Finite State Machines in Hardware

Finite State Machines in Hardware

Theory and Design (with VHDL and SystemVerilog)

Volnei A. Pedroni

The MIT Press
Cambridge, Massachusetts
London, England
© 2013 Massachusetts Institute of Technology
All rights reserved. No part of this book may be reproduced in any form by any electronic or mechanical means (including photocopying, recording, or information storage and retrieval) without permission in writing from the publisher.

MIT Press books may be purchased at special quantity discounts for business or sales promotional use. For information, please email special_sales@mitpress.mit.edu.

This book was set in Stone Sans and Stone Serif by Toppan Best-set Premedia Limited, Hong Kong. Printed and bound in the United States of America.

Library of Congress Cataloging-in-Publication Data

Pedroni, Volnei A.
Finite state machines in hardware : theory and design (with VHDL and SystemVerilog) / Volnei A. Pedroni.
pages cm
Includes bibliographical references and index.
ISBN 978-0-262-01966-8 (hardcover : alk. paper) 1. SystemVerilog (Computer hardware description language) 2. VHDL (Computer hardware description language) 3. Sequential machine theory—Data processing. 4. Computer systems-Mathematical models. I. Title.

TK7885.7.P443 2013
621.39'2—dc23

Contents

Preface xi
Acknowledgments xiii
1 The Finite State Machine Approach 1
1.1 Introduction 1
1.2 Sequential Circuits and State Machines 1
1.3 State Transition Diagrams 4
1.4 Equivalent State Transition Diagram Representations 6
1.5 Under- and Overspecified State Transition Diagrams 8
1.6 Transition Types 11
1.7 Moore-to-Mealy Conversion 12
1.8 Mealy-to-Moore Conversion 14
1.9 Algorithmic State Machine Chart 15
1.10 When to Use the FSM Approach 16
1.11 List of Main Machines Included in the Book 17
1.12 Exercises 18
2 Hardware Fundamentals-Part I 21
2.1 Introduction 21
2.2 Flip-Flops 21
2.3 Metastability and Synchronizers 24
2.4 Pulse Detection 28
2.5 Glitches 29
2.6 Pipelined Implementations 32
2.7 Exercises 33
3 Hardware Fundamentals-Part II 39
3.1 Introduction 39
3.2 Hardware Architectures for State Machines 39
3.3 Fundamental Design Technique for Moore Machines 41
3.4 Fundamental Design Technique for Mealy Machines 44
3.5 Moore versus Mealy Time Behavior 46
3.6 State Machine Categories 47
3.7 State-Encoding Options 49
3.7.1 Sequential Binary Encoding 49
3.7.2 One-Hot Encoding 50
3.7.3 Johnson Encoding 50
3.7.4 Gray Encoding 50
3.7.5 Modified One-Hot Encoding with All-Zero State 51
3.7.6 Other Encoding Schemes 52
3.8 The Need for Reset 52
3.9 Safe State Machines 54
3.10 Capturing the First Bit 56
3.11 Storing the Final Result 58
3.12 Multimachine Designs 60
3.13 State Machines for Datapath Control 62
3.14 Exercises 67
4 Design Steps and Classical Mistakes 73
4.1 Introduction 73
4.2 Classical Problems and Mistakes 73
4.2.1 \quad Skipping the State Transition Diagram 73
4.2.2 Wrong Architecture 73
4.2.3 Incorrect State Transition Diagram Composition 74
4.2.4 Existence of State Bypass 75
4.2.5 Lack of Reset 75
4.2.6 Lack of Synchronizers 76
4.2.7 Incorrect Timer Construction 76
4.2.8 Incomplete VHDL/SystemVerilog Code 76
4.2.9 Overregistered VHDL/SystemVerilog Code 78
4.3 Design Steps Summary 79
5 Regular (Category 1) State Machines 81
5.1 Introduction 81
5.2 Architectures for Regular (Category 1) Machines 82
5.3 Number of Flip-Flops 84
5.4 Examples of Regular (Category 1) Machines 84
5.4.1 Small Counters 84
5.4.2 Parity Detector 85
5.4.3 Basic One-Shot Circuit 86
5.4.4 Temperature Controller 88
5.4.5 Garage Door Controller 89
5.4.6 Vending Machine Controller 90
5.4.7 Datapath Control for an Accumulator 91
5.4.8 Datapath Control for a Greatest Common Divisor Calculator 93
5.4.9 Generic Sequence Detector 95
5.4.10 Transparent Circuits 96
5.4.11 LCD, ${ }^{2}$ C, and SPI Interfaces 97
5.5 Exercises 97
6 VHDL Design of Regular (Category 1) State Machines 105
6.1 Introduction 105
6.2 General Structure of VHDL Code 105
6.3 VHDL Template for Regular (Category 1) Moore Machines 107
6.4 Template Variations 111
6.4.1 Combinational Logic Separated into Two Processes 111
6.4.2 State Register Plus Output Register in a Single Process 112
6.4.3 Using Default Values 112
6.4.4 A Dangerous Template 113
6.5 VHDL Template for Regular (Category 1) Mealy Machines 114
6.6 Design of a Small Counter 116
6.7 Design of a Garage Door Controller 120
6.8 Design of a Datapath Controller for a Greatest Common Divisor Calculator 123
6.9 Exercises 126
7 SystemVerilog Design of Regular (Category 1) State Machines 129
7.1 Introduction 129
7.2 General Structure of SystemVerilog Code 129
7.3 SystemVerilog Template for Regular (Category 1) Moore Machines 130
7.4 SystemVerilog Template for Regular (Category 1) Mealy Machines 133
7.5 Design of a Small Counter 135
7.6 Design of a Garage Door Controller 137
7.7 Design of a Datapath Controller for a Greatest Common Divisor Calculator 140
7.8 Exercises 141
8 Timed (Category 2) State Machines 143
8.1 Introduction 143
8.2 Architectures for Timed (Category 2) Machines 144
8.3 Timer Interpretation 146
8.3.1 Time Measurement Unit 146
8.3.2 Timer Range 146
8.3.3 Number of Bits 146
8.4 Transition Types and Timer Usage 147
8.5 Timer Control Strategies 147
8.5.1 Preliminary Analysis 148
8.5.2 Timer Control Strategy \#1 (Generic) 149
8.5.3 Timer Control Strategy \#2 (Nongeneric) 150
8.5.4 Time Behavior of Strategies \#1 and \#2 151
8.6 Truly Complementary Time-Based Transition Conditions 153
8.7 Repetitively Looped State Machines 154
8.8 Time Behavior of Timed Moore Machines 155
8.9 Time Behavior of Timed Mealy Machines 156
8.10 Number of Flip-Flops 158
8.11 Examples of Timed (Category 2) Machines 158
8.11.1 Blinking Light 159
8.11.2 Light Rotator 160
8.11.3 Switch Debouncer 161
8.11.4 Reference-Value Definer 163
8.11.5 Traffic Light Controller 166
8.11.6 Car Alarm (with Chirps) 167
8.11.7 Password Detector 168
8.11.8 Triggered Circuits 170
8.11.9 Pulse Shifter 172
8.11.10 Pulse Stretchers 173
8.12 Exercises 176
9 VHDL Design of Timed (Category 2) State Machines 185
9.1 Introduction 185
9.2 VHDL Template for Timed (Category 2) Moore Machines 185
9.3 VHDL Template for Timed (Category 2) Mealy Machines 189
9.4 Design of a Light Rotator 191
9.5 Design of a Car Alarm (with Chirps) 194
9.6 Design of a Triggered Monostable Circuit 198
9.7 Exercises 201
10 SystemVerilog Design of Timed (Category 2) State Machines 207
10.1 Introduction 207
10.2 SystemVerilog Template for Timed (Category 2) Moore Machines 207
10.3 SystemVerilog Template for Timed (Category 2) Mealy Machines 210
10.4 Design of a Light Rotator 212
10.5 Design of a Car Alarm (with Chirps) 214
10.6 Design of a Triggered Monostable Circuit 217
10.7 Exercises 220
11 Recursive (Category 3) State Machines 221
11.1 Introduction 221
11.2 Recursive (Category 3) State Machines 222
11.3 Architectures for Recursive (Category 3) Machines 223
11.4 Category 3 to Category 1 Conversion 224
11.5 Repetitively Looped Category 3 Machines 225
11.6 Number of Flip-Flops 226
11.7 Examples of Recursive (Category 3) State Machines 226
11.7.1 Generic Counters 226
11.7.2 Long-String Comparator 228
11.7.3 Reference-Value Definer 229
11.7.4 Reference-Value Definer with Embedded Debouncer 231
11.7.5 Datapath Control for a Sequential Multiplier 232
11.7.6 Sequential Divider 234
11.7.7 Serial Data Receiver 236
11.7.8 Memory Interface 237
11.8 Exercises 240
12 VHDL Design of Recursive (Category 3) State Machines 245
12.1 Introduction 245
12.2 VHDL Template for Recursive (Category 3) Moore Machines 245
12.3 VHDL Template for Recursive (Category 3) Mealy Machines 248
12.4 Design of a Datapath Controller for a Multiplier 249
12.5 Design of a Serial Data Receiver 252
12.6 Design of a Memory Interface 256
12.7 Exercises 261
13 SystemVerilog Design of Recursive (Category 3) State Machines 265
13.1 Introduction 265
13.2 SystemVerilog Template for Recursive (Category 3) Moore Machines 265
13.3 SystemVerilog Template for Recursive (Category 3) Mealy Machines 267
13.4 Design of a Datapath Controller for a Multiplier 268
13.5 Design of a Serial Data Receiver 271
13.6 Design of a Memory Interface 273
13.7 Exercises 278
14 Additional Design Examples 279
14.1 LCD Driver 279
14.1.1 Alphanumeric LCD 279
14.1.2 Typical FSM Structure for Alphanumeric LCD Drivers 283
14.1.3 Complete Design Example: Clock with LCD Display 284
$14.2 I^{2} \mathrm{C}$ Interface 290
14.2.1 $I^{2} \mathrm{C}$ Bus Structure 290
14.2.2 Open-Drain Outputs 291
14.2.3 $I^{2} C$ Bus Operation 292
14.2.4 Typical FSM Structure for $I^{2} \mathrm{C}$ Applications 295
14.2.5 Complete Design Example: RTC (Real-Time Clock) Interface 296
14.3 SPI Interface 305
14.3.1 SPI Bus Structure 305
14.3.2 SPI Bus Operation 306
14.3.3 Complete Design Example: FRAM (Ferroelectric RAM) Interface 307
14.4 Exercises 315
15 Pointer-Based FSM Implementation 319
15.1 Introduction 319
15.2 Single-Loop FSM 319
15.3 Serial Data Transmitter 321
15.4 Serial Data Receiver 322
15.5 SPI Interface for an FRAM 325
15.6 Exercises 329
Bibliography 331
Index 333

Preface

This book deals with the crucial issue of implementing Finite State Machines (FSMs) in hardware, which has become increasingly important in the development of modern, complex digital systems.

Because FSM is a modeling technique for synchronous digital circuits, a detailed review of synchronous circuits in general is also presented, to enable in-depth and broad coverage of the topic.

A new classification for FSMs from a hardware perspective is introduced, which places any state machine under one of three categories: regular machines, timed machines, or recursive machines. The result is a clear, precise, and systematic approach to the construction of FSMs in hardware.

Many examples are presented in each category, from datapath controllers to password readers, from car alarms to multipliers and dividers, and from triggered circuits to serial data communications interfaces.

Several of the state machines, in all three categories, are subsequently implemented using VHDL and SystemVerilog. It starts with a review of these hardware description languages, accompanied by new, detailed templates. The subsequent designs are always complete and are accompanied by comments and simulation results, illustrating the design's main features.

Numerous exercises are also included in the chapters, providing an invaluable opportunity for students to play with state machines, VHDL and SystemVerilog languages, compilation and simulation tools, and FPGA development boards.

In summary, the book is a complete, modern, and interesting guide on the theory and physical implementation of synchronous digital circuits, particularly when such circuits are modeled as FSMs.

Acknowledgments

I want to express my gratitude to Bruno U. Pedroni for his invaluable help and suggestions during the initial phase of the book. I am also grateful to the personnel at MIT Press, especially Marc Lowenthal, acquisitions editor, for his assistance during the early phases of the book; and Marcy Ross, production editor, for her excellent work and endless patience during the editing and production phases.

1 The Finite State Machine Approach

1.1 Introduction

This chapter presents fundamental concepts and introduces new material on the finite state machine (FSM) approach for the modeling and design of sequential digital circuits.

A summary of the notation used in the book is presented in table 1.1.

1.2 Sequential Circuits and State Machines

Digital circuits can be classified as combinational or sequential. A combinational circuit is one whose output values depend solely on the present input values, whereas a sequential circuit has outputs that depend on previous system states. Consequently, the former is memoryless, whereas the latter requires some sort of memory (generally, D-type flip-flops [DFFs], reviewed in section 2.2).

An example of a combinational circuit is presented in figure 1.1a, which shows an N -bit adder; because the present sum is not affected by previous sums computed by the circuit, it is combinational. An example of sequential circuit is depicted in figure 1.1 b , which shows a synchronous three-bit counter (it counts from 0 to 7); because its output depends on the system state (for example, if the current output is 5 , then the next will be 6), it is a sequential circuit. Note the presence of a clock signal in the latter.

An often advantageous model for sequential circuits is presented in figure 1.2a, which consists of a combinational logic block in the forward path and a memory (DFFs) in the feedback loop. When this architecture is used, a finite state machine (FSM) results. Note that the state presently stored in the memory is called pr_state, and the state to be stored by the DFFs at the next (positive) clock transition is called $n x$ _state.

An example of such a modeling technique is depicted in figure 1.2 b , which shows the same circuit of figure 1.1 b , now reorganized according to the architecture of

Table 1.1

Item	Representation	Examples
Signal names	In italic	a, x, clk, rst, ena, WE
Active-low signal names	In italic, followed by an n	WEn, rstn, rst_n
Single-bit values	Within a pair of single quotes	'0', '1', 'x', '-', 'z'
Multi-bit values	Within a pair of double quotes	"00", "1000", "ZZZZ"
Integers	Without quotes	1000, 5, -256
Allowed bit values	'0' or 'L' for low logic level '1' or 'H' for high logic level ' X ' or '-' for "don't care" 'Z' for high impedance	$\begin{aligned} & y='^{\prime} \text { or } y=' L ' \\ & y=1 \text { ' or } y=' H^{\prime} \\ & y=' X^{\prime} \text { or } y='-'^{\prime} \\ & y=' Z ' \end{aligned}$
Bit indexing (outside VHDL or SystemVerilog codes)	Between parentheses, with a colon	$x(7: 0)$ means that x has 8 bits, $x(7)$ is the most significant bit, $x(0)$ is the least significant bit
Reset and clear signals	- Called reset (rst) when asynchronous (resets the circuit regardless of the clock) - Called clear (clr) when synchronous (effective only at the proper clock edge)	if $r s t=$ ' 1 ' then ... if $c l r=$ '1' then ..
Transition conditions in state diagrams	\& means and \| means or ! and \neq mean not or different - (bar) and ' mean not or inversion ' X ' and ' - ' mean "don't care" for a single-bit value "XX..." and "--..." mean "don't care" for a multi-bit value - means "don't care" for an integer	

Figure 1.1
Examples of (a) combinational and (b) sequential circuits.

Figure 1.2
(a) Sequential circuit with a registered feedback loop (a finite state machine). (b) Counter of figure 1.1 b rearranged according to figure 1.2 a .
figure 1.2a. Note that the lower section contains only flip-flops, whereas the upper section is purely combinational.

Concept

In short, a state machine is a modeling/design technique for sequential circuits. At any time, the machine sits in one of a finite number of possible states. For each state, both the output values and the transition conditions into other states are fully defined. The state is stored by the FSM, and the transition conditions are usually reevaluated at every (positive) clock edge, so the state-change procedure is always synchronous because the machine can only move to another state when the clock ticks. (Note: There has been some effort to develop asynchronous FSMs as well.)

Benefits

The FSM model provides a systematic approach (a method) for designing sequential circuits, which can lead to optimal or near-optimal implementations. Moreover, the method does not require any prior knowledge or specifics on how the general circuit (solution) for the problem at hand should look like.

When to Use the FSM Approach

This will be discussed in section 1.10.

Hardware- versus Software-Implemented State Machines

Designing and implementing correct state machines in hardware is generally (much) more complex than doing it in software. Some of the reasons for that are listed below.

1) It is physically impossible for the clock signal to arrive at all chip locations at exactly the same time (this is called clock skew), so some flip-flops will be activated before others, a concern that simply does not exist in software.
2) A naive design in hardware might lead to the inference of latches, which impair the time response. It might also lead to the other extreme, which consists of reregistering one or more signals, causing unwanted latency.
3) In hardware, signals might be subject to glitches, another concern that does not occur in software.
4) Contrary to software, hardware allows no abstraction. For example, if a state machine must produce in the next state the same output value produced in the current state, in software we can simply omit the corresponding expression; or if it requires an incrementer, we can simply write $x=x+1$. In either case, an explicit expression would be required in hardware ($x=x$ or $x=x+1$), which can only be evaluated if the value of x is available, so the machine itself must provide a means for storing (and properly retrieving) x.
5) In hardware, signals represent physical wires, so we cannot assign a signal source to an interconnection now and simply assign another later.
6) Many machines have asynchronous inputs, so the use of synchronizers (to avoid flip-flop metastability) must be considered, another concern that does not occur in software-implemented FSMs.
7) Some circuits need a special clock, obtained by "gating" the main clock. Depending on how it is done, the resulting clock might be subject to glitches, another issue that simply does not exist in software.
8) Several other concerns, such as "reset generation," "capturing the first bit," "keeping the final result stable," and "stretching the decision pulse", are also not a problem in software-implemented machines.

1.3 State Transition Diagrams

The state transition diagram (or simply state diagram) of a sequential circuit is a graphical representation of its functional specifications. Such a diagram must obey three fundamental principles:

1) It must include all possible system states.
2) All state transition conditions must be specified (unless a transition is unconditional) and must be truly complementary.
3) The list of output signals must be exactly the same in all states (for a standard architecture implementation).

To employ the FSM approach to design a sequential digital circuit, all three requisites listed above must be fulfilled, and also the list of states must not be too long. All sorts of controllers (including control units for datapath-based designs) are typical examples of circuits well suited for this design technique, as will become clear through the many examples presented in the book.

State machines can be of Moore or Mealy type. Both are described below.

Moore-Type State Machines

An FSM is said to be of Moore type when its output depends solely on the machine's present state. In other words, the output is not affected directly by the input (the input can only affect the machine's next state). The result is a fully synchronous circuit because the output can only change when the clock ticks.

An example of Moore FSM is presented in figure 1.3b. The circuit ports are shown in figure 1.3a, consisting of a data input, x (8 -bit extended ASCII character), a data output, y (single bit), plus the conventional operational inputs of clock and reset. The circuit must produce $y=$ ' 1 ' when the sequence " $a b c$ " occurs in x, that is, when $x=$ " 01100001 " (ASCII code for a), followed by $x=$ " $01100010 "(=b)$, then $x=" 01100011 "(=c)$ occur.

The Moore-type state transition diagram of figure 1.3b contains four states, called idle, char1, char2, and char3. Each state tells the value that must be produced at the output (y) while the machine is in that state; note that only char3 produces $y=$ ' 1 ' because the machine only reaches that state if the correct sequence $(a b c)$ is detected. Finally, the transition conditions (on x, the input) are shown along the arrows.

The meaning of the state diagram of figure 1.3b is as follows. Say that the circuit is in the idle state; if $x=a$ is received, it moves from idle to char1, otherwise it remains in idle; if it is in char1 and b is received, it moves to state char2, otherwise it remains in char1 if a was received or returns to idle if neither a nor b was received; and so on. Note in figure 1.3 b that, because this is a Moore machine, the output depends only on the state in which the machine is, so the output values can be written inside the state circles.

Figure 1.3
A finite state machine that detects the ASCII sequence "abc". (a) Circuit ports. Corresponding (b) Moore and (c) Mealy state transition diagrams.

It is important to mention that the state transitions are always synchronous (governed by a clock signal). For example, if the machine is in the idle state and the condition $x=a$ is true at the moment when a (positive) clock edge occurs, then the circuit moves to state char1. A machine can operate either at the positive or negative clock edge, or even at both clock edges if dual-edge flip-flops are employed. Unless specified otherwise, it will be assumed (default) that it is a positive-edge machine.

Mealy-Type State Machines

An FSM is said to be of Mealy type when its input can affect the output directly. In other words, the output now does not depend solely on the machine's state but also depends on the input value. The resulting circuit is no longer truly synchronous because the output might now change independently of the clock.

A Mealy-type solution for the same problem of figure 1.3a is depicted in figure 1.3c. Because the output can now exhibit more than one value for the same state (because the output also depends on the input value), the output values can no longer be written inside the state circles. Note that they are indeed marked on the arrows, along with the input (transition condition) values. Additionally, to simplify the notation, in the Mealy machine the signal names are generally omitted (they are indicated separately, as in the small rectangle of figure 1.3 c). In this example the Mealy parameters are x / y, meaning "if $x=$ value, then $y=$ value"; for example, $a /{ }^{\prime} 0$ ' means "if $x=a$, then $y={ }^{\prime} 0$ '."

The meaning of the state diagram of figure 1.3 c is as follows. If the circuit is in state A and the input is $x=a$, the output is $y=$ ' 0 ', and the next state (at the next positive clock edge) will be B; otherwise, the output is still $y=$ ' 0 ', but the next state will be A. Likewise, if the machine is in state C and the input is $x=a$, then the output is $y={ }^{\prime} 0$ ', and the next state will be B; otherwise, if the input is $x=c$, the output is $y={ }^{\prime} 1$ ', and the next state will be A; else, the output is $y=$ ' 0 ', but the next state will still be A. A similar reasoning can easily be applied to state B. The direct dependence of the output on the input can easily be observed in the state diagram; for example, note that in state C the value of y varies with x, resulting in $y=$ ' 1 ' when $x=c$ or $y=$ ' 0 ' otherwise.

Because modern designs are generally synchronous, the Moore option tends to be preferred whenever the application permits.

Further details on Moore and Mealy constructions are seen in sections 1.7 and 1.8, in which the conversion from one to the other is described.

1.4 Equivalent State Transition Diagram Representations

Unconditional and equivalent representations for the state transition diagram are shown in figure 1.4, where a 1-to-5 counter is used as an example. Two cases are considered. The case in figure 1.4a has only clock and reset as inputs and as output has the 3-bit signal outp that encodes the counting. The case in figure 1.4 c has an additional

Figure 1.4
(a, b) A 1-to-5 counter with only clock and reset as inputs (the transitions are unconditional). (c-g) The counter has an additional input (ena), which either enables the counter or causes it to stop. The representations in $\mathrm{d}-\mathrm{g}$ are equivalent.
input, called ena, which enables the counter when asserted (ena = ' 1 ') or causes it to stop otherwise.

Figure 1.4 b shows the FSM corresponding to the counter in figure 1.4a. Because there are no inputs in this circuit (except for the operational inputs, clock and reset), it can only be a Moore machine. Note that all possible states are included and that the value that must be produced at the output in each state is specified. However, there are no specifications for the transition conditions, which means that the transitions are unconditional, that is, they must occur at every (positive) clock edge.

Observe that a special (simplified) representation is reserved for the reset signal (not only in this example, but in all state transition diagrams). The reset signal is represented by a single arrow pointing to the state to which the machine is forced when $r s t=$ ' 1 ' occurs.

Figures $1.4 \mathrm{~d}-\mathrm{g}$ show equivalent representations for the FSM corresponding to the counter in figure 1.4c. Because now an external nonoperational input is present (ena, which lets the counter run when high or stops it when low), it can be modeled as either a Moore or a Mealy machine. However, because counters are inherently synchronous, the Moore approach is the natural choice.

The diagram in figure 1.4 d is the most detailed, expressing, both by name and numerically, all transition conditions and output values. The representation in figure 1.4 e expresses the transition conditions in Boolean form instead of numeric form. The representation in figure 1.4 f assumes that else is implicit. Finally, the extreme simplification of figure 1.4 g includes just the numeric output values inside the state circles, assuming again that else is implicit. The advantage of the first representation (figure 1.4 d) is that it forces the designer to go over all possibilities more closely, whereas the advantage of the other representations is a simpler, neater diagram. To help the reader visualize small details, the first representation is used here more often than the others, but these representations are all equivalent and can be used interchangeably.

1.5 Under- and Overspecified State Transition Diagrams

This section describes a relatively frequent mistake that occurs while one is preparing the state transition diagram for a given problem, which consists of either under- or overspecifying it. An underspecification occurs when not all combinations of the transition control signals are covered, whereas an overspecification occurs when one or more combinations are included more than once.

Figure 1.5a shows an example of underspecification. Because the transition control signals are a and b, which are single-bit signals, the possible transition conditions are $a b=\{" 00$ ", " 01 ", " 10 ", " 11 " $\}$. In state A, the AA transition is governed by the condition $a=$ ' 0 '; because this is independent of b, it is the same as writing $a={ }^{\prime} 0$ ' \& $b=$ ' - ', thus covering the cases $a b=$ " $0-$ " $=\{" 00$ ", " 01 " $\}$. The AB transition is governed by the condition $a=' 1$ ' \& $b=' 1$ ', thus covering the case $a b=$ " 11 ". Since there is no

Figure 1.5
(a) Example of underspecified state transition diagram and (b, c) examples of possible solutions. In c, the else condition is implicit.
other outward transition in state A, we conclude that the condition $a b=$ " 10 " was not covered in the state diagram. A similar analysis for state B shows that the transition condition $a b=$ " 10 " was again not covered. Therefore, in this example, both states are underspecified. If the machine faces one of the unspecified combinations, it will either get stuck there or will proceed as defined (probably unconsciously) in the corresponding VHDL or SystemVerilog code.

Figure 1.5b shows a corrected version for the underspecified machine of figure 1.5a. It was considered that the missing condition for state $\mathrm{A}(a b=" 10$ ") should be associated to the AA transition, and the missing condition for state B ($a b=$ " 10 ") should be associated to the BA transition. Note that the latter caused the BA transition to become independent from a.

Another corrected version for the underspecified machine of figure 1.5 a is presented in figure 1.5c. In this case the missing conditions for states A and B were associated to the AA and BB transitions, respectively. The representation with implicit else was used.

Figure 1.6a shows an example of overspecification. Again, a and b are the transition control signals. The AB transition is governed by the condition $a=$ ' 1 ', thus covering the cases $a b=" 1-"=\{" 10 ", " 11 "\}$. The AC transition is governed by the condition b $=' 1$ ', thus covering the cases $a b="-1 "=\{" 01 ", " 11 "\}$. Note that $a b=" 11$ " appears in both AB and AC transitions, thus causing a conflict. To solve the problem, we must establish priorities.

Figure 1.6
(a) Example of overspecified state transition diagram and (b) a possible solution. (c) Another overspecified machine and (d) a possible solution.

A corrected version for the overspecified machine of figure 1.6a is presented in figure 1.6b. In this example the following priority list was adopted (from highest to lowest): AB, AC, AA.

Figure 1.6 c shows another example of overspecification. The transition control signals now are a, b, and c. The AB transition is governed by the condition $a=$ ' 1 ' and thus covers the cases $a b c=" 1--"=\{" 100 ", " 101 ", " 110 ", " 111 "\}$. The AC transition is governed by the condition $b={ }^{\prime} 1$ ' and thus covers the cases $a b c="-1-$ " $=\left\{{ }^{\prime \prime} 010\right.$ ", " 011 ", " 110 ", " 111 " $\}$. Similarly, the AD transition is governed by the condition $c=$ ' 1 ' and thus covers the cases $a b c="--1 "=\{" 001 ", " 011 ", " 101$ ", " 111 " $\}$. Note that several conditions are repeated, causing conflicts. To solve the problem, we must again establish priorities.

A corrected version for the overspecified machine of figure 1.6 c is presented in figure 1.6d. In this example the following priority list was adopted (from highest to lowest): AB, AC, AD, AA.

In summary, the outward transition conditions must be exactly fully complementary. In other words, they must include all possible combinations of the transition control signals, but without any repetitions.

In regard to underspecification, another example is shown in figure 1.7, in which an integer t, produced by a counter to represent time, is the transition control signal. The machine must stay in state A during T clock periods, moving then to state B. Because the timer's initial value is zero, it must count from 0 to $T-1$ in order to span T clock cycles, which is the reason why $t=T-1$ (instead of $t=T$) appears in the transition control conditions (specific details on timed transitions are given in chapter 8).

Note in figure 1.7a that the outward transition conditions from state A are not truly complementary because the $t>T-1$ condition is not covered. It was fixed in figure 1.7 b with the $t>T-1$ condition associated with the AB transition. Another corrected option is shown in figure 1.7 c , this time with the $t>T-1$ condition associated with the AA transition.

There are two main reasons for not using non-truly complementary conditions. First, the machine can go into an undesirable state, even get deadlocked (for example, if the initial state is A and the timer is not properly reset, starting with $t>T-1$,

Figure 1.7
Noncomplementary transition conditions. (a) Condition $t>T-1$ not covered. (b, c) Corrected versions with $t>T-1$ associated with the AB and AA transitions, respectively.
depending on how this timer is controlled by the FSM, the machine can get stuck in state A forever). Second, it is more costly (in terms of hardware) to compute non-fully complementary conditions than otherwise. For example, if VHDL is used, the following sections of code could be employed for the three cases in figure 1.7:

```
For figure 1.7a:
if t=T-1 then
    nx_state <= B
elsif t<T-1 then
    nx_state <= A;
end if;
```

```
For figure 1.7b:
if t>=T-1 then
    nx_state <= B
else
    nx_state <= A;
end if;
```

```
For figure 1.7c:
if t=T-1 then
    nx_state <= B
else
    nx_state <= A;
end if;
```

Note that else was used to close the if statement in the last two codes, which means that all conditions are covered and only one comparison is needed. On the other hand, in the first code elsif was used instead, so an additional comparison is required; moreover, it does not cover all input combinations, so latches might be inferred by the compiler. In summary, the option in figure 1.7a produces an inferior circuit, and we still have to pay more for it.

Other common mistakes and problems that can occur while one is designing FSMs in hardware are described in chapter 4.

1.6 Transition Types

A very important classification for the transitions, from a hardware perspective, is introduced in this section. In section 3.6 this classification is used to separate any state machine into one of three categories, immensely easing its hardware-based design.

The state machine of figure 1.8a is used to describe the transition types, where x is the actual input, t is an auxiliary input generated by a timer, and y is the actual output. This machine contains all four possible types of transitions.

Transition AB (conditional transition) depends only on the actual input, x. If the machine is in state A , it must move to state B at the first (positive) clock edge that finds $x=x_{1}$.

Transition BC (timed transition) depends only on the timer, t. The machine must stay in state B during exactly T_{1} clock cycles, moving then to state C. An auxiliary circuit (a timer, which is simply a counter, operating from 0 to $T_{1}-1$ in this transition) must be included in the design. By default, the timer is zeroed every time the FSM changes state; moreover, the timer is kept stopped at zero in states where it is not needed (states A and D of figure 1.8a, for example).

Transition CD (conditional-timed transition) is more complex because it depends on the actual input, x, and also on the timer, t. The machine must move to state D at the first (positive) clock edge that finds $x=x_{2}$ after staying in state C during T_{2} clock

Figure 1.8
(a) State machine containing all four types of transitions (from a hardware perspective): conditional, timed, conditional-timed, and unconditional. (b) A special compound transition, which checks whether a condition has been true during the whole time.
cycles. This implies that it will remain in state C during at least T_{2} clock cycles, not necessarily during exactly T_{2} clock cycles.

Transition DA (unconditional transition) is the simplest type of transition. The machine must move from state D to state A at the next (positive) clock edge, regardless of x and t, thus staying in D during exactly one clock period.

Note that even though t denotes time in the description above, it is not expressed in seconds but rather in "number of clock cycles." For example, if we want the machine to stay in a certain state during $t_{\text {state }}=2 \mathrm{~ms}$, and the clock frequency is $f_{\text {clk }}$ $=50 \mathrm{MHz}$, we simply adopt $T_{\text {state }}=t_{\text {state }} \times f_{\text {clk }}=2 \cdot 10^{-3} \times 50 \cdot 10^{6}=100,000$ clock cycles.

A special time-dependent transition is shown in figure 1.8 b . Note that the conditional-timed transition CD in figure 1.8a only checks if $x=x_{2}$ after T_{2} clock cycles. Say, however, that we want the machine to move from C to D only if $x=x_{2}$ has occurred during the whole time (i.e., during all T_{2} clock cycles). To cover this case, a compound transition is needed that results from the combination of three pure transitions, as shown in figure 1.8 b . This arrangement works well because the timer is zeroed every time the machine changes its state. Note that $T_{2}-1$ clock cycles are needed in the XD transition (so the timer must count from 0 to $T_{2}-2$) because one clock cycle is spent in the CX transition. Even though in many applications this " -2 " factor in t $=T_{2}-2$ is not relevant, it is maintained here for the sake of accuracy. Much more on time-dependent transitions is presented in chapter 8.

In section 3.6, the transition types described above are used to classify any hardwareimplemented FSM into one of the following three categories: regular machines, timed machines, or recursive machines. Two fundamental decisions must then be made when developing an actual design in hardware: the machine category (just listed) and the machine type (Moore or Mealy).

1.7 Moore-to-Mealy Conversion

Moore machines can be converted into corresponding Mealy machines. The latter will have the same number of states as the former if state merging is not possible, or fewer states otherwise.

When merging is not possible, the conversion is trivial, consisting simply of a change of notation (from Moore to Mealy style). To do so, just bring outside the output values marked inside the state circles and associate them with the corresponding preceding (inward) transitions. An example is presented in figure 1.9.

The merging of two states is possible when they fulfill the following two requisites:

1) Their sets of outward transitions are exactly equal.
2) The pairs of equal outward transitions (one from each state) go to the same states.

An example is presented in figures 1.10a-c. The original Moore FSM, with four states, is presented in figure 1.10a. Note that states A and B have the same set of outward transitions ($x=x_{1}, x=x_{2}$) and that the equal transitions go to the same states (from both A and B , the transitions governed by $x=x_{1}$ go to state C , while those governed by $x=x_{2}$ go to state D). Therefore, A and B can be merged. To do so, first

Figure 1.9
Moore-to-Mealy conversion when state merging is not possible (just a change of notation).

Merging of $A+B$:

Merging of $A+B+C$:

Figure 1.10
Moore-to-Mealy conversion principle. (a) Original Moore machine. (b) Moore-to-Mealy notation change. (c) Merging of states A and B. (d-f) Another example, following the same procedure.
the notation is changed from Moore to Mealy style, as shown in figure 1.10b, and then the merging is done in figure 1.10c.

Another example is presented in figures $1.10 \mathrm{~d}-\mathrm{f}$ following the same procedure. The analysis of this example is left to the reader. The reader is also invited to apply this procedure to the Moore machine of figure 1.3b and see if the Mealy machine of figure 1.3 c results.

As expected, because of the highly restricting requirements for state merging (described above), in practical engineering problems the number of additional states in a Moore machine compared to its Mealy counterpart is generally very small.

1.8 Mealy-to-Moore Conversion

Mealy machines, too, can be converted into corresponding Moore machines. As seen above, the former can be smaller than the latter, although the difference (in number of states) in useful engineering applications is generally negligible.

The conversion principle consists again of two steps, illustrated in figures 1.11a-c. A Mealy FSM with three states is presented in figure 1.11a. The first step, shown in figure 1.11 b , consists of changing the notation from Mealy to Moore style. Because in a Mealy machine the same state can exhibit more than one output value, the resulting Moore diagram might have states with conditional outputs, such as state A in the figure. The next step is to split each state into as many states as the possible output values.

Splitting of A :

Splitting of A and B :

Figure 1.11
Mealy-to-Moore conversion principle. (a) Original Mealy machine. (b) Mealy-to-Moore notation change. (c) Splitting of state A into A^{\prime} and $A^{\prime \prime}$. (d-f) Another example, following the same procedure.

Figure 1.12
Example of Mealy-to-Moore conversion (" $a b c$ " detector of figure 1.3c).

This is shown in figure 1.11c, where only state A was split because it is the only state with multiple output values. Another example is presented in figures $1.11 \mathrm{~d}-\mathrm{f}$, following the same procedure. The analysis of this example is left to the reader.

Just as a check, note in figure 1.11c that the outward transitions of states A^{\prime} and $A^{\prime \prime}$ are alike and that the equal transitions go to the same state, so A^{\prime} and $A^{\prime \prime}$ can be merged. Observe in figure 1.11f that the pairs $\mathrm{A}^{\prime}-\mathrm{A}^{\prime \prime}$ and $\mathrm{B}^{\prime}-\mathrm{B}^{\prime \prime}$ also fulfill the merging requirements, so they too can be merged.

A final example is presented in figure 1.12. In figure 1.12a, the same Mealy machine of figure 1.3 c is shown (just reorganized horizontally). Note that there are four possible transitions into state A, of which the first three must produce $y=$ ' 0 ' while the last one must produce $y=$ ' 1 ' (hence with two possible values for the output). On the other hand, note that the transitions into states B and C must all produce a single output value $(y=$ ' 0 '). The resulting intermediate diagram, with Moore notation, is shown in figure 1.12 b . Because only state A has more than one output value (two values), only A needs to be decomposed (into two states), resulting in the Moore machine shown in figure 1.12c. The reader is invited to compare it against that presented earlier, in figure 1.3b.

1.9 Algorithmic State Machine Chart

An algorithmic state machine (ASM) chart is another way of representing a state machine instead of using a state transition diagram. An ASM chart is a flowchart-like diagram containing information equivalent to that of the state diagram but generally in a more textual, algorithm-like form.

Figure 1.13
ASM chart for the " $a b c$ " detector of figure 1.3b.

As in flowcharts, the main elements of ASM charts are rectangles (representing the machine's states) and diamonds (representing condition checks). An example is presented in figure 1.13, which is equivalent to the "abc" detector of figure 1.3b.

In large and/or complex designs, ASM charts tend to be cumbersome. Moreoverand more importantly-they do not convey the hardware aspects as clearly as state transition diagrams. For these reasons, they are generally of limited use to hardwarebased designs.

1.10 When to Use the FSM Approach

Even though any sequential circuit can be modeled/designed using the FSM approach, it is not always advantageous or necessary to do so. For example, if the circuit has too many states (say, over 100), it might be not viable to represent it as a state machine. Also, if it has very few states (say two or three), it might happen that a direct (experience-based) solution is straightforward. The number of control signals and the number of transitions are also determinant factors in the decision on whether or not to use the FSM approach.

Four candidates for the FSM approach are depicted in figure 1.14. The first candidate, in figure 1.14a, has only one (big) loop, with perhaps one control input. This is the case, for example, of regular counters (possibly with an enable input), which, as already mentioned, constitute a classical example of circuits for which the FSM technique is not needed.

The second candidate, in figure 1.14b, has few states, but proportionally more connections than the previous case due to more control inputs, which might even include

(a) Big loop, zero or one control input

(b) One or more control inputs (possibly including time)

(c) Several loops, two or more control inputs (possibly including time)

(d) Many loops (highly interconnected), two or more control inputs (possibly including time)

Figure 1.14
Weak and strong candidates for the FSM approach.
time (as will be shown in chapter 8, dealing with time-dependent transitions is more complex than dealing with regular transitions), so this candidate is not as weak as the previous one.

The candidate in figure 1.14 c has more states and more control inputs than the previous one, resulting in a relatively strongly interconnected diagram. Consequently, this is a strong candidate for the FSM approach.

The final candidate, in figure 1.14 d , has many states and several control inputs, resulting in a highly interconnected diagram. For this kind of candidate, the FSM approach is indispensable.

1.11 List of Main Machines Included in the Book

—Arbiter (bus access)
-Blinking light (with special features)
-Car alarms (basic and with chirps)
-Counters
-Datapath controller for a greatest common divisor
-Datapath controller for a largest-value detector
-Datapath controller for a sequential divider
-Datapath controller for a sequential multiplier
-Datapath controller for a square root calculator
-Datapath controller for an accumulator
-Debouncers (single and multiple, without and with one-shot conversion and memory)
-Divider
-Factorial calculator
-Flag monitor
-Garage door controller
-Greatest common divisor
-Hamming-weight calculator
$-\mathrm{I}^{2} \mathrm{C}$ (inter-integrated circuits) interface
—Keypad encoder
-LCD (liquid crystal display) driver
-Leading-ones counter
-Light rotator
-Manchester encoders (regular and differential)
-Memory interfaces (SRAM and EEPROM)
-Multiplier
-One-shot circuits
-Parity detectors
-Password detector
—Pulse shifters
—Pulse stretchers
-Reference-value definers
-RTC (real-time clock) interface
-Serial data receivers
-Serial data transmitters
-SPI (serial peripheral interface)
-String detectors
-Strings comparators (short and long, with and without overlap)
-Temperature controller
-Traffic light controller
-Triggered circuits (bistable and monostable)
-Vending machine controller

1.12 Exercises

Exercise 1.1: FSM Architecture

Two sequential circuits are given in figure 1.15. Rearrange each of them according to the FSM architecture of figure 1.2.

Exercise 1.2: "aabb" Detector

Draw the state transition diagram for an FSM capable of detecting the sequence " $a a b b$ " (see example in figure 1.3) for the following cases:

Figure 1.15

Figure 1.16
a) Using a Moore machine.
b) Using a Mealy machine.

Exercise 1.3: Equivalent State Transition Diagrams

a) Present a simplified version (see figure 1.4) for the detailed state transition diagram of figure 5.4b.
b) Present fully detailed versions for the semidetailed state transition diagrams of figures 5.7c and 8.16c.

Exercise 1.4: Under- and Overspecified State Diagrams

a) Why is the state transition diagram of figure 1.16a said to be underspecified? Fix it.
b) Why is that of figure 1.16 b said to be overspecified? Fix it.

Exercise 1.5: Transition Types

List the types (conditional, timed, etc.) of all transitions in the following FSMs:
a) Figure 8.12c.
b) Figure 8.14 b.

Exercise 1.6: Moore-to-Mealy Conversion \#1

Consider the Moore machine of figure 3.4a.
a) Are there states that can be merged in the Moore-to-Mealy conversion? Explain.
b) Do the conversion. After finishing it, compare your result to figure 3.6a.

Figure 1.17

Exercise 1.7: Moore-to-Mealy Conversion \#2

Consider the Moore machine of figure 1.17a.
a) Are there states that can be merged in the Moore-to-Mealy conversion? Explain.
b) Do the conversion. Does your result have any relationship with figure 1.17b?

Exercise 1.8: Mealy-to-Moore Conversion \#1

Consider the Mealy machine of figure 3.6a.
a) Are there any states that must be split in the Mealy-to-Moore conversion? Explain.
b) Do the conversion. After finishing it, compare your result to figure 3.4a.

Exercise 1.9: Mealy-to-Moore Conversion \#2

Consider the Mealy machine of figure 1.17b.
a) Are there any states that must be split in the Mealy-to-Moore conversion? Explain.
b) Do the conversion. Does your result have any relationship with figure 1.17a?

2 Hardware Fundamentals-Part I

2.1 Introduction

This chapter and the one that follows discuss fundamental hardware-related aspects and introduce new material essential to fully understand and correctly design finite state machines in hardware. This chapter deals mainly with registers, and the next deals with the complete state machine structure.

The topics seen in these two chapters are used, reinforced, and expanded as the subsequent chapters unfold, particularly in chapters 5 (theory for category 1 machines), 8 (theory for category 2 machines), and 11 (theory for category 3 machines).

2.2 Flip-Flops

Flip-flops are available in four versions: SR (set-reset), D (data), T (toggle), and JK. The D-type flip-flop (DFF) is a general-purpose flip-flop and therefore the most commonly used. However, because counters are among the most common digital circuits, and counters are implemented with T-type flip-flops (TFFs), the TFF is also very popular. Nevertheless, because a TFF can be obtained from a DFF by simply connecting an inverted version of its output back to its input, the DFF is essentially the only flip-flop needed in most designs, no matter how big or how complex. For instance, the DFF is the only flip-flop fabricated in field programmable gate array (FPGA) devices.

The DFF is the flip-flop used to build the state register (that is, the memory that stores the machine's state) in hardware-implemented finite state machines (see figure 1.2). It is also the flip-flop used to build any other additional (optional or compulsory) register that the machine might require. Consequently, it is important to review its operation well.

Figure 2.1a shows the symbol and truth table for a basic positive-edge-triggered DFF. The inputs are d (data in) and $c l k$ (clock), while the output is q (data out). As can be seen in the truth table, $q+$ (which represents the next value of q) receives the value of d when a positive clock transition occurs (gray table line) but remains unchanged

Figure 2.1
Symbol and truth table for basic (a) positive-edge and (b) negative-edge DFFs.

(a)

Figure 2.2
DFF symbol with (a) reset or (b) clear, followed by examples of functional response. (c) Diagram showing how clear can be implemented.
under any other condition. For this reason, it is said that a positive-edge-triggered (or simply positive-edge) DFF is "transparent" during positive clock transitions and "opaque" elsewhere.

Figure 2.1 b shows the symbol and truth table for a basic negative-edge-triggered (or simply negative-edge) DFF (note the little circle at the clock input). This DFF is "transparent" during negative clock transitions (see last table line) and "opaque" elsewhere.

The behavior of any digital circuit can be expressed by means of its functional and timing responses. The former takes into account only the circuit's logical functions, thus conveying only its functional behavior, whereas the latter also takes into account the propagation delays as the signals travel through the circuit, thus expressing the circuit's actual behavior. Both types of responses (functional and timing) are illustrated next for flip-flops.

Figure 2.2 shows (on the left) two DFFs, the first having a reset (rst) input, and the second a clear (clr) input. In the context of this book the difference between reset and clear is that the former is asynchronous (it forces the output to zero regardless the clock value), whereas the latter is synchronous (the output is forced to zero when the proper clock transition occurs). It is important to mention, however, that these des-
ignations for reset and clear are not universal; for instance, FPGA companies usually call both "clear." The diagram in figure 2.2c shows how clear can be implemented; note that when $c l r=$ ' 1 ', d is forced to ' 0 ', so at the next positive clock edge this ' 0 ' will be copied to q, clearing the output.

Examples of functional response for both cases are included in figure 2.2. Arrows were placed on the clock waveforms to highlight the only moments at which the DFFs are transparent. As can be seen, the value of d is copied to q at each of these clock transitions. Note, however, that when rst is asserted (figure 2.2a), the output is forced to zero immediately, whereas when clr is asserted (figure 2.2 b), the output is forced to zero at the next positive clock transition.

The timing response (with propagation delays taken into account) of a DFF is illustrated in figure 2.3. A DFF with reset, similar to that of figure 2.2 a , was considered. The propagation delays are defined in figure 2.3 a , where $t_{p C Q(H L)}$ and $t_{p C Q(L H)}$ represent the propagation delays from $c l k$ to q (time interval between the clock edge and the settling of q in the high-to-low and low-to-high transitions, respectively) and $t_{P R Q}$ is the propagation delay between r rst and q. In the example of figure 2.3 b , the following values were assumed: $t_{p C Q(H L)}=t_{p C Q(L H)}=2 \mathrm{~ns}$ and $t_{p R Q}=1 \mathrm{~ns}$ (note the gray shades in the q waveform; the distance between the vertical lines is 1 ns).

A final pair of time-related parameters define the DFF's forbidden region (also called aperture or transparency window). As shown in figure 2.4 , such parameters are called $t_{\text {setup }}$ and $t_{\text {hold }}$, which specify, respectively, how long before and after the clock edge the

Figure 2.3
(a) Time-related parameters of a DFF. (b) Example of timing response with $t_{p C Q(H L)}=t_{p C Q(L H)}=2 \mathrm{~ns}$ and $t_{P R Q}=1 \mathrm{~ns}$.

Figure 2.4
DFF's forbidden region (d must remain stable within the aperture window).

(a) DTG-FF (dynamic transmission-gate-based flip-flop)

(b) STG-FF (static transmission-gate-based flip-flop)

(c) AMD K6 (self-resetting, semi-dynamic)

(d) Intel Itanium 2 (static)

Figure 2.5
Examples of actual DFF constructions. (a, b) Very popular implementations (dynamic and static versions, master-slave approach). (c, d) Two other commercial implementations (pulsed-latch approach).
input signal must remain stable. If d changes within the transparency window, the output value might be undetermined (further details on this are seen in the next section).

We conclude this section by presenting some examples of DFF constructions. The cases in figures $2.5 \mathrm{a}, \mathrm{b}$ are among the most commonly used, consisting of dynamic and static versions for the same transmission-gate-based master-slave implementation. Two other commercial cases are shown in figures 2.5 c ,d, both based on the short-clock (pulsed latch) principle rather than on the master-slave approach.

2.3 Metastability and Synchronizers

Because many FSMs have control inputs that are asynchronous (that is, not related to the FSM's clock), such inputs can change during the state machine's DFFs' forbidden (aperture) window. This section describes what can happen in such cases and how its effect can be reduced.

This fact is illustrated in figure 2.6a, in which d changes precisely within the forbidden time interval (gray area). When this occurs, the output can go into an undetermined (metastable) state that lasts a relatively long time before finally resolving for ' 1 ' (path 1) or ' 0 ' (path 2). If the metastable state resolves within one clock period (as in the figure), at the next (positive) clock edge a valid value will be available (even

Figure 2.6
Illustration of flip-flop metastability and the use of synchronizers.

Figure 2.7
Partial diagram for a frequency meter (two clock domains). (a) Solution with a Gray counter. (b) Solution with a synchronizer (so a regular counter can be employed).
though it might be different from the expected value); otherwise, an undetermined value will be read.

Synchronizers are circuits used to cope with metastability. The most common alternative is shown in figure 2.6b, consisting simply of a 2 -stage shift register. In welldesigned DFFs the probability of metastability is very small so the probability of having such a rare event going through both DFFs is extremely small. The obvious drawback is the two-clock-period latency imposed by this circuit (exercise 2.2). When the (multibit) data is accompanied by a control signal (data ready, figure 2.6 c), only the control signal should be synchronized.

Another strategy to reduce the impact of having the input of a DFF change during its forbidden time window, applicable to counters, consists in using Gray counters instead of regular sequential counters (as reviewed in section 3.7, in a Gray counter only one bit changes from one codeword to the next-this applies also to Johnson counters). An example is depicted in figure 2.7a, which shows a partial diagram for a frequency meter. Because the system must measure the frequency $f x$ of x, x acts as the clock to the corresponding counter; however, x and clk are uncorrelated, so a two-clock-domain situation results. The value of $f x$ must be stored into the output
register periodically (every 1 s , for example, resulting in a reading in Hz), and at the same time the counter must be reset in order to start a new counting. Because x and $c l k$ are uncorrelated, the storage of $f x$ into the register might occur while $f x$ is changing its value. If a sequential counter is used, several bits (or even all) can change from one codeword to the next, but because in a Gray counter only one bit changes, the value actually stored into the register cannot be off by more than one unit.

For comparison, a solution with a synchronizer (so a regular counter can be used) is included in figure 2.7 b . Note that the synchronizer's output must be a short pulse (lasting only one clock period, $T_{c l k}$); otherwise the counter could be incremented multiple times for the same pulse of x. Additionally, if a pulse in x might last less than $T_{c k}$, then an edge detector must also be included. (One-shot and edge-detecting circuits are described in the next section.)

A last class of circuits still involving the synchronous-asynchronous issue is presented in figure 2.8. They are clock gaters, needed in applications where the clock signal must be stopped (gated) during one or more clock periods (the $\mathrm{I}^{2} \mathrm{C}$ and SPI serial data communications interfaces, studied in chapter 14, are examples where clock gating is necessary). The purpose here should not be confused with clock gating for powersaving reasons.

Figures 2.8a-f relate to positive-edge-triggered FSMs. Figure 2.8a highlights the facts that the machine operates at the positive clock edge and also that the clock-enabling signal ena is just one of its outputs. This signal (ena) must stop the clock when low, replacing the clock signal with a static-low value (analogous solutions can be easily derived for a static-high value).

The first solution, shown in figure 2.8 b , is asynchronous and requires just an AND gate, where $c l k$ represents the main clock and gclk represents its gated version. The advantage of this solution is that the clock is interrupted at the same time that ena $=$ ' 0 ' occurs (see gray shades in figures $2.8 \mathrm{c}-\mathrm{d}$). However, as depicted in the timing diagrams of figures $2.8 \mathrm{c}-\mathrm{d}$, the output is fine (glitch-free) only if the edge of ena reaches the gater before the edge of clk does, a situation that, though possible (due to long, unbalanced routings inside the chip), is very unlikely. Moreover, glitches in ena can propagate to the output. For these reasons, the clock gater of figure 2.8 b is not recommended when the clock must be replaced with a static-low value.

The second solution, shown in figure 2.8 e , is fully synchronous, so occasional glitches in ena are automatically filtered out. Also, note in figure 2.8 f that the output is fine regardless of the delay (positive or negative) between clk and ena. For these reasons, the clock gater of figure 2.8 e is recommended when the clock must be interrupted and replaced with a zero. Its drawback is that now ena = ' 0 ' must be produced in the previous clock cycle (previous FSM state-see gray shades in figure 2.8f), being therefore more error prone (requiring greater attention when preparing the corresponding state transition diagram).

Figure 2.8
Clock gating circuits. (a-f) For positive-edge-triggered FSMs. (g-l) For negative-edge-triggered FSMs. Asynchronous (good and bad) solutions are shown in (b) and (h), and synchronous solutions (usually recommended) are presented in (e) and (k), all accompanied by illustrative timing diagrams.

Figures $2.8 \mathrm{~g}-1$ relate to negative-edge triggered FSMs. Figure 2.8 g highlights the facts that the machine operates at the negative clock edge and that ena is just one of its outputs. Again, ena must stop the clock when low, replacing it with a zero.

The first solution, shown in figure 2.8 h , is the same as that in figure 2.8 b . However, as depicted in the timing diagrams of figures $2.8 \mathbf{i}-\mathrm{j}$, the output is now fine (glitch-free) when the edge of ena reaches the gater after the edge of $c l k$ does, which is what normally occurs, so this solution is generally fine. Recall, however, that ena must be glitch-free.

The second solution, shown in figure 2.8 k , is fully synchronous, so occasional glitches in ena are automatically filtered out. Also, note that in figure 2.81 the output is fine regardless of the delay (positive or negative) between clk and ena (two DFFs are needed here to guarantee that condition). This solution has the same drawback as that of figure 2.8 e ; that is, ena $=$ ' 0 ' must be produced in the previous clock cycle (see gray shades in figure 2.81), thus requiring a greater attention when developing the state transition diagram.

As a final comment, it is important to mention that in many applications the occurrence of metastability is not a problem, either because the metastable state cannot cause a malfunctioning or because the application itself is not critical.

2.4 Pulse Detection

Because many FSMs have asynchronous inputs, the duration of such inputs must be considered in the design. If an input pulse lasts at least one clock period ($T_{p u l s e} \geq T_{c l k}$), its detection by the machine is guaranteed because at least one (positive) clock edge will occur while the pulse is present. On the other hand, if the pulse might last less than that, its detection is no longer guaranteed. Both cases are illustrated in figure 2.9a, where only the first of the two pulses is detected by the circuit. Note the small
(a)

(b)

Figure 2.9
(a) Only input pulses with duration $T_{\text {pulse }} \geq T_{c l k}$ are guaranteed to be detected, and the output duration is proportional to the input duration. (b) Any pulse is detected, and the output duration is always $T_{c k k}$.

Figure 2.10
Circuit capable of detecting pulses of any width, producing a pulse with fixed length (one clock period) at the output (outp).
propagation delays left intentionally between the clock transitions and the corresponding responses in outp in order to portray a more realistic situation.

In some cases, the pulse (of any duration) must be detected and converted into a pulse whose duration is one clock period. This is illustrated in figure 2.9 b , where both pulses are detected, and each produces an output pulse with duration $T_{c l k}$.

A circuit that shortens the output pulse down to a predefined length ($T_{c l k}$ in the present case) is called a one-shot circuit, whereas one that detects short pulses is called an edge detector. Both are present in the example of figure 2.10 , so pulses of any length can be detected and converted into pulses with one-clock-period duration.

The first circuit in figure 2.10 is the edge detector, which consists simply of a DFF plus a reset mechanism. Note that to be able to detect short pulses, inp is connected to the clock port instead of the data port. Because the data input is connected to $V_{D D}$ (' 1 '), the output goes immediately to ' 1 ' when a positive edge occurs in inp. Some time later (see exercise 2.4), this ' 1 ' reaches inp $_{\text {sync }}$, resetting the input DFF, which will remain so until a new positive transition occurs in inp.

The second circuit in figure 2.10 is the synchronizer, already seen in the previous section.

The third and final circuit before the application is the one-shot circuit. Because of the AND gate, as soon as inp sync goes to ' 1 ', outp goes to ' 1 '. However, at the next (positive) clock edge, this value of in $_{\text {sync }}$ crosses the DFF, bringing outp back to ' 0 ', which it will remain until another pulse occurs at the input and the whole procedure is repeated. This one-shot circuit, however, works well only when the input is synchronous (see exercise 2.3), which is the case here.

Another circuit with the same purposes as that in figure 2.10 is discussed in exercise 2.5. In the chapters ahead, examples employing this kind of circuit are seen.

2.5 Glitches

Glitches are short voltage (or current) pulses produced involuntarily by combinational circuits. It is said that a hazard exists when the possibility of glitches in the circuit exists.

Figure 2.11
Glitch types.

Figure 2.12
(a) Combinational circuit implementing the function $y=a \cdot c+b \cdot c^{\prime}$. (b) Corresponding Karnaugh map. (c) Glitch generation when moving from $a b c=$ " 111 " to $a b c=" 110$ ". (d, e) Glitch eliminated by the addition of a redundant implicant.

Even though glitches are not a problem in many designs, it is important to be aware of their existence and understand how they can be eliminated when that is necessary. An example in which glitches can be disastrous is when a signal is used as a clock because then the associated flip-flops can be (improperly) triggered by the glitches.

Figure 2.11 shows the glitch types, which can be static (single pulse) or dynamic (multiple transitions). A static glitch is said to be of type static-0 when the signal should remain stable at ' 0 ' but a pulse toward ' 1 ' occurs. The meaning of static- 1 glitches is analogous.

An example of a circuit subject to glitches is presented in figure 2.12 a , which implements the function $y=a \cdot c+b \cdot c^{\prime}$. The corresponding Karnaugh map is shown in figure 2.12 b , where two prime implicants can be observed. Although the value of y is ' 1 ' for both $a b c=$ " 111 " and $a b c=$ " 110 ", when the input transitions from the former to the latter, the involved propagation delays can produce a glitch at the output. This is illustrated in figure 2.12c, with a and b fixed at ' 1 ' and c changing from ' 1 ' to ' 0 ' (for simplicity, it was considered that the propagation delays of all gates are equal). Figure 2.12 e shows a solution for this problem, which consists of including a redundant implicant covering the transition mentioned above, thus resulting in the circuit of figure 2.12 d .

(a)

(c)

(d)

Figure 2.13
A circuit (Manchester encoder) in which multiple inputs can change at the same time, subjecting the output to glitches that cannot be prevented with a combinational circuit.

Figure 2.14
Glitch elimination with a flip-flop.

The problem with the solution above is that it covers only transitions in which just one input value changes. Because in actual designs multiple inputs can change (approximately) at the same time, this approach is of little practical interest.

An example in which more than one input can change is depicted in figure 2.13, which consists of a Manchester encoder. Figure 2.13a shows the circuit ports, and figure 2.13 b shows the waveform that must be produced at the output (dout must be a ' 1 '-to- 0 ' pulse when $\operatorname{din}=$ ' 0 ' or a ' 0 '-to- 1 ' pulse if $\operatorname{din}=$ ' 1 '). Looking at the waveforms, we verify that dout $=c l k$ when $d i n=$ ' 0 ' or dout $=c l k$ ' when din $=$ ' 1 ', so this encoder can be implemented with a simple multiplexer, as depicted in figure 2.13c. Observe, however, in figure 2.13b, that clk and din can change at the same time, so unfixable glitches are potentially expected. Indeed, the last plot for dout in figure 2.13b takes into account such a possibility (due to different propagation delays), resulting in a series of glitches. Just for completeness, note that the trivial multiplexer of figure 2.13c, having the equation dout $=c l k \cdot d i n^{\prime}+c l k^{\prime} \cdot d i n$, can be implemented using just an XOR gate for din and clk, as shown in figure 2.13d.

If the combinational circuit is part of a synchronous system (as in state machines), then there is a simple-and, more importantly, systematic and guaranteed-solution for glitch elimination, which consists of passing the noisy signal through a DFF. Because glitches in a synchronous signal can only appear right after a clock edge, when such a signal is passed through a DFF the resulting output will be automatically free from glitches. This procedure is illustrated in figure 2.14 , where d (synchronous) has glitches but q has not. Note that there is a price to pay, however, which is one clock cycle (if the same clock edge that produces d is used in the DFF) or one-half of a clock cycle (if the opposite clock edge is employed) of delay with respect to the original

Figure 2.15
Glitch interpretation (bits must be examined individually).
signal. As a final remark, observe that this technique is not OK when there are signal transitions at both clock edges, as in figure 2.13b, but that is not the case in state machines, so for FSMs this technique is fine.

We conclude this section by calling attention to a confusion that often occurs in inspecting simulation or measurement results. This is illustrated in figure 2.15, which shows a timing diagram for a three-bit counter. Because count is formed by more than one bit, it might exhibit glitch-like information. This, however, does not mean that actual glitches have occurred. Recall that two physical signals, due to different propagation delays, will never change exactly at the same time (and they are not perfect voltage steps anyway), so the value of count is expected to go through intermediate values before reaching the final value. As an example, in the inset of figure 2.15 count goes through $3 \rightarrow 2 \rightarrow 0 \rightarrow 4$ instead of moving straight from 3 to 4 , even though glitches have not occurred. In conclusion, to inspect glitches, we must examine only one bit at a time.

2.6 Pipelined Implementations

Figure 2.16a shows a common architecture for high-speed synchronous systems. Each circuit-possibly designed by a different team or from an IP (intellectual property) cell-is constructed in RTL (register transfer logic) fashion, resulting in a pipelined implementation. In other words, combinational logic blocks ($\mathrm{L}_{1}, \mathrm{~L}_{2}$, etc.) are followed/ separated by registers ($\mathrm{R}_{1}, \mathrm{R}_{2}$, etc.) (registers are just DFF banks). The advantage of having a register as the final stage element is that the time behavior of DFFs is well known, so the overall timing response can be safely predicted, allowing the clock speed to be maximized.

To illustrate this, say that circuit 2 is constructed using only $L_{2}-R_{2}-L_{3}$. In this case, after a clock edge occurs, the total output propagation delay will be that through R_{2} ($t_{p C Q}$ of figure 2.3a) plus that through L_{3}. However, contrary to R_{2}, whose construction and parameters are known in advance, L_{3} varies from one design to another and with the routing, making the time response more difficult to predict. Because the absence of R_{2} increases the stage's propagation delay, the maximum clock speed gets reduced.

Figure 2.16
RTL pipeline (a) with loopless circuits only and (b) with a looped circuit.

Figure 2.17

On the downside, pipelining increases the latency (number of clock cycles needed for a signal to travel though the system), which is not always acceptable. Consequently, both approaches (with and without the output register) are needed, and the choice of one or the other will be determined by the application.

The example in figure 2.16a contains only loopless stages, but looped circuits can also be found (generally, more difficult to design), as in circuit 4 in figure 2.16b. FSMs fall in the looped category.

To conclude this section, let us look at the order (input-output latency) of the synchronous circuits just described (figure 2.16). Circuits 1 and 3 are order- 1 synchronous because the input-output transfer takes one clock cycle. Circuit 2 is order-2 synchronous because the transfer takes two clock cycles. Finally, circuit 4 is order- 1 synchronous because its input affects L_{2} directly, so its effect shows up at the output after just one clock cycle ($\mathrm{L}_{2}-\mathrm{R}_{2}$ pair).

2.7 Exercises

Exercise 2.1: DFF Response

Figure 2.17 shows waveforms for the clock, reset, and data inputs to the DFF of figure 2.2a.

Figure 2.18

Figure 2.19
a) Sketch, on the left, the DFF's functional response.
b) Sketch, on the right, the timing response. Assume $t_{p C Q(L H)}=2 \mathrm{~ns}, t_{p C Q(H L)}=3 \mathrm{~ns}$, and $t_{\text {pRQ }}=1 \mathrm{~ns}$ (the vertical lines are 1 ns apart).

Exercise 2.2: Metastability and Synchronizers

A popular synchronizer was presented in figure 2.6 b and repeated in figure 2.18 along with an illustrative timing diagram.
a) What do the gray areas in figure 2.18 b represent?
b) Which time parameters define the aperture window's width?
c) Is it desirable that the aperture window be as narrow as possible or as wide as possible?
d) Why must d remain stable during that time interval? What is metastability?
e) Why can synchronizers reduce the effect of metastability?
f) Given the asynchronous input d shown in the figure, draw the waveforms for q_{0} and $d_{s y n c}$. (The initial part of q_{0} was already drawn; the delay included between the clock edge and the signal edge is $t_{p C Q(L H) .}$)
g) At which positive clock edge (first, second, etc.) after d goes up does the signal actually delivered to the FSM $\left(d_{\text {sync }}\right)$ go up?
h) Two short pulses (lasting less than one clock period) are included in the d waveform. Are they always detected? Explain.

Exercise 2.3: Basic One-Shot Circuit

Figure 2.19a shows the same elementary one-shot circuit seen in figure 2.10, which must produce at the output a pulse with a fixed (one clock period) duration every time the input goes up.

Figure 2.20
a) It is said in section 2.4 that this circuit is fine only if the input is synchronous. In figure 2.19b, two illustrative pulses are shown for x, the first assumed to be synchronous (produced by the same clock that commands this DFF; the delays between the clock edges and the pulse edges are just $t_{p C Q}$) but the second not. Draw the waveforms for q and y, and confirm what was said about the output pulse duration.
b) It is also said that the input must last at least one clock period. Why?
c) Why is this circuit called a "one-shot" circuit? Does x need to return to ' 0 ' for it to produce the intended pulse?

Exercise 2.4: Fast Synchronized One-Shot Circuit \#1

Figure 2.20a shows the same arrangement of figure 2.10, implementing a fast oneshot circuit with asynchronous, and possibly short, input. This circuit is capable of detecting input pulses shorter (and also longer, of course) than the clock period, producing at the output a pulse whose duration is always one clock period. Figure 2.20b shows the main signals involved in this circuit, with the plots for the clock and for the input (x) already completed (some helping arrows are also included in the figure).
a) Draw the waveforms for the internal (i_{1} to i_{4}) and output (y) signals. Do not forget to leave a little delay between a signal transition and the corresponding response.
b) What are the minimum and maximum durations of i_{1} (in clock periods)? Why is the initial (edge detector) DFF also called a "stretcher"?
c) What are the durations of i_{2}, i_{3}, i_{4}, and y (in clock periods)?
d) At which clock edge (first, second, etc.) after x goes up does y go up?

Figure 2.21
e) Note that the second pulse of x is shorter than one clock period and does not coincide with any positive clock transition. Is the overall circuit able to capture this pulse?
f) Is y subject to glitches? Explain.

Exercise 2.5: Fast Synchronized One-Shot Circuit \#2

This exercise is an extension to the previous one. Figure 2.21a shows another synchronized one-shot circuit capable of detecting short pulses at the input while still producing a one-clock-period-long pulse at the output. All involved signals are included in figure 2.21 b, with the plots for the clock and for the input (x) already completed (some helping arrows were also included in the figure).
a) Draw the waveforms for q, q_{0}, and y. Do not forget to leave a little delay between a signal transition and the corresponding response.
b) What are the minimum and maximum durations (in clock periods) of q ?
c) What are the durations (in clock periods) of q_{0} and y ?
d) At which clock edge (first, second, etc.) after x goes up does y go up?
e) Note that the second pulse of x is shorter than one clock period and does not coincide with any positive clock transition. Is the overall circuit able to capture this pulse?
f) Is y subject to glitches? Explain.
g) Compare this circuit to that in figure 2.20 and comment on the respective advantages and disadvantages.

Exercise 2.6: Pipelined Construction

Figure 2.22 shows a complete two-stage pipeline, with L_{i} and R_{i} representing the logical blocks and the registers (DFFs), respectively. The propagation delays are also included in the figure, with low-to-high and high-to-low delays considered to be equal.

Figure 2.22

Figure 2.23
a) Draw the corresponding timing response in the lower part of the figure, where i_{1} and i_{2} represent internal signals. Consider that the vertical lines are 1 ns apart and, for sketching purposes, that L_{1} and L_{2} are just buffers.
b) After how many positive clock edges does the input pulse reach each output?
c) Which output (outp1 or outp2) is fully pipelined? Which has superior time predictability? Why?

Exercise 2.7: Glitch-free Clock Gater

All four possible clock-gating cases are depicted in figure 2.23. Cases 1 and 2 relate to FSMs operating at the positive clock edge, whereas cases 3 and 4 are related to FSMs operating at the negative clock edge. In cases 1 and 3, the clock, when interrupted, is replaced with a zero, whereas in cases 2 and 4, it is replaced with a one.
a) Asynchronous and synchronous solutions were discussed/developed for cases 1 and 3 (see figure 2.8). Do the same for cases 2 and 4 .
b) Can you devise other solutions (different from those presented in the book) for cases 1 and 3 ?

3 Hardware Fundamentals-Part II

3.1 Introduction

This chapter is a continuation of the previous chapter. It completes the study of fundamental hardware-related aspects that are essential to fully understand and correctly design finite state machines in hardware. Whereas chapter 2 dealt mainly with registers, chapter 3 deals with the complete state machine structure.

The topics seen in these two chapters are used, reinforced, and expanded as the subsequent chapters unfold, particularly in chapters 5 (theory for category 1 machines), 8 (theory for category 2 machines), and 11 (theory for category 3 machines).

3.2 Hardware Architectures for State Machines

State machines are looped circuits, as already illustrated in figure 1.2a. They can be of Moore or Mealy type, depending on how the input is connected to the combinational logic blocks. We want to verify here how FSMs are related to the pipeline models described in section 2.6.

Figure 3.1a shows a Moore machine, characterized by the fact that the input is connected only to block L_{1} (recall that L_{1} and L_{2} represent logic blocks and that R_{1} and R_{2} are registers). Note the feedback loop from R_{1} to L_{1}, which is the most fundamental characteristic of any FSM. Observe also that the machine itself contains only the $L_{1}-R_{1}-L_{2}$ stages, so if a full pipeline is desired, the optional register R_{2} must be added. An equivalent representation is shown in figure 3.1 b ; the purpose of this arrangement is to emphasize the feedback loop.

Figure 3.1c shows a Mealy machine, characterized by the fact that the input is now also connected to block L_{2}. Note that again the machine itself contains only the $\mathrm{L}_{1}-\mathrm{R}_{1}-\mathrm{L}_{2}$ stages. An equivalent representation is shown in figure 3.1 d , again emphasizing the feedback loop.

The optional output register can be used to obtain a fully pipelined implementation with better time predictability and higher clock speed or for glitch removal, as seen

Figure 3.1
Pipelined hardware representations for (a) Moore and (c) Mealy machines. (b, d) Equivalent representations highlighting the feedback loop.
in section 2.5. The consequence of this extra register is that the new output will be delayed with respect to the original output by either one clock cycle (if all registers operate at the same clock edge) or by one-half of a clock cycle (if they operate at opposite clock edges). If it is a Moore machine, and this extra delay is a problem in the application, the Mealy option should be considered. Obviously, if the extra register is being added to obtain a pipelined construction, such a latency increase is probably not a problem.

The state machine diagram of figure 3.1d is shown with additional details in figure 3.2. The original machine is depicted in figure 3.2 a , while figure 3.2 b shows the machine plus the optional output register (identified as out-registered FSM or pipelined FSM). Note the following in figure 3.2a:

1) The lower section is purely sequential (contains only DFFs) and comprises the state register (it stores the state of the FSM). Therefore, clock and reset signals are connected only to that section.
2) The signal stored in the DFFs is called pr_state (present state), whereas the signal to be stored in the DFFs at the next clock tick is called $n x _$state (next state).
3) The upper section is purely combinational (hence memoryless).
4) The upper section is divided into two parts, one producing the actual (outward) output, the other producing the circuit's next state.

(a) Pure Moore or Mealy machine

With input	Input connections	Machine type
No	None	Moore
Yes	(1)	Moore
	(1) and (2)	Mealy

(c) Input connections x machine types
(b) Out-registered Moore or Mealy machine

Figure 3.2
FSM architectures and input connection options.
5) The upper section has two inputs. That called input is external and, depending on the application, might not exist (as in the example of figure 1.2b). That called pr_state is internal and mandatory.
6) There are three input options (figure 3.2c): with no external input (Moore); with the input connected only to the nx_state logic block (connection 1 ; Moore); and with the input connected to both logic blocks (connections 1 and 2; Mealy).
7) Finally, note the extra register at the output (figure 3.2b) for glitch removal or pipelined implementation.

3.3 Fundamental Design Technique for Moore Machines

This section describes a fundamental design technique for Moore machines. It is a "by hand" design; in the succeeding chapters, the designs are developed with VHDL and SystemVerilog.

As seen above, from a hardware perspective a Moore machine can be represented as in figures 3.2a,b, but having only connection 1 or no external input at all (except, of course, for clock and reset). The corresponding design procedure, consisting of five steps, is summarized below. The first four steps relate to the FSM proper, and the last step regards the optional output register.

