
Finite State Machines in Hardware

Finite State Machines in Hardware

Theory and Design (with VHDL and SystemVerilog)

Volnei A. Pedroni

The MIT Press

Cambridge, Massachusetts

London, England

© 2013 Massachusetts Institute of Technology

 All rights reserved. No part of this book may be reproduced in any form by any electronic or
mechanical means (including photocopying, recording, or information storage and retrieval)
without permission in writing from the publisher.

 MIT Press books may be purchased at special quantity discounts for business or sales promotional
use. For information, please email special_sales@mitpress.mit.edu.

 This book was set in Stone Sans and Stone Serif by Toppan Best-set Premedia Limited, Hong
Kong. Printed and bound in the United States of America.

 Library of Congress Cataloging-in-Publication Data

 Pedroni, Volnei A.
 Finite state machines in hardware : theory and design (with VHDL and SystemVerilog) /
Volnei A. Pedroni.
 pages cm
 Includes bibliographical references and index.
 ISBN 978-0-262-01966-8 (hardcover : alk. paper) 1. SystemVerilog (Computer hardware
description language) 2. VHDL (Computer hardware description language) 3. Sequential
machine theory — Data processing. 4. Computer systems — Mathematical models. I. Title.

TK7885.7.P443 2013
621.39 ' 2 — dc23

 2013009431

 10 9 8 7 6 5 4 3 2 1

 Contents

 Preface xi

 Acknowledgments xiii

 1 The Finite State Machine Approach 1
 1.1 Introduction 1
 1.2 Sequential Circuits and State Machines 1
 1.3 State Transition Diagrams 4
 1.4 Equivalent State Transition Diagram Representations 6
 1.5 Under- and Overspecified State Transition Diagrams 8
 1.6 Transition Types 11
 1.7 Moore-to-Mealy Conversion 12
 1.8 Mealy-to-Moore Conversion 14
 1.9 Algorithmic State Machine Chart 15
 1.10 When to Use the FSM Approach 16
 1.11 List of Main Machines Included in the Book 17
 1.12 Exercises 18

 2 Hardware Fundamentals — Part I 21
 2.1 Introduction 21
 2.2 Flip-Flops 21
 2.3 Metastability and Synchronizers 24
 2.4 Pulse Detection 28
 2.5 Glitches 29
 2.6 Pipelined Implementations 32
 2.7 Exercises 33

 3 Hardware Fundamentals — Part II 39
 3.1 Introduction 39
 3.2 Hardware Architectures for State Machines 39
 3.3 Fundamental Design Technique for Moore Machines 41

vi Contents

 3.4 Fundamental Design Technique for Mealy Machines 44
 3.5 Moore versus Mealy Time Behavior 46
 3.6 State Machine Categories 47
 3.7 State-Encoding Options 49

 3.7.1 Sequential Binary Encoding 49
 3.7.2 One-Hot Encoding 50
 3.7.3 Johnson Encoding 50
 3.7.4 Gray Encoding 50
 3.7.5 Modified One-Hot Encoding with All-Zero State 51
 3.7.6 Other Encoding Schemes 52

 3.8 The Need for Reset 52
 3.9 Safe State Machines 54
 3.10 Capturing the First Bit 56
 3.11 Storing the Final Result 58
 3.12 Multimachine Designs 60
 3.13 State Machines for Datapath Control 62
 3.14 Exercises 67

 4 Design Steps and Classical Mistakes 73
 4.1 Introduction 73
 4.2 Classical Problems and Mistakes 73

 4.2.1 Skipping the State Transition Diagram 73
 4.2.2 Wrong Architecture 73
 4.2.3 Incorrect State Transition Diagram Composition 74
 4.2.4 Existence of State Bypass 75
 4.2.5 Lack of Reset 75
 4.2.6 Lack of Synchronizers 76
 4.2.7 Incorrect Timer Construction 76
 4.2.8 Incomplete VHDL/SystemVerilog Code 76
 4.2.9 Overregistered VHDL/SystemVerilog Code 78

 4.3 Design Steps Summary 79

5 Regular (Category 1) State Machines 81
 5.1 Introduction 81
 5.2 Architectures for Regular (Category 1) Machines 82
 5.3 Number of Flip-Flops 84
 5.4 Examples of Regular (Category 1) Machines 84

 5.4.1 Small Counters 84
 5.4.2 Parity Detector 85
 5.4.3 Basic One-Shot Circuit 86
 5.4.4 Temperature Controller 88
 5.4.5 Garage Door Controller 89

Contents vii

 5.4.6 Vending Machine Controller 90
 5.4.7 Datapath Control for an Accumulator 91
 5.4.8 Datapath Control for a Greatest Common Divisor Calculator 93
 5.4.9 Generic Sequence Detector 95
 5.4.10 Transparent Circuits 96
 5.4.11 LCD, I 2 C, and SPI Interfaces 97

 5.5 Exercises 97

 6 VHDL Design of Regular (Category 1) State Machines 105
 6.1 Introduction 105
 6.2 General Structure of VHDL Code 105
 6.3 VHDL Template for Regular (Category 1) Moore Machines 107
 6.4 Template Variations 111

 6.4.1 Combinational Logic Separated into Two Processes 111
 6.4.2 State Register Plus Output Register in a Single Process 112
 6.4.3 Using Default Values 112
 6.4.4 A Dangerous Template 113

 6.5 VHDL Template for Regular (Category 1) Mealy Machines 114
 6.6 Design of a Small Counter 116
 6.7 Design of a Garage Door Controller 120
 6.8 Design of a Datapath Controller for a Greatest Common Divisor

Calculator 123
 6.9 Exercises 126

 7 SystemVerilog Design of Regular (Category 1) State Machines 129
 7.1 Introduction 129
 7.2 General Structure of SystemVerilog Code 129
 7.3 SystemVerilog Template for Regular (Category 1) Moore Machines 130
 7.4 SystemVerilog Template for Regular (Category 1) Mealy Machines 133
 7.5 Design of a Small Counter 135
 7.6 Design of a Garage Door Controller 137
 7.7 Design of a Datapath Controller for a Greatest Common Divisor

Calculator 140
 7.8 Exercises 141

 8 Timed (Category 2) State Machines 143
 8.1 Introduction 143
 8.2 Architectures for Timed (Category 2) Machines 144
 8.3 Timer Interpretation 146

 8.3.1 Time Measurement Unit 146
 8.3.2 Timer Range 146
 8.3.3 Number of Bits 146

viii Contents

 8.4 Transition Types and Timer Usage 147
 8.5 Timer Control Strategies 147

 8.5.1 Preliminary Analysis 148
 8.5.2 Timer Control Strategy #1 (Generic) 149
 8.5.3 Timer Control Strategy #2 (Nongeneric) 150
 8.5.4 Time Behavior of Strategies #1 and #2 151

 8.6 Truly Complementary Time-Based Transition Conditions 153
 8.7 Repetitively Looped State Machines 154
 8.8 Time Behavior of Timed Moore Machines 155
 8.9 Time Behavior of Timed Mealy Machines 156
 8.10 Number of Flip-Flops 158
 8.11 Examples of Timed (Category 2) Machines 158

 8.11.1 Blinking Light 159
 8.11.2 Light Rotator 160
 8.11.3 Switch Debouncer 161
 8.11.4 Reference-Value Definer 163
 8.11.5 Traffic Light Controller 166
 8.11.6 Car Alarm (with Chirps) 167
 8.11.7 Password Detector 168
 8.11.8 Triggered Circuits 170
 8.11.9 Pulse Shifter 172
 8.11.10 Pulse Stretchers 173

 8.12 Exercises 176

 9 VHDL Design of Timed (Category 2) State Machines 185
 9.1 Introduction 185
 9.2 VHDL Template for Timed (Category 2) Moore Machines 185
 9.3 VHDL Template for Timed (Category 2) Mealy Machines 189
 9.4 Design of a Light Rotator 191
 9.5 Design of a Car Alarm (with Chirps) 194
 9.6 Design of a Triggered Monostable Circuit 198
 9.7 Exercises 201

 10 SystemVerilog Design of Timed (Category 2) State Machines 207
 10.1 Introduction 207
 10.2 SystemVerilog Template for Timed (Category 2) Moore Machines 207
 10.3 SystemVerilog Template for Timed (Category 2) Mealy Machines 210
 10.4 Design of a Light Rotator 212
 10.5 Design of a Car Alarm (with Chirps) 214
 10.6 Design of a Triggered Monostable Circuit 217
 10.7 Exercises 220

Contents ix

11 Recursive (Category 3) State Machines 221
 11.1 Introduction 221
 11.2 Recursive (Category 3) State Machines 222
 11.3 Architectures for Recursive (Category 3) Machines 223
 11.4 Category 3 to Category 1 Conversion 224
 11.5 Repetitively Looped Category 3 Machines 225
 11.6 Number of Flip-Flops 226
 11.7 Examples of Recursive (Category 3) State Machines 226

 11.7.1 Generic Counters 226
 11.7.2 Long-String Comparator 228
 11.7.3 Reference-Value Definer 229
 11.7.4 Reference-Value Definer with Embedded Debouncer 231
 11.7.5 Datapath Control for a Sequential Multiplier 232
 11.7.6 Sequential Divider 234
 11.7.7 Serial Data Receiver 236
 11.7.8 Memory Interface 237

 11.8 Exercises 240

 12 VHDL Design of Recursive (Category 3) State Machines 245
 12.1 Introduction 245
 12.2 VHDL Template for Recursive (Category 3) Moore Machines 245
 12.3 VHDL Template for Recursive (Category 3) Mealy Machines 248
 12.4 Design of a Datapath Controller for a Multiplier 249
 12.5 Design of a Serial Data Receiver 252
 12.6 Design of a Memory Interface 256
 12.7 Exercises 261

 13 SystemVerilog Design of Recursive (Category 3) State Machines 265
 13.1 Introduction 265
 13.2 SystemVerilog Template for Recursive (Category 3) Moore Machines 265
 13.3 SystemVerilog Template for Recursive (Category 3) Mealy Machines 267
 13.4 Design of a Datapath Controller for a Multiplier 268
 13.5 Design of a Serial Data Receiver 271
 13.6 Design of a Memory Interface 273
 13.7 Exercises 278

 14 Additional Design Examples 279
 14.1 LCD Driver 279

 14.1.1 Alphanumeric LCD 279
 14.1.2 Typical FSM Structure for Alphanumeric LCD Drivers 283
 14.1.3 Complete Design Example: Clock with LCD Display 284

x Contents

 14.2 I 2 C Interface 290
 14.2.1 I 2 C Bus Structure 290
 14.2.2 Open-Drain Outputs 291
 14.2.3 I 2 C Bus Operation 292
 14.2.4 Typical FSM Structure for I 2 C Applications 295
 14.2.5 Complete Design Example: RTC (Real-Time Clock) Interface 296

 14.3 SPI Interface 305
 14.3.1 SPI Bus Structure 305
 14.3.2 SPI Bus Operation 306
 14.3.3 Complete Design Example: FRAM (Ferroelectric RAM)

Interface 307
 14.4 Exercises 315

 15 Pointer-Based FSM Implementation 319
 15.1 Introduction 319
 15.2 Single-Loop FSM 319
 15.3 Serial Data Transmitter 321
 15.4 Serial Data Receiver 322
 15.5 SPI Interface for an FRAM 325
 15.6 Exercises 329

Bibliography 331

 Index 333

Preface

This book deals with the crucial issue of implementing Finite State Machines (FSMs)
in hardware, which has become increasingly important in the development of modern,
complex digital systems.

 Because FSM is a modeling technique for synchronous digital circuits, a detailed
review of synchronous circuits in general is also presented, to enable in-depth and
broad coverage of the topic.

 A new classifi cation for FSMs from a hardware perspective is introduced, which
places any state machine under one of three categories: regular machines , timed machines ,
or recursive machines . The result is a clear, precise, and systematic approach to the con-
struction of FSMs in hardware.

 Many examples are presented in each category, from datapath controllers to pass-
word readers, from car alarms to multipliers and dividers, and from triggered circuits
to serial data communications interfaces.

 Several of the state machines, in all three categories, are subsequently implemented
using VHDL and SystemVerilog. It starts with a review of these hardware description
languages, accompanied by new, detailed templates. The subsequent designs are always
complete and are accompanied by comments and simulation results, illustrating the
design ’ s main features.

 Numerous exercises are also included in the chapters, providing an invaluable
opportunity for students to play with state machines, VHDL and SystemVerilog lan-
guages, compilation and simulation tools, and FPGA development boards.

 In summary, the book is a complete, modern, and interesting guide on the theory
and physical implementation of synchronous digital circuits, particularly when such
circuits are modeled as FSMs.

Acknowledgments

I want to express my gratitude to Bruno U. Pedroni for his invaluable help and sug-
gestions during the initial phase of the book. I am also grateful to the personnel at
MIT Press, especially Marc Lowenthal, acquisitions editor, for his assistance during the
early phases of the book; and Marcy Ross, production editor, for her excellent work
and endless patience during the editing and production phases.

1 The Finite State Machine Approach

1.1 Introduction

This chapter presents fundamental concepts and introduces new material on the fi nite
state machine (FSM) approach for the modeling and design of sequential digital
circuits.

 A summary of the notation used in the book is presented in table 1.1 .

 1.2 Sequential Circuits and State Machines

 Digital circuits can be classifi ed as combinational or sequential . A combinational circuit
is one whose output values depend solely on the present input values, whereas a
sequential circuit has outputs that depend on previous system states. Consequently,
the former is memoryless, whereas the latter requires some sort of memory (generally,
D-type fl ip-fl ops [DFFs], reviewed in section 2.2).

 An example of a combinational circuit is presented in fi gure 1.1a , which shows
an N -bit adder; because the present sum is not affected by previous sums computed
by the circuit, it is combinational. An example of sequential circuit is depicted in
 fi gure 1.1b , which shows a synchronous three-bit counter (it counts from 0 to 7);
because its output depends on the system state (for example, if the current output is
5, then the next will be 6), it is a sequential circuit. Note the presence of a clock signal
in the latter.

 An often advantageous model for sequential circuits is presented in fi gure 1.2a ,
which consists of a combinational logic block in the forward path and a memory
(DFFs) in the feedback loop. When this architecture is used, a fi nite state machine (FSM)
results. Note that the state presently stored in the memory is called pr_state , and
the state to be stored by the DFFs at the next (positive) clock transition is called
 nx_state .

 An example of such a modeling technique is depicted in fi gure 1.2b , which shows
the same circuit of fi gure 1.1b , now reorganized according to the architecture of

2 Chapter 1

Figure 1.1
Examples of (a) combinational and (b) sequential circuits.

Table 1.1

The Finite State Machine Approach 3

fi gure 1.2a . Note that the lower section contains only fl ip-fl ops, whereas the upper
section is purely combinational.

Concept
In short, a state machine is a modeling / design technique for sequential circuits. At any
time, the machine sits in one of a fi nite number of possible states. For each state, both
the output values and the transition conditions into other states are fully defi ned. The
state is stored by the FSM, and the transition conditions are usually reevaluated at
every (positive) clock edge, so the state-change procedure is always synchronous
because the machine can only move to another state when the clock ticks. (Note:
There has been some effort to develop asynchronous FSMs as well.)

 Benefi ts
 The FSM model provides a systematic approach (a method) for designing sequential
circuits, which can lead to optimal or near-optimal implementations. Moreover, the
method does not require any prior knowledge or specifi cs on how the general circuit
(solution) for the problem at hand should look like.

 When to Use the FSM Approach
 This will be discussed in section 1.10.

Figure 1.2
(a) Sequential circuit with a registered feedback loop (a fi nite state machine). (b) Counter of fi gure

1.1b rearranged according to fi gure 1.2a .

4 Chapter 1

Hardware- versus Software-Implemented State Machines
Designing and implementing correct state machines in hardware is generally (much)
more complex than doing it in software. Some of the reasons for that are listed below.

1) It is physically impossible for the clock signal to arrive at all chip locations at
exactly the same time (this is called clock skew), so some fl ip-fl ops will be activated
before others, a concern that simply does not exist in software.
2) A naive design in hardware might lead to the inference of latches, which impair
the time response. It might also lead to the other extreme, which consists of reregister-
ing one or more signals, causing unwanted latency.
3) In hardware, signals might be subject to glitches, another concern that does not
occur in software.
4) Contrary to software, hardware allows no abstraction. For example, if a state
machine must produce in the next state the same output value produced in the current
state, in software we can simply omit the corresponding expression; or if it requires
an incrementer, we can simply write x = x + 1. In either case, an explicit expression
would be required in hardware (x = x or x = x + 1), which can only be evaluated if the
value of x is available, so the machine itself must provide a means for storing (and
properly retrieving) x .
 5) In hardware, signals represent physical wires, so we cannot assign a signal source
to an interconnection now and simply assign another later.
 6) Many machines have asynchronous inputs, so the use of synchronizers (to avoid
fl ip-fl op metastability) must be considered, another concern that does not occur in
software-implemented FSMs.
 7) Some circuits need a special clock, obtained by “ gating ” the main clock. Depending
on how it is done, the resulting clock might be subject to glitches, another issue that
simply does not exist in software.
 8) Several other concerns, such as “ reset generation, ” “ capturing the fi rst bit, ” “ keeping
the fi nal result stable, ” and “ stretching the decision pulse ” , are also not a problem in
software-implemented machines.

 1.3 State Transition Diagrams

 The state transition diagram (or simply state diagram) of a sequential circuit is a graphi-
cal representation of its functional specifi cations. Such a diagram must obey three
fundamental principles:

 1) It must include all possible system states.
 2) All state transition conditions must be specifi ed (unless a transition is uncondi-
tional) and must be truly complementary.
 3) The list of output signals must be exactly the same in all states (for a standard
architecture implementation).

The Finite State Machine Approach 5

To employ the FSM approach to design a sequential digital circuit, all three requisites
listed above must be fulfi lled, and also the list of states must not be too long. All sorts
of controllers (including control units for datapath-based designs) are typical examples
of circuits well suited for this design technique, as will become clear through the many
examples presented in the book.

 State machines can be of Moore or Mealy type. Both are described below.

Moore-Type State Machines
An FSM is said to be of Moore type when its output depends solely on the machine ’ s
present state. In other words, the output is not affected directly by the input (the input
can only affect the machine ’ s next state). The result is a fully synchronous circuit
because the output can only change when the clock ticks.

 An example of Moore FSM is presented in fi gure 1.3b . The circuit ports are shown in
 fi gure 1.3a , consisting of a data input, x (8-bit extended ASCII character), a data output,
 y (single bit), plus the conventional operational inputs of clock and reset. The circuit must
produce y = ‘ 1 ’ when the sequence “ abc ” occurs in x , that is, when x = “ 01100001 ” (ASCII
code for a), followed by x = “ 01100010 ” (= b), then x = “ 01100011 ” (= c) occur.

 The Moore-type state transition diagram of fi gure 1.3b contains four states, called
 idle , char1 , char2 , and char3 . Each state tells the value that must be produced at the
output (y) while the machine is in that state; note that only char3 produces y = ‘ 1 ’
because the machine only reaches that state if the correct sequence (abc) is detected.
Finally, the transition conditions (on x , the input) are shown along the arrows.

 The meaning of the state diagram of fi gure 1.3b is as follows. Say that the circuit is in
the idle state; if x = a is received, it moves from idle to char1 , otherwise it remains in idle ;
if it is in char1 and b is received, it moves to state char2 , otherwise it remains in char1 if
 a was received or returns to idle if neither a nor b was received; and so on. Note in fi gure
1.3b that, because this is a Moore machine, the output depends only on the state in
which the machine is, so the output values can be written inside the state circles.

 Figure 1.3
 A fi nite state machine that detects the ASCII sequence “ abc ” . (a) Circuit ports. Corresponding (b)

Moore and (c) Mealy state transition diagrams.

6 Chapter 1

It is important to mention that the state transitions are always synchronous (gov-
erned by a clock signal). For example, if the machine is in the idle state and the condi-
tion x = a is true at the moment when a (positive) clock edge occurs , then the circuit moves
to state char1 . A machine can operate either at the positive or negative clock edge, or
even at both clock edges if dual-edge fl ip-fl ops are employed. Unless specifi ed other-
wise, it will be assumed (default) that it is a positive-edge machine.

 Mealy-Type State Machines
 An FSM is said to be of Mealy type when its input can affect the output directly. In
other words, the output now does not depend solely on the machine ’ s state but also
depends on the input value. The resulting circuit is no longer truly synchronous
because the output might now change independently of the clock.

 A Mealy-type solution for the same problem of fi gure 1.3a is depicted in fi gure 1.3c .
Because the output can now exhibit more than one value for the same state (because
the output also depends on the input value), the output values can no longer be written
inside the state circles. Note that they are indeed marked on the arrows, along with
the input (transition condition) values. Additionally, to simplify the notation, in the
Mealy machine the signal names are generally omitted (they are indicated separately,
as in the small rectangle of fi gure 1.3c). In this example the Mealy parameters are x / y ,
meaning “ if x = value, then y = value ” ; for example, a / ‘ 0 ’ means “ if x = a , then y = ‘ 0 ’ . ”

 The meaning of the state diagram of fi gure 1.3c is as follows. If the circuit is in state
A and the input is x = a , the output is y = ‘ 0 ’ , and the next state (at the next positive
clock edge) will be B; otherwise, the output is still y = ‘ 0 ’ , but the next state will be A.
Likewise, if the machine is in state C and the input is x = a , then the output is y = ‘ 0 ’ ,
and the next state will be B; otherwise, if the input is x = c , the output is y = ‘ 1 ’ , and
the next state will be A; else, the output is y = ‘ 0 ’ , but the next state will still be A. A
similar reasoning can easily be applied to state B. The direct dependence of the output
on the input can easily be observed in the state diagram; for example, note that in state
C the value of y varies with x , resulting in y = ‘ 1 ’ when x = c or y = ‘ 0 ’ otherwise.

 Because modern designs are generally synchronous, the Moore option tends to be
preferred whenever the application permits.

 Further details on Moore and Mealy constructions are seen in sections 1.7 and 1.8,
in which the conversion from one to the other is described.

 1.4 Equivalent State Transition Diagram Representations

 Unconditional and equivalent representations for the state transition diagram are
shown in fi gure 1.4 , where a 1-to-5 counter is used as an example. Two cases are con-
sidered. The case in fi gure 1.4a has only clock and reset as inputs and as output has the
3-bit signal outp that encodes the counting. The case in fi gure 1.4c has an additional

The Finite State Machine Approach 7

input, called ena , which enables the counter when asserted (ena = ‘ 1 ’) or causes it to
stop otherwise.

 Figure 1.4b shows the FSM corresponding to the counter in fi gure 1.4a . Because
there are no inputs in this circuit (except for the operational inputs, clock and reset),
it can only be a Moore machine. Note that all possible states are included and that
the value that must be produced at the output in each state is specifi ed. However,
there are no specifi cations for the transition conditions, which means that the transi-
tions are unconditional , that is, they must occur at every (positive) clock edge.

 Observe that a special (simplifi ed) representation is reserved for the reset signal (not
only in this example, but in all state transition diagrams). The reset signal is repre-
sented by a single arrow pointing to the state to which the machine is forced when
 rst = ‘ 1 ’ occurs.

Figure 1.4
(a, b) A 1-to-5 counter with only clock and reset as inputs (the transitions are unconditional).

(c – g) The counter has an additional input (ena), which either enables the counter or causes it to

stop. The representations in d – g are equivalent.

8 Chapter 1

Figures 1.4d – g show equivalent representations for the FSM corresponding to the
counter in fi gure 1.4c . Because now an external nonoperational input is present (ena ,
which lets the counter run when high or stops it when low), it can be modeled as
either a Moore or a Mealy machine. However, because counters are inherently syn-
chronous, the Moore approach is the natural choice.

 The diagram in fi gure 1.4d is the most detailed, expressing, both by name and
numerically, all transition conditions and output values. The representation in fi gure
1.4e expresses the transition conditions in Boolean form instead of numeric form.
The representation in fi gure 1.4f assumes that else is implicit. Finally, the extreme
simplifi cation of fi gure 1.4g includes just the numeric output values inside the state
circles, assuming again that else is implicit. The advantage of the fi rst representation
(fi gure 1.4d) is that it forces the designer to go over all possibilities more closely,
whereas the advantage of the other representations is a simpler, neater diagram. To
help the reader visualize small details, the fi rst representation is used here more often
than the others, but these representations are all equivalent and can be used
interchangeably.

 1.5 Under- and Overspecifi ed State Transition Diagrams

 This section describes a relatively frequent mistake that occurs while one is preparing
the state transition diagram for a given problem, which consists of either under- or
overspecifying it. An underspecifi cation occurs when not all combinations of the
transition control signals are covered, whereas an overspecifi cation occurs when one
or more combinations are included more than once.

 Figure 1.5a shows an example of underspecifi cation. Because the transition control
signals are a and b , which are single-bit signals, the possible transition conditions are
 ab = { “ 00 ” , “ 01 ” , “ 10 ” , “ 11 ” }. In state A, the AA transition is governed by the condi-
tion a = ‘ 0 ’ ; because this is independent of b , it is the same as writing a = ‘ 0 ’ & b =
 ‘ − ’ , thus covering the cases ab = “ 0 − ” = { “ 00 ” , “ 01 ” }. The AB transition is governed by
the condition a = ‘ 1 ’ & b = ‘ 1 ’ , thus covering the case ab = “ 11 ” . Since there is no

Figure 1.5
(a) Example of underspecifi ed state transition diagram and (b, c) examples of possible solutions.

In c, the else condition is implicit.

The Finite State Machine Approach 9

other outward transition in state A, we conclude that the condition ab = “ 10 ” was not
covered in the state diagram. A similar analysis for state B shows that the transition
condition ab = “ 10 ” was again not covered. Therefore, in this example, both states are
underspecifi ed. If the machine faces one of the unspecifi ed combinations, it will either
get stuck there or will proceed as defi ned (probably unconsciously) in the correspond-
ing VHDL or SystemVerilog code.

 Figure 1.5b shows a corrected version for the underspecifi ed machine of fi gure 1.5a .
It was considered that the missing condition for state A (ab = “ 10 ”) should be associ-
ated to the AA transition, and the missing condition for state B (ab = “ 10 ”) should be
associated to the BA transition. Note that the latter caused the BA transition to become
independent from a .

 Another corrected version for the underspecifi ed machine of fi gure 1.5a is
present ed in fi gure 1.5c . In this case the missing conditions for states A and B were
associated to the AA and BB transitions, respectively. The representation with implicit
 else was used.

 Figure 1.6a shows an example of overspecifi cation. Again, a and b are the transition
control signals. The AB transition is governed by the condition a = ‘ 1 ’ , thus covering
the cases ab = “ 1 − ” = { “ 10 ” , “ 11 ” }. The AC transition is governed by the condition b
= ‘ 1 ’ , thus covering the cases ab = “ − 1 ” = { “ 01 ” , “ 11 ” }. Note that ab = “ 11 ” appears in
both AB and AC transitions, thus causing a confl ict. To solve the problem, we must
establish priorities .

Figure 1.6
(a) Example of overspecifi ed state transition diagram and (b) a possible solution. (c) Another

overspecifi ed machine and (d) a possible solution.

10 Chapter 1

A corrected version for the overspecifi ed machine of fi gure 1.6a is presented in
 fi gure 1.6b . In this example the following priority list was adopted (from highest to
lowest): AB, AC, AA.

 Figure 1.6c shows another example of overspecifi cation. The transition control
signals now are a , b , and c . The AB transition is governed by the condition a = ‘ 1 ’ and
thus covers the cases abc = “ 1 − − ” = { “ 100 ” , “ 101 ” , “ 110 ” , “ 111 ” }. The AC transition
is governed by the condition b = ‘ 1 ’ and thus covers the cases abc = “ − 1 − ” = { “ 010 ” ,
 “ 011 ” , “ 110 ” , “ 111 ” }. Similarly, the AD transition is governed by the condition c = ‘ 1 ’
and thus covers the cases abc = “ − − 1 ” = { “ 001 ” , “ 011 ” , “ 101 ” , “ 111 ” }. Note that several
conditions are repeated, causing confl icts. To solve the problem, we must again estab-
lish priorities.

 A corrected version for the overspecifi ed machine of fi gure 1.6c is presented in
 fi gure 1.6d . In this example the following priority list was adopted (from highest to
lowest): AB, AC, AD, AA.

 In summary, the outward transition conditions must be exactly fully complementary .
In other words, they must include all possible combinations of the transition control
signals, but without any repetitions.

 In regard to underspecifi cation, another example is shown in fi gure 1.7 , in which
an integer t , produced by a counter to represent time, is the transition control signal.
The machine must stay in state A during T clock periods, moving then to state B.
Because the timer ’ s initial value is zero, it must count from 0 to T − 1 in order to span
 T clock cycles, which is the reason why t = T − 1 (instead of t = T) appears in the transi-
tion control conditions (specifi c details on timed transitions are given in chapter 8).

 Note in fi gure 1.7a that the outward transition conditions from state A are not truly
complementary because the t > T − 1 condition is not covered. It was fi xed in fi gure
1.7b with the t > T − 1 condition associated with the AB transition. Another corrected
option is shown in fi gure 1.7c , this time with the t > T − 1 condition associated with
the AA transition.

 There are two main reasons for not using non – truly complementary conditions.
First, the machine can go into an undesirable state, even get deadlocked (for example,
if the initial state is A and the timer is not properly reset, starting with t > T − 1,

 Figure 1.7
 Noncomplementary transition conditions. (a) Condition t > T − 1 not covered. (b, c) Corrected

versions with t > T − 1 associated with the AB and AA transitions, respectively.

The Finite State Machine Approach 11

depending on how this timer is controlled by the FSM, the machine can get stuck in
state A forever). Second, it is more costly (in terms of hardware) to compute non – fully
complementary conditions than otherwise. For example, if VHDL is used, the follow-
ing sections of code could be employed for the three cases in fi gure 1.7 :

For figure 1.7a:

if t=T-1 then

 nx_state < = B

 elsif t < T-1 then

 nx_state < = A;

 end if;

 For figure 1.7b:

 if t > =T-1 then

 nx_state < = B

 else

 nx_state < = A;

 end if;

 For figure 1.7c:

 if t=T-1 then

 nx_state < = B

 else

 nx_state < = A;

 end if;

Note that else was used to close the if statement in the last two codes, which means
that all conditions are covered and only one comparison is needed. On the other
hand, in the fi rst code elsif was used instead, so an additional comparison is required;
moreover, it does not cover all input combinations, so latches might be inferred by
the compiler. In summary, the option in fi gure 1.7a produces an inferior circuit, and
we still have to pay more for it.

 Other common mistakes and problems that can occur while one is designing FSMs
in hardware are described in chapter 4.

 1.6 Transition Types

 A very important classifi cation for the transitions, from a hardware perspective, is
introduced in this section. In section 3.6 this classifi cation is used to separate any state
machine into one of three categories, immensely easing its hardware-based design.

 The state machine of fi gure 1.8a is used to describe the transition types, where x is
the actual input, t is an auxiliary input generated by a timer, and y is the actual output.
This machine contains all four possible types of transitions.

 Transition AB (conditional transition) depends only on the actual input, x . If the machine
is in state A, it must move to state B at the fi rst (positive) clock edge that fi nds x = x 1 .

 Transition BC (timed transition) depends only on the timer, t . The machine must
stay in state B during exactly T 1 clock cycles, moving then to state C. An auxiliary
circuit (a timer, which is simply a counter, operating from 0 to T 1 − 1 in this transition)
must be included in the design. By default, the timer is zeroed every time the FSM
changes state; moreover, the timer is kept stopped at zero in states where it is not
needed (states A and D of fi gure 1.8a , for example).

 Transition CD (conditional-timed transition) is more complex because it depends on
the actual input, x , and also on the timer, t . The machine must move to state D at
the fi rst (positive) clock edge that fi nds x = x 2 after staying in state C during T 2 clock

12 Chapter 1

cycles. This implies that it will remain in state C during at least T 2 clock cycles, not
necessarily during exactly T 2 clock cycles.

 Transition DA (unconditional transition) is the simplest type of transition. The
machine must move from state D to state A at the next (positive) clock edge, regard-
less of x and t , thus staying in D during exactly one clock period.

 Note that even though t denotes time in the description above, it is not expressed
in seconds but rather in “ number of clock cycles. ” For example, if we want the
machine to stay in a certain state during t state = 2 ms, and the clock frequency is f clk
= 50 MHz, we simply adopt T state = t state × f clk = 2 · 10 – 3 × 50 · 10 6 = 100,000 clock cycles.

 A special time-dependent transition is shown in fi gure 1.8b. Note that the
conditional-timed transition CD in fi gure 1.8a only checks if x = x 2 after T 2 clock cycles.
Say, however, that we want the machine to move from C to D only if x = x 2 has
occurred during the whole time (i.e., during all T 2 clock cycles). To cover this case, a
 compound transition is needed that results from the combination of three pure transi-
tions, as shown in fi gure 1.8b . This arrangement works well because the timer is zeroed
every time the machine changes its state. Note that T 2 − 1 clock cycles are needed in
the XD transition (so the timer must count from 0 to T 2 − 2) because one clock cycle
is spent in the CX transition. Even though in many applications this “ − 2 ” factor in t
 = T 2 − 2 is not relevant, it is maintained here for the sake of accuracy. Much more on
time-dependent transitions is presented in chapter 8.

In section 3.6, the transition types described above are used to classify any hardware-
implemented FSM into one of the following three categories: regular machines , timed
machines , or recursive machines . Two fundamental decisions must then be made when
developing an actual design in hardware: the machine category (just listed) and the
machine type (Moore or Mealy).

 1.7 Moore-to-Mealy Conversion

 Moore machines can be converted into corresponding Mealy machines. The latter will
have the same number of states as the former if state merging is not possible, or fewer
states otherwise.

 Figure 1.8
 (a) State machine containing all four types of transitions (from a hardware perspective): condi-

tional , timed , conditional-timed , and unconditional . (b) A special compound transition, which checks

whether a condition has been true during the whole time .

The Finite State Machine Approach 13

When merging is not possible, the conversion is trivial, consisting simply of a
change of notation (from Moore to Mealy style). To do so, just bring outside the output
values marked inside the state circles and associate them with the corresponding pre-
ceding (inward) transitions. An example is presented in fi gure 1.9 .

The merging of two states is possible when they fulfi ll the following two requisites:

 1) Their sets of outward transitions are exactly equal.
 2) The pairs of equal outward transitions (one from each state) go to the same states.

 An example is presented in fi gures 1.10a – c . The original Moore FSM, with four
states, is presented in fi gure 1.10a . Note that states A and B have the same set of
 outward transitions (x = x 1 , x = x 2) and that the equal transitions go to the same states
(from both A and B, the transitions governed by x = x 1 go to state C, while those
governed by x = x 2 go to state D). Therefore, A and B can be merged. To do so, fi rst

Figure 1.9
Moore-to-Mealy conversion when state merging is not possible (just a change of notation).

Figure 1.10
Moore-to-Mealy conversion principle. (a) Original Moore machine. (b) Moore-to-Mealy notation

change. (c) Merging of states A and B. (d – f) Another example, following the same procedure.

14 Chapter 1

the notation is changed from Moore to Mealy style, as shown in fi gure 1.10b , and
then the merging is done in fi gure 1.10c .

 Another example is presented in fi gures 1.10d – f following the same procedure. The
analysis of this example is left to the reader. The reader is also invited to apply this
procedure to the Moore machine of fi gure 1.3b and see if the Mealy machine of fi gure
1.3c results.

 As expected, because of the highly restricting requirements for state merging
(described above), in practical engineering problems the number of additional states
in a Moore machine compared to its Mealy counterpart is generally very small.

 1.8 Mealy-to-Moore Conversion

 Mealy machines, too, can be converted into corresponding Moore machines. As seen
above, the former can be smaller than the latter, although the difference (in number
of states) in useful engineering applications is generally negligible.

 The conversion principle consists again of two steps, illustrated in fi gures 1.11a – c .
A Mealy FSM with three states is presented in fi gure 1.11a . The fi rst step, shown in
 fi gure 1.11b , consists of changing the notation from Mealy to Moore style. Because in
a Mealy machine the same state can exhibit more than one output value, the resulting
Moore diagram might have states with conditional outputs, such as state A in the fi gure.
The next step is to split each state into as many states as the possible output values.

Figure 1.11
Mealy-to-Moore conversion principle. (a) Original Mealy machine. (b) Mealy-to-Moore notation

change. (c) Splitting of state A into A ′ and A ″ . (d – f) Another example, following the same procedure.

The Finite State Machine Approach 15

This is shown in fi gure 1.11c , where only state A was split because it is the only state
with multiple output values. Another example is presented in fi gures 1.11d – f , follow-
ing the same procedure. The analysis of this example is left to the reader.

 Just as a check, note in fi gure 1.11c that the outward transitions of states A ′ and
A ″ are alike and that the equal transitions go to the same state, so A ′ and A ″ can be
merged. Observe in fi gure 1.11f that the pairs A ′ -A ″ and B ′ -B ″ also fulfi ll the merging
requirements, so they too can be merged.

 A fi nal example is presented in fi gure 1.12 . In fi gure 1.12a , the same Mealy machine
of fi gure 1.3c is shown (just reorganized horizontally). Note that there are four possible
transitions into state A, of which the fi rst three must produce y = ‘ 0 ’ while the last
one must produce y = ‘ 1 ’ (hence with two possible values for the output). On the other
hand, note that the transitions into states B and C must all produce a single output
value (y = ‘ 0 ’). The resulting intermediate diagram, with Moore notation, is shown in
 fi gure 1.12b . Because only state A has more than one output value (two values), only
A needs to be decomposed (into two states), resulting in the Moore machine shown
in fi gure 1.12c . The reader is invited to compare it against that presented earlier, in
 fi gure 1.3b .

 1.9 Algorithmic State Machine Chart

 An algorithmic state machine (ASM) chart is another way of representing a state
machine instead of using a state transition diagram. An ASM chart is a fl owchart-like
diagram containing information equivalent to that of the state diagram but generally
in a more textual, algorithm-like form.

Figure 1.12
Example of Mealy-to-Moore conversion (“ abc ” detector of fi gure 1.3c).

16 Chapter 1

As in fl owcharts, the main elements of ASM charts are rectangles (representing the
machine ’ s states) and diamonds (representing condition checks). An example is pre-
sented in fi gure 1.13 , which is equivalent to the “ abc ” detector of fi gure 1.3b .

 In large and/or complex designs, ASM charts tend to be cumbersome. Moreover —
 and more importantly — they do not convey the hardware aspects as clearly as state
transition diagrams. For these reasons, they are generally of limited use to hardware-
based designs.

 1.10 When to Use the FSM Approach

 Even though any sequential circuit can be modeled/designed using the FSM approach,
it is not always advantageous or necessary to do so. For example, if the circuit has
too many states (say, over 100), it might be not viable to represent it as a state ma -
chine. Also, if it has very few states (say two or three), it might happen that a direct
(experience-based) solution is straightforward. The number of control signals and the
number of transitions are also determinant factors in the decision on whether or not
to use the FSM approach.

 Four candidates for the FSM approach are depicted in fi gure 1.14 . The fi rst candi-
date, in fi gure 1.14a , has only one (big) loop, with perhaps one control input. This is
the case, for example, of regular counters (possibly with an enable input), which, as
already mentioned, constitute a classical example of circuits for which the FSM tech-
nique is not needed.

 The second candidate, in fi gure 1.14b , has few states, but proportionally more con-
nections than the previous case due to more control inputs, which might even include

Figure 1.13
ASM chart for the “ abc ” detector of fi gure 1.3b .

The Finite State Machine Approach 17

time (as will be shown in chapter 8, dealing with time-dependent transitions is more
complex than dealing with regular transitions), so this candidate is not as weak as the
previous one.

 The candidate in fi gure 1.14c has more states and more control inputs than the
previous one, resulting in a relatively strongly interconnected diagram. Consequently,
this is a strong candidate for the FSM approach.

 The fi nal candidate, in fi gure 1.14d , has many states and several control inputs,
resulting in a highly interconnected diagram. For this kind of candidate, the FSM
approach is indispensable.

 1.11 List of Main Machines Included in the Book

 — Arbiter (bus access)
 — Blinking light (with special features)
 — Car alarms (basic and with chirps)
 — Counters
 — Datapath controller for a greatest common divisor
 — Datapath controller for a largest-value detector
 — Datapath controller for a sequential divider
 — Datapath controller for a sequential multiplier
 — Datapath controller for a square root calculator
 — Datapath controller for an accumulator
 — Debouncers (single and multiple, without and with one-shot conversion and memory)

Figure 1.14
Weak and strong candidates for the FSM approach.

18 Chapter 1

— Divider
— Factorial calculator
— Flag monitor
— Garage door controller
— Greatest common divisor
— Hamming-weight calculator
— I 2 C (inter-integrated circuits) interface
 — Keypad encoder
 — LCD (liquid crystal display) driver
 — Leading-ones counter
 — Light rotator
 — Manchester encoders (regular and differential)
 — Memory interfaces (SRAM and EEPROM)
 — Multiplier
 — One-shot circuits
 — Parity detectors
 — Password detector
 — Pulse shifters
 — Pulse stretchers
 — Reference-value defi ners
 — RTC (real-time clock) interface
 — Serial data receivers
 — Serial data transmitters
 — SPI (serial peripheral interface)
 — String detectors
 — Strings comparators (short and long, with and without overlap)
 — Temperature controller
 — Traffi c light controller
 — Triggered circuits (bistable and monostable)
 — Vending machine controller

 1.12 Exercises

 Exercise 1.1: FSM Architecture
 Two sequential circuits are given in fi gure 1.15 . Rearrange each of them according to
the FSM architecture of fi gure 1.2 .

 Exercise 1.2: “ aabb ” Detector
 Draw the state transition diagram for an FSM capable of detecting the sequence “ aabb ”
(see example in fi gure 1.3) for the following cases:

The Finite State Machine Approach 19

 Figure 1.15

a) Using a Moore machine.
b) Using a Mealy machine.

Exercise 1.3: Equivalent State Transition Diagrams
a) Present a simplifi ed version (see fi gure 1.4) for the detailed state transition diagram
of fi gure 5.4b.
 b) Present fully detailed versions for the semidetailed state transition diagrams of
fi gures 5.7c and 8.16c.

 Exercise 1.4: Under- and Overspecifi ed State Diagrams
 a) Why is the state transition diagram of fi gure 1.16a said to be underspecifi ed? Fix it.
 b) Why is that of fi gure 1.16b said to be overspecifi ed? Fix it.

 Exercise 1.5: Transition Types
 List the types (conditional, timed, etc.) of all transitions in the following FSMs:

 a) Figure 8.12c.
 b) Figure 8.14b.

 Exercise 1.6: Moore-to-Mealy Conversion #1
 Consider the Moore machine of fi gure 3.4a.

 a) Are there states that can be merged in the Moore-to-Mealy conversion? Explain.
 b) Do the conversion. After fi nishing it, compare your result to fi gure 3.6a.

Figure 1.16

20 Chapter 1

Exercise 1.7: Moore-to-Mealy Conversion #2
Consider the Moore machine of fi gure 1.17a .

 a) Are there states that can be merged in the Moore-to-Mealy conversion? Explain.
 b) Do the conversion. Does your result have any relationship with fi gure 1.17b ?

 Exercise 1.8: Mealy-to-Moore Conversion #1
 Consider the Mealy machine of fi gure 3.6a.

 a) Are there any states that must be split in the Mealy-to-Moore conversion? Explain.
 b) Do the conversion. After fi nishing it, compare your result to fi gure 3.4a.

 Exercise 1.9: Mealy-to-Moore Conversion #2
 Consider the Mealy machine of fi gure 1.17b .

 a) Are there any states that must be split in the Mealy-to-Moore conversion? Explain.
 b) Do the conversion. Does your result have any relationship with fi gure 1.17a ?

Figure 1.17

2 Hardware Fundamentals — Part I

2.1 Introduction

This chapter and the one that follows discuss fundamental hardware-related aspects
and introduce new material essential to fully understand and correctly design fi nite
state machines in hardware. This chapter deals mainly with registers, and the next
deals with the complete state machine structure.

 The topics seen in these two chapters are used, reinforced, and expanded as the
subsequent chapters unfold, particularly in chapters 5 (theory for category 1 machines),
8 (theory for category 2 machines), and 11 (theory for category 3 machines).

2.2 Flip-Flops

Flip-fl ops are available in four versions: SR (set-reset), D (data), T (toggle), and JK. The
D-type fl ip-fl op (DFF) is a general-purpose fl ip-fl op and therefore the most commonly
used. However, because counters are among the most common digital circuits, and
counters are implemented with T-type fl ip-fl ops (TFFs), the TFF is also very popular.
Nevertheless, because a TFF can be obtained from a DFF by simply connecting an
inverted version of its output back to its input, the DFF is essentially the only fl ip-fl op
needed in most designs, no matter how big or how complex. For instance, the DFF is
the only fl ip-fl op fabricated in fi eld programmable gate array (FPGA) devices.

 The DFF is the fl ip-fl op used to build the state register (that is, the memory that
stores the machine ’ s state) in hardware-implemented fi nite state machines (see fi gure
1.2). It is also the fl ip-fl op used to build any other additional (optional or compulsory)
register that the machine might require. Consequently, it is important to review its
operation well.

 Figure 2.1a shows the symbol and truth table for a basic positive-edge-triggered
DFF. The inputs are d (data in) and clk (clock), while the output is q (data out). As can
be seen in the truth table, q + (which represents the next value of q) receives the value
of d when a positive clock transition occurs (gray table line) but remains unchanged

22 Chapter 2

under any other condition. For this reason, it is said that a positive-edge-triggered (or
simply positive-edge) DFF is “ transparent ” during positive clock transitions and
 “ opaque ” elsewhere.

 Figure 2.1b shows the symbol and truth table for a basic negative-edge-triggered
(or simply negative-edge) DFF (note the little circle at the clock input). This DFF is
 “ transparent ” during negative clock transitions (see last table line) and “ opaque ”
elsewhere.

 The behavior of any digital circuit can be expressed by means of its functional and
 timing responses. The former takes into account only the circuit ’ s logical functions,
thus conveying only its functional behavior, whereas the latter also takes into account
the propagation delays as the signals travel through the circuit, thus expressing the
circuit ’ s actual behavior. Both types of responses (functional and timing) are illustrated
next for fl ip-fl ops.

 Figure 2.2 shows (on the left) two DFFs, the fi rst having a reset (rst) input, and the
second a clear (clr) input. In the context of this book the difference between reset and
clear is that the former is asynchronous (it forces the output to zero regardless the
clock value), whereas the latter is synchronous (the output is forced to zero when the
proper clock transition occurs). It is important to mention, however, that these des-

Figure 2.1
Symbol and truth table for basic (a) positive-edge and (b) negative-edge DFFs.

Figure 2.2
DFF symbol with (a) reset or (b) clear, followed by examples of functional response. (c) Diagram

showing how clear can be implemented.

Hardware Fundamentals—Part I 23

Figure 2.3
(a) Time-related parameters of a DFF. (b) Example of timing response with t pCQ(HL) = t pCQ(LH) = 2 ns

and t pRQ = 1 ns.

ignations for reset and clear are not universal; for instance, FPGA companies usually
call both “ clear. ” The diagram in fi gure 2.2c shows how clear can be implemented;
note that when clr = ‘ 1 ’ , d is forced to ‘ 0 ’ , so at the next positive clock edge this ‘ 0 ’
will be copied to q , clearing the output.

 Examples of functional response for both cases are included in fi gure 2.2 . Arrows
were placed on the clock waveforms to highlight the only moments at which the DFFs
are transparent. As can be seen, the value of d is copied to q at each of these clock
transitions. Note, however, that when rst is asserted (fi gure 2.2a), the output is forced
to zero immediately, whereas when clr is asserted (fi gure 2.2b), the output is forced to
zero at the next positive clock transition.

 The timing response (with propagation delays taken into account) of a DFF is illus-
trated in fi gure 2.3 . A DFF with reset, similar to that of fi gure 2.2a , was considered.
The propagation delays are defi ned in fi gure 2.3a , where t pCQ(HL) and t pCQ(LH) represent
the propagation delays from clk to q (time interval between the clock edge and the
settling of q in the high-to-low and low-to-high transitions, respectively) and t pRQ is
the propagation delay between rst and q . In the example of fi gure 2.3b , the following
values were assumed: t pCQ(HL) = t pCQ(LH) = 2 ns and t pRQ = 1 ns (note the gray shades in
the q waveform; the distance between the vertical lines is 1 ns).

 A fi nal pair of time-related parameters defi ne the DFF ’ s forbidden region (also called
 aperture or transparency window). As shown in fi gure 2.4 , such parameters are called
 t setup and t hold , which specify, respectively, how long before and after the clock edge the

Figure 2.4
DFF ’ s forbidden region (d must remain stable within the aperture window).

24 Chapter 2

Figure 2.5
Examples of actual DFF constructions. (a, b) Very popular implementations (dynamic and static

versions, master-slave approach). (c, d) Two other commercial implementations (pulsed-latch

approach).

input signal must remain stable. If d changes within the transparency window, the
output value might be undetermined (further details on this are seen in the next
section).

 We conclude this section by presenting some examples of DFF constructions. The
cases in fi gures 2.5a,b are among the most commonly used, consisting of dynamic
and static versions for the same transmission-gate-based master-slave implementation.
Two other commercial cases are shown in fi gures 2.5c,d , both based on the short-clock
(pulsed latch) principle rather than on the master-slave approach.

 2.3 Metastability and Synchronizers

 Because many FSMs have control inputs that are asynchronous (that is, not related to
the FSM ’ s clock), such inputs can change during the state machine ’ s DFFs ’ forbidden
(aperture) window. This section describes what can happen in such cases and how its
effect can be reduced.

 This fact is illustrated in fi gure 2.6a , in which d changes precisely within the forbid-
den time interval (gray area). When this occurs, the output can go into an undeter-
mined (metastable) state that lasts a relatively long time before fi nally resolving for
 ‘ 1 ’ (path 1) or ‘ 0 ’ (path 2). If the metastable state resolves within one clock period (as
in the fi gure), at the next (positive) clock edge a valid value will be available (even

Hardware Fundamentals—Part I 25

though it might be different from the expected value); otherwise, an undetermined
value will be read.

 Synchronizers are circuits used to cope with metastability. The most common alter-
native is shown in fi gure 2.6b , consisting simply of a 2-stage shift register. In well-
designed DFFs the probability of metastability is very small so the probability of having
such a rare event going through both DFFs is extremely small. The obvious drawback
is the two-clock-period latency imposed by this circuit (exercise 2.2). When the (multi-
bit) data is accompanied by a control signal (data ready, fi gure 2.6c), only the control
signal should be synchronized.

 Another strategy to reduce the impact of having the input of a DFF change during
its forbidden time window, applicable to counters, consists in using Gray counters
instead of regular sequential counters (as reviewed in section 3.7, in a Gray counter
only one bit changes from one codeword to the next — this applies also to Johnson
counters). An example is depicted in fi gure 2.7a , which shows a partial diagram for
a frequency meter. Because the system must measure the frequency fx of x , x acts
as the clock to the corresponding counter; however, x and clk are uncorrelated, so a
two-clock-domain situation results. The value of fx must be stored into the output

Figure 2.6
Illustration of fl ip-fl op metastability and the use of synchronizers.

Figure 2.7
Partial diagram for a frequency meter (two clock domains). (a) Solution with a Gray counter. (b)

Solution with a synchronizer (so a regular counter can be employed).

26 Chapter 2

register periodically (every 1 s, for example, resulting in a reading in Hz), and at the
same time the counter must be reset in order to start a new counting. Because x and
clk are uncorrelated, the storage of fx into the register might occur while fx is changing
its value. If a sequential counter is used, several bits (or even all) can change from one
codeword to the next, but because in a Gray counter only one bit changes, the value
actually stored into the register cannot be off by more than one unit.

 For comparison, a solution with a synchronizer (so a regular counter can be used)
is included in fi gure 2.7b . Note that the synchronizer ’ s output must be a short pulse
(lasting only one clock period, T clk); otherwise the counter could be incremented mul-
tiple times for the same pulse of x . Additionally, if a pulse in x might last less than
 T clk , then an edge detector must also be included. (One-shot and edge-detecting circuits
are described in the next section.)

 A last class of circuits still involving the synchronous-asynchronous issue is pre-
sented in fi gure 2.8 . They are clock gaters , needed in applications where the clock signal
must be stopped (gated) during one or more clock periods (the I 2 C and SPI serial data
communications interfaces, studied in chapter 14, are examples where clock gating is
necessary). The purpose here should not be confused with clock gating for power-
saving reasons.

 Figures 2.8a – f relate to positive -edge-triggered FSMs. Figure 2.8a highlights the facts
that the machine operates at the positive clock edge and also that the clock-enabling
signal ena is just one of its outputs. This signal (ena) must stop the clock when low,
replacing the clock signal with a static-low value (analogous solutions can be easily
derived for a static-high value).

 The fi rst solution, shown in fi gure 2.8b , is asynchronous and requires just an AND
gate, where clk represents the main clock and gclk represents its gated version. The
advantage of this solution is that the clock is interrupted at the same time that ena =
 ‘ 0 ’ occurs (see gray shades in fi gures 2.8c – d). However, as depicted in the timing dia-
grams of fi gures 2.8c – d , the output is fi ne (glitch-free) only if the edge of ena reaches
the gater before the edge of clk does, a situation that, though possible (due to long,
unbalanced routings inside the chip), is very unlikely. Moreover, glitches in ena can
propagate to the output. For these reasons, the clock gater of fi gure 2.8b is not recom-
mended when the clock must be replaced with a static-low value.

 The second solution, shown in fi gure 2.8e , is fully synchronous, so occasional
glitches in ena are automatically fi ltered out. Also, note in fi gure 2.8f that the output
is fi ne regardless of the delay (positive or negative) between clk and ena . For these
reasons, the clock gater of fi gure 2.8e is recommended when the clock must be inter-
rupted and replaced with a zero. Its drawback is that now ena = ‘ 0 ’ must be produced
in the previous clock cycle (previous FSM state — see gray shades in fi gure 2.8f), being
therefore more error prone (requiring greater attention when preparing the corre-
sponding state transition diagram).

Hardware Fundamentals—Part I 27

Figure 2.8
Clock gating circuits. (a – f) For positive-edge-triggered FSMs. (g – l) For negative-edge-triggered

FSMs. Asynchronous (good and bad) solutions are shown in (b) and (h), and synchronous solu-

tions (usually recommended) are presented in (e) and (k), all accompanied by illustrative timing

diagrams.

28 Chapter 2

Figures 2.8g – l relate to negative -edge triggered FSMs. Figure 2.8g highlights the facts
that the machine operates at the negative clock edge and that ena is just one of its
outputs. Again, ena must stop the clock when low, replacing it with a zero.

 The fi rst solution, shown in fi gure 2.8h , is the same as that in fi gure 2.8b . However,
as depicted in the timing diagrams of fi gures 2.8i – j , the output is now fi ne (glitch-free)
when the edge of ena reaches the gater after the edge of clk does, which is what nor-
mally occurs, so this solution is generally fi ne. Recall, however, that ena must be
glitch-free.

 The second solution, shown in fi gure 2.8k , is fully synchronous, so occasional
glitches in ena are automatically fi ltered out. Also, note that in fi gure 2.8l the output
is fi ne regardless of the delay (positive or negative) between clk and ena (two DFFs are
needed here to guarantee that condition). This solution has the same drawback as that
of fi gure 2.8e ; that is, ena = ‘ 0 ’ must be produced in the previous clock cycle (see gray
shades in fi gure 2.8l), thus requiring a greater attention when developing the state
transition diagram.

 As a fi nal comment, it is important to mention that in many applications the
occurrence of metastability is not a problem, either because the metastable state
cannot cause a malfunctioning or because the application itself is not critical.

 2.4 Pulse Detection

 Because many FSMs have asynchronous inputs, the duration of such inputs must be
considered in the design. If an input pulse lasts at least one clock period (T pulse ≥ T clk),
its detection by the machine is guaranteed because at least one (positive) clock edge
will occur while the pulse is present. On the other hand, if the pulse might last less
than that, its detection is no longer guaranteed. Both cases are illustrated in fi gure
2.9a , where only the fi rst of the two pulses is detected by the circuit. Note the small

Figure 2.9
(a) Only input pulses with duration T pulse ≥ T clk are guaranteed to be detected, and the output

duration is proportional to the input duration. (b) Any pulse is detected, and the output duration

is always T clk .

Hardware Fundamentals—Part I 29

propagation delays left intentionally between the clock transitions and the corre-
sponding responses in outp in order to portray a more realistic situation.

 In some cases, the pulse (of any duration) must be detected and converted into a
pulse whose duration is one clock period. This is illustrated in fi gure 2.9b , where both
pulses are detected, and each produces an output pulse with duration T clk .

 A circuit that shortens the output pulse down to a predefi ned length (T clk in the
present case) is called a one-shot circuit, whereas one that detects short pulses is called
an edge detector . Both are present in the example of fi gure 2.10 , so pulses of any length
can be detected and converted into pulses with one-clock-period duration.

 The fi rst circuit in fi gure 2.10 is the edge detector, which consists simply of a DFF
plus a reset mechanism. Note that to be able to detect short pulses, inp is connected
to the clock port instead of the data port. Because the data input is connected to V DD

(‘ 1 ’), the output goes immediately to ‘ 1 ’ when a positive edge occurs in inp . Some time
later (see exercise 2.4), this ‘ 1 ’ reaches inp sync , resetting the input DFF, which will remain
so until a new positive transition occurs in inp .

 The second circuit in fi gure 2.10 is the synchronizer, already seen in the previous
section.

 The third and fi nal circuit before the application is the one-shot circuit. Because
of the AND gate, as soon as inp sync goes to ‘ 1 ’ , outp goes to ‘ 1 ’ . However, at the next
(positive) clock edge, this value of inp sync crosses the DFF, bringing outp back to ‘ 0 ’ ,
which it will remain until another pulse occurs at the input and the whole procedure
is repeated. This one-shot circuit, however, works well only when the input is syn-
chronous (see exercise 2.3), which is the case here.

 Another circuit with the same purposes as that in fi gure 2.10 is discussed in exercise
2.5. In the chapters ahead, examples employing this kind of circuit are seen.

 2.5 Glitches

 Glitches are short voltage (or current) pulses produced involuntarily by combinational
circuits. It is said that a hazard exists when the possibility of glitches in the circuit exists.

Figure 2.10
Circuit capable of detecting pulses of any width, producing a pulse with fi xed length (one clock

period) at the output (outp).

30 Chapter 2

Even though glitches are not a problem in many designs, it is important to be aware
of their existence and understand how they can be eliminated when that is necessary.
An example in which glitches can be disastrous is when a signal is used as a clock
because then the associated fl ip-fl ops can be (improperly) triggered by the glitches.

 Figure 2.11 shows the glitch types, which can be static (single pulse) or dynamic
(multiple transitions). A static glitch is said to be of type static-0 when the signal
should remain stable at ‘ 0 ’ but a pulse toward ‘ 1 ’ occurs. The meaning of static-1
glitches is analogous.

 An example of a circuit subject to glitches is presented in fi gure 2.12a , which imple-
ments the function y = a ⋅ c + b ⋅ c ′ . The corresponding Karnaugh map is shown in fi gure
2.12b , where two prime implicants can be observed. Although the value of y is ‘ 1 ’ for
both abc = “ 111 ” and abc = “ 110 ” , when the input transitions from the former to the
latter, the involved propagation delays can produce a glitch at the output. This is
illustrated in fi gure 2.12c , with a and b fi xed at ‘ 1 ’ and c changing from ‘ 1 ’ to ‘ 0 ’ (for
simplicity, it was considered that the propagation delays of all gates are equal). Figure
2.12e shows a solution for this problem, which consists of including a redundant
implicant covering the transition mentioned above, thus resulting in the circuit of
 fi gure 2.12d .

Figure 2.11
Glitch types.

Figure 2.12
(a) Combinational circuit implementing the function y = a ⋅ c + b ⋅ c ′ . (b) Corresponding Karnaugh

map. (c) Glitch generation when moving from abc = “ 111 ” to abc = “ 110 ” . (d, e) Glitch eliminated

by the addition of a redundant implicant.

Hardware Fundamentals—Part I 31

The problem with the solution above is that it covers only transitions in which just
one input value changes. Because in actual designs multiple inputs can change
(approximately) at the same time, this approach is of little practical interest.

An example in which more than one input can change is depicted in fi gure 2.13 ,
which consists of a Manchester encoder. Figure 2.13a shows the circuit ports, and
 fi gure 2.13b shows the waveform that must be produced at the output (dout must be
a ‘ 1 ’ -to- ‘ 0 ’ pulse when din = ‘ 0 ’ or a ‘ 0 ’ -to- ‘ 1 ’ pulse if din = ‘ 1 ’). Looking at the wave-
forms, we verify that dout = clk when din = ‘ 0 ’ or dout = clk ′ when din = ‘ 1 ’ , so this
encoder can be implemented with a simple multiplexer, as depicted in fi gure 2.13c .
Observe, however, in fi gure 2.13b , that clk and din can change at the same time, so
unfi xable glitches are potentially expected. Indeed, the last plot for dout in fi gure 2.13b
takes into account such a possibility (due to different propagation delays), resulting
in a series of glitches. Just for completeness, note that the trivial multiplexer of fi gure
2.13c , having the equation dout = clk ⋅ din ′ + clk ′ ⋅ din , can be implemented using just an
XOR gate for din and clk , as shown in fi gure 2.13d .

 If the combinational circuit is part of a synchronous system (as in state machines),
then there is a simple — and, more importantly, systematic and guaranteed — solution
for glitch elimination, which consists of passing the noisy signal through a DFF.
Because glitches in a synchronous signal can only appear right after a clock edge, when
such a signal is passed through a DFF the resulting output will be automatically free
from glitches. This procedure is illustrated in fi gure 2.14 , where d (synchronous) has
glitches but q has not. Note that there is a price to pay, however, which is one clock
cycle (if the same clock edge that produces d is used in the DFF) or one-half of a clock
cycle (if the opposite clock edge is employed) of delay with respect to the original

Figure 2.13
A circuit (Manchester encoder) in which multiple inputs can change at the same time, subjecting

the output to glitches that cannot be prevented with a combinational circuit.

Figure 2.14
Glitch elimination with a fl ip-fl op.

32 Chapter 2

signal. As a fi nal remark, observe that this technique is not OK when there are signal
transitions at both clock edges, as in fi gure 2.13b , but that is not the case in state
machines, so for FSMs this technique is fi ne.

 We conclude this section by calling attention to a confusion that often occurs in
inspecting simulation or measurement results. This is illustrated in fi gure 2.15 , which
shows a timing diagram for a three-bit counter. Because count is formed by more than
one bit, it might exhibit glitch-like information. This, however, does not mean that
actual glitches have occurred. Recall that two physical signals, due to different propa-
gation delays, will never change exactly at the same time (and they are not perfect
voltage steps anyway), so the value of count is expected to go through intermediate
values before reaching the fi nal value. As an example, in the inset of fi gure 2.15 count
goes through 3 → 2 → 0 → 4 instead of moving straight from 3 to 4, even though
glitches have not occurred. In conclusion, to inspect glitches, we must examine only
one bit at a time.

 2.6 Pipelined Implementations

 Figure 2.16a shows a common architecture for high-speed synchronous systems. Each
circuit — possibly designed by a different team or from an IP (intellectual property)
cell — is constructed in RTL (register transfer logic) fashion, resulting in a pipelined
implementation. In other words, combinational logic blocks (L 1 , L 2 , etc.) are followed/
separated by registers (R 1 , R 2 , etc.) (registers are just DFF banks). The advantage of
having a register as the fi nal stage element is that the time behavior of DFFs is well
known, so the overall timing response can be safely predicted, allowing the clock speed
to be maximized.

 To illustrate this, say that circuit 2 is constructed using only L 2 -R 2 -L 3 . In this case,
after a clock edge occurs, the total output propagation delay will be that through R 2
(t pCQ of fi gure 2.3a) plus that through L 3 . However, contrary to R 2 , whose construction
and parameters are known in advance, L 3 varies from one design to another and with
the routing, making the time response more diffi cult to predict. Because the absence
of R 2 increases the stage ’ s propagation delay, the maximum clock speed gets reduced.

Figure 2.15
Glitch interpretation (bits must be examined individually).

Hardware Fundamentals—Part I 33

On the downside, pipelining increases the latency (number of clock cycles needed
for a signal to travel though the system), which is not always acceptable. Conse-
quently, both approaches (with and without the output register) are needed, and the
choice of one or the other will be determined by the application.

The example in fi gure 2.16a contains only loopless stages, but looped circuits can
also be found (generally, more diffi cult to design), as in circuit 4 in fi gure 2.16b . FSMs
fall in the looped category.

 To conclude this section, let us look at the order (input – output latency) of the
synchronous circuits just described (fi gure 2.16). Circuits 1 and 3 are order-1 synchro-
nous because the input – output transfer takes one clock cycle. Circuit 2 is order-2
synchronous because the transfer takes two clock cycles. Finally, circuit 4 is order-1
synchronous because its input affects L 2 directly, so its effect shows up at the output
after just one clock cycle (L 2 -R 2 pair).

 2.7 Exercises

 Exercise 2.1: DFF Response
 Figure 2.17 shows waveforms for the clock, reset, and data inputs to the DFF of fi gure
2.2a .

Figure 2.16
RTL pipeline (a) with loopless circuits only and (b) with a looped circuit.

Figure 2.17

34 Chapter 2

a) Sketch, on the left, the DFF ’ s functional response.
 b) Sketch, on the right, the timing response. Assume t pCQ(LH) = 2 ns, t pCQ(HL) = 3 ns, and
t pRQ = 1 ns (the vertical lines are 1 ns apart).

 Exercise 2.2: Metastability and Synchronizers
 A popular synchronizer was presented in fi gure 2.6b and repeated in fi gure 2.18 along
with an illustrative timing diagram.

 a) What do the gray areas in fi gure 2.18b represent?
 b) Which time parameters defi ne the aperture window ’ s width?
 c) Is it desirable that the aperture window be as narrow as possible or as wide as
possible?
 d) Why must d remain stable during that time interval? What is metastability?
 e) Why can synchronizers reduce the effect of metastability?
 f) Given the asynchronous input d shown in the fi gure, draw the waveforms for q 0
and d sync . (The initial part of q 0 was already drawn; the delay included between the
clock edge and the signal edge is t pCQ(LH) .)
g) At which positive clock edge (fi rst, second, etc.) after d goes up does the signal
actually delivered to the FSM (d sync) go up?
 h) Two short pulses (lasting less than one clock period) are included in the d wave-
form. Are they always detected? Explain.

 Exercise 2.3: Basic One-Shot Circuit
 Figure 2.19a shows the same elementary one-shot circuit seen in fi gure 2.10 , which
must produce at the output a pulse with a fi xed (one clock period) duration every
time the input goes up.

Figure 2.18

Figure 2.19

Hardware Fundamentals—Part I 35

a) It is said in section 2.4 that this circuit is fi ne only if the input is synchronous.
In fi gure 2.19b , two illustrative pulses are shown for x , the fi rst assumed to be
synchronous (produced by the same clock that commands this DFF; the delays
between the clock edges and the pulse edges are just t pCQ) but the second not.
Draw the waveforms for q and y , and confi rm what was said about the output
pulse duration.
 b) It is also said that the input must last at least one clock period. Why?
 c) Why is this circuit called a “ one-shot ” circuit? Does x need to return to ‘ 0 ’ for it to
produce the intended pulse?

 Exercise 2.4: Fast Synchronized One-Shot Circuit #1
 Figure 2.20a shows the same arrangement of fi gure 2.10 , implementing a fast one-
shot circuit with asynchronous, and possibly short, input. This circuit is capable of
detecting input pulses shorter (and also longer, of course) than the clock period,
producing at the output a pulse whose duration is always one clock period. Figure
2.20b shows the main signals involved in this circuit, with the plots for the clock
and for the input (x) already completed (some helping arrows are also included in
the fi gure).

 a) Draw the waveforms for the internal (i 1 to i 4) and output (y) signals. Do not forget
to leave a little delay between a signal transition and the corresponding response.
 b) What are the minimum and maximum durations of i 1 (in clock periods)? Why is
the initial (edge detector) DFF also called a “ stretcher ” ?
 c) What are the durations of i 2 , i 3 , i 4 , and y (in clock periods)?
 d) At which clock edge (fi rst, second, etc.) after x goes up does y go up?

Figure 2.20

36 Chapter 2

e) Note that the second pulse of x is shorter than one clock period and does not
coincide with any positive clock transition. Is the overall circuit able to capture this
pulse?
 f) Is y subject to glitches? Explain.

 Exercise 2.5: Fast Synchronized One-Shot Circuit #2
 This exercise is an extension to the previous one. Figure 2.21a shows another synchro-
nized one-shot circuit capable of detecting short pulses at the input while still produc-
ing a one-clock-period-long pulse at the output. All involved signals are included in
 fi gure 2.21b , with the plots for the clock and for the input (x) already completed (some
helping arrows were also included in the fi gure).

 a) Draw the waveforms for q , q 0 , and y . Do not forget to leave a little delay between
a signal transition and the corresponding response.
 b) What are the minimum and maximum durations (in clock periods) of q ?
 c) What are the durations (in clock periods) of q 0 and y ?
 d) At which clock edge (fi rst, second, etc.) after x goes up does y go up?
 e) Note that the second pulse of x is shorter than one clock period and does not coin-
cide with any positive clock transition. Is the overall circuit able to capture this pulse?
 f) Is y subject to glitches? Explain.
 g) Compare this circuit to that in fi gure 2.20 and comment on the respective advan-
tages and disadvantages.

 Exercise 2.6: Pipelined Construction
 Figure 2.22 shows a complete two-stage pipeline, with L i and R i representing the logical
blocks and the registers (DFFs), respectively. The propagation delays are also included
in the fi gure, with low-to-high and high-to-low delays considered to be equal.

Figure 2.21

Hardware Fundamentals—Part I 37

a) Draw the corresponding timing response in the lower part of the fi gure, where i 1
and i 2 represent internal signals. Consider that the vertical lines are 1 ns apart and,
for sketching purposes, that L 1 and L 2 are just buffers.
 b) After how many positive clock edges does the input pulse reach each output?
 c) Which output (outp1 or outp2) is fully pipelined? Which has superior time predict-
ability? Why?

 Exercise 2.7: Glitch-free Clock Gater
 All four possible clock-gating cases are depicted in fi gure 2.23. Cases 1 and 2 relate to
FSMs operating at the positive clock edge, whereas cases 3 and 4 are related to FSMs
operating at the negative clock edge. In cases 1 and 3, the clock, when interrupted, is
replaced with a zero, whereas in cases 2 and 4, it is replaced with a one.

 a) Asynchronous and synchronous solutions were discussed/developed for cases 1 and
3 (see fi gure 2.8). Do the same for cases 2 and 4.
 b) Can you devise other solutions (different from those presented in the book) for
cases 1 and 3?

Figure 2.22

Figure 2.23

3 Hardware Fundamentals — Part II

3.1 Introduction

This chapter is a continuation of the previous chapter. It completes the study of fun-
damental hardware-related aspects that are essential to fully understand and correctly
design fi nite state machines in hardware. Whereas chapter 2 dealt mainly with regis-
ters, chapter 3 deals with the complete state machine structure.

 The topics seen in these two chapters are used, reinforced, and expanded as the
subsequent chapters unfold, particularly in chapters 5 (theory for category 1 machines),
8 (theory for category 2 machines), and 11 (theory for category 3 machines).

3.2 Hardware Architectures for State Machines

State machines are looped circuits, as already illustrated in fi gure 1.2a. They can be of
Moore or Mealy type, depending on how the input is connected to the combinational
logic blocks. We want to verify here how FSMs are related to the pipeline models
described in section 2.6.

 Figure 3.1a shows a Moore machine, characterized by the fact that the input is
connected only to block L 1 (recall that L 1 and L 2 represent logic blocks and that R 1
and R 2 are registers). Note the feedback loop from R 1 to L 1 , which is the most funda-
mental characteristic of any FSM. Observe also that the machine itself contains only
the L 1 -R 1 -L 2 stages, so if a full pipeline is desired, the optional register R 2 must be added.
An equivalent representation is shown in fi gure 3.1b ; the purpose of this arrangement
is to emphasize the feedback loop.

 Figure 3.1c shows a Mealy machine, characterized by the fact that the input is
now also connected to block L 2 . Note that again the machine itself contains only the
L 1 -R 1 -L 2 stages. An equivalent representation is shown in fi gure 3.1d , again emphasiz-
ing the feedback loop.

 The optional output register can be used to obtain a fully pipelined implementation
with better time predictability and higher clock speed or for glitch removal, as seen

40 Chapter 3

in section 2.5. The consequence of this extra register is that the new output will be
delayed with respect to the original output by either one clock cycle (if all registers
operate at the same clock edge) or by one-half of a clock cycle (if they operate at
opposite clock edges). If it is a Moore machine, and this extra delay is a problem in
the application, the Mealy option should be considered. Obviously, if the extra register
is being added to obtain a pipelined construction, such a latency increase is probably
not a problem.

 The state machine diagram of fi gure 3.1d is shown with additional details in fi gure
3.2 . The original machine is depicted in fi gure 3.2a, while fi gure 3.2b shows the
machine plus the optional output register (identifi ed as out-registered FSM or pipelined
FSM). Note the following in fi gure 3.2a :

 1) The lower section is purely sequential (contains only DFFs) and comprises the state
register (it stores the state of the FSM). Therefore, clock and reset signals are connected
only to that section.
 2) The signal stored in the DFFs is called pr_state (present state), whereas the signal
to be stored in the DFFs at the next clock tick is called nx_state (next state).
 3) The upper section is purely combinational (hence memoryless).
 4) The upper section is divided into two parts, one producing the actual (outward)
output, the other producing the circuit ’ s next state.

