 ’  lights a segment, whereas a  ‘ 1 ’  turns it off). (d) Logic values to obtain 

the 0-to-F hexadecimal characters. 
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The segments must be lit sequentially in the clockwise direction, with overlaps used 
to provide a smoother rotation. In other words, segment  a  must be lit for some time, 
then  a  and  b  should be lit together, then  b  only, next  b  and  c , then  c  only, and so on. 
If the stop switch is asserted ( stp  =  ‘ 1 ’ ), the movement must stop, resuming exactly 
from the same position when  stp  returns to  ‘ 0 ’ . If reset is asserted ( rst  =  ‘ 1 ’ ), the circuit 
must return asynchronously to the initial state (only segment  a  lit). 

 A corresponding Moore solution is presented in   fi gure 8.14b , where each state name 
denotes which SSD segments are lit while the machine is in that state. Note that it is 
a simplifi ed diagram, with only the output value (no output name) shown inside each 
state circle and only the time values (no stop conditions) specifi ed on the arrows. 
Moreover, note the relaxed use of  T  1  and  T  2  alone on the arrows (instead of  t  =  T  1   −  1 
and  t  =  T  2   −  1), indicating simply the total number of clock periods that the machine 
must spend in each state. 

 As in the previous example, the input ( stp ) is asynchronous and produced by a 
mechanical switch. However, because of the nature of the application, again neither 
a synchronizer (section 2.3) nor a debouncer (section 8.11.3) is needed. 

 Based on section 8.10, the number of fl ip-fl ops needed to implement this circuit is 
as follows. For the state register:  M FSM   = 12 states; therefore,  N FSM   = 4 if sequential or 
Gray encoding is used, 6 for Johnson, or 12 for one-hot. For the optional output reg-
ister: not needed in this application, so  N output   = 0. For the timer: assuming 120 ms for 
 T  1  and 35 ms for  T  2 , with  f clk   = 50 MHz,  T max   = 6  ⋅  10 6  clock cycles results, so  N timer   = 23. 
Therefore,  N total   = 27, 29, or 35. 

 VHDL and SystemVerilog implementations for this light rotator are presented in 
sections 9.4 and 10.4, respectively. Because this machine falls in the situation depicted 
in fi gure 8.4a, it can be implemented with either timer control strategy (#1, section 
8.5.2, or #2, section 8.5.3). Strategy #2 was adopted there, but both strategies are 
explored and compared in exercises 9.1 and 10.1. 

 8.11.3   Switch Debouncer 
   Figure 8.15a  shows a switch that produces  x  =  ‘ 0 ’  when open or  x  =  ‘ 1 ’  when closed. 
The problem with mechanical switches is that they might bounce a few times before 

Figure 8.14 
SSD rotator. (a) Circuit ports. (b) Corresponding (simplifi ed) Moore-type state diagram. 
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fi nally settling in the proper position, as illustrated in   fi gures 8.15b,c . Depending on 
the switch characteristics, such bounces can last from a fraction of a millisecond up 
to several milliseconds.    

 Switch bounces are not acceptable in several applications. A disastrous example is 
when the signal produced by the switch must act as a clock to some process because 
the corresponding fl ip-fl ops will understand the bounces as several clock pulses. 

 Two debouncing approaches are depicted in   fi gures 8.15b,c . The fi rst is one-sided 
(only the low-to-high transition is debounced), whereas the second is two-sided (both 
transitions are debounced). The debouncing strategy here consists of checking the 
input permanently (at every clock cycle) and accepting a new value only after it has 
remained fi xed for a certain amount of time. For example, if the debouncing time is 
2 ms and the clock frequency is 50 MHz, the same result must occur 2 · 10  – 3   ×  50 · 10 6

= 100,000 consecutive times to be considered valid. 
 Note that in   fi gure 8.15b  the one-sided debouncer automatically fi lters the other 

transition, but it does not protect the circuit against unexpected input transients/
glitches (caused, for example, by the switching of large current loads onto the same 
power supply or by lightning). 

 In debouncers, glitches at the output are generally undesired because providing a 
safe, clean signal is precisely the purpose of this circuit, so the optional output register 
of   fi gure 8.2b  should be employed unless  y  comes directly from a DFF (this depends 
on the encoding scheme and can be checked in the compilation report equations). 

 A fl owchart for the two-sided debouncer of   fi gure 8.15c  is presented in   fi gure 8.16a .  
    An initial (bad) solution is presented in   fi gure 8.16b . The problem here is that it 

only checks the condition  x  =  ‘ 1 ’  (or  ‘ 0 ’ )  at the end  of  T  clock cycles. Consequently, to 
obtain a full debouncer, each transition of   fi gure 8.16b  must be replaced with three 
pure transitions, resulting in the FSM of   fi gure 8.16c . Although the  “  − 2 ”  factor in the 
timed  t  =  T   −  2 condition does not matter in this application, it was kept as a reminder 
of the precise value. 

 Even though the input ( x ) is asynchronous, a synchronizer (section 2.3) is not 
needed because  y  can change its value only after a time  T , which is a synchronous 
condition (the timer operates with the same clock as the FSM). 

Figure 8.15 
(a) Mechanical switch and debouncer ports. (b) Bounces processed by a one-sided (low-to-high) 

debouncer. (c) With a two-sided debouncer. 
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To discuss the need for an explicit reset signal (see sections 3.8 and 3.9), let us 
divide the problem into two cases. The fi rst regards implementation in FPGAs whose 
fl ip-fl ops are automatically reset to  ‘ 0 ’  at power-up. In this case, reset is not needed if 
any of the encoding schemes described in section 3.7 is used, except for one-hot, but 
fi ne for the modifi ed version of one-hot seen in fi gure 3.10b, with the only restriction 
that  zero  must be declared as the initial (reset) state. The second case regards imple-
mentation in devices whose DFFs ’  initial state is arbitrary. If sequential or Gray encod-
ing is used, all two-bit codewords will be consumed to encode the machine, so the 
initial state will fall necessarily inside the machine, and deadlock cannot occur. Con-
sequently, we only need to consider the consequences of having the machine start 
from a state other than state  zero . It is clear from   fi gure 8.16c  that the value of  y  will 
adjust itself automatically to the value of  x  after at most  T  clock periods; therefore, 
reset is required only if having  y  =  ‘ 1 ’  during such a short time period might be enough 
to turn on a critical application (a factory machine, for example). 

 Based on section 8.10, the number of fl ip-fl ops needed to implement this circuit is 
as follows. For the state register:  M FSM   = 4 states; therefore,  N FSM   = 2 if sequential, Gray, 
or Johnson encoding is used, or 4 for one-hot. For the optional output register: assum-
ing that  y  comes directly from a DFF,  N output   = 0. For the timer: with  t state_max   = 2 ms and 
 f clk   = 50 MHz,  T max   = 10 5  clock cycles results, so  N timer   = 17. Therefore,  N total   = 19 or 21. 

 8.11.4   Reference-Value Defi ner 
 This section deals with a problem that is common in control applications. It consists 
of a circuit that sets a reference value. For example, a temperature controller for an 
air conditioning system must have a way of letting the user choose the desired ( refer-
ence ) room temperature (see section 5.4.4). 

Figure 8.16 
Full switch debouncer. (a) Flowchart. (b) Bad and (c) good solutions. 
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An example is presented in   fi gure 8.17 , in which the reference value is set by a 
pushbutton. Two cases are considered; in both a debouncer is needed, but in   fi gure 
8.17a  the reference value is produced by a common counter (note that  x  plays the 
role of clock), whereas in   fi gure 8.17b  it is produced by an FSM (the actual system 
clock plays the role of clock). Even though a counter too is an FSM, the reference here 
is to the fact that only the latter is implemented using the FSM approach.    

 The case in   fi gure 8.17a  is advantageous when the reference values are regular 
(next = present + constant). For example, if we want to set the desired room tem-
perature for the air conditioning system mentioned above, the counter can be 
incremented by one unit (1 ° F or 1 ° C) every time the pushbutton is pressed (and 
released, of course), going from the minimum to the maximum reference value, 
returning then to the minimum value and restarting from there. Another advan-
tage of this alternative is that the number of reference values can be arbitrarily 
large. 

 The case in   fi gure 8.17b  is advantageous when the reference values are irregular 
and the number of reference values is small. Note that we have made a little modifi ca-
tion in the debouncer (FSM1), embedding in it a one-shot converter (see sections 2.4 
and 5.4.3), which converts the (long) debounced signal into a pulse with duration 
equal to one clock period. 

 A solution for the case of   fi gure 8.17b  is presented in   fi gure 8.18 . The time behavior 
of FSM1 is illustrated in   fi gure 8.18a , and the corresponding state diagram is shown 
in   fi gure 8.18b . It is a  ‘ 0 ’ -to- ‘ 1 ’  debouncer, so it requires three states; just one extra 
state is needed to include the one-shot conversion, thus totaling four states. The state 
diagram for FSM2 is depicted in   fi gure 8.18c , for a total of 10 states with arbitrary 
reference values  r  1 ,  r  2 ,  … ,  r  10 . The one-shot modifi cation of FSM1 is important because 
it eliminates the need for FSM2 to check the return of  x  to  ‘ 0 ’ , which would double 
its number of states.    

 In many applications both up and down controls are needed. This kind of situation 
is illustrated in   fi gures 8.19a and 8.19b , which are generalizations of the cases in   fi gures 
8.17a and 8.17b , respectively (i.e., in the former the reference value is set by a counter, 
whereas in the latter it is set by a state machine).    

Figure 8.17 
Reference-value defi ner implemented (a) with a counter and (b) with a state machine. 
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 The circuit of   fi gure 8.19a  consists of a block with switch connections plus a 
debouncer, followed by a regular counter with up-down control (it counts upward if 
 up/dn  ′  =  ‘ 1 ’  or downward otherwise). Note that  x  acts as the clock to the counter, so 
 x  must be debounced. When a switch is pressed, it must not only generate a pulse in 
 x  but also defi ne the value of  up/dn  ′  (see exercise 8.12). 

 The circuit of   fi gure 8.19b  also consists of two blocks. Note that it is similar to that 
in   fi gure 8.17b , but with two control inputs. The fi rst block contains a debouncer plus 
a one-shot conversion circuit, producing two short (one-clock-period duration) pulses 
at  x  1  and  x  2 , which are not expected to happen simultaneously. The second block is a 
reference-value-defi ner state machine, moving up if  x  1  =  ‘ 1 ’  or down if  x  2  =  ‘ 1 ’ . The 
construction of this circuit can be based on   fi gure 8.18 . As in that case, it might be 
advantageous to build the fi rst block with a single FSM that combines the debouncer 
and the one-shot circuit. Additionally, because  x  1  and  x  2  are not expected to be active 
at the same time, it might be advantageous to build a  “ combined ”  debouncer for both 
 up  and  dn  signals (see exercises 8.9 and 8.10). 

Figure 8.18 
Solution for the circuit of   fi gure 8.17b . (a) Time behavior and (b) FSM for the pushbutton 

debouncer with embedded one-shot conversion. (c) FSM for the reference-value defi ner, with 10 

arbitrary values. 

 Figure 8.19 
 Reference-value defi ner with up and down controls implemented (a) with a counter and (b) with 

a state machine. 
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8.11.5   Traffi c Light Controller 
 A classical timed application is described in this example, which consists of a traffi c 
light controller. 

 The overall specifi cations, summarized in   fi gure 8.20a , are as follows: 

a) It must have three operating modes:  regular ,  test , and  standby . 
b) Regular mode consists of four states of operation, called  RG  (red in direction 1 and 
green in direction 2 turned on),  RY  (red in direction 1 and yellow in direction 2 turned 
on),  GR  (green in direction 1 and red in direction 2 turned on), and  YR  (yellow in direc-
tion 1 and red in direction 2 turned on), each with an independent time duration. 
 c) Test mode must allow all preprogrammed times to be overwritten (by activating 
a manual switch) with a small value (1 s per state), such that the system can be easily 
tested during maintenance. 
 d) Standby mode, if set (by a sensor accusing malfunctioning, for example, or by a 
manual switch), must have the system activate the yellow lights in both directions, 
remaining so while the standby signal is active.    

 The circuit ports are shown in   fi gure 8.20b . The inputs are two switches, called  stby  
and  test , plus clock and reset. The standby switch selects between the regular mode 
( stby  =  ‘ 0 ’ ) and the standby mode ( stby  =  ‘ 1 ’ ), and the test switch forces the system 
into test mode when asserted ( test  =  ‘ 1 ’ ). The output consists of six signals that control 
the six traffi c lights (RYG in direction 1 plus RYG in direction 2). 

 A corresponding Moore solution is presented in   fi gure 8.20c . If the system is in 
standby mode, the machine remains in state YY; otherwise, it circulates through states 

 Figure 8.20 
 Traffi c light controller. (a) Time-related specifi cations. (b) Circuit ports. (c) Corresponding (simpli-

fi ed) Moore machine. 
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RG  →  RY  →  GR  →  YR  →  RG, and onward. The time values shown in the fi gure ( timeRG , 
 timeRY , and so on) are for the regular operation mode, which must change to  timeTEST  
if the system is switched to the test mode (not included in the state diagram for the 
sake of simplicity). Note that, due to the nature of this application,  stby  can operate 
in a way similar to reset (after proper synchronization/glitch removal). 

 Based on section 8.10, the number of fl ip-fl ops needed to implement this circuit is 
as follows. For the state register:  M FSM   = 5 states; therefore,  N FSM   = 3 if sequential, Gray, 
or Johnson encoding is used, or 5 for one-hot. For the optional output register: not 
needed in this application, so  N output   = 0. For the timer: knowing that  t state_max   = 15 s 
(table of   fi gure 8.20a ) and assuming  f clk   = 50 MHz,  T max   = 75  ⋅  10 7  clock cycles results, 
so  N timer   = 30. Therefore,  N total   = 33 or 35. 

 The analysis on the need for reset and synchronizers is left as an exercise (exercise 
8.13). 

 8.11.6   Car Alarm (with Chirps) 
 A car alarm was presented in section 4.2.4. The example shown here is an extension 
to that one, now with chirps included to announce when the alarm is turned on (one 
chirp) or off (two chirps). Because the chirps are brief siren activations, a timed 
machine is now needed. 

 The circuit ports are shown in   fi gure 8.21a . The inputs are  remt  (command from 
the remote control) and  sen  (from sensors indicating intrusion) plus clock and reset. 

 Figure 8.21 
 Car alarm. (a) Circuit ports. (b) Bad (with state bypass and non – true complementarity) and (c) 

good solutions. 
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The output is  siren , which must be turned on (=  ‘ 1 ’ ) when an intrusion occurs or during 
the chirps.    

 A corresponding Moore solution is presented in   fi gure 8.21b,  with  disarmed ,  armed , 
and  alarm  as the fundamental states and  chirp1  to  chirp5  as the chirp-generating states. 
Note the timed transitions. The time duration of a chirp is  chirpON  clock cycles, and 
the time interval between two siren activations is  chirpOFF  clock periods. Observe, 
however, that this machine exhibits the state-bypass problem described in section 
4.2.4, which occurs when a long  remt  =  ‘ 1 ’  command is received because then the 
circuit simply circulates in the loop  disarmed   →   chirp1   →   armed   →   chirp3   →   chirp4   →  
 chirp5   →   disarmed , and so on. An additional (minor) problem is that not all transition 
conditions are truly complementary (section 1.5); for example, observe in state  armed  
that there is no priority defi nition in case  remt  =  ‘ 1 ’  and  sen  =  ‘ 1 ’  occur 
simultaneously. 

 A corrected machine is presented in   fi gure 8.21c , in which two wait states (white 
circles) were added to eliminate state bypass. Of course, if a one-shot circuit (section 
5.4.3) were added to the previous solution to reduce the duration of  remt  to a single 
clock period, and noncomplementarity were corrected, then that machine would work 
well too. Note that in the presented solution the alarm can be turned on with  sen  = 
 ‘ 1 ’ ; if that is not wanted, all that is needed is to use the condition  “  remt  =  ‘ 1 ’   &   sen  = 
 ‘ 0 ’  ”  in the  disarmed -to- chirp1  transition. 

 As mentioned in a similar application in section 5.4.5 (garage door controller), a 
good practice in this kind of application is to include debouncers for the signals 
coming from the remote control and sensors, which not only eliminate the need for 
synchronizers but also prevent short glitches (due to lightning, for example) from (de)
activating the alarm (they have to be full debouncers, similar to that in section 8.11.3). 

 VHDL and SystemVerilog implementations for this car alarm are presented in sec-
tions 9.5 and 10.5, respectively. The analysis of the number of fl ip-fl ops and the need 
for reset and synchronizers is treated in exercise 8.14. 

 8.11.7   Password Detector 
 This section describes a password detector, used, for example, in password-protected 
door locks like that in   fi gure 8.22a . 

 The circuit ports are depicted in   fi gure 8.22b . The inputs are  key  (which repre-
sents the keypad pushbutton pressed by the user) plus the traditional clock and reset 
signals;  key  is composed of four bits, so it can encode a keypad with up to 15 pushbut-
tons (one codeword is reserved for the no-button-pressed case). In the development 
below it is assumed that the bits of  key  are already debounced and encoded according 
to the table in exercise 5.14. The outputs are  led1  (turned on when the system is in 
the  idle  state) and  led2  (turned on for a few seconds when the correct password has 
been typed in). 
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The desired circuit features are the following (where  T  corresponds to 3 s): 

 a) When the system is in the  idle  state, LED  led1  ( idle ) must be on and LED  led2  
( unlocked ) must be off. 
 b) During the time a password is being entered both LEDs must be off. 
 c) If the correct password is entered,  led2  must be turned on for a time  T , with  led1  
still off, after which the system must return to  idle  (during that time interval a new 
password must not be accepted). 
 d) If the time interval during which a key is kept pressed or between two key presses 
is longer than  T , it must be considered an error, so the machine should return to  idle . 
 e) Passwords with repeated digits must be allowed. 

 A Moore-type solution for this problem is presented in   fi gure 8.22c . The three digits 
that comprise the password are called  a ,  b , and  c ;  n  means  none , which is the character 
corresponding to none of the keys pressed ( “ 1111 ”  — see the table in exercise 5.14). 
Note that both LEDs remain off during the process. To keep the diagram as clean as 
possible, a slightly simplifi ed representation was used (for example, the  a  and  T  condi-
tions on the arrows mean  key  =  a  and  t  =  T   −  1, respectively). The time during which 
 led2  stays on is the time that the user has to open the door in a corresponding physi-
cal implementation.  

 Figure 8.22 
 Password detector. (a) A password-protected door lock. (b) Circuit ports. (c) A Moore-type 

solution. 
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Based on section 8.10, the number of fl ip-fl ops needed to implement this circuit is 
as follows. For the state register:  M FSM   = 11 states; therefore,  N FSM   = 4 if sequential or 
Gray encoding is used, 6 for Johnson, or 11 for one-hot. For the optional output reg-
ister: glitches are generally not a problem in this kind of application, so  N output   = 0. For 
the timer: because  t state_max   = 3 s, and assuming  f clk   = 50 MHz,  T max   = 15 · 10 7  clock cycles 
results, so  N timer   = 28. Therefore,  N total   = 32, 34, or 39. 

 The analysis of the need for reset and synchronizers is left as an exercise (exercise 
8.15). 

 8.11.8   Triggered Circuits 
 This section shows FSMs for triggered circuits with both bistable and monostable 
behavior. The former can hold any logic level ( ‘ 0 ’  or  ‘ 1 ’ ) forever, whereas the latter 
(also called  one-shot ) always returns to the initial value ( ‘ 0 ’ , for example) after a fi nite 
time interval. The input (triggering signal) is denoted by  x , and the output (response) 
is called  y .  

 The input can be either synchronous (generated by a circuit operating with the 
same clock as the triggered circuit) or asynchronous. However, the circuit itself is 
always synchronous, so the output goes up or down only at the proper clock edge. 
For example, if we say that  y  goes to  ‘ 1 ’  when  x  goes to  ‘ 1 ’ , it means that  y  goes to  ‘ 1 ’  
at the fi rst (positive) clock transition after  x  goes to  ‘ 1 ’ . 

 Two signals produced by bistable circuits are depicted in   fi gure 8.23 . Note that  y  
does not return to  ‘ 0 ’  (initial value) automatically. The signal in   fi gure 8.23a  is trig-
gered by the condition  “  x  =  ‘ 1 ’  during  T  clock cycles ”  and detriggered by  x  =  ‘ 0 ’ . The 
signal in   fi gure 8.23b  is triggered by  x  =  ‘ 1 ’  and detriggered by the condition  “  x  =  ‘ 0 ’  
during  T  clock cycles. ”   

Figure 8.23 
(a, b) Signals produced by triggered bistable circuits (note that the output does not return to zero 

automatically). (c) Solution for the case in b. 



Timed (Category 2) State Machines 171

 A solution for the case in fi gure 8.23b is presented in fi gure 8.23c. Note that in this 
machine, when reset is released, the output goes immediately to  ‘ 1 ’  if the input is  ‘ 1 ’ , 
which is fi ne because this is a level-detecting machine (as opposed to edge-detecting 
machines, depicted in the next example).    

 Monostable (one-shot) circuits are generally more complex to design than bistable 
circuits. An example is shown in fi gure 8.24. Observe that now  y  always returns to  ‘ 0 ’  
(initial value) after a certain time interval, regardless of  x . As indicated by arrows in 
the fi gure,  y  is now edge-dependent rather than level-dependent. The output is trig-
gered by a positive transition in  x  and detriggered  T  clock cycles later. Observe that 
retriggering during the time interval  T  is allowed (check the fi nal part of the plot).  

 A solution for this problem is presented in fi gure 8.24b. Note that the timer must 
not be zeroed when the machine enters state D (the thick circle indicates that there 
is at least one transition into state D in which the timer should not be zeroed, while 
the different arrow, with a large dot at its origin, identifi es that transition). Observe 
also that when reset is released the output does not go to  ‘ 1 ’  if the input is  ‘ 1 ’ , but it 
rather waits for the next upward transition of  x , which is proper of edge-detecting (as 
opposed to level-detecting) circuits.     

 Solutions for edge-triggered circuits (as in fi gures 8.24b) are among the few cases 
in which the timer control strategy #1 (section 8.5.2) cannot be applied completely 
because the timer cannot be zeroed in all state transitions (another example was seen 
in section 8.8). Anyhow, it will be shown in the designs with VHDL and SystemVerilog 
(sections 9.6 and 10.6, respectively) that preventing the timer from being zeroed 
during specifi c state transitions is very simple. Moreover, it will be shown in exercise 
8.18 that this particular FSM can be broken into two FSMs, causing strategy #1 to be 
applicable without restrictions. 

Figure 8.24 
(a) Signal produced by a triggered monostable circuit (note that the output always returns to 

zero). (b) A possible solution (the timer is not zeroed but it rather holds its value during the CD 

transition). 
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8.11.9   Pulse Shifter 
This section presents a circuit that is a particular case of the triggered circuits family 
described above. It consists of a  “ pulse shifter, ”  which, as the name says, shifts a pulse 
a certain number of time units. In other words, it makes a copy of a given pulse  T shift

clock cycles later. 
 An example is presented in fi gure 8.25. The circuit ports are shown in fi gure 8.25a, 

where  x  is the input (original pulse) and  y  is the output (shifted pulse). An illustrative 
timing diagram is included if fi gure 8.25b, which shows that  x  can be synchronous or 
asynchronous. The time parameters are  T pulse   = 3  T clk   and  T shift   = 8  T clk  . Note, however, 
that  T pulse   is measured (inevitably) in  number of clock edges  rather than number of clock 
periods (these values coincide when  x  is synchronous). The last (positive) clock edge 
for which  x  =  ‘ 0 ’  was chosen as the reference for the shift; a different alternative would 
be the fi rst (positive) clock edge for which  x  =  ‘ 1 ’ .    

 A solution for this problem is presented in fi gure 8.26a. Note the box above the 
state  shift , which says that  T x   is a (registered) copy of  t , enabled when  x  is high.  T x   is 
needed to keep track of the pulse ’ s width, so the circuit can operate without any 
a-priori information on the value of  T pulse  .  

 Figure 8.26 
 (a) FSM that implements the pulse shifter of fi gure 8.25. (b) Corresponding timing diagram, for 

 T pulse   = 3 and  T shift   = 8 clock periods. 

 Figure 8.25 
 Pulse shifter. (a) Circuit ports. (b) Desired behavior for both synchronous and asynchronous 

input. 
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An illustrative timing diagram for this FSM is shown in fi gure 8.26b. It is very 
important that the reader examine this diagram carefully and check the correctness 
of the circuit operation.  

 An application for pulse shifters is in the generation of enable signals (see section 
3.11). In the case of fi gure 3.18, the input is synchronous and its width is just one 
clock period, being therefore simpler to generate than the generic case above (exercise 
8.19).    

 8.11.10   Pulse Stretchers 
 This section presents another king of circuit that is a particular case of the triggered 
circuits family introduced in section 8.11.8. It consists of  “ pulse stretchers, ”  which, as 
the name indicates, take a pulse of shorter duration (often one clock period) and 
stretch it to a longer length (in fact, one case was already seen in section 2.4 and 
exercises 2.4 and 2.5). In fi gure 8.29 an application for a pulse stretcher will be 
presented. 

 The circuit ports are shown in   fi gure 8.27a , where  x  (short pulse) is the input 
and  y  (longer pulse) is the output. The desired behavior is depicted in   fi gures 8.27b,c . 
In   fi gure 8.27b  the input is asynchronous and the output can be asynchronous ( y  
goes to  ‘ 1 ’  as soon as  x  goes to  ‘ 1 ’ ) or synchronous ( y  changes only at clock edges). In 
  fi gure 8.27c  the input is synchronous and the output can again be asynchronous or 
synchronous. As usual, cases with synchronous output can be implemented with 

Figure 8.27 
Pulse stretcher. (a) Circuit ports. Desired behavior for (b) asynchronous and (c) synchronous 

input, both with asynchronous or synchronous output. 
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Moore machines, whereas for asynchronous output a Mealy machine is the natural 
choice. 

      Figure 8.27b  shows three options for the asynchronous input: in graph 1,  x  lasts 
one clock period; in graph 2, it lasts more than one clock period but not more than 
 T ; in graph 3, it lasts less than one (or even less than one-half of a) clock period. In 
all cases the output pulse ( y ) must have the same length  T . Because stretchers can be 
synchronous or asynchronous, two options are shown for the output. In the asyn-
chronous case (upper plot for  y ), the output goes up as soon as the input goes up 
(thus, the total length is obviously  >  T ), whereas in the synchronous case (lower plot 
for  y ), the output changes only at clock edges. As usual, small propagation delays were 
included between clock transitions and the corresponding responses to portray a 
realistic situation. 

   Figure 8.27c  shows three options for the synchronous input: in graph 4,  x  lasts one 
clock period; in graph 5, it lasts more than one but less than  T  clock periods; in graph 
6, it lasts at least one-half of a clock period. Again, the output can be asynchronous 
(upper plot for  y ) or synchronous (lower plot for  y ). Note that the asynchronous output 
looks synchronous, but rigorously speaking it is not because its starting point is deter-
mined by  x , not directly by the clock. Observe that in the truly synchronous case the 
negative clock edge was adopted for the FSM (so  x  and  y  are updated at opposite clock 
edges). 

 Solutions for two of the cases presented in   fi gure 8.27  are shown in   fi gure 8.28 . The 
fi rst solution is for the synchronous case of   fi gure 8.27b , valid for inputs 1 and 2; 
because this circuit is synchronous, it was implemented with a Moore machine (  fi gure 

 Figure 8.28 
 (a) Moore solution for the synchronous case of   fi gure 8.27b , covering inputs 1 – 2, and (b) an 

illustrative timing diagram. (c) Mealy solution for the asynchronous case of   fi gure 8.27c , covering 

inputs 4 – 5, and (d) an illustrative timing diagram. 
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8.28a ). The second solution is for the asynchronous case of   fi gure 8.27c , valid for 
inputs 4 and 5; because this circuit is asynchronous, it was implemented with a Mealy 
machine (  fi gure 8.28c ). Solutions for other cases are treated in exercises 8.20 to 8.23. 

   Figures 8.28b and 8.28d  present illustrative timing diagrams for the FSMs of   fi gures 
8.28a and 8.28c , respectively, for  T  = 5. It is very important that the reader examine 
these diagrams carefully and check the correctness of the circuit operation.    

 An application for a pulse stretcher is depicted in fi gure 8.29, which consists of a 
serial data receiver (a deserializer). The circuit ports are shown in   fi gure 8.29a . The 
inputs are  x  (serial bit stream),  dv  (data valid bit, high during only one clock cycle, 
informing that data storage should start), plus the conventional clock and reset. The 
outputs are  y ( N  − 1:0) (multibit one-dimensional register in which the received data 
must be stored) and  done  (high while the machine is idle). Some of these signals are 
shown in   fi gure 8.29b , which also highlights the fact that the fi rst bit of  x  is made 
available at the same time that  dv  is asserted, so data storage must start immediately.    

 A possible solution is presented in   fi gure 8.29c . It consists of a shift register whose 
enable input is produced by an FSM (this is a simplifi ed view; the enable port of a 
DFF, if not built-in, can be constructed using a multiplexer, as shown in   fi gure 8.29d ). 
When a  dv  =  ‘ 1 ’  pulse occurs, the FSM produces  ena  =  ‘ 1 ’  during  N  consecutive clock 
cycles, causing  N  bits of  x  to be shifted in, thus getting stored in the  N  fl ip-fl ops that 
comprise the shift register, producing  y ( N  − 1:0). 

 Note that in this case the FSM is simply a pulse stretcher. Because the fi rst bit of 
 x  is made available at the same time that  dv  is asserted, one must be careful not to 
skip that bit (see section 3.10). Consequently, we can employ either an asynchro-
nous (Mealy) FSM, which would then produce the signal shown in the fi gure, or a 

Figure 8.29 
Serial data receiver. (a) Circuit ports. (b) Desired behavior ( dv  is stretched to produce  ena ). (c) 

Solution with a shift register controlled by the pulse stretcher. 
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synchronous (Moore) machine operating at the negative clock transition. The former 
option can be implemented with the FSM of   fi gure 8.28c , with  T  =  N . Note also that 
done  can be computed as  ena  ′ . Another serial data receiver will be seen in section 11.7.7. 

 8.12   Exercises 

 Exercise 8.1: Machines Category 
 a) Why are the state machines in   fi gures 8.12c, 8.14b, 8.20c, and 8.21c  (among others) 
said to be of category 2? 
 b) What differentiates category 2 from category 1? (Compare   fi gures 8.2  and 5.2.) 

 Exercise 8.2: Timer Interpretation #1 
 Consider the timed machine of fi gure 8.3, operating with  f clk   = 1 MHz and  T    = 13 clock 
cycles.  

 a) Which states are timed (timer needed) and which are not? 
 b) Can any of the states last longer than  T  clock periods? Explain. 
 c) Can the timer control strategy #2 (section 8.5.3) be used to build the timer? 
 d) Since  T    = 13, we know that the range of interest is from 0 to 12. Assuming that 
strategy #1 (section 8.5.2) is adopted to build the timer, can we employ a timer that 
runs (when enabled, of course) up to 16 (a power of two)? What are the consequences 
of this?  
 e) Still assuming strategy #1 for the timer, is it necessary to specify a value for  T  (= 0, 
for example) in the untimed states? Is that the case also in strategy #2? 
 f) During how many microseconds will the machine stay in each state? Does your 
answer depend on  x ?  
 g) How many fl ip-fl ops are needed to build this FSM (with sequential encoding), 
including the timer? Does this answer depend on  x ? 

 Exercise 8.3: Timer Interpretation #2 
 Consider the timed machine of fi gure 8.3, operating with  T  = 3 clock cycles. Fill in 
the missing parts in the plots of fi gure 8.30. Note the intentional propagation delays 
left between the clock transitions and the respective responses to portray a realistic 

Figure 8.30 
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situation. Assume that strategy #1 (section 8.5.2) was adopted for the timer. (Regarding 
strategy #2, see the previous exercise.)    

Exercise 8.4: Analysis of Timer Control Strategies #1 and #2 
Assume that the switch debouncer of fi gure 8.16c was designed to operate with  T  = 4 
clock cycles (more precisely, with 4 clock edges, because  x  is asynchronous). 

 a) Say that strategy #1 (section 8.5.2) was employed to design the timer. Complete the 
timing diagram of fi gure 8.31a for the given input  x . As usual, a small propagation 
delay was included between clock transitions and corresponding responses to portray 
a more realistic situation. Call the states A, B, C, and D to simplify the notation. 
 b) Do the same for the timing diagram of fi gure 8.31b, assuming now that strategy #2 
was used for the timer. Is the result ( y ) the same as for strategy #1?    

 Exercise 8.5: Blinking Light without Reset 
 It was said in section 8.11.1 that the light blinker of   fi gure 8.12c  might not require a 
reset signal, even if fl ip-fl ops with arbitrary initial states are used to implement it. 

 a) Prove that if sequential encoding is used and optimal (minimal) expressions are 
adopted for  nx_state  (i.e.,  d  1  and  d  0 ), then this FSM can indeed operate without reset. 
(Suggestion: Review sections 3.8 and 3.9 and see exercise 3.11.) 
 b) Show that, on the other hand, if sequential encoding is used but all  “ don ’ t care ”  
bits are fi lled with  ‘ 1 ’ s, then the machine is subject to deadlock, so a reset signal is 
needed. 

 Exercise 8.6: Blinking Light with Several Speeds 
 This exercise is an extension to the light blinker of   fi gure 8.12c , which must now 
operate with a  programmable  speed, set by a pushbutton (called  spd ). The desired speeds 

Figure 8.31 
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are 1, 2, 4, and 8 Hz. The next speed must be selected every time the pushbutton is 
pressed, returning to 1 Hz after passing 8 Hz. One alternative (among others) is pre-
sented in   fi gure 8.32 , which consists of a cascade of FSMs. The fi rst can be a debouncer 
+ one-shot converter (similar to   fi gure 8.18b ), the second can be a reference-value 
defi ner (similar to   fi gure 8.18c ), and the third the light blinker proper (  fi gure 8.12c ). 
The purpose of the fi rst pair of FSMs is to produce  T ref  , which is then used as time 
parameter for the blinker. Assume a 1-ms debouncing interval, a 50-MHz clock, and 
sequential encoding for the FSMs. 

a) Calculate the four values of  T ref   (one for each speed); for example, for 1 Hz,  t ref   = 0.5 
s, so  T ref   = 25 ⋅ 10 6  clock cycles. 
 b) Draw a block diagram for your solution, splitting the big block of   fi gure 8.32  into 
two blocks. 
 c) Show the state transition diagram for each FSM used in this circuit. 
 d) How many DFFs are needed to build the entire circuit?    

 Exercise 8.7: Pushbutton Debouncer plus Memory 
   Figure 8.33  shows a pushbutton that must be debounced and also  “ memorized, ”  
such that the stored value gets inverted every time the pushbutton is pressed (as in 
the stopwatch used by football referees, which alternately runs and stops every time 
the pushbutton is pressed). If a debouncer were not needed, the trivial solution of 
  fi gure 8.33a  could be used, in which  x  is connected directly to the clock input of a 
DFF (due to the inverted version of  q  connected back to  d , it resembles a toggle-type 
fl ip-fl op, so every time a positive clock edge occurs, the value of  y  gets inverted). 
Let us assume, however, the usual situation, in which the pushbutton must be 
debounced. 

 Figure 8.32 

 Figure 8.33 
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a) Draw a fl owchart for the combined solution of   fi gure 8.33b  (debouncer plus memory 
in one FSM). 
 b) Draw a Moore-type state diagram corresponding to the fl owchart presented above. 
 c) Assuming that sequential encoding is used and that the debouncing time interval 
is 1 ms, with  f clk   = 50 MHz, calculate the number of fl ip-fl ops needed to build this 
machine. 
 d) If the solution of   fi gure 8.33a  were employed, with the debouncer included, how 
many fl ip-fl ops would be required?    

 Exercise 8.8: Independent Multisignal Debouncer 
   Figure 8.34  shows four mechanical switches for which debouncers are needed. In   fi gure 
8.34a  a complete debouncer for each signal is considered, whereas   fi gure 8.34b  consid-
ers a  “ combined ”  approach. Because the timer is the most expensive part, if a single 
timer could be used in the latter it would already represent a major gain. In this exer-
cise the switches are independent of each other, so they might be activated simultane-
ously. Assume a 1-ms  minimum  debouncing interval, a 50-MHz clock, and sequential 
encoding for the FSMs. 

 a) How many fl ip-fl ops are needed to implement the option in   fi gure 8.34a , employing 
the debouncer of   fi gure 8.16c ? 
 b) Draw a state transition diagram for an FSM capable of implementing the combined 
debouncer of   fi gure 8.34b . 
 c) How many fl ip-fl ops are needed to implement your combined circuit?    

 Exercise 8.9: Dependent Multisignal Debouncer 
   Figure 8.35  shows a keypad (see details in exercise 5.14) for which debouncers are 
needed. Note that this exercise is an extension to that above, with the difference that 
now the signals are no longer independent of each other. Because only one key is 
supposed to be pressed at a time, the only valid codewords are  “ 1111 ”  (no key pressed), 
 “ 0111 ”  (key in row 1 pressed),  “ 1011 ”  (key in row 2 pressed),  “ 1101 ”  (key in row 3 

Figure 8.34 
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pressed), and  “ 1110 ”  (key in row 4 pressed). Note that for the purposes of this exercise, 
as well as for testing the solution with VHDL or SystemVerilog, the arrangement in 
fi gure 8.34 can be used equivalently. Assume a 1-ms debouncing interval, a 50-MHz 
clock, and sequential encoding for the FSMs. 

 a) How many fl ip-fl ops are needed to implement the option in   fi gure 8.35a    (or 8.34a)  
with the debouncer of   fi gure 8.16c?  Is this option capable of fi ltering out invalid 
codewords? 
 b) Draw a state transition diagram for an FSM capable of implementing the combined 
debouncer of   fi gure 8.35b  (or 8.34b). It must also be able to fi lter out invalid codewords 
(hence,  y  can only be  “ 1111, ”   “ 0111, ”   “ 1011, ”   “ 1101, ”  or  “ 1110 ” ). 
 c) How many fl ip-fl ops are now required?    

 Exercise 8.10: Dependent Multisignal Debouncer with One-Shot Conversion 
 This exercise concerns the FSM1 block of   fi gure 8.19b , which must implement a two-
signal debouncer with one-shot output. Recall that  up  and  dn  are not supposed to be 
high at the same time, so the machine should be able to fi lter out invalid inputs (the 
only values allowed for  x  1  x  2  are  “ 00 ” ,  “ 10 ” , and  “ 01 ” ). Draw a state transition diagram 
for this FSM. 

 Exercise 8.11: Arbitrary Reference-Value Defi ner with Up/Down Controls 
   Figure 8.19b  shows an alternative for implementing a reference-value defi ner with up 
and down controls, which is advantageous when the reference values are few and 
irregular (arbitrary). The fi rst block was already treated in the previous exercise. Draw 
a state transition diagram for an FSM capable of implementing the second block, with 
eight reference values ( r  1 ,  r  2 ,  … ,  r  8 ). Recall that the inputs to this machine can only be 
 x  1  x  2  =  “ 00 ”  ( idle ),  “ 10 ”  ( up ), or  “ 01 ”  ( down ), with any nonzero input lasting only one 
clock period (as determined by the previous block). 

 Exercise 8.12: Regular Reference-Value Defi ner with Up/Down Controls 
   Figure 8.19a  shows an alternative for implementing a reference-value defi ner with up 
and down controls, which is advantageous when the reference values are regularly 

 Figure 8.35 
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distributed, so some type of counter/adder can be used to build it. Say that the circuit 
must generate values from 0 to 99, incremented (when  up  =  ‘ 1 ’ ) or decremented (when 
dn  =  ‘ 1 ’ ) in steps of size 1. 

 a) Make a sketch for this circuit, detailing especially the connections of the two push-
buttons (feel free to add other contacts to the pushbuttons if you consider it neces-
sary). How many debouncers are needed? 
 b) How many fl ip-fl ops are needed to build the entire circuit of   fi gure 8.19a  based on 
your sketch above? If any debouncer is needed, consider 1 ms for the debouncing 
interval and  f clk   = 50 MHz. 