Step 1: Draw the state transition diagram.
Step 2: Based on the state diagram, write two truth tables, one for the next state and the other for the output. Then rearrange the truth tables, replacing the state names with signal names (q for flip-flop outputs, d for flip-flop inputs) and using corresponding binary values. To do this, choose first the encoding style (described in section 3.7).

Step 3: Extract, from the rearranged truth tables, the optimal Boolean expressions for $n x$ _state and for the output.
Step 4: Draw the corresponding circuit, placing all flip-flops (DFFs only) in the lower section and the combinational logic for the expressions derived above in the upper section (as in figure 32a).
Step 5 (optional): Analyze the application and include the extra register (for glitch removal or pipelining) if you conclude that it is necessary.
To illustrate this design technique, let us consider the circuit of figure 3.3a, which must detect the sequence " 010 " in the single-bit data stream x , producing $\mathrm{y}=$ ' 1 ' at the output when such a sequence occurs. As depicted in figure 3.3b, overlaps are not allowed (if they were allowed, the trivial solution of figure 3.3c could be used).

Step 1: The corresponding Moore diagram is presented in figure 3.4a.
Step 2: The truth tables for $n x$ _state and y are in figures $3.4 \mathrm{~b}, \mathrm{c}$. To make the procedure clearer, the tables were written first using the state names, based directly on the diagram of figure 3.4a; then they were rearranged using signal names (q for flip-flop outputs, d for flip-flop inputs) and binary values. Reset is connected directly to the flip-flops, so it does not appear here.
Step 3: From the truth tables, the Karnaugh maps of figure 3.4 d are drawn, from which the expressions for d_{1}, d_{0}, and y are obtained. Note that because this is a Moore machine, the input should not affect the output directly, which can be confirmed in the expression for $y\left(=q_{1} \cdot q_{0}\right)$, which does not contain x.
Step 4: Based on the expressions obtained above, the circuit is drawn (figure 3.4e).
Step 5: If glitches are not acceptable in this application, we must analyze the circuit to check whether the implementation is subject to glitches. In the present example, we saw that $y=q_{1} \cdot q_{0}$. Moreover, we know that q_{1} and q_{0} can both change at the same time (see in figure 3.4 c that the transition between states one and two requires both to change, but the output must remain low in both cases; depending on the routing inside the chip, q_{1} might go to ' 1 ' before q_{0} comes down to ' 0 ', so the AND gate will produce a momentary ' 1 '-a glitch). The output DFF of figure 3.2 b can then be added

Figure 3.3
FSM that detects the sequence " 010 ". (a) Circuit ports. (b) Operation example (overlaps not allowed). (c) Trivial solution if overlaps were allowed.

Truth table for next state

pr_state	x	$n x$ state	pr_state	χ	$n x$ _state
zero	0	$\begin{aligned} & \text { one } \\ & \text { zero } \end{aligned}$	$q_{1} q_{0}$		$d_{1} d_{0}$
	1		00	0	01
one	0	one two		1	00
	1		01	0	01
two	0	three		1	10
	1	zero	10	0	11
three	0	$\begin{aligned} & \text { one } \\ & \text { zero } \end{aligned}$		1	00
	1		11	0	01
(b)				1	00

Truth table for output

$p r_{\text {_state }}$		
\bar{q}_{1}	q_{0}	y
0	0	0
0	1	0
1	0	0
1	1	1

Karnaugh for d_{1} :

Karnaugh $q_{1} q_{0}$					
x	00	01	11	10	
0	0	0	0	1	
1	0	1	0	0	
$d_{1}=q_{1} \cdot q_{0} \cdot x+q_{1} \cdot q_{0} \cdot x^{\prime}$					

Karnaugh for y :		
	q_{1}	
q_{0}	0	1
0	0	0
1	0	1

$$
y=q_{1} \cdot q_{0}
$$

(d)

Figure 3.4
Moore machine for a nonoverlapping " 010 " detector. (a) State transition diagram. (b, c) Truth tables for next state and output. (d) Corresponding Karnaugh maps and minimal Boolean expressions. (e) Resulting circuit.

Figure 3.5
Simulation results from the nonoverlapping " 010 " detector of figure 3.4 e (Moore type).
to render a glitch-free y. (Recall the comments made earlier on increased latency and possible use of a Mealy machine in this kind of situation.)

Simulation results from the circuit of figure 3.4 e , without the extra DFF, synthesized using VHDL, are shown in figure 3.5. Note the following (expected) results:

1) The output changes only at (positive) clock edges (Moore machines are synchronous).
2) The output goes to ' 1 ' at the first (positive) clock edge after the sequence " 010 " occurs.
3) Overlaps do not cause the output to go to ' 1 '.
4) Without the optional output DFF, glitches do occur at the output.

3.4 Fundamental Design Technique for Mealy Machines

This section describes a fundamental design technique for Mealy machines. It is a "by hand" design; in the succeeding chapters, the designs are developed with VHDL and SystemVerilog.

As seen above, from a hardware perspective a Mealy machine can be represented as in figures $3.2 \mathrm{a}, \mathrm{b}$ with both input connections (1 and 2). The corresponding design procedure is the same seen for Moore machines, with just one difference, in step 2, as follows.

Step 2: Based on the state diagram, write a single truth table, including both the next state and the output. Then rearrange the truth table \qquad etc.

If the Moore-to-Mealy conversion technique introduced in section 1.7 is applied to the Moore diagram of figure 3.4a, the Mealy diagram of figure 3.6a results. Its truth table (including both $n x$ _state and y) is shown in figure 3.6 b. From this table, the

(a)

Mealy parameters: x / y
Karnaugh for d_{1} :

$d_{1}=q_{0 \cdot x}$

Karnaugh for $d_{0}:$				
	$q_{1} q_{0}$			
x	00	01	11	10
0	1	1	-	0
1	0	0	-	0

(c)

Truth table for next state and outp.

pr_state	x	$n x _$state	y
A	0	B	0
	1	A	0
B	0	B	0
	1	C	0
C	0	A	1
	1	A	0

(b)

Figure 3.6
Mealy machine for a nonovelapping " 010 " detector. (a) State transition diagram. (b) Truth table for both next state and output. (c) Corresponding Karnaugh maps and minimal Boolean expressions. (d) Resulting circuit.

Karnaugh maps and optimal Boolean expressions of figure 3.6c result. Finally, the corresponding Mealy circuit is presented in figure 3.6d.

Note that, contrary to the Moore case (previous section), here the expression for the output (y) does include the input (x); that is, it is now $y=q_{1} \cdot x^{\prime}$, whereas in the Moore case it was $y=q_{1} \cdot q_{0}$. This means that y can change asynchronously (that is, as soon as x changes, independently from the clock), which occurs when $q_{1}=$ ' 1 ', because then $y=x^{\prime}$.

The decision on using or not using the extra register (step 5) is similar to that for Moore machines. However, because Mealy machines are asynchronous, if a project accepts this type of circuit, glitches are generally of no relevance. An interesting use for out-registered (pipelined) Mealy machines is to implement glitch-free Moore-like circuits (details are shown in the next section).

3.5 Moore versus Mealy Time Behavior

It is very important to understand the differences between Moore and Mealy solutions well. To do that, let us compare the timing responses of the Moore and Mealy circuits designed above for the nonoverlapping " 010 " detector (figures 3.4 e and 3.6 d , respectively).

An example of timing response for the Moore circuit is presented in figure 3.7a. The input sequence is $x=\left\{{ }^{\prime} 0^{\prime}\right.$, ' 1 ', ' 0 ', ' 1 ', ' 0 ', ' 1 ', ' 0 ', ' 0 ' $\}$. Following the state transition diagram of figure 3.4 a , the sequence obtained for the present state is pr_state $=\left\{\begin{array}{l}\text { one, }\end{array}\right.$ two, three, zero, one, two, three, one\}, shown in the corresponding plot of figure 3.7a. Because y is ' 1 ' when the machine is in state three and ' 0 ' elsewhere, the resulting output sequence (after a small propagation delay) is $y=\left\{{ }^{\prime} 0^{\prime}, ~ ' 0\right.$ ', ' 1 ', ' 0 ', ' 0 ', ' 0 ', ' 11^{\prime}, ' 0 ' $\}$. Note that y is indeed synchronous because it can change only when the clock ticks (at positive clock transitions in this example), and then remains fixed during the whole clock period. Because y is synchronous, glitches in y can happen only right after (positive) clock transitions (as already illustrated in figure 3.5). If the optional output register is used (to remove glitches, for example), then a registered output y_reg results, which is simply a (clean) shifted version of y. In other words, y goes to ' 1 ' at the next clock edge after the condition " 010 " occurs, while $y_{_}$reg goes to ' 1 ' at the second clock edge after that sequence happens.

Figure 3.7
Time behavior of the nonoverlapping " 010 " detector. (a) For the Moore circuit of figure 3.4e. (b) For the Mealy circuit of figure 3.6d.

A similar analysis is presented for the Mealy circuit in figure 3.7b. The input sequence is again $x=\left\{{ }^{\prime} 0^{\prime},{ }^{\prime} 1^{\prime},{ }^{\prime} 0^{\prime},{ }^{\prime} 1\right.$ ', ' 0 ', ' 1 ', ' 0^{\prime} ', ' 0 ' $\}$. Following the state transition diagram of figure 3.6a, the sequence obtained for the present state is pr_state $=\{\mathrm{B}$, C, A, A, B, C, A, B\}. As shown in the state diagram, the output is ' 0 ' in states A and B , and it is x^{\prime} in state C , thus resulting (after a small propagation delay) in the output sequence $y=\left\{{ }^{\prime} 0^{\prime}, x^{\prime},{ }^{\prime} 0^{\prime},{ }^{\prime} 0^{\prime},{ }^{\prime} 0^{\prime}, x^{\prime},{ }^{\prime} 0^{\prime},{ }^{\prime} 0\right.$ ' $\}$. Note that x appears in the list for y, which was expected because in a Mealy machine the input can affect the output directly. For the same reason, this machine is asynchronous (note that in state C, y changes independently of the clock). Observe also that, because it is asynchronous, the shape of y can be quite strange, with values lasting less than one clock period. On the other hand, observe the interesting shape of $y_{-} r e g$, which is exactly the same as the shape of y in the Moore case. This means that when we want to get rid of glitches and the consequent extra delay of an out-registered (pipelined) Moore machine is not acceptable in the application, an out-registered (pipelined) Mealy machine can be used.

Another drawback of the original Mealy machine is that input glitches can propagate to the output, as depicted in the plot for y in figure 3.7b.

3.6 State Machine Categories

We have already seen that state machines can be classified into two types, based on their input connections, as follows.

1) Moore machines: The input, if it exists, is connected only to the logic block that computes the next state.
2) Mealy machines: The input is connected to both logic blocks, that is, for the next state and for the actual output.

In this section we introduce a new classification, into three categories, based on the transition types and nature of the outputs.

As mentioned in section 1.2 (see Hardware- versus Software-Implemented State Machines), designing a hardware-implemented FSM is generally (much) more complex than designing a software-implemented FSM. To ease such a task, a very important new classification, from a hardware perspective and covering any state machine, is introduced here (this classification dictates the organization of the subsequent chapters). Figure 3.8 is used as an illustration.

Category 1: Regular (pure) state machines (studied in chapters 5-7): This category, illustrated in figure 3.8a, is the simplest. It consists of machines with only untimed transitions and outputs that do not depend on previous (past) output values.
Category 2: Timed state machines (studied in chapters 8-10): These consist of machines with one or more transitions that depend on time, but still having only outputs that

Figure 3.8
State machine categories.
do not depend on previous (past) output values. In the example of figure 3.8b, the first transition is conditional, but the second is conditional-timed. Recall that, by default, the timer is zeroed every time the FSM changes state and is kept stopped at zero in the states where it is not needed (states A and C in figure 3.8b). Category 2 machines can have all four types of transitions (conditional, timed, conditional-timed, and unconditional).
Category 3: Recursive state machines (studied in chapters 11-13): In this case, illustrated in figure 3.8c, the transitions can be timed, as in category 2 , but now one or more outputs depend on previous (past) output values. Such dependency is usually expressed by means of recursive equations (the output is a function of itself). In this example the output must keep in state B the same value that it had when the machine left state A, whereas in state C the output must present the incremented version of the value that it had when the machine left state B. This implies that some sort of extra memory is required because the expressions $y=y$ and $y=y+1$ can only be evaluated if the value of y is available somewhere. Because this is a hardware implementation, such auxiliary memory must be provided along with the state machine.

As will be seen in coming chapters, the classification presented above will ease immensely the design of hardware-based state machines (and no other classification is needed). The two fundamental decisions before starting a design are then the following:

1) First, the state machine category (regular, timed, or recursive);
2) Second, the state machine type (Moore or Mealy).

3.7 State-Encoding Options

This section describes the main codes used for encoding the states of an FSM. The most common encoding alternatives are sequential (also called binary), Gray, Johnson, and one-hot, all illustrated in figure 3.9a for an eight-state FSM. Note that the first two require three bits, the third requires four bits, and the last one requires eight bits.

To illustrate the encoding options further, let us consider a machine with the following five states (using VHDL notation):
type state is $(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E})$;

3.7.1 Sequential Binary Encoding

The states are encoded using the conventional binary code (increasing order of corresponding decimal values; see figure 3.9a). For the type state above, three bits would be needed, resulting $\mathrm{A}=" 000 "$ (decimal value $=0$), $\mathrm{B}=" 001 "(=1), \mathrm{C}=" 010 "(=2)$, $\mathrm{D}=" 011 "(=3)$, and $\mathrm{E}=" 100 "(=4)$.

The advantage of this encoding is that it requires the smallest number of flip-flops; with N flip-flops (N bits), up to 2^{N} states can be encoded. The disadvantage is that it might require more combinational logic than other encoding options (illustrated in exercises 3.2 and 3.3), so the resulting circuit might be slightly slower.
(a)

State	Encoding			
	Sequential	Gray	Johnson	One-hot
0	000	000	0000	00000001
1	001	001	0001	00000010
2	010	011	0011	00000100
3	011	010	0111	00001000
4	100	110	1111	00010000
5	101	111	1110	00100000
6	110	101	1100	01000000
7	111	100	1000	10000000

(b)

Figure 3.9
(a) Main encoding options for an eight-state machine. (b) Regular sequential binary counter with outputs converted to Gray code. (c) Johnson counter. (d) One-hot counter.

3.7.2 One-Hot Encoding

At the other extreme is the one-hot code, in which only one bit is high in each codeword, so with N flip-flops only N states can be encoded (see figure 3.9 a). For the type state above, five bits would be needed, resulting in $\mathrm{A}=$ " 00001 ", $\mathrm{B}=$ " 00010 ", $\mathrm{C}=$ "00100", $\mathrm{D}=$ " $01000 "$, and $\mathrm{E}=" 10000$ ".

This code demands the largest number of flip-flops, but the amount of combinational logic tends to be smaller than that of other encodings (illustrated in exercise 3.2), often leading to a slightly faster implementation. For big machines (say, over 40 or 50 states), the hardware for this type of encoding tends to be prohibitively large.

Just to illustrate the one-hot code, figure 3.9d depicts a one-hot counter, which consists simply of a shift register with a direct feedback loop. Note that the initial state is $q_{3} q_{2} q_{1} q_{0}=$ " 0001 " because the reset signal is connected to the reset port of three DFFs and to the preset port of the other.

3.7.3 Johnson Encoding

This is an implementation in between the two above. With N flip-flops, $2 N$ states can be encoded (see figure 3.9a). It does not require much more combinational logic than the one-hot alternative, but it can encode twice the number of states. Each codeword is obtained by circularly shifting the previous codeword to the left and inverting the incoming bit. For the type state above, three bits would be needed, resulting $\mathrm{A}=$ " 000 ", $\mathrm{B}=" 001 ", \mathrm{C}=" 011 ", \mathrm{D}=" 111 "$, and $\mathrm{E}=" 110 "$.

Just to illustrate the Johnson code, a Johnson counter is depicted in figure 3.9c, which consists simply of a shift register with an inverter in the feedback loop.

An important property of this code is that the Hamming distance (number of bits that are different) between any two adjacent codewords is just 1 (see figure 3.9 a), so it can be useful in the same applications as the Gray code, described below.

3.7.4 Gray Encoding

Gray code is similar to the sequential code in the sense that it too requires the least number of flip-flops (with N flip-flops, up to 2^{N} states can be encoded), but the amount of combinational logic can be slightly larger (illustrated in exercise 3.3) and the speed slightly lower.

This code too exhibits the property of unitary Hamming distance between any two adjacent codewords, useful in certain implementations involving multiple clock domains (recall comments of section 2.3). Because of this property, a Gray counter is free from glitches during state transitions (except when returning to the initial state if the counter's modulo is not a power of 2); consequently, if a Grayencoded FSM has a long path without branching, transitions along that path are glitch-free.

In a Gray code, each codeword is obtained by modifying the value of the rightmost bit in the previous codeword such that a new codeword results (see figure 3.9a). For the type state above, three bits would be needed, resulting in $\mathrm{A}=$ " 000 ", $\mathrm{B}=$ " 001 ", C $=" 011 ", \mathrm{D}=" 010 "$, and $\mathrm{E}=" 110$ ".

Just to illustrate the Gray code, a Gray counter is presented in figure 3.9b, which consists simply of a regular sequential counter whose output is converted into Gray code by means of the following expressions (see XOR gates in figure 3.9 b): $q(N-1)_{\text {Gray }}$ $=q(N-1)_{\text {Seq }} q(i)_{\text {Gray }}=q(i+1)_{\text {seq }} \oplus q(i)_{\text {seq }}$ for $i=N-2$ to $i=0$.

3.7.5 Modified One-Hot Encoding with All-Zero State

Figure 3.10a shows an example using the true one-hot code described above for a four-bit system (a four-state FSM). As expected, the bits of pr_state are \{"0001", "0010", " 0100 ", " 1000 " $\}$. A modified version, with bit zero inverted, is depicted in figure 3.10 b . The encoding is now $\{$ " 0000 ", " 0011 ", " 0101 ", " 1001 " $\}$, thus containing the all-zero codeword. This code has the same properties as the true one-hot code in the sense that it too has a Hamming distance of 2 between any two codewords, and all codewords can be identified based on a single bit.

The alternative of figure 3.10b is used, for example, by Altera's Quartus II compiler when synthesizing state machines using the one-hot option. The reason for doing so is that all DFFs in Altera's FPGAs (and Xilinx's as well for that matter) are initialized to a low output on power-up, so if an explicit reset port was not included in the design, the machine will still be able to start from a specific state, avoiding improper initialization and deadlock. More details on this are seen in sections 3.8 and 3.9, which discuss the importance of reset in FSMs and how to implement safe FSMs.
(a)

(b)

Figure 3.10
(a) True one-hot encoding. (b) Modified one-hot encoding (bit zero inverted), containing the all-zero codeword.

3.7.6 Other Encoding Schemes

Besides the encoding schemes described above, VHDL and SystemVerilog synthesis compilers have at least two other options, known as user and auto. The former is a user-defined encoding (the codeword for each state is specified by the user), whereas the latter is used to let the compiler choose the best encoding scheme based on the target device. Typically, auto employs sequential encoding for small machines (for example, up to four or five states), then one-hot for medium-sized machines (for example, up to 40 or 50 states), and finally sequential again (or an equivalent, such as Gray) for larger machines. In general, auto is the compiler's default option.

The one-hot style is common in applications where flip-flops are abundant, such as field programmable gate arrays (FPGAs), whereas minimal-bit encodings (such as sequential and Gray) are common in complex programmable logic devices (CPLDs) and in compact, low-cost application-specific integrated circuits (ASICs).

Chapters 6 and 7 show how to select the encoding scheme when using VHDL or SystemVerilog, respectively.

3.8 The Need for Reset

If no reset signal is provided and no intentional circuit asymmetry exists (such that a specific output state is favored), the initial state (output either low or high) of a flip-flop, on power-up, might be arbitrary. Because flip-flops are used to construct the state register, the machine's initial state would then also be arbitrary. In this case, one of two situations will result: either the initial state is internal (that is, belongs) to the machine or is external (does not belong) to it. Of course, if N bits are used to encode a machine that has 2^{N} states, then the initial state can only belong to the machine.

When the initial state is internal, deadlock can still happen, but only in rare cases, so the usual main consequence is a possibly undesirable sequence of events during the first few state transitions. If the initial state is external, however, deadlock is much more likely, obviously in addition to the possibly undesirable sequence of events during the first few state transitions after the system converges to one of the FSM states (assuming that deadlock has not occurred).

To further illustrate this discussion, let us consider the four-state counter of figure 3.11a, whose states are encoded using one-hot code (the corresponding pr_state $=$ $q_{3} q_{2} q_{1} q_{0}$ vectors are shown below the state circles). The equations for $n x _$state $=d_{3} d_{2} d_{1} d_{0}$ can be easily obtained using the method described in section 3.3, resulting $d_{3}=q_{2}, d_{2}$ $=q_{1}, d_{1}=q_{0}$, and $d_{0}=q_{3}$. Consequently, if the initial state is $q_{3} q_{2} q_{1} q_{0}=$ " 0000 ", for example, $d_{3} d_{2} d_{1} d_{0}=$ " 0000 " results; because $n x _$state $=p r$ state, a deadlock then occurs. Indeed, based on the equations above, note that with one-hot encoding any time the initial state falls outside the FSM the machine gets deadlocked.

Figure 3.11
Four-state counter encoded with (a) one-hot and (b) sequential code.

Another example is shown in figure 3.11b, now using regular sequential encoding. Because the number of states is a power of two, all possible two-bit values belong to the machine; since all internal states are deadlock-free, the whole machine is deadlockfree. It is important to mention, however, that with sequential or Gray encoding full code usage is not needed for an outside initial state to eventually converge to one of the actual machine states, thus without deadlock.

Deadlock prevention is necessary in any FSM, but in many applications it is also required that the FSM start from a specific state and with proper transition control conditions. For example, one might want the FSM used to implement a traffic light controller to start from a state that keeps the lights red in all directions for a few seconds (on power-up, after an energy failure, for example) before it proceeds to its regular operation. This requires an explicit reset signal if the DFFs initial state is arbitrary.

It is important to mention that there are devices (such as Altera's and Xilinx's FPGAs) whose DFFs are automatically reset to ' 0 ' on power-up. In that case, if the allzero codeword belongs to the code and is assigned to the intended initial state, the FSM will be reset automatically.

Still regarding the FPGAs mentioned above, whose DFFs' initial state is ' 0 ', note that that does not reset the machine automatically when one-hot encoding is used (see in figure 3.11a that " 0000 " is not part of the codewords list). However, contrary to Xilinx's XST synthesis compiler (of the ISE suite), which uses true one-hot code, Altera's Quartus II synthesis compiler uses the modified one-hot code seen in figure 3.10b, which does include the all-zero codeword, thus allowing automatic reset.

Figure 3.12 shows typical sources for the reset signal. In figure 3.12a it is generated by a resistor-capacitor (RC) circuit; when the power is turned on, the voltage on C is zero, so the full $V_{D D}$ voltage is applied to the rst input, resetting the circuit; the voltage on C then grows (with a time constant R.C $=0.1 \mathrm{~s}$), thus eventually reducing the voltage on $\mathrm{R}(r s t)$ to zero and so freeing the circuit from the reset command. In figure 3.12 b , a specialized integrated circuit is used to generate the reset signal; if $V_{D D}$ falls below a predefined threshold voltage, $r s t=$ ' 1 ' is produced, resetting the target circuit. Finally, in figure 3.12c, the reset signal is produced by another circuit that might belong to the same system as the FSM (for example, another FSM to which this one

Figure 3.12
Reset options (a) generated by an RC circuit, (b) generated by a specialized reset chip, and (c) generated by another circuit possibly belonging to the same system as the FSM.

Figure 3.13
FSM with a nonconvergent external state (B3 causes deadlock).
works as a secondary machine, or a watchdog circuit). The first two cases are related to the power supply, so they are power-related resets, whereas the last one can be produced at any time.

As a final comment, it is important to mention that there are applications in which reset is not necessary, either because the initial state is not important or because it is set automatically by another signal (assuming that the machine is not subject to deadlock). However, that is rarely the case, so the exclusion of reset should only be done after very careful design analysis.

Additional details on FSMs' initial state and deadlock are given in the next section.

3.9 Safe State Machines

The concept of safe state machines concerns deadlock-proof implementations.
Figure 3.13 shows an FSM with five states (A1-A5), assumed to be encoded with three-bit values, thus resulting in three states (B1-B3) outside the machine. The machine can start from or move to an external state when no proper reset is provided (when the DFFs' initial state is arbitrary) or because of noise during regular operation (which might flip one or more encoding bits). In this example the machine is able to automatically recover when state B1 or B2 occurs (converging to state A1 or A3, respectively), but it gets deadlocked if state B3 happens.
(a)

(b)

$p r_{_}$state $q_{1}$$q_{0}$			x	$n \times$ _state d_{1} d_{0}
0	0	0	0	0
		1	0	1
0	1	0	1	0
		1	1	0
1	0	0	0	1
		1	0	0

	Karnaugh for d_{1} :			
	$q_{1} q_{0}$			
x	00	01	11	10
0	0	1		0
1	0	1		0

	Karnaugh for d_{0} :			
	$q_{1} q_{0}$			
x	00	01	11	10
0	0	0		1
1	1	0		0

(c)

Critical columns

(h)

	$d_{0}=q_{1} \cdot x^{\prime}+q_{1} \cdot{ }^{\prime} \cdot o^{\prime} \cdot x$			
	$q_{1} q_{0}$			
x	00	01	11	10
0	0	0	1	
1	1	0	0	0

Figure 3.14
Safe-machine analysis. (a) Example with three states and sequential encoding. (b) Corresponding truth table for $n x$ _state. (c) Resulting Karnaugh maps. (d-f) Three compositions for the critical (free-filling) columns. (g) Resulting system if the option in f is used. (h) Optimal expressions for $n x$ _state, which coincide with the (bad) case of e.

Note that the use of an explicit reset signal only prevents the first possibility, not the effect of noise. Consequently, for a truly safe FSM, the external states must also be considered when the expressions for $n x$ _state are developed. Other, less usual mechanisms also exist, including the use of a watchdog that resets the machine in case it remains in the same state longer than a predefined time limit, but this would obviously be applicable only if the machine were expected to change its state periodically.

A detailed example is presented in figure 3.14. The actual machine states are A1-A3. Because sequential encoding is used (note the codewords below the state circles in figure 3.14a), two bits are needed, resulting in one external state (B). We want to examine the conditions needed for this machine to be able to recover in case state B happens.

By the method of section 3.3, the truth table for $n x$ _state shown in figure 3.14 b is obtained, from which the Karnaugh maps of figure 3.14 c result. Note in the latter that

Figure 3.15
A simple solution for truly safe state machines when using sequential encoding.
the column $q_{1} q_{0}=$ " 11 " is the critical column because all elements in that column can be filled indifferently with ' 0 ' or ' 1 ', so a number of different equations can be used for d_{1} and d_{0}. We have to make certain that the condition $n x_{-}$state $=p r _$state (i.e., $d_{1} d_{0}$ $=q_{1} q_{0}$) never happens, either directly or through a loop in the external states, because then deadlock will occur.

The maps of figure 3.14 c were repeated in figures $3.14 \mathrm{~d}-\mathrm{f}$ for three different compositions of the critical columns. In figure 3.14d, all positions were filled with ' 1 's, so $d_{1} d_{0}=$ " 11 " results when $q_{1} q_{0}=" 11$ " (i.e., nx_state $=p r$ state) for both $x=$ ' 0 ' (upper row) and $x=$ ' 1 ' (lower row), causing deadlock. In figure $3.14 \mathrm{e}, d_{1} d_{0}=$ " 11 " for $x={ }^{\prime} 0$ ' (upper row) and $d_{1} d_{0}=$ " 10 " for $x=$ ' 1 ' (lower row), so a deadlock would occur in the former, and a convergence to state A 3 would occur in the latter. Finally, the case in figure 3.14 f has $d_{1} d_{0}=$ " 00 " for $x=$ ' 0 ' and $d_{1} d_{0}=$ " 10 " for $x=$ ' 1 ', so both would converge (to A1 and A3, respectively).

Figure 3.14 g shows the complete resulting state diagram (internal plus external states) in case the encoding of figure 3.14 f is adopted. As seen above, B converges to A1 if $x=$ ' 0 ' or to A3 if $x={ }^{\prime} 1$ ', so this is a truly safe implementation.

To conclude, the Karnaugh maps are repeated in figure 3.14 h , in which the optimal (minimal) expressions were adopted for $n x$ _state (i.e., d_{1} and d_{0}). Note that the resulting situation is that of figure 3.14 e , subject, therefore, to deadlock. In summary, in this example the optimal implementation from a hardware-saving perspective is not the best implementation from a safety point of view.

We conclude this section by showing, in figure 3.15, a simple solution that is applicable to FSMs that employ sequential encoding. M is the machine's number of states. If $M=20$, for example, five bits are needed, and the state values will range from 0 to 19. If at any moment (either at initialization or during regular operation) pr_state happens to be above 19, it means that an external state has occurred, so a reset pulse is produced (this reset can be combined with the original reset signal, if it exists, by means of an OR gate). The flip-flop in figure 3.15 is needed because the comparator can have glitches at the output during state transitions (see, for example, figure 2.15).

3.10 Capturing the First Bit

This section discusses a common hardware need that occurs, for example, when data is processed serially. In such cases there is often an input bit (here called $d v$, for data
valid) that is asserted during one clock cycle to inform that the data is ready (to be stored, processed, etc.). In many cases the first data bit (or vector) is made available at the same time that $d v$ is asserted, so one must be very careful not to miss that first bit (or vector).

An example is shown in figure 3.16a, which consists of a serial data receiver. The FSM must store the input data x in a register y. Note that it is a timed machine, which must stay in state B during T clock cycles, where T is the number of bits of x to be stored in y. This first solution is of Moore type and employs the default clocking scheme (everybody clocked at the same clock edge—positive by default-as indicated in the rectangle in the upper part of the figure).

An illustrative timing diagram for the FSM of figure 3.16a is presented in figure 3.16b, for $x=$ " 1011 " (see the shaded area on the x waveform). The problem with this solution is that it misses the first bit of x because the machine only moves to state B at the first (positive) clock edge after $d v=$ ' 1 ' occurs (note in the figure that when the

Figure 3.16
Techniques for capturing the first bit when it coincides with $d v$. (a, b) Bad Moore solution. (c, d) Fine Moore solution. (e, f) Fine Mealy solution.
first clock edge occurs after the machine is in state B, bit 2 is captured by $y(0)$ instead of bit 1).

The same FSM is used in figure 3.16c. However, even though the data ($d v$ and x) and the auxiliary register (for y) are still updated at the positive clock edge, the FSM and its timer operate now at the negative clock transition. Note in the accompanying timing diagram in figure 3.16d that again the proper values are produced for t (recall that, by default, the timer is zeroed every time the FSM changes state, and here it is kept stopped at zero in the states where it is not needed-state A in this example), but now all bits are captured properly, resulting, in the end, $y(3: 0)=$ " 1101 ".

A final solution is shown in figure 3.16e, which consists of using a Mealy machine instead of a Moore machine. Note in the accompanying timing diagram, in figure 3.16 f , that this machine too works well, and now the default clocking scheme (everybody operating at the same clock edge) is employed.

Both solutions above require an auxiliary register (for y). This kind of FSM will be studied in detail in chapter 11.

3.11 Storing the Final Result

This section discusses another need that sometimes arises in hardware implementations. It consists of wanting the final result from one run of a process to remain stable (constant, exhibited on a display, for example) until another run is completed, with the new result replacing the old one and also remaining unchanged until the next value is produced, and so on. It is also common in such cases to have a control signal ($d v$, data-valid) that indicates when the input data is ready, so data processing should commence. The $d v$ signal, which generally lasts one clock period but can also last for the entire process, can help produce the desired feature.

Figures $3.17 \mathrm{a}, \mathrm{b}$ illustrate the case of $d v$ lasting for the entire process (as usual, a small propagation delay was included between a clock edge and its response in order to portray a realistic situation). Note that in figure 3.17a, $d v$ is updated at the positive clock edge, which is the same edge at which the circuit operates (see the waveform for output), whereas in figure 3.17b, $d v$ is updated at the negative clock edge. As shown in figure 3.17 c , the negative edge of $d v$ is used to store the final result (assumed to be output $=e$; see gray shade) into an auxiliary register. This result will obviously remain unchanged until a new result overwrites it.

The problem with the alternative in figure 3.17a is that the output value is unlikely to have had enough time to settle, so an incorrect value will probably be registered. This alternative would be unsafe even if $d v$ lasted an extra clock period because of the time delay between the edges of $c l k$ and $d \nu$.

Figure 3.17
Storing the final result. $(\mathrm{a}-\mathrm{c}) d v$ lasts the entire process, so its falling edge is used to activate the output register. (d-f) $d v$ lasts only one clock period, so the falling edge of busy is used to activate the register.

The alternative in figure 3.17 b is obviously safe, but using the negative edge implies that the output value has to be ready within $T_{c k} / 2$, which might reduce the circuit's maximum speed.

Figures 3.17 d ,e illustrate the more usual case in which $d v$ lasts only one clock cycle, so an auxiliary signal (called busy in the figures) is needed to activate the register in figure 3.17f. To produce busy from $d v$, a pulse stretcher (studied in section 8.11.10) can be used. However, because busy behaves exactly like $d v$ in figures $3.17 \mathrm{a}, \mathrm{b}$, the same limitations apply here.

A completely different approach is presented in figure 3.18. Note that, contrary to the alternatives in figure 3.17, which do not employ the actual clock to store the final result, $c l k$ itself is used to activate the output register in figure 3.18b, with $d v$ used

Figure 3.18
Truly synchronous alternative for storing the final result, which consists of producing an enable signal, so the actual clock is responsible for activating the register.
simply to produce an enable (ena) signal. The result is a truly synchronous, safe implementation. Two versions of ena are shown, updated either at the positive (ena+) or negative (ena-) clock edge, which can be selected according to the application. This kind of circuit (pulse shifter) is studied in section 8.11.9.

3.12 Multimachine Designs

State machine decomposition, also called state machine factoring, refers to FSMs that are split into two or more machines to ease the design or to take advantage of machines that have been designed previously. In more general terms, two or more smaller FSMs are associated in order to produce the same results as a larger, more complex machine.

Typical associations/decompositions are depicted in figures 3.19a-c. A series (cascade) association is illustrated in figure 3.19a; a parallel association is shown in figure 3.19b; finally, an internal association (one machine is called as part of the other) is depicted in figure 3.19c.

An actual example is depicted in figure 3.19d, which shows an association that falls in the case of figure 3.19c. The main FSM is a factorial ($f=n!$) calculator (details can be seen in exercise 11.9), so a multiplier is needed; because a multiplier can also be implemented using the FSM approach (see section 11.7.5), the latter is called as part of the former.

Another interesting example is presented in figure 3.20a, which shows a machine with a pair of states that need to be repeated a number of times. If T is large (say 64; therefore, 130 states), it is impractical to represent this circuit as a regular FSM. A solution for this problem is presented in figure 3.20b, with the original circuit decomposed into two machines, the first with three states, the other with two states, regardless of the value of T. Note that the main machine has a "superstate" (SS) that simply enables the secondary machine to run. When ena $=$ ' 0 ', the secondary machine remains in the reset state, whereas ena $=$ ' 1 ' causes it to flip back and forth between states B and C during $2 T$ clock cycles (recall that the timer's initial value

Figure 3.19
Multimachine implementations with the FSMs associated (a) in series, (b) in parallel, or (c) with one machine called as part of the other. (d) Example showing a factorial calculator, which needs a multiplier, so the latter is called as part of the former.
(a)

(b)

Figure 3.20
(a) FSM with a repetitive pair of states. (b) Solution with FSM decomposition where the secondary machine operates as a "superstate" to the main machine.
is zero, so it runs from 0 to $2 T-1$ in this case), after which the machine moves to state D.

An example where this arrangement can be useful is in serial data communications, as in the $I^{2} \mathrm{C}$ interface (chapter 14), because a data vector must be transmitted (state B) by the master, then an acknowledgment bit must be received from the slave (state C), with these operations repeated until all data vectors have been sent out.

Another area in which the use of multiple machines is relatively common is in control units for CPUs, in which simpler instructions (e.g., load and store) are part of
more elaborate CPU instructions. Several examples with multiple machines are seen in chapters 8 and 11.

3.13 State Machines for Datapath Control

The purposes of this section are to review datapath-related concepts and to describe how state machines can be used to build the control unit that controls a datapath. Because the control unit is generally the most complex circuit to design in this kind of application, and the FSM approach is employed to do it, a study of state machines for datapath control is indispensable.

A popular datapath is that of microprocessors and microcontrollers, needed to construct the CPU, write/read data to/from memory, communicate with peripherals, and so on. Fundamental components for datapath construction are depicted in figure 3.21. Note that they all have some type of control input (sel, ALUop, wrR, rdM, wrM, $w r P C, w r I R)$.

Multiplexers are digital switches used to route data from one location to another; in the case of figure 3.21, when the selection (sel) input is ' 0 ', the upper input is passed to the output, whereas a ' 1 ' causes the lower input to be passed to the output. The arithmetic logic unit (ALU), as the name says, is responsible for executing arithmetic $\left(+,-,{ }^{*}, /, \ldots\right)$ and logic (AND, OR, XOR, ...) operations; the operation is selected by the ALU's operational code, ALUop. Registers are simply DFF banks: for example, a 32-bit register is simply a set of 32 parallel DFFs; note the write-register (wrR) input, which must be asserted for the input data to be stored into the DFFs (at the next positive clock edge). The data memory is used to store data during datapath operations; it contains two control inputs, for reading from ($r d M$) or writing into ($w r M$) the

Figure 3.21
Main datapath components.
memory. The program counter (PC) is a counter that keeps the instruction address; observe the write-PC (wrPC) control input. Finally, the instruction register is responsible for storing and decoding the instructions; note the write-instruction-register (wrIR) control input.

The control unit, shown in the lower part of the figure, is responsible for producing all control signals. Its main input (besides clock and reset) is an opcode, based on which the whole sequence of events needed for the datapath to perform the desired computations is provided. An important aspect to observe is that the control unit, although responsible for sequencing all of the computations, does not access the data directly (except for some occasional trivial data monitoring). Instead, it just makes the proper path manipulations such that the datapath itself produces the intended results.

A simple datapath is depicted in figure 3.22a, containing an ALU, two registers (A, B), and a multiplexer. Four control signals are involved: selA (selects the data source for register A), $w r A$ and $w r B$ (enable writing into registers A and B, respectively-at the next positive clock edge), and ALUop (some of the ALU operations are listed in figure $3.22 b)$. These four control signals must be generated by the control unit, based on opcode. For simplicity, clock and reset are generally omitted in datapath representations (as in figure 3.22a), but they are obviously needed.

As an example, say that the following computation must be performed by the datapath of figure 3.22a: When an external input, called $d v$ (data-valid bit), is asserted

(a)

ALUop	ALUout
0	zero
1	A
2	B
3	$\mathrm{~A}+\mathrm{B}$

(b)

(c)

Figure 3.22
(a) Datapath example. (b) Partial ALU's opcode table. (c) Illustrative timing diagram for the following computation: inputs are stored into A and B , then added, with the result then stored into A. (d) Corresponding Moore machine.
(during one clock cycle), inpA and inpB must be added and the result stored in register A (so we can assume opcode $=d v$).

The overall datapath operation is illustrated in the timing diagram of figure 3.22c (as usual, small propagation delays were left between the clock transitions and the corresponding responses to portray a more realistic situation), which shows the system clock (clk), the data-valid bit ($d v$), the four signals to be produced by the FSM (selA, wrA, wrB, ALUop), and, finally, the machine's state (pr_state) after every positive clock transition.

A very important aspect to observe, which often causes confusion and leads to incorrect designs, is how data is stored in datapaths. Because the control unit does not access the data directly but just provides the proper path for it, the storage occurs at the end of any write-enabling state. For example, note in figure 3.22c that $\mathrm{wrA}=\mathrm{wrB}$ $=$ ' 1 ' in the load state, which means that at the next clock edge (thus, at the end of the load state) the inputs will be stored in A and B (see comments at the bottom of the figure). The same is true in the store state; because $w r A=$ ' 1 ' in it, at the next clock edge (end of that state), the sum will be stored in A.

A corresponding Moore-type solution is presented in figure 3.22d, which is a direct translation of figure 3.22c (compare the values in the plots against those in the state transition diagram). Note also in figure 3.22d that the list of outputs is exactly the same in all three states, as required for hardware-implemented (as opposed to softwareimplemented) FSMs, otherwise latches would be inferred (unless the optional output register is included).

The next example (figure 3.23) shows a relatively complete CPU datapath (based on MIPS [Patterson \& Hennessy, 2011]). It contains an ALU, four multiplexers (memory address source, register data source, ALU source A, and ALU source B), several registers (instruction register-IR, memory data register-MDR, general purpose register file,

Figure 3.23
A CPU datapath (based on the MIPS architecture).
general purpose A and B registers, and the ALU register-ALUreg), plus a general purpose data memory.

As usual, a control unit (FSM) is needed to control the datapath, which produces nine signals: AddrSource (to control the memory address source mux), DataSource (to control the register data source mux), ALUSourceA (to control the ALU input-A mux), ALUSourceB (to control the ALU input-B mux), PCWr (to enable writing into the program counter register), MemWr (to enable writing into the memory), MemRd (to enable reading the memory), RegWr (to enable writing into the register file), and ALUop (to define the ALU operation). The control unit produces these signals based on the opcode received from the instruction register/decoder.

Each CPU instruction is broken down into a series of clock cycles, with each cycle limited to one ALU operation plus storage or one memory/register access plus storage, such that at the end of each cycle the data needed in the next cycle will be available in one of the registers or in memory. For example, note in figure 3.23 that the data read from the memory is stored in MDR, the data from the register file is stored in A or B, and the ALU result is stored in ALUreg.

Two partial examples of instructions executed by the CPU of figure 3.23 are depicted in figure 3.24, concerning the store word (SW) and load word (LW) instructions. As shown in figure 3.24a, SW is composed of two main parts: SetAddr, in which the memory address to which data will be written is set, and WriteMem, which causes the data to be effectively stored (at the end of that state, as explained earlier). Note the following in the SetAddr state: ALUSourceA $=$ ' 0 ', so port A of the ALU is fed by register A; ALUSourceB $=$ ' 1 ', so port B of the ALU is fed by the IR; and ALUop = add, meaning that the actual opcode will cause the ALU to add its inputs, thereby producing the intended memory address stored in ALUreg. Note the following in the WriteMem state: AddrSource $=$ ' 1 ', so the address comes from the ALU register (as expected); and MemWr = ' 1 ', so writing is enabled and will occur at the next (positive) clock edge. As a final remark, note that the list of outputs is not the same in both states (it should be for hardware-based implementations), which was done here just for simplicity.

Figure 3.24
Partial state machines implementing memory access using the datapath of figure 3.23. Recall that in an actual design the list of outputs has to be exactly the same in all states of an FSM.

The LW instruction, depicted in figure 3.24b, is composed of three main parts: SetAddr, responsible for setting the memory address from which data must be read; ReadMem, which causes the data to be effectively read (at the end of this state); and WriteReg, which causes the read data to be stored in one of the IR registers (again, at the end of the state). The SetAddr state is similar to the previous case. Note the following in the ReadMem state: AddrSourceA = ' 1 ', so the address comes from the ALU register (as expected); and MemRd = ' 1 ', so reading is enabled and the data will be stored in MDR at the next (positive) clock edge. Finally, note the following in the WriteReg state: DataSourceA = '0', so the data must come from MDR (as expected); and RegWr $=$ ' 1 ', so the data will be written into the register pointed to by the IR at the next (positive) clock edge.

The reasoning used in the instructions above can be extended to all instructions of a CPU, resulting in a generally large set of small state machines, collectively responsible for implementing all of a CPU's instructions.

Points to Remember when Designing a Control Unit

We close this section with some comments that can be helpful for the proper understanding and correct design of FSMs for datapath control.

1) Sequential circuit and Moore machine: The control unit is normally the only sequential circuit in a datapath-based design (except for the PC, but this is just a basic counter; registers are also clocked and so can be memories, but these act just as data storage elements), and its design is normally based on the FSM approach. Moreover, because control units are inherently synchronous, the Moore approach is generally preferred (over Mealy). In the comments that follow, it is assumed that the Moore model was adopted.
2) No direct data access: Even though the control unit is responsible for sequencing all datapath computations, it normally does not access the actual data directly (except for occasional trivial data monitoring).
3) Late data storage: Data storage in a datapath-based design is controlled by a writeenable signal produced by the control unit. Because such a signal will be ready only after the clock edge that causes the machine to enter the write-enabling state, the actual writing will only occur at the next clock edge, that is, at the end of that state (in other words, it will occur just prior the moment at which the machine leaves the write-enabling state).
4) Dependency on input data: In some applications the machine must read/write data and, based on the data value, make a decision on which state to go to next. Because the data will be available only when the machine leaves the read/write state, the decision can obviously not be made yet. In such cases, a wait state must be included before the decision can be made. This is illustrated in figure 3.25. Assume that we are using a datapath similar to that in figure 3.22a, where the inputs must be stored in registers

Figure 3.25
Input-data-dependent decision in a Moore-type control unit. (a) Incorrect. (b) correct.

A and B and then compared to decide where the machine should go next. In figure 3.25a the data-valid bit causes the machine to move from the idle state to the load state; in the latter, $w r A=w r B=$ ' 1 ', so when the machine leaves that state, the proper data will be available for comparison. Therefore, in this machine the comparison will actually be between the data values previously stored in A and B (a mistake). This was fixed in figure 3.25 b with the inclusion of a wait state. (Recall that in a Mealy machine the wait state is not needed, but the Mealy approach is rarely adopted in datapathrelated applications.)

3.14 Exercises

Exercise 3.1: Moore and Mealy Circuits

a) Just by looking at the circuit of figure 3.4e, how can you tell that it is a Moore machine?
b) How can you tell that the circuit of figure 3.6d is a Mealy machine?

Exercise 3.2: By-Hand Design of a Moore Machine \#1

We saw in section 3.7 that the number of DFFs and the amount of combinational logic needed to build an FSM can vary substantially with the encoding style chosen. In the "by-hand" design of section 3.3, sequential binary encoding was employed (e.g., pr_state $=$ " 00 " for state zero, " 01 " for state one, " 10 " for state two, and " 11 " for state three).
a) Redo that design, again "by hand," using Gray code (state zero \rightarrow " 00 ", one \rightarrow " 01 ", two \rightarrow " 11 ", three \rightarrow " 10 ").
b) Redo it again, now using true one-hot code (state zero \rightarrow " 0001 ", one \rightarrow " 0010 ", two \rightarrow "0100", three \rightarrow "1000").
c) Compare these three solutions (sequential, Gray, and one-hot). Which requires the fewest DFFs? Which requires the least combinational logic? Which has the best time predictability for the output?

Exercise 3.3: By-Hand Design of a Moore Machine \#2

Consider the Moore machine of figure 5.7c, which implements a short-pulse generator.
a) Design it "by hand" using sequential encoding. Show that $y=q_{0}$.
b) Design it using Gray encoding. Show that $y=q_{1}{ }^{\prime} \cdot q_{0}$.
c) Design it using the following user-defined encoding: $\mathrm{A}="-0$ ", $\mathrm{B}=" 01$ ", $\mathrm{C}=" 11$ ". Show that $d_{0}=x, d_{1}=q_{0}$, and $y=q_{1} \cdot q_{0}$.
d) Draw all three circuits and show that the last one is the simplest.
e) Which of these circuits is/are guaranteed to have a glitch-free output, with better time predictability? Explain.

Exercise 3.4: By-Hand Design of a Mealy Machine

a) Draw a Mealy-type state transition diagram for the parity detector of figure 5.5.
b) Design a circuit that implements this machine, with sequential encoding.

Exercise 3.5: Time Behavior of a Moore Machine

Say that the parity detector of figure 5.4 b operates with the clock signal of figure 3.26 , receiving at the input the signal x also included in the figure. Draw the other two waveforms (machine's present state and output; the initial part of pr_state was already filled). Does the output change only when the state changes?

Exercise 3.6: Time Behavior of a Mealy Machine

This exercise is a continuation of the one above.
a) Draw a Mealy-type solution for the parity detector of figure 5.4.
b) Say that this machine is operating with the clock of figure 3.27, receiving the signal x also included in the figure. Draw the other two waveforms (machine's present state and output). Does the output change only when the state changes?
c) Compare the time behavior of this Mealy solution against that of the Moore counterpart developed in the previous exercise. Which is different (pr_state or y or both) from one solution to the other?

Figure 3.26

Figure 3.27

Exercise 3.7: State Machine Categories

What is the category of the machines in figures $1.3 \mathrm{~b}, 1.3 \mathrm{c}, 3.4 \mathrm{a}$, and 3.6 a ?
Why are the machines of figures 8.12 c and 8.14 b said to be of category 2 ?
Why are the machines of figures 11.5 b and 11.7 b said to be of category 3 ?

Exercise 3.8: State Encoding

List the codewords used to encode the states of the garage door controller of figure 5.9c in the following cases:
a) With sequential encoding.
b) With Gray encoding.
c) With Johnson encoding.
d) With one-hot encoding.

Exercise 3.9: Number of Flip-Flops

Calculate the number of DFFs needed to encode an FSM with $M=8$ or $M=33$ states, in the following cases:
a) With sequential encoding.
b) With Gray encoding.
c) With Johnson encoding.
d) With one-hot encoding.

Exercise 3.10: Need for Reset \#1

Say that the FSM of figure 5.4b, which implements a basic parity detector, is encoded using regular sequential encoding (so pr_state $=$ ' 0 ' in state zero and pr_state $=$ ' 1 ' in state one).
a) Are there any states outside the machine (i.e., unused codewords)?
b) Is an explicit reset signal needed when this machine is implemented in an FPGA (flip-flops reset automatically on power-up)? Can deadlock occur in this case?
c) Answer the questions of part b when the flip-flops' initial state is arbitrary.

Exercise 3.11: Need for Reset \#2

This exercise concerns the parity detector of figure 5.5 c , which has a data-valid ($d v$) input. Assume that a reset input is not provided and that the circuit is implemented in a device whose flip-flops' initial state (on power-up) is arbitrary.
a) If the initial state falls inside the machine (in state zero, one, or hold_one), will the circuit operate properly? Does this answer depend on the encoding scheme?
b) Answer the same questions above for the case when the initial state falls outside the machine.
c) Prove that this FSM works well in both cases mentioned above if sequential encoding is used and optimal (minimal) expressions are used for $n x _$state $\left(d_{1}, d_{0}\right)$.
d) Prove that it also works well in both cases mentioned above if one-hot encoding is used and optimal (minimal) expressions are used for $n x _$state $\left(d_{2}, d_{1}, d_{0}\right)$.
e) Consider that sequential encoding is used. Show that if the "don't care" bits are all filled with ' 0 's the machine is not subject to deadlock, but if they are all filled with ' 1 's then deadlock can occur.
f) Consider now that one-hot encoding is used. Show that in both cases ("don't care" bits all filled with ' 0 's or all filled with ' 1 's) deadlock can occur.

Suggestion to solve parts c and d: First, review sections 3.8 and 3.9 ; next, use the method seen in section 3.3 to find the machine's optimal expressions for nx_state; then apply the values of $p r_{-}$state (i.e., q_{1} and q_{0} in c or q_{2}, q_{1}, and q_{0} in d) and of the transition conditions ($d v$ and x) for the cases not used in the FSM encoding (states outside the machine) to the expressions derived to show that the results always converge to states inside the machine.

Exercise 3.12: Capturing the First Bit

Two options for processing data correctly when the first data bit is made available at the same time that the data-valid $(d v)$ bit is asserted were presented in figure 3.16. Show that the option in figure 3.16c will no longer work if the auxiliary register that stores x operates at the falling clock edge.

Exercise 3.13: Storing the Final Result

Explain why the option in figure 3.18 is better than any of the options in figure 3.17 for registering a process's final result.

Exercise 3.14: Multimachine Design

In figure 3.20a, an FSM with a repetitive pair of states is shown, for which a solution using two FSMs was presented in figure 3.20b. Complete the timing diagrams of figure 3.28 for the machines of figure 3.20 b , assuming that $T=3$.

Figure 3.28

Exercise 3.15: Datapath Control

Assume that the datapath of figure 3.22a must operate as an add-and-accumulate circuit (ACC), accumulating in A four consecutive values of inpB. The data-valid pulse $(d v)$, lasting only one clock period, must again start the four-iteration procedure, after which the resulting value must remain displayed at ALUout until another $d v$ pulse occurs. In summary, the operations are: $0+B \rightarrow A, A+B \rightarrow A, A+B \rightarrow A$, and $A+B \rightarrow A$.
a) Draw an illustrative timing diagram (as in figure 3.22c) for an FSM that controls this datapath.
b) Draw a corresponding state transition diagram (as in figure 3.22d) for this machine.

After solving the problem, check section 5.4.7.

4 Design Steps and Classical Mistakes

4.1 Introduction

This chapter presents a list of classical problems and mistakes that might occur in the design of hardware-based finite state machines. Subsequently, a summary regarding the main design steps is also presented.

4.2 Classical Problems and Mistakes

4.2.1 Skipping the State Transition Diagram

Probably the most error-prone step in the design of a circuit based on the state machine approach is to think that it is fine to go straight from the specifications to the design without sketching the state transition diagram (students sometimes believe that they can "see" the state diagram in their minds). With this approach, states can be missed, or, more likely, output values and state transitions may be ill specified. This step is critical because any error in the state transition diagram will invalidate the whole effort, no matter how well the rest is done.

4.2.2 Wrong Architecture

Once one has been convinced that sketching the state transition diagram is indispensable, the next step is not to draw it but first to decide which type the machine architecture should be used (a major mistake is to think that all machines are "just the same"). A great effort has been made in this book to show that, when one is using hardware (as opposed to software) to implement an FSM, the circuit architecture can vary substantially from one problem to another. For that reason, a classification into three categories, which covers any state machine, was introduced in section 3.6 (see figure 3.8), as follows: category 1 for regular state machines; category 2 for timed state machines; and category 3 for recursive state machines.

The first decision is to select correctly in which of these categories the machine to be designed falls. That not only will lead to the right circuit (optimal resources usage)
but will also immensely reduce the design effort. The second important decision is to choose between the corresponding Moore and Mealy architectures. The third and final architectural decision is whether to include or not in the FSM the optional output register (figure 3.2b).

4.2.3 Incorrect State Transition Diagram Composition

As seen in section 1.3, the state diagram must obey three fundamental principles:

1) It must include all possible system states.
2) All state transition conditions must be specified (unless a transition is unconditional), and such conditions must be truly complementary.
3) The list of output signals must be exactly the same in all states (standard architecture).

Failing to comply with requisite 1 above will lead inevitably to an incorrect circuit. Even though this seems an obvious step, there are situations in which subtle details are involved, such as the inclusion of wait states to hold until the data to be inspected is ready (as in figure 3.25, for example) or to suppress state bypass (as in figure 4.2, for example).

Condition 2 above requires that the complete set of transition conditions be neither under- nor overspecified; otherwise, a poor or incorrect circuit will again result. This is a relatively common error that can be avoided by following the material seen in section 1.5.

Finally, requisite 3 determines that, for hardware implementations, the list of outputs must be exactly the same in all states; otherwise, latches will be inferred, wasting resources and making the time response less predictable. Because this is by far the most common mistake, an example is provided in figure 4.1. In figure 4.1a, y is not specified in state B. If this lack of specification is the result of careless analysis, an incorrect circuit will probably be implemented; otherwise, if the missing specification is because y should keep in state B the same value that it had when the FSM left state A, then $y=y$ should be entered, as depicted in figure 4.1b, making the list of outputs exactly the same in all states and also clarifying what is indeed wanted for y.

Figure 4.1
(a) State diagram with incomplete output specifications. (b) Corrected state diagram.

Figure 4.2
Car alarm (a) with and (b) without state bypass.

4.2.4 Existence of State Bypass

The state-bypass problem occurs when the transition conditions for entering a state coincide with the transition conditions for leaving that same state, and such conditions are true during more than one clock cycle.

As an example, consider the car alarm of figure 4.2a. If the alarm is in the disarmed state and a command from the remote control (remote $=$ ' 1 ') is received, the machine passes to the armed state, ready to detect any intrusions. However, if the remote = ' 1 ' command lasts several clock cycles (as is generally the case) and the intrusion sensor is off (sensor $=$ ' 0 '), the circuit goes back to disarmed, then returns to armed, and so on, producing a kind of state bypass (in fact, the states are not exactly bypassed, but rather, the machine remains in each state for just one clock period instead of staying there). Note that in this example state bypass occurs even when sensor $=$ ' 1 '.

This problem can be solved with some kind of flag or, more clearly, with wait states, as in figure 4.2 b (white circles). Note that the wait1 and wait2 states wait until remote returns to zero before allowing any other action to take place.

The failure to prevent state bypass can lead to a circuit with occasional malfunctioning that is very difficult to locate later. This is especially true when the state bypass can only occur in very particular situations, which might have been overlooked in the simulations and therefore remained undetected during the design phase.

4.2.5 Lack of Reset

In the design of any FSM the need for reset must always be considered (only few cases are fine without an explicit reset port). Failing to do so can cause incorrect machine initialization or even deadlock. A detailed analysis on the use of reset and its consequences was presented in sections 3.8 and 3.9.

4.2.6 Lack of Synchronizers

Many FSMs have asynchronous inputs, so metastability can occur if synchronizers are not employed. Failing to analyze whether asynchronous signals are involved in the design and the possible consequences of metastability to that particular application can compromise the entire project. Material on the use and construction of synchronizers and their consequences was presented in section 2.3.

4.2.7 Incorrect Timer Construction

Many engineering problems include timed decisions, leading to state machines with time as a transition condition (see figure 1.8). Because timers are just counters (therefore sequential circuits, which can then also be modeled as state machines), one might be tempted to use the FSM approach to design them. There are two main reasons for not doing so in general. The first is that counters are standard circuits, easily designed without the FSM approach. The second is that a counter might have thousands of states and therefore would be impractical to represent as a regular state machine.

The recommended approach in such cases is to consider the timer (counter) as an auxiliary circuit, implemented separately and acting as an input to the (main) state machine. However, the state machine itself must be responsible for clearing the timer at the proper moments as well as for stopping it or letting it run as needed. Such fine details, sometimes overlooked, are fundamental to attain a correct and optimized design. Such aspects are studied in chapter 8, which deals specifically with timed state machines, and are reinforced in chapters 9 and 10, which show VHDL and SystemVerilog implementions for timed FSMs.

4.2.8 Incomplete VHDL/SystemVerilog Code

Once the state transition diagram has been correctly and completely constructed, we can write a corresponding VHDL or SystemVerilog code to synthesize the circuit. The problem is that here too the coverage of specifications might not be complete, even if the state diagram is complete. Two common mistakes are described below, both related to the combinational logic section of the FSM (more precisely, related to requisites 2 and 3 listed in section 4.2.3).

The first mistake regards incomplete output specifications. One might believe that when something was said in a previous state and nothing occurred there is no need to say it again. For example, consider that we are using VHDL and the case statement to implement the combinational logic section of an FSM as follows (do not worry about code details for now; they are seen in chapter 6):

```
--Bad:
case pr_state is
    when A =>
```

```
--Good:
case pr_state is
    when A =>
```

```
        output1 <= "0000";
        output2 <= "01";
        nx_state <= B;
    when }\overline{B}=
    output2 <= "10";
    nx_state <= C;
    when C =>
    output1 <= "1111";
    output2 <= "11";
    nx_state <= A;
end case;
```

```
    output1 <= "0000";
    output2 <= "01";
    nx_state <= B;
    when }\overline{B}=
    output1 <= "0000";
    output2 <= "10";
    nx_state <= C;
    when }\overline{C}=
    output1 <= "1111";
    output2 <= "11";
    nx_state <= A;
end case;
```

Note in the code on the left that from state A the machine can only go to state B. If the desired value for output1 while in B is the same as that in A, one might be tempted to omit it in state B. Recall, however, that the upper section of an FSM is combinational (thus memoryless), so there is nothing to prevent its output from changing when the machine leaves a state. For cases like the code above, the compiler will generally infer latches, guessing that the designer wanted the machine to keep the same value that it had in the previous state, which can produce an unsafe behavior because the timing response of latches (built with regular gates) is difficult to predict and is subject to race conditions.

In summary, it is important to remember what was said earlier: the list of outputs must be exactly the same in all states (so in this example it must contain output1 and output2 in all states, as shown in the code on the right).

The second mistake regards incomplete transition conditions specifications. For example, consider again that we are using VHDL and the case statement to implement the combinational logic section of an FSM as follows:

```
--Moore machine:
case pr_state is
    when A =>
        output <= <value>;
        if <condition> then
            nx_state <= B;
        elsif...
        else
            nx_state <= A;
        end if;
    when B =>
end case;
```

```
--Mealy machine:
```

--Mealy machine:
case pr_state is
case pr_state is

```
    when A =>
```

 when A =>
 if <condition> then
 if <condition> then
 output <= <value>;
 output <= <value>;
 nx_state <= B;
 nx_state <= B;
 elsif...
 elsif...
 else
 else
 output <= <value>;
 output <= <value>;
 nx_state <= A;
 nx_state <= A;
 end if;
 end if;
 when B =>
 when B =>
 end case;

```
end case;
```

Both codes above are correct. Note that in both the if statement includes an else part, which takes care of all remaining options. If this else were omitted, an
underspecification would occur, and the compiler might again infer unnecessary (and undesirable) latches.

4.2.9 Overregistered VHDL/SystemVerilog Code

This is another common mistake. It is very important to be aware of the code sections that infer registers and close such sections as soon as registers are no longer needed.

An example is shown below, using VHDL. Any signal to which a value is assigned under the if rising_edge(clk) statement will be registered, so that if must be closed as soon as possible. The code on the left is constructed correctly. Note that the only assignment under the if rising_edge(clk) statement is pr_state <= nx_state, so only the machine state gets registered. Because the case statement used for the upper section is outside that if statement, no flip-flops will be inferred for that part of the machine, resulting in a truly combinational circuit for the upper section, which is how it should be.

The code on the right, on the other hand, is an example of an error-prone design. Note that now the case statement is inside the if rising_edge(clk) statement, so the output will also be registered. As we have already seen, there are cases in which the optional output register is needed, but that is a case-by-case decision, not a forced condition as it is in this code. Probably the worst aspect of this code is that the designer might be completely unaware of what is actually happening. (Note that pr_state has no effect in this process' sensitivity list.)

```
--Good:
--lower section of FSM:
process (clk)
begin
    if rising_edge(clk)then
        pr_state <= nx_state;
    end if;
end process;
--upper section of FSM:
process (all)
begin
    case pr_state is
        when A =>
            output <= <value>;
                if <condition> then
                    nx_state <= B;
                else
                    nx_state <= A;
                end if;
        when B =>
    end case;
end process;
```

```
--Error prone:
process (clk, pr_state)
begin
    if rising_edge(clk) then
        --lower section of FSM:
        pr_state <= nx_state;
        --upper section of FSM:
        case pr_state is
                when A =>
                output <= <value>;
                if <condition> then
                nx_state <= B;
                else
                                    nx_state <= A;
                        end if;
                when B =>
            end case;
        end if;
end process;
```


4.3 Design Steps Summary

We close this chapter by summarizing the main steps that should be observed in designing sequential circuits using the FSM approach.

1) Specifications analysis: Study the problem specifications carefully. As a final step, decide:
a) The FSM category (regular, timed, or recursive) to be adopted.
b) The FSM type (Moore or Mealy) to be used.
c) Whether the optional output register should be included.
2) State transition diagram: Based on your analysis and conclusions above, carefully draw the state transition diagram. The use of a detailed diagram (as in figure 1.4 d) is particularly recommended in complex designs or for beginners because it helps visualize and assure that all transition conditions have been completely and correctly covered.
3) Encoding style and resources usage: Decide which state-encoding option (e.g., sequential, Gray, Johnson, one-hot) will be employed in the design. After that, the exact number of DFFs that will be needed to build the FSM can be calculated. Do it, so your estimate can be compared later against the actual number reported by the VHDL/SystemVerilog compiler (this is a very important checkpoint).
4) Reset signal: Analyze your FSM and decide whether an explicit reset port is needed. Recall that, as seen in sections 3.8 and 3.9 , only occasionally is a state machine guaranteed to work properly without a dedicated reset signal.
5) Input signals: Two fundamental features must be observed with respect to the input signals. The first regards the aspect of such signals. For example, they might have glitches, or they might be too short or too long, so proper signal conditioning might be required. The second regards synchronism. If any input is asynchronous with respect to the FSM, analyze if metastability (section 2.3) can be critical to the application. If that is the case, and no other part of the circuit is taking care of metastability, add a synchronizer for each asynchronous input from which the machine must be protected. Do not forget to take into account the latency that this will cause.
6) Code and compilation: Write the corresponding VHDL/SystemVerilog code and synthesize it (design by hand is viable only for very simple circuits). Compare the number of flip-flops inferred by the compiler against your prediction.
7) Simulation: Fully simulate your design (graphically or, preferably, with VHDL/ SystemVerilog testbenches). If the simulation is too time consuming, do functional simulation first until the design is debugged; then do timing simulation.
8) Physical implementation: Finally, download the resulting FPGA programming file (.pof or .sof) into the physical device in order to program it and proceed to the physical tests.

5 Regular (Category 1) State Machines

5.1 Introduction

We know that, from a hardware perspective, state machines can be classified into two types, based on their input connections, as follows.

1) Moore machines: The input, if it exists, is connected only to the logic block that computes the next state.
2) Mealy machines: The input is connected to both logic blocks, that is, for the next state and for the actual output.

In Section 3.6 we introduced a new classification, also from a hardware point of view, based on the transition types and nature of the outputs, as follows (see figure 5.1).

1) Regular (category 1) state machines: This category, illustrated in figure 5.1a and studied in chapters 5 to 7 , consists of machines with only untimed transitions and outputs that do not depend on previous (past) output values.
2) Timed (category 2) state machines: This category, illustrated in figure 5.1 b and studied in chapters 8 to 10 , consists of machines with one or more transitions that depend on time (so they can have all four transition types: conditional, timed, conditional-timed, and unconditional). However, all outputs are still independent from previous (past) output values.
3) Recursive (category 3) state machines: This category is illustrated in figure 5.1c and studied in chapters 11 to 13 . It can have all four types of transitions, but one or more outputs depend on previous (past) output values. Recall that the outputs are produced by the FSM's combinational logic block, so the current output values are "forgotten" after the machine leaves that state; consequently, to implement a recursive (recurrent) machine, some sort of extra memory is needed.

As seen in this and in upcoming chapters, the classifications mentioned above (no other classification is needed) will immensely ease the design of hardware-based

Figure 5.1
State machine categories (from a hardware perspective).
state machines. The two fundamental decisions before starting a design are then the following:

1) Decide the state machine category (regular, timed, or recursive).
2) Next, decide the state machine type (Moore or Mealy).

It is important to recall, however, that regardless of the machine category and type, the state transition diagram must fulfill three fundamental requisites (seen in section 1.3):

1) It must include all possible system states.
2) All state transition conditions must be specified (unless a transition is unconditional) and must be truly complementary.
3) The list of outputs must be exactly the same in all states (standard architecture).

5.2 Architectures for Regular (Category 1) Machines

The architectures for category 1 machines are summarized in figure 5.2. These representations follow the style of figures $3.1 \mathrm{~b}, \mathrm{~d}$, but the style of figures $3.1 \mathrm{a}, \mathrm{c}$ could be used equivalently. The output register (figure 5.2c) is optional. The four possible constructions, listed in figure 5.2 d , are summarized below.
Regular Moore machine (figure 5.2a): In this case, the input (if it exists) is connected only to the logic block for the next state. Consequently, the output depends only on the state in which the machine is (in other words, for each state, the output value in unique), resulting a synchronous behavior (see details in section 3.5). Because modern designs are generally synchronous, this implementation is preferred whenever the application permits.

(d)

Construction	Resulting category 1 circuit	Behavior
(a) only	Pure Moore machine (preferred)	Order-1 synchronous
(b) only	Pure Mealy machine	Asynchronous
(a) + (c)	Out-registered (pipelined) Moore machine	Order-2 synchronous
(b) + (c)	Out-registered (pipelined) Mealy machine	Order-1 synchronous

Figure 5.2
Regular (category 1) state machine architectures for (a) Moore and (b) Mealy types. (c) Optional output register. (d) Resulting circuits.

Regular Mealy machine (figure 5.2b): In this case, the input is connected to both logic blocks, so it can affect the output directly, resulting an asynchronous behavior. Therefore, the machine can have more than one output value for the same state (section 3.5).
Out-registered (pipelined) Moore machine: This consists of connecting the register of figure 5.2 c to the output of the Moore machine of figure 5.2 a . As seen in sections 2.5 and 2.6, two fundamental reasons for doing so are glitch removal and pipelined construction. As a result, the final circuit's output will be delayed with respect to the original machine's output by either one clock period (if the same clock edge is employed in the state register and in the output register) or by one-half of a clock period (if different clock edges are used). Note that the resulting circuit is order-2 synchronous because the original Moore machine was already a registered circuit (in other words, the input-output transfer occurs after two clock edges-see details in section 3.5). If in a given application this extra register is needed but its consequent extra delay is not acceptable, the next alternative can be used.
Out-registered (pipelined) Mealy machine: This consists of connecting the register of figure 5.2 c to the output of the Mealy machine of figure 5.2 b . The reasons for doing so are the same as for Moore machines. The resulting circuit is order- 1 synchronous because the original Mealy machine is asynchronous. Consequently, the overall
behavior (with the output register included) is similar to that of a pure Moore machine (without the output register-see details in section 3.5).

5.3 Number of Flip-Flops

In general, and particularly in large designs, it is difficult to estimate the number of logic gates that will be needed to implement the desired solution. However, it is always possible to determine, and exactly, the number of flip-flops.

In the case of sequential circuits implemented as category 1 state machines, there are two demands for DFFs, as follows (see state-encoding options in section 3.7).

1) For the state register (see nx_state and pr_state in figure 5.2 a , which are the state memory flip-flops' input and output, respectively; below, $M_{F S M}$ is the number of states):

For sequential or Gray encoding: $N_{F S M}=\left\lceil\log _{2} M_{F S M}\right\rceil$. Example: $M_{F S M}=25 \rightarrow N_{F S M}=5$.
For Johnson encoding: $N_{F S M}=\left\lceil M_{F S M} / 21\right.$. Example: $M_{F S M}=25 \rightarrow N_{F S M}=13$.
For one-hot encoding: $N_{F S M}=M_{F S M}$. Example: $M_{F S M}=25 \rightarrow N_{F S M}=25$.
2) For the output register (figure 5.2 c , optional, with $b_{\text {output }}$ bits):

$$
N_{\text {output }}=b_{\text {output }} \text {. Example: } b_{\text {output }}=16 \rightarrow N_{\text {output }}=16 .
$$

Hence, the total is $N_{\text {total }}=N_{F S M}+N_{\text {output }}$. In the examples that follow, as well as in the actual designs with VHDL and SystemVerilog, the number of flip-flops will be often examined.

5.4 Examples of Regular (Category 1) Machines

A series of regular FSMs are presented next. Several of these examples are designed later using VHDL (chapter 6) and SystemVerilog (chapter 7).

5.4.1 Small Counters

Counters are well-known circuits easily designed without the FSM approach using VHDL or SystemVerilog. Moreover, a counter might have thousands of states, rendering it impractical for representation as a regular state machine. Nevertheless, for designing counters without the help of any EDA tool (as done in sections 3.3 and 3.4), the FSM model can be very helpful, particularly if the counter is not too big and has several control inputs such as enable and up-down. Moreover, the implementation of such counters can be very illustrative of the FSM approach. For these reasons, an example is included in this section.

A 1-to-5 counter with enable and up-down controls is presented in figure 5.3 (just to practice, equivalent detailed and simplified representations are shown-recall figure 1.4). The circuit counts if ena = ' 1 ', or stops (and holds its last output value) otherwise. If $u p=$ ' 1 ', the circuit counts from 1 to 5 , restarting then automatically from 1 ; oth-

Figure 5.3
Detailed (a) and simplified (b) representations for a 1-to-5 counter with enable and up-down controls.

Figure 5.4
Parity detector. (a) Circuit ports. (b) State transition diagram. (c) Hardware block diagram.
erwise, it counts from 5 down to 1 , restarting then automatically from 5 . Because counters are inherently synchronous, the Moore model is the natural choice for their implementations.

Because this machine has $M_{F S M}=5$ states, and the optional output register is generally not needed in counters, the number of flip-flops required to implement it (see section 5.3) is $N_{F S M}=3$ if sequential, Gray, or Johnson encoding is used, or 5 for one-hot encoding.

VHDL and SystemVerilog implementations for this counter are presented in sections 6.6 and 7.5 , respectively.

5.4.2 Parity Detector

This example concerns a circuit that detects the parity of a serial data stream. As depicted in figure 5.4a, x is the serial data input, and y is the circuit's response. The output must be $y=$ ' 1 ' when the number of ' 1 's in x is odd.

A basic solution for the case when a reset pulse is applied before every calculation starts is presented in figure 5.4 b . In this case the parity value is the value of y after the last bit has been presented to the circuit (before a new reset pulse is applied). Note

Figure 5.5
Another parity detector. (a) Circuit ports. (b) Illustrative time behavior. (c) State transition diagram.
the arrangement in figure 5.4 c , based on the material seen in section 3.11; when the reset pulse goes up (which subsequently resets the FSM), it causes the value of y to be stored in the auxiliary register, producing y_{-}reg, which stays stable (constant) until a new calculation is completed (i.e., a new reset pulse occurs).