Figure 3.1
Pipelined hardware representations for (a) Moore and (c) Mealy machines. (b, d) Equivalent

representations highlighting the feedback loop.

Hardware Fundamentals—Part II 41

5) The upper section has two inputs. That called input is external and, depending on
the application, might not exist (as in the example of fi gure 1.2b). That called pr_state
is internal and mandatory.
6) There are three input options (fi gure 3.2c): with no external input (Moore); with
the input connected only to the nx_state logic block (connection 1; Moore); and with
the input connected to both logic blocks (connections 1 and 2; Mealy).
7) Finally, note the extra register at the output (fi gure 3.2b) for glitch removal or
pipelined implementation.

3.3 Fundamental Design Technique for Moore Machines

This section describes a fundamental design technique for Moore machines. It is a “ by
hand ” design; in the succeeding chapters, the designs are developed with VHDL and
SystemVerilog.

 As seen above, from a hardware perspective a Moore machine can be represented
as in fi gures 3.2a,b , but having only connection 1 or no external input at all (except,
of course, for clock and reset). The corresponding design procedure, consisting of fi ve
steps, is summarized below. The fi rst four steps relate to the FSM proper, and the last
step regards the optional output register.

Step 1: Draw the state transition diagram.
Step 2: Based on the state diagram, write two truth tables, one for the next state
and the other for the output. Then rearrange the truth tables, replacing the state
names with signal names (q for fl ip-fl op outputs, d for fl ip-fl op inputs) and using
corresponding binary values. To do this, choose fi rst the encoding style (described in
section 3.7).

Figure 3.2
FSM architectures and input connection options.

42 Chapter 3

Step 3: Extract, from the rearranged truth tables, the optimal Boolean expressions for
nx_state and for the output.
Step 4: Draw the corresponding circuit, placing all fl ip-fl ops (DFFs only) in the lower
section and the combinational logic for the expressions derived above in the upper
section (as in fi gure 3.2a).
 Step 5 (optional): Analyze the application and include the extra register (for glitch
removal or pipelining) if you conclude that it is necessary.

 To illustrate this design technique, let us consider the circuit of fi gure 3.3a , which
must detect the sequence “ 010 ” in the single-bit data stream x, producing y = ‘ 1 ’ at
the output when such a sequence occurs. As depicted in fi gure 3.3b , overlaps are not
allowed (if they were allowed, the trivial solution of fi gure 3.3c could be used).

 Step 1: The corresponding Moore diagram is presented in fi gure 3.4a .
 Step 2: The truth tables for nx_state and y are in fi gures 3.4b,c . To make the procedure
clearer, the tables were written fi rst using the state names, based directly on the
diagram of fi gure 3.4a ; then they were rearranged using signal names (q for fl ip-fl op
outputs, d for fl ip-fl op inputs) and binary values. Reset is connected directly to the
fl ip-fl ops, so it does not appear here.
 Step 3: From the truth tables, the Karnaugh maps of fi gure 3.4d are drawn, from
which the expressions for d 1 , d 0 , and y are obtained. Note that because this is a Moore
machine, the input should not affect the output directly, which can be confi rmed in
the expression for y (= q 1 ⋅ q 0), which does not contain x .
 Step 4: Based on the expressions obtained above, the circuit is drawn (fi gure 3.4e).
 Step 5: If glitches are not acceptable in this application, we must analyze the circuit
to check whether the implementation is subject to glitches. In the present example,
we saw that y = q 1 ⋅ q 0 . Moreover, we know that q 1 and q 0 can both change at the same
time (see in fi gure 3.4c that the transition between states one and two requires both
to change, but the output must remain low in both cases; depending on the routing
inside the chip, q 1 might go to ‘ 1 ’ before q 0 comes down to ‘ 0 ’ , so the AND gate will
produce a momentary ‘ 1 ’ — a glitch). The output DFF of fi gure 3.2b can then be added

Figure 3.3
FSM that detects the sequence “ 010 ” . (a) Circuit ports. (b) Operation example (overlaps not

allowed). (c) Trivial solution if overlaps were allowed.

Hardware Fundamentals—Part II 43

Figure 3.4
Moore machine for a nonoverlapping “ 010 ” detector. (a) State transition diagram. (b, c) Truth

tables for next state and output. (d) Corresponding Karnaugh maps and minimal Boolean expres-

sions. (e) Resulting circuit.

44 Chapter 3

to render a glitch-free y . (Recall the comments made earlier on increased latency and
possible use of a Mealy machine in this kind of situation.)

 Simulation results from the circuit of fi gure 3.4e , without the extra DFF, synthesized
using VHDL, are shown in fi gure 3.5 . Note the following (expected) results:

1) The output changes only at (positive) clock edges (Moore machines are
synchronous).
2) The output goes to ‘ 1 ’ at the fi rst (positive) clock edge after the sequence “ 010 ”
occurs.
 3) Overlaps do not cause the output to go to ‘ 1 ’ .
 4) Without the optional output DFF, glitches do occur at the output.

 3.4 Fundamental Design Technique for Mealy Machines

 This section describes a fundamental design technique for Mealy machines. It is a “ by
hand ” design; in the succeeding chapters, the designs are developed with VHDL and
SystemVerilog.

 As seen above, from a hardware perspective a Mealy machine can be represented
as in fi gures 3.2a,b with both input connections (1 and 2). The corresponding design
procedure is the same seen for Moore machines, with just one difference, in step 2,
as follows.

 Step 2: Based on the state diagram, write a single truth table , including both the next
state and the output. Then rearrange the truth table . . . etc.

 If the Moore-to-Mealy conversion technique introduced in section 1.7 is applied to
the Moore diagram of fi gure 3.4a , the Mealy diagram of fi gure 3.6a results. Its truth
table (including both nx_state and y) is shown in fi gure 3.6b . From this table, the

Figure 3.5
Simulation results from the nonoverlapping “ 010 ” detector of fi gure 3.4e (Moore type).

Hardware Fundamentals—Part II 45

Karnaugh maps and optimal Boolean expressions of fi gure 3.6c result. Finally, the
corresponding Mealy circuit is presented in fi gure 3.6d .

 Note that, contrary to the Moore case (previous section), here the expression for
the output (y) does include the input (x); that is, it is now y = q 1 ⋅ x ′ , whereas in the
Moore case it was y = q 1 ⋅ q 0 . This means that y can change asynchronously (that is, as
soon as x changes, independently from the clock), which occurs when q 1 = ‘ 1 ’ , because
then y = x ′ .

 The decision on using or not using the extra register (step 5) is similar to that for
Moore machines. However, because Mealy machines are asynchronous, if a project
accepts this type of circuit, glitches are generally of no relevance. An interesting use
for out-registered (pipelined) Mealy machines is to implement glitch-free Moore-like
circuits (details are shown in the next section).

Figure 3.6
Mealy machine for a nonovelapping “ 010 ” detector. (a) State transition diagram. (b) Truth table

for both next state and output. (c) Corresponding Karnaugh maps and minimal Boolean expres-

sions. (d) Resulting circuit.

46 Chapter 3

3.5 Moore versus Mealy Time Behavior

It is very important to understand the differences between Moore and Mealy solutions
well. To do that, let us compare the timing responses of the Moore and Mealy
circuits designed above for the nonoverlapping “ 010 ” detector (fi gures 3.4e and 3.6d ,
respectively).

 An example of timing response for the Moore circuit is presented in fi gure 3.7a .
The input sequence is x = { ‘ 0 ’ , ‘ 1 ’ , ‘ 0 ’ , ‘ 1 ’ , ‘ 0 ’ , ‘ 1 ’ , ‘ 0 ’ , ‘ 0 ’ }. Following the state transition
diagram of fi gure 3.4a , the sequence obtained for the present state is pr_state = { one ,
 two , three , zero , one , two , three , one }, shown in the corresponding plot of fi gure 3.7a .
Because y is ‘ 1 ’ when the machine is in state three and ‘ 0 ’ elsewhere, the resulting
output sequence (after a small propagation delay) is y = { ‘ 0 ’ , ‘ 0 ’ , ‘ 1 ’ , ‘ 0 ’ , ‘ 0 ’ , ‘ 0 ’ , ‘ 1 ’ , ‘ 0 ’ }.
Note that y is indeed synchronous because it can change only when the clock ticks
(at positive clock transitions in this example), and then remains fi xed during the whole
clock period. Because y is synchronous, glitches in y can happen only right after (posi-
tive) clock transitions (as already illustrated in fi gure 3.5). If the optional output
register is used (to remove glitches, for example), then a registered output y_reg results,
which is simply a (clean) shifted version of y . In other words, y goes to ‘ 1 ’ at the next
clock edge after the condition “ 010 ” occurs, while y_reg goes to ‘ 1 ’ at the second clock
edge after that sequence happens.

Figure 3.7
Time behavior of the nonoverlapping “ 010 ” detector. (a) For the Moore circuit of fi gure 3.4e. (b)

For the Mealy circuit of fi gure 3.6d .

Hardware Fundamentals—Part II 47

A similar analysis is presented for the Mealy circuit in fi gure 3.7b . The input
sequence is again x = { ‘ 0 ’ , ‘ 1 ’ , ‘ 0 ’ , ‘ 1 ’ , ‘ 0 ’ , ‘ 1 ’ , ‘ 0 ’ , ‘ 0 ’ }. Following the state transition
diagram of fi gure 3.6a , the sequence obtained for the present state is pr_state = {B,
C, A, A, B, C, A, B}. As shown in the state diagram, the output is ‘ 0 ’ in states A and
B, and it is x ′ in state C, thus resulting (after a small propagation delay) in the output
sequence y = { ‘ 0 ’ , x ′ , ‘ 0 ’ , ‘ 0 ’ , ‘ 0 ’ , x ′ , ‘ 0 ’ , ‘ 0 ’ }. Note that x appears in the list for y ,
which was expected because in a Mealy machine the input can affect the output
directly. For the same reason, this machine is asynchronous (note that in state C, y
changes independently of the clock). Observe also that, because it is asynchronous,
the shape of y can be quite strange, with values lasting less than one clock period.
On the other hand, observe the interesting shape of y_reg , which is exactly the same
as the shape of y in the Moore case. This means that when we want to get rid of
glitches and the consequent extra delay of an out-registered (pipelined) Moore
machine is not acceptable in the application, an out-registered (pipelined) Mealy
machine can be used.

 Another drawback of the original Mealy machine is that input glitches can propa-
gate to the output, as depicted in the plot for y in fi gure 3.7b .

 3.6 State Machine Categories

 We have already seen that state machines can be classifi ed into two types, based on
their input connections , as follows.

 1) Moore machines: The input, if it exists, is connected only to the logic block that
computes the next state.
 2) Mealy machines: The input is connected to both logic blocks, that is, for the next
state and for the actual output.

 In this section we introduce a new classifi cation, into three categories, based on
the transition types and nature of the outputs .

 As mentioned in section 1.2 (see Hardware- versus Software-Implemented State
Machines), designing a hardware-implemented FSM is generally (much) more complex
than designing a software-implemented FSM. To ease such a task, a very important
new classifi cation, from a hardware perspective and covering any state machine, is
introduced here (this classifi cation dictates the organization of the subsequent chap-
ters). Figure 3.8 is used as an illustration.

 Category 1: Regular (pure) state machines (studied in chapters 5 – 7): This category, illus-
trated in fi gure 3.8a , is the simplest. It consists of machines with only untimed transi-
tions and outputs that do not depend on previous (past) output values.
 Category 2: Timed state machines (studied in chapters 8 – 10): These consist of machines
with one or more transitions that depend on time, but still having only outputs that

48 Chapter 3

do not depend on previous (past) output values. In the example of fi gure 3.8b , the
fi rst transition is conditional, but the second is conditional-timed. Recall that, by
default, the timer is zeroed every time the FSM changes state and is kept stopped at
zero in the states where it is not needed (states A and C in fi gure 3.8b). Category 2
machines can have all four types of transitions (conditional, timed, conditional-timed,
and unconditional).
Category 3: Recursive state machines (studied in chapters 11 – 13): In this case, illus-
trated in fi gure 3.8c , the transitions can be timed, as in category 2, but now one or
more outputs depend on previous (past) output values. Such dependency is usually
expressed by means of recursive equations (the output is a function of itself). In this
example the output must keep in state B the same value that it had when the
machine left state A, whereas in state C the output must present the incremented
version of the value that it had when the machine left state B. This implies that
some sort of extra memory is required because the expressions y = y and y = y + 1
can only be evaluated if the value of y is available somewhere. Because this is a
hardware implementation, such auxiliary memory must be provided along with the
state machine.

 As will be seen in coming chapters, the classifi cation presented above will ease
immensely the design of hardware-based state machines (and no other classifi cation
is needed). The two fundamental decisions before starting a design are then the
following:

1) First, the state machine category (regular, timed, or recursive);
2) Second, the state machine type (Moore or Mealy).

Figure 3.8
State machine categories.

Hardware Fundamentals—Part II 49

3.7 State-Encoding Options

This section describes the main codes used for encoding the states of an FSM.
The most common encoding alternatives are sequential (also called binary), Gray ,
 Johnson , and one-hot , all illustrated in fi gure 3.9a for an eight-state FSM. Note that
the fi rst two require three bits, the third requires four bits, and the last one requires
eight bits.

 To illustrate the encoding options further, let us consider a machine with the fol-
lowing fi ve states (using VHDL notation):

 type state is (A, B, C, D, E);

 3.7.1 Sequential Binary Encoding
 The states are encoded using the conventional binary code (increasing order of cor-
responding decimal values; see fi gure 3.9a). For the type state above, three bits would
be needed, resulting A = “ 000 ” (decimal value = 0), B = “ 001 ” (= 1), C = “ 010 ” (= 2),
D = “ 011 ” (= 3), and E = “ 100 ” (= 4).

 The advantage of this encoding is that it requires the smallest number of fl ip-fl ops;
with N fl ip-fl ops (N bits), up to 2 N states can be encoded. The disadvantage is that it
might require more combinational logic than other encoding options (illustrated in
exercises 3.2 and 3.3), so the resulting circuit might be slightly slower.

Figure 3.9
(a) Main encoding options for an eight-state machine. (b) Regular sequential binary counter with

outputs converted to Gray code. (c) Johnson counter. (d) One-hot counter.

50 Chapter 3

3.7.2 One-Hot Encoding
At the other extreme is the one-hot code, in which only one bit is high in each code-
word, so with N fl ip-fl ops only N states can be encoded (see fi gure 3.9a). For the type
state above, fi ve bits would be needed, resulting in A = “ 00001 ” , B = “ 00010 ” , C =
 “ 00100 ” , D = “ 01000 ” , and E = “ 10000 ” .

 This code demands the largest number of fl ip-fl ops, but the amount of combi-
national logic tends to be smaller than that of other encodings (illustrated in
exercise 3.2), often leading to a slightly faster implementation. For big machines
(say, over 40 or 50 states), the hardware for this type of encoding tends to be
prohibitively large.

 Just to illustrate the one-hot code, fi gure 3.9d depicts a one-hot counter, which
consists simply of a shift register with a direct feedback loop. Note that the initial state
is q 3 q 2 q 1 q 0 = “ 0001 ” because the reset signal is connected to the reset port of three DFFs
and to the preset port of the other.

 3.7.3 Johnson Encoding
 This is an implementation in between the two above. With N fl ip-fl ops, 2 N states can
be encoded (see fi gure 3.9a). It does not require much more combinational logic than
the one-hot alternative, but it can encode twice the number of states. Each codeword
is obtained by circularly shifting the previous codeword to the left and inverting the
incoming bit. For the type state above, three bits would be needed, resulting A = “ 000 ” ,
B = “ 001 ” , C = “ 011 ” , D = “ 111 ” , and E = “ 110 ” .

 Just to illustrate the Johnson code, a Johnson counter is depicted in fi gure 3.9c ,
which consists simply of a shift register with an inverter in the feedback loop.

 An important property of this code is that the Hamming distance (number of bits
that are different) between any two adjacent codewords is just 1 (see fi gure 3.9a), so
it can be useful in the same applications as the Gray code, described below.

 3.7.4 Gray Encoding
 Gray code is similar to the sequential code in the sense that it too requires the least
number of fl ip-fl ops (with N fl ip-fl ops, up to 2 N states can be encoded), but the amount
of combinational logic can be slightly larger (illustrated in exercise 3.3) and the speed
slightly lower.

 This code too exhibits the property of unitary Hamming distance between any
two adjacent codewords, useful in certain implementations involving multiple
clock domains (recall comments of section 2.3). Because of this property, a Gray
 counter is free from glitches during state transitions (except when returning to the
initial state if the counter ’ s modulo is not a power of 2); consequently, if a Gray-
encoded FSM has a long path without branching, transitions along that path are
glitch-free.

Hardware Fundamentals—Part II 51

In a Gray code, each codeword is obtained by modifying the value of the rightmost
bit in the previous codeword such that a new codeword results (see fi gure 3.9a). For
the type state above, three bits would be needed, resulting in A = “ 000 ” , B = “ 001 ” , C
= “ 011 ” , D = “ 010 ” , and E = “ 110 ” .

 Just to illustrate the Gray code, a Gray counter is presented in fi gure 3.9b , which
consists simply of a regular sequential counter whose output is converted into Gray
code by means of the following expressions (see XOR gates in fi gure 3.9b): q(N − 1) Gray

= q(N − 1) Seq ; q(i) Gray = q(i +1) Seq ⊕ q(i) Seq for i = N − 2 to i = 0.

 3.7.5 Modifi ed One-Hot Encoding with All-Zero State
 Figure 3.10a shows an example using the true one-hot code described above for a
four-bit system (a four-state FSM). As expected, the bits of pr_state are { “ 0001 ” , “ 0010 ” ,
 “ 0100 ” , “ 1000 ” }. A modifi ed version, with bit zero inverted, is depicted in fi gure 3.10b .
The encoding is now { “ 0000 ” , “ 0011 ” , “ 0101 ” , “ 1001 ” }, thus containing the all-zero
codeword. This code has the same properties as the true one-hot code in the sense
that it too has a Hamming distance of 2 between any two codewords, and all code-
words can be identifi ed based on a single bit.

 The alternative of fi gure 3.10b is used, for example, by Altera ’ s Quartus II compiler
when synthesizing state machines using the one-hot option. The reason for doing so
is that all DFFs in Altera ’ s FPGAs (and Xilinx ’ s as well for that matter) are initialized
to a low output on power-up, so if an explicit reset port was not included in the design,
the machine will still be able to start from a specifi c state, avoiding improper initial-
ization and deadlock. More details on this are seen in sections 3.8 and 3.9, which
discuss the importance of reset in FSMs and how to implement safe FSMs.

Figure 3.10
(a) True one-hot encoding. (b) Modifi ed one-hot encoding (bit zero inverted), containing the

all-zero codeword.

52 Chapter 3

3.7.6 Other Encoding Schemes
Besides the encoding schemes described above, VHDL and SystemVerilog synthesis
compilers have at least two other options, known as user and auto . The former is a
user-defi ned encoding (the codeword for each state is specifi ed by the user), whereas
the latter is used to let the compiler choose the best encoding scheme based on the
target device. Typically, auto employs sequential encoding for small machines (for
example, up to four or fi ve states), then one-hot for medium-sized machines (for
example, up to 40 or 50 states), and fi nally sequential again (or an equivalent, such
as Gray) for larger machines. In general, auto is the compiler ’ s default option.

 The one-hot style is common in applications where fl ip-fl ops are abundant, such
as fi eld programmable gate arrays (FPGAs), whereas minimal-bit encodings (such as
sequential and Gray) are common in complex programmable logic devices (CPLDs)
and in compact, low-cost application-specifi c integrated circuits (ASICs).

 Chapters 6 and 7 show how to select the encoding scheme when using VHDL or
SystemVerilog, respectively.

 3.8 The Need for Reset

 If no reset signal is provided and no intentional circuit asymmetry exists (such that
a specifi c output state is favored), the initial state (output either low or high) of a
fl ip-fl op, on power-up, might be arbitrary. Because fl ip-fl ops are used to construct
the state register, the machine ’ s initial state would then also be arbitrary. In this
case, one of two situations will result: either the initial state is internal (that is,
belongs) to the machine or is external (does not belong) to it. Of course, if N bits
are used to encode a machine that has 2 N states, then the initial state can only
belong to the machine.

 When the initial state is internal, deadlock can still happen, but only in rare cases,
so the usual main consequence is a possibly undesirable sequence of events during
the fi rst few state transitions. If the initial state is external, however, deadlock is much
more likely, obviously in addition to the possibly undesirable sequence of events
during the fi rst few state transitions after the system converges to one of the FSM
states (assuming that deadlock has not occurred).

 To further illustrate this discussion, let us consider the four-state counter of fi gure
3.11a , whose states are encoded using one-hot code (the corresponding pr_state =
 q 3 q 2 q 1 q 0 vectors are shown below the state circles). The equations for nx_state = d 3 d 2 d 1 d 0
can be easily obtained using the method described in section 3.3, resulting d 3 = q 2 , d 2
= q 1 , d 1 = q 0 , and d 0 = q 3 . Consequently, if the initial state is q 3 q 2 q 1 q 0 = “ 0000 ” , for
example, d 3 d 2 d 1 d 0 = “ 0000 ” results; because nx_state = pr_state , a deadlock then occurs.
Indeed, based on the equations above, note that with one-hot encoding any time the
initial state falls outside the FSM the machine gets deadlocked.

Hardware Fundamentals—Part II 53

Another example is shown in fi gure 3.11b , now using regular sequential encoding.
Because the number of states is a power of two, all possible two-bit values belong to
the machine; since all internal states are deadlock-free, the whole machine is deadlock-
free. It is important to mention, however, that with sequential or Gray encoding full
code usage is not needed for an outside initial state to eventually converge to one of
the actual machine states, thus without deadlock.

 Deadlock prevention is necessary in any FSM, but in many applications it is also
required that the FSM start from a specifi c state and with proper transition control
conditions. For example, one might want the FSM used to implement a traffi c light
controller to start from a state that keeps the lights red in all directions for a few
seconds (on power-up, after an energy failure, for example) before it proceeds to its
regular operation. This requires an explicit reset signal if the DFFs initial state is
arbitrary.

 It is important to mention that there are devices (such as Altera ’ s and Xilinx ’ s
FPGAs) whose DFFs are automatically reset to ‘ 0 ’ on power-up. In that case, if the all-
zero codeword belongs to the code and is assigned to the intended initial state, the
FSM will be reset automatically.

 Still regarding the FPGAs mentioned above, whose DFFs ’ initial state is ‘ 0 ’ , note
that that does not reset the machine automatically when one-hot encoding is
used (see in fi gure 3.11a that “ 0000 ” is not part of the codewords list). However,
contrary to Xilinx ’ s XST synthesis compiler (of the ISE suite), which uses true
one-hot code, Altera ’ s Quartus II synthesis compiler uses the modifi ed one-hot
code seen in fi gure 3.10b , which does include the all-zero codeword, thus allowing
automatic reset.

 Figure 3.12 shows typical sources for the reset signal. In fi gure 3.12a it is generated
by a resistor-capacitor (RC) circuit; when the power is turned on, the voltage on C is
zero, so the full V DD voltage is applied to the rst input, resetting the circuit; the voltage
on C then grows (with a time constant R ⋅ C = 0.1 s), thus eventually reducing the
voltage on R (rst) to zero and so freeing the circuit from the reset command. In fi gure
3.12b , a specialized integrated circuit is used to generate the reset signal; if V DD falls
below a predefi ned threshold voltage, rst = ‘ 1 ’ is produced, resetting the target circuit.
Finally, in fi gure 3.12c , the reset signal is produced by another circuit that might
belong to the same system as the FSM (for example, another FSM to which this one

Figure 3.11
Four-state counter encoded with (a) one-hot and (b) sequential code.

54 Chapter 3

works as a secondary machine, or a watchdog circuit). The fi rst two cases are related
to the power supply, so they are power-related resets, whereas the last one can be
produced at any time.

 As a fi nal comment, it is important to mention that there are applications in which
reset is not necessary, either because the initial state is not important or because it is
set automatically by another signal (assuming that the machine is not subject to
deadlock). However, that is rarely the case, so the exclusion of reset should only be
done after very careful design analysis.

 Additional details on FSMs ’ initial state and deadlock are given in the next section.

 3.9 Safe State Machines

 The concept of safe state machines concerns deadlock-proof implementations.
 Figure 3.13 shows an FSM with fi ve states (A1 – A5), assumed to be encoded with

three-bit values, thus resulting in three states (B1 – B3) outside the machine. The machine
can start from or move to an external state when no proper reset is provided (when
the DFFs ’ initial state is arbitrary) or because of noise during regular operation (which
might fl ip one or more encoding bits). In this example the machine is able to auto-
matically recover when state B1 or B2 occurs (converging to state A1 or A3, respec-
tively), but it gets deadlocked if state B3 happens.

Figure 3.13
FSM with a nonconvergent external state (B3 causes deadlock).

Figure 3.12
Reset options (a) generated by an RC circuit, (b) generated by a specialized reset chip, and (c)

generated by another circuit possibly belonging to the same system as the FSM.

Hardware Fundamentals—Part II 55

Figure 3.14
Safe-machine analysis. (a) Example with three states and sequential encoding. (b) Corresponding

truth table for nx_state . (c) Resulting Karnaugh maps. (d – f) Three compositions for the critical

(free-fi lling) columns. (g) Resulting system if the option in f is used. (h) Optimal expressions for

 nx_state , which coincide with the (bad) case of e.

Note that the use of an explicit reset signal only prevents the fi rst possibility, not
the effect of noise. Consequently, for a truly safe FSM, the external states must also
be considered when the expressions for nx_state are developed. Other, less usual
mechanisms also exist, including the use of a watchdog that resets the machine in
case it remains in the same state longer than a predefi ned time limit, but this
would obviously be applicable only if the machine were expected to change its
state periodically.

 A detailed example is presented in fi gure 3.14 . The actual machine states are A1 – A3.
Because sequential encoding is used (note the codewords below the state circles in
 fi gure 3.14a), two bits are needed, resulting in one external state (B). We want to
examine the conditions needed for this machine to be able to recover in case state B
happens.

 By the method of section 3.3, the truth table for nx_state shown in fi gure 3.14b is
obtained, from which the Karnaugh maps of fi gure 3.14c result. Note in the latter that

56 Chapter 3

the column q 1 q 0 = “ 11 ” is the critical column because all elements in that column can
be fi lled indifferently with ‘ 0 ’ or ‘ 1 ’ , so a number of different equations can be used
for d 1 and d 0 . We have to make certain that the condition nx_state = pr_state (i.e., d 1 d 0
= q 1 q 0) never happens, either directly or through a loop in the external states, because
then deadlock will occur.

The maps of fi gure 3.14c were repeated in fi gures 3.14d – f for three different com-
positions of the critical columns. In fi gure 3.14d , all positions were fi lled with ‘ 1 ’ s, so
 d 1 d 0 = “ 11 ” results when q 1 q 0 = “ 11 ” (i.e., nx_state = pr_state) for both x = ‘ 0 ’ (upper
row) and x = ‘ 1 ’ (lower row), causing deadlock. In fi gure 3.14e , d 1 d 0 = “ 11 ” for x = ‘ 0 ’
(upper row) and d 1 d 0 = “ 10 ” for x = ‘ 1 ’ (lower row), so a deadlock would occur in the
former, and a convergence to state A3 would occur in the latter. Finally, the case in
 fi gure 3.14f has d 1 d 0 = “ 00 ” for x = ‘ 0 ’ and d 1 d 0 = “ 10 ” for x = ‘ 1 ’ , so both would con-
verge (to A1 and A3, respectively).

 Figure 3.14g shows the complete resulting state diagram (internal plus external
states) in case the encoding of fi gure 3.14f is adopted. As seen above, B converges to
A1 if x = ‘ 0 ’ or to A3 if x = ‘ 1 ’ , so this is a truly safe implementation.

 To conclude, the Karnaugh maps are repeated in fi gure 3.14h , in which the optimal
(minimal) expressions were adopted for nx_state (i.e., d 1 and d 0). Note that the result-
ing situation is that of fi gure 3.14e , subject, therefore, to deadlock. In summary, in
this example the optimal implementation from a hardware-saving perspective is not
the best implementation from a safety point of view.

 We conclude this section by showing, in fi gure 3.15 , a simple solution that is appli-
cable to FSMs that employ sequential encoding. M is the machine ’ s number of states.
If M = 20, for example, fi ve bits are needed, and the state values will range from 0 to
19. If at any moment (either at initialization or during regular operation) pr_state
happens to be above 19, it means that an external state has occurred, so a reset pulse
is produced (this reset can be combined with the original reset signal, if it exists, by
means of an OR gate). The fl ip-fl op in fi gure 3.15 is needed because the comparator
can have glitches at the output during state transitions (see, for example, fi gure 2.15).

 3.10 Capturing the First Bit

 This section discusses a common hardware need that occurs, for example, when data
is processed serially. In such cases there is often an input bit (here called dv , for data

Figure 3.15
A simple solution for truly safe state machines when using sequential encoding.

Hardware Fundamentals—Part II 57

valid) that is asserted during one clock cycle to inform that the data is ready (to be
stored, processed, etc.). In many cases the fi rst data bit (or vector) is made available
at the same time that dv is asserted, so one must be very careful not to miss that fi rst
bit (or vector).

 An example is shown in fi gure 3.16a , which consists of a serial data receiver. The
FSM must store the input data x in a register y . Note that it is a timed machine, which
must stay in state B during T clock cycles, where T is the number of bits of x to be
stored in y . This fi rst solution is of Moore type and employs the default clocking
scheme (everybody clocked at the same clock edge — positive by default — as indicated
in the rectangle in the upper part of the fi gure).

 An illustrative timing diagram for the FSM of fi gure 3.16a is presented in fi gure
3.16b , for x = “ 1011 ” (see the shaded area on the x waveform). The problem with this
solution is that it misses the fi rst bit of x because the machine only moves to state B
at the fi rst (positive) clock edge after dv = ‘ 1 ’ occurs (note in the fi gure that when the

Figure 3.16
Techniques for capturing the fi rst bit when it coincides with dv . (a, b) Bad Moore solution. (c, d)

Fine Moore solution. (e, f) Fine Mealy solution.

58 Chapter 3

fi rst clock edge occurs after the machine is in state B, bit 2 is captured by y (0) instead
of bit 1).

 The same FSM is used in fi gure 3.16c . However, even though the data (dv and x)
and the auxiliary register (for y) are still updated at the positive clock edge, the FSM
and its timer operate now at the negative clock transition. Note in the accompanying
timing diagram in fi gure 3.16d that again the proper values are produced for t (recall
that, by default, the timer is zeroed every time the FSM changes state, and here it is
kept stopped at zero in the states where it is not needed — state A in this example),
but now all bits are captured properly, resulting, in the end, y (3:0) = “ 1101 ” .

 A fi nal solution is shown in fi gure 3.16e , which consists of using a Mealy machine
instead of a Moore machine. Note in the accompanying timing diagram, in fi gure
3.16f , that this machine too works well, and now the default clocking scheme (every-
body operating at the same clock edge) is employed.

 Both solutions above require an auxiliary register (for y). This kind of FSM will be
studied in detail in chapter 11.

 3.11 Storing the Final Result

 This section discusses another need that sometimes arises in hardware imple-
mentations. It consists of wanting the fi nal result from one run of a process to
remain stable (constant, exhibited on a display, for example) until another run
is completed, with the new result replacing the old one and also remaining
unchanged until the next value is produced, and so on. It is also common in such
cases to have a control signal (dv , data-valid) that indicates when the input data
is ready, so data processing should commence. The dv signal, which generally
lasts one clock period but can also last for the entire process, can help produce the
desired feature.

 Figures 3.17a,b illustrate the case of dv lasting for the entire process (as usual, a
small propagation delay was included between a clock edge and its response in order
to portray a realistic situation). Note that in fi gure 3.17a , dv is updated at the positive
clock edge, which is the same edge at which the circuit operates (see the waveform
for output), whereas in fi gure 3.17b , dv is updated at the negative clock edge. As shown
in fi gure 3.17c , the negative edge of dv is used to store the fi nal result (assumed to be
 output = e ; see gray shade) into an auxiliary register. This result will obviously remain
unchanged until a new result overwrites it.

 The problem with the alternative in fi gure 3.17a is that the output value is unlikely
to have had enough time to settle, so an incorrect value will probably be registered.
This alternative would be unsafe even if dv lasted an extra clock period because of the
time delay between the edges of clk and dv .

Hardware Fundamentals—Part II 59

Figure 3.17
Storing the fi nal result. (a – c) dv lasts the entire process, so its falling edge is used to activate the

output register. (d – f) dv lasts only one clock period, so the falling edge of busy is used to activate

the register.

The alternative in fi gure 3.17b is obviously safe, but using the negative edge implies
that the output value has to be ready within T clk /2, which might reduce the circuit ’ s
maximum speed.

 Figures 3.17d,e illustrate the more usual case in which dv lasts only one clock cycle,
so an auxiliary signal (called busy in the fi gures) is needed to activate the register in
 fi gure 3.17f . To produce busy from dv , a pulse stretcher (studied in section 8.11.10)
can be used. However, because busy behaves exactly like dv in fi gures 3.17a,b , the same
limitations apply here.

 A completely different approach is presented in fi gure 3.18 . Note that, contrary to
the alternatives in fi gure 3.17 , which do not employ the actual clock to store the fi nal
result, clk itself is used to activate the output register in fi gure 3.18b , with dv used

60 Chapter 3

simply to produce an enable (ena) signal. The result is a truly synchronous, safe imple-
mentation. Two versions of ena are shown, updated either at the positive (ena +) or
negative (ena –) clock edge, which can be selected according to the application. This
kind of circuit (pulse shifter) is studied in section 8.11.9.

 3.12 Multimachine Designs

 State machine decomposition, also called state machine factoring, refers to FSMs
that are split into two or more machines to ease the design or to take advantage
of machines that have been designed previously. In more general terms, two or more
smaller FSMs are associated in order to produce the same results as a larger, more
complex machine.

 Typical associations/decompositions are depicted in fi gures 3.19a – c . A series
(cascade) association is illustrated in fi gure 3.19a; a parallel association is shown in
fi gure 3.19b; fi nally, an internal association (one machine is called as part of the other)
is depicted in fi gure 3.19c.

 An actual example is depicted in fi gure 3.19d , which shows an association that falls
in the case of fi gure 3.19c . The main FSM is a factorial (f = n !) calculator (details can
be seen in exercise 11.9), so a multiplier is needed; because a multiplier can also be
implemented using the FSM approach (see section 11.7.5), the latter is called as part
of the former.

 Another interesting example is presented in fi gure 3.20a , which shows a machine
with a pair of states that need to be repeated a number of times. If T is large (say
64; therefore, 130 states), it is impractical to represent this circuit as a regular FSM.
A solution for this problem is presented in fi gure 3.20b , with the original circuit
decomposed into two machines, the fi rst with three states, the other with two states,
regardless of the value of T . Note that the main machine has a “ superstate ” (SS)
that simply enables the secondary machine to run. When ena = ‘ 0 ’ , the secondary
machine remains in the reset state, whereas ena = ‘ 1 ’ causes it to fl ip back and forth
between states B and C during 2 T clock cycles (recall that the timer ’ s initial value

Figure 3.18
Truly synchronous alternative for storing the fi nal result, which consists of producing an enable

signal, so the actual clock is responsible for activating the register.

Hardware Fundamentals—Part II 61

is zero, so it runs from 0 to 2 T − 1 in this case), after which the machine moves to
state D.

 An example where this arrangement can be useful is in serial data communications,
as in the I 2 C interface (chapter 14), because a data vector must be transmitted (state
B) by the master, then an acknowledgment bit must be received from the slave (state
C), with these operations repeated until all data vectors have been sent out.

 Another area in which the use of multiple machines is relatively common is in
control units for CPUs, in which simpler instructions (e.g., load and store) are part of

 Figure 3.19
 Multimachine implementations with the FSMs associated (a) in series, (b) in parallel, or (c) with

one machine called as part of the other. (d) Example showing a factorial calculator, which needs

a multiplier, so the latter is called as part of the former.

Figure 3.20
(a) FSM with a repetitive pair of states. (b) Solution with FSM decomposition where the secondary

machine operates as a “ superstate ” to the main machine.

62 Chapter 3

more elaborate CPU instructions. Several examples with multiple machines are seen
in chapters 8 and 11.

3.13 State Machines for Datapath Control

The purposes of this section are to review datapath-related concepts and to describe
how state machines can be used to build the control unit that controls a datapath.
Because the control unit is generally the most complex circuit to design in this kind
of application, and the FSM approach is employed to do it, a study of state machines
for datapath control is indispensable.

 A popular datapath is that of microprocessors and microcontrollers, needed to
construct the CPU, write/read data to/from memory, communicate with peripherals,
and so on. Fundamental components for datapath construction are depicted in fi gure
3.21 . Note that they all have some type of control input (sel , ALUop , wrR , rdM , wrM ,
 wrPC , wrIR).

 Multiplexers are digital switches used to route data from one location to another;
in the case of fi gure 3.21 , when the selection (sel) input is ‘ 0 ’ , the upper input is passed
to the output, whereas a ‘ 1 ’ causes the lower input to be passed to the output. The
arithmetic logic unit (ALU), as the name says, is responsible for executing arithmetic
(+, − , *, /, …) and logic (AND, OR, XOR, …) operations; the operation is selected by
the ALU ’ s operational code, ALUop . Registers are simply DFF banks: for example, a
32-bit register is simply a set of 32 parallel DFFs; note the write-register (wrR) input,
which must be asserted for the input data to be stored into the DFFs (at the next posi-
tive clock edge). The data memory is used to store data during datapath operations;
it contains two control inputs, for reading from (rdM) or writing into (wrM) the

Figure 3.21
Main datapath components.

Hardware Fundamentals—Part II 63

memory. The program counter (PC) is a counter that keeps the instruction address;
observe the write-PC (wrPC) control input. Finally, the instruction register is respon-
sible for storing and decoding the instructions; note the write-instruction-register
(wrIR) control input.

 The control unit, shown in the lower part of the fi gure, is responsible for producing
all control signals. Its main input (besides clock and reset) is an opcode, based on
which the whole sequence of events needed for the datapath to perform the desired
computations is provided. An important aspect to observe is that the control unit,
although responsible for sequencing all of the computations, does not access the
data directly (except for some occasional trivial data monitoring). Instead, it just
makes the proper path manipulations such that the datapath itself produces the
intended results.

 A simple datapath is depicted in fi gure 3.22a , containing an ALU, two registers (A,
B), and a multiplexer. Four control signals are involved: selA (selects the data source
for register A), wrA and wrB (enable writing into registers A and B, respectively — at the
next positive clock edge), and ALUop (some of the ALU operations are listed in fi gure
3.22b). These four control signals must be generated by the control unit, based on
 opcode . For simplicity, clock and reset are generally omitted in datapath representations
(as in fi gure 3.22a), but they are obviously needed.

 As an example, say that the following computation must be performed by the data-
path of fi gure 3.22a : When an external input, called dv (data-valid bit), is asserted

Figure 3.22
(a) Datapath example. (b) Partial ALU ’ s opcode table. (c) Illustrative timing diagram for the fol-

lowing computation: inputs are stored into A and B, then added, with the result then stored into

A. (d) Corresponding Moore machine.

64 Chapter 3

(during one clock cycle), inpA and inpB must be added and the result stored in register
A (so we can assume opcode = dv).

 The overall datapath operation is illustrated in the timing diagram of fi gure 3.22c
(as usual, small propagation delays were left between the clock transitions and the
corresponding responses to portray a more realistic situation), which shows the
system clock (clk), the data-valid bit (dv), the four signals to be produced by the FSM
(selA , wrA , wrB , ALUop), and, fi nally, the machine ’ s state (pr_state) after every positive
clock transition.

 A very important aspect to observe, which often causes confusion and leads to
incorrect designs, is how data is stored in datapaths. Because the control unit does
not access the data directly but just provides the proper path for it, the storage occurs
 at the end of any write-enabling state. For example, note in fi gure 3.22c that wrA = wrB
= ‘ 1 ’ in the load state, which means that at the next clock edge (thus, at the end of the
 load state) the inputs will be stored in A and B (see comments at the bottom of the
fi gure). The same is true in the store state; because wrA = ‘ 1 ’ in it, at the next clock
edge (end of that state), the sum will be stored in A.

 A corresponding Moore-type solution is presented in fi gure 3.22d , which is a direct
translation of fi gure 3.22c (compare the values in the plots against those in the state
transition diagram). Note also in fi gure 3.22d that the list of outputs is exactly the same
in all three states, as required for hardware-implemented (as opposed to software-
implemented) FSMs, otherwise latches would be inferred (unless the optional output
register is included).

 The next example (fi gure 3.23) shows a relatively complete CPU datapath (based
on MIPS [Patterson & Hennessy, 2011]). It contains an ALU, four multiplexers (memory
address source, register data source, ALU source A, and ALU source B), several registers
(instruction register — IR, memory data register — MDR, general purpose register fi le,

Figure 3.23
A CPU datapath (based on the MIPS architecture).

Hardware Fundamentals—Part II 65

general purpose A and B registers, and the ALU register — ALUreg), plus a general
purpose data memory.

 As usual, a control unit (FSM) is needed to control the datapath, which produces
nine signals: AddrSource (to control the memory address source mux), DataSource (to
control the register data source mux), ALUSourceA (to control the ALU input-A mux),
 ALUSourceB (to control the ALU input-B mux), PCWr (to enable writing into the
program counter register), MemWr (to enable writing into the memory), MemRd (to
enable reading the memory), RegWr (to enable writing into the register fi le), and ALUop
(to defi ne the ALU operation). The control unit produces these signals based on the
opcode received from the instruction register/decoder.

 Each CPU instruction is broken down into a series of clock cycles, with each cycle
limited to one ALU operation plus storage or one memory/register access plus storage,
such that at the end of each cycle the data needed in the next cycle will be available
in one of the registers or in memory. For example, note in fi gure 3.23 that the data
read from the memory is stored in MDR, the data from the register fi le is stored in A
or B, and the ALU result is stored in ALUreg.

 Two partial examples of instructions executed by the CPU of fi gure 3.23 are depicted
in fi gure 3.24 , concerning the store word (SW) and load word (LW) instructions. As
shown in fi gure 3.24a , SW is composed of two main parts: SetAddr, in which the
memory address to which data will be written is set, and WriteMem, which causes
the data to be effectively stored (at the end of that state, as explained earlier). Note
the following in the SetAddr state: ALUSourceA = ‘ 0 ’ , so port A of the ALU is fed by
register A; ALUSourceB = ‘ 1 ’ , so port B of the ALU is fed by the IR; and ALUop = add,
meaning that the actual opcode will cause the ALU to add its inputs, thereby pro-
ducing the intended memory address stored in ALUreg. Note the following in the
WriteMem state: AddrSource = ‘ 1 ’ , so the address comes from the ALU register (as
expected); and MemWr = ‘ 1 ’ , so writing is enabled and will occur at the next (posi-
tive) clock edge. As a fi nal remark, note that the list of outputs is not the same in
both states (it should be for hardware-based implementations), which was done here
just for simplicity.

Figure 3.24
Partial state machines implementing memory access using the datapath of fi gure 3.23. Recall

that in an actual design the list of outputs has to be exactly the same in all states of an FSM.

66 Chapter 3

The LW instruction, depicted in fi gure 3.24b , is composed of three main parts:
SetAddr, responsible for setting the memory address from which data must be read;
ReadMem, which causes the data to be effectively read (at the end of this state); and
WriteReg, which causes the read data to be stored in one of the IR registers (again, at
the end of the state). The SetAddr state is similar to the previous case. Note the fol-
lowing in the ReadMem state: AddrSourceA = ‘ 1 ’ , so the address comes from the ALU
register (as expected); and MemRd = ‘ 1 ’ , so reading is enabled and the data will be
stored in MDR at the next (positive) clock edge. Finally, note the following in the
WriteReg state: DataSourceA = ‘ 0 ’ , so the data must come from MDR (as expected); and
 RegWr = ‘ 1 ’ , so the data will be written into the register pointed to by the IR at the
next (positive) clock edge.

 The reasoning used in the instructions above can be extended to all instructions
of a CPU, resulting in a generally large set of small state machines, collectively respon-
sible for implementing all of a CPU ’ s instructions.

 Points to Remember when Designing a Control Unit
 We close this section with some comments that can be helpful for the proper under-
standing and correct design of FSMs for datapath control.

 1) Sequential circuit and Moore machine: The control unit is normally the only sequen-
tial circuit in a datapath-based design (except for the PC, but this is just a basic counter;
registers are also clocked and so can be memories, but these act just as data storage
elements), and its design is normally based on the FSM approach. Moreover, because
control units are inherently synchronous, the Moore approach is generally preferred
(over Mealy). In the comments that follow, it is assumed that the Moore model was
adopted.
 2) No direct data access: Even though the control unit is responsible for sequencing
all datapath computations, it normally does not access the actual data directly (except
for occasional trivial data monitoring).
 3) Late data storage: Data storage in a datapath-based design is controlled by a write-
enable signal produced by the control unit. Because such a signal will be ready only
 after the clock edge that causes the machine to enter the write-enabling state, the
actual writing will only occur at the next clock edge, that is, at the end of that state (in
other words, it will occur just prior the moment at which the machine leaves the
write-enabling state).
 4) Dependency on input data: In some applications the machine must read/write data
and, based on the data value, make a decision on which state to go to next. Because
the data will be available only when the machine leaves the read/write state, the deci-
sion can obviously not be made yet. In such cases, a wait state must be included before
the decision can be made. This is illustrated in fi gure 3.25 . Assume that we are using
a datapath similar to that in fi gure 3.22a , where the inputs must be stored in registers

Hardware Fundamentals—Part II 67

A and B and then compared to decide where the machine should go next. In fi gure
3.25a the data-valid bit causes the machine to move from the idle state to the load
state; in the latter, wrA = wrB = ‘ 1 ’ , so when the machine leaves that state, the proper
data will be available for comparison. Therefore, in this machine the comparison will
actually be between the data values previously stored in A and B (a mistake). This was
fi xed in fi gure 3.25b with the inclusion of a wait state. (Recall that in a Mealy machine
the wait state is not needed, but the Mealy approach is rarely adopted in datapath-
related applications.)

 3.14 Exercises

 Exercise 3.1: Moore and Mealy Circuits
 a) Just by looking at the circuit of fi gure 3.4e , how can you tell that it is a Moore
machine?
 b) How can you tell that the circuit of fi gure 3.6d is a Mealy machine?

 Exercise 3.2: By-Hand Design of a Moore Machine #1
 We saw in section 3.7 that the number of DFFs and the amount of combinational
logic needed to build an FSM can vary substantially with the encoding style chosen.
In the “ by-hand ” design of section 3.3, sequential binary encoding was employed (e.g.,
 pr_state = “ 00 ” for state zero , “ 01 ” for state one , “ 10 ” for state two , and “ 11 ” for state
three).

a) Redo that design, again “ by hand, ” using Gray code (state zero → “ 00 ” , one → “ 01 ” ,
 two → “ 11 ” , three → “ 10 ”).
 b) Redo it again, now using true one-hot code (state zero → “ 0001 ” , one → “ 0010 ” ,
 two → “ 0100 ” , three → “ 1000 ”).
 c) Compare these three solutions (sequential, Gray, and one-hot). Which requires the
fewest DFFs? Which requires the least combinational logic? Which has the best time
predictability for the output?

Figure 3.25
Input-data-dependent decision in a Moore-type control unit. (a) Incorrect. (b) correct.

68 Chapter 3

Exercise 3.3: By-Hand Design of a Moore Machine #2
Consider the Moore machine of fi gure 5.7c, which implements a short-pulse
generator.

a) Design it “ by hand ” using sequential encoding. Show that y = q 0 .
 b) Design it using Gray encoding. Show that y = q 1 ′ · q 0 .
 c) Design it using the following user-defi ned encoding: A = “ − 0 ” , B = “ 01 ” , C = “ 11 ” .
Show that d 0 = x , d 1 = q 0 , and y = q 1 ′ · q 0 .
d) Draw all three circuits and show that the last one is the simplest.
e) Which of these circuits is/are guaranteed to have a glitch-free output, with better
time predictability? Explain.

Exercise 3.4: By-Hand Design of a Mealy Machine
a) Draw a Mealy-type state transition diagram for the parity detector of fi gure 5.5.
b) Design a circuit that implements this machine, with sequential encoding.

Exercise 3.5: Time Behavior of a Moore Machine
Say that the parity detector of fi gure 5.4b operates with the clock signal of fi gure 3.26 ,
receiving at the input the signal x also included in the fi gure. Draw the other two
waveforms (machine ’ s present state and output; the initial part of pr_state was already
fi lled). Does the output change only when the state changes?

 Exercise 3.6: Time Behavior of a Mealy Machine
 This exercise is a continuation of the one above.

 a) Draw a Mealy-type solution for the parity detector of fi gure 5.4.
 b) Say that this machine is operating with the clock of fi gure 3.27 , receiving the signal
 x also included in the fi gure. Draw the other two waveforms (machine ’ s present state
and output). Does the output change only when the state changes?
 c) Compare the time behavior of this Mealy solution against that of the Moore coun-
terpart developed in the previous exercise. Which is different (pr_state or y or both)
from one solution to the other?

Figure 3.26

Hardware Fundamentals—Part II 69

Exercise 3.7: State Machine Categories
What is the category of the machines in fi gures 1.3b, 1.3c, 3.4a, and 3.6a ?
 Why are the machines of fi gures 8.12c and 8.14b said to be of category 2?
 Why are the machines of fi gures 11.5b and 11.7b said to be of category 3?

 Exercise 3.8: State Encoding
 List the codewords used to encode the states of the garage door controller of fi gure
5.9c in the following cases:

 a) With sequential encoding.
 b) With Gray encoding.
 c) With Johnson encoding.
 d) With one-hot encoding.

 Exercise 3.9: Number of Flip-Flops
 Calculate the number of DFFs needed to encode an FSM with M = 8 or M = 33 states,
in the following cases:

 a) With sequential encoding.
 b) With Gray encoding.
 c) With Johnson encoding.
 d) With one-hot encoding.

 Exercise 3.10: Need for Reset #1
 Say that the FSM of fi gure 5.4b, which implements a basic parity detector, is encoded
using regular sequential encoding (so pr_state = ‘ 0 ’ in state zero and pr_state = ‘ 1 ’ in
state one).

 a) Are there any states outside the machine (i.e., unused codewords)?
 b) Is an explicit reset signal needed when this machine is implemented in an FPGA
(fl ip-fl ops reset automatically on power-up)? Can deadlock occur in this case?
 c) Answer the questions of part b when the fl ip-fl ops ’ initial state is arbitrary.

Figure 3.27

70 Chapter 3

Exercise 3.11: Need for Reset #2
This exercise concerns the parity detector of fi gure 5.5c, which has a data-valid (dv)
input. Assume that a reset input is not provided and that the circuit is implemented
in a device whose fl ip-fl ops ’ initial state (on power-up) is arbitrary.

 a) If the initial state falls inside the machine (in state zero , one , or hold_one), will the
circuit operate properly? Does this answer depend on the encoding scheme?
 b) Answer the same questions above for the case when the initial state falls outside
the machine.
 c) Prove that this FSM works well in both cases mentioned above if sequential encod-
ing is used and optimal (minimal) expressions are used for nx_state (d 1 , d 0).
d) Prove that it also works well in both cases mentioned above if one-hot encoding
is used and optimal (minimal) expressions are used for nx_state (d 2 , d 1 , d 0).
 e) Consider that sequential encoding is used. Show that if the “ don ’ t care ” bits are all
fi lled with ‘ 0 ’ s the machine is not subject to deadlock, but if they are all fi lled with
 ‘ 1 ’ s then deadlock can occur.
 f) Consider now that one-hot encoding is used. Show that in both cases (“ don ’ t care ”
bits all fi lled with ‘ 0 ’ s or all fi lled with ‘ 1 ’ s) deadlock can occur.

 Suggestion to solve parts c and d: First, review sections 3.8 and 3.9; next, use the
method seen in section 3.3 to fi nd the machine ’ s optimal expressions for nx_state ;
then apply the values of pr_state (i.e., q 1 and q 0 in c or q 2 , q 1 , and q 0 in d) and of the
transition conditions (dv and x) for the cases not used in the FSM encoding (states
 outside the machine) to the expressions derived to show that the results always con-
verge to states inside the machine.

 Exercise 3.12: Capturing the First Bit
 Two options for processing data correctly when the fi rst data bit is made available at
the same time that the data-valid (dv) bit is asserted were presented in fi gure 3.16 .
Show that the option in fi gure 3.16c will no longer work if the auxiliary register that
stores x operates at the falling clock edge.

 Exercise 3.13: Storing the Final Result
 Explain why the option in fi gure 3.18 is better than any of the options in fi gure 3.17
for registering a process ’ s fi nal result.

 Exercise 3.14: Multimachine Design
 In fi gure 3.20a, an FSM with a repetitive pair of states is shown, for which a solution
using two FSMs was presented in fi gure 3.20b . Complete the timing diagrams of fi gure
3.28 for the machines of fi gure 3.20b , assuming that T = 3.

Hardware Fundamentals—Part II 71

Figure 3.28

Exercise 3.15: Datapath Control
Assume that the datapath of fi gure 3.22a must operate as an add-and-accumulate
circuit (ACC), accumulating in A four consecutive values of inpB . The data-valid pulse
(dv), lasting only one clock period, must again start the four-iteration procedure, after
which the resulting value must remain displayed at ALUout until another dv pulse
occurs. In summary, the operations are: 0+B → A, A+B → A, A+B → A, and A+B → A.

 a) Draw an illustrative timing diagram (as in fi gure 3.22c) for an FSM that controls
this datapath.
 b) Draw a corresponding state transition diagram (as in fi gure 3.22d) for this machine.

 After solving the problem, check section 5.4.7.

4 Design Steps and Classical Mistakes

4.1 Introduction

This chapter presents a list of classical problems and mistakes that might occur in the
design of hardware-based fi nite state machines. Subsequently, a summary regarding
the main design steps is also presented.

4.2 Classical Problems and Mistakes

4.2.1 Skipping the State Transition Diagram
Probably the most error-prone step in the design of a circuit based on the state
machine approach is to think that it is fi ne to go straight from the specifi cations to
the design without sketching the state transition diagram (students sometimes believe
that they can “ see ” the state diagram in their minds). With this approach, states can
be missed, or, more likely, output values and state transitions may be ill specifi ed. This
step is critical because any error in the state transition diagram will invalidate the
whole effort, no matter how well the rest is done.

4.2.2 Wrong Architecture
Once one has been convinced that sketching the state transition diagram is indispens-
able, the next step is not to draw it but fi rst to decide which type the machine archi-
tecture should be used (a major mistake is to think that all machines are “ just the
same ”). A great effort has been made in this book to show that, when one is using
hardware (as opposed to software) to implement an FSM, the circuit architecture can
vary substantially from one problem to another. For that reason, a classifi cation into
three categories, which covers any state machine, was introduced in section 3.6 (see
fi gure 3.8), as follows: category 1 for regular state machines; category 2 for timed state
machines; and category 3 for recursive state machines.

 The fi rst decision is to select correctly in which of these categories the machine to
be designed falls. That not only will lead to the right circuit (optimal resources usage)

74 Chapter 4

but will also immensely reduce the design effort. The second important decision is to
choose between the corresponding Moore and Mealy architectures. The third and fi nal
architectural decision is whether to include or not in the FSM the optional output
register (fi gure 3.2b).

4.2.3 Incorrect State Transition Diagram Composition
As seen in section 1.3, the state diagram must obey three fundamental principles:

1) It must include all possible system states.
2) All state transition conditions must be specifi ed (unless a transition is uncondi-
tional), and such conditions must be truly complementary.
 3) The list of output signals must be exactly the same in all states (standard
architecture).

 Failing to comply with requisite 1 above will lead inevitably to an incorrect circuit.
Even though this seems an obvious step, there are situations in which subtle details
are involved, such as the inclusion of wait states to hold until the data to be inspected
is ready (as in fi gure 3.25, for example) or to suppress state bypass (as in fi gure 4.2 ,
for example).

 Condition 2 above requires that the complete set of transition conditions be neither
under- nor overspecifi ed; otherwise, a poor or incorrect circuit will again result. This
is a relatively common error that can be avoided by following the material seen in
section 1.5.

 Finally, requisite 3 determines that, for hardware implementations, the list of
outputs must be exactly the same in all states; otherwise, latches will be inferred,
wasting resources and making the time response less predictable. Because this is
by far the most common mistake, an example is provided in fi gure 4.1 . In fi gure 4.1a ,
 y is not specifi ed in state B. If this lack of specifi cation is the result of careless
analysis, an incorrect circuit will probably be implemented; otherwise, if the missing
specifi cation is because y should keep in state B the same value that it had when
the FSM left state A, then y = y should be entered, as depicted in fi gure 4.1b , making
the list of outputs exactly the same in all states and also clarifying what is indeed
wanted for y .

Figure 4.1
(a) State diagram with incomplete output specifi cations. (b) Corrected state diagram.

Design Steps and Classical Mistakes 75

4.2.4 Existence of State Bypass
The state-bypass problem occurs when the transition conditions for entering a state
coincide with the transition conditions for leaving that same state, and such condi-
tions are true during more than one clock cycle.

 As an example, consider the car alarm of fi gure 4.2a . If the alarm is in the disarmed
state and a command from the remote control (remote = ‘ 1 ’) is received, the machine
passes to the armed state, ready to detect any intrusions. However, if the remote = ‘ 1 ’
command lasts several clock cycles (as is generally the case) and the intrusion sensor
is off (sensor = ‘ 0 ’), the circuit goes back to disarmed , then returns to armed , and so on,
producing a kind of state bypass (in fact, the states are not exactly bypassed, but rather,
the machine remains in each state for just one clock period instead of staying there).
Note that in this example state bypass occurs even when sensor = ‘ 1 ’ .

 This problem can be solved with some kind of fl ag or, more clearly, with wait states,
as in fi gure 4.2b (white circles). Note that the wait1 and wait2 states wait until remote
returns to zero before allowing any other action to take place.

 The failure to prevent state bypass can lead to a circuit with occasional malfunc-
tioning that is very diffi cult to locate later. This is especially true when the state bypass
can only occur in very particular situations, which might have been overlooked in the
simulations and therefore remained undetected during the design phase.

 4.2.5 Lack of Reset
 In the design of any FSM the need for reset must always be considered (only few cases
are fi ne without an explicit reset port). Failing to do so can cause incorrect machine
initialization or even deadlock. A detailed analysis on the use of reset and its conse-
quences was presented in sections 3.8 and 3.9.

Figure 4.2
Car alarm (a) with and (b) without state bypass.

76 Chapter 4

4.2.6 Lack of Synchronizers
Many FSMs have asynchronous inputs, so metastability can occur if synchronizers are
not employed. Failing to analyze whether asynchronous signals are involved in the
design and the possible consequences of metastability to that particular application
can compromise the entire project. Material on the use and construction of synchro-
nizers and their consequences was presented in section 2.3.

4.2.7 Incorrect Timer Construction
Many engineering problems include timed decisions, leading to state machines
with time as a transition condition (see fi gure 1.8). Because timers are just counters
(therefore sequential circuits, which can then also be modeled as state machines),
one might be tempted to use the FSM approach to design them. There are two main
reasons for not doing so in general. The fi rst is that counters are standard circuits,
easily designed without the FSM approach. The second is that a counter might
have thousands of states and therefore would be impractical to represent as a regular
state machine.

 The recommended approach in such cases is to consider the timer (counter) as an
auxiliary circuit, implemented separately and acting as an input to the (main) state
machine. However, the state machine itself must be responsible for clearing the timer
at the proper moments as well as for stopping it or letting it run as needed. Such fi ne
details, sometimes overlooked, are fundamental to attain a correct and optimized
design. Such aspects are studied in chapter 8, which deals specifi cally with timed state
machines, and are reinforced in chapters 9 and 10, which show VHDL and System-
Verilog implementions for timed FSMs.

 4.2.8 Incomplete VHDL/SystemVerilog Code
 Once the state transition diagram has been correctly and completely constructed, we
can write a corresponding VHDL or SystemVerilog code to synthesize the circuit. The
problem is that here too the coverage of specifi cations might not be complete, even
if the state diagram is complete. Two common mistakes are described below, both
related to the combinational logic section of the FSM (more precisely, related to req-
uisites 2 and 3 listed in section 4.2.3).

 The fi rst mistake regards incomplete output specifi cations. One might believe that
when something was said in a previous state and nothing occurred there is no need
to say it again. For example, consider that we are using VHDL and the case statement
to implement the combinational logic section of an FSM as follows (do not worry
about code details for now; they are seen in chapter 6):

 --Bad: --Good:
 case pr_state is case pr_state is

 when A = > when A = >

Design Steps and Classical Mistakes 77

 output1 < = “0000”; output1 < = “0000”;
 output2 < = “01”; output2 < = “01”;
 nx_state < = B; nx_state < = B;

 when B = > when B = >
 output2 < = “10”; output1 < = “0000”;
 nx_state < = C; output2 < = “10”;

 when C = > nx_state < = C;
 output1 < = “1111”; when C = >
 output2 < = “11”; output1 < = “1111”;
 nx_state < = A; output2 < = “11”;

 end case; nx_state < = A;
 end case;

 Note in the code on the left that from state A the machine can only go to state B.
If the desired value for output1 while in B is the same as that in A, one might be
tempted to omit it in state B. Recall, however, that the upper section of an FSM is
combinational (thus memoryless), so there is nothing to prevent its output from chang-
ing when the machine leaves a state. For cases like the code above, the compiler will
generally infer latches, guessing that the designer wanted the machine to keep the
same value that it had in the previous state, which can produce an unsafe behavior
because the timing response of latches (built with regular gates) is diffi cult to predict
and is subject to race conditions.

 In summary, it is important to remember what was said earlier: the list of outputs
must be exactly the same in all states (so in this example it must contain output1 and
output2 in all states, as shown in the code on the right).

 The second mistake regards incomplete transition conditions specifi cations. For
example, consider again that we are using VHDL and the case statement to implement
the combinational logic section of an FSM as follows:

 --Moore machine: --Mealy machine:
 case pr_state is case pr_state is

 when A = > when A = >
 output < = < value > ; if < condition > then
 if < condition > then output < = < value > ;

 nx_state < = B; nx_state < = B;
 elsif... elsif...

 else else

 nx_state < = A; output < = < value > ;
 end if; nx_state < = A;

 when B = > end if;
 ... when B = >

 end case; ...
 end case;

 Both codes above are correct. Note that in both the if statement includes an else
part, which takes care of all remaining options. If this else were omitted, an

78 Chapter 4

underspecifi cation would occur, and the compiler might again infer unnecessary (and
undesirable) latches.

4.2.9 Overregistered VHDL/SystemVerilog Code
This is another common mistake. It is very important to be aware of the code sections
that infer registers and close such sections as soon as registers are no longer needed.

 An example is shown below, using VHDL. Any signal to which a value is assigned
under the if rising_edge(clk) statement will be registered, so that if must be closed
as soon as possible. The code on the left is constructed correctly. Note that the only
assignment under the if rising_edge(clk) statement is pr_state < = nx_state , so only
the machine state gets registered. Because the case statement used for the upper
section is outside that if statement, no fl ip-fl ops will be inferred for that part of the
machine, resulting in a truly combinational circuit for the upper section, which is
how it should be.

 The code on the right, on the other hand, is an example of an error-prone design.
Note that now the case statement is inside the if rising_edge(clk) statement, so the
output will also be registered. As we have already seen, there are cases in which the
optional output register is needed, but that is a case-by-case decision, not a forced
condition as it is in this code. Probably the worst aspect of this code is that the designer
might be completely unaware of what is actually happening. (Note that pr_state has
no effect in this process ’ sensitivity list.)

 --Good: --Error prone:
 --lower section of FSM: process (clk, pr_state)
 process (clk) begin
 begin if rising_edge(clk) then

 if rising_edge(clk)then --lower section of FSM:
 pr_state < = nx_state; pr_state < = nx_state;

 end if; --upper section of FSM:
 end process; case pr_state is
 --upper section of FSM: when A = >
 process (all) output < = < value > ;
 begin if < condition > then

 case pr_state is nx_state < = B;
 when A = > else

 output < = < value > ; nx_state < = A;
 if < condition > then end if;

 nx_state < = B; when B = >
 else ...

 nx_state < = A; end case;
 end if; end if;

 when B = > end process;
 ...

 end case;
 end process;

Design Steps and Classical Mistakes 79

4.3 Design Steps Summary

We close this chapter by summarizing the main steps that should be observed in
designing sequential circuits using the FSM approach.

1) Specifi cations analysis: Study the problem specifi cations carefully. As a fi nal step,
decide:

 a) The FSM category (regular, timed, or recursive) to be adopted.
 b) The FSM type (Moore or Mealy) to be used.
 c) Whether the optional output register should be included.

2) State transition diagram: Based on your analysis and conclusions above, carefully
draw the state transition diagram. The use of a detailed diagram (as in fi gure 1.4d) is
particularly recommended in complex designs or for beginners because it helps visual-
ize and assure that all transition conditions have been completely and correctly
covered.
3) Encoding style and resources usage: Decide which state-encoding option (e.g.,
sequential, Gray, Johnson, one-hot) will be employed in the design. After that, the
exact number of DFFs that will be needed to build the FSM can be calculated. Do it,
so your estimate can be compared later against the actual number reported by the
VHDL/SystemVerilog compiler (this is a very important checkpoint).
 4) Reset signal: Analyze your FSM and decide whether an explicit reset port is needed.
Recall that, as seen in sections 3.8 and 3.9, only occasionally is a state machine guar-
anteed to work properly without a dedicated reset signal.
 5) Input signals: Two fundamental features must be observed with respect to the
input signals. The fi rst regards the aspect of such signals. For example, they might
have glitches, or they might be too short or too long, so proper signal conditioning
might be required. The second regards synchronism. If any input is asynchronous with
respect to the FSM, analyze if metastability (section 2.3) can be critical to the applica-
tion. If that is the case, and no other part of the circuit is taking care of metastability,
add a synchronizer for each asynchronous input from which the machine must be
protected. Do not forget to take into account the latency that this will cause.
 6) Code and compilation: Write the corresponding VHDL/SystemVerilog code and
synthesize it (design by hand is viable only for very simple circuits). Compare the
number of fl ip-fl ops inferred by the compiler against your prediction.
 7) Simulation: Fully simulate your design (graphically or, preferably, with VHDL/
SystemVerilog testbenches). If the simulation is too time consuming, do functional
simulation fi rst until the design is debugged; then do timing simulation.
 8) Physical implementation: Finally, download the resulting FPGA programming fi le
(.pof or .sof) into the physical device in order to program it and proceed to the physi-
cal tests.

5 Regular (Category 1) State Machines

5.1 Introduction

We know that, from a hardware perspective, state machines can be classifi ed into two
types, based on their input connections , as follows.

 1) Moore machines: The input, if it exists, is connected only to the logic block that
computes the next state.
 2) Mealy machines: The input is connected to both logic blocks, that is, for the next
state and for the actual output.

 In Section 3.6 we introduced a new classifi cation, also from a hardware point of view,
based on the transition types and nature of the outputs , as follows (see fi gure 5.1).

 1) Regular (category 1) state machines: This category, illustrated in fi gure 5.1a and
studied in chapters 5 to 7, consists of machines with only untimed transitions and
outputs that do not depend on previous (past) output values.
 2) Timed (category 2) state machines: This category, illustrated in fi gure 5.1b and
studied in chapters 8 to 10, consists of machines with one or more transitions that
depend on time (so they can have all four transition types: conditional, timed,
conditional-timed, and unconditional). However, all outputs are still independent
from previous (past) output values.
 3) Recursive (category 3) state machines: This category is illustrated in fi gure 5.1c and
studied in chapters 11 to 13. It can have all four types of transitions, but one or more
outputs depend on previous (past) output values. Recall that the outputs are produced
by the FSM ’ s combinational logic block, so the current output values are “ forgotten ”
after the machine leaves that state; consequently, to implement a recursive (recurrent)
machine, some sort of extra memory is needed.

 As seen in this and in upcoming chapters, the classifi cations mentioned above
(no other classifi cation is needed) will immensely ease the design of hardware-based

82 Chapter 5

state machines. The two fundamental decisions before starting a design are then the
following:

1) Decide the state machine category (regular, timed, or recursive).
2) Next, decide the state machine type (Moore or Mealy).

 It is important to recall, however, that regardless of the machine category and type,
the state transition diagram must fulfi ll three fundamental requisites (seen in section
1.3):

 1) It must include all possible system states.
 2) All state transition conditions must be specifi ed (unless a transition is uncondi-
tional) and must be truly complementary.
 3) The list of outputs must be exactly the same in all states (standard architecture).

 5.2 Architectures for Regular (Category 1) Machines

 The architectures for category 1 machines are summarized in fi gure 5.2 . These repre-
sentations follow the style of fi gures 3.1b,d, but the style of fi gures 3.1a,c could be
used equivalently. The output register (fi gure 5.2c) is optional. The four possible con-
structions, listed in fi gure 5.2d , are summarized below.

 Regular Moore machine (fi gure 5.2a): In this case, the input (if it exists) is connected
only to the logic block for the next state. Consequently, the output depends only on
the state in which the machine is (in other words, for each state, the output value in
unique), resulting a synchronous behavior (see details in section 3.5). Because modern
designs are generally synchronous, this implementation is preferred whenever the
application permits.

Figure 5.1
State machine categories (from a hardware perspective).

Regular (Category 1) State Machines 83

Regular Mealy machine (fi gure 5.2b): In this case, the input is connected to both
logic blocks, so it can affect the output directly, resulting an asynchronous behavior.
Therefore, the machine can have more than one output value for the same state
(section 3.5).
Out-registered (pipelined) Moore machine: This consists of connecting the register of
fi gure 5.2c to the output of the Moore machine of fi gure 5.2a . As seen in sections 2.5
and 2.6, two fundamental reasons for doing so are glitch removal and pipelined con-
struction. As a result, the fi nal circuit ’ s output will be delayed with respect to the
original machine ’ s output by either one clock period (if the same clock edge is
employed in the state register and in the output register) or by one-half of a clock
period (if different clock edges are used). Note that the resulting circuit is order-2
synchronous because the original Moore machine was already a registered circuit (in
other words, the input – output transfer occurs after two clock edges — see details in
section 3.5). If in a given application this extra register is needed but its consequent
extra delay is not acceptable, the next alternative can be used.
 Out-registered (pipelined) Mealy machine: This consists of connecting the register of
 fi gure 5.2c to the output of the Mealy machine of fi gure 5.2b . The reasons for
doing so are the same as for Moore machines. The resulting circuit is order-1 synchro-
nous because the original Mealy machine is asynchronous. Consequently, the overall

Figure 5.2
Regular (category 1) state machine architectures for (a) Moore and (b) Mealy types. (c) Optional

output register. (d) Resulting circuits.

84 Chapter 5

behavior (with the output register included) is similar to that of a pure Moore machine
(without the output register — see details in section 3.5).

5.3 Number of Flip-Flops

In general, and particularly in large designs, it is diffi cult to estimate the number of
logic gates that will be needed to implement the desired solution. However, it is always
possible to determine, and exactly , the number of fl ip-fl ops.

 In the case of sequential circuits implemented as category 1 state machines, there
are two demands for DFFs, as follows (see state-encoding options in section 3.7).

 1) For the state register (see nx_state and pr_state in fi gure 5.2a , which are the state
memory fl ip-fl ops ’ input and output, respectively; below, M FSM is the number of states):

 For sequential or Gray encoding: N FSM = log 2 M FSM . Example: M FSM = 25 → N FSM = 5.
 For Johnson encoding: N FSM = M FSM /2 . Example: M FSM = 25 → N FSM = 13.
 For one-hot encoding: N FSM = M FSM . Example: M FSM = 25 → N FSM = 25.

 2) For the output register (fi gure 5.2c , optional, with b output bits):
 N output = b output . Example: b output = 16 → N output = 16.

 Hence, the total is N total = N FSM + N output . In the examples that follow, as well as in the
actual designs with VHDL and SystemVerilog, the number of fl ip-fl ops will be often
examined.

 5.4 Examples of Regular (Category 1) Machines

 A series of regular FSMs are presented next. Several of these examples are designed
later using VHDL (chapter 6) and SystemVerilog (chapter 7).

 5.4.1 Small Counters
 Counters are well-known circuits easily designed without the FSM approach using
VHDL or SystemVerilog. Moreover, a counter might have thousands of states, render-
ing it impractical for representation as a regular state machine. Nevertheless, for
designing counters without the help of any EDA tool (as done in sections 3.3 and 3.4),
the FSM model can be very helpful, particularly if the counter is not too big and has
several control inputs such as enable and up-down. Moreover, the implementation of
such counters can be very illustrative of the FSM approach. For these reasons, an
example is included in this section.

 A 1-to-5 counter with enable and up-down controls is presented in fi gure 5.3 (just
to practice, equivalent detailed and simplifi ed representations are shown — recall fi gure
1.4). The circuit counts if ena = ‘ 1 ’ , or stops (and holds its last output value) otherwise.
If up = ‘ 1 ’ , the circuit counts from 1 to 5, restarting then automatically from 1; oth-

Regular (Category 1) State Machines 85

erwise, it counts from 5 down to 1, restarting then automatically from 5. Because
counters are inherently synchronous, the Moore model is the natural choice for
their implementations.

