Springer Series on
S1GNALS AND COMMUNICATION TECHNOLOGY

Recollected by: mqadry©

S1GNALS AND COMMUNICATION TECHNOLOGY

Wireless Network Security
Y. Xiao, D.-Z. Du, X. Shen
ISBN 978-0-387-28040-0

Terrestrial Trunked Radio - TETRA
A Global Security Tool
P. Stavroulakis ISBN 978-3-540-71190-2

Multirate Statistical Signal Processing
0.S. Jahromi ISBN 978-1-4020-5316-0

Wireless Ad Hoc and Sensor Networks
A Cross-Layer Design Perspective
R.Jurdak ISBN 978-0-387-39022-2

Positive Trigonometric Polynomials
and Signal Processing Applications
B. Dumitrescu ISBN 978-1-4020-5124-1

Face Biometrics for Personal Identification
Multi-Sensory Multi-Modal Systems

R.I. Hammoud, B.R. Abidi, M.A. Abidi (Eds.)
ISBN 978-3-540-49344-0

Cryptographic Algorithms
on Reconfigurable Hardware
F. Rodriguez-Henriquez
ISBN 978-0-387-33883-5

Ad-Hoc Networking
Towards Seamless Communications
L. Gavrilovska ISBN 978-1-4020-5065-7

Multimedia Database Retrieval
A Human-Centered Approach
P. Muneesawang, L. Guan

ISBN 978-0-387-25627-6

Broadband Fixed Wireless Access
A System Perspective

M. Engels; F. Petre

ISBN 978-0-387-33956-6

Acoustic MIMO Signal Processing
Y. Huang, J. Benesty, J. Chen
ISBN 978-3-540-37630-9

Algorithmic Information Theory
Mathematics of Digital Information
Processing

P. Seibt ISBN 978-3-540-33218-3

Continuous-Time Signals
Y.S. Shmaliy ISBN 978-1-4020-4817-3

Interactive Video
Algorithms and Technologies
R.I.Hammoud (Ed.) ISBN 978-3-540-33214-5

Distributed Cooperative Laboratories
Networking, Instrumentation,

and Measurements

E Davoli, S. Palazzo, S. Zappatore (Eds.)
ISBN 978-0-387-29811-5

Topics in Acoustic Echo and Noise Control
Selected Methods for the Cancellation

of Acoustical Echoes, the Reduction

of Background Noise, and Speech Processing
E. Hinsler, G. Schmidt (Eds.)

ISBN 978-3-540-33212-1

EM Modeling of Antennas

and RF Components for Wireless
Communication Systems

F. Gustrau, D. Manteuffel

ISBN 978-3-540-28614-1

Orthogonal Frequency Division Multiplexing
for Wireless Communications

Y. Li, G.L. Stuber (Eds.)

ISBN 978-0-387-29095-9

Advanced Man-Machine Interaction
Fundamentals and Implementation
K.-E. Kraiss ISBN 978-3-540-30618-4

The Variational Bayes Method
in Signal Processing
V. 8midl, A. Quinn ISBN 978-3-540-28819-0
Voice and Speech Quality Perception
Assessment and Evaluation

U. Jekosch ISBN 978-3-540-24095-2

Circuits and Systems Based

on Delta Modulation

Linear, Nonlinear and Mixed Mode Processing
D.G. Zrilic ISBN 978-3-540-23751-8

Speech Enhancement
J. Benesty, S. Makino, J. Chen (Eds.)
ISBN 978-3-540-24039-6

Uwe Meyer-Baese

Digital Signal Processing
with Field Programmable
Gate Arrays

Third Edition

With 359 Figures and 98 Tables
Book with CD-ROM

@ Springer Recollected by: mgadry©

Dr. Uwe Meyer-Baese

Florida State University

College of Engineering

Department Electrical & Computer Engineering
Pottsdamer St. 2525

Tallahassee, Florida 32310

USA

E-Mail: Uwe.Meyer-Baese@ieee.org

Originally published as a monograph

Library of Congress Control Number: 2007933846

ISBN 978-3-540-72612-8 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material
is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication
of this publication or parts thereof is permitted only under the provisions of the German Copyright
Law of September 9, 1965, in its current version, and permission for use must always be obtained from
Springer. Violations are liable for prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media
springer.com
© Springer-Verlag Berlin Heidelberg 2007

The use of general descriptive names, registered names, trademarks, etc. in this publication does not
imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

Typesetting: Data conversion by the author
Production: LE-TgX Jelonek, Schmidt & Véckler GbR, Leipzig
Cover Design: WMXDesign GmbH, Heidelberg

Printed on acid-free paper 60/3180/YL 543210

To my Parents,

Anke and Lisa

Preface

Field-programmable gate arrays (FPGAs) are on the verge of revolutionizing
digital signal processing in the manner that programmable digital signal pro-
cessors (PDSPs) did nearly two decades ago. Many front-end digital signal
processing (DSP) algorithms, such as FFTs, FIR or IIR filters, to name just
a few, previously built with ASICs or PDSPs, are now most often replaced
by FPGAs. Modern FPGA families provide DSP arithmetic support with
fast-carry chains (Xilinx Virtex, Altera FLEX) that are used to implement
multiply-accumulates (MACs) at high speed, with low overhead and low costs
[1]. Previous FPGA families have most often targeted TTL “glue logic” and
did not have the high gate count needed for DSP functions. The efficient
implementation of these front-end algorithms is the main goal of this book.

At the beginning of the twenty-first century we find that the two pro-
grammable logic device (PLD) market leaders (Altera and Xilinx) both re-
port revenues greater than US$1 billion. FPGAs have enjoyed steady growth
of more than 20% in the last decade, outperforming ASICs and PDSPs by
10%. This comes from the fact that FPGAs have many features in com-
mon with ASICs, such as reduction in size, weight, and power dissipation,
higher throughput, better security against unauthorized copies, reduced de-
vice and inventory cost, and reduced board test costs, and claim advantages
over ASICs, such as a reduction in development time (rapid prototyping),
in-circuit reprogrammability, lower NRE costs, resulting in more econom-
ical designs for solutions requiring less than 1000 units. Compared with
PDSPs, FPGA design typically exploits parallelism, e.g., implementing multi-
ple multiply-accumulate calls efficiency, e.g., zero product-terms are removed,
and pipelining, i.e., each LE has a register, therefore pipelining requires no
additional resources.

Another trend in the DSP hardware design world is the migration from
graphical design entries to hardware description language (HDL). Although
many DSP algorithms can be described with “signal flow graphs,” it has been
found that “code reuse” is much higher with HDL-based entries than with
graphical design entries. There is a high demand for HDL design engineers
and we already find undergraduate classes about logic design with HDLs [2].
Unfortunately two HDL languages are popular today. The US west coast and
Asia area prefer Verilog, while US east coast and Europe more frequently

VIII Preface

use VHDL. For DSP with FPGAs both languages seem to be well suited,
although some VHDL examples are a little easier to read because of the sup-
ported signed arithmetic and multiply/divide operations in the IEEE VHDL
1076-1987 and 1076-1993 standards. The gap is expected to disappear after
approval of the Verilog IEEE standard 1364-1999, as it also includes signed
arithmetic. Other constraints may include personal preferences, EDA library
and tool availability, data types, readability, capability, and language exten-
sions using PLIs, as well as commercial, business, and marketing issues, to
name just a few [3]. Tool providers acknowledge today that both languages
have to be supported and this book covers examples in both design languages.

We are now also in the fortunate situation that “baseline” HDL compilers
are available from different sources at essentially no cost for educational use.
We take advantage of this fact in this book. It includes a CD-ROM with
Altera’s newest MaxPlusII software, which provides a complete set of design
tools, from a content-sensitive editor, compiler, and simulator, to a bitstream
generator. All examples presented are written in VHDL and Verilog and
should be easily adapted to other propriety design-entry systems. Xilinx’s
“Foundation Series,” ModelTech’s ModelSim compiler, and Synopsys FC2 or
FPGA Compiler should work without any changes in the VHDL or Verilog
code.

The book is structured as follows. The first chapter starts with a snapshot
of today’s FPGA technology, and the devices and tools used to design state-
of-the-art DSP systems. It also includes a detailed case study of a frequency
synthesizer, including compilation steps, simulation, performance evaluation,
power estimation, and floor planning. This case study is the basis for more
than 30 other design examples in subsequent chapters. The second chapter
focuses on the computer arithmetic aspects, which include possible number
representations for DSP FPGA algorithms as well as implementation of basic
building blocks, such as adders, multipliers, or sum-of-product computations.
At the end of the chapter we discuss two very useful computer arithmetic con-
cepts for FPGAs: distributed arithmetic (DA) and the CORDIC algorithm.
Chapters 3 and 4 deal with theory and implementation of FIR and IIR fil-
ters. We will review how to determine filter coefficients and discuss possible
implementations optimized for size or speed. Chapter 5 covers many concepts
used in multirate digital signal processing systems, such as decimation, inter-
polation, and filter banks. At the end of Chap. 5 we discuss the various pos-
sibilities for implementing wavelet processors with two-channel filter banks.
In Chap. 6, implementation of the most important DFT and FFT algorithms
is discussed. These include Rader, chirp-z, and Goertzel DFT algorithms, as
well as Cooley—Tuckey, Good—Thomas, and Winograd FFT algorithms. In
Chap. 7 we discuss more specialized algorithms, which seem to have great
potential for improved FPGA implementation when compared with PDSPs.
These algorithms include number theoretic transforms, algorithms for cryp-
tography and errorcorrection, and communication system implementations.

Preface X

The appendix includes an overview of the VHDL and Verilog languages, the
examples in Verilog HDL, and a short introduction to the utility programs
included on the CD-ROM.

Acknowledgements. This book is based on an FPGA communications system design
class I taught for four years at the Darmstadt University of Technology; my previous
(German) books [4, 5]; and more than 60 Masters thesis projects I have supervised
in the last 10 years at Darmstadt University of Technology and the University
of Florida at Gainesville. I wish to thank all my colleagues who helped me with
critical discussions in the lab and at conferences. Special thanks to: M. Acheroy,
D. Achilles, F. Bock, C. Burrus, D. Chester, D. Childers, J. Conway, R. Crochiere,
K. Damm, B. Delguette, A. Dempster, C. Dick, P. Duhamel, A. Drolshagen, W. En-
dres, H. Eveking, S. Foo, R. Games, A. Garcia, O. Ghitza, B. Harvey, W. Hilberg,
W. Jenkins, A. Laine, R. Laur, J. Mangen, J. Massey, J. McClellan, F. Ohl, S. Orr,
R. Perry, J. Ramirez, H. Scheich, H. Scheid, M. Schroeder, D. Schulz, F. Simons,
M. Soderstrand, S. Stearns, P. Vaidyanathan, M. Vetterli, H. Walter, and J. Wiet-
zke.

I would like to thank my students for the innumerable hours they have spent im-
plementing my FPGA design ideas. Special thanks to: D. Abdolrahimi, E. Allmann,
B. Annamaier, R. Bach, C. Brandt, M. Brauner, R. Bug, J. Burros, M. Burschel,
H. Diehl, V. Dierkes, A. Dietrich, S. Dworak, W. Fieber, J. Guyot, T. Hatter-
mann, T. Hauser, H. Hausmann, D. Herold, T. Heute, J. Hill, A. Hundt, R. Huth-
mann, T. Irmler, M. Katzenberger, S. Kenne, S. Kerkmann, V. Kleipa, M. Koch,
T. Kriiger, H. Leitel, J. Maier, A. Noll, T. Podzimek, W. Praefcke, R. Resch,
M. Rosch, C. Scheerer, R. Schimpf, B. Schlanske, J. Schleichert, H. Schmitt,
P. Schreiner, T. Schubert, D. Schulz, A. Schuppert, O. Six, O. Spiess, O. Tamm,
W. Trautmann, S. Ullrich, R. Watzel, H. Wech, S. Wolf, T. Wolf, and F. Zahn.

For the English revision I wish to thank my wife Dr. Anke Meyer-Bése, Dr.
J. Harris, Dr. Fred Taylor from the University of Florida at Gainesville, and Paul
DeGroot from Springer.

For financial support I would like to thank the DAAD, DFG, the European
Space Agency, and the Max Kade Foundation.

If you find any errata or have any suggestions to improve this book, please
contact me at Uwe.Meyer-Baese@ieee.org or through my publisher.

Tallahassee, May 2001 Uwe Meyer-Base

Preface to Second Edition

A new edition of a book is always a good opportunity to keep up with the lat-
est developments in the field and to correct some errors in previous editions.
To do so, I have done the following for this second edition:

e Set up a web page for the book at the following URL:
http://hometown.aol.de/uwemeyerbaese
The site has additional information on DSP with FPGAs, useful links,
and additional support for your designs, such as code generators and extra
documentation.

e Corrected the mistakes from the first edition. The errata for the first edition
can be downloaded from the book web page or from the Springer web page
at www.springer.de, by searching for Meyer-Baese.

e A total of approximately 100 pages have been added to the new edition.
The major new topics are:

— The design of serial and array dividers
— The description of a complete floating-point library
— A new Chap. 8 on adaptive filter design

e Altera’s current student version has been updated from 9.23 to 10.2 and
all design examples, size and performance measurements, i.e., many ta-
bles and plots have been compiled for the EPF10K70RC240-4 device
that is on Altera’s university board UP2. Altera’s UP1 board with the
EPF10K20RC240-4 has been discontinued.

o A solution manual for the first edition (with more than 65 exercises and over
33 additional design examples) is available from Amazon. Some additional
(over 25) new homework exercises are included in the second edition.

Acknowledgements. 1 would like to thank my colleagues and students for the feed-
back to the first edition. It helped me to improve the book. Special thanks to:
P. Ashenden, P. Athanas, D. Belc, H. Butterweck, S. Conners, G. Coutu, P. Costa,
J. Hamblen, M. Horne, D. Hyde, W. Li, S. Lowe, H. Natarajan, S. Rao, M. Rupp,
T. Sexton, D. Sunkara, P. Tomaszewicz, F. Verahrami, and Y. Yunhua.

From Altera, I would like to thank B. Esposito, J. Hanson, R. Maroccia,
T. Mossadak, and A. Acevedo (now with Xilinx) for software and hardware support
and the permission to include datasheets and MaxPlus IT on the CD of this book.

From my publisher (Springer-Verlag) I would like to thank P. Jantzen, F. Holz-
warth, and Dr. Merkle for their continuous support and help over recent years.

XII Preface

I feel excited that the first edition was a big success and sold out quickly. I
hope you will find this new edition even more useful. I would also be grateful,
if you have any suggestions for how to improve the book, if you would e-mail
me at Uwe.Meyer-Baese@ieee.org or contact me through my publisher.

Tallahassee, October 2003 Uwe Meyer-Base

Preface to Third Edition

Since FPGAs are still a rapidly evolving field, I am very pleased that my
publisher Springer Verlag gave me the opportunity to include new develop-
ments in the FPGA field in this third edition. A total of over 150 pages of
new ideas and current design methods have been added. You should find the
following innovations in this third edition:

1)

2)

3)

4)

5)

6)

Many FPGAs now include embedded 18 x 18-bit multipliers and it is
therefore recommended to use these devices for DSP-centered applica-
tions since an embedded multiplier will save many LEs. The Cyclone
II EP2C35F672C6 device for instance, used in all the examples in this
edition, has 35 18 x 18-bit multipliers.

MaxPlus II software is no longer updated and new devices such as the
Stratix or Cyclone are only supported in Quartus II. All old and new
examples in the book are now compiled with Quartus 6.0 for the Cyclone
II EP2C35F672C6 device. Starting with Quartus II 6.0 integers are by
default initialized with the smallest negative number (similar to with the
ModelSim simulator) rather than zero and the verbatim 2/e examples
will therefore not work with Quartus II 6.0. Tcl scripts are provided
that allow the evaluation of all examples with other devices too. Since
downloading Quartus II can take a long time the book CD includes the
web version 6.0 used in the book.

The new device features now also allow designs that use many MAC calls.
We have included a new section (2.9) on MAC-based function approxi-
mation for trigonometric, exponential, logarithmic, and square root.

To shorten the time to market further FPGA vendors offer intellectual
property (IP) cores that can be easily included in the design project. We
explain the use of IP blocks for NCOs, FIR filters, and FFTs.
Arbitrary sampling rate change is a frequent problem in multirate sys-
tems and we describe in Sect. 5.6 several options including B-spline,
MOMS, and Farrow-type converter designs.

FPGA-based microprocessors have become an important IP block for
FPGA vendors. Although they do not have the high performance of a
custom algorithm design, the software implementation of an algorithm
with a uP usually needs much less resources. A complete new chapter
(9) covers many aspects from software tool to hard- and softcore uPs. A

XIV Preface

complete example processor with an assembler and C compiler is devel-
oped.

7) A total of 107 additional problems have been added and a solution manual
will be available later from www.amazon.com at a not-for-profit price.

8) Finally a special thank you goes to Harvey Hamel who discovered many
errors that have been summarized in the errata for 2/e that is posted at
the book homepage http://hometown.aol.de/uwemeyerbaese

Acknowledgements. Again many colleagues and students have helped me with re-
lated discussions and feedback to the second edition, which helped me to improve
the book. Special thanks to:

P. Athanas, M. Bolic, C. Bentancourth, A. Canosa, S. Canosa, C. Chang,
J. Chen, T, Chen, J. Choi, A. Comba, S. Connors, J. Coutu, A. Dempster, A. El-
wakil, T. Felderhoff, O. Gustafsson, J. Hallman, H. Hamel, S. Hashim, A. Hoover,
M. Karlsson, K. Khanachandani, E. Kim, S. Kulkarni, K. Lenk, E. Manolakos,
F.Mirzapour, S. Mitra, W. Moreno, D. Murphy, T. Mei@ner, K. Nayak, H. Ningxin,
F.von Miinchow-Pohl, H. Quach, S. Rao, S. Stepanov, C. Suslowicz, M. Unser
J. Vega-Pineda, T. Zeh, E. Zurek

I am particular thankful to P. Thévenaz from EPFL for help with the newest
developments in arbitrary sampling rate changers.

My colleagues from the ISS at RHTH Aachen I would like to thank for their
time and efforts to teach me LISA during my Humboldt award sponsored summer
research stay in Germany. Special thanks go to H. Meyr, G. Ascheid, R. Leupers,
D. Kammler, and M. Witte.

From Altera, I would like to thank B. Esposito, R. Maroccia, and M. Phipps for
software and hardware support and permission to include datasheets and Quartus
IT software on the CD of this book. From Xilinx I like to thank for software and
hardware support of my NSF CCLI project J. Weintraub, A. Acevedo, A. Vera,
M. Pattichis, C. Sepulveda, and C. Dick.

From my publisher (Springer-Verlag) I would like to thank Dr. Baumann,
Dr. Merkle, M. Hanich, and C. Wolf for the opportunity to produce an even more
useful third edition.

I would be very grateful if you have any suggestions for how to improve
the book and would appreciate an e-mail to Uwe .Meyer-Baese@ieee.org or
through my publisher.

Tallahassee, May 2007 Uwe Meyer-Base

Contents

Preface VII
Preface to Second Edition, XI
Preface to Third Edition........... XIIT
1. Introduction......... 1
1.1 Overview of Digital Signal Processing (DSP) 1

1.2 FPGA Technologyot 3
1.2.1 Classification by Granularity 3

1.2.2 Classification by Technology 6

1.2.3 Benchmark for FPLs.............................. 7

1.3 DSP Technology Requirements 10
1.3.1 FPGA and Programmable Signal Processors 12

1.4 Design Implementation........... 13
1.4.1 FPGA Structure 18

1.4.2 The Altera EP2C35F672C6cooviin... 22

1.4.3 Case Study: Frequency Synthesizer 29

1.4.4 Design with Intellectual Property Cores 35
EXercisest 42

2. Computer Arithmetic........ 53
2.1 Introduction i 53

2.2 Number Representation 54
2.2.1 Fixed-Point Numbers 54

2.2.2 Unconventional Fixed-Point Numbers 57

2.2.3 Floating-Point Numbers................. 71

2.3 Binary Adders i 74
2.3.1 Pipelined Adders i 76

2.3.2 Modulo Adders 80

2.4 Binary Multipliers o i 82
2.4.1 Multiplier Blocks i i 87

2.5 Binary Dividers 91

2.5.1 Linear Convergence Division Algorithms 93

XVI

Contents
2.5.2 Fast Divider Design............ 98
2.5.3 Array Divider...........o i 103
2.6 Floating-Point Arithmetic Implementation................. 104
2.6.1 Fixed-point to Floating-Point Format Conversion. 105
2.6.2 Floating-Point to Fixed-Point Format Conversion.. ... 106
2.6.3 Floating-Point Multiplication 107
2.6.4 Floating-Point Addition 108
2.6.5 Floating-Point Division 110
2.6.6 Floating-Point Reciprocal 112
2.6.7 Floating-Point Synthesis Results 114
2.7 Multiply-Accumulator (MAC) and Sum of Product (SOP) .. 114
2.7.1 Distributed Arithmetic Fundamentals 115
2.7.2 Signed DA Systemsoiiiiiiiiiii. 118
2.7.3 Modified DA Solutions 120
2.8 Computation of Special Functions Using CORDIC.......... 120
2.8.1 CORDIC Architectures 125
2.9 Computation of Special Functions using MAC Calls......... 130
2.9.1 Chebyshev Approximations 131
2.9.2 Trigonometric Function Approximation 132
2.9.3 Exponential and Logarithmic Function Approximation 141
2.9.4 Square Root Function Approximation 148
EXErciSes . ..o 154
Finite Impulse Response (FIR) Digital Filters 165
3.1 Digital Filters. 165
3.2 FIRTheory.o e 166
3.2.1 FIR Filter with Transposed Structure 167
3.2.2 Symmetry in FIR Filters 170
3.2.3 Linear-phase FIR Filters 171
3.3 Designing FIR Filters 172
3.3.1 Direct Window Design Method..................... 173
3.3.2 Equiripple Design Method 175
3.4 Constant Coefficient FIR Design 177
3.4.1 Direct FIR Designo i, 178
3.4.2 FIR Filter with Transposed Structure 182
3.4.3 FIR Filters Using Distributed Arithmetic............ 189
3.4.4 1IP Core FIR Filter Design 204
3.4.5 Comparison of DA- and RAG-Based FIR Filters 207
EXercises 209
Infinite Impulse Response (IIR) Digital Filters 215
4.1 TIR Theoryot e 218
4.2 TIR Coefficient Computation 221
4.2.1 Summary of Important ITR Design Attributes........ 223

4.3 TIR Filter Implementation 224

Contents XVII

4.3.1 Finite Wordlength Effects 228
4.3.2 Optimization of the Filter Gain Factor 229
44 Fast IR Filter ... 230
4.4.1 Time-domain Interleaving 230
4.4.2 Clustered and Scattered Look-Ahead Pipelining 233
4.4.3 TIIR Decimator Design................. 235
4.4.4 Parallel Processing i 236
4.4.5 TIR Design Using RNS 239
EXercises 240
Multirate Signal Processing 245
5.1 Decimation and Interpolation 245
5.1.1 Noble Identities i 246
5.1.2 Sampling Rate Conversion by Rational Factor........ 248
5.2 Polyphase Decomposition., 249
5.2.1 Recursive IIR Decimator 254
5.2.2 Fast-running FIR Filter 254
5.3 Hogenauer CIC Filters 256
5.3.1 Single-Stage CIC Case Study 257
5.3.2 Multistage CIC Filter Theory 259
5.3.3 Amplitude and Aliasing Distortion 264
5.3.4 Hogenauer Pruning Theory 266
535 CICRNS Designcoviiiiiiiiniiniiina.. 272
5.4 Multistage Decimator i 273
5.4.1 Multistage Decimator Design Using Goodman—Carey
Half-band Filters 274
5.5 Frequency-Sampling Filters as Bandpass Decimators 277
5.6 Design of Arbitrary Sampling Rate Converters 280
5.6.1 Fractional Delay Rate Change 284
5.6.2 Polynomial Fractional Delay Design 290
5.6.3 B-Spline-Based Fractional Rate Changer 296
5.6.4 MOMS Fractional Rate Changer 301
5.7 Filter Banks 308
5.7.1 Uniform DFT Filter Bank 309
5.7.2 Two-channel Filter Banks 313
5.8 Wavelets 328
5.8.1 The Discrete Wavelet Transformation 332
Exercises 335
Fourier Transforms 343
6.1 The Discrete Fourier Transform Algorithms................ 344
6.1.1 Fourier Transform Approximations Using the DFT ... 344
6.1.2 Propertiesof the DFT 346
6.1.3 The Goertzel Algorithm 349

6.1.4 The Bluestein Chirp-z Transform................... 350

XVIII Contents

6.1.5 The Rader Algorithm 353
6.1.6 The Winograd DFT Algorithm..................... 359

6.2 The Fast Fourier Transform (FFT) Algorithms............. 361
6.2.1 The Cooley—Tukey FFT Algorithm 363
6.2.2 The Good-Thomas FFT Algorithm................. 373
6.2.3 The Winograd FFT Algorithm 375
6.2.4 Comparison of DFT and FFT Algorithms 379
6.25 IP Core FFT Design...........o .. 381

6.3 Fourier-Related Transforms 385
6.3.1 Computing the DCT Using the DFT................ 387
6.3.2 Fast Direct DCT Implementation 388
ExXercises 391
7. Advanced Topics 401
7.1 Rectangular and Number Theoretic Transforms (NTTs) 401
7.1.1 Arithmetic Modulo 22 1 403
7.1.2 Efficient Convolutions Using NTTs 405
7.1.3 Fast Convolution Using NTTs 405
7.1.4 Multidimensional Index Maps 409
7.1.5 Computing the DFT Matrix with NTTs............. 411
7.1.6 Index Maps for NTTs........ 413
7.1.7 Using Rectangular Transforms to Compute the DFT .. 416

7.2 Error Control and Cryptography 418
7.2.1 Basic Concepts from Coding Theory 419
7.2.2 Block Codeso 424
7.2.3 Convolutional Codes i, .. 428
7.2.4 Cryptography Algorithms for FPGAs 436

7.3 Modulation and Demodulation 453
7.3.1 Basic Modulation Concepts 453
7.3.2 Incoherent Demodulation 457
7.3.3 Coherent Demodulation 463
ExXercises 472
8. Adaptive Filters 477
8.1 Application of Adaptive Filter 478
8.1.1 Interference Cancellation 478
8.1.2 Prediction 479
8.1.3 Imverse Modeling 479
8.1.4 Identification......... 480

8.2 Optimum Estimation Techniques 481
8.2.1 The Optimum Wiener Estimation 482

8.3 The Widrow—Hoff Least Mean Square Algorithm 486
8.3.1 Learning Curves.coouiinininninennnn... 493
8.3.2 Normalized LMS (NLMS), 496

8.4 Transform Domain LMS Algorithms 498

Contents XIX

8.4.1 Fast-Convolution Techniques....................... 498
8.4.2 Using Orthogonal Transforms 500

8.5 Implementation of the LMS Algorithm 503
8.5.1 Quantization Effects L. 504
8.5.2 FPGA Design of the LMS Algorithm 504
8.5.3 Pipelined LMS Filters. 507
8.5.4 Transposed Form LMS Filter 510
8.5.5 Design of DLMS Algorithms 511
8.5.6 LMS Designs using SIGNUM Function 515

8.6 Recursive Least Square Algorithms 518
8.6.1 RLS with Finite Memory 521
8.6.2 Fast RLS Kalman Implementation.................. 524
8.6.3 The Fast a Posteriori Kalman RLS Algorithm........ 529

8.7 Comparison of LMS and RLS Parameters 530
EXErciSes . ..o 532
9. Microprocessor Design 537
9.1 History of Microprocessors.uuiineuneeneenn.n. 537
9.1.1 Brief History of General-Purpose Microprocessors 538
9.1.2 Brief History of RISC Microprocessors 540
9.1.3 Brief History of PDSPs 541

9.2 Instruction Set Design 544
9.2.1 Addressing Modes 544
9.2.2 Data Flow: Zero-,One-, Two- or Three-Address Design 552
9.2.3 Register File and Memory Architecture 558
9.2.4 Operation Support 562
9.2.5 Next Operation Location 565

9.3 Software Tools 566
9.3.1 Lexical Analysis............. ..o ... 567
9.3.2 Parser Development 578

9.4 FPGA Microprocessor COresuuuuiineunenaenn... 588
9.4.1 Hardcore Microprocessorsc.ouoeun... 589
9.4.2 Softcore Microprocessorsc..c.ooeeuvennon.. 594

9.5 Case Studiesvin 605
9.5.1 T-RISC Stack Microprocessors 605
9.5.2 LISA Wavelet Processor Design 610
9.5.3 Nios FFT Design....... 625
Exercises 634
References 645

A. Verilog Source Code 2001 661

XX Contents

B. VHDL and Verilog Coding 729
B.1 List of Examples i 731
B.2 Library of Parameterized Modules (LPM) 733
B.2.1 The Parameterized Flip-Flop Megafunction (Ipm ff) .. 733
B.2.2 The Adder/Subtractor Megafunction 737

B.2.3 The Parameterized Multiplier Megafunction
(Ipm mult) ... i 741

B.2.4 The Parameterized ROM Megafunction (Ipm rom) ... 746
B.2.5 The Parameterized Divider Megafunction

(Ipm divide) ... i i 749
B.2.6 The Parameterized RAM Megafunction (Ipm ram dq) 751

C. Glossaryot 755

D. CD-ROM File: “lreadme.ps” 761

1. Introduction

This chapter gives an overview of the algorithms and technology we will
discuss in the book. It starts with an introduction to digital signal processing
and we will then discuss FPGA technology in particular. Finally, the Altera
EP2C35F672C6 and a larger design example, including chip synthesis, timing
analysis, floorplan, and power consumption, will be studied.

1.1 Overview of Digital Signal Processing (DSP)

Signal processing has been used to transform or manipulate analog or digital
signals for a long time. One of the most frequent applications is obviously
the filtering of a signal, which will be discussed in Chaps. 3 and 4. Digital
signal processing has found many applications, ranging from data communi-
cations, speech, audio or biomedical signal processing, to instrumentation and
robotics. Table 1.1 gives an overview of applications where DSP technology
is used [6].

Digital signal processing (DSP) has become a mature technology and has
replaced traditional analog signal processing systems in many applications.
DSP systems enjoy several advantages, such as insensitivity to change in
temperature, aging, or component tolerance. Historically, analog chip design
yielded smaller die sizes, but now, with the noise associated with modern
submicrometer designs, digital designs can often be much more densely in-
tegrated than analog designs. This yields compact, low-power, and low-cost
digital designs.

Two events have accelerated DSP development. One is the disclosure by
Cooley and Tuckey (1965) of an efficient algorithm to compute the discrete
Fourier Transform (DFT). This class of algorithms will be discussed in detail
in Chapter 6. The other milestone was the introduction of the programmable
digital signal processor (PDSP) in the late 1970s, which will be discussed in
Chap. 9. This could compute a (fixed-point) “multiply-and-accumulate” in
only one clock cycle, which was an essential improvement compared with the
“Yon Neuman” microprocessor-based systems in those days. Modern PDSPs
may include more sophisticated functions, such as floating-point multipliers,
barrelshifters, memory banks, or zero-overhead interfaces to A/D and D/A
converters. EDN publishes every year a detailed overview of available PDSPs

2 1. Introduction

Table 1.1. Digital signal processing applications.

Area DSP algorithm
Filtering and convolution, adaptive filtering, detection
General-purpose and correlation, spectral estimation and Fourier trans-
form

Coding and decoding, encryption and decryption, speech
Speech processing recognition and synthesis, speaker identification, echo
cancellation, cochlea-implant signal processing

hi-fi encoding and decoding, noise cancellation, audio
Audio processing equalization, ambient acoustics emulation, audio mixing
and editing, sound synthesis

Compression and decompression, rotation, image trans-
Image processing mission and decompositioning, image recognition, image
enhancement, retina-implant signal processing

Voice mail, facsimile (fax), modems, cellular telephones,
modulators/demodulators, line equalizers, data encryp-

Information systems tion and decryption, digital communications and LANS,
spread-spectrum technology, wireless LANs, radio and
television, biomedical signal processing

Servo control, disk control, printer control, engine con-
Control trol, guidance and navigation, vibration control, power-
system monitors, robots

Beamforming, waveform generation, transient analysis,
Instrumentation steady-state analysis, scientific instrumentation, radar
and sonar

[7]. We will return in and Chap. 2 (p. 116) and Chap. 9 to PDSPs after we
have studied FPGA architectures.

Digital
Input Samples r-po--c-o---oooooo oo Out
Anti Sample Quantizer | Analo;
t P k g
X0 Aliasing u and | and - X[k DSP DAC
Analog Filter f , Hold Encoder | | Digital | System Out
In S ! Signal
'

Fig. 1.1. A typical DSP application.

Figure 1.1 shows a typical application used to implement an analog system
by means of a digital signal processing system. The analog input signal is
feed through an analog anti aliasing filter whose stopband starts at half the
sampling frequency fs to suppress unwonted mirror frequencies that occur
during the sampling process. Then the analog-to-digital converter (ADC)

1.2 FPGA Technology 3

follows that typically is implemented with a sample-and-hold and a quantize
(and encoder) circuit. The digital signal processing circuit perform then the
steps that in the past would have been implemented in the analog system.
We may want to further process or store (i.e., on CD) the digital processed
data, or we may like to produce an analog output signal (e.g., audio signal)
via a digital-to-analog converter (DAC) which would be the output of the
equivalent analog system.

1.2 FPGA Technology

VLSI circuits can be classified as shown in Fig. 1.2. FPGAs are a member
of a class of devices called field-programmable logic (FPL). FPLs are defined
as programmable devices containing repeated fields of small logic blocks and
elements?. It can be argued that an FPGA is an ASIC technology since
FPGAs are application-specific ICs. It is, however, generally assumed that the
design of a classic ASIC required additional semiconductor processing steps
beyond those required for an FPL. The additional steps provide higher-order
ASICs with their performance and power consumption advantage, but also
with high nonrecurring engineering (NRE) costs. At 65 nm the NRE cost are
about $4 million, see [8] . Gate arrays, on the other hand, typically consist of a
“sea of NAND gates” whose functions are customer provided in a “wire list.”
The wire list is used during the fabrication process to achieve the distinct
definition of the final metal layer. The designer of a programmable gate array
solution, however, has full control over the actual design implementation
without the need (and delay) for any physical IC fabrication facility. A more
detailed FPGA/ASIC comparison can be found in Sect. 1.3, p. 10.

1.2.1 Classification by Granularity

Logic block size correlates to the granularity of a device that, in turn, relates
to the effort required to complete the wiring between the blocks (routing
channels). In general three different granularity classes can be found:

e Fine granularity (Pilkington or “sea of gates” architecture)
e Medium granularity (FPGA)
e Large granularity (CPLD)

Fine-Granularity Devices

Fine-grain devices were first licensed by Plessey and later by Motorola, being
supplied by Pilkington Semiconductor. The basic logic cell consisted of a

2 Called configurable logic block (CLB) by Xilinx, logic cell (LC) or logic elements
(LE) by Altera.

4 1. Introduction

Monolithic highly

integrated circuits

— .

Standard Custom
circuit circuits
\
) \ . "
Fixed Custom- Semi- Hand
wires programmable custom layout
E Analog circuits
Standard logic
A
Mermory- Wire- Programm- Gate Standard Full Cell
programm- || programm- able
. array cell custermn based
able able logic
FPL
Sea of gates
RAM PROM CPLD ULA Megacell
»C EFROM FPGA Masterslice Composite cells
prog. D3P ROM SPLD NAND array

classic ASIC
ASIC

Fig. 1.2. Classification of VLSI circuits (©1995 VDI Press [4]).

single NAND gate and a latch (see Fig. 1.3). Because it is possible to realize
any binary logic function using NAND gates (see Exercise 1.1, p. 42), NAND
gates are called universal functions. This technique is still in use for gate array
designs along with approved logic synthesis tools, such as ESPRESSO. Wiring
between gate-array NAND gates is accomplished by using additional metal
layer(s). For programmable architectures, this becomes a bottleneck because
the routing resources used are very high compared with the implemented
logic functions. In addition, a high number of NAND gates is needed to build
a simple DSP object. A fast 4-bit adder, for example, uses about 130 NAND
gates. This makes fine-granularity technologies unattractive in implementing
most DSP algorithms.

Medium-Granularity Devices

The most common FPGA architecture is shown in Fig. 1.4a. A concrete ex-
ample of a contemporary medium-grain FPGA device is shown in Fig. 1.5.
The elementary logic blocks are typically small tables (e.g., Xilinx Virtex
with 4- to 5-bit input tables, 1- or 2-bit output), or are realized with ded-

1.2 FPGA Technology 5

(a)
L DD DI
) I
e [Bl
e C
IO IO

(b)

Fig. 1.3. Plessey ERA60100 architecture with 10K NAND logic blocks [9]. (a)
Elementary logic block. (b) Routing architecture (©1990 Plessey).

icated multiplexer (MPX) logic such as that used in Actel ACT-2 devices
[10]. Routing channel choices range from short to long. A programmable I/O
block with flip-flops is attached to the physical boundary of the device.

Large-Granularity Devices

Large granularity devices, such as the complex programmable logic devices
(CPLDs), are characterized in Fig. 1.4b. They are defined by combining so-
called simple programmable logic devices (SPLDs), like the classic GAL16V8
shown in Fig. 1.6. This SPLD consists of a programmable logic array (PLA)
implemented as an AND/OR array and a universal I/O logic block. The
SPLDs used in CPLDs typically have 8 to 10 inputs, 3 to 4 outputs, and
support around 20 product terms. Between these SPLD blocks wide busses
(called programmable interconnect arrays (PTAs) by Altera) with short delays
are available. By combining the bus and the fixed SPLD timing, it is possible
to provide predictable and short pin-to-pin delays with CPLDs.

6 1. Introduction

Programmable

interconnect Routmg channels
point (PIP)

\ i /
i T 0 - Simple Simple
|:|_" A 111/] ‘l:l PLD PLD
LU v HH
|:|_I —n o — I—I:l
el
|:|_. — o — o — .—I:l Programmable interconnect array (PTIA) I
%“ Ml Z B —l:l Macrocells k<t
— O\
D_" Simple
A PLD \
I ; ~

(b)

1/0 blocks

Fig. 1.4. (a) FPGA and (b) CPLD architecture (©1995 VDI Press [4]).

1.2.2 Classification by Technology

FPLs are available in virtually all memory technologies: SRAM, EPROM,
E2PROM, and antifuse [11]. The specific technology defines whether the de-
vice is reprogrammable or one-time programmable. Most SRAM devices can be
programmed by a single-bit stream that reduces the wiring requirements, but
also increases programming time (typically in the ms range). SRAM devices,
the dominate technology for FPGAs, are based on static CMOS memory
technology, and are re- and in-system programmable. They require, how-
ever, an external “boot” device for configuration. Electrically programmable
read-only memory (EPROM) devices are usually used in a one-time CMOS
programmable mode because of the need to use ultraviolet light for erasure.
CMOS electrically erasable programmable read-only memory (E2PROM) can
be used as re- and in-system programmable. EPROM and E2PROM have the
advantage of a short setup time. Because the programming information is

1.2 FPGA Technology 7

3 VERTICAL LONG
BIDIRECTIONAL GLOBAL MET LINES PER COLUMN
INTERCONNECT
FFERS

\ | 0 CLOCKS
-—

. HORIZONTAL LONG LINE
~~BOLL-UP RESISTOR

1 . ff A L} Y g HORIZONTAL LONG LINE
‘? L I\\ Ll ? Ll
- - - L] -1 r L M . . .
. - = C - 3
RN a3 dki " & OSCILLATOR
L ICIRRE E _— ufm 1 : i | ¢ " AMPLIFIER OUTPUT
1 4 !
h i
= DIRECTINPUT OF P47
‘ TO AUXILIARY BUFFER
r ; 1 L]
= = r | :
£ HG = HH ____CRYSTAL OSCILLATOR
] A I 1 BUFFER
T e
. —— —— 3-STATE INPUT
= T]]
|l
y . .: T l L —
: C = ~-3-STATE CONTROL
- Wl I
e L l+4 ck
- ! s T
et . M ~UE T~ 3.5TATE BUFFER
I 1 i i
iE L I N L I 'y o FIG
] - m m E r = M
. - n _ L o a - L - o T
nln (m[m L BN r . ”,_]
. [T nam " ALTERNATE BUFFER

L
L
Fan | [P raz | [Paz RST
- X1245

Fig. 1.5. Example of a medium-grain device (©1993 Xilinx).

not “downloaded” to the device, it is better protected against unauthorized
use. A recent innovation, based on an EPROM technology, is called “flash”
memory. These devices are usually viewed as “pagewise” in-system repro-
grammable systems with physically smaller cells, equivalent to an E2PROM
device. Finally, the important advantages and disadvantages of different de-
vice technologies are summarized in Table 1.2.

1.2.3 Benchmark for FPLs

Providing objective benchmarks for FPL devices is a nontrivial task. Perfor-
mance is often predicated on the experience and skills of the designer, along
with design tool features. To establish valid benchmarks, the Programmable
Electronic Performance Cooperative (PREP) was founded by Xilinx [12], Al-
tera [13], and Actel [14], and has since expanded to more than 10 members.
PREP has developed nine different benchmarks for FPLs that are summa-
rized in Table 1.3. The central idea underlining the benchmarks is that each
vendor uses its own devices and software tools to implement the basic blocks
as many times as possible in the specified device, while attempting to max-
imize speed. The number of instantiations of the same logic block within

8 1. Introduction

1o—=

2128
4 12 18 20 24 28 PTD

0000
oLMmc — 319

0224 XOR-2048

22—z AC1-2120

0256
E oLMmC —K 318

vas XOR-2049

3—3 AC1-2121

0512
OLMC ; L@——G 17

orea XOR-2050

ao—A3 AC1-2122
(a)

(b)

Fig. 1.6. The GAL16V8. (a) First three of eight macrocells. (b) The output logic
macrocell (OLMC) (©1997 Lattice).

one device is called the repetition rate and is the basis for all benchmarks.
For DSP comparisons, benchmarks five and six of Table 1.3 are relevant.
In Fig. 1.7, repetition rates are reported over frequency, for typical Actel
(Ag), Altera (or), and Xilinx (xx) devices. It can be concluded that modern
FPGA families provide the best DSP complexity and maximum speed. This
is attributed to the fact that modern devices provide fast-carry logic (see
Sect. 1.4.1, p. 18) with delays (less than 0.1 ns per bit) that allow fast adders
with large bit width, without the need for expensive “carry look-ahead” de-
coders. Although PREP benchmarks are useful to compare equivalent gate
counts and maximum speeds, for concrete applications additional attributes
are also important. They include:

e Array multiplier (e.g., 18 x 18 bits)

e Embedded hardwired microprocessor (e.g., 32-bit RISC PowerPC)
e On-chip RAM or ROM (LE or large block size)

e External memory support for ZBT, DDR, QDR, SDRAM

1.2 FPGA Technology 9

Table 1.2. FPL technology.

Technology SRAM EPROM E?PROM Antifuse Flash

Repro- v v v — v

grammable

In-system v - v — v

programmable

Volatile v - - - -

Copy - v v v v

protected

Examples Xilinx Altera AMD Actel Xilinx
Spartan MAX5K MACH ACT XC9500
Altera Xilinx Altera Cypress
Cyclone XC7K MAX 7K Ultra 37K

Pin-to-pin delay

Internal tristate bus

Readback- or boundary-scan decoder
Programmable slew rate or voltage of I/O
Power dissipation

Ultra-high speed serial interfaces

Some of these features are (depending on the specific application) more
relevant to DSP application than others. We summarize the availability of
some of these key features in Tables 1.4 and 1.5 for Xilinx and Altera, respec-
tively. The first column shows the device family name. The columns 3 — 9
show the (for most DSP applications) relevant features: (3) the support of
fast-carry logic for adder or subtractor, (4) the embedded array multiplier of
18 x 18 bit width, (5) the on-chip RAM implemented with the LEs, (6) the
on-chip kbit memory block of size larger of about 1-16 kbit,(7) the on-chip
Mbit memory block of size larger of about 1 mega bit, (8) embedded micro-
processor: IBM’s PowerPC on Xilinx or the ARM processor available with
Altera devices, and (9) the target price and availability of the device family.
Device that are no longer recommended for new designs are classified as ma-
ture with m. Low-cost devices have a single $ and high price range devices
have two 3.

Figure 1.8 summarizes the power dissipation of some typical FPL devices.
It can be seen that CPLDs usually have higher “standby” power consump-
tion. For higher-frequency applications, FPGAs can be expected to have a
higher power dissipation. A detailed power analysis example can be found in
Sect. 1.4.2, p. 27.

10

1. Introduction

Table 1.3. The PREP benchmarks for FPLs.

Number Benchmark name Description
1 Data path Eight 4-to-1 multiplexers drive a
parallel-load 8-bit shift register
(see Fig. 1.27, p. 44)
2 Timer/counter Two 8-bit values are clocked
through 8-bit value registers and
compared (see Fig. 1.28, p. 45)
3 Small state An 8-state machine with 8 inputs and
machine 8 outputs (see Fig. 2.59, p. 159)
4 Large state A 16-state machine with 40 transitions,
machine 8 inputs, and 8 outputs (see Fig. 2.60, p. 161)
5 Arithmetic A 4-by-4 unsigned multiplier and
circuit 8-bit accumulator (see Fig. 4.23, p. 243)
6 16-bit A 16-bit accumulator
accumulator (see Fig. 4.24, p. 244)
7 16-bit counter Loadable binary up counter
(see Fig. 9.40, p. 642)
8 16-bit synchronous Loadable binary counter

prescaled counter

with asynchronous reset
(see Fig. 9.40, p. 642)

Memory
mapper

The map decodes a 16-bit
address space into 8 ranges
(see Fig. 9.41, p. 643)

1.3 DSP Technology Requirements

The PLD market share, by vendor, is presented in Fig. 1.9. PLDs, since their
introduction in the early 1980s, have enjoyed in the last decade steady growth
of 20% per annum, outperforming ASIC growth by more than 10%. In 2001
the worldwide recession in microelectronics reduced the ASIC and FPLD
growth essentially. Since 2003 we see again a steep increase in revenue for the
two market leader. The reason that FPLDs outperformed ASICs seems to be
related to the fact that FPLs can offer many of the advantages of ASICs such
as:

Reduction in size, weight, and power dissipation
Higher throughput
Better security against unauthorized copies
Reduced device and inventory cost

Reduced board test costs

without many of the disadvantages of ASICs such as:

1.3 DSP Technology Requirements 11

Table 1.4. Xilinx FPGA family DSP features.

Family Feature

Fast Emb. LE Kbit Mbit Emb. Low
adder mult. RAM RAM RAM uP cost/

carry 18x18 mature

logic bits
XC2000 — — — — — — m
XC3000 — — — — — — m
XC4000 v — v — — — m
Spartan-XL v - v — — — $
Spartan-II v - v v - - $
Spartan-3 v v v v — — $
Virtex v - v v — — $$
Virtex-11 v v v v — - 3%
Virtex-II Pro v v v v — v $3
Virtex-4-LX v v v v — - 3%
Virtex-4-SX v v v v — - $3
Virtex-4-FX v v v v — v 3%
Virtex-5 v v v v — — $$

Table 1.5. Altera FPGA family DSP features.

Family Feature

Fast Emb. LE Kbit Mbit Emb. Low
adder mult. RAM RAM RAM uP cost/

carry 18x18 mature

logic bits
FLEX8K v — — — — — m
FLEX10K v — — v — — m
APEX20K v — — v — - m
APEX II v — — v — — m
ACEX v - - v - - m
Mercury v - - v - - m
Excalibur v — — v — v m
Cyclone v - - v — — $
Cyclone II v v - v - - $
Stratix v v - v v - $$
Stratix II v v — v v - $$

e A reduction in development time (rapid prototyping) by a factor of three
to four

e In-circuit reprogrammability

e Lower NRE costs resulting in more economical designs for solutions requir-
ing less than 1000 units

12 1. Introduction

f in MHz

30 m/ CPLD
o1 %4 1\

20

10

REP rate

10 20 30 40

Fig. 1.7. Benchmarks for FPLs (©1995 VDI Press [4]).

CBIC ASICs are used in high-end, high-volume applications (more than
1000 copies). Compared to FPLs, CBIC ASICs typically have about ten times
more gates for the same die size. An attempt to solve the latter problem is
the so-called hard-wired FPGA, where a gate array is used to implement a
verified FPGA design.

1.3.1 FPGA and Programmable Signal Processors

General-purpose programmable digital signal processors (PDSPs) [6, 15, 16]
have enjoyed tremendous success for the last two decades. They are based
on a reduced instruction set computer (RISC) paradigm with an architecture
consisting of at least one fast array multiplier (e.g., 16x16-bit to 24x24-bit
fixed-point, or 32-bit floating-point), with an extended wordwidth accumu-
lator. The PDSP advantage comes from the fact that most signal processing
algorithms are multiply and accumulate (MAC) intensive. By using a mul-
tistage pipeline architecture, PDSPs can achieve MAC rates limited only by
the speed of the array multiplier. More details on PDSPs can be found in
Chap. 9. It can be argued that an FPGA can also be used to implement
MAC cells [17], but cost issues will most often give PDSPs an advantage, if
the PDSP meets the desired MAC rate. On the other hand we now find many
high-bandwidth signal-processing applications such as wireless, multimedia,
or satellite transmission, and FPGA technology can provide more bandwidth
through multiple MAC cells on one chip. In addition, there are several al-

1.4 Design Implementation 13

P in mW
600

400 Altera 7128

200

Xilinx XC3142

Actel A1020

f in MHz

10 20

Fig. 1.8. Power dissipation for FPLs (©1995 VDI Press [4]).

gorithms such as CORDIC, NTT or error-correction algorithms, which will
be discussed later, where FPL technology has been proven to be more effi-
cient than a PDSP. It is assumed [18] that in the future PDSPs will dominate
applications that require complicated algorithms (e.g., several if-then-else
constructs), while FPGAs will dominate more front-end (sensor) applications
like FIR filters, CORDIC algorithms, or FFTs, which will be the focus of this
book.

1.4 Design Implementation

The levels of detail commonly used in VLSI designs range from a geomet-
rical layout of full custom ASICs to system design using so-called set-top
boxes. Table 1.6 gives a survey. Layout and circuit-level activities are absent
from FPGA design efforts because their physical structure is programmable
but fixed. The best utilization of a device is typically achieved at the gate
level using register transfer design languages. Time-to-market requirements,
combined with the rapidly increasing complexity of FPGAs, are forcing a
methodology shift towards the use of intellectual property (IP) macrocells or
mega-core cells. Macrocells provide the designer with a collection of prede-
fined functions, such as microprocessors or UARTS. The designer, therefore,
need only specify selected features and attributes (e.g., accuracy), and a

14 1. Introduction

Revenue

1600

1400

x— Xilinx
e—=a Altera
v—v Vantis
— Lattice
——— Actel

1200

1000

in Mil. $

800

600

400

200

.
1994 1996 1998 2000 2002 2004
year

Fig. 1.9. Revenues of the top five vendors in the PLD/FPGA/CPLD market.

Table 1.6. VLSI design levels.

Object Objectives Example

System Performance specifications Computer, disk unit, radar
Chip Algorithm uP, RAM, ROM, UART, parallel port
Register Data flow Register, ALU, COUNTER, MUX
Gate Boolean equations AND, OR, XOR, FF

Circuit Differential equations Transistor, R, L, C

Layout None Geometrical shapes

synthesizer will generate a hardware description code or schematic for the
resulting solution.
A key point in FPGA technology is, therefore, powerful design tools to

e Shorten the design cycle

e Provide good utilization of the device

e Provide synthesizer options, i.e., choose between optimization speed versus
size of the design

A CAE tool taxonomy, as it applies to FPGA design flow, is presented in
Fig. 1.10. The design entry can be graphical or text-based. A formal check

1.4 Design Implementation 15

that eliminates syntax errors or graphic design rule errors (e.g., open-ended
wires) should be performed before proceeding to the next step. In the function
extraction the basic design information is extracted from the design and writ-
ten in a functional netlist. The netlist allows a first functional simulation of
the circuit and to build an example data set called a testbench for later test-
ing of the design with timing information. If the functional test is not passed
we start with the design entry again. If the functional test is satisfactory we
proceed with the design implementation, which usually takes several steps
and also requires much more compile time then the function extraction. At
the end of the design implementation the circuit is completely routed within
our FPGA, which provides precise resource data and allows us to perform a
simulation with all timing delay information as well as performance measure-
ments. If all these implementation data are as expected we can proceed with
the programming of the actual FPGA; if not we have to start with the design
entry again and make appropriate changes in our design. Using the JTAG
interface of modern FPGAs we can also directly monitor data processing on
the FPGA: we may read out just the I/O cells (which is called a boundary
scan) or we can read back all internal flip-flops (which is called a full scan).
If the in-system debugging fails we need to return to the design entry.

In general, the decision of whether to work within a graphical or a text
design environment is a matter of personal taste and prior experience. A
graphical presentation of a DSP solution can emphasize the highly regular
dataflow associated with many DSP algorithms. The textual environment,
however, is often preferred with regard to algorithm control design and al-
lows a wider range of design styles, as demonstrated in the following design
example. Specifically, for Altera’s Quartus II, it seemed that with text de-
sign more special attributes and more-precise behavior can be assigned in the
designs.

Example 1.1: Comparison of VHDL Design Styles

The following design example illustrates three design strategies in a VHDL
context. Specifically, the techniques explored are:
e Structural style (component instantiation, i.e., graphical netlist design)
e Data flow, i.e., concurrent statements
e Sequential design using PROCESS templates
The VHDL design file example.vhd* follows (comments start with --):
PACKAGE eight_bit_int IS -- User-defined type
SUBTYPE BYTE IS INTEGER RANGE -128 TO 127;
END eight_bit_int;

LIBRARY work;
USE work.eight_bit_int.ALL;

LIBRARY lpm; -- Using predefined packages
USE 1pm.lpm_components.ALL;

4 The equivalent Verilog code example.v for this example can be found in Ap-
pendix A on page 663. Synthesis results are shown in Appendix B on page 731.

16 1. Introduction

Design entry
- Graphic
-Text: VHDL or Verilog

Design verification

Formal check

- Graphic design rules

- Language syntax check

Functional simulation

- Database builder

Function extraction 1
- Functional netlist J

Design implementation
- Logic synthesis
- Logic partitioning
- Logic fitting
- Timing extraction
- Programming file

Device programming

£

Fig. 1.10. CAD design circle.

LIBRARY ieee;

- Verify functionality

Timing simulation
- Compare output
- Check for glitch/oscillations
- Check setup/hold violations

\ Timing analysis
- Delay matrix analysis
- Registered performance

In-system debugging]

- Boundary scan
- Full scan J

USE ieee.std_logic_1164.ALL;
USE jeee.std_logic_arith.ALL;

ENTITY example IS
GENERIC (WIDTH :

INTEGER := 8);

-- Bit width

PORT (clk IN STD_LOGIC;
a, b : 1IN BYTE;
opl IN STD_LOGIC_VECTOR(WIDTH-1 DOWNTO 0);
sum OUT STD_LOGIC_VECTOR(WIDTH-1 DOWNTO 0);
d : 0OUT BYTE);
END example;

ARCHITECTURE fpga OF example IS

SIGNAL «c, s
SIGNAL op2, op3
BEGIN

BYTE;

-- Conversion int -> logic vector

> Interface

-- Auxiliary variables
STD_LOGIC_VECTOR(WIDTH-1 DOWNTO 0);

1.4 Design Implementation 17

op2 <= CONV_STD_LOGIC_VECTOR(b,8);

addl: lpm_add_sub = ------ > Component instantiation
GENERIC MAP (LPM_WIDTH => WIDTH,
LPM_REPRESENTATION => "SIGNED",
LPM_DIRECTION => "ADD")
PORT MAP (dataa => opil,
datab => op2,
result => op3);
regl: lpm_ff
GENERIC MAP (LPM_WIDTH => WIDTH)
PORT MAP (data => op3,
q => sum,
clock => clk);

c<<=a +b; - > Data flow style

pl: PROCESS —————- > Behavioral style
BEGIN

WAIT UNTIL clk = ’1’;

s <= c¢c + s; ----> Signal assignment statement
END PROCESS pi;
d <= s;

END fpga;

To start the simulator® we first copy the file from the CD to the project
directory and use File—0Open Project to select the example project. Now
select Simulator Tool under the Processing menu. A new window to con-
trol the simulation parameter will pop up. To perform a function simula-
tion in Quartus II the Generate Functional Simulation Netlist button
needs to be activated first by selecting Functional as Simulation mode. If
successful we can proceed and start with the design implementation as shown
in Fig. 1.10. To do this with the Quartus II compiler, we choose Timing as
the Simulation mode. However, the timing simulation requires that all com-
pilation steps (Analysis & Synthesis, Fitter, Assembler and Timing
Analyzer) are first performed. After completion of the compilation we can
then conduct a simulation with timing, check for glitches, or measure the
Registered Performance of the design, to name just a few options. After all
these steps are successfully completed, and if a hardware board (like the pro-
totype board shown in Fig. 1.11) is available, we proceed with programming
the device and may perform additional hardware tests using the read-back
methods, as reported in Fig. 1.10. Altera supports several DSP development
boards with a large set of useful prototype components including fast A/D,
D/A, audio CODEC, DIP switches, single and 7-segment LEDs, and push

® Note that a more detailed design tool study will follow in section 1.4.3.

18 1. Introduction

buttons. These development boards are available from Altera directly. Altera
offers Stratix S25, Stratix IT S60,and S80 and Cyclone I boards, in the $995-
$5995 price range, which differs not only in FPGA size, but also in terms of
the extra features, like number, precision and speed of A/D channels, and
memory blocks. For universities a good choice will be the lowest-cost Cy-
clone II board, which is still more expensive than the UP2 or UP3 boards
used in many digital logic labs, but has a fast A/D and D/A and a two-
channel CODEC, and large memory bank outside the FPGA, see Fig. 1.11a.
Xilinx on the other side has very limited direct board support; all boards for
instance available in the university program are from third parties. However
some of these boards are priced so low that it seems that these boards are
not-for-profit designs. A good board for DSP purposes (with on-chip multi-
pliers) is for instance offered by Digilent Inc. for only $99, see Fig. 1.11b. The
board has a XC35200 FPGA, flash, four 7-segment LEDs, eight switches, and
four push buttons. For DSP experiments, A/D and D/A mounted on very
small daughter boards are available for $19.95 each, so a nice DSP board can
be built for only $138.90.

Fig. 1.11. Low-cost prototype boards: (a) Cyclone II Altera board. (b) Xilinx
Nexsys board with ADC and DAC daughter boards.

1.4.1 FPGA Structure

At the beginning of the 21%¢ century FPGA device families now have several
attractive features for implementing DSP algorithms. These devices provide
fast-carry logic, which allows implementations of 32-bit (nonpipelined) adders
at speeds exceeding 300 MHz [1, 19, 20], embedded 18 x 18 bit multipliers,
and large memory blocks.

Xilinx FPGAs are based on the elementary logic block of the early XC4000
family and the newest derivatives are called Spartan (low cost) and Virtex
(high performance). Altera devices are based on FLEX 10K logic blocks and
the newest derivatives are called Stratix (high performance) and Cyclone (low

1.4 Design Implementation 19

cost). The Xilinx devices have the wide range of routing levels typical of a
FPGAs, while the Altera devices are based on an architecture with the wide
busses used in Altera’s CPLDs. However, the basic blocks of the Cyclone and
Stratix devices are no longer large PLAs as in CPLD. Instead the devices
now have medium granularity, i.e., small look-up tables (LUTS), as is typical
for FPGAs. Several of these LUTS, called logic elements (LE) by Altera, are
grouped together in a logic array block (LAB). The number of LEs in an LAB
depends on the device family, where newer families in general have more LEs
per LAB: Flex10K utilizes eight LEs per LAB, APEX20K uses 10 LEs per
LAB and Cyclone II has 16 LEs per LAB.

[ET i
Tk +
FLl==-=

._._.-...
—
@
&

f
il

SUICEWE! U758 WE! |

= i
Wi
i Common Logic
Ci XBMUX
I o s 1 CYMURE] M > x5
Lo &
i L Fomux -
s N [D T S Fs
e H HORAF
T T __}Z > x
FXMUX
CvoF
= v
7 2 F
BY > > > BXOUT
| Botlom Portion

LEGEND: Logic Funclions Y
—-- Distrisuied AAM and SHIFTOUT om

Shift Aegister Funclions

Fig. 1.12. Spartan-3 low portion of a slice/logic element ((©2006 Xilinx).

Since the Spartan-3 devices are part of a popular DSP board offered by
Digilent Inc., see Figure 1.11b, we will have a closer look at this FPGA fam-
ily. The basic logic elements of the Xilinx Spartan-3 are called slices having
two separate four-input one-output LUTs, fast-carry dedicated logic, two flip-
flops, and some shared control signals. In the Spartan-3 family four slices are
combined in a configurable logic blocks (CLB), having a total of eight four-
input one-output LUTSs, and eight flip-flops. Figure 1.12 shows the lower part
of the left slice. Each slice LUT can be used as a 16x1 RAM or ROM. The
dashed part is used if the slice is used to implement distributed memory or
shift registers, and is only available in 50% of the slices. The Xilinx device
has multiple levels of routing, ranging from CLB to CLB, to long lines span-
ning the entire chip. The Spartan-3 device also includes large memory block

20 1. Introduction

Table 1.7. The Xilinx Spartan-3 family.

Device Total CLB RAM DCM Emb. Max. Conf.
4-input blocks mult. 1/0 file
LUTs 18x18 mbit
XC3S50 1536 192 4 2 4 124 0.4
XC35200 3840 480 12 4 12 173 1.0
XC35400 7168 896 16 4 16 264 1.7
X(C3S1000 15360 1920 24 4 24 391 3.2
XC3S1500 26624 3328 32 4 32 487 5.2
X(C3S52000 40960 5120 40 4 40 565 7.6
X(C354000 55296 6912 96 4 96 712 11.3
XC3S5000 66560 8320 104 4 104 784 13.2

(18,432 bits or 16,384 bits if no parity bits are used) that can be used as
single- or dual-port RAM or ROM. The memory blocks can be configure as
29%32,210x16,...,2™" x 1, i.e., each additional address bit reduces the data
bit width by a factor of two. Another interesting feature for DSP purpose
is the embedded multiplier in the Spartan-3 family. These are fast 18 x 18
bit signed array multipliers. If unsigned multiplication is required 17 x 17 bit
multiplier can be implemented with this embedded multiplier. This device
family also includes up to four complete clock networks (DCMs) that allow
one to implement several designs that run at different clock frequencies in the
same FPGA with low clock skew. Up to 13 Mbits configuration files size is
required to program Spartan-3 devices. Tables 1.7 shows the most important
DSP features of members of the Xilinx Spartan-3 family.

As an example of an Altera FPGA family let us have a look at the Cyclone
IT devices used in the low-cost prototyping board by Altera, see Fig. 1.11a.
The basic block of the Altera Cyclone IT device achieves a medium granularity
using small LUT's. The Cyclone device is similar to the Altera 10K device used
in the popular UP2 and UP3 boards, with increased RAM blocks memory
size to 4 kbits, which are no longer called EAB as in Flex 10K or ESB as in
the APEX family, bur rather M4K memory blocks, which better reflects their
size. The basic logic element in Altera FPGAs is called a logic element (LE)®
and consists of a flip-flop, a four-input one-output or three-input one-output
LUT and a fast-carry logic, or AND/OR product term expanders, as shown
in Fig. 1.13. Each LE can be used as a four-input LUT in the normal mode, or
in the arithmetic mode, as a three-input LUT with an additional fast carry.
Sixteen LEs are combined in a logic array block (LAB) in Cyclone II devices.
Each row contains at least one embedded 18 x 18 bit multiplier and one M4K
memory block. One 18 x 18 bit multiplier can also be used as two signed 9 x 9
bit multipliers, or one unsigned 17 x 17 bit multiplier. The M4K memory can
be configured as 27 x 32, 28 x 16, ...,4096 x 1 RAM or ROM. In addition one

6 Sometimes also called logic cells (LCs) in a design report file.

1.4 Design Implementation 21

sload sclear
(LAB Wide) (LAB Wide)
Packed Register input

Register chain
Normal Mode connection

Q e Row, Column, and
datal D Direct Link Routing
data2 — ENA L Row, Column, and
data3 ——@ Four-Input CLRN Direct Link Routing
cin (from cout {ljﬁ LUT
ofprevious LE) clock (LAB Wide) ! Local routing
datad ena (LAB Wide)

aclr (LAB Wide)
Register Feedback L, Register
chain output
sload sclear

(LAB Wide) (LAB Wide)
Arithmetic Mode

Register chain
connection

datat F] \ I -
ala Three-Input) Q
data?2
LuT
ENA
Ll | CLRN
cin (from cout TWT_‘E'T"F’“‘ clock (LAB Wide)
of previous LE) } ena (LAB Wide)
- aclr (LAB Wide)

cout

Row, column, and
direct link routing

Row, column, and
direct link routing

]—» Local routing

Register
chain output

Register Feedback

Fig. 1.13. Cyclone II logic cell (©2005 Altera).

parity bit per byte is available (e.g., 128 x 36 configuration), which can be
used for data integrity. These M4Ks and LABs are connected through wide
high-speed busses as shown in Fig. 1.14. Several PLLs are in use to produce
multiple clock domains with low clock skew in the same device. At least 1
Mbits configuration files size is required to program the devices. Table 1.8
shows some members of the Altera Cyclone II family.

If we compare the two routing strategies from Altera and Xilinx we find
that both approaches have value: the Xilinx approach with more local and
less global routing resources is synergistic to DSP use because most digital
signal processing algorithms process the data locally. The Altera approach,
with wide busses, also has value, because typically not only are single bits

22 1. Introduction

Table 1.8. Altera’s Cyclone II device family.

Device Total RAM PLLs/ Emb. Max. Conf.
4-input blocks clock mul. I/0 file

LUTs M4K networks 18x18 Mbits
EP2C5 4608 26 2/8 13 89 1.26
EP2C8 8256 36 2/8 18 85 1.98
EP2C20 18752 52 4/16 26 315 3.89
EP2C35 33216 105 4/16 35 475 6.85
EP2C50 50528 129 4/16 86 450 9.96
EP2C70 68416 250 4/16 150 622 14.31

processed in bit slice operations, but normally wide data vectors with 16 to
32 bits must be moved to the next DSP block.

1.4.2 The Altera EP2C35F672C6

The Altera EP2C35F672C6 device, a member of the Cyclone II family, which
is part of the DSP prototype board provided through Altera’s university pro-
gram, is used throughout this book. The device nomenclature is interpreted
as follows:

EP2C35F672C6
[| |--> speed grade
| |————- > Package and pin number
| |- > LEs in 1000
[-——————- > Device family

Specific design examples will, wherever possible, target the Cyclone II
device EP2C35F672C6 using Altera-supplied software. The enclosed Quar-
tus II software is a fully integrated system with VHDL and Verilog editor,
synthesizer, simulator, and bitstream generator. The only limitation in the
web version is that not all pinouts of every devices are available. Because
all examples are available in VHDL and Verilog, any other simulator may
also be used. For instance, the device-independent ModelTech compiler has
successfully been used to compile the examples using the synthesizable code
for 1pm functions on the CD-ROM provided by EDIF. The use of Xilinx ISE
software is also discussed in appendix D.

Logic Resources

The EP2C35 is a member of the Altera Cyclone II family and has a logic
density equivalent to about 35000 logic elements (LEs). An additional 35
multipliers of size 18 x 18 bits (or twice this number if a size of 9 x 9 bit is
used) are available. From Table 1.8 it can be seen that the EP2C35 device

1.4 Design Implementation 23

T 8 1 L o) o o o o o s o

Embedded s s s
multiplier

1

Logic array

0 | o L |

_| i T e e o e

JTAG block |
uses 24 LABs
MA4K memory
blocks |
—‘ JJJJJA1 N O T I) S S S e 1'
/O elements Phase-locked
loops

Fig. 1.14. Overall floorplan in Cyclone II devices.

has 33216 basic logic elements (LEs). This is also the maximum number of
implementable full adders. Each LE can be used as a four-input LUT, or in the
arithmetic mode, as a three-input LUT with an additional fast carry as shown
in Fig. 1.13. Sixteen LEs are always combined into a logic array block (LAB),
see Fig. 1.15a. The number of LABs is therefore 33,216/16=2076. These 2076
LABs are arranged in 35 rows and 60 columns. In the left medium area of
the device the JTAG interface is placed and uses the area of 24 LABs. This is
why the total number of LABs in not just the product of rows x column, i.e.,
35 x 60 —24 = 2100 — 24 = 2076. The device also includes three columns of 4-
kbit memory block (called M4K memory blocks, see Fig. 1.15b) that have the
height of one LAB and the total number of M4Ks is therefore 3 x 35 = 105.
The M4Ks can be configured as 128 x 36, 128 x 32, 256 x 18, 256 x 16,
...4096 x 1 RAM or ROM, where for each byte one parity bit is available.
The EP2C35 also has one column of 18 x 18 bit fast array multipliers, that
can also be configured as two 9 x 9 bit multipliers, see Fig. 1.16. Since there
are 35 rows the number of multipliers is 35 for the 18 x 18 bit type or 70 of
the 9 x 9 bit multiplier type. Figure 1.14 presents the overall device floorplan.

Routing Resources

All 16 LEs in a LAB share the same reset and clock signals. Each LE has a
fan-out of 48 for fast local connection to neighboring LABs. The next level
of routing are the R4 and C4 fast row and column local connections that
allow wires to reach LABs at a distance of +4 LABs, or 3 LABs and one
embedded multiplier or M4K memory block. The longest connection available

24 1. Introduction

4—¢

Row Interconnect

5

- - +~— Column
- Interconnest
» [—
< Dirsct link
Direct link > . - <> interconnect
interconnect v from adjacent
from adjacent L -« — | » -« block
black — —
- —
Direct link &] P Direct link
interconnect 1 | — interconnect
to adjacent [[— to adjacent
black block
C A
(a) LAB Local intercennect
G4 Interconnects - R4 Interconnects
3
Direct link 16 Direct link
interconnect intercannect
to adjacent LAB + + to adjacent LAB
dataout fm—
M4K RAM
Direct link 16 Block 16 Direct link
interconnect intercannect
from adjacent LAB b= Byte enable from adjacent LAB
Control
Signals| ™
address datain
&
M4K RAM Block Local LAB Row Clocks
(b) Interconnect Region

Fig. 1.15. Cyclone II resources: (a) logic array block structure (b) M4K memory

block interface ((© 2005 Altera [21]).

are R24 and C16 wires that allows 24 rows or 16 column LAB, respectively,
to build connections that span basically the entire chip. It is also possible to
use any combination of row and column connections, in case the source and
destination LAB are not only in different rows but also in different columns.
As we will see in the next section the delay in these connections varies widely
and the synthesis tool tries always to place logic as close together as possible
to minimize the interconnection delay. A 32 bit adder, for instance, would
be best placed in two LABs in two rows one above the other, see Fig. 1.20,

p- 33.

1.4 Design Implementation 25

signa (1)
signb (1)
aclr
clock
ena

Sl

= Data Out
D Q

ENA

CLRN

Data B w=— T T
—ENA Ovtput
—1 input Register
CLRN Register
Embedded Multiplier Block
(a)
Direct Link Intercannect 18 Direct Link Ouipues Direct Link Intérconnect
Cointerconnects o Adjacent LAB B hnterconnects o Adiacent LABs from Adjecent LAB
Embedded Muttiplier
Lap Lag
How Interlace
Block
LAE Block Embaddad Mulspiter 36 Inpits per Row 36 Quiputs per Row L48 Biock
Intevco nect Region to LAB Row lntedace Interconect Region
Biock Interconnect Region
(b) G4 Interconnects

Fig. 1.16. Embedded multiplier (a) Architecture (b) LAB interface ((© 2005 Altera
[21)).

Timing Estimates

Altera’s Quartus II software calculates various timing data, such as the
Registered Performance, setup/hold time (s, 1) and non-registered com-
bination delay (tpq). For a full description of all timing parameters, re-
fer to the Timing Analysis Settings under EDA Tools Settings in the
Assignments menu. To achieve optimal performance, it is necessary to un-
derstand how the software physically implements the design. It is useful,
therefore, to produce a rough estimate of the solution and then determine
how the design may be improved.

26 1. Introduction

Example 1.2: Speed of an 32-bit Adder

Assume one is required to implement a 32-bit adder and estimate the design’s
maximum speed. The adder can be implemented in two LABs, each using
the fast-carry chain. A rough first estimate can be done using the carry-in to
carry-out delay, which is 71 ps for Cyclone II speed grade 6. An upper bound
for the maximum performance would then be 32 x 71 x 107'2 = 2.272ns or
440 MHz. But in the actual implementation additional delays occur: first the
interconnect delay from the previous register to the first full adder gives an
additional delay of 0.511 ns. Next the first carry tcgen must be generated,
requiring about 0.414 ns. With the group of eight LEs each and in between
the LAB we see from the floorplan that stronger drivers are used, requiring
an additional 75-88 ps. Finally at the end of the carry chain the full sum
bit needs to be computed (about 410 ps) and the setup time for the output
register (84 ps) needs to be taken into account. The results are then stored
in the LE register. The following table summarizes these timing data:

LE register clock-to-output delay teo = 223 ps
Interconnect delay tic = 511 ps
Data-in to carry-out delay tegen = 414 ps
Carry-in to carry-out delay 27 X toico =27 X T1ps =1917 ps
8 bit LAB group carry-out delay 2 X tcicosLaAB=2X 159 ps = 318 ps
Same column carry out delay tsamecolumn = 146 ps

LE look-up table delay tLuT = 410 ps

LE register setup time tsu = 84 ps

Total = 4,022 ps

The estimated delay is 4.02 ns, or a rate of 248.63 MHz. The design is expected
to use about 32 LEs for the adder and an additional 2 x 32 to store the input
data in the registers (see also Exercise 1.7, p. 43).

If the two LABs used can not be placed in the same column next to
each other then an additional delay would occur. If the signal comes directly
from the I/O pins much longer delays have to be expected. For a 32 bit
adder with data coming from the I/O pins the Quartus II Timing Analyzer
Tool reports a propagation delay of 8.944 ns, much larger than the registered
performance when the data comes directly from the register next to the design
under test. Datasheets [21, Chap. 5] usually report the best performance that
is achieved if I/O data of the design are placed in registers close to the design
unit under test. Multiplier and block M4K (but not the adder) have additional
I/0 registers to enable maximum speed, see Fig. 1.16. The additional I/O
registers are usually not counted in the LE resource estimates, since it is
assumed that the previous processing unit uses a output register for all data.
This may not always be the case and we have therefore put the additional
register needed for the adder design in parentheses. Table 1.9 reports some
typical data measured under these assumptions. If we compare this measured
data with the delay given in the data book [21, Chap. 5] we notice that for
some blocks Quartus IT limits the upper frequency to a specific bound less
than the delay in the data book. This is a conservative and more-secure
estimate — the design may in fact run error free at a slightly higher speed.

1.4 Design Implementation 27

Table 1.9. Some typical Registered Performance and resource data for the Cy-
clone IT EP2C35F672C6.

Design LE M4K Multiplier =~ Registered
memory blocks Performance
blocks 9 x 9 bit MHz

16 bit adder 16(+432) — — 369

32 bit adder 32(+64) - - 248

64 bit adder 64(4128) - — 151

ROM 27 x 8 - 1 - 260

RAM 27 x 8 - 1 - 230

9 x 9 bit multiplier - — 1 260

18 x 18 bit multiplier — — 2 260

Power Dissipation

The power consumption of an FPGA can be a critical design constraint,
especially for mobile applications. Using 3.3V or even lower-voltage process
technology devices is recommended in this case. The Cyclone II family for
instance is produced in a 1.2 V, 90-nm, low-k-dielectric process from the
Taiwan ASIC foundry TSMC, but I/0 interface voltages of 3.3 V, 2.5V, 1.8V
and 1.5V are also supported. To estimate the power dissipation of the Altera
device EP2C35, two main sources must be considered, namely:

1) Static power dissipation, Istandby =~ 66 mA for the EP2C35F672C6
2) Dynamic (logic, multiplier, RAM, PLL, clocks, I/O) power dissipation,

Iactive

The first parameter is not design dependent, and also the standby power in
CMOS technology is generally small. The active current depends mainly on
the clock frequency and the number of LEs or other resources in use. Altera
provides an EXCEL work sheet, called PowerPlay Early Power Estimator,
to get an idea about the power consumption (e.g., battery life) and possible
cooling requirements in an early project phase.

For LE the dynamic power dissipation is estimated according to the pro-
portional relation

P Idynamic‘/cc =K x fmax x N x TLEV::ca (11)

where K is a constant, fi,.x is the operating frequency in MHz, N is the total
number of logic cells used in the device, and 7 g is the average percentage
of logic cells toggling at each clock (typically 12.5%). Table 1.10 shows the
results for power estimation when all resource of the EP2C35F672C6 are in
use and a system clock of 100 MHz is applied. For less resource usage or lower
system clock the data in (1.1) can be adjusted. If, for instance, a system clock
is reduced from 100 MHz to 10 MHz then the power would be reduced to

28 1. Introduction

Table 1.10. Power consumption estimation for the Cyclone II EP2C35F672C6.

Parameter Units Toggle Power
rate (%) mW
Pstatic 85
LEs 33216 @ 100 MHz 33216 12.5% 572
M4K block memory 105 50% 37
18 x 18 bit multiplier 35 12.5% 28
I/0 cells (3.3V,24 mA) 475 12.5% 473
PLL 4 30
Clock network 33831 215
Total 1440

85+ 1355/10 = 220.5mW, and the static power consumption would now be
account for 38%.

Although the PowerPlay estimation is a useful tool in a project planing
phase, it has its limitations in accuracy because the designer has to specify
the toggle rate. There are cases when it become more complicated, such as
for instance in frequency synthesis design examples, see Fig. 1.17. While the
block RAM estimation with a 50% toggle may be accurate, the toggle rate of
the LEs in the accumulator part is more difficult to determine, since the LSBs
will toggle at a much higher frequency than the MSBs, since the accumulators
produce a triangular output function. A more-accurate power estimation can
be made using Altera’s PowerPlay Power Analyzer Tool available from the
Processing menu. The Analyzer allows us to read in toggle data computed
from the simulation output. The simulator produces a “Signal Activity File”
that can be selected as the input file for the Analyzer. Table 1.11 shows a
comparison between the power estimation and the power analysis.

Table 1.11. Power consumption for the design shown in Fig. 1.17 for a Cyclone II
EP2C35F672C6.

Parameter Estimation Analysis
12.5% toggle rate toggle rate measured
power/mW power/mW
Static 79.91 80.02
Dynamic 5.09 6.68
I/0 50.60 83.47

Total 135.60 170.17

1.4 Design Implementation 29

We notice a discrepancy of 20% between estimation and analysis. The
analysis however requires a complete design including a testbench, while the
estimation may be done at an early phase in the project.

The following case study should be used as a detailed scheme for the
examples and self-study problems in subsequent chapters.

1.4.3 Case Study: Frequency Synthesizer

The design objective in the following case study is to implement a classical
frequency synthesizer based on the Philips PM5190 model (circa 1979, see
Fig. 1.17). The synthesizer consists of a 32-bit accumulator, with the eight
most significant bits (MSBs) wired to a SINE-ROM lookup table (LUT)
to produce the desired output waveform. A graphical solution, using Altera’s
Quartus II software, is shown in Fig. 1.18, and can be found on the CD-ROM
as book3e/vhdl/fun_graf.bdf. The equivalent HDL text file fun_text.vhd
and fun_text.v implement the design using component instantiation. In
the following we walk through all steps that are usually performed when
implementing a design using Quartus II:

1) Compilation of the design
2) Design results and floor plan
3) Simulation of the design

4) A performance evaluation

/O expander 1] Phase accumulator
' '
! 4x VA !
' 6 x FF ' 6 x FF 6 x FF
12 x FF ' ! To
! 4x VA ' 256x8 -]
! ! SIN ROM DAC
! 6 x FF , 2 x FF 2 x FF
' 4x VA !
| > !
] '
! 4x VA ' 2 x 74LS175 2 x 74LS175
i 6 x FF |
10 x FF | |
' 4x VA '
1 6xFF [
' 4x VA '
Frequency ' 4x VA ,
—apl 10 x FF : 6x FF !
value ! !
' 4x VA '
! 2 x FF '
' '
3 x P8234 3 8 x 74LS283 6 x 74LS174 3
'

Fig. 1.17. PM5190 frequency synthesizer.

30 1. Introduction

R4fun_graf.bdf ~=lofx]

lpm_add_sub0
I rom0

Wi S sdalas[31,0] - i ipm il 240
i resutf31.0); * .01
catab(31.0] P/J H " inciock oF.00 P —— .y UL N

outclock

inst

instT

sccl3 .0

[T ——

e e Rl

4 | v 4

Fig. 1.18. Graphical design of the frequency synthesizer.

Design Compilation

To check and compile the file, start the Quartus II Software and select
File—Open Project or launch File—New Project Wizard if you do not
have a project file yet. In the project wizard specify the project directory you
would like to use, and the project name and top-level design as fun_text.
Then press Next and specify the HDL file you would like to add, in our case
fun_text.vhd. Press Next again and then select the device EP2C35F672C6
from the Cyclone II family and press Finish. If you use the project file from
the CD the file fun_text.qgsf will already have the correct file and device
specification. Now select File—0pen to load the HDL file. The VHDL de-
sign” reads as follows:

-- A 32-bit function generator using accumulator and ROM

LIBRARY lpm;
USE lpm.lpm_components.ALL;

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
USE ieee.std_logic_arith.ALL;

ENTITY fun_text IS

GENERIC (WIDTH : INTEGER := 32); -- Bit width

PORT (M : IN STD_LOGIC_VECTOR(WIDTH-1 DOWNTO 0);
sin, acc : OUT STD_LOGIC_VECTOR(7 DOWNTO 0);
clk : IN STD_LOGIC);

END fun_text;

ARCHITECTURE fpga OF fun_text IS

" The equivalent Verilog code fun text.v for this example can be found in Ap-
pendix A on page 664. Synthesis results are shown in Appendix B on page 731.

1.4 Design Implementation 31

SIGNAL s, acc32 : STD_LOGIC_VECTOR(WIDTH-1 DOWNTO 0);
SIGNAL msbs : STD_LOGIC_VECTOR(7 DOWNTO 0);
-- Auxiliary vectors
BEGIN

addl: lpm_add_sub -- Add M to acc32
GENERIC MAP (LPM_WIDTH => WIDTH,
LPM_REPRESENTATION => "SIGNED",
LPM_DIRECTION => "ADD",
LPM_PIPELINE => 0)
PORT MAP (dataa => M,
datab => acc32,
result => s);

regl: 1lpm_ff -- Save accu
GENERIC MAP (LPM_WIDTH => WIDTH)
PORT MAP (data => s,
q => acc32,
clock => clk);

selectl: PROCESS (acc32)
VARIABLE i : INTEGER;
BEGIN
FOR i IN 7 DOWNTO O LOOP
msbs (i) <= acc32(31-7+1i);
END LOOP;
END PROCESS selectl;

acc <= msbs;

roml: lpm_rom
GENERIC MAP (LPM_WIDTH => 8,
LPM_WIDTHAD => 8,
LPM_FILE => "sine.mif")
PORT MAP (address => msbs,
inclock => clk,
outclock => clk,
q => sin);

END fpga;

The object LIBRARY, found early in the code, contains predefined modules
and definitions. The ENTITY block specifies the I/O ports of the device and
generic variables. Using component instantiation, three blocks (see labels
addl, regl, roml) are called as subroutines. The selectl PROCESS con-

32 1. Introduction

struct is used to select the eight MSBs to address the ROM. Now start the
compiler tool (it has a little factory symbol) that can be found under the
Processing menu. A window similar to the one shown in Fig. 1.19 pops
up. You can now see the four steps envolved in the compilation, namely:
Analysis & Synthesis, Fitter, Assembler and Timing Analyzer. Each
of these steps has four small buttons. The first arrow to the right starts the
processing, the second “equal-sign with a pen” is used for the assignments,
the third is used to display the report files, and the last button starts an addi-
tional function, such as the hierarchy of the project, timing closure floorplan,
programmer, or timing summary. To optimize the design for speed, click on
the assignment symbol (equal-sign with a pen) in the Analysis & Synthesis
step in the compiler window. A new window pops up that allows you to specify
the Optimization Technique as Speed, Balanced or Area. Select the op-
tion Speed, and leave the other synthesis options unchanged. To set the target
speed of the design click on the assignment button of the Timing Analyzer
section and set the Default required fmax to 260 MHz. Note that you
can also find all the assignments also under EDA Tools Settings under the
Assignment menu. Next, start the Analysis & Synthesis by clicking on the
right arrow in the compiler window or with <Ctrl+K> or by selecting Start
Analysis & Synthesis in the Start item in the Processing menu. The
compiler checks for basic syntax errors and produces a report file that lists
resource estimation for the design. After the syntax check is successful, com-
pilation can be started by pressing the large Start button in the lower left
corner of the compiler tool window, or by pressing <Ctrl+L>. If all compiler
steps were successfully completed, the design is fully implemented. Press the
Report button in the compiler window to get a flow summary report that
should show 32 LEs and 2048 memory bits use. Check the memory initial-
ization file sine.mif, containing the sine table in offset binary form. This
file was generated using the program sine3e.exe included on the CD-ROM
under book3e/util. Figure 1.19 summarizes all the processing steps of the
compilation, as shown in the Quartus IT compiler window.

Floor Planing

The design results can be verified by clicking on the 4. button (i.e., Timing
Closure Floorplan or opening the Tool—Chip Editor) to get a more-
detailed view of the chip layout. The Chip Editor view is shown in Fig. 1.20.
Use the Zoom in button (i.e., the & magnifying glass) to produce the screen
shown in Fig. 1.20. Zoom in to the area where the LAB and an M4K are
highlighted in a different color. You should then see the two LABs used
by the accumulation highlighted in blue and the M4K block highlighted in
green. In addition several I/O cell are also highlighted in brown. Click on the
Critical Path Setting® button and use the slider to select graph display.

& Note, as with all MS Window programs, just move your mouse over a button
(no need to click on the button) and its name/function will be displayed.

1.4 Design Implementation 33

=10/ x|

Fitter Assemmbler Tirning Analyzer—
T
00:00:28 00:00:25 00:00:05

&

TERT

| 2|&

B | r|¥|& S

¥ ol | = ole

Full Compilation

000117

B Start | @ Stop ﬁ%? Report |

Fig. 1.19. Compilation steps in Quartus II.

You should then see in the Chip Editor a blue line that shows the worst-
case path running from the first to the last bit of the accumulator. Now click
on the Bird’s Eye View button on the left menu buttons and an additional
window will pop up. Now select the Coordinate option, i.e., the last entry
in the Main Window options. You may also try out the connection display.
First select for instance the M4K block and then press the button Generate
Fan-In Connections or Generate Fan-QOut Connections several times and
more and more connections will be displayed.

Simulation

To simulate, open the Simulator Tool under the Processing menu. Under
simulation mode you can select between Functional, Timing and Timing
using fast Timing Model. The Functional simulation requires the func-

4 Chip Editor T =10 x|

M4K memory 16 bit
block

22 R - - SR --.- RS - |

4]

Fig. 1.20. Floorplan of the frequency synthesizer design.

34 1. Introduction

_iol x|
Master Time Bar 0 ps 1| +| Paointer: ‘ 21.28 ns Intersyak ‘ .28 ns Start: ‘ End: ‘
20.0ns 30.0 ns A0.0ns 50.0ns G0.0 ns|
Name Yaluz at
Ops
== o BO
=4] U 715827803 15
=4 acc U0
|&| Esn UD
14 |] | o

)

ig. 1.21. VHDL simulation of frequency synthesizer design.

tional netlist to be generate first; this takes additional time, but is much
faster than the full compilation of the design. The Timing simulation re-
quires that you first make a full compile of the design as described in the
previous section. You should then click the Open button and the waveform
window will pop up. Notice also that 24 new buttons on the left have been
added. Move your mouse (without clicking) over the buttons to become fa-
miliar with their name and function. If you have copied the waveform file
fun_text.vwf from the CD into the project directory you will see a simu-
lation with timing loaded. If you start with an empty waveform Quartus IT
helps you to assemble a waveform file. Double click the space under the Name
section to insert a node or bus. Click the Node Finder button and select in
the Node Finder window as Filter the entry Pins: all. Now press List
and all I/O pins are listed. Note that the I/O pins are available with both
functional and timing simulation, but internal signals may not all be avail-
able in the netlist generated. Now select all bus signals, i.e., acc, c1k, M, and
sin, and press the single arrow to the right button. Now the four signals
should be listed in the Selected Nodes window. If you selected only one
bus signal repeat the selection by pressing the arrow with the other signals
too. After all four signals are listed in the right window, press 0K. Now the
signal should be listed in the waveform window. Sort the signal according to
Fig. 1.21, i.e., list first input control signals like c1k followed by input data
signal(s) M. In the last place in the list put the output data (acc and sin).
To move a signal make sure that the arrow is selected from the left menu
buttons. Then select the signal you would like to move and hold down the
mouse button while moving the signal. When all signals are arranged cor-
rectly we can start defining the input signals. Select first the c1lk signal and
then press the clock symbol from the left menu buttons. As the period select
1/260 MHz = 3.846ns. Next set M = 715827883 (M = 232/6), so that the
period of the synthesizer is six clock cycles long. After we have specified the
input signals we are ready to simulate. The default simulation time is always
1us. You can change the default value by selecting End Time under the Edit
menu. You may set it to about 60 ns to display the first 15 clock cycles. You
may want to start with a functional simulation first and then proceed with

1.4 Design Implementation 35

the timing simulation. Select Functional Simulation and do not forget to
generate the functional netlist first. You can then press the Start button
in the Simulator Tool window. You should see the waveforms without de-
lays, i.e., the output signals should change exactly at the same time samples
that the clock has a rising edge. You can then proceed with the timing sim-
ulation. Remember to conduct a full compile first if you have not done so
already. Then press the Start button in the Simulator Tool window and
you should see a waveform result similar to Fig. 1.21 that shows a simulation
with delay. Notice that now the output signals no longer change exactly at
the rising edge and that the signals also need some time to settle down, i.e.,
become stable. Make sure that the period is of length 6, both in the accu
as well in the sin signal. Notice that the ROM has been coded in binary
offset (i.e., zero = 128). This is a typical coding used in D/A converters and
is used in the D/A converter of the Cyclone II DSP prototype board. When
complete, change the frequency so that a period of eight cycles occurs, i.e.,
(M = 232/8), and repeat the simulation.

Performance Analysis

To initiate a performance analysis, select the Timing Analyzer Tool under
the Processing menu. Usually the Registered Performance is the most im-
portant measurement. For a combination circuit (only) the propagation delay
tpa should be monitored. You can change the goals in the EDA Tools Setting
under the Assignment menu. Note that it not sufficient to set the synthesis
options to Speed; if you do not specify a requested Default Required fmax
the synthesis results will most likely not reach the best performance that can
be achieved with the device.

In order to display timing data a full compile of the design has to be done
first. The Registered Performance is then displayed using a speed meter,
while the other timing data like ¢,q are shown in table form. The result
for Registered Performance should be similar to that shown in Fig. 1.22.
You can also list the worst-case path. Select 1 in Number of path to list
and press the List Paths button. The path is shown as information in the
message window. Pressing the plus sign, expand the information to see the
full path detail. The path information of each node includes interconnect
delay, cell delay, the LAB cell location with = and y coordinates, and the
local signal name. You can verify this data using the Chip Editor described
in the previous “Floor Planning” section.

This concludes the case study of the frequency synthesizer.
1.4.4 Design with Intellectual Property Cores

Although FPGAs are known for their capability to support rapid prototyp-
ing, this only applies if the HDL design is already available and sufficiently

36 1. Introduction

& Timing Analyzer Tool =101 x|
Registered Pafomnance | pd |t |too | th | CustombDelays|
Clack: [k =
Value |
From Iprn_ff-reg1idHs(0]

To Tpm_ffreg1Ils[31]
Clack petiad | 3,785 ns
Frequency | 264.20 MHz

[E
00:00:00

P Slait I B Sl | & Repoit | Hlurnber of paths 1o st IT— List Paths |

Fig. 1.22. Register performance of frequency synthesizer design.

tested. A complex block like a PCI bus interface, a pipelined FFT, an FIR
filter, or a uP may take weeks or even months in development time. One
option that allows us to essentially shorten the development time is available
with the use of a so-called intellectual property (IP) core. These are predevel-
oped (larger) blocks, where typical standard blocks like numeric controlled
oscillators (NCO), FIR filters, FFTs, or microprocessors are available from
FPGA vendors directly, while more-specialized blocks (e.g., AES, DES, or
JPEG codec, a floating-point library, or I12C bus or ethernet interfaces) are
available from third-party vendors. On a much smaller scale we have already
used IP blocks. The library of parameterize modules (LPM) blocks we used in
the example and fun_text designs are parameterized cores, where we could
select, for instance, bitwidth and pipelining that allow fast design develop-
ment. We can use the LPM blocks and configure a pipelined multiplier or
divider or we can specify to use memory blocks as CAM, RAM, ROM or
FIFO. While this LPM blocks are free in the Quartus IT package the larger
more-sophisticated blocks may have a high price tag. But as long as the block
meets your design requirement it is most often more cost effective to use one
of these predefined IP blocks.

Let us now have a quick look at different types of IP blocks and discuss
the advantages and disadvantages of each type [22, 23, 24]. Typically IP cores
are divided into three main forms, as described below.

Soft Core

A soft core is a behavioral description of a component that needs to be synthe-
sized with FPGA vendor tools. The block is typically provided in a hardware
description language (HDL) like VHDL or Verilog, which allows easy mod-
ification by the user, or even new features to be added or deleted before

1.4 Design Implementation 37

synthesis for a specific vendor or device. On the downside the IP block may
also require more work to meet the desired size/speed/power requirements.
Very few of the blocks provided by FPGA vendors are available in this form,
like the Nios microprocessor from Altera or the PICO blaze microprocessor
by Xilinx. IP protection for the FPGA vendor is difficult to achieve since
the block is provided as synthesizable HDL and can quite easily be used
with a competing FPGA tool/device set or a cell-based ASIC. The price of
third-party FPGA blocks provided in HDL is usually much higher than the
moderate pricing of the parameterized core discussed next.

Parameterized Core

A parameterized or firm core is a structural description of a component. The
parameters of the design can be changed before synthesis, but the HDL is
usually not available. The majority of cores provided by Altera and Xilinx
come in this type of core. They allow certain flexibility, but prohibit the
use of the core with other FPGA vendors or ASIC foundries and therefore
offers better IP protection for the FPGA vendors than soft cores. Examples
of parameterized cores available from Altera and Xilinx include an NCO, FIR
filter compiler, FFT (parallel and serial) and embedded processors, e.g., Nios
II from Altera. Another advantage of parameterized cores is that usually a
resource (LE, multiplier, block RAMs) is available that is most often correct
within a few percent, which allows a fast design space exploration in terms
of size/speed/power requirements even before synthesis. Testbenches in HDL
(for ModelSim simulator) that allow cycle-accurate modeling as well as C or
MATLAB scripts that allow behavior-accurate modeling are also standard for
parameterized cores. Code generation usually only takes a few seconds. Later
in this section we will study an NCO parameterized core and continue this
in later chapters (Chap. 3 on FIR filter and Chap. 6 on FFTs).

Hard Core

A hard core (fixed netlist core) is a physical description, provided in any of a
variety of physical layout formats like EDIF. The cores are usually optimized
for a specific device (family), when hard realtime constrains are required, like
for instance a PCI bus interface. The parameters of the design are fixed, like
a 16-bit 256-point FFT, but a behavior HDL description allows simulation
and integration in a larger project. Most third-party IP cores from FPGA
vendors and several free FFT cores from Xilinx use this core type. Since the
layout is fixed, the timing and resource data provided are precise and do not
depend on synthesis results. But the downside is that a parameter change is
not possible, so if the FFT should have 12- or 24-bit input data the 16-bit
256-point FFT block can not be used.

38 1. Introduction

IP Core Comparison and Challenges

If we now compare the different IP block types we have to choose between
design flexibility (soft core) and fast results and reliability of data (hard core).
Soft cores are flexible, e.g., change of system parameters or device/process
technology is easy, but may have longer debug time. Hard cores are verified in
silicon. Hard cores reduce development, test, and debug time but no VHDL
code is available to look at. A parameterized core is most often the best
compromise between flexibility and reliability of the generated core.

There are however two major challenges with current IP block technol-
ogy, which are pricing of a block and, closely related, IP protection. Because
the cores are reusable vendor pricing has to rely on the number of units of
IP blocks the customer will use. This is a problem known for many years in
patent rights and most often requires long licence agreements and high penal-
ties in case of customer misuse. FPGA-vendor-provided parameterized blocks
(as well as the design tool) have very moderate pricing since the vendor will
profit if a customer uses the IP block in many devices and then usually has
to buy the devices from this single source. This is different with third-party
IP block providers that do not have this second stream of income. Here the
licence agreement, especially for a soft core, has be drafted very carefully.

For the protection of parameterized cores FPGA vendor use FlexLM-
based keys to enable/disable single IP core generation. Evaluation of the
parameterized cores is possible down to hardware verification by using time-
limited programming files or requiring a permanent connection between the
host PC and board via a JTAG cable, allowing you to program devices and
verify your design in hardware before purchasing a licence. For instance, Al-
tera’s OpenCore evaluation feature allows you to simulate the behavior of
an IP core function within the targeted system, verify the functionality of
the design, and evaluate its size and speed quickly and easily. When you are
completely satisfied with the IP core function and you would like to take the
design into production, you can purchase a licence that allows you to gener-
ate non-time-limited programming files. The Quartus software automatically
downloads the latest IP cores from Altera’s website. Many third-party IP
providers also support the OpenCore evaluation flow but you have to contact
the IP provider directly in order to enable the OpenCore feature.

The protection of soft cores is more difficult. Modification of the HDL
to make them very hard to read, or embedding watermarks in the high-
level design by minimizing the extra hardware have been suggested [24]. The
watermark should be robust, i.e., a single bit change in the watermark should
not be possible without corrupting the authentication of the owner.

IP Core-Based NCO Design

Finally we evaluate the design process of an IP block in an example using the
case study from the last section, but this time our design will use Altera’s

1.4 Design Implementation 39

MegaWizard Plug-In Manager [page 2a] x| € NCO Compiler M -0l x|
Which megafunction would you like to customize? \which device family will you be Cyctore |l B
Select a megatunchion from the list below — “l
ERTY] rctalled Pluglne Which type of output fle do you want to creats?
2] Ahtera SOPC Buider o~ BHDL
@@ aithraetic & VHDL MegaCore
7] ARMBased Excalibur et
5 & Communications Visileg DL
- @l DSP "
B rd
&8 EvorDetection/Coneetion What name do you want for the autput fie Browse.., |
588 Filters [CDocuments and Seltings\Uweh e EJASPralftZ56, About this Core

i - AR Campier va 21
&3 Image & Videa Processing
£ @ Signal Generation

! NCO v2.22

Documentation
I™ Fetum to this page for ancther create operation

= @ Transforms
FFT+21.3 Mote: To compile a project successhully in the Quartus || software, .
o &8 gates your design files must be in the project directory, in the global user E Digplay Symbol
o & 110 lixveries specified in the Optians dislog bos (Tooks menw), of a user
) & ertaces ibrary specified in the User Libraries page of the Settings dislog

bax [Assignments ment)

+| & memory compiler R
5 “Yaur curtent user library directories are: *q Step 1
Iz SignalTap Il Logic Analyzer k Parameterize
b8 storage
0 IP MegaStors

Y step 2
.J SetUp Simulation

Stap 3
Generale

(a) (b)
Fig. 1.23. IP design of NCO (a) Library element selection. (b) IP toolbench.

Cancel | <Back | Mew> | Frne |

NCO Compiler MegaCore Functien v2.2.2

NCO core generator. The NCO compiler generates numerically controlled os-
cillators (NCOs) optimized for Altera devices. You can use the IP toolbench
interface to implement a variety of NCO architectures, including ROM-based,
CORDIC-based, and multiplier-based options. The MegaWizard also includes
time- and frequency-domain graphs that dynamically display the functional-
ity of the NCO based on the parameter settings. For a simple evaluation we
use the graphic design entry. Open a new project and BDF file, then double
click in the empty space in the BDF window and press the button MegaWizard
Plug-In Manager. In the first step select the NCO block in the MegaWizard
Plug-In Manager window, see Fig. 1.23a. The NCO block can by found in
the Signal Generation group under the DSP cores. We then select the de-
sired output format (AHDL, VHDL, or Verilog) and specify our working
directory. Then the IP toolbench pops up (see Fig. 1.23b) and we have ac-
cess to documentation and can start with step 1, i.e., the parametrization
of the block. Since we want to reproduce the function generator from the
last section, we select a 32-bit accumulator, 8 bit output precision, and the
use of a large block of RAM in the parameter window, see Fig. 1.24. As ex-
pected for an 8 bit output we get about 50 dB sidelope suppression, as can be
seen in the Frequency Domain Response plot in the lower part of the NCO
window. Phase dithering will make the noise more equally distributed, but
will require twice as many LEs. In the Implementation window we select
Single Output since we only require one sine but no cosine output as is
typical for 1/Q receivers, see Chap. 7. The Resource Estimation provides
as data 72 LEs, 2048 memory bits and one M4K block. After we are satisfied
with our parameter selection we then proceed to step 2 to specify if we want

40 1. Introduction

—inix
Parameters | Imp\emsnlaﬁun| Resource Esﬁmale'
Generation Alnorithm| -Precisions ~Phase Dithering
© Gmall ROM Al:cumu\a’mrPrE:isinnm I Implement Phase Dilhering
Angular Precision m _'_
& Lange ROM Magnitude Precision m e MIn” . ‘v‘m;:
rGaneratad Output Freguency Paramster
8 GE Clock Rate l»’ﬁ“_;ﬂm
Desired Qulput Frequency fe =l =]
C Mutiplier-Based Phass Incramant Value [hmmea

Frequency Domain Response | Time Domain Response

DR

0.1625 0326
Frequeacy z10° Hr

cancel | b | weie | pnen |

Fig. 1.24. IP parametrization of NCO core according to the data from the case
study in the previous section.

to generate behavior HDL code, which speeds up simulation time. Since our
block is small we deselect this option and use the full HDL generated code
directly. We can now continue with step 3, i.e., Generate on the Toolbench.
The listing in Table 1.12 gives an overview of the generated files.

We see that not only are the VHDL and Verilog files generated along with
their component file, but MATLAB (bit accurate) and ModelTech (cycle ac-
curate) testbenches are also provided to enable an easy verification path. We
decide to instantiate our block in the graphical design and connect the input
and outputs, see Fig. 1.25a. We notice that the block (outside that we have
asked for) has some additional useful control signal, i.e., reset, clken, and
data_ready, whose function is self-explanatory. All control signals are high
active. We start with a Functional simulation first and then proceed (after
a full compile) with the Timing simulation. With the full compile data avail-
able we can now compare the actual resource requirement with the estimate.
The memory requirement and block RAM predictions were correct, but for
the LEs with 86 LEs (actual) to 72LEs (estimated) we observe a 17% error
margin. Using the same value M = 715827883 as in our function generator
(see Fig. 1.21, p. 34) we get a period of 6 in the output signal, as shown in
Fig. 1.25b. We may notice a small problem with the IP block, since the output
is a signed value, but our D/A converter expects unsigned (or more precisely
binary offset) numbers. In a soft core we would be able to change the HDL
code of the design, but in the parameterized core we do not have this option.

1.4 Design Implementation

Table 1.12. IP file generation for the NCO core.

File Description
nco. bsf Quartus II symbol file for the IP core function varia-
’ tion
VHDL component declaration for the IP core function
nco.cmp S
variation
nco.html IP core function report file that lists all generated files
. AHDL include declaration file for the IP core function
nco.inc L
variation
nco.vec Quartus vector file
nco.vhd VHDL top-level description of the custom IP core
function
nco.vho VHDL IP functional simulation model
nco bb.v Verilog HDL black-box file for the IP core function

nco_inst.vhd
nco_model.m
nco_sin.hex
nco_st.v
nco_tb.m
nco_tb.v

nco_tb.vhd

nco_vho_msim.tcl

nco_wave.do

variation
VHDL sample instantiation file

MaTLAB M-file describing a MATLAB bit-accurate
model

Intel Hex-format ROM initialization file
Generated NCO synthesizable netlist
MATLAB Testbench

Verilog testbench

VHDL testbench

ModelSim T'CL Script to run the VHDL IP functional
simulation model in the ModelSim simulation soft-
ware

ModelSim waveform file

41

But we can solved this problem by attaching an adder with constant 128 to
the output that make it an offset binary representation. The offset binary is
not a parameter we could select in the block, and we encounter extra design
effort. This is a typical experience with the parameterized cores — the core
provide a 90% or more reduction in design time, but sometimes small extra
design effort is necessary to meet the exact project requirements.

Exercises

Note: If you have no prior experience with the Quartus II software, refer
to the case study found in Sect. 1.4.3, p. 29. If not otherwise noted use the

42 1. Introduction

ioixd

f phi_inc_if31..0) toin_off 0] [== : “T"‘,‘*'l;
sl da_ready | ———————— LTy

reset

clken

inet

(a)

T =loj x|
Mastex Time Bar. | Ops <[] Poirter: | 1347 ns Intervat | 1347 ns Start:| End

ps 10Pns 2005 e 40Pns 50Pns 600 ns |

N alue at : : : - - -
B Ops | [Pps
H

- ok B0
|z | reset BT
[chen E1
> M U 7156, 5827853
2| datares BO J
|| @ sn 50 T) AR EIE U S SIS G SR aIE S Gl
Lo L] & |0

(b)

Fig. 1.25. Testbench for NCO IP design (a) Instantiation of IP block in graphical
design. (b) Verification via simulation.

EP2C35F672C6 from the Cyclone II family for the Quartus II synthesis eval-
uations.

1.1: Use only two input NAND gates to implement a full adder:
(a) s=a®b®cin
(Note: =XOR)
(b) cout =a X b+ cin X (a+b)
(Note: +=0R; x=AND)
(c) Show that the two-input NAND is universal by implementing NOT, AND, and
OR with NAND gates.
(d) Repeat (a)-(c) for the two input NOR gate.
(e) Repeat (a)-(c) for the two input multiplexer f = zs’ + ys.

1.2: (a) Compile the HDL file example using the Quartus II compiler (see p. 15)
in the Functional mode. Start first the Simulation Tool under the Processing
menu. Then select Functional as Simulation mode and press the button Generate
Functional Simulation Netlist.

(b) Simulate the design using the file example.vwf.

(c¢) Compile the HDL file example using the Quartus II compiler with Timing.
Perform a full compilation using the Compiler Tool under the Processing menu.
Then select Timing as Simulation mode option in the the Simulation Tool.

(d) Simulate the design using the file example.vwf.

(e) Turn on the option Check Outputs in the simulator window and compare the
functional and timing netlists.

1.3: (a) Generate a waveform file for clk,a,b,opl that approximates that shown
in Fig. 1.26.

Exercises 43

_ioix|
Master Time Bar: ‘ Ops j_:l F'mnler:‘ 124.0ns Interval 124.0ns Start: End: ‘
" -0 dO‘pns 80.0ns 1200ns 193[3“! EEOIIJm 240,08
Mo dumal | EF : '
Dps JDe

EI B0 1] J 1 [1
o a usz k] 1 3
g b uz 2
vg opl uin 10 i 1] il
5| @ un I ¥ 2 ¥ 7) (D
5| =4 ug L | 5 X 0 4 iE] ¥ 12 X2
[2

Fig. 1.26. Waveform file for Example 1.1 on p. 15.

(b) Conduct a simulation using the HDL code example.
(c) Explain the algebraic relation between a,b,opl and sum,d.

1.4: (a) Compile the HDL file fun_text with the synthesis optimization technique
set to Speed, Balanced or Area that can be found in the Analysis & Synthesis
Settings under EDA Tool Settings in the Assignments menu.

(b) Evaluate Registered Performance and the LE’s utilization of the designs from
(a). Explain the results.

1.5: (a) Compile the HDL file fun_text with the synthesis Optimization
Technique set to Speed that can be found in the Analysis & Synthesis Settings
under EDA Tool Settings in the Assignments menu.

For the period of the clock signal

(I) 20ms,

(IT) 10ms,

(III) 5ns,

(IV) 3us,

use the waveform file fun_text.vwf and enable

(b) Setup and hold time violation detection,

(c) Glitch detection, and

(d)Check outputs.