 Exercise 8.13: Traffi c Light Controller 
 The questions below refer to the traffi c light controller of   fi gure 8.20c . 

 a) Explain why either strategy #1 or #2 (section 8.5) can be used to implement the 
timer in this machine. 
 b) Is a reset signal needed? Explain. (Suggestion: Review sections 3.8 and 3.9.) 
 c) Which inputs are asynchronous? (Suggestion: Review section 2.3.) 
 d) If debouncers are included in the asynchronous inputs, are synchronizers needed? 
 e) If debouncers are not used, are synchronizers indispensable in this application? 
 f) Redraw the state transition diagram including in it the following feature: Instead of 
having the yellow lights in both directions statically on while in standby mode, make 
them blink continuously (with a 0.5 Hz frequency) in that mode. 
 g) The number of DFFs needed to build the FSM after the feature above is included is 
still that determined in section 8.11.5? Explain. 

 Exercise 8.14: Car Alarm 
 The questions below refer to the car alarm of   fi gure 8.21c . Assume that the chirps must 
last 0.3 s and  f clk   = 50 MHz. 

 a) Explain why both strategies #1 and #2 (section 8.5) are appropriate to imple-
ment the timer in this machine. What are the advantages and disadvantages of 
each one? 
 b) How many DFFs are needed to build that circuit with sequential encoding for the 
machine states? And with one-hot encoding? 
 c) Is a reset signal needed? Explain. (Suggestion: Review sections 3.8 and 3.9.) 
 d) Which inputs are asynchronous? (Suggestion: Review section 2.3.) 
 e) If debouncers are included in the asynchronous inputs, are synchronizers needed? 
 f) If debouncers are not used, are synchronizers indispensable in this application? 

 Exercise 8.15: Password Detector 
 The questions below refer to the password detector of   fi gure 8.22c . 
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a) Explain why both strategies #1 and #2 (section 8.5) are appropriate to implement 
the timer in this machine. What are the advantages and disadvantages of each one? 
b) Is a reset signal needed? Explain. (Suggestion: Review sections 3.8 and 3.9.) 
c) Is  key  an asynchronous input? (Suggestion: Review section 2.3.) 
 d) If  key  has already been processed by a debouncer (as in exercise 8.11), are synchro-
nizers needed? 
e) Why is the state  ready  needed in this FSM?  
f) Why must the machine not go back to the  idle  state as soon as a wrong key is 
punched in? 

 Exercise 8.16: Triggered Circuits #1 
 The questions below concern the pulse generator of   fi gure 8.24b , which produces the 
signal of   fi gure 8.24a . 

 a) How many fl ip-fl ops are needed to build that circuit, for  T  = 3 clock cycles, sequen-
tial encoding, and not including the optional output register? 
 b) In which states is the timer not needed? How should the timer be operated in those 
states? 
 c) Complete the plots of   fi gure 8.36  (for  T  = 3) and then comment on the results. 

    Exercise 8.17: Triggered Circuits #2 
 Two signals produced by triggered circuits are exhibited in   fi gure 8.37 .  

 Figure 8.36 

 Figure 8.37 
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a) Present a state transition diagram for an FSM capable of producing the signal of 
fi gure 8.37a . Estimate the number of DFFs needed to build your complete circuit for 
T  = 3 clock cycles and sequential encoding. 
b) Do the same for the signal of   fi gure 8.37b . Assume sequential encoding and  T  1    = 3 
and  T  2    = 5 clock cycles.    

 Exercise 8.18: Triggered Circuits #3 
   Figure 8.38a  shows a two-machine arrangement for the implementation of an edge-
detecting triggered circuit. We want to use this arrangement to implement a circuit 
that generates the signal of   fi gure 8.24a . A solution for that case was already seen in 
  fi gure 8.24b , using a single machine. The advantage of the approach discussed here is 
that the timer can be zeroed every time the machine changes its state; hence, contrary 
to   fi gure 8.24b , strategy #1 (section 8.5.2) can be applied without exceptions. In   fi gure 
8.38a , FSM1 is a one-shot circuit (discussed in section 5.4.3) that converts  x  into a 
short pulse (internal signal  i ), from which FSM2 must produce the actual output signal, 
 y , as illustrated in   fi gure 8.38b . Present two state transitions diagrams (one for each 
machine) to solve this problem with the timer allowed to be zeroed at every state 
transition. Can the timer control strategy #2 also be employed in your FSMs?    

 Exercise 8.19: Pulse Shifter 
 This exercise concerns the pulse shifter introduced in section 8.11.9. 

 a) Draw a state transition diagram and present an illustrative timing diagram for an 
FSM capable of producing a signal similar to that in   fi gure 8.25b , but knowing that  x  
(still synchronous) now lasts exactly one clock period. 
 b) How many fl ip-fl ops are needed to build your circuit, for  T shift   = 16  T clk  , using sequen-
tial encoding for the FSM? 

 Exercise 8.20: Synchronous Pulse Stretcher #1 
 This exercise concerns the synchronous version of a pulse stretcher whose behavior 
was depicted in   fi gure 8.27b . 

 a) If the falling edge of signal 2 is beyond the falling edge of (sync)  y , will the solution 
presented in   fi gure 8.28a  still produce the same result? If not, modify it to accom-
modate this situation as well. 

Figure 8.38 
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b) Develop a circuit capable of processing signal 3. (Suggestion: See section 2.4.) 
c) Draw an illustrative timing diagram for your circuit (as in   fi gure 8.28b ), demonstrat-
ing that it indeed covers case 3. 

 Exercise 8.21: Synchronous Pulse Stretcher #2 
 This exercise concerns the synchronous version of a pulse stretcher whose behavior 
was depicted in   fi gure 8.27c . 

 a) Present a state transition diagram for a Moore FSM capable of processing all three 
signals (4 to 6). Should it operate at the positive or negative clock transition? 
 b) Draw an illustrative timing diagram for your FSM (as in   fi gure 8.28b ), demonstrat-
ing that it indeed works as expected. 

 Exercise 8.22: Asynchronous Pulse Stretcher #1 
 This exercise concerns the asynchronous version of a pulse stretcher whose behavior 
was depicted in   fi gure 8.27b . 

 a) Present a state transition diagram for a Mealy FSM capable of processing signals 
1 – 2. 
 b) Draw an illustrative timing diagram for your FSM (as in   fi gure 8.28d ), demonstrat-
ing that it indeed works as expected. 
 c) Develop a circuit capable of processing signal 3. (Suggestion: See section 2.4.) 

 Exercise 8.23: Asynchronous Pulse Stretcher #2 
 This exercise concerns the asynchronous version of a pulse stretcher whose behavior 
was depicted in   fi gure 8.27c . 

 a) If the falling edge of signal 5 is beyond the falling edge of (async)  y , will the solu-
tion presented in   fi gure 8.28c  still produce the same result? If not, modify it to accom-
modate this situation as well. 
 b) Develop a circuit capable of processing signal 6. (Suggestion: See section 2.4.) 
 c) Draw an illustrative timing diagram for your circuit (as in   fi gure 8.28d ), demonstrat-
ing that it indeed covers case 6. 

 Exercise 8.24: Eliminating Conditional-Timed Transitions 
 Because the conditional-timed transition (CD) in fi gure 8.3 is the only transition that 
departs from state C, it can be eliminated by splitting it into a simple timed transition 
followed by a simple conditional transition.  

 a) Apply the principle described above to the FSM of fi gure 8.3. 
 b) Can strategy #2 be now used to build the timer? Why couldn ’ t it be used in the 
original machine of fi gure 8.3? 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 



9   VHDL Design of Timed (Category 2) State Machines 

9.1   Introduction 

This chapter presents several VHDL designs of category 2 state machines. It starts by 
presenting two VHDL templates, for Moore- and Mealy-based implementations, which 
are used subsequently to develop a series of designs related to the examples introduced 
in chapter 8. 

 The codes are always complete (not only partial sketches) and are accompanied by 
comments and simulation results, illustrating the design ’ s main features. All circuits 
were synthesized using Quartus II (from Altera) or ISE (from Xilinx). The simulations 
were performed with Quartus II or ModelSim (from Mentor Graphics). The default 
encoding scheme for the states of the FSMs was regular sequential encoding (see 
encoding options in section 3.7; see ways of selecting the encoding scheme at the end 
of section 6.3). 

 The same designs are presented in chapter 10 using SystemVerilog, so the reader 
can make a direct comparison between the codes.  

  Note:  See suggestions of VHDL books in the bibliography. 

 9.2   VHDL Template for Timed (Category 2) Moore Machines 

 The template is presented below. Because it is an extension to the Moore template for 
category 1, described in section 6.3, a review of that template is suggested before this 
one is examined because only the differences are described. 

 The only differences are those needed for the inclusion of a timer (external to the 
FSM — see fi gure 8.2a). Recall, however, that the FSM itself is responsible for controlling 
the timer. For that purpose, two strategies were developed in chapter 8, being the fi rst 
generic (section 8.5.2), and the second (section 8.5.3), non-generic. It is very important 
that the reader review those two sections before proceeding.  
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The fi rst of the two templates that follow is for timed Moore machines with the 
timer implemented using strategy #1. The timer-related constants ( T  1 ,  T  2 , . . .) can be 
declared either as  generic  constants (lines 6 – 7; see details in the template for category 
1 in section 6.3), therefore in the entity, or in the declarative part of the architecture, 
as shown in lines 18 – 20. The signal  t  must obviously stay where it is (line 21). As seen 
in section 8.5.2, the timer must obey  t max    ≥  max ( T  1 ,  T  2 , . . .)  −  1. 

 The fi rst process (lines 26 – 37) implements the timer. Note that it is a straight copy 
of the code presented in section 8.5.2. 

 The second process (line 40) implements the machine ’ s state register, exactly as for 
category 1 Moore (section 6.3).  

 The third process (lines 43 – 71) implements the machine ’ s combinational logic. It 
is the same as for category 1 except for the fact that  t  might appear in the conditions 
for  nx_state  (lines 50, 52,  .   .   . ). The use of  t   ≥   T   −  1 instead of  t  =  T   −  1 is required in 
the conditional-timed transitions with  T   −  1    <   t max  . Note that  t max   does not need to be 
defi ned in all states, which is not true for strategy #2. 

 The fourth and fi nal process (line 74) implements the optional output register, 
exactly as for category 1. 

  Note:  See also the comments in section 6.4 on template variations.  

  1    --Timed Moore machine with timer control strategy #1---------  
  2    library ieee;  
  3    use ieee.std_logic_1164.all;  
  4    --------------------------------------------------------------  
  5    entity circuit is  
  6    generic (   
  7    (timer-related constants of lines 18-20 can go here)  
  8    port (  
  9    (same as for category 1 Moore, section 6.3)  
  10    end entity;  
  11    --------------------------------------------------------------  
  12    architecture moore_fsm of circuit is   
  13  
  14    --FSM-related declarations:  
  15      (same as for category 1 Moore, section 6.3)  
  16  
  17    --Timer-related declarations:  
  18    constant T1: natural :=  < value > ;  
  19    constant T2: natural :=  < value > ;  ...  
  20    constant tmax: natural :=  < value > ; --tmax ≥ max(T1,T2,...)-1  
  21    signal t: natural range 0 to tmax;  
  22  
  23    begin  
  24  
  25    --Timer (strategy #1, section 8.5.2):  
  26    process (clk, rst)  
  27    begin  
  28    if (rst='1') then  
  29    t  < = 0;  
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  30    elsif rising_edge(clk) then  
  31    if pr_state /= nx_state then  
  32    t  < = 0;  
  33    elsif t /= tmax then   
  34    t  < = t + 1;  
  35    end if;  
  36    end if;  
  37    end process;  
  38  
  39    --FSM state register:  
  40    (same as for category 1 Moore, section 6.3)  
  41  
  42    --FSM combinational logic:  
  43    process (all) --list proc. inputs if  “ all ”  not supported  
  44    begin        
  45    case pr_state is  
  46    when A = >   
  47    output1  < =  < value > ;  
  48    output2  < =  < value > ;  
  49    ...  
  50    if ... and t > =T1-1 then   
  51    nx_state  < = B;  
  52    elsif ... and t > =T2-1 then  
  53    nx_state  < = ...;  
  54      else  
  55    nx_state  < = A;  
  56    end if;  
  57    when B = >   
  58    output1  < =  < value > ;  
  59    output2  < =  < value > ;  
  60    ...  
  61    if ... and t > =T3-1 then  
  62    nx_state  < = C;  
  63    elsif ... then  
  64    nx_state  < = ...;  
  65    else  
  66    nx_state  < = B;  
  67    end if;  
  68    when C = >   
  69    ...  
  70    end case;  
  71    end process;  
  72  
  73      --Optional output register:  
  74    (same as for category 1 Moore, section 6.3)  
  75  
  76    end architecture;  
  77    --------------------------------------------------------------  

The next template is for timed Moore machines employing strategy #2 to imple-
ment the timer. 

The fi rst difference is in line 18, which now includes also  t max  .  
 The second difference is in the process for the timer (lines 23 – 34), which is a copy 

of the code presented in section 8.5.3. 
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The third and fi nal difference is in the process for the combinational logic block 
(lines 40 – 70), which requires now the value of  t max   to be specifi ed in each state (lines 
47, 59,  .   .   . ), even if the state is untimed ( t max   = 0). This code can obviously be simpli-
fi ed in several ways when there are no conditional-timed transitions and/or  t max   is the 
same in all or most states. 

  1   --Timed Moore machine with timer control strategy #2------------  
  2    library ieee;  
  3    use ieee.std_logic_1164.all;  
  4    -----------------------------------------------------------------  
  5    entity circuit is   
  6    (same as template above)  
  7    end entity;  
  8    -----------------------------------------------------------------  
  9    architecture moore_fsm of circuit is   
  10  
  11    --FSM-related declarations:  
  12    (same as for category 1 Moore, section 6.3)  
  13  
  14    --Timer-related declarations:  
  15    constant T1: natural :=  < value > ;  
  16    constant T2: natural :=  < value > ; ...  
  17    constant tmax_timer: natural :=  < value > ; --  ≥ max(T1,T2,...)-1  
  18    signal t, tmax: natural range 0 to tmax_timer;  
  19  
  20    begin  
  21  
  22    --Timer (strategy #2, section 8.5.3):  
  23    process (clk, rst)  
  24    begin  
  25    if (rst='1') then  
  26    t  < = 0;  
  27    elsif rising_edge(clk) then  
  28    if t  <  tmax then  
  29    t  < = t + 1;  
  30    else  
  31    t  < = 0;  
  32    end if;  
  33      end if;  
  34    end process;  
  35  
  36      --FSM state register:  
  37    (same as for category 1 Moore, section 6.3)  
  38  
  39    --FSM combinational logic:  
  40    process (all) --list proc. inputs if  “ all  ”   not supported  
  41    begin        
  42    case pr_state is  
  43    when A = >   
  44    output1  < =  < value > ;  
  45    output2  < =  < value > ;  
  46    ...  
  47    tmax  < = T1-1;  
  48    if ... and t=tmax then   
  49    nx_state  < = B;  
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  50    elsif ... then  
  51    nx_state  < = ...;  
  52    else  
  53    nx_state  < = A;  
  54    end if;  
  55    when B = >   
  56    output1  < =  < value > ;  
  57    output2  < =  < value > ;  
  58    ...  
  59    tmax  < = T2-1;  
  60    if ... and t=tmax then  
  61    nx_state  < = C;  
  62    elsif ... then  
  63    nx_state  < = ...;  
  64    else  
  65    nx_state  < = B;  
  66    end if;  
  67    when C = >   
  68    ...  
  69    end case;  
  70    end process;  
  71  
  72    --Optional output register:  
  73    (same as for category 1 Moore, section 6.3)  
  74  
  75    end architecture;  
  76    -----------------------------------------------------------------  

9.3   VHDL Template for Timed (Category 2) Mealy Machines 

The template is presented below, using strategy #1 to implement the timer. The only 
difference with respect to the Moore template (section 9.2) is in the process for the 
combinational logic block (lines 20 – 60) because the outputs are specifi ed differently 
here (see the template for category 1 Mealy machines in section 6.5). Recall that in a 
Mealy machine the output depends not only on the FSM ’ s state, but also on the input, 
so  if  statements are expected for the output in one or more states because the output 
values might not be unique.  

 Please review the following comments, which can be easily adapted from the Moore 
case to the Mealy case: 

  — On the Moore template for category 1, in section 6.3, especially comment 10. 
  — On the  enum_encoding  and  fsm_encoding  attributes, also in section 6.3. 
  — On possible code variations, in section 6.4. 
  — On the Mealy template for category 1, in section 6.5. 
  — On the Moore templates for category 2, in section 9.2. 

  1   --Timed Mealy machine with timer control strategy #1----  
  2    library ieee;  
  3    use ieee.std_logic_1164.all;  
  4   ---------------------------------------------------------  
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  5    entity circuit is  
  6    (same as for Moore, Section 9.2));   
  7    end entity;  
  8    ---------------------------------------------------------  
  9    architecture mealy_fsm of circuit is   
  10    (same as for Moore, section 9.2)  
  11    begin  
  12  
  13    --Timer (using timer control strategy #1):  
  14    (same as for Moore, section 9.2)  
  15  
  16    --FSM state register:  
  17    (same as for Moore, section 9.2)  
  18  
  19    --FSM combinational logic:  
  20    process (all)   
  21    begin        
  22    case pr_state is  
  23    when A = >   
  24    if ... and t > =T1-1 then  
  25    output1  < =  < value > ;  
  26    output2  < =  < value > ;  
  27    ...  
  28    nx_state  < = B;  
  29    elsif ... and t > =T2-1 then  
  30    output1  < =  < value > ;  
  31    output2  < =  < value > ;  
  32    ...  
  33    nx_state  < = ...;  
  34    else  
  35    output1  < =  < value > ;  
  36    output2  < =  < value > ;  
  37    ...  
  38    nx_state  < = A;  
  39    end if;  
  40    when B = >   
  41    if ... and t > =T3-1 then   
  42    output1  < =  < value > ;  
  43    output2  < =  < value > ;  
  44    ...  
  45    nx_state  < = C;  
  46    elsif ... then  
  47    output1  < =  < value > ;  
  48    output2  < =  < value > ;  
  49    ...  
  50    nx_state  < = ...;  
  51    else  
  52    output1  < =  < value > ;  
  53    output2  < =  < value > ;  
  54    ...  
  55    nx_state  < = B;  
  56    end if;  
  57    when C = >   
  58    ...  
  59    end case;  
  60    end process;  
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  61  
  62    --Optional output register:  
  63    (same as for Moore, section 9.2)  
  64  
  65    end architecture;  
  66    ---------------------------------------------------------  

9.4   Design of a Light Rotator 

This section presents a VHDL-based design for the light rotator introduced in 
section 8.11.2. The Moore template of section 9.2 is used to implement the FSM 
of fi gure 8.14b. Either strategy #1 (section 8.5.2) or #2 (section 8.5.3) can be used 
to build the timer (both templates were presented in section 9.2); the former is 
employed in the code below, while the latter is explored in exercise 9.1. 

 The entity, called  light_rotator , is in lines 5 – 9. All ports are of type  std_logic  or  std_
logic_vector  (industry standard). 

 The architecture, called  moore_fsm , is in lines 11 – 105. As usual, it contains a declara-
tive part and a statements part, with three processes in the latter. 

 The declarative part of the architecture (lines 13 – 21) contains FSM- and 
timer-related declarations. In the former, the enumerated type  state  is created to 
repre sent the machine ’ s present and next states. In the latter, the values cho sen 
for  T  1  and  T  2  are such that 120 ms and 35 ms result, respectively, assuming  f clk   = 
50 MHz. 

 The fi rst process (lines 26 – 37) implements the timer (using strategy #1). Except for 
the inclusion of  stp  (lines 26 and 30), this code is exactly as in the template. 

 The second process (lines 40 – 47) implements the FSM ’ s state register, exactly as in 
the template. 

 The third and fi nal process (lines 50 – 103) implements the entire combinational 
logic section. It is just a list of all states (indeed, because this code is repetitive, some 
of the states were not detailed in order to save some space), each containing the output 
( ssd ) value and the next state. Note that in each state the output value is unique 
because in a Moore machine the output depends only on the state in which the 
machine is.  

 In this kind of application the  “  − 1 ”  term present in the determination of the total 
time (lines 20, 55, 62, .   .   .) does not make any difference, but it was maintained as a 
reminder of the accurate value. 

 Observe the correct use of registers and the completeness of the code, as described 
in comment 10 of section 6.3. Note in particular the following: 

 1)   Regarding the use of registers: The circuit is not overregistered. This can be observed 
in the  elsif rising_edge(clk)  statement of line 44 (responsible for the inference of 
fl ip-fl ops), which is closed in line 46, guaranteeing that only the machine state (line 
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45) gets stored (the timer is in a separate circuit — see fi gure 8.2a). The output ( ssd ) is 
in the next process, which is purely combinational (thus not registered). 
 2)   Regarding the outputs: The list of outputs (just  ssd  in this example) is exactly the 
same in all states (see lines 54, 61, 68, . . .), and the corresponding values are always 
properly declared. 
 3)   Regarding the next state: Again, the coverage is complete because all states are 
included (see lines 53, 60, 67, . . .), and in each state the next state is always properly 
declared (lines 55-59, 62-66, 69-73, . . .). 

 The total number of fl ip-fl ops inferred by the compiler using the code below was 
27 for sequential or Gray encoding, 29 for Johnson, and 35 for one-hot, which agree 
with the predictions made in section 8.11.2. 

 Because this particular machine has only simple timed transitions, a few simplifi ca-
tions could be made in the code below, but with no impact on the resulting circuit 
(thus with no reason to depart from the proposed template). 

  1    -----------------------------------------------------------  
  2    library ieee;  
  3    use ieee.std_logic_1164.all;  
  4    -----------------------------------------------------------  
  5    entity light_rotator is  
  6    port (  
  7    stp, clk, rst: in std_logic;  
  8    ssd: out std_logic_vector(6 downto 0));  
  9    end entity;  
  10    -----------------------------------------------------------  
  11    architecture moore_fsm of light_rotator is  
  12  
  13    --FSM-related declarations:  
  14    type state is (A, AB, B, BC, C, CD, D, DE, E, EF, F, FA);  
  15    signal pr_state, nx_state: state;  
  16  
  17    --Timer-related declarations:  
  18    constant T1: natural := 6_000_000;  --120ms @ fclk=50MHz  
  19    constant T2: natural := 1_750_000;  --35ms @ fclk=50MHz  
  20    constant tmax: natural := T1-1;    --tmax ≥ max(T1,T2)-1  
  21    signal t: natural range 0 to tmax;  
  22  
  23    begin  
  24  
  25    --Timer (using strategy #1):  
  26    process (clk, rst, stp)  
  27    begin  
  28    if rst='1' then  
  29    t  < = 0;  
  30    elsif rising_edge(clk) and stp='0' then  
  31    if pr_state /= nx_state then  
  32    t  < = 0;  
  33    elsif t /= tmax then  
  34    t  < = t + 1;  
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  35    end if;  
  36    end if;  
  37    end process;  
  38  
  39    --FSM state register:  
  40    process (clk, rst)  
  41    begin  
  42    if rst='1' then  
  43    pr_state  < = A;  
  44    elsif rising_edge(clk) then  
  45    pr_state  < = nx_state;  
  46    end if;  
  47    end process;  
  48  
  49    --FSM combinational logic:  
  50    process (all)  
  51    begin  
  52    case pr_state is  
  53    when A = >   
  54    ssd  < = "0111111";  
  55    if t > =T1-1 then -- or t=T1-1  
  56    nx_state  < = AB;  
  57    else  
  58    nx_state  < = A;  
  59    end if;  
  60    when AB = >   
  61    ssd  < = "0011111";  
  62    if t > =T2-1 then -- or t=T2-1  
  63    nx_state  < = B;  
  64    else  
  65    nx_state  < = AB;  
  66    end if;  
  67    when B = >   
  68    ssd  < = "1011111";  
  69    if t > =T1-1 then  
  70    nx_state  < = BC;  
  71    else  
  72    nx_state  < = B;  
  73    end if;  
  74    when BC = >   
  75    ssd  < = "1001111";  
  76    if t > =T2-1 then  
  77    nx_state  < = C;  
  78    else  
  79    nx_state  < = BC;  
  80    end if;  
  81    when C = >   
  82    ...  
  83    when CD = >   
  84    ...  
  85    when D = >   
  86    ...  
  87    when DE = >   
  88    ...  
  89    when E = >   
  90    ...  
  91    when EF = >   
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  92    ...  
  93    when F = >   
  94    ...  
  95    when FA = >   
  96    ssd  < = "0111101";  
  97    if t=T2-1 then  
  98    nx_state  < = A;  
  99    else  
  100    nx_state  < = FA;  
  101    end if;  
  102    end case;  
  103    end process;  
  104  
  105    end architecture;  
  106    -----------------------------------------------------------  

9.5   Design of a Car Alarm (with Chirps) 

This section presents a VHDL-based design for the car alarm with chirps introduced 
in section 8.11.6. The Moore template of section 9.2 is employed to implement the 
FSM of fi gure 8.21c. Again, either strategy #1 or #2 can be used to build the timer; the 
latter was adopted in the code below. 

 The entity, called  car_alarm_with_chirps , is in lines 5 – 9. All ports are of type  std_logic  
(industry standard). 

 The architecture, called  moore_fsm , is in lines 11 – 138. As usual, it contains a declara-
tive part and a statements part, with three processes in the latter. 

 The declarative part of the architecture (lines 13 – 21) contains FSM- and timer-
related declarations. In the former the enumerated type  state  is created to represent 
the machine ’ s present and next states. In the latter the value chosen for  chirpON  and 
 chirpOFF  is such that the chirp and the time interval between chirps last 0.3 s, assum-
ing  f clk   = 50 MHz. 

The fi rst process (lines 26 – 37) implements the timer, using strategy #2, exactly as 
in the template. 

The second process (lines 40 – 47) implements the state register, again exactly as in 
the template. 

 The third and fi nal process (lines 50 – 136) implements the entire combinational 
logic section. It is just a list of all states, each containing the output ( siren ) value, the 
value of  t max  , and the next state. Note that in each state the output value is unique 
because in a Moore machine the output depends only on the state in which the 
machine is. 

 In this kind of application the  “  − 1 ”  term present in the determination of  t max   (lines 
21, 63, 97, .   .   .) does not make any difference, but it was maintained as a reminder of 
the accurate value. 

 Observe the correct use of registers and the completeness of the code, as described 
in comment 10 of section 6.3. Note in particular the following: 
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1)   Regarding the use of registers: The circuit is not overregistered. This can be observed 
in the  elsif rising_edge(clk)  statement of line 44 (responsible for the inference of 
fl ip-fl ops), which is closed in line 46, guaranteeing that only the machine state (line 
45) gets stored (besides the timer, of course, designed in the previous process). The 
output ( siren ) is in the next process, which is purely combinational (thus not 
registered). 
2)   Regarding the outputs: The list of outputs (just  siren  in this example) and time 
parameters ( t max  ) is exactly the same in all states (see lines 54 – 55, 62 – 63, 70 – 71, . . .), 
and the corresponding values are always properly declared. 
 3)   Regarding the next state: Again, the coverage is complete because all states are 
included (see lines 53, 61, 69, . . .), and in each state the conditional declarations for 
the next state are always fi nalized with an  else  statement (lines 58, 66, 74, . . .), guar-
anteeing that no condition is left unchecked. 

 The total number of fl ip-fl ops inferred by the compiler on synthesizing this code 
was 28 for sequential or Gray encoding, 29 for Johnson, and 34 for one-hot. Compare 
these results against your predictions made in exercise 8.14. 

 Simulation results are shown in   fi gure 9.1 .  

1    ------------------------------------------------------------------  
2    library ieee;  
3    use ieee.std_logic_1164.all;  
4    ------------------------------------------------------------------  
5    entity car_alarm_with_chirps is  
  6    port (  
  7    remt, sen, clk, rst: in std_logic;  
  8    siren: out std_logic);   
  9    end entity;  
  10    ------------------------------------------------------------------  
  11    architecture moore_fsm of car_alarm_with_chirps is   
  12  
  13    --FSM-related declarations:  
  14    type state is (disarmed, armed, alarm, chirp1, chirp2, chirp3,  
  15    chirp4, chirp5, wait1, wait2);   

 Figure 9.1 
 Simulation results from the VHDL code for the car alarm of fi gure 8.21c. 
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16    signal pr_state, nx_state: state;  
  17  
  18    --Timer-related declarations:  
  19    constant chirpON: natural := 15_000_000; --0.3s @fclk=50MHz  
  20    constant chirpOFF: natural := 15_000_000;  
  21    signal t, tmax: natural range 0 to chirpOFF-1; --range  ≥  max time  
  22  
  23    begin  
  24  
  25    --Timer (using strategy #2):  
  26    process (clk, rst)  
  27    begin  
  28    if rst='1' then  
  29    t  < = 0;  
  30    elsif rising_edge(clk) then  
  31    if t  <  tmax then  
  32    t  < = t + 1;  
  33    else  
  34    t  < = 0;  
35    end if;  
  36    end if;  
  37    end process;  
  38  
  39    --FSM state register:  
  40    process (clk, rst)  
  41    begin  
  42    if rst='1' then  
  43    pr_state  < = disarmed;  
  44    elsif rising_edge(clk) then  
  45    pr_state  < = nx_state;  
  46    end if;  
  47    end process;  
  48  
  49    --FSM combinational logic:  
  50    process (all)  
  51    begin        
  52    case pr_state is  
  53    when disarmed = >   
  54    siren  < = '0';  
  55    tmax  < = 0;  
  56    if remt='1' then  
  57    nx_state  < = chirp1;  
  58    else  
  59    nx_state  < = disarmed;  
  60    end if;  
  61    when chirp1 = >   
  62    siren  < = '1';  
  63    tmax  < = chirpON-1;  
  64    if t=tmax then  
  65    nx_state  < = wait1;  
  66    else  
  67    nx_state  < = chirp1;  
  68    end if;  
  69    when wait1 = >   
  70    siren  < = '0';  
  71    tmax  < = 0;  
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72    if remt='0' then  
73    nx_state  < = armed;  
  74    else  
  75    nx_state  < = wait1;  
  76    end if;  
  77    when armed = >   
  78    siren  < = '0';  
  79    tmax  < = 0;  
  80    if sen='1' then  
  81    nx_state  < = alarm;  
  82    elsif remt='1' then  
  83    nx_state  < = chirp3;  
  84    else  
  85    nx_state  < = armed;  
  86    end if;  
  87    when alarm = >   
  88    siren  < = '1';  
  89    tmax  < = 0;  
  90    if remt='1' then  
  91    nx_state  < = chirp2;  
  92    else  
  93    nx_state  < = alarm;  
  94    end if;  
  95    when chirp2 = >   
  96    siren  < = '0';  
  97    tmax  < = chirpOFF-1;  
  98    if t=tmax then  
  99    nx_state  < = chirp3;  
  100    else  
  101    nx_state  < = chirp2;  
  102    end if;  
  103    when chirp3 = >   
  104    siren  < = '1';  
  105    tmax  < = chirpON-1;  
  106    if t=tmax then  
  107    nx_state  < = chirp4;  
  108    else  
  109    nx_state  < = chirp3;  
  110    end if;  
  111    when chirp4 = >   
  112    siren  < = '0';  
  113    tmax  < = chirpOFF-1;  
  114    if t=tmax then  
  115    nx_state  < = chirp5;  
  116    else  
  117    nx_state  < = chirp4;  
  118    end if;  
  119    when chirp5 = >   
  120    siren  < = '1';  
  121    tmax  < = chirpON-1;  
  122    if t=tmax then  
  123    nx_state  < = wait2;  
  124    else  
  125    nx_state  < = chirp5;  
  126    end if;  
  127    when wait2 = >   
  128    siren  < = '0';  
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129    tmax  < = 0;  
  130    if remt='0' then  
  131    nx_state  < = disarmed;  
  132    else  
  133    nx_state  < = wait2;  
  134    end if;  
  135    end case;  
  136    end process;  
  137  
  138    end architecture;  
  139    ------------------------------------------------------------------  

9.6   Design of a Triggered Monostable Circuit 

This section presents a VHDL-based design for the triggered monostable circuit of 
fi gure 8.24b, which is capable of generating the signal of fi gure 8.24a. Again, the code 
that follows is a straightforward application of the VHDL template for category 2 
Moore machines introduced in section 9.2. Note, however, that in this FSM the timer 
control strategy #2 (section 8.5.3) cannot be used. Indeed, even strategy #1 (section 
8.5.2) cannot be applied completely because in one of the state transitions the timer 
must not be zeroed. 

 The entity, called  triggered_mono , is in lines 5 – 10. All ports are of type  std_logic  
(industry standard). 

 The architecture, called  moore_fsm , is in lines 12 – 99. As usual, it contains a declara-
tive part and a statements part, with four processes in the latter. 

 The declarative part of the architecture (lines 14 – 20) contains FSM- and timer-
related declarations. In the former the enumerated type  state  is created to represent 
the machine ’ s present and next states. In the latter a small value was used for  T  (called 
 delay  in the code; note  delay  = 3 in line 19) in order to ease the inspection of the simu-
lation results (shown later). 

 The fi rst process (lines 25 – 38) implements the timer (with strategy #1, adapted). 
Observe how the timer is prevented from being zeroed when the machine enters state 
D, done with just the introduction of lines 31 and 33. 

 The second process (lines 41 – 48) implements the state register, exactly as in the 
template. 

 The third process (lines 51 – 89) implements the entire combinational logic section. 
It is just a list of all states, each containing the output ( y ) value and the next state. 
Note that in each state the output value is unique because in a Moore machine the 
output depends only on the state in which the machine is. 

 The fourth and fi nal process (lines 92 – 97) implements the optional output register, 
exactly as in the template. The output register was included because in this kind of 
application glitches are generally not acceptable. Even though  y  could come directly 
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from a DFF (hence glitch-free), that is not guaranteed because it depends on the encod-
ing scheme used in the machine. 

 Observe the correct use of registers and the completeness of the code, as described 
in comment 10 of section 6.3. Note in particular the following: 

1)   Regarding the use of registers: The circuit is not overregistered. This can be observed 
in the  elsif rising_edge(clk)  statement of line 45 (responsible for the inference of 
fl ip-fl ops), which is closed in line 47, guaranteeing that only the machine state (line 
46) gets stored (besides the timer and the output register, of course, designed in other 
processes). The output ( y ) is in the next process, which is purely combinational (thus 
not registered). 
2)   Regarding the outputs: The list of outputs (just  y  in this example) is exactly the 
same in all states (see lines 55, 62, 69, . . .), and the corresponding values are always 
properly declared. 
 3)   Regarding the next state: Again, the coverage is complete because all states are 
included (see lines 54, 61, 68, . . .), and in each state the conditional declarations for 
the next state are always fi nalized with an  else  statement (lines 58, 65, 76,  .   .   . ), guar-
anteeing that no condition is left unchecked. 

 The total number of fl ip-fl ops inferred by the compiler on synthesizing the code 
below, with regular sequential encoding for the machine states, was 5 for  T  = 3 and 
15 for  T  = 3000. 

 Simulation results, for  T  = 3 clock cycles, are depicted in   fi gure 9.2 . Analyze the 
plots to confi rm the correctness of the circuit operation. 

  1    ----------------------------------------------------  
  2    library ieee;  
  3    use ieee.std_logic_1164.all;  
  4    ----------------------------------------------------  

 Figure 9.2 
 Simulation results from the VHDL code for the triggered monostable circuit of fi gure 8.24b for 

 T  = 3 clock periods. 
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  5    entity triggered_mono is  
  6    port (  
  7    x, clk, rst: in std_logic;  
  8    y: buffer std_logic;  
  9    y_reg: out std_logic);  
  10    end entity;  
  11    -------------------------------------------------------  
  12    architecture moore_fsm of triggered_mono is  
  13  
  14    --FSM-related declarations:  
  15    type state is (A, B, C, D);   
  16    signal pr_state, nx_state: state;  
  17  
  18    --Timer-related declarations:    
  19    constant delay: natural := 3; --any value  > =2  
  20    signal t: natural range 0 to delay-1; --tmax ≥ delay-1  
  21  
  22    begin  
  23  
  24    --Timer (strategy #1, adapted):  
  25    process (clk, rst)  
  26    begin  
  27    if rst='1' then  
  28    t  < = 0;  
  29    elsif rising_edge(clk) then  
  30    if pr_state /= nx_state then  
  31    if nx_state/=D then  
  32    t  < = 0;  
  33    end if;  
  34    elsif t/=delay-1 then  
  35    t  < = t + 1;  
  36    end if;  
  37    end if;  
  38    end process;  
  39  
  40    --FSM state register:  
  41    process (clk, rst)  
  42    begin  
  43    if rst='1' then  
  44    pr_state  < = A;  
  45    elsif rising_edge(clk) then  
  46    pr_state  < = nx_state;  
  47    end if;  
  48    end process;  
  49  
  50    --FSM combinational logic:  
  51    process (all)   
  52    begin  
  53    case pr_state is  
  54    when A = >       
  55    y  < = '0';  
  56    if x='0' then   
  57    nx_state  < = B;  
  58    else  
  59    nx_state  < = A;  
  60    end if;  
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  61    when B = >       
  62    y  < = '0';  
  63    if x='1' then   
  64    nx_state  < = C;  
  65    else  
  66    nx_state  < = B;  
  67    end if;  
  68    when C = >       
  69    y  < = '1';  
  70    if x='0' and t < delay-1 then   
  71    nx_state  < = D;  
  72    elsif x='0' and t > =delay-1 then  
  73    nx_state  < = B;  
  74    elsif x='1' and t > =delay-1 then  
  75    nx_state  < = A;  
  76    else  
  77    nx_state  < = C;  
  78    end if;  
  79    when D = >       
  80    y  < = '1';  
  81    if x='1' then   
  82    nx_state  < = C;  
  83    elsif x='0' and t > =delay-2 then   
  84    nx_state  < = B;  
  85    else  
  86    nx_state  < = D;  
  87    end if;  
  88    end case;  
  89    end process;  
  90  
  91    --Optional output register:  
  92    process (clk)  
  93    begin  
  94    if rising_edge(clk) then  
  95    y_reg  < = y;  
  96    end if;  
  97    end process;  
  98         
  99    end architecture;  
  100    -------------------------------------------------------  

9.7   Exercises 

Exercise 9.1: Timer Control Strategies Analysis (Light Rotator) 
This exercise concerns the light rotator of fi gure 8.14b, implemented with VHDL in 
section 9.4.  

a) Compile the code of section 9.4 for the following options and write down the 
number of logic elements and registers inferred by the compiler in each case: 1) Using 
strategy #1 for the timer and sequential encoding for the machine; 2) With strategy 
#1 and one-hot encoding; 3) With strategy #2 and sequential encoding; 4) With strat-
egy #2 and one-hot encoding. 
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 b) Compare the results above. Was the difference between the two strategies more 
relevant for sequential or one-hot encoding? Explain. 

 Exercise 9.2: Blinking Light 
 This exercise concerns the blinking light FSM of fi gure 8.12c. 

 a) Which of the two timer control strategies (#1, section 8.5.2, or #2, section 8.5.3), 
if any, can be adopted in the implementation of this FSM? 
 b) Implement it using VHDL. Check whether the number of DFFs inferred by the 
compiler matches the prediction made in section 8.11.1 for each encoding option 
(sequential, Gray, Johnson, and one-hot). Recall that the predictions must be adjusted 
in case the clock frequency is different from 50 MHz. 
 c) Physically test your design in the FPGA development board. Use two switches to 
produce  rst  and  ena  and use an LED to display the output. 

 Exercise 9.3: Switch Debouncer 
 This exercise concerns the switch debouncer of fi gure 8.16c, which was inserted into 
the circuit of   fi gure 9.3 . The fi gure also shows two counters; the signal pro duced 
by the switch ( sw ) acts as clock to counter1, and its debounced version ( sw_deb ) acts 
as clock to counter2. Every time the pushbutton is pressed (or a toggle switch is 
fl ipped), both counters will be incremented, but counter1 might occa sionally be 
incremented by more than one unit (the more the switch bounces, the bigger the 
difference between the values on the displays). Assume a 2-ms debouncing interval 
(check the clock frequency in your development board) and sequential encoding for 
the FSM, with the counters able to count from 0h to Fh. 

 a) Which of the two timer control strategies (#1, section 8.5.2, or #2, section 8.5.3), 
if any, can be adopted in the implementation of this FSM? 
 b) Estimate the number of DFFs needed to build the complete circuit. Does this 
number depend on the answer to part a above? 
 c) Design the circuit using VHDL. Check whether the number of DFFs inferred by the 
compiler matches your prediction. 

