
Springer Series on

Signals and Communication Technology

 Recollected by: mqadry©

Signals and Communication Technology

Wireless Network Security
Y. Xiao, D.-Z. Du, X. Shen
ISBN 978-0-387-28040-0

Terrestrial Trunked Radio – TETRA
A Global Security Tool
P. Stavroulakis ISBN 978-3-540-71190-2

Multirate Statistical Signal Processing
O.S. Jahromi ISBN 978-1-4020-5316-0

Wireless Ad Hoc and Sensor Networks
A Cross-Layer Design Perspective
R. Jurdak ISBN 978-0-387-39022-2

Positive Trigonometric Polynomials
and Signal Processing Applications
B. Dumitrescu ISBN 978-1-4020-5124-1

Face Biometrics for Personal Identification
Multi-Sensory Multi-Modal Systems
R.I. Hammoud, B.R. Abidi, M.A. Abidi (Eds.)
ISBN 978-3-540-49344-0

Cryptographic Algorithms
on Reconfigurable Hardware
F. Rodŕıguez-Henŕıquez
ISBN 978-0-387-33883-5

Ad-Hoc Networking
Towards Seamless Communications
L. Gavrilovska ISBN 978-1-4020-5065-7

Multimedia Database Retrieval
A Human-Centered Approach
P. Muneesawang, L. Guan
ISBN 978-0-387-25627-6

Broadband Fixed Wireless Access
A System Perspective
M. Engels; F. Petre
ISBN 978-0-387-33956-6

Acoustic MIMO Signal Processing
Y. Huang, J. Benesty, J. Chen
ISBN 978-3-540-37630-9

Algorithmic Information Theory
Mathematics of Digital Information
Processing
P. Seibt ISBN 978-3-540-33218-3

Continuous-Time Signals
Y.S. Shmaliy ISBN 978-1-4020-4817-3

Interactive Video
Algorithms and Technologies
R.I. Hammoud (Ed.) ISBN 978-3-540-33214-5

Distributed Cooperative Laboratories
Networking, Instrumentation,
and Measurements
F. Davoli, S. Palazzo, S. Zappatore (Eds.)
ISBN 978-0-387-29811-5

Topics in Acoustic Echo and Noise Control
Selected Methods for the Cancellation
of Acoustical Echoes, the Reduction
of Background Noise, and Speech Processing
E. Hänsler, G. Schmidt (Eds.)
ISBN 978-3-540-33212-1

EM Modeling of Antennas
and RF Components for Wireless
Communication Systems
F. Gustrau, D. Manteuffel
ISBN 978-3-540-28614-1

Orthogonal Frequency Division Multiplexing
for Wireless Communications
Y. Li, G.L. Stuber (Eds.)
ISBN 978-0-387-29095-9

Advanced Man-Machine Interaction
Fundamentals and Implementation
K.-F. Kraiss ISBN 978-3-540-30618-4

The Variational Bayes Method
in Signal Processing
V. Šmı́dl, A. Quinn ISBN 978-3-540-28819-0

Voice and Speech Quality Perception
Assessment and Evaluation
U. Jekosch ISBN 978-3-540-24095-2

Circuits and Systems Based
on Delta Modulation
Linear, Nonlinear and Mixed Mode Processing
D.G. Zrilic ISBN 978-3-540-23751-8

Speech Enhancement
J. Benesty, S. Makino, J. Chen (Eds.)
ISBN 978-3-540-24039-6

Uwe Meyer-Baese

Digital Signal Processing
with Field Programmable
Gate Arrays

Third Edition

With 359 Figures and 98 Tables
Book with CD-ROM

123 Recollected by: mqadry©

Dr. Uwe Meyer-Baese
Florida State University
College of Engineering
Department Electrical & Computer Engineering
Pottsdamer St. 2525
Tallahassee, Florida 32310
USA
E-Mail: Uwe.Meyer-Baese@ieee.org

Originally published as a monograph

Library of Congress Control Number: 2007933846

ISBN 978-3-540-72612-8 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material
is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication
of this publication or parts thereof is permitted only under the provisions of the German Copyright
Law of September 9, 1965, in its current version, and permission for use must always be obtained from
Springer. Violations are liable for prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2007

The use of general descriptive names, registered names, trademarks, etc. in this publication does not
imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

Typesetting: Data conversion by the author
Production: LE-TEX Jelonek, Schmidt & Vöckler GbR, Leipzig
Cover Design: WMXDesign GmbH, Heidelberg

Printed on acid-free paper 60/3180/YL 5 4 3 2 1 0

To my Parents,

Anke and Lisa

Preface

Field-programmable gate arrays (FPGAs) are on the verge of revolutionizing
digital signal processing in the manner that programmable digital signal pro-
cessors (PDSPs) did nearly two decades ago. Many front-end digital signal
processing (DSP) algorithms, such as FFTs, FIR or IIR filters, to name just
a few, previously built with ASICs or PDSPs, are now most often replaced
by FPGAs. Modern FPGA families provide DSP arithmetic support with
fast-carry chains (Xilinx Virtex, Altera FLEX) that are used to implement
multiply-accumulates (MACs) at high speed, with low overhead and low costs
[1]. Previous FPGA families have most often targeted TTL “glue logic” and
did not have the high gate count needed for DSP functions. The efficient
implementation of these front-end algorithms is the main goal of this book.

At the beginning of the twenty-first century we find that the two pro-
grammable logic device (PLD) market leaders (Altera and Xilinx) both re-
port revenues greater than US$1 billion. FPGAs have enjoyed steady growth
of more than 20% in the last decade, outperforming ASICs and PDSPs by
10%. This comes from the fact that FPGAs have many features in com-
mon with ASICs, such as reduction in size, weight, and power dissipation,
higher throughput, better security against unauthorized copies, reduced de-
vice and inventory cost, and reduced board test costs, and claim advantages
over ASICs, such as a reduction in development time (rapid prototyping),
in-circuit reprogrammability, lower NRE costs, resulting in more econom-
ical designs for solutions requiring less than 1000 units. Compared with
PDSPs, FPGA design typically exploits parallelism, e.g., implementing multi-
ple multiply-accumulate calls efficiency, e.g., zero product-terms are removed,
and pipelining, i.e., each LE has a register, therefore pipelining requires no
additional resources.

Another trend in the DSP hardware design world is the migration from
graphical design entries to hardware description language (HDL). Although
many DSP algorithms can be described with “signal flow graphs,” it has been
found that “code reuse” is much higher with HDL-based entries than with
graphical design entries. There is a high demand for HDL design engineers
and we already find undergraduate classes about logic design with HDLs [2].
Unfortunately two HDL languages are popular today. The US west coast and
Asia area prefer Verilog, while US east coast and Europe more frequently

VIII Preface

use VHDL. For DSP with FPGAs both languages seem to be well suited,
although some VHDL examples are a little easier to read because of the sup-
ported signed arithmetic and multiply/divide operations in the IEEE VHDL
1076-1987 and 1076-1993 standards. The gap is expected to disappear after
approval of the Verilog IEEE standard 1364-1999, as it also includes signed
arithmetic. Other constraints may include personal preferences, EDA library
and tool availability, data types, readability, capability, and language exten-
sions using PLIs, as well as commercial, business, and marketing issues, to
name just a few [3]. Tool providers acknowledge today that both languages
have to be supported and this book covers examples in both design languages.

We are now also in the fortunate situation that “baseline” HDL compilers
are available from different sources at essentially no cost for educational use.
We take advantage of this fact in this book. It includes a CD-ROM with
Altera’s newest MaxPlusII software, which provides a complete set of design
tools, from a content-sensitive editor, compiler, and simulator, to a bitstream
generator. All examples presented are written in VHDL and Verilog and
should be easily adapted to other propriety design-entry systems. Xilinx’s
“Foundation Series,” ModelTech’s ModelSim compiler, and Synopsys FC2 or
FPGA Compiler should work without any changes in the VHDL or Verilog
code.

The book is structured as follows. The first chapter starts with a snapshot
of today’s FPGA technology, and the devices and tools used to design state-
of-the-art DSP systems. It also includes a detailed case study of a frequency
synthesizer, including compilation steps, simulation, performance evaluation,
power estimation, and floor planning. This case study is the basis for more
than 30 other design examples in subsequent chapters. The second chapter
focuses on the computer arithmetic aspects, which include possible number
representations for DSP FPGA algorithms as well as implementation of basic
building blocks, such as adders, multipliers, or sum-of-product computations.
At the end of the chapter we discuss two very useful computer arithmetic con-
cepts for FPGAs: distributed arithmetic (DA) and the CORDIC algorithm.
Chapters 3 and 4 deal with theory and implementation of FIR and IIR fil-
ters. We will review how to determine filter coefficients and discuss possible
implementations optimized for size or speed. Chapter 5 covers many concepts
used in multirate digital signal processing systems, such as decimation, inter-
polation, and filter banks. At the end of Chap. 5 we discuss the various pos-
sibilities for implementing wavelet processors with two-channel filter banks.
In Chap. 6, implementation of the most important DFT and FFT algorithms
is discussed. These include Rader, chirp-z, and Goertzel DFT algorithms, as
well as Cooley–Tuckey, Good–Thomas, and Winograd FFT algorithms. In
Chap. 7 we discuss more specialized algorithms, which seem to have great
potential for improved FPGA implementation when compared with PDSPs.
These algorithms include number theoretic transforms, algorithms for cryp-
tography and errorcorrection, and communication system implementations.

Preface IX

The appendix includes an overview of the VHDL and Verilog languages, the
examples in Verilog HDL, and a short introduction to the utility programs
included on the CD-ROM.

Acknowledgements. This book is based on an FPGA communications system design
class I taught for four years at the Darmstadt University of Technology; my previous
(German) books [4, 5]; and more than 60 Masters thesis projects I have supervised
in the last 10 years at Darmstadt University of Technology and the University
of Florida at Gainesville. I wish to thank all my colleagues who helped me with
critical discussions in the lab and at conferences. Special thanks to: M. Acheroy,
D. Achilles, F. Bock, C. Burrus, D. Chester, D. Childers, J. Conway, R. Crochiere,
K. Damm, B. Delguette, A. Dempster, C. Dick, P. Duhamel, A. Drolshagen, W. En-
dres, H. Eveking, S. Foo, R. Games, A. Garcia, O. Ghitza, B. Harvey, W. Hilberg,
W. Jenkins, A. Laine, R. Laur, J. Mangen, J. Massey, J. McClellan, F. Ohl, S. Orr,
R. Perry, J. Ramirez, H. Scheich, H. Scheid, M. Schroeder, D. Schulz, F. Simons,
M. Soderstrand, S. Stearns, P. Vaidyanathan, M. Vetterli, H. Walter, and J. Wiet-
zke.

I would like to thank my students for the innumerable hours they have spent im-
plementing my FPGA design ideas. Special thanks to: D. Abdolrahimi, E. Allmann,
B. Annamaier, R. Bach, C. Brandt, M. Brauner, R. Bug, J. Burros, M. Burschel,
H. Diehl, V. Dierkes, A. Dietrich, S. Dworak, W. Fieber, J. Guyot, T. Hatter-
mann, T. Häuser, H. Hausmann, D. Herold, T. Heute, J. Hill, A. Hundt, R. Huth-
mann, T. Irmler, M. Katzenberger, S. Kenne, S. Kerkmann, V. Kleipa, M. Koch,
T. Krüger, H. Leitel, J. Maier, A. Noll, T. Podzimek, W. Praefcke, R. Resch,
M. Rösch, C. Scheerer, R. Schimpf, B. Schlanske, J. Schleichert, H. Schmitt,
P. Schreiner, T. Schubert, D. Schulz, A. Schuppert, O. Six, O. Spiess, O. Tamm,
W. Trautmann, S. Ullrich, R. Watzel, H. Wech, S. Wolf, T. Wolf, and F. Zahn.

For the English revision I wish to thank my wife Dr. Anke Meyer-Bäse, Dr.
J. Harris, Dr. Fred Taylor from the University of Florida at Gainesville, and Paul
DeGroot from Springer.

For financial support I would like to thank the DAAD, DFG, the European
Space Agency, and the Max Kade Foundation.

If you find any errata or have any suggestions to improve this book, please
contact me at Uwe.Meyer-Baese@ieee.org or through my publisher.

Tallahassee, May 2001 Uwe Meyer-Bäse

Preface to Second Edition

A new edition of a book is always a good opportunity to keep up with the lat-
est developments in the field and to correct some errors in previous editions.
To do so, I have done the following for this second edition:

• Set up a web page for the book at the following URL:
http://hometown.aol.de/uwemeyerbaese
The site has additional information on DSP with FPGAs, useful links,
and additional support for your designs, such as code generators and extra
documentation.

• Corrected the mistakes from the first edition. The errata for the first edition
can be downloaded from the book web page or from the Springer web page
at www.springer.de, by searching for Meyer-Baese.

• A total of approximately 100 pages have been added to the new edition.
The major new topics are:
– The design of serial and array dividers
– The description of a complete floating-point library
– A new Chap. 8 on adaptive filter design

• Altera’s current student version has been updated from 9.23 to 10.2 and
all design examples, size and performance measurements, i.e., many ta-
bles and plots have been compiled for the EPF10K70RC240-4 device
that is on Altera’s university board UP2. Altera’s UP1 board with the
EPF10K20RC240-4 has been discontinued.

• A solution manual for the first edition (with more than 65 exercises and over
33 additional design examples) is available from Amazon. Some additional
(over 25) new homework exercises are included in the second edition.

Acknowledgements. I would like to thank my colleagues and students for the feed-
back to the first edition. It helped me to improve the book. Special thanks to:
P. Ashenden, P. Athanas, D. Belc, H. Butterweck, S. Conners, G. Coutu, P. Costa,
J. Hamblen, M. Horne, D. Hyde, W. Li, S. Lowe, H. Natarajan, S. Rao, M. Rupp,
T. Sexton, D. Sunkara, P. Tomaszewicz, F. Verahrami, and Y. Yunhua.

From Altera, I would like to thank B. Esposito, J. Hanson, R. Maroccia,
T. Mossadak, and A. Acevedo (now with Xilinx) for software and hardware support
and the permission to include datasheets and MaxPlus II on the CD of this book.

From my publisher (Springer-Verlag) I would like to thank P. Jantzen, F. Holz-
warth, and Dr. Merkle for their continuous support and help over recent years.

XII Preface

I feel excited that the first edition was a big success and sold out quickly. I
hope you will find this new edition even more useful. I would also be grateful,
if you have any suggestions for how to improve the book, if you would e-mail
me at Uwe.Meyer-Baese@ieee.org or contact me through my publisher.

Tallahassee, October 2003 Uwe Meyer-Bäse

Preface to Third Edition

Since FPGAs are still a rapidly evolving field, I am very pleased that my
publisher Springer Verlag gave me the opportunity to include new develop-
ments in the FPGA field in this third edition. A total of over 150 pages of
new ideas and current design methods have been added. You should find the
following innovations in this third edition:

1) Many FPGAs now include embedded 18 × 18-bit multipliers and it is
therefore recommended to use these devices for DSP-centered applica-
tions since an embedded multiplier will save many LEs. The Cyclone
II EP2C35F672C6 device for instance, used in all the examples in this
edition, has 35 18× 18-bit multipliers.

2) MaxPlus II software is no longer updated and new devices such as the
Stratix or Cyclone are only supported in Quartus II. All old and new
examples in the book are now compiled with Quartus 6.0 for the Cyclone
II EP2C35F672C6 device. Starting with Quartus II 6.0 integers are by
default initialized with the smallest negative number (similar to with the
ModelSim simulator) rather than zero and the verbatim 2/e examples
will therefore not work with Quartus II 6.0. Tcl scripts are provided
that allow the evaluation of all examples with other devices too. Since
downloading Quartus II can take a long time the book CD includes the
web version 6.0 used in the book.

3) The new device features now also allow designs that use many MAC calls.
We have included a new section (2.9) on MAC-based function approxi-
mation for trigonometric, exponential, logarithmic, and square root.

4) To shorten the time to market further FPGA vendors offer intellectual
property (IP) cores that can be easily included in the design project. We
explain the use of IP blocks for NCOs, FIR filters, and FFTs.

5) Arbitrary sampling rate change is a frequent problem in multirate sys-
tems and we describe in Sect. 5.6 several options including B-spline,
MOMS, and Farrow-type converter designs.

6) FPGA-based microprocessors have become an important IP block for
FPGA vendors. Although they do not have the high performance of a
custom algorithm design, the software implementation of an algorithm
with a µP usually needs much less resources. A complete new chapter
(9) covers many aspects from software tool to hard- and softcore µPs. A

XIV Preface

complete example processor with an assembler and C compiler is devel-
oped.

7) A total of 107 additional problems have been added and a solution manual
will be available later from www.amazon.com at a not-for-profit price.

8) Finally a special thank you goes to Harvey Hamel who discovered many
errors that have been summarized in the errata for 2/e that is posted at
the book homepage http://hometown.aol.de/uwemeyerbaese

Acknowledgements. Again many colleagues and students have helped me with re-
lated discussions and feedback to the second edition, which helped me to improve
the book. Special thanks to:

P. Athanas, M. Bolic, C. Bentancourth, A. Canosa, S. Canosa, C. Chang,
J. Chen, T, Chen, J. Choi, A. Comba, S. Connors, J. Coutu, A. Dempster, A. El-
wakil, T. Felderhoff, O. Gustafsson, J. Hallman, H. Hamel, S. Hashim, A. Hoover,
M. Karlsson, K. Khanachandani, E. Kim, S. Kulkarni, K. Lenk, E. Manolakos,
F.Mirzapour, S. Mitra, W. Moreno, D. Murphy, T. Meiβner, K. Nayak, H. Ningxin,
F.von Münchow-Pohl, H. Quach, S. Rao, S. Stepanov, C. Suslowicz, M. Unser
J. Vega-Pineda, T. Zeh, E. Zurek

I am particular thankful to P. Thévenaz from EPFL for help with the newest
developments in arbitrary sampling rate changers.

My colleagues from the ISS at RHTH Aachen I would like to thank for their
time and efforts to teach me LISA during my Humboldt award sponsored summer
research stay in Germany. Special thanks go to H. Meyr, G. Ascheid, R. Leupers,
D. Kammler, and M. Witte.

From Altera, I would like to thank B. Esposito, R. Maroccia, and M. Phipps for
software and hardware support and permission to include datasheets and Quartus
II software on the CD of this book. From Xilinx I like to thank for software and
hardware support of my NSF CCLI project J. Weintraub, A. Acevedo, A. Vera,
M. Pattichis, C. Sepulveda, and C. Dick.

From my publisher (Springer-Verlag) I would like to thank Dr. Baumann,
Dr. Merkle, M. Hanich, and C. Wolf for the opportunity to produce an even more
useful third edition.

I would be very grateful if you have any suggestions for how to improve
the book and would appreciate an e-mail to Uwe.Meyer-Baese@ieee.org or
through my publisher.