 Because this machine has M FSM = 5 states, and the optional output register is gener-
ally not needed in counters, the number of fl ip-fl ops required to implement it (see
section 5.3) is N FSM = 3 if sequential, Gray, or Johnson encoding is used, or 5 for one-hot
encoding.

 VHDL and SystemVerilog implementations for this counter are presented in sec-
tions 6.6 and 7.5, respectively.

 5.4.2 Parity Detector
 This example concerns a circuit that detects the parity of a serial data stream. As
depicted in fi gure 5.4a , x is the serial data input, and y is the circuit ’ s response. The
output must be y = ‘ 1 ’ when the number of ‘ 1 ’ s in x is odd.

 A basic solution for the case when a reset pulse is applied before every calculation
starts is presented in fi gure 5.4b . In this case the parity value is the value of y after
the last bit has been presented to the circuit (before a new reset pulse is applied). Note

Figure 5.3
Detailed (a) and simplifi ed (b) representations for a 1-to-5 counter with enable and up-down

controls.

Figure 5.4
Parity detector. (a) Circuit ports. (b) State transition diagram. (c) Hardware block diagram.

86 Chapter 5

the arrangement in fi gure 5.4c , based on the material seen in section 3.11; when the
reset pulse goes up (which subsequently resets the FSM), it causes the value of y to be
stored in the auxiliary register, producing y_reg , which stays stable (constant) until a
new calculation is completed (i.e., a new reset pulse occurs).

 A slightly different parity detection problem is depicted in fi gure 5.5 , which has
to be reset only at power-up (thus a more usual situation). A data-valid (dv) bit indi-
cates the extension of the data vector whose parity must be calculated (when dv goes
up, a new vector begins, fi nishing when dv returns to zero). It is assumed that after a
calculation (data stream) is completed, the machine must keep displaying the fi nal
parity value until a new vector is presented, as depicted in the illustrative timing
diagram of fi gure 5.5b , which shows two vectors of size 5 bits each, with fi nal parity
y = ‘ 1 ’ for vector 1 and y = ‘ 0 ’ for vector 2.

 A Moore machine that complies with these specifi cations is presented in fi gure 5.5c
(note that in this example dv and x are updated at the negative clock edge). Because
of dv , this machine does not need to be reset before a new calculation starts. Indeed,
depending on the encoding scheme (sequential or Gray, for example), this circuit
might not need a reset signal at all because deadlock cannot occur (the unused code-
word will converge back to one of the machines ’ states) and dv will cause the compu-
tations to be correct even if the initial state is arbitrary (see exercise 3.11).

 5.4.3 Basic One-Shot Circuit
 One-shot circuits are circuits that, when triggered, generate a single voltage or current
pulse, possibly with a fi xed time duration. This section discusses the particular case
in which the time duration of the output is exactly one clock period. In this example
it will be considered that the input lasts at least one clock period; generic cases are
studied in sections 8.11.8 to 8.11.10, which deal specifi cally with triggered circuits.

Figure 5.5
Another parity detector. (a) Circuit ports. (b) Illustrative time behavior. (c) State transition

diagram.

Regular (Category 1) State Machines 87

In fact, a one-shot circuit (not employing the FSM approach) was already seen in
chapter 2 (fi gure 2.10), with its schematic repeated in fi gure 5.6a . This option, however,
is fi ne only if the triggering input (x) is synchronous; otherwise, the output pulse could
last less than T clk . For it to work with asynchronous inputs, another DFF is needed, as
shown in fi gure 5.6b . A version with a full synchronizer (section 2.3) is shown in fi gure
5.6c .

 The general operating principle is illustrated in fi gure 5.7 . The circuit ports are
shown in fi gure 5.7a , where x is the triggering input and y is the one-shot output. An
illustrative timing diagram is presented in fi gure 5.7b , with x having an arbitrary dura-
tion and y lasting exactly one clock period. Pulse 1 lasts less than T clk but happened
to fall under a positive clock edge, so it was detected. This is obviously not guaranteed
to happen, as illustrated for pulse 2. Only if the duration is T clk or longer, as for pulse
3, is the triggering of y guaranteed. Note that x and y are uncorrelated (mutually
asynchronous) if x and clk are uncorrelated.

 A solution using a regular (category 1) Moore machine is presented in fi gure 5.7c .
Note that it stays in state B during only one clock period; because y = ‘ 1 ’ occurs only
in that state, the desired pulse results. An inferior solution is presented in fi gure 5.7d
(see exercise 5.5).

Figure 5.6
Trivial one-shot circuits. (a) Basic version, for synchronous input only. (b) Preceded by a

synchronizing DFF, so the input can be asynchronous. (c) With a two-stage synchronizer.

Figure 5.7
One-shot state machine. (a) Circuit ports. (b) Example of expected behavior. (c) State transition

diagram. (d) An inferior solution (exercise 5.5).

88 Chapter 5

As a fi nal comment, let us consider the circuit of fi gure 5.6b , which is a kind of
optimized synchronous version of the one-shot circuit. Because the solution in fi gure
5.7c is also synchronous (all Moore machines are), would you expect the circuit that
implements this state machine to be equal or at least similar to that of fi gure 5.6b ?
(See exercise 5.5.)

 5.4.4 Temperature Controller
 Figure 5.8a shows a circuit diagram for a temperature controller of an air conditioning
system. In the upper branch, the room temperature is sensed by some type of tem-
perature sensor and converted to digital format by the ADC (analog-to-digital con-
verter), producing the signal T room . In the lower branch, the user, by means of two
pushbuttons (up , dn), selects the reference (desired) temperature, producing the signal
 T ref . Depending on the values of these two signals, the controller core decides whether
to heat the room (h = ‘ 1 ’), to cool it (c = ‘ 1 ’), or to stay in the idle state.

 Because mechanical switches are subject to bounces before they fi nally settle in
the proper position, the pushbuttons must be debounced. However, debouncers are
timed circuits, thus requiring a timed (category 2) machine to be implemented. Such
machines are seen in chapter 8, so for now let us just consider that the proper value
is produced for T ref (the design of this block is treated in section 8.11.4). For example,
 T ref could be selected in the 60 ° F to 90 ° F range with an initial value (on power-up,
defi ned by the reset signal) of 73 ° F, if degrees Fahrenheit are used, or in the 15 ° C to
30 ° C range with a default value of 23 ° C, if degrees centigrade are employed instead.

 An important addition to the system is depicted in fi gure 5.8b , which consists of
a display accessed by means of a multiplexer. The display shows the room temperature
while the selection pushbutton (sel , with no need for debouncing, not shown in the
fi gure) is at rest (sel = ‘ 0 ’) or the reference temperature while it is pressed (sel = ‘ 1 ’).

 A state machine for the controller core, using the Moore approach, is depicted in
 fi gure 5.8c . Δ T represents the system hysteresis, which is generally a fi xed circuit

Figure 5.8
Temperature controller. (a) Overall circuit diagram. (b) Display driver. (c) State machine for the

controller core block.

Regular (Category 1) State Machines 89

parameter. For example, if Δ T = 1 ° F, the room temperature will be kept within T ref ±
1 ° F. By comparing T room to T ref and taking into account the hysteresis, the machine will
be able to produce the proper values for h and c .

 Finally, note that the inputs from the pushbuttons are asynchronous with respect
to the system clock, which could, in principle, cause metastability (see section 2.3).
This, however, is prevented here by the debouncer (section 8.11.3).

 5.4.5 Garage Door Controller
 This example presents a garage door controller that operates as follows. If the door is
completely closed or completely open and the remote is activated, the motor is turned
on in the direction to open or close it, respectively. If the door is opening or closing
and the remote is activated, the door stops. If the remote is activated again, the motor
is turned on to move the door in the opposite direction.

 The circuit ports are depicted in fi gure 5.9a , where remt (command from the remote
control), sen1 (door-open sensor), and sen2 (door-closed sensor) are the inputs (plus
the conventional clk and rst signals), and ctr (control) is the output. Note that ctr has
two bits; ctr (1) turns the motor on (‘ 1 ’) or off (‘ 0 ’), whereas ctr (0) defi nes its direction,
opening (‘ 0 ’) or closing (‘ 1 ’) the door (thus the value of the latter does not matter
when the former is ‘ 0 ’).

 A preliminary state diagram is shown in fi gure 5.9b . The transition control signals
are remt , sen1 , and sen2 . Note that this machine complies with all three requisites of

Figure 5.9
Garage door controller. (a) Circuit ports. (b) Bad solution (with state-bypass). (c) Good

solution.

90 Chapter 5

section 1.3. However, it exhibits a major problem, which is state bypass (see section
4.2.4). For example, if the door is closed and a long (lasting several clock cycles) remt
= ‘ 1 ’ command is received, the machine goes around the entire loop. Of course, if a
one-shot circuit (section 5.4.3) is used to reduce the duration of remt to a single clock
period, then this machine is fi ne.

 A corrected diagram is presented in fi gure 5.9c , containing additional states that
wait for remt to return to zero before proceeding, thus eliminating the state-bypass
problem. This is a Moore machine because there is no reason to employ an asynchro-
nous solution in this kind of application. Glitches at the output are not a problem
here, so the optional output register is not needed.

 A good practice in this kind of application is to include debouncers for the signals
coming from the remote control and from the sensors, which not only eliminate the
need for synchronizers but also prevent short input glitches (due to lightning or the
switching of large electric currents, for example) from activating the machine (in this
case, it has to be a full debouncer, like that in section 8.11.3, for example).

 Because the machine of fi gure 5.9c has M FSM = 8 states, the required number of DFFs
is N FSM = 3 if sequential or Gray encoding is used, 4 for Johnson, or 8 for one-hot.

 VHDL and SystemVerilog implementations for this garage door controller are pre-
sented in sections 6.7 and 7.6, respectively.

 5.4.6 Vending Machine Controller
 This example deals with a controller for a vending machine. It is assumed that it sells
candy bars for the single price of $0.40, accepting nickel, dime, and quarter coins.

 The circuit ports are depicted in fi gure 5.10a . The inputs nickel_in , dime_in , and
 quarter_in are generated by the coin collector, informing the type of coin that was
deposited by the customer. The inputs nickel_out and dime_out are generated by the
coin dispenser mechanism, informing the type of coin that was returned to the cus-
tomer. The last nonoperational input is candy_out , produced by the candy dispenser
mechanism, informing that a candy was delivered to the customer. The outputs
 disp_nickel and disp_dime tell the coin dispenser mechanism that a nickel or a dime
must be returned to the customer, while the output disp_candy tells the candy bar
dispenser mechanism that a candy bar must be delivered to the customer.

 A corresponding Moore machine is presented in fi gure 5.10b . To simplify the nota-
tion, numbers were used instead of names (see other examples of equivalent state
diagram representations in section 1.4). The state names correspond to the accumu-
lated amount (credit). The transition conditions refer to the last coin entered, with
negative values indicating change returned to the customer. In the coin-return opera-
tions it was opted to deliver the largest coins possible. After the machine reaches the
state 40 (thick circle), the only way to return to the initial state is by receiving a

Regular (Category 1) State Machines 91

candy_out = ‘ 1 ’ command from the candy-delivering mechanism confi rming that a
candy bar was dispensed or a reset pulse.

 Note that the machine of fi gure 5.10b is subject to state bypass (section 4.2.4) if
the inputs last longer than one clock period (which is generally the case in this kind
of application), so wait states (or a fl ag or one-shot conversion) must be added (exercise
5.11).

 Because glitches are defi nitely not acceptable in this application, the optional
output register should be used here. In regard to the inputs, we can assume that
they are produced by other circuits that process the actual inputs and hence
operate with the same clock as our state machine, dispensing with the use of debounc-
ers and/or synchronizers (although they might be needed at the inputs of preceding
circuits).

 If we assume that all control inputs to this machine last exactly one clock period
(due to one-shot circuits, for example), so state bypass cannot occur and additional
states are not needed, the number of DFFs required to build it (with M FSM = 13 states)
is N FSM = 4 if sequential or Gray encoding is used, 7 for Johnson, or 13 for one-hot,
plus N output = 3 for the output register.

 5.4.7 Datapath Control for an Accumulator
 Before we examine this example, a review of section 3.13 is suggested.

 In this example we assume that the datapath of fi gure 3.22a must operate as an
add-and-accumulate circuit (ACC), accumulating in register A four consecutive values

Figure 5.10
Controller for a vending machine that sells candy bars for $0.40, accepting nickels, dimes, and

quarters. (a) Circuit ports. (b) Corresponding Moore machine (state-bypass prevention not

included).

92 Chapter 5

of inpB . The data-valid bit (dv), when asserted (during just one clock period), will again
be responsible for starting the computations, after which the resulting value must
remain displayed at ALUout until another pulse occurs in dv . In summary, the opera-
tions are: 0 + B → A, A + B → A, A + B → A, and A + B → A.

 Recall that in a datapath-based design the FSM is not responsible for implementing
the whole computation but just the control unit (shown on the left in fi gure 3.22a),
which controls the datapath. In other words, the FSM must produce the signals selA
(selects the data source for register A), wrA and wrB (enable writing into registers A
and B), and ALUop (produces the ALU opcode, defi ning its operations, according to
the table in fi gure 3.22b).

 An illustrative timing diagram (similar to what was done in fi gure 3.22c) for an
FSM that controls this datapath such that the desired accumulator results is presented
in fi gure 5.11a . Note that the computations take fi ve steps (called start , acc1 , acc2 ,
acc3 , and acc4), after which the control unit (FSM) returns to the idle state (so the
machine has six states). The corresponding state transition diagram, which is a direct
translation of the timing diagram (compare the values in the timing diagram against
those in the state transition diagram), is exhibited in fi gure 5.11b . Observe that this
control unit is indeed a category 1 machine.

 Because this machine has M FSM = 6 states, and the optional output register is gener-
ally not needed in control units, the number of fl ip-fl ops required to implement it
(see section 5.3) is N FSM = 3 if sequential, Gray, or Johnson encoding is used or 6 for
one-hot.

Figure 5.11
(a) Illustrative timing diagram for the datapath of fi gure 3.22a operating as an accumulator. (b)

Corresponding Moore machine.

Regular (Category 1) State Machines 93

5.4.8 Datapath Control for a Greatest Common Divisor Calculator
Before we examine this example, a review of section 3.13 is suggested. Particular
attention should be paid to comment number 4 at the end of that section, which is
helpful here.

 This section shows another example of a datapath-based circuit. The datapath must
compute the GCD (greatest common divisor) between two integers. The corresponding
algorithm is shown in fi gure 5.12 ; the largest value is substituted with the difference
between it and the other value until the values become equal, which is then declared
to be the GCD. A corresponding fl owchart is also included in fi gure 5.12 . As in the
previous example, a dv bit, when asserted (during one clock period), must start the
computations.

 The datapath to be used in this example is depicted in fi gure 5.13a . The ALU ’ s
opcode table is shown in fi gure 5.13b . The ALU has also an auxiliary output (sign) that
indicates whether its output (ALUout) is zero (“ 00 ”), positive (“ 01 ”), or negative (“ 10 ”),
as listed in fi gure 5.13c .

 As shown, the datapath ’ s control signals are selA and selB (select the data sources
for registers A and B), wrA and wrB (enable writing into registers A and B), and ALUop
(produces the ALU opcode, defi ning its operations, according to the table in fi gure
5.13b). The control unit (FSM) is responsible for generating all control signals.

 An illustrative timing diagram for an FSM that controls this datapath such that the
desired computations occur is presented in fi gure 5.13d . Dashed lines indicate “ don ’ t
care ” values. Because inpA = 9 and inpB = 15 were adopted, the following computations
are expected: Iteration 1, 9 → A, 15 → B; Iteration 2, B > A, then 15 − 9 = 6 → B; Itera-
tion 3, A > B, then 9 − 6 = 3 → A; Iteration 4, B > A, so 6 − 3 = 3 → B. Because A = B,
GCD = A = 3.

 Observe in fi gure 5.13d that the time slots are identifi ed as idle (waiting for a dv
bit), load (inpA and inpB are stored in A and B), writeA (ALUout is stored in A), and

Figure 5.12
GCD algorithm and fl owchart.

94 Chapter 5

Figure 5.13
(a) Datapath and control unit for a GCD calculator. (b) ALU ’ s opcode table. (c) ALU ’ s sign table.

(d) Illustrative timing diagram, for inpA = 9 and inpB = 15. (e) Corresponding state machine.

Regular (Category 1) State Machines 95

writeB (ALUout is stored in B). Observe also the presence of a wait time slot after every
data storage, which is needed for the data to be effectively ready for comparison before
an actual comparison occurs (recall comment 4 of section 3.13).

 A corresponding state transition diagram is presented in fi gure 5.13e , which is a
direct translation of the timing diagram (compare the values in the plots against those
in the state transition diagram). Note that after each write-enabling state (load , writeA ,
and writeB) the machine goes unconditionally to the wait state. In the idle state, wrA =
wrB = ‘ 0 ’ , so nothing can be written into the registers, and because ALUop = 0, the output
is ALUout = A, so the computed GCD value is kept unchanged until dv is asserted again.

 VHDL and SystemVerilog implementations for this control unit are presented in
sections 6.8 and 7.7, respectively.

 5.4.9 Generic Sequence Detector
 This is another interesting example from a conceptual point of view. Say that we want
to design a signature detector that searches for the string “ abc ” in a sequential data
stream, examining one character at a time (a character here represents a bit vector
with any number of bits). So this is exactly the same problem presented in the very
fi rst state transition diagram of the book (fi gure 1.3, repeated in fi gure 5.14a) . In this
example it was assumed that a ≠ b ≠ c , so this machine works well. But let us consider
now a completely generic situation, in which a , b , and c are programmable , so we can
no longer assume that they are all different. Will this machine still work?

Figure 5.14
Generic string detection. (a) Nongeneric case (requires a ≠ b ≠ c). (b) Completely generic imple-

mentation due to the inclusion of priorities in the transition conditions. (c) Example for the case

of a = b = c .

96 Chapter 5

To answer this question, let us assume that a = b , so b can be replaced with a in
 fi gure 5.14a . Consequently, state B (for example) has the following transition condi-
tions: a in the BB transition; a also in the BC transition; and ≠ a & ≠ b = ≠ a in the BA
transition. This shows that state B is now overspecifi ed because both BB and BC transi-
tions are governed by the same condition (a). Therefore, this machine is not fi ne for
generic values of a , b , and c .

 The new question then is “ How do we fi x overspecifi cations? ” We do it in the way
explained in section 1.5, that is, with the establishment of priorities . This is done in
 fi gure 5.14b . For state B, the BC transition must have priority over the BB transition,
so the transition condition in the former remains just b , while that in the latter
becomes a & ≠ b . Likewise, for state C, the CD transition must have priority over the
CB transition; thus, the transition condition in the former remains c , whereas that in
the latter becomes a & ≠ c .

 As an example, fi gure 5.14c shows the extreme case in which a = b = c . Then ≠ a &
 ≠ b = ≠ a , ≠ a & ≠ c = ≠ a , a & ≠ b = null (so the BB transition disappears), and a & ≠ c =
null (the CB transition also disappears).

 The only restriction of this generic string detector is that it detects only nonover-
lapping strings.

 5.4.10 Transparent Circuits
 We close this chapter with the description of a special (although uncommon) type of
circuit for FSMs, which consists of sequential circuits that are required to be “ transpar-
ent ” (i.e., the output must “ see ” the input; in other words, if the input changes, so
should the output). If implemented using an FSM, the circuit must provide outputs
that are capable of changing when the input changes, even if the machine remains
in the same state.

 As an example, consider the case in fi gure 5.15a , with inputs a and b and output
 y . The output must be y = a during one clock period, y = a ⋅ b during the next period,
and fi nally y = b during the third clock cycle, with this sequence repeated indefi nitely.
Corresponding Moore and Mealy diagrams are included in fi gures 5.15b,c . Note that
because the machine must go to the next state at every clock cycle, its transitions are
unconditional.

 Because in this case the output depends solely on the machine ’ s state, a Moore
machine seems to be the natural choice. However, because the output must change
when the input changes, a Mealy machine, being asynchronous, would be recom-
mended. In fact, both are fi ne.

 In the Moore case the transparency problem is circumvented by associating the
machine with switches such as the multiplexer in fi gure 5.15d , in which case the
machine plays just the role of mux selector (in this example, the resulting machine
is clearly just a 0-to-2 counter), so even though the machine is not transparent, the

Regular (Category 1) State Machines 97

overall circuit is (this is typically what a VHDL/SystemVerilog compiler would do). In
the Mealy case the implementation is straightforward, but the output will be one clock
cycle ahead of the desired sequence (compare fi gures 5.15b and 5.15c).

5.4.11 LCD, I 2 C, and SPI Interfaces
 Three special additional design examples are presented in chapter 14, consisting of
circuits for interfacing with alphanumeric LCD displays and for implementing I 2 C or
SPI serial interfaces. Depending on the application, any of the three FSM categories
might be needed in these circuits; for instance, in the LCD driver example of section
14.1, a category 1 FSM is employed, whereas in the I 2 C and SPI serial interfaces of
sections 14.2 and 14.3, categories 2 and 3 are used.

 5.5 Exercises

 Exercise 5.1: Machine Category and Number of Flip-Flops
 a) Why are the state machines in fi gures 5.3, 5.9c, and 5.13e (among others) said to
be of category 1?
 b) How many DFFs are needed to implement each of these FSMs using (i) sequential
encoding, (ii) Gray encoding, or (iii) one-hot encoding?

 Exercise 5.2: Metastability and Synchronizer
 a) Solve exercise 2.2 if not done yet.
 b) Consider now the garage door controller of fi gure 5.9 . (i) Which inputs are asyn-
chronous? (ii) If no debouncing circuits (which are synchronous) are adopted for the
asynchronous inputs, are synchronizers indispensable in this application?

 Exercise 5.3: Need for Reset
 a) Solve exercise 3.10 if not done yet.
 b) Solve exercise 3.11 if not done yet.

Figure 5.15
A “ transparent ” circuit. (a) Circuit ports. (b) Moore and (c) Mealy state transition diagrams.

(d) Typical implementation based on the Moore model.

98 Chapter 5

Exercise 5.4: Truly Complementary Transition Conditions
In section 1.5 the importance of having the state transition diagram neither under- nor
overspecifi ed was discussed. What happens if, in the garage door controller of fi gure
5.9c, the condition sen1 = ‘ 0 ’ is removed from the opening1 - opening2 transition, or the
condition sen2 = ‘ 0 ’ is removed from the closing1 - closing2 transition?

 Exercise 5.5: One-Shot Circuits Analysis
 a) It is said in section 5.4.3 that the solution in fi gure 5.7d is inferior to that in fi gure
5.7c . Why? (Suggestion: fi ll in the last two plots of fi gure 5.16 and you will see the
answer.)
 b) Is reset indispensable in these two solutions?
 c) In order to answer the question posed at the end of section 5.4.3, solve exercise 3.3
if not done yet.

 Exercise 5.6: Two-Signal-Triggered One-Shot Circuit
 Figure 5.17 shows an illustrative timing diagram for a one-shot circuit that is not trig-
gered by a single signal but rather by a pair of signals. The triggering condition is the
following: the one-shot pulse (in y) must be generated if the control signal x lasts at
least as long as the dv pulse (this is obviously checked only at positive clock transi-
tions). Note in the fi gure that only the fi rst pulse of x fulfi lls this requirement, so the
one-clock-period pulse in y has to be produced only in that case. Draw the state transi-
tion diagram for a state machine capable of implementing this circuit.

 Exercise 5.7: Arbiter
 Arbiters are used to manage access to shared resources. An example is depicted
in fi gure 5.18 , which shows three peripherals (P1 to P3) that use a common bus

Figure 5.16

Figure 5.17

Regular (Category 1) State Machines 99

to access common resources. Obviously, only one of them can use the bus at a
time; for example, if P1 wants to use the bus, it issues a request (r 1 = ‘ 1 ’) to the
arbiter, which grants (g 1 = ‘ 1 ’) access only if the bus is idle at that moment. If
multiple requests are received by the arbiter, access is granted based on preestablished
priorities. Assuming that the priorities are P1 > P2 > P3, draw a state transition
diagram for a machine capable of implementing this arbiter. The machine ’ s input
and output are the vectors r = r 1 r 2 r 3 and g = g 1 g 2 g 3 , respectively (besides clock and
reset, of course).

 Exercise 5.8: Manchester Encoder
 An IEEE Manchester encoder produces a low-to-high transition when the input is ‘ 1 ’
or a high-to-low transition when it is ‘ 0 ’ , as illustrated in fi gure 5.19 for the sequence
 “ 01001 ” . Note that each input value lasts two clock periods. Observe also the presence
of a dv bit, which defi nes the extent of the vector to be encoded (dashed lines in y
indicate “ don ’ t care ” values). To be more realistic, dv is produced at the same time
that the fi rst valid bit is presented; additionally, a small propagation delay is included
between clock transitions and corresponding responses. Assume that the machine too
must operate at the positive clock edge.

 a) Draw a state transition diagram for a Moore machine capable of implementing this
encoder.
 b) Redraw the illustrative timing diagram of fi gure 5.19 for your Moore machine,
including in it a plot for pr_state . Does the Moore circuit behave exactly as in fi gure
5.19, or is y one clock cycle delayed?
 c) Redo the design, this time employing a Mealy machine.

Figure 5.18

Figure 5.19

100 Chapter 5

d) Repeat part b now for your Mealy solution.
e) Say that we want the output to be completely clean. Are any of the solutions above
guaranteed to be glitch-free? If not, how can glitches be removed? What happens then
with the time response?

Exercise 5.9: Differential Manchester Encoder
Figure 5.20 illustrates the operation of a differential Manchester encoder for the
sequence “ 01001 ” . Note that the shape of the output pulse remains unchanged when
the input is ‘ 0 ’ but gets inverted when it is ‘ 1 ’ . For example, if the last pulse was a
 ‘ 1 ’ -to- ‘ 0 ’ pulse, the next pulse must be ‘ 1 ’ -to- ‘ 0 ’ if the input is ‘ 0 ’ or ‘ 0 ’ -to- ‘ 1 ’ if it is
 ‘ 1 ’ . Observe the presence of a dv bit, which defi nes the extent of the vector to be
encoded (dashed lines in y indicate “ don ’ t care ” values). To be more realistic, dv is
produced at the same time that the fi rst valid bit is presented; additionally, a small
propagation delay has been included between the clock transitions and the corre-
sponding responses. Assume that the machine too must operate at the positive clock
edge.

 a) Draw a state transition diagram for a Moore machine capable of implementing this
encoder.
 b) Redraw the illustrative timing diagram of fi gure 5.20 for your solution, including
in it a plot for pr_state . Does the Moore circuit behave exactly as in fi gure 5.20, or is
 y one clock cycle delayed?

 Exercise 5.10: Time-Ordered “ 111 ” Detector
 Draw the state transition diagram for an FSM that detects the sequence abc = “ 111 ”
under the constraint that it must be time ordered; that is, a = ‘ 1 ’ must occur (and
hold), then b = ‘ 1 ’ must also occur (and hold), and fi nally, c = ‘ 1 ’ must happen. The
circuit ports are shown in fi gure 5.21a . The circuit operation is illustrated in fi gure
5.21b , where x = ‘ 1 ’ occurs when abc = “ 111 ” , but in a time-ordered fashion.

 Exercise 5.11: Vending Machine
 It was seen that the vending machine controller of fi gure 5.10b must be improved
to avoid state bypass. Present a solution for this problem. Is it better to include wait

Figure 5.20

Regular (Category 1) State Machines 101

states or a fl ag or to convert the inputs into one-shot signals with one-clock-period
duration?

Exercise 5.12: Time Behavior of a String Detector
Consider the Moore-type state machine of fi gure 5.14a , which detects the sequence
“ abc ” for the case of a ≠ b ≠ c , where x and y represent the input and output,
respectively.

 a) Complete the timing diagram of fi gure 5.22 for the given values of x . Note that a
little propagation delay was included between the clock transitions and the respective
changes in the present state; do the same for y .
 b) Does the output go up immediately when the sequence “ abc ” occurs or only at the
next (positive) clock edge? Is this result as you expected? (Recall that Moore machines
are fully synchronous.)

 Exercise 5.13: Generic Overlapping String Detector
 We saw in section 5.4.9 a generic approach for the implementation of nonoverlapping
string detectors. In that case, if the sequence to be detected were “ aba ” , for example,
the response to the serial bit stream “ abababab … ” would be “ 00100010001 … ” , whereas
here, because overlaps must be allowed, it should be “ 0010101 … ” . Can you fi nd a
generic solution (with or without a state machine) for this case?

 Exercise 5.14: Keypad Encoder
 Figure 5.23a shows a 12-key keypad for which we need to design an encoder (and
possibly also a debouncer — debouncers are discussed in chapter 8). The actual push-
button connections can be seen in fi gure 5.23b , where r (3:0) and c (2:0) represent the
keypad ’ s rows and columns, respectively. Note that because of the pull-up resistors,

Figure 5.21

Figure 5.22

102 Chapter 5

the rows ’ voltages are all high when no switch is pressed. The keypad encoder must
connect the bottom of one column at a time to ground (‘ 0 ’), then read the resulting
row values, converting them into the respective codeword, as listed in fi gure 5.23c
(n stands for “ none ”); for example, if c = “ 011 ” , which means that the leftmost column
is being inspected, and the reading is r = “ 1011 ” , then we know that pushbutton 4 is
pressed. Present a solution for this encoder. (A possible solution for the debouncer is
treated in exercise 8.11.)

 Exercise 5.15: Datapath Controller for a Largest-Value Detector
 Say that you are given the datapath of fi gure 5.13a , with inpB monitoring a serial data
stream, of which the largest value must be determined (placed at the ALU output,
 ALUout). The monitoring should start when a dv bit is asserted, ending when dv returns
to zero.

a) Develop a state transition diagram (as in fi gure 5.13e) for an FSM capable of imple-
menting the corresponding control unit. Include in it “ nop ” (no operation) states if
necessary to have the number of clock cycles be the same in all iterations.
 b) Present an illustrative timing diagram for your machine (as in fi gure 5.13d), assum-
ing that the values presented to the circuit (while dv = ‘ 1 ’) are 5 → 8 → 4 → 0. (If you
prefer, do part b before part a.)

 Exercise 5.16: Datapath Controller for a Square Root Calculator
 To calculate z = (x 2 + y 2) 1/2 , where x , y , and z are unsigned integers, the expression z =
max(a − a /8 + b /2, a) can be used, where a = max(x , y) and b = min(x , y). Recall that
to divide an integer by 8 or by 2 all that is needed is to shift it to the right three posi-
tions or one position, respectively. Make the adjustments that you fi nd necessary in
the datapath of fi gure 5.13a (for example, include a shift-right option in one of the
existing registers or in a new register at the ALU output), then devise a state machine
that computes the square root above using that datapath.

Figure 5.23

Regular (Category 1) State Machines 103

Exercise 5.17: Flag Monitor
Develop an FSM for a circuit that monitors a fl ag such that, if the fl ag remains constant
within a given time window, the output copies the measured (constant) fl ag value.
This is illustrated in fi gure 5.24 ; if fl ag_in has no transitions at all while window is high,
then fl ag_out gets the value of fl ag_in ; otherwise, it keeps the same value that it had
when the time window started.

Figure 5.24

6 VHDL Design of Regular (Category 1) State Machines

6.1 Introduction

This chapter presents several VHDL designs of category 1 state machines. It starts by
presenting two VHDL templates, for Moore- and Mealy-based implementations, which
are used subsequently to develop a series of designs related to the examples introduced
in chapter 5.

 The codes are always complete (not only partial sketches) and are accompanied by
comments and simulation results, illustrating the design ’ s main features. All circuits
were synthesized using Quartus II (from Altera) or ISE (from Xilinx). The simulations
were performed with Quartus II or ModelSim (from Mentor Graphics). The default
encoding scheme for the states of the FSMs was regular sequential encoding (see
encoding options in section 3.7; see ways of selecting the encoding scheme at the end
of section 6.3).

 The same designs will be presented in chapter 7 using SystemVerilog, so the reader
can make a direct comparison between the codes.

 Note: See suggestions of VHDL books in the bibliography.

 6.2 General Structure of VHDL Code

 A typical structure of VHDL code for synthesis, with all elements that are needed in
this and in coming chapters, is depicted in fi gure 6.1 . It is composed of three funda-
mental sections, briefl y described below.

 Library/Package Declarations
 As the name says, it contains the libraries and corresponding packages needed in the
design. The most common package is std_logic_1164 , from the IEEE library, which
defi nes the types std_logic (for single bit) and std_logic_vector (for multiple bits), which
are the industry standard.

106 Chapter 6

Entity
The entity is divided into two main parts, called generic and port .

 Generic: This portion is optional. It is used for the declaration of global parameters,
which can be easily modifi ed to fulfi ll different system specifi cations or, more impor-
tantly, can be overridden during instantiations (using the component construct) into
other designs.
 Port: This part of the code is mandatory for synthesis. It is just a list with specifi -
cations of all circuit ports (I/Os), including their name, mode (in , out , inout , or buffer),
and type (plus range).

 Architecture
 The architecture too is divided into two parts, called declarative part and statements part .

 Declarative part: This section precedes the keyword begin and is optional. It is used
for all sorts of local declarations, including type , signal , and component . It also allows
the construction of function and procedure . These declarations and functions/
procedures can also be placed outside the main code, in a package .
 Statements part: This portion, which starts at the keyword begin , constitutes the
code proper. As shown in fi gure 6.1 , its main elements (in no particular order) are
the following: basic expressions using operators (for simple combinational circuits);
expressions using concurrent statements (when , select , generate), generally for simple

Figure 6.1
Typical VHDL code structure for synthesis.

VHDL Design of Regular (Category 1) State Machines 107

to midcomplexity combinational circuits; sequential code using process , which is
constructed using sequential statements (if , case , loop , wait), for sequential as well
as (complex) combinational circuits; function / procedure calls; and, fi nally, compo-
nent (that is, other design) instantiations, resulting in structural designs.

 6.3 VHDL Template for Regular (Category 1) Moore Machines

 The template is based on fi gure 6.2 (derived from fi gure 5.2), which shows three pro-
cesses: 1) for the FSM state register; 2) for the FSM combinational logic; and 3) for the
optional output register. Note the asterisk on one of the input connections; as we
know, if that connection exists it is a Mealy machine, else it is a Moore machine.

 There obviously are other ways of breaking the code instead of using the three
processes indicated in fi gure 6.2 . For example, the combinational logic section, being
not sequential, could be implemented without a process (using purely concurrent
code). At the other extreme the combinational logic section could be implement ed
with two processes, one with the logic for output , the other with the logic for nx_
state .

 The VHDL template for the design of category 1 Moore machines, based on fi gures
6.1 and 6.2 , is presented below. Observe the following:

 1) To improve readability, the three fundamental code sections (library/package dec-
larations, entity, and architecture) are separated by dashed lines (lines 1, 4, 14, 76).
 2) The library/package declarations (lines 2 – 3) show the package std_logic_1164 ,
needed because the types used in the ports of all designs will be std_logic and/or std_
logic_vector (industry standard).
 3) The entity, called circuit , is in lines 5 – 13. As seen in fi gure 6.1 , it usually contains
two parts: generic (optional) and port (mandatory for synthesis). The former is
employed for the declaration of generic parameters (if they exist), as illustrated in lines
6 – 8. The latter is a list of all circuit ports, with respective specifi cations, as illustrated

Figure 6.2
State machine architecture depicting how the VHDL code was broken (three processes).

108 Chapter 6

in lines 9 – 12. Note that the type used for all ports (lines 10 – 12) is indeed std_logic or
 std_logic_vector .
 4) The architecture, called moore_fsm , is in lines 15 – 75. It too is divided into two parts:
declarative part (optional) and statements part (code proper, so mandatory).
 5) The declarative part of the architecture is in lines 16 – 19. In lines 16 – 17 a special
enumerated type, called state , is created, and then the signals pr_state and nx_state are
declared using that type. In lines 18 – 19 an optional attribute called enum_encoding is
shown, which defi nes the type of encoding desired for the machine ’ s states (e.g.,
 “ sequential ” , “ one-hot ”). Another related attribute is fsm_encoding . See a description
for both attributes after the template below. The encoding scheme can also be chosen
using the compiler ’ s setup, in which case lines 18 – 19 can be removed.
 6) The statements part (code proper) of the architecture is in lines 20 – 75 (from begin
on). In this template it is composed of three process blocks, described below.
 7) The fi rst process (lines 23 – 30) implements the state register (process 1 of fi gure 6.2).
Because all of the machine ’ s DFFs are in this section, clock and reset are only con-
nected to this block (plus to the optional output register, of course, but that is not
part of the FSM proper). Note that the code for this process is essentially standard,
simply copying nx_state to pr_state at every positive clock transition (thus inferring
the DFFs that store the machine ’ s state).
 8) The second process (lines 33 – 61) implements the entire combinational logic section
of the FSM (process 2 of fi gure 6.2). This part must contain all states (A, B, C, . . .),
and for each state two things must be declared: the output values/expressions and the
next state. Observe, for example, in lines 36 – 46, relative to state A, the output declara-
tions in lines 37 – 39 and the next-state declarations in lines 40 – 46. A very important
point to note here is that there is no if statement associated with the outputs because
in a Moore machine the outputs depend solely on the state in which the machine is,
so for a given state each output value/expression is unique.
 9) The third and fi nal process (lines 64 – 73) implements the optional output register
(process 3 of fi gure 6.2). Note that it simply copies each original output to a new
output at every positive clock edge (it could also be at the negative edge), thus infer-
ring the extra register. If this register is used, then the names of the new outputs must
obviously be the names used in the corresponding port declarations (line 12). If the
initial output values do not matter, reset is not required in this register.
 10) To conclude, observe the completeness of the code and the correct use of registers
(as requested in sections 4.2.8 and 4.2.9, respectively), summarized below.

 a) Regarding the use of registers: The circuit is not overregistered. This can be
observed in the elsif rising_edge(clk) statement of line 27 (responsible for the infer-
ence of fl ip-fl ops), which is closed in line 29, guaranteeing that only the machine
state (line 28) gets registered. The circuit outputs are in the next process, which is
purely combinational.

VHDL Design of Regular (Category 1) State Machines 109

b) Regarding the outputs: The list of outputs (output1 , output2 , . . .) is the same in
all states (see lines 37 – 39, 48 – 50, . . .), and the output values (or expressions) are
always declared.
 c) Regarding the next state: Again, the coverage is complete because all states (A, B,
C, . . .) are included, and in each state the declarations are fi nalized with an else
statement (lines 44, 55, . . .), guaranteeing that no condition is left unchecked.

 Note 1: See also the comments in sections 6.4, which show some template variations.

 Note 2: The VHDL 2008 review of the VHDL standard added the keyword all as a replace-
ment for a process ’ sensitivity list, so process (all) is now valid. It also added boolean
tests for std_logic signals and variables, so if x= ‘ 1 ’ then . . . can be replaced with if x
then. . . . Both are supported by the current version (12.1) of Altera ’ s Quartus II compiler
but not yet by the current version (14.2) of Xilinx ’ s ISE suite (XST compiler).

 Note 3: Another implementation approach, for simple FSMs, will be seen in chapter 15.

 1 ---
 2 library ieee;
 3 use ieee.std_logic_1164.all;
 4 ---
 5 entity circuit is
 6 generic (
 7 param1: std_logic_vector(...) := < value > ;
 8 param2: std_logic_vector(...) := < value >);
 9 port (
 10 clk, rst: in std_logic;
 11 input1, input2, ...: in std_logic_vector(...);
 12 output1, output2, ...: out std_logic_vector(...);
 13 end entity;
 14 ---
 15 architecture moore_fsm of circuit is
 16 type state is (A, B, C, ...);
 17 signal pr_state, nx_state: state;
 18 attribute enum_encoding: string; --optional, see comments
 19 attribute enum_encoding of state: type is "sequential";
 20 begin
 21
 22 --FSM state register:
 23 process (clk, rst)
 24 begin
 25 if rst='1' then --see Note 2 above on boolean tests
 26 pr_state < = A;
 27 elsif rising_edge(clk) then
 28 pr_state < = nx_state;
 29 end if;
 30 end process;
 31
 32 --FSM combinational logic:
 33 process (all) --see Note 2 above on "all" keyword
 34 begin
 35 case pr_state is

110 Chapter 6

 36 when A = >
 37 output1 < = < value > ;
 38 output2 < = < value > ;
 39 ...
 40 if < condition > then
 41 nx_state < = B;
 42 elsif < condition > then
 43 nx_state < = ...;
 44 else
 45 nx_state < = A;
 46 end if;
 47 when B = >
 48 output1 < = < value > ;
 49 output2 < = < value > ;
 50 ...
 51 if < condition > then
 52 nx_state < = C;
 53 elsif < condition > then
 54 nx_state < = ...;
 55 else
 56 nx_state < = B;
 57 end if;
 58 when C = >
 59 ...
 60 end case;
 61 end process;
 62
 63 --Optional output register:
 64 process (clk, rst)
 65 begin
 66 if rst='1' then --rst generally optional here
 67 new_output1 < = ...;
 68 ...
 69 elsif rising_edge(clk) then
 70 new_output1 < = output1;
 71 ...
 72 end if;
 73 end process;
 74
 75 end architecture;
 76 ---

Final Comments

1) On the need for a reset signal: Note in the template above that the sequential
portion of the FSM (process of lines 23 – 30) has a reset signal. As seen in sections 3.8
and 3.9, that is the usual situation. However, as also seen in those sections, if the
circuit is implemented in an FPGA (so the fl ip-fl ops are automatically reset on power-up)
and the codeword assigned to the intended initial (reset) state is the all-zero codeword,
then reset will occur automatically.
 2) On the enum_encoding and fsm_encoding attributes: As mentioned earlier, these
attributes can be used to select the desired encoding scheme (“ sequential ” , “ one-hot ” ,
 “ 001 011 010 ” , and others — see options in section 3.7), overriding the compiler ’ s

VHDL Design of Regular (Category 1) State Machines 111

setup. It is important to mention, however, that support for these attributes varies
among synthesis compilers. For example, Altera ’ s Quartus II has full support for
enum_encoding , so both examples below are fi ne (where “ sequential ” can also be “ one-
hot ” , “ gray ” , and so on):

attribute enum_encoding: string;

attribute enum_encoding of state: type is "sequential";

attribute enum_encoding: string;

attribute enum_encoding of state: type is "001 100 101"; --user defined

Xilinx ’ s XST (from the ISE suite), on the other hand, only supports enum_encoding
for user-defi ned encoding; for the others (“ sequential ” , “ one-hot ” , etc.), fsm_encoding
can be used. Two valid examples are shown below:

attribute enum_encoding: string;

attribute enum_encoding of state: type is "001 100 101";

attribute fsm_encoding: string;

attribute fsm_encoding of pr_state: signal is "sequential";

6.4 Template Variations

The template of section 6.3 can be modifi ed in several ways with little or no effect on
the fi nal result. Some options are described below. These modifi cations are extensible
to the Mealy template treated in the next section.

6.4.1 Combinational Logic Separated into Two Processes
A variation sometimes helpful from a didactic point of view is to separate the FSM
combinational logic process into two processes: one for the output, another for the
next state. Below, the process for the output logic is in lines 33 – 47, and that for the
next state logic is in lines 50 – 69.

 32 --FSM combinational logic for output:
 33 process (all)
 34 begin
 35 case pr_state is
 36 when A = >
 37 output1 < = < value > ;
 38 output2 < = < value > ;
 39 ...
 40 when B = >
 41 output1 < = < value > ;
 42 output2 < = < value > ;
 43 ...
 44 when C = >

112 Chapter 6

 45 ...
 46 end case;
 47 end process;
 48
 49 --FSM combinational logic for next state:
 50 process (all)
 51 begin
 52 case pr_state is
 53 when A = >
 54 if < condition > then
 55 nx_state < = B;
 56 elsif < condition > then
 57 nx_state < = ...;
 58 else
 59 nx_state < = A;
 60 end if;
 61 when B = >
 62 if < condition > then
 63 nx_state < = C;
 64 ...
 65 end if;
 66 when C = >
 67 ...
 68 end case;
 69 end process;

6.4.2 State Register Plus Output Register in a Single Process
A variation in the other direction (reducing the number of processes from three to
two instead of increasing it to four) consists of joining the process for the state register
with that for the output register. This is not recommended for three reasons. First, in
most projects the optional output register is not needed. Second, having the output
register in a separate process helps remind the designer that the need or not for such
a register is an important case-by-case decision. Third, one might want to have the
output register operating at the other (negative) clock edge, which is better emphasized
by using separate processes.

6.4.3 Using Default Values
When the same signal or variable value appears several times inside the same process,
a default value can be entered at the beginning of the process. An example is shown
below for the process of the combinational logic section, with default values for the
outputs included in lines 36 – 38. In lines 40 – 45 only the values that disagree with
these must then be typed in. An example in which default values are used is seen in
section 12.4.

 32 --FSM combinational logic:
 33 process (all)
 34 begin

VHDL Design of Regular (Category 1) State Machines 113

 35 --Default values:
 36 output1 < = < value > ;
 37 output2 < = < value > ;
 38 ...
 39 --Code:
 40 case pr_state is
 41 when A = > ;
 42 ...
 43 when B = >
 44 ...
 45 end case;
 46 end process;

6.4.4 A Dangerous Template
A tempting template is shown next. Note that the entire FSM is in a single process
(lines 17 – 43). Its essential point is that the elsif rising_edge(clk) statement encloses
the whole circuit (it opens in line 21 and only closes in line 42), thus registering it
completely (that is, not only the state is stored in fl ip-fl ops — this has to be done
anyway — but also all the outputs).

 This template has several apparent advantages. One is that a shorter code results
(for instance, we can replace pr_state and nx_state with a single name — fsm_state , for
example; also, only one process is needed). Another apparent advantage is that the
code will work (no latches inferred) when the list of outputs is not exactly the same
in all states. Such features, however, might hide serious problems.

 One of the problems is precisely the fact that the outputs are always registered, so
the resulting circuit is never the FSM alone but the FSM plus the optional output
register of fi gure 5.2c, which many times is unwanted.

 Another problem is that, even if the optional output register were needed, we do
not have the freedom to choose in which of the clock edges to operate it because the
same edge is used for the FSM and for the output register in this template, reducing
the design fl exibility.

 A third problem is the fact that, because the list of outputs does not need to be the
same in all states (because they are registered, latches will not be inferred when an
output value is not specifi ed), the designer is prone to overlook the project
specifi cations.

 Finally, it is important to remember that VHDL (and SystemVerilog) is not a
program but a code, and a shorter code does not mean a smaller or better circuit. In
fact, longer, better-organized codes tend to ease the compiler ’ s work, helping to opti-
mize the fi nal circuit.

 In summary, the template below is a particular case of the general template intro-
duced in section 6.3. The general template gets reduced to this one only when all
outputs must be registered and the same clock edge must operate both the state register
and the output register.

114 Chapter 6

 1 --Dangerous template (particular case of the general template)
 2 library ieee;
 3 use ieee.std_logic_1164.all;
 4 ---
 5 entity circuit is
 6 generic (...);
 7 port (
 8 clk, rst: in std_logic;
 9 input, ...: in std_logic_vector(...);
 10 output, ...: out std_logic_vector(...);
 11 end entity;
 12 ---
 13 architecture moore_fsm of circuit is
 14 type state is (A, B, C, ...);
 15 signal fsm_state: state;
 16 begin
 17 process (clk, rst)
 18 begin
 19 if rst then
 20 fsm_state < = A;
 21 elsif rising_edge(clk) then
 22 case fsm_state is
 23 when A = >
 24 output < = < value > ;
 25 if < condition > then
 26 fsm_state < = B;
 27 elsif < condition > then
 28 fsm_state < = ...;
 29 else
 30 fsm_state < = A;
 31 end if;
 32 when B = >
 33 output < = < value > ;
 34 if < condition > then
 35 ...
 36 else
 37 fsm_state < = B;
 38 end if;
 39 when C = >
 40 ...
 41 end case;
 42 end if;
 43 end process;
 44 ---

6.5 VHDL Template for Regular (Category 1) Mealy Machines

This template, also based on fi gures 6.1 and 6.2 , is presented below. The only differ-
ence with respect to the Moore template just presented is in the process for the com-
binational logic because the output is specifi ed differently now. Recall that in a Mealy
machine the output depends not only on the FSM ’ s state but also on its input, so if
statements are expected for the output in one or more states because the output values
might not be unique. This is achieved by including the output within the conditional

VHDL Design of Regular (Category 1) State Machines 115

statements for nx_state . For example, observe in lines 20 – 36, relative to state A, that
the output values are now conditional. Compare these lines against lines 36 – 46 in the
template of section 6.3.

 Please review the following comments, which can easily be adapted from the Moore
case to the Mealy case:

 — On the Moore template for category 1, in section 6.3, especially comment 10.
 — On the enum_encoding and fsm_encoding attributes, also in section 6.3.
 — On possible code variations, in section 6.4.

 1 ---
 2 library ieee;
 3 use ieee.std_logic_1164.all;
 4 ---
 5 entity circuit is
 6 (same as for category 1 Moore, section 6.3)
 7 end entity;
 8 ---
 9 architecture mealy_fsm of circuit IS
 10 (same as for category 1 Moore, Section 6.3)
 11 begin
 12
 13 --FSM state register:
 14 (same as for category 1 Moore, section 6.3)
 15
 16 --FSM combinational logic:
 17 process (all) --list proc. inputs if “ all ” not supported
 18 begin
 19 case pr_state is
 20 when A = >
 21 if < condition > then
 22 output1 < = < value > ;
 23 output2 < = < value > ;
 24 ...
 25 nx_state < = B;
 26 elsif < condition > then
 27 output1 < = < value > ;
 28 output2 < = < value > ;
 29 ...
 30 nx_state < = ...;
 31 else
 32 output1 < = < value > ;
 33 output2 < = < value > ;
 34 ...
 35 nx_state < = A;
 36 end if;
 37 when B = >
 38 if < condition > then
 39 output1 < = < value > ;
 40 output2 < = < value > ;
 41 ...
 42 nx_state < = C;
 43 elsif < condition > then

116 Chapter 6

 44 output1 < = < value > ;
 45 output2 < = < value > ;
 46 ...
 47 nx_state < = ...;
 48 else
 49 output1 < = < value > ;
 50 output2 < = < value > ;
 51 ...
 52 nx_state < = B;
 53 end if;
 54 when C = >
 55 ...
 56 end case;
 57 end process;
 58
 59 --Optional output register:
 60 (same as for category 1 Moore, section 6.3)
 61
 62 end architecture;
 63 ---

6.6 Design of a Small Counter

This section presents a VHDL-based design for the 1-to-5 counter with enable and
up-down controls introduced in section 5.4.1 (fi gure 5.3).

 Because counters are inherently synchronous, the Moore approach is the natural
choice for their implementation, so the VHDL template of section 6.3 is used. Because
possible glitches during (positive) clock transitions are generally not a problem in
counters, the optional output register shown in the last process of the template is not
employed.

 The entity, called counter , is in lines 5 – 9. All ports are of type std_logic or std_logic_
vector (industry standard).

 The architecture, called moore_fsm , is in lines 11 – 88. As usual, it contains a declara-
tive part (before the keyword begin) and a statements part (from begin on).

 In the declarative part of the architecture (lines 12 – 13), the enumerated type state
is created to represent the machine ’ s present and next states. Recall that when neither
the enum_encoding nor the fsm_encoding attribute is used, the encoding scheme must
be selected in the compiler ’ s setup.

 The fi rst process (lines 17 – 24) in the statements part implements the state register.
As in the template, this is a standard code with clock and reset present only in this
process.

 The second and fi nal process (lines 27 – 86) implements the entire combinational
logic section. It is just a list of all states, each containing the output value and the
next state. Note that in each state the output value is unique because in a Moore
machine the output depends only on the state in which the machine is.

VHDL Design of Regular (Category 1) State Machines 117

Observe the correct use of registers and the completeness of the code, as described
in comment 10 of section 6.3. Note in particular the following:

 1) Regarding the use of registers: The circuit is not overregistered. This can be observed
in the elsif rising_edge(clk) statement of line 21 (responsible for the inference of
fl ip-fl ops), which is closed in line 23, guaranteeing that only the machine state (line
22) gets stored. The output (outp) is in the next process, which is purely combinational
(thus not registered).
 2) Regarding the outputs: The list of outputs (just outp in this example) is exactly the
same in all states (see lines 31, 42, 53, 64, 75), and the corresponding output values
are always properly declared.
 3) Regarding the next state: Again, the coverage is complete because all states are
included (see lines 30, 41, 52, 63, 74), and in each state the conditional declarations
for the next state are always fi nalized with an else statement (lines 38, 49, 60, 71, 82),
guaranteeing that no condition is left unchecked.

 1 ---
 2 library ieee;
 3 use ieee.std_logic_1164.all;
 4 ---
 5 entity counter is
 6 port (
 7 ena, up, clk, rst: in std_logic;
 8 outp: out std_logic_vector(2 downto 0));
 9 end entity;
 10 ---
 11 architecture moore_fsm of counter is
 12 type state is (one, two, three, four, five);
 13 signal pr_state, nx_state: state;
 14 begin
 15
 16 --FSM state register:
 17 process (clk, rst)
 18 begin
 19 if rst='1' then
 20 pr_state < = one;
 21 elsif rising_edge(clk) then
 22 pr_state < = nx_state;
 23 end if;
 24 end process;
 25
 26 --FSM combinational logic:
 27 process (all) --list proc. inputs if "all" not supported
 28 begin
 29 case pr_state is
 30 when one = >
 31 outp < = "001";
 32 if ena='1' then
 33 if up='1' then
 34 nx_state < = two;
 35 else

118 Chapter 6

 36 nx_state < = five;
 37 end if;
 38 else
 39 nx_state < = one;
 40 end if;
 41 when two = >
 42 outp < = "010";
 43 if ena='1' then
 44 if up='1' then
 45 nx_state < = three;
 46 else
 47 nx_state < = one;
 48 end if;
 49 else
 50 nx_state < = two;
 51 end if;
 52 when three = >
 53 outp < = "011";
 54 if ena='1' then
 55 if up='1' then
 56 nx_state < = four;
 57 else
 58 nx_state < = two;
 59 end if;
 60 else
 61 nx_state < = three;
 62 end if;
 63 when four = >
 64 outp < = "100";
 65 if ena='1' then
 66 if up='1' then
 67 nx_state < = five;
 68 else
 69 nx_state < = three;
 70 end if;
 71 else
 72 nx_state < = four;
 73 end if;
 74 when five = >
 75 outp < = "101";
 76 if ena='1' then
 77 if up='1' then
 78 nx_state < = one;
 79 else
 80 nx_state < = four;
 81 end if;
 82 else
 83 nx_state < = five;
 84 end if;
 85 end case;
 86 end process;
 87
 88 end architecture;
 89 ---

Synthesis results using the VHDL code above are presented in fi gure 6.3 . The cir-
cuit ’ s structure can be seen in the RTL view of fi gure 6.3a , while the FSM can be seen

VHDL Design of Regular (Category 1) State Machines 119

 Figure 6.3
 Results from the VHDL code for the 1-to-5 counter with enable and up-down controls of fi gure

5.3. (a) RTL view. (b) State machine view. (c) Simulation results.

in fi gure 6.3b . As expected, the latter coincides with the intended state transition
diagram (fi gure 5.3). Simulation results are exhibited in fi gure 6.3c . Note that the
output changes only at positive clock transitions, counting up when up = ‘ 1 ’ , down
when up = ‘ 0 ’ , and stopping if ena = ‘ 0 ’ .

 The number of fl ip-fl ops inferred by the compiler after synthesizing the code above
was three for sequential, Gray, or Johnson encoding and fi ve for one-hot, matching
the predictions made in section 5.4.1.

 Note: As smentioned in section 5.4.1, counters can be designed very easily without
employing the FSM approach when using VHDL or SystemVerilog. The design above
was included, nevertheless, because it illustrates well the construction of VHDL code
for category 1 machines. A similar counter, but without the up-down control, results
from the code below, where the FSM technique is not employed. Moreover, it is fi ne
for any number of bits.

 1 --
 2 library ieee;
 3 use ieee.std_logic_1164.all;
 4 use ieee.std_logic_arith.all;
 5 --
 6 entity counter is
 7 generic (
 8 bits: natural := 3;
 9 xmin: natural := 1;
 10 xmax: natural := 5);
 11 port (
 12 clk, rst, ena: in std_logic;

120 Chapter 6

 13 x_out: out std_logic_vector(bits-1 downto 0));
 14 end entity;
 15 --
 16 architecture direct_counter of counter is
 17 signal x: natural range 0 to xmax;
 18 begin
 19 process (clk, rst)
 20 begin
 21 if rst='1' then
 22 x < = xmin;
 23 elsif rising_edge(clk) and ena='1' then
 24 if x < xmax then
 25 x < = x + 1;
 26 else
 27 x < = xmin;
 28 end if;
 29 end if;
 30 end process;
 31 x_out < = conv_std_logic_vector(x, bits);
 32 end architecture;
 33 --

6.7 Design of a Garage Door Controller

This section presents a VHDL-based design for the garage door controller introduced
in section 5.4.5. The Moore template of section 6.3 is employed to implement the
FSM of fi gure 5.9c.

 The entity, called garage_door_controller , is in lines 5 – 9. All ports are of type std_logic
or std_logic_vector (industry standard).

 The architecture, called moore_fsm , is in lines 11 – 94. As usual, it contains a declara-
tive part (before the keyword begin) and a statements part (from begin on).

 In the declarative part of the architecture (lines 12 – 14), the enumerated type state
is created to represent the machine ’ s present and next states.

 The fi rst process (lines 18 – 25) in the statements part implements the state register. As
in the template, this is a standard code with clock and reset present only in this process.

 The second and fi nal process (lines 28 – 92) implements the entire combinational
logic section. It is just a list of all states, each containing the output value and the
next state. Note that in each state the output value is unique because in a Moore
machine the output depends only on the state in which the machine is.

 Observe the correct use of registers and the completeness of the code as described
in comment number 10 of section 6.3. Note in particular the following:

 1) Regarding the use of registers: The circuit is not overregistered. This can be observed
in the elsif rising_edge(clk) statement of line 22 (responsible for the inference of
fl ip-fl ops), which is closed in line 24, guaranteeing that only the machine state (line
23) gets stored. The output (ctr) is in the next process, which is purely combinational
(thus not registered).

VHDL Design of Regular (Category 1) State Machines 121

2) Regarding the outputs: The list of outputs (just ctr in this example) is exactly the
same in all states (see lines 32, 39, 46, …), and the corresponding output value is
always properly declared.
3) Regarding the next state: Again, the coverage is complete because all states are
included (see lines 31, 38, 45, …), and in each state the conditional declarations for
the next state are always fi nalized with an else statement (lines 35, 42, 51, …), guar-
anteeing that no condition is left unchecked.

 1 --
 2 library ieee;
 3 use ieee.std_logic_1164.all;
 4 --
 5 entity garage_door_controller is
 6 port (
 7 remt, sen1, sen2, clk, rst: in std_logic;
 8 ctr: out std_logic_vector(1 downto 0));
 9 end entity;
 10 --
 11 architecture moore_fsm of garage_door_controller is
 12 type state is (closed1, closed2, opening1, opening2,
 13 open1, open2, closing1, closing2);
 14 signal pr_state, nx_state: state;
 15 begin
 16
 17 --FSM state register:
 18 process (clk, rst)
 19 begin
 20 if rst='1' then
 21 pr_state < = closed1;
 22 elsif rising_edge(clk) then
 23 pr_state < = nx_state;
 24 end if;
 25 end process;
 26
 27 --FSM combinational logic:
 28 process (all) --or (pr_state, remt, sen1, sen2)
 29 begin
 30 case pr_state is
 31 when closed1 = >
 32 ctr < = "0-";
 33 if remt='0' then
 34 nx_state < = closed2;
 35 else
 36 nx_state < = closed1;
 37 end if;
 38 when closed2 = >
 39 ctr < = "0-";
 40 if remt='1' then
 41 nx_state < = opening1;
 42 else
 43 nx_state < = closed2;
 44 end if;
 45 when opening1 = >

122 Chapter 6

 46 ctr < = "10";
 47 if sen1='1' then
 48 nx_state < = open1;
 49 elsif remt='0' then
 50 nx_state < = opening2;
 51 else
 52 nx_state < = opening1;
 53 end if;
 54 when opening2 = >
 55 ctr < = "10";
 56 if remt='1' or sen1='1' then
 57 nx_state < = open1;
 58 else
 59 nx_state < = opening2;
 60 end if;
 61 when open1 = >
 62 ctr < = "0-";
 63 if remt='0' then
 64 nx_state < = open2;
 65 else
 66 nx_state < = open1;
 67 end if;
 68 when open2 = >
 69 ctr < = "0-";
 70 if remt='1' then
 71 nx_state < = closing1;
 72 else
 73 nx_state < = open2;
 74 end if;
 75 when closing1 = >
 76 ctr < = "11";
 77 if sen2='1' then
 78 nx_state < = closed1;
 79 elsif remt='0' then
 80 nx_state < = closing2;
 81 else
 82 nx_state < = closing1;
 83 end if;
 84 when closing2 = >
 85 ctr < = "11";
 86 if remt='1' or sen2='1' then
 87 nx_state < = closed1;
 88 else
 89 nx_state < = closing2;
 90 end if;
 91 end case;
 92 end process;
 93
 94 end architecture;
 95 ---

The number of fl ip-fl ops inferred by the compiler after synthesizing the code above
was three for sequential or Gray encoding, four for Johnson, and eight for one-hot,
matching the predictions made in section 5.4.5.

VHDL Design of Regular (Category 1) State Machines 123

Figure 6.4
Simulation results from the VHDL code for the garage door controller of fi gure 5.9c.

Simulation results are depicted in fi gure 6.4 . The encoding chosen for the states
was sequential (section 3.7). The states are enumerated from 0 to 7 (there are eight
states), in the order in which they were declared in lines 12 – 13. Be aware, however,
that some compilers reserve the value zero for the reset state; because the reset (initial)
state in the present example is closed1 (see lines 20 – 21), which is the fi rst state in the
declaration list, that is not a concern here.

 In this simulation the sequence closed1 – closed2 – opening1 – opening2 – open1 – open2 –
 closing1 – closed1 (see state names in the lower part of fi gure 6.4) was tested. Note that
pulses of various widths were used to illustrate the fact that their width has no effect
beyond the fi rst positive clock edge.

 6.8 Design of a Datapath Controller for a Greatest Common Divisor Calculator

 This section presents a VHDL-based design for the control unit introduced in sec-
tion 5.4.8, which controls a datapath to produce a greatest common divisor (GCD)
calculator. The Moore template of section 6.3 is employed to implement the FSM of
fi gure 5.13e.

 The entity, called control_unit_for_GCD , is in lines 5 – 11. All ports are of the type
 std_logic or std_logic_vector (industry standard).

 The architecture, called moore_fsm , is in lines 13 – 80. As usual, it contains a declara-
tive part (before the keyword begin) and a statements part (from begin on).

 In the declarative part of the architecture (lines 14 – 15), the enumerated type state
is created to represent the machine ’ s present and next states.

 The fi rst process (lines 19 – 26) in the statements part implements the state register.
As in the template, this is a standard code with clock and reset present only in this
process.

124 Chapter 6

The second and fi nal process (lines 29 – 78) implements the entire combinational
logic section. It is just a list of all states, each containing the output values and the
next state. Note that in each state the output values are unique because in a Moore
machine the outputs depend only on the state in which the machine is.

 Observe the correct use of registers and the completeness of the code, as described
in comment 10 of section 6.3. Note in particular the following:

 1) Regarding the use of registers: The circuit is not overregistered. This can be observed
in the elsif rising_edge(clk) statement of line 23 (responsible for the inference of
fl ip-fl ops), which is closed in line 25, guaranteeing that only the machine state (line
24) gets stored. The outputs are in the next process, which is purely combinational
(thus not registered).
 2) Regarding the outputs: The list of outputs (selA , selB , wrA , wrB , ALUop) is exactly
the same in all states (see lines 33 – 37, 44 – 48, 51 – 55, . . .), and the corresponding
output values are always properly declared.
 3) Regarding the next state: Again, the coverage is complete because all states are
included (see lines 32, 43, 50, . . .), and in each state any conditional declarations for
the next state are fi nalized with an else statement (lines 40 and 60), guaranteeing that
no condition is left unchecked.

 1 ---
 2 library ieee;
 3 use ieee.std_logic_1164.all;
 4 ---
 5 entity control_unit_for_GCD is
 6 port (
 7 dv, clk, rst: in std_logic;
 8 sign: in std_logic_vector(1 downto 0)
 9 selA, selB, wrA, wrB: out std_logic;
 10 ALUop: out std_logic_vector(1 downto 0));
 11 end entity;
 12 ---
 13 architecture moore_fsm of control_unit_for_GCD is
 14 type state is (idle, load, waitt, writeA, writeB);
 15 signal pr_state, nx_state: state;
 16 begin
 17
 18 --FSM state register:
 19 process (clk, rst)
 20 begin
 21 if rst='1' then
 22 pr_state < = idle;
 23 elsif rising_edge(clk) then
 24 pr_state < = nx_state;
 25 end if;
 26 end process;
 27
 28 --FSM combinational logic:
 29 process (all) --or (pr_state, dv, sign)

VHDL Design of Regular (Category 1) State Machines 125

 30 begin
 31 case pr_state is
 32 when idle = >
 33 selA < = '-';
 34 selB < = '-';
 35 wrA < = '0';
 36 wrB < = '0';
 37 ALUop < = "00";
 38 if dv='1' then
 39 nx_state < = load;
 40 else
 41 nx_state < = idle;
 42 end if;
 43 when load = >
 44 selA < = '1';
 45 selB < = '1';
 46 wrA < = '1';
 47 wrB < = '1';
 48 ALUop < = "00";
 49 nx_state < = waitt;
 50 when waitt = >
 51 selA < = '-';
 52 selB < = '-';
 53 wrA < = '0';
 54 wrB < = '0';
 55 ALUop < = "10";
 56 if sign="01" then
 57 nx_state < = writeA;
 58 elsif sign="10" then
 59 nx_state < = writeB;
 60 else
 61 nx_state < = idle;
 62 end if;
 63 when writeA = >
 64 selA < = '0';
 65 selB < = '-';
 66 wrA < = '1';
 67 wrB < = '0';
 68 ALUop < = "10";
 69 nx_state < = waitt;
 70 when writeB = >
 71 selA < = '-';
 72 selB < = '0';
 73 wrA < = '0';
 74 wrB < = '1';
 75 ALUop < = "11";
 76 nx_state < = waitt;
 77 end case;
 78 end process;
 79
 80 end architecture;
 81 ---

Simulation results are presented in fi gure 6.5 . The encoding chosen for the states
was sequential (section 3.7). The states are enumerated from 0 to 4 (there are fi ve states)

126 Chapter 6

Figure 6.5
Simulation results from the VHDL code for the control unit of fi gure 5.13e, which controls a

datapath for GCD calculation.

in the order in which they were declared in line 14 (be aware, however, that some
compilers reserve the value zero for the reset state). The stimuli are exactly as in fi gure
5.13d (GCD for 9 and 15). The reader is invited to inspect these results and compare
them against the waveforms in fi gure 5.13d.

 6.9 Exercises

 Exercise 6.1: Parity Detector
 This exercise concerns the parity detector of fi gure 5.5c.

 a) How many fl ip-fl ops are needed to implement it with sequential and one-hot
encoding?
 b) Implement it using VHDL. Check whether the number of DFFs inferred by the
compiler matches each of your predictions.
 c) Simulate it using the same stimuli of fi gure 5.5b and check if the same waveform
results for y .

 Exercise 6.2: One-Shot Circuits
 This exercise concerns the one-shot circuits of fi gures 5.7c,d.

 a) Solve exercise 5.5 if not done yet.
 b) How many fl ip-fl ops are needed to implement each FSM with sequential
encoding?
 c) Implement both circuits using VHDL. Check whether the number of DFFs inferred
by the compiler matches each of your predictions.
 d) Simulate each circuit using the same stimuli of exercise 5.5 (fi gure 5.16) and check
whether the same results are obtained here.

VHDL Design of Regular (Category 1) State Machines 127

Exercise 6.3: Manchester Encoder
This exercise concerns the Manchester encoder treated in exercise 5.8.

a) Solve exercise 5.8 if not done yet.
b) Implement the Moore machine relative to part a of that exercise using VHDL.
Simulate it using the same stimuli of part b, checking if the results match.
c) Implement the Mealy machine relative to part c of that exercise using VHDL. Simu-
late it using the same stimuli of part d, checking if the results match.

Exercise 6.4: Differential Manchester Encoder
This exercise concerns the differential Manchester encoder treated in exercise 5.9.

a) Solve exercise 5.9 if not done yet.
b) Implement the FSM relative to part a of that exercise using VHDL. Simulate it using
the same waveforms of part b, checking if the results match.

Exercise 6.5: String Detector
This exercise concerns the string detector of fi gure 5.14a, which detects the sequence
“ abc ” .

a) Solve exercise 5.12 if not done yet.
b) Implement the FSM of fi gure 5.14a using VHDL. Simulate it using the same stimuli
of exercise 5.12, checking if the same results are obtained here.

Exercise 6.6: Generic String Detector
This exercise concerns the generic string detector of fi gure 5.14b. Implement it using
VHDL and simulate it for the following cases:

 a) To detect the sequence “ abc ” .
 b) To detect the sequence “ aab ” .
 c) To detect the sequence “ aaa ” .

 Exercise 6.7: Keypad Encoder
 This exercise concerns the keypad encoder treated in exercise 5.14. It is repeated
in fi gure 6.6 , with a seven-segment display (SSD — see fi gure 8.13) at the output,
which must display the last key pressed (use the characters “ A ” and “ b ” for *
and #, respectively). (A deboucer is generally needed in this kind of design; see
exercise 8.9.)

a) Solve exercise 5.14 if not done yet.
b) Implement the FSM obtained above using VHDL. Instead of encoding r (3:0) accord-
ing to the table in fi gure 5.23c, encode it as an SSD driver, using the table in fi gure
8.13d (so key is now a 7-bit signal).

128 Chapter 6

c) Physically test your design by connecting an actual keypad (or an arrangement of
pushbuttons) to the FPGA in your development board, with key displayed by one of
the board ’ s SSDs.

 Exercise 6.8: Datapath Controller for a Largest-Value Detector
 This exercise concerns the control unit treated in exercise 5.15.

 a) Solve exercise 5.15 if not done yet.
 b) Implement the FSM obtained above using VHDL. Present meaningful simulation
results.

Figure 6.6

7 SystemVerilog Design of Regular (Category 1) State Machines

7.1 Introduction

This chapter presents several SystemVerilog designs of category 1 state machines. It
starts by presenting two SystemVerilog templates, for Moore- and Mealy-based imple-
mentations, which are used subsequently to develop a series of designs related to the
examples introduced in chapter 5.

 The codes are always complete (not only partial sketches) and are accompanied by
comments and simulation results illustrating the design ’ s main features. All circuits
were synthesized using Quartus II (from Altera) or ISE (from Xilinx). The simulations
were performed with Quartus II or ModelSim (from Mentor Graphics). The default
encoding scheme for the states of the FSMs was regular sequential encoding (see
encoding options in section 3.7).

 The same designs were developed in chapter 6 using VHDL, so the reader can make
a direct comparison between the codes.

 Note: See suggestions of SystemVerilog books in the bibliography.

 7.2 General Structure of SystemVerilog Code

 A typical structure of SystemVerilog code for synthesis, with all elements that will be
needed in this and in coming chapters, is depicted in fi gure 7.1 . It is composed of
three fundamental sections, briefl y described below.

 Module Header
 The module header is similar to entity in VHDL (section 6.2), also divided into two
parts, called parameter declarations and port declarations .

 Parameter declarations: This portion, similar to generic in VHDL, is optional. It
is used for the declaration of global parameters, which can be easily modifi ed to
fulfi ll different system specifi cations or, more importantly, can be overridden during
instantiations into other designs (structural code).

130 Chapter 7

 Port declarations: This portion, similar to port in VHDL, is mandatory for syn-
thesis. It is just a list with specifi cations of all circuit ports (I/Os), including their
mode (input , output , or inout), type (plus range), and name.

 Declarations Part
 The declarations part of a SystemVerilog code is similar to the declarative part of
 architecture in VHDL (section 6.2). It too is optional and allows all sorts of local
declarations (e.g., local parameters, data types, variables) as well as function (and task)
constructions.

 Statements Part
 The statements part of a SystemVerilog code is similar to the statements part of archi-
tecture in VHDL (section 6.2). As shown in fi gure 7.1 , its main elements (in no par-
ticular order) are the following: assign statements, normally using operators, for
simple combinational circuits; always blocks, constructed using sequential statements
(if , case , for , while , repeat), for both sequential as well as (complex) combinational
circuits; function (and task) calls; and, fi nally, module (that is, other design)
instantiations.

 7.3 SystemVerilog Template for Regular (Category 1) Moore Machines

 The template is based on fi gure 7.2 (derived from fi gure 5.2), which shows three
 always blocks: 1) for the FSM state register; 2) for the FSM combinational logic; and

Figure 7.1
Typical SystemVerilog code structure for synthesis.

SystemVerilog Design of Regular (Category 1) State Machines 131

3) for the optional output register. Note the asterisk on one of the input connections;
as we know, if that connection exists it is a Mealy machine, else it is a Moore machine.

 There obviously are other ways of breaking the code instead of using the three
 always blocks indicated in fi gure 7.2 . For example, the combinational logic section
could be implemented with two always blocks, one with the logic for output , the other
with the logic for nx_state .