A slightly different parity detection problem is depicted in figure 5.5 , which has to be reset only at power-up (thus a more usual situation). A data-valid ($d v$) bit indicates the extension of the data vector whose parity must be calculated (when $d v$ goes up, a new vector begins, finishing when $d v$ returns to zero). It is assumed that after a calculation (data stream) is completed, the machine must keep displaying the final parity value until a new vector is presented, as depicted in the illustrative timing diagram of figure 5.5 b , which shows two vectors of size 5 bits each, with final parity $y=$ ' 1 ' for vector 1 and $y=$ ' 0 ' for vector 2 .

A Moore machine that complies with these specifications is presented in figure 5.5 c (note that in this example $d v$ and x are updated at the negative clock edge). Because of $d v$, this machine does not need to be reset before a new calculation starts. Indeed, depending on the encoding scheme (sequential or Gray, for example), this circuit might not need a reset signal at all because deadlock cannot occur (the unused codeword will converge back to one of the machines' states) and $d v$ will cause the computations to be correct even if the initial state is arbitrary (see exercise 3.11).

5.4.3 Basic One-Shot Circuit

One-shot circuits are circuits that, when triggered, generate a single voltage or current pulse, possibly with a fixed time duration. This section discusses the particular case in which the time duration of the output is exactly one clock period. In this example it will be considered that the input lasts at least one clock period; generic cases are studied in sections 8.11 .8 to 8.11 .10, which deal specifically with triggered circuits.

Figure 5.6
Trivial one-shot circuits. (a) Basic version, for synchronous input only. (b) Preceded by a synchronizing DFF, so the input can be asynchronous. (c) With a two-stage synchronizer.

Figure 5.7
One-shot state machine. (a) Circuit ports. (b) Example of expected behavior. (c) State transition diagram. (d) An inferior solution (exercise 5.5).

In fact, a one-shot circuit (not employing the FSM approach) was already seen in chapter 2 (figure 2.10), with its schematic repeated in figure 5.6a. This option, however, is fine only if the triggering input (x) is synchronous; otherwise, the output pulse could last less than $T_{c l k}$. For it to work with asynchronous inputs, another DFF is needed, as shown in figure 5.6b. A version with a full synchronizer (section 2.3) is shown in figure 5.6c.

The general operating principle is illustrated in figure 5.7. The circuit ports are shown in figure 5.7a, where x is the triggering input and y is the one-shot output. An illustrative timing diagram is presented in figure 5.7 b , with x having an arbitrary duration and y lasting exactly one clock period. Pulse 1 lasts less than $T_{c l k}$ but happened to fall under a positive clock edge, so it was detected. This is obviously not guaranteed to happen, as illustrated for pulse 2. Only if the duration is $T_{c k}$ or longer, as for pulse 3 , is the triggering of y guaranteed. Note that x and y are uncorrelated (mutually asynchronous) if x and $c l k$ are uncorrelated.

A solution using a regular (category 1) Moore machine is presented in figure 5.7c. Note that it stays in state B during only one clock period; because $y=$ ' 1 ' occurs only in that state, the desired pulse results. An inferior solution is presented in figure 5.7 d (see exercise 5.5).

As a final comment, let us consider the circuit of figure 5.6 b , which is a kind of optimized synchronous version of the one-shot circuit. Because the solution in figure 5.7 c is also synchronous (all Moore machines are), would you expect the circuit that implements this state machine to be equal or at least similar to that of figure 5.6 b ? (See exercise 5.5.)

5.4.4 Temperature Controller

Figure 5.8a shows a circuit diagram for a temperature controller of an air conditioning system. In the upper branch, the room temperature is sensed by some type of temperature sensor and converted to digital format by the ADC (analog-to-digital converter), producing the signal $T_{\text {room }}$. In the lower branch, the user, by means of two pushbuttons (up,dn), selects the reference (desired) temperature, producing the signal $T_{\text {ref }}$. Depending on the values of these two signals, the controller core decides whether to heat the room $\left(h=' 1\right.$ '), to cool it ($c={ }^{\prime} 1$ '), or to stay in the idle state.

Because mechanical switches are subject to bounces before they finally settle in the proper position, the pushbuttons must be debounced. However, debouncers are timed circuits, thus requiring a timed (category 2) machine to be implemented. Such machines are seen in chapter 8, so for now let us just consider that the proper value is produced for $T_{\text {ref }}$ (the design of this block is treated in section 8.11.4). For example, $T_{\text {ref }}$ could be selected in the $60^{\circ} \mathrm{F}$ to $90^{\circ} \mathrm{F}$ range with an initial value (on power-up, defined by the reset signal) of $73^{\circ} \mathrm{F}$, if degrees Fahrenheit are used, or in the $15^{\circ} \mathrm{C}$ to $30^{\circ} \mathrm{C}$ range with a default value of $23^{\circ} \mathrm{C}$, if degrees centigrade are employed instead.

An important addition to the system is depicted in figure 5.8 b , which consists of a display accessed by means of a multiplexer. The display shows the room temperature while the selection pushbutton (sel, with no need for debouncing, not shown in the figure) is at rest ($\mathrm{sel}=$ ' 0 ') or the reference temperature while it is pressed ($\mathrm{sel}=$ ' 1 ').

A state machine for the controller core, using the Moore approach, is depicted in figure 5.8c. ΔT represents the system hysteresis, which is generally a fixed circuit

Figure 5.8
Temperature controller. (a) Overall circuit diagram. (b) Display driver. (c) State machine for the controller core block.
parameter. For example, if $\Delta T=1^{\circ} \mathrm{F}$, the room temperature will be kept within $T_{\text {ref }} \pm$ $1^{\circ} \mathrm{F}$. By comparing $T_{\text {room }}$ to $T_{\text {ref }}$ and taking into account the hysteresis, the machine will be able to produce the proper values for h and c.

Finally, note that the inputs from the pushbuttons are asynchronous with respect to the system clock, which could, in principle, cause metastability (see section 2.3). This, however, is prevented here by the debouncer (section 8.11.3).

5.4.5 Garage Door Controller

This example presents a garage door controller that operates as follows. If the door is completely closed or completely open and the remote is activated, the motor is turned on in the direction to open or close it, respectively. If the door is opening or closing and the remote is activated, the door stops. If the remote is activated again, the motor is turned on to move the door in the opposite direction.

The circuit ports are depicted in figure 5.9a, where remt (command from the remote control), sen1 (door-open sensor), and sen2 (door-closed sensor) are the inputs (plus the conventional $c l k$ and $r s t$ signals), and $c t r$ (control) is the output. Note that ctr has two bits; $\operatorname{ctr}(1)$ turns the motor on (' 1 ') or off (' 0 '), whereas $\operatorname{ctr}(0)$ defines its direction, opening (' 0 ') or closing (' 1 ') the door (thus the value of the latter does not matter when the former is ' 0 ').

A preliminary state diagram is shown in figure 5.9 b . The transition control signals are remt, sen1, and sen2. Note that this machine complies with all three requisites of

Figure 5.9
Garage door controller. (a) Circuit ports. (b) Bad solution (with state-bypass). (c) Good solution.
section 1.3. However, it exhibits a major problem, which is state bypass (see section 4.2.4). For example, if the door is closed and a long (lasting several clock cycles) remt = ' 1 ' command is received, the machine goes around the entire loop. Of course, if a one-shot circuit (section 5.4.3) is used to reduce the duration of remt to a single clock period, then this machine is fine.

A corrected diagram is presented in figure 5.9c, containing additional states that wait for remt to return to zero before proceeding, thus eliminating the state-bypass problem. This is a Moore machine because there is no reason to employ an asynchronous solution in this kind of application. Glitches at the output are not a problem here, so the optional output register is not needed.

A good practice in this kind of application is to include debouncers for the signals coming from the remote control and from the sensors, which not only eliminate the need for synchronizers but also prevent short input glitches (due to lightning or the switching of large electric currents, for example) from activating the machine (in this case, it has to be a full debouncer, like that in section 8.11.3, for example).

Because the machine of figure 5.9 c has $M_{F S M}=8$ states, the required number of DFFs is $N_{F S M}=3$ if sequential or Gray encoding is used, 4 for Johnson, or 8 for one-hot.

VHDL and SystemVerilog implementations for this garage door controller are presented in sections 6.7 and 7.6, respectively.

5.4.6 Vending Machine Controller

This example deals with a controller for a vending machine. It is assumed that it sells candy bars for the single price of $\$ 0.40$, accepting nickel, dime, and quarter coins.

The circuit ports are depicted in figure 5.10a. The inputs nickel_in, dime_in, and quarter_in are generated by the coin collector, informing the type of coin that was deposited by the customer. The inputs nickel_out and dime_out are generated by the coin dispenser mechanism, informing the type of coin that was returned to the customer. The last nonoperational input is candy_out, produced by the candy dispenser mechanism, informing that a candy was delivered to the customer. The outputs disp_nickel and disp_dime tell the coin dispenser mechanism that a nickel or a dime must be returned to the customer, while the output disp_candy tells the candy bar dispenser mechanism that a candy bar must be delivered to the customer.

A corresponding Moore machine is presented in figure 5.10b. To simplify the notation, numbers were used instead of names (see other examples of equivalent state diagram representations in section 1.4). The state names correspond to the accumulated amount (credit). The transition conditions refer to the last coin entered, with negative values indicating change returned to the customer. In the coin-return operations it was opted to deliver the largest coins possible. After the machine reaches the state 40 (thick circle), the only way to return to the initial state is by receiving a

Figure 5.10
Controller for a vending machine that sells candy bars for $\$ 0.40$, accepting nickels, dimes, and quarters. (a) Circuit ports. (b) Corresponding Moore machine (state-bypass prevention not included).
candy_out = ' 1 ' command from the candy-delivering mechanism confirming that a candy bar was dispensed or a reset pulse.

Note that the machine of figure 5.10 b is subject to state bypass (section 4.2.4) if the inputs last longer than one clock period (which is generally the case in this kind of application), so wait states (or a flag or one-shot conversion) must be added (exercise 5.11).

Because glitches are definitely not acceptable in this application, the optional output register should be used here. In regard to the inputs, we can assume that they are produced by other circuits that process the actual inputs and hence operate with the same clock as our state machine, dispensing with the use of debouncers and/or synchronizers (although they might be needed at the inputs of preceding circuits).

If we assume that all control inputs to this machine last exactly one clock period (due to one-shot circuits, for example), so state bypass cannot occur and additional states are not needed, the number of DFFs required to build it (with $M_{F S M}=13$ states) is $N_{F S M}=4$ if sequential or Gray encoding is used, 7 for Johnson, or 13 for one-hot, plus $N_{\text {output }}=3$ for the output register.

5.4.7 Datapath Control for an Accumulator

Before we examine this example, a review of section 3.13 is suggested.
In this example we assume that the datapath of figure 3.22a must operate as an add-and-accumulate circuit (ACC), accumulating in register A four consecutive values
of inpB. The data-valid bit ($d v$), when asserted (during just one clock period), will again be responsible for starting the computations, after which the resulting value must remain displayed at ALUout until another pulse occurs in $d v$. In summary, the operations are: $0+\mathrm{B} \rightarrow \mathrm{A}, \mathrm{A}+\mathrm{B} \rightarrow \mathrm{A}, \mathrm{A}+\mathrm{B} \rightarrow \mathrm{A}$, and $\mathrm{A}+\mathrm{B} \rightarrow \mathrm{A}$.

Recall that in a datapath-based design the FSM is not responsible for implementing the whole computation but just the control unit (shown on the left in figure 3.22a), which controls the datapath. In other words, the FSM must produce the signals selA (selects the data source for register A), wrA and wrB (enable writing into registers A and B), and ALUop (produces the ALU opcode, defining its operations, according to the table in figure 3.22b).

An illustrative timing diagram (similar to what was done in figure 3.22c) for an FSM that controls this datapath such that the desired accumulator results is presented in figure 5.11a. Note that the computations take five steps (called start, acc1, acc2, acc3, and acc4), after which the control unit (FSM) returns to the idle state (so the machine has six states). The corresponding state transition diagram, which is a direct translation of the timing diagram (compare the values in the timing diagram against those in the state transition diagram), is exhibited in figure 5.11b. Observe that this control unit is indeed a category 1 machine.

Because this machine has $M_{F S M}=6$ states, and the optional output register is generally not needed in control units, the number of flip-flops required to implement it (see section 5.3) is $N_{F S M}=3$ if sequential, Gray, or Johnson encoding is used or 6 for one-hot.

Figure 5.11
(a) Illustrative timing diagram for the datapath of figure 3.22a operating as an accumulator. (b) Corresponding Moore machine.

5.4.8 Datapath Control for a Greatest Common Divisor Calculator

Before we examine this example, a review of section 3.13 is suggested. Particular attention should be paid to comment number 4 at the end of that section, which is helpful here.

This section shows another example of a datapath-based circuit. The datapath must compute the GCD (greatest common divisor) between two integers. The corresponding algorithm is shown in figure 5.12; the largest value is substituted with the difference between it and the other value until the values become equal, which is then declared to be the GCD. A corresponding flowchart is also included in figure 5.12. As in the previous example, a $d v$ bit, when asserted (during one clock period), must start the computations.

The datapath to be used in this example is depicted in figure 5.13a. The ALU's opcode table is shown in figure 5.13b. The ALU has also an auxiliary output (sign) that indicates whether its output (ALUout) is zero ("00"), positive (" 01 "), or negative (" 10 "), as listed in figure 5.13c.

As shown, the datapath's control signals are selA and selB (select the data sources for registers A and B), wrA and wrB (enable writing into registers A and B), and ALUop (produces the ALU opcode, defining its operations, according to the table in figure 5.13b). The control unit (FSM) is responsible for generating all control signals.

An illustrative timing diagram for an FSM that controls this datapath such that the desired computations occur is presented in figure 5.13d. Dashed lines indicate "don't care" values. Because $\operatorname{inp} A=9$ and $\operatorname{inpB}=15$ were adopted, the following computations are expected: Iteration $1,9 \rightarrow A, 15 \rightarrow B$; Iteration $2, B>A$, then $15-9=6 \rightarrow B$; Iteration 3, $A>B$, then $9-6=3 \rightarrow A$; Iteration $4, B>A$, so $6-3=3 \rightarrow B$. Because $A=B$, $\mathrm{GCD}=\mathrm{A}=3$.

Observe in figure 5.13d that the time slots are identified as idle (waiting for a $d v$ bit), load (inpA and inpB are stored in A and B), writeA (ALUout is stored in A), and

Figure 5.12
GCD algorithm and flowchart.
(a)

ALUop	ALUout
0	A
1	B
2	$\mathrm{~A}-\mathrm{B}$
3	$\mathrm{~B}-\mathrm{A}$

(b)

ALUout	sign
0	" 00 "
>0	" 01 "
<0	$" 10$ "

(c)

Figure 5.13
(a) Datapath and control unit for a GCD calculator. (b) ALU's opcode table. (c) ALU's sign table.
(d) Illustrative timing diagram, for $\operatorname{inp} A=9$ and $\operatorname{inp} B=15$. (e) Corresponding state machine.
writeB (ALUout is stored in B). Observe also the presence of a wait time slot after every data storage, which is needed for the data to be effectively ready for comparison before an actual comparison occurs (recall comment 4 of section 3.13).

A corresponding state transition diagram is presented in figure 5.13e, which is a direct translation of the timing diagram (compare the values in the plots against those in the state transition diagram). Note that after each write-enabling state (load, writeA, and write B) the machine goes unconditionally to the wait state. In the idle state, $w r A=$ $w r B=$ ' 0 ', so nothing can be written into the registers, and because $A L U o p=0$, the output is $A L U o u t=\mathrm{A}$, so the computed GCD value is kept unchanged until $d v$ is asserted again.

VHDL and SystemVerilog implementations for this control unit are presented in sections 6.8 and 7.7, respectively.

5.4.9 Generic Sequence Detector

This is another interesting example from a conceptual point of view. Say that we want to design a signature detector that searches for the string "abc" in a sequential data stream, examining one character at a time (a character here represents a bit vector with any number of bits). So this is exactly the same problem presented in the very first state transition diagram of the book (figure 1.3, repeated in figure 5.14a). In this example it was assumed that $a \neq b \neq c$, so this machine works well. But let us consider now a completely generic situation, in which a, b, and c are programmable, so we can no longer assume that they are all different. Will this machine still work?
(a)

(b)

(c)

Figure 5.14
Generic string detection. (a) Nongeneric case (requires $a \neq b \neq c$). (b) Completely generic implementation due to the inclusion of priorities in the transition conditions. (c) Example for the case of $a=b=c$.

To answer this question, let us assume that $a=b$, so b can be replaced with a in figure 5.14 a. Consequently, state B (for example) has the following transition conditions: a in the BB transition; a also in the BC transition; and $\neq a \& \neq b=\neq a$ in the BA transition. This shows that state B is now overspecified because both BB and BC transitions are governed by the same condition (a). Therefore, this machine is not fine for generic values of a, b, and c.

The new question then is "How do we fix overspecifications?" We do it in the way explained in section 1.5, that is, with the establishment of priorities. This is done in figure 5.14 b . For state B , the BC transition must have priority over the BB transition, so the transition condition in the former remains just b, while that in the latter becomes $a \& \neq b$. Likewise, for state C, the CD transition must have priority over the CB transition; thus, the transition condition in the former remains c, whereas that in the latter becomes $a \& \neq c$.

As an example, figure 5.14 c shows the extreme case in which $a=b=c$. Then $\neq a$ \& $\neq b=\neq a, \neq a \& \neq c=\neq a, a \& \neq b=$ null (so the BB transition disappears), and $a \& \neq c=$ null (the CB transition also disappears).

The only restriction of this generic string detector is that it detects only nonoverlapping strings.

5.4.10 Transparent Circuits

We close this chapter with the description of a special (although uncommon) type of circuit for FSMs, which consists of sequential circuits that are required to be "transparent" (i.e., the output must "see" the input; in other words, if the input changes, so should the output). If implemented using an FSM, the circuit must provide outputs that are capable of changing when the input changes, even if the machine remains in the same state.

As an example, consider the case in figure 5.15a, with inputs a and b and output y. The output must be $y=a$ during one clock period, $y=a \cdot b$ during the next period, and finally $y=b$ during the third clock cycle, with this sequence repeated indefinitely. Corresponding Moore and Mealy diagrams are included in figures 5.15b,c. Note that because the machine must go to the next state at every clock cycle, its transitions are unconditional.

Because in this case the output depends solely on the machine's state, a Moore machine seems to be the natural choice. However, because the output must change when the input changes, a Mealy machine, being asynchronous, would be recommended. In fact, both are fine.

In the Moore case the transparency problem is circumvented by associating the machine with switches such as the multiplexer in figure 5.15 d , in which case the machine plays just the role of mux selector (in this example, the resulting machine is clearly just a 0 -to- 2 counter), so even though the machine is not transparent, the

Figure 5.15
A "transparent" circuit. (a) Circuit ports. (b) Moore and (c) Mealy state transition diagrams. (d) Typical implementation based on the Moore model.
overall circuit is (this is typically what a VHDL/SystemVerilog compiler would do). In the Mealy case the implementation is straightforward, but the output will be one clock cycle ahead of the desired sequence (compare figures 5.15b and 5.15c).

5.4.11 LCD, $I^{2} C$, and SPI Interfaces

Three special additional design examples are presented in chapter 14, consisting of circuits for interfacing with alphanumeric LCD displays and for implementing $\mathrm{I}^{2} \mathrm{C}$ or SPI serial interfaces. Depending on the application, any of the three FSM categories might be needed in these circuits; for instance, in the LCD driver example of section 14.1, a category 1 FSM is employed, whereas in the $\mathrm{I}^{2} \mathrm{C}$ and SPI serial interfaces of sections 14.2 and 14.3, categories 2 and 3 are used.

5.5 Exercises

Exercise 5.1: Machine Category and Number of Flip-Flops

a) Why are the state machines in figures 5.3, 5.9c, and 5.13e (among others) said to be of category 1 ?
b) How many DFFs are needed to implement each of these FSMs using (i) sequential encoding, (ii) Gray encoding, or (iii) one-hot encoding?

Exercise 5.2: Metastability and Synchronizer

a) Solve exercise 2.2 if not done yet.
b) Consider now the garage door controller of figure 5.9. (i) Which inputs are asynchronous? (ii) If no debouncing circuits (which are synchronous) are adopted for the asynchronous inputs, are synchronizers indispensable in this application?

Exercise 5.3: Need for Reset

a) Solve exercise 3.10 if not done yet.
b) Solve exercise 3.11 if not done yet.

Exercise 5.4: Truly Complementary Transition Conditions

In section 1.5 the importance of having the state transition diagram neither under- nor overspecified was discussed. What happens if, in the garage door controller of figure 5.9 c , the condition sen $1=$ ' 0 ' is removed from the opening1-opening 2 transition, or the condition sen $2=$ ' 0 ' is removed from the closing1-closing2 transition?

Exercise 5.5: One-Shot Circuits Analysis

a) It is said in section 5.4 .3 that the solution in figure 5.7 d is inferior to that in figure 5.7c. Why? (Suggestion: fill in the last two plots of figure 5.16 and you will see the answer.)
b) Is reset indispensable in these two solutions?
c) In order to answer the question posed at the end of section 5.4.3, solve exercise 3.3 if not done yet.

Exercise 5.6: Two-Signal-Triggered One-Shot Circuit

Figure 5.17 shows an illustrative timing diagram for a one-shot circuit that is not triggered by a single signal but rather by a pair of signals. The triggering condition is the following: the one-shot pulse (in y) must be generated if the control signal x lasts at least as long as the $d v$ pulse (this is obviously checked only at positive clock transitions). Note in the figure that only the first pulse of x fulfills this requirement, so the one-clock-period pulse in y has to be produced only in that case. Draw the state transition diagram for a state machine capable of implementing this circuit.

Exercise 5.7: Arbiter

Arbiters are used to manage access to shared resources. An example is depicted in figure 5.18, which shows three peripherals (P1 to P3) that use a common bus

Figure 5.16

Figure 5.17

Figure 5.18

Figure 5.19
to access common resources. Obviously, only one of them can use the bus at a time; for example, if P1 wants to use the bus, it issues a request ($r_{1}={ }^{\prime} 1$ ') to the arbiter, which grants ($g_{1}=' 1$ ') access only if the bus is idle at that moment. If multiple requests are received by the arbiter, access is granted based on preestablished priorities. Assuming that the priorities are P1 > P2 > P3, draw a state transition diagram for a machine capable of implementing this arbiter. The machine's input and output are the vectors $r=r_{1} r_{2} r_{3}$ and $g=g_{1} g_{2} g_{3}$, respectively (besides clock and reset, of course).

Exercise 5.8: Manchester Encoder

An IEEE Manchester encoder produces a low-to-high transition when the input is ' 1 ' or a high-to-low transition when it is ' 0 ', as illustrated in figure 5.19 for the sequence " 01001 ". Note that each input value lasts two clock periods. Observe also the presence of a $d v$ bit, which defines the extent of the vector to be encoded (dashed lines in y indicate "don't care" values). To be more realistic, $d v$ is produced at the same time that the first valid bit is presented; additionally, a small propagation delay is included between clock transitions and corresponding responses. Assume that the machine too must operate at the positive clock edge.
a) Draw a state transition diagram for a Moore machine capable of implementing this encoder.
b) Redraw the illustrative timing diagram of figure 5.19 for your Moore machine, including in it a plot for pr_state. Does the Moore circuit behave exactly as in figure 5.19 , or is y one clock cycle delayed?
c) Redo the design, this time employing a Mealy machine.

Figure 5.20
d) Repeat part b now for your Mealy solution.
e) Say that we want the output to be completely clean. Are any of the solutions above guaranteed to be glitch-free? If not, how can glitches be removed? What happens then with the time response?

Exercise 5.9: Differential Manchester Encoder

Figure 5.20 illustrates the operation of a differential Manchester encoder for the sequence "01001". Note that the shape of the output pulse remains unchanged when the input is ' 0 ' but gets inverted when it is ' 1 '. For example, if the last pulse was a ' 1 '-to- 0 ' pulse, the next pulse must be ' 1 '-to-' 0 ' if the input is ' 0 ' or ' 0 '-to- 1 ' if it is ' 1 '. Observe the presence of a $d v$ bit, which defines the extent of the vector to be encoded (dashed lines in y indicate "don't care" values). To be more realistic, $d v$ is produced at the same time that the first valid bit is presented; additionally, a small propagation delay has been included between the clock transitions and the corresponding responses. Assume that the machine too must operate at the positive clock edge.
a) Draw a state transition diagram for a Moore machine capable of implementing this encoder.
b) Redraw the illustrative timing diagram of figure 5.20 for your solution, including in it a plot for pr_state. Does the Moore circuit behave exactly as in figure 5.20, or is y one clock cycle delayed?

Exercise 5.10: Time-Ordered "111" Detector

Draw the state transition diagram for an FSM that detects the sequence $a b c=$ " 111 " under the constraint that it must be time ordered; that is, $a=$ ' 1 ' must occur (and hold), then $b=$ ' 1 ' must also occur (and hold), and finally, $c=$ ' 1 ' must happen. The circuit ports are shown in figure 5.21a. The circuit operation is illustrated in figure 5.21 b , where $x=$ ' 1 ' occurs when $a b c=$ " 111 ", but in a time-ordered fashion.

Exercise 5.11: Vending Machine

It was seen that the vending machine controller of figure 5.10 b must be improved to avoid state bypass. Present a solution for this problem. Is it better to include wait
(a)

Figure 5.21

Figure 5.22
states or a flag or to convert the inputs into one-shot signals with one-clock-period duration?

Exercise 5.12: Time Behavior of a String Detector

Consider the Moore-type state machine of figure 5.14a, which detects the sequence " $a b c$ " for the case of $a \neq b \neq c$, where x and y represent the input and output, respectively.
a) Complete the timing diagram of figure 5.22 for the given values of x. Note that a little propagation delay was included between the clock transitions and the respective changes in the present state; do the same for y.
b) Does the output go up immediately when the sequence " $a b c$ " occurs or only at the next (positive) clock edge? Is this result as you expected? (Recall that Moore machines are fully synchronous.)

Exercise 5.13: Generic Overlapping String Detector

We saw in section 5.4 .9 a generic approach for the implementation of nonoverlapping string detectors. In that case, if the sequence to be detected were "aba", for example, the response to the serial bit stream "abababab..." would be "00100010001...", whereas here, because overlaps must be allowed, it should be "0010101...". Can you find a generic solution (with or without a state machine) for this case?

Exercise 5.14: Keypad Encoder

Figure 5.23a shows a 12-key keypad for which we need to design an encoder (and possibly also a debouncer-debouncers are discussed in chapter 8). The actual pushbutton connections can be seen in figure 5.23b, where $r(3: 0)$ and $c(2: 0)$ represent the keypad's rows and columns, respectively. Note that because of the pull-up resistors,

(a)

$c(2: 0)$	$r(3: 0)$	$\operatorname{key}(3: 0)$
	0111	$0001(1)$
	1011	$0100(4)$
011	1101	$0111(7)$
	1110	$1010\left({ }^{*}\right)$
	1111	$1111(\mathrm{n})$
	0111	$0010(2)$
	1011	$0101(5)$
101	1101	$1000(8)$
	1110	$0000(0)$
	1111	$1111(\mathrm{n})$
	0111	$0011(3)$
	1011	$0110(6)$
110	1101	$1001(9)$
	1110	$1011(\#)$
	1111	$1111(\mathrm{n})$

Figure 5.23
the rows' voltages are all high when no switch is pressed. The keypad encoder must connect the bottom of one column at a time to ground (' 0 '), then read the resulting row values, converting them into the respective codeword, as listed in figure 5.23c (n stands for "none"); for example, if $c=$ " 011 ", which means that the leftmost column is being inspected, and the reading is $r=$ " 1011 ", then we know that pushbutton 4 is pressed. Present a solution for this encoder. (A possible solution for the debouncer is treated in exercise 8.11.)

Exercise 5.15: Datapath Controller for a Largest-Value Detector

Say that you are given the datapath of figure 5.13a, with inpB monitoring a serial data stream, of which the largest value must be determined (placed at the ALU output, ALUout). The monitoring should start when a $d v$ bit is asserted, ending when $d v$ returns to zero.
a) Develop a state transition diagram (as in figure 5.13e) for an FSM capable of implementing the corresponding control unit. Include in it "nop" (no operation) states if necessary to have the number of clock cycles be the same in all iterations.
b) Present an illustrative timing diagram for your machine (as in figure 5.13d), assuming that the values presented to the circuit (while $d v={ }^{\prime} 1$ ') are $5 \rightarrow 8 \rightarrow 4 \rightarrow 0$. (If you prefer, do part b before part a.)

Exercise 5.16: Datapath Controller for a Square Root Calculator

To calculate $z=\left(x^{2}+y^{2}\right)^{1 / 2}$, where x, y, and z are unsigned integers, the expression $z=$ $\max (a-a / 8+b / 2, a)$ can be used, where $a=\max (x, y)$ and $b=\min (x, y)$. Recall that to divide an integer by 8 or by 2 all that is needed is to shift it to the right three positions or one position, respectively. Make the adjustments that you find necessary in the datapath of figure 5.13a (for example, include a shift-right option in one of the existing registers or in a new register at the ALU output), then devise a state machine that computes the square root above using that datapath.

Figure 5.24

Exercise 5.17: Flag Monitor

Develop an FSM for a circuit that monitors a flag such that, if the flag remains constant within a given time window, the output copies the measured (constant) flag value. This is illustrated in figure 5.24; if flag_in has no transitions at all while window is high, then flag_out gets the value of flag_in; otherwise, it keeps the same value that it had when the time window started.

6 VHDL Design of Regular (Category 1) State Machines

6.1 Introduction

This chapter presents several VHDL designs of category 1 state machines. It starts by presenting two VHDL templates, for Moore- and Mealy-based implementations, which are used subsequently to develop a series of designs related to the examples introduced in chapter 5.

The codes are always complete (not only partial sketches) and are accompanied by comments and simulation results, illustrating the design's main features. All circuits were synthesized using Quartus II (from Altera) or ISE (from Xilinx). The simulations were performed with Quartus II or ModelSim (from Mentor Graphics). The default encoding scheme for the states of the FSMs was regular sequential encoding (see encoding options in section 3.7; see ways of selecting the encoding scheme at the end of section 6.3).

The same designs will be presented in chapter 7 using SystemVerilog, so the reader can make a direct comparison between the codes.

Note: See suggestions of VHDL books in the bibliography.

6.2 General Structure of VHDL Code

A typical structure of VHDL code for synthesis, with all elements that are needed in this and in coming chapters, is depicted in figure 6.1. It is composed of three fundamental sections, briefly described below.

Library/Package Declarations

As the name says, it contains the libraries and corresponding packages needed in the design. The most common package is std_logic_1164, from the IEEE library, which defines the types std_logic (for single bit) and std_logic_vector (for multiple bits), which are the industry standard.

Library/package declarations

```
Entity
    - generic (global parameters)
    - port (circuit I/Os)
```

```
Architecture
    - Declarations of types, constants, signals, components, etc.
    - function/procedure construction (*)
begin
    - expressions with operators
    - when, select, generate statements
    - process blocks (*)
    - function/procedure calls
    - component instantiations
```

 (*) Sequential statements: if, case, loop, wait.
 Figure 6.1
Typical VHDL code structure for synthesis.

Entity

The entity is divided into two main parts, called generic and port.
Generic: This portion is optional. It is used for the declaration of global parameters, which can be easily modified to fulfill different system specifications or, more importantly, can be overridden during instantiations (using the component construct) into other designs.
Port: This part of the code is mandatory for synthesis. It is just a list with specifications of all circuit ports (I/Os), including their name, mode (in, out, inout, or buffer), and type (plus range).

Architecture

The architecture too is divided into two parts, called declarative part and statements part.
Declarative part: This section precedes the keyword begin and is optional. It is used for all sorts of local declarations, including type, signal, and component. It also allows the construction of function and procedure. These declarations and functions/ procedures can also be placed outside the main code, in a package.
Statements part: This portion, which starts at the keyword begin, constitutes the code proper. As shown in figure 6.1, its main elements (in no particular order) are the following: basic expressions using operators (for simple combinational circuits); expressions using concurrent statements (when, select, generate), generally for simple
to midcomplexity combinational circuits; sequential code using process, which is constructed using sequential statements (if, case, loop, wait), for sequential as well as (complex) combinational circuits; function/procedure calls; and, finally, component (that is, other design) instantiations, resulting in structural designs.

6.3 VHDL Template for Regular (Category 1) Moore Machines

The template is based on figure 6.2 (derived from figure 5.2), which shows three processes: 1) for the FSM state register; 2) for the FSM combinational logic; and 3) for the optional output register. Note the asterisk on one of the input connections; as we know, if that connection exists it is a Mealy machine, else it is a Moore machine.

There obviously are other ways of breaking the code instead of using the three processes indicated in figure 6.2. For example, the combinational logic section, being not sequential, could be implemented without a process (using purely concurrent code). At the other extreme the combinational logic section could be implemented with two processes, one with the logic for output, the other with the logic for $n x_{-}$ state.

The VHDL template for the design of category 1 Moore machines, based on figures 6.1 and 6.2 , is presented below. Observe the following:

1) To improve readability, the three fundamental code sections (library/package declarations, entity, and architecture) are separated by dashed lines (lines 1, 4, 14, 76).
2) The library/package declarations (lines 2-3) show the package std_logic_1164, needed because the types used in the ports of all designs will be std_logic and/or std_ logic_vector (industry standard).
3) The entity, called circuit, is in lines $5-13$. As seen in figure 6.1 , it usually contains two parts: generic (optional) and port (mandatory for synthesis). The former is employed for the declaration of generic parameters (if they exist), as illustrated in lines $6-8$. The latter is a list of all circuit ports, with respective specifications, as illustrated

Figure 6.2
State machine architecture depicting how the VHDL code was broken (three processes).
in lines $9-12$. Note that the type used for all ports (lines 10-12) is indeed std_logic or std_logic_vector.
4) The architecture, called moore_fsm, is in lines $15-75$. It too is divided into two parts: declarative part (optional) and statements part (code proper, so mandatory).
5) The declarative part of the architecture is in lines $16-19$. In lines $16-17$ a special enumerated type, called state, is created, and then the signals pr_state and $n x _$state are declared using that type. In lines 18-19 an optional attribute called enum_encoding is shown, which defines the type of encoding desired for the machine's states (e.g., "sequential", "one-hot"). Another related attribute is $f s m_{-}$encoding. See a description for both attributes after the template below. The encoding scheme can also be chosen using the compiler's setup, in which case lines 18-19 can be removed.
6) The statements part (code proper) of the architecture is in lines $20-75$ (from begin on). In this template it is composed of three process blocks, described below.
7) The first process (lines 23-30) implements the state register (process 1 of figure 6.2). Because all of the machine's DFFs are in this section, clock and reset are only connected to this block (plus to the optional output register, of course, but that is not part of the FSM proper). Note that the code for this process is essentially standard, simply copying $n x$ _state to pr_state at every positive clock transition (thus inferring the DFFs that store the machine's state).
8) The second process (lines 33-61) implements the entire combinational logic section of the FSM (process 2 of figure 6.2). This part must contain all states (A, B, C, . . .), and for each state two things must be declared: the output values/expressions and the next state. Observe, for example, in lines 36-46, relative to state A, the output declarations in lines 37-39 and the next-state declarations in lines 40-46. A very important point to note here is that there is no if statement associated with the outputs because in a Moore machine the outputs depend solely on the state in which the machine is, so for a given state each output value/expression is unique.
9) The third and final process (lines 64-73) implements the optional output register (process 3 of figure 6.2). Note that it simply copies each original output to a new output at every positive clock edge (it could also be at the negative edge), thus inferring the extra register. If this register is used, then the names of the new outputs must obviously be the names used in the corresponding port declarations (line 12). If the initial output values do not matter, reset is not required in this register.
10) To conclude, observe the completeness of the code and the correct use of registers (as requested in sections 4.2.8 and 4.2.9, respectively), summarized below.
a) Regarding the use of registers: The circuit is not overregistered. This can be observed in the elsif rising_edge(clk) statement of line 27 (responsible for the inference of flip-flops), which is closed in line 29, guaranteeing that only the machine state (line 28) gets registered. The circuit outputs are in the next process, which is purely combinational.
b) Regarding the outputs: The list of outputs (output1, output2, . . .) is the same in all states (see lines 37-39, 48-50, . .), and the output values (or expressions) are always declared.
c) Regarding the next state: Again, the coverage is complete because all states (A, B, C, . . .) are included, and in each state the declarations are finalized with an else statement (lines $44,55, \ldots$), guaranteeing that no condition is left unchecked.
Note 1: See also the comments in sections 6.4, which show some template variations.
Note 2: The VHDL 2008 review of the VHDL standard added the keyword all as a replacement for a process' sensitivity list, so process (all) is now valid. It also added boolean tests for std_logic signals and variables, so if $\mathbf{x}={ }^{\prime} 1^{\prime}$ then . . . can be replaced with if \mathbf{x} then. . . . Both are supported by the current version (12.1) of Altera's Quartus II compiler but not yet by the current version (14.2) of Xilinx's ISE suite (XST compiler).

Note 3: Another implementation approach, for simple FSMs, will be seen in chapter 15.

```
library ieee;
use ieee.std_logic_1164.all;
entity circuit is
    generic (
        param1: std_logic_vector(...) := <value>;
        param2: std_logic_vector(...) := <value>);
    port (
        clk, rst: in std_logic;
        input1, input2, ...: in std_logic_vector(...);
        output1, output2, ...: out std_log}ic_vector(...)
end entity;
architecture moore fsm of circuit is
    type state is (\overline{A}, B, C, ...);
    signal pr_state, nx_state: state;
    attribute enum_encoding: string; --optional, see comments
    attribute enum_encoding of state: type is "sequential";
begin
    --FSM state register:
    process (clk, rst)
    begin
        if rst='1' then --see Note 2 above on boolean tests
            pr_state <= A;
        elsif rising_edge(clk) then
            pr_state <= nx_state;
        end if;
    end process;
    --FSM combinational logic:
    process (all) --see Note 2 above on "all" keyword
    begin
        case pr_state is
```

```
            when A =>
            outputl <= <value>;
                        output2 <= <value>;
                        if <condition> then
                    nx_state <= B;
            elsif <condition> then
                    nx_state <= ...;
                else
                    nx_state <= A;
            end if
            when B =>
            output1 <= <value>;
            output2 <= <value>;
            if <condition> then
                    nx_state <= C;
            elsif <condition> then
                    nx_state <= ...;
            else
                    nx_state <= B;
                    end if;
                when C =>
                    ...
        end case;
    end process;
    --Optional output register:
    process (clk, rst)
    begin
    if rst='1' then --rst generally optional here
        new_output1 <= ...;
    elsif rising_edge(clk) then
        new_output1 <= output1;
    end if;
    end process;
end architecture;
```

Final Comments

1) On the need for a reset signal: Note in the template above that the sequential portion of the FSM (process of lines 23-30) has a reset signal. As seen in sections 3.8 and 3.9 , that is the usual situation. However, as also seen in those sections, if the circuit is implemented in an FPGA (so the flip-flops are automatically reset on power-up) and the codeword assigned to the intended initial (reset) state is the all-zero codeword, then reset will occur automatically.
2) On the enum_encoding and fsm_encoding attributes: As mentioned earlier, these attributes can be used to select the desired encoding scheme ("sequential", "one-hot", "001 011 010", and others-see options in section 3.7), overriding the compiler's
setup. It is important to mention, however, that support for these attributes varies among synthesis compilers. For example, Altera's Quartus II has full support for enum_encoding, so both examples below are fine (where "sequential" can also be "onehot", "gray", and so on):
```
attribute enum_encoding: string;
attribute enum_encoding of state: type is "sequential";
attribute enum_encoding: string;
attribute enum_encoding of state: type is "001 100 101"; --user defined
```

Xilinx's XST (from the ISE suite), on the other hand, only supports enum_encoding for user-defined encoding; for the others ("sequential", "one-hot", etc.), fsm_encoding can be used. Two valid examples are shown below:

```
attribute enum_encoding: string;
attribute enum_encoding of state: type is "001 100 101";
attribute fsm_encoding: string;
attribute fsm_encoding of pr_state: signal is "sequential";
```


6.4 Template Variations

The template of section 6.3 can be modified in several ways with little or no effect on the final result. Some options are described below. These modifications are extensible to the Mealy template treated in the next section.

6.4.1 Combinational Logic Separated into Two Processes

A variation sometimes helpful from a didactic point of view is to separate the FSM combinational logic process into two processes: one for the output, another for the next state. Below, the process for the output logic is in lines 33-47, and that for the next state logic is in lines 50-69.

```
--FSM combinational logic for output:
process (all)
begin
    case pr_state is
        when A =>
        outputl <= <value>;
        output2 <= <value>;
        when B =>
                output1 <= <value>;
                output2 <= <value>;
        when C =>
```

```
    end case;
end process;
--FSM combinational logic for next state:
process (all)
begin
    case pr_state is
        when A =>
            if <condition> then
                nx_state <= B;
            elsif <condition> then
                    nx state <= ...;
            else
                    nx_state <= A;
            end if;
        when B =>
            if <condition> then
                nx_state <= C;
            end if;
        when C =>
    end case;
end process;
```


6.4.2 State Register Plus Output Register in a Single Process

A variation in the other direction (reducing the number of processes from three to two instead of increasing it to four) consists of joining the process for the state register with that for the output register. This is not recommended for three reasons. First, in most projects the optional output register is not needed. Second, having the output register in a separate process helps remind the designer that the need or not for such a register is an important case-by-case decision. Third, one might want to have the output register operating at the other (negative) clock edge, which is better emphasized by using separate processes.

6.4.3 Using Default Values

When the same signal or variable value appears several times inside the same process, a default value can be entered at the beginning of the process. An example is shown below for the process of the combinational logic section, with default values for the outputs included in lines 36 - 38 . In lines $40-45$ only the values that disagree with these must then be typed in. An example in which default values are used is seen in section 12.4.

```
32 --FSM combinational logic:
33 process (all)
34 begin
```

```
35 --Default values:
36 output1 <= <value>;
37 output2 <= <value>;
38 ...
39 --Code:
4 0 ~ c a s e ~ p r \_ s t a t e ~ i s
41 when A =>;
4 2
4 3
4 4
4 5 ~ e n d ~ c a s e ;
46 end process;
```


6.4.4 A Dangerous Template

A tempting template is shown next. Note that the entire FSM is in a single process (lines 17-43). Its essential point is that the elsif rising_edge(clk) statement encloses the whole circuit (it opens in line 21 and only closes in line 42), thus registering it completely (that is, not only the state is stored in flip-flops-this has to be done anyway-but also all the outputs).

This template has several apparent advantages. One is that a shorter code results (for instance, we can replace pr_state and $n x$ _state with a single name-fsm_state, for example; also, only one process is needed). Another apparent advantage is that the code will work (no latches inferred) when the list of outputs is not exactly the same in all states. Such features, however, might hide serious problems.

One of the problems is precisely the fact that the outputs are always registered, so the resulting circuit is never the FSM alone but the FSM plus the optional output register of figure 5.2 c , which many times is unwanted.

Another problem is that, even if the optional output register were needed, we do not have the freedom to choose in which of the clock edges to operate it because the same edge is used for the FSM and for the output register in this template, reducing the design flexibility.

A third problem is the fact that, because the list of outputs does not need to be the same in all states (because they are registered, latches will not be inferred when an output value is not specified), the designer is prone to overlook the project specifications.

Finally, it is important to remember that VHDL (and SystemVerilog) is not a program but a code, and a shorter code does not mean a smaller or better circuit. In fact, longer, better-organized codes tend to ease the compiler's work, helping to optimize the final circuit.

In summary, the template below is a particular case of the general template introduced in section 6.3. The general template gets reduced to this one only when all outputs must be registered and the same clock edge must operate both the state register and the output register.

```
--Dangerous template (particular case of the general template)
library ieee;
use ieee.std_logic_1164.all;
entity circuit is
    generic (...);
    port (
        clk, rst: in std_logic;
        input, ...: in std_logic_vector(...);
        output, ...: out st̄d_logíc_vector(...);
end entity;
architecture moore fsm of circuit is
    type state is (\overline{A}, B, C, ...);
    signal fsm_state: state;
begin
    process (clk, rst)
    begin
        if rst then
            fsm_state <= A;
        elsif rising_edge(clk) then
            case fsm_state is
                when \overline{A}=>
                    output <= <value>;
                if <condition> then
                    fsm_state <= B;
                elsif <condition> then
                    fsm_state <= ...;
                else
                    fsm_state <= A;
                end i\overline{f;}
                when B =>
                output <= <value>;
                if <condition> then
                    .
                        fsm_state <= B;
                end if;
                when C =>
                ...
            end case;
        end if;
    end process;
```


6.5 VHDL Template for Regular (Category 1) Mealy Machines

This template, also based on figures 6.1 and 6.2, is presented below. The only difference with respect to the Moore template just presented is in the process for the combinational logic because the output is specified differently now. Recall that in a Mealy machine the output depends not only on the FSM's state but also on its input, so if statements are expected for the output in one or more states because the output values might not be unique. This is achieved by including the output within the conditional
statements for $n x$ _state. For example, observe in lines $20-36$, relative to state A, that the output values are now conditional. Compare these lines against lines 36-46 in the template of section 6.3.

Please review the following comments, which can easily be adapted from the Moore case to the Mealy case:
-On the Moore template for category 1, in section 6.3, especially comment 10.
-On the enum_encoding and fsm_encoding attributes, also in section 6.3.
-On possible code variations, in section 6.4.

```
1
```

```
library ieee;
use ieee.std_logic_1164.all;
-------------------------------------------------------------------
entity circuit is
    (same as for category 1 Moore, section 6.3)
end entity;
------------------------------------------------------------------
architecture mealy_fsm of circuit IS
    (same as for category 1 Moore, Section 6.3)
begin
    --FSM state register:
    (same as for category 1 Moore, section 6.3)
    --FSM combinational logic:
    process (all) --list proc. inputs if "all" not supported
    begin
        case pr_state is
            when A =>
                if <condition> then
                output1 <= <value>;
                output2 <= <value>;
                nx state <= B;
                elsif <condition> then
                    output1 <= <value>;
                output2 <= <value>;
                ...
                nx_state <= ...;
                else
                    output1 <= <value>;
                    output2 <= <value>;
                nx_state <= A;
                end i\overline{f}
            when B =>
                if <condition> then
                    output1 <= <value>;
                    output2 <= <value>;
                nx_state <= C;
                elsif <condition> then
```

```
4 4
4 5
4 6
4 7
4 8
4 9
5 0
5 1
5 2
5
5 4
5 5
56
```

 output1 <= <value>;
    ```
            output1 <= <value>;
            output2 <= <value>;
            output2 <= <value>;
                            ..
                            ..
                    nx_state <= ...;
                    nx_state <= ...;
                else
                else
                            output1 <= <value>;
                            output1 <= <value>;
                            output2 <= <value>;
                            output2 <= <value>;
                        nx_state <= B;
                        nx_state <= B;
            end if;
            end if;
            when C =>
            when C =>
        end case;
        end case;
    end process;
    end process;
    --Optional output register:
    --Optional output register:
    (same as for category 1 Moore, section 6.3)
    (same as for category 1 Moore, section 6.3)
end architecture;
```

end architecture;

```

\subsection*{6.6 Design of a Small Counter}

This section presents a VHDL-based design for the 1-to-5 counter with enable and up-down controls introduced in section 5.4.1 (figure 5.3).

Because counters are inherently synchronous, the Moore approach is the natural choice for their implementation, so the VHDL template of section 6.3 is used. Because possible glitches during (positive) clock transitions are generally not a problem in counters, the optional output register shown in the last process of the template is not employed.

The entity, called counter, is in lines 5-9. All ports are of type std_logic or std_logic_ vector (industry standard).

The architecture, called moore_fsm, is in lines 11-88. As usual, it contains a declarative part (before the keyword begin) and a statements part (from begin on).

In the declarative part of the architecture (lines 12-13), the enumerated type state is created to represent the machine's present and next states. Recall that when neither the enum_encoding nor the fsm_encoding attribute is used, the encoding scheme must be selected in the compiler's setup.

The first process (lines 17-24) in the statements part implements the state register. As in the template, this is a standard code with clock and reset present only in this process.

The second and final process (lines 27-86) implements the entire combinational logic section. It is just a list of all states, each containing the output value and the next state. Note that in each state the output value is unique because in a Moore machine the output depends only on the state in which the machine is.

Observe the correct use of registers and the completeness of the code, as described in comment 10 of section 6.3. Note in particular the following:
1) Regarding the use of registers: The circuit is not overregistered. This can be observed in the elsif rising_edge(clk) statement of line 21 (responsible for the inference of flip-flops), which is closed in line 23, guaranteeing that only the machine state (line 22) gets stored. The output (outp) is in the next process, which is purely combinational (thus not registered).
2) Regarding the outputs: The list of outputs (just outp in this example) is exactly the same in all states (see lines 31, 42, 53, 64, 75), and the corresponding output values are always properly declared.
3) Regarding the next state: Again, the coverage is complete because all states are included (see lines \(30,41,52,63,74\) ), and in each state the conditional declarations for the next state are always finalized with an else statement (lines 38, 49, 60, 71, 82), guaranteeing that no condition is left unchecked.
```

1
2
library ieee;
use ieee.std_logic_1164.all;

port (
ena, up, clk, rst: in std_logic;
outp: out std_logic_vector(2 downto 0));
end entity;
architecture moore fsm of counter is
type state is (one, two, three, four, five);
signal pr_state, nx_state: state;
begin
--FSM state register:
process (clk, rst)
begin
if rst='1' then
pr state <= one;
elsif rising_edge(clk) then
pr_state <= nx_state;
end if;
end process;
--FSM combinational logic:
process (all) --list proc. inputs if "all" not supported
begin
case pr_state is
when one =>
outp <= "001";
if ena='1' then
if up='1' then
nx_state <= two;
else

```
```

 nx_state <= five;
 end if;
 else
 nx state <= one;
 end if;
 when two =>
 outp <= "010";
 if ena='1' then
 if up='1' then
 nx_state <= three;
 else
 nx state <= one;
 end if;
 else
 nx_state <= two;
 end if;
 when three =>
 outp <= "011";
 if ena='1' then
 if up='1' then
 nx_state <= four;
 else
 nx_state <= two;
 end if;
 else
 nx_state <= three;
 end if;
 when four =>
 outp <= "100";
 if ena='1' then
 if up='1' then
 nx state <= five;
 else
 nx_state <= three;
 end if;
 else
 nx_state <= four;
 end if;
 when five =>
 outp <= "101";
 if ena='1' then
 if up='1' then
 nx_state <= one;
 else
 nx_state <= four;
 end if;
 else
 nx_state <= five;
 end i\overline{f}
 end case;
 end process;
 end architecture;

```
89

Synthesis results using the VHDL code above are presented in figure 6.3. The circuit's structure can be seen in the RTL view of figure 6.3a, while the FSM can be seen


Figure 6.3
Results from the VHDL code for the 1-to-5 counter with enable and up-down controls of figure 5.3. (a) RTL view. (b) State machine view. (c) Simulation results.
in figure 6.3b. As expected, the latter coincides with the intended state transition diagram (figure 5.3). Simulation results are exhibited in figure 6.3c. Note that the output changes only at positive clock transitions, counting up when \(u p=\) ' 1 ', down when \(u p=\) ' 0 ', and stopping if ena \(=\) ' 0 '.

The number of flip-flops inferred by the compiler after synthesizing the code above was three for sequential, Gray, or Johnson encoding and five for one-hot, matching the predictions made in section 5.4.1.

Note: As smentioned in section 5.4.1, counters can be designed very easily without employing the FSM approach when using VHDL or SystemVerilog. The design above was included, nevertheless, because it illustrates well the construction of VHDL code for category 1 machines. A similar counter, but without the up-down control, results from the code below, where the FSM technique is not employed. Moreover, it is fine for any number of bits.
```

library ieee;
use ieee.std_logic 1164.all;
use ieee.std_logic_arith.all;

entity counter is
generic (
bits: natural := 3;
xmin: natural := 1;
xmax: natural := 5);
port (
clk, rst, ena: in std_logic;

```
```

x_out: out std_logic_vector(bits-1 downto 0));
end entity;
architecture direct counter of counter is
signal x: natural range 0 to xmax;
begin
process (clk, rst)
begin
if rst='1' then
x <= xmin;
elsif rising_edge(clk) and ena='1' then
if }x<xmax then
x <= x + 1;
else
x <= xmin;
end if;
end if;
end process;
x_out <= conv_std_logic_vector(x, bits);
end architecture;

```

\subsection*{6.7 Design of a Garage Door Controller}

This section presents a VHDL-based design for the garage door controller introduced in section 5.4.5. The Moore template of section 6.3 is employed to implement the FSM of figure 5.9c.

The entity, called garage_door_controller, is in lines 5-9. All ports are of type std_logic or std_logic_vector (industry standard).

The architecture, called moore_fsm, is in lines 11-94. As usual, it contains a declarative part (before the keyword begin) and a statements part (from begin on).

In the declarative part of the architecture (lines 12-14), the enumerated type state is created to represent the machine's present and next states.

The first process (lines 18-25) in the statements part implements the state register. As in the template, this is a standard code with clock and reset present only in this process.

The second and final process (lines 28-92) implements the entire combinational logic section. It is just a list of all states, each containing the output value and the next state. Note that in each state the output value is unique because in a Moore machine the output depends only on the state in which the machine is.

Observe the correct use of registers and the completeness of the code as described in comment number 10 of section 6.3. Note in particular the following:
1) Regarding the use of registers: The circuit is not overregistered. This can be observed in the elsif rising_edge(clk) statement of line 22 (responsible for the inference of flip-flops), which is closed in line 24 , guaranteeing that only the machine state (line 23) gets stored. The output (ctr) is in the next process, which is purely combinational (thus not registered).
2) Regarding the outputs: The list of outputs (just ctr in this example) is exactly the same in all states (see lines \(32,39,46, \ldots\) ), and the corresponding output value is always properly declared.
3) Regarding the next state: Again, the coverage is complete because all states are included (see lines \(31,38,45, \ldots\) ), and in each state the conditional declarations for the next state are always finalized with an else statement (lines \(35,42,51, \ldots\) ), guaranteeing that no condition is left unchecked.
```

library ieee;
use ieee.std_logic_1164.all;
entity garage_door_controller is
port (
remt, sen1, sen2, clk, rst: in std_logic;
ctr: out std_logic_vector(1 downto - 0));
end entity;
architecture moore_fsm of garage_door_controller is
type state is (closed1, close\overline{d}2, opening1, opening2,
open1, open2, closing1, closing2);
signal pr_state, nx_state: state;
begin
--FSM state register:
process (clk, rst)
begin
if rst='1' then
pr_state <= closedl;
elsif
pr_state <= nx_state;
end if;
end process;
--FSM combinational logic:
process (all) --or (pr_state, remt, sen1, sen2)
begin
case pr_state is
when closed1 =>
ctr <= "0-";
if remt='0' then
nx_state <= closed2;
else
nx state <= closedl;
end i\overline{f}
when closed2 =>
ctr <= "0-";
if remt='1' then
nx_state <= opening1;
else
nx state <= closed2;
end i\overline{f;}
when openingl =>

```
```

 ctr <= "10";
 if sen1='l' then
 nx_state <= open1;
 elsif remt='0' then
 nx_state <= opening2;
 else
 nx_state <= opening1;
 end i\overline{f};
 when opening2 =>
 ctr <= "10";
 if remt='1' or sen1='1' then
 nx_state <= open1;
 else
 nx_state <= opening2;
 end i\overline{f};
 when open1 =>
 ctr <= "0-";
 if remt='0' then
 nx_state <= open2;
 else
 nx_state <= open1;
 end if;
 when open2 =>
 ctr <= "0-";
 if remt='1' then
 nx_state <= closing1;
 else
 nx_state <= open2;
 end i\overline{f};
 when closingl =>
 ctr <= "11";
 if sen2='1' then
 nx_state <= closed1;
 elsif remt='0' then
 nx_state <= closing2;
 else
 nx_state <= closing1;
 end if;
 when closing2 =>
 ctr <= "11";
 if remt='1' or sen2='1' then
 nx_state <= closed1;
 else
 nx_state <= closing2;
 end i\overline{f};
 end case;
 end process;
 end architecture;

```

The number of flip-flops inferred by the compiler after synthesizing the code above was three for sequential or Gray encoding, four for Johnson, and eight for one-hot, matching the predictions made in section 5.4.5.


Figure 6.4
Simulation results from the VHDL code for the garage door controller of figure 5.9c.

Simulation results are depicted in figure 6.4. The encoding chosen for the states was sequential (section 3.7). The states are enumerated from 0 to 7 (there are eight states), in the order in which they were declared in lines 12-13. Be aware, however, that some compilers reserve the value zero for the reset state; because the reset (initial) state in the present example is closed1 (see lines 20-21), which is the first state in the declaration list, that is not a concern here.

In this simulation the sequence closed1-closed2-opening1-opening2-open1-open2-closing1-closed1 (see state names in the lower part of figure 6.4) was tested. Note that pulses of various widths were used to illustrate the fact that their width has no effect beyond the first positive clock edge.

\subsection*{6.8 Design of a Datapath Controller for a Greatest Common Divisor Calculator}

This section presents a VHDL-based design for the control unit introduced in section 5.4.8, which controls a datapath to produce a greatest common divisor (GCD) calculator. The Moore template of section 6.3 is employed to implement the FSM of figure 5.13e.

The entity, called control_unit_for_GCD, is in lines 5-11. All ports are of the type std_logic or std_logic_vector (industry standard).

The architecture, called moore_fsm, is in lines 13-80. As usual, it contains a declarative part (before the keyword begin) and a statements part (from begin on).

In the declarative part of the architecture (lines 14-15), the enumerated type state is created to represent the machine's present and next states.

The first process (lines 19-26) in the statements part implements the state register. As in the template, this is a standard code with clock and reset present only in this process.

The second and final process (lines 29-78) implements the entire combinational logic section. It is just a list of all states, each containing the output values and the next state. Note that in each state the output values are unique because in a Moore machine the outputs depend only on the state in which the machine is.

Observe the correct use of registers and the completeness of the code, as described in comment 10 of section 6.3. Note in particular the following:
1) Regarding the use of registers: The circuit is not overregistered. This can be observed in the elsif rising_edge(clk) statement of line 23 (responsible for the inference of flip-flops), which is closed in line 25, guaranteeing that only the machine state (line 24) gets stored. The outputs are in the next process, which is purely combinational (thus not registered).
2) Regarding the outputs: The list of outputs (selA, selB, wrA, wrB, \(A L U o p\) ) is exactly the same in all states (see lines 33-37, 44-48, 51-55, . . .), and the corresponding output values are always properly declared.
3) Regarding the next state: Again, the coverage is complete because all states are included (see lines \(32,43,50, \ldots\) ), and in each state any conditional declarations for the next state are finalized with an else statement (lines 40 and 60), guaranteeing that no condition is left unchecked.
```

library ieee;
use ieee.std_logic_1164.all;
--
entity control_unit_for_GCD is
port (
dv, clk, rst: in std_logic;
sign: in std_logic_vector(1 downto 0)
selA, selB, wrA, wrB: out std_logic;
ALUop: out std_logic_vector(1 downto 0));
end entity;
architecture moore_fsm of control_unit_for_GCD is
type state is (idle, load, waitt, write\overline{A}, writeB);
signal pr_state, nx_state: state;
begin
--FSM state register:
process (clk, rst)
begin
if rst='1' then
pr_state <= idle;
elsif rising_edge(clk) then
pr_state <= nx_state;
end if;
end process;
--FSM combinational logic:
process (all) --or (pr_state, dv, sign)

```
```

 begin
 case pr_state is
 when idle =>
 selA <= '-';
 selB <= '-';
 wrA <= '0';
 wrB <= '0';
 ALUop <= "00";
 if dv='1' then
 nx_state <= load;
 else
 nx_state <= idle;
 end if;
 when load =>
 selA <= '1';
 selB <= '1';
 wrA <= '1';
 wrB <= '1';
 ALUop <= "00";
 nx_state <= waitt;
 when waitt =>
 selA <= '-';
 selB <= '-';
 wrA <= '0';
 wrB <= '0';
 ALUop <= "10";
 if sign="01" then
 nx state <= writeA;
 elsif sign="10" then
 nx_state <= writeB;
 else
 nx_state <= idle;
 end i\overline{f};
 when writeA =>
 selA <= '0';
 selB <= '-';
 wrA <= '1';
 wrB <= '0';
 ALUop <= "10";
 nx state <= waitt;
 when writeB =>
 selA <= '-';
 selB <= '0';
 wrA <= '0';
 wrB <= '1';
 ALUop <= "11";
 nx_state <= waitt;
 end case;
 end process;
 end architecture;

```

Simulation results are presented in figure 6.5. The encoding chosen for the states was sequential (section 3.7). The states are enumerated from 0 to 4 (there are five states)


Figure 6.5
Simulation results from the VHDL code for the control unit of figure 5.13 e , which controls a datapath for GCD calculation.
in the order in which they were declared in line 14 (be aware, however, that some compilers reserve the value zero for the reset state). The stimuli are exactly as in figure 5.13d (GCD for 9 and 15). The reader is invited to inspect these results and compare them against the waveforms in figure 5.13d.

\subsection*{6.9 Exercises}

\section*{Exercise 6.1: Parity Detector}

This exercise concerns the parity detector of figure 5.5c.
a) How many flip-flops are needed to implement it with sequential and one-hot encoding?
b) Implement it using VHDL. Check whether the number of DFFs inferred by the compiler matches each of your predictions.
c) Simulate it using the same stimuli of figure 5.5 b and check if the same waveform results for \(y\).

\section*{Exercise 6.2: One-Shot Circuits}

This exercise concerns the one-shot circuits of figures \(5.7 \mathrm{c}, \mathrm{d}\).
a) Solve exercise 5.5 if not done yet.
b) How many flip-flops are needed to implement each FSM with sequential encoding?
c) Implement both circuits using VHDL. Check whether the number of DFFs inferred by the compiler matches each of your predictions.
d) Simulate each circuit using the same stimuli of exercise 5.5 (figure 5.16) and check whether the same results are obtained here.

\section*{Exercise 6.3: Manchester Encoder}

This exercise concerns the Manchester encoder treated in exercise 5.8.
a) Solve exercise 5.8 if not done yet.
b) Implement the Moore machine relative to part a of that exercise using VHDL. Simulate it using the same stimuli of part b, checking if the results match.
c) Implement the Mealy machine relative to part c of that exercise using VHDL. Simulate it using the same stimuli of part d, checking if the results match.

\section*{Exercise 6.4: Differential Manchester Encoder}

This exercise concerns the differential Manchester encoder treated in exercise 5.9.
a) Solve exercise 5.9 if not done yet.
b) Implement the FSM relative to part a of that exercise using VHDL. Simulate it using the same waveforms of part b , checking if the results match.

\section*{Exercise 6.5: String Detector}

This exercise concerns the string detector of figure 5.14a, which detects the sequence "abc".
a) Solve exercise 5.12 if not done yet.
b) Implement the FSM of figure 5.14a using VHDL. Simulate it using the same stimuli of exercise 5.12, checking if the same results are obtained here.

\section*{Exercise 6.6: Generic String Detector}

This exercise concerns the generic string detector of figure 5.14b. Implement it using VHDL and simulate it for the following cases:
a) To detect the sequence " \(a b c\) ".
b) To detect the sequence " \(a a b\) ".
c) To detect the sequence " \(a a a^{\prime}\).

\section*{Exercise 6.7: Keypad Encoder}

This exercise concerns the keypad encoder treated in exercise 5.14. It is repeated in figure 6.6, with a seven-segment display (SSD—see figure 8.13) at the output, which must display the last key pressed (use the characters "A" and "b" for * and \#, respectively). (A deboucer is generally needed in this kind of design; see exercise 8.9.)
a) Solve exercise 5.14 if not done yet.
b) Implement the FSM obtained above using VHDL. Instead of encoding \(r(3: 0)\) according to the table in figure 5.23 c , encode it as an SSD driver, using the table in figure 8.13d (so key is now a 7-bit signal).


Figure 6.6
c) Physically test your design by connecting an actual keypad (or an arrangement of pushbuttons) to the FPGA in your development board, with key displayed by one of the board's SSDs.

Exercise 6.8: Datapath Controller for a Largest-Value Detector
This exercise concerns the control unit treated in exercise 5.15.
a) Solve exercise 5.15 if not done yet.
b) Implement the FSM obtained above using VHDL. Present meaningful simulation results.

\section*{7 SystemVerilog Design of Regular (Category 1) State Machines}

\subsection*{7.1 Introduction}

This chapter presents several SystemVerilog designs of category 1 state machines. It starts by presenting two SystemVerilog templates, for Moore- and Mealy-based implementations, which are used subsequently to develop a series of designs related to the examples introduced in chapter 5.

The codes are always complete (not only partial sketches) and are accompanied by comments and simulation results illustrating the design's main features. All circuits were synthesized using Quartus II (from Altera) or ISE (from Xilinx). The simulations were performed with Quartus II or ModelSim (from Mentor Graphics). The default encoding scheme for the states of the FSMs was regular sequential encoding (see encoding options in section 3.7).

The same designs were developed in chapter 6 using VHDL, so the reader can make a direct comparison between the codes.

Note: See suggestions of SystemVerilog books in the bibliography.

\subsection*{7.2 General Structure of SystemVerilog Code}

A typical structure of SystemVerilog code for synthesis, with all elements that will be needed in this and in coming chapters, is depicted in figure 7.1. It is composed of three fundamental sections, briefly described below.

\section*{Module Header}

The module header is similar to entity in VHDL (section 6.2), also divided into two parts, called parameter declarations and port declarations.

Parameter declarations: This portion, similar to generic in VHDL, is optional. It is used for the declaration of global parameters, which can be easily modified to fulfill different system specifications or, more importantly, can be overridden during instantiations into other designs (structural code).


Figure 7.1
Typical SystemVerilog code structure for synthesis.

Port declarations: This portion, similar to port in VHDL, is mandatory for synthesis. It is just a list with specifications of all circuit ports (I/Os), including their mode (input, output, or inout), type (plus range), and name.

\section*{Declarations Part}

The declarations part of a SystemVerilog code is similar to the declarative part of architecture in VHDL (section 6.2). It too is optional and allows all sorts of local declarations (e.g., local parameters, data types, variables) as well as function (and task) constructions.

\section*{Statements Part}

The statements part of a SystemVerilog code is similar to the statements part of architecture in VHDL (section 6.2). As shown in figure 7.1, its main elements (in no particular order) are the following: assign statements, normally using operators, for simple combinational circuits; always blocks, constructed using sequential statements (if, case, for, while, repeat), for both sequential as well as (complex) combinational circuits; function (and task) calls; and, finally, module (that is, other design) instantiations.

\subsection*{7.3 SystemVerilog Template for Regular (Category 1) Moore Machines}

The template is based on figure 7.2 (derived from figure 5.2), which shows three always blocks: 1) for the FSM state register; 2) for the FSM combinational logic; and


Figure 7.2
State machine architecture depicting how the SystemVerilog code was broken (three always blocks).
3) for the optional output register. Note the asterisk on one of the input connections; as we know, if that connection exists it is a Mealy machine, else it is a Moore machine.

There obviously are other ways of breaking the code instead of using the three always blocks indicated in figure 7.2. For example, the combinational logic section could be implemented with two always blocks, one with the logic for output, the other with the logic for \(n x \_\)state.

The SystemVerilog template for the design of category 1 Moore machines is presented below. Observe the following:
1) To improve readability, the three fundamental code sections were separated by dashed lines (lines 1, 11, 17, 61).
2) The first part of the code is the module header, in lines 1-9. It contains two sections: global parameter declarations (optional, lines 3-5) and circuit ports (mandatory for synthesis, lines 7-9). Note that all ports are of type logic, with one or more bits.
3) The second part of the code is the declarations part, in lines \(11-15\). A special enumerated type, called state, is created in line 14 , then the signals pr_state and \(n x \_\)state are declared using that type in line 15 .
4) The third part of the code is the statements part (code proper), in lines 17-60. In this template, it contains three always blocks, described next.
5) The first always block (lines 20-22) is an always_ff because we want flip-flops to be inferred. It implements the machine's state register (always 1 block of figure 7.2). This register is reset when \(r s t==^{\prime} 1\) ' occurs; if \(r s t==^{\prime} 0\) ', the input is copied to the output at every positive clock edge.
6) The second always block (lines 25-47) is an always_comb because we want a purely combinational circuit to be inferred (see always 2 block in figure 7.2). This part must contain all states (A, B, C, . . .), and for each state two things must be declared: the output values/expressions and the next state. Note, for example, in lines 27-34, relative to state A, the output declarations in lines \(28-30\) and the next state declarations in lines \(31-33\). A very important point to observe here is that there is no if
statement associated with the outputs because in a Moore machine the outputs depend solely on the state in which the machine is, so for a given state each output value/ expression is unique.
7) The third and final always block (lines 50-58) implements the optional output register (always 3 block of figure 7.2). Note that it simply copies each original output to a new output at every positive clock edge (it could also be at the negative edge), thus inferring the extra register. If this register is used, then the names of the new outputs must obviously be the names used in the corresponding port declarations (line 9). If the initial output values do not matter, reset is not required in this register.
8) To conclude, observe the completeness of the code and the correct use of registers (as requested in sections 4.2.8 and 4.2.9, respectively), summarized below.
a) Regarding the use of registers: The circuit is not overregistered. This can be observed in the always_ff statement of line 20 (responsible for the inference of flip-flops), which is closed in line 22 , guaranteeing that only the machine state (line 22) gets registered. The output is in the always_comb block, which is purely combinational.
b) Regarding the outputs: The list of outputs (outp1, outp \(2, \ldots\) ) is exactly the same in all states (see lines 28-30, 36-38, . . .), and the output values/expressions are always declared.
c) Regarding the next state: Again, the coverage is complete because all states (A, B, C, . . .) are included and in each state the conditional declarations are finalized with an else statement (lines 33, 41, . . ), guaranteeing that no condition is left unchecked.

Note: Another implementation approach, for simple FSMs, will be seen in chapter 15.
```

//Part 1: Module header:
module module_name
\#(parameter
param1 = <value>,
param2 = <value>)
(
input logic clk, rst, ...
input logic [7:0] inp1, inp2, ...
output logic [15:0] outp1, outp2, ...);
//Part 2: Declarations:----------------------------------
//FSM states type:
typedef enum logic [2:0] {A, B, C, ...} state;
state pr_state, nx_state;
//Part 3: Statements:------------------------------------
//FSM state register:
always_ff @(posedge clk, posedge rst)
if (rst) pr_state <= A;
else pr_state <= nx_state;

```
```

 //FSM combinational logic:
 always_comb
 case (pr_state)
 A: begin
 outp1 <= <value>;
 outp2 <= <value>;
 if (condition) nx_state <= B;
 else if (condition) nx_state <= ...;
 else nx_state <= A;
 end
 B: begin
 outp1 <= <value>;
 outp2 <= <value>;
 if (condition) nx_state <= C;
 else if (condition) nx_state <= ...;
 else nx_state <= B;
 end
 C: begin
 end
 endcase
 //Optional output register:
 always_ff @(posedge clk, posedge rst)
 if (rst) begin //rst might be not needed here
 new_outpl <= ...;
 new_outp2 <= ...; ...
 end
 else begin
 new_outp1 <= outp1;
 new_outp2 <= outp2; ...
 end
 endmodule
//--

```

\subsection*{7.4 SystemVerilog Template for Regular (Category 1) Mealy Machines}

This template, also based on figures 7.1 and 7.2 , is presented below. The only difference with respect to the Moore template just presented is in the always_comb block for the combinational logic because the output is specified differently now. Recall that in a Mealy machine the output depends not only on the FSM's state but also on its input, so if statements are expected for the output in one or more states because the output values might not be unique. This is achieved by including the output within the conditional statements for \(n x\) _state. For example, observe in lines 15-33, relative to state A , that the output values are now conditional. Compare these lines against lines 27-34 in the previous template.

Please read all comments made for the Moore template in section 7.3 because, except for the difference mentioned above, they all apply to the Mealy template below
as well. Particular attention should be paid to the recommendations in comment 8, which can be easily adapted from the Moore case to the Mealy case.
```

//Part 1: Module header:--------------------------------------
(same as for category 1 Moore, section 7.3)
//Part 2: Declarations:--------------------------------------
(same as for category 1 Moore, section 7.3)
//Part 3: Statements:---
//FSM state register:
(same as for category 1 Moore, section 7.3)
//FSM combinational logic:
always_comb
case (pr_state)
A:
if (condition) begin
outpl <= <value>;
outp2 <= <value>;
...
nx_state <= B;
end
else if (condition) begin
outp1 <= <value>;
outp2 <= <value>;
nx_state <= ...;
end
else begin
outp1 <= <value>;
outp2 <= <value>;
...
nx_state <= A;
end
B :
if (condition) begin
outp1 <= <value>;
outp2 <= <value>;
nx state <= C;
end
else if (condition) begin
outp1 <= <value>;
outp2 <= <value>;
...
nx_state <= ...;
end
else begin
outp1 <= <value>;
outp2 <= <value>;
nx_state <= B;
end

```
```

53 C: ...
54 endcase
56
5 7 ~ / / O p t i o n a l ~ o u t p u t ~ r e g i s t e r :
5 8
5 9
6 0 ~ e n d m o d u l e ~
6 1

```

\subsection*{7.5 Design of a Small Counter}

This section presents a SystemVerilog-based design for the 1-to-5 counter with enable and up-down controls introduced in section 5.4.1 (figure 5.3).