Tallahassee, May 2007 Uwe Meyer-Bäse

Contents

Preface . VII

Preface to Second Edition . XI

Preface to Third Edition .XIII

1. Introduction . 1
1.1 Overview of Digital Signal Processing (DSP) 1
1.2 FPGA Technology . 3

1.2.1 Classification by Granularity . 3
1.2.2 Classification by Technology . 6
1.2.3 Benchmark for FPLs . 7

1.3 DSP Technology Requirements . 10
1.3.1 FPGA and Programmable Signal Processors 12

1.4 Design Implementation . 13
1.4.1 FPGA Structure . 18
1.4.2 The Altera EP2C35F672C6 . 22
1.4.3 Case Study: Frequency Synthesizer 29
1.4.4 Design with Intellectual Property Cores 35

Exercises . 42

2. Computer Arithmetic . 53
2.1 Introduction . 53
2.2 Number Representation . 54

2.2.1 Fixed-Point Numbers . 54
2.2.2 Unconventional Fixed-Point Numbers 57
2.2.3 Floating-Point Numbers . 71

2.3 Binary Adders . 74
2.3.1 Pipelined Adders . 76
2.3.2 Modulo Adders . 80

2.4 Binary Multipliers . 82
2.4.1 Multiplier Blocks . 87

2.5 Binary Dividers . 91
2.5.1 Linear Convergence Division Algorithms 93

XVI Contents

2.5.2 Fast Divider Design. 98
2.5.3 Array Divider . 103

2.6 Floating-Point Arithmetic Implementation 104
2.6.1 Fixed-point to Floating-Point Format Conversion 105
2.6.2 Floating-Point to Fixed-Point Format Conversion 106
2.6.3 Floating-Point Multiplication . 107
2.6.4 Floating-Point Addition . 108
2.6.5 Floating-Point Division . 110
2.6.6 Floating-Point Reciprocal . 112
2.6.7 Floating-Point Synthesis Results 114

2.7 Multiply-Accumulator (MAC) and Sum of Product (SOP) . . 114
2.7.1 Distributed Arithmetic Fundamentals 115
2.7.2 Signed DA Systems . 118
2.7.3 Modified DA Solutions . 120

2.8 Computation of Special Functions Using CORDIC 120
2.8.1 CORDIC Architectures . 125

2.9 Computation of Special Functions using MAC Calls 130
2.9.1 Chebyshev Approximations . 131
2.9.2 Trigonometric Function Approximation 132
2.9.3 Exponential and Logarithmic Function Approximation 141
2.9.4 Square Root Function Approximation 148

Exercises . 154

3. Finite Impulse Response (FIR) Digital Filters 165
3.1 Digital Filters . 165
3.2 FIR Theory . 166

3.2.1 FIR Filter with Transposed Structure 167
3.2.2 Symmetry in FIR Filters . 170
3.2.3 Linear-phase FIR Filters . 171

3.3 Designing FIR Filters . 172
3.3.1 Direct Window Design Method . 173
3.3.2 Equiripple Design Method . 175

3.4 Constant Coefficient FIR Design . 177
3.4.1 Direct FIR Design . 178
3.4.2 FIR Filter with Transposed Structure 182
3.4.3 FIR Filters Using Distributed Arithmetic 189
3.4.4 IP Core FIR Filter Design . 204
3.4.5 Comparison of DA- and RAG-Based FIR Filters 207

Exercises . 209

4. Infinite Impulse Response (IIR) Digital Filters 215
4.1 IIR Theory . 218
4.2 IIR Coefficient Computation . 221

4.2.1 Summary of Important IIR Design Attributes 223
4.3 IIR Filter Implementation . 224

Contents XVII

4.3.1 Finite Wordlength Effects . 228
4.3.2 Optimization of the Filter Gain Factor 229

4.4 Fast IIR Filter . 230
4.4.1 Time-domain Interleaving . 230
4.4.2 Clustered and Scattered Look-Ahead Pipelining 233
4.4.3 IIR Decimator Design . 235
4.4.4 Parallel Processing . 236
4.4.5 IIR Design Using RNS . 239

Exercises . 240

5. Multirate Signal Processing . 245
5.1 Decimation and Interpolation . 245

5.1.1 Noble Identities . 246
5.1.2 Sampling Rate Conversion by Rational Factor 248

5.2 Polyphase Decomposition . 249
5.2.1 Recursive IIR Decimator . 254
5.2.2 Fast-running FIR Filter . 254

5.3 Hogenauer CIC Filters . 256
5.3.1 Single-Stage CIC Case Study . 257
5.3.2 Multistage CIC Filter Theory . 259
5.3.3 Amplitude and Aliasing Distortion 264
5.3.4 Hogenauer Pruning Theory . 266
5.3.5 CIC RNS Design . 272

5.4 Multistage Decimator . 273
5.4.1 Multistage Decimator Design Using Goodman–Carey

Half-band Filters . 274
5.5 Frequency-Sampling Filters as Bandpass Decimators 277
5.6 Design of Arbitrary Sampling Rate Converters 280

5.6.1 Fractional Delay Rate Change . 284
5.6.2 Polynomial Fractional Delay Design 290
5.6.3 B-Spline-Based Fractional Rate Changer 296
5.6.4 MOMS Fractional Rate Changer 301

5.7 Filter Banks . 308
5.7.1 Uniform DFT Filter Bank . 309
5.7.2 Two-channel Filter Banks . 313

5.8 Wavelets . 328
5.8.1 The Discrete Wavelet Transformation 332

Exercises . 335

6. Fourier Transforms . 343
6.1 The Discrete Fourier Transform Algorithms 344

6.1.1 Fourier Transform Approximations Using the DFT . . . 344
6.1.2 Properties of the DFT . 346
6.1.3 The Goertzel Algorithm . 349
6.1.4 The Bluestein Chirp-z Transform 350

XVIII Contents

6.1.5 The Rader Algorithm . 353
6.1.6 The Winograd DFT Algorithm . 359

6.2 The Fast Fourier Transform (FFT) Algorithms 361
6.2.1 The Cooley–Tukey FFT Algorithm 363
6.2.2 The Good–Thomas FFT Algorithm 373
6.2.3 The Winograd FFT Algorithm . 375
6.2.4 Comparison of DFT and FFT Algorithms 379
6.2.5 IP Core FFT Design . 381

6.3 Fourier-Related Transforms . 385
6.3.1 Computing the DCT Using the DFT 387
6.3.2 Fast Direct DCT Implementation 388

Exercises . 391

7. Advanced Topics . 401
7.1 Rectangular and Number Theoretic Transforms (NTTs) 401

7.1.1 Arithmetic Modulo 2b ± 1 . 403
7.1.2 Efficient Convolutions Using NTTs 405
7.1.3 Fast Convolution Using NTTs . 405
7.1.4 Multidimensional Index Maps . 409
7.1.5 Computing the DFT Matrix with NTTs 411
7.1.6 Index Maps for NTTs . 413
7.1.7 Using Rectangular Transforms to Compute the DFT . . 416

7.2 Error Control and Cryptography . 418
7.2.1 Basic Concepts from Coding Theory 419
7.2.2 Block Codes . 424
7.2.3 Convolutional Codes . 428
7.2.4 Cryptography Algorithms for FPGAs 436

7.3 Modulation and Demodulation . 453
7.3.1 Basic Modulation Concepts . 453
7.3.2 Incoherent Demodulation . 457
7.3.3 Coherent Demodulation . 463

Exercises . 472

8. Adaptive Filters . 477
8.1 Application of Adaptive Filter . 478

8.1.1 Interference Cancellation . 478
8.1.2 Prediction . 479
8.1.3 Inverse Modeling . 479
8.1.4 Identification . 480

8.2 Optimum Estimation Techniques . 481
8.2.1 The Optimum Wiener Estimation 482

8.3 The Widrow–Hoff Least Mean Square Algorithm 486
8.3.1 Learning Curves . 493
8.3.2 Normalized LMS (NLMS) . 496

8.4 Transform Domain LMS Algorithms . 498

Contents XIX

8.4.1 Fast-Convolution Techniques . 498
8.4.2 Using Orthogonal Transforms . 500

8.5 Implementation of the LMS Algorithm . 503
8.5.1 Quantization Effects . 504
8.5.2 FPGA Design of the LMS Algorithm 504
8.5.3 Pipelined LMS Filters . 507
8.5.4 Transposed Form LMS Filter . 510
8.5.5 Design of DLMS Algorithms . 511
8.5.6 LMS Designs using SIGNUM Function 515

8.6 Recursive Least Square Algorithms . 518
8.6.1 RLS with Finite Memory . 521
8.6.2 Fast RLS Kalman Implementation 524
8.6.3 The Fast a Posteriori Kalman RLS Algorithm 529

8.7 Comparison of LMS and RLS Parameters 530
Exercises . 532

9. Microprocessor Design . 537
9.1 History of Microprocessors . 537

9.1.1 Brief History of General-Purpose Microprocessors 538
9.1.2 Brief History of RISC Microprocessors 540
9.1.3 Brief History of PDSPs . 541

9.2 Instruction Set Design . 544
9.2.1 Addressing Modes . 544
9.2.2 Data Flow: Zero-,One-, Two- or Three-Address Design 552
9.2.3 Register File and Memory Architecture 558
9.2.4 Operation Support . 562
9.2.5 Next Operation Location . 565

9.3 Software Tools . 566
9.3.1 Lexical Analysis . 567
9.3.2 Parser Development . 578

9.4 FPGA Microprocessor Cores . 588
9.4.1 Hardcore Microprocessors . 589
9.4.2 Softcore Microprocessors . 594

9.5 Case Studies . 605
9.5.1 T-RISC Stack Microprocessors . 605
9.5.2 LISA Wavelet Processor Design . 610
9.5.3 Nios FFT Design . 625

Exercises . 634

References . 645

A. Verilog Source Code 2001 . 661

XX Contents

B. VHDL and Verilog Coding . 729
B.1 List of Examples . 731
B.2 Library of Parameterized Modules (LPM) 733

B.2.1 The Parameterized Flip-Flop Megafunction (lpm ff) . . 733
B.2.2 The Adder/Subtractor Megafunction 737
B.2.3 The Parameterized Multiplier Megafunction

(lpm mult) . 741
B.2.4 The Parameterized ROM Megafunction (lpm rom) . . . 746
B.2.5 The Parameterized Divider Megafunction

(lpm divide) . 749
B.2.6 The Parameterized RAM Megafunction (lpm ram dq) 751

C. Glossary . 755

D. CD-ROM File: “1readme.ps” . 761

Index . 769

1. Introduction

This chapter gives an overview of the algorithms and technology we will
discuss in the book. It starts with an introduction to digital signal processing
and we will then discuss FPGA technology in particular. Finally, the Altera
EP2C35F672C6 and a larger design example, including chip synthesis, timing
analysis, floorplan, and power consumption, will be studied.

1.1 Overview of Digital Signal Processing (DSP)

Signal processing has been used to transform or manipulate analog or digital
signals for a long time. One of the most frequent applications is obviously
the filtering of a signal, which will be discussed in Chaps. 3 and 4. Digital
signal processing has found many applications, ranging from data communi-
cations, speech, audio or biomedical signal processing, to instrumentation and
robotics. Table 1.1 gives an overview of applications where DSP technology
is used [6].

Digital signal processing (DSP) has become a mature technology and has
replaced traditional analog signal processing systems in many applications.
DSP systems enjoy several advantages, such as insensitivity to change in
temperature, aging, or component tolerance. Historically, analog chip design
yielded smaller die sizes, but now, with the noise associated with modern
submicrometer designs, digital designs can often be much more densely in-
tegrated than analog designs. This yields compact, low-power, and low-cost
digital designs.

Two events have accelerated DSP development. One is the disclosure by
Cooley and Tuckey (1965) of an efficient algorithm to compute the discrete
Fourier Transform (DFT). This class of algorithms will be discussed in detail
in Chapter 6. The other milestone was the introduction of the programmable
digital signal processor (PDSP) in the late 1970s, which will be discussed in
Chap. 9. This could compute a (fixed-point) “multiply-and-accumulate” in
only one clock cycle, which was an essential improvement compared with the
“Von Neuman” microprocessor-based systems in those days. Modern PDSPs
may include more sophisticated functions, such as floating-point multipliers,
barrelshifters, memory banks, or zero-overhead interfaces to A/D and D/A
converters. EDN publishes every year a detailed overview of available PDSPs

2 1. Introduction

Table 1.1. Digital signal processing applications.

Area DSP algorithm

General-purpose
Filtering and convolution, adaptive filtering, detection
and correlation, spectral estimation and Fourier trans-
form

Speech processing
Coding and decoding, encryption and decryption, speech
recognition and synthesis, speaker identification, echo
cancellation, cochlea-implant signal processing

Audio processing
hi-fi encoding and decoding, noise cancellation, audio
equalization, ambient acoustics emulation, audio mixing
and editing, sound synthesis

Image processing
Compression and decompression, rotation, image trans-
mission and decompositioning, image recognition, image
enhancement, retina-implant signal processing

Information systems

Voice mail, facsimile (fax), modems, cellular telephones,
modulators/demodulators, line equalizers, data encryp-
tion and decryption, digital communications and LANs,
spread-spectrum technology, wireless LANs, radio and
television, biomedical signal processing

Control
Servo control, disk control, printer control, engine con-
trol, guidance and navigation, vibration control, power-
system monitors, robots

Instrumentation
Beamforming, waveform generation, transient analysis,
steady-state analysis, scientific instrumentation, radar
and sonar

[7]. We will return in and Chap. 2 (p. 116) and Chap. 9 to PDSPs after we
have studied FPGA architectures.

Filter
Aliasing

Input

Analog
sf

Samples

In

x(t)

Digital

ADC

x[k]
DAC

Signal

Out

Out

Digital

DSPand
System

Sample Analog

Hold
and

Encoder

Anti Quantizer

Fig. 1.1. A typical DSP application.

Figure 1.1 shows a typical application used to implement an analog system
by means of a digital signal processing system. The analog input signal is
feed through an analog anti aliasing filter whose stopband starts at half the
sampling frequency fs to suppress unwonted mirror frequencies that occur
during the sampling process. Then the analog-to-digital converter (ADC)

1.2 FPGA Technology 3

follows that typically is implemented with a sample-and-hold and a quantize
(and encoder) circuit. The digital signal processing circuit perform then the
steps that in the past would have been implemented in the analog system.
We may want to further process or store (i.e., on CD) the digital processed
data, or we may like to produce an analog output signal (e.g., audio signal)
via a digital-to-analog converter (DAC) which would be the output of the
equivalent analog system.

1.2 FPGA Technology

VLSI circuits can be classified as shown in Fig. 1.2. FPGAs are a member
of a class of devices called field-programmable logic (FPL). FPLs are defined
as programmable devices containing repeated fields of small logic blocks and
elements2. It can be argued that an FPGA is an ASIC technology since
FPGAs are application-specific ICs. It is, however, generally assumed that the
design of a classic ASIC required additional semiconductor processing steps
beyond those required for an FPL. The additional steps provide higher-order
ASICs with their performance and power consumption advantage, but also
with high nonrecurring engineering (NRE) costs. At 65 nm the NRE cost are
about $4 million, see [8] . Gate arrays, on the other hand, typically consist of a
“sea of NAND gates” whose functions are customer provided in a “wire list.”
The wire list is used during the fabrication process to achieve the distinct
definition of the final metal layer. The designer of a programmable gate array
solution, however, has full control over the actual design implementation
without the need (and delay) for any physical IC fabrication facility. A more
detailed FPGA/ASIC comparison can be found in Sect. 1.3, p. 10.

1.2.1 Classification by Granularity

Logic block size correlates to the granularity of a device that, in turn, relates
to the effort required to complete the wiring between the blocks (routing
channels). In general three different granularity classes can be found:

• Fine granularity (Pilkington or “sea of gates” architecture)
• Medium granularity (FPGA)
• Large granularity (CPLD)

Fine-Granularity Devices

Fine-grain devices were first licensed by Plessey and later by Motorola, being
supplied by Pilkington Semiconductor. The basic logic cell consisted of a
2 Called configurable logic block (CLB) by Xilinx, logic cell (LC) or logic elements

(LE) by Altera.

4 1. Introduction

Fig. 1.2. Classification of VLSI circuits (c©1995 VDI Press [4]).

single NAND gate and a latch (see Fig. 1.3). Because it is possible to realize
any binary logic function using NAND gates (see Exercise 1.1, p. 42), NAND
gates are called universal functions. This technique is still in use for gate array
designs along with approved logic synthesis tools, such as ESPRESSO. Wiring
between gate-array NAND gates is accomplished by using additional metal
layer(s). For programmable architectures, this becomes a bottleneck because
the routing resources used are very high compared with the implemented
logic functions. In addition, a high number of NAND gates is needed to build
a simple DSP object. A fast 4-bit adder, for example, uses about 130 NAND
gates. This makes fine-granularity technologies unattractive in implementing
most DSP algorithms.

Medium-Granularity Devices

The most common FPGA architecture is shown in Fig. 1.4a. A concrete ex-
ample of a contemporary medium-grain FPGA device is shown in Fig. 1.5.
The elementary logic blocks are typically small tables (e.g., Xilinx Virtex
with 4- to 5-bit input tables, 1- or 2-bit output), or are realized with ded-

1.2 FPGA Technology 5

(a)

(b)

Fig. 1.3. Plessey ERA60100 architecture with 10K NAND logic blocks [9]. (a)
Elementary logic block. (b) Routing architecture (c©1990 Plessey).

icated multiplexer (MPX) logic such as that used in Actel ACT-2 devices
[10]. Routing channel choices range from short to long. A programmable I/O
block with flip-flops is attached to the physical boundary of the device.

Large-Granularity Devices

Large granularity devices, such as the complex programmable logic devices
(CPLDs), are characterized in Fig. 1.4b. They are defined by combining so-
called simple programmable logic devices (SPLDs), like the classic GAL16V8
shown in Fig. 1.6. This SPLD consists of a programmable logic array (PLA)
implemented as an AND/OR array and a universal I/O logic block. The
SPLDs used in CPLDs typically have 8 to 10 inputs, 3 to 4 outputs, and
support around 20 product terms. Between these SPLD blocks wide busses
(called programmable interconnect arrays (PIAs) by Altera) with short delays
are available. By combining the bus and the fixed SPLD timing, it is possible
to provide predictable and short pin-to-pin delays with CPLDs.

6 1. Introduction

Logic blocks

Routing channels

I/O blocks

point (PIP)
interconnect

Programmable

(a)

Simple

PLD

Simple

PLD

Macrocells

Simple

PLD

Programmable interconnect array (PIA)

(b)

Fig. 1.4. (a) FPGA and (b) CPLD architecture (c©1995 VDI Press [4]).