 The SystemVerilog template for the design of category 1 Moore machines is pre-
sented below. Observe the following:

 1) To improve readability, the three fundamental code sections were separated by
dashed lines (lines 1, 11, 17, 61).
 2) The fi rst part of the code is the module header, in lines 1 – 9. It contains two sec-
tions: global parameter declarations (optional, lines 3 – 5) and circuit ports (mandatory
for synthesis, lines 7 – 9). Note that all ports are of type logic , with one or more bits.
 3) The second part of the code is the declarations part, in lines 11 – 15. A special enu-
merated type, called state , is created in line 14, then the signals pr_state and nx_state
are declared using that type in line 15.
 4) The third part of the code is the statements part (code proper), in lines 17 – 60. In
this template, it contains three always blocks, described next.
 5) The fi rst always block (lines 20 – 22) is an always_ff because we want fl ip-fl ops to
be inferred. It implements the machine ’ s state register (always 1 block of fi gure 7.2).
This register is reset when rst = ‘ 1 ’ occurs; if rst = ‘ 0 ’ , the input is copied to the output at
every positive clock edge.
 6) The second always block (lines 25 – 47) is an always_comb because we want a
purely combinational circuit to be inferred (see always 2 block in fi gure 7.2). This part
must contain all states (A, B, C, . . .), and for each state two things must be declared:
the output values/expressions and the next state. Note, for example, in lines 27 – 34,
relative to state A, the output declarations in lines 28 – 30 and the next state declara-
tions in lines 31 – 33. A very important point to observe here is that there is no if

Figure 7.2
State machine architecture depicting how the SystemVerilog code was broken (three always

blocks).

132 Chapter 7

statement associated with the outputs because in a Moore machine the outputs depend
solely on the state in which the machine is, so for a given state each output value/
expression is unique.
7) The third and fi nal always block (lines 50 – 58) implements the optional output
register (always 3 block of fi gure 7.2). Note that it simply copies each original output
to a new output at every positive clock edge (it could also be at the negative edge),
thus inferring the extra register. If this register is used, then the names of the new
outputs must obviously be the names used in the corresponding port declarations (line
9). If the initial output values do not matter, reset is not required in this register.
 8) To conclude, observe the completeness of the code and the correct use of registers
(as requested in sections 4.2.8 and 4.2.9, respectively), summarized below.

 a) Regarding the use of registers: The circuit is not overregistered. This can be
observed in the always_ff statement of line 20 (responsible for the inference of
fl ip-fl ops), which is closed in line 22, guaranteeing that only the machine state
(line 22) gets registered. The output is in the always_comb block, which is purely
combinational.
 b) Regarding the outputs: The list of outputs (outp1 , outp2 , …) is exactly the same
in all states (see lines 28 – 30, 36 – 38, . . .), and the output values/expressions are
always declared.
 c) Regarding the next state: Again, the coverage is complete because all states (A,
B, C, . . .) are included and in each state the conditional declarations are fi nalized
with an else statement (lines 33, 41, . . .), guaranteeing that no condition is left
unchecked.

 Note: Another implementation approach, for simple FSMs, will be seen in chapter 15.

 1 //Part 1: Module header:-----------------------------
 2 module module_name
 3 #(parameter
 4 param1 = < value > ,
 5 param2 = < value >)
 6 (
 7 input logic clk, rst, ...
 8 input logic [7:0] inp1, inp2, ...
 9 output logic [15:0] outp1, outp2, ...);
 10
 11 //Part 2: Declarations:------------------------------
 12
 13 //FSM states type:
 14 typedef enum logic [2:0] {A, B, C, ...} state;
 15 state pr_state, nx_state;
 16
 17 //Part 3: Statements:--------------------------------
 18
 19 //FSM state register:
 20 always_ff @(posedge clk, posedge rst)
 21 if (rst) pr_state < = A;
 22 else pr_state < = nx_state;
 23

SystemVerilog Design of Regular (Category 1) State Machines 133

 24 //FSM combinational logic:
 25 always_comb
 26 case (pr_state)
 27 A: begin
 28 outp1 < = < value > ;
 29 outp2 < = < value > ;
 30 ...
 31 if (condition) nx_state < = B;
 32 else if (condition) nx_state < = ...;
 33 else nx_state < = A;
 34 end
 35 B: begin
 36 outp1 < = < value > ;
 37 outp2 < = < value > ;
 38 ...
 39 if (condition) nx_state < = C;
 40 else if (condition) nx_state < = ...;
 41 else nx_state < = B;
 42 end
 43 C: begin
 44 ...
 45 end
 46 ...
 47 endcase
 48
 49 //Optional output register:
 50 always_ff @(posedge clk, posedge rst)
 51 if (rst) begin //rst might be not needed here
 52 new_outp1 < = ...;
 53 new_outp2 < = ...; ...
 54 end
 55 else begin
 56 new_outp1 < = outp1;
 57 new_outp2 < = outp2; ...
 58 end
 59
 60 endmodule
 61 //---

7.4 SystemVerilog Template for Regular (Category 1) Mealy Machines

This template, also based on fi gures 7.1 and 7.2 , is presented below. The only differ-
ence with respect to the Moore template just presented is in the always_comb block
for the combinational logic because the output is specifi ed differently now. Recall that
in a Mealy machine the output depends not only on the FSM ’ s state but also on its
input, so if statements are expected for the output in one or more states because the
output values might not be unique. This is achieved by including the output within
the conditional statements for nx_state . For example, observe in lines 15 – 33, relative
to state A, that the output values are now conditional. Compare these lines against
lines 27 – 34 in the previous template.

 Please read all comments made for the Moore template in section 7.3 because,
except for the difference mentioned above, they all apply to the Mealy template below

134 Chapter 7

as well. Particular attention should be paid to the recommendations in comment 8,
which can be easily adapted from the Moore case to the Mealy case.

 1 //Part 1: Module header:----------------------------------
 2 (same as for category 1 Moore, section 7.3)
 3
 4 //Part 2: Declarations:-----------------------------------
 5 (same as for category 1 Moore, section 7.3)
 6
 7 //Part 3: Statements:-------------------------------------
 8
 9 //FSM state register:
 10 (same as for category 1 Moore, section 7.3)
 11
 12 //FSM combinational logic:
 13 always_comb
 14 case (pr_state)
 15 A:
 16 if (condition) begin
 17 outp1 < = < value > ;
 18 outp2 < = < value > ;
 19 ...
 20 nx_state < = B;
 21 end
 22 else if (condition) begin
 23 outp1 < = < value > ;
 24 outp2 < = < value > ;
 25 ...
 26 nx_state < = ...;
 27 end
 28 else begin
 29 outp1 < = < value > ;
 30 outp2 < = < value > ;
 31 ...
 32 nx_state < = A;
 33 end
 34 B:
 35 if (condition) begin
 36 outp1 < = < value > ;
 37 outp2 < = < value > ;
 38 ...
 39 nx_state < = C;
 40 end
 41 else if (condition) begin
 42 outp1 < = < value > ;
 43 outp2 < = < value > ;
 44 ...
 45 nx_state < = ...;
 46 end
 47 else begin
 48 outp1 < = < value > ;
 49 outp2 < = < value > ;
 50 ...
 51 nx_state < = B;
 52 end

SystemVerilog Design of Regular (Category 1) State Machines 135

 53 C: ...
 54 ...
 55 endcase
 56
 57 //Optional output register:
 58 (same as for category 1 Moore, section 7.3)
 59
 60 endmodule
 61 //--

7.5 Design of a Small Counter

This section presents a SystemVerilog-based design for the 1-to-5 counter with enable
and up-down controls introduced in section 5.4.1 (fi gure 5.3).

 Because counters are inherently synchronous, the Moore approach is the natural
choice for their implementation, so the SystemVerilog template of section 7.3 is used.
Because possible glitches at (positive) clock transitions are generally not a problem in
counters, the optional output register shown in the fi nal portion of the template is
not employed.

 The fi rst part of the code (module header) is in lines 1 – 4. The module ’ s name is
 counter . Note that all ports are of type logic , with one bit for each input and three bits
for the output.

 The second part of the code (declarations) is in lines 6 – 9. The enumerated type state
is created in it to represent the machine ’ s present and next states.

 The third and fi nal part of the code (statements) is in lines 11 – 57. It contains two
 always blocks, described next.

 The fi rst always block (lines 13 – 15) is an always_ff , which implements the
machine ’ s state register. This is a standard code, similar to the template.

 The second always block (lines 18 – 55) is an always_comb , which implements the
entire combinational logic section. It is just a list of all states, each containing the
output value and the next state. Note that in each state the output value is unique
because in a Moore machine the output depends only on the state in which the
machine is.

 Finally, and very importantly, observe the correct use of registers and the complete-
ness of the code, as described in comment 8 of section 7.3. Observe in particular the
following: 1) all states are included; 2) the list of outputs (only outp in this case) is
exactly the same in all states, and the corresponding values are always included; 3)
the specifi cations for nx_state are always fi nalized with an else statement, so no condi-
tion is left unchecked.

 1 //Module header:---
 2 module counter (
 3 input logic up, ena, clk, rst,

136 Chapter 7

 4 output logic [2:0] outp);
 5
 6 //Declarations:---
 7 //FSM states type:
 8 typedef enum logic [2:0] {one, two, three, four, five} state;
 9 state pr_state, nx_state;
 10
 11 //Statements:---
 12 //FSM state register:
 13 always_ff @(posedge clk, posedge rst)
 14 if (rst) pr_state < = one;
 15 else pr_state < = nx_state;
 16
 17 //FSM combinational logic:
 18 always_comb
 19 case (pr_state)
 20 one: begin
 21 outp < = 1;
 22 if (ena)
 23 if (up) nx_state < = two;
 24 else nx_state < = five;
 25 else nx_state < = one;
 26 end
 27 two: begin
 28 outp < = 2;
 29 if (ena)
 30 if (up) nx_state < = three;
 31 else nx_state < = one;
 32 else nx_state < = two;
 33 end
 34 three: begin
 35 outp < = 3;
 36 if (ena)
 37 if (up) nx_state < = four;
 38 else nx_state < = two;
 39 else nx_state < = three;
 40 end
 41 four: begin
 42 outp < = 4;
 43 if (ena)
 44 if (up) nx_state < = five;
 45 else nx_state < = three;
 46 else nx_state < = four;
 47 end
 48 five: begin
 49 outp < = 5;
 50 if (ena)
 51 if (up) nx_state < = one;
 52 else nx_state < = four;
 53 else nx_state < = five;
 54 end
 55 endcase
 56
 57 endmodule
 58 //--

SystemVerilog Design of Regular (Category 1) State Machines 137

Simulation results from the code above are exhibited in fi gure 7.3 . Note that the
output changes only at positive clock transitions, counting up when up = ‘ 1 ’ , down
when up = ‘ 0 ’ , and stopping if ena = ‘ 0 ’ .

 The number of fl ip-fl ops inferred by the compiler was three for sequential, Gray,
or Johnson encoding and fi ve for one-hot, matching the predictions made in section
5.4.1.

 7.6 Design of a Garage Door Controller

 This section presents a SystemVerilog-based design for the garage door controller
introduced in section 5.4.5. The Moore template of section 7.3 is employed to imple-
ment the FSM of fi gure 5.9c.

 The fi rst part of the code (module header) is in lines 1 – 4. The module ’ s name is
 garage_door_controller . Note that all ports are of type logic .

 The second part of the code (declarations) is in lines 6 – 10. The enumerated type
 state is created in it to represent the machine ’ s present and next states.

 The third and fi nal part of the code (statements) is in lines 12 – 65. It contains two
 always blocks, described next.

 The fi rst always block (lines 14 – 16) is an always_ff , which implements the
machine ’ s state register. This is a standard code, similar to the template.

 The second always block (lines 19 – 63) is an always_comb , which implements the
entire combinational logic section. It is just a list of all states, each containing the
output value and the next state. Note that in each state the output value is unique
because in a Moore machine the output depends only on the state in which the
machine is.

 Finally, and very importantly, observe the correct use of registers and the complete-
ness of the code, as described in comment 8 of section 7.3. Observe in particular the

Figure 7.3
Simulation results from the SystemVerilog code for the 1-to-5 counter with enable and up-down

controls of fi gure 5.3.

138 Chapter 7

following: 1) all states are included; 2) the list of outputs (only ctr in this case) is
exactly the same in all states, and the corresponding values are always included; 3)
the specifi cations for nx_state are always fi nalized with an else statement, so no condi-
tion is left unchecked.

 1 //Module header:---
 2 module garage_door_controller (
 3 input logic remt, sen1, sen2, clk, rst,
 4 output logic [1:0] ctr);
 5
 6 //Declarations:--
 7 //FSM states type:
 8 typedef enum logic [2:0] {closed1, closed2, opening1,
 9 opening2, open1, open2, closing1, closing2} state;
 10 state pr_state, nx_state;
 11
 12 //Statements:--
 13 //FSM state register:
 14 always_ff @(posedge clk, posedge rst)
 15 if (rst) pr_state < = closed1;
 16 else pr_state < = nx_state;
 17
 18 //FSM combinational logic:
 19 always_comb
 20 case (pr_state)
 21 closed1: begin
 22 ctr < = 2'b0x;
 23 if (~remt) nx_state < = closed2;
 24 else nx_state < = closed1;
 25 end
 26 closed2: begin
 27 ctr < = 2'b0x;
 28 if (remt) nx_state < = opening1;
 29 else nx_state < = closed2;
 30 end
 31 opening1: begin
 32 ctr < = 2'b10;
 33 if (sen1) nx_state < = open1;
 34 else if (~remt) nx_state < = opening2;
 35 else nx_state < = opening1;
 36 end
 37 opening2: begin
 38 ctr < = 2'b10;
 39 if (remt | sen1) nx_state < = open1;
 40 else nx_state < = opening2;
 41 end
 42 open1: begin
 43 ctr < = 2'b0x;
 44 if (~remt) nx_state < = open2;
 45 else nx_state < = open1;
 46 end
 47 open2: begin
 48 ctr < = 2'b0x;
 49 if (remt) nx_state < = closing1;

SystemVerilog Design of Regular (Category 1) State Machines 139

 50 else nx_state < = open2;
 51 end
 52 closing1: begin
 53 ctr < = 2'b11;
 54 if (sen2) nx_state < = closed1;
 55 else if (~remt) nx_state < = closing2;
 56 else nx_state < = closing1;
 57 end
 58 closing2: begin
 59 ctr < = 2'b11;
 60 if (remt | sen2) nx_state < = closed1;
 61 else nx_state < = closing2;
 62 end
 63 endcase
 64
 65 endmodule
 66 //---

 The number of fl ip-fl ops inferred by the compiler after synthesizing the code above
was three for sequential or Gray encoding, four for Johnson, and eight for one-hot,
matching the predictions made in section 5.4.5.

 Simulation results are depicted in fi gure 7.4 . The encoding chosen for the states
was sequential (section 3.7). The states are enumerated from 0 to 7 (there are eight
states) in the order in which they were declared in lines 8 – 9. Be aware, however, that
some compilers reserve the value zero for the reset state; because the reset (initial)
state in the present example is closed1 (see line 15), which is the fi rst state in the
declaration list, that is not a concern here.

 In this simulation the sequence closed1 — closed2 — opening1 — opening2 — open1 —
 open2 — closing1 — closed1 (see state names in the lower part of fi gure 7.4) was tested.
Note that pulses of various widths were used to illustrate the fact that their width has
no effect beyond the fi rst positive clock edge.

Figure 7.4
Simulation results from the SystemVerilog code for the garage door controller of fi gure 5.9c.

140 Chapter 7

7.7 Design of a Datapath Controller for a Greatest Common Divisor Calculator

This section presents a SystemVerilog-based design for the control unit introduced in
section 5.4.8, which controls a datapath to produce a greatest common divisor (GCD)
calculator. The Moore template of section 7.3 is employed to implement the FSM of
fi gure 5.13e.

 The fi rst part of the code (module header) is in lines 1 – 6. The module ’ s name is
 control_unit_for_GCD . Note that all ports are of type logic .

 The second part of the code (declarations) is in lines 8 – 11. The enumerated type
 state is created in it to represent the machine ’ s present and next states.

 The third and fi nal part of the code (statements) is in lines 13 – 67. It contains two
always blocks, described next.

 The fi rst always block (lines 15 – 17) is an always_ff , which implements the
machine ’ s state register. This is a standard code, similar to the template.

 The second always block (lines 20 – 65) is an always_comb , which implements the
entire combinational logic section. It is just a list of all states, each containing the
output values and the next state. Note that in each state the output values are unique
because in a Moore machine the outputs depend only on the state in which the
machine is.

 Finally, and very importantly, observe the correct use of registers and the complete-
ness of the code, as described in comment 8 of section 7.3. Observe in particular the
following: 1) all states are included; 2) the list of outputs is exactly the same in all
states, and the corresponding values are always included; 3) the conditional specifi ca-
tions for nx_state are always fi nalized with an else statement, so no condition is left
unchecked.

 1 //Module header:--
 2 module control_unit_for_GCD (
 3 input logic dv, clk, rst,
 4 input logic [1:0] sign,
 5 output logic selA, selB, wrA, wrB,
 6 output logic [1:0] ALUop);
 7
 8 //Declarations:---
 9 //FSM states type:
 10 typedef enum logic [2:0] {idle, load, waitt, writeA, writeB} state;
 11 state pr_state, nx_state;
 12
 13 //Statements:---
 14 //FSM state register:
 15 always_ff @(posedge clk, posedge rst)
 16 if (rst) pr_state < = idle;
 17 else pr_state < = nx_state;
 18
 19 //FSM combinational logic:

SystemVerilog Design of Regular (Category 1) State Machines 141

 20 always_comb
 21 case (pr_state)
 22 idle: begin
 23 selA < = 1'bx;
 24 selB < = 1'bx;
 25 wrA < = 1'b0;
 26 wrB < = 1'b0;
 27 ALUop < = 0;
 28 if (dv) nx_state < = load;
 29 else nx_state < = idle;
 30 end
 31 load: begin
 32 selA < = 1'b1;
 33 selB < = 1'b1;
 34 wrA < = 1'b1;
 35 wrB < = 1'b1;
 36 ALUop < = 0;
 37 nx_state < = waitt;
 38 end
 39 waitt: begin
 40 selA < = 1'bx;
 41 selB < = 1'bx;
 42 wrA < = 1'b0;
 43 wrB < = 1'b0;
 44 ALUop < = 2;
 45 if (sign==1) nx_state < = writeA;
 46 else if (sign==2) nx_state < = writeB;
 47 else nx_state < = idle;
 48 end
 49 writeA: begin
 50 selA < = 1'b0;
 51 selB < = 1'bx;
 52 wrA < = 1'b1;
 53 wrB < = 1'b0;
 54 ALUop < = 2;
 55 nx_state < = waitt;
 56 end
 57 writeB: begin
 58 selA < = 1'bx;
 59 selB < = 1'b0;
 60 wrA < = 1'b0;
 61 wrB < = 1'b1;
 62 ALUop < = 3;
 63 nx_state < = waitt;
 64 end
 65 endcase
 66
 67 endmodule
 68 //--

7.8 Exercises

Exercise 7.1: Parity Detector
Solve exercise 6.1 using SystemVerilog instead of VHDL.

142 Chapter 7

Exercise 7.2: One-Shot Circuits
Solve exercise 6.2 using SystemVerilog instead of VHDL.

Exercise 7.3: Manchester Encoder
Solve exercise 6.3 using SystemVerilog instead of VHDL.

Exercise 7.4: Differential Manchester Encoder
Solve exercise 6.4 using SystemVerilog instead of VHDL.

Exercise 7.5: String Detector
Solve exercise 6.5 using SystemVerilog instead of VHDL.

Exercise 7.6: Generic String Detector
Solve exercise 6.6 using SystemVerilog instead of VHDL.

Exercise 7.7: Keypad Encoder
Solve exercise 6.7 using SystemVerilog instead of VHDL.

Exercise 7.8: Datapath Controller for a Largest-Value Detector
Solve exercise 6.8 using SystemVerilog instead of VHDL.

8 Timed (Category 2) State Machines

8.1 Introduction

We know that state machines can be classifi ed into two types, based on their input
connections , as follows.

 1) Moore machines : The input, if it exists, is connected only to the logic block that
computes the next state.
 2) Mealy machines : The input is connected to both logic blocks, that is, for the next
state and for the actual output.

 In section 3.6 we introduced a new, additional classifi cation, also from a hardware
point of view, based on the transition types and nature of the outputs , as follows (see
 fi gure 8.1).

 1) Regular (category 1) state machines : This category, illustrated in fi gure 8.1a and
studied in chapters 5 to 7, consists of machines with only untimed transitions and
outputs that do not depend on previous (past) values, so none of the outputs need to
be registered for the machine to function.
 2) Timed (category 2) state machines : This category, illustrated in fi gure 8.1b and studied
in chapters 8 to 10, consists of machines with one or more transitions that depend
on time (so they can have all four transition types: conditional, timed, conditional-
timed, and unconditional). However, all outputs are still independent from previous
(past) values.
 3) Recursive (category 3) state machines : This category is illustrated in fi gure 8.1c and
studied in chapters 11 to 13. It can have all four types of transitions, but one or more
outputs depend on previous (past) values, so such outputs must be stored in auxiliary
registers for the machine to function.

 The two fundamental decisions before starting a design in hardware are then the
following:

 1) The state machine category (regular, timed, or recursive).

144 Chapter 8

2) The state machine type (Moore or Mealy).

 It is important to recall, however, that regardless of the machine category and type,
the state transition diagram must fulfi ll three fundamental requisites (seen in section
1.3):

 1) It must include all possible system states.
 2) All state transition conditions must be specifi ed (unless a transition is uncondi-
tional) and must be truly complementary.
 3) The list of outputs must be exactly the same in all states (standard architecture).

 8.2 Architectures for Timed (Category 2) Machines

 The general architecture for category 2 machines is summarized in fi gure 8.2a . This
representation follows the style of fi gures 3.1b and 3.1d, but the style of fi gures 3.1a
and 3.1c could be used equivalently. The output register (fi gure 8.2b) is still optional,
but the timer (in fi gure 8.2a) is compulsory.

 Note that the timer operates as an auxiliary circuit, producing the signal t , needed by
the state machine. However, the FSM itself is responsible for controlling the timer, as
represented symbolically by the control signal ctr in the fi gure. In other words, the
machine is who decides when the timer should run or stop and when it should be zeroed.

 The four possible constructions, listed in fi gure 8.2c , are summarized below.

 Timed Moore machine : The circuit of fi gure 8.2a is used with the input (if it exists) con-
nected only to the logic block for the next state, as in fi gure 5.2a. Consequently, it
behaves exactly as a pure Moore machine, just with an auxiliary timer operating as

Figure 8.1
State machine categories (from a hardware perspective).

Timed (Category 2) State Machines 145

an extra input. Because the output depends only on the state in which the machine
is, this circuit is synchronous (see details in section 3.5). Because modern designs are
generally synchronous, this option is preferred over any other timed implementation
whenever the application permits.
Timed Mealy machine : Again, the circuit of fi gure 8.2a is used, but this time with the
input connected to both logic blocks (for output and for next state), as in fi gure 5.2b.
Consequently, it behaves exactly as a pure Mealy machine, just with an auxiliary timer
operating as an extra input. Because the input – output transfer is asynchronous, this
machine can have more than one output value for the same state (see details in section
3.5).
 Out-registered (pipelined) timed Moore machine : The extra register of fi gure 8.2b is con-
nected to the output of the timed Moore machine. As seen in sections 2.5 and 2.6,
two fundamental reasons for doing so are glitch removal and pipelined construction.
The new output will be one or one-half of a clock cycle (depending on the selected
clock edge) behind the original output. The resulting circuit is order-2 synchronous
because the original Moore machine was already a registered circuit (in other words,
the input – output transfer occurs after two clock edges — see details in section 3.5). If
in a given application this extra register is needed but its consequent extra delay is
not acceptable, the next alternative can be considered.
 Out-registered (pipelined) timed Mealy machine : The extra register of fi gure 8.2b is
connected to the output of the timed Mealy machine. The reasons for doing so
are the same as for Moore machines. The resulting circuit is order-1 synchronous
because the input – output relationship in the original Mealy machine can be asyn-
chronous. Consequently, the overall behavior (with the output register included) is
similar to that of a timed Moore machine without the output register (see details in
section 3.5).

Figure 8.2
Timed (category 2) state machine architectures. (a) Moore or Mealy type (depending on input

connections). (b) Optional output register. (c) Resulting circuits.

146 Chapter 8

8.3 Timer Interpretation

It is very important to interpret the timer correctly. The analysis below and that in
the section that follows are based on the state machine of fi gure 8.3, where x is the
actual input, t is an auxiliary input generated by a timer (see the timer in fi gure 8.2a),
and y is the actual output. Note that this FSM contains all four possible transition
types (see section 1.6).

 8.3.1 Time Measurement Unit
 The time in timed machines (t and T in fi gure 8.3, for example) is not expressed in
seconds but rather in “ number of clock cycles. ” For example, if we want the machine
to stay in a certain state during t state = 2 ms, and the clock frequency is f clk = 50 MHz,
we simply adopt T = t state × f clk = 2 · 10 – 3 × 50 · 10 6 = 100,000 clock cycles.

 8.3.2 Timer Range
 If a regular sequential counter with initial value zero is used to build the timer, the
counter ’ s range for the timer to span T clock periods is then from t = 0 to t = T − 1
(so t max = T − 1).

 If the machine has multiple timed transitions, requiring it to stay T 1 clock cycles
in state S 1 , T 2 clock cycles in state S 2 , and so on, then the value of T can be determined
using the expression T = max { T 1 , T 2 , . . .}. The same is true if multiple values of T are
required in the same state.

 Note that indeed a counter running up to any value above t max would also do. For
example, one could choose to use a timer that runs up to the next power-of-two, in
which case only the counter ’ s MSB would need to be monitored, simplifying the circuit
construction (at the expense of an extra DFF; also, the transition conditions should
be changed from t = t max to t ≥ t max in the conditional-timed cases).

 8.3.3 Number of Bits
 The number of bits needed to implement the timer is N = log 2 T . In other words, N
must satisfy T ≤ 2 N . For example, if we want T 1 = 25 and T 2 = 8, T = max {25, 8} = 25

 Figure 8.3
 State machine with all four possible transition types.

Timed (Category 2) State Machines 147

results, so a fi ve-bit counter is needed to build the timer (thus able to run from 0 up
to 31). The ranges of interest in this case are 0-to-24 in state S 1 and 0-to-7 in state S 2 .

8.4 Transition Types and Timer Usage

The state machine of fi gure 8.3, which contains all four possible transition types, is
again used in the analysis that follows.

 Transition AB is time independent, so the timer is not needed. Consequently, we
can let the timer run freely (for example, from 0 to 2 N − 1, restarting then automati-
cally from 0), or let it run up to a certain value and then stop it, or simply keep it
stopped (at zero, for example). Keeping the timer stopped saves power but can
increase the complexity of the comparator. However, if the timer runs up to a certain
value and then stops (remaining so until the machine changes its state), the addi-
tional power consumption will generally be negligible. In case one decides to keep
the timer stopped at zero, T = 1 should be used (timer running from 0 to t max = T
− 1 = 0).

 Transition BC is timed, so the timer is needed. The machine must stay in state B
during exactly T clock periods, moving then to state C. Consequently, we can stop the
timer when the monitored value (t max = T − 1) is reached or we can simply let it run
freely (for example, from 0 to 2 N − 1, restarting then automatically from 0) because
the machine will change its state anyway after t = t max occurs.

 Transition CD is conditional-timed, so the timer is again needed. The machine must
move to state D at the fi rst (positive) clock edge that fi nds x = ‘ 0 ’ after staying in state
C during T clock periods (so it will stay in C during at least T clock periods). In this
case we cannot let the timer run freely because then if x = ‘ 0 ’ is not satisfi ed when
the timer reaches the monitored value (t max = T − 1) the condition x = ‘ 0 ’ will only be
effective again when the timer passes through that value once more. A possible solu-
tion here is to stop the timer when the monitored value is reached (indeed, any value
 ≥ t max would do — see comments in section 8.3.2).

 Finally, transition DA is unconditional, so the same comments made for transition
AB apply here.

 In the next section, the possible timer usages described above will be considered
in order to develop systematic strategies for designing the timer.

 8.5 Timer Control Strategies

 We can now develop systematic strategies for controlling the timer. Figure 8.4 is used
to illustrate the discussions that follow. Note that all four machines are timed. The
timed states (states that need the timer) are represented with a darker shade of gray.
A simplifi ed representation was employed for the transition conditions; for example,

148 Chapter 8

‘ 1 ’ means x = ‘ 1 ’ and T − 1 means t = T − 1. As usual, it is assumed that a regular
sequential counter running from t = 0 up to t = T − 1 is employed to build the timer.

8.5.1 Preliminary Analysis
A “ tentative ” strategy is assumed in this preliminary analysis, which consists of zeroing
the timer after it reaches the monitored value (t max = T − 1), with t max = 0 adopted in
the untimed states.

 The machine in fi gure 8.4a has only conditional and timed transitions, so the timer
always runs exactly up to t max , after which the machine changes its state. Since it is
assumed here that the timer is always zeroed after t max occurs, the timer will always
be cleared when the FSM enters a new state, causing it to work properly.

 The machine in fi gure 8.4b has a conditional-timed transition. If x = ‘ 0 ’ occurs
before t = t max , the machine moves from A to B with the timer at an unknown (< t max) value.
Consequently, the timer will not be zeroed here. However, because state B is untimed,
so t max = 0, the timer will be zeroed at the end of the fi rst clock period after entering
state B. As a result, the timer will be ready to operate properly even if state C is timed.

 The case in fi gure 8.4c is similar to that in fi gure 8.4b, but state B is now timed.
Because the machine will enter state B with t < t max , the timer will span in state B only
the number of clock cycles needed to complete state B ’ s t max . In summary, our tentative
timer control strategy is not appropriate for this machine.

Figure 8.4
Four timed machines. (a) With only conditional and timed transitions. (b) With conditional and

conditional-timed transitions but with state B untimed. (c) Same as b but with state B timed. (d)

Same as b but with conditional values (“ 01 ” and “ 10 ”) that might require the machine to remain

in state A longer than T clock periods.

Timed (Category 2) State Machines 149

The case in fi gure 8.4d is also similar to that in fi gure 8.4b, with state B again
untimed. However, note that there are values of x (“ 01 ” and “ 10 ”) that might cause
the machine to stay in state A even if t max is reached. Because the timer is zeroed
after t max occurs, our tentative strategy does not work here either. A possible solution
in this case is to stop the timer at t max , zeroing it only when the machine changes
state.

 Based on the analysis above and that in section 8.4, two timer control strategies
are proposed next.

 8.5.2 Timer Control Strategy #1 (Generic)
 A strategy that complies with all conditions described in section 8.4 and, consequently,
with all conditions in the examples of fi gure 8.4, is summarized below.

 For stopping the timer: Stop the timer when it reaches the monitored value (or a pre-
defi ned value above that). Keep it so until the machine changes its state.
 For zeroing the timer: Zero the timer whenever the machine changes state.

 To apply the timer-zeroing technique above, we can compare pr_state to nx_state .
If they are different, it means that the FSM will change its state at the next clock edge,
so a fl ip-fl op clearing command can be produced to zero the timer when such a transi-
tion occurs.

 The advantages of this strategy are that it is generic, simple to understand, and
simple to implement. The construction of state transition diagrams using it is simple
and direct as well. Additionally, the timer does not need to be controlled in the
untimed states because it will run only up to a certain value and will stop anyway, so
power consumption is generally not a problem. Also, if one wants, a value greater
than t max can be employed (see comments in section 8.3.2), which can simplify the
 t -to- t max comparator (recall that this comparator can be large; for example, to produce
a 1 s delay from a 100 MHz clock, a 27-bit counter is needed); for instance, if T (= t max

+ 1) is a power of 2, only a single bit (the MSB) needs to be monitored.
 Its main disadvantage is that the pr_state -to- nx_state comparator can be a large

circuit, because the number of bits in these two signals can be large, particularly when
the number of states is high and one-hot encoding is employed (sequential or gray
encoding is suggested when using strategy #1).

 The following procedure is recommended: Use strategy #1, which is generic, to
draw the state transition diagram. After completing it, check whether it complies with
condition 1 or 2 described below for strategy #2. If it does, strategy #2 too can be used
to build the timer.

 There are only few cases in which strategy #1 cannot be applied completely, but
the required adjustments are simple to handle. Such cases will be illustrated in sections
8.7 and 8.11.8.

150 Chapter 8

When using VHDL or SystemVerilog, one of the following codes can be used to
implement the timer using strategy #1. Note the use of t ≠ t max , which can be a slightly
smaller comparator circuit than t < t max , but either one is fi ne.

--Timer for strategy #1-------------------------

 --VHDL--
 process (clk, rst)
 begin

 if rst=’1’ then
 t < = 0;

 elsif rising_edge(clk) then
 if pr_state /= nx_state then

 t < = 0;
 elsif t /= tmax then – -see comment

 t < = t + 1;
 end if;

 end if;
 end process;
 --

 --SystemVerilog---------------------------------
 always_ff @(posedge clk, posedge rst)

 if (rst) t < = 0;
 else if (pr_state != nx_state) t < = 0;
 else if (t != tmax) t < = t + 1; – -see comment

 --

8.5.3 Timer Control Strategy #2 (Nongeneric)
This strategy is not generic because it cannot be employed in any timed machine. For
example, it only works properly for machines a and b of fi gure 8.4. The procedure is
summarized below.

For stopping the timer: Do not stop the timer.
 For zeroing the timer: Zero the timer after it reaches t max = T − 1. In the untimed states,
adopt t max = 0 (timer stopped at zero).

 This strategy can be applied in the following cases:

 1) To any timed machine without conditional-timed transitions (fi gure 8.4a, for
example).
 2) To timed machines with conditional-timed transitions but only if no state has more
than one value for T , if no state can last longer than T clock periods, and if any transi-
tion that might last less than T clock cycles goes to an untimed state (fi gure 8.4b, for
example).

 The advantage of this strategy is that it avoids the pr_state -to- nx_state comparator,
which can be a large circuit.

Timed (Category 2) State Machines 151

The disadvantages are that it is not generic and that the resulting circuit is not
guaranteed to be smaller than that for strategy #1. Because here the value of t max must
be specifi ed in all states (with t max = 0 in the untimed states) when the machine has
conditional-timed transitions, the t -to- t max comparator (which also can be large) is
more complex.

 Since strategy #2 is not generic, the suggested procedure is to draw the state transi-
tion diagram using strategy #1, checking next if it complies with condition 1 or 2
above in order to determine whether strategy #2 can be used as well.

 When using VHDL or SystemVerilog, one of the codes below can be used to imple-
ment the timer for strategy #2. Note the use of t < t max instead of t ≠ t max , needed to
guarantee that the timer will be zeroed if the FSM leaves a timed state before the timer
has reached t max (entering therefore an untimed state). However, such a situation can
only occur if the machine has conditional-timed transitions (fi gure 8.4b, for example);
if the machine does not have conditional-timed transitions (fi gure 8.4a, for example),
then t ≠ t max is fi ne, too.

--Timer for strategy #2------------------------

--VHDL--
 process (clk, rst)
 begin

 if rst=’1’ then
 t < = 0;

 elsif rising_edge(clk) then
 if t < tmax then – -see comment

 t < = t + 1;
 else

 t < = 0;
 end if;

 end if;
 end process;
 --

 --SystemVerilog---------------------------------
 always_ff @(posedge clk, posedge rst)

 if (rst) t < = 0;
 else if (t < tmax) t < = t + 1; – -see comment
 else t < = 0;

 --

8.5.4 Time Behavior of Strategies #1 and #2
Figure 8.5 shows an example of FSM that in spite of having a conditional-timed transi-
tion can be implemented using any of the timer control strategies proposed above
(note that this machine falls in the category depicted in fi gure 8.4b). The purpose of
this example is to illustrate the differences in terms of time behavior between strate-
gies #1 and #2.

152 Chapter 8

The machine must implement a triggered circuit with input x and output y . The
intended behavior is depicted in fi gure 8.5a. In this case, y must go up as soon as (i.e.,
at the next positive clock edge) x goes up, returning to zero T clock cycles (more pre-
cisely, T clock edges) after x returns to zero. Observe in the fi nal part of the plot that
when x comes down but goes up again before the time T has ended the circuit is
retriggered.

 A solution is shown in fi gure 8.5b. t max = T − 2 is used in the CA transition, thus
spanning T − 1 clock periods (in fact, T − 1 clock edges, as indicated by the black dots),
because one period is spent in the BC transition.

 When strategy #1 is used the overall behavior is objective and very simple to under-
stand, as can be observed in fi gure 8.5c, which shows an illustrative timing diagram
for T = 4. It is assumed that the timer stops as soon as t max is reached (though not
required for strategy #1, t max = 0 was used in the untimed states).

 Figure 8.5
 (a) Desired circuit behavior for a triggered circuit. (b) A solution, which can be implemented

directly with either strategy #1 or #2. (c) Timing diagram for strategy #1. (d) Timing diagram for

strategy #2.

Timed (Category 2) State Machines 153

Strategy #2 is a little more diffi cult to examine. This is due to the CB transition,
which can only happen with t < t max , causing the FSM to enter state B without any
command to zero the timer at the next clock edge. Observe in the B-to-C transition
in the timing diagram of fi gure 8.5d that t is still incremented when the FSM enters
state B, being only zeroed at the next clock pulse. However, in spite of this detail, the
machine operates adequately, as can be seen in the plot for y , which is exactly the
same as that in fi gure 8.5c.

 The reader is invited to examine these two timing diagrams carefully to fully under-
stand and appreciate the differences between these two timer control strategies.

 8.6 Truly Complementary Time-Based Transition Conditions

 As discussed in Section 3.8, when a circuit does not have any sort of reset mechanism,
the initial state (either ‘ 0 ’ or ‘ 1 ’) of its fl ip-fl ops upon power-up might be undeter-
mined. Say that that is the case and that our machine has a timed transition that must
span 10 clock periods, thus requiring a 4-bit counter, where 0-to-9 is the range of
interest. Since a 4-bit counter is capable of counting from 0 to 15, the initial (random)
state might fall in the 10-to-15 range. Recall from section 1.5 that the outward transi-
tion conditions in any state must be truly complementary (i.e., they must include all
possible combinations of the transition control signals, and obviously all just once),
so the 10-to-15 range must also be considered.

 Figure 8.6a shows an example of timed machine with under-specifi ed transition
conditions, which falls in the situation described above because the t > T − 1 range is
not covered. The problem in fi xed in fi gure 8.6b by assigning that range to the AB
transition. Another alternative is presented in fi gure 8.6c, with the missing range
assigned to the AA transition. Either one of the last two options should be used. The
decision between one or the other depends on the application; more specifi cally, it
depends on where we want the machine to be in case t > T − 1 happens (at power-up,
for example).

Figure 8.6
(a) Under-specifi ed transition conditions (t > T − 1 range not covered). (b) t > T − 1 range assigned

to the AB transition. (c) t > T − 1 range assigned to the AA transition.

154 Chapter 8

Note, however, that the problem described above can only happen before the fi rst
run of the timer, after which the FSM has full control over the timer.

 Another timed machine with incorrect transition conditions is shown in fi gure 8.7.
However, contrary to the previous example, this machine is over-specifi ed, because
more than one transition can be true at the same time (‘ 0 ’ and T − 1 can occur at the
same time). As seen in section 1.5, overspecifi cation can be resolved by establishing
priorities. AB was considered to have priority over AC in the solution of fi gure 8.7b,
whereas the opposite was assumed in fi gure 8.7c.

 8.7 Repetitively Looped State Machines

 This section discusses the particular case of repetitively looped state machines, found,
for example, in serial data communications circuits (serial data receiver/transmitter,
I 2 C interface, SPI interface, etc.). An equivalent implementation will be seen in section
11.5 using the category 3 approach.

 The fi rst case is shown in fi gure 8.8a, where a pair of states is repeated T times (this
kind of problem was in fact introduced in section 3.12). If T is large, it is obviously
impractical to represent this circuit as a regular FSM.

 An equivalent representation for this problem is shown in fi gure 8.8b, with a loop
replacing the repeated states. This loop must be repeated T times in the AB direction
(in the BA direction the total is T − 1 times). Consequently, by converting the category
1 machine of fi gure 8.8a into the category 2 machine of fi gure 8.8b, the FSM repre-
sentation becomes viable and the problem can be easily solved.

 A possible implementation is depicted in fi gure 8.8c, with the timer incremented
in both directions (AB and BA), therefore being not zeroed in any of them (note the
thick circles and the different arrows; a thick circle means that there is at least one
transition into that state in which the timer should not be zeroed, while the different
arrow with a dot at its origin identifi es which that transition is).

Figure 8.7
(a) Overspecifi ed transition conditions (‘ 0 ’ and T − 1 can happen at the same time). (b) Solution

with priority given to transition AB. (c) Solution with priority given to transition AC.

Timed (Category 2) State Machines 155

 A more general case is presented in fi gure 8.9. Here, not only the loop must be
repeated T times, but the machine must also stay T A clock periods in A and T B clock
periods in B. The problem is stated in fi gure 8.9a, with an equivalent representation
shown in fi gure 8.9b. A possible solution is shown in fi gure 8.9c, using two timers.
While timer t 1 controls the time the machine stays in state A or state B, timer t 2 mea-
sures the number of loop repetitions. Consequently, only timer t 2 is not zeroed in the
state transitions.

 8.8 Time Behavior of Timed Moore Machines

 In section 3.5 an analysis of the general time behavior of Moore and Mealy machines
was presented. This section and the next present extensions to that analysis for the
case when timed transitions are also involved.

 Figure 8.8
 (a) FSM with a pair of states repeated T times. (b) Equivalent looped representation. (c) An alter-

native for the timer, counting in both directions, thus being not zeroed in any of them.

 Figure 8.9
 Generalization of the case seen in fi gure 8.8. Not only the loop is repeated T times but also the

machine stays T A clock periods in A and T B clock periods in B.

156 Chapter 8

The Moore machine of fi gure 8.10a , which includes three transition types, is used
to illustrate the analysis. It is assumed that the timer control strategy #1 is adopted
to build the timer. Observe the following in the accompanying timing diagram of
 fi gure 8.10b :

 1) T B = 3 and T C = 2 clock cycles.
 2) When x changes, the output does not change. This is expected because in a Moore
machine the output is synchronous, thus changing only when the state changes.
 3) The stay in state A depends only on x , so the machine moves to state B at the fi rst
(positive) clock edge that fi nds x = ‘ 1 ’ .
 4) Because T B = 3, state B lasts exactly three clock cycles (the timer counts from
0 to 2).
 5) Because T C = 2 but the CA transition is conditional-timed, state C lasts at least two
clock cycles (the timer counts from 0 to 1). The “ at least ” restriction is due to the x =
 ‘ 0 ’ condition, which might not be true when the timer reaches the monitored
(T C − 1 = 1) value. In this example x = ‘ 0 ’ was already available, so state C did last
only two clock periods.
 6) In the states where the timer is not needed (only state A in this example), the timer
was kept stopped at zero.

 In conclusion, in a Moore machine the output and the state are in perfect sync,
changing at the same time. Each output value then has the same duration as its associ-
ated state.

 8.9 Time Behavior of Timed Mealy Machines

 The Mealy machine of fi gure 8.11a , which is the Mealy counterpart of the Moore
machine of fi gure 8.10a , is used to illustrate the analysis. Observe the following in the
accompanying timing diagram of fi gure 8.11b :

 1) T B = 3 and T C = 2 clock cycles.
 2) Contrary to the Moore case, y can change when x changes. This is expected because
Mealy machines are asynchronous.

Figure 8.10
(a) A Moore machine and (b) a corresponding timing diagram.

Timed (Category 2) State Machines 157

3) The output value while in state A depends on x , so two different values can occur:
y = 5 if x = ‘ 0 ’ or y = 6 if x = ‘ 1 ’ .
 4) Because T B = 3, state B lasts exactly three clock cycles (the timer counts from
0 to 2).
 5) Because T C = 2 but the CA transition is conditional-timed, state C lasts at least two
clock cycles (the timer counts from 0 to 1). The “ at least ” restriction is due to the x =
 ‘ 0 ’ condition, which might not be true when the timer reaches the monitored
(T C − 1 = 1) value. In this example x = ‘ 0 ’ was already available, so state C did last
only two clock periods.
 6) In the states where the timer is not needed (only state A in this example), the timer
was kept stopped at zero.
 7) The states and the timer operate exactly as in the Moore case, but that is not true
for the output.
 8) As already seen, contrary to the Moore case, the output value is not unique in
all states.
 9) Contrary to the Moore case, the output does not change together with the state.
It changes earlier.
 10) Contrary to the Moore case, the output values do not necessarily last as long
as the states. They last less than the associated state if the transition condition into
that state is asynchronous, or they last exactly the same as the associated state
if the transition condition into that state is synchronous (a timed transition, for
example). Note that the output value y = 6 lasts less than three clock periods (the
transition control signal into state B is x , which is asynchronous), but y = 7 lasts
exactly two clock periods (the transition control signal into state C is t , which is
synchronous).

 In conclusion, in a Mealy machine the output changes earlier than the state,
either by a fraction of a clock period (if the transition condition into that state
is asynchronous) or by a full clock period (for synchronous conditions, such as
time). The duration of each output value can then be different from that of its
associated state.

Figure 8.11
(a) Mealy counterpart of the Moore machine of fi gure 8.10a. (b) A corresponding timing diagram.

158 Chapter 8

8.10 Number of Flip-Flops

Having understood the timer, we pass now to the last analysis before the presentation
of timed (category 2) FSM examples. The analysis regards the number of fl ip-fl ops
needed to implement the intended circuit. As mentioned earlier, in general, and par-
ticularly in large designs, it is diffi cult to estimate the number of logic gates that will
be needed to implement the desired solution, but it is always possible to determine,
and exactly, the number of fl ip-fl ops.

 In the particular case of sequential circuits implemented as category 2 state
machines, there are three demands for DFFs, as follows.

 1) For the state register (see nx_state and pr_state in fi gure 8.2a , which are the
state memory fl ip-fl ops ’ input and output, respectively; below, M FSM is the number of
states):

 For sequential or Gray encoding, N FSM = log 2 M FSM . For example, M FSM = 25 → N FSM

= 5.
 For Johnson encoding, N FSM = M FSM /2 . For example, M FSM = 25 → N FSM = 13.
 For one-hot encoding, N FSM = M FSM . For example, M FSM = 25 → N FSM = 25.

 2) For the output register (fi gure 8.2b , optional, with b output bits):
 N output = b output . For example, b output = 16 → N output = 16.

 3) To build the timer (fi gure 8.2a , compulsory):
 N timer = log 2 T max , where T max is the largest transition time, expressed in “ number
of clock cycles, ” that is, T max = t state_max × f clk , where t state_max is the largest transition
time, in seconds, and f clk is the clock frequency, in hertz. For example, for the
machine to be able to stay t state_max = 8 μ s in the state with longest duration, and
assuming that f clk = 50 MHz, T max = 8 · 10 – 6 × 50 · 10 6 = 400 clock cycles must be used,
from which N timer = 9 results.

 Therefore, the total number of DFFs is N total = N FSM + N output + N timer . In the examples
that follow, as well as in the actual designs with VHDL and SystemVerilog, the number
of fl ip-fl ops will be often examined.

 8.11 Examples of Timed (Category 2) Machines

 A series of timed FSMs are presented next. To draw the corresponding state transition
diagrams, strategy #1 (section 8.5.2) is considered as the default strategy for controlling
the timer. If the resulting machine fulfi lls condition 1 or 2 for strategy #2 (section
8.5.3), then that strategy too can be used to control the timer.

 Several of the examples described in this chapter will be implemented later using
VHDL (chapter 9) and SystemVerilog (chapter 10).

Timed (Category 2) State Machines 159

8.11.1 Blinking Light
This example is simple enough and yet very illustrative of the general behavior of
timed FSMs. It concerns a circuit that must turn a light on and off, remaining on
during T 1 clock periods and off during T 2 clock periods. An important desired feature
is that when the circuit is enabled it must start from a state with the light on (to
prevent the user from thinking that the circuit is not working when large transition
times are involved).

 The circuit ports are depicted in fi gure 8.12a . The input comes from a switch called
 ena , which enables the circuit when asserted. The output is a port called light that
feeds a light-emitting diode (LED).

 Figure 8.12b shows examples of commercial LEDs and their typical usage. An LED
consists of a PN junction fabricated, for example, with gallium arsenide (GaAs). It
emits light when forward biased, as shown on the right of fi gure 8.12b , which also
shows a current-limiting resistor, R . The emitted radiation can be in the infrared spec-
trum (used, for example, in remote controls) or in the visible spectrum (used, for
example, in alphanumeric displays and as signaling lamps in all sorts of equipment).
To radiate in the visible spectrum, other materials must be added to GaAs, such as
aluminum, in AlGaAs (red light), or phosphorus, in GaAsP (red or yellow light). Other
materials are used to obtain radiations at higher frequencies, such as zinc selenide
(ZnSe) for blue LEDs.

 A Moore-type solution is presented in fi gure 8.12c . It has three states, called stop
(not blinking, with light off), on (circuit enabled, with light on), and off (circuit
enabled, with light off). Note that while the switch is closed (ena = ‘ 1 ’) the circuit fl ips
back and forth between states on and off , staying T 1 clock periods in the former and
 T 2 clock periods in the latter. Note also that when ena is asserted the machine moves
immediately (at the next positive clock edge) from state stop to state on ; likewise, when
enable is turned off, the machine moves immediately to state stop .

 This machine falls in the situation depicted in fi gure 8.4b, so it can be implemented
with either timer control strategy (#1, section 8.5.2, or #2, section 8.5.3).

 An interesting aspect of this machine is that it might not need a reset signal at all,
depending on the chosen encoding scheme (for example, sequential or Gray) and on

 Figure 8.12
 Circuit that feeds a blinking light (an LED, in this case). (a) Circuit ports. (b) Commercial LEDs

and typical usage. (c) Moore-type solution.

160 Chapter 8

the equations used to implement the next state (see exercise 8.5). Also, despite ena
being an asynchronous input and being produced by a mechanical switch, neither a
synchronizer (section 2.3) nor a debouncer (section 8.11.3) is needed because of the
nature of this application.

 Based on section 8.10, the number of fl ip-fl ops needed to implement this circuit is
as follows. For the state register: M FSM = 3 states; therefore, N FSM = 2 if sequential, Gray,
or Johnson encoding is used, or 3 for one-hot. For the optional output register: not
needed in this application, so N output = 0. For the timer: assuming 0.5 s for T 1 and 1 s
for T 2 , with f clk = 50 MHz, T max = 5 ⋅ 10 7 clock cycles results, so N timer = 26. Therefore,
 N total = 28 or 29.

 8.11.2 Light Rotator
 This example shows another simple and yet very illustrative application for timed
machines. It consists of a circuit that produces a rotating movement in a seven-
segment display (SSD).

 SSDs are just special seven-LED arrangements (eight if a decimal point is also
included). This kind of device is illustrated in fi gure 8.13 . In fi gure 8.13a an exam ple
of a commercial SSD device (two digits with decimal points) is shown. In fi gure 8.13b
a typical notation for the segment names (abcdefg) is shown. In fi gure 8.13c the
common-anode confi guration is presented, in which a ‘ 0 ’ turns a segment on and a
 ‘ 1 ’ turns it off. Finally, the table in fi gure 8.13d shows the logic values that must be
used to obtain the traditional 0-to-F hexadecimal characters.

 The circuit ports for the current example are presented in fi gure 8.14a . The inputs
are a stop switch (stp), clock (clk), and reset (rst), and the output is a seven-bit signal
(ssd) that feeds the seven segments of the SSD.

 Figure 8.13
 (a) A commercial seven-segment display (SSD) device. (b) Segment names (abcdefg). (c) Common-

anode confi guration (a ‘ 0 ’ lights a segment, whereas a ‘ 1 ’ turns it off). (d) Logic values to obtain

the 0-to-F hexadecimal characters.

Timed (Category 2) State Machines 161

The segments must be lit sequentially in the clockwise direction, with overlaps used
to provide a smoother rotation. In other words, segment a must be lit for some time,
then a and b should be lit together, then b only, next b and c , then c only, and so on.
If the stop switch is asserted (stp = ‘ 1 ’), the movement must stop, resuming exactly
from the same position when stp returns to ‘ 0 ’ . If reset is asserted (rst = ‘ 1 ’), the circuit
must return asynchronously to the initial state (only segment a lit).

 A corresponding Moore solution is presented in fi gure 8.14b , where each state name
denotes which SSD segments are lit while the machine is in that state. Note that it is
a simplifi ed diagram, with only the output value (no output name) shown inside each
state circle and only the time values (no stop conditions) specifi ed on the arrows.
Moreover, note the relaxed use of T 1 and T 2 alone on the arrows (instead of t = T 1 − 1
and t = T 2 − 1), indicating simply the total number of clock periods that the machine
must spend in each state.

 As in the previous example, the input (stp) is asynchronous and produced by a
mechanical switch. However, because of the nature of the application, again neither
a synchronizer (section 2.3) nor a debouncer (section 8.11.3) is needed.

 Based on section 8.10, the number of fl ip-fl ops needed to implement this circuit is
as follows. For the state register: M FSM = 12 states; therefore, N FSM = 4 if sequential or
Gray encoding is used, 6 for Johnson, or 12 for one-hot. For the optional output reg-
ister: not needed in this application, so N output = 0. For the timer: assuming 120 ms for
 T 1 and 35 ms for T 2 , with f clk = 50 MHz, T max = 6 ⋅ 10 6 clock cycles results, so N timer = 23.
Therefore, N total = 27, 29, or 35.

 VHDL and SystemVerilog implementations for this light rotator are presented in
sections 9.4 and 10.4, respectively. Because this machine falls in the situation depicted
in fi gure 8.4a, it can be implemented with either timer control strategy (#1, section
8.5.2, or #2, section 8.5.3). Strategy #2 was adopted there, but both strategies are
explored and compared in exercises 9.1 and 10.1.

 8.11.3 Switch Debouncer
 Figure 8.15a shows a switch that produces x = ‘ 0 ’ when open or x = ‘ 1 ’ when closed.
The problem with mechanical switches is that they might bounce a few times before

Figure 8.14
SSD rotator. (a) Circuit ports. (b) Corresponding (simplifi ed) Moore-type state diagram.

162 Chapter 8

fi nally settling in the proper position, as illustrated in fi gures 8.15b,c . Depending on
the switch characteristics, such bounces can last from a fraction of a millisecond up
to several milliseconds.

 Switch bounces are not acceptable in several applications. A disastrous example is
when the signal produced by the switch must act as a clock to some process because
the corresponding fl ip-fl ops will understand the bounces as several clock pulses.

 Two debouncing approaches are depicted in fi gures 8.15b,c . The fi rst is one-sided
(only the low-to-high transition is debounced), whereas the second is two-sided (both
transitions are debounced). The debouncing strategy here consists of checking the
input permanently (at every clock cycle) and accepting a new value only after it has
remained fi xed for a certain amount of time. For example, if the debouncing time is
2 ms and the clock frequency is 50 MHz, the same result must occur 2 · 10 – 3 × 50 · 10 6

= 100,000 consecutive times to be considered valid.
 Note that in fi gure 8.15b the one-sided debouncer automatically fi lters the other

transition, but it does not protect the circuit against unexpected input transients/
glitches (caused, for example, by the switching of large current loads onto the same
power supply or by lightning).

 In debouncers, glitches at the output are generally undesired because providing a
safe, clean signal is precisely the purpose of this circuit, so the optional output register
of fi gure 8.2b should be employed unless y comes directly from a DFF (this depends
on the encoding scheme and can be checked in the compilation report equations).

 A fl owchart for the two-sided debouncer of fi gure 8.15c is presented in fi gure 8.16a .
 An initial (bad) solution is presented in fi gure 8.16b . The problem here is that it

only checks the condition x = ‘ 1 ’ (or ‘ 0 ’) at the end of T clock cycles. Consequently, to
obtain a full debouncer, each transition of fi gure 8.16b must be replaced with three
pure transitions, resulting in the FSM of fi gure 8.16c . Although the “ − 2 ” factor in the
timed t = T − 2 condition does not matter in this application, it was kept as a reminder
of the precise value.

 Even though the input (x) is asynchronous, a synchronizer (section 2.3) is not
needed because y can change its value only after a time T , which is a synchronous
condition (the timer operates with the same clock as the FSM).

Figure 8.15
(a) Mechanical switch and debouncer ports. (b) Bounces processed by a one-sided (low-to-high)

debouncer. (c) With a two-sided debouncer.

Timed (Category 2) State Machines 163

To discuss the need for an explicit reset signal (see sections 3.8 and 3.9), let us
divide the problem into two cases. The fi rst regards implementation in FPGAs whose
fl ip-fl ops are automatically reset to ‘ 0 ’ at power-up. In this case, reset is not needed if
any of the encoding schemes described in section 3.7 is used, except for one-hot, but
fi ne for the modifi ed version of one-hot seen in fi gure 3.10b, with the only restriction
that zero must be declared as the initial (reset) state. The second case regards imple-
mentation in devices whose DFFs ’ initial state is arbitrary. If sequential or Gray encod-
ing is used, all two-bit codewords will be consumed to encode the machine, so the
initial state will fall necessarily inside the machine, and deadlock cannot occur. Con-
sequently, we only need to consider the consequences of having the machine start
from a state other than state zero . It is clear from fi gure 8.16c that the value of y will
adjust itself automatically to the value of x after at most T clock periods; therefore,
reset is required only if having y = ‘ 1 ’ during such a short time period might be enough
to turn on a critical application (a factory machine, for example).

 Based on section 8.10, the number of fl ip-fl ops needed to implement this circuit is
as follows. For the state register: M FSM = 4 states; therefore, N FSM = 2 if sequential, Gray,
or Johnson encoding is used, or 4 for one-hot. For the optional output register: assum-
ing that y comes directly from a DFF, N output = 0. For the timer: with t state_max = 2 ms and
 f clk = 50 MHz, T max = 10 5 clock cycles results, so N timer = 17. Therefore, N total = 19 or 21.

 8.11.4 Reference-Value Defi ner
 This section deals with a problem that is common in control applications. It consists
of a circuit that sets a reference value. For example, a temperature controller for an
air conditioning system must have a way of letting the user choose the desired (refer-
ence) room temperature (see section 5.4.4).

Figure 8.16
Full switch debouncer. (a) Flowchart. (b) Bad and (c) good solutions.

164 Chapter 8

An example is presented in fi gure 8.17 , in which the reference value is set by a
pushbutton. Two cases are considered; in both a debouncer is needed, but in fi gure
8.17a the reference value is produced by a common counter (note that x plays the
role of clock), whereas in fi gure 8.17b it is produced by an FSM (the actual system
clock plays the role of clock). Even though a counter too is an FSM, the reference here
is to the fact that only the latter is implemented using the FSM approach.

 The case in fi gure 8.17a is advantageous when the reference values are regular
(next = present + constant). For example, if we want to set the desired room tem-
perature for the air conditioning system mentioned above, the counter can be
incremented by one unit (1 ° F or 1 ° C) every time the pushbutton is pressed (and
released, of course), going from the minimum to the maximum reference value,
returning then to the minimum value and restarting from there. Another advan-
tage of this alternative is that the number of reference values can be arbitrarily
large.

 The case in fi gure 8.17b is advantageous when the reference values are irregular
and the number of reference values is small. Note that we have made a little modifi ca-
tion in the debouncer (FSM1), embedding in it a one-shot converter (see sections 2.4
and 5.4.3), which converts the (long) debounced signal into a pulse with duration
equal to one clock period.

 A solution for the case of fi gure 8.17b is presented in fi gure 8.18 . The time behavior
of FSM1 is illustrated in fi gure 8.18a , and the corresponding state diagram is shown
in fi gure 8.18b . It is a ‘ 0 ’ -to- ‘ 1 ’ debouncer, so it requires three states; just one extra
state is needed to include the one-shot conversion, thus totaling four states. The state
diagram for FSM2 is depicted in fi gure 8.18c , for a total of 10 states with arbitrary
reference values r 1 , r 2 , … , r 10 . The one-shot modifi cation of FSM1 is important because
it eliminates the need for FSM2 to check the return of x to ‘ 0 ’ , which would double
its number of states.

 In many applications both up and down controls are needed. This kind of situation
is illustrated in fi gures 8.19a and 8.19b , which are generalizations of the cases in fi gures
8.17a and 8.17b , respectively (i.e., in the former the reference value is set by a counter,
whereas in the latter it is set by a state machine).

Figure 8.17
Reference-value defi ner implemented (a) with a counter and (b) with a state machine.

Timed (Category 2) State Machines 165

 The circuit of fi gure 8.19a consists of a block with switch connections plus a
debouncer, followed by a regular counter with up-down control (it counts upward if
 up/dn ′ = ‘ 1 ’ or downward otherwise). Note that x acts as the clock to the counter, so
 x must be debounced. When a switch is pressed, it must not only generate a pulse in
 x but also defi ne the value of up/dn ′ (see exercise 8.12).

 The circuit of fi gure 8.19b also consists of two blocks. Note that it is similar to that
in fi gure 8.17b , but with two control inputs. The fi rst block contains a debouncer plus
a one-shot conversion circuit, producing two short (one-clock-period duration) pulses
at x 1 and x 2 , which are not expected to happen simultaneously. The second block is a
reference-value-defi ner state machine, moving up if x 1 = ‘ 1 ’ or down if x 2 = ‘ 1 ’ . The
construction of this circuit can be based on fi gure 8.18 . As in that case, it might be
advantageous to build the fi rst block with a single FSM that combines the debouncer
and the one-shot circuit. Additionally, because x 1 and x 2 are not expected to be active
at the same time, it might be advantageous to build a “ combined ” debouncer for both
 up and dn signals (see exercises 8.9 and 8.10).

Figure 8.18
Solution for the circuit of fi gure 8.17b . (a) Time behavior and (b) FSM for the pushbutton

debouncer with embedded one-shot conversion. (c) FSM for the reference-value defi ner, with 10

arbitrary values.

 Figure 8.19
 Reference-value defi ner with up and down controls implemented (a) with a counter and (b) with

a state machine.

166 Chapter 8

8.11.5 Traffi c Light Controller
 A classical timed application is described in this example, which consists of a traffi c
light controller.

 The overall specifi cations, summarized in fi gure 8.20a , are as follows:

a) It must have three operating modes: regular , test , and standby .
b) Regular mode consists of four states of operation, called RG (red in direction 1 and
green in direction 2 turned on), RY (red in direction 1 and yellow in direction 2 turned
on), GR (green in direction 1 and red in direction 2 turned on), and YR (yellow in direc-
tion 1 and red in direction 2 turned on), each with an independent time duration.
 c) Test mode must allow all preprogrammed times to be overwritten (by activating
a manual switch) with a small value (1 s per state), such that the system can be easily
tested during maintenance.
 d) Standby mode, if set (by a sensor accusing malfunctioning, for example, or by a
manual switch), must have the system activate the yellow lights in both directions,
remaining so while the standby signal is active.

 The circuit ports are shown in fi gure 8.20b . The inputs are two switches, called stby
and test , plus clock and reset. The standby switch selects between the regular mode
(stby = ‘ 0 ’) and the standby mode (stby = ‘ 1 ’), and the test switch forces the system
into test mode when asserted (test = ‘ 1 ’). The output consists of six signals that control
the six traffi c lights (RYG in direction 1 plus RYG in direction 2).

 A corresponding Moore solution is presented in fi gure 8.20c . If the system is in
standby mode, the machine remains in state YY; otherwise, it circulates through states

 Figure 8.20
 Traffi c light controller. (a) Time-related specifi cations. (b) Circuit ports. (c) Corresponding (simpli-

fi ed) Moore machine.

Timed (Category 2) State Machines 167

RG → RY → GR → YR → RG, and onward. The time values shown in the fi gure (timeRG ,
 timeRY , and so on) are for the regular operation mode, which must change to timeTEST
if the system is switched to the test mode (not included in the state diagram for the
sake of simplicity). Note that, due to the nature of this application, stby can operate
in a way similar to reset (after proper synchronization/glitch removal).

 Based on section 8.10, the number of fl ip-fl ops needed to implement this circuit is
as follows. For the state register: M FSM = 5 states; therefore, N FSM = 3 if sequential, Gray,
or Johnson encoding is used, or 5 for one-hot. For the optional output register: not
needed in this application, so N output = 0. For the timer: knowing that t state_max = 15 s
(table of fi gure 8.20a) and assuming f clk = 50 MHz, T max = 75 ⋅ 10 7 clock cycles results,
so N timer = 30. Therefore, N total = 33 or 35.

 The analysis on the need for reset and synchronizers is left as an exercise (exercise
8.13).

 8.11.6 Car Alarm (with Chirps)
 A car alarm was presented in section 4.2.4. The example shown here is an extension
to that one, now with chirps included to announce when the alarm is turned on (one
chirp) or off (two chirps). Because the chirps are brief siren activations, a timed
machine is now needed.

 The circuit ports are shown in fi gure 8.21a . The inputs are remt (command from
the remote control) and sen (from sensors indicating intrusion) plus clock and reset.

 Figure 8.21
 Car alarm. (a) Circuit ports. (b) Bad (with state bypass and non – true complementarity) and (c)

good solutions.

168 Chapter 8

The output is siren , which must be turned on (= ‘ 1 ’) when an intrusion occurs or during
the chirps.

 A corresponding Moore solution is presented in fi gure 8.21b, with disarmed , armed ,
and alarm as the fundamental states and chirp1 to chirp5 as the chirp-generating states.
Note the timed transitions. The time duration of a chirp is chirpON clock cycles, and
the time interval between two siren activations is chirpOFF clock periods. Observe,
however, that this machine exhibits the state-bypass problem described in section
4.2.4, which occurs when a long remt = ‘ 1 ’ command is received because then the
circuit simply circulates in the loop disarmed → chirp1 → armed → chirp3 → chirp4 →
 chirp5 → disarmed , and so on. An additional (minor) problem is that not all transition
conditions are truly complementary (section 1.5); for example, observe in state armed
that there is no priority defi nition in case remt = ‘ 1 ’ and sen = ‘ 1 ’ occur
simultaneously.

 A corrected machine is presented in fi gure 8.21c , in which two wait states (white
circles) were added to eliminate state bypass. Of course, if a one-shot circuit (section
5.4.3) were added to the previous solution to reduce the duration of remt to a single
clock period, and noncomplementarity were corrected, then that machine would work
well too. Note that in the presented solution the alarm can be turned on with sen =
 ‘ 1 ’ ; if that is not wanted, all that is needed is to use the condition “ remt = ‘ 1 ’ & sen =
 ‘ 0 ’ ” in the disarmed -to- chirp1 transition.

 As mentioned in a similar application in section 5.4.5 (garage door controller), a
good practice in this kind of application is to include debouncers for the signals
coming from the remote control and sensors, which not only eliminate the need for
synchronizers but also prevent short glitches (due to lightning, for example) from (de)
activating the alarm (they have to be full debouncers, similar to that in section 8.11.3).

 VHDL and SystemVerilog implementations for this car alarm are presented in sec-
tions 9.5 and 10.5, respectively. The analysis of the number of fl ip-fl ops and the need
for reset and synchronizers is treated in exercise 8.14.

 8.11.7 Password Detector
 This section describes a password detector, used, for example, in password-protected
door locks like that in fi gure 8.22a .

 The circuit ports are depicted in fi gure 8.22b . The inputs are key (which repre-
sents the keypad pushbutton pressed by the user) plus the traditional clock and reset
signals; key is composed of four bits, so it can encode a keypad with up to 15 pushbut-
tons (one codeword is reserved for the no-button-pressed case). In the development
below it is assumed that the bits of key are already debounced and encoded according
to the table in exercise 5.14. The outputs are led1 (turned on when the system is in
the idle state) and led2 (turned on for a few seconds when the correct password has
been typed in).

Timed (Category 2) State Machines 169

The desired circuit features are the following (where T corresponds to 3 s):

 a) When the system is in the idle state, LED led1 (idle) must be on and LED led2
(unlocked) must be off.
 b) During the time a password is being entered both LEDs must be off.
 c) If the correct password is entered, led2 must be turned on for a time T , with led1
still off, after which the system must return to idle (during that time interval a new
password must not be accepted).
 d) If the time interval during which a key is kept pressed or between two key presses
is longer than T , it must be considered an error, so the machine should return to idle .
 e) Passwords with repeated digits must be allowed.

 A Moore-type solution for this problem is presented in fi gure 8.22c . The three digits
that comprise the password are called a , b , and c ; n means none , which is the character
corresponding to none of the keys pressed (“ 1111 ” — see the table in exercise 5.14).
Note that both LEDs remain off during the process. To keep the diagram as clean as
possible, a slightly simplifi ed representation was used (for example, the a and T condi-
tions on the arrows mean key = a and t = T − 1, respectively). The time during which
 led2 stays on is the time that the user has to open the door in a corresponding physi-
cal implementation.

 Figure 8.22
 Password detector. (a) A password-protected door lock. (b) Circuit ports. (c) A Moore-type

solution.

170 Chapter 8

Based on section 8.10, the number of fl ip-fl ops needed to implement this circuit is
as follows. For the state register: M FSM = 11 states; therefore, N FSM = 4 if sequential or
Gray encoding is used, 6 for Johnson, or 11 for one-hot. For the optional output reg-
ister: glitches are generally not a problem in this kind of application, so N output = 0. For
the timer: because t state_max = 3 s, and assuming f clk = 50 MHz, T max = 15 · 10 7 clock cycles
results, so N timer = 28. Therefore, N total = 32, 34, or 39.

 The analysis of the need for reset and synchronizers is left as an exercise (exercise
8.15).

 8.11.8 Triggered Circuits
 This section shows FSMs for triggered circuits with both bistable and monostable
behavior. The former can hold any logic level (‘ 0 ’ or ‘ 1 ’) forever, whereas the latter
(also called one-shot) always returns to the initial value (‘ 0 ’ , for example) after a fi nite
time interval. The input (triggering signal) is denoted by x , and the output (response)
is called y .

 The input can be either synchronous (generated by a circuit operating with the
same clock as the triggered circuit) or asynchronous. However, the circuit itself is
always synchronous, so the output goes up or down only at the proper clock edge.
For example, if we say that y goes to ‘ 1 ’ when x goes to ‘ 1 ’ , it means that y goes to ‘ 1 ’
at the fi rst (positive) clock transition after x goes to ‘ 1 ’ .

 Two signals produced by bistable circuits are depicted in fi gure 8.23 . Note that y
does not return to ‘ 0 ’ (initial value) automatically. The signal in fi gure 8.23a is trig-
gered by the condition “ x = ‘ 1 ’ during T clock cycles ” and detriggered by x = ‘ 0 ’ . The
signal in fi gure 8.23b is triggered by x = ‘ 1 ’ and detriggered by the condition “ x = ‘ 0 ’
during T clock cycles. ”

Figure 8.23
(a, b) Signals produced by triggered bistable circuits (note that the output does not return to zero

automatically). (c) Solution for the case in b.

Timed (Category 2) State Machines 171

 A solution for the case in fi gure 8.23b is presented in fi gure 8.23c. Note that in this
machine, when reset is released, the output goes immediately to ‘ 1 ’ if the input is ‘ 1 ’ ,
which is fi ne because this is a level-detecting machine (as opposed to edge-detecting
machines, depicted in the next example).

 Monostable (one-shot) circuits are generally more complex to design than bistable
circuits. An example is shown in fi gure 8.24. Observe that now y always returns to ‘ 0 ’
(initial value) after a certain time interval, regardless of x . As indicated by arrows in
the fi gure, y is now edge-dependent rather than level-dependent. The output is trig-
gered by a positive transition in x and detriggered T clock cycles later. Observe that
retriggering during the time interval T is allowed (check the fi nal part of the plot).

 A solution for this problem is presented in fi gure 8.24b. Note that the timer must
not be zeroed when the machine enters state D (the thick circle indicates that there
is at least one transition into state D in which the timer should not be zeroed, while
the different arrow, with a large dot at its origin, identifi es that transition). Observe
also that when reset is released the output does not go to ‘ 1 ’ if the input is ‘ 1 ’ , but it
rather waits for the next upward transition of x , which is proper of edge-detecting (as
opposed to level-detecting) circuits.

 Solutions for edge-triggered circuits (as in fi gures 8.24b) are among the few cases
in which the timer control strategy #1 (section 8.5.2) cannot be applied completely
because the timer cannot be zeroed in all state transitions (another example was seen
in section 8.8). Anyhow, it will be shown in the designs with VHDL and SystemVerilog
(sections 9.6 and 10.6, respectively) that preventing the timer from being zeroed
during specifi c state transitions is very simple. Moreover, it will be shown in exercise
8.18 that this particular FSM can be broken into two FSMs, causing strategy #1 to be
applicable without restrictions.

Figure 8.24
(a) Signal produced by a triggered monostable circuit (note that the output always returns to

zero). (b) A possible solution (the timer is not zeroed but it rather holds its value during the CD

transition).

172 Chapter 8

8.11.9 Pulse Shifter
This section presents a circuit that is a particular case of the triggered circuits family
described above. It consists of a “ pulse shifter, ” which, as the name says, shifts a pulse
a certain number of time units. In other words, it makes a copy of a given pulse T shift

clock cycles later.
 An example is presented in fi gure 8.25. The circuit ports are shown in fi gure 8.25a,

where x is the input (original pulse) and y is the output (shifted pulse). An illustrative
timing diagram is included if fi gure 8.25b, which shows that x can be synchronous or
asynchronous. The time parameters are T pulse = 3 T clk and T shift = 8 T clk . Note, however,
that T pulse is measured (inevitably) in number of clock edges rather than number of clock
periods (these values coincide when x is synchronous). The last (positive) clock edge
for which x = ‘ 0 ’ was chosen as the reference for the shift; a different alternative would
be the fi rst (positive) clock edge for which x = ‘ 1 ’ .