Select one option after the other and not all three at the same time. For Check
outputs first make a Functional Simulation, then select Check outputs, and
perform then Timing simulation. Under Waveform Comparison Setting select sin
for comparison and deselect all other signals. Set the Default comparison timing
tolerance to <<default>>, i.e., halve the clock period or the falling edge of clock.
Click on the Report button in the Simulation Tool window if there are violation.

1.6: (a) Open the file fun_text.vwf and start the simulation.
(b) Select File—0Open to open the file sine.mif and the file will be displayed in
the Memory editor. Now select File—Save As and select Save as type: (*.hex)
to store the file in Intel HEX format as sine.hex.
(c) Change the fun_text HDL file so that it uses the Intel HEX file sine.hex for
the ROM table, and verify the correct results through a simulation.

1.7: (a) Design a 32-bit adder using the LPM_ADD_SUB macro with the Quartus II

software.
(b) Measure the Registered Performance and compare the result with the data

from Example 1.2 (p. 26).

44 1. Introduction

id[23:16]
id[15:8] .
idr7:0l nstanice
-1 d3
4:1 MUX 8-bit 8-bit shift —
register register |q[7] .
id[23:16] d3 5 idp(7:0] ——] qf— q[7:0]
id[15:8] @ - _
id[7:0] dr Y] d gq—={d q q[7:0]
idp[7:0] do —=| sl]

_ 1 :
s T T clk
clk ¢ st

st sl

(a) (b)
. =10j x|
Master Time Bar. | || peinter 50814 rs Intevat Start End
y Value 2t PP 2000 ns 4000 r 6000 ns 8000 ns 1.0u]
ame 2
s
ok BO
st B1
[ipd HXX b
id23.18) Hx 11} R
| [id15.8) H¥x g L 4 o
A| @ id7.0) H®X I ¢
s B ™ = T e = il =
o BO
Eaq H 0D 00 O 30 TR G GO T W @ e) m T @ YT wW
|

(c)

Fig. 1.27. PREP benchmark 1. (a) Single design. (b) Multiple instantiation. (c)
Testbench to check the function.

1.8: (a) Design the PREP benchmark 1, as shown in Fig. 1.27a with the Quar-
tus II software. PREP benchmark no. 1 is a data path circuit with a 4-to-1 8-bit
multiplexer, an 8-bit register, followed by a shift register that is controlled by a
shift /load input sl. For s1=1 the contents of the register is cyclic rotated by one
bit, i.e., g(k) = q(k—1),1 < k <7 and ¢(0) <= ¢(7). The reset rst for all flip-flops
is an asynchronous reset and the 8-bit registers are positive-edge triggered via clk,
see the simulation in Fig. 1.27c for the function test.

(b)Determine the Registered Performance and the used resources (LEs, multi-
pliers, and M2Ks/M4Ks) for a single copy. Compile the HDL file with the synthe-
sis Optimization Technique set to Speed, Balanced or Area; this can be found
in the Analysis & Synthesis Settings section under EDA Tool Settings in the
Assignments menu. Which synthesis options are optimal in terms of size and
Registered Performance?

Select one of the following devices:

(b1) EP2C35F672C6 from the Cyclone II family

(b2) EPF10K70RC240-4 from the Flex 10K family

(b3) EPM7128LC84-7 from the MAX7000S family

(c) Design the multiple instantiation for benchmark 5 as shown in Fig. 1.27b.

(d) Determine the Registered Performance and the used resources (LEs, multipli-
ers, and M2Ks/M4Ks) for the design with the maximum number of instantiations
of PREP benchmark 1. Use the optimal synthesis option you found in (b) for the
following devices:

(d1) EP2C35F672C6 from the Cyclone II family

(d2) EPF10K70RC240-4 from the Flex 10K family
(d3) EPM7128LC84-7 from the MAX7000S family

Exercises 45

2:1 MUX data2[7:0 ey = = = = = = =
datal[7:0)] e——1 | Counter S First Second . Last
Register data0[7:0] instance
—— 4 q
data2(7:0] —g@g—pm-| d !0 " L] data2(7:0] | L—m=] data2(7:0] | L—m=] data2(7:0]
dp ao data0[7:0] data0[7:0]f 4 data0[7:0] frmmii—
= datal [7:0 prg-| datal[7:0] —|—> datal[7:0] | = 4] datal[7:0] | dataO[7:0]
] —
sel T
st
clk
Register
Idcomp ----
L
q sel . T

(b)

P [=1 5|
Master Time Bar: |] Painter: 496308 Intervat | Start: | End:
PP | ps B00ns 1600ns 2400ns 3200ns 4000ns 4B00ns S600ne 6400ns 7200ns @000ns 6900ns 9600ns |
Name e
ok uo
[ut T 1
@ datal HXx e X il
data2 Ho = X 05 iy R
ldpre uo 1
start H oo [1] [i]
By H OO 0 05 X T3
sel uo [
ldeomp uo 1
7| @ stop HFF i i)
dasl HOD
1]

(c)

Fig. 1.28. PREP benchmark 2. (a) Single design. (b) Multiple instantiation. (c)
Testbench to check the function.

1.9: (a) Design the PREP benchmark 2, as shown in Fig. 1.28a with the Quar-
tus II software. PREP benchmark no. 2 is a counter circuit where 2 registers are
loaded with start and stop values of the counter. The design has two 8-bit regis-
ter and a counter with asynchronous reset rst and synchronous load enable signal
(1d, ldpre and ldcomp) and positive-edge triggered flip-flops via c1k. The counter
can be loaded through a 2:1 multiplexer (controlled by the sel input) directly from
the datal input or from the register that holds data2 values. The load signal of
the counter is enabled by the equal condition that compares the counter value data
with the stored values in the 1dcomp register. Try to match the simulation in Fig.
1.28¢c for the function test. Note there is a mismatch between the original PREP
definition and the actual implementation: We can not satisfy, that the counter start
counting after reset, because all register are set to zero and 1d will be true all the
time, forcing counter to zero. Also in the simulation testbench signal value have
been reduced that simulation fits in a 1 us time frame.

(b) Determine the Registered Performance and the used resources (LEs, multi-
pliers, and M2Ks/M4Ks) for a single copy. Compile the HDL file with the synthe-
sis Optimization Technique set to Speed, Balanced or Area; this can be found
in the Analysis & Synthesis Settings section under EDA Tool Settings in the
Assignments menu. Which synthesis options are optimal in terms of size and
Registered Performance?

Select one of the following devices:

(b1) EP2C35F672C6 from the Cyclone II family

(b2) EPF10K70RC240-4 from the Flex 10K family

(b3) EPM7128LC84-7 from the MAX7000S family

46 1. Introduction

(c) Design the multiple instantiation for benchmark 2 as shown in Fig. 1.28b.

(d) Determine the Registered Performance and the used resources (LEs, multipli-
ers, and M2Ks/M4Ks) for the design with the maximum number of instantiations
of PREP benchmark 2. Use the optimal synthesis option you found in (b) for the
following devices:

(d1) EP2C35F672C6 from the Cyclone II family

(d2) EPF10K70RC240-4 from the Flex 10K family

(d3) EPM7128LC84-7 from the MAX7000S family

1.10: Use the Quartus II software and write two different codes using the structural
(use only one or two input basic gates, i.e., NOT, AND, and OR) and behavioral HDL
styles for:

(a) A 2:1 multiplexer

(b) An XNOR gate

(c) A half-adder

(d) A 2:4 decoder (demultiplexer)

Note for VHDL designs: use the a_74xx Altera SSI component for the structural
design files. Because a component identifier can not start with a number Altera has
added the a_ in front of each 74 series component. In order to find the names
and data types for input and output ports you need to check the library file
libraries\vhdl\altera\MAXPLUS2.VHD in the Altera installation path. You will
find that the library uses STD_LOGIC data type and the names for the ports are a_1,
a_2, and a_3 (if needed).

(e) Verify the function of the design(s) via

(el) A Functional simulation.

(e2) The RTL viewer that can be found under the Netlist Viewers in the Tools
menu.

1.11: Use the Quartus II software language templates and compile the HDL designs
for:
(a) A tri-state buffer
(b) A flip-flop with all control signals
(c) A counter
(d) A state machine with asynchronous reset
Open a new HDL text file and then select Insert Template from the Edit menu.
(e) Verify the function of the design(s) via
(el) A Functional simulation
(e2) The RTL viewer that can be found under the Netlist Viewers in the Tools
menu

1.12: Use the search option in Quartus II software help to study HDL designs for:
(a) The 14 counters, see search—implementing sequential logic
(b) A manually specifying state assignments, Search—enumsmch
(c) A latch, Search—latchinf
(d) A one’s counter, Search—proc—Using Process Statements
(e) A implementing CAM, RAM & ROM, Search—ram256x8
(f) A implementing a user-defined component, Search—reg24
(g) Implementing registers with clr, load, and preset, Search—reginf
(h) A state machine, Search—state_machine—Implementing. ..
Open a new project and HDL text file. Then Copy/Paste the HDL code, save and
compile the code. Note that in VHDL you need to add the STD LOGIC 1164 IEEE
library so that the code runs error free.
(i) Verify the function of the design via
(i1) A Functional simulation

Exercises 47

(i2) The RTL viewer that can be found under the Netlist Viewers in the Tools
menu

1.13: Determine if the following VHDL identifiers are valid (true) or invalid (false).
(a) VESIC (b) h333 (c) A_B_C
(d) xyz (e) N#3 (f) My-name
(g) BEGIN (h) A B (i) ENTITI

1.14: Determine if the following VHDL string literals are valid (true) or invalid
(false).

(a) B"11_00" (b) 0"5678" (c) o"o_1_2"
(d) x"5678" (e) 16#FfF# (f) 10#007#
(g) 5#12345# (h) 2#0001_1111_# (i) 2#00_o0#

1.15: Determine the number of bits necessary to represent the following integer
numbers.

(a) INTEGER RANGE 10 TO 20;

(b) INTEGER RANGE -2%*6 TO 2%*4-1;

(c) INTEGER RANGE -10 TO -5;

(d) INTEGER RANGE -2 TO 15;

Note that ** stand for the power-of symbol.

1.16: Determine the error lines (Y/N) in the VHDL code below and explain what

is wrong, or give correct code.

VHDL code Error | Give reason
(Y/N)

LIBRARY ieee; /* Using predefined packages */
ENTITY error is

PORTS (x: in BIT; c: in BIT;

Z1: out INTEGER; z2 : out BIT);
END error
ARCHITECTURE error OF has IS
SIGNAL s ; w : BIT;
BEGIN

w = C;

Z1 <= x;

P1: PROCESS (x)

BEGIN

IF c=’1’ THEN
x <= z2;

END PROCESS PO;

END OF has;

1.17: Determine the error lines (Y/N) in the VHDL code below, and explain what
is wrong, or give correct code.

48 1. Introduction

VHDL code Error | Give reason
(Y/N)

LIBRARY ieee; /* Using predefined packages */
USE altera.std_logic_1164.ALL;
ENTITY srhiftreg IS
GENERIC (WIDTH : POSITIVE = 4);
PORT(clk, din : IN STD_LOGIC;
dout : OUT STD_LOGIC);

END;
ARCHITECTURE a OF shiftreg IS
COMPONENT d_f£ff
PORT (clock, d : IN std_logic;
q : OUT std_logic);
END d_f£ff;
SIGNAL b : logic_vector(0 TO witdh-1);
BEGIN
dl: d_ff PORT MAP (clk, b(0), din);
gl: FOR j IN 1 TO width-1 GENERATE
d2: d-ff
PORT MAP(clk => clock,
din => b(3-1),
q => b(G));
END GENERATE d2;
dout <= b(width);
END a;

1.18: Determine for the following process statements
(a) the synthesized circuit and label I/O ports
(b) the cost of the design assuming a cost 1 per adder/subtractor
(c) the critical (i.e., worst-case) path of the circuit for each process. Assume a delay
of 1 for an adder or subtractor.

-- QUIZ VHDL2graph for DSP with FPGAs
LIBRARY ieee; USE ieee.std_logic_1164.ALL;
USE ieee.std_logic_arith.ALL;

USE ieee.std_logic_unsigned.ALL;

ENTITY qv2g IS
PORT(a, b, c, d : IN std_logic_vector(3 DOWNTO 0);
u, v, w, X, y, z : OUT std_logic_vector(3 DOWNTO 0));
END;
ARCHITECTURE a OF qv2g IS BEGIN

PO: PROCESS(a, b, c, d)
BEGIN

u<=a+b-c+d;
END PROCESS;

P1: PROCESS(a, b, c, d)
BEGIN

v<=(a+b) - (c-4d);
END PROCESS;

P2: PROCESS(a, b, ¢)

Exercises 49

BEGIN
w<=a+b+c;
x <= a-Db-c;
END PROCESS;

P3: PROCESS(a, b, ¢)
VARIABLE t1 : std_logic_vector(3 DOWNTO 0);
BEGIN
tl := Db + c;
y <= a + ti;
z <= a - ti;
END PROCESS;

END;

i slv_pack_tb.vhd* =] 4]
LIBRARY ieee; -
USE ieee.std_logic_116%.ALL;

USE ieee_std_logic_arith.ALL;
USE ieee.std_logic_signed.ALL;
LIBRARY work;
use work.slu_pack.all;
entity SLU_PACK_TB is
port (A :z in STD_LOGIC_VECTOR(7 dounto 8);
ZLONG, SLONG : out STD_LOGIC_UECTOR(31 downto 8);
2SHORT, SSHORT : out STD_LOGIC_VECTOR(15 dounto 8);
A2, A6, Adivz, Adius, A3divk : out STD_LOGIC_UECTOR(Z dounto 0));
end;
architecture test of SLU_PACK_TB is
begin
ZLONE <= zero_ext(A,32); ZSHORT <= zero_ext{A,16);
SLONE <= sign_ext(n,32); SSHORT <= sign_ext{A,16);
A2 <= A =2 ;A6 <= N =2+ A =4 Adiv2 <= N / 2;
Adivk <= A / b; A3divh <= A / 2 + A / b3
end test;

(a) KN} i
Bishv_pack_thwk - o] x|
Master Time Bar: 4| v |Pointer | 41044 s Interval: Start: End‘

ps 200,0ns 400,0ne 600,0 s 800,0ns 10us
Valu... L L L L
Hams Dps

[A 510 10 -10 X 20 b 20

|| @ 22 520 20 20 X 0 b ED

5P| @ Adive 57 7 B X 15 % 5 b

|=2| @ a5 580 [} 0)4 120 b -120

|| B Advz 55 5 h¢ 5 X [e 0

|| [Adive 52 H 3 5 X 5

|| @ sLonc 510 10 10 b4 Z0 b 20

|55 | SSHORT 510 10 1] X 20 b 20 1

|&¢| @ zonG 510 10 24] b 236

|| @ zsHORT S10 0 246 W 20 b 236

(b)

Fig. 1.29. STD LOGIC VECTOR package testbench. (a) HDL code. (b) Functional
simulation result.

1.19: (a) Develop a functions for zero- and sign extension called
zero_ext (ARG,SIZE) and sign_ext(ARG,SIZE) for the STD_LOGIC_VECTOR
data type.

(b) Develop “#” and “/” function overloading to implement multiply and divide
operation for the STD_LOGIC_VECTOR data type.
(c) Use the testbench shown in Fig. 1.29 to verify the correct functionality.

50 1. Introduction

shift_pack_tb.vhd* T =01 x|
LIBRARY iece;

USE ieee.std_logic_1164.ALL; USE ieee.std_logic_arith.ALL;
USE ieee.std_logic_signed.ALL;

LIBRARY work; use work.shift_pack.all;

entity shift_pack_tb is
port (A : in STD_LOGIGC_VECTOR(7 downto B);

SHIFT : in integer;

SLL2, SLA2, SRLZ, SRA2 : out STD_LOGIG_UVECTOR(? downto @));
end;

architecture test of shift_pack_tb is
begin
process (SHIFT, R)
begin
if SHIFT = -2 then
SLL2 <= A s11 -2; SLA2Z <= A s5la -2;
SRL2 <= A srl -2; SRA2 {= A sra -2;
else
SLL2 <= A s11 2; SLA2 <= A sla 2;
SRL2 <= A srl 2; SRA2 {= A sra 2;
end if;
end process;
end test;

& =10
Master Time J_l Fainter |4U.2? ng Interval Start End |
ps |
Value at
Mame Dps
e SHIFT 52] \ 2
=d A B 11100772 T1002ZZ
= SLAZ B 10027277 00 b 11117002
|| @ sz B 100ZZZ00 10022200)4 02111002
= SRAZ BT111100Z 111002 ¥ 100
= SRL2 B 00111002 00111002 ¥ T00ZZZ00
shift 2 St 2
4 »
(b) - L

Fig. 1.30. STD LOGIC VECTOR shift library testbench. (a) HDL code. (b) Functional
simulation result.

=

.20: (a) Design a function library for the STD_LOGIC_VECTOR data type that im-
plement the following operation (defined in VHDL only for the bit_vector data
type):

(a) sr1 (b)sra (c)sll (d) sla

(e) Use the testbench shown in Fig. 1.30 to verify the correct functionality. Note
the high impedance values Z that are part of the STD_LOGIC_VECTOR data type but
are not included in the bit_vector data type. A left/right shift by a negative value
should be replaced by the appropriate right/left shift of the positive amount inside
your function.

1.21: Determine for the following PROCESS statements the synthesized circuit type
(combinational, latch, D-flip-flop, or T-flip-flop) and the function of a, b, and «c,
i.e., clock, a-synchronous set (AS) or reset (AR) or synchronous set (SS) or reset
(SR). Use the table below to specify your classification.

LIBRARY ieee; USE ieee.std_logic_1164.ALL;

ENTITY quiz IS
PORT(a, b, ¢ : IN std_logic;

Exercises

d : IN std_logic_vector(0 TO 5);
q : BUFFER std_logic_vector(0 TO 5));
END quiz;

ARCHITECTURE a OF quiz IS BEGIN

PO: PROCESS (a)
BEGIN
IF rising_edge(a) THEN
q(0) <= d(0);
END IF;
END PROCESS PO;

P1: PROCESS (a, d)
BEGIN
IF a= ’1’ THEN q(1) <= d(1);
ELSE q(1) <= ’17;
END IF;
END PROCESS Pi;

P2: PROCESS (a, b, c, d)
BEGIN
IF a = 1’ THEN q(2) <= ’0’;
ELSE IF rising_edge(b) THEN
IF ¢ = ’1’ THEN q(2) <= ’1’;
ELSE q(2) <= d(1);
END IF;
END IF;
END IF;
END PROCESS P2;

P3: PROCESS (a, b, d)
BEGIN
IF a = ’1’ THEN q(3) <= ’1°;
ELSE IF rising_edge(b) THEN
IF ¢ = ’1’ THEN q(3) <= ’0’;
ELSE q(3) <= not q(3);
END IF;
END IF;
END IF;
END PROCESS P3;

P4: PROCESS (a, d)

BEGIN
IF a = ’1’ THEN q(4) <= d(4);
END IF;

END PROCESS P4;

P5: PROCESS (a, b, d)
BEGIN
IF rising_edge(a) THEN
IF b = 1’ THEN q(5) <= ’07;
ELSE q(5) <= d(5);
END IF;
END IF;

51

52 1. Introduction

END PROCESS P5;

Process

Circuit
type

CLK

AS

AR

SS

SR

PO
P1
P2
P3
P4
P5
P6

1.22: Given the following MATLAB instructions,

a=-1:2:5
b=[ones(1,2) ,zeros(1,2)]

c=ax*a’
d=a.*a
e=a’*a

f=conv(a,b)
g=fft(b)

h=ifft(fft(a).*xfft (b))

determine a-h.

2. Computer Arithmetic

2.1 Introduction

In computer arithmetic two fundamental design principles are of great impor-
tance: number representation and the implementation of algebraic operations
[25, 26, 27, 28, 29]. We will first discuss possible number representations,
(e.g., fixed-point or floating-point), then basic operations like adder and mul-
tiplier, and finally efficient implementation of more difficult operations such
as square roots, and the computation of trigonometric functions using the
CORDIC algorithm or MAC calls.

FPGAs allow a wide variety of computer arithmetic implementations for
the desired digital signal processing algorithms, because of the physical bit-
level programming architecture. This contrasts with the programmable dig-
ital signal processors (PDSPs), with the fixed multiply accumulator core.
Careful choice of the bit width in FPGA design can result in substantial
savings.

[NUMBER SYSTEMS]|

Floating—point

| conventional | |unc0nventional| | conventional | |unc0nventi0nal|
Unsigned integer Signed digit 32-bit IEEE 18 Bit
Two’s complement Fractional 64-bit IEEE Splash II
One’s complement Logarithmic format
Signed magnitude RNS

Diminished by one

Fig. 2.1. Survey of number representations.

54 2. Computer Arithmetic

2.2 Number Representation

Deciding whether fixed- or floating-point is more appropriate for the problem
must be done carefully, preferably at an early phase in the project. In general,
it can be assumed that fixed-point implementations have higher speed and
lower cost, while floating-point has higher dynamic range and no need for
scaling, which may be attractive for more complicated algorithms. Figure 2.1
is a survey of conventional and less conventional fixed- and floating-point
number representations. Both systems are covered by a number of standards
but may, if desired, be implemented in a proprietary form.

2.2.1 Fixed-Point Numbers

We will first review the fixed-point number systems shown in Fig. 2.1. Table
2.1 shows the 3-bit coding for the 5 different integer representations.

Unsigned Integer

Let X be an N-bit unsigned binary number. Then the range is [0,2"Y — 1]
and the representation is given by:

N—-1
X=> 22", (2.1)
n=0

where z,, is the n'! binary digit of X (i.e., ,, € [0, 1]). The digit z¢ is called
the least significant bit (LSB) and has a relative weight of unity. The digit
xn_1 is the most significant bit (MSB) and has a relative weight of 2V 1.

Signed-Magnitude (SM)

In signed-magnitude systems the magnitude and the sign are represented
separately. The first bit xy_1 (i.e., the MSB) represents the sign and the
remaining N — 1 bits the magnitude. The representation becomes:

N=2 on S
— > o Tn2" X<0.

The range of this representation is [—(2V =1 —1),2¥~! —1]. The advantage of
the signed-magnitude representation is simplified prevention of overflows, but
the disadvantage is that addition must be split depending on which operand
is larger.

2.2 Number Representation 55

Two’s Complement (2C)

An N-bit two’s complement representation of a signed integer, over the range
[-2N=1 2N=1 _ 1] is given by:

PO X>0
X == _ N—-1 N—-2 n (2.3)
2 + > o Tn2 X<0.

The two’s complement (2C) system is by far the most popular signed
numbering system in DSP use today. This is because it is possible to add
several signed numbers, and as long as the final sum is in the N-bit range,
we can ignore any overflow in the arithmetic. For instance, if we add two
3-bit numbers as follows

310 +— 01 1x¢
—2190 11 0oc
110 «— 1.00 120

the overflow can be ignored. All computations are modulo 2. It follows that
it is possible to have intermediate values that can not be correctly repre-
sented, but if the final value is valid then the result is correct. For instance,
if we add the 3-bit numbers 2+ 2 — 3, we would have an intermediate value of
010 + 010 = 1002¢, i.e., —419, but the result 100 — 011 = 100 + 101 = 0015¢
is correct.

Two’s complement numbers can also be used to implement modulo 2V
arithmetic without any change in the arithmetic. This is what we will use in
Chap. 5 to design CIC filters.

One’s Complement (1C)

An N-bit one’s complement system (1C) can represent integers over the range
[—(2V=1 4+1),2¥~1 — 1]. In a one’s complement code, positive and negative
numbers have bit-by-bit complement representations including for the sign
bit. There is, in fact a redundant representation of zero (see Table 2.1). The
representation of signed numbers in a 1C system is formally given by:

X = Yno Tn2" X=20 (2.4)
NSl N2 om X< '

For example, the three-bit 1C representation of the numbers —3 to 3 is shown
in the third column of Table 2.1.
From the following simple example

56 2. Computer Arithmetic

310 0 1lc
—210 «— 1 014¢
110 — 1. 00 01(}
Carry — — — 110
lyg +— 0 01i¢

we remember that in one’s complement a “carry wrap-around” addition is
needed. A carry occurring at the MSB must be added to the LSB to get the
correct final result.

The system can, however, efficiently be used to implement modulo 2V — 1
arithmetic without correction. As a result, one’s complement has specialized
value in implementing selected DSP algorithms (e.g., Mersenne transforms
over the integer ring 2V — 1; see Chap. 7).

Diminished One System (D1)

A diminished one (D1) system is a biased system. The positive numbers are,
compared with the 2C, diminished by 1. The range for (N +1)-bit D1 numbers

is [-2N 1 2V~1] excluding 0. The coding rule for a D1 system is defined as
follows:
SN2 r,2m 41 X>0
X=q —oN- 1y N2pon X<0 (2.5)
2N X=0.

From adding two D1 numbers

310 «— 0 10p1
—210 — 1 1 ODl
110 — 1. 00 0[)1
Carry c—>‘><—1‘HOD1
lip «— 0 00p1

we see that, for D1 a complement and add of the inverted carry must be
computed.

D1 numbers can efficiently be used to implement modulo 2V 41 arithmetic
without any change in the arithmetic. This fact will be used in Chap. 7 to
implement Fermat NTTs in the ring 2V 4 1.

Bias System

The biased number system has a bias for all numbers. The bias value is
usually in the middle of the binary range, i.e., bias = 2V¥~1 — 1. For a 3-bit
system, for instance the bias would be 23~! — 1 = 3. The range for N-bit
biased numbers is [-2V 1 — 1,2V 1], Zero is coded as the bias. The coding
rule for a biased system is defined as follows:

2.2 Number Representation 57

Table 2.1. Conventional coding of signed binary numbers.

Binary 2C 1C D1 SM Bias

011 3 3 4 3 0

010 2 2 3 2 -1

001 1 1 2 1 -2

000 0 0 1 0 -3

111 -1 -0 -1 -3 4

110 —2 -1 -2 -2 3

101 -3 -2 -3 -1 2

100 —4 -3 —4 -0 1

1000 - - 0 - -
N-1

X =) 2,2" - bias. (2.6)

n=0

From adding two biased numbers

310 — 11 Obias
+(_210) A 00 Ipias
419 11 Ipias
—bias «— 01 lpjas
lip «— 10 Opjas

we see that, for each addition the bias needs to be subtracted, while for every
subtraction the bias needs to be added.

Bias numbers can efficiently be used to simplify comparison of numbers.
This fact will be used in Sect. 2.2.3 (p. 71) for coding the exponent of floating-
point numbers.

2.2.2 Unconventional Fixed-Point Numbers

In the following we continue the review of number systems according to
Fig. 2.1 (p. 53). The unconventional fixed-point number systems discussed in
the following are not as often used as for instance the 2C system, but can
yield significant improvements for particular applications or problems.

Signed Digit Numbers (SD)

The signed digit (SD) system differs from the traditional binary systems
presented in the previous section in the fact that it is ternary valued (i.e.,
digits have the value {0,1,—1}, where —1 is sometimes denoted as 1).

SD numbers have proven to be useful in carry-free adders or multipliers
with less complexity, because the effort in multiplication can typically be

58 2. Computer Arithmetic

estimated through the number of nonzero elements, which can be reduced
by using SD numbers. Statistically, half the digits in the two’s complement
coding of a number are zero. For an SD code, the density of zeros increases
to two thirds as the following example shows:

Example 2.1: SD Coding

Consider coding the decimal number 15 = 11115 using a 5-bit binary and an
SD code. Their representations are as follows:

1) 1510 = 1610 — 110 = 10001sp

2) 1510 = 1610 — 210 + 110 = 10011sp

3) 1510 = 1610 — 410 + 310 = 10111sp

4) etc.

The SD representation, unlike a 2C code, is nonunique. We call a canonic
signed digit system (CSD) the system with the minimum number of non-zero
elements. The following algorithm can be used to produce a classical CSD
code.

Algorithm 2.2: Classical CSD Coding

Starting with the LSB substitute all 1 sequences equal or larger than two,
with 10...01.

This CSD coding is the basis for the C utility program csd3e.exe! on the
CD-ROM. This classical CSD code is also unique and an additional property
is that the resulting representation has at least one zero between two digits,
which may have values 1, 1, or 0.

Example 2.3: Classical CSD Code

Consider again coding the decimal number 15 using a 5-bit binary and a CSD
code. Their representations are: 11112 = 10001 csp. We notice from a compar-
ison with the SD coding from Example 2.1 that only the first representation
is a CSD code.

As another example consider the coding of

2710 = 110112 = 11101sp = 100101 csp. (2.7)
We note that, although the first substitution of 011 — 101 does not reduce

the complexity, it produces a length-three strike, and the complexity reduces
from three additions to two subtractions.

On the other hand, the classical CSD coding does not always produce the
optimal CSD coding in terms of hardware complexity, because in Algorithm
2.2 additions are also substituted by subtractions, when there should be no
such substitution. For instance 0115 is coded as 101¢sp, and if this coding is
used to produce a constant multiplier the subtraction will need a full-adder

! You need to copy the program to your harddrive first because the program writes
out the results in a file csd.dat; you can not start it from the CD directly.

2.2 Number Representation 59

instead of a half-adder for the LSB. The CSD coding given in the following
will produce a CSD coding with the minimum number of nonzero terms, but
also with the minimum number of subtractions.

Algorithm 2.4: Optimal CSD Coding
1) Starting with the LSB substitute all 1 sequences larger than two with

10...01. Also substitute 1011 with 1101.
2) Starting with the MSB, substitute 101 with 011.

Fractional (CSD) Coding

Many DSP algorithms require the implementation of fractional numbers.
Think for instance of trigonometric coefficient like sine or cosine coefficients.
Implementation via integer numbers only would result in a large quantiza-
tion error. The question then is, can we also use the CSD coding to reduce
the implementation effort of a fractional constant coefficient? The answer is
yes, but we need to be a little careful with the ordering of the operands. In
VHDL the analysis of an expression is usually done from left to right, which
means an expression like y = 7 x /8 is implemented as y = (7 x x)/8, and
equivalently the expression y = x/8 x 7 is implemented as y = (z/8) x 7. The
latter term unfortunately will produce a large quantization error, since the
evaluation of x/8 is in fact synthesized by the tool? as a right shift by three
bits, so we will lose the lower three bits of our input z in the computation
that follows. Let us demonstrate this with a small HDL design example.

Example 2.5: Fractional CSD Coding

Consider coding the fractional decimal number 0.875 = 7/8 using a fractional
4-bit binary and CSD code. The 7 can be implemented more efficiently in CSD
as 7= 8—1 and we want to determine the quantization error of the following
four mathematically equivalent representations, which give different synthesis
results:

y0=7Txz/8=(7Txx)/8

yl=x/8x 7= (x/8) x 7

y2=z/2+z/4+ /8 = ((x/2) + (z/4)) + (z/8)

y3=z—z/8 =z — (z/8)
Using parenthesis in the above equations it is shown how the HDL tool will
group the expressions. Multiply and divide have a higher priority than add
and subtract and the evaluation is from left to right. The VHDL code® of the
constant coeflicient fractional multiplier is shown next.

ENTITY cmul7p8 IS ~ —==——= > Interface
PORT (X : IN INTEGER RANGE -2**4 TO 2%*4-1;

2 Most HDL tools only support dividing by power-of-2 values, which can be de-
signed using a shifter, see Sect. 2.5, p. 91.

3 The equivalent Verilog code cmul7p8.v for this example can be found in Ap-
pendix A on page 665. Synthesis results are shown in Appendix B on page 731.

60 2. Computer Arithmetic

N emul 7p8.vwi

=T

1.0us

Master Time Bar, ‘ Ops I F‘u\nler:‘ 195.05 ns Interval 185 ns Start Ops End:

ps 1000ns 2000ns a000ns 4M0fns GO0fins EOOOns 7000ns B000ns 8000ns

Moo | VAt]]] | ;] ! | ;

Ops EDS

IE H = 50 1 ‘,(2 X 4)(a 5(15 X 1 }' -2)(4 ‘:(-8 ‘,(-16
i | il S0 + SRS S R SR G A SR S R SR SR R SR A S L
EINER 50 T 7 T 7 iD
=4 2 50] [] LD SR G G D G- G GNR!]
=2 ¥3 S0 1 D S G SR G| z EI A T
Kl i | K1 | ¥
Fig. 2.2. Simulation results for fraction CSD coding.

y0, y1, y2, y3 : OUT INTEGER RANGE -2+%*4 TO 2%*4-1);
END;

ARCHITECTURE fpga OF cmul7p8 IS
BEGIN

yO <=7 * x / 8;

yl <=x/ 8 %7,

y2 <= x/2 + x/4 + x/8;
y3 <= x - x/8;

END fpga;

The design uses 48 LEs and no embedded multiplier. A Registered Perfor-
mance can not be measured since there is no register-to-register path. The
simulated results of the fractional constant coefficient multiplier is shown
in Fig. 2.2. Note the large quantization error for y1. Looking at the results
for the input value x = 4, we can also see that the CSD coding y3 shows
rounding to the next largest integer, while yO and y2 show rounding to the
next smallest integer. For negative value (e.g., —4) we see that the CSD
coding y3 shows rounding to the next smallest (i.e., —4) integer, while y0
and y2 show rounding to the next largest (i.e., —3) integer.

Carry-Free Adder

The SD number representation can also be used to implement a carry-free
adder. Tagaki et al. [30] introduced the scheme presented in Table 2.2. Here,
uy, is the interim sum and ¢y, is the carry of the k'™ bit (i.e., to be added to
Uk+1)-

Example 2.6: Carry-Free Addition
The addition of 29 to —9 in the SD system is performed below.

2.2 Number Representation 61

Table 2.2. Adding carry-free binaries using the SD representation.

TrYk 00 01 01 01 01 11 11
Tp—1Yk—1 — neither at least neither at least — —
is 1 one is 1 is 1 one is 1

Ck 0 1 0 0 1 1 1

Uk 0 1 1 1 1 0 0
100101 xg
+ 011111y
000111 ¢
111010 ug
110100 s

However, due to the ternary logic burden, implementing Table 2.2 with
FPGAs requires four-input operands for the ¢, and uy. This translates into
a 28 x 4-bit LUT when implementing Table 2.2.

Multiplier Adder Graph (MAG)

We have seen that the cost of multiplication is a direct function of the number
of nonzero elements ay, in A. The CSD system minimizes this cost. The CSD is
also the basis for the Booth multiplier [25] discussed in Exercise 2.2 (p. 154).

It can, however, sometimes be more efficient first to factor the coefficient
into several factors, and realize the individual factors in an optimal CSD sense
[31, 32, 33, 34]. Figure 2.3 illustrates this option for the coefficient 93. The
direct binary and CSD codes are given by 9319 = 10111015 = 1100101¢sp,

x[n]

93 93x[n] x[n] Is 131 93x[n]
x[n] — ()= 93x[n] x[n] —¢ e (% 93x[n]
>

3>~

s>

Fig. 2.3. Two realizations for the constant factor 93.

62 2. Computer Arithmetic

with the 2C requiring four adders, and the CSD requiring three adders. The
coefficient 93 can also be represented as 93 = 3 x 31, which requires one adder
for each factor (see Fig. 2.3). The complexity for the factor number is reduced
to two. There are several ways to combine these different factors. The number
of adders required is often referred to as the cost of the constant coefficient
multiplier. Figure 2.4, suggested by Dempster et al. [33], shows all possible
configurations for one to four adders. Using this graph, all coefficients with a
cost ranging from one to four can be synthesized with k; € Ny, according to:

Cost 1: 1) A = 2ko(2F1 £ 2k2)
Cost 2: 1) = 2ko (21 £ 2k2 4 oks)

2) = 2ko(2k1 £ gk2)(2ks 4 oks)
Cost 3: 1) A*2“@h12b12“i2h)

Using this technique, Table 2.3 shows the optimal coding for all 8-bit
integers having a cost between zero and three [5].

Logarithmic Number System (LINS)

The logarithmic number system (LNS) [35, 36] is analogous to the floating-
point system with a fixed mantissa and a fractional exponent. In the LNS, a
number z is represented as:

X = frtes, (2.8)

where r is the system’s radix, and e, is the LNS exponent. The LNS format
consists of a sign-bit for the number and exponent, and an exponent assigned
I integer bits and F’ fractional bits of precision. The format in graphical form
is shown below:

Sign | Exponent | Exponent integer | Exponent fractional
Sx sign S, bits bits F'

The LNS, like floating-point, carries a nonuniform precision. Small values of
x are highly resolved, while large values of x are more coarsely resolved as
the following example shows.

Example 2.7: LNS Coding

Consider a radix-2 9-bit LNS word with two sign-bits, three bits for inte-
ger precision and four-bit fractional precision. How can, for instance, the
LNS coding 00011.0010 be translated into the real number system? The
two sign bits indicate that the whole number and the exponent are positive.
The integer part is 3 and the fractional part 27% = 1/8. The real num-
ber representation is therefore 2311/8 = 23125 — 8794, We find also that
—23125 — 10011.0010 and 273125 = 01 100.1110. Note that the exponent is
represented in fractional two’s complement format. The largest number that
can be represented with this 9-bit LNS format is 2871/ ~ 28 = 256 and

2.2 Number Representation 63

Costl 2 3 4

1 A2

Fig. 2.4. Possible cost one to four graphs. Each node is either an adder or subtractor
and each edge is associated with a power-of-two factor (©1995 IEEE [33]).

the smallest is 278 = 0.0039, as graphically interpreted in Fig. 2.5a. In con-
trast, an 8-bit plus sign fixed-point number has a maximal positive value of
2% — 1 = 255, and the smallest nonzero positive value is one. A comparison
of the two 9-bit systems is shown in Fig. 2.5b.

The historical attraction of the LNS lies in its ability to efficiently imple-
ment multiplication, division, square-rooting, or squaring. For example, the
product C = A x B, where A, B, and C are LNS words, is given by:

C = rCa ¢ p€b — ,],.€a+€h — pCe, (29)

That is, the exponent of the LNS product is simply the sum of the two expo-
nents. Division and high-order operations immediately follow. Unfortunately,

64 2. Computer Arithmetic

Table 2.3. Cost C (i.e., number of adders) for all 8-bit numbers using the multiplier
adder graph (MAG) technique.

C Coefficient
0 1,2 4,8, 16, 32, 64, 128, 256

3,5,6,7,9, 10, 12, 14, 15, 17, 18, 20, 24, 28, 30, 31, 33, 34, 36, 40, 48
1 56, 60, 62, 63, 65, 66, 68, 72, 80, 96, 112, 120, 124, 126, 127, 129, 130
132, 136, 144, 160, 192, 224, 240, 248, 252, 254, 255

11, 13, 19, 21, 22, 23, 25, 26, 27, 29, 35, 37, 38, 39, 41, 42, 44, 46, 47,
49, 50, 52, 54, 55, 57, 58, 59, 61, 67, 69, 70, 71, 73, 74, 76, 78, 79, 81,
82, 84, 88, 92, 94, 95, 97, 98, 100, 104, 108, 110, 111, 113, 114, 116, 118

2 119, 121, 122, 123, 125, 131, 133, 134, 135, 137, 138, 140, 142, 143, 145
146, 148, 152, 156, 158, 159, 161, 162, 164, 168, 176, 184, 188, 190, 191,
193, 194, 196, 200, 208, 216, 220, 222, 223, 225, 226, 228, 232, 236, 238
239, 241, 242, 244, 246, 247, 249, 250, 251, 253

43, 45, 51, 53, 75, 77, 83, 85, 86, 87, 89, 90, 91, 93, 99, 101, 102, 103
105, 106, 107, 109, 115, 117, 139, 141, 147, 149, 150, 151, 153, 154, 155
157, 163, 165, 166, 167, 169, 170, 172, 174, 175, 177, 178, 180, 182, 183
185, 186, 187, 189, 195, 197, 198, 199, 201, 202, 204, 206, 207, 209, 210
212, 214, 215, 217, 218, 219, 221, 227, 229, 230, 231, 233, 234, 235, 237
243, 245

4 171,173, 179, 181, 203, 205, 211, 213

Minimum costs through factorization

45 =5x%x9,51=3x 17,75 =5x 15,85 =5 x 17,90 =2 x 9 x 5,93
3%x31,99 =3x33,102 =2x3x17,105 = 7x 15,150 = 2x 5x 15,153
2 9 x17,155 = 5 x 31,165 = 5 x 33,170 = 2 x 5 x 17,180 = 4 x 5
9,186 =2 x3x 31,189 =7x 9,195 = 3 x 65,198 = 2 x 3 x 33,204
4x3x17,210=2%x7x15,217="7x 31,231 =7 x 33

171 = 3 x 57,173 = 8 + 165,179 = 51 + 128,181 = 1 + 180, 211
14 210,213 =3 x 71,205 = 5 x 41,203 = 7 x 29

I

addition or subtraction are by comparison far more complex. Addition and
subtraction operations are based on the following procedure, where it is as-
sumed that A > B.

C=A+ B =25 420 =26 (1 42 ¢) = 2%, (2.10)
—_——
B+(A)

Solving for the exponent e., one obtains e, = e, + ¢ (A) where A =
ep — eq and ¢ (u) = log,(PT(A)). For subtraction a similar table, ¢~ (u) =
logy (P~ (4)), &~ (A) = (1 — 2% °), can be used. Such tables have been
historically used for rational numbers as described in “Logarithmorm Com-
pletus,” Jurij Vega (1754-1802), containing tables computed by Zech. As a
result, the term log,(1 — 2%) is usually referred to as a Zech logarithm.

2.2 Number Representation 65

(a) (b)
150
100f |~ S,=1 0
10 F————— - —— — — = A
- Sw=_1 fixed .
50 1 — - fixed point
5 — LNS
g E
E 0 TS ?, 2
A L10° ¢
N o
-50 \ 4
\
-100 N
-150 107
-5 0 5 0 50 100 150 200
Exponent Sample no.

Fig. 2.5. LNS processing. (a) Values. (b) Resolution.

LNS arithmetic is performed in the following manner [35]. Let A =
26 B = 2% (= 2° with Sa,Sg,Sc denoting the sign-bit for each word:

Operation Action
Multiply C=AxB e.=¢4+ep;Sc=54X0R Sp
Divide C=A/B e. =eq —ep; Sc = Sa XOR Sp

*(ep — >
Add C=A+B e = ea+¢ (Gb ea)A_B

er+ ¢ (eq —ey) B> A
A _ ea+¢_(eb_€a)AZB
Subtract C=A—-B e.= eo+ b (ca—cy) B> A
Square root C =+A ec=¢€,/2
Square C=A? e. = 2e,

Methods have been developed to reduce the necessary table size for the
Zech logarithm by using partial tables [35] or using linear interpolation tech-
niques [37]. These techniques are beyond the scope of the discussion presented
here.

Residue Number System (RNS)

The RNS is actually an ancient algebraic system whose history can be traced
back 2000 years. The RNS is an integer arithmetic system in which the prim-
itive operations of addition, subtraction, and multiplication are defined. The
primitive operations are performed concurrently within noncommunicating
small-wordlength channels [38, 39]. An RNS system is defined with respect
to a positive integer basis set {mq,ma,...,mr}, where the m; are all rel-
atively (pairwise) prime. The dynamic range of the resulting system is M,
where M = H1L=1 my. For signed-number applications, the integer value of
X is assumed to be constrained to X € [-M/2, M/2). RNS arithmetic is
defined within a ring isomorphism:

66 2. Computer Arithmetic

Ing 2 Loy X Lopy X -+ X Loy s (2.11)

where Zy = Z/(M) corresponds to the ring of integers modulo M, called
the residue class mod M. The mapping of an integer X into an RNS L-tuple
X < (x1,29,...,21) is defined by ; = X mod my, forl = 1,2, ... L. Defining
(] to be the algebraic operations +, — or %, it follows that, if Z, X, Y € Z,,,
then:

Z =X0OY mod M (2.12)

is isomorphic to Z < (z1, 22, ..., 21),. Specifically:

X (X (XD ey (XD
Y e ™)y Wy v (V)
7 — X0V (m1,ma,...,mr) (<X|:|Y>m1,<X|:|Y>m2; ,<XDY>mL)

As a result, RNS arithmetic is pairwise defined. The L elements of Z7 =
(XOY) mod M are computed concurrently within L small-wordlength mod
(m;) channels whose width is bounded by w; = [log,(m;)] bits (typical 4 to
8 bits). In practice, most RNS arithmetic systems use small RAM or ROM
tables to implement the modular mappings z; = x;y; mod m;.

Example 2.8: RNS Arithmetic

Consider an RNS system based on the relatively prime moduli set {2, 3,5}
having a dynamic range of M = 2 x 3 x 5 = 30. Two integers in Zso, say 710
and 410, have RNS representations 7 = (1,1,2)rns and 4 = (0, 1,4)rns, re-
spectively. Their sum, difference, and products are 11, 3, and 28, respectively,
which are all within Zsg. Their computation is shown below.

7229 (11,9) 72 (1,1,2) T2 (1,1,2)
+4 &% 401,49 a2 01,4 x4 x0,1,9)
1125 g0y 383 03 98 23 (0,1,3).

RNS systems have been built as custom VLSI devices [40], GaAs, and LSI
[39]. It has been shown that, for small wordlengths, the RNS can provide a
significant speed-up using the 2% x 2-bit tables found in Xilinx FPGAs [41].
For larger moduli, the M2K and M4K tables belonging to the Altera FPGAs
are beneficial in designing RNS arithmetic and RNS-to-integer converters.
With the ability to support larger moduli, the design of high-precision high-
speed FPGA systems becomes a practical reality.

A historical barrier to implementing practical RNS systems, until recently,
has been decoding [42]. Implementing RNS-to-integer decoder, division, or

2.2 Number Representation 67

magnitude scaling, requires that data first be converted from an RNS format
to an integer. The commonly referenced RNS-to-integer conversion meth-
ods are called the Chinese remainder theorem (CRT) and the mixed-radix-
conversion (MRC) algorithm [38]. The MRC actually produced the digits of
a weighted number system representation of an integer while the CRT maps
an RNS L-tuple directly to an integer. The CRT is defined below.

L—1
X mod M = Z (i ' xy)m, mod M, (2.13)

1=0
where m; = M/m; is an integer, and m;l is the multiplicative inverse of
my; mod my, i.e., mlml—l = 1 mod m;. Typically, the desired output of an

RNS computation is much less than the maximum dynamic range M. In
such cases, a highly efficient algorithm, called the e—CRT [43], can be used
to implement a time- and area-efficient RNS to (scaled) integer conversion.

Index Multiplier

There are, in fact, several variations of the RNS. One in common use is based
on the use of index arithmetic [38]. It is similar in some respects to logarithmic
arithmetic. Computation in the index domain is based on the fact that, if all
the moduli are primes, it is known from number theory that there exists a
primitive element, a generator g, such that:

a = g% mod p (2.14)

that generates all elements in the field Z,, excluding zero (denoted Z,/{0}).
There is, in fact, a one-to-one correspondence between the integers a in
Z,/{0} and the exponents « in Z,_1. As a point of terminology, the index
«, with respect to the generator g and integer a, is denoted o = indy(a).

Example 2.9: Index Coding

Consider a prime moduli p = 17; a generator g = 3 will generate the elements
of Z,/{0}. The encoding table is shown below. For notational purposes, the
case a = 0 is denoted by g~ = 0.

a 0 1 2 3 45 6 7 8 910 11 12 13 14 15 16

indg(a) —c0 0 14 1 12 5 15 11 10 2 3 7 13 4 9 6 8

2.9

Multiplication of RNS numbers can be performed as follows:

1) Map a and b into the index domain, i.e., a = ¢® and b = g°

68 2. Computer Arithmetic

2) Add the index values modulo p — 1, i.e., v = (a+) mod (p — 1)
3) Map the sum back to the original domain, i.e., n = g¥

If the data being processed is in index form, then only exponent addition
mod(p — 1) is required. This is illustrated by the following example.

Example 2.10: Index Multiplication

Consider the prime moduli p = 17, generator g = 3, and the results shown
in Example 2.9. The multiplication of a = 2 and b = 4 proceeds as follows:

(indg(2) 4+ indg(4)) mod 16 = (14 + 12) mod 16 = 10.

From the table in Example 2.9 it is seen that inds(8) = 10, which corresponds
to the integer 8, which is the expected result.

Addition in the Index Domain

Most often, DSP algorithms require both multiplication and addition. Index
arithmetic is well suited to multiplication, but addition is no longer trivial.
Technically, addition can be performed by converting index RNS data back
into the RNS where addition is simple to implement. Once the sum is com-
puted the result is mapped back into the index domain. Another approach
is based on a Zech logarithm. The sum of index-coded numbers a and b is
expressed as:

If we now define the Zech logarithm as

Definition 2.11: Zech Logarithm

Z(n)=ind,(1+g") — g =14¢" (2.16)

then we can rewrite (2.15) in the following way:
P =g xg? P =0+ Z(a-P). (2.17)

Adding numbers in the index domain, therefore, requires one addition, one
subtraction, and a Zech LUT. The following small example illustrates the
principle of adding 2 + 5 in the index domain.

Example 2.12: Zech Logarithms

A table of Zech logarithms, for a prime moduli 17 and g = 3, is shown below.

n —-oo 0 1 2345 6 7 8 91011 12 13 14 15
Zn) 0 1412379158 13 —c0o 6 2 10 5 4 1 11

2.2 Number Representation 69

The index values for 2 and 5 are defined in the tables found in Example 2.9
(p. 67). It therefore follows that:

24+5=3"43"=3°(143") =31 = 3" =7 mod 17.

The case where a + b = 0 needs special attention, corresponding to the
case where [44]:

—X=Ymodp «—— ¢ 1/2= g0 modp.

That is, the sum is zero if, in the index domain, § = a+(p—1)/2 mod (p—1).
An example follows.

Example 2.13: The addition of 5 and 12 in the original domain is given by
5412=3"+3" =3%(1+3°%) =3"7®) =37 =0 mod 17.

Complex Multiplication using QRNS

Another interesting property of the RNS arises if we process complex data.
This special representation, called QRNS, allows very efficient multiplication,
which we wish to discuss next.

When the real and imaginary components are coded as RNS digits, the
resulting system is called the complex RNS or CRNS. Complex addition in
the CRNS requires that two real adds be performed. Complex RNS (CRNS)
multiplication is defined in terms of four real products, an addition, and a
subtraction. This condition is radically changed when using a variant of the
RNS, called the quadratic RNS, or QRNS. The QRNS is based on known
properties of Gaussian primes of the form p = 4k + 1, where k is a positive
integer. The importance of this choice of moduli is found in the factorization
of the polynomial 22 +1 in Zy,. The polynomial has two roots, j and —j, where
7 and —) are real integers belonging to the residue class Z,. This is in sharp
contrast with the factoring of 22 + 1 over the complex field. Here, the roots
are complex and have the form 71 5 = a4 j3 where j = v/—1 is the imaginary
operator. Converting a CRNS number into the QRNS is accomplished by the
transform f : Z2 — 72, defined as follows:

fla+jb) = ((a + 3b) mod p, (a — jb) mod p) = (A, B). (2.18)

In the QRNS, addition and multiplication is realized componentwise, and is
defined as

(a+ja)+ (c+jd) < (A+C,B+D) modp (2.19)
(@ +jb)(c+jd) « (AC,BD) mod p (2.20)

70

2. Computer Arithmetic

a b CRNS a b
A - A
1y 2" 0y’
LUT: b2° LUT: b2 LUT: b2°
l ' iI " {(+)m (+)um
<+)M <+>M T A A {_
A B QRNS B
Fig. 2.6. CRNS < QRNS conversion.
and the square of the absolute value can be computed with
la +jb|* <+ (A x B) mod p. (2.21)

The inverse mapping from QRNS digits back to the CRNS is defined by:
fTHAB) =27 (A+B)+j(2)) (A~ B)

(2.22)

Consider the Gaussian prime p = 13 and the complex product of (a + jb) =
(24]1), (c+]jd) = (3+]j2),is (24]1) x (3+]j2) = (4+j7) mod 13. In this case
four real multiplies, a real add, and real subtraction are required to complete
the product.

Example 2.14: QRNS Multiplication

The quadratic equation z? = (—1) mod 13 has two roots: j = 5 and —j =
—5 =8 mod 13. The QRNS-coded data become:

(a+jb)=2+j—(2+5x%x1,2+8x 1)=(A4, B)
(c+jd)=3+j2<(3+5 x 2,3+ 8 x 2)=(C, D)

(7,10) mod 13
(0,6) mod 13.

Componentwise multiplication yields (A4, B)(C,D) = (7,10)(0,6) = (0,8)
mod 13, requiring only two real multiplies. The inverse mapping to the CRNS
is defined in terms of (2.22), where 27" =7 and (2j)™*' = 10~ = 4. Solving
the equations for 2x = 1 mod 13 and 10z = 1 mod 13, produces 7 and 4,

respectively. It then follows that

£71(0,8) = 7(0 4+ 8) +j 4(0 — 8) mod 13 = 4 + j7 mod 13. V'

Figure 2.6 shows a graphical interpretation of the mapping between CRNS
and QRNS.

2.2 Number Representation 71

2.2.3 Floating-Point Numbers

Floating-point systems were developed to provide high resolution over a large
dynamic range. Floating-point systems can often provide a solution when
fixed-point systems, with their limited dynamic range, fail. Floating-point
systems, however, bring a speed and complexity penalty. Most microprocessor
floating-point systems comply with the published single- or double-precision
IEEE floating-point standard [45, 46], while in FPGA-based systems often
employ custom formats. We will therefore discuss in the following standard
and custom floating-point formats, and in Sect. 2.6 (p. 104) the design of basic
building blocks. Such arithmetic blocks are available from several “intellectual
property” providers, or through special request via e-mail to Uwe.Meyer-
Baese@ieee.org.

A standard floating-point word consists of a sign-bit s, exponent e, and
an unsigned (fractional) normalized mantissa m, arranged as follows:

| S | Exponent e | Unsigned mantissa m |

Algebraically, a floating-point word is represented by:

X = (—1)% x 1.m x 2¢7Pias, (2.23)

Note that this is a signed magnitude format (see p. 57). The “hidden” one in
the mantissa is not present in the binary coding of the floating-point number.
If the exponent is represented with E bits then the bias is selected to be

bias = 2B — 1. (2.24)

To illustrate, let us determine the decimal value 9.25 in a 12-bit custom
floating-point format.

Example 2.15: A (1,6,5) Floating-Point Format

Consider a floating-point representation with a sign bit, E = 6-bit exponent
width, and M = 5-bit for the mantissa (not counting the hidden one). Let
us now determine the representation of 9.251¢ in this (1,6,5) floating-point
format. Using (2.24) the bias is

bias = 2871 — 1= 31,
and the mantissa need to be normalized according the 1.m format, i.e.,

9.2510 = 1001.015 = 1. 00101 x2°.
——

m

The biased exponent is therefore represented with

e = 3 + bias = 3410 = 100010-.
Finally, we can represent 9.251¢ in the (1,6,5) floating-point format with

s | Exponent e | Unsigned mantissa m
0 100010 00101

72 2. Computer Arithmetic

Besides this fixed-point to floating-point conversion we also need the back
conversion from floating-point to integer. So, let us assume the following
floating-point number

s | Exponent e | Unsigned mantissa m
1 011111 00000

is given and we wish to find the fixed-point representation of this number.
We first notice that the sign bit is one, i.e., it is a negative number. Adding
the hidden one to the mantissa and subtracting the bias from the exponent,
yields

—1.000005 x 2317Pias — 10,20 = —1.040.

We note that in the floating-point to fixed-point conversion the bias is sub-
tracted from the exponent, while in the fixed-point to floating-point conver-
sion the bias is added to the exponent.

The IEEE standard 754-1985 for binary floating-point arithmetic [45] also
defines some additional useful special numbers to handle, for instance, over-
flow and underflow. The exponent ¢ = F.x = 1...15 in combination with
zero mantissa m = 0 is reserved for co. Zeros are coded with zero exponent
e = Enin = 0 and zero mantissa m = 0. Note, that due to the signed mag-
nitude representation, plus and minus zero are coded differently. There are
two more special numbers defined in the 754 standard, but these additional
representations are most often not supported in FPGA floating-point arith-
metic. These additional number are denormals and NaN’s (not a number).
With denormalized numbers we can represent numbers smaller than 2Emin,
by allowing the mantissa to represent numbers without the hidden one, i.e.,
the mantissa can represents numbers smaller than 1.0. The exponent in de-
normals is code with e = Ep,;, = 0, but the mantissa is allowed to be different
from zero. NaNs have proven useful in software systems to reduce the num-
ber of “exceptions” that are called when an invalid operation is performed.
Examples that produce such “quiet” NaNs include:

Addition or subtraction of two infinities, such as oo — oo
Multiplication of zero and infinite, e.g., 0 X co

Division of zeros or infinities, e.g., 0/0 or co/oco

Square root of negative operand

In the IEEE standard 754-1985 for binary floating-point arithmetic NaNs
are coded with exponent e = Ej,.x = 1...15 in combination with a nonzero
mantissa m # 0.

We wish now to compare the fixed-point and floating-point representation
in terms of precision and dynamic range in the following example.

Example 2.16: 12-Bit Floating- and Fixed-point Representations

Suppose we use again a (1,6,5) floating-point format as in the previous ex-
ample. The (absolute) largest number we can represent is:

2.2 Number Representation 73

Table 2.4. Example values in (1,6,5) floating-point format.

(1,6,5) format Decimal Coding

0 000000 00000 +0 2Fmin
1 000000 00000 -0 —2Fmin
0 011111 00000 +1.0 gbias
1 011111 00000 —1.0 —gbias
0 111111 00000 +00 2Fmax
1 111111 00000 —00 —2Bmax

+1.111115 x 23! &~ +4.2319 x 10°.

The (absolutely measured) smallest number (not including denormals) that
can be represented is

+1.00 x 217P18 = 110, x 2730 & 4£9.3110 x 1071°.

Note, that Fmax = 1...12 and Emin = 0 are reserved for zero and infinity in
the floating-point format, and must not be used for general number represen-
tations. Table 2.4 shows some example coding for the (1,6,5) floating-point
format including the special numbers.

For the 12-bit fixed-point format we use one sign bit, 5 integer bits, and 6
fractional bits. The maximum (absolute) values we can represent with this
12-bit fixed-point format are therefore:

1 n 1
32 64
)10 ~ :t32010

111111111115 = £(16+ 8 + - --

1
64

The (absolutely measured) smallest number that this 12-bit fixed-point for-
mat represents is

)10

= +(32—

4+00000.0000012 = + ! = +0.01562510.
64 10

From this example we notice the larger dynamic range of the floating-point
representation (4 x 10° compared with 32) but also a higher precision of the
fixed-point representation. For instance, 1.0 and 1+1/64 = 1.015625 are code
the same in (1,6,5) floating-point format, but can be distinguished in 12-bit
fixed-point representation.

Although the IEEE standard 754-1985 for binary floating-point arith-
metic [45] is not easy to implement with all its details such as four different
rounding modes, denormals, or NaNs, the early introduction in 1985 of the
standard helped as it has become the most adopted implementation for mi-
croprocessors. The parameters of this IEEE single and double format can
be seen from Table 2.5. Due to the fact that already single-precision 754
standard arithmetic designs will require

74 2. Computer Arithmetic

e a 24 x 24 bit multiplier, and
e FPGAs allow a more specific dynamic range design (i.e., exponent bit
width) and precision (mantissa bit width) design

we find that FPGAs design usually do not adopt the 754 standard and define
a special format. Shirazi et al. [47], for instance, have developed a modified
format to implement various algorithms on their custom computing machine
called SPLASH-2, a multiple-FPGA board based on Xilinx XC4010 devices.
They used an 18-bit format so that they can transport two operands over the
36-bit wide system bus of the multiple-FPGA board. The 18-bit format has
a 10-bit mantissa, 7-bit exponent and a sign bit, and can represent a range
of 3.7 x 1019,

Table 2.5. IEEE floating-point standard.

Single Double
Word length 32 64
Mantissa 23 52
Exponent 8 11
Bias 127 1023
Range 2128 3.8 x10% 21021 1.8 x 1038

2.3 Binary Adders

A basic binary N-bit adder/subtractor consists of N full-adders (FA). A
full-adder implements the following Boolean equations

sk =z XOR 1y XOR ¢ (2.25)
=xr D Yr D ck (2.26)
that define the sum-bit. The carry (out) bit is computed with:
ck+1 = (v AND y) OR (x5 AND cx) OR (yx AND c) (2.27)
= (zr Xyp) + (xp x ck) + (ye X cx) (2.28)

In the case of a 2C adder, the LSB can be reduced to a half-adder because
the carry input is zero.

The simplest adder structure is called the “ripple carry adder” as shown
in Fig. 2.7a in a bit-serial form. If larger tables are available in the FPGA,
several bits can be grouped together into one LUT, as shown in Fig. 2.7b. For
this “two bit at a time” adder the longest delay comes from the ripple of the
carry through all stages. Attempts have been made to reduce the carry delays
using techniques such as the carry-skip, carry lookahead, conditional sum,

2.3 Binary Adders 75
a[3]b[3] a[2] b[2] a[1]b[1] a[0]b[0]
@ yy oy b
c[4] FA c[3] FA c[2] FA c[1] FA < 0]
s[3] s[2] s[1] s[0]
a[3]1b[3] a[2]b[2] a[1]b[1] a[0]b[0]
CONETEINEEE.
cl4] 2-bitadder | CI21| 2-bit adder (0]
LUT 25x3 LUT 25x3
s[3] s[2] s[1] s[0]

Fig. 2.7. Two’s complement adders.

or carry-select adders. These techniques can speed up addition and can be
used with older-generation FPGA families (e.g., XC 3000 from Xilinx) since
these devices do not provide internal fast carry logic. Modern families, such
as the Xilinx Spartan-3 or Altera Cyclone II, possess very fast “ripple carry
logic” that is about a magnitude faster than the delay through a regular logic
LUT [1]. Altera uses fast tables (see Fig. 1.13, p. 21), while the Xilinx uses
hardwired decoders for implementing carry logic based on the multiplexer
structure shown in Fig. 2.8, see also Fig. 1.12, p. 19. The presence of the fast-
carry logic in modern FPGA families removes the need to develop hardware
intensive carry look-ahead schemes.

Figure 2.9 summarizes the size and Registered Performance of N-bit
binary adders, if implemented with the 1pm_add_sub megafunction compo-
nent. Beside the EP2C35F672C6 from the Cyclone II family (that is build
currently using a 90-nm process technology), we have also included as a ref-
erence the data for mature families. The EP20K200EFC484-2X is from the
APEX20KE family and can be found on the Nios development boards, see
Chap. 9. The APEX20KE family was introduced in 1999 and used a 0.18 pm
process technology. The EPF10K70RC240-4 is from the FLEX10K family
and can be found on the UP2 development boards. The FLEX10K family
was introduced in 1995 and used a 0.42 ym process technology. Although the
LE cell structure has not changed much over time we can see from the ad-
vance in process technology the improvement in speed. If the operands are

76 2. Computer Arithmetic

A B = Cour
[0 0 0
— A=B,Cqour =A
Cia 0 0 1 0
[1 0 [
B . (G4)
2 1] 1 1 1
— A#B.Cour =C iy
A (G1) +——»Ciy 1 0 0 0
B, (F2) 1 0 1 1|
0 S —]
1 1 0 1
A (F1) — <, —A=B.Coyr =A
1 1 1 1
[+

Fig. 2.8. XC4000 fast-carry logic ((©1993 Xilinx).

placed in I/O register cells, the delays through the busses of a FPGA are
dominant and performance decreases. If the data are routed from local reg-
isters, performance improves. For this type of design additional LE register
allocation will appear (in the project report file) as increased LE use by a fac-
tor of three or four. However, a synchronous registered larger system would
not consume any additional resources since the data are registered at the per-
vious processing stage. A typical design will achieve a speed between these
two cases. For Flex10K the adder and register are not merged, and 4 x N
LEs are required. LE requirements for the Cyclone I and APEX devices are
3 X N for the speed data shown in Fig. 2.9.

2.3.1 Pipelined Adders

Pipelining is extensively used in DSP solutions due to the intrinsic dataflow
regularity of DSP algorithms. Programmable digital signal processor MACs
[6, 15, 16] typically carry at least four pipelined stages. The processor:

1) Decodes the command

2) Loads the operands in registers

3) Performs multiplication and stores the product, and
4) Accumulates the products, all concurrently.

The pipelining principle can be applied to FPGA designs as well, at little
or no additional cost since each logic element contains a flip-flop, which is
otherwise unused, to save routing resources. With pipelining it is possible
to break an arithmetic operation into small primitive operations, save the
carry and the intermediate values in registers, and continue the calculation
in the next clock cycle. Such adders are sometimes called carry save adders?

4 The name carry save adder is also used in the context of a Wallace multiplier,
see Exercise 2.1, p. 154.

2.3 Binary Adders 7

450 T T

— Cyclone Il C35
400 G—=™o° APEX 200 .
*—= Flex 10K70

350 -

300

250

MHz

200

150 -

100 -

0 | | | | | | |
8 16 24 32 40 48 56 64

Bit width of adder N

Fig. 2.9. Adder speed and size for Cyclone II, APEX, and Flex10K.

(CSAs) in the literature. Then the question arises: In how many pieces should
we divide the adder? Should we use bit level? For Altera’s Cyclone II devices
a reasonable choice will be always using an LAB with 16 LEs and 16 FFs
for one pipeline element. The FLEX10K family has 8 LEs per LAB, while
APEX20KE uses 10 LEs per LAB. So we need to consult the datasheet before
we make a decision on the size of the pipelining group. In fact, it can be shown
that if we try to pipeline (for instance) a 14-bit adder in our Cyclone II
devices, the performance does not improve, as reported in Table 2.6, because
the pipelined 14-bit adder does not fit in one LAB.

Because the number of flip-flops in one LAB is 16 and we need an extra
flip-flop for the carry-out, we should use a maximum block size of 15 bits for
maximum Registered Performance. Only the blocks with the MSBs can be
16 bits wide, because we do not need the extra flip-flop for the carry. This
observation leads to the following conclusions:

1) With one additional pipeline stage we can build adders up to a length
15+ 16 = 31.

2) With two pipeline stages we can build adders with up to 15+15+16 = 46-
bit length.

78 2. Computer Arithmetic

Table 2.6. Performance of a 14-bit pipelined adder for the EP2C35F672C6 using
synthesis of predefined LPM modules with pipeline option.

Pipeline MHz LEs

stages

0 395.57 42
1 388.50 56
2 392.31 70
3 395.57 84
4 394.63 98
5 395.57 113

Table 2.7. Performance and resource requirements of adders with and without
pipelining. Size and speed are for the maximum bit width, for 31-, 46-, and 61-bit
adders.

Bit No With Pipeline Design
width Pipeline pipeline stages file name
MHz LEs MHz LEs

17 —-31 253.36 93 316.46 125 1 addlp.vhd
32—-46 19290 138 229.04 234 2 add2p.vhd
47 —-61 153.78 183 215.84 372 3 add3p.vhd

3) With three pipeline stages we can build adders with up to 15+ 15+ 15+
16 = 61-bit length.

Table 2.7 shows the Registered Performance and LE utilization of this kind
of pipelined adder. From Table 2.7 it can be concluded that although the bit
width increases the Registered Performance remains high if we add the
appropriate number of pipeline stages.

The following example shows the code of a 31-bit pipelined adder. It turns
out that the straight forward implementation of the pipelining would require
two registers for the MSBs as shown in Fig. 2.10a. If we instead use adders
for the MSBs, we can save a set of LEs, since each LE can implement a full
adder, but only one flip-flop. This is graphically interpreted by Fig. 2.10b.

Example 2.17: VHDL Design of 31-bit Pipelined Adder

Consider the VADL code® of a 31-bit pipelined adder that is graphically
interpreted in Fig. 2.10. The design runs at 316.46 MHz and uses 125 LEs.
LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
USE ieee.std_logic_arith.ALL;
USE ieee.std_logic_unsigned.ALL;

® The equivalent Verilog code addip.v for this example can be found in Ap-
pendix A on page 666. Synthesis results are shown in Appendix B on page
731.

2.3 Binary Adders 79

MSBs h/t{SBs -
o Y B
ofY i mses | | ° ¥ MSBs
e of X+Y HE of X+Y
MSBs_ : ! i
' :—»
of X o
4} fichaﬂy Carry
of Y i LSBs of Y LSBs
=+ — — + — —_——
1ioof X+Y HE of X+Y
LSBs i LSBs HE
—
of X of X

(a) (b)

Fig. 2.10. Pipelined adder. (a) Direct implementation. (b) FPGA optimized ap-
proach.

ENTITY addlp IS
GENERIC (WIDTH : INTEGER := 31; -- Total bit width
WIDTH1 : INTEGER := 15; -- Bit width of LSBs
WIDTH2 : INTEGER := 16); -- Bit width of MSBs
PORT (x,y : IN STD_LOGIC_VECTOR(WIDTH-1 DOWNTO 0);
—-- Inputs
sum : OUT STD_LOGIC_VECTOR(WIDTH-1 DOWNTO 0);
-- Result

LSBs_Carry : OUT STD_LOGIC;
clk : IN STD_LOGIC);
END addip;

ARCHITECTURE fpga OF addip IS

SIGNAL 11, 12, si -- LSBs of inputs

: STD_LOGIC_VECTOR(WIDTH1-1 DOWNTO O);
SIGNAL ri -- LSBs of inputs

: STD_LOGIC_VECTOR(WIDTH1 DOWNTO O);
SIGNAL 13, 14, r2, s2 -- MSBs of inputs

: STD_LOGIC_VECTOR(WIDTH2-1 DOWNTO 0);

BEGIN

PROCESS -- Split in MSBs and LSBs and store in registers
BEGIN

WAIT UNTIL clk = ’1°;

-- Split LSBs from input x,y

80 2. Computer Arithmetic

-lgix]
Maste: Time Bar. | 0ps]|t | e Intervat | 2386ns Start: | End:
v, ps 80.0 ns 1600 s 2400 ne 3200 he 400.0ns
- e ot 1 i i . +
o [[oFs

2 clk BO
P % U 32760 270
g v uz0 20 X 5 b 0 b4 0
|| & am uo 1 k4 2700) T 4 EF
= | LSBs Camy BO
L4 |

Fig. 2.11. Simulation results for a pipelined adder.

11 <= x(WIDTH1-1 DOWNTO 0);
12 <= y(WIDTH1-1 DOWNTO 0);
-- Split MSBs from input x,y
13 <= x(WIDTH-1 DOWNTO WIDTH1);
14 <= y(WIDTH-1 DOWNTO WIDTH1);
—————————————— First stage of the adder -----——-----—-----
rl <= (0’ & 11) + (0’ & 12);
r2 <= 13 + 14;
———————————— Second stage of the adder
s1 <= r1(WIDTH1-1 DOWNTO O);
-- Add result von MSBs (x+y) and carry from LSBs
s2 <= r1(WIDTH1) + r2;
END PROCESS;
LSBs_Carry <= r1(WIDTH1); -- Add a test signal

-- Build a single output word of WIDTH = WIDTH1 + WIDHT2
sum <= s2 & sl ; —-- Connect s to output pins

END fpga;
The simulated performance of the 15-bit pipelined adder shows Fig. 2.11b.
Note that the addition results for 32780 and 32770 produce a carry from the
lower 15-bit adder, but there is no carry for 32760 + 5 = 32765 < 2%°.

2.3.2 Modulo Adders

Modulo adders are the most important building blocks in RNS-DSP designs.
They are used for both additions and, via index arithmetic, for multiplica-
tions. We wish to describe some design options for FPGAs in the following
discussion.

A wide variety of modular addition designs exists [48]. Using LEs only, the
design of Fig. 2.12a is viable for FPGAs. The Altera FLEX devices contain
a small number of M2K ROMs or RAMs (EABs) that can be configured
as 28 x 8,29 x 4,210 x 2 or 2! x 1 tables and can be used for modulo my
correction. The next table shows size and Registered Performance 6, 7,
and 8-bit modulo adder compile for Altera FLEX10K devices [49].

2.3 Binary Adders 81

XYy
l Pipeline
aregister
C + N

ROM
xHY),,
Size: b2 b+1
(a) (b)
Fig. 2.12. Modular additions. (a) MPX-Add and MPX-Add-Pipe. (b) ROM-Pipe.
Pipeline Bits
stages 6 7 8
41.3 MSPS 46.5 MSPS 33.7 MSPS
MPX 0 27 LE 31 LE 35 LE
76.3 MSPS 62.5 MSPS 60.9 MSPS
MPX 2 16 LE 18 LE 20 LE
151.5 MSPS 138.9 MSPS 123.5 MSPS
MPX 3 27 LE 31 LE 35 LE
86.2 MSPS 86.2 MSPS 86.2 MSPS
ROM 3 7LE 8 LE 9 LE
1 EAB 1 EAB 2 EAB

Although the ROM shown in Fig 2.12 provides high speed, the ROM
itself produces a four-cycle pipeline delay and the number of ROMs is limited.
ROMs, however, are mandatory for the scaling schemes discussed before. The
multiplexed-adder (MPX-Add) has a comparatively reduced speed even if a
carry chain is added to each column. The pipelined version usually needs the
same number of LEs as the unpipelined version but runs about three times
as fast. Maximum throughput occurs when the adders are implemented with
3 pipeline stages and 6-bit width channels.

82 2. Computer Arithmetic

2.4 Binary Multipliers
The product of two N-bit binary numbers, say X and A = Zg;ol ap2”, is
given by the “pencil and paper” method as:

N—-1
P=AxX=> a2X. (2.29)
k=0

It can be seen that the input X is successively shifted by k positions and
whenever aj, # 0, then X2* is accumulated. If a; = 0, then the correspond-
ing shift-add can be ignored (i.e., nop). The following VHDL example uses
this “pencil and paper” scheme implemented via FSM to multiply two 8-bit
integers. Other FSM design examples can be found in Exercises 2.20, p. 158
and 2.21, p. 159.

Example 2.18: 8-bit Multiplier

The VHDL description® of an 8-bit multiplier is developed below. Multiplica-
tion is performed in three stages. After reset, the 8-bit operands are “loaded”
and the product register is set to zero. In the second stage, s1, the actual
serial-parallel multiplication takes place. In the third step, s2, the product is
transferred to the output register y.
PACKAGE eight_bit_int IS -- User-defined types
SUBTYPE BYTE IS INTEGER RANGE -128 TO 127;
SUBTYPE TWOBYTES IS INTEGER RANGE -32768 TO 32767;
END eight_bit_int;

LIBRARY work;
USE work.eight_bit_int.ALL;

LIBRARY ieee; —-- Using predefined packages
USE ieee.std_logic_1164.ALL;
USE jeee.std_logic_arith.ALL;

ENTITY mul_ser IS —=———- > Interface
PORT (clk, reset : IN STD_LOGIC;
X : IN BYTE;
a : IN STD_LOGIC_VECTOR(7 DOWNTO O);
y : OUT TWOBYTES);
END mul_ser;

ARCHITECTURE fpga OF mul_ser IS

TYPE STATE_TYPE IS (sO, s1, s2);
SIGNAL state : STATE_TYPE;

------ > Multiplier in behavioral style
States: PROCESS(reset, clk)

5 The equivalent Verilog code mul ser.v for this example can be found in Ap-
pendix A on page 670. Synthesis results are shown in Appendix B on page 731.

2.4 Binary Multipliers 83

(Bmisernt Il
Masler Time Bar Ops || Poirter | 37.6ns Interval: | FHEne Start | End:

Mo Vduu;sal n: 200 ns B00ns 1200 s 1600 ns 2000 ns 2200 ns ZEJ,Qnai
= 8o i_I_1__F_Z_J__L_I_1__F_l_J_1__F_I_J__L_I_T__F_I_J__L_
| | resel U1 1
g state U state.s0 state.sl X stabs el ¥ statesZ ¥ stabe sl
E EHa u13 13
|w#| [» us i
E H \Statest uo 0 I I S S L O 640
|&| @ \Statesp un 1] H) S 4 [
= By un 0 ¥ &5
il |
Fig. 2.13. Simulation results for a shift add multiplier.

VARIABLE p, t : TWOBYTES:=0; -- Double bit width
VARIABLE count : INTEGER RANGE O TO 7;
BEGIN
IF reset = ’1’ THEN
state <= s0;
ELSIF rising_edge(clk) THEN
CASE state IS
WHEN sO => -- Initialization step
state <= si;
count := 0;
p := 0; -- Product register reset
t = x; -- Set temporary shift register to x
WHEN s1 => -- Processing step
IF count = 7 THEN -- Multiplication ready
state <= s2;
ELSE
IF a(count) = ’1’ THEN
P :=p+ t; -- Add 27k
END IF;
t =t *x 2;
count := count + 1;
state <= si;
END IF;
WHEN s2 => -- Output of result to y and
y <= p; -- start next multiplication
state <= s0;
END CASE;
END IF;
END PROCESS States;
END fpga;
Figure 2.13 shows the simulation result of a multiplication of 13 and 5.
The register t shows the partial product sequence of 5,10,20,.... Since

1310 = 000011012c, the product register p is updated only three times in
the production of the final result, 65. In state s2 the result 65 is transferred
to the output y of the multiplier. The design uses 121 LEs and and no em-
bedded multiplier. With synthesis style Speed its runs with a Registered
Performance of 256.15 MHz

84 2. Computer Arithmetic

a[3]x[0] a[2]x[0] a[1]x[0] a[0]x[0]

a[31x[1] HA HA |% HA |%

a[2]x[1] a[1]x[1] a[0]x[1]

a[3]x[2] FA FA FA
a[2]x[2] a[1]x[2] a[0]x[2]
a[31x[3] FA FA FA
a[2]x[3] a[1]x[3] a[0]x[3]
FA FA HA
pl7] pl6] pl5] pl4] pl3] pl2] pl1] pl0]

Fig. 2.14. A 4-bit array multiplier.

Because one operand is used in parallel (i.e., X) and the second operand
A is used bitwise, the multipliers we just described are called serial/parallel
multipliers. If both operands are used serial, the scheme is called a serial /serial
multiplier [50], and such a multiplier only needs one full adder, but the latency
of serial/serial multipliers is high O(N?), because the state machine needs
about N? cycles.

Another approach, which trades speed for increased complexity, is called
an “array,” or parallel /parallel multiplier. A 4 x4-bit array multiplier is shown
in Fig. 2.14. Notice that both operands are presented in parallel to an adder
array of N2 adder cells.

This arrangement is viable if the times required to complete the carry
and sum calculations are the same. For a modern FPGA, however, the carry
computation is performed faster than the sum calculation and a different ar-
chitecture is more efficient for FPGAs. The approach for this array multiplier
is shown in Fig. 2.15, for an 8 x 8-bit multiplier. This scheme combines in
the first stage two neighboring partial products a,, X2" and a,, 11 X2"*! and
the results are added to arrive at the final output product. This is a direct
array form of the “pencil and paper” method and must therefore produce a
valid product.

We recognize from Fig. 2.15 that this type of array multiplier gives the
opportunity to realize a (parallel) binary tree of the multiplier with a total:

2.4 Binary Multipliers 85

Pipeline-register optional
.":< -------------- :.:I-.--.-------.‘-‘- ------------ \':;.
128X a7 _E;_» : a4 :.
I
64X a, ——| : s
=K
32X a; = ' ;
: Y
S B o E
i : — Py;
16X a, ——— HH :
: +|
8X a, = i P;
B : : I P4
¥ + [A
HIEgE
. B
o 3 P,
P,
+ [4
i HH Pl
¥ Py
Fig. 2.15. Fast array multiplier for FPGAs.
number of stages in the binary tree multiplier = log,(N). (2.30)

This alternative architecture also makes it easier to introduce pipeline stages
after each tree level. The necessary number of pipeline stages, according to
(2.30), to achieve maximum throughput is:

Bit width 2 3-4 5-8 9-16 17-32

Optimal number

. 2 3 4 5
of pipeline stages

Since the data are registered at the input and output the number of delays
in the simulation would be two larger then the pipeline stage we specified for
the 1pm_mul blocks.

Figure 2.16 reports the Registered Performance of pipelined N x N-bit
multipliers, using the Quartus II 1pm_mult function, for 8 x 8, to 24 x 24
bits operands. Embedded multiplier are shown with dash lines and up to
16 x 16-bit the multiplier do not improve with pipelining since they fit in one
embedded 18 x 18-bit array multiplier. The LE-based multiplier are shown
with a solid line. Figure 2.17 shows the LEs effort for the multiplier. The
pipelined 8 x 8 bit multiplier outperforms the embedded multiplier if 2 or

86 2. Computer Arithmetic

350

300

250

200

Performance in MHz

150

100

— 24x24

50 | | | | |
0 1 2 3 4 5 6

Number of pipeline stages

Fig. 2.16. Performance of an array multiplier for FPGAs, LE-based multiplier
(solid line) and embedded multiplier (dashed line).

more pipeline stages are used. We can notice from Fig. 2.16 that, for pipeline
delays longer than log,(N), there is no essential improvement for LE-based
multipliers. The multiplier architecture (embedded or LEs) must be con-
trolled via synthesis options in case we write behavioral code (e.g., p <=
a*b). This can be done in the EDA Tools Setting under the Assignments
menu. There you find the DSP Block Balancing entry under the Analysis
& Synthesis Settings. Select DSP blocks if you like to use the embed-
ded multiplier, Logic Elements to use the LEs only, or Auto, and the syn-
thesis tool will first use the embedded multiplier; if there are not enough
then use the LE-based multiplier. If we use the lpm_mul block (see Ap-
pendix B, p. 733) we have direct control using the GENERIC MAP parameter
DEDICATED MULTIPLIER CIRCUITRY => "YES" or "NO".

Other multiplier architectures typically used in the ASIC world include
Wallace-tree multipliers and Booth multipliers. They are discussed in Exer-
cises 2.1 (p. 154) and 2.2 (p. 154) but are rarely used in connection with
FPGAs.

2.4 Binary Multipliers 87

1000 -

650 1

400 - b

N
(o)
o

150

100,

Number of logic elements

65

40

. o— 24x24
251 7 = 16x16| |
P o——>o 8x8

15 q | | | |

0 1 2 3 4 5 6
Number of pipeline stages

Fig. 2.17. Effort in LEs for array multipliers, LE-based multiplier (solid line)
and embedded multiplier (dashed line).

2.4.1 Multiplier Blocks

A 2N x 2N multiplier can be defined in terms of an N x N multiplier block
[29]. The resulting multiplication is defined as:

P=Y x X = (22" + V1)(X22N + X))
= Y2 X022 + (Yo X; + V1X2)2V + V1 Xy, (2.31)

where the indices 2 and 1 indicate the most significant and least significant N-
bit halves, respectively. This partitioning scheme can be used if the capacity
of the FPGA is insufficient to implement a multiplier of desired size, or used
to implement a multiplier using memory blocks. A 36 x 36-bit multiplier
can be build with four 18 x 18 bit embedded multipliers and three adders.
An 8 x 8-bit LUT-based multiplier in direct form would require an LUT
size of 216 x 16 = 1 Mbit. The partitioning technique reduces the table size
to four 2% x 8 memory blocks and three adders. A 16 x 16-bit multiplier
requires 16 M4K blocks. The benefit of multiplier implementation via M4Ks
versus LE-based is twofold. First, the number of LE is reduced. Secondly,
the requirements on the routing resources of the devices are also reduced.

88 2. Computer Arithmetic

LUT Pipeline
r regiiter
¥ 2] e
¥ o || HH p1FH Y H=]
L S IR i
5B 0.128 - 0027 - I
0.8L02 HE
| o+
i HRAHg
= O L
-+ Ll Dli:z':':—+ |
256,254 0.256 00.255 (i
0..32768 +
" —XY
¥ T 2 e
': ': I ‘l
man 0.128) 00.27 — [H +

Fig. 2.18. Two’s complement 8-bit additive half-square multiplier design.

Although some FPGAs families now have a limited number of embedded
array multipliers, the number is usually small, and the LUT-based multiplier
provides a way to enlarge the number of fast low-latency multipliers in these
devices. In addition, some device families like Cyclone, Flex, or Excalibur do

not have embedded multipliers; therefore, the LUT or LE multipliers are the
only option.

Half-Square Multiplier

Another way to reduce the memory requirement for LUT-based multipliers
is to decrease the bits in the input domain. One bit decrease in the input
domain decreases the number of LUT words by a factor of two. An LUT of
a square operation of an N-bit word only requires an LUT size of 2V x 2N,
The additive half-square (AHSM) multiplier

X+Y)2-—X2_Y?
Y><X:(+)2 =

B (X +Y)?2 X2 \& 1 X,Yodd
- { 2 | 2| | 2| 10 others (2:32)
was introduced by Logan [51]. If the division by 2 is included in the LUT, this
requires a correction of —1 in the event that X and Y are odd. A differential
half-square multiplier (DHSM) can then be implemented as:
(X+Y)2-X2-Y?
2

Y x X =

2.4 Binary Multipliers 89

LUT Pipeline
) . :": regiiter
i H 21 a="
x > I HH D1+ Y =
L vy
e 0.128 00..127 — -_-.- + : :
o 0 2 . P T
+ | il ()7L }
g i S - HERE Y
. 0..32512 :- -I + +XY
v Fil 2 B
= .| o o1 Q[1
L - B
0.128 0,0.127 — wd +

Fig. 2.19. Two’s complement 8-bit differential half-square multiplier design.

X2 Y? (X -Y)? 1 X,Yodd

B { 2 J + {TJ B { 2 J + {0 others (2.33)
A correction of 1 is required in the event that X and Y are odd. If the
numbers are signed, an additional saving is possible by using the diminished-
by-one (D1) encoding, see Sect. 2.2.1, p. 56. In D1 coding all numbers are
diminished by 1, and the zero gets special encoding [52]. Figure 2.18 shows
for 8-bit data the AHSM multiplier, the required LUTs, and the data range
of 8-bit input operands. The absolute operation almost allows a reduction by
a factor of 2 in LUT words, while the D1 encoding enables a reduction to the
next power-of-2 table size that is beneficial for the FPGA design. Since LUT
inputs 0 and 1 both have the same square, LUT entry | A?/2], we share this
value and do not need to use special encoding for zero. Without the division
by 2, a 17-bit output word would be required. However, the division by two
in the squaring table requires an increment (decrement) of the output result
for the AHSM (DHSM) in case both input operands are odd values. Figure

2.19 shows a DHSM multiplier that only requires two D1 encoding compared
with the AHSM design.

Quarter-Square Multiplier

A further reduction in arithmetic requirements and the number of LUT's can
be achieved by using the quarter-square multiplication (QSM) principle that

is also well studied in analog designs [53, 54]. The QSM is based on the
following equation:

90 2. Computer Arithmetic

LUT Pipeline
:": register
i I PRV HEH
X [: ¥ : . ! .
+ B L D1 Y B !
L SRR
Ls8 —256.254 0.256 0,0.255 HH T i
0..16384 HH
XY
- - 5 E E if
Y H H o
+ 4 | | 1 »l () --—-—f
— S el B 4 |
L L o
LsB —255.255 0.255 La
0..16256

—128.127

Fig. 2.20. Two’s complement 8-bit quarter-square multiplier design.

Y x X = VXZY)QJ — VX;Y)QJ .

It is interesting to note that the division by 4 in (2.34) does not require
any correction for operation as in the HSM case. This can be checked as
follows. If both operands are even (odd), then the sum and the difference are
both even, and the squaring followed by a division of 4 produces no error
(i.e., 4|(2u * 2v)). If one operand is odd (even) and the other operand is
even (odd), then the sum and the difference after squaring and a division
by 4 produce a 0.25 error that is annihilated in both cases. No correction
operation is necessary. The direct implementation of (2.34) would require
LUTSs of (N + 1)-bit inputs to represent the correct result of X +Y as used
in [55], which will require four 2% x 2V LUTSs. Signed arithmetic along with
D1 coding will reduce the table to the next power-of-2 value, allowing the
design to use only two 2V x 2 LUTs compared with the four in [55]. Figure
2.20 shows the D1 QSM circuit.

LUT-Based Multiplier Comparison

For each of the multiplier circuits HDL code can be developed (see Exercises
2.23-2.25, p. 161) and short C programs or MATLAB scripts are necessary to
generate the memory initialization files for two’s complement, unsigned, and
D1 data. The Verilog code from [55] and the half and quarter square designs
are then synthesized using the Altera Quartus II software for the popular
Cyclone II device from Altera development board. Table 2.8 quantifies the
resources required and reports the performance data for the LUT-based mul-
tipliers. The table shows the required LUTs for an 8 x 8-bit signed multiplier,
the number of logic elements (LEs), the maximum frequency, and the num-
ber of M4K blocks used. Results reveal that the D1 multiplier uses 50% less

2.5 Binary Dividers 91

LUT resources than proposed in [55] for Cyclone IT devices with a moderate
increase in LE usage. The D1 QSM doubles the number of fast M4K-based
multipliers in the FPGA. Throughput is restricted by the synchronous M4K
blocks to 260 MHz in Cyclone II devices.

Comparing the data of Table 2.8 with the data from Figs. 2.16 (p. 86)
and 2.17 (p. 87), it can be seen that the LUT-based multiplier reduces the
number of LEs but does not improve the Registered Performance.

Table 2.8. Resource and performance data for 8 x 8-bit signed LUT-based multi-
pliers.

Design LUT size LEs M4K Reg. Eq.
Perf. or
in MHz Ref
Partitioning 4x2%x8 40 4 260.0 (2.31)
Altera’s QSM 2 x 27 x 16 34 4 180.9 [55]
D1 AHSM 2x27%x16,2% x16 118 3 260.0 (2.32)
D1 DHSM 2x2"x 16,28 x 16 106 3 260.0 (2.33)
D1 QSM 2 x 28 x 16 66 2 260.0 (2.34)

2.5 Binary Dividers

Of all four basic arithmetic operations division is the most complex. Conse-
quently, it is the most time-consuming operation and also the operation with
the largest number of different algorithms to be implemented. For a given
dividend (or numerator) N and divisor (or denominator) D the division pro-
duces (unlike the other basic arithmetic operations) two results: the quotient
@ and the remainder R, i.e.,

N
D= Q and R with|R| < D. (2.34)

However, we may think of division as the inverse process of multiplication,
as demonstrated through the following equation,

N=DxQ+R, (2.35)

it differs from multiplication in many aspects. Most importantly, in multipli-
cation all partial products can be produced parallel, while in division each
quotient bit is determined in a sequential “trail-and-error” procedure.
Because most microprocessors handle division as the inverse process to
multiplications, referring to (2.35), the numerator is assumed to be the result
of a multiplication and has therefore twice the bit width of denominator and
quotient. As a consequence, the quotient has to be checked in an awkward

92 2. Computer Arithmetic

procedure to be in the valid range, i.e., that there is no overflow in the
quotient. We wish to use a more general approach in which we assume that

Q<N and |R|<D,

i.e., quotient and numerator as well as denominator and remainder are as-
sumed to be of the same bit width. With this bit width assumptions no range
check (except N = 0) for a valid quotient is necessary.

Another consideration when implementing division comes when we deal
with signed numbers. Obviously, the easiest way to handle signed numbers is
first to convert both to unsigned numbers and compute the sign of the result
as an XOR or modulo 2 add operation of the sign bits of the two operands.
But some algorithms, (like the nonrestoring division discussed below), can
directly process signed numbers. Then the question arises, how are the sign
of quotient and remainder related. In most hardware or software systems (but
not for all, such as in the PASCAL programming language), it is assumed
that the remainder and the quotient have the same sign. That is, although

234
50

meets the requirements from (2.35), we, in general, would prefer the following
results

=5 and R=-16 (2.36)

234
50 = 4 and R =34 (2.37)
DIVISION ALGORITHMS
Linear convergence Quadratic convergence
Restoring By reciprocation
Nonrestoring Anderson et al.
SRT algorithm
CORDIC

Fig. 2.21. Survey of division algorithms.

Let us now start with a brief overview of the most commonly used division
algorithms. Figure 2.21 shows the most popular linear and quadratic conver-
gence schemes. A basic categorization of the linear division algorithms can

2.5 Binary Dividers 93

be done according to the permissible values of each quotient digit generated.
In the binary restoring, nonperforming or CORDIC algorithms the digits are
selected from the set

{0,1}.

In the binary nonrestoring algorithms a signed-digit set is used, i.e.,

{~1,1} = {1,1}.

In the binary SRT algorithm, named after Sweeney, Robertson, and Tocher
[29] who discovered the algorithms at about the same time, the digits from
the ternary set

{-=1,0,1} = {1,0,1}

are used. All of the above algorithms can be extended to higher radix algo-
rithms. The generalized SRT division algorithms of radix r, for instance, uses
the digit set

{-2"—1,...,-1,0,1,...,2" —1}.

We find two algorithms with quadratic convergence to be popular. The
first algorithm is the division by reciprocation of the denominator, where
we compute the reciprocal with the Newton algorithm for finding zeros. The
second quadratic convergence algorithms was developed for the IBM 360/91
in the 1960s by Anderson et al. [56]. This algorithm multiplies numerator
and denominator with the same factors and converges N — 1, which results
in D — Q. Note, that the division algorithms with quadratic convergence
produce no remainder.

Although the number of iterations in the quadratic convergence algo-
rithms are in the order of log, () for b bit operands, we must take into account
that each iteration step is more complicated (i.e., uses two multiplications)
than the linear convergence algorithms, and speed and size performance com-
parisons have to be done carefully.

2.5.1 Linear Convergence Division Algorithms

The most obvious sequential algorithms is our “pencil-and-paper” method
(which we have used many times before) translated into binary arithmetic.
We align first the denominator and load the numerator in the remainder
register. We then subtract the aligned denominator from the remainder and
store the result in the remainder register. If the new remainder is positive
we set the quotient’s LSB to 1, otherwise the quotient’s LSB is set to zero
and we need to restore the previous remainder value by adding the denomi-
nator. Finally, we have to realign the quotient and denominator for the next
step. The recalculation of the previous remainder is why we call such an
algorithm “restoring division.” The following example demonstrates a FSM
implementation of the algorithm.

94 2. Computer Arithmetic

Example 2.19: 8-bit Restoring Divider

The VHDL description” of an 8-bit divider is developed below. Division is
performed in four stages. After reset, the 8-bit numerator is “loaded” in the
remainder register, the 6-bit denominator is loaded and aligned (by 2V~ for
a N bit numerator), and the quotient register is set to zero. In the second and
third stages, s1 and s2, the actual serial division takes place. In the fourth
step, s3, quotient and remainder are transferred to the output registers. Nom-
inator and quotient are assumed to be 8 bits wide, while denominator and
remainder are 6-bit values.

-- Restoring Division

LIBRARY ieee; -- Using predefined packages

USE ieee.std_logic_1164.ALL;

USE ieee.std_logic_arith.ALL;

USE ieee.std_logic_unsigned.ALL;

ENTITY div_res IS ====—= > Interface
GENERIC(WN : INTEGER := 8;
WD : INTEGER := 6;
PO2WND : INTEGER := 8192; -- 2%*(WN+WD)
PO2WN1 : INTEGER := 128; -- 2%*(WN-1)
PO2WN : INTEGER := 255); -- 2**WN-1
PORT (clk, reset : IN STD_LOGIC;
n_in : IN STD_LOGIC_VECTOR(WN-1 DOWNTO O);
d_in : IN STD_LOGIC_VECTOR(WD-1 DOWNTO O);
r_out : OUT STD_LOGIC_VECTOR(WD-1 DOWNTO O);
q_out : OUT STD_LOGIC_VECTOR(WN-1 DOWNTO 0));
END div_res;

ARCHITECTURE flex OF div_res IS

SUBTYPE TWOWORDS IS INTEGER RANGE -1 TO PO2WND-1;
SUBTYPE WORD IS INTEGER RANGE O TO PO2WN;

TYPE STATE_TYPE IS (s0, sl, s2, s3);
SIGNAL s : STATE_TYPE;

BEGIN

-- Bit width: WN WD WN WD

- Numerator / Denominator = Quotient and Remainder
-- OR: Numerator = Quotient * Denominator + Remainder

States: PROCESS(reset, clk)-- Divider in behavioral style
VARIABLE r, 4 : TWOWORDS :=0; -- N+D bit width
VARIABLE q : WORD;

VARIABLE count : INTEGER RANGE O TO WN;

BEGIN
IF reset = ’1’ THEN —-- asynchronous reset
s <= s0;
ELSIF rising_edge(clk) THEN
CASE s IS

" The equivalent Verilog code div res.v for this example can be found in Ap-
pendix A on page 671. Synthesis results are shown in Appendix B on page 731.

2.5 Binary Dividers 95

(Bawreswor ini
Master Time Bar. | Ops «| | Pairter: | 30091 s Interval: | 30091 ns Start: | End
Vsbest PP 400N 800ns 1200ns 1600ns 2000ns 2000ns 2600ns 3200ne 3600ns 4000ne 4400ns 480y
Name pe (0ps
EIED B0 L r i r e riror
(o] reset B1 1
|&| E ‘Ststescount U0 0 1 2 3 L] 5 3 7 g
e - Uss0
|| & nin U234 254
| | din uE0 50
| @ e 50 0 E16E 034§ 966 ¥ 054 §-1368 ¥ 0a4 ¥ b6 o34 f 16 § o34 3 o G L £l
|2 \Statesig uao 1] T 7 T
| @ otaesd uo T [3700 TEDD) 00 200 00 50]
E=d ot uo] T
El =T uo I D
ol —]

Fig. 2.22. Simulation results for a restoring divider.

WHEN sO => -- Initialization step
s <= s1;
count := 0;
q :=0; -- Reset quotient register
d := PO2WN1 * CONV_INTEGER(d_in); -- Load denom.
r := CONV_INTEGER(n_in); -- Remainder = numerator
WHEN s1 => -- Processing step
r :=r - d; —- Subtract denominator
s <= s2;
WHEN s2 => -- Restoring step
IF r < 0 THEN
r :=r + d; -- Restore previous remainder
q :=q * 2; -- LSB = 0 and SLL
ELSE
q:=2%q+ 1; -- LSB =1 and SLL
END IF;
count := count + 1;
d :=d/ 2;
IF count = WN THEN -- Division ready 7
s <= s83;
ELSE
s <= s1;
END IF;
WHEN s3 => -- Output of result

g_out <= CONV_STD_LOGIC_VECTOR(q, WN);
r_out <= CONV_STD_LOGIC_VECTOR(r, WD);
s <= s0; —-- Start next division
END CASE;
END IF;
END PROCESS States;

END flex;
Figure 2.22 shows the simulation result of a division of 234 by 50. The register
d shows the aligned denominator values 50 x 27 = 6400, 50 x 2° = 3200,
Every time the remainder r calculated in step sl is negative, the previous
remainder is restored in step s2. In state s3 the quotient 4 and the remainder
34 are transferred to the output registers of the divider. The design uses

96 2. Computer Arithmetic

[Gavppervwr =lof;
Master Time Bar:| Ops o| | Pointer | 153.2 ns Interval: | 153.2 ns Start | End
Ve ot ps 200rs 400ns B0Ons BO0ns 1000ns 1200ns 1400ns 1600ns 1800ns 2000ns 2200ns 2400ms 2600ns 2800n
Hame o =
» clk 80
L 4 feset B1
& \Statescount U D 0 1 2 3 [} [3 7 ¥ 5
= state U state.s0 state.s0 b4 state.sT state.sZ § state.sl
o n_in Uz 73
[d_in Usn =0
| E \States ua 1] b4 23 34
= \Statesiq uo a T ¥ 7y T
=) \States:d uo 0 6400 3200 TEO0 ¥ 800w 400 ¥ 200 i f00 kGO0 ¥ 25
| B ot uo 1]]
o ot uo 1]) L
: &l

Fig. 2.23. Simulation results for a nonperforming divider.

127 LEs, no embedded multiplier, and runs with a Registered Performance

of 265.32 MHz.

The main disadvantage of the restoring division is that we need two steps
to determine one quotient bit. We can combine the two steps using a non-
performing divider algorithm, i.e., each time the denominator is larger than
the remainder, we do not perform the subtraction. In VHDL we would write
the new step as:

t :=r - d; -- temporary remainder value
IF t >= 0 THEN -- Nonperforming test
r := t; —- Use new denominator
q:=q*2+1; ——LSB =1 and SLL
ELSE
q :=q * 2; -- LSB = 0 and SLL
END IF;

The number of steps is reduced by a factor of 2 (not counting initialization and
transfers of results), as can be seen from the simulation in Fig. 2.23. Note also
from the simulation shown in Fig. 2.23 that the remainder r is never negative
in the nonperforming division algorithms. On the downside the worst case
delay path is increased when compared with the restoring division and the
maximum Registered Performance is expected to be reduced, see Exercise
2.17 (p. 157). The nonperforming divider has two arithmetic operations and
the if condition in the worst case path, while the restoring divider has (see
step s2) only the if condition and one arithmetic operation in the worst case
path.

A similar approach to the nonperforming algorithm, but that does not
increase the critical path, is the so-called nonrestoring division. The idea
behind the nonrestoring division is that if we have computed in the restoring
division a negative remainder, i.e., rx4+1 = rr—dj, then in the next step we will
restore 1, by adding di and then perform a subtraction of the next aligned

2.5 Binary Dividers 97

denominator di41 = di/2. So, instead of adding dj, followed by subtracting
di. /2, we can just skip the restoring step and proceed with adding dy /2, when
the remainder has (temporarily) a negative value. As a result, we have now
quotient bits that can be positive or negative, i.e., g = +1, but not zero.
We can change this signed-digit representation later to a two’s complement
representation. In conclusion, the nonrestoring algorithms works as follows:
every time the remainder after the iteration is positive we store a 1 and
subtract the aligned denominator, while for negative remainder, we store a
—1 =1 in the quotient register and add the aligned denominator. To use only
one bit in the quotient register we will use a zero in the quotient register to
code the —1. To convert this signed-digit quotient back to a two’s complement
word, the straightforward way is to put all 1s in one word and the zeros, which
are actually the coded —1 = 1 in the second word as a one. Then we need
just to subtract the two words to compute the two’s complement. On the
other hand this subtraction of the —1s is nothing other than the complement
of the quotient augmented by 1. In conclusion, if ¢ holds the signed-digit
representation, we can compute the two’s complement via

q2c =2 X qsp + 1. (2.38)

Both quotient and remainder are now in the two’s complement representation
and have a valid result according to (2.35). If we wish to constrain our results
in a way that both have the same sign, we need to correct the negative
remainder, i.e., for r < 0 we correct this via

r:=r+D and ¢q:=q-—1.

Such a nonrestoring divider will now run faster than the nonperforming di-
vider, with about the same Registered Performance as the restoring di-
vider, see Exercise 2.18 (p. 157). Figure 2.24 shows a simulation of the non-
restoring divider. We notice from the simulation that register values of the
remainder are allowed now again to be negative. Note also that the above-
mentioned correction for negative remainder is necessary for this value. The
not corrected result is ¢ = 5 and 7 = —16 The equal sign correction results
ing=5—1=4and r = —16 + 50 = 34, as shown in Fig. 2.24.

To shorten further the number of clock cycles needed for the division
higher radix (array) divider can be built using, for instance, the SRT and
radix 4 coding. This is popular in ASIC designs when combined with the
carry-save-adder principle as used in the floating-point accelerators of the
Pentium microprocessors. For FPGAs with a limited LUT size this higher-
order schemes seem to be less attractive.

A totally different approach to improve the latency are the division algo-
rithms with quadratic convergence, which use fast array multiplier. The two
most popular versions of this quadratic convergence schemes are discussed in
the next section.

98 2. Computer Arithmetic

[Mdvpresowt =10j x|
Master Time Bar:| Ops || Painter 279,05 ns Intervak | 272,05 ns Start:| End

Valueat | [P 20frs d40fns BOPns B00ne 1000ns 1200ns 1400ns 1600ns 1800ns 2000ns 2200ns 2400ns 2600ns 2800 rs|

Name e ? =

= o BO Iy A ey T o AN oy A oy Y o S e SN I A S B e)
|2 reset E1 1
e ‘\Stateszcount LU0 a 1 H 3] 8 g 7]
E state U state.s0 state. s state 5T slate.s2 state s0
s nin Uz 234
IE din uso]
= “States:r 50 RESED G G G G G
[@ \satesq uo 0 i H 1 g i) £5 Z [}
|| @ s uo T F SO G S] 00 00§ 100 F 50
|| @ aqou uo 1] 7
= T_out uo 1] Y=
i} 5

Fig. 2.24. Simulation results for a nonrestoring divider.

2.5.2 Fast Divider Design

The first fast divider algorithm we wish to discuss is the division through
multiplication with the reciprocal of the denominator D. The reciprocal can,
for instance, be computed via a look-up table for small bit width. The general
technique for constructing iterative algorithms, however, makes use of the
Newton method for finding a zero. According to this method, we define a
function

1
flxy)= " -D — 0. (2.39)
x
If we define an algorithm such that f(z.) = 0 then it follows that
1 1
——-D=0 = —. 2.40
o o Te = (2.40)
Using the tangent the estimation for the next xx1 is calculated using
f(xr)
=z, — 2.41
xk%‘rl Tk fl(Ik) 9 ()

with f(x) = 1/x—D we have f'(x) = 1/2? and the iteration equation becomes

1

Th4+1 = Tk — ikT = iL'k(Q — D x :L'k). (242)
=2
k

2

Although the algorithm will converge for any initial D, it converges much
faster if we start with a normalized value close to 1.0, i.e., we normalized D
in such a way that 0.5 < D < 1or 1 < D < 2 as used for floating-point
mantissa, see Sect. 2.6 (p. 104). We can then use an initial value o = 1
to get fast convergence. Let us illustrate the Newton algorithm with a short
example.

Example 2.20: Newton Algorithm

2.5 Binary Dividers 99

1 L.
[o0]
<
X 05
1]
&)
f(x,)
0 L. .
; ; f(x,)
0.75 1 1.25

X

Fig. 2.25. Newton’s zero-finding algorithms for z., = 1/0.8 = 1.25.

Let us try to compute the Newton algorithm for 1/D = 1/0.8 = 1.25. The
following table shows in the first column the number of the iteration, in the
second column the approximation to 1/D, in the third column the error xy —
ZToo, and in the last column the equivalent bit precision of our approximation.

k Tk Tr — Too Eff. bits
0 1.0 —0.25 2

1 1.2 —0.05 4.3

2 1.248 —0.002 8.9

3 125 —32x10°° 18.2
4 125 —82x107'? 36.8

Figure 2.25 shows a graphical interpretation of the Newton zero-finding al-
gorithm. The f(z)) converges rapidly to zero.

Because the first iterations in the Newton algorithm only produce a few bits
of precision, it may be useful to use a small look-up table to skip the first
iterations. A table to skip the first two iterations can, for instance, be found
in [29, p. 260].

We note also from the above example the overall rapid convergence of the
algorithm. Only 5 steps are necessary to have over 32-bit precision. Many
more steps would be required to reach the same precision with the linear
convergence algorithms. This quadratic convergence applies for all values not
only for our special example. This can be shown as follows:

1
€htl = Thtl — Too = k(2 — D X 2p) — =

D
1 2
=-D (mk - 5) = —Deé3,

100 2. Computer Arithmetic

i.e., the error improves in a quadratic fashion from one iteration to the next.
With each iteration we double the effective number of bit precision.

Although the Newton algorithm has been successfully used in micropro-
cessor design (e.g., IBM RISC 6000), it has two main disadvantages: First, the
two multiplications in each iteration are sequential, and second, the quanti-
zation error of the multiplication is accumulated due to the sequential nature
of the multiplication. Additional guard bits are used in general to avoid this
quantization error.

The following convergence algorithm, although similar to the Newton al-
gorithm, has an improved quantization behavior and uses 2 multiplications
in each iteration that can be computed parallel. In the convergence division
scheme both numerator N and denominator D are multiplied by approxima-
tion factors fj, which, for a sufficient number of iterations k, we find

D[[fr—1 and N][f— Q. (2.43)

This algorithm, originally developed for the IBM 360/91, is credited to An-
derson et al. [56], and the algorithm works as follows:

Algorithm 2.21: Division by Convergence

1) Normalize N and D such that D is close to 1. Use a normalization
interval such as 0.5 < D <1 or 1< D < 2 as used for floating-point
mantissa.

2) Initialize 2o = N and ¢ty = D.

3) Repeat the following loop until xj shows the desired precision.

Jr=2—1t
Tpy1 = T X fr
tev1 =tk X fk

It is important to note that the algorithm is self-correcting. Any quantization
error in the factors does not really matter because numerator and denomi-
nator are multiplied with the same factor fi. This fact has been used in the
IBM 360/91 design to reduce the required resources. The multiplier used for
the first iteration has only a few significant bits, while in later iteration more
multiplier bits are allocated as the factor fj gets closer to 1.

Let us demonstrate the multiply by convergence algorithm with the fol-
lowing example.

Example 2.22: Anderson—Earle—Goldschmidt—Powers Algorithm

Let us try to compute the division-by-convergence algorithm for N = 1.5
and D = 1.2, i.e.,, @ = N/D = 1.25 The following table shows in the first
column the number of the iteration, in the second column the scaling factor
f&, in the third column the approximation to N/D, in the fourth column
the error xx — oo, and in the last column the equivalent bit precision of our
approximation.