1.2.2 Classification by Technology

FPLs are available in virtually all memory technologies: SRAM, EPROM,
E2PROM, and antifuse [11]. The specific technology defines whether the de-
vice is reprogrammable or one-time programmable. Most SRAM devices can be
programmed by a single-bit stream that reduces the wiring requirements, but
also increases programming time (typically in the ms range). SRAM devices,
the dominate technology for FPGAs, are based on static CMOS memory
technology, and are re- and in-system programmable. They require, how-
ever, an external “boot” device for configuration. Electrically programmable
read-only memory (EPROM) devices are usually used in a one-time CMOS
programmable mode because of the need to use ultraviolet light for erasure.
CMOS electrically erasable programmable read-only memory (E2PROM) can
be used as re- and in-system programmable. EPROM and E2PROM have the
advantage of a short setup time. Because the programming information is

1.2 FPGA Technology 7

Fig. 1.5. Example of a medium-grain device (c©1993 Xilinx).

not “downloaded” to the device, it is better protected against unauthorized
use. A recent innovation, based on an EPROM technology, is called “flash”
memory. These devices are usually viewed as “pagewise” in-system repro-
grammable systems with physically smaller cells, equivalent to an E2PROM
device. Finally, the important advantages and disadvantages of different de-
vice technologies are summarized in Table 1.2.

1.2.3 Benchmark for FPLs

Providing objective benchmarks for FPL devices is a nontrivial task. Perfor-
mance is often predicated on the experience and skills of the designer, along
with design tool features. To establish valid benchmarks, the Programmable
Electronic Performance Cooperative (PREP) was founded by Xilinx [12], Al-
tera [13], and Actel [14], and has since expanded to more than 10 members.
PREP has developed nine different benchmarks for FPLs that are summa-
rized in Table 1.3. The central idea underlining the benchmarks is that each
vendor uses its own devices and software tools to implement the basic blocks
as many times as possible in the specified device, while attempting to max-
imize speed. The number of instantiations of the same logic block within

8 1. Introduction

(a)

(b)

Fig. 1.6. The GAL16V8. (a) First three of eight macrocells. (b) The output logic
macrocell (OLMC) (c©1997 Lattice).

one device is called the repetition rate and is the basis for all benchmarks.
For DSP comparisons, benchmarks five and six of Table 1.3 are relevant.
In Fig. 1.7, repetition rates are reported over frequency, for typical Actel
(Ak), Altera (ok), and Xilinx (xk) devices. It can be concluded that modern
FPGA families provide the best DSP complexity and maximum speed. This
is attributed to the fact that modern devices provide fast-carry logic (see
Sect. 1.4.1, p. 18) with delays (less than 0.1 ns per bit) that allow fast adders
with large bit width, without the need for expensive “carry look-ahead” de-
coders. Although PREP benchmarks are useful to compare equivalent gate
counts and maximum speeds, for concrete applications additional attributes
are also important. They include:

• Array multiplier (e.g., 18 × 18 bits)
• Embedded hardwired microprocessor (e.g., 32-bit RISC PowerPC)
• On-chip RAM or ROM (LE or large block size)
• External memory support for ZBT, DDR, QDR, SDRAM

1.2 FPGA Technology 9

Table 1.2. FPL technology.

Technology SRAM EPROM E2PROM Antifuse Flash

Repro- � � � − �
grammable

In-system � − � − �
programmable

Volatile � − − − −
Copy − � � � �
protected

Examples Xilinx Altera AMD Actel Xilinx
Spartan MAX5K MACH ACT XC9500

Altera Xilinx Altera Cypress
Cyclone XC7K MAX 7K Ultra 37K

• Pin-to-pin delay
• Internal tristate bus
• Readback- or boundary-scan decoder
• Programmable slew rate or voltage of I/O
• Power dissipation
• Ultra-high speed serial interfaces

Some of these features are (depending on the specific application) more
relevant to DSP application than others. We summarize the availability of
some of these key features in Tables 1.4 and 1.5 for Xilinx and Altera, respec-
tively. The first column shows the device family name. The columns 3 − 9
show the (for most DSP applications) relevant features: (3) the support of
fast-carry logic for adder or subtractor, (4) the embedded array multiplier of
18 × 18 bit width, (5) the on-chip RAM implemented with the LEs, (6) the
on-chip kbit memory block of size larger of about 1-16 kbit,(7) the on-chip
Mbit memory block of size larger of about 1 mega bit, (8) embedded micro-
processor: IBM’s PowerPC on Xilinx or the ARM processor available with
Altera devices, and (9) the target price and availability of the device family.
Device that are no longer recommended for new designs are classified as ma-
ture with m. Low-cost devices have a single $ and high price range devices
have two $$.

Figure 1.8 summarizes the power dissipation of some typical FPL devices.
It can be seen that CPLDs usually have higher “standby” power consump-
tion. For higher-frequency applications, FPGAs can be expected to have a
higher power dissipation. A detailed power analysis example can be found in
Sect. 1.4.2, p. 27.

10 1. Introduction

Table 1.3. The PREP benchmarks for FPLs.

Number Benchmark name Description

1 Data path Eight 4-to-1 multiplexers drive a
parallel-load 8-bit shift register

(see Fig. 1.27, p. 44)

2 Timer/counter Two 8-bit values are clocked
through 8-bit value registers and
compared (see Fig. 1.28, p. 45)

3 Small state An 8-state machine with 8 inputs and
machine 8 outputs (see Fig. 2.59, p. 159)

4 Large state A 16-state machine with 40 transitions,
machine 8 inputs, and 8 outputs (see Fig. 2.60, p. 161)

5 Arithmetic A 4-by-4 unsigned multiplier and
circuit 8-bit accumulator (see Fig. 4.23, p. 243)

6 16-bit A 16-bit accumulator
accumulator (see Fig. 4.24, p. 244)

7 16-bit counter Loadable binary up counter
(see Fig. 9.40, p. 642)

8 16-bit synchronous Loadable binary counter
prescaled counter with asynchronous reset

(see Fig. 9.40, p. 642)

9 Memory The map decodes a 16-bit
mapper address space into 8 ranges

(see Fig. 9.41, p. 643)

1.3 DSP Technology Requirements

The PLD market share, by vendor, is presented in Fig. 1.9. PLDs, since their
introduction in the early 1980s, have enjoyed in the last decade steady growth
of 20% per annum, outperforming ASIC growth by more than 10%. In 2001
the worldwide recession in microelectronics reduced the ASIC and FPLD
growth essentially. Since 2003 we see again a steep increase in revenue for the
two market leader. The reason that FPLDs outperformed ASICs seems to be
related to the fact that FPLs can offer many of the advantages of ASICs such
as:

• Reduction in size, weight, and power dissipation
• Higher throughput
• Better security against unauthorized copies
• Reduced device and inventory cost
• Reduced board test costs

without many of the disadvantages of ASICs such as:

1.3 DSP Technology Requirements 11

Table 1.4. Xilinx FPGA family DSP features.

Family Feature

Fast Emb. LE Kbit Mbit Emb. Low
adder mult. RAM RAM RAM µP cost/
carry 18×18 mature
logic bits

XC2000 − − − − − − m
XC3000 − − − − − − m
XC4000 � − � − − − m
Spartan-XL � − � − − − $
Spartan-II � − � � − − $
Spartan-3 � � � � − − $
Virtex � − � � − − $$
Virtex-II � � � � − − $$
Virtex-II Pro � � � � − � $$
Virtex-4-LX � � � � − − $$
Virtex-4-SX � � � � − − $$
Virtex-4-FX � � � � − � $$
Virtex-5 � � � � − − $$

Table 1.5. Altera FPGA family DSP features.

Family Feature

Fast Emb. LE Kbit Mbit Emb. Low
adder mult. RAM RAM RAM µP cost/
carry 18×18 mature
logic bits

FLEX8K � − − − − − m
FLEX10K � − − � − − m
APEX20K � − − � − − m
APEX II � − − � − − m
ACEX � − − � − − m
Mercury � − − � − − m
Excalibur � − − � − � m
Cyclone � − − � − − $
Cyclone II � � − � − − $
Stratix � � − � � − $$
Stratix II � � − � � − $$

• A reduction in development time (rapid prototyping) by a factor of three
to four

• In-circuit reprogrammability
• Lower NRE costs resulting in more economical designs for solutions requir-

ing less than 1000 units

12 1. Introduction

�
f in MHz

30

20

10

�

A1

A2

◦1

◦2

◦3

◦4

×2

×1

×3

CPLD �

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
��

FPGA

���

REP rate

10 20 30 40

�

�

�

�

�
�
�
�
�
�
�
�
�
�

Fig. 1.7. Benchmarks for FPLs (c©1995 VDI Press [4]).

CBIC ASICs are used in high-end, high-volume applications (more than
1000 copies). Compared to FPLs, CBIC ASICs typically have about ten times
more gates for the same die size. An attempt to solve the latter problem is
the so-called hard-wired FPGA, where a gate array is used to implement a
verified FPGA design.

1.3.1 FPGA and Programmable Signal Processors

General-purpose programmable digital signal processors (PDSPs) [6, 15, 16]
have enjoyed tremendous success for the last two decades. They are based
on a reduced instruction set computer (RISC) paradigm with an architecture
consisting of at least one fast array multiplier (e.g., 16×16-bit to 24×24-bit
fixed-point, or 32-bit floating-point), with an extended wordwidth accumu-
lator. The PDSP advantage comes from the fact that most signal processing
algorithms are multiply and accumulate (MAC) intensive. By using a mul-
tistage pipeline architecture, PDSPs can achieve MAC rates limited only by
the speed of the array multiplier. More details on PDSPs can be found in
Chap. 9. It can be argued that an FPGA can also be used to implement
MAC cells [17], but cost issues will most often give PDSPs an advantage, if
the PDSP meets the desired MAC rate. On the other hand we now find many
high-bandwidth signal-processing applications such as wireless, multimedia,
or satellite transmission, and FPGA technology can provide more bandwidth
through multiple MAC cells on one chip. In addition, there are several al-

1.4 Design Implementation 13

�
P in mW

�
f in MHz

10 20

600

400

200

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
��

Xilinx XC3142���

�

Altera 7128

Actel A1020

Fig. 1.8. Power dissipation for FPLs (c©1995 VDI Press [4]).

gorithms such as CORDIC, NTT or error-correction algorithms, which will
be discussed later, where FPL technology has been proven to be more effi-
cient than a PDSP. It is assumed [18] that in the future PDSPs will dominate
applications that require complicated algorithms (e.g., several if-then-else
constructs), while FPGAs will dominate more front-end (sensor) applications
like FIR filters, CORDIC algorithms, or FFTs, which will be the focus of this
book.

1.4 Design Implementation

The levels of detail commonly used in VLSI designs range from a geomet-
rical layout of full custom ASICs to system design using so-called set-top
boxes. Table 1.6 gives a survey. Layout and circuit-level activities are absent
from FPGA design efforts because their physical structure is programmable
but fixed. The best utilization of a device is typically achieved at the gate
level using register transfer design languages. Time-to-market requirements,
combined with the rapidly increasing complexity of FPGAs, are forcing a
methodology shift towards the use of intellectual property (IP) macrocells or
mega-core cells. Macrocells provide the designer with a collection of prede-
fined functions, such as microprocessors or UARTs. The designer, therefore,
need only specify selected features and attributes (e.g., accuracy), and a

14 1. Introduction

1994 1996 1998 2000 2002 2004
0

200

400

600

800

1000

1200

1400

1600

Revenue
in

 M
il.

 $

year

Xilinx
Altera
Vantis
Lattice
Actel

Fig. 1.9. Revenues of the top five vendors in the PLD/FPGA/CPLD market.

Table 1.6. VLSI design levels.

Object Objectives Example

System Performance specifications Computer, disk unit, radar
Chip Algorithm µP, RAM, ROM, UART, parallel port
Register Data flow Register, ALU, COUNTER, MUX
Gate Boolean equations AND, OR, XOR, FF
Circuit Differential equations Transistor, R, L, C
Layout None Geometrical shapes

synthesizer will generate a hardware description code or schematic for the
resulting solution.

A key point in FPGA technology is, therefore, powerful design tools to

• Shorten the design cycle
• Provide good utilization of the device
• Provide synthesizer options, i.e., choose between optimization speed versus

size of the design

A CAE tool taxonomy, as it applies to FPGA design flow, is presented in
Fig. 1.10. The design entry can be graphical or text-based. A formal check

1.4 Design Implementation 15

that eliminates syntax errors or graphic design rule errors (e.g., open-ended
wires) should be performed before proceeding to the next step. In the function
extraction the basic design information is extracted from the design and writ-
ten in a functional netlist. The netlist allows a first functional simulation of
the circuit and to build an example data set called a testbench for later test-
ing of the design with timing information. If the functional test is not passed
we start with the design entry again. If the functional test is satisfactory we
proceed with the design implementation, which usually takes several steps
and also requires much more compile time then the function extraction. At
the end of the design implementation the circuit is completely routed within
our FPGA, which provides precise resource data and allows us to perform a
simulation with all timing delay information as well as performance measure-
ments. If all these implementation data are as expected we can proceed with
the programming of the actual FPGA; if not we have to start with the design
entry again and make appropriate changes in our design. Using the JTAG
interface of modern FPGAs we can also directly monitor data processing on
the FPGA: we may read out just the I/O cells (which is called a boundary
scan) or we can read back all internal flip-flops (which is called a full scan).
If the in-system debugging fails we need to return to the design entry.

In general, the decision of whether to work within a graphical or a text
design environment is a matter of personal taste and prior experience. A
graphical presentation of a DSP solution can emphasize the highly regular
dataflow associated with many DSP algorithms. The textual environment,
however, is often preferred with regard to algorithm control design and al-
lows a wider range of design styles, as demonstrated in the following design
example. Specifically, for Altera’s Quartus II, it seemed that with text de-
sign more special attributes and more-precise behavior can be assigned in the
designs.

Example 1.1: Comparison of VHDL Design Styles
The following design example illustrates three design strategies in a VHDL
context. Specifically, the techniques explored are:
• Structural style (component instantiation, i.e., graphical netlist design)
• Data flow, i.e., concurrent statements
• Sequential design using PROCESS templates
The VHDL design file example.vhd4 follows (comments start with --):

PACKAGE eight_bit_int IS -- User-defined type
SUBTYPE BYTE IS INTEGER RANGE -128 TO 127;

END eight_bit_int;

LIBRARY work;
USE work.eight_bit_int.ALL;

LIBRARY lpm; -- Using predefined packages
USE lpm.lpm_components.ALL;

4 The equivalent Verilog code example.v for this example can be found in Ap-
pendix A on page 663. Synthesis results are shown in Appendix B on page 731.

16 1. Introduction

Device programming

- Graphic design rules

-Text: VHDL or Verilog

- Graphic

- Database builder

In-system debugging

- Full scan
- Boundary scan

Design verification

Design implementation

Function extraction

Design entry

- Compare output

- Check setup/hold violations

- Check for glitch/oscillations

Timing simulation

Timing analysis

- Registered performance
- Delay matrix analysis

- Functional netlist

Formal check

- Language syntax check

Functional simulation
- Verify functionality

- Logic synthesis

- Logic fitting

- Timing extraction

- Programming file

- Logic partitioning

Fig. 1.10. CAD design circle.

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
USE ieee.std_logic_arith.ALL;

ENTITY example IS ------> Interface
GENERIC (WIDTH : INTEGER := 8); -- Bit width
PORT (clk : IN STD_LOGIC;

a, b : IN BYTE;
op1 : IN STD_LOGIC_VECTOR(WIDTH-1 DOWNTO 0);
sum : OUT STD_LOGIC_VECTOR(WIDTH-1 DOWNTO 0);
d : OUT BYTE);

END example;

ARCHITECTURE fpga OF example IS

SIGNAL c, s : BYTE; -- Auxiliary variables
SIGNAL op2, op3 : STD_LOGIC_VECTOR(WIDTH-1 DOWNTO 0);

BEGIN

-- Conversion int -> logic vector

1.4 Design Implementation 17

op2 <= CONV_STD_LOGIC_VECTOR(b,8);

add1: lpm_add_sub ------> Component instantiation
GENERIC MAP (LPM_WIDTH => WIDTH,

LPM_REPRESENTATION => "SIGNED",
LPM_DIRECTION => "ADD")

PORT MAP (dataa => op1,
datab => op2,
result => op3);

reg1: lpm_ff
GENERIC MAP (LPM_WIDTH => WIDTH)
PORT MAP (data => op3,

q => sum,
clock => clk);

c <= a + b ; ------> Data flow style

p1: PROCESS ------> Behavioral style
BEGIN
WAIT UNTIL clk = ’1’;
s <= c + s; ----> Signal assignment statement

END PROCESS p1;
d <= s;

END fpga;
1.1

To start the simulator5 we first copy the file from the CD to the project
directory and use File→Open Project to select the example project. Now
select Simulator Tool under the Processing menu. A new window to con-
trol the simulation parameter will pop up. To perform a function simula-
tion in Quartus II the Generate Functional Simulation Netlist button
needs to be activated first by selecting Functional as Simulation mode. If
successful we can proceed and start with the design implementation as shown
in Fig. 1.10. To do this with the Quartus II compiler, we choose Timing as
the Simulation mode. However, the timing simulation requires that all com-
pilation steps (Analysis & Synthesis, Fitter, Assembler and Timing
Analyzer) are first performed. After completion of the compilation we can
then conduct a simulation with timing, check for glitches, or measure the
Registered Performance of the design, to name just a few options. After all
these steps are successfully completed, and if a hardware board (like the pro-
totype board shown in Fig. 1.11) is available, we proceed with programming
the device and may perform additional hardware tests using the read-back
methods, as reported in Fig. 1.10. Altera supports several DSP development
boards with a large set of useful prototype components including fast A/D,
D/A, audio CODEC, DIP switches, single and 7-segment LEDs, and push

5 Note that a more detailed design tool study will follow in section 1.4.3.

18 1. Introduction

buttons. These development boards are available from Altera directly. Altera
offers Stratix S25, Stratix II S60,and S80 and Cyclone II boards, in the $995-
$5995 price range, which differs not only in FPGA size, but also in terms of
the extra features, like number, precision and speed of A/D channels, and
memory blocks. For universities a good choice will be the lowest-cost Cy-
clone II board, which is still more expensive than the UP2 or UP3 boards
used in many digital logic labs, but has a fast A/D and D/A and a two-
channel CODEC, and large memory bank outside the FPGA, see Fig. 1.11a.
Xilinx on the other side has very limited direct board support; all boards for
instance available in the university program are from third parties. However
some of these boards are priced so low that it seems that these boards are
not-for-profit designs. A good board for DSP purposes (with on-chip multi-
pliers) is for instance offered by Digilent Inc. for only $99, see Fig. 1.11b. The
board has a XC3S200 FPGA, flash, four 7-segment LEDs, eight switches, and
four push buttons. For DSP experiments, A/D and D/A mounted on very
small daughter boards are available for $19.95 each, so a nice DSP board can
be built for only $138.90.

(a) (b)

Fig. 1.11. Low-cost prototype boards: (a) Cyclone II Altera board. (b) Xilinx
Nexsys board with ADC and DAC daughter boards.

1.4.1 FPGA Structure

At the beginning of the 21st century FPGA device families now have several
attractive features for implementing DSP algorithms. These devices provide
fast-carry logic, which allows implementations of 32-bit (nonpipelined) adders
at speeds exceeding 300MHz [1, 19, 20], embedded 18 × 18 bit multipliers,
and large memory blocks.