 Figure 9.3 
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d) Physically test your design in the FPGA development board for several switches 
(both toggle and pushbutton types).    

Exercise 9.4: Reference-Value Defi ner 
This exercise concerns the reference-value defi ner of fi gure 8.17b, which must produce 
the following consecutive values (the value must change every time the pushbutton 
is pressed): 250, 180, 130, 100, 70, and 40 (thus  ref  is an eight-bit signal). These values 
must be displayed on your development board using either three SSDs or eight LEDs 
(if the former is chosen, an SSD driver must be included in the design). In this exercise 
it is requested that the clock frequency be divided down to 1 kHz; this 1-kHz signal 
( clk1k ) is the clock to be employed in the circuit. 

 a) Assume a 3-ms debouncing interval. Consequently, only four consecutive equal 
readings are needed for the pushbutton value to be considered valid. Is an FSM still 
desired for the debouncer (plus one-shot conversion)? If so, does it need to be a timed 
machine, as in fi gure 8.18b? 
 b) Draw a block diagram for your circuit, including in it the clock divider and the 
output display. 
 c) Draw the state transition diagram for each FSM used in the design. 
 d) Estimate the number of DFFs that will be needed to build the entire circuit (includ-
ing the clock divider). Assume sequential encoding for the FSM(s) and check the clock 
frequency in your development board. 
 e) Implement the circuit using VHDL. Check whether the number of DFFs inferred by 
the compiler matches your prediction. 
 f) Physically demonstrate your design in the FPGA development board. 

 Exercise 9.5: Blinking Light with Several Speeds 
 This exercise is an extension to the light blinker of fi gure 8.12c, which must 
now operate with a  programmable  speed, set by a pushbutton, called  spd  (see the 
gener al diagram of   fi gure 9.4 ). The next speed must be selected every time the 
pushbutton is pressed. The speed is determined by the on – off time interval ( T ref  ), 
which must be one of the following: 250, 180, 130, 100, 70, or 40 ms. As in exercise 
9.4, the frequency of the system clock should be divided down, producing a 1-kHz 

 Figure 9.4 
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clock for the present circuit. Note that a debouncer is indispensable for the speed 
pushbutton. 

a) Draw a block diagram for your circuit, including the pushbutton, clock divider, and 
FSMs. 
b) Draw the state transition diagram for each FSM to be used in the design. 
c) Estimate the number of DFFs that will be needed to build the entire circuit. 
d) Implement the circuit using VHDL. Check whether the number of DFFs inferred by 
the compiler matches your prediction. 
e) Physically demonstrate your design in the FPGA development board. 

Suggestion: Before solving this problem, solve exercises 9.3 and 9.4 if not done yet.    

Exercise 9.6: Light Rotator with Additional Features 
This exercise concerns the light rotator of fi gure 8.14, to which the following features 
must be added: 

i ) An input called  dir  (produced by a switch) that selects the rotating direction (clock-
wise when  dir  =  ‘ 1 ’ , counterclockwise otherwise). 
  ii ) An input called  spd  (produced by a pushbutton) that selects the rotating speed, as 
in exercises 9.4 and 9.5. Every time the pushbutton is pressed, the next speed must 
be selected. The speed is determined by the time interval during which the machine 
stays in states A, B, C, . . . , which must be one of the following: 250, 180, 130, 100, 
70, or 40 ms. The duration of states AB, BC, CD, . . . must be always 20 ms. Note 
that a debouncer is necessary for the speed pushbutton. 

 As in exercises 9.4 and 9.5, the system clock should be divided down, producing a 
1-kHz clock for the present circuit. (Suggestion: Before solving this problem, solve 
exercises 9.4 and 9.5 if not done yet.) 

 a) Draw a block diagram for your circuit. 
 b) Draw the state transition diagram for each FSM to be used in the design. 
 c) Estimate the number of DFFs that will be needed to build the entire circuit. Assume 
sequential encoding for the FSM(s). 
 d) Design the circuit using VHDL. Check whether the number of DFFs inferred by the 
compiler matches your prediction. 
 e) Physically demonstrate your design in the FPGA development board. 

 Exercise 9.7: Garage Door Controller 
 This exercise concerns the garage door controller seen in section 5.4.5, designed with 
VHDL and SystemVerilog in sections 6.7 and 7.6, respectively. Make the modifi cations 
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needed in the VHDL code to incorporate the following feature: the door must close 
automatically 30 s after arriving at the completely open position. This feature should 
be optional, so an input must be added to the circuit to allow the user to choose between 
enabling it or not. How many DFFs will be needed to build the entire circuit now? 

Exercise 9.8: Traffi c Light Controller 
This exercise concerns the traffi c light controller of fi gure 8.20c. 

 a) Which of the two timer control strategies (#1, section 8.5.2, or #2, section 8.5.3), 
if any, can be adopted to implement this FSM? 
 b) Implement it using VHDL. Check whether the number of DFFs inferred by the 
compiler matches the prediction made in section 8.11.5 for each encoding option 
(sequential, Gray, Johnson, and one-hot). Recall that the predictions must be adjusted 
in case the clock frequency is different from 50 MHz. 
 c) Physically test your design in the FPGA development board. Use three switches to 
produce  stby ,  test , and  rst , and six LEDs to display the outputs. 
 d) At this point add the following feature (modify the design and download it to the 
FPGA board): the yellow lights should blink (at 0.5 Hz) while the circuit is in the 
standby mode. 

 Exercise 9.9: Password Detector 
 This exercise concerns the password detector of fi gure 8.22. A general block diagram 
for the present design is shown in   fi gure 9.5 , where, to ease the experiment, four 
pushbuttons (from the FPGA board itself) replace the keypad. A multisignal debouncer 
(treated in exercise 8.9) is also included. Only the following values are valid inputs ( x ) 
to the password detector:  “ 1111 ”  (no pushbutton pressed),  “ 0111 ”  (top pushbutton 
pressed),  “ 1011 ” ,  “ 1101 ” , and  “ 1110 ”  (bottom pushbutton pressed). 

 a) Solve exercise 8.9 if not done yet. 
 b) Present a state transition diagram for each FSM to be used in this design. 
 c) How many DFFs are needed to build the entire circuit? Adopt a 1-ms debouncing 
interval and sequential encoding for the FSMs. Check the clock frequency in your 
FPGA development board. 

 Figure 9.5  
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d) Design the circuit using VHDL. Enter the multisignal debouncer as a  component  in 
the main code. After compilation, check whether the inferred number of DFFs matches 
your prediction. 
e) Physically test your design in the FPGA development board. Test it for the following 
passwords:  abc ,  aad , and  aaa  (where  a  =  “ 0111 ” ,  b  =  “ 1011 ” ,  c  =  “ 1101 ” , and  d  = 
 “ 1110 ” ). 

    Exercise 9.10: Triggered Circuits 
 This exercise concerns the triggered FSMs treated in exercise 8.17. 

 a) Solve exercise 8.17 if not done yet. 
 b) Using VHDL, implement the FSM devised in part a of that exercise. Check whether 
the number of DFFs inferred by the compiler matches your prediction. Show corre-
sponding simulation results. 
 c) Do the same for the FSM of part b in that exercise. 

 Exercise 9.11: Pulse Shifter 
 This exercise concerns the pulse shifter of fi gure 8.26a. Implement it using VHDL. 
Simulate it using the same stimuli of fi gure 8.26b and check whether the same wave-
forms result. 

 Exercise 9.12: Synchronous Pulse Stretcher 
 This exercise concerns the synchronous pulse stretcher introduced in fi gure 8.28a. 

 a) How many DFFs are needed to build it for  T  = 64 clock cycles and sequential 
encoding? 
 b) Implement it using VHDL. Check whether the number of DFFs inferred by the 
compiler matches your estimate. 
 c) Recompile it for  T  = 5 and simulate it with the same stimuli of fi gure 8.28b, check-
ing if the same waveforms result. 

 Exercise 9.13: Asynchronous Pulse Stretcher 
 This exercise concerns the asynchronous pulse stretcher introduced in fi gure 8.28c. 

 a) How many DFFs are needed to build it for  T  = 64 clock cycles and sequential 
encoding? 
 b) Implement it using VHDL. Check whether the number of DFFs inferred by the 
compiler matches your estimate. 
 c) Recompile it for  T  = 5 and simulate it with the same stimuli of fi gure 8.28d, check-
ing if the same waveforms result. 



10   SystemVerilog Design of Timed (Category 2) State Machines 

10.1   Introduction 

This chapter presents several SystemVerilog designs of category 2 state machines. It 
starts by presenting two SystemVerilog templates, for Moore- and Mealy-based imple-
mentations, which are used subsequently to develop a series of designs related to the 
examples introduced in chapter 8. 

 The codes are all complete (not only partial sketches) and are accompanied by 
comments and simulation results, illustrating the design ’ s main features. All circuits 
were synthesized using Quartus II (from Altera) or ISE (from Xilinx). The simulations 
were performed with Quartus II or ModelSim (from Mentor Graphics). The default 
encoding scheme for the states of the FSMs was regular sequential encoding (see 
encoding options in section 3.7). 

 The same designs were developed in chapter 9 using VHDL, so the reader can make 
a direct comparison between the codes.  

  Note : See suggestions of SystemVerilog books in the bibliography. 

 10.2   SystemVerilog Template for Timed (Category 2) Moore Machines 

 The template is presented below. Because it is an extension to the Moore template for 
category 1, described in section 7.3, a review of that template is suggested before this 
one is examined because only the differences are described. 

 The only differences are those needed for the inclusion of a timer (external to the 
FSM — see fi gure 8.2a). Recall, however, that the FSM itself is responsible for controlling 
the timer. For that purpose, two strategies were developed in chapter 8, being the fi rst 
generic (section 8.5.2), and the second (section 8.5.3), non-generic. It is very important 
that the reader review those two sections before proceeding. 

 The fi rst of the two templates that follow is for timed Moore machines with the 
timer implemented using strategy #1. The timer-related constants ( T  1 ,  T  2 , . . .) can be 
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declared either as global parameters (in the module header — see lines 3 – 5 in the tem-
plate of section 7.3) or as local parameters, as shown in lines 11 – 13 of the template 
below. The variable  t  (line 14) must obviously stay where it is. As seen in section 8.5.2, 
the timer must obey  t max    ≥  max ( T  1 ,  T  2 ,  .   .   . )  −  1. 

 In the statements part of the code (lines 16 – 55), there are two differences. 
 The fi rst difference is an additional  always_ff  block (lines 19 – 22), which imple-

ments the timer, according to the strategy described in section 8.5.2. 
 The second difference is in the  always_comb  block that implements the FSM ’ s 

combinational logic section (lines 28 – 50), because  t  might now appear in the condi-
tions for  nx_state  (lines 34, 35, 42, . . .). The use of  t   ≥   T   −  1 instead of  t  =  T   −  1 is 
required in the conditional-timed transitions with  T   −  1    <   t max  . Note that  t max   does not 
need to be defi ned in all states, which is not true for strategy #2.  

  1    //Timed Moore machine with timer control strategy #1  
  2    //Part 1: Module header:-----------------------------------  
  3    (same as for category 1 Moore, section 7.3)  
  4  
  5    //Part 2: Declarations:-------------------------------------  
  6  
  7    //FSM-related declarations:  
  8    (same as for category 1 Moore, section 7.3)  
  9  
  10    //Timer-related declarations:  
  11    const logic [7:0] T1 =  < value > ;  
  12    const logic [7:0] T2 =  < value > ;  
  13    const logic [7:0] tmax =  < value > ;//tmax ≥ max(T1,T2,...)-1  
  14    logic [7:0] t;  
  15  
  16    //Part 3: Statements:---------------------------------------  
  17  
  18    //Timer (strategy #1, section 8.5.2):  
  19    always_ff @(posedge clk, posedge rst)  
  20    if (rst) t  < = 0;  
  21    else if (pr_state != nx_state) t  < = 0;  
  22    else if (t != tmax) t  < = t + 1;  
  23  
  24    //FSM state register:  
  25    (same as for category 1 Moore, Section 7.3)  
  26  
  27    //FSM combinational logic:  
  28    always_comb        
  29    case (pr_state)  
  30    A: begin  
  31    outp1  < =  < value > ;  
  32    outp2  < =  < value > ;  
  33    ...  
  34    if (... and t > =T1-1) nx_state  < = B;  
  35    else if (... and t > =T2-1) nx_state  < = ...;  
  36    else nx_state  < = A;   
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  37    end  
  38    B: begin  
  39    outp1  < =  < value > ;  
  40    outp2  < =  < value > ;  
  41    ...  
  42    if (... and t > =T3-1) nx_state  < = C;  
  43    else if (...) nx_state  < = ...;  
  44    else nx_state  < = B;   
  45    end           
  46    C: begin  
  47    ...  
  48    end  
  49    ...  
  50    endcase  
  51  
  52    //Optional output register:  
  53    (same as for category 1 Moore, section 7.3)  
  54  
  55    endmodule  
  56    //----------------------------------------------------------  

The next template is for timed Moore machines employing strategy #2 to imple-
ment the timer. 

The fi rst difference is in line 14, which now includes also  t max  .  
 The second difference is in the  always_ff  block for the timer (lines 19 – 22), which 

is now based on the strategy described in section 8.5.3. 
 The third and fi nal difference is in  always_comb  block that implements the FSM ’ s 

combinational logic section (lines 28 – 52), which requires now the value of  t max   to be 
specifi ed in each state (lines 34, 43, . . .), even if the state is untimed ( t max   = 0). This 
code can obviously be simplifi ed in several ways when there are no conditional-timed 
transitions and/or  t max   is the same in all or most states.  

  1   //Timed Moore machine with timer control strategy #2  
  2    //Part 1: Module header:-----------------------------  
  3    (same as template above)  
  4  
  5    //Part 2: Declarations:------------------------------  
  6  
  7    //FSM-related declarations:  
  8    (same as for category 1 Moore, section 7.3)  
  9  
  10    //Timer-related declarations:  
  11    const logic [7:0] T1 =  < value > ;  
  12    const logic [7:0] T2 =  < value > ;  
  13    ...  
  14    logic [7:0] t, tmax;  
  15  
  16    //Part 3: Statements:-------------------------------  
  17  
  18    //Timer (strategy #2, section 8.5.3):  
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  19    always_ff @(posedge clk, posedge rst)  
  20    if (rst) t  < = 0;  
  21    else if (t  <  tmax) t  < = t + 1;  
  22    else t  < = 0;   
  23  
  24    //FSM state register:  
  25    (same as for category 1 Moore, Section 7.3)  
  26  
  27    //FSM combinational logic:  
  28    always_comb        
  29    case (pr_state)  
  30    A: begin  
  31    outp1  < =  < value > ;  
  32    outp2  < =  < value > ;  
  33    ...  
  34    tmax  < = T1-1;  
  35    if (... and t=tmax) nx_state  < = B;  
  36    else if (...) nx_state  < = ...;  
  37    else nx_state  < = A;   
  38    end  
  39    B: begin  
  40    outp1  < =  < value > ;  
  41    outp2  < =  < value > ;  
  42    ...  
  43    tmax  < = T2-1;  
  44    if (... and t=tmax) nx_state  < = C;  
  45    else if (...) nx_state  < = ...;  
  46    else nx_state  < = B;   
  47    end           
  48    C: begin  
  49    ...  
  50    end  
  51    ...  
  52    endcase  
  53  
  54    //Optional output register:  
  55    (same as for category 1 Moore, section 7.3)  
  56  
  57    endmodule  
  58    //-------------------------------------------------  

10.3   SystemVerilog Template for Timed (Category 2) Mealy Machines 

The template is presented below, using strategy #1 to implement the timer. The only 
difference with respect to the Moore template just described is in the  always_comb
block for the combinational logic (lines 22 – 64) because the output is specifi ed differ-
ently now. Recall that in a Mealy machine the output depends not only on the FSM ’ s 
state but also on its input, so  if  statements are expected for the output in one or more 
states because the output values might not be unique. This is achieved by including 
such values within the conditional statements for  nx_state . For example, observe in 
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lines 24 – 42, relative to state A, that the output values are now conditional. Compare 
these lines against lines 30 – 37 in the previous template.  

  1   //Timed Mealy machine with timer control strategy #1  
  2    //Part 1: Module header:----------------------------  
  3    (same as for category 2 Moore, section 10.2)  
  4  
  5    //Part 2: Declarations:-----------------------------  
  6  
  7    //FSM-related declarations:  
  8    (same as for category 2 Moore, section 10.2)  
  9  
  10    //Timer-related declarations:  
  11    (same as for category 2 Moore, section 10.2)  
  12  
  13    //Part 3: Statements:-------------------------------  
  14  
  15    //Timer (using timer control strategy #1):  
  16    (same as for category 2 Moore, section 10.2)  
  17  
  18    //FSM state register:  
  19    (same as for category 2 Moore, section 10.2)  
  20  
  21    //FSM combinational logic:  
  22    always_comb        
  23    case (pr_state)  
  24    A:  
  25    if (... and t > =T1-1) begin  
  26    outp1  < =  < value > ;  
  27    outp2  < =  < value > ;  
  28    ...  
  29    nx_state  < = B;  
  30    end  
  31    else if (... and t > =T2-1) begin   
  32    outp1  < =  < value > ;  
  33    outp2  < =  < value > ;  
  34    ...  
  35    nx_state  < = ...;  
  36    end  
  37    else begin  
  38    outp1  < =  < value > ;  
  39    outp2  < =  < value > ;  
  40    ...  
  41    nx_state  < = A;   
  42    end  
  43    B:  
  44    if (... and t > =T3-1) begin  
  45    outp1  < =  < value > ;  
  46    outp2  < =  < value > ;  
  47    ...  
  48    nx_state  < = C;  
  49    end  
  50    else if (condition) begin   
  51    outp1  < =  < value > ;  
  52    outp2  < =  < value > ;  
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  53    ...  
  54    nx_state  < = ...;  
  55    end  
  56    else begin  
  57    outp1  < =  < value > ;  
  58    outp2  < =  < value > ;  
  59    ...  
  60    nx_state  < = B;   
  61    end  
  62    C: ...  
  63    ...  
  64    endcase  
  65  
  66    //Optional output register:  
  67    (same as for category 2 Moore, section 10.2)  
  68  
  69    endmodule  
  70   //-------------------------------------------------  

10.4   Design of a Light Rotator 

This section presents a SystemVerilog-based design for the light rotator introduced in 
section 8.11.2. The Moore template of section 10.2 is used to implement the FSM of 
fi gure 8.14b. Either strategy #1 (section 8.5.2) or #2 (section 8.5.3) can be used to build 
the timer (both templates are shown in section 10.2); the former is employed in the 
code below, while the latter is explored in exercise 10.1.  

 The fi rst part of the code ( module header ) is in lines 1 – 4. The module ’ s name is 
 light_rotator . Note that all ports are of type  logic . 

 The second part of the code ( declarations ) is in lines 6 – 17. In the FSM-related dec-
larations (lines 9 – 11), the enumerated type  state  is created to represent the machine ’ s 
present and next states. In the timer-related declarations (lines 14 – 17), the values 
chosen for  T  1  and  T  2  are such that 120 ms and 35 ms result, respectively, assuming 
 f clk   = 50 MHz. 

 The third and fi nal part of the code ( statements ) is in lines 19 – 85. It contains three 
 always  blocks, described next. 

 The fi rst  always  block (lines 22 – 27) is an  always_ff  that implements the timer, 
using strategy #1. Except for the presence of  stp , it is exactly as in the template. 

 The second  always  block (lines 30 – 32) is an  always_ff  that implements the FSM ’ s 
state register, exactly as in the template. 

 The third and fi nal  always  block (lines 35 – 83) is an  always_comb , which imple-
ments the entire combinational logic section. It is just a list of all states (indeed, 
because this code is repetitive, some of the states were not detailed in order to save 
some space), each containing the output ( ssd ) value and the next state. Note that in 
each state the output value is unique because in a Moore machine the output depends 
only on the state in which the machine is. 
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In this kind of application, the  “  − 1 ”  term present in the defi nition of the total time 
(lines 16, 39, 44, 49, .    .    .) does not make any difference, but it was maintained as a 
reminder of the precise value. Also, in this application possible glitches during (posi-
tive) clock transitions are not a problem, so the optional output register shown in the 
last part of the template was not employed. 

 The reader is invited to compile this code and play with the circuit in the FPGA 
development board. Also, check whether the number of DFFs inferred by the compiler 
matches the prediction made in section 8.11.2 for each encoding style.  

  1   //Module header:-----------------------------------  
  2    module light_rotator (  
  3    input logic stp, clk, rst,  
  4    output logic [6:0] ssd);  
  5  
  6   //Declarations:-------------------------------------  
  7  
  8    //FSM-related declarations:  
  9    typedef enum logic [3:0] {A, AB, B, BC, C, CD, D, DE, E, EF,  
  10    F, FA} state;  
  11    state pr_state, nx_state;  
  12  
  13    //Timer-related declarations:  
  14    const logic [22:0] T1 = 6_000_000; //120ms @fclk=50MHz  
  15    const logic [22:0] T2 = 1_750_000; //35ms @fclk=50MHz  
  16    const logic [22:0] tmax = T1-1; //tmax ≥ max(T1,T2)-1   
  17    logic [22:0] t;   
  18  
  19    //Statements:-----------------------------------------  
  20  
  21    //Timer (using strategy #1):  
  22    always_ff @(posedge clk, posedge rst)  
  23    if (rst) t  < = 0;  
  24    else if (~stp) begin   
  25    if (pr_state != nx_state) t  < = 0;  
  26    else if (t != tmax) t  < = t + 1;  
  27    end  
  28  
  29    //FSM state register:  
  30    always_ff @(posedge clk, posedge rst)  
  31    if (rst) pr_state  < = A;  
  32    else pr_state  < = nx_state;  
  33            
  34    //FSM combinational logic:  
  35    always_comb        
  36    case (pr_state)  
  37    A: begin  
  38    ssd  < = 7'b0111111;  
  39    if (t > =T1-1) nx_state  < = AB; //or t==T1-1  
  40    else nx_state  < = A;  
  41    end  
  42    AB: begin  
  43    ssd  < = 7'b0011111;  
  44    if (t > =T2-1) nx_state  < = B; //or t==T2-1  
  45    else nx_state  < = AB;  
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  46    end  
  47    B: begin  
  48    ssd  < = 7'b1011111;  
  49    if (t > =T1-1) nx_state  < = BC;  
  50    else nx_state  < = B;  
  51    end  
  52    BC: begin  
  53    ssd  < = 7'b1001111;  
  54    if (t > =T2-1) nx_state  < = C;  
  55    else nx_state  < = BC;  
  56    end  
  57    C: begin  
  58    ...   
  59    end  
  60    CD: begin  
  61    ...   
  62    end  
  63    D: begin  
  64    ...  
  65    end  
  66    DE: begin  
  67    ...  
  68    end  
  69    E: begin  
  70    ...  
  71    end  
  72    EF: begin  
  73    ...  
  74    end  
  75    F: begin  
  76    ...  
  77    end  
  78    FA: begin  
  79    ssd  < = 7'b0111101;  
  80    if (t==T2-1) nx_state  < = A;  
  81    else nx_state  < = FA;   
  82    end  
  83    endcase  
  84  
  85    endmodule  
  86    //-------------------------------------------------  

10.5   Design of a Car Alarm (with Chirps) 

This section presents a SystemVerilog-based design for the car alarm with chirps intro-
duced in section 8.11.6. The Moore template of section 10.2 is employed to implement 
the FSM of fi gure 8.21c. Again, either strategy #1 or #2 can be used to build the timer; 
the latter was adopted in the code below. 

 The fi rst part of the code ( module header ) is in lines 1 – 4. The module ’ s name is 
 car_alarm_with_chirps . Note that all ports are of type  logic . 

 The second part of the code ( declarations ) is in lines 6 – 16. In the FSM-related dec-
larations (lines 9 – 11), the enumerated type  state  is created to represent the machine ’ s 
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present and next states. In the timer-related declarations (lines 14 – 16), the value 
chosen for  chirpON  and  chirpOFF  is such that the chirp and the time interval between 
chirps last 0.3 s, assuming  f clk   = 50 MHz. 

 The third and fi nal part of the code ( statements ) is in lines 18 – 97. It contains three 
 always  blocks, described next. 

 The fi rst  always  block (lines 21 – 24) is an  always_ff  that implements the timer, 
using strategy #2, exactly as in the template. 

 The second  always  block (lines 27 – 29) is another  always_ff , implementing the 
machine ’ s state register, also as in the template. 

 The third and fi nal  always  block (lines 32 – 95) is an  always_comb , which imple-
ments the entire combinational logic section. It is just a list of all states, each contain-
ing the output ( siren ) value, the value of  t max  , and the next state. Note that in each 
state the output value is unique because in a Moore machine the output depends only 
on the state in which the machine is. 

 In this kind of application the  “  − 1 ”  term present in the determination of  t max   (lines 
42, 67, 73, .   .   .) does not make any difference, but it was maintained as a reminder of 
the precise value. Also, in this kind of application possible glitches during (positive) 
clock transitions are generally not a problem, so the optional output register shown 
in the fi nal portion of the template was not employed. 

 Finally, and very importantly, observe the correct use of registers and the complete-
ness of the code, as described in comment 8 of section 7.3. Observe in particular the 
following: 1) all states are included; 2) the list of outputs is exactly the same in all 
states, and the corresponding values are properly declared; 3) the specifi cations for 
 nx_state  are always fi nalized with an  else  statement, so no condition is left unchecked. 

 The total number of fl ip-fl ops inferred by the compiler on synthesizing this code 
was 28 for sequential or Gray encoding, 29 for Johnson, and 34 for one-hot. Compare 
these results against your predictions made in exercise 8.14. 

 Simulation results are shown in   fi gure 10.1 .  

 Figure 10.1 
 Simulation results from the SystemVerilog code for the car alarm of fi gure 8.21c for  chirpON  = 

 chirpOFF  = 3 clock cycles. 
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  1    //Module header:-----------------------------------------------  
  2    module car_alarm_with_chirps (  
  3    input logic remt, sen, clk, rst,  
  4    output logic siren);  
  5  
  6    //Declarations:------------------------------------------------  
  7  
  8    //FSM-related declarations:  
  9    typedef enum logic [3:0] {disarmed, armed, alarm, chirp1,    
  10    chirp2, chirp3, chirp4, chirp5, wait1, wait2} state;  
  11    state pr_state, nx_state;  
  12  
  13    //Timer-related declarations:  
  14    const logic [23:0] chirpON = 15_000_000;   //0.3s @fclk=50MHz  
  15    const logic [23:0] chirpOFF = 15_000_000;     
  16    logic [23:0] t, tmax; --range ≥ max(chirpON,chirpOFF)  
  17  
  18    //Statements:--------------------------------------------------  
  19  
  20    //Timer (using strategy #2):  
  21    always_ff @(posedge clk, posedge rst)  
  22    if (rst) t  < = 0;  
  23    else if (t  <  tmax) t  < = t + 1;  
  24    else t  < = 0;  
  25  
  26    //FSM state register:  
  27    always_ff @(posedge clk, posedge rst)  
  28    if (rst) pr_state  < = disarmed;  
  29    else pr_state  < = nx_state;  
  30  
  31    //FSM combinational logic:  
  32    always_comb        
  33    case (pr_state)  
  34    disarmed: begin  
  35    siren  < = 1'b0;  
  36    tmax  < = 0;  
  37    if (remt) nx_state  < = chirp1;  
  38    else nx_state  < = disarmed;   
  39    end  
  40    chirp1: begin  
  41    siren  < = 1'b1;  
  42    tmax  < = chirpON-1;  
  43    if (t==tmax) nx_state  < = wait1;  
  44    else nx_state  < = chirp1;   
  45    end  
  46    wait1: begin  
  47    siren  < = 1'b0;  
  48    tmax  < = 0;  
  49    if (~remt) nx_state  < = armed;  
  50    else nx_state  < = wait1;   
  51    end  
  52    armed: begin  
  53    siren  < = 1'b0;  
  54    tmax  < = 0;  
  55    if (sen) nx_state  < = alarm;  
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  56    else if (remt) nx_state  < = chirp3;  
  57    else nx_state  < = armed;   
  58    end  
  59    alarm: begin  
  60    siren  < = 1'b1;  
  61    tmax  < = 0;  
  62    if (remt) nx_state  < = chirp2;  
  63    else nx_state  < = alarm;   
  64    end  
  65    chirp2: begin  
  66    siren  < = 1'b0;  
  67    tmax  < = chirpOFF-1;  
  68    if (t==tmax) nx_state  < = chirp3;  
  69    else nx_state  < = chirp2;   
  70    end  
  71    chirp3: begin  
  72    siren  < = 1'b1;  
  73    tmax  < = chirpON-1;  
  74    if (t==tmax) nx_state  < = chirp4;  
  75    else nx_state  < = chirp3;   
  76    end  
  77    chirp4: begin  
  78    siren  < = 1'b0;  
  79    tmax  < = chirpOFF-1;  
  80    if (t==tmax) nx_state  < = chirp5;  
  81    else nx_state  < = chirp4;   
  82    end  
  83    chirp5: begin  
  84    siren  < = 1'b1;  
  85    tmax  < = chirpON-1;  
  86    if (t==tmax) nx_state  < = wait2;  
  87    else nx_state  < = chirp5;   
  88    end  
  89    wait2: begin  
  90    siren  < = 1'b0;  
  91    tmax  < = 0;  
  92    if (~remt) nx_state  < = disarmed;  
  93    else nx_state  < = wait2;   
  94    end  
  95    endcase  
  96  
  97    endmodule  
  98    //-------------------------------------------------------------  

10.6   Design of a Triggered Monostable Circuit 

This section presents a SystemVerilog-based design for the triggered monostable circuit 
of fi gure 8.24b, which is capable of generating the signal of fi gure 8.24a. Again, the 
code that follows is a straightforward application of the SystemVerilog template for 
category 2 Moore machines introduced in section 10.2. Note, however, that in this 
FSM the timer control strategy #2 (section 8.5.3) cannot be used. Indeed, even strategy 
#1 (section 8.5.2) cannot be applied completely because in one of the state transitions 
the timer must not be zeroed. 
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The fi rst part of the code ( module header ) is in lines 1 – 4. The module ’ s name is  trig-
gered_mono . Note that all ports are of type  logic . 

 The second part of the code ( declarations ) is in lines 6 – 15. In the FSM-related dec-
larations (lines 9 – 11), the enumerated type  state  is created to represent the machine ’ s 
present and next states; also, a variable called  y  is defi ned because the optional output 
register (which will produce a registered version of  y , called  y_reg ) is needed here to 
remove possible glitches. In the timer-related declarations (lines 14 – 15), a small value 
was used for  T  (called  delay  in the code; note  delay  = 3 in line 14) in order to ease the 
inspection of the simulation results. 

 The third and fi nal part of the code ( statements ) is in lines 17 – 62. It contains four 
 always  blocks, described next. 

 The fi rst  always  block (lines 20 – 23) is an  always_ff  that implements the timer. 
Note that the timer is not zeroed when the machine enters state D. 

 The second  always  block (lines 26 – 28) is another  always_ff , implementing the 
machine ’ s state register, exactly as in the template. 

 The third  always  block (lines 31 – 56) is an  always_comb , which implements the 
entire combinational logic section. It is just a list of all states, each containing the 
output ( y ) value and the next state. Note that in each state the output value is unique 
because in a Moore machine the output depends only on the state in which the 
machine is. 

 The fourth and fi nal  always  block (lines 59 – 60) implements the optional output 
register, exactly as in the template. Even though  y  could come directly from a DFF 
(hence glitch-free), that is not guaranteed because it depends on the encoding scheme 
used in the machine. 

 Finally, and very importantly, observe the correct use of registers and the complete-
ness of the code, as described in comment 8 of section 7.3. Observe in particular the 
following: 1) all states are included; 2) the list of outputs is exactly the same in all 
states, and the corresponding values are properly declared; 3) the specifi cations for 
 nx_state  are always fi nalized with an  else  statement, so no condition is left unchecked. 

 The total number of fl ip-fl ops inferred by the compiler on synthesizing the code 
below, with regular sequential encoding for the machine states, was 5 for  T  = 3 and 
15 for  T  = 3000. 

 Simulation results are similar to those in fi gure 9.2, where the same circuit was 
implemented using VHDL.  

  1   //Module header:-------------------------------------  
  2    module triggered_mono (  
  3    input logic x, clk, rst,  
  4    output logic y_reg);  
  5  
  6    //Declarations:--------------------------------------  
  7  
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  8    //FSM-related declarations:  
  9    typedef enum logic [1:0] {A, B, C, D} state;  
  10    state pr_state, nx_state;  
  11    logic y;  
  12  
  13    //Timer-related declarations:  
  14    const logic [1:0] delay = 3;   //any value  > 1  
  15    logic [1:0] t; //tmax ≥ delay-1  
  16  
  17    //Statements:----------------------------------------  
  18  
  19    //Timer (strategy #1, adapted):  
  20    always_ff @(posedge clk, posedge rst)  
  21    if (rst) t  < = 0;  
  22    else if (pr_state!=nx_state  &  nx_state!=D) t  < = 0;  
  23    else if (pr_state==nx_state  &  t!=delay-1) t  < = t + 1;  
  24  
  25    //FSM state register:  
  26    always_ff @(posedge clk, posedge rst)  
  27    if (rst) pr_state  < = A;  
  28    else pr_state  < = nx_state;  
  29  
  30    //FSM combinational logic:  
  31    always_comb        
  32    case (pr_state)  
  33    A: begin  
  34    y  < = 1'b0;  
  35    if (~x) nx_state  < = B;  
  36    else nx_state  < = A;   
  37    end  
  38    B: begin  
  39    y  < = 1'b0;  
  40    if (x) nx_state  < = C;  
  41    else nx_state  < = B;   
  42    end  
  43    C: begin  
  44    y  < = 1'b1;  
  45    if (~x  &  t < delay-1) nx_state  < = D;  
  46    else if (~x  &  t > =delay-1) nx_state  < = B;  
  47    else if (x  &  t==delay-1) nx_state  < = A;  
  48    else nx_state  < = C;   
  49    end           
  50    D: begin  
  51    y  < = 1'b1;  
  52    if (x) nx_state  < = C;  
  53    else if (~x  &  t > =delay-2) nx_state  < = B;  
  54    else nx_state  < = D;   
  55    end     
  56    endcase  
  57            
  58    //Optional output register:-------  
  59    always_ff @(posedge clk)  
  60    y_reg  < = y;  
  61            
  62    endmodule  
  63    //--------------------------------------------------  
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10.7   Exercises 

Exercise 10.1: Timer Control Strategies Analysis (Light Rotator) 
Solve exercise 9.1 using SystemVerilog instead of VHDL. 

Exercise 10.2: Blinking Light 
Solve exercise 9.2 using SystemVerilog instead of VHDL. 

Exercise 10.3: Switch Debouncer 
Solve exercise 9.3 using SystemVerilog instead of VHDL. 

Exercise 10.4: Reference-Value Defi ner 
Solve exercise 9.4 using SystemVerilog instead of VHDL. 

Exercise 10.5: Blinking Light with Several Speeds 
Solve exercise 9.5 using SystemVerilog instead of VHDL. 

Exercise 10.6: Light Rotator with Additional Features 
Solve exercise 9.6 using SystemVerilog instead of VHDL. 

Exercise 10.7: Garage Door Controller 
Solve exercise 9.7 using SystemVerilog instead of VHDL. 

Exercise 10.8: Traffi c Light Controller 
 Solve exercise 9.8 using SystemVerilog instead of VHDL. 

 Exercise 10.9: Password Detector 
 Solve exercise 9.9 using SystemVerilog instead of VHDL. 

 Exercise 10.10: Triggered Circuits 
 Solve exercise 9.10 using SystemVerilog instead of VHDL. 

 Exercise 10.11: Pulse Shifter  
 Solve exercise 9.11 using SystemVerilog instead of VHDL. 

 Exercise 10.12: Synchronous Pulse Stretcher 
 Solve exercise 9.12 using SystemVerilog instead of VHDL. 

 Exercise 10.13: Asynchronous Pulse Stretcher 
 Solve exercise 9.13 using SystemVerilog instead of VHDL. 



11   Recursive (Category 3) State Machines 

11.1   Introduction 

We know that, from a hardware perspective, state machines can be classifi ed into two 
types, based on their  input connections , as follows. 

 1)    Moore machines : The input, if it exists, is connected only to the logic block that 
computes the next state. 
 2)    Mealy machines : The input is connected to both logic blocks, that is, for the next 
state and for the actual output. 

 In section 3.6 we introduced a new classifi cation, also from a hardware point of 
view, based on the  transition types  and  nature of the outputs , as follows (see   fi gure 11.1 ). 

 1)    Regular (category 1) state machines : This category, illustrated in   fi gure 11.1a  and 
studied in chapters 5 to 7, consists of machines with only untimed transitions and 
outputs that do not depend on previous (past) output values so none of the outputs 
need to be registered for the machine to function. 
 2)    Timed (category 2) state machines : This category, illustrated in   fi gure 11.1b  and 
studied in chapters 8 to 10, is similar to category 1, except for the fact that one or 
more of its transitions depend on time (so these FSMs can have all four transition 
types: conditional, timed, conditional-timed, and unconditional).  
 3)    Recursive (category 3) state machines : This category is illustrated in   fi gure 11.1c  and 
studied in chapters 11 to 13. It can have all four types of transitions, but one or more 
outputs depend on previous (past) output values so such outputs must be registered. 
Recall that in the standard architecture the outputs are produced by the FSM ’ s  combi-
national  logic block, so the current output values are  “ forgotten ”  after the machine 
leaves that state; consequently, to implement a recursive (recurrent) machine, some 
sort of extra memory is needed.  

 The name  “ recursive ”  for category 3 is due to the fact that when an output depends 
on a previous output value that value is generally from that same output, so a recursive 
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equation results (i.e., the output is a function of itself). For example,  y  =  y ,  y  =  y  ′ , and 
 y  =  y  + 1 mean that  y  (which is an output) should keep in the present state the same 
value that it had in the previous state, or the complement of that value, or the incre-
mented version of that value, respectively. Equivalently, one could write  y new   =  y old  ,  y new

=  y old   ′ , and  y new   =  y old   + 1. Occasionally, an output might be a function of a past value 
of another signal, like  y  =  z  (same as  y new   =  z old  ).    

 The two fundamental decisions that must be made before starting a design are then 
the following: 

 1)   The state machine category (regular, timed, or recursive). 
 2)   The state machine type (Moore or Mealy). 

 It is important to recall, however, that regardless of the machine category and type, 
the state transition diagram must fulfi ll three fundamental requisites (seen in section 
1.3): 

 1)   It must include all possible system states. 
 2)   All state transition conditions must be specifi ed (unless a transition is uncondi-
tional) and must be truly complementary. 
 3)   The list of outputs must be exactly the same in all states (standard architecture). 

 11.2   Recursive (Category 3) State Machines 

   Figure 11.2  shows two examples of very special circuits. In   fi gure 11.2a  a simplifi ed 
fl owchart for a memory-write procedure is shown in which an address is set, the data 
to be stored at that address is presented, then a write-enable pulse is applied to store 
the data. Note the presence of an incrementer (gray block), responsible for setting the 

Figure 11.1 
State machine categories (from a hardware perspective). 
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next memory address. Because the expression  addr  =  addr  + 1 is not a constant but, 
rather, depends on the previous value of  addr , this fl owchart cannot be implemented 
in hardware without some sort of auxiliary memory (to hold the value of  addr ), which 
must be provided along with the corresponding FSM (note that this is different — and 
more complex — than a  “ similar ”  implementation in software). 

    The second example (  fi gure 11.2b ) consists of a state machine with three outputs. 
Note that the list of outputs is exactly the same in all states (as required for hardware 
implementations using the standard architecture; otherwise latches would be inferred), 
but again not all output values are deterministic: in state B,  z  must keep the same 
value that it had when the machine left state A; in state C,  y  must exhibit the comple-
ment of the value that it had in the previous state, while  z  must be incremented. 
Recall that we cannot simply write  z  =  z A   in state B because  z A   might have changed; 
for the same reason, we cannot write  y  =  y B   ′  and  z  =  z A   + 1 in state C. Consequently, 
an extra memory (to hold the values of  y  and  z ) is again needed. 

 11.3   Architectures for Recursive (Category 3) Machines 

 The general architecture for category 3 machines is summarized in   fi gure 11.3a . This 
representation follows the style of fi gures 3.1b and 3.1d, but the style of fi gures 3.1a 
and 3.1c could be used equivalently. Note that the timer is optional, but at least one 
auxiliary register is necessary. 