2.5 Binary Dividers 101

k fr Tk Tk — Too Eff. bits
0 0.8 ~z 205 1.5~ 384 0.25 2

1 1.04 z?‘fg% 1.2~ §§g —0.05 4.3

2 1.0016 ~ 52¢ 1.248 ~ 320 0.002 8.9

3 1.0+256x10°° 1.25 —32x 1076 18.2
4 1.0+6.55%x10712 1.25 —8.2x 10712 36.8

We note the same quadratic convergence as in the Newton algorithm, see
Example 2.20 (p. 99).
The VHDL description® of an 8-bit fast divider is developed below. We as-
sume that denominator and numerator are normalized as, for instance, typical
for floating-point mantissa values, to the interval 1 < N, D < 2. This normal-
ization step may require essential addition resources (leading-zero detection
and two barrelshifters) when the denominator and numerator are not nor-
malized. Nominator, denominator, and quotient are all assumed to be 9 bits
wide. The decimal values 1.5, 1.2, and 1.25 are represented in a 1.8-bit for-
mat (1 integer and 8 fractional bits) as 1.5 x 256 = 384, 1.2 x 256 = 307, and
1.25 x 256 = 320, respectively. Division is performed in three stages. First,
the 1.8-formatted denominator and numerator are loaded into the registers.
In the second state, s1, the actual convergence division takes place. In the
third step, s2, the quotient is transferred to the output register.

-- Convergence division after Anderson, Earle, Goldschmidt,

LIBRARY ieee; -- and Powers

USE ieee.std_logic_1164.ALL;

USE ieee.std_logic_arith.ALL;

USE ieee.std_logic_unsigned.ALL;

ENTITY div_aegp IS ~ —===—- > Interface
GENERIC(WN : INTEGER := 9; -- 8 bit plus one integer bit
WD : INTEGER := 9;
STEPS : INTEGER := 2;
TWO : INTEGER := 512; -- 2**x(WN+1)

PO2WN : INTEGER := 256; -- 2xx(WN-1)
PO2WN2 : INTEGER := 1023); -- 2xx(WN+1)-1
PORT (clk, reset : IN STD_LOGIC;
n_in : IN STD_LOGIC_VECTOR(WN-1 DOWNTO 0);
d_in : IN STD_LOGIC_VECTOR(WD-1 DOWNTO 0);
gq_out : OUT STD_LOGIC_VECTOR(WD-1 DOWNTO 0));
END div_aegp;

ARCHITECTURE fpga OF div_aegp IS
SUBTYPE WORD IS INTEGER RANGE O TO PO2WN2;

TYPE STATE_TYPE IS (s0O, sl1, s2);

SIGNAL state : STATE_TYPE;
BEGIN
-- Bit width: WN WD WN WD

- Numerator / Denominator = Quotient and Remainder

8 The equivalent Verilog code div aegp.v for this example can be found in Ap-
pendix A on page 673. Synthesis results are shown in Appendix B on page 731.

102 2. Computer Arithmetic
o/
Master Time Bar. | Ops 4| Pointer: | 87.35 ns Intervat | 87.35 ns Stat: | End
Valie at ps 00ns B00ns 1200ne TB00ns 2000ns 2400n: 2800ns 3200ns 3600rs 4000ns 4400ns 4800ns |
Name i
ps
]

= ck B0 J | J 1 1 I

[reset B1

4 “Stateszcount U0 0 1 2

= state U date.s0 state.s0 state.s1 slate.s2 state.s0
[T r_in U3s 381

[T din uan? 307

e “Statesk ug) b4 307 b4 320

e “States:t ug b4 307 b4 745 755

o Qout uo 0]

: ¥l

Fig. 2.26. Simulation results for a convergence divider.

-- OR:

States: PROCESS(reset, clk)-- Divider in behavior
VARIABLE x, t, f : WORD:=0; -- WN+1 bits
VARIABLE count : INTEGER RANGE O TO STEPS;

BEGIN
IF reset = 1’

state <= s0;
ELSIF rising_edge(clk) THEN
CASE state IS

THEN —-- asynchrono

Numerator = Quotient * Denominator + Remainder

al style

us reset

WHEN sO => -- Initialization step
state <= si;
count := 0;
t := CONV_INTEGER(d_in); -- Load denominator
x := CONV_INTEGER(n_in); -- Load numerator

WHEN s1 => -- Processing step
f := TWO - t;
x :=x *x £ / PO2WN;
t :=t x £ / PO2WN;
count := count + 1;
IF count = STEPS THEN -- Division ready ?

state <= s2;
ELSE
state <= si;

END IF;

WHEN s2 => —-- Output of results
g_out <= CONV_STD_LOGIC_VECTOR(x, WN);
state <= s0; -- start next division

END CASE;
END IF;
END PROCESS States;

END fpga;

Figure 2.26 shows the simulation result of the division 1.5/1.2. The variable £
(which becomes an internal net and is not shown in the simulation) holds the

three scaling factors 205,267, and 257, sufficient for 8-bit prec

ision results.

The x and t values are multiplied by the scaling factor £ and scaled down to
the 1.8 format. x converges to the quotient 1.25=320/256, while t converges
to 1.0 = 255/256, as expected. In state s3 the quotient 1.25 = 320/256

2.5 Binary Dividers 103

350

300

250

200

Performance in MHz

100

50

| | |
0 1 2 4 8 16 24 32 48
Number of pipeline stages

0 | | | |

Fig. 2.27. Performance of array divider using the 1pm divide macro block.

is transferred to the output registers of the divider. Note that the divider
produces no remainder. The design uses 64 LEs, 4 embedded multipliers and
runs with a Registered Performance of 134.63 MHz.

Although the Registered Performance of the nonrestoring divider (see
Fig. 2.24) is about twice as high, the total latency, however, in the conver-
gence divider is reduced, because the number of processing steps are reduced
from 8 to [v/8] = 3 (not counting initialization in both algorithms). The
convergence divider uses less LEs as the nonrestoring divider but also 4 em-
bedded multipliers.

2.5.3 Array Divider

Obviously, as with multipliers, all division algorithms can be implemented in
a sequential, FSM-like, way or in the array form. If the array form and pipelin-
ing is desired, a good option will then be to use the 1pm_divide block, which
implements an array divider with the option of pipelining, see Appendix B,
(p. 749) for a detailed description of the 1pm_divide block.

Figure 2.27 shows the Registered Performance and Fig. 2.28 the LEs
necessary for 8 x 8—,16 x 16—, and 24 x 24—bit array dividers. Note the

104 2. Computer Arithmetic

2500

1600

1000

(2]
a
o

400

Number of logic cells

250

160

100

| | |
0 1 2 4 8 16 24 32 48
Number of pipeline stages

65 | | | |

Fig. 2.28. Effort in LEs for array divider using the 1pm divide macro block.

logarithmic like scaling for the number of pipeline stages. We conclude from
the performance measurement, that the optimal number of pipeline stages is
the same as the number of bits in the denominator.

2.6 Floating-Point Arithmetic Implementation

Due to the large gate count capacity of current FPGAs the design of floating-
point arithmetic has become a viable option. In addition, the introduction of
the embedded 18 x 18 bit array multiplier in Altera Stratix or Cyclone and
Xilinx Virtex IT or Spartan IIT FPGA device families allows an efficient design
of custom floating-point arithmetic. We will therefore discuss the design of
basic building blocks such as a floating-point adder, subtractor, multiplier,
reciprocal and divider, and the necessary conversion blocks to and from fixed-
point data format. Such blocks are available from several IP providers, or
through special request via e-mail to Uwve.Meyer-BaeseQieee.org.

Most of the commercially available floating-point blocks use (typically 3)
pipeline stages to increase the throughput. To keep the presentation simple
we will not use pipelining. The custom floating-point format we will use is the
(1,6,5) floating-point format introduced in Sect. 2.2.3, (p. 71). This format

2.6 Floating-Point Arithmetic Implementation 105

uses 1 sign bit, 6 bits for the exponent and 5 bits for the mantissa. We
support special coding for zero and infinities, but we do not support NaNs
or denormals. Rounding is done via truncation. The fixed-point format used
in the examples has 6 integer bits (including a sign bit) and 6 fractional bits.

2.6.1 Fixed-point to Floating-Point Format Conversion

As shown in Sect. 2.2.3, (p. 71), floating-point numbers use a signed-magni-
tude format and the first step is therefore to convert the two’s complement
number to signed-magnitude form. If the sign of the fixed-point number is
one, we need to compute the complement of the fixed-point number, which
becomes the unnormalized mantissa. In the next step we normalize the man-
tissa and compute the exponent. For the normalization we first determine the
number of leading zeros. This can be done with a LOOP statement within a
sequential PROCESS in VHDL. Using this number of leading zeros, we shift the
mantissa left, until the first 1 “leaves” the mantissa registers, i.e., the hidden
one is also removed. This shift operation is actually the task of a barrelshifter,
which can be inferred in VHDL via the SLL instruction. Unfortunately we
can not use the SLL with Altera’s Quartus II because it is only defined for
BIT_VECTOR data type, but not for the STD_LOGIC_VECTOR data type we need
for other arithmetic operations. But we can design a barrelshifter in many
different ways as Exercise 2.19 (p. 157) shows. Another alternative would
be to design a function overloading for the STD_LOGIC_VECTOR that allows a
shift operation, see Exercise 1.20, p. 50.

The exponent of our floating-point number is computed as the sum of
the bias and the number of integer bits in our fixed-point format minus the
leading zeros in the not normalized mantissa.

Finally, we concatenate the sign, exponent, and the normalized mantissa
to a single floating-point word if the fixed-point number is not zero, otherwise
we set the floating-point word also to zero.

We have assumed that the range of the floating-point number is larger
than the range of the fixed-point number, i.e., the special number oo will
never be used in the conversion.

Figure 2.29 shows the conversion from 12-bit fixed-point data to the
(1,6,5) floating-point data for five values +1, absolute maximum, absolute
minimum, and the smallest value. Rows 1 to 3 show the 12-bit fixed-point
number and the integer and fractional parts. Rows 4 to 7 show the com-
plete floating-point number, followed by the three parts, sign, exponent, and
mantissa. The last row shows the decimal values.

2.6.2 Floating-Point to Fixed-Point Format Conversion

The floating-point to fixed-point conversion is, in general, more complicated
than the conversion in the other direction. Depending if the exponent is

106 2. Computer Arithmetic

1o x|
Master Time Bar.l j_'l Painter: ‘ 156.48 ns Interval Start ‘ Ops End: 1.0us
ps BEI,ID ns '\SEIII] nz 24El|D ns SZIJIEI ng mqn hs aenin hs EEE[II] n3 EdDiD hs ?2EIiI] ns EDDiD ns ESDID ne 9800 ng‘
Mame
|| fise X 1000000 T 1000000 [ERENRRAREN] 1 m_ T
|=#| & fieinti11.6] X 000007 ARRREL])4 [KRRA] 100000)4 000000
|| [fis_frac(5. 0] 00000])4 JENARA] 000001 h
E fp 007117100000 101777700000 A 010001171711 TTO0TT11T1 X 001100700000 i
[&| @ fp_owlin 5] [IRKKA] b4 TO00TT 00 b
15| @ fo_menfd. 0] 00000 b 1111 ¥ 00000 \
+ 1 e min smallest
KN |

Fig. 2.29. Simulation results for a (1,5,6) fixed-point format to (1,6,5) floating-
point conversion.

larger or smaller than the bias we need to implement a left or right shift
of the mantissa. In addition, extra consideration is necessary for the special
values £oo and +£0.

To keep the discussion as simple as possible, we assume in the following
that the floating-point number has a larger dynamic range than the fixed-
point number, but the fixed-point number has a higher precision, i.e., the
number of fractional bits of the fixed-point number is larger than the bits
used for the mantissa in the floating-point number.

The first step in the conversion is the correction of the bias in the expo-
nent. We then place the hidden 1 to the left and the (fractional) mantissa to
the right of the decimal point of the fixed-point word. We then check if the
exponent is too large to be represented with the fixed-point number and set
the fixed-point number then to the maximum value. Also, if the exponent is
too small, we set the output value to zero. If the exponent is in the valid range
that the floating-point number can be represented with the fixed-point for-
mat, we shift left the 1.m mantissa value (format see (2.23), p. 71) for positive
exponents, and shift right for negative exponent values. This, in general, can
be coded with the SLL and SRL in VHDL, respectively, but these BIT_VECTOR
operations are not supported in Altera’s Quartus II for STD_LOGIC_VECTOR,
see Exercise 1.20, p. 50. In the final step we convert the signed magnitude
representation to the two’s complement format by evaluating the sign bit of
the floating-point number.

Figure 2.30 shows the conversion from (1,6,5) floating-point format to
(1,5,6) fixed-point data for the five values +1, absolute maximum, absolute
minimum, and the smallest value. The last row shows the decimal values, rows
1 to 4 the 12-bit floating-point number and the three parts, sign, exponent,
and mantissa. The rows 5 to 7 show the complete fixed-point number, followed
by the integer and fractional parts. Note that the conversion is without any
quantization error for £1 and the smallest value. For the absolute maximum
and minimum values, however, the smaller precision in the floating-point
numbers gives the imperfect conversion values compared with Fig. 2.29.

2.6 Floating-Point Arithmetic Implementation 107

olzix
Master Time Bal:l Ops J_Pl Painter: ‘ 19.2d ns Intervat ‘ 19.24ns Shark: ‘ End:

ps 800ns 1600ns 2400ns 3200ns 4000ns 4800ns 5E00ns E400ns 7200ns B000ns 8800ns SBO.0ng

Nams 0ps
R]
= | e I~ omiriqo00m TOT00n Y Oionm T 000117911 T 1007 00000
o (1] 1 [
= fp_exp[10.5] [RRER e 100071 e 071001
| @ fpman(t 0] i) b T 0000
'?l’ fix 0000071000000 IHTHITIW_){ 017711100000 1000007 00000 000000000007
= Fi_int[11_6] oot 11T " [RRRN] 700000 000000 1
E fie_frac(5..00 Onnoon b 100000 * b 000001
+1 -1 .'mlx mn smaliest

ol L]

Fig. 2.30. Simulation results for (1,6,5) floating-point format to (1,5,6) fixed-point
format conversion.

2.6.3 Floating-Point Multiplication

In contrast to fixed-point operations, multiplication in floating-point is the
simplest of all arithmetic operations and we will discuss this first. In general,
the multiplication of two numbers in scientific format is accomplished by
multiplication of the mantissas and adding of the exponents, i.e.,

fix fa= (a12€1) % (a2262) — (al % a2)261+e2,

For our floating-point format with an implicit one and a biased exponent this
becomes

fix fo=(=1)" (Lmg 297 P19%) x (—1)* (1.mg2%2~Pies)
e1 + ea — bias —bias
—————
= (—1)sts2med 2 () % 1.my) 2 s
~—_——

ms3

= (=1)% Limg 2% ",

We note that the exponent sum needs to be adjusted by the bias, since the
bias is included twice in both exponents. The sign of the product is the XOR
or modulo-2 sum of the two sign bits of the two operands. We need also to
take care of the special values. If one factor is co the product should be oo
too. Next, we check if one factor is zero and set the product to zero if true.
Because we do not support NaNs, this implies that 0 x oo is set to co. Special

values may also be produced from original nonspecial operands. If we detect
an overflow, i.e.,

e1 + e3 — bias > Fiax,
we set the product to co. Likewise, if we detect an underflow, i.e.,
e1 + ez — bias < Fyiy,

we set the product to zero. It can be seen that the internal representation of
the exponent es of the product, must have two more bits than the two factors,

108 2. Computer Arithmetic

=lalx|
Master Time Bar | Ops || it | 463 e Interva | 42637 s St | End:
ps E[I!II ns '\EElI[I ns 24[ll[l ne SZI]‘I] ne 4000ns 4800 ne EHJ‘[I ns E'H]‘I] ne 7ZIIIIEI ns EDI]iEI 3 EE]IEI ns HHJiD ns
HName Tps
fl
e Ml L\ torTiTTo0000 OOTTT1T11000 TOOUTiTi0000 % O00O0OD0O0O0 ¥ fomifoneoe
3 np | -
A [Ae[10.5] [ERAK] X 0711 X OOoonn Ty 1110
= Fim{4.0) OO0 TT000 X TO000 o000 e 11000
[i2 I 101171700000 b 001111111000 b 000071170000 1711700000 000000000000
s 211 1
f2el10..5] [GREKE] X 000771 T ¥ 000000
| &m0 8] 1003 Y o000 Qi3]
f2 001111700000 AT 0000010001 X [T] 11111100000 00000000000
3] -
f3010.5] [CIRRN 100000 X 000000 T 000000
£3m[4..0) L] 0007 X 0000 3
-1.0x-1.0 175:1 75 unerfiona Qxntinty=ntinity -1.75x0=0
|

Fig. 2.31. Simulation results for multiplications with floating-point numbers in the
(1,6,5) format.

because we need a sign and a guard bit. Fortunately, the normalization of
the product 1.mg is relatively simple, because both operands are in the range
1.0 < 1.m;2 < 2.0, the mantissa product is therefore in the range 1.0 <
1.m3 < 4.0, i.e., a shift by one bit (and exponent adjustment by 1) is sufficient
to normalize the product.

Finally, we build the new floating-point number by concatenation of the
sign, exponent, and magnitude.

Figure 2.31 shows the multiplication in the (1,6,5) floating-point format
of the following values (see also last row in Fig. 2.31):

1) (=1) x (=1) = 1.019 = 1.000005 x 231~bias

2) 1.75 x 1.75 = 3.062519 = 11.00015 x 2317Pias = 1,100014 x 232-blas
3) exponent: 7+ 7 — bias = —17 < Eui, — underflow in multiplication
4) 0 x 0o = oo per definition (NaNs are not supported).

5) —1.75x 0= -0

The rows 1 to 4 show the first floating-point number £1 and the three parts:
sign, exponent, and mantissa. Rows 5 to 8 show the same for the second
operand £2, and rows 9 to 12 the product £3 and the decomposition of the
three parts.

2.6.4 Floating-Point Addition

Floating-point addition is more complex than multiplication. Two numbers
is scientific format

fa=f1+ fa = (12°) £ (a22?)

can only be added if the exponents are the same, i.e., e; = es. Without loss
of generality we assume in the following that the second number has the

2.6 Floating-Point Arithmetic Implementation 109

(absolute) smaller value. If this is not true, we just exchange the first and the
second number. The next step is now to “denormalize” the smaller number
by using the following identity:

22 = ay/2922 1,

If we select the normalization factor such as es +d = eq, i.e., d = 1 — e, we
get

ag /2420210 = g, /201 7C2001

Now both numbers have the same exponent and we can, depending on the
signs, add or subtract the first mantissa and the aligned second, according to

as = a; = ag /247,

We need also to check if the second operand is zero. This is the case if e = 0
or d > M, i.e., the shift operation reduces the second mantissa to zero. If the
second operand is zero the first (larger) operand is forwarded to the result
ER

The two aligned mantissas are added if the two floating-point operands
have the same sign, otherwise subtracted. The new mantissa needs to be
normalized to have the 1.m3 format, and the exponent, initially set to es = e,
needs to be adjusted accordingly to the normalization of the mantissa. We
need to determine the number of leading zeros including the first one and
perform a shift logic left (SLL). We also need to take into account if one of
the operands is a special number, or if over- or underflow occurs. If the first
operand is oo or the new computed exponent is larger than F,.x the output
is set to oo. This implies that oo — co = oo since NaNs are not supported.
If the new computed exponent is smaller than E.,;,, underflow has occurred
and the output is set to zero. Finally, we concatenate the sign, exponent, and
mantissa to the new floating-point number.

Figure 2.32 shows the addition in the (1,6,5) floating-point format of the
following values (see also last row in Fig. 2.32):

1) 9.25+ (—10.5) = —1.2519 = 1.01000 x 231~Pbias

2) 1.0+ (~1.0)=0

3) 1.001115 x 227P1as 4 (—1.001002 x 227Pias) = (0.00011 x 227Plas = 1.1, x
2—2-bias _, _9 <« B i — underflow

4) 1.011115x2627bias 11 111109 x 202~ Pias = 11,011019262-Plas = 1,1263-bias
— 63 > Enax — overflow

5) —co+1=—-00

The rows 1 to 4 show the first floating-point number £1 and the three parts:
sign, exponent, and mantissa. Rows 5 to 8 show the same for the second
operand f2, and rows 9 to 12 show the sum £3 and the decomposition in the
three parts, sign, exponent, and mantissa.

110 2. Computer Arithmetic

=
Master Time Bar. | o[| Poier: [438110 Interval: Start | End:
ps 200,0 ns 400,0 ns: 6000 ns 00,0 e 10us
MHame
i fl T DOm0 00 001111700000 ¥ 000007 D001 7110017111 ¥ 111100000
L A
3 fe[10.5] 100070 [GRREN W 00000 111710 o LRENAA]
fimf4.0] 00701 X D000) (KR} kAR N 00000
ER 1000001010 101111700000 i 00007 000100 [ENRRIRANIT] ¥ 001111000000
t2[11)
; f2e[10.5] 00070 [IRARN b 000070 111710 ¥ 01110
f2m[4..0] [0 X 00ood b 00100 11170 X 00000
f3 101711101000 000000000000 011111700300 A 111111700000
t3111)
[e10.5] [LRNEN] 000000 ERANAN
f3rm{4.0] 7000 00000
0925405 1-4=0 underflow averflow -Irtiniity +1 =dnfinity
=

Fig. 2.32. Simulation results for additions with floating-point numbers in the
(1,6,5) format.

2.6.5 Floating-Point Division

In general, the division of two numbers in scientific format is accomplished
by division of the mantissas and subtraction of the exponents, i.e.,

fl/f2 = (a12€1)/(a2262) — (al/a2)2€1—62.

For our floating-point format with an implicit one and a biased exponent this
becomes

fl/f2 — (71)51 (1.m12617bias) /(71)52 (1’m22627bias)
e; — eg — bias +bias
—_—

= (=1)sFszmod 2] 4y /1.my) 2 e

m3

— (_1)531-m3263+bias-

We note that the exponent sum needs to be adjusted by the bias, since
the bias is no longer present after the subtraction of the exponents. The
sign of the division is the XOR or modulo-2 sum of the two sign bits of
the two operands. The division of the mantissas can be implemented with
any algorithm discussed in Sect. 2.5 (p. 91) or we can use the 1lpm_divide
component. Because the denominator and quotient has to be at least M+1 bits
wide, but numerator and quotient have the same bit width in the 1pm_divide
component, we need to use numerator and quotient with 2 x (M 4 1) bits.
Because the numerator and denominator are both in the range 1 < 1.m; 5 <
2, we conclude that the quotient will be in the range 0.5 < 1.mg < 2. It follows
that a normalization of only one bit (including the exponent adjustment by
1) is required.

2.6 Floating-Point Arithmetic Implementation 111

-lolx|
Master Time Bar: | j;l Pniniul:| Ops Interval: Start: | End:l
0 ps 2000 400,0 ns B00.0 s 8000 ns 1.0ue 12us 1due
Name
g i 107771700000 170007007070 070007000707) 0777100700003 000007 100000 Q017771700000 ¥ 000000000000
Lid nmi |
| @ neo.s) [(IANRA] i 100010 X ARARL] X 0aonTT X Tt X 000000

E nmlt.0] [[i) i) . Jooo0 00000

12 T T00000__Y_ (i A0A 00y T 100 Onanin_y_aoonoi 160600y (1 (0070000 000on00ong_y__ 10111 1100000
12011
12¢[10. 5] [NRRN] 00010 000011 Y1100 AL N S 1 A
{240 _oomoo ¥] ¢ 010 W ooogn_y 0000 b 00000

13 007171100000 101771700700 TOTT1107 1000 077111700000 % 100000000000 C117177100000 100000000000 %
1311]
13510.5] [RANK]) SR SRR L R GRS KRN B " ooodog b
famf#..0] 00000] 17000])

<1.04-1.0) -1058.25 9.251-10.5) averflow underfionm: 1 0=infinily A =0

Fig. 2.33. Simulation results for division with floating-point numbers in the (1,6,5)
format.

We need also to take care of the special values. The result is oo if the
numerator is 0o, the denominator is zero, or we detect an overflow, i.e.,

e1 — ez + bias = e3 > Eax.

Then we check for a zero quotient. The quotient is set to zero if the numerator
is zero, denominator is co, or we detect an underflow, i.e.,

e1 — eg + bias = e3 < Fnin-

In all other cases the result is in the valid range that produces no special
result.

Finally, we build the new floating-point number by concatenation of the
sign, exponent, and magnitude.

Figure 2.33 shows the division in the (1,6,5) floating-point format of the
following values (see also last row in Fig. 2.33):

1) (=1)/(=1) = 1.05p = 1.000004 x 231 ~bias

2) —10.5/9.2519 = 1.13519 &~ 1.0015 x 231~ bias

3) 9.25/(—10.5)19 = 0.8809521¢ ~ 1.11, x 230-bias

4) exponent: 60 — 3 4 bias = 88 > Eax — overflow in division

5) exponent: 3 — 60 + bias = —26 < Fyi, — underflow in division

6) 1.0/0 =0

7) 0/(—-1.0)=—-0.0

Rows 1 to 4 show the first floating-point number and the three parts: sign,

exponent, and mantissa. Rows 5 to 8 show the same for the second operand,
and rows 9 to 12 show the quotient and the decomposition in the three parts.

112 2. Computer Arithmetic

2.6.6 Floating-Point Reciprocal

Although the reciprocal function of a floating-point number, i.e.,

1.0
LO/T = oyt
= (~1)*27¢/1.m

seems to be less frequently used than the other arithmetic functions, it is
nonetheless useful since it can also be used in combination with the multiplier
to build a floating-point divider, because

i) fa= 320 < f1,

i.e., reciprocal of the denominator followed by multiplication is equivalent to
the division.

If the bit width of the mantissa is not too large, we may implement the
reciprocal of the mantissa, via a look-up table implemented with a case
statement or with a M4K memory block. Because the mantissa is in the

range 1 < 1.m < 2, the reciprocal must be in the range 0.5 < Lm < 1.

1.
The mantissa normalization is therefore a one-bit shift for all values except
f=1.0.

The following include file fptab5.mif was generated with the program
fpinv3e.exe ? (included on the CD-ROM under book3e/util) and shows
the first few values for a 5-bit reciprocal look-up table. The file has the

following contents:

-- This is the floating-point 1/x table for 5 bit data

-- automatically generated with fpinv3e.exe -- DO NOT EDIT!
depth = 32;

width = 5;

address_radix = uns;

data_radix = uns;

content

begin

0 : 0;

1 : 30; -- 30.060606
2 : 28; -- 28.235294
3 : 27; —-- 26.514286
4 : 25; -—- 24.888889
5 : 23; -- 23.351351
6 : 22; —- 21.894737
7 : 21; -- 20.512821
8 : 19; -- 19.200000

% You need to copy the program to your harddrive first; you can not start it from
the CD directly.

2.6 Floating-Point Arithmetic Implementation 113

ol x4
Maste Time Bar: | Ups || Pointer| 114450 Interval 11445 s Start:| End
s 2000 ns 4000 ns B0 0 ns 8001 ns
Mame 0 s
|k ([| J L I ! I
» f [110000000000 IOT00I0i000 f 1nTiiio00nt {___00D000NO0OOn__ __ oiiiiiooonn
2 il |
|| @ fefin 5] 100000 i [RRRH p 00000 i RRNKRI]
o Frn[4..0] 00000 mooa) e 00007 00000
| @2 1071 70000 A TTAT001T) SR I IRRA 2N AT 0 QT 1717100000 X 000000000000)
= 1 1
|| @ repns [RRNI] TITTT ¥ A
|5 | B f2nld 0] 0000 0071 1170 0000
12=05 111258 10103109637 10<inirity 1infinity=0
K- Ml 1+

Fig. 2.34. Simulation results for reciprocal with floating-point numbers in the
(1,6,5) format.

END;
We also need to take care of the special values. The reciprocal of co is

0, and the reciprocal of 0 is co. For all other values the new exponent e; is
computed with

e2 = —(e1 — bias) + bias = 2 X bias — e;.

Finally, we build the reciprocal floating-point number by the concatena-
tion of the sign, exponent, and magnitude.

Figure 2.34 shows the reciprocal in the (1,6,5) floating-point format of the
following values (see also last row in Fig. 2.34):

1) —1/2=—0.519 = —1.05 x 230Pbias

2) 1/1.2519 = 0.810 &~ (32 +19)/64 = 1.100115 x 230~Pbias
3) 1/1.031 = 0.969710 ~ (32 + 30)/64 = 1.111104 x 230—bias
4) 1.0/0 = oo

5) 1/00 = 0.0

For the first three values the entries (without leading 1) corresponds to the
MIF file from above for the address line 0, 8, and 1, respectively. Rows 1 to 4
show the input floating-point number £1 and the three parts: sign, exponent,
and mantissa. Rows 5 to 8 show the reciprocal £2 and the decomposition in
the three parts. Notice that for the simulation we have to us a clock signal,
since for Cyclone II device we can not use the M4K blocks without I/0
register. If we use a FLEX10K device it would be possible to use the memory
block also as asynchronous table only without additional I/O registers, see
[57]. In order to align the I/O values in the same time slot without an one
clock cycle delay we use a 10ns offset.

114 2. Computer Arithmetic

2.6.7 Floating-Point Synthesis Results

In order to measure the Registered Performance, registers were added to
the input and output ports, but no pipelining inside the block has been used.
Table 2.9 shows the synthesis results for all six basic building blocks. As
expected the floating-point adder is more complex than the multiplier or the
divider. The conversion blocks also use substantial resources. The reciprocal
block uses besides the listed LEs also one M4K memory block, or, more
specifically, 160 bits of an M4K.

Table 2.9. Synthesis results for floating-point design using the (1,6,5) data format.

Block MHz LEs 9 x 9-bit M4K
embedded memory
multiplier blocks

fix2fp 97.68 163 - -
fp2fix 164.8 114 - -
fpmul 168.24 63 1 -
fp add 57.9 181 — —
fp div 66.13 153 - -
fp rec 331.13 26 - 1

These blocks are available from several “intellectual property” providers,
or through special request via e-mail to Uwe.Meyer-Baese@Qieee.org.

2.7 Multiply-Accumulator (MAC) and Sum of Product
(SOP)

DSP algorithms are known to be multiply-accumulate (MAC) intensive. To
illustrate, consider the linear convolution sum given by

L—1
yln] = fln] + afn) = 3 flklaln — k] (2.44)
k=0
requiring L consecutive multiplications and L—1 addition operations per sam-
ple y[n] to compute the sum of products (SOPs). This suggests that a N x N-
bit multiplier need to be fused together with an accumulator, see Fig. 2.35a.
A full-precision N x N-bit product is 2NV bits wide. If both operands are (sym-
metric) signed numbers, the product will only have 2N — 1 significant bits,
i.e., two sign bits. The accumulator, in order to maintain sufficient dynamic
range, is often designed to be an extra K bits in width, as demonstrated in
the following example.

2.7 Multiply-Accumulator (MAC) and Sum of Product (SOP) 115

Example 2.23: The Analog Devices PDSP family ADSP21xx contains a 16 x 16
array multiplier and an accumulator with an extra 8 bits (for a total accumulator
width of 324 8 = 40 bits). With this eight extra bits, at least 2® accumulations are
possible without sacrificing the output. If both operands are symmetric signed, 2°
accumulation can be performed. In order to produce the desired output format, such
modern PDSPs include also a barrelshifter, which allows the desired adjustment

within one clock cycle.

This overflow consideration in fixed-point PDSP is important to main-
stream digital signal processing, which requires that DSP objects be com-
puted in real time without unexpected interruptions. Recall that checking
and servicing accumulator overflow interrupts the data flow and carries a
significant temporal liability. By choosing the number of guard bits correctly,
the liability can be eliminated.

An alternative approach to the MAC of a conventional PDSP for com-
puting a sum of product will be discussed in the next section.

2.7.1 Distributed Arithmetic Fundamentals

Distributed arithmetic (DA) is an important FPGA technology. It is exten-
sively used in computing the sum of products

N-—-1
y="{(c,x)="Y_ c[n] xz[n]. (2.45)
n=0

Besides convolution, correlation, DFT computation and the RNS inverse
mapping discussed earlier can also be formulated as such a “sum of prod-
ucts” (SOPs). Completing a filter cycle, when using a conventional arith-
metic unit, would take approximately N MAC cycles. This amount can be
shortened with pipelining but can, nevertheless, be prohibitively long. This
is a fundamental problem when general-purpose multipliers are used.

In many DSP applications, a general-purpose multiplication is technically
not required. If the filter coefficients c[n] are known a priori, then technically
the partial product term c[n|z[n] becomes a multiplication with a constant
(i.e., scaling). This is an important difference and is a prerequisite for a DA
design.

The first discussion of DA can be traced to a 1973 paper by Croisier [58]
and DA was popularized by Peled and Liu [59]. Yiu [60] extended DA to
signed numbers, and Kammeyer [61] and Taylor [62] studied quantization
effects in DA systems. DA tutorials are available from White [63] and Kam-
meyer [64]. DA also is addressed in textbooks [65, 66]. To understand the
DA design paradigm, consider the “sum of products” inner product shown
below:

116 2. Computer Arithmetic

Word shift register Multiplier Accumulator

X[N-1]| e 0@ X[1] X[0]

(a) .

CIN-1] | e 0o C[1] C[0] E E +

Register
\

.
Pipeline register optional
.

-
-
-
-
-

Bit shift register Arith?tagle Accumulator
| Xpl0] | oo | X[0] ‘ X, 0] |% i
—~ :
(b) | Xgll] | eee | X [1] ‘ Xo[1] I% D : 331
. N | y 3 Y
. ° . H E + - o T
|XB[N—I] eee XI[N—I]‘X(,[N—I]Iﬁ _ %D
~
7!
{Add. 0<=t<B
Sub. t=B
Fig. 2.35. (a) Conventional PDSP and (b) Shift-Adder DA Architecture.
N-1
y=(c,x)=7_ cn]xzn]
n=0
= ¢[0]z[0] + ¢[1]z[1] + ... + ¢[N — 1]z[N —1]. (2.46)

Assume further that the coefficients c[n] are known constants and z[n] is
a variable. An unsigned DA system assumes that the variable x[n] is repre-
sented by:

B-1
x[n] = Z xp[n] x 20 with x[n] € [0,1], (2.47)
b=0
where x,[n] denotes the b bit of z[n], i.e., the n'" sample of z. The inner
product y can, therefore, be represented as:

2.7 Multiply-Accumulator (MAC) and Sum of Product (SOP) 117

B-1

N—-1
= > clnlx Y apln] x 2", (2.48)
n=0 b=0

Redistributing the order of summation (thus the name “distributed arith-
metic”) results in:

y= c[0] (zp_1[0]2° 1 + 252012572 + ... + 20[0]2°)
+e[1] (zp-1[1]128 7 + 25 _2[1]2572 + ... 4+ 2[1]2°)

-+c[N — 1] (zp1[N — 12871+ 4 3o[N — 1]2°)
= (c[0]xp_1[0] + c[lJzp_1[1] + ...+ ¢[N — 1]zp_1[N — 1]) 251
+ (c[0)zp_2[0] + ¢[l]zp_2[1] + ...+ ¢[N — 1|zp_o[N — 1]) 282

+ (c[0]20[0] + c[L]zo[1] + ... + [N — 1]zo[N — 1]) 2°,

or in more compact form

B-1 N— B-1 N-1
y = 2 % | Xz 20 x f (c[n], zp[n]) . (2.49)
bz:; ; h’b_/ ; n=0 '

fe[n],zp[n])

Implementation of the function f(c[n], zp[n]) requires special attention. The
preferred implementation method is to realize the mapping f(c[n], zp[n]) us-
ing one LUT. That is, a 2V-word LUT is preprogrammed to accept an N-bit
input vector ap = [25[0], 2p[1], - - -, zp[N — 1]], and output f(c[n], zp[n]). The
individual mappings f(c[n], z3[n]) are weighted by the appropriate power-of-
two factor and accumulated. The accumulation can be efficiently implemented
using a shift-adder as shown in Fig. 2.35b. After N look-up cycles, the inner
product y is computed.

Example 2.24: Unsigned DA Convolution
A third-order inner product is defined by the inner product equation y =
2
(c,z) = > c[n]z[n]. Assume that the 3-bit coeflicients have the values c[0] =

n=0
2, [1] = 3, and ¢[2] = 1. The resulting LUT, which implements f(c[n], zs[n]),
is defined below:

118 2. Computer Arithmetic

o [2] wo[1] 5[0] f(eln], xo[n])

1 X 043 X 0+2 x 0=070=0002
1 x 043 X 0+2 x 1=210=0102
1 x 0+3 x 142 x 0=310=0112
1 x 043 X 142 x 1=519=1012
1 X143 x 042 x 0=110=0012
1 x 143 X 0+2 x 1=319=0112
1 x 143 x 142 x 0=410=1002
1 1 x 143 X 142 x 1=610=1102

The inner product, with respect to z[n] = {z[0] = 110 = 0012, z[1] = 310 =
0112, z[2] = Tio = 1112}, is obtained as follows:

PR OOOO

0
0
1
1
0
0
1

RO, OR,RORFRO

—_

Step t x¢[2] x¢[1] [0] f[t] +ACC[t —1]=ACC|t]

0 1 1 1 6x2°04 0 = 6
1 1 1 0 4x2'+ 6 = 14
2 1 0 0 1x22+ 14 = 18

As a numerical check, note that

y = (e.2) = 0]z (0] + e[t]a[1] + cl2af2]
=2%x14+3x3+1x7=18.v

For a hardware implementation, instead of shifting each intermediate
value by b (which will demand an expensive barrelshifter) it is more ap-
propriate to shift the accumulator content itself in each iteration one bit to
the right. It is easy to verify that this will give the same results.

The bandwidth of an N*'-order B-bit linear convolution, using general-
purpose MACs and DA hardware, can be compared. Figure 2.35 shows the
architectures of a conventional PDSP and the same realization using dis-
tributed arithmetic.

Assume that a LUT and a general-purpose multiplier have the same delay
7 =7(LUT) = 7(MUL). The computational latencies are then BT(LUT) for
DA and N7(MUL) for the PDSP. In the case of small bit width B, the speed of
the DA design can therefore be significantly faster than a MAC-based design.
In Chap. 3, comparisons will be made for specific filter design examples.

2.7.2 Signed DA Systems

In the following, we wish to discuss how (2.46) should be modified, in order to
process a signed two’s complement number. In two’s complement, the MSB is
used to distinguish between positive and negative numbers. For instance, from
Table 2.1 (p. 57) we see that decimal —3 is coded as 1013 = —44+0+1 = —34,.
We use, therefore, the following (B + 1)-bit representation

B—-1
zln] = —2% x zpn] + Y w[n] x 2°. (2.50)
b=0

2.7 Multiply-Accumulator (MAC) and Sum of Product (SOP) 119

Combining this with (2.48), the outcome y is defined by:

y= =25 flelnl.zsln)) + 32 x 3 F(elnl.). (251)
b=0 n=0

To achieve the signed DA system we therefore have two choices to modify
the unsigned DA system. They are

e An accumulator with add/subtract control
e Using a ROM with one additional input

Most often the switchable accumulator is preferred, because the additional
input bit in the table requires a table with twice as many words. The following
example demonstrates the processing steps for the add/sub switch design.

Example 2.25: Signed DA Inner Product

Consider again a third-order inner product defined by the convolution sum
2

y = (c,z) = > c[n]z[n]. Assume that the data z[n] is given in 4-bit two’s
n=0

complement encoding and that the coefficients are ¢[0] = —2, ¢[1] = 3, and

¢[2] = 1. The corresponding LUT table is given below:

p[2] zo[1] 2[0] f(c[k], xp[n])
0 0 0 1 x 043 x 0—2 x 0= 019
0 0 1 1 x04+3x0-2x1=—219
0 1 0 1 x04+3x1-2x 0= 310
0 1 1 1 x04+3x1-2x 1= 119
1 0 0 1 x 143 x0-2x 0= 110
1 0 1 1 x143x0-2x 1=—149
1 1 0 1 x 143 x1-2 % 0= 4590
1 1 1 1 x143%x1-2x 1= 219
The values of z[k] are z[0] = 110 = 0001l2c, z[l] = —310 = 11012c, and
z[2] = 710 = 01113¢. The output at sample index k, namely y, is defined as
follows:
Step t x¢[2] ¢[1] (0] flt] x 28 +Y[t — 1]=Y[t]
0 111 2x2° + 0 =2
1 1 0 0 1x2! + 2 =4
2 1 1 o0 4x2*> + 4 =20
we[2] @il] @:[0] f[t] x (=2)+Y [t - 1]=Y 1]
3 0 1 0 3x (2% + 20 =-4

A numerical check results in ¢[0]z[0] +¢[1]z[1]+¢[2]z[2] = =2x14+3x (=3)+
I1x7=-4V 2.25

120 2. Computer Arithmetic

2.7.3 Modified DA Solutions

In the following we wish to discuss two interesting modifications to the ba-
sic DA concept, where the first variation reduces the size, and the second
increases the speed.

If the number of coefficients N is too large to implement the full word
with a single LUT (recall that input LUT bit width = number of coefficients),
then we can use partial tables and add the results. If we also add pipeline
registers, this modification will not reduce the speed, but can dramatically
reduce the size of the design, because the size of a LUT grows exponentially
with the address space, i.e., the number of input coefficients N. Suppose the
length LN inner product

LN-1
y=le,a)= 3 clnlafn] (2:52)
n=0
is to be implemented using a DA architecture. The sum can be partitioned
into L independent N** parallel DA LUTSs resulting in

L-1N-1
y={(c,x) = Z Z c[Ll 4+ n|x[Ll + n]. (2.53)
=0 n=0

This is shown in Fig. 2.36 for a realization of a 4N DA design requiring three
postadditional adders. The size of the table is reduced from one 24N x B LUT

to four 2V x B tables.
Another variation of the DA architecture increases speed at the expense
of additional LUTSs, registers, and adders. A basic DA architecture, for a
length N*" sum-of-product computation, accepts one bit from each of N
words. If two bits per word are accepted, then the computational speed can
be essentially doubled. The maximum speed can be achieved with the fully
pipelined word-parallel architecture shown in Fig. 2.37. Here, a new result
of a length four sum-of-product is computed for 4-bit signed coefficients at
each LUT cycle. For maximum speed, we have to provide a separate ROM
(with identical content) for each bit vector x[n]. But the maximum speed
can become expensive: If we double the input bit width, we need twice as
many LUTSs, adders and registers. If the number of coefficients N is limited
to four or eight this modification gives attractive performance, essentially
outperforming all commercially available programmable signal processors, as

we will see in Chap. 3.

2.8 Computation of Special Functions Using CORDIC

If a digital signal processing algorithm is implemented with FPGAs and the
algorithm uses a nontrivial (transcendental) algebraic function, like \/z or

2.8 Computation of Special Functions Using CORDIC 121

| Xpl0]

X,10] ‘Xn[O] Ii

e H E Pipeline-Register optional
- — = [ii= :
: : : o -'-'—‘l: : S
ot | oo o v [xomvn o R | e
S+ e
| XgIN] eee | X|[N] ‘ X,[N] Ii H Li
0 : : 2 i T H
: : : O H
|XB[2N—1] eee |X|[2N-1] Xn[ZN—I]Iﬁ m e
o +
I S
Xgl2N] | eee | X,[2N] ‘ X[zN]H HH
| Bl 1 o E e 8 Y
0 . Q HH 2
. . o .
. . . O B | +/- Eb
|XB|3N'1| eee X [3N-1] XO|3N-1|I7 m E E b &)
ol I 2
| X3N] eee | X|[3N] ‘ X,[3N] Iﬁ] :
- — =i F
: . O 0 !
|Xu[4N'1] e oo (X [4N-1] XO[4N-1]|4 m {Add. 0<=t<B
Sub. t=B

Fig. 2.36. Distributed arithmetic with table partitioning to yield a reduced size.

arctany/xz, we can always use the Taylor series to approximate this function,
ie.,

K ki,
f(z) :Zf (0)(35—350)’2 (2.54)

where f¥(z) is the k' derivative of f(z) and k! = k x (k—1)... x 1. The
problem is then reduced to a sequence of multiply and add operations. A
more efficient, alternative approach, based on the Coordinate Rotation Dig-
ital Computer (CORDIC) algorithm can also be considered. The CORDIC
algorithm is found in numerous applications, such as pocket calculators [67],
and in mainstream DSP objects, such as adaptive filters, FFTs, DCTs [68],
demodulators [69], and neural networks [40]. The basic CORDIC algorithm
can be found in two classic papers by Volder [70] and Walther [71]. Some
theoretical extensions have been made, such as the extension of range in the
hyperbolic mode, or the quantization error analysis by Hu et al. [72], and
Meyer-Bése et al. [69]. VLSI implementations have been discussed in Ph.D.
theses, such as those by Timmermann [73] and Hahn [74]. The first FPGA
implementations were investigated by Meyer-Bése et al. [4, 69]. The realiza-
tion of the CORDIC algorithm in distributed arithmetic was investigated by
Ma [75]. A very detailed overview including details of several applications,
was provided by Hu [68] in a 1992 IEEE Signal Processing Magazine review

paper.

122 2. Computer Arithmetic

Xol0] Pipeline-Register optional

B R MR RMRARE, A

OM

Xo[N-1]

X,410]

X[N-1]

X,[0]

X,[N-1]

+

Xpl0]

i

ROM || ROM || ROM (| R

Xpg[N-1]

Fig. 2.37. Higher-order distributed arithmetic optimized for speed.

The original CORDIC algorithm by Volder [70] computes a multiplier-
free coordinate conversion between rectangular (z,y) and polar (R,) coor-
dinates. Walther [71] generalized the CORDIC algorithm to include circular
(m = 1), linear (m = 0), and hyperbolic (m = —1) transforms. For each
mode, two rotation directions are identified. For wectoring, a vector with
starting coordinates (Xj, Yp) is rotated in such a way that the vector finally
lies on the abscissa (i.e., x axis) by iteratively converging Yx to zero. For ro-
tation, a vector with a starting coordinate (X, Yo) is rotated by an angle 6,
in such a way that the final value of the angle register, denoted Z, converges
to zero. The angle 6 is chosen so that each iteration can be performed with
an addition and a binary shift. Table 2.10 shows, in the second column, the
choice for the rotation angle for the three modes m = 1,0, and —1.

Now we can formally define the CORDIC algorithm as follows:

2.8 Computation of Special Functions Using CORDIC 123

Table 2.10. CORDIC algorithm modes.

Mode Angle 0y, Shift sequence Radius factor
circular m = 1 tan™1(27F) 0,1,2,... K, =1.65
linear m = 0 27k 1,2,... Ko=1.0
hyperbolic m = —1 tanh™*(27%) 1,2,3,4,4,... K_; =0.80

Algorithm 2.26: CORDIC Algorithm

At each iteration, the CORDIC algorithm implements the mapping:
Xk+1 N 1 m5k27’“ Xk
|:Yk+1:| N |:5k2_k 1 Yy (2:55)

Zyy1 = Zi + 010k,
where the angle 6y is given in Table 2.10, 0 = +1, and the two rotation
directions are Zxg — 0 and Yx — 0.

This means that six operational modes exist, and they are summarized in
Table 2.11. A consequence is that nearly all transcendental functions can be
computed with the CORDIC algorithm. With a proper choice of the initial
values, the function X x Y,Y/X,sin(Z),cos(Z),tan"*(Y), sinh(Z), cosh(Z),
and tanh(Z) can directly be computed. Additional functions may be gener-
ated by choosing appropriate initialization, sometimes combined with multi-
ple modes of operation, as shown in the following listing:

tan(Z)=sin(Z)/ cos(Z) Modes: m=1,0
tanh(Z)=sinh(Z)/cosh(Z) Modes: m=—1,0
exp(Z)=sinh(Z) + cosh(Z) Modes: m=—1; xz=y=1
log, (W)=2tanh™*(Y/X) Modes: m=—1
with X =W +1,Y =W —1
VIW=yV/X2 - Y2 Modes: m=1

with X =W+ Y =W — |.

Table 2.11. Modes m of operation for the CORDIC algorithm.

m Zrx — 0 Yk — 0
1 XKk = Kl(Xo COS(Zo) — Yo Sin(Zo)) Xk = Kl\/XOQ + Y02

YK = Kl (Xo COS(Z()) + Yo 51n(Z0))

Zx = Zo + arctan(Yo/Xo)

0 Xk = Xo
YKIY0+X0><ZQ

Xk = Xo
Zrx = Zo + Yo/Xo

-1 Xk = K_1(Xocosh(Zy) — Yy sinh(Zp))
Yk = K_1(Xo cosh(Zp) + Yy sinh(Zp))

Xx =K 1/X2+ Y2

Zi = Zo + tanh ™! (Y5 /Xo)

124 2. Computer Arithmetic

(@) (b)
1.5 1
I /
— m=1 | / :
— m=0 / 0
— - m=1|! / 0.5}
11— | / X2
| / -
/ 3
o 0 13
/ %" 4
0.5 L,
I/ -0.5}
‘/
|
0 -1
0 0.5 1 1.5 2 -1 0 1 2

Fig. 2.38. CORDIC. (a) Modes. (b) Example of circular vectoring.

A careful analysis of (2.55) reveals that the iteration vectors only approach
the curves shown in Fig. 2.38a. The length of the vectors changes with each
iteration, as shown in Fig. 2.38b. This change in length does not depend
on the starting angle and after K iterations the same change (called radius
factor) always occurs. In the last column of Table 2.10 these radius factors
are shown. To ensure that the CORDIC algorithm converges, the sum of all
remaining rotation angles must be larger than the actual rotation angle. This
is the case for linear and circular transforms. For the hyperbolic mode, all
iterations of the form ng4; = 3ng + 1 have to be repeated. These are the
iterations 4,13,40,121....

Effective bits _~~>~.,Contour line 14 bit
< > Contour line 12 bit
20 Contour line 10 bit
16 Contour line 8 bit

12 \
8
4 20
20 18 12 Iterations n

Fig. 2.39. Effective bits in circular mode.

2.8 Computation of Special Functions Using CORDIC 125

Effective Z
©

10 1 12 13 14 15 16 17 18
Z register width

Fig. 2.40. Resolution of phase for circular mode.

Output precision can be estimated using a procedure developed by Hu
[76] and illustrated in Fig. 2.39. The graph shows the effective bit precision
for the circular mode, depending on the X,Y path width, and the number
of iterations. If b bits is the desired output precision, the “rule of thumb”
suggests that the X, Y path should have log, (b) additional guard bits. From
Fig. 2.40, it can also be seen that the bit width of the Z path should have
the same precision as that for X and Y.

In contrast to the circular CORDIC algorithm, the effective resolution of
a hyperbolic CORDIC cannot be computed analytically because the preci-
sion depends on the angular values of z(k) at iteration k. Hyperbolic precision
can, however, be estimated using simulation. Figure 2.41 shows the minimum
accuracy estimate computed over 1000 test values for each bit-width/number
combination of the possible iterations. The 3D representation shows the num-
ber of iterations, the bit width of the X /Y path, and the resulting minimum
precision of the result in terms of effective bits. The contour lines allow an
exchange between the number of iterations and the bit width. For example,
to achieve 10-bit precision, one can use a 21-bit X/Y path and 18 iterations,
or 14 iterations at 24 bits.

2.8.1 CORDIC Architectures

Two basic structures are used to implement a CORDIC architecture: the
more compact state machine or the high-speed, fully pipelined processor.

If computation time is not critical, then a state machine as shown in
Fig. 2.42 is applicable. In each cycle, exactly one iteration of (2.55) will be
computed. The most complex part of this design is the two barrelshifters. The
two barrelshifters can be replaced by a single barrelshifter, using a multiplexer
as shown in Fig. 2.43, or a serial (right, or right/left) shifter. Table 2.12

126 2. Computer Arithmetic

~._ «— Contour line 12 bit
Effective bits i

15 - .. «— Contour line 10 bit
14

+— Contour line 8 bit

LENLIN 2 L B B B B

25

23 Iterations

21
Bit width X/Y

Fig. 2.41. Effective bits in hyperbolic mode.

compares different design options for a 13-bit implementation using Xilinx
XC3K FPGAs.

1 I]
‘ X-register Y -register ‘ ‘ Z-register
I
| | | ¥
| i —
9—(i-2)y T 9—(i-2) x Table «;
I |
‘XI + 2—(1'—2)Yi< I—»YZ ¥ 2—(i—2)Xi‘ ‘ Zi + oy l« |
I L 1 || 4

Fig. 2.42. CORDIC state machine.

If high speed is needed, a fully pipelined version of the design shown
in Fig. 2.44 can be used. Figure 2.44 shows eight iterations of a circular
CORDIC. After an initial delay of K cycles, a new output value becomes

2.8 Computation of Special Functions Using CORDIC

127

Table 2.12. Effort estimation (Xilinx XC3K) for a CORDIC a machine with 13-
bits plus sign for X/Y path. (Abbreviations: Ac=accumulator; BS=barrelshifter;

RS=serial right shifter; LRS=serial left/right shifter)

Structure Registers Multiplexer ~Adder Shifter > LE Cycle
2BS+2Ac 2x7 0 2x14 2x19.5 81 12
2RS+2Ac 2X7 0 2x14 2x6.5 55 46
2LRS+2Ac 2x7 0 2x14 2x8 58 39
1BS+2Ac 7 3xT7 2x14 19.5 75.5 20
1RS+2Ac 7 3x7 2x14 6.5 62.5 56
1LRS+2Ac 7 3xT7 2x14 8 64 74
1BS+1Ac 3x7 2x7 14 19.5 68.5 20
1RS+1Ac 3x7 2Xx7 14 6.5 55.5 92
1LRS+1Ac 3x7 2x7 14 8 57 74
I I
X-register ‘ Y -register ‘ Z-register
I
X,-register l— 1
‘ I Table a;
| [| |
MPX U ‘ MPX V ‘
I ‘ ZiFoi
2-(-2y ‘ | | 4
[
U; £27072; N |

+

Fig. 2.43. CORDIC machine with reduced complexity.

available after each cycle. As with array multipliers, CORDIC implementa-
tions have a quadratic growth in LE complexity as the bit width increases

(see Fig. 2.44)

The following example shows the first four steps of a circular-vectoring

fully pipelined

design.

Example 2.27: Circular CORDIC in Vectoring Mode

The first iteration rotates the vectors from the second or third quadrant
to the first or fourth, respectively. The shift sequence is 0,0,1, and 2. The

128 2. Computer Arithmetic

X Y
o
v ¥
| x=+v | | wm=Fx
|steriofs o sHIFT:O|
‘ X3 =X +2°%, ‘ ‘ Y=Y, F2°X,
| SHIFT 1 |« R
‘X4=X312*1Y3‘ ‘ Yi=YsF271X;5
-
| X =xit2vi| | ve=viweiv
[smerale]
‘X6=X5j:2—3y5 ‘ ‘ Ys=Ys F273X5
| SHIFT:4 [« R
‘ X7 = X6+ 2745 ‘ ‘ Yr =Ys F274Xs
[SHIFT:5 | sera|
‘Xg :X712*5Y7‘ ‘ Ys =Y F27°X;
l K. X, i

Fig. 2.44. Fast CORDIC pipeline.

92 = :|:Oél

b3

04

05

bs

b7

Os

292:|:Oc2

293:|:Oc2

=94:|:Oé3

295:|:OC5

296:|:OCG

}

=97:|:Oé7

I o,

(€3]

rotation angle of the first four steps becomes: arctan(co) = 90°, arctan(2°) =
45° arctan(271) = 26.5°, and arctan(272) = 14°. The VHDL code'® for 8-bit
data can be implemented as follows:

PACKAGE eight_bit_int IS -- User-defined types
SUBTYPE BYTE IS INTEGER RANGE -128 TO 127;
TYPE ARRAY_BYTE IS ARRAY (0 TO 3) OF BYTE;

END eight_bit_int;

LIBRARY work;
USE work.eight_bit_int.ALL;

LIBRARY ieee;
USE ijeee.std_logic_1164.ALL;
USE ieee.std_logic_arith.ALL;

10 The equivalent Verilog code cordic.v for this example can be found in Ap-
pendix A on page 674. Synthesis results are shown in Appendix B on page 731.

2.8 Computation of Special Functions Using CORDIC

ENTITY cordic IS ~ —==—== > Interface
PORT (clk : IN STD_LOGIC;
x_in , y_in : IN BYTE;
r, phi, eps : OUT BYTE);
END cordic;

ARCHITECTURE fpga OF cordic IS
SIGNAL x, y, z : ARRAY_BYTE:= (0,0,0,0);

BEGIN -- Array of Bytes

PROCESS —————- > Behavioral Style

BEGIN
WAIT UNTIL clk = ’1’; -- Compute last value first in
r <= x(3); -- sequential VHDL statements !!
phi <= z(3);
eps <= y(3);
IF y(2) >= 0 THEN -- Rotate 14 degrees

x(3) <= x(2) + y(2) /4;
y(3) <= y(2) - x(2) /4;
z(3) <= z(2) + 14;

ELSE
x(3) <= x(2) - y(2) /4;
y(3) <= y(2) + x(2) /4;
z(3) <= z(2) - 14;

END IF;

IF y(1) >= O THEN -- Rotate 26 degrees
x(2) <= x(1) + y(1) /2;
y(2) <= y(1) - x(1) /2;
z(2) <= z(1) + 26;
ELSE
x(2) <= x(1) - y(1) /2;
y(2) <= y(1) + x(1) /2;
z(2) <= z(1) - 26;
END IF;

IF y(0) >= O THEN -- Rotate 45 degrees
x(1) <= x(0) + y(0);
y(1) <= y(0) - x(0);
z(1) <= z(0) + 45;
ELSE
x(1) <= x(0) - y(0O);
y(1) <= y(0) + x(0);
z(1) <= z(0) - 45;
END IF;

-- Test for x_in < 0 rotate 0,+90, or -90 degrees
IF x_in >= 0 THEN
x(0) <= x_in; -- Input in register 0
y(0) <= y_in;
z(0) <= 0;

129

130 2. Computer Arithmetic

ol
Master Time Biar: | Ops || Pointer | 3641 s Interval | Fdlns Stat:| End

v ps 400 ns B0.0ns 1200 ns 1600 ns 2000 ns 2400 ns 2800 n#

Name Geoe | o : : i i i i
ps n

=2 clk BD I I I
F| H«in S0 il i
IE yin 555 55 i
= = un T ¥ T
& @i U T ¥ i}) 4 0) 4 3 kS iFE]
2| Eeps 50 [k4]
& @m so T] T
& @ so T il T
& @ 50 a L 0
=] @) 50 1 14 1
|| @« 50 1] 103 0
|| @2 50 [1]] 1
|&| @« 5o 1] 111 i
|| @ 3 S0 1] E] [1
1 [

Fig. 2.45. CORDIC simulation results.

ELSIF y_in >= O THEN
x(0) <= y_in;
y(0) <= - x_in;

z(0) <= 90;
ELSE

x(0) <= - y_in;

y(0) <= x_in;

z(0) <= -90;
END IF;

END PROCESS;

END fpga;
Figure 2.45 shows the simulation of the conversion of Xo = —41, and Yy = 55.
Note that the radius is enlarged to R = Xx = 111 = 1.6184/X¢ + Y and the
accumulated angle in degrees is arctan(Yp/Xo) = 123°. The design requires

235 LEs and runs with a Speed synthesis optimization at 222.67 MHz using
no embedded multiplier.

The actual LE count in the previous example is larger than that expected
for a four-stage 8-bit pipeline design that is 5 x 8 x 3 = 120 LEs. The increase
by a factor of two comes from the fact that a FPGA uses an N-bit switchable
LPM_ADD_SUB megafunction that needs 2N LEs. It needs 2N LEs because the
LE has only three inputs in the fast arithmetic mode, and the switch mode
needs four input LUTs. A Xilinx XC4K type LE, see Fig. 1.12, p. 19, would
be needed, with four inputs per LE, to reduce the count by a factor of two.

2.9 Computation of Special Functions using MAC Calls

The CORDIC algorithm introduced in the previous section allows one to
implement a wide variety of functions at a moderate implementation cost.

2.9 Computation of Special Functions using MAC Calls 131

The only disadvantage is that some high-precision functions need a large
number of iterations, because the number of bits is linearly proportional to
the number of iterations. In a pipelined implementation this results in a large
latency.

With the advent of fast embedded array multipliers in new FPGA families
like Spartan or Cyclone, see Table 1.4 (p. 11), the implementation of special
functions via a polynomial approximation has becomes a viable option. We
have introduced the Taylor series approximation in (2.54), p. 121. The Tay-
lor series approximation converges fast for some functions, e.g., exp(x), but
needs many product terms for some other special functions, e.g., arctan(x),
to approximate with sufficient precision. In these cases a Chebyshev approx-
imation can be used to shorten the number of iterations or product terms
required.

2.9.1 Chebyshev Approximations

The Chebyshev approximation is based on the Chebyshev polynomial
Ti(x) = cos (k x arccos(z)) (2.56)

defined for the range —1 < x < 1. The Ty (z) may look like trigonometric
functions, but using some algebraic identities and manipulations allow us to
write (2.56) as a true polynomial. The first few polynomials look like

To(z) =1

Ti(x) =z

To(z) =22% — 1

Ts(z) = 4% — 32 (2.57)
Ty(x) = 8z* — 82% 4 1

Ts(z) = 162° — 2023 + 52

To(z) = 3225 — 482" + 1822 — 1

In [77] we find a list of the first 12 polynomials. The first six polynomials are
graphical interpreted in Fig.2.46. In general, Chebyshev polynomials obey
the following iterative rule

Ti(z) = 20Th—1(x) — Th—2(x) Vk>2. (2.58)
A function approximation can now be written as
N—-1
f@) =" e(k)Tu(x). (2.59)
k=0

Because all discrete Chebyshev polynomials are orthogonal to each other
it follows that forward and inverse transform are unique, i.e., bijective [78,

132 2. Computer Arithmetic

0.8 1

0.4 1

-

n

T P I B B
a ~ O DN

Amplitude T _(x)

1 1 1 1 1 1 1 1 1 1 1
-1 -08 -06 -04 -02 0 02 04 06 08 1
X

Fig. 2.46. The first 6 Chebyshev polynomials .

p. 191]. The question now is why (2.59) is so much better than, for instance,
a polynomial using the Taylor approximation (2.54)

7N71 fk(l'()) - kiNfl - .
f@)= 3 E0) 0 agr = 3 bk - a0, (2.60)
k=0 k=0

There are mainly three reasons. First (2.59) is a very close (but not exact)
approximation to the very complicated problem of finding the function ap-
proximation with a minimum of the maximum error, i.e., an optimization
of the lo norm max(f(z) — f(x)) — min. The second reason we prefer
(2.59) is the fact, that a pruned polynomial with M << N still gives a min-
imum/maximum approximation, i.e., a shorter sum still gives a Chebyshev
approximation as if we had started the computation with M as the target
from the very start. Last but not least we gain from the fact that (2.59)
can be computed (for all functions of relevance) with much fewer coefficients
than would be required for a Taylor approximation of the same precision.
Let us study these special function approximation in the following for pop-
ular functions, like trigonometric, exponential, logarithmic, and the square
root functions.

2.9 Computation of Special Functions using MAC Calls 133
(a) x 107 (b)
1 A
— Exact 1 ‘7 error‘ 1
05 Q8 z
’ g 0.5
x
— L
E o L0
2
-0.5 % 05
-1
_1»
15 -1 -05 0 05 1 15 -1 -05 0 0.5 1
X X
© ¢ Chebyshev c(k) g
© L + Polynomial g(k) @
o o Taylor p(k) 20
g 7
= 1 16
2 0.8 2
[s8
s °° £12
T 04 8 $
(72}
:é 02 B 38 oo
T o N s, o o
© 02 s g ® O i
ﬁ a8y
0 1 2 3 4 5 1 2 3 4 5 6
k Number of coefficients

Fig. 2.47. Inverse tangent function approximation. (a) Comparison of full-
precision and 8-bit quantized approximations. (b) Error of quantized approxi-
mation for z € [—1,1]. (c) Chebyshev, polynomial from Chebyshev, and Taylor
polynomial coefficients. (d) Error of the three pruned polynomials.

2.9.2 Trigonometric Function Approximation

As a first example we study the inverse tangent function

f(z) = arctan(x), (2.61)

where z is specified for the range —1 < x < 1. If we need to evaluate function
values outside this interval, we can take advantage of the relation

arctan(z) = 0.5 — arctan(1/z). (2.62)

Embedded multipliers in Altera FPGAs have a basic size of 9 x 9 bits, i.e., 8
bits plus sign bit data format, or 18 x 18 bit, i.e., 17 bits plus sign data format.
We will therefore in the following always discuss two solutions regarding these
two different word sizes.

Fig. 2.47a shows the exact value and approximation for 8-bit quantiza-
tion, and Fig. 2.47b displays the error, i.e., the difference between the exact
function value and the approximation. The error has the typical alternating

134 2. Computer Arithmetic

minimum/maximum behavior of all Chebyshev approximations. The approx-
imation with N = 6 already gives an almost perfect approximation. If we use
fewer coefficients, e.g., N = 2 or N = 4, we will have a more-substantial
error, see Exercise 2.26 (p. 162).

For 8-bit precision we can see from Fig. 2.47d that N = 6 coeflicients
are sufficient. From Fig. 2.47c we conclude that all even coefficients are zero,
because arctan(z) is an odd symmetric function with respect to z = 0. The
function to be implemented now becomes

N—-1
fa) =Y e(k)Ti()
k=0
f(@) = c(V)T1(2) + e(3)T5(x) + c(5)T5(x)
F(z) = 0.8284Ty(x) — 0.0475T5(x) + 0.0055T5(x). (2.63)

To determine the function values in (2.63) we can substitute the T, (z) from
(2.57) and solve (2.63). It is however more efficient to use the iterative rule
(2.58) for the function evaluation. This is known as Clenshaw’s recurrence
formula [78, p. 193] and works as follows:

dIN)=d(N+1)=0

d(k) = 2zd(k +1) —d(k+2)+c(k) k=N-1,N—2...1

f(z) = d(0) = zd(1) — d(2) + ¢(0) (2.64)
For our N = 6 system with even coefficients equal to zero we can simplify
(2.64) to

d(5) = c(5)

d(4) = 2zc¢(5)

d(3) = 2zd(4) — d(5) + ¢(3)

d(2) = 2zd(3) — d(4)

d(1) = 2zd(2) — d(3) + ¢(1)

f(z) = zd(1) — d(2). (2.65)

We can now start to implement the arctan(z) function approximation in
HDL.

Example 2.28: arctan Function Approximation

If we implement the arctan(z) using the embedded 9 x 9 bit multipliers we
have to take into account that our values are in the range —1 < z < 1.
We therefore use a fractional integer representation in a 1.8 format. In our
HDL simulation these fractional numbers are represented as integers and the
values are mapped to the range —256 < z < 256. We can use the same
number format for our Chebyshev coefficients because they are all less than
1, i.e., we quantize

2.9 Computation of Special Functions using MAC Calls 135

(1) = 0.8284 = 212/256, (2.66)
(3) = —0.0475 = —12/256, (2.67)
¢(5) = 0.0055 = 1,/256. (2.68)

The following VHDL code'! shows the arctan(z) approximation using poly-
nomial terms up to N = 6.
PACKAGE n_bits_int IS -- User-defined types
SUBTYPE BITS9 IS INTEGER RANGE -2%*8 TO 2%*8-1;
TYPE ARRAY_BITS9_4 IS ARRAY (1 TO 5) of BITS9;
END n_bits_int;

LIBRARY work;
USE work.n_bits_int.ALL;

LIBRARY ieee;

USE ieee.std_logic_1164.ALL;
USE ieee.std_logic_arith.ALL;
USE ieee.std_logic_signed.ALL;

ENTITY arctan IS ~ ==—=== > Interface
PORT (clk : IN STD_LOGIC;
X_in : IN BITS9;
d_o : OUT ARRAY_BITS9_4;
f_out : OUT BITS9);
END arctan;

ARCHITECTURE fpga OF arctan IS

SIGNAL x,f,d1,d2,d3,d4,d5 : BITS9; -- Auxilary signals
SIGNAL 4 : ARRAY_BITS9_4 := (0,0,0,0,0);-- Auxilary array
—-- Chebychev coefficients for 8-bit precision:

CONSTANT c1 : BITS9 := 212;

CONSTANT c3 : BITS9 := -12;

CONSTANT c5 : BITS9 := 1;

BEGIN

STORE: PROCESS ~ ---—-—-- > I/0 store in register
BEGIN

WAIT UNTIL clk = ’1°;

x <= x_in;

f_out <= f;
END PROCESS;

--> Compute sum-of-products:
SOP: PROCESS (x,d)
BEGIN
—- Clenshaw’s recurrence formula
d(5) <= cb;
d(4) <= x * d(5) / 128;
d(3) <= x *x d(4) / 128 - d(5) + c3;

1 The equivalent Verilog code arctan.v for this example can be found in Ap-
pendix A on page 676. Synthesis results are shown in Appendix B on page 731.

136 2. Computer Arithmetic

I} arctan.vel

=10 x|

Master Time Bar.| Ops +| »| Fairter B4.46 ns Irterval | 8446 ns Stal|

End:

1000 ns 2000 ns 300,0 ns 00,0 rs

Valae al

500,01

500.0 ns 700.0 ng

0 ps
1]

clk BO | J |] |] |]

win FA il 05 [

=
=

"X

[1]

dols] §1 i

dod] §2 2 il] i

Hdoz 58 3 iz 13 1z

-3

dol2l &0 T3 EE

-2

[d_o1] S0 211 7] b 211

b

1¢7

225

[PeRERREE
B e et e ot

f_out 50 18 0

118

P P e o

200

o T

Fig. 2.48. VHDL simulation of the arctan(z) function approximation for the values
x = —1=-256/256,z = —0.5 = —128/256, 2 = 0,z = 0.5 = 128/256,z = 1 ~

255/256.
d(2) <= x * d(3) / 128 - d(4);
d(1) <= x * d(2) / 128 - d(3) + ci;
f <=x *d(1) / 256 - d(2); -- last step is different
END PROCESS SOP;
d_o <= d; -- Provide some test signals as outputs
END fpga;

The first PROCESS is used to infer registers for the input and output data.
The next PROCESS blocks SOP include the computation of the Chebyshev
approximation using Clenshaw’s recurrence formula. The iteration variables
d(k) are also connected to the output ports so we can monitor them. The
design uses 100 LEs, 4 embedded multipliers and has a 32.09 MHz Registered
Performance. Comparing FLEX and Cyclone synthesis data we can conclude
that the use of embedded multipliers saves many LEs.

A simulation of the arctan function approximation is shown in Fig. 2.48. The
simulation shows the result for five different input values:

x f(x) = arctan(z) f(z) lerror| Eff. bits
-1.0 -0.7854 —201/256 = —0.7852 0.0053 7.6
-0.5 -0.4636 —118/256 = —0.4609 0.0027 7.4
0 0.0 0 0 -
0.5 0.4636 118/256 = 0.4609 0.0027 7.4
1.0 0.7854 200/256 = 0.7812 0.0053 7.6

Note that, due to the I/O registers, the output values appear with a delay of

one clock cycle.

If the precision in the previous example is not sufficient we can use more
coefficients. The odd Chebyshev coefficients for 16-bit precision, for instance,

would be

c(2k + 1) = (0.82842712, —0.04737854, 0.00487733,

—0.00059776,0.00008001, —0.00001282).

(2.69)

2.9 Computation of Special Functions using MAC Calls 137
(a)
1
05 =
8
- i
X 0 L
%
g
-0.5 — Exact o
Q16
-1
-1 0 1 2
X X
© ¢ Chebyshev c(k)
(© : (@
+ + Polynomial g(k) 0
s @ o o Taylor p(k)
z ! $
3 .16]
£ 4 £
§” E 12 o
; 0.5 ¢ g &
o © 8 m
o (9]
£ 08 O o] 8 o o
§ ’ 4 ol t
-0.5 o
8 @ @
0 1 2 3 4 5 1 2 3 4 5 6
k Number of coefficients

Fig. 2.49. Sine function approximation. (a) Comparison of full-precision and 8-bit
quantized approximations. (b) Error of quantized approximation for z € [0, 1]. (¢)
Chebyshev, polynomial from Chebyshev, and Taylor polynomial coefficients. (d)
Error of the three pruned polynomials.

If we compare this with the Taylor series coefficient

3 x
t =z L (=D)F
arctan(z) = x + _ +...(-1 ok 4+ 1

2k+1

s T s (2.70)

p(2k +1) = (1,-0.3,0.2, —0.14285714, 0.1, —0.09)

we see that the Taylor coefficients converge very slowly compared with the
Chebyshev approximation.

There are two more common trigonometric functions. On is the sin(x)
and the other is the cos(x) function. There is however a small problem with
these functions. The argument is usually defined only for the first quadrant,
ie, 0 <z < m/2, and the other quadrants values are computed via

sin(z) = — sin(—x) sin(x) = sin(7w/2 — x) (2.71)

or equivalent for the cos(x) we use
cos(z) = cos(—x)

cos(z) = —cos(m/2 — x). (2.72)

138 2. Computer Arithmetic

We may also find that sometimes the data are normalized f(x) = sin(zx7/2) or
degree values are used, i.e., 0° < x < 90°. Figure 2.49a shows the exact value
and approximation for 16-bit quantization, and Fig. 2.49b displays the error,
i.e., the difference between the exact function values and the approximation.
In Fig. 2.50 the same data are plotted for the cos(zm/2) function. The problem
now is that our Chebyshev polynomials are only defined for the range = €
[—1,1]. Which brings up the question, how the Chebyshev approximation
has to be modified to take care of different range values? Luckily this does
not take too much effort, we just make a linear transformation of the input
values. Suppose the function f(y) to be approximated has a range y € [a, b]
then we can develop our function approximation using a change of variable
defined by

2 —b—a

b—a
Now if we have for instance in our sin(x7/2) function x in the range z = [0, 1],
i.e,, a=0and b =1, it follows that y has the range y = [(2x0—-1-0)/(1 —
0),2x1-1-0)/(1—-0)] = [-1,1], which we need for our Chebyshev
approximation. If we prefer the degree representation then a = 0 and b = 90,
and we will use the mapping y = (22 — 90)/90 and develop the Chebyshev
approximation in y.

The final question we discuss is regarding the polynomial computation.
You may ask if we really need to compute the Chebyshev approximation
via the Clenshaw’s recurrence formula (2.64) or if we can use instead the
direct polynomial approximation, which requires one fewer add operation
per iteration:

Y= (2.73)

N-1

f) =" p(k)a* (2.74)

k=
or even better use the Horner scheme
s(k) =s(k+1)xz+pk) k=N-=2,...0.
f=s(0). (2.75)

We can of course substitute the Chebyshev functions (2.57) in the approxi-
mation formula (2.59), because the T),(x) do not have terms of higher order
than z”. However there is one important disadvantage to this approach. We
will lose the pruning property of the Chebyshev approximation, i.e., if we use
in the polynomial approximation (2.74) fewer than N terms, the pruned poly-
nomial will no longer be an I, optimized polynomial. Figure 2.47d (p. 133)
shows this property. If we use all 6 terms the Chebyshev and the associated
polynomial approximation will have the same precision. If we now prune the
polynomial, the Chebyshev function approximation (2.59) using the T),(x)
has more precision than the pruned polynomial using (2.74). The resulting

2.9 Computation of Special Functions using MAC Calls 139

(a) x107° (b)
1 3
— Exact — error
0.5 Q16 | | ® 2 1
3
y ©
i
X o 1T
-— x
2
2 0
-05 &
-1
-1
-1 0 1 2 0 02 04 06 08 1
X X
© ¢ Chebyshev c(k) g
© L + Polynomial g(k) @
163 o o Taylor p(k) 20
=
2 o5 w16 ¢
S t 5 6
£ o0 B o @ o) £12
o [}
= @ o
.g —05 o § 8 1
£ o o u] 0
o
3 - 1 4 + 1
© iz} @
R
0 1 2 3 4 5 1 2 3 4 5 6
k Number of coefficients

Fig. 2.50. Cosine function approximation. (a) Comparison of full-precision and 16-
bit quantized approximations. (b) Error of quantized approximation for z € [0, 1].
(c) Chebyshev, polynomial from Chebyshev, and Taylor polynomial coefficients.
(d) Error of the three pruned polynomials.

precision is much lower than the equivalent pruned Chebyshev function ap-
proximation of the same length. In fact it is not much better than the Taylor
approximation. So the solution to this problem is not complicated: if we want
to shorten the length M < N of our polynomial approximation (2.74) we need
to develop first a Chebyshev approximation for length M and then compute
the polynomial coefficient g(k) from this pruned Chebyshev approximation.
Let us demonstrate this with a comparison of 8- and 16-bit arctan(x) coeffi-
cients. The substitution of the Chebyshev functions (2.57) into the coefficient
(2.69) gives the following odd coefficients:

g(2k + 1) = (0.99999483, —0.33295711, 0.19534659,
—0.12044859, 0.05658999, —0.01313038). (2.76)

If we now use the length N = 6 approximation from (2.66) the odd coefficient
will be

g(2k + 1) = (0.9982, —0.2993, 0.0876). (2.77)

140 2. Computer Arithmetic

Although the pruned Chebyshev coefficients are the same, we see from a com-
parison of (2.76) and (2.77) that the polynomial coefficient differ essentially.
The coefficient g(5) for instance has a factor of 2 difference.

We can summarize the Chebyshev approximation in the following proce-
dure.

Algorithm 2.29: Chebyshev Function Approximation

1) Define the number of coefficients N.

2) Transform the variable from z to y using (2.73)

3) Determine the Chebyshev approximation in y.

4) Determine the direct polynomial coefficients g(k) using Clenshaw’s
recurrence formula.

5) Build the inverse of the mapping y.

If we apply these five steps to our sin(zw/2) function for z € [0, 1] with four
nonzero coefficients, we get the following polynomials sufficient for a 16-bit
quantization

f(z) = sin(xn/2)
= 1.57035062x + 0.0050871922 — 0.666660992>
+0.03610310z* + 0.055121662°
= (514572 + 1672 — 218452 + 11832 + 18062°)/32768.

Note that the first coefficient is larger than 1 and we need to scale appropriate.
This is quite different from the Taylor approximation given by

sn () =" - 3}! (x;)3+ ;! (?)5
(—1)F fomy\ 2K+l
(2k + 1)1 ()

Figure 2.49c shows a graphical illustration. For an 8-bit quantization we
would use

f(z) =sin(zn/2) = 1.5647x + 0.0493z% — 0.7890x> + 0.1748z*
= (200z + 62% — 10123 + 222%)/128. (2.78)

+...+

Although we would expect that, for an odd symmetric function, all even
coeflicients are zero, this is not the case in this approximation, because we
only used the interval = € [0, 1] for the approximation. The cos(z) function
can be derived via the relation

oS (ac;r) = sin ((x +1) 72r) (2.79)

or we may also develop a direct Chebyshev approximation. For € [0,1]
with four nonzero coefficients and get the following polynomial for a 16-bit
quantization

2.9 Computation of Special Functions using MAC Calls 141

f(z) = cos (x;)

= 1.00000780 — 0.00056273z — 1.22706059z>
—0.028967992% + 0.31171138z* — 0.055121662°
= (32768 — 18z — 40208x2 — 949> + 10214z — 18062°)/32768.

For an 8-bit quantization we would use

f(z) = cos (xﬂ-)

2
= (0.9999 + 0.0046z — 1.26902% + 0.0898z" + 0.1748z* (2.80)
= (128 + = — 1622* + 112® + 222")/128. (2.81)

Again the Taylor approximation has quite different coefficients:
(amr) L] (:mr)2Jr 1 (:mr)4+ N (—1)* (amr)%
cos =1- e .
2 21\ 2 a4\ 2 2k \ 2
Figure 2.49c shows a graphical illustration of the coefficients. We notice from
Fig. 2.49d that with the same number (i.e., six) of terms x* the Taylor ap-

proximation only provides about 6 bit accuracy, while the Chebyshev approx-
imation has 16-bit precision.

2.9.3 Exponential and Logarithmic Function Approximation

The exponential function is one of the few functions who’s Taylor approxi-
mation converges relatively fast. The Taylor approximation is given by

T 1'2 ﬂfk

flx)=e"=1+ _ + !+...+k!

1! 2
with 0 < a < 1. For 16-bit polynomial quantization computed using the
Chebyshev coefficients we would use:
flz) = e”
= 1.00002494 + 0.998757052 + 0.509779842>
+0.140275042° + 0.06941551z*
= (32769 + 32727z + 16704x> 4 459723 + 22752%) /32768.

(2.82)

Only terms up to order z* are required to reach 16-bit precision. We notice
also from Fig. 2.51c that the Taylor and polynomial coefficient computed from
the Chebyshev approximation are quite similar. If 8 bits plus sign precision
are sufficient, we use

f(z) = e” = 1.0077 + 0.8634x + 0.8373x>
= (129 + 111z + 1072%)/128. (2.83)

142 2. Computer Arithmetic

(@)
20
— Exact
15 Q16
Z10
5
- 1 0 1 2 3 1
X X
© ¢ Chebyshev c(k)
© L+ + Polynomial g(k) @
2 o o Taylor p(k) 201
= 16} i
g1.5 %
Q.
= £12 %
}E’ 18) g
° i ° ?
= o
@ & Q
8 0.5 al o &
[n| =2
B &
0 1 2 4 1 2 3 4 5
k Number of coefficients

Fig. 2.51. Exponential f(z) = exp(z) function approximation. (a) Comparison
of full-precision and 16-bit quantized approximations. (b) Error of quantized ap-
proximation for z € [0, 1]. (c) Chebyshev, polynomial from Chebyshev, and Taylor
polynomial coefficients. (d) Error of the three pruned polynomials.

Based on the fact that one coefficient is larger than ¢(0) > 1.0 we need to
select a scaling factor of 128.

The input needs to be scaled in such a way that 0 < x < 1. If x is outside
this range we can use the identity

ST — (em)s (284)

Because s = 2* is a power-of-two value this implies that a series of squar-
ing operations need to follow the exponential computation. For a negative
exponent we can use the relation

1
—
or develop a separate approximation. If we like to build a direct function ap-
proximation to f(z) = e~* we have to alternate the sign of each second term
in (2.82). For a Chebyshev polynomial approximation we get additional minor
changes in the coeflicients. For a 16-bit Chebyshev polynomial approximation

we use

2.9 Computation of Special Functions using MAC Calls 143

(a) x107° (b)
7]
6 — Exact | | 2 — error,
\ Q16 =
5 g 1
g4 T
= x
3 § 0
2 &
1 -1
-2 -1 0 1 2 3 0 0.2 0.4 06 08 1
X X
© ¢ Chebyshev c(k) g
© L+ + Polynomial g(k) @
18 o o Taylor p(k) 20
3 16 9
< 05 @ @
= o
= £ 12 ¢
T o0 o o a8 s
£ kS @ 6
8 © g 8 i
£ -0.5 o 4
g 4 o
o S
-1 B 1 $ =)
0 1 2 3 4 1 2 3 4 5
k Number of coefficients

Fig. 2.52. Negative exponential f(z) = exp(—x) function approximation. (a) Com-
parison of full-precision and 16-bit quantized approximations. (b) Error of quan-
tized approximation for z € [0, 1]. (¢) Chebyshev, polynomial from Chebyshev, and
Taylor polynomial coefficients. (d) Error of the three pruned polynomials.

fla) =e™
= 0.99998916 — 0.999456302 + 0.49556967 2>
—0.153750462° + 0.02553654z*
= (65535 — 65500 + 324782 — 100762° + 16742)/65536.
where z is defined for the range = € [0, 1]. Note that, based on the fact that
all coefficients are less than 1, we can select a scaling by a factor of 2 larger
than in (2.83). From Fig. 2.52d we conclude that three or five coefficients are
required for 8- and 16-bit precision, respectively. For 8-bit quantization we
would use the coefficients
f(z) =e " =0.9964 — 0.9337x + 0.30802>
= (255 — 239z + 7922)/256. (2.86)
The inverse to the exponential function is the logarithm function, which

is typically approximated for the argument in the range [1,2]. As notation
this is typically written as f(x) = In(l + z) now with 0 < z < 1. Figure

144 2. Computer Arithmetic

1
— Exact
0.5 Q16
0
x
-05
-1
-05 0 05 1 15 0 02 04 06 08 1
X X
© ¢ Chebyshev c(k)
() - (d
+ + Polynomial g(k) 0
1 @ o o Taylor p(k)
X
=3 16 3
< 2
=% O
g 0.5 £ 12
G o n 5 o
€ 1 @
[0
S ow T T S g 8 o
= o
© +
3 O 4 O +
& O m
-05 @ o ® 8
0 1 2 3 4 5 1 2 3 4 5 6
k Number of coefficients

Fig. 2.53. Natural logarithm f(z) = In(1 + z) function approximation. (a) Com-
parison of full-precision and 16-bit quantized approximations. (b) Error of quan-
tized approximation for z € [0, 1]. (¢) Chebyshev, polynomial from Chebyshev, and
Taylor polynomial coefficients. (d) Error of the three pruned polynomials.

2.53a shows the exact and 16-bit quantized approximation for this range.
The approximation with NV = 6 gives an almost perfect approximation. If we
use fewer coeflicients, e.g., N =2 or N = 3, we will have a more substantial
error, see Exercise 2.29 (p. 163).

The Taylor series approximation in no longer fast converging as for the
exponential function

22 23 (—1)F+igh
flz)=In(1+2z) == 2+3+...+ B

as can be seen from the linear factor in the denominator. A 16-bit Chebyshev

approximation converges much faster, as can be seen from Fig. 2.53d. Only

six coeflicients are required for 16-bit precision. With six Taylor coefficients

we get less than 4-bit precision. For 16-bit polynomial quantization computed

using the Chebyshev coefficients we would use

J(@) = In(1 +a)

2.9 Computation of Special Functions using MAC Calls 145

= 0.00001145 4 0.99916640z — 0.48969909x>
40.283823182° — 0.129957202 + 0.02980877°
= (14 65481z — 3209322 + 186012> — 8517z* + 19542°)/65536.

Only terms up to order 2° are required to get 16-bit precision. We also notice
from Fig. 2.53c that the Taylor and polynomial coefficient computed from
the Chebyshev approximation are similar only for the first three coefficients.

We can now start to implement the In(1 4+ z) function approximation in
HDL.

Example 2.30: In(14x) Function Approximation

If we implement the In(1 + z) using embedded 18 x 18 bit multipliers we
have to take into account that our values x are in the range 0 < z < 1. We
therefore use a fractional integer representation with a 2.16 format. We use
an additional guard bit that guarantees no problem with any overflow and
that = 1 can be exactly represented as 2'°. We use the same number format
for our Chebyshev coefficients because they are all less than 1.
The following VHDL code'? shows the In(1 + z) approximation using six
coefficients.
PACKAGE n_bits_int IS -- User-defined types
SUBTYPE BITS9 IS INTEGER RANGE -2%%8 TO 2%x8-1;
SUBTYPE BITS18 IS INTEGER RANGE -2%%17 TO 2%*17-1;
TYPE ARRAY_BITS18_6 IS ARRAY (O TO 5) of BITS18;
END n_bits_int;

LIBRARY work;
USE work.n_bits_int.ALL;

LIBRARY ieee;

USE ieee.std_logic_1164.ALL;
USE ieee.std_logic_arith.ALL;
USE ieee.std_logic_signed.ALL;

ENTITY I IS === > Interface
GENERIC (N : INTEGER := 5);-- Number of coeffcients-1
PORT (clk : IN STD_LOGIC;

X_in : IN BITS18;
f_out : OUT BITS18);

END 1n;

ARCHITECTURE fpga OF 1n IS

SIGNAL x, f : BITS18:= 0; -- Auxilary wire
-- Polynomial coefficients for 16-bit precision:
-- f(x) = (1 + 65481 x -32093 x"2 + 18601 x"3
-- -8517 x"4 + 1954 x°5)/65536
CONSTANT p : ARRAY_BITS18_6 :=
(1,65481,-32093,18601,-8517,1954) ;
SIGNAL s : ARRAY_BITS18_6 ;

12 The equivalent Verilog code 1n.v for this example can be found in Appendix A
on page 677. Synthesis results are shown in Appendix B on page 731.

146 2. Computer Arithmetic

(B =0l x
Master Time Bar | 0ps «| | Poiter | 17408 ns Interval 1740Ans Start: | End
s 1000 s 200 0ns 2000ns 4000 s 5000 s £00,0ns
Walue at ’ . ’ ! ! '
Marne Ope 5“,3
i clk BU J J 1] 1] | J | 1
| @ s un 1 LI I S = - G v |7 e
| B ot uo 1 T ¥ Rl et ¥ 3w AT
] —)

Fig. 2.54. VHDL simulation of the In(1 + z) function approximation for the
values z = 0,z = 0.25 = 16384/65536,x = 0.5 = 32768/65536,z = 0.75 =

49152/65536, z = 1.0 = 65536,/65536.

BEGIN

STORE: PROCESS ------ > I/0 store in register
BEGIN

WAIT UNTIL clk = ’1’;

x <= x_in;

f_out <= f£;
END PROCESS;

--> Compute sum-of-products:

SOP: PROCESS (x,s)

VARIABLE slv : STD_LOGIC_VECTOR(35 DOWNTO 0);
BEGIN

-- Polynomial Approximation from Chebyshev coeffiecients

s(N) <= p(D);
FOR K IN N-1 DOWNTO O LOOP
slv := CONV_STD_LOGIC_VECTOR(x,18)

* CONV_STD_LOGIC_VECTOR(s(K+1),18);
s(K) <= CONV_INTEGER(slv(33 downto 16)) + p(K);

END LOOP; -- x*s/65536 problem 32 bits

f <= s(0); -- make visiable outside

END PROCESS SOP;

END fpga;

The first PROCESS is used to infer the registers for the input and output data.
The next PROCESS blocks SOP includes the computation of the Chebyshev
approximation using a sum of product computations. The multiply and scale
arithmetic is implemented with standard logic vectors data types because the
36-bit products are larger than the valid 32-bit range allowed for integers.
The design uses 88 LEs, 10 embedded 9 x 9-bit multipliers (or half of that for
18 x 18-bit multipliers) and has a 32.76 MHz Registered Performance.

A simulation of the function approximation is shown in Fig. 2.54. The simu-

lation shows the result for five different input values:

2.9 Computation of Special Functions using MAC Calls 147

(a) x 107 (b)
0
0.4]
— Exact -1 — error| 1
0.2 Q8 1 =
g -2
2
g ° i 3
— x
-0.2 @ -4
3
-0.4 -5
-6
-0.6
-0.5 0 0.5 1 15 0 0.2 0.4 06 08 1
X X
© © ¢ Chebyshev c(k) @
05 + + Polynomial g(k)
: o o Taylor p(k) 20
o]
T 04
2 o3 @ 16
‘5-; o
g 02 o 0 E 12 1
£ 01 g ¢
:g [0)::] o Z § 8 o) 1
% o
§ -0.1 1 4 6]
+ + m
-0.2 o o & O
0 1 2 3 1 2 3 4
k Number of coefficients

Fig. 2.55. Base 10 logarithm f(z) = log,,(z) function approximation. (a) Com-
parison of full-precision and 8-bit quantized approximations. (b) Error of quantized
approximation for x € [0, 1]. (¢) Chebyshev, polynomial from Chebyshev, and Tay-
lor polynomial coefficients. (d) Error of the three pruned polynomials.

T f(z) = In(z) f(z) lerror| Eff. bits

0 0 1 1.52 x 107° 16
0.25 14623.9/2'° 14624/2'® 4.39 x 10° 17.8
0.5 26572.6/2'% 26572/2'¢ 2.11 x 10° 15.3
0.75 36675.0/2' 36675/2'° 5.38 x 107 20.8
1.0 45426.1/2' 45427/2'6 1.99 x 10° 15.6

Note that, due to the I/O registers, the output values appear with a delay of

one clock cycle.

If we compare the polynomial code of the In function with Clenshaw’s recur-
rence formula from Example 2.28 (p. 134), we notice the reduction by one
adder in the design.

If 8 bit plus sign precision is sufficient, we use

f(x) =In(1 + x) = 0.0006 + 0.9813x — 0.39422% + 0.1058z°
= (251z — 1012? 4 272%)/256. (2.87)

148 2. Computer Arithmetic

Based on the fact that no coefficient is larger than 1.0 we can select a scaling
factor of 256.

If the argument x is not in the valid range [0, 1], using the following
algebraic manipulation with y = sz = 2Fz we get

In(sz) = In(s) + In(z) = k x In(2) + In(z), (2.88)

i.e., we normalize by a power-of-two factor such that = is again in the valid
range. If we have determined s, the addition arithmetic effort is only one
multiply and one add operation.

If we like to change to another base, e.g., base 10, we can use the following
rule

log,(z) = In(z)/ In(a), (2.89)

i.e., we only need to implement the logarithmic function for one base and can
deduce it for any other base. On the other hand the divide operation may
be expensive to implement too and we can alternatively develop a separate
Chebyshev approximation. For base 10 we would use, in 16-bit precision, the
following Chebyshev polynomial coefficients

f(z) =logyo(1+)
= 0.00000497 4 0.433932452 — 0.212673612:>
+0.123262842° — 0.05643969x* + 0.012945782°
= (28438x — 139382 + 8078z3 — 3699z* + 8482°) /65536
for € [0,1]. Figure 2.55a shows the exact and 8-bit quantized function of

log;y(1 + x). For an 8-bit quantization we would use the following approxi-
mation

f(z) = logyo(1+x)
= 0.0002 + 0.4262z — 0.171222 + 0.04602> (2.90)
= (109x — 442* + 122%) /256, (2.91)

which uses only three nonzero coefficients, as shown in Fig. 2.55d.

2.9.4 Square Root Function Approximation

The development of a Taylor function approximation for the square root can
not be computed around zp = 0 because then all derivatives f"(xo) would
be zero or even worse 1/0. However, we can compute a Taylor series around
xo = 1 for instance. The Taylor approximation would then be

(z—-1)° (x—1)Y 0.52 5 0.5%1.5 3

=0 +0.5 T (x —1)%+ 3 (x—1)%—...
-1 —1)2 —1)3

—14 " _@-l +(x) > (x—1)*+. ..

2 8 16 128

2.9 Computation of Special Functions using MAC Calls 149

(a) x10°° (b)
14
1.2t |— Exact ’ 1 — error
Q16 = 5 1
1 5
2
_.08 LlI_I
x Lo
“ 06 g
[%]
0.4 3
O 5
0.2
0
0 05 1 15 2 05 0.6 0.7 08 09 1
X X
© © ¢ Chebyshev c(k) @
15 + + Polynomial g(k)
4 o o Taylor p(k) 20
=
= 1B j 9
;3 ° 16
= 3 o
S 05 o + £12 o
s 1
s ¥ 2 m
c 0 2
o 8 ¢ g g 8 o E
b5 o =
Q -0.5 1 o
o 4 g i
-1 -] T + +
0 1 3 4 1 2 3 4 5
k Number of coefficients

Fig. 2.56. Square root f(z) = /z function approximation. (a) Comparison of
full-precision and 16-bit quantized approximations. (b) Error of quantized approx-
imation for z € [0.5,1). (¢) Chebyshev, polynomial from Chebyshev, and Taylor
polynomial coefficients. (d) Error of the three pruned polynomials.

The coefficient and the equivalent Chebyshev coefficient are graphically in-
terpreted in Fig.2.56¢c. For 16-bit polynomial quantization computed using
the Chebyshev coefficient we would use

f(@) =V
= 0.23080201 + 1.29086721z — 0.88893983x2
+0.482575252° — 0.115309932*
= (7563 + 42299z — 291292% + 1581323 — 3778z*)/32768.

The valid argument range is € [0.5,1). Only terms up to order x* are
required to get 16-bit precision. We also notice from Fig. 2.56¢ that the Taylor
and polynomial coefficients computed from the Chebyshev approximation are
not similar. The approximation with NV = 5 shown in Fig. 2.56a is almost a
perfect approximation. If we use fewer coefficients, e.g., N =2 or N = 3, we
will have a more-substantial error, see Exercise 2.30 (p. 163).

The only thing left to discuss is the question of how to handle argument
values outside the range 0.5 < x < 1. For the square root operation this can

150 2. Computer Arithmetic

be done by splitting the argument y = sx into a power-of-two scaling factor
s = 2F and the remaining argument with a valid range of 0.5 < # < 1. The
square root for the scaling factor is accomplished by

2k/2 k even
— k —
Vs =2k = {\/2 Cot-D2 1 oodd (2.92)

We can now start to implement the /x function approximation in HDL.

Example 2.31: Square Root Function Approximation

We can implement the function approximation in a parallel way using N em-
bedded 18 x 18 bit multiplier or we can build an FSM to solve this iteratively.
Other FSM design examples can be found in Exercises 2.20 , p. 158 and 2.21,
p- 159. In a first design step we need to scale our data and coefficients in such
a way that overflow-free processing is guaranteed. In addition we need a pre-
and post-scaling such that z is in the range 0.5 < z < 1. We therefore use a
fractional integer representation in 3.15 format. We use two additional guard
bits that guarantee no problem with any overflow and that z = 1 can be
exact represented as 2'°. We use the same number format for our Chebyshev
coefficients because they are all less than 2.
The following VHDL code'® shows the /z approximation using N = 5 coef-
ficients
PACKAGE n_bits_int IS -- User-defined types
SUBTYPE BITS9 IS INTEGER RANGE -2%%8 TO 2%x8-1;
SUBTYPE BITS17 IS INTEGER RANGE -2%%16 TO 2%*16-1;
TYPE ARRAY_BITS17_5 IS ARRAY (0 TO 4) of BITS9;
TYPE STATE_TYPE IS (start,leftshift,sop,rightshift,done);
TYPE OP_TYPE IS (load, mac, scale, denorm, nop);
END n_bits_int;

LIBRARY work;
USE work.n_bits_int.ALL;

LIBRARY ieee;

USE ieee.std_logic_1164.ALL;
USE jeee.std_logic_arith.ALL;
USE ieee.std_logic_signed.ALL;

ENTITY sQrt IS —===—= > Interface
PORT (clk, reset : IN STD_LOGIC;
X_in : IN BITS17;
a_o, imm_o, f_o : OUT BITS17;

ind_o : OUT INTEGER RANGE O TO 4;
count_o : OUT INTEGER RANGE O TO 3;
x_o,pre_o,post_o : OUT BITS17;
f_out : OUT BITS17);

END sqrt;

ARCHITECTURE fpga OF sqrt IS

13 The equivalent Verilog code sqrt.v for this example can be found in Appendix A
on page 678. Synthesis results are shown in Appendix B on page 731.

2.9 Computation of Special Functions using MAC Calls 151

SIGNAL s : STATE_TYPE;

SIGNAL op : OP_TYPE;

SIGNAL x : BITS17:= 0; -- Auxilary

SIGNAL a,b,f,imm : BITS17:= 0; -- ALU data

-- Chebychev poly coefficients for 16-bit precision:

CONSTANT p : ARRAY_BITS17_5 :=
(7563,42299,-29129,15813,-3778) ;

SIGNAL pre, post : BITS17;

BEGIN

States: PROCESS(clk) ------ > SQRT in behavioral style
VARIABLE ind : INTEGER RANGE -1 TO 4:=0;
VARIABLE count : INTEGER RANGE O TO 3;
BEGIN
IF reset = ’1’ THEN -- Asynchronous reset
s <= start;
ELSIF rising_edge(clk) THEN
CASE s IS -- Next State assignments
WHEN start => -- Initialization step
s <= leftshift;
ind := 4;
imm <= x_in; -- Load argument in ALU
op <= load;
count := 0;
WHEN leftshift => -- Normalize to 0.5 .. 1.0
count := count + 1;
a <= pre;
op <= scale;
imm <= p(4);
IF count = 3 THEN -- Normalize ready 7
s <= sop;
op<=load;
x <= f;
END IF;
WHEN sop => -- Processing step
ind := ind - 1;
a <= x;
IF ind =-1 THEN -- SOP ready 7
s <= rightshift;
op<=denorm;
a <= post;
ELSE
imm <= p(ind);
op<=mac;
END IF;
WHEN rightshift => -- Denormalize to original range
s <= done;
op<=nop;
WHEN done => -- Output of results
f_out <= £; = -———- > I/0 store in register
op<=nop;

152 2. Computer Arithmetic

s <= start; -- start next cycle
END CASE;
END IF;
ind_o <= ind;
count_o <= count;
END PROCESS States;

ALU: PROCESS

BEGIN

WAIT UNTIL clk = ’1°;

CASE 0P IS
WHEN load => f <= imm;
WHEN mac => f <= a x f /32768 + imm;
WHEN scale => f <=a=x £;
WHEN denorm => f <= a * f /32768;
WHEN nop = f <=1;
WHEN others => f <= f1;

END CASE;

END PROCESS ALU;

EXP: PROCESS(x_in)
VARIABLE slv : STD_LOGIC_VECTOR(16 DOWNTO 0);
VARIABLE po, pr : BITS17;

BEGIN
slv := CONV_STD_LOGIC_VECTOR(x_in, 17);
pr := 2%x14; -- Compute pre- and post scaling

FOR K IN O TO 15 LOOP
IF slv(K) = ’1’ THEN
pre <= pr;
END IF;
pr := pr / 2;
END LOOP;
po := 1; -- Compute pre- and post scaling
FOR K IN O TO 7 LOOP
IF slv(2%K) = 1’ THEN -- even 2"k get 27k/2
po := 256%2%xK;
END IF;
-- sqrt(2): CSD Error = 0.0000208 = 15.55 effective bits
-— +1 +0. -1 +0 -1 +0 +1 +0 +1 +0 +0 +0 +0 +0 +1
- 9 7 5 3 1 -5
IF slv(2*K+1) = ’1’ THEN -- odd k has sqrt(2) factor
po := 2%* (K+9)—2x%* (K+7) —2x* (K+5) +2x* (K+3)

+2%x (K+1) +2*x*K/32;
END IF;
post <= po;
END LOOP;
END PROCESS EXP;
a_o<=a; -- Provide some test signals as outputs
imm_o<=imm;
f_o <= £;

pre_o<=pre;

2.9 Computation of Special Functions using MAC Calls 153

(Beortowr =10)]
Master Time Bar. | Ops || Painter 16228 e Interval: 16228 ne Start: | End

T P 1000ns 2000ns 3000ns 4000ns S000n: BOOOns 7000ns 8000ns 9000ns 1Qus 1lus T2us 13ud

Mame e Oos
4

== sk Bl | 1 10 e L
[resset B1 1 l_
& - Usstat sotat ¥ STeltahit 5om Yeghay_dane ¥ ssat
] = U Undefined Trdefned Y op oad o ol opload Somes “Yop deromy, oo
|| count_e LD i T4 2 ¥ 3
|2 & xin 53072 A
=2 pre_o 58 g
=] @ o 50 i ¥ 2578
] @ posto 51158 11585
i ind_o un]]) ST S S S 7
2] Eimmo 50 i 3778 IEED SarED S T
2] @0 50 a g 4 5 ¥ 1585
2| @ o 50 a EI SE e A, BEE B SR, W 0032
=] & fout 50 T Y 0
Kl |

Fig. 2.57. VHDL simulation of the y/z function approximation for the value x =
0.75/8 = 3072/32768.

post_o<=post;
X_0<=x;

END fpga;

The code consists of three major PROCESS blocks. The control part is placed
in the FSM block, while the arithmetic parts can be found in the ALU and
EXP blocks. The first FSM PROCESS is used to control the machine and place
the data in the correct registers for the ALU and EXP blocks. In the start
state the data are initialized and the input data are loaded into the ALU. In
the leftshift state the input data are normalized such that the input x is
in the range = € [0.5,1). The sop state is the major processing step where
the polynomial evaluation takes place using multiply-accumulate operations
performed by the ALU. At the end data are loaded for the denormalization
step, i.e., rightshift state, that reverses the normalization done before. In
the final step the result is transferred to the output register and the FSM is
ready for the next square root computation. The ALU PROCESS block performs
a f = a X f+ imm operation as used in the Horner scheme (2.75), p. 139
to compute the polynomial function and will be synthesized to a single 18 x
18 embedded multiplier (or two 9 X 9-bit multiplier blocks as reported by
Quartus) and some additional add and normalization logic. The block has the
form of an ALU, i.e., the signal op is used to determine the current operation.
The accumulator register £ can be preloaded with an imm operand. The last
PROCESS block EXP hosts the computation of the pre- and post-normalization
factors according to (2.92). The v/2 factor for the odd k values of 2F has
been implemented with CSD code computed with the csd3e.exe program.
The design uses 336 LEs, 2 embedded 9 x 9-bit multipliers (or half of that for
18 x 18-bit multipliers) and has a 82.16 MHz Registered Performance.

A simulation of the function approximation is shown in Fig. 2.57. The simu-
lation shows the result for the input value 2 = 0.75/8 = 0.0938 = 3072/2'°.
In the shift phase the input z = 3072 is normalized by a pre factor of 8. The
normalized result 24 576 is in the range = € [0.5,1) ~ [16 384, 32 768). Then
several MAC operations are computed to arrive at f = 1/0.75 x 2!° = 28 378.
Finally a denormalization with a post factor of v/2 x 22 = 11 585 takes place

154 2. Computer Arithmetic

and the final result f = /0.75/8 x 2'% = 10032 is transferred to the output
register.

If 8 bit plus sign precision is sufficient, we would build a square root via

f(z) = V& = 0.3171 + 0.8801x — 0.1977x>
= (81 + 225z — 51x%)/256. (2.93)

Based on the fact that no coefficient is larger than 1.0 we can select a scaling
factor of 256.

Exercises

Note: If you have no prior experience with the Quartus II software, refer
to the case study found in Sect. 1.4.3, p. 29. If not otherwise noted use the
EP2C35F672C6 from the Cyclone II family for the Quartus IT synthesis eval-
uations.

2.1: Wallace has introduced an alternative scheme for a fast multiplier. The basic
building block of this type of multiplier is a carry-save adder (CSA). A CSA takes
three n-bit operands and produces two n-bit outputs. Because there is no propaga-
tion of the carry, this type of adder is sometimes called a 3:2 compress or counter.
For an n x n-bit multiplier we need a total of n — 2 CSAs to reduce the output to
two operands. These operands then have to be added by a (fast) 2n-bit ripple-carry
adder to compute the final result of the multiplier.

(a) The CSA computation can be done in parallel. Determine the minimum num-
ber of levels for an n x n-bit multiplier with n € [0, 16].

(b) Explain why, for FPGAs with fast two’s complement adders, these multipliers
are not more attractive than the usual array multiplier.

(c) Explain how a pipelined adder in the final adder stage can be used to implement
a faster multiplier. Use the data from Table 2.7 (p. 78) to estimate the necessary
LE usage and possible speed for:

(c1) an 8 x 8-bit multiplier

(c2) a 12 x 12-bit multiplier

2.2: The Booth multiplier used the classical CSD code to reduce the number of
necessary add/subtract operations. Starting with the LSB, typically two or three
bits (called radix-4 and radix-8 algorithms) are processed in one step. The following
table demonstrates possible radix-4 patterns and actions:

Exercises 155

Tk+1 Tk Tk-1 Accumulator activity Comment
0 0 0 ACC—ACC +R" (0) within a string of “0s”
0 0 1 ACC—ACC +R" (X) end of a string of “1s”
0 1 0 ACC—ACC +R" (X)
0 1 1 ACC—ACC +R”* (2X) end of a string of “1s”
1 0 0 ACC—ACC +R”* (-2X) beginning of a string of “ls”
1 0 1 ACC—ACC +R* (—X)
1 1 0 ACC—ACC +R" (-X) beginning of a string of “1s”
1 1 1 ACC—ACC +R* (0) within a string of “1s”

The hardware requirements for a state machine implementation are an accu-
mulator and a two’s complement shifter.
(a) Let X be a signed 6-bit two’s complement representation of —10 = 1101102¢.
Complete the following table for the Booth product P = XY = —10Y and indicate
the accumulator activity in each step.

Step x5 x4 x3 x2 1 wxo x—1 ACC ACC + Booth rule

Start 1 1 0 1 1 0 0
0 (2.94)

1
2

(b) Compare the latency of the Booth multiplier, with the serial /parallel multiplier
from Example 2.18 (p. 82), for the radix-4 and radix-8 algorithms.

2.3: (a) Compile the HDL file add_2p with the QuartusII compiler with optimiza-
tion for speed and area. How many LEs are needed? Explain the results.
(b) Conduct a simulation with 15 + 102.

2.4: Explain how to modify the HDL design addip for subtraction.
(a) Modify the design and simulate as an example:
(b) 3—2
(c)2-3
(d) Add an asynchronous set to the carry flip-flop to avoid initial wrong sum values.
Simulate again 3 — 2.