Because counters are inherently synchronous, the Moore approach is the natural choice for their implementation, so the SystemVerilog template of section 7.3 is used. Because possible glitches at (positive) clock transitions are generally not a problem in counters, the optional output register shown in the final portion of the template is not employed.

The first part of the code (module header) is in lines \(1-4\). The module's name is counter. Note that all ports are of type logic, with one bit for each input and three bits for the output.

The second part of the code (declarations) is in lines 6-9. The enumerated type state is created in it to represent the machine's present and next states.

The third and final part of the code (statements) is in lines 11-57. It contains two always blocks, described next.

The first always block (lines 13-15) is an always_ff, which implements the machine's state register. This is a standard code, similar to the template.

The second always block (lines 18-55) is an always_comb, which implements the entire combinational logic section. It is just a list of all states, each containing the output value and the next state. Note that in each state the output value is unique because in a Moore machine the output depends only on the state in which the machine is.

Finally, and very importantly, observe the correct use of registers and the completeness of the code, as described in comment 8 of section 7.3. Observe in particular the following: 1) all states are included; 2) the list of outputs (only outp in this case) is exactly the same in all states, and the corresponding values are always included; 3) the specifications for \(n x\) _state are always finalized with an else statement, so no condition is left unchecked.
```

//Module header:
module counter (
input logic up, ena, clk, rst,

```
```

 output logic [2:0] outp);
 //Declarations:--
//FSM states type:
typedef enum logic [2:0] {one, two, three, four, five} state;
state pr_state, nx_state;
//Statements:--
//FSM state register:
always_ff @(posedge clk, posedge rst)
if (rst) pr_state <= one;
else pr_state <= nx_state;
//FSM combinational logic:
always_comb
case (pr_state)
one: begin
outp <= 1;
if (ena)
if (up) nx state <= two;
else nx_stāte <= five;
else nx_state <= one;
end
two: begin
outp <= 2;
if (ena)
if (up) nx_state <= three;
else nx_state <= one;
else nx state <= two;
end
three: begin
outp <= 3;
if (ena)
if (up) nx_state <= four;
else nx_state <= two;
else nx_state <= three;
end
four: begin
outp <= 4;
if (ena)
if (up) nx_state <= five;
else nx_state <= three;
else nx_state <= four;
end
five: begin
outp <= 5;
if (ena)
if (up) nx_state <= one;
else nx_stāte <= four;
else nx_state <= five;
end
endcase
endmodule
//---

```


Figure 7.3
Simulation results from the SystemVerilog code for the 1-to-5 counter with enable and up-down controls of figure 5.3.

Simulation results from the code above are exhibited in figure 7.3. Note that the output changes only at positive clock transitions, counting up when \(u p={ }^{\prime} 1^{\prime}\), down when \(u p={ }^{\prime} 0\) ', and stopping if \(e n a={ }^{\prime} 0\) '.

The number of flip-flops inferred by the compiler was three for sequential, Gray, or Johnson encoding and five for one-hot, matching the predictions made in section 5.4.1.

\subsection*{7.6 Design of a Garage Door Controller}

This section presents a SystemVerilog-based design for the garage door controller introduced in section 5.4.5. The Moore template of section 7.3 is employed to implement the FSM of figure 5.9c.

The first part of the code (module header) is in lines 1-4. The module's name is garage_door_controller. Note that all ports are of type logic.

The second part of the code (declarations) is in lines 6-10. The enumerated type state is created in it to represent the machine's present and next states.

The third and final part of the code (statements) is in lines 12-65. It contains two always blocks, described next.

The first always block (lines 14-16) is an always_ff, which implements the machine's state register. This is a standard code, similar to the template.

The second always block (lines 19-63) is an always_comb, which implements the entire combinational logic section. It is just a list of all states, each containing the output value and the next state. Note that in each state the output value is unique because in a Moore machine the output depends only on the state in which the machine is.

Finally, and very importantly, observe the correct use of registers and the completeness of the code, as described in comment 8 of section 7.3. Observe in particular the
following: 1) all states are included; 2) the list of outputs (only ctr in this case) is exactly the same in all states, and the corresponding values are always included; 3) the specifications for \(n x\) _state are always finalized with an else statement, so no condition is left unchecked.
```

//Module header:---
module garage_door_controller (
input logic remt, sen1, sen2, clk, rst,
output logic [1:0] ctr);
//Declarations:---
//FSM states type:
typedef enum logic [2:0] {closed1, closed2, opening1,
opening2, open1, open2, closing1, closing2} state;
state pr_state, nx_state;
//Statements:---
//FSM state register:
always_ff @(posedge clk, posedge rst)
if (rst) pr_state <= closedl;
else pr_state <= nx_state;
//FSM combinational logic:
always_comb
case (pr_state)
closedl: begin
ctr <= 2'b0x;
if (~remt) nx_state <= closed2;
else nx_state <= closed1;
end
closed2: begin
ctr <= 2'b0x;
if (remt) nx_state <= opening1;
else nx_state <= closed2;
end
opening1: begin
ctr <= 2'b10;
if (sen1) nx_state <= open1;
else if (~rem}t) nx state <= opening2
else nx_state <= opening1;
end
opening2: begin
ctr <= 2'blo;
if (remt | sen1) nx_state <= open1;
else nx_state <= opening2;
end
open1: begin
ctr <= 2'b0x;
if (~remt) nx_state <= open2;
else nx_state <= open1;
end
open2: begin
ctr <= 2'b0x;
if (remt) nx_state <= closing1;

```
```

 else nx_state <= open2;
 end
 closing1: begin
 ctr <= 2'b11;
 if (sen2) nx_state <= closed1;
 else if (~remt) nx_state <= closing2;
 else nx_state <= closing1;
 end
 closing2: begin
 ctr <= 2'b11;
 if (remt | sen2) nx_state <= closed1;
 else nx_state <= closing2;
 end
 endcase
 endmodule
//--

```

The number of flip-flops inferred by the compiler after synthesizing the code above was three for sequential or Gray encoding, four for Johnson, and eight for one-hot, matching the predictions made in section 5.4.5.

Simulation results are depicted in figure 7.4. The encoding chosen for the states was sequential (section 3.7). The states are enumerated from 0 to 7 (there are eight states) in the order in which they were declared in lines \(8-9\). Be aware, however, that some compilers reserve the value zero for the reset state; because the reset (initial) state in the present example is closed1 (see line 15), which is the first state in the declaration list, that is not a concern here.

In this simulation the sequence closed1-closed2-opening1—opening2-open1-open2-closing1—closed1 (see state names in the lower part of figure 7.4) was tested. Note that pulses of various widths were used to illustrate the fact that their width has no effect beyond the first positive clock edge.


Figure 7.4
Simulation results from the SystemVerilog code for the garage door controller of figure 5.9c.

\subsection*{7.7 Design of a Datapath Controller for a Greatest Common Divisor Calculator}

This section presents a SystemVerilog-based design for the control unit introduced in section 5.4.8, which controls a datapath to produce a greatest common divisor (GCD) calculator. The Moore template of section 7.3 is employed to implement the FSM of figure 5.13e.

The first part of the code (module header) is in lines 1-6. The module's name is control_unit_for_GCD. Note that all ports are of type logic.

The second part of the code (declarations) is in lines \(8-11\). The enumerated type state is created in it to represent the machine's present and next states.

The third and final part of the code (statements) is in lines 13-67. It contains two always blocks, described next.

The first always block (lines 15-17) is an always_ff, which implements the machine's state register. This is a standard code, similar to the template.

The second always block (lines 20-65) is an always_comb, which implements the entire combinational logic section. It is just a list of all states, each containing the output values and the next state. Note that in each state the output values are unique because in a Moore machine the outputs depend only on the state in which the machine is.

Finally, and very importantly, observe the correct use of registers and the completeness of the code, as described in comment 8 of section 7.3. Observe in particular the following: 1) all states are included; 2) the list of outputs is exactly the same in all states, and the corresponding values are always included; 3) the conditional specifications for \(n x\) _state are always finalized with an else statement, so no condition is left unchecked.
```

//Module header:--
module control_unit_for_GCD (
input logic dv, clk, rst,
input logic [1:0] sign,
output logic selA, selB, wrA, wrB,
output logic [1:0] ALUop);
//Declarations
//FSM states type:
typedef enum logic [2:0] {idle, load, waitt, writeA, writeB} state;
state pr_state, nx_state;
//Statements:--
//FSM state register:
always_ff @(posedge clk, posedge rst)
if (rst) pr_state <= idle;
else pr_state <= nx_state;
//FSM combinational logic:

```
```

 always_comb
 case (pr_state)
 idle: begin
 selA <= 1'bx;
 selB <= 1'bx;
 wrA <= 1'b0;
 wrB <= 1'b0;
 ALUop <= 0;
 if (dv) nx_state <= load;
 else nx_state <= idle;
 end
 load: begin
 selA <= 1'bl;
 selB <= 1'b1;
 wrA <= 1'b1;
 wrB <= 1'b1;
 ALUop <= 0;
 nx_state <= waitt;
 end
 waitt: begin
 selA <= 1'bx;
 selB <= 1'bx;
 wrA <= 1'b0;
 wrB <= 1'b0;
 ALUop <= 2;
 if (sign==1) nx_state <= writeA;
 else if (sign==2) nx_state <= writeB;
 else nx_state <= idle;
 end
 writeA: begin
 selA <= 1'b0;
 selB <= 1'bx;
 wrA <= 1'b1;
 wrB <= 1'b0;
 ALUop <= 2;
 nx state <= waitt;
 end
 writeB: begin
 selA <= 1'bx;
 selB <= 1'b0;
 wrA <= 1'b0;
 wrB <= 1'b1;
 ALUop <= 3;
 nx_state <= waitt;
 end
 endcase
 endmodule
//---

```

\subsection*{7.8 Exercises}

\section*{Exercise 7.1: Parity Detector}

Solve exercise 6.1 using SystemVerilog instead of VHDL.

\section*{Exercise 7.2: One-Shot Circuits}

Solve exercise 6.2 using SystemVerilog instead of VHDL.

\section*{Exercise 7.3: Manchester Encoder}

Solve exercise 6.3 using SystemVerilog instead of VHDL.

Exercise 7.4: Differential Manchester Encoder
Solve exercise 6.4 using SystemVerilog instead of VHDL.

\section*{Exercise 7.5: String Detector}

Solve exercise 6.5 using SystemVerilog instead of VHDL.

Exercise 7.6: Generic String Detector
Solve exercise 6.6 using SystemVerilog instead of VHDL.

\section*{Exercise 7.7: Keypad Encoder}

Solve exercise 6.7 using SystemVerilog instead of VHDL.

Exercise 7.8: Datapath Controller for a Largest-Value Detector Solve exercise 6.8 using SystemVerilog instead of VHDL.

\section*{8 Timed (Category 2) State Machines}

\subsection*{8.1 Introduction}

We know that state machines can be classified into two types, based on their input connections, as follows.
1) Moore machines: The input, if it exists, is connected only to the logic block that computes the next state.
2) Mealy machines: The input is connected to both logic blocks, that is, for the next state and for the actual output.

In section 3.6 we introduced a new, additional classification, also from a hardware point of view, based on the transition types and nature of the outputs, as follows (see figure 8.1).
1) Regular (category 1) state machines: This category, illustrated in figure 8.1a and studied in chapters 5 to 7 , consists of machines with only untimed transitions and outputs that do not depend on previous (past) values, so none of the outputs need to be registered for the machine to function.
2) Timed (category 2) state machines: This category, illustrated in figure 8.1 b and studied in chapters 8 to 10 , consists of machines with one or more transitions that depend on time (so they can have all four transition types: conditional, timed, conditionaltimed, and unconditional). However, all outputs are still independent from previous (past) values.
3) Recursive (category 3) state machines: This category is illustrated in figure 8.1c and studied in chapters 11 to 13. It can have all four types of transitions, but one or more outputs depend on previous (past) values, so such outputs must be stored in auxiliary registers for the machine to function.

The two fundamental decisions before starting a design in hardware are then the following:
1) The state machine category (regular, timed, or recursive).


Figure 8.1
State machine categories (from a hardware perspective).
2) The state machine type (Moore or Mealy).

It is important to recall, however, that regardless of the machine category and type, the state transition diagram must fulfill three fundamental requisites (seen in section 1.3):
1) It must include all possible system states.
2) All state transition conditions must be specified (unless a transition is unconditional) and must be truly complementary.
3) The list of outputs must be exactly the same in all states (standard architecture).

\subsection*{8.2 Architectures for Timed (Category 2) Machines}

The general architecture for category 2 machines is summarized in figure 8.2a. This representation follows the style of figures 3.1 b and 3.1 d , but the style of figures 3.1 a and 3.1c could be used equivalently. The output register (figure 8.2 b ) is still optional, but the timer (in figure 8.2a) is compulsory.

Note that the timer operates as an auxiliary circuit, producing the signal \(t\), needed by the state machine. However, the FSM itself is responsible for controlling the timer, as represented symbolically by the control signal ctr in the figure. In other words, the machine is who decides when the timer should run or stop and when it should be zeroed.

The four possible constructions, listed in figure 8.2c, are summarized below.
Timed Moore machine: The circuit of figure 8.2a is used with the input (if it exists) connected only to the logic block for the next state, as in figure 5.2a. Consequently, it behaves exactly as a pure Moore machine, just with an auxiliary timer operating as


Figure 8.2
Timed (category 2) state machine architectures. (a) Moore or Mealy type (depending on input connections). (b) Optional output register. (c) Resulting circuits.
an extra input. Because the output depends only on the state in which the machine is, this circuit is synchronous (see details in section 3.5). Because modern designs are generally synchronous, this option is preferred over any other timed implementation whenever the application permits.
Timed Mealy machine: Again, the circuit of figure 8.2a is used, but this time with the input connected to both logic blocks (for output and for next state), as in figure 5.2b. Consequently, it behaves exactly as a pure Mealy machine, just with an auxiliary timer operating as an extra input. Because the input-output transfer is asynchronous, this machine can have more than one output value for the same state (see details in section 3.5).

Out-registered (pipelined) timed Moore machine: The extra register of figure 8.2 b is connected to the output of the timed Moore machine. As seen in sections 2.5 and 2.6, two fundamental reasons for doing so are glitch removal and pipelined construction. The new output will be one or one-half of a clock cycle (depending on the selected clock edge) behind the original output. The resulting circuit is order- 2 synchronous because the original Moore machine was already a registered circuit (in other words, the input-output transfer occurs after two clock edges-see details in section 3.5). If in a given application this extra register is needed but its consequent extra delay is not acceptable, the next alternative can be considered.
Out-registered (pipelined) timed Mealy machine: The extra register of figure 8.2b is connected to the output of the timed Mealy machine. The reasons for doing so are the same as for Moore machines. The resulting circuit is order- 1 synchronous because the input-output relationship in the original Mealy machine can be asynchronous. Consequently, the overall behavior (with the output register included) is similar to that of a timed Moore machine without the output register (see details in section 3.5 ).

\subsection*{8.3 Timer Interpretation}

It is very important to interpret the timer correctly. The analysis below and that in the section that follows are based on the state machine of figure 8.3 , where \(x\) is the actual input, \(t\) is an auxiliary input generated by a timer (see the timer in figure 8.2a), and \(y\) is the actual output. Note that this FSM contains all four possible transition types (see section 1.6).

\subsection*{8.3.1 Time Measurement Unit}

The time in timed machines ( \(t\) and \(T\) in figure 8.3, for example) is not expressed in seconds but rather in "number of clock cycles." For example, if we want the machine to stay in a certain state during \(t_{\text {state }}=2 \mathrm{~ms}\), and the clock frequency is \(f_{c l k}=50 \mathrm{MHz}\), we simply adopt \(T=t_{\text {state }} \times f_{c l k}=2 \cdot 10^{-3} \times 50 \cdot 10^{6}=100,000\) clock cycles.

\subsection*{8.3.2 Timer Range}

If a regular sequential counter with initial value zero is used to build the timer, the counter's range for the timer to span \(T\) clock periods is then from \(t=0\) to \(t=T-1\) (so \(t_{\text {max }}=T-1\) ).

If the machine has multiple timed transitions, requiring it to stay \(T_{1}\) clock cycles in state \(\mathrm{S}_{1}, T_{2}\) clock cycles in state \(\mathrm{S}_{2}\), and so on, then the value of \(T\) can be determined using the expression \(T=\max \left\{T_{1}, T_{2}, \ldots\right\}\). The same is true if multiple values of \(T\) are required in the same state.

Note that indeed a counter running up to any value above \(t_{\max }\) would also do. For example, one could choose to use a timer that runs up to the next power-of-two, in which case only the counter's MSB would need to be monitored, simplifying the circuit construction (at the expense of an extra DFF; also, the transition conditions should be changed from \(t=t_{\max }\) to \(t \geq t_{\text {max }}\) in the conditional-timed cases).

\subsection*{8.3.3 Number of Bits}

The number of bits needed to implement the timer is \(N=\left\lceil\log _{2} T\right\rceil\). In other words, \(N\) must satisfy \(T \leq 2^{N}\). For example, if we want \(T_{1}=25\) and \(T_{2}=8, T=\max \{25,8\}=25\)

(*) Timer running from \(t=0\) to \(t=T-1\), thus spanning \(T\) clock periods
Figure 8.3
State machine with all four possible transition types.
results, so a five-bit counter is needed to build the timer (thus able to run from 0 up to 31 ). The ranges of interest in this case are 0 -to- 24 in state \(S_{1}\) and 0-to-7 in state \(S_{2}\).

\subsection*{8.4 Transition Types and Timer Usage}

The state machine of figure 8.3, which contains all four possible transition types, is again used in the analysis that follows.

Transition \(A B\) is time independent, so the timer is not needed. Consequently, we can let the timer run freely (for example, from 0 to \(2^{N}-1\), restarting then automatically from 0 ), or let it run up to a certain value and then stop it, or simply keep it stopped (at zero, for example). Keeping the timer stopped saves power but can increase the complexity of the comparator. However, if the timer runs up to a certain value and then stops (remaining so until the machine changes its state), the additional power consumption will generally be negligible. In case one decides to keep the timer stopped at zero, \(T=1\) should be used (timer running from 0 to \(t_{\max }=T\) \(-1=0\) ).

Transition BC is timed, so the timer is needed. The machine must stay in state B during exactly \(T\) clock periods, moving then to state C . Consequently, we can stop the timer when the monitored value \(\left(t_{\max }=T-1\right)\) is reached or we can simply let it run freely (for example, from 0 to \(2^{N}-1\), restarting then automatically from 0 ) because the machine will change its state anyway after \(t=t_{\max }\) occurs.

Transition CD is conditional-timed, so the timer is again needed. The machine must move to state D at the first (positive) clock edge that finds \(x=\) ' 0 ' after staying in state C during \(T\) clock periods (so it will stay in C during at least \(T\) clock periods). In this case we cannot let the timer run freely because then if \(x=\) ' 0 ' is not satisfied when the timer reaches the monitored value \(\left(t_{\max }=T-1\right)\) the condition \(x=\) ' 0 ' will only be effective again when the timer passes through that value once more. A possible solution here is to stop the timer when the monitored value is reached (indeed, any value \(\geq t_{\text {max }}\) would do-see comments in section 8.3.2).

Finally, transition DA is unconditional, so the same comments made for transition AB apply here.

In the next section, the possible timer usages described above will be considered in order to develop systematic strategies for designing the timer.

\subsection*{8.5 Timer Control Strategies}

We can now develop systematic strategies for controlling the timer. Figure 8.4 is used to illustrate the discussions that follow. Note that all four machines are timed. The timed states (states that need the timer) are represented with a darker shade of gray. A simplified representation was employed for the transition conditions; for example,


Figure 8.4
Four timed machines. (a) With only conditional and timed transitions. (b) With conditional and conditional-timed transitions but with state B untimed. (c) Same as b but with state B timed. (d) Same as b but with conditional values (" 01 " and " 10 ") that might require the machine to remain in state A longer than \(T\) clock periods.
' 1 ' means \(x=\) ' 1 ' and \(T-1\) means \(t=T-1\). As usual, it is assumed that a regular sequential counter running from \(t=0\) up to \(t=T-1\) is employed to build the timer.

\subsection*{8.5.1 Preliminary Analysis}

A "tentative" strategy is assumed in this preliminary analysis, which consists of zeroing the timer after it reaches the monitored value \(\left(t_{\max }=T-1\right)\), with \(t_{\max }=0\) adopted in the untimed states.

The machine in figure 8.4a has only conditional and timed transitions, so the timer always runs exactly up to \(t_{\max }\), after which the machine changes its state. Since it is assumed here that the timer is always zeroed after \(t_{\max }\) occurs, the timer will always be cleared when the FSM enters a new state, causing it to work properly.

The machine in figure 8.4 b has a conditional-timed transition. If \(x=\) ' 0 ' occurs before \(t=t_{\max }\), the machine moves from A to B with the timer at an unknown \(\left(<t_{\max }\right)\) value. Consequently, the timer will not be zeroed here. However, because state \(B\) is untimed, so \(t_{\max }=0\), the timer will be zeroed at the end of the first clock period after entering state B. As a result, the timer will be ready to operate properly even if state C is timed.

The case in figure 8.4 c is similar to that in figure 8.4 b , but state \(B\) is now timed. Because the machine will enter state B with \(t<t_{\max }\), the timer will span in state B only the number of clock cycles needed to complete state B's \(t_{\max }\). In summary, our tentative timer control strategy is not appropriate for this machine.

The case in figure 8.4 d is also similar to that in figure 8.4 b , with state B again untimed. However, note that there are values of \(x\) (" 01 " and " 10 ") that might cause the machine to stay in state A even if \(t_{\max }\) is reached. Because the timer is zeroed after \(t_{\text {max }}\) occurs, our tentative strategy does not work here either. A possible solution in this case is to stop the timer at \(t_{\max }\), zeroing it only when the machine changes state.

Based on the analysis above and that in section 8.4, two timer control strategies are proposed next.

\subsection*{8.5.2 Timer Control Strategy \#1 (Generic)}

A strategy that complies with all conditions described in section 8.4 and, consequently, with all conditions in the examples of figure 8.4, is summarized below.

For stopping the timer: Stop the timer when it reaches the monitored value (or a predefined value above that). Keep it so until the machine changes its state.
For zeroing the timer: Zero the timer whenever the machine changes state.
To apply the timer-zeroing technique above, we can compare pr_state to \(n x \_\)state. If they are different, it means that the FSM will change its state at the next clock edge, so a flip-flop clearing command can be produced to zero the timer when such a transition occurs.

The advantages of this strategy are that it is generic, simple to understand, and simple to implement. The construction of state transition diagrams using it is simple and direct as well. Additionally, the timer does not need to be controlled in the untimed states because it will run only up to a certain value and will stop anyway, so power consumption is generally not a problem. Also, if one wants, a value greater than \(t_{\text {max }}\) can be employed (see comments in section 8.3.2), which can simplify the \(t\)-to- \(t_{\max }\) comparator (recall that this comparator can be large; for example, to produce a 1 s delay from a 100 MHz clock, a 27-bit counter is needed); for instance, if \(T\) ( \(=t_{\max }\) +1 ) is a power of 2 , only a single bit (the MSB) needs to be monitored.

Its main disadvantage is that the pr_state-to- \(n x\) _state comparator can be a large circuit, because the number of bits in these two signals can be large, particularly when the number of states is high and one-hot encoding is employed (sequential or gray encoding is suggested when using strategy \#1).

The following procedure is recommended: Use strategy \#1, which is generic, to draw the state transition diagram. After completing it, check whether it complies with condition 1 or 2 described below for strategy \#2. If it does, strategy \#2 too can be used to build the timer.

There are only few cases in which strategy \#1 cannot be applied completely, but the required adjustments are simple to handle. Such cases will be illustrated in sections 8.7 and 8.11.8.

When using VHDL or SystemVerilog, one of the following codes can be used to implement the timer using strategy \(\# 1\). Note the use of \(t \neq t_{\max }\), which can be a slightly smaller comparator circuit than \(t<t_{\max }\), but either one is fine.
```

--Timer for strategy \#l--------------------------------
--VHDL--
process (clk, rst)
begin
if rst='1' then
t <= 0;
elsif rising edge(clk) then
if pr_state /= nx_state then
t <= 0;
elsif t /= tmax then --see comment
t <= t + 1;
end if;
end if;
end process;
--SystemVerilog--
always_ff @(posedge clk, posedge rst)
if (rst) t <= 0;
else if (pr_state != nx_state) t <= 0;
else if (t != tmax) t <= t + 1; --see comment

```

\subsection*{8.5.3 Timer Control Strategy \#2 (Nongeneric)}

This strategy is not generic because it cannot be employed in any timed machine. For example, it only works properly for machines \(a\) and \(b\) of figure 8.4 . The procedure is summarized below.

For stopping the timer: Do not stop the timer.
For zeroing the timer: Zero the timer after it reaches \(t_{\max }=T-1\). In the untimed states, adopt \(t_{\max }=0\) (timer stopped at zero).

This strategy can be applied in the following cases:
1) To any timed machine without conditional-timed transitions (figure 8.4a, for example).
2) To timed machines with conditional-timed transitions but only if no state has more than one value for \(T\), if no state can last longer than \(T\) clock periods, and if any transition that might last less than \(T\) clock cycles goes to an untimed state (figure 8.4b, for example).

The advantage of this strategy is that it avoids the pr_state-to-nx_state comparator, which can be a large circuit.

The disadvantages are that it is not generic and that the resulting circuit is not guaranteed to be smaller than that for strategy \#1. Because here the value of \(t_{\text {max }}\) must be specified in all states (with \(t_{\max }=0\) in the untimed states) when the machine has conditional-timed transitions, the \(t\)-to- \(t_{\max }\) comparator (which also can be large) is more complex.

Since strategy \#2 is not generic, the suggested procedure is to draw the state transition diagram using strategy \#1, checking next if it complies with condition 1 or 2 above in order to determine whether strategy \#2 can be used as well.

When using VHDL or SystemVerilog, one of the codes below can be used to implement the timer for strategy \#2. Note the use of \(t<t_{\max }\) instead of \(t \neq t_{\max }\), needed to guarantee that the timer will be zeroed if the FSM leaves a timed state before the timer has reached \(t_{\max }\) (entering therefore an untimed state). However, such a situation can only occur if the machine has conditional-timed transitions (figure 8.4b, for example); if the machine does not have conditional-timed transitions (figure 8.4a, for example), then \(t \neq t_{\text {max }}\) is fine, too.
```

--Timer for strategy \#2---------------------------
--VHDL--
process (clk, rst)
begin
if rst='1' then
t <= 0;
elsif rising_edge(clk) then
if t < tmax then --see comment
t <= t + 1;
else
t <= 0;
end if;
end if;
end process;
--SystemVerilog-----------------------------------
always_ff @(posedge clk, posedge rst)
if (rst) t <= 0;
else if (t < tmax) t <= t + 1; --see comment
else t <= 0;

```

\subsection*{8.5.4 Time Behavior of Strategies \#1 and \#2}

Figure 8.5 shows an example of FSM that in spite of having a conditional-timed transition can be implemented using any of the timer control strategies proposed above (note that this machine falls in the category depicted in figure 8.4 b ). The purpose of this example is to illustrate the differences in terms of time behavior between strategies \#1 and \#2.

The machine must implement a triggered circuit with input \(x\) and output \(y\). The intended behavior is depicted in figure 8.5a. In this case, \(y\) must go up as soon as (i.e., at the next positive clock edge) \(x\) goes up, returning to zero \(T\) clock cycles (more precisely, \(T\) clock edges) after \(x\) returns to zero. Observe in the final part of the plot that when \(x\) comes down but goes up again before the time \(T\) has ended the circuit is retriggered.

A solution is shown in figure 8.5 b. \(t_{\max }=T-2\) is used in the CA transition, thus spanning \(T-1\) clock periods (in fact, \(T-1\) clock edges, as indicated by the black dots), because one period is spent in the BC transition.

When strategy \#1 is used the overall behavior is objective and very simple to understand, as can be observed in figure 8.5c, which shows an illustrative timing diagram for \(T=4\). It is assumed that the timer stops as soon as \(t_{m a x}\) is reached (though not required for strategy \(\# 1, t_{\max }=0\) was used in the untimed states).


Figure 8.5
(a) Desired circuit behavior for a triggered circuit. (b) A solution, which can be implemented directly with either strategy \#1 or \#2. (c) Timing diagram for strategy \#1. (d) Timing diagram for strategy \#2.

Strategy \#2 is a little more difficult to examine. This is due to the CB transition, which can only happen with \(t<t_{\max }\), causing the FSM to enter state B without any command to zero the timer at the next clock edge. Observe in the B-to-C transition in the timing diagram of figure 8.5 d that \(t\) is still incremented when the FSM enters state B, being only zeroed at the next clock pulse. However, in spite of this detail, the machine operates adequately, as can be seen in the plot for \(y\), which is exactly the same as that in figure 8.5c.

The reader is invited to examine these two timing diagrams carefully to fully understand and appreciate the differences between these two timer control strategies.

\subsection*{8.6 Truly Complementary Time-Based Transition Conditions}

As discussed in Section 3.8, when a circuit does not have any sort of reset mechanism, the initial state (either ' 0 ' or ' 1 ') of its flip-flops upon power-up might be undetermined. Say that that is the case and that our machine has a timed transition that must span 10 clock periods, thus requiring a 4 -bit counter, where 0 -to- 9 is the range of interest. Since a 4-bit counter is capable of counting from 0 to 15 , the initial (random) state might fall in the 10-to- 15 range. Recall from section 1.5 that the outward transition conditions in any state must be truly complementary (i.e., they must include all possible combinations of the transition control signals, and obviously all just once), so the 10 -to- 15 range must also be considered.

Figure 8.6a shows an example of timed machine with under-specified transition conditions, which falls in the situation described above because the \(t>T-1\) range is not covered. The problem in fixed in figure 8.6 b by assigning that range to the AB transition. Another alternative is presented in figure 8.6c, with the missing range assigned to the AA transition. Either one of the last two options should be used. The decision between one or the other depends on the application; more specifically, it depends on where we want the machine to be in case \(t>T-1\) happens (at power-up, for example).


Figure 8.6
(a) Under-specified transition conditions ( \(t>T-1\) range not covered). (b) \(t>T-1\) range assigned to the AB transition. (c) \(t>T-1\) range assigned to the AA transition.


Figure 8.7
(a) Overspecified transition conditions (' 0 ' and \(T-1\) can happen at the same time). (b) Solution with priority given to transition AB. (c) Solution with priority given to transition AC.

Note, however, that the problem described above can only happen before the first run of the timer, after which the FSM has full control over the timer.

Another timed machine with incorrect transition conditions is shown in figure 8.7. However, contrary to the previous example, this machine is over-specified, because more than one transition can be true at the same time (' 0 ' and \(T-1\) can occur at the same time). As seen in section 1.5 , overspecification can be resolved by establishing priorities. AB was considered to have priority over AC in the solution of figure 8.7 b , whereas the opposite was assumed in figure 8.7c.

\subsection*{8.7 Repetitively Looped State Machines}

This section discusses the particular case of repetitively looped state machines, found, for example, in serial data communications circuits (serial data receiver/transmitter, \(I^{2} \mathrm{C}\) interface, SPI interface, etc.). An equivalent implementation will be seen in section 11.5 using the category 3 approach.

The first case is shown in figure 8.8a, where a pair of states is repeated \(T\) times (this kind of problem was in fact introduced in section 3.12). If \(T\) is large, it is obviously impractical to represent this circuit as a regular FSM.

An equivalent representation for this problem is shown in figure 8.8 b , with a loop replacing the repeated states. This loop must be repeated \(T\) times in the AB direction (in the BA direction the total is \(T-1\) times). Consequently, by converting the category 1 machine of figure 8.8 a into the category 2 machine of figure 8.8 b , the FSM representation becomes viable and the problem can be easily solved.

A possible implementation is depicted in figure 8.8c, with the timer incremented in both directions ( AB and BA ), therefore being not zeroed in any of them (note the thick circles and the different arrows; a thick circle means that there is at least one transition into that state in which the timer should not be zeroed, while the different arrow with a dot at its origin identifies which that transition is).
(a)

(b)

(c)


Figure 8.8
(a) FSM with a pair of states repeated \(T\) times. (b) Equivalent looped representation. (c) An alternative for the timer, counting in both directions, thus being not zeroed in any of them.
(a)

(b)

(c)


Figure 8.9
Generalization of the case seen in figure 8.8. Not only the loop is repeated \(T\) times but also the machine stays \(T_{\mathrm{A}}\) clock periods in A and \(T_{\mathrm{B}}\) clock periods in B.

A more general case is presented in figure 8.9. Here, not only the loop must be repeated \(T\) times, but the machine must also stay \(T_{\mathrm{A}}\) clock periods in A and \(T_{\mathrm{B}}\) clock periods in \(B\). The problem is stated in figure 8.9a, with an equivalent representation shown in figure 8.9 b . A possible solution is shown in figure 8.9 c , using two timers. While timer \(t_{1}\) controls the time the machine stays in state A or state B , timer \(t_{2}\) measures the number of loop repetitions. Consequently, only timer \(t_{2}\) is not zeroed in the state transitions.

\subsection*{8.8 Time Behavior of Timed Moore Machines}

In section 3.5 an analysis of the general time behavior of Moore and Mealy machines was presented. This section and the next present extensions to that analysis for the case when timed transitions are also involved.


Figure 8.10
(a) A Moore machine and (b) a corresponding timing diagram.

The Moore machine of figure 8.10a, which includes three transition types, is used to illustrate the analysis. It is assumed that the timer control strategy \#1 is adopted to build the timer. Observe the following in the accompanying timing diagram of figure 8.10b:
1) \(T_{\mathrm{B}}=3\) and \(T_{\mathrm{C}}=2\) clock cycles.
2) When \(x\) changes, the output does not change. This is expected because in a Moore machine the output is synchronous, thus changing only when the state changes.
3) The stay in state A depends only on \(x\), so the machine moves to state \(B\) at the first (positive) clock edge that finds \(x=\) ' 1 '.
4) Because \(T_{\mathrm{B}}=3\), state B lasts exactly three clock cycles (the timer counts from 0 to 2).
5) Because \(T_{\mathrm{C}}=2\) but the CA transition is conditional-timed, state C lasts at least two clock cycles (the timer counts from 0 to 1 ). The "at least" restriction is due to the \(x=\) ' 0 ' condition, which might not be true when the timer reaches the monitored \(\left(T_{\mathrm{C}}-1=1\right)\) value. In this example \(x=\) ' 0 ' was already available, so state C did last only two clock periods.
6) In the states where the timer is not needed (only state A in this example), the timer was kept stopped at zero.

In conclusion, in a Moore machine the output and the state are in perfect sync, changing at the same time. Each output value then has the same duration as its associated state.

\subsection*{8.9 Time Behavior of Timed Mealy Machines}

The Mealy machine of figure 8.11a, which is the Mealy counterpart of the Moore machine of figure 8.10a, is used to illustrate the analysis. Observe the following in the accompanying timing diagram of figure 8.11b:
1) \(T_{\mathrm{B}}=3\) and \(T_{\mathrm{C}}=2\) clock cycles.
2) Contrary to the Moore case, \(y\) can change when \(x\) changes. This is expected because Mealy machines are asynchronous.


Figure 8.11
(a) Mealy counterpart of the Moore machine of figure 8.10a. (b) A corresponding timing diagram.
3) The output value while in state A depends on \(x\), so two different values can occur: \(y=5\) if \(x=' 0\) ' or \(y=6\) if \(x=' 1\) '.
4) Because \(T_{\mathrm{B}}=3\), state B lasts exactly three clock cycles (the timer counts from 0 to 2).
5) Because \(T_{\mathrm{C}}=2\) but the CA transition is conditional-timed, state C lasts at least two clock cycles (the timer counts from 0 to 1 ). The "at least" restriction is due to the \(x=\) ' 0 ' condition, which might not be true when the timer reaches the monitored ( \(T_{\mathrm{C}}-1=1\) ) value. In this example \(x=\) ' 0 ' was already available, so state C did last only two clock periods.
6) In the states where the timer is not needed (only state A in this example), the timer was kept stopped at zero.
7) The states and the timer operate exactly as in the Moore case, but that is not true for the output.
8) As already seen, contrary to the Moore case, the output value is not unique in all states.
9) Contrary to the Moore case, the output does not change together with the state. It changes earlier.
10) Contrary to the Moore case, the output values do not necessarily last as long as the states. They last less than the associated state if the transition condition into that state is asynchronous, or they last exactly the same as the associated state if the transition condition into that state is synchronous (a timed transition, for example). Note that the output value \(y=6\) lasts less than three clock periods (the transition control signal into state B is \(x\), which is asynchronous), but \(y=7\) lasts exactly two clock periods (the transition control signal into state C is \(t\), which is synchronous).

In conclusion, in a Mealy machine the output changes earlier than the state, either by a fraction of a clock period (if the transition condition into that state is asynchronous) or by a full clock period (for synchronous conditions, such as time). The duration of each output value can then be different from that of its associated state.

\subsection*{8.10 Number of Flip-Flops}

Having understood the timer, we pass now to the last analysis before the presentation of timed (category 2) FSM examples. The analysis regards the number of flip-flops needed to implement the intended circuit. As mentioned earlier, in general, and particularly in large designs, it is difficult to estimate the number of logic gates that will be needed to implement the desired solution, but it is always possible to determine, and exactly, the number of flip-flops.

In the particular case of sequential circuits implemented as category 2 state machines, there are three demands for DFFs, as follows.
1) For the state register (see nx_state and pr_state in figure 8.2 a , which are the state memory flip-flops' input and output, respectively; below, \(M_{F S M}\) is the number of states):

For sequential or Gray encoding, \(N_{F S M}=\left\lceil\log _{2} M_{F S M}\right\rceil\). For example, \(M_{F S M}=25 \rightarrow N_{F S M}\) \(=5\).
For Johnson encoding, \(N_{F S M}=\left\lceil M_{F S M} / 21\right.\). For example, \(M_{F S M}=25 \rightarrow N_{F S M}=13\).
For one-hot encoding, \(N_{F S M}=M_{F S M}\). For example, \(M_{F S M}=25 \rightarrow N_{F S M}=25\).
2) For the output register (figure 8.2 b , optional, with \(b_{\text {output }}\) bits):
\(N_{\text {output }}=b_{\text {output. }}\). For example, \(b_{\text {output }}=16 \rightarrow N_{\text {output }}=16\).
3) To build the timer (figure 8.2a, compulsory):
\(N_{\text {timer }}=\left\lceil\log _{2} T_{\max }\right\rceil\), where \(T_{\max }\) is the largest transition time, expressed in "number of clock cycles," that is, \(T_{\max }=t_{\text {state_max }} \times f_{c l k}\), where \(t_{\text {state_max }}\) is the largest transition time, in seconds, and \(f_{c l k}\) is the clock frequency, in hertz. For example, for the machine to be able to stay \(t_{\text {state_max }}=8 \mu \mathrm{~s}\) in the state with longest duration, and assuming that \(f_{c l k}=50 \mathrm{MHz}, T_{\max }=8 \cdot 10^{-6} \times 50 \cdot 10^{6}=400\) clock cycles must be used, from which \(N_{\text {timer }}=9\) results.

Therefore, the total number of DFFs is \(N_{\text {total }}=N_{F S M}+N_{\text {output }}+N_{\text {timer }}\). In the examples that follow, as well as in the actual designs with VHDL and SystemVerilog, the number of flip-flops will be often examined.

\subsection*{8.11 Examples of Timed (Category 2) Machines}

A series of timed FSMs are presented next. To draw the corresponding state transition diagrams, strategy \#1 (section 8.5.2) is considered as the default strategy for controlling the timer. If the resulting machine fulfills condition 1 or 2 for strategy \#2 (section 8.5.3), then that strategy too can be used to control the timer.

Several of the examples described in this chapter will be implemented later using VHDL (chapter 9) and SystemVerilog (chapter 10).


Figure 8.12
Circuit that feeds a blinking light (an LED, in this case). (a) Circuit ports. (b) Commercial LEDs and typical usage. (c) Moore-type solution.

\subsection*{8.11.1 Blinking Light}

This example is simple enough and yet very illustrative of the general behavior of timed FSMs. It concerns a circuit that must turn a light on and off, remaining on during \(T_{1}\) clock periods and off during \(T_{2}\) clock periods. An important desired feature is that when the circuit is enabled it must start from a state with the light on (to prevent the user from thinking that the circuit is not working when large transition times are involved).

The circuit ports are depicted in figure 8.12a. The input comes from a switch called ena, which enables the circuit when asserted. The output is a port called light that feeds a light-emitting diode (LED).

Figure 8.12b shows examples of commercial LEDs and their typical usage. An LED consists of a PN junction fabricated, for example, with gallium arsenide (GaAs). It emits light when forward biased, as shown on the right of figure 8.12 b , which also shows a current-limiting resistor, \(R\). The emitted radiation can be in the infrared spectrum (used, for example, in remote controls) or in the visible spectrum (used, for example, in alphanumeric displays and as signaling lamps in all sorts of equipment). To radiate in the visible spectrum, other materials must be added to GaAs, such as aluminum, in AlGaAs (red light), or phosphorus, in GaAsP (red or yellow light). Other materials are used to obtain radiations at higher frequencies, such as zinc selenide (ZnSe) for blue LEDs.

A Moore-type solution is presented in figure 8.12c. It has three states, called stop (not blinking, with light off), on (circuit enabled, with light on), and off (circuit enabled, with light off). Note that while the switch is closed (ena = ' 1 ') the circuit flips back and forth between states on and off, staying \(T_{1}\) clock periods in the former and \(T_{2}\) clock periods in the latter. Note also that when ena is asserted the machine moves immediately (at the next positive clock edge) from state stop to state on; likewise, when enable is turned off, the machine moves immediately to state stop.

This machine falls in the situation depicted in figure 8.4 b , so it can be implemented with either timer control strategy (\#1, section 8.5.2, or \#2, section 8.5.3).

An interesting aspect of this machine is that it might not need a reset signal at all, depending on the chosen encoding scheme (for example, sequential or Gray) and on
the equations used to implement the next state (see exercise 8.5). Also, despite ena being an asynchronous input and being produced by a mechanical switch, neither a synchronizer (section 2.3) nor a debouncer (section 8.11.3) is needed because of the nature of this application.

Based on section 8.10, the number of flip-flops needed to implement this circuit is as follows. For the state register: \(M_{F S M}=3\) states; therefore, \(N_{F S M}=2\) if sequential, Gray, or Johnson encoding is used, or 3 for one-hot. For the optional output register: not needed in this application, so \(N_{\text {output }}=0\). For the timer: assuming 0.5 s for \(T_{1}\) and 1 s for \(T_{2}\), with \(f_{c l k}=50 \mathrm{MHz}, T_{\max }=5 \cdot 10^{7}\) clock cycles results, so \(N_{\text {timer }}=26\). Therefore, \(N_{\text {total }}=28\) or 29 .

\subsection*{8.11.2 Light Rotator}

This example shows another simple and yet very illustrative application for timed machines. It consists of a circuit that produces a rotating movement in a sevensegment display (SSD).

SSDs are just special seven-LED arrangements (eight if a decimal point is also included). This kind of device is illustrated in figure 8.13. In figure 8.13a an example of a commercial SSD device (two digits with decimal points) is shown. In figure 8.13 b a typical notation for the segment names (abcdefg) is shown. In figure 8.13c the common-anode configuration is presented, in which a ' 0 ' turns a segment on and a ' 1 ' turns it off. Finally, the table in figure 8.13 d shows the logic values that must be used to obtain the traditional 0-to-F hexadecimal characters.

The circuit ports for the current example are presented in figure 8.14a. The inputs are a stop switch ( \(s t p\) ), clock \((c l k)\), and reset (rst), and the output is a seven-bit signal (ssd) that feeds the seven segments of the SSD.
(a)

(b)

(c)

(d)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline char & abcdefg & char & abcdefg & char & abcdefg & char & abcdefg \\
\hline 0 & "0000001" & 4 & "1001100" & 8 & "0000000" & C & "0110001" \\
\hline 1 & "1001111" & 5 & "0100100" & 9 & "0000100" & d & "1000010" \\
\hline 2 & "0010010" & 6 & "0100000" & A & "0001000" & E & "0110000" \\
\hline 3 & "0000110" & 7 & "0001111" & b & "1100000" & F & "0111000" \\
\hline
\end{tabular}

Figure 8.13
(a) A commercial seven-segment display (SSD) device. (b) Segment names (abcdefg). (c) Commonanode configuration (a ' 0 ' lights a segment, whereas a ' 1 ' turns it off). (d) Logic values to obtain the 0 -to-F hexadecimal characters.


Figure 8.14
SSD rotator. (a) Circuit ports. (b) Corresponding (simplified) Moore-type state diagram.

The segments must be lit sequentially in the clockwise direction, with overlaps used to provide a smoother rotation. In other words, segment \(a\) must be lit for some time, then \(a\) and \(b\) should be lit together, then \(b\) only, next \(b\) and \(c\), then \(c\) only, and so on. If the stop switch is asserted ( \(s t p=\) ' 1 '), the movement must stop, resuming exactly from the same position when stp returns to ' 0 '. If reset is asserted ( \(r s t=\) ' 1 '), the circuit must return asynchronously to the initial state (only segment \(a\) lit).

A corresponding Moore solution is presented in figure 8.14b, where each state name denotes which SSD segments are lit while the machine is in that state. Note that it is a simplified diagram, with only the output value (no output name) shown inside each state circle and only the time values (no stop conditions) specified on the arrows. Moreover, note the relaxed use of \(T_{1}\) and \(T_{2}\) alone on the arrows (instead of \(t=T_{1}-1\) and \(t=T_{2}-1\) ), indicating simply the total number of clock periods that the machine must spend in each state.

As in the previous example, the input ( \(s t p\) ) is asynchronous and produced by a mechanical switch. However, because of the nature of the application, again neither a synchronizer (section 2.3) nor a debouncer (section 8.11.3) is needed.

Based on section 8.10, the number of flip-flops needed to implement this circuit is as follows. For the state register: \(M_{F S M}=12\) states; therefore, \(N_{F S M}=4\) if sequential or Gray encoding is used, 6 for Johnson, or 12 for one-hot. For the optional output register: not needed in this application, so \(N_{\text {output }}=0\). For the timer: assuming 120 ms for \(T_{1}\) and 35 ms for \(T_{2}\), with \(f_{c l k}=50 \mathrm{MHz}, T_{\max }=6 \cdot 10^{6}\) clock cycles results, so \(N_{\text {timer }}=23\). Therefore, \(N_{\text {total }}=27,29\), or 35 .

VHDL and SystemVerilog implementations for this light rotator are presented in sections 9.4 and 10.4, respectively. Because this machine falls in the situation depicted in figure 8.4a, it can be implemented with either timer control strategy (\#1, section 8.5 .2 , or \#2, section 8.5.3). Strategy \#2 was adopted there, but both strategies are explored and compared in exercises 9.1 and 10.1.

\subsection*{8.11.3 Switch Debouncer}

Figure 8.15 a shows a switch that produces \(x=\) ' 0 ' when open or \(x=\) ' 1 ' when closed. The problem with mechanical switches is that they might bounce a few times before


Figure 8.15
(a) Mechanical switch and debouncer ports. (b) Bounces processed by a one-sided (low-to-high) debouncer. (c) With a two-sided debouncer.
finally settling in the proper position, as illustrated in figures \(8.15 b, c\). Depending on the switch characteristics, such bounces can last from a fraction of a millisecond up to several milliseconds.

Switch bounces are not acceptable in several applications. A disastrous example is when the signal produced by the switch must act as a clock to some process because the corresponding flip-flops will understand the bounces as several clock pulses.

Two debouncing approaches are depicted in figures \(8.15 b\) b, . The first is one-sided (only the low-to-high transition is debounced), whereas the second is two-sided (both transitions are debounced). The debouncing strategy here consists of checking the input permanently (at every clock cycle) and accepting a new value only after it has remained fixed for a certain amount of time. For example, if the debouncing time is 2 ms and the clock frequency is 50 MHz , the same result must occur \(2 \cdot 10^{-3} \times 50 \cdot 10^{6}\) \(=100,000\) consecutive times to be considered valid.

Note that in figure 8.15b the one-sided debouncer automatically filters the other transition, but it does not protect the circuit against unexpected input transients/ glitches (caused, for example, by the switching of large current loads onto the same power supply or by lightning).

In debouncers, glitches at the output are generally undesired because providing a safe, clean signal is precisely the purpose of this circuit, so the optional output register of figure 8.2 b should be employed unless \(y\) comes directly from a DFF (this depends on the encoding scheme and can be checked in the compilation report equations).

A flowchart for the two-sided debouncer of figure 8.15 c is presented in figure 8.16a.
An initial (bad) solution is presented in figure 8.16 b . The problem here is that it only checks the condition \(x=\) ' 1 ' (or ' 0 ') at the end of \(T\) clock cycles. Consequently, to obtain a full debouncer, each transition of figure 8.16 b must be replaced with three pure transitions, resulting in the FSM of figure 8.16 c . Although the " -2 " factor in the timed \(t=T-2\) condition does not matter in this application, it was kept as a reminder of the precise value.

Even though the input ( \(x\) ) is asynchronous, a synchronizer (section 2.3) is not needed because \(y\) can change its value only after a time \(T\), which is a synchronous condition (the timer operates with the same clock as the FSM).


Figure 8.16
Full switch debouncer. (a) Flowchart. (b) Bad and (c) good solutions.

To discuss the need for an explicit reset signal (see sections 3.8 and 3.9), let us divide the problem into two cases. The first regards implementation in FPGAs whose flip-flops are automatically reset to ' 0 ' at power-up. In this case, reset is not needed if any of the encoding schemes described in section 3.7 is used, except for one-hot, but fine for the modified version of one-hot seen in figure 3.10b, with the only restriction that zero must be declared as the initial (reset) state. The second case regards implementation in devices whose DFFs' initial state is arbitrary. If sequential or Gray encoding is used, all two-bit codewords will be consumed to encode the machine, so the initial state will fall necessarily inside the machine, and deadlock cannot occur. Consequently, we only need to consider the consequences of having the machine start from a state other than state zero. It is clear from figure 8.16c that the value of \(y\) will adjust itself automatically to the value of \(x\) after at most \(T\) clock periods; therefore, reset is required only if having \(y=\) ' 1 ' during such a short time period might be enough to turn on a critical application (a factory machine, for example).

Based on section 8.10, the number of flip-flops needed to implement this circuit is as follows. For the state register: \(M_{F S M}=4\) states; therefore, \(N_{F S M}=2\) if sequential, Gray, or Johnson encoding is used, or 4 for one-hot. For the optional output register: assuming that \(y\) comes directly from a DFF, \(N_{\text {output }}=0\). For the timer: with \(t_{\text {state_max }}=2 \mathrm{~ms}\) and \(f_{c l k}=50 \mathrm{MHz}, T_{\max }=10^{5}\) clock cycles results, so \(N_{\text {timer }}=17\). Therefore, \(N_{\text {total }}=19\) or 21 .

\subsection*{8.11.4 Reference-Value Definer}

This section deals with a problem that is common in control applications. It consists of a circuit that sets a reference value. For example, a temperature controller for an air conditioning system must have a way of letting the user choose the desired (reference) room temperature (see section 5.4.4).


Figure 8.17
Reference-value definer implemented (a) with a counter and (b) with a state machine.

An example is presented in figure 8.17, in which the reference value is set by a pushbutton. Two cases are considered; in both a debouncer is needed, but in figure 8.17a the reference value is produced by a common counter (note that \(x\) plays the role of clock), whereas in figure 8.17b it is produced by an FSM (the actual system clock plays the role of clock). Even though a counter too is an FSM, the reference here is to the fact that only the latter is implemented using the FSM approach.

The case in figure 8.17a is advantageous when the reference values are regular (next = present + constant). For example, if we want to set the desired room temperature for the air conditioning system mentioned above, the counter can be incremented by one unit \(\left(1^{\circ} \mathrm{F}\right.\) or \(\left.1^{\circ} \mathrm{C}\right)\) every time the pushbutton is pressed (and released, of course), going from the minimum to the maximum reference value, returning then to the minimum value and restarting from there. Another advantage of this alternative is that the number of reference values can be arbitrarily large.

The case in figure 8.17b is advantageous when the reference values are irregular and the number of reference values is small. Note that we have made a little modification in the debouncer (FSM1), embedding in it a one-shot converter (see sections 2.4 and 5.4.3), which converts the (long) debounced signal into a pulse with duration equal to one clock period.

A solution for the case of figure 8.17 b is presented in figure 8.18. The time behavior of FSM1 is illustrated in figure 8.18a, and the corresponding state diagram is shown in figure 8.18 b . It is a ' 0 '-to- \({ }^{-} 1\) ' debouncer, so it requires three states; just one extra state is needed to include the one-shot conversion, thus totaling four states. The state diagram for FSM2 is depicted in figure 8.18c, for a total of 10 states with arbitrary reference values \(r_{1}, r_{2}, \ldots, r_{10}\). The one-shot modification of FSM1 is important because it eliminates the need for FSM2 to check the return of \(x\) to ' 0 ', which would double its number of states.

In many applications both up and down controls are needed. This kind of situation is illustrated in figures 8.19 a and 8.19 b , which are generalizations of the cases in figures 8.17 a and 8.17 b, respectively (i.e., in the former the reference value is set by a counter, whereas in the latter it is set by a state machine).


Figure 8.18
Solution for the circuit of figure 8.17b. (a) Time behavior and (b) FSM for the pushbutton debouncer with embedded one-shot conversion. (c) FSM for the reference-value definer, with 10 arbitrary values.


Figure 8.19
Reference-value definer with up and down controls implemented (a) with a counter and (b) with a state machine.

The circuit of figure 8.19a consists of a block with switch connections plus a debouncer, followed by a regular counter with up-down control (it counts upward if \(u p / d n^{\prime}=\) ' 1 ' or downward otherwise). Note that \(x\) acts as the clock to the counter, so \(x\) must be debounced. When a switch is pressed, it must not only generate a pulse in \(x\) but also define the value of \(u p / d n^{\prime}\) (see exercise 8.12).

The circuit of figure 8.19 b also consists of two blocks. Note that it is similar to that in figure 8.17 b , but with two control inputs. The first block contains a debouncer plus a one-shot conversion circuit, producing two short (one-clock-period duration) pulses at \(x_{1}\) and \(x_{2}\), which are not expected to happen simultaneously. The second block is a reference-value-definer state machine, moving up if \(x_{1}=\) ' 1 ' or down if \(x_{2}=\) ' 1 '. The construction of this circuit can be based on figure 8.18. As in that case, it might be advantageous to build the first block with a single FSM that combines the debouncer and the one-shot circuit. Additionally, because \(x_{1}\) and \(x_{2}\) are not expected to be active at the same time, it might be advantageous to build a "combined" debouncer for both \(u p\) and \(d n\) signals (see exercises 8.9 and 8.10).


Figure 8.20
Traffic light controller. (a) Time-related specifications. (b) Circuit ports. (c) Corresponding (simplified) Moore machine.

\subsection*{8.11.5 Traffic Light Controller}

A classical timed application is described in this example, which consists of a traffic light controller.

The overall specifications, summarized in figure 8.20a, are as follows:
a) It must have three operating modes: regular, test, and standby.
b) Regular mode consists of four states of operation, called \(R G\) (red in direction 1 and green in direction 2 turned on), \(R Y\) (red in direction 1 and yellow in direction 2 turned on), \(G R\) (green in direction 1 and red in direction 2 turned on), and \(Y R\) (yellow in direction 1 and red in direction 2 turned on), each with an independent time duration.
c) Test mode must allow all preprogrammed times to be overwritten (by activating a manual switch) with a small value ( 1 s per state), such that the system can be easily tested during maintenance.
d) Standby mode, if set (by a sensor accusing malfunctioning, for example, or by a manual switch), must have the system activate the yellow lights in both directions, remaining so while the standby signal is active.

The circuit ports are shown in figure 8.20 b . The inputs are two switches, called stby and test, plus clock and reset. The standby switch selects between the regular mode (stby \(=\) ' 0 ') and the standby mode (stby \(=\) ' 1 '), and the test switch forces the system into test mode when asserted (test \(=\) ' 1 '). The output consists of six signals that control the six traffic lights (RYG in direction 1 plus RYG in direction 2).

A corresponding Moore solution is presented in figure 8.20c. If the system is in standby mode, the machine remains in state YY; otherwise, it circulates through states
\(\mathrm{RG} \rightarrow \mathrm{RY} \rightarrow \mathrm{GR} \rightarrow \mathrm{YR} \rightarrow \mathrm{RG}\), and onward. The time values shown in the figure (timeRG, timeRY, and so on) are for the regular operation mode, which must change to timeTEST if the system is switched to the test mode (not included in the state diagram for the sake of simplicity). Note that, due to the nature of this application, stby can operate in a way similar to reset (after proper synchronization/glitch removal).

Based on section 8.10, the number of flip-flops needed to implement this circuit is as follows. For the state register: \(M_{F S M}=5\) states; therefore, \(N_{F S M}=3\) if sequential, Gray, or Johnson encoding is used, or 5 for one-hot. For the optional output register: not needed in this application, so \(N_{\text {output }}=0\). For the timer: knowing that \(t_{\text {state_max }}=15 \mathrm{~s}\) (table of figure 8.20a) and assuming \(f_{c l k}=50 \mathrm{MHz}, T_{\max }=75 \cdot 10^{7}\) clock cycles results, so \(N_{\text {timer }}=30\). Therefore, \(N_{\text {total }}=33\) or 35 .

The analysis on the need for reset and synchronizers is left as an exercise (exercise 8.13).

\subsection*{8.11.6 Car Alarm (with Chirps)}

A car alarm was presented in section 4.2.4. The example shown here is an extension to that one, now with chirps included to announce when the alarm is turned on (one chirp) or off (two chirps). Because the chirps are brief siren activations, a timed machine is now needed.

The circuit ports are shown in figure 8.21a. The inputs are remt (command from the remote control) and sen (from sensors indicating intrusion) plus clock and reset.


Figure 8.21
Car alarm. (a) Circuit ports. (b) Bad (with state bypass and non-true complementarity) and (c) good solutions.

The output is siren, which must be turned on (= ' 1 ') when an intrusion occurs or during the chirps.

A corresponding Moore solution is presented in figure 8.21b, with disarmed, armed, and alarm as the fundamental states and chirp1 to chirp 5 as the chirp-generating states. Note the timed transitions. The time duration of a chirp is chirpON clock cycles, and the time interval between two siren activations is chirpOFF clock periods. Observe, however, that this machine exhibits the state-bypass problem described in section 4.2.4, which occurs when a long remt \(=\) ' 1 ' command is received because then the circuit simply circulates in the loop disarmed \(\rightarrow\) chirp \(1 \rightarrow\) armed \(\rightarrow\) chirp \(3 \rightarrow\) chirp \(4 \rightarrow\) chirp5 \(\rightarrow\) disarmed, and so on. An additional (minor) problem is that not all transition conditions are truly complementary (section 1.5); for example, observe in state armed that there is no priority definition in case remt \(=\) ' 1 ' and sen \(=\) ' 1 ' occur simultaneously.

A corrected machine is presented in figure 8.21c, in which two wait states (white circles) were added to eliminate state bypass. Of course, if a one-shot circuit (section 5.4.3) were added to the previous solution to reduce the duration of remt to a single clock period, and noncomplementarity were corrected, then that machine would work well too. Note that in the presented solution the alarm can be turned on with sen = ' 1 '; if that is not wanted, all that is needed is to use the condition "remt = ' 1 ' \& sen = ' 0 '" in the disarmed-to-chirp 1 transition.

As mentioned in a similar application in section 5.4.5 (garage door controller), a good practice in this kind of application is to include debouncers for the signals coming from the remote control and sensors, which not only eliminate the need for synchronizers but also prevent short glitches (due to lightning, for example) from (de) activating the alarm (they have to be full debouncers, similar to that in section 8.11.3).

VHDL and SystemVerilog implementations for this car alarm are presented in sections 9.5 and 10.5 , respectively. The analysis of the number of flip-flops and the need for reset and synchronizers is treated in exercise 8.14.

\subsection*{8.11.7 Password Detector}

This section describes a password detector, used, for example, in password-protected door locks like that in figure 8.22a.

The circuit ports are depicted in figure 8.22 b . The inputs are key (which represents the keypad pushbutton pressed by the user) plus the traditional clock and reset signals; key is composed of four bits, so it can encode a keypad with up to 15 pushbuttons (one codeword is reserved for the no-button-pressed case). In the development below it is assumed that the bits of key are already debounced and encoded according to the table in exercise 5.14. The outputs are led1 (turned on when the system is in the idle state) and led2 (turned on for a few seconds when the correct password has been typed in).


Figure 8.22
Password detector. (a) A password-protected door lock. (b) Circuit ports. (c) A Moore-type solution.

The desired circuit features are the following (where \(T\) corresponds to 3 s ):
a) When the system is in the idle state, LED led1 (idle) must be on and LED led2 (unlocked) must be off.
b) During the time a password is being entered both LEDs must be off.
c) If the correct password is entered, led2 must be turned on for a time T, with led1 still off, after which the system must return to idle (during that time interval a new password must not be accepted).
d) If the time interval during which a key is kept pressed or between two key presses is longer than \(T\), it must be considered an error, so the machine should return to idle.
e) Passwords with repeated digits must be allowed.

A Moore-type solution for this problem is presented in figure 8.22c. The three digits that comprise the password are called \(a, b\), and \(c\); \(n\) means none, which is the character corresponding to none of the keys pressed (" 1111 "-see the table in exercise 5.14 ). Note that both LEDs remain off during the process. To keep the diagram as clean as possible, a slightly simplified representation was used (for example, the \(a\) and \(T\) conditions on the arrows mean \(k e y=a\) and \(t=T-1\), respectively). The time during which led2 stays on is the time that the user has to open the door in a corresponding physical implementation.

Based on section 8.10, the number of flip-flops needed to implement this circuit is as follows. For the state register: \(M_{F S M}=11\) states; therefore, \(N_{F S M}=4\) if sequential or Gray encoding is used, 6 for Johnson, or 11 for one-hot. For the optional output register: glitches are generally not a problem in this kind of application, so \(N_{\text {output }}=0\). For the timer: because \(t_{\text {state_max }}=3 \mathrm{~s}\), and assuming \(f_{c l k}=50 \mathrm{MHz}, T_{\text {max }}=15 \cdot 10^{7}\) clock cycles results, so \(N_{\text {timer }}=28\). Therefore, \(N_{\text {total }}=32,34\), or 39 .

The analysis of the need for reset and synchronizers is left as an exercise (exercise 8.15).

\subsection*{8.11.8 Triggered Circuits}

This section shows FSMs for triggered circuits with both bistable and monostable behavior. The former can hold any logic level (' 0 ' or ' 1 ') forever, whereas the latter (also called one-shot) always returns to the initial value (' 0 ', for example) after a finite time interval. The input (triggering signal) is denoted by \(x\), and the output (response) is called \(y\).

The input can be either synchronous (generated by a circuit operating with the same clock as the triggered circuit) or asynchronous. However, the circuit itself is always synchronous, so the output goes up or down only at the proper clock edge. For example, if we say that \(y\) goes to ' 1 ' when \(x\) goes to ' 1 ', it means that \(y\) goes to ' 1 ' at the first (positive) clock transition after \(x\) goes to ' 1 '.

Two signals produced by bistable circuits are depicted in figure 8.23. Note that \(y\) does not return to ' 0 ' (initial value) automatically. The signal in figure 8.23a is triggered by the condition " \(x=\) ' 1 ' during \(T\) clock cycles" and detriggered by \(x=\) ' 0 '. The signal in figure 8.23 b is triggered by \(x=\) ' 1 ' and detriggered by the condition " \(x=\) ' 0 ' during \(T\) clock cycles."
(a)

(b)

(c)


Figure 8.23
(a, b) Signals produced by triggered bistable circuits (note that the output does not return to zero automatically). (c) Solution for the case in b.
(a)

(b)


Figure 8.24
(a) Signal produced by a triggered monostable circuit (note that the output always returns to zero). (b) A possible solution (the timer is not zeroed but it rather holds its value during the CD transition).

A solution for the case in figure 8.23 b is presented in figure 8.23c. Note that in this machine, when reset is released, the output goes immediately to ' 1 ' if the input is ' 1 ', which is fine because this is a level-detecting machine (as opposed to edge-detecting machines, depicted in the next example).

Monostable (one-shot) circuits are generally more complex to design than bistable circuits. An example is shown in figure 8.24. Observe that now \(y\) always returns to ' 0 ' (initial value) after a certain time interval, regardless of \(x\). As indicated by arrows in the figure, \(y\) is now edge-dependent rather than level-dependent. The output is triggered by a positive transition in \(x\) and detriggered \(T\) clock cycles later. Observe that retriggering during the time interval \(T\) is allowed (check the final part of the plot).

A solution for this problem is presented in figure 8.24 b . Note that the timer must not be zeroed when the machine enters state D (the thick circle indicates that there is at least one transition into state D in which the timer should not be zeroed, while the different arrow, with a large dot at its origin, identifies that transition). Observe also that when reset is released the output does not go to ' 1 ' if the input is ' 1 ', but it rather waits for the next upward transition of \(x\), which is proper of edge-detecting (as opposed to level-detecting) circuits.

Solutions for edge-triggered circuits (as in figures 8.24b) are among the few cases in which the timer control strategy \#1 (section 8.5.2) cannot be applied completely because the timer cannot be zeroed in all state transitions (another example was seen in section 8.8). Anyhow, it will be shown in the designs with VHDL and SystemVerilog (sections 9.6 and 10.6, respectively) that preventing the timer from being zeroed during specific state transitions is very simple. Moreover, it will be shown in exercise 8.18 that this particular FSM can be broken into two FSMs, causing strategy \#1 to be applicable without restrictions.

\subsection*{8.11.9 Pulse Shifter}

This section presents a circuit that is a particular case of the triggered circuits family described above. It consists of a "pulse shifter," which, as the name says, shifts a pulse a certain number of time units. In other words, it makes a copy of a given pulse \(T_{\text {shift }}\) clock cycles later.

An example is presented in figure 8.25. The circuit ports are shown in figure 8.25a, where \(x\) is the input (original pulse) and \(y\) is the output (shifted pulse). An illustrative timing diagram is included if figure 8.25 b , which shows that \(x\) can be synchronous or asynchronous. The time parameters are \(T_{\text {pulse }}=3 T_{c l k}\) and \(T_{\text {shift }}=8 T_{c l k}\). Note, however, that \(T_{\text {pulse }}\) is measured (inevitably) in number of clock edges rather than number of clock periods (these values coincide when \(x\) is synchronous). The last (positive) clock edge for which \(x=\) ' 0 ' was chosen as the reference for the shift; a different alternative would be the first (positive) clock edge for which \(x=\) ' 1 '.

A solution for this problem is presented in figure 8.26a. Note the box above the state shift, which says that \(T_{x}\) is a (registered) copy of \(t\), enabled when \(x\) is high. \(T_{x}\) is needed to keep track of the pulse's width, so the circuit can operate without any a-priori information on the value of \(T_{\text {pulse }}\).

(a)


Figure 8.25
Pulse shifter. (a) Circuit ports. (b) Desired behavior for both synchronous and asynchronous input.


Figure 8.26
(a) FSM that implements the pulse shifter of figure 8.25. (b) Corresponding timing diagram, for \(T_{\text {pulse }}=3\) and \(T_{\text {shift }}=8\) clock periods.

An illustrative timing diagram for this FSM is shown in figure 8.26b. It is very important that the reader examine this diagram carefully and check the correctness of the circuit operation.

An application for pulse shifters is in the generation of enable signals (see section 3.11). In the case of figure 3.18, the input is synchronous and its width is just one clock period, being therefore simpler to generate than the generic case above (exercise 8.19).

\subsection*{8.11.10 Pulse Stretchers}

This section presents another king of circuit that is a particular case of the triggered circuits family introduced in section 8.11.8. It consists of "pulse stretchers," which, as the name indicates, take a pulse of shorter duration (often one clock period) and stretch it to a longer length (in fact, one case was already seen in section 2.4 and exercises 2.4 and 2.5). In figure 8.29 an application for a pulse stretcher will be presented.

The circuit ports are shown in figure 8.27a, where \(x\) (short pulse) is the input and \(y\) (longer pulse) is the output. The desired behavior is depicted in figures \(8.27 \mathrm{~b}, \mathrm{c}\). In figure 8.27 b the input is asynchronous and the output can be asynchronous ( \(y\) goes to ' 1 ' as soon as \(x\) goes to ' 1 ') or synchronous ( \(y\) changes only at clock edges). In figure 8.27 c the input is synchronous and the output can again be asynchronous or synchronous. As usual, cases with synchronous output can be implemented with


Figure 8.27
Pulse stretcher. (a) Circuit ports. Desired behavior for (b) asynchronous and (c) synchronous input, both with asynchronous or synchronous output.

Moore machines, whereas for asynchronous output a Mealy machine is the natural choice.

Figure 8.27b shows three options for the asynchronous input: in graph 1 , \(x\) lasts one clock period; in graph 2, it lasts more than one clock period but not more than \(T\); in graph 3, it lasts less than one (or even less than one-half of a) clock period. In all cases the output pulse ( \(y\) ) must have the same length \(T\). Because stretchers can be synchronous or asynchronous, two options are shown for the output. In the asynchronous case (upper plot for \(y\) ), the output goes up as soon as the input goes up (thus, the total length is obviously \(>T\) ), whereas in the synchronous case (lower plot for \(y\) ), the output changes only at clock edges. As usual, small propagation delays were included between clock transitions and the corresponding responses to portray a realistic situation.

Figure 8.27c shows three options for the synchronous input: in graph 4, \(x\) lasts one clock period; in graph 5, it lasts more than one but less than \(T\) clock periods; in graph 6, it lasts at least one-half of a clock period. Again, the output can be asynchronous (upper plot for \(y\) ) or synchronous (lower plot for \(y\) ). Note that the asynchronous output looks synchronous, but rigorously speaking it is not because its starting point is determined by \(x\), not directly by the clock. Observe that in the truly synchronous case the negative clock edge was adopted for the FSM (so \(x\) and \(y\) are updated at opposite clock edges).

Solutions for two of the cases presented in figure 8.27 are shown in figure 8.28. The first solution is for the synchronous case of figure 8.27 b , valid for inputs 1 and 2 ; because this circuit is synchronous, it was implemented with a Moore machine (figure


Figure 8.28
(a) Moore solution for the synchronous case of figure 8.27 b , covering inputs \(1-2\), and (b) an illustrative timing diagram. (c) Mealy solution for the asynchronous case of figure 8.27 c , covering inputs 4-5, and (d) an illustrative timing diagram.


Figure 8.29
Serial data receiver. (a) Circuit ports. (b) Desired behavior ( \(d v\) is stretched to produce ena). (c) Solution with a shift register controlled by the pulse stretcher.
8.28a). The second solution is for the asynchronous case of figure 8.27 c , valid for inputs 4 and 5; because this circuit is asynchronous, it was implemented with a Mealy machine (figure 8.28c). Solutions for other cases are treated in exercises 8.20 to 8.23.

Figures 8.28 b and 8.28 d present illustrative timing diagrams for the FSMs of figures 8.28 a and 8.28 c , respectively, for \(T=5\). It is very important that the reader examine these diagrams carefully and check the correctness of the circuit operation.

An application for a pulse stretcher is depicted in figure 8.29, which consists of a serial data receiver (a deserializer). The circuit ports are shown in figure 8.29a. The inputs are \(x\) (serial bit stream), \(d v\) (data valid bit, high during only one clock cycle, informing that data storage should start), plus the conventional clock and reset. The outputs are \(y(N-1: 0)\) (multibit one-dimensional register in which the received data must be stored) and done (high while the machine is idle). Some of these signals are shown in figure 8.29 b , which also highlights the fact that the first bit of \(x\) is made available at the same time that \(d v\) is asserted, so data storage must start immediately.

A possible solution is presented in figure 8.29c. It consists of a shift register whose enable input is produced by an FSM (this is a simplified view; the enable port of a DFF, if not built-in, can be constructed using a multiplexer, as shown in figure 8.29d). When a \(d v=\) ' 1 ' pulse occurs, the FSM produces ena \(=\) ' 1 ' during \(N\) consecutive clock cycles, causing \(N\) bits of \(x\) to be shifted in, thus getting stored in the \(N\) flip-flops that comprise the shift register, producing \(y(N-1: 0)\).

Note that in this case the FSM is simply a pulse stretcher. Because the first bit of \(x\) is made available at the same time that \(d v\) is asserted, one must be careful not to skip that bit (see section 3.10). Consequently, we can employ either an asynchronous (Mealy) FSM, which would then produce the signal shown in the figure, or a
synchronous (Moore) machine operating at the negative clock transition. The former option can be implemented with the FSM of figure 8.28c, with \(T=N\). Note also that done can be computed as ena'. Another serial data receiver will be seen in section 11.7.7.

\subsection*{8.12 Exercises}

\section*{Exercise 8.1: Machines Category}
a) Why are the state machines in figures \(8.12 \mathrm{c}, 8.14 \mathrm{~b}, 8.20 \mathrm{c}\), and 8.21 c (among others) said to be of category 2 ?
b) What differentiates category 2 from category 1? (Compare figures 8.2 and 5.2.)