 A solution for this problem is presented in fi gure 8.26a. Note the box above the
state shift , which says that T x is a (registered) copy of t , enabled when x is high. T x is
needed to keep track of the pulse ’ s width, so the circuit can operate without any
a-priori information on the value of T pulse .

 Figure 8.26
 (a) FSM that implements the pulse shifter of fi gure 8.25. (b) Corresponding timing diagram, for

 T pulse = 3 and T shift = 8 clock periods.

 Figure 8.25
 Pulse shifter. (a) Circuit ports. (b) Desired behavior for both synchronous and asynchronous

input.

Timed (Category 2) State Machines 173

An illustrative timing diagram for this FSM is shown in fi gure 8.26b. It is very
important that the reader examine this diagram carefully and check the correctness
of the circuit operation.

 An application for pulse shifters is in the generation of enable signals (see section
3.11). In the case of fi gure 3.18, the input is synchronous and its width is just one
clock period, being therefore simpler to generate than the generic case above (exercise
8.19).

 8.11.10 Pulse Stretchers
 This section presents another king of circuit that is a particular case of the triggered
circuits family introduced in section 8.11.8. It consists of “ pulse stretchers, ” which, as
the name indicates, take a pulse of shorter duration (often one clock period) and
stretch it to a longer length (in fact, one case was already seen in section 2.4 and
exercises 2.4 and 2.5). In fi gure 8.29 an application for a pulse stretcher will be
presented.

 The circuit ports are shown in fi gure 8.27a , where x (short pulse) is the input
and y (longer pulse) is the output. The desired behavior is depicted in fi gures 8.27b,c .
In fi gure 8.27b the input is asynchronous and the output can be asynchronous (y
goes to ‘ 1 ’ as soon as x goes to ‘ 1 ’) or synchronous (y changes only at clock edges). In
 fi gure 8.27c the input is synchronous and the output can again be asynchronous or
synchronous. As usual, cases with synchronous output can be implemented with

Figure 8.27
Pulse stretcher. (a) Circuit ports. Desired behavior for (b) asynchronous and (c) synchronous

input, both with asynchronous or synchronous output.

174 Chapter 8

Moore machines, whereas for asynchronous output a Mealy machine is the natural
choice.

 Figure 8.27b shows three options for the asynchronous input: in graph 1, x lasts
one clock period; in graph 2, it lasts more than one clock period but not more than
 T ; in graph 3, it lasts less than one (or even less than one-half of a) clock period. In
all cases the output pulse (y) must have the same length T . Because stretchers can be
synchronous or asynchronous, two options are shown for the output. In the asyn-
chronous case (upper plot for y), the output goes up as soon as the input goes up
(thus, the total length is obviously > T), whereas in the synchronous case (lower plot
for y), the output changes only at clock edges. As usual, small propagation delays were
included between clock transitions and the corresponding responses to portray a
realistic situation.

 Figure 8.27c shows three options for the synchronous input: in graph 4, x lasts one
clock period; in graph 5, it lasts more than one but less than T clock periods; in graph
6, it lasts at least one-half of a clock period. Again, the output can be asynchronous
(upper plot for y) or synchronous (lower plot for y). Note that the asynchronous output
looks synchronous, but rigorously speaking it is not because its starting point is deter-
mined by x , not directly by the clock. Observe that in the truly synchronous case the
negative clock edge was adopted for the FSM (so x and y are updated at opposite clock
edges).

 Solutions for two of the cases presented in fi gure 8.27 are shown in fi gure 8.28 . The
fi rst solution is for the synchronous case of fi gure 8.27b , valid for inputs 1 and 2;
because this circuit is synchronous, it was implemented with a Moore machine (fi gure

 Figure 8.28
 (a) Moore solution for the synchronous case of fi gure 8.27b , covering inputs 1 – 2, and (b) an

illustrative timing diagram. (c) Mealy solution for the asynchronous case of fi gure 8.27c , covering

inputs 4 – 5, and (d) an illustrative timing diagram.

Timed (Category 2) State Machines 175

8.28a). The second solution is for the asynchronous case of fi gure 8.27c , valid for
inputs 4 and 5; because this circuit is asynchronous, it was implemented with a Mealy
machine (fi gure 8.28c). Solutions for other cases are treated in exercises 8.20 to 8.23.

 Figures 8.28b and 8.28d present illustrative timing diagrams for the FSMs of fi gures
8.28a and 8.28c , respectively, for T = 5. It is very important that the reader examine
these diagrams carefully and check the correctness of the circuit operation.

 An application for a pulse stretcher is depicted in fi gure 8.29, which consists of a
serial data receiver (a deserializer). The circuit ports are shown in fi gure 8.29a . The
inputs are x (serial bit stream), dv (data valid bit, high during only one clock cycle,
informing that data storage should start), plus the conventional clock and reset. The
outputs are y (N − 1:0) (multibit one-dimensional register in which the received data
must be stored) and done (high while the machine is idle). Some of these signals are
shown in fi gure 8.29b , which also highlights the fact that the fi rst bit of x is made
available at the same time that dv is asserted, so data storage must start immediately.

 A possible solution is presented in fi gure 8.29c . It consists of a shift register whose
enable input is produced by an FSM (this is a simplifi ed view; the enable port of a
DFF, if not built-in, can be constructed using a multiplexer, as shown in fi gure 8.29d).
When a dv = ‘ 1 ’ pulse occurs, the FSM produces ena = ‘ 1 ’ during N consecutive clock
cycles, causing N bits of x to be shifted in, thus getting stored in the N fl ip-fl ops that
comprise the shift register, producing y (N − 1:0).

 Note that in this case the FSM is simply a pulse stretcher. Because the fi rst bit of
 x is made available at the same time that dv is asserted, one must be careful not to
skip that bit (see section 3.10). Consequently, we can employ either an asynchro-
nous (Mealy) FSM, which would then produce the signal shown in the fi gure, or a

Figure 8.29
Serial data receiver. (a) Circuit ports. (b) Desired behavior (dv is stretched to produce ena). (c)

Solution with a shift register controlled by the pulse stretcher.

176 Chapter 8

synchronous (Moore) machine operating at the negative clock transition. The former
option can be implemented with the FSM of fi gure 8.28c , with T = N . Note also that
done can be computed as ena ′ . Another serial data receiver will be seen in section 11.7.7.

 8.12 Exercises

 Exercise 8.1: Machines Category
 a) Why are the state machines in fi gures 8.12c, 8.14b, 8.20c, and 8.21c (among others)
said to be of category 2?
 b) What differentiates category 2 from category 1? (Compare fi gures 8.2 and 5.2.)

 Exercise 8.2: Timer Interpretation #1
 Consider the timed machine of fi gure 8.3, operating with f clk = 1 MHz and T = 13 clock
cycles.

 a) Which states are timed (timer needed) and which are not?
 b) Can any of the states last longer than T clock periods? Explain.
 c) Can the timer control strategy #2 (section 8.5.3) be used to build the timer?
 d) Since T = 13, we know that the range of interest is from 0 to 12. Assuming that
strategy #1 (section 8.5.2) is adopted to build the timer, can we employ a timer that
runs (when enabled, of course) up to 16 (a power of two)? What are the consequences
of this?
 e) Still assuming strategy #1 for the timer, is it necessary to specify a value for T (= 0,
for example) in the untimed states? Is that the case also in strategy #2?
 f) During how many microseconds will the machine stay in each state? Does your
answer depend on x ?
 g) How many fl ip-fl ops are needed to build this FSM (with sequential encoding),
including the timer? Does this answer depend on x ?

 Exercise 8.3: Timer Interpretation #2
 Consider the timed machine of fi gure 8.3, operating with T = 3 clock cycles. Fill in
the missing parts in the plots of fi gure 8.30. Note the intentional propagation delays
left between the clock transitions and the respective responses to portray a realistic

Figure 8.30

Timed (Category 2) State Machines 177

situation. Assume that strategy #1 (section 8.5.2) was adopted for the timer. (Regarding
strategy #2, see the previous exercise.)

Exercise 8.4: Analysis of Timer Control Strategies #1 and #2
Assume that the switch debouncer of fi gure 8.16c was designed to operate with T = 4
clock cycles (more precisely, with 4 clock edges, because x is asynchronous).

 a) Say that strategy #1 (section 8.5.2) was employed to design the timer. Complete the
timing diagram of fi gure 8.31a for the given input x . As usual, a small propagation
delay was included between clock transitions and corresponding responses to portray
a more realistic situation. Call the states A, B, C, and D to simplify the notation.
 b) Do the same for the timing diagram of fi gure 8.31b, assuming now that strategy #2
was used for the timer. Is the result (y) the same as for strategy #1?

 Exercise 8.5: Blinking Light without Reset
 It was said in section 8.11.1 that the light blinker of fi gure 8.12c might not require a
reset signal, even if fl ip-fl ops with arbitrary initial states are used to implement it.

 a) Prove that if sequential encoding is used and optimal (minimal) expressions are
adopted for nx_state (i.e., d 1 and d 0), then this FSM can indeed operate without reset.
(Suggestion: Review sections 3.8 and 3.9 and see exercise 3.11.)
 b) Show that, on the other hand, if sequential encoding is used but all “ don ’ t care ”
bits are fi lled with ‘ 1 ’ s, then the machine is subject to deadlock, so a reset signal is
needed.

 Exercise 8.6: Blinking Light with Several Speeds
 This exercise is an extension to the light blinker of fi gure 8.12c , which must now
operate with a programmable speed, set by a pushbutton (called spd). The desired speeds

Figure 8.31

178 Chapter 8

are 1, 2, 4, and 8 Hz. The next speed must be selected every time the pushbutton is
pressed, returning to 1 Hz after passing 8 Hz. One alternative (among others) is pre-
sented in fi gure 8.32 , which consists of a cascade of FSMs. The fi rst can be a debouncer
+ one-shot converter (similar to fi gure 8.18b), the second can be a reference-value
defi ner (similar to fi gure 8.18c), and the third the light blinker proper (fi gure 8.12c).
The purpose of the fi rst pair of FSMs is to produce T ref , which is then used as time
parameter for the blinker. Assume a 1-ms debouncing interval, a 50-MHz clock, and
sequential encoding for the FSMs.

a) Calculate the four values of T ref (one for each speed); for example, for 1 Hz, t ref = 0.5
s, so T ref = 25 ⋅ 10 6 clock cycles.
 b) Draw a block diagram for your solution, splitting the big block of fi gure 8.32 into
two blocks.
 c) Show the state transition diagram for each FSM used in this circuit.
 d) How many DFFs are needed to build the entire circuit?

 Exercise 8.7: Pushbutton Debouncer plus Memory
 Figure 8.33 shows a pushbutton that must be debounced and also “ memorized, ”
such that the stored value gets inverted every time the pushbutton is pressed (as in
the stopwatch used by football referees, which alternately runs and stops every time
the pushbutton is pressed). If a debouncer were not needed, the trivial solution of
 fi gure 8.33a could be used, in which x is connected directly to the clock input of a
DFF (due to the inverted version of q connected back to d , it resembles a toggle-type
fl ip-fl op, so every time a positive clock edge occurs, the value of y gets inverted).
Let us assume, however, the usual situation, in which the pushbutton must be
debounced.

 Figure 8.32

 Figure 8.33

Timed (Category 2) State Machines 179

a) Draw a fl owchart for the combined solution of fi gure 8.33b (debouncer plus memory
in one FSM).
 b) Draw a Moore-type state diagram corresponding to the fl owchart presented above.
 c) Assuming that sequential encoding is used and that the debouncing time interval
is 1 ms, with f clk = 50 MHz, calculate the number of fl ip-fl ops needed to build this
machine.
 d) If the solution of fi gure 8.33a were employed, with the debouncer included, how
many fl ip-fl ops would be required?

 Exercise 8.8: Independent Multisignal Debouncer
 Figure 8.34 shows four mechanical switches for which debouncers are needed. In fi gure
8.34a a complete debouncer for each signal is considered, whereas fi gure 8.34b consid-
ers a “ combined ” approach. Because the timer is the most expensive part, if a single
timer could be used in the latter it would already represent a major gain. In this exer-
cise the switches are independent of each other, so they might be activated simultane-
ously. Assume a 1-ms minimum debouncing interval, a 50-MHz clock, and sequential
encoding for the FSMs.

 a) How many fl ip-fl ops are needed to implement the option in fi gure 8.34a , employing
the debouncer of fi gure 8.16c ?
 b) Draw a state transition diagram for an FSM capable of implementing the combined
debouncer of fi gure 8.34b .
 c) How many fl ip-fl ops are needed to implement your combined circuit?

 Exercise 8.9: Dependent Multisignal Debouncer
 Figure 8.35 shows a keypad (see details in exercise 5.14) for which debouncers are
needed. Note that this exercise is an extension to that above, with the difference that
now the signals are no longer independent of each other. Because only one key is
supposed to be pressed at a time, the only valid codewords are “ 1111 ” (no key pressed),
 “ 0111 ” (key in row 1 pressed), “ 1011 ” (key in row 2 pressed), “ 1101 ” (key in row 3

Figure 8.34

180 Chapter 8

pressed), and “ 1110 ” (key in row 4 pressed). Note that for the purposes of this exercise,
as well as for testing the solution with VHDL or SystemVerilog, the arrangement in
fi gure 8.34 can be used equivalently. Assume a 1-ms debouncing interval, a 50-MHz
clock, and sequential encoding for the FSMs.

 a) How many fl ip-fl ops are needed to implement the option in fi gure 8.35a (or 8.34a)
with the debouncer of fi gure 8.16c? Is this option capable of fi ltering out invalid
codewords?
 b) Draw a state transition diagram for an FSM capable of implementing the combined
debouncer of fi gure 8.35b (or 8.34b). It must also be able to fi lter out invalid codewords
(hence, y can only be “ 1111, ” “ 0111, ” “ 1011, ” “ 1101, ” or “ 1110 ”).
 c) How many fl ip-fl ops are now required?

 Exercise 8.10: Dependent Multisignal Debouncer with One-Shot Conversion
 This exercise concerns the FSM1 block of fi gure 8.19b , which must implement a two-
signal debouncer with one-shot output. Recall that up and dn are not supposed to be
high at the same time, so the machine should be able to fi lter out invalid inputs (the
only values allowed for x 1 x 2 are “ 00 ” , “ 10 ” , and “ 01 ”). Draw a state transition diagram
for this FSM.

 Exercise 8.11: Arbitrary Reference-Value Defi ner with Up/Down Controls
 Figure 8.19b shows an alternative for implementing a reference-value defi ner with up
and down controls, which is advantageous when the reference values are few and
irregular (arbitrary). The fi rst block was already treated in the previous exercise. Draw
a state transition diagram for an FSM capable of implementing the second block, with
eight reference values (r 1 , r 2 , … , r 8). Recall that the inputs to this machine can only be
 x 1 x 2 = “ 00 ” (idle), “ 10 ” (up), or “ 01 ” (down), with any nonzero input lasting only one
clock period (as determined by the previous block).

 Exercise 8.12: Regular Reference-Value Defi ner with Up/Down Controls
 Figure 8.19a shows an alternative for implementing a reference-value defi ner with up
and down controls, which is advantageous when the reference values are regularly

 Figure 8.35

Timed (Category 2) State Machines 181

distributed, so some type of counter/adder can be used to build it. Say that the circuit
must generate values from 0 to 99, incremented (when up = ‘ 1 ’) or decremented (when
dn = ‘ 1 ’) in steps of size 1.

 a) Make a sketch for this circuit, detailing especially the connections of the two push-
buttons (feel free to add other contacts to the pushbuttons if you consider it neces-
sary). How many debouncers are needed?
 b) How many fl ip-fl ops are needed to build the entire circuit of fi gure 8.19a based on
your sketch above? If any debouncer is needed, consider 1 ms for the debouncing
interval and f clk = 50 MHz.

 Exercise 8.13: Traffi c Light Controller
 The questions below refer to the traffi c light controller of fi gure 8.20c .

 a) Explain why either strategy #1 or #2 (section 8.5) can be used to implement the
timer in this machine.
 b) Is a reset signal needed? Explain. (Suggestion: Review sections 3.8 and 3.9.)
 c) Which inputs are asynchronous? (Suggestion: Review section 2.3.)
 d) If debouncers are included in the asynchronous inputs, are synchronizers needed?
 e) If debouncers are not used, are synchronizers indispensable in this application?
 f) Redraw the state transition diagram including in it the following feature: Instead of
having the yellow lights in both directions statically on while in standby mode, make
them blink continuously (with a 0.5 Hz frequency) in that mode.
 g) The number of DFFs needed to build the FSM after the feature above is included is
still that determined in section 8.11.5? Explain.

 Exercise 8.14: Car Alarm
 The questions below refer to the car alarm of fi gure 8.21c . Assume that the chirps must
last 0.3 s and f clk = 50 MHz.

 a) Explain why both strategies #1 and #2 (section 8.5) are appropriate to imple-
ment the timer in this machine. What are the advantages and disadvantages of
each one?
 b) How many DFFs are needed to build that circuit with sequential encoding for the
machine states? And with one-hot encoding?
 c) Is a reset signal needed? Explain. (Suggestion: Review sections 3.8 and 3.9.)
 d) Which inputs are asynchronous? (Suggestion: Review section 2.3.)
 e) If debouncers are included in the asynchronous inputs, are synchronizers needed?
 f) If debouncers are not used, are synchronizers indispensable in this application?

 Exercise 8.15: Password Detector
 The questions below refer to the password detector of fi gure 8.22c .

182 Chapter 8

a) Explain why both strategies #1 and #2 (section 8.5) are appropriate to implement
the timer in this machine. What are the advantages and disadvantages of each one?
b) Is a reset signal needed? Explain. (Suggestion: Review sections 3.8 and 3.9.)
c) Is key an asynchronous input? (Suggestion: Review section 2.3.)
 d) If key has already been processed by a debouncer (as in exercise 8.11), are synchro-
nizers needed?
e) Why is the state ready needed in this FSM?
f) Why must the machine not go back to the idle state as soon as a wrong key is
punched in?

 Exercise 8.16: Triggered Circuits #1
 The questions below concern the pulse generator of fi gure 8.24b , which produces the
signal of fi gure 8.24a .

 a) How many fl ip-fl ops are needed to build that circuit, for T = 3 clock cycles, sequen-
tial encoding, and not including the optional output register?
 b) In which states is the timer not needed? How should the timer be operated in those
states?
 c) Complete the plots of fi gure 8.36 (for T = 3) and then comment on the results.

 Exercise 8.17: Triggered Circuits #2
 Two signals produced by triggered circuits are exhibited in fi gure 8.37 .

 Figure 8.36

 Figure 8.37

Timed (Category 2) State Machines 183

a) Present a state transition diagram for an FSM capable of producing the signal of
fi gure 8.37a . Estimate the number of DFFs needed to build your complete circuit for
T = 3 clock cycles and sequential encoding.
b) Do the same for the signal of fi gure 8.37b . Assume sequential encoding and T 1 = 3
and T 2 = 5 clock cycles.

 Exercise 8.18: Triggered Circuits #3
 Figure 8.38a shows a two-machine arrangement for the implementation of an edge-
detecting triggered circuit. We want to use this arrangement to implement a circuit
that generates the signal of fi gure 8.24a . A solution for that case was already seen in
 fi gure 8.24b , using a single machine. The advantage of the approach discussed here is
that the timer can be zeroed every time the machine changes its state; hence, contrary
to fi gure 8.24b , strategy #1 (section 8.5.2) can be applied without exceptions. In fi gure
8.38a , FSM1 is a one-shot circuit (discussed in section 5.4.3) that converts x into a
short pulse (internal signal i), from which FSM2 must produce the actual output signal,
 y , as illustrated in fi gure 8.38b . Present two state transitions diagrams (one for each
machine) to solve this problem with the timer allowed to be zeroed at every state
transition. Can the timer control strategy #2 also be employed in your FSMs?

 Exercise 8.19: Pulse Shifter
 This exercise concerns the pulse shifter introduced in section 8.11.9.

 a) Draw a state transition diagram and present an illustrative timing diagram for an
FSM capable of producing a signal similar to that in fi gure 8.25b , but knowing that x
(still synchronous) now lasts exactly one clock period.
 b) How many fl ip-fl ops are needed to build your circuit, for T shift = 16 T clk , using sequen-
tial encoding for the FSM?

 Exercise 8.20: Synchronous Pulse Stretcher #1
 This exercise concerns the synchronous version of a pulse stretcher whose behavior
was depicted in fi gure 8.27b .

 a) If the falling edge of signal 2 is beyond the falling edge of (sync) y , will the solution
presented in fi gure 8.28a still produce the same result? If not, modify it to accom-
modate this situation as well.

Figure 8.38

184 Chapter 8

b) Develop a circuit capable of processing signal 3. (Suggestion: See section 2.4.)
c) Draw an illustrative timing diagram for your circuit (as in fi gure 8.28b), demonstrat-
ing that it indeed covers case 3.

 Exercise 8.21: Synchronous Pulse Stretcher #2
 This exercise concerns the synchronous version of a pulse stretcher whose behavior
was depicted in fi gure 8.27c .

 a) Present a state transition diagram for a Moore FSM capable of processing all three
signals (4 to 6). Should it operate at the positive or negative clock transition?
 b) Draw an illustrative timing diagram for your FSM (as in fi gure 8.28b), demonstrat-
ing that it indeed works as expected.

 Exercise 8.22: Asynchronous Pulse Stretcher #1
 This exercise concerns the asynchronous version of a pulse stretcher whose behavior
was depicted in fi gure 8.27b .

 a) Present a state transition diagram for a Mealy FSM capable of processing signals
1 – 2.
 b) Draw an illustrative timing diagram for your FSM (as in fi gure 8.28d), demonstrat-
ing that it indeed works as expected.
 c) Develop a circuit capable of processing signal 3. (Suggestion: See section 2.4.)

 Exercise 8.23: Asynchronous Pulse Stretcher #2
 This exercise concerns the asynchronous version of a pulse stretcher whose behavior
was depicted in fi gure 8.27c .

 a) If the falling edge of signal 5 is beyond the falling edge of (async) y , will the solu-
tion presented in fi gure 8.28c still produce the same result? If not, modify it to accom-
modate this situation as well.
 b) Develop a circuit capable of processing signal 6. (Suggestion: See section 2.4.)
 c) Draw an illustrative timing diagram for your circuit (as in fi gure 8.28d), demonstrat-
ing that it indeed covers case 6.

 Exercise 8.24: Eliminating Conditional-Timed Transitions
 Because the conditional-timed transition (CD) in fi gure 8.3 is the only transition that
departs from state C, it can be eliminated by splitting it into a simple timed transition
followed by a simple conditional transition.

 a) Apply the principle described above to the FSM of fi gure 8.3.
 b) Can strategy #2 be now used to build the timer? Why couldn ’ t it be used in the
original machine of fi gure 8.3?

9 VHDL Design of Timed (Category 2) State Machines

9.1 Introduction

This chapter presents several VHDL designs of category 2 state machines. It starts by
presenting two VHDL templates, for Moore- and Mealy-based implementations, which
are used subsequently to develop a series of designs related to the examples introduced
in chapter 8.

 The codes are always complete (not only partial sketches) and are accompanied by
comments and simulation results, illustrating the design ’ s main features. All circuits
were synthesized using Quartus II (from Altera) or ISE (from Xilinx). The simulations
were performed with Quartus II or ModelSim (from Mentor Graphics). The default
encoding scheme for the states of the FSMs was regular sequential encoding (see
encoding options in section 3.7; see ways of selecting the encoding scheme at the end
of section 6.3).

 The same designs are presented in chapter 10 using SystemVerilog, so the reader
can make a direct comparison between the codes.

 Note: See suggestions of VHDL books in the bibliography.

 9.2 VHDL Template for Timed (Category 2) Moore Machines

 The template is presented below. Because it is an extension to the Moore template for
category 1, described in section 6.3, a review of that template is suggested before this
one is examined because only the differences are described.

 The only differences are those needed for the inclusion of a timer (external to the
FSM — see fi gure 8.2a). Recall, however, that the FSM itself is responsible for controlling
the timer. For that purpose, two strategies were developed in chapter 8, being the fi rst
generic (section 8.5.2), and the second (section 8.5.3), non-generic. It is very important
that the reader review those two sections before proceeding.

186 Chapter 9

The fi rst of the two templates that follow is for timed Moore machines with the
timer implemented using strategy #1. The timer-related constants (T 1 , T 2 , . . .) can be
declared either as generic constants (lines 6 – 7; see details in the template for category
1 in section 6.3), therefore in the entity, or in the declarative part of the architecture,
as shown in lines 18 – 20. The signal t must obviously stay where it is (line 21). As seen
in section 8.5.2, the timer must obey t max ≥ max (T 1 , T 2 , . . .) − 1.

 The fi rst process (lines 26 – 37) implements the timer. Note that it is a straight copy
of the code presented in section 8.5.2.

 The second process (line 40) implements the machine ’ s state register, exactly as for
category 1 Moore (section 6.3).

 The third process (lines 43 – 71) implements the machine ’ s combinational logic. It
is the same as for category 1 except for the fact that t might appear in the conditions
for nx_state (lines 50, 52, . . .). The use of t ≥ T − 1 instead of t = T − 1 is required in
the conditional-timed transitions with T − 1 < t max . Note that t max does not need to be
defi ned in all states, which is not true for strategy #2.

 The fourth and fi nal process (line 74) implements the optional output register,
exactly as for category 1.

 Note: See also the comments in section 6.4 on template variations.

 1 --Timed Moore machine with timer control strategy #1---------
 2 library ieee;
 3 use ieee.std_logic_1164.all;
 4 --
 5 entity circuit is
 6 generic (
 7 (timer-related constants of lines 18-20 can go here)
 8 port (
 9 (same as for category 1 Moore, section 6.3)
 10 end entity;
 11 --
 12 architecture moore_fsm of circuit is
 13
 14 --FSM-related declarations:
 15 (same as for category 1 Moore, section 6.3)
 16
 17 --Timer-related declarations:
 18 constant T1: natural := < value > ;
 19 constant T2: natural := < value > ; ...
 20 constant tmax: natural := < value > ; --tmax ≥ max(T1,T2,...)-1
 21 signal t: natural range 0 to tmax;
 22
 23 begin
 24
 25 --Timer (strategy #1, section 8.5.2):
 26 process (clk, rst)
 27 begin
 28 if (rst='1') then
 29 t < = 0;

VHDL Design of Timed (Category 2) State Machines 187

 30 elsif rising_edge(clk) then
 31 if pr_state /= nx_state then
 32 t < = 0;
 33 elsif t /= tmax then
 34 t < = t + 1;
 35 end if;
 36 end if;
 37 end process;
 38
 39 --FSM state register:
 40 (same as for category 1 Moore, section 6.3)
 41
 42 --FSM combinational logic:
 43 process (all) --list proc. inputs if “ all ” not supported
 44 begin
 45 case pr_state is
 46 when A = >
 47 output1 < = < value > ;
 48 output2 < = < value > ;
 49 ...
 50 if ... and t > =T1-1 then
 51 nx_state < = B;
 52 elsif ... and t > =T2-1 then
 53 nx_state < = ...;
 54 else
 55 nx_state < = A;
 56 end if;
 57 when B = >
 58 output1 < = < value > ;
 59 output2 < = < value > ;
 60 ...
 61 if ... and t > =T3-1 then
 62 nx_state < = C;
 63 elsif ... then
 64 nx_state < = ...;
 65 else
 66 nx_state < = B;
 67 end if;
 68 when C = >
 69 ...
 70 end case;
 71 end process;
 72
 73 --Optional output register:
 74 (same as for category 1 Moore, section 6.3)
 75
 76 end architecture;
 77 --

The next template is for timed Moore machines employing strategy #2 to imple-
ment the timer.

The fi rst difference is in line 18, which now includes also t max .
 The second difference is in the process for the timer (lines 23 – 34), which is a copy

of the code presented in section 8.5.3.

188 Chapter 9

The third and fi nal difference is in the process for the combinational logic block
(lines 40 – 70), which requires now the value of t max to be specifi ed in each state (lines
47, 59, . . .), even if the state is untimed (t max = 0). This code can obviously be simpli-
fi ed in several ways when there are no conditional-timed transitions and/or t max is the
same in all or most states.

 1 --Timed Moore machine with timer control strategy #2------------
 2 library ieee;
 3 use ieee.std_logic_1164.all;
 4 ---
 5 entity circuit is
 6 (same as template above)
 7 end entity;
 8 ---
 9 architecture moore_fsm of circuit is
 10
 11 --FSM-related declarations:
 12 (same as for category 1 Moore, section 6.3)
 13
 14 --Timer-related declarations:
 15 constant T1: natural := < value > ;
 16 constant T2: natural := < value > ; ...
 17 constant tmax_timer: natural := < value > ; -- ≥ max(T1,T2,...)-1
 18 signal t, tmax: natural range 0 to tmax_timer;
 19
 20 begin
 21
 22 --Timer (strategy #2, section 8.5.3):
 23 process (clk, rst)
 24 begin
 25 if (rst='1') then
 26 t < = 0;
 27 elsif rising_edge(clk) then
 28 if t < tmax then
 29 t < = t + 1;
 30 else
 31 t < = 0;
 32 end if;
 33 end if;
 34 end process;
 35
 36 --FSM state register:
 37 (same as for category 1 Moore, section 6.3)
 38
 39 --FSM combinational logic:
 40 process (all) --list proc. inputs if “ all ” not supported
 41 begin
 42 case pr_state is
 43 when A = >
 44 output1 < = < value > ;
 45 output2 < = < value > ;
 46 ...
 47 tmax < = T1-1;
 48 if ... and t=tmax then
 49 nx_state < = B;

VHDL Design of Timed (Category 2) State Machines 189

 50 elsif ... then
 51 nx_state < = ...;
 52 else
 53 nx_state < = A;
 54 end if;
 55 when B = >
 56 output1 < = < value > ;
 57 output2 < = < value > ;
 58 ...
 59 tmax < = T2-1;
 60 if ... and t=tmax then
 61 nx_state < = C;
 62 elsif ... then
 63 nx_state < = ...;
 64 else
 65 nx_state < = B;
 66 end if;
 67 when C = >
 68 ...
 69 end case;
 70 end process;
 71
 72 --Optional output register:
 73 (same as for category 1 Moore, section 6.3)
 74
 75 end architecture;
 76 ---

9.3 VHDL Template for Timed (Category 2) Mealy Machines

The template is presented below, using strategy #1 to implement the timer. The only
difference with respect to the Moore template (section 9.2) is in the process for the
combinational logic block (lines 20 – 60) because the outputs are specifi ed differently
here (see the template for category 1 Mealy machines in section 6.5). Recall that in a
Mealy machine the output depends not only on the FSM ’ s state, but also on the input,
so if statements are expected for the output in one or more states because the output
values might not be unique.

 Please review the following comments, which can be easily adapted from the Moore
case to the Mealy case:

 — On the Moore template for category 1, in section 6.3, especially comment 10.
 — On the enum_encoding and fsm_encoding attributes, also in section 6.3.
 — On possible code variations, in section 6.4.
 — On the Mealy template for category 1, in section 6.5.
 — On the Moore templates for category 2, in section 9.2.

 1 --Timed Mealy machine with timer control strategy #1----
 2 library ieee;
 3 use ieee.std_logic_1164.all;
 4 ---

190 Chapter 9

 5 entity circuit is
 6 (same as for Moore, Section 9.2));
 7 end entity;
 8 ---
 9 architecture mealy_fsm of circuit is
 10 (same as for Moore, section 9.2)
 11 begin
 12
 13 --Timer (using timer control strategy #1):
 14 (same as for Moore, section 9.2)
 15
 16 --FSM state register:
 17 (same as for Moore, section 9.2)
 18
 19 --FSM combinational logic:
 20 process (all)
 21 begin
 22 case pr_state is
 23 when A = >
 24 if ... and t > =T1-1 then
 25 output1 < = < value > ;
 26 output2 < = < value > ;
 27 ...
 28 nx_state < = B;
 29 elsif ... and t > =T2-1 then
 30 output1 < = < value > ;
 31 output2 < = < value > ;
 32 ...
 33 nx_state < = ...;
 34 else
 35 output1 < = < value > ;
 36 output2 < = < value > ;
 37 ...
 38 nx_state < = A;
 39 end if;
 40 when B = >
 41 if ... and t > =T3-1 then
 42 output1 < = < value > ;
 43 output2 < = < value > ;
 44 ...
 45 nx_state < = C;
 46 elsif ... then
 47 output1 < = < value > ;
 48 output2 < = < value > ;
 49 ...
 50 nx_state < = ...;
 51 else
 52 output1 < = < value > ;
 53 output2 < = < value > ;
 54 ...
 55 nx_state < = B;
 56 end if;
 57 when C = >
 58 ...
 59 end case;
 60 end process;

VHDL Design of Timed (Category 2) State Machines 191

 61
 62 --Optional output register:
 63 (same as for Moore, section 9.2)
 64
 65 end architecture;
 66 ---

9.4 Design of a Light Rotator

This section presents a VHDL-based design for the light rotator introduced in
section 8.11.2. The Moore template of section 9.2 is used to implement the FSM
of fi gure 8.14b. Either strategy #1 (section 8.5.2) or #2 (section 8.5.3) can be used
to build the timer (both templates were presented in section 9.2); the former is
employed in the code below, while the latter is explored in exercise 9.1.

 The entity, called light_rotator , is in lines 5 – 9. All ports are of type std_logic or std_
logic_vector (industry standard).

 The architecture, called moore_fsm , is in lines 11 – 105. As usual, it contains a declara-
tive part and a statements part, with three processes in the latter.

 The declarative part of the architecture (lines 13 – 21) contains FSM- and
timer-related declarations. In the former, the enumerated type state is created to
repre sent the machine ’ s present and next states. In the latter, the values cho sen
for T 1 and T 2 are such that 120 ms and 35 ms result, respectively, assuming f clk =
50 MHz.

 The fi rst process (lines 26 – 37) implements the timer (using strategy #1). Except for
the inclusion of stp (lines 26 and 30), this code is exactly as in the template.

 The second process (lines 40 – 47) implements the FSM ’ s state register, exactly as in
the template.

 The third and fi nal process (lines 50 – 103) implements the entire combinational
logic section. It is just a list of all states (indeed, because this code is repetitive, some
of the states were not detailed in order to save some space), each containing the output
(ssd) value and the next state. Note that in each state the output value is unique
because in a Moore machine the output depends only on the state in which the
machine is.

 In this kind of application the “ − 1 ” term present in the determination of the total
time (lines 20, 55, 62, . . .) does not make any difference, but it was maintained as a
reminder of the accurate value.

 Observe the correct use of registers and the completeness of the code, as described
in comment 10 of section 6.3. Note in particular the following:

 1) Regarding the use of registers: The circuit is not overregistered. This can be observed
in the elsif rising_edge(clk) statement of line 44 (responsible for the inference of
fl ip-fl ops), which is closed in line 46, guaranteeing that only the machine state (line

192 Chapter 9

45) gets stored (the timer is in a separate circuit — see fi gure 8.2a). The output (ssd) is
in the next process, which is purely combinational (thus not registered).
 2) Regarding the outputs: The list of outputs (just ssd in this example) is exactly the
same in all states (see lines 54, 61, 68, . . .), and the corresponding values are always
properly declared.
 3) Regarding the next state: Again, the coverage is complete because all states are
included (see lines 53, 60, 67, . . .), and in each state the next state is always properly
declared (lines 55-59, 62-66, 69-73, . . .).

 The total number of fl ip-fl ops inferred by the compiler using the code below was
27 for sequential or Gray encoding, 29 for Johnson, and 35 for one-hot, which agree
with the predictions made in section 8.11.2.

 Because this particular machine has only simple timed transitions, a few simplifi ca-
tions could be made in the code below, but with no impact on the resulting circuit
(thus with no reason to depart from the proposed template).

 1 ---
 2 library ieee;
 3 use ieee.std_logic_1164.all;
 4 ---
 5 entity light_rotator is
 6 port (
 7 stp, clk, rst: in std_logic;
 8 ssd: out std_logic_vector(6 downto 0));
 9 end entity;
 10 ---
 11 architecture moore_fsm of light_rotator is
 12
 13 --FSM-related declarations:
 14 type state is (A, AB, B, BC, C, CD, D, DE, E, EF, F, FA);
 15 signal pr_state, nx_state: state;
 16
 17 --Timer-related declarations:
 18 constant T1: natural := 6_000_000; --120ms @ fclk=50MHz
 19 constant T2: natural := 1_750_000; --35ms @ fclk=50MHz
 20 constant tmax: natural := T1-1; --tmax ≥ max(T1,T2)-1
 21 signal t: natural range 0 to tmax;
 22
 23 begin
 24
 25 --Timer (using strategy #1):
 26 process (clk, rst, stp)
 27 begin
 28 if rst='1' then
 29 t < = 0;
 30 elsif rising_edge(clk) and stp='0' then
 31 if pr_state /= nx_state then
 32 t < = 0;
 33 elsif t /= tmax then
 34 t < = t + 1;

VHDL Design of Timed (Category 2) State Machines 193

 35 end if;
 36 end if;
 37 end process;
 38
 39 --FSM state register:
 40 process (clk, rst)
 41 begin
 42 if rst='1' then
 43 pr_state < = A;
 44 elsif rising_edge(clk) then
 45 pr_state < = nx_state;
 46 end if;
 47 end process;
 48
 49 --FSM combinational logic:
 50 process (all)
 51 begin
 52 case pr_state is
 53 when A = >
 54 ssd < = "0111111";
 55 if t > =T1-1 then -- or t=T1-1
 56 nx_state < = AB;
 57 else
 58 nx_state < = A;
 59 end if;
 60 when AB = >
 61 ssd < = "0011111";
 62 if t > =T2-1 then -- or t=T2-1
 63 nx_state < = B;
 64 else
 65 nx_state < = AB;
 66 end if;
 67 when B = >
 68 ssd < = "1011111";
 69 if t > =T1-1 then
 70 nx_state < = BC;
 71 else
 72 nx_state < = B;
 73 end if;
 74 when BC = >
 75 ssd < = "1001111";
 76 if t > =T2-1 then
 77 nx_state < = C;
 78 else
 79 nx_state < = BC;
 80 end if;
 81 when C = >
 82 ...
 83 when CD = >
 84 ...
 85 when D = >
 86 ...
 87 when DE = >
 88 ...
 89 when E = >
 90 ...
 91 when EF = >

194 Chapter 9

 92 ...
 93 when F = >
 94 ...
 95 when FA = >
 96 ssd < = "0111101";
 97 if t=T2-1 then
 98 nx_state < = A;
 99 else
 100 nx_state < = FA;
 101 end if;
 102 end case;
 103 end process;
 104
 105 end architecture;
 106 ---

9.5 Design of a Car Alarm (with Chirps)

This section presents a VHDL-based design for the car alarm with chirps introduced
in section 8.11.6. The Moore template of section 9.2 is employed to implement the
FSM of fi gure 8.21c. Again, either strategy #1 or #2 can be used to build the timer; the
latter was adopted in the code below.

 The entity, called car_alarm_with_chirps , is in lines 5 – 9. All ports are of type std_logic
(industry standard).

 The architecture, called moore_fsm , is in lines 11 – 138. As usual, it contains a declara-
tive part and a statements part, with three processes in the latter.

 The declarative part of the architecture (lines 13 – 21) contains FSM- and timer-
related declarations. In the former the enumerated type state is created to represent
the machine ’ s present and next states. In the latter the value chosen for chirpON and
 chirpOFF is such that the chirp and the time interval between chirps last 0.3 s, assum-
ing f clk = 50 MHz.

The fi rst process (lines 26 – 37) implements the timer, using strategy #2, exactly as
in the template.

The second process (lines 40 – 47) implements the state register, again exactly as in
the template.

 The third and fi nal process (lines 50 – 136) implements the entire combinational
logic section. It is just a list of all states, each containing the output (siren) value, the
value of t max , and the next state. Note that in each state the output value is unique
because in a Moore machine the output depends only on the state in which the
machine is.

 In this kind of application the “ − 1 ” term present in the determination of t max (lines
21, 63, 97, . . .) does not make any difference, but it was maintained as a reminder of
the accurate value.

 Observe the correct use of registers and the completeness of the code, as described
in comment 10 of section 6.3. Note in particular the following:

VHDL Design of Timed (Category 2) State Machines 195

1) Regarding the use of registers: The circuit is not overregistered. This can be observed
in the elsif rising_edge(clk) statement of line 44 (responsible for the inference of
fl ip-fl ops), which is closed in line 46, guaranteeing that only the machine state (line
45) gets stored (besides the timer, of course, designed in the previous process). The
output (siren) is in the next process, which is purely combinational (thus not
registered).
2) Regarding the outputs: The list of outputs (just siren in this example) and time
parameters (t max) is exactly the same in all states (see lines 54 – 55, 62 – 63, 70 – 71, . . .),
and the corresponding values are always properly declared.
 3) Regarding the next state: Again, the coverage is complete because all states are
included (see lines 53, 61, 69, . . .), and in each state the conditional declarations for
the next state are always fi nalized with an else statement (lines 58, 66, 74, . . .), guar-
anteeing that no condition is left unchecked.

 The total number of fl ip-fl ops inferred by the compiler on synthesizing this code
was 28 for sequential or Gray encoding, 29 for Johnson, and 34 for one-hot. Compare
these results against your predictions made in exercise 8.14.

 Simulation results are shown in fi gure 9.1 .

1 --
2 library ieee;
3 use ieee.std_logic_1164.all;
4 --
5 entity car_alarm_with_chirps is
 6 port (
 7 remt, sen, clk, rst: in std_logic;
 8 siren: out std_logic);
 9 end entity;
 10 --
 11 architecture moore_fsm of car_alarm_with_chirps is
 12
 13 --FSM-related declarations:
 14 type state is (disarmed, armed, alarm, chirp1, chirp2, chirp3,
 15 chirp4, chirp5, wait1, wait2);

 Figure 9.1
 Simulation results from the VHDL code for the car alarm of fi gure 8.21c.

196 Chapter 9

16 signal pr_state, nx_state: state;
 17
 18 --Timer-related declarations:
 19 constant chirpON: natural := 15_000_000; --0.3s @fclk=50MHz
 20 constant chirpOFF: natural := 15_000_000;
 21 signal t, tmax: natural range 0 to chirpOFF-1; --range ≥ max time
 22
 23 begin
 24
 25 --Timer (using strategy #2):
 26 process (clk, rst)
 27 begin
 28 if rst='1' then
 29 t < = 0;
 30 elsif rising_edge(clk) then
 31 if t < tmax then
 32 t < = t + 1;
 33 else
 34 t < = 0;
35 end if;
 36 end if;
 37 end process;
 38
 39 --FSM state register:
 40 process (clk, rst)
 41 begin
 42 if rst='1' then
 43 pr_state < = disarmed;
 44 elsif rising_edge(clk) then
 45 pr_state < = nx_state;
 46 end if;
 47 end process;
 48
 49 --FSM combinational logic:
 50 process (all)
 51 begin
 52 case pr_state is
 53 when disarmed = >
 54 siren < = '0';
 55 tmax < = 0;
 56 if remt='1' then
 57 nx_state < = chirp1;
 58 else
 59 nx_state < = disarmed;
 60 end if;
 61 when chirp1 = >
 62 siren < = '1';
 63 tmax < = chirpON-1;
 64 if t=tmax then
 65 nx_state < = wait1;
 66 else
 67 nx_state < = chirp1;
 68 end if;
 69 when wait1 = >
 70 siren < = '0';
 71 tmax < = 0;

VHDL Design of Timed (Category 2) State Machines 197

72 if remt='0' then
73 nx_state < = armed;
 74 else
 75 nx_state < = wait1;
 76 end if;
 77 when armed = >
 78 siren < = '0';
 79 tmax < = 0;
 80 if sen='1' then
 81 nx_state < = alarm;
 82 elsif remt='1' then
 83 nx_state < = chirp3;
 84 else
 85 nx_state < = armed;
 86 end if;
 87 when alarm = >
 88 siren < = '1';
 89 tmax < = 0;
 90 if remt='1' then
 91 nx_state < = chirp2;
 92 else
 93 nx_state < = alarm;
 94 end if;
 95 when chirp2 = >
 96 siren < = '0';
 97 tmax < = chirpOFF-1;
 98 if t=tmax then
 99 nx_state < = chirp3;
 100 else
 101 nx_state < = chirp2;
 102 end if;
 103 when chirp3 = >
 104 siren < = '1';
 105 tmax < = chirpON-1;
 106 if t=tmax then
 107 nx_state < = chirp4;
 108 else
 109 nx_state < = chirp3;
 110 end if;
 111 when chirp4 = >
 112 siren < = '0';
 113 tmax < = chirpOFF-1;
 114 if t=tmax then
 115 nx_state < = chirp5;
 116 else
 117 nx_state < = chirp4;
 118 end if;
 119 when chirp5 = >
 120 siren < = '1';
 121 tmax < = chirpON-1;
 122 if t=tmax then
 123 nx_state < = wait2;
 124 else
 125 nx_state < = chirp5;
 126 end if;
 127 when wait2 = >
 128 siren < = '0';

198 Chapter 9

129 tmax < = 0;
 130 if remt='0' then
 131 nx_state < = disarmed;
 132 else
 133 nx_state < = wait2;
 134 end if;
 135 end case;
 136 end process;
 137
 138 end architecture;
 139 --

9.6 Design of a Triggered Monostable Circuit

This section presents a VHDL-based design for the triggered monostable circuit of
fi gure 8.24b, which is capable of generating the signal of fi gure 8.24a. Again, the code
that follows is a straightforward application of the VHDL template for category 2
Moore machines introduced in section 9.2. Note, however, that in this FSM the timer
control strategy #2 (section 8.5.3) cannot be used. Indeed, even strategy #1 (section
8.5.2) cannot be applied completely because in one of the state transitions the timer
must not be zeroed.

 The entity, called triggered_mono , is in lines 5 – 10. All ports are of type std_logic
(industry standard).

 The architecture, called moore_fsm , is in lines 12 – 99. As usual, it contains a declara-
tive part and a statements part, with four processes in the latter.

 The declarative part of the architecture (lines 14 – 20) contains FSM- and timer-
related declarations. In the former the enumerated type state is created to represent
the machine ’ s present and next states. In the latter a small value was used for T (called
 delay in the code; note delay = 3 in line 19) in order to ease the inspection of the simu-
lation results (shown later).

 The fi rst process (lines 25 – 38) implements the timer (with strategy #1, adapted).
Observe how the timer is prevented from being zeroed when the machine enters state
D, done with just the introduction of lines 31 and 33.

 The second process (lines 41 – 48) implements the state register, exactly as in the
template.

 The third process (lines 51 – 89) implements the entire combinational logic section.
It is just a list of all states, each containing the output (y) value and the next state.
Note that in each state the output value is unique because in a Moore machine the
output depends only on the state in which the machine is.

 The fourth and fi nal process (lines 92 – 97) implements the optional output register,
exactly as in the template. The output register was included because in this kind of
application glitches are generally not acceptable. Even though y could come directly

VHDL Design of Timed (Category 2) State Machines 199

from a DFF (hence glitch-free), that is not guaranteed because it depends on the encod-
ing scheme used in the machine.

 Observe the correct use of registers and the completeness of the code, as described
in comment 10 of section 6.3. Note in particular the following:

1) Regarding the use of registers: The circuit is not overregistered. This can be observed
in the elsif rising_edge(clk) statement of line 45 (responsible for the inference of
fl ip-fl ops), which is closed in line 47, guaranteeing that only the machine state (line
46) gets stored (besides the timer and the output register, of course, designed in other
processes). The output (y) is in the next process, which is purely combinational (thus
not registered).
2) Regarding the outputs: The list of outputs (just y in this example) is exactly the
same in all states (see lines 55, 62, 69, . . .), and the corresponding values are always
properly declared.
 3) Regarding the next state: Again, the coverage is complete because all states are
included (see lines 54, 61, 68, . . .), and in each state the conditional declarations for
the next state are always fi nalized with an else statement (lines 58, 65, 76, . . .), guar-
anteeing that no condition is left unchecked.

 The total number of fl ip-fl ops inferred by the compiler on synthesizing the code
below, with regular sequential encoding for the machine states, was 5 for T = 3 and
15 for T = 3000.

 Simulation results, for T = 3 clock cycles, are depicted in fi gure 9.2 . Analyze the
plots to confi rm the correctness of the circuit operation.

 1 --
 2 library ieee;
 3 use ieee.std_logic_1164.all;
 4 --

 Figure 9.2
 Simulation results from the VHDL code for the triggered monostable circuit of fi gure 8.24b for

 T = 3 clock periods.

200 Chapter 9

 5 entity triggered_mono is
 6 port (
 7 x, clk, rst: in std_logic;
 8 y: buffer std_logic;
 9 y_reg: out std_logic);
 10 end entity;
 11 ---
 12 architecture moore_fsm of triggered_mono is
 13
 14 --FSM-related declarations:
 15 type state is (A, B, C, D);
 16 signal pr_state, nx_state: state;
 17
 18 --Timer-related declarations:
 19 constant delay: natural := 3; --any value > =2
 20 signal t: natural range 0 to delay-1; --tmax ≥ delay-1
 21
 22 begin
 23
 24 --Timer (strategy #1, adapted):
 25 process (clk, rst)
 26 begin
 27 if rst='1' then
 28 t < = 0;
 29 elsif rising_edge(clk) then
 30 if pr_state /= nx_state then
 31 if nx_state/=D then
 32 t < = 0;
 33 end if;
 34 elsif t/=delay-1 then
 35 t < = t + 1;
 36 end if;
 37 end if;
 38 end process;
 39
 40 --FSM state register:
 41 process (clk, rst)
 42 begin
 43 if rst='1' then
 44 pr_state < = A;
 45 elsif rising_edge(clk) then
 46 pr_state < = nx_state;
 47 end if;
 48 end process;
 49
 50 --FSM combinational logic:
 51 process (all)
 52 begin
 53 case pr_state is
 54 when A = >
 55 y < = '0';
 56 if x='0' then
 57 nx_state < = B;
 58 else
 59 nx_state < = A;
 60 end if;

VHDL Design of Timed (Category 2) State Machines 201

 61 when B = >
 62 y < = '0';
 63 if x='1' then
 64 nx_state < = C;
 65 else
 66 nx_state < = B;
 67 end if;
 68 when C = >
 69 y < = '1';
 70 if x='0' and t < delay-1 then
 71 nx_state < = D;
 72 elsif x='0' and t > =delay-1 then
 73 nx_state < = B;
 74 elsif x='1' and t > =delay-1 then
 75 nx_state < = A;
 76 else
 77 nx_state < = C;
 78 end if;
 79 when D = >
 80 y < = '1';
 81 if x='1' then
 82 nx_state < = C;
 83 elsif x='0' and t > =delay-2 then
 84 nx_state < = B;
 85 else
 86 nx_state < = D;
 87 end if;
 88 end case;
 89 end process;
 90
 91 --Optional output register:
 92 process (clk)
 93 begin
 94 if rising_edge(clk) then
 95 y_reg < = y;
 96 end if;
 97 end process;
 98
 99 end architecture;
 100 ---

9.7 Exercises

Exercise 9.1: Timer Control Strategies Analysis (Light Rotator)
This exercise concerns the light rotator of fi gure 8.14b, implemented with VHDL in
section 9.4.

a) Compile the code of section 9.4 for the following options and write down the
number of logic elements and registers inferred by the compiler in each case: 1) Using
strategy #1 for the timer and sequential encoding for the machine; 2) With strategy
#1 and one-hot encoding; 3) With strategy #2 and sequential encoding; 4) With strat-
egy #2 and one-hot encoding.

202 Chapter 9

 b) Compare the results above. Was the difference between the two strategies more
relevant for sequential or one-hot encoding? Explain.

 Exercise 9.2: Blinking Light
 This exercise concerns the blinking light FSM of fi gure 8.12c.

 a) Which of the two timer control strategies (#1, section 8.5.2, or #2, section 8.5.3),
if any, can be adopted in the implementation of this FSM?
 b) Implement it using VHDL. Check whether the number of DFFs inferred by the
compiler matches the prediction made in section 8.11.1 for each encoding option
(sequential, Gray, Johnson, and one-hot). Recall that the predictions must be adjusted
in case the clock frequency is different from 50 MHz.
 c) Physically test your design in the FPGA development board. Use two switches to
produce rst and ena and use an LED to display the output.

 Exercise 9.3: Switch Debouncer
 This exercise concerns the switch debouncer of fi gure 8.16c, which was inserted into
the circuit of fi gure 9.3 . The fi gure also shows two counters; the signal pro duced
by the switch (sw) acts as clock to counter1, and its debounced version (sw_deb) acts
as clock to counter2. Every time the pushbutton is pressed (or a toggle switch is
fl ipped), both counters will be incremented, but counter1 might occa sionally be
incremented by more than one unit (the more the switch bounces, the bigger the
difference between the values on the displays). Assume a 2-ms debouncing interval
(check the clock frequency in your development board) and sequential encoding for
the FSM, with the counters able to count from 0h to Fh.

 a) Which of the two timer control strategies (#1, section 8.5.2, or #2, section 8.5.3),
if any, can be adopted in the implementation of this FSM?
 b) Estimate the number of DFFs needed to build the complete circuit. Does this
number depend on the answer to part a above?
 c) Design the circuit using VHDL. Check whether the number of DFFs inferred by the
compiler matches your prediction.

 Figure 9.3

VHDL Design of Timed (Category 2) State Machines 203

d) Physically test your design in the FPGA development board for several switches
(both toggle and pushbutton types).

Exercise 9.4: Reference-Value Defi ner
This exercise concerns the reference-value defi ner of fi gure 8.17b, which must produce
the following consecutive values (the value must change every time the pushbutton
is pressed): 250, 180, 130, 100, 70, and 40 (thus ref is an eight-bit signal). These values
must be displayed on your development board using either three SSDs or eight LEDs
(if the former is chosen, an SSD driver must be included in the design). In this exercise
it is requested that the clock frequency be divided down to 1 kHz; this 1-kHz signal
(clk1k) is the clock to be employed in the circuit.

 a) Assume a 3-ms debouncing interval. Consequently, only four consecutive equal
readings are needed for the pushbutton value to be considered valid. Is an FSM still
desired for the debouncer (plus one-shot conversion)? If so, does it need to be a timed
machine, as in fi gure 8.18b?
 b) Draw a block diagram for your circuit, including in it the clock divider and the
output display.
 c) Draw the state transition diagram for each FSM used in the design.
 d) Estimate the number of DFFs that will be needed to build the entire circuit (includ-
ing the clock divider). Assume sequential encoding for the FSM(s) and check the clock
frequency in your development board.
 e) Implement the circuit using VHDL. Check whether the number of DFFs inferred by
the compiler matches your prediction.
 f) Physically demonstrate your design in the FPGA development board.

 Exercise 9.5: Blinking Light with Several Speeds
 This exercise is an extension to the light blinker of fi gure 8.12c, which must
now operate with a programmable speed, set by a pushbutton, called spd (see the
gener al diagram of fi gure 9.4). The next speed must be selected every time the
pushbutton is pressed. The speed is determined by the on – off time interval (T ref),
which must be one of the following: 250, 180, 130, 100, 70, or 40 ms. As in exercise
9.4, the frequency of the system clock should be divided down, producing a 1-kHz

 Figure 9.4

204 Chapter 9

clock for the present circuit. Note that a debouncer is indispensable for the speed
pushbutton.

a) Draw a block diagram for your circuit, including the pushbutton, clock divider, and
FSMs.
b) Draw the state transition diagram for each FSM to be used in the design.
c) Estimate the number of DFFs that will be needed to build the entire circuit.
d) Implement the circuit using VHDL. Check whether the number of DFFs inferred by
the compiler matches your prediction.
e) Physically demonstrate your design in the FPGA development board.

Suggestion: Before solving this problem, solve exercises 9.3 and 9.4 if not done yet.

Exercise 9.6: Light Rotator with Additional Features
This exercise concerns the light rotator of fi gure 8.14, to which the following features
must be added:

i) An input called dir (produced by a switch) that selects the rotating direction (clock-
wise when dir = ‘ 1 ’ , counterclockwise otherwise).
 ii) An input called spd (produced by a pushbutton) that selects the rotating speed, as
in exercises 9.4 and 9.5. Every time the pushbutton is pressed, the next speed must
be selected. The speed is determined by the time interval during which the machine
stays in states A, B, C, . . . , which must be one of the following: 250, 180, 130, 100,
70, or 40 ms. The duration of states AB, BC, CD, . . . must be always 20 ms. Note
that a debouncer is necessary for the speed pushbutton.

 As in exercises 9.4 and 9.5, the system clock should be divided down, producing a
1-kHz clock for the present circuit. (Suggestion: Before solving this problem, solve
exercises 9.4 and 9.5 if not done yet.)

 a) Draw a block diagram for your circuit.
 b) Draw the state transition diagram for each FSM to be used in the design.
 c) Estimate the number of DFFs that will be needed to build the entire circuit. Assume
sequential encoding for the FSM(s).
 d) Design the circuit using VHDL. Check whether the number of DFFs inferred by the
compiler matches your prediction.
 e) Physically demonstrate your design in the FPGA development board.

 Exercise 9.7: Garage Door Controller
 This exercise concerns the garage door controller seen in section 5.4.5, designed with
VHDL and SystemVerilog in sections 6.7 and 7.6, respectively. Make the modifi cations

VHDL Design of Timed (Category 2) State Machines 205

needed in the VHDL code to incorporate the following feature: the door must close
automatically 30 s after arriving at the completely open position. This feature should
be optional, so an input must be added to the circuit to allow the user to choose between
enabling it or not. How many DFFs will be needed to build the entire circuit now?

Exercise 9.8: Traffi c Light Controller
This exercise concerns the traffi c light controller of fi gure 8.20c.

 a) Which of the two timer control strategies (#1, section 8.5.2, or #2, section 8.5.3),
if any, can be adopted to implement this FSM?
 b) Implement it using VHDL. Check whether the number of DFFs inferred by the
compiler matches the prediction made in section 8.11.5 for each encoding option
(sequential, Gray, Johnson, and one-hot). Recall that the predictions must be adjusted
in case the clock frequency is different from 50 MHz.
 c) Physically test your design in the FPGA development board. Use three switches to
produce stby , test , and rst , and six LEDs to display the outputs.
 d) At this point add the following feature (modify the design and download it to the
FPGA board): the yellow lights should blink (at 0.5 Hz) while the circuit is in the
standby mode.

 Exercise 9.9: Password Detector
 This exercise concerns the password detector of fi gure 8.22. A general block diagram
for the present design is shown in fi gure 9.5 , where, to ease the experiment, four
pushbuttons (from the FPGA board itself) replace the keypad. A multisignal debouncer
(treated in exercise 8.9) is also included. Only the following values are valid inputs (x)
to the password detector: “ 1111 ” (no pushbutton pressed), “ 0111 ” (top pushbutton
pressed), “ 1011 ” , “ 1101 ” , and “ 1110 ” (bottom pushbutton pressed).

 a) Solve exercise 8.9 if not done yet.
 b) Present a state transition diagram for each FSM to be used in this design.
 c) How many DFFs are needed to build the entire circuit? Adopt a 1-ms debouncing
interval and sequential encoding for the FSMs. Check the clock frequency in your
FPGA development board.

 Figure 9.5

206 Chapter 9

d) Design the circuit using VHDL. Enter the multisignal debouncer as a component in
the main code. After compilation, check whether the inferred number of DFFs matches
your prediction.
e) Physically test your design in the FPGA development board. Test it for the following
passwords: abc , aad , and aaa (where a = “ 0111 ” , b = “ 1011 ” , c = “ 1101 ” , and d =
 “ 1110 ”).

 Exercise 9.10: Triggered Circuits
 This exercise concerns the triggered FSMs treated in exercise 8.17.

 a) Solve exercise 8.17 if not done yet.
 b) Using VHDL, implement the FSM devised in part a of that exercise. Check whether
the number of DFFs inferred by the compiler matches your prediction. Show corre-
sponding simulation results.
 c) Do the same for the FSM of part b in that exercise.

 Exercise 9.11: Pulse Shifter
 This exercise concerns the pulse shifter of fi gure 8.26a. Implement it using VHDL.
Simulate it using the same stimuli of fi gure 8.26b and check whether the same wave-
forms result.

 Exercise 9.12: Synchronous Pulse Stretcher
 This exercise concerns the synchronous pulse stretcher introduced in fi gure 8.28a.

 a) How many DFFs are needed to build it for T = 64 clock cycles and sequential
encoding?
 b) Implement it using VHDL. Check whether the number of DFFs inferred by the
compiler matches your estimate.
 c) Recompile it for T = 5 and simulate it with the same stimuli of fi gure 8.28b, check-
ing if the same waveforms result.

 Exercise 9.13: Asynchronous Pulse Stretcher
 This exercise concerns the asynchronous pulse stretcher introduced in fi gure 8.28c.

 a) How many DFFs are needed to build it for T = 64 clock cycles and sequential
encoding?
 b) Implement it using VHDL. Check whether the number of DFFs inferred by the
compiler matches your estimate.
 c) Recompile it for T = 5 and simulate it with the same stimuli of fi gure 8.28d, check-
ing if the same waveforms result.

10 SystemVerilog Design of Timed (Category 2) State Machines

10.1 Introduction

This chapter presents several SystemVerilog designs of category 2 state machines. It
starts by presenting two SystemVerilog templates, for Moore- and Mealy-based imple-
mentations, which are used subsequently to develop a series of designs related to the
examples introduced in chapter 8.

 The codes are all complete (not only partial sketches) and are accompanied by
comments and simulation results, illustrating the design ’ s main features. All circuits
were synthesized using Quartus II (from Altera) or ISE (from Xilinx). The simulations
were performed with Quartus II or ModelSim (from Mentor Graphics). The default
encoding scheme for the states of the FSMs was regular sequential encoding (see
encoding options in section 3.7).

 The same designs were developed in chapter 9 using VHDL, so the reader can make
a direct comparison between the codes.

 Note : See suggestions of SystemVerilog books in the bibliography.

 10.2 SystemVerilog Template for Timed (Category 2) Moore Machines

 The template is presented below. Because it is an extension to the Moore template for
category 1, described in section 7.3, a review of that template is suggested before this
one is examined because only the differences are described.

 The only differences are those needed for the inclusion of a timer (external to the
FSM — see fi gure 8.2a). Recall, however, that the FSM itself is responsible for controlling
the timer. For that purpose, two strategies were developed in chapter 8, being the fi rst
generic (section 8.5.2), and the second (section 8.5.3), non-generic. It is very important
that the reader review those two sections before proceeding.

 The fi rst of the two templates that follow is for timed Moore machines with the
timer implemented using strategy #1. The timer-related constants (T 1 , T 2 , . . .) can be

208 Chapter 10

declared either as global parameters (in the module header — see lines 3 – 5 in the tem-
plate of section 7.3) or as local parameters, as shown in lines 11 – 13 of the template
below. The variable t (line 14) must obviously stay where it is. As seen in section 8.5.2,
the timer must obey t max ≥ max (T 1 , T 2 , . . .) − 1.

 In the statements part of the code (lines 16 – 55), there are two differences.
 The fi rst difference is an additional always_ff block (lines 19 – 22), which imple-

ments the timer, according to the strategy described in section 8.5.2.
 The second difference is in the always_comb block that implements the FSM ’ s

combinational logic section (lines 28 – 50), because t might now appear in the condi-
tions for nx_state (lines 34, 35, 42, . . .). The use of t ≥ T − 1 instead of t = T − 1 is
required in the conditional-timed transitions with T − 1 < t max . Note that t max does not
need to be defi ned in all states, which is not true for strategy #2.

 1 //Timed Moore machine with timer control strategy #1
 2 //Part 1: Module header:-----------------------------------
 3 (same as for category 1 Moore, section 7.3)
 4
 5 //Part 2: Declarations:-------------------------------------
 6
 7 //FSM-related declarations:
 8 (same as for category 1 Moore, section 7.3)
 9
 10 //Timer-related declarations:
 11 const logic [7:0] T1 = < value > ;
 12 const logic [7:0] T2 = < value > ;
 13 const logic [7:0] tmax = < value > ;//tmax ≥ max(T1,T2,...)-1
 14 logic [7:0] t;
 15
 16 //Part 3: Statements:---------------------------------------
 17
 18 //Timer (strategy #1, section 8.5.2):
 19 always_ff @(posedge clk, posedge rst)
 20 if (rst) t < = 0;
 21 else if (pr_state != nx_state) t < = 0;
 22 else if (t != tmax) t < = t + 1;
 23
 24 //FSM state register:
 25 (same as for category 1 Moore, Section 7.3)
 26
 27 //FSM combinational logic:
 28 always_comb
 29 case (pr_state)
 30 A: begin
 31 outp1 < = < value > ;
 32 outp2 < = < value > ;
 33 ...
 34 if (... and t > =T1-1) nx_state < = B;
 35 else if (... and t > =T2-1) nx_state < = ...;
 36 else nx_state < = A;

SystemVerilog Design of Timed (Category 2) State Machines 209

 37 end
 38 B: begin
 39 outp1 < = < value > ;
 40 outp2 < = < value > ;
 41 ...
 42 if (... and t > =T3-1) nx_state < = C;
 43 else if (...) nx_state < = ...;
 44 else nx_state < = B;
 45 end
 46 C: begin
 47 ...
 48 end
 49 ...
 50 endcase
 51
 52 //Optional output register:
 53 (same as for category 1 Moore, section 7.3)
 54
 55 endmodule
 56 //--

The next template is for timed Moore machines employing strategy #2 to imple-
ment the timer.

The fi rst difference is in line 14, which now includes also t max .
 The second difference is in the always_ff block for the timer (lines 19 – 22), which

is now based on the strategy described in section 8.5.3.
 The third and fi nal difference is in always_comb block that implements the FSM ’ s

combinational logic section (lines 28 – 52), which requires now the value of t max to be
specifi ed in each state (lines 34, 43, . . .), even if the state is untimed (t max = 0). This
code can obviously be simplifi ed in several ways when there are no conditional-timed
transitions and/or t max is the same in all or most states.

 1 //Timed Moore machine with timer control strategy #2
 2 //Part 1: Module header:-----------------------------
 3 (same as template above)
 4
 5 //Part 2: Declarations:------------------------------
 6
 7 //FSM-related declarations:
 8 (same as for category 1 Moore, section 7.3)
 9
 10 //Timer-related declarations:
 11 const logic [7:0] T1 = < value > ;
 12 const logic [7:0] T2 = < value > ;
 13 ...
 14 logic [7:0] t, tmax;
 15
 16 //Part 3: Statements:-------------------------------
 17
 18 //Timer (strategy #2, section 8.5.3):

210 Chapter 10

 19 always_ff @(posedge clk, posedge rst)
 20 if (rst) t < = 0;
 21 else if (t < tmax) t < = t + 1;
 22 else t < = 0;
 23
 24 //FSM state register:
 25 (same as for category 1 Moore, Section 7.3)
 26
 27 //FSM combinational logic:
 28 always_comb
 29 case (pr_state)
 30 A: begin
 31 outp1 < = < value > ;
 32 outp2 < = < value > ;
 33 ...
 34 tmax < = T1-1;
 35 if (... and t=tmax) nx_state < = B;
 36 else if (...) nx_state < = ...;
 37 else nx_state < = A;
 38 end
 39 B: begin
 40 outp1 < = < value > ;
 41 outp2 < = < value > ;
 42 ...
 43 tmax < = T2-1;
 44 if (... and t=tmax) nx_state < = C;
 45 else if (...) nx_state < = ...;
 46 else nx_state < = B;
 47 end
 48 C: begin
 49 ...
 50 end
 51 ...
 52 endcase
 53
 54 //Optional output register:
 55 (same as for category 1 Moore, section 7.3)
 56
 57 endmodule
 58 //---

10.3 SystemVerilog Template for Timed (Category 2) Mealy Machines

The template is presented below, using strategy #1 to implement the timer. The only
difference with respect to the Moore template just described is in the always_comb
block for the combinational logic (lines 22 – 64) because the output is specifi ed differ-
ently now. Recall that in a Mealy machine the output depends not only on the FSM ’ s
state but also on its input, so if statements are expected for the output in one or more
states because the output values might not be unique. This is achieved by including
such values within the conditional statements for nx_state . For example, observe in

SystemVerilog Design of Timed (Category 2) State Machines 211

lines 24 – 42, relative to state A, that the output values are now conditional. Compare
these lines against lines 30 – 37 in the previous template.

 1 //Timed Mealy machine with timer control strategy #1
 2 //Part 1: Module header:----------------------------
 3 (same as for category 2 Moore, section 10.2)
 4
 5 //Part 2: Declarations:-----------------------------
 6
 7 //FSM-related declarations:
 8 (same as for category 2 Moore, section 10.2)
 9
 10 //Timer-related declarations:
 11 (same as for category 2 Moore, section 10.2)
 12
 13 //Part 3: Statements:-------------------------------
 14
 15 //Timer (using timer control strategy #1):
 16 (same as for category 2 Moore, section 10.2)
 17
 18 //FSM state register:
 19 (same as for category 2 Moore, section 10.2)
 20
 21 //FSM combinational logic:
 22 always_comb
 23 case (pr_state)
 24 A:
 25 if (... and t > =T1-1) begin
 26 outp1 < = < value > ;
 27 outp2 < = < value > ;
 28 ...
 29 nx_state < = B;
 30 end
 31 else if (... and t > =T2-1) begin
 32 outp1 < = < value > ;
 33 outp2 < = < value > ;
 34 ...
 35 nx_state < = ...;
 36 end
 37 else begin
 38 outp1 < = < value > ;
 39 outp2 < = < value > ;
 40 ...
 41 nx_state < = A;
 42 end
 43 B:
 44 if (... and t > =T3-1) begin
 45 outp1 < = < value > ;
 46 outp2 < = < value > ;
 47 ...
 48 nx_state < = C;
 49 end
 50 else if (condition) begin
 51 outp1 < = < value > ;
 52 outp2 < = < value > ;

212 Chapter 10

 53 ...
 54 nx_state < = ...;
 55 end
 56 else begin
 57 outp1 < = < value > ;
 58 outp2 < = < value > ;
 59 ...
 60 nx_state < = B;
 61 end
 62 C: ...
 63 ...
 64 endcase
 65
 66 //Optional output register:
 67 (same as for category 2 Moore, section 10.2)
 68
 69 endmodule
 70 //---

10.4 Design of a Light Rotator

This section presents a SystemVerilog-based design for the light rotator introduced in
section 8.11.2. The Moore template of section 10.2 is used to implement the FSM of
fi gure 8.14b. Either strategy #1 (section 8.5.2) or #2 (section 8.5.3) can be used to build
the timer (both templates are shown in section 10.2); the former is employed in the
code below, while the latter is explored in exercise 10.1.

 The fi rst part of the code (module header) is in lines 1 – 4. The module ’ s name is
 light_rotator . Note that all ports are of type logic .

 The second part of the code (declarations) is in lines 6 – 17. In the FSM-related dec-
larations (lines 9 – 11), the enumerated type state is created to represent the machine ’ s
present and next states. In the timer-related declarations (lines 14 – 17), the values
chosen for T 1 and T 2 are such that 120 ms and 35 ms result, respectively, assuming
 f clk = 50 MHz.

 The third and fi nal part of the code (statements) is in lines 19 – 85. It contains three
 always blocks, described next.

 The fi rst always block (lines 22 – 27) is an always_ff that implements the timer,
using strategy #1. Except for the presence of stp , it is exactly as in the template.

 The second always block (lines 30 – 32) is an always_ff that implements the FSM ’ s
state register, exactly as in the template.

 The third and fi nal always block (lines 35 – 83) is an always_comb , which imple-
ments the entire combinational logic section. It is just a list of all states (indeed,
because this code is repetitive, some of the states were not detailed in order to save
some space), each containing the output (ssd) value and the next state. Note that in
each state the output value is unique because in a Moore machine the output depends
only on the state in which the machine is.

SystemVerilog Design of Timed (Category 2) State Machines 213

In this kind of application, the “ − 1 ” term present in the defi nition of the total time
(lines 16, 39, 44, 49, . . .) does not make any difference, but it was maintained as a
reminder of the precise value. Also, in this application possible glitches during (posi-
tive) clock transitions are not a problem, so the optional output register shown in the
last part of the template was not employed.

 The reader is invited to compile this code and play with the circuit in the FPGA
development board. Also, check whether the number of DFFs inferred by the compiler
matches the prediction made in section 8.11.2 for each encoding style.