2.5: (a) Compile the HDL file mul_ser with the Quartus II compiler.
(b) Determine the Registered Performance and the used resources of the 8-bit
design. What is the total multiplication latency?

2.6: Modify the HDL design file mul_ser to multiply 12 x 12-bit numbers.
(a) Simulate the new design with the values 1000 x 2000.
(b) Measure the Registered Performance and the resources (LEs, multipliers, and
M2Ks/MA4Ks).
(c) What is the total multiplication latency of the 12 x 12-bit multiplier?

2.7: (a) Design a state machine in Quartus II to implement the Booth multiplier
(see Exercise 2.2) for 6 x 6 bit signed inputs.
(b) Simulate the four data +5 x (£9).
(c) Determine the Registered Performance.
(d) Determine LE utilization for maximum speed.

2.8: (a) Design a generic CSA that is used to build a Wallace-tree multiplier for
an 8 x 8-bit multiplier.

156 2. Computer Arithmetic

(b) Implement the 8 x 8 Wallace tree using Quartus II.

(c) Use a final adder to compute the product, and test your multiplier with a
multiplication of 100 x 63.

(d) Pipeline the Wallace tree. What is the maximum throughput of the pipelined
design?

2.9: (a) Use the principle of component instantiation, using the predefined macros
LPM_ADD_SUB and LPM_MULT, to write the VHDL code for a pipelined complex 8-bit
multiplier, (i.e., (a + jb)(c + jd) = ac — bd + j(ad + bc)), with all operands a, b, c,
and d in 8-bit.

(b) Determine the Registered Performance.

(c) Determine LE and embedded multipliers used for maximum speed synthesis.
(d) How many pipeline stages does the optimal single LPM_MULT multiplier have?
(e) How many pipeline stages does the optimal complex multiplier have in total if
you use: (el) LE-based multipliers?

(e2) Embedded array multipliers?

2.10: An alternative algorithm for a complex multiplier is:

s[ll=a—> s2l=c—d s8]=c+d
m[l] = s[1]d m[2] = s[2]a m[3] = s[3]b
s[4] = m[1] + m[2] ‘ s[5] :.m[l] + m[3].
(a+jb)(c+jd) = s[4] + js[5]

which, in general, needs five adders and three multipliers. Verify that if one coeffi-
cient, say ¢+ jd is known, then s[2], s[3], and d can be prestored and the algorithm
reduces to three adds and three multiplications. Also

(a) Design a pipelined 5/3 complex multiplier using the above algorithm for 8-bit
signed inputs. Use the predefined macros LPM_ADD_SUB and LPM_MULT.

(b) Measure the Registered Performance and the used resources (LEs, multipli-
ers, and M2Ks/M4Ks) for maximum speed synthesis.

(c) How many pipeline stages does the single LPM_MULT multiplier have?

(d) How many pipeline stages does the complex multiplier have in total is you use
(d1) LE-based multipliers?

(d2) Embedded array multipliers?

(2.95)

2.11: Compile the HDL file cordic with the Quartus II compiler, and
(a) Conduct a simulation (using the waveform file cordic.vwf) with x_in==+30
and y_in=4b55. Determine the radius factor for all four simulations.
(b) Determine the maximum errors for radius and phase, compared with an un-
quantized computation.

2.12: Modify the HDL design cordic to implement stages 4 and 5 of the CORDIC
pipeline.
(a) Compute the rotation angle, and compile the VHDL code.
(b) Conduct a simulation with values x_in=430 and y_in=455.
(c) What are the maximum errors for radius and phase, compared with the un-
quantized computation?

2.13: Consider a floating-point representation with a sign bit, E = 7-bit exponent
width, and M = 10 bits for the mantissa (not counting the hidden one).
(a) Compute the bias using (2.24) p. 71.
(b) Determine the (absolute) largest number that can be represented.
(c) Determine the (absolutely measured) smallest number (not including denor-
mals) that can be represented.

Exercises 157

2.14: Using the result from Exercise 2.13
(a) Determine the representation of f; = 9.2519 in this (1,7,10) floating-point
format.
(b) Determine the representation of fo = —10.510 in this (1,7,10) floating-point
format.
(c¢) Compute fi + f2 using floating-point arithmetic.
(d) Compute f1 * f2 using floating-point arithmetic.
(e) Compute fi/f2 using floating-point arithmetic.

2.15: For the IEEE single-precision format (see Table 2.5, p. 74) determine the 32-
bit representation of:
(a) fr=-0.
(b) fa=o00.
(C) f3 = 9.2510.
(d) f1 = —10.510.
(e) f5 = 0.110.
(£) fo = m = 3.14159310.
(8) fr =V3/2 = 0.866025410.

2.16: Compile the HDL file div_res from Example 2.19 (p. 94) to divide two num-
bers.
(a) Simulate the design with the values 234/3.
(b) Simulate the design with the values 234/1.
(c) Simulate the design with the values 234/0. Explain the result.

2.17: Design a nonperforming divider based on the HDL file div_res from Example
2.19 (p. 94).
(a) Simulate the design with the values 234/50 as shown in Fig. 2.23, p. 96.
(b) Measure the Registered Performance, the used resources (LEs, multipliers,
and M2Ks/M4Ks) and latency for maximum speed synthesis.

2.18: Design a nonrestoring divider based on the HDL file div_res from Example
2.19 (p. 94).
(a) Simulate the design with the values 234/50 as shown in Fig. 2.24, p. 98.
(b) Measure the Registered Performance, the used resources (LEs, multipliers,
and M2Ks/M4Ks) and latency for maximum speed synthesis.

2.19: Shift operations are usually implemented with a barrelshifter, which can be
inferred in VHDL via the SLL instruction. Unfortunately, the SLL is not supported
for STD_LOGIC, but we can design a barrelshifter in many different ways to achieve
the same function. We wish to design 12-bit barrelshifters, that have the following
entity:

ENTITY 1shift IS ~ —-—==——- > Interface
GENERIC (W1 : INTEGER := 12; -- data bit width
W2 : integer := 4); -- ceil(log2(W1));
PORT (clk : IN STD_LOGIC;
distance : IN STD_LOGIC_VECTOR (W2-1 DOWNTO O);
data : IN STD_LOGIC_VECTOR (Wi-1 DOWNTO O);
result : OUT STD_LOGIC_VECTOR (Wi-1 DOWNTO 0));
END;

that should be verified via the simulation shown in Fig. 2.58. Use input and out-
put registers for data and result, no register for the distance. Select one of the
following devices:

158 2. Computer Arithmetic

B Ishift.vwf =10l x|
Master Time Bar,| Ops «| | Paintes 125 us Intervak | 125 Start: | End

ps 1600 ns 3200w 4800 ns 40,0 e 5000 ns 60,0 ne 112w 1 ZB‘u4

Mame 0 ps
f

EE | | 1 \ 1 | \] |
li¥| @ distance L] b] X o0 X 10T Y 11T
| & data 000000007111
|| @ resu T0o0000000 00000110y oo00oaT 11100 OO 110000y 100000000000y anoooooaoonn
L | |

Fig. 2.58. Testbench for the barrel shifter from Exercise 2.19.

(I) EP2C35F672C6 from the Cyclone II family

(IT) EPF10K70RC240-4 from the Flex 10K family

(III) EPM7128LC84-7 from the MAX7000S family

(al) Use a PROCESS and (sequentially) convert each bit of the distance vector in an
equivalent power-of-two constant multiplication. Use 1shift as the entity name.
(a2) Measure the Registered Performance and the resources (LEs, multipliers,
and M2Ks/M4Ks).

(b1) Use a PROCESS and shift (in a loop) the input data always 1 bit only, until the
loop counter and distance show the same value. Then transfer the shifted data to
the output register. Use 1shiftloop as the entity name.

(b2) Measure the Registered Performance and the resources (LEs, multipliers,
and M2Ks/M4Ks).

(c1) Use a PROCESS environment and “demux” with a loop statement the distance
vector in an equivalent multiplication factor. Then use a single (array) multiplier
to perform the multiplication. Use 1shiftdemux as the entity name.

(c2) Measure the Registered Performance and the resources (LEs, multipliers,
and M2Ks/M4Ks).

(d1) Use a PROCESS environment and convert with a case statement the distance
vector to an equivalent multiplication factor. Then use a single (array) multiplier
to perform the multiplication. Use 1shiftmul as the entity name.

(d2) Measure the Registered Performance and the resources (LEs, multipliers,
and M2Ks/M4Ks).

(el) Use the 1pm_clshift megafunction to implement the 12-bit barrelshifter. Use
1shiftlpm as the entity name.

(e2) Measure the Registered Performance and the resources (LEs, multipliers,
and M2Ks/M4Ks).

(d) Compare all five barrelshifter designs in terms of Registered Performance, re-
sources (LEs, multipliers, and M2Ks/M4Ks), and design reuse, i.e., effort to change
data width and the use of software other than Quartus II.

2.20: (a) Design the PREP benchmark 3 shown in Fig. 2.59a with the Quartus II
software. The design is a small FSM with eight states, eight data input bits i, clk,
rst, and an 8-bit data-out signal o. The next state and output logic is controlled
by a positive-edge triggered clk and an asynchronous reset rst, see the simulation
in Fig. 2.59c¢ for the function test. The following table shows next state and output
assignments,

Exercises 159

Current | Next i o
state state (Hex) (Hex)
start start (3c)’ 00
start sa 3c 82

sa sc 2a 40
sa, sb 1f 20
sa sa | (2a)'(1f) 04
sb se aa 11
sb sf (aa)’ 30
sc sd — 08
sd sg - 80
se start — 40
sf sg - 02
sg start - 01

where 7’ is the condition not z.

(b) Determine the Registered Performance and the used resources (LEs, multi-
pliers, and M2Ks/M4Ks) for a single copy. Compile the HDL file with the synthe-
sis Optimization Technique set to Speed, Balanced or Area; this can be found
in the Analysis & Synthesis Settings section under EDA Tool Settings in the
Assignments menu. Which synthesis options are optimal in terms of LE count and
Registered Performance?

Select one of the following devices:

(b1) EP2C35F672C6 from the Cyclone II family

(b2) EPF10K70RC240-4 from the Flex 10K family

(b3) EPM7128LC84-7 from the MAX7000S family

(c) Design the multiple instantiation for benchmark 3 as shown in Fig. 2.59b.

(d) Determine the Registered Performance and the used resources (LEs, multipli-
ers, and M2Ks/M4Ks) for the design with the maximum number of instantiations
of PREP benchmark 3. Use the optimal synthesis option you found in (b) for the
following devices:

(d1) EP2C35F672C6 from the Cyclone II family

(d2) EPF10K70RC240-4 from the Flex 10K family

(d3) EPM7128LC84-7 from the MAX7000S family

2.21: (a) Design the PREP benchmark 4 shown in Fig. 2.60a with the Quartus II
software. The design is a large FSM with sixteen states, 40 transitions, eight data
input bits i[0..7], clk, rst and 8-bit data-out signal o[0..7]. The next state is
controlled by a positive-edge-triggered clk and an asynchronous reset rst, see the
simulation in Fig. 2.60c for a partial function test. The following shows the output
decoder table

Current state o[7..0] Current state o[7..0]
s0 00000000 sl 00000110
s2 00011000 s3 01100000
s4 Ilxxxxxx0 sH x1lxxxx0x
s6 00011111 s7 00111111
s8 01111111 s9 11111111
s10 x1x1lx1lxl1 sll Ixlxlxlx
s12 11111101 sl3 11110111
sl4 11011111 sl5 01111111

where X is the unknown value. Note that the output values does not have an
additional output register as in the PREP 3 benchmark. The next state table is:

160 2. Computer Arithmetic

Next state Output First Second ast
logic

register instance
i[15:8] —| Machine d q ol7:0] i[7:0] i - i of—0[7:0]
S state
—1 r
clk
clk st— e
rst
(a) (b)
T bz, vl 101 x|
Mastar Time Bar | 0ps «| | Pointer: | 227 Interval | 227 ns Start End
ps B00ns IG00ns 2400n: W00ns A000ns 4800ns SAOOns B400ns 7200ns BONOm
Name e
i
(] ok HpSpSpEpSplnEpEnlnSpSnEninEnEnEaEnEeEele
I 1
|| & foo (CaC 300 j(om) o aC TF) [l Y0 WO AR Y]
= . 5 slat 333 sse(sed ¥ sag) ssiat sea W ssh sl)
S e OO B0 (04) 40 3008 o B0 (W7 ¢ 00 3780 20 30 M 07) 0 {00
Check st path Check =t path Check == palh
KN L]

()

Fig. 2.59. PREP benchmark 3. (a) Single design. (b) Multiple instantiation. (c)
Testbench to check function.

Current | Next Condition Current | Next Condition
state state state state
sO sO i=0 s0 sl 1<i<3
s0 s2 4<7¢<31 s0 s3 32<1<63
s0 s4 1> 63 sl sO 10 X 21
sl s3 (10 x i1)’ s2 s3
s3 sb — s4 sH 10412+ 114
s4 s6 (20 + 42 + 44)’ sb s5 i0’
sb s7 20 s6 sl 16 X 17
s6 s6 (i6 +i7)’ s6 s8 i6 x i7’
s6 s9 6’ x 47 s7 s3 16’ x 7’
s7 s4 16 X 17 s7 s7 16 7
s8 sl (14 ©®5)i7 s8 s8 (14 © i5)iT’
s8 sll 4 Db s9 s9 0’
s9 sll 20 s10 sl
sl1 s8 i # 64 sl1 sl15 i =64
s12 s0 i =255 s12 sl12 1 # 255
s13 s12 11 @ i3 Db s13 sl4 (11 ® i3 @ i5)’
sl4 s10 i> 63 sl4 s12 1<i<63
sl4 sl4 i=0 sl5 s0 i7 x i1 x 10
sl5 s10 17 x i1’ x 40 sl5 s13 i7 x i1 x 30
sl sl4 i7 x i1’ x 0’ sl sl i7’

where ik is bit k of input i, the symbol ’ is the not operation, x is the Boolean AND
operation, + is the Boolean OR operation, ©® is the Boolean equivalence operation,
and & is the XOR operation.

(b) Determine the Registered Performance and the used resources (LEs, multi-
pliers, and M2Ks/M4Ks) for a single copy. Compile the HDL file with the synthe-
sis Optimization Technique set to Speed, Balanced or Area; this can be found

Exercises 161

in the Analysis & Synthesis Settings section under EDA Tool Settings in the
Assignments menu. Which synthesis options are optimal in terms of LE count and
Registered Performance?

Select one of the following devices:

(b1) EP2C35F672C6 from the Cyclone II family

(b2) EPF10K70RC240-4 from the Flex 10K family

(b3) EPM7128LC84-7 from the MAX7000S family

(c) Design the multiple instantiation for benchmark 4 as shown in Fig. 2.60b.

(d) Determine the Registered Performance and the used resources (LEs, multipli-
ers, and M2Ks/M4Ks) for the design with the maximum number of instantiations
of PREP benchmark 4. Use the optimal synthesis option you found in (b) for the
following devices:

(d1) EP2C35F672C6

(d2) EPF10K70RC240-4

(d3) EPM7128LC84-7

First Second . Last
Next state Machine Output instance
logic state logic
i[7:0 i - i o} 0[7:0
i[15:8] —= s »{d q > —0[7:0] (701 (7:0]
—1 r
clk 1
clk st — e
st —m™M |
(@) (b)
: =101.x|
Master Time Bar: | [+ pointer 265.36 ns Intervak Stat:| 8400ns End 880.0ns
s 2000ns 4000ns One 8000ns 1.0
i V,m, L i | 00 | o]
3 ok B0
= st g0 |1
(2| @i vo KoC @ 0 T (82 X0 T8 T (B 30 X0 X T X255 X 64 X0 64 (32 X B4 YT (0 X3 X 0
| O 63 60 X1 O 66D 6nl) a6k GOk GA L) o 601 G €3 68 Gl 6L),
=3 o
L«

Fig. 2.60. PREP benchmark 4. (a) Single design. (b) Multiple instantiation. (c)
Testbench to check function.

2.22: (a) Design an 8 x 8-bit signed multiplier smul8x8 using MK4s memory blocks
and the partitioning technique discussed in (2.31), p. 87.
(b) Use a short C or MATLAB script to produce the three required MIF files. You
need signed/signed, signed /unsigned, and unsigned/unsigned tables. The last entry
in the table should be:

(b1) 11111111 : 11100001; --> 15 % 15 = 225 for unsigned/unsigned.
(b2) 11111111 : 11110001; =--> -1 * 15 = -15 for signed/unsigned.
(b3) 11111111 : 00000001; --> -1 * (-1) = 1 for signed/signed.

() Verify the design with the three data pairs —128 x (—128) = 16384; —128x 127 =
—16256; 127 x 127 = 16129.
(d) Measure the Registered Performance and determine the resources used.

2.23: (a) Design an 8 x 8-bit additive half-square (AHSM) multiplier ahsm8x8 as
shown in Fig. 2.18, p. 88.

162 2. Computer Arithmetic

(b) Use a short C or MATLAB script to produce the two required MIF files. You
need a 7- and 8-bit D1 encoded square tables. The first entries in the 7-bit table
should be:

depth= 128; width = 14;
address_radix = bin; data_radix = bin;
content begin

0000000 : 00000000000000; --> (1_d1 * 1.d1)/2 =0
0000001 : 00000000000010; --> (2_d1 * 2_.d1)/2 = 2
0000010 : 00000000000100; --> (3_d1 * 3_d1)/2 = 4
0000011 : 00000000001000; --> (4_d1 * 4_.d1)/2 = 8
0000100 : 00000000001100; --> (5_d1 * 5.d1)/2 = 12

(c) Verify the design with the three data pairs —128x (—128) = 16384; —128x 127 =
—16256; 127 x 127 = 16129.
(d) Measure the Registered Performance and determine the resources used.

2.24: (a) Design an 8 x 8-bit differential half-square (DHSM) multiplier dhsm8x8
as shown in Fig. 2.19, p. 89.
(b) Use a short C or MATLAB script to produce the two required MIF files. You
need an 8-bit standard square table and a 7-bit D1 encoded table. The last entries
in the tables should be:
(b1) 1111111 : 10000000000000; --> (128 d1 * 128 d1)/2 = 8192 for the 7-bit
D1 table.
(b2) 11111111 : 111111100000000; --> (255%255)/2 = 32512 for the 8-bit half-
square table.
() Verify the design with the three data pairs —128 x (—128) = 16384; —128x 127 =
—16256; 127 x 127 = 16129.
(d) Measure the Registered Performance and determine the resources used.

2.25: (a) Design an 8 x 8-bit quarter-square multiplication multiplier qsm8x8 as
shown in Fig. 2.20, p. 90.
(b) Use a short C or MATLAB script to produce the two required MIF files. You
need an 8-bit standard quarter square table and an 8-bit D1 encoded quarter square
table. The last entries in the tables should be:
(b1) 11111111 : 11111110000000; --> (255%255)/4 = 16256 for the 8-bit quar-
ter square table.
(b2) 11111111 : 100000000000000; --> (256 d1 * 256 d1)/4 = 16384 for the
D1 8-bit quarter-square table.
() Verify the design with the three data pairs —128 x (—128) = 16384; —128x 127 =
—16256; 127 x 127 = 16129.
(d) Measure the Registered Performance and determine the resources used.

2.26: Plot the function approximation and the error function as shown in Fig. 2.47a
and b (p. 133) for the arctan function for x € [—1, 1] using the following coefficients:
(a) For N =2 use f(z) = 0.0000 + 0.8704z = (0 + 223x)/256.

(bz For N = 4 use f(x) = 0.0000 + 0.9857x 4 0.0000x? — 0.2090z> = (0 4 252z +

0z? — 532%)/256.

2.27: Plot the function approximation and the error function as shown, for instance,
in Fig. 2.47a and b (p. 133) for the arctan function using the 8-bit precision coeffi-
cients, but with increased convergence range and determine the maximum error:

Exercises 163

(a) For the arctan(z) approximation the using coefficients from (2.63), p. 134 with
:fbe) [5021"7 ﬂie sin(z) approximation using the coeflicients from (2.78), p. 140 with
:fcf [F(‘)o’rZ}the cos(z) approximation using the coefficients from (2.81), p. 141 with
fde) [FZ(ynzthe V1 + z approximation using the coefficients from (2.93), p. 153 with
x € [0,

2.28: Plot the function approximation and the error function as shown, for instance,
in Fig. 2.51a and b (p. 142) for the e® function using the 8-bit precision coefficients,
but with increased convergence range and determine the maximum error:

(a) For the e” approximation using the coefficients from (2.83), p. 141 with = €
[717 2]

(b) For the e™® approximation using the coefficients from (2.86), p. 143 with = €
[717 2]

(¢) For the In(1 + z) approximation using the coeflicients from (2.87), p. 147 with
z€[0,2]

(d) For the log;,(1 + z) approximation using the coeflicients from (2.91), p. 148
with z € [0, 2]

2.29: Plot the function approximation and the error function as shown in Fig. 2.53a
and b (p. 144) for the In(1+4z) function for z € [0, 1] using the following coefficients:
(a) For N =2 use f(x) =0.0372 + 0.6794z = (10 + 174x)/256.

(b) For N = 3 use f(z) = 0.0044 + 0.9182z — 0.23202> = (1 + 235z — 5922)/256.

2.30: Plot the function approximation and the error function as shown in Fig. 2.56a
and b (p. 149) for the y/z function for z € [0.5, 1] using the following coefficients:
(a) For N =2 use f(x) = 0.4238 4 0.5815z = (108 + 149x)/256.

(b) For N =3 use f(z) = 0.3171 + 0.8801z — 0.19772% = (81 4 2252 — 5122) /256

3. Finite Impulse Response (FIR) Digital
Filters

3.1 Digital Filters

Digital filters are typically used to modify or alter the attributes of a signal
in the time or frequency domain. The most common digital filter is the linear
time-invariant (LTI) filter. An LTI interacts with its input signal through a
process called linear convolution, denoted by y = f * x where f is the filter’s
impulse response, x is the input signal, and y is the convolved output. The
linear convolution process is formally defined by:

yln] = afn] *) = S alklfln— k) = 3 flkleln — k. (3.1)
k

k

LTT digital filters are generally classified as being finite impulse response
(i.e., FIR), or infinite impulse response (i.e., IIR). As the name implies, an
FIR filter consists of a finite number of sample values, reducing the above
convolution sum to a finite sum per output sample instant. An IIR filter,
however, requires that an infinite sum be performed. An FIR design and
implementation methodology is discussed in this chapter, while IIR filter
issues are addressed in Chap. 4.

The motivation for studying digital filters is found in their growing popu-
larity as a primary DSP operation. Digital filters are rapidly replacing classic
analog filters, which were implemented using RLC components and opera-
tional amplifiers. Analog filters were mathematically modeled using ordinary
differential equations of Laplace transforms. They were analyzed in the time
or s (also known as Laplace) domain. Analog prototypes are now only used
in ITR design, while FIR are typically designed using direct computer speci-
fications and algorithms.

In this chapter it is assumed that a digital filter, an FIR in particular,
has been designed and selected for implementation. The FIR design process
will be briefly reviewed, followed by a discussion of FPGA implementation
variations.

166 3. Finite Impulse Response (FIR) Digital Filters

x[n] —¢= Z T z T—» zZ
f[OR7 f[1] f12] flL-1]

+y—(+)y y[n]

Fig. 3.1. Direct form FIR filter.

3.2 FIR Theory

An FIR with constant coefficients is an LTI digital filter. The output of an
FIR of order or length L, to an input time-series z[n], is given by a finite
version of the convolution sum given in (3.1), namely:

L-1
yln] = @[n] * fln] = Y flklz[n — K], (3.2)

k=0

where f[0] # 0 through f[L — 1] # 0 are the filter’s L coefficients. They also
correspond to the FIR’s impulse response. For LTI systems it is sometimes
more convenient to express (3.2) in the z-domain with

Y(z) = F(2)X (%), (3.3)
where F(z) is the FIR’s transfer function defined in the z-domain by
L—1
F(z)= Z flk]z~k. (3.4)
k=0

The L*™-order LTI FIR filter is graphically interpreted in Fig. 3.1. It can
be seen to consist of a collection of a “tapped delay line,” adders, and multi-
pliers. One of the operands presented to each multiplier is an FIR coefficient,
often referred to as a “tap weight” for obvious reasons. Historically, the FIR
filter is also known by the name “transversal filter,” suggesting its “tapped
delay line” structure.

The roots of polynomial F'(z) in (3.4) define the zeros of the filter. The
presence of only zeros is the reason that FIRs are sometimes called all zero
filters. In Chap. 5 we will discuss an important class of FIR filters (called
CIC filters) that are recursive but also FIR. This is possible because the poles
produced by the recursive part are canceled by the nonrecursive part of the
filter. The effective pole/zero plot also then has only zeros, i.e., is an all-zero
filter or FIR. We note that nonrecursive filters are always FIR, but recursive
filters can be either FIR or IIR. Figure 3.2 illustrates this dependence.

3.2 FIR Theory 167

Non-
recursive Recursive

FIR IIR

Fig. 3.2. Relation between structure and impulse length.

3.2.1 FIR Filter with Transposed Structure

A variation of the direct FIR model is called the transposed FIR filter. It can
be constructed from the FIR filter in Fig. 3.1 by:

e Exchanging the input and output
e Inverting the direction of signal flow
e Substituting an adder by a fork, and vice versa

A transposed FIR filter is shown in Fig. 3.3 and is, in general, the preferred
implementation of an FIR filter. The benefit of this filter is that we do not
need an extra shift register for xz[n], and there is no need for an extra pipeline
stage for the adder (tree) of the products to achieve high throughput.

The following examples show a direct implementation of the transposed
filter.

Example 3.1: Programmable FIR Filter

We recall from the discussion of sum-of-product (SOP) computations using a
PDSP (see Sect. 2.7, p. 114) that, for B, data/coefficient bit width and filter
length L, additional log, (L) bits for unsigned SOP and log, (L) —1 guard bits
for signed arithmetic must be provided. For a 9-bit signed data/coefficient
and L = 4, the adder width must be 9 + 9 + log,(4) — 1 = 19.

Xx[n] —p——"—-y—m——>
f[L—1K7 f[L-2] f[L-3] f10]
y[n]
e 771 7 P

Fig. 3.3. FIR filter in the transposed structure.

168 3. Finite Impulse Response (FIR) Digital Filters

The following VHDL code® shows the generic specification for an implemen-
tation for a length-4 filter.
-- This is a generic FIR filter generator
—-- It uses W1 bit data/coefficients bits
LIBRARY lpm; -- Using predefined packages
USE 1pm.lpm_components.ALL;

LIBRARY ieee;

USE ieee.std_logic_1164.ALL;
USE ieee.std_logic_arith.ALL;
USE ieee.std_logic_unsigned.ALL;

ENTITY fir gen IS —=———- > Interface
GENERIC (W1 : INTEGER := 9; -- Input bit width
W2 : INTEGER := 18;-- Multiplier bit width 2*W1

W3 : INTEGER := 19;-- Adder width = W2+log2(L)-1
W4 : INTEGER := 11;-- Output bit width
L : INTEGER := 4; -- Filter length

Mpipe : INTEGER := 3-- Pipeline steps of multiplier
)3

PORT (clk : IN STD_LOGIC;
Load_x : IN STD_LOGIC;
x_in : IN STD_LOGIC_VECTOR(W1-1 DOWNTO 0);
c_in : IN STD_LOGIC_VECTOR(W1-1 DOWNTO 0);
y_out : OUT STD_LOGIC_VECTOR(W4-1 DOWNTO 0));
END fir_gen;

ARCHITECTURE fpga OF fir_gen IS

SUBTYPE N1BIT IS STD_LOGIC_VECTOR(W1-1 DOWNTO O0);
SUBTYPE N2BIT IS STD_LOGIC_VECTOR(W2-1 DOWNTO O0);
SUBTYPE N3BIT IS STD_LOGIC_VECTOR(W3-1 DOWNTO O);
TYPE ARRAY_N1BIT IS ARRAY (0 TO L-1) OF N1BIT;
TYPE ARRAY_N2BIT IS ARRAY (0 TO L-1) OF N2BIT;
TYPE ARRAY_N3BIT IS ARRAY (0 TO L-1) OF N3BIT;

SIGNAL x N1iBIT;
SIGNAL vy N3BIT;
SIGNAL c¢ ARRAY_N1BIT; -- Coefficient array
SIGNAL p ARRAY_N2BIT; -- Product array
SIGNAL a ARRAY_N3BIT; -- Adder array
BEGIN
Load: PROCESS —-=————- > Load data or coefficient
BEGIN

WAIT UNTIL clk = ’1°;
IF (Load_x = ’0’) THEN
c(L-1) <= c_in; -- Store coefficient in register
FOR I IN L-2 DOWNTO O LOOP -- Coefficients shift one
c(I) <= c(I+1);

2 The equivalent Verilog code fir gen.v for this example can be found in Ap-
pendix A on page 680. Synthesis results are shown in Appendix B on page 731.

3.2 FIR Theory 169

END LOOP;
ELSE
x <= x_in; -- Get one data sample at a time
END IF;
END PROCESS Load;

SOP: PROCESS (clk) -—--—- > Compute sum-of-products
BEGIN
IF clk’event and (clk = ’1°) THEN
FOR I IN O TO L-2 LOOP -- Compute the transposed
a(I) <= (p(I)(W2-1) & p(I)) + a(I+1); -- filter adds
END LOOP;
a(L-1) <= p(L-1) (W2-1) & p(L-1); -- First TAP has
END IF; -- only a register
y <= a(0);

END PROCESS SOP;

-- Instantiate L pipelined multiplier
MulGen: FOR I IN O TO L-1 GENERATE
Muls: lpm_mult -- Multiply p(i) = c(i) * x;
GENERIC MAP (LPM_WIDTHA => Wi, LPM_WIDTHB => W1,
LPM_PIPELINE => Mpipe,
LPM_REPRESENTATION => "SIGNED",
LPM_WIDTHP => W2,
LPM_WIDTHS => W2)
PORT MAP (clock => clk, dataa => x,
datab => c(I), result => p(I));
END GENERATE;

y_out <= y(W3-1 DOWNTO W3-W4);
END fpga;

The first process, Load, is used to load the coefficient in a tapped delay
line if Load_x=0. Otherwise, a data word is loaded into the x register. The
second process, called SOP, implements the sum-of-products computation.
The products p(I) are sign-extended by one bit and added to the previous
partial SOP. Note also that all multipliers are instantiated by a generate
statement, which allows the assignment of extra pipeline stages. Finally, the
output y_out is assigned the value of the SOP divided by 256, because the
coefficients are all assumed to be fractional (i.e., |f[k]| < 1.0). The design
uses 184 LEs, 4 embedded multipliers, and has a 329.06 MHz Registered
Performance.

To simulate this length-4 filter consider a Daubechies DB4 filter coefficient
with

(1+v3)+(B+v3)z '+ (B-v3) 22+ (1—-V3)z?
44/2 ’
G(z) = 0.48301 4 0.83652 " +0.22412"% — 0.12942°.

Quantizing the coefficients to eight bits (plus a sign bit) of precision results
in the following model:

G(z) =

170 3. Finite Impulse Response (FIR) Digital Filters

e =loix|
Master Tims Bar Ops 4| *| Painter: ‘ 708,89 ns lri:ewal:‘ 70839 ns Si-:vt:‘ End
ps 80.0ns 160.0ns 240 0ns 3200ns 400 0ns 48000 s 560 0ns B540.0 ns
Vale ot i i i d d i i i
ema Ops [Jes

e Load » BQ |
w ok B0

ain 50 0 [;

cin 5124 124 33 0

7 yout S0 1] [g3 F 13 Y0
= |

Fig. 3.4. Simulation of the 4-tap programmable FIR filter with Daubechies filter
coefficient loaded.

G(2)

(124 + 21427 4+ 57272 — 3327°) /256
24 5T, 3
256 256 256 256

As can be seen from Fig. 3.4, in the first four steps we load the coefficients
{124, 214, 57, —33} into the tapped delay line. Note that Quartus II can also
display signed numbers. As unsigned data the value —33 will be displayed as
512 — 33 = 479. Then we check the impulse response of the filter by loading
100 into the x register. The first valid output is then available after 450 ns.

3.2.2 Symmetry in FIR Filters

The center of an FIR’s impulse response is an important point of symmetry.
It is sometimes convenient to define this point as the 0*" sample instant. Such
filter descriptions are a-causal (centered notation). For an odd-length FIR,
the a-causal filter model is given by:

(L-1)/2

F(z)= Z flk]z7F. (3.5)

k=—(L—1)/2

The FIR’s frequency response can be computed by evaluating the filter’s
transfer function about the periphery of the unity circle, by setting z = /“7T.
It then follows that:

F(w)=F(e*") =" flkle 7. (3.6)
k

We then denote with |F(w)]| the filter’s magnitude frequency response and
¢(w) denotes the phase response, and satisfies:

S(F (w))>
R(Fw) /)

Digital filters are more often characterized by phase and magnitude than
by the z-domain transfer function or the complex frequency transform.

¢(w) = arctan ((3.7)

3.2 FIR Theory 171

Table 3.1. Four possible linear-phase FIR filters F(2) = Y f[k]z~*.
k

Symmetry f[n] = f[-n] fln] = fl-n] fln] = —f[-n] fln] =—f[-n]
L d

od even odd even
Example
1 1
I A A | R T A)T
‘ | N R
Zeros at +120° +90°, 180° 0°,180° 0°,2 x 180°

3.2.3 Linear-phase FIR Filters

Maintaining phase integrity across a range of frequencies is a desired system
attribute in many applications such as communications and image processing.
As a result, designing filters that establish linear-phase versus frequency is
often mandatory. The standard measure of the phase linearity of a system is
the “group delay” defined by:

do(w)

T(w) = b

A perfectly linear-phase filter has a group delay that is constant over a

range of frequencies. It can be shown that linear-phase is achieved if the

filter is symmetric or antisymmetric, and it is therefore preferable to use the

a-causal framework of (3.5). From (3.7) it can be seen that a constant group

delay can only be achieved if the frequency response F'(w) is a purely real or

imaginary function. This implies that the filter’s impulse response possesses
even or odd symmetry. That is:

fln] = fl=n] or fn] =—f[-n]. (3.9)

An odd-order even-symmetry FIR filter would, for example, have a fre-
quency response given by:

(3.8)

F(w) = fl0] + > flkle *T + kel (3.10)
k>0
= fl0]+2> f[k] cos(kwT), (3.11)
k>0

which is seen to be a purely real function of frequency. Table 3.1 summarizes
the four possible choices of symmetry, antisymmetry, even order and odd
order. In addition, Table 3.1 graphically displays an example of each class of
linear-phase FIR.

172 3. Finite Impulse Response (FIR) Digital Filters

Z—l <o Z—l < Z—l
- Z—l
x[n] —e—> Z_l 1> Z_l —— 1P Z_l *
\i \i Y Y

f[0K7 f[1] f[L-2] flL-1]

Fig. 3.5. Linear-phase filter with reduced number of multipliers.

The symmetry properties intrinsic to a linear-phase FIR can also be used
to reduce the necessary number of multipliers L, as shown in Fig. 3.1. Con-
sider the linear-phase FIR shown in Fig. 3.5 (even symmetry assumed), which
fully exploits coefficient symmetry. Observe that the “symmetric” architec-
ture has a multiplier budget per filter cycle exactly half of that found in the
direct architecture shown in Fig. 3.1 (L versus L/2) while the number of
adders remains constant at L — 1.

3.3 Designing FIR Filters

Modern digital FIR filters are designed using computer-aided engineering
(CAE) tools. The filters used in this chapter are designed using the MATLAB
Signal Processing toolbox. The toolbox includes an “Interactive Lowpass Fil-
ter Design” demo example that covers many typical digital filter designs,
including:

e Equiripple (also known as minimax) FIR design, which uses the Parks—
McClellan and Remez exchange methods for designing a linear-phase (sym-
metric) equiripple FIR. This equiripple design may also be used to design
a differentiator or Hilbert transformer.

e Kaiser window design using the inverse DFT method weighted by a Kaiser
window.

e Least square FIR method. This filter design also has ripple in the passband
and stopband, but the mean least square error is minimized.

e Four IIR filter design methods (Butterworth, Chebyshev I and II, and
elliptic) which will be discussed in Chap. 4.

3.3 Designing FIR Filters 173

The FIR methods are individually developed in this section. Most often we
already know the transfer function (i.e., magnitude of the frequency response)
of the desired filter. Such a lowpass specification typically consists of the
passband [0...wp], the transition band [wp, . . . ws], and the stopband [ws . . . 7]
specification, where the sampling frequency is assumed to be 27. To compute
the filter coefficients we may therefore apply the direct frequency method
discussed next.

3.3.1 Direct Window Design Method

The discrete Fourier transform (DFT) establishes a direct connection between
the frequency and time domains. Since the frequency domain is the domain
of filter definition, the DFT can be used to calculate a set of FIR filter
coefficients that produce a filter that approximates the frequency response of
the target filter. A filter designed in this manner is called a direct FIR filter.
A direct FIR filter is defined by:

fln] = IDFT(F[k]) = Y _ F[kle”>m*/ L. (3.12)
k

From basic signals and systems theory, it is known that the spectrum of
a real signal is Hermitian. That is, the real spectrum has even symmetry and
the imaginary spectrum has odd symmetry. If the synthesized filter should
have only real coefficients, the target DFT design spectrum must therefore
be Hermitian or F[k] = F*[—k], where the * denotes conjugate complex.

Consider a length-16 direct FIR filter design with a rectangular window,
shown in Fig. 3.6a, with the passband ripple shown in Fig. 3.6b. Note that
the filter provides a reasonable approximation to the ideal lowpass filter with
the greatest mismatch occurring at the edges of the transition band. The
observed “ringing” is due to the Gibbs phenomenon, which relates to the
inability of a finite Fourier spectrum to reproduce sharp edges. The Gibbs
ringing is implicit in the direct inverse DF'T method and can be expected to
be about +7% over a wide range of filter orders. To illustrate this, consider
the example filter with length 128, shown in Fig. 3.6c, with the passband
ripple shown in Fig. 3.6d. Although the filter length is essentially increased
(from 16 to 128) the ringing at the edge still has about the same quantity.
The effects of ringing can only be suppressed with the use of a data “window”
that tapers smoothly to zero on both sides. Data windows overlay the FIR’s
impulse response, resulting in a “smoother” magnitude frequency response
with an attendant widening of the transition band. If, for instance, a Kaiser
window is applied to the FIR, the Gibbs ringing can be reduced as shown
in Fig. 3.7(upper). The deleterious effect on the transition band can also
be seen. Other classic window functions are summarized in Table 3.2. They
differ in terms of their ability to make tradeoffs between “ringing” and tran-
sition bandwidth extension. The number of recognized and published window
functions is large. The most common windows, denoted w(n], are:

174 3. Finite Impulse Response (FIR) Digital Filters

(@)

0.5 A
04 1.07

[n]
o O
N W
()

0.1 0.93

R RENRLE

-0.2

0 8 16 0 500 1000
Time n fin Hz

(c) (d)

0.5
0.4
0.3
0.2 3 1

0.1
S UL | TR 0.93

i

1.07

fin]

-0.1
-0.2

0 64 128

Time n 0 500 1000

fin Hz

Fig. 3.6. Gibbs phenomenon. (a) Impulse response of FIR lowpass with L = 16.
(b) Passband of transfer function L = 16. (¢) Impulse response of FIR lowpass
with L = 128. (d) Passband of transfer function L = 128.

Rectangular: w[n] =1

Bartlett (triangular) : w[n] = 2n/N

Hanning: w[n] = 0.5 (1 — cos(27n/L)

Hamming: w[n] = 0.54 — 0.46 cos(27n/L)

Blackman: w[n] = 0.42 — 0.5 cos(2mn/L) + 0.08 cos(4nn/L)

Kaiser: w[n] = Iy (5\/1 —(n— L/2)2/(L/2)2)

Table 3.2 shows the most important parameters of these windows.

The 3-dB bandwidth shown in Table 3.2 is the bandwidth where the
transfer function is decreased from DC by 3 dB or a~ 1/4/2. Data windows
also generate sidelobes, to various degrees, away from the 0" harmonic. De-

3.3 Designing FIR Filters 175

Table 3.2. Parameters of commonly used window functions.

Name 3-dB First Maximum Sidelobe Equivalent
band- Zero sidelobe decrease Kaiser
width per octave B
Rectangular 0.89/T 1/T —13 dB —6 dB 0
Bartlett 1.28/T 2/T —27 dB —12 dB 1.33
Hanning 144/T 2/T —-32dB —18 dB 3.86
Hamming 1.33/T 2/T —42dB —6dB 4.86
Blackman 1.79 /T 3/T —74 dB —6 dB 7.04
Kaiser 1.44)T 2/T —38dB —18dB 3

pending on the smoothness of the window, the third column in Table 3.2
shows that some windows do not have a zero at the first or second zero DF'T
frequency 1/7T. The maximum sidelobe gain is measured relative to the 0}
harmonic value. The fifth column describes the asymptotic decrease of the
window per octave. Finally, the last column describes the value 3 for a Kaiser
window that emulates the corresponding window properties. The Kaiser win-
dow, based on the first-order Bessel function I, is special in two respects. It
is nearly optimal in terms of the relationship between “ringing” suppression
and transition width, and second, it can be tuned by 3, which determines the
ringing of the filter. This can be seen from the following equation credited to
Kaiser.

0.1102(A — 8.7) A > 50,
B =1 0.5842(A — 21)%* +0.07886(A4 — 21) 21 < A < 50, (3.13)
0 A< 21,

where A = 20log;, &, is both stopband attenuation and the passband ripple
in dB. The Kaiser window length to achieve a desired level of suppression
can be estimated:

A-38

L=————+1 .14
2.285(wg — wp) i (3:-14)

The length is generally correct within an error of +2 taps.

3.3.2 Equiripple Design Method

A typical filter specification not only includes the specification of passband
wp and stopband ws frequencies and ideal gains, but also the allowed devi-
ation (or ripple) from the desired transfer function. The transition band is
most often assumed to be arbitrary in terms of ripples. A special class of FIR
filter that is particularly effective in meeting such specifications is called the
equiripple FIR. An equiripple design protocol minimizes the maximal devia-
tions (ripple error) from the ideal transfer function. The equiripple algorithm
applies to a number of FIR design instances. The most popular are:

176 3. Finite Impulse Response (FIR) Digital Filters

(a) (b) (c)
10
0 295 1
-10
_20 29.5 0.5
—_ 3
S 30 S 295 E o
L S
40 29.5 -0.5
-50
60 29.5 -1
_70 ”ﬂ(\n
0 1000 2000 0 200 400 600 800
fin Hz fin Hz
(a) (b) (c)
10
[I7aw.away 13.5 1
-10
13.5 0.5
-20
_ 3
S 30 2135 E o
w 5
-40
135 -05
-50
-60 13.5 1
-70
0 1000 2000 0 200 400 600 800 -1 -05 0 05 1
finHz fin Hz Re

Fig. 3.7. (upper) Kaiser window design with L = 59. (lower) Parks-McClellan
design with L = 27.
(a) Transfer function. (b) Group delay of passband. (c) Zero plot.

e Lowpass filter design (in MATLAB? use firpm(L,F,A,W)), with tolerance
scheme as shown in Fig. 3.8a

e Hilbert filter, i.e., a unit magnitude filter that produces a 90° phase shift
for all frequencies in the passband (in MATLAB use firpm(L, F, A,
’Hilbert’)

e Differentiator filter that has a linear increasing frequency magnitude pro-
portional to w (in MATLAB use firpm(L,F,A,’differentiator’)

The equiripple or minimum-maximum algorithm is normally implemented
using the Parks—McClellan iterative method. The Parks-McClellan method
is used to produce a equiripple or minimax data fit in the frequency domain.
It is based on the “alternation theorem” that says that there is exactly one
polynomial, a Chebyshev polynomial with minimum length, that fits into a
given tolerance scheme. Such a tolerance scheme is shown in Fig. 3.8a, and
Fig. 3.8b shows a polynomial that fulfills this tolerance scheme. The length

3 In previous MATLAB versions the function remez had to be used.

3.3 Designing FIR Filters 177

(a) (b)
10 10
Pass- :
00— 1+¢ 0
band -] 5
-10 -10
% Tran—
| sition- I
',% -20 band -20
3
© -30¢ ‘ - Stop- -30}
band
-40 € | -40
S
0 fp f £ /2 0 800 1200 2000
fin Hz fin Hz

Fig. 3.8. Parameters for the filter design. (a) Tolerance scheme (b) Example
function, which fulfills the scheme.

of the polynomial, and therefore the filter, can be estimated for a lowpass

with

I —10log;o(epes) — 13
2.324(ws — wp)

+1, (3.15)

where €, is the passband and e the stopband ripple.

The algorithm iteratively finds the location of locally maximum errors
that deviate from a nominal value, reducing the size of the maximal error
per iteration, until all deviation errors have the same value. Most often, the
Remez method is used to select the new frequencies by selecting the frequency
set with the largest peaks of the error curve between two iterations, see [79,
p. 478]. This is why the MATLAB equiripple function was called remez in the
past (now renamed to firpm for Parks-McClellan).

Compared to the direct frequency method, with or without data windows,
the advantage of the equiripple design method is that passband and stopband
deviations can be specified differently. This may, for instance, be useful in
audio applications where the ripple in the passband may be specified to be
higher, because the ear only perceives differences larger than 3 dB.

We note from Fig. 3.7(lower) that the equiripple design having the same
tolerance requirements as the Kaiser window design enjoys a considerably
reduced filter order, i.e., 27 compared with 59.

178 3. Finite Impulse Response (FIR) Digital Filters

3.4 Constant Coefficient FIR Design

There are only a few applications (e.g., adaptive filters) where we need a
general programmable filter architecture like the one shown in Example 3.1
(p. 167). In many applications, the filters are LTI (i.e., linear time invariant)
and the coefficients do not change over time. In this case, the hardware ef-
fort can essentially be reduced by exploiting the multiplier and adder (trees)
needed to implement the FIR filter arithmetic.

With available digital filter design software the production of FIR coef-
ficients is a straightforward process. The challenge remains to map the FIR
design into a suitable architecture. The direct or transposed forms are pre-
ferred for maximum speed and lowest resource utilization. Lattice filters are
used in adaptive filters because the filter can be enlarged by one section,
without the need for recomputation of the previous lattice sections. But this
feature only applies to PDSPs and is less applicable to FPGAs. We will
therefore focus our attention on the direct and transposed implementations.
We will start with possible improvements to the direct form and will then
move on to the transposed form. At the end of the section we will discuss an
alternative design approach using distributed arithmetic.

3.4.1 Direct FIR Design

The direct FIR filter shown in Fig. 3.1 (p. 166) can be implemented in VHDL
using (sequential) PROCESS statements or by “component instantiations” of
the adders and multipliers. A PROCESS design provides more freedom to the
synthesizer, while component instantiation gives full control to the designer.
To illustrate this, a length-4 FIR will be presented as a PROCESS design. Al-
though a length-4 FIR is far too short for most practical applications, it is
easily extended to higher orders and has the advantage of a short compil-
ing time. The linear-phase (therefore symmetric) FIR’s impulse response is
assumed to be given by

flk] = {~1.0,3.75,3.75, —1.0}. (3.16)

These coefficients can be directly encoded into a 5-bit fractional number. For
example, 3.7519 would have a 5-bit binary representation 011.115 where “.”
denotes the location of the binary point. Note that it is, in general, more
efficient to implement only positive CSD coefficients, because positive CSD
coefficients have fewer nonzero terms and we can take the sign of the coef-
ficient into account when the summation of the products is computed. See
also the first step in the RAG algorithm 3.4 discussed later, p. 183.

In a practical situation, the FIR coefficients are obtained from a com-
puter design tool and presented to the designer as floating-point numbers.
The performance of a fixed-point FIR, based on floating-point coefficients,
needs to be verified using simulation or algebraic analysis to ensure that de-
sign specifications remain satisfied. In the above example, the floating-point

3.4 Constant Coefficient FIR Design 179

numbers are 3.75 and 1.0, which can be represented exactly with fixed-point
numbers, and the check can be skipped.

Another issue that must be addressed when working with fixed-point de-
signs is protecting the system from dynamic range overflow. Fortunately, the
worst-case dynamic range growth G of an L*-order FIR is easy to compute
and it is:

G <log, (Z If[k]|> . (3.17)

k=0

The total bit width is then the sum of the input bit width and the bit
growth G. For the above filter for (3.16) we have G = log,(9.5) < 4, which
states that the system’s internal data registers need to have at least four
more integer bits than the input data to insure no overflow. If 8-bit internal
arithmetic is used the input data should be bounded by +128/9.5 = £13.

Example 3.2: Four-tap Direct FIR Filter

The VHDL design® for a filter with coefficients {—1,3.75,3.75, —1} is shown
in the following listing.
PACKAGE eight_bit_int IS -- User-defined types
SUBTYPE BYTE IS INTEGER RANGE -128 TO 127;
TYPE ARRAY_BYTE IS ARRAY (0 TO 3) OF BYTE;
END eight_bit_int;

LIBRARY work;
USE work.eight_bit_int.ALL;

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
USE ieee.std_logic_arith.ALL;

ENTITY fir_srg IS ~ ———-—- > Interface
PORT (clk : IN STD_LOGIC;
X : IN BYTE;
y : OUT BYTE);
END fir_srg;

ARCHITECTURE flex OF fir_srg IS

SIGNAL tap : ARRAY_BYTE := (0,0,0,0);
-- Tapped delay line of bytes
BEGIN

pl: PROCESS -—-—-——- > Behavioral style
BEGIN
WAIT UNTIL clk = ’1°;
-- Compute output y with the filter coefficients weight.
-- The coefficients are [-1 3.75 3.75 -1].

4 The equivalent Verilog code fir srg.v for this example can be found in Ap-
pendix A on page 682. Synthesis results are shown in Appendix B on page 731.

180 3. Finite Impulse Response (FIR) Digital Filters

o]
Master Time Erar, | Ops <| | Painer:| 536,83 e Iriervak | £3589 ne Start:| Erd
ps 20.0ns 160,0ns 2400 3200 400,0ns 480,0ns 5600 ne 6400ns |
M Walue at il . :
Ops A P
G EO [1] | [|] | I
|| @« 50 0 0 1]
&| & = 50.0.0.0 00,00 ¥ o010y 0000 § 01000 § o000 ¥ 0.0,0,0
=l tapll] S0 T 4 i) 4 i
|| tapll] S0 0 . 10 X a
= glap[zl S0 0 k4 0 Y i
=4 tapl3l S0 0 10 b 0
| EHoy S0 1] b d 0 b4 37 Y 0)
L L]

Fig. 3.9. VHDL simulation results of the FIR filter with impulse input 10.

-- Division for Altera VHDL is only allowed for
-- powers-of-two values!
y <= 2 * tap(1) + tap(1) + tap(l) / 2 + tap(1l) / 4
+ 2 * tap(2) + tap(2) + tap(2) / 2 + tap(2) / 4
- tap(3) - tap(0);
FOR I IN 3 DOWNTO 1 LOOP

tap(I) <= tap(I-1); -- Tapped delay line: shift one
END LOOP;
tap(0) <= x; -- Input in register O

END PROCESS;

END flex;
The design is a literal interpretation of the direct FIR architecture found in
Fig. 3.1 (p. 166). The design is applicable to both symmetric and asymmetric
filters. The output of each tap of the tapped delay line is multiplied by the
appropriately weighted binary value and the results are added. The impulse
response y of the filter to an impulse 10 is shown in Fig. 3.9.

There are three obvious actions that can improve this design:

1) Realize each filter coefficient with an optimized CSD code (see Chap. 2,
Example 2.1, p. 58).

2) Increase effective multiplier speed by pipelining. The output adder
should be arranged in a pipelined balance tree. If the coefficients are coded
as “powers-of-two,” the pipelined multiplier and the adder tree can be
merged. Pipelining has low overhead due to the fact that the LE registers
are otherwise often unused. A few additional pipeline registers may be nec-
essary if the number of terms in the tree to be added is not a power of
two.

3) For symmetric coeflicients, the multiplication complexity can be reduced
as shown in Fig. 3.5 (p. 172).

The first two actions are applicable to all FIR filters, while the third applies
only to linear-phase (symmetric) filters. These ideas will be illustrated by
example designs.

3.4 Constant Coefficient FIR Design 181

Table 3.3. Improved FIR filter.

Symmetry no yes no no yes yes
CSD no no yes no yes yes
Tree no no no yes no yes
Speed/MHz 99.17 178.83 123.59 270.20 161.79 277.24
Size/LEs 114 99 65 139 57 81

Example 3.3: Improved Four-tap Direct FIR Filter

The design from the previous example can be improved using a CSD code for
the coefficients 3.75 = 22 — 272, In addition, symmetry and pipelining can
also be employed to enhance the filter’s performance. Table 3.3 shows the
maximum throughput that can be expected for each different design. CSD
coding and symmetry result in smaller, more compact designs. Improvements
in Registered Performance are obtained by pipelining the multiplier and
providing an adder tree for the output accumulation. Two additional pipeline
registers (i.e., 16 LEs) are necessary, however. The most compact design is
expected using symmetry and CSD coding without the use of an adder tree.
The partial VHDL code for producing the filter output y is shown below.

tl <= tap(1) + tap(2); -- Using symmetry
t2 <= tap(0) + tap(3);
IF rising_edge(clk) THEN
y <=4 % tl -tl /4 - t2; Apply CSD code and add

The fastest design is obtained when all three enhancements are used. The
partial VHDL code, in this case, becomes:

WAIT UNTIL clk = ’1’; -- Pipelined all operations

tl <= tap(1) + tap(2); -- Use symmetry of coefficients

t2 <= tap(0) + tap(3); -- and pipeline adder

t3 <=4 * t1 - t1 / 4; -- Pipelined CSD multiplier

td <= -t2; -- Build a binary tree and add delay

y <= t3 + t4;

Exercise 3.7 (p. 210) discusses the implementation of the filter in more

detail.

Direct Form Pipelined FIR Filter

Sometimes a single coefficient has more pipeline delay than all the other
coefficients. We can model this delay by f[n]z=%. If we now add a positive

delay with
fln] = z%f)=~

(3.18)

182 3. Finite Impulse Response (FIR) Digital Filters

77! 7! 7
(D f[n]
-1 -1 -1

f[nx

2) 2-stage
pipelined

multiplier

Fig. 3.10. Rephasing FIR filter. (a) Principle. (b) Rephasing a multiplier. (1)
Without pipelining. (2) With two-stage pipelining.

the two delays are eliminated. Translating this into hardware means that for
the direct form FIR filter we have to use the output of the d position previous
register.

This principle is shown in Fig. 3.10a. Figure 3.10b shows an example of
rephasing a pipelined multiplier that has two delays.

3.4.2 FIR Filter with Transposed Structure

A variation of the direct FIR filter is called the transposed filter and has been
discussed in Sect. 3.2.1 (p. 167). The transposed filter enjoys, in the case
of a constant coefficient filter, the following two additional improvements
compared with the direct FIR:

e Multiple use of the repeated coefficients using the reduced adder graph
(RAG) algorithm [31, 32, 33, 34]
e Pipeline adders using a carry-save adder

The pipeline adder increases the speed, at additional adder and register
costs, while the RAG principle will reduce the size (i.e., number of LEs) of
the filter and sometimes also increase the speed. The pipeline adder principle
has been discussed in Chap. 2 and here we will focus on the RAG algorithm.

3.4 Constant Coefficient FIR Design 183

In Chap. 2 it was noted that it can sometimes be advantageous to imple-
ment the factors of a constant coefficient, rather than implement the CSD
code directly. For example, the CSD code realization of the constant multi-
plier coefficient 93 requires three adders, while the factors 3 x 31 only requires
two adders, see Fig. 2.3 (p. 61). For a transposed FIR filter, the probabil-
ity is high that all the coefficients will have several factors in common. For
instance, the coefficients 9 and 11 can be built using 8 + 1 = 9 for the first
and 11 = 9 4 2 for the second. This reduces the total effort by one adder.
In general, however, finding the optimal reduced adder graph (RAG) is an
NP-hard problem. As a result, heuristics must be used. The RAG algorithm
first suggested by Dempster and Macleod is described next [33].

Algorithm 3.4: Reduced Adder Graph
1) Reduce all coefficients in the input set to positive odd fundamentals
(OF).

2) Evaluate the single-coefficient adder cost of each coefficient using the
MAG Table 2.3, p. 64.

3) Remove from the input set all power-of-two values and repeated fun-
damentals.

4) Create a graph set of all coefficients that can be built with one adder.
Remove these coefficients from the input set.

5) Check if a pair of fundamentals in the graph set can be used to gen-
erate a coefficient in the input set by using a single adder.

6) Repeat step 5 until no further coefficients are added to the graph set.

This completes the optimal part of the algorithm. Next follows the heuris-

tic part of the algorithm:

7) Add the smallest coefficient requiring two adders (if found) from the
input set and its smallest NOF. The OF and one NOF (i.e., auxiliary
coefficient) requires two adders using the fundamentals in the graph
set.

8) Go to step 5 since the two new fundamentals from step 7 can be used
to build other coefficients from the input set.

9) Add the smallest adder cost-3 or higher OF to the graph set and use
the minimum NOF sum for this coefficient.

10) Go to step 5 until all coefficients are synthesized.

Steps 1-6 are straightforward, but steps 7-10 are potentially complex since
the number of theoretical graphs increases exponentially. To simplify the
process it is helpful to use the MAG coding data shown in Table 2.3 (p. 64).
Let us briefly review some of the RAG steps that are not so obvious at first
glance.

In step 1 all coefficients are reduced to positive odd fundamentals (i.e.,
power-of-two factors are removed from each coefficient), since this maximizes
the number of partial sums, and the negative signs of the coefficients are
implemented in the output adder TAPs of the filter. The two coefficient —7
and 28 = 4 x 7 would be merged. This works fine except for the unlikely case

184 3. Finite Impulse Response (FIR) Digital Filters

when all coefficients are negative. Then a sign complement operation has to
be added to the filter output.

In step 5 all sums of two extended fundamentals are considered. It may
happen that a final division is also required, ie., g = (2%f1 & 2V f2)/2".
Note that multiplication or division by two can be implemented by left and
right shift, respectively, i.e., they do not require hardware resources. For
instance the coefficient set {7,105,53} MAG coding required one, two, and
three adders, respectively. In RAG the set is synthesized as 7 =8 — 1;105 =
7 x 15;53 = (105 + 1)/2, requiring only three adders but also a divide/right
shift operation.

In step 7 an adder cost-2 coefficient is added and the algorithm selects
the auxiliary coefficient, called the non-output fundamental (NOF), with the
smallest values. This is motivated by the fact that an additional small NOF
will generate more additional coefficients than a larger NOF. For instance, let
us assume that the coefficient 45 needs to be added and we must decide which
NOF value has to be used. The NOF LUTs lists possible NOFs as 3, 5, 9, or
15. It can now be argued that, if 3 is selected, more coefficients are generated
than if any other NOF is used, since 3, 6,12,24,48, ... can be generated with-
out additional effort from NOF 3. If 15 is used, for instance, as the NOF the
coefficients 15,30,45, ..., are generated, which produces significantly fewer
coefficients than NOF 3.

To illustrate the RAG algorithm, consider coding the coefficients defining
the F6 half-band FIR filter of Goodman and Carey [80].

Example 3.5: Reduced Adder Graph for an F6 Half-band Filter

The half-band filter F6 has four nonzero coefficients, namely f[0], f[1], f[3],
and f[5], which are 346, 208, —44, and 9. For a first cost estimation we convert
the decimal values (index 10) into binary representations (index 2) and look
up the cost for the coefficients in Table 2.3 (p. 64):

f1k] Cost
fl0] = 34610 = 2x 173 = 101011010, 4

fl1] = 20810 = 2% x 13 = 110100002 2
fI3] = —4410 = =2° x 11 = —1011002 2
fl5] = 910 = 32 = 10015 1

Total 9

For the direct CSD code realization, nine adders are required. The RAG
algorithms proceeds as follows:

Step To be Already Action
realized realized

0) {346,208,—-44,9} { — } Initialization

la) {346,208,44,9} { -} No negative coeflicients

1b) {173,13,11,9} { -1} Remove 2" factors

2) {173,13,11,9} { -} Look-up coefficients costs: {3,2,2,1}
3) {173,13,11,9} { -} Remove cost-0 coefficients from set
4) {173,13,11} {9} Realize cost-1 coefficients: 9 = 8 + 1
5) {173.1311} {9,11,13} Build 11=9+2and 13=9+4

3.4 Constant Coefficient FIR Design 185

Pipeline register optional

Fig. 3.11. Realization of F6 using RAG algorithm.

Apply the heuristic to the remaining coefficients, starting with the coefficient
with the lowest cost and smallest value. It follows that:
Step Realize Already Action
realized Find representation

7 {—-1} {911,13,173} Add NOF 3: 173 =11 x 16 — 3

Figure 3.11 shows the resulting reduced adder graph. The number of adders
is reduced from 9 to 5. The adder path delay is also reduced from 4 to 3.

A program ragopt.exe that implements the optimal part of the algo-

rithms can be found in the book CD under book3e/util. Compared with
the original algorithm only some minor improvements have been reported
over the years [81].

The MAG LUT table used has been extended to 14 bits (Gustafsson et
al. [82] have actually extended the cost table to 19 bits but do not keep the
fundamental table) and all 32 MAG adder cost-4 graph are now considered
when computing the minimum NOF sum. Within 14 bits only two coeffi-
cients (i.e., 14709, 15573) are of cost 5 and, as long as these coeflicients
are not used, the computed minimum NOF sum list will be optimal in the
RAG-95 sense.

In step 7 all adder cost-2 graph are now considered. There are three such
graphs, i.e., a single fundamental followed by an adder cost-2 factor, a
sum of two fundamentals, and an adder cost-1 factor or a sum of three
fundamentals.

186 3. Finite Impulse Response (FIR) Digital Filters

e The last improvement is based on the adder cost-2 selection, which some-
times produced suboptimal results in the RAG-95 algorithm when multiple
adder cost-2 coefficients have to be implemented. This can be explained as
follows. While the selection of the smallest NOF is motivated by the statis-
tical observation this may lead to suboptional results. For instance, for the
coefficient set {13, 59,479} the minimum NOFs values used by RAG-95 are
{3,5,7} because 13 =4 x 3+ 1;59 = 64 — 5;479 = 59 x 8 + 7, resulting in
a six-adder graph. If the NOF {15} is chosen instead, then all coefficients
(13=15—2;59 =15 x4 —1;479 = 15 x 32 — 1) benefit and RAG-05 only
requires four adders, a 30% improvement. Therefore, instead of selecting
the smallest NOF for the smallest adder cost-2 coeflicient, a search for the
best NOF is done over all adder cost-2 coefficients.

These modifications have been implemented in the RAG-05 algorithm,
while the original RAG will be called RAG-95 based on the year of publishing
the algorithms.

Although the RAG algorithm has been in use for quite some time, a large
set of reliable benchmark data that can be verified and reproduced by anyone
was not produced until recently [81]. In a recent paper by Wang and Roy [83],
for instance, 60% of the comparison RAG data were declared “unknown.” A
benchmark should cover filters used in practical applications that are widely
published or can easily be computed — a generation of random number filter
coefficients that: (a) cannot be verified by a third party, and (b) are of no
practical relevance (although used in many publications) are less useful. The
problem with a RAG benchmark is that the heuristic part may give different
results depending on the exact software implementation or the NOF table
used. In addition, since some filters are rather long, a benchmark that lists
the whole RAG is not practical in most cases. It is therefore suggested to use a
benchmark based on the following equivalence transformation (remembering
that the number of output fundamentals is equivalent to the number of adders
required):

Theorem 3.6: RAG Equivalent Transformation

Let S; be a coefficient set that can be synthesized by the RAG algorithm
with a set of F; output fundamentals and N; non-output fundamentals,
(i.e., internal auxiliary coefficients). A congruent RAG is synthesized if a
coefficient set Ss is used that contains as fundamentals both output and
non-output fundamentals from the first set So = F; UNj.

Proof: Assume that S, is synthesized via the RAG algorithm. Now all funda-
mentals can be synthesized with exactly one adder, since all fundamentals are
synthesized in the optimal part of the algorithm. As a result a minimum num-
ber Cy = #F1 + #N; of adders for this fundamental set is used. If now set Sy
is synthesized and generates the same fundamentals (output and non-output)
as set Sg, the resulting RAG also uses the minimum number of adders. Since
both use the minimum number of adders they must be congruent. q.e.d.

3.4 Constant Coefficient FIR Design 187

A corollary of Theorem 3.6 is that graphs can now be classified as (guar-
anteed) optimal and heuristic graphs. An optimal graph has no more than
one NOF, while a heuristic graph has more than one NOF. It is only required
to provide a list of the NOF's to describe a unique OF graph. If this NOF is
added to the coefficient set, all OFs are synthesized via the optimal part of
the algorithm, which can easily be programmed. The program ragopt.exe
that implements the optimal part of the algorithms is in fact available on the
book CD under book3e/util. Some example benchmarks are given in Table
3.4. The first column shows the filter name, followed by the filter length L,
and the bitwidth of the largest coefficient B. Then the reference adder data
for CSD coding and CSE coding follows. The idea of the CSE coding is stud-
ied in Exercises 3.4 and 3.5 (p. 209) Note that the number of CSD adders
given already takes advantage of coefficient symmetry, i.e., f(k) = f(L — k).
Common subexpression (CSE) required adder data are used from [83]. For
the RAG algorithm the output fundamental (OF) and non-output fundamen-
tal (NOF) for RAG-2005 are listed. Note that the number of OF's is already
much smaller than the filter length L. We then list in column 8 the adders
required in the improved RAG-2005 version. Finally in the last column we list
the NOF values that are required to synthesize the RAG filter via the optimal
part of the RAG algorithms that is the basis for the program ragopt . exe® on
the book CD under book3e/util. ragopt.exe uses a MAG LUT magl4.dat
to determine the MAG costs, and produces two output files: firXX.dat that
contains the filter data, and a file ragopt.pro that has the RAG-n coeffi-
cient equations. A grep command for lines that start with Build yields the
equations necessary to construct the RAG-n graph.

It can be seen that the examples from Samueli [84] and Lim and Parker
[85] all produce optimal RAG results, i.e., have a maximum of one NOF.
Notice particularly for long filters the improvement of RAG compared to
CSD and CSE adders. Filters F5-F9 are from the Goodman and Carey set of
half-band filters (see Table 5.3, p. 274) and give better results using RAG-05
than RAG-95. The benchmark data from Samueli, and Lim andParker work
very well for RAG since the filters are lowpass and therefore taper smoothly to
zero at both sides, improving the likelihood of cost-1 output fundamentals.
A more-challenging RAG design for DFT coefficients will be discussed in
Chap. 6.

Pipelined RAG FIR Filter

Due to the logic delay in the RAG running through several adders, the result-
ing register performance of the design is not very high even for a small graph.
To improve the register performance one can take advantage of the register
embedded in each LE that would not otherwise be used. A single register

5 You need to copy the program to your hard drive first; you can not start it from
the CD directly.

188 3. Finite Impulse Response (FIR) Digital Filters

Table 3.4. Required number of adders for the CSD, CSE, and RAG algorithms for
lowpass filters. Prototype filters are from Goodman and Carey [80], Samueli [84],
and Lim and Parker [85].

Filter L B CSD CSE #OF #NOF RAG-05 NOF

name adder adder adder values
F5 11 8 6 - 3 0 3 -
F6 11 9 9 - 4 1 5 3
F7 11 9 7 - 3 1 4 23
F8 15 10 10 - 5 2 7 11, 17
F9 19 13 14 - 5 2 7 13, 1261
S1 25 9 11 6 6 0 6 -
S2 60 14 57 29 26 0 26 -
L1 121 17 145 57 51 1 52 49
L2 63 13 49 23 22 0 22 -
L3 36 11 16 5 5 0 5 -

placed at the output of an adder does therefore not require any additional
logic resource. However, power-of-two coefficients that are implemented by
shifting the register input word require an additional register not included in
the zero-pipeline design. This design with one pipeline stage already enjoys
a speed improvement of 50% compared with the non-pipelined design, see
Table 3.5(Pipeline stages=1). For the fully pipelined design we need to have
the same delay for each incoming path of the adders. For the F6 design one
needs to build:

29 <=8 xx+x; hasdelay 1
zll <=29+2x 2z x z~!; has delay 2
rl13 <=x9+4 x z x z~'; has delay 2

3 <=xz"'42xxx 27! has delay 2
173 <=16 x 211 — 23; has delay 3

i.e., one extra pipeline register is used for input z, and a maximum delay
of three pipeline stage is needed. The pipelined graph is shown in Fig. 3.11
with the dashed register active. Now the coefficients in the RAG are all fully
pipelined. Now we need to take care of the different delays of the coefficients.
We basically have two options: we can add to the output of all coefficients
an additional delay, that we achieve the same delay for all coefficients (three
in the case of the F6 filter) and then do not need to change the output
tap delay line structure; alternative we can use pipeline retiming, i.e., the
multiplier outputs need to be aligned in the tap delay line according to their
pipeline stages. This is a similar approach to that used in the direct FIR (see
Fig. 3.10, p. 182) by aligning the coefficient adder location according to the

3.4 Constant Coefficient FIR Design 189

Table 3.5. F6 pipeline options for the RAG algorithm.

Pipeline LEs Fmax Cost
stages (MHz) LEs/Fmax
0 225 165.95 1.36

1 234 223.61 1.05
max 252 353.86 0.71
Gain% 0/max -11 114 92

delay, and is shown in Fig. 3.12. Note in order to build only two input adder,
we had to use an additional register to delay the x13 coefficient.

For this half-band filter design the pipeline retiming synthesis results
shown in Table 3.5 reveal that the design now runs about twice as fast with a
moderate (11%) increase in LEs when compared with the unpipelined design.
Since the overall cost measured by LEs/Fmax is improved, fully pipelined de-
signs should be preferred.

3.4.3 FIR Filters Using Distributed Arithmetic

A completely different FIR architecture is based on the distributed arithmetic
(DA) concept introduced in Sect. 2.7.1 (p. 115). In contrast to a conventional
sum-of-products architecture, in distributed arithmetic we always compute
the sum of products of a specific bit b over all coefficients in one step. This is
computed using a small table and an accumulator with a shifter. To illustrate,
consider the three-coefficient FIR with coefficients {2, 3,1} found in Example
2.24 (p. 117).

Example 3.7: Distributed Arithmetic Filter as State Machine

A distributed arithmetic filter can be built in VHDL code® using the following
state machine description:

5 The equivalent Verilog code dafsm.v for this example can be found in Ap-
pendix A on page 683. Synthesis results are shown in Appendix B on page
731.

x[n]

9x[n-3]| —44x[n-3]

x[n]
Multiplir]
block
346x[n-3] 208x[n-2] L —44x[n-2]L 9x[n—1]1

| 1=

Multiplier
block

Fig. 3.12. F6 RAG filter with pipeline retiming.

190 3. Finite Impulse Response (FIR) Digital Filters

LIBRARY ieee; -- Using predefined packages
USE ieee.std_logic_1164.ALL;
USE ieee.std_logic_arith.ALL;

ENTITY dafsm IS ~ =—=—=— > Interface
PORT (clk, reset : IN STD_LOGIC;
x0_in, x1_in, x2_in :
IN STD_LOGIC_VECTOR(2 DOWNTO O);
lut : OUT INTEGER RANGE 0 TO 7;
y : OUT INTEGER RANGE O TO 63);
END dafsm;

ARCHITECTURE fpga OF dafsm IS

COMPONENT case3 -- User-defined component
PORT (table_in : IN STD_LOGIC_VECTOR(2 DOWNTO O);
table_out : OUT INTEGER RANGE O TO 6);
END COMPONENT;

TYPE STATE_TYPE IS (s0, sl1);
SIGNAL state : STATE_TYPE;
SIGNAL x0, x1, x2, table_in
: STD_LOGIC_VECTOR(2 DOWNTO 0);
SIGNAL table_out : INTEGER RANGE O TO 7;
BEGIN

table_in(0) <= x0(0);
table_in(1) <= x1(0);
table_in(2) <= x2(0);

PROCESS (reset, clk) = -—-———- > DA in behavioral style
VARIABLE p : INTEGER RANGE O TO 63;-- temp. register
VARIABLE count : INTEGER RANGE O TO 3; -- counts shifts

BEGIN
IF reset = ’1’ THEN -- asynchronous reset

state <= s0;
ELSIF rising_edge(clk) THEN
CASE state IS

WHEN sO => -- Initialization step
state <= sl;
count := 0;
p :=0;

x0 <= x0O_in;
x1 <= x1_in;
X2 <= x2_in;

WHEN s1 => -- Processing step
IF count = 3 THEN -- Is sum of product done ?
y <= p; -- Output of result to y and
state <= s0; -- start next sum of product
ELSE

p :=p / 2 + table_out * 4;
x0(0) <= x0(1);
x0(1) <= x0(2);

3.4 Constant Coefficient FIR Design 191

x1(0) <= x1(1);
x1(1) <= x1(2);
x2(0) <= x2(1);
x2(1) <= x2(2);

count := count + 1;
state <= si;
END IF;
END CASE;
END IF;

END PROCESS;

LC_TableO: case3
PORT MAP(table_in => table_in, table_out => table_out);
lut <= table_out; -- Extra test signal

END fpga;
The LE table” defined as CASE components was generated with the utility
program dagen3e.exe. The output is show below.

LIBRARY ieee;

USE ieee.std_logic_1164.ALL;

USE ieee.std_logic_arith.ALL;

ENTITY case3 IS
PORT (table_in : IN STD_LOGIC_VECTOR(2 DOWNTO O);
table_out : OUT INTEGER RANGE O TO 6);
END case3;

ARCHITECTURE LEs OF case3 IS
BEGIN

-- This is the DA CASE table for
—- the 3 coefficients: 2, 3, 1
-- automatically generated with dagen.exe -- DO NOT EDIT!

PROCESS (table_in)
BEGIN
CASE table_in IS

WHEN "O0O00" => table_out <= O0;
WHEN "001" => table_out <= 2;
WHEN "O010" => table_out <= 3;
WHEN "O11" => table_out <= 5;
WHEN "100" => table_out <= 1;
WHEN "101" => table_out <= 3;
WHEN "110" => table_out <= 4;
WHEN "111" => table_out <= 6;
WHEN OTHERS => table_out <= 0;
END CASE;
END PROCESS;
END LEs;

" The equivalent Verilog code case3.v for this example can be found in Ap-
pendix A on page 684. Synthesis results are shown in Appendix B on page
731.

192 3. Finite Impulse Response (FIR) Digital Filters

(Bostmer =

Master Time Bar. | Ops «| +| Painter | 1353 ns Intervak | 31353 ns Start: | 50.0ns End 0ps

ps 400 ns 800ns 1200ns 160,0ns 2000 ns 2400ns 2800ns 3200 n%
Walue at i i i i i i i

Name o |

ck BO T 1 T T
eset 51 1
state 50
count UD T 7 z 3
W2in B il
Wn B0 (il
Wiin B 001 [}
W20 50
€0 50 1
W0 S0 I
ut ug T b4 5 7 e i
3 50 T = | Ta
v 50 i e 18
|

Fig. 3.13. Simulation of the 3-tap FIR filter with input {1, 3,7}.

As suggested in Chap. 2, a shift/accumulator is used, which shifts only one
position to the right for each step, instead of shifting & positions to the
left. The simulation results, shown in Fig. 3.13, report the correct result
(y = 18) for an input sequence {1, 3, 7}. The simulation shows the clk, reset,
state, and count signals followed by the three input signals. Next the three
bits selected from the input word to address the prestored DA LUT are
shown. The LUT output values {6,4, 1} are then weighted and accumulated
to generate the final output value y = 18 = 6 +4 x 2+ 1 x 4. The design
uses 32 LEs, no embedded multiplier, no M4K block, and has a 420.17 MHz
Registered Performance.

By defining the distributed arithmetic table with a CASE statement, the
synthesizer will use logic cells to implement the LUT. This will result in a fast
and efficient design only if the tables are small. For large tables, alternative
means must be found. In this case, we may use the 4-kbit embedded memory
blocks (M4Ks), which (as discussed in Chap. 1) can be configured as 29 x
9,219 x 4,2 x 2 or 22 x 1 tables. These design paths are discussed in more
detail in the following.

Distributed Arithmetic Using Logic Cells

The DA implementation of an FIR filter is particularly attractive for low-
order cases due to LUT address space limitations (e.g., L < 4). It should be
remembered, however, that FIR filters are linear filters. This implies that the
outputs of a collection of low-order filters can be added together to define
the output of a high-order FIR, as shown in Fig. 2.37 (p. 122). Based on the
LEs found in a Cyclone II device, namely 24 x 1-bit tables, a DA table for
four coefficients can be implemented. The number of necessary LEs increases
exponentially with order. Typically, the number of LEs is much higher than
the number of M4Ks. For example, an EP2C35 contains 35K LEs but only
105 M4Ks. Also, M4Ks can be used to efficiently implement RAMs and FIFOs

3.4 Constant Coefficient FIR Design 193

— Pipelined
o—= No pipeline

Number of LEs

Number of bits b

Fig. 3.14. Size comparison of synthesis results for different coding using the CASE
statement with b input and outputs.

and other high-valued functions. It is therefore sometimes desirable to use
M4Ks economically. On the other side if the design is implemented using
larger tables with a 2° x b CASE statement, inefficient designs can result. The
pipelined 2 x 9 table implemented with one VHDL CASE statement only,
for example, required over 100 LEs. Figure 3.14 shows the number of LEs
necessary for tables having three to nine bits inputs and outputs using the
CASE statement generated with utility program dagen3e.exe.

Another alternative is the design using 4-input LUT only via a CASE state-
ments, and implementing table with more than 4 inputs with an additional
(binary tree) multiplexer using 2 — 1 multiplexer only. In this model it is
straightforward to add additional pipeline registers to the modular design.
For maximum speed, a register must be introduced behind each LUT and
2 — 1 multiplexer. This will, most likely, yield a higher LE count® compared
to the minimization of the one large LUT. The following example illustrates
the structure of a 5-input table.

Example 3.8: Five-input DA Table

The utility program dagen3e. exe accepts filter length and coefficients, and re-
turns the necessary PROCESS statements for the 4-input CASE table followed by
a multiplexer. The VHDL output for an arbitrary set of coefficients, namely
{1, 3, 5, 7, 9}, is given? in the following listing:

LIBRARY ieee;

USE ieee.std_logic_1164.ALL;

USE ieee.std_logic_arith.ALL;

ENTITY casebp IS
PORT (clk : IN STD_LOGIC;
table_in : IN STD_LOGIC_VECTOR(4 DOWNTO 0);

8 A 16:1 multiplexer and is reported with 11 LEs while we need 15 LEs or 2:1 MUX
in a tree structure, see Cyclone II Device Handbook p. 5-15 [21].

® The equivalent Verilog code casebp.v for this example can be found in Ap-
pendix A on page 685. Synthesis results are shown in Appendix B on page 731.

194 3. Finite Impulse Response (FIR) Digital Filters

table_out : OUT INTEGER RANGE O TO 25);

END casebp;
ARCHITECTURE LEs OF casebp IS
SIGNAL 1sbs

SIGNAL msbsO
SIGNAL tableOout00, tableOoutO1

: STD_LOGIC_VECTOR(3 DOWNTO O);
: STD_LOGIC_VECTOR(1 DOWNTO O);
INTEGER RANGE O TO 25;

BEGIN

-— These are the distributed arithmetic CASE tables for
-- the 5 coefficients: 1, 3, 5, 7, 9
-- automatically generated with dagen.exe -- DO NOT EDIT!

PROCESS
BEGIN
WAIT UNTIL clk = ’1’;

1sbs(0) <=
1sbs(1) <=
1sbs(2) <=
1sbs(3) <=

table_in(0);
table_in(1);
table_in(2);
table_in(3);

msbs0(0) <= table_in(4);
msbs0(1) <= msbs0(0);
END PROCESS;

PROCESS -- This is the final DA MPX stage.

BEGIN -- Automatically generated with dagen.exe
WAIT UNTIL clk = ’1°;
CASE msbs0(1) IS

WHEN ’0’° => table_out <= tableOout00;
WHEN °’1° => table_out <= tableOoutO1;
WHEN OTHERS => table_out <= 0;

END CASE;

END PROCESS;

PROCESS -- This is the DA CASE table 00 out of 1.
BEGIN -- Automatically generated with dagen.exe
WAIT UNTIL clk = ’1°;
CASE 1sbs IS

WHEN "0000" => tableOout00 <= O0;
WHEN "0001" => tableOout00 <= 1;
WHEN "0010" => tableOout00 <= 3;
WHEN "0011" => tableOout00 <= 4;
WHEN "0100" => tableOout00 <= 5;
WHEN "O0101" => tableOout00 <= 6;
WHEN "0110" => tableOout00 <= 8;
WHEN "O0111" => tableOout00 <= 9;
WHEN "1000" => tableOout00 <= 7;
WHEN "1001" => tableOout00 <= 8;
WHEN "1010" => tableOout00 <= 10;
WHEN "1011" => tableOout00 <= 11;
WHEN "1100" => tableOout00 <= 12;

WHEN
WHEN
WHEN
WHEN

"1101"

l|1110|l

ll1111|l
OTHERS

END CASE;
END PROCESS;

PROCESS
BEGIN

WHEN
WHEN
WHEN
WHEN
WHEN
WHEN
WHEN
WHEN
WHEN
WHEN
WHEN
WHEN
WHEN
WHEN
WHEN
WHEN
WHEN

>
=>
=>

3.4 Constant Coefficient FIR Design 195

=>

tableOout00
tableOout00
tableOout00

tableOout00 <=

<=
<=
<=

13;

15;

16;
0;

-- This is the DA CASE table 01 out of 1.
-- Automatically generated with dagen.exe
WAIT UNTIL clk
CASE 1sbs IS

"0000"
"0001"
"0010"
"0011"
"0100"
"0101"
"0110"
"o111"
"1000"
"1001"
"1010"
"1011"
"1100"
"1101"
"1110"
"1111"
OTHERS

END CASE;
END PROCESS;

END LEs;

)1);

=>

tableOoutO1
tableOout01
tableOoutO1
tableOout01
tableOoutO1
tableOout01
tableOoutO1
tableOout01
tableOoutO1
tableOout01
tableOoutO1
tableOout01
tableOoutO1
tableOout01
tableOoutO1
tableOout01

tableOout01 <=

9;

10;
12;
13;
14;
15;
17;
18;
16;
17;
19;
20;
21;
22;
24;
25;

0;

The five inputs produce two CASE tables and a 2 — 1 bus multiplexer. The
multiplexer may also be realized with a component instantiation using the
LPM function busmux. The program dagen3e.exe writes a VHDL file with
the name caseX.vhd, where X is the filter length that is also the input bit
width. The file caseXp.vhd is the same table, except with additional pipeline
registers. The component can be used directly in a state machine design or
in an unrolled filter structure.

Referring to Fig. 3.14, it can be seen that the structured VHDL code
improves on the number of required LEs. Figure 3.15 compares the different
design methods in terms of speed. We notice that the busmux generated
VHDL code allows to run all pipelined designs with the maximum speed of
464 MHz outperforming the M4Ks by nearly a factor two. Without pipeline
stages the synthesis tools is capable to reduce the LE count essentially, but
Registered Performance is also reduced. Note that still a busmux design is
used. The synthesis tool is not able to optimize one (large) case statement in
the same way. Although we get a high Registered Performance using eight
pipeline stages for a 2% x 9 table with 464 MHz the design may now be too
large for some applications. We may also consider the partitioning technique

196 3. Finite Impulse Response (FIR) Digital Filters

500
o
N 400F]
= — Pipelined
c . .
S 3001 1 |¢—=% No pipeline
e ¥ * ¥ * %
g — |*—* M4K
£ 200F 3
o
h =
[0}
& 1001 1
0 ‘ ‘ ‘ ‘ ‘
3 4 5 6 7 8 9

Number of bits b

Fig. 3.15. Speed comparison for different coding styles using the CASE statement.

(Exercise 3.6, p. 210), shown in Fig. 2.36 (p. 121), or implementation with
an M4K, discussed next.

DA Using Embedded Array Blocks

As mentioned in the last section, it is not economical to use the 4-kbit M4Ks
for a short FIR filter, mainly because the number of available M4Ks is limited.
Also, the maximum registered speed of an M4K is 260 MHz, and an LE
table implementation may be faster. The following example shows the DA
implementation using a component instantiation of the M4K.

Example 3.9: Distributed Arithmetic Filter using M4Ks

The CASE table from the last example can be replaced by a M4K ROM. The
ROM table is defined by file darom3.mif. The default input and output con-
figuration of the M4K is given by "REGISTERED." If it is not desirable to have
a registered configuration, set LPM ADDRESS CONTROL => "UNREGISTERED" or
LPM OUTDATA => "UNREGISTERED." Note that in Cyclone II at least one input
must be registered. With Flex devices we can also build asynchronous, i.e.,
non registered M2K ROMs. The VHDL code'® for the DA state machine
design is shown below:

LIBRARY lpm;

USE 1pm.lpm_components.ALL;

LIBRARY ieee; -- Using predefined packages
USE ieee.std_logic_1164.ALL;
USE jeee.std_logic_arith.ALL;

USE ieee.std_logic_unsigned.ALL; -- Contains conversion
-- VECTOR -> INTEGER
ENTITY darom IS ~ -—————- > Interface

PORT (clk, reset : IN STD_LOGIC;
x_in0, x_inl, x_in2

10 The equivalent Verilog code darom.v for this example can be found in Ap-
pendix A on page 687. Synthesis results are shown in Appendix B on page
731.

3.4 Constant Coefficient FIR Design 197

IN STD_LOGIC_VECTOR(2 DOWNTO 0);
lut : OUT INTEGER RANGE 0 TO 7;
y : OUT INTEGER RANGE O TO 63);
END darom;

ARCHITECTURE fpga OF darom IS
TYPE STATE_TYPE IS (s0, sl);
SIGNAL state : STATE_TYPE;
SIGNAL x0, x1, x2, table_in, mem
: STD_LOGIC_VECTOR(2 DOWNTO 0);
SIGNAL table_out : INTEGER RANGE 0 TO 7;
BEGIN

table_in(0) <= x0(0);
table_in(1) <= x1(0);
table_in(2) <= x2(0);

PROCESS (reset, clk) = -—-———- > DA in behavioral style
VARIABLE p : INTEGER RANGE O TO 63; --Temp. register
VARIABLE count : INTEGER RANGE O TO 3;

BEGIN -- Counts the shifts
IF reset = ’1’ THEN -- Asynchronous reset

state <= s0;
ELSIF rising_edge(clk) THEN
CASE state IS

WHEN sO => -- Initialization step
state <= sl;
count := 0;
p :=0;

x0 <= x_in0;
x1 <= x_inl;
x2 <= x_in2;
WHEN s1 => -- Processing step
IF count = 3 THEN -- Is sum of product done ?
y <= p / 2 + table_out * 4; -- Output of result
state <= s0; -- to y andstart next
ELSE -- sum of product
p :=p / 2 + table_out * 4;
x0(0) <= x0(1);
x0(1) <= x0(2);
x1(0) <= x1(1);
x1(1) <= x1(2);
x2(0) <= x2(1);
x2(1) <= x2(2);

count := count + 1;
state <= si;
END IF;
END CASE;
END IF;

END PROCESS;

rom_1: lpm_rom
GENERIC MAP (LPM_WIDTH => 3,

198 3. Finite Impulse Response (FIR) Digital Filters

LPM_WIDTHAD => 3,
LPM_OUTDATA => "REGISTERED",
LPM_ADDRESS_CONTROL => "UNREGISTERED",
LPM_FILE => "darom3.mif")

PORT MAP(outclock => clk,address => table_in,q => mem);

table_out <= CONV_INTEGER (mem);
lut <= table_out;

END fpga;
Compared with Example 3.7 (p. 189), we now have a component instan-
tiation of the LPM_ROM. Because there is a need to convert between the
STD_LOGIC_VECTOR output of the ROM and the integer, we have used the
package std_logic_unsigned from the library ieee. The latter contains the
CONV_INTEGER function for unsigned STD_LOGIC_VECTOR.

The include file darom3.mif was generated with the program dagen3e.exe.
The file has the following contents:

—- This is the DA MIF table for the 3 coefficients: 2, 3, 1

-- automatically generated with dagen3e.exe

-— DO NOT EDIT!

WIDTH = 3; DEPTH = 8; ADDRESS_RADIX = uns; DATA_RADIX = uns;

CONTENT BEGI

0 :

~NOoO O WN
AP W O1TWN O

END;

The design runs at 218.29 MHz and uses 27 LEs, and one M4K memory block
(more precisely, 24 bits of an M4K).

The simulation results, shown in Fig. 3.16, are very similar to the dafsm sim-
ulation shown in Fig. 3.13 (p, 3.13). Due to the mandatory 1 clock cycle delay
of the synchronous M4K memory block we notice a delay by one clock cycle
in the lut output signal; the result (y = 18) for the input sequence {1,3, 7},
however, is still correct. The simulation shows the clk, reset, state, and
count signals followed by the three input signals. Next the three bits selected
from the input word to address the prestored DA LUT are shown. The LUT
output values {6,4,1} are then weighted and accumulated to generate the
final output value y =18 =6 +4 x 2+ 1 x 4.

But M4Ks have only a single address decoder and if we implement a 23 x 3
table, a complete M4K would be consumed unnecessarily, and it can not be
used elsewhere. For longer filters, however, the use of M4Ks is attractive
because:

o M4Ks have registered throughput at a constant 260 MHz, and
e Routing effort is reduced

3.4 Constant Coefficient FIR Design 199

Midaromvwt =10l x|
Master Time Bar: | Ops || Pirter| 287.02 ns Interval: | 287.02 s Start:| End:

" ps 40.0ns #0.0ns 1200ns 1600 ns 2000ns 2400 ns 280.0ns 200ns |

e slue at : I d d i d i d
Ops EIDS

| clk. B0 [| [[| J
| et 51 1 |
| sate sO
|| count U0 i 1 H 3
[win2 BN 111
i wiml BON [1ik]
[wind B O01 lij}
@] swm so
@] wm so 1
] wm oso 0000000 1
= un] 3 [} 1
|| ¥ uo i L]
ol I—]

Fig. 3.16. Simulation of the 3-tap FIR M4K-based DA filter with input {1, 3, 7}.

Signed DA FIR Filter

A signed DA filter will require a signed accumulator. The following example
shows the VHDL code for the previously studied three-coefficient example,

2.25 from Chap. 2 (p. 119).
Example 3.10: Signed DA FIR Filter

For the signed DA filter, an additional state is required. See the variable
count! to process the sign bit.
LIBRARY ieee; -- Using predefined packages

USE ieee.std_logic_1164.ALL;
USE jeee.std_logic_arith.ALL;

ENTITY dasign IS ~ —==——- > Interface

PORT (clk, reset : IN STD_LOGIC;
x_in0, x_inl, x_in2

IN STD_LOGIC_VECTOR(3 DOWNTO 0);

lut : out INTEGER RANGE -2 TO 4;
y : OUT INTEGER RANGE -64 TO 63);
END dasign;

ARCHITECTURE fpga OF dasign IS

COMPONENT case3s -- User-defined components
PORT (table_in : IN STD_LOGIC_VECTOR(2 DOWNTO 0);
table_out : OUT INTEGER RANGE -2 TO 4);
END COMPONENT;

TYPE STATE_TYPE IS (s0, sl);

SIGNAL state . STATE_TYPE;

SIGNAL table_in : STD_LOGIC_VECTOR(2 DOWNTO 0);
SIGNAL x0, x1, x2 : STD_LOGIC_VECTOR(3 DOWNTO O0);
SIGNAL table_out : INTEGER RANGE -2 TO 4;

1 The equivalent Verilog code case3s.v for this example can be found in Ap-
pendix A on page 688. Synthesis results are shown in Appendix B on page 731.

200

BEGIN

table_in(0) <=
table_in(1) <=
table_in(2) <=

x0(0);
x1(0);
x2(0);

PROCESS (reset, clk)

3. Finite Impulse Response (FIR) Digital Filters

> DA in behavioral style

VARIABLE p : INTEGER RANGE -64 TO 63:= 0; -- Temp. reg.

VARIABLE count : INTEGER RANGE O TO 4; -- Counts the
BEGIN -- shifts

IF reset = ’1’ THEN —-- asynchronous reset

state <= s0;

ELSIF rising_edge(clk) THEN

CASE state IS

WHEN sO => -- Initialization step
state <= sli;
count := 0;
p :=0;
x0 <= x_in0;
x1 <= x_inl;
x2 <= x_in2;
WHEN s1 => -- Processing step
IF count = 4 THEN -- Is sum of product done?
y <= p; -- Output of result to y and
state <= s0; -- start next sum of product
ELSE
IF count = 3 THEN -- Subtract for last
P :=p / 2 - table_out * 8; -- accumulator step
ELSE
p :=p/ 2 + table_out * 8; -- Accumulation for
END IF; -- all other steps
FOR k IN O TO 2 LOOP -- Shift bits
x0(k) <= x0(k+1);
x1(k) <= x1(k+1);
x2(k) <= x2(k+1);
END LOOP;
count := count + 1;
state <= sli;
END IF;
END CASE;
END IF;
END PROCESS;
LC_TableO: case3s
PORT MAP(table_in => table_in, table_out => table_out);
lut <= table_out; -- Extra test signal
END fpga;

The LE table (component case3s.vhd) was generated using the program
dagen3e.exe. The VHDL code'? is shown below:

12 The equivalent Verilog code case3s.v for this example can be found in Ap-
pendix A on page 690. Synthesis results are shown in Appendix B on page 731.

3.4 Constant Coefficient FIR Design 201

-I0lx

Ops 4| | Pointer: | 3552 ns Intervat:| 3592 s Start | End

Master Time Bar: |

Mame

Yaheat |0 40prs

800 ns 1200 ns 160.0ns 2000 s 2400 ns 280,0ns 320,0ns 3600 ns ‘

0ps 0 ps
1

ok
reset
state
count
x_in2
w_int
«_inll
«2[0]
1[0
«0[0]
lut
[
v

I I L LT [E—

51 1

50

uo i T z 3 T
B O oI

B 1101 T

B 0001]

50

50

50 I |

50 a ;4 H e i ¥] ¥ 3

50 T 76 a0 b T
s0 T ¥ 7

I»]

Fig. 3.17. Simulation of the 3-tap signed FIR filter with input {1, —3,7}.

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
USE ieee.std_logic_arith.ALL;

ENTITY case3s IS
PORT (table_in : IN STD_LOGIC_VECTOR(2 DOWNTO 0);
table_out : OUT INTEGER RANGE -2 TO 4);

END case3s;

ARCHITECTURE LEs OF case3s IS

BEGIN

-- This is the DA CASE table for
-— the 3 coefficients: -2, 3, 1
-- automatically generated with dagen.exe -- DO NOT EDIT!

PROCESS (table_in)

BEGIN

CASE table_in IS

WHEN
WHEN
WHEN
WHEN
WHEN
WHEN
WHEN
WHEN
WHEN

"000" => table_out <= O0;
"oo1" => table_out <= -2;
"010" => table_out <= 3;
"o11" => table_out <= 1;
"100" => table_out <= 1;
"101" => table_out <= -1;
"110" => table_out <= 4;
111" => table_out <= 2;
OTHERS => table_out <=

END CASE;
END PROCESS;

END LEs;

Figure 3.17 shows the simulation for the input sequence {1, —3, 7}. The sim-
ulation shows the clk, reset, state, and count signals followed by the
four input signals. Next the three bits selected from the input word to ad-
dress the prestored DA LUT are shown. The LUT output values {2, 1,4, 3}
are then weighted and accumulated to generate the final output value y =

202 3. Finite Impulse Response (FIR) Digital Filters

Xol0] Pipeline register

AP e .

oo
o

o
of

/4

X_ing Xo[N-1]

+

X410]

LISy R l....--t.....-' lesunnsheneens
- E
> -

X_ing X, [N-1]

X,[0]

X_inp X,[N-1]

=+

X;10]

v

ROM || ROM || ROM || ROM

X_in3 X3[N-1]

Fig. 3.18. Parallel implementation of a distributed arithmetic FIR filter.

2+1x2+4x4—3x8 = —4. The design uses 56 LEs, no embedded multiplier,
and has a 236.91 MHz Registered Performance.

To accelerate a DA filter, unrolled loops can be used. The input is applied
sample by sample (one word at a time), in a bit-parallel form. In this case,
for each bit of input a separate table is required. While the table size varies
(input bit width equals number of filter taps), the contents of the tables are
the same. The obvious advantage is a reduction of VHDL code size, if we
use a component definition for the LE tables, as previously presented. To
demonstrate, the unrolling of the 3-coefficients, 4-bit input example, previ-
ously considered, is developed below.

Example 3.11: Loop Unrolling for DA FIR Filter

In a typical FIR application, the input values are processed in word parallel
form (i.e., see Fig. 3.18). The following VHDL code?® illustrates the unrolled
DA code, according to Fig. 3.18.

LIBRARY ieee; -- Using predefined packages

USE ieee.std_logic_1164.ALL;

3 The equivalent Verilog code dapara.v for this example can be found in Ap-
pendix A on page 691. Synthesis results are shown in Appendix B on page 731.

3.4 Constant Coefficient FIR Design 203

USE ieee.std_logic_arith.ALL;

ENTITY dapara IS ~ —-==——- > Interface
PORT (clk : IN STD_LOGIC;
x_in : IN STD_LOGIC_VECTOR(3 DOWNTO 0);
y : OUT INTEGER RANGE -46 TO 44);
END dapara;

ARCHITECTURE fpga OF dapara IS
TYPE ARRAY4x3 IS ARRAY (0 TO 3)
OF STD_LOGIC_VECTOR(2 DOWNTO O);

SIGNAL x : ARRAY4x3;
TYPE IARRAY IS ARRAY (0O TO 3) OF INTEGER RANGE -2 TO 4;
SIGNAL h : TARRAY;
SIGNAL sO : INTEGER RANGE -6 TO 12;
SIGNAL s1 : INTEGER RANGE -10 TO 8;
SIGNAL tO, t1, t2, t3 : INTEGER RANGE -2 TO 4;
COMPONENT case3s

PORT (table_in : IN STD_LOGIC_VECTOR(2 DOWNTO 0);

table_out : OUT INTEGER RANGE -2 TO 4);

END COMPONENT;

BEGIN
PROCESS —===-- > DA in behavioral style
BEGIN
WAIT UNTIL clk = ’1°;
FOR 1 IN O TO 3 LOOP -- For all four vectors
FOR k IN O TO 1 LOOP -- shift all bits
x(1) (k) <= x(1)(k+1);
END LOOP;
END LOOP;
FOR k¥ IN O TO 3 LOOP -- Load x_in in the
x(k) (2) <= x_in(k); -- MSBs of the registers
END LOOP;

y <= h(0) + 2 * h(1) + 4 * h(2) - 8 * h(3);
-- Pipeline register and adder tree
-- t0 <= h(0); t1 <= h(1); t2 <= h(2); t3 <= h(3);
-— s0 <=t0 + 2 x tl; s1 <= t2 - 2 *x t3;
-- y <=0 + 4 % s1;
END PROCESS;

LC_Tables: FOR k IN O TO 3 GENERATE -- One table for each
LC_Table: case3s -- bit in x_in

PORT MAP(table_in => x(k), table_out => h(k));
END GENERATE;

END fpga;
The design uses four tables of size 2% x 4 and all tables have the same content
as the table in Example 3.10 (p. 199). Figure 3.19 shows the simulation for
the input sequence {1, —3, 7}. Because the input is applied serially (and bit-
parallel) the expected result —4;9 = 11111002¢ is computed at the 400-ns

interval.

204 3. Finite Impulse Response (FIR) Digital Filters

=10l
Master Time Bar Ops]| pointer | 289281 Inkeavak 26928 ns Stat End:
ps A00ns 800n: 1200ns 1600ns 2000ns 2400 2000n: 3200ms 3600ns 4000n: 440.0ns
N Value &l r G g : d g i i ;i i i
ame 0ps 0ps
f
| ok 80 J 1 J | I | [1 —
|| & win 80001 0007 X 1101 X ot X 0000
1| (0] B 000 (] i) 110 11 ¥ [1]] j
) @ 0 8000 000 00 b4 (] p
| @ 2 8000 i 100 X 10 b4 (L] N
|| @ 4= B 000] 00 X [l e (0]} i
| @y 50 U X i X 0 i E})
L4 L

Fig. 3.19. Simulation results for the parallel distributed arithmetic FIR filter.

The previous design requires no embedded multiplier, 33 LEs, no M4K
memory block, and runs at 214.96 MHz. An important advantage of the DA
concept, compared with the general-purpose MAC design, is that pipelining
is easy achieved. We can add additional pipeline registers to the table output
and at the adder-tree output with no cost. To compute y, we replace the line

y <= h(0) + 2 * h(1) + 4 * h(2) - 8 * h(3);

In a first step we only pipeline the adders. We use the signals s0 and s1 for
the pipelined adder within the PROCESS statement, i.e.,

s0 <= h(0) + 2 * h(1); s1 <= h(2) - 2 *x h(3);
y <= s0 + 4 x s1;

and the Registered Performance increase to 368.60 MHz, and about the
same number of LEs are used. For a fully pipeline version we also need to
store the case LUT output in registers; the partial VHDL code then becomes:

t0 <= h(0); t1 <= h(1); t2 <= h(2); t3 <= h(3);
sO <= t0 + 2 * tl; sl <= t2 - 2 *x t3;
y <= s0 + 4 x s1;

The size of the design increases to 47 LEs, because the registers of the LE
that hold the case tables can no longer be used for the x input shift register.
But the Registered Performance increases from 214.96 MHz to 420 MHz.

3.4.4 TP Core FIR Filter Design

Altera and Xilinx usually also offer with the full subscription an FIR filter
generator, since this is one of the most often used intellectual property (IP)
blocks. For an introduction to IP blocks see Sect. 1.4.4, p. 35.

FPGA vendors in general prefer distributed arithmetic (DA)-based FIR
filter generators since these designs are characterized by:

o fully pipelined architecture
e short compile time

3.4 Constant Coefficient FIR Design 205

JSTeT

3

3460 3459 C0f

Aboutthis Core 0t . ! . . I ' 11

o
g -44.0 44
-
g Coeflicients Original Value I Scaled Value Fixed PaintValue]
t S | Display Symbol 1 9.0 9.0 9 -|
E ———— 2 0.0 0.0 1]
S Step 1: 3 -44.0 -440 -44
Pa:ameterize s n.o 0o o
[77 502] 080 208.0 08
2 =) Set Up Simulation ﬁ EiEE fife fif =l
o -
i | SR e Fredueney Respanse | Tima R & Cosficient Valuas |

(a) (b)

Fig. 3.20. IP design of FIR (a) IP toolbench. (b) Coefficient specification.

e good resource estimation
e area results independent from the coefficient values, in contrast to the RAG
algorithm

DA-based filters do not require any coefficient optimization or the computa-
tion of a RAG graph, which may be time consuming when the coefficient set
is large. DA-based code generation including all VHDL code and testbenches
is done in a few seconds using the vendor’s FIR compilers [86].

Let us have a look at the FIR filter generation of an F6 filter from Good-
man and Carey [80] that we had discussed before, see Example 3.5, p. 184.
But this time we use the Altera FIR compiler [86] to build the filter. The
Altera FIR compiler MegaCore function generates FIR filters optimized for
Altera devices. Stratix and Cyclone II devices are supported but no ma-
ture devices from the APEX or Flex family. You can use the IP toolbench
MegaWizard design environment to specify a variety of filter architectures,
including fixed-coefficient, multicycle variable, and multirate filters. The FIR
compiler includes a coefficient generator, but can also load and use predefined
(for instance computed via MATLAB) coefficients from a file.

Example 3.12: F6 Half-band Filter IP Generation

To start the Altera FIR compiler we select the MegaWizard Plug-In Manager
under the Tools menu and the library selection window (see Fig. 1.23, p. 39)
will pop up. The FIR compiler can be found under DSP—Filters. You need
to specify a design name for the core and then proceed to the ToolBench.
We first parameterize the filter and, since we want to use the F6 coefficients,
we select Edit Coefficient Set and load the coefficient filter by selecting
Imported Coefficient Set. The coefficient file is a simple text file with
each line listing a single coefficient, starting with the first coefficient in the
first line. The coefficients can be integer or floating-point numbers, which
will then be quantized by the tool since only integer-coefficient filters can
be generated with the FIR compiler. The coefficients are shown in the im-
pulse response window as shown in Fig. 3.20b and can be modified if needed.

206 3. Finite Impulse Response (FIR) Digital Filters

After loading the coefficients we can then select the Structure to be fully
parallel, fully serial, multi-bit serial, or multicycle. We select Distributed
Arithmetic: Fully Parallel Filter. We set the input coefficient width to
8 bit and let the tool compute the output bitwidth based on the method
Actual Coefficients. We select Coefficient Scaling as None since our
integer coefficients should not be further quantized. The transfer function
in integer and floating-point should therefore be seen as matching lines, see
Fig. 3.21. The FIR compiler reports an estimated size of 312 LEs. We skip
step 2 from the toolbench since the design is small and we will use the com-
piled data to verify and simulate the design. We proceed with step 3 and
the generation of the VHDL code and all supporting files follows. These files
are listed in Table 3.6. We see that not only are the VHDL and Verilog files
generated along with their component files, but MATLAB (bit accurate) and
Quartus II (cycle accurate) test vectors are also provided to enable an easy
verification path. We then instantiate the FIR core in a wrapper file that also
includes registers for the input and output values. We then compile the HDL
code of the filter to enable a timing simulation and provide precise resource
data. The impulse response simulation of the F6 filter is shown in Figure
3.22. We see that two additional control signals rdy_to_1d and done have
been synthesized, although we did not ask for them.

The design from the Example 3.12 requires 426 LEs and runs at 362.84 MHz.
Without the wrapper file the LE count (404 LEs) is still slightly higher than
the estimation of 312 LEs. The overall cost metric measured as the quotient
LEs/Fmax is 1.17 and is better than RAG without pipelining, since the DA
is fully pipelined, as you can see from the large initial delay of the impulse
response. For an appropriate comparison we should compare the DA-based
design with the fully pipelined RAG design. The cost of the DA design is
higher than the fully pipelined RAG design, see Table 3.5, p. 189. But the
Registered Performance of the DA-based IP core is slightly higher than
the fully pipelined RAG design.

3.4.5 Comparison of DA- and RAG-Based FIR Filters

In the last section we followed a detailed case study of the F6 half-band RAG-
and DA-based FIR filter designs. The question now would be whether the
results were just one single (atypical) example or if the results in terms of
speed/size/cost are typical. In order to answer this question a set of larger
filters has been designed using VHDL for fully pipelined RAG (see Exercises
3.13-3.29, p. 212) and should be compared with the synthesis data using the
FIR core compiler from Altera that implements a fully parallel DA filter [86].
Table 3.7 shows the results for three half-band filters (F6, F8, and F9) from
Goodman and Carey [80], two from Samueli [84], and two from Lim and
Parker [85]. The first column shows the filter name, followed by the pipeline
stages used. No-pipeline and fully pipelined data are reported, but no one-
pipeline design data, as in Table 3.5 (p. 189). The third column shows the

3.4 Constant Coefficient FIR Design 207

ST
- Coeflcients Specification - (Low Fass Set (1)) ~Rate inicati
New Coeflicient Set | Ed i Coefiicient Set | Remove Coefiiient Set | |singte rate = Facto- |2 =]
Law Pass Set[1] | Flow Control |
: : ~Input Spech {
Plot Option |F\xsdJF|oaung Cosfiicients ~ | ™ Dark Backgraund
Mumber of Input Channels |1 -
Floating Coefl. Response Fied Coefl. Hesponse e 5 UL =L e
Signed Binary ;I
0d8 ‘\\ Input Bit Widih |8 b
. T
20 e Outaut
\\\ Full Resolution Bit'Widthis 18
0 5 Based on Method [Actual Coeficients =
60 AN Output Number Systerm
\/ \‘\ ’]Full Resolution LI
-80 \
Freguency 04 0z 03 0.4 05
Frequency Resy | Time Response & Coeflicient Values
Coefficients Scaling INune 'I

At

Device Farnily Cyclone Il - I~ Faorce Mon-Symmetric Structune) [[Reseures Estimates Throughput——————

Structure IDislrihuled Arithmetic : Fully Parallel Filter =l :::"cz:s Um;':m !”mzﬁ::ﬂ";f[be valid for
Fipeline Level 1 = M512 o Quiput data will be valid for
Data Storage Loic Cells »| wutiplier Implementation [Losie calls =] e zlockpericd
- Qutput data |5 updated
Coefiicient Storage |Logic Cells vl I” Caoeficients Reload [T Use Single Clack Multipliers every clock period
Based on Quartus 1142

’El Info: Force non-symmetric struciure is only ifco I reload is i’

Wyzming: "Cyclone II" device family does not support memory blocks “M512", “M-RAN".
Cancel | Finish |

Fig. 3.21. IP parametrization of FIR core according to the F6 Example 3.5, p. 184.