Xilinx FPGAs are based on the elementary logic block of the early XC4000
family and the newest derivatives are called Spartan (low cost) and Virtex
(high performance). Altera devices are based on FLEX 10K logic blocks and
the newest derivatives are called Stratix (high performance) and Cyclone (low

1.4 Design Implementation 19

cost). The Xilinx devices have the wide range of routing levels typical of a
FPGAs, while the Altera devices are based on an architecture with the wide
busses used in Altera’s CPLDs. However, the basic blocks of the Cyclone and
Stratix devices are no longer large PLAs as in CPLD. Instead the devices
now have medium granularity, i.e., small look-up tables (LUTs), as is typical
for FPGAs. Several of these LUTs, called logic elements (LE) by Altera, are
grouped together in a logic array block (LAB). The number of LEs in an LAB
depends on the device family, where newer families in general have more LEs
per LAB: Flex10K utilizes eight LEs per LAB, APEX20K uses 10LEs per
LAB and Cyclone II has 16LEs per LAB.

Fig. 1.12. Spartan-3 low portion of a slice/logic element (c©2006 Xilinx).

Since the Spartan-3 devices are part of a popular DSP board offered by
Digilent Inc., see Figure 1.11b, we will have a closer look at this FPGA fam-
ily. The basic logic elements of the Xilinx Spartan-3 are called slices having
two separate four-input one-output LUTs, fast-carry dedicated logic, two flip-
flops, and some shared control signals. In the Spartan-3 family four slices are
combined in a configurable logic blocks (CLB), having a total of eight four-
input one-output LUTs, and eight flip-flops. Figure 1.12 shows the lower part
of the left slice. Each slice LUT can be used as a 16×1 RAM or ROM. The
dashed part is used if the slice is used to implement distributed memory or
shift registers, and is only available in 50% of the slices. The Xilinx device
has multiple levels of routing, ranging from CLB to CLB, to long lines span-
ning the entire chip. The Spartan-3 device also includes large memory block

20 1. Introduction

Table 1.7. The Xilinx Spartan-3 family.

Device Total CLB RAM DCM Emb. Max. Conf.
4-input blocks mult. I/O file
LUTs 18×18 mbit

XC3S50 1536 192 4 2 4 124 0.4
XC3S200 3840 480 12 4 12 173 1.0
XC3S400 7168 896 16 4 16 264 1.7
XC3S1000 15 360 1920 24 4 24 391 3.2
XC3S1500 26 624 3328 32 4 32 487 5.2
XC3S2000 40 960 5120 40 4 40 565 7.6
XC3S4000 55 296 6912 96 4 96 712 11.3
XC3S5000 66 560 8320 104 4 104 784 13.2

(18,432 bits or 16,384 bits if no parity bits are used) that can be used as
single- or dual-port RAM or ROM. The memory blocks can be configure as
29×32, 210×16, . . . , 214×1, i.e., each additional address bit reduces the data
bit width by a factor of two. Another interesting feature for DSP purpose
is the embedded multiplier in the Spartan-3 family. These are fast 18 × 18
bit signed array multipliers. If unsigned multiplication is required 17× 17 bit
multiplier can be implemented with this embedded multiplier. This device
family also includes up to four complete clock networks (DCMs) that allow
one to implement several designs that run at different clock frequencies in the
same FPGA with low clock skew. Up to 13 Mbits configuration files size is
required to program Spartan-3 devices. Tables 1.7 shows the most important
DSP features of members of the Xilinx Spartan-3 family.

As an example of an Altera FPGA family let us have a look at the Cyclone
II devices used in the low-cost prototyping board by Altera, see Fig. 1.11a.
The basic block of the Altera Cyclone II device achieves a medium granularity
using small LUTs. The Cyclone device is similar to the Altera 10K device used
in the popular UP2 and UP3 boards, with increased RAM blocks memory
size to 4 kbits, which are no longer called EAB as in Flex 10K or ESB as in
the APEX family, bur rather M4K memory blocks, which better reflects their
size. The basic logic element in Altera FPGAs is called a logic element (LE)6

and consists of a flip-flop, a four-input one-output or three-input one-output
LUT and a fast-carry logic, or AND/OR product term expanders, as shown
in Fig. 1.13. Each LE can be used as a four-input LUT in the normal mode, or
in the arithmetic mode, as a three-input LUT with an additional fast carry.
Sixteen LEs are combined in a logic array block (LAB) in Cyclone II devices.
Each row contains at least one embedded 18×18 bit multiplier and one M4K
memory block. One 18×18 bit multiplier can also be used as two signed 9×9
bit multipliers, or one unsigned 17×17 bit multiplier. The M4K memory can
be configured as 27×32, 28×16, . . . , 4096×1 RAM or ROM. In addition one
6 Sometimes also called logic cells (LCs) in a design report file.

1.4 Design Implementation 21

Fig. 1.13. Cyclone II logic cell (c©2005 Altera).

parity bit per byte is available (e.g., 128 × 36 configuration), which can be
used for data integrity. These M4Ks and LABs are connected through wide
high-speed busses as shown in Fig. 1.14. Several PLLs are in use to produce
multiple clock domains with low clock skew in the same device. At least 1
Mbits configuration files size is required to program the devices. Table 1.8
shows some members of the Altera Cyclone II family.

If we compare the two routing strategies from Altera and Xilinx we find
that both approaches have value: the Xilinx approach with more local and
less global routing resources is synergistic to DSP use because most digital
signal processing algorithms process the data locally. The Altera approach,
with wide busses, also has value, because typically not only are single bits

22 1. Introduction

Table 1.8. Altera’s Cyclone II device family.

Device Total RAM PLLs/ Emb. Max. Conf.
4-input blocks clock mul. I/O file
LUTs M4K networks 18×18 Mbits

EP2C5 4608 26 2/8 13 89 1.26
EP2C8 8256 36 2/8 18 85 1.98
EP2C20 18 752 52 4/16 26 315 3.89
EP2C35 33 216 105 4/16 35 475 6.85
EP2C50 50 528 129 4/16 86 450 9.96
EP2C70 68 416 250 4/16 150 622 14.31

processed in bit slice operations, but normally wide data vectors with 16 to
32 bits must be moved to the next DSP block.

1.4.2 The Altera EP2C35F672C6

The Altera EP2C35F672C6 device, a member of the Cyclone II family, which
is part of the DSP prototype board provided through Altera’s university pro-
gram, is used throughout this book. The device nomenclature is interpreted
as follows:

EP2C35F672C6
| | | |--> speed grade
| | |-----> Package and pin number
| |---------> LEs in 1000
|------------> Device family

Specific design examples will, wherever possible, target the Cyclone II
device EP2C35F672C6 using Altera-supplied software. The enclosed Quar-
tus II software is a fully integrated system with VHDL and Verilog editor,
synthesizer, simulator, and bitstream generator. The only limitation in the
web version is that not all pinouts of every devices are available. Because
all examples are available in VHDL and Verilog, any other simulator may
also be used. For instance, the device-independent ModelTech compiler has
successfully been used to compile the examples using the synthesizable code
for lpm functions on the CD-ROM provided by EDIF. The use of Xilinx ISE
software is also discussed in appendix D.

Logic Resources

The EP2C35 is a member of the Altera Cyclone II family and has a logic
density equivalent to about 35 000 logic elements (LEs). An additional 35
multipliers of size 18× 18 bits (or twice this number if a size of 9 × 9 bit is
used) are available. From Table 1.8 it can be seen that the EP2C35 device

1.4 Design Implementation 23

Fig. 1.14. Overall floorplan in Cyclone II devices.

has 33 216 basic logic elements (LEs). This is also the maximum number of
implementable full adders. Each LE can be used as a four-input LUT, or in the
arithmetic mode, as a three-input LUT with an additional fast carry as shown
in Fig. 1.13. Sixteen LEs are always combined into a logic array block (LAB),
see Fig. 1.15a. The number of LABs is therefore 33,216/16=2076. These 2076
LABs are arranged in 35 rows and 60 columns. In the left medium area of
the device the JTAG interface is placed and uses the area of 24 LABs. This is
why the total number of LABs in not just the product of rows × column, i.e.,
35×60−24 = 2100−24 = 2076. The device also includes three columns of 4-
kbit memory block (called M4K memory blocks, see Fig. 1.15b) that have the
height of one LAB and the total number of M4Ks is therefore 3× 35 = 105.
The M4Ks can be configured as 128 × 36, 128 × 32, 256 × 18, 256 × 16,
. . . 4096 × 1 RAM or ROM, where for each byte one parity bit is available.
The EP2C35 also has one column of 18× 18 bit fast array multipliers, that
can also be configured as two 9× 9 bit multipliers, see Fig. 1.16. Since there
are 35 rows the number of multipliers is 35 for the 18× 18 bit type or 70 of
the 9×9 bit multiplier type. Figure 1.14 presents the overall device floorplan.

Routing Resources

All 16 LEs in a LAB share the same reset and clock signals. Each LE has a
fan-out of 48 for fast local connection to neighboring LABs. The next level
of routing are the R4 and C4 fast row and column local connections that
allow wires to reach LABs at a distance of ±4 LABs, or 3 LABs and one
embedded multiplier or M4K memory block. The longest connection available

24 1. Introduction

(a)

(b)

Fig. 1.15. Cyclone II resources: (a) logic array block structure (b) M4K memory
block interface (c© 2005 Altera [21]).

are R24 and C16 wires that allows 24 rows or 16 column LAB, respectively,
to build connections that span basically the entire chip. It is also possible to
use any combination of row and column connections, in case the source and
destination LAB are not only in different rows but also in different columns.
As we will see in the next section the delay in these connections varies widely
and the synthesis tool tries always to place logic as close together as possible
to minimize the interconnection delay. A 32 bit adder, for instance, would
be best placed in two LABs in two rows one above the other, see Fig. 1.20,
p. 33.

1.4 Design Implementation 25

(a)

(b)

Fig. 1.16. Embedded multiplier (a) Architecture (b) LAB interface (c© 2005 Altera
[21]).

Timing Estimates

Altera’s Quartus II software calculates various timing data, such as the
Registered Performance, setup/hold time (tsu, th) and non-registered com-
bination delay (tpd). For a full description of all timing parameters, re-
fer to the Timing Analysis Settings under EDA Tools Settings in the
Assignments menu. To achieve optimal performance, it is necessary to un-
derstand how the software physically implements the design. It is useful,
therefore, to produce a rough estimate of the solution and then determine
how the design may be improved.

26 1. Introduction

Example 1.2: Speed of an 32-bit Adder
Assume one is required to implement a 32-bit adder and estimate the design’s
maximum speed. The adder can be implemented in two LABs, each using
the fast-carry chain. A rough first estimate can be done using the carry-in to
carry-out delay, which is 71 ps for Cyclone II speed grade 6. An upper bound
for the maximum performance would then be 32 × 71 × 10−12 = 2.272 ns or
440 MHz. But in the actual implementation additional delays occur: first the
interconnect delay from the previous register to the first full adder gives an
additional delay of 0.511 ns. Next the first carry tcgen must be generated,
requiring about 0.414 ns. With the group of eight LEs each and in between
the LAB we see from the floorplan that stronger drivers are used, requiring
an additional 75-88 ps. Finally at the end of the carry chain the full sum
bit needs to be computed (about 410 ps) and the setup time for the output
register (84 ps) needs to be taken into account. The results are then stored
in the LE register. The following table summarizes these timing data:

LE register clock-to-output delay tco = 223 ps
Interconnect delay tic = 511 ps
Data-in to carry-out delay tcgen = 414 ps
Carry-in to carry-out delay 27× tcico =27× 71 ps =1917 ps
8 bit LAB group carry-out delay 2× tcico8LAB=2× 159 ps = 318 ps
Same column carry out delay tsamecolumn = 146 ps
LE look-up table delay tLUT = 410 ps
LE register setup time tsu = 84 ps

Total = 4,022 ps
The estimated delay is 4.02 ns, or a rate of 248.63 MHz. The design is expected
to use about 32 LEs for the adder and an additional 2×32 to store the input
data in the registers (see also Exercise 1.7, p. 43). 1.2

If the two LABs used can not be placed in the same column next to
each other then an additional delay would occur. If the signal comes directly
from the I/O pins much longer delays have to be expected. For a 32 bit
adder with data coming from the I/O pins the Quartus II Timing Analyzer
Tool reports a propagation delay of 8.944 ns, much larger than the registered
performance when the data comes directly from the register next to the design
under test. Datasheets [21, Chap. 5] usually report the best performance that
is achieved if I/O data of the design are placed in registers close to the design
unit under test. Multiplier and block M4K (but not the adder) have additional
I/O registers to enable maximum speed, see Fig. 1.16. The additional I/O
registers are usually not counted in the LE resource estimates, since it is
assumed that the previous processing unit uses a output register for all data.
This may not always be the case and we have therefore put the additional
register needed for the adder design in parentheses. Table 1.9 reports some
typical data measured under these assumptions. If we compare this measured
data with the delay given in the data book [21, Chap. 5] we notice that for
some blocks Quartus II limits the upper frequency to a specific bound less
than the delay in the data book. This is a conservative and more-secure
estimate – the design may in fact run error free at a slightly higher speed.

1.4 Design Implementation 27

Table 1.9. Some typical Registered Performance and resource data for the Cy-
clone II EP2C35F672C6.

Design LE M4K Multiplier Registered
memory blocks Performance
blocks 9× 9 bit MHz

16 bit adder 16(+32) − − 369
32 bit adder 32(+64) − − 248
64 bit adder 64(+128) − − 151
ROM 29 × 8 − 1 − 260
RAM 29 × 8 − 1 − 230
9× 9 bit multiplier − − 1 260
18× 18 bit multiplier − − 2 260

Power Dissipation

The power consumption of an FPGA can be a critical design constraint,
especially for mobile applications. Using 3.3V or even lower-voltage process
technology devices is recommended in this case. The Cyclone II family for
instance is produced in a 1.2 V, 90-nm, low-k-dielectric process from the
Taiwan ASIC foundry TSMC, but I/O interface voltages of 3.3 V, 2.5V, 1.8V
and 1.5V are also supported. To estimate the power dissipation of the Altera
device EP2C35, two main sources must be considered, namely:

1) Static power dissipation, Istandby ≈ 66mA for the EP2C35F672C6
2) Dynamic (logic, multiplier, RAM, PLL, clocks, I/O) power dissipation,
Iactive

The first parameter is not design dependent, and also the standby power in
CMOS technology is generally small. The active current depends mainly on
the clock frequency and the number of LEs or other resources in use. Altera
provides an EXCEL work sheet, called PowerPlay Early Power Estimator,
to get an idea about the power consumption (e.g., battery life) and possible
cooling requirements in an early project phase.

For LE the dynamic power dissipation is estimated according to the pro-
portional relation

P ≈ IdynamicVcc = K × fmax ×N × τLEVcc, (1.1)

where K is a constant, fmax is the operating frequency in MHz, N is the total
number of logic cells used in the device, and τLE is the average percentage
of logic cells toggling at each clock (typically 12.5%). Table 1.10 shows the
results for power estimation when all resource of the EP2C35F672C6 are in
use and a system clock of 100 MHz is applied. For less resource usage or lower
system clock the data in (1.1) can be adjusted. If, for instance, a system clock
is reduced from 100 MHz to 10 MHz then the power would be reduced to

28 1. Introduction

Table 1.10. Power consumption estimation for the Cyclone II EP2C35F672C6.

Parameter Units Toggle Power
rate (%) mW

Pstatic 85
LEs 33216 @ 100 MHz 33216 12.5% 572
M4K block memory 105 50% 37
18× 18 bit multiplier 35 12.5% 28
I/O cells (3.3V,24 mA) 475 12.5% 473
PLL 4 30
Clock network 33831 215

Total 1440

85 + 1355/10 = 220.5mW, and the static power consumption would now be
account for 38%.

Although the PowerPlay estimation is a useful tool in a project planing
phase, it has its limitations in accuracy because the designer has to specify
the toggle rate. There are cases when it become more complicated, such as
for instance in frequency synthesis design examples, see Fig. 1.17. While the
block RAM estimation with a 50% toggle may be accurate, the toggle rate of
the LEs in the accumulator part is more difficult to determine, since the LSBs
will toggle at a much higher frequency than the MSBs, since the accumulators
produce a triangular output function. A more-accurate power estimation can
be made using Altera’s PowerPlay Power Analyzer Tool available from the
Processing menu. The Analyzer allows us to read in toggle data computed
from the simulation output. The simulator produces a “Signal Activity File”
that can be selected as the input file for the Analyzer. Table 1.11 shows a
comparison between the power estimation and the power analysis.

Table 1.11. Power consumption for the design shown in Fig. 1.17 for a Cyclone II
EP2C35F672C6.

Parameter Estimation Analysis
12.5% toggle rate toggle rate measured

power/mW power/mW

Static 79.91 80.02
Dynamic 5.09 6.68
I/O 50.60 83.47

Total 135.60 170.17

1.4 Design Implementation 29

We notice a discrepancy of 20% between estimation and analysis. The
analysis however requires a complete design including a testbench, while the
estimation may be done at an early phase in the project.

The following case study should be used as a detailed scheme for the
examples and self-study problems in subsequent chapters.

1.4.3 Case Study: Frequency Synthesizer

The design objective in the following case study is to implement a classical
frequency synthesizer based on the Philips PM5190 model (circa 1979, see
Fig. 1.17). The synthesizer consists of a 32-bit accumulator, with the eight
most significant bits (MSBs) wired to a SINE-ROM lookup table (LUT)
to produce the desired output waveform. A graphical solution, using Altera’s
Quartus II software, is shown in Fig. 1.18, and can be found on the CD-ROM
as book3e/vhdl/fun_graf.bdf. The equivalent HDL text file fun_text.vhd
and fun_text.v implement the design using component instantiation. In
the following we walk through all steps that are usually performed when
implementing a design using Quartus II:

1) Compilation of the design
2) Design results and floor plan
3) Simulation of the design
4) A performance evaluation

8 x 74LS283

4 x VA

4 x VA

4 x VA

4 x VA

4 x VA

4 x VA

4 x VA

4 x VA

6 x FF

6 x FF

6 x FF

3 x P8234

10 x FF

12 x FF

10 x FF

6 x 74LS174

2 x FF

6 x FF

6 x FF

256x8

SIN ROM

2 x FF

6 x FF

2 x 74LS175

2 x FF

6 x FF

2 x 74LS175

To

DAC

I/O expander Phase accumulator

Frequency

value

Fig. 1.17. PM5190 frequency synthesizer.

30 1. Introduction

Fig. 1.18. Graphical design of the frequency synthesizer.