\section*{Exercise 8.2: Timer Interpretation \#1}

Consider the timed machine of figure 8.3 , operating with \(f_{c l k}=1 \mathrm{MHz}\) and \(T=13\) clock cycles.
a) Which states are timed (timer needed) and which are not?
b) Can any of the states last longer than \(T\) clock periods? Explain.
c) Can the timer control strategy \#2 (section 8.5.3) be used to build the timer?
d) Since \(T=13\), we know that the range of interest is from 0 to 12 . Assuming that strategy \#1 (section 8.5.2) is adopted to build the timer, can we employ a timer that runs (when enabled, of course) up to 16 (a power of two)? What are the consequences of this?
e) Still assuming strategy \#1 for the timer, is it necessary to specify a value for \(T\) ( \(=0\), for example) in the untimed states? Is that the case also in strategy \#2?
f) During how many microseconds will the machine stay in each state? Does your answer depend on \(x\) ?
g) How many flip-flops are needed to build this FSM (with sequential encoding), including the timer? Does this answer depend on \(x\) ?

\section*{Exercise 8.3: Timer Interpretation \#2}

Consider the timed machine of figure 8.3, operating with \(T=3\) clock cycles. Fill in the missing parts in the plots of figure 8.30. Note the intentional propagation delays left between the clock transitions and the respective responses to portray a realistic


Figure 8.30


Figure 8.31
situation. Assume that strategy \#1 (section 8.5.2) was adopted for the timer. (Regarding strategy \#2, see the previous exercise.)

\section*{Exercise 8.4: Analysis of Timer Control Strategies \#1 and \#2}

Assume that the switch debouncer of figure 8.16c was designed to operate with \(T=4\) clock cycles (more precisely, with 4 clock edges, because \(x\) is asynchronous).
a) Say that strategy \#1 (section 8.5.2) was employed to design the timer. Complete the timing diagram of figure 8.31a for the given input \(x\). As usual, a small propagation delay was included between clock transitions and corresponding responses to portray a more realistic situation. Call the states A, B, C, and D to simplify the notation.
b) Do the same for the timing diagram of figure 8.31b, assuming now that strategy \#2 was used for the timer. Is the result \((y)\) the same as for strategy \#1?

\section*{Exercise 8.5: Blinking Light without Reset}

It was said in section 8.11 .1 that the light blinker of figure 8.12c might not require a reset signal, even if flip-flops with arbitrary initial states are used to implement it.
a) Prove that if sequential encoding is used and optimal (minimal) expressions are adopted for \(n x \_\)state (i.e., \(d_{1}\) and \(d_{0}\) ), then this FSM can indeed operate without reset. (Suggestion: Review sections 3.8 and 3.9 and see exercise 3.11.)
b) Show that, on the other hand, if sequential encoding is used but all "don't care" bits are filled with ' 1 's, then the machine is subject to deadlock, so a reset signal is needed.

\section*{Exercise 8.6: Blinking Light with Several Speeds}

This exercise is an extension to the light blinker of figure 8.12c, which must now operate with a programmable speed, set by a pushbutton (called \(s p d\) ). The desired speeds
are \(1,2,4\), and 8 Hz . The next speed must be selected every time the pushbutton is pressed, returning to 1 Hz after passing 8 Hz . One alternative (among others) is presented in figure 8.32 , which consists of a cascade of FSMs. The first can be a debouncer + one-shot converter (similar to figure \(8.18 b\) ), the second can be a reference-value definer (similar to figure 8.18c), and the third the light blinker proper (figure 8.12c). The purpose of the first pair of FSMs is to produce \(T_{\text {ref }}\), which is then used as time parameter for the blinker. Assume a \(1-\mathrm{ms}\) debouncing interval, a \(50-\mathrm{MHz}\) clock, and sequential encoding for the FSMs.
a) Calculate the four values of \(T_{\text {ref }}\) (one for each speed); for example, for \(1 \mathrm{~Hz}, t_{\text {ref }}=0.5\) s, so \(T_{\text {ref }}=25 \cdot 10^{6}\) clock cycles.
b) Draw a block diagram for your solution, splitting the big block of figure 8.32 into two blocks.
c) Show the state transition diagram for each FSM used in this circuit.
d) How many DFFs are needed to build the entire circuit?

\section*{Exercise 8.7: Pushbutton Debouncer plus Memory}

Figure 8.33 shows a pushbutton that must be debounced and also "memorized," such that the stored value gets inverted every time the pushbutton is pressed (as in the stopwatch used by football referees, which alternately runs and stops every time the pushbutton is pressed). If a debouncer were not needed, the trivial solution of figure 8.33 a could be used, in which \(x\) is connected directly to the clock input of a DFF (due to the inverted version of \(q\) connected back to \(d\), it resembles a toggle-type flip-flop, so every time a positive clock edge occurs, the value of \(y\) gets inverted). Let us assume, however, the usual situation, in which the pushbutton must be debounced.


Figure 8.32


Figure 8.33


Figure 8.34
a) Draw a flowchart for the combined solution of figure 8.33b (debouncer plus memory in one FSM).
b) Draw a Moore-type state diagram corresponding to the flowchart presented above.
c) Assuming that sequential encoding is used and that the debouncing time interval is 1 ms , with \(f_{c l k}=50 \mathrm{MHz}\), calculate the number of flip-flops needed to build this machine.
d) If the solution of figure 8.33a were employed, with the debouncer included, how many flip-flops would be required?

\section*{Exercise 8.8: Independent Multisignal Debouncer}

Figure 8.34 shows four mechanical switches for which debouncers are needed. In figure 8.34a a complete debouncer for each signal is considered, whereas figure 8.34 b considers a "combined" approach. Because the timer is the most expensive part, if a single timer could be used in the latter it would already represent a major gain. In this exercise the switches are independent of each other, so they might be activated simultaneously. Assume a \(1-\mathrm{ms}\) minimum debouncing interval, a \(50-\mathrm{MHz}\) clock, and sequential encoding for the FSMs.
a) How many flip-flops are needed to implement the option in figure 8.34a, employing the debouncer of figure 8.16 c?
b) Draw a state transition diagram for an FSM capable of implementing the combined debouncer of figure 8.34b.
c) How many flip-flops are needed to implement your combined circuit?

\section*{Exercise 8.9: Dependent Multisignal Debouncer}

Figure 8.35 shows a keypad (see details in exercise 5.14 ) for which debouncers are needed. Note that this exercise is an extension to that above, with the difference that now the signals are no longer independent of each other. Because only one key is supposed to be pressed at a time, the only valid codewords are "1111" (no key pressed), " 0111 " (key in row 1 pressed), " 1011 " (key in row 2 pressed), " 1101 " (key in row 3


Figure 8.35
pressed), and " 1110 " (key in row 4 pressed). Note that for the purposes of this exercise, as well as for testing the solution with VHDL or SystemVerilog, the arrangement in figure 8.34 can be used equivalently. Assume a \(1-\mathrm{ms}\) debouncing interval, a \(50-\mathrm{MHz}\) clock, and sequential encoding for the FSMs.
a) How many flip-flops are needed to implement the option in figure 8.35a (or 8.34a) with the debouncer of figure 8.16 c? Is this option capable of filtering out invalid codewords?
b) Draw a state transition diagram for an FSM capable of implementing the combined debouncer of figure 8.35 (or 8.34 b). It must also be able to filter out invalid codewords (hence, \(y\) can only be "1111," "0111," "1011," "1101," or "1110").
c) How many flip-flops are now required?

\section*{Exercise 8.10: Dependent Multisignal Debouncer with One-Shot Conversion}

This exercise concerns the FSM1 block of figure 8.19b, which must implement a twosignal debouncer with one-shot output. Recall that \(u p\) and \(d n\) are not supposed to be high at the same time, so the machine should be able to filter out invalid inputs (the only values allowed for \(x_{1} x_{2}\) are " 00 ", " 10 ", and " 01 "). Draw a state transition diagram for this FSM.

\section*{Exercise 8.11: Arbitrary Reference-Value Definer with Up/Down Controls}

Figure 8.19 b shows an alternative for implementing a reference-value definer with up and down controls, which is advantageous when the reference values are few and irregular (arbitrary). The first block was already treated in the previous exercise. Draw a state transition diagram for an FSM capable of implementing the second block, with eight reference values \(\left(r_{1}, r_{2}, \ldots, r_{8}\right)\). Recall that the inputs to this machine can only be \(x_{1} x_{2}=" 00\) " (idle), " 10 " (up), or " 01 " (down), with any nonzero input lasting only one clock period (as determined by the previous block).

\section*{Exercise 8.12: Regular Reference-Value Definer with Up/Down Controls}

Figure 8.19a shows an alternative for implementing a reference-value definer with up and down controls, which is advantageous when the reference values are regularly
distributed, so some type of counter/adder can be used to build it. Say that the circuit must generate values from 0 to 99 , incremented (when \(u p=' 1\) ') or decremented (when \(d n=' 1\) ') in steps of size 1 .
a) Make a sketch for this circuit, detailing especially the connections of the two pushbuttons (feel free to add other contacts to the pushbuttons if you consider it necessary). How many debouncers are needed?
b) How many flip-flops are needed to build the entire circuit of figure 8.19a based on your sketch above? If any debouncer is needed, consider 1 ms for the debouncing interval and \(f_{c l k}=50 \mathrm{MHz}\).

\section*{Exercise 8.13: Traffic Light Controller}

The questions below refer to the traffic light controller of figure 8.20c.
a) Explain why either strategy \#1 or \#2 (section 8.5) can be used to implement the timer in this machine.
b) Is a reset signal needed? Explain. (Suggestion: Review sections 3.8 and 3.9.)
c) Which inputs are asynchronous? (Suggestion: Review section 2.3.)
d) If debouncers are included in the asynchronous inputs, are synchronizers needed?
e) If debouncers are not used, are synchronizers indispensable in this application?
f) Redraw the state transition diagram including in it the following feature: Instead of having the yellow lights in both directions statically on while in standby mode, make them blink continuously (with a 0.5 Hz frequency) in that mode.
g) The number of DFFs needed to build the FSM after the feature above is included is still that determined in section 8.11.5? Explain.

\section*{Exercise 8.14: Car Alarm}

The questions below refer to the car alarm of figure 8.21c. Assume that the chirps must last 0.3 s and \(f_{c l k}=50 \mathrm{MHz}\).
a) Explain why both strategies \#1 and \#2 (section 8.5) are appropriate to implement the timer in this machine. What are the advantages and disadvantages of each one?
b) How many DFFs are needed to build that circuit with sequential encoding for the machine states? And with one-hot encoding?
c) Is a reset signal needed? Explain. (Suggestion: Review sections 3.8 and 3.9.)
d) Which inputs are asynchronous? (Suggestion: Review section 2.3.)
e) If debouncers are included in the asynchronous inputs, are synchronizers needed?
f) If debouncers are not used, are synchronizers indispensable in this application?

\section*{Exercise 8.15: Password Detector}

The questions below refer to the password detector of figure 8.22c.
a) Explain why both strategies \#1 and \#2 (section 8.5) are appropriate to implement the timer in this machine. What are the advantages and disadvantages of each one?
b) Is a reset signal needed? Explain. (Suggestion: Review sections 3.8 and 3.9.)
c) Is key an asynchronous input? (Suggestion: Review section 2.3.)
d) If key has already been processed by a debouncer (as in exercise 8.11), are synchronizers needed?
e) Why is the state ready needed in this FSM?
f) Why must the machine not go back to the idle state as soon as a wrong key is punched in?

\section*{Exercise 8.16: Triggered Circuits \#1}

The questions below concern the pulse generator of figure 8.24 b , which produces the signal of figure 8.24a.
a) How many flip-flops are needed to build that circuit, for \(T=3\) clock cycles, sequential encoding, and not including the optional output register?
b) In which states is the timer not needed? How should the timer be operated in those states?
c) Complete the plots of figure 8.36 (for \(T=3\) ) and then comment on the results.

\section*{Exercise 8.17: Triggered Circuits \#2}

Two signals produced by triggered circuits are exhibited in figure 8.37.


Figure 8.36


Figure 8.37


Figure 8.38
a) Present a state transition diagram for an FSM capable of producing the signal of figure 8.37a. Estimate the number of DFFs needed to build your complete circuit for \(T=3\) clock cycles and sequential encoding.
b) Do the same for the signal of figure 8.37 b . Assume sequential encoding and \(T_{1}=3\) and \(T_{2}=5\) clock cycles.

\section*{Exercise 8.18: Triggered Circuits \#3}

Figure 8.38a shows a two-machine arrangement for the implementation of an edgedetecting triggered circuit. We want to use this arrangement to implement a circuit that generates the signal of figure 8.24 a . A solution for that case was already seen in figure 8.24 b , using a single machine. The advantage of the approach discussed here is that the timer can be zeroed every time the machine changes its state; hence, contrary to figure 8.24 b , strategy \#1 (section 8.5.2) can be applied without exceptions. In figure 8.38a, FSM1 is a one-shot circuit (discussed in section 5.4.3) that converts \(x\) into a short pulse (internal signal \(i\) ), from which FSM2 must produce the actual output signal, \(y\), as illustrated in figure 8.38b. Present two state transitions diagrams (one for each machine) to solve this problem with the timer allowed to be zeroed at every state transition. Can the timer control strategy \#2 also be employed in your FSMs?

\section*{Exercise 8.19: Pulse Shifter}

This exercise concerns the pulse shifter introduced in section 8.11.9.
a) Draw a state transition diagram and present an illustrative timing diagram for an FSM capable of producing a signal similar to that in figure 8.25 b, but knowing that \(x\) (still synchronous) now lasts exactly one clock period.
b) How many flip-flops are needed to build your circuit, for \(T_{\text {shift }}=16 T_{c l k}\), using sequential encoding for the FSM?

\section*{Exercise 8.20: Synchronous Pulse Stretcher \#1}

This exercise concerns the synchronous version of a pulse stretcher whose behavior was depicted in figure 8.27b.
a) If the falling edge of signal 2 is beyond the falling edge of (sync) \(y\), will the solution presented in figure 8.28a still produce the same result? If not, modify it to accommodate this situation as well.
b) Develop a circuit capable of processing signal 3. (Suggestion: See section 2.4.)
c) Draw an illustrative timing diagram for your circuit (as in figure 8.28b), demonstrating that it indeed covers case 3.

\section*{Exercise 8.21: Synchronous Pulse Stretcher \#2}

This exercise concerns the synchronous version of a pulse stretcher whose behavior was depicted in figure 8.27c.
a) Present a state transition diagram for a Moore FSM capable of processing all three signals (4 to 6). Should it operate at the positive or negative clock transition?
b) Draw an illustrative timing diagram for your FSM (as in figure 8.28b), demonstrating that it indeed works as expected.

\section*{Exercise 8.22: Asynchronous Pulse Stretcher \#1}

This exercise concerns the asynchronous version of a pulse stretcher whose behavior was depicted in figure 8.27b.
a) Present a state transition diagram for a Mealy FSM capable of processing signals 1-2.
b) Draw an illustrative timing diagram for your FSM (as in figure 8.28d), demonstrating that it indeed works as expected.
c) Develop a circuit capable of processing signal 3. (Suggestion: See section 2.4.)

\section*{Exercise 8.23: Asynchronous Pulse Stretcher \#2}

This exercise concerns the asynchronous version of a pulse stretcher whose behavior was depicted in figure 8.27c.
a) If the falling edge of signal 5 is beyond the falling edge of (async) \(y\), will the solution presented in figure 8.28c still produce the same result? If not, modify it to accommodate this situation as well.
b) Develop a circuit capable of processing signal 6. (Suggestion: See section 2.4.)
c) Draw an illustrative timing diagram for your circuit (as in figure 8.28d), demonstrating that it indeed covers case 6 .

\section*{Exercise 8.24: Eliminating Conditional-Timed Transitions}

Because the conditional-timed transition (CD) in figure 8.3 is the only transition that departs from state C , it can be eliminated by splitting it into a simple timed transition followed by a simple conditional transition.
a) Apply the principle described above to the FSM of figure 8.3.
b) Can strategy \#2 be now used to build the timer? Why couldn't it be used in the original machine of figure 8.3?

\section*{9 VHDL Design of Timed (Category 2) State Machines}

\subsection*{9.1 Introduction}

This chapter presents several VHDL designs of category 2 state machines. It starts by presenting two VHDL templates, for Moore- and Mealy-based implementations, which are used subsequently to develop a series of designs related to the examples introduced in chapter 8.

The codes are always complete (not only partial sketches) and are accompanied by comments and simulation results, illustrating the design's main features. All circuits were synthesized using Quartus II (from Altera) or ISE (from Xilinx). The simulations were performed with Quartus II or ModelSim (from Mentor Graphics). The default encoding scheme for the states of the FSMs was regular sequential encoding (see encoding options in section 3.7; see ways of selecting the encoding scheme at the end of section 6.3).

The same designs are presented in chapter 10 using SystemVerilog, so the reader can make a direct comparison between the codes.

Note: See suggestions of VHDL books in the bibliography.

\subsection*{9.2 VHDL Template for Timed (Category 2) Moore Machines}

The template is presented below. Because it is an extension to the Moore template for category 1, described in section 6.3, a review of that template is suggested before this one is examined because only the differences are described.

The only differences are those needed for the inclusion of a timer (external to the FSM—see figure 8.2a). Recall, however, that the FSM itself is responsible for controlling the timer. For that purpose, two strategies were developed in chapter 8 , being the first generic (section 8.5.2), and the second (section 8.5.3), non-generic. It is very important that the reader review those two sections before proceeding.

The first of the two templates that follow is for timed Moore machines with the timer implemented using strategy \#1. The timer-related constants ( \(T_{1}, T_{2}, \ldots\) ) can be declared either as generic constants (lines 6-7; see details in the template for category 1 in section 6.3), therefore in the entity, or in the declarative part of the architecture, as shown in lines 18-20. The signal \(t\) must obviously stay where it is (line 21). As seen in section 8.5.2, the timer must obey \(t_{\max } \geq \max \left(T_{1}, T_{2}, \ldots\right)-1\).

The first process (lines \(26-37\) ) implements the timer. Note that it is a straight copy of the code presented in section 8.5.2.

The second process (line 40) implements the machine's state register, exactly as for category 1 Moore (section 6.3).

The third process (lines 43-71) implements the machine's combinational logic. It is the same as for category 1 except for the fact that \(t\) might appear in the conditions for \(n x\) _state (lines 50, 52, . .). The use of \(t \geq T-1\) instead of \(t=T-1\) is required in the conditional-timed transitions with \(T-1<t_{\max }\). Note that \(t_{\max }\) does not need to be defined in all states, which is not true for strategy \#2.

The fourth and final process (line 74) implements the optional output register, exactly as for category 1 .

Note: See also the comments in section 6.4 on template variations.
```

--Timed Moore machine with timer control strategy \#1---------
library ieee;
use ieee.std_logic_1164.all;
--
entity circuit is
generic (
(timer-related constants of lines 18-20 can go here)
port (
(same as for category 1 Moore, section 6.3)
end entity;
architecture moore_fsm of circuit is
--FSM-related declarations:
(same as for category 1 Moore, section 6.3)
--Timer-related declarations:
constant T1: natural := <value>;
constant T2: natural := <value>; ...
constant tmax: natural := <value>; --tmax>max(T1,T2,...)-1
signal t: natural range 0 to tmax;
begin
--Timer (strategy \#1, section 8.5.2):
process (clk, rst)
begin
if (rst='1') then
t <= 0;

```
```

 elsif rising_edge(clk) then
 if pr_state /= nx_state then
 t <= 0;
 elsif t /= tmax then
 t <= t + 1;
 end if;
 end if;
 end process;
 --FSM state register:
 (same as for category 1 Moore, section 6.3)
 --FSM combinational logic:
 process (all) --list proc. inputs if "all" not supported
 begin
 case pr_state is
 when A =>
 output1 <= <value>;
 output2 <= <value>;
 if ... and t>=T1-1 then
 nx state <= B;
 elsif ... and t>=T2-1 then
 nx_state <= ...;
 else
 nx_state <= A;
 end if;
 when B =>
 output1 <= <value>;
 output2 <= <value>;
 if ... and t>=T3-1 then
 nx_state <= C;
 elsif ... then
 nx_state <= ...;
 else
 nx_state <= B;
 end if;
 when C =>
 end case;
 end process;
 --Optional output register:
 (same as for category 1 Moore, section 6.3)
 end architecture;

```

The next template is for timed Moore machines employing strategy \#2 to implement the timer.

The first difference is in line 18, which now includes also \(t_{\max }\).
The second difference is in the process for the timer (lines 23-34), which is a copy of the code presented in section 8.5.3.

The third and final difference is in the process for the combinational logic block (lines 40-70), which requires now the value of \(t_{\max }\) to be specified in each state (lines \(47,59, \ldots)\), even if the state is untimed \(\left(t_{\max }=0\right)\). This code can obviously be simplified in several ways when there are no conditional-timed transitions and/or \(t_{\max }\) is the same in all or most states.
```

--Timed Moore machine with timer control strategy \#2------------
library ieee;
use ieee.std_logic_1164.all;
entity circuit is
(same as template above)
end entity;
architecture moore_fsm of circuit is
--FSM-related declarations:
(same as for category 1 Moore, section 6.3)
--Timer-related declarations:
constant T1: natural := <value>;
constant T2: natural := <value>; ...
constant tmax_timer: natural := <value>; -- \geqmax(T1,T2,...)-1
signal t, tmax: natural range 0 to tmax_timer;
begin
--Timer (strategy \#2, section 8.5.3):
process (clk, rst)
begin
if (rst='1') then
t <= 0;
elsif rising_edge(clk) then
if t < tmax then
t <= t + 1;
else
t <= 0;
end if;
end if;
end process;
--FSM state register:
(same as for category 1 Moore, section 6.3)
--FSM combinational logic:
process (all) --list proc. inputs if "all" not supported
begin
case pr_state is
when A =>
outputl <= <value>;
output2 <= <value>;
tmax <= T1-1;
if ... and t=tmax then
nx_state <= B;

```
```

5 0
5 1
5 2
5 3
5 4
5 5
5 6
5 7
5 8
5 9
6 0
6 1
6 2
6 3
6 4
6 5
6 6
6 7
6 8
6 9
7 0
7 1
7 2
73
7 4
7 5
7 6

```
```

 elsif ... then
    ```
        elsif ... then
    nx_state <= ...;
    nx_state <= ...;
        else
        else
    nx state <= A;
    nx state <= A;
    end if;
    end if;
        when B =>
        when B =>
        output1 <= <value>;
        output1 <= <value>;
        output2 <= <value>;
        output2 <= <value>;
        tmax <= T2-1;
        tmax <= T2-1;
        if ... and t=tmax then
        if ... and t=tmax then
        nx_state <= C;
        nx_state <= C;
        elsif ... then
        elsif ... then
        nx_state <= ...;
        nx_state <= ...;
        else
        else
                            nx state <= B;
                            nx state <= B;
    end if;
    end if;
        when C =>
        when C =>
        -
        -
        end case;
        end case;
    end process;
    end process;
    --Optional output register:
    --Optional output register:
    (same as for category 1 Moore, section 6.3)
    (same as for category 1 Moore, section 6.3)
end architecture;
```

end architecture;

```

\subsection*{9.3 VHDL Template for Timed (Category 2) Mealy Machines}

The template is presented below, using strategy \#1 to implement the timer. The only difference with respect to the Moore template (section 9.2) is in the process for the combinational logic block (lines 20-60) because the outputs are specified differently here (see the template for category 1 Mealy machines in section 6.5). Recall that in a Mealy machine the output depends not only on the FSM's state, but also on the input, so if statements are expected for the output in one or more states because the output values might not be unique.

Please review the following comments, which can be easily adapted from the Moore case to the Mealy case:
-On the Moore template for category 1, in section 6.3, especially comment 10 .
-On the enum_encoding and fsm_encoding attributes, also in section 6.3.
-On possible code variations, in section 6.4.
-On the Mealy template for category 1 , in section 6.5.
-On the Moore templates for category 2, in section 9.2.
```

--Timed Mealy machine with timer control strategy \#1----
library ieee;
use ieee.std_logic_1164.all;

```
```

entity circuit is
(same as for Moore, Section 9.2));
end entity;
architecture mealy_fsm of circuit is
(same as for Moore, section 9.2)
begin
--Timer (using timer control strategy \#1):
(same as for Moore, section 9.2)
--FSM state register:
(same as for Moore, section 9.2)
--FSM combinational logic:
process (all)
begin
case pr_state is
when A =>
if ... and t>=T1-1 then
output1 <= <value>;
output2 <= <value>;
nx state <= B;
elsif ... and t>=T2-1 then
outputl <= <value>;
output2 <= <value>;
nx_state <= ...;
else
outputl <= <value>;
output2 <= <value>;
nx_state <= A;
end if;
when B =>
if ... and t>=T3-1 then
output1 <= <value>;
output2 <= <value>;
nx state <= C;
elsif ... then
output1 <= <value>;
output2 <= <value>;
nx_state <= ...;
else
output1 <= <value>;
output2 <= <value>;
nx_state <= B;
end if;
when C =>
end case;
end process;

```
```

62 --Optional output register:
(same as for Moore, section 9.2)
end architecture;

```
----------------------------------------------------------------

\subsection*{9.4 Design of a Light Rotator}

This section presents a VHDL-based design for the light rotator introduced in section 8.11.2. The Moore template of section 9.2 is used to implement the FSM of figure 8.14 b . Either strategy \#1 (section 8.5.2) or \#2 (section 8.5.3) can be used to build the timer (both templates were presented in section 9.2); the former is employed in the code below, while the latter is explored in exercise 9.1.

The entity, called light_rotator, is in lines 5-9. All ports are of type std_logic or std_ logic_vector (industry standard).

The architecture, called moore_fsm, is in lines \(11-105\). As usual, it contains a declarative part and a statements part, with three processes in the latter.

The declarative part of the architecture (lines 13-21) contains FSM- and timer-related declarations. In the former, the enumerated type state is created to represent the machine's present and next states. In the latter, the values chosen for \(T_{1}\) and \(T_{2}\) are such that 120 ms and 35 ms result, respectively, assuming \(f_{c l k}=\) 50 MHz .

The first process (lines 26-37) implements the timer (using strategy \#1). Except for the inclusion of \(s t p\) (lines 26 and 30), this code is exactly as in the template.

The second process (lines 40-47) implements the FSM's state register, exactly as in the template.

The third and final process (lines 50-103) implements the entire combinational logic section. It is just a list of all states (indeed, because this code is repetitive, some of the states were not detailed in order to save some space), each containing the output ( \(s s d\) ) value and the next state. Note that in each state the output value is unique because in a Moore machine the output depends only on the state in which the machine is.

In this kind of application the " -1 " term present in the determination of the total time (lines \(20,55,62, \ldots\) ) does not make any difference, but it was maintained as a reminder of the accurate value.

Observe the correct use of registers and the completeness of the code, as described in comment 10 of section 6.3. Note in particular the following:
1) Regarding the use of registers: The circuit is not overregistered. This can be observed in the elsif rising_edge(clk) statement of line 44 (responsible for the inference of flip-flops), which is closed in line 46, guaranteeing that only the machine state (line
45) gets stored (the timer is in a separate circuit-see figure 8.2a). The output ( \(s s d\) ) is in the next process, which is purely combinational (thus not registered).
2) Regarding the outputs: The list of outputs (just ssd in this example) is exactly the same in all states (see lines \(54,61,68, \ldots\) ), and the corresponding values are always properly declared.
3) Regarding the next state: Again, the coverage is complete because all states are included (see lines \(53,60,67, \ldots\) ), and in each state the next state is always properly declared (lines 55-59, 62-66, 69-73, . . .).

The total number of flip-flops inferred by the compiler using the code below was 27 for sequential or Gray encoding, 29 for Johnson, and 35 for one-hot, which agree with the predictions made in section 8.11.2.

Because this particular machine has only simple timed transitions, a few simplifications could be made in the code below, but with no impact on the resulting circuit (thus with no reason to depart from the proposed template).
```

1
2
3
4
5
6
7
8
9

```
library ieee;
```

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_1164.all;
--
--
entity light_rotator is
entity light_rotator is
port (
port (
stp, clk, rst: in std_logic;
stp, clk, rst: in std_logic;
ssd: out std_logic_vector(6 downto 0));
ssd: out std_logic_vector(6 downto 0));
end entity;
end entity;
architecture moore_fsm of light_rotator is
architecture moore_fsm of light_rotator is
--FSM-related declarations:
--FSM-related declarations:
type state is (A, AB, B, BC, C, CD, D, DE, E, EF, F, FA);
type state is (A, AB, B, BC, C, CD, D, DE, E, EF, F, FA);
signal pr_state, nx_state: state;
signal pr_state, nx_state: state;
--Timer-related declarations:
--Timer-related declarations:
constant T1: natural := 6_000_000; --120ms @ fclk=50MHz
constant T1: natural := 6_000_000; --120ms @ fclk=50MHz
constant T2: natural := 1_750_000; --35ms @ fclk=50MHz
constant T2: natural := 1_750_000; --35ms @ fclk=50MHz
constant tmax: natural := T1-1; --tmax max(T1,T2)-1
constant tmax: natural := T1-1; --tmax max(T1,T2)-1
signal t: natural range 0 to tmax;
signal t: natural range 0 to tmax;
begin
begin
--Timer (using strategy \#1):
--Timer (using strategy \#1):
process (clk, rst, stp)
process (clk, rst, stp)
begin
begin
if rst='1' then
if rst='1' then
t <= 0;
t <= 0;
elsif rising_edge(clk) and stp='0' then
elsif rising_edge(clk) and stp='0' then
if pr_stāe /= nx_state then
if pr_stāe /= nx_state then
t <= 0;
t <= 0;
elsif t /= tmax then
elsif t /= tmax then
t <= t + 1;

```
                t <= t + 1;
```

```
35
36
37
38
39
4 0
4 1
4 2
4 3
4 4
4 5
4 6
4 7
4 8
4 9
5 0
5 1
5 2
5 3
5 4
5 5
5 6
5 7
5
5 9
6 0
6 1
6 2
6 3
6 4
6 5
6 6
6 7
6 8
6 9
7 0
7 1
7 2
7 3
7 4
75
76
7 7
78
7 9
```

 end if;
    ```
        end if;
    end if;
    end if;
end process;
end process;
--FSM state register:
--FSM state register:
process (clk, rst)
process (clk, rst)
begin
begin
    if rst='1' then
    if rst='1' then
        pr_state <= A;
        pr_state <= A;
    elsif rising_edge(clk) then
    elsif rising_edge(clk) then
        pr_state <= nx_state;
        pr_state <= nx_state;
    end if;
    end if;
end process;
end process;
--FSM combinational logic:
--FSM combinational logic:
process (all)
process (all)
begin
begin
    case pr_state is
    case pr_state is
        when A =>
        when A =>
            ssd <= "0111111";
            ssd <= "0111111";
            if t>=T1-1 then -- or t=T1-1
            if t>=T1-1 then -- or t=T1-1
                    nx state <= AB;
                    nx state <= AB;
            else
            else
                nx_state <= A;
                nx_state <= A;
            end if;
            end if;
        when AB =>
        when AB =>
            ssd <= "0011111";
            ssd <= "0011111";
                if t>=T2-1 then -- or t=T2-1
                if t>=T2-1 then -- or t=T2-1
                    nx_state <= B;
                    nx_state <= B;
                else
                else
                    nx state <= AB;
                    nx state <= AB;
            end if;
            end if;
        when B =>
        when B =>
            ssd <= "1011111";
            ssd <= "1011111";
            if t>=T1-1 then
            if t>=T1-1 then
                    nx_state <= BC;
                    nx_state <= BC;
            else
            else
                    nx_state <= B;
                    nx_state <= B;
                end if;
                end if;
        when BC =>
        when BC =>
            ssd <= "1001111";
            ssd <= "1001111";
            if t>=T2-1 then
            if t>=T2-1 then
                    nx_state <= C;
                    nx_state <= C;
            else
            else
                    nx_state <= BC;
                    nx_state <= BC;
            end if;
            end if;
        when C =>
        when C =>
            ...
            ...
        when CD =>
        when CD =>
        ...
        ...
        when D =>
        when D =>
        when DE =>
        when DE =>
        ...
        ...
        when E =>
        when E =>
        when EF =>
```

 when EF =>
    ```
```

 when F =>
 ...
 when FA =>
 ssd <= "0111101";
 if t=T2-1 then
 nx state <= A;
 else
 nx_state <= FA;
 end if;
 end case;
 end process;
 end architecture;

```


\subsection*{9.5 Design of a Car Alarm (with Chirps)}

This section presents a VHDL-based design for the car alarm with chirps introduced in section 8.11.6. The Moore template of section 9.2 is employed to implement the FSM of figure 8.21c. Again, either strategy \#1 or \#2 can be used to build the timer; the latter was adopted in the code below.

The entity, called car_alarm_with_chirps, is in lines 5-9. All ports are of type std_logic (industry standard).

The architecture, called moore_fsm, is in lines 11-138. As usual, it contains a declarative part and a statements part, with three processes in the latter.

The declarative part of the architecture (lines 13-21) contains FSM- and timerrelated declarations. In the former the enumerated type state is created to represent the machine's present and next states. In the latter the value chosen for chirpON and chirpOFF is such that the chirp and the time interval between chirps last 0.3 s , assuming \(f_{c l k}=50 \mathrm{MHz}\).

The first process (lines 26-37) implements the timer, using strategy \#2, exactly as in the template.

The second process (lines 40-47) implements the state register, again exactly as in the template.

The third and final process (lines 50-136) implements the entire combinational logic section. It is just a list of all states, each containing the output (siren) value, the value of \(t_{\max }\), and the next state. Note that in each state the output value is unique because in a Moore machine the output depends only on the state in which the machine is.

In this kind of application the " -1 " term present in the determination of \(t_{\text {max }}\) (lines \(21,63,97, \ldots\) ) does not make any difference, but it was maintained as a reminder of the accurate value.

Observe the correct use of registers and the completeness of the code, as described in comment 10 of section 6.3. Note in particular the following:


Figure 9.1
Simulation results from the VHDL code for the car alarm of figure 8.21c.
1) Regarding the use of registers: The circuit is not overregistered. This can be observed in the elsif rising_edge(clk) statement of line 44 (responsible for the inference of flip-flops), which is closed in line 46, guaranteeing that only the machine state (line 45) gets stored (besides the timer, of course, designed in the previous process). The output (siren) is in the next process, which is purely combinational (thus not registered).
2) Regarding the outputs: The list of outputs (just siren in this example) and time parameters \(\left(t_{\max }\right)\) is exactly the same in all states (see lines \(54-55,62-63,70-71, \ldots\). ), and the corresponding values are always properly declared.
3) Regarding the next state: Again, the coverage is complete because all states are included (see lines \(53,61,69, \ldots\) ), and in each state the conditional declarations for the next state are always finalized with an else statement (lines \(58,66,74, \ldots\) ), guaranteeing that no condition is left unchecked.

The total number of flip-flops inferred by the compiler on synthesizing this code was 28 for sequential or Gray encoding, 29 for Johnson, and 34 for one-hot. Compare these results against your predictions made in exercise 8.14.

Simulation results are shown in figure 9.1.
```

library ieee;
use ieee.std_logic_1164.all;
entity car_alarm_with_chirps is
port (
remt, sen, clk, rst: in std_logic;
siren: out std_logic);
end entity;
architecture moore_fsm of car_alarm_with_chirps is
--FSM-related declarations:
type state is (disarmed, armed, alarm, chirp1, chirp2, chirp3,
chirp4, chirp5, wait1, wait2);

```
```

 signal pr_state, nx_state: state;
 --Timer-related declarations:
 constant chirpON: natural := 15_000_000; --0.3s @fclk=50MHz
 constant chirpOFF: natural := 15 000
 signal t, tmax: natural range 0 to chirpOFF-1; --range \geq max time
 begin
--Timer (using strategy \#2):
process (clk, rst)
begin
if rst='1' then
t <= 0;
elsif rising_edge(clk) then
if t < tmax then
t <= t + 1;
else
t <= 0;
end if;
end if;
end process;
--FSM state register:
process (clk, rst)
begin
if rst='1' then
pr_state <= disarmed;
elsif rising_edge(clk) then
pr_state <= nx_state;
end if;
end process;
--FSM combinational logic:
process (all)
begin
case pr_state is
when disarmed =>
siren <= '0';
tmax <= 0;
if remt='1' then
nx_state <= chirpl;
else
nx_state <= disarmed;
end if;
when chirp1 =>
siren <= '1';
tmax <= chirpON-1;
if t=tmax then
nx_state <= wait1;
else
nx_state <= chirp1;
end if;
when wait1 =>
siren <= '0';
tmax <= 0;

```
```

 if remt='0' then
 nx_state <= armed;
 else
 nx_state <= waitl;
 end if;
 when armed =>
siren <= '0';
tmax $<=0$;
if sen='1' then
nx_state <= alarm;
elsif remt='1' then
nx_state <= chirp3;
else
nx_state <= armed;
end if;
when alarm =>
siren <= '1';
tmax <= 0;
if remt='1' then
nx_state <= chirp2;
else
nx_state $<=$ alarm;
end if;
when chirp2 =>
siren <= '0';
tmax <= chirpOFF-1;
if $t=t m a x$ then
nx_state <= chirp3;
else
nx_state <= chirp2;
end if;
when chirp3 =>
siren <= '1';
tmax <= chirpON-1;
if $t=t m a x$ then
nx_state <= chirp4;
else
nx_state <= chirp3;
end if;
when chirp4 =>
siren <= '0';
tmax <= chirpOFF-1;
if $t=t m a x$ then
nx_state <= chirp5;
else
nx_state <= chirp4;
end if;
when chirp5 =>
siren <= '1';
tmax <= chirpON-1;
if $t=t m a x$ then
nx_state <= wait2;
else
nx_state <= chirp5;
end if;
when wait2 =>
siren <= '0';

```
```

 tmax <= 0;
 if remt='0' then
 nx_state <= disarmed;
 else
 nx_state <= wait2;
 end if;
 end case;
 end process;
 end architecture;

```


\subsection*{9.6 Design of a Triggered Monostable Circuit}

This section presents a VHDL-based design for the triggered monostable circuit of figure 8.24 b , which is capable of generating the signal of figure 8.24a. Again, the code that follows is a straightforward application of the VHDL template for category 2 Moore machines introduced in section 9.2. Note, however, that in this FSM the timer control strategy \#2 (section 8.5.3) cannot be used. Indeed, even strategy \#1 (section 8.5.2) cannot be applied completely because in one of the state transitions the timer must not be zeroed.

The entity, called triggered_mono, is in lines 5-10. All ports are of type std_logic (industry standard).

The architecture, called moore_fsm, is in lines 12-99. As usual, it contains a declarative part and a statements part, with four processes in the latter.

The declarative part of the architecture (lines 14-20) contains FSM- and timerrelated declarations. In the former the enumerated type state is created to represent the machine's present and next states. In the latter a small value was used for \(T\) (called delay in the code; note delay \(=3\) in line 19) in order to ease the inspection of the simulation results (shown later).

The first process (lines \(25-38\) ) implements the timer (with strategy \#1, adapted). Observe how the timer is prevented from being zeroed when the machine enters state D, done with just the introduction of lines 31 and 33.

The second process (lines 41-48) implements the state register, exactly as in the template.

The third process (lines 51-89) implements the entire combinational logic section. It is just a list of all states, each containing the output \((y)\) value and the next state. Note that in each state the output value is unique because in a Moore machine the output depends only on the state in which the machine is.

The fourth and final process (lines 92-97) implements the optional output register, exactly as in the template. The output register was included because in this kind of application glitches are generally not acceptable. Even though y could come directly
from a DFF (hence glitch-free), that is not guaranteed because it depends on the encoding scheme used in the machine.

Observe the correct use of registers and the completeness of the code, as described in comment 10 of section 6.3. Note in particular the following:
1) Regarding the use of registers: The circuit is not overregistered. This can be observed in the elsif rising_edge(clk) statement of line 45 (responsible for the inference of flip-flops), which is closed in line 47, guaranteeing that only the machine state (line 46) gets stored (besides the timer and the output register, of course, designed in other processes). The output ( \(y\) ) is in the next process, which is purely combinational (thus not registered).
2) Regarding the outputs: The list of outputs (just \(y\) in this example) is exactly the same in all states (see lines \(55,62,69, \ldots\) ), and the corresponding values are always properly declared.
3) Regarding the next state: Again, the coverage is complete because all states are included (see lines \(54,61,68, \ldots\) ), and in each state the conditional declarations for the next state are always finalized with an else statement (lines \(58,65,76, \ldots\) ), guaranteeing that no condition is left unchecked.

The total number of flip-flops inferred by the compiler on synthesizing the code below, with regular sequential encoding for the machine states, was 5 for \(T=3\) and 15 for \(T=3000\).

Simulation results, for \(T=3\) clock cycles, are depicted in figure 9.2. Analyze the plots to confirm the correctness of the circuit operation.


Figure 9.2
Simulation results from the VHDL code for the triggered monostable circuit of figure 8.24 b for \(T=3\) clock periods.
```

entity triggered_mono is
port (
x, clk, rst: in std_logic;
y: buffer std_logic;
y_reg: out std_logic);
end entity;
architecture moore_fsm of triggered_mono is
--FSM-related declarations:
type state is (A, B, C, D);
signal pr_state, nx_state: state;
--Timer-related declarations:
constant delay: natural := 3; --any value >=2
signal t: natural range 0 to delay-1; --tmax\geqdelay-1
begin
--Timer (strategy \#1, adapted):
process (clk, rst)
begin
if rst='1' then
t <= 0;
elsif rising edge(clk) then
if pr_state /= nx_state then
if nx_state/=D then
t <= 0;
end if;
elsif t/=delay-1 then
t <= t + 1;
end if;
end if;
end process;
--FSM state register:
process (clk, rst)
begin
if rst='1' then
pr_state <= A;
elsif rising_edge(clk) then
pr_state <= nx_state;
end if;
end process;
--FSM combinational logic:
process (all)
begin
case pr_state is
when A =>
Y <= '0';
if x='0' then
nx_state <= B;
else
nx_state <= A;
end if;

```
```

6 1
6 2
6 3
6 4
6
6 6
6 7
6 8
6 9
70
7 1
7 2
73
7 4
75
76
7 7
78
7 9
80
8 1
82
8
84
85
86
8
88
89
90
91
92
93
94
95
96
97
98
9 9
1 0 0

```
```

 when \(B=>\)
    ```
        when \(B=>\)
    y <= '0';
    y <= '0';
    if \(x=11\) then
    if \(x=11\) then
                        nx_state <= C;
                        nx_state <= C;
        else
        else
                        nx_state <= B;
                        nx_state <= B;
        end if;
        end if;
        when \(C=>\)
        when \(C=>\)
            y <= '1';
            y <= '1';
            if \(x=' 0 '\) and \(t<d e l a y-1\) then
            if \(x=' 0 '\) and \(t<d e l a y-1\) then
                nx_state <= D;
                nx_state <= D;
            elsif \(x=' 0 '\) and \(t>=d e l a y-1\) then
            elsif \(x=' 0 '\) and \(t>=d e l a y-1\) then
            nx_state <= B;
            nx_state <= B;
            elsif \(x=' 1\) ' and \(t>=d e l a y-1\) then
            elsif \(x=' 1\) ' and \(t>=d e l a y-1\) then
                nx_state <= A;
                nx_state <= A;
            else
            else
                        nx_state <= C;
                        nx_state <= C;
            end if;
            end if;
                when \(D=>\)
                when \(D=>\)
            y <= '1';
            y <= '1';
            if \(x=11\) then
            if \(x=11\) then
                nx_state <= C;
                nx_state <= C;
            elsif \(x=' 0 '\) and \(t>=d e l a y-2\) then
            elsif \(x=' 0 '\) and \(t>=d e l a y-2\) then
                                nx_state \(<=B\);
                                nx_state \(<=B\);
            else
            else
                nx_state <= D;
                nx_state <= D;
            end if;
            end if;
            end case;
            end case;
    end process;
    end process;
    --Optional output register:
    --Optional output register:
    process (clk)
    process (clk)
    begin
    begin
        if rising_edge(clk) then
        if rising_edge(clk) then
        Y_reg <= y;
        Y_reg <= y;
            end if;
            end if;
        end process;
        end process;
end architecture;
```

end architecture;

```

\subsection*{9.7 Exercises}

\section*{Exercise 9.1: Timer Control Strategies Analysis (Light Rotator)}

This exercise concerns the light rotator of figure 8.14b, implemented with VHDL in section 9.4.
a) Compile the code of section 9.4 for the following options and write down the number of logic elements and registers inferred by the compiler in each case: 1) Using strategy \#1 for the timer and sequential encoding for the machine; 2) With strategy \#1 and one-hot encoding; 3) With strategy \#2 and sequential encoding; 4) With strategy \#2 and one-hot encoding.
b) Compare the results above. Was the difference between the two strategies more relevant for sequential or one-hot encoding? Explain.

\section*{Exercise 9.2: Blinking Light}

This exercise concerns the blinking light FSM of figure 8.12c.
a) Which of the two timer control strategies (\#1, section 8.5.2, or \#2, section 8.5.3), if any, can be adopted in the implementation of this FSM?
b) Implement it using VHDL. Check whether the number of DFFs inferred by the compiler matches the prediction made in section 8.11 .1 for each encoding option (sequential, Gray, Johnson, and one-hot). Recall that the predictions must be adjusted in case the clock frequency is different from 50 MHz .
c) Physically test your design in the FPGA development board. Use two switches to produce rst and ena and use an LED to display the output.

\section*{Exercise 9.3: Switch Debouncer}

This exercise concerns the switch debouncer of figure 8.16c, which was inserted into the circuit of figure 9.3. The figure also shows two counters; the signal produced by the switch ( \(s w\) ) acts as clock to counter1, and its debounced version ( \(s w \_\)deb) acts as clock to counter2. Every time the pushbutton is pressed (or a toggle switch is flipped), both counters will be incremented, but counter1 might occasionally be incremented by more than one unit (the more the switch bounces, the bigger the difference between the values on the displays). Assume a 2-ms debouncing interval (check the clock frequency in your development board) and sequential encoding for the FSM, with the counters able to count from 0h to Fh.
a) Which of the two timer control strategies (\#1, section 8.5.2, or \#2, section 8.5.3), if any, can be adopted in the implementation of this FSM?
b) Estimate the number of DFFs needed to build the complete circuit. Does this number depend on the answer to part a above?
c) Design the circuit using VHDL. Check whether the number of DFFs inferred by the compiler matches your prediction.


Figure 9.3
d) Physically test your design in the FPGA development board for several switches (both toggle and pushbutton types).

\section*{Exercise 9.4: Reference-Value Definer}

This exercise concerns the reference-value definer of figure 8.17b, which must produce the following consecutive values (the value must change every time the pushbutton is pressed): \(250,180,130,100,70\), and 40 (thus ref is an eight-bit signal). These values must be displayed on your development board using either three SSDs or eight LEDs (if the former is chosen, an SSD driver must be included in the design). In this exercise it is requested that the clock frequency be divided down to 1 kHz ; this \(1-\mathrm{kHz}\) signal (clk1k) is the clock to be employed in the circuit.
a) Assume a 3-ms debouncing interval. Consequently, only four consecutive equal readings are needed for the pushbutton value to be considered valid. Is an FSM still desired for the debouncer (plus one-shot conversion)? If so, does it need to be a timed machine, as in figure 8.18b?
b) Draw a block diagram for your circuit, including in it the clock divider and the output display.
c) Draw the state transition diagram for each FSM used in the design.
d) Estimate the number of DFFs that will be needed to build the entire circuit (including the clock divider). Assume sequential encoding for the FSM(s) and check the clock frequency in your development board.
e) Implement the circuit using VHDL. Check whether the number of DFFs inferred by the compiler matches your prediction.
f) Physically demonstrate your design in the FPGA development board.

\section*{Exercise 9.5: Blinking Light with Several Speeds}

This exercise is an extension to the light blinker of figure 8.12c, which must now operate with a programmable speed, set by a pushbutton, called spd (see the general diagram of figure 9.4). The next speed must be selected every time the pushbutton is pressed. The speed is determined by the on-off time interval \(\left(T_{r e f}\right)\), which must be one of the following: 250, 180, 130, 100, 70, or 40 ms . As in exercise 9.4, the frequency of the system clock should be divided down, producing a \(1-\mathrm{kHz}\)


Figure 9.4
clock for the present circuit. Note that a debouncer is indispensable for the speed pushbutton.
a) Draw a block diagram for your circuit, including the pushbutton, clock divider, and FSMs.
b) Draw the state transition diagram for each FSM to be used in the design.
c) Estimate the number of DFFs that will be needed to build the entire circuit.
d) Implement the circuit using VHDL. Check whether the number of DFFs inferred by the compiler matches your prediction.
e) Physically demonstrate your design in the FPGA development board.

Suggestion: Before solving this problem, solve exercises 9.3 and 9.4 if not done yet.

\section*{Exercise 9.6: Light Rotator with Additional Features}

This exercise concerns the light rotator of figure 8.14, to which the following features must be added:
i) An input called dir (produced by a switch) that selects the rotating direction (clockwise when \(\operatorname{dir}=\) ' 1 ', counterclockwise otherwise).
ii) An input called \(s p d\) (produced by a pushbutton) that selects the rotating speed, as in exercises 9.4 and 9.5 . Every time the pushbutton is pressed, the next speed must be selected. The speed is determined by the time interval during which the machine stays in states A, B, C, . . . , which must be one of the following: 250, 180, 130, 100, 70 , or 40 ms . The duration of states \(\mathrm{AB}, \mathrm{BC}, \mathrm{CD}, \ldots\). . must be always 20 ms . Note that a debouncer is necessary for the speed pushbutton.

As in exercises 9.4 and 9.5 , the system clock should be divided down, producing a \(1-\mathrm{kHz}\) clock for the present circuit. (Suggestion: Before solving this problem, solve exercises 9.4 and 9.5 if not done yet.)
a) Draw a block diagram for your circuit.
b) Draw the state transition diagram for each FSM to be used in the design.
c) Estimate the number of DFFs that will be needed to build the entire circuit. Assume sequential encoding for the FSM(s).
d) Design the circuit using VHDL. Check whether the number of DFFs inferred by the compiler matches your prediction.
e) Physically demonstrate your design in the FPGA development board.

\section*{Exercise 9.7: Garage Door Controller}

This exercise concerns the garage door controller seen in section 5.4.5, designed with VHDL and SystemVerilog in sections 6.7 and 7.6, respectively. Make the modifications
needed in the VHDL code to incorporate the following feature: the door must close automatically 30 s after arriving at the completely open position. This feature should be optional, so an input must be added to the circuit to allow the user to choose between enabling it or not. How many DFFs will be needed to build the entire circuit now?

\section*{Exercise 9.8: Traffic Light Controller}

This exercise concerns the traffic light controller of figure 8.20c.
a) Which of the two timer control strategies (\#1, section 8.5.2, or \#2, section 8.5.3), if any, can be adopted to implement this FSM?
b) Implement it using VHDL. Check whether the number of DFFs inferred by the compiler matches the prediction made in section 8.11 .5 for each encoding option (sequential, Gray, Johnson, and one-hot). Recall that the predictions must be adjusted in case the clock frequency is different from 50 MHz .
c) Physically test your design in the FPGA development board. Use three switches to produce stby, test, and rst, and six LEDs to display the outputs.
d) At this point add the following feature (modify the design and download it to the FPGA board): the yellow lights should blink (at 0.5 Hz ) while the circuit is in the standby mode.

\section*{Exercise 9.9: Password Detector}

This exercise concerns the password detector of figure 8.22. A general block diagram for the present design is shown in figure 9.5, where, to ease the experiment, four pushbuttons (from the FPGA board itself) replace the keypad. A multisignal debouncer (treated in exercise 8.9) is also included. Only the following values are valid inputs ( \(x\) ) to the password detector: " 1111 " (no pushbutton pressed), "0111" (top pushbutton pressed), "1011", "1101", and " 1110 " (bottom pushbutton pressed).
a) Solve exercise 8.9 if not done yet.
b) Present a state transition diagram for each FSM to be used in this design.
c) How many DFFs are needed to build the entire circuit? Adopt a 1-ms debouncing interval and sequential encoding for the FSMs. Check the clock frequency in your FPGA development board.


Figure 9.5
d) Design the circuit using VHDL. Enter the multisignal debouncer as a component in the main code. After compilation, check whether the inferred number of DFFs matches your prediction.
e) Physically test your design in the FPGA development board. Test it for the following passwords: \(a b c\), \(a a d\), and \(a a a\) (where \(a=" 0111 ", b=" 1011 ", c=" 1101 "\), and \(d=\) "1110").

\section*{Exercise 9.10: Triggered Circuits}

This exercise concerns the triggered FSMs treated in exercise 8.17.
a) Solve exercise 8.17 if not done yet.
b) Using VHDL, implement the FSM devised in part a of that exercise. Check whether the number of DFFs inferred by the compiler matches your prediction. Show corresponding simulation results.
c) Do the same for the FSM of part b in that exercise.

\section*{Exercise 9.11: Pulse Shifter}

This exercise concerns the pulse shifter of figure 8.26a. Implement it using VHDL. Simulate it using the same stimuli of figure 8.26 b and check whether the same waveforms result.

\section*{Exercise 9.12: Synchronous Pulse Stretcher}

This exercise concerns the synchronous pulse stretcher introduced in figure 8.28a.
a) How many DFFs are needed to build it for \(T=64\) clock cycles and sequential encoding?
b) Implement it using VHDL. Check whether the number of DFFs inferred by the compiler matches your estimate.
c) Recompile it for \(T=5\) and simulate it with the same stimuli of figure 8.28 b , checking if the same waveforms result.

\section*{Exercise 9.13: Asynchronous Pulse Stretcher}

This exercise concerns the asynchronous pulse stretcher introduced in figure 8.28c.
a) How many DFFs are needed to build it for \(T=64\) clock cycles and sequential encoding?
b) Implement it using VHDL. Check whether the number of DFFs inferred by the compiler matches your estimate.
c) Recompile it for \(T=5\) and simulate it with the same stimuli of figure 8.28 d , checking if the same waveforms result.

\section*{10 SystemVerilog Design of Timed (Category 2) State Machines}

\subsection*{10.1 Introduction}

This chapter presents several SystemVerilog designs of category 2 state machines. It starts by presenting two SystemVerilog templates, for Moore- and Mealy-based implementations, which are used subsequently to develop a series of designs related to the examples introduced in chapter 8.

The codes are all complete (not only partial sketches) and are accompanied by comments and simulation results, illustrating the design's main features. All circuits were synthesized using Quartus II (from Altera) or ISE (from Xilinx). The simulations were performed with Quartus II or ModelSim (from Mentor Graphics). The default encoding scheme for the states of the FSMs was regular sequential encoding (see encoding options in section 3.7).

The same designs were developed in chapter 9 using VHDL, so the reader can make a direct comparison between the codes.

Note: See suggestions of SystemVerilog books in the bibliography.

\subsection*{10.2 SystemVerilog Template for Timed (Category 2) Moore Machines}

The template is presented below. Because it is an extension to the Moore template for category 1 , described in section 7.3, a review of that template is suggested before this one is examined because only the differences are described.

The only differences are those needed for the inclusion of a timer (external to the FSM—see figure 8.2a). Recall, however, that the FSM itself is responsible for controlling the timer. For that purpose, two strategies were developed in chapter 8 , being the first generic (section 8.5.2), and the second (section 8.5.3), non-generic. It is very important that the reader review those two sections before proceeding.

The first of the two templates that follow is for timed Moore machines with the timer implemented using strategy \#1. The timer-related constants ( \(T_{1}, T_{2}, \ldots\) ) can be
declared either as global parameters (in the module header-see lines 3-5 in the template of section 7.3) or as local parameters, as shown in lines 11-13 of the template below. The variable \(t\) (line 14) must obviously stay where it is. As seen in section 8.5.2, the timer must obey \(t_{\max } \geq \max \left(T_{1}, T_{2}, \ldots\right)-1\).

In the statements part of the code (lines 16-55), there are two differences.
The first difference is an additional always_ff block (lines 19-22), which implements the timer, according to the strategy described in section 8.5.2.

The second difference is in the always_comb block that implements the FSM's combinational logic section (lines 28-50), because \(t\) might now appear in the conditions for \(n x \_\)state (lines \(34,35,42, \ldots\) ). The use of \(t \geq T-1\) instead of \(t=T-1\) is required in the conditional-timed transitions with \(T-1<t_{\max }\). Note that \(t_{\max }\) does not need to be defined in all states, which is not true for strategy \#2.
```

//Timed Moore machine with timer control strategy \#1
//Part 1: Module header:--------------------------------------
(same as for category 1 Moore, section 7.3)
//Part 2: Declarations:--
//FSM-related declarations:
(same as for category 1 Moore, section 7.3)
//Timer-related declarations:
const logic [7:0] T1 = <value>;
const logic [7:0] T2 = <value>;
const logic [7:0] tmax = <value>;//tmax\geqmax(T1,T2,...)-1
logic [7:0] t;
//Part 3: Statements:--
//Timer (strategy \#1, section 8.5.2):
always_ff @(posedge clk, posedge rst)
if (rst) t <= 0;
else if (pr_state != nx_state) t <= 0;
else if (t != tmax) t <= t + 1;
//FSM state register:
(same as for category 1 Moore, Section 7.3)
//FSM combinational logic:
always_comb
case (pr_state)
A: begin
outp1 <= <value>;
outp2 <= <value>;
if (... and t>=T1-1) nx_state <= B;
else if (... and t>=T2-1) nx_state <= ...;
else nx_state <= A;

```
```

37
3
39
4 0
4 1
4 2
4 3
4 4
4 5
4 6
4 7
4 8
4 9

```
            end
```

 end
 B: begin
 B: begin
 outp1 <= <value>;
 outp1 <= <value>;
 outp2 <= <value>;
 outp2 <= <value>;
 if (... and t>=T3-1) nx_state <= C;
 if (... and t>=T3-1) nx_state <= C;
 else if (...) nx_state <= ...;
 else if (...) nx_state <= ...;
 else nx_state <= B;
 else nx_state <= B;
 end
 end
 C: begin
 C: begin
 end
 end
 ...
 ...
 endcase
 endcase
 //Optional output register:
 //Optional output register:
 (same as for category 1 Moore, section 7.3)
 (same as for category 1 Moore, section 7.3)
 endmodule
endmodule
//---

```
//-----------------------------------------------------------------
```

The next template is for timed Moore machines employing strategy \#2 to implement the timer.

The first difference is in line 14, which now includes also $t_{\max }$.
The second difference is in the always_ff block for the timer (lines 19-22), which is now based on the strategy described in section 8.5.3.

The third and final difference is in always_comb block that implements the FSM's combinational logic section (lines 28-52), which requires now the value of $t_{\text {max }}$ to be specified in each state (lines $34,43, \ldots$), even if the state is untimed $\left(t_{\max }=0\right)$. This code can obviously be simplified in several ways when there are no conditional-timed transitions and/or $t_{\max }$ is the same in all or most states.

```
//Timed Moore machine with timer control strategy #2
//Part 1: Module header:--------------------------------
    (same as template above)
//Part 2: Declarations:-----------------------------------
    //FSM-related declarations:
    (same as for category 1 Moore, section 7.3)
    //Timer-related declarations:
    const logic [7:0] T1 = <value>;
    const logic [7:0] T2 = <value>;
    logic [7:0] t, tmax;
//Part 3: Statements:-----------------------------------
    //Timer (strategy #2, section 8.5.3):
```

```
    always_ff @(posedge clk, posedge rst)
        if (rst) t <= 0;
        else if (t < tmax) t <= t + 1;
        else t <= 0;
        //FSM state register:
        (same as for category 1 Moore, Section 7.3)
        //FSM combinational logic:
        always_comb
        case (pr_state)
            A: begin
                outpl <= <value>;
                outp2 <= <value>;
                ...
                tmax <= T1-1;
                if (... and t=tmax) nx state <= B;
                else if (...) nx_state <= ...;
                else nx_state <= A;
            end
            B: begin
                outp1 <= <value>;
                outp2 <= <value>;
                    tmax <= T2-1;
                if (... and t=tmax) nx state <= C;
                else if (...) nx_state <= ...;
                else nx_state <= B;
            end
            C: begin
            end
            ...
        endcase
    //Optional output register:
    (same as for category 1 Moore, section 7.3)
endmodule
//--------------------------------------------------------
```


10.3 SystemVerilog Template for Timed (Category 2) Mealy Machines

The template is presented below, using strategy \#1 to implement the timer. The only difference with respect to the Moore template just described is in the always_comb block for the combinational logic (lines 22-64) because the output is specified differently now. Recall that in a Mealy machine the output depends not only on the FSM's state but also on its input, so if statements are expected for the output in one or more states because the output values might not be unique. This is achieved by including such values within the conditional statements for $n x _s t a t e$. For example, observe in
lines 24-42, relative to state A, that the output values are now conditional. Compare these lines against lines $30-37$ in the previous template.

```
//Timed Mealy machine with timer control strategy #1
//Part 1: Module header:------------------------------
    (same as for category 2 Moore, section 10.2)
//Part 2: Declarations:--------------------------------
    //FSM-related declarations:
    (same as for category 2 Moore, section 10.2)
    //Timer-related declarations:
        (same as for category 2 Moore, section 10.2)
//Part 3: Statements:----------------------------------
        //Timer (using timer control strategy #1):
        (same as for category 2 Moore, section 10.2)
        //FSM state register:
        (same as for category 2 Moore, section 10.2)
        //FSM combinational logic:
        always_comb
            case (pr_state)
            A:
                            if (... and t>=T1-1) begin
                                outp1 <= <value>;
                                outp2 <= <value>;
                                nx_state <= B;
                    end
                            else if (... and t>=T2-1) begin
                                outp1 <= <value>;
                                outp2 <= <value>;
                                nx_state <= ...;
                    end
                else begin
                        outp1 <= <value>;
                                outp2 <= <value>;
                                nx_state <= A;
                    end
                B :
                    if (... and t>=T3-1) begin
                        outp1 <= <value>;
                        outp2 <= <value>;
                        nx_state <= C;
                    end
                    else if (condition) begin
                        outp1 <= <value>;
                        outp2 <= <value>;
```

```
5 3
5 4
5 5
56
5 7
5 8
5 9
6 0
6 1
6 2
6 3
6 4
6 5
6 6
6 7
6 8
6 9
70
```

```
                        nx_state <= ...;
```

 nx_state <= ...;
 end
 end
 else begin
 else begin
 outpl <= <value>;
 outpl <= <value>;
 outp2 <= <value>;
 outp2 <= <value>;
 nx_state <= B;
 nx_state <= B;
 end
 end
 C: ...
 C: ...
 endcase
 endcase
 //Optional output register:
 //Optional output register:
 (same as for category 2 Moore, section 10.2)
 (same as for category 2 Moore, section 10.2)
 endmodule
endmodule
//---

```
//-------------------------------------------------------
```


10.4 Design of a Light Rotator

This section presents a SystemVerilog-based design for the light rotator introduced in section 8.11.2. The Moore template of section 10.2 is used to implement the FSM of figure 8.14 b. Either strategy \#1 (section 8.5.2) or \#2 (section 8.5.3) can be used to build the timer (both templates are shown in section 10.2); the former is employed in the code below, while the latter is explored in exercise 10.1.

The first part of the code (module header) is in lines 1-4. The module's name is light_rotator. Note that all ports are of type logic.

The second part of the code (declarations) is in lines 6-17. In the FSM-related declarations (lines 9-11), the enumerated type state is created to represent the machine's present and next states. In the timer-related declarations (lines 14-17), the values chosen for T_{1} and T_{2} are such that 120 ms and 35 ms result, respectively, assuming $f_{c l k}=50 \mathrm{MHz}$.

The third and final part of the code (statements) is in lines 19-85. It contains three always blocks, described next.

The first always block (lines 22-27) is an always_ff that implements the timer, using strategy \#1. Except for the presence of $s t p$, it is exactly as in the template.

The second always block (lines 30-32) is an always_ff that implements the FSM's state register, exactly as in the template.

The third and final always block (lines $35-83$) is an always_comb, which implements the entire combinational logic section. It is just a list of all states (indeed, because this code is repetitive, some of the states were not detailed in order to save some space), each containing the output ($s s d$) value and the next state. Note that in each state the output value is unique because in a Moore machine the output depends only on the state in which the machine is.

In this kind of application, the " -1 " term present in the definition of the total time (lines $16,39,44,49, \ldots$.) does not make any difference, but it was maintained as a reminder of the precise value. Also, in this application possible glitches during (positive) clock transitions are not a problem, so the optional output register shown in the last part of the template was not employed.

The reader is invited to compile this code and play with the circuit in the FPGA development board. Also, check whether the number of DFFs inferred by the compiler matches the prediction made in section 8.11.2 for each encoding style.

```
//Module header:--------------------------------------
module light_rotator (
    input logíc stp, clk, rst,
    output logic [6:0] ssd);
//Declarations:-----------------------------------------
    //FSM-related declarations:
    typedef enum logic [3:0] {A, AB, B, BC, C, CD, D, DE, E, EF,
        F, FA} state;
    state pr_state, nx_state;
    //Timer-related declarations:
    const logic [22:0] T1 = 6_000_000; //120ms @fclk=50MHz
    const logic [22:0] T2 = 1_750_000; //35ms @fclk=50MHz
    const logic [22:0] tmax = T1-1; //tmax\geqmax(T1,T2)-1
    logic [22:0] t;
//Statements:-----------------------------------------------
    //Timer (using strategy #1):
    always_ff @(posedge clk, posedge rst)
        if (rst) t <= 0;
        else if (~stp) begin
            if (pr_state != nx_state) t <= 0;
            else if (t != tmax) t <= t + 1;
        end
        //FSM state register:
        always_ff @(posedge clk, posedge rst)
            if (rst) pr_state <= A;
            else pr_state <= nx_state;
        //FSM combinational logic:
        always_comb
            case (pr_state)
                A: begin
                    ssd <= 7'b0111111;
                if (t>=T1-1) nx_state <= AB; //or t==T1-1
                else nx_state <= A;
            end
            AB: begin
                ssd <= 7'b0011111;
                if (t>=T2-1) nx_state <= B; //or t==T2-1
                else nx_state <= AB;
```

```
    end
```

 end
 B: begin
 B: begin
 ssd <= 7'b1011111;
 ssd <= 7'b1011111;
 if (t>=T1-1) nx_state <= BC;
 if (t>=T1-1) nx_state <= BC;
 else nx_state <= B;
 else nx_state <= B;
 end
 end
 BC: begin
 BC: begin
 ssd <= 7'b1001111;
 ssd <= 7'b1001111;
 if (t>=T2-1) nx_state <= C;
 if (t>=T2-1) nx_state <= C;
 else nx_state <= BC;
 else nx_state <= BC;
 end
 end
 C: begin
 C: begin
 end
 end
 CD: begin
 CD: begin
 end
 end
 D: begin
 D: begin
 end
 end
 DE: begin
 DE: begin
 end
 end
 E: begin
 E: begin
 end
 end
 EF: begin
 EF: begin
 ...
 ...
 end
 end
 F: begin
 F: begin
 end
 end
 FA: begin
 FA: begin
 ssd <= 7'b0111101;
 ssd <= 7'b0111101;
 if (t==T2-1) nx_state <= A;
 if (t==T2-1) nx_state <= A;
 else nx_state <= FA;
 else nx_state <= FA;
 end
 end
 endcase
endcase
endmodule
//---

```

\subsection*{10.5 Design of a Car Alarm (with Chirps)}

This section presents a SystemVerilog-based design for the car alarm with chirps introduced in section 8.11.6. The Moore template of section 10.2 is employed to implement the FSM of figure 8.21 c . Again, either strategy \#1 or \#2 can be used to build the timer; the latter was adopted in the code below.

The first part of the code (module header) is in lines 1-4. The module's name is car_alarm_with_chirps. Note that all ports are of type logic.

The second part of the code (declarations) is in lines 6-16. In the FSM-related declarations (lines 9-11), the enumerated type state is created to represent the machine's
present and next states. In the timer-related declarations (lines 14-16), the value chosen for chirpON and chirpOFF is such that the chirp and the time interval between chirps last 0.3 s , assuming \(f_{c k}=50 \mathrm{MHz}\).

The third and final part of the code (statements) is in lines 18-97. It contains three always blocks, described next.

The first always block (lines 21-24) is an always_ff that implements the timer, using strategy \#2, exactly as in the template.

The second always block (lines 27-29) is another always_ff, implementing the machine's state register, also as in the template.

The third and final always block (lines 32-95) is an always_comb, which implements the entire combinational logic section. It is just a list of all states, each containing the output (siren) value, the value of \(t_{\max }\), and the next state. Note that in each state the output value is unique because in a Moore machine the output depends only on the state in which the machine is.

In this kind of application the " -1 " term present in the determination of \(t_{\text {max }}\) (lines \(42,67,73, \ldots\) ) does not make any difference, but it was maintained as a reminder of the precise value. Also, in this kind of application possible glitches during (positive) clock transitions are generally not a problem, so the optional output register shown in the final portion of the template was not employed.

Finally, and very importantly, observe the correct use of registers and the completeness of the code, as described in comment 8 of section 7.3. Observe in particular the following: 1) all states are included; 2) the list of outputs is exactly the same in all states, and the corresponding values are properly declared; 3) the specifications for \(n x \_\)state are always finalized with an else statement, so no condition is left unchecked.

The total number of flip-flops inferred by the compiler on synthesizing this code was 28 for sequential or Gray encoding, 29 for Johnson, and 34 for one-hot. Compare these results against your predictions made in exercise 8.14.

Simulation results are shown in figure 10.1.


Figure 10.1
Simulation results from the SystemVerilog code for the car alarm of figure 8.21c for chirpON \(=\) chirpOFF \(=3\) clock cycles.

1
```

//Module header:--

```
//Module header:----------------------------------------------------
module car_alarm_with_chirps (
module car_alarm_with_chirps (
    input logic remt, sen, clk, rst,
    input logic remt, sen, clk, rst,
    output logic siren);
    output logic siren);
//Declarations:-------------------------------------------------------
//Declarations:-------------------------------------------------------
    //FSM-related declarations:
    //FSM-related declarations:
    typedef enum logic [3:0] {disarmed, armed, alarm, chirp1,
    typedef enum logic [3:0] {disarmed, armed, alarm, chirp1,
        chirp2, chirp3, chirp4, chirp5, wait1, wait2} state;
        chirp2, chirp3, chirp4, chirp5, wait1, wait2} state;
    state pr_state, nx_state;
    state pr_state, nx_state;
    //Timer-related declarations:
    //Timer-related declarations:
    const logic [23:0] chirpON = 15 000 000; //0.3s @fclk=50MHz
    const logic [23:0] chirpON = 15 000 000; //0.3s @fclk=50MHz
    const logic [23:0] chirpOFF = 15_000_000;
    const logic [23:0] chirpOFF = 15_000_000;
    logic [23:0] t, tmax; --range>max(chirpON,chirpOFF)
    logic [23:0] t, tmax; --range>max(chirpON,chirpOFF)
//Statements:---------------------------------------------------------
//Statements:---------------------------------------------------------
    //Timer (using strategy #2):
    //Timer (using strategy #2):
    always ff @(posedge clk, posedge rst)
    always ff @(posedge clk, posedge rst)
        if (rst) t <= 0;
        if (rst) t <= 0;
        else if (t < tmax) t <= t + 1;
        else if (t < tmax) t <= t + 1;
        else t <= 0;
        else t <= 0;
    //FSM state register:
    //FSM state register:
    always_ff @(posedge clk, posedge rst)
    always_ff @(posedge clk, posedge rst)
        if (rst) pr_state <= disarmed;
        if (rst) pr_state <= disarmed;
        else pr_state <= nx_state;
        else pr_state <= nx_state;
    //FSM combinational logic:
    //FSM combinational logic:
    always_comb
    always_comb
        case (pr_state)
        case (pr_state)
            disarmed: begin
            disarmed: begin
                    siren <= 1'b0;
                    siren <= 1'b0;
                    tmax <= 0;
                    tmax <= 0;
                    if (remt) nx_state <= chirp1;
                    if (remt) nx_state <= chirp1;
                    else nx_state <= disarmed;
                    else nx_state <= disarmed;
                end
                end
                chirp1: begin
                chirp1: begin
                    siren <= 1'b1;
                    siren <= 1'b1;
                    tmax <= chirpON-1;
                    tmax <= chirpON-1;
                    if (t==tmax) nx_state <= wait1;
                    if (t==tmax) nx_state <= wait1;
                    else nx state <= chirpl;
                    else nx state <= chirpl;
                end
                end
                wait1: begin
                wait1: begin
                    siren <= 1'b0;
                    siren <= 1'b0;
                    tmax <= 0;
                    tmax <= 0;
                    if (~remt) nx_state <= armed;
                    if (~remt) nx_state <= armed;
                    else nx_state <= wait1;
                    else nx_state <= wait1;
                end
                end
                armed: begin
                armed: begin
                    siren <= 1'b0;
                    siren <= 1'b0;
                    tmax <= 0;
                    tmax <= 0;
                    if (sen) nx_state <= alarm;
```

 if (sen) nx_state <= alarm;
    ```
```

5 6
5 7
5 8
5 9
6 0
6 1
6 2
6 3
6 4
6 5
6 6
6 7
6 8
6 9
7 0
7 1
7 2
7 3
7 4
7 5
76
7 7
7
7 9
80
8 1
//---

```
```

 else if (remt) nx_state <= chirp3;
    ```
    else if (remt) nx_state <= chirp3;
    else nx_state <= armed;
    else nx_state <= armed;
        end
        end
        alarm: begin
        alarm: begin
    siren <= 1'b1;
    siren <= 1'b1;
    tmax <= 0;
    tmax <= 0;
    if (remt) nx_state <= chirp2;
    if (remt) nx_state <= chirp2;
    else nx_state <= alarm;
    else nx_state <= alarm;
        end
        end
        chirp2: begin
        chirp2: begin
            siren <= 1'b0;
            siren <= 1'b0;
            tmax <= chirpOFF-1;
            tmax <= chirpOFF-1;
            if (t==tmax) nx_state <= chirp3;
            if (t==tmax) nx_state <= chirp3;
            else nx_state <= chirp2;
            else nx_state <= chirp2;
        end
        end
        chirp3: begin
        chirp3: begin
    siren <= 1'b1;
    siren <= 1'b1;
    tmax <= chirpON-1;
    tmax <= chirpON-1;
        if (t==tmax) nx_state <= chirp4;
        if (t==tmax) nx_state <= chirp4;
            else nx_state <= chirp3;
            else nx_state <= chirp3;
        end
        end
        chirp4: begin
        chirp4: begin
            siren <= 1'b0;
            siren <= 1'b0;
            tmax <= chirpOFF-1;
            tmax <= chirpOFF-1;
            if (t==tmax) nx_state <= chirp5;
            if (t==tmax) nx_state <= chirp5;
            else nx_state <= chirp4;
            else nx_state <= chirp4;
        end
        end
        chirp5: begin
        chirp5: begin
            siren <= 1'b1;
            siren <= 1'b1;
            tmax <= chirpON-1;
            tmax <= chirpON-1;
            if (t==tmax) nx_state <= wait2;
            if (t==tmax) nx_state <= wait2;
            else nx_state <= chirp5;
            else nx_state <= chirp5;
        end
        end
        wait2: begin
        wait2: begin
            siren <= 1'b0;
            siren <= 1'b0;
            tmax <= 0;
            tmax <= 0;
            if (~remt) nx_state <= disarmed;
            if (~remt) nx_state <= disarmed;
            else nx_state <= wait2;
            else nx_state <= wait2;
        end
        end
    endcase
    endcase
endmodule
```

endmodule

```

\subsection*{10.6 Design of a Triggered Monostable Circuit}

This section presents a SystemVerilog-based design for the triggered monostable circuit of figure 8.24b, which is capable of generating the signal of figure 8.24a. Again, the code that follows is a straightforward application of the SystemVerilog template for category 2 Moore machines introduced in section 10.2. Note, however, that in this FSM the timer control strategy \#2 (section 8.5.3) cannot be used. Indeed, even strategy \#1 (section 8.5.2) cannot be applied completely because in one of the state transitions the timer must not be zeroed.