 In this illustration, only for the signal that produces  output2  an auxiliary register is 
needed, so for that output the optional output register (fi gure 11.3b) is never required 
(the dashed lines indicate that  output2  can be either the unregistered or the registered 

Figure 11.2 
Examples of category 3 state machines. 
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version of  outp ). On the other hand,  output1  is not registered, so depending on the 
application, for it the optional output register might be needed. The resulting imple-
mentations are described below.    

  Recursive Moore machine : The circuit of   fi gure 11.3a  is used, with the input (if it exists) 
connected only to the logic block for the next state, as in fi gure 5.2a, and with unreg-
istered output. Regarding the options for the output, see the comments above. 
  Recursive Mealy machine : Again, the circuit of   fi gure 11.3a  is used, but this time with 
the input connected to both logic blocks (for output and for next state), as in fi gure 
5.2b. Regarding the options for the output, see the comments above. 

11.4   Category 3 to Category 1 Conversion 

We said in section 1.3 that for an FSM to be implemented in hardware it must obey 
three fundamental principles, the last one being that the list of outputs be exactly the 
same in all states. This is indispensable because the outputs are generated by the 
combinational logic section, which, being combinational, has no memory, so if an 
output is not specifi ed in a certain state, the compiler usually infers a latch (to hold 
the output ’ s last value), which is undesirable. 

 There is, however, an (apparent) exception, which occurs when the outputs are 
registered  (that is, when the optional output register seen in all templates is used), 
because then the outputs are stored anyway (so latches are not needed). In such cases 
one might not list all outputs in all states, but that simply means that unlisted outputs 
will exhibit the value previously stored in the corresponding fl ip-fl ops. Consequently, 
for any physical purpose the list of outputs is in fact the same in all states. 

Figure 11.3 
(a) General architecture for category 3 machines (timer is optional, but auxiliary register is com-

pulsory). (b) Optional output register (only for outputs not processed by an auxiliary register). 
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The reasoning above allows us to conclude that if a circuit was modeled as a cat-
egory 3 machine (because it has recursive outputs), with all outputs requiring an 
auxiliary register, then it can be implemented as if it were a category 1 circuit, with 
the optional output register included. In practical terms, in such cases the  “ dangerous ”  
VHDL template of section 6.4.4 can be used (although not recommended). 

 11.5   Repetitively Looped Category 3 Machines 

 This section highlights the particular case in which multiple pointers (counters) are 
needed to implement an FSM. As is shown later in the examples, this can occur par-
ticularly when one is dealing with serial data communications (e.g., serial data receiver/
transmitter, I 2 C interface, SPI interface). Note that this section is the counterpart of 
section 8.8, in which similar machines were implemented using the category 2 model. 

 The general problem is stated in   fi gure 11.4a . The machine must stay only one 
clock period in each state, but the loop must be repeated  N  AB  times, where  N  AB  is the 
number of times that the AB transition occurs ( N  BA  and  N  AB  +  N  BA  would be fi ne too, 
but an extra DFF would be required in the counter for the latter). The solution proper 
is in   fi gure 11.4b . Note that the counter ( k ) is incremented only in state B, holding 
its value while in state A. 

    A more general case is stated in   fi gure 11.4c . Here, not only must the loop be 
repeated  N  AB  times, but also the machine must stay  N  A  clock periods in A and  N  B  clock 
periods in B (note  N  A  and  N  B  over the state circles). The solution proper is in   fi gure 
11.4d . Three counters ( i ,  j ,  k ) are needed. Counter  i , which controls the stay in state 
A, is incremented in A and zeroed in B. Counter  j , which controls the stay in state B, 

Figure 11.4 
Repetitively looped machines using the category 3 model. (a) Symbolic representation when only 

the loop must be repeated and (b) corresponding details ( k  is incremented only in state B). (c) 

Symbolic representation with the loop and the individual states repeated and (d) corresponding 

details (three counters are needed; again,  k  is incremented only in state B). 



226 Chapter 11

is incremented in B and zeroed in A. Finally, counter  k , which controls the number 
of loops, is incremented in B but is not zeroed in A. 

11.6   Number of Flip-Flops 

As mentioned earlier, it is diffi cult to estimate the number of logic gates that will be 
needed in a large design, but it is always possible to determine, and exactly, the 
number of fl ip-fl ops. 

 In the particular case of sequential circuits implemented as category 3 state 
machines, there are four demands for DFFs, as follows: 

 1)   For the state register (below,  M FSM   is the number of states): 
 For sequential or Gray encoding:  N FSM   =   log 2  M FSM    . Example:  M FSM   = 25  →
 N FSM   = 5. 
 For Johnson encoding:  N FSM   =    M FSM  /2  . Example:  M FSM   = 25  →   N FSM   = 13. 
 For One-hot encoding:  N FSM   =  M FSM  . Example:  M FSM   = 25  →   N FSM   = 25. 

 2)   For the auxiliary register (compulsory, for at least one output, total  b aux   bits): 
  Naux  =  b aux  . Example:  baux  = 8  →   Naux  = 8. 

 3)   For the output register (optional, never needed for outputs processed by auxiliary 
registers, total  b output   bits): 
  N output   =  b output  . Example:  b output   = 16  →   N output   = 16. 

 4)   For the timer (optional; category 3 can have all four types of transitions): 
  N timer   =   log 2  T max    , where  T max   is the largest transition time, expressed in  “ number 
of clock cycles ” ; that is,  T max   =  t state_max    ×   f clk  , where  t state_max   is the largest transition 
time, in seconds, and  f clk   is the clock frequency, in hertz. 

 Therefore, the total number of DFFs is  N total   =  N FSM   +  N aux   +  N output   +  N timer  . In the 
examples that follow, as well as in the actual designs with VHDL and SystemVerilog, 
the number of fl ip-fl ops will be examined often. 

 11.7   Examples of Recursive (Category 3) State Machines 

 A series of recursive FSMs are presented next. Several of these examples will be 
designed later using VHDL (chapter 12) and SystemVerilog (chapter 13). 

 11.7.1   Generic Counters 
 As mentioned in section 5.4.1, counters are well-known circuits, easily designed 
without the FSM approach. Nevertheless, because they illustrate the state machine 
technique well, an example was included in that section using a regular FSM. A limita-
tion seen there is that only small counters can be represented as regular state machines. 
In this section we are interested in examining how the FSM model can be extended 
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to represent counters of any size. Even though one does not need the FSM approach 
to implement a counter when using an EDA tool (such as VHDL or SystemVerilog), 
the formal extension presented here will help in understanding the examples that 
follow, which often contain an embedded counter. 

 Two examples of counters modeled as category 3 FSMs are examined in this section 
(where  N  is the number of bits): (a) free-running (meaning that once the last value is 
reached it returns and restarts automatically from the initial value) with modulo 2  N  ; 
(b) free-running with modulo  < 2  N  . 

 A modulo 2  N   counter is one that has 2  N   states, thus spanning all possible  N -bit 
values. A regular modulo 2  N   sequential counter will count from 0 to 2  N    −  1, restarting 
then automatically from zero. This type of counter is depicted in   fi gure 11.5a . As usual, 
 ena  =  ‘ 1 ’  allows the counter to run, whereas  ena  =  ‘ 0 ’  causes it to stop. Note the pres-
ence of reset, which acts directly on the  hold  ( x  =  x ) state, thereby being able to set 
 x  = 0 (or any other value) as the starting value.  

   A modulo  < 2  N   counter is one that has fewer than 2  N   states, thus not spanning all 
possible  N -bit values. Therefore, a mechanism for starting/stopping the counter at the 
desired values is needed. A category 3 solution for this kind of counter is presented 
in   fi gure 11.5b , where  x min   and  x max   represent the counter ’ s initial and fi nal values, 
respectively.  

 The examples above show that there is a big difference between category 1 and 
category 3 representations for counters. In the former all states are required to appear 
in the state transition diagram (section 5.4.1), whereas in the latter only very few states 
are needed (  fi gure 11.5 ), regardless of the counter ’ s number of states (thus, only the 
latter allows large counters to be conveniently represented as state machines). There 
is a price to pay, however: even though the resulting circuits in category 1 and category 
3 are quite similar, only the former can lead to optimal implementations (similar to 

 Figure 11.5 
 (a, b) Generic counters modeled as category 3 FSMs, free running in the range 0 to 2  N    −  1 or  x min   

to  x max  , respectively. (c) Usual (optimal) construction for large synchronous counters. 
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fi gure 11.5c ; this is called a synchronous counter with serial enable; for small counters —
typically up to four or fi ve bits — parallel enable can be employed, but then no longer 
with a standard logic cell). 

 The nonoptimality mentioned above can be verifi ed, for example, by counting the 
number of DFFs needed to build the category 3 circuit. Based on section 11.6, and 
assuming that  x  is an eight-bit value and that regular sequential encoding (section 
3.7) is used for the FSMs, the number of DFFs is as follows: in   fi gure 11.5a : 1 for the 
two states + 8 for  x  = 9 DFFs; in   fi gure 11.5b : 2 for the three states + 8 for  x  = 10 DFFs; 
with category 1: 8 DFFs in either case. 

 11.7.2   Long-String Comparator 
 This section deals with an FSM capable of sequentially comparing two arbitrarily long 
serial bit streams. The machine must determine whether the last  N  bits are pairwise 
equal (this means that the effect of the oldest pair of bits must be discarded when a 
new pair is received). Note that this is very different from determining whether two 
sequential blocks of  N  bits each are equal (in the latter,  N  bits are compared, then the 
next  N  bits are compared, and so on, without overlapping). The former is described 
in this section, and the latter is treated in exercise 11.5. 

 The circuit ports are depicted in   fi gure 11.6a . The inputs (serial bit streams) are  a  
and  b , while the output is  y  (=  ‘ 1 ’  if all last  N  pairs of bits are equal). The comparator 
in this case is just a two-input XNOR gate, also depicted in the fi gure, which produces 
 x  =  ‘ 1 ’  when the inputs are equal. This signal ( x ) will be the actual input to the FSM. 

 A corresponding Moore-type solution is presented in   fi gure 11.6b . Note that 
besides the actual output ( y ), it also produces an auxiliary output ( i ) that is a counter 

 Figure 11.6 
 Two-string comparator that produces  y  =  ‘ 1 ’  if the last  N  bits are pairwise equal. (a) Circuit ports 

and bit comparator. (b) State transition diagram. (c) Illustrative timing diagram, for  N  = 4. 
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needed to control some of the machine transitions. The machine only reaches state 
C, which is the only state with  y  =  ‘ 1 ’ , if the last  N  values of  x  are  ‘ 1 ’  (no mis-
matches). Observe the recursive expression  i  =  i  + 1 in state B, which characterizes 
a category 3 FSM. Again, to better illustrate the solution, a detailed state transition 
diagram is presented, but simpler representations can obviously be used as well (as 
in fi gure 1.4). 

    An illustrative timing diagram for this circuit is included in   fi gure 11.6c  for  N  = 4. 
The inputs were considered to be updated at the negative clock edge, whereas the FSM 
operates at the positive clock transition (note the dots marked on the  x  waveform, 
highlighting the values of  x  as perceived by the state machine). The reader is invited 
to apply the values of  x  given in   fi gure 11.6c  to the state machine in   fi gure 11.6b  to 
check the correctness of the plots for  pr_state ,  i , and  y . 

 Based on section 11.6, the number of fl ip-fl ops needed to build the FSM of 
  fi gure 11.6b  is as follows. For the state register:  M FSM   = 3 states, so  N FSM   = 2 (assum-
ing sequential encoding). For the auxiliary register: needed for signal  i , which ranges 
from 0 to  N   −  1; assuming  N  = 64 bits,  N aux   = 6 DFFs. For the optional output register: 
not needed, so  N output   = 0. For the timer: not needed, so  N timer   = 0. Therefore,  N total   = 
8 DFFs. 

 11.7.3   Reference-Value Defi ner 
 In section 8.11.4 we started a discussion on a very important class of circuits, found 
particularly in control applications, capable of setting reference values. An example 
mentioned there was a temperature controller for an air conditioning system, which 
must have a way of letting the user choose the desired ( reference ) room temperature. 
As seen in that section, such circuits can be easily implemented without the FSM 
approach when the increments are constant, or with category 1 FSMs otherwise, 
but in the latter only if the number of reference values is small. When additional 
features are required, category 3 can be an interesting alternative because it poses no 
restrictions. 

 Let us start by examining two basic building blocks, shown in   fi gures 11.7a,b and 
11.7c,d . The circuit of   fi gure 11.7a  has only one control input ( up ), which must cause 
the output ( ref , the reference value) to be incremented by one unit every time  up  is 
asserted (by means of a pushbutton, for example). The output must range from  ref min

to  ref max  , restarting automatically from  ref min   after  ref max   has been reached (or a reset 
pulse has been applied to the circuit). 

    A possible solution for this problem is depicted in   fi gure 11.7b , requiring only four 
states regardless of the number of reference values. The machine must stay in state C 
during only one clock cycle (otherwise the incrementer would keep incrementing), so 
CD is an unconditional transition. Note the presence of recursive equations in almost 
all states, typical of category 3 FSMs. 
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 The second case, presented in   fi gures 11.7c,d , has up and down controls. Again, 
the output must range from  ref min   to  ref max  , with  up  and  dn  causing  ref  to be incremented 
or decremented, respectively. When one of these limits is reached, the machine must 
remain there until a movement (with  up  or  dn ) in the opposite direction is provoked. 
A possible solution is depicted in   fi gure 11.7d . Again, the number of states is just four, 
regardless of the number of reference values. Similarly to the previous case, here too 
there are states (C and D) that must last only one clock period. 

 A practical application is presented in   fi gure 11.8a , where  up  is produced by a 
pushbutton (after a debouncing circuit — see sections 8.11.3 and 11.7.4) and  ref  (refer-
ence value) is an eight-bit value, thus capable of operating anywhere in the 0-to-255 

 Figure 11.8 
 Practical application for a reference-value defi ner with a large number of states and timed 

transitions. 

Figure 11.7 
Setting a reference value (for any set size). (a, b) Up only. (c, d) Up and down. 
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range. Every time the pushbutton is pressed (and released),  ref  must be incremented 
by one unit; however, if the pushbutton is kept pressed for  t  1  = 2 s ( T  1  clock periods) 
or longer, the increment must occur automatically and at every  t  2  = 0.5 s ( T  2  clock 
periods). If the maximum value is reached, the machine must stop and hold that value, 
only returning to the initial state if the pushbutton is released and pressed again.   

 A solution (without the debouncer) is depicted in   fi gure 11.8b , which is simply the 
basic building block of   fi gure 11.7b  plus two extra states (E, F), added to take care of 
the time-related specifi cations. Note that the initial and fi nal values can be chosen 
freely by the designer and that the CD and EF transitions are unconditional. Again, 
the machine size is independent of the number of reference values and of the time 
values used in the timed transitions (the time values only affect the size of the counter 
that implements the timer). 

 Even though  up  is an asynchronous input in   fi gure 11.8 , a synchronizer (section 
2.3) is not needed because a debouncer was included in the circuit (and the applica-
tion might not be critical anyway). 

 Based on section 11.6, the number of fl ip-fl ops needed to build the FSM of   fi gure 
11.8b  is as follows. For the state register:  M FSM   = 6 states, so  N FSM   = 3 if sequential, Gray, 
or Johnson encoding is used, or 6 for one-hot. For the auxiliary register: needed for 
 ref ; because it is an eight-bit value,  N aux   = 8. For the optional output register: not 
needed, so  N output   = 0. (If needed, the auxiliary register could be used for that because 
it contains  ref  anyway.) For the timer: because  t state_max   = 2 s, and assuming  f clk   = 50 
MHz,  T max   = 10 7  clock cycles results, so  N timer   = 27. Therefore,  N total   = 38 or 41 DFFs. 

 11.7.4   Reference-Value Defi ner with Embedded Debouncer 
 This section is an extension to the section above. Because in many control applications 
reference values are set by means of mechanical switches, which might require some 
sort of debouncer (section 8.11.3), we want to examine the possibility of embedding 
the debouncer directly into the reference-value defi ner circuit. 

 Three possible situations are depicted in   fi gure 11.9 : (a) with debouncers imple-
mented as two separate circuits; (b) with the debouncers combined into a single circuit; 
(c) with the debouncers embedded in the FSM that implements the reference-value 
defi ner. The case in a was seen in section 8.11.3; that in b was treated in exercises 8.11 
and 8.12; and that in c is discussed in this section.    

 The general debouncing principle seen in section 8.11.3 is summarized in   fi gure 
11.10a  (with a simplifi ed representation — see fi gure 1.4), which says that for the 
output to change from  ‘ 0 ’  to  ‘ 1 ’  the input must remain high during  T  consecutive 
clock cycles (recall that the timer is zeroed every time the machine changes its state, 
so if a  ‘ 0 ’  occurs before the time has been completed, the machine returns to the initial 
state, restarting the timer). 
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This principle was applied to the  ‘ 0 ’ -to- ‘ 1 ’  ( ‘ 1 ’ -to- ‘ 0 ’  not included) transitions of 
  fi gure 11.7d , resulting in the state diagram of   fi gure 11.10b . Note the white circles 
between states BC and BD, related to the debouncing procedure. 

 For an analysis of the number of fl ip-fl ops, see exercise 11.6. For another imple-
mentation, concerning the case of   fi gure 11.7b , see exercise 11.7.    

 11.7.5   Datapath Control for a Sequential Multiplier 
 Before we examine this example, a review of Section 3.13 is useful. Particular attention 
should be paid to comment 4 at the end of that section, which is helpful here. 

   Figure 11.11a  presents an algorithm for unsigned sequential multiplication using 
only add and shift operations. It computes the product in  N  iterations (after a data-
load operation), where  N  is the number of bits in the multiplier and multiplicand, 
and 2 N  is the number of bits in the product. Note that the product is divided into 

 Figure 11.9 
 Reference-value defi ner with up and down controls set by two pushbuttons having the debounc-

ers (a) implemented as two separate circuits, (b) implemente as a combined circuit, and (c) 

embedded into the main FSM. 

 Figure 11.10 
 (a) Review of the general debouncing principle. (b) Machine of   fi gure 11.7d  with embedded 

debouncer (for the  ‘ 0 ’ -to- ‘ 1 ’  transition only). 
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two halves, called  prodL  (product left) and  prodR  (product right). In this example the 
inputs are  “ 1100 ”  (multiplicand = 12) and  “ 1011 ”  (multiplier = 11), so the expected 
result is  “ 10000100 ”  (product = 132).    

 Initially, the multiplicand is stored in a (fi xed) register, and the multiplier is loaded 
into  prodR , with  prodL  loaded with zeros. The algorithm checks the LSB (least signifi -
cant bit) of the product; if it is  ‘ 0 ’ , the product register is simply shifted to the right 
one position (empty position fi lled with the carry bit); if, however, it is  ‘ 1 ’ ,  mult  is 
added (with carry) to  prodL  before the shift operation is executed. After  N  iterations 
the product will be available in the product register. 

 The algorithm is described in ASM form in   fi gure 11.11b . A data-valid bit ( dv  =  ‘ 1 ’  
during one clock period) is used to tell the circuit when the computation should start. 
The algorithm runs  N  times (for  i  = 0 to  N   −  1), so when  i  =  N  occurs the algorithm 
returns to the beginning, ready to start a new computation when  dv  is asserted again. 
Note that a nop (no operation) stage was included in the left branch to consume one 
clock cycle, so the computations will always take a fi xed amount of time (depending 
on the application, the nop stage can be suppressed). Observe in the fl owchart the 
recursive equation  i  =  i  + 1, which characterizes a category 3 FSM. 

   Figure 11.12a  shows the parts of a datapath used to implement this multiplier, 
consisting of an ALU, two registers (REG1, REG2), and a multiplexer (MUX). It is 
assumed that it is a 16-bit system. The control unit (FSM) must generate the signals 
 wrR1  and  wrR2  (to enable writing into REG1 and REG2, respectively),  sel  (for mux 
input selection),  ALUop  (to control the ALU operation), and  shift  (to shift REG2 to the 

 Figure 11.11 
 Sequential add-and-shift multiplier. (a) Algorithm. (b) Flowchart. 
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right one position, with carry). The ALU opcode table is assumed to be that included 
in the fi gure.    

 The multiplication starts when the control unit receives  dv  =  ‘ 1 ’  (during one clock 
period), at which time it enables REG1 (by means of  wrR1  =  ‘ 1 ’ ) to store (at the next 
positive clock edge) the multiplicand, and REG2 (by means of  ALUop  = 0,  sel  =  ‘ 1 ’ , and 
wrR2  =  ‘ 1 ’ ) to store zero in  prodL  and the multiplier in  prodR . After this,  wrR1  stays low 
until the end of the computations, while  wrR2  is asserted at the end of each iteration 
to enable the storage of  ALUout  into  prodL , after which  shift  =  ‘ 1 ’  is produced to shift 
REG2 one position to the right. After  N  of such iterations, the product will be available 
in REG2. 

 A Moore machine that implements the control unit of   fi gure 11.12(a)  is presented 
in   fi gure 11.12(b) , which is a direct translation of the algorithm described above. 
Observe the inclusion of a wait state, needed for the reason explained in comment 4 
at the end of section 3.13. 

 VHDL and SystemVerilog implementations for this multiplier are presented in sec-
tions 12.4 and 13.4, respectively. 

 11.7.6   Sequential Divider 
 This section describes a state machine capable of sequentially computing the division 
 num / den  (numerator/denominator), producing the corresponding quotient ( quot ) and 

Figure 11.12 
Sequential add-and-shift multiplier. (a) Datapath. (b) Control unit implementation. 
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 Figure 11.13 
 Complete sequential divider. (a) Algorithm. (b) Flowchart. (c) A possible implementation (for 

 N  = 4). 

remainder ( rem ) values. Contrary to the previous section, here a datapath is not 
employed, so the machine is a complete divider, not a control unit. 

 The division algorithm, for unsigned inputs and employing only subtract and shift 
operations, is illustrated in   fi gure 11.13(a) . The computations take  N +1 iterations (after 
a data-load operation), where  N  is the number of bits in all four signals ( num ,  den , 
quot ,  rem ). In this example the inputs are  num =   “ 1101 ”  (= 13) and  den =   “ 0101 ”  (= 
5), so the expected results are  quot  =  “ 0010 ”  (= 2) and  rem  =  “ 0011 ”  (= 3).    

 Initially, the denominator is stored in a (fi xed) register, while the numerator is 
loaded into the quotient register, and the remainder is loaded with zeros. The algo-
rithm checks whether  rem  ≥  den ; if yes,  den  is subtracted from  rem,  and the entire result 
( rem  and  quot ) is shifted to the left one position with the empty position fi lled with 
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a  ‘ 1 ’ ; otherwise, no subtraction occurs, and the result is shifted to the left with a  ‘ 0 ’  
in the empty position. After  N  + 1 iterations, the fi nal result will be available. Note 
that the actual value of  rem  does not include its LSB. 

 The algorithm is described in ASM form in   fi gure 11.13b . A data-valid bit ( dv  =  ‘ 1 ’  
during one clock period) is used to tell the circuit when the computation should start. 
The algorithm runs  N  + 1 times (for  i  = 0 to  N ), so when  i  =  N  + 1 occurs, the algorithm 
returns to the beginning, ready to start a new computation when  dv  is asserted again. 
As in the previous section, an optional nop (no operation) stage was included in the 
left branch to consume one clock cycle, so the computations will always take a fi xed 
amount of time. 

 A Moore machine that implements the complete divider is presented in   fi gure 
11.13c  (note that  N  = 4 in this example). In the  load  state,  rem  is zeroed and  quot  is 
loaded with  num . If  rem  ≥  den , the machine moves to state  subtract , in which  rem  −  den  
occurs, followed by state  shift1 , responsible for shifting the data one position to the 
left with a  ‘ 1 ’  included in the rightmost position (following VHDL notation,  “  &  ”  
means concatenation in the expression  rem  =  rem (2:0)  &   quot (3), meaning that  rem (3:1) 
=  rem (2:0) and  rem (0) =  quot (3); the expression  quot  =  quot (2:0)  &   ‘ 1 ’  has a similar 
meaning). On the other hand, if  rem  <  den  when the machine is in  load , it goes through 
the  nop  state, followed by state  shift0 , responsible for shifting the result one position 
to the left with a  ‘ 0 ’  included in the rightmost position. Observe the presence of 
recursive equations ( quot  =  quot ,  i  =  i  + 1, etc.) in several states, which characterize a 
category 3 FSM. 

 11.7.7   Serial Data Receiver 
 This section shows another application that can be solved using a category 3 machine. 
It consists of a serial data receiver, which must store the received (one bit at a time) 
data in a multibit register. Even though this kind of circuit is simple, so it can be 
implemented without the FSM approach, we want to see how it can be modeled as 
a state machine (recall that we should be able to model any sequential circuit as an 
FSM). 

 The circuit ports are depicted in   fi gure 11.14a . The inputs are  x  (serial bit stream), 
 dv  (data-valid bit, high during only one clock cycle, informing that data storage should 
start), plus the conventional clock and reset. The received data must be stored in  y , 
which is an  N -fl ip-fl op register. A signal called  done  is also shown, which informs when 
the machine is free to receive/store another serial vector. 

 It will be assumed that the fi rst bit of  x  is made available at the same time that  dv  
is asserted, which is more diffi cult to implement. Because this kind of problem was 
already treated in section 3.10, a review of that section is recommended before pro-
ceeding. Indeed, two solutions for this problem were already presented in fi gures 
3.16c,e, using a timed machine. 
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Two additional solutions are presented in  fi gure 11.14 , this time using category 3 
machines, both of Moore type and without timed transitions. The FSM of fi gure 11.14b 
was based directly on that of fi gure 3.16c, with the timer ( t ) replaced with a pointer 
( i ). As indicated in the rectangle above the state machine, the data is updated at the 
positive clock edge, which is also the edge that causes the storage of  i  and  y  in auxiliary 
registers, whereas the FSM operates at the negative clock transition. 

 A fi nal solution is presented in   fi gure 11.14c , operating with the default clocking 
scheme (everybody operating at the same clock edge). In this case the fi rst bit of  x  is 
not lost because it is part of the transition conditions (observe the  idle-store0  and  idle-
store1  transitions, the fi rst for  x  =  ‘ 0 ’ , the second for  x  =  ‘ 1 ’ ).    

 11.7.8   Memory Interface 
 We want to develop a circuit for the memory interface of   fi gure 11.15a , which must 
write data to an asynchronous SRAM chip. The only nonoperational input is  dv  (data 
valid), and the outputs are  A  (address at which the data must be stored),  OEn  (output 
enable, active low),  CEn  (chip enable, active low), and  WEn  (write enable, also active 
low). The actual memory-write command, internal to the SRAM, normally corresponds 
to the overlap between  CEn  and  WEn . As in the previous example, this too is a simple 
circuit, but it is important to understand how it can be modeled as a fi nite state 
machine.    

   Figure 11.15b  shows a possible (conservative) memory-write sequence. All signals 
are updated/produced at positive clock edges. As usual, a small propagation delay is 
included between clock transitions and corresponding responses in order to portray 
a more realistic situation. In this example it is assumed that writing occurs only while 
 dv  is high. When  dv  is raised, the circuit lowers  CEn  and  WEn , causing  D0  to be 

Figure 11.14 
Serial data receiver. (a) Circuit ports. (b) Solution based on fi gure 3.16c (FSM operating at the 

negative clock edge). (c) Solution with all units operating at the same clock edge. 
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stored at the initial memory address, after which  WEn  is raised, disabling further 
writing. Each subsequent iteration consists of three clock cycles, during which the 
memory address is updated and then another write-enable pulse ( WEn  =  ‘ 0 ’ ) is applied 
to the circuit. When  dv  returns to  ‘ 0 ’ , the address is reset to zero (or to any other 
initial value). These operations can be done with  OEn  permanently high (thus not 
shown). 

 A Moore-type state machine capable of implementing this sequence of events is 
presented in   fi gure 11.15c , which is a direct translation of the timing diagram of   fi gure 
11.15b . The address is updated in state  incA , which increments the value of  A . Note 
the recursive expressions  A  =  A  and  A  =  A  + 1, which characterize a category 3 FSM. 

 An example involving an actual SRAM chip is depicted in   fi gure 11.16 . The SRAM 
(IS61LV25616 device, from ISSI) is shown in   fi gure 11.16a . It can store 262 kwords of 
16 bits each, hence requiring an 18-bit address bus,  A (17:0), and a 16-bit data bus, 
 D (15:0). It also contains fi ve control signals, all active low, called  CEn ,  WEn ,  OEn ,  UBn  
(upper byte enable), and  LBn  (lower byte enable).    

 A memory-write procedure based on this device ’ s truth table and time parameters 
is presented in the left half of   fi gure 11.16b . Note that it is less conservative than that 
in   fi gure 11.15b  (the end of the  WEn  pulse coincides with the beginning of a new 

 Figure 11.15 
 FSM implementing a memory-write procedure for an asynchronous SRAM. (a) Circuit ports. (b) 

Illustrative timing diagram (note that here writing occurs while  dv  is high). (c) Corresponding 

state machine. 
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memory-write cycle). The largest read/write time parameter is 10 ns, so a clock of up 
to 100 MHz can be used in the procedure shown in the fi gure. Finally, note that the 
 wr  command lasts just one clock cycle, so the end of writing is determined by a pre-
defi ned maximum address value. 

 A memory-read procedure is presented in the right half of   fi gure 11.16b . When the 
device is not in write mode (write is done with  WEn  low), it is automatically in read 
mode, so when the  rd  command (which also lasts only one clock cycle) occurs, all 
that is needed is to do the address sweep. 

 A complete FSM for writing to (upper branch) and reading from (lower branch) this 
device is presented in   fi gure 11.16c . If a  wr  =  ‘ 1 ’  pulse occurs, data is written to the 
SRAM from address  A  = 0 (or any other initial value) up to  A  =  A max  . A similar situation 
occurs for reading when an  rd  =  ‘ 1 ’  pulse is received. Note that state  hold  is important 
to prevent overwriting or overreading in case  wr  or  rd  is too long. The signals  done_wr  
and  done_rd  were included to inform the user when writing or reading has been com-
pleted. Note also the inclusion of  t  =  T 1   and  t  =  T 2   in two of the transitions, which 
indicate a way of reducing the write/read speed if that is desired. 

 A complete design for this memory interface, using VHDL and SystemVerilog, is 
presented in sections 12.6 and 13.6, respectively. The number of fl ip-fl ops is treated 
in exercise 11.15. 

Figure 11.16 
FSM implementing memory-write and memory-read procedures for an actual 262k    ×    16 SRAM. 

(a) Chip pinout. (b) Illustrative timing diagram (here,  wr  and  rd  are short pulses). (c) Correspond-

ing state machine. 
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11.8   Exercises 

Exercise 11.1: Machines Category 
a) Why are the state machines in   fi gures 11.5, 11.6, and 11.7  (among others) said to 
be of category 3? 
b) What types of transitions (section 1.6) can category 3 machines have? 
c) What differentiates category 3 from categories 1 and 2? 

Exercise 11.2: Generic Counter with a Stop Value 
Say that we must design a counter that starts at  x min   and stops (and remains there) 
when  x max   is reached, only returning to the initial value and running again after a 
reset pulse is applied to the circuit. As in section 11.7.1, the counter must have an 
enable input ( ena ) that allows the counter to run when asserted or holds it 
otherwise. 

 a) Draw a Moore-type state transition diagram for this counter modeled as a category 
3 machine. 
 b) Does the number of states depend on the counting range? 
 c) Does the number of fl ip-fl ops depend on the counting range? How many are needed 
to build your machine with  x min   = 1 and  x max   = 200? 
 d) Is it advantageous or necessary to use the FSM approach to design counters in 
general? 

 Exercise 11.3: Hamming-Weight Calculator 
 The circuit of   fi gure 11.17  must determine the Hamming weight (number of  ‘ 1 ’ s) of 
a  serial  bit vector  x . The vector is delimited by a data-valid bit (the counting must 
occur during all the time while  dv  =  ‘ 1 ’ ). Study the illustrative timing diagram included 
in the fi gure. Observe that  dv  and  x  (=  “ 100110101, ”  so  N  = 9) are updated at positive 
clock edges and that the FSM too operates at positive clock edges (see the plot for  y ). 
As usual, small propagation delays were included to portray a more realistic 
situation. 

 Figure 11.17 
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 a) Based on the given data, draw a Moore-type state transition diagram for this 
problem. Include a reset signal but assume that it can be asserted only at power-up. 
 b) Based on your state diagram, fi ll in the waveform for  pr_state  in the fi gure. 
 c) Redo part a assuming now that a reset pulse is applied to the FSM before each new 
computation starts. Can you fi nd a solution with fewer states than in a? 
 d) Draw an illustrative timing diagram, similar to that in   fi gure 11.17 , for the FSM 
developed in part c. 
 e) How many DFFs are needed to build each machine developed above, assuming that 
sequential encoding is used and that  x  is a 32-bit vector (so  y  can go from 0 to 32)?    

 Exercise 11.4: Leading-Ones Counter 
 The circuit of   fi gure 11.18  must count the number of  ‘ 1 ’ s before a  ‘ 0 ’  is found in a 
 serial  bit vector  x . The vector is delimited by a data-valid bit (the counting must occur 
during all the time while  dv  =  ‘ 1 ’ ). Study the illustrative timing diagram included in 
the fi gure. Observe that  dv  and  x  (=  “ 111110000, ”  so  N  = 9) are updated at positive 
clock edges, which are the same edges at which the FSM must operate. 

 a) Draw a state transition diagram for this machine. 
 b) Based on your machine, complete the plots for  y  and  pr_state  in the fi gure. 
 c) Say that we want the output value to remain stable (constant) during the computa-
tions, with the current value replaced only when a new value is ready. How can that 
be done? (Suggestion: see section 3.11.) 

    Exercise 11.5: Long-String Comparator 
 Develop an FSM that detects if two  serial  bit streams  a  and  b  of length  N  are pair-wise 
equal. This is an extension to the example of section 11.7.2 in which the FSM had to 
detect if the  last N  bits were equal. The circuit ports are depicted in the upper part of 
  fi gure 11.19 , which also shows an XNOR gate ( x  =  ‘ 1 ’  when  a  =  b ). The desired behavior 
is also illustrated in the fi gure for  N  = 4. Note in the  y  and  done  waveforms that after 
every four bits, starting right after the reset pulse,  done  must be asserted, informing 
that a complete block has been inspected, with  y  high during that pulse if the four 
pairs of bits were equal ( x  =  ‘ 1 ’  in all four time slots) or low otherwise. 

 Figure 11.18 
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a) Draw a state transition diagram for a machine that solves this problem for any 
(arbitrarily long) value of  N . 
 b) Based on your solution, fi ll in the missing plots in   fi gure 11.19 . 
 c) How many DFFs are needed to build your machine, assuming that sequential encod-
ing is used and that  N  = 256 bits? 

    Exercise 11.6: Reference-Value Defi ner with Embedded Debouncer #1 
 This exercise concerns the reference-value defi ner with embedded debouncer seen in 
  fi gure 11.10b . 

 a) Assuming that  ref  is an eight-bit signal, regular sequential encoding is used for the 
FSM, the debouncing time interval is 1 ms, and  f clk   = 50 MHz, calculate the number 
of fl ip-fl ops needed to build that circuit. 
 b) The inputs  up  and  dn  are asynchronous. Is a synchronizer (section 2.3) needed in 
this application? 

 Exercise 11.7: Reference-Value Defi ner with Embedded Debouncer #2 
 We saw in   fi gure 11.10b  an FSM that embeds, in the reference-value defi ner of   fi gure 
11.7d,  a pair of debouncers for the  up  and  dn  pushbuttons. 

 a) Using the same principle, modify the state transition diagram of   fi gure 11.7b  in 
order to include in it a debouncer for the  ‘ 0 ’ -to- ‘ 1 ’  transitions of  up . 
 b) Determine the number of DFFs needed to implement your FSM, assuming that 
sequential encoding is used,  ref  is an eight-bit signal, the debouncing interval is 1 ms, 
and  f clk   = 50 MHz. 

 Exercise 11.8: Greatest Common Divisor 
 The algorithm and a corresponding fl owchart for calculating the greatest common 
divisor (GCD) between two integers  a  and  b  are presented in fi gure 5.12. A data-valid 

Figure 11.19 
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( dv ) pulse, lasting only one clock period, informs when the computations must start. 
We want to redesign that machine, now without the datapath (so this is a  complete
GCD calculator). Note that the  “ load data ”  block of fi gure 5.12 is not indispensable 
here, but then the inputs must remain stable during the whole computations. Because 
the circuit will take a variable amount of time to compute the GCD (it depends on 
the input values), an output called  done  must be provided, which should remain high 
while the machine is idle. Draw a state transition diagram for an FSM capable of 
solving this problem. 

 Exercise 11.9: Factorial Calculator 
 An algorithm for calculating  f  =  n ! ( n   ≥  0, integer) is described in the fl owchart of 
  fi gure 11.20 . Assume that  dv  (data valid) is asserted during one clock cycle, indicating 
when the data ( n ) is ready, so the computation should commence. Because the circuit 
will take a variable amount of time to compute  f  (it depends on the value of  n ), an 
output called  done  must be provided, which should remain high while the machine 
is idle. Draw a state transition diagram for a Moore-type machine that solves this 
problem. 

    Exercise 11.10: Datapath Control for a Sequential Multiplier 
 This exercise concerns the datapath and corresponding control unit for multiplication 
using add-and-shift operations seen in   fi gure 11.12 . 

 a) How many fl ip-fl ops are needed to build the machine of   fi gure 11.12b  for  N  = 4 
and for  N  = 32 bits? 
 b) Draw a timing diagram that illustrates its operation (as done in fi gure 5.13d, for 
example), for  N  = 4. Consider that the fi rst four values of  prod (0), after  dv  =  ‘ 1 ’  occurs, 
are  prod (0) = { ‘ 1 ’ ,  ‘ 0 ’ ,  ‘ 1 ’ ,  ‘ 0 ’ }. 

Figure 11.20 
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Exercise 11.11: Datapath Control for a Sequential Divider 
The algorithm and a corresponding fl owchart for calculating the division  num / den
between two integers were presented in   fi gure 11.13 . In that case a complete divider 
was developed, whereas in this case we are interested in the same division but using 
a datapath (in other words, a  control unit  is needed here). 

 a) Based on the algorithm of   fi gure 11.13  (and on the several examples using a data-
path shown in chapters 3, 5, and 11), sketch a datapath that seems adequate for this 
problem. 
 b) Draw a state transition diagram for a (Moore) control unit such that the desired 
division is produced by your datapath. 

 Exercise 11.12: Serial Data Receiver 
 Two category 3 solutions for a serial data receiver were presented in fi gure 11.14. 

 a) Present an illustrative timing diagram for the solution in   fi gure 11.14b , considering 
for  clk ,  dv , and  x  the same waveforms of   fi gure 3.16 . 
 b) Do the same for the solution in   fi gure 11.14c.   

 Exercise 11.13: Serial Data Transmitter 
 Two category 3 solutions for a serial data receiver (a deserializer) were presented in 
section 11.7.7. 

 a) Develop a category 3 solution for a serial data transmitter (a serializer). 
 b) Present an illustrative timing diagram for your FSM, for  N  = 4 and  x (3:0) =  “ 1101. ”  

 Exercise 11.14: Memory Interface 
 Calculate the number of fl ip-fl ops needed to build the memory interface of   fi gure 
11.16c . Assume that sequential encoding is used for the FSM and that no timer is 
employed. 



12   VHDL Design of Recursive (Category 3) State Machines 

12.1   Introduction 

This chapter presents several VHDL designs of category 3 state machines. It starts by 
presenting two VHDL templates, for Moore- and Mealy-based implementations, which 
are used subsequently to develop a series of designs related to the examples introduced 
in chapter 11. 

 The codes are always complete (not only partial sketches) and are accompanied by 
comments and often also simulation results illustrating the design ’ s main features. All 
circuits were synthesized using Quartus II (from Altera) or ISE (from Xilinx). The simu-
lations were performed with Quartus II or ModelSim (from Mentor Graphics). The 
default encoding scheme for the states of the FSMs was regular sequential encoding 
(see encoding options in section 3.7; see ways of selecting the encoding scheme at the 
end of section 6.3). 

 The same designs are presented in chapter 13 using SystemVerilog, so the reader 
can make a direct comparison between the codes.  

  Note : See suggestions of VHDL books in the bibliography. 