Design Compilation

To check and compile the file, start the Quartus II Software and select
File→Open Project or launch File→New Project Wizard if you do not
have a project file yet. In the project wizard specify the project directory you
would like to use, and the project name and top-level design as fun_text.
Then press Next and specify the HDL file you would like to add, in our case
fun_text.vhd. Press Next again and then select the device EP2C35F672C6
from the Cyclone II family and press Finish. If you use the project file from
the CD the file fun_text.qsf will already have the correct file and device
specification. Now select File→Open to load the HDL file. The VHDL de-
sign7 reads as follows:

-- A 32-bit function generator using accumulator and ROM

LIBRARY lpm;
USE lpm.lpm_components.ALL;

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
USE ieee.std_logic_arith.ALL;

ENTITY fun_text IS
GENERIC (WIDTH : INTEGER := 32); -- Bit width
PORT (M : IN STD_LOGIC_VECTOR(WIDTH-1 DOWNTO 0);

sin, acc : OUT STD_LOGIC_VECTOR(7 DOWNTO 0);
clk : IN STD_LOGIC);

END fun_text;

ARCHITECTURE fpga OF fun_text IS

7 The equivalent Verilog code fun text.v for this example can be found in Ap-
pendix A on page 664. Synthesis results are shown in Appendix B on page 731.

1.4 Design Implementation 31

SIGNAL s, acc32 : STD_LOGIC_VECTOR(WIDTH-1 DOWNTO 0);
SIGNAL msbs : STD_LOGIC_VECTOR(7 DOWNTO 0);

-- Auxiliary vectors
BEGIN

add1: lpm_add_sub -- Add M to acc32
GENERIC MAP (LPM_WIDTH => WIDTH,

LPM_REPRESENTATION => "SIGNED",
LPM_DIRECTION => "ADD",
LPM_PIPELINE => 0)

PORT MAP (dataa => M,
datab => acc32,
result => s);

reg1: lpm_ff -- Save accu
GENERIC MAP (LPM_WIDTH => WIDTH)
PORT MAP (data => s,

q => acc32,
clock => clk);

select1: PROCESS (acc32)
VARIABLE i : INTEGER;

BEGIN
FOR i IN 7 DOWNTO 0 LOOP
msbs(i) <= acc32(31-7+i);

END LOOP;
END PROCESS select1;

acc <= msbs;

rom1: lpm_rom
GENERIC MAP (LPM_WIDTH => 8,

LPM_WIDTHAD => 8,
LPM_FILE => "sine.mif")

PORT MAP (address => msbs,
inclock => clk,
outclock => clk,
q => sin);

END fpga;

The object LIBRARY, found early in the code, contains predefined modules
and definitions. The ENTITY block specifies the I/O ports of the device and
generic variables. Using component instantiation, three blocks (see labels
add1, reg1, rom1) are called as subroutines. The select1 PROCESS con-

32 1. Introduction

struct is used to select the eight MSBs to address the ROM. Now start the
compiler tool (it has a little factory symbol) that can be found under the
Processing menu. A window similar to the one shown in Fig. 1.19 pops
up. You can now see the four steps envolved in the compilation, namely:
Analysis & Synthesis, Fitter, Assembler and Timing Analyzer. Each
of these steps has four small buttons. The first arrow to the right starts the
processing, the second “equal-sign with a pen” is used for the assignments,
the third is used to display the report files, and the last button starts an addi-
tional function, such as the hierarchy of the project, timing closure floorplan,
programmer, or timing summary. To optimize the design for speed, click on
the assignment symbol (equal-sign with a pen) in the Analysis & Synthesis
step in the compiler window. A new window pops up that allows you to specify
the Optimization Technique as Speed, Balanced or Area. Select the op-
tion Speed, and leave the other synthesis options unchanged. To set the target
speed of the design click on the assignment button of the Timing Analyzer
section and set the Default required fmax to 260 MHz. Note that you
can also find all the assignments also under EDA Tools Settings under the
Assignmentmenu. Next, start the Analysis & Synthesis by clicking on the
right arrow in the compiler window or with <Ctrl+K> or by selecting Start
Analysis & Synthesis in the Start item in the Processing menu. The
compiler checks for basic syntax errors and produces a report file that lists
resource estimation for the design. After the syntax check is successful, com-
pilation can be started by pressing the large Start button in the lower left
corner of the compiler tool window, or by pressing <Ctrl+L>. If all compiler
steps were successfully completed, the design is fully implemented. Press the
Report button in the compiler window to get a flow summary report that
should show 32 LEs and 2048 memory bits use. Check the memory initial-
ization file sine.mif, containing the sine table in offset binary form. This
file was generated using the program sine3e.exe included on the CD-ROM
under book3e/util. Figure 1.19 summarizes all the processing steps of the
compilation, as shown in the Quartus II compiler window.

Floor Planing

The design results can be verified by clicking on the 4. button (i.e., Timing
Closure Floorplan or opening the Tool→Chip Editor) to get a more-
detailed view of the chip layout. The Chip Editor view is shown in Fig. 1.20.
Use the Zoom in button (i.e., the ± magnifying glass) to produce the screen
shown in Fig. 1.20. Zoom in to the area where the LAB and an M4K are
highlighted in a different color. You should then see the two LABs used
by the accumulation highlighted in blue and the M4K block highlighted in
green. In addition several I/O cell are also highlighted in brown. Click on the
Critical Path Setting8 button and use the slider to select graph display.
8 Note, as with all MS Window programs, just move your mouse over a button

(no need to click on the button) and its name/function will be displayed.

1.4 Design Implementation 33

Fig. 1.19. Compilation steps in Quartus II.

You should then see in the Chip Editor a blue line that shows the worst-
case path running from the first to the last bit of the accumulator. Now click
on the Bird’s Eye View button on the left menu buttons and an additional
window will pop up. Now select the Coordinate option, i.e., the last entry
in the Main Window options. You may also try out the connection display.
First select for instance the M4K block and then press the button Generate
Fan-In Connections or Generate Fan-Out Connections several times and
more and more connections will be displayed.

Simulation

To simulate, open the Simulator Tool under the Processing menu. Under
simulation mode you can select between Functional, Timing and Timing
using fast Timing Model. The Functional simulation requires the func-

Fig. 1.20. Floorplan of the frequency synthesizer design.

34 1. Introduction

Fig. 1.21. VHDL simulation of frequency synthesizer design.

tional netlist to be generate first; this takes additional time, but is much
faster than the full compilation of the design. The Timing simulation re-
quires that you first make a full compile of the design as described in the
previous section. You should then click the Open button and the waveform
window will pop up. Notice also that 24 new buttons on the left have been
added. Move your mouse (without clicking) over the buttons to become fa-
miliar with their name and function. If you have copied the waveform file
fun_text.vwf from the CD into the project directory you will see a simu-
lation with timing loaded. If you start with an empty waveform Quartus II
helps you to assemble a waveform file. Double click the space under the Name
section to insert a node or bus. Click the Node Finder button and select in
the Node Finder window as Filter the entry Pins: all. Now press List
and all I/O pins are listed. Note that the I/O pins are available with both
functional and timing simulation, but internal signals may not all be avail-
able in the netlist generated. Now select all bus signals, i.e., acc, clk, M, and
sin, and press the single arrow to the right button. Now the four signals
should be listed in the Selected Nodes window. If you selected only one
bus signal repeat the selection by pressing the arrow with the other signals
too. After all four signals are listed in the right window, press OK. Now the
signal should be listed in the waveform window. Sort the signal according to
Fig. 1.21, i.e., list first input control signals like clk followed by input data
signal(s) M. In the last place in the list put the output data (acc and sin).
To move a signal make sure that the arrow is selected from the left menu
buttons. Then select the signal you would like to move and hold down the
mouse button while moving the signal. When all signals are arranged cor-
rectly we can start defining the input signals. Select first the clk signal and
then press the clock symbol from the left menu buttons. As the period select
1/260MHz = 3.846ns. Next set M = 715 827 883 (M = 232/6), so that the
period of the synthesizer is six clock cycles long. After we have specified the
input signals we are ready to simulate. The default simulation time is always
1μs. You can change the default value by selecting End Time under the Edit
menu. You may set it to about 60 ns to display the first 15 clock cycles. You
may want to start with a functional simulation first and then proceed with

1.4 Design Implementation 35

the timing simulation. Select Functional Simulation and do not forget to
generate the functional netlist first. You can then press the Start button
in the Simulator Tool window. You should see the waveforms without de-
lays, i.e., the output signals should change exactly at the same time samples
that the clock has a rising edge. You can then proceed with the timing sim-
ulation. Remember to conduct a full compile first if you have not done so
already. Then press the Start button in the Simulator Tool window and
you should see a waveform result similar to Fig. 1.21 that shows a simulation
with delay. Notice that now the output signals no longer change exactly at
the rising edge and that the signals also need some time to settle down, i.e.,
become stable. Make sure that the period is of length 6, both in the accu
as well in the sin signal. Notice that the ROM has been coded in binary
offset (i.e., zero = 128). This is a typical coding used in D/A converters and
is used in the D/A converter of the Cyclone II DSP prototype board. When
complete, change the frequency so that a period of eight cycles occurs, i.e.,
(M = 232/8), and repeat the simulation.

Performance Analysis

To initiate a performance analysis, select the Timing Analyzer Tool under
the Processingmenu. Usually the Registered Performance is the most im-
portant measurement. For a combination circuit (only) the propagation delay
tpd should be monitored. You can change the goals in the EDA Tools Setting
under the Assignment menu. Note that it not sufficient to set the synthesis
options to Speed; if you do not specify a requested Default Required fmax
the synthesis results will most likely not reach the best performance that can
be achieved with the device.

In order to display timing data a full compile of the design has to be done
first. The Registered Performance is then displayed using a speed meter,
while the other timing data like tpd are shown in table form. The result
for Registered Performance should be similar to that shown in Fig. 1.22.
You can also list the worst-case path. Select 1 in Number of path to list
and press the List Paths button. The path is shown as information in the
message window. Pressing the plus sign, expand the information to see the
full path detail. The path information of each node includes interconnect
delay, cell delay, the LAB cell location with x and y coordinates, and the
local signal name. You can verify this data using the Chip Editor described
in the previous “Floor Planning” section.
This concludes the case study of the frequency synthesizer.

1.4.4 Design with Intellectual Property Cores

Although FPGAs are known for their capability to support rapid prototyp-
ing, this only applies if the HDL design is already available and sufficiently

36 1. Introduction

Fig. 1.22. Register performance of frequency synthesizer design.

tested. A complex block like a PCI bus interface, a pipelined FFT, an FIR
filter, or a μP may take weeks or even months in development time. One
option that allows us to essentially shorten the development time is available
with the use of a so-called intellectual property (IP) core. These are predevel-
oped (larger) blocks, where typical standard blocks like numeric controlled
oscillators (NCO), FIR filters, FFTs, or microprocessors are available from
FPGA vendors directly, while more-specialized blocks (e.g., AES, DES, or
JPEG codec, a floating-point library, or I2C bus or ethernet interfaces) are
available from third-party vendors. On a much smaller scale we have already
used IP blocks. The library of parameterize modules (LPM) blocks we used in
the example and fun_text designs are parameterized cores, where we could
select, for instance, bitwidth and pipelining that allow fast design develop-
ment. We can use the LPM blocks and configure a pipelined multiplier or
divider or we can specify to use memory blocks as CAM, RAM, ROM or
FIFO. While this LPM blocks are free in the Quartus II package the larger
more-sophisticated blocks may have a high price tag. But as long as the block
meets your design requirement it is most often more cost effective to use one
of these predefined IP blocks.

Let us now have a quick look at different types of IP blocks and discuss
the advantages and disadvantages of each type [22, 23, 24]. Typically IP cores
are divided into three main forms, as described below.

Soft Core

A soft core is a behavioral description of a component that needs to be synthe-
sized with FPGA vendor tools. The block is typically provided in a hardware
description language (HDL) like VHDL or Verilog, which allows easy mod-
ification by the user, or even new features to be added or deleted before

1.4 Design Implementation 37

synthesis for a specific vendor or device. On the downside the IP block may
also require more work to meet the desired size/speed/power requirements.
Very few of the blocks provided by FPGA vendors are available in this form,
like the Nios microprocessor from Altera or the PICO blaze microprocessor
by Xilinx. IP protection for the FPGA vendor is difficult to achieve since
the block is provided as synthesizable HDL and can quite easily be used
with a competing FPGA tool/device set or a cell-based ASIC. The price of
third-party FPGA blocks provided in HDL is usually much higher than the
moderate pricing of the parameterized core discussed next.

Parameterized Core

A parameterized or firm core is a structural description of a component. The
parameters of the design can be changed before synthesis, but the HDL is
usually not available. The majority of cores provided by Altera and Xilinx
come in this type of core. They allow certain flexibility, but prohibit the
use of the core with other FPGA vendors or ASIC foundries and therefore
offers better IP protection for the FPGA vendors than soft cores. Examples
of parameterized cores available from Altera and Xilinx include an NCO, FIR
filter compiler, FFT (parallel and serial) and embedded processors, e.g., Nios
II from Altera. Another advantage of parameterized cores is that usually a
resource (LE, multiplier, block RAMs) is available that is most often correct
within a few percent, which allows a fast design space exploration in terms
of size/speed/power requirements even before synthesis. Testbenches in HDL
(for ModelSim simulator) that allow cycle-accurate modeling as well as C or
MatLab scripts that allow behavior-accurate modeling are also standard for
parameterized cores. Code generation usually only takes a few seconds. Later
in this section we will study an NCO parameterized core and continue this
in later chapters (Chap. 3 on FIR filter and Chap. 6 on FFTs).

Hard Core

A hard core (fixed netlist core) is a physical description, provided in any of a
variety of physical layout formats like EDIF. The cores are usually optimized
for a specific device (family), when hard realtime constrains are required, like
for instance a PCI bus interface. The parameters of the design are fixed, like
a 16-bit 256-point FFT, but a behavior HDL description allows simulation
and integration in a larger project. Most third-party IP cores from FPGA
vendors and several free FFT cores from Xilinx use this core type. Since the
layout is fixed, the timing and resource data provided are precise and do not
depend on synthesis results. But the downside is that a parameter change is
not possible, so if the FFT should have 12- or 24-bit input data the 16-bit
256-point FFT block can not be used.

38 1. Introduction

IP Core Comparison and Challenges

If we now compare the different IP block types we have to choose between
design flexibility (soft core) and fast results and reliability of data (hard core).
Soft cores are flexible, e.g., change of system parameters or device/process
technology is easy, but may have longer debug time. Hard cores are verified in
silicon. Hard cores reduce development, test, and debug time but no VHDL
code is available to look at. A parameterized core is most often the best
compromise between flexibility and reliability of the generated core.

There are however two major challenges with current IP block technol-
ogy, which are pricing of a block and, closely related, IP protection. Because
the cores are reusable vendor pricing has to rely on the number of units of
IP blocks the customer will use. This is a problem known for many years in
patent rights and most often requires long licence agreements and high penal-
ties in case of customer misuse. FPGA-vendor-provided parameterized blocks
(as well as the design tool) have very moderate pricing since the vendor will
profit if a customer uses the IP block in many devices and then usually has
to buy the devices from this single source. This is different with third-party
IP block providers that do not have this second stream of income. Here the
licence agreement, especially for a soft core, has be drafted very carefully.

For the protection of parameterized cores FPGA vendor use FlexLM-
based keys to enable/disable single IP core generation. Evaluation of the
parameterized cores is possible down to hardware verification by using time-
limited programming files or requiring a permanent connection between the
host PC and board via a JTAG cable, allowing you to program devices and
verify your design in hardware before purchasing a licence. For instance, Al-
tera’s OpenCore evaluation feature allows you to simulate the behavior of
an IP core function within the targeted system, verify the functionality of
the design, and evaluate its size and speed quickly and easily. When you are
completely satisfied with the IP core function and you would like to take the
design into production, you can purchase a licence that allows you to gener-
ate non-time-limited programming files. The Quartus software automatically
downloads the latest IP cores from Altera’s website. Many third-party IP
providers also support the OpenCore evaluation flow but you have to contact
the IP provider directly in order to enable the OpenCore feature.

The protection of soft cores is more difficult. Modification of the HDL
to make them very hard to read, or embedding watermarks in the high-
level design by minimizing the extra hardware have been suggested [24]. The
watermark should be robust, i.e., a single bit change in the watermark should
not be possible without corrupting the authentication of the owner.

IP Core-Based NCO Design

Finally we evaluate the design process of an IP block in an example using the
case study from the last section, but this time our design will use Altera’s

1.4 Design Implementation 39

(a) (b)

Fig. 1.23. IP design of NCO (a) Library element selection. (b) IP toolbench.

NCO core generator. The NCO compiler generates numerically controlled os-
cillators (NCOs) optimized for Altera devices. You can use the IP toolbench
interface to implement a variety of NCO architectures, including ROM-based,
CORDIC-based, and multiplier-based options. The MegaWizard also includes
time- and frequency-domain graphs that dynamically display the functional-
ity of the NCO based on the parameter settings. For a simple evaluation we
use the graphic design entry. Open a new project and BDF file, then double
click in the empty space in the BDF window and press the button MegaWizard
Plug-In Manager. In the first step select the NCO block in the MegaWizard
Plug-In Manager window, see Fig. 1.23a. The NCO block can by found in
the Signal Generation group under the DSP cores. We then select the de-
sired output format (AHDL, VHDL, or Verilog) and specify our working
directory. Then the IP toolbench pops up (see Fig. 1.23b) and we have ac-
cess to documentation and can start with step 1, i.e., the parametrization
of the block. Since we want to reproduce the function generator from the
last section, we select a 32-bit accumulator, 8 bit output precision, and the
use of a large block of RAM in the parameter window, see Fig. 1.24. As ex-
pected for an 8 bit output we get about 50 dB sidelope suppression, as can be
seen in the Frequency Domain Response plot in the lower part of the NCO
window. Phase dithering will make the noise more equally distributed, but
will require twice as many LEs. In the Implementation window we select
Single Output since we only require one sine but no cosine output as is
typical for I/Q receivers, see Chap. 7. The Resource Estimation provides
as data 72 LEs, 2048 memory bits and one M4K block. After we are satisfied
with our parameter selection we then proceed to step 2 to specify if we want

40 1. Introduction

Fig. 1.24. IP parametrization of NCO core according to the data from the case
study in the previous section.

to generate behavior HDL code, which speeds up simulation time. Since our
block is small we deselect this option and use the full HDL generated code
directly. We can now continue with step 3, i.e., Generate on the Toolbench.
The listing in Table 1.12 gives an overview of the generated files.

We see that not only are the VHDL and Verilog files generated along with
their component file, but MatLab (bit accurate) and ModelTech (cycle ac-
curate) testbenches are also provided to enable an easy verification path. We
decide to instantiate our block in the graphical design and connect the input
and outputs, see Fig. 1.25a. We notice that the block (outside that we have
asked for) has some additional useful control signal, i.e., reset, clken, and
data_ready, whose function is self-explanatory. All control signals are high
active. We start with a Functional simulation first and then proceed (after
a full compile) with the Timing simulation. With the full compile data avail-
able we can now compare the actual resource requirement with the estimate.
The memory requirement and block RAM predictions were correct, but for
the LEs with 86LEs (actual) to 72LEs (estimated) we observe a 17% error
margin. Using the same value M = 715 827 883 as in our function generator
(see Fig. 1.21, p. 34) we get a period of 6 in the output signal, as shown in
Fig. 1.25b. We may notice a small problem with the IP block, since the output
is a signed value, but our D/A converter expects unsigned (or more precisely
binary offset) numbers. In a soft core we would be able to change the HDL
code of the design, but in the parameterized core we do not have this option.