The first part of the code (module header) is in lines \(1-4\). The module's name is triggered_mono. Note that all ports are of type logic.

The second part of the code (declarations) is in lines 6-15. In the FSM-related declarations (lines 9-11), the enumerated type state is created to represent the machine's present and next states; also, a variable called \(y\) is defined because the optional output register (which will produce a registered version of \(y\), called \(y_{-} r e g\) ) is needed here to remove possible glitches. In the timer-related declarations (lines 14-15), a small value was used for \(T\) (called delay in the code; note delay \(=3\) in line 14) in order to ease the inspection of the simulation results.

The third and final part of the code (statements) is in lines 17-62. It contains four always blocks, described next.

The first always block (lines 20-23) is an always_ff that implements the timer. Note that the timer is not zeroed when the machine enters state D.

The second always block (lines 26-28) is another always_ff, implementing the machine's state register, exactly as in the template.

The third always block (lines 31-56) is an always_comb, which implements the entire combinational logic section. It is just a list of all states, each containing the output \((y)\) value and the next state. Note that in each state the output value is unique because in a Moore machine the output depends only on the state in which the machine is.

The fourth and final always block (lines 59-60) implements the optional output register, exactly as in the template. Even though \(y\) could come directly from a DFF (hence glitch-free), that is not guaranteed because it depends on the encoding scheme used in the machine.

Finally, and very importantly, observe the correct use of registers and the completeness of the code, as described in comment 8 of section 7.3. Observe in particular the following: 1) all states are included; 2) the list of outputs is exactly the same in all states, and the corresponding values are properly declared; 3) the specifications for \(n x \_\)state are always finalized with an else statement, so no condition is left unchecked.

The total number of flip-flops inferred by the compiler on synthesizing the code below, with regular sequential encoding for the machine states, was 5 for \(T=3\) and 15 for \(T=3000\).

Simulation results are similar to those in figure 9.2, where the same circuit was implemented using VHDL.
```

//Module header:--
module triggered_mono (
input logic x, clk, rst,
output logic y_reg);
//Declarations:

```
```

 //FSM-related declarations:
 typedef enum logic [1:0] {A, B, C, D} state;
 state pr_state, nx_state;
 logic y;
 //Timer-related declarations:
 const logic [1:0] delay = 3; //any value >1
 logic [1:0] t; //tmax\geqdelay-1
 //Statements:---
//Timer (strategy \#1, adapted):
always_ff @(posedge clk, posedge rst)
if (rst) t <= 0;
else if (pr_state!=nx_state \& nx_state!=D) t <= 0;
else if (pr_state==nx_state \& t!=`delay-1) t <= t + 1;
//FSM state register:
always_ff @(posedge clk, posedge rst)
if (rst) pr_state <= A;
else pr_state <= nx_state;
//FSM combinational logic:
always_comb
case (pr_state)
A: begin
y <= 1'b0;
if (~x) nx_state <= B;
else nx_state <= A;
end
B: begin
y <= 1'b0;
if (x) nx_state <= C;
else nx state <= B;
end
C: begin
Y <= 1'bl;
if (~x \& t<delay-1) nx_state <= D;
else if (~x \& t>=delay-1) nx_state <= B;
else if (x \& t==delay-1) nx_state <= A;
else nx_state <= C;
end
D: begin
y <= 1'b1;
if (x) nx_state <= C;
else if (~x \& t>=delay-2) nx_state <= B;
else nx_state <= D;
end
endcase
//Optional output register:-------
always_ff @(posedge clk)
y_reg <= Y;
endmodule
//---

```

\subsection*{10.7 Exercises}

Exercise 10.1: Timer Control Strategies Analysis (Light Rotator)
Solve exercise 9.1 using SystemVerilog instead of VHDL.

\section*{Exercise 10.2: Blinking Light}

Solve exercise 9.2 using SystemVerilog instead of VHDL.

Exercise 10.3: Switch Debouncer
Solve exercise 9.3 using SystemVerilog instead of VHDL.

\section*{Exercise 10.4: Reference-Value Definer}

Solve exercise 9.4 using SystemVerilog instead of VHDL.

\section*{Exercise 10.5: Blinking Light with Several Speeds}

Solve exercise 9.5 using SystemVerilog instead of VHDL.

\section*{Exercise 10.6: Light Rotator with Additional Features}

Solve exercise 9.6 using SystemVerilog instead of VHDL.

\section*{Exercise 10.7: Garage Door Controller}

Solve exercise 9.7 using SystemVerilog instead of VHDL.

\section*{Exercise 10.8: Traffic Light Controller}

Solve exercise 9.8 using SystemVerilog instead of VHDL.

\section*{Exercise 10.9: Password Detector}

Solve exercise 9.9 using SystemVerilog instead of VHDL.

\section*{Exercise 10.10: Triggered Circuits}

Solve exercise 9.10 using SystemVerilog instead of VHDL.

\section*{Exercise 10.11: Pulse Shifter}

Solve exercise 9.11 using SystemVerilog instead of VHDL.

\section*{Exercise 10.12: Synchronous Pulse Stretcher}

Solve exercise 9.12 using SystemVerilog instead of VHDL.

\section*{Exercise 10.13: Asynchronous Pulse Stretcher}

Solve exercise 9.13 using SystemVerilog instead of VHDL.

\section*{11 Recursive (Category 3) State Machines}

\subsection*{11.1 Introduction}

We know that, from a hardware perspective, state machines can be classified into two types, based on their input connections, as follows.
1) Moore machines: The input, if it exists, is connected only to the logic block that computes the next state.
2) Mealy machines: The input is connected to both logic blocks, that is, for the next state and for the actual output.

In section 3.6 we introduced a new classification, also from a hardware point of view, based on the transition types and nature of the outputs, as follows (see figure 11.1).
1) Regular (category 1) state machines: This category, illustrated in figure 11.1a and studied in chapters 5 to 7 , consists of machines with only untimed transitions and outputs that do not depend on previous (past) output values so none of the outputs need to be registered for the machine to function.
2) Timed (category 2) state machines: This category, illustrated in figure 11.1b and studied in chapters 8 to 10 , is similar to category 1 , except for the fact that one or more of its transitions depend on time (so these FSMs can have all four transition types: conditional, timed, conditional-timed, and unconditional).
3) Recursive (category 3) state machines: This category is illustrated in figure 11.1c and studied in chapters 11 to 13 . It can have all four types of transitions, but one or more outputs depend on previous (past) output values so such outputs must be registered. Recall that in the standard architecture the outputs are produced by the FSM's combinational logic block, so the current output values are "forgotten" after the machine leaves that state; consequently, to implement a recursive (recurrent) machine, some sort of extra memory is needed.

The name "recursive" for category 3 is due to the fact that when an output depends on a previous output value that value is generally from that same output, so a recursive


Figure 11.1
State machine categories (from a hardware perspective).
equation results (i.e., the output is a function of itself). For example, \(y=y, y=y^{\prime}\), and \(y=y+1\) mean that \(y\) (which is an output) should keep in the present state the same value that it had in the previous state, or the complement of that value, or the incremented version of that value, respectively. Equivalently, one could write \(y_{\text {new }}=y_{\text {old }}, y_{\text {new }}\) \(=y_{\text {old }}{ }^{\prime}\), and \(y_{\text {new }}=y_{\text {old }}+1\). Occasionally, an output might be a function of a past value of another signal, like \(y=z\) (same as \(y_{\text {new }}=z_{\text {old }}\) ).

The two fundamental decisions that must be made before starting a design are then the following:
1) The state machine category (regular, timed, or recursive).
2) The state machine type (Moore or Mealy).

It is important to recall, however, that regardless of the machine category and type, the state transition diagram must fulfill three fundamental requisites (seen in section 1.3):
1) It must include all possible system states.
2) All state transition conditions must be specified (unless a transition is unconditional) and must be truly complementary.
3) The list of outputs must be exactly the same in all states (standard architecture).

\subsection*{11.2 Recursive (Category 3) State Machines}

Figure 11.2 shows two examples of very special circuits. In figure 11.2a a simplified flowchart for a memory-write procedure is shown in which an address is set, the data to be stored at that address is presented, then a write-enable pulse is applied to store the data. Note the presence of an incrementer (gray block), responsible for setting the


Figure 11.2
Examples of category 3 state machines.
next memory address. Because the expression \(a d d r=a d d r+1\) is not a constant but, rather, depends on the previous value of addr, this flowchart cannot be implemented in hardware without some sort of auxiliary memory (to hold the value of addr), which must be provided along with the corresponding FSM (note that this is different-and more complex-than a "similar" implementation in software).

The second example (figure 11.2b) consists of a state machine with three outputs. Note that the list of outputs is exactly the same in all states (as required for hardware implementations using the standard architecture; otherwise latches would be inferred), but again not all output values are deterministic: in state \(B, z\) must keep the same value that it had when the machine left state A; in state C, \(y\) must exhibit the complement of the value that it had in the previous state, while \(z\) must be incremented. Recall that we cannot simply write \(z=z_{A}\) in state B because \(z_{A}\) might have changed; for the same reason, we cannot write \(y=y_{B}{ }^{\prime}\) and \(z=z_{A}+1\) in state \(C\). Consequently, an extra memory (to hold the values of \(y\) and \(z\) ) is again needed.

\subsection*{11.3 Architectures for Recursive (Category 3) Machines}

The general architecture for category 3 machines is summarized in figure 11.3a. This representation follows the style of figures 3.1 b and 3.1 d , but the style of figures 3.1a and 3.1c could be used equivalently. Note that the timer is optional, but at least one auxiliary register is necessary.

In this illustration, only for the signal that produces output2 an auxiliary register is needed, so for that output the optional output register (figure 11.3b) is never required (the dashed lines indicate that output2 can be either the unregistered or the registered


Figure 11.3
(a) General architecture for category 3 machines (timer is optional, but auxiliary register is compulsory). (b) Optional output register (only for outputs not processed by an auxiliary register).
version of outp). On the other hand, output1 is not registered, so depending on the application, for it the optional output register might be needed. The resulting implementations are described below.

Recursive Moore machine: The circuit of figure 11.3a is used, with the input (if it exists) connected only to the logic block for the next state, as in figure 5.2a, and with unregistered output. Regarding the options for the output, see the comments above.
Recursive Mealy machine: Again, the circuit of figure 11.3a is used, but this time with the input connected to both logic blocks (for output and for next state), as in figure 5.2b. Regarding the options for the output, see the comments above.

\subsection*{11.4 Category 3 to Category 1 Conversion}

We said in section 1.3 that for an FSM to be implemented in hardware it must obey three fundamental principles, the last one being that the list of outputs be exactly the same in all states. This is indispensable because the outputs are generated by the combinational logic section, which, being combinational, has no memory, so if an output is not specified in a certain state, the compiler usually infers a latch (to hold the output's last value), which is undesirable.

There is, however, an (apparent) exception, which occurs when the outputs are registered (that is, when the optional output register seen in all templates is used), because then the outputs are stored anyway (so latches are not needed). In such cases one might not list all outputs in all states, but that simply means that unlisted outputs will exhibit the value previously stored in the corresponding flip-flops. Consequently, for any physical purpose the list of outputs is in fact the same in all states.

The reasoning above allows us to conclude that if a circuit was modeled as a category 3 machine (because it has recursive outputs), with all outputs requiring an auxiliary register, then it can be implemented as if it were a category 1 circuit, with the optional output register included. In practical terms, in such cases the "dangerous" VHDL template of section 6.4.4 can be used (although not recommended).

\subsection*{11.5 Repetitively Looped Category 3 Machines}

This section highlights the particular case in which multiple pointers (counters) are needed to implement an FSM. As is shown later in the examples, this can occur particularly when one is dealing with serial data communications (e.g., serial data receiver/ transmitter, \(\mathrm{I}^{2} \mathrm{C}\) interface, SPI interface). Note that this section is the counterpart of section 8.8 , in which similar machines were implemented using the category 2 model.

The general problem is stated in figure 11.4a. The machine must stay only one clock period in each state, but the loop must be repeated \(N_{\mathrm{AB}}\) times, where \(N_{\mathrm{AB}}\) is the number of times that the AB transition occurs ( \(N_{B A}\) and \(N_{A B}+N_{B A}\) would be fine too, but an extra DFF would be required in the counter for the latter). The solution proper is in figure 11.4b. Note that the counter ( \(k\) ) is incremented only in state B, holding its value while in state A.

A more general case is stated in figure 11.4c. Here, not only must the loop be repeated \(N_{\mathrm{AB}}\) times, but also the machine must stay \(N_{\mathrm{A}}\) clock periods in A and \(N_{\mathrm{B}}\) clock periods in B (note \(N_{\mathrm{A}}\) and \(N_{\mathrm{B}}\) over the state circles). The solution proper is in figure 11.4 d . Three counters \((i, j, k)\) are needed. Counter \(i\), which controls the stay in state A, is incremented in A and zeroed in B. Counter \(j\), which controls the stay in state B,


Figure 11.4
Repetitively looped machines using the category 3 model. (a) Symbolic representation when only the loop must be repeated and (b) corresponding details ( \(k\) is incremented only in state B). (c) Symbolic representation with the loop and the individual states repeated and (d) corresponding details (three counters are needed; again, \(k\) is incremented only in state B).
is incremented in B and zeroed in A. Finally, counter \(k\), which controls the number of loops, is incremented in B but is not zeroed in A.

\subsection*{11.6 Number of Flip-Flops}

As mentioned earlier, it is difficult to estimate the number of logic gates that will be needed in a large design, but it is always possible to determine, and exactly, the number of flip-flops.

In the particular case of sequential circuits implemented as category 3 state machines, there are four demands for DFFs, as follows:
1) For the state register (below, \(M_{F S M}\) is the number of states):

For sequential or Gray encoding: \(N_{F S M}=\left\lceil\log _{2} M_{F S M}\right\rceil\). Example: \(M_{F S M}=25 \rightarrow\) \(N_{F S M}=5\).
For Johnson encoding: \(N_{F S M}=\left\lceil M_{F S M} / 21\right.\). Example: \(M_{F S M}=25 \rightarrow N_{F S M}=13\).
For One-hot encoding: \(N_{F S M}=M_{F S M}\). Example: \(M_{F S M}=25 \rightarrow N_{F S M}=25\).
2) For the auxiliary register (compulsory, for at least one output, total \(b_{\text {aux }}\) bits):
\(N_{a u x}=b_{a u x}\). Example: \(b_{a u x}=8 \rightarrow N_{a u x}=8\).
3) For the output register (optional, never needed for outputs processed by auxiliary registers, total \(b_{\text {output }}\) bits):
\(N_{\text {output }}=b_{\text {output }}\). Example: \(b_{\text {output }}=16 \rightarrow N_{\text {output }}=16\).
4) For the timer (optional; category 3 can have all four types of transitions):
\(N_{\text {timer }}=\left\lceil\log _{2} T_{\max }\right\rceil\), where \(T_{\text {max }}\) is the largest transition time, expressed in "number
of clock cycles"; that is, \(T_{\text {max }}=t_{\text {state_max }} \times f_{c k}\), where \(t_{\text {state_max }}\) is the largest transition
time, in seconds, and \(f_{c l k}\) is the clock frequency, in hertz.
Therefore, the total number of DFFs is \(N_{\text {total }}=N_{F S M}+N_{\text {aux }}+N_{\text {output }}+N_{\text {timer }}\). In the examples that follow, as well as in the actual designs with VHDL and SystemVerilog, the number of flip-flops will be examined often.

\subsection*{11.7 Examples of Recursive (Category 3) State Machines}

A series of recursive FSMs are presented next. Several of these examples will be designed later using VHDL (chapter 12) and SystemVerilog (chapter 13).

\subsection*{11.7.1 Generic Counters}

As mentioned in section 5.4.1, counters are well-known circuits, easily designed without the FSM approach. Nevertheless, because they illustrate the state machine technique well, an example was included in that section using a regular FSM. A limitation seen there is that only small counters can be represented as regular state machines. In this section we are interested in examining how the FSM model can be extended
to represent counters of any size. Even though one does not need the FSM approach to implement a counter when using an EDA tool (such as VHDL or SystemVerilog), the formal extension presented here will help in understanding the examples that follow, which often contain an embedded counter.

Two examples of counters modeled as category 3 FSMs are examined in this section (where \(N\) is the number of bits): (a) free-running (meaning that once the last value is reached it returns and restarts automatically from the initial value) with modulo \(2^{N}\); (b) free-running with modulo \(<2^{N}\).

A modulo \(2^{N}\) counter is one that has \(2^{N}\) states, thus spanning all possible \(N\)-bit values. A regular modulo \(2^{N}\) sequential counter will count from 0 to \(2^{N}-1\), restarting then automatically from zero. This type of counter is depicted in figure 11.5a. As usual, ena \(=\) ' 1 ' allows the counter to run, whereas ena \(=\) ' 0 ' causes it to stop. Note the presence of reset, which acts directly on the hold \((x=x)\) state, thereby being able to set \(x=0\) (or any other value) as the starting value.

A modulo \(<2^{N}\) counter is one that has fewer than \(2^{N}\) states, thus not spanning all possible \(N\)-bit values. Therefore, a mechanism for starting/stopping the counter at the desired values is needed. A category 3 solution for this kind of counter is presented in figure 11.5b, where \(x_{\text {min }}\) and \(x_{\max }\) represent the counter's initial and final values, respectively.

The examples above show that there is a big difference between category 1 and category 3 representations for counters. In the former all states are required to appear in the state transition diagram (section 5.4.1), whereas in the latter only very few states are needed (figure 11.5), regardless of the counter's number of states (thus, only the latter allows large counters to be conveniently represented as state machines). There is a price to pay, however: even though the resulting circuits in category 1 and category 3 are quite similar, only the former can lead to optimal implementations (similar to


Figure 11.5
(a, b) Generic counters modeled as category 3 FSMs, free running in the range 0 to \(2^{N}-1\) or \(x_{\text {min }}\) to \(x_{\text {max }}\), respectively. (c) Usual (optimal) construction for large synchronous counters.
figure 11.5 c ; this is called a synchronous counter with serial enable; for small counterstypically up to four or five bits-parallel enable can be employed, but then no longer with a standard logic cell).

The nonoptimality mentioned above can be verified, for example, by counting the number of DFFs needed to build the category 3 circuit. Based on section 11.6, and assuming that \(x\) is an eight-bit value and that regular sequential encoding (section 3.7) is used for the FSMs, the number of DFFs is as follows: in figure 11.5a: 1 for the two states +8 for \(x=9\) DFFs; in figure 11.5b: 2 for the three states +8 for \(x=10\) DFFs; with category 1: 8 DFFs in either case.

\subsection*{11.7.2 Long-String Comparator}

This section deals with an FSM capable of sequentially comparing two arbitrarily long serial bit streams. The machine must determine whether the last \(N\) bits are pairwise equal (this means that the effect of the oldest pair of bits must be discarded when a new pair is received). Note that this is very different from determining whether two sequential blocks of \(N\) bits each are equal (in the latter, \(N\) bits are compared, then the next \(N\) bits are compared, and so on, without overlapping). The former is described in this section, and the latter is treated in exercise 11.5.

The circuit ports are depicted in figure 11.6a. The inputs (serial bit streams) are \(a\) and \(b\), while the output is \(y\) ( \(=\) ' 1 ' if all last \(N\) pairs of bits are equal). The comparator in this case is just a two-input XNOR gate, also depicted in the figure, which produces \(x=\) ' 1 ' when the inputs are equal. This signal \((x)\) will be the actual input to the FSM.

A corresponding Moore-type solution is presented in figure 11.6b. Note that besides the actual output \((y)\), it also produces an auxiliary output (i) that is a counter


Figure 11.6
Two-string comparator that produces \(y=\) ' 1 ' if the last \(N\) bits are pairwise equal. (a) Circuit ports and bit comparator. (b) State transition diagram. (c) Illustrative timing diagram, for \(N=4\).
needed to control some of the machine transitions. The machine only reaches state C, which is the only state with \(y=\) ' 1 ', if the last \(N\) values of \(x\) are ' 1 ' (no mismatches). Observe the recursive expression \(i=i+1\) in state B , which characterizes a category 3 FSM. Again, to better illustrate the solution, a detailed state transition diagram is presented, but simpler representations can obviously be used as well (as in figure 1.4).

An illustrative timing diagram for this circuit is included in figure 11.6 c for \(N=4\). The inputs were considered to be updated at the negative clock edge, whereas the FSM operates at the positive clock transition (note the dots marked on the \(x\) waveform, highlighting the values of \(x\) as perceived by the state machine). The reader is invited to apply the values of \(x\) given in figure 11.6 c to the state machine in figure 11.6 b to check the correctness of the plots for pr_state, \(i\), and \(y\).

Based on section 11.6, the number of flip-flops needed to build the FSM of figure 11.6 b is as follows. For the state register: \(M_{F S M}=3\) states, so \(N_{F S M}=2\) (assuming sequential encoding). For the auxiliary register: needed for signal \(i\), which ranges from 0 to \(N-1\); assuming \(N=64\) bits, \(N_{a u x}=6\) DFFs. For the optional output register: not needed, so \(N_{\text {output }}=0\). For the timer: not needed, so \(N_{\text {timer }}=0\). Therefore, \(N_{\text {total }}=\) 8 DFFs.

\subsection*{11.7.3 Reference-Value Definer}

In section 8.11 .4 we started a discussion on a very important class of circuits, found particularly in control applications, capable of setting reference values. An example mentioned there was a temperature controller for an air conditioning system, which must have a way of letting the user choose the desired (reference) room temperature. As seen in that section, such circuits can be easily implemented without the FSM approach when the increments are constant, or with category 1 FSMs otherwise, but in the latter only if the number of reference values is small. When additional features are required, category 3 can be an interesting alternative because it poses no restrictions.

Let us start by examining two basic building blocks, shown in figures 11.7a,b and \(11.7 \mathrm{c}, \mathrm{d}\). The circuit of figure 11.7a has only one control input ( \(u p\) ), which must cause the output (ref, the reference value) to be incremented by one unit every time \(u p\) is asserted (by means of a pushbutton, for example). The output must range from \(r e f_{\text {min }}\) to \(r e f_{\max }\), restarting automatically from \(r e f_{\min }\) after \(r e f_{\max }\) has been reached (or a reset pulse has been applied to the circuit).

A possible solution for this problem is depicted in figure 11.7b, requiring only four states regardless of the number of reference values. The machine must stay in state C during only one clock cycle (otherwise the incrementer would keep incrementing), so CD is an unconditional transition. Note the presence of recursive equations in almost all states, typical of category 3 FSMs.


Figure 11.7
Setting a reference value (for any set size). (a, b) Up only. (c, d) Up and down.


Figure 11.8
Practical application for a reference-value definer with a large number of states and timed transitions.

The second case, presented in figures \(11.7 \mathrm{c}, \mathrm{d}\), has up and down controls. Again, the output must range from \(r e f_{\text {min }}\) to \(r e f_{\max }\), with \(u p\) and \(d n\) causing ref to be incremented or decremented, respectively. When one of these limits is reached, the machine must remain there until a movement (with \(u p\) or \(d n\) ) in the opposite direction is provoked. A possible solution is depicted in figure 11.7d. Again, the number of states is just four, regardless of the number of reference values. Similarly to the previous case, here too there are states ( C and D ) that must last only one clock period.

A practical application is presented in figure 11.8a, where \(u p\) is produced by a pushbutton (after a debouncing circuit-see sections 8.11.3 and 11.7.4) and ref (reference value) is an eight-bit value, thus capable of operating anywhere in the 0-to-255
range. Every time the pushbutton is pressed (and released), ref must be incremented by one unit; however, if the pushbutton is kept pressed for \(t_{1}=2 \mathrm{~s}\) ( \(T_{1}\) clock periods) or longer, the increment must occur automatically and at every \(t_{2}=0.5 \mathrm{~s}\) ( \(T_{2}\) clock periods). If the maximum value is reached, the machine must stop and hold that value, only returning to the initial state if the pushbutton is released and pressed again.

A solution (without the debouncer) is depicted in figure 11.8 b , which is simply the basic building block of figure 11.7 b plus two extra states ( \(\mathrm{E}, \mathrm{F}\) ), added to take care of the time-related specifications. Note that the initial and final values can be chosen freely by the designer and that the CD and EF transitions are unconditional. Again, the machine size is independent of the number of reference values and of the time values used in the timed transitions (the time values only affect the size of the counter that implements the timer).

Even though \(u p\) is an asynchronous input in figure 11.8, a synchronizer (section 2.3) is not needed because a debouncer was included in the circuit (and the application might not be critical anyway).

Based on section 11.6, the number of flip-flops needed to build the FSM of figure 11.8 b is as follows. For the state register: \(M_{F S M}=6\) states, so \(N_{F S M}=3\) if sequential, Gray, or Johnson encoding is used, or 6 for one-hot. For the auxiliary register: needed for ref; because it is an eight-bit value, \(N_{a u x}=8\). For the optional output register: not needed, so \(N_{\text {output }}=0\). (If needed, the auxiliary register could be used for that because it contains ref anyway.) For the timer: because \(t_{\text {state_max }}=2 \mathrm{~s}\), and assuming \(f_{c l k}=50\) \(\mathrm{MHz}, T_{\max }=10^{7}\) clock cycles results, so \(N_{\text {timer }}=27\). Therefore, \(N_{\text {total }}=38\) or 41 DFFs.

\subsection*{11.7.4 Reference-Value Definer with Embedded Debouncer}

This section is an extension to the section above. Because in many control applications reference values are set by means of mechanical switches, which might require some sort of debouncer (section 8.11.3), we want to examine the possibility of embedding the debouncer directly into the reference-value definer circuit.

Three possible situations are depicted in figure 11.9: (a) with debouncers implemented as two separate circuits; (b) with the debouncers combined into a single circuit; (c) with the debouncers embedded in the FSM that implements the reference-value definer. The case in a was seen in section 8.11.3; that in b was treated in exercises 8.11 and 8.12; and that in c is discussed in this section.

The general debouncing principle seen in section 8.11.3 is summarized in figure 11.10a (with a simplified representation-see figure 1.4), which says that for the output to change from ' 0 ' to ' 1 ' the input must remain high during \(T\) consecutive clock cycles (recall that the timer is zeroed every time the machine changes its state, so if a ' 0 ' occurs before the time has been completed, the machine returns to the initial state, restarting the timer).


Figure 11.9
Reference-value definer with up and down controls set by two pushbuttons having the debouncers (a) implemented as two separate circuits, (b) implemente as a combined circuit, and (c) embedded into the main FSM.
(a)


Recall that, rigorously speaking, it is \(T-2\) in the \(Y Z\) transition (see Figure 8.16(c)).


Figure 11.10
(a) Review of the general debouncing principle. (b) Machine of figure 11.7 d with embedded debouncer (for the ' 0 '-to- 10 ' transition only).

This principle was applied to the ' 0 '-to-' 1 ' (' 1 '-to- \({ }^{\prime} 0\) ' not included) transitions of figure 11.7 d , resulting in the state diagram of figure 11.10 b . Note the white circles between states BC and BD , related to the debouncing procedure.

For an analysis of the number of flip-flops, see exercise 11.6. For another implementation, concerning the case of figure 11.7 b , see exercise 11.7.

\subsection*{11.7.5 Datapath Control for a Sequential Multiplier}

Before we examine this example, a review of Section 3.13 is useful. Particular attention should be paid to comment 4 at the end of that section, which is helpful here.

Figure 11.11a presents an algorithm for unsigned sequential multiplication using only add and shift operations. It computes the product in \(N\) iterations (after a dataload operation), where \(N\) is the number of bits in the multiplier and multiplicand, and 2 N is the number of bits in the product. Note that the product is divided into

(a)


Figure 11.11
Sequential add-and-shift multiplier. (a) Algorithm. (b) Flowchart.
two halves, called prodL (product left) and prodR (product right). In this example the inputs are " 1100 " (multiplicand \(=12\) ) and " 1011 " (multiplier \(=11\) ), so the expected result is "10000100" (product \(=132\) ).

Initially, the multiplicand is stored in a (fixed) register, and the multiplier is loaded into prodR, with prodL loaded with zeros. The algorithm checks the LSB (least significant bit) of the product; if it is ' 0 ', the product register is simply shifted to the right one position (empty position filled with the carry bit); if, however, it is ' 1 ', mult is added (with carry) to prodL before the shift operation is executed. After \(N\) iterations the product will be available in the product register.

The algorithm is described in ASM form in figure 11.11b. A data-valid bit ( \(d v=\) ' 1 ' during one clock period) is used to tell the circuit when the computation should start. The algorithm runs \(N\) times (for \(i=0\) to \(N-1\) ), so when \(i=N\) occurs the algorithm returns to the beginning, ready to start a new computation when \(d v\) is asserted again. Note that a nop (no operation) stage was included in the left branch to consume one clock cycle, so the computations will always take a fixed amount of time (depending on the application, the nop stage can be suppressed). Observe in the flowchart the recursive equation \(i=i+1\), which characterizes a category 3 FSM.

Figure 11.12a shows the parts of a datapath used to implement this multiplier, consisting of an ALU, two registers (REG1, REG2), and a multiplexer (MUX). It is assumed that it is a 16-bit system. The control unit (FSM) must generate the signals wrR1 and wrR2 (to enable writing into REG1 and REG2, respectively), sel (for mux input selection), ALUop (to control the ALU operation), and shift (to shift REG2 to the


Figure 11.12
Sequential add-and-shift multiplier. (a) Datapath. (b) Control unit implementation.
right one position, with carry). The ALU opcode table is assumed to be that included in the figure.

The multiplication starts when the control unit receives \(d v=\) ' 1 ' (during one clock period), at which time it enables REG1 (by means of wrR1 = ' 1 ') to store (at the next positive clock edge) the multiplicand, and REG2 (by means of \(A L U o p=0, s e l=\) ' 1 ', and \(w r R 2=\) ' 1 ') to store zero in prodL and the multiplier in prodR. After this, wrR1 stays low until the end of the computations, while wrR2 is asserted at the end of each iteration to enable the storage of \(A L U o u t\) into prodL, after which shift = ' 1 ' is produced to shift REG2 one position to the right. After \(N\) of such iterations, the product will be available in REG2.

A Moore machine that implements the control unit of figure 11.12(a) is presented in figure 11.12 (b), which is a direct translation of the algorithm described above. Observe the inclusion of a wait state, needed for the reason explained in comment 4 at the end of section 3.13.

VHDL and SystemVerilog implementations for this multiplier are presented in sections 12.4 and 13.4, respectively.

\subsection*{11.7.6 Sequential Divider}

This section describes a state machine capable of sequentially computing the division num/den (numerator/denominator), producing the corresponding quotient (quot) and

Computation: \(\frac{\text { Numerator (num) }}{\text { Denominator (den) }}\)
\begin{tabular}{|c|c|c|c|}
\hline Iteration & Procedure & \[
\underset{\text { den }}{\substack{\text { Denominator }}}
\] & Result rem quot \\
\hline -- & Load data & 0101 &  \\
\hline 1 & rem \(<\) den \(\rightarrow\) no operation Shift left result with ' 0 ' & & 00011010 \\
\hline 2 & rem \(<\) den \(\rightarrow\) no operation Shift left result with ' 0 ' & & 00110100 \\
\hline 3 & rem<den \(\rightarrow\) no operation Shift left result with ' 0 ' & & 01101000 \\
\hline 4 & \begin{tabular}{l}
\[
r e m \geq \text { den } \rightarrow \text { rem }=r e m-d e n
\] \\
Shift left result with ' 1 '
\end{tabular} & & \begin{tabular}{|c|c|}
0001 & 1000 \\
\hline 0011 & 0001 \\
\hline
\end{tabular} \\
\hline 5 & \begin{tabular}{l}
rem<den \(\rightarrow\) no operation \\
Shift left result with ' 0 '
\end{tabular} & & \begin{tabular}{l} 
Rem.: \\
011 \\
010 \\
\hline
\end{tabular} \\
\hline
\end{tabular}
(a)



Figure 11.13
Complete sequential divider. (a) Algorithm. (b) Flowchart. (c) A possible implementation (for \(N=4)\).
remainder (rem) values. Contrary to the previous section, here a datapath is not employed, so the machine is a complete divider, not a control unit.

The division algorithm, for unsigned inputs and employing only subtract and shift operations, is illustrated in figure 11.13(a). The computations take \(N+1\) iterations (after a data-load operation), where \(N\) is the number of bits in all four signals (num, den, quot, rem). In this example the inputs are num \(=\) " \(1101 "(=13)\) and den \(=\) "0101" \((=\) 5), so the expected results are quot \(=" 0010 "(=2)\) and rem \(=" 0011 "(=3)\).

Initially, the denominator is stored in a (fixed) register, while the numerator is loaded into the quotient register, and the remainder is loaded with zeros. The algorithm checks whether rem \(\geq\) den; if yes, den is subtracted from rem, and the entire result (rem and quot) is shifted to the left one position with the empty position filled with
a ' 1 '; otherwise, no subtraction occurs, and the result is shifted to the left with a ' 0 ' in the empty position. After \(N+1\) iterations, the final result will be available. Note that the actual value of rem does not include its LSB.

The algorithm is described in ASM form in figure 11.13b. A data-valid bit ( \(d v=\) ' 1 ' during one clock period) is used to tell the circuit when the computation should start. The algorithm runs \(N+1\) times (for \(i=0\) to \(N\) ), so when \(i=N+1\) occurs, the algorithm returns to the beginning, ready to start a new computation when \(d v\) is asserted again. As in the previous section, an optional nop (no operation) stage was included in the left branch to consume one clock cycle, so the computations will always take a fixed amount of time.

A Moore machine that implements the complete divider is presented in figure 11.13c (note that \(N=4\) in this example). In the load state, rem is zeroed and quot is loaded with num. If rem \(\geq\) den, the machine moves to state subtract, in which rem-den occurs, followed by state shift1, responsible for shifting the data one position to the left with a ' 1 ' included in the rightmost position (following VHDL notation, "\&" means concatenation in the expression \(\operatorname{rem}=\operatorname{rem}(2: 0) \& \operatorname{quot}(3)\), meaning that \(\operatorname{rem}(3: 1)\) \(=\operatorname{rem}(2: 0)\) and \(\operatorname{rem}(0)=q u o t(3)\); the expression quot \(=q u o t(2: 0) \& ' 1\) ' has a similar meaning). On the other hand, if rem<den when the machine is in load, it goes through the nop state, followed by state shifto, responsible for shifting the result one position to the left with a ' 0 ' included in the rightmost position. Observe the presence of recursive equations (quot \(=q u o t, i=i+1\), etc.) in several states, which characterize a category 3 FSM.

\subsection*{11.7.7 Serial Data Receiver}

This section shows another application that can be solved using a category 3 machine. It consists of a serial data receiver, which must store the received (one bit at a time) data in a multibit register. Even though this kind of circuit is simple, so it can be implemented without the FSM approach, we want to see how it can be modeled as a state machine (recall that we should be able to model any sequential circuit as an FSM).

The circuit ports are depicted in figure 11.14a. The inputs are \(x\) (serial bit stream), \(d v\) (data-valid bit, high during only one clock cycle, informing that data storage should start), plus the conventional clock and reset. The received data must be stored in \(y\), which is an \(N\)-flip-flop register. A signal called done is also shown, which informs when the machine is free to receive/store another serial vector.

It will be assumed that the first bit of \(x\) is made available at the same time that \(d v\) is asserted, which is more difficult to implement. Because this kind of problem was already treated in section 3.10, a review of that section is recommended before proceeding. Indeed, two solutions for this problem were already presented in figures \(3.16 \mathrm{c}, \mathrm{e}\), using a timed machine.


Figure 11.14
Serial data receiver. (a) Circuit ports. (b) Solution based on figure 3.16c (FSM operating at the negative clock edge). (c) Solution with all units operating at the same clock edge.

Two additional solutions are presented in figure 11.14, this time using category 3 machines, both of Moore type and without timed transitions. The FSM of figure 11.14b was based directly on that of figure 3.16 c , with the timer \((t)\) replaced with a pointer (i). As indicated in the rectangle above the state machine, the data is updated at the positive clock edge, which is also the edge that causes the storage of \(i\) and \(y\) in auxiliary registers, whereas the FSM operates at the negative clock transition.

A final solution is presented in figure 11.14 c , operating with the default clocking scheme (everybody operating at the same clock edge). In this case the first bit of \(x\) is not lost because it is part of the transition conditions (observe the idle-store0 and idlestore 1 transitions, the first for \(x=\) ' 0 ', the second for \(x=\) ' 1 ').

\subsection*{11.7.8 Memory Interface}

We want to develop a circuit for the memory interface of figure 11.15a, which must write data to an asynchronous SRAM chip. The only nonoperational input is \(d v\) (data valid), and the outputs are \(A\) (address at which the data must be stored), OEn (output enable, active low), CEn (chip enable, active low), and WEn (write enable, also active low). The actual memory-write command, internal to the SRAM, normally corresponds to the overlap between CEn and WEn. As in the previous example, this too is a simple circuit, but it is important to understand how it can be modeled as a finite state machine.

Figure 11.15b shows a possible (conservative) memory-write sequence. All signals are updated/produced at positive clock edges. As usual, a small propagation delay is included between clock transitions and corresponding responses in order to portray a more realistic situation. In this example it is assumed that writing occurs only while \(d v\) is high. When \(d v\) is raised, the circuit lowers CEn and WEn, causing DO to be


Figure 11.15
FSM implementing a memory-write procedure for an asynchronous SRAM. (a) Circuit ports. (b) Illustrative timing diagram (note that here writing occurs while \(d v\) is high). (c) Corresponding state machine.
stored at the initial memory address, after which WEn is raised, disabling further writing. Each subsequent iteration consists of three clock cycles, during which the memory address is updated and then another write-enable pulse ( \(W E n=\) ' 0 ') is applied to the circuit. When \(d v\) returns to ' 0 ', the address is reset to zero (or to any other initial value). These operations can be done with OEn permanently high (thus not shown).

A Moore-type state machine capable of implementing this sequence of events is presented in figure 11.15 c , which is a direct translation of the timing diagram of figure \(11.15 b\). The address is updated in state \(i n c A\), which increments the value of \(A\). Note the recursive expressions \(A=A\) and \(A=A+1\), which characterize a category 3 FSM.

An example involving an actual SRAM chip is depicted in figure 11.16. The SRAM (IS61LV25616 device, from ISSI) is shown in figure 11.16 . It can store 262 kwords of 16 bits each, hence requiring an 18-bit address bus, \(A(17: 0)\), and a 16 -bit data bus, \(D(15: 0)\). It also contains five control signals, all active low, called CEn, WEn, OEn, UBn (upper byte enable), and \(L B n\) (lower byte enable).

A memory-write procedure based on this device's truth table and time parameters is presented in the left half of figure 11.16 b . Note that it is less conservative than that in figure 11.15 b (the end of the WEn pulse coincides with the beginning of a new


Figure 11.16
FSM implementing memory-write and memory-read procedures for an actual \(262 \mathrm{k} \times 16\) SRAM. (a) Chip pinout. (b) Illustrative timing diagram (here, \(w r\) and \(r d\) are short pulses). (c) Corresponding state machine.
memory-write cycle). The largest read/write time parameter is 10 ns , so a clock of up to 100 MHz can be used in the procedure shown in the figure. Finally, note that the \(w r\) command lasts just one clock cycle, so the end of writing is determined by a predefined maximum address value.

A memory-read procedure is presented in the right half of figure 11.16b. When the device is not in write mode (write is done with WEn low), it is automatically in read mode, so when the \(r d\) command (which also lasts only one clock cycle) occurs, all that is needed is to do the address sweep.

A complete FSM for writing to (upper branch) and reading from (lower branch) this device is presented in figure 11.16 c . If a \(w r=\) ' 1 ' pulse occurs, data is written to the SRAM from address \(A=0\) (or any other initial value) up to \(A=A_{\max }\). A similar situation occurs for reading when an \(r d=\) ' 1 ' pulse is received. Note that state hold is important to prevent overwriting or overreading in case \(w r\) or \(r d\) is too long. The signals done_wr and done_rd were included to inform the user when writing or reading has been completed. Note also the inclusion of \(t=T_{1}\) and \(t=T_{2}\) in two of the transitions, which indicate a way of reducing the write/read speed if that is desired.

A complete design for this memory interface, using VHDL and SystemVerilog, is presented in sections 12.6 and 13.6, respectively. The number of flip-flops is treated in exercise 11.15.

\subsection*{11.8 Exercises}

\section*{Exercise 11.1: Machines Category}
a) Why are the state machines in figures 11.5, 11.6, and 11.7 (among others) said to be of category 3 ?
b) What types of transitions (section 1.6) can category 3 machines have?
c) What differentiates category 3 from categories 1 and 2?

\section*{Exercise 11.2: Generic Counter with a Stop Value}

Say that we must design a counter that starts at \(x_{\text {min }}\) and stops (and remains there) when \(x_{\max }\) is reached, only returning to the initial value and running again after a reset pulse is applied to the circuit. As in section 11.7.1, the counter must have an enable input (ena) that allows the counter to run when asserted or holds it otherwise.
a) Draw a Moore-type state transition diagram for this counter modeled as a category 3 machine.
b) Does the number of states depend on the counting range?
c) Does the number of flip-flops depend on the counting range? How many are needed to build your machine with \(x_{\min }=1\) and \(x_{\max }=200\) ?
d) Is it advantageous or necessary to use the FSM approach to design counters in general?

\section*{Exercise 11.3: Hamming-Weight Calculator}

The circuit of figure 11.17 must determine the Hamming weight (number of ' 1 's) of a serial bit vector \(x\). The vector is delimited by a data-valid bit (the counting must occur during all the time while \(d v=\) ' 1 '). Study the illustrative timing diagram included in the figure. Observe that \(d v\) and \(x(=" 100110101, "\) so \(N=9)\) are updated at positive clock edges and that the FSM too operates at positive clock edges (see the plot for \(y\) ). As usual, small propagation delays were included to portray a more realistic situation.


Figure 11.17


Figure 11.18
a) Based on the given data, draw a Moore-type state transition diagram for this problem. Include a reset signal but assume that it can be asserted only at power-up.
b) Based on your state diagram, fill in the waveform for \(p r_{-}\)state in the figure.
c) Redo part a assuming now that a reset pulse is applied to the FSM before each new computation starts. Can you find a solution with fewer states than in a?
d) Draw an illustrative timing diagram, similar to that in figure 11.17, for the FSM developed in part c.
e) How many DFFs are needed to build each machine developed above, assuming that sequential encoding is used and that \(x\) is a 32-bit vector (so \(y\) can go from 0 to 32)?

\section*{Exercise 11.4: Leading-Ones Counter}

The circuit of figure 11.18 must count the number of ' 1 's before a ' 0 ' is found in a serial bit vector \(x\). The vector is delimited by a data-valid bit (the counting must occur during all the time while \(d v=\) ' 1 '). Study the illustrative timing diagram included in the figure. Observe that \(d v\) and \(x(=" 111110000, "\) so \(N=9)\) are updated at positive clock edges, which are the same edges at which the FSM must operate.
a) Draw a state transition diagram for this machine.
b) Based on your machine, complete the plots for \(y\) and \(p r_{-}\)state in the figure.
c) Say that we want the output value to remain stable (constant) during the computations, with the current value replaced only when a new value is ready. How can that be done? (Suggestion: see section 3.11.)

\section*{Exercise 11.5: Long-String Comparator}

Develop an FSM that detects if two serial bit streams \(a\) and \(b\) of length \(N\) are pair-wise equal. This is an extension to the example of section 11.7.2 in which the FSM had to detect if the last \(N\) bits were equal. The circuit ports are depicted in the upper part of figure 11.19, which also shows an XNOR gate ( \(x=1\) ' when \(a=b\) ). The desired behavior is also illustrated in the figure for \(N=4\). Note in the \(y\) and done waveforms that after every four bits, starting right after the reset pulse, done must be asserted, informing that a complete block has been inspected, with \(y\) high during that pulse if the four pairs of bits were equal ( \(x=\) ' 1 ' in all four time slots) or low otherwise.


Figure 11.19
a) Draw a state transition diagram for a machine that solves this problem for any (arbitrarily long) value of \(N\).
b) Based on your solution, fill in the missing plots in figure 11.19.
c) How many DFFs are needed to build your machine, assuming that sequential encoding is used and that \(N=256\) bits?

\section*{Exercise 11.6: Reference-Value Definer with Embedded Debouncer \#1}

This exercise concerns the reference-value definer with embedded debouncer seen in figure 11.10b.
a) Assuming that ref is an eight-bit signal, regular sequential encoding is used for the FSM, the debouncing time interval is 1 ms , and \(f_{c l k}=50 \mathrm{MHz}\), calculate the number of flip-flops needed to build that circuit.
b) The inputs \(u p\) and \(d n\) are asynchronous. Is a synchronizer (section 2.3) needed in this application?

\section*{Exercise 11.7: Reference-Value Definer with Embedded Debouncer \#2}

We saw in figure 11.10b an FSM that embeds, in the reference-value definer of figure 11.7 d , a pair of debouncers for the \(u p\) and \(d n\) pushbuttons.
a) Using the same principle, modify the state transition diagram of figure 11.7 b in order to include in it a debouncer for the '0'-to-' 1 ' transitions of \(u p\).
b) Determine the number of DFFs needed to implement your FSM, assuming that sequential encoding is used, ref is an eight-bit signal, the debouncing interval is 1 ms , and \(f_{c l k}=50 \mathrm{MHz}\).

\section*{Exercise 11.8: Greatest Common Divisor}

The algorithm and a corresponding flowchart for calculating the greatest common divisor (GCD) between two integers \(a\) and \(b\) are presented in figure 5.12. A data-valid


Figure 11.20
\((d v)\) pulse, lasting only one clock period, informs when the computations must start. We want to redesign that machine, now without the datapath (so this is a complete GCD calculator). Note that the "load data" block of figure 5.12 is not indispensable here, but then the inputs must remain stable during the whole computations. Because the circuit will take a variable amount of time to compute the GCD (it depends on the input values), an output called done must be provided, which should remain high while the machine is idle. Draw a state transition diagram for an FSM capable of solving this problem.

\section*{Exercise 11.9: Factorial Calculator}

An algorithm for calculating \(f=n!(n \geq 0\), integer) is described in the flowchart of figure 11.20. Assume that \(d v\) (data valid) is asserted during one clock cycle, indicating when the data \((n)\) is ready, so the computation should commence. Because the circuit will take a variable amount of time to compute \(f\) (it depends on the value of \(n\) ), an output called done must be provided, which should remain high while the machine is idle. Draw a state transition diagram for a Moore-type machine that solves this problem.

\section*{Exercise 11.10: Datapath Control for a Sequential Multiplier}

This exercise concerns the datapath and corresponding control unit for multiplication using add-and-shift operations seen in figure 11.12.
a) How many flip-flops are needed to build the machine of figure 11.12 b for \(N=4\) and for \(N=32\) bits?
b) Draw a timing diagram that illustrates its operation (as done in figure 5.13d, for example), for \(N=4\). Consider that the first four values of \(\operatorname{prod}(0)\), after \(d v=\) ' 1 ' occurs, are \(\operatorname{prod}(0)=\left\{{ }^{\prime} 1\right.\) ', ' 0 ', ' 1 ', ' 0 ' \(\}\).

\section*{Exercise 11.11: Datapath Control for a Sequential Divider}

The algorithm and a corresponding flowchart for calculating the division num/den between two integers were presented in figure 11.13. In that case a complete divider was developed, whereas in this case we are interested in the same division but using a datapath (in other words, a control unit is needed here).
a) Based on the algorithm of figure 11.13 (and on the several examples using a datapath shown in chapters 3,5 , and 11), sketch a datapath that seems adequate for this problem.
b) Draw a state transition diagram for a (Moore) control unit such that the desired division is produced by your datapath.

\section*{Exercise 11.12: Serial Data Receiver}

Two category 3 solutions for a serial data receiver were presented in figure 11.14.
a) Present an illustrative timing diagram for the solution in figure 11.14 b , considering for \(c l k, d v\), and \(x\) the same waveforms of figure 3.16 .
b) Do the same for the solution in figure 11.14c.

\section*{Exercise 11.13: Serial Data Transmitter}

Two category 3 solutions for a serial data receiver (a deserializer) were presented in section 11.7.7.
a) Develop a category 3 solution for a serial data transmitter (a serializer).
b) Present an illustrative timing diagram for your FSM, for \(N=4\) and \(x(3: 0)=\) "1101."

\section*{Exercise 11.14: Memory Interface}

Calculate the number of flip-flops needed to build the memory interface of figure 11.16 c . Assume that sequential encoding is used for the FSM and that no timer is employed.

\section*{12 VHDL Design of Recursive (Category 3) State Machines}

\subsection*{12.1 Introduction}

This chapter presents several VHDL designs of category 3 state machines. It starts by presenting two VHDL templates, for Moore- and Mealy-based implementations, which are used subsequently to develop a series of designs related to the examples introduced in chapter 11.

The codes are always complete (not only partial sketches) and are accompanied by comments and often also simulation results illustrating the design's main features. All circuits were synthesized using Quartus II (from Altera) or ISE (from Xilinx). The simulations were performed with Quartus II or ModelSim (from Mentor Graphics). The default encoding scheme for the states of the FSMs was regular sequential encoding (see encoding options in section 3.7; see ways of selecting the encoding scheme at the end of section 6.3).

The same designs are presented in chapter 13 using SystemVerilog, so the reader can make a direct comparison between the codes.

Note: See suggestions of VHDL books in the bibliography.

\subsection*{12.2 VHDL Template for Recursive (Category 3) Moore Machines}

The template is presented below. Because it is an extension to the Moore templates for categories 1 and 2, described in sections 6.3 and 9.2, respectively, a review of those templates is suggested before this one is examined because only the differences are described. Review also some possible code variations in section 6.4.

The only differences are those needed for the inclusion of an auxiliary register, compulsory in category 3 machines. As seen in section 6.2, the architecture is composed of two parts, the declarative part (before begin) and the statements part (from begin on); both have new elements in order to accommodate the auxiliary register.

In the architecture's declarative part (lines 14-21), the difference is in line 21, in which two signals are created to deal with the auxiliary register. It is assumed that there is only one output and that it must be stored, but recall that the circuit might have several outputs, not all registered. The actual number of auxiliary registers is determined by the number of outputs that depend on past values.

In the architecture's statements part (lines 23-75), two differences are seen: the inclusion of a process to infer the auxiliary register and the replacement of outp with outp_reg on the right-hand side of the recursive equations. The latter removes the recursiveness, thus allowing the output to be computed by a combinational circuit.

Lines 29-36 show the process that implements the auxiliary register. If one prefers, this process can be combined with that for the FSM's state register (a shorter code results, but less didactic, with no effect on the result).

Lines 42-68 show the process that implements the machine's combinational logic section. The only difference here is that outp_reg, instead of outp itself, appears on the right-hand side of the (originally) recursive equations (lines 46 and 56).

As explained in section 11.3, an interesting aspect of category 3 FSMs is that the auxiliary register can also play the role of output register (for glitch-free and/or pipelined construction). To do so, we simply send outp_reg out instead of outp in line 73.

The code is concluded in line 73 , in which the value of outp is passed to the actual output. In fact, the actual output could be used in lines 34,46 , and 56 , in which case the mode of output (in the entity) should be changed from out to buffer (see example in section 12.5).
```

library ieee;
use ieee.std_logic_1164.all;
entity circuit is
generic (
(same as for category 2 Moore, section 9.2)
port (
(same as for category 1 Moore, section 6.3)
end entity;
architecture moore_fsm of circuit is
--FSM-related declarations:
(same as for category 1 Moore, section 6.3)
--Timer-related declarations:
(same as for category 2 Moore, section 9.2)
--Auxiliary-register-related declarations:

```
```

 signal outp, outp_reg: std_logic_vector(...);
 begin
--Timer:
(same as for category 2 Moore, section 9.2)
--Auxiliary register:
process (clk, rst)
begin
if (rst='1') then
outp_reg <= <initial value>;
elsif rising_edge(clk) then
outp_reg <= outp;
end if;
end process;
--FSM state register:
(same as for category 2 Moore, section 9.2)
--FSM combinational logic:
process (all) --list proc. inputs if "all" not supported
begin
case pr_state is
when A =>
outp <= outp_reg;
tmax <= T1-1;
if <condition> then
nx_state <= B;
elsif <condition> then
nx state <= ...;
else
nx_state <= A;
end if;
when B =>
outp <= outp_reg + 1;
tmax <= T2-1;
if <condition> then
nx_state <= C;
elsif <condition> then
nx_state <= ...;
else
nx_state <= B;
end if;
when C =>
...
end case;
end process;
--Optional output register:
(same as for category 1 Moore, section 6.3)
output <= outp;
end architecture;

```

\subsection*{12.3 VHDL Template for Recursive (Category 3) Mealy Machines}

The template is presented below. The only difference with respect to the Moore template just described is in the process for the combinational logic (lines 23-57) because the output is specified differently here. Recall that in a Mealy machine the output depends not only on the FSM's state but also on the input, so if statements are expected for the output in one or more states because the output value might not be unique.

Please review the following comments, which can be easily adapted from the Moore case to the Mealy case:
-On the Moore template for category 1, in section 6.3, especially comment 10.
-On the enum_encoding and fsm_encoding attributes, also in section 6.3.
-On possible code variations, in section 6.4.
-On the Mealy template for category 1, in section 6.5.
-On the Moore template for category 2, in section 9.2.
-On the Mealy template for category 2 , in section 9.3.
-Finally, on the Moore template for category 3, in section 12.2.
```

library ieee;
use ieee.std_logic_1164.all;
entity circuit is
(same as for Moore, section 12.2)
end entity;
architecture mealy_fsm of circuit is
(same as for Moore, section 12.2)
Begin
--Timer:
(same as for Moore, section 9.2)
--Auxiliary register:
(same as for Moore, section 12.2)
--FSM state register:
(same as for Moore, section 9.2)
--FSM combinational logic:
process (all) --list proc. inputs if "all" not supported
begin
case pr_state is
when A =>
if <condition> then
outp <= outp_reg;
tmax <= <value>;
nx_state <= B;
elsif - <condition> then

```
```

 outp <= outp_reg + 1;
 tmax <= <value>;
 nx_state <= ...;
 else
 outp <= outp_reg;
 tmax <= <value>;
 nx_state <= A;
 end i\overline{f;}
 when B =>
 if <condition> then
 outp <= outp_reg;
 tmax <= <value>;
 nx_state <= C;
 elsif
 outp <= outp_reg - 1;
 tmax <= <value>;
 nx_state <= ...;
 else
 outp <= outp_reg;
 tmax <= <value>;
 nx_state <= B;
 end if;
 when C =>
 end cas
 end process;
 --Optional output register:
 (same as for Moore, Section 12.2)
 output <= outp;
 end architecture;

```

\subsection*{12.4 Design of a Datapath Controller for a Multiplier}

This section presents a VHDL-based design for the control unit introduced in section 11.7.5, which controls a datapath to produce a sequential add-and-shift multiplier. The Moore template for category 3 machines seen in section 12.2 is used to implement the FSM of figure 11.12 b .

The entity, called control_unit_for_multiplier, is in lines \(5-11\). The number of bits ( \(N\) ) in the multiplier and multiplicand was entered as a generic parameter (line 6); a small value \((N=4)\) was used to ease the inspection of the simulation results. Note that all ports (lines 8-10) are of type std_logic or std_logic_vector (industry standard).

The architecture, called moore_fsm, is in lines 13-93. As usual, it contains a declarative part and a statements part, with three processes in the latter.

The declarative part of the architecture (lines 15-20) contains FSM- and auxiliary-register-related declarations. In the former the enumerated type state is created to represent the machine's present and next states. In the latter the signals \(i\) and \(i_{-} r e g\)
are created to deal with the auxiliary register (note that in this case none of the actual outputs is stored in an auxiliary register).

The first process (lines 25-32) implements the auxiliary register, exactly as in the template.

The second process (lines 35-42) implements the FSM's state register, again exactly as in the template.

The third and final process (lines 45-91) implements the entire combinational logic section. It is just a list of all states, each containing the output values and the next state. Note that because some of the output values get repeated several times, default values were entered in lines \(48-53\), so they only need to be included in the case statement when different values are required (see section 6.4.3). Observe that in the (originally) recursive equations (lines \(68,75,80\), and 84 ), i_reg appears on the right-hand side instead of \(i\) itself (as seen in the template). As usual, in each state the output value is unique because in a Moore machine the output depends only on the state in which the machine is.

In datapath-related designs, possible glitches at the output of the control unit during clock transitions are normally not a problem, so the optional output register is not employed.

Observe the correct use of registers and the completeness of the code, as described in comment 10 of section 6.3. Note in particular the following:
1) Regarding the use of registers: The circuit is not overregistered. This can be observed in the elsif rising_edge(clk) statement of line 39 (responsible for the inference of flip-flops), which is closed in line 41, guaranteeing that only the machine state (line 40) gets stored (the auxiliary register is a separate circuit, built in the preceding process). The outputs are in the next process, which is purely combinational (thus not registered).
2) Regarding the outputs: The list of outputs (wrR1, sel, wrR2, shft, ALUop, i) is exactly the same in all states, and the corresponding values/expressions are always properly declared (note that some values are declared in the default list of lines 48-53).
3) Regarding the next state: Again, the coverage is complete because all states are included (see lines \(56,62,67, \ldots\) ), and in each state the conditional declarations for the next state are always finalized with an else statement (lines 59, 71, 87), guaranteeing that no condition is left unchecked.
```

library ieee;
use ieee.std_logic_1164.all;

entity control_unit_for_multiplier is
generic (N: natural }:=4); --number of bits (any >0)
port (
dv, prod, clk, rst: in std_logic;

```
```

 wrR1, sel, wrR2, shft: out std_logic;
 ALUop: out std_logic_vector(1 downto 0));
 end entity;
architecture moore_fsm of control_unit_for_multiplier is
--FSM-related declarations:
type state is (idle, load, waitt, nop, add, shift);
signal pr_state, nx_state: state;
--Auxiliary-register-related declarations:
signal i, i_reg: natural range 0 to N;
begin
--Auxiliary register:
process (clk, rst)
begin
if rst='1' then
i_reg <= 0;
elsi\overline{f}}\mathrm{ rising_edge(clk) then
i_reg <= - i;
end íf;
end process;
--FSM state register:
process (clk, rst)
begin
if rst='1' then
pr state <= idle;
elsif rising_edge(clk) then
pr_state <= nx_state;
end if;
end process;
--FSM combinational logic:
process (all)
begin
--Default values:
wrR1 <= '0';
sel <= '0';
wrR2 <= '0';
shft <= '0';
ALUop <= "00";
i <= 0;
--Case statement:
case pr_state is
when idle =>
if dv='1' then
nx_state <= load;
else
nx_state <= idle;
end i\overline{f;}
when load =>
wrR1 <= '1';
sel <= '1';
wrR2 <= '1';
nx_state <= waitt;

```
```

 when waitt =>
 i <= i_reg;
 if prod='0' then
 nx state <= nop;
 else
 nx_state <= add;
 end if;
 when nop =>
 i <= i_reg;
 nx_state <= shift;
 when add =>
 wrR2 <= '1';
 ALUop <= "11";
 i <= i_reg;
 nx_state <= shift;
 when shift =>
 shft <= '1';
 i <= i_reg + 1;
 if i<N then
 nx state <= waitt;
 else
 nx_state <= idle;
 end i\overline{f}
 end case;
 end process;
 end architecture;

```

The number of flip-flops inferred by the compiler on synthesizing the code above, with regular sequential encoding (section 3.7), was six for \(N=4\) and nine for \(N=32\) bits. Compare these results against your predictions made in exercise 11.10.

Simulation results are shown in figure 12.1. Observe in the plot for prod that the circuit was tested for the sequence prod \(=\{\) ' 1 ', ' 0 ', ' 1 ', ' 0 ' \(\}\), so the expected sequence of states is pr_state \(=\{0,1,2,4,5,2,3,5,2,4,5,2,3,5,0\}\), which indeed occurs (recall that the states are enumerated in the order that they appear in line 16 ; however, some compilers reserve the value zero for the reset state, but that is not a concern here because that is the first state in our list anyway). Note that the values produced at the output in each state are exactly as in figure 11.12b. Finally, compare these simulation results against your sketch in exercise 11.10 to see whether they match.

\subsection*{12.5 Design of a Serial Data Receiver}

This section presents a VHDL-based design for the serial data receiver introduced in section 11.7.7. The Moore template for category 3 machines seen in section 12.2 is used to implement the solution of figure 11.14c.

The entity, called serial_data_receiver, is in lines \(5-11\). The number of bits ( \(N\) ) is entered as a generic parameter (line 6). All ports (lines 8-10) are of type std_logic or


Figure 12.1
Simulation results from the VHDL code for the control unit of figure 11.12 b , for \(N=4\), which controls a multiplying datapath.
std_logic_vector (industry standard). Note that mode buffer is used this time for \(y\), so \(y\) can be associated directly with \(y_{-}\)reg.

The architecture, called moore_fsm, is in lines 13-89. As usual, it contains a declarative part and a statements part, with three processes in the latter.

The declarative part of the architecture (lines 15-21) contains FSM- and auxiliary-register-related declarations. In the former the enumerated type state is created to represent the machine's present and next states. In the latter the signals \(y_{-} r e g, i\), and i_reg are created to deal with the auxiliary registers. Note that two auxiliary registers are needed in this example: for the main (actual) output ( \(y\) ) and for the output that operates as an auxiliary pointer (i) to the FSM.

The first process (lines 26-35) implements the auxiliary register, similarly to the template, except for the fact that there are now two auxiliary registers.

The second process (lines 38-45) implements the FSM's state register, exactly as in the template.

The third and final process (lines 48-87) implements the entire combinational logic section. It is just a list of all states, each containing the output values and the next state. Observe that in the (originally) recursive equations (lines 53, 63-64, and 75-76), \(i \_r e g\) and and \(y \_r e g\) appear on the right-hand side instead of \(i\) and \(y\) themselves (as proposed in the template). As usual, note that in each state the output values are unique because in a Moore machine the outputs depend only on the state in which the machine is. Another important aspect can be observed in lines 64-65 and 76-77; note that first a value is assigned to the entire vector \(y\) (lines 64 and 76), then one of its bits, \(y(i-1)\), is overwritten (lines 65 and 77).


Figure 12.2
Simulation results from the VHDL code for the serial data receiver of figure 11.14 d , with \(N=8\).

In this kind of application glitches during clock transitions are generally not a problem. In any case, because \(y\) is one of the signals that go through an auxiliary register, if a glitch-free/pipelined output is required we can simply send out \(y_{-}\)reg instead of \(y\).

Observe the correct use of registers and the completeness of the code, as described in comment number 10 of section 6.3.

The number of flip-flops inferred by the compiler on synthesizing the code below, with regular sequential encoding (section 3.7), was 14 for \(N=8\) and 40 for \(N=32\).

Simulation results are shown in figure 12.2, for \(x=\) " 1011 ".
```

library ieee;
use ieee.std_logic_1164.all;
--
entity serial_data_receiver is
generic (N: natural := 4); --number of bits (any >0)
port (
x, dv, clk, rst: in std_logic;
done: out std_logic;
y: buffer std_logic_vector(N-1 downto 0));
end entity;

architecture moore_fsm of serial_data_receiver is
--FSM-related declarations:
type state is (idle, store0, store1);
signal pr_state, nx_state: state;
--Auxiliary-register-related declarations:
signal y_reg: std_logic_vector(N-1 downto 0);

```
```

2 1
22
23
24
25
26
2 7
28
29
3 0
3 1
32
33
34
35
36
3 7
38
39
40
4 1
4 2
4 3
4 4

```
    signal i, i_reg: natural range 0 to N;
```

 signal i, i_reg: natural range 0 to N;
 begin
begin
--Auxiliary register:
--Auxiliary register:
process (clk, rst)
process (clk, rst)
begin
begin
if rst='1' then
if rst='1' then
i_reg <= 0;
i_reg <= 0;
y_reg <= (others => '0');
y_reg <= (others => '0');
elsif rising edge(clk) then
elsif rising edge(clk) then
i_reg <= \overline{i};
i_reg <= \overline{i};
y_reg <= y;
y_reg <= y;
end if;
end if;
end process;
end process;
--FSM state register:
--FSM state register:
process (clk, rst)
process (clk, rst)
begin
begin
if rst='1' then
if rst='1' then
pr_state <= idle;
pr_state <= idle;
elsif rising_edge(clk) then
elsif rising_edge(clk) then
pr state <= nx state;
pr state <= nx state;
end if;
end if;
end process;
end process;
--FSM combinational logic:
--FSM combinational logic:
process (all)
process (all)
begin
begin
case pr_state is
case pr_state is
when idle =>
when idle =>
i <= 0;
i <= 0;
Y <= Y_reg;
Y <= Y_reg;
done <= '1';
done <= '1';
if dv='1' and x='0' then
if dv='1' and x='0' then
nx_state <= store0;
nx_state <= store0;
elsif dv='1' and x='1' then
elsif dv='1' and x='1' then
nx state <= store1;
nx state <= store1;
else
else
nx_state <= idle;
nx_state <= idle;
end i\overline{f;}
end i\overline{f;}
when store0 =>
when store0 =>
i <= i reg + 1;
i <= i reg + 1;
y <= y_reg;
y <= y_reg;
y(i-1) <= '0';
y(i-1) <= '0';
done <= '0';
done <= '0';
if i=N then
if i=N then
nx_state <= idle;
nx_state <= idle;
elsif x='1' then
elsif x='1' then
nx state <= store1;
nx state <= store1;
else
else
nx_state <= store0;
nx_state <= store0;
end if;
end if;
when store1 =>
when store1 =>
i <= i_reg + 1;
i <= i_reg + 1;
y <= y_reg;

```
            y <= y_reg;
```

```
8
```

```
                y(i-1) <= '1';
```

 y(i-1) <= '1';
 done <= '0';
 done <= '0';
 if i=N then
 if i=N then
 nx state <= idle;
 nx state <= idle;
 elsif
 elsif
 nx_state <= store0;
 nx_state <= store0;
 else
 else
 nx state <= store1;
 nx state <= store1;
 end if;
 end if;
 end case;
 end case;
 end process;
end process;
end architecture;

```
end architecture;
```

77
78
79
80
81
82
8
85
86
87
88
89
90

12.6 Design of a Memory Interface

This section presents a VHDL-based design for the memory interface introduced in section 11.7.8 (figure 11.16). The SRAM used in the experiments is the IS61LV25616 device, from ISSI, which is capable of storing 262 k 16 -bit words. The corresponding FSM was presented in figure 11.16c, and the circuit ports are depicted in figure 12.3 (note that a test circuit has been included).

The entity, called sram_interface, is in lines 7-25. Note that several parameters were declared as generic (lines 8-14), so they can be easily modified and overridden. Note also that the port names are from figure 12.3 and that all ports (lines 15-24) are of type std_logic or std_logic_vector (industry standard).

The signals in lines 21-24 are for the test circuit (see figure 12.3). The signal seed (line 22), set by two switches, is added to the actual address (A, line 19) to produce the test data (D, line 21), which is displayed on a seven-segment display by means of the signal ssd (line 23). Two LEDs are lit by the signals done_wr and done_rd (line 24)

Figure 12.3
Setup for the experiments with the SRAM memory interface introduced in figure 11.16, including a test circuit as well. The device's truth table is also shown.
to indicate when the test circuit has finished writing to or reading from the memory, respectively.

The architecture, called moore_fsm, is in lines 27-181. As usual, it contains a declarative part and a statements part, with six code sections in the latter.

The architecture's declarative part is in lines 29-62. In the FSM-related declarations (lines 30-31), the enumerated type state is created to represent the machine's present and next states. In the auxiliary-register-related declarations (line 34), the signals addr and addr_reg are created to deal with the auxiliary register (observe that the address is the signal that appears in the recursive expressions, so that is the signal to be stored in that register). In the timer-related declarations (line 37), the signals needed to build a 0.5-s timer are created to be used in the read1-read2 transition (see $t=T_{2}$) of figure 11.16 c , so the user will have enough time to observe the value presented on the display during the tests. Finally, a function is created in lines 39-62 to later implement the SSD driver (integer-to-SSD conversion).

The first code section (line 67) in the architecture's statements part is a list of static signals to be connected to the SRAM chip during the tests. Note that they are all enabled (because they are active low) except for the upper byte of the data word, which is not used here.

The second code section (lines 70-81) contains a process that implements the timer (needed in the read1-read2 transition; the write1-write2 transition is made at full clock speed). This code is similar to the template of section 9.2. Both timer control strategies (section 8.5) are allowed for this FSM.

The third code section (lines 84-91) in the architecture's statements part is a process that implements the auxiliary register, exactly as in the template.

The fourth code section (lines 94-101) is another process, which implements the FSM's state register, again exactly as in the template.

The fifth code section (lines 104-172) contains a process that implements the entire combinational logic section. It is just a list of all states, each containing the output and time parameter values plus the next state. Observe that in the (originally) recursive equations (lines 121, 128, 139, and 150), addr_reg appears on the right-hand side instead of $a d d r$ itself (as proposed in the template). As usual, in each state the output values are unique because in a Moore machine the outputs depend only on the state in which the machine is.

The sixth and final code section (lines 174-179) in the architecture's statements part passes the value of addr to A (in std_logic_vector form) and also builds the test circuit. The test circuit is important because it illustrates how we can deal with a bidirectional bus. Note that during the writing procedure the FPGA sends data to the SRAM, but when data is being read from the SRAM the FPGA's output must go into high-impedance (floating) mode because they (FPGA and SRAM) are physically connected to the same wires (data bus D). Observe also that the generated data consist
simply of seed $+A$ (line 177-see also figure 12.3), which is written to the SRAM when a $w r=$ ' 1 ' pulse occurs and is read from the SRAM and displayed on the SSD when a $r d=$ ' 1 ' pulse occurs.

In this kind of application, glitches during clock transitions are generally not a problem, so the optional output register is not needed.

Observe the correct use of registers and the completeness of the code, as described in comment 10 of section 6.3.