 12.2   VHDL Template for Recursive (Category 3) Moore Machines 

 The template is presented below. Because it is an extension to the Moore templates 
for categories 1 and 2, described in sections 6.3 and 9.2, respectively, a review of those 
templates is suggested before this one is examined because only the differences are 
described. Review also some possible code variations in section 6.4. 

 The only differences are those needed for the inclusion of an auxiliary register, 
compulsory in category 3 machines. As seen in section 6.2, the architecture is com-
posed of two parts, the declarative part (before  begin ) and the statements part 
(from  begin  on); both have new elements in order to accommodate the auxiliary 
register. 
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In the architecture ’ s declarative part (lines 14 – 21), the difference is in line 21, in 
which two signals are created to deal with the auxiliary register. It is assumed that 
there is only one output and that it must be stored, but recall that the circuit might 
have several outputs, not all registered. The actual number of auxiliary registers is 
determined by the number of outputs that depend on past values. 

 In the architecture ’ s statements part (lines 23 – 75), two differences are seen: 
the inclusion of a process to infer the auxiliary register and the replacement of 
 outp  with  outp_reg  on the right-hand side of the recursive equations. The latter 
removes the recursiveness, thus allowing the output to be computed by a combina-
tional circuit. 

 Lines 29 – 36 show the process that implements the auxiliary register. If one prefers, 
this process can be combined with that for the FSM ’ s state register (a shorter code 
results, but less didactic, with no effect on the result). 

 Lines 42 – 68 show the process that implements the machine ’ s combinational logic 
section. The only difference here is that  outp_reg , instead of  outp  itself, appears on the 
right-hand side of the (originally) recursive equations (lines 46 and 56). 

 As explained in section 11.3, an interesting aspect of category 3 FSMs is that 
the auxiliary register can also play the role of output register (for glitch-free 
and/or pipelined construction). To do so, we simply send  outp_reg  out instead of  outp  
in line 73. 

 The code is concluded in line 73, in which the value of  outp  is passed to the actual 
output. In fact, the actual output could be used in lines 34, 46, and 56, in which case 
the mode of  output  (in the entity) should be changed from  out  to  buffer  (see example 
in section 12.5). 
 

  1    -------------------------------------------------------------  
  2    library ieee;  
  3    use ieee.std_logic_1164.all;  
  4    -------------------------------------------------------------  
  5    entity circuit is  
  6      generic (   
  7        (same as for category 2 Moore, section 9.2)  
  8      port (  
  9        (same as for category 1 Moore, section 6.3)  
  10    end entity;  
  11    -------------------------------------------------------------  
  12    architecture moore_fsm of circuit is   
  13  
  14      --FSM-related declarations:  
  15      (same as for category 1 Moore, section 6.3)  
  16  
  17      --Timer-related declarations:  
  18      (same as for category 2 Moore, section 9.2)  
  19  
  20      --Auxiliary-register-related declarations:  
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  21      signal outp, outp_reg: std_logic_vector(...);  
  22  
  23    begin  
  24  
  25      --Timer:  
  26      (same as for category 2 Moore, section 9.2)  
  27  
  28      --Auxiliary register:  
  29      process (clk, rst)  
  30      begin  
  31        if (rst='1') then  
  32          outp_reg  < =  < initial value > ;  
  33        elsif rising_edge(clk) then  
  34          outp_reg  < = outp;  
  35        end if;  
  36      end process;  
  37  
  38      --FSM state register:  
  39      (same as for category 2 Moore, section 9.2)  
  40  
  41      --FSM combinational logic:  
  42      process (all) --list proc. inputs if  ″ all ″  not supported  
  43      begin        
  44        case pr_state is  
  45          when A = >   
  46            outp  < = outp_reg;  
  47            tmax  < = T1-1;  
  48            if  < condition >  then   
  49              nx_state  < = B;  
  50            elsif  < condition >  then  
  51              nx_state  < = ...;  
  52            else  
  53              nx_state  < = A;  
  54            end if;  
  55          when B = >   
  56            outp  < = outp_reg + 1;  
  57            tmax  < = T2-1;  
  58            if  < condition >  then   
  59              nx_state  < = C;  
  60            elsif  < condition >  then  
  61              nx_state  < = ...;  
  62            else  
  63              nx_state  < = B;  
  64            end if;  
  65          when C = >   
  66            ...  
  67        end case;  
  68      end process;  
  69  
  70      --Optional output register:  
  71      (same as for category 1 Moore, section 6.3)  
  72  
  73      output  < = outp;  
  74  
  75    end architecture;  
  76    -------------------------------------------------------------  
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12.3   VHDL Template for Recursive (Category 3) Mealy Machines 

The template is presented below. The only difference with respect to the Moore tem-
plate just described is in the process for the combinational logic (lines 23 – 57) because 
the output is specifi ed differently here. Recall that in a Mealy machine the output 
depends not only on the FSM ’ s state but also on the input, so  if  statements are 
expected for the output in one or more states because the output value might not be 
unique. 

 Please review the following comments, which can be easily adapted from the Moore 
case to the Mealy case: 

  — On the Moore template for category 1, in section 6.3, especially comment 10. 
  — On the  enum_encoding  and  fsm_encoding  attributes, also in section 6.3. 
  — On possible code variations, in section 6.4. 
  — On the Mealy template for category 1, in section 6.5. 
  — On the Moore template for category 2, in section 9.2. 
  — On the Mealy template for category 2, in section 9.3. 
  — Finally, on the Moore template for category 3, in section 12.2. 
 

  1   -------------------------------------------------------------  
  2    library ieee;  
  3    use ieee.std_logic_1164.all;  
  4    -------------------------------------------------------------  
  5    entity circuit is  
  6      (same as for Moore, section 12.2)  
  7    end entity;  
  8    -------------------------------------------------------------  
  9    architecture mealy_fsm of circuit is   
  10      (same as for Moore, section 12.2)  
  11    Begin  
  12  
  13      --Timer:  
  14      (same as for Moore, section 9.2)  
  15  
  16      --Auxiliary register:  
  17      (same as for Moore, section 12.2)  
  18  
  19      --FSM state register:  
  20      (same as for Moore, section 9.2)  
  21  
  22      --FSM combinational logic:  
  23      process (all) --list proc. inputs if  ″ all ″  not supported  
  24      begin        
  25        case pr_state is  
  26          when A = >   
  27            if  < condition >  then   
  28              outp  < = outp_reg;  
  29              tmax  < =  < value > ;  
  30              nx_state  < = B;  
  31            elsif  < condition >  then  
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  32              outp  < = outp_reg + 1;  
  33              tmax  < =  < value > ;  
  34              nx_state  < = ...;  
  35            else  
  36              outp  < = outp_reg;  
  37              tmax  < =  < value > ;  
  38              nx_state  < = A; 
  39            end if;  
  40          when B = >   
  41            if  < condition >  then   
  42              outp  < = outp_reg;  
  43              tmax  < =  < value > ;  
  44              nx_state  < = C;  
  45            elsif  < condition >  then  
  46              outp  < = outp_reg - 1;  
  47              tmax  < =  < value > ;  
  48              nx_state  < = ...;  
  49            else  
  50              outp  < = outp_reg;  
  51              tmax  < =  < value > ;  
  52              nx_state  < = B;  
  53            end if;  
  54          when C = >   
  55            ...  
  56        end case;  
  57      end process;  
  58  
  59      --Optional output register:  
  60      (same as for Moore, Section 12.2)  
  61  
  62      output  < = outp;  
  63  
  64    end architecture;  
  65    -------------------------------------------------------------  

12.4   Design of a Datapath Controller for a Multiplier 

This section presents a VHDL-based design for the control unit introduced in section 
11.7.5, which controls a datapath to produce a sequential add-and-shift multiplier. 
The Moore template for category 3 machines seen in section 12.2 is used to implement 
the FSM of fi gure 11.12b. 

 The entity, called  control_unit_for_multiplier , is in lines 5 – 11. The number of bits ( N ) 
in the multiplier and multiplicand was entered as a generic parameter (line 6); a small 
value ( N  = 4) was used to ease the inspection of the simulation results. Note that all 
ports (lines 8 – 10) are of type  std_logic  or  std_logic_vector  (industry standard). 

 The architecture, called  moore_fsm , is in lines 13 – 93. As usual, it contains a declara-
tive part and a statements part, with three processes in the latter. 

 The declarative part of the architecture (lines 15 – 20) contains FSM- and auxiliary-
register-related declarations. In the former the enumerated type  state  is created to 
represent the machine ’ s present and next states. In the latter the signals  i  and  i_reg  
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are created to deal with the auxiliary register (note that in this case none of the actual 
outputs is stored in an auxiliary register). 

 The fi rst process (lines 25 – 32) implements the auxiliary register, exactly as in the 
template. 

 The second process (lines 35 – 42) implements the FSM ’ s state register, again exactly 
as in the template. 

 The third and fi nal process (lines 45 – 91) implements the entire combinational logic 
section. It is just a list of all states, each containing the output values and the next 
state. Note that because some of the output values get repeated several times, default 
values were entered in lines 48 – 53, so they only need to be included in the  case  state-
ment when different values are required (see section 6.4.3). Observe that in the (origi-
nally) recursive equations (lines 68, 75, 80, and 84),  i_reg  appears on the right-hand 
side instead of  i  itself (as seen in the template). As usual, in each state the output value 
is unique because in a Moore machine the output depends only on the state in which 
the machine is. 

 In datapath-related designs, possible glitches at the output of the control unit 
during clock transitions are normally not a problem, so the optional output register 
is not employed. 

 Observe the correct use of registers and the completeness of the code, as described 
in comment 10 of section 6.3. Note in particular the following: 

 1)   Regarding the use of registers: The circuit is not overregistered. This can be observed 
in the  elsif rising_edge(clk)  statement of line 39 (responsible for the inference of 
fl ip-fl ops), which is closed in line 41, guaranteeing that only the machine state (line 
40) gets stored (the auxiliary register is a separate circuit, built in the preceding 
process). The outputs are in the next process, which is purely combinational (thus not 
registered). 
 2)   Regarding the outputs: The list of outputs ( wrR1 ,  sel ,  wrR2 ,  shft ,  ALUop ,  i ) is exactly 
the same in all states, and the corresponding values/expressions are always properly 
declared (note that some values are declared in the default list of lines 48 – 53). 
 3)   Regarding the next state: Again, the coverage is complete because all states are 
included (see lines 56, 62, 67, . . .), and in each state the conditional declarations for 
the next state are always fi nalized with an  else  statement (lines 59, 71, 87), guarantee-
ing that no condition is left unchecked. 
 

  1    -----------------------------------------------------------  
  2    library ieee;  
  3    use ieee.std_logic_1164.all;  
  4    -----------------------------------------------------------  
  5    entity control_unit_for_multiplier is  
  6      generic (N: natural := 4);   --number of bits (any  > 0)  
  7      port (  
  8        dv, prod, clk, rst: in std_logic;  
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  9        wrR1, sel, wrR2, shft: out std_logic;  
  10        ALUop: out std_logic_vector(1 downto 0));  
  11    end entity;  
  12    -----------------------------------------------------------  
  13    architecture moore_fsm of control_unit_for_multiplier is   
  14         
  15      --FSM-related declarations:  
  16      type state is (idle, load, waitt, nop, add, shift);   
  17      signal pr_state, nx_state: state;  
  18  
  19      --Auxiliary-register-related declarations:  
  20      signal i, i_reg: natural range 0 to N;  
  21  
  22    begin  
  23  
  24      --Auxiliary register:  
  25      process (clk, rst)  
  26      begin  
  27        if rst='1' then  
  28            i_reg  < = 0;  
  29        elsif rising_edge(clk) then  
  30            i_reg  < = i;  
  31        end if;  
  32      end process;  
  33  
  34      --FSM state register:  
  35      process (clk, rst)  
  36      begin  
  37        if rst='1' then  
  38          pr_state  < = idle;  
  39        elsif rising_edge(clk) then  
  40          pr_state  < = nx_state;  
  41        end if;  
  42      end process;  
  43  
  44      --FSM combinational logic:  
  45      process (all)  
  46      begin  
  47        --Default values:  
  48        wrR1  < = '0';  
  49        sel  < = '0';  
  50        wrR2  < = '0';  
  51        shft  < = '0';  
  52        ALUop  < = "00";  
  53        i  < = 0;  
  54        --Case statement:  
  55        case pr_state is  
  56          when idle = >   
  57            if dv='1' then  
  58              nx_state  < = load;  
  59            else  
  60              nx_state  < = idle;  
  61            end if;  
  62          when load = >   
  63            wrR1  < = '1';  
  64            sel  < = '1';  
  65            wrR2  < = '1';  
  66            nx_state  < = waitt;  
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  67          when waitt = >   
  68            i  < = i_reg;  
  69            if prod='0' then  
  70              nx_state  < = nop;  
  71            else  
  72              nx_state  < = add;  
  73            end if;  
  74          when nop = >   
  75            i  < = i_reg;  
  76            nx_state  < = shift;     
  77          when add = >   
  78            wrR2  < = '1';  
  79            ALUop  < = "11";  
  80            i  < = i_reg;  
  81            nx_state  < = shift;  
  82          when shift = >   
  83            shft  < = '1';  
  84            i  < = i_reg + 1;  
  85            if i < N then  
  86              nx_state  < = waitt;  
  87            else  
  88              nx_state  < = idle;  
  89            end if;  
  90        end case;  
  91      end process;  
  92  
  93    end architecture;  
  94    -----------------------------------------------------------  

 The number of fl ip-fl ops inferred by the compiler on synthesizing the code above, 
with regular sequential encoding (section 3.7), was six for  N  = 4 and nine for  N  = 32 
bits. Compare these results against your predictions made in exercise 11.10. 

 Simulation results are shown in   fi gure 12.1 . Observe in the plot for  prod  that the 
circuit was tested for the sequence  prod  = { ‘ 1 ’ ,  ‘ 0 ’ ,  ‘ 1 ’ ,  ‘ 0 ’ }, so the expected sequence 
of states is  pr_state  = {0, 1, 2, 4, 5, 2, 3, 5, 2, 4, 5, 2, 3, 5, 0}, which indeed occurs (recall 
that the states are enumerated in the order that they appear in line 16; however, some 
compilers reserve the value zero for the reset state, but that is not a concern here 
because that is the fi rst state in our list anyway). Note that the values produced at the 
output in each state are exactly as in fi gure 11.12b. Finally, compare these simulation 
results against your sketch in exercise 11.10 to see whether they match.    

 12.5   Design of a Serial Data Receiver 

 This section presents a VHDL-based design for the serial data receiver introduced in 
section 11.7.7. The Moore template for category 3 machines seen in section 12.2 is 
used to implement the solution of fi gure 11.14c. 

 The entity, called  serial_data_receiver , is in lines 5 – 11. The number of bits ( N ) is 
entered as a generic parameter (line 6). All ports (lines 8 – 10) are of type  std_logic  or 
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std_logic_vector  (industry standard). Note that mode  buffer  is used this time for  y , so  y
can be associated directly with  y_reg . 

 The architecture, called  moore_fsm , is in lines 13 – 89. As usual, it contains a declara-
tive part and a statements part, with three processes in the latter. 

 The declarative part of the architecture (lines 15 – 21) contains FSM- and auxiliary-
register-related declarations. In the former the enumerated type  state  is created to 
represent the machine ’ s present and next states. In the latter the signals  y_reg ,  i , and 
 i_reg  are created to deal with the auxiliary registers. Note that two auxiliary registers 
are needed in this example: for the main (actual) output ( y ) and for the output that 
operates as an auxiliary pointer ( i ) to the FSM. 

 The fi rst process (lines 26 – 35) implements the auxiliary register, similarly to the 
template, except for the fact that there are now two auxiliary registers.  

 The second process (lines 38 – 45) implements the FSM ’ s state register, exactly as in 
the template. 

 The third and fi nal process (lines 48 – 87) implements the entire combinational logic 
section. It is just a list of all states, each containing the output values and the next 
state. Observe that in the (originally) recursive equations (lines 53, 63 – 64, and 75 – 76), 
 i_reg  and and  y_reg  appear on the right-hand side instead of  i  and  y  themselves (as 
proposed in the template). As usual, note that in each state the output values are 
unique because in a Moore machine the outputs depend only on the state in which 
the machine is. Another important aspect can be observed in lines 64 – 65 and 76 – 77; 
note that fi rst a value is assigned to the entire vector  y  (lines 64 and 76), then one of 
its bits,  y ( i  − 1), is overwritten (lines 65 and 77). 

Figure 12.1 
Simulation results from the VHDL code for the control unit of fi gure 11.12b, for  N  = 4, which 

controls a multiplying datapath. 
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In this kind of application glitches during clock transitions are generally not a 
problem. In any case, because  y  is one of the signals that go through an auxiliary 
register, if a glitch-free/pipelined output is required we can simply send out  y_reg  
instead of  y . 

 Observe the correct use of registers and the completeness of the code, as described 
in comment number 10 of section 6.3.  

 The number of fl ip-fl ops inferred by the compiler on synthesizing the code below, 
with regular sequential encoding (section 3.7), was 14 for  N  = 8 and 40 for  N  = 32. 

 Simulation results are shown in   fi gure 12.2 , for  x = “ 1011 ” . 
 

  1   --------------------------------------------------------  
  2    library ieee;  
  3    use ieee.std_logic_1164.all;  
  4    --------------------------------------------------------  
  5    entity serial_data_receiver is  
  6      generic (N: natural := 4); --number of bits (any  > 0)  
  7      port (  
  8        x, dv, clk, rst: in std_logic;  
  9        done: out std_logic;  
  10        y: buffer std_logic_vector(N-1 downto 0));  
  11    end entity;  
  12    --------------------------------------------------------  
  13    architecture moore_fsm of serial_data_receiver is  
  14         
  15      --FSM-related declarations:  
  16      type state is (idle, store0, store1);   
  17      signal pr_state, nx_state: state;  
  18  
  19      --Auxiliary-register-related declarations:  
  20      signal y_reg: std_logic_vector(N-1 downto 0);  

Figure 12.2 
Simulation results from the VHDL code for the serial data receiver of fi gure 11.14d, with  N  = 8. 
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  21      signal i, i_reg: natural range 0 to N;  
  22  
  23    begin  
  24  
  25      --Auxiliary register:  
  26      process (clk, rst)  
  27      begin  
  28        if rst='1' then  
  29          i_reg  < = 0;  
  30          y_reg  < = (others = >  '0');  
  31        elsif rising_edge(clk) then  
  32          i_reg  < = i;  
  33          y_reg  < = y;  
  34        end if;  
  35      end process;  
  36  
  37      --FSM state register:  
  38      process (clk, rst)  
  39      begin  
  40        if rst='1' then  
  41          pr_state  < = idle;  
  42        elsif rising_edge(clk) then  
  43          pr_state  < = nx_state;  
  44        end if;  
  45      end process;  
  46  
  47      --FSM combinational logic:  
  48      process (all)  
  49      begin  
  50        case pr_state is  
  51          when idle = >       
  52            i  < = 0;  
  53            y  < = y_reg;  
  54            done  < = '1';  
  55            if dv='1' and x='0' then  
  56              nx_state  < = store0;  
  57            elsif dv='1' and x='1' then  
  58              nx_state  < = store1;  
  59            else  
  60              nx_state  < = idle;  
  61            end if;  
  62          when store0 = >   
  63            i  < = i_reg + 1;  
  64            y  < = y_reg;  
  65            y(i-1)  < = '0';  
  66            done  < = '0';  
  67            if i=N then  
  68              nx_state  < = idle;  
  69            elsif x='1' then  
  70              nx_state  < = store1;  
  71            else  
  72              nx_state  < = store0;  
  73            end if;  
  74          when store1 = >   
  75            i  < = i_reg + 1;  
  76            y  < = y_reg;  
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  77            y(i-1)  < = '1';  
  78            done  < = '0';  
  79            if i=N then  
  80              nx_state  < = idle;  
  81            elsif x='0' then  
  82              nx_state  < = store0;  
  83            else  
  84              nx_state  < = store1;  
  85            end if;  
  86        end case;  
  87      end process;  
  88         
  89    end architecture;  
  90    --------------------------------------------------------  

12.6   Design of a Memory Interface 

This section presents a VHDL-based design for the memory interface introduced in 
section 11.7.8 (fi gure 11.16). The SRAM used in the experiments is the IS61LV25616 
device, from ISSI, which is capable of storing 262k 16-bit words. The corresponding 
FSM was presented in fi gure 11.16c, and the circuit ports are depicted in   fi gure 12.3 
(note that a test circuit has been included).    

 The entity, called  sram_interface , is in lines 7 – 25. Note that several parameters were 
declared as generic (lines 8 – 14), so they can be easily modifi ed and overridden. Note 
also that the port names are from   fi gure 12.3  and that all ports (lines 15 – 24) are of 
type  std_logic  or  std_logic_vector  (industry standard). 

 The signals in lines 21 – 24 are for the test circuit (see   fi gure 12.3 ). The signal  seed  
(line 22), set by two switches, is added to the actual address ( A , line 19) to produce 
the test data ( D , line 21), which is displayed on a seven-segment display by means of 
the signal  ssd  (line 23). Two LEDs are lit by the signals  done_wr  and  done_rd  (line 24) 

Figure 12.3 
Setup for the experiments with the SRAM memory interface introduced in fi gure 11.16, including 

a test circuit as well. The device ’ s truth table is also shown. 
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to indicate when the test circuit has fi nished writing to or reading from the memory, 
respectively. 

 The architecture, called  moore_fsm , is in lines 27 – 181. As usual, it contains a declara-
tive part and a statements part, with six code sections in the latter. 

 The architecture ’ s declarative part is in lines 29 – 62. In the FSM-related declarations 
(lines 30 – 31), the enumerated type  state  is created to represent the machine ’ s present 
and next states. In the auxiliary-register-related declarations (line 34), the signals  addr  
and  addr_reg  are created to deal with the auxiliary register (observe that the address is 
the signal that appears in the recursive expressions, so that is the signal to be stored 
in that register). In the timer-related declarations (line 37), the signals needed to build 
a 0.5-s timer are created to be used in the  read1-read2  transition (see  t  =  T 2  ) of fi gure 
11.16c, so the user will have enough time to observe the value presented on the display 
during the tests. Finally, a function is created in lines 39 – 62 to later implement the 
SSD driver (integer-to-SSD conversion). 

 The fi rst code section (line 67) in the architecture ’ s statements part is a list of static 
signals to be connected to the SRAM chip during the tests. Note that they are all 
enabled (because they are active low) except for the upper byte of the data word, which 
is not used here. 

 The second code section (lines 70 – 81) contains a process that implements the timer 
(needed in the  read1-read2  transition; the  write1-write2  transition is made at full clock 
speed). This code is similar to the template of section 9.2. Both timer control strategies 
(section 8.5) are allowed for this FSM. 

 The third code section (lines 84 – 91) in the architecture ’ s statements part is a process 
that implements the auxiliary register, exactly as in the template. 

 The fourth code section (lines 94 – 101) is another process, which implements the 
FSM ’ s state register, again exactly as in the template. 

 The fi fth code section (lines 104 – 172) contains a process that implements the entire 
combinational logic section. It is just a list of all states, each containing the output 
and time parameter values plus the next state. Observe that in the (originally) recursive 
equations (lines 121, 128, 139, and 150),  addr_reg  appears on the right-hand side 
instead of  addr  itself (as proposed in the template). As usual, in each state the output 
values are unique because in a Moore machine the outputs depend only on the state 
in which the machine is. 

 The sixth and fi nal code section (lines 174 – 179) in the architecture ’ s statements 
part passes the value of  addr  to  A  (in  std_logic_vector  form) and also builds the test 
circuit. The test circuit is important because it illustrates how we can deal with a 
bidirectional bus. Note that during the writing procedure the FPGA sends data to the 
SRAM, but when data is being read from the SRAM the FPGA ’ s output must go into 
high-impedance (fl oating) mode because they (FPGA and SRAM) are physically con-
nected to the same wires (data bus  D ). Observe also that the generated data consist 
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simply of  seed  +  A  (line 177 — see also   fi gure 12.3 ), which is written to the SRAM when 
a  wr  =  ‘ 1 ’  pulse occurs and is read from the SRAM and displayed on the SSD when a 
 rd  =  ‘ 1 ’  pulse occurs. 

 In this kind of application, glitches during clock transitions are generally not a 
problem, so the optional output register is not needed. 

 Observe the correct use of registers and the completeness of the code, as described 
in comment 10 of section 6.3. 
 

  1   ------------------------------------------------------------------ 
  2    library ieee;  
  3    use ieee.std_logic_1164.all;  
  4    use ieee.std_logic_unsigned.all;  
  5    use ieee.std_logic_arith.all;  
  6    ------------------------------------------------------------------  
  7    entity sram_interface is  
  8      generic (  
  9        --Main-circuit parameters:  
  10        Abus: natural := 18; --Address bus width  
  11        Dbus: natural := 16; --Data bus width  
  12        --Test-circuit parameters:  
  13        Tread: natural := 25_000_000; --Time=0.5s @fclk=50MHz  
  14        Amax: natural := 12); --Max address in test circuit  
  15      port (  
  16        --Main-circuit ports:  
  17        rd, wr, clk, rst: in std_logic;  
  18        CEn, WEn, OEn, UBn, LBn: out std_logic;     
  19        A: out std_logic_vector(Abus-1 downto 0);  
  20        --Test-circuit ports:  
  21        D: inout std_logic_vector(7 downto 0); --Lower-byte only  
  22        seed: in std_logic_vector(1 downto 0);  
  23        ssd: out std_logic_vector(6 downto 0);      
  24        done_wr, done_rd: buffer std_logic);   
  25    end entity;  
  26    ------------------------------------------------------------------  
  27    architecture moore_fsm of sram_interface is   
  28         
  29      --FSM-related declarations:  
  30      type state is (idle, write1, write2, read1, read2, hold);   
  31      signal pr_state, nx_state: state;  
  32  
  33      --Auxiliary-register-related declarations:  
  34      signal addr, addr_reg: natural range 0 to 2**Abus-1;  
  35  
  36      --Timer-related declarations:  
  37      signal t, tmax: natural range 0 to Tread-1; --range ≥ Tread  
  38         
  39      function int_to_ssd(signal input: natural) return std_logic_vector   
  40        is variable output: std_logic_vector(6 downto 0);  
  41      begin  
  42        case input is  
  43          when 0 = >  output:="0000001";  
  44          when 1 = >  output:="1001111";  
  45          when 2 = >  output:="0010010";  
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  46          when 3 = >  output:="0000110";  
  47          when 4 = >  output:="1001100";  
  48          when 5 = >  output:="0100100";  
  49          when 6 = >  output:="0100000";  
  50          when 7 = >  output:="0001111";  
  51          when 8 = >  output:="0000000";  
  52          when 9 = >  output:="0000100";  
  53          when 10 = >  output:="0001000";  
  54          when 11 = >  output:="1100000";  
  55          when 12 = >  output:="0110001";  
  56          when 13 = >  output:="1000010";  
  57          when 14 = >  output:="0110000";  
  58          when 15 = >  output:="0111000";  
  59          when others = >  output:="1111110"; --"-"  
  60        end case;  
  61        return output;  
  62      end integer_to_ssd;  
  63         
  64    begin  
  65  
  66      --Static SRAM signals:  
  67      CEn < ='0'; OEn < ='0'; UBn < ='1'; LBn < ='0';  
  68         
  69      --Timer (using strategy #2, section 8.5.3):  
  70      process (clk, rst)  
  71      begin  
  72        if (rst='1') then  
  73          t  < = 0;  
  74        elsif rising_edge(clk) then  
  75          if t  <  tmax then  
  76            t  < = t + 1;  
  77          else  
  78            t  < = 0;  
  79        end if;  
  80      end if;  
  81    end process;  
  82  
  83      --Auxiliary register:  
  84      process (clk, rst)  
  85      begin  
  86        if rst='1' then  
  87          addr_reg  < = 0;  
  88        elsif rising_edge(clk) then  
  89          addr_reg  < = addr;  
  90        end if;  
  91      end process;  
  92  
  93      --FSM state register:  
  94      process (clk, rst)  
  95      begin  
  96        if rst='1' then  
  97          pr_state  < = idle;  
  98        elsif rising_edge(clk) then  
  99          pr_state  < = nx_state;  
  100        end if;  
  101      end process;  
  102  



260 Chapter 12

  103      --FSM combinational logic:  
  104      process (all)  
  105      begin  
  106        case pr_state is  
  107          when idle = >    
  108            addr  < = 0;  
  109            WEn  < = '1';  
  110            done_wr  < = '1';  
  111            done_rd  < = '1';  
  112            tmax  < = 0;  
  113            if wr='1' and rd='0' then  
  114              nx_state  < = write1;  
  115            elsif wr='0' and rd='1' then  
  116              nx_state  < = read1;  
  117            else  
  118              nx_state  < = idle;  
  119            end if;  
  120          when write1 = >    
  121            addr  < = addr_reg;  
  122            WEn  < = '0';  
  123            done_wr  < = '0';  
  124            done_rd  < = '1';  
  125            tmax  < = 0;  
  126            nx_state  < = write2;  
  127          when write2 = >    
  128            addr  < = addr_reg + 1;  
  129            WEn  < = '1';  
  130            done_wr  < = '0';  
  131            done_rd  < = '1';  
  132            tmax  < = 0;  
  133            if addr  < = Amax then  
  134              nx_state  < = write1; 
  135            else  
  136              nx_state  < = hold;  
  137            end if;  
  138          when read1 = >    
  139            addr  < = addr_reg;  
  140            WEn  < = '1';  
  141            done_wr  < = '1';  
  142            done_rd  < = '0';  
  143            tmax  < = Tread;  
  144            if t > =tmax then  
  145              nx_state  < = read2;  
  146            else  
  147              nx_state  < = read1;  
  148            end if;  
  149          when read2 = >    
  150            addr  < = addr_reg + 1;  
  151            WEn  < = '1';  
  152            done_wr  < = '1';  
  153            done_rd  < = '0';  
  154            tmax  < = 0;  
  155            if addr  < = Amax then  
  156              nx_state  < = read1;  
  157            else  
  158              nx_state  < = hold;  
  159            end if;  
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  160          when hold = >    
  161            addr  < = 0;  
  162            WEn  < = '1';  
  163            done_wr  < = '1';  
  164            done_rd  < = '1';  
  165            tmax  < = 0;  
  166            if wr=’0’ and rd=’0’ then  
  167              nx_state  < = idle;  
  168            else  
  169              nx_state  < = hold;  
  170            end if;  
  171        end case;  
  172      end process;  
  173         
  174      A  < = conv_std_logic_vector(addr, Abus);  
  175  
  176      --Test circuit:  
  177      D  < = seed + conv_std_logic_vector(addr, 8) when done_wr='0' else  
  178        (others = >  'Z');  
  179      ssd  < = int_to_ssd(conv_integer(D));  
  180  
  181    end architecture;  
  182    ------------------------------------------------------------------  

   12.7   Exercises 

 Exercise 12.1: Long-String Comparator #1 
 This exercise concerns the long-string comparator of fi gure 11.6, which must detect 
whether the last  N  bits in two serial bit streams are equal. 

 a) Implement it using VHDL. Compile it for  N  = 64 bits and sequential encoding and 
check if the number of DFFs inferred by the compiler matches the estimate made in 
section 11.7.2. 
 b) Recompile it for  N  = 4; then simulate it using the same stimuli of fi gure 11.6c and 
check if the same waveforms result. 

 Exercise 12.2: Long-String Comparator #2 
 This exercise concerns the long-string comparator of exercise 11.5. 

 a) Solve exercise 11.5 if not done yet. 
 b) Implement the resulting FSM using VHDL. Check if the number of DFFs inferred 
by the compiler matches your estimate. 
 c) Simulate it using the same stimuli of fi gure 11.19, checking if the same waveforms 
result. 

 Exercise 12.3: Hamming-Weight Calculator 
 This exercise concerns the Hamming-weight calculator of exercise 11.3. 
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a) Solve parts a and b of exercise 11.3 if not done yet. 
b) How many DFFs are needed to build the resulting FSM, with sequential encoding 
and  dv  lasting 64 clock periods (so  y  can go from 0 to 64)? 
 c) Implement your machine using VHDL. Check if the number of DFFs inferred by 
the compiler matches your estimate. 
 d) Recompile the code for  N  = 9 (hence with four bits for  y ) and simulate it using the 
same stimuli of fi gure 11.17, checking if the same waveforms result. 
 e) Even though exercise 11.3 is important to understand how that kind of circuit can 
be modeled as an FSM, it was said in sections 5.4.1 and 11.7.1 that counters are well-
known circuits, easily designed without the FSM approach. Therefore, because a 
Hamming calculator is a kind of counter, it can be designed directly in VHDL. Do it. 
Check the number of DFFs and combinational elements needed to implement it for 
 dv  lasting 64 clock periods and compare the results against those obtained in part 
c above. 

 Exercise 12.4: Leading-Ones Counter 
 This exercise concerns the leading-ones counter of exercise 11.4. 

 a) Solve parts a and b of exercise 11.4 if not done yet. 
 b) How many DFFs are needed to build the resulting FSM, with sequential encoding 
and  dv  lasting 64 clock periods (so  y  can go from 0 to 64)? 
 c) Implement your machine using VHDL. Check if the number of DFFs inferred by 
the compiler matches your estimate. 
 d) Recompile the code for  N  = 9 (hence with four bits for  y ) and simulate it using the 
same stimuli of fi gure 11.18, checking if the same waveforms result. 
 e) Even though exercise 11.4 is important to understand how that kind of circuit can 
be modeled as an FSM, it is said in sections 5.4.1 and 11.7.1 that counters are well-
known circuits, easily designed without the FSM approach. Therefore, because a 
leading-ones counter is a kind of counter, it can be designed directly in VHDL. Do it. 
Check the number of DFFs and combinational elements needed to implement it for 
 dv  lasting 64 clock periods and compare the results against those obtained in part 
c above. 

 Exercise 12.5: Complete Reference-Value Defi ner 
   Figure 12.4  shows an initial block diagram for the experiment to be developed in this 
exercise. It consists of a reference-value defi ner with up-down controls, which must 
also include some type of debouncer for the pushbuttons. The output (reference value) 
must range from 00 to 60 and must be displayed on two SSDs or an LCD. Note that 
 ref  is a six-bit signal, while each display digit ( dig0  for units,  dig1  for tens of units) is 
a seven-bit value if SSDs are employed. A special feature desired for this circuit is the 
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following: if either pushbutton is kept pressed for  t  1   ≥  2 s ( T  1  clock periods), the incre-
ment must occur automatically and at every  t  2  = 0.5 s ( T  2  clock periods). 

 a) Carefully review sections 8.11.4, 11.7.3, and 11.7.4 and decide what should go 
inside the main block of   fi gure 12.4 . Then draw an expanded block diagram with 
proper details. 
 b) Draw a state transition diagram for each FSM to be used in this problem. 
 c) Estimate the number of DFFs that will be needed to build the complete circuit. 
Assume sequential encoding for the FSM(s) and a 1-ms debouncing interval (check 
the clock frequency in your development board). 
 d) Implement the circuit using VHDL. Check whether the number of DFFs inferred by 
the compiler matches your prediction. 
 f) Physically demonstrate your design in the FPGA development board.    

 Exercise 12.6: Factorial Calculator 
 This exercise concerns the factorial calculator of exercise 11.9. 

 a) Solve exercise 11.9 if not done yet. 
 b) Implement the resulting FSM using VHDL. Show meaningful simulation results. 

 Exercise 12.7: Divider 
 This exercise concerns the sequential divider of fi gure 11.13. 

 a) How many DFFs are needed to build it for  N  = 32 bits and sequential encoding? 
 b) Implement it using VHDL. Check whether the number of DFFs inferred by the 
compiler matches your estimate. 
 c) Recompile the code for  N  = 4 and simulate it using the same stimuli of fi gure 11.13a, 
checking whether the same results are obtained here. 

 
 
 
 

 Figure 12.4 





13   SystemVerilog Design of Recursive (Category 3) State Machines 

13.1   Introduction 

This chapter presents several SystemVerilog designs of category 3 state machines. It 
starts by presenting two SystemVerilog templates, for Moore- and Mealy-based imple-
mentations, which are used subsequently to develop a series of designs related to the 
examples introduced in chapter 11. 

 The codes are always complete (not only partial sketches) and are accompanied by 
comments and often also simulation results, illustrating the design ’ s main features. 
All circuits were synthesized using Quartus II (from Altera) or ISE (from Xilinx). The 
simulations were performed with Quartus II or ModelSim (from Mentor Graphics). 
The default encoding scheme for the states of the FSMs was regular sequential encod-
ing (see encoding options in section 3.7). 

 The same designs were developed in chapter 12 using VHDL, so the reader can 
make a direct comparison between the codes.  

  Note : See suggestions of SystemVerilog books in the bibliography.  

 13.2   SystemVerilog Template for Recursive (Category 3) Moore Machines 

 The template is presented below. Because it is an extension to the Moore templates 
for categories 1 and 2, described in sections 7.3 and 10.2, respectively, a review of 
those templates is suggested before this one is examined because only the differences 
are described. 

 The only differences are those needed for the inclusion of an auxiliary register, 
compulsory in category 3 machines. In summary, the following must be added/
done to the previous template: declarations concerning the auxiliary register; an 
 always_ff  block to infer the auxiliary register; and proper adjustments in the recur-
sive equations to invoke the auxiliary register. These modifi cations are described 
next. 
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The auxiliary-register-related declarations are in line 13. It is assumed that there is 
only one output and that it must be stored, but recall that the circuit might have 
several outputs, not all registered. The actual number of auxiliary registers is deter-
mined by the number of outputs that depend on past output values. 

To implement the auxiliary register, an  always_ff  block is employed in lines 
21 – 23. 

 Finally, note in the  always_comb  block of lines 29 – 49 that  outp  (lines 32 and 39) 
is no longer a function of itself but rather a function of  outp_reg . This removes the 
recursiveness, allowing the output to be computed by a combinational circuit. 

 As explained in section 11.3, an interesting aspect of category 3 FSMs is that the 
auxiliary register can also play the role of output register (for glitch-free and/or pipe-
lined construction) when the output is one of the signals stored in an auxiliary register. 
To do so, simply send  outp_reg  out instead of  outp .  

  1   //Part 1: Module header:-----------------------------  
  2    (same as for categ. 1 and 2, sections 7.3 and 10.2)  
  3  
  4    //Part 2: Declarations:------------------------------  
  5  
  6    //FSM-related declarations:  
  7    (same as for category 1 Moore, Section 7.3)  
  8  
  9    //Timer-related declarations:  
  10    (same as for category 2 Moore, section 10.2)  
  11  
  12    //Auxiliary-register-related declarations:  
  13    logic [N-1:0] outp, outp_reg;  
  14  
  15    //Part 3: Statements:--------------------------------  
  16  
  17    //Timer:  
  18    (same as for category 2 Moore, section 10.2)  
  19  
  20    // Auxiliary register:  
  21    always_ff @(posedge clk, posedge rst)  
  22    if (rst) outp_reg  < =  < initial_value > ;  
  23    else outp_reg  < = outp;  
  24         
  25    //FSM state register:  
  26    (same as for category 2 Moore, section 10.2)  
  27  
  28    //FSM combinational logic:  
  29    always_comb        
  30    case (pr_state)  
  31    A: begin  
  32    outp  < = outp_reg;  
  33    tmax  < = T1-1; //if using strategy #2  
  34    if (condition) nx_state  < = B;  
  35    else if (condition) nx_state  < = ...;  
  36    else nx_state  < = A;   



SystemVerilog Design of Recursive (Category 3) State Machines 267

  37    end  
  38    B: begin  
  39    outp  < = outp_reg + 1;  
  40    tmax  < = T2-1; //if using strategy #2  
  41    if (condition) nx_state  < = C;  
  42    else if (condition) nx_state  < = ...;  
  43    else nx_state  < = B;   
  44    end           
  45    C: begin  
  46    ...  
  47    end  
  48    ...  
  49    endcase  
  50  
  51    //Optional output register:  
  52    (same as for category 1 Moore, section 7.3)  
  53  
  54    endmodule  
  55   //---------------------------------------------------  

13.3   SystemVerilog Template for Recursive (Category 3) Mealy Machines 

The template is presented below. The only difference with respect to the Moore tem-
plate just described is in the  always_comb  block for the combinational logic (lines 
27 – 63) because the output is specifi ed differently now. Recall that in a Mealy machine 
the output depends not only on the FSM ’ s state but also on its input, so  if  statements 
are expected for the output in one or more states because the output (and  t max  ) values 
might not be unique. This is achieved by including such values  within  the conditional 
statements for  nx_state . For example, observe in lines 29 – 44, relative to state A, that 
the output (and  t max  ) values are now conditional. Compare these lines against lines 
31 – 37 in the previous template.  