[Greeet =0 x|
Master Time B | Ops o] ¢ Peinter. | il Interval. Ops Stait | End.

o P5_ B00rs JEO0ns 00n: 3200ns A000nc 4800ns SE0One G400ns 7n: BO00ns AO0ns |

Name Ops [0Pe

|| ok 50 iipliipglipgiipgiipgiigiipgiipgigigipgigiigiigigiigigigiipgipgie!
=l £ 51
| | idy_to_ld B0
|2 | din 50 [S 1
|| doe BO I
= fiout 50 i R AN £ AR EDED EDaRETE AN SR
je—1 E

Fig. 3.22. FIR core timing simulation result.

filter length L. The next three columns show the synthesis data for the RAG-
based filters, namely LEs, Registered Performance and the cost (area X
delay) measured as the quotient LEs/Fmax. Columns 7-9 show the same three
values for the DA-based designs generated with Altera’s FIR compiler. For
each filter two rows are used to show the data for zero/no and fully pipelined
designs. Finally in the last rows the average value for zero- and fully pipelined
designs are given and, at the very end, a comparison of the gain/loss of RAG

208 3. Finite Impulse Response (FIR) Digital Filters

Table 3.6. IP files generation for FIR core.

File

Description

f6_core.vhd

f6_core_inst.vhd

f6_core.cmp
f6_core.inc
f6_core_bb.v

f6_core.bsf

f6_core_st.v

f6_core

_constraints.tcl

f6_core_mlab.m

f6_core_tb.m

f6_core.vec

f6_core.html

A MegaCore function variation file, which defines a
top-level VHDL description of the custom MegaCore
function

VHDL sample instantiation file

A VHDL component declaration for the MegaCore
function variation

An AHDL include declaration file for the MegaCore
function variation function

Verilog HDL black-box file for the MegaCore function

variation

Quartus IT symbol file to be used in the Quartus II
block diagram editor

Generated FIR filter netlist

This file contains the necessary constraints to

achieve FIR filter size and speed

This file provides a MATLAB simulation model for the
customized FIR filter

This file provides a MATLAB testbench for the cus-
tomized FIR filter

This file provides simulation test vectors to be used
simulating the customized FIR filter with the Quartus
1T software

The MegaCore function report file

zero- and fully pipelined and fully pipelined RAG compared with DA-based

designs are given.

It can be seen from Table 3.7, that

e Fully pipelined RAG filters enjoy size reductions averaging 71% compared

with DA-based designs.

e The fully pipelined RAG filter requires on average only 6% more LEs than

the RAG design without pipelining.

e The Register Performance of the DA-based FIR filters is on average 8%

higher than fully pipelined RAG designs.

e The overall cost, measured as LEs/Fmax, is on average 56% better for
RAG-based compared with DA-based designs when a fully pipeline ap-

proach is used.

It can also be seen from Table 3.7 that, without pipelining (pipe=0), the
DA-based approach gives better results. With a 6% increase in area, the cost

for RAG pipelining is quite reasonable.

Exercises 209

Table 3.7. Size, speed and cost comparison of DA and RAG algorithm.

RAG DA

Filter Pipe L | LEs Fmax Cost | LEs Fmax Cost
name stages (MHz) Flf:x (MHz) Flf;x
F6 0 11 225 165.95 1.36

max 234 353.86 0.71 396 33234 1.19
F8 0 15 | 326 135.85 2.40

max 360 323.42 1.11 570 340.72 1.67
F9 0 19 | 461 97.26 4.74

max 534 304.04 1.76 717 326.16 2.20
S1 0 25 | 460 130.63 3.52

max 492 296.65 1.66 | 985 356.51 2.76
L3 0 36 | 651 205.3 3.17

max 671 310.37 2.16 1406 321.3 4.38
S2 0 60 | 1672 129.97 12.86

max 1745 25291 6.90 | 2834 289.02 9.81
L2 0 63 | 1446 134.95 10.72

max 1531 265.53 5.77 | 2590 282.41 9.17
Mean 0 745 140.34 5.53
Mean max 793 296.60 2.86 | 1357 321.21 4.45
Gain% RAG-0/RAG-max RAG-max/DA

—6 111 93 71 -8 56

Exercises

Note: If you have no prior experience with the Quartus II software, refer
to the case study found in Sect. 1.4.3, p. 29. If not otherwise noted use the
EP2C35F672C6 from the Cyclone II family for the Quartus IT synthesis eval-
uations.

3.1: A filter has the following specification: sampling frequency 2kHz; passband
0-0.4 kHz, stopband 0.5-1 kHz; passband ripple, 3dB, and stopband ripple, 48 dB.
Use the MATLAB software and the “Interactive Lowpass Filter Design” demo from
the Signal Processing Toolbox for the filter design.

(al) Design a direct filter with a Kaiser window.

(a2) Determine the filter length and the absolute ripple in the passband.
(b1) Design an equiripple filter (use the functions remex or firpm).

(b2) Determine the filter length and the absolute ripple in the passband.

3.2: (a) Compute the RAG for a length-11 half-band filter F5 that has the nonzero
coefficients f[0] = 256, f[+1] = 150, f[£3] = —25, f[£5] = 3.
(b) What is the minimum output bit width of the filter, if the input bit width is 8
bits?
(c1) Write and compile (with the Quartus II compiler) the HDL code for the filter.
(c2) Simulate the filter with impulse and step responses.
(d) Write the VHDL code for the filter in distributed arithmetic, using the state
machine approach with the table realized as LPM_ROM.

210 3. Finite Impulse Response (FIR) Digital Filters

3.3: (a) Compute the RAG for length-11 half-band filter F7 that has the nonzero
coefficients f[0] = 512, f[£1] = 302, f[£3] = —53, f[£5] = T7.
(b) What is the minimum output bit width of the filter, if the input bit width is 8
bits?
(c1) Write and compile (with the Quartus II compiler) the VHDL code for the
filter.
(c2) Simulate the filter with impulse and step response.

3.4: Hartley [87] has introduced a concept to implement constant coefficient filters,
by exploiting common subexpressions across coefficients. For instance, the filter
L-1
yln] =Y alklz[n — &, (3.19)
k=0

with three coefficients a[k] = {480, —302, 31}. The CSD code of these three coeffi-
cients is given by

512 256 128 64 32 16 8 4 2 1

480 : 1 0 0 0 -1 0 0 0 O 0
—302 : 0 -1 0 -1 0 1 0 0 1 0
31: 0 0 0 0 1 0 0 0 0 -1

From the table we note that the pattern can be found four times. If we

1 0
0-1
therefore build the temporary variable h[n] = 2z[n] — z[n — 1], we can compute the
filter output with

y[n] = 256h[n] — 16h[n] — 32h[n — 1] + h[n — 1]. (3.20)

(a) Verify (3.20) by substituting h[n] = 2z[n] — z[n — 1].

(b) How many adders are required to yield the direct CSD implementation of (3.19)
and the implementation with subexpression sharing?

(c1) Implement the filter with subexpression sharing with Quartus II for 8-bit in-
puts.

(c2) Simulate the impulse response of the filter.

(c3) Determine the Registered Performance and the used resources (LEs, multi-
pliers, and M4Ks).

3.5: Use the subexpression method from Exercise 3.4 to implement a 4-tap filter
with the coefficients a[k] = {—1406, —1109, —894, 2072}.
(a) Find the CSD code and the subexpression representation for the most frequent
pattern.
(b) Substitute for the subexpression a 2 or —2, respectively. Apply the subexpres-
sion sharing one more time to the reduced set.
(c) Determine the temporary equations and check by substitution back into (3.19).
(d) How many adders are required to yield the direct CSD implementation of (3.19)
and the implementation with subexpression sharing?
(el) Implement the filter with subexpression sharing with Quartus II for 8-bit in-
puts.
(e2) Simulate the impulse response of the filter.
(e3) Determine the Registered Performance and the used resources (LEs, multi-
pliers, and M4Ks).

3.6: (al) Use the program dagen3e.exe to compile a DA table for the coefficients
{20, 24, 21, 100, 13, 11, 19, 7} using multiple CASE statements.

Exercises 211

Synthesize the design for maximum speed and determine the resources (LEs, mul-
tipliers, and M4Ks) and Registered Performance.

(a2) Simulate the design using power-of-two 2%.0 < k < 7 input values.

(b) Use the partitioning technique to implement the same table using two sets,
namely {20, 24, 21, 100} and {13, 11, 19, 7}, and an additional adder. Synthesize the
design for maximum speed and determine the size and Registered Performance.
(b2) Simulate the design using power-of-two 2%.0 < k < 7 input values.

(c) Compare the designs from (a) and (b).

3.7: Implement 8-bit input/output improved 4-tap {-1, 3.75, 3.75, -1} filter de-
signs according to the listing in Table 3.3, p. 181. For each filter write the HDL
code and determine the resources (LEs, multipliers, and M4Ks) and Registered
Performance.

(a) Synthesize fir_sym.vhd as the filter using symmetry.

(b) Synthesize fir_csd.vhd as the filter using CSD coding.

(c) Synthesize fir_tree.vhd as the filter using an adder tree.

(d) Synthesize fir_csd_sym.vhd as the filter using CSD coding and symmetry.
(e) Synthesize fir_csd_sym_tree.vhd as the filter using all three improvements.

3.8: (a) Write a short MATLAB program that plots the
(al) impulse response,
(a2) frequency response, and
(a2) the pole/zero plot for the half-band filter F3, see Table 5.3, p. 274.
Hint: Use the MATLAB functions: filter, stem, freqz, zplane.
(b) What is the bit growth of the F3 filter? What is the total required output bit
width for an 8-bit input?
(c) Use the csd3e.exe program from the CD to determine the CSD code for the
coefficients.
(c) Use the ragopt.exe program from the CD to determine the reduced adder
graph (RAG) of the filter coefficients.

3.9: Repeat Exercise 3.8 for the CFIR filter of the GC4114 communication IC.
Try the WWW to download a datasheet if possible. The 31 filter coefficients are:
—23,-3,103, 137, —21, —230, —387, —235, 802, 1851, 81, —4372, —4774, 5134, 20 605,
28216, 20605, 5134, —4774, —4372, 81, 1851, 802, —235, —387, —230, —21, 137, 103,
~3, —23.

3.10: Download the datasheet for the GC4114 from the WWW. Use the results
from Exercise 3.9.
(a) Design the 31-tap symmetric CFIR compensation filter as CSD FIR filter in
transposed form (see Fig. 3.3, p. 167) for 8-bit input and an asynchronous reset.
Try to match the simulation shown in Fig. 3.23.
(b) For the device EP2C35F672C6 from the Cyclone II family determine the re-
sources (LEs, multipliers, and M4Ks) and the Registered Performance.

3.11: Download the datasheet for the GC4114 from the WWW. Use the results
from Exercise 3.9.
(a) Design the 31-tap symmetric CFIR compensation filter using distributed arith-
metic. Use the dagen3e.exe program from the CD to generate the HDL code for
the coefficients. Note you should use always groups of four coefficients each and add
the results in an adder tree.
(b) Design the DA FIR filter in the full parallel form (see Fig. 3.18, p. 202) for
8-bit input and an asynchronous reset. Take advantage of the coefficient symmetry.
Try to match the simulation shown in Fig. 3.24.

212 3. Finite Impulse Response (FIR) Digital Filters

B FIRCSD3L.wwf*

taster Time Bar:

o]] Peinter |

ps 100,0ns 2000 ns

2956 ns Interval Start: End

300.0ns 400.0ns 500.0ns 600.0ns 700.0ns 200.0ns 500.0ns
Value... = _ _ _ = = _

Ops

Name

chk S0

resst

E «in

51
S0

FICAEAE]

yout S0

Fig. 3.23. Testbench for the CSD FIR filter in Exercise 3.10.

(c) For the device EP2C35F672C6 from the Cyclone II family determine the re-
sources (LEs, multipliers, and M4Ks) and the Registered Performance.

=101 x|

Master Time Bar 1.26us

J_>| Fointer: | Ops

ps 1000ns 2000ns 3000ns 4000ns

Interval 125 us Start: End:

5000ns 6000ns 7000ns 800,0ns 500,0ns 1.0us 1. us 1l 3u4
Value =t i i i i i | i d

Name

125us

25us

clk

S0

reset
xin

S0
S0

CICAEIES

(=%

rout S 28216

4 | |

Fig. 3.24. Testbench for the DA-based FIR filter in Exercise 3.11.

3.12: Repeat Exercise 3.8 for the half-band filter F4, see Table 5.3, p. 274.
3.13: Repeat Exercise 3.8 for the half-band filter F5, see Table 5.3, p. 274.

3.14: Use the results from Exercise 3.13 and report the HDL code, resources (LEs,
multipliers, and M4Ks) and Registered Performance for the HDL design of the
F5 half-band HDL FIR filter as:

(a) an RAG filter without pipelining
(b) a fully pipelined RAG filter
(c) a DA fully pipelined filter using an FIR core generator

3.15: Repeat Exercise 3.8 for the half-band filter F6, see Table 5.3, p. 274.

3.16: Use the results from Exercise 3.15 and report the HDL code, resources (LEs,
multipliers, and M4Ks) and Registered Performance for the HDL design of the
F6 half-band HDL FIR filter as:

(a) an RAG filter without pipelining
(b) a fully pipelined RAG filter
(c) a DA fully pipelined filter using an FIR core generator

3.17: Repeat Exercise 3.8 for the half-band filter F7, see Table 5.3, p. 274.
3.18: Repeat Exercise 3.8 for the half-band filter F8, see Table 5.3, p. 274.
3.19: Use the results from Exercise 3.18 and report the HDL code, resources (LEs,

multipliers, and M4Ks) and Registered Performance for the HDL design of the
F8 half-band HDL FIR filter as:

Exercises 213

(a) an RAG filter without pipelining
(b) a fully pipelined RAG filter
(c) a DA fully pipelined filter using an FIR core generator

3.20: FIR features design. In this problem we want to compare the influence of
additional features like reset and enable for different device families. Use the re-
sults from Exercise 3.18 for the CSD code. For all following HDL F8 CSD designs
with 8-bit input determine the resources (LEs, multipliers, and M2Ks/M4Ks) and
Registered Performance. As the device use the EP2C35F672C6 from the Cyclone
II family and the EPF10K70RC240-4 from the Flex 10K family.

(a) Design the F8 CSD FIR filter in direct form (see Fig. 3.1, p. 166).

(b) Design the F8 CSD FIR filter in transposed form (see Fig. 3.3, p. 167).

(c) Add a synchronous reset to the transposed FIR from (b).

(d) Add an asynchronous reset to the transposed FIR from (b).

(e) Add a synchronous reset and enable to the transposed FIR from (b).

(f) Add an asynchronous reset and enable to the transposed FIR from (b).

(g) Tabulate your resources (LEs, multipliers, and M2Ks/M4Ks) and Registered
Performance results from (a)-(g). What conclusions can be drawn for Flex and
Cyclone II devices from the measurements?

3.21: Repeat Exercise 3.8 for the half-band filter F9, see Table 5.3, p. 274.

3.22: Use the results from Exercise 3.21 and report the HDL code, resources (LEs,
multipliers, and M4Ks) and Registered Performance for the HDL design of the
F9 half-band HDL FIR filter as:

(a) an RAG filter without pipelining
(b) a fully pipelined RAG filter
(c) a DA fully pipelined filter using an FIR core generator

3.23: Repeat Exercise 3.8 for the Samueli filter S1 [84]. The 25 filter coefficients
are: 1,3,1,8,7, 10,20, 1,40, 34, 56, 184, 246, 184, 56, 34, 40, 1, 20, 10,7, 8,1, 3, 1.

3.24: Use the results from Exercise 3.23 and report the HDL code, resources (LEs,
multipliers, and M4Ks) and Registered Performance for the HDL design of the
Samueli filter S1 FIR filter as:

(a) an RAG filter without pipelining
(b) a fully pipelined RAG filter
(c) a DA fully pipelined filter using an FIR core generator

3.25: Repeat Exercise 3.8 for the Samueli filter S2 [84]. The 60 filter coefficients are:
31,28, 29,22,8,-17,-59, —116, —188, —268, —352, —432, —500, —532, —529, —464,
—336, —129, 158, 526, 964, 1472, 2008, 2576, 3136, 3648, 4110, 4478, 4737, 4868,
4868, 4737, 4478, 4110, 3648, 3136, 2576, 2008, 1472, 964, 526, 158, —129, —336,
—464, —529, —532, —500, —432, —352, —268, —188, —116, —59, —17, 8, 22, 29, 28,
31.

3.26: Use the results from Exercise 3.25 and report the HDL code, resources (LEs,
multipliers, and M2Ks/M4Ks) and Registered Performance for the HDL design
of the Samueli filter S2 FIR filter as:

(a) an RAG filter without pipelining.
(b) a fully pipelined RAG filter.
(c) a DA fully pipelined filter using an FIR core generator.

3.27: Repeat Exercise 3.8 for the Lim and Parker L2 filter [85]. The 63 filter coef-
ficients are: 3,6,8,7,1,—9,—19, —24, —20, —5, 15, 31, 33, 16, —15, —46, —59, —42, 4,

214 3. Finite Impulse Response (FIR) Digital Filters

61, 99, 92, 29, —71,-164, —195, —119, 74, 351, 642, 862, 944, 862, 642, 351, 74,
—-119, -195, —164, —71, 29, 92, 99, 61, 4, —42,-59, —46, —15, 16, 33, 31, 15, -5,
—20, —24, -19, -9, 1, 7, 8§, 6, 3.

3.28: Use the results from Exercise 3.27 and report the HDL code, resources (LEs,
multipliers, and M4Ks) and Registered Performance for the HDL design of the
Lim and Parker L2 filter FIR filter as:

(a) an RAG filter without pipelining
(b) a fully pipelined RAG filter
(c) a DA fully pipelined filter using an FIR core generator

3.29: Repeat Exercise 3.8 for the Lim and Parker L3 filter [85]. The 36 filter coef-
ficients are: 10,1, —8, —14, —14, —3, 10, 20, 24, 9,—18, —40, —48, —20,36, 120, 192,
240, 240, 192, 120, 36, —20, —48, —40, —18, 9, 24, 20, 10, —3, —14, —14, —8, 1, 10.

3.30: Use the results from Exercise 3.29 and report the HDL code, resources (LEs,
multipliers, and M4Ks) and Registered Performance for the HDL design of the
Lim and Parker filter L3 FIR filter as:

(a) an RAG filter without pipelining
(b) a fully pipelined RAG filter
(c) a DA fully pipelined filter using an FIR core generator

4. Infinite Impulse Response (IIR) Digital
Filters

Introduction

In Chap. 3 we introduced the FIR filter. The most important properties that
make the FIR attractive (4) or unattractive (—) for selective applications
include:

+ FIR linear-phase performance is easily achieved.

+ Multiband filters are possible.

+ The Kaiser window method allows iterative-free design.

+ FIRs have a simple structure for decimators and interpolators (see
Chap. 5).

+ Nonrecursive filters are always stable and have no limit cycles.

+ It is easy to get high-speed, pipelined designs.

+ FIRs typically have low coefficient and arithmetic roundoff error budgets,
and well-defined quantization noise.

— Recursive FIR filters may be unstable because of imperfect pole/zero
annihilation.

— The sophisticated Parks—McClellan algorithms must be available for
minimax filter design.

— High filter length requires high implementation effort.

Compared to an FIR filter, an IIR filter can often be much more efficient
in terms of attaining certain performance characteristics with a given filter
order. This is because the IIR filter incorporates feedback and is capable
of realizing both zeros and poles of a system transfer function, whereas the
FIR filter is an all-zero filter. In this chapter, the fundamentals of IIR fil-
ter design will be developed. The traditional approach to the design of IIR
filters involves the transformation of an analog filter, with defined feedback
specifications, into the digital domain. This is a reasonable approach, mainly
because the art of designing analog filters is highly advanced, and many stan-
dard tables are available, i.e., [88]. We will review the four most important
classes of these analog prototype filters in this chapter, namely Butterworth,
Chebyshev I and I, and elliptic filters.

The IIR will be shown to overcome many of the deficiencies of the FIR,
but to have some less desirable properties as well. The general desired (+)
and undesired (—) properties of an IIR filter are:

216 4. Infinite Impulse Response (IIR) Digital Filters

x[n] Z_l ——e—» y[n]

a=3/4

Fig. 4.1. First-order IIR filter used as lossy integrator.

+ Standard design using an analog prototype filter is well understood.

+ Highly selective filters can be realized with low-order designs that can
run at high speeds.

+ Design using tables and a pocket calculator is possible.

+ For the same tolerance scheme, filters are short, compared with FIR
filters.

+ Closed-loop design algorithms can be used.

— Nonlinear-phase response is typical, i.e., it is difficult to get linear-phase
response. (Using an allpass filter for phase compensation results in twice
the complexity.)

— Limit cycles may occur for integer implementation.

— Multiband design is difficult; only low, high, or bandpass filters are
designed.

— Feedback can introduce instabilities. (Most often, the mirror pole to the
unit circle can be used to produce the same magnitude response, and the
filter will be stable.)

— It is more difficult to get high-speed, pipelined designs

To demonstrate the possible benefits of using IIR filters, we will discuss
a first-order IIR filter example.

Example 4.1: Lossy Integrator I

One of the basic tasks of a filter may be to smooth a noisy signal. Assume
that a signal z[n] is received in the presence of wideband zero-mean random
noise. Mathematically, an integrator could be used to suppress the effects of
the noise. If the average value of the input signal is to be preserved over a
finite time interval, a lossy integrator is often used to process the signal with
additive noise. Figure 4.1 displays a simple first-order lossy integrator that
satisfies the discrete-time difference equation:

yln+1] = Syln] + aln. (4.1)

As we can see from the impulse response in Fig. 4.2a, the same functionality
of the first-order lossy integrator can be achieved with a 15-tap FIR filter.
The step response to the lossy integrator is shown in Fig. 4.2b.

4. Infinite Impulse Response (IIR) Digital Filters 217

(a) (b)
1000 400 —G0T
o) 0]
350 ®
©
800]
® 300 ¢
0]
600] 250 o
= 200
400 150
100
200]
TT 50
0 : T??@@@ o
5 0 5 10 15 5 0 5 10 15
n n

Fig. 4.2. Simulation of lossy integrator with a = 3/4. (a) Impulse response for
z[n] = 10004[n]. (b) Step response for z[n] = 1000n].

The following VHDL code! shows a possible implementation of this IIR filter.
PACKAGE n_bit_int IS -- User-defined type
SUBTYPE BITS15 IS INTEGER RANGE -2%%14 TO 2%x14-1;
END n_bit_int;

LIBRARY work;
USE work.n_bit_int.ALL;

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
USE ieee.std_logic_arith.ALL;

ENTITY iir IS

PORT (x_in : IN BITS15; -- Input
y_out : OUT BITS15; -- Result
clk : IN STD_LOGIC);

END iir;

ARCHITECTURE fpga OF iir IS
SIGNAL x, y : BITS15 := 0;
BEGIN

PROCESS -- Use FF for input and recursive part
BEGIN

WAIT UNTIL clk = ’1’;

x <= x_in;

y <=x+y/4+y/ 2

! The equivalent Verilog code iir.v for this example can be found in Appendix A
on page 692. Synthesis results are shown in Appendix B on page 731.

218 4. Infinite Impulse Response (IIR) Digital Filters

B iir.vwf =10 x|
Master Time Bar | Ops +| »| Pointer: | %5215 m Intervak | 6215 m Stat| End|

i yale at ps B0fns 1600ns 2400ps 3200ns 4000ns 4000ns 5600ns G400ns 7200ns O000ns BO00ns 60,0 nsl

ps
H

| = | 3 BO]
|| @ sin 51000 7000 i
| Byon 50 1__¥7000 EFi] 178 7z 12X 3 K83
[E L]

Fig. 4.3. Impulse response for Quartus II simulation of the lossy integrator.

end process;

y_out <= y; -- Connect y to output pins

END fpga;
Registers have been implemented using a WAIT statement inside a PROCESS
block, while the multiplication and addition is implemented using CSD code.
The design uses 62LEs, no embedded multiplier, and has a 160.69 MHz
Registered Performance, if synthesized with the Speed option. The response
of the filter to an impulse of amplitude 1000, shown in Fig. 4.3, agrees with
the MATLAB simulated results presented in Fig. 4.2a.

An alternative design approach using a “standard logic vector” data type
and LPM_ADD_SUB megafunctions is discussed in Exercise 4.6 (p. 241). This
second approach will produce longer VHDL code but will have the benefit of
direct control, at the bit level, over the sign extension and multiplier.

4.1 TIR Theory

A nonrecursive filter incorporates, as the name implies, no feedback. The
impulse response of such a filter is finite, i.e., it is an FIR filter. A recursive
filter, on the other hand has feedback, and is expected, in general, to have
an infinite impulse response, i.e., to be an IIR filter. Figure 4.4a shows filters
with separate recursive and nonrecursive parts. A canonical filter is produced
if these recursive and nonrecursive parts are merged together, as shown in
Fig. 4.4b. The transfer function of the filter from Fig. 4.4 can be written as:

LU
Fz) = 22— (4.2)
1— > all]z~

=1

The difference equation for such a system yields:

y[n] = b x[n =1+ Z yln —1]. (4.3)

1=0 =1

4.1 IIR Theory 219

Recursive part

b[L—Z] b[L-1] //_/\

o> y[n]

Fig. 4.4. Filter with feedback.

Comparing this with the difference equation for the FIR filter (3.2) on p. 166,
we find that the difference equation for recursive systems depends not only
on the L previous values of the input sequence x[n], but also on the L — 1
previous values of y[n].

If we compute poles and zeros of F(z), we see that the nonrecursive part,
i.e., the numerator of F'(z), produces the zeros pg;, while the denominator of
F(z) produces the poles peo;-

For the transfer function, the pole/zero plot can be used to look up the
most important properties of the filter. If we substitute z = €7 in the
z-domain transfer function, we can construct the Fourier transfer function

L-2 L—2
[Tro—e“" expGd_8) []w
! 1=0

F(w) = |F ()]’ = =0 - (4.4)

L-2 L—2
H Poct — €T exp(3) " an) H uy
]

=0 =0

by graphical means. This is shown in Fig. 4.5, for a specific amplitude (i.e.,
gain) and phase value. The gain at a specific frequency wy is the quotient of
the zero vectors v; and the pole vectors u;. These vectors start at a specific

220

4. Infinite Impulse Response (IIR) Digital Filters

zero or pole, respectively, and end at the frequency point, e/“°”, of interest.
The phase gain for the example from Fig. 4.5 becomes 8(wo) = By + 31 — ap.

z=exp(ju/T) Im 7—plane

Re

Pole

Zero

Fig. 4.5. Computation of transfer function using the pole/zero plot. Amplitude
gain = wou1 /vo, phase gain = By + 51 — apo.

Using the connection between the transfer function in the Fourier domain

and the pole/zero plot, we can already deduce several properties:

1)

2)

3)

4)

5)

A zero on the unit circle py = e/“°T (with no annihilating pole) produces
a zero in the transfer function in the Fourier domain at the frequency wy.
A pole on the unit circle po = €T (and no annihilating zero) produces
an infinite gain in the transfer function in the Fourier domain at the
frequency wg.

A stable filter with all poles inside the unit circle can have any type of
input signal.

A real filter has single poles and zeros on the real axis, while complex
poles and zeros appear always in pairs, i.e., if ag + ja; is a pole or zero,
ap — ja; must also be a pole or zero.

A linear-phase (i.e., constant group delay) filter has all poles and zeros
symmetric to the unit circle or at z = 0.

If we combine observations 3 and 5, we find that, for a stable linear-phase
system, all zeros must be symmetric to the unit circle and only poles at z = 0

are

permitted.
An IIR filter (with poles z # 0) can therefore be only approximately

linear-phase. To achieve this approximation a well-known principle from ana-

log

filter design is used: an allpass has a unit gain, and introduces a nonzero

4.2 TIR Coefficient Computation 221

phase gain, which is used to achieve linearization in the frequency range of
interest, i.e., the passband.

4.2 TIR Coefficient Computation

In classical IIR design, a digital filter is designed that approximates an ideal
filter. The ideal digital filter model specifications are mathematically con-
verted into a set of specifications from an analog filter model using the bilinear
z-transform given by:
z—1
S= i1 (4.5)

A classic analog Butterworth, Chebyshev, or elliptic model can be synthe-
sized from these specifications, and is then mapped into a digital IIR using
this bilinear z-transform.

An analog Butterworth filter has a magnitude-squared frequency response
given by:

F)f? = — (46)

The poles of |F(w)|? are distributed along a circular arc at locations sepa-
rated by m/N radians. More specifically, the transfer function is N times dif-
ferentiable at w = 0. This results in a locally smooth transfer function around
0Hz. An example of a Butterworth filter model is shown in Fig. 4.6(upper).
Note that the tolerance scheme for this design is the same as for the Kaiser
window and equiripple design shown in Fig. 3.7 (p. 176).

An analog Chebysheu filter of Type I or II is defined in terms of a Cheby-
shev polynomial Vi (w) = cos(N cos(w)), which forces the filter poles to reside
on an ellipse. The magnitude-squared frequency response of a Type I filter is
represented by:

1

Ws

|F(w)[? (4.7)

An example of a typical Type I magnitude frequency and impulse response
is shown in Fig. 4.7(upper). Note the ripple in the passband, and smooth
stopband behavior.

The Type II magnitude-squared frequency response is modeled as:

F)f? = : - (48)

1+ <52V]3 (wi)l)

222 4. Infinite Impulse Response (IIR) Digital Filters

(a) (b) (c)
10
25
0 X
X
-10 x
20
20 . X
S 30 2 £ §
L S
—40 15 >;<<<
-0.5 %
-50 X
_60 10 X
-70
0 1000 2000 0 200 400 600 800
fin Hz fin Hz
(a) (b)
10
0 50
-10
40
-20
3 S 30 £
30 g E
-40 20
-50 -0.5
_60 ; ; 10
-70 -1
0 1000 2000 0 200 400 600 800
fin Hz fin Hz

Fig. 4.6. Filter design with MATLAB toolbox. (upper) Butterworth filter and
(lower) elliptic Filter.

(a) Transfer function. (b) Group delay of passband. (c¢) Pole/zero plot. (x = pole;
o = zero).

An example of a typical Type II magnitude frequency and impulse re-
sponse is shown in Fig. 4.7(lower). Note that in this case a smooth passband
results, and the stopband now exhibits ripple behavior.

An analog elliptic prototype filter is defined in terms of the solution to
the Jacobian elliptic function, Uy (w). The magnitude-squared frequency re-
sponse is modeled as:

1

1+ 202 (i)_l. .

|F(w)|* =

The magnitude-squared and impulse response of a typical elliptic filter
is shown in Fig. 4.6(lower). Observe that the elliptic filter exhibits ripple in
both the passband and stopband.

If we compare the four different IIR filter implementations, we find that
a Butterworth filter has order 19, a Chebyshev has order 8, while the elliptic
design has order 6, for the same tolerance scheme shown in Fig. 3.8 (p. 177).

4.2 TIR Coefficient Computation 223

@ (b) (c)
10 X
0 40
-10
-20 s 30
S 30 g
L S
40 20
-50
_60 10
-70 - -
0 1000 2000 0 200 400 600 800 -1 -05 0 0.5 1
fin Hz fin Hz Re
(a) (b) (c)
10 12 1
X
0 N
-10 10 05
X
20 .8 y
S 30 2 E o0
pr 3 x
40 6
X
-50 -0.5
4 x
-60
X
-70 -1
0 1000 2000 0 200 400 600 800 -1 -05 0 0.5 1
fin Hz fin Hz Re

Fig. 4.7. Chebyshev filter design with MATLAB toolbox. Chebyshev I (upper)
and Chebyshev II (lower).

(a) Transfer function. (b) Group delay of passband. (¢) Pole/zero plot (x = pole;
o = zero).

If we compare Figs. 4.6 and 4.7, we find that for the filter with shorter order
the ripple increases, and the group delay becomes highly nonlinear. A good
compromise is most often the Chebyshev Type II filter with medium order,
a flat passband, and tolerable group delay.

4.2.1 Summary of Important ITR Design Attributes

In the previous section, classic IIR types were presented. Each model provides
the designer with tradeoff choices. The attributes of classic IIR types are
summarized as follows:

e Butterworth: Maximally flat passband, flat stopband, wide transition
band

e Chebyshev I: Equiripple passband, flat stopband, moderate transition
band

e Chebyshev II: Flat passband, equiripple stopband, moderate transition
band

224 4. Infinite Impulse Response (IIR) Digital Filters

x[n] e

b[L—l]; ; b[L—Z]; ;

Z—l

a[L-1] ﬁ a[L-2] ﬁ Multiplier
block

A

R
-t

Fig. 4.8. Direct I form IIR filter using multiplier blocks.

e Elliptic: Equiripple passband, equiripple stopband, narrow transition
band

For a given set of filter requirement, the following observations generally
hold:

e Filter order
— Lowest: Elliptic
— Medium: Chebyshev I or 1T
— Highest: Butterworth
e Passband characteristics
— Equiripple: Elliptic, Chebyshev I
— Flat: Butterworth, Chebyshev 11
e Stopband characteristics
— Equiripple: Elliptic, Chebyshev II
— Flat: Butterworth, Chebyshev 1
e Transition band characteristics
— Narrowest: Elliptic
— Medium: Chebyshev I+11
— Widest: Butterworth

4.3 IIR Filter Implementation

Obtaining an IIR transfer function is generally considered to be a straightfor-
ward exercise, especially if design software like MATLAB is used. IIR filters
can be developed in the context of many architectures. The most important
structures are summarized as follows:

4.3 IIR Filter Implementation 225

x[n]

Z—l

a[l] a[Z]/\ a[L-1]
. >

block

7 b[L—2]§; b[L—3]\/

-

Z

-1

y[n]
Z_l —>é—>—>é—>

Fig. 4.9. Direct II form IIR filter using multiplier blocks.

(a)

x[n]

(b)

x[n]—= F(2) F(z) [- E(z) P yin]
Y \ \
F (2) Fz) | oo F(2)
aéi—)—» ‘‘‘‘‘‘‘ —»é—» y[n]

Fig. 4.10. (a) Cascade 1mplementat10n F(z) =

Zk 1Fk

mentation F(z

(see Fig. 4.10Db).
e BiQuad implementation of a typical second-order section found in basic
cascade or parallel designs (see Fig. 4.11)
e Normal [89], i.e., cascade of first- or second-order state variable systems
(see Fig. 4.10a)

Direct I form (see Fig. 4.8)
Direct IT form (see Fig. 4.9)
Cascade of first- or second-order systems (see Fig. 4.10a)
Parallel implementation of first- or second-order systems

[T, P

). (b) Parallel imple-

226 4. Infinite Impulse Response (IIR) Digital Filters

7! 7!
—a[1] -a[2]
1/a[0]
x[n]
b[2] b[1] b[0]
y[n]
| -1 71

Fig. 4.11. Possible second-order section BiQuad with transfer function F(z) =
(b[0] + b[1]2 +b[2]272) /(a[0] + a[1]z™" + a[2]272).

Parallel normal, i.e., parallel first- or second-order state variable systems
(see Fig. 4.10b)

Continued fraction structures

Lattice filter (after Gray—Markel, see Fig. 4.12)

Wave digital implementation (after Fettweis [90])

General state space filter

Each architecture serves a unique purpose. Some of the general selection
rules are summarized below:

e Speed
— High: Direct I & 11
— Low: Wave
e Fixed-point arithmetic roundoff error sensitivity
— High: Direct I & II
— Low: Normal, Lattice
e Fixed-point coefficient roundoff error sensitivity
— High: Direct I & II
— Low: Parallel, Wave
e Special properties
— Orthogonal weight outputs: Lattice
— Optimized second-order sections: Normal
— Arbitrary IIR specification: State variable

With the help of software tools like MATLAB, the coefficients can easily be
converted from one architecture to another, as demonstrated by the following
example.

4.3 IIR Filter Implementation 227

x[n] e
a[0] a[l] a[N]K7
Section Section<= ~=—Section [
1 > 2 — -] N | o y[n]
- ~~ﬂ
: % bIk] :
1 1
1 1
1 1
1 1
1 1
1 1
1 1
' A -1 '
! ~-O— 7 [~ !
1 1

Fig. 4.12. Lattice filter.

Example 4.2: Butterworth Second-order System

Assume we wish to design a Butterworth filter (order N = 10, passband Fp =
0.3 Fs) realized by second-order systems. We can use the following MATLAB
code to generate the coefficients:

N=10;Fp=0.3;

[B,Al=butter (N,Fp)

[sos, gain]=tf2sos(B,A)
i.e., we first compute the Butterworth coefficient using the function butter(),
and then convert this filter coefficient using the “transfer function to second-
order section” function tf2sos to compute the BiQuad coefficients. We will
get the following results using MATLAB for the second-order sections:

b[0,9] bl b2,4] a[0,4] all,1] af2,i]
1.0000 21181 1.1220 1.0000 —0.6534 0.1117
1.0000 20703 1.0741 1.0000 —0.6831 0.1622
1.0000 1.9967 1.0004 1.0000 —0.7478 0.2722
1.0000 19277 09312 1.0000 —0.8598 0.4628
1.0000 1.8872 0.8907 1.0000 —1.0435 0.7753

and the gain is 4.9614107°.

Figure 4.13 shows the transfer function, group delay, and the pole/zero plot
of the filter. Note that all zeros are near zp; = —1, which can also be seen
from the numerator coefficients of the second-order systems. Note also the
rounding error in b[1,:] = 2 and b[0, ¢] = b[2,¢] = 1.

228 4. Infinite Impulse Response (IIR) Digital Filters

(@ (b)
10
14
0
-10 12
-20 10
3 3
I_SO % 8
4
0 6
-50
4
-60
-70 2
0 0.5 1 0 02 04 06 08

2f/f 2f/f
s s

Fig. 4.13. Tenth-order Butterworth filter showing (a) magnitude, (b) phase, and
(c) group delay response.

Table 4.1. Data for eighth-order elliptic filter by Crochiere and Oppenheim [91]
sorted according the costs M x W.

Type Word- Mults Adds Delays Cost
length W M M xW

Wave 11.35 12 31 10 136
Cascade 11.33 13 16 8 147
Parallel 10.12 18 16 8 182
Lattice 13.97 17 32 8 238
Direct T 20.86 16 16 16 334
Direct 11 20.86 16 16 8 334
Cont.-frac 22.61 18 16 8 408

4.3.1 Finite Wordlength Effects

Crochiere and Oppenheim [91] have shown that the coefficient wordlength
required for a digital filter is closely related to the coefficient sensitivities.
Implementation of the same IIR filter can therefore lead to a wide range of
required wordlengths. To illustrate some of the dynamics of this problem,
consider an eighth-order elliptic filter analyzed by Crochiere and Oppenheim
[91]. The resulting eighth-order transfer function was implemented with a
Wave, Cascade, Parallel, Lattice, Direct I and II, and Continuous Fraction
architecture. The estimated coeflicient wordlength to meet a specific maximal
passband error criterion was conservatively estimated as shown in the second
column of Table 4.1. As a result, it can be seen that the Direct form needs
more wordlength than the Wave or Parallel structure. This has led to the
conclusion that a Wave structure gives the best complexity (M W) in terms
of the bit-width (W) multiplier product (M), as can be seen from column six
of Table 4.1.

4.3 IIR Filter Implementation 229

In the context of FIR filters (see Chap. 3), the reduced adder graph (RAG)
technique was introduced in order to simplify the design of a block of several
multipliers [92, 93]. Dempster and Macleod have evaluated the eighth-order
elliptic filter from above, in the context of RAG multiplier implementation
strategies. A comparison is presented in Table 4.2. The second column dis-
plays the multiplier block size. For a Direct II architecture, two multiplier
blocks, of size 9 and 7, are required. For a Wave architecture, no two coef-
ficients have the same input, and, as a result, no multiplier blocks can be
developed. Instead, eleven individual multipliers must be implemented. The
third column displays the number of adders/subtractors B for a canonical
signed digit (CSD) design required to implement the multiplier blocks. Col-
umn four shows the same result for single-optimized multiplier adder graphs
(MAG) [94]. Column five shows the result for the reduced adder graph. Col-
umn six shows the overall adder/wordwidth product for a RAG design. Table
4.2 shows that Cascade and Parallel forms give comparable or better results,
compared with Wave digital filters, because the multiplier block size is an
essential criterion when using the RAG algorithms. Delays have not been
considered for the FPGA design, because all the logic cells have an associ-
ated flip-flop.

4.3.2 Optimization of the Filter Gain Factor

In general, we derive the IIR integer coefficients from floating-point filter coef-
ficients by first normalizing to the maximum coefficient, and then multiplying
with the desired gain factor, i.e., bit-width 27°"*d(W) However, most often it
is more efficient to select the gain factor within a range, 2" ... 2IW1. There
will be essentially no change in the transfer function, because the coefficients
must be rounded anyway, after multiplying by the gain factor. If we apply,
for instance, this search in the range 21! ... 2[WT for the cascade filter in
the Crochiere and Oppenheim design example from above (gain used in Table
4.2 was 2L11:331=1 — 1024), we get the data reported in Table 4.3.

Table 4.2. Data for eighth-order elliptic filter implemented using CSD, MAG, and
RAG strategies [92].

Type Block CSD MAG RAG
size B B B W(B+A)

Cascade 4x3,2x1 26 26 24 453
Parallel 11x9,4%x2/1x1 31 30 29 455
Wave 11x1 58 63 22 602
Lattice 1x9,8x1 33 31 29 852
Direct I 1x 16 103 83 36 1085
Direct 11 1x9,1x7 103 83 41 1189

Cont.-frac 18 x1 118 117 88 2351

230 4. Infinite Impulse Response (IIR) Digital Filters

Table 4.3. Variation of the gain factor to minimize filter complexity of the cascade
filter.

CSD MAG RAG

Optimal gain 1122 1121 1121
adders for optimal gain 23 21 18
adders for gain = 1024 26 26 24
Improvement 12% 19% 25%

We note, from the comparison shown in Table 4.3 a substantial improve-
ment in the number of adders required to implement the multiplier. Although
the optimal gain factor for MAG and RAG in this case is the same, it can be
different.

4.4 Fast IIR Filter

In Chap. 3, FIR filter Registered Performance was improved using pipelin-
ing (see Table 3.3, p. 181). In the case of FIR filters, pipelining can be achieved
at essentially no cost. Pipelining IIR filters, however, is more sophisticated
and is certainly not free. Simply introducing pipeline registers for all adders
will, especially in the feedback path, very likely change the pole locations
and therefore the transfer function of the IIR filter. However strategies that
do not change the transfer function and still allow a higher throughput have
been reported in the literature. The reported methods that look promising
to improve IIR filter throughput are:

Look-ahead interleaving in the time domain [95]
Clustered look-ahead pole/zero assignment [96, 97)
Scattered look-ahead pole/zero assignment [95, 98]
ITR decimation filter design [99]

Parallel processing [100]

RNS implementation [39, Sect. 4.2][49]

The first five methods are based on filter architecture or signal flow tech-
niques, and the last is based on computer arithmetic (see Chap. 2). These
techniques will be demonstrated with examples. To simplify the VHDL rep-
resentation of each case, only a first-order IIR filter will be considered, but
the same ideas can be applied to higher-order IIR filters and can be found in
the literature references.

4.4.1 Time-domain Interleaving

Consider the differential equation of a first-order IIR system, namely

4.4 Fast IIR Filter 231

X[n]

ab=3/4\ / b=1

> 7 Z + s—> y[n]

Fig. 4.14. Lossy integrator with look-ahead arithmetic.

y[n + 1] = ay[n] + bz[n]. (4.10)

The output of the first-order system, namely y[n + 1], can be computed
using a look-ahead methodology by substituting y[n + 1] into the differential
equation for y[n + 2]. That is

y[n +2] = ay[n + 1] + bz[n + 1] = a’*y[n] + abx[n] + bz[n +1]. (4.11)

The equivalent system is shown in Fig. 4.14.
This concept can be generalized by applying the look-ahead transform for
(S — 1) steps, resulting in:

5-1
y[n + 8] = a®y[n] + Z a*brn+ S —1—kl. (4.12)
k=0

(m)

It can be seen that the term () defines an FIR filter having coefficients
{b,ab,a?b,...,a° 1}, that can be pipelined using the pipelining techniques
presented in Chap. 3 (i.e., pipelined multiplier and pipelined adder trees).
The recursive part of (4.12) can now also be implemented with an S-stage
pipelined multiplier for the coefficient a. We will demonstrate the look-ahead
design with the following example.

Example 4.3: Lossy Integrator IT

Consider again the lossy integrator from Example 4.1 (p. 216), but now with
look-ahead. Figure 4.14 shows the look-ahead lossy integrator, which is a
combination of a nonrecursive part (i.e., FIR filter for x), and a recursive
part with delay 2 and coefficient 9/16.

232

4. Infinite Impulse Response (IIR) Digital Filters

ylr+2 = Syln+ 1]+ o+ 1] = 5 Cylnl +afn]) + 2l + 1]
_ 196y[n] + im[n] +afn+ 1], (4.13)
y[n] = 196y[n 2]+ ix[n — 2]+ z[n —1] (4.14)

(4.15)

The VHDL code? shown below, implements the IIR filter in look-ahead form.

PACKAGE n_bit_int IS -- User-defined type
SUBTYPE BITS15 IS INTEGER RANGE -2%%14 TO 2%*14-1;
END n_bit_int;

LIBRARY work;
USE work.n_bit_int.ALL;

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
USE ieee.std_logic_arith.ALL;

ENTITY iir_pipe IS

PORT (x_in : IN BITS15; -- Input
y_out : OUT BITS15; -- Result
clk : IN STD_LOGIC);

END iir_pipe;

ARCHITECTURE fpga OF iir_pipe IS
SIGNAL x, x3, sx, y, y9 : BITS15 := 0;

BEGIN
PROCESS -- Use FFs for input, output and pipeline stages
BEGIN

WAIT UNTIL clk = ’1°;
X <= x_in;

x3 <=x/2+x/ 4 -- Compute x*3/4
sx <= x + x3; -- Sum of x element i.e. output FIR part
y9 <=y / 2+ y / 16; -- Compute y*9/16
y <= sx + y9; —-- Compute output

END PROCESS;
y_out <=y ; -- Connect register y to output pins

END fpga;

The pipelined adder and multiplier in this example are implemented in two
steps. In the first stage, % y[n] is computed. In the second stage, z[n + 1] +
3z[n] and [y[n] are added. The design uses 124 LEs, no embedded multiplier
and has a 207.08 MHz Registered Performance. The response of the filter
to an impulse of amplitude 1000 is shown in Fig. 4.15.

2 The equivalent Verilog code iir pipe.v for this example can be found in Ap-
pendix A on page 692. Synthesis results are shown in Appendix B on page 731.

4.4 Fast IIR Filter 233

Il

Master Time Bar: Ops 4| ¥| Pointer: ‘ 7678 ns Intenvak | I7E T8 ns Start| End:

ps 200ns 1600ns 2400ns 3200ns 4000ns 4B00ns SEOOns E400ns 7200ns 8000ns 2800ns S60.0ns
Value at 0 T i i i i d i i i i i d
ps ps
i i

= T 'y Iy Yy Yy Yy Yy Uy Y Sy T Y 6 0 B
e

o

1

Mame

s.n 51000 f 1000 ¥ 1]

Hyow 50 i YTC00 ¥ 760 ¥ 562§ 421 § T16 ¥ 236 § 177 § 132 ¥ 95 ¥ 74 ¥ 55 % 61 ¥ 30 { 22 % 16 § 12 ¥ 3
|

Fig. 4.15. VHDL simulation of impulse response of the look-ahead lossy integrator.

Comparing the look-ahead scheme with the 62 LEs and 160.69 MHz solution
reported in Example 4.1 (p. 216), we find that look-ahead pipelining requires
many more resources, but attains a speed-up of about 30%. The comparison of
the two filter’s response to the impulse with amplitude 1000 shown in Fig. 4.3
(p. 218) and Fig. 4.15 reveals that the look-ahead scheme has an additional
overall delay, and that the quantization effect differs by a +2 amount between
the two methodologies.

An alternative design approach, using a standard logic vector data type
and LPM_ADD_SUB megafunctions, is discussed in Exercise 4.7 (p. 241). The
second approach will produce longer VHDL code, but will have the benefit
of direct control at the bit level of the sign extension and multiplier.

4.4.2 Clustered and Scattered Look-Ahead Pipelining

Clustered and scattered look-ahead pipelining schemes add self-canceling
poles and zeros to the design to facilitate pipelining of the recursive portion
of the filter. In the clustered method, additional pole/zeros are introduced in
such a way that in the denominator of the transfer function the coefficients for
271,272, ..., 2751 become zero. The following example shows clustering
for a second-order filter.

Example 4.4: Clustering Method

A second-order transfer function is assumed to have a pole at 1/2 and 3/4
and a transfer function given by:

1 1
() = T T35 403757~ (1—05:-1)(1 - 0.75:-1)" (416)
Adding a canceling pole/zero at z = —1.25 results in a new transfer function
1+1.25271
Fz) = +1.252 (4.17)

T 1—1.187522 4+ 0.46882—3"
The recursive part of the filter can now be implemented with an additional

pipeline stage. 4.4
g

The problem with clustering is that the cancelled pole/zero pair may lie
outside the unit circle, as is the case in the previous example (i.e., zoo =

234

=~

Infinite Impulse Response (IIR) Digital Filters

(a) (b)

1 1

o
0.5 0.5
E o E o
-0.5 -0.5

le)
-1 -1

-1 -05 0 0.5 1 -1 -0.5 0 0.5 1
Re Re

e

-1 -0.5 0 0.5
Re Re

Fig. 4.16. Pole/zero plot for scattered look-ahead first-order IIR filter.

(a) Fi(z) = (1 +az™h). (b) Fa(z) = 1 +a?272 (c) F5(2) = 1/(1 —a’z™").

(@) F(z) =[] Fr(z) = 1+ az (1 +a*272)/(1 —a*2"*) = 1/(1 —az™1).
k

—1.25). This introduces instability into the design if the pole/zero annihi-
lating is not perfect. In general, a second-order system with poles at 71,73
and with one extra canceling pair, has a pole location at —(r; + r2), which
lies outside the unit circle for |ry + 73] > 1. Soderstrand et al. [97], have
described a stable clustering method, which in general introduces more than
one canceling pole/zero pair.

The scattered look-ahead approach does not introduce stability problems.
It introduces (S — 1) canceling pole/zero pairs located at z, = pe/™/S | for
an original filter with a pole located at p. The denominator of the transfer
function has, as a result, only zero coeflicients associated with the terms

20,25,2_25, etc.

Example 4.5: Scattered Look-Ahead Method

Consider implementing a second-order system having poles located at zoo1 =
0.5 and zoo2 = 0.75 with two additional pipeline stages. A second-order trans-
fer function of a filter with poles at 1/2 and 3/4 has the transfer function

4.4 Fast IIR Filter 235

1 1
T 1-1.252"1 40375272~ (1 —0.5271)(1 —0.75271)"

Note that in general a pole/zero pair at p and p* results in a transfer function
of

F(z) (4.18)

(L—pz A -p2) =1—(p+p)z +rr 22

and in particular with p = r X exp(j2n/3) it follows that

(1—pz A —p 2" =1 —2rcos(2n/3)z" " + 7122772
=1+4rz 72272
The scattered look-ahead introduces two additional pipeline stages by adding
pole/zero pairs at 0.5¢*927/3 and 0.75e27/3, Adding a canceling pole/zero
at this location results in

1
1—1.25271 +0.375272
L 0.5z +0.2522)(1 + .75z~ + 0.562522)

(140.52=14+0.25272)(1 4+ .752~1 + 0.56252—2)

1+1.2527" + 1.1875272 + 0.46872 % + 0.14062~*

1 —0.5469z73 4 0.05272—6
512 + 6402 + 60822 4 2402 % 4 722~*

512 — 280z—3 + 272—6 ’

and the recursive part can be implemented with two additional pipeline

stages.

F(z) =

It is interesting to note that for a first-order IIR system, clustered and
scattered look-ahead methods result in the same pole/zero canceling pair
lying on a circle around the origin with angle differences 27/S. The nonre-
cursive part can be realized with a “power-of-two decomposition” according
to

(1+az D1 +a?2HA +a2) . (4.19)

Figure 4.16 shows such a pole/zero representation for a first-order section,
which enables an implementation with four pipeline stages in the recursive
part.

4.4.3 TIR Decimator Design

Martinez and Parks [99] have introduced, in the context of decimation filters
(see Chap. 5, p. 254), a filter design algorithm based on the minimax method.
The resulting transfer function satisfies

i b[l]z "

F(z) = N/5 : (4.20)
1— > aln]z—nS

n=0

236 4. Infinite Impulse Response (IIR) Digital Filters

(@)

14 1
12
1 05 K W\
08
0.6
04 -05
0.2
0 : — -1

0 0.2 0.4 0.6 0.8 1 -1 -0
O] Re

[F(w)|
Im
o

Fig. 4.17. (a) Transfer function, and (b) pole/zero distribution of a 37-order
Martinez—Parks IIR filter with S = 5.

That is, only every other S coefficient in the denominator is nonzero. In
this case, the recursive part (i.e., the denominator) can be pipelined with
S stages. It has been found that in the resulting pole/zero distribution, all
zeros are on the unit circle, as is usual for an elliptic filter, while the poles
lie on circles, whose main axes have a difference in angle of 27/S, as shown
in Fig. 4.17b.

4.4.4 Parallel Processing

In a parallel-processing filter implementation [100], P parallel IIR paths are
formed, each running at a 1/P input sampling rate. They are combined at the
output using a multiplexer, as shown in Fig. 4.18. Because a multiplexer, in
general, will be faster than a multiplier and/or adder, the parallel approach
will be faster. Furthermore, each path P has a factor of P more time to
compute its assigned output.

To illustrate, consider again a first-order system and P = 2. The look-
ahead scheme, as in (4.11)

y[n + 2] = ay[n + 1] + z[n + 1] = a®*y[n] + azx[n] + z[n + 1] (4.21)
is now split into even n = 2k and odd n = 2k — 1 output sequences, obtaining

y[2k + 2]=a’y[2k] + ax[2k] + z[2k + 1]

yln+2] = { yl2k + 1)=a2y[2k — 1] + az[2k — 1] + x[2k] ° (4.22)

where n, k € Z. The two equations are the basis for the following parallel IIR
filter FPGA implementation.

Example 4.6: Lossy Integrator III

4.4 Fast IIR Filter 237

x[n]

— |TDL = [IRp |——

Fig. 4.18. Parallel IIR implementation. The tapped delay lines (TDL) run with a
1/p input sampling rate.

Consider implementing a parallel lossy integrator, with a = 3/4, as an ex-
tension to the methods presented in Examples 4.1 (p. 216) and 4.3 (p. 231).
A two-channel parallel lossy integrator, which is a combination of two non-
recursive parts (i.e., an FIR filter for x), and two recursive parts with delay
2 and coefficient 9/16, is shown in Fig. 4.19. The VHDL code® shown below
implements the design.

PACKAGE n_bit_int IS -- User-defined type

SUBTYPE BITS15 IS INTEGER RANGE -2%x14 TO 2x%%14-1;
END n_bit_int;

LIBRARY work;
USE work.n_bit_int.ALL;

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
USE ieee.std_logic_arith.ALL;

ENTITY iir par IS ~ —==——- > Interface
PORT (clk, reset : IN STD_LOGIC;
x_in : IN BITS15;

3 The equivalent Verilog code iir par.v for this example can be found in Ap-
pendix A on page 693. Synthesis results are shown in Appendix B on page 731.

x_even y_even
x[n] 4>L y[n]

—e y_odd

Fig. 4.19. Two-path parallel IIR filter implementation.

238 4. Infinite Impulse Response (IIR) Digital Filters

X_e, Xx_o, y_e, y_o : OUT BITS15;

clk?2 : OUT STD_LOGIC;
y_out : OUT BITS15);
END iir_par;

ARCHITECTURE fpga OF iir_par IS

TYPE STATE_TYPE IS (even, odd);

SIGNAL state : STATE_TYPE;

SIGNAL x_even, xd_even : BITS15 := 0;

SIGNAL x_odd, xd_odd, x_wait : BITS15 := 0;

SIGNAL y_even, y_odd, y_wait, y : BITS15 := 0;

SIGNAL sum_x_even, sum_x_odd : BITS15 := 0;

SIGNAL clk_div2 : STD_LOGIC;
BEGIN

Multiplex: PROCESS (reset, clk) --> Split x into even and
BEGIN -- odd samples; recombine y at clk rate
IF reset = ’1’ THEN -- asynchronous reset
state <= even;
ELSIF rising_edge(clk) THEN
CASE state IS
WHEN even =>
x_even <= x_in;
x_odd <= x_wait;
clk_div2 <= ’1’;
y <= y_wait;
state <= odd;
WHEN odd =>
x_wait <= x_in;
y <= y_odd;
y_wait <= y_even;
clk_div2 <= ’0’;
state <= even;
END CASE;
END IF;
END PROCESS Multiplex;

y_out <= y;

clk2 <= clk_div2;

x_e <= x_even; -- Monitor some extra test signals
X_o <= x_odd;

y_e <= y_even;

y_o <= y_odd;

Arithmetic: PROCESS

BEGIN
WAIT UNTIL clk_div2 = ’0’;
xd_even <= x_even;
sum_x_even <= (xd_even * 2 + xd_even) /4 + x_odd;
y_even <= (y_even * 8 + y_even)/16 + sum_x_even;
xd_odd <= x_odd;

4.4 Fast IIR Filter 239

Riiir_par.vwl i [=] 3]
o| ¢ Peirter: | 304.28 s Interval: | 304.28 s Start: Ups End 560.0 s

Master Time Bar.

=
B

o B00ns 1600 ns 2400 3200n 4000 ns 4800ns 5600 ng
tes ops [0ps

T3 TSN Ny oy Yy Iy Ny Yy Yy s Y Y Yy Ny N Y Ny (N
| teset 51 1

| e 80 /1 /1 /1 71 T 771 71 1 [
(ol swe s0 } 1 1 1 1 1 1 1 1 I 1
|| @xin SO Ty 7000 T

[Bxws 5O [S | i

|| xo 50 0

| @ye S0 0) S S S S SR S

[&] @we 50 0 } SR S SR SR S S

[&] @ ot so [TO000 750§ 662 §_421 D S S G

J Bl

Fig. 4.20. VHDL simulation of the response of the parallel IIR filter to an impulse
1000.

sum_x_odd <= (xd_odd * 2 + xd_odd) /4 + xd_even;
y_odd <= (y_odd * 8 + y_odd) / 16 + sum_x_odd;
END PROCESS Arithmetic;

END fpga;
The design is realized with two PROCESS statements. In the first, PROCESS
Multiplex, x is split into even and odd indexed parts, and the output y is
recombined at the clk rate. In addition, the first PROCESS statement gener-
ates the second clock, running at clk/2. The second block implements the
filter’s arithmetic according to (4.22). The design uses 268 LEs, no embedded
multiplier, and has a 168.12 MHz Registered Performance. The simulation

is shown in Fig. 4.20.

The disadvantage of the parallel implementation, compared with the other
methods presented, is the relatively high implementation cost of 268 LEs.

4.4.5 TIR Design Using RNS

Because the residue number system (RNS) uses an intrinsically short word-
length, it is an excellent candidate to implement fast (recursive) IIR filters. In

x[n]
Y Y
FIR FIR
[n]
Scaling y:

Fig. 4.21. RNS implementation of IIR filters using two FIR sections and scaling.

240 4. Infinite Impulse Response (IIR) Digital Filters

a typical IIR-RNS design, a system is implemented as a collection of recursive
and nonrecursive systems, each defined in terms of an FIR structure (see
Fig. 4.21). Each FIR may be implemented in RNS-DA, using a quarter-square
multiplier, or in the index domain, as developed in Chap. 2 (p. 67).

For a stable filter, the recursive part should be scaled to control dynamic
range growth. The scaling operation may be implemented with mixed radix
conversion, Chinese remainder theorem (CRT), or the e—CRT method. For
high-speed designs, it is preferable to add an additional pipeline delay based
on the clustered or scattered look-ahead pipelining technique [39, Sect. 4-2].
An RNS recursive filter design will be developed in detail in Sect. 5.3. It
will be seen that RNS design will improve speed from 50 MHz to more than
70 MHz.

Exercises

Note: If you have no prior experience with the Quartus II software, refer
to the case study found in Sect. 1.4.3, p. 29. If not otherwise noted use the
EP2C35F672C6 from the Cyclone II family for the Quartus IT synthesis eval-
uations.

4.1: A filter has the following specification: sampling frequency 2kHz; passband
0-0.4 kHz, stopband 0.5—1 kHz; passband ripple, 3dB, and stopband ripple, 48 dB.
Use the MATLAB software and the “Interactive Lowpass Filter Design” demo from
the Signal Processing Toolbox for the filter design.

(al) Design a Butterworth filter (called BUTTER).

(a2) Determine the filter length and the absolute ripple in the passband.
(b1) Design a Chebyshev type I filter (called CHEBY1).

(b2) Determine the filter length and the absolute ripple in the passband.
(c1) Design a Chebyshev type 11 filter (called CHEBY?2).

(c2) Determine the filter length and the absolute ripple in the passband.
(d1) Design an elliptic filter (called ELLIP).

(d2) Determine the filter length and the absolute ripple in the passband.

4.2: (a) Compute the maximum bit growth for a first-order IIR filter with a pole
at zoo = 3/4.
(a2) Use the MATLAB or C software to verify the bit growth using a step response
of the first-order IIR filter with a pole at zeo = 3/4.
(b) Compute the maximum bit growth for a first-order IIR filter with a pole at
Zoo = 3/8.
(b2) Use the MATLAB or C software to verify the bit growth using a step response
of the first-order IIR filter with a pole at zoc = 3/8.
(c¢) Compute the maximum bit growth for a first-order IIR filter with a pole at
Zoo =D .

4.3: (a) Implement a first-order IIR filter with a pole at zoc0 = 3/8 and 12-bit
input width, using Quartus II.
(b) Determine the the Registered Performance and the used resources (LEs, mul-
tipliers, and M4Ks).

Exercises 241

(c) Simulate the design with an input impulse of amplitude 100.

(d) Compute the maximum bit growth for the filter.

(e) Verify the result from (d) with a simulation of the step response with amplitude
100.

4.4: (a) Implement a first-order IIR filter with a pole at zoco = 3/8, 12-bit input
width, and a look-ahead of one step, using Quartus II.
(b) Determine the Registered Performance and the used resources (LEs, multi-
pliers, and M4Ks).
(c) Simulate the design with an input impulse of amplitude 100.

4.5: (a) Implement a first-order IIR filter with a pole at zoco = 3/8, 12-bit input
width, and a parallel design with two paths, using Quartus II.
(b) Determine the Registered Performance and the used resources (LEs, multi-
pliers, and M4Ks).
(c) Simulate the design with an input impulse of amplitude 100.

4.6: (a) Implement a first-order IIR filter as in Example 4.1 (p. 216), using a 15-bit
std_logic_vector, and implement the adder with two 1pm_add_sub megafunctions,
using Quartus II.

(b) Determine the Registered Performance and the used resources (LEs, multi-
pliers, and M4Ks).

(c) Simulate the design with an input impulse of amplitude 1000, and compare the
results to Fig. 4.3 (p. 218).

4.7: (a) Implement a first-order pipelined IIR filter from Example 4.3 (p. 231) us-
ing a 15-bit std_logic_vector, and implement the adder with four 1pm_add_sub
megafunctions, using Quartus II.

(b) Determine the Registered Performance and the used resources (LEs, multi-
pliers, and M4Ks).

(c) Simulate the design with an input impulse of amplitude 1000, and compare the
results to Fig. 4.15 (p. 233).

4.8: Shajaan and Sorensen have shown that an ITR Butterworth filter can be ef-
ficiently designed by implementing the coefficients as signed-power-of-two (SPT)
values [101]. The transfer function of a cascade filter with N sections

N
b, 0] 4 b[l, 1]27* + b[1,2]272
F(z)= St 4.23
(2) lHl U 0 T ol 17 T all. 22 (4.23)
should be implemented using the second-order sections shown in Fig. 4.11 (p. 226).
A tenth-order filter, as discussed in Example 4.2 (p. 227), can be realized with the
following SPT filter coefficients [101]:

I S 1/all,0] all, 1] all, 2]

1 21 1 —1-—27% 1-272
2 2t 21 —1-271 1-27°
3 27! 2! -1-27! 27t 4278
4 1 o1 —1-272 2724975
5 2! 21 -1-271 272 4974

We choose b[0] = b[2] = 0.5 and b[1] = 1 because the zeros of the Butterworth filter
are all at z = —1.
(a) Compute and plot the transfer function of the first BiQuad and the complete

242 4. Infinite Impulse Response (IIR) Digital Filters

filter.

(b) Implement and simulate the first BiQuad for 8-bit inputs.

(c) Build and simulate the five-stage filter with Quartus II.

(d) Determine the Registered Performance and the used resources (LEs, multi-
pliers, and M4Ks) of the filter.

4.9: (a) Design a tenth-order order lowpass Butterworth filter using MATLAB with
a cut-off frequency of 0.3 the sampling frequency, i.e, [b,al=butter(10,0.3).
(b) Plot the transfer function using freqz() for oo bits (i.e., real coefficients) and
12-bit fractional bits. What is the stopband suppression in dB at 0.5 of the Nyquist
frequency?
Hint: round(a*2°B)/2"B has B fractional bits.
(c) Generate a pole/zero plot using zplane() for oo bits and 12 fractional bits.
(d) Plot the impulse response for an impulse of amplitude 100 using filter() and
stem() for coefficients with 12-bit fractional bits. Also plot the response to impulse
of amplitude 100 of the recursive part only, i.e., set the FIR part to b=[1];
(e) For the 12 fractional bit filter determine using the csd3e.exe program from
the CD the CSD representation for all coefficients a and b from part (a).

il
Master Time Bar: Ups || Painter| 5297 s Interval:| 5297 ns Start: | End

vto s ps 1000 ns 2000 3000 ns 4000 ns S0ne GO00ns 7000 rs 8000 ns S0ns 10u]

Name e | [Tes

E D Ty ey Oy Yy Y oy Ty Yy Ty Yy Oy Y oy Y oy B o B B B B e B B
[enable S0
[et 57
& @« 5o
2| @tot so
=] Eyon 50 [--“““““-- 2
L1l 1]

Fig. 4.22. IIR Butterworth testbench for Exercise 4.10.

4.10: (a) Using the results from Exercise 4.9 develop the VHDL code for the tenth-
order Butterworth filter for 8-bit inputs. As internal data format use a 14.12 bit
format, i.e., 14 integer and 12 fractional bits. You need to scale the input and out-
put by 2'2 and use an internal 26-bit format. Use the direct form II, i.e., Fig. 4.9
(p. 225) for your design. Make sure that the transfer function of Fig. 4.9 and the
MATLAB representation of the transfer functions match.

Recommendation: you can start with the recursive part first and try to match the
simulation from Exercise 4.9(d). Then add the nonrecursive part.

(b) Add an active-high enable and active-high asynchronous reset to the design.
(c) Try to match the simulation from Exercise 4.9(d) shown in simulation Fig.4.22,
where t_out is the output of the recursive part.

(d) For the device EP2C35F672C6 from the Cyclone II family determine the re-
sources (LEs, multipliers, and M4Ks) and Registered Performance.

4.11: (a) Design the PREP benchmark 5 shown in Fig. 4.23a with the Quartus
1T software. The design has a 4 x 4 unsigned array multiplier followed by an 8-bit
accumulator. If mac = ’1’ accumulation is performed otherwise the adder output
s shows the multiplier output without adding q. rst is an asynchronous reset and
the 8-bit register is positive-edge triggered via clk, see the simulation in Fig. 4.23c

Exercises 243

8-bit 8—bit irs . ast instanc
4x4 MULT] ADDER REGISLER First Second Last instance
s[7:0] a[3:0] —p| —| - =
a[3:0] —| | »q[7: [ql7:0]
a[3:01 %* CIEE N — + 1+ = +
: +

b[3:0] —{ —| —=

p[7:0], f
ma(:;‘% r clk T
clk st
st mac

(a)

R bmb_scf - Waveform Editor [_To]=]
Ref: Time: [470.0ns Interval: [470.0ns =
MName: 5.0ns 250.0ns 375.0ns 500.0ns 625.0ns 750.0ns 875.0ns 1C

= rst T ‘ ‘

W= mac

= clk

5= a[3.0]

= 6(3.0) ERERERIDEBEDEN. te o)

= 0 LS R T e 00— 2 0 G 18) S

[T vl

()

Fig. 4.23. PREP benchmark 5. (a) Single design. (b) Multiple instantiation. (c)
Testbench to check function.

for the function test.

(b) Determine the Registered Performance and the used resources (LEs, mul-
tipliers, and M4Ks) for a single copy. Compile the HDL file with the synthe-
sis Optimization Technique set to Speed, Balanced or Area; this can be found
in the Analysis & Synthesis Settings section under EDA Tool Settings in the
Assignments menu. Which synthesis options are optimal for size or Registered
Performance?

Select one of the following devices:

(b1) EP2C35F672C6 from the Cyclone II family

(b2) EPF10K70RC240-4 from the Flex 10K family

(b3) EPM7128LC84-7 from the MAX7000S family

(c) Design the multiple instantiation for benchmark 5 as shown in Fig. 4.23b.

(d) Determine the Registered Performance and the used resources (LEs, multipli-
ers, and M2Ks/M4Ks) for the design with the maximum number of instantiations
of PREP benchmark 5. Use the optimal synthesis option you found in (b) for the
following devices:

(d1) EP2C35F672C6 from the Cyclone II family

(d2) EPF10K70RC240-4 from the Flex 10K family

(d3) EPM7128LC84-7 from the MAX7000S family

4.12: (a) Design the PREP benchmark 6 shown in Fig. 4.24a with the Quartus II
software. The design is positive-edge triggered via clk and includes a 16-bit accu-
mulator with an asynchronous reset rst; see the simulation in Fig. 4.24c for the
function test.

(b) Determine the Registered Performance and the used resources (LEs, multi-
pliers, and M2Ks/M4Ks) for a single copy. Compile the HDL file with the synthe-
sis Optimization Technique set to Speed, Balanced or Area; this can be found
in the Analysis & Synthesis Settings section under EDA Tool Settings in the
Assignments menu. Which synthesis options are optimal for size or Registered

244 4. Infinite Impulse Response (IIR) Digital Filters

ACC 16 First Second Last instance

d[15:0] ——p] > q[15:0] d[15:0] ——p] > - - — q[15:0]

+ + + +

L e T

st —9M8M8 ¢————— @------mm

(a) (b)

B® bmb. scf - Wavelom E ditor

Ref [00ns |[=[=] Time: W‘ Interval. IW‘ =
Oidns =

Name. Walug: 100.0ns 2000ns 300.0ns 400.0ns S000ns BOOOns 700.0ns B800.0ns S000ns 1

£ clk 0]

- rat 1

= d H 1050 1050

- g HOOOD | W A0AD Y 20AD X 30F0 Y 410§ A1a0) AIE0 o000 o0 Y a0e0)

Al H

()

Fig. 4.24. PREP benchmark 6. (a) Single design. (b) Multiple instantiation. (c)
Testbench to check function.

Performance?

Select one of the following devices:

(b1) EP2C35F672C6 from the Cyclone II family

(b2) EPF10K70RC240-4 from the Flex 10K family

(b3) EPM7128LC84-7 from the MAX7000S family

(c) Design the multiple instantiation for benchmark 6 as shown in Fig. 4.24b.

(d) Determine the Registered Performance and the used resources (LEs, multipli-
ers, and M2Ks/M4Ks) for the design with the maximum number of instantiations
of PREP benchmark 6. Use the optimal synthesis option you found in (b) for the
following devices:

(d1) EP2C35F672C6 from the Cyclone II family

(d2) EPF10K70RC240-4 from the Flex 10K family

(d3) EPM7128LC84-7 from the MAX7000S family

5. Multirate Signal Processing

Introduction

A frequent task in digital signal processing is to adjust the sampling rate
according to the signal of interest. Systems with different sampling rates are
referred to as multirate systems. In this chapter, two typical examples will
illustrate decimation and interpolation in multirate DSP systems. We will
then introduce polyphase notation, and will discuss some efficient decimator
designs. At the end of the chapter we will discuss filter banks and a quite
new, highly celebrated addition to the DSP toolbox: wavelet analysis.

5.1 Decimation and Interpolation

If, after A/D conversion, the signal of interest can be found in a small fre-
quency band (typically, lowpass or bandpass), then it is reasonable to filter
with a lowpass or bandpass filter and to reduce the sampling rate. A narrow
filter followed by a downsampler is usually referred to as a decimator [79]. !
The filtering, downsampling, and the effect on the spectrum is illustrated in
Fig. 5.1.

We can reduce the sampling rate up to the limit called the “Nyquist rate,”
which says that the sampling rate must be higher than the bandwidth of the
signal, in order to avoid aliasing. Aliasing is demonstrated in Fig. 5.2 for a
lowpass signal. Aliasing is irreparable, and should be avoided at all cost.

For a bandpass signal, the frequency band of interest must fall within an
integer band. If fs is the sampling rate, and R is the desired downsampling
factor, then the band of interest must fall between

fs Js
kﬁ<f<(k+1)ﬁ keN. (5.1)

If it does not, there may be aliasing due to “copies” from the negative
frequency bands, although the sampling rate may still be higher than the
Nyquist rate, as shown in Fig. 5.3.

Increasing the sampling rate can be useful, in the D/A conversion process,
for example. Typically, D/A converters use a sample-and-hold of first-order

1 .
Some authors refer to a downsampler as a decimator.

246 5. Multirate Signal Processing

X(w)
¥ | "
H(w) T 2n
Y
H(w) X (o)
¥ | .

VR T 2n
Y

Xq()

| w

T 2m

Fig. 5.1. Decimation of signal z[n] o—e X (w).

at the output, which produces a step-like output function. This can be com-
pensated for with an analog 1/sinc(x) compensation filter, but most often a
digital solution is more efficient. We can use, in the digital domain, an ex-
pander and an additional filter to get the desired frequency band. We note,
from Fig. 5.4, that the introduced zeros produce an extra copy of the base-
band spectrum that must first be removed before the signal can be processed
with the D/A converter. The much smoother output signal of such an inter-
polation® can be seen in Fig. 5.5.

5.1.1 Noble Identities

When manipulating signal flow graphs of multirate systems it is sometimes
useful to rearrange the filter and downsampler /expander, as shown in Fig. 5.6.
These are the so-called “Noble” relations [102]. For the decimator, it follows

(L R) F(z) = F(z") (| R), (5.2)

2 Some authors refer to the expander as an interpolator.

5.1 Decimation and Interpolation

[X®)| Undecimated frequency

response /__\

I
0
R2B < fy

[Y (D)l

[

fS
\ R2B > fy

o+

B fg/R

Unaliased case

D@

0 B f /R

Aliased case

Fig. 5.2. Unaliased and aliased decimation cases.

A

‘f i

-

M\

S (eJ‘JJ fs

D(\D(\

0

Fig. 5.3. Integer band violation (©1995 VDI Press [4]).

e., if the downsampling is done first, we can reduce the filter length F(z

by a factor of R.

For the interpolator, the Noble relation is defined as

F(z) (1 R) = (T R) F(z"

247

)

(5.3)

i.e., in an interpolation putting the filter before the expander results in an

R-times shorter filter.

These two identities will become very useful when we discuss polyphase

implementation in Sect. 5.2 (p. 249).

248 5. Multirate Signal Processing

X(w)
'
‘R Q

'

X (@)
{ o
n 21

H(w)
'
H) X; @)
| (,0
n 2n
Fig. 5.4. Interpolation example. R = 3 for z[n] o—e X (w).
H = Hﬂn |
L] iy
(a) (b)

Fig. 5.5. D/A conversion. (a) Low oversampling, high degradation. (b) High over-
sampling, low degradation.

5.1.2 Sampling Rate Conversion by Rational Factor

If the input and output rate of a multirate system is not an integer factor,
then a rational change factor R;/Rs in the sampling rate can be used. More

5.2 Polyphase Decomposition 249

[n] [m] [n] [m]
"> {R Fz) b = "S={F@®) IR
X[n—]> H(z) 'R —y>[m] = X[—n]» 'R F(zR) —y>[m]

Fig. 5.6. Equivalent multirate systems (Noble relation).

precisely, we first use an interpolator to increase the sampling rate by R,
and then use a decimator to downsample by Rs. Since the filters used for
interpolation and decimation are both lowpass filters, it follows, from the
upper configuration in Fig. 5.7, that we only need to implement the lowpass
filter with the smaller passband frequency, i.e.,

. s ™
fp = min (Rl’ Rz) : (5.4)

This is graphically interpreted in the lower configuration of Fig. 5.7. We will
discuss later in Sect. 5.6, p. 280 different design options of this system.

x[n] Lowpass Lowpass y[m]
'T‘Rl /R, /R,] ¢R2 ’

x[n] Lowpass y[m]
= ¢Rl ™ minw/R R, [¢Rz =

Fig. 5.7. Noninteger decimation system. (upper) Cascade of an interpolator and a
decimator. (lower) Result combining the lowpass filters.

5.2 Polyphase Decomposition

Polyphase decomposition is very useful when implementing decimation or in-
terpolation in IIR or FIR filter and filter banks. To illustrate this, consider
the polyphase decomposition of an FIR decimation filter. If we add downsam-
pling by a factor of R to the FIR filter structure shown in Fig. 3.1 (p. 166),
we find that we only need to compute the outputs y[n] at time instances

y[0], y[R],y[2R], (5.5)

250 5. Multirate Signal Processing

It follows that we do not need to compute all sums-of-product f[k]z[n — k]
of the convolution. For instance, z[0] only needs to be multiplied by

f10], f[R], f[2R],... . (5.6)
Besides z[0], these coefficients only need to be multiplied by
x[R],z[2R],. .. . (5.7)

It is therefore reasonable to split the input signal first into R separate se-
quences according to

R-1
zln] =) [n]

r=0
o[n] = {«[0], z[R], ...}
a1[n] = {z[1], 2[R+ 1],...}

xp-1[n] = {z[R—1],2[2R—1],...}
and also to split the filter f[n] into R sequences

R—-1
flnl = foln]

foln] = {101, fIR], ..}
filnl = {0 IR+ 1,)

froaln] = {f[R-1], fRR—1],...}.

Figure 5.8 shows a decimator filter implemented using polyphase decompo-
sition. Such a decimator can run R times faster than the usual FIR filter fol-
lowed by a downsampler. The filters f,.[n] are called polyphase filters, because
they all have the same magnitude transfer function, but they are separated
by a sample delay, which introduces a phase offset.

A final example illustrates the polyphase decomposition.

Example 5.1: Polyphase Decimator Filter
Consider a Daubechies length-4 filter with G(z) and R = 2.

1

G2) = (A+Va+ BV +E -V + A=V)

G(z) = 0.48301 4 0.83652 " +0.22412"% — 0.1294z°.
Quantizing the filter to 8 bits of precision results in the following model:

5.2 Polyphase Decomposition 251

x[n] —r> VR P F y[n]

*—» IR b F
L VR = FR_1_1

Fig. 5.8. Polyphase realization of a decimation filter.

G(z) = (124 + 2142~ 4+ 57272 — 33277) /256
G(z) = Go(2%) + 27 'G1(Z%)
124 57 o\ 1 /214 33 _,
))

256 256 256 256
Go(22) G1(22)
and it follows that 57 914 33
_ 124 o7 _z24 33
Gol2) = 356 * 3567 (=)= 356 ~ 3567 (58)
The following VHDL code® shows the polyphase implementation for DB4.
PACKAGE n_bits_int IS -- User-defined types

SUBTYPE BITS8 IS INTEGER RANGE -128 TO 127;

SUBTYPE BITS9 IS INTEGER RANGE -2%*8 TO 2%%*8-1;

SUBTYPE BITS17 IS INTEGER RANGE -2%%16 TO 2%*16-1;

TYPE ARRAY_BITS17_4 IS ARRAY (0 TO 3) of BITS17;
END n_bits_int;

LIBRARY work;
USE work.n_bits_int.ALL;

LIBRARY ieee;

USE ieee.std_logic_1164.ALL;
USE ieee.std_logic_arith.ALL;
USE ieee.std_logic_signed.ALL;

ENTITY db4poly IS —===== > Interface
PORT (clk, reset : IN STD_LOGIC;
X_in : IN BITSS;
clk2 : OUT STD_LOGIC;

3 The equivalent Verilog code db4poly.v for this example can be found in Ap-
pendix A on page 697. Synthesis results are shown in Appendix B on page 731.

252 5. Multirate Signal Processing

x_e, x_o, g0, gl : OUT BITS17;
y_out : OUT BITS9);
END db4poly;
ARCHITECTURE fpga OF db4dpoly IS

TYPE STATE_TYPE IS (even, odd);

SIGNAL state : STATE_TYPE;
SIGNAL x_odd, x_even, x_wait : BITS8 := 0;
SIGNAL clk_div2 : STD_LOGIC;

-- Arrays for multiplier and taps:
SIGNAL r : ARRAY_BITS17_4 := (0,0,0,0);

SIGNAL x33, x99, x107 : BITS17;
SIGNAL y : BITS17 := 0
BEGIN
Multiplex: PROCESS(reset, clk) ----> Split into even and
BEGIN -- odd samples at clk rate
IF reset = ’1’ THEN —-- Asynchronous reset

state <= even;
ELSIF rising_edge(clk) THEN
CASE state IS
WHEN even =>
x_even <= X_in;
x_odd <= x_wait;
clk_div2 <= ’1’;
state <= odd;
WHEN odd =>
X_wait <= x_in;
clk_div2 <= ’0’;
state <= even;
END CASE;
END IF;
END PROCESS Multiplex;

AddPolyphase: PROCESS (clk_div2,x_odd,x_even,x33,x99,x107)
VARIABLE m : ARRAY_BITS17_4 ;
BEGIN
-- Compute auxiliary multiplications of the filter
x33 <= x_odd * 32 + x_odd;
x99 <= x33 * 2 + x33;
x107 <= x99 + 8 * x_odd;
-- Compute all coefficients for the transposed filter

m(0) := 4 x (32 * x_even - x_even); -- m[0] = 127
m(1) := 2 * x107; -- m[1] = 214
m(2) := 8 *x (8 * x_even - x_even) + x_even;—— m[2] = 57
m(3) := x33; -- m[3] = -33

—————— > Compute the filters and infer registers
IF clk_div2’event and (clk_div2 = ’0°) THEN
———————————— Compute filter GO
r(0) <= r(2) + m(0); -- glo] = 127
r(2) <= m(2); -- gl2] 57

I dbapoly.vw ol x|

Master Time Bar: | Ops «| | Pointer: | 39142 s Intervat | 39142 ns Start:| 1.04 us End: 1.08 us

5.2 Polyphase Decomposition 253

Mame

Vamar PP 800ns 1600ne 2400ne 3200ns 4000ns 4300ns S600ns G400ns 7200ns 8000ns B800ns SB00ne T0dus |
Ops ? P

= ok BO N e T Yy s Yy o Y Y Yy Y Y o S B e B B
|| reset 51 1

D we e | T 1 T 1 T 1 T 1 T 1 1 1 T 1 7 1 T 1 T 1
= win 50 T T2 3 ¥ 1 i 00 T 00 i

& Bwe s0 T E S Ty T ¥ T

| Hxo =0 1] 1 37 0 } S 4 1

ERCE L 1] L G R S R G ST § 0

& Bo so 1]) S G R G-I ¢]) LTI S I]

|| Eyoun 30] T)) 0§ 8 % 22§ w3 ¥ 2 yo0.
I E— |

Fig. 5.9. VHDL simulation of the polyphase implementation of the length-4
Daubechies filter.

———————————— Compute filter G1
r(1) <= -r(3) +m(1); -- gl1] =214
r(3) <= m(3); -- gl[3] = -33
———————————— Add the polyphase components
y <= r(0) + r(1);
END IF;
END PROCESS AddPolyphase;

x_e <= x_even; -- Provide some test signal as outputs
X_o <= x_odd;

clk2 <= clk_div2;

g0 <= r(0);

gl <= r(1);

y_out <=y / 256; -- Connect to output

END fpga;

The first PROCESS is the FSM, which includes the control flow and the splitting
of the input stream at the sampling rate into even and odd samples. The
second PROCESS includes the reduced adder graph (RAG) multiplier, and the
last PROCESS hosts the two filters in a transposed structure. Although the
output is scaled, there is potential growth by the amount Y |gx| = 1.673 <
2!, Therefore the output y_out was chosen to have an additional guard bit.
The design uses 173 LEs, no embedded multiplier, and has a 136.65 MHz
Registered Performance.

A simulation of the filter is shown in Fig. 5.9. The first four input samples are
a triangle function to demonstrate the splitting into even and odd samples.
Impulses with an amplitude of 100 are used to verify the coefficients of the
two polyphase filters. Note that the filter is not shift invariant.

From the VHDL simulation shown in Fig. 5.9, it can be seen that such

a decimator is no longer shift invariant, resulting in a technically nonlinear
system. This can be validated by applying a single impulse. Initializing at an
even-indexed sample, the response is Gy (z), while for an odd-indexed sample,
the response is G1(z).

254 5. Multirate Signal Processing

Multiplications per second

0.005 0.05 AF

Fig. 5.10. Comparison of computational effort for decimators AF = f, — fs.

5.2.1 Recursive ITR Decimator

It is also possible to apply polyphase decomposition to recursive filters and
to get the speed benefit, if we follow the idea from Martinez and Parks [99],
in the transfer function
L—1
> all]™!
Flz)=—8&% (5.9)

—1
1— 3 iR
=1

i.e., the recursive part has only each R'" coefficient. We have already discussed
such a design in the context of IIR filters (Fig. 4.17, p. 236). Figure 5.10 shows
that, depending on the transition width AF of the filter, an IIR decimator
offers substantial savings compared with an FIR decimator.

5.2.2 Fast-running FIR Filter

An interesting application of polyphase decomposition is the so-called fast-
running FIR filter. The basic idea of this filter is the following: If we de-
compose the input signal z[n] into R polyphase components, we can use
Winograd’s short convolution algorithms to implement a fast filter. Let us
demonstrate this with an example for R = 2.

Example 5.2: Fast-Running FIR filter

We decompose the input signal X(z) and filter F(z) into even and odd
polyphase components, i.e.,

5.2 Polyphase Decomposition 255

Yo(z2)
|
y
= Fy(z) + F\(2) G.)_» Y(z)
A
X(2)
t2 z
X,(2) |.> |—Z'Yl (2"2)
Fig. 5.11. Fast-running FIR filter with R = 2.
X(2) = Zm[n]z_n = Xo(2°) 4+ 27 X1 (%) (5.10)
F(z2) =Y flnz™" = Fo(2") + 2 i (2). (5.11)

The convolution in the time domain of z[n] and f[n] yields a polynomial
multiply in the z-domain. It follows for the output signal Y (z) that

Y (2) = Yo(2%) + 27 'Yi(2°) (5.12)
= (Xo(2°) 4+ 2 ' X1 (23) (Fo(2*) + 27 ' Fi(2%)). (5.13)
If we split (5.13) into the polyphase components Yy(z) and Yi(z) we get
Yo(z) = Xo(2)Fo(2) + 2z~ ' X1 (2)Fi(2) (5.14)
Yi(z) = X1(2)Fo(z) + Xo(2)Fi(2). (5.15)

If we now compare (5.13) with a 2 x 2 linear convolution

A(z) x B(z) = (a[0] + 2~ "a[1])(b[0] + 2~ "b[1]) (5.16)

= a[0]b[0] + 2" (a[0]b[1] + a[1]b[0]) + a[1]b[1]z2, (5.17)

we notice that the factors for 27! are the same, but for Yo(z) we must compute
an extra delay to get the right phase relation. Winograd [103] has compiled

a list of short convolution algorithms, and a linear 2 X 2 convolution can be
computed using three multiplications and six adds with

a[0] = z[0] — =[1] a[l] = z[0] a[2] = z[1] — z[0]
b[0] = f[0] — f[1] b[1] = f[0] b2] = f[1] — f[0] (5.18)
c[k] = alk]bik] k=0,1,2 :

y[0] = c[1] + 2] y[1] = ef1] - c[0].

With the help of this short convolution algorithm, we can now define the
fast-running filter as follows:

Fy 0 0 1 -1
B@} _ [(1) i ‘(1)} 0FR+F 0|1 0 {?] (5.19)
! 0 0 F||1-=zt !

Figure 5.11 shows the graphical interpretation. 5.2

256 5. Multirate Signal Processing

If we compare the direct filter implementation with the fast-running FIR
filter we must distinguish between hardware effort and average number of
adder and multiplier operations. A direct implementation would have L mul-
tipliers and L — 1 adders running at full speed. For the fast-running filter we
have three filters of length L/2 running at half speed. This results in 3L/4
multiplications per output sample and (2+2)/2+3/2(L/2—1)=3L/4+1/2
additions for the whole filter, i.e., the arithmetic count is about 25% better
than in the direct implementation. From an implementation standpoint, we
need 3L/2 multipliers and 4+ 3(L/2 —1) = 3L/2+ 1 adders, i.e., the effort is
about 50% higher than in the direct implementation. The important feature
in Fig. 5.11 is that the fast-running filter basically runs at twice the speed
of the direct implementation. Using a higher number R of decomposition
may further increase the maximum throughput. The general methology for
R polyphase signals with f, as input rate is now as follows:

Algorithm 5.3: Fast-Running FIR Filter

1) Decompose the input signal into R polyphase signals, using A, adders
to form R sequences at a rate of f,/R.

2) Filter the R sequences with R filters of length L/R.

3) Use A, additions to compute the polyphase representation of the
output Y% (z). Use a final output multiplexer to generate the output
signal Y'(z).

Note that the computed partial filter of length L/R may again be decom-
posed, using Algorithm 5.3. Then the question arises: When should we stop
the iterative decomposition? Mou and Duhamel [104] have compiled a table
with the goal of minimizing the average arithmetic count. Table 5.1 shows
the optimal decomposition. The criterion used was a minimum total number
of multiplications and additions, which is typical for a MAC-based design. In
Table 5.1, all partial filters that should be implemented based on Algorithm
5.3 are underlined.

For a larger length than 60, a fast convolution using the FFT is more
efficient, and will be discussed in Chap. 6.

5.3 Hogenauer CIC Filters

A very efficient architecture for a high decimation-rate filter is the “cascade
integrator comb” (CIC) filter introduced by Hogenauer [106]. The CIC (also
known as the Hogenauer filter), has proven to be an effective element in
high-decimation or interpolation systems. One application is in wireless com-
munications, where signals, sampled at RF or IF rates, need to be reduced
to baseband. For narrowband applications (e.g., cellular radio), decimation
rates in excess of 1000 are routinely required. Such systems are sometimes
referred to as channelizers [107]. Another application area is in X'A data
converters [108].

5.3 Hogenauer CIC Filters 257

Table 5.1. Computational effort for the recursive FIR decomposition [104, 105].

. M+ A
L Factors M+ A L L Factors M+ A M L+ A
g j?recz 165 g 22 11 x 2 663 30.4
1ree 24 22x3x2 624 26
4 2% 2 26 6.5
5 rrionet e o 25 5x5 740 29.6
26 13 x 2 750 28.9
6 3% 2 56 9.33 5
i 27 32x3 810 30
8 22 % 2 94 11.75
30 5x3x2 912 30.4
9 3x3 120 13.33 "
32 24 % 2 1006 31.44
10 5x2 152 15.2
33 11 %3 1248 37.8
12 2x3x2 192 16 o e Lo o1
Mo T2 310 22.1 5 ?xsxs 1260 35
5 5x3 300 20
3 39 13 %3 1419 36.4
16 28x2 314 19.63
55 11x5 2900 52.7
18 2x3x3 396 22
60 5x2x3x2 2784 46.4
20 5x2x2 472 23.6 p A iy o
21 7x3 591 28.1 X .

CIC filters are based on the fact that perfect pole/zero canceling can
be achieved. This is only possible with exact integer arithmetic. Both two’s
complement and the residue number system have the ability to support error-
free arithmetic. In the case of two’s complement, arithmetic is performed
modulo 2%, and, in the case of the RNS, modulo M.

An introductory case study will be used to demonstrate.

5.3.1 Single-Stage CIC Case Study

Figure 5.12 shows a first-order CIC filter without decimation in 4-bit arith-
metic. The filter consists of a (recursive) integrator (I-section), followed by a
4-bit differentiator or comb (C-section). The filter is realized with 4-bit val-
ues, which are implemented in two’s complement arithmetic, and the values
are bounded by —8;9 = 10002¢ and 719 = 01115¢.

Figure 5.13 shows the impulse response of the filter. Although the filter is
recursive, the impulse response is finite, i.e., it is a recursive FIR filter. This

4 4
x[n] ==& ijﬂ/ -/ yln]

\
|
o)

Fig. 5.12. Moving average in 4-bit arithmetic.

258 5. Multirate Signal Processing

Input signal x[n] Integrator w[n] Output y[n]

1.5 1.5 1.5
1 1 1
0.5 0.5 0.5

0 00000000000 0 0 eo00000
-0.5 -0.5 -0.5

0 5 10 0 5 10 0 5 10
n n n

Fig. 5.13. Impulse response of the filter from Fig. 5.12.

is unusual because we generally expect a recursive filter to be an IIR filter.
The impulse response shows that the filter computes the sum

D—1
yln] = > xln — k], (5.20)
k=0
where D is the delay found in the comb section. The filter’s response is a
moving average defined over D contiguous sample values. Such a moving
average is a very simple form of a lowpass filter. The same moving-average
filter implemented as a nonrecursive FIR filter, would require D — 1 = 5
adders, compared with one adder and one subtractor for the CIC design.

A recursive filter having a known pole location has its largest steady-state
sinusoidal output when the input is an “eigenfrequency” signal, one whose
pole directly coincides with a pole of the recursive filter. For the CIC section,
the eigenfrequency corresponds to the frequency w = 0, i.e., a step input.
The step response of the first-order moving average given by (5.20) is a ramp
for the first D samples, and a constant y[n] = D = 6 thereafter, as shown in
Fig. 5.14. Note that although the integrator w[n] shows frequent overflows,
the output is still correct. This is because the comb subtraction also uses two’s
complement arithmetic, e.g., at the time of the first wrap-around, the actual
integrator signal is w[n] = —819 = 10002¢, and the delay signal is w[n — 6] =
219 = 00102c. This results in y[n] = —819 — 219 = 10002c — 00102¢c =
01102¢ = 619, as expected. The accumulator would continue to count upward
until w[n] = =819 = 10002 is again reached. This pattern would continue as
long as the step input is present. In fact, as long as the output y[n] is a valid 4-
bit two’s complement number in the range [—8, 7], the exact arithmetic of the
two’s complement system will automatically compensate for the integrator
overflows.

In general, a 4-bit filter width is usually much too small for a typical
application. The Harris IC HSP43220, for instance, has five stages and uses a

5.3 Hogenauer CIC Filters 259

Table 5.2. RNS mapping for the set (2,3,5).

a = o1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
amod2 0 1 0 1 0 1 0 1 O 1 O 1 O 1 0 1
amod3 0 1 2 0 1 2 0O 1 2 O 1 2 0 1 2 O
amod 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0

a= 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
amod2 0 1 0 1 0 1 0 1 O 1 O 1 O 1 O
amod3 1 2 0 1 2 0 1 2 0 1 2 0 1 2 O
amod 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0

Input signal x[n] Integrator w[n] Output y[n]

6 6 6
4 4 [I 4 [
2 2 2
Miaasansnsnsanansnsnns 0 ?ﬂ ‘.?ﬂ 0 ?ﬂ
: T
-4 -4 -4
-6 -6 -6
-8 -8 PN -8
0 10 20 0 10 20 0 10 20
n n n

Fig. 5.14. Step response (eigenfrequency test) of the filter from Fig. 5.12.

66-bit integrator width. To reduce the adder latency, it is therefore reasonable
to use a multibase RNS system. If we use, for instance, the set Zso = {2, 3,5},
it can be seen from Table 5.2 that a total of 2 x 3 x 5 = 30 unique values
can be represented. The mapping is unique (bijective) and is proven by the
Chinese remainder theorem.

Figure 5.15 displays the step response of the illustrated RNS implementa-
tion. The filter’s output, y[n], has been reconstructed using data from Table
5.2. The output response is identical with the sample value obtained in the
two’s complement case (see Fig. 5.14). A mapping that preserves the structure
is called a homomorphism. A bijective homomorphism is called an isomor-
phism (notation 22), which can be expressed as:

Z30 = Zg X Z3 X Z5. (521)
5.3.2 Multistage CIC Filter Theory

The transfer function of a general CIC system consisting of .S stages is given
by:

260 5. Multirate Signal Processing

Input signal x[n] Integrator w[n] Output mod (2,3,5)
1 1
9V}
B8 05 0.5 0.5
1S
0 0—e—-o—-0-0-0 0—eo-o 00000
0 5 10 0 5 10 0 5 10
Output y[n]
2 2 2
10
15 15 15
o Retiaaninnd
g 1 1 1 0
1S
0.5 0.5 0.5 _10
0 0 0 o ' eccee

[]
" e
[]

0 0 5 10 0

) LA

Fig. 5.15. Step response of the first-order CIC in RNS arithmetic.

F(z) = (ﬂ)s (5.22)

1—271

where D is the number of delays in the comb section, and R the downsampling
(decimation) factor.

It can be seen from (5.22) that F'(z) is defined with respect to RD.S zeros
and S poles. The RD zeros generated by the numerator term (1 — z~RP)
are located on 27 /(RD)-radian centers beginning at z = 1. Each distinct
zero appears with multiplicity S. The S poles of F(z) are located at z = 1,
i.e., at the zero frequency (DC) location. It can immediately be seen that
they are annihilated by S zeros of the CIC filter. The result is an S-stage
moving average filter. The maximum dynamic range growth occurs at the
DC frequency (i.e., z = 1). The maximum dynamic range growth is

Bgrow = (RD)S or bgrow = logy (Bgrow) bits. (523)

Knowledge of this value is important when designing a CIC filter, since the
need for exact arithmetic as shown in the single-state CIC example. In prac-
tice, the worst-case gain can be substantial, as evidenced by a 66-bit dynamic
range built into commercial CIC filters (e.g., the Harris HSP43220 [107] chan-
nelizer), typically designed using two’s complement arithmetic.

5.3 Hogenauer CIC Filters 261

C

1 1 1 C C
X[n] —>|26—bit|—>|26—bit|—*|26—bit}—)vg°—>|26—bit|—* 26—bit|—>|26—bit|—> y[n]

N . ~

'() -1 P A
V4

0 |

Fig. 5.16. CIC filter. Each stage 26-bit.

(a) x 10" (b)
150
3
2
=
_ 100 g,
(=) —
- o
z g o0
3 [
c Q
= 50 E 4
o
-2
0 -3
0 100 200 300 0 100 200 300 400
n n
x 107 (©) (d)
500
3
=
. Z400
el
= 2
2, = 300
H F
815
E 3200
1 =
o 100
05 @ T
0 o ®
0 100 200 300 400 0 100 200 300 400
n n

Fig. 5.17. MATLAB simulation of the three-stage CIC filter shown in Fig. 5.16.

Figure 5.16 shows a three-stage CIC filter that consists of a three-stage
integrator, a sampling rate reduction by R, and a three-stage comb. Note
that all integrators are implemented first, then the decimator, and finally the
comb sections. The rearrangement saves a factor R of delay elements in the
comb sections. The number of delays D for a high-decimation rate filter is
typically one or two.

A three-stage CIC filter with an input wordwidth of eight bits, along with
D =2, R=32,or DR =2 x 32 = 64, would require an internal wordwidth
of W = 8 + 3log,(64) = 26 bits to ensure that run-time overflow would not
occur. The output wordwidth would normally be a value significantly less
than W, such as 10 bits.

262 5. Multirate Signal Processing

Example 5.4: Three-Stage CIC Decimator 1

The worst-case gain condition can be forced by supplying a step (DC) sig-
nal to the CIC filter. Fig. 5.17a shows a step input signal with amplitude
the third integrator section.
Observe that run-time overflows occur at a regular rate. The CIC output
shown in Fig. 5.17c is interpolated (smoothed) for display at the input sam-
pling rate. The output shown in Fig. 5.17d is scaled to 10-bit precision and

127. Figure 5.17b displays the output found at

displayed at the decimated sample rate.

The following VHDL code® shows the CIC example design.

LIBRARY ieee;

USE ieee.std_logic_1164.ALL;
USE jeee.std_logic_arith.ALL;
USE ieee.std_logic_signed.ALL;

ENTITY cic3r32 IS
PORT (clk, reset : IN STD_LOGIC
x_in : IN STD_LOGIC
clk2 : OUT STD_LOGIC
y_out : OUT STD_LOGIC
END cic3r32;

ARCHITECTURE fpga OF cic3r32 IS

_VECTOR(7 DOWNTO O);

_VECTOR(9 DOWNTO 0));

SUBTYPE word26 IS STD_LOGIC_VECTOR(25 DOWNTO O);

TYPE STATE_TYPE IS (hold, sample)
SIGNAL state : STATE_TYPE ;
SIGNAL count : INTEGER RANGE O
SIGNAL x : STD_LOGIC_VECTOR(7 DOWNT
(OTHERS => ’0’);
SIGNAL sxtx : STD_LOGIC_VECTOR(25 D
SIGNAL i0, il , i2 : word26 := (OTH
-—- 1
SIGNAL i2d1, i2d2, c1, cO : word26
SIGNAL c1dl, c1d2, c2 : word26 := (
SIGNAL c2d1, c2d2, c3 : word26 := (

BEGIN

FSM: PROCESS (reset, clk)
BEGIN
IF reset = ’1’ THEN
state <= hold;
count <= 0;
clk2 <= ’0’;
ELSIF rising_edge(clk) THEN
IF count = 31 THEN
count <= 0;

® The equivalent Verilog code cic3r32.v for this ex

3

TO 31;
0 0) :=

-- Registered input
OWNTO 0);
- Sign extended input
ERS=>’0");

section 0, 1, and 2
:= (OTHERS=>’0’) ;

I and COMB section O
O0THERS=>’0") ;-- COMB1
0THERS=>’0") ;-— COMB2

-- Asynchronous reset

ample can be found in Ap-
pendix A on page 694. Synthesis results are shown in Appendix B on page 731.

5.3 Hogenauer CIC Filters

state <= sample;
clk2 <= ’1’;

ELSE
count <= count + 1;
state <= hold;
clk2 <= ’0’;

END IF;

END IF;
END PROCESS FSM;

sxt: PROCESS (x)
BEGIN
sxtx(7 DOWNTO 0) <= x;
FOR k IN 25 DOWNTO 8 LOOP
sxtx(k) <= x(x’high);
END LOOP;
END PROCESS sxt;

Int: PROCESS -- 3 integrator sections

BEGIN
WAIT UNTIL clk = ’1°;
X <= x_in;

io0 <= i0 + sxtx;

il <= il + i0 ;

i2 <= i2 + il ;
END PROCESS Int;

Comb: PROCESS -- 3 comb sections
BEGIN
WAIT UNTIL clk = ’1°;
IF state = sample THEN
cO <= i2;
i2d1l <= c0;
i2d2 <= i2di;
cl <= c0 - i2d2;
cldl <= c1;
cld2 <= cl1di;
c2 <= cl - c1d2;
c2dl <= c2;
c2d2 <= c2d1;
c3 <= c2 - c2d2;
END IF;

END PROCESS

y_out <= c3(25 DOWNTO 16);

END fpga;

Comb;

-- i.e., c3 / 2**16

263

The designed filter includes a finite state machine (FSM), a sign extension,
sxt: PROCESS, and two arithmetic PROCESS blocks. The FSM: PROCESS con-
tains the clock divider for the comb section. The Int: PROCESS realizes the
three integrators. The Comb: PROCESS includes the three comb filters, each
having a delay of two samples. The filter uses 337 LEs, no embedded mul-
tiplier and has a 282.17 MHz Registered Performance. Note that the filter

264 5. Multirate Signal Processing

N cic3r3z.vwf

M [=1 4|
Master Time Bar: | Ops «| ¢ Peirter.| 119us Intereat 1.19us Stat:| End;|
ops 1.28us 256 us 381 us 512us Edus FEBus 896 us 1024 us 1152 us 128
Neme | Vel et ; ;] i i ; ; ; ?]

Ops [Ops
EED B0
[| reset B1
|| ck2 B0 | 1 I 1 | | 1 | 1 | | 1 |
|| B win 5127 27
= B 50 1O 100000 O Y D 1) 00 D OO O OO O O O 0 OO YOO 0O 0 1 SO I
=] ma 50 gk"H.}‘}}ﬂN”.\'J.“.‘.“J.”"‘"ﬂ”"ﬂ”.“ﬂ”.”"“.““ﬂ
| @i 50 Fil
| @« 50 [P S0 GETPE N @Rt ALY, W LY QNI QRN G T P EELVN) QI AL L T LI ()
& @ 50 532972 ¥ 5547360) 10001968 ¥ 20260210 661636)-20793504 ¥ 16903392 ¥, 3874456 ¥ 711328 ¥ 7325520 ¥ 14806240 309,
= B s0 i ¥ GIZ31Z ¥ 5947360 417330055 § JI292200 171 F0A 3Ly 524200 1612105 ¥ JZ760000 -1 76720y T04057E YGa7E
(| @y s0 i ¥ 0 ¥ ™y 4 ¥ 4§ ¥ I
1 S

Fig. 5.18. VHDL simulation of the three-stage CIC filter shown in Fig. 5.16.

would require many more LEs without the early downsampling. The early
downsampling saves 3 x 32 X 26 = 2496 registers or LEs.
If we compare the filter outputs (Fig. 5.18 shows the VHDL output y_out,
and the response y[n] from the MATLAB simulation shown in Fig. 5.17d we

see that the filter behaves as expected.

Hogenauer [106] noted, based on a careful analysis, that some of the lower
significant bits from early stages can be eliminated without sacrificing system
integrity. Figure 5.19 displays the system’s magnitude frequency response
for a design using full (worst-case) wordwidth in all stages, and using the

wordlength “pruning” policy suggested by Hogenauer.

5.3.3 Amplitude and Aliasing Distortion

The transfer function of an S-stage CIC filter was reported to be

0dB
All 26 bit ——
26,20,20,14,14,14 bit
-20 dB
-40 dB -
-60 dB

T T
1/64 2/64

ffi_s

Fig. 5.19. CIC transfer function (f s is sampling frequency

3/64

at the input).

5.3 Hogenauer CIC Filters 265

Aliasing components
/ \

¥ X
! /I \- Passband
I f,
S
l! Lo ‘
I Lo !
|
I ‘ (\- Aliasing bands
¥ /\
A M« ALAL
f/f, ™ f/f,

(a) (b)

Fig. 5.20. Transfer function of a three-stage CIC decimator. Note that fs is the
sampling frequency at the lower rate.

1— Z—RD S
Fz)=———F . 5.24
0= (=) (5.21)
The amplitude distortion and the maximum aliasing component can be com-

puted in the frequency domain by evaluating F(z) along the arc z = e/27/7
The magnitude response becomes

~ (sin2n fTRD/2) s
o= ()

which can be used to directly compute the amplitude distortion at the pass-
band edge wy,. Figure 5.20 shows |F(f — k55)| for a three-stage CIC filter
with R = 3, D = 2, and RD = 6. Observe that several copies of the CIC
filter’s low-frequency response are aliased in the baseband.

It can be seen that the maximum aliasing component can be computed
from |F(f)| at the frequency

(5.25)

f|AliaSing has maximum = 1/(2R) = fp. (5.26)

Most often, only the first aliasing component is taken into consideration,
because the second component is smaller. Figure 5.21 shows the amplitude
distortion at f, for different ratios of f,/(Dfs).

Figure 5.22 shows, for different values of S, R, and D, the maximum
aliasing component for a special ratio of passband frequency and sampling
frequency, fp/ fs-

266 5. Multirate Signal Processing

—*— 1 stage

70 —»— 2 stages
60 —-©— 3 stages
—— 4 stages

50}

= N W
o O O

Amplitude distortion at fpin dB
N
o

1128 1/64 1/32 1116 1/8 1/4
f /(fsD)

Fig. 5.21. Amplitude distortion for the CIC decimator.

It may be argued that the amplitude distortion can be corrected with a
cascaded FIR compensation filter, which has a transfer function 1/|F(z)| in
the passband, but the aliasing distortion can not be repaired. Therefore, the
acceptable aliasing distortion is most often the dominant design parameter.