1.4 Design Implementation 41

Table 1.12. IP file generation for the NCO core.

File Description

nco.bsf Quartus II symbol file for the IP core function varia-
tion

nco.cmp
VHDL component declaration for the IP core function
variation

nco.html IP core function report file that lists all generated files

nco.inc
AHDL include declaration file for the IP core function
variation

nco.vec Quartus vector file

nco.vhd
VHDL top-level description of the custom IP core
function

nco.vho VHDL IP functional simulation model

nco_bb.v Verilog HDL black-box file for the IP core function
variation

nco_inst.vhd VHDL sample instantiation file

nco_model.m MatLab M-file describing a MatLab bit-accurate
model

nco_sin.hex Intel Hex-format ROM initialization file

nco_st.v Generated NCO synthesizable netlist

nco_tb.m MatLab Testbench

nco_tb.v Verilog testbench

nco_tb.vhd VHDL testbench

nco_vho_msim.tcl
ModelSim TCL Script to run the VHDL IP functional
simulation model in the ModelSim simulation soft-
ware

nco_wave.do ModelSim waveform file

But we can solved this problem by attaching an adder with constant 128 to
the output that make it an offset binary representation. The offset binary is
not a parameter we could select in the block, and we encounter extra design
effort. This is a typical experience with the parameterized cores – the core
provide a 90% or more reduction in design time, but sometimes small extra
design effort is necessary to meet the exact project requirements.

Exercises

Note: If you have no prior experience with the Quartus II software, refer
to the case study found in Sect. 1.4.3, p. 29. If not otherwise noted use the

42 1. Introduction

(a)

(b)

Fig. 1.25. Testbench for NCO IP design (a) Instantiation of IP block in graphical
design. (b) Verification via simulation.

EP2C35F672C6 from the Cyclone II family for the Quartus II synthesis eval-
uations.

1.1: Use only two input NAND gates to implement a full adder:
(a) s = a⊕ b⊕ cin

(Note: ⊕=XOR)
(b) cout = a× b + cin × (a + b)
(Note: +=OR; ×=AND)
(c) Show that the two-input NAND is universal by implementing NOT, AND, and
OR with NAND gates.
(d) Repeat (a)-(c) for the two input NOR gate.
(e) Repeat (a)-(c) for the two input multiplexer f = xs′ + ys.

1.2: (a) Compile the HDL file example using the Quartus II compiler (see p. 15)
in the Functional mode. Start first the Simulation Tool under the Processing
menu. Then select Functional as Simulation mode and press the button Generate
Functional Simulation Netlist.
(b) Simulate the design using the file example.vwf.
(c) Compile the HDL file example using the Quartus II compiler with Timing.
Perform a full compilation using the Compiler Tool under the Processing menu.
Then select Timing as Simulation mode option in the the Simulation Tool.
(d) Simulate the design using the file example.vwf.
(e) Turn on the option Check Outputs in the simulator window and compare the
functional and timing netlists.

1.3: (a) Generate a waveform file for clk,a,b,op1 that approximates that shown
in Fig. 1.26.

Exercises 43

Fig. 1.26. Waveform file for Example 1.1 on p. 15.

(b) Conduct a simulation using the HDL code example.
(c) Explain the algebraic relation between a,b,op1 and sum,d.

1.4: (a) Compile the HDL file fun_text with the synthesis optimization technique
set to Speed, Balanced or Area that can be found in the Analysis & Synthesis
Settings under EDA Tool Settings in the Assignments menu.
(b) Evaluate Registered Performance and the LE’s utilization of the designs from
(a). Explain the results.

1.5: (a) Compile the HDL file fun_text with the synthesis Optimization
Technique set to Speed that can be found in the Analysis & Synthesis Settings
under EDA Tool Settings in the Assignments menu.
For the period of the clock signal

(I) 20 ns,
(II) 10 ns,
(III) 5 ns,
(IV) 3 ns,
use the waveform file fun_text.vwf and enable
(b) Setup and hold time violation detection,
(c) Glitch detection, and
(d)Check outputs.
Select one option after the other and not all three at the same time. For Check
outputs first make a Functional Simulation, then select Check outputs, and
perform then Timing simulation. Under Waveform Comparison Setting select sin
for comparison and deselect all other signals. Set the Default comparison timing
tolerance to <<default>>, i.e., halve the clock period or the falling edge of clock.
Click on the Report button in the Simulation Tool window if there are violation.

1.6: (a) Open the file fun_text.vwf and start the simulation.
(b) Select File→Open to open the file sine.mif and the file will be displayed in
the Memory editor. Now select File→Save As and select Save as type: (*.hex)
to store the file in Intel HEX format as sine.hex.
(c) Change the fun_text HDL file so that it uses the Intel HEX file sine.hex for
the ROM table, and verify the correct results through a simulation.

1.7: (a) Design a 32-bit adder using the LPM_ADD_SUB macro with the Quartus II
software.
(b) Measure the Registered Performance and compare the result with the data
from Example 1.2 (p. 26).

44 1. Introduction

sl
clk
rst

8−bit
register

8−bit shift
register

sl

q[7]

q[7:0]y q qd d

sl

(a)

s

4:1 MUX

rst
clk
s

idp[7:0]

id[23:16]
id[15:8]
id[7:0]

q q q q[7:0]
Firstsi

instance

(b)

id[23:16]

idp[7:0]

id[15:8]
id[7:0]

d3

d0
d1
d2

d3

d0
d1
d2

d3

d0
d1
d2

d3

d0
d1
d2

Last

(c)

Fig. 1.27. PREP benchmark 1. (a) Single design. (b) Multiple instantiation. (c)
Testbench to check the function.

1.8: (a) Design the PREP benchmark 1, as shown in Fig. 1.27a with the Quar-
tus II software. PREP benchmark no. 1 is a data path circuit with a 4-to-1 8-bit
multiplexer, an 8-bit register, followed by a shift register that is controlled by a
shift/load input sl. For sl=1 the contents of the register is cyclic rotated by one
bit, i.e., q(k) = q(k−1), 1 ≤ k ≤ 7 and q(0) <= q(7). The reset rst for all flip-flops
is an asynchronous reset and the 8-bit registers are positive-edge triggered via clk,
see the simulation in Fig. 1.27c for the function test.
(b)Determine the Registered Performance and the used resources (LEs, multi-
pliers, and M2Ks/M4Ks) for a single copy. Compile the HDL file with the synthe-
sis Optimization Technique set to Speed, Balanced or Area; this can be found
in the Analysis & Synthesis Settings section under EDA Tool Settings in the
Assignments menu. Which synthesis options are optimal in terms of size and
Registered Performance?
Select one of the following devices:
(b1) EP2C35F672C6 from the Cyclone II family
(b2) EPF10K70RC240-4 from the Flex 10K family
(b3) EPM7128LC84-7 from the MAX7000S family
(c) Design the multiple instantiation for benchmark 5 as shown in Fig. 1.27b.
(d) Determine the Registered Performance and the used resources (LEs, multipli-
ers, and M2Ks/M4Ks) for the design with the maximum number of instantiations
of PREP benchmark 1. Use the optimal synthesis option you found in (b) for the
following devices:
(d1) EP2C35F672C6 from the Cyclone II family
(d2) EPF10K70RC240-4 from the Flex 10K family
(d3) EPM7128LC84-7 from the MAX7000S family

Exercises 45

data1[7:0]

data2[7:0]

Last
instance

SecondFirst

data0[7:0]

ldcomp
sel

rst
clk

(b)

2:1 MUX

y

0

1

sel

data0[7:0]

clk
rst

ldpre

a

b
a=b?

Register
Counter

data2[7:0]

data1[7:0]

Compare
Register

d

ld
q

ldcomp

(a)

d

ldpre

q data2[7:0]

data1[7:0]

data0[7:0]

data2[7:0]

data1[7:0]

data0[7:0]

data2[7:0]

data1[7:0]

data0[7:0]

q

ld

d

ld

(c)

Fig. 1.28. PREP benchmark 2. (a) Single design. (b) Multiple instantiation. (c)
Testbench to check the function.

1.9: (a) Design the PREP benchmark 2, as shown in Fig. 1.28a with the Quar-
tus II software. PREP benchmark no. 2 is a counter circuit where 2 registers are
loaded with start and stop values of the counter. The design has two 8-bit regis-
ter and a counter with asynchronous reset rst and synchronous load enable signal
(ld, ldpre and ldcomp) and positive-edge triggered flip-flops via clk. The counter
can be loaded through a 2:1 multiplexer (controlled by the sel input) directly from
the data1 input or from the register that holds data2 values. The load signal of
the counter is enabled by the equal condition that compares the counter value data
with the stored values in the ldcomp register. Try to match the simulation in Fig.
1.28c for the function test. Note there is a mismatch between the original PREP
definition and the actual implementation: We can not satisfy, that the counter start
counting after reset, because all register are set to zero and ld will be true all the
time, forcing counter to zero. Also in the simulation testbench signal value have
been reduced that simulation fits in a 1 μs time frame.
(b) Determine the Registered Performance and the used resources (LEs, multi-
pliers, and M2Ks/M4Ks) for a single copy. Compile the HDL file with the synthe-
sis Optimization Technique set to Speed, Balanced or Area; this can be found
in the Analysis & Synthesis Settings section under EDA Tool Settings in the
Assignments menu. Which synthesis options are optimal in terms of size and
Registered Performance?
Select one of the following devices:
(b1) EP2C35F672C6 from the Cyclone II family
(b2) EPF10K70RC240-4 from the Flex 10K family
(b3) EPM7128LC84-7 from the MAX7000S family

46 1. Introduction

(c) Design the multiple instantiation for benchmark 2 as shown in Fig. 1.28b.
(d) Determine the Registered Performance and the used resources (LEs, multipli-
ers, and M2Ks/M4Ks) for the design with the maximum number of instantiations
of PREP benchmark 2. Use the optimal synthesis option you found in (b) for the
following devices:
(d1) EP2C35F672C6 from the Cyclone II family
(d2) EPF10K70RC240-4 from the Flex 10K family
(d3) EPM7128LC84-7 from the MAX7000S family

1.10: Use the Quartus II software and write two different codes using the structural
(use only one or two input basic gates, i.e., NOT, AND, and OR) and behavioral HDL
styles for:
(a) A 2:1 multiplexer
(b) An XNOR gate
(c) A half-adder
(d) A 2:4 decoder (demultiplexer)
Note for VHDL designs: use the a_74xx Altera SSI component for the structural
design files. Because a component identifier can not start with a number Altera has
added the a_ in front of each 74 series component. In order to find the names
and data types for input and output ports you need to check the library file
libraries\vhdl\altera\MAXPLUS2.VHD in the Altera installation path. You will
find that the library uses STD_LOGIC data type and the names for the ports are a_1,
a_2, and a_3 (if needed).
(e) Verify the function of the design(s) via
(e1) A Functional simulation.
(e2) The RTL viewer that can be found under the Netlist Viewers in the Tools
menu.

1.11: Use the Quartus II software language templates and compile the HDL designs
for:
(a) A tri-state buffer
(b) A flip-flop with all control signals
(c) A counter
(d) A state machine with asynchronous reset
Open a new HDL text file and then select Insert Template from the Edit menu.
(e) Verify the function of the design(s) via
(e1) A Functional simulation
(e2) The RTL viewer that can be found under the Netlist Viewers in the Tools
menu

1.12: Use the search option in Quartus II software help to study HDL designs for:
(a) The 14 counters, see search→implementing sequential logic
(b) A manually specifying state assignments, Search→enumsmch
(c) A latch, Search→latchinf
(d) A one’s counter, Search→proc→Using Process Statements
(e) A implementing CAM, RAM & ROM, Search→ram256x8
(f) A implementing a user-defined component, Search→reg24
(g) Implementing registers with clr, load, and preset, Search→reginf
(h) A state machine, Search→state_machine→Implementing...
Open a new project and HDL text file. Then Copy/Paste the HDL code, save and
compile the code. Note that in VHDL you need to add the STD LOGIC 1164 IEEE
library so that the code runs error free.
(i) Verify the function of the design via
(i1) A Functional simulation

Exercises 47

(i2) The RTL viewer that can be found under the Netlist Viewers in the Tools
menu

1.13: Determine if the following VHDL identifiers are valid (true) or invalid (false).
(a) VHSIC (b) h333 (c) A_B_C
(d) XyZ (e) N#3 (f) My-name
(g) BEGIN (h) A B (i) ENTITI

1.14: Determine if the following VHDL string literals are valid (true) or invalid
(false).
(a) B"11_00" (b) O"5678" (c) O"0_1_2"
(d) X"5678" (e) 16#FfF# (f) 10#007#
(g) 5#12345# (h) 2#0001_1111_# (i) 2#00_00#

1.15: Determine the number of bits necessary to represent the following integer
numbers.
(a) INTEGER RANGE 10 TO 20;
(b) INTEGER RANGE -2**6 TO 2**4-1;
(c) INTEGER RANGE -10 TO -5;
(d) INTEGER RANGE -2 TO 15;
Note that ** stand for the power-of symbol.

1.16: Determine the error lines (Y/N) in the VHDL code below and explain what
is wrong, or give correct code.

VHDL code Error Give reason
(Y/N)

LIBRARY ieee; /* Using predefined packages */
ENTITY error is

PORTS (x: in BIT; c: in BIT;
Z1: out INTEGER; z2 : out BIT);

END error

ARCHITECTURE error OF has IS
SIGNAL s ; w : BIT;
BEGIN

w := c;
Z1 <= x;
P1: PROCESS (x)

BEGIN
IF c=’1’ THEN

x <= z2;

END PROCESS P0;
END OF has;

1.17: Determine the error lines (Y/N) in the VHDL code below, and explain what
is wrong, or give correct code.

48 1. Introduction

VHDL code Error Give reason
(Y/N)

LIBRARY ieee; /* Using predefined packages */

USE altera.std_logic_1164.ALL;
ENTITY srhiftreg IS

GENERIC (WIDTH : POSITIVE = 4);

PORT(clk, din : IN STD_LOGIC;
dout : OUT STD_LOGIC);

END;
ARCHITECTURE a OF shiftreg IS

COMPONENT d_ff

PORT (clock, d : IN std_logic;
q : OUT std_logic);

END d_ff;

SIGNAL b : logic_vector(0 TO witdh-1);
BEGIN

d1: d_ff PORT MAP (clk, b(0), din);

g1: FOR j IN 1 TO width-1 GENERATE
d2: d-ff
PORT MAP(clk => clock,

din => b(j-1),
q => b(j));

END GENERATE d2;

dout <= b(width);
END a;

1.18: Determine for the following process statements
(a) the synthesized circuit and label I/O ports
(b) the cost of the design assuming a cost 1 per adder/subtractor
(c) the critical (i.e., worst-case) path of the circuit for each process. Assume a delay
of 1 for an adder or subtractor.

-- QUIZ VHDL2graph for DSP with FPGAs
LIBRARY ieee; USE ieee.std_logic_1164.ALL;
USE ieee.std_logic_arith.ALL;
USE ieee.std_logic_unsigned.ALL;

ENTITY qv2g IS
PORT(a, b, c, d : IN std_logic_vector(3 DOWNTO 0);

u, v, w, x, y, z : OUT std_logic_vector(3 DOWNTO 0));
END;
ARCHITECTURE a OF qv2g IS BEGIN

P0: PROCESS(a, b, c, d)
BEGIN

u <= a + b - c + d;
END PROCESS;

P1: PROCESS(a, b, c, d)
BEGIN

v <= (a + b) - (c - d);
END PROCESS;

P2: PROCESS(a, b, c)

Exercises 49

BEGIN
w <= a + b + c;
x <= a - b - c;

END PROCESS;

P3: PROCESS(a, b, c)
VARIABLE t1 : std_logic_vector(3 DOWNTO 0);
BEGIN

t1 := b + c;
y <= a + t1;
z <= a - t1;

END PROCESS;
END;

(a)

(b)

Fig. 1.29. STD LOGIC VECTOR package testbench. (a) HDL code. (b) Functional
simulation result.

1.19: (a) Develop a functions for zero- and sign extension called
zero_ext(ARG,SIZE) and sign_ext(ARG,SIZE) for the STD_LOGIC_VECTOR
data type.
(b) Develop “∗” and “/” function overloading to implement multiply and divide
operation for the STD_LOGIC_VECTOR data type.
(c) Use the testbench shown in Fig. 1.29 to verify the correct functionality.

50 1. Introduction

(a)

(b)

Fig. 1.30. STD LOGIC VECTOR shift library testbench. (a) HDL code. (b) Functional
simulation result.

1.20: (a) Design a function library for the STD_LOGIC_VECTOR data type that im-
plement the following operation (defined in VHDL only for the bit_vector data
type):
(a) srl (b) sra (c) sll (d) sla
(e) Use the testbench shown in Fig. 1.30 to verify the correct functionality. Note
the high impedance values Z that are part of the STD_LOGIC_VECTOR data type but
are not included in the bit_vector data type. A left/right shift by a negative value
should be replaced by the appropriate right/left shift of the positive amount inside
your function.

1.21: Determine for the following PROCESS statements the synthesized circuit type
(combinational, latch, D-flip-flop, or T-flip-flop) and the function of a, b, and c,
i.e., clock, a-synchronous set (AS) or reset (AR) or synchronous set (SS) or reset
(SR). Use the table below to specify your classification.

LIBRARY ieee; USE ieee.std_logic_1164.ALL;

ENTITY quiz IS
PORT(a, b, c : IN std_logic;

Exercises 51

d : IN std_logic_vector(0 TO 5);
q : BUFFER std_logic_vector(0 TO 5));

END quiz;
ARCHITECTURE a OF quiz IS BEGIN
P0: PROCESS (a)
BEGIN

IF rising_edge(a) THEN
q(0) <= d(0);

END IF;
END PROCESS P0;

P1: PROCESS (a, d)
BEGIN

IF a= ’1’ THEN q(1) <= d(1);
ELSE q(1) <= ’1’;

END IF;
END PROCESS P1;

P2: PROCESS (a, b, c, d)
BEGIN

IF a = ’1’ THEN q(2) <= ’0’;
ELSE IF rising_edge(b) THEN

IF c = ’1’ THEN q(2) <= ’1’;
ELSE q(2) <= d(1);

END IF;
END IF;

END IF;
END PROCESS P2;

P3: PROCESS (a, b, d)
BEGIN

IF a = ’1’ THEN q(3) <= ’1’;
ELSE IF rising_edge(b) THEN

IF c = ’1’ THEN q(3) <= ’0’;
ELSE q(3) <= not q(3);

END IF;
END IF;

END IF;
END PROCESS P3;

P4: PROCESS (a, d)
BEGIN

IF a = ’1’ THEN q(4) <= d(4);
END IF;

END PROCESS P4;

P5: PROCESS (a, b, d)
BEGIN

IF rising_edge(a) THEN
IF b = ’1’ THEN q(5) <= ’0’;

ELSE q(5) <= d(5);
END IF;

END IF;

52 1. Introduction

END PROCESS P5;

Process Circuit CLK AS AR SS SR
type

P0
P1
P2
P3
P4
P5
P6

1.22: Given the following MatLab instructions,

a=-1:2:5
b=[ones(1,2),zeros(1,2)]
c=a*a’
d=a.*a
e=a’*a
f=conv(a,b)
g=fft(b)
h=ifft(fft(a).*fft(b))

determine a-h.