  1   //Part 1: Module header:----------------------------  
  2    (same as for category 3 Moore, section 13.2)  
  3  
  4    //Part 2: Declarations:------------------------------  
  5  
  6    //FSM-related declarations:  
  7    (same as for category 3 Moore, section 13.2)  
  8  
  9    //Timer-related declarations:  
  10    (same as for category 3 Moore, section 13.2)  
  11  
  12    //Auxiliary-register-related declarations:  
  13    (same as for category 3 Moore, section 13.2)  
  14  
  15    //Part 3: Statements:-------------------------------  
  16  
  17    //Timer:  
  18    (same as for category 3 Moore, section 13.2)  
  19  
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  20    // Auxiliary register:  
  21    (same as for category 3 Moore, section 13.2)  
  22  
  23    //FSM state register:  
  24    (same as for category 3 Moore, section 13.2)  
  25  
  26    //FSM combinational logic:  
  27    always_comb        
  28    case (pr_state)  
  29    A:  
  30    if (condition) begin  
  31    outp  < = outp_reg;  
  32    tmax  < =  < value > ; //if using strategy #2  
  33    nx_state  < = B;  
  34    end  
  35    else if (condition) begin   
  36    outp  < = outp_reg + 1;  
  37    tmax  < =  < value > ; //if using strategy #2  
  38    nx_state  < = ...;  
  39    end  
  40    else begin  
  41    outp  < =  < value > ;  
  42    tmax  < =  < value > ;  
  43    nx_state  < = A;   
  44    end  
  45    B:  
  46    if (condition) begin  
  47    outp  < = outp_reg + 1;  
  48    tmax  < =  < value > ;  
  49    nx_state  < = C;  
  50    end  
  51    else if (condition) begin   
  52    outp  < = outp_reg;  
  53    tmax  < =  < value > ;  
  54    nx_state  < = ...;  
  55    end  
  56    else begin  
  57    outp  < =  < value > ;  
  58    tmax  < =  < value > ;  
  59    nx_state  < = B;   
  60    end  
  61    C: ...  
  62    ...  
  63    endcase  
  64  
  65    //Optional output register:  
  66    (same as for category 3 Moore, section 13.2)  
  67  
  68   endmodule  
  69   //-------------------------------------------------  

13.4   Design of a Datapath Controller for a Multiplier 

This section presents a SystemVerilog-based design for the control unit introduced 
in section 11.7.5, which controls a datapath to produce a sequential add-and-shift 
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multiplier. The Moore template for category 3 machines seen in section 13.2 is used 
to implement the FSM of fi gure 11.12b. 

 The fi rst part of the code ( module header ) is in lines 1 – 7. The module ’ s name is 
contol_unit_for_multiplier . Note that all ports are of type  logic . 

 The second part of the code ( declarations ) is in lines 9 – 17. In the FSM-related dec-
larations (lines 12 – 14), the enumerated type  state  is created to represent the machine ’ s 
present and next states. In the auxiliary-register-related declarations (line 17),  i  and 
 i_reg  are created to deal with the auxiliary register. Note that in this example none of 
the actual outputs is stored in an auxiliary register (the auxiliary registers are always 
for the variables that appear in the recursive equations). 

 The third and fi nal part of the code ( statements ) is in lines 19 – 75. It contains three 
 always  blocks, described next. 

 The fi rst  always  block (lines 22 – 24) is an  always_ff  that implements the auxiliary 
register, exactly as in the template. 

 The second  always  block (lines 27 – 29) is another  always_ff , which implements 
the machine ’ s state register, again exactly as in the template. 

 The third and fi nal  always  block (lines 32 – 73) is an  always_comb , which imple-
ments the entire combinational logic section. It is just a list of all states, each contain-
ing the output values and the next state. Note that because some of the output values 
get repeated several times, default values were entered in lines 35 – 40, so they only 
need to be included in the  case  statement when different values are required. Observe 
that in the (originally) recursive equations (lines 53, 58, 64, and 69),  i_reg  appears on 
the right-hand side instead of  i  itself (as proposed in the template). As usual, in each 
state the output values are unique because in a Moore machine the outputs depend 
only on the state in which the machine is. 

 In datapath-related designs, possible glitches at the output of the control unit fol-
lowing clock transitions are normally not a problem, so the optional output register 
was not employed. 

 Finally, and very importantly, observe the correct use of registers and the complete-
ness of the code, as described in comment 8 of section 7.3. Observe in particular the 
following: 1) all states are included; 2) the list of outputs is exactly the same in all 
states, and the corresponding values/expressions are always properly declared; 3) any 
conditional specifi cation for  nx_state  is fi nalized with an  else  statement, so no condi-
tion is left unchecked. 

 The number of fl ip-fl ops inferred by the compiler on synthesizing the code below, 
with regular sequential encoding (section 3.7), was six for  N  = 4 and nine for  N  = 32 
bits. Compare these results against your predictions made in exercise 11.10. 

 Simulation results from this code are exactly the same as those obtained using 
VHDL, shown in fi gure 12.1. 
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  1    //Module header:---------------------------------------------  
  2    module control_unit_for_multiplier  
  3    #(parameter N=4)   //number of bits  
  4    (  
  5    input logic dv, prod, clk, rst,  
  6    output logic wrR1, sel, wrR2, shft,  
  7    output logic [1:0] ALUop);  
  8  
  9    //Declarations:----------------------------------------------  
  10  
  11    //FSM-related declarations:  
  12    typedef enum logic [2:0]   
  13    {idle, load, waitt, nop, add, shift} state;  
  14    state pr_state, nx_state;  
  15  
  16    //Auxiliary-register-related declarations:  
  17    logic [$clog2(N):0] i, i_reg; //function ceiling(log2(N))  
  18  
  19    //Statements:------------------------------------------------  
  20  
  21    // Auxiliary register:  
  22    always_ff @(posedge clk, posedge rst)  
  23    if (rst) i_reg  < = 0;  
  24    else   i_reg  < = i;  
  25  
  26    //FSM state register:  
  27    always_ff @(posedge clk, posedge rst)  
  28    if (rst) pr_state  < = idle;  
  29    else pr_state  < = nx_state;  
  30  
  31    //FSM combinational logic:  
  32    always_comb begin  
  33         
  34    //Default values:  
  35    wrR1  < = 'b0;  
  36    sel  < = 'b0;  
  37    wrR2  < = 'b0;  
  38    shft  < = 'b0;  
  39    ALUop  < = 2'b00;  
  40    i  < = 0;  
  41  
  42    case (pr_state)  
  43    idle:  
  44    if (dv) nx_state  < = load;  
  45    else nx_state  < = idle;  
  46    load: begin  
  47    wrR1  < = 'b1;  
  48    sel  < = 'b1;  
  49    wrR2  < = 'b1;  
  50    nx_state  < = waitt;  
  51    end  
  52    waitt: begin  
  53    i  < = i_reg;  
  54    if (~prod) nx_state  < = nop;  
  55    else nx_state  < = add;  
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  56    end  
  57    nop: begin  
  58    i  < = i_reg;  
  59    nx_state  < = shift;  
  60    end              
  61    add: begin  
  62    wrR2  < = 'b1;  
  63    ALUop  < = 2'b11;  
  64    i  < = i_reg;  
  65    nx_state  < = shift;  
  66    end              
  67    shift: begin  
  68    shft  < = 'b1;  
  69    i  < = i_reg + 1;  
  70    if (i < N) nx_state  < = waitt;  
  71    else nx_state  < = idle;  
  72    end     
  73    endcase  
  74  
  75    endmodule  
  76    //-----------------------------------------------------------  

13.5   Design of a Serial Data Receiver 

This section presents a SystemVerilog-based design for the serial data receiver intro-
duced in section 11.7.7. The Moore template for category 3 machines seen in section 
13.2 is used to implement the solution of fi gure 11.14c. 

 The fi rst part of the code ( module header ) is in lines 1 – 7. The module ’ s name is 
serial_data_receiver . Note that all ports are of type  logic . 

 The second part of the code ( declarations ) is in lines 9 – 17. In the FSM-related dec-
larations (lines 12 – 13), the enumerated type  state  is created to represent the machine ’ s 
present and next states. In the auxiliary-register-related declarations (lines 16 – 17),  y_
reg ,  i,  and  i_reg  are created to deal with the auxiliary registers. Note that two auxiliary 
registers are needed in this example: for the main (actual) output ( y ) and for the output 
that operates as an auxiliary pointer ( i ) to the FSM. 

 The third and fi nal part of the code ( statements ) is in lines 19 – 68. It contains three 
 always  blocks, described next. 

 The fi rst  always  block (lines 22 – 30) is an  always_ff  that implements the auxiliary 
register, similarly to the template. 

 The second  always  block (lines 33 – 35) is another  always_ff , which implements 
the machine ’ s state register, exactly as in the template. 

 The third and fi nal  always  block (lines 38 – 66) is an  always_comb , which imple-
ments the entire combinational logic section. It is just a list of all states, each contain-
ing the output values and the next state. Observe that in the (originally) recursive 
equations (lines 42, 49 – 50, and 58 – 59),  i_reg  and  y_reg  appear on the right-hand side 
instead of  i  and  y  themselves (as proposed in the template). As usual, in each state the 
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output values are unique because in a Moore machine the outputs depend only on 
the state in which the machine is. Another important aspect can be observed in lines 
50 – 51 and 59 – 60; note that fi rst a value is assigned to the entire vector  y  (lines 50 and 
59); then one of its bits,  y ( i   −  1), is overwritten (lines 51 and 60). 

 In this kind of application, glitches during clock transitions are generally not a 
problem. Anyway, because  y  is one of the signals that go through an auxiliary register, 
if a glitch-free (pipelined) output is required, we can simply send out  y_reg  instead of  y . 

 Finally, and very importantly, observe the correct use of registers and the complete-
ness of the code, as described in comment 8 of section 7.3. Observe in particular the 
following: 1) all states are included; 2) the list of outputs is exactly the same in all 
states, and the corresponding values/expressions are always properly declared; 3) the 
specifi cations for  nx_state  are always fi nalized with an  else  statement, so no condition 
is left unchecked. 

 The number of fl ip-fl ops inferred by the compiler on synthesizing the code below, 
with regular sequential encoding (section 3.7) and  N  = 8, was 14. 

 Simulation results from this code are exactly the same as those obtained using 
VHDL, shown in fi gure 12.2. 

  1   //Module header:--------------------------------------------  
  2    module serial_data_receiver  
  3    #(parameter N=8)   //number of bits (any  > 0)  
  4    (  
  5    input logic x, dv, clk, rst,  
  6    output logic done,  
  7    output logic [N-1:0] y);  
  8  
  9    //Declarations:----------------------------------------------  
  10  
  11    //FSM-related declarations:  
  12    typedef enum logic [1:0] {idle, load0, load1} state;  
  13    state pr_state, nx_state;  
  14  
  15    //Auxiliary-register-related declarations:  
  16    logic [N-1:0] y_reg;  
  17    logic [$clog2(N):0] i, i_reg; //function ceiling(log2(N))  
  18  
  19    //Statements:------------------------------------------------  
  20  
  21    //Auxiliary register:  
  22    always_ff @(posedge clk, posedge rst)  
  23    if (rst) begin  
  24    i_reg  < = '0;  
  25    y_reg  < = '0;  
  26    end  
  27    else begin  
  28    i_reg  < = i;  
  29    y_reg  < = y;  
  30    end  
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  31  
  32    //FSM state register:  
  33    always_ff @(posedge clk, posedge rst)  
  34    if (rst) pr_state  < = idle;  
  35    else pr_state  < = nx_state;  
  36  
  37    //FSM combinational logic:  
  38    always_comb  
  39    case (pr_state)  
  40    idle: begin  
  41    i  < = 1'b0;  
  42    y  < = y_reg;  
  43    done  < = 1'b1;  
  44    if (dv  &  ~x) nx_state  < = load0;  
  45    else if (dv  &  x) nx_state  < = load1;  
  46    else nx_state  < = idle;  
  47    end  
  48    load0: begin  
  49    i  < = i_reg + 1;  
  50    y  < = y_reg;  
  51    y[i-1]  < = 1'b0;  
  52    done  < = 1'b0;  
  53    if (i=N) nx_state  < = idle;  
  54    else if (x) nx_state  < = load1;  
  55    else nx_state  < = load0;  
  56    end  
  57    load1: begin  
  58    i  < = i_reg + 1;  
  59    y  < = y_reg;  
  60    y[i-1]  < = 1'b1;  
  61    done  < = 1'b0;  
  62    if (i=N) nx_state  < = idle;  
  63    else if (~x) nx_state  < = load0;  
  64    else nx_state  < = load1;  
  65    end  
  66    endcase  
  67         
  68    endmodule  
  69    //-----------------------------------------------------------  

13.6   Design of a Memory Interface 

This section presents a SystemVerilog-based design for the memory interface intro-
duced in section 11.7.8 (fi gure 11.16). The SRAM used in the experiments is the 
IS61LV25616 device, from ISSI, which is capable of storing 262k 16-bit words. The 
corresponding FSM was presented in fi gure 11.16c, and the circuit ports are depicted 
in   fi gure 13.1  (note that a test circuit has been included).    

 The fi rst part of the code ( module header ) is in lines 1 – 19. The module ’ s name is 
 sram_interface . Several global parameters were included for both the main circuit and 
a test circuit. The port names are from   fi gure 13.1 . All ports are of type  logic . 
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The signals in lines 16 – 19 are for the test circuit.  seed  (line 17), set by two switches, 
is added to the actual address ( A , line 14) to produce the test data ( D , line 16), which 
is displayed on a seven-segment display by means of the signal  ssd  (line 18). Two LEDs 
are lit by the signals  done_wr  and  done_rd  (line 19) to indicate when the test circuit 
has fi nished writing to or reading from the memory, respectively. 

 The second part of the code ( declarations ) is in lines 21 – 56. In the FSM-related 
declarations (lines 24 – 26), the enumerated type  state  is created to represent the 
machine ’ s present and next states. In the auxiliary-register-related declarations (line 
29),  A_reg  is created to deal with the auxiliary register (observe that the address is the 
signal that appears in the recursive expressions, so that is the signal to be stored in 
that register). In the timer-related declarations (line 32), the signals needed to build a 
0.5-s timer are created, to be used in the  read1-read2  transition (see  t  =  T 2  ) of fi gure 
11.16c, so the user has enough time to observe the value presented on the display 
during the tests. Finally, a function is created in lines 35 – 56 to implement later the 
SSD driver (integer-to-SSD conversion). 

 The third and fi nal part of the code ( statements ) is in lines 58 – 149. It contains six 
sections, described next. 

 The fi rst section (lines 61 – 64) of the statements produces the static signals to 
be connected to the SRAM chip during the tests. Note that they are all enabled 
(because they are active low), except for the upper byte of the data word, which is not 
used here. 

 The second section (lines 67 – 69) of the statements contains an  always_ff  block, 
which implements the timer (needed in the  read1-read2  transition; the  write1-write2  
transition is made at full clock speed). This code is similar to the template of section 
10.2. Both timer control strategies (section 8.5) are allowed for this FSM. 

 The third code section (lines 73 – 75) is another  always_ff  block, which implements 
the auxiliary register, exactly as in the template. 

Figure 13.1 
Setup for the experiments with the SRAM memory interface introduced in fi gure 11.16, also 

including a test circuit. The device ’ s truth table is also shown. 
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The fourth code section (lines 78 – 80) is an  always_ff  block that implements the 
FSM ’ s state register, again exactly as in the template. 

 The fi fth portion (lines 83 – 139) of the statements is part of an  always_comb  block 
that implements the entire FSM ’ s combinational logic section. It is just a list with all 
states, each containing the output and time parameter values, plus the next state. 
Observe that in the (originally) recursive equations (lines 96, 104, 113, and 122),  A_reg  
appears on the right-hand side instead of  A  itself (as proposed in the template). As 
usual, in each state the output values are unique because in a Moore machine the 
outputs depend only on the state in which the machine is. 

 Finally, the code in lines 142 – 147 implements the test circuit. This code is impor-
tant because it illustrates one way (similar to VHDL — see section 12.6) of dealing with 
a bidirectional bus. Note that during the writing procedure the FPGA sends data to 
the SRAM, but when data is being read from the SRAM, the FPGA ’ s output must go 
into high-impedance (fl oating) mode because they (FPGA and SRAM) are physically 
connected to the same wires (data bus  D ). Observe also that the generated data consist 
simply of  A  +  seed  (line 142; see also   fi gure 13.1 ), which is written to the SRAM when 
a  wr  =  ‘ 1 ’  pulse occurs and is read from the SRAM and displayed on the SSD when a 
 rd  =  ‘ 1 ’  pulse occurs. 

 In this kind of application, glitches during clock transitions are generally not a 
problem, so the optional output register is not needed. 

 Finally, and very importantly, observe the correct use of registers and the complete-
ness of the code, as described in comment 8 of section 7.3. Observe in particular the 
following: 1) all states are included; 2) the list of outputs is exactly the same in all 
states, and the corresponding values/expressions are always properly declared; 3) the 
specifi cations for  nx_state , when conditional, are always fi nalized with an  else  state-
ment, so no condition is left unchecked.  

  1    //Module header:-----------------------------------  
  2    module sram_interface  
  3    #(parameter  
  4    //Main-circuit parameters:  
  5    Abus = 18, //Address bus width  
  6    Dbus = 16, //Data bus width  
  7    //Test-circuit parameters:  
  8    Tread = 25_000_000, //Time=0.5s @fclk=50MHz  
  9    Amax = 12) //Max address in test circuit  
  10    (  
  11    //Main-circuit ports:  
  12    input logic rd, wr, clk, rst,  
  13    output logic CEn, WEn, OEn, UBn, LBn,  
  14    output logic [17:0] A,  
  15    //Test-circuit ports:  
  16    inout logic [7:0] D, //Only lower-byte used  
  17    input logic [1:0] seed,  
  18    output logic [6:0] ssd,  
  19    output logic  done_wr, done_rd);  
  20  
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  21    //Declarations:-----------------------------------  
  22  
  23    //FSM-related declarations:  
  24    typedef enum logic [2:0]   
  25    {idle, write1, write2, read1, read2, hold} state;  
  26    state pr_state, nx_state;  
  27         
  28    //Auxiliary-register-related declarations:  
  29    logic [Abus-1:0] A_reg;  
  30  
  31    //Timer-related declarations:  
  32    logic [$clog2(Tread)-1:0] t, tmax; //range ≥ Tread  
  33         
  34    //Function construction:  
  35    function [6:0] integer_to_ssd;  
  36    input [3:0] inp;  
  37    case (inp)  
  38    0: integer_to_ssd = 7'b0000001;  
  39    1: integer_to_ssd = 7'b1001111;  
  40    2: integer_to_ssd = 7'b0010010;  
  41    3: integer_to_ssd = 7'b0000110;  
  42    4: integer_to_ssd = 7'b1001100;  
  43    5: integer_to_ssd = 7'b0100100;  
  44    6: integer_to_ssd = 7'b0100000;  
  45    7: integer_to_ssd = 7'b0001111;  
  46    8: integer_to_ssd = 7'b0000000;  
  47    9: integer_to_ssd = 7'b0000100;  
  48    10: integer_to_ssd = 7'b0001000;  
  49    11: integer_to_ssd = 7'b1100000;  
  50    12: integer_to_ssd = 7'b0110001;  
  51    13: integer_to_ssd = 7'b1000010;  
  52    14: integer_to_ssd = 7'b0110000;  
  53    15: integer_to_ssd = 7'b0111000;  
  54    default: integer_to_ssd = 7'b1111110;  
  55    endcase  
  56    endfunction  
  57  
  58    //Statements:--------------------------------------  
  59  
  60    //Static SRAM signals:  
  61    assign CEn = 1'b0;  
  62    assign OEn = 1'b0;  
  63    assign UBn = 1'b0;  
  64    assign LBn = 1'b0;  
  65  
  66    //Timer (using strategy #2):  
  67    always_ff @(posedge clk, posedge rst)  
  68    if (rst) t  < = 0;  
  69    else if (t  <  tmax) t  < = t + 1;  
  70    else t  < = 0;  
  71  
  72    // Auxiliary register:  
  73    always_ff @(posedge clk, posedge rst)  
  74    if (rst) A_reg  < = 0;  
  75    else   A_reg  < = A;  
  76  
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  77    //FSM state register:  
  78    always_ff @(posedge clk, posedge rst)  
  79    if (rst) pr_state  < = idle;  
  80    else pr_state  < = nx_state;  
  81  
  82    //FSM combinational logic:  
  83    always_comb begin  
  84    case (pr_state)  
  85    idle: begin  
  86    A  < = 0;  
  87    WEn  < = 1'b1;  
  88    done_wr  < = 1'b1;  
  89    done_rd  < = 1'b1;  
  90    tmax  < = 0;  
  91    if (wr  &  ~rd) nx_state  < = write1;  
  92    else if (~wr  &  rd) nx_state  < = read1;  
  93    else nx_state  < = idle;  
  94    end  
  95    write1: begin  
  96    A  < = A_reg;  
  97    WEn  < = 1'b0;  
  98    done_wr  < = 1'b0;  
  99    done_rd  < = 1'b1;  
  100    tmax  < = 0;  
  101    nx_state  < = write2;  
  102    end  
  103    write2: begin  
  104    A  < = A_reg + 1;  
  105    WEn  < = 1'b1;  
  106    done_wr  < = 1'b0;  
  107    done_rd  < = 1'b1;  
  108    tmax  < = 0;  
  109    if (A  < = Amax) nx_state  < = write1;  
  110    else nx_state  < = hold;  
  111    end  
  112    read1: begin  
  113    A  < = A_reg;  
  114    WEn  < = 1'b1;  
  115    done_wr  < = 1'b1;  
  116    done_rd  < = 1'b0;  
  117    tmax  < = Tread;  
  118    if (t > =tmax) nx_state  < = read2;  
  119    else nx_state  < = read1;  
  120    end  
  121    read2: begin  
  122    A  < = A_reg + 1;  
  123    WEn  < = 1'b1;  
  124    done_wr  < = 1'b1;  
  125    done_rd  < = 1'b0;  
  126    tmax  < = 0;  
  127    if (A  < = Amax) nx_state  < = read1;  
  128    else nx_state  < = hold;  
  129    end  
  130    hold: begin  
  131    A  < = 0;  
  132    WEn  < = 1'b1;  
  133    done_wr  < = 1'b1;  
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  134    done_rd  < = 1'b1;  
  135    tmax  < = 0;  
  136    if (~wr  &  ~rd) nx_state  < = idle;  
  137    else nx_state  < = hold;  
  138    end  
  139    endcase  
  140         
  141    //In-out port with tri-state:  
  142    if (~done_wr) D  < = A[7:0] + seed;  
  143    else D  < = 'z;     
  144  
  145    //SSD signal produced by function integer_to_ssd:  
  146    ssd  < = integer_to_ssd(D[3:0]);     
  147    end  
  148  
  149    endmodule  
  150    //-----------------------------------------------  

13.7   Exercises 

Exercise 13.1: Long-String Comparator #1 
Solve exercise 12.1 using SystemVerilog instead of VHDL. 

Exercise 13.2: Long-String Comparator #2 
Solve exercise 12.2 using SystemVerilog instead of VHDL. 

Exercise 13.3: Hamming-Weight Calculator 
Solve exercise 12.3 using SystemVerilog instead of VHDL. 

Exercise 13.4: Leading-Ones Counter 
Solve exercise 12.4 using SystemVerilog instead of VHDL. 

Exercise 13.5: Complete Reference-Value Defi ner 
Solve exercise 12.5 using SystemVerilog instead of VHDL. 

Exercise 13.6: Factorial Calculator 
Solve exercise 12.6 using SystemVerilog instead of VHDL. 

Exercise 13.7: Divider 
Solve exercise 12.7 using SystemVerilog instead of VHDL. 



14   Additional Design Examples 

This chapter presents three additional FSM-based designs. They are included in a sepa-
rate chapter because theoretical details and background material are also provided, 
leading to much longer design examples. Moreover, FSMs from all three categories are 
involved, depending on the application. The chapter starts with a simple LCD driver, 
followed by the I 2 C and SPI interfaces, which are currently the most popular circuits 
for serial communication between integrated circuits. 

 14.1   LCD Driver 

 Like SSDs (seven segment displays), alphanumeric LCDs (liquid crystal displays) are 
popular options for displaying readings in all sorts of equipment, from watches to car 
speedometers, from microwave ovens to medical instruments. Their main advantages 
over SSDs are a much lower power consumption and the possibility of displaying 
basically any character and also simple fi gures, but at a higher price and a more 
complex driver. 

 14.1.1   Alphanumeric LCD 
 A popular alphanumeric LCD is shown in   fi gure 14.1 , which contains two lines of 16 
characters each. A picture of the display is shown in   fi gure 14.1a . The corresponding 
pinout is exhibited in   fi gure 14.1b . The internal display layout is illustrated in   fi gure 
14.1c , showing 16 × 2 dot arrays of size 8 × 5 each. In   fi gure 14.1d , its most frequent 
exhibition mode is depicted, consisting of 8 × 5-dot arrays for 7 × 5 characters. Finally, 
in   fi gure 14.1e , its other predefi ned exhibition mode is depicted, consisting of 11 × 5-
dot arrays, for 10 × 5 characters. 

    Even though this kind of display can also be found with I 2 C and other serial inter-
faces, for low-cost applications the use of parallel access through an HD44780U micro-
controller constitutes the industry standard. Such a controller (from Hitachi, or an 
equivalent one such as KS0066U from Samsung) is installed on the back of the device, 
acting as the interface between the LCD and the external world. The device is then 
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accessed through the 16 pins listed in   fi gure 14.1b , which include power, contrast, 
control, and data. 

 Circuit Ports 
 To use this kind of display, the fi rst step is to understand its microcontroller. The 
purposes of the signals listed in   fi gure 14.1b  are described below. 

  —  E  (enable, pin 6): Writing into the LCD controller occurs at the negative edge of  E , 
whereas reading occurs at the positive edge. 
  —  RS  (register select, pin 4):  ‘ 0 ’  selects the controller ’ s instruction register (for initializa-
tion, for example), whereas  ‘ 1 ’  selects its data register (for the characters to be displayed 
by the LCD). 
  —  R/W  (read/write, pin 5):  ‘ 1 ’  for reading,  ‘ 0 ’  for writing. If  R/W  =  ‘ 0 ’ , the next negative 
edge of  E  causes the present instruction or data to be written into the controller ’ s 
register selected by  RS . If  R/W  =  ‘ 1 ’ , data is read from the controller ’ s register at the 
next positive edge of  E . 
  —  DB  (data bus, pins 7 – 14): Bidirectional eight-bit bus for sending/receiving data or 
instructions to/from the LCD controller. 
  —  BF  (busy fl ag, pin 14): The microcontroller sets bit 7 of  DB  to  ‘ 1 ’  when it is busy, 
informing that writing is not allowed. In practice, the use of this signal can be avoided 
by adopting for each instruction a time long enough to guarantee completion. 

Figure 14.1 
Alphanumeric LCD. (a) Popular 16 × 2 device. (b) Pinout (with HD44780U microcontroller). (c) 

Internal layout (16 × 2 8 × 5-dot blocks). (d) Standard 8 × 5-dot exhibition mode (two lines of 7 × 5 

characters). (e) Standard 11 × 5-dot confi guration (single line of 10 × 5 characters). 
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Figure 14.2 
LCD controller (HD44780U or equivalent) instruction set. 

Controller Instructions 
The controller ’ s instruction set is shown in   fi gure 14.2 , along with explanatory com-
ments and worst-case execution times. As mentioned above, a common design practice 
is to adopt a slow clock to operate the LCD, such that any of the instructions has 
enough time to be completed (so reading  BF  is not necessary); for example, 500 Hz, 
hence allowing 2 ms for execution.    

 The maximum execution times in   fi gure 14.2  are for the controller ’ s internal oscil-
lator operating at 270 kHz. This frequency is set by an external resistor between 75 
k Ω  (for  V  DD  = 3 V) and 91 k Ω  (for  V  DD  = 5 V). If a different frequency is employed (with 
different resistor values, the range that can be covered is roughly 100 – 500 kHz), then 
the execution times must be multiplied by 270 kHz/ f  oscillator . 
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Character ROM 
A total of 192 predefi ned characters of size 7 × 5 (see   fi gure 14.3 ) are available in the 
LCD controller ’ s character generator ROM (CGROM). The CGROM also contains 32 
characters of size 10 × 5. When the former are used (hence, with 8 × 5-dot blocks), the 
LCD can operate with two lines; when the latter (11 × 5-dot blocks) are used, only 
single-line operation is possible. User-defi ned characters are also allowed, so other 
exhibition modes are possible, such as full-height (16 × 5-dot) characters.    

 Initialization by Instructions 
 An important design consideration is the controller ’ s initialization procedure, which 
can be done in two ways: automatically, at power up, or by instructions. The latter 
can be used when the power supply conditions for automatic initialization are not 
met, or for safety. It consists of the following (adjusted) sequence (always with  R/W  = 
 ‘ 0 ’  and  RS  =  ‘ 0 ’ ; as usual,  “  −  ”  means  “ don ’ t care ” ): 

Figure 14.3 
Predefi ned characters of size 7 × 5 available in the LCD controller ’ s ROM. 
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1)   Turn the power ON. 
2)   Wait  > 15 ms after  V  DD  rises to 4.5 V. 
 3)   Execute instruction  “ Function set, ”  with  DB  =  “ 0011 −   −   −   −  ” . 
 4)   Wait  > 4.1 ms. 
 5)   Execute instruction  “ Function set, ”  with  DB  =  “ 0011 −   −   −   −  ” . 
 6)   Wait  > 100  μ s. 
 7)   Execute instruction  “ Function set, ”  with  DB  =  “ 0011 −   −   −   −  ” . 
 8)   Execute instruction  “ Function set, ”  with  DB  =  “ 0011  N F   −   −  ”  (choose  N  and  F ). 
 9)   Execute instruction  “ Clear display, ”  with  DB  =  “ 00000001 ” . 
 10)   Execute instruction  “ Display on/off control, ”  with  DB  =  “ 00001100 ” . 
 11)   Execute instruction  “ Entry mode set, ”  with  DB  =  “ 000001  I/D S  ”  (choose  I/D  
and  S ). 

 (Some equivalent microcontrollers have a slightly simpler initialization.) 

 14.1.2   Typical FSM Structure for Alphanumeric LCD Drivers 
 A typical FSM structure for writing to the LCD of   fi gure 14.1  is shown in   fi gure 14.4a , 
clocked by  E  at around 500 or 600 Hz. The seven states in the upper row constitute 
the initialization sequence (compare those states to the sequence described above), 

Figure 14.4 
(a) Typical structure for an FSM that writes characters to the LCD of   fi gure 14.1 . (b) Another 

example for the actual data-writing states, displaying the digits of a clock. 
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and the states in the lower row (within a dashed rectangle) are responsible for the 
actual data-writing procedure. Note that  RS  =  ‘ 0 ’  in the upper row, needed to write to 
the instruction register, whereas  RS  =  ‘ 1 ’  in the lower row (except for state  ReturnHome ), 
so the writing occurs in the data register.  R/W  (not shown) is kept permanently low 
(writing only). 

 In the initialization sequence of   fi gure 14.4a  the same value was adopted for  DB  in 
all four repetitions of the  “ Function set ”  instruction, with  N  =  ‘ 1 ’  (two-line operation) 
and  F  =  ‘ 0 ’  (5 × 8-dot characters). In the  “ Entry mode ”  instruction the selected values 
were  I/D  =  ‘ 1 ’  (DD RAM address incremented automatically) and  S  =  ‘ 0 ’  (display not 
shifted). 

 The actual data-writing sequence (lower row, inside the dashed rectangle) depends 
on the application. In   fi gure 14.4a  a timed (category 2) machine is employed, which 
writes a total of eight characters ( t  running from 0 to 7) to the LCD, then returns to 
the initial display address and overwrites those eight characters, repeating this loop 
indefi nitely.    

 Another data-writing example is presented in   fi gure 14.4b , this time with a regular 
(category 1) machine (this is the FSM that will be implemented with VHDL in the 
next section). It displays the digits of a digital clock, with tens of hours and units of 
hours in the fi rst two positions, then a colon, followed by tens and units of minutes 
in the next two characters, then another colon, and fi nally tens and units of seconds 
in the last two positions, after which the machine repeats the loop, overwriting the 
characters with the new readings. This FSM will implement the LCD driver, while the 
values of  DB  ( hourT ,  hourU ,  minT ,  minU ,  secT ,  secU ) shown in   fi gure 14.4b  are produced 
by another circuit, responsible for implementing the timer proper. Note that  DB  = 
 “ 00111010 ”  was used in states  WriteColon1  and  WriteColon2 , which corresponds to the 
 “ : ”  character (check this in   fi gure 14.3 ). 

 The FSM of fi gure 14.4 is simple enough to also be implemented using the pointer-
based technique described in chapter 15. 

 14.1.3   Complete Design Example: Clock with LCD Display 
   Figure 14.5  shows a digital clock that displays hours, minutes, and seconds on an 
alphanumeric LCD. The circuit was divided into two blocks, with the fi rst block imple-
menting the clock proper and the second block implementing the LCD driver. 

 The Clock block is controlled by fi ve pushbuttons, as follows. Powers-of-two (simple 
shifts) were chosen as speed-up factors to reduce the amount of hardware. 

  —  sec  (adjustment of seconds): Increases the clock speed by a factor of 8. 
  —  min  (adjustment of minutes): Increases the clock speed by a factor of 256. 
  —  hour  (adjustment of hours): Increases the clock speed by a factor of 8192. 
  —  rst_clock  (clock reset): Resets the clock (and so the display) to zero. 
  —  rst_lcd  (LCD reset): Resets the FSM that implements the LCD driver. 
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The outputs of the Clock block are the following: 

— secU : Units of seconds. 
— secT : Tens of seconds. 
— minU : Units of minutes. 
— minT : Tens of minutes. 
— hourU : Units of hours. 
— hourT : Tens of hours. 

Finally, the outputs of the LCD Driver block are the signals already described (listed 
in   fi gure 14.1b ): 

— E  (enable): Actual LCD clock. 
— RS  (register select): Selects LCD instruction ( ‘ 1 ’ ) or data ( ‘ 0 ’ ) register. 
  —  R/W  (read/write): Selects LCD read ( ‘ 1 ’ ) or write ( ‘ 0 ’ ) operation. 
  —  DB  (data bus): Bidirectional eight-bit bus. 
  —  LCD_ON : Turns display on ( ‘ 1 ’ ) or off ( ‘ 0 ’ ). 
  —  BKLT_ON : Turns backlight on ( ‘ 1 ’ ) or off ( ‘ 0 ’ ). 

 VHDL Code 
 Because of space limitations, only the VHDL code is presented. However, with that 
code and the SystemVerilog codes seen in chapters 7, 10, and 13, writing the corre-
sponding SystemVerilog code is relatively simple. 

 A complete VHDL code for the FSM of   fi gure 14.4b , with the initialization sequence 
of   fi gure 14.4a , is presented below. Because it is a category 1 machine, it was based on 
the template of section 6.3. 

 The entity, called  clock_with_LCD_display , is in lines 5 – 12. The clock frequency was 
entered as a generic constant (line 6), so the speed-up factors (lines 50 – 53), the 1-s 
time base for the clock (line 57), and the frequency of the LCD clock (500 Hz, lines 
120 and 124) will adjust automatically when this parameter changes. The circuit ports 
(lines 8 – 11) are exactly as in   fi gure 14.5  and are all of type  std_logic  or  std_logic_vector  
(industry standard). 

Figure 14.5 
Digital clock with LCD display. 
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The architecture, called  moore_fsm , is in lines 14 – 214. As usual, it contains a declara-
tive part and a statements part, both commented below. 

 The declarative part of the architecture (lines 16 – 43) starts with a function that 
converts binary-coded decimal (BCD) values into LCD characters (according to   fi gure 
14.3 ). It also contains FSM-related and other signal declarations. In the FSM declara-
tions (lines 35 – 39), the enumerated type  state  is created to represent the machine ’ s 
present and next states. The other declarations contain in line 42 the signals needed 
to interface the Clock block with the LCD block (see   fi gure 14.5 ) and in line 43 a 
signal that will allow the adoption of different limits in the fi rst clock counter so the 
clock can be sped up during seconds, minutes, or hours adjustments. 

 The code proper (statements part, lines 45 – 214) is divided into two parts. Part I 
(lines 47 – 110) implements the Clock block of   fi gure 14.5 , while part II (lines 112 – 212) 
implements the LCD Driver block of   fi gure 14.5 . 

 Part I (Clock block) contains just defi nitions for the speed-up factors (lines 50 – 53) 
and a basic process (lines 56 – 110) that implements the clock proper. 

 Part II (LCD Driver block) starts with defi nitions for the LCD static signals (lines 
114 – 116), followed by a process (lines 119 – 129) that creates the 500 Hz clock for the 
LCD controller. The last two processes implement the FSM that runs the LCD, with 
the sequential section (FSM state register) in lines 132 – 139 and the combinational 
logic section in lines 142 – 212, based directly on the template of section 6.3. Note that 
this last process follows   fi gure 14.4  exactly. 

 Finally, observe the correct use of registers and the completeness of the code, as 
described in comment 10 of section 6.3. 

 The reader is invited to set up this (or an equivalent) experiment and play with it 
in the FPGA board. 
 