5.3.4 Hogenauer Pruning Theory

The total internal wordwidth is defined as the sum of the input wordwidth
and the maximum dynamic growth requirement (5.23), or algebraically:

Bintern = Binput + Bgrowth- (527)

If the CIC filter is designed to perform exact arithmetic with this wordwidth
at all levels, no run-time overflow will occur at the output. In general, input
and output bit width of a CIC filter are in the same range. We find then
that quantization introduced through pruning in the output is, in general,
larger than quantization introduced by also pruning some LSBs at previous
stages. If 0%725 41 1s the quantization noise introduced through pruning in
the output, Hogenauer suggested to set it equal to the sum of the noise o7
introduced by all previous sections. For a CIC filter with S integrator and S
comb sections, it follows that:

25 25
D otk = oiFi <otasi (5.28)
k=1 k=1
2 I,
OoT K = QSUT,QS+1 (5.29)

P2 =Y (h[n])* k=12,...,28 (5.30)

n

5.3 Hogenauer CIC Filters 267

D=1
110} —*— 1 stage
100} —»— 2 stages
907 —©— 3 stages
o 80T —— 4 stages

701
60|
50}
407
30
20t
10

Aliasing ¢

1128 1/64 1/32 1/16 1/8 1/4
fp/fs

D=2

—k— 1 stage

—»— 2 stages
—-©— 3 stages
—+— 4 stages

2N

1128 1/64 1/32 1/16 1/8 1/4
fp/fS

110}
100}
90
o 80
70t
60
50
407
30
20}
107

Aliasing €

Fig. 5.22. Maximum aliasing for one- to four stage CIC decimator.

where P? is the power gain from stage k to the output. Compute next the
number of bits By, which should be pruned by

6
By, = {0.510g2 (P,;2 X 57 X a%,QSH)J (5.31)
1 1
2 — _~ 92Bx _ _~ 92(Bin—Bout+Bgrowth)
UTak k=2S+1 122 b= 122 € b (532)

The power gain P2,k = S+1,...,2S for the comb sections can be computed
using the binomial coefficient

25+1—-k
=3 o (35 74) e

n=0

268 5. Multirate Signal Processing

o[n] >|Int. | : | Int. | >|Int. | : | Int. H Co. | : | Co. | '| Co. | | Co. | > hi[n]
N
I—Pé gs[k]
0[n] >|Int.| >|Co. |“'|Int.| >|Co.| >|Co.| |Co.| > hin]
gx[n] (S — k +1) pairs (k—1) Corlnb sections

Fig. 5.23. Rearrangement to simplify the computation of P (©1995 VDI Press
(4]).

k=S,5+1,...,28. (5.33)

For computation of the first factor P? for k =1,2,...,S, it is useful to keep
in mind that each integrator/comb pair produces a finite (moving average)
impulse response. The resulting system for stage k is therefore a series of
S — k + 1 integrator /comb pairs followed by k& — 1 comb sections. Figure 5.23
shows this rearrangement for a simplified computation of P,CQ.

The program cic.exe (included on the CD-ROM under book3e/util)
computes this CIC pruning. The program produces the impulse response
cicXX.imp and a configuration file cicXX.dat, where XX must be specified.
The following design example explains the results.

Example 5.5: Three-Stages CIC Decimator 11

Let us design the same overall CIC filter as in Example 4 (p. 262) but this time
with bit pruning. The row data of the decimator were: Binput = 8, Boutput =
10, Bit R = 32, and D = 2. Obviously, the bit growth is

Bgrowth = [log,(RD®)] = log, (64%)[3 x 6] = 18, (5.34)
and the total internal bit width becomes
Bintern = Binput + Bgrowth =84 18 = 26. (535)

The program cic.exe shows the following results:

-= Input bit width Bin = 8
- Output bit width Bout = 10
- Number of stages S = 3
- Decimation factor R = 32
-- COMB delay D = 2
- Frequency resolution DR = 64
- Passband freq. ratio P = 8

—————————— Computed bit width:
—————————— Maximum bit growth over all stages

]
e
(¢}

- Maximum bit

COMB.
COMB.
COMB.

WNFPWN -

Maximum aliasing componen

INTEGRATOR.
INTEGRATOR.
INTEGRATOR.

width including sign Bmax+1

Bit
Bit
Bit
Bit
Bit
Bit

5.3 Hogenauer CIC Filters 269

width :

width :
width :
width :
width :

width :

Amplitude distortion

26
21
16
14
13
12

: 0.002135
: 0.729769

= 26

= 53.41 dB

2.74 dB

5.5

The design charts shown in Figs. 5.21 and 5.22 may also be used to com-
pute the maximum aliasing component and the amplitude distortion. If we
compare this data with the tables provided by Hogenauer then the aliasing
suppression is 53.4 dB (for Delay = 2 [106, Table II]), and the passband
attenuation is 2.74 dB [106, Table I]. Note that the Table I provided by
Hogenauer are normalized with the comb delay, while the program cic.exe

does not normalize with the comb delay.

The following design example demonstrates the detailed bit-width design,

using Quartus II.

Example 5.6: Three-Stage CIC Decimator III

The data for the design should be the same as for Example 5.4 (p. 262), but

we now consider the pruning as computed in Example 5.5 (p. 268).

The following VHDL code® shows the CIC example design with pruning.
LIBRARY ieee;
USE ieee.std_logic_1164.ALL;

USE ieee.std_logic_arith.ALL;

USE ieee.std_logic_signed.ALL;

ENTITY cic3s32 IS

PORT (clk, reset
x_in
clk2

y_

out

END cic3s32;

ARCHITECTURE fpga OF cic3s32 IS

SUBTYPE
SUBTYPE
SUBTYPE
SUBTYPE
SUBTYPE
SUBTYPE

TYPE

: IN STD_LOGIC;
: IN STD_LOGIC_VECTOR(7 DOWNTO O);

: 0UT STD_LOGIC;

: OUT STD_LOGIC_VECTOR(9 DOWNTO 0));

word26 IS STD_LOGIC_VECTOR(25
word21 IS STD_LOGIC_VECTOR (20
word16 IS STD_LOGIC_VECTOR(15
wordl4 IS STD_LOGIC_VECTOR(13
word13 IS STD_LOGIC_VECTOR(12
wordl2 IS STD_LOGIC_VECTOR(11

STATE_TYPE IS (hold, sample);

DOWNTO
DOWNTO
DOWNTO
DOWNTO
DOWNTO
DOWNTO

0);
0);
0);
0);
0);
0);

5 The equivalent Verilog code cic3s32.v for this example can be found in Ap-
pendix A on page 696. Synthesis results are shown in Appendix B on page 731.

270 5. Multirate Signal Processing
SIGNAL state : STATE_TYPE ;
SIGNAL count : INTEGER RANGE O TO 31;
SIGNAL x : STD_LOGIC_VECTOR(7 DOWNTO O0)
:= (OTHERS => ’0’); -- Registered input

SIGNAL sxtx : STD_LOGIC_VECTOR(25 DOWNTO O0);

-- Sign extended input
SIGNAL i0 : word26 := (OTHERS => ’0’); -- I section O
SIGNAL i1 : word21 := (OTHERS => ’0’); -- I section 1
SIGNAL i2 : wordl16 := (OTHERS => ’0’); -- I section 2
SIGNAL i2d1, i2d2, cl, cO : wordil4 := (OTHERS => ’0’);

-- I and COMB section O
SIGNAL cid1l, c1d2, c2 : wordl3 := (OTHERS=>’0’);--COMB 1
SIGNAL c2d1, c2d2, c3 : wordl2 := (OTHERS=>’0’);--COMB 2

BEGIN

FSM: PROCESS
BEGIN
IF reset ’1’ THEN
state <= hold;
count <= 0;
clk2 <= ’07;
ELSIF rising_edge(clk) THEN
IF count = 31 THEN
count <= 0;
state <= sample;
clk2 <= ’17;
ELSE
count <=
state <=
clk2 <=
END IF;
END IF;
END PROCESS FSM;

(reset, clk)

-- Asynchronous reset

count + 1;
hold;
)0);

Sxt : PROCESS (x)
BEGIN
sxtx (7 DOWNTO 0) <= x;
FOR k IN 25 DOWNTO 8 LOOP
sxtx(k) <= x(x’high);
END LOOP;
END PROCESS Sxt;

Int: PROCESS
BEGIN
WAIT
UNTIL clk = ’1’;
X <= x_in;
i0 <= i0 + x;

il
i2

<= il + i0(25 DOWNTO 5);
<= i2 + i1(20 DOWNTO 5);

--i.e.,
--i.e.,

END PROCESS Int;

i0/32
i1/32

Ricic3ssz.vwl

5.3 Hogenauer CIC Filters 271

=] S|

Master Time Ear‘

Ops

23830 Intervak | 2383 us Start End: |

|| Pointer|

Hame

Walus at
Ops

ps 256 us 512us 7BBus 1024us 128w 153w 172w 2048u BRw |

cle
reset
chz

@ win

®= v out

BO
B1

5127
S0

FREEE

|

1|

127

S B 6 1) §:ED i) CFE) £ SN A SR i SR (1)

Fig. 5.24. VHDL simulation of the three-stage CIC filter, implemented with bit

pruning.

Comb: PROCESS
BEGIN

END PROCESS

y_

END

WAIT UNTIL clk = ’1°;
IF state = sample THEN
c0 <= i2(15 DOWNTO 2); --i.e., i2/4
i2d1 <= c0;
i2d2 <= i2d1;
cl <= c0 - i2d2;
cldl <= c1(13 DOWNTO 1); --i.e., c1/2
cld2 <= ci1di;
c2 <= c1(13 DOWNTO 1) - c1d2;
c2d1l <= c2(12 DOWNTO 1); --i.e., c2/2
c2d2 <= c2d1i;
c3 <= c2(12 DOWNTO 1) - c2d2;
END IF;

Comb;
out <= c3(11 DOWNTO 2); --i.e., c3/4

fpga;

The design has the same architecture as the unscaled CIC shown in Example
5.4 (p. 262). The design consists of a finite state machine (FSM), a sign exten-
sion sxt: PROCESS, and two arithmetic PROCESS blocks. The FSM: PROCESS
contains the clock divider for the comb sections. The Int: PROCESS realizes
the three integrators. The Comb: PROCESS includes the three comb sections,
each having a delay of two. But now, all integrator and comb sections are
designed with the bit width suggested by Hogenauer’s pruning technique.
This reduces the size of the design to 205 LEs and the design now runs at

284.58 MHz.

This design does not improve the speed (282.17 versus 284.58 MHz), but
saves a substantial number of LEs (about 30%), compared with the design
considered in Example 5.4 (p. 262). Comparing the filter output of the VHDL
simulations, shown in Figs. 5.24 and 5.18 (p. 264), different LSB quantization
behavior can be noted (see Exercise 5.11, p. 338). In the pruned design,
“noise” possesses the asymptotic behavior of the LSB (507 < 508).

272 5. Multirate Signal Processing

The design of a CIC interpolator and its pruning technique is discussed
in Exercise 5.24, p. 340.

5.3.5 CIC RNS Design

The design of a CIC filter using the RNS was proposed by Garcia et al.
[49]. A three-stage CIC filter, with 8-bit input, 10-bit output, D = 2, and
R = 32 was implemented. The maximum wordwidth was 26 bits. For the
RNS implementation, the 4-moduli set (256, 63,61,59), i.e., one 8-bit two’s
complement and three 6-bit moduli, covers this range (see Fig. 5.25). The
output was scaled using an e-CRT requiring eight tables and three two’s
complement adders [43, Fig. 1], or (as shown in Fig. 5.26) using a base removal
scaling (BRS) algorithm based on two 6-bit moduli (after [42]), and an e-CRT
for the remaining two moduli, for a total of five modulo adders and nine
ROM tables, or seven tables (if multiplicative inverse ROM and the e-CRT
are combined). The following table shows the speed in MSPS and the number
of LEs and EABs used for the three scaling schemes for a FLEX10K device.

Type e-CRT BRS e-CRT BRS ¢-CRT
(Speed data for combined
BRS my4 only) ROM
MSPS 58.8 70.4 58.8
#LE 34 87 87
#Table (EAB) 8 9 7

The decrease in speed to 58.8 MSPS, for the scaling schemes 1 and 3, is
the result of the need for a 10-bit e-CRT. It should be noted that this does
not reduce the system speed, since scaling is applied at the lower (output)
sampling rate. For the BRS ¢-CRT, it is assumed that only the BRS my
part (see Fig. 5.26) must run at the input sampling rate, while BRS mg and
e-CRT run at the output sampling rate.

Some resources can be saved if a scaling scheme, similar to Example 5.5
(p. 268), and illustrated in Fig. 5.25, is used. With this scheme, the BRS
e-CRT scheme must be applied to reduce the bit width in the earlier sections
of the filter. The early use of ROMs decreases the possible throughput from
76.3 to 70.4 MSPS, which is the maximum speed of the BRS with my4. At the
output, the efficient e-CRT scheme was applied.

The following table summarizes the three implemented filter designs on a
FLEX10K device, without including the scaling data.

Type 2C RNS Detailed bit width
26-bit 8,6, 6, 6-bit RNS design
MSPS 49.3 76.3 70.4

#LEs 343 559 355

5.4 Multistage Decimator 273

I I I C C C &-CRT

| Output
8 8 8 10 bit
6 6|6 / -

BRS

BRS
N || =

N|N]|] o©

—_—]

Input
8 bit

NN V| ©

Fig. 5.25. CIC filter. Detail of design with base removal scaling (BRS).

BRS m, BRS m, e—CRT
X, |y X)), X X, | %, | ¢ 10
x— 5] '] LY
] ’_‘ ROM _i ROM
X, ’ X
— 1= s — 1= 6
S T e Ll e e B s WA V)
_* ROM — ROM
X4
—_— 1= 9
x3<m4 X0, X3
= ROM

Fig. 5.26. BRS and ¢-CRT conversion steps.

5.4 Multistage Decimator

If the decimation rate R is large it can be shown that a multistage design
can be realized with less effort than a single-stage converter. In particular,
S stages, each having a decimation capability of Ry, are designed to have
an overall downsampling rate of R = R1Rs --- Rg. Unfortunately, passband
imperfections, such as ripple deviation, accumulate from stage to stage. As a
result, a passband deviation target of €, must normally be tightened on the
order of ¢}, = £,/5 to meet overall system specifications. This is obviously a
worst-case assumption, in which all short filters have the maximum ripple at
the same frequencies, which is, in general, too pessimistic. It is often more

274 5. Multirate Signal Processing

reasonable to try an initial value near the given passband specification ¢,
and then selectively reduce it if necessary.

5.4.1 Multistage Decimator Design Using Goodman—Carey
Half-band Filters

Goodman and Carey [80] proposed to develop multistage systems based on
the use of CIC and half-band filters. As the name implies, a half-band filter
has a passband and stopband located at ws = wp = 7/2, or midway in the
baseband. A half-band filter can therefore be used to change the sampling
rate by a factor of two. If the half-band filter has point symmetry relative to
w = m/2, then all even coefficients (except the center tap) become zero.

Definition 5.7: Half-band Filter

The centered impulse response of a half-band filter obeys the following
rule

flkl=0 k = even without k& = 0. (5.36)
The same condition transformed in the z-domain reads

F(z)+ F(—z) =c, (5.37)
where ¢ € C. For a causal half-band filter this condition translates to

F(z) = F(=2) = cz7¢, (5.38)

since now all (except one) odd coefficients are zero.

Goodman and Carey [80] have compiled a list of integer half-band filters that,
with increased length, have smaller amplitude distortions. Table 5.3 shows
the coefficients of these half-band filters. To simplify the representation, the
coefficients were noted with a center tap located at d = 0. F1 is the moving-
average filter of length L, i.e., it is Hogenauer’s CIC filter, and may therefore
be used in the first stage also, to change the rate with a factor other than
two. Figure 5.27 shows the transfer function of the nine different filters. Note
that in the logarithmic plot of Fig. 5.27, the point symmetry (as is usual for
half-band filters) cannot be observed.

Table 5.3. Centered coefficients of the half-band filter F1 to F9 from Goodman
and Carey [80].

Name L Ripple f[0] f{1] — fB] f5] f[7 f[9]
F1 3 - 1 1

F2 3 - 2 1

F3 7 — 16 9 -1

F4 7 3dB 32 19 -3

F5 1 - 256 150 —25 3

F6 11 49dB 346 208 —44 9

F7 11 77dB 512 302 53 7

F8 15 65dB 802 490 -116 33 —6

F9 19 78dB 8192 5042 —1277 429 —-116 18

5.4 Multistage Decimator 275

0dB T 0dB i
S F4 ——
-10dB -10dB 6 -o--
%, O
N 8
-20dB -20dB B\pge
TR
= = v %
£ -sou T -30dB A
-40dB et -40dB L
LA Vel
-50dB: k- -50dB Ll \
P e
-60dB P -60dB —h
0O 20 40 60 80 100 120 140 160 180 0 20 40 60 80 100 120 140 160 180
Frequency in degree Frequency in degree

Fig. 5.27. Transfer function of the half-band filter F1 to F9.

The basic idea of the Goodman and Carey multistage decimator design is
that, in the first stages, filters with larger ripple and less complexity can be
applied, because the passband-to-sampling frequency ratio is relatively small.
As the passband-to-sampling frequency ratio increases, we must use filters
with less distortion. The algorithm stops at R = 2. For the final decimation
(R=2to R=1), alonger half-band filter must be designed.

Goodman and Carey have provided the design chart shown in Fig. 5.28.
Initially, the input oversampling factor R and the necessary attenuation in
the passband and stopband A = A, = A, must be computed. From this
starting point, the necessary filters for R, R/2, R/4,... can be drawn as a
horizontal line (at the same stopband attenuation). The filters F4 and F6-F9
have ripple in the passband (see Exercise 5.8, p. 337), and if several such
filters are used it may be necessary to adjust e,. We may, therefore, consider
the following adjustment

A= —20log e, for F1-F3, F5 (5.39)
80 9
75
L] 3 5
< 60 [~
o 1
o
250 -
m 6
40 - 4
30 -
20 |-
Oversampling ratio R
10 I I NN N N N N |

2 4 8 16 32 64 128 256 512
Fig. 5.28. Goodman and Carey design chart [80].

276

5. Multirate Signal Processing

80 9
7/5
70 3
8 2
1.02
oo+ !/ /SN V- _-__________
1
1.01
50 - 6
L 3z
40 4 g 1
30 -
/ 0.99
20 | / ***************
Oversampling ratio R 0.98
10 1 1 1 1 10 20 30 40
2 4 8 16 32 64 128 256 512 Frequency in degree
(a) (b)

Fig. 5.29. Design example for Goodman and Carey half-band filter. (a) Design
chart. (b) Transfer function |F(w)].

A = —20log,, min (%5) for F4, F6 F9, (5.40)

where S’ is the number of stages with ripple.

We will demonstrate the multistage design with the following example.

Example 5.8: Multistage Half-band Filter Decimator

We wish to develop a decimator with R = 160,¢, = 0.015, and €, = 0.031 =
30 dB, using the Goodman and Carey design approach.

At first glance, we can conclude that we need a total of five filters and mark
the starting point at R = 160 and 30 dB in Fig. 5.29a. From 160 to 32, we
use a CIC filter of length L = 5. This CIC filter is followed by two F2 filter
and one F3 filter to reach R = 8. Now we need a filter with ripple. It follows
that

0.015

A = —20log,, min (, 0.031) = 36.48 dB. (5.41)

From Fig. 5.28, we conclude that for 36 dB the filter F4 is appropriate. We
may now compute the whole filter transfer function |F'(w)| by using the No-
ble relation (see Fig. 5.6, p. 249) F(2) = F1(2)F2(2°)F2(2'°)F3(2%°)F4(2"°),
who’s passband is shown in Fig. 5.29b. Figure 5.29a shows the design algo-
rithm, using the design chart from Fig. 5.28.

Example 5.8 shows that considering only the filter with ripple in (5.40)

was sufficient. Using a more pessimistic approach, with S = 6, we would have
obtained A = —2010g(0.015/6) = 52 dB, and we would have needed filter F'8,
with essentially higher effort. It is therefore better to start with an optimistic
assumption and possibly correct this later.

5.5 Frequency-Sampling Filters as Bandpass Decimators 277

X[n] —| Poles | -+ —{ Poles —)Jo—» Comb| Comb yln]

Fig. 5.30. Cascading of frequency-sampling filters to save a factor of R delays for
multirate signal processing [4, Sect. 3.4].

5.5 Frequency-Sampling Filters as Bandpass Decimators

The CIC filters discussed in Sect. 5.3 (p. 256) belong to a larger class of
systems called frequency-sampling filters (FSFs). Frequency-sampling filters
can be used, as channelizer or decimating filter, to decompose the information
spectrum into a set of discrete subbands, such as those found in multiuser
communication systems. A classic FSF consists of a comb filter cascaded with
a bank of frequency-selective resonators [4, 65]. The resonators independently
produce a collection of poles that selectively annihilate the zeros produced
by the comb prefilter. Gain adjustments are applied to the output of the
resonators to shape the resulting magnitude frequency response of the overall
filter. An FSF can also be created by cascading all-pole filter sections with
all-zero filter (comb) sections, as suggested in Fig. 5.30. The delay of the
comb section, 1 £ 2z~ P, is chosen so that its zeros cancel the poles of the all-
pole prefilter as shown in Fig. 5.31. Wherever there is a complex pole, there
is also an annihilating complex zero that results in an all-zero FIR, with the
usual linear-phase and constant group-delay properties.

Frequency-sampling filters are of interest to designers of multirate filter
banks due, in part, to their intrinsic low complexity and linear-phase behav-
ior. FSF designs rely on exact pole-zero annihilation and are often found in
embedded applications. Exact FSF pole-zero annihilation, can be guaranteed
by using polynomial filters defined over an integer ring using the two’s com-
plement or the residue number system (RNS). The poles of an FSF filter
developed in this manner can reside on the periphery of the unit circle. This
conditionally unstable location is acceptable, due to the guarantee of exact
pole-zero cancellation. Without this guarantee, the designer would have to
locate the poles of the resonators within the unit circle, with a loss in per-
formance. In addition, by allowing the FSF poles and zeros to reside on the
unit circle, a multiplier-less FSF can be created, with an attendant reduction
in complexity and an increase in data bandwidth.

278 5. Multirate Signal Processing

Im z-plane Im z-plane

%\ Re Re

Pole/Zero plot Pole/Zero plot
[H(e'™")|
0dB—
-20 dB—
-40 dB‘\: | | | | |
0 fal6 2fal6 3f/6 4fal6 5fal6 fa
Frequency

Transfer function

Fig. 5.31. Example of pole/zero-compensation for a pole angle of 60° and comb
delay D = 6.

Consider the filter shown in Fig. 5.30. It can be shown that first-order fil-
ter sections (with integer coefficients) produce poles at angles of 0° and 180°.
Second-order sections, with integer coeflicients, can produce poles at angles
of 60°, 90°, and 120°, according to the relationship 2 cos(2rK/D)=1, 0, and
—1. The frequency selectivity of higher-order sections is shown in Table 5.4.
The angular frequencies for all polynomials having integer coefficients with
roots on the unit circle, up to order six, are reported. The building blocks
listed in Table 5.4 can be used to efficiently design and implement such FSF
filters. For example, a two’s complement (i.e., RNS single modulus) filter
bank was developed for use as a constant-() speech processing filter bank. It
covers a frequency range from 900 to 8000 Hz [109, 110], using 16 kHz sam-
pling frequency. An integer coefficient half-band filter HB6 [80] anti-aliasing

5.5 Frequency-Sampling Filters as Bandpass Decimators 279

Table 5.4. Filters with integer coefficients producing unique angular pole locations
up to order six. Shown are the filter coefficients and nonredundant angular locations
of the roots on the unit circle.

Ck (Z) Order ap a1 a2 a3 a4 a5 Qas 91 92 93

—Ci(2) 11 -1 0°

Ca(2) 111 180°

Cs(2) 2 1 -1 1 60°

Ca(z) 2 1 0 1 90°

Cs(z) 2 11 1 120°

Ci2(2) 4 1 0 -1 0 1 30° 150°

Cio(z) 4 1 -1 1 -1 1 36° 108°

Cs(2) 4 1 .0 0 0 1 45° 135°

Cs(z) 4 1 1 1 1 1 72° 144°

Ci6(2) 6 1 0 0 -1 0 0 1 20.00° 100.00° 140.00°

Ch4(2) 6 1 -1 1 -1 1 -1 1 2571° 77.14° 128.57°

C7(z) 6 1 1 1 1 1 1 1 51.42° 102.86° 154.29°

Cy(z) 6 1 0 0 1 0 0 1 40.00° 80.00° 160.00°
x[n] -1 A/D HB6 I({I]|I 3x|D= 4 3x|D= 5

90° 120°] | 180°f | 72° | |51.4° 36° 20° | |25.7°
D=40] |D=33| |D=14| |D=40]| |[D=49]| |D=60] |D=90] |D=70

R

E6 E7 ES8 ES5 E4 E3 El E2

Fig. 5.32. Design of a filter bank consisting of a half-band and CIC prefilter and
FSF comb-resonator sections.

filter and a third-order multiplier-free CIC filter (also known as Hogenauer
filter [106] see Sect. 5.3, p. 256), was then added to the design to suppress
unwanted frequency components, as shown in Fig. 5.32. The bandwidth of
each resonator can be independently tuned by the number of stages and de-
lays in the comb section. The number of stages and delays is optimized to
meet the desired bandwidth requirements. All frequency-selective filters have
two stages and delays.

The filter bank was prototyped using a Xilinx XC4000 FPGA with the
complexity reported in Table 5.5. Using high-level design tools (XBLOCKS
from Xilinx), the number of used CLBs was typically 20% higher than the

280 5. Multirate Signal Processing

Table 5.5. Number of CLBs used in Xilinx XC4000 FPGAs (notation: F20D90
means filter pole angle 20.00°, delay comb D = 90). Total: actual 1572 CLBs,
nonrecursive FIR: 11292 CLBs

F20D90 F25D70 F36D60 F51D49 F72D40 F90D40

Theory 122 184 128 164 124 65
Practice 160 271 190 240 190 93
Nonre. FIR 2256 1836 1924 1140 1039 1287

F120D33 F180D14 HB6 111 D4 D5
Theory 86 35 122 31 24 24
Practice 120 53 153 36 33 33
Nonre. FIR 1260 550

theoretical prediction obtained by counting adders, flip-flops, ROMs, and
RAMs.

The design of an FSF can be manipulated by changing the comb delay,
channel amplitude, or the number of sections. For example, adaptation of
the comb delay can easily be achieved because the CLBs are used as 32 x 1
memory cells, and a counter realizes specific comb delays with the CLB used
as a memory cell.

5.6 Design of Arbitrary Sampling Rate Converters

Most sampling rate converters can be implemented via a rational sampling
rate converter system as already discussed. Figure 5.7, p. 249 illustrates the
system. Upsampling by R; is followed by downsampling Ry. We now discuss
different design options, ranging from IIR, FIR filters, to Lagrange and spline
interpolation.

To illustrate, let us look at the design procedure for a rational factor
change in the sampling rate with interpolation by R; = 3 followed by a
decimation by Ry =4, i.e., a rate change by R = R1/Ry = 3/4 =0.75.

Example 5.9: R = 0.75 Rate Changer I

An interpolation by 3 followed by a decimation by 4 with a centered lowpass
filter has to be designed. As shown in Fig. 5.7, p. 249 we only need to im-
plement one lowpass with a cut-off frequency of min(7%, 7) = 7. In MATLAB
the frequencies in the filter design procedures are normalized to f2/2 = 7
and the design of a tenth order Chebyshev II filter with a 50 dB stopband

attenuation is accomplished by
[B, Al = cheby2(10,50,0.25)
A Chebyshev II filter was chosen because it has a flat passband, ripple in

the stopband, and moderate filter length and is therefore a good choice in
many applications. If we want to reduce the filter coefficient sensitivity to

5.6 Design of Arbitrary Sampling Rate Converters 281

(a) Original signal (c) Downsample R=3/4
100 100
80 1 80

E 60 _E’ 60

@ =

g)

£ 40 1 S a0t

= £

€ [

shool ? shooal Po o
0 5 10 15 20 5 10 15 20

Sample index n Sample index m

(b) Upsampled R1=3

100 T T T
—© Upsampled
80 —— filtered B
S
< 60F B
)
kel
2 40 =
[=%
€
< 20 T T =
o] ? ? 5662
| | | | | |
0 10 20 30 40 50 60 70

Sample index u

Fig. 5.33. IIR filter simulation of rational rate change. (a) Original signal (b)
upsampled and filtered version of the original signal. (c) Signal after downsampling.

quantization, we can use an implementation form with biquad sections rather
than the direct forms, see Example 4.2 (p. 227). In MATLAB we use

[S0S, gain]=tf2sos(B,A)
Using this IIR filter we can now simulated the rational rate change. Figure
5.33 shows a simulation for a triangular test signal. Figure 5.33a shows the

original input sequence. (b) the signal after upsampling by 3 and after filtering
with the IIR filter, and (c) the signal after downsampling.

Although the rational interpolation via an IIR filter is not perfect we
notice that the triangular shape is well preserved, but ringing of the filter
next to the triangle when the signal should be zero can be observed. We
may ask if the interpolation can be improved if we use an exact lowpass
that we can build in the frequency domain. Instead of using the IIR filter
in the time domain, we may try to interpolate by means of a DFT/FFT-
based frequency method [111]. In order to keep the frame processing simple
we choose a DFT or FFT whose length IV is a multiple of the rate change
factors, i.e., N = k x Ry x Ry with k& € N. The necessary processing steps
can be summarized as follows:

282 5. Multirate Signal Processing

Algorithm 5.10: Rational Rate Change using an FFT

The algorithm to compute the rate change by R = R;/R» via an FFT is

as follows:

1) Select a block of k x Ry samples.

2) Interpolate with (Ry — 1) zeros between each sample.

3) Compute the FFT of size N = k X Ry X Ra.

4) Apply the lowpass filter operation in the frequency domain.

5) Compute the IFFT of size N = k x Ry x Ro.

6) Compute finally the output sequence by downsampling by Ry, i.e.,
keep k x Ry samples.

Let us illustrate this algorithm with a small numerical example.

Example 5.11: R = 0.75 Rate Changer 11

Let us assume we have a triangular input sequence z to interpolate by R =

Ri/R; = 3/4 =0.75. and we select k = 1. The steps are as follows:

1) Original block z = (1,2, 3,4).

2) Interpolation 3 gives z; = (1,0,0,2,0,0,3,0,0,4,0,0).

3) The FFT gives X; = (10,2 + j2,-2,2 — j2,10, -2 + j2,—2,—2 —
i2,10, -2 +j2, -2, —2 — j2).

4) The Lowpass filter operation in the frequency domain. X, = (10, -2 +
j2,-2,0,0,0,0,0,0,0, -2, —2 — j2).

5) Compute the IFFT, y = 3 x ifft(Xjp).

6) Downsampling finally gives y = (0.5000, 2.6340, 4.3660).

Let us now apply this block processing to the triangular sequence shown
in Fig. 5.34a. From the results shown in Fig. 5.34b we notice the border effects
between the blocks when compared with the FFT interpolation results with
full-length input data as shown in Fig. 5.34d. This is due to the fact that the
underlying assumption of the DFT is that the signals in time and frequency
are periodic. We may try to improve the quality and reduce the border dis-
turbance by applying a window function that tapers smoothly to zero at the
borders. This will however also reduce the number of useful samples in our
output sequence and we need to implement an overlapping block processing.
This can be improved by using longer (i.e., k > 1) FFTs and removing the
leading and tailing samples. Figure 5.34c shows the result for £ = 2 with
removal of 50% of the lead and tail samples. We may therefore ask, why not
using a very long FFT, which produces the best results, as can be seem from
full length FFT simulation result as shown in Fig. 5.34d? The reason we
prefer the short FFT comes from the computational perspective: the longer
FFT will require more effort per output sample. Although with &£ > 1 we
have more output values per FFT available and overall need fewer FFTs, the
computational effort per sample of a radix-2 FFT is 1d(N)/2 complex multi-
plications, because the FFT requires 1d(N)N/2 complex multiplications for

5.6 Design of Arbitrary Sampling Rate Converters 283

(a) Original signal (b) No overlap
100 100
80 1 80 ¢
= 60} £ e
3 3
2 aof 1 2 4
g £
20t T T 1 < 2 T T
o i ? o ¢ ?
5 10 15 20 25 0 5 10 15 20
Sample index n Sample index m
(c) 2 x overlap (d) Full length FFT
100 100
80t 9 1 80 9
E; 60 % 60
(0] ()
3 s
£ 40r 1 £ 40
[=% [=%
£ £
< 20} T 1 < 2 T T
ore QQ T ? QOO 0 OT T Q
0 5 10 15 20 0 5 10 15 20
Sample index m Sample index m

Fig. 5.34. FFT based rational rate change. (a) Original signal (b) Decimation
without overlap. (c) 50% overlap. (c) Full length FFT.

the N-point radix-2 FFT. A short FFT reduces therefore the computational
effort.

Given the contradiction that longer FFTs are used to produce a better
approximation while the computational effort requires shorter FFTs, we now
want to discuss briefly what computational simplifications can be made to
simplify the computation of the two long FFTs in Algorithm 5.10. Two major
savings are basically possible.

The first is in the forward transform: the interpolated sequence has many
zeros, and if we use a Cooley—Tuckey decimation-in-time-based algorithm,
we can group all nonzero values in one DFT block and the remaining k(R; x
Rs — Ry) in the other Ry — 1 groups. Then basically only one FFT of size
k x Ro needs to be computed compared with the full-length N = k x Ry X Rs
FFT.

The second simplification can be implemented by computing the down-
sampling in the frequency domain. For downsampling by two we compute

Fla(k) = F(k) + F(k + N/2) (5.42)

284 5. Multirate Signal Processing

for all & < N/2. The reason is that the downsampling in the time domain
leads to a Nyquist frequency repetition of the base band scaled by a factor
of 2. In Algorithm 5.10 we need downsampling by a factor Ry, which we
compute as follows

Fig,(k) = F(k+nN/Ry). (5.43)

If we now consider that due to the lowpass filtering in the frequency domain
many samples are set to zero, the summations necessary in (5.43) can be
further reduced. The TFFT required is only of length k x R;.

To illustrate the saving let us assume that the implemented FFT and
IFFT both require 1d(N)N/2 complex multiplications. The modified algo-
rithm is improved by a factor of

2k (kR Ry)

F= . (5.44)

MUld(kRy) + HE21d(kRs)

For the simulation above with R = 3/4 and 50% overlap we get

1d(24)24
F= = 5.57. 5.45
1d(6)6/2 4 1d(8)8/2 ()
If we can use the Winograd short-term DFT algorithms (see Sect. 6.1.6,
p. 359) instead of the Cooley—Tuckey FFT the improvement would be even
larger.

5.6.1 Fractional Delay Rate Change

In some applications the input and output sampling rate quotients are close
to 1, as in the previous example with R = 3/4. As another examples consider
a change from the CD rate (44.1 kHz) to DAT player rate (48 kHz), which
requires a rational factor change factor of R = 147/160. In this case the
direct approach using a sampling rate interpolation followed by a sampling
rate reduction would required a very high sampling rate for the lowpass
interpolation filter. In case of the CD—DAT change for instance the filter
must run with 147 times the input sampling rate.

01234567891011

Input

rate ®) S x[n] ylm]

Output | | | Raet 00 = pldmin
ol)

rate

Fig. 5.35. (a) Input and output sampling grid for fractional delay rate change. (b)
Filter configuration for R = 3/4 sinc filter system.

5.6 Design of Arbitrary Sampling Rate Converters 285

(a) Delay=3.6 (b) Delay=5 (c) Delay=6.3
1 1 1
0.8 0.8 0.8
0.6 0.6 0.6
(0]
S 04 0.4 0.4
S
g 02 0.2 0.2
<<
oL AN N AN O oo /2 Ia
RURTEAIN A IS BN AR B
-0.2 -0.2 -0.2
-0.4 -0.4 -0.4
0 5 10 0 5 10 0 5 10
Sample index n Sample index n Sample index n

Fig. 5.36. Fractional delay filter with delays D =5 —4/3,5, and 5+ 4/3.

In these large- Ry cases we may consider implementation of the rate change
with the help of fractional delays. We will briefly review the idea and then
discuss the HDL code for two different versions. The idea will be illustrated by
a rate change of R = 3/4. Figure 5.35a shows the input and output sampling
grid for a system. For each block of four input values, the system computes
three interpolated output samples. From a filter perspective we need three
filters with unit transfer functions: one filter with a zero delay and two filters
that implement the delays of D = +4/3. A filter with unit frequency is a
sinc or sin(t)/t = sinc(t) filter in the time domain. We must allow an initial
delay to make the filter realizable, i.e., causal. Figure 5.35b shows the filter
configuration and Fig. 5.35 shows the three length-11 filter impulse responses
for the delays 5 —4/3 = 3.6,5, and 5 +4/3 = 6.3.

We can now apply these three filters to our triangular input signal and for
each block of four input samples we compute three output samples. Figure
5.37c shows the simulation result for the length-11 sinc filter. Figure 5.37b
shows that length-5 filters produce too much ripple to be useful. The length-
11 sinc filters produce a much smoother triangular output, but some ripple
due to the Gibbs phenomenon can be observed next to the triangular function
when the output should be zero.

Let us now have a look at the HDL implementation of the fractional delay
rate changer using sinc filters.

Example 5.12: R= 0.75 Rate Changer III

The following VHDL code” shows the sinc filter design for an R = 3/4 rate
change.
PACKAGE n_bits_int IS -- User-defined types
SUBTYPE BITS8 IS INTEGER RANGE -128 TO 127;
SUBTYPE BITS9 IS INTEGER RANGE -2%%8 TO 2%*8-1;
SUBTYPE BITS17 IS INTEGER RANGE -2%%16 TO 2%*16-1;

" The equivalent Verilog code rc sinc.v for this example can be found in Ap-
pendix A on page 697. Synthesis results are shown in Appendix B on page 731.

286 5. Multirate Signal Processing
(a) Original signal (b) sinc L=5
100 100
80 80t 00
= 60 S 6o} * ¥
8 3 o o
=} =3
£ 40 £ 40r o] ¢
[=% Q.
£ S
< 20 T T < 20} * *
o ?] ofooxo® O6%00%0]
0 10 20 30 0 10 20 30
Sample index n D=—4/3 Sample index m
(c) sinc L=11 D=0 (d) Lagrange filter L=4
100 ‘ ‘ D=4/3 ‘ ‘
80 o 80 oo
T © S
= 60 * * = 60 * *
3 < 3 o o
% 40 o o % 40
g o g © ¢
< 20 * * < 20 * *
© ¢ e}
0tO*00O*00 O%x00 0*0O*0o O*x OO *q
0 10 20 30 0 10 20 30

Sample index m

Sample index m

Fig. 5.37. Fraction delay interpolation (a) Original signal (b) Filtering with sinc
filter of length 5. (c) Filtering with sinc filter of length 11. (d) Interpolation using
Lagrange interpolation.

TYPE ARRAY_BITS8_11 IS ARRAY (0 TO 10) of BITSS;
TYPE ARRAY_BITS9_11 IS ARRAY (O TO 10) of BITS9;

TYPE ARRAY_BITS8_3

IS ARRAY (0 TO 2) of BITSS8;

TYPE ARRAY_BITS8_4 IS ARRAY (0 TO 3) of BITSS8;
TYPE ARRAY_BITS17_11 IS ARRAY (0 TO 10) of BITS17;

END n_bits_int;

LIBRARY work;
USE work.n_bits_int.ALL;

LIBRARY ieee;

USE ieee.std_logic_1164.ALL;

USE ieee.std_logic_arith.ALL;
USE ieee.std_logic_signed.ALL;

ENTITY rc_sinc IS

GENERIC (OL : INTEGER :
IL : INTEGER :
L : INTEGER :=

)

2; -
3; —-— Input buffer length -1
10 -- Filter length -1

Output

______ > Interface
buffer length -1

5.6 Design of Arbitrary Sampling Rate Converters 287

PORT (clk : IN STD_LOGIC;
x_in : IN BITSS;
reset : IN STD_LOGIC;
count_o : OUT INTEGER RANGE O TO 12;
ena_in_o, ena_out_o,ena_io_o : OUT BOOLEAN;
fO0_o, fi1_o, f2_o : 0UT BITS9;
y_out : OUT BITS9);

END rc_sinc;
ARCHITECTURE fpga OF rc_sinc IS

SIGNAL count : INTEGER RANGE O TO 12; -- Cycle R_1*R_2
SIGNAL ena_in, ena_out, ena_io : BOOLEAN; -- FSM enables
-- Constant arrays for multiplier and taps:
CONSTANT cO : ARRAY_BITS9_11
(-19,26,-42,106,212,-53,29,-21,16,-13,11) ;
CONSTANT c2 : ARRAY_BITS9_11

:= (11,-13,16,-21,29,-53,212,106,-42,26,-19) ;
SIGNAL x : ARRAY_BITS8_11 := (0,0,0,0,0,0,0,0,0,0,0);

-- TAP registers for 3 filters

SIGNAL ibuf : ARRAY_BITS8_4 := (0,0,0,0); -- in registers
SIGNAL obuf : ARRAY_BITS8_3 := (0,0,0); -- out registers
SIGNAL fo, f1, £f2 : BITS9 := 0; -- Filter outputs
BEGIN
FSM: PROCESS (reset, clk) = ------ > Control the system
BEGIN -- sample at clk rate
IF reset = ’1’ THEN -- Asynchronous reset

count <= 0;
ELSIF rising_edge(clk) THEN
IF count = 11 THEN
count <= 0;
ELSE
count <= count + 1;
END IF;
CASE count IS
WHEN 2 | 56 | 8 | 11 =>
ena_in <= TRUE;
WHEN others =>
ena_in <= FALSE;
END CASE;
CASE count IS
WHEN 4 | 8 =>
ena_out <= TRUE;
WHEN others =>
ena_out <= FALSE;
END CASE;
IF COUNT = O THEN
ena_io <= TRUE;
ELSE
ena_io <= FALSE;
END IF;

288 5. Multirate Signal Processing

END IF;
END PROCESS FSM;

INPUTMUX: PROCESS -——-——- > One tapped delay line
BEGIN
WAIT UNTIL clk = ’1°;
IF ENA_IN THEN
FOR I IN IL DOWNTO 1 LOOP

ibuf (I) <= ibuf(I-1); -- shift one
END LOOP;
ibuf (0) <= x_in; -- Input in register 0
END IF;

END PROCESS;

OUPUTMUX: PROCESS —-——--- > One tapped delay line
BEGIN

WAIT UNTIL clk = ’1°;

IF ENA_IO THEN -- store 3 samples in output buffer

obuf (0) <= f0 ;
obuf (1) <= f1;
obuf (2) <= f2 ;

ELSIF ENA_QUT THEN
FOR I IN OL DOWNTO 1 LOOP

obuf (I) <= obuf(I-1); -- shift one

END LOOP;

END IF;

END PROCESS;

TAP: PROCESS -—-—-———- > One tapped delay line
BEGIN -- get 4 samples at one time
WAIT UNTIL clk = ’1°;
IF ENA_IO THEN
FOR I IN O TO 3 LOOP -- take over input buffer
x(I) <= ibuf(I);

END LOOP;
FOR I IN 4 TO 10 LOOP -- 0->4; 4->8 etc.
x(I) <= x(I-4); -- shift 4 taps
END LOOP;
END IF;

END PROCESS;

SOPO: PROCESS (clk, x) --> Compute sum-of-products for fO
VARIABLE sum : BITS17;
VARIABLE p : ARRAY_BITS17_11;
BEGIN
FOR I IN O TO L LOOP -- Infer L+1 multiplier
p(I) := cO(D) * x(I);

END LOOP;

sum := p(0);

FOR I IN 1 TO L LOOP -- Compute the direct
sum := sum + p(I); -- filter adds

END LOOP;

IF clk’event and clk = ’1’ THEN

5.6 Design of Arbitrary Sampling Rate Converters 289

f0 <= sum /256;
END IF;
END PROCESS SOPO;

SOP1: PROCESS (clk, x) --> Compute sum-of-products for fil

BEGIN
IF clk’event and clk = ’1’ THEN
f1 <= x(5); -- No scaling, i.e. unit inpulse
END IF;

END PROCESS SOP1;

SOP2: PROCESS (clk, x) --> Compute sum-of-products for f2
VARIABLE sum : BITS17;
VARIABLE p : ARRAY_BITS17_11;
BEGIN
FOR I IN O TO L LOOP -- Infer L+1 multiplier
p(D) = c2(I) * x(I);

END LOOP;

sum := p(0);

FOR I IN 1 TO L LOOP -- Compute the direct
sum := sum + p(I); -- filter adds

END LOOP;

IF clk’event and clk = ’1’ THEN
f2 <= sum /256;
END IF;
END PROCESS SO0P2;

f0_o <= £0; -- Provide some test signal as outputs
fl_o <= f1;
f2_o <= £2;

count_o <= count;
ena_in_o <= ena_in;
ena_out_o <= ena_out;
ena_io_o <= ena_io;

y_out <= obuf(OL); -- Connect to output

END fpga;

The first PROCESS is the FSM, which includes the control flow and generation
of the enable signals for the input and output buffers, and the enable signal
ena_io for the three filters. The full round takes 12 clock cycles. The next
three PROCESS blocks include the input buffer, output buffer, and the TAP
delay line. Note that only one tapped delay line is used for all three filters.
The final three PROCESS blocks include the sinc filter. The output y_out was
chosen to have an additional guard bit. The design uses 448 LEs, 19 embedded
multiplier and has a 61.93 MHz Registered Performance.

A simulation of the filter is shown in Fig. 5.38. The simulation first shows the
control and enable signals of the FSM. A triangular input x_in is used. The
three filter outputs only update once every 12 clock cycles. The filter output
values (£0,f1,£2) are arranged in the correct order to generate the output
y_out. Note that the filter values 20 and 60 from f1 appear unchanged in the
output sequence, while the other values are interpolated.

290 5. Multirate Signal Processing

Rirc_sinc.vwf =10l x|
Master Time Bar: | Ops «| > Painter:| 501 us Interval: | 501 us Sta;| End

ps 8000 ns 16us 24us 32us 40us 4Bus 56 us Bdus 72us Blus BEUS‘
Yale at i i i 3 i ? i i 3 i ?

Ops [0Fs

Name

> clk BO

IE reset g1

AR R (0 205 20 33 (8 2098 380,95 REA.58 Hea0 A8 AE AL TE 73 B0 WA TS 3308 TEIY B 0590 IS 08 SUAE AT 050 $EaU I8
2 [N IS Y O O O B B p B B p B
(D] enioo 80 [T 3l n n mn mn 3l n

| enaous B0 1N N n 1 n n_n n_n 1N !
@ H_in 50 1] 020 30 3740 3 B0 B0 70 B0 (700 B0) 50 40 (30 20 10 [1]

=2 o 1] i ¥ T y Eil W 73) 4 17 Y 7 Y]

= H_o S0 1] b o0 W E0 Y 70 b4]

|] 2o 50 [b 7 b4 7 b 73 ¥ 31) 4 a ¥
i y_out 50 a -1 7 20 il a7] 73 [1] 47 H 20 7 -1
K — |

Fig. 5.38. VHDL simulation of the R = 3/4 rate change using three sinc filter.

Notice that in this particular case the filters are implemented in the direct
rather than in the transposed form, because now we only need one tapped
delay line for all three filters. Due to the complexity of the design the coding
style for this example was based more on clarity than efficiency. The filters can
be improved if MAG coding is used for the filter coefficients and a pipelined
adder tree is applied at the filter summations, see Exercise 5.15 (p. 338).

5.6.2 Polynomial Fractional Delay Design

The implementation of the fractional delay via a set of lowpass filters is
attractive as long as the number of delays (i.e., nominator R; in the rate
change factor R = R;/R> to be implemented) is small. For large R; how-
ever, as for examples required for the CD—DAT conversion with rate change
factor R = 147/160, this implies a large implementation effort, because 147
different lowpass filters need to be implemented. It is then more attractive to
compute the fractional delay via a polynomial approximation using Lagrange
or spline polynomials [112, 113]. An N-point so-called Lagrange polynomial
approximation will be of the type:

p(t) = co+ert + ot + ..+ enoitN (5.46)

where typically 3-4 points should be enough, although some high-quality
audio application use up to 10 terms [114]. The Lagrange polynomial ap-
proximation has the tendency to oscillate at the ends, and the interval to be
estimated should be at the center of the polynomial. Figure 5.39 illustrates
this fact for a signal with just two nonzero values. It can also be observed
that a length-4 polynomial already gives a good approximation for the cen-
ter interval, i.e., 0 < n < 1, and that the improvement from a length-4 to
a length-8 polynomial is not significant. A bad choice of the approximation
interval would be the first or last interval, e.g., the range 3 < n < 4 for a
length-8 polynomial. This choice would show large oscillations and errors.
The input sample set in use should therefore be placed symmetric around

5.6 Design of Arbitrary Sampling Rate Converters 291

T T T T T
6 | —© Samples
| — — — Length-4 polynomial
Length-8 polynomial

/

0
1+ B
2k \ X B
| | | | | | ! | | | |
4 5 6

Sample index n

Amplitude
n
T

Fig. 5.39. Polynomial approximation using a short and long polynomial.

the interval for which the fractional delay should be approximated such that
0 < d < 1. We use input samples at times —N/2—1, ..., N/2. For four points
for example we will use input samples at —1,0, 1, 2. In order to fit the poly-
nomial p(t) through the sample points we substitute the sample times and
x(t) values into (5.46) and solve this equation for the coefficients cj. This
matrix equation Ve = x leads to a so-called Lagrange polynomial [78,; 112]
and for N = 4, for instance, we get:

1 t,1 t2_1 t3_1 Co LL'(TL — 1)

1 t() t(Q) tg C1 o x(n)

1t 2 6 ey | T x(n+1) (5.47)
1ty t3 83 3 x(n + 2)

with ¢z = k; we need to solve this equation for the unknown coefficients
cn. We also notice that the matrix for the t; is a Vandermonde matrix a
popular matrix type we also use for the DFT. Each line in the Vandermonde
matrix is constructed by building the power series of a basic element, i.e.,

tfg =1,t, ti, Substitution of the t; and matrix inversion leads to
co 1-11-17"" [a(n—1)
aal 1000 o x(n)
2| 1111 x(n+1)
c3 1248 x(n+2)

292 5. Multirate Signal Processing

Co C, Cy Cs
Cs C C (10
2 3
vy \—|>+é>—>.<£—|>+@.p<d>
p(d) d d d
(a) (b)

Fig. 5.40. Fractional delay via an N = 4 polynomial approximation. (a) Direct
implementation. (b) Farrow structure.

01 0 0 x(n —1)
1 _1 1 _1 x(n)

= 3 2 61 x 5.48
A I o
6 2 "2 6 z(n +2)

For each output sample we now need to determine the fractional delay
value d, solve the matrix equation (5.48), and finally compute the polynomial
approximation via (5.46). A simulation using the Lagrange approximation is
shown in Fig. 5.37d, p. 286. This give a reasonably exact approximation,
with little or no ripple in the Lagrange approximation, compared to the sinc
design next to the triangular values where the input and output values are
supposed to be zero.

The polynomial evaluation (5.46) can be more efficiently computed if we
use the Horner scheme instead of the direct evaluation of (5.46). Instead of

p(d) = co + crd + c2d® + c3d® (5.49)
we use for N = 4 the Horner scheme
p(d) = co + d(c1 + d(ca + c3d)). (5.50)

The advantage is that we do not need to evaluate the power of d* values.
This was first suggested by Farrow [115] and is therefore called in the litera-
ture the Farrow structure [116, 117, 118, 119]. The Farrow structure for four
coefficients is shown in Fig. 5.40b.

Let use now look at an implementation example of the polynomial frac-
tional delay design.

Example 5.13: R = 0.75 Rate Changer IV

The following VHDL code® shows the Farrow design using a Lagrange poly-
nomial of order 3 for a R = 3/4 rate change.
PACKAGE n_bits_int IS -- User-defined types
SUBTYPE BITS8 IS INTEGER RANGE -128 TO 127;
SUBTYPE BITS9 IS INTEGER RANGE -2%%8 TO 2%x8-1;
SUBTYPE BITS17 IS INTEGER RANGE -2%%16 TO 2%*16-1;
TYPE ARRAY_BITS8_4 IS ARRAY (0 TO 3) of BITSS;

& The equivalent Verilog code farrow.v for this example can be found in Ap-
pendix A on page 697. Synthesis results are shown in Appendix B on page 731.

5.6 Design of Arbitrary Sampling Rate Converters 293

END n_bits_int;

LIBRARY work;
USE work.n_bits_int.ALL;

LIBRARY ieee;

USE ieee.std_logic_1164.ALL;
USE jeee.std_logic_arith.ALL;
USE ieee.std_logic_signed.ALL;

ENTITY farrow IS ~ —=———— > Interface
GENERIC (IL : INTEGER := 3); -- Input puffer length -1
PORT (clk : IN STD_LOGIC;

X_in : IN BITSS;
reset : IN STD_LOGIC;
count_o : OUT INTEGER RANGE O TO 12;
ena_in_o, ena_out_o : OUT BOOLEAN;
c0_o, cl_o, c2_o, c3_o : OUT BITS9;
d_out, y_out : OUT BITS9);
END farrow;

ARCHITECTURE fpga OF farrow IS

SIGNAL count : INTEGER RANGE O TO 12; -- Cycle R_1*R_2
CONSTANT delta : INTEGER := 85; -- Increment d
SIGNAL ena_in, ena_out : BOOLEAN; -- FSM enables
SIGNAL x, ibuf : ARRAY_BITS8_4 := (0,0,0,0); -- TAP reg.
SIGNAL d : BITS9 := 0; -- Fractional Delay scaled to 8 bits
-- Lagrange matrix outputs:
SIGNAL cO, c1, c2, c3 : BITS9 := 0;
BEGIN
FSM: PROCESS (reset, clk) ----——- > Control the system
VARIABLE dnew : BITS9 := 0;
BEGIN -- sample at clk rate
IF reset = ’1’ THEN -- Asynchronous reset
count <= 0;
d <= delta;

ELSIF rising_edge(clk) THEN
IF count = 11 THEN
count <= 0;
ELSE
count <= count + 1;
END IF;
CASE count IS
WHEN 2 | 5 | 8 | 11 =>
ena_in <= TRUE;
WHEN others =>
ena_in <= FALSE;
END CASE;
CASE count IS
WHEN 3 | 7 | 11 =>

294 5. Multirate Signal Processing

ena_out <= TRUE;
WHEN others =>
ena_out <= FALSE;
END CASE;
-- Compute phase delay
IF ENA_OUT THEN
dnew := d + delta;
IF dnew >= 255 THEN
d <= 0;
ELSE
d <= dnew;
END IF;
END IF;
END IF;
END PROCESS FSM;

TAP: PROCESS -—-————- > One tapped delay line
BEGIN
WAIT UNTIL clk = ’1’;
IF ENA_IN THEN
FOR I IN 1 TO IL LOOP

ibuf (I-1) <= ibuf(I); -- Shift one
END LOOP;
ibuf (IL) <= x_in; -- Input in register IL
END IF;

END PROCESS;

GET: PROCESS ~ ------ > Get 4 samples at one time
BEGIN
WAIT UNTIL clk = ’1°;
IF ENA_OUT THEN
FOR I IN O TO IL LOOP -- take over input buffer
x(I) <= ibuf(D);
END LOOP;
END IF;
END PROCESS;

--> Compute sum-of-products:
SOP: PROCESS (clk, x, d, cO, c1, c2, c3, ENA_OUT)
VARIABLE y : BITS9;

BEGIN
-- Matrix multiplier iV=inv(Vandermonde) c=iV*x(n-1:n+2)’
-- x(0) x(1) x(2) x(3)
-- iV= 0 1.0000 0 0
- -0.3333 -0.5000 1.0000 -0.1667
- 0.5000 -1.0000 0.5000 0

- -0.1667 0.5000 -0.5000 0.1667
IF ENA_OUT THEN
IF clk’event AND clk = ’1’ THEN
c0 <= x(1);
cl <= -85 * x(0)/256 - x(1)/2 + x(2) - 43 * x(3)/256;
c2 <= (x(0) + x(2)) /2 - x(1) ;
c3 <= (x(1) - x(2))/2 + 43 * (x(3) - x(0))/256;

5.6 Design of Arbitrary Sampling Rate Converters

295

Master Time Bar.| 0ps 4| | Pinter.| EREIT

Interval | 31Bus Stat:| End:

Voot [PEE 00,0 ns TGus

z4us 32us

Mams Ops (Ops

[ok B0

|| teset B1

|Z¥| @ ecounto UD % EYRT EYRy e Y o ——— =
= [S Y B B B
o R G I SN o NN Ty O I oY N N Y Y O Y O N N B
[&] @i S0 T 10y 20 (30 40 50 B0y 70 {80 ¥_70 ¥ B0 ¥ 50y 40 ¥ 30 Y 20 y_10 i

53 d_out sS85 70 70 §_ 0y 0o ¥ T ¥ 0 ¥ 5§ 170y 0 70§ 0 ¥ & ¥ 10§ 0 %
EEEE 0 [20 4 90 % 40 ¥ GO0 ¥ 70 ¥ 00 § G0y 50 ¥ 40 ¥ 20 ¥ 10 T

|| &1 50 1]) G A { i -3 W 3§ 0
= S0 0 W5 K 0 0 D
| Mo S0 1] 1 -2 0 0 P SR]
] @ pox s0 1] 5 ¥ 70 % 33 ¥ 47 3 60 ¥ 74 % 75 ¥ 60 ¥ 48y ® ¥ 20y 7 i
i —

Fig. 5.41. VHDL simulation of the R = 3/4 rate change using Lagrange polyno-

mials and a Farrow combiner.

END IF;

-- Farrow structure =

Lagrange with Horner schema

-- for u=0:3, y=y+f(u)*d~u; end;

y :=c2 + (c3 * d)
y = (y xd) / 256
y (y * &) / 256

IF clk’event AND

y_out <= y; --
END IF;

END IF;

END PROCESS SOP;

cO_o <= c0; -
cl_o <= c1;

c2_o <= c2;

c3_o <= c3;
count_o <= count;

ena_in_o <= ena_in;

/ 2566; -- d is scale by 256
+ cl;

+ c0;

clk = ’1’ THEN

Connect to output + store in register

Provide some test signals as outputs

ena_out_o <= ena_out;

d_out <= d;

END fpga;

The HDL code for the control is similar to the rc_sinc design discussed
in Example 5.9 (p. 280). The first PROCESS is the FSM, which includes the
control flow and generation of the enable signals for input, output buffer, and
the computation of the delay D. The full round takes 12 clock cycles. The next
two PROCESS blocks include the input buffer and the TAP delay line. Note
that only one tapped delay line is used for all four polynomial coefficients cg.
The SOP PROCESS blocks includes the Lagrange matrix computation and the
Farrow combiner. The output y_out was chosen to have an additional guard
bit. The design uses 279 LEs, 6 embedded multipliers and has a 43.91 MHz

Registered Performance.

A simulation of the filter is shown in Fig. 5.41. The simulation shows first
the control and enable signals of the FSM. A triangular input x_in is used.

296 5. Multirate Signal Processing

The three filter outputs only update once every four clock cycles, i.e., three
times in an overall cycle. The filter output values are weighted using the
Farrow structure to generate the output y_out. Note that only the first and
second Lagrange polynomial coefficients are nonzero, due to the fact that a
triangular input signal does not have higher polynomial coefficient. Notice
also that the filter values 20 and 60 from cO appear unchanged in the output
sequence (because D = 0 at these points in time), while the other values are

interpolated.

Although the implementation data for the Lagrange interpolation with
the Farrow combiner and the sinc filter design do not differ much for our
example design with R = R;/Rs = 3/4, larger differences occur when we
try to implement rate changes with large values of R;. The discussed Farrow
design only needs to be changed in the enable signal generation. The effort
for the Lagrange interpolation and Farrow combiner remain the same, while
for a sinc filter the design effort will be proportional to the number of filters
to be implemented, i.e., Ry, see Exercise 5.16 (p. 338). The only disadvantage
of the Farrow combiner is the long latency due to the sequential organization
of the multiplications, but this can be improved by adding pipeline stages for
the multipliers and coefficient data, see Exercise 5.17 (p. 339).

5.6.3 B-Spline-Based Fractional Rate Changer

Polynomial approximation using Lagrange polynomials is smooth in the cen-
ter but has the tendency to have large ripples at the end of the polynomials,
see Fig. 5.38, p. 290. Much smoother behavior is promised when B-spline
approximation functions are used. In contrast to Lagrange polynomials B-
splines are of finite length and a B-spline of degree N must be N-times dif-
ferentiable, hence the smooth behavior. Depending on the border definitions,
several versions of B-splines can be defined [78, p.113-116], but the most pop-
ular are those defined via the integration of the box function, as shown in
Fig. 5.42. A B-spline of degree zero is integrated to give a triangular B-spline,
degree-one B-spline integrated yields a quadratic function, etc.

An analytic description of a B-spline is possible [120, 121] using the fol-
lowing representation of the ramp function:

t—17 Vit>T
(t=7)y = { 0 otherwise (5.51)

This allows us to represent the Nt'-degree symmetric B-spline as

N'Nf (N“> <tk+N;1>j. (5.52)

All segments of the B-splines use polynomials of degree N and are therefore
N-times differentiable, resulting in a smooth behavior also at the end of the

5.6 Design of Arbitrary Sampling Rate Converters

()
’
0.8
(0]
S o6
=
£ 04
<
0.2
0
-0.2
-1 -0.5 0 0.5
()
1
0.8
[0}
S o6
2
£ 04
<
0.2
0
-0.2
=2 -1 0 1
Time t

0.8
0.6
0.4
0.2

-0.2

-1.5

0.8
0.6
0.4
0.2

-0.2

B

-1 -05 0

1.5

Time t

1

297

Fig. 5.42. B-spline functions of degree zero to three.

B-splines. Zero- and first-degree B-splines give box and triangular represen-
tations, respectively; quadratic and cubic B-splines are next. Cubic B-splines
are the most popular type used in DSP although for very high-quality speech
processing degree six has been used [114]. For a cubic B-spline (5.52) for
instance we get

4
50 = § -1 () - 2
k=0
=é(t+2)i—g(t+1)i+ti—g(t—l)iJré(t—z)i
:é(t+2)3—;(t+1)3+\ti/—§(t—1)3+é(t—2)3. (5.53)

—_——— — 50 —— ——
t>—2 t>—1 t>1 t>2

We can now use this cubic B-spline for the reconstruction of the spline, by
summation of the weighted sequence of the B-splines, i.e.,

g(t) = a(k) B3t — k).

k

(5.54)

This weighted sum is shown in Fig. 5.43 as a bold line. Although §(t) is quite
smooth, we can also observe that the spline §(t) does not go exactly through
the sample points, i.e., §(k) # x(k). Such a B-spline reconstruction is called

298 5. Multirate Signal Processing

7 T T
O Samples
Weighted sum
Single spline bl

Amplitude

_2 I I I I I I I I

Sample index ¢/ T

Fig. 5.43. Spline approximation using cubic B-splines.

in the literature a B-spline approzimation. From a B-spline interpolation,
however, we expect that the weighted sum goes exactly through our sample
points [122]. For cubic B-splines for instance it turns out [117, 123] that the
cubic B-spline applies a filter weight whose z-transform is given by

2444271
6

to the sample points. To achieve a perfect interpolation we therefore need to

apply an inverse cubic B-spline filter, i.e.,

6

F(z) =1/H(z) = PRy (5.56)
to our input samples. Unfortunately the pole/zero plot of this filter reveals
that this IIR filter in not stable and, if we apply this filter to our input
sequence, we may produce an increasing signal for the impulse response, see
Exercise 5.18 (p. 339). Unser et al. [124] suggest spliting the filter into a
stable, causal part and a stable, a-causal filter part and applying the a-causal
filter starting with the last value of the output of the first causal filter. While
this works well in image processing with a finite number of samples in each
image line, in a continuous signal processing scheme this is not practical,

especially when the filters are implemented with finite arithmetic.
However another approach that can be used for continuous signal pro-
cessing is to approximate the filter F'(z) = 1/H(z) by an FIR filter. It turns

H(z) = (5.55)

5.6 Design of Arbitrary Sampling Rate Converters 299

Ideal ="
- - —FIRL=5 _
52'57 — = FIR L=11 = }
it -
. 2r - i
() =
e =
3 _
E 15f - 8
(=] =
(] —=
g P
) —]
05 L L L L L L L L L
0 0.1 02 03 0.4 0.5 06 07 0.8 0.9 1
#1./2)
s
20 :
—o— IFFT

—— IFFT-bias
151 | —*— Unser matrix

Equivalent bits B
=
T

1 1
2 4 6 8 10 12 14 16 18 20
Filter length N

Fig. 5.44. FIR compensation filter design for cubic B-spline interpolation.

out that even very few FIR coefficients give a good approximation, because
the transfer function does not have any sharp edges, see Fig. 5.44. We just
need to compute the transfer function of the IIR filter and then take the
IFFT of the transfer function to determine the FIR time values. We may also
apply a bias correction if a DC shift is critical in the application. Unser et
al. [125] suggested an algorithm to optimize the filter coefficient set, but due
to the nature of the finite coefficient precision and finite coefficient set, the
gain compared with the direct IFFT method is not significant, see Fig. 5.44
and Exercise 5.19, p. 339.

Now we can apply this FIR filter first to our input samples and then use a
cubic B-spline reconstruction. As can be seen from Fig. 5.45 we have in fact
an interpolation, i.e., the reconstructed function goes through our original
sampling points, i.e., §(k) = z(k).

The only thing left to do is to develop a fractional delay B-spline inter-
polation and to determine the Farrow filter structure. We want to use the
popular cubic B-spline set and only consider fractional delays in the range
0 < d < 1. For an interpolation with four points we use the samples at time
instances t = —1,0, 1,2 of the input signal [116, p. 780]. With the B-spline
representation (5.53) and the weighted sum (5.54) we also find that four
B-spline segments have to be considered and we arrive at

y(d) = z(n +2)83(d - 2) + z(n+ 1)33(d — 1)

300 5. Multirate Signal Processing

7 T T
O Samples %
* B-spline coeff.
Weighted sum
Single spline

Amplitude

-2 L L
Sample index /T

Fig. 5.45. Interpolation using cubic B-splines and FIR compensation filter.

+a(n)*(d) + x(n —1)3%(d — 1) (5.57)
— ol + DG+t 1) [0 +1P = S| +alo) »

1

6(d - 1)3] (5.58)

[d3 ;(d+1)3+ é(d+2)3] +aln—1) [

& B d o1
=a(n+2) +a(n+1) {2 + +2+6}
ey B d o1
- —1) |- - . (5.
+x(n)[2 d 3}—1—30(71){ 6t o 2+6} (5.59)

In order to realize this in a Farrow structure we need to summarize ac-
cording to the factors d*, which yields the following four equations:

d®: 0 +x(n+1)/6 +2x(n)/3 +z(n —1)/6 = ¢
d*: 0 +z(n+1)/2 40 —az(n-1)/2=c
2 0 tan+1)/2 —an) +an—1)/2=c (5.60)
d:x(n+2)/6 —x(n+1)/2 z(n)/2 —xz(n—1)/6=c3
This Farrow structure can be translated directly into a B-spline rate
changer as discussed in Exercise 5.23, p. 340.

5.6 Design of Arbitrary Sampling Rate Converters 301

5.6.4 MOMS Fractional Rate Changer

One aspect? often overlooked in traditional design of interpolation kernels
¢(t) is the order of the approximation, which is an essential parameter in
the quality of the interpolation result. Here the order is defined by the rate
of decrease of the square error (i.e., L? norm) between the original function
and the reconstructed function when the sampling step vanishes. In terms
of implementation effort the support or length of the interpolation function
is a critical design parameter. It is now important to notice that the B-
splines used in the last section is both maximum order and minimum support
(MOMS) [126]. The question then is whether or not the B-spline is the only
kernel that has degree L — 1, support of length L, and order L. It turns out
that there is a whole class of functions that obey this MOMS behavior. This
class of interpolating polynomials can be described as

k N
(1) +Zp 4 ﬁk 2 (5.61)

Since B-splines are built via successive convolution with the box function the
differentiation can be computed via

dﬂ’::(t) _ g <t+ ;) iy (t _ ;) , (5.62)

From (5.61) it can be seen that we have a set of design parameters p(k)
at hand that can be chosen to meet certain design goals. In many designs
symmetry of the interpolation kernel is desired, forcing all odd coefficients
p(k) to zero. A popular choice is N = 3, i.e., the cubic spline type, and it
follows then that

o(t) = 50 +p2) 0 1

= 0°(t) +p(2) (B'(t +1) = 281 (1) + B'(t - 1)) (5.63)

and only the design parameter p(2) needs to be determined. We may, for in-
stance, try to design a direct interpolating function that requires no compen-
sation filter at all. Those ZMOMS occur for p(2) = —1/6, and are identical to
the Lagrange interpolation (see Exercise 5.20, p. 339) and therefore give sub-
optimal interpolation results. Figure 5.46(b) shows the -lMOMS interpolation
of degree three. Another design goal may be to minimize the interpolation
error in the L? norm sense. These O-MOMS require p(2) = 1/42, and the
approximation error is a magnitude smaller than for I-MOMS [127]. Figure
5.46(c) shows the O-MOMS interpolation kernel for degree three. We may
also use an iterative method to maximize a specific application the S/N of
the interpolation. For a specific set of five images, for instance, p(2) = 1/28
has been found to perform 1 dB better than O-MOMS [128].

9 This section was suggested by P. Thévenaz from EPFL.

302 5. Multirate Signal Processing

(a) B-spline (b) I-MOMS
1 1
08 058
06 06
0.4 : 0.4
0.2 0.2
0 0
02, -1 0 1 2 0z, -1 0 1 2
(c) O-MOMS (d) C-MOMS
1 1
08 058
06 06
04 : 0.4
02 0.2
0 0
02, -1 0 1 2 0z, -1 0 1 2
Time t Time t

Fig. 5.46. Possible MOMS kernel functions of length four.

Unfortunately the compensation filter required for O-MOMS has (as for
B-splines) an instable pole location and an FIR approximation has to be used
in a continuous signal processing scheme. The promised gain via the small
L? error of the O-MOMS will therefore most likely not result in much overall
gain if the FIR has to be built in finite-precision arithmetic. If we give up the
symmetry requirements of the kernel then we can design MOMS functions
in such a way that the interpolation function sampled at integer points ¢(k)
is a causal function, i.e., ¢(—1) = 0, as can be seen from Fig. 5.46(d). This
C-MOMS function is fairly smooth since p(2) = p(3) = 0. The C-MOMS
requirement demands p(1) = —1/3 and we get the asymmetric interpola-
tion function, but with the major advantage that a simple one-pole stable
IIR compensation filter with F(z) = 1.5/(1 + 0.52~1) can be used. No FIR
approximation is necessary as for B-splines or O-MOMS [127]. It is now in-
teresting to observe that the C-MOMS maxima and sample points no longer
have the same time location as in the symmetric kernel, e.g., B-spline case.
To see this compare Fig. 5.45 with Fig. 5.47. However, the weighted sum
of the C-MOMS goes thorough the sample point as we expect for a spline
interpolation. Experiments with C-MOMS splines shows that in terms of in-
terpolation C-MOMS performs better than B-splines and a little worse than
O-MOMS, when O-MOMS is implemented at full precision.

5.6 Design of Arbitrary Sampling Rate Converters 303

7 T T
O Samples
* C-MOMS coeff.
Weighted sum B
Single C-MOMS

Amplitude

Sample index /T

Fig. 5.47. C-MOMS interpolation using IIR compensation filter.

The only thing left to do is to compute the equation for the Farrow re-
sampler. We may use (5.53) to compute the interpolation function ¢(t) =
B3(t) — 1/3d33(t)/dt and then the Farrow structure is sorted according to
the delays d*. Alternatively we can use the precomputed equation (5.60) for
the B-splines and apply the differentiation directly to the Farrow matrix, i.e.,
we compute ¢V = ¢, — kegq1/3 for k = 1,2, and 3, since p(1) = —1/3 and
p(2) = p(3) = 0 for cubic C-MOMS. The same principle can also be applied
to compute the Farrow equations for O-MOMS and I-MOMS, see Exercise
5.20, p. 339. For C-MOMS this yields the following four equations:

d®: 0 +2x(n)/3 +1lz(n—1)/3=co

d*: 0 +x(n+1)/6 +2x(n)/3 —5z(n —1)/6 = 1

d?>: —x(n+2)/6 +z(n+1) —3z(n)/2 +2x(n—1)/3=cy

d: x(n+2)/6 —xz(n+1)/2 +x(n)/2 —x(n—1)/6 =c3

We now develop the VHDL code for the cubic C-MOMS fractional rate
changer.

Example 5.14: R= 0.75 Rate Changer V

The following VHDL code'® shows an R = 3/4 rate change using a C-MOMS
spline polynomial of degree three.

(5.64)

10 The equivalent Verilog code cmomc.v for this example can be found in Ap-
pendix A on page 697. Synthesis results are shown in Appendix B on page
731.

304 5. Multirate Signal Processing

PACKAGE n_bits_int IS -- User-defined types
SUBTYPE BITS8 IS INTEGER RANGE -128 TO 127;
SUBTYPE BITS9 IS INTEGER RANGE -2%%8 TO 2%*8-1;
SUBTYPE BITS17 IS INTEGER RANGE -2%%16 TO 2%x16-1;
TYPE ARRAY_BITS8_4 IS ARRAY (0 TO 3) of BITSS;
TYPE ARRAY_BITS9_3 IS ARRAY (0 TO 2) of BITS9;
TYPE ARRAY_BITS17_5 IS ARRAY (0 TO 4) of BITS17;

END n_bits_int;

LIBRARY work;
USE work.n_bits_int.ALL;

LIBRARY ieee;

USE ieee.std_logic_1164.ALL;
USE ieee.std_logic_arith.ALL;
USE ieee.std_logic_signed.ALL;

ENTITY ¢cmoms Is - —=—=—== > Interface
GENERIC (IL : INTEGER := 3);-- Input puffer length -1
PORT (clk : IN STD_LOGIC;

x_in : IN BITSS;
reset : IN STD_LOGIC;
count_o : OUT INTEGER RANGE O TO 12;
ena_in_o, ena_out_o : OUT BOOLEAN;
t_out : out INTEGER RANGE 0 TO 2;
dil_out : out BITS9;
c0_o, cl_o, c2_o, c3_o : 0OUT BITS9;
xiir_o, y_out : OUT BITS9);
END cmoms;

ARCHITECTURE fpga OF cmoms IS

SIGNAL count : INTEGER RANGE O TO 12; -- Cycle R_1*R_2
SIGNAL t : INTEGER RANGE O TO 2;

SIGNAL ena_in, ena_out : BOOLEAN; -- FSM enables

SIGNAL x, ibuf : ARRAY_BITS8_4 := (0,0,0,0); -- TAP regs.
SIGNAL xiir : BITS9 := 0; -- iir filter output

-- Precomputed value for d*xk :

CONSTANT d1 : ARRAY_BITS9_3 := (0,85,171);

CONSTANT d2 : ARRAY_BITS9_3 := (0,28,114);

CONSTANT d3 : ARRAY_BITS9_3 := (0,9,76);

-- Spline matrix output:

SIGNAL cO, cl, c2, c3 : BITS9 := 0;

BEGIN

t_out <= t;

di_out <= di(t);

FSM: PROCESS (reset, clk) = --——-- > Control the system

BEGIN -- sample at clk rate

IF reset = ’1’ THEN -- Asynchronous reset

count <= 0;
t <= 1;

ELSIF rising_edge(clk) THEN

5.6 Design of Arbitrary Sampling Rate Converters 305

IF count = 11 THEN
count <= 0;
ELSE
count <= count + 1;
END IF;
CASE count IS
WHEN 2 | 5 | 8 | 11 =>
ena_in <= TRUE;
WHEN others =>
ena_in <= FALSE;
END CASE;
CASE count IS
WHEN 3 | 7 | 11 =>
ena_out <= TRUE;
WHEN others =>
ena_out <= FALSE;
END CASE;
-- Compute phase delay
IF ENA_OUT THEN
IF t >= 2 THEN
t <= 0;
ELSE
t <=t + 1;
END IF;
END IF;
END IF;
END PROCESS FSM;

- Coeffs: H(z)=1.5/(1+0.5z"-1)

IIR: PROCESS (clk) -—=——=—- > Behavioral Style
VARIABLE x1 : BITS9 := 0;

BEGIN -- Compute iir coefficients first
IF rising_edge(clk) THEN -- iir:

IF ENA_IN THEN
xiir <= 3 * x1 / 2 - xiir / 2;
x1 := x_in;
END IF;
END IF;
END PROCESS;

TAP: PROCESS —-=————- > One tapped delay line
BEGIN
WAIT UNTIL clk = ’1°;
IF ENA_IN THEN
FOR I IN 1 TO IL LOOP

ibuf (I-1) <= ibuf(I); -- Shift one
END LOOP;
ibuf (IL) <= xiir; -- Input in register IL
END IF;

END PROCESS;

GET: PROCESS W ------ > Get 4 samples at one time
BEGIN

306 5. Multirate Signal Processing

WAIT UNTIL clk = ’1°;
IF ENA_OUT THEN
FOR I IN O TO IL LOOP -- take over input buffer
x(I) <= ibuf(I);
END LOOP;
END IF;
END PROCESS;

-- Compute sum-of-products:
SOP: PROCESS (clk, x, cO, cl, c2, c3, ENA_OUT)
VARIABLE y, yO, yi1, y2, y3, hO, hl : BITS17;

BEGIN -- pipeline registers
-- Matrix multiplier C-MOMS matrix:
- x(0) x(1) x(2) x(3)
-- 0.3333 0.6667 0 0
-- -0.8333 0.6667 0.1667 0
-- 0.6667 -1.5 1.0 -0.1667
-- -0.1667 0.5 -0.5 0.1667

IF ENA_OUT THEN
IF clk’event and clk = ’1’ THEN
cO <= (85 * x(0) + 171 * x(1))/256;
cl <= (171 * x(1) - 213 * x(0) + 43 * x(2)) / 256;
c2 <= (171 * x(0) - 43 * x(3))/256 - 3*x(1)/2 + x(2);
c3 <= 43 x (x(3) - x(0)) / 256 + (x(1) - x(2))/2;
-- No Farrow structure, parallel LUT for delays
-- for u=0:3, y=y+f(u)*d~u; end;
y := hO + hil;
hO := yO + yi;
hl := y2 + y3;
yO := cO * 256;
yl := cl x d1(t);
y2 = c2 * d2(t);
y3 := c3 * d3(t);

END IF;
y_out <= y/256; -- Connect to output
y_full <= y;

END PROCESS SOP;
cO_o <= c0; -- Provide some test signal as outputs
cl_o <= ci;
c2_o <= c2;
c3_o <= c3;
count_o <= count;
ena_in_o <= ena_in;
ena_out_o <= ena_out;
xiir_o <= xiir;

END fpga;
The HDL code for the control is similar the the rc_sinc design discussed in
Example 5.9, p. 280. The first PROCESS is the FSM and includes the control
flow and the generation of the enable signals for input and output buffer. The
computation of the index for the delay di=d' and its power representation

5.6 Design of Arbitrary Sampling Rate Converters 307

&
%

Master Time Bar. | 0ps o| ¢| Painter: | 509 us Interval: | 503us Start | End

ps 8000 ns 1.6us Z4us 3.2us 40us 18us 58us Edus 7.2us 80us |
Walue at] ; i : ! : : | : L
Ops Elus

Name

clk BO
reset B1
SN TN NS I o 0 T N Y 0 o Y Y
enaouta BO

[«in 50 1] 00 20 3 30 3 40 37 60) B0 % 70 3 80 % 70 3 B0 % 60 3 40) 30 % 20 310 1]

[1] LD D &3 €53 3 453 €13 53 I3 &3 €D &1 ¥1D &L 7 ED & [1]

® cia 50 [1] 10 20 ¥ 40 60 E0] 70 E] KE] 30 20 1]

E cl_o 50 0 T3 ¥ 8 ¥ 9 § 0¥ 39 T ¥ 154 © E] 7 ¥ 3]

@ cZo 50 i YTz ¥ 4 ¥ 7 ¥ Z¥ 7 ¥oa¥d9 ¥ 5y 1% 0 ¥9¥ Iy 0

M c3_o 50 0 HE I SR -1 T -1 7 -3 2 1 0 } I ¢ []

& y_out 50 0 13 2 40 53 5] a0 [g3 EE] 7 13 [1]

LREERREERREE
B

Il 0]

Fig. 5.48. VHDL simulation of the R = 3/4 rate change using cubic C-MOMS
splines and a one-pole IIR compensation filter.

d2= d? and d3= d> are precomputed and stored in tables as constant. The
full round takes 12 clock cycles. The IIR PROCESS blocks include the IIR
compensation filter. The next two PROCESS blocks include the input buffer
and the TAP delay line. Note that only one tapped delay line is used for all
four polynomial coefficients c;. The SOP PROCESS block includes the cubic C-
MOMS matrix computation and the output combiner. Note that no Farrow
structure is used to speed up the computation with a parallel multiplier/adder
tree structure. This speeds up the design by a factor of 2. The output y_out
was chosen to have an additional guard bit. The design uses 372 LEs, 10
embedded multipliers and has an 85.94 MHz Registered Performance.

A simulation of the filter is shown in Fig. 5.48. The simulation shows first
the control and enable signals of the FSM. A rectangular input x_in similar
to that in Fig. 5.49 is used. The IIR filter output shows the sharpening of
the edges. The C-MOMS matrix output values ¢; are weighted by d* and
summed to generate the output y_out.

As with the Lagrange interpolation we may also use a Farrow combiner to
compute the output y_out. This is particular interesting if array multipliers
are available and we have large values of R; and therefore large constant
table requirements, see Exercise 5.21 (p. 339).

Finally let us demonstrate the limits of our rate change methods. One
particularly difficult problem [129] is the rate change for a rectangular input
signal, since we know from the Gibbs phenomenon (see Fig. 3.6, p. 174) that
any finite filter has the tendency to introduce ringing at a rectangular edge.
Within a DAT recorder two frequencies 32 kHz and 48 kHz are in use and a
conversion between them is a common task. The rational rate change factor
in this case is R = 3/2, if we increase the sampling rate from 32 to 48 kHz.
This rate change is shown for a rectangular wave in Fig. 5.49 using O-MOMS
spline interpolation. The FIR prefilter output shown in Fig. 5.49b emphasizes
the edges. Figure 5.49¢ shows the result of the O-MOMS cubic spline rate
changer without FIR prefiltering. Although the signal without the filter seems
smoother, a closer look reveals that the edges in the O-MOMS cubic spline

308 5. Multirate Signal Processing

(a) Original signal (b) Filtered input signal
100 100
80 80
T 60 = 60
= T
o x
40 40
E E
E 20 ‘:;1 20
0 << 0 I} o) (P (P o) o
-20 -20 l l
0 5 10 15 20 0 5 10 15 20
Sample index n Sample index n
(c) O-MOMS no filter (d) O-MOMS with compensation
100 100
80 80
= €
E 60 ¥ 60
o S
()
E 40 3 40
= =]
g 20 S 20
< I i & [
0 X 0 T =
-20 -20
0 5 10 15 20 0 5 10 15 20
Sample index m Sample index m

Fig. 5.49. O-MOMS-based fractional R = 3/2 rate change. (a) Original signal. (b)
Original signal filter with length-11 FIR compensation filter. (¢) O-MOMS approx-
imation (no compensation filter). (d) O-MOMS rate change using a compensation
filter.

interpolation are now better preserved than without prefiltering, as shown in
Fig. 5.49d. But it can still be seen that, even with O-MOMS and a length-11
FIR compensation filter at full precision, the Gibbs phenomenon is visible.

5.7 Filter Banks

A digital filter bank is a collection of filters having a common input or out-
put, as shown in Fig. 5.50. One common application of the analysis filter bank
shown in Fig. 5.50a is spectrum analysis, i.e., to split the input signal into
R different so-called subband signals. The combination of several signals into
a common output signal, as shown in Fig. 5.50b, is called a synthesis filter
bank. The analysis filter may be nonoverlapping, slightly overlapping, or sub-
stantially overlapping. Figure 5.51 shows an example of a slightly overlapping
filter bank, which is the most common case.

Another important characteristic that distinguishes different classes of
filter banks is the bandwidth and spacing of the center frequencies of the
filters. A popular example of a nonuniform filter bank is the octave-spaced or
wavelet filter bank, which will be discussed in Sect. 5.8 (p. 328). In uniform

5.7 Filter Banks 309

Analysis section Synthesis section

x[n] | Hi(z) e O ———| Fl(2)

Fig. 5.50. Typical filter bank decomposition system showing (a) analysis, and (b)
synthesis filters.

filter banks, all filters have the same bandwidth and sampling rates. From
the implementation standpoint, uniform, maximal decimating filter banks
are often preferred, because they can be realized with the help of an FFT
algorithm, as shown in the next section.

5.7.1 Uniform DFT Filter Bank

In a maximal decimating, or critically sampled filter bank, the decimation or
interpolation R is equal to the number of bands K. We call it a DFT filter
bank if the r*® band filter h"[n] is computed from the “modulation” of a single
prototype filter h[n], according to

h"[n) = h[n]WE* = hln)e 727/, (5.65)

oG

Normalized frequency

[H@)|

Fig. 5.51. R channel filter bank, with a small amount of overlapping.

310 5. Multirate Signal Processing

x[n] —;—» VR P{H(2)
—1

V4
(a) — YR P~{H,(2)
Z—l
'
—=| {R |, @
WR—F(R—I)
x[n] | R b{Hy X1k
— (2) X
Z—l
DFT A
= IR 1@ | via 5N

(b) FFT

—=| |{R —o-{H, (2) _Xi[k]

Fig. 5.52. (a) Analysis DFT filter bank for channel k. (b) Complete analysis DFT
filter bank.

An efficient implementation of the R channel filter bank can be generated
if we use polyphase decomposition (see Sect. 5.2, p. 249) of the filter h"[n]
and the input signal z[n]. Because each of these bandpass filters is critically
sampled, we use a decomposition with R polyphase signals according to

R—1

hln] = hin] < hg[m] = h[mR — k] (5.66)
-

zn] = xg[n] < xx[m] = 2[mR — K]. (5.67)
k=0

If we now substitute (5.66) into (5.65), we find that all bandpass filters h” [n]
share the same polyphase filter hi[n], while the “twiddle factors” for each
filter are different. This structure is shown in Fig. 5.52a for the 7! filter h"[n)].

5.7 Filter Banks 311

It is now obvious that this “twiddle multiplication” for h"[n] corresponds to
the *® DFT component, with an input vector of Zo[n],#1[n],...,2r_1[n].
The computation for the whole analysis band can be reduced to filtering
with R polyphase filters, followed by a DFT (or FFT) of these R filtered
components, as shown in Fig. 5.52b. This is obviously much more efficient
than direct computation using the filter defined in (5.65) (see Exercise 5.6,
p. 336).

The polyphase filter bank for the uniform DFT synthesis bank can be
developed as an inverse operation to the analysis bank, i.e., we can use the
R spectral components X”[k] as input for the inverse DFT (or FFT), and
reconstruct the output signal using a polyphase interpolator structure, shown
in Fig. 5.53. The reconstruction bandpass filter becomes

F7ln) = 5 AW = flnleT 0 (5.65)

If we now combine the analysis and synthesis filter banks, we can see that
the DFT and IDFT annihilate each other, and perfect reconstruction occurs if
the convolution of the included polyphase filter gives a unit sample function,
ie.,

o= {3

In other words, the two polyphase functions must be inverse filters of each
other, i.e.,

H,(2) X Fp(2) = 271

»—d

H.(2)

where we allow a delay d in order to have causal (realizable) filters. In a
practical design, these ideal conditions cannot be met exactly by two FIR
filters. We can use approximation for the two FIR filters, or we can combine
an FIR and IIR, as shown in the following example.

Example 5.15: DFT Filter Bank

The lossy integrator studied in Example 4.3 (p. 231) should be interpreted in
the context of a DFT filter bank with R = 2. The difference equation was

(5.69)

F.(z) =

3
yln+1] = 4y[n] + z[n)]. (5.70)
The impulse response of this filter in the z-domain is
-1
z
FG) =10 (5.71)

In order to get two polyphase filters, we use a similar scheme as for the “scat-
tered look-ahead” modification (see Example 4.5, p. 234), i.e., we introduce
an additional pole/zero pair at the mirror position. Multiplying nominator
and denominator by (14 0.75z71) yields

312 5. Multirate Signal Processing

Ao A
X[k] — »| F,(2) 'R —>?—> X[n]
-1
Z
. IDFT
1 .
X [k] = via »| F (2) 'R
IFFT
-1
Z
A A
-1 -
X'[k] - >(F (2 R
Fig. 5.53. DFT synthesis filter bank.
S L C LS B S (5.72)
- 1-0.75%272 1—0.752z2 '
— —
(=) m (=)
= Ho (%) + 2~ 'Hi (2°), (5.73)
which gives the two polyphase filters:
_ 0.75271 _ _1 _92 -3
Ho(z) = 107521 = 0.75z7 " +0.4219z"° +0.2373z " +... (5.74)
_ 1 _ -1 —2

Hi(z) = 107521 — 140.5625z" " +0.31642" " 4+ (5.75)

We can approximate these impulse responses with a nonrecursive FIR, but
to get less than 1% error we must use about 16 coefficients. It is therefore
much more efficient if we use the two recursive polyphase IIR filters defined
by (5.74) and (5.75). After decomposition with the polyphase filters, we then
apply a 2-point DFT, which is given by

1 1
W= [1 1] :
The whole analysis filter bank can now be constructed as shown in 5.54a.
For the synthesis bank, we first compute the inverse DF'T using

o111
w —2[11]'

In order to get a perfect reconstruction we must find the inverse polyphase
filter to ho[n] and hi[n]. This is not difficult, because the H,(z)'s are single-

pole IIR filters, and Fi-(z) = z~%/H..(z) must therefore be two-tap FIR filters.

5.7 Filter Banks 313

X[K]

X [k]

X[k

(b)

X [k]

Fig. 5.54. Critically sampled uniform DFT filter bank for R = 2. (a) Analysis
filter bank. (b) Synthesis filter bank.

Using (5.74) and (5.75), we find that d = 1 is already sufficient to get causal
filters, and it is

4 2_—1
Foln] = (1-0.75%271) (5.76)
Filn] = 27" = 0.75°22. (5.77)
The synthesis bank is graphically interpreted in Fig. 5.54b. 5.15

5.7.2 Two-channel Filter Banks

Two-channel filter banks are an important tool for the design of general filter
banks and wavelets. Figure 5.55 shows an example of a two-channel filter
bank that splits the input z[n] using lowpass (G(z)) and highpass (H(z))
“analysis” filters. The resulting signal Z[n] is reconstructed using lowpass
and highpass “synthesis” filters. Between the analysis and synthesis sections

314 5. Multirate Signal Processing

G(z)

x[n] —»

G(z)

05

-0.5

05

-0.5

@O xn]

N
H(z) H(z)
\\’v__/
Analysis Synthesis

Fig. 5.55. Two-channel filter bank using Daubechies filter of length-4.

are decimation and interpolation by 2 units. The signal between the deci-
mators and interpolators is often quantized, and nonlinearly processed for
enhancement, or compressed.

It is common practice to define only the lowpass filter G(z), and to use
its definition to specify the highpass filter H(z). The construction rule is
normally given by

hln] = (—=1)"g[n] o—e H(z) = G(—=z), (5.78)

which defines the filters to be mirrored pairs. Specifically, in the frequency
domain, |H(e/*)| = |G(e/~™)|. This is a quadrature mirror filter (QMF)
bank, because the two filters have mirror symmetry to 7/2.

For the synthesis shown in Fig. 5.55, we first use an expander (a sampling
rate increase of 2), and then two separate reconstruction filters, G(z) and
H(z), to reconstruct &[n]. A challenging question now is, can the input signal
be perfectly reconstructed, i.e., can we satisfy

Z[n] = z[n —d]? (5.79)

That is, a perfectly reconstructed signal has the same shape as the original,
up to a phase (time) shift. Because G(z) and H(z) are not ideal rectan-
gular filters, achieving perfect reconstruction is not a trivial problem. Both
filters produce essential aliasing components after the downsampling by 2, as
shown in Fig. 5.55. The simple orthogonal filter bank that satisfies (5.79) is
attributed to Alfred Haar (circa 1910) [130].

5.7 Filter Banks 315

Example 5.16: Two-Channel Haar Filter Bank 1

The filter transfer functions of the two-channel QMF filter bank from Fig. 5.56
12
are

Giz)=1+2z" H@E=1-2z"
A 1 _ - 1 _

G(z):2(1+z D) H(z):2(71+z h.

Using data found in the table in Fig. 5.56, it can be verified that the
filter produces a perfect reconstruction of the input. The input sequence
z[0], z[1], z[2], ..., processed by G(z) and H(z), yields the sum z[n]+z[n—1]
and difference z[n] — z[n — 1], respectively. The downsampling followed by
upsampling forces every second value to zero. After applying the synthesis
filter and combining the output we again get the input sequence delayed by
one, i.e., Z[n] = z[n — 1], a perfect reconstruction with d = 1.

In the following we will discuss the general relationships the four filters
must obey to get a perfect reconstruction. It is useful to remember that
decimation and interpolation by 2 of a signal s[k] is equivalent to multiplying
S(z) by the sequence {1,0,1,0,...,}. This translates, in the z-domain, to

1
Si1(z) = 5

If this signal is applied to the two-channel filter bank, the lowpass path
X|1c(#) and highpass path X |11 (z) become

(5(2) + 5(=2)). (5.80)

Xi1a() = , (X(2)G(2) + X (~2)G(~)), (5.81)
Xin(z) = , (X()H(:) + X(~2)H(-)). (5.82)

After multiplication by the synthesis filter G(z) and H(z), and summation
of the results, we get X (z) as

X(2) = X16(2)G(2) + X u(2)H(2)
_ ; (C()66) + HEHE) X(2) (5.83)

+; (G(—z)G(z) + H(—z)H(z)) X(—2).

The factor of X (—z) shows the aliasing component, while the term at X (z)
shows the amplitude distortion. For a perfect reconstruction this translates
into the following;:

12 Sometimes the amplitude factors are chosen in such a way that orthonormal
filters are obtained, i.e., > |h[n] |? = 1. In this case, the filters have an amplitude

factor of 1/4/2. This will complicate a hardware design significantly.

316 5. Multirate Signal Processing

aln]

Approximation ayr[n]

Pl e

x[n] Reconstruction ><? > y[n]
1/2
%%ﬁ R RENIt R R
Detail dyy[n]
d[n]

Time step n

0 1 2 3 4
z[n] (0] (1] (2] (3] (4]
aln] z[0] z[0]+=z[1] =z[1]+=z[2] =z[2]+ 23] =z[3]+ z[4]
d[n] x0] =[] —=[0] =[2] —=[1] z[3]—=z[2] 4] —z[3]
ayt[n] z[0] 0 z[1] + z[2] 0 x[3] + x[4]
dy1[n] z[0] 0 z[2] — z[1] 0 z[4] — z[3]
aln] z[0] z[0] z[1] + z[2] 1] +z[2] =[3]+ «[4]
d[n] —z[0] z[0] el] —x2] 2] —2[1] 3] — z[4]
Z[n] 0 z[0] z[1] z[2] z[3]
Fig. 5.56. Two-channel Haar-QMF bank.
Theorem 5.17: Perfect Reconstruction

A perfect reconstruction for a two-channel filter bank, as shown in

Fig. 5.55, is achieved if

1) G(—2)G(z)+ H(—z)H(z) = 0, i.e., the reconstruction is free of alias-
ing. .

2) G(2)G(z) + H(z)H(z) = 22~%, i.e., the amplitude distortion has am-
plitude one.

Let us check this condition for the Haar filter bank.

Example 5.18: Two-Channel Haar Filter bank II
The filters of the two-channel Haar QMF bank were defined by

Giz)=1+z" H(Ez=1-z"
G(z) = ;(Hz*l) A(z) = ;(71“*1).

The two conditions from Theorem 5.17 can be proved with:

5.7 Filter Banks 317

1) G(—2)G(z)+ H(—=2)H(=2)

1 1 1 1 —1 -1
:2(172)14z)+2(1+z)(=14277)

_1 7_2 17 -2y _
==+ (-1+277)=0 Vv

2) G(2)G(z) + H(2)H(2)

SO+ (=) (1427
; ((1 4227 2 F(—1 4227 — 272)) =2:"" v

For the proof using Theorem 5.17, it can be noted that the perfect recon-
struction condition does not change if we switch the analysis and synthesis
filters.

In the following we will discuss some restrictions that can be made in the
filter design to fulfill the condition from Theorem 5.17 more easily.

First, we limit the filter choice by using the following:

Theorem 5.19: Aliasing-Free Two-Channel Filter Bank
A two-channel filter bank is aliasing-free if
G(-z)=—-H(z) and H(-z) = G(z2). (5.84)

This can be checked if we use (5.84) for the first condition of Theorem 5.17.
Using a length-4 filter, these two conditions can be interpreted as follows:

gln)=1{g[0], 9[1], 9121, 93]} — hln]= {—g[0], 9[1], —g[2], 9[3]}
hin]={h[0], n{1], h[2], h[3]} — g[n]={R[0], —h[1], h[2], —A[3]}.

With the restriction of the filters as in Theorem 5.19, we can now simplify
the second condition in Theorem 5.17. It is useful to define first an auxiliary

product filter F(z) = G(z)G(z). The second condition from Theorem 5.17
becomes

G(2)G(2) + H(2)H(z) = F(2) — G(—2)G(—2) = F(z)— F(—z) (5.85)
and we finally get

| F(z) - F(—2) =2:7, | (5.86)

i.e., the product filter must be a half-band filter.'> The construction of a
perfect reconstruction filter bank uses the following three simple steps:

13 For the definition of a half-band filter, see p. 274.

318 5. Multirate Signal Processing

Algorithm 5.20: Perfect-Reconstruction Two-Channel Filter
Bank

1) Define a normalized causal half-band filter according to (5.86).
2) Factor the filter F(z) in F(z) = G(2)G(z).
3) Compute H(z) and H(z) using (5.84), i.e., H(z) = —G(—z) and
H(z) = G(~=2).
We wish to demonstrate Algorithm 5.20 with the following example. To sim-
plify the notation we will, in the following example, write a combination of
a length L filter for G(z), and length N for é(z), as an L/N filter.

Example 5.21: Perfect-Reconstructing Filter Bank Using F3

The (normalized) causal half-band filter F3 (Table 5.3, p. 274) of length 7
has the following z-domain transfer function

1 _ _ _ _
F3(z) = o (149277416277 +9:74 =27, (5.87)
Using (5.86) we first verify that F3(z) — F3(—z) = 2272, The zeros of the
transfer function are at zp1—4 = —1,205 = 2 + V3 = 3.7321, and zps =

2 — /3 = 0.2679 = 1/z05. There are different choices for factoring F(z) =
G(2)G(z). A 5/3 filter is, for instance,

a) G(z) = (14227 1 +62724223—27%)/8and G(z) = (1422 ' +272)/2.
We may design a 4/4 filter as:

b) G(z) = }(1+2")® and G(z) = M(-14+327 43272 =270,
Another configuration of the 4/4 configuration uses the Daubechies filter con-
figuration, which is often found in wavelet applications and has the form:

c) G(z) = 1;\/\23(1+z_1)2(—zo5+z_1) and G(z) = —14+—\/‘/23(1+z_1)2(—z06+
271,

Figure 5.57 shows these three combinations, along with their pole/zero plots.

For the Daubechies filter, the condition H(z) = —2~VG(—2z71) holds in
addition, i.e., highpass and lowpass polynomials are mirror versions of each
other. This is a typical behavior in orthogonal filter banks.

From the pole/zero plots shown in Fig. 5.57, for F(z) = G(2)G(z) the
following conclusions can be made:

Corollary 5.22: Factorization of a Half-band Filter

1) To construct a real filter, we must always group the conjugate sym-
metric zeros at (2o and z3) in the same filter.

2) For linear-phase filters, the pole/zero plot must be symmetrical to the
unit circle (z = 1). Zero pairs at (2o and 1/zp) must be assigned to
the same filter.

3) To have orthogonal filters that are mirror polynomials of each other,
(F(z) = U(2)U(z71)), all pairs zp and 1/zp must be assigned to
different filters.

5.7 Filter Banks 319

(a) (b) (c)
21 14277 '+6272 2 (1+z7 3 2 (1+271)2(—205+Zi1)
+2778 774
1 1 1
Eo o 0 0 o
-1 -1 -1
-2 -2 -2
0 2 4 0 2 4 0 2 4
2 (1+z_1)2 2 1432714327278 2 (1+271)2(—1/205+271)
1 1 1
E o 0 o 0
-1 -1 -1
-2 -2 -2
0 2 4 0 2 4 0 2 4
Re Re Re

Fig. 5.57. Pole/zero plot for different factorization of the half-band filter F3. Upper
row G(z). lower row G(z). (a) Linear-phase 5/3 filter. (b) Linear-phase 4/4 filter.
(c) 4/4 Daubechies filter.

We note that some of the above conditions can not be fulfilled at the same
time. In particular, rules 2 and 3 represent a contradiction. Orthogonal,
linear-phase filters are, in general, not possible, except when all zeros are
on the unit circle, as in the case of the Haar filter bank.

If we classify the filter banks from Example 5.21, we find that configura-
tions (a) and (b) are real linear-phase filters, while (c) is a real orthogonal
filter.

Implementing Two-Channel Filter Banks

We will now discuss different options for implementing two-channel filter
banks. We will first discuss the general case, and then special simplifications
that are possible if the filters are QMF, linear-phase, or orthogonal. We will
only discuss the analysis filter bank, as synthesis may be achieved with graph
transposition.

Polyphase two-channel filter banks. In the general case, with two filters
G(z) and H(z), we can realize each filter as a polyphase filter

320 5. Multirate Signal Processing

1 Go(2)
i2 -
2@ @ x@cmi2
X(z)
—| G,(2)
77 {12 P X(2)H(2)V2
—| H,(z)

Fig. 5.58. Polyphase implementation of the two-channel filter bank.

H(z) = Ho(2*) + 27 'H1(2?) G(2) = Go(2*) + 27 1G1(2?), (5.88)

which is shown in Fig. 5.58. This does not reduce the hardware effort (2L
multipliers and 2(L — 1) adders are still used), but the design can be run with
twice the usual sampling frequency, 2 f;.

These four polyphase filters have only half the length of the original fil-
ters. We may implement these length L/2 filters directly or with one of the
following methods:

1) Run-length filter using short Winograd convolution algorithms [104], dis-
cussed in Sect. 5.2.2, p. 254.

2) Fast convolution using FFT (discussed in Chap. 6) or NTTs (discussed
in Chap. 7).

3) Using advanced arithmetic concepts discussed in Chap. 3, such as dis-
tribute arithmetic, reduced adder graph, or residue number system.

Using the fast convolution FFT/NTT techniques has the additional benefit
that the forward transform for each polyphase filter need only be done once,
and also, the inverse transform can be applied to the spectral sum of the two
components, as shown in Fig. 5.59. But, in general, FF'T methods only give
improvements for longer filters, typically, larger than 32; however, the typical
two-channel filter length is less than 32.

Lifting. Another general approach to constructing fast and efficient two-
channel filter banks is the lifting scheme introduced recently by Swelden [131]
and Herley and Vetterli [132]. The basic idea is the use of cross-terms (called
lifting and dual-lifting), as in a lattice filter, to construct a longer filter from a
short filter, while preserving the perfect reconstruction conditions. The basic
structure is shown in Fig. 5.60.

Designing a lifting scheme typically starts with the “lazy filter bank,”
with G(z) = H(z) = 1 and H(z) = G(z) = z~'. This channel bank fulfills
both conditions from Theorem 5.17 (p. 316), i.e., it is a perfect reconstruction
filter bank. The following question arises: if we keep one filter fixed, what are

5.7 Filter Banks 321

12 »| FFT
N-—point
X(z) =] IFFT = X(2)G(z)¥2
—point
| 771 [12 [FET IFFT (= X(H@)12

Fig. 5.59. Two-channel filter bank with polyphase decomposition and fast convo-
lution using the FFT ((©1999 Springer Press [5]).

filters S(z) and T'(z) such that the filter bank is still a perfect reconstruction?
The answer is important, and not trivial:

Lifting: G'(2) = G(z) + G(—2)S(2%) for any S(z2). (5.89)

Dual-Lifting: G'(z) = G(z) + G(—=2)T(2?) for any T(z?). (5.90)

To check, if we substitute the lifting equation into the perfect reconstruction

condition from Theorem 5.17 (p. 316), and we see that both conditions are

fulfilled if G(z) and H(z) still meet the conditions of Theorem 5.19 (p. 317)
for the aliasing free filter bank (Exercise 5.9, p. 337).

The conversion of the Daubechies length-4 filter bank into lifting steps
demonstrates the design.

Example 5.23: Lifting Implementation of the DB4 Filter

One filter configuration in Example 5.21 (p. 318) was the Daubechies length-4
filter [133, p. 195]. The filter coefficients were

x[n] (? A o~ {>E(,Z)

1/k
/
lsio] (10| [s:0] |me 5u0| [T
A A X
-3 - — O

H(z)

Fig. 5.60. Two-channel filter implementation using lifting and dual-lifting steps.

322 5. Multirate Signal Processing

-1 -2 -3 1
(L+V3)+(B+V3)zT +(3-V3)z" + (1-V3)z)4\/2
H(z) =
1 s a1
(~(1=vV3)+(B-V3)z =B+ V3)z >+ (1+V3)z)4\/2.

A possible implementation uses two lifting steps and one dual-lifting step.
The differential equations that produce a two-channel filter bank based on
the above equation are

hi[n] = z[2n + 1] — V/3z[2n]

gi[n] = z[2n] + \ighl[n] + ¢34* 2 b — 1
h2[n] = hi[n] + g1[n + 1]
= V3 g
g = \/2 g1
_V3-1
hin] = /2 ha[n].

Note that the early decimation and splitting of the input into even z[2n] and
odd z[2n — 1] sequences allows the filter to run with 2fs. This structure can
be directly translated into hardware and can be implemented using Quartus
IT (Exercise 5.10, p. 337). The implementation will use five multiplications
and four adders. The reconstruction filter bank can be constructed based
on graph transposition, which is, in the case of the differential equations, a
reversing of the operations and flipping of the signs.

Daubechies and Sweldens [134], have shown that any (bi)orthogonal wave-
let filter bank can be converted into a sequence of lifting and dual-lifting steps.
The number of multipliers and adders required then depends on the number
of lifting steps (more steps gives less complexity) and can reach up to 50%
compared with the direct polyphase implementation. This approach seems
especially promising if the bit width of the multiplier is small [135]. On the
other hand, the lattice-like structure does not allow use of reduced adder
graph (RAG) techniques, and for longer filters the direct polyphase approach
will often be more efficient.

Although the techniques (polyphase decomposition and lifting) discussed
so far improve speed or size and cover all types of two-channel filters, addi-
tional savings can be achieved if the filters are QMF, linear-phase, or orthog-
onal. This will be discussed in the following.

QMF implementation. For QMF [136] we have found that according to
(5.78),

hin] = (=1)"g[n] o—e H(z) = G(—=z). (5.91)

But this implies that the polyphase filters are the same (except the sign),
ie.,

5.7 Filter Banks 323

12 Go(z) X(#)G(z2)¥2

X(2)

77 P V2 P G@ X(2)H(z) 2

Fig. 5.61. Polyphase realization of the two-channel QMF bank ((©1999 Springer
Press [5]).

Instead of the four filters from Fig. 5.58, for QMF we only need two filters
and an additional “Butterfly,” as shown in Fig. 5.61. This saves about 50%.
For the QMF filter we need:

L real adders L real multipliers, (5.93)

and the filter can run with twice the usual input-sampling rate.

x[n] *

a[L-1]

G(z)

H(z)

Fig. 5.62. Orthogonal two-channel filter bank using the transposed FIR structure.

Orthogonal filter banks. An orthogonal filter pair' obeys the conjugate
mirror filter (CQF) [137] condition, defined by

H(z)=2zNG(-z71). (5.94)

If we use the transposed FIR filter shown in Fig. 5.62, we need only half
the number of multipliers. The disadvantage is that we can not benefit from
polyphase decomposition to double the speed.

14 The orthogonal filter name comes from the fact that the scalar product of the
filters, for a shift by two (i.e., Y g[klh[k — 2I] = 0, k,l € Z), is zero.

324 5. Multirate Signal Processing

Another alternative is realization of the CQF bank using the lattice filter
shown in Fig. 5.63. The following example demonstrates the conversion of
the direct FIR filter into a lattice filter.