```
library ieee;
use ieee.std_logic_1164.all;
use ieee.std}\mp@subsup{}{}{-
use ieee.std_logic_arith.all;
entity sram_interface is
    generic \
        --Main-circuit parameters:
        Abus: natural := 18; --Address bus width
        Dbus: natural := 16; --Data bus width
        --Test-circuit parameters:
        Tread: natural := 25_000_000; --Time=0.5s @fclk=50MHz
        Amax: natural := 12); --Max address in test circuit
    port (
        --Main-circuit ports:
        rd, wr, clk, rst: in std_logic;
        CEn, WEn, OEn, UBn, LBn: out std logic;
        A: out std_logic_vector(Abus-1 downto 0);
        --Test-circuit ports:
        D: inout std_logic_vector(7 downto 0); --Lower-byte only
        seed: in std logic vector(1 downto 0);
        ssd: out std_logic_vector(6 downto 0);
        done_wr, done_rd: buffer std_logic);
end entity;
architecture moore_fsm of sram_interface is
    --FSM-related declarations:
    type state is (idle, write1, write2, read1, read2, hold);
    signal pr_state, nx_state: state;
    --Auxiliary-register-related declarations:
    signal addr, addr_reg: natural range 0 to 2**Abus-1;
    --Timer-related declarations:
    signal t, tmax: natural range 0 to Tread-1; --range\geqTread
    function int_to_ssd(signal input: natural) return std_logic_vector
        is variable output: std_logic_vector(6 downto 0);
    begin
        case input is
            when 0 => output:="0000001";
            when 1 => output:="1001111";
            when 2 => output:="0010010";
```

```
        when 3 => output:="0000110";
        when 4 => output:="1001100";
        when 5 => output:="0100100";
        when 6 => output:="0100000";
        when 7 => output:="0001111";
        when 8 => output:="0000000";
        when 9 => output:="0000100";
        when 10 => output:="0001000";
        when 11 => output:="1100000";
        when 12 => output:="0110001";
        when 13 => output:="1000010";
        when 14 => output:="0110000";
        when 15 => output:="0111000";
        when others => output:="1111110"; --"-"
        end case;
        return output;
    end integer_to_ssd;
begin
    --Static SRAM signals:
    CEn<='0'; OEn<='0'; UBn<='1'; LBn<='0';
    --Timer (using strategy #2, section 8.5.3):
    process (clk, rst)
    begin
        if (rst='1') then
        t <= 0;
        elsif rising_edge(clk) then
            if t < tmax then
            t <= t + 1;
            else
                t <= 0;
        end if;
    end if;
end process;
    --Auxiliary register:
    process (clk, rst)
    begin
        if rst='1' then
        addr_reg <= 0;
        elsif rísing_edge(clk) then
        addr_reg <= addr;
    end if;
    end process;
    --FSM state register:
    process (clk, rst)
    begin
        if rst='1' then
        pr_state <= idle;
        elsif rising_edge(clk) then
            pr_state <= nx_state;
        end i\overline{f}
    end process;
```

103
104
105
106 107 108
109
110
111
112
113 114 115 116
117 118 119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149 150 151 152

153 154 155 156 157 158 159

```
--FSM combinational logic:
process (all)
begin
case pr state is
        when idle =>
            addr <= 0;
            WEn <= '1';
                done wr <= '1';
                done rd <= '1';
                tmax <= 0;
                if wr='1' and rd='0' then
                    nx state <= writel;
                elsif wr='0' and rd='1' then
                    nx_state <= read1;
                else
                    nx state <= idle;
                end if;
        when write1 =>
            addr <= addr_reg;
            WEn <= '0';
                done_wr <= '0';
                done_rd <= '1';
                tmax <= 0;
                nx state <= write2;
        when write2 =>
            addr <= addr_reg + 1;
            WEn <= '1';
            done wr <= '0';
            done rd <= '1';
            tmax <= 0;
            if addr <= Amax then
                    nx state <= writel;
                else
                    nx_state <= hold;
            end i\overline{f;}
        when readl =>
            addr <= addr_reg;
            WEn <= '1';
            done wr <= '1';
            done-rd <= '0';
            tmax <= Tread;
            if t>=tmax then
                    nx_state <= read2;
                else
                    nx_state <= readl;
            end if;
        when read2 =>
            addr <= addr reg + 1;
            WEn <= '1';
            done_wr <= '1';
            done_rd <= '0';
            tmax <= 0;
            if addr <= Amax then
                    nx_state <= read1;
            else
                    nx state <= hold;
            end if;
```

160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182

```
        when hold =>
    addr <= 0;
    WEn <= '1';
        done wr <= '1';
        done-rd <= '1';
        tmax <= 0;
        if wr='0' and rd='0' then
            nx state <= idle;
        else
        nx_state <= hold;
                        end i\overline{f}
        end case;
        end process;
        A <= conv_std_logic_vector(addr, Abus);
        --Test circuit:
        D <= seed + conv_std_logic_vector(addr, 8) when done_wr='0' else
        (others => ''Z');
    ssd <= int_to_ssd(conv_integer(D));
end architecture;
```

12.7 Exercises

Exercise 12.1: Long-String Comparator \#1

This exercise concerns the long-string comparator of figure 11.6, which must detect whether the last N bits in two serial bit streams are equal.
a) Implement it using VHDL. Compile it for $N=64$ bits and sequential encoding and check if the number of DFFs inferred by the compiler matches the estimate made in section 11.7.2.
b) Recompile it for $N=4$; then simulate it using the same stimuli of figure 11.6 c and check if the same waveforms result.

Exercise 12.2: Long-String Comparator \#2

This exercise concerns the long-string comparator of exercise 11.5.
a) Solve exercise 11.5 if not done yet.
b) Implement the resulting FSM using VHDL. Check if the number of DFFs inferred by the compiler matches your estimate.
c) Simulate it using the same stimuli of figure 11.19, checking if the same waveforms result.

Exercise 12.3: Hamming-Weight Calculator

This exercise concerns the Hamming-weight calculator of exercise 11.3.
a) Solve parts a and b of exercise 11.3 if not done yet.
b) How many DFFs are needed to build the resulting FSM, with sequential encoding and $d v$ lasting 64 clock periods (so y can go from 0 to 64)?
c) Implement your machine using VHDL. Check if the number of DFFs inferred by the compiler matches your estimate.
d) Recompile the code for $N=9$ (hence with four bits for y) and simulate it using the same stimuli of figure 11.17, checking if the same waveforms result.
e) Even though exercise 11.3 is important to understand how that kind of circuit can be modeled as an FSM, it was said in sections 5.4.1 and 11.7.1 that counters are wellknown circuits, easily designed without the FSM approach. Therefore, because a Hamming calculator is a kind of counter, it can be designed directly in VHDL. Do it. Check the number of DFFs and combinational elements needed to implement it for $d \nu$ lasting 64 clock periods and compare the results against those obtained in part c above.

Exercise 12.4: Leading-Ones Counter

This exercise concerns the leading-ones counter of exercise 11.4.
a) Solve parts a and b of exercise 11.4 if not done yet.
b) How many DFFs are needed to build the resulting FSM, with sequential encoding and $d v$ lasting 64 clock periods (so y can go from 0 to 64)?
c) Implement your machine using VHDL. Check if the number of DFFs inferred by the compiler matches your estimate.
d) Recompile the code for $N=9$ (hence with four bits for y) and simulate it using the same stimuli of figure 11.18, checking if the same waveforms result.
e) Even though exercise 11.4 is important to understand how that kind of circuit can be modeled as an FSM, it is said in sections 5.4.1 and 11.7.1 that counters are wellknown circuits, easily designed without the FSM approach. Therefore, because a leading-ones counter is a kind of counter, it can be designed directly in VHDL. Do it. Check the number of DFFs and combinational elements needed to implement it for $d v$ lasting 64 clock periods and compare the results against those obtained in part c above.

Exercise 12.5: Complete Reference-Value Definer

Figure 12.4 shows an initial block diagram for the experiment to be developed in this exercise. It consists of a reference-value definer with up-down controls, which must also include some type of debouncer for the pushbuttons. The output (reference value) must range from 00 to 60 and must be displayed on two SSDs or an LCD. Note that ref is a six-bit signal, while each display digit (dig0 for units, dig1 for tens of units) is a seven-bit value if SSDs are employed. A special feature desired for this circuit is the

Figure 12.4
following: if either pushbutton is kept pressed for $t_{1} \geq 2 \mathrm{~s}$ (T_{1} clock periods), the increment must occur automatically and at every $t_{2}=0.5 \mathrm{~s}$ (T_{2} clock periods).
a) Carefully review sections $8.11 .4,11.7 .3$, and 11.7 .4 and decide what should go inside the main block of figure 12.4. Then draw an expanded block diagram with proper details.
b) Draw a state transition diagram for each FSM to be used in this problem.
c) Estimate the number of DFFs that will be needed to build the complete circuit. Assume sequential encoding for the FSM(s) and a 1-ms debouncing interval (check the clock frequency in your development board).
d) Implement the circuit using VHDL. Check whether the number of DFFs inferred by the compiler matches your prediction.
f) Physically demonstrate your design in the FPGA development board.

Exercise 12.6: Factorial Calculator

This exercise concerns the factorial calculator of exercise 11.9.
a) Solve exercise 11.9 if not done yet.
b) Implement the resulting FSM using VHDL. Show meaningful simulation results.

Exercise 12.7: Divider

This exercise concerns the sequential divider of figure 11.13.
a) How many DFFs are needed to build it for $N=32$ bits and sequential encoding?
b) Implement it using VHDL. Check whether the number of DFFs inferred by the compiler matches your estimate.
c) Recompile the code for $N=4$ and simulate it using the same stimuli of figure 11.13a, checking whether the same results are obtained here.

13 SystemVerilog Design of Recursive (Category 3) State Machines

13.1 Introduction

This chapter presents several SystemVerilog designs of category 3 state machines. It starts by presenting two SystemVerilog templates, for Moore- and Mealy-based implementations, which are used subsequently to develop a series of designs related to the examples introduced in chapter 11.

The codes are always complete (not only partial sketches) and are accompanied by comments and often also simulation results, illustrating the design's main features. All circuits were synthesized using Quartus II (from Altera) or ISE (from Xilinx). The simulations were performed with Quartus II or ModelSim (from Mentor Graphics). The default encoding scheme for the states of the FSMs was regular sequential encoding (see encoding options in section 3.7).

The same designs were developed in chapter 12 using VHDL, so the reader can make a direct comparison between the codes.

Note: See suggestions of SystemVerilog books in the bibliography.

13.2 SystemVerilog Template for Recursive (Category 3) Moore Machines

The template is presented below. Because it is an extension to the Moore templates for categories 1 and 2, described in sections 7.3 and 10.2, respectively, a review of those templates is suggested before this one is examined because only the differences are described.

The only differences are those needed for the inclusion of an auxiliary register, compulsory in category 3 machines. In summary, the following must be added/ done to the previous template: declarations concerning the auxiliary register; an always_ff block to infer the auxiliary register; and proper adjustments in the recursive equations to invoke the auxiliary register. These modifications are described next.

The auxiliary-register-related declarations are in line 13. It is assumed that there is only one output and that it must be stored, but recall that the circuit might have several outputs, not all registered. The actual number of auxiliary registers is determined by the number of outputs that depend on past output values.

To implement the auxiliary register, an always_ff block is employed in lines 21-23.

Finally, note in the always_comb block of lines 29-49 that outp (lines 32 and 39) is no longer a function of itself but rather a function of outp_reg. This removes the recursiveness, allowing the output to be computed by a combinational circuit.

As explained in section 11.3, an interesting aspect of category 3 FSMs is that the auxiliary register can also play the role of output register (for glitch-free and/or pipelined construction) when the output is one of the signals stored in an auxiliary register. To do so, simply send outp_reg out instead of outp.

```
//Part 1: Module header:-------------------------------
    (same as for categ. 1 and 2, sections 7.3 and 10.2)
//Part 2: Declarations:---------------------------------
    //FSM-related declarations:
    (same as for category 1 Moore, Section 7.3)
    //Timer-related declarations:
    (same as for category 2 Moore, section 10.2)
    //Auxiliary-register-related declarations:
    logic [N-1:0] outp, outp_reg;
//Part 3: Statements:--------------------------------------
    //Timer:
    (same as for category 2 Moore, section 10.2)
    // Auxiliary register:
    always_ff @(posedge clk, posedge rst)
            if (rst) outp_reg <= <initial_value>;
            else outp_reg <= outp;
        //FSM state register:
        (same as for category 2 Moore, section 10.2)
        //FSM combinational logic:
        always_comb
            case (pr_state)
                A: begin
                    outp <= outp_reg;
                tmax <= T1-1; //if using strategy #2
                if (condition) nx_state <= B;
                else if (condition) nx state <= ...;
                else nx_state <= A;
```

```
37
3
39
4 0
4 1
4 2
4 3
44
4 5
4 6
4 7
4 8
4 9
5 0
5 2
5 3
5 4
55
```

```
51 //Optional output register:
```

51 //Optional output register:

```
            end
```

 end
 B: begin
 B: begin
 outp <= outp reg + 1;
 outp <= outp reg + 1;
 tmax <= T2-1; //if using strategy #2
 tmax <= T2-1; //if using strategy #2
 if (condition) nx_state <= C;
 if (condition) nx_state <= C;
 else if (condition) nx_state <= ...;
 else if (condition) nx_state <= ...;
 else nx_state <= B;
 else nx_state <= B;
 end
 end
 C: begin
 C: begin
 end
 end
 endcase
 endcase
 (same as for category 1 Moore, section 7.3)
 (same as for category 1 Moore, section 7.3)
 endmodule
endmodule
//--

```
//----------------------------------------------------------
```


13.3 SystemVerilog Template for Recursive (Category 3) Mealy Machines

The template is presented below. The only difference with respect to the Moore template just described is in the always_comb block for the combinational logic (lines 27-63) because the output is specified differently now. Recall that in a Mealy machine the output depends not only on the FSM's state but also on its input, so if statements are expected for the output in one or more states because the output (and $t_{\max }$) values might not be unique. This is achieved by including such values within the conditional statements for $n x$ _state. For example, observe in lines $29-44$, relative to state A, that the output (and $t_{\max }$) values are now conditional. Compare these lines against lines 31-37 in the previous template.

```
//Part 1: Module header:------------------------------
    (same as for category 3 Moore, section 13.2)
//Part 2: Declarations:----------------------------------
    //FSM-related declarations:
    (same as for category 3 Moore, section 13.2)
    //Timer-related declarations:
    (same as for category 3 Moore, section 13.2)
    //Auxiliary-register-related declarations:
    (same as for category 3 Moore, section 13.2)
//Part 3: Statements:----------------------------------
    //Timer:
    (same as for category 3 Moore, section 13.2)
```

```
20
2 1
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
3
39
4 0
4 1
4 2
4 3
```

 // Auxiliary register:
    ```
    // Auxiliary register:
    (same as for category 3 Moore, section 13.2)
    (same as for category 3 Moore, section 13.2)
    //FSM state register:
    //FSM state register:
    (same as for category 3 Moore, section 13.2)
    (same as for category 3 Moore, section 13.2)
    //FSM combinational logic:
    //FSM combinational logic:
    always_comb
    always_comb
        case (pr_state)
        case (pr_state)
            A:
            A:
            if (condition) begin
            if (condition) begin
                outp <= outp_reg;
                outp <= outp_reg;
                tmax <= <valūe>; //if using strategy #2
                tmax <= <valūe>; //if using strategy #2
                nx_state <= B;
                nx_state <= B;
            end
            end
            else if (condition) begin
            else if (condition) begin
                outp <= outp_reg + 1;
                outp <= outp_reg + 1;
                tmax <= <value>; //if using strategy #2
                tmax <= <value>; //if using strategy #2
                nx_state <= ...;
                nx_state <= ...;
            end
            end
            else begin
            else begin
                outp <= <value>;
                outp <= <value>;
                tmax <= <value>;
                tmax <= <value>;
                nx_state <= A;
                nx_state <= A;
            end
            end
            B :
            B :
            if (condition) begin
            if (condition) begin
                outp <= outp_reg + 1;
                outp <= outp_reg + 1;
                tmax <= <value>;
                tmax <= <value>;
                nx state <= C;
                nx state <= C;
            end
            end
            else if (condition) begin
            else if (condition) begin
                outp <= outp_reg;
                outp <= outp_reg;
                tmax <= <value>;
                tmax <= <value>;
                nx state <= ...;
                nx state <= ...;
            end
            end
            else begin
            else begin
                        outp <= <value>;
                        outp <= <value>;
                    tmax <= <value>;
                    tmax <= <value>;
                    nx_state <= B;
                    nx_state <= B;
                    end
                    end
            C: ...
            C: ...
    endcase
    endcase
    //Optional output register:
    //Optional output register:
    (same as for category 3 Moore, section 13.2)
    (same as for category 3 Moore, section 13.2)
endmodule
endmodule
//------------------------------------------------------
```

//--

```

\subsection*{13.4 Design of a Datapath Controller for a Multiplier}

This section presents a SystemVerilog-based design for the control unit introduced in section 11.7.5, which controls a datapath to produce a sequential add-and-shift
multiplier. The Moore template for category 3 machines seen in section 13.2 is used to implement the FSM of figure 11.12b.

The first part of the code (module header) is in lines 1-7. The module's name is contol_unit_for_multiplier. Note that all ports are of type logic.

The second part of the code (declarations) is in lines 9-17. In the FSM-related declarations (lines 12-14), the enumerated type state is created to represent the machine's present and next states. In the auxiliary-register-related declarations (line 17), \(i\) and i_reg are created to deal with the auxiliary register. Note that in this example none of the actual outputs is stored in an auxiliary register (the auxiliary registers are always for the variables that appear in the recursive equations).

The third and final part of the code (statements) is in lines 19-75. It contains three always blocks, described next.

The first always block (lines 22-24) is an always_ff that implements the auxiliary register, exactly as in the template.

The second always block (lines 27-29) is another always_ff, which implements the machine's state register, again exactly as in the template.

The third and final always block (lines 32-73) is an always_comb, which implements the entire combinational logic section. It is just a list of all states, each containing the output values and the next state. Note that because some of the output values get repeated several times, default values were entered in lines 35-40, so they only need to be included in the case statement when different values are required. Observe that in the (originally) recursive equations (lines 53, 58, 64, and 69), i_reg appears on the right-hand side instead of \(i\) itself (as proposed in the template). As usual, in each state the output values are unique because in a Moore machine the outputs depend only on the state in which the machine is.

In datapath-related designs, possible glitches at the output of the control unit following clock transitions are normally not a problem, so the optional output register was not employed.

Finally, and very importantly, observe the correct use of registers and the completeness of the code, as described in comment 8 of section 7.3. Observe in particular the following: 1) all states are included; 2) the list of outputs is exactly the same in all states, and the corresponding values/expressions are always properly declared; 3) any conditional specification for \(n x\) _state is finalized with an else statement, so no condition is left unchecked.

The number of flip-flops inferred by the compiler on synthesizing the code below, with regular sequential encoding (section 3.7), was six for \(N=4\) and nine for \(N=32\) bits. Compare these results against your predictions made in exercise 11.10.

Simulation results from this code are exactly the same as those obtained using VHDL, shown in figure 12.1.
```

//Module header:--

```
//Module header:--------------------------------------------------
module control_unit_for_multiplier
module control_unit_for_multiplier
    #(parameter N=4) //number of bits
    #(parameter N=4) //number of bits
    (
    (
    input logic dv, prod, clk, rst,
    input logic dv, prod, clk, rst,
    output logic wrR1, sel, wrR2, shft,
    output logic wrR1, sel, wrR2, shft,
    output logic [1:0] ALUop);
    output logic [1:0] ALUop);
//Declarations:----------------------------------------------------
//Declarations:----------------------------------------------------
    //FSM-related declarations:
    //FSM-related declarations:
    typedef enum logic [2:0]
    typedef enum logic [2:0]
            {idle, load, waitt, nop, add, shift} state;
            {idle, load, waitt, nop, add, shift} state;
    state pr_state, nx_state;
    state pr_state, nx_state;
    //Auxiliary-register-related declarations:
    //Auxiliary-register-related declarations:
    logic [$clog2(N):0] i, i_reg; //function ceiling(log2(N))
    logic [$clog2(N):0] i, i_reg; //function ceiling(log2(N))
//Statements:-------------------------------------------------------
//Statements:-------------------------------------------------------
    // Auxiliary register:
    // Auxiliary register:
    always_ff @(posedge clk, posedge rst)
    always_ff @(posedge clk, posedge rst)
        if (rst) i_reg <= 0;
        if (rst) i_reg <= 0;
        else i_reg <= i;
        else i_reg <= i;
    //FSM state register:
    //FSM state register:
    always_ff @(posedge clk, posedge rst)
    always_ff @(posedge clk, posedge rst)
        if (rst) pr_state <= idle;
        if (rst) pr_state <= idle;
        else pr_state <= nx_state;
        else pr_state <= nx_state;
    //FSM combinational logic:
    //FSM combinational logic:
    always_comb begin
    always_comb begin
        //Default values:
        //Default values:
        wrR1 <= 'b0;
        wrR1 <= 'b0;
        sel <= 'b0;
        sel <= 'b0;
        wrR2 <= 'b0;
        wrR2 <= 'b0;
        shft <= 'b0;
        shft <= 'b0;
        ALUop <= 2'b00;
        ALUop <= 2'b00;
        i <= 0;
        i <= 0;
        case (pr_state)
        case (pr_state)
        idle:
        idle:
            if (dv) nx_state <= load;
            if (dv) nx_state <= load;
            else nx_state <= idle;
            else nx_state <= idle;
        load: begin
        load: begin
            wrR1 <= 'b1;
            wrR1 <= 'b1;
            sel <= 'b1;
            sel <= 'b1;
            wrR2 <= 'b1;
            wrR2 <= 'b1;
            nx_state <= waitt;
            nx_state <= waitt;
            end
            end
            waitt: begin
            waitt: begin
                i <= i_reg;
                i <= i_reg;
                if (~prod) nx_state <= nop;
                if (~prod) nx_state <= nop;
            else nx_state <= add;
```

 else nx_state <= add;
    ```
```

56 end
57 nop: begin
58 i <= i_reg;
5 9 ~ n x < s t a t e ~ < = ~ s h i f t ;
60 end
6 1 ~ a d d : ~ b e g i n
6 2
6 3
6 4
6 5
6 6
67
6 8
6 9
7 0
7 1
72
7 3
74
75
76

```

\subsection*{13.5 Design of a Serial Data Receiver}

This section presents a SystemVerilog-based design for the serial data receiver introduced in section 11.7.7. The Moore template for category 3 machines seen in section 13.2 is used to implement the solution of figure 11.14c.

The first part of the code (module header) is in lines \(1-7\). The module's name is serial_data_receiver. Note that all ports are of type logic.

The second part of the code (declarations) is in lines 9-17. In the FSM-related declarations (lines 12-13), the enumerated type state is created to represent the machine's present and next states. In the auxiliary-register-related declarations (lines 16-17), \(y_{-}\) reg, \(i\), and \(i \_r e g\) are created to deal with the auxiliary registers. Note that two auxiliary registers are needed in this example: for the main (actual) output \((y)\) and for the output that operates as an auxiliary pointer ( \(i\) ) to the FSM.

The third and final part of the code (statements) is in lines 19-68. It contains three always blocks, described next.

The first always block (lines 22-30) is an always_ff that implements the auxiliary register, similarly to the template.

The second always block (lines 33-35) is another always_ff, which implements the machine's state register, exactly as in the template.

The third and final always block (lines 38-66) is an always_comb, which implements the entire combinational logic section. It is just a list of all states, each containing the output values and the next state. Observe that in the (originally) recursive equations (lines 42, 49-50, and 58-59), i_reg and \(y_{-}\)reg appear on the right-hand side instead of \(i\) and \(y\) themselves (as proposed in the template). As usual, in each state the
output values are unique because in a Moore machine the outputs depend only on the state in which the machine is. Another important aspect can be observed in lines \(50-51\) and 59-60; note that first a value is assigned to the entire vector \(y\) (lines 50 and 59); then one of its bits, \(y(i-1)\), is overwritten (lines 51 and 60 ).

In this kind of application, glitches during clock transitions are generally not a problem. Anyway, because \(y\) is one of the signals that go through an auxiliary register, if a glitch-free (pipelined) output is required, we can simply send out \(y_{-}\)reg instead of \(y\).

Finally, and very importantly, observe the correct use of registers and the completeness of the code, as described in comment 8 of section 7.3. Observe in particular the following: 1) all states are included; 2) the list of outputs is exactly the same in all states, and the corresponding values/expressions are always properly declared; 3) the specifications for \(n x\) _state are always finalized with an else statement, so no condition is left unchecked.

The number of flip-flops inferred by the compiler on synthesizing the code below, with regular sequential encoding (section 3.7 ) and \(N=8\), was 14 .

Simulation results from this code are exactly the same as those obtained using VHDL, shown in figure 12.2.
```

//Module header:--
module serial data receiver
\#(parameter N=8) //number of bits (any >0)
(
input logic x, dv, clk, rst,
output logic done,
output logic [N-1:0] y);
//Declarations:---
//FSM-related declarations:
typedef enum logic [1:0] {idle, loado, loadl} state;
state pr_state, nx_state;
//Auxiliary-register-related declarations:
logic [N-1:0] Y_reg;
logic [\$clog2(N):0] i, i_reg; //function ceiling(log2(N))
//Statements:---
//Auxiliary register:
always_ff @(posedge clk, posedge rst)
if (rst) begin
i reg <= '0;
y_reg <= '0;
end
else begin
i_reg <= i;
y_reg <= y;
end

```

31
//FSM state register:
always_ff @(posedge clk, posedge rst)
        if (rst) pr_state <= idle;
        else pr_state <= nx_state;
        //FSM combinational logic:
        always_comb
        case (pr_state)
        idle: begin
            i <= 1'bo;
            y <= Y_reg;
            done <= 1'b1;
            if (dv \& \(\sim x\) ) \(n x\) state \(<=\) loado;
            else if (dv \& x) nx_state \(<=\) loadi;
            else nx_state <= idle;
            end
        loado: begin
            i <= i_reg + 1;
            y <= Y_reg;
            y[i-1] <= 1'b0;
            done <= 1'b0;
            if (i=N) nx_state <= idle;
            else if (x) nx_state <= load1;
            else nx_state <= loado;
            end
        load1: begin
            i \(<=\) i_reg +1 ;
            Y <= Y_reg;
            \(y[i-1]<=1 ' b 1 ;\)
            done <= 1'b0;
            if (i=N) nx_state <= idle;
            else if (~x) nx_state <= loado;
            else nx_state \(<=\) loadi;
            end
    endcase
endmodule


\subsection*{13.6 Design of a Memory Interface}

This section presents a SystemVerilog-based design for the memory interface introduced in section 11.7.8 (figure 11.16). The SRAM used in the experiments is the IS61LV25616 device, from ISSI, which is capable of storing 262 k 16 -bit words. The corresponding FSM was presented in figure 11.16c, and the circuit ports are depicted in figure 13.1 (note that a test circuit has been included).

The first part of the code (module header) is in lines \(1-19\). The module's name is sram_interface. Several global parameters were included for both the main circuit and a test circuit. The port names are from figure 13.1. All ports are of type logic.


Figure 13.1
Setup for the experiments with the SRAM memory interface introduced in figure 11.16, also including a test circuit. The device's truth table is also shown.

The signals in lines 16-19 are for the test circuit. seed (line 17), set by two switches, is added to the actual address ( \(A\), line 14 ) to produce the test data ( \(D\), line 16 ), which is displayed on a seven-segment display by means of the signal ssd (line 18). Two LEDs are lit by the signals done_wr and done_rd (line 19) to indicate when the test circuit has finished writing to or reading from the memory, respectively.

The second part of the code (declarations) is in lines 21-56. In the FSM-related declarations (lines \(24-26\) ), the enumerated type state is created to represent the machine's present and next states. In the auxiliary-register-related declarations (line 29), A_reg is created to deal with the auxiliary register (observe that the address is the signal that appears in the recursive expressions, so that is the signal to be stored in that register). In the timer-related declarations (line 32), the signals needed to build a 0.5 -s timer are created, to be used in the read1-read2 transition (see \(t=T_{2}\) ) of figure 11.16 c , so the user has enough time to observe the value presented on the display during the tests. Finally, a function is created in lines \(35-56\) to implement later the SSD driver (integer-to-SSD conversion).

The third and final part of the code (statements) is in lines 58-149. It contains six sections, described next.

The first section (lines 61-64) of the statements produces the static signals to be connected to the SRAM chip during the tests. Note that they are all enabled (because they are active low), except for the upper byte of the data word, which is not used here.

The second section (lines 67-69) of the statements contains an always_ff block, which implements the timer (needed in the read1-read2 transition; the write1-write2 transition is made at full clock speed). This code is similar to the template of section 10.2. Both timer control strategies (section 8.5) are allowed for this FSM.

The third code section (lines 73-75) is another always_ff block, which implements the auxiliary register, exactly as in the template.

The fourth code section (lines 78-80) is an always_ff block that implements the FSM's state register, again exactly as in the template.

The fifth portion (lines 83-139) of the statements is part of an always_comb block that implements the entire FSM's combinational logic section. It is just a list with all states, each containing the output and time parameter values, plus the next state. Observe that in the (originally) recursive equations (lines 96, 104, 113, and 122), A_reg appears on the right-hand side instead of \(A\) itself (as proposed in the template). As usual, in each state the output values are unique because in a Moore machine the outputs depend only on the state in which the machine is.

Finally, the code in lines 142-147 implements the test circuit. This code is important because it illustrates one way (similar to VHDL-see section 12.6) of dealing with a bidirectional bus. Note that during the writing procedure the FPGA sends data to the SRAM, but when data is being read from the SRAM, the FPGA's output must go into high-impedance (floating) mode because they (FPGA and SRAM) are physically connected to the same wires (data bus \(D\) ). Observe also that the generated data consist simply of \(A+\) seed (line 142; see also figure 13.1), which is written to the SRAM when a \(w r=\) ' 1 ' pulse occurs and is read from the SRAM and displayed on the SSD when a \(r d=\) ' 1 ' pulse occurs.

In this kind of application, glitches during clock transitions are generally not a problem, so the optional output register is not needed.

Finally, and very importantly, observe the correct use of registers and the completeness of the code, as described in comment 8 of section 7.3. Observe in particular the following: 1) all states are included; 2) the list of outputs is exactly the same in all states, and the corresponding values/expressions are always properly declared; 3) the specifications for \(n x\) _state, when conditional, are always finalized with an else statement, so no condition is left unchecked.
```

//Module header:--------------------------------------
module sram_interface
\#(parameter
//Main-circuit parameters:
Abus = 18, //Address bus width
Dbus = 16, //Data bus width
//Test-circuit parameters:
Tread = 25_000_000, //Time=0.5s @fclk=50MHz
Amax = 12) //Max address in test circuit
(
//Main-circuit ports:
input logic rd, wr, clk, rst,
output logic CEn, WEn, OEn, UBn, LBn,
output logic [17:0] A,
//Test-circuit ports:
inout logic [7:0] D, //Only lower-byte used
input logic [1:0] seed,
output logic [6:0] ssd,
output logic done_wr, done_rd);

```
```

//Declarations:--------------------------------------
//FSM-related declarations:
typedef enum logic [2:0]
{idle, write1, write2, read1, read2, hold} state;
state pr_state, nx_state;
//Auxiliary-register-related declarations:
logic [Abus-1:0] A_reg;
//Timer-related declarations:
logic [\$clog2(Tread)-1:0] t, tmax; //range\geqTread
//Function construction:
function [6:0] integer_to_ssd;
input [3:0] inp;
case (inp)
0: integer_to_ssd = 7'b0000001;
1: integer_to_ssd = 7'b1001111;
2: integer_to_ssd = 7'b0010010;
3: integer_to_ssd = 7'b0000110;
4: integer_to_ssd = 7'b1001100;
5: integer_to_ssd = 7'b0100100;
6: integer_to_ssd = 7'b0100000;
7: integer_to_ssd = 7'b0001111;
8: integer to ssd = 7'b0000000;
9: integer_to_ssd = 7'b0000100;
10: integer_to_ssd = 7'b0001000;
11: integer_to_ssd = 7'b1100000;
12: integer_to_ssd = 7'b0110001;
13: integer_to_ssd = 7'b1000010;
14: integer_to_ssd = 7'b0110000;
15: integer to ssd = 7'b0111000;
default: integer_to_ssd = 7'b1111110;
endcase
endfunction
//Statements:---
//Static SRAM signals:
assign CEn = 1'b0;
assign OEn = 1'b0;
assign UBn = 1'b0;
assign LBn = 1'b0;
//Timer (using strategy \#2):
always_ff @(posedge clk, posedge rst)
if (rst) t <= 0;
else if (t < tmax) t <= t + 1;
else t <= 0;
// Auxiliary register:
always_ff @(posedge clk, posedge rst)
if (rst) A_reg <= 0;
else A_reg <= A;

```
```

77 //FSM state register:
78
7 9
80
8 1
82
8
84
85
86
87
8
89
90
9 1
92
93
94
95
96
97
98
9 9

```
always_ff @(posedge clk, posedge rst)
```

always_ff @(posedge clk, posedge rst)
if (rst) pr_state <= idle;
if (rst) pr_state <= idle;
else pr_state <= nx_state;
else pr_state <= nx_state;
//FSM combinational logic:
//FSM combinational logic:
always_comb begin
always_comb begin
case (pr_state)
case (pr_state)
idle: begin
idle: begin
A <= 0;
A <= 0;
WEn <= 1'b1;
WEn <= 1'b1;
done_wr <= 1'b1;
done_wr <= 1'b1;
done_rd <= 1'b1;
done_rd <= 1'b1;
tmax <= 0;
tmax <= 0;
if (wr \& ~rd) nx_state <= write1;
if (wr \& ~rd) nx_state <= write1;
else if (~wr \& rd) nx_state <= readl;
else if (~wr \& rd) nx_state <= readl;
else nx_state <= idle;
else nx_state <= idle;
end
end
write1: begin
write1: begin
A <= A_reg;
A <= A_reg;
WEn <= 1'b0;
WEn <= 1'b0;
done_wr <= 1'b0;
done_wr <= 1'b0;
done_rd <= 1'b1;
done_rd <= 1'b1;
tmax <= 0;
tmax <= 0;
nx state <= write2;
nx state <= write2;
end
end
write2: begin
write2: begin
A <= A_reg + 1;
A <= A_reg + 1;
WEn <= 1'b1;
WEn <= 1'b1;
done_wr <= 1'bo;
done_wr <= 1'bo;
done_rd <= 1'b1;
done_rd <= 1'b1;
tmax <= 0;
tmax <= 0;
if (A <= Amax) nx_state <= writel;
if (A <= Amax) nx_state <= writel;
else nx_state <= hold;
else nx_state <= hold;
end
end
read1: begin
read1: begin
A <= A_reg;
A <= A_reg;
WEn <= - 1'b1;
WEn <= - 1'b1;
done_wr <= 1'b1;
done_wr <= 1'b1;
done_rd <= 1'b0;
done_rd <= 1'b0;
tmax <= Tread;
tmax <= Tread;
if (t>=tmax) nx_state <= read2;
if (t>=tmax) nx_state <= read2;
else nx_state <= readl;
else nx_state <= readl;
end
end
read2: begin
read2: begin
A <= A_reg + 1;
A <= A_reg + 1;
WEn <= 1'b1;
WEn <= 1'b1;
done_wr <= 1'b1;
done_wr <= 1'b1;
done_rd <= 1'b0;
done_rd <= 1'b0;
tmax <= 0;
tmax <= 0;
if (A <= Amax) nx_state <= readl;
if (A <= Amax) nx_state <= readl;
else nx_state <= hold;
else nx_state <= hold;
end
end
hold: begin
hold: begin
A <= 0;
A <= 0;
WEn <= 1'b1;
WEn <= 1'b1;
done_wr <= 1'b1;

```
            done_wr <= 1'b1;
```

```
1 3 4
135
136
1 3 7
138
139
1 4 0
1 4 1
142
1 4 3
144
1 4 5
```

endmodule

```
endmodule
```

 done rd <= 1'b1;
    ```
                done rd <= 1'b1;
                tmax <= 0;
                tmax <= 0;
                if (~wr & ~rd) nx_state <= idle;
                if (~wr & ~rd) nx_state <= idle;
                else nx_state <= hold;
                else nx_state <= hold;
                end
                end
            endcase
            endcase
        //In-out port with tri-state:
        //In-out port with tri-state:
        if (~done_wr) D <= A[7:0] + seed;
        if (~done_wr) D <= A[7:0] + seed;
        else D <= 'z;
        else D <= 'z;
        //SSD signal produced by function integer_to_ssd:
        //SSD signal produced by function integer_to_ssd:
        ssd <= integer_to_ssd(D[3:0]);
        ssd <= integer_to_ssd(D[3:0]);
        end
        end
//----------------------------------------------------
```

//--

```

\subsection*{13.7 Exercises}

\section*{Exercise 13.1: Long-String Comparator \#1}

Solve exercise 12.1 using SystemVerilog instead of VHDL.

\section*{Exercise 13.2: Long-String Comparator \#2}

Solve exercise 12.2 using SystemVerilog instead of VHDL.

\section*{Exercise 13.3: Hamming-Weight Calculator}

Solve exercise 12.3 using SystemVerilog instead of VHDL.

\section*{Exercise 13.4: Leading-Ones Counter}

Solve exercise 12.4 using SystemVerilog instead of VHDL.

\section*{Exercise 13.5: Complete Reference-Value Definer}

Solve exercise 12.5 using SystemVerilog instead of VHDL.

\section*{Exercise 13.6: Factorial Calculator}

Solve exercise 12.6 using SystemVerilog instead of VHDL.

\section*{Exercise 13.7: Divider}

Solve exercise 12.7 using SystemVerilog instead of VHDL.

\section*{14 Additional Design Examples}

This chapter presents three additional FSM-based designs. They are included in a separate chapter because theoretical details and background material are also provided, leading to much longer design examples. Moreover, FSMs from all three categories are involved, depending on the application. The chapter starts with a simple LCD driver, followed by the \(I^{2} \mathrm{C}\) and SPI interfaces, which are currently the most popular circuits for serial communication between integrated circuits.

\subsection*{14.1 LCD Driver}

Like SSDs (seven segment displays), alphanumeric LCDs (liquid crystal displays) are popular options for displaying readings in all sorts of equipment, from watches to car speedometers, from microwave ovens to medical instruments. Their main advantages over SSDs are a much lower power consumption and the possibility of displaying basically any character and also simple figures, but at a higher price and a more complex driver.

\subsection*{14.1.1 Alphanumeric LCD}

A popular alphanumeric LCD is shown in figure 14.1, which contains two lines of 16 characters each. A picture of the display is shown in figure 14.1a. The corresponding pinout is exhibited in figure 14.1b. The internal display layout is illustrated in figure 14.1 c , showing \(16 \times 2\) dot arrays of size \(8 \times 5\) each. In figure 14.1 d , its most frequent exhibition mode is depicted, consisting of \(8 \times 5\)-dot arrays for \(7 \times 5\) characters. Finally, in figure 14.1 e , its other predefined exhibition mode is depicted, consisting of \(11 \times 5\) dot arrays, for \(10 \times 5\) characters.

Even though this kind of display can also be found with \(\mathrm{I}^{2} \mathrm{C}\) and other serial interfaces, for low-cost applications the use of parallel access through an HD44780U microcontroller constitutes the industry standard. Such a controller (from Hitachi, or an equivalent one such as KS0066U from Samsung) is installed on the back of the device, acting as the interface between the LCD and the external world. The device is then

(a)
\begin{tabular}{|c|c|c|c|}
\hline Pin & Signal & Pin & Signal \\
\hline 1 & GND & 9 & DB2 (data bus, bit 2) \\
\hline 2 & \(\mathrm{Vcc}(2.7 \mathrm{~V}\) to 5.5 V\()\) & 10 & DB3 (data bus, bit 3) \\
\hline 3 & Contrast (0 to Vcc) & 11 & DB4 (data bus, bit 4) \\
\hline 4 & RS (register select) & 12 & DB5 (data bus, bit 5) \\
\hline 5 & R/W (read='1', write='0') & 13 & DB6 (data bus, bit 6) \\
\hline 6 & \(E\) (read/write enable) & 14 & DB7 (bit 7 or Busy Flag) \\
\hline 7 & DB0 (data bus, bit 0) & 15 & +Vcc for backlight \\
\hline 8 & DB1 (data bus, bit 1) & 16 & GND for backlight \\
\hline
\end{tabular}
(b)

(c)

(d)

(e)


Figure 14.1
Alphanumeric LCD. (a) Popular \(16 \times 2\) device. (b) Pinout (with HD44780U microcontroller). (c) Internal layout ( \(16 \times 28 \times 5\)-dot blocks). (d) Standard \(8 \times 5\)-dot exhibition mode (two lines of \(7 \times 5\) characters). (e) Standard \(11 \times 5\)-dot configuration (single line of \(10 \times 5\) characters).
accessed through the 16 pins listed in figure 14.1b, which include power, contrast, control, and data.

\section*{Circuit Ports}

To use this kind of display, the first step is to understand its microcontroller. The purposes of the signals listed in figure 14.1b are described below.
\(-E\) (enable, pin 6): Writing into the LCD controller occurs at the negative edge of \(E\), whereas reading occurs at the positive edge.
\(— R S\) (register select, pin 4): ‘0' selects the controller's instruction register (for initialization, for example), whereas ' 1 ' selects its data register (for the characters to be displayed by the LCD).
\(-R / W\) (read/write, pin 5): ' 1 ' for reading, ' 0 ' for writing. If \(R / W=\) ' 0 ', the next negative edge of \(E\) causes the present instruction or data to be written into the controller's register selected by \(R S\). If \(R / W=\) ' 1 ', data is read from the controller's register at the next positive edge of \(E\).
—DB (data bus, pins 7-14): Bidirectional eight-bit bus for sending/receiving data or instructions to/from the LCD controller.
- \(B F\) (busy flag, pin 14): The microcontroller sets bit 7 of \(D B\) to ' 1 ' when it is busy, informing that writing is not allowed. In practice, the use of this signal can be avoided by adopting for each instruction a time long enough to guarantee completion.
\begin{tabular}{|c|c|c|c|c|c|}
\hline Instruction & RS & RW & DB7 ... DB0 & Description & \[
\begin{gathered}
\text { Max exec. } \\
\text { time }\left(^{*}\right)
\end{gathered}
\] \\
\hline 1) Clear Display & 0 & 0 & 00000001 & Clears display and resets DD RAM address to zero & 1.52 ms \\
\hline 2) Return Home & 0 & 0 & 0000001 - & Returns display to origin and resets DD RAM address to zero & 1.52 ms \\
\hline 3) Entry Mode Set & 0 & 0 & \(000001 \mathrm{I} / \mathrm{DS}\) & Sets cursor direction and display shift during read and write I/D=1/0 incr./decrement DD RAM address S=1/0 shift/do not shift display & \(37 \mu \mathrm{~s}\) \\
\hline 4) Display on/off Control & 0 & 0 & 00001 DCB & \begin{tabular}{l}
\(D=1 / 0\) display on/display off \\
\(\mathrm{C}=1 / 0\) cursor on/cursor off \\
\(B=1 / 0\) blink/do not blink character
\end{tabular} & \(37 \mu \mathrm{~s}\) \\
\hline 5) Cursor or Display Shift & 0 & 0 & 0001 S/C R/L -- & \begin{tabular}{l}
Moves cursor or display without changing DD RAM contents \\
\(\mathrm{S} / \mathrm{C}=1\) shift display, \(=0\) shift cursor \\
\(R / L=1\) shift to right, \(=0\) shift to left
\end{tabular} & \(37 \mu \mathrm{~s}\) \\
\hline 6) Function Set & 0 & 0 & 001 DL N F -- & \begin{tabular}{l}
Sets bus size, number of lines, and digit size (font) \\
\(\mathrm{DL}=1 / 08\)-bit bus/4-bit bus \\
\(N=1 / 0\) two-line/one-line operation \\
\(\mathrm{F}=1 / 05 \times 10\) dots \(/ 5 \times 8\) dots
\end{tabular} & \(37 \mu \mathrm{~s}\) \\
\hline 7) Set CG RAM Address & 0 & 0 & 01 AAAAAA & Sets CG RAM address to AAAAAA 1st position in 1st row: address=0 1st position in 2nd row: address=64 & \(37 \mu \mathrm{~s}\) \\
\hline 8) Set DD RAM Address & 0 & 0 & 1 AAAAAAA & Sets DD RAM address to AAAAAAA & \(37 \mu \mathrm{~s}\) \\
\hline 9) Read Busy Flag and Address & 0 & 1 & BFAAAAAAA & Reads busy flag and address counter & \(0 \mu \mathrm{~s}\) \\
\hline 10) Write Data to CG or DD RAM & 1 & 0 & DDDDDDD & Writes data into DD RAM or CG RAM (defined by last DD or CG RAM addr set) & \(41 \mu \mathrm{~s}\) \\
\hline 11) Read Data from CG or DD RAM & 1 & 1 & DDDDDDD & Reads data from DD RAM or CG RAM (defined by last DD or CG RAM addr set) & \(41 \mu \mathrm{~s}\) \\
\hline \multicolumn{6}{|l|}{\(\left(^{*}\right.\) ) For 270 kHz internal oscillator; for other frequencies ( 100 to 500 kHz ), multiply time given by \(270 \mathrm{kHz} / \mathrm{oscillator} \mathrm{freq}\).} \\
\hline
\end{tabular}

Figure 14.2
LCD controller (HD44780U or equivalent) instruction set.

\section*{Controller Instructions}

The controller's instruction set is shown in figure 14.2, along with explanatory comments and worst-case execution times. As mentioned above, a common design practice is to adopt a slow clock to operate the LCD, such that any of the instructions has enough time to be completed (so reading \(B F\) is not necessary); for example, 500 Hz , hence allowing 2 ms for execution.

The maximum execution times in figure 14.2 are for the controller's internal oscillator operating at 270 kHz . This frequency is set by an external resistor between 75 \(\mathrm{k} \Omega\) (for \(V_{\mathrm{DD}}=3 \mathrm{~V}\) ) and \(91 \mathrm{k} \Omega\) (for \(V_{\mathrm{DD}}=5 \mathrm{~V}\) ). If a different frequency is employed (with different resistor values, the range that can be covered is roughly \(100-500 \mathrm{kHz}\) ), then the execution times must be multiplied by \(270 \mathrm{kHz} / f_{\text {oscillator }}\).
\begin{tabular}{|c|c|c|c|}
\hline & & &  \\
\hline & \％ & CiP＇P & －9 \({ }^{\text {ap }}\) \\
\hline & （2） &  &  \\
\hline & （3） &  &  \\
\hline & （4） & \＃｜3｜C｜S｜c｜s &  \\
\hline & （5） & \＄4｜DTIdt & ，I／r｜rs \\
\hline & （6） & Y 5 ｜U｜e｜u｜ & － \(\mid\) 才｜ \\
\hline & （7） & \(\&|G| F|\cup| f|v|\) & 7刀二ヨアを \\
\hline & （8） & \({ }^{2}|7| \mathrm{G}|\mathrm{W}| \mathrm{g} \mid \mathrm{w}\) &  \\
\hline & （1） &  &  \\
\hline & （2） & ） \(9 \mathrm{I}|\mathrm{Y} \mathbf{i}| \underline{y}\) &  \\
\hline & （3） & ＊\(: \mathbf{1} / \mathrm{J}|\mathbf{Z}| \mathbf{Z}\) & エコ｜以込 \\
\hline & （4） & ＋ \(\mid\)｜ \(\mid\)｜ \(\mid\)｜ \(\mid\)｜ \(\mid\) &  \\
\hline & （6） &  &  \\
\hline & （6） &  &  \\
\hline & \％ &  &  \\
\hline & （8） & ／ \(7 \mathbf{7} \mid\)－ \(0|\div|\) &  \\
\hline
\end{tabular}

Figure 14.3
Predefined characters of size \(7 \times 5\) available in the LCD controller＇s ROM．

\section*{Character ROM}

A total of 192 predefined characters of size \(7 \times 5\)（see figure 14．3）are available in the LCD controller＇s character generator ROM（CGROM）．The CGROM also contains 32 characters of size \(10 \times 5\) ．When the former are used（hence，with \(8 \times 5\)－dot blocks），the LCD can operate with two lines；when the latter（ \(11 \times 5\)－dot blocks）are used，only single－line operation is possible．User－defined characters are also allowed，so other exhibition modes are possible，such as full－height（ \(16 \times 5\)－dot）characters．

\section*{Initialization by Instructions}

An important design consideration is the controller＇s initialization procedure，which can be done in two ways：automatically，at power up，or by instructions．The latter can be used when the power supply conditions for automatic initialization are not met，or for safety．It consists of the following（adjusted）sequence（always with \(R / W=\) ＇ 0 ＇and \(R S=\)＇ 0 ＇；as usual，＂－＂means＂don＇t care＂）：
1) Turn the power ON .
2) Wait \(>15 \mathrm{~ms}\) after \(V_{\mathrm{DD}}\) rises to 4.5 V .
3) Execute instruction "Function set," with \(D B=\) "0011- - - -".
4) Wait \(>4.1 \mathrm{~ms}\).
5) Execute instruction "Function set," with \(D B=\) "0011- - - -".
6) Wait \(>100 \mu \mathrm{~s}\).
7) Execute instruction "Function set," with \(D B=\) " \(0011----\) ".
8) Execute instruction "Function set," with \(D B=\) "0011 NF--" (choose \(N\) and \(F\) ).
9) Execute instruction "Clear display," with \(D B=\) " 00000001 ".
10) Execute instruction "Display on/off control," with \(D B=\) " 00001100 ".
11) Execute instruction "Entry mode set," with \(D B=\) "000001 I/D \(S\) " (choose \(I / D\) and \(S\) ).
(Some equivalent microcontrollers have a slightly simpler initialization.)

\subsection*{14.1.2 Typical FSM Structure for Alphanumeric LCD Drivers}

A typical FSM structure for writing to the LCD of figure 14.1 is shown in figure 14.4a, clocked by \(E\) at around 500 or 600 Hz . The seven states in the upper row constitute the initialization sequence (compare those states to the sequence described above),

(b)


Figure 14.4
(a) Typical structure for an FSM that writes characters to the LCD of figure 14.1. (b) Another example for the actual data-writing states, displaying the digits of a clock.
and the states in the lower row (within a dashed rectangle) are responsible for the actual data-writing procedure. Note that \(R S=\) ' 0 ' in the upper row, needed to write to the instruction register, whereas \(R S=\) ' 1 ' in the lower row (except for state ReturnHome), so the writing occurs in the data register. \(R / W\) (not shown) is kept permanently low (writing only).

In the initialization sequence of figure 14.4a the same value was adopted for \(D B\) in all four repetitions of the "Function set" instruction, with \(N=\) ' 1 ' (two-line operation) and \(F=\) ' 0 ' ( \(5 \times 8\)-dot characters). In the "Entry mode" instruction the selected values were \(I / D=\) ' 1 ' (DD RAM address incremented automatically) and \(S=\) ' 0 ' (display not shifted).

The actual data-writing sequence (lower row, inside the dashed rectangle) depends on the application. In figure 14.4a a timed (category 2) machine is employed, which writes a total of eight characters ( \(t\) running from 0 to 7 ) to the LCD, then returns to the initial display address and overwrites those eight characters, repeating this loop indefinitely.

Another data-writing example is presented in figure 14.4 b , this time with a regular (category 1) machine (this is the FSM that will be implemented with VHDL in the next section). It displays the digits of a digital clock, with tens of hours and units of hours in the first two positions, then a colon, followed by tens and units of minutes in the next two characters, then another colon, and finally tens and units of seconds in the last two positions, after which the machine repeats the loop, overwriting the characters with the new readings. This FSM will implement the LCD driver, while the values of \(D B\) (hourT, hour \(U, \min T, \min U, \sec T, \sec U\) ) shown in figure 14.4 b are produced by another circuit, responsible for implementing the timer proper. Note that \(D B=\) "00111010" was used in states WriteColon1 and WriteColon2, which corresponds to the ":" character (check this in figure 14.3).

The FSM of figure 14.4 is simple enough to also be implemented using the pointerbased technique described in chapter 15.

\subsection*{14.1.3 Complete Design Example: Clock with LCD Display}

Figure 14.5 shows a digital clock that displays hours, minutes, and seconds on an alphanumeric LCD. The circuit was divided into two blocks, with the first block implementing the clock proper and the second block implementing the LCD driver.

The Clock block is controlled by five pushbuttons, as follows. Powers-of-two (simple shifts) were chosen as speed-up factors to reduce the amount of hardware.
—sec (adjustment of seconds): Increases the clock speed by a factor of 8.
—min (adjustment of minutes): Increases the clock speed by a factor of 256.
-hour (adjustment of hours): Increases the clock speed by a factor of 8192.
_rst_clock (clock reset): Resets the clock (and so the display) to zero.
—rst_lcd (LCD reset): Resets the FSM that implements the LCD driver.


Figure 14.5
Digital clock with LCD display.

The outputs of the Clock block are the following:
\(-\sec U\) : Units of seconds.
-secT: Tens of seconds.
-minU: Units of minutes.
-minT: Tens of minutes.
-hourU: Units of hours.
—hourT: Tens of hours.
Finally, the outputs of the LCD Driver block are the signals already described (listed in figure 14.1b):
\(-E\) (enable): Actual LCD clock.
\(— R S\) (register select): Selects LCD instruction (' 1 ') or data ('0') register.
\(-R / W\) (read/write): Selects LCD read (' 1 ') or write (' 0 ') operation.
\(-D B\) (data bus): Bidirectional eight-bit bus.
-LCD_ON: Turns display on (' 1 ') or off (' 0 ').
\(-B K L T \_O N\) : Turns backlight on (' 1 ') or off (' 0 ').

\section*{VHDL Code}

Because of space limitations, only the VHDL code is presented. However, with that code and the SystemVerilog codes seen in chapters 7, 10, and 13, writing the corresponding SystemVerilog code is relatively simple.

A complete VHDL code for the FSM of figure 14.4 b , with the initialization sequence of figure 14.4 a , is presented below. Because it is a category 1 machine, it was based on the template of section 6.3.

The entity, called clock_with_LCD_display, is in lines 5-12. The clock frequency was entered as a generic constant (line 6), so the speed-up factors (lines 50-53), the 1 -s time base for the clock (line 57), and the frequency of the LCD clock ( 500 Hz , lines 120 and 124) will adjust automatically when this parameter changes. The circuit ports (lines \(8-11\) ) are exactly as in figure 14.5 and are all of type std_logic or std_logic_vector (industry standard).

The architecture, called moore_fsm, is in lines 14-214. As usual, it contains a declarative part and a statements part, both commented below.

The declarative part of the architecture (lines 16-43) starts with a function that converts binary-coded decimal (BCD) values into LCD characters (according to figure 14.3). It also contains FSM-related and other signal declarations. In the FSM declarations (lines \(35-39\) ), the enumerated type state is created to represent the machine's present and next states. The other declarations contain in line 42 the signals needed to interface the Clock block with the LCD block (see figure 14.5) and in line 43 a signal that will allow the adoption of different limits in the first clock counter so the clock can be sped up during seconds, minutes, or hours adjustments.

The code proper (statements part, lines \(45-214\) ) is divided into two parts. Part I (lines 47-110) implements the Clock block of figure 14.5, while part II (lines 112-212) implements the LCD Driver block of figure 14.5.

Part I (Clock block) contains just definitions for the speed-up factors (lines 50-53) and a basic process (lines 56-110) that implements the clock proper.

Part II (LCD Driver block) starts with definitions for the LCD static signals (lines 114-116), followed by a process (lines 119-129) that creates the 500 Hz clock for the LCD controller. The last two processes implement the FSM that runs the LCD, with the sequential section (FSM state register) in lines 132-139 and the combinational logic section in lines 142-212, based directly on the template of section 6.3. Note that this last process follows figure 14.4 exactly.

Finally, observe the correct use of registers and the completeness of the code, as described in comment 10 of section 6.3.

The reader is invited to set up this (or an equivalent) experiment and play with it in the FPGA board.
```

1
2
3
4
5
6

```
library ieee;
```

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_1164.all;
entity clock_with_LCD_display is
entity clock_with_LCD_display is
generic (fclk: natural := 50_000_000); --freq in Hz
generic (fclk: natural := 50_000_000); --freq in Hz
port (
port (
clk, rst_clock, rst_lcd, sec, min, hour: in std_logic;
clk, rst_clock, rst_lcd, sec, min, hour: in std_logic;
RS, RW, LCD_ON, BKLT_ON: out std_logic;
RS, RW, LCD_ON, BKLT_ON: out std_logic;
E: buffer std_logic;
E: buffer std_logic;
DB: out std_logic_vector(7 downto 0));
DB: out std_logic_vector(7 downto 0));
end entity;
end entity;
architecture moore_fsm of clock_with_LCD_display is
architecture moore_fsm of clock_with_LCD_display is
--BCD-to-LCD character conversion function:
--BCD-to-LCD character conversion function:
function bcd_to_lcd (input: natural) return std_logic_vector is
function bcd_to_lcd (input: natural) return std_logic_vector is
begin
begin
case input is

```
        case input is
```

```
    when 0 => return "00110000"; --"0" on LCD
    when 1 => return "00110001"; --"1" on LCD
    when 2 => return "00110010"; --"2" on LCD
    when 3 => return "00110011"; --"3" on LCD
    when 4 => return "00110100"; --"4" on LCD
    when 5 => return "00110101"; --"5" on LCD
    when 6 => return "00110110"; --"6" on LCD
    when 7 => return "00110111"; --"7" on LCD
    when 8 => return "00111000"; --"8" on LCD
    when 9 => return "00111001"; --"9" on LCD
    when others => return "00111111"; --"?" on LCD
        end case;
    end bcd_to_lcd;
    --FSM-related declarations:
    type state is (FunctionSet1, FunctionSet2, FunctionSet3,
        FunctionSet4, ClearDisplay, DisplayControl, EntryMode,
        WriteHourT, WriteHourU, WriteColon1, WriteMinT, WriteMinU,
        WriteColon2, WriteSecT, WriteSecU, ReturnHome);
    signal pr_state, nx_state: state;
    --Other signal declarations:
    signal secU, secT, minU, minT, hourU, hourT: natural range 0 to 9;
    signal limit: natural range 0 to fclk;
begin
    --PART I: CLOCK BLOCK----------------------------
    --Speed-up factors:
    limit <= fclk/8192 when hour='1' else
        fclk/256 when min='1' else
        fclk/8 when sec='1' else
        fclk;
    --Clock design:
process (clk, rst_clock)
    variable counterl: natural range 0 to fclk;
    variable counter2: natural range 0 to 10;
    variable counter3: natural range 0 to 6;
    variable counter4: natural range 0 to 10;
    variable counter5: natural range 0 to 6;
    variable counter6: natural range 0 to 10;
    variable counter7: natural range 0 to 3;
begin
    if rst_clock='1' then
            counterl := 0;
            counter2 := 0;
            counter3 := 0;
            counter4 := 0;
            counter5 := 0;
            counter6 := 0;
            counter7 := 0;
        elsif rising_edge(clk) then
            counterl := counter1 + 1;
            if counterl=limit then
```

```
        counterl := 0;
        counter2 := counter2 + 1;
        if counter2=10 then
            counter2 := 0;
            counter3 := counter3 + 1;
            if counter3=6 then
                counter3 := 0;
                counter4 := counter4 + 1;
                if counter4=10 then
                    counter4 := 0;
                    counter5 := counter5 + 1;
                    if counter5=6 then
                        counter5 := 0;
                    counter6 := counter6 + 1;
                        if (counter7/=2 and counter6=10) OR
                    (counter7=2 and counter6=4) then
                    counter6 := 0;
                    counter7 := counter7 + 1;
                    if counter7=3 then
                                    counter7 := 0;
                                    end if;
                                    end if;
                end if;
                end if;
            end if;
            end if;
            end if;
        end if;
        secU <= counter2;
        secT <= counter3;
        minU <= counter4;
        minT <= counter5;
        hourU <= counter6;
        hourT <= counter7;
end process;
--PART II: LCD DRIVER BLOCK-----------------------
LCD_ON <= '1';
BKLT_ON <= '1';
RW <= '0';
--Generate 500Hz enable (E):
process (clk)
    variable counterl: natural range 0 to fclk/1000;
begin
    if rising_edge(clk) then
            counterl := counterl + 1;
            if counterl=fclk/1000 then
                    counter1 := 0;
            E <= not E;
        end if;
    end if;
end process;
--FSM state register:
process (E, rst_lcd)
```

```
1 3 3
134
135
136
1 3 7
138
1 3 9
140
141
142
143
144
145
146
1 4 7
148
149
150
151
152
153
154
155
156
157
158
159
```

begin

```
begin
    if rst_lcd='1' then
    if rst_lcd='1' then
            pr_state <= FunctionSet1;
            pr_state <= FunctionSet1;
        elsif rising_edge(E) then
        elsif rising_edge(E) then
            pr_state <= nx_state;
            pr_state <= nx_state;
        end if;
        end if;
end process;
end process;
--FSM combinational logic:
--FSM combinational logic:
process (all)
process (all)
begin
begin
        case pr_state is
        case pr_state is
        --Initialization:
        --Initialization:
        when FunctionSet1 =>
        when FunctionSet1 =>
            RS <= '0';
            RS <= '0';
            DB <= "00111000";
            DB <= "00111000";
            nx_state <= FunctionSet2;
            nx_state <= FunctionSet2;
        when FunctionSet2 =>
        when FunctionSet2 =>
            RS <= '0';
            RS <= '0';
            DB <= "00111000";
            DB <= "00111000";
            nx_state <= FunctionSet3;
            nx_state <= FunctionSet3;
        when FunctionSet3 =>
        when FunctionSet3 =>
            RS <= '0';
            RS <= '0';
            DB <= "00111000";
            DB <= "00111000";
            nx_state <= FunctionSet4;
            nx_state <= FunctionSet4;
        when FunctionSet4 =>
        when FunctionSet4 =>
            RS <= '0';
            RS <= '0';
            DB <= "00111000";
            DB <= "00111000";
            nx_state <= ClearDisplay;
            nx_state <= ClearDisplay;
        when ClearDisplay =>
        when ClearDisplay =>
            RS <= 'O';
            RS <= 'O';
            DB <= "00000001";
            DB <= "00000001";
            nx_state <= DisplayControl;
            nx_state <= DisplayControl;
        when DisplayControl =>
        when DisplayControl =>
            RS <= '0';
            RS <= '0';
            DB <= "00001100";
            DB <= "00001100";
            nx_state <= EntryMode;
            nx_state <= EntryMode;
        when EntryMode =>
        when EntryMode =>
            RS <= '0';
            RS <= '0';
            DB <= "00000110";
            DB <= "00000110";
            nx_state <= WriteHourT;
            nx_state <= WriteHourT;
        --Write data:
        --Write data:
        when WriteHourT =>
        when WriteHourT =>
            RS <= '1';
            RS <= '1';
            DB <= bcd_to_lcd(hourT);
            DB <= bcd_to_lcd(hourT);
            nx_state <= W}rriteHourU
            nx_state <= W}rriteHourU
        when WriteHourU =>
        when WriteHourU =>
            RS <= '1';
            RS <= '1';
            DB <= bcd_to_lcd(hourU);
            DB <= bcd_to_lcd(hourU);
            nx_state <= WriteColon1;
            nx_state <= WriteColon1;
        when WriteColon1 =>
        when WriteColon1 =>
            RS <= '1';
            RS <= '1';
            DB <= "00111010";
            DB <= "00111010";
            nx_state <= WriteMinT;
            nx_state <= WriteMinT;
        when WriteMinT =>
        when WriteMinT =>
            RS <= '1';
            RS <= '1';
            DB <= bcd_to_lcd(minT);
```

 DB <= bcd_to_lcd(minT);
    ```
```

 nx_state <= WriteMinU;
 when WriteMinU =>
 RS <= '1';
 DB <= bcd_to_lcd(minU);
 nx_state <= WriteColon2;
 when WriteColon2 =>
 RS <= '1';
 DB <= "00111010";
 nx_state <= WriteSecT;
 when WriteSecT =>
 RS <= '1';
 DB <= bcd_to_lcd(secT);
 nx_state <= \overline{WriteSecU;}
 when WriteSecU =>
 RS <= '1';
 DB <= bcd_to_lcd(secU);
 nx_state <= ReturnHome;
 when ReturnHome =>
 RS <= '0';
 DB <= "10000000";
 nx_state <= WriteHourT;
 end case;
 end process;
 end architecture;

```

\section*{\(14.2 I^{2} \mathrm{C}\) Interface}
\(\mathrm{I}^{2} \mathrm{C}\) (Inter Integrated Circuit) is a synchronous eight-bit oriented serial bus for communication between integrated circuits installed next to each other (normally on the same board). Created by Philips in the 1980s, it is a two-wire bus with five standardized speed modes, called standard (100 kbps), fast ( 400 kbps ), fast-plus ( 1 Mbps ), highspeed (3.4 Mbps), and ultrafast (5 Mbps).

\subsection*{14.2.1 \(\quad I^{2} C\) Bus Structure}

The \(I^{2} \mathrm{C}\) bus general structure is depicted in figure 14.6. Its two wires are called \(S C L\) (serial clock) and SDA (serial data), which interconnect a master unit to a number of


Figure 14.6
General \(\mathrm{I}^{2} \mathrm{C}\) bus structure.
slave units. A common ground wire (not shown) is obviously also needed for the system to function. Examples of IC families currently fabricated with \(\mathrm{I}^{2} \mathrm{C}\) support are also shown in the figure, including microcontrollers, EEPROM and Flash memories, A/D and D/A converters, RTC (real time clock) circuits, temperature sensors, and accelerometers, among others.

As indicated in figure 14.6, the clock (SCL) is unidirectional, always generated by the master (usually a microcontroller), whereas data (SDA) transmission is bidirectional. Because \(S C L\) and \(S D A\) are open-drain lines (the \(5-\mathrm{Mbps}\) version also allows push-pull logic), external pull-up resistors \(\left(R_{P U}\right)\) must be connected between these wires and the power supply.

The number of devices sharing the same bus can be up to 128 (seven-bit address) or 1024 (10-bit address). More than one master is allowed, in which case the \(\mathrm{I}^{2} \mathrm{C}\) protocol provides bus arbitration. Other advanced features include clock stretching, general call, reset by software, and others.

\subsection*{14.2.2 Open-Drain Outputs}

As mentioned, \(S C L\) and SDA are open-drain pins. Details on open-drain connections for SDA (which is bidirectional) are shown in figure 14.7. Note that for an individual stage (the master, for example) to have its output high, the corresponding nMOS transistor must be cut off (so its gate voltage must be low), because then the output voltage will be elevated to \(V_{D D}\) by the pull-up resistor. Because all stages are hardwired to the same \(S D A\) node, the only way to have \(S D A\) high is to have all nMOS transistors off; in other words, all individual outputs must be high. Consequently, the SDA node behaves as an AND gate, so any nonactive unit must keep its output high (i.e., internal nMOS transistor gate voltage low) in order not to interfere with the communication between any other units.

Because of the open-drain arrangement, the high-impedance state (' Z ', in VHDL) provided by tristate buffers is actually not needed. However, the design example shown ahead is tested with the master on an FPGA (without open-drain pads), so in that case the ' \(Z\) ' state is required.


Figure 14.7
Open-drain connections for the \(S D A\) wire.


Figure 14.8
(a) \(\mathrm{I}^{2} \mathrm{C}\) communication principle. (b) Time parameters. (c) Resulting (allowed) operation.

The value of \(R_{P U}\) is typically in the \(1-\mathrm{k} \Omega\) to \(33-\mathrm{k} \Omega\) range. It depends on the total SCL or SDA wire capacitance; if it is large (long bus with many slaves), then the resistor must be small to achieve the rise time defined in the \(\mathrm{I}^{2} \mathrm{C}\) specifications. The value of \(V_{\mathrm{DD}}\) was 5 V in initial \(\mathrm{I}^{2} \mathrm{C}\)-driven devices, but voltages as low as 1.8 V are now common.

\subsection*{14.2.3 \(I^{2} \mathrm{C}\) Bus Operation}

Data transfers are always done one byte at a time, after which an acknowledgment bit is issued by the receiving end. The general principle is depicted in figure 14.8a, which shows a data transmission from the master to a slave. The start sequence consists of lowering SDA with SCL high, whereas the stop sequence consists of raising SDA with SCL high. This means that during data transmission SDA must remain stable while SCL is high; otherwise start/stop commands will occur (note in the figure that the data is always updated while SCL is low). While the master is transmitting (always MSB first), the slave remains with its output high (nMOS transistor cut off-represented by ' \(Z\) ' in the figure), so the master has control over the \(S D A\) wire. After the eighth bit is
received, the slave issues an ack bit, which (for obvious reasons) can only be a ' 0 '. As also depicted in figure 14.8a, the slave stores the data available on the \(S D A\) wire at the positive edge of \(S C L\) and places data on that wire at the negative edge.

The main time parameters are summarized in figure 14.8b, which have the following meaning:
\(t_{\text {SU_STA }}(\) setup time for start): \(S C L\) stable high before \(S D A\) high-to-low transition. \(t_{\text {HD_STA }}\) (hold time for start): SCL still stable high after SDA high-to-low transition. \(t_{\text {SU_DAT }}\) (setup time for data): data or address stable before SCL pulse.
\(t_{H D \_D A T}(\) hold time for data): data or address still stable after \(S C L\) pulse.
\(t_{\text {SU_STO }}\) (setup time for stop): SCL stable high before SDA low-to-high transition. \(t_{B U F}\) (bus-free time): bus-free time before another data transmission.

Figure 14.8b also shows examples of numerical values for these time parameters. A very important observation is that \(t_{H D \_D A T}=0\) (this is generally true for \(\mathrm{I}^{2} \mathrm{C}\)-interfaced devices), which causes the simpler timing diagram of figure 14.8 c to be allowed.

The overall \(\mathrm{I}^{2} \mathrm{C}\) protocol is summarized in figure 14.9. In figure 14.9 a the master writes data to a slave, whereas in figure 14.9 b it reads data from a slave. White blocks represent actions taken by the master, and gray blocks indicate actions taken by the slave.


Figure 14.9
Summary of \(\mathrm{I}^{2} \mathrm{C}\) operation for (a) writing and (b) reading.

The write procedure (figure 14.9a) begins with a start pulse, followed by the first byte, which contains the slave's seven-bit address plus a ' 0 ' appended to its right-end (this ' 0 ' informs the slave that a write procedure will occur). The corresponding slave responds with an acknowledgment bit ( \(=\) ' 0 '). The second byte is then issued by the master, containing the initial memory address where the writing must occur, to which the slave responds with another ack bit. After this, data writing begins, which can consist of any number of bytes, until the master ends the operation with a stop pulse.

The read procedure (figure 14.9 b ) is exactly the same as the write procedure up to line 1 , or up to line 2 if the same initial address is used for writing and for reading. After line 2 another start pulse is issued by the master, followed by the sevenbit slave's address, this time with a ' 1 ' appended to its right-end (informing that a read operation will occur), to which the slave responds with a final ack bit. After this point the slave issues the data and the master issues the ack bit. Again, any number of bytes can be transferred, until a no-ack ( \(=\) ' 1 ') bit is issued by the master, followed by a stop pulse.

The repetition seen in figure 14.9 b (before line 2 ) is sometimes referred to as dummy write. It is necessary because \(\mathrm{I}^{2} \mathrm{C}\) also permits reading from wherever the address pointer sits, in which case the entire portion before line 2 is omitted. In other words, the dummy write resets the address pointer to a specific position.

The diagram of figure 14.9 is shown in a temporal fashion in figure 14.10, now with all waveforms to be used in the experiments explicitly shown. This diagram is based directly on figure 14.8 c . Because \(t_{H D \_D A T}=0\) (figure 14.8 b ), only a single clock is actually needed. Observe the safe construction of the restart sequence, needed for reading, which takes two clock cycles (left and right portions). Note also the inclusion of a hold state at the end, which waits for \(w r=\) ' 0 ' (and also \(r d=\) ' 0 ' if sequential


Figure 14.10
Detailed \(\mathrm{I}^{2} \mathrm{C}\) signals for (a) writing and (b) reading (compare to the sequences in figure 14.9).


Figure 14.11
Typical FSM structure for \(\mathrm{I}^{2} \mathrm{C}\) master implementations.
reading is not wanted) and for a time equal to \(t_{B U F}\) before a new transmission can take place. Because this diagram is completely generic, it can be used as the basis for any circuit that writes/reads data to/from any \(\mathrm{I}^{2} \mathrm{C}\)-interfaced device.

\subsection*{14.2.4 Typical FSM Structure for \(I^{2} C\) Applications}

Figure 14.11 shows a typical FSM structure for implementing an \(\mathrm{I}^{2} \mathrm{C}\) master circuit. The sequence of states is based directly on figures 14.9 and 14.10. The process starts when a \(w r=\) ' 1 ' or \(r d=\) ' 1 ' pulse is received, with the first three states after the idle state corresponding to the initialization sequence (down to line 1 of figure 14.9). After this point the upper branch is pursued if writing is wanted, or the lower branch if reading is intended.

Understanding this state transition diagram well is very important because basically the only changes from one \(I^{2} \mathrm{C}\) application to another are in the data-write and dataread sequences inside the dashed rectangles. Two very important aspects of this machine are commented on below.

The first point regards the duration of the \(w r\) and \(r d\) signals. Note that these signals are used to make decisions in two points along the FSM, so at least one of them must last up to the point where the second decision must be made. If \(w r\) and \(r d\) are short pulses, then a stretcher (section 8.11.10) can be used; another (simpler) solution is to repeat the three initial states for writing and for reading. If, on the other hand, \(w r\) and \(r d\) are long pulses, then the hold state (which waits also for \(t_{B U F}\) ) shown after stop can solve the problem.

The second point regards the two blocks within dashed rectangles. If the number of bytes to be transmitted or received is small, then one pair "write-data + ack" or "read-data + ack" can be used for each byte. However, for a large number of bytes, it is more practical to build a loop to have the same pair repeated a number of times (except for the last pair when reading data, because then no-ack must be used in place of ack). Both solutions can be implemented with a category 2 machine (based on the


Figure 14.12
(a) PCF8593 pinout. (b) Setup for the experiment.
material in section 8.7), or with a category 3 machine (based on the material in section 11.5 ), or still using the pointer-based technique described in chapter 15. In the design example shown next, a category 3 machine is used, with individual pairs for reading and a looped pair for writing.

\subsection*{14.2.5 Complete Design Example: RTC (Real-Time Clock) Interface}

This section shows a complete design example for an \(\mathrm{I}^{2} \mathrm{C}\) master that interfaces with an RTC (real-time clock) circuit. The master first writes the current time and date to the RTC; then it reads the clock-related data continuously, hence having the RTC operate as a high-precision clock. The circuit is implemented with VHDL and physically tested in the FPGA development board.

The RTC employed in this example is the PFC8593 (see figure 14.12a), from NXP, which contains clock, calendar, timer, and alarm features (see the device's manual).