  1    ----------------------------------------------------------------  
  2   library ieee;  
  3   use ieee.std_logic_1164.all;  
  4    ----------------------------------------------------------------  
  5   entity clock_with_LCD_display is  
  6      generic (fclk: natural := 50_000_000);    --freq in Hz  
  7      port (  
  8        clk, rst_clock, rst_lcd, sec, min, hour: in std_logic;  
  9        RS, RW, LCD_ON, BKLT_ON: out std_logic;  
  10        E: buffer std_logic;  
  11        DB: out std_logic_vector(7 downto 0));   
  12    end entity;  
  13    ----------------------------------------------------------------  
  14    architecture moore_fsm of clock_with_LCD_display is  
  15  
  16      --BCD-to-LCD character conversion function:  
  17      function bcd_to_lcd (input: natural) return std_logic_vector is  
  18      begin  
  19        case input is  
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  20          when 0 = >  return "00110000";   --"0" on LCD  
  21          when 1 = >  return "00110001";   --"1" on LCD  
  22          when 2 = >  return "00110010";   --"2" on LCD  
  23          when 3 = >  return "00110011";   --"3" on LCD  
  24          when 4 = >  return "00110100";   --"4" on LCD  
  25          when 5 = >  return "00110101";   --"5" on LCD  
  26          when 6 = >  return "00110110";   --"6" on LCD  
  27          when 7 = >  return "00110111";   --"7" on LCD  
  28          when 8 = >  return "00111000";   --"8" on LCD  
  29          when 9 = >  return "00111001";   --"9" on LCD  
  30          when others = >  return "00111111";   --"?" on LCD  
  31        end case;  
  32      end bcd_to_lcd;  
  33  
  34      --FSM-related declarations:  
  35      type state is (FunctionSet1, FunctionSet2, FunctionSet3,  
  36        FunctionSet4, ClearDisplay, DisplayControl, EntryMode,  
  37        WriteHourT, WriteHourU, WriteColon1, WriteMinT, WriteMinU,  
  38        WriteColon2, WriteSecT, WriteSecU, ReturnHome);    
  39      signal pr_state, nx_state: state;  
  40         
  41      --Other signal declarations:  
  42      signal secU, secT, minU, minT, hourU, hourT: natural range 0 to 9;  
  43      signal limit: natural range 0 to fclk;  
  44         
  45    begin  
  46         
  47      --PART I: CLOCK BLOCK--------------------------  
  48         
  49      --Speed-up factors:  
  50      limit  < =   fclk/8192 when hour='1' else  
  51            fclk/256 when min='1' else  
  52            fclk/8 when sec='1' else  
  53            fclk;  
  54  
  55      --Clock design:  
  56      process (clk, rst_clock)  
  57        variable counter1: natural range 0 to fclk;  
  58        variable counter2: natural range 0 to 10;  
  59        variable counter3: natural range 0 to 6;  
  60        variable counter4: natural range 0 to 10;  
  61        variable counter5: natural range 0 to 6;  
  62        variable counter6: natural range 0 to 10;  
  63        variable counter7: natural range 0 to 3;  
  64      begin  
  65        if rst_clock=’1’ then  
  66          counter1 := 0;   
  67          counter2 := 0;  
  68          counter3 := 0;  
  69          counter4 := 0;  
  70          counter5 := 0;  
  71          counter6 := 0;  
  72          counter7 := 0;  
  73        elsif rising_edge(clk) then  
  74          counter1 := counter1 + 1;  
  75          if counter1=limit then  
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  76            counter1 := 0;  
  77            counter2 := counter2 + 1;  
  78            if counter2=10 then  
  79              counter2 := 0;  
  80              counter3 := counter3 + 1;  
  81              if counter3=6 then  
  82                counter3 := 0;  
  83                counter4 := counter4 + 1;  
  84                if counter4=10 then  
  85                  counter4 := 0;  
  86                  counter5 := counter5 + 1;  
  87                  if counter5=6 then  
  88                    counter5 := 0;  
  89                    counter6 := counter6 + 1;  
  90                    if (counter7/=2 and counter6=10) OR  
  91                      (counter7=2 and counter6=4) then  
  92                      counter6 := 0;  
  93                      counter7 := counter7 + 1;  
  94                      if counter7=3 then  
  95                        counter7 := 0;  
  96                      end if;  
  97                    end if;  
  98                  end if;  
  99                end if;  
  100              end if;  
  101            end if;  
  102          end if;  
  103        end if;  
  104        secU  < = counter2;  
  105        secT  < = counter3;  
  106        minU  < = counter4;  
  107        minT  < = counter5;  
  108        hourU  < = counter6;  
  109        hourT  < = counter7;  
  110      end process;  
  111         
  112      --PART II: LCD DRIVER BLOCK--------------------  
  113  
  114      LCD_ON  < = '1';  
  115      BKLT_ON  < = '1';  
  116      RW  < = '0';  
  117  
  118      --Generate 500Hz enable (E):  
  119      process (clk)  
  120        variable counter1: natural range 0 to fclk/1000;  
  121      begin  
  122        if rising_edge(clk) then  
  123          counter1 := counter1 + 1;  
  124          if counter1=fclk/1000 then  
  125            counter1 := 0;  
  126            E  < = not E;  
  127          end if;  
  128        end if;  
  129      end process;  
  130         
  131      --FSM state register:  
  132      process (E, rst_lcd)  
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  133      begin  
  134        if rst_lcd='1' then  
  135          pr_state  < = FunctionSet1;  
  136        elsif rising_edge(E) then  
  137          pr_state  < = nx_state;  
  138        end if;  
  139      end process;  
  140  
  141      --FSM combinational logic:  
  142      process (all)  
  143      begin  
  144        case pr_state is  
  145          --Initialization:  
  146          when FunctionSet1 = >   
  147            RS  < = '0';  
  148            DB  < = "00111000";  
  149            nx_state  < = FunctionSet2;  
  150          when FunctionSet2 = >   
  151            RS  < = '0';  
  152            DB  < = "00111000";  
  153            nx_state  < = FunctionSet3;  
  154          when FunctionSet3 = >   
  155            RS  < = '0';  
  156            DB  < = "00111000";  
  157            nx_state  < = FunctionSet4;  
  158          when FunctionSet4 = >   
  159            RS  < = '0';  
  160            DB  < = "00111000";  
  161            nx_state  < = ClearDisplay;  
  162          when ClearDisplay = >   
  163            RS  < = '0';  
  164            DB  < = "00000001";  
  165            nx_state  < = DisplayControl;  
  166          when DisplayControl = >   
  167            RS  < = '0';  
  168            DB  < = "00001100";  
  169            nx_state  < = EntryMode;  
  170          when EntryMode = >   
  171            RS  < = '0';  
  172            DB  < = "00000110";  
  173            nx_state  < = WriteHourT;  
  174          --Write data:  
  175          when WriteHourT = >   
  176            RS  < = '1';  
  177            DB  < = bcd_to_lcd(hourT);  
  178            nx_state  < = WriteHourU;  
  179          when WriteHourU = >   
  180            RS  < = '1';  
  181            DB  < = bcd_to_lcd(hourU);  
  182            nx_state  < = WriteColon1;  
  183          when WriteColon1 = >   
  184            RS  < = '1';  
  185            DB  < = "00111010";  
  186            nx_state  < = WriteMinT;  
  187          when WriteMinT = >   
  188            RS  < = '1';  
  189            DB  < = bcd_to_lcd(minT);  
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  190            nx_state  < = WriteMinU;  
  191          when WriteMinU = >   
  192            RS  < = '1';  
  193            DB  < = bcd_to_lcd(minU);  
  194            nx_state  < = WriteColon2;  
  195          when WriteColon2 = >   
  196            RS  < = '1';  
  197            DB  < = "00111010";  
  198            nx_state  < = WriteSecT;  
  199          when WriteSecT = >   
  200            RS  < = '1';  
  201            DB  < = bcd_to_lcd(secT);  
  202            nx_state  < = WriteSecU;  
  203          when WriteSecU = >   
  204            RS  < = '1';  
  205            DB  < = bcd_to_lcd(secU);  
  206            nx_state  < = ReturnHome;  
  207          when ReturnHome = >   
  208            RS  < = '0';  
  209            DB  < = "10000000";  
  210            nx_state  < = WriteHourT;  
  211        end case;  
  212      end process;  
  213         
  214    end architecture;  
  215    ------------------------------------------------------------  

14.2   I 2 C Interface 

 I 2 C (Inter Integrated Circuit) is a synchronous eight-bit oriented serial bus for com-
munication between integrated circuits installed next to each other (normally on the 
same board). Created by Philips in the 1980s, it is a two-wire bus with fi ve standard-
ized speed modes, called  standard  (100 kbps),  fast  (400 kbps),  fast-plus  (1 Mbps),  high-
speed  (3.4 Mbps), and  ultrafast  (5 Mbps). 

 14.2.1   I 2 C Bus Structure 
 The I 2 C bus general structure is depicted in   fi gure 14.6 . Its two wires are called  SCL  
(serial clock) and  SDA  (serial data), which interconnect a master unit to a number of 

Figure 14.6 
General I 2 C bus structure. 
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slave units. A common ground wire (not shown) is obviously also needed for the 
system to function. Examples of IC families currently fabricated with I 2 C support are 
also shown in the fi gure, including microcontrollers, EEPROM and Flash memories, 
A/D and D/A converters, RTC (real time clock) circuits, temperature sensors, and 
accelerometers, among others.    

 As indicated in   fi gure 14.6 , the clock ( SCL ) is unidirectional, always generated by 
the master (usually a microcontroller), whereas data ( SDA ) transmission is bidirec-
tional. Because  SCL  and  SDA  are open-drain lines (the 5-Mbps version also allows 
push-pull logic), external pull-up resistors ( R PU  ) must be connected between these wires 
and the power supply. 

 The number of devices sharing the same bus can be up to 128 (seven-bit address) 
or 1024 (10-bit address). More than one master is allowed, in which case the I 2 C pro-
tocol provides bus arbitration. Other advanced features include clock stretching, 
general call, reset by software, and others. 

 14.2.2   Open-Drain Outputs 
 As mentioned,  SCL  and  SDA  are open-drain pins. Details on open-drain connections 
for  SDA  (which is bidirectional) are shown in   fi gure 14.7 . Note that for an individual 
stage (the master, for example) to have its output high, the corresponding nMOS 
transistor must be cut off (so its gate voltage must be low), because then the output 
voltage will be elevated to  V DD   by the pull-up resistor. Because all stages are hardwired 
to the same  SDA  node, the only way to have  SDA  high is to have all nMOS transistors 
off; in other words, all individual outputs must be high. Consequently, the  SDA  node 
behaves as an AND gate, so any nonactive unit must keep its output high (i.e., internal 
nMOS transistor gate voltage low) in order not to interfere with the communication 
between any other units.    

 Because of the open-drain arrangement, the high-impedance state ( ‘ Z ’ , in VHDL) 
provided by tristate buffers is actually not needed. However, the design example 
shown ahead is tested with the master on an FPGA (without open-drain pads), so in 
that case the  ‘ Z ’  state is required. 

Figure 14.7 
Open-drain connections for the  SDA  wire. 
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Figure 14.8 
(a) I 2 C communication principle. (b) Time parameters. (c) Resulting (allowed) operation. 

The value of  R PU   is typically in the 1-k Ω  to 33-k Ω  range. It depends on the total 
 SCL  or  SDA  wire capacitance; if it is large (long bus with many slaves), then the resis-
tor must be small to achieve the rise time defi ned in the I 2 C specifi cations. The value 
of  V  DD  was 5 V in initial I 2 C-driven devices, but voltages as low as 1.8 V are now 
common. 

 14.2.3   I 2 C Bus Operation 
 Data transfers are always done one byte at a time, after which an acknowledgment bit 
is issued by the receiving end. The general principle is depicted in   fi gure 14.8a , which 
shows a data transmission from the master to a slave. The start sequence consists of 
lowering  SDA  with  SCL  high, whereas the stop sequence consists of raising  SDA  with 
 SCL  high. This means that during data transmission  SDA  must remain stable while 
 SCL  is high; otherwise start/stop commands will occur (note in the fi gure that the data 
is always updated while  SCL  is low). While the master is transmitting (always MSB 
fi rst), the slave remains with its output high (nMOS transistor cut off — represented by 
 ‘ Z ’  in the fi gure), so the master has control over the  SDA  wire. After the eighth bit is 
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received, the slave issues an ack bit, which (for obvious reasons) can only be a  ‘ 0 ’ . As 
also depicted in   fi gure 14.8a , the slave stores the data available on the  SDA  wire at the 
positive edge of  SCL  and places data on that wire at the negative edge.    

 The main time parameters are summarized in fi gure 14.8b, which have the follow-
ing meaning: 

  t SU_STA   (setup time for start):  SCL  stable high before  SDA  high-to-low transition. 
  t HD_STA   (hold time for start):  SCL  still stable high after  SDA  high-to-low transition. 
  t SU_DAT   (setup time for data): data or address stable before  SCL  pulse. 
  t HD_DAT   (hold time for data): data or address still stable after  SCL  pulse. 
  t SU_STO   (setup time for stop):  SCL  stable high before  SDA  low-to-high transition. 
  t BUF   (bus-free time): bus-free time before another data transmission. 

 Figure 14.8b also shows examples of numerical values for these time parameters. A 
very important observation is that  t HD_DAT   = 0 (this is generally true for I 2 C-interfaced 
devices), which causes the simpler timing diagram of fi gure 14.8c to be allowed. 

 The overall I 2 C protocol is summarized in   fi gure 14.9 . In   fi gure 14.9a  the master 
writes data to a slave, whereas in   fi gure 14.9b  it reads data from a slave. White blocks 
represent actions taken by the master, and gray blocks indicate actions taken by 
the slave.    

Figure 14.9 
Summary of I 2 C operation for (a) writing and (b) reading. 
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The write procedure (  fi gure 14.9a ) begins with a start pulse, followed by the fi rst 
byte, which contains the slave ’ s seven-bit address plus a  ‘ 0 ’  appended to its right-end 
(this  ‘ 0 ’  informs the slave that a write procedure will occur). The corresponding slave 
responds with an acknowledgment bit (=  ‘ 0 ’ ). The second byte is then issued by the 
master, containing the initial memory address where the writing must occur, to which 
the slave responds with another ack bit. After this, data writing begins, which can 
consist of any number of bytes, until the master ends the operation with a stop pulse. 

 The read procedure (  fi gure 14.9b ) is exactly the same as the write procedure 
up to line 1, or up to line 2 if the same initial address is used for writing and for 
reading. After line 2 another start pulse is issued by the master, followed by the seven-
bit slave ’ s address, this time with a  ‘ 1 ’  appended to its right-end (informing that a 
read operation will occur), to which the slave responds with a fi nal ack bit. After this 
point the slave issues the data and the master issues the ack bit. Again, any number 
of bytes can be transferred, until a no-ack (=  ‘ 1 ’ ) bit is issued by the master, followed 
by a stop pulse. 

 The repetition seen in   fi gure 14.9b  (before line 2) is sometimes referred to as  dummy 
write . It is necessary because I 2 C also permits reading from wherever the address 
pointer sits, in which case the entire portion before line 2 is omitted. In other words, 
the dummy write resets the address pointer to a specifi c position. 

 The diagram of   fi gure 14.9  is shown in a temporal fashion in   fi gure 14.10 , now 
with all waveforms to be used in the experiments explicitly shown. This diagram is 
based directly on fi gure 14.8c. Because  t HD_DAT   = 0 (fi gure 14.8b), only a single clock is 
actually needed. Observe the safe construction of the restart sequence, needed for 
reading, which takes two clock cycles (left and right portions). Note also the inclusion 
of a hold state at the end, which waits for  wr  =  ‘ 0 ’  (and also  rd  =  ‘ 0 ’  if sequential 

Figure 14.10 
Detailed I 2 C signals for (a) writing and (b) reading (compare to the sequences in   fi gure 14.9 ). 
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reading is not wanted) and for a time equal to  t BUF   before a new transmission can take 
place. Because this diagram is completely generic, it can be used as the basis for any 
circuit that writes/reads data to/from any I 2 C-interfaced device.    

 14.2.4   Typical FSM Structure for I 2 C Applications 
   Figure 14.11  shows a typical FSM structure for implementing an I 2 C master circuit. 
The sequence of states is based directly on   fi gures 14.9 and 14.10 . The process starts 
when a  wr  =  ‘ 1 ’  or  rd  =  ‘ 1 ’  pulse is received, with the fi rst three states after the idle 
state corresponding to the initialization sequence (down to line 1 of   fi gure 14.9 ). After 
this point the upper branch is pursued if writing is wanted, or the lower branch if 
reading is intended.    

 Understanding this state transition diagram well is very important because basically 
the only changes from one I 2 C application to another are in the data-write and data-
read sequences inside the dashed rectangles. Two very important aspects of this 
machine are commented on below. 

 The fi rst point regards the duration of the  wr  and  rd  signals. Note that these signals 
are used to make decisions in two points along the FSM, so at least one of them must 
last up to the point where the second decision must be made. If  wr  and  rd  are short 
pulses, then a stretcher (section 8.11.10) can be used; another (simpler) solution is to 
repeat the three initial states for writing and for reading. If, on the other hand,  wr  and 
 rd  are long pulses, then the  hold  state (which waits also for  t BUF  ) shown after  stop  can 
solve the problem. 

 The second point regards the two blocks within dashed rectangles. If the number 
of bytes to be transmitted or received is small, then one pair  “ write-data + ack ”  or 
 “ read-data + ack ”  can be used for each byte. However, for a large number of bytes, it 
is more practical to build a loop to have the same pair repeated a number of times 
(except for the last pair when reading data, because then no-ack must be used in place 
of ack). Both solutions can be implemented with a category 2 machine (based on the 

Figure 14.11 
Typical FSM structure for I 2 C master implementations. 
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material in section 8.7), or with a category 3 machine (based on the material in section 
11.5), or still using the pointer-based technique described in chapter 15. In the design 
example shown next, a category 3 machine is used, with individual pairs for reading 
and a looped pair for writing. 

14.2.5   Complete Design Example: RTC (Real-Time Clock) Interface 
This section shows a complete design example for an I 2 C master that interfaces with 
an RTC (real-time clock) circuit. The master fi rst writes the current time and date to 
the RTC; then it reads the clock-related data continuously, hence having the RTC 
operate as a high-precision clock. The circuit is implemented with VHDL and physi-
cally tested in the FPGA development board. 

 The RTC employed in this example is the PFC8593 (see   fi gure 14.12a ), from NXP, 
which contains clock, calendar, timer, and alarm features (see the device ’ s manual). 

 The setup for the experiment is shown in   fi gure 14.12b . The inputs are the  wr  and 
 rd  commands plus the traditional clock and reset. The output is divided into two sets; 
the fi rst set contains  SCL  and  SDA  (plus a chip-reset signal), thus constituting the 
actual I 2 C bus; the second set of outputs is for testing the circuit, displaying on six 
SSDs (or on an LCD) the data (clock information) read from the RTC. The FSM fi rst 
writes the time and date into the RTC; then it reads continuously the clock-related 
data produced by the RTC.    

 The 16 registers (each eight bits long) of the PCF8593 RTC are detailed in   fi gure 
14.13 . Register 0 is used for setup information; register 1 stores subseconds, with units 
of subseconds in bits 3:0, and tens of subseconds in bits 7:4; register 2 stores seconds, 
with units of seconds (0 to 9 values) in bits 3:0, and tens of seconds (values from 0 
to 5) in bits 7:4; and so on.  

Figure 14.12 
(a) PCF8593 pinout. (b) Setup for the experiment. 
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Data is written to registers 0 to 7, which comprise the clock and calendar; then 
registers 2 to 4 are read (thus the initial address for reading is different from that for 
writing), which contain clock information concerning seconds, minutes, and hours. 
The following data are written (assuming that the present time and date are 1:30 pm 
of Christmas day): Control =  “ 00000000 ” ; Subseconds =  “ 00000000 ”  (0.00 s); Seconds 
=  “ 00000000 ”  (00 s); Minutes =  “ 00110000 ”  (30 min); Hours =  “ 00010011 ”  (13 h, 24-h 
option selected); Date =  “ 00100101 ”  (date 25); Month =  “ 00010010 ”  (month 12). 

 A detailed state transition diagram for this problem is presented in   fi gure 14.14 , 
based directly on   fi gures 14.10 and 14.11 . Either a category 2 or a category 3 machine 
can be used to implement this kind of circuit; the latter option was chosen here, 
whereas the former option will be employed in the next section, which deals with the 
SPI interface. This FSM is simple enough to also be implemented using the pointer-
based technique described in chapter 15. 

   Figure 14.14  was divided into three parts. The overall FSM is presented in   fi gure 
14.14a , where six common states plus write and read blocks are shown. Because the 
 wr  and  rd  commands are produced by two switches (long signals) in the experiments, 
the state called  hold  was included after  stop  to force the machine to wait until  wr  =  ‘ 0 ’  
occurs before returning to  idle  (long  rd  =  ‘ 1 ’  is accepted because continuous reading is 
wanted here, although this could also be done by repeating only the data-reading 
states). It was chosen not to have  hold  wait for  t BUF   because another immediate write 
sequence is very unlikely to be needed in this kind of application. The write sequence 
is shown in   fi gure 14.14b ; seven bytes of data (listed under the dashed rectangle) must 
be transmitted, so the pair of states inside the dashed rectangle must be repeated seven 
times. Finally, the read sequence is presented in   fi gure 14.14c ; three bytes of data (listed 
under the dashed rectangle) must be received (and stored), so the pair of states inside 
the dashed rectangle must be repeated three times. We have elected to use a pointer 
( j ) to repeat the  wr_data-ack3  pair in the transmitter and to use three separate pairs to 
repeat the  rd_data-ack  (or  noack ) pair in the receiver.    

Figure 14.13 
PCF8593 registers. 
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Figure 14.14 
Complete FSM for the I 2 C RTC interface. 

Two pointers are used in   fi gure 14.14 . The fi rst ( i ) is employed in all states where 
more than one bit must be transmitted or received. The second ( j ) can be useful when 
multiple bytes are involved, which is the case of the dashed rectangles in   fi gures 
14.14b,c ; as mentioned above, we have chosen to use  j  only in the transmitter. Recall 
that in a category 2 (timed) machine the pointer would run from 0 to 7 (for one byte 
of data), whereas here it runs from 1 to 8 because the pointer is immediately incre-
mented when the FSM enters a multibit state (then the  i  = 8 condition in the state 
diagram would be  i  = 7 if it were a category 2 machine). 

 Observe that the values for  SDA  in   fi gure 14.14  are those that must be produced 
by the master. For example, when the slave is supposed to answer with  SDA  =  ‘ 0 ’  in 
the ack states, the master must produce  SDA  =  ‘ Z ’  (FPGA implementation). Note also 
that  SDA  =  x (8 −  i ) was used in the eight-bit writing states, indicating that the MSB will 
be transmitted fi rst [recall that  i  ranges from 1 to 8, so  x (7) will go fi rst and  x (0) will 
go last]. Here,  x  is just a generic name; the actual signal name varies from one state 
to another. Finally, note that the received data must be stored somewhere, as indicated 
by an arrow and a box over the dashed rectangle in   fi gure 14.14c . 
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VHDL Code 
Because of space limitations, only the VHDL code is presented. However, with this 
code and the SystemVerilog codes seen in chapters 7, 10, and 13, writing the corre-
sponding SystemVerilog code is relatively simple. 

 A complete VHDL code for the FSM of   fi gure 14.14  is presented below. Because it 
is a category 3 machine, it was based on the template of section 12.2. 

 Initially, a function called  bcd_to_ssd , to convert BCD (binary-coded decimal) values 
into SSD values (display driver), was built in a separate package (called  my_functions ), 
which is called in the main code (lines 252 – 257) to make the corresponding 
conversions. 

 The entity, called  RTC_with_I2C_bus , is in lines 6 – 37. A number of system param-
eters were entered as generic constants (lines 7 – 23), including the clock frequency (50 
MHz, line 9) and the desired I 2 C speed (100 kbps, line 10), so the I 2 C clock ( i2c_clk ) 
is automatically adjusted (in lines 71 and 75) when these parameters change. They 
also include the RTC addresses of interest (lines 12 – 15) and the time and date to be 
stored in the RTC registers (lines 17 – 23). 

 The circuit ports, all of type  std_logic  or  std_logic_vector  (industry standard), are in 
lines 24 – 36. They are exactly as in   fi gure 14.12b . 

 The architecture, called  moore_fsm , is in lines 39 – 259. As usual, it contains a declara-
tive part and a statements part, both commented on below. 

 The declarative part of the architecture (lines 41 – 63) contains FSM-related and 
auxiliary-register-related declarations plus other system declarations. In the FSM dec-
larations (lines 42 – 50), the enumerated type  state  is created to represent the machine ’ s 
present and next states. In the auxiliary-register declarations (lines 53 – 54), the signals 
needed to build the pointers  i  and  j  are created. Finally, the other declarations (lines 
57 – 63) include the I 2 C clock, the signals that will store the values read from the RTC 
(test circuit), and also a 1D × 1D type called  data_array , used to build a ROM called 
 data_out  containing the data to be sent to the slave (to set the clock and calendar). 

 The statements part (lines 65 – 259) contains fi ve processes. The fi rst process (lines 
70 – 80) produces  i2c_clk , with frequency 100 kHz (desired data rate). 

 The second process (lines 83 – 94) builds the FSM ’ s state register plus the auxiliary 
registers for  i  and  j . 

 The third process (lines 97 – 237) implements the entire combinational logic section 
of the FSM, following the state transition diagram of   fi gure 14.14  exactly. Note that 
because some of the output values are repeated a number of times, they were entered 
as default values in lines 100 – 102, so the actual list of outputs  (SCL ,  SDA ,  i ,  j ) is indeed 
exactly the same in all states. 

 The fourth and fi nal process (lines 240 – 251) plus associated statements (lines 
252 – 257) constitute the test circuit. It stores the data read from the RTC and sends it 
to the display. 
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Observe the correct use of registers and the completeness of the code, as described 
in comment 10 of section 6.3. 

The reader is invited to set up this (or an equivalent) experiment and play with it 
in the FPGA board. 
 

  1    ----Package with function “bcd_to_ssd”:-----------------  
  2   library ieee;  
  3   use ieee.std_logic_1164.all;  
  4    package my_functions is     
  5      function bcd_to_ssd(input:std_logic_vector)   
  6        return std_logic_vector;  
  7    end my_functions;  
  8    --------------------------------------------------------  
  9    package body my_functions is  
  10      function bcd_to_ssd(input: std_logic_vector)   
  11        return std_logic_vector is  
  12      begin  
  13        case input is  
  14          when "0000" = >  return "0000001";  --"0" on SSD  
  15          when "0001" = >  return "1001111";  --"1" on SSD  
  16          when "0010" = >  return "0010010";  --"2" on SSD  
  17          when "0011" = >  return "0000110";  --"3" on SSD   
  18          when "0100" = >  return "1001100";  --"4" on SSD  
  19          when "0101" = >  return "0100100";  --"5" on SSD  
  20          when "0110" = >  return "0100000";  --"6" on SSD  
  21          when "0111" = >  return "0001111";  --"7" on SSD   
  22          when "1000" = >  return "0000000";  --"8" on SSD   
  23          when "1001" = >  return "0000100";  --"9" on SSD  
  24          when others = >  return "1111110";  --"-" on SSD   
  25        end case;  
  26      end bcd_to_ssd;  
  27    end package body;  
  28    --------------------------------------------------------  

  1    ----Main code:----------------------------------------------------------- 
  2   library ieee;  
  3   use ieee.std_logic_1164.all;  
  4    use work.my_functions.all; --package with “bcd_to_ssd” function  
  5   ------------------------------------------------------------------------- 
  6   entity RTC_with_I2C_bus is  
  7      generic (  
  8        --Clock parameters:  
  9        fclk: positive := 50_000_000;    --Clock frequency in Hz  
  10        data_rate: positive := 100_000;    --Desired I2C bus speed in bps  
  11        --RTC addresses:  
  12        slave_addr_for_wr: std_logic_vector(7 downto 0) := "10100010";  
  13        slave_addr_for_rd: std_logic_vector(7 downto 0) := "10100011";  
  14        initial_addr_for_wr: std_logic_vector(7 downto 0) := "00000000";  
  15        initial_addr_for_rd: std_logic_vector(7 downto 0) := "00000010";  
  16        --Values to store in the RTC clock/calendar registers:  
  17        set_control: std_logic_vector(7 downto 0) := "00000000";  
  18        set_subsec: std_logic_vector(7 downto 0) := "00000000";   --0.00 sec  
  19        set_sec: std_logic_vector(7 downto 0) := "00000000";      --00 sec  
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  20        set_min: std_logic_vector(7 downto 0) := "00110000";      --30 min  
  21        set_hour: std_logic_vector(7 downto 0) := "00010011";      --13 h  
  22        set_date: std_logic_vector(7 downto 0) := "00100101";      --date 25  
  23        set_month: std_logic_vector(7 downto 0) := "00010010");   --month 12  
  24      port (  
  25        --Clock and control ports:  
  26        clk, rst, wr, rd: in std_logic;  
  27        --I2C ports:  
  28        SCL, CH_RSTn: out std_logic;  
  29        SDA: inout std_logic;  
  30        --Display ports (test circuit):  
  31        ssd_1sec: out std_logic_vector(6 downto 0);       --units of seconds  
  32        ssd_10sec: out std_logic_vector(6 downto 0);       --tens of seconds  
  33        ssd_1min: out std_logic_vector(6 downto 0);       --units of minutes  
  34        ssd_10min: out std_logic_vector(6 downto 0);       --tens of minutes  
  35        ssd_1hour: out std_logic_vector(6 downto 0);       --units of hours  
  36        ssd_10hour: out std_logic_vector(6 downto 0));    --tens of hours  
  37    end entity;  
  38    -------------------------------------------------------------------------  
  39    architecture moore_fsm of RTC_with_I2C_bus is  
  40         
  41      --FSM-related declarations:  
  42      type state is (  
  43        --common states:  
  44        idle, start, slave_addr_wr, ack1, stop, hold,  
  45        --write-only states:  
  46        initial_addr_wr, ack2, wr_data, ack3,  
  47        --read-only states:  
  48        initial_addr_rd, ack4, restartL, restartR, slave_addr_rd, ack5,   
  49        rd_sec, ack6, rd_min, ack7, rd_hour, no_ack);  
  50      signal pr_state, nx_state: state;  
  51         
  52      --Auxiliary-register-related declarations:  
  53      signal i, i_reg: natural range 0 to 8;  
  54      signal j, j_reg: natural range 0 to 7;  
  55         
  56      --Other declarations:  
  57      signal i2c_clk: std_logic;  
  58      signal sec: std_logic_vector(7 downto 0);  
  59      signal min: std_logic_vector(7 downto 0);  
  60      signal hour: std_logic_vector(7 downto 0);  
  61      type data_array is array (0 to 6) of std_logic_vector(7 downto 0);  
  62      constant data_out: data_array := (set_control, set_subsec, set_sec,  
  63        set_min, set_hour, set_date, set_month);  
  64         
  65    begin  
  66  
  67      CH_RSTn  < = not rst; --chip reset  
  68  
  69      --i2c_clk (100kHz):  
  70      process (clk)  
  71        variable count: natural range 0 to fclk/(2*data_rate);  
  72      begin  
  73        if rising_edge(clk) then  
  74          count := count + 1;  
  75          if count=fclk/(2*data_rate) then   
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  76            i2c_clk  < = not i2c_clk;  
  77            count := 0;  
  78          end if;  
  79        end if;   
  80      end process;  
  81  
  82      --FSM state register + Auxiliary register:  
  83      process (i2c_clk, rst)  
  84      begin  
  85        if rst='1' then  
  86          pr_state  < = idle;  
  87          i_reg  < = 0;  
  88          j_reg  < = 0;  
  89        elsif falling_edge(i2c_clk) then  
  90          pr_state  < = nx_state;  
  91          i_reg  < = i;  
  92          j_reg  < = j;  
  93        end if;  
  94      end process;  
  95         
  96      --FSM combinational logic:  
  97      process (all)  
  98      begin  
  99        --Default values:  
  100        SCL  < = i2c_clk;  
  101        i  < = 0;   
  102        j  < = 0;     
  103        case pr_state IS  
  104          --Common states:  
  105          when idle = >   
  106            SCL  < = '1';  
  107            SDA  < = '1';  
  108            if wr='1' or rd='1' then   
  109              nx_state  < = start;  
  110            else   
  111              nx_state  < = idle;  
  112            end if;  
  113          when start = >   
  114            SCL  < = '1';  
  115            SDA  < = '0';  
  116            nx_state  < = slave_addr_wr;  
  117          when slave_addr_wr = >   
  118            SDA  < = slave_addr_for_wr(8-i);  
  119            i  < = i_reg + 1;   
  120            if i=8 then  
  121              nx_state  < = ack1;  
  122            else   
  123              nx_state  < = slave_addr_wr;  
  124            end if;  
  125          when ack1 = >   
  126            SDA  < = 'Z';  
  127            if wr='1' then  
  128              nx_state  < = initial_addr_wr;  
  129            else   
  130              nx_state  < = initial_addr_rd;  
  131            end if;  
  132          when stop = >   
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  133            SDA  < = '0';  
  134            nx_state  < = hold;  
  135          when hold = >   
  136            SCL  < = '1';  
  137            SDA  < = '1';  
  138            if wr='0' then  
  139              nx_state  < = idle;  
  140            else   
  141              nx_state  < = hold;  
  142            end if;  
  143          --Data-write states:  
  144          when initial_addr_wr = >   
  145            SDA  < = initial_addr_for_wr(8-i);  
  146            i  < = i_reg + 1;  
  147            if i=8 then  
  148              nx_state  < = ack2;  
  149            else   
  150              nx_state  < = initial_addr_wr;  
  151            end if;  
  152          when ack2 = >   
  153            SDA  < = 'Z';  
  154            nx_state  < = wr_data;  
  155          when wr_data = >   
  156            SDA  < = data_out(j)(8-i);  
  157            i  < = i_reg + 1;   
  158            j  < = j_reg;  
  159            if i=8 then  
  160              nx_state  < = ack3;  
  161            else   
  162              nx_state  < = wr_data;  
  163            end if;              
  164          when ack3 = >   
  165            SDA  < = 'Z';  
  166            j  < = j_reg + 1;  
  167            if j < 7 then  
  168              nx_state  < = wr_data;  
  169            else   
  170              nx_state  < = stop;  
  171            end if;                 
  172          --Data-read states:  
  173          when initial_addr_rd = >            
  174            SDA  < = initial_addr_for_rd(8-i);  
  175            i  < = i_reg + 1;   
  176            if i=8 then  
  177              nx_state  < = ack4;  
  178            else   
  179              nx_state  < = initial_addr_rd;  
  180            end if;  
  181          when ack4 = >   
  182            SDA  < = 'Z';  
  183            nx_state  < = restartL;  
  184          when restartL = >   
  185            SCL  < = '0';  
  186            SDA  < = '1';  
  187            nx_state  < = restartR;  
  188          when restartR = >   
  189            SCL  < = '1';  
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  190            SDA  < = not i2c_clk;  
  191            nx_state  < = slave_addr_rd;  
  192          when slave_addr_rd = >   
  193            SDA  < = slave_addr_for_rd(8-i);  
  194            i  < = i_reg + 1;   
  195            if i=8 then  
  196              nx_state  < = ack5;  
  197            else   
  198              nx_state  < = slave_addr_rd;  
  199            end if;  
  200          when ack5 = >   
  201            SDA  < = 'Z';  
  202            nx_state  < = rd_sec;  
  203          when rd_sec = >   
  204            SDA  < = 'Z';  
  205            i  < = i_reg + 1;   
  206            if i=8 then  
  207              nx_state  < = ack6;  
  208            else   
  209              nx_state  < = rd_sec;  
  210            end if;  
  211          when ack6 = >   
  212            SDA  < = '0';  
  213            nx_state  < = rd_min;  
  214          when rd_min = >   
  215            SDA  < = 'Z';  
  216            i  < = i_reg + 1;   
  217            if i=8 then  
  218              nx_state  < = ack7;  
  219            else   
  220              nx_state  < = rd_min;  
  221            end if;  
  222          when ack7 = >   
  223            SDA  < = '0';  
  224            nx_state  < = rd_hour;  
  225          when rd_hour = >   
  226            SDA  < = 'Z';  
  227            i  < = i_reg + 1;   
  228            if i=8 then  
  229              nx_state  < = no_ack;  
  230            else   
  231              nx_state  < = rd_hour;  
  232            end if;                 
  233          when no_ack = >   
  234            SDA  < = '1';  
  235            nx_state  < = stop;  
  236        end case;  
  237      end process;  
  238  
  239      --Store data read from RTC and send it to display:  
  240      process (i2c_clk)  
  241      begin  
  242        if rising_edge(i2c_clk) then  
  243          if (pr_state=rd_sec) then  
  244            sec(8-i)  < = SDA;  
  245          elsif (pr_state=rd_min) then  
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  246            min(8-i)  < = SDA;  
  247          elsif (pr_state=rd_hour) then  
  248            hour(8-i)  < = SDA;  
  249          end if;  
  250        end if;  
  251      end process;  
  252      ssd_1sec  < = bcd_to_ssd(sec(3 downto 0));   
  253      ssd_10sec  < = bcd_to_ssd(sec(7 downto 4));   
  254      ssd_1min  < = bcd_to_ssd(min(3 downto 0));   
  255      ssd_10min  < = bcd_to_ssd(min(7 downto 4));   
  256      ssd_1hour  < = bcd_to_ssd(hour(3 downto 0));   
  257      ssd_10hour  < = bcd_to_ssd(“00”  &  hour(5 DOWNTO 4));  
  258  
  259    end architecture;  
  260    -------------------------------------------------------------------------  

   14.3   SPI Interface 
 Serial peripheral interface (SPI) is another synchronous serial bus for communication 
between integrated circuits (installed next to each other, normally on the same board). 
Like I 2 C, it operates in a master-slave architecture, but it is simpler to implement and 
can operate at higher speeds (up to around 100 Mbps), although it requires more 
interconnecting wires. Developed by Motorola for its 68HC family of microcontrollers, 
it is now in widespread use. 

 14.3.1   SPI Bus Structure 
 The SPI bus general structure is depicted in   fi gure 14.15 . In   fi gure 14.15a , a single slave 
is shown (normally, the master is a microcontroller), so four wires are needed, called 
 SCK  (serial clock, always generated by the master),  MOSI  (Master Out Slave In),  MISO  
(Master In Slave Out), and  SSn  (Slave Select, active low). When  SSn  is low, the slave is 
selected, to/from which the master sends/receives messages through the  MOSI / MISO  
wires. In   fi gure 14.15b , a multislave system is depicted, so multiple  SSn  wires are 
needed. Examples of ICs with SPI support are also shown in the fi gure, which are 
essentially the same categories as for I 2 C (e.g., microcontrollers, EEPROM and Flash 
memories, A/D and D/A converters, RTCs, and accelerometers).    

Figure 14.15 
General SPI bus structure with (a) single and (b) multiple slaves. 
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SPI is simpler than I 2 C because there is no bidirectional line, and the device selec-
tion is made with a separate wire for each slave rather than with a transmitted address. 
On the other hand, SPI demands more I/O pins, can operate with only one master, 
has no message acknowledgment, and because there is no standard message, format 
validation would be more diffi cult. SPI is said to be a four-wire bus, but that is indeed 
the  least  number of wires, whereas I 2 C is truly two wires. In some cases a bidirectional 
line can be used for  MOSI  and  MISO  together, resulting then a three-wire bus. 

 14.3.2   SPI Bus Operation 
 There are four SPI operating modes, determined by the clock phase ( CPHA ) and clock 
polarity ( CPOL ). They are called  mode 0  ( CPHA  = 0,  CPOL  = 0),  mode 1  ( CPHA  = 0, 
 CPOL  = 1),  mode 2  ( CPHA  = 1,  CPOL  = 0), and  mode 3  ( CPHA  = 1,  CPOL  = 1). The two 
most common modes are 0 and 3, illustrated in   fi gures 14.16a,b ; note that in mode 
0  SSn  is lowered with  SCK  low, whereas the opposite occurs in mode 3. 

   Figure 14.16c  shows how the slave operates. It stores the data available on the MOSI 
wire at positive clock edges and places data on the MISO wire at negative clock transi-
tions. Consequently, the FSM used to implement the master side of this interface must 
operate at the negative clock edge, so the data provided by the machine will be ready 
for the slave at the positive clock edge. Likewise, a register that records the data issued 
by the slave must operate at the positive clock edge, so the data (issued at the negative 
clock edge) will be ready for storage.    

 Part of the communication between master and slave is ruled by information stored 
in eight-bit registers at both ends. These registers are not standardized, neither in 
number nor in content. For example, the SPI in the Motorola MC68HC908GT micro-
controller contains three registers (for status, called SPSCR, control, SPCR, and data, 
SPDR), whereas the SPI in the Maxim DS1306 RTC has two registers (for status and 
control), and the SPI in the Ramtron FM25L512 FRAM memory contains only one (for 
status). 

Figure 14.16 
(a, b) Main SPI operating modes. (c) Slave ’ s registers operation. 
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The general communication procedure consists of a number of opcodes transmitted 
by the master to the slave, followed by a data-write or data-read procedure with any 
number of data bytes. The only particularity is that each opcode must be preceded by 
a deselect-reselect sequence. 

As an example, the FRAM memory used in the design example presented ahead 
requires two opcodes, called WREN (sets the write enable latch) and WRITE (enables 
writing to the memory — at the next positive clock edge), before actual data writing 
takes place. The same device requires one opcode, called READ (enables reading from 
the memory — at the next negative clock edge), before actual data reading occurs. 
Consequently, a typical fl ow for the SPI interface for this FRAM is that depicted in 
  fi gure 14.17 . Note in   fi gure 14.17a  that the device is deselected-reselected between two 
consecutive opcodes. Dashed lines indicate  “ don ’ t care ”  or high-impedance values for 
the MOSI/MISO wires. Observe the safe distance between the high-to-low transitions 
of  SSn  and the next positive edge of  SCK , as well as between the low-to-high transi-
tions of  SSn  and the previous negative edge of  SCK , both required to be at least 10 ns 
in this particular device.    

 14.3.3   Complete Design Example: FRAM (Ferroelectric RAM) Interface 
 To illustrate the use of SPI, the FM25L512 FRAM mentioned above, from Ramtron, is 
used as an example. It is a 64k  ×  8 bits nonvolatile memory with serial access through 
an SPI bus. Its pinout, list of opcodes, and contents of the status register are shown 
in   fi gure 14.18 . An important feature of this technology (FRAM) is that data can be 
written into it at high speed (20 MHz in the present example), contrasting with 
EEPROM, which generally takes a few milliseconds/page. 

Figure 14.17 
Examples of SPI behavior for (a) writing and (b) reading (FM25L512 FRAM device). 
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Note in   fi gure 14.18  that besides the SPI pins ( SCK ,  SSn ,  MOSI ,  MISO ), the chip 
contains also two other control pins, called  WPn  (write protect) and  HOLDn . The 
purpose of  WPn  is, together with bits 7 ( WPEN ), 3 ( BP1 ), and 2 ( BP0 ) of the status 
register, to allow several protection modes against writing to both the memory and 
the status register. For example, with  WPn  =  ‘ 1 ’  and  WPEN  =  BP1  =  BP0  =  ‘ 0 ’ , all writ-
ings are allowed (see other protection options in the device ’ s datasheets). The role of 
 HOLDn  is to handle interrupts. 