2. Computer Arithmetic

2.1 Introduction

In computer arithmetic two fundamental design principles are of great impor-
tance: number representation and the implementation of algebraic operations
[25, 26, 27, 28, 29]. We will first discuss possible number representations,
(e.g., fixed-point or floating-point), then basic operations like adder and mul-
tiplier, and finally efficient implementation of more difficult operations such
as square roots, and the computation of trigonometric functions using the
CORDIC algorithm or MAC calls.

FPGAs allow a wide variety of computer arithmetic implementations for
the desired digital signal processing algorithms, because of the physical bit-
level programming architecture. This contrasts with the programmable dig-
ital signal processors (PDSPs), with the fixed multiply accumulator core.
Careful choice of the bit width in FPGA design can result in substantial
savings.

Fractional
Logarithmic

RNS

18 Bit
Splash II
format

32−bit IEEE
64−bit IEEE

unconventionalconventional conventional unconventional

Floating−pointFixed−point

Two’s complement

NUMBER SYSTEMS

Signed magnitude
Diminished by one

Unsigned integer Signed digit

One’s complement

Fig. 2.1. Survey of number representations.

54 2. Computer Arithmetic

2.2 Number Representation

Deciding whether fixed- or floating-point is more appropriate for the problem
must be done carefully, preferably at an early phase in the project. In general,
it can be assumed that fixed-point implementations have higher speed and
lower cost, while floating-point has higher dynamic range and no need for
scaling, which may be attractive for more complicated algorithms. Figure 2.1
is a survey of conventional and less conventional fixed- and floating-point
number representations. Both systems are covered by a number of standards
but may, if desired, be implemented in a proprietary form.

2.2.1 Fixed-Point Numbers

We will first review the fixed-point number systems shown in Fig. 2.1. Table
2.1 shows the 3-bit coding for the 5 different integer representations.

Unsigned Integer

Let X be an N -bit unsigned binary number. Then the range is [0, 2N − 1]
and the representation is given by:

X =
N−1∑

n=0

xn2n, (2.1)

where xn is the nth binary digit of X (i.e., xn ∈ [0, 1]). The digit x0 is called
the least significant bit (LSB) and has a relative weight of unity. The digit
xN−1 is the most significant bit (MSB) and has a relative weight of 2N−1.

Signed-Magnitude (SM)

In signed-magnitude systems the magnitude and the sign are represented
separately. The first bit xN−1 (i.e., the MSB) represents the sign and the
remaining N − 1 bits the magnitude. The representation becomes:

X =

{ ∑N−2
n=0 xn2n X≥ 0

−∑N−2
n=0 xn2n X< 0.

(2.2)

The range of this representation is [−(2N−1−1), 2N−1−1]. The advantage of
the signed-magnitude representation is simplified prevention of overflows, but
the disadvantage is that addition must be split depending on which operand
is larger.

2.2 Number Representation 55

Two’s Complement (2C)

An N -bit two’s complement representation of a signed integer, over the range
[−2N−1, 2N−1 − 1], is given by:

X =

{ ∑N−2
n=0 xn2n X≥ 0

−2N−1 +
∑N−2

n=0 xn2n X< 0.
(2.3)

The two’s complement (2C) system is by far the most popular signed
numbering system in DSP use today. This is because it is possible to add
several signed numbers, and as long as the final sum is in the N -bit range,
we can ignore any overflow in the arithmetic. For instance, if we add two
3-bit numbers as follows

310 ←→ 0 1 12C

−210 ←→ 1 1 02C

110 ←→ 1. 0 0 12C

the overflow can be ignored. All computations are modulo 2N . It follows that
it is possible to have intermediate values that can not be correctly repre-
sented, but if the final value is valid then the result is correct. For instance,
if we add the 3-bit numbers 2+2−3, we would have an intermediate value of
010 + 010 = 1002C, i.e., −410, but the result 100− 011 = 100 + 101 = 0012C

is correct.
Two’s complement numbers can also be used to implement modulo 2N

arithmetic without any change in the arithmetic. This is what we will use in
Chap. 5 to design CIC filters.

One’s Complement (1C)

An N -bit one’s complement system (1C) can represent integers over the range
[−(2N−1 + 1), 2N−1 − 1]. In a one’s complement code, positive and negative
numbers have bit-by-bit complement representations including for the sign
bit. There is, in fact a redundant representation of zero (see Table 2.1). The
representation of signed numbers in a 1C system is formally given by:

X =

{ ∑N−2
n=0 xn2n X≥ 0

−2N−1 + 1 +
∑N−2

n=0 xn2n X< 0.
(2.4)

For example, the three-bit 1C representation of the numbers −3 to 3 is shown
in the third column of Table 2.1.

From the following simple example

56 2. Computer Arithmetic

310 ←→ 0 1 11C

−210 ←→ 1 0 11C

110 ←→ 1. 0 0 01C

Carry ↪→ → → 11C

110 ←→ 0 0 11C

we remember that in one’s complement a “carry wrap-around” addition is
needed. A carry occurring at the MSB must be added to the LSB to get the
correct final result.

The system can, however, efficiently be used to implement modulo 2N −1
arithmetic without correction. As a result, one’s complement has specialized
value in implementing selected DSP algorithms (e.g., Mersenne transforms
over the integer ring 2N − 1; see Chap. 7).

Diminished One System (D1)

A diminished one (D1) system is a biased system. The positive numbers are,
compared with the 2C, diminished by 1. The range for (N+1)-bit D1 numbers
is [−2N−1, 2N−1], excluding 0. The coding rule for a D1 system is defined as
follows:

X =

⎧
⎨

⎩

∑N−2
n=0 xn2n + 1 X> 0

−2N−1 +
∑N−2

n=0 xn2n X< 0
2N X= 0.

(2.5)

From adding two D1 numbers

310 ←→ 0 1 0D1

−210 ←→ 1 1 0D1

110 ←→ 1. 0 0 0D1

Carry ↪→ ×− 1 → 0D1

110 ←→ 0 0 0D1

we see that, for D1 a complement and add of the inverted carry must be
computed.

D1 numbers can efficiently be used to implement modulo 2N+1 arithmetic
without any change in the arithmetic. This fact will be used in Chap. 7 to
implement Fermat NTTs in the ring 2N + 1.

Bias System

The biased number system has a bias for all numbers. The bias value is
usually in the middle of the binary range, i.e., bias = 2N−1 − 1. For a 3-bit
system, for instance the bias would be 23−1 − 1 = 3. The range for N -bit
biased numbers is [−2N−1 − 1, 2N−1]. Zero is coded as the bias. The coding
rule for a biased system is defined as follows:

2.2 Number Representation 57

Table 2.1. Conventional coding of signed binary numbers.

Binary 2C 1C D1 SM Bias

011 3 3 4 3 0
010 2 2 3 2 −1
001 1 1 2 1 −2
000 0 0 1 0 −3
111 −1 −0 −1 −3 4
110 −2 −1 −2 −2 3
101 −3 −2 −3 −1 2
100 −4 −3 −4 −0 1

1000 − − 0 − −

X =
N−1∑

n=0

xn2n − bias. (2.6)

From adding two biased numbers

310 ←→ 1 1 0bias

+(−210) ←→ 0 0 1bias

410 ←→ 1 1 1bias

−bias ←→ 0 1 1bias

110 ←→ 1 0 0bias

we see that, for each addition the bias needs to be subtracted, while for every
subtraction the bias needs to be added.

Bias numbers can efficiently be used to simplify comparison of numbers.
This fact will be used in Sect. 2.2.3 (p. 71) for coding the exponent of floating-
point numbers.

2.2.2 Unconventional Fixed-Point Numbers

In the following we continue the review of number systems according to
Fig. 2.1 (p. 53). The unconventional fixed-point number systems discussed in
the following are not as often used as for instance the 2C system, but can
yield significant improvements for particular applications or problems.

Signed Digit Numbers (SD)

The signed digit (SD) system differs from the traditional binary systems
presented in the previous section in the fact that it is ternary valued (i.e.,
digits have the value {0, 1,−1}, where −1 is sometimes denoted as 1).

SD numbers have proven to be useful in carry-free adders or multipliers
with less complexity, because the effort in multiplication can typically be

58 2. Computer Arithmetic

estimated through the number of nonzero elements, which can be reduced
by using SD numbers. Statistically, half the digits in the two’s complement
coding of a number are zero. For an SD code, the density of zeros increases
to two thirds as the following example shows:

Example 2.1: SD Coding
Consider coding the decimal number 15 = 11112 using a 5-bit binary and an
SD code. Their representations are as follows:
1) 1510 = 1610 − 110 = 10001SD

2) 1510 = 1610 − 210 + 110 = 10011SD

3) 1510 = 1610 − 410 + 310 = 10111SD

4) etc.
2.1

The SD representation, unlike a 2C code, is nonunique. We call a canonic
signed digit system (CSD) the system with the minimum number of non-zero
elements. The following algorithm can be used to produce a classical CSD
code.

Algorithm 2.2: Classical CSD Coding

Starting with the LSB substitute all 1 sequences equal or larger than two,
with 10 . . . 01.

This CSD coding is the basis for the C utility program csd3e.exe1 on the
CD-ROM. This classical CSD code is also unique and an additional property
is that the resulting representation has at least one zero between two digits,
which may have values 1, 1, or 0.

Example 2.3: Classical CSD Code
Consider again coding the decimal number 15 using a 5-bit binary and a CSD
code. Their representations are: 11112 = 10001CSD. We notice from a compar-
ison with the SD coding from Example 2.1 that only the first representation
is a CSD code.
As another example consider the coding of

2710 = 110112 = 11101SD = 100101CSD. (2.7)

We note that, although the first substitution of 011 → 101 does not reduce
the complexity, it produces a length-three strike, and the complexity reduces
from three additions to two subtractions. 2.3

On the other hand, the classical CSD coding does not always produce the
optimal CSD coding in terms of hardware complexity, because in Algorithm
2.2 additions are also substituted by subtractions, when there should be no
such substitution. For instance 0112 is coded as 101CSD, and if this coding is
used to produce a constant multiplier the subtraction will need a full-adder
1 You need to copy the program to your harddrive first because the program writes

out the results in a file csd.dat; you can not start it from the CD directly.

2.2 Number Representation 59

instead of a half-adder for the LSB. The CSD coding given in the following
will produce a CSD coding with the minimum number of nonzero terms, but
also with the minimum number of subtractions.

Algorithm 2.4: Optimal CSD Coding

1) Starting with the LSB substitute all 1 sequences larger than two with
10 . . .01. Also substitute 1011 with 1101.

2) Starting with the MSB, substitute 101 with 011.

Fractional (CSD) Coding

Many DSP algorithms require the implementation of fractional numbers.
Think for instance of trigonometric coefficient like sine or cosine coefficients.
Implementation via integer numbers only would result in a large quantiza-
tion error. The question then is, can we also use the CSD coding to reduce
the implementation effort of a fractional constant coefficient? The answer is
yes, but we need to be a little careful with the ordering of the operands. In
VHDL the analysis of an expression is usually done from left to right, which
means an expression like y = 7 × x/8 is implemented as y = (7 × x)/8, and
equivalently the expression y = x/8×7 is implemented as y = (x/8)×7. The
latter term unfortunately will produce a large quantization error, since the
evaluation of x/8 is in fact synthesized by the tool2 as a right shift by three
bits, so we will lose the lower three bits of our input x in the computation
that follows. Let us demonstrate this with a small HDL design example.

Example 2.5: Fractional CSD Coding
Consider coding the fractional decimal number 0.875 = 7/8 using a fractional
4-bit binary and CSD code. The 7 can be implemented more efficiently in CSD
as 7 = 8−1 and we want to determine the quantization error of the following
four mathematically equivalent representations, which give different synthesis
results:

y0 = 7× x/8 = (7× x)/8

y1 = x/8× 7 = (x/8)× 7

y2 = x/2 + x/4 + x/8 = ((x/2) + (x/4)) + (x/8)

y3 = x− x/8 = x− (x/8)

Using parenthesis in the above equations it is shown how the HDL tool will
group the expressions. Multiply and divide have a higher priority than add
and subtract and the evaluation is from left to right. The VHDL code3 of the
constant coefficient fractional multiplier is shown next.

ENTITY cmul7p8 IS ------> Interface
PORT (x : IN INTEGER RANGE -2**4 TO 2**4-1;

2 Most HDL tools only support dividing by power-of-2 values, which can be de-
signed using a shifter, see Sect. 2.5, p. 91.

3 The equivalent Verilog code cmul7p8.v for this example can be found in Ap-
pendix A on page 665. Synthesis results are shown in Appendix B on page 731.

60 2. Computer Arithmetic

Fig. 2.2. Simulation results for fraction CSD coding.

y0, y1, y2, y3 : OUT INTEGER RANGE -2**4 TO 2**4-1);
END;

ARCHITECTURE fpga OF cmul7p8 IS
BEGIN

y0 <= 7 * x / 8;
y1 <= x / 8 * 7;
y2 <= x/2 + x/4 + x/8;
y3 <= x - x/8;

END fpga;

The design uses 48LEs and no embedded multiplier. A Registered Perfor-
mance can not be measured since there is no register-to-register path. The
simulated results of the fractional constant coefficient multiplier is shown
in Fig. 2.2. Note the large quantization error for y1. Looking at the results
for the input value x = 4, we can also see that the CSD coding y3 shows
rounding to the next largest integer, while y0 and y2 show rounding to the
next smallest integer. For negative value (e.g., −4) we see that the CSD
coding y3 shows rounding to the next smallest (i.e., −4) integer, while y0
and y2 show rounding to the next largest (i.e., −3) integer. 2.5

Carry-Free Adder

The SD number representation can also be used to implement a carry-free
adder. Tagaki et al. [30] introduced the scheme presented in Table 2.2. Here,
uk is the interim sum and ck is the carry of the kth bit (i.e., to be added to
uk+1).

Example 2.6: Carry-Free Addition
The addition of 29 to −9 in the SD system is performed below.

2.2 Number Representation 61

Table 2.2. Adding carry-free binaries using the SD representation.

xkyk 00 01 01 01 01 11 11
xk−1yk−1 − neither at least neither at least − −

is 1 one is 1 is 1 one is 1

ck 0 1 0 0 1 1 1
uk 0 1 1 1 1 0 0

1 0 0 1 0 1 xk

+ 0 1 1 1 1 1 yk

0 0 0 1 1 1 ck

1 1 1 0 1 0 uk

1 1 0 1 0 0 sk

2.6

However, due to the ternary logic burden, implementing Table 2.2 with
FPGAs requires four-input operands for the ck and uk. This translates into
a 28 × 4-bit LUT when implementing Table 2.2.

Multiplier Adder Graph (MAG)

We have seen that the cost of multiplication is a direct function of the number
of nonzero elements ak in A. The CSD system minimizes this cost. The CSD is
also the basis for the Booth multiplier [25] discussed in Exercise 2.2 (p. 154).

It can, however, sometimes be more efficient first to factor the coefficient
into several factors, and realize the individual factors in an optimal CSD sense
[31, 32, 33, 34]. Figure 2.3 illustrates this option for the coefficient 93. The
direct binary and CSD codes are given by 9310 = 10111012 = 1100101CSD,

+

93x[n]

93x[n]

93

x[n]

x[n]

4

+

− +

−

32

313

2

++x[n]

x[n]

64

32

93x[n]

93x[n]

Fig. 2.3. Two realizations for the constant factor 93.

62 2. Computer Arithmetic

with the 2C requiring four adders, and the CSD requiring three adders. The
coefficient 93 can also be represented as 93 = 3×31, which requires one adder
for each factor (see Fig. 2.3). The complexity for the factor number is reduced
to two. There are several ways to combine these different factors. The number
of adders required is often referred to as the cost of the constant coefficient
multiplier. Figure 2.4, suggested by Dempster et al. [33], shows all possible
configurations for one to four adders. Using this graph, all coefficients with a
cost ranging from one to four can be synthesized with ki ∈ N0, according to:

Cost 1: 1) A = 2k0(2k1 ± 2k2)
Cost 2: 1) A = 2k0(2k1 ± 2k2 ± 2k3)

2) A = 2k0(2k1 ± 2k2)(2k3 ± 2k4)
Cost 3: 1) A = 2k0(2k1 ± 2k2 ± 2k3 ± 2k4)

...

Using this technique, Table 2.3 shows the optimal coding for all 8-bit
integers having a cost between zero and three [5].

Logarithmic Number System (LNS)

The logarithmic number system (LNS) [35, 36] is analogous to the floating-
point system with a fixed mantissa and a fractional exponent. In the LNS, a
number x is represented as:

X = ±r±ex , (2.8)

where r is the system’s radix, and ex is the LNS exponent. The LNS format
consists of a sign-bit for the number and exponent, and an exponent assigned
I integer bits and F fractional bits of precision. The format in graphical form
is shown below:

Sign Exponent Exponent integer Exponent fractional
SX sign Se bits I bits F

The LNS, like floating-point, carries a nonuniform precision. Small values of
x are highly resolved, while large values of x are more coarsely resolved as
the following example shows.

Example 2.7: LNS Coding
Consider a radix-2 9-bit LNS word with two sign-bits, three bits for inte-
ger precision and four-bit fractional precision. How can, for instance, the
LNS coding 00 011.0010 be translated into the real number system? The
two sign bits indicate that the whole number and the exponent are positive.
The integer part is 3 and the fractional part 2−3 = 1/8. The real num-

ber representation is therefore 23+1/8 = 23.125 = 8.724. We find also that
−23.125 = 10 011.0010 and 2−3.125 = 01 100.1110. Note that the exponent is
represented in fractional two’s complement format. The largest number that
can be represented with this 9-bit LNS format is 28−1/16 ≈ 28 = 256 and

2.2 Number Representation 63

Cost1 2 3 4

1

1

1

2

3

2

4

5

6

7

1
2

3

4
5

6

7

8

9
10
11
12

13
14
15

16

17
18
19
20
21
22
23
24

25
26
27

28

29

30

31

32

Fig. 2.4. Possible cost one to four graphs. Each node is either an adder or subtractor
and each edge is associated with a power-of-two factor (c©1995 IEEE [33]).

the smallest is 2−8 = 0.0039, as graphically interpreted in Fig. 2.5a. In con-
trast, an 8-bit plus sign fixed-point number has a maximal positive value of
28 − 1 = 255, and the smallest nonzero positive value is one. A comparison
of the two 9-bit systems is shown in Fig. 2.5b. 2.7

The historical attraction of the LNS lies in its ability to efficiently imple-
ment multiplication, division, square-rooting, or squaring. For example, the
product C = A×B, where A, B, and C are LNS words, is given by:

C = rea × reb = rea+eb = rec . (2.9)

That is, the exponent of the LNS product is simply the sum of the two expo-
nents. Division and high-order operations immediately follow. Unfortunately,

64 2. Computer Arithmetic

Table 2.3. Cost C (i.e., number of adders) for all 8-bit numbers using the multiplier
adder graph (MAG) technique.