The setup for the experiment is shown in figure 14.12b. The inputs are the \(w r\) and \(r d\) commands plus the traditional clock and reset. The output is divided into two sets; the first set contains \(S C L\) and \(S D A\) (plus a chip-reset signal), thus constituting the actual \(\mathrm{I}^{2} \mathrm{C}\) bus; the second set of outputs is for testing the circuit, displaying on six SSDs (or on an LCD) the data (clock information) read from the RTC. The FSM first writes the time and date into the RTC; then it reads continuously the clock-related data produced by the RTC.

The 16 registers (each eight bits long) of the PCF8593 RTC are detailed in figure 14.13. Register 0 is used for setup information; register 1 stores subseconds, with units of subseconds in bits 3:0, and tens of subseconds in bits 7:4; register 2 stores seconds, with units of seconds ( 0 to 9 values) in bits 3:0, and tens of seconds (values from 0 to 5 ) in bits 7:4; and so on.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Register name & Address & Bit7 & Bit6 & Bit5 & Bit4 & Bit3 & Bit2 & Bit1 & Bit0 \\
\hline Control & 0 & \multicolumn{8}{|c|}{RTC setup} \\
\hline Subseconds & 1 & \multicolumn{4}{|c|}{10subsec} & \multicolumn{4}{|c|}{1subsec} \\
\hline Seconds & 2 & \multicolumn{4}{|c|}{10sec} & \multicolumn{4}{|c|}{1 sec} \\
\hline Minutes & 3 & \multicolumn{4}{|c|}{10 min} & \multicolumn{4}{|c|}{1 min} \\
\hline Hours & 4 & 24h/12h & AM/PM & \multicolumn{2}{|c|}{10hour} & \multicolumn{4}{|c|}{1hour} \\
\hline Year / Date & 5 & \multicolumn{2}{|c|}{year} & \multicolumn{2}{|c|}{10date} & \multicolumn{4}{|c|}{1date} \\
\hline Weekday/Month & 6 & \multicolumn{3}{|c|}{weekday} & 10mo & \multicolumn{4}{|c|}{1 mo} \\
\hline Timer & 7 & \multicolumn{8}{|c|}{(timer register)} \\
\hline Alarm & 8-15 & \multicolumn{8}{|c|}{(alarm registers)} \\
\hline
\end{tabular}

Figure 14.13
PCF8593 registers.

Data is written to registers 0 to 7 , which comprise the clock and calendar; then registers 2 to 4 are read (thus the initial address for reading is different from that for writing), which contain clock information concerning seconds, minutes, and hours. The following data are written (assuming that the present time and date are 1:30 pm of Christmas day): Control = "00000000"; Subseconds = "00000000" (0.00 s); Seconds \(=\) "00000000" (00 s); Minutes \(=\) " \(00110000 "(30 \mathrm{~min})\); Hours \(=\) " \(00010011 "(13 \mathrm{~h}, 24-\mathrm{h}\) option selected); Date = "00100101" (date 25); Month = "00010010" (month 12).

A detailed state transition diagram for this problem is presented in figure 14.14, based directly on figures 14.10 and 14.11. Either a category 2 or a category 3 machine can be used to implement this kind of circuit; the latter option was chosen here, whereas the former option will be employed in the next section, which deals with the SPI interface. This FSM is simple enough to also be implemented using the pointerbased technique described in chapter 15.

Figure 14.14 was divided into three parts. The overall FSM is presented in figure 14.14a, where six common states plus write and read blocks are shown. Because the \(w r\) and \(r d\) commands are produced by two switches (long signals) in the experiments, the state called hold was included after stop to force the machine to wait until \(w r=\) ' 0 ' occurs before returning to idle (long \(r d=\) ' 1 ' is accepted because continuous reading is wanted here, although this could also be done by repeating only the data-reading states). It was chosen not to have hold wait for \(t_{B U F}\) because another immediate write sequence is very unlikely to be needed in this kind of application. The write sequence is shown in figure 14.14 b ; seven bytes of data (listed under the dashed rectangle) must be transmitted, so the pair of states inside the dashed rectangle must be repeated seven times. Finally, the read sequence is presented in figure 14.14c; three bytes of data (listed under the dashed rectangle) must be received (and stored), so the pair of states inside the dashed rectangle must be repeated three times. We have elected to use a pointer (j) to repeat the \(w r_{\text {_data-ack3 pair in the transmitter and to use three separate pairs to }}\) repeat the rd_data-ack (or noack) pair in the receiver.


Figure 14.14
Complete FSM for the \(\mathrm{I}^{2} \mathrm{C}\) RTC interface.

Two pointers are used in figure 14.14. The first \((i)\) is employed in all states where more than one bit must be transmitted or received. The second ( \(j\) ) can be useful when multiple bytes are involved, which is the case of the dashed rectangles in figures \(14.14 \mathrm{~b}, \mathrm{c}\); as mentioned above, we have chosen to use \(j\) only in the transmitter. Recall that in a category 2 (timed) machine the pointer would run from 0 to 7 (for one byte of data), whereas here it runs from 1 to 8 because the pointer is immediately incremented when the FSM enters a multibit state (then the \(i=8\) condition in the state diagram would be \(i=7\) if it were a category 2 machine).

Observe that the values for \(S D A\) in figure 14.14 are those that must be produced by the master. For example, when the slave is supposed to answer with \(S D A=\) ' 0 ' in the ack states, the master must produce \(S D A=\) ' \(Z\) ' (FPGA implementation). Note also that \(S D A=x(8-i)\) was used in the eight-bit writing states, indicating that the MSB will be transmitted first [recall that \(i\) ranges from 1 to 8 , so \(x(7)\) will go first and \(x(0)\) will go last]. Here, \(x\) is just a generic name; the actual signal name varies from one state to another. Finally, note that the received data must be stored somewhere, as indicated by an arrow and a box over the dashed rectangle in figure 14.14 c .

\section*{VHDL Code}

Because of space limitations, only the VHDL code is presented. However, with this code and the SystemVerilog codes seen in chapters 7, 10, and 13, writing the corresponding SystemVerilog code is relatively simple.

A complete VHDL code for the FSM of figure 14.14 is presented below. Because it is a category 3 machine, it was based on the template of section 12.2.

Initially, a function called bcd_to_ssd, to convert BCD (binary-coded decimal) values into SSD values (display driver), was built in a separate package (called my_functions), which is called in the main code (lines 252-257) to make the corresponding conversions.

The entity, called RTC_with_I2C_bus, is in lines 6-37. A number of system parameters were entered as generic constants (lines 7-23), including the clock frequency (50 MHz , line 9) and the desired \(\mathrm{I}^{2} \mathrm{C}\) speed (100 kbps, line 10), so the \(\mathrm{I}^{2} \mathrm{C}\) clock (i2c_clk) is automatically adjusted (in lines 71 and 75) when these parameters change. They also include the RTC addresses of interest (lines \(12-15\) ) and the time and date to be stored in the RTC registers (lines 17-23).

The circuit ports, all of type std_logic or std_logic_vector (industry standard), are in lines \(24-36\). They are exactly as in figure 14.12 b .

The architecture, called moore_fsm, is in lines 39-259. As usual, it contains a declarative part and a statements part, both commented on below.

The declarative part of the architecture (lines 41-63) contains FSM-related and auxiliary-register-related declarations plus other system declarations. In the FSM declarations (lines 42-50), the enumerated type state is created to represent the machine's present and next states. In the auxiliary-register declarations (lines 53-54), the signals needed to build the pointers \(i\) and \(j\) are created. Finally, the other declarations (lines 57-63) include the \(\mathrm{I}^{2} \mathrm{C}\) clock, the signals that will store the values read from the RTC (test circuit), and also a \(1 \mathrm{D} \times 1 \mathrm{D}\) type called data_array, used to build a ROM called data_out containing the data to be sent to the slave (to set the clock and calendar).

The statements part (lines 65-259) contains five processes. The first process (lines \(70-80)\) produces i2c_clk, with frequency 100 kHz (desired data rate).

The second process (lines 83-94) builds the FSM's state register plus the auxiliary registers for \(i\) and \(j\).

The third process (lines 97-237) implements the entire combinational logic section of the FSM, following the state transition diagram of figure 14.14 exactly. Note that because some of the output values are repeated a number of times, they were entered as default values in lines 100-102, so the actual list of outputs (SCL, SDA, \(i, j\) ) is indeed exactly the same in all states.

The fourth and final process (lines 240-251) plus associated statements (lines 252-257) constitute the test circuit. It stores the data read from the RTC and sends it to the display.

Observe the correct use of registers and the completeness of the code, as described in comment 10 of section 6.3.

The reader is invited to set up this (or an equivalent) experiment and play with it in the FPGA board.
```

----Package with function "bcd to ssd":-------------------
library ieee;
use ieee.std_logic_1164.all;
package my_functions is
function bcd_to_ssd(input:std_logic_vector)
return st\overline{d}_logic_vector;
end my_functions;
package body my functions is
function bcd_to_ssd(input: std_logic_vector)
return st\overline{d_logic_vector is}
begin
case input is
when "0000" => return "0000001"; --"0" on SSD
when "0001" => return "1001111"; --"1" on SSD
when "0010" => return "0010010"; --"2" on SSD
when "0011" => return "0000110"; --"3" on SSD
when "0100" => return "1001100"; --"4" on SSD
when "0101" => return "0100100"; --"5" on SSD
when "0110" => return "0100000"; --"6" on SSD
when "0111" => return "0001111"; --"7" on SSD
when "1000" => return "0000000"; --"8" on SSD
when "1001" => return "0000100"; --"9" on SSD
when others => return "1111110"; --"-" on SSD
end case;
end bcd to ssd;
end package boody;

```
----Main code:------------------------------------------------------------------
library ieee;
use ieee.std_logic_1164.all;
use work.my_functiōns.all; --package with "bcd_to_ssd" function

entity RTC_with_I2C_bus is
    generic (
        --Clock parameters:
        fclk: positive := 50_000_000; --Clock frequency in Hz
        data_rate: positive := 100_000; --Desired I2C bus speed in bps
        --RTC addresses:
        slave_addr_for_wr: std_logic_vector (7 downto 0) := "10100010";
        slave_addr_for_rd: std_logic_vector (7 downto 0) := "10100011";
        initial_addr_for_wr:std_logic_vector (7downto0) :="00000000";
        initial_addr_for_rd:std_logic_vector(7downto0): ="00000010";
        --Values to store in the RTC clock/calendar registers:
        set_control: std_logic_vector(7 downto 0) := "00000000";
        set_subsec:std_logic_vector(7downto0):="00000000"; --0.00sec
        set_sec: std_lōgic_vēctor(7 downto 0) := "00000000"; --00 sec
```

 set_min: std_logic_vector(7 downto 0) := "00110000"; --30 min
 set_hour: std_logic_vector(7 downto 0) := "00010011"; --13 h
 set_date:std_logic_vector(7 downto 0) := "00100101"; --date 25
 set_month:std_logic_vector(7downto0):="00010010"); --month12
 port (
 --Clock and control ports:
 clk, rst, wr, rd: in std_logic;
 --I2C ports:
 SCL, CH_RSTn: out std_logic;
 SDA: inout std_logic;
 --Display ports (test circuit):
 ssd_1sec: out std_logic_vector(6 downto 0); --units of seconds
 ssd_10sec: out st\overline{d}logic
 ssd_lmin: out std_logic_vector(6 downto 0); --units of minutes
 ssd_10min: out std_logic_vector(6 downto 0); --tens of minutes
 ssd_1hour: out std_logic_vector(6 downto 0); --units of hours
 ssd_10hour: out st\overline{d}_logi\overline{c}_vector(6 downto 0)); --tens of hours
 end entity;
architecture moore_fsm of RTC_with_I2C_bus is
--FSM-related declarations:
type state is (
--common states:
idle, start, slave_addr_wr, ack1, stop, hold,
--write-only states:
initial_addr_wr, ack2, wr_data, ack3,
--read-only states:
initial_addr_rd, ack4, restartL, restartR, slave_addr_rd, ack5,
rd_sec, ack6, rd_min, ack7, rd_hour, no_ack);
signal pr_state, nx_state: state;
--Auxiliary-register-related declarations:
signal i, i_reg: natural range 0 to 8;
signal j, j_reg: natural range 0 to 7;
--Other declarations:
signal i2c_clk: std_logic;
signal sec: std_logic_vector(7 downto 0);
signal min: std_logic_vector(7 downto 0);
signal hour: st\overline{d}logic
type data_array is array (0 to 6) of std_logic_vector(7 downto 0);
constant data_out: data_array:= (set_control, set_subsec, set_sec,
set_min, set_hour, set_date, set_month);
begin
CH_RSTn <= not rst; --chip reset
--i2c_clk (100kHz):
process (clk)
variable count: natural range 0 to fclk/(2*data_rate);
begin
if rising_edge(clk) then
count := count + 1;
if count=fclk/(2*data_rate) then

```
```

 i2c_clk <= not i2c_clk;
 count := 0;
 end if;
 end if;
 end process;
--FSM state register + Auxiliary register:
process (i2c_clk, rst)
begin
if rst='1' then
pr_state <= idle;
i_reg <= 0;
j_reg <= 0;
elsif falling_edge(i2c_clk) then
pr_state <= nx_state;
i_reg <= i;
j_reg <= j;
end if;
end process;
--FSM combinational logic:
process (all)
begin
--Default values:
SCL <= i2c_clk;
i <= 0;
j <= 0;
case pr_state IS
--Common states:
when idle =>
SCL <= '1';
SDA <= '1';
if wr='l' or rd='1' then
nx_state <= start;
else
nx_state <= idle;
end if;
when start =>
SCL <= '1';
SDA <= '0';
nx_state <= slave_addr_wr;
when slave_addr_wr =>
SDA <= slave_addr_for_wr(8-i);
i <= i_reg + 1;
if i=8 then
nx_state <= ack1;
else
nx_state <= slave_addr_wr;
end if;
when ack1 =>
SDA <= 'Z';
if wr='1' then
nx_state <= initial_addr_wr;
else
nx_state <= initial_addr_rd;
end i\overline{f;}
when stop =>

```
```

 SDA <= '0';
 nx_state <= hold;
 when hold =>
SCL <= '1';
SDA <= '1';
if wr='0' then
nx_state <= idle;
else
nx_state <= hold;
end if;
--Data-write states:
when initial_addr_wr =>
SDA <= initial_addr_for_wr(8-i);
i <= i_reg + 1;
if i=8 then
nx_state <= ack2;
else
nx_state <= initial_addr_wr;
end if;
when ack2 =>
SDA <= 'Z';
nx_state <= wr_data;
when wr_data =>
SDA <= data_out(j)(8-i);
i <= i_reg + 1;
j <= j_reg;
if i=8 then
nx_state <= ack3;
else
nx_state <= wr_data;
end i\overline{f;}
when ack3 =>
SDA <= 'Z';
j <= j_reg + 1;
if j<7 then
nx_state <= wr_data;
else
nx_state <= stop;
end if;
--Data-read states:
when initial_addr_rd =>
SDA <= initial_addr_for_rd(8-i);
i <= i_reg + 1;
if i=8 then
nx_state <= ack4;
else
nx_state <= initial_addr_rd;
end if;
when ack4 =>
SDA <= 'Z';
nx_state <= restartL;
when restartL =>
SCL <= '0';
SDA <= '1';
nx_state <= restartR;
when restartR =>
SCL <= '1';

```
```

 SDA <= not i2c clk;
 nx_state <= slave_addr_rd;
 when slave_addr_rd =>
 SDA <= Slave_addr_for_rd(8-i);
 i <= i_reg + 1;
 if i=8 then
 nx_state <= ack5;
 else
 nx_state <= slave_addr_rd;
 end if;
 when ack5 =>
 SDA <= 'Z';
 nx_state <= rd_sec;
 when rd_sec =>
 SDA <= 'Z';
 i <= i reg + 1;
 if \(i=8\) then
 nx_state <= ack6;
 else
 nx_state <= rd_sec;
 end if;
 when ack6 =>
 SDA <= '0';
 nx_state <= rd_min;
 when \(\bar{r} d _m i n=>\)
 SDA <= ' Z';
 i <= i_reg + 1;
 if \(i=8\) then
 nx_state <= ack7;
 else
 nx_state <= rd_min;
 end if;
 when ack7 =>
 SDA <= '0';
 nx_state <= rd_hour;
 when \(\bar{r} d\) hour \(=>\)
 SDA <= 'Z';
 i <= i_reg + 1;
 if \(i=8\) then
 nx_state <= no_ack;
 else
 nx_state <= rd_hour;
 end if;
 when no ack =>
 SDA <= '1';
 nx_state <= stop;
 end case;
 end process;
--Store data read from RTC and send it to display:
process (i2c_clk)
begin
if rising_edge(i2c_clk) then
if (pr_state=rd_sec) then
$\sec (8-i)<=$ SDA;
elsif (pr_state=rd_min) then

```
```

246
24
248
249
250
251
252
253
254
255
256
257
258
259
260

```
```

 min(8-i) <= SDA;
    ```
            min(8-i) <= SDA;
            elsif (pr_state=rd_hour) then
            elsif (pr_state=rd_hour) then
                hour(8-i) <= SDA;
                hour(8-i) <= SDA;
            end if;
            end if;
            end if;
            end if;
    end process;
    end process;
    ssd_1sec <= bcd_to_ssd(sec(3 downto 0));
    ssd_1sec <= bcd_to_ssd(sec(3 downto 0));
    ssd_10sec <= bc\overline{d_to_ssd(sec(7 downto 4));}
    ssd_10sec <= bc\overline{d_to_ssd(sec(7 downto 4));}
    ssd_1min <= bcd_to_ssd(min(3 downto 0));
    ssd_1min <= bcd_to_ssd(min(3 downto 0));
    ssd_10min <= bc\overline{d_to_ssd(min(7 downto 4));}
    ssd_10min <= bc\overline{d_to_ssd(min(7 downto 4));}
    ssd_1hour <= bcd_to_ssd(hour(3 downto 0));
    ssd_1hour <= bcd_to_ssd(hour(3 downto 0));
    ssd_10hour <= bcd_to_ssd("00" & hour(5 DOWNTO 4));
    ssd_10hour <= bcd_to_ssd("00" & hour(5 DOWNTO 4));
end architecture;
end architecture;
---------------------------------------------------------------------------
```


14.3 SPI Interface

Serial peripheral interface (SPI) is another synchronous serial bus for communication between integrated circuits (installed next to each other, normally on the same board). Like $I^{2} \mathrm{C}$, it operates in a master-slave architecture, but it is simpler to implement and can operate at higher speeds (up to around 100 Mbps), although it requires more interconnecting wires. Developed by Motorola for its 68 HC family of microcontrollers, it is now in widespread use.

14.3.1 SPI Bus Structure

The SPI bus general structure is depicted in figure 14.15. In figure 14.15a, a single slave is shown (normally, the master is a microcontroller), so four wires are needed, called SCK (serial clock, always generated by the master), MOSI (Master Out Slave In), MISO (Master In Slave Out), and SSn (Slave Select, active low). When SSn is low, the slave is selected, to/from which the master sends/receives messages through the MOSI/MISO wires. In figure 14.15b, a multislave system is depicted, so multiple SSn wires are needed. Examples of ICs with SPI support are also shown in the figure, which are essentially the same categories as for $\mathrm{I}^{2} \mathrm{C}$ (e.g., microcontrollers, EEPROM and Flash memories, A/D and D/A converters, RTCs, and accelerometers).

Figure 14.15
General SPI bus structure with (a) single and (b) multiple slaves.
(a)

(b)

(c)

Figure 14.16
(a, b) Main SPI operating modes. (c) Slave's registers operation.

SPI is simpler than $\mathrm{I}^{2} \mathrm{C}$ because there is no bidirectional line, and the device selection is made with a separate wire for each slave rather than with a transmitted address. On the other hand, SPI demands more I/O pins, can operate with only one master, has no message acknowledgment, and because there is no standard message, format validation would be more difficult. SPI is said to be a four-wire bus, but that is indeed the least number of wires, whereas $\mathrm{I}^{2} \mathrm{C}$ is truly two wires. In some cases a bidirectional line can be used for MOSI and MISO together, resulting then a three-wire bus.

14.3.2 SPI Bus Operation

There are four SPI operating modes, determined by the clock phase (CPHA) and clock polarity $(C P O L)$. They are called mode $0(C P H A=0, C P O L=0)$, mode $1(C P H A=0$, $C P O L=1)$, mode $2(C P H A=1, C P O L=0)$, and mode $3(C P H A=1, C P O L=1)$. The two most common modes are 0 and 3, illustrated in figures 14.16a,b; note that in mode $0 S S n$ is lowered with SCK low, whereas the opposite occurs in mode 3.

Figure 14.16c shows how the slave operates. It stores the data available on the MOSI wire at positive clock edges and places data on the MISO wire at negative clock transitions. Consequently, the FSM used to implement the master side of this interface must operate at the negative clock edge, so the data provided by the machine will be ready for the slave at the positive clock edge. Likewise, a register that records the data issued by the slave must operate at the positive clock edge, so the data (issued at the negative clock edge) will be ready for storage.

Part of the communication between master and slave is ruled by information stored in eight-bit registers at both ends. These registers are not standardized, neither in number nor in content. For example, the SPI in the Motorola MC68HC908GT microcontroller contains three registers (for status, called SPSCR, control, SPCR, and data, SPDR), whereas the SPI in the Maxim DS1306 RTC has two registers (for status and control), and the SPI in the Ramtron FM25L512 FRAM memory contains only one (for status).

Figure 14.17
Examples of SPI behavior for (a) writing and (b) reading (FM25L512 FRAM device).

The general communication procedure consists of a number of opcodes transmitted by the master to the slave, followed by a data-write or data-read procedure with any number of data bytes. The only particularity is that each opcode must be preceded by a deselect-reselect sequence.

As an example, the FRAM memory used in the design example presented ahead requires two opcodes, called WREN (sets the write enable latch) and WRITE (enables writing to the memory-at the next positive clock edge), before actual data writing takes place. The same device requires one opcode, called READ (enables reading from the memory-at the next negative clock edge), before actual data reading occurs. Consequently, a typical flow for the SPI interface for this FRAM is that depicted in figure 14.17. Note in figure 14.17a that the device is deselected-reselected between two consecutive opcodes. Dashed lines indicate "don't care" or high-impedance values for the MOSI/MISO wires. Observe the safe distance between the high-to-low transitions of $S S n$ and the next positive edge of $S C K$, as well as between the low-to-high transitions of SSn and the previous negative edge of SCK, both required to be at least 10 ns in this particular device.

14.3.3 Complete Design Example: FRAM (Ferroelectric RAM) Interface

To illustrate the use of SPI, the FM25L512 FRAM mentioned above, from Ramtron, is used as an example. It is a $64 \mathrm{k} \times 8$ bits nonvolatile memory with serial access through an SPI bus. Its pinout, list of opcodes, and contents of the status register are shown in figure 14.18. An important feature of this technology (FRAM) is that data can be written into it at high speed (20 MHz in the present example), contrasting with EEPROM, which generally takes a few milliseconds/page.

FM25L512 FRAM		Opcode name						Value
		WREN (sets write-enable latch through WEL=1)						00000110
	VDD	WRITE (enables writing to memory)						00000010
		READ (enables reading from memory)						00000011
		WRSR (enables writing to status register)						00000001
		RDSR (enables reading status register)						00000101
		WRDI (disables writing through WEL=0)						00000100
Status register								
bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	
WPEN	1	0	0	BP1	BPO	WEL	0	

Figure 14.18
FM25L512 FRAM memory: Pinout, opcodes, and status register.

Figure 14.19
(a) Setup for the experiment. (b) FRAM wiring.

Note in figure 14.18 that besides the SPI pins (SCK, SSn, MOSI, MISO), the chip contains also two other control pins, called WPn (write protect) and HOLDn. The purpose of WPn is, together with bits 7 (WPEN), 3 (BP1), and 2 (BPO) of the status register, to allow several protection modes against writing to both the memory and the status register. For example, with $W P n=' 1$ ' and $W P E N=B P 1=B P O=' 0$ ', all writings are allowed (see other protection options in the device's datasheets). The role of $H O L D n$ is to handle interrupts.

In addition to the bits mentioned above, there is another programmable bit in the status register, called $W E L$ (write enable latch), which determines whether writing is allowed (when ' 1 ') or not (when ' 0 '). Only when $W E L=$ ' 1 ' are the protection options mentioned above in place (any writing is forbidden while $W E L=$ ' 0 '). Because this bit is automatically zeroed at power up or at the upward transition of SSn after a WRITE, WRSR, or WRDI opcode, any write action must start with the WREN opcode because that is the only way of setting WEL to ' 1 ' (writing to the status register does not affect this bit).

Figure 14.19 shows the setup for the experiment. The inputs are $w r$ (write) and $r d$ (read) commands plus the traditional clock (assumed to be 50 MHz) and reset ($w r, r d$,

Figure 14.20
FSM for the SPI FRAM interface.
and $r s t$ are from switches). The outputs are the SPI signals (SSn, SCK, MOSI, and MISOthe last one is in fact an input), connected to the slave, plus $s s d 1$ and $s s d 2$, which feed two SSD displays to exhibit the data retrieved from the FRAM. A frequency of 5 MHz is used for spi_clk (as mentioned, this device can operate at up to 20 MHz). The figure also shows how the device was wired.

A detailed FSM for this problem is presented in figure 14.20 (employing mode 0). The data-write sequence is in the upper branch, while the data-read sequence is in the lower branch. MOSI $=x(7-i)$ in some of the states is just a symbolic way of saying that vector x, with eight bits, starting with the MSB, must be transmitted. Note that this is a category 2 (timed) machine, so the timers (here represented by i and j) run from 0 to $i_{\max }$ and 0 to $j_{\max }$.

In this experiment a total of eight bytes are written into the FRAM, starting at address zero; note that state $w r_{\text {_data }}$ lasts from $\{i=0, j=0\}$ up to $\{i=7, j=7\}$, hence transmitting eight bytes, corresponding to $x(0)(7: 0)$ up to $x(7)(7: 0)$. A test circuit is also included, which reads all eight bytes from the FRAM and displays them sequentially onto the two SSDs; note the arrow and box associated with state r d_data, informing that data must be recorded (from the MISO wire) while the FSM is in that state.

The FSM of figure 14.20 can be implemented with a category 2 or category 3 machine (the former is employed in the VHDL code below). It is also simple enough to be implemented using the pointer-based technique described in chapter 15 (see section 15.5).

VHDL Code

A complete VHDL code for the FSM of figure 14.20 is presented below, following the template for timed (category 2) machines introduced in chapter 9.

Initially, a function called hex_to_ssd, to convert hexadecimal values into SSD values (display driver), was built in a separate package (called my_functions), then called in the main code (lines 217-218) to make the corresponding conversions.

The entity, called FRAM_with_SPI_bus, is in lines 6-22. The SPI parameters were declared as generic constants (lines 9-13). The circuit ports (lines 15-21) follow figure 14.19a and are all of type std_logic or std_logic_vector (industry standard).

The architecture, called moore_fsm, is in lines 24-224. As usual, it contains a declarative part and a statements part, both commented on below.

The declarative part of the architecture (lines 26-41) contains FSM-related and timer-related declarations plus other system declarations. In the FSM declarations (lines 27-29), the enumerated type state is created to represent the machine's present and next states. In the timer declarations (lines 32-33), the signals needed to build the timers i and j are created. Finally, the other declarations (lines 36-41) include the SPI clock, plus a $1 \mathrm{D} \times 1 \mathrm{D}$ type called data_array used to build a ROM called data_out (lines 38-40) whose contents are sent to the FRAM. A similar 1D $\times 1 \mathrm{D}$ signal is declared in line 41 , which is used to create a register in which all data read from the FRAM is stored during the tests.

The statements part (lines 43-224) contains five processes. The first process (lines $49-59$) creates the SPI clock (5 MHz , assuming that the system clock is 50 MHz ; as mentioned, this FRAM can operate at up to 20 MHz). As seen in figure 14.17, this is the only clock needed in the entire SPI circuit. Because the slave stores data at the rising clock edge, the FSM (and therefore its associated timers too) must operate at the negative edge.

The second process (lines 62-80) implements the timers. In this example, the timercontrol strategy \#1 (section 8.5.2) was adopted.

The third process (lines 83-90) implements the FSM state register. Like the timers, it too operates at the negative clock edge.

The fourth process (lines 93-193) implements the entire combinational logic section. It is just a list of all states, obeying the state transition diagram of figure 14.20 exactly. As usual, in each state the outputs (SSn, SCK, MOSI) and the time parameters $\left(i_{\max }, j_{\max }\right)$ are specified, and the next state is defined. Note that because some of the output values are repeated a number of times, default values were entered in lines $96-100$, so the actual list of outputs and time parameters is exactly the same in all states.

The fifth and final process (lines 196-223) builds the test circuit. First, the data read from the FRAM (while the machine is in the rd_data state) is stored into the data_in $1 \mathrm{D} \times 1 \mathrm{D}$ register (at the positive clock edge, line 201, because the slave places the data on the MISO wire at the negative clock transition). Because the machine operates at 5 MHz , an independent slow counter (2 Hz) is produced in lines 205-214, which allows the read data to be sequentially displayed on two SSDs while the machine remains in the wait_rd0 state (that is, while the $r d$ switch remains on). Note in the ROM of lines 38-40 that the first byte contains the values 0 (last half) and 1 (right half), the second contains 2 and 3 , the third contains 4 and 5 , and so on, so
these pairs of values are the values expected to be seen on the display (during 0.5 s each).

Observe the correct use of registers and the completeness of the code, as described in comment 10 of section 6.3.

The reader is invited to set up this (or an equivalent) experiment and play with it in the FPGA board.

```
--Package with function "hex_to_ssd":------------------------------------------
library ieee;
use ieee.std_logic_1164.all;
package my_functions is
    function hex_to_ssd(input:std_logic_vector) return std_logic_vector;
end my functions;
package body my_functions is
    function hex_to_ssd(input: std_logic_vector) return std_logic_vector is
    begin
        case input is
            when "0000" => return "0000001"; --"0" on SSD
            when "0001" => return "1001111"; --"1" on SSD
            when "0010" => return "0010010"; --"2" on SSD
            when "0011" => return "0000110"; --"3" on SSD
            when "0100" => return "1001100"; --"4" on SSD
            when "0101" => return "0100100"; --"5" on SSD
            when "0110" => return "0100000"; --"6" on SSD
            when "0111" => return "0001111"; --"7" on SSD
            when "1000" => return "0000000"; --"8" on SSD
            when "1001" => return "0000100"; --"9" on SSD
            when "1010" => return "0001000"; --"A" on SSD
            when "1011" => return "1100000"; --"b" on SSD
            when "1100" => return "0110001"; --"C" on SSD
            when "1101" => return "1000010"; --"d" on SSD
            when "1110" => return "0110000"; --"E" on SSD
            when "1111" => return "0111000"; --"F" on SSD
            when others => return "1111110"; --"-" on SSD
        end case;
    end hex to ssd;
end package bōdy;
```

 --Main code:---
 library ieee;
 use ieee.std logic 1164.all;
 use work.my_functiōns.all; --package with "hex_to_ssd" function
 entity FRAM_with_SPI_bus is
 generic (
 --Device's SPI parameters:
 WREN_opcode: std_logic_vector(7 downto 0) := "00000110";
 WRITE_opcode: st̄̄_logic_vector(7 downto 0) := "00000010";
    ```
    READ opcode: std logic vector(7 downto 0) := "00000011";
        initial_addr_for_wr: std_logic_vector(15 downto 0) := (others=>'0');
        initial_addr_for_rd: std_logic_vector(15 downto 0) := (others=>'0'));
        --Assumed: fclk=50MHz, desired SPI speed=5MHz
    port (
        --System ports:
        rd, wr, clk, rst: in std_logic;
        ssd1, ssd2: out std_logic_vector(6 downto 0);
        --SPI ports:
        SCK, SSn, MOSI, WPn, HOLDn: out std_logic;
        MISO: in std_logic);
end entity;
architecture moore_fsm of FRAM_with_SPI_bus is
    --FSM-related declarations:
    type state is (idle, WREN, deselect, WRITEx, initial_addr_wr,
        wr_data, wait_wr0, READx, initial_addr_rd, rd_data, wait_rd0);
    signal pr_state, nx_state: state;
    --Timer-related declarations:
    signal i, imax: natural range 0 to 15;
    signal j, jmax: natural range 0 to 7;
    --SPI clock and test signal declarations:
    signal spi_clk: std_logic;
    type data_array is array (0 to 7) of std_logic_vector(7 downto 0);
    constant data_out: data_array :=
    ("00000001"-, "00100011", "01000101", "01100111",
        "10001001", "10101011", "11001101", "11101111");
    signal data_in: data_array;
begin
WPn <= '1';
HOLDn <= '1';
--Generate 5MHz clock for SPI circuit:
process (clk)
    variable counterl: natural range 0 to 5;
begin
        if rising_edge(clk) then
            counterl := counter1 + 1;
            if counterl=5 then
                spi_clk <= not spi_clk;
                counterl := 0;
            end if;
        end if;
end process;
    --Timers (using strategy #1):
    process (spi_clk, rst)
    begin
        if (rst='1') THEN
```

```
    i <= 0;
    j <= 0;
    elsif falling_edge(spi_clk) then
        if pr_state /= nx_state then
            i <= 0;
            j <= 0;
        elsif not (i=imax and j=jmax) then
            if i/=imax then
                    i <= i + 1;
            elsif j/=jmax then
                    i <= 0;
                j <= j + 1;
            end if;
        end if;
    end if;
end process;
--FSM state register:
process (spi_clk, rst)
begin
    if (rst='1') THEN
        pr_state <= idle;
    elsif falling_edge(spi_clk) then
        pr_state <= nx_state;
    end if;
end process;
--FSM combinational logic:
process (all)
begin
    --Default values:
    SSn <= '0';
    SCK <= spi_clk;
    MOSI <= '-';
    imax <= 0;
    jmax <= 0;
    --Other values:
    case pr_state IS
        when idle =>
                SSn <= '1';
                SCK <= '0';
                if wr='1' then
                    nx_state <= WREN;
                elsif rd='1' then
                    nx_state <= READx;
                else
                    nx_state <= idle;
                end if;
            --Data-write sequence:
            when WREN =>
                MOSI <= WREN_opcode(7-i);
                imax <= 7;
                if i=imax then
                    nx_state <= deselect;
            else
                    nx_state <= WREN;
            end if;
```

```
when deselect =>
    SSn <= spi_clk;
    SCK <= '0';
    nx_state <= WRITEx;
when WRITEx =>
    MOSI <= WRITE_opcode(7-i);
    imax <= 7;
    if i=imax then
            nx_state <= initial_addr_wr;
    else
            nx_state <= WRITEx;
    end if;
when initial addr wr =>
    MOSI <= iñitial_addr_for_wr(15-i);
    imax <= 15;
    if i=imax then
            nx_state <= wr_data;
    else
            nx_state <= initial_addr_wr;
        end if;
when wr_data =>
    MOSI <= data_out(j)(7-i);
    imax <= 7;
    jmax <= 7;
    if i=imax and j=jmax then
            nx_state <= wait_wr0;
    else
            nx_state <= wr_data;
        end if;
when wait_wr0 =>
    SSn <= '0';
    SCK <= 'O';
    if wr='0' then
            nx_state <= idle;
    else
            nx_state <= wait_wr0;
        end i\overline{f;}
--Data-read sequence:
when READx =>
    MOSI <= READ_opcode(7-i);
    imax <= 7;
    if i=imax then
        nx_state <= initial_addr_rd;
    else
            nx_state <= READx;
    end i\overline{f;}
when initial_addr_rd =>
    MOSI <= initial_addr_for_rd(15-i);
    imax <= 15;
    if i=imax then
        nx_state <= rd_data;
    else
        nx_state <= initial_addr_rd;
        end i\overline{f;}
when rd_data =>
    imax <= 7;
    jmax <= 7;
```

179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
209
210 211
212
213
214

```
            if i=imax and j=jmax then
            nx_state <= wait_rd0;
        else
            nx_state <= rd_data;
                end if;
            when wait_rdo =>
            SSn <= '0';
            SCK <= 'O';
            if rd='0' then
            nx_state <= idle;
            else
                    nx_state <= wait_rdo;
            end if;
        end case;
        end process;
        --Test circuit:
        process (spi_clk, pr_state, data_in)
    variable counter2: natural range 0 to 2_500_000;
    variable counter3: natural range 0 to 8;
begin
    --Read FRAM and store data:
    if rising_edge(spi_clk) and pr_state=rd_data then
        data_in(j)(7-i) <= MISO;
    end if;
    --Generate slow (2Hz) pointer for displaying data:
    if rising_edge(spi_clk) then
        counter2 := counter2 + 1;
        if counter2=2_500_000 then
            counter2 := 0;
            counter3 := counter3 + 1;
            if counter3=8 then
                    counter3 := 0;
            end if;
        end if;
    end if;
    --Send read data to display @2Hz:
    if pr_state=wait_rdo then
        ss\overline{d}1}<= hex_to_ssd(data_in(counter3)(3 downto 0))
        ssd2 <= hex_to_ssd(data_in(counter3)(7 downto 4));
    else
        ssd1 <= "1111110";
        ssd2 <= "1111110";
    end if;
end process;
end architecture;
```

14.4 Exercises

Exercise 14.1: Reference-Value Definer with LCD Display
a) Solve exercise 8.11 if not done yet. The reference values should be $\{000,005,010$, 050, 100, 200, 400, 800\}.
b) Draw the state transition diagram for a second circuit, which should implement an LCD driver to have the reference value displayed on an alphanumeric LCD.
c) Implement the complete circuit using VHDL or SystemVerilog and test it in the FPGA development board.

Exercise 14.2: $\mathrm{I}^{2} \mathrm{C}$ Interface for an RTC

Repeat the design of section 14.2 .5 , this time with a category 2 machine instead of a category 3.

Exercise 14.3: $I^{2} \mathrm{C}$ Interface for an EEPROM

Develop an experiment (as in section 14.2.5), including VHDL or SystemVerilog code and physical implementation in the FPGA development board, for a master circuit that interfaces with an EEPROM device through an $\mathrm{I}^{2} \mathrm{C}$ bus. The device can be, for example, AT24C01 or AT24C02, from Atmel.

Exercise 14.4: $\mathrm{I}^{2} \mathrm{C}$ Interface for an ADC

Develop an experiment (as in section 14.2.5), including VHDL or SystemVerilog code and physical implementation in the FPGA development board, for a master circuit that interfaces with an analog-to-digital converter through an $\mathrm{I}^{2} \mathrm{C}$ bus. The device can be, for example, AD7991, from Analog Devices, or PCF8591, from NXP.

Exercise 14.5: $\mathrm{I}^{2} \mathrm{C}$ Interface for a Temperature Sensor

Develop an experiment (as in Section 14.2.5), including VHDL or SystemVerilog code and physical implementation in the FPGA development board, for a master circuit that interfaces with a temperature sensor through an $\mathrm{I}^{2} \mathrm{C}$ bus. The device can be, for example, LM75A, from NXP, or AD7416, from Analog Devices.

Exercise 14.6: $\mathrm{I}^{2} \mathrm{C}$ versus SPI

Make a brief comparison between $I^{2} \mathrm{C}$ and SPI interfaces. Include at least the following topics in your analysis: synchronous or asynchronous, number of wires, duplex or simplex, with data acknowledgment or not, which hardware is simpler and why, who generates clock and data, which operates at higher speed.

Exercise 14.7: SPI Interface for a FRAM

Repeat the design of section 14.3.3, this time with a category 3 machine instead of a category 2.

Exercise 14.8: SPI Interface for an ADC

Develop an experiment (as in section 14.3.3), including VHDL or SystemVerilog code and physical implementation in the FPGA development board, for a master circuit
that interfaces with an analog-to-digital converter through an SPI bus. The device can be, for example, AD7091R, from Analog Devices, or MAX1242, from Maxim.

Exercise 14.9: SPI Interface for a Flash Memory

Develop an experiment (as in section 14.3.3), including VHDL or SystemVerilog code and physical implementation in the FPGA development board, for a master circuit that interfaces with a flash memory through an SPI bus. The device can be, for example, AT45DB011, from Atmel, or S25FL128, from Spansion.

Exercise 14.10: SPI Interface for an Accelerometer

Develop an experiment (as in section 14.3.3), including VHDL or SystemVerilog code and physical implementation in the FPGA development board, for a master circuit that interfaces with an accelerometer through an SPI bus. The device can be, for example, ADXL345, from Analog Devices.

Exercise 14.11: $I^{2} \mathrm{C}$ Interface for an Accelerometer

The accelerometer mentioned in exercise 14.10 (ADXL345) supports both SPI and $\mathrm{I}^{2} \mathrm{C}$ interfaces. Repeat that exercise, this time using the $\mathrm{I}^{2} \mathrm{C}$ alternative.

15 Pointer-Based FSM Implementation

15.1 Introduction

In the preceding chapters we have established and used a standard and generic design approach for any FSM. In the particular case of machines with a simple state transition diagram (a single loop, for example), a simpler but possibly equivalent implementation can be adopted, which consists of building a counter that acts as a pointer to a lookup table (LUT) that contains the desired output values. This implementation technique, identified as pointer-based FSM implementation, is illustrated by means of a series of examples in the sections that follow.

It is important to mention that although this technique can ease the implementation of FSMs with few loops and repetitive states (like those in chapter 14), it does not eliminate the other design steps, including the development of a precise state transition diagram. Also, it does not mean that a simpler circuit will result. A limitation of this technique is that it is difficult (or awkward, at least) to use an encoding scheme other than regular sequential encoding; moreover, the encoding is set during the design phase, so it cannot be chosen/modified and experimented with at compilation time.

15.2 Single-Loop FSM

The general technique is illustrated with the help of figure 15.1a, which shows an FSM with just one loop. Note that the states' names were replaced with numeric values (to be produced by the counter/pointer). Note also that the machine must run whenever run=' 1 ' occurs while the machine is in the idle state, and that it must stay in a certain state (pointer in the 3-to-8 range) during six clock cycles (thus this is similar to a timed state in a timed state machine, with t running from 0 to 5). The output values are summarized (repeated) in the LUT of figure 15.1b. To implement this FSM, we can build a counter (pointer) ranging from 0 to 9 and use it to retrieve the corresponding values from the LUT.

(a)

| state
 (pointer i) | output
 (y) |
| :---: | :---: |
| 0 | $" 000 "$ |
| 1 | "001" |
| 2 | "011" |
| $3-8$ | $" 111 "$ |
| 9 | $" 110 "$ |

Figure 15.1
(a) Single-loop FSM with a timed state and (b) LUT containing its output values.

A VHDL code for the machine of figure 15.1 is presented below. The code contains just one process, which builds the pointer (called i, lines 19-27) and the LUT (for y, lines 30-36).

Note: To save space, only VHDL codes are shown in this chapter. However, based on these VHDL codes and on the SystemVerilog codes seen in chapters 7, 10, and 13, writing the SystemVerilog codes for the examples described here is straightforward.

```
library ieee;
use ieee.std_logic_1164.all;
-----------------------------
entity simple_machine is
    port (
        run, clk, rst: in std_logic;
        y: out std_logic_vector(2 downto 0));
end entity;
architecture pointer_based of simple_machine is
begin
    process (clk, rst)
        variable i: natural range 0 to 9;
    begin
        --Pointer (i):
        if (rst='1') then
            i:= 0;
        elsif rising_edge(clk) then
            if (i=0 and run='0') or i=9 then
                i:= 0;
            else
                i:= i + 1;
                end if;
        end if;
        --LUT (for y):
        case i is
            when 0 => y <= "000";
            when 1 => y <= "001";
            when 2 => Y <= "011";
            when 3 to 8 => y <= "111";
```

```
35 when 9 => y <= "110";
36
3 7
3
39
40 end architecture;
4 1
```


15.3 Serial Data Transmitter

Another example is presented in figure 15.2a, which is a kind of serial data transmitter. The output (y), which is a single-bit signal, must send out a predefined single-bit value in states 0,2 , and 6 (recall that the states' "names" are determined by the pointer), whereas in states 1 and $3 \ldots 5$ bit-vectors must be serially transmitted (see the data arrays under those states).

In figure 15.2 a three pointers are shown, called i (main pointer, representing the states), j (column index for the arrays of states 1 and $3 \ldots 5$), and k (row index for the array of state $3 \ldots 5$). Note, however, that k can be replaced with $i-3$, so only two pointers are actually needed, resulting in the LUT of figure 15.2 b . This machine too is simple enough to be implemented using the pointer-based technique.

A corresponding VHDL code is shown below. The data to be transmitted was placed in an array of constants (called x, lines $12-13$). The first word (i.e., $x(0)=$ " 0101 ") is transmitted in state 1, while the whole array is transmitted in state $3 . . .5$. As in the previous example, only one process is used, which builds the pointers (lines 22-38) and the LUT (lines 41-47). Note that in this example the LSB is transmitted first.

```
library ieee;
use ieee.std_logic_1164.all;
entity serial_transmitter is
    port (
        run, clk, rst: in std_logic;
        y: out std_logic);
```

(a)

(b)

| state
 (pointer i) | output
 (y) |
| :---: | :---: |
| 0 | ${ }^{\prime} 0^{\prime}$ |
| 1 | $x(j)$ |
| 2 | $' 1 '$ |
| $3-5$ | $x(i-3)(j)$ |
| 6 | $' 1$ |

Figure 15.2
A serial data transmitter and (b) its output LUT.

```
end entity;
architecture pointer_based of serial_transmitter is
    type data_array is array (0 to 2) of std_logic_vector(3 downto 0);
    constant x: data_array:= ("0101", "1010", "0110");
begin
    process(clk, rst)
        variable i: natural range 0 to 6;
        variable j: natural range 0 to 3;
    begin
    --Pointers (i, j):
    if rst='1' then
        i:= 0;
        j:= 0;
    elsif rising_edge(clk) then
        if (i=0 and run='1') or i=2 then
                i:= i + 1;
        elsif i=1 or (i>=3 and i<=5) then
                if j/=3 then
                    j:= j + 1;
            else
                j:= 0;
                i:= i + 1;
            end if;
        elsif i=6 then
                i:= 0;
        end if;
    end if;
    --LUT (for y):
    case i is
        when 0 => y <= '0';
        when 1 => y <= x(0)(j);
        when 2 => y <= '1';
        when 3 to 5 => y <= x(i-3)(j);
        when 6 => y <= '1';
    end case;
    end process;
end architecture;
```

Simulation results obtained after compiling the code above are presented in figure 15.3. The reader is invited to examine the waveforms to check the operation of the inferred circuit.

15.4 Serial Data Receiver

Another example is presented in figure 15.4. The serial data receiver of figure 3.16 c is repeated in figure 15.4 a . When the data-valid $(d v)$ bit is asserted, the circuit must store

| Name | 0ps | 320,0 ns | 640,0 ns | 960,0 ns | 1.28 us | 1.6 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | Ops | | | | | |
| | | | | | | |
| rst ck | | | | | | |
| n | | | | | | |
| 团i | | | | | | |
| 团i | $0 \times \sqrt{1} \times \sqrt{3} \times 0 \times 1 \times \sqrt{3} \times 0 \times 1 \times \sqrt{3} \times 0 \times 1 \times 2 \times 3 \times 0$ | | | | | |
| y | | | | | | |

Figure 15.3
Simulation results from the VHDL code for the serial data transmitter of figure 15.2.

Figure 15.4
(a) Serial data receiver of figure 3.16c. (b) Adapted version for pointer-based implementation.
four consecutive bits received at input x (hence, this is a timed machine, with t running from 0 to 3 -a small range was adopted in order to ease the inspection of the simulation results). Because it is assumed that the first data bit is made available at the same time that $d v$ is asserted (both updated at the positive clock edge), which is more difficult to detect, one must be careful with respect to the clock edges (see rectangle in the upper part of the figure and also the discussion in section 3.10). This machine is simple enough to be implemented using the pointer-based approach, for which an adapted state diagram is presented in figure 15.4 b . Note that the counter (pointer) must run from 0 to 4 . Again, care must be taken with respect to the clock edges.

A VHDL code for the machine of figure 15.4 b is presented below. It contains just one process, which builds the pointer (lines 19-27) and the registered LUT (lines 30-35). Because x must be stored (producing y) in a deserializer, the case statement (lines 31-34) was placed inside an if rising_edge(clk) statement (lines 30 and 35), which is responsible for inferring flip-flops.

```
library ieee;
use ieee.std_logic_1164.all;
---------------------------------------------------
entity serial_receiver is
    port (
        x, dv, clk, rst: in std_logic;
        y: buffer std_logic_vectōor(3 downto 0));
```

```
end entity;
architecture pointer based of serial receiver is
begin
    process (clk, rst)
        variable i: natural range 0 to 4;
    begin
    --Pointer (i):
    if (rst='l') then
        i:= 0;
    elsif falling_edge(clk) then
        if (i=0 and dv='0') or i=4 then
            i:= 0;
        else
            i:= i + 1;
        end if;
    end if;
        --Registered LUT (for y):
        if rising_edge(clk) then
        case i is
            when 0 => y <= y;
            when 1 to 4 => y(i-1) <= x;
        end case;
    end if;
    end process;
end architecture;
```

Simulation results are shown in figure 15.5 . Note that the data ($d v$ and x) and the register (y) are updated at the positive clock edges, whereas the pointer (i) changes at the negative clock transitions. Note also that the sequence received in x is ' 1 ', ' 0 ', ' 1 ',

Figure 15.5
Simulation results from the VHDL code for the serial data receiver of figure 15.4b.
and ' 0 ', with the first bit considered to be the LSB, hence resulting $y(3: 0)=$ " 0101 " after the pointer's 0 -to- 4 run is completed.

15.5 SPI Interface for an FRAM

A final example is presented in figure 15.6, which is an equivalent (pointer-based) implementation for the FRAM SPI interface circuit studied in section 14.3.3. Note that the machine of figure 15.6 is exactly the same as that in figure 14.20 , just with the adjustments needed for pointer-based implementation (main pointer i ranging from 0 to 75 , secondary pointer j ranging from 0 to 7). The values (either 8 or 8×8) under the arrows indicate the number of clock cycles spent in the preceding state (which is the same as the number of bits transmitted or received in that state).

Observe that the enumeration of the states was done differently from that in figure 15.2 (just to illustrate another alternative). In state 1 of figure 15.2 , for example, the main pointer (i) stays fixed $(i=1)$, whereas the secondary pointer (j) sweeps the data. Here, in state WREN, for example, i sweeps the data, while j is not used (so only in states $w r$ _data and rd_data are both pointers needed). Recall that, as in all FSM designs, the crucial point is to develop a complete and precise state transition diagram (as in figure 15.6), after which any of the implementation techniques can be applied straightforwardly.

Figure 15.6
FSM for the FRAM SPI interface circuit seen in section 14.3 .3 (figure 14.20), with all adjustments for pointer-based implementation. Values under the arrows indicate the number of clock cycles spent in the preceding state.

A VHDL code for this machine is presented below (function hex-to-ssd not shownbring the package my_functions, from section 14.3.3, to your design). This code is equivalent to that in section 14.3.3, except for a small difference in the test circuit (here the stored values are sent to the display continuously). The entity (lines 6-22) is the same as that in section 14.3.3, and so are the list of declarations for the SPI and test signals (lines 27-32) and the spi_clk generator (lines 40-50). The FSM, constructed using the pointer-based technique, is in the process of lines $53-115$, with the pointers built in lines $59-78$ and the LUT in lines $82-113$. Note in lines $108-110$ that the received data is stored in the data_in array while the machine is in the rd_data state. The final part of the test circuit (data storage was embedded in the LUT) is in the process of lines 118-140 (see comments in section 14.3.3).

```
--Main code:-------------------------------------------------------------------
library ieee;
use ieee.std_logic_1164.all;
use work.my_functions.all; --package from sec. 14.3.3
entity FRAM_with_SPI_bus is
    generic (
        --Device's SPI parameters:
        WREN_opcode: std_logic_vector(7 downto 0):= "00000110";
        WRITE_opcode: st\overline{d_logic_vector(7 downto 0):= "00000010";}
        READ_opcode: std_logic_vector(7 downto 0):= "00000011";
        initial_addr_for_wr: std_logic_vector(15 downto 0):= (others=>'0');
        initial_addr_for_rd: std_logic_vector(15 downto 0):= (others=>'0'));
        --Assumed: fclk=50MHz, desired SPI speed=5MHz
    port (
        --System ports:
        rd, wr, clk, rst: in std_logic;
        ssd1, ssd2: out std_logic_vector(6 downto 0);
        --SPI ports:
        SCK, SSn, MOSI, WPn, HOLDn: out std logic;
        MISO: in std_logic);
end entity;
*---------------------------
architecture pointer_based of FRAM_with_SPI_bus is
    --Clock for SPI and test signal declarations:
    signal spi_clk: std_logic;
    type data_array is array (0 to 7) of std_logic_vector(7 downto 0);
    constant data_out: data_array:=
        ("00000001", "00100011", "01000101", "01100111",
            "10001001", "10101011", "11001101", "11101111");
    signal data_in: data_array;
begin
    WPn <= '1';
    HOLDn <= '1';
```

4 0
4 1
4 2
4 3
4 4
4 5
4 6
4 7
4 8
4 9
5 0
5 1
5 2
5 3
5 4
55
5 6
5 7
5 8
5 9
6 0
6 1
6 2
6 3
6 4
6 5
6 6
6 7
6 8
6 9
7 0
7 1
7 2
7 3
7 4
75
76
7 7
78
7 9
80

```
```

39 --Generate 5MHz clock for SPI circuit:

```
```

39 --Generate 5MHz clock for SPI circuit:

```
process (clk)
```

process (clk)
variable counterl: natural range 0 to 5;
variable counterl: natural range 0 to 5;
begin
begin
if rising_edge(clk) then
if rising_edge(clk) then
counter1:= counter1 + 1;
counter1:= counter1 + 1;
if counterl=5 then
if counterl=5 then
spi_clk <= not spi_clk;
spi_clk <= not spi_clk;
counter1:= 0;
counter1:= 0;
end if;
end if;
end if;
end if;
end process;
end process;
--FSM (complete SPI circuit):
--FSM (complete SPI circuit):
process(spi_clk, rst)
process(spi_clk, rst)
variable i: natural range 0 to 75;
variable i: natural range 0 to 75;
variable j: natural range 0 to 7;
variable j: natural range 0 to 7;
begin
begin
--Pointers (i, j):
--Pointers (i, j):
if rst='1' then
if rst='1' then
i:= 0;
i:= 0;
j:= 0;
j:= 0;
elsif falling edge(spi clk) then
elsif falling edge(spi clk) then
if (i=0 and wr='0' and rd='0') or (i=42 and wr='0') or
if (i=0 and wr='0' and rd='0') or (i=42 and wr='0') or
(i=75 and rd='0') then
(i=75 and rd='0') then
i:= 0;
i:= 0;
elsif (i=0 andwr='1') or (i>0 and i<34) or (i>=43 and i<67) then
elsif (i=0 andwr='1') or (i>0 and i<34) or (i>=43 and i<67) then
i:= i + 1;
i:= i + 1;
elsif i=0 and rd='1' then
elsif i=0 and rd='1' then
i:= 43;
i:= 43;
elsif (i>=34 and i<=41) or (i>=67 and i<=74) then
elsif (i>=34 and i<=41) or (i>=67 and i<=74) then
if j/=7 then
if j/=7 then
j:= j + 1;
j:= j + 1;
else
else
j:= 0;
j:= 0;
i:= i + 1;
i:= i + 1;
end if;
end if;
end if;
end if;
end if;
end if;
--LUT (for outputs):
--LUT (for outputs):
--Default values:
--Default values:
SSn <= '0';
SSn <= '0';
SCK <= spi clk;
SCK <= spi clk;
MOSI <= '-';
MOSI <= '-';
--Other values:
--Other values:
case i is
case i is
when 0 =>
when 0 =>
SSn <= '1';
SSn <= '1';
SCK <= '0';
SCK <= '0';
when 1 to 8 =>
when 1 to 8 =>
MOSI <= WREN opcode(8-i);
MOSI <= WREN opcode(8-i);
when 9 =>
when 9 =>
SSn <= spi_clk;

```
                SSn <= spi_clk;
```

```
        SCK <= '0';
        when 10 to 17 =>
            MOSI <= WRITE_opcode(17-i);
        when 18 to 33 =>
            MOSI <= initial_addr_for_wr(33-i);
        when 34 to 41 => --transmit data
            MOSI <= data_out(i-34)(7-j);
        when 42 =>
            SCK <= '0';
        when 43 to 50 =>
            MOSI <= READ_opcode(50-i);
        when 51 to 66 =>
            MOSI <= initial_addr_for_rd(66-i);
        when 67 to 74 => --store received data
        if rising_edge(spi_clk) then
            data_in(i-67)(7-j) <= MISO;
            end if;
        when 75 =>
        SCK <= '0';
        end case;
    end process;
    --Test circuit:
    process (spi_clk, rst)
        variable counter2: natural range 0 to 2_500_000;
        variable counter3: natural range 0 to 7;
begin
        --Generate slow (2Hz) pointer for displaying data:
        if rst='1' then
            counter2:=0;
            counter3:=0;
    elsif rising_edge(spi_clk) then
            counter2:= counter\overline{2 + 1;}
            if counter2=2_500_000 then
                    counter2:= - 0;
                    if counter3/=7 then
                    counter3:= counter3 + 1;
                    else
                    counter3:= 0;
                    end if;
            end if;
    end if;
        --Send data continuously to the display:
    ssd1 <= hex_to_ssd(data_in(counter3)(3 downto 0));
        ssd2 <= hex_to_ssd(data_in(counter3)(7 downto 4));
        end process;
end architecture;
```


Figure 15.7

Figure 15.8

15.6 Exercises

Exercise 15.1: Number of Flip-Flops

How many DFFs are needed to build the FSMs of figures 15.1, 15.2, and 15.6 ?

Exercise 15.2: Two-Loop FSM

Figure 15.7 shows a two-loop FSM, with input x and output y. When in state $3 . . .6$ the machine must transmit four bits from a $z(3: 0)$ array, starting with the MSB.
a) How many flip-flops are needed to construct this FSM? Does your answer depend on the implementation approach (generic, seen in the previous chapters, or pointerbased, seen here)?
b) Implement it using VHDL or SystemVerilog (pointer-based technique). Enter z in your code as a constant. After compilation, check whether the number of flip-flops inferred by the compiler matches your prediction.
c) Show simulation results.

Exercise 15.3: FSM with Repetitive States

Figure 15.8 shows an FSM with an apparent single loop. Note that state B must be repeated 8 times, then state C must occur, with this sequence ($B-C$) repeated 7 times before proceeding to state D. A similar procedure must occur in states F-G.
a) Implement this machine using the pointer-based technique and VHDL or SystemVerilog. Start by making the proper adaptations (using pointer(s)) in the state transition diagram. Create an array of constants to be placed at the output in states B and F , and chose numeric values for y_{A}, y_{C}, y_{D}, etc.
b) Show simulation results. To ease the inspection of the results, use 3 instead of 8 and 2 instead of 7 in the repetitions.

Exercise 15.4: Clock with LCD Display

Redo the design of section 14.1.3 using the pointer-based technique. Start by drawing the adapted (using pointer(s)) state transition diagram. After compilation, compare the resources usage (especially the number of flip-flops) against the results obtained after compiling the code of section 14.1.3.

Exercise 15.5: $\mathrm{I}^{2} \mathrm{C}$ Interface for an RTC

Redo the design of section 14.2 .5 using the pointer-based technique. Start by drawing the adapted (using pointer(s)) state transition diagram. After compilation, compare the resources usage (especially the number of flip-flops) against the results obtained after compiling the code of section 14.2.5.

Exercise 15.6: SPI Interface for an ADC

Solve exercise 14.8 using the pointer-based technique.

Exercise 15.7: SPI Interface for an Accelerometer

Solve exercise 14.10 using the pointer-based technique.

Exercise 15.8: $\mathrm{I}^{2} \mathrm{C}$ Interface for an ADC

Solve exercise 14.4 using the pointer-based technique.
Exercise 15.9: $\mathrm{I}^{2} \mathrm{C}$ Interface for a Temperature Sensor
Solve exercise 14.5 using the pointer-based technique.

Exercise 15.10: $I^{2} \mathrm{C}$ Interface for an Accelerometer

Solve exercise 14.11 using the pointer-based technique.

Index

Accumulator. See Datapath control
Algorithmic state machine (ASM) chart, 15-16
Arbiter, 98
Blinking light, 159-160, 177, 202, 203
Car alarm, basic, 75
Car alarm, with chirps, 167-168, 181, 194-198, 214-217
Category 1 machines. See Regular state machines
Category 2 machines. See Timed state machines
Category 3 machines. See Recursive state machines
Classical mistakes in FSMs
existence of state bypass, 75
incomplete VHDL/SystemVerilog code, 76-78
incorrect state transition diagram, 74-75
incorrect timer construction, 76
lack of reset, 75
lack of synchronizers, 76
over-registered VHDL/SystemVerilog code, 78
skipping the state transition diagram, 73
wrong architecture, 73
Clock gater, 26-28, 37
Control unit. See Datapath
Counters, 7, 49, 53, 84-85, 116-120,
135-137, 226-228

Datapath, 62-67
Datapath control unit
for accumulator, 91-92
for divider, 244
for greatest common divisor, 93-95, 123-126, 140-141
for largest-value detector, 102
for multiplier, 232-234, 243, 249-252, 268-271
for square root calculator, 102
Data receiver, 236-237, 252-256, 271-273, 322-325
Data transmitter, 321-322
Debouncer, multiple, 179-180, 231-232
Debouncer, single, 161-163, 164-165, 178, 202, 231-232, 242
Design procedures. See Moore and Mealy machines
Design steps summary, 79
Divider, 234-236, 244, 263
Edge detector, 29
Encoding schemes. See State encoding
Enum_encoding. See State encoding
Factorial calculator, 243
Finite state machine (FSM)
algorithmic state machine (ASM) chart, 15-16
architectures for state machines, 39-41, 82-84, 144-145, 223-224

Finite state machine (FSM) (cont.) basic design procedures, 41-45 capturing the first bit, 56-58, 70 category 1 FSMs (see Regular state machines)
category 2 FSMs (see Timed state machines)
category 3 FSMs (see Recursive state machines)
classical mistakes, 73-78
concept and benefits, 3
design steps summary, 79
glitches (see Glitches)
hardware versus software, 3-4
Mealy machines (see Moore and Mealy machines)
Moore machines (see Moore and Mealy machines)
multimachine designs, 60-62, 70
number of flip-flops, 49-51, 84, 158, 226
pipelined (see Pipelined implementations)
safe state machines, 54-56
state diagram (see State transition diagram)
state encoding options (see State encoding) state machines for datapath control (see Datapath)
storing the final result, 58-60, 70
SystemVerilog for FSMs (see SystemVerilog)
transition types (see State transition diagram)
VHDL for FSMs (see VHDL)
when to use the FSM approach, 16-17
Finite state machines list
arbiter, 98
blinking light, 159-160, 177, 202, 203
car alarm, basic, 75
car alarm, with chirps, 167-168, 181, 194-198, 214-217
counters, 7, 49, 53, 84-85, 116-120, 135-137, 226-228
datapath control unit (see Datapath control unit)
data receiver, 236-237, 252-256, 271-273, 322-325
data transmitter, 321-322
debouncer, multiple, 179-180, 231-232
debouncer, single, 161-163, 164-165, 178, 202, 231-232, 242
divider, 234-236, 244, 263
factorial calculator, 243
flag monitor, 103
garage door controller, 89-90, 98, 120-123, 137-139
greatest common divisor, 242-243
hamming-weight calculator, 240
$\mathrm{I}^{2} \mathrm{C}$ interface for RTC, 290-305
keypad encoder, 101-102, 127
LCD driver, 279-290
leading-ones counter, 241, 262
light rotator, 160-161, 191-194, 204, 212-214
Manchester encoder, differential, 100, 127
Manchester encoder, regular 99, 127
one-shot circuits, 29, 34-36, 86-88, 101, 164, 170, 171, 178
parity detectors, 85-86, 126
password detector, 168-170, 181, 205
pulse shifters, 172-173, 183
pulse stretchers, 173-176, 183-184
reference-value definers, $163-165,180,203$, 229-232, 242
SPI interface for FRAM, 307-315, 325-328
SRAM interface, 237-239, 256-261, 273-278
string (sequence) detectors, 5-6, 95-96, 101
strings comparators, 228-229, 241, 261
temperature controller, 88-89, 164
traffic light controller, 166-167, 181, 205
triggered circuits, 170-171, 172-176
vending machine controller, 90-91
Flag monitor, 103
Flip-flops, 21-24, 33-34, 49-51, 84, 158, 226
FRAM. See SPI interface
FSM. See Finite state machine
fsm_encoding. See State encoding

Garage door controller, 89-90, 98, 120-123, 137-139

Glitches, 29-32, 36-37, 41-42, 46, 50, 83, 90, $116,135,145,162,218$
Gray encoding. See State encoding
Greatest common divisor, 93-95, 242-243

Hamming-weight calculator, 240
$\mathrm{I}^{2} \mathrm{C}$ Interface
bus operation, 292-295
bus structure, 290-291
$\mathrm{I}^{2} \mathrm{C}$ interface for RTC, 296-305
open-drain outputs, 291-292
proposed designs, 316, 317
state machine for $\mathrm{I}^{2} \mathrm{C}, 295-296$

Johnson encoding. See State encoding

Keypad encoder, 101-102, 127

Largest-value detector (see Datapath control)
LCD interface
description, 279-283
LCD driver for a clock, 284-290
proposed design, 316
state machine for LCD, 283-284
Leading-ones counter, 241, 262
Light rotator, 160-161, 191-194, 204, 212-214

Manchester encoder, differential, 100, 127
Manchester encoder, regular, 99, 127
Mealy machines. See Moore and Mealy machines

Metastability, 24-26, 34, 76, 79
Modified one-hot encoding. See State encoding

Moore and Mealy machines
for category 1, 81-82
for category 2, 143-144
for category 3, 221-222
description of Mealy, 6
description of Moore, 5-6
design procedure for Mealy, 44-45
design procedure for Moore, 41-44

Mealy-to-Moore conversion, 14-15
Moore-to-Mealy conversion, 12-14
Moore vs. Mealy time behavior, 46-47
Multimachines. See Finite state machine
Multiplier. See Datapath control

Number of flip-flops. See Finite state machine

One-hot encoding. See State encoding
One-shot circuits, 29, 34-36, 86-88, 101, 164, 170, 171, 178

Parity detectors, 85-86, 126
Password detector, 168-170, 181, 205
Pipelined implementations, 32-33, 36-37, 40-41, 83, 145
Pointer-based FSM implementation
description, 319
proposed design, 330
with repetitive states, 329-330
serial data receiver, 322-325
serial data transmitter, 321-322
single-loop FSM, 319-321
SPI interface for an FRAM, 325-328
Pulse detection, 28-29
Pulse shifters, 172-173, 183
Pulse stretchers, 173-176, 183-184

Recursive state machines (category 3)
architectures, 223-224
category 3-to-1 conversion, 224-225
datapath control for a multiplier, 232-234
description, 47-48, 221-223
divider, 234-236
examples, 226-239
generic counters, 226-228
long-string comparator, 228-229
number of flip-flops, 226
reference-value definers, 229-232
repetitively looped, 225
serial data receiver, 236-237
SRAM interface, 237-239
Reference-value definers, 163-165, 180, 203, 229-232, 242

Regular state machines (category 1)
arbiter, 98-99
architectures, 82-84
categories, 47-48, 81-82
datapath control for a GCD, 93-95
datapath control for an accumulator, 91-92
description, 6, 81-82
examples, 84-97
garage door controller, 89-90
keypad encoder, 101-102
Manchester encoder, differential, 100
Manchester encoder, regular, 99-100
number of flip-flops, 84
one-shot circuit, 86-88, 98
parity detector, 85-86
sequence detector, 95-96, 101
small counters, 84-85
temperature controller, 88-89
transparent circuits, 96-97
vending machine controller, 90-91, 100-101
Reset, 52-54, 69-70
RTC. See $I^{2} C$ interface

Safe state machines. See Finite state machine
Sequential circuits, 1-3, 21-33, 39-41
SPI interface
bus operation, 306-307
bus structure, 305-306
proposed designs, 316-317
SPI interface for FRAM, 307-315, 325-328
state machine for SPI, 309, 325
Square root calculator. See Datapath control
SRAM interface, 237-239, 256-261, 273-278
State encoding
enum_encoding attribute, 110-111
fsm_encoding attribute, 110-111
Gray encoding, 50-51, 84, 85, 90, 111, 158, 160, 195, 226, 231
Johnson encoding, 50, 84, 85, 91, 111, 158, 160, 195, 226, 231
modified one-hot encoding, 51
one-hot encoding, 50, 51, 53, 84, 85, 158, 160, 226, 231
other encoding schemes, 52, 111
sequential encoding, $49,53,55,56,84,85$, 105, 111, 158, 160, 226, 228

State machines for datapath control. See Datapath
State transition diagram
classical mistakes, 73-78
description, 4-15
equivalent state transition diagrams, 6-8
for Mealy machines, 6
for Moore machines, 5-6
overspecified state diagram, $9-10,18,74,96$, 153-154
recursive state diagrams (see Recursive state machines)
regular state diagrams (see Regular state machines)
timed state diagrams (see Timed state machines)
transition types, 11-12, 81-82, 143-144, 221-222
under-specified state diagram, $8-11,18,74$, 153-154
Storing the final result (see Finite state machine)
String (sequence) detectors, 5-6, 95-96, 101
Strings comparators, 228-229, 241, 261
Synchronizers, 24-26, 34-36, 76, 79, 87, 91, 160, 168
SystemVerilog for category 1 machines code structure, 129-130
design of datapath controller for GCD, 140-141
design of garage door controller, 137-139
design of small counter, 135-137
proposed designs, 141-142
template for Mealy, 133-135
template for Moore, 130-133
SystemVerilog for category 2 machines
design of car alarm with chirps, 214-217
design of light rotator, 212-214
design of triggered circuit, 217-219
proposed designs, 220
template for Mealy, 210-212
template for Moore, 207-210
SystemVerilog for category 3 machines
design of datapath controller for multiplier, 268-271
design of serial data receiver, 271-273
design of SRAM interface, 273-278
proposed designs, 278
template for Mealy, 267-268
template for Moore, 265-267

Temperature controller, 88-89, 164
The importance of reset. See Reset
Timed state machines (category 2)
architectures, 144-145
blinking light, 159-160, 177-178
car alarm (with chirps), 167-168, 181
debouncers, 161-163, 178-180
description, 47-48, 143-144
examples, 158-176
light rotator, 160-161
number of bits, 146-147
number of flip-flops, 158
password detector, 168-170, 181-182
preliminary analysis, 148-149
pulse shifters, 172-173, 183
pulse stretchers, 173-176, 183-184
reference-value definer, 163-165, 180-181
repetitively looped, 154-155
time behavior of timed Mealy FSMs, 156-157
time behavior of timed Moore FSMs, 155-156
time behavior of timer control strategies, 152-153
time measurement unit, 146
timer control strategies, 147-153
timer control strategy \#1, 149-150
timer control strategy \#2, 150-151
timer interpretation, 146, 176-177
timer range, 146
traffic light controller, 166-167, 181
transition types and timer usage, 147
triggered circuits, 170-176, 182-184
truly complementary timed transitions, 153-154

Timer. See Timed state machines
Traffic light controller, 166-167, 181, 205
Transition types. See State transition diagram
Triggered circuits, 170-171, 172-176

Vending machine controller, 90-91
VHDL for category 1 machines
clock with LCD display, 284-290
code structure, 104-107
design of datapath controller for GCD, 123-126
design of garage door controller, 120-123
design of small counter, 116-120
enum_encoding, 110-111
fsm_encoding, 110-111
proposed designs, 126-128
template for Mealy, 114-116
template for Moore, 107-111
template variations, 111-114
VHDL for category 2 machines
design of car alarm with chirps, 194-198
design of light rotator, 191-194
design of triggered circuit, 198-201
proposed designs, 201-206
serial data receiver, 322-325
serial data transmitter, 321-322
SPI interface for FRAM, 307-315, 325-328
template for Mealy, 189-191
template for Moore, 185-189
VHDL for category 3 machines
design of a datapath controller for multiplier, 249-252
design of a serial data receiver, 252-256
design of a SRAM interface, 256-261
$\mathrm{I}^{2} \mathrm{C}$ interface for RTC, 296-305
proposed designs, 261-263
template for Mealy, 248-249
template for Moore, 245-247

When to use the FSM approach, 17-18

Bibliography

On VHDL

Ashenden, P. (2008). The Designer's Guide to VHDL (3rd ed.). Burlington, MA: Morgan Kaufmann. Pedroni, V. A. (2010). Circuit Design and Simulation with VHDL (2nd ed.). Cambridge, MA: MIT Press.

IEEE. (2008). 1076-2008 Standard VHDL Language Reference Manual. Washington, DC: IEEE (www.ieee.org).

On SystemVerilog

Harris, D. M., \& Harris, S. (2012). Digital Design and Computer Architecture (2nd ed.). Burlington, MA: Morgan Kaufmann.

Sutherland, S., Davidmann, S., Flake, P., \& Moorby, P. (2010). SystemVerilog for Design (2nd ed.). Berlin: Springer.

IEEE. (2005). 1800-2005 Standard SystemVerilog Language Reference Manual. Washington, DC: IEEE (www.ieee.org).

On Digital Electronics

Pedroni, V. A. (2008). Digital Electronics and Design with VHDL. Burlington, MA: Morgan Kaufmann. Patterson, D. A., \& Hennessy, J. L. (2011). Computer Organization and Design: The Hardware/Software Interface (4th ed.). Burlington, MA: Morgan Kaufmann.