 1 //Module header:-----------------------------------
 2 module light_rotator (
 3 input logic stp, clk, rst,
 4 output logic [6:0] ssd);
 5
 6 //Declarations:-------------------------------------
 7
 8 //FSM-related declarations:
 9 typedef enum logic [3:0] {A, AB, B, BC, C, CD, D, DE, E, EF,
 10 F, FA} state;
 11 state pr_state, nx_state;
 12
 13 //Timer-related declarations:
 14 const logic [22:0] T1 = 6_000_000; //120ms @fclk=50MHz
 15 const logic [22:0] T2 = 1_750_000; //35ms @fclk=50MHz
 16 const logic [22:0] tmax = T1-1; //tmax ≥ max(T1,T2)-1
 17 logic [22:0] t;
 18
 19 //Statements:---
 20
 21 //Timer (using strategy #1):
 22 always_ff @(posedge clk, posedge rst)
 23 if (rst) t < = 0;
 24 else if (~stp) begin
 25 if (pr_state != nx_state) t < = 0;
 26 else if (t != tmax) t < = t + 1;
 27 end
 28
 29 //FSM state register:
 30 always_ff @(posedge clk, posedge rst)
 31 if (rst) pr_state < = A;
 32 else pr_state < = nx_state;
 33
 34 //FSM combinational logic:
 35 always_comb
 36 case (pr_state)
 37 A: begin
 38 ssd < = 7'b0111111;
 39 if (t > =T1-1) nx_state < = AB; //or t==T1-1
 40 else nx_state < = A;
 41 end
 42 AB: begin
 43 ssd < = 7'b0011111;
 44 if (t > =T2-1) nx_state < = B; //or t==T2-1
 45 else nx_state < = AB;

214 Chapter 10

 46 end
 47 B: begin
 48 ssd < = 7'b1011111;
 49 if (t > =T1-1) nx_state < = BC;
 50 else nx_state < = B;
 51 end
 52 BC: begin
 53 ssd < = 7'b1001111;
 54 if (t > =T2-1) nx_state < = C;
 55 else nx_state < = BC;
 56 end
 57 C: begin
 58 ...
 59 end
 60 CD: begin
 61 ...
 62 end
 63 D: begin
 64 ...
 65 end
 66 DE: begin
 67 ...
 68 end
 69 E: begin
 70 ...
 71 end
 72 EF: begin
 73 ...
 74 end
 75 F: begin
 76 ...
 77 end
 78 FA: begin
 79 ssd < = 7'b0111101;
 80 if (t==T2-1) nx_state < = A;
 81 else nx_state < = FA;
 82 end
 83 endcase
 84
 85 endmodule
 86 //---

10.5 Design of a Car Alarm (with Chirps)

This section presents a SystemVerilog-based design for the car alarm with chirps intro-
duced in section 8.11.6. The Moore template of section 10.2 is employed to implement
the FSM of fi gure 8.21c. Again, either strategy #1 or #2 can be used to build the timer;
the latter was adopted in the code below.

 The fi rst part of the code (module header) is in lines 1 – 4. The module ’ s name is
 car_alarm_with_chirps . Note that all ports are of type logic .

 The second part of the code (declarations) is in lines 6 – 16. In the FSM-related dec-
larations (lines 9 – 11), the enumerated type state is created to represent the machine ’ s

SystemVerilog Design of Timed (Category 2) State Machines 215

present and next states. In the timer-related declarations (lines 14 – 16), the value
chosen for chirpON and chirpOFF is such that the chirp and the time interval between
chirps last 0.3 s, assuming f clk = 50 MHz.

 The third and fi nal part of the code (statements) is in lines 18 – 97. It contains three
 always blocks, described next.

 The fi rst always block (lines 21 – 24) is an always_ff that implements the timer,
using strategy #2, exactly as in the template.

 The second always block (lines 27 – 29) is another always_ff , implementing the
machine ’ s state register, also as in the template.

 The third and fi nal always block (lines 32 – 95) is an always_comb , which imple-
ments the entire combinational logic section. It is just a list of all states, each contain-
ing the output (siren) value, the value of t max , and the next state. Note that in each
state the output value is unique because in a Moore machine the output depends only
on the state in which the machine is.

 In this kind of application the “ − 1 ” term present in the determination of t max (lines
42, 67, 73, . . .) does not make any difference, but it was maintained as a reminder of
the precise value. Also, in this kind of application possible glitches during (positive)
clock transitions are generally not a problem, so the optional output register shown
in the fi nal portion of the template was not employed.

 Finally, and very importantly, observe the correct use of registers and the complete-
ness of the code, as described in comment 8 of section 7.3. Observe in particular the
following: 1) all states are included; 2) the list of outputs is exactly the same in all
states, and the corresponding values are properly declared; 3) the specifi cations for
 nx_state are always fi nalized with an else statement, so no condition is left unchecked.

 The total number of fl ip-fl ops inferred by the compiler on synthesizing this code
was 28 for sequential or Gray encoding, 29 for Johnson, and 34 for one-hot. Compare
these results against your predictions made in exercise 8.14.

 Simulation results are shown in fi gure 10.1 .

 Figure 10.1
 Simulation results from the SystemVerilog code for the car alarm of fi gure 8.21c for chirpON =

 chirpOFF = 3 clock cycles.

216 Chapter 10

 1 //Module header:---
 2 module car_alarm_with_chirps (
 3 input logic remt, sen, clk, rst,
 4 output logic siren);
 5
 6 //Declarations:--
 7
 8 //FSM-related declarations:
 9 typedef enum logic [3:0] {disarmed, armed, alarm, chirp1,
 10 chirp2, chirp3, chirp4, chirp5, wait1, wait2} state;
 11 state pr_state, nx_state;
 12
 13 //Timer-related declarations:
 14 const logic [23:0] chirpON = 15_000_000; //0.3s @fclk=50MHz
 15 const logic [23:0] chirpOFF = 15_000_000;
 16 logic [23:0] t, tmax; --range ≥ max(chirpON,chirpOFF)
 17
 18 //Statements:--
 19
 20 //Timer (using strategy #2):
 21 always_ff @(posedge clk, posedge rst)
 22 if (rst) t < = 0;
 23 else if (t < tmax) t < = t + 1;
 24 else t < = 0;
 25
 26 //FSM state register:
 27 always_ff @(posedge clk, posedge rst)
 28 if (rst) pr_state < = disarmed;
 29 else pr_state < = nx_state;
 30
 31 //FSM combinational logic:
 32 always_comb
 33 case (pr_state)
 34 disarmed: begin
 35 siren < = 1'b0;
 36 tmax < = 0;
 37 if (remt) nx_state < = chirp1;
 38 else nx_state < = disarmed;
 39 end
 40 chirp1: begin
 41 siren < = 1'b1;
 42 tmax < = chirpON-1;
 43 if (t==tmax) nx_state < = wait1;
 44 else nx_state < = chirp1;
 45 end
 46 wait1: begin
 47 siren < = 1'b0;
 48 tmax < = 0;
 49 if (~remt) nx_state < = armed;
 50 else nx_state < = wait1;
 51 end
 52 armed: begin
 53 siren < = 1'b0;
 54 tmax < = 0;
 55 if (sen) nx_state < = alarm;

SystemVerilog Design of Timed (Category 2) State Machines 217

 56 else if (remt) nx_state < = chirp3;
 57 else nx_state < = armed;
 58 end
 59 alarm: begin
 60 siren < = 1'b1;
 61 tmax < = 0;
 62 if (remt) nx_state < = chirp2;
 63 else nx_state < = alarm;
 64 end
 65 chirp2: begin
 66 siren < = 1'b0;
 67 tmax < = chirpOFF-1;
 68 if (t==tmax) nx_state < = chirp3;
 69 else nx_state < = chirp2;
 70 end
 71 chirp3: begin
 72 siren < = 1'b1;
 73 tmax < = chirpON-1;
 74 if (t==tmax) nx_state < = chirp4;
 75 else nx_state < = chirp3;
 76 end
 77 chirp4: begin
 78 siren < = 1'b0;
 79 tmax < = chirpOFF-1;
 80 if (t==tmax) nx_state < = chirp5;
 81 else nx_state < = chirp4;
 82 end
 83 chirp5: begin
 84 siren < = 1'b1;
 85 tmax < = chirpON-1;
 86 if (t==tmax) nx_state < = wait2;
 87 else nx_state < = chirp5;
 88 end
 89 wait2: begin
 90 siren < = 1'b0;
 91 tmax < = 0;
 92 if (~remt) nx_state < = disarmed;
 93 else nx_state < = wait2;
 94 end
 95 endcase
 96
 97 endmodule
 98 //---

10.6 Design of a Triggered Monostable Circuit

This section presents a SystemVerilog-based design for the triggered monostable circuit
of fi gure 8.24b, which is capable of generating the signal of fi gure 8.24a. Again, the
code that follows is a straightforward application of the SystemVerilog template for
category 2 Moore machines introduced in section 10.2. Note, however, that in this
FSM the timer control strategy #2 (section 8.5.3) cannot be used. Indeed, even strategy
#1 (section 8.5.2) cannot be applied completely because in one of the state transitions
the timer must not be zeroed.

218 Chapter 10

The fi rst part of the code (module header) is in lines 1 – 4. The module ’ s name is trig-
gered_mono . Note that all ports are of type logic .

 The second part of the code (declarations) is in lines 6 – 15. In the FSM-related dec-
larations (lines 9 – 11), the enumerated type state is created to represent the machine ’ s
present and next states; also, a variable called y is defi ned because the optional output
register (which will produce a registered version of y , called y_reg) is needed here to
remove possible glitches. In the timer-related declarations (lines 14 – 15), a small value
was used for T (called delay in the code; note delay = 3 in line 14) in order to ease the
inspection of the simulation results.

 The third and fi nal part of the code (statements) is in lines 17 – 62. It contains four
 always blocks, described next.

 The fi rst always block (lines 20 – 23) is an always_ff that implements the timer.
Note that the timer is not zeroed when the machine enters state D.

 The second always block (lines 26 – 28) is another always_ff , implementing the
machine ’ s state register, exactly as in the template.

 The third always block (lines 31 – 56) is an always_comb , which implements the
entire combinational logic section. It is just a list of all states, each containing the
output (y) value and the next state. Note that in each state the output value is unique
because in a Moore machine the output depends only on the state in which the
machine is.

 The fourth and fi nal always block (lines 59 – 60) implements the optional output
register, exactly as in the template. Even though y could come directly from a DFF
(hence glitch-free), that is not guaranteed because it depends on the encoding scheme
used in the machine.

 Finally, and very importantly, observe the correct use of registers and the complete-
ness of the code, as described in comment 8 of section 7.3. Observe in particular the
following: 1) all states are included; 2) the list of outputs is exactly the same in all
states, and the corresponding values are properly declared; 3) the specifi cations for
 nx_state are always fi nalized with an else statement, so no condition is left unchecked.

 The total number of fl ip-fl ops inferred by the compiler on synthesizing the code
below, with regular sequential encoding for the machine states, was 5 for T = 3 and
15 for T = 3000.

 Simulation results are similar to those in fi gure 9.2, where the same circuit was
implemented using VHDL.

 1 //Module header:-------------------------------------
 2 module triggered_mono (
 3 input logic x, clk, rst,
 4 output logic y_reg);
 5
 6 //Declarations:--------------------------------------
 7

SystemVerilog Design of Timed (Category 2) State Machines 219

 8 //FSM-related declarations:
 9 typedef enum logic [1:0] {A, B, C, D} state;
 10 state pr_state, nx_state;
 11 logic y;
 12
 13 //Timer-related declarations:
 14 const logic [1:0] delay = 3; //any value > 1
 15 logic [1:0] t; //tmax ≥ delay-1
 16
 17 //Statements:--
 18
 19 //Timer (strategy #1, adapted):
 20 always_ff @(posedge clk, posedge rst)
 21 if (rst) t < = 0;
 22 else if (pr_state!=nx_state & nx_state!=D) t < = 0;
 23 else if (pr_state==nx_state & t!=delay-1) t < = t + 1;
 24
 25 //FSM state register:
 26 always_ff @(posedge clk, posedge rst)
 27 if (rst) pr_state < = A;
 28 else pr_state < = nx_state;
 29
 30 //FSM combinational logic:
 31 always_comb
 32 case (pr_state)
 33 A: begin
 34 y < = 1'b0;
 35 if (~x) nx_state < = B;
 36 else nx_state < = A;
 37 end
 38 B: begin
 39 y < = 1'b0;
 40 if (x) nx_state < = C;
 41 else nx_state < = B;
 42 end
 43 C: begin
 44 y < = 1'b1;
 45 if (~x & t < delay-1) nx_state < = D;
 46 else if (~x & t > =delay-1) nx_state < = B;
 47 else if (x & t==delay-1) nx_state < = A;
 48 else nx_state < = C;
 49 end
 50 D: begin
 51 y < = 1'b1;
 52 if (x) nx_state < = C;
 53 else if (~x & t > =delay-2) nx_state < = B;
 54 else nx_state < = D;
 55 end
 56 endcase
 57
 58 //Optional output register:-------
 59 always_ff @(posedge clk)
 60 y_reg < = y;
 61
 62 endmodule
 63 //--

220 Chapter 10

10.7 Exercises

Exercise 10.1: Timer Control Strategies Analysis (Light Rotator)
Solve exercise 9.1 using SystemVerilog instead of VHDL.

Exercise 10.2: Blinking Light
Solve exercise 9.2 using SystemVerilog instead of VHDL.

Exercise 10.3: Switch Debouncer
Solve exercise 9.3 using SystemVerilog instead of VHDL.

Exercise 10.4: Reference-Value Defi ner
Solve exercise 9.4 using SystemVerilog instead of VHDL.

Exercise 10.5: Blinking Light with Several Speeds
Solve exercise 9.5 using SystemVerilog instead of VHDL.

Exercise 10.6: Light Rotator with Additional Features
Solve exercise 9.6 using SystemVerilog instead of VHDL.

Exercise 10.7: Garage Door Controller
Solve exercise 9.7 using SystemVerilog instead of VHDL.

Exercise 10.8: Traffi c Light Controller
 Solve exercise 9.8 using SystemVerilog instead of VHDL.

 Exercise 10.9: Password Detector
 Solve exercise 9.9 using SystemVerilog instead of VHDL.

 Exercise 10.10: Triggered Circuits
 Solve exercise 9.10 using SystemVerilog instead of VHDL.

 Exercise 10.11: Pulse Shifter
 Solve exercise 9.11 using SystemVerilog instead of VHDL.

 Exercise 10.12: Synchronous Pulse Stretcher
 Solve exercise 9.12 using SystemVerilog instead of VHDL.

 Exercise 10.13: Asynchronous Pulse Stretcher
 Solve exercise 9.13 using SystemVerilog instead of VHDL.

11 Recursive (Category 3) State Machines

11.1 Introduction

We know that, from a hardware perspective, state machines can be classifi ed into two
types, based on their input connections , as follows.

 1) Moore machines : The input, if it exists, is connected only to the logic block that
computes the next state.
 2) Mealy machines : The input is connected to both logic blocks, that is, for the next
state and for the actual output.

 In section 3.6 we introduced a new classifi cation, also from a hardware point of
view, based on the transition types and nature of the outputs , as follows (see fi gure 11.1).

 1) Regular (category 1) state machines : This category, illustrated in fi gure 11.1a and
studied in chapters 5 to 7, consists of machines with only untimed transitions and
outputs that do not depend on previous (past) output values so none of the outputs
need to be registered for the machine to function.
 2) Timed (category 2) state machines : This category, illustrated in fi gure 11.1b and
studied in chapters 8 to 10, is similar to category 1, except for the fact that one or
more of its transitions depend on time (so these FSMs can have all four transition
types: conditional, timed, conditional-timed, and unconditional).
 3) Recursive (category 3) state machines : This category is illustrated in fi gure 11.1c and
studied in chapters 11 to 13. It can have all four types of transitions, but one or more
outputs depend on previous (past) output values so such outputs must be registered.
Recall that in the standard architecture the outputs are produced by the FSM ’ s combi-
national logic block, so the current output values are “ forgotten ” after the machine
leaves that state; consequently, to implement a recursive (recurrent) machine, some
sort of extra memory is needed.

 The name “ recursive ” for category 3 is due to the fact that when an output depends
on a previous output value that value is generally from that same output, so a recursive

222 Chapter 11

equation results (i.e., the output is a function of itself). For example, y = y , y = y ′ , and
 y = y + 1 mean that y (which is an output) should keep in the present state the same
value that it had in the previous state, or the complement of that value, or the incre-
mented version of that value, respectively. Equivalently, one could write y new = y old , y new

= y old ′ , and y new = y old + 1. Occasionally, an output might be a function of a past value
of another signal, like y = z (same as y new = z old).

 The two fundamental decisions that must be made before starting a design are then
the following:

 1) The state machine category (regular, timed, or recursive).
 2) The state machine type (Moore or Mealy).

 It is important to recall, however, that regardless of the machine category and type,
the state transition diagram must fulfi ll three fundamental requisites (seen in section
1.3):

 1) It must include all possible system states.
 2) All state transition conditions must be specifi ed (unless a transition is uncondi-
tional) and must be truly complementary.
 3) The list of outputs must be exactly the same in all states (standard architecture).

 11.2 Recursive (Category 3) State Machines

 Figure 11.2 shows two examples of very special circuits. In fi gure 11.2a a simplifi ed
fl owchart for a memory-write procedure is shown in which an address is set, the data
to be stored at that address is presented, then a write-enable pulse is applied to store
the data. Note the presence of an incrementer (gray block), responsible for setting the

Figure 11.1
State machine categories (from a hardware perspective).

Recursive (Category 3) State Machines 223

next memory address. Because the expression addr = addr + 1 is not a constant but,
rather, depends on the previous value of addr , this fl owchart cannot be implemented
in hardware without some sort of auxiliary memory (to hold the value of addr), which
must be provided along with the corresponding FSM (note that this is different — and
more complex — than a “ similar ” implementation in software).

 The second example (fi gure 11.2b) consists of a state machine with three outputs.
Note that the list of outputs is exactly the same in all states (as required for hardware
implementations using the standard architecture; otherwise latches would be inferred),
but again not all output values are deterministic: in state B, z must keep the same
value that it had when the machine left state A; in state C, y must exhibit the comple-
ment of the value that it had in the previous state, while z must be incremented.
Recall that we cannot simply write z = z A in state B because z A might have changed;
for the same reason, we cannot write y = y B ′ and z = z A + 1 in state C. Consequently,
an extra memory (to hold the values of y and z) is again needed.

 11.3 Architectures for Recursive (Category 3) Machines

 The general architecture for category 3 machines is summarized in fi gure 11.3a . This
representation follows the style of fi gures 3.1b and 3.1d, but the style of fi gures 3.1a
and 3.1c could be used equivalently. Note that the timer is optional, but at least one
auxiliary register is necessary.

 In this illustration, only for the signal that produces output2 an auxiliary register is
needed, so for that output the optional output register (fi gure 11.3b) is never required
(the dashed lines indicate that output2 can be either the unregistered or the registered

Figure 11.2
Examples of category 3 state machines.

224 Chapter 11

version of outp). On the other hand, output1 is not registered, so depending on the
application, for it the optional output register might be needed. The resulting imple-
mentations are described below.

 Recursive Moore machine : The circuit of fi gure 11.3a is used, with the input (if it exists)
connected only to the logic block for the next state, as in fi gure 5.2a, and with unreg-
istered output. Regarding the options for the output, see the comments above.
 Recursive Mealy machine : Again, the circuit of fi gure 11.3a is used, but this time with
the input connected to both logic blocks (for output and for next state), as in fi gure
5.2b. Regarding the options for the output, see the comments above.

11.4 Category 3 to Category 1 Conversion

We said in section 1.3 that for an FSM to be implemented in hardware it must obey
three fundamental principles, the last one being that the list of outputs be exactly the
same in all states. This is indispensable because the outputs are generated by the
combinational logic section, which, being combinational, has no memory, so if an
output is not specifi ed in a certain state, the compiler usually infers a latch (to hold
the output ’ s last value), which is undesirable.

 There is, however, an (apparent) exception, which occurs when the outputs are
registered (that is, when the optional output register seen in all templates is used),
because then the outputs are stored anyway (so latches are not needed). In such cases
one might not list all outputs in all states, but that simply means that unlisted outputs
will exhibit the value previously stored in the corresponding fl ip-fl ops. Consequently,
for any physical purpose the list of outputs is in fact the same in all states.

Figure 11.3
(a) General architecture for category 3 machines (timer is optional, but auxiliary register is com-

pulsory). (b) Optional output register (only for outputs not processed by an auxiliary register).

Recursive (Category 3) State Machines 225

The reasoning above allows us to conclude that if a circuit was modeled as a cat-
egory 3 machine (because it has recursive outputs), with all outputs requiring an
auxiliary register, then it can be implemented as if it were a category 1 circuit, with
the optional output register included. In practical terms, in such cases the “ dangerous ”
VHDL template of section 6.4.4 can be used (although not recommended).

 11.5 Repetitively Looped Category 3 Machines

 This section highlights the particular case in which multiple pointers (counters) are
needed to implement an FSM. As is shown later in the examples, this can occur par-
ticularly when one is dealing with serial data communications (e.g., serial data receiver/
transmitter, I 2 C interface, SPI interface). Note that this section is the counterpart of
section 8.8, in which similar machines were implemented using the category 2 model.

 The general problem is stated in fi gure 11.4a . The machine must stay only one
clock period in each state, but the loop must be repeated N AB times, where N AB is the
number of times that the AB transition occurs (N BA and N AB + N BA would be fi ne too,
but an extra DFF would be required in the counter for the latter). The solution proper
is in fi gure 11.4b . Note that the counter (k) is incremented only in state B, holding
its value while in state A.

 A more general case is stated in fi gure 11.4c . Here, not only must the loop be
repeated N AB times, but also the machine must stay N A clock periods in A and N B clock
periods in B (note N A and N B over the state circles). The solution proper is in fi gure
11.4d . Three counters (i , j , k) are needed. Counter i , which controls the stay in state
A, is incremented in A and zeroed in B. Counter j , which controls the stay in state B,

Figure 11.4
Repetitively looped machines using the category 3 model. (a) Symbolic representation when only

the loop must be repeated and (b) corresponding details (k is incremented only in state B). (c)

Symbolic representation with the loop and the individual states repeated and (d) corresponding

details (three counters are needed; again, k is incremented only in state B).

226 Chapter 11

is incremented in B and zeroed in A. Finally, counter k , which controls the number
of loops, is incremented in B but is not zeroed in A.

11.6 Number of Flip-Flops

As mentioned earlier, it is diffi cult to estimate the number of logic gates that will be
needed in a large design, but it is always possible to determine, and exactly, the
number of fl ip-fl ops.

 In the particular case of sequential circuits implemented as category 3 state
machines, there are four demands for DFFs, as follows:

 1) For the state register (below, M FSM is the number of states):
 For sequential or Gray encoding: N FSM = log 2 M FSM . Example: M FSM = 25 →
 N FSM = 5.
 For Johnson encoding: N FSM = M FSM /2 . Example: M FSM = 25 → N FSM = 13.
 For One-hot encoding: N FSM = M FSM . Example: M FSM = 25 → N FSM = 25.

 2) For the auxiliary register (compulsory, for at least one output, total b aux bits):
 Naux = b aux . Example: baux = 8 → Naux = 8.

 3) For the output register (optional, never needed for outputs processed by auxiliary
registers, total b output bits):
 N output = b output . Example: b output = 16 → N output = 16.

 4) For the timer (optional; category 3 can have all four types of transitions):
 N timer = log 2 T max , where T max is the largest transition time, expressed in “ number
of clock cycles ” ; that is, T max = t state_max × f clk , where t state_max is the largest transition
time, in seconds, and f clk is the clock frequency, in hertz.

 Therefore, the total number of DFFs is N total = N FSM + N aux + N output + N timer . In the
examples that follow, as well as in the actual designs with VHDL and SystemVerilog,
the number of fl ip-fl ops will be examined often.

 11.7 Examples of Recursive (Category 3) State Machines

 A series of recursive FSMs are presented next. Several of these examples will be
designed later using VHDL (chapter 12) and SystemVerilog (chapter 13).

 11.7.1 Generic Counters
 As mentioned in section 5.4.1, counters are well-known circuits, easily designed
without the FSM approach. Nevertheless, because they illustrate the state machine
technique well, an example was included in that section using a regular FSM. A limita-
tion seen there is that only small counters can be represented as regular state machines.
In this section we are interested in examining how the FSM model can be extended

Recursive (Category 3) State Machines 227

to represent counters of any size. Even though one does not need the FSM approach
to implement a counter when using an EDA tool (such as VHDL or SystemVerilog),
the formal extension presented here will help in understanding the examples that
follow, which often contain an embedded counter.

 Two examples of counters modeled as category 3 FSMs are examined in this section
(where N is the number of bits): (a) free-running (meaning that once the last value is
reached it returns and restarts automatically from the initial value) with modulo 2 N ;
(b) free-running with modulo < 2 N .

 A modulo 2 N counter is one that has 2 N states, thus spanning all possible N -bit
values. A regular modulo 2 N sequential counter will count from 0 to 2 N − 1, restarting
then automatically from zero. This type of counter is depicted in fi gure 11.5a . As usual,
 ena = ‘ 1 ’ allows the counter to run, whereas ena = ‘ 0 ’ causes it to stop. Note the pres-
ence of reset, which acts directly on the hold (x = x) state, thereby being able to set
 x = 0 (or any other value) as the starting value.

 A modulo < 2 N counter is one that has fewer than 2 N states, thus not spanning all
possible N -bit values. Therefore, a mechanism for starting/stopping the counter at the
desired values is needed. A category 3 solution for this kind of counter is presented
in fi gure 11.5b , where x min and x max represent the counter ’ s initial and fi nal values,
respectively.

 The examples above show that there is a big difference between category 1 and
category 3 representations for counters. In the former all states are required to appear
in the state transition diagram (section 5.4.1), whereas in the latter only very few states
are needed (fi gure 11.5), regardless of the counter ’ s number of states (thus, only the
latter allows large counters to be conveniently represented as state machines). There
is a price to pay, however: even though the resulting circuits in category 1 and category
3 are quite similar, only the former can lead to optimal implementations (similar to

 Figure 11.5
 (a, b) Generic counters modeled as category 3 FSMs, free running in the range 0 to 2 N − 1 or x min

to x max , respectively. (c) Usual (optimal) construction for large synchronous counters.

228 Chapter 11

fi gure 11.5c ; this is called a synchronous counter with serial enable; for small counters —
typically up to four or fi ve bits — parallel enable can be employed, but then no longer
with a standard logic cell).

 The nonoptimality mentioned above can be verifi ed, for example, by counting the
number of DFFs needed to build the category 3 circuit. Based on section 11.6, and
assuming that x is an eight-bit value and that regular sequential encoding (section
3.7) is used for the FSMs, the number of DFFs is as follows: in fi gure 11.5a : 1 for the
two states + 8 for x = 9 DFFs; in fi gure 11.5b : 2 for the three states + 8 for x = 10 DFFs;
with category 1: 8 DFFs in either case.

 11.7.2 Long-String Comparator
 This section deals with an FSM capable of sequentially comparing two arbitrarily long
serial bit streams. The machine must determine whether the last N bits are pairwise
equal (this means that the effect of the oldest pair of bits must be discarded when a
new pair is received). Note that this is very different from determining whether two
sequential blocks of N bits each are equal (in the latter, N bits are compared, then the
next N bits are compared, and so on, without overlapping). The former is described
in this section, and the latter is treated in exercise 11.5.

 The circuit ports are depicted in fi gure 11.6a . The inputs (serial bit streams) are a
and b , while the output is y (= ‘ 1 ’ if all last N pairs of bits are equal). The comparator
in this case is just a two-input XNOR gate, also depicted in the fi gure, which produces
 x = ‘ 1 ’ when the inputs are equal. This signal (x) will be the actual input to the FSM.

 A corresponding Moore-type solution is presented in fi gure 11.6b . Note that
besides the actual output (y), it also produces an auxiliary output (i) that is a counter

 Figure 11.6
 Two-string comparator that produces y = ‘ 1 ’ if the last N bits are pairwise equal. (a) Circuit ports

and bit comparator. (b) State transition diagram. (c) Illustrative timing diagram, for N = 4.

Recursive (Category 3) State Machines 229

needed to control some of the machine transitions. The machine only reaches state
C, which is the only state with y = ‘ 1 ’ , if the last N values of x are ‘ 1 ’ (no mis-
matches). Observe the recursive expression i = i + 1 in state B, which characterizes
a category 3 FSM. Again, to better illustrate the solution, a detailed state transition
diagram is presented, but simpler representations can obviously be used as well (as
in fi gure 1.4).

 An illustrative timing diagram for this circuit is included in fi gure 11.6c for N = 4.
The inputs were considered to be updated at the negative clock edge, whereas the FSM
operates at the positive clock transition (note the dots marked on the x waveform,
highlighting the values of x as perceived by the state machine). The reader is invited
to apply the values of x given in fi gure 11.6c to the state machine in fi gure 11.6b to
check the correctness of the plots for pr_state , i , and y .

 Based on section 11.6, the number of fl ip-fl ops needed to build the FSM of
 fi gure 11.6b is as follows. For the state register: M FSM = 3 states, so N FSM = 2 (assum-
ing sequential encoding). For the auxiliary register: needed for signal i , which ranges
from 0 to N − 1; assuming N = 64 bits, N aux = 6 DFFs. For the optional output register:
not needed, so N output = 0. For the timer: not needed, so N timer = 0. Therefore, N total =
8 DFFs.

 11.7.3 Reference-Value Defi ner
 In section 8.11.4 we started a discussion on a very important class of circuits, found
particularly in control applications, capable of setting reference values. An example
mentioned there was a temperature controller for an air conditioning system, which
must have a way of letting the user choose the desired (reference) room temperature.
As seen in that section, such circuits can be easily implemented without the FSM
approach when the increments are constant, or with category 1 FSMs otherwise,
but in the latter only if the number of reference values is small. When additional
features are required, category 3 can be an interesting alternative because it poses no
restrictions.

 Let us start by examining two basic building blocks, shown in fi gures 11.7a,b and
11.7c,d . The circuit of fi gure 11.7a has only one control input (up), which must cause
the output (ref , the reference value) to be incremented by one unit every time up is
asserted (by means of a pushbutton, for example). The output must range from ref min

to ref max , restarting automatically from ref min after ref max has been reached (or a reset
pulse has been applied to the circuit).

 A possible solution for this problem is depicted in fi gure 11.7b , requiring only four
states regardless of the number of reference values. The machine must stay in state C
during only one clock cycle (otherwise the incrementer would keep incrementing), so
CD is an unconditional transition. Note the presence of recursive equations in almost
all states, typical of category 3 FSMs.

230 Chapter 11

 The second case, presented in fi gures 11.7c,d , has up and down controls. Again,
the output must range from ref min to ref max , with up and dn causing ref to be incremented
or decremented, respectively. When one of these limits is reached, the machine must
remain there until a movement (with up or dn) in the opposite direction is provoked.
A possible solution is depicted in fi gure 11.7d . Again, the number of states is just four,
regardless of the number of reference values. Similarly to the previous case, here too
there are states (C and D) that must last only one clock period.

 A practical application is presented in fi gure 11.8a , where up is produced by a
pushbutton (after a debouncing circuit — see sections 8.11.3 and 11.7.4) and ref (refer-
ence value) is an eight-bit value, thus capable of operating anywhere in the 0-to-255

 Figure 11.8
 Practical application for a reference-value defi ner with a large number of states and timed

transitions.

Figure 11.7
Setting a reference value (for any set size). (a, b) Up only. (c, d) Up and down.

Recursive (Category 3) State Machines 231

range. Every time the pushbutton is pressed (and released), ref must be incremented
by one unit; however, if the pushbutton is kept pressed for t 1 = 2 s (T 1 clock periods)
or longer, the increment must occur automatically and at every t 2 = 0.5 s (T 2 clock
periods). If the maximum value is reached, the machine must stop and hold that value,
only returning to the initial state if the pushbutton is released and pressed again.

 A solution (without the debouncer) is depicted in fi gure 11.8b , which is simply the
basic building block of fi gure 11.7b plus two extra states (E, F), added to take care of
the time-related specifi cations. Note that the initial and fi nal values can be chosen
freely by the designer and that the CD and EF transitions are unconditional. Again,
the machine size is independent of the number of reference values and of the time
values used in the timed transitions (the time values only affect the size of the counter
that implements the timer).

 Even though up is an asynchronous input in fi gure 11.8 , a synchronizer (section
2.3) is not needed because a debouncer was included in the circuit (and the applica-
tion might not be critical anyway).

 Based on section 11.6, the number of fl ip-fl ops needed to build the FSM of fi gure
11.8b is as follows. For the state register: M FSM = 6 states, so N FSM = 3 if sequential, Gray,
or Johnson encoding is used, or 6 for one-hot. For the auxiliary register: needed for
 ref ; because it is an eight-bit value, N aux = 8. For the optional output register: not
needed, so N output = 0. (If needed, the auxiliary register could be used for that because
it contains ref anyway.) For the timer: because t state_max = 2 s, and assuming f clk = 50
MHz, T max = 10 7 clock cycles results, so N timer = 27. Therefore, N total = 38 or 41 DFFs.

 11.7.4 Reference-Value Defi ner with Embedded Debouncer
 This section is an extension to the section above. Because in many control applications
reference values are set by means of mechanical switches, which might require some
sort of debouncer (section 8.11.3), we want to examine the possibility of embedding
the debouncer directly into the reference-value defi ner circuit.

 Three possible situations are depicted in fi gure 11.9 : (a) with debouncers imple-
mented as two separate circuits; (b) with the debouncers combined into a single circuit;
(c) with the debouncers embedded in the FSM that implements the reference-value
defi ner. The case in a was seen in section 8.11.3; that in b was treated in exercises 8.11
and 8.12; and that in c is discussed in this section.

 The general debouncing principle seen in section 8.11.3 is summarized in fi gure
11.10a (with a simplifi ed representation — see fi gure 1.4), which says that for the
output to change from ‘ 0 ’ to ‘ 1 ’ the input must remain high during T consecutive
clock cycles (recall that the timer is zeroed every time the machine changes its state,
so if a ‘ 0 ’ occurs before the time has been completed, the machine returns to the initial
state, restarting the timer).

232 Chapter 11

This principle was applied to the ‘ 0 ’ -to- ‘ 1 ’ (‘ 1 ’ -to- ‘ 0 ’ not included) transitions of
 fi gure 11.7d , resulting in the state diagram of fi gure 11.10b . Note the white circles
between states BC and BD, related to the debouncing procedure.

 For an analysis of the number of fl ip-fl ops, see exercise 11.6. For another imple-
mentation, concerning the case of fi gure 11.7b , see exercise 11.7.

 11.7.5 Datapath Control for a Sequential Multiplier
 Before we examine this example, a review of Section 3.13 is useful. Particular attention
should be paid to comment 4 at the end of that section, which is helpful here.

 Figure 11.11a presents an algorithm for unsigned sequential multiplication using
only add and shift operations. It computes the product in N iterations (after a data-
load operation), where N is the number of bits in the multiplier and multiplicand,
and 2 N is the number of bits in the product. Note that the product is divided into

 Figure 11.9
 Reference-value defi ner with up and down controls set by two pushbuttons having the debounc-

ers (a) implemented as two separate circuits, (b) implemente as a combined circuit, and (c)

embedded into the main FSM.

 Figure 11.10
 (a) Review of the general debouncing principle. (b) Machine of fi gure 11.7d with embedded

debouncer (for the ‘ 0 ’ -to- ‘ 1 ’ transition only).

Recursive (Category 3) State Machines 233

two halves, called prodL (product left) and prodR (product right). In this example the
inputs are “ 1100 ” (multiplicand = 12) and “ 1011 ” (multiplier = 11), so the expected
result is “ 10000100 ” (product = 132).

 Initially, the multiplicand is stored in a (fi xed) register, and the multiplier is loaded
into prodR , with prodL loaded with zeros. The algorithm checks the LSB (least signifi -
cant bit) of the product; if it is ‘ 0 ’ , the product register is simply shifted to the right
one position (empty position fi lled with the carry bit); if, however, it is ‘ 1 ’ , mult is
added (with carry) to prodL before the shift operation is executed. After N iterations
the product will be available in the product register.

 The algorithm is described in ASM form in fi gure 11.11b . A data-valid bit (dv = ‘ 1 ’
during one clock period) is used to tell the circuit when the computation should start.
The algorithm runs N times (for i = 0 to N − 1), so when i = N occurs the algorithm
returns to the beginning, ready to start a new computation when dv is asserted again.
Note that a nop (no operation) stage was included in the left branch to consume one
clock cycle, so the computations will always take a fi xed amount of time (depending
on the application, the nop stage can be suppressed). Observe in the fl owchart the
recursive equation i = i + 1, which characterizes a category 3 FSM.

 Figure 11.12a shows the parts of a datapath used to implement this multiplier,
consisting of an ALU, two registers (REG1, REG2), and a multiplexer (MUX). It is
assumed that it is a 16-bit system. The control unit (FSM) must generate the signals
 wrR1 and wrR2 (to enable writing into REG1 and REG2, respectively), sel (for mux
input selection), ALUop (to control the ALU operation), and shift (to shift REG2 to the

 Figure 11.11
 Sequential add-and-shift multiplier. (a) Algorithm. (b) Flowchart.

234 Chapter 11

right one position, with carry). The ALU opcode table is assumed to be that included
in the fi gure.

 The multiplication starts when the control unit receives dv = ‘ 1 ’ (during one clock
period), at which time it enables REG1 (by means of wrR1 = ‘ 1 ’) to store (at the next
positive clock edge) the multiplicand, and REG2 (by means of ALUop = 0, sel = ‘ 1 ’ , and
wrR2 = ‘ 1 ’) to store zero in prodL and the multiplier in prodR . After this, wrR1 stays low
until the end of the computations, while wrR2 is asserted at the end of each iteration
to enable the storage of ALUout into prodL , after which shift = ‘ 1 ’ is produced to shift
REG2 one position to the right. After N of such iterations, the product will be available
in REG2.

 A Moore machine that implements the control unit of fi gure 11.12(a) is presented
in fi gure 11.12(b) , which is a direct translation of the algorithm described above.
Observe the inclusion of a wait state, needed for the reason explained in comment 4
at the end of section 3.13.

 VHDL and SystemVerilog implementations for this multiplier are presented in sec-
tions 12.4 and 13.4, respectively.

 11.7.6 Sequential Divider
 This section describes a state machine capable of sequentially computing the division
 num / den (numerator/denominator), producing the corresponding quotient (quot) and

Figure 11.12
Sequential add-and-shift multiplier. (a) Datapath. (b) Control unit implementation.

Recursive (Category 3) State Machines 235

 Figure 11.13
 Complete sequential divider. (a) Algorithm. (b) Flowchart. (c) A possible implementation (for

 N = 4).

remainder (rem) values. Contrary to the previous section, here a datapath is not
employed, so the machine is a complete divider, not a control unit.

 The division algorithm, for unsigned inputs and employing only subtract and shift
operations, is illustrated in fi gure 11.13(a) . The computations take N +1 iterations (after
a data-load operation), where N is the number of bits in all four signals (num , den ,
quot , rem). In this example the inputs are num = “ 1101 ” (= 13) and den = “ 0101 ” (=
5), so the expected results are quot = “ 0010 ” (= 2) and rem = “ 0011 ” (= 3).

 Initially, the denominator is stored in a (fi xed) register, while the numerator is
loaded into the quotient register, and the remainder is loaded with zeros. The algo-
rithm checks whether rem ≥ den ; if yes, den is subtracted from rem, and the entire result
(rem and quot) is shifted to the left one position with the empty position fi lled with

236 Chapter 11

a ‘ 1 ’ ; otherwise, no subtraction occurs, and the result is shifted to the left with a ‘ 0 ’
in the empty position. After N + 1 iterations, the fi nal result will be available. Note
that the actual value of rem does not include its LSB.

 The algorithm is described in ASM form in fi gure 11.13b . A data-valid bit (dv = ‘ 1 ’
during one clock period) is used to tell the circuit when the computation should start.
The algorithm runs N + 1 times (for i = 0 to N), so when i = N + 1 occurs, the algorithm
returns to the beginning, ready to start a new computation when dv is asserted again.
As in the previous section, an optional nop (no operation) stage was included in the
left branch to consume one clock cycle, so the computations will always take a fi xed
amount of time.

 A Moore machine that implements the complete divider is presented in fi gure
11.13c (note that N = 4 in this example). In the load state, rem is zeroed and quot is
loaded with num . If rem ≥ den , the machine moves to state subtract , in which rem − den
occurs, followed by state shift1 , responsible for shifting the data one position to the
left with a ‘ 1 ’ included in the rightmost position (following VHDL notation, “ & ”
means concatenation in the expression rem = rem (2:0) & quot (3), meaning that rem (3:1)
= rem (2:0) and rem (0) = quot (3); the expression quot = quot (2:0) & ‘ 1 ’ has a similar
meaning). On the other hand, if rem < den when the machine is in load , it goes through
the nop state, followed by state shift0 , responsible for shifting the result one position
to the left with a ‘ 0 ’ included in the rightmost position. Observe the presence of
recursive equations (quot = quot , i = i + 1, etc.) in several states, which characterize a
category 3 FSM.

 11.7.7 Serial Data Receiver
 This section shows another application that can be solved using a category 3 machine.
It consists of a serial data receiver, which must store the received (one bit at a time)
data in a multibit register. Even though this kind of circuit is simple, so it can be
implemented without the FSM approach, we want to see how it can be modeled as
a state machine (recall that we should be able to model any sequential circuit as an
FSM).

 The circuit ports are depicted in fi gure 11.14a . The inputs are x (serial bit stream),
 dv (data-valid bit, high during only one clock cycle, informing that data storage should
start), plus the conventional clock and reset. The received data must be stored in y ,
which is an N -fl ip-fl op register. A signal called done is also shown, which informs when
the machine is free to receive/store another serial vector.

 It will be assumed that the fi rst bit of x is made available at the same time that dv
is asserted, which is more diffi cult to implement. Because this kind of problem was
already treated in section 3.10, a review of that section is recommended before pro-
ceeding. Indeed, two solutions for this problem were already presented in fi gures
3.16c,e, using a timed machine.

Recursive (Category 3) State Machines 237

Two additional solutions are presented in fi gure 11.14 , this time using category 3
machines, both of Moore type and without timed transitions. The FSM of fi gure 11.14b
was based directly on that of fi gure 3.16c, with the timer (t) replaced with a pointer
(i). As indicated in the rectangle above the state machine, the data is updated at the
positive clock edge, which is also the edge that causes the storage of i and y in auxiliary
registers, whereas the FSM operates at the negative clock transition.

 A fi nal solution is presented in fi gure 11.14c , operating with the default clocking
scheme (everybody operating at the same clock edge). In this case the fi rst bit of x is
not lost because it is part of the transition conditions (observe the idle-store0 and idle-
store1 transitions, the fi rst for x = ‘ 0 ’ , the second for x = ‘ 1 ’).

 11.7.8 Memory Interface
 We want to develop a circuit for the memory interface of fi gure 11.15a , which must
write data to an asynchronous SRAM chip. The only nonoperational input is dv (data
valid), and the outputs are A (address at which the data must be stored), OEn (output
enable, active low), CEn (chip enable, active low), and WEn (write enable, also active
low). The actual memory-write command, internal to the SRAM, normally corresponds
to the overlap between CEn and WEn . As in the previous example, this too is a simple
circuit, but it is important to understand how it can be modeled as a fi nite state
machine.

 Figure 11.15b shows a possible (conservative) memory-write sequence. All signals
are updated/produced at positive clock edges. As usual, a small propagation delay is
included between clock transitions and corresponding responses in order to portray
a more realistic situation. In this example it is assumed that writing occurs only while
 dv is high. When dv is raised, the circuit lowers CEn and WEn , causing D0 to be

Figure 11.14
Serial data receiver. (a) Circuit ports. (b) Solution based on fi gure 3.16c (FSM operating at the

negative clock edge). (c) Solution with all units operating at the same clock edge.

238 Chapter 11

stored at the initial memory address, after which WEn is raised, disabling further
writing. Each subsequent iteration consists of three clock cycles, during which the
memory address is updated and then another write-enable pulse (WEn = ‘ 0 ’) is applied
to the circuit. When dv returns to ‘ 0 ’ , the address is reset to zero (or to any other
initial value). These operations can be done with OEn permanently high (thus not
shown).

 A Moore-type state machine capable of implementing this sequence of events is
presented in fi gure 11.15c , which is a direct translation of the timing diagram of fi gure
11.15b . The address is updated in state incA , which increments the value of A . Note
the recursive expressions A = A and A = A + 1, which characterize a category 3 FSM.

 An example involving an actual SRAM chip is depicted in fi gure 11.16 . The SRAM
(IS61LV25616 device, from ISSI) is shown in fi gure 11.16a . It can store 262 kwords of
16 bits each, hence requiring an 18-bit address bus, A (17:0), and a 16-bit data bus,
 D (15:0). It also contains fi ve control signals, all active low, called CEn , WEn , OEn , UBn
(upper byte enable), and LBn (lower byte enable).

 A memory-write procedure based on this device ’ s truth table and time parameters
is presented in the left half of fi gure 11.16b . Note that it is less conservative than that
in fi gure 11.15b (the end of the WEn pulse coincides with the beginning of a new

 Figure 11.15
 FSM implementing a memory-write procedure for an asynchronous SRAM. (a) Circuit ports. (b)

Illustrative timing diagram (note that here writing occurs while dv is high). (c) Corresponding

state machine.

Recursive (Category 3) State Machines 239

memory-write cycle). The largest read/write time parameter is 10 ns, so a clock of up
to 100 MHz can be used in the procedure shown in the fi gure. Finally, note that the
 wr command lasts just one clock cycle, so the end of writing is determined by a pre-
defi ned maximum address value.

 A memory-read procedure is presented in the right half of fi gure 11.16b . When the
device is not in write mode (write is done with WEn low), it is automatically in read
mode, so when the rd command (which also lasts only one clock cycle) occurs, all
that is needed is to do the address sweep.

 A complete FSM for writing to (upper branch) and reading from (lower branch) this
device is presented in fi gure 11.16c . If a wr = ‘ 1 ’ pulse occurs, data is written to the
SRAM from address A = 0 (or any other initial value) up to A = A max . A similar situation
occurs for reading when an rd = ‘ 1 ’ pulse is received. Note that state hold is important
to prevent overwriting or overreading in case wr or rd is too long. The signals done_wr
and done_rd were included to inform the user when writing or reading has been com-
pleted. Note also the inclusion of t = T 1 and t = T 2 in two of the transitions, which
indicate a way of reducing the write/read speed if that is desired.

 A complete design for this memory interface, using VHDL and SystemVerilog, is
presented in sections 12.6 and 13.6, respectively. The number of fl ip-fl ops is treated
in exercise 11.15.

Figure 11.16
FSM implementing memory-write and memory-read procedures for an actual 262k × 16 SRAM.

(a) Chip pinout. (b) Illustrative timing diagram (here, wr and rd are short pulses). (c) Correspond-

ing state machine.

240 Chapter 11

11.8 Exercises

Exercise 11.1: Machines Category
a) Why are the state machines in fi gures 11.5, 11.6, and 11.7 (among others) said to
be of category 3?
b) What types of transitions (section 1.6) can category 3 machines have?
c) What differentiates category 3 from categories 1 and 2?

Exercise 11.2: Generic Counter with a Stop Value
Say that we must design a counter that starts at x min and stops (and remains there)
when x max is reached, only returning to the initial value and running again after a
reset pulse is applied to the circuit. As in section 11.7.1, the counter must have an
enable input (ena) that allows the counter to run when asserted or holds it
otherwise.

 a) Draw a Moore-type state transition diagram for this counter modeled as a category
3 machine.
 b) Does the number of states depend on the counting range?
 c) Does the number of fl ip-fl ops depend on the counting range? How many are needed
to build your machine with x min = 1 and x max = 200?
 d) Is it advantageous or necessary to use the FSM approach to design counters in
general?

 Exercise 11.3: Hamming-Weight Calculator
 The circuit of fi gure 11.17 must determine the Hamming weight (number of ‘ 1 ’ s) of
a serial bit vector x . The vector is delimited by a data-valid bit (the counting must
occur during all the time while dv = ‘ 1 ’). Study the illustrative timing diagram included
in the fi gure. Observe that dv and x (= “ 100110101, ” so N = 9) are updated at positive
clock edges and that the FSM too operates at positive clock edges (see the plot for y).
As usual, small propagation delays were included to portray a more realistic
situation.

 Figure 11.17

Recursive (Category 3) State Machines 241

 a) Based on the given data, draw a Moore-type state transition diagram for this
problem. Include a reset signal but assume that it can be asserted only at power-up.
 b) Based on your state diagram, fi ll in the waveform for pr_state in the fi gure.
 c) Redo part a assuming now that a reset pulse is applied to the FSM before each new
computation starts. Can you fi nd a solution with fewer states than in a?
 d) Draw an illustrative timing diagram, similar to that in fi gure 11.17 , for the FSM
developed in part c.
 e) How many DFFs are needed to build each machine developed above, assuming that
sequential encoding is used and that x is a 32-bit vector (so y can go from 0 to 32)?

 Exercise 11.4: Leading-Ones Counter
 The circuit of fi gure 11.18 must count the number of ‘ 1 ’ s before a ‘ 0 ’ is found in a
 serial bit vector x . The vector is delimited by a data-valid bit (the counting must occur
during all the time while dv = ‘ 1 ’). Study the illustrative timing diagram included in
the fi gure. Observe that dv and x (= “ 111110000, ” so N = 9) are updated at positive
clock edges, which are the same edges at which the FSM must operate.

 a) Draw a state transition diagram for this machine.
 b) Based on your machine, complete the plots for y and pr_state in the fi gure.
 c) Say that we want the output value to remain stable (constant) during the computa-
tions, with the current value replaced only when a new value is ready. How can that
be done? (Suggestion: see section 3.11.)

 Exercise 11.5: Long-String Comparator
 Develop an FSM that detects if two serial bit streams a and b of length N are pair-wise
equal. This is an extension to the example of section 11.7.2 in which the FSM had to
detect if the last N bits were equal. The circuit ports are depicted in the upper part of
 fi gure 11.19 , which also shows an XNOR gate (x = ‘ 1 ’ when a = b). The desired behavior
is also illustrated in the fi gure for N = 4. Note in the y and done waveforms that after
every four bits, starting right after the reset pulse, done must be asserted, informing
that a complete block has been inspected, with y high during that pulse if the four
pairs of bits were equal (x = ‘ 1 ’ in all four time slots) or low otherwise.

 Figure 11.18

242 Chapter 11

a) Draw a state transition diagram for a machine that solves this problem for any
(arbitrarily long) value of N .
 b) Based on your solution, fi ll in the missing plots in fi gure 11.19 .
 c) How many DFFs are needed to build your machine, assuming that sequential encod-
ing is used and that N = 256 bits?

 Exercise 11.6: Reference-Value Defi ner with Embedded Debouncer #1
 This exercise concerns the reference-value defi ner with embedded debouncer seen in
 fi gure 11.10b .

 a) Assuming that ref is an eight-bit signal, regular sequential encoding is used for the
FSM, the debouncing time interval is 1 ms, and f clk = 50 MHz, calculate the number
of fl ip-fl ops needed to build that circuit.
 b) The inputs up and dn are asynchronous. Is a synchronizer (section 2.3) needed in
this application?

 Exercise 11.7: Reference-Value Defi ner with Embedded Debouncer #2
 We saw in fi gure 11.10b an FSM that embeds, in the reference-value defi ner of fi gure
11.7d, a pair of debouncers for the up and dn pushbuttons.

 a) Using the same principle, modify the state transition diagram of fi gure 11.7b in
order to include in it a debouncer for the ‘ 0 ’ -to- ‘ 1 ’ transitions of up .
 b) Determine the number of DFFs needed to implement your FSM, assuming that
sequential encoding is used, ref is an eight-bit signal, the debouncing interval is 1 ms,
and f clk = 50 MHz.

 Exercise 11.8: Greatest Common Divisor
 The algorithm and a corresponding fl owchart for calculating the greatest common
divisor (GCD) between two integers a and b are presented in fi gure 5.12. A data-valid

Figure 11.19

Recursive (Category 3) State Machines 243

(dv) pulse, lasting only one clock period, informs when the computations must start.
We want to redesign that machine, now without the datapath (so this is a complete
GCD calculator). Note that the “ load data ” block of fi gure 5.12 is not indispensable
here, but then the inputs must remain stable during the whole computations. Because
the circuit will take a variable amount of time to compute the GCD (it depends on
the input values), an output called done must be provided, which should remain high
while the machine is idle. Draw a state transition diagram for an FSM capable of
solving this problem.

 Exercise 11.9: Factorial Calculator
 An algorithm for calculating f = n ! (n ≥ 0, integer) is described in the fl owchart of
 fi gure 11.20 . Assume that dv (data valid) is asserted during one clock cycle, indicating
when the data (n) is ready, so the computation should commence. Because the circuit
will take a variable amount of time to compute f (it depends on the value of n), an
output called done must be provided, which should remain high while the machine
is idle. Draw a state transition diagram for a Moore-type machine that solves this
problem.

 Exercise 11.10: Datapath Control for a Sequential Multiplier
 This exercise concerns the datapath and corresponding control unit for multiplication
using add-and-shift operations seen in fi gure 11.12 .

 a) How many fl ip-fl ops are needed to build the machine of fi gure 11.12b for N = 4
and for N = 32 bits?
 b) Draw a timing diagram that illustrates its operation (as done in fi gure 5.13d, for
example), for N = 4. Consider that the fi rst four values of prod (0), after dv = ‘ 1 ’ occurs,
are prod (0) = { ‘ 1 ’ , ‘ 0 ’ , ‘ 1 ’ , ‘ 0 ’ }.

Figure 11.20

244 Chapter 11

Exercise 11.11: Datapath Control for a Sequential Divider
The algorithm and a corresponding fl owchart for calculating the division num / den
between two integers were presented in fi gure 11.13 . In that case a complete divider
was developed, whereas in this case we are interested in the same division but using
a datapath (in other words, a control unit is needed here).

 a) Based on the algorithm of fi gure 11.13 (and on the several examples using a data-
path shown in chapters 3, 5, and 11), sketch a datapath that seems adequate for this
problem.
 b) Draw a state transition diagram for a (Moore) control unit such that the desired
division is produced by your datapath.

 Exercise 11.12: Serial Data Receiver
 Two category 3 solutions for a serial data receiver were presented in fi gure 11.14.

 a) Present an illustrative timing diagram for the solution in fi gure 11.14b , considering
for clk , dv , and x the same waveforms of fi gure 3.16 .
 b) Do the same for the solution in fi gure 11.14c.

 Exercise 11.13: Serial Data Transmitter
 Two category 3 solutions for a serial data receiver (a deserializer) were presented in
section 11.7.7.

 a) Develop a category 3 solution for a serial data transmitter (a serializer).
 b) Present an illustrative timing diagram for your FSM, for N = 4 and x (3:0) = “ 1101. ”

 Exercise 11.14: Memory Interface
 Calculate the number of fl ip-fl ops needed to build the memory interface of fi gure
11.16c . Assume that sequential encoding is used for the FSM and that no timer is
employed.

12 VHDL Design of Recursive (Category 3) State Machines

12.1 Introduction

This chapter presents several VHDL designs of category 3 state machines. It starts by
presenting two VHDL templates, for Moore- and Mealy-based implementations, which
are used subsequently to develop a series of designs related to the examples introduced
in chapter 11.

 The codes are always complete (not only partial sketches) and are accompanied by
comments and often also simulation results illustrating the design ’ s main features. All
circuits were synthesized using Quartus II (from Altera) or ISE (from Xilinx). The simu-
lations were performed with Quartus II or ModelSim (from Mentor Graphics). The
default encoding scheme for the states of the FSMs was regular sequential encoding
(see encoding options in section 3.7; see ways of selecting the encoding scheme at the
end of section 6.3).

 The same designs are presented in chapter 13 using SystemVerilog, so the reader
can make a direct comparison between the codes.

 Note : See suggestions of VHDL books in the bibliography.

 12.2 VHDL Template for Recursive (Category 3) Moore Machines

 The template is presented below. Because it is an extension to the Moore templates
for categories 1 and 2, described in sections 6.3 and 9.2, respectively, a review of those
templates is suggested before this one is examined because only the differences are
described. Review also some possible code variations in section 6.4.

 The only differences are those needed for the inclusion of an auxiliary register,
compulsory in category 3 machines. As seen in section 6.2, the architecture is com-
posed of two parts, the declarative part (before begin) and the statements part
(from begin on); both have new elements in order to accommodate the auxiliary
register.

246 Chapter 12

In the architecture ’ s declarative part (lines 14 – 21), the difference is in line 21, in
which two signals are created to deal with the auxiliary register. It is assumed that
there is only one output and that it must be stored, but recall that the circuit might
have several outputs, not all registered. The actual number of auxiliary registers is
determined by the number of outputs that depend on past values.

 In the architecture ’ s statements part (lines 23 – 75), two differences are seen:
the inclusion of a process to infer the auxiliary register and the replacement of
 outp with outp_reg on the right-hand side of the recursive equations. The latter
removes the recursiveness, thus allowing the output to be computed by a combina-
tional circuit.

 Lines 29 – 36 show the process that implements the auxiliary register. If one prefers,
this process can be combined with that for the FSM ’ s state register (a shorter code
results, but less didactic, with no effect on the result).

 Lines 42 – 68 show the process that implements the machine ’ s combinational logic
section. The only difference here is that outp_reg , instead of outp itself, appears on the
right-hand side of the (originally) recursive equations (lines 46 and 56).

 As explained in section 11.3, an interesting aspect of category 3 FSMs is that
the auxiliary register can also play the role of output register (for glitch-free
and/or pipelined construction). To do so, we simply send outp_reg out instead of outp
in line 73.

 The code is concluded in line 73, in which the value of outp is passed to the actual
output. In fact, the actual output could be used in lines 34, 46, and 56, in which case
the mode of output (in the entity) should be changed from out to buffer (see example
in section 12.5).

 1 ---
 2 library ieee;
 3 use ieee.std_logic_1164.all;
 4 ---
 5 entity circuit is
 6 generic (
 7 (same as for category 2 Moore, section 9.2)
 8 port (
 9 (same as for category 1 Moore, section 6.3)
 10 end entity;
 11 ---
 12 architecture moore_fsm of circuit is
 13
 14 --FSM-related declarations:
 15 (same as for category 1 Moore, section 6.3)
 16
 17 --Timer-related declarations:
 18 (same as for category 2 Moore, section 9.2)
 19
 20 --Auxiliary-register-related declarations:

VHDL Design of Recursive (Category 3) State Machines 247

 21 signal outp, outp_reg: std_logic_vector(...);
 22
 23 begin
 24
 25 --Timer:
 26 (same as for category 2 Moore, section 9.2)
 27
 28 --Auxiliary register:
 29 process (clk, rst)
 30 begin
 31 if (rst='1') then
 32 outp_reg < = < initial value > ;
 33 elsif rising_edge(clk) then
 34 outp_reg < = outp;
 35 end if;
 36 end process;
 37
 38 --FSM state register:
 39 (same as for category 2 Moore, section 9.2)
 40
 41 --FSM combinational logic:
 42 process (all) --list proc. inputs if ″ all ″ not supported
 43 begin
 44 case pr_state is
 45 when A = >
 46 outp < = outp_reg;
 47 tmax < = T1-1;
 48 if < condition > then
 49 nx_state < = B;
 50 elsif < condition > then
 51 nx_state < = ...;
 52 else
 53 nx_state < = A;
 54 end if;
 55 when B = >
 56 outp < = outp_reg + 1;
 57 tmax < = T2-1;
 58 if < condition > then
 59 nx_state < = C;
 60 elsif < condition > then
 61 nx_state < = ...;
 62 else
 63 nx_state < = B;
 64 end if;
 65 when C = >
 66 ...
 67 end case;
 68 end process;
 69
 70 --Optional output register:
 71 (same as for category 1 Moore, section 6.3)
 72
 73 output < = outp;
 74
 75 end architecture;
 76 ---

248 Chapter 12

12.3 VHDL Template for Recursive (Category 3) Mealy Machines

The template is presented below. The only difference with respect to the Moore tem-
plate just described is in the process for the combinational logic (lines 23 – 57) because
the output is specifi ed differently here. Recall that in a Mealy machine the output
depends not only on the FSM ’ s state but also on the input, so if statements are
expected for the output in one or more states because the output value might not be
unique.

 Please review the following comments, which can be easily adapted from the Moore
case to the Mealy case:

 — On the Moore template for category 1, in section 6.3, especially comment 10.
 — On the enum_encoding and fsm_encoding attributes, also in section 6.3.
 — On possible code variations, in section 6.4.
 — On the Mealy template for category 1, in section 6.5.
 — On the Moore template for category 2, in section 9.2.
 — On the Mealy template for category 2, in section 9.3.
 — Finally, on the Moore template for category 3, in section 12.2.

 1 ---
 2 library ieee;
 3 use ieee.std_logic_1164.all;
 4 ---
 5 entity circuit is
 6 (same as for Moore, section 12.2)
 7 end entity;
 8 ---
 9 architecture mealy_fsm of circuit is
 10 (same as for Moore, section 12.2)
 11 Begin
 12
 13 --Timer:
 14 (same as for Moore, section 9.2)
 15
 16 --Auxiliary register:
 17 (same as for Moore, section 12.2)
 18
 19 --FSM state register:
 20 (same as for Moore, section 9.2)
 21
 22 --FSM combinational logic:
 23 process (all) --list proc. inputs if ″ all ″ not supported
 24 begin
 25 case pr_state is
 26 when A = >
 27 if < condition > then
 28 outp < = outp_reg;
 29 tmax < = < value > ;
 30 nx_state < = B;
 31 elsif < condition > then

VHDL Design of Recursive (Category 3) State Machines 249

 32 outp < = outp_reg + 1;
 33 tmax < = < value > ;
 34 nx_state < = ...;
 35 else
 36 outp < = outp_reg;
 37 tmax < = < value > ;
 38 nx_state < = A;
 39 end if;
 40 when B = >
 41 if < condition > then
 42 outp < = outp_reg;
 43 tmax < = < value > ;
 44 nx_state < = C;
 45 elsif < condition > then
 46 outp < = outp_reg - 1;
 47 tmax < = < value > ;
 48 nx_state < = ...;
 49 else
 50 outp < = outp_reg;
 51 tmax < = < value > ;
 52 nx_state < = B;
 53 end if;
 54 when C = >
 55 ...
 56 end case;
 57 end process;
 58
 59 --Optional output register:
 60 (same as for Moore, Section 12.2)
 61
 62 output < = outp;
 63
 64 end architecture;
 65 ---

12.4 Design of a Datapath Controller for a Multiplier

This section presents a VHDL-based design for the control unit introduced in section
11.7.5, which controls a datapath to produce a sequential add-and-shift multiplier.
The Moore template for category 3 machines seen in section 12.2 is used to implement
the FSM of fi gure 11.12b.

 The entity, called control_unit_for_multiplier , is in lines 5 – 11. The number of bits (N)
in the multiplier and multiplicand was entered as a generic parameter (line 6); a small
value (N = 4) was used to ease the inspection of the simulation results. Note that all
ports (lines 8 – 10) are of type std_logic or std_logic_vector (industry standard).

 The architecture, called moore_fsm , is in lines 13 – 93. As usual, it contains a declara-
tive part and a statements part, with three processes in the latter.

 The declarative part of the architecture (lines 15 – 20) contains FSM- and auxiliary-
register-related declarations. In the former the enumerated type state is created to
represent the machine ’ s present and next states. In the latter the signals i and i_reg

250 Chapter 12

are created to deal with the auxiliary register (note that in this case none of the actual
outputs is stored in an auxiliary register).

 The fi rst process (lines 25 – 32) implements the auxiliary register, exactly as in the
template.

 The second process (lines 35 – 42) implements the FSM ’ s state register, again exactly
as in the template.

 The third and fi nal process (lines 45 – 91) implements the entire combinational logic
section. It is just a list of all states, each containing the output values and the next
state. Note that because some of the output values get repeated several times, default
values were entered in lines 48 – 53, so they only need to be included in the case state-
ment when different values are required (see section 6.4.3). Observe that in the (origi-
nally) recursive equations (lines 68, 75, 80, and 84), i_reg appears on the right-hand
side instead of i itself (as seen in the template). As usual, in each state the output value
is unique because in a Moore machine the output depends only on the state in which
the machine is.

 In datapath-related designs, possible glitches at the output of the control unit
during clock transitions are normally not a problem, so the optional output register
is not employed.

 Observe the correct use of registers and the completeness of the code, as described
in comment 10 of section 6.3. Note in particular the following:

 1) Regarding the use of registers: The circuit is not overregistered. This can be observed
in the elsif rising_edge(clk) statement of line 39 (responsible for the inference of
fl ip-fl ops), which is closed in line 41, guaranteeing that only the machine state (line
40) gets stored (the auxiliary register is a separate circuit, built in the preceding
process). The outputs are in the next process, which is purely combinational (thus not
registered).
 2) Regarding the outputs: The list of outputs (wrR1 , sel , wrR2 , shft , ALUop , i) is exactly
the same in all states, and the corresponding values/expressions are always properly
declared (note that some values are declared in the default list of lines 48 – 53).
 3) Regarding the next state: Again, the coverage is complete because all states are
included (see lines 56, 62, 67, . . .), and in each state the conditional declarations for
the next state are always fi nalized with an else statement (lines 59, 71, 87), guarantee-
ing that no condition is left unchecked.

 1 ---
 2 library ieee;
 3 use ieee.std_logic_1164.all;
 4 ---
 5 entity control_unit_for_multiplier is
 6 generic (N: natural := 4); --number of bits (any > 0)
 7 port (
 8 dv, prod, clk, rst: in std_logic;

VHDL Design of Recursive (Category 3) State Machines 251

 9 wrR1, sel, wrR2, shft: out std_logic;
 10 ALUop: out std_logic_vector(1 downto 0));
 11 end entity;
 12 ---
 13 architecture moore_fsm of control_unit_for_multiplier is
 14
 15 --FSM-related declarations:
 16 type state is (idle, load, waitt, nop, add, shift);
 17 signal pr_state, nx_state: state;
 18
 19 --Auxiliary-register-related declarations:
 20 signal i, i_reg: natural range 0 to N;
 21
 22 begin
 23
 24 --Auxiliary register:
 25 process (clk, rst)
 26 begin
 27 if rst='1' then
 28 i_reg < = 0;
 29 elsif rising_edge(clk) then
 30 i_reg < = i;
 31 end if;
 32 end process;
 33
 34 --FSM state register:
 35 process (clk, rst)
 36 begin
 37 if rst='1' then
 38 pr_state < = idle;
 39 elsif rising_edge(clk) then
 40 pr_state < = nx_state;
 41 end if;
 42 end process;
 43
 44 --FSM combinational logic:
 45 process (all)
 46 begin
 47 --Default values:
 48 wrR1 < = '0';
 49 sel < = '0';
 50 wrR2 < = '0';
 51 shft < = '0';
 52 ALUop < = "00";
 53 i < = 0;
 54 --Case statement:
 55 case pr_state is
 56 when idle = >
 57 if dv='1' then
 58 nx_state < = load;
 59 else
 60 nx_state < = idle;
 61 end if;
 62 when load = >
 63 wrR1 < = '1';
 64 sel < = '1';
 65 wrR2 < = '1';
 66 nx_state < = waitt;

252 Chapter 12

 67 when waitt = >
 68 i < = i_reg;
 69 if prod='0' then
 70 nx_state < = nop;
 71 else
 72 nx_state < = add;
 73 end if;
 74 when nop = >
 75 i < = i_reg;
 76 nx_state < = shift;
 77 when add = >
 78 wrR2 < = '1';
 79 ALUop < = "11";
 80 i < = i_reg;
 81 nx_state < = shift;
 82 when shift = >
 83 shft < = '1';
 84 i < = i_reg + 1;
 85 if i < N then
 86 nx_state < = waitt;
 87 else
 88 nx_state < = idle;
 89 end if;
 90 end case;
 91 end process;
 92
 93 end architecture;
 94 ---

 The number of fl ip-fl ops inferred by the compiler on synthesizing the code above,
with regular sequential encoding (section 3.7), was six for N = 4 and nine for N = 32
bits. Compare these results against your predictions made in exercise 11.10.

 Simulation results are shown in fi gure 12.1 . Observe in the plot for prod that the
circuit was tested for the sequence prod = { ‘ 1 ’ , ‘ 0 ’ , ‘ 1 ’ , ‘ 0 ’ }, so the expected sequence
of states is pr_state = {0, 1, 2, 4, 5, 2, 3, 5, 2, 4, 5, 2, 3, 5, 0}, which indeed occurs (recall
that the states are enumerated in the order that they appear in line 16; however, some
compilers reserve the value zero for the reset state, but that is not a concern here
because that is the fi rst state in our list anyway). Note that the values produced at the
output in each state are exactly as in fi gure 11.12b. Finally, compare these simulation
results against your sketch in exercise 11.10 to see whether they match.

 12.5 Design of a Serial Data Receiver

 This section presents a VHDL-based design for the serial data receiver introduced in
section 11.7.7. The Moore template for category 3 machines seen in section 12.2 is
used to implement the solution of fi gure 11.14c.

 The entity, called serial_data_receiver , is in lines 5 – 11. The number of bits (N) is
entered as a generic parameter (line 6). All ports (lines 8 – 10) are of type std_logic or

VHDL Design of Recursive (Category 3) State Machines 253

std_logic_vector (industry standard). Note that mode buffer is used this time for y , so y
can be associated directly with y_reg .

 The architecture, called moore_fsm , is in lines 13 – 89. As usual, it contains a declara-
tive part and a statements part, with three processes in the latter.

 The declarative part of the architecture (lines 15 – 21) contains FSM- and auxiliary-
register-related declarations. In the former the enumerated type state is created to
represent the machine ’ s present and next states. In the latter the signals y_reg , i , and
 i_reg are created to deal with the auxiliary registers. Note that two auxiliary registers
are needed in this example: for the main (actual) output (y) and for the output that
operates as an auxiliary pointer (i) to the FSM.

 The fi rst process (lines 26 – 35) implements the auxiliary register, similarly to the
template, except for the fact that there are now two auxiliary registers.

 The second process (lines 38 – 45) implements the FSM ’ s state register, exactly as in
the template.

 The third and fi nal process (lines 48 – 87) implements the entire combinational logic
section. It is just a list of all states, each containing the output values and the next
state. Observe that in the (originally) recursive equations (lines 53, 63 – 64, and 75 – 76),
 i_reg and and y_reg appear on the right-hand side instead of i and y themselves (as
proposed in the template). As usual, note that in each state the output values are
unique because in a Moore machine the outputs depend only on the state in which
the machine is. Another important aspect can be observed in lines 64 – 65 and 76 – 77;
note that fi rst a value is assigned to the entire vector y (lines 64 and 76), then one of
its bits, y (i − 1), is overwritten (lines 65 and 77).

Figure 12.1
Simulation results from the VHDL code for the control unit of fi gure 11.12b, for N = 4, which

controls a multiplying datapath.

254 Chapter 12

In this kind of application glitches during clock transitions are generally not a
problem. In any case, because y is one of the signals that go through an auxiliary
register, if a glitch-free/pipelined output is required we can simply send out y_reg
instead of y .

 Observe the correct use of registers and the completeness of the code, as described
in comment number 10 of section 6.3.

 The number of fl ip-fl ops inferred by the compiler on synthesizing the code below,
with regular sequential encoding (section 3.7), was 14 for N = 8 and 40 for N = 32.

 Simulation results are shown in fi gure 12.2 , for x = “ 1011 ” .

 1 --
 2 library ieee;
 3 use ieee.std_logic_1164.all;
 4 --
 5 entity serial_data_receiver is
 6 generic (N: natural := 4); --number of bits (any > 0)
 7 port (
 8 x, dv, clk, rst: in std_logic;
 9 done: out std_logic;
 10 y: buffer std_logic_vector(N-1 downto 0));
 11 end entity;
 12 --
 13 architecture moore_fsm of serial_data_receiver is
 14
 15 --FSM-related declarations:
 16 type state is (idle, store0, store1);
 17 signal pr_state, nx_state: state;
 18
 19 --Auxiliary-register-related declarations:
 20 signal y_reg: std_logic_vector(N-1 downto 0);

Figure 12.2
Simulation results from the VHDL code for the serial data receiver of fi gure 11.14d, with N = 8.

VHDL Design of Recursive (Category 3) State Machines 255

 21 signal i, i_reg: natural range 0 to N;
 22
 23 begin
 24
 25 --Auxiliary register:
 26 process (clk, rst)
 27 begin
 28 if rst='1' then
 29 i_reg < = 0;
 30 y_reg < = (others = > '0');
 31 elsif rising_edge(clk) then
 32 i_reg < = i;
 33 y_reg < = y;
 34 end if;
 35 end process;
 36
 37 --FSM state register:
 38 process (clk, rst)
 39 begin
 40 if rst='1' then
 41 pr_state < = idle;
 42 elsif rising_edge(clk) then
 43 pr_state < = nx_state;
 44 end if;
 45 end process;
 46
 47 --FSM combinational logic:
 48 process (all)
 49 begin
 50 case pr_state is
 51 when idle = >
 52 i < = 0;
 53 y < = y_reg;
 54 done < = '1';
 55 if dv='1' and x='0' then
 56 nx_state < = store0;
 57 elsif dv='1' and x='1' then
 58 nx_state < = store1;
 59 else
 60 nx_state < = idle;
 61 end if;
 62 when store0 = >
 63 i < = i_reg + 1;
 64 y < = y_reg;
 65 y(i-1) < = '0';
 66 done < = '0';
 67 if i=N then
 68 nx_state < = idle;
 69 elsif x='1' then
 70 nx_state < = store1;
 71 else
 72 nx_state < = store0;
 73 end if;
 74 when store1 = >
 75 i < = i_reg + 1;
 76 y < = y_reg;

256 Chapter 12

 77 y(i-1) < = '1';
 78 done < = '0';
 79 if i=N then
 80 nx_state < = idle;
 81 elsif x='0' then
 82 nx_state < = store0;
 83 else
 84 nx_state < = store1;
 85 end if;
 86 end case;
 87 end process;
 88
 89 end architecture;
 90 --

12.6 Design of a Memory Interface

This section presents a VHDL-based design for the memory interface introduced in
section 11.7.8 (fi gure 11.16). The SRAM used in the experiments is the IS61LV25616
device, from ISSI, which is capable of storing 262k 16-bit words. The corresponding
FSM was presented in fi gure 11.16c, and the circuit ports are depicted in fi gure 12.3
(note that a test circuit has been included).