 In addition to the bits mentioned above, there is another programmable bit in the 
status register, called  WEL  (write enable latch), which determines whether writing is 
allowed (when  ‘ 1 ’ ) or not (when  ‘ 0 ’ ). Only when  WEL  =  ‘ 1 ’  are the protection options 
mentioned above in place (any writing is forbidden while  WEL  =  ‘ 0 ’ ). Because this bit 
is automatically zeroed at power up or at the upward transition of  SSn  after a WRITE, 
WRSR, or WRDI opcode, any write action must start with the WREN opcode because 
that is the only way of setting  WEL  to  ‘ 1 ’  (writing to the status register does not affect 
this bit). 

   Figure 14.19  shows the setup for the experiment. The inputs are  wr  (write) and  rd  
(read) commands plus the traditional clock (assumed to be 50 MHz) and reset ( wr ,  rd , 

Figure 14.18 
FM25L512 FRAM memory: Pinout, opcodes, and status register. 

Figure 14.19 
(a) Setup for the experiment. (b) FRAM wiring. 
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and  rst  are from switches). The outputs are the SPI signals ( SSn ,  SCK ,  MOSI , and  MISO  —
 the last one is in fact an input), connected to the slave, plus  ssd1  and  ssd2 , which feed 
two SSD displays to exhibit the data retrieved from the FRAM. A frequency of 5 MHz 
is used for  spi_clk  (as mentioned, this device can operate at up to 20 MHz). The fi gure 
also shows how the device was wired.    

 A detailed FSM for this problem is presented in   fi gure 14.20  (employing mode 0). 
The data-write sequence is in the upper branch, while the data-read sequence is in the 
lower branch.  MOSI  =  x (7 −  i ) in some of the states is just a symbolic way of saying that 
vector  x , with eight bits, starting with the MSB, must be transmitted. Note that this 
is a category 2 (timed) machine, so the timers (here represented by  i  and  j ) run from 
0 to  i max   and 0 to  j max  .    

 In this experiment a total of eight bytes are written into the FRAM, starting at 
address zero; note that state  wr_data  lasts from { i  = 0,  j  = 0} up to { i  = 7,  j  = 7}, hence 
transmitting eight bytes, corresponding to  x (0)(7:0) up to  x (7)(7:0). A test circuit is 
also included, which reads all eight bytes from the FRAM and displays them sequen-
tially onto the two SSDs; note the arrow and box associated with state  rd_data , inform-
ing that data must be recorded (from the  MISO  wire) while the FSM is in that state. 

 The FSM of fi gure 14.20 can be implemented with a category 2 or category 3 
machine (the former is employed in the VHDL code below). It is also simple enough 
to be implemented using the pointer-based technique described in chapter 15 (see 
section 15.5). 

 VHDL Code 
 A complete VHDL code for the FSM of   fi gure 14.20  is presented below, following the 
template for timed (category 2) machines introduced in chapter 9.  

 Initially, a function called  hex_to_ssd , to convert hexadecimal values into SSD values 
(display driver), was built in a separate package (called  my_functions ), then called in 
the main code (lines 217 – 218) to make the corresponding conversions. 

Figure 14.20 
FSM for the SPI FRAM interface. 
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The entity, called  FRAM_with_SPI_bus , is in lines 6 – 22. The SPI parameters were 
declared as generic constants (lines 9 – 13). The circuit ports (lines 15 – 21) follow   fi gure 
14.19a  and are all of type  std_logic  or  std_logic_vector  (industry standard). 

 The architecture, called  moore_fsm , is in lines 24 – 224. As usual, it contains a declara-
tive part and a statements part, both commented on below. 

 The declarative part of the architecture (lines 26 – 41) contains FSM-related and 
timer-related declarations plus other system declarations. In the FSM declarations 
(lines 27 – 29), the enumerated type  state  is created to represent the machine ’ s present 
and next states. In the timer declarations (lines 32 – 33), the signals needed to build 
the timers  i  and  j  are created. Finally, the other declarations (lines 36 – 41) include the 
SPI clock, plus a 1D × 1D type called  data_array  used to build a ROM called  data_out  
(lines 38 – 40) whose contents are sent to the FRAM. A similar 1D × 1D signal is declared 
in line 41, which is used to create a register in which all data read from the FRAM is 
stored during the tests. 

 The statements part (lines 43 – 224) contains fi ve processes. The fi rst process (lines 
49 – 59) creates the SPI clock (5 MHz, assuming that the system clock is 50 MHz; as 
mentioned, this FRAM can operate at up to 20 MHz). As seen in   fi gure 14.17 , this is 
the only clock needed in the entire SPI circuit. Because the slave stores data at the 
rising clock edge, the FSM (and therefore its associated timers too) must operate at the 
negative edge. 

 The second process (lines 62 – 80) implements the timers. In this example, the timer-
control strategy #1 (section 8.5.2) was adopted. 

 The third process (lines 83 – 90) implements the FSM state register. Like the timers, 
it too operates at the negative clock edge. 

 The fourth process (lines 93 – 193) implements the entire combinational logic 
section. It is just a list of all states, obeying the state transition diagram of   fi gure 14.20  
exactly. As usual, in each state the outputs ( SSn ,  SCK ,  MOSI ) and the time parameters 
( i max  ,  j max  ,) are specifi ed, and the next state is defi ned. Note that because some of 
the output values are repeated a number of times, default values were entered in 
lines 96 – 100, so the actual list of outputs and time parameters is exactly the same in 
all states. 

 The fi fth and fi nal process (lines 196 – 223) builds the test circuit. First, the data 
read from the FRAM (while the machine is in the  rd_data  state) is stored into 
the  data_in  1D × 1D register (at the positive clock edge, line 201, because the slave places 
the data on the  MISO  wire at the negative clock transition). Because the machine 
operates at 5 MHz, an independent slow counter (2 Hz) is produced in lines 205 – 214, 
which allows the read data to be sequentially displayed on two SSDs while the machine 
remains in the  wait_rd0  state (that is, while the  rd  switch remains on). Note in 
the ROM of lines 38 – 40 that the fi rst byte contains the values 0 (last half) and 1 
(right half), the second contains 2 and 3, the third contains 4 and 5, and so on, so 
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these pairs of values are the values expected to be seen on the display (during 
0.5 s each). 

 Observe the correct use of registers and the completeness of the code, as described 
in comment 10 of section 6.3. 

 The reader is invited to set up this (or an equivalent) experiment and play with it 
in the FPGA board. 

  1    --Package with function "hex_to_ssd":--------------------------------------  
  2    library ieee;  
  3    use ieee.std_logic_1164.all;  
  4    package my_functions is     
  5      function hex_to_ssd(input:std_logic_vector) return std_logic_vector;  
  6    end my_functions;  
  7    --------------------------------------------------------------------------- 
  8   package body my_functions is  
  9      function hex_to_ssd(input: std_logic_vector) return std_logic_vector is  
  10      begin  
  11        case input is  
  12          when "0000" = >  return "0000001";  --"0" on SSD  
  13          when "0001" = >  return "1001111";  --"1" on SSD  
  14          when "0010" = >  return "0010010";  --"2" on SSD  
  15          when "0011" = >  return "0000110";  --"3" on SSD   
  16          when "0100" = >  return "1001100";  --"4" on SSD  
  17          when "0101" = >  return "0100100";  --"5" on SSD  
  18          when "0110" = >  return "0100000";  --"6" on SSD  
  19          when "0111" = >  return "0001111";  --"7" on SSD   
  20          when "1000" = >  return "0000000";  --"8" on SSD   
  21          when "1001" = >  return "0000100";  --"9" on SSD  
  22          when "1010" = >  return "0001000";  --"A" on SSD  
  23          when "1011" = >  return "1100000";  --"b" on SSD  
  24          when "1100" = >  return "0110001";  --"C" on SSD  
  25          when "1101" = >  return "1000010";  --"d" on SSD  
  26          when "1110" = >  return "0110000";  --"E" on SSD  
  27          when "1111" = >  return "0111000";  --"F" on SSD  
  28          when others = >  return "1111110";  --"-" on SSD   
  29        end case;  
  30      end hex_to_ssd;  
  31    end package body;  
  32    --------------------------------------------------------------------------- 

  1    --Main code:--------------------------------------------------------------- 
  2   library ieee;  
  3   use ieee.std_logic_1164.all;  
  4    use work.my_functions.all; --package with “hex_to_ssd” function  
  5   --------------------------------------------------------------------------- 
  6   entity FRAM_with_SPI_bus is     
  7      generic (  
  8        --Device’s SPI parameters:  
  9        WREN_opcode: std_logic_vector(7 downto 0) := "00000110";  
  10        WRITE_opcode: std_logic_vector(7 downto 0) := "00000010";  



312 Chapter 14

  11        READ_opcode: std_logic_vector(7 downto 0) := "00000011";  
  12        initial_addr_for_wr: std_logic_vector(15 downto 0) := (others= > '0');  
  13        initial_addr_for_rd: std_logic_vector(15 downto 0) := (others= > '0'));  
  14        --Assumed: fclk=50MHz, desired SPI speed=5MHz  
  15      port (  
  16        --System ports:  
  17        rd, wr, clk, rst: in std_logic;  
  18        ssd1, ssd2: out std_logic_vector(6 downto 0);  
  19        --SPI ports:  
  20        SCK, SSn, MOSI, WPn, HOLDn: out std_logic;  
  21        MISO: in std_logic);  
  22    end entity;  
  23    ----------------------------------------------------------------  
  24    architecture moore_fsm of FRAM_with_SPI_bus is  
  25            
  26      --FSM-related declarations:  
  27      type state is (idle, WREN, deselect, WRITEx, initial_addr_wr,   
  28        wr_data, wait_wr0, READx, initial_addr_rd, rd_data, wait_rd0);   
  29      signal pr_state, nx_state: state;  
  30         
  31      --Timer-related declarations:  
  32      signal i, imax: natural range 0 to 15;  
  33      signal j, jmax: natural range 0 to 7;  
  34  
  35      --SPI clock and test signal declarations:  
  36      signal spi_clk: std_logic;  
  37      type data_array is array (0 to 7) of std_logic_vector(7 downto 0);  
  38      constant data_out: data_array :=   
  39        ("00000001", "00100011", "01000101", "01100111",   
  40         "10001001", "10101011", "11001101", "11101111");  
  41      signal data_in: data_array;  
  42         
  43    begin  
  44  
  45      WPn  < = '1';  
  46      HOLDn  < = '1';  
  47         
  48      --Generate 5MHz clock for SPI circuit:  
  49      process (clk)  
  50        variable counter1: natural range 0 to 5;  
  51      begin  
  52        if rising_edge(clk) then  
  53          counter1 := counter1 + 1;  
  54          if counter1=5 then   
  55            spi_clk  < = not spi_clk;  
  56            counter1 := 0;  
  57          end if;  
  58        end if;   
  59      end process;  
  60  
  61      --Timers (using strategy #1):  
  62      process (spi_clk, rst)  
  63      begin  
  64        if (rst='1') THEN  
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  65          i  < = 0;  
  66          j  < = 0;  
  67        elsif falling_edge(spi_clk) then  
  68          if pr_state /= nx_state then  
  69            i  < = 0;  
  70            j  < = 0;  
  71          elsif not (i=imax and j=jmax) then  
  72            if i/=imax then  
  73              i  < = i + 1;  
  74            elsif j/=jmax then  
  75              i  < = 0;  
  76              j  < = j + 1;  
  77            end if;  
  78          end if;  
  79        end if;  
  80      end process;  
  81         
  82      --FSM state register:  
  83      process (spi_clk, rst)  
  84      begin  
  85        if (rst=’1’) THEN  
  86          pr_state  < = idle;  
  87        elsif falling_edge(spi_clk) then  
  88          pr_state  < = nx_state;  
  89        end if;  
  90      end process;  
  91         
  92      --FSM combinational logic:  
  93      process (all)  
  94      begin  
  95        --Default values:  
  96        SSn  < = '0';  
  97        SCK  < = spi_clk;  
  98        MOSI  < = '-';  
  99        imax  < = 0;   
  100        jmax  < = 0;  
  101        --Other values:  
  102        case pr_state IS  
  103          when idle = >   
  104            SSn  < = '1';  
  105            SCK  < = '0';  
  106            if wr='1' then   
  107              nx_state  < = WREN;  
  108            elsif rd='1' then   
  109              nx_state  < = READx;              
  110            else   
  111              nx_state  < = idle;  
  112            end if;  
  113          --Data-write sequence:  
  114          when WREN = >   
  115            MOSI  < = WREN_opcode(7-i);  
  116            imax  < = 7;   
  117            if i=imax then  
  118              nx_state  < = deselect;  
  119            else  
  120              nx_state  < = WREN;  
  121            end if;  
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  122          when deselect = >   
  123            SSn  < = spi_clk;  
  124            SCK  < = '0';  
  125            nx_state  < = WRITEx;  
  126          when WRITEx = >   
  127            MOSI  < = WRITE_opcode(7-i);  
  128            imax  < = 7;   
  129            if i=imax then  
  130              nx_state  < = initial_addr_wr;  
  131            else  
  132              nx_state  < = WRITEx;  
  133            end if;  
  134          when initial_addr_wr = >   
  135            MOSI  < = initial_addr_for_wr(15-i);  
  136            imax  < = 15;   
  137            if i=imax then  
  138              nx_state  < = wr_data;  
  139            else  
  140              nx_state  < = initial_addr_wr;  
  141            end if;           
  142          when wr_data = >   
  143            MOSI  < = data_out(j)(7-i);   
  144            imax  < = 7;   
  145            jmax  < = 7;  
  146            if i=imax and j=jmax then  
  147              nx_state  < = wait_wr0;  
  148            else  
  149              nx_state  < = wr_data;  
  150            end if;  
  151          when wait_wr0 = >   
  152            SSn  < = '0';  
  153            SCK  < = '0';  
  154            if wr='0' then   
  155              nx_state  < = idle;           
  156            else   
  157              nx_state  < = wait_wr0;  
  158            end if;     
  159          --Data-read sequence:        
  160          when READx = >   
  161            MOSI  < = READ_opcode(7-i);  
  162            imax  < = 7;   
  163            if i=imax then  
  164              nx_state  < = initial_addr_rd;  
  165            else  
  166              nx_state  < = READx;  
  167            end if;  
  168          when initial_addr_rd = >   
  169            MOSI  < = initial_addr_for_rd(15-i);  
  170            imax  < = 15;   
  171            if i=imax then  
  172              nx_state  < = rd_data;  
  173            else  
  174              nx_state  < = initial_addr_rd;  
  175            end if;                          
  176          when rd_data = >   
  177            imax  < = 7;   
  178            jmax  < = 7;  
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  179            if i=imax and j=jmax then  
  180              nx_state  < = wait_rd0;  
  181            else  
  182              nx_state  < = rd_data;  
  183            end if;  
  184          when wait_rd0 = >   
  185            SSn  < = '0';  
  186            SCK  < = '0';  
  187            if rd='0' then   
  188              nx_state  < = idle;           
  189            else   
  190              nx_state  < = wait_rd0;  
  191            end if;     
  192        end case;  
  193      end process;  
  194  
  195      --Test circuit:  
  196      process (spi_clk, pr_state, data_in)  
  197        variable counter2: natural range 0 to 2_500_000;  
  198        variable counter3: natural range 0 to 8;  
  199      begin  
  200        --Read FRAM and store data:  
  201        if rising_edge(spi_clk) and pr_state=rd_data then  
  202          data_in(j)(7-i)  < = MISO;  
  203        end if;  
  204        --Generate slow (2Hz) pointer for displaying data:  
  205        if rising_edge(spi_clk) then  
  206          counter2 := counter2 + 1;  
  207          if counter2=2_500_000 then  
  208            counter2 := 0;  
  209            counter3 := counter3 + 1;  
  210            if counter3=8 then  
  211              counter3 := 0;  
  212            end if;  
  213          end if;  
  214        end if;  
  215        --Send read data to display @2Hz:  
  216        if pr_state=wait_rd0 then  
  217          ssd1  < = hex_to_ssd(data_in(counter3)(3 downto 0));  
  218          ssd2  < = hex_to_ssd(data_in(counter3)(7 downto 4));  
  219        else  
  220          ssd1  < = "1111110";  
  221          ssd2  < = "1111110";  
  222        end if;  
  223      end process;  
  223  
  224    end architecture;  
  225    ----------------------------------------------------------------  

   14.4   Exercises 

 Exercise 14.1: Reference-Value Defi ner with LCD Display 
 a) Solve exercise 8.11 if not done yet. The reference values should be {000, 005, 010, 
050, 100, 200, 400, 800}. 



316 Chapter 14

b) Draw the state transition diagram for a second circuit, which should implement an 
LCD driver to have the reference value displayed on an alphanumeric LCD. 
c) Implement the complete circuit using VHDL or SystemVerilog and test it in the 
FPGA development board. 

Exercise 14.2: I 2 C Interface for an RTC 
 Repeat the design of section 14.2.5, this time with a category 2 machine instead of a 
category 3. 

 Exercise 14.3: I 2 C Interface for an EEPROM 
 Develop an experiment (as in section 14.2.5), including VHDL or SystemVerilog code 
and physical implementation in the FPGA development board, for a master circuit 
that interfaces with an EEPROM device through an I 2 C bus. The device can be, for 
example, AT24C01 or AT24C02, from Atmel. 

 Exercise 14.4: I 2 C Interface for an ADC 
 Develop an experiment (as in section 14.2.5), including VHDL or SystemVerilog code 
and physical implementation in the FPGA development board, for a master circuit 
that interfaces with an analog-to-digital converter through an I 2 C bus. The device can 
be, for example, AD7991, from Analog Devices, or PCF8591, from NXP. 

 Exercise 14.5: I 2 C Interface for a Temperature Sensor 
 Develop an experiment (as in Section 14.2.5), including VHDL or SystemVerilog code 
and physical implementation in the FPGA development board, for a master circuit 
that interfaces with a temperature sensor through an I 2 C bus. The device can be, for 
example, LM75A, from NXP, or AD7416, from Analog Devices. 

 Exercise 14.6: I 2 C versus SPI 
 Make a brief comparison between I 2 C and SPI interfaces. Include at least the following 
topics in your analysis: synchronous or asynchronous, number of wires, duplex or 
simplex, with data acknowledgment or not, which hardware is simpler and why, who 
generates clock and data, which operates at higher speed. 

 Exercise 14.7: SPI Interface for a FRAM 
 Repeat the design of section 14.3.3, this time with a category 3 machine instead of a 
category 2. 

 Exercise 14.8: SPI Interface for an ADC 
 Develop an experiment (as in section 14.3.3), including VHDL or SystemVerilog code 
and physical implementation in the FPGA development board, for a master circuit 
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that interfaces with an analog-to-digital converter through an SPI bus. The device can 
be, for example, AD7091R, from Analog Devices, or MAX1242, from Maxim. 

Exercise 14.9: SPI Interface for a Flash Memory 
Develop an experiment (as in section 14.3.3), including VHDL or SystemVerilog code 
and physical implementation in the FPGA development board, for a master circuit 
that interfaces with a fl ash memory through an SPI bus. The device can be, for 
example, AT45DB011, from Atmel, or S25FL128, from Spansion. 

Exercise 14.10: SPI Interface for an Accelerometer 
Develop an experiment (as in section 14.3.3), including VHDL or SystemVerilog code 
and physical implementation in the FPGA development board, for a master circuit 
that interfaces with an accelerometer through an SPI bus. The device can be, for 
example, ADXL345, from Analog Devices. 

Exercise 14.11: I 2 C Interface for an Accelerometer 
 The accelerometer mentioned in exercise 14.10 (ADXL345) supports both SPI and I 2 C 
interfaces. Repeat that exercise, this time using the I 2 C alternative. 





15   Pointer-Based FSM Implementation 

15.1   Introduction 

In the preceding chapters we have established and used a  standard  and  generic  design 
approach for  any  FSM. In the particular case of machines with a simple state transition 
diagram (a single loop, for example), a simpler but possibly equivalent implementa-
tion can be adopted, which consists of building a counter that acts as a pointer to a 
lookup table (LUT) that contains the desired output values. This implementation 
technique, identifi ed as  pointer-based FSM implementation , is illustrated by means of a 
series of examples in the sections that follow. 

 It is important to mention that although this technique can ease the implementa-
tion of FSMs with few loops and repetitive states (like those in chapter 14), it does 
not eliminate the other design steps, including the development of a precise state 
transition diagram. Also, it does not mean that a simpler circuit will result. A limita-
tion of this technique is that it is diffi cult (or awkward, at least) to use an encoding 
scheme other than regular sequential encoding; moreover, the encoding is set during 
the design phase, so it cannot be chosen/modifi ed and experimented with at compila-
tion time. 

 15.2   Single-Loop FSM 

 The general technique is illustrated with the help of   fi gure 15.1a , which shows an FSM 
with just one loop. Note that the states ’  names were replaced with numeric values (to 
be produced by the counter/pointer). Note also that the machine must run whenever 
 run = ‘ 1 ’  occurs while the machine is in the idle state, and that it must stay in a certain 
state (pointer in the 3-to-8 range) during six clock cycles (thus this is similar to a timed 
state in a timed state machine, with  t  running from 0 to 5). The output values are 
summarized (repeated) in the LUT of   fi gure 15.1b . To implement this FSM, we can 
build a counter (pointer) ranging from 0 to 9 and use it to retrieve the corresponding 
values from the LUT. 
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A VHDL code for the machine of   fi gure 15.1  is presented below. The code contains 
just one process, which builds the pointer (called  i , lines 19 – 27) and the LUT (for  y , 
lines 30 – 36).    

  Note:  To save space, only VHDL codes are shown in this chapter. However, based 
on these VHDL codes and on the SystemVerilog codes seen in chapters 7, 10, and 13, 
writing the SystemVerilog codes for the examples described here is straightforward. 
 

  1    ------------------------------------------------  
  2    library ieee;  
  3    use ieee.std_logic_1164.all;  
  4    ------------------------------------------------  
  5    entity simple_machine is  
  6      port (  
  7        run, clk, rst: in std_logic;  
  8        y: out std_logic_vector(2 downto 0));  
  9    end entity;  
  10    ------------------------------------------------  
  11    architecture pointer_based of simple_machine is  
  12    begin  
  13  
  14      process (clk, rst)  
  15        variable i: natural range 0 to 9;  
  16      begin  
  17  
  18        --Pointer (i):  
  19        if (rst='1') then  
  20          i:= 0;  
  21        elsif rising_edge(clk) then  
  22          if (i=0 and run=’0’) or i=9 then  
  23            i:= 0;  
  24          else  
  25            i:= i + 1;  
  26          end if;  
  27        end if;  
  28  
  29        --LUT (for y):  
  30        case i is  
  31          when 0 = >  y  < = "000";  
  32          when 1 = >  y  < = "001";  
  33          when 2 = >  y  < = "011";  
  34          when 3 to 8 = >  y  < = "111";  

Figure 15.1 
(a) Single-loop FSM with a timed state and (b) LUT containing its output values. 
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  35          when 9 = >  y  < = "110";  
  36        end case;  
  37  
  38      end process;  
  39  
  40    end architecture;  
  41    ------------------------------------------------  

15.3   Serial Data Transmitter 

Another example is presented in   fi gure 15.2a , which is a kind of serial data transmitter. 
The output ( y ), which is a single-bit signal, must send out a predefi ned single-bit value 
in states 0, 2, and 6 (recall that the states ’   “ names ”  are determined by the pointer), 
whereas in states 1 and 3 … 5 bit-vectors must be serially transmitted (see the data 
arrays under those states). 

 In   fi gure 15.2a  three pointers are shown, called  i  (main pointer, representing the 
states),  j  (column index for the arrays of states 1 and 3 … 5), and  k  (row index for the 
array of state 3 … 5). Note, however, that  k  can be replaced with  i  − 3, so only two point-
ers are actually needed, resulting in the LUT of   fi gure 15.2b . This machine too is simple 
enough to be implemented using the pointer-based technique.    

 A corresponding VHDL code is shown below. The data to be transmitted was placed 
in an array of constants (called  x , lines 12 – 13). The fi rst word (i.e.,  x (0)= “ 0101 ” ) is 
transmitted in state 1, while the whole array is transmitted in state 3 … 5. As in the 
previous example, only one process is used, which builds the pointers (lines 22 – 38) 
and the LUT (lines 41 – 47). Note that in this example the LSB is transmitted fi rst. 
 

  1    -------------------------------------------------------------------- 
  2   library ieee;  
  3   use ieee.std_logic_1164.all;  
  4    -------------------------------------------------------------------- 
  5   entity serial_transmitter is  
  6      port (  
  7        run, clk, rst: in std_logic;  
  8        y: out std_logic);  

 Figure 15.2 
 A serial data transmitter and (b) its output LUT. 
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  9   end entity;  
  10   -------------------------------------------------------------------- 
  11    architecture pointer_based of serial_transmitter is  
  12      type data_array is array (0 to 2) of std_logic_vector(3 downto 0);  
  13      constant x: data_array:= ("0101", "1010", "0110");  
  14    begin  
  15  
  16      process(clk, rst)  
  17        variable i: natural range 0 to 6;  
  18        variable j: natural range 0 to 3;  
  19      begin  
  20         
  21      --Pointers (i, j):  
  22      if rst='1' then  
  23        i:= 0;  
  24        j:= 0;  
  25      elsif rising_edge(clk) then     
  26        if (i=0 and run='1') or i=2 then  
  27          i:= i + 1;  
  28        elsif i=1 or (i > =3 and i < =5) then  
  29          if j/=3 then  
  30            j:= j + 1;  
  31          else  
  32            j:= 0;  
  33            i:= i + 1;  
  34          end if;  
  35        elsif i=6 then  
  36          i:= 0;  
  37        end if;  
  38      end if;  
  39         
  40      --LUT (for y):  
  41      case i is  
  42        when 0 = >  y  < = '0';  
  43        when 1 = >  y  < = x(0)(j);  
  44        when 2 = >  y  < = '1';  
  45        when 3 to 5 = >  y  < = x(i-3)(j);  
  46        when 6 = >  y  < = '1';  
  47      end case;  
  48         
  49      end process;  
  50  
  51    end architecture;  
  52    --------------------------------------------------------------------  

Simulation results obtained after compiling the code above are presented in   fi gure 
15.3 . The reader is invited to examine the waveforms to check the operation of the 
inferred circuit.    

 15.4   Serial Data Receiver 

 Another example is presented in   fi gure 15.4 . The serial data receiver of fi gure 3.16c is 
repeated in   fi gure 15.4a . When the data-valid ( dv ) bit is asserted, the circuit must store 
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four consecutive bits received at input  x  (hence, this is a timed machine, with  t
running from 0 to 3 — a small range was adopted in order to ease the inspection of 
the simulation results). Because it is assumed that the fi rst data bit is made available 
at the same time that  dv  is asserted (both updated at the positive clock edge), which 
is more diffi cult to detect, one must be careful with respect to the clock edges (see 
rectangle in the upper part of the fi gure and also the discussion in section 3.10). This 
machine is simple enough to be implemented using the pointer-based approach, for 
which an adapted state diagram is presented in   fi gure 15.4b . Note that the counter 
(pointer) must run from 0 to 4. Again, care must be taken with respect to the clock 
edges.    

 A VHDL code for the machine of   fi gure 15.4b  is presented below. It contains just 
one process, which builds the pointer (lines 19 – 27) and the  registered  LUT (lines 30 – 35). 
Because  x  must be stored (producing  y ) in a deserializer, the  case  statement (lines 
31 – 34) was placed inside an  if rising_edge(clk)  statement (lines 30 and 35), which is 
responsible for inferring fl ip-fl ops. 
 

  1    -------------------------------------------------  
  2    library ieee;  
  3    use ieee.std_logic_1164.all;  
  4    -------------------------------------------------  
  5    entity serial_receiver is  
  6      port (  
  7        x, dv, clk, rst: in std_logic;  
  8        y: buffer std_logic_vector(3 downto 0));  

Figure 15.3 
Simulation results from the VHDL code for the serial data transmitter of   fi gure 15.2 . 

Figure 15.4 
(a) Serial data receiver of fi gure 3.16c. (b) Adapted version for pointer-based implementation. 
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  9   end entity;  
  10   -------------------------------------------------  
  11    architecture pointer_based of serial_receiver is  
  12    begin 
  13  
  14      process (clk, rst)  
  15        variable i: natural range 0 to 4;  
  16      begin  
  17         
  18        --Pointer (i):  
  19        if (rst='1') then  
  20          i:= 0;  
  21        elsif falling_edge(clk) then  
  22          if (i=0 and dv='0') or i=4 then  
  23            i:= 0;  
  24          else  
  25            i:= i + 1;  
  26          end if;  
  27        end if;  
  28  
  29        --Registered LUT (for y):  
  30        if rising_edge(clk) then  
  31          case i is  
  32            when 0 = >  y  < = y;  
  33            when 1 to 4 = >  y(i-1)  < = x;  
  34          end case;  
  35        end if;  
  36            
  37      end process;  
  38  
  39    end architecture;  
  40    -------------------------------------------------  

 Simulation results are shown in   fi gure 15.5 . Note that the data ( dv  and  x ) and the 
register ( y ) are updated at the positive clock edges, whereas the pointer ( i ) changes at 
the negative clock transitions. Note also that the sequence received in  x  is  ‘ 1 ’ ,  ‘ 0 ’ ,  ‘ 1 ’ , 

Figure 15.5 
Simulation results from the VHDL code for the serial data receiver of   fi gure 15.4b . 



Pointer-Based FSM Implementation 325

and  ‘ 0 ’ , with the fi rst bit considered to be the LSB, hence resulting  y (3:0) =  “ 0101 ” 
after the pointer ’ s 0-to-4 run is completed.    

 15.5   SPI Interface for an FRAM 

 A fi nal example is presented in   fi gure 15.6 , which is an equivalent (pointer-based) 
implementation for the FRAM SPI interface circuit studied in section 14.3.3. Note that 
the machine of   fi gure 15.6  is exactly the same as that in fi gure 14.20, just with the 
adjustments needed for pointer-based implementation (main pointer  i  ranging from 
0 to 75, secondary pointer  j  ranging from 0 to 7). The values (either 8 or 8 × 8) under 
the arrows indicate the number of clock cycles spent in the preceding state (which is 
the same as the number of bits transmitted or received in that state).    

 Observe that the enumeration of the states was done differently from that in   fi gure 
15.2  (just to illustrate another alternative). In state 1 of   fi gure 15.2 , for example, the 
main pointer ( i ) stays fi xed ( i  = 1), whereas the secondary pointer ( j ) sweeps the data. 
Here, in state WREN, for example,  i  sweeps the data, while  j  is not used (so only in 
states  wr_data  and  rd_data  are both pointers needed). Recall that, as in all FSM designs, 
the crucial point is to develop a complete and precise state transition diagram (as 
in   fi gure 15.6 ), after which any of the implementation techniques can be applied 
straightforwardly. 

Figure 15.6 
FSM for the FRAM SPI interface circuit seen in section 14.3.3 (fi gure 14.20), with all adjustments 

for pointer-based implementation. Values under the arrows indicate the number of clock cycles 

spent in the preceding state. 
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A VHDL code for this machine is presented below (function  hex-to-ssd  not shown —
 bring the package  my_functions , from section 14.3.3, to your design). This code is 
equivalent to that in section 14.3.3, except for a small difference in the test circuit 
(here the stored values are sent to the display continuously). The entity (lines 6 – 22) 
is the same as that in section 14.3.3, and so are the list of declarations for the SPI and 
test signals (lines 27 – 32) and the  spi_clk  generator (lines 40 – 50). The FSM, constructed 
using the pointer-based technique, is in the process of lines 53 – 115, with the pointers 
built in lines 59 – 78 and the LUT in lines 82 – 113. Note in lines 108 – 110 that the 
received data is stored in the  data_in  array while the machine is in the  rd_data  state. 
The fi nal part of the test circuit (data storage was embedded in the LUT) is in the 
process of lines 118 – 140 (see comments in section 14.3.3). 
 

  1    --Main code:--------------------------------------------------------------- 
  2   library ieee;  
  3   use ieee.std_logic_1164.all;  
  4    use work.my_functions.all; --package from sec. 14.3.3  
  5    ---------------------------------------------------------------------------  
  6    entity FRAM_with_SPI_bus is     
  7      generic (  
  8        --Device ’ s SPI parameters:  
  9        WREN_opcode: std_logic_vector(7 downto 0):= "00000110";  
  10        WRITE_opcode: std_logic_vector(7 downto 0):= "00000010";  
  11        READ_opcode: std_logic_vector(7 downto 0):= "00000011";  
  12        initial_addr_for_wr: std_logic_vector(15 downto 0):= (others= > '0');  
  13        initial_addr_for_rd: std_logic_vector(15 downto 0):= (others= > '0'));  
  14        --Assumed: fclk=50MHz, desired SPI speed=5MHz  
  15      port (  
  16        --System ports:  
  17        rd, wr, clk, rst: in std_logic;  
  18        ssd1, ssd2: out std_logic_vector(6 downto 0);  
  19        --SPI ports:  
  20        SCK, SSn, MOSI, WPn, HOLDn: out std_logic;  
  21        MISO: in std_logic);  
  22    end entity;  
  23    ---------------------------------------------------------------------------  
  24    architecture pointer_based of FRAM_with_SPI_bus is  
  25            
  26      --Clock for SPI and test signal declarations:  
  27      signal spi_clk: std_logic;  
  28      type data_array is array (0 to 7) of std_logic_vector(7 downto 0);  
  29      constant data_out: data_array:=  
  30        ("00000001", "00100011", "01000101", "01100111",  
  31         "10001001", "10101011", "11001101", "11101111");  
  32      signal data_in: data_array;  
  33         
  34    begin  
  35  
  36      WPn  < = '1';  
  37      HOLDn  < = '1';  
  38         
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  39      --Generate 5MHz clock for SPI circuit:  
  40      process (clk)  
  41        variable counter1: natural range 0 to 5;  
  42      begin  
  43        if rising_edge(clk) then  
  44          counter1:= counter1 + 1;  
  45          if counter1=5 then  
  46            spi_clk  < = not spi_clk;  
  47            counter1:= 0;  
  48          end if;  
  49        end if;  
  50      end process;  
  51  
  52      --FSM (complete SPI circuit):  
  53      process(spi_clk, rst)  
  54        variable i: natural range 0 to 75;  
  55        variable j: natural range 0 to 7;  
  56      begin  
  57         
  58        --Pointers (i, j):  
  59        if rst='1' then  
  60          i:= 0;  
  61          j:= 0;  
  62        elsif falling_edge(spi_clk) then     
  63          if (i=0 and wr='0' and rd='0') or (i=42 and wr='0') or  
  64            (i=75 and rd='0') then  
  65            i:= 0;  
  66          elsif (i=0 and wr='1') or (i > 0 and i < 34) or (i > =43 and i < 67) then  
  67            i:= i + 1;  
  68          elsif i=0 and rd='1' then  
  69            i:= 43;  
  70          elsif (i > =34 and i < =41) or (i > =67 and i < =74) then        
  71            if j/=7 then  
  72              j:= j + 1;  
  73            else  
  74              j:= 0;  
  75              i:= i + 1;  
  76            end if;  
  77            end if;  
  78        end if;  
  79         
  80        --LUT (for outputs):  
  81        --Default values:  
  82        SSn  < = '0';  
  83        SCK  < = spi_clk;  
  84        MOSI  < = '-';  
  85        --Other values:  
  86        case i is  
  87          when 0 = >   
  88            SSn  < = '1';  
  89            SCK  < = '0';  
  90          when 1 to 8 = >   
  91            MOSI  < = WREN_opcode(8-i);  
  92          when 9 = >   
  93            SSn  < = spi_clk;  
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  94            SCK  < = '0';  
  95          when 10 to 17 = >   
  96            MOSI  < = WRITE_opcode(17-i);           
  97          when 18 to 33 = >   
  98            MOSI  < = initial_addr_for_wr(33-i);  
  99          when 34 to 41 = >  --transmit data  
  100            MOSI  < = data_out(i-34)(7-j);  
  101          when 42 = >   
  102            SCK  < = '0';  
  103          when 43 to 50 = >   
  104            MOSI  < = READ_opcode(50-i);  
  105          when 51 to 66 = >   
  106            MOSI  < = initial_addr_for_rd(66-i);  
  107          when 67 to 74 = >  --store received data  
  108            if rising_edge(spi_clk) then  
  109              data_in(i-67)(7-j)  < = MISO;  
  110            end if;  
  111          when 75 = >   
  112            SCK  < = '0';  
  113        end case;  
  114         
  115      end process;  
  116  
  117      --Test circuit:  
  118      process (spi_clk, rst)  
  119        variable counter2: natural range 0 to 2_500_000;  
  120        variable counter3: natural range 0 to 7;  
  121      begin  
  122        --Generate slow (2Hz) pointer for displaying data:  
  123        if rst='1' then  
  124          counter2:=0;  
  125          counter3:=0;  
  126        elsif rising_edge(spi_clk) then  
  127          counter2:= counter2 + 1;  
  128          if counter2=2_500_000 then  
  129            counter2:= 0;  
  130            if counter3/=7 then  
  131              counter3:= counter3 + 1;  
  132            else  
  133              counter3:= 0;  
  134            end if;  
  135          end if;  
  136        end if;  
  137        --Send data continuously to the display:  
  138        ssd1  < = hex_to_ssd(data_in(counter3)(3 downto 0));  
  139        ssd2  < = hex_to_ssd(data_in(counter3)(7 downto 4));  
  140      end process;  
  141  
  142    end architecture;  
  143    ---------------------------------------------------------------------------  
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15.6   Exercises 

Exercise 15.1: Number of Flip-Flops 
How many DFFs are needed to build the FSMs of   fi gures 15.1, 15.2, and 15.6 ? 

Exercise 15.2: Two-Loop FSM 
Figure 15.7  shows a two-loop FSM, with input  x  and output  y . When in state 3 … 6 the 
machine must transmit four bits from a  z (3:0) array, starting with the MSB. 

 a) How many fl ip-fl ops are needed to construct this FSM? Does your answer depend 
on the implementation approach (generic, seen in the previous chapters, or pointer-
based, seen here)? 
 b) Implement it using VHDL or SystemVerilog (pointer-based technique). Enter  z  in 
your code as a constant. After compilation, check whether the number of fl ip-fl ops 
inferred by the compiler matches your prediction. 
 c) Show simulation results.    

 Exercise 15.3: FSM with Repetitive States 
   Figure 15.8  shows an FSM with an  apparent  single loop. Note that state B must be 
repeated 8 times, then state C must occur, with this sequence (B – C) repeated 7 times 
before proceeding to state D. A similar procedure must occur in states F – G. 

Figure 15.7 

Figure 15.8 
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a) Implement this machine using the pointer-based technique and VHDL or System-
Verilog. Start by making the proper adaptations (using pointer(s)) in the state transi-
tion diagram. Create an array of constants to be placed at the output in states B and 
F, and chose numeric values for  y A  ,  y C  ,  y D  , etc. 
 b) Show simulation results. To ease the inspection of the results, use 3 instead of 8 
and 2 instead of 7 in the repetitions.    

 Exercise 15.4: Clock with LCD Display 
 Redo the design of section 14.1.3 using the pointer-based technique. Start by drawing 
the adapted (using pointer(s)) state transition diagram. After compilation, compare 
the resources usage (especially the number of fl ip-fl ops) against the results obtained 
after compiling the code of section 14.1.3. 

 Exercise 15.5: I 2 C Interface for an RTC 
 Redo the design of section 14.2.5 using the pointer-based technique. Start by drawing 
the adapted (using pointer(s)) state transition diagram. After compilation, compare 
the resources usage (especially the number of fl ip-fl ops) against the results obtained 
after compiling the code of section 14.2.5. 

 Exercise 15.6: SPI Interface for an ADC 
 Solve exercise 14.8 using the pointer-based technique. 

 Exercise 15.7: SPI Interface for an Accelerometer 
 Solve exercise 14.10 using the pointer-based technique. 

 Exercise 15.8: I 2 C Interface for an ADC 
 Solve exercise 14.4 using the pointer-based technique. 

 Exercise 15.9: I 2 C Interface for a Temperature Sensor 
 Solve exercise 14.5 using the pointer-based technique. 

 Exercise 15.10: I 2 C Interface for an Accelerometer 
 Solve exercise 14.11 using the pointer-based technique. 
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