Example 5.24: Lattice Daubechies L = 4 Filter Implementation

One filter configuration in Example 5.21 (p. 318) was the Daubechies length-4
filter [133, p. 195]. The filter coefficients were

A+V3)+B+vV3)2 ' +B-vV3)z 2+ (1 —-+3)273

G(z) = 2
= 0.48301 + 0.8365z ' +0.22412" % — 0.12942° (5.95)
H(z) = —(1=V3)+(B=V3)z ' —=B+v3)z 2+ (1+3)z73
4+/2
= 0.1294 +0.2241z"" — 0.83652 "> + 0.48301z . (5.96)

The transfer function for a two-channel lattice with two stages is

G(z) = (1 +a[0]z7" = a[0]a[1]z72 + a[l]z_g) s (5.97)
H(z) = (—a[l] — a[0]a[l]z™" —al0]z" % + 27 %) s. (5.98)
If we now compare (5.95) with (5.97) we find
_1+3 _3+V3 1-v3
s = 2 al0] = /28 all] = s (5.99)

We can now translate this structure direct into hardware and implement the
filter bank with Quartus II as shown in the following VHDL'® code.

@G(z)

H(z)

Fig. 5.63. Lattice realization for the orthogonal two-channel filter bank ((©1999
Springer Press [5]).

PACKAGE n_bits_int IS -- User-defined types
SUBTYPE BITS8 IS INTEGER RANGE -128 TO 127;
SUBTYPE BITS9 IS INTEGER RANGE -2%%*8 TO 2%*8-1;
SUBTYPE BITS17 IS INTEGER RANGE -2%%16 TO 2%x16-1;
TYPE ARRAY_BITS17_4 IS ARRAY (0 TO 3) OF BITS17;

END n_bits_int;

LIBRARY work;
USE work.n_bits_int.ALL;

15 The equivalent Verilog code db4latti.v for this example can be found in Ap-
pendix A on page 709. Synthesis results are shown in Appendix B on page 731.

5.7 Filter Banks 325

LIBRARY ieee;

USE ieee.std_logic_1164.ALL;
USE ieee.std_logic_arith.ALL;
USE ieee.std_logic_unsigned.ALL;

ENTITY db4latti 1s —====- > Interface
PORT (clk, reset : IN STD_LOGIC;
clk?2 : OUT STD_LOGIC;
X_in : IN BITSS;
X_e, X_O : OUT BITS17;
g, h : OUT BITS9);

END db4latti;
ARCHITECTURE fpga OF db4latti IS

TYPE STATE_TYPE IS (even, odd);

SIGNAL state : STATE_TYPE;

SIGNAL sx_up, sx_low, x_wait : BITS17 := O;

SIGNAL clk_div2 : STD_LOGIC;

SIGNAL sxaO_up, sxaO_low : BITS17 := 0;

SIGNAL upO, upl, lowO, lowl : BITS17 := O;

BEGIN
Multiplex: PROCESS (reset, clk) ----> Split into even and
BEGIN -- odd samples at clk rate
IF reset = ’1’ THEN -- Asynchronous reset

state <= even;
ELSIF rising_edge(clk) THEN
CASE state IS
WHEN even =>
-- Multiply with 256%*s=124
SX_up <= 4 x (32 * x_in - x_in);
sx_low <=4 *x (32 * x_wait - x_wait);
clk_div2 <= ’1’;
state <= odd;
WHEN odd =>
X_wait <= x_in;
clk_div2 <= ’0’;
state <= even;
END CASE;
END IF;
END PROCESS;

—————————— Multipy al[0] = 1.7321
sxa0_up <= (2*sx_up - sx_up /4)
- (sx_up /64 + sx_up/256);
sxal_low <= (2*sx_low - sx_low/4)
- (sx_low/64 + sx_low/256);
—————————— First stage -- FF in lower tree
up0 <= sxaO_low + sx_up;
LowerTreeFF: PROCESS

326 5. Multirate Signal Processing

I} dbalattivwf =10] x|
Iaster Time Bar: | Ops j_*l Fainter: j BBO.E ns Intervak | BEO.E ns Start: ‘ End:
vt PP 1600 s 3200 480,0ns 6400 ns 8000 ns 550,0ns 1igus 12 |
Hame Ops ?pg
I ED
| o= | reset B1 1
| | k2 BO [1 [1 [1 [| [| [|
|| @ win 50 i 00 1] W10y]
|| ne 50 1 ¥ 12400)4 (]
|&| Exeo S0 [1] ¥ TEm [
o E 50] b 4 i b4 22) 4] 4 3 ¥ BE]) S
(& @n 50 i ¥ iE] ¥ o ¥ 1] ¢ = ¥ g ¥ 0
1 — |

Fig. 5.64. VHDL simulation of the Daubechies length-4 lattice filter bank.

BEGIN
WAIT UNTIL clk = ’1°;
IF clk_div2 = ’1’ THEN
low0O <= sx_low - sxaO_up;
END IF;
END PROCESS;

—————————— Second stage al[1]=0.2679
upl <= (up0O - low0/4) - (low0/64 + 1low0/256);
lowl <= (lowO + up0/4) + (up0/64 + up0/256);

x_e <= sx_up; -- Provide some extra test signals
Xx_o <= sx_low;
clk2 <= clk_div2;

OutputScale: PROCESS
BEGIN
WAIT UNTIL clk = ’17;
IF clk_div2 = ’1’ THEN
g <= upl / 256;
h <= lowl / 256;
END IF;
END PROCESS;

END fpga;

This VHDL code is a direct translation of the lattice shown in Fig. 5.63.
The incoming stream is multiplied by s = 0.48 ~ 124/256. Next, the cross-
term product multiplications, with a[0] = 1.73 &~ (2 — 272 —27% — 27%) of
the first stage are computed. It follows that the stage 1 additions and the
lower tree signal must be delayed by one sample. In the second stage, the
cross multiplication by a[1] = 0.27 =~ (272 +27° 4+ 27%) and the final output
addition are implemented. The design uses 418 LEs, no embedded multiplier,
and has a 58.81 MHz Registered Performance.

The VHDL simulation is shown in Fig. 5.64. The simulation shows the re-
sponse to an impulse with amplitude 100 at even and odd positions for the

filters G(z) and H(z), respectively.

5.7 Filter Banks 327

Fig. 5.65. Lattice filter to realize linear-phase two-channel filter bank ((©1999
Springer Press [5]).

If we compare the size of the lattice with the direct polyphase implemen-
tation of G(z) shown in Example 5.1 on p. 250 (LEs multiplied by two), we
note that both designs have about the same size (208 x 2 = 416 LEs, versus
331 LEs). Although the lattice implementation needs only five multipliers,
compared with eight multipliers for the polyphase implementation, we note
that in the polyphase implementation we can use the RAG technique to im-
plement the coefficients of the transposed filter, while in the lattice we must
implement single multipliers, which, in general, are less efficient.

Linear-phase two-channel filter bank. We have already seen in Chap. 3
that if a linear filter has even or odd symmetry, 50% of multiplier resources
can be saved. The same symmetry also applies for polyphase decomposition
of the filters if the filters, have even length. In addition, these filters may run
at twice the speed.

If G(z) and H(z) have the same length, another implementation using
lattice filters can further decrease the implementation effort, as shown in
Fig. 5.65. Notice that the lattice is different from the lattice used for the
orthogonal filter bank shown in Fig. 5.63.

The following example demonstrates how to convert a direct architecture
into a lattice filter.

Example 5.25: Lattice for L = 4 Linear-Phase Filter

One filter configuration in Example 5.21 (p. 318) was a linear-phase filter
pair, with both filters of length 4. The filters are

1 _ _ _
Gl2) =, (14327143272 +1277) (5.100)
and)
H(z) =, (14327143272 -1277%). (5.101)
The transfer functions for the two-channel length-4 linear-phase lattice filters
are:

G(z) = ((1+a[0]) +al0]z" +al0]z >+ (1 +a[0])z"°) s (5.102)

H(z) = (—(1 +al0]) +al0]z”" +al0]z7% - (1 + a[O])z_g) s. (5.103)
Comparing (5.100) with (5.102), we find

s=-1/2 al0] = —15. (5.104)

328 5. Multirate Signal Processing

Table 5.6. Effort to compute two-channel filter banks if both filter are of length
L.

Number of Number of Can
real real see use

Type multipliers adders Fig. Speed RAG?
Polyphase with any coefficients
Direct FIR filtering 2L 2L —2 5.58 2fs v
Lifting ~L ~ 560 2f -
Quadrature mirror filter (QMF)
Identical polyphase filter L L 5.61 2fs v
Orthogonal filter
Transposed FIR filter L 2L — 2 5.62 fs v
Lattice L+1 3L/4 5.63 2fs -
Linear-phase filter
Symmetric filter L 2L — 2 3.5 2fs v
Lattice L/2 3L/2—-1 5.65 2fs -

Note that, compared with the direct implementation, only about one quarter
of the multipliers are required.

The disadvantage of the linear-phase lattice is that not all linear-phase
filters can be implemented. Specifically, G(z) must be even symmetric, H(z)
must be odd symmetric, and both filters must be of the same length, with
an even number of samples.

Comparison of implementation options. Finally, Table 5.6 compares
the different implementation options, which include the general case and
special types like QMF, linear-phase and orthogonal.

Table 5.6 shows the required number of multipliers and adders, the refer-
ence figure, the maximum input rate, and the structurally important question
of whether the coefficients can be implemented using reduced adder graph
technique, or occur as single-multiplier coefficients. For shorter filters, the lat-
tice structure seems to be attractive, while for longer filters, RAG will most
often produce smaller and faster designs. Note that the number of multipliers
and adders in Table 5.6 are an estimate of the hardware effort required for
the filter, and not the typical number found in the literature for the compu-
tational effort per input sample in a PDSP/uP solution [104, 138].

Excellent additional literature about two-channel filter banks is available
(see [102, 135, 138, 139)).

5.8 Wavelets 329

5.8 Wavelets

A time-frequency representation of signals processed through transform me-
thods has proven beneficial for audio and image processing [135, 140, 141].
Many signals subject to analysis are known to have statistically constant
properties for only short time frames (e.g., speech or audio signals). It is
therefore reasonable to analyze such signals in a short window, compute the
signal parameter, and slide the window forward to analyze the next frame. If
this analysis is based on Fourier transforms, it is called a short-term Fourier
transform (STFT).
A short-term Fourier transform (STFT) is formally defined by

oo
X(r. f) = / w(t) w(t — 7) e 92 dt, (5.105)
—0o0

i.e., it slides a window function w(t — 7) over the signal z(t), and produces
a continuous time—frequency map. The window should taper smoothly to
zero, both in frequency and time, to ensure localization in frequency Ag
and time A; of the mapping. One weight function, the Gaussian function
(9(t) = e_tz)7 is optimal in this sense, and provides the minimum (Heisenberg
principle) product As A (i.e., best localization), as proposed by Gabor in 1949
[142]. The discretization of the Gabor transform leads to the discrete Gabor
transform (DGT). The Gabor transform uses identical resolution windows
throughout the time and frequency plane (see Fig. 5.67a). Every rectangle
in Fig. 5.67a has exactly the same shape, but often a constant @ (i.e., the
quotient of bandwidth to center frequency) is desirable, especially in audio
and image processing. That is, for high frequencies we wish to have broadband
filters and short sampling intervals, while for low frequencies, the bandwidth
should be small and the intervals larger. This can be accomplished with the
continuous wavelet transform (CWT), introduced by Grossmann and Morlet
143),

oo

CWT(r,) = /

— 00

2(t) h (t - T) dt, (5.106)

where h(t), known from the Heugens principle in physics, is called a small
wave or wavelet. Some typical wavelets are displayed in Fig. 5.68.

X) X)

AA@) AD() DD(®) DA(®) A) [D) D,) D,@)

(a) (b)

Fig. 5.66. Frequency distribution for (a) Fourier (constant bandwidth) and (b)
constant Q.

330 5. Multirate Signal Processing

(a) STFT lattice (b) Wavelet lattice

Frequency f—
Frequency f—

Time t— Time t—

Fig. 5.67. Time frequency grids for a chirp signal. (a) Short-term Fourier trans-
form. (b) Wavelet transform.

If we use now as a wavelet
h(t) = (ejQTrk't _ e—k2/2) o—t/2 (5.107)

we still enjoy the “optimal” properties of the Gaussian window, but now with
different scales in time and frequency. This so-called Morlet transform is also
subject to quantization, and is then called the discrete Morlet transformation
(DMT) [144]. In the discrete case the lattice points in time and frequency are
shown in Fig. 5.67b. The exponential term e~*/2 in (5.107) was introduced
such that the wavelet is DC free. The following examples show the excellent
performance of the Gaussian window.

Example 5.26: Analysis of a Chirp Signal

Morlet wavelet Meyer wavelet Daubechies wavelet

1 1 1
0.5 0.5 0.5
0 0 0
-0.5 -05 -0.5
-1 -1 -1

-4 -2 0 2 4 -5 0 5 -1 0 1 2

(a) (b) (©

Fig. 5.68. Some typical wavelets from Morlet, Meyer, and Daubechies.

5.8 Wavelets 331

0.5 0.5
: ’
C
=
@ !
) 0 ‘ 0 |
£
i:
-05 -0.5
-1 ‘ -1
0 200 400 600 800 1000 0 200 400 600 800 1000
(a) Morlet analysis (b) Haar analysis
4 i 4
I il H|\H.II
10 e 10 e
19 i 10 jiil
22 “ 22]
28 28
34 ; 34 1
40 40 1
o 46 46 1
< 52 52 \Iw 1
S 58 58 ||\ 1
3 64 64 ’ll 1
70 70 “
76 76 ‘ 1
82 82
88 88
94 94 i|
100 100
200 400 600 800 1000 400 800 1000

Fig. 5.69. Analysis of a chirp signal with (a) Discrete Morlet transform. (b) Haar
transform.

Figure 5.69 shows the analysis of a constant amplitude signal with increasing
frequency. Such signals are called chirp signals. If we applied the Fourier
transform we would get a uniform spectrum, because all frequencies are
present. The Fourier spectrum does not preserve time-related information.
If we use instead an STFT with a Gaussian window, i.e., the Morlet trans-
form, as shown in Fig. 5.69a, we can clearly see the increasing frequency.
But the Gaussian window shows the best localization of all windows. On the
other hand, with a Haar window we would have less computational effort,
but, as can be seen from Fig. 5.69b, the Haar window will achieve less precise
time-frequency localization of the signal.

Both DGT and DMT provide good localization by using a Gaussian win-
dow, but both are computationally intensive. An efficient multiplier-free im-
plementation is based on two ideas [144]. First, the Gaussian window can
be sufficiently approximated by a convolution of (> 3) rectangular func-
tions, and second, single-passband frequency-sampling filters (FSF) can be
efficiently implemented by defining algebraic integers over polynomial rings,
as introduced in [144].

332 5. Multirate Signal Processing

Analysis

Synthesis X[n]

x[n] Time t

dy[n]

b2

aln] $=[H@) : :

dy[n]
G(z)
P2

adn] $=={H() ' '
ds[n]

G(z)
Scaling
ajn]

Fig. 5.70. Wavelets tree decomposition in three octaves (©1999 Springer Press

[5])-

In the following, we wish to focus our attention on a newly popular anal-
ysis method called the discrete wavelet transform, which better exploits the
auditory and visual human perception mode (i.e., constant @), and also can
often be more efficiently computed, using O(n) complexity algorithms.

5.8.1 The Discrete Wavelet Transformation

A discrete-time version of the analog model leads to the discrete wavelet
transform (DWT). In practical applications, the DWT is restricted to the
discrete time dyadic DWT with a = 2, and will be considered in the fol-
lowing. The DWT achieves the constant (Q bandwidth distribution shown in
Fig. 5.66b and Fig. 5.67b by always applying the two-channel filter bank in
a filter tree to the lowpass signal, as shown in Fig. 5.70.

We now wish to focus on what conditions for the CWT wavelet allow it
to be realized with a two-channel DWT filter bank. We may argue that if
we sample a continuous wavelet at an appropriate rate (above the Nyquist
rate), we may call the sampled version a DWT. But, in general, only those
continuous wavelet transforms that can be realized with a two-channel filter
bank are called DWT.

Closely related to whether a continuous wavelet (¢) can be realized with
a two-channel DWT, is the question of whether the scaling equation

5.8 Wavelets 333

o(t) = 3 gln) 6(2t — n) (5.108)

n

exists, where the actual wavelet is computed with

G(t) = hnlg(2t — n), (5.109)

where g[n] is a lowpass, and h[n] a highpass filter. Note that ¢(¢) and ()
are continuous functions, while g[n| and h[n| are sample sequences (but still
may also be IIR filters). Note that (5.108) is similar to the self-similarity
(¢(t) = ¢(at)) exhibited by fractals. In fact, the scaling equation may iterate
to a fractal, but that is, in general, not the desired case, because most often a
smooth wavelet is desired. The smoothness can be improved if we use a filter
with maximal numbers of zeros at 7.

We consider now backwards reconstruction: we start with the filter g[n],
and construct the corresponding wavelet. This is the most common case,
especially if we use the half-band design from Algorithm 5.20 (p. 318) to
generate perfect reconstruction filter pairs of the desired length and property.

To get a graphical interpretation of the wavelet, we start with a rectan-
gular function (box function) and build, according to (5.108), the following
graphical iteration:

ok (1) = Zg[n] o®) (2t — n). (5.110)

n

If this converges to a stable ¢(t), the (new) wavelet is found. This itera-
tion obviously converges for the Haar filter {1, 1} immediately after the first
iteration, because the sum of two box functions scaled and added is again a
box function, i.e.,

r(t) r(20)+r(2t-1)

Let us now graphically construct the wavelet that belongs to the filter
gln] = {1,1,1,1}, which we will call Hutlet4 [145].

Example 5.27: Hutlet of Length-4

We start with four box functions weighted by g[n] = {1,1,1,1}. The sum
shown in Fig. 5.71a is the starting ¢*) (). This function is scaled by two,
and the sum gives a two-step function. After 10 iterations we already get a
very smooth trapezoid function. If we now use the QMF relation, from (5.78)
(p- 314), to construct the actual wavelet, we get the Hutlet4, which has two
triangles as shown in Fig. 5.72.

334 5. Multirate Signal Processing

(@)
1 e 1
/ 5

Fos s " 3os
£ 06 S \ £ 06

& i \ s
§o4 i | §o4
—0.2 / : \ a2

/ : N
o= ? 0
0 1 2 3
Time t
()

1 1

< 3
308 Zos8

“5 >

I
Tos c 0.6

S 2

= ©
o4 $04
@02 So2

Time t Time t

Fig. 5.71. ITteration steps 1,2, 3, and 10 for Hutlet4. (solid line: $**1)(¢); dotted
line: ¢® (2t — n); and ideal Hut-function: dashed)

We note that g[n| is the impulse response of the moving-average filter,
and can be implemented as an one-stage CIC filter [146]. Figure 5.72 shows
all scaling functions and wavelets for this type of wavelet with even length
coefficients.

As noted before, the iteration defined by (5.110) may also converge to
a fractal. Such an example is shown in Fig. 5.73, which is the wavelet for
the length-5 “moving average filter.” This indicates the challenge of the fil-
ter selection g[n]: it may converge to a smooth or, totally chaotic function,
depending only on an apparently insignificant property like the length of the
filter!

We still have not explained why the two-scale equation (5.108) is so im-
portant for the DWT. This can be better understood if we rearrange the
downsampler (compressor) and filter in the analysis part of the DWT, using
the “Noble” relation

(1 M) H(z) = H(") (1 M), (5.111)

which was introduced in Sect. 5.1.1, p. 246. The results for a three-level
filter bank are shown in Fig. 5.74. If we compute the impulse response of the
cascade sequences, i.e.,

H(z) < di[k/2]

5.8 Wavelets 335

Hutlet2 Hutlet4 Hutlet6
1 === 1 ——= 1 ===

o(t) and w(t)

0(t) and w(V

5 10

Time t Time t Time t

Fig. 5.72. The Hutlet wavelet family (solid line) and scaling function (dashed
line) after 10 iterations (©1999 Springer Press [5]).

G(2)H(2%) = da[k/4]
G(2)G(22)H (2*) < d3[k/8]
G(2)G(z*)G(z) — as[k/8],

we find that a3 is an approximation to the scaling function, while dz gives
an approximation to the mother wavelet, if we compare the graphs with the
continuous wavelet shown in Fig. 5.68 (p. 330).

This is not always possible. For instance, for the Morlet wavelet shown in
Fig. 5.68 (p. 330), no scaling function can be found, and a realization using
the DWT is not possible.

Two-channel DWT design examples for the Daubechies length-4 filter
have already been discussed, in combination with polyphase representation
(Example 5.1, p. 250), and the lattice implementation of orthogonal filters in
Example 5.24 (p. 324).

336 5. Multirate Signal Processing

(b)

1 1
[Te} n
0.8 0.8
0.6 0.6
S S
© T
|5 0.4 |5 0.4
~0.2 Q.2

0 0 2 \\

-5 5 -5 0 5

Time t
(d)

1
0 o 1
0.8 ko
; ; 0.8

0.6

S 506
i s
04 $04
<02 ©02

0 0

-5 5 -5 0 5

Time t Time t

Fig. 5.73. Iteration step 1,24, and 8 for Hutlet5. The sequence converges to a
fractal!

Exercises

Note: If you have no prior experience with the Quartus II software, refer
to the case study found in Sect. 1.4.3, p. 29. If not otherwise noted use the
EP2C35F672C6 from the Cyclone II family for the Quartus II synthesis eval-
uations.

5.1: Let F(z) = 1+ 2~ For which d do we have a half-band filter according to
Definition 5.7 (p. 274)7

5.2: Let F(z) =1+ 27> be a half-band filter.
(a) Draw |F(w)|. What kind of symmetry does this filter have?
(b) Use Algorithm 5.20 (p. 318) to compute a perfectly reconstructing real filter
bank. What is the total delay of the filter bank?

5.3: Use the half-band filter F3 from Example 5.21 (p. 318) to build a perfect-
reconstruction filter bank, using Algorithm 5.20 (p. 318), of length

(a) 1/7.

(b) 2/6.

5.4: How many different filter pairs can be built, using F3 from Example 5.21
(p- 318), if both filters are
(a) Complex.
(b) Real.

Exercises 337

(a) (b)
x[n] x[n]
H(z) 12 .
dy[n] 5 ldime2r TR
G() Ll
H Z2 — | 4 [[—> T .
(%) dyn] U agoay *L
G(z2) AN [:
H Z4 —{ | § |— . >
%) di[n] < adnss
Giz*) 8= >
() aj[n] I !] a,[n/8]

Fig. 5.74. DWT filter bank rearrange using Noble relations. (a) Transfer function
in the z-domain. (b) Impulse response for the length-4 Daubechies filters.

(¢) Linear-phase.
(d) Orthogonal filter bank.

5.5: Use the half-band filter F2(z) = 14227+ 272 to compute, based on Algorithm
5.20 (p. 318), all possible perfect-reconstructing filter banks.

5.6: (a) Compute the number of real additions and multiplications for a direct im-
plementation of the critically sampled uniform DFT filter bank shown in Fig. 5.50
(p. 309). Assume the length L analysis and synthesis filters have complex coeffi-
cients, and the inputs are real valued.

(b) Assume an FFT algorithm is used that needs (15N log,(IV)) real additions and
multiplications. Compute the total effort for a uniform DFT filter bank, using the
polyphase representation from Figs. 5.52 (p. 310) and 5.53 (p. 312), for R of length
L complex filters.

(c) Using the results from (a) and (b) compute the effort for a critically sampled
DFT filter bank with L = 64 and R = 16.

5.7: Use the lossy integrator from Example 5.15 (p. 311) to implement an R = 4
uniform DFT filter bank.
(a) Compute the analysis polyphase filter Hj(z).
(b) Determine the synthesis filter Fj(z) for perfect reconstruction.
(c) Determine the 4 x 4 DFT matrix. How many real additions and multiplications
are used to compute the DFT?
(d) Compute the total computational effort of the whole filter bank, in terms of
real additions and multiplications per input sample.

5.8: Analyze the frequency response of each Goodman and Carey half-band filter
from Table 5.3 (p. 274). Zoom in on the passband to estimate the ripple of the
filter.

338 5. Multirate Signal Processing

5.9: Prove the perfect reconstruction for the lifting and dual-lifting scheme from
(5.89) and (5.90) on p. 321.

5.10: (a) Implement the Daubechies length-4 filter using the lifting scheme from
Example 5.23 (p. 321), with 8-bit input and coefficient, and 10-bit output quanti-
zation.

(b) Simulate the design with two impulses of amplitude 100, similar to Fig. 5.64
(p. 326).

(c) Determine the Registered Performance and the used resources (LEs, multi-
pliers, and M4Ks).

(d) Compare the lifting design with the direct polyphase implementation (Example
5.1, p. 250) and with the lattice implementation (Example 5.24, p. 324), in terms
of size and speed.

5.11: Use component instantiation of the two designs from Example 5.4 (p. 262) and
Example 5.6 (p. 269) to compute the difference of the two filter outputs. Determine
the maximum positive and negative deviation.

5.12: (a) Use the reduced adder graph design from Fig. 3.11 (p. 185) to build a
half-band filter F6 (see Table 5.3, p. 274) for 8-bit inputs using Quartus II. Use the
transposed FIR structure (Fig. 3.3, p. 167) as the filter architecture.

(b) Verify the function via a simulation of the impulse response.
(c) Determine the Registered Performance and the used resources (LEs, multi-
pliers, and M4Ks), of the F6 design.

5.13: (a) Compute the polyphase representation for F6 from Table 5.3, p. 274.
(b) Implement the polyphase filter F6 with decimation R = 2 for 8-bit inputs with
Quartus II.

() Verify the function via a simulation of the impulse (one at even and one at odd)
response.

(d) Determine the Registered Performance and the used resources (LEs, multi-
pliers, and M4Ks) of the polyphase design.

(e) What are the advantages and disadvantages of the polyphase design, when
compared with the direct implementation from Exercise 5.12 (p. 338), in terms of
size and speed.

5.14: (a) Compute the 8-bit quantized DB4 filters G(z) by multiplication of (5.95)
with 256 and taking the integer part. Use the programm csd3e.exe from the CD-
ROM or the data from Table 2.3, p. 64.

(b1) Design the filter G(z) only from Fig. 5.62, p. 323 for 9-bit inputs with Quartus
II. Assume that input and coefficient are signed, i.e., only one additional guard bit
is required for a filter of length 4.

(b2) Determine the Registered Performance and the used resources (LEs, multi-
pliers, and M4Ks) of the filter G(z).

(b3) What are the advantages and disadvantages of the CSD design, when com-
pared with the programmable FIR filter from Example 3.1 (p. 167), in terms of size
and speed.

(c1) Design the filter bank with H(z) and G(z) from Fig. 5.62, p. 323.

(c2) Determine the Registered Performance and the used resources (LEs, multi-
pliers, and M4Ks) of the filter bank.

(c3) What are the advantages and disadvantages of the CSD filter bank design,
when compared with the lattice design from Example 5.24, (p. 324), in terms of
size and speed.

Exercises 339

5.15: (a) Use the MAG coding from Table 2.3 (p. 64) to build the sinc filter from
Example 5.12; (p. 285).
(al) Determine the Registered Performance and the used resources (LEs, multi-
pliers, and M4Ks) of the MAG rc_sinc design.
(b) Implement a pipelined adder tree to improve the throughput of the filter
rc_sinc design.
(b1) Determine the Registered Performance and the used resources (LEs, multi-
pliers, and M4Ks) for the improved design.

5.16: (a) Use the sinc filter data from Example 5.12, (p. 285) to estimate the im-
plementation effort for an R = 147/160 rate changer. Assume that the two filters
each account for 50% of the resources.

(b) Use the Farrow filter data from Example 5.13, (p. 292) to estimate the imple-
mentation effort for an R = 147/160 rate changer.

(c) Compare the two design options from (a) and (b) for small and large values of
R in terms of required LEs and Registered Performance.

5.17: The Farrow combiner from Example 5.13, (p. 292) uses several multiplications
in series. Pipeline register for the data and multiplier can be added to perform a
maximum-speed design.

(a) How many pipeline stages (total) are required for a maximum-speed design if
we use:

(al) an embedded array multiplier?

(a2) an LE-based multiplier?

(b) Design the HDL code for a maximum-speed design using:

(b1) an embedded array multiplier

(b2) an LE-based multiplier

(c) Determine the Registered Performance and the used resources (LEs, multi-
pliers, and M4Ks) for the improved designs.

5.18: (a) Compute and plot using MATLAB or C the impulse response of the IIR
filter given in (5.56), p. 298. Is this filter stable?
(b) Simulate the IIR filter using the following input signal: z = [0, 0, 0, 1, 2, 3, 0,
0, 0]; using the filter F= [1 4 1]/6 determine
(b1) z filtered by F'(z) followed by 1/(F(z) and plot the results.
(b2) z filtered by 1/F(z) followed by F'(z) and plot the results.
(c) Split the filter 1/F(z) in a stable causal and a-causal part and apply the causal
first-to-last sample while the a-causal is applied last-to-first sample. Repeat the
simulation in (b).

5.19: (a) Plot the filter transfer function of the IIR filter given in (5.56), p. 298.
(b) Build the length-11 IFFT of the filter and apply a DC correction, i.e.,
> o h(k) =0.

(c) Unser et al. [125] determined the following length-11 FIR approximation for the
IIR: [—0.0019876, 0.00883099, —0.0332243, 0.124384, —0.46405, 1.73209, —0.46405,
0.124384, —0.0332243, 0.00883099, —0.0019876]. Plot the impulse response and
transfer function of this filter.

(d) Determine the error of the two solutions in (b) and (c) by computing the convo-
lution with the filter (5.55) and building the square sum of the elements (excluding

1).

5.20: Use the Farrow equation (5.60) (p. 300) for B-splines to determine the Farrow
matrix for the ¢ for

(a) I-MOMS with ¢(t) = 8°(t) —
(b) O-MOMS with ¢(t) = 8(t) + L L2

da2p3(t)

340 5. Multirate Signal Processing

5.21: Study the FSM part of the cubic B-spline interpolator from Example 5.14,
(p- 303) for an R = 147/160 rate changer.
(a) Assume that the delays d” are stored in LUTs or M4Ks tables. What is the
required table size if d¥ are quantized to
(al) 8 bit unsigned?
(a2) 16 bit unsigned?
(b) Determine the first five phase values for (al) and (a2). Is 8 bit sufficient preci-
sion?
(c) Assume that the Farrow structure is used, i.e., the delays d* are computed
successively using the Horner scheme. What are the FSM hardware requirements
for this solution?

5.22: Use the results from Exercise 5.20 and the fractional rate change design from
Example 5.14, (p. 303) to design an R = 3/4 rate changer using O-MOMS.
(a) Determine the RAG-n for the FIR compensation filter with the following coeffi-
cients: (—0.0094, 0.0292, —0.0831, 0.2432, —0.7048, 2.0498, —0.7048, 0.2432, . ..)
= (—1,4,—11,31,-90,262, —90,31, —11, 4, —1)/128.
(b) Replace the IIR filter with the FIR filter from (a) and adjust the Farrow matrix
coefficients as determined in Exercise 5.20(b).
(c) Verify the functionality with a triangular test function as in Fig. 5.48, p. 307.
(d) Determine the Registered Performance and the used resources (LEs, embed-
ded multipliers, and M4Ks) for the O-MOMS design.

5.23: Use the Farrow matrix (5.60) (p. 300) and the fractional rate change design
from Example 5.14, (p. 303) to design an R = 3/4 rate changer using B-splines.
(a) Determine the RAG-n for the FIR compensation filter with the following coef-
ficients: (0.0085, —0.0337, 0.1239, —0.4645, 1.7316, —0.4645, 0.1239, —0.0337, 0.0085)
= (1,-4, 16, —59,222, —59, 16, —4, 1)/128
(b) Replace the IIR filter with the FIR filter from (a).

(¢) Verify the functionality with a triangular test function as in Fig. 5.48, p. 307.
(d) Determine the Registered Performance and the used resources (LEs, embed-
ded multipliers, and M4Ks) for the B-spline design.

5.24: (a) The GC4114 has a four-stage CIC interpolator with a variable sampling
change factor R. Try to download and study the datasheet for the GC4114 from
the WWW.

(b) Write a short C or MATLAB program that computes the bit growth By =
log,(Gy) for the CIC interpolator using Hogenauers [106] equation:

2k k=1,2,...,8
G = otany s k=S+1,5+2,...,25 (5.112)

where D is the delay of the comb, S is number of stages, and R is the interpolation
factor. Determine for the GC4114 (S = 4 stages, delay comb D = 1) the output bit
growth for R=8, R=32, and R=16 384.

(c) Write a MATLAB program to simulate a four-stage CIC interpolator with delay 1
in the comb and R=32 upsampling. Try to match the simulation shown in Fig. 5.75.
(d) Measure the bit growth for each stage using the program from (c) for a step
input and compare the results to (b).

5.25: Using the results from Exercise 5.24
(a) Design a four-stage CIC interpolator with delay D = 1 in the comb and R = 32
rate change for 16-bit input. Use for the internal bit width the output bit width
you determined in Exercise 5.24(b) for R=32. Try to match the MATLAB simulation

Exercises 341

1
0.5 —_
S
= <t
= P
5 0 £
Q o
£ o
-05 ¥
-1)
0 10 20 30
n
(c) x 10* (d)
3 3l
2 —_
—_ g 2r
£ =
<t L
: L | £
3 <
e =
© = L
2 -1 a -1
=) - 8 ol
-3 ‘ ‘ ‘ ‘ ‘ -3r ‘ ‘ ‘ ‘ ‘
0 200 400 600 800 1000 0 200 400 600 800 1000
m m

Fig. 5.75. Simulation of the GC4114 CIC interpolator.

shown in Fig. 5.75 with the HDL simulation for the input and output.

(b) Design the four-stage CIC interpolator now with the detailed bit width deter-
mined in Exercise 5.24(b). Try to match the MATLAB simulation with the HDL
simulation for the input and output.

(c) Determine the Registered Performance and the used resources (LEs, multi-
pliers, and M2Ks/M4Ks) for the two designs from (a) and (b) using:

(c1) the device EPF10K70RC240-4 from the UP2 board

(c2) the device EP2C35F672C6 from the Cyclone II family

6. Fourier Transforms

The discrete Fourier transform (DFT) and its fast implementation, the fast
Fourier transform (FFT), have played a central role in digital signal process-
ing.

DFT and FFT algorithms have been invented (and reinvented) in many
variations. As Heideman et al. [147] pointed out, we know that Gauss used
an FFT-type algorithm that today we call the Cooley—Tukey FFT. In this
chapter we will discuss the most important algorithms summarized in Fig. 6.1.

We will follow the terminology introduced by Burrus [148], who classi-
fied FFT algorithms simply by the (multidimensional) index maps of their
input and output sequences. We will therefore call all algorithms that do not
use a multidimensional index map, DFT algorithms, although some of them,
such as the Winograd DFT algorithms, enjoy an essentially reduced com-
putational effort. DFT and FFT algorithms do not “stand alone”: the most

Computation of
DFT

With multi—

dimensional index map

Without multi—

dimensional index map

Goertzel algorithm Cooley—Tukey FFT
Blustein chirp—z transform

Decimation in Decimation in
Rader algorithm frequency (DIF) time (DIT)
Winograd DFT Good-Thomas FFT
Hartley transform Winograd FFT algorithms

Fig. 6.1. Classifications of DFT and FFT algorithms.

344 6. Fourier Transforms

efficient implementations often result in a combination of DFT and FFT al-
gorithms. For instance, the combination of the Rader prime algorithm and
the Good-Thomas FFT results in excellent VLSI implementations. The lit-
erature provides many FFT design examples. We find implementations with
PDSPs and ASICs [149, 150, 151, 152, 153, 154]. FFTs have also been devel-
oped using FPGAs for 1-D [155, 156, 157] and 2-D transforms [47, 158].

We will discuss in this chapter the four most important DFT algorithms
and the three most often used FFT algorithms, in terms of computational
effort, and will compare the different implementation issues. At the end of the
chapter, we will discuss Fourier-related transforms, such as the DCT, which
is an important tool in image compression (e.g., JPEG, MPEG). We start
with a short review of definitions and the most important properties of the
DFT.

For more detailed study, students should be aware that DFT algorithms
are covered in basic DSP books [5, 79, 159, 160], and a wide variety of FFT
books are also available [66, 161, 162, 163, 164, 165].

6.1 The Discrete Fourier Transform Algorithms

We will start with a review of the most important DFT properties and will
then review basic DFT algorithms introduced by Bluestein, Goertzel, Rader,
and Winograd.

6.1.1 Fourier Transform Approximations Using the DFT

The Fourier transform pair is defined by

o0 o0
X(f) = / x(t)e 2t dt —— 2(t) = / X(f)e*taf. (6.1
—0o0 — 00

The formulation assumes a continuous signal of infinite duration and
bandwidth. For practical representation, we must sample in time and fre-
quency, and amplitudes must be quantized. From an implementation stand-
point, we prefer to use a finite number of samples in time and frequency. This
leads to the discrete Fourier transform (DFT), where N samples are used
in time and frequency, according to

N-1 N-1
X[k =Y alnle 2N =N " an] Wi, (6.2)
n=0 n=0
and the inverse DFT (IDFT) is defined as
1 N1 1 N1
_ = i2tkn/N _ _— —kn
z[n] = 2 X [kemn /N = = I; X[KWxm, (6.3)

6.1 The Discrete Fourier Transform Algorithms 345

N - - Hanning
RN Gauss
0.78¢ D - Blackman|
A . >
® VN |— Kaiser °
° =
2 NS o
s 057 NI E
3 \ £
< \ N Q
NN £
N
0.25} AN
N AN
N
S~ O
0 ~. =~
0 N/2
Time k Frequency

Fig. 6.2. Window functions in time and frequency.

or, in vector/matrix notation
1
X:Wme»m:NW*X. (6.4)

If we use the DF'T to approximate the Fourier spectrum, we must remember
the effect of sampling in time and frequency, namely:

e By sampling in time, we get a periodic spectrum with the sampling fre-
quency fs. The approximation of a Fourier transform by a DFT is rea-
sonable only if the frequency components of z(t) are concentrated on a
smaller range than the Nyquist frequency fs/2, as stated in the “Shannon
sampling theorem.”

e By sampling in the frequency domain, the time function becomes periodic,
i.e., the DFT assumes the time series to be periodic. If an N-sample DFT
is applied to a signal that does not complete an integer number of cycles
within an N-sample window, a phenomenon called leakage occurs. There-
fore, if possible, we should choose the sampling frequency and the analysis
window in such a way that it covers an integer number of periods of x(t),
if x(t) is periodic.

A more practical alternative for decreasing leakage is the use of a window
function that tapers smoothly to zero on both sides. Such window functions
were already discussed in the context of FIR filter design in Chap. 3 (see
Table 3.2, p. 175). Figure 6.2 shows the time and frequency behavior of some
typical windows [107, 166].

An example illustrates the use of a window function.

Example 6.1: Windowing

Figure 6.3a shows a sinusoidal signal that does not complete an integer num-
ber of periods in its sample window. The Fourier transform of the signal
should ideally include only the two Dirac functions at +wo, as displayed in
Fig. 6.3b. Figures 6.3c and d show the DFT analysis with different windows.
We note that the analysis with the box function has somewhat more ripple

346 6. Fourier Transforms

DFT window Fourier transform
(@) \ \ \ (b)
W W (O]
—0y W
(b) (d)
Hw?ﬂTTﬂﬂ hTTTTTT‘H?T -'I T*T L-
DFT with box window DFT with Hanning window

Fig. 6.3. Analysis of periodic function through the DFT, using window functions.

than the analysis with the Hanning window. An exact analysis would also
show that the main lope width with Hanning analysis is larger than the width
achieved with the box function, i.e., no window.

6.1.2 Properties of the DFT

The most important properties of the DFT are summarized in Table 6.1.
Many properties are identical with the Fourier transform, e.g., the transform
is unique (bijective), the superposition applies, and real and imaginary parts
are related through the Hilbert transform.

The similarity of the forward and inverse transform leads to an alternative
inversion algorithm. Using the vector/matrix notation (6.4) of the DFT

1
X:WwHwZNW*X, (6.5)
we can conclude
1 1
= — (W X)) = =—WX* 6.6
= (W'X) = WX, (6.6)

i.e., we can use the DFT of X* scaled by 1/N to compute the inverse DFT.

6.1 The Discrete Fourier Transform Algorithms

Table 6.1. Theorems of the DFT

Theorem z[n] X[k]
N—1 _

Transform x[n] x[n]e 2 k/N

No1 . n=0
Inverse Transform N X [k]ei2mnk/N X|[k]

k=0
Superposition s1x1[n] + s2x2[n] s1X1[k] + s2X2[K]
Time reversal x[—n] X[—k]
Conjugate complex z*[n] X*[—k]
Split
Real part R(z[n]) (X[k] + X" [—K])/2
Imaginary part S(z[n) (X[k] + X [—K])/(2))

Real even part Ze[n] = R(XTK])
Real odd part Zo[n] = (z[n] — z[—n])/2 IS(Xk])
Symmetry X[n] Nz[—k]
corlcv}(;(l;llll‘fion 2 @ finl X[k F[k]
Multiplication z[n] x f[n] ~X[k] ® F[k]
Periodic shift z[n —d mod N] X [k]e32mdk/N
Parseval N-1 N-1
theorem S Jaln? LY X
n=0 k=0

347

DFT of a Real Sequence

We now turn to some additional computational savings for DFT (and FFT)
computations, when the input sequence is real. In this case, we have two
options: we can compute with one N-point DFT the DFT of two N-point
sequences, or we can compute with an N-point DFT a length 2N DFT of a
real sequence.

If we use the Hilbert property from Table 6.1, i.e., a real sequence has an
even-symmetric real spectrum and an odd imaginary spectrum, the following
algorithms can be synthesized [161].

348 6. Fourier Transforms

Algorithm 6.2: Length 2N Transform with N-point DFT
The algorithm to compute the 2N-point DFT X [k] = X,[k] + jXi[k] from
the time sequence z[n] is as follows:
1) Build an N-point sequence y[n] = z[2n] + jz[2n + 1] with n =
0,1,...N — 1.
2) Compute y[n] o—e Y[k] = Y;[k] + jYi[k]. where R(Y[k]) = Y;[k] is the
real and $(Y'[k]) = Yi[k] is the imaginary part of Y'[k], respectively.
3) Compute
Yk + Yi[—k Yilk] + Yi|—k
X = Vil]+2 =R cos (/) %
Yi k] - Yi[—Fk
—sin (7k/N) %] 5 [=#
Yilk| - Yi[-k . Yilk] +Yi[-k
xi) = T TEH gy oy T
Yilk] — Y[k
—cos (mk/N) %] 5 =]
with k = 0,1,... N — 1.

The computational effort, therefore, besides an N-point DFT (or FFT), is 4
N real additions and multiplications, from the twiddle factors + exp(jmk/N).

To transform two length-N sequences with a length-N DFT, we use the
fact (see Table 6.1) that a real sequence has an even spectrum, while the
spectrum of a purely imaginary sequence is odd. This is the basis for the
following algorithm.

Algorithm 6.3: Two Length N Transforms with one N-point
DFT

The algorithm to compute the N-point DFT g[n] o—eG[k] and

hin] o—e H|[k] is as follows:

1) Build an N-point sequence y[n] = h[n]+jg[n] withn =0,1,... N —1.

2) Compute y[n] o—e Y[k] = Y;[k] + jYi[k], where R(Y[k]) = Y;:[K] is the
real and (Y [k]) = Yi[k] is the imaginary part of Y[k], respectively.

3) Compute, finally

Ykl + Yi[-k] | Yilk] — Yi[—H]

HIK] = ; ; :
Glk] = M _ Ykl *QYr[fk],

with k =0,1,...N = 1.

The computational effort, therefore, besides an N-point DFT (or FFT), is 2
N real additions, to form the correct two N-point DFTs.

Fast Convolution Using DFT

One of the most frequent applications of the DFT (or FFT) is the computa-
tion of convolutions. As with the Fourier transform, the convolution in time is

6.1 The Discrete Fourier Transform Algorithms 349

HIKI/N
Re(HIKIX[K])/N
Im (YIKI+Y “[=kD)/2 +1§E(H[[13]X[[13]))/N
X[K]
FFT Y[k]
x[n] == Re (Y[KI+Y" [=k])/2j={ Re(ulk])+Im(u[k]) == y[n]
u[k]

Fig. 6.4. Real convolution using a complex FFT [66].

done by multiplying the two transformed sequences: the two time sequences
are transformed in the frequency domain, we compute a (scalar) pointwise
product, and we transform the product back into the time domain. The main
difference, compared with the Fourier transform, is that now the DFT com-
putes a cyclic, and not a linear, convolution. This must be considered when
implementing fast convolution with the FFT. This leads to two methods
called “overlap save” and “overlap add.” In the overlap save method, we ba-
sically discharge the samples at the border that are corrupted by the cyclic
convolution. In the overlap add method, we zero-pad the filter and signal
in such a way that we can directly add the partial sequences to a common
product stream.

Most often the input sequences for the fast convolution are real. An effi-
cient convolution may therefore be accomplished with a real transform, such
as the Hartley transform discussed in Exercise 6.15, p. 393. We may also con-
struct an FFT-like algorithm for the Hartley transform, and can get about
twice the performance compared with a complex transform [167].

If we wish to utilize an available FFT program, we may use one of the
previously discussed Algorithms, 6.2 or 6.3, for real sequences. An alternative
approach is shown in Fig. 6.4. It shows a similar approach to Algorithm 6.3,
where we implemented two N-point transforms with one N-point DFT, but
in this case we use the “real” part for a DFT, and the imaginary part for
the IDFT, which is needed for the back transformation, according to the
convolution theorem.

It is assumed that the DFT of the real-valued filter (i.e., F[k] = F[—k]*)
has been computed offline and, in addition, in the frequency domain we need
only N/2 multiplications to compute X [k]F[k].

6.1.3 The Goertzel Algorithm

A single spectral component X [k] in the DFT computation is given by
X[k] = z[0] + z[1]WE + z[2]W3F + ... + z[N — 1]W](\[N—1)k.

350 6. Fourier Transforms

We can combine all x[n] with the same common factor W%, and get
X[k] = 2[0) + WE (2[1] + W (z[2] + ...+ Wra[N —1])...)).

It can be noted that this results in a possible recursive computation of
X|[k]. This is called the Goertzel algorithm, and is graphically interpreted
by Fig. 6.5. The computation of y[n] starts with the last value of the input
sequence [N — 1]. After step three, a spectrum value of X [k] is available at
the output.

x[n] o = y[n]
Register 1 WI:(
Step z[n] Register 1 y[n]
0 z[3] 0 z[3]
1 z[2] WEz[3) z[2) + Wfz[3]
2 e[l Wiel2) + Wika[3] a[1] + Wia[2] + Witz[3]
3 z[0] WEz[1] z[0] + WEx[1]

+WiEkz[2] + Wikz[3) +WiEkz[2] + Wikz[3)

Fig. 6.5. The length-4 Goertzel algorithm.

If we have to compute several spectral components, we can reduce the
complexity if we combine factors of the type eFi2™/N_ This will result in
second-order systems having a denominator according to

2mn
2
-2 1.
z zcos(> +

All complex multiplications are then reduced to real multiplications.

In general, the Goertzel algorithm can be attractive if only a few spec-
tral components have to be computed. For the whole DFT, the effort is of
order N2, and therefore yields no advantage compared with the direct DFT
computation.

6.1.4 The Bluestein Chirp-z Transform

In the Bluestein chirp-z transform (CZT) algorithm, the DFT exponent nk
is quadratic expanded to

nk = —(k—n)?/2+n?/2+k?/2. (6.7)

6.1 The Discrete Fourier Transform Algorithms 351

The DFT therefore becomes

N—-1
X[k =wh"?Y (:c[n]wjfﬂ) Wy k2, (6.8)
n=0
This algorithm is graphically interpreted in Fig. 6.6. This results in the fol-
lowing

Algorithm 6.4: Bluestein Chirp-z Algorithm
The computation of the DFT is done in three steps, namely
1) N multiplication of z[n] with Wﬁzm

2) Linear convolution of x[n] W;\;Q/ % W}'\;?/ 2

C e . . k2 /2
3) N multiplications with Wy,

For a complete transform, we therefore need a length-N convolution and
2N complex multiplications. The advantage, compared with the Rader algo-
rithms, is that there is no restriction to primes in the transform length N.
The CZT can be defined for every length.

Narasimha et al. [168] and others have noticed that in the CZT algorithm
many coefficients of the FIR filter part are trivial or identical. For instance,
the length-8 CZT has an FIR filter of length 14, but there are only four
different complex coefficients, as graphically interpreted in Fig. 6.7. These
four coefficients are 1,j, and +e22°° | i.e., we only have two nontrivial real
coefficients to implement.

It may be of general interest what the mazimum DFT length for a fixed
number Cy of (complex) coefficients is. This is shown in the following table.

DFT
length 8 12 16 24 40 48 72 80 120 144 168 180 240 360 504

Cn 4 6 7 8 12 14 16 21 24 28 32 36 42 48 64

As mentioned before, the number of different complex coefficients does not
directly correspond to the implementation effort, because some coefficients

x[n] Linear X[K]
convolution
exp(—jn n"2/N) exp(—jnt k"2/N)
Premulitplication Postmultiplication
with chirp signal with chirp signal

Fig. 6.6. The Bluestein chirp-z algorithm.

352 6. Fourier Transforms

CZT with 8 points
15 T

2,6,10,14
1 *o E
0.5 e i
K T 1,79
= ,
Q
5 OF g % 4812 g
I} .
£ .
-0.51 3,5,11,13 7
1k -
15 L L L L L
-1.5 -1 -0.5 0 0.5 1 15
Real(C(n))

n2/2 mod 8
8

Fig. 6.7. CZT coefficients C(n) = &2™ in=1,2,...,14.

may be trivial (i.e., £1 or £j) or may show symmetry. In particular, the
power-of-two length transform enjoys many symmetries, as can be seen from
Fig. 6.8. If we compute the maximum DFT length for a specific number of
nontrivial real coefficients, we find as maximum-length transforms:

DFT length 10 16 20 32 40 48 50 &80 96 160 192
sin/cos 2 3 5 6 8 9 10 11 14 20 25

Length 16 and 32 are therefore the maximum length DFTs with only three
and fix real multipliers, respectively.

In general, power-of-two lengths are popular FFT building blocks, and
the following table therefore shows, for length N = 2", the effort when im-
plementing the CZT filter in transposed form.

N Cn sinfcos CSD RAG NOFs for 14-bit
adder adder coefficients
8 4 2 23 7 3,5,33,49.59
16 7 3 91 8 3,25,59,63,387
32 12 6 183 13 3,25.49.73,121,375
64 23 11 431 18 5,25,27,93,181,251,7393
128 44 22 879 31 5,15,25,175,199,319,403,499,1567

256 87 42 1911 49 5,25,765,1443,1737,2837,4637

6.1 The Discrete Fourier Transform Algorithms 353

CZT with 4..128 points

80 T T T 0]
O Complex coefficients o
x Nontrivial coefficients 1)
70+ Q oo |
X
Q
o 9 x 0%,
O
60 - x O B
Q ©c © x
@ o X o ><><>< O
g o o N
S 501 x i
g Q Q 2 R e 20°
2 Q ©) (@) XX (@) X (0]
o x O x x
*E > 401+ o 9 O) i
= o) Ox x
= oo x e} o o
° o o
> Q X @ X X (@)
2 30 O »x o X X o
O X X
€ o o o o o
=z XX X X X
O O O 00 O O
Roo RO X 040 Ox o X % % X
20+ X X XX % X X X XX X X X —
OQ O O Q X x
O O
O x O XX X X
Oy © %00 & o x N "
10 Q O>< x « X —
(¢] ()8() O x x X
Q?@Q« Xy XX X
O
XXX X x
0 Il Il Il Il Il Il
0 20 40 60 80 100 120

DFT length N

Fig. 6.8. Number of complex coefficients and nontrivial real multiplications for the
CZT.

The first column shows the DFT length N. The second column shows
the total number of complex exponentials Cn. The worst-case effort for Cy
complex coefficients is that 2Cy real, nontrivial coefficients must be imple-
mented. The actual number of different nontrivial real coefficients is shown
in column three. We note when comparing columns two and three that for
power-of-two lengths the symmetry and trivial coefficients reduce the num-
ber of nontrivial coefficients. The next columns show, for CZT DFTs up to
length 256, the effort (i.e., number of adders) for a 15-bit (14-bit unsigned
plus sign bit) coefficient precision implementation, using the CSD and RAG
algorithms (discussed in Chap. 2), respectively. For CSD coding no coefficient
symmetry is consider and the adder count is quite high. We note that the
RAG algorithm when compared with CSD can essentially reduce the effort
for DFT lengths larger than 16.

6.1.5 The Rader Algorithm

The Rader algorithm [169, 170] to compute a DFT,

354 6. Fourier Transforms

X[k] = x[n] Wik k,n€Zy; ord(Wy)=N (6.9)

X[=3 zn). (6.10)

Because N = p is a prime, we know from the discussion in Chap. 2 (p. 67)
that there is a primitive element, a generator g, that generates all elements
of n and k in the field Z,, excluding zero, i.e., g* € Z,/{0}. We substitute n
by ¢" mod N and k with ¢*¥ mod N, and get the following index transform:

N-2
X[g* mod N] - (0] = 3 a[g" mod NJWwg " mod N (6.11)
n=0

for k € {1,2,3,..., N — 1}. We note that the right side of (6.11) is a cyclic
convolution, i.e.,

[z[¢° mod N], z[g" mod NJ,...,z[¢g" % mod N
® Wy, w, ... owg T med N} : (6.12)
An example with NV = 7 demonstrates the Rader algorithms.
Example 6.5: Rader Algorithms for N =7

For N = 7, we know that g = 3 is a primitive element (see, for instance, [5],
Table B.7), and the index transform is

[3°,3',3%,3% 3%,3°) mod 7 = [1,3,2,6,4, 5]. (6.13)
We first compute the DC component
6
X[0] =Y 2ln] = 2[0] + 2[1] + 2[2] + 2[3] + o[4] + =[5] + 2[6],
n=0
and in the second step, the cyclic convolution of X[k] — z[0]

[2[1], z[3], (2], (6], =[4], 2[5]] ® (W7, W7, W7, W7, W7, W7],
or in matrix notation

X[1] Wi W2 W2 W Wi W2 [zl (0]
X[3] W2 W72 W Wi w2 wi || z[3] z[0]
X[2]| _ | w? Wi wi W7? Wi Wi z[2] N z[0] | (6.14)
[6] VV76 Wz VV75 Wz VV73 w7 (6] z[0]
X4 WE W2 Wi w2 w2 we | | z[4 z[0
7 7 7 7 7 7
X[5] w2 wi wE w2 wb wi| L[] x[0]

This is graphically interpreted using an FIR filter in Fig. 6.9.

We now verify the p = 7 Rader DFT formula, using a test triangular signal
z[n] = 10A[n] (i.e., a triangle with step size 10). Directly interpreting (6.14),
one obtains

6.1 The Discrete Fourier Transform Algorithms 355

*Run Cyclic shift register
... — — —
X[11X[31.X[21.X[6].X[41.X[5] __::*—| 71 1 [1
—ee
permuted input sequence Load
w, w; w;
x[0] —=(+ @ +

DFT: X[5],X[4].X[6],X[2],X[3],X[1]

Fig. 6.9. Length p = 7 Rader prime-factor DFT implementation.

X[1] [Wr Wi W2 WP Wi W2 20 10
X[3] w2 w2 wf wi w? Wi | | 40 10
X[2]| | wWE2wWEwr w2 wiwE| |30 10
xio]| T (wewrwrwiwEwz| |70 |10
X4 Wi w3 wt w2 w2 wg | |50 10
X[5] L W2 Wit w2 w2 ws wii] [60 10

[—35 + j72

—35 +j8

| -35+j28

= | 35— 572

—35— 38

| 3528

The value of X[0] is the sum of the time series, which is 104-20+- - -+70 = 280.

In addition, in the Rader algorithms we may use the symmetries of the
complex pairs e5257/N I € [0, N/2], to build more-efficient FIR realizations
(Exercise 6.5, p. 391). Implementing a Rader prime-factor DFT is equivalent
to implementing an FIR filter, which we discussed in Chap. 3. In order to
implement a fast FIR filter, a fully pipelined DA or the transposed filter struc-
ture using the RAG algorithm is attractive. The RAG FPGA implementation
is illustrated in the following example.

Example 6.6: Rader FPGA Implementation
An RAG implementation of the length-7 Rader algorithm is accomplished
as follows. The first step is quantizing the coefficients. Assuming that the

input values and coefficients are to be represented as a signed 8-bit word, the
quantized coefficients are:

k 0 1 2 3 4 5 6
Re{256 x WF} 256 160 —57 —231 —231 —57 160
Im{256 x W7k} 0 -200 -250 -111 111 250 200
A direct-form implementation of all the individual coefficients would (con-

sulting Table 2.3, p. 64) consume 24 adders for the constant coefficient mul-
tipliers. Using the transposed structure, the individual coefficient implemen-

356 6. Fourier Transforms

tation effort is reduced to 11 adders by exploiting the fact that several co-
efficients differ only in sign. Optimizing further (reduced adder graph, see
Fig. 2.4, p. 63), the number of adders reaches a minimum of seven (see
Factor: PROCESS and Coeffs: PROCESS below). This is more than a three
times improvement over the direct FIR architecture. The following VHDL
code! illustrates a possible implementation of the length-7 Rader DFT, us-

ing transposed FIR filters.

PACKAGE B_bit_int IS ------ > User-defined types
SUBTYPE WORD8 IS INTEGER RANGE -2%%7 TO 2%x7-1;
SUBTYPE WORD11 IS INTEGER RANGE -2%%10 TO 2%*10-1;
SUBTYPE WORD19 IS INTEGER RANGE -2%%18 TO 2%%18-1;
TYPE ARRAY_WORD IS ARRAY (0 to 5) OF WORD19;

END B_bit_int;

LIBRARY work;
USE work.B_bit_int.ALL;

LIBRARY ieee;

USE ieee.std_logic_1164.ALL;
USE ieee.std_logic_arith.ALL;
USE ieee.std_logic_unsigned.ALL;

ENTITY rader7 IS ===—=—- > Interface
PORT (clk, reset : IN STD_LOGIC;
x_in : IN WORDS;

y_real, y_imag : OUT WORD11);

END rader7;

ARCHITECTURE fpga OF rader7 IS

SIGNAL
TYPE

SIGNAL
SIGNAL
SIGNAL
SIGNAL
SIGNAL
SIGNAL

BEGIN

States:

BEGIN

count : INTEGER RANGE O TO 15;
STATE_TYPE IS (Start, Load, Run);
state : STATE_TYPE ;
accu : WORD11 := 0; -- Signal for X[0]
real, imag : ARRAY_WORD := (0,0,0,0,0,0);
-- Tapped delay line array
x57, x111, x160, x200, x231, x250 : WORD19 := O0;
-- The (unsigned) filter coefficients
x5, x25, x110, x125, x256 : WORD19 ;
-- Auxiliary filter coefficients
x, x_0 : WORD8; -- Signals for x[0]

PROCESS (reset, clk)----- > FSM for RADER filter

IF reset = ’1’ THEN -- Asynchronous reset
state <= Start;

ELSIF rising_edge(clk) THEN
CASE state IS

! The equivalent Verilog code rader7.v for this example can be found in Ap-
pendix A on page 710. Synthesis results are shown in Appendix B on page 731.

WHEN Start => -- Initialization step

6.1 The Discrete Fourier Transform Algorithms 357

state <= Load;
count <= 1;

x_0 <= x_in; -- Save x[0]
accu <= 0 ; -- Reset accumulator for X[0]
y_real <= 0;

y_imag <= 0;
WHEN Load => -- Apply x[5],x[4],x[6],x[2],x[3],x[1]

IF count = 8 THEN -- Load phase done 7
state <= Run;
ELSE

state <= Load;
accu <= accu + X ;
END IF;
count <= count + 1;
WHEN Run => -- Apply again x[5],x[4],x[6],x[2],x[3]

IF count = 15 THEN -- Run phase done 7
y_real <= accu; -- X[o]
y_imag <= 0; -- Only re inputs i.e. Im(X[0])=0
state <= Start; -- Output of result

ELSE -- and start again

y_real <= real(0) / 256 + x_0;
y_imag <= imag(0) / 256;
state <= Run;

END IF;

count <= count + 1;

END CASE;
END IF;
END PROCESS States;

Structure: PROCESS -- Structure of the two FIR
BEGIN -- filters in transposed form
WAIT UNTIL clk = ’1°;
x <= x_in;
-- Real part of FIR filter in transposed form
real(0) <= real(1l) + x160 ; -—- W1
real(1l) <= real(2) - x231 ; -- W3
real(2) <= real(3) - x57 ; -— W2
real(3) <= real(4) + x160 ; -- W6
real(4) <= real(5) - x231 ; -- W4
real(5) <= -x57 ; -- Wb

-- Imaginary part of FIR filter in transposed form
imag(0) <= imag(1l) - x200 ; -- W~
imag(1l) <= imag(2) - x111 ; -
imag(2) <= imag(3) - x250 ; --
imag(3) <= imag(4) + x200 ; -
imag(4) <= imag(5) + x111 ; --
imag(5) <= x250; -
END PROCESS Structure;

)

)

)

SSE}SSS
AP oON W

)

Coeffs: PROCESS -- Note that all signals
BEGIN -- are globally defined
WAIT UNTIL clk = ’1°;

358 6. Fourier Transforms

il
aster Time Ea‘l 0ps i Pnhlev“ 111 us Intewall 117 us Slavl“ End

o ps 1600ns 3200m 4800n: G400n: 8000ne 9800ns 112us 1.25u8 1.8 us Tkus 1.78 u4

Name Ops 0p:

S BO T T T T T i rrrirrrirrr
|| resst B1
=d % in 50 010 B0 (50 LU T T T O T [1]
| | state H ctabe start f etate.dant state.load) slate. run tale.sta
|| B cout UD U T CZ T T 0E 6 7 (8 (3 (T8 (T (T2 (73 1 12 ¥ 15 3 0 %
) e SO 0 10 k70 ¥ 120 ¥ 190 ¥ 220 260 ¥ 750
|&| B ymeal SO [1] x]) = |
|| @ yimsg SO [i] I D G D A
| 1|

Fig. 6.10. VHDL simulation of a seven-point Rader algorithm.

-- Compute the filter coefficients and use FFs
x160 <= x5 *x 32;
x200 <= x25 * 8;
x250 <= x125 * 2;
x57 <= x25 + x * 32;
x111 <= x110 + x;
x231 <= x2b56 - x25;
END PROCESS Coeffs;

Factors: PROCESS (x, x5, x25) -- Note that all signals
BEGIN -- are globally defined
-- Compute the auxiliary factor for RAG without an FF

x5 <= x * 4 + x;

x25 <= xb *x 4 + x5;

x110 <= x25 * 4 + x5 * 2;
x125 <= x2b5 * 4 + x25;
x256 <= x * 256;

END PROCESS Factors;

END fpga;

The design consists of four blocks of statements within the four PROCESS
statements. The first — Stages: PROCESS — is the state machine, which dis-
tinguishes the three processing phases, Start, Load, and Run. The second —
Structure: PROCESS — defines the two FIR filter paths, real and imaginary.
The third item implements the multiplier block using the reduced adder
graph. The forth block — Factor: PROCESS — implements the unregistered
factors of the RAG algorithm. It can be seen that all coefficients are realized
by using six adders and one subtractor. The design uses 443 LEs, no embed-
ded multiplier, and has a 137.06 MHz Registered Performance. Figure 6.10
displays simulation results using Quartus II for a triangular input sequence
z[n] = {10, 20, 30, 40, 50, 60, 70}. Note that the input and output sequences,
starting at 1 us, occur in permuted order, and negative results appear signed
if we use the signed data type in the simulator. Finally, at 1.7 us, X[0] = 280
is forwarded to the output and rader7 is ready to process the next input

frame.

6.1 The Discrete Fourier Transform Algorithms 359

Because the Rader algorithm is restricted to prime lengths there is less
symmetry in the coefficients, compared with the CZT. The following table
shows, for primes length 2™ 41, the implementation effort of the circular filter
in transposed form.

DFT sin/cos CSD RAG NOFs for 14-bit

length adder adder coefficients

7 6 52 13 7,11,31,59,101,177,319

17 16 138 23 3,35,103,415,1153,1249,8051
31 30 244 38 3,9,133,797,877,975,1179,3235
61 60 496 66 5,39,51,205,265,3211

127 124 1060 126 5

The first column shows the cyclic convolution length N, which is also the
number of complex coefficients. Comparing column two and the worst case
with 2N real sin/cos coeflicients, we see that symmetry and trivial coeffi-
cients reduce the number of nontrivial coefficients by a factor of 2. The next
two columns show the effort for a 14-bit (plus sign) coefficient precision im-
plementation using CSD or RAG algorithms, respectively. The last column
shows the auxiliary coefficient, i.e., NOFs used by RAG. Note the advantage
of RAG for longer filters. It can be seen from this table that the effort for
CSD-type filters can be estimated by BN/2, where B is the coefficient bit
width (14 in this table) and N is the filter length. For RAG, the effort (i.e.,
the number of adders) is only N, i.e., a factor B/2 improvement over CSD for
longer filters (for B = 14, a factor &~ 14/2 = 7 of improvement). For longer
filters, RAG needs only one additional adder for each additional coefficient,
because the already-synthesized coefficient produces a dense grid of small
coeflicients.

6.1.6 The Winograd DFT Algorithm

The first algorithm with a reduced number of multiplications necessary we
want to discuss is the Winograd DFT algorithm. The Winograd algorithm
is a combination of the Rader algorithm (which translates the DFT into a
cyclic convolution), and Winograd’s [103] short convolution algorithm, which
we have already used to implement fast-running FIR filters (see Sect. 5.2.2,
p. 254).

The length is therefore restricted to primes or powers of primes. Table 6.2
gives an overview of the number of arithmetic operations necessary.

The following example for N = 5 demonstrates the steps to build a Wino-
grad DFT algorithm.

Example 6.7: N =5 Winograd DFT Algorithm

An alternative representation of the Rader algorithm, using X|[0] instead of
z[0], is given by [5]

360 6. Fourier Transforms

Table 6.2. Effort for the Winograd DFT with real inputs. Trivial multiplications
are those by +1 or +j. For complex inputs, the number of operations is twice as
large.

Block length ~ Total number Total number Total number
of real nontrivial of real
multiplications multiplications additions

2 2 0 2

3 3 2 6

4 4 0 8

5 6 5 17

7 9 8 36

8 8 2 26

9 11 10 44
11 21 20 84

13 21 20 94
16 18 10 74

17 36 35 157

19 39 38 186

X[0] =) @ln] = (0] + 2[1] + (2] + 2[3] + [4]
X -xp0
= [=[1], z[2], z[4], z[3]] ® [W5s — 1, W — 1, W — 1, W5 — 1]
k=1,2,3,4.

If we implement the cyclic convolution of length 4 with a Winograd algorithm
that costs only five nontrivial multiplications, we get the following algorithm:

4

X[k = afple ™ k=0,1,...,4
n=0
X/[0] 10 0 0 0 0
X[4] 1171 1 0-1
XBl|=11-1 1 1 0
X[2] 11-1-1-1 0
X[1] 11 1-1 0 1

xdiag(1, ;(cos(zw/m +cos(4n/5)) — 1,

;(cos(zw/m — cos(4m/5)),] sin(2m/5),
j(—sin(27/5) + sin(47/5)), j(sin(27/5) + sin(47/5)))

6.1 The Discrete Fourier Transform Algorithms 361

X[0] @i el - ® X[0]

X[1] 1]
x[2] X[4]
x(3] X[3]
x[4] X[2]

sin[2u)=0.588

Fig. 6.11. Winograd 5-point DFT signal flow graph.

11 1 1 1
01 1 1 1] [0
01-1-1 1| |*W
*1o1-1 1-1 ‘”[g]
01 0 0-1 ﬂj
00-1 1 o L=

The total computational effort is therefore only 5 or 10 real nontrivial multi-
plications for real or imaginary input sequences xz[n], respectively. The signal
flow graph shown in Fig. 6.11 shows also how to implement the additions in
an efficient fashion.

It is quite convenient to use a matrix notation for the Winograd DFT
algorithm, and so we get

WNL :Cl XB[XAl, (615)

where A; incorporates the input addition, B; is the diagonal matrix with the
Fourier coefficients, and C includes the output additions. The only disad-
vantage is that now it is not as easy to define the exact steps of the short
convolution algorithms, because the sequence in which input and output ad-
ditions are computed is lost with this matrix representation.

This combination of Rader algorithms and a short Winograd convolution,
known as the Winograd DFT algorithm, will be used later, together with
index mapping to introduce the Winograd FFT algorithm. This is the FFT
algorithm with the least number of real multiplications among all known FFT
algorithms.

362 6. Fourier Transforms

6.2 The Fast Fourier Transform (FFT) Algorithms

As mentioned in the introduction of this chapter, we use the terminology
introduced by Burrus [148], who classified all FFT algorithms simply by
different (multidimensional) index maps of the input and output sequences.
These are based on a transform of the length N DFT (6.2)
N—-1
X[k = an] Wi (6.16)
n=0
into a multidimensional N =[], N; representation. It is, in general, sufficient
to discuss only the two-factor case, because higher dimensions can be built
simply by iteratively replacing again one of these factors. To simplify our
representation we will therefore discuss the three FFT algorithms presented
only in terms of a two-dimensional index transform.
We transform the (time) index n with

0 §n1§ N1 -1
0 <ny<N; —1,
where N = N1Ns, and A, B € Z are constants that must be defined later.

Using this index transform, a two-dimensional mapping f : CN — CNi1xN2
of the data is built, according to

n = Ani + Bng mod N { (6.17)

]
0] 1] - z[0,Ny—1]
,0] x[1,1] -+ z[1,Ny —1]
. (6.18)

l‘[Nl — 1,0] J)[Nl — 1, 1] A l‘[Nl — 1,N2 — 1]
Applying another index mapping k to the output (frequency) domain yields

0<k1<N;-—-1
0 <ko<Ny —1,

where C, D € Z are constants that must be defined later. Because the DFT
is bijective, we must choose A, B,C, and D in such a way that the trans-
form representation is still unique, i.e., a bijective projection. Burrus [148]
has determined the general conditions for how to choose A, B,C, and D for
specific N1 and Nz such that the mapping is bijective (see Exercises 6.7 and
6.8, p. 392). The transforms given in this chapter are all unique.

An important point in distinguishing different FFT algorithms is the
question of whether N; and N> are allowed to have a common factor, i.e.,
ged(N1, No) > 1, or whether the factors must be coprime. Sometimes algo-
rithms with ged(Ny, N2) > 1 are referred to as common-factor algorithms
(CFAs), and algorithms with ged(Ny, N2) = 1 are called prime-factor algo-
rithms (PFAs). A CFA algorithm discussed in the following is the Cooley—
Tukey FFT, while the Good—Thomas and Winograd FFTs are of the PFA

k = Cky + Dky mod N { (6.19)

6.2 The Fast Fourier Transform (FFT) Algorithms 363

type. It should be emphasized that the Cooley—Tukey algorithm may indeed
realize FFTs with two factors, N = N;N,, which are coprime, and that for
a PFA the factors N7 and N2 must only be coprime, i.e., they must not be
primes themselves. A transform of length N = 12 factored with N; = 4 and
Ny = 3, for instance, can therefore be used for both CFA FFTs and PFA
FFTs!

6.2.1 The Cooley—Tukey FFT Algorithm

The Cooley—Tukey FF'T is the most universal of all FFT algorithms, because
any factorization of N is possible. The most popular Cooley—Tukey FFTs
are those where the transform length N is a power of a basis r, i.e., N = r".
These algorithms are often referred to as radix-r algorithms.

The index transform suggested by Cooley and Tukey (and earlier by
Gauss) is also the simplest index mapping. Using (6.17) we have A = Ny
and B = 1, and the following mapping results

0 §n1§N1 -1

n = Noni + no {
From the valid range of n; and nsy, we conclude that the modulo reduction
given by (6.17) need not be explicitly computed.

For the inverse mapping from (6.19) Cooley and Tukey, choose C' = 1 and
D = Ni, and the following mapping results

0<ki<N;—1

0 <ky<Ny—1. (6.21)

k= k1 + Niko {

The modulo computation can also be skipped in this case. If we now substi-
tute n and k in W2F according to (6.20) and (6.21), respectively, we find

Wnk — WJJ\}bnlk1+N1N2n1k2+n2k1+N1n2k2_ (6.22)

Because W is of order N = NjNs, it follows that W;VVI = Wy, and W]Qb =
W, . This simplifies (6.22) to

Wik = Wik wrekipygeke, (6.23)
If we now substitute (6.23) in the DFT from (6.16) it follows that

N271 lel
Xlky ko) = > WRER | WEEH S~ afng, ng] WHH (6.24)
no=0 n1=0

N;-point transform

;E[Tm,kl]

364 6. Fourier Transforms

N271
=Y W Zlng, k. (6.25)

no =0

Ns-point transform
We now can define the complete Cooley-Tukey algorithm
Algorithm 6.8: Cooley—Tukey Algorithm

An N = NjNs-point DFT can be done using the following steps:

1) Compute an index transform of the input sequence according to
(6.20).

2) Compute the Ny DFTs of length Nj.

3) Apply the twiddle factors Wﬁzkl to the output of the first transform
stage.

4) Compute N; DFTs of length N.

5) Compute an index transform of the output sequence according to
(6.21).

The following length-12 transform demonstrates these steps.

Example 6.9: Cooley—Tukey FFT for N =12

Assume N1 = 4 and No = 3. It follows then that n = 3n1 + ne and k =
k1 + 4k2, and we can compute the following tables for the index mappings:

na ny k2 k1

0o 1 2 3 0 1 2 3
0 [z[0] z[3] z[6] =x[9] 0 |X[0] XT1] X[2] X]I3]
1 |x[1] z[4] z[7] =[10] 11X1[4] X[5] X[6] X][7]
2 |2[2] 5] =[8] x[11] 2 |X[8] X[9] X[10] X[11]

With the help of this transform we can construct the signal flow graph shown
in Fig. 6.12. It can be seen that first we must compute three DFTs with
four points each, followed by the multiplication with the twiddle factors, and
finally we compute four DFTs each having length 3.

For direct computation of the 12-point DFT, a total of 122 = 144 complex
multiplications and 112 = 121 complex additions are needed. To compute
the Cooley—Tukey FFT with the same length we need a total of 12 complex
multiplication for the twiddle factors, of which 8 are trivial (i.e., £1 or +j)
multiplications. According to Table 6.2 (p. 360), the length-4 DFTs can be
computed using 8 real additions and no multiplications. For the length-3
DFTs, we need 4 multiplications and 6 additions. If we implement the (fixed
coefficient) complex multiplications using 3 additions and 3 multiplications
(see Algorithm 6.10, p. 367), and consider that W° = 1,W3 = —j and
W6 = —1 are trivial, the total effort for the 12-point Cooley—Tukey FFT is
given by

3x164+4x3+4x12=108 real additions and
4x3+4x4=28 real multiplications.

6.2 The Fast Fourier Transform (FFT) Algorithms 365

4—point DFTs 3—point DFTs
n = Twiddle factors Ko
x[0]—2m] D m— 0 X[0]
x[3]— —|>—> k=0 = X[4]
sisi=e] ' N —pL_F=xis
X[9]—=» jv\ h®—> o X[1]
x[1] _—>—| «-1 P XS]
x[4]— | > - X[9]
x[7]-2 " > o X[2]
x[10]—2m —\ K= |- X[6]
x[2]-2 > - X[10]
x5l —&4@—» e X[3]
x[8]—2»] * > =3 X[7]
x[11]=2»] [>-> P X[11]

Fig. 6.12. Cooley—Tukey FFT for N = 12.

For the direct implementation we would need 2 x 112 + 122 x 3 = 674 real
additions and 122 x 3 = 432 real multiplications. It is now obvious why the
Cooley—Tukey algorithm is called the “fast Fourier transform” (FFT).

Radix-r Cooley—Tukey Algorithm

One important fact that distinguishes the Cooley—Tukey algorithm from
other FFT algorithms is that the factors for N can be chosen arbitrarily.
It is therefore possible to use a radix-r algorithm in which N = 7. The most
popular algorithms are those of basis » = 2 or r = 4, because the necessary
basic DFTs can, according to Table 6.2 (p. 360), be implemented without
any multiplications. For r = 2 and S stages, for instance, the following index
mapping results

n=2M 4+ 42ng_1 +ng (6.26)
k =k +2ky+--- 425 ks, (6.27)

For § > 2 a common practice is that in the signal flow graph a 2-point
DFT is represented with a Butterfly, as shown in Fig. 6.13 for an 8-point
transform. The signal flow graph representation has been simplified by using
the fact that all arriving arrows at a node are added, while the constant
coefficient multiplications are symbolized through a factor at an arrow. A
radix-r algorithm has log,.(IN) stages, and for each group the same type of
twiddle factor occurs.

366 6. Fourier Transforms

1. Stage 2. Stage 3. Stage

X[0]
X[4]
X[2]
X{el
X[1]
X[5]
X[3]
X[7]

> >
-1 -1 =l

Group Butterfly

Fig. 6.13. Decimation-in-frequency algorithm of length-8 for radix-2.

It can be seen from the signal flow graph in Fig. 6.13 that the compu-
tation can be done “in-place,” i.e., the memory location used by a butterfly
can be overwritten, because the data are no longer needed in the next com-
putational steps. The total number of twiddle factor multiplications for the
radix-2 transform is given by

logy (N)N/2, (6.28)

because only every second arrow has a twiddle factor.

Because the algorithm shown in Fig. 6.13 starts in the frequency do-
main to split the original DFT into shorter DFTs, this algorithm is called
a decimation-in-frequency (DIF) algorithm. The input values typically occur
in natural order, while the index of the frequency values is in bit-reversed
order. Table 6.3 shows the characteristic values of a DIF radix-2 algorithm.

Table 6.3. Radix-2 FFT with frequency decimation.

Stage 1 Stage 2 Stage3 --- Stage log,(N)
Number of
Numb 1 2 4 o N/2
Butterflies
Butterflic N/2 N/4 N/§ 1
Increment
exponent 1 2 4 N/2

twiddle factors

6.2 The Fast Fourier Transform (FFT) Algorithms 367

We may also construct an algorithm with decimation in time (DIT). In
this case, we start by splitting the input (time) sequence, and we find that
all frequency values will appear in natural order (Exercise 6.10, p. 392).

The necessary index transform for index 41, for an radix-2 and radix-4
algorithm, is shown in Fig. 6.14. For a radix-2 algorithm, a reversing of the
bit sequence, a bitreverse, is necessary. For a radix-4 algorithm we must first
build “digits” of two bits, and then reverse the order of these digits. This
operation is called digitreverse.

Bitreverse r=2 Digitreverse r=4

X[411 101001 Original ,10,10,,01, X[4]]

PR

X[371 100101 Reversed 01,,10,10, X[26]

Fig. 6.14. Bitreverse and digitreverse.

Radix-2 Cooley—Tukey Algorithm Implementation

A radix-2 FFT can be efficiently implemented using a butterfly processor
which includes, besides the butterfly itself, an additional complex multiplier
for the twiddle factors.

A radix-2 butterfly processor consists of a complex adder, a complex sub-
traction, and a complex multiplier for the twiddle factors. The complex mul-
tiplication with the twiddle factor is often implemented with four real mul-
tiplications and two add/subtract operations. However, it is also possible to
build the complex multiplier with only three real multiplications and three
add/subtract operations, because one operand is precomputed. The algorithm
works as follows:

Algorithm 6.10: Efficient Complex Multiplier
The complex twiddle factor multiplication R+ jI = (X +jY) x (C +jS)

can be simplified, because C' and S are precomputed and stored in a table.
It is therefore also possible to store the following three coefficients

Cc, C+5, and C-S. (6.29)
With these three precomputed factors we first compute
E=X-Y, andthen Z=CxE=Cx (X -Y). (6.30)
We can then compute the final product using
=(C-8S)xY+Z (6.31)

I=(C+S)xX—Z (6.32)

368 6. Fourier Transforms

To check:
R=(C-9Y+C(X-Y)
=CY-SY+CX-C0Y=CX-S5YV
I=C+5X-C(X-Y)
=CX+S8X-CX+CY=CY+5X.V

The algorithm uses three multiplications, one addition, and two subtractions,
at the cost of an additional, third table.

The following example demonstrates the implementation of this twiddle
factor complex multiplier.

Example 6.11: Twiddle Factor Multiplier

Let us first choose some concrete design parameters for the twiddle factor
multiplier. Let us assume we have 8-bit input data, the coefficients should
have 8 bits (i.e., 7 bits plus sign), and we wish to multiply by e/ = oI20%,
Quantized to 8 bits, the twiddle factor becomes C + jS = 128 x ™0 =
121 + j39. If we use an input value of 70 + j50, then the expected result is

(70 + j50)el™® = (70 + j50)(121 + j39) /128
= (6520 4 j8780)/128 = 50 + j68.

If we use Algorithm 6.10 to compute the complex multiplication, the three
factors become:
C=121, C+S=160, and C — S =82.

We note from the above that, in general, the tables C'+ S and C' — S must
have one more bit of precision than the C' and S tables.
The following VHDL code? implements the twiddle factor multiplier.

LIBRARY lpm;

USE 1lpm.lpm_components.ALL;

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
USE ieee.std_logic_arith.ALL;

ENTITY ccmul IS

GENERIC (W2 : INTEGER := 17; -- Multiplier bit width
W1l : INTEGER := 9; -— Bit width c+s sum
W : INTEGER := 8); -- Input bit width
PORT (clk : STD_LOGIC; -- Clock for the output register
x_in, y_in, c_in —-- Inputs
: IN STD_LOGIC_VECTOR(W-1 DOWNTO 0);
cps_in, cms_in —-- Inputs
: IN STD_LOGIC_VECTOR(W1i-1 DOWNTO O);
r_out, i_out -- Results

: OUT STD_LOGIC_VECTOR(W-1 DOWNTO 0));
END ccmul;

2 The equivalent Verilog code ccmul.v for this example can be found in Ap-
pendix A on page 713. Synthesis results are shown in Appendix B on page
731.

6.2 The Fast Fourier Transform (FFT) Algorithms 369

ARCHITECTURE fpga OF ccmul IS

SIGNAL x, y, ¢ : STD_LOGIC_VECTOR(W-1 DOWNTO 0);
-- Inputs and outputs

SIGNAL r, i, cmsy, cpsx, Xmyc -- Products
: STD_LOGIC_VECTOR(W2-1 DOWNTO 0);
SIGNAL xmy, cps, cms, sxtx, sxty -- x-y etc.

: STD_LOGIC_VECTOR(W1-1 DOWNTO 0);

BEGIN

b'd <= x_in; -- X
y <=y.in; -—-j*y
[<= c_in; -- cos
cps <= cps_in; -- cos + sin
cms <= cms_in; -- cos - sin

PROCESS

BEGIN
WAIT UNTIL clk=’1’;
r_out <= r(W2-3 DOWNTO W-1); -- Scaling and FF
i_out <= i(W2-3 DOWNTO W-1); -- for output

END PROCESS;
—————————— ccmul with 3 mul. and 3 add/sub -------—-------

sxtx <= x(x’high) & x; -- Possible growth for
sxty <= y(y’high) & y; -- sub_1 -> sign extension
sub_1: lpm_add_sub -- Sub: x - y;

GENERIC MAP (LPM_WIDTH => Wi, LPM_DIRECTION => "SUB",
LPM_REPRESENTATION => "SIGNED")
PORT MAP (dataa => sxtx, datab => sxty, result => xmy);

mul_1: lpm_mult —-- Multiply (x-y)*c = xmyc
GENERIC MAP (LPM_WIDTHA => Wi, LPM_WIDTHB => W,
LPM_WIDTHP => W2, LPM_WIDTHS => W2,
LPM_REPRESENTATION => "SIGNED")
PORT MAP (dataa => xmy, datab => c, result => xmyc);

mul_2: lpm_mult -- Multiply (c-s)*y = cmsy
GENERIC MAP (LPM_WIDTHA => Wi, LPM_WIDTHB => W,
LPM_WIDTHP => W2, LPM_WIDTHS => W2,
LPM_REPRESENTATION => "SIGNED")
PORT MAP (dataa => cms, datab => y, result => cmsy);

mul_3: lpm_mult -- Multiply (c+s)*x = cpsx
GENERIC MAP (LPM_WIDTHA => Wi, LPM_WIDTHB => W,
LPM_WIDTHP => W2, LPM_WIDTHS => W2,
LPM_REPRESENTATION => "SIGNED")
PORT MAP (dataa => cps, datab => x, result => cpsx);

sub_2: lpm_add_sub —= Sub: i <= (c-s)*x - (x-y)*c;

GENERIC MAP (LPM_WIDTH => W2, LPM_DIRECTION => "SUB",
LPM_REPRESENTATION => "SIGNED")

PORT MAP (dataa => cpsx, datab => xmyc, result => i);

370 6. Fourier Transforms

R o]
MastelT\meBar:| 50.0re j_»lPoirter| 7439 ns lntewal:\ 24.33ns Starl:| End:\
200 ns 30.0ns 40.0 ne 50.0ns EDOng 70.0ns |
Mame Yalue at L L U L L L
B0 ns G00ns 57.097 ne
]]
= ek B1
|| B win 570 70
E win S50 a0
=d c_in 5121 T2
| | opsin 5160 TED
| | oms_in - 582 [
=4 1_out 50 i 4 50
| i_out 50 1] b [
1 [S— |]
Fig. 6.15. VHDL simulation of a twiddle factor multiplier.
add_1: lpm_add_sub -- Add: r <= (x-y)*c + (c+s)*y;

GENERIC MAP (LPM_WIDTH => W2, LPM_DIRECTION => "ADD",
LPM_REPRESENTATION => "SIGNED")
PORT MAP (dataa => cmsy, datab => xmyc, result => r);

END fpga;

The twiddle factor multiplier is implemented using component instantiations
of three 1pm_mult and three 1pm_add_sub modules. The output is scaled such
that it has the same data format as the input. This is reasonable, because
multiplication with a complex exponential & should not change the magni-
tude of the complex input. To ensure short latency (for an in-place FFT),
the complex multiplier only has output registers, with no internal pipeline
registers. With only one output register, it is impossible to determine the
Registered Performance of the design, but from the simulation results in
Fig. 6.15, it can be estimated. The design uses 39 LEs, 3 embedded multipli-
ers, and may run faster, if the 1pm_mult components can be pipelined (see

Fig. 2.16, p. 86).

An in-place implementation, i.e., with only one data memory, is now pos-
sible, because the butterfly processor is designed without pipeline stages. If
we introduce additional pipeline stages (one for the butterfly and three for
the multiplier) the size of the design increases insignificantly (see Exercise
6.23, p. 395), however, the speed increases significantly. The price for this
pipeline design is the cost for extra data memory for the whole FFT, be-
cause data read and write memories must now be separated, i.e., no in-place
computation can be done.

Using the twiddle factor multiplier introduced above, it is now possible
to design a butterfly processor for a radix-2 Cooley—Tukey FFT.

Example 6.12: Butterfly Processor

To prevent overflow in the arithmetic, the butterfly processor computes the
two (scaled) butterfly equations

6.2 The Fast Fourier Transform (FFT) Algorithms 371

Dre +] X Dim - ((Are +] X Alm) + (Bre +] X Blm)) /2
Ere +J X Eim - ((Are +] X Alm) - (Bre +] X Blm)) /2
Then the temporary result Ere + j X Eim must be multiplied by the twiddle
factor.
The VHDL code® of the whole butterfly processor is shown in the following.
LIBRARY lpm;
USE 1pm.lpm_components.ALL;

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
USE jeee.std_logic_arith.ALL;

PACKAGE mul_package IS -- User-defined components
COMPONENT ccmul
GENERIC (W2 : INTEGER := 17; -- Multiplier bit width
W1l : INTEGER := 9; -— Bit width c+s sum
W : INTEGER := 8); -- Input bit width
PORT
(clk : IN STD_LOGIC; -- Clock for the output register
x_in, y_in, c_in: IN STD_LOGIC_VECTOR(W-1 DOWNTO O);
-- Inputs
cps_in, cms_in : IN STD_LOGIC_VECTOR(W1-1 DOWNTO O);
-- Inputs
r_out, i_out : OUT STD_LOGIC_VECTOR(W-1 DOWNTO 0));
-- Results

END COMPONENT;
END mul_package;

LIBRARY work;
USE work.mul_package.ALL;

LIBRARY ieee;
USE ijeee.std_logic_1164.ALL;
USE ieee.std_logic_arith.ALL;

LIBRARY lpm;
USE 1pm.lpm_components.ALL;

LIBRARY ieee;

USE ieee.std_logic_1164.ALL;
USE jeee.std_logic_arith.ALL;
USE ieee.std_logic_unsigned.ALL;

ENTITY bfproc IS

GENERIC (W2 : INTEGER := 17; -- Multiplier bit width
W1 : INTEGER := 9; -— Bit width c+s sum
W : INTEGER := 8); -- Input bit width

PORT

3 The equivalent Verilog code bfproc.v for this example can be found in Ap-
pendix A on page 715. Synthesis results are shown in Appendix B on page 731.

372 6. Fourier Transforms

(clk : STD_LOGIC;

Are_in, Aim_in, c_in, -- 8 bit inputs

Bre_in, Bim_in : IN STD_LOGIC_VECTOR(W-1 DOWNTO 0);

cps_in, cms_in : IN STD_LOGIC_VECTOR(W1i-1 DOWNTO O);
-- 9 bit coefficients

Dre_out, Dim_out, -- 8 bit results

Ere_out, Eim_out : OUT STD_LOGIC_VECTOR(W-1 DOWNTO 0)
:= (OTHERS => ’07));
END bfproc;

ARCHITECTURE fpga OF bfproc IS

SIGNAL dif_re, dif_im -- Bf out
: STD_LOGIC_VECTOR(W-1 DOWNTO O);

SIGNAL Are, Aim, Bre, Bim : INTEGER RANGE -128 TO 127:=0;
-- Inputs as integers

SIGNAL c : STD_LOGIC_VECTOR(W-1 DOWNTO 0)
:= (OTHERS => ’0’); -- Input
SIGNAL cps, cms : STD_LOGIC_VECTOR(W1-1 DOWNTO 0)
:= (OTHERS => ’0’); -- Coeff in
BEGIN
PROCESS -- Compute the additions of the butterfly using
BEGIN -- integers and store inputs in flip-flops
WAIT UNTIL clk = ’1°;
Are <= CONV_INTEGER(Are_in);
Aim <= CONV_INTEGER(Aim_in);
Bre <= CONV_INTEGER(Bre_in);
Bim <= CONV_INTEGER(Bim_in);
c <= c_in; -- Load from memory cos
cps <= cps_in; -- Load from memory cos+sin
cms <= cms_in; -- Load from memory cos-sin

Dre_out <= CONV_STD_LOGIC_VECTOR((Are + Bre)/2, W);
Dim_out <= CONV_STD_LOGIC_VECTOR((Aim + Bim)/2, W);
END PROCESS;

-- No FF because butterfly difference "diff" is not an
PROCESS (Are, Bre, Aim, Bim) -- output port
BEGIN
dif_re <= CONV_STD_LOGIC_VECTOR(Are/2 - Bre/2, 8);
dif_im <= CONV_STD_LOGIC_VECTOR(Aim/2 - Bim/2, 8);
END PROCESS;

---- Instantiate the complex twiddle factor multiplier ----
ccmul_1: ccmul —-- Multiply (x+jy)(c+js)
GENERIC MAP (W2 => W2, Wi => Wi, W => W)
PORT MAP (clk => clk, x_in => dif_re, y_in => dif_im,
c_in => ¢, cps_in => cps, cms_in => cms,
r_out => Ere_out, i_out => Eim_out);

END fpga;

The butterfly processor is implemented using one adder, one subtraction,
and the twiddle factor multiplier instantiated as a component. Flip-flops

6.2 The Fast Fourier Transform (FFT) Algorithms 373

B} bfproc.ywl =1l x|
Master TireBar | 1500ns <[¥|Pointer | 187245 Intorvak | 17.28n5 Statt| Enct

140.0 ns 150,0ns 160,0ns 1700 ns 180,0ns 1300 ns
Value al i i i i i i}
Hame | 500 e Ens 198103 n:
) |) |

3 B1
Ae_in 5100 100
| [Aim_in 5110 110
#| & Bre_in 5-a0 A0
Bim_in £10 i 10
J c_in s121 i 121
| [E cps_in 5160 i 160
A| @ emein 582 ; 2]

Dreout 50 1 b4]
Dim_out S0 1] 60
Elgod S0 d =01
[Em_out S0 1 h 5]
1) I | ‘ L

Fig. 6.16. VHDL simulation of a radix-2 butterfly processor.

have been implemented for input A, B, the three table values, and the out-
put port D, in order to have single input/output registered design. The de-
sign uses 131 LEs, 3 embedded multipliers, and has a 95.73 MHz Registered
Performance. Figure 6.16 shows the simulation for the zero-pipeline design,
for the inputs A = 100 4 j110, B = —40 + j10, and W = ¢™/°.

6.2.2 The Good—Thomas FFT Algorithm

The index transform suggested by Good [171] and Thomas [172] transforms
a DFT of length N = N;N; into an “actual” two-dimensional DFT, i.e.,
there are no twiddle factors as in the Cooley—Tukey FFT. The price we pay
for the twiddle factor free flow is that the factors must be coprime (i.e.,
ged(Ng, N;) = 1 for k # 1), and we have a somewhat more complicated
index mapping, as long as the index computation is done “online” and no
precomputed tables are used for the index mapping.

If we try to eliminate the twiddle factors introduced through the index
mapping of n and k according to (6.17) and (6.19), respectively, it follows
from

A B Cki1+Dk
W;\I;k :W](v n1+Bna)(Cki1+Dkz) (6.33)
_ WACTL1k:1+AD’rL1k22+BCk:1’rL2+BD’rL2k:2
- N

_ Nonikq Nikong niky kano
=Wy Wy =W W™,

that we must fulfill all the following necessary conditions at the same time:
(AD)y = (BC)ny =0 (6.34)
(AC)N = N (6.35)
(BD)n = Ni. (6.36)

374 6. Fourier Transforms

The mapping suggested by Good [171] and Thomas [172] fulfills this condition
and is given by

A=Ny B=N; C=No(NyYn, D=N (N n,. (6.37)

To check: Because the factors AD and BC both include the factor NyNo = N,
it follows that (6.34) is checked. With ged(N1, N2) = 1 and a theorem due to
Euler, we can write the inverse as N2_1 mod Ny = N;“Nl)_l mod N7 where
¢ is the Euler totient function. The condition (6.35) can now be rewritten as

(AC)n = (NaNo(NSNI™h . (6.38)

We can now solve the inner modulo reduction, and it follows with v € Z and
vN1Ns mod N =0 finally

(AC)n = (NaNo(NYNI™1 4 Ny)y = N, (6.39)

The same argument can be applied for the condition (6.36), and we have

shown that all three conditions from (6.34)—(6.36) are fulfilled if the Good—

Thomas mapping (6.37) is used. O
In conclusion, we can now define the following theorem

Theorem 6.13: Good—Thomas Index Mapping
The index mapping suggested by Good and Thomas for n is

_ 0 SmSNl -1
n = Noni + Nins mod N {0 <np<Ny — 1 (6.40)
and as index mapping for k results
_ _ 0 <k1<N; -1
k= No(Ny Y n, k1 + Ni(NT Y v, ke mod N {0 Sk;SN; _, -(641)

The transform from (6.41) is identical to the Chinese remainder theorem 2.13
(p. 67). It follows, therefore, that k1 and ks can simply be computed via a
modulo reduction, i.e., k; = k£ mod N;.

If we now substitute the Good—Thomas index map in the equation for the
DFT matrix (6.16), it follows that

N271 lel
Xk ko] = > W= LS ang, ng]WitH (6.42)
no2=0 n1=0

Ni-point transform

.’E[TLQ,kl]
N2—1
> Wik &lng, k), (6.43)

no =0

Ny-point transform

6.2 The Fast Fourier Transform (FFT) Algorithms 375

i.e., as claimed at the beginning, it is an “actual” two-dimensional DFT
transform without the twiddle factor introduced by the mapping suggested
by Cooley and Tukey. It follows that the Good-Thomas algorithm, although
similar to the Cooley—Tukey Algorithm 6.8, has a different index mapping
and no twiddle factors.

Algorithm 6.14: Good—Thomas FFT Algorithm

An N = NjNs-point DFT can be computed according to the following
steps:

1) Index transform of the input sequence, according to (6.40).

2) Computation of Ny DFTs of length Nj.

3) Computation of N3 DFTs of length Ns.

4) Index transform of the output sequence, according to (6.41).

An N = 12 transform shown in the following example demonstrates the steps.

Example 6.15: Good—Thomas FFT Algorithm for N =12

Suppose we have N1 = 4 and Ny = 3. Then a mapping for the input index
according to n = 3n1 +4n2 mod 12, and k = 9k1 +4k2 mod 12 for the output
index results, and we can compute the following index mapping tables

na ni ko k1

0 1 2 3 0 1 2 3
0 [z[0] =[3] =[6] z[9] 0 | XT0] X[9] XT[6] X[3]
1lel] 27 2[10]2[1] 1 |X[4] X[1] X[10] X[7]
2 |2[8] 2[11) 2] z[5] 2 |X[8] X[5] X[2] X[11]

Using these index transforms we can construct the signal flow graph shown
in Fig. 6.17. We realize that the first stage has three DFTs each having four
points and the second stage four DFTs each of length 3. Multiplication by
twiddle factors between the stages is not necessary.

6.2.3 The Winograd FFT Algorithm

The Winograd FFT algorithm [103] is based on the observation that the
inverse DFT matrix (6.4) (without prefactor N~!) of dimension Ny x Na,
with ng(Nl,NQ) = 1, i.e.,

N—-1
zln] = Y XKWy (6.44)
k=0
=Wy X (6.45)

can be rewritten using the Kronecker product* with two quadratic IDFT
matrices each, with dimension N; and Ns, respectively. As with the index

4 A Kronecker product is defined by

376

6. Fourier Transforms

4—point DFTs

3—point DFTs

x[0]—2»] —————] e X[0]
x[3]— —| k=0 [X[4]
sol= " R N ek s
x[9]—» jﬂ > He X[9]
X[4]-2 | o Fe X1
X[7]— = X[5]
x[10]-2] "' 7£: O X[6]
x[1]= —\ k=2 Fo= X[10]
x[8]—= = X[2]
x[11]={ Hoe X[3]
x[2]=2] " =3 Hoe X[7]
x[5]—»] - - X[11]

Fig. 6.17. Good—Thomas FFT for N = 12.

mapping for the Good-Thomas algorithm, we must write the indices of X [k]
and x[n] in a two-dimensional scheme and then read out the indices row by

row. The following example for N = 12 demonstrates the steps.

Example 6.16: IDFT using Kronecker Product for N =12

where A is a K x L matrix.

A®B = [afi,j]|B
al0,0]B

a[K —1,0B - -

al0,L —1]B

a[K —1,L —1]B

Let Ny = 4 and N2 = 3. Then we have the output index transform k =
9k1 + 4k2 mod 12 according to the Good—Thomas index mapping:

6.2 The Fast Fourier Transform (FFT) Algorithms 377

X0 X0
X1 X9
X2 X6
X[3 X3
k2 k1
e 0 1 2 3 iy
il | — 0]X][0] X[9] X[6] X[3] — X[10]
X7 1|X[4] X[1] X[10] X[7] X7
X8 2 |X[8] X[5] X[2] X[11] XI[8
X[9 X5
X10] X2
| x[11] | L X[11]]
We can now construct a length-12 IDFT with
[2[0] T [X1[0] T
x[9 X[9
z[6 X|[6
X
| e e e 1 [WE WE wh wh 1 | X
|l w ws | e | Wi Wiz Wi Wia || XL
[10] W102 W1—28 W1_24 Wiy Wi’ Wiy Wi, X[10]
x 7 12 12 12 W102 W79 W76 W73 X 7
12 Wiz Waa
z[8 X[8
z[5 X5
x[2 X2
| 2[11] | L X1]

So far we have used the Kronecker product to (re)define the IDFT. Using
the short-hand notation & for the permuted sequence x, we may use the
following matrix/vector notation:

E=Wy oWy, X. (6.46)
For these short DFTs we now use the Winograd DFT Algorithm 6.7 (p. 359),
ie.,

WN, :Cl XB[XAl, (647)
where A; incorporate the input additions, B; is a diagonal matrix with the
Fourier coefficients, and C includes the output additions. If we now substi-
tute (6.47) into (6.46), and use the fact that we can change the sequence of
matrix multiplications and Kronecker product computation (see for instance
[5, App. D], we get

VVN1 (8‘}‘/1\[2 = (Cl X B1 X Al) X (CQ X B2 X AQ)

= (Cl ® CQ)(Bl ® BQ)(Al (24 A2) (648)

Because the matrices A; and C; are simple addition matrices, the same ap-
plies for its Kronecker products, A; ® A; and C1 ® C5. The Kronecker

378 6. Fourier Transforms

product of two quadratic diagonal matrices of dimension N7 and N, respec-
tively, obviously also gives a diagonal matrix of dimension N1 N5. The total
number of necessary multiplications is therefore identical to the number of
diagonal elements of B = B1 ® Bs, i.e., M1 M, if M7 and Ms, respectively,
are the number of multiplications used to compute the smaller Winograd
DFTs according to Table 6.2 (p. 360).

We can now combine the different steps to construct a Winograd FFT.

Theorem 6.17: Winograd FFT Design

A N = N;Ns-point transform with coprimes N; and N> can be con-

structed as follows:

1) Index transform of the input sequence according to the Good-Thomas
mapping (6.40), followed by a row read of the indices.

2) Factorization of the DFT matrix using the Kronecker product.

3) Substitute the length N7 and Ny DFT matrices through the Winograd
DFT algorithm.

4) Centralize the multiplications.

After successful construction of the Winograd FFT algorithm, we can com-
pute the Winograd FFT using the following three steps:

Theorem 6.18: Winograd FFT Algorithm

1) Compute the preadditions A; and As.
2) Compute M; M, multiplications according to the matrix By ® Ba.
3) Compute postadditions according to C; and Cs.

Let us now look at a construction of a Winograd FFT of length-12, in detail
in the following example.

Example 6.19: Winograd FFT of Length 12

To build a Winograd FFT, we have, according to Theorem 6.17, to compute
the necessary matrices used in the transform. For Ny = 3 and Ny = 4 we
have the following matrices:

S I R
AT®RA =101 1 X 1 0-1 0 (649)
01— -
01 0-1
B ® B = diag(1, —3/2,V3/2) ® diag(1,1, 1, —i) (6.50)
oo 100
CiwC:= |11 i|®| 0.1 ol- (6.51)
11— B
00 1-1

Combining these matrices according to (6.48) results in the Winograd FFT
algorithm. Input and output additions can be realized multiplier free, and
the total number of real multiplication becomes 2 x 3 x 4 = 24.

6.2 The Fast Fourier Transform (FFT) Algorithms 379

So far we have used the Winograd FFT to compute the IDFT. If we now
want to compute the DFT with the help of an IDFT, we can use a technique
we used in (6.6) on p. 346 to compute the IDFT with help of the DFT. Using
matrix/vector notation we find

- =Wy X)" (6.52)
=Wy X", (6.53)

if Wy = [eQWj”k/N] with n,k € Zy is a DFT. The DFT can therefore be
computed using the IDFT with the following steps: Compute the conjugate
complex of the input sequence, transform the sequence with the IDFT algo-
rithm, and compute the conjugate complex of the output sequence.

It is also possible to use the Kronecker product algorithms; i.e., the Wino-
grad FFT, to compute the DF'T directly. This leads to a slide-modified output
index mapping, as the following example shows.

Example 6.20: A 12-point DFT can be computed using the following Kronecker
product formulation:

Wy Wiy Wiy, WYk
WO WO WO 12 12 12 12
:[121211® Wiy Wi Wi Wi

88888

0 4 8
W e T | w wh i wh (6.54)

0 8 4
Wiz Wiz Wiz 0 9 16 18
ng ng ng ng

8

N U0 S = W oo o

888K

b B P e B P B e B D e e
CHM:OOHE.\]%COQOJO

8
=
=

]

The input sequence z[n] can be considered to be in the order used for Good-Thomas
mapping, while in the (frequency) output index mapping for X[k], each first and
third element are exchanged, compared with the Good—Thomas mapping.

6.2.4 Comparison of DFT and FFT Algorithms

It should now be apparent that there are many ways to implement a DFT.
The choice begins with the selection of a short DFT algorithm from among
those shown in Fig. 6.1 (p. 343). The short DFT can then be used to develop
long DFTs, using the indexing schemes provided by Cooley—Tukey, Good—
Thomas, or Winograd. A common objective in choosing an implementation
is minimum multiplication complexity. This is a viable criterion when the
implementation cost of multiplication is much higher compared with other
operations, such as additions, data access, or index computation.

380

6. Fourier Transforms

Table 6.4. Number of real multiplications for a length-12 complex input FFT
algorithm (twiddle factor multiplications by WO are not counted). A complex mul-
tiplication is assumed to use four real multiplications.

Index mapping

DFT Good—-Thomas Cooley—Tukey Winograd
Method Fig. 6.17 Fig. 6.2 Example 6.16
p. 376 p. 363 p. 376
Direct 4 x 12> =4 x 144 = 576
4(3(4 — 1)?
RPFA +4(3-1)?) =172 4(43+6) =196 -
3x0x2

WFTA +4x2x2=16 164+4x6=40 2x3x4=24

Figure 6.18 shows the number of multiplications required for various FFT

lengths.

It can be concluded that the Winograd FFT is most attractive,

based purely on a multiply complexity criterion. In this chapter, the design of
N = 4x3 = 12-point FFTs has been presented in several forms. A comparison
of a direct, Rader prime-factor algorithms, and Winograd DFT algorithms

Number of real multiplications

1 Butterfly

2 Butterflies

3 Butterflies
Good-Thomas FFT
Winograd FFT

10 10° 10
Transform length N

Fig. 6.18. Comparison of different FFT algorithm based on the number of neces-
sary real multiplications.

6.2 The Fast Fourier Transform (FFT) Algorithms 381

Table 6.5. Important properties for FFT algorithms of length N = [Nx.

Property Cooley-Tukey Good-Thomas Winograd
Any transform no
Length yes ged(Ng, V) =1
Maximum
order of W N max(Ng)

Twiddle
factors needed yes no no
Multiplications bad fair best
Additions fair fair fair
Index comput-

ation effort best fair bad
Data in-place yes yes no
Implementation small can use RPFA, small size for
advantages butterfly fast, simple full parallel, medium-

processor FIR array size FFT (< 50)

used for the basic DFT blocks, and the three different index mappings called
Good—-Thomas, Cooley—Tukey, and Winograd FFT, is presented in Table 6.4.

Besides the number of multiplications, other constraints must be consid-
ered, such as possible transform lengths, number of additions, index compu-
tation overhead, coefficient or data memory size, and run-time code length.
In many cases, the Cooley—Tukey method provides the best overall solution,
as suggested by Table 6.5.

Some of the published FPGA realizations are summarized in Table 6.6.
The design by Goslin [157] is based on a radix-2 FFT, in which the butterflies
have been realized using distributed arithmetic, discussed in Chap. 2. The
design by Dandalis et al. [173], is based on an approximation of the DFT
using the so-called arithmetic Fourier transform and will be discussed in
Sect. 7.1. The ERNS FFT, from Meyer-Bése et al. [174], uses the Rader
algorithm in combination with the number theoretic transform, which will
also be discussed in Chap. 7.

With FPGAs reaching complexities of more than 1M gates today, full in-
tegration of an FFT on a single FPGA is viable. Because the design of such
an FFT block is labor intensive, it most often makes sense to utilize com-
mercially available “intellectual property” (IP) blocks (sometimes also called
“virtual components” VCs). See, for instance, the IP partnership programs
at www.xilinx.com or www.altera.com. The majority of the commercially
available designs are based on radix-2 or radix-4.

382 6. Fourier Transforms

Table 6.6. Comparison of some FPGA FFT implementations [5].

Name Data FFT N-point Clock Internal Design
type type FFT rate RAM/ aim/
time P ROM source
Xilinx 8 bit Radix=2 N =256 70MHz No 573
FPGA FFT 102.4 us 4.8W CLBs
@3.3V [157]
Xilinx 16 bit AFT N =256 50MHz No [173]
FPGA 82.48 us 15.6 W 2602 CLBs
@33V
42.08 us 29.5 W 4922 CLBs
Xilinx ~ 12.7 bit FFT N =97 26MHz No 1178
FPGA using 9.24 us 3.5W CLBs
ERNS-
NTT NTT @33V [174]

6.2.5 TP Core FFT Design

Altera and Xilinx offer FFT generators, since this is, besides the FIR filter,
one of the most often used intellectual property (IP) blocks. For an introduc-
tion to IP blocks see Sect. 1.4.4, p. 35. Xilinx has some free fixed-length and
bitwidth hard core [175], but usually the FFT parameterized cores have to
be purchased from the FPGA vendors for a (reasonable) licence fee.