 The entity, called sram_interface , is in lines 7 – 25. Note that several parameters were
declared as generic (lines 8 – 14), so they can be easily modifi ed and overridden. Note
also that the port names are from fi gure 12.3 and that all ports (lines 15 – 24) are of
type std_logic or std_logic_vector (industry standard).

 The signals in lines 21 – 24 are for the test circuit (see fi gure 12.3). The signal seed
(line 22), set by two switches, is added to the actual address (A , line 19) to produce
the test data (D , line 21), which is displayed on a seven-segment display by means of
the signal ssd (line 23). Two LEDs are lit by the signals done_wr and done_rd (line 24)

Figure 12.3
Setup for the experiments with the SRAM memory interface introduced in fi gure 11.16, including

a test circuit as well. The device ’ s truth table is also shown.

VHDL Design of Recursive (Category 3) State Machines 257

to indicate when the test circuit has fi nished writing to or reading from the memory,
respectively.

 The architecture, called moore_fsm , is in lines 27 – 181. As usual, it contains a declara-
tive part and a statements part, with six code sections in the latter.

 The architecture ’ s declarative part is in lines 29 – 62. In the FSM-related declarations
(lines 30 – 31), the enumerated type state is created to represent the machine ’ s present
and next states. In the auxiliary-register-related declarations (line 34), the signals addr
and addr_reg are created to deal with the auxiliary register (observe that the address is
the signal that appears in the recursive expressions, so that is the signal to be stored
in that register). In the timer-related declarations (line 37), the signals needed to build
a 0.5-s timer are created to be used in the read1-read2 transition (see t = T 2) of fi gure
11.16c, so the user will have enough time to observe the value presented on the display
during the tests. Finally, a function is created in lines 39 – 62 to later implement the
SSD driver (integer-to-SSD conversion).

 The fi rst code section (line 67) in the architecture ’ s statements part is a list of static
signals to be connected to the SRAM chip during the tests. Note that they are all
enabled (because they are active low) except for the upper byte of the data word, which
is not used here.

 The second code section (lines 70 – 81) contains a process that implements the timer
(needed in the read1-read2 transition; the write1-write2 transition is made at full clock
speed). This code is similar to the template of section 9.2. Both timer control strategies
(section 8.5) are allowed for this FSM.

 The third code section (lines 84 – 91) in the architecture ’ s statements part is a process
that implements the auxiliary register, exactly as in the template.

 The fourth code section (lines 94 – 101) is another process, which implements the
FSM ’ s state register, again exactly as in the template.

 The fi fth code section (lines 104 – 172) contains a process that implements the entire
combinational logic section. It is just a list of all states, each containing the output
and time parameter values plus the next state. Observe that in the (originally) recursive
equations (lines 121, 128, 139, and 150), addr_reg appears on the right-hand side
instead of addr itself (as proposed in the template). As usual, in each state the output
values are unique because in a Moore machine the outputs depend only on the state
in which the machine is.

 The sixth and fi nal code section (lines 174 – 179) in the architecture ’ s statements
part passes the value of addr to A (in std_logic_vector form) and also builds the test
circuit. The test circuit is important because it illustrates how we can deal with a
bidirectional bus. Note that during the writing procedure the FPGA sends data to the
SRAM, but when data is being read from the SRAM the FPGA ’ s output must go into
high-impedance (fl oating) mode because they (FPGA and SRAM) are physically con-
nected to the same wires (data bus D). Observe also that the generated data consist

258 Chapter 12

simply of seed + A (line 177 — see also fi gure 12.3), which is written to the SRAM when
a wr = ‘ 1 ’ pulse occurs and is read from the SRAM and displayed on the SSD when a
 rd = ‘ 1 ’ pulse occurs.

 In this kind of application, glitches during clock transitions are generally not a
problem, so the optional output register is not needed.

 Observe the correct use of registers and the completeness of the code, as described
in comment 10 of section 6.3.

 1 --
 2 library ieee;
 3 use ieee.std_logic_1164.all;
 4 use ieee.std_logic_unsigned.all;
 5 use ieee.std_logic_arith.all;
 6 --
 7 entity sram_interface is
 8 generic (
 9 --Main-circuit parameters:
 10 Abus: natural := 18; --Address bus width
 11 Dbus: natural := 16; --Data bus width
 12 --Test-circuit parameters:
 13 Tread: natural := 25_000_000; --Time=0.5s @fclk=50MHz
 14 Amax: natural := 12); --Max address in test circuit
 15 port (
 16 --Main-circuit ports:
 17 rd, wr, clk, rst: in std_logic;
 18 CEn, WEn, OEn, UBn, LBn: out std_logic;
 19 A: out std_logic_vector(Abus-1 downto 0);
 20 --Test-circuit ports:
 21 D: inout std_logic_vector(7 downto 0); --Lower-byte only
 22 seed: in std_logic_vector(1 downto 0);
 23 ssd: out std_logic_vector(6 downto 0);
 24 done_wr, done_rd: buffer std_logic);
 25 end entity;
 26 --
 27 architecture moore_fsm of sram_interface is
 28
 29 --FSM-related declarations:
 30 type state is (idle, write1, write2, read1, read2, hold);
 31 signal pr_state, nx_state: state;
 32
 33 --Auxiliary-register-related declarations:
 34 signal addr, addr_reg: natural range 0 to 2**Abus-1;
 35
 36 --Timer-related declarations:
 37 signal t, tmax: natural range 0 to Tread-1; --range ≥ Tread
 38
 39 function int_to_ssd(signal input: natural) return std_logic_vector
 40 is variable output: std_logic_vector(6 downto 0);
 41 begin
 42 case input is
 43 when 0 = > output:="0000001";
 44 when 1 = > output:="1001111";
 45 when 2 = > output:="0010010";

VHDL Design of Recursive (Category 3) State Machines 259

 46 when 3 = > output:="0000110";
 47 when 4 = > output:="1001100";
 48 when 5 = > output:="0100100";
 49 when 6 = > output:="0100000";
 50 when 7 = > output:="0001111";
 51 when 8 = > output:="0000000";
 52 when 9 = > output:="0000100";
 53 when 10 = > output:="0001000";
 54 when 11 = > output:="1100000";
 55 when 12 = > output:="0110001";
 56 when 13 = > output:="1000010";
 57 when 14 = > output:="0110000";
 58 when 15 = > output:="0111000";
 59 when others = > output:="1111110"; --"-"
 60 end case;
 61 return output;
 62 end integer_to_ssd;
 63
 64 begin
 65
 66 --Static SRAM signals:
 67 CEn < ='0'; OEn < ='0'; UBn < ='1'; LBn < ='0';
 68
 69 --Timer (using strategy #2, section 8.5.3):
 70 process (clk, rst)
 71 begin
 72 if (rst='1') then
 73 t < = 0;
 74 elsif rising_edge(clk) then
 75 if t < tmax then
 76 t < = t + 1;
 77 else
 78 t < = 0;
 79 end if;
 80 end if;
 81 end process;
 82
 83 --Auxiliary register:
 84 process (clk, rst)
 85 begin
 86 if rst='1' then
 87 addr_reg < = 0;
 88 elsif rising_edge(clk) then
 89 addr_reg < = addr;
 90 end if;
 91 end process;
 92
 93 --FSM state register:
 94 process (clk, rst)
 95 begin
 96 if rst='1' then
 97 pr_state < = idle;
 98 elsif rising_edge(clk) then
 99 pr_state < = nx_state;
 100 end if;
 101 end process;
 102

260 Chapter 12

 103 --FSM combinational logic:
 104 process (all)
 105 begin
 106 case pr_state is
 107 when idle = >
 108 addr < = 0;
 109 WEn < = '1';
 110 done_wr < = '1';
 111 done_rd < = '1';
 112 tmax < = 0;
 113 if wr='1' and rd='0' then
 114 nx_state < = write1;
 115 elsif wr='0' and rd='1' then
 116 nx_state < = read1;
 117 else
 118 nx_state < = idle;
 119 end if;
 120 when write1 = >
 121 addr < = addr_reg;
 122 WEn < = '0';
 123 done_wr < = '0';
 124 done_rd < = '1';
 125 tmax < = 0;
 126 nx_state < = write2;
 127 when write2 = >
 128 addr < = addr_reg + 1;
 129 WEn < = '1';
 130 done_wr < = '0';
 131 done_rd < = '1';
 132 tmax < = 0;
 133 if addr < = Amax then
 134 nx_state < = write1;
 135 else
 136 nx_state < = hold;
 137 end if;
 138 when read1 = >
 139 addr < = addr_reg;
 140 WEn < = '1';
 141 done_wr < = '1';
 142 done_rd < = '0';
 143 tmax < = Tread;
 144 if t > =tmax then
 145 nx_state < = read2;
 146 else
 147 nx_state < = read1;
 148 end if;
 149 when read2 = >
 150 addr < = addr_reg + 1;
 151 WEn < = '1';
 152 done_wr < = '1';
 153 done_rd < = '0';
 154 tmax < = 0;
 155 if addr < = Amax then
 156 nx_state < = read1;
 157 else
 158 nx_state < = hold;
 159 end if;

VHDL Design of Recursive (Category 3) State Machines 261

 160 when hold = >
 161 addr < = 0;
 162 WEn < = '1';
 163 done_wr < = '1';
 164 done_rd < = '1';
 165 tmax < = 0;
 166 if wr=’0’ and rd=’0’ then
 167 nx_state < = idle;
 168 else
 169 nx_state < = hold;
 170 end if;
 171 end case;
 172 end process;
 173
 174 A < = conv_std_logic_vector(addr, Abus);
 175
 176 --Test circuit:
 177 D < = seed + conv_std_logic_vector(addr, 8) when done_wr='0' else
 178 (others = > 'Z');
 179 ssd < = int_to_ssd(conv_integer(D));
 180
 181 end architecture;
 182 --

 12.7 Exercises

 Exercise 12.1: Long-String Comparator #1
 This exercise concerns the long-string comparator of fi gure 11.6, which must detect
whether the last N bits in two serial bit streams are equal.

 a) Implement it using VHDL. Compile it for N = 64 bits and sequential encoding and
check if the number of DFFs inferred by the compiler matches the estimate made in
section 11.7.2.
 b) Recompile it for N = 4; then simulate it using the same stimuli of fi gure 11.6c and
check if the same waveforms result.

 Exercise 12.2: Long-String Comparator #2
 This exercise concerns the long-string comparator of exercise 11.5.

 a) Solve exercise 11.5 if not done yet.
 b) Implement the resulting FSM using VHDL. Check if the number of DFFs inferred
by the compiler matches your estimate.
 c) Simulate it using the same stimuli of fi gure 11.19, checking if the same waveforms
result.

 Exercise 12.3: Hamming-Weight Calculator
 This exercise concerns the Hamming-weight calculator of exercise 11.3.

262 Chapter 12

a) Solve parts a and b of exercise 11.3 if not done yet.
b) How many DFFs are needed to build the resulting FSM, with sequential encoding
and dv lasting 64 clock periods (so y can go from 0 to 64)?
 c) Implement your machine using VHDL. Check if the number of DFFs inferred by
the compiler matches your estimate.
 d) Recompile the code for N = 9 (hence with four bits for y) and simulate it using the
same stimuli of fi gure 11.17, checking if the same waveforms result.
 e) Even though exercise 11.3 is important to understand how that kind of circuit can
be modeled as an FSM, it was said in sections 5.4.1 and 11.7.1 that counters are well-
known circuits, easily designed without the FSM approach. Therefore, because a
Hamming calculator is a kind of counter, it can be designed directly in VHDL. Do it.
Check the number of DFFs and combinational elements needed to implement it for
 dv lasting 64 clock periods and compare the results against those obtained in part
c above.

 Exercise 12.4: Leading-Ones Counter
 This exercise concerns the leading-ones counter of exercise 11.4.

 a) Solve parts a and b of exercise 11.4 if not done yet.
 b) How many DFFs are needed to build the resulting FSM, with sequential encoding
and dv lasting 64 clock periods (so y can go from 0 to 64)?
 c) Implement your machine using VHDL. Check if the number of DFFs inferred by
the compiler matches your estimate.
 d) Recompile the code for N = 9 (hence with four bits for y) and simulate it using the
same stimuli of fi gure 11.18, checking if the same waveforms result.
 e) Even though exercise 11.4 is important to understand how that kind of circuit can
be modeled as an FSM, it is said in sections 5.4.1 and 11.7.1 that counters are well-
known circuits, easily designed without the FSM approach. Therefore, because a
leading-ones counter is a kind of counter, it can be designed directly in VHDL. Do it.
Check the number of DFFs and combinational elements needed to implement it for
 dv lasting 64 clock periods and compare the results against those obtained in part
c above.

 Exercise 12.5: Complete Reference-Value Defi ner
 Figure 12.4 shows an initial block diagram for the experiment to be developed in this
exercise. It consists of a reference-value defi ner with up-down controls, which must
also include some type of debouncer for the pushbuttons. The output (reference value)
must range from 00 to 60 and must be displayed on two SSDs or an LCD. Note that
 ref is a six-bit signal, while each display digit (dig0 for units, dig1 for tens of units) is
a seven-bit value if SSDs are employed. A special feature desired for this circuit is the

VHDL Design of Recursive (Category 3) State Machines 263

following: if either pushbutton is kept pressed for t 1 ≥ 2 s (T 1 clock periods), the incre-
ment must occur automatically and at every t 2 = 0.5 s (T 2 clock periods).

 a) Carefully review sections 8.11.4, 11.7.3, and 11.7.4 and decide what should go
inside the main block of fi gure 12.4 . Then draw an expanded block diagram with
proper details.
 b) Draw a state transition diagram for each FSM to be used in this problem.
 c) Estimate the number of DFFs that will be needed to build the complete circuit.
Assume sequential encoding for the FSM(s) and a 1-ms debouncing interval (check
the clock frequency in your development board).
 d) Implement the circuit using VHDL. Check whether the number of DFFs inferred by
the compiler matches your prediction.
 f) Physically demonstrate your design in the FPGA development board.

 Exercise 12.6: Factorial Calculator
 This exercise concerns the factorial calculator of exercise 11.9.

 a) Solve exercise 11.9 if not done yet.
 b) Implement the resulting FSM using VHDL. Show meaningful simulation results.

 Exercise 12.7: Divider
 This exercise concerns the sequential divider of fi gure 11.13.

 a) How many DFFs are needed to build it for N = 32 bits and sequential encoding?
 b) Implement it using VHDL. Check whether the number of DFFs inferred by the
compiler matches your estimate.
 c) Recompile the code for N = 4 and simulate it using the same stimuli of fi gure 11.13a,
checking whether the same results are obtained here.

 Figure 12.4

13 SystemVerilog Design of Recursive (Category 3) State Machines

13.1 Introduction

This chapter presents several SystemVerilog designs of category 3 state machines. It
starts by presenting two SystemVerilog templates, for Moore- and Mealy-based imple-
mentations, which are used subsequently to develop a series of designs related to the
examples introduced in chapter 11.

 The codes are always complete (not only partial sketches) and are accompanied by
comments and often also simulation results, illustrating the design ’ s main features.
All circuits were synthesized using Quartus II (from Altera) or ISE (from Xilinx). The
simulations were performed with Quartus II or ModelSim (from Mentor Graphics).
The default encoding scheme for the states of the FSMs was regular sequential encod-
ing (see encoding options in section 3.7).

 The same designs were developed in chapter 12 using VHDL, so the reader can
make a direct comparison between the codes.

 Note : See suggestions of SystemVerilog books in the bibliography.

 13.2 SystemVerilog Template for Recursive (Category 3) Moore Machines

 The template is presented below. Because it is an extension to the Moore templates
for categories 1 and 2, described in sections 7.3 and 10.2, respectively, a review of
those templates is suggested before this one is examined because only the differences
are described.

 The only differences are those needed for the inclusion of an auxiliary register,
compulsory in category 3 machines. In summary, the following must be added/
done to the previous template: declarations concerning the auxiliary register; an
 always_ff block to infer the auxiliary register; and proper adjustments in the recur-
sive equations to invoke the auxiliary register. These modifi cations are described
next.

266 Chapter 13

The auxiliary-register-related declarations are in line 13. It is assumed that there is
only one output and that it must be stored, but recall that the circuit might have
several outputs, not all registered. The actual number of auxiliary registers is deter-
mined by the number of outputs that depend on past output values.

To implement the auxiliary register, an always_ff block is employed in lines
21 – 23.

 Finally, note in the always_comb block of lines 29 – 49 that outp (lines 32 and 39)
is no longer a function of itself but rather a function of outp_reg . This removes the
recursiveness, allowing the output to be computed by a combinational circuit.

 As explained in section 11.3, an interesting aspect of category 3 FSMs is that the
auxiliary register can also play the role of output register (for glitch-free and/or pipe-
lined construction) when the output is one of the signals stored in an auxiliary register.
To do so, simply send outp_reg out instead of outp .

 1 //Part 1: Module header:-----------------------------
 2 (same as for categ. 1 and 2, sections 7.3 and 10.2)
 3
 4 //Part 2: Declarations:------------------------------
 5
 6 //FSM-related declarations:
 7 (same as for category 1 Moore, Section 7.3)
 8
 9 //Timer-related declarations:
 10 (same as for category 2 Moore, section 10.2)
 11
 12 //Auxiliary-register-related declarations:
 13 logic [N-1:0] outp, outp_reg;
 14
 15 //Part 3: Statements:--------------------------------
 16
 17 //Timer:
 18 (same as for category 2 Moore, section 10.2)
 19
 20 // Auxiliary register:
 21 always_ff @(posedge clk, posedge rst)
 22 if (rst) outp_reg < = < initial_value > ;
 23 else outp_reg < = outp;
 24
 25 //FSM state register:
 26 (same as for category 2 Moore, section 10.2)
 27
 28 //FSM combinational logic:
 29 always_comb
 30 case (pr_state)
 31 A: begin
 32 outp < = outp_reg;
 33 tmax < = T1-1; //if using strategy #2
 34 if (condition) nx_state < = B;
 35 else if (condition) nx_state < = ...;
 36 else nx_state < = A;

SystemVerilog Design of Recursive (Category 3) State Machines 267

 37 end
 38 B: begin
 39 outp < = outp_reg + 1;
 40 tmax < = T2-1; //if using strategy #2
 41 if (condition) nx_state < = C;
 42 else if (condition) nx_state < = ...;
 43 else nx_state < = B;
 44 end
 45 C: begin
 46 ...
 47 end
 48 ...
 49 endcase
 50
 51 //Optional output register:
 52 (same as for category 1 Moore, section 7.3)
 53
 54 endmodule
 55 //---

13.3 SystemVerilog Template for Recursive (Category 3) Mealy Machines

The template is presented below. The only difference with respect to the Moore tem-
plate just described is in the always_comb block for the combinational logic (lines
27 – 63) because the output is specifi ed differently now. Recall that in a Mealy machine
the output depends not only on the FSM ’ s state but also on its input, so if statements
are expected for the output in one or more states because the output (and t max) values
might not be unique. This is achieved by including such values within the conditional
statements for nx_state . For example, observe in lines 29 – 44, relative to state A, that
the output (and t max) values are now conditional. Compare these lines against lines
31 – 37 in the previous template.

 1 //Part 1: Module header:----------------------------
 2 (same as for category 3 Moore, section 13.2)
 3
 4 //Part 2: Declarations:------------------------------
 5
 6 //FSM-related declarations:
 7 (same as for category 3 Moore, section 13.2)
 8
 9 //Timer-related declarations:
 10 (same as for category 3 Moore, section 13.2)
 11
 12 //Auxiliary-register-related declarations:
 13 (same as for category 3 Moore, section 13.2)
 14
 15 //Part 3: Statements:-------------------------------
 16
 17 //Timer:
 18 (same as for category 3 Moore, section 13.2)
 19

268 Chapter 13

 20 // Auxiliary register:
 21 (same as for category 3 Moore, section 13.2)
 22
 23 //FSM state register:
 24 (same as for category 3 Moore, section 13.2)
 25
 26 //FSM combinational logic:
 27 always_comb
 28 case (pr_state)
 29 A:
 30 if (condition) begin
 31 outp < = outp_reg;
 32 tmax < = < value > ; //if using strategy #2
 33 nx_state < = B;
 34 end
 35 else if (condition) begin
 36 outp < = outp_reg + 1;
 37 tmax < = < value > ; //if using strategy #2
 38 nx_state < = ...;
 39 end
 40 else begin
 41 outp < = < value > ;
 42 tmax < = < value > ;
 43 nx_state < = A;
 44 end
 45 B:
 46 if (condition) begin
 47 outp < = outp_reg + 1;
 48 tmax < = < value > ;
 49 nx_state < = C;
 50 end
 51 else if (condition) begin
 52 outp < = outp_reg;
 53 tmax < = < value > ;
 54 nx_state < = ...;
 55 end
 56 else begin
 57 outp < = < value > ;
 58 tmax < = < value > ;
 59 nx_state < = B;
 60 end
 61 C: ...
 62 ...
 63 endcase
 64
 65 //Optional output register:
 66 (same as for category 3 Moore, section 13.2)
 67
 68 endmodule
 69 //---

13.4 Design of a Datapath Controller for a Multiplier

This section presents a SystemVerilog-based design for the control unit introduced
in section 11.7.5, which controls a datapath to produce a sequential add-and-shift

SystemVerilog Design of Recursive (Category 3) State Machines 269

multiplier. The Moore template for category 3 machines seen in section 13.2 is used
to implement the FSM of fi gure 11.12b.

 The fi rst part of the code (module header) is in lines 1 – 7. The module ’ s name is
contol_unit_for_multiplier . Note that all ports are of type logic .

 The second part of the code (declarations) is in lines 9 – 17. In the FSM-related dec-
larations (lines 12 – 14), the enumerated type state is created to represent the machine ’ s
present and next states. In the auxiliary-register-related declarations (line 17), i and
 i_reg are created to deal with the auxiliary register. Note that in this example none of
the actual outputs is stored in an auxiliary register (the auxiliary registers are always
for the variables that appear in the recursive equations).

 The third and fi nal part of the code (statements) is in lines 19 – 75. It contains three
 always blocks, described next.

 The fi rst always block (lines 22 – 24) is an always_ff that implements the auxiliary
register, exactly as in the template.

 The second always block (lines 27 – 29) is another always_ff , which implements
the machine ’ s state register, again exactly as in the template.

 The third and fi nal always block (lines 32 – 73) is an always_comb , which imple-
ments the entire combinational logic section. It is just a list of all states, each contain-
ing the output values and the next state. Note that because some of the output values
get repeated several times, default values were entered in lines 35 – 40, so they only
need to be included in the case statement when different values are required. Observe
that in the (originally) recursive equations (lines 53, 58, 64, and 69), i_reg appears on
the right-hand side instead of i itself (as proposed in the template). As usual, in each
state the output values are unique because in a Moore machine the outputs depend
only on the state in which the machine is.

 In datapath-related designs, possible glitches at the output of the control unit fol-
lowing clock transitions are normally not a problem, so the optional output register
was not employed.

 Finally, and very importantly, observe the correct use of registers and the complete-
ness of the code, as described in comment 8 of section 7.3. Observe in particular the
following: 1) all states are included; 2) the list of outputs is exactly the same in all
states, and the corresponding values/expressions are always properly declared; 3) any
conditional specifi cation for nx_state is fi nalized with an else statement, so no condi-
tion is left unchecked.

 The number of fl ip-fl ops inferred by the compiler on synthesizing the code below,
with regular sequential encoding (section 3.7), was six for N = 4 and nine for N = 32
bits. Compare these results against your predictions made in exercise 11.10.

 Simulation results from this code are exactly the same as those obtained using
VHDL, shown in fi gure 12.1.

270 Chapter 13

 1 //Module header:---
 2 module control_unit_for_multiplier
 3 #(parameter N=4) //number of bits
 4 (
 5 input logic dv, prod, clk, rst,
 6 output logic wrR1, sel, wrR2, shft,
 7 output logic [1:0] ALUop);
 8
 9 //Declarations:--
 10
 11 //FSM-related declarations:
 12 typedef enum logic [2:0]
 13 {idle, load, waitt, nop, add, shift} state;
 14 state pr_state, nx_state;
 15
 16 //Auxiliary-register-related declarations:
 17 logic [$clog2(N):0] i, i_reg; //function ceiling(log2(N))
 18
 19 //Statements:--
 20
 21 // Auxiliary register:
 22 always_ff @(posedge clk, posedge rst)
 23 if (rst) i_reg < = 0;
 24 else i_reg < = i;
 25
 26 //FSM state register:
 27 always_ff @(posedge clk, posedge rst)
 28 if (rst) pr_state < = idle;
 29 else pr_state < = nx_state;
 30
 31 //FSM combinational logic:
 32 always_comb begin
 33
 34 //Default values:
 35 wrR1 < = 'b0;
 36 sel < = 'b0;
 37 wrR2 < = 'b0;
 38 shft < = 'b0;
 39 ALUop < = 2'b00;
 40 i < = 0;
 41
 42 case (pr_state)
 43 idle:
 44 if (dv) nx_state < = load;
 45 else nx_state < = idle;
 46 load: begin
 47 wrR1 < = 'b1;
 48 sel < = 'b1;
 49 wrR2 < = 'b1;
 50 nx_state < = waitt;
 51 end
 52 waitt: begin
 53 i < = i_reg;
 54 if (~prod) nx_state < = nop;
 55 else nx_state < = add;

SystemVerilog Design of Recursive (Category 3) State Machines 271

 56 end
 57 nop: begin
 58 i < = i_reg;
 59 nx_state < = shift;
 60 end
 61 add: begin
 62 wrR2 < = 'b1;
 63 ALUop < = 2'b11;
 64 i < = i_reg;
 65 nx_state < = shift;
 66 end
 67 shift: begin
 68 shft < = 'b1;
 69 i < = i_reg + 1;
 70 if (i < N) nx_state < = waitt;
 71 else nx_state < = idle;
 72 end
 73 endcase
 74
 75 endmodule
 76 //---

13.5 Design of a Serial Data Receiver

This section presents a SystemVerilog-based design for the serial data receiver intro-
duced in section 11.7.7. The Moore template for category 3 machines seen in section
13.2 is used to implement the solution of fi gure 11.14c.

 The fi rst part of the code (module header) is in lines 1 – 7. The module ’ s name is
serial_data_receiver . Note that all ports are of type logic .

 The second part of the code (declarations) is in lines 9 – 17. In the FSM-related dec-
larations (lines 12 – 13), the enumerated type state is created to represent the machine ’ s
present and next states. In the auxiliary-register-related declarations (lines 16 – 17), y_
reg , i, and i_reg are created to deal with the auxiliary registers. Note that two auxiliary
registers are needed in this example: for the main (actual) output (y) and for the output
that operates as an auxiliary pointer (i) to the FSM.

 The third and fi nal part of the code (statements) is in lines 19 – 68. It contains three
 always blocks, described next.

 The fi rst always block (lines 22 – 30) is an always_ff that implements the auxiliary
register, similarly to the template.

 The second always block (lines 33 – 35) is another always_ff , which implements
the machine ’ s state register, exactly as in the template.

 The third and fi nal always block (lines 38 – 66) is an always_comb , which imple-
ments the entire combinational logic section. It is just a list of all states, each contain-
ing the output values and the next state. Observe that in the (originally) recursive
equations (lines 42, 49 – 50, and 58 – 59), i_reg and y_reg appear on the right-hand side
instead of i and y themselves (as proposed in the template). As usual, in each state the

272 Chapter 13

output values are unique because in a Moore machine the outputs depend only on
the state in which the machine is. Another important aspect can be observed in lines
50 – 51 and 59 – 60; note that fi rst a value is assigned to the entire vector y (lines 50 and
59); then one of its bits, y (i − 1), is overwritten (lines 51 and 60).

 In this kind of application, glitches during clock transitions are generally not a
problem. Anyway, because y is one of the signals that go through an auxiliary register,
if a glitch-free (pipelined) output is required, we can simply send out y_reg instead of y .

 Finally, and very importantly, observe the correct use of registers and the complete-
ness of the code, as described in comment 8 of section 7.3. Observe in particular the
following: 1) all states are included; 2) the list of outputs is exactly the same in all
states, and the corresponding values/expressions are always properly declared; 3) the
specifi cations for nx_state are always fi nalized with an else statement, so no condition
is left unchecked.

 The number of fl ip-fl ops inferred by the compiler on synthesizing the code below,
with regular sequential encoding (section 3.7) and N = 8, was 14.

 Simulation results from this code are exactly the same as those obtained using
VHDL, shown in fi gure 12.2.

 1 //Module header:--
 2 module serial_data_receiver
 3 #(parameter N=8) //number of bits (any > 0)
 4 (
 5 input logic x, dv, clk, rst,
 6 output logic done,
 7 output logic [N-1:0] y);
 8
 9 //Declarations:--
 10
 11 //FSM-related declarations:
 12 typedef enum logic [1:0] {idle, load0, load1} state;
 13 state pr_state, nx_state;
 14
 15 //Auxiliary-register-related declarations:
 16 logic [N-1:0] y_reg;
 17 logic [$clog2(N):0] i, i_reg; //function ceiling(log2(N))
 18
 19 //Statements:--
 20
 21 //Auxiliary register:
 22 always_ff @(posedge clk, posedge rst)
 23 if (rst) begin
 24 i_reg < = '0;
 25 y_reg < = '0;
 26 end
 27 else begin
 28 i_reg < = i;
 29 y_reg < = y;
 30 end

SystemVerilog Design of Recursive (Category 3) State Machines 273

 31
 32 //FSM state register:
 33 always_ff @(posedge clk, posedge rst)
 34 if (rst) pr_state < = idle;
 35 else pr_state < = nx_state;
 36
 37 //FSM combinational logic:
 38 always_comb
 39 case (pr_state)
 40 idle: begin
 41 i < = 1'b0;
 42 y < = y_reg;
 43 done < = 1'b1;
 44 if (dv & ~x) nx_state < = load0;
 45 else if (dv & x) nx_state < = load1;
 46 else nx_state < = idle;
 47 end
 48 load0: begin
 49 i < = i_reg + 1;
 50 y < = y_reg;
 51 y[i-1] < = 1'b0;
 52 done < = 1'b0;
 53 if (i=N) nx_state < = idle;
 54 else if (x) nx_state < = load1;
 55 else nx_state < = load0;
 56 end
 57 load1: begin
 58 i < = i_reg + 1;
 59 y < = y_reg;
 60 y[i-1] < = 1'b1;
 61 done < = 1'b0;
 62 if (i=N) nx_state < = idle;
 63 else if (~x) nx_state < = load0;
 64 else nx_state < = load1;
 65 end
 66 endcase
 67
 68 endmodule
 69 //---

13.6 Design of a Memory Interface

This section presents a SystemVerilog-based design for the memory interface intro-
duced in section 11.7.8 (fi gure 11.16). The SRAM used in the experiments is the
IS61LV25616 device, from ISSI, which is capable of storing 262k 16-bit words. The
corresponding FSM was presented in fi gure 11.16c, and the circuit ports are depicted
in fi gure 13.1 (note that a test circuit has been included).

 The fi rst part of the code (module header) is in lines 1 – 19. The module ’ s name is
 sram_interface . Several global parameters were included for both the main circuit and
a test circuit. The port names are from fi gure 13.1 . All ports are of type logic .

274 Chapter 13

The signals in lines 16 – 19 are for the test circuit. seed (line 17), set by two switches,
is added to the actual address (A , line 14) to produce the test data (D , line 16), which
is displayed on a seven-segment display by means of the signal ssd (line 18). Two LEDs
are lit by the signals done_wr and done_rd (line 19) to indicate when the test circuit
has fi nished writing to or reading from the memory, respectively.

 The second part of the code (declarations) is in lines 21 – 56. In the FSM-related
declarations (lines 24 – 26), the enumerated type state is created to represent the
machine ’ s present and next states. In the auxiliary-register-related declarations (line
29), A_reg is created to deal with the auxiliary register (observe that the address is the
signal that appears in the recursive expressions, so that is the signal to be stored in
that register). In the timer-related declarations (line 32), the signals needed to build a
0.5-s timer are created, to be used in the read1-read2 transition (see t = T 2) of fi gure
11.16c, so the user has enough time to observe the value presented on the display
during the tests. Finally, a function is created in lines 35 – 56 to implement later the
SSD driver (integer-to-SSD conversion).

 The third and fi nal part of the code (statements) is in lines 58 – 149. It contains six
sections, described next.

 The fi rst section (lines 61 – 64) of the statements produces the static signals to
be connected to the SRAM chip during the tests. Note that they are all enabled
(because they are active low), except for the upper byte of the data word, which is not
used here.

 The second section (lines 67 – 69) of the statements contains an always_ff block,
which implements the timer (needed in the read1-read2 transition; the write1-write2
transition is made at full clock speed). This code is similar to the template of section
10.2. Both timer control strategies (section 8.5) are allowed for this FSM.

 The third code section (lines 73 – 75) is another always_ff block, which implements
the auxiliary register, exactly as in the template.

Figure 13.1
Setup for the experiments with the SRAM memory interface introduced in fi gure 11.16, also

including a test circuit. The device ’ s truth table is also shown.

SystemVerilog Design of Recursive (Category 3) State Machines 275

The fourth code section (lines 78 – 80) is an always_ff block that implements the
FSM ’ s state register, again exactly as in the template.

 The fi fth portion (lines 83 – 139) of the statements is part of an always_comb block
that implements the entire FSM ’ s combinational logic section. It is just a list with all
states, each containing the output and time parameter values, plus the next state.
Observe that in the (originally) recursive equations (lines 96, 104, 113, and 122), A_reg
appears on the right-hand side instead of A itself (as proposed in the template). As
usual, in each state the output values are unique because in a Moore machine the
outputs depend only on the state in which the machine is.

 Finally, the code in lines 142 – 147 implements the test circuit. This code is impor-
tant because it illustrates one way (similar to VHDL — see section 12.6) of dealing with
a bidirectional bus. Note that during the writing procedure the FPGA sends data to
the SRAM, but when data is being read from the SRAM, the FPGA ’ s output must go
into high-impedance (fl oating) mode because they (FPGA and SRAM) are physically
connected to the same wires (data bus D). Observe also that the generated data consist
simply of A + seed (line 142; see also fi gure 13.1), which is written to the SRAM when
a wr = ‘ 1 ’ pulse occurs and is read from the SRAM and displayed on the SSD when a
 rd = ‘ 1 ’ pulse occurs.

 In this kind of application, glitches during clock transitions are generally not a
problem, so the optional output register is not needed.

 Finally, and very importantly, observe the correct use of registers and the complete-
ness of the code, as described in comment 8 of section 7.3. Observe in particular the
following: 1) all states are included; 2) the list of outputs is exactly the same in all
states, and the corresponding values/expressions are always properly declared; 3) the
specifi cations for nx_state , when conditional, are always fi nalized with an else state-
ment, so no condition is left unchecked.

 1 //Module header:-----------------------------------
 2 module sram_interface
 3 #(parameter
 4 //Main-circuit parameters:
 5 Abus = 18, //Address bus width
 6 Dbus = 16, //Data bus width
 7 //Test-circuit parameters:
 8 Tread = 25_000_000, //Time=0.5s @fclk=50MHz
 9 Amax = 12) //Max address in test circuit
 10 (
 11 //Main-circuit ports:
 12 input logic rd, wr, clk, rst,
 13 output logic CEn, WEn, OEn, UBn, LBn,
 14 output logic [17:0] A,
 15 //Test-circuit ports:
 16 inout logic [7:0] D, //Only lower-byte used
 17 input logic [1:0] seed,
 18 output logic [6:0] ssd,
 19 output logic done_wr, done_rd);
 20

276 Chapter 13

 21 //Declarations:-----------------------------------
 22
 23 //FSM-related declarations:
 24 typedef enum logic [2:0]
 25 {idle, write1, write2, read1, read2, hold} state;
 26 state pr_state, nx_state;
 27
 28 //Auxiliary-register-related declarations:
 29 logic [Abus-1:0] A_reg;
 30
 31 //Timer-related declarations:
 32 logic [$clog2(Tread)-1:0] t, tmax; //range ≥ Tread
 33
 34 //Function construction:
 35 function [6:0] integer_to_ssd;
 36 input [3:0] inp;
 37 case (inp)
 38 0: integer_to_ssd = 7'b0000001;
 39 1: integer_to_ssd = 7'b1001111;
 40 2: integer_to_ssd = 7'b0010010;
 41 3: integer_to_ssd = 7'b0000110;
 42 4: integer_to_ssd = 7'b1001100;
 43 5: integer_to_ssd = 7'b0100100;
 44 6: integer_to_ssd = 7'b0100000;
 45 7: integer_to_ssd = 7'b0001111;
 46 8: integer_to_ssd = 7'b0000000;
 47 9: integer_to_ssd = 7'b0000100;
 48 10: integer_to_ssd = 7'b0001000;
 49 11: integer_to_ssd = 7'b1100000;
 50 12: integer_to_ssd = 7'b0110001;
 51 13: integer_to_ssd = 7'b1000010;
 52 14: integer_to_ssd = 7'b0110000;
 53 15: integer_to_ssd = 7'b0111000;
 54 default: integer_to_ssd = 7'b1111110;
 55 endcase
 56 endfunction
 57
 58 //Statements:--------------------------------------
 59
 60 //Static SRAM signals:
 61 assign CEn = 1'b0;
 62 assign OEn = 1'b0;
 63 assign UBn = 1'b0;
 64 assign LBn = 1'b0;
 65
 66 //Timer (using strategy #2):
 67 always_ff @(posedge clk, posedge rst)
 68 if (rst) t < = 0;
 69 else if (t < tmax) t < = t + 1;
 70 else t < = 0;
 71
 72 // Auxiliary register:
 73 always_ff @(posedge clk, posedge rst)
 74 if (rst) A_reg < = 0;
 75 else A_reg < = A;
 76

SystemVerilog Design of Recursive (Category 3) State Machines 277

 77 //FSM state register:
 78 always_ff @(posedge clk, posedge rst)
 79 if (rst) pr_state < = idle;
 80 else pr_state < = nx_state;
 81
 82 //FSM combinational logic:
 83 always_comb begin
 84 case (pr_state)
 85 idle: begin
 86 A < = 0;
 87 WEn < = 1'b1;
 88 done_wr < = 1'b1;
 89 done_rd < = 1'b1;
 90 tmax < = 0;
 91 if (wr & ~rd) nx_state < = write1;
 92 else if (~wr & rd) nx_state < = read1;
 93 else nx_state < = idle;
 94 end
 95 write1: begin
 96 A < = A_reg;
 97 WEn < = 1'b0;
 98 done_wr < = 1'b0;
 99 done_rd < = 1'b1;
 100 tmax < = 0;
 101 nx_state < = write2;
 102 end
 103 write2: begin
 104 A < = A_reg + 1;
 105 WEn < = 1'b1;
 106 done_wr < = 1'b0;
 107 done_rd < = 1'b1;
 108 tmax < = 0;
 109 if (A < = Amax) nx_state < = write1;
 110 else nx_state < = hold;
 111 end
 112 read1: begin
 113 A < = A_reg;
 114 WEn < = 1'b1;
 115 done_wr < = 1'b1;
 116 done_rd < = 1'b0;
 117 tmax < = Tread;
 118 if (t > =tmax) nx_state < = read2;
 119 else nx_state < = read1;
 120 end
 121 read2: begin
 122 A < = A_reg + 1;
 123 WEn < = 1'b1;
 124 done_wr < = 1'b1;
 125 done_rd < = 1'b0;
 126 tmax < = 0;
 127 if (A < = Amax) nx_state < = read1;
 128 else nx_state < = hold;
 129 end
 130 hold: begin
 131 A < = 0;
 132 WEn < = 1'b1;
 133 done_wr < = 1'b1;

278 Chapter 13

 134 done_rd < = 1'b1;
 135 tmax < = 0;
 136 if (~wr & ~rd) nx_state < = idle;
 137 else nx_state < = hold;
 138 end
 139 endcase
 140
 141 //In-out port with tri-state:
 142 if (~done_wr) D < = A[7:0] + seed;
 143 else D < = 'z;
 144
 145 //SSD signal produced by function integer_to_ssd:
 146 ssd < = integer_to_ssd(D[3:0]);
 147 end
 148
 149 endmodule
 150 //---

13.7 Exercises

Exercise 13.1: Long-String Comparator #1
Solve exercise 12.1 using SystemVerilog instead of VHDL.

Exercise 13.2: Long-String Comparator #2
Solve exercise 12.2 using SystemVerilog instead of VHDL.

Exercise 13.3: Hamming-Weight Calculator
Solve exercise 12.3 using SystemVerilog instead of VHDL.

Exercise 13.4: Leading-Ones Counter
Solve exercise 12.4 using SystemVerilog instead of VHDL.

Exercise 13.5: Complete Reference-Value Defi ner
Solve exercise 12.5 using SystemVerilog instead of VHDL.

Exercise 13.6: Factorial Calculator
Solve exercise 12.6 using SystemVerilog instead of VHDL.

Exercise 13.7: Divider
Solve exercise 12.7 using SystemVerilog instead of VHDL.

14 Additional Design Examples

This chapter presents three additional FSM-based designs. They are included in a sepa-
rate chapter because theoretical details and background material are also provided,
leading to much longer design examples. Moreover, FSMs from all three categories are
involved, depending on the application. The chapter starts with a simple LCD driver,
followed by the I 2 C and SPI interfaces, which are currently the most popular circuits
for serial communication between integrated circuits.

 14.1 LCD Driver

 Like SSDs (seven segment displays), alphanumeric LCDs (liquid crystal displays) are
popular options for displaying readings in all sorts of equipment, from watches to car
speedometers, from microwave ovens to medical instruments. Their main advantages
over SSDs are a much lower power consumption and the possibility of displaying
basically any character and also simple fi gures, but at a higher price and a more
complex driver.

 14.1.1 Alphanumeric LCD
 A popular alphanumeric LCD is shown in fi gure 14.1 , which contains two lines of 16
characters each. A picture of the display is shown in fi gure 14.1a . The corresponding
pinout is exhibited in fi gure 14.1b . The internal display layout is illustrated in fi gure
14.1c , showing 16 × 2 dot arrays of size 8 × 5 each. In fi gure 14.1d , its most frequent
exhibition mode is depicted, consisting of 8 × 5-dot arrays for 7 × 5 characters. Finally,
in fi gure 14.1e , its other predefi ned exhibition mode is depicted, consisting of 11 × 5-
dot arrays, for 10 × 5 characters.

 Even though this kind of display can also be found with I 2 C and other serial inter-
faces, for low-cost applications the use of parallel access through an HD44780U micro-
controller constitutes the industry standard. Such a controller (from Hitachi, or an
equivalent one such as KS0066U from Samsung) is installed on the back of the device,
acting as the interface between the LCD and the external world. The device is then

280 Chapter 14

accessed through the 16 pins listed in fi gure 14.1b , which include power, contrast,
control, and data.

 Circuit Ports
 To use this kind of display, the fi rst step is to understand its microcontroller. The
purposes of the signals listed in fi gure 14.1b are described below.

 — E (enable, pin 6): Writing into the LCD controller occurs at the negative edge of E ,
whereas reading occurs at the positive edge.
 — RS (register select, pin 4): ‘ 0 ’ selects the controller ’ s instruction register (for initializa-
tion, for example), whereas ‘ 1 ’ selects its data register (for the characters to be displayed
by the LCD).
 — R/W (read/write, pin 5): ‘ 1 ’ for reading, ‘ 0 ’ for writing. If R/W = ‘ 0 ’ , the next negative
edge of E causes the present instruction or data to be written into the controller ’ s
register selected by RS . If R/W = ‘ 1 ’ , data is read from the controller ’ s register at the
next positive edge of E .
 — DB (data bus, pins 7 – 14): Bidirectional eight-bit bus for sending/receiving data or
instructions to/from the LCD controller.
 — BF (busy fl ag, pin 14): The microcontroller sets bit 7 of DB to ‘ 1 ’ when it is busy,
informing that writing is not allowed. In practice, the use of this signal can be avoided
by adopting for each instruction a time long enough to guarantee completion.

Figure 14.1
Alphanumeric LCD. (a) Popular 16 × 2 device. (b) Pinout (with HD44780U microcontroller). (c)

Internal layout (16 × 2 8 × 5-dot blocks). (d) Standard 8 × 5-dot exhibition mode (two lines of 7 × 5

characters). (e) Standard 11 × 5-dot confi guration (single line of 10 × 5 characters).

Additional Design Examples 281

Figure 14.2
LCD controller (HD44780U or equivalent) instruction set.

Controller Instructions
The controller ’ s instruction set is shown in fi gure 14.2 , along with explanatory com-
ments and worst-case execution times. As mentioned above, a common design practice
is to adopt a slow clock to operate the LCD, such that any of the instructions has
enough time to be completed (so reading BF is not necessary); for example, 500 Hz,
hence allowing 2 ms for execution.

 The maximum execution times in fi gure 14.2 are for the controller ’ s internal oscil-
lator operating at 270 kHz. This frequency is set by an external resistor between 75
k Ω (for V DD = 3 V) and 91 k Ω (for V DD = 5 V). If a different frequency is employed (with
different resistor values, the range that can be covered is roughly 100 – 500 kHz), then
the execution times must be multiplied by 270 kHz/ f oscillator .

282 Chapter 14

Character ROM
A total of 192 predefi ned characters of size 7 × 5 (see fi gure 14.3) are available in the
LCD controller ’ s character generator ROM (CGROM). The CGROM also contains 32
characters of size 10 × 5. When the former are used (hence, with 8 × 5-dot blocks), the
LCD can operate with two lines; when the latter (11 × 5-dot blocks) are used, only
single-line operation is possible. User-defi ned characters are also allowed, so other
exhibition modes are possible, such as full-height (16 × 5-dot) characters.

 Initialization by Instructions
 An important design consideration is the controller ’ s initialization procedure, which
can be done in two ways: automatically, at power up, or by instructions. The latter
can be used when the power supply conditions for automatic initialization are not
met, or for safety. It consists of the following (adjusted) sequence (always with R/W =
 ‘ 0 ’ and RS = ‘ 0 ’ ; as usual, “ − ” means “ don ’ t care ”):

Figure 14.3
Predefi ned characters of size 7 × 5 available in the LCD controller ’ s ROM.

Additional Design Examples 283

1) Turn the power ON.
2) Wait > 15 ms after V DD rises to 4.5 V.
 3) Execute instruction “ Function set, ” with DB = “ 0011 − − − − ” .
 4) Wait > 4.1 ms.
 5) Execute instruction “ Function set, ” with DB = “ 0011 − − − − ” .
 6) Wait > 100 μ s.
 7) Execute instruction “ Function set, ” with DB = “ 0011 − − − − ” .
 8) Execute instruction “ Function set, ” with DB = “ 0011 N F − − ” (choose N and F).
 9) Execute instruction “ Clear display, ” with DB = “ 00000001 ” .
 10) Execute instruction “ Display on/off control, ” with DB = “ 00001100 ” .
 11) Execute instruction “ Entry mode set, ” with DB = “ 000001 I/D S ” (choose I/D
and S).

 (Some equivalent microcontrollers have a slightly simpler initialization.)

 14.1.2 Typical FSM Structure for Alphanumeric LCD Drivers
 A typical FSM structure for writing to the LCD of fi gure 14.1 is shown in fi gure 14.4a ,
clocked by E at around 500 or 600 Hz. The seven states in the upper row constitute
the initialization sequence (compare those states to the sequence described above),

Figure 14.4
(a) Typical structure for an FSM that writes characters to the LCD of fi gure 14.1 . (b) Another

example for the actual data-writing states, displaying the digits of a clock.

284 Chapter 14

and the states in the lower row (within a dashed rectangle) are responsible for the
actual data-writing procedure. Note that RS = ‘ 0 ’ in the upper row, needed to write to
the instruction register, whereas RS = ‘ 1 ’ in the lower row (except for state ReturnHome),
so the writing occurs in the data register. R/W (not shown) is kept permanently low
(writing only).

 In the initialization sequence of fi gure 14.4a the same value was adopted for DB in
all four repetitions of the “ Function set ” instruction, with N = ‘ 1 ’ (two-line operation)
and F = ‘ 0 ’ (5 × 8-dot characters). In the “ Entry mode ” instruction the selected values
were I/D = ‘ 1 ’ (DD RAM address incremented automatically) and S = ‘ 0 ’ (display not
shifted).

 The actual data-writing sequence (lower row, inside the dashed rectangle) depends
on the application. In fi gure 14.4a a timed (category 2) machine is employed, which
writes a total of eight characters (t running from 0 to 7) to the LCD, then returns to
the initial display address and overwrites those eight characters, repeating this loop
indefi nitely.

 Another data-writing example is presented in fi gure 14.4b , this time with a regular
(category 1) machine (this is the FSM that will be implemented with VHDL in the
next section). It displays the digits of a digital clock, with tens of hours and units of
hours in the fi rst two positions, then a colon, followed by tens and units of minutes
in the next two characters, then another colon, and fi nally tens and units of seconds
in the last two positions, after which the machine repeats the loop, overwriting the
characters with the new readings. This FSM will implement the LCD driver, while the
values of DB (hourT , hourU , minT , minU , secT , secU) shown in fi gure 14.4b are produced
by another circuit, responsible for implementing the timer proper. Note that DB =
 “ 00111010 ” was used in states WriteColon1 and WriteColon2 , which corresponds to the
 “ : ” character (check this in fi gure 14.3).

 The FSM of fi gure 14.4 is simple enough to also be implemented using the pointer-
based technique described in chapter 15.

 14.1.3 Complete Design Example: Clock with LCD Display
 Figure 14.5 shows a digital clock that displays hours, minutes, and seconds on an
alphanumeric LCD. The circuit was divided into two blocks, with the fi rst block imple-
menting the clock proper and the second block implementing the LCD driver.

 The Clock block is controlled by fi ve pushbuttons, as follows. Powers-of-two (simple
shifts) were chosen as speed-up factors to reduce the amount of hardware.

 — sec (adjustment of seconds): Increases the clock speed by a factor of 8.
 — min (adjustment of minutes): Increases the clock speed by a factor of 256.
 — hour (adjustment of hours): Increases the clock speed by a factor of 8192.
 — rst_clock (clock reset): Resets the clock (and so the display) to zero.
 — rst_lcd (LCD reset): Resets the FSM that implements the LCD driver.

Additional Design Examples 285

The outputs of the Clock block are the following:

— secU : Units of seconds.
— secT : Tens of seconds.
— minU : Units of minutes.
— minT : Tens of minutes.
— hourU : Units of hours.
— hourT : Tens of hours.

Finally, the outputs of the LCD Driver block are the signals already described (listed
in fi gure 14.1b):

— E (enable): Actual LCD clock.
— RS (register select): Selects LCD instruction (‘ 1 ’) or data (‘ 0 ’) register.
 — R/W (read/write): Selects LCD read (‘ 1 ’) or write (‘ 0 ’) operation.
 — DB (data bus): Bidirectional eight-bit bus.
 — LCD_ON : Turns display on (‘ 1 ’) or off (‘ 0 ’).
 — BKLT_ON : Turns backlight on (‘ 1 ’) or off (‘ 0 ’).

 VHDL Code
 Because of space limitations, only the VHDL code is presented. However, with that
code and the SystemVerilog codes seen in chapters 7, 10, and 13, writing the corre-
sponding SystemVerilog code is relatively simple.

 A complete VHDL code for the FSM of fi gure 14.4b , with the initialization sequence
of fi gure 14.4a , is presented below. Because it is a category 1 machine, it was based on
the template of section 6.3.

 The entity, called clock_with_LCD_display , is in lines 5 – 12. The clock frequency was
entered as a generic constant (line 6), so the speed-up factors (lines 50 – 53), the 1-s
time base for the clock (line 57), and the frequency of the LCD clock (500 Hz, lines
120 and 124) will adjust automatically when this parameter changes. The circuit ports
(lines 8 – 11) are exactly as in fi gure 14.5 and are all of type std_logic or std_logic_vector
(industry standard).

Figure 14.5
Digital clock with LCD display.

286 Chapter 14

The architecture, called moore_fsm , is in lines 14 – 214. As usual, it contains a declara-
tive part and a statements part, both commented below.

 The declarative part of the architecture (lines 16 – 43) starts with a function that
converts binary-coded decimal (BCD) values into LCD characters (according to fi gure
14.3). It also contains FSM-related and other signal declarations. In the FSM declara-
tions (lines 35 – 39), the enumerated type state is created to represent the machine ’ s
present and next states. The other declarations contain in line 42 the signals needed
to interface the Clock block with the LCD block (see fi gure 14.5) and in line 43 a
signal that will allow the adoption of different limits in the fi rst clock counter so the
clock can be sped up during seconds, minutes, or hours adjustments.

 The code proper (statements part, lines 45 – 214) is divided into two parts. Part I
(lines 47 – 110) implements the Clock block of fi gure 14.5 , while part II (lines 112 – 212)
implements the LCD Driver block of fi gure 14.5 .

 Part I (Clock block) contains just defi nitions for the speed-up factors (lines 50 – 53)
and a basic process (lines 56 – 110) that implements the clock proper.

 Part II (LCD Driver block) starts with defi nitions for the LCD static signals (lines
114 – 116), followed by a process (lines 119 – 129) that creates the 500 Hz clock for the
LCD controller. The last two processes implement the FSM that runs the LCD, with
the sequential section (FSM state register) in lines 132 – 139 and the combinational
logic section in lines 142 – 212, based directly on the template of section 6.3. Note that
this last process follows fi gure 14.4 exactly.

 Finally, observe the correct use of registers and the completeness of the code, as
described in comment 10 of section 6.3.

 The reader is invited to set up this (or an equivalent) experiment and play with it
in the FPGA board.

 1 --
 2 library ieee;
 3 use ieee.std_logic_1164.all;
 4 --
 5 entity clock_with_LCD_display is
 6 generic (fclk: natural := 50_000_000); --freq in Hz
 7 port (
 8 clk, rst_clock, rst_lcd, sec, min, hour: in std_logic;
 9 RS, RW, LCD_ON, BKLT_ON: out std_logic;
 10 E: buffer std_logic;
 11 DB: out std_logic_vector(7 downto 0));
 12 end entity;
 13 --
 14 architecture moore_fsm of clock_with_LCD_display is
 15
 16 --BCD-to-LCD character conversion function:
 17 function bcd_to_lcd (input: natural) return std_logic_vector is
 18 begin
 19 case input is

Additional Design Examples 287

 20 when 0 = > return "00110000"; --"0" on LCD
 21 when 1 = > return "00110001"; --"1" on LCD
 22 when 2 = > return "00110010"; --"2" on LCD
 23 when 3 = > return "00110011"; --"3" on LCD
 24 when 4 = > return "00110100"; --"4" on LCD
 25 when 5 = > return "00110101"; --"5" on LCD
 26 when 6 = > return "00110110"; --"6" on LCD
 27 when 7 = > return "00110111"; --"7" on LCD
 28 when 8 = > return "00111000"; --"8" on LCD
 29 when 9 = > return "00111001"; --"9" on LCD
 30 when others = > return "00111111"; --"?" on LCD
 31 end case;
 32 end bcd_to_lcd;
 33
 34 --FSM-related declarations:
 35 type state is (FunctionSet1, FunctionSet2, FunctionSet3,
 36 FunctionSet4, ClearDisplay, DisplayControl, EntryMode,
 37 WriteHourT, WriteHourU, WriteColon1, WriteMinT, WriteMinU,
 38 WriteColon2, WriteSecT, WriteSecU, ReturnHome);
 39 signal pr_state, nx_state: state;
 40
 41 --Other signal declarations:
 42 signal secU, secT, minU, minT, hourU, hourT: natural range 0 to 9;
 43 signal limit: natural range 0 to fclk;
 44
 45 begin
 46
 47 --PART I: CLOCK BLOCK--------------------------
 48
 49 --Speed-up factors:
 50 limit < = fclk/8192 when hour='1' else
 51 fclk/256 when min='1' else
 52 fclk/8 when sec='1' else
 53 fclk;
 54
 55 --Clock design:
 56 process (clk, rst_clock)
 57 variable counter1: natural range 0 to fclk;
 58 variable counter2: natural range 0 to 10;
 59 variable counter3: natural range 0 to 6;
 60 variable counter4: natural range 0 to 10;
 61 variable counter5: natural range 0 to 6;
 62 variable counter6: natural range 0 to 10;
 63 variable counter7: natural range 0 to 3;
 64 begin
 65 if rst_clock=’1’ then
 66 counter1 := 0;
 67 counter2 := 0;
 68 counter3 := 0;
 69 counter4 := 0;
 70 counter5 := 0;
 71 counter6 := 0;
 72 counter7 := 0;
 73 elsif rising_edge(clk) then
 74 counter1 := counter1 + 1;
 75 if counter1=limit then

288 Chapter 14

 76 counter1 := 0;
 77 counter2 := counter2 + 1;
 78 if counter2=10 then
 79 counter2 := 0;
 80 counter3 := counter3 + 1;
 81 if counter3=6 then
 82 counter3 := 0;
 83 counter4 := counter4 + 1;
 84 if counter4=10 then
 85 counter4 := 0;
 86 counter5 := counter5 + 1;
 87 if counter5=6 then
 88 counter5 := 0;
 89 counter6 := counter6 + 1;
 90 if (counter7/=2 and counter6=10) OR
 91 (counter7=2 and counter6=4) then
 92 counter6 := 0;
 93 counter7 := counter7 + 1;
 94 if counter7=3 then
 95 counter7 := 0;
 96 end if;
 97 end if;
 98 end if;
 99 end if;
 100 end if;
 101 end if;
 102 end if;
 103 end if;
 104 secU < = counter2;
 105 secT < = counter3;
 106 minU < = counter4;
 107 minT < = counter5;
 108 hourU < = counter6;
 109 hourT < = counter7;
 110 end process;
 111
 112 --PART II: LCD DRIVER BLOCK--------------------
 113
 114 LCD_ON < = '1';
 115 BKLT_ON < = '1';
 116 RW < = '0';
 117
 118 --Generate 500Hz enable (E):
 119 process (clk)
 120 variable counter1: natural range 0 to fclk/1000;
 121 begin
 122 if rising_edge(clk) then
 123 counter1 := counter1 + 1;
 124 if counter1=fclk/1000 then
 125 counter1 := 0;
 126 E < = not E;
 127 end if;
 128 end if;
 129 end process;
 130
 131 --FSM state register:
 132 process (E, rst_lcd)

Additional Design Examples 289

 133 begin
 134 if rst_lcd='1' then
 135 pr_state < = FunctionSet1;
 136 elsif rising_edge(E) then
 137 pr_state < = nx_state;
 138 end if;
 139 end process;
 140
 141 --FSM combinational logic:
 142 process (all)
 143 begin
 144 case pr_state is
 145 --Initialization:
 146 when FunctionSet1 = >
 147 RS < = '0';
 148 DB < = "00111000";
 149 nx_state < = FunctionSet2;
 150 when FunctionSet2 = >
 151 RS < = '0';
 152 DB < = "00111000";
 153 nx_state < = FunctionSet3;
 154 when FunctionSet3 = >
 155 RS < = '0';
 156 DB < = "00111000";
 157 nx_state < = FunctionSet4;
 158 when FunctionSet4 = >
 159 RS < = '0';
 160 DB < = "00111000";
 161 nx_state < = ClearDisplay;
 162 when ClearDisplay = >
 163 RS < = '0';
 164 DB < = "00000001";
 165 nx_state < = DisplayControl;
 166 when DisplayControl = >
 167 RS < = '0';
 168 DB < = "00001100";
 169 nx_state < = EntryMode;
 170 when EntryMode = >
 171 RS < = '0';
 172 DB < = "00000110";
 173 nx_state < = WriteHourT;
 174 --Write data:
 175 when WriteHourT = >
 176 RS < = '1';
 177 DB < = bcd_to_lcd(hourT);
 178 nx_state < = WriteHourU;
 179 when WriteHourU = >
 180 RS < = '1';
 181 DB < = bcd_to_lcd(hourU);
 182 nx_state < = WriteColon1;
 183 when WriteColon1 = >
 184 RS < = '1';
 185 DB < = "00111010";
 186 nx_state < = WriteMinT;
 187 when WriteMinT = >
 188 RS < = '1';
 189 DB < = bcd_to_lcd(minT);

290 Chapter 14

 190 nx_state < = WriteMinU;
 191 when WriteMinU = >
 192 RS < = '1';
 193 DB < = bcd_to_lcd(minU);
 194 nx_state < = WriteColon2;
 195 when WriteColon2 = >
 196 RS < = '1';
 197 DB < = "00111010";
 198 nx_state < = WriteSecT;
 199 when WriteSecT = >
 200 RS < = '1';
 201 DB < = bcd_to_lcd(secT);
 202 nx_state < = WriteSecU;
 203 when WriteSecU = >
 204 RS < = '1';
 205 DB < = bcd_to_lcd(secU);
 206 nx_state < = ReturnHome;
 207 when ReturnHome = >
 208 RS < = '0';
 209 DB < = "10000000";
 210 nx_state < = WriteHourT;
 211 end case;
 212 end process;
 213
 214 end architecture;
 215 --

14.2 I 2 C Interface

 I 2 C (Inter Integrated Circuit) is a synchronous eight-bit oriented serial bus for com-
munication between integrated circuits installed next to each other (normally on the
same board). Created by Philips in the 1980s, it is a two-wire bus with fi ve standard-
ized speed modes, called standard (100 kbps), fast (400 kbps), fast-plus (1 Mbps), high-
speed (3.4 Mbps), and ultrafast (5 Mbps).

 14.2.1 I 2 C Bus Structure
 The I 2 C bus general structure is depicted in fi gure 14.6 . Its two wires are called SCL
(serial clock) and SDA (serial data), which interconnect a master unit to a number of

Figure 14.6
General I 2 C bus structure.

Additional Design Examples 291

slave units. A common ground wire (not shown) is obviously also needed for the
system to function. Examples of IC families currently fabricated with I 2 C support are
also shown in the fi gure, including microcontrollers, EEPROM and Flash memories,
A/D and D/A converters, RTC (real time clock) circuits, temperature sensors, and
accelerometers, among others.

 As indicated in fi gure 14.6 , the clock (SCL) is unidirectional, always generated by
the master (usually a microcontroller), whereas data (SDA) transmission is bidirec-
tional. Because SCL and SDA are open-drain lines (the 5-Mbps version also allows
push-pull logic), external pull-up resistors (R PU) must be connected between these wires
and the power supply.

 The number of devices sharing the same bus can be up to 128 (seven-bit address)
or 1024 (10-bit address). More than one master is allowed, in which case the I 2 C pro-
tocol provides bus arbitration. Other advanced features include clock stretching,
general call, reset by software, and others.

 14.2.2 Open-Drain Outputs
 As mentioned, SCL and SDA are open-drain pins. Details on open-drain connections
for SDA (which is bidirectional) are shown in fi gure 14.7 . Note that for an individual
stage (the master, for example) to have its output high, the corresponding nMOS
transistor must be cut off (so its gate voltage must be low), because then the output
voltage will be elevated to V DD by the pull-up resistor. Because all stages are hardwired
to the same SDA node, the only way to have SDA high is to have all nMOS transistors
off; in other words, all individual outputs must be high. Consequently, the SDA node
behaves as an AND gate, so any nonactive unit must keep its output high (i.e., internal
nMOS transistor gate voltage low) in order not to interfere with the communication
between any other units.

 Because of the open-drain arrangement, the high-impedance state (‘ Z ’ , in VHDL)
provided by tristate buffers is actually not needed. However, the design example
shown ahead is tested with the master on an FPGA (without open-drain pads), so in
that case the ‘ Z ’ state is required.

Figure 14.7
Open-drain connections for the SDA wire.

292 Chapter 14

Figure 14.8
(a) I 2 C communication principle. (b) Time parameters. (c) Resulting (allowed) operation.

The value of R PU is typically in the 1-k Ω to 33-k Ω range. It depends on the total
 SCL or SDA wire capacitance; if it is large (long bus with many slaves), then the resis-
tor must be small to achieve the rise time defi ned in the I 2 C specifi cations. The value
of V DD was 5 V in initial I 2 C-driven devices, but voltages as low as 1.8 V are now
common.

 14.2.3 I 2 C Bus Operation
 Data transfers are always done one byte at a time, after which an acknowledgment bit
is issued by the receiving end. The general principle is depicted in fi gure 14.8a , which
shows a data transmission from the master to a slave. The start sequence consists of
lowering SDA with SCL high, whereas the stop sequence consists of raising SDA with
 SCL high. This means that during data transmission SDA must remain stable while
 SCL is high; otherwise start/stop commands will occur (note in the fi gure that the data
is always updated while SCL is low). While the master is transmitting (always MSB
fi rst), the slave remains with its output high (nMOS transistor cut off — represented by
 ‘ Z ’ in the fi gure), so the master has control over the SDA wire. After the eighth bit is

Additional Design Examples 293

received, the slave issues an ack bit, which (for obvious reasons) can only be a ‘ 0 ’ . As
also depicted in fi gure 14.8a , the slave stores the data available on the SDA wire at the
positive edge of SCL and places data on that wire at the negative edge.

 The main time parameters are summarized in fi gure 14.8b, which have the follow-
ing meaning:

 t SU_STA (setup time for start): SCL stable high before SDA high-to-low transition.
 t HD_STA (hold time for start): SCL still stable high after SDA high-to-low transition.
 t SU_DAT (setup time for data): data or address stable before SCL pulse.
 t HD_DAT (hold time for data): data or address still stable after SCL pulse.
 t SU_STO (setup time for stop): SCL stable high before SDA low-to-high transition.
 t BUF (bus-free time): bus-free time before another data transmission.

 Figure 14.8b also shows examples of numerical values for these time parameters. A
very important observation is that t HD_DAT = 0 (this is generally true for I 2 C-interfaced
devices), which causes the simpler timing diagram of fi gure 14.8c to be allowed.

 The overall I 2 C protocol is summarized in fi gure 14.9 . In fi gure 14.9a the master
writes data to a slave, whereas in fi gure 14.9b it reads data from a slave. White blocks
represent actions taken by the master, and gray blocks indicate actions taken by
the slave.

Figure 14.9
Summary of I 2 C operation for (a) writing and (b) reading.

294 Chapter 14

The write procedure (fi gure 14.9a) begins with a start pulse, followed by the fi rst
byte, which contains the slave ’ s seven-bit address plus a ‘ 0 ’ appended to its right-end
(this ‘ 0 ’ informs the slave that a write procedure will occur). The corresponding slave
responds with an acknowledgment bit (= ‘ 0 ’). The second byte is then issued by the
master, containing the initial memory address where the writing must occur, to which
the slave responds with another ack bit. After this, data writing begins, which can
consist of any number of bytes, until the master ends the operation with a stop pulse.

 The read procedure (fi gure 14.9b) is exactly the same as the write procedure
up to line 1, or up to line 2 if the same initial address is used for writing and for
reading. After line 2 another start pulse is issued by the master, followed by the seven-
bit slave ’ s address, this time with a ‘ 1 ’ appended to its right-end (informing that a
read operation will occur), to which the slave responds with a fi nal ack bit. After this
point the slave issues the data and the master issues the ack bit. Again, any number
of bytes can be transferred, until a no-ack (= ‘ 1 ’) bit is issued by the master, followed
by a stop pulse.

 The repetition seen in fi gure 14.9b (before line 2) is sometimes referred to as dummy
write . It is necessary because I 2 C also permits reading from wherever the address
pointer sits, in which case the entire portion before line 2 is omitted. In other words,
the dummy write resets the address pointer to a specifi c position.

 The diagram of fi gure 14.9 is shown in a temporal fashion in fi gure 14.10 , now
with all waveforms to be used in the experiments explicitly shown. This diagram is
based directly on fi gure 14.8c. Because t HD_DAT = 0 (fi gure 14.8b), only a single clock is
actually needed. Observe the safe construction of the restart sequence, needed for
reading, which takes two clock cycles (left and right portions). Note also the inclusion
of a hold state at the end, which waits for wr = ‘ 0 ’ (and also rd = ‘ 0 ’ if sequential

Figure 14.10
Detailed I 2 C signals for (a) writing and (b) reading (compare to the sequences in fi gure 14.9).

Additional Design Examples 295

reading is not wanted) and for a time equal to t BUF before a new transmission can take
place. Because this diagram is completely generic, it can be used as the basis for any
circuit that writes/reads data to/from any I 2 C-interfaced device.

 14.2.4 Typical FSM Structure for I 2 C Applications
 Figure 14.11 shows a typical FSM structure for implementing an I 2 C master circuit.
The sequence of states is based directly on fi gures 14.9 and 14.10 . The process starts
when a wr = ‘ 1 ’ or rd = ‘ 1 ’ pulse is received, with the fi rst three states after the idle
state corresponding to the initialization sequence (down to line 1 of fi gure 14.9). After
this point the upper branch is pursued if writing is wanted, or the lower branch if
reading is intended.

 Understanding this state transition diagram well is very important because basically
the only changes from one I 2 C application to another are in the data-write and data-
read sequences inside the dashed rectangles. Two very important aspects of this
machine are commented on below.

 The fi rst point regards the duration of the wr and rd signals. Note that these signals
are used to make decisions in two points along the FSM, so at least one of them must
last up to the point where the second decision must be made. If wr and rd are short
pulses, then a stretcher (section 8.11.10) can be used; another (simpler) solution is to
repeat the three initial states for writing and for reading. If, on the other hand, wr and
 rd are long pulses, then the hold state (which waits also for t BUF) shown after stop can
solve the problem.

 The second point regards the two blocks within dashed rectangles. If the number
of bytes to be transmitted or received is small, then one pair “ write-data + ack ” or
 “ read-data + ack ” can be used for each byte. However, for a large number of bytes, it
is more practical to build a loop to have the same pair repeated a number of times
(except for the last pair when reading data, because then no-ack must be used in place
of ack). Both solutions can be implemented with a category 2 machine (based on the

Figure 14.11
Typical FSM structure for I 2 C master implementations.

296 Chapter 14

material in section 8.7), or with a category 3 machine (based on the material in section
11.5), or still using the pointer-based technique described in chapter 15. In the design
example shown next, a category 3 machine is used, with individual pairs for reading
and a looped pair for writing.

14.2.5 Complete Design Example: RTC (Real-Time Clock) Interface
This section shows a complete design example for an I 2 C master that interfaces with
an RTC (real-time clock) circuit. The master fi rst writes the current time and date to
the RTC; then it reads the clock-related data continuously, hence having the RTC
operate as a high-precision clock. The circuit is implemented with VHDL and physi-
cally tested in the FPGA development board.

 The RTC employed in this example is the PFC8593 (see fi gure 14.12a), from NXP,
which contains clock, calendar, timer, and alarm features (see the device ’ s manual).

 The setup for the experiment is shown in fi gure 14.12b . The inputs are the wr and
 rd commands plus the traditional clock and reset. The output is divided into two sets;
the fi rst set contains SCL and SDA (plus a chip-reset signal), thus constituting the
actual I 2 C bus; the second set of outputs is for testing the circuit, displaying on six
SSDs (or on an LCD) the data (clock information) read from the RTC. The FSM fi rst
writes the time and date into the RTC; then it reads continuously the clock-related
data produced by the RTC.

 The 16 registers (each eight bits long) of the PCF8593 RTC are detailed in fi gure
14.13 . Register 0 is used for setup information; register 1 stores subseconds, with units
of subseconds in bits 3:0, and tens of subseconds in bits 7:4; register 2 stores seconds,
with units of seconds (0 to 9 values) in bits 3:0, and tens of seconds (values from 0
to 5) in bits 7:4; and so on.

Figure 14.12
(a) PCF8593 pinout. (b) Setup for the experiment.

Additional Design Examples 297

Data is written to registers 0 to 7, which comprise the clock and calendar; then
registers 2 to 4 are read (thus the initial address for reading is different from that for
writing), which contain clock information concerning seconds, minutes, and hours.
The following data are written (assuming that the present time and date are 1:30 pm
of Christmas day): Control = “ 00000000 ” ; Subseconds = “ 00000000 ” (0.00 s); Seconds
= “ 00000000 ” (00 s); Minutes = “ 00110000 ” (30 min); Hours = “ 00010011 ” (13 h, 24-h
option selected); Date = “ 00100101 ” (date 25); Month = “ 00010010 ” (month 12).

 A detailed state transition diagram for this problem is presented in fi gure 14.14 ,
based directly on fi gures 14.10 and 14.11 . Either a category 2 or a category 3 machine
can be used to implement this kind of circuit; the latter option was chosen here,
whereas the former option will be employed in the next section, which deals with the
SPI interface. This FSM is simple enough to also be implemented using the pointer-
based technique described in chapter 15.

 Figure 14.14 was divided into three parts. The overall FSM is presented in fi gure
14.14a , where six common states plus write and read blocks are shown. Because the
 wr and rd commands are produced by two switches (long signals) in the experiments,
the state called hold was included after stop to force the machine to wait until wr = ‘ 0 ’
occurs before returning to idle (long rd = ‘ 1 ’ is accepted because continuous reading is
wanted here, although this could also be done by repeating only the data-reading
states). It was chosen not to have hold wait for t BUF because another immediate write
sequence is very unlikely to be needed in this kind of application. The write sequence
is shown in fi gure 14.14b ; seven bytes of data (listed under the dashed rectangle) must
be transmitted, so the pair of states inside the dashed rectangle must be repeated seven
times. Finally, the read sequence is presented in fi gure 14.14c ; three bytes of data (listed
under the dashed rectangle) must be received (and stored), so the pair of states inside
the dashed rectangle must be repeated three times. We have elected to use a pointer
(j) to repeat the wr_data-ack3 pair in the transmitter and to use three separate pairs to
repeat the rd_data-ack (or noack) pair in the receiver.

Figure 14.13
PCF8593 registers.

298 Chapter 14

Figure 14.14
Complete FSM for the I 2 C RTC interface.

Two pointers are used in fi gure 14.14 . The fi rst (i) is employed in all states where
more than one bit must be transmitted or received. The second (j) can be useful when
multiple bytes are involved, which is the case of the dashed rectangles in fi gures
14.14b,c ; as mentioned above, we have chosen to use j only in the transmitter. Recall
that in a category 2 (timed) machine the pointer would run from 0 to 7 (for one byte
of data), whereas here it runs from 1 to 8 because the pointer is immediately incre-
mented when the FSM enters a multibit state (then the i = 8 condition in the state
diagram would be i = 7 if it were a category 2 machine).

 Observe that the values for SDA in fi gure 14.14 are those that must be produced
by the master. For example, when the slave is supposed to answer with SDA = ‘ 0 ’ in
the ack states, the master must produce SDA = ‘ Z ’ (FPGA implementation). Note also
that SDA = x (8 − i) was used in the eight-bit writing states, indicating that the MSB will
be transmitted fi rst [recall that i ranges from 1 to 8, so x (7) will go fi rst and x (0) will
go last]. Here, x is just a generic name; the actual signal name varies from one state
to another. Finally, note that the received data must be stored somewhere, as indicated
by an arrow and a box over the dashed rectangle in fi gure 14.14c .

Additional Design Examples 299

VHDL Code
Because of space limitations, only the VHDL code is presented. However, with this
code and the SystemVerilog codes seen in chapters 7, 10, and 13, writing the corre-
sponding SystemVerilog code is relatively simple.

 A complete VHDL code for the FSM of fi gure 14.14 is presented below. Because it
is a category 3 machine, it was based on the template of section 12.2.

 Initially, a function called bcd_to_ssd , to convert BCD (binary-coded decimal) values
into SSD values (display driver), was built in a separate package (called my_functions),
which is called in the main code (lines 252 – 257) to make the corresponding
conversions.

 The entity, called RTC_with_I2C_bus , is in lines 6 – 37. A number of system param-
eters were entered as generic constants (lines 7 – 23), including the clock frequency (50
MHz, line 9) and the desired I 2 C speed (100 kbps, line 10), so the I 2 C clock (i2c_clk)
is automatically adjusted (in lines 71 and 75) when these parameters change. They
also include the RTC addresses of interest (lines 12 – 15) and the time and date to be
stored in the RTC registers (lines 17 – 23).

 The circuit ports, all of type std_logic or std_logic_vector (industry standard), are in
lines 24 – 36. They are exactly as in fi gure 14.12b .

 The architecture, called moore_fsm , is in lines 39 – 259. As usual, it contains a declara-
tive part and a statements part, both commented on below.

 The declarative part of the architecture (lines 41 – 63) contains FSM-related and
auxiliary-register-related declarations plus other system declarations. In the FSM dec-
larations (lines 42 – 50), the enumerated type state is created to represent the machine ’ s
present and next states. In the auxiliary-register declarations (lines 53 – 54), the signals
needed to build the pointers i and j are created. Finally, the other declarations (lines
57 – 63) include the I 2 C clock, the signals that will store the values read from the RTC
(test circuit), and also a 1D × 1D type called data_array , used to build a ROM called
 data_out containing the data to be sent to the slave (to set the clock and calendar).

 The statements part (lines 65 – 259) contains fi ve processes. The fi rst process (lines
70 – 80) produces i2c_clk , with frequency 100 kHz (desired data rate).

 The second process (lines 83 – 94) builds the FSM ’ s state register plus the auxiliary
registers for i and j .

 The third process (lines 97 – 237) implements the entire combinational logic section
of the FSM, following the state transition diagram of fi gure 14.14 exactly. Note that
because some of the output values are repeated a number of times, they were entered
as default values in lines 100 – 102, so the actual list of outputs (SCL , SDA , i , j) is indeed
exactly the same in all states.

 The fourth and fi nal process (lines 240 – 251) plus associated statements (lines
252 – 257) constitute the test circuit. It stores the data read from the RTC and sends it
to the display.

300 Chapter 14

Observe the correct use of registers and the completeness of the code, as described
in comment 10 of section 6.3.

The reader is invited to set up this (or an equivalent) experiment and play with it
in the FPGA board.

 1 ----Package with function “bcd_to_ssd”:-----------------
 2 library ieee;
 3 use ieee.std_logic_1164.all;
 4 package my_functions is
 5 function bcd_to_ssd(input:std_logic_vector)
 6 return std_logic_vector;
 7 end my_functions;
 8 --
 9 package body my_functions is
 10 function bcd_to_ssd(input: std_logic_vector)
 11 return std_logic_vector is
 12 begin
 13 case input is
 14 when "0000" = > return "0000001"; --"0" on SSD
 15 when "0001" = > return "1001111"; --"1" on SSD
 16 when "0010" = > return "0010010"; --"2" on SSD
 17 when "0011" = > return "0000110"; --"3" on SSD
 18 when "0100" = > return "1001100"; --"4" on SSD
 19 when "0101" = > return "0100100"; --"5" on SSD
 20 when "0110" = > return "0100000"; --"6" on SSD
 21 when "0111" = > return "0001111"; --"7" on SSD
 22 when "1000" = > return "0000000"; --"8" on SSD
 23 when "1001" = > return "0000100"; --"9" on SSD
 24 when others = > return "1111110"; --"-" on SSD
 25 end case;
 26 end bcd_to_ssd;
 27 end package body;
 28 --

 1 ----Main code:---
 2 library ieee;
 3 use ieee.std_logic_1164.all;
 4 use work.my_functions.all; --package with “bcd_to_ssd” function
 5 ---
 6 entity RTC_with_I2C_bus is
 7 generic (
 8 --Clock parameters:
 9 fclk: positive := 50_000_000; --Clock frequency in Hz
 10 data_rate: positive := 100_000; --Desired I2C bus speed in bps
 11 --RTC addresses:
 12 slave_addr_for_wr: std_logic_vector(7 downto 0) := "10100010";
 13 slave_addr_for_rd: std_logic_vector(7 downto 0) := "10100011";
 14 initial_addr_for_wr: std_logic_vector(7 downto 0) := "00000000";
 15 initial_addr_for_rd: std_logic_vector(7 downto 0) := "00000010";
 16 --Values to store in the RTC clock/calendar registers:
 17 set_control: std_logic_vector(7 downto 0) := "00000000";
 18 set_subsec: std_logic_vector(7 downto 0) := "00000000"; --0.00 sec
 19 set_sec: std_logic_vector(7 downto 0) := "00000000"; --00 sec

Additional Design Examples 301

 20 set_min: std_logic_vector(7 downto 0) := "00110000"; --30 min
 21 set_hour: std_logic_vector(7 downto 0) := "00010011"; --13 h
 22 set_date: std_logic_vector(7 downto 0) := "00100101"; --date 25
 23 set_month: std_logic_vector(7 downto 0) := "00010010"); --month 12
 24 port (
 25 --Clock and control ports:
 26 clk, rst, wr, rd: in std_logic;
 27 --I2C ports:
 28 SCL, CH_RSTn: out std_logic;
 29 SDA: inout std_logic;
 30 --Display ports (test circuit):
 31 ssd_1sec: out std_logic_vector(6 downto 0); --units of seconds
 32 ssd_10sec: out std_logic_vector(6 downto 0); --tens of seconds
 33 ssd_1min: out std_logic_vector(6 downto 0); --units of minutes
 34 ssd_10min: out std_logic_vector(6 downto 0); --tens of minutes
 35 ssd_1hour: out std_logic_vector(6 downto 0); --units of hours
 36 ssd_10hour: out std_logic_vector(6 downto 0)); --tens of hours
 37 end entity;
 38 ---
 39 architecture moore_fsm of RTC_with_I2C_bus is
 40
 41 --FSM-related declarations:
 42 type state is (
 43 --common states:
 44 idle, start, slave_addr_wr, ack1, stop, hold,
 45 --write-only states:
 46 initial_addr_wr, ack2, wr_data, ack3,
 47 --read-only states:
 48 initial_addr_rd, ack4, restartL, restartR, slave_addr_rd, ack5,
 49 rd_sec, ack6, rd_min, ack7, rd_hour, no_ack);
 50 signal pr_state, nx_state: state;
 51
 52 --Auxiliary-register-related declarations:
 53 signal i, i_reg: natural range 0 to 8;
 54 signal j, j_reg: natural range 0 to 7;
 55
 56 --Other declarations:
 57 signal i2c_clk: std_logic;
 58 signal sec: std_logic_vector(7 downto 0);
 59 signal min: std_logic_vector(7 downto 0);
 60 signal hour: std_logic_vector(7 downto 0);
 61 type data_array is array (0 to 6) of std_logic_vector(7 downto 0);
 62 constant data_out: data_array := (set_control, set_subsec, set_sec,
 63 set_min, set_hour, set_date, set_month);
 64
 65 begin
 66
 67 CH_RSTn < = not rst; --chip reset
 68
 69 --i2c_clk (100kHz):
 70 process (clk)
 71 variable count: natural range 0 to fclk/(2*data_rate);
 72 begin
 73 if rising_edge(clk) then
 74 count := count + 1;
 75 if count=fclk/(2*data_rate) then

302 Chapter 14

 76 i2c_clk < = not i2c_clk;
 77 count := 0;
 78 end if;
 79 end if;
 80 end process;
 81
 82 --FSM state register + Auxiliary register:
 83 process (i2c_clk, rst)
 84 begin
 85 if rst='1' then
 86 pr_state < = idle;
 87 i_reg < = 0;
 88 j_reg < = 0;
 89 elsif falling_edge(i2c_clk) then
 90 pr_state < = nx_state;
 91 i_reg < = i;
 92 j_reg < = j;
 93 end if;
 94 end process;
 95
 96 --FSM combinational logic:
 97 process (all)
 98 begin
 99 --Default values:
 100 SCL < = i2c_clk;
 101 i < = 0;
 102 j < = 0;
 103 case pr_state IS
 104 --Common states:
 105 when idle = >
 106 SCL < = '1';
 107 SDA < = '1';
 108 if wr='1' or rd='1' then
 109 nx_state < = start;
 110 else
 111 nx_state < = idle;
 112 end if;
 113 when start = >
 114 SCL < = '1';
 115 SDA < = '0';
 116 nx_state < = slave_addr_wr;
 117 when slave_addr_wr = >
 118 SDA < = slave_addr_for_wr(8-i);
 119 i < = i_reg + 1;
 120 if i=8 then
 121 nx_state < = ack1;
 122 else
 123 nx_state < = slave_addr_wr;
 124 end if;
 125 when ack1 = >
 126 SDA < = 'Z';
 127 if wr='1' then
 128 nx_state < = initial_addr_wr;
 129 else
 130 nx_state < = initial_addr_rd;
 131 end if;
 132 when stop = >

Additional Design Examples 303

 133 SDA < = '0';
 134 nx_state < = hold;
 135 when hold = >
 136 SCL < = '1';
 137 SDA < = '1';
 138 if wr='0' then
 139 nx_state < = idle;
 140 else
 141 nx_state < = hold;
 142 end if;
 143 --Data-write states:
 144 when initial_addr_wr = >
 145 SDA < = initial_addr_for_wr(8-i);
 146 i < = i_reg + 1;
 147 if i=8 then
 148 nx_state < = ack2;
 149 else
 150 nx_state < = initial_addr_wr;
 151 end if;
 152 when ack2 = >
 153 SDA < = 'Z';
 154 nx_state < = wr_data;
 155 when wr_data = >
 156 SDA < = data_out(j)(8-i);
 157 i < = i_reg + 1;
 158 j < = j_reg;
 159 if i=8 then
 160 nx_state < = ack3;
 161 else
 162 nx_state < = wr_data;
 163 end if;
 164 when ack3 = >
 165 SDA < = 'Z';
 166 j < = j_reg + 1;
 167 if j < 7 then
 168 nx_state < = wr_data;
 169 else
 170 nx_state < = stop;
 171 end if;
 172 --Data-read states:
 173 when initial_addr_rd = >
 174 SDA < = initial_addr_for_rd(8-i);
 175 i < = i_reg + 1;
 176 if i=8 then
 177 nx_state < = ack4;
 178 else
 179 nx_state < = initial_addr_rd;
 180 end if;
 181 when ack4 = >
 182 SDA < = 'Z';
 183 nx_state < = restartL;
 184 when restartL = >
 185 SCL < = '0';
 186 SDA < = '1';
 187 nx_state < = restartR;
 188 when restartR = >
 189 SCL < = '1';

304 Chapter 14

 190 SDA < = not i2c_clk;
 191 nx_state < = slave_addr_rd;
 192 when slave_addr_rd = >
 193 SDA < = slave_addr_for_rd(8-i);
 194 i < = i_reg + 1;
 195 if i=8 then
 196 nx_state < = ack5;
 197 else
 198 nx_state < = slave_addr_rd;
 199 end if;
 200 when ack5 = >
 201 SDA < = 'Z';
 202 nx_state < = rd_sec;
 203 when rd_sec = >
 204 SDA < = 'Z';
 205 i < = i_reg + 1;
 206 if i=8 then
 207 nx_state < = ack6;
 208 else
 209 nx_state < = rd_sec;
 210 end if;
 211 when ack6 = >
 212 SDA < = '0';
 213 nx_state < = rd_min;
 214 when rd_min = >
 215 SDA < = 'Z';
 216 i < = i_reg + 1;
 217 if i=8 then
 218 nx_state < = ack7;
 219 else
 220 nx_state < = rd_min;
 221 end if;
 222 when ack7 = >
 223 SDA < = '0';
 224 nx_state < = rd_hour;
 225 when rd_hour = >
 226 SDA < = 'Z';
 227 i < = i_reg + 1;
 228 if i=8 then
 229 nx_state < = no_ack;
 230 else
 231 nx_state < = rd_hour;
 232 end if;
 233 when no_ack = >
 234 SDA < = '1';
 235 nx_state < = stop;
 236 end case;
 237 end process;
 238
 239 --Store data read from RTC and send it to display:
 240 process (i2c_clk)
 241 begin
 242 if rising_edge(i2c_clk) then
 243 if (pr_state=rd_sec) then
 244 sec(8-i) < = SDA;
 245 elsif (pr_state=rd_min) then

Additional Design Examples 305

 246 min(8-i) < = SDA;
 247 elsif (pr_state=rd_hour) then
 248 hour(8-i) < = SDA;
 249 end if;
 250 end if;
 251 end process;
 252 ssd_1sec < = bcd_to_ssd(sec(3 downto 0));
 253 ssd_10sec < = bcd_to_ssd(sec(7 downto 4));
 254 ssd_1min < = bcd_to_ssd(min(3 downto 0));
 255 ssd_10min < = bcd_to_ssd(min(7 downto 4));
 256 ssd_1hour < = bcd_to_ssd(hour(3 downto 0));
 257 ssd_10hour < = bcd_to_ssd(“00” & hour(5 DOWNTO 4));
 258
 259 end architecture;
 260 ---

 14.3 SPI Interface
 Serial peripheral interface (SPI) is another synchronous serial bus for communication
between integrated circuits (installed next to each other, normally on the same board).
Like I 2 C, it operates in a master-slave architecture, but it is simpler to implement and
can operate at higher speeds (up to around 100 Mbps), although it requires more
interconnecting wires. Developed by Motorola for its 68HC family of microcontrollers,
it is now in widespread use.

 14.3.1 SPI Bus Structure
 The SPI bus general structure is depicted in fi gure 14.15 . In fi gure 14.15a , a single slave
is shown (normally, the master is a microcontroller), so four wires are needed, called
 SCK (serial clock, always generated by the master), MOSI (Master Out Slave In), MISO
(Master In Slave Out), and SSn (Slave Select, active low). When SSn is low, the slave is
selected, to/from which the master sends/receives messages through the MOSI / MISO
wires. In fi gure 14.15b , a multislave system is depicted, so multiple SSn wires are
needed. Examples of ICs with SPI support are also shown in the fi gure, which are
essentially the same categories as for I 2 C (e.g., microcontrollers, EEPROM and Flash
memories, A/D and D/A converters, RTCs, and accelerometers).

Figure 14.15
General SPI bus structure with (a) single and (b) multiple slaves.

306 Chapter 14

SPI is simpler than I 2 C because there is no bidirectional line, and the device selec-
tion is made with a separate wire for each slave rather than with a transmitted address.
On the other hand, SPI demands more I/O pins, can operate with only one master,
has no message acknowledgment, and because there is no standard message, format
validation would be more diffi cult. SPI is said to be a four-wire bus, but that is indeed
the least number of wires, whereas I 2 C is truly two wires. In some cases a bidirectional
line can be used for MOSI and MISO together, resulting then a three-wire bus.

 14.3.2 SPI Bus Operation
 There are four SPI operating modes, determined by the clock phase (CPHA) and clock
polarity (CPOL). They are called mode 0 (CPHA = 0, CPOL = 0), mode 1 (CPHA = 0,
 CPOL = 1), mode 2 (CPHA = 1, CPOL = 0), and mode 3 (CPHA = 1, CPOL = 1). The two
most common modes are 0 and 3, illustrated in fi gures 14.16a,b ; note that in mode
0 SSn is lowered with SCK low, whereas the opposite occurs in mode 3.

 Figure 14.16c shows how the slave operates. It stores the data available on the MOSI
wire at positive clock edges and places data on the MISO wire at negative clock transi-
tions. Consequently, the FSM used to implement the master side of this interface must
operate at the negative clock edge, so the data provided by the machine will be ready
for the slave at the positive clock edge. Likewise, a register that records the data issued
by the slave must operate at the positive clock edge, so the data (issued at the negative
clock edge) will be ready for storage.

 Part of the communication between master and slave is ruled by information stored
in eight-bit registers at both ends. These registers are not standardized, neither in
number nor in content. For example, the SPI in the Motorola MC68HC908GT micro-
controller contains three registers (for status, called SPSCR, control, SPCR, and data,
SPDR), whereas the SPI in the Maxim DS1306 RTC has two registers (for status and
control), and the SPI in the Ramtron FM25L512 FRAM memory contains only one (for
status).

Figure 14.16
(a, b) Main SPI operating modes. (c) Slave ’ s registers operation.

Additional Design Examples 307

The general communication procedure consists of a number of opcodes transmitted
by the master to the slave, followed by a data-write or data-read procedure with any
number of data bytes. The only particularity is that each opcode must be preceded by
a deselect-reselect sequence.

As an example, the FRAM memory used in the design example presented ahead
requires two opcodes, called WREN (sets the write enable latch) and WRITE (enables
writing to the memory — at the next positive clock edge), before actual data writing
takes place. The same device requires one opcode, called READ (enables reading from
the memory — at the next negative clock edge), before actual data reading occurs.
Consequently, a typical fl ow for the SPI interface for this FRAM is that depicted in
 fi gure 14.17 . Note in fi gure 14.17a that the device is deselected-reselected between two
consecutive opcodes. Dashed lines indicate “ don ’ t care ” or high-impedance values for
the MOSI/MISO wires. Observe the safe distance between the high-to-low transitions
of SSn and the next positive edge of SCK , as well as between the low-to-high transi-
tions of SSn and the previous negative edge of SCK , both required to be at least 10 ns
in this particular device.

 14.3.3 Complete Design Example: FRAM (Ferroelectric RAM) Interface
 To illustrate the use of SPI, the FM25L512 FRAM mentioned above, from Ramtron, is
used as an example. It is a 64k × 8 bits nonvolatile memory with serial access through
an SPI bus. Its pinout, list of opcodes, and contents of the status register are shown
in fi gure 14.18 . An important feature of this technology (FRAM) is that data can be
written into it at high speed (20 MHz in the present example), contrasting with
EEPROM, which generally takes a few milliseconds/page.

Figure 14.17
Examples of SPI behavior for (a) writing and (b) reading (FM25L512 FRAM device).

308 Chapter 14

Note in fi gure 14.18 that besides the SPI pins (SCK , SSn , MOSI , MISO), the chip
contains also two other control pins, called WPn (write protect) and HOLDn . The
purpose of WPn is, together with bits 7 (WPEN), 3 (BP1), and 2 (BP0) of the status
register, to allow several protection modes against writing to both the memory and
the status register. For example, with WPn = ‘ 1 ’ and WPEN = BP1 = BP0 = ‘ 0 ’ , all writ-
ings are allowed (see other protection options in the device ’ s datasheets). The role of
 HOLDn is to handle interrupts.

 In addition to the bits mentioned above, there is another programmable bit in the
status register, called WEL (write enable latch), which determines whether writing is
allowed (when ‘ 1 ’) or not (when ‘ 0 ’). Only when WEL = ‘ 1 ’ are the protection options
mentioned above in place (any writing is forbidden while WEL = ‘ 0 ’). Because this bit
is automatically zeroed at power up or at the upward transition of SSn after a WRITE,
WRSR, or WRDI opcode, any write action must start with the WREN opcode because
that is the only way of setting WEL to ‘ 1 ’ (writing to the status register does not affect
this bit).

 Figure 14.19 shows the setup for the experiment. The inputs are wr (write) and rd
(read) commands plus the traditional clock (assumed to be 50 MHz) and reset (wr , rd ,

Figure 14.18
FM25L512 FRAM memory: Pinout, opcodes, and status register.

Figure 14.19
(a) Setup for the experiment. (b) FRAM wiring.

Additional Design Examples 309

and rst are from switches). The outputs are the SPI signals (SSn , SCK , MOSI , and MISO —
 the last one is in fact an input), connected to the slave, plus ssd1 and ssd2 , which feed
two SSD displays to exhibit the data retrieved from the FRAM. A frequency of 5 MHz
is used for spi_clk (as mentioned, this device can operate at up to 20 MHz). The fi gure
also shows how the device was wired.

 A detailed FSM for this problem is presented in fi gure 14.20 (employing mode 0).
The data-write sequence is in the upper branch, while the data-read sequence is in the
lower branch. MOSI = x (7 − i) in some of the states is just a symbolic way of saying that
vector x , with eight bits, starting with the MSB, must be transmitted. Note that this
is a category 2 (timed) machine, so the timers (here represented by i and j) run from
0 to i max and 0 to j max .

 In this experiment a total of eight bytes are written into the FRAM, starting at
address zero; note that state wr_data lasts from { i = 0, j = 0} up to { i = 7, j = 7}, hence
transmitting eight bytes, corresponding to x (0)(7:0) up to x (7)(7:0). A test circuit is
also included, which reads all eight bytes from the FRAM and displays them sequen-
tially onto the two SSDs; note the arrow and box associated with state rd_data , inform-
ing that data must be recorded (from the MISO wire) while the FSM is in that state.

 The FSM of fi gure 14.20 can be implemented with a category 2 or category 3
machine (the former is employed in the VHDL code below). It is also simple enough
to be implemented using the pointer-based technique described in chapter 15 (see
section 15.5).

 VHDL Code
 A complete VHDL code for the FSM of fi gure 14.20 is presented below, following the
template for timed (category 2) machines introduced in chapter 9.

 Initially, a function called hex_to_ssd , to convert hexadecimal values into SSD values
(display driver), was built in a separate package (called my_functions), then called in
the main code (lines 217 – 218) to make the corresponding conversions.

Figure 14.20
FSM for the SPI FRAM interface.

310 Chapter 14

The entity, called FRAM_with_SPI_bus , is in lines 6 – 22. The SPI parameters were
declared as generic constants (lines 9 – 13). The circuit ports (lines 15 – 21) follow fi gure
14.19a and are all of type std_logic or std_logic_vector (industry standard).

 The architecture, called moore_fsm , is in lines 24 – 224. As usual, it contains a declara-
tive part and a statements part, both commented on below.

 The declarative part of the architecture (lines 26 – 41) contains FSM-related and
timer-related declarations plus other system declarations. In the FSM declarations
(lines 27 – 29), the enumerated type state is created to represent the machine ’ s present
and next states. In the timer declarations (lines 32 – 33), the signals needed to build
the timers i and j are created. Finally, the other declarations (lines 36 – 41) include the
SPI clock, plus a 1D × 1D type called data_array used to build a ROM called data_out
(lines 38 – 40) whose contents are sent to the FRAM. A similar 1D × 1D signal is declared
in line 41, which is used to create a register in which all data read from the FRAM is
stored during the tests.

 The statements part (lines 43 – 224) contains fi ve processes. The fi rst process (lines
49 – 59) creates the SPI clock (5 MHz, assuming that the system clock is 50 MHz; as
mentioned, this FRAM can operate at up to 20 MHz). As seen in fi gure 14.17 , this is
the only clock needed in the entire SPI circuit. Because the slave stores data at the
rising clock edge, the FSM (and therefore its associated timers too) must operate at the
negative edge.

 The second process (lines 62 – 80) implements the timers. In this example, the timer-
control strategy #1 (section 8.5.2) was adopted.

 The third process (lines 83 – 90) implements the FSM state register. Like the timers,
it too operates at the negative clock edge.

 The fourth process (lines 93 – 193) implements the entire combinational logic
section. It is just a list of all states, obeying the state transition diagram of fi gure 14.20
exactly. As usual, in each state the outputs (SSn , SCK , MOSI) and the time parameters
(i max , j max ,) are specifi ed, and the next state is defi ned. Note that because some of
the output values are repeated a number of times, default values were entered in
lines 96 – 100, so the actual list of outputs and time parameters is exactly the same in
all states.

 The fi fth and fi nal process (lines 196 – 223) builds the test circuit. First, the data
read from the FRAM (while the machine is in the rd_data state) is stored into
the data_in 1D × 1D register (at the positive clock edge, line 201, because the slave places
the data on the MISO wire at the negative clock transition). Because the machine
operates at 5 MHz, an independent slow counter (2 Hz) is produced in lines 205 – 214,
which allows the read data to be sequentially displayed on two SSDs while the machine
remains in the wait_rd0 state (that is, while the rd switch remains on). Note in
the ROM of lines 38 – 40 that the fi rst byte contains the values 0 (last half) and 1
(right half), the second contains 2 and 3, the third contains 4 and 5, and so on, so

Additional Design Examples 311

these pairs of values are the values expected to be seen on the display (during
0.5 s each).

 Observe the correct use of registers and the completeness of the code, as described
in comment 10 of section 6.3.

 The reader is invited to set up this (or an equivalent) experiment and play with it
in the FPGA board.

 1 --Package with function "hex_to_ssd":--------------------------------------
 2 library ieee;
 3 use ieee.std_logic_1164.all;
 4 package my_functions is
 5 function hex_to_ssd(input:std_logic_vector) return std_logic_vector;
 6 end my_functions;
 7 ---
 8 package body my_functions is
 9 function hex_to_ssd(input: std_logic_vector) return std_logic_vector is
 10 begin
 11 case input is
 12 when "0000" = > return "0000001"; --"0" on SSD
 13 when "0001" = > return "1001111"; --"1" on SSD
 14 when "0010" = > return "0010010"; --"2" on SSD
 15 when "0011" = > return "0000110"; --"3" on SSD
 16 when "0100" = > return "1001100"; --"4" on SSD
 17 when "0101" = > return "0100100"; --"5" on SSD
 18 when "0110" = > return "0100000"; --"6" on SSD
 19 when "0111" = > return "0001111"; --"7" on SSD
 20 when "1000" = > return "0000000"; --"8" on SSD
 21 when "1001" = > return "0000100"; --"9" on SSD
 22 when "1010" = > return "0001000"; --"A" on SSD
 23 when "1011" = > return "1100000"; --"b" on SSD
 24 when "1100" = > return "0110001"; --"C" on SSD
 25 when "1101" = > return "1000010"; --"d" on SSD
 26 when "1110" = > return "0110000"; --"E" on SSD
 27 when "1111" = > return "0111000"; --"F" on SSD
 28 when others = > return "1111110"; --"-" on SSD
 29 end case;
 30 end hex_to_ssd;
 31 end package body;
 32 ---

 1 --Main code:---
 2 library ieee;
 3 use ieee.std_logic_1164.all;
 4 use work.my_functions.all; --package with “hex_to_ssd” function
 5 ---
 6 entity FRAM_with_SPI_bus is
 7 generic (
 8 --Device’s SPI parameters:
 9 WREN_opcode: std_logic_vector(7 downto 0) := "00000110";
 10 WRITE_opcode: std_logic_vector(7 downto 0) := "00000010";

312 Chapter 14

 11 READ_opcode: std_logic_vector(7 downto 0) := "00000011";
 12 initial_addr_for_wr: std_logic_vector(15 downto 0) := (others= > '0');
 13 initial_addr_for_rd: std_logic_vector(15 downto 0) := (others= > '0'));
 14 --Assumed: fclk=50MHz, desired SPI speed=5MHz
 15 port (
 16 --System ports:
 17 rd, wr, clk, rst: in std_logic;
 18 ssd1, ssd2: out std_logic_vector(6 downto 0);
 19 --SPI ports:
 20 SCK, SSn, MOSI, WPn, HOLDn: out std_logic;
 21 MISO: in std_logic);
 22 end entity;
 23 --
 24 architecture moore_fsm of FRAM_with_SPI_bus is
 25
 26 --FSM-related declarations:
 27 type state is (idle, WREN, deselect, WRITEx, initial_addr_wr,
 28 wr_data, wait_wr0, READx, initial_addr_rd, rd_data, wait_rd0);
 29 signal pr_state, nx_state: state;
 30
 31 --Timer-related declarations:
 32 signal i, imax: natural range 0 to 15;
 33 signal j, jmax: natural range 0 to 7;
 34
 35 --SPI clock and test signal declarations:
 36 signal spi_clk: std_logic;
 37 type data_array is array (0 to 7) of std_logic_vector(7 downto 0);
 38 constant data_out: data_array :=
 39 ("00000001", "00100011", "01000101", "01100111",
 40 "10001001", "10101011", "11001101", "11101111");
 41 signal data_in: data_array;
 42
 43 begin
 44
 45 WPn < = '1';
 46 HOLDn < = '1';
 47
 48 --Generate 5MHz clock for SPI circuit:
 49 process (clk)
 50 variable counter1: natural range 0 to 5;
 51 begin
 52 if rising_edge(clk) then
 53 counter1 := counter1 + 1;
 54 if counter1=5 then
 55 spi_clk < = not spi_clk;
 56 counter1 := 0;
 57 end if;
 58 end if;
 59 end process;
 60
 61 --Timers (using strategy #1):
 62 process (spi_clk, rst)
 63 begin
 64 if (rst='1') THEN

Additional Design Examples 313

 65 i < = 0;
 66 j < = 0;
 67 elsif falling_edge(spi_clk) then
 68 if pr_state /= nx_state then
 69 i < = 0;
 70 j < = 0;
 71 elsif not (i=imax and j=jmax) then
 72 if i/=imax then
 73 i < = i + 1;
 74 elsif j/=jmax then
 75 i < = 0;
 76 j < = j + 1;
 77 end if;
 78 end if;
 79 end if;
 80 end process;
 81
 82 --FSM state register:
 83 process (spi_clk, rst)
 84 begin
 85 if (rst=’1’) THEN
 86 pr_state < = idle;
 87 elsif falling_edge(spi_clk) then
 88 pr_state < = nx_state;
 89 end if;
 90 end process;
 91
 92 --FSM combinational logic:
 93 process (all)
 94 begin
 95 --Default values:
 96 SSn < = '0';
 97 SCK < = spi_clk;
 98 MOSI < = '-';
 99 imax < = 0;
 100 jmax < = 0;
 101 --Other values:
 102 case pr_state IS
 103 when idle = >
 104 SSn < = '1';
 105 SCK < = '0';
 106 if wr='1' then
 107 nx_state < = WREN;
 108 elsif rd='1' then
 109 nx_state < = READx;
 110 else
 111 nx_state < = idle;
 112 end if;
 113 --Data-write sequence:
 114 when WREN = >
 115 MOSI < = WREN_opcode(7-i);
 116 imax < = 7;
 117 if i=imax then
 118 nx_state < = deselect;
 119 else
 120 nx_state < = WREN;
 121 end if;

314 Chapter 14

 122 when deselect = >
 123 SSn < = spi_clk;
 124 SCK < = '0';
 125 nx_state < = WRITEx;
 126 when WRITEx = >
 127 MOSI < = WRITE_opcode(7-i);
 128 imax < = 7;
 129 if i=imax then
 130 nx_state < = initial_addr_wr;
 131 else
 132 nx_state < = WRITEx;
 133 end if;
 134 when initial_addr_wr = >
 135 MOSI < = initial_addr_for_wr(15-i);
 136 imax < = 15;
 137 if i=imax then
 138 nx_state < = wr_data;
 139 else
 140 nx_state < = initial_addr_wr;
 141 end if;
 142 when wr_data = >
 143 MOSI < = data_out(j)(7-i);
 144 imax < = 7;
 145 jmax < = 7;
 146 if i=imax and j=jmax then
 147 nx_state < = wait_wr0;
 148 else
 149 nx_state < = wr_data;
 150 end if;
 151 when wait_wr0 = >
 152 SSn < = '0';
 153 SCK < = '0';
 154 if wr='0' then
 155 nx_state < = idle;
 156 else
 157 nx_state < = wait_wr0;
 158 end if;
 159 --Data-read sequence:
 160 when READx = >
 161 MOSI < = READ_opcode(7-i);
 162 imax < = 7;
 163 if i=imax then
 164 nx_state < = initial_addr_rd;
 165 else
 166 nx_state < = READx;
 167 end if;
 168 when initial_addr_rd = >
 169 MOSI < = initial_addr_for_rd(15-i);
 170 imax < = 15;
 171 if i=imax then
 172 nx_state < = rd_data;
 173 else
 174 nx_state < = initial_addr_rd;
 175 end if;
 176 when rd_data = >
 177 imax < = 7;
 178 jmax < = 7;

Additional Design Examples 315

 179 if i=imax and j=jmax then
 180 nx_state < = wait_rd0;
 181 else
 182 nx_state < = rd_data;
 183 end if;
 184 when wait_rd0 = >
 185 SSn < = '0';
 186 SCK < = '0';
 187 if rd='0' then
 188 nx_state < = idle;
 189 else
 190 nx_state < = wait_rd0;
 191 end if;
 192 end case;
 193 end process;
 194
 195 --Test circuit:
 196 process (spi_clk, pr_state, data_in)
 197 variable counter2: natural range 0 to 2_500_000;
 198 variable counter3: natural range 0 to 8;
 199 begin
 200 --Read FRAM and store data:
 201 if rising_edge(spi_clk) and pr_state=rd_data then
 202 data_in(j)(7-i) < = MISO;
 203 end if;
 204 --Generate slow (2Hz) pointer for displaying data:
 205 if rising_edge(spi_clk) then
 206 counter2 := counter2 + 1;
 207 if counter2=2_500_000 then
 208 counter2 := 0;
 209 counter3 := counter3 + 1;
 210 if counter3=8 then
 211 counter3 := 0;
 212 end if;
 213 end if;
 214 end if;
 215 --Send read data to display @2Hz:
 216 if pr_state=wait_rd0 then
 217 ssd1 < = hex_to_ssd(data_in(counter3)(3 downto 0));
 218 ssd2 < = hex_to_ssd(data_in(counter3)(7 downto 4));
 219 else
 220 ssd1 < = "1111110";
 221 ssd2 < = "1111110";
 222 end if;
 223 end process;
 223
 224 end architecture;
 225 --

 14.4 Exercises

 Exercise 14.1: Reference-Value Defi ner with LCD Display
 a) Solve exercise 8.11 if not done yet. The reference values should be {000, 005, 010,
050, 100, 200, 400, 800}.

316 Chapter 14

b) Draw the state transition diagram for a second circuit, which should implement an
LCD driver to have the reference value displayed on an alphanumeric LCD.
c) Implement the complete circuit using VHDL or SystemVerilog and test it in the
FPGA development board.

Exercise 14.2: I 2 C Interface for an RTC
 Repeat the design of section 14.2.5, this time with a category 2 machine instead of a
category 3.

 Exercise 14.3: I 2 C Interface for an EEPROM
 Develop an experiment (as in section 14.2.5), including VHDL or SystemVerilog code
and physical implementation in the FPGA development board, for a master circuit
that interfaces with an EEPROM device through an I 2 C bus. The device can be, for
example, AT24C01 or AT24C02, from Atmel.

 Exercise 14.4: I 2 C Interface for an ADC
 Develop an experiment (as in section 14.2.5), including VHDL or SystemVerilog code
and physical implementation in the FPGA development board, for a master circuit
that interfaces with an analog-to-digital converter through an I 2 C bus. The device can
be, for example, AD7991, from Analog Devices, or PCF8591, from NXP.

 Exercise 14.5: I 2 C Interface for a Temperature Sensor
 Develop an experiment (as in Section 14.2.5), including VHDL or SystemVerilog code
and physical implementation in the FPGA development board, for a master circuit
that interfaces with a temperature sensor through an I 2 C bus. The device can be, for
example, LM75A, from NXP, or AD7416, from Analog Devices.

 Exercise 14.6: I 2 C versus SPI
 Make a brief comparison between I 2 C and SPI interfaces. Include at least the following
topics in your analysis: synchronous or asynchronous, number of wires, duplex or
simplex, with data acknowledgment or not, which hardware is simpler and why, who
generates clock and data, which operates at higher speed.

 Exercise 14.7: SPI Interface for a FRAM
 Repeat the design of section 14.3.3, this time with a category 3 machine instead of a
category 2.

 Exercise 14.8: SPI Interface for an ADC
 Develop an experiment (as in section 14.3.3), including VHDL or SystemVerilog code
and physical implementation in the FPGA development board, for a master circuit

Additional Design Examples 317

that interfaces with an analog-to-digital converter through an SPI bus. The device can
be, for example, AD7091R, from Analog Devices, or MAX1242, from Maxim.

Exercise 14.9: SPI Interface for a Flash Memory
Develop an experiment (as in section 14.3.3), including VHDL or SystemVerilog code
and physical implementation in the FPGA development board, for a master circuit
that interfaces with a fl ash memory through an SPI bus. The device can be, for
example, AT45DB011, from Atmel, or S25FL128, from Spansion.

Exercise 14.10: SPI Interface for an Accelerometer
Develop an experiment (as in section 14.3.3), including VHDL or SystemVerilog code
and physical implementation in the FPGA development board, for a master circuit
that interfaces with an accelerometer through an SPI bus. The device can be, for
example, ADXL345, from Analog Devices.

Exercise 14.11: I 2 C Interface for an Accelerometer
 The accelerometer mentioned in exercise 14.10 (ADXL345) supports both SPI and I 2 C
interfaces. Repeat that exercise, this time using the I 2 C alternative.

15 Pointer-Based FSM Implementation

15.1 Introduction

In the preceding chapters we have established and used a standard and generic design
approach for any FSM. In the particular case of machines with a simple state transition
diagram (a single loop, for example), a simpler but possibly equivalent implementa-
tion can be adopted, which consists of building a counter that acts as a pointer to a
lookup table (LUT) that contains the desired output values. This implementation
technique, identifi ed as pointer-based FSM implementation , is illustrated by means of a
series of examples in the sections that follow.

 It is important to mention that although this technique can ease the implementa-
tion of FSMs with few loops and repetitive states (like those in chapter 14), it does
not eliminate the other design steps, including the development of a precise state
transition diagram. Also, it does not mean that a simpler circuit will result. A limita-
tion of this technique is that it is diffi cult (or awkward, at least) to use an encoding
scheme other than regular sequential encoding; moreover, the encoding is set during
the design phase, so it cannot be chosen/modifi ed and experimented with at compila-
tion time.

 15.2 Single-Loop FSM

 The general technique is illustrated with the help of fi gure 15.1a , which shows an FSM
with just one loop. Note that the states ’ names were replaced with numeric values (to
be produced by the counter/pointer). Note also that the machine must run whenever
 run = ‘ 1 ’ occurs while the machine is in the idle state, and that it must stay in a certain
state (pointer in the 3-to-8 range) during six clock cycles (thus this is similar to a timed
state in a timed state machine, with t running from 0 to 5). The output values are
summarized (repeated) in the LUT of fi gure 15.1b . To implement this FSM, we can
build a counter (pointer) ranging from 0 to 9 and use it to retrieve the corresponding
values from the LUT.

320 Chapter 15

A VHDL code for the machine of fi gure 15.1 is presented below. The code contains
just one process, which builds the pointer (called i , lines 19 – 27) and the LUT (for y ,
lines 30 – 36).

 Note: To save space, only VHDL codes are shown in this chapter. However, based
on these VHDL codes and on the SystemVerilog codes seen in chapters 7, 10, and 13,
writing the SystemVerilog codes for the examples described here is straightforward.

 1 --
 2 library ieee;
 3 use ieee.std_logic_1164.all;
 4 --
 5 entity simple_machine is
 6 port (
 7 run, clk, rst: in std_logic;
 8 y: out std_logic_vector(2 downto 0));
 9 end entity;
 10 --
 11 architecture pointer_based of simple_machine is
 12 begin
 13
 14 process (clk, rst)
 15 variable i: natural range 0 to 9;
 16 begin
 17
 18 --Pointer (i):
 19 if (rst='1') then
 20 i:= 0;
 21 elsif rising_edge(clk) then
 22 if (i=0 and run=’0’) or i=9 then
 23 i:= 0;
 24 else
 25 i:= i + 1;
 26 end if;
 27 end if;
 28
 29 --LUT (for y):
 30 case i is
 31 when 0 = > y < = "000";
 32 when 1 = > y < = "001";
 33 when 2 = > y < = "011";
 34 when 3 to 8 = > y < = "111";

Figure 15.1
(a) Single-loop FSM with a timed state and (b) LUT containing its output values.

Pointer-Based FSM Implementation 321

 35 when 9 = > y < = "110";
 36 end case;
 37
 38 end process;
 39
 40 end architecture;
 41 --

15.3 Serial Data Transmitter

Another example is presented in fi gure 15.2a , which is a kind of serial data transmitter.
The output (y), which is a single-bit signal, must send out a predefi ned single-bit value
in states 0, 2, and 6 (recall that the states ’ “ names ” are determined by the pointer),
whereas in states 1 and 3 … 5 bit-vectors must be serially transmitted (see the data
arrays under those states).

 In fi gure 15.2a three pointers are shown, called i (main pointer, representing the
states), j (column index for the arrays of states 1 and 3 … 5), and k (row index for the
array of state 3 … 5). Note, however, that k can be replaced with i − 3, so only two point-
ers are actually needed, resulting in the LUT of fi gure 15.2b . This machine too is simple
enough to be implemented using the pointer-based technique.

 A corresponding VHDL code is shown below. The data to be transmitted was placed
in an array of constants (called x , lines 12 – 13). The fi rst word (i.e., x (0)= “ 0101 ”) is
transmitted in state 1, while the whole array is transmitted in state 3 … 5. As in the
previous example, only one process is used, which builds the pointers (lines 22 – 38)
and the LUT (lines 41 – 47). Note that in this example the LSB is transmitted fi rst.

 1 --
 2 library ieee;
 3 use ieee.std_logic_1164.all;
 4 --
 5 entity serial_transmitter is
 6 port (
 7 run, clk, rst: in std_logic;
 8 y: out std_logic);

 Figure 15.2
 A serial data transmitter and (b) its output LUT.

322 Chapter 15

 9 end entity;
 10 --
 11 architecture pointer_based of serial_transmitter is
 12 type data_array is array (0 to 2) of std_logic_vector(3 downto 0);
 13 constant x: data_array:= ("0101", "1010", "0110");
 14 begin
 15
 16 process(clk, rst)
 17 variable i: natural range 0 to 6;
 18 variable j: natural range 0 to 3;
 19 begin
 20
 21 --Pointers (i, j):
 22 if rst='1' then
 23 i:= 0;
 24 j:= 0;
 25 elsif rising_edge(clk) then
 26 if (i=0 and run='1') or i=2 then
 27 i:= i + 1;
 28 elsif i=1 or (i > =3 and i < =5) then
 29 if j/=3 then
 30 j:= j + 1;
 31 else
 32 j:= 0;
 33 i:= i + 1;
 34 end if;
 35 elsif i=6 then
 36 i:= 0;
 37 end if;
 38 end if;
 39
 40 --LUT (for y):
 41 case i is
 42 when 0 = > y < = '0';
 43 when 1 = > y < = x(0)(j);
 44 when 2 = > y < = '1';
 45 when 3 to 5 = > y < = x(i-3)(j);
 46 when 6 = > y < = '1';
 47 end case;
 48
 49 end process;
 50
 51 end architecture;
 52 --

Simulation results obtained after compiling the code above are presented in fi gure
15.3 . The reader is invited to examine the waveforms to check the operation of the
inferred circuit.

 15.4 Serial Data Receiver

 Another example is presented in fi gure 15.4 . The serial data receiver of fi gure 3.16c is
repeated in fi gure 15.4a . When the data-valid (dv) bit is asserted, the circuit must store

Pointer-Based FSM Implementation 323

four consecutive bits received at input x (hence, this is a timed machine, with t
running from 0 to 3 — a small range was adopted in order to ease the inspection of
the simulation results). Because it is assumed that the fi rst data bit is made available
at the same time that dv is asserted (both updated at the positive clock edge), which
is more diffi cult to detect, one must be careful with respect to the clock edges (see
rectangle in the upper part of the fi gure and also the discussion in section 3.10). This
machine is simple enough to be implemented using the pointer-based approach, for
which an adapted state diagram is presented in fi gure 15.4b . Note that the counter
(pointer) must run from 0 to 4. Again, care must be taken with respect to the clock
edges.

 A VHDL code for the machine of fi gure 15.4b is presented below. It contains just
one process, which builds the pointer (lines 19 – 27) and the registered LUT (lines 30 – 35).
Because x must be stored (producing y) in a deserializer, the case statement (lines
31 – 34) was placed inside an if rising_edge(clk) statement (lines 30 and 35), which is
responsible for inferring fl ip-fl ops.

 1 ---
 2 library ieee;
 3 use ieee.std_logic_1164.all;
 4 ---
 5 entity serial_receiver is
 6 port (
 7 x, dv, clk, rst: in std_logic;
 8 y: buffer std_logic_vector(3 downto 0));

Figure 15.3
Simulation results from the VHDL code for the serial data transmitter of fi gure 15.2 .

Figure 15.4
(a) Serial data receiver of fi gure 3.16c. (b) Adapted version for pointer-based implementation.

324 Chapter 15

 9 end entity;
 10 ---
 11 architecture pointer_based of serial_receiver is
 12 begin
 13
 14 process (clk, rst)
 15 variable i: natural range 0 to 4;
 16 begin
 17
 18 --Pointer (i):
 19 if (rst='1') then
 20 i:= 0;
 21 elsif falling_edge(clk) then
 22 if (i=0 and dv='0') or i=4 then
 23 i:= 0;
 24 else
 25 i:= i + 1;
 26 end if;
 27 end if;
 28
 29 --Registered LUT (for y):
 30 if rising_edge(clk) then
 31 case i is
 32 when 0 = > y < = y;
 33 when 1 to 4 = > y(i-1) < = x;
 34 end case;
 35 end if;
 36
 37 end process;
 38
 39 end architecture;
 40 ---

 Simulation results are shown in fi gure 15.5 . Note that the data (dv and x) and the
register (y) are updated at the positive clock edges, whereas the pointer (i) changes at
the negative clock transitions. Note also that the sequence received in x is ‘ 1 ’ , ‘ 0 ’ , ‘ 1 ’ ,

Figure 15.5
Simulation results from the VHDL code for the serial data receiver of fi gure 15.4b .

Pointer-Based FSM Implementation 325

and ‘ 0 ’ , with the fi rst bit considered to be the LSB, hence resulting y (3:0) = “ 0101 ”
after the pointer ’ s 0-to-4 run is completed.

 15.5 SPI Interface for an FRAM

 A fi nal example is presented in fi gure 15.6 , which is an equivalent (pointer-based)
implementation for the FRAM SPI interface circuit studied in section 14.3.3. Note that
the machine of fi gure 15.6 is exactly the same as that in fi gure 14.20, just with the
adjustments needed for pointer-based implementation (main pointer i ranging from
0 to 75, secondary pointer j ranging from 0 to 7). The values (either 8 or 8 × 8) under
the arrows indicate the number of clock cycles spent in the preceding state (which is
the same as the number of bits transmitted or received in that state).

 Observe that the enumeration of the states was done differently from that in fi gure
15.2 (just to illustrate another alternative). In state 1 of fi gure 15.2 , for example, the
main pointer (i) stays fi xed (i = 1), whereas the secondary pointer (j) sweeps the data.
Here, in state WREN, for example, i sweeps the data, while j is not used (so only in
states wr_data and rd_data are both pointers needed). Recall that, as in all FSM designs,
the crucial point is to develop a complete and precise state transition diagram (as
in fi gure 15.6), after which any of the implementation techniques can be applied
straightforwardly.

Figure 15.6
FSM for the FRAM SPI interface circuit seen in section 14.3.3 (fi gure 14.20), with all adjustments

for pointer-based implementation. Values under the arrows indicate the number of clock cycles

spent in the preceding state.

326 Chapter 15

A VHDL code for this machine is presented below (function hex-to-ssd not shown —
 bring the package my_functions , from section 14.3.3, to your design). This code is
equivalent to that in section 14.3.3, except for a small difference in the test circuit
(here the stored values are sent to the display continuously). The entity (lines 6 – 22)
is the same as that in section 14.3.3, and so are the list of declarations for the SPI and
test signals (lines 27 – 32) and the spi_clk generator (lines 40 – 50). The FSM, constructed
using the pointer-based technique, is in the process of lines 53 – 115, with the pointers
built in lines 59 – 78 and the LUT in lines 82 – 113. Note in lines 108 – 110 that the
received data is stored in the data_in array while the machine is in the rd_data state.
The fi nal part of the test circuit (data storage was embedded in the LUT) is in the
process of lines 118 – 140 (see comments in section 14.3.3).

 1 --Main code:---
 2 library ieee;
 3 use ieee.std_logic_1164.all;
 4 use work.my_functions.all; --package from sec. 14.3.3
 5 ---
 6 entity FRAM_with_SPI_bus is
 7 generic (
 8 --Device ’ s SPI parameters:
 9 WREN_opcode: std_logic_vector(7 downto 0):= "00000110";
 10 WRITE_opcode: std_logic_vector(7 downto 0):= "00000010";
 11 READ_opcode: std_logic_vector(7 downto 0):= "00000011";
 12 initial_addr_for_wr: std_logic_vector(15 downto 0):= (others= > '0');
 13 initial_addr_for_rd: std_logic_vector(15 downto 0):= (others= > '0'));
 14 --Assumed: fclk=50MHz, desired SPI speed=5MHz
 15 port (
 16 --System ports:
 17 rd, wr, clk, rst: in std_logic;
 18 ssd1, ssd2: out std_logic_vector(6 downto 0);
 19 --SPI ports:
 20 SCK, SSn, MOSI, WPn, HOLDn: out std_logic;
 21 MISO: in std_logic);
 22 end entity;
 23 ---
 24 architecture pointer_based of FRAM_with_SPI_bus is
 25
 26 --Clock for SPI and test signal declarations:
 27 signal spi_clk: std_logic;
 28 type data_array is array (0 to 7) of std_logic_vector(7 downto 0);
 29 constant data_out: data_array:=
 30 ("00000001", "00100011", "01000101", "01100111",
 31 "10001001", "10101011", "11001101", "11101111");
 32 signal data_in: data_array;
 33
 34 begin
 35
 36 WPn < = '1';
 37 HOLDn < = '1';
 38

Pointer-Based FSM Implementation 327

 39 --Generate 5MHz clock for SPI circuit:
 40 process (clk)
 41 variable counter1: natural range 0 to 5;
 42 begin
 43 if rising_edge(clk) then
 44 counter1:= counter1 + 1;
 45 if counter1=5 then
 46 spi_clk < = not spi_clk;
 47 counter1:= 0;
 48 end if;
 49 end if;
 50 end process;
 51
 52 --FSM (complete SPI circuit):
 53 process(spi_clk, rst)
 54 variable i: natural range 0 to 75;
 55 variable j: natural range 0 to 7;
 56 begin
 57
 58 --Pointers (i, j):
 59 if rst='1' then
 60 i:= 0;
 61 j:= 0;
 62 elsif falling_edge(spi_clk) then
 63 if (i=0 and wr='0' and rd='0') or (i=42 and wr='0') or
 64 (i=75 and rd='0') then
 65 i:= 0;
 66 elsif (i=0 and wr='1') or (i > 0 and i < 34) or (i > =43 and i < 67) then
 67 i:= i + 1;
 68 elsif i=0 and rd='1' then
 69 i:= 43;
 70 elsif (i > =34 and i < =41) or (i > =67 and i < =74) then
 71 if j/=7 then
 72 j:= j + 1;
 73 else
 74 j:= 0;
 75 i:= i + 1;
 76 end if;
 77 end if;
 78 end if;
 79
 80 --LUT (for outputs):
 81 --Default values:
 82 SSn < = '0';
 83 SCK < = spi_clk;
 84 MOSI < = '-';
 85 --Other values:
 86 case i is
 87 when 0 = >
 88 SSn < = '1';
 89 SCK < = '0';
 90 when 1 to 8 = >
 91 MOSI < = WREN_opcode(8-i);
 92 when 9 = >
 93 SSn < = spi_clk;

328 Chapter 15

 94 SCK < = '0';
 95 when 10 to 17 = >
 96 MOSI < = WRITE_opcode(17-i);
 97 when 18 to 33 = >
 98 MOSI < = initial_addr_for_wr(33-i);
 99 when 34 to 41 = > --transmit data
 100 MOSI < = data_out(i-34)(7-j);
 101 when 42 = >
 102 SCK < = '0';
 103 when 43 to 50 = >
 104 MOSI < = READ_opcode(50-i);
 105 when 51 to 66 = >
 106 MOSI < = initial_addr_for_rd(66-i);
 107 when 67 to 74 = > --store received data
 108 if rising_edge(spi_clk) then
 109 data_in(i-67)(7-j) < = MISO;
 110 end if;
 111 when 75 = >
 112 SCK < = '0';
 113 end case;
 114
 115 end process;
 116
 117 --Test circuit:
 118 process (spi_clk, rst)
 119 variable counter2: natural range 0 to 2_500_000;
 120 variable counter3: natural range 0 to 7;
 121 begin
 122 --Generate slow (2Hz) pointer for displaying data:
 123 if rst='1' then
 124 counter2:=0;
 125 counter3:=0;
 126 elsif rising_edge(spi_clk) then
 127 counter2:= counter2 + 1;
 128 if counter2=2_500_000 then
 129 counter2:= 0;
 130 if counter3/=7 then
 131 counter3:= counter3 + 1;
 132 else
 133 counter3:= 0;
 134 end if;
 135 end if;
 136 end if;
 137 --Send data continuously to the display:
 138 ssd1 < = hex_to_ssd(data_in(counter3)(3 downto 0));
 139 ssd2 < = hex_to_ssd(data_in(counter3)(7 downto 4));
 140 end process;
 141
 142 end architecture;
 143 ---

Pointer-Based FSM Implementation 329

15.6 Exercises

Exercise 15.1: Number of Flip-Flops
How many DFFs are needed to build the FSMs of fi gures 15.1, 15.2, and 15.6 ?

Exercise 15.2: Two-Loop FSM
Figure 15.7 shows a two-loop FSM, with input x and output y . When in state 3 … 6 the
machine must transmit four bits from a z (3:0) array, starting with the MSB.

 a) How many fl ip-fl ops are needed to construct this FSM? Does your answer depend
on the implementation approach (generic, seen in the previous chapters, or pointer-
based, seen here)?
 b) Implement it using VHDL or SystemVerilog (pointer-based technique). Enter z in
your code as a constant. After compilation, check whether the number of fl ip-fl ops
inferred by the compiler matches your prediction.
 c) Show simulation results.

 Exercise 15.3: FSM with Repetitive States
 Figure 15.8 shows an FSM with an apparent single loop. Note that state B must be
repeated 8 times, then state C must occur, with this sequence (B – C) repeated 7 times
before proceeding to state D. A similar procedure must occur in states F – G.

Figure 15.7

Figure 15.8

330 Chapter 15

a) Implement this machine using the pointer-based technique and VHDL or System-
Verilog. Start by making the proper adaptations (using pointer(s)) in the state transi-
tion diagram. Create an array of constants to be placed at the output in states B and
F, and chose numeric values for y A , y C , y D , etc.
 b) Show simulation results. To ease the inspection of the results, use 3 instead of 8
and 2 instead of 7 in the repetitions.

 Exercise 15.4: Clock with LCD Display
 Redo the design of section 14.1.3 using the pointer-based technique. Start by drawing
the adapted (using pointer(s)) state transition diagram. After compilation, compare
the resources usage (especially the number of fl ip-fl ops) against the results obtained
after compiling the code of section 14.1.3.

 Exercise 15.5: I 2 C Interface for an RTC
 Redo the design of section 14.2.5 using the pointer-based technique. Start by drawing
the adapted (using pointer(s)) state transition diagram. After compilation, compare
the resources usage (especially the number of fl ip-fl ops) against the results obtained
after compiling the code of section 14.2.5.

 Exercise 15.6: SPI Interface for an ADC
 Solve exercise 14.8 using the pointer-based technique.

 Exercise 15.7: SPI Interface for an Accelerometer
 Solve exercise 14.10 using the pointer-based technique.

 Exercise 15.8: I 2 C Interface for an ADC
 Solve exercise 14.4 using the pointer-based technique.

 Exercise 15.9: I 2 C Interface for a Temperature Sensor
 Solve exercise 14.5 using the pointer-based technique.

 Exercise 15.10: I 2 C Interface for an Accelerometer
 Solve exercise 14.11 using the pointer-based technique.

Index

Accumulator. See Datapath control

Algorithmic state machine (ASM) chart,

15 – 16

Arbiter, 98

Blinking light, 159 – 160, 177, 202, 203

 Car alarm, basic, 75

 Car alarm, with chirps, 167 – 168, 181,

194 – 198, 214 – 217

Category 1 machines. See Regular state

machines

 Category 2 machines. See Timed state

machines

 Category 3 machines. See Recursive state

machines

 Classical mistakes in FSMs

 existence of state bypass,75

 incomplete VHDL/SystemVerilog code,

76 – 78

 incorrect state transition diagram, 74 – 75

 incorrect timer construction, 76

 lack of reset, 75

 lack of synchronizers, 76

 over-registered VHDL/SystemVerilog code, 78

 skipping the state transition diagram, 73

 wrong architecture, 73

 Clock gater, 26 – 28, 37

 Control unit. See Datapath

 Counters, 7, 49, 53, 84 – 85, 116 – 120,

135 – 137, 226 – 228

 Datapath, 62 – 67

 Datapath control unit

for accumulator, 91 – 92

for divider, 244

for greatest common divisor, 93 – 95,

123 – 126, 140 – 141

 for largest-value detector, 102

 for multiplier, 232 – 234, 243, 249 – 252,

268 – 271

for square root calculator, 102

Data receiver, 236 – 237, 252 – 256, 271 – 273,

322 – 325

 Data transmitter, 321 – 322

 Debouncer, multiple, 179 – 180, 231 – 232

 Debouncer, single, 161 – 163, 164 – 165, 178,

202, 231 – 232, 242

 Design procedures. See Moore and Mealy

machines

 Design steps summary, 79

 Divider, 234 – 236, 244, 263

 Edge detector, 29

 Encoding schemes. See State encoding

 Enum_encoding . See State encoding

 Factorial calculator, 243

 Finite state machine (FSM)

 algorithmic state machine (ASM) chart,

15 – 16

 architectures for state machines, 39 – 41,

82 – 84, 144 – 145, 223 – 224

334 Index

basic design procedures, 41 – 45

capturing the fi rst bit, 56 – 58, 70

 category 1 FSMs (see Regular state

machines)

 category 2 FSMs (see Timed state machines)

 category 3 FSMs (see Recursive state

machines)

 classical mistakes, 73 – 78

 concept and benefi ts, 3

 design steps summary, 79

 glitches (see Glitches)

 hardware versus software, 3 – 4

 Mealy machines (see Moore and Mealy

machines)

 Moore machines (see Moore and Mealy

machines)

 multimachine designs, 60 – 62, 70

 number of fl ip-fl ops, 49 – 51, 84, 158, 226

 pipelined (see Pipelined implementations)

 safe state machines, 54 – 56

 state diagram (see State transition diagram)

 state encoding options (see State encoding)

 state machines for datapath control (see

Datapath)

 storing the fi nal result, 58 – 60, 70

 SystemVerilog for FSMs (see SystemVerilog)

 transition types (see State transition

diagram)

 VHDL for FSMs (see VHDL)

 when to use the FSM approach, 16 – 17

 Finite state machines list

 arbiter, 98

 blinking light, 159 – 160, 177, 202, 203

 car alarm, basic, 75

 car alarm, with chirps, 167 – 168, 181,

194 – 198, 214 – 217

 counters, 7, 49, 53, 84 – 85, 116 – 120,

135 – 137, 226 – 228

 datapath control unit (see Datapath control

unit)

 data receiver, 236 – 237, 252 – 256, 271 – 273,

322 – 325

 data transmitter, 321 – 322

 debouncer, multiple, 179 – 180, 231 – 232

 debouncer, single, 161 – 163, 164 – 165, 178,

202, 231 – 232, 242

 divider, 234 – 236, 244, 263

 factorial calculator, 243

 fl ag monitor, 103

 garage door controller, 89 – 90, 98, 120 – 123,

137 – 139

 greatest common divisor, 242 – 243

 hamming-weight calculator, 240

 I 2 C interface for RTC, 290 – 305

 keypad encoder, 101 – 102, 127

 LCD driver, 279 – 290

 leading-ones counter, 241, 262

 light rotator, 160 – 161, 191 – 194, 204,

212 – 214

 Manchester encoder, differential, 100, 127

 Manchester encoder, regular 99, 127

 one-shot circuits, 29, 34 – 36, 86 – 88, 101,

164, 170, 171, 178

 parity detectors, 85 – 86, 126

 password detector, 168 – 170, 181, 205

 pulse shifters, 172 – 173, 183

 pulse stretchers, 173 – 176, 183 – 184

 reference-value defi ners, 163 – 165, 180, 203,

229 – 232, 242

 SPI interface for FRAM, 307 – 315, 325 – 328

 SRAM interface, 237 – 239, 256 – 261,

273 – 278

 string (sequence) detectors, 5 – 6, 95 – 96, 101

 strings comparators, 228 – 229, 241, 261

 temperature controller, 88 – 89, 164

 traffi c light controller, 166 – 167, 181, 205

 triggered circuits, 170 – 171, 172 – 176

 vending machine controller, 90 – 91

 Flag monitor, 103

 Flip-fl ops, 21 – 24, 33 – 34, 49 – 51, 84, 158,

226

 FRAM. See SPI interface

 FSM. See Finite state machine

 fsm_encoding . See State encoding

 Garage door controller, 89 – 90, 98, 120 – 123,

137 – 139

Finite state machine (FSM) (cont.)

Index 335

Glitches, 29 – 32, 36 – 37, 41 – 42, 46, 50, 83, 90,

116, 135, 145, 162, 218

 Gray encoding. See State encoding

 Greatest common divisor, 93 – 95, 242 – 243

 Hamming-weight calculator, 240

 I 2 C Interface

 bus operation, 292 – 295

 bus structure, 290 – 291

 I 2 C interface for RTC, 296 – 305

 open-drain outputs, 291 – 292

 proposed designs, 316, 317

 state machine for I 2 C, 295 – 296

 Johnson encoding. See State encoding

 Keypad encoder, 101 – 102, 127

 Largest-value detector (see Datapath control)

 LCD interface

 description, 279 – 283

 LCD driver for a clock, 284 – 290

 proposed design, 316

 state machine for LCD, 283 – 284

 Leading-ones counter, 241, 262

 Light rotator, 160 – 161, 191 – 194, 204,

212 – 214

 Manchester encoder, differential, 100, 127

 Manchester encoder, regular, 99, 127

 Mealy machines. See Moore and Mealy

machines

 Metastability, 24 – 26, 34, 76, 79

 Modifi ed one-hot encoding. See State

encoding

 Moore and Mealy machines

 for category 1, 81 – 82

 for category 2, 143 – 144

 for category 3, 221 – 222

 description of Mealy, 6

 description of Moore, 5 – 6

 design procedure for Mealy, 44 – 45

 design procedure for Moore, 41 – 44

Mealy-to-Moore conversion, 14 – 15

Moore-to-Mealy conversion, 12 – 14

Moore vs. Mealy time behavior, 46 – 47

Multimachines. See Finite state machine

Multiplier. See Datapath control

 Number of fl ip-fl ops. See Finite state machine

 One-hot encoding. See State encoding

 One-shot circuits, 29, 34 – 36, 86 – 88, 101, 164,

170, 171, 178

 Parity detectors, 85 – 86, 126

 Password detector, 168 – 170, 181, 205

 Pipelined implementations, 32 – 33, 36 – 37,

40 – 41, 83, 145

 Pointer-based FSM implementation

 description, 319

 proposed design, 330

 with repetitive states, 329 – 330

 serial data receiver, 322 – 325

 serial data transmitter, 321 – 322

 single-loop FSM, 319 – 321

 SPI interface for an FRAM, 325 – 328

 Pulse detection, 28 – 29

 Pulse shifters, 172 – 173, 183

 Pulse stretchers, 173 – 176, 183 – 184

 Recursive state machines (category 3)

 architectures, 223 – 224

 category 3-to-1 conversion, 224 – 225

 datapath control for a multiplier, 232 – 234

 description, 47 – 48, 221 – 223

 divider, 234 – 236

 examples, 226 – 239

 generic counters, 226 – 228

 long-string comparator, 228 – 229

 number of fl ip-fl ops, 226

 reference-value defi ners, 229 – 232

 repetitively looped, 225

 serial data receiver, 236 – 237

 SRAM interface, 237 – 239

 Reference-value defi ners, 163 – 165, 180, 203,

229 – 232, 242

336 Index

Regular state machines (category 1)

arbiter, 98 – 99

architectures, 82 – 84

 categories, 47 – 48, 81 – 82

 datapath control for a GCD, 93 – 95

 datapath control for an accumulator, 91 – 92

 description, 6, 81 – 82

 examples, 84 – 97

 garage door controller, 89 – 90

 keypad encoder, 101 – 102

 Manchester encoder, differential, 100

 Manchester encoder, regular, 99 – 100

 number of fl ip-fl ops, 84

 one-shot circuit, 86 – 88, 98

 parity detector, 85 – 86

 sequence detector, 95 – 96, 101

small counters, 84 – 85

temperature controller, 88 – 89

 transparent circuits, 96 – 97

 vending machine controller, 90 – 91, 100 – 101

 Reset, 52 – 54, 69 – 70

 RTC. See I 2 C interface

 Safe state machines. See Finite state machine

 Sequential circuits, 1 – 3, 21 – 33, 39 – 41

 SPI interface

 bus operation, 306 – 307

 bus structure, 305 – 306

 proposed designs, 316 – 317

 SPI interface for FRAM, 307 – 315, 325 – 328

 state machine for SPI, 309, 325

 Square root calculator. See Datapath control

 SRAM interface, 237 – 239, 256 – 261, 273 – 278

 State encoding

 enum_encoding attribute, 110 – 111

 fsm_encoding attribute, 110 – 111

 Gray encoding, 50 – 51, 84, 85, 90, 111, 158,

160, 195, 226, 231

 Johnson encoding, 50, 84, 85, 91, 111, 158,

160, 195, 226, 231

 modifi ed one-hot encoding, 51

 one-hot encoding, 50, 51, 53, 84, 85, 158,

160, 226, 231

 other encoding schemes, 52, 111

 sequential encoding, 49, 53, 55, 56, 84, 85,

105, 111, 158, 160, 226, 228

 State machines for datapath control. See

Datapath

 State transition diagram

 classical mistakes, 73 – 78

 description, 4 – 15

 equivalent state transition diagrams, 6 – 8

 for Mealy machines, 6

for Moore machines, 5 – 6

overspecifi ed state diagram, 9 – 10, 18, 74, 96,

153 – 154

 recursive state diagrams (see Recursive state

machines)

 regular state diagrams (see Regular state

machines)

 timed state diagrams (see Timed state

machines)

 transition types, 11 – 12, 81 – 82, 143 – 144,

221 – 222

 under-specifi ed state diagram, 8 – 11, 18, 74,

153 – 154

 Storing the fi nal result (see Finite state

machine)

 String (sequence) detectors, 5 – 6, 95 – 96, 101

 Strings comparators, 228 – 229, 241, 261

 Synchronizers, 24 – 26, 34 – 36, 76, 79, 87, 91,

160, 168

 SystemVerilog for category 1 machines

 code structure, 129 – 130

 design of datapath controller for GCD,

140 – 141

 design of garage door controller, 137 – 139

 design of small counter, 135 – 137

 proposed designs, 141 – 142

 template for Mealy, 133 – 135

 template for Moore, 130 – 133

 SystemVerilog for category 2 machines

design of car alarm with chirps, 214 – 217

design of light rotator, 212 – 214

design of triggered circuit, 217 – 219

proposed designs, 220

Index 337

template for Mealy, 210 – 212

 template for Moore, 207 – 210

 SystemVerilog for category 3 machines

 design of datapath controller for multiplier,

268 – 271

 design of serial data receiver, 271 – 273

 design of SRAM interface, 273 – 278

 proposed designs, 278

 template for Mealy, 267 – 268

 template for Moore, 265 – 267

 Temperature controller, 88 – 89, 164

 The importance of reset. See Reset

 Timed state machines (category 2)

 architectures, 144 – 145

 blinking light, 159 – 160, 177 – 178

 car alarm (with chirps), 167 – 168, 181

debouncers, 161 – 163, 178 – 180

 description, 47 – 48, 143 – 144

 examples, 158 – 176

 light rotator, 160 – 161

 number of bits, 146 – 147

 number of fl ip-fl ops, 158

 password detector, 168 – 170, 181 – 182

 preliminary analysis, 148 – 149

 pulse shifters, 172 – 173, 183

 pulse stretchers, 173 – 176, 183 – 184

 reference-value defi ner, 163 – 165, 180 – 181

 repetitively looped, 154 – 155

 time behavior of timed Mealy FSMs,

156 – 157

 time behavior of timed Moore FSMs,

155 – 156

 time behavior of timer control strategies,

152 – 153

 time measurement unit, 146

 timer control strategies, 147 – 153

 timer control strategy #1, 149 – 150

 timer control strategy #2, 150 – 151

 timer interpretation, 146, 176 – 177

 timer range, 146

 traffi c light controller, 166 – 167, 181

 transition types and timer usage, 147

 triggered circuits, 170 – 176, 182 – 184

 truly complementary timed transitions,

153 – 154

 Timer. See Timed state machines

 Traffi c light controller, 166 – 167, 181, 205

 Transition types. See State transition diagram

 Triggered circuits, 170 – 171, 172 – 176

 Vending machine controller, 90 – 91

 VHDL for category 1 machines

clock with LCD display, 284 – 290

code structure, 104 – 107

design of datapath controller for GCD,

123 – 126

design of garage door controller, 120 – 123

design of small counter, 116 – 120

enum_encoding , 110 – 111

fsm_encoding , 110 – 111

 proposed designs, 126 – 128

 template for Mealy, 114 – 116

 template for Moore, 107 – 111

 template variations, 111 – 114

 VHDL for category 2 machines

 design of car alarm with chirps, 194 – 198

 design of light rotator, 191 – 194

 design of triggered circuit, 198 – 201

 proposed designs, 201 – 206

 serial data receiver, 322 – 325

 serial data transmitter, 321 – 322

 SPI interface for FRAM, 307 – 315, 325 – 328

 template for Mealy, 189 – 191

 template for Moore, 185 – 189

 VHDL for category 3 machines

 design of a datapath controller for

multiplier, 249 – 252

 design of a serial data receiver, 252 – 256

 design of a SRAM interface, 256 – 261

I 2 C interface for RTC, 296 – 305

 proposed designs, 261 – 263

 template for Mealy, 248 – 249

 template for Moore, 245 – 247

 When to use the FSM approach, 17 – 18

Bibliography

On VHDL

Ashenden, P. (2008). The Designer’s Guide to VHDL (3rd ed.). Burlington, MA: Morgan Kaufmann.

 Pedroni, V. A. (2010). Circuit Design and Simulation with VHDL (2nd ed.). Cambridge, MA:

MIT Press.

 IEEE. (2008). 1076-2008 Standard VHDL Language Reference Manual . Washington, DC: IEEE

(www.ieee.org).

On SystemVerilog

Harris, D. M., & Harris, S. (2012). Digital Design and Computer Architecture (2nd ed.). Burlington,

MA: Morgan Kaufmann.

 Sutherland, S., Davidmann, S., Flake, P., & Moorby, P. (2010). SystemVerilog for Design (2nd ed.).

Berlin: Springer.

 IEEE. (2005). 1800-2005 Standard SystemVerilog Language Reference Manual . Washington, DC: IEEE

(www.ieee.org).

On Digital Electronics

Pedroni, V. A. (2008). Digital Electronics and Design with VHDL . Burlington, MA: Morgan Kaufmann.

 Patterson, D. A., & Hennessy, J. L. (2011). Computer Organization and Design: The Hardware/Software

Interface (4th ed.). Burlington, MA: Morgan Kaufmann.

	Cover
	Contents
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	Index
	Bibliography