Let us have a look at the 256-point FFT generation that we discussed
before, see Example 6.12, p. 370, for a radix-2 butterfly processor. But this
time we use the Altera FFT compiler [176] to build the FFT, including the
FSM to control the processing. The Altera FFT MegaCore function is a
high performance, highly parameterizable FFT processor optimized for Altera
devices. Stratix and Cyclone II devices are supported but no mature devices
from the APEX or Flex family. The FFT function implements a radix-2/4
decimation-in-frequency (DIF) FFT algorithm for transform lengths of 2,
where 6 < S < 14. Internally a block-floating-point architecture is used to
maximize signal dynamic range in the transform calculation. You can use the
IP toolbench MegaWizard design environment to specify a variety of FFT
architectures, including 4 x 2+ and 3 x 5+ butterfly architectures and different
parallel architectures. The FFT compiler includes a coefficient generator for
the twiddle factors that are stored in M4K blocks.

Example 6.21: Length-256 FFT IP Generation

To start the Altera FFT compiler we select MegaWizard Plug-In Manager
under the Tools menu, and the library selection window (see Fig. 1.23, p. 39)
will pop up. The FFT generator can be found under DSP—Transform. You
need to specify a design name for the core and we can then proceed to the
ToolBench, see Fig. 6.19a. We first select Parameters and choose as the FFT
length 256, and set the data and coefficient precision to 16 bits. We then have

6.2 The Fast Fourier Transform (FFT) Algorithms 383

 FF1 Megatore FURESRISIIEY S=T
Farameters | architecture | Implementation Options |
“ Target Device Family Cyclane || B
MegaCore
Transform Length 256 ~| points
=
1| ot this care
Data Precision 16 =| nits
Twiddle Precision 16 =| bits
E Documentation

Display Symhol Resource Usage and Cycle Count Estimation

0 step 1
Pararmetanzes
Step2-
_—) Set Up Simulation 256
Step 3
Generate Cancel Finish
(a) (b)

o
o
o
c
S
]
]
c
H]
[y
o
o
&
o
]
o
@
=
-
L
w

Fig. 6.19. IP design of an FFT (a) IP toolbench. (b) Coefficient specification.

a choice of different architecture: Streaming, Buffered Burst, and Burst. The
different architectures use more or fewer additional buffers to allow block-by-
block processing that requires, in the case of the Streaming architecture, no
additional clock cycles. Every 256 cycles, we submit a new data set to the
FFT core and, after some processing, get a new 256-point data set. With the
3% x 5+ selection in the Implementation Options the logic resource estimation
for the Cyclone II family will be as follows:

Resource Streaming Buffered burst Burst
LEs 4581 4638 4318
M4K 22 18 10
Mega RAM 0 0 0
M512 0 0 0
DSP block 9-bit 18 18 18
Transform calculation 256 953 262
cycles

Block throughput cycles 256 331 e

Step 2 from the toolbench will generate a simulation model that is required
for the ModelSim simulation. We proceed with step 3, and the generation of
the VHDL code and all supporting files follows. We then instantiate the FFT
core in a wrapper file that we can compile with Quartus II. The coefficient
files for the twiddle factor, along with MATLAB testbenches and ModelTech
simulation files and scripts, are generated within a few seconds. This files
are listed in Table 6.7. We see that not only are the VHDL and Verilog
files generated along with their component file, but MATLAB (bit accurate)
and ModelSim (cycle accurate) test vectors are provided to enable an easy
verification path. Unfortunately there is no vector file *.vwf that can be used
for the Quartus II simulation and we need to put together our own testbench.
As test data we use a short triangular sequence generated in MATLAB as
follows:

384 6. Fourier Transforms

x=[(1:8)%20,zeros(1,248)];

Y=fft(x);
with the following instruction we quantize and list the first five samples scaled
by 272 as in the Quartus II simulation:

sprintf (°%d ’,real(round(Y(1:5)*2°-3)))
sprintf (°%d ’,imag(round(Y(1:5)*2°-3))),

and the (expected) test data will be

90 89 87 84 79 73 67 59 50 41 ...
0 -10 -20 -30 -39 -47 -55 -61 -66 -70 ...

(real)
(imag)

Table 6.7. IP files generation for FFT core.

File

Description

££t256.vhd
fft256_inst.vhd
£££256. cmp
fft256.1inc

f£t256_bb.v

f£t256.bst
£££256.vho
fft_tb.vhd

££t256_vho_msim.tcl
££t256_model.m

fft256_wave.do

*.txt

f£t256_tb.m

*.hex
f6_core.vec

£££256.html

A MegaCore function variation file, which defines a
top-level VHDL description of the custom MegaCore
function

A VHDL sample instantiation file

A VHDL component declaration for the MegaCore
function variation

An AHDL include declaration file for the MegaCore
function variation function.

Verilog HDL black-box file for the MegaCore function

variation

Quartus II symbol file to be used in the Quartus II
block diagram editor

Functional model used by the ModelSim simulation
Testbench used by the ModelSim simulation (can not
be used with Quartus II simulator)

Compile script used by the ModelSim simulation

This file provides a MATLAB simulation model for the
customized FFT

Waveform scripts used by the ModelSim simulation

Two text files with random real and imaginary input
data

This file provides a MATLAB testbench for the cus-
tomized FFT

Six sin/cos twiddle coefficient tables

This file provides simulation test vectors to be used
simulating the customized FFT with the Quartus IT
software

The MegaCore function report file

The simulation of the FFT block is shown in Figs. 6.20 and 6.21. We see
that the processing works in several steps. After reset is low we set the

6.3 Fourier-Related Transforms 385

I} afft256.vwf =10 %]
Masler Time Bar:| Ops _<]4>| Pointer; | 1311 ns Interval: | 131 ns 5lart:| 165.0 ns End: ‘ 255.0ns

Vel (i 200ns 40.0ns ED.0 ns 80.0ns 1000ns 1200ns 1400ns 1600ns |

Name alus at L L L L L i L L
Ops | [Pp2

L §0 ' e e o 6y A I
| | i =]
=4 reset 51 |
[aster_sink_day S50
E mastel_source_dav so
E master_sink_sop SO 1
oA | [data_real_in 50 g
| | dala_imag_in sa 1]
| | master_source_ena S0
g master_sink_zna S0 |
2 master_source_sop S0
2 mastel_source_sop S0
i exponent_out s 0
E fit_real_out S50 0
i [E f_imag_out =] 0
L4 A EYN M

Fig. 6.20. Quartus II simulation of the IP FFT block initialization steps.

data available signal .._dav from the sink and source. Then the FFT block
response with a high in the enable signal master_sink_ena. We then set the
signal processing start flag mast_sink_sop to high for one clock cycle. At the
same time we apply the first input data (i.e., value 20 in our test) to the
FFT block followed by the next data in each clock cycles. After 256 clock
cycles all input data are processed. Since the FFT uses Steaming mode a
total latency of one extra block is required and the first data are available
after 256 x 2x 10 ns & 5 us, as indicated by the master_source_sop signal, see
Fig. 6.21a. After 256 clock cycles all output data are transmitted as shown by
the pulse in the master_source_eop signal (see Fig. 6.21b) and the FFT will
output the next block. Notice that the output data shows little quantization,
but have a block exponent of —3, i.e., are scaled by 1/8. This is a result of the
block floating-point format used inside the block to minimize the quantization
noise in the multistage FF'T computation. To unscale use a barrelshifter and
shift all real and imaginary data according to this exponent value.

The design from the previous example runs at 144.09 MHz and requires
4461 LEs, 18 embedded multipliers of size 9 x 9 bits (i.e., nine blocks of size
18 x 18 bits), and 19 M4Ks embedded memory blocks, see the floorplan in
Fig. 6.22. If we compare this with the estimation of 22 M4Ks, 18 multipli-
ers, 4581 LEs given by the FFT core toolbench, we observe no error for the
multiplier, a 3% error for the LEs, and an 18% error for the M4Ks estimation.

6.3 Fourier-Related Transforms

The discrete cosine transform (DCT) and discrete sine transform (DST) are
not DF'Ts, but they can be computed using a DFT. However, DCTs and DSTs

386 6. Fourier Transforms

0| Il

Master Time Bar.| Ops 4|+ Painter[543 us Intervak| 543us Start:[165.0ns End:[255.0ns ointer:[781 us Interval[7.91 us Start: [165.0ns Endt [255 0 s
53dus 53us B3Bus Bdus 542w | T82us TBAus 7BBus T8Bus T9us 732w

Name

= ok jEpSpipEpipEpinEpinEpi Lo

] i

(] resmt

(] master_sink_dav

(] master_souce_dav

(] master_sink_sop

(5] @ data_realin I I

=l data_imag_in 1 [1]

] mastersouceena ||

[2] mastersink_ena

[@]| metersowcecop |

|| master_source_eop 1

|| expanent_out [T 3 3 a

5| [i real o

|| @ imag out - 553 BT 86 48 (40 ;{30 21 12) 0

KN — iy i | J I i

(a) (b)

Fig. 6.21. FFT core simulation output results. (a) Start of the output frame. (b)
End of the output frame.

FFT
floorplan

19 M4K
blocks

18 mul.
9x9bits

4461
LEs

| ANNENN BNNNND NUNNOUN NUNNNN DUNUNE |
Fig. 6.22. Annotated Quartus II floorplan of the 256-point FFT.

can not be used directly to compute fast convolution, by multiplying the
transformed spectra and an inverse transform, i.e., the convolution theorem
does not hold. The applications for DCTs and DSTs are therefore not as broad
as those for FFTs, but in some applications, like image compression, DCTs
are (due to their close relationship to the Kahunen—Loevé transform) very
popular. However, because DCTs and DSTs are defined by sine and cosine
“kernels,” they have a close relation to the DFT, and will be presented in this

6.3 Fourier-Related Transforms 387

chapter. We will begin with the definition and properties of DCTs and DSTs,
and will then present an FFT-like fast computation algorithm to implement
the DCT. All DCTs obey the following transform pattern observed by Wang
[177]:

X[k =Y ap]Cy" «— a[n] = > X[k|CY". (6.55)
k

n

The kernel functions C]T\l,’k, for four different DCT instances, are defined by

DCT-I. Cw* =\/2/Nc[n]c[k] cos (nk) nk=0,1,...,N

DCT-II: Cw* =\/2/Nc[k]cos (k(n+) T) n,k=0,1,...,N —1
DCT-IIL: Cy* =\/2/Nefn] cos (n(k+ 1) T) nk=0,1,....N -1
DCT-IV: C* =v/2/Ncos((k+3)(n+3) %) nk=0,1,...,N —1,

where c[m] = 1 except c[0] = 1/4/2. The DST has the same structure, but the
cosine terms are replaced by sine terms. DCTs have the following properties:

1) DCTs implement functions using cosine bases.

2) All transforms are orthogonal, i.e., C x C* = k[n]I.

3) A DCT is a real transform, unlike the DFT.

4) DCT-I is its own inverse.

5) DCT-II is the inverse of DCT-III, and vice versa.

6) DCT-1V is its own inverse. Type IV is symmetric, i.e., C = C".

7) The convolution property of the DCT is not the same as the convolution
multiplication relationship in the DFT.

8) The DCT is an approximation of the Kahunen—Loevé transformation
(KLT).

The two-dimensional 8 x 8 transform of the DCT-II is used most often in
image compression, i.e., in the H.261, H.263, and MPEG standards for video
and in the JPEG standard for still images. Because the two-dimensional
transform is separable into two dimensions, we compute the two-dimensional
DCT by row transforms followed by column transforms, or vice versa (Ex-
ercise 6.17, p. 394). We will therefore focus on the implementation of one-
dimensional transforms.

6.3.1 Computing the DCT Using the DFT

Narasimha and Peterson [178] have introduced a scheme describing how to
compute the DCT with the help of the DFT [179, p. 50]. The mapping of
the DCT to the DFT is attractive because we can then use the wide variety
of FFT-type algorithms. Because DCT-II is used most often, we will further

388 6. Fourier Transforms

develop the relationship of the DFT and DCT-II. To simplify the representa-
tion, we will skip the scaling operation, since it can be included at the end of
the DFT or FFT computation. Assuming that the transform length is even,
we can rewrite the DCT-II transform

N—1
1\ 7
X[k] = k — 6.56
[k] ;x[n]cos(<n+2)N), (6.56)
using the following permutation
yln] =z[2n] and y[N —n—1] =z[2n+ 1]
for n=0,1,...,N/2—1.

It follows then that
N/2—1

X[k = ,;) y[n] cos (k(Qn + ;)%)
+ Nglyw —n—1]cos (k(Qn + ;)%)
X[k = zn:y[n] cos (k(2n + ;)%) . (6.57)

If we now compute the DFT of y[n] denoted with Y[k], we find that
X[k] = R (WanYk])

~ cos (%) R(YH]) — sin (%) S(YTR)). (6.58)

This can be easily transformed in a C or MATLAB program (see Exercise
6.17, p. 394), and can be used to compute the DCT with the help of a DFT
or FFT.

6.3.2 Fast Direct DCT Implementation

The symmetry properties of DCTs have been used by Byeong Lee [180] to
construct an FFT-like DCT algorithm. Because of its similarities to a radix-
2 Cooley—Tukey FFT, the resulting algorithm is sometimes referred to as
the fast DCT or simply FCT. Alternatively, a fast DCT algorithm can be
developed using a matrix structure [181]. A DCT can be obtained by “trans-
posing” an inverse DCT (IDCT) since the DCT is known to be an orthog-
onal transform. IDCT Type II was introduced in (6.55) and, noting that
X[k] = ¢[k] X [k], it follows that

zn] =Y X[EKCR*, n=0,1,...,N-1 (6.59)

6.3 Fourier-Related Transforms 389

0.5%0.5

x[0]
x[1]
x[3]
x[2]
X[7]
x[6]
x[4]
x[5]

X[0]
X[4]
X[2]
X[6]
X[1]
x[5]
X[3]
X[7]

H[3] “Lhpg -1

Fig. 6.23. 8-point fast DCT flow graph with the short-hand notation c[p] =
1/(2 cos(pm/16)).

Decomposing z[n] into even and odd parts it can be shown that z[n] can be
reconstructed by two N/2 DCTs, namely

G[k] = X[2k], (6.60)
Hk] = X[2k+1]+X[2k—1], k=0,1,...,N/2—1. (6.61)
In the time domain, we get
N/2—-1
glnl = Y GIKICy),, (6.62)
k=0
N/2—-1
hin)= > HKCy)y — k=0,1,...,N/2—1. (6.63)
k=0

The reconstruction becomes
z[n] = g[n] + 1/(2C%")h[n), (6.64)
2[N —1—n] = g[n] — 1/(2C%")h[n], (6.65)

n=0,1,...,N/2—1.

By repeating this process, we can decompose the DCT further. Compar-
ing (6.62) with the radix-2 FFT twiddle factor shown in Fig. 6.13 (p. 366)
shows that a division seems to be necessary for the FCT. The twiddle factors
1/ (2C;\L,’k) should therefore be precomputed and stored in a table. Such a
table approach is also appropriate for the Cooley—Tukey FFT, because the

“online” computation of the trigonometric function is, in general, too time
consuming. We will demonstrate the FCT with the following example.

390 6. Fourier Transforms

IDCT input permutation IDCT output permutation
X[41] 101001 Original 0 1
0l Ol
X[37] 10 0101 Reversed 004,01, 11,.10

0 Jlol1o1l10 1

1000,,001,,011,,0104111,,1104100,,101,

Fig. 6.24. Input and output permutation for the 8-point fast DCT.

Example 6.22: A 8-point FCT
For an 8-point FCT (6.60)—(6.65) become

Glk] = X[2k], (6.66)
H[k] = X[2k +1]+ X[2k — 1], k=0,1,2,3. (6.67)
and in the time domain we get
3
gln] =Y GIEICPF, (6.68)
k=0
3
hn) = > HEC]*, n=0,1,2,3. (6.69)
k=0
The reconstruction becomes
z[n] = g[n] + 1/(2C5 ")h[n], (6.70)
[N —1—n] = g[n] —1/2C5")h[n], n=0,1,2,3. (6.71)
Equations (6.66) and (6.67) form the first stage in the flow graph in Fig. 6.23,
and (6.70) and (6.71) build the last stage in the flow graph.

In Fig. 6.23, the input sequence X[k] is applied in bit-reversed order.
The order of the output sequence z[n] is generated in the following manner:
starting with the set (0,1) we form the new set by adding a prefix 0 and 1.
For the prefix 1, all bits of the previous pattern are inverted. For instance,
from the sequence 10 we get the two babies 010 and 110 = 101. This scheme
is graphically interpreted in Fig. 6.24.

Exercises 391

Exercises

Note: If you have no prior experience with the Quartus II software, refer
to the case study found in Sect. 1.4.3, p. 29. If not otherwise noted use the
EP2C35F672C6 from the Cyclone II family for the Quartus IT synthesis eval-
uations.

6.1: Compute the 3-dB bandwidth, first zero, maximum sidelobe, and decrease per
octave, for a rectangular and triangular window using the Fourier transform.

6.2: (a) Compute the cyclic convolution of z[n] = {3,1, -1} and f[n] = {2,1,5}.
(b) Compute the DFT matrix W for N = 3.
(c) Compute the DFT of z[n] = {3,1, -1} and f[n] = {2,1,5}.
(d) Now compute Y[k] = X[k]F[k], followed by y = W3 'Y, for the signals from
part (c).
Note: use a C compiler or MATLAB for part (c) and (d).

6.3: A single spectral component X [k] in the DFT computation
X[k] = 2[0] + 2[1]WE + zQIWEF + ...+ z[N — qw [~ D*
can be rearranged by collecting all common factors W&, such that we get
X[k = z[0] + WE(z[1] + WE(z[2] + ... + WEz[N —1])...)).

This results in a possibly recursive computation of X [k]. This is called the Goertzel
algorithm and is graphically interpreted by Fig. 6.5 (p. 350). The Goertzel algo-
rithm can be attractive if only a few spectral components must be computed. For
the whole DFT, the effort is of order N2 and there is no advantage compared with
the direct DFT computation.

(a) Construct the recursive signal flow graph, including input and output register,
to compute a single X[k] for N = 5.

For N = 5 and k = 1, compute all registers contents for the following input se-
quences:

(b) {20, 40, 60, 80, 100}.

(c) {20, j40, j60, j80, j100}.

(d) {20+ j20, 40 + j40, 60 + j60, 80 + j80, 100 + j100}.

6.4: The Bluestein chirp-z algorithm was defined in Sect. 6.1.4 (p. 350). This algo-
rithm is graphically interpreted in Fig. 6.6 (p. 351).
(a) Determine the CZT algorithms for N = 4.
(b) Using C or MATLAB, determine the CZT for the triangular sequence z[n] =
{0,1,2,3}.
(c) Using C or MATLAB, extend the length to N = 256, and check the CZT results
with an FFT of the same length. Use a triangular input sequence, z[n] = n.

6.5: (a) Design a direct implementation of the nonrecursive filter for the N = 7
Rader algorithm.
(b) Determine the coeflicients that can be combined.
(c) Compare the realizations from (a) and (b) in terms of realization effort.

6.6: Design a length N = 3 Winograd DFT algorithm and draw the signal flow
graph.

392 6. Fourier Transforms

6.7: (a) Using the two-dimensional index transform n = 3ni + 2n2 mod 6, with
Ni = 2 and Ny = 3, determine the mapping (6.18) on p. 362. Is this mapping
bijective?

(b) Using the two-dimensional index transform n = 2n1 4+ 2n2 mod 6, with N1 = 2
and Ny = 3, determine the mapping (6.18) on p. 362. Is this mapping bijective?
(c) For ged (N1, N2) > 1, Burrus [148] found the following conditions such that the
mapping is bijective:

A =aN;3 and B # bN; and ged(a, N1) = ged(B, N2) =1
or
A # aNz and B = bN; and ged(A, N1) = ged(b, N2) =1,

with a,b € Z. Suppose N; = 9 and N2 = 15. For A = 15, compute all possible
values for B € Zsg.

6.8: For gcd(Ni, N2) = 1, Burrus [148] found that in the following conditions the
mapping is bijective:

A = aN; and/or B = bN; and ged(A, N1) = ged(B, N2) =1, (6.72)

with a,b € Z. Assume N1 = 5 and No = 8. Determine whether the following
mappings are possibly bijective index mappings:

(a) A=8,B=H5.

(b) A=8,B =10,

(c) A=24,B=15.

(d) For A =7, compute all valid B € Zao.

(e) For A = 8, compute all valid B € Zao.

6.9: (a) Draw the signal flow graph for a radix-2 DIF algorithm where N = 16.
(b) Write a C or MATLAB program for the DIF radix-2 FFT.
(c) Test your FFT program with a triangular input z[n] = n+jn with n € [0, N—1].

6.10: (a) Draw the signal flow graph for a radix-2 DIT algorithm where N = 8.
(b) Write a C or MATLAB program for the DIT radix-2 FFT.
(c) Test your FFT program with a triangular input z[n] = n+jn with n € [0, N—1].

6.11: For a common-factor FFT the following 2D DFT (6.24; p. 363) is used:

No—1 Ni—1
Xl ko] = > Wik (w;;m > w[nl,nz]W;ﬁh) (6.73)

no=0 n1=0

(a) Compile a table for the index map for a N = 16 radix-4 FFT with: n = 4n1 +no
and k = k1 + 4k2, and 0 < ni, k1 < N1 and 0 < no, ks < Na.

(b) Complete the signal flow graph (x, X and twiddle factors) for the N = 16 radix
4 shown in Fig.6.25.

(¢) Compute the 16-point FFT for x = [0 1, 0, 0, 0, 2, 0, 0, 0, 3, 0, 0, 0, 4, 0, 0]
using the following steps:

(c1) Map the input data and compute the DFTs of the first stage.

(c2) Multiply the (none-zero DFTs) with the twiddle factors (hint: w =
exp(—j2m/16)).

(¢3) Compute the second level DFT.

(c4) Sort the output sequence X in the right order (use two fractional digits).
Note: Consider using a C compiler or MATLAB for part (c).

Exercises

393

S5—point DFTs 3—point DFTs
n= Twiddle factors ko=
—O] —|>—> R
— —D—b k=0 -
—Zp] 0,0 \ ™ T
] U
~ _\ W k=1 L
A D» 2
L D 10
e D—b k=2 -
— /—Db .
—» 7 D—b— L.
O | \—D—b k=3 |-
L | 2
- n,=2 v 1
] k=t -
— 4D-> -

Fig. 6.25. Incomplete 16-point radix-4 FFT signal flow graph.

6.12: Draw the signal flow graph for an N = 12 Good-Thomas FFT, such that no
crossings occur in the signal flow graph.
(Hint: Use a 3D representation of the row and column DFTs)

6.13: The index transform for FFTs by Burrus and Eschenbacher [182] is given by

0<ni<N; -1
n = Nanq + Nins mod N {0 gn;gwj _ (6.74)
and
0 <ki<N; —1
k = Noky + Niks mod N {0 ngN;f 1 (6.75)

(a) Compute the mapping for n and k with N1 = 3 and N2 = 4.

(b) Compute W™*.

(c) Substitute W™ from (b) in the DFT matrix.

(d) What type of FFT algorithm is this?

(e) Can the Rader algorithm be used to compute the DFTs of length N1 or No?

6.14: (a) Compute the DFT matrices W2 and W 3.
(b) Compute the Kronecker product Wi = Wi @ W,
(c) Compute the index for the vectors X and x, such that X = Wz is a DFT of
length 6.
(d) Compute the index mapping for z[n] and X[k], with £ = W3 ® W3X being
the IDFT.

6.15: The discrete Hartley transformation (DHT) is a transform for real signals. A
length N transform is defined by

394 6. Fourier Transforms

Y 1cas (27nk/N) h[K], (6.76)
k=0
with cas(z) = sin(z) 4 cos(z). The relation with the DFT (f[k] 25 F[n]) is
Hin] = R{F[n]} — S{Fn]} (6.77)
Fln] = E[n} —jOln] (6.78)
Eln] = (H[n] + H[-n]) (6.79)
Oln] =) (H[n] — H[-n]), (6.80)

where R is the real part, § the imaginary part, E[n]| the even part of H[n], and
O[n] the odd part of H[n].

(a) Compute the equation for the inverse DHT.

(b) Compute (using the frequency convolution of the DFT) the steps to compute
a convolution with the DHT.

(c) Show possible simplifications for the algorithms from (b), if the input sequence
is even.

6.16: The DCT-II form is:

X[= c[k]\/7 cos —@n+ 1)k) (6.81)

_ 1/2 k=0
olk] = {1 otherwise (6.82)

(a) Compute the equations for the inverse transform.

(b) Compute the DCT matrix for N = 4.

(c) Compute the transform of z[n] = {1,2,2,1} and z[n] = {1,1, -1, —1}.
(d) What can you say about the DCT of even or odd symmetric sequences?

6.17: The following MATLAB code can be used to compute the DCT-II transform
(assuming even length N = 2"), with the help of a radix-2 FFT (see Exercise 6.9).

function X = DCTII(x)

N = length(x); % get length

y = [x(1:2:N); x(N:-2:2) 1; % re-order elements

Y = £ft(y); % Compute the FFT

w = 2%exp(-i*(0:N-1) >*pi/(2%N))/sqrt(2*N); % get weights
w(1) = w(l) / sqrt(2); % make it unitary
X = real(w .*x Y); % compute pointwise product

(a) Compile the program with C or MatLab.
(b) Compute the transform of z[n] = {1,2,2,1} and z[n] = {1,1, -1, —1}.

6.18: Like the DFT, the DCT is a separable transform and, we can therefore im-
plement a 2D DCT using 1D DCTs. The 2D N x N transform is given by
X[’Ih, 77,2] =
N-1N—-1
clrajefne] c[ng] z[k,] cos (m(k: + 1)
k=0 1=0 2

) cos (ng(l +)%) (6.83)

=[=

Exercises 395

where c[0] = 1/+/2 and c[m] = 1 for m # 0.

Use the program introduced in Exercise 6.17 to compute an 8 x 8 DCT transform
by

(a) First row followed by column transforms.

(b) First column followed by row transforms.

(c) Direct implementation of (6.83).

(d) Compare the results from (a) and (b) for the test data z[k,l] = k + ! with
k,i€0,7]

6.19: (a) Implement a first-order system according to Exercise 6.3, to compute the
Goertzel algorithm for N = 5 and n = 1, and 8-bit coefficient and input data, using
Quartus II.

(b) Determine the Registered Performance and the used resources (LEs, multi-
pliers, and M4Ks).

Simulate the design with the three input sequences:

(¢) {20, 40, 60,80, 100},

(d) {j20, j40, j60, j80, 100}, and

(e) {20 + j20, 40 + j40, 60 + j60, 80 + j80, 100 + j100}.

6.20: (a) Design a Component to compute the (real input) 4-point Winograd DFT
(from Example 6.16, p. 376) using Quartus II. The input and output precision
should be 8 bits and 10 bit, respectively.

(b) Determine the Registered Performance and the used resources (LEs, multi-
pliers, and M4Ks).

Simulate the design with the three input sequences:

(c) {40,70, 100, 10}.

(d) {0, 30,60,90}.

(e) {80,110, 20, 50}.

6.21: (a) Design a Component to compute the (complex input) 3-point Winograd
DFT (from Example 6.16, p. 376) using Quartus II. The input and output precision
should be 10 bits and 12 bits, respectively.

(b) Determine the Registered Performance and the used resources (LEs, multi-
pliers, and M4Ks).
(c) Simulate the design with the input sequences {180, 220, 260}.

6.22: (a) Using the designed 3- and 4-point Components from Exercises 6.20 and
6.21, use component instantiation to design a fully parallel 12-point Good—Thomas
FFT similar to that shown in Fig. 6.17 (p. 376), using Quartus II. The input and
output precision should be 8 bit and 12 bit, respectively.

(b) Determine the Registered Performance and the used resources (LEs, multi-
pliers, and M4Ks).
(c) Simulate the design with the input sequences z[n] = 10n with 0 <n < 11.

6.23: (a) Design a component ccmulp similar to the one shown in Example 6.11
(p. 368), to compute the twiddle factor multiplication. Use three pipeline stages for
the multiplier and one for the input subtraction X — Y, using Quartus II. The input
and output precision should again be 8 bits.

(b) Conduct a simulation to ensure that the pipelined multiplier correctly com-
putes (70 + j50)(121 + j39).

(c) Determine the Registered Performance and the used resources (LEs, multi-
pliers, and M4Ks) of the twiddle factor multiplier.

(d) Now implement the whole pipelined butterfly processor.

(e) Conduct a simulation, with the data from Example 6.12 (p. 370).

(f) Determine the Registered Performance and the used resources (LEs, multi-
pliers, and M4Ks) of the whole pipelined butterfly processor.

396

6. Fourier Transforms

S5—point DFTs 3—point DFTs
n= Twiddle factors ko=
—O] —|>—> R
— —D—b k=0 -
—Zp] 0,0 \ ™ T
] U
~ _\ W k=1 L
A D» 2
L D 10
e D—b k=2 -
— /—Db .
—» 7 D—b— L.
O | \—D—b k=3 |-
L | 2
- n,=2 v 1
] k=t -
— 4D-> -

Fig. 6.26. Incomplete 15-point CFA FFT signal flow graph.

6.24: (a) Compute the cyclic convolution of z[n] = {1,2,3,4,5} and f[n] = {—1,0,
—2,0,4}.
(b) Compute the DFT matrix W for N = 5.
(c) Compute the DFT of z[n] and f[n].
(d) Now compute Y[k] = X [k]F[k], followed by y = W 'Y, for the signals from
part (c).
Note: use a C compiler or MATLAB for part (c¢) and (d).

6.25: For a common-factor FFT the following 2D DFT (6.24; p. 363) is used:

No—1 Ni—1
X[k1,]€2] = Z W]T\lélw (W]T\?kl Z x[nl,ng]W]\l,ih) .

no=0 n1=0

(6.84)

(a) Compile a table for the index map for a N = 15, N; = 5, and N2 = 3 FFT with
n =3n1 +no and k = k1 + Ska.

(b) Complete the signal flow graph shown in Fig. 6.26 for the N = 15 transform.
(¢) Compute the 15-point FFT for x = [0, 1,0, 0,2,0,0, 3,0, 0, 4, 0, 0, 5, 0] using
the following steps:

(c1) Map the input data and compute the DFTs of the first stage.

(c2) Multiply the (nonzero DFTs) with the twiddle factors, i.e., w = exp(—j27/15).
(c3) Compute the second-level DFT.

(c4) Sort the output sequence X into the right order (use two fractional digits).
Note: use a C compiler or MATLAB for part (c).

N2

6.26: For a prime-factor FFT the following 2D DFT (6.42); p. 374 is used:

Ny—1 Ni—1
Xlk1, ko] = Z Wk <Z m[nl,m]w;;;kl) .

no=0 n1=0

(6.85)

Exercises 397

(a) Compile a table for the index map for a N = 15,N; = 5, N, = 3 FFT with
n = 3n1 + d5n2 mod 15 and k = 6k; + 10k2 mod 15, and 0 < ni, k1 < N; and
0 S na, kz S N2.

(b) Draw the signal flow graph for the N = 15 transform.

(¢) Compute the 15-point FFT for z = [0, 0, 5, 0, 0, 1, 0, 0, 2, 0, 0, 3, 0, 0, 4] using
the following steps:

(c1) Map the input data and compute the DFTs of the first stage.

(c2) Compute the second-level DFTs.

(¢3) Sort the output sequence X into the right order (use two fractional digits).
Note: use a C compiler or MATLAB to verify part (c).

6.27: (a) Develop the table for the 5 x 2 Good-Thomas index map (see Theorem
6.13, p. 374) for N1 =5 and Ny = 2.
(b) Develop a program in MATLAB or C to compute the (real-input) five-point
Winograd DFT using the signal flow graph shown in Fig. 6.11, p. 6.11. Test your
code using the two input sequences {10 , 30, 50, 70, 90 } and {60, 80, 100, 20, 40}.
(c) Develop a program in MATLAB or C to compute the (complex input) two-point
Winograd DFT. Test your code using the two input sequences {250, 300} and
{—50 + —j67, —j85}.
(d) Combine the two programs from (b) and (c) and build a Good-Thomas 5 x 2
FFT using the mapping from (a). Test your code using the input sequences z[n| =
10n with 1 <=n <= 10.

6.28: (a) Design a five-point (real-input) DFT in HDL. The input and output pre-
cision should be 8 and 11 bits, respectively. Use registers for the input and output.
Add a synchronous enable signal to the registers. Quantize the center coefficients
using the program csd.exe from the CD and use a CSD coding with at least 8-bit
precision.

(b) Simulate the design with the two input sequences {10, 30, 50, 70, 90} and {60,
80, 100, 20, 40}, and match the simulation shown in Fig. 6.27.

(c) Determine the Registered Performance and the used resources (LEs, embed-
ded multipliers, and M4Ks) of the five-point DFT.

6.29: (a) Design a two-point (complex input) Winograd DFT in HDL. Input and
output precision should be 11 and 12 bits, respectively. Use registers for the input
and output. Add a synchronous enable signal to the registers.

(b) Simulate the design with the two input sequences {250, 300} and {—50 +
j67,—j85}, and match the simulation shown in Fig. 6.28.

(c) Determine the Registered Performance and the used resources (LEs, embed-
ded multipliers, and M4Ks) of the two-point DFT.

6.30: (a) Using the designed five- and two-point components from Exercises 6.28
and 6.29 use component instantiation to design a fully parallel 10-point Good—
Thomas FFT similar to your software code from Exercise 6.27. The input and
output precision should be 8 and 12 bits, respectively. Add an asynchronous reset
for the I/O FSM and I/O registers. Use a signal ENA to indicate when a set of I/O
values has been transferred.

(b) Simulate the design with the input z[n] = 10n with 1 < n < 10. Try to match
the simulation shown in Fig. 6.29.

(c) Determine the Registered Performance and the used resources (LEs, embed-
ded multipliers, and M4Ks) of the 10-point Good—-Thomas FFT.

398 6. Fourier Transforms

I wino5dft.vwf 10l x|

Maszter Time Bar: Ops J_il Fointer: ‘ ESE8n: Interval: ‘ E9B 8 ns Siart.’l End: |

Val ps 100,0 ns 2000 ns 3000 ns 400,0ns 500.0 ns EOO.0 ns |
Meis auue at 0o
P

| ck BD [I S 1) S N I N
E enable B1
=d #0_in 510 1y 0 VB0 Y [
=d #1_in 530 D 4 1 Va0 W i
= %2_in 550 50 [1 W f 0
=4 %3in 570 70 1 V20 W 0
E #d_in 590 90 b4 0 W40) 0
@ yll_re 50 0 W20 W 0 300 @
=4 i 50 0 }
=4 wl_re 50 0 B0 i)
| Eylim 50 I & X 0 ¥ 8)0,
=2 y2_re S0 0 W B0 0
=4 u2_im] 0 W 18 i i] W 53 X0
| EHy3e S0 0 W A0 a
= p3im 50 0 F L 0 W B3 WO
=d wh e 50 0 W B0] ;
=2 whim 50 0 LT 0 T
| 2]

=
®

. 6.27. VHDL simulation of a five-point real-input Winograd DFT.

B wino2dft.wwf o =]
=

Master Time Bar: 0ps il ll Pninter:| B2297 nz Interval | 62297 he Start | End: ‘

Val P 100,0 ns 200,0 ns 3000 ns 4000 nis 200,0 ns 600,0ns |
Name anueal TS
= |

L4 clk BO J \ J | J [| | | | I |
| ensble B 1
Pd wre 5250 D 1 - 4 0
d slm 50 [W Br W i
F | Ew1re S300 I 0
= ®1_im 50 0 b -65 W 0 y
i yO_re 50 0 W BR0 X 0 ¥ B0)
| Eom S0 a A8 3
i vi_re 50 i 0 K -h0 i 0 W BD y
= | viiim 50 0 Y 152
4 |+

Fig. 6.28. VHDL simulation of a two-point complex-input Winograd DFT.

6.31: Fast IDCT design.
(a) Develop a fast IDCT (MATLAB or C) code for the length-8 transform according

to Fig. 6.23 (p. 389). Note that the scaling for X[0] is 4/1/2 and the DCT scaling

\/Z/N according to (6.55) is not shown in Fig. 6.23 (p. 389).
(a) Verify your program with the MATLAB function idct for the sequence X =

Exercises 399

B dfe5x2.vwf -1al x|
Master Time Bar:l 0ps 4| | Pairter; . 4432 ns |nlerval:| 4432 ns Stat:[End:
) E 2000ns 4000 ns 600.0 ns |
Ops E ps
| clk BO
| 13t B1
EEFEL I SN D 5 D 1D D SRS D G0 G
kod eha g0
E wre S0 1]
i wim =)
4 2R 13
(@) L 3] ET— _J
B dit5x2.ewf =101 =]
taster Time Ear:l Ops J_'l Pairker: 30us Inkerval: | F0us Skart: [End:
v 305 us 315 us 325 us 3.3 us 340 us 350 us B0 us |
M alue at
Ops
E D 810
d 13t B1
|| [win = 1]
|| ena BO
= ure 50 0 550 =0
12| & vim 50 1] (152 69)} 97 (18 3 0 (18X 37 X €33 152
4 DK »
(b) | —| 0] I 0|

Fig. 6.29. VHDL simulation of a 10-point Good—Thomas FFT. (a) Begin of frame.
(b) End of frame.

10, 20, . .. 80.

(c¢) Determine the maximum bit growth for each spectral component. Hint: in
MATLAB take advantage of the functions abs, max, dctmtx, and sum.

(d) Using the program csd.exe from the CD determine for each coefficient c[p] =
0.5/ cos(p/16) the CSD presentation for at least 8-bit precision.

(e) For the input sequence X = 10,20,...,80 compute the output in float and
integer format.

(f) Tabulate the intermediate values behind the first-, second-, and third-stage
multiplication by ¢[p]. As input use the sequence X from (e) with additional four
guard bits, i.e., scaled by 2% = 16.

6.32: (a) Develop the HDL code for the length-8 transform according to Fig. 6.23
(p. 6.23). Include an asynchronous reset and a signal ena when the transform is
ready. Use serial I/O. Input x_in should be 8 bit, as the output y_out and internal
data format use a 14 integer format with four fractional bits, i.e., scale the input
(x16) and output (/16) in order to implement the four fractional bits.

(b) Use the data from Exercise 6.31(f) to debug the HDL code. Match the simula-
tion from Fig. 6.30 for the input and output sequences.

(c) Determine the Registered Performance and the used resources (LEs, embed-
ded multipliers, and M4Ks) of the 8-point IDCT.

(d) Determine the maximum output error in percent comparing the HDL and soft-
ware results from Exercise 6.31.

400 6. Fourier Transforms

B =
Master Time Bar: | Ops «| 2| Pirter: | 5l4ns Interval: | 514ns Start:| Ops End 10us
o at [P 1000 s 2000 s 300,0 s 4000 s 500,0 s 6000 s 00,0 s 8000 s an0ns 10ug
Weme Ops ps

1
[

Fig. 6.30. VHDL simulation of an 8-point IDCT.

7. Advanced Topics

Several algorithms exist that enable FPGAs to outperform PDSPs by an
order of magnitude, due to the fact that FPGAs can be built with bitwise
implementations. Such applications are the focus of this chapter.

For number theoretic transforms (NTTs), the essential advantage of FP-
GAs is that it is possible to implement modulo arithmetic in any desired bit
width. NTTs are discussed in detail in Sect. 7.1.

For error control and cryptography, two basic building blocks are used:
Galois field arithmetic and linear feedback shift registers (LFSR). Both can
be efficiently implemented with FPGAs, and are discussed in Sect. 7.2. If,
for instance, an N-bit LFSR is used as an M-multistep number generator,
this will give an FPGA at least an M N speed advantage over a PDSPs or
microprocessor.

Finally, in Sect. 7.3, communication systems designed with FPGAs will
demonstrate low system costs, high throughput, and the possibility of fast
prototyping. A comprehensive discussion of both coherent and incoherent
receivers will close this chapter.

7.1 Rectangular and Number Theoretic Transforms
(NTTSs)

Fast implementation of convolution, and discrete Fourier transform (DFT)
computations, are frequent problems in signal and image processing. In prac-
tice these operations are most often implemented using fast Fourier transform
(FFT) algorithms. NTTs can, in some instances, outperform FFT-based sys-
tems. In addition, it is also possible to use a rectangular transform, like the
Walsh—-Hadamard or the arithmetic Fourier transform, to get an approxima-
tion of the DFT or convolution, as will be discussed at the end of Sect. 7.1.
In 1971, Pollard [183] defined the NTT, over a finite group, as the trans-
form pair
N—1 N-—
zln] = N7' > X[kla " mod M < X[k] = > x[k]o* mod M, (7.1)
k=0 =0

[

3

402 7. Advanced Topics

where N x N~! = 1 exists, and a € Zy (Zy = {0,1,2,..., M — 1}, and
Zy = Z/MZ) is an element of order N, ie., «¥ =1 and o* # 1 for all
ke {l1,2,3,...,N — 1} in the finite group (Zys, x) (see Exercise 7.1, p. 472).

It is important to be able to ensure that, for a given tuple («, M, N), such
a transform pair exists. Clearly, a must be of order N modulo M. In order
to ensure that the inverse NTT (INTT) exists, other requirements are:

1) The multiplicative inverse N ~! mod M must exist, i.e., the equation = x
N =1 mod M must have a solution z € Z,y.

2) The determinant of the transform matrix |A| = |[a*"]| must be nonzero
so that the matrix is invertible, i.e., A~! exists.

1) It can only be concluded that a multiplicative inverse exists if o and
M do not share a common factor, or in short notation, ged(a, M) = 0.

2) For the second condition, a well-known fact from algebra is used: The
NTT matrix is a special case of the Vandermonde matriz (with a[k] = of;),
and it follows for the determinant

1 al0] al0]> -+ a[0]F!
1 afl] all]?> -+ a[1)E?

dev)=|. [=TleW-a). (72)
la[L'— a[lL—12%--alL 7.1]L—1 k>l

For det(V') # 0, it is required that alk] # a[l] V k # . Since the calculations
are, in fact, modulo M, a second constraint arises. Specifically, there cannot

be a zero multiplier in the determinant (i.e., ged (H ag — ay, M> =1).
k>l

In conclusion, to check the existence of an NTT, it must be verified that:

Theorem 7.1: Existence of an NTT over Z,,

An NTT of length N for « defined over Z,; exists, if:
1) ged(a, M) = 1.
2) «is of order N, i.e.,

" =1 n=N
a mod]M{?él 1 <n<AN. (7.3)
3) The inverse det(A)~! exist, i.e., ged(al — 1, M) 1 for I =

1,2,...,N —1.

For Z,,, p = prime, all the conditions shown above are automatically satisfied.
In Z, elements up to an order p—1 can be found. But transforms length p—1
are, in general, of limited practical interest, since in this case “general” mul-
tiplications and modulo reductions are necessary, and it is more appropriate
to use a “normal” FFT in binary or QRNS arithmetic [184] and [39, paper
5-6].

There are no useful transforms in the ring M = 2°. But it is possible to
use the next neighbors, 2° + 1. If primes are used, then conditions 1 and 3
are automatically satisfied. We therefore need to discuss what kind of primes
20 + 1 are known.

7.1 Rectangular and Number Theoretic Transforms (NTTs) 403

Mersenne and Fermat Numbers. Primes of the form 2° — 1 were first in-
vestigated by the French mathematician Marin Mersenne (1588-1648). Using
the geometry series

(14274224 429771) (27 —1) =27 — 1

it can be concluded that exponent b of a Mersenne prime must also be a
prime. This is necessary, but not sufficient, as the example 2! — 1 = 23 x 89
shows. The first Mersenne primes 2° — 1 have exponents

b=23,5713,17,31,61,89,107, 127,521,607, 1279. (7.4)

Primes of the type 2° 4+ 1 are known from one of Fermat’s old letters.
Fermat conjectured that all numbers 22 41 are primes but, as for Mersenne
primes, this is necessary but not sufficient. It is necessary because if b is odd,
i.e., b = q2! then

9a2" _ (2(2t) + 1) (2(0—”21 _9@@=2)2" | 9(@=3)2" _ . | 1)

is not prime, as in the case of (2% +1)|(22 + 1), i.e., 17]4097. There are five
known Fermat primes

Fhy=3 Fi=5 Fy,=17 F3=257 F,; =65537, (7.5)

but Euler (1707-1783) showed that 641 divides F5 = 252 +1. Up to Fy; there
are no Fermat primes, which reduce the possible prime Fermat primes for
NTTs to the first five.

7.1.1 Arithmetic Modulo 2° + 1

In Chap. 2, the one’s complement (1C) and diminished-by-one (D1) coding
were reviewed. Consult Table 2.1 (p. 57) for C1 and D1 coding. It was claimed
that C1 coding can efficiently represent arithmetic modulo 2°— 1. This is used
to build Mersenne NTTs, as suggested by Rader [185]. D1 coding efficiently
represents arithmetic modulo 2° + 1, and is therefore preferred for Fermat
NTTs, as suggested by Leibowitz [52].

The following table illustrates again the 1C and D1 arithmetic for com-
puting addition.

1C D1

s=a+b+cen if((a == 0)&&(b==10))s =0
else s=a+b+cn

where a and b are the input operands, s is the sum and cy the carry bit of
the intermediate sum a + b without modulo reduction. To implement the 1C
addition, first form the intermediate B-bit sum. Then add the carry of the
MSB ¢y to the LSB. In D1 arithmetic, the carry must first be inverted before

404 7. Advanced Topics

adding it to the LSB. The hardware requirement to add modulo 28 + 1 is
therefore a total of two adders. The second adder may be built using half-
adders, because one operand, besides the carry in the LSB, is zero.

Example 7.2: As an example, compute 10 + 7 mod M.

1C D1
Decimal M =15 M =17
7 0111 00110
+10 +1010 +01001
17 10001 01111
Correction +1 = 0010 +1 = 1.0000

Check: 1710 mod 15 =2 170 mod 17 =0

Subtraction is defined in terms of an additive inverse. Specifically, B =
—A is said to be the additive inverse of A if A+ B = 0. How the additive
inverse is built can easily be seen by consulting Table 2.1 (p. 57). Additive
inverse production is

1C D1
a if(zf(a)! = 1)a

It can be seen that a bitwise complement must first be computed. That is
sufficient in the case of 1C, and for the nonzero elements in D1, coding. But
for the zero in D1, the bitwise complement should be inhibited.

Example 7.3: The computation of the inverse of two is as follows

1C D1

Decimal M =15 M =17
2 0010 0001
—2 1101 1110

which can be verified using the data provided in Table 2.1 (p. 57).

The simplest « for an NTT is 2. Depending on M = 2°41, the arithmetic
codings (C1 for Mersenne transforms and D1 for Fermat NTTs) is selected
first. The only necessary multiplications are then those with o = 2*. These
multiplications are implemented, as shown in Chap. 2, by a binary (left)
rotation by k bit positions. The leftmost outgoing bit, i.e., carry cy, is copied
to the LSB. For the D1 coding (other than where A = 0) a complement of
the carry bit must be computed, as the following table shows:

7.1 Rectangular and Number Theoretic Transforms (NTTs) 405

1C D1
shl(X, k, en) if(X! = 0) shl(X, k, cn)

The following example illustrates the multiplications by o* = 2* used
most frequently in NTTs.
Example 7.4: Multiplication by 2* for 1C and D1 Coding

The following table shows the multiplication of £+2 by 2, and finally a multi-
plication of 2 by 8 = 23 to demonstrate the modulo operation for 1C and D1

coding.
1C D1
Decimal M =15 M =17
2x2! 0010 0001
=4 0100 0011
—2x 2! 1101 1110
=—4 1011 1100
2x23 0010 0001
=16 0001 1111
which can be verified using the data found in Table 2.1 (p. 57).

7.1.2 Efficient Convolutions Using NTT's

In the last section we saw that with a being a power of two, multiplication
was reduced to data shifts that can be built efficiently and fast with FPGAs,
if the modulus is M = 2° + 1. Obviously this can be extended to complex
as of the kind 2% + j2¥. Multiplication of complex as can also be reduced to
simple data shifts.

In order to avoid general multiplications and general modulo operations,
the following constraints when building NTTs should be taken into account:

Theorem 7.5: Constraints for Practical Useful NTTs

A NTT is only of practical interest if

1) The arithmetic is modulo M = 2 £ 1.

2) All multiplications z[k]a*™ can be realized with a maximum of 2
modulo additions.

7.1.3 Fast Convolution Using NTTs

Fast cyclic convolution of two sequences & and h may be performed by multi-
plying two transformed sequences [66, 170, 185], as described by the following
theorem.

406 7. Advanced Topics

Theorem 7.6: Convolution by NTT

Let « and y be sequences of length N defined modulus M, and z =
(x @ y)p be the circular convolution of and y. Let X = NTT(x), and
Y = NTT(y) be the length-N NTTs of and y computed over M. Then

z=NTT (X oY) (7.6)

To prove the theorem, it must first be known that the commutative, associa-
tive, and distributive laws hold in a ring modulo M. That these properties
hold is obvious, since Z is an integral domain (a commutative ring with unity)
[186, 187].

Specifically, the circular convolution outcome, y[n], is given by

— < -1 Z (Nz::) ml) <]:Z_:_01 h[k]ozkl> a—ln>) (7.7)

Applying the properties of commutation, association, and distribution, the
sums and products can be rearranged, giving

1N-1 N—1
<Z Z (N‘l Z a(m-i—k—n)l>> . (7.8)
k=0 m=0 1=0 M
Clearly for combinations of m,n, and k such that (m +n — k) = 0 mod N,
the sum over [gives N ones and is therefore equal to N. However, for (m +
n—k)ny =r %0, the sum is given by
N—-1 N
dat=1+a"+a” 4. +a" VY = 1z
1—a”
1=0
for a” # 1. Because « is of order N, and r < N, it follows that a” # 1. It
follows that for the sum over I, (7.8) becomes

=0 (7.9)

NﬁlNzila(m*k’”)l _ [(NN71=1)y form+1—n=0 mod N
o 0 form +1—n#0 mod N’

It is now possible to eliminate either the sum over k, using k = (n — m), or
the sum over m, using m = (n — k). The first case gives

yln) = (SN Zgalmlhlin —m)n]) (7.10)
while the second case gives
yln) = (X35 hlklaln —k)n]) . O (7.11)

The following example demonstrates the convolution.

Example 7.7: Fermat NTT of Length 4

7.1 Rectangular and Number Theoretic Transforms (NTTs) 407

Compute the cyclic convolution of length-4 time series z[n] = {1,1,0,0} and
h[n] = {1,0,0,1}, using a Fermat NTT modulo 257.

Solution: For the NTT of length 4 modulo M = 257, the element o = 16
has order 4. In addition, using a symmetric range [—128,...,128], we need
47! = —64 mod 257 and 16" = —64 mod 257. The transform and inverse
transform matrices are given by

11 1 1 11 1 1
116 —1-16 o |1-16-1 16

T=\;, 71 4 To=1; 401 4 (7.12)
1-16 -1 16 116 —1—16

The transform of x[n] and h[n] is followed by the multiplication element by
element, of the transformed sequence. The result for y[n], using the INTT, is
shown in the following

n, k = {0, 1, 2, 3}

zfn) |

X[k] = {2, 17, 0, ~15}

hin) A

H[K] = {2, -15,0, 17}

X|[k] x H[K] = {4 2, 0 2}
yin] =z[n]®hn] = {2 1 0 1}

Wordlength limitations for NTT. When using an NTT to perform con-
volution, remember that all elements of the output sequence y[n| must be
bounded by M. This is true (for simplicity, unsigned coding is assumed) if

TmaxhmaxL < M. (7.13)

If the bit widths B, = logy(Zmax), Brn = 1085 (hmax), Br = logy(L), and
By = log, (M) are used, it follows that for B, = By, the maximum bit width
of the input is bounded by

B, = M, (7.14)

with the additional constraint that M = 2° + 1, and « is a power of two. It
follows that very few prime M transforms exist. Table 7.1 displays the most
useful choices of as, and the attendant transform length (i.e., order of as) of
Mersenne and Fermat NTTs.

If complex transforms and nonprime Ms are also considered, then the
number and length of the transform becomes larger, and the complexity also
increases. In general, for nonprime modul, the conditions from Theorem 7.1
(p. 402) should be checked. It is still possible to utilize Mersenne or Fermat
arithmetic, by using the following congruence

a mod u = (a mod (u X v)) mod wu, (7.15)

408 7. Advanced Topics

Table 7.1. Prime M = 2° + 1 NTTs including complex transforms.

Mersenne M =2° —1 Fermat M =2° +1

a ordas(a) « ordas (o)
2 b 2 b
-2 2b V2 2b
+9] 4b 1+] 4b
1+j 8b

which states that everything is first computed modulo M = u x v =20 £ 1,
and only the output sequence need be computed modulo u, which is the
valid module regarding Theorem 7.1. Although using M = u x v = 2* + 1
increases the internal bit width, 1C or D1 arithmetic can be used. They have
lower complexity than modulo arithmetic modulo u, and this will, in general,
reduce the overall effort for the system.

Such nonprime NTTs are called pseudotransforms, i.e., pseudo-Mersenne
transforms or pseudo-Fermat transforms. The following example demonstra-
tes the construction for a pseudo-Fermat transform.

Example 7.8: A Fermat NTT of Length 50

Using the MATLAB utility order.m (see Exercise 7.1, p. 472), it can be deter-
mined that o = 2 is of order 50 modulo 2%° 4+ 1. From Theorem 7.1, we know
that ged(a? — 1, M) = 3, and a length 50 transform does not exist modulo
225 1 1. It is therefore necessary to identify the “bad” factors in M = (2°+ 1),
those that do not have order 50, and exclude these factors by using the final
modulo operation in (7.15).

Solution: Using the standard MATLAB function factor(2°25+1), the prime-
factors of M are:

2%° 41 =3 x 11 x 251 x 4051. (7.16)
The order of a = 2 for the single factor can be computed with the algorithm
given in Exercise 7.1 on p. 472. They are
ords(2) =2 ordi1(2) =10
OI‘d251 (2):50 ord4051 (2):50
In order to have an NTT of length 50, a final modulo reduction with (225 +
1)/33 must be computed.

(7.17)

Comparing Fermat and Mersenne NTT implementations, consider that

e A Mersenne NTT of length b, with b primes, can be converted by the
chirp-z transform (CZT), or the Rader prime factor theorem (PFT) [169],
into a cyclic convolution, as shown in Fig. 7.1a. In addition this allows a
simplified bus structure if a multi-FPGA implementation [174] is used.

e Fermat NTTs with M = 22 + 1 have a power-of-two length N = 2!, and
can therefore be implemented with the usual Cooley—Tukey radix-2-type
FFT algorithm, which we discussed in Chap. 6.

7.1 Rectangular and Number Theoretic Transforms (NTTs) 409

Table 7.2. Data for some Agarwal-Burrus NTTs, to compute cyclic convolution
using real Fermat NTTs (b= 2¢,¢ = 0 to 4) or pseudo-Fermat NTTs ¢t = 5, 6.

Module « 1D 2D

2 11 2 26 22
241 V2 4b 82

7.1.4 Multidimensional Index Maps for NTTs and the
Agarwal-Burrus NTT

For NTTs, in general the transform length IV is proportional to the bit width
b. This constraint makes it impossible to build long (one-dimensional) trans-
forms, because the necessary bit width will be tremendous. It is possible to try
the multidimensional index maps, called Good-Thomas and Cooley—Tukey,
which we discussed in Chap. 6. If these methods are applied to NTTs, the
following problems arise:

e In Cooley—Tukey algorithms of length N = NjNj, an element of order N
in the twiddle factors is needed. It follows that the transform length is not
increased, compared with the one-dimensional case, and will result in large
bit width. It is therefore not attractive.

e If Good—Thomas mapping is applied, there is no need for an element of
length N, for a length N = Nj Ny transform. However, two coprime length
transforms N7 and N» are needed for the same M. That is impossible for
NTTs, if the transforms listed in Table 7.1 (p. 408) are used. The only
way to make Good—Thomas NTTs work is to use different extension fields,
as reported in [174], or to use them in combination with Winograd short-
convolution algorithms, but this will also increase the complexity of the
implementation.

An alternative method suggested by Agarwal and Burrus [188] seems to be
more attractive. In the Agarwal-Burrus algorithm, a one-dimensional array is
also first mapped into a two-dimensional array, but in contrast to the Good—
Thomas methods, the lengths N7 and N must not be coprime. The Agarwal—
Burrus algorithm can be understood as a generalization of the overlap-save
method, where periodic extensions of the signals are built. If an « of order
2L is used, a convolution of size

(7.18)

can be built. From Table 7.2, it can be seen that this two-dimensional method
improves the maximum length of the transforms.
To compute the Agarwal-Burrus NTT, the following five steps are used:

410 7. Advanced Topics

Algorithm 7.9: Agarwal-Burrus NTT

The cyclic convolution of £ ® h of length N = 2L2, with an NTT of
length L, is accomplished with the following steps:

1) Index transformation of the one-dimensional sequence into a two-
dimensional array according to

x[0] z[L] -+ z[N—1L]

z[l] z[L+1] -+ [N — L+1]

2= |o[L—1 2201 a[N—1] (7.19)

0 0 0
0 0 0 0

ChIN = L+1] AL - h[N —2L+1]]

mﬁ—u hMLH-:MN—i—H

h = h[0] hL] -~ KN-L] |. (7.20)
h[1] h[L+1] -+ h[N —L+1]
h@;u l@i—ﬂ;: MNLH

N
2) Computation of the row transforms [. 1 followed by the column

transforms [| -].

3) Computation of the element-by-element matrix multiplication, ¥ =
HoX.

4) Inverse transforms of the columns [|] - - -] followed by the inverse row

_
transforms | . | .

5) Reconstruction of the output sequence from the lower part of y, ac-

cording to
g0yl - NI
Y= yll] ylL+1] - y[N—L+1]]|. (7.21)
YL -1 yRL 1] yN-1]

The Agarwal-Burrus NTT can be demonstrated with the following example:

Example 7.10: Length 8 Agarwal-Burrus NTT

An NTT modulo 257 of length 4 exists for & = 16. Compute the convolution
of X(2) =142+ 2724+ 273 with F(2) =14+ 227' + 3272 + 4272 using a

7.1 Rectangular and Number Theoretic Transforms (NTTs) 411

Fermat NTT modulo 257.
Solution: First, the index maps and transforms of z[n] and f[n] are com-
puted. It follows that

(11007 4 340227
1100 34 320 2
= 10000 — X = 0 00 0 (7.22)
10000 | 227 2 0225
[0000] 16 143 255 112
0240 253 114 66 206
F=11300| 7 F=|249212255 51 | (7.23)
12400] 253 45 195 145
Now, an element-by-element multiplication is computed, which results in
64 236 0 238 2640
| 121 50 0155 10264
Y=10 000 | 7Y~|16094]| (7.24)
120 90 0 243 31070
From the lower half of y, the element of y[n] = {1,3,6,10,9,7,4,0} can be
seen.

With the Agarwal-Burrus NTT, a double-size intermediate memory is
needed, but much longer transforms can be computed. The two-dimensional
principle can easily be extended to three-dimensional index maps, but most
often the transform length achieved with the two-dimensional method will be
sufficient. For instance, for « = 2 and b = 32, the transform length is increased
from 64 in the one-dimensional case to 2'! = 2048 in the two-dimensional
case.

7.1.5 Computing the DFT Matrix with NTTs

Most often DFTs and NTTs are used to compute convolution, and it can be
attractive to use NTTs to compute this convolution with FPGAs, because
1C and D1 can be efficiently implemented. But sometimes it is necessary to
compute the DFT to estimate the Fourier spectrum. Then a question arises: Is
it possible to use the more efficient NTT to compute the DFT? This question
has been addressed in detail by Siu and Constantinides [189].

The idea is as follows: For prime p-length DFTs, the Rader algorithm can
be used, which converts the task into a length p — 1 cyclic convolution. This
cyclic convolution is then computed by an NTT of the original sequence and
the DFT twiddle factors in the NTT domain, multiplication elementwise, and
the back conversion. These processing steps are illustrated in Fig. 7.1b. The
principle is demonstrated in the following example.

Example 7.11: Rader Algorithm for N =5

For N = 5, a generator is g = 2, which gives the following index map,
{2°,2',2%,23Y mod 5 = {1,2,4,3}. First, the DC component is computed
with

412 7. Advanced Topics

Table 7.3. Building blocks to compute DFT with Fermat NTT.

DFT Number o Number of real
length ring Mul. Shift-Add.
3 F\,Fy, F3,Fy, Fs, Fg 22,2% 28 216 232 964 2 6

5 Fi,Fy, F3,Fy, Fs, Fs 2,22, 2% 28 216 932 4 20

17 F3,Fy, Fs, Fs 2,22 94 28 16 144
257 Fs V2 256 4544

13 Fi,Fy, F3,Fy, Fs, Fs 2,22, 2% 28 216 932 16 104
97 Fy, Fs, Fg 2,22 2% o 128 1408
193 Fx, Fs 2,22 256 3200
769 Fs V2 1024 16448

X[0] =) @ln] = 2(0] + 2[1] + (2] + 2[3] + 2[4]

and in the second step, X[k] — x[0], the cyclic convolution

{e[1], «[2], 2[4], 23]} ® (W5, WZ, W5, Wi},

Now the NTT is applied to the (reordered) sequences x[n] and W¥, as shown
in Example 7.7 (p. 407). The transformed sequences are then multiplied el-
ement by element, in the NTT domain, and finally the INTT is computed.

For Mersenne NTTs a problem arises, in that the NTT itself is of prime
length, and therefore the length increased by one can not be of prime length.
But for a Fermat NTT, the length is 2¢, since M = 2! + 1, which is a prime.
Siu and Constantinides found eight such short-length DFT building blocks
to be useful. These basic building blocks are summarized in Table 7.3.

The first part of Table 7.3 shows blocks that do not need an index trans-
form. In the second part are listed the building blocks that have two coprime
factors. They are 13 —1 =3 x4, 97 -1 =3 x 32, 193 — 1 = 3 x 64, and
769 — 1 = 3 x 256. The disadvantage of the two-factor case is that, in a
two-dimensional index map, for only one dimension every second transform
of the twiddle factor becomes zero.

In the multidimensional map, it is also possible to implement a radix-2
FFT-like algorithm, or to combine Fermat NTTs with other NTT algorithms,
such as the (pseudo-) Fermat NTT transform, (pseudo-) Mersenne transform,
Lagrange interpolation, Eisenstein NTTs or a short convolution algorithm
such as the Winograd algorithm [66, 189].

In the following, the techniques for the two-factor case using a length
13 — 1 = 3 x 4 multidimensional index map are reviewed. This is similar to
the discussion in Chap. 6 for FFTs.

7.1 Rectangular and Number Theoretic Transforms (NTTs) 413

X10]
. X[0] =3, =[n] -
(a) zn]
. X[k]
N al{g"N] ®WETIN £ afo] | >
kell,N-1]
X10]
. X[0] =3, =[n]
(b) z[n]
| NTT wrr | X
[{g")n] X-W ey -1
NTT
W](\;]”>N

Fig. 7.1. The use of NTTs in Rader’s prime-length algorithm for computing the
DFT. (a) Rader’s original algorithm. (b) Modification of the Rader prime algorithm
using NTTs.

7.1.6 Index Maps for NTTs

To directly realize the NTT matrix is generally too expensive. This prob-
lem may be resolved by suitable multidimensional techniques. Burrus [148]
gives a systematic overview of different common and prime factor maps,
from one dimension to multiple dimensions. The mapping is explained for
the two-dimensional case. Higher-order mapping is equivalent. The mapping
from the one-dimensional cyclic length-N convolution from (7.1), into a two-
dimensional convolution with dimension N = N; X N5, can be written in
linear form as follows:

n = Myny + Msns mod N, (7.25)

whereny € {0,1,2,...,Ny—1}and ny € {0,1,2,..., No—1}. For ged(Ny, Na)
1, the well-known Cooley—Tukey FFT algorithm may be used. Burrus [148]

414 7. Advanced Topics

shows that the map is cyclic in both dimensions if and only if N7 and N, are
relatively prime, i.e., gcd(N7, N2) = 1. In order for this map to be one-to-one
and onto (i.e., a bijection), the mapping constants M; and Ms must satisfy
certain conditions. For the relatively prime case, the conditions to make the
mapping bijective are:

[My = BNy and/or My = vN1| and
ged(My, N1) = ged(Ma, M3) = 1. (7.26)

As an example, consider Ny = 3 and N, = 4, N = 12. From condi-
tion (7.26) we see that it is necessary to choose M; (a multiple of N3),
or My (a multiple of Niy), or both. Make M; the simplest multiple of Nj,
i.e., M1 = Ny = 4, which also satisfies gecd(M7, N1) = ged(4,3) = 1. Then,
noting that ged(Ma, N2) = ged(Ma,4) = 1, the possible values for My are
{1,3,5,7,9,11}. As a simple choice, select My = N; = 3. The map becomes
n = (4ny + 3na)12. Now let us apply the map to consider a 12-point convo-
lution example. The transform of the one-dimensional cyclic array x[n] into
a 3 x 4 two-dimensional array x[ni,ns], produces

(0] (3] x[6] x[9)]
[z[0]z[1]z[2] ... z[11]] « | «[4] =[7] z[10] z[1]] . (7.27)
x[8] z[11] x[2] z[5]
To recover the sequence X [k] from the X[kq, k2], use the Chinese remainder
theorem, as suggested by Good [171],
k= ((N5 ' mod N1)Naky + (Ny ' mod Na)Niks) - (7.28)

The o matrix can now be rewritten as

Ni—1 /Np—1

X[k1, ko] = Z (Z I[n1,TL2]Oé%22k2> oz%llkl, (7.29)
n1=0 \ns=0

where ay, is an element of order N;. Having mapped the original sequence

z[n] into the two-dimensional array x[nq, ns], the desired matrix can be eval-

uated by the following two steps:

1) Perform an Na-point NTT on each row of the matrix x[nq, no).
2) Perform an Nj-point NTT on each column of the resultant matrix, to
yield X|[kq, ko).
These processing steps are shown in Fig. 7.2. The input map is given by
(7.27), while the output map can be computed with (7.28),

k= ((47")34k1 + (37 ")43ka),, = (4k1 + k)12 (7.30)
The array X|[k1, ko] will therefore have the following arrangement:
X[o] X[9] x6] X{3]
[X[0]X[1]X[2]...X[11]] « | X[4] X[1] X[10] X[7] | . (7.31)
X[8] X[5] X[2] X[11]

7.1 Rectangular and Number Theoretic Transforms (NTTs) 415

X X[6] x[9] N X[6] X[3]
X[0] X[3]— X[0] [9]
1]——> H H M X7
<[] X[lO]&’ /4 0 - X[1] X[10] [7]
x[4] = X[4]
[S]——= H H - 7 X]11]
. x% o S — - <5 X
x[8] = X[8]

4—point NTTs 3—point NTTs

VI

Fig. 7.2. Two-dimensional map. First stage: three 4-point NTTs. Second stage:
four 3-point NTTs.

Length 97 DFT case study. In recent years programmable digital sig-
nal processors (e.g., TMS320; Motorola 56K; AT&T 32C) have become the
dominant vehicle to implement fast convolution via FFT algorithms. These
PDSPs provide a fast (real) multiplier with typical cycle times of 10 to 50 ns.
There are also some NTT implementations [190], but NTT implementations
need modulo arithmetic, which is not supported by general-purpose PDSPs.
Dedicated accelerators, such as the FNT from McClellan [190], use 90 stan-
dard ECL 10K ICs. In recent years, field-programmable gate arrays (FPGAs)
have become dense enough and fast enough to implement typical high-speed
DSP applications [4, 158]. It is possible to implement several arithmetic cores
with only one FPGA, producing good packaging, speed, and power character-
istics. FPGAs, with their fine granularity, can implement modulo arithmetic
efficiently, without penalty, as in the PDSP case.

In NTT implementation of Fermat number arithmetic, the previously dis-
cussed speed and hardware advantages, compared with conventional FFT im-
plementations, become an even bigger advantage for an FPGA implementa-
tion. By implementing the DFT algorithm with the Rader prime convolution
strategy, the required I/O performance can be further reduced.

To clarify the NTT design paradigm, a length-97 DFT in the Fermat
number system, Fy and Fj, for real input data, will be shown. A Xilinx XC4K
multi-FPGA board has been used to implement this design, as reported in
[174].

For modulo Fermat number arithmetic (modulo 2" +1) it is advantageous
to use, instead of the usual two’s complement arithmetic (2C), the “Dimin-
ished one” (D1) number system from Leibowitz [52]. Negative numbers are
the same as in 2C, and positive numbers are diminished by one. The zero is
encoded as a zero string and the MSB “ZERO-FLAG?” is one. Therefore the
diminished system consists of a ZERO-FLAG and integer bits xy. For 2C,
the MSB is the sign bit, while for D1 the second MSB is the sign bit. With
this encoding the basic operations of 2C«+D1 conversion, negation, addition,

416 7. Advanced Topics

and multiplication by 2" can easily be determined, as shown in Sect. 7.1.1
(p. 403).

The rough processing steps of the 97-point transform are shown in
Fig. 7.1b. A direct length-96 implementation for a single NTT will cost at
least 96x2 barrel shifters and 96x2 accumulators and, therefore, approxi-
mately 96(2 x 32 4+ 2 x 18) = 9600 Xilinx combinatorial logic blocks (CLBs).
Therefore it seemed reasonable to use a 32 x 3 index map, as described in
the last section. The length-32 FFT now becomes a simpler length-32 Fermat
NTT, and the length-3 transform has o* = 1;7 and —1 — j with j?> = 7+ 1.
The 32-point FNT can be realized with the usual radix-2 FFT-type algo-
rithm, while the length-3 transform can be implemented by a two-tap FIR
filter. The following table gives CLB utilization estimates for Xilinx XC4000
FPGAs, for Fy:

Length-32 Length-3 14 Multipliers Length-3 Two length-32
FNT FIR NTT 32-bit NTTS! FNT!

104 108 462 288 216

The design consumes a total of 1178 CLBs. To get high throughput, the
buffer memory between the blocks must be doubled. Two real buffers for the
first FNT, and three complex buffers, are required. If the buffers are realized
internally, an additional 748 CLBs are required, which will also minimize the
I/O requirements. If 80% utilization is assumed, then about six XC4010s are
needed for the design, including the buffer memory.

The time-critical path in the design is the length-32 FNT. To maximize
the throughput, a three-stage pipeline is used inside the butterfly. For a 5-ns
FPGA, the butterfly speed is 28 ns for Fy, and 38.5ns for F5. For three length-
32 FNTs, five stages, each with 16 butterflies, must be computed. This gives
a total transform time of 7.15 us for Fy, and 9.24 us for F5, for the length-97
DFT. To set this result in perspective, the time for the butterfly computation
gives a fair comparison. A TMS320C50 PDSP with a 50-ns cycle time needs
17 cycles for a butterfly [191], or 850ns, assuming zero wait-state memory.
Another “conventional” FPGA fixed-point arithmetic design [158] uses four
serial/parallel multipliers (2 MHz), and therefore has a latency of 500ns for
the butterfly.

7.1.7 Using Rectangular Transforms to Compute the DFT

Rectangular transforms also map an input sequence in an image domain, but
do not necessarily have the DFT structure, i.e., A = [a"*]. Examples are Haar
transforms [130], the Walsh-Hadamard transform [71], a ruff-quantized DFT
[5], or the arithmetic Fourier transform [173, 192, 193]. These rectangular
transforms, in general, do not support cyclic convolution, but they may be
used to approximate the DFT spectrum [165]. The advantage of rectangular

7.1 Rectangular and Number Theoretic Transforms (NTTs) 417

Matrix G Matrix T

J

YIK] . X[K]

|
— 0
L 1

Fig. 7.3. DFT computation using rectangular transform and map matrix T .

x[n] =P

[]

transforms is that the coefficients are from the set {—1,0,1} and they do not
need any multiplications.

How to compute the DFT is shown in Fig. 7.3. In order to have a useful
system, it is assumed that the rectangular transform can be computed with
low effort, and the second transform using the matrix T', which maps the
rectangular transform to the DFT vectors, has only a few nonzero elements.

Table 7.4. Comparison of different transforms to approximate the DFT [5].

Number of ~ Algorithmic Zeros in
Transform base complexity 16 x 16 T Matrix
Walsh N Nlog,(N) 66
Hadamard N Nlog,(N) 66
Haar N 2N 18
AFT N+1 N? 82
QDFT 2N (N/8)?+3N 86

Table 7.4 compares different implementations. The algorithmic complex-
ity of the Walsh-Hadamard and Haar transforms is most interesting, but
from the number of zeros in the second transform T it can be concluded
that the arithmetic Fourier transform and the ruff-quantized DFT are more
attractive for approximating the DFT.

418 7. Advanced Topics

7.2 Error Control and Cryptography

Modern communications systems, such as pagers, mobile phones or satellite
transmission systems, use algorithms to correct transmission errors, since
error-correction coding better utilizes the band-limited channel capacity than
special modulation schemes (see Fig. 7.4). In addition, most systems also use
cryptography algorithms, not just to protect messages against unauthorized
listeners, but also to protect messages against unauthorized changes.

In a typical transmission scheme, such as that shown in Fig. 7.5, the
encoder (for error correction or cryptography) is placed between the data
source and the actual modulation. On the receiver side, the decoder is located
between demodulation and the data destination (sink). Often an encoder and
decoder are combined in one circuit, referred to as a CODEC.

Typical error correction and cryptographic algorithms use finite field
arithmetic and are therefore more suitable for FPGAs than they are for
PDSPs [195]. Bitwise operations or linear feedback shift registers (LFSR)
can be very efficiently realized with FPGAs. Some CODEC schemes use
large tables, and one objective when selecting the appropriate algorithms
for FPGAs is therefore to find out which algorithms are most suitable. The

T
¢ ASK

§ * PSK
10k x FSK H
F —©- BCH code El
— - Shannon limit |]
107 3
10°E

e

Error probability P
)
T

-6

10 ¢ 3
107 E
[\
10-3 | ! ! \
0 5 10 15 20 25
E/N,

Fig. 7.4. Performance of modulation schemes [194]. Solid line coherent demodu-
lation and dashed line incoherent demodulation.

7.2 Error Control and Cryptography 419

Noise

................

Fig. 7.5. Typical communications system configuration.

algorithms presented in this section are mainly based on previous publica-
tions [4] and have been used to develop a paging system for low frequencies
[196, 197, 198, 199, 200], and an error-correction scheme for radio-controlled
watches [201, 202].

It is impossible in a short section to present the whole theory of error
correction and cryptography. We will present the basic ideas and suggest, for
further investigation, one of the excellent textbooks in this area [163, 203,
204, 205, 206, 207, 208].

7.2.1 Basic Concepts from Coding Theory

The simplest way to protect a digital transmission against random errors
is to repeat the message several times. This is called repetition code. For a
repetition of 5, for instance, the message is sent five times, i.e.,

0 < 00000 (7.32)
1 11111, (7.33)

where the left side shows the k information bits and the right side the n-
bit codewords. The minimum distance between two codewords, also called
the Hamming distance d*, is also n and the repetition code is of the form
(n,k,d*) = (5,1,5). With such a code it is possible to correct up to |(n—1)/2]
random errors. But from the perspective of channel efficiency, this code is
not very attractive. If our system is two-way then it is more efficient to use a
technique such as a parity check and an automatic repeat request (ARQ) for
any detected parity error. Such parity checks are used, for instance, in PC
memory.

Error correction using a Hamming code. If a few more parity check
bits are added, it is possible to correct a word with a parity error.

If the parities P10, P11, P1,2, and P; 3 are computed using modulo 2 op-
erations, i.e., XOR, according to

Pio=1t21 @ t20 @ d23 D tog ;D io5 D tog D o7
Py =91 @ o3 D o5 @ 27
Py =i @ 22 @ d25 D 26
Pi3s=i21 @© i220 @ t23 @ 24

420 7. Advanced Topics

i21 i21
122 122
123 153
i24 i24
i25 i%5
i26 126
i27 . i27
& O i%g
©
©
el
B "o
‘_,,—| P2 .
& i
A3
Mg |- 7y
(a) =
21 124
i22 122
bz 23
124 o4
25| i2s
26 ize
|27 T liz7
i28 \f
° Correction logic ‘
M . s s S s
N Po 1.0 [S1,1[S1,2 [S1,3
"o P, 1
m Pl 2
i’; PlLs
Pro_1Pr1_1Pr2 TP 3
| || || |=
(b)

Fig. 7.6. (a) Coder and (b) Decoder for Hamming code.

then the parity detector is i55(= P1,0) and three additional bits are necessary
to locate the error position. Figure 7.6a shows the encoder, and Fig. 7.6b
the decoder including the correction logic. On the decoder side the incoming
parities are XOR’d with the newly computed parities. This forms the so-
called syndrome (S1,0---S1,3). The parities have been chosen in such a way
that the syndrome pattern corresponds to the position of the bit in binary
code, i.e., a 3 — 7 demultiplexer can be used to decode the error location.

For a more compact representation of the decoder, the following parity
check matrix H can be used

11111111000
10101010100
11001100010
11110000001

H = {PTEI] = (7.34)

7.2 Error Control and Cryptography 421

Table 7.5. Estimated effort for error correction with Hamming code.

CLB effort for

Block Minutes Hours Date
Hamming code (11,7,3) (10,6,3) (27,22,3)
Register 6 6 14
Syndrome computation 5 5 16
Correction logic 4 4 22
Output register 4 4 11
Sum 19 19 63
Total 101

It is possible to describe the encoder using a generator matrix. G = [I:P], i.e.,
the generator matrix consists of a systematic identity matrix I followed by
the parity-bits matrix P. A codeword v is computed by multiplying (modulo
2) the information word ¢ with the generator matrix G:

v=1ixG. (7.35)

The (de)coders shown in Fig. 7.6 are those for a (11,7,3) Hamming code,
and it is possible to detect and correct one error. In general, it can be shown
that for 4 parity bits, up to 15 information bits, can be used, i.e., a (15,11,3)
Hamming code has been shortened to a (11,7,3) code.

A Hamming code with distance 3 generally has a (2™ — 1,2™ — m, 3)
structure. The dates in radio-controlled watches, for instance, are coded with
22 bits, and a (31,26,3) Hamming code can be shortened to a (27,22,3) code
to achieve a single-error correcting code. The parity check matrix becomes:

101010101010101010101010000
1100110011001101000
111000011110000100

1
0000000011111100010
1111111100000000001

001100
H = 110000
111111
111111
Again, the syndromes can be sorted in such a way that the correction logic
is a simple 5 — 22 demultiplexer.

Table 7.5 shows the estimated effort in CLBs using Xilinx XC3K FP-
GAs for an error-correction unit for radio-controlled watches that uses three
separate data blocks for minutes, hours, and date.

In conclusion, with an additional 34+-3+5=11 bits and the parity bits for

the minutes using about 100 CLBs, it is possible to correct one error in each
of the three blocks.

Survey of Error Correction Codes

After the introductory case study in the last section, commonly used codes
and possible encoder and decoder implementations will be discussed next.

422 7. Advanced Topics

Decoder
Block Convolutional
Algebraic Cyclic code ML sequence Sequential Algebraic
algorithms decoder decoder algorithms algorithm
£ Euclidian Meggitt L Viterbi £ Fano £ Syndrome
Berlekampian Majority logic Stack Majority

Error-trapping
Kasami
Permutation

Fig. 7.7. Decoder for error correction.

Most often the effort for the decoder is of greater concern, since many com-
munications systems like pager or radios use one sender and several receivers.
Figure 7.7 shows a diagram of possible decoders.

Some nearly optimal decoders use huge tables and are not included in
Fig. 7.7. The difference between block and convolutional codes is based on
whether “memory” is used in the code generation. Both methods are charac-
terized by the code rate R, which is the quotient of the information bits and
the code length, i.e., R = k/n. For tree codes with memory, the actual output
block, which is n bits long, depends not only on the present k£ information
bits, but also on the previous m symbols, as shown in Fig. 7.8. Character-
istics of convolution codes are the memory length v = m X k, as well the
distance profile, the free distance dy, and the minimum distance d,, (see, for
instance, [163]). Block codes can most often be constructed with algebraic
methods using Galois fields, but tree codes are often only found in computer
simulations.

Our discussion will be limited to linear codes, i.e., codes where the sum of
two codewords is again a codeword, because this simplifies the decoder imple-
mentation. For linear codes, the Hamming distance can always be computed
as the difference between a codeword and the zero word, which simplifies com-
parisons of the performance of the code. Linear tree codes are often called
convolutional codes, because the codes can be built using an FIR-like struc-
ture. Convolutional codes may be catastrophic or noncatastrophic. In the case
of a catastrophic code, a single error will be propagated forever. It can be

7.2 Error Control and Cryptography 423

| Constrain length |

I [1i]i] |
INARSARSARSARNARNAIN

Informe{mtioP block f i
» Logic | |

[T | o
2K ¥
| |

_ __Encoder J

('
Code word

Fig. 7.8. Parameters of the convolutional encoders.

shown that systematic convolutional codes are always noncatastrophic. It is
also common to distinguish between random error correction codes and burst
error correction codes. In burst error correction, there may be a long burst
of errors (or erasures). In random error correction code, the capability to cor-
rect errors is not limited to consecutive bits — the error may have a random
position in the received codeword.

Coding bounds. With coding bounds we can compare different coding
schemes. The bounds show the maximum error correction capability of the
code. A decoder can never be better than the upper bound of the code, and
sometimes to reduce the complexity of the decoder it is necessary to decode
less than the theoretical bound.

A simple but still good, rough estimation is the Singleton bound or the
Hamming bound. The Singleton bound states that the minimum Hamming
distance d* is upper bounded by the number of parity bits (n — k). It is also
known [163, p. 256] that the number of correctable errors ¢ and the number
of erasures e for a code is upper bounded by the Hamming distance. This
gives the following bounds:

e+2+1<d <n—k+1. (7.36)

A code with d* = n—k+1 is called mazimum distance separable, but besides
the repetition code and the parity check code, there are no binary maximum
distance separable codes [163, p. 431]. Following the example in the last
section from Table 7.5, with 11 parity bits the upper bound can be used to
correct up to five errors.

For a t-error-correcting binary code, the following Hamming bound pro-
vides a good estimation:

gn—k > zt: (:1) (7.37)

m=0

424 7. Advanced Topics

Equation (7.37) says that the possible number of parity check patterns (27*)
must be greater than or equal to the number of error patterns. If the equal
sign is valid in (7.37), such codes are called perfect codes. A perfect code is,
for instance, the Hamming code discussed in the last section. If it is desired,
for instance, to find a code to protect all 44 bits transmitted in one minute for
radio-controlled watches, using the maximum-available 13 parity bits, then
it follows that

218 > (404) + (414) + (424) but (7.38)
<)+ (1) (2)+(2).

i.e., it should be possible to find a code with the capability to correct two
random errors but none with three errors. In the following sections we will
review such block encoders and decoders, and then discuss convolutional
encoders and decoders.

7.2.2 Block Codes

The linear cyclic binary BCH codes (from Bose, Chaudhuri, and Hocquen-
ghem) and the subclass of Reed—Solomon codes, consist of a large class of
block codes. BCH codes have various known efficient decoders in the time
and frequency domains. In the following, we will illustrate the shortening of
a (63,50,6) to a (57,44,6) BCH code. The algorithm is discussed in detail by
Blahut [163, pp. 162—6].

The code is based on a transformation of GF(2°) to GF(2). To describe
GF(2%), a primitive polynomial of degree 6 is needed, such as P(x) = 25 + 2+
1. To compute the generator polynomial, the least common multiple of the
first d—1 = 5 minimal polynomials in GF(2%) must be computed. If a denotes
a primitive element in GF(2°), it follows then that a® =1 and my(,) =z —1.
The minimum polynomials of «, o and a* are identical Ma(z) = 2+ +1,
and the minimum polynomial to a? is Ma3(z) = S+t 2+ +1 It is
now possible to build the generator polynomial, g(z):

g(I) = Mi(x) X Me(x) X Mas3(x) (740)

=Bt a0 12 bt 41 (7.41)

Using this generator polynomial (to compute the parity bits), it is now a
straight forward procedure to build the encoder and decoder.

Encoder. Since a systematic code is desired, the first codeword bits are iden-
tical with the information bits. The parity bits p(z) are computed by modulo
reduction of the information bits i(x) shifted in order to get a systematic
code according to:

p(z) = i(z) x 2" % mod g(z). (7.42)

7.2 Error Control and Cryptography 425

C

Information B Code word
— 4

Fig. 7.9. Encoder for (57,44,6) BCH code.

Such a modulo reduction can be achieved with a recursive shift register as
shown in Fig. 7.9. The circuit works as follows: In the beginning, switches
A and B are closed and C is open. Next, the information bits are applied
(MSB first) and directly transferred to the codeword. At the same time, the
recursive shift register computes the parity bits. After the information bits
are all processed, switches A and B are opened and C is closed. The parity
bits are now shifted into the codeword.

Decoder. The decoder is usually more complex than the encoder. A Meg-
gitt decoder can be used for decoding in the time domain, and frequency
decoding is also possible, but it needs a detailed understanding of the alge-
braic properties of BCH codes ([163, pp. 166—200], [203, pp. 81—107], [204,
pp. 65—73]). Such frequency decoders for FPGAs are already available as in-
tellectual property (IP) blocks, sometimes also called “virtual components,”
VC (see [19, 20, 209]).

The Meggitt decoder (shown in Fig. 7.10) is very efficient for codes with
only a few errors to be corrected, since the decoder uses the cyclic properties
of BCH codes. Only errors in the highest bit position are corrected and then
a cyclic shift is computed, so that eventually all corrupted bits pass the MSB
position and are corrected.

In order to use a shortened code and to regain the cyclic properties of
the codes, a forward incoupling of the received data a(x) must be computed.
This condition can be gained for code shortened by b bits using the condition

s(x) = a(z)i(z)mod g(z) = 2"~ *i(z)mod g(x). (7.43)
For the shortened (57,44,6) BCH code this becomes

) = 29700 mod g(x) = 2 mod g()

a(z
=2 mod (z"® + 2 + 2" + 20 + 2%+ 2® + 2 +2® + 2 + 1)
=20 42"+ 25 425+ 4 1.
The developed code has the ability to correct two errors. If only the error in
the MSB need be corrected, a total of 1 + (516) =1+ 56 = 57 different error
patterns must be stored, as shown in Table 7.6. The 57 syndrome values can
be computed through a simulation and are listed in [202, B.3].

426 7. Advanced Topics

Received Modulo g(x)

sequence

it | ! 1 |
& (n — k) shift register

Table of all syndromes
Syndrome match?
|

10,71+ -
D— n-bit shift register Hér) {,

Fig. 7.10. Basic blocks of the Meggitt decoder.

Now all the building blocks are available for constructing the Meggitt
decoder for the (57,44,6) BCH code. The decoder is shown in Fig. 7.11.

The Meggitt decoder has two stages. In the initialization phase, the syn-
drome is computed by processing the received bits modulo the generator
polynomial g(z). This takes 57 cycles. In the second phase, the actual error
correction takes place. The content of the syndrome register is compared with
the values of the syndrome table. If an entry is found, the table delivers a
one, otherwise it delivers a zero. This hit bit is then XOR’d with the received
bits in the shift register. In this way, the error is removed from the shift reg-
ister. The hit bit is also wired to the syndrome register, to remove the error
pattern from the syndrome register. Once again the syndrome and the shift
register are clocked, and the next correction can be done. At the end, the
shift register should include the corrected word, while the syndrome register
should contain the all-zero word. If the syndrome is not zero, then more than
two errors have occurred, and these can not be corrected with this BCH code.

Table 7.6. Table of possible error patterns.

No. Error pattern

1 0 0 O 0 0 1
2 0 0 O 0 1 1
3 0 0 O 1 0 1
56 0 1 0 0 0 1

57 1. .0 O --- 0 0 1

7.2 Error Control and Cryptography 427

0 1 3 6 G(x)
e—{ 0} 1H2}e3{4}e{5 146 }e{7 h
A o | 3 5 s 7‘ J J 2
=
Code- 1 45,
Word Table with all syndromes: 1 for hit else 0 §
input s
| g,
o]
a| 57-bit shift register for codeword with errors ————
Corrected
codeword

Fig. 7.11. Meggitt decoder for (57,44,6) BCH code.

Our only concern for an FPGA implementation of the Meggitt decoder
is the large number (13) of inputs for the syndrome table, because the LUTSs
of FPGAs typically have 4 to 8 inputs. It is possible to use an external
EPROM or (for Altera Flex 10K) four 2-kbit EABs to implement a table
of size 213 x 1. The syndrome is wired to the address lines, which deliver a
hit (one) for the 57 syndromes, and otherwise a zero. It is also possible to
use the logic synthesis tool to compute the table with internal logic blocks
on the FPGA. The Xilinx XNFOPT (used in [202]) needs 132 LUTs, each
with 24 x 2 bits. If modern binary decision diagrams (BBDs) synthesizer type
[210, 211, 212] are used, this number can (at the cost of additional delays)
be reduced to 58 LUTs with a size of 2¢ x 2 bits [213]. Table 7.7 shows the
estimated effort, using Flex 10K, for the Meggitt decoder using the different
kinds of syndrome tables.

Table 7.7. Estimated effort for Altera FLEX devices, for the three versions of the
Meggitt decoder based on XC3K implementations [4]. (EABs are used as 2'' x 1
ROMs.)

Syndrome table

Function group Using EABs Only LEs BDD [213]
Interface 36 LEs 36 LEs 36 LEs
Syndrome table 2LEs, 4 EABs 264 LEs 116 LEs
64-bit FIFO 64 LEs 64 LEs 64 LEs
Meggitt decoder 12 LEs 12 LEs 12 LEs
State machine 21 LEs 21 LEs 21 LEs

Total 135 LEs, 4 EABs 397 LEs 249 LEs

428 7. Advanced Topics

7.2.3 Convolutional Codes

We also want to explore the kind of convolutional error-correcting decoders
that are suitable for an FPGA realization. To simplify the discussion, the
following constraints are defined, which are typical for communications sys-
tems:

e The code should minimize the complexity of the decoder. Encoder com-
plexity is of less concern.

e The code is linear systematic.

e The code is convolutional.

e The code should allow random error correction.

A systematic code is stipulated to allow a power-down mode, in which
only incoming bits are received without error correction [201]. A random-
error-correction code is stipulated if the channel is slow fading.

Figure 7.12 shows a diagram of the possible tree codes, while Fig. 7.7
(p- 422) shows possible decoders. Fano and stack decoders are not very suit-
able for an FPGA implementation because of the complexity of organizing a
stack [200]. A conventional uP/uC realization is much more suitable here. In
the following sections, maximum-likelihood sequence decoders and algebraic
algorithms are compared regarding hardware complexity, measured in CLBs
usage for the Xilinx XC3K FPGA, and achievable error correction.

Viterbi maximum likelihood sequence decoder. The Viterbi decoder
deals with an erroneous sequence by determining the corresponding sender
sequence with the minimum Hamming distance. Put differently, the algorithm
finds the optimal path through the trellis diagram, and is therefore an optimal
memoryless noisy-sequence estimator (MLSE).

The advantage of the Viterbi decoder is its constant decoding time and
MLSE optimality. The disadvantage lies in its high memory requirements and
resulting limitation to codes with very short constraint length. Figures 7.13
and 7.14 show an R = k/n = 1/2 encoder and the attendant trellis diagram.
The constraint length v = m X k is 2, so the trellis has 2¥ nodes. Each node
has 2% = 2 outgoing and at most 2¥ = 2 incoming edges. For a binary trellis
(k = 1) like this, it is convenient to show a zero as an upward edge and a one
as a downward edge.

For MLSE decoding it is sufficient to store only the 2” paths (and their
metrics) passing through the nodes at a given level, because the MLSE path
must pass through one of these nodes. Incoming paths with a smaller metric
than the “survivor” with the highest metric need not be stored, because these
paths will never be part of the MLSE path. Nevertheless, the maximum
metric at any given time may not be part of the MLSE path if it is part
of a short erroneous sequence. Voting down such a local error is analogous
to demodulating a digital FM signal with memory [214]. Simulation results
in [163, p. 381] and [203, pp. 120—3] show that it is sufficient to construct a

7.2 Error Control and Cryptography 429

Tree codes
Linear Finite constraint length
Linear .
tree codes Trellis codes
Systematic ‘ Time invariant ‘ Systematic
Finite constraint
Systematic length and Systematic
linear time invariant terlis codes
tree codes
Time
invariant
Finite constraint —
length and Sliding
time invariant block codes
Linear Systematic
Systematic
Convolutional codes sliding
block codes

Systematic Linear

Systematic
convolutional codes

Fig. 7.12. Survey of tree codes [163].

path memory of four to five times the constraint length. Infinite path memory
yields no significant improvement.

The Viterbi decoder hardware consists of three main parts: path memory
with output decoder (see Fig. 7.15), survivor computation, and maximum
detection (see Fig. 7.16). The path memory is 4v2” bits, consuming 2v2"
CLBs. The output decoder uses (1 + 2 + ... + 2¥71) 2-to-1 multiplexers.

430 7. Advanced Topics

o Codeword

Input sequence ‘]
‘ i

Fig. 7.13. Encoder for an R = 1/2 convolutional decoder.

Metric update adders, registers and comparisons are each ([log, (v *n)] + 1)
bits wide. For the maximum computation, additional comparisons, 2-to-1
multiplexers and a decoder are necessary.

The hardware for decoders with £ > 1 seems too complex to implement
with today’s FPGAs. For n > 2 the information rate R = 1/n is too low,
so the most suitable code rate is R = 1/2. Table 7.8 lists the complexity in
CLBs in a XC3K FPGA for constraint lengths v = 2,3,4, and the general
case, for R = 1/2. Tt can be seen that complexity increases exponentially
with constraint length v, which should thus be as short as possible. Although
very few errors can be corrected in the short window allowed by such a small
constraint length, the MLSE algorithm guarantees acceptable performance.

Next it is necessary to choose an appropriate generating polynomial. It
is shown in the literature ([215, pp. 306—8], [216, p. 465], [205, pp. 402—7],
[163, p. 367]) that, for a given constraint length, nonsystematic codes have
better performance than systematic codes, but using a nonsystematic code
contradicts the demand for using the information bits without error correc-
tion. Quick look in (QLI) codes are nonsystematic convolution codes with
R = 1/2, providing free distance values as good as any known code for con-
straint lengths v = 2 to 4 [217]. The advantage of QLI codes is that only one
XOR gate is necessary for the reconstruction of the information sequence.
QLIs with v = 2,3, and 4 have a free distance of df = 5,6, and 7, respectively

State

Fig. 7.14. Trellis for R = 1/2 convolutional decoder.

7.2 Error Control and Cryptography 431

Path memory and output decoder

| f 7 7 7 v |
| 00 |R| ™M R[M R[M R[M,
|l U E|l U E| U |l U |
M al x al x al x aglx o
| SUIHE jL Tk, |
| al x Mlel x M*tlel x alx 1 |
" T [} [} [} [} Vi
louT U 20 |
X
Vs
| 10 |R| ™M th[th[Rl\+/1 |
T EU':EU‘EU Blu?©
| L M |l x al x 9 lelx alx o |
2 y 11 |R| M R[M R[M R M
| X Bl U E| U E|lvu Blu!? |
al x al x al x alx 1
| T 4 1) 1 Vs |
0
2~ |

Fig. 7.15. Viterbi decoder with constraint length 4v and 2“=2 nodes: path memory
and output decoder.

[216, p. 465]. This seems to be a good compromise for low power consump-

Table 7.8. Hardware complexity in CLBs for an R = 1/2 Viterbi decoder for
v = 2,3,4, and the general case.

Function v=2 v=3 v=4 veN
Path memory 16 48 128 4xvxov!
Output decoder 1,5 3,5 6,5 14+2+4... 42772
Metric AM 4 4 4 4
Metric clear 1 2 4 [(2+4+...+27H/4]
Metric adder 24 64 128 (ﬂogQ(m/ﬂ + 1) x 2v*!
Survivor-MUX 6 24 48 (Mogy (nv)] +1) x 2v71
Metric compare 6 24 48 (Mogy(nv)] +1) x 2v71
([logy(nv)] +1)
Maximum compare 4,5 14 30 xax (I4+24...2"71)
2+...4+2v7h
MUX 3 12 28 x 3% ([logy(nv)] + 1)
Decoder 1 2 4 [(2+...+2"7H/4]
State machine 4 4 4

Sum: 67 1975 4285

432 7. Advanced Topics
Metric update l\iaxiglurn_det_ect()i

HE T
| bl

M f; | Dec. MUX |
U ~cemM
| // N R || >
/ P> X e |‘<t‘—v4 |
| AMoo |
— > | M |
| ‘ ‘<tu'l [X |
L= I LEL, |
| g X _>1\(4;ﬁ|
| A P> ' || |
>
| HES N
: Z t» M F}é | |
U 6
| AM g o X J\j || > |
|| 10 g > 2 |‘<L' |
| iy
| ‘zmg || U |
> 1. a | =]] X |
| ,_AMOl\\ J g ™ G —‘|| |
N Z > M
| iPp || |

o e o _ _|

Fig. 7.16. Viterbi decoder with constraint length 4v and 2“=2 nodes: metric cal-
culation.

tion. The upper part of Table 7.9 shows the generating polynomials in octal
notation.

Error-correction performance of the QLI decoder. To compute the
error-correction performance of the QLI decoder, it is convenient to use the
“union bound” method. Because QLI codes are linear, error sequences can be
computed as a difference from the zero sequence. An MLSE decoder will make
an incorrect decision if a sequence that starts at the null state, and differs
from the null-word at j separate time steps, contains at least j/2 ones. The
probability of this occurrence is
T Nplgi—? for odd j

2 ()P 2072+ 300 o ('@’ for even j.

Now the only thing necessary for a bit-error probability formula is to
compute the number w; of paths with weight j for the code, which is an
easily programmable task [200, C.4]. Because P; decreases exponentially with

7.2 Error Control and Cryptography 433

Table 7.9. Union-bound weights for a Viterbi decoder with v = 2 to 4 using QLI
codes.

Code Ol1=7 Ol=74 Ol=66
02=5 02=54 02=46

Constraint length v =2 =3 =4

Distance Weight w;

0-4 0 0 0

5 1 0 0

6 4 2 0

7 12 7 4

8 32 18 12

9 80 49 26
10 192 130 74
11 448 333 205
12 1024 836 530
13 2304 2069 1369
14 5120 5060 3476
15 11264 12255 8470
16 24576 29 444 19772
17 53079 64183 43062
18 109396 126260 83346
19 103665 223980 147474
20 262144 351956 244 458

increasing j, only the first few w; must be computed. Table 7.9 shows the w;
for 7 = 0 to 20. The total error probability can now be computed with:

1 (o)
Py< Z;wjpj. (7.45)
o

Syndrome algebraic decoder. The syndrome decoder (Fig. 7.17) and en-
coder (Fig. 7.18), like standard block decoders, computes a number of parity
bits from the data sequence. The decoder’s newly computed parity bits are
XOR’d with the received parity bits to create the “syndrome” word, which
will be nonzero if an error occurs in transmission. The error position and
value are determined from the syndrome value. In contrast to block codes,
where only one generator polynomial is used, convolutional codes at data rate
R = k/n have k + 1 generating polynomials. The complete generator may be
written in a compact n X k generator matrix. For the encoder of Fig. 7.18 the

matrix is

G(x) _ [1 221 Jr3320 Jr:E19 +x17 Jr:E16 Jr:E13 +x11 + 1} . (7.46)

434 7. Advanced Topics

Serial / Parallel
Conversion
Seriel Oui

{TTTTTTTTTTI I [TTTH

I
%

I
Syndrome Register

|
Nt

fery

p [}é@é»%éq}é»mﬁ»m"
=
|8
HE P - IS anm
=y
3
S1+55+58+515+821 S17 S18 S13 S11 S2+3%+S6+519 80
S4FS£14+520
J1 12 I3 J4 I5 18 T J8)

Majority - Logic
IF % Iy > 4 THEN Majority = | ELSE Majority = O

} Majority

Fig. 7.17. Trial and error majority decoder with J = 8.

For a systematic code the matrix has the form G(z) = [I:P(z)]. The

parity check matrix H(x) = [~P(z)7:1] is easily computed, given that G x
H7T = 0. The desired syndrome vector is thus § = v x H', where v is the
received bit sequence.

The syndrome decoder now looks up the calculated syndrome in a table
to find the correct sequence. To keep the table small, only sequences with
an error at the first bit position are included. If the decoder needs to correct
errors of more than one bit, we cannot clear the syndrome after the correction.
Instead, the syndrome value must be subtracted from a syndrome register (see
the “Majority” signal in Fig. 7.17).

A 22-bit table would be necessary for the standard convolutional decoder,
but it is unfortunately difficult to implement a good FPGA look-up table
with more than 4 to 11 bit addresses [201]. Majority codes, a special class of
syndrome-decodable codes, offer an advantage here. This type of canonical
self-orthogonal code (CSOC) has exclusively ones in the first row of the { Ay}
parity check matrix (where the J columns are used as an orthogonal set to
compute the syndrome) [205, p. 284]. Thus, every error in the first-bit position

Coded bits

‘ «— Constraintlength =22 — »

Informal.ionhit.‘r|{I||I|||||||||||[I|J‘

| PR B

AL AL AL

Fig. 7.18. Systematic (44, 22) encoder with rate R = 1/2 and constraint length
v =22.

7.2 Error Control and Cryptography 435

Table 7.10. Some majority-decodable “trial and error” codes [205, p. 406].

J tmp v Generating polynomial Orthogonal equation
2 1 2 1+z 50,51
4 2 6 1+ 2%+ 2% +2° S0, 83, S4, S1 + S5

6 3 12 1425+2"+2°+ 20+ 21 S0, 86, S7, S9, 81 + S3 + S10,
Sa4+ Ss + s11

11 13 16 17 19
8 4 2214z +xz°+xz " +x " +x” so0,511,513,516, 517,52 + 53 + S6+
20 21
+z° +x S19, 84 + S14 + S20, 81 + S5 + S8+
S15 + S21

10 5 361428+ 21 + 2% 22 4 22 S0, S18, S19, 827, 81 + S9 + S28, S10+
4230 4+ 232 4 533 4 2% S20 + S29, 811 + S30 + S31,
S13 + S21 + S23 + S32, S14+
833 + S34,82 + S3 + S16 + S24+
S26 1+ S35

will cause at least [J/2] ones in the syndrome register. The decoding rule is
therefore

; 1 for S A > [J)/2]
= - . .4
‘0 { 0 otherwise (7.47)

Thus the name “majority code”: instead of the expensive syndrome table
only a majority vote is needed. Massey [205, p. 289] has designed a class
of majority codes, called trial and error codes, which, instead of evaluating
the syndrome vector directly, manipulate a combination of syndrome bits to
get a vector orthogonal to e}y. This small additional hardware cost results
in slightly better error correction performance than the conventional CSOC
codes. Table 7.10 lists some trial and error codes with data rate R = 1/2.
Figure 7.17 shows a trial and error decoder with J = 8. Table 7.11 shows the
complexity in CLBs of decoders with J =4 to 10.

Error-correction capability of the trial and error decoder. To calcu-
late the error-correction performance of trial and error codes, we must first

Table 7.11. Complexity in CLBs of a majority decoder with J = 4 to 10.

Function J=4 J=6 J=8 J=10
Register 6 12 22 36
XOR-Gate 2 4 7 11
Majority-circuit 1 5 7 15
Sum 9 22 36 62

436 7. Advanced Topics

0
-2 e /,
Uncoded e 7 Vol
r ' o
= -4
a Coding-
k<] . Simulation 1 MBit
= gain Imulation |
e -6
5
o
ES A -
> -8 G — Syndrom
3 Viterbi decoder S decoder
© < “ o
S Union bound AV 1=5 (72,36)
o -10 b e
g df=7 — t=4 (44,22)
5 A
& di=6 O e 1=3 (24,12)
di=5 o R t=2 (12,6)
-14
N -4 2 0
P=10"x

Fig. 7.19. Performance comparison of Viterbi and majority decoders.

note that in a window twice the constraint length, the codes allow up to
|.J/2]-bit errors [163, p. 440]:

LJ/2]
P =30 (Y)t pt (1.49

k=0

A computer simulation of 10® bits, in Fig. 7.19, reveals good agreement
with this equation. The equivalent single-error probability Pg of an (n, k)
code can be computed with

P(J) = P(0) = (1 — Pg)" (7.49)
— Pg =1— P/ (7.50)

Final comparison. Figure 7.19 shows the error-correction performance of
Viterbi and majority decoders. For a comparable hardware cost (Viterbi,
v =2,ds =5, 67 CLBs and trial and error, t = 5, 62 CLBs) the better per-
formance of the majority decoder, due to the greater constraint length per-
mitted, is immediately apparent. The optimal MLSE property of the Viterbi
algorithm cannot compensate for its short constraint length.

7.2.4 Cryptography Algorithms for FPGAs

Many communication systems use data-stream ciphers to protect relevant
information, as shown in Fig. 7.20. The key sequence K is more or less a

7.2 Error Control and Cryptography 437

Key sequence Key sequence

Plaintext >@ Ciphertext >@ Plaintext >

Fig. 7.20. The principle of a synchronous data-stream cipher.

“pseudorandom sequence” (known to the sender and the receiver), and with
the modulo 2 property of the XOR function, the plaintext P can be recon-
structed at the receiver side, because

PeK&K=P&0=P. (7.51)

In the following, we compare an algorithm based on a linear-feedback
shift register (LFSR) and a “data encryption standard” (DES) cryptographic
algorithm. Neither algorithm requires large tables and both are suitable for
an FPGA implementation.

Linear Feedback Shift Registers Algorithm

LFSRs with maximal sequence length are a good approach for an ideal se-
curity key, because they have good statistical properties (see, for instance,
[218, 219]). In other words, it is difficult to analyze the sequence in a crypto-
graphic attack, an analysis called cryptoanalysis. Because bitwise designs are
possible with FPGAs, such LFSRs are more efficiently realized with FPGAs
than PDSPs. Two possible realizations of a LFSR of length 8 are shown in
Fig. 7.21.

For the XOR LFSR there is always the possibility of the all-zero word,
which should never be reached. If the cycle starts with any nonzero word,
the cycle length is always 2! — 1. Sometimes, if the FPGA wakes up with
an all-zero state, it is more convenient to use a “mirrored” or inverted LFSR
circuit. If the all-zero word is a valid pattern and produces exactly the inverse
sequence, it is necessary to substitute the XOR with a “not XOR” or XNOR
gate. Such LFSRs can easily be designed using a PROCESS statement in VHDL,
as the following example shows.

Example 7.12: Length 6 LFSR
The following VHDL code? implements a LFSR of length 6.

2 The equivalent Verilog code 1fsr.v for this example can be found in Appendix A
on page 716. Synthesis results are shown in Appendix B on page 731.

438 7. Advanced Topics

(@)

1 +X? +X3 +X* +X3

Fig. 7.21. Possible realizations of LFSRs. (a) Fibonacci configuration. (b) Galois
configuration.

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
USE ieee.std_logic_arith.ALL;

ENTITY 1fST IS —————- > Interface
PORT (clk : IN STD_LOGIC;
y : OUT STD_LOGIC_VECTOR(6 DOWNTO 1));
END 1lfsr;

ARCHITECTURE fpga OF lfsr IS

SIGNAL ff : STD_LOGIC_VECTOR(6 DOWNTO 1)
:= (OTHERS => ’0’);
BEGIN

PROCESS -- Implement length 6 LFSR with xnor
BEGIN

WAIT UNTIL clk = ’1°;

f£(1) <= NOT (££f(5) XOR ££(6));

FOR I IN 6 DOWNTO 2 LOOP —-- Tapped delay line:
f£(I) <= £f£(I-1); -- shift one
END LOOP;

END PROCESS ;

PROCESS (ff)
BEGIN -- Connect to I/0 cell
FOR k IN 1 TO 6 LOOP
y(k) <= ff(k);
END LOOP;
END PROCESS;

END fpga;

From the simulation of the design in Fig. 7.22, it can be concluded that the
LFSR goes through all possible bit patterns, which results in the maximum
sequence length of 26 — 1 = 63 ~ 630ns/10ns. The design uses 6 LEs, no
embedded multiplier, and has a 420.17 MHz Registered Performance.

7.2 Error Control and Cryptography 439

FEUEE—— 1ol x|
aster Time Bar 17.176ns <| | Fonter: 80117 ns Interval 534.0ns Start: End:

Vahed B100ns E30,0ns 620,0ns 67