C Coefficient

0 1, 2, 4, 8, 16, 32, 64, 128, 256

1
3, 5, 6, 7, 9, 10, 12, 14, 15, 17, 18, 20, 24, 28, 30, 31, 33, 34, 36, 40, 48,
56, 60, 62, 63, 65, 66, 68, 72, 80, 96, 112, 120, 124, 126, 127, 129, 130,
132, 136, 144, 160, 192, 224, 240, 248, 252, 254, 255

2

11, 13, 19, 21, 22, 23, 25, 26, 27, 29, 35, 37, 38, 39, 41, 42, 44, 46, 47,
49, 50, 52, 54, 55, 57, 58, 59, 61, 67, 69, 70, 71, 73, 74, 76, 78, 79, 81,
82, 84, 88, 92, 94, 95, 97, 98, 100, 104, 108, 110, 111, 113, 114, 116, 118,
119, 121, 122, 123, 125, 131, 133, 134, 135, 137, 138, 140, 142, 143, 145,
146, 148, 152, 156, 158, 159, 161, 162, 164, 168, 176, 184, 188, 190, 191,
193, 194, 196, 200, 208, 216, 220, 222, 223, 225, 226, 228, 232, 236, 238,
239, 241, 242, 244, 246, 247, 249, 250, 251, 253

3

43, 45, 51, 53, 75, 77, 83, 85, 86, 87, 89, 90, 91, 93, 99, 101, 102, 103,
105, 106, 107, 109, 115, 117, 139, 141, 147, 149, 150, 151, 153, 154, 155,
157, 163, 165, 166, 167, 169, 170, 172, 174, 175, 177, 178, 180, 182, 183,
185, 186, 187, 189, 195, 197, 198, 199, 201, 202, 204, 206, 207, 209, 210,
212, 214, 215, 217, 218, 219, 221, 227, 229, 230, 231, 233, 234, 235, 237,
243, 245

4 171, 173, 179, 181, 203, 205, 211, 213

Minimum costs through factorization

2

45 = 5× 9, 51 = 3 × 17, 75 = 5 × 15, 85 = 5 × 17, 90 = 2 × 9 × 5, 93 =
3×31, 99 = 3×33, 102 = 2×3×17, 105 = 7×15, 150 = 2×5×15, 153 =
9 × 17, 155 = 5 × 31, 165 = 5 × 33, 170 = 2 × 5 × 17, 180 = 4 × 5 ×
9, 186 = 2× 3× 31, 189 = 7× 9, 195 = 3× 65, 198 = 2× 3× 33, 204 =
4× 3× 17, 210 = 2× 7× 15, 217 = 7× 31, 231 = 7× 33

3
171 = 3 × 57, 173 = 8 + 165, 179 = 51 + 128, 181 = 1 + 180, 211 =
1 + 210, 213 = 3× 71, 205 = 5× 41, 203 = 7× 29

addition or subtraction are by comparison far more complex. Addition and
subtraction operations are based on the following procedure, where it is as-
sumed that A > B.

C = A+B = 2ea + 2eb = 2ea
(
1 + 2eb−ea

)
︸ ︷︷ ︸

Φ+(Δ)

= 2ec . (2.10)

Solving for the exponent ec, one obtains ec = ea + φ+(Δ) where Δ =
eb − ea and φ+(u) = log2(Φ

+(Δ)). For subtraction a similar table, φ−(u) =
log2(Φ−(Δ)), Φ−(Δ) = (1 − 2eb−ea), can be used. Such tables have been
historically used for rational numbers as described in “Logarithmorm Com-
pletus,” Jurij Vega (1754–1802), containing tables computed by Zech. As a
result, the term log2(1− 2u) is usually referred to as a Zech logarithm.

2.2 Number Representation 65

−5 0 5
−150

−100

−50

0

50

100

150
(a)

Exponent

V
al

ue

S
w

=1
S

w
=−1

0 50 100 150 200
10

−4

10
−2

10
0

(b)

R
es

ol
ut

io
n

Sample no.

fixed point
LNS

Fig. 2.5. LNS processing. (a) Values. (b) Resolution.

LNS arithmetic is performed in the following manner [35]. Let A =
2ea , B = 2eb , C = 2ec , with SA, SB, SC denoting the sign-bit for each word:

Operation Action

Multiply C = A×B ec = ea + eb;SC = SA XOR SB

Divide C = A/B ec = ea − eb;SC = SA XOR SB

Add C = A+B ec =
{
ea + φ+(eb − ea) A ≥ B
eb + φ+(ea − eb) B > A

Subtract C = A−B ec =
{
ea + φ−(eb − ea) A ≥ B
eb + φ−(ea − eb) B > A

Square root C =
√
A ec = ea/2

Square C = A2 ec = 2ea

Methods have been developed to reduce the necessary table size for the
Zech logarithm by using partial tables [35] or using linear interpolation tech-
niques [37]. These techniques are beyond the scope of the discussion presented
here.

Residue Number System (RNS)

The RNS is actually an ancient algebraic system whose history can be traced
back 2000 years. The RNS is an integer arithmetic system in which the prim-
itive operations of addition, subtraction, and multiplication are defined. The
primitive operations are performed concurrently within noncommunicating
small-wordlength channels [38, 39]. An RNS system is defined with respect
to a positive integer basis set {m1,m2, . . . ,mL}, where the ml are all rel-
atively (pairwise) prime. The dynamic range of the resulting system is M,

where M =
∏L

l=1ml. For signed-number applications, the integer value of
X is assumed to be constrained to X ∈ [−M/2,M/2). RNS arithmetic is
defined within a ring isomorphism:

66 2. Computer Arithmetic

ZM
∼= Zm1 × Zm2 × · · · × ZmL , (2.11)

where ZM = Z/(M) corresponds to the ring of integers modulo M , called
the residue class modM . The mapping of an integer X into an RNS L-tuple
X ↔ (x1, x2, . . . , xL) is defined by xl = X mod ml, for l = 1, 2, . . . L. Defining
� to be the algebraic operations +,− or ∗, it follows that, if Z,X, Y ∈ ZM ,
then:

Z = X�Y mod M (2.12)

is isomorphic to Z ↔ (z1, z2, . . . , zL),. Specifically:

X
(m1,m2,...,mL)←−−→ (〈X〉m1 , 〈X〉m2 , . . . , 〈X〉mL)

Y
(m1,m2,...,mL)←−−→ (〈Y 〉m1 , 〈Y 〉m2 , . . . , 〈Y 〉mL)

Z = X�Y (m1,m2,...,mL)←−−→ (〈X�Y 〉m1 ,〈X�Y 〉m2 , . . . ,〈X�Y 〉mL).

As a result, RNS arithmetic is pairwise defined. The L elements of Z =
(X�Y) mod M are computed concurrently within L small-wordlength mod
(ml) channels whose width is bounded by wl =
log2(ml)� bits (typical 4 to
8 bits). In practice, most RNS arithmetic systems use small RAM or ROM
tables to implement the modular mappings zl = xl�yl mod ml.

Example 2.8: RNS Arithmetic
Consider an RNS system based on the relatively prime moduli set {2, 3, 5}
having a dynamic range of M = 2× 3× 5 = 30. Two integers in Z30, say 710

and 410, have RNS representations 7 = (1, 1, 2)RNS and 4 = (0, 1, 4)RNS, re-
spectively. Their sum, difference, and products are 11, 3, and 28, respectively,
which are all within Z30. Their computation is shown below.

7
(2,3,5)←−−→ (1, 1, 2)

+4
(2,3,5)←−−→ +(0, 1, 4)

11
(2,3,5)←−−→ (1, 2, 1)

7
(2,3,5)←−−→ (1, 1, 2)

−4
(2,3,5)←−−→ −(0, 1, 4)

3
(2,3,5)←−−→ (1, 0, 3)

7
(2,3,5)←−−→ (1, 1, 2)

×4
(2,3,5)←−−→ ×(0, 1, 4)

28
(2,3,5)←−−→ (0, 1, 3).

2.8

RNS systems have been built as custom VLSI devices [40], GaAs, and LSI
[39]. It has been shown that, for small wordlengths, the RNS can provide a
significant speed-up using the 24 × 2-bit tables found in Xilinx FPGAs [41].
For larger moduli, the M2K and M4K tables belonging to the Altera FPGAs
are beneficial in designing RNS arithmetic and RNS-to-integer converters.
With the ability to support larger moduli, the design of high-precision high-
speed FPGA systems becomes a practical reality.

A historical barrier to implementing practical RNS systems, until recently,
has been decoding [42]. Implementing RNS-to-integer decoder, division, or

2.2 Number Representation 67

magnitude scaling, requires that data first be converted from an RNS format
to an integer. The commonly referenced RNS-to-integer conversion meth-
ods are called the Chinese remainder theorem (CRT) and the mixed-radix-
conversion (MRC) algorithm [38]. The MRC actually produced the digits of
a weighted number system representation of an integer while the CRT maps
an RNS L-tuple directly to an integer. The CRT is defined below.

X mod M ≡
L−1∑

l=0

m̂l〈m̂−1
l xl〉ml

mod M, (2.13)

where m̂l = M/ml is an integer, and m̂−1
l is the multiplicative inverse of

m̂l mod ml, i.e., m̂lm̂
−1
l ≡ 1 mod ml. Typically, the desired output of an

RNS computation is much less than the maximum dynamic range M . In
such cases, a highly efficient algorithm, called the ε−CRT [43], can be used
to implement a time- and area-efficient RNS to (scaled) integer conversion.

Index Multiplier

There are, in fact, several variations of the RNS. One in common use is based
on the use of index arithmetic [38]. It is similar in some respects to logarithmic
arithmetic. Computation in the index domain is based on the fact that, if all
the moduli are primes, it is known from number theory that there exists a
primitive element, a generator g, such that:

a ≡ gα mod p (2.14)

that generates all elements in the field Zp, excluding zero (denoted Zp/{0}).
There is, in fact, a one-to-one correspondence between the integers a in
Zp/{0} and the exponents α in Zp−1. As a point of terminology, the index
α, with respect to the generator g and integer a, is denoted α = indg(a).

Example 2.9: Index Coding
Consider a prime moduli p = 17; a generator g = 3 will generate the elements
of Zp/{0}. The encoding table is shown below. For notational purposes, the
case a = 0 is denoted by g−∞ = 0.

a 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

ind3(a) −∞ 0 14 1 12 5 15 11 10 2 3 7 13 4 9 6 8

2.9

Multiplication of RNS numbers can be performed as follows:

1) Map a and b into the index domain, i.e., a = gα and b = gβ

68 2. Computer Arithmetic

2) Add the index values modulo p− 1, i.e., ν = (α+ β) mod (p− 1)
3) Map the sum back to the original domain, i.e., n = gν

If the data being processed is in index form, then only exponent addition
mod(p− 1) is required. This is illustrated by the following example.

Example 2.10: Index Multiplication
Consider the prime moduli p = 17, generator g = 3, and the results shown
in Example 2.9. The multiplication of a = 2 and b = 4 proceeds as follows:

(indg(2) + indg(4)) mod 16 = (14 + 12) mod 16 = 10.

From the table in Example 2.9 it is seen that ind3(8) = 10, which corresponds
to the integer 8, which is the expected result. 2.10

Addition in the Index Domain

Most often, DSP algorithms require both multiplication and addition. Index
arithmetic is well suited to multiplication, but addition is no longer trivial.
Technically, addition can be performed by converting index RNS data back
into the RNS where addition is simple to implement. Once the sum is com-
puted the result is mapped back into the index domain. Another approach
is based on a Zech logarithm. The sum of index-coded numbers a and b is
expressed as:

d = a+ b = gδ = gα + gβ = gα
(
1 + gβ−α

)
= gβ

(
1 + gα−β

)
. (2.15)

If we now define the Zech logarithm as

Definition 2.11: Zech Logarithm

Z(n) = indg(1 + gn) ←→ gZ(n) = 1 + gn (2.16)

then we can rewrite (2.15) in the following way:

gδ = gβ × gZ(α−β) ←→ δ = β + Z(α− β). (2.17)

Adding numbers in the index domain, therefore, requires one addition, one
subtraction, and a Zech LUT. The following small example illustrates the
principle of adding 2 + 5 in the index domain.

Example 2.12: Zech Logarithms
A table of Zech logarithms, for a prime moduli 17 and g = 3, is shown below.

n −∞ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Z(n) 0 14 12 3 7 9 15 8 13 −∞ 6 2 10 5 4 1 11

2.2 Number Representation 69

The index values for 2 and 5 are defined in the tables found in Example 2.9
(p. 67). It therefore follows that:

2 + 5 = 314 + 35 = 35(1 + 39) = 35+Z(9) = 311 ≡ 7 mod 17.
2.12

The case where a + b ≡ 0 needs special attention, corresponding to the
case where [44]:

−X ≡ Y mod p ←→ gα+(p−1)/2 ≡ gβ mod p.

That is, the sum is zero if, in the index domain, β = α+(p−1)/2 mod (p−1).
An example follows.

Example 2.13: The addition of 5 and 12 in the original domain is given by

5 + 12 = 35 + 313 = 35(1 + 38) = 35+Z(8) ≡ 3−∞ ≡ 0 mod 17. 2.13

Complex Multiplication using QRNS

Another interesting property of the RNS arises if we process complex data.
This special representation, called QRNS, allows very efficient multiplication,
which we wish to discuss next.

When the real and imaginary components are coded as RNS digits, the
resulting system is called the complex RNS or CRNS. Complex addition in
the CRNS requires that two real adds be performed. Complex RNS (CRNS)
multiplication is defined in terms of four real products, an addition, and a
subtraction. This condition is radically changed when using a variant of the
RNS, called the quadratic RNS, or QRNS. The QRNS is based on known
properties of Gaussian primes of the form p = 4k + 1, where k is a positive
integer. The importance of this choice of moduli is found in the factorization
of the polynomial x2+1 in Zp. The polynomial has two roots, ĵ and −ĵ, where
ĵ and −ĵ are real integers belonging to the residue class Zp. This is in sharp
contrast with the factoring of x2 + 1 over the complex field. Here, the roots
are complex and have the form x1,2 = α± jβ where j =

√−1 is the imaginary
operator. Converting a CRNS number into the QRNS is accomplished by the
transform f : Z

2
p → Z

2
p, defined as follows:

f(a+ jb) = ((a+ ĵb) mod p, (a− ĵb) mod p) = (A,B). (2.18)

In the QRNS, addition and multiplication is realized componentwise, and is
defined as

(a+ ja) + (c+ jd) ↔ (A+ C,B +D) mod p (2.19)
(a+ jb)(c+ jd) ↔ (AC,BD) mod p (2.20)

70 2. Computer Arithmetic

jŷ jŷ

+ M + M

QRNS

CRNS

+ + M

-
M

-

2
-1

()
-1

a b a b

BABA

b b bLUT: b2 LUT: b2 LUT: b2

Fig. 2.6. CRNS ↔ QRNS conversion.

and the square of the absolute value can be computed with

|a+ jb|2 ↔ (A×B) mod p. (2.21)

The inverse mapping from QRNS digits back to the CRNS is defined by:

f−1(A,B) = 2−1(A+B) + j (2ĵ)−1(A−B) mod p. (2.22)

Consider the Gaussian prime p = 13 and the complex product of (a + jb) =
(2+j1), (c+jd) = (3+j2), is (2+j1)× (3+j2) = (4+j7) mod 13. In this case
four real multiplies, a real add, and real subtraction are required to complete
the product.

Example 2.14: QRNS Multiplication
The quadratic equation x2 ≡ (−1) mod 13 has two roots: ĵ = 5 and −ĵ =
−5 ≡ 8 mod 13. The QRNS-coded data become:

(a + jb)= 2 + j↔(2 + 5× 1,2 + 8× 1)=(A,B)=(7, 10) mod 13
(c + jd)=3 + j2↔(3 + 5× 2,3 + 8× 2)=(C, D)=(0, 6) mod 13.

Componentwise multiplication yields (A, B)(C,D) = (7, 10)(0, 6) ≡ (0, 8)
mod 13, requiring only two real multiplies. The inverse mapping to the CRNS
is defined in terms of (2.22), where 2−1 ≡ 7 and (2ĵ)−1 = 10−1 ≡ 4. Solving
the equations for 2x ≡ 1 mod 13 and 10x ≡ 1 mod 13, produces 7 and 4,
respectively. It then follows that

f−1(0, 8) = 7(0 + 8) + j 4(0− 8) mod 13 ≡ 4 + j7 mod 13. �
2.14

Figure 2.6 shows a graphical interpretation of the mapping between CRNS
and QRNS.

2.2 Number Representation 71

2.2.3 Floating-Point Numbers

Floating-point systems were developed to provide high resolution over a large
dynamic range. Floating-point systems can often provide a solution when
fixed-point systems, with their limited dynamic range, fail. Floating-point
systems, however, bring a speed and complexity penalty. Most microprocessor
floating-point systems comply with the published single- or double-precision
IEEE floating-point standard [45, 46], while in FPGA-based systems often
employ custom formats. We will therefore discuss in the following standard
and custom floating-point formats, and in Sect. 2.6 (p. 104) the design of basic
building blocks. Such arithmetic blocks are available from several “intellectual
property” providers, or through special request via e-mail to Uwe.Meyer-
Baese@ieee.org.

A standard floating-point word consists of a sign-bit s, exponent e, and
an unsigned (fractional) normalized mantissa m, arranged as follows:

s Exponent e Unsigned mantissa m

Algebraically, a floating-point word is represented by:

X = (−1)S × 1.m× 2e−bias. (2.23)

Note that this is a signed magnitude format (see p. 57). The “hidden” one in
the mantissa is not present in the binary coding of the floating-point number.
If the exponent is represented with E bits then the bias is selected to be

bias = 2E−1 − 1. (2.24)

To illustrate, let us determine the decimal value 9.25 in a 12-bit custom
floating-point format.

Example 2.15: A (1,6,5) Floating-Point Format
Consider a floating-point representation with a sign bit, E = 6-bit exponent
width, and M = 5-bit for the mantissa (not counting the hidden one). Let
us now determine the representation of 9.2510 in this (1,6,5) floating-point
format. Using (2.24) the bias is

bias = 2E−1 − 1 = 31,

and the mantissa need to be normalized according the 1.m format, i.e.,

9.2510 = 1001.012 = 1. 00101︸ ︷︷ ︸
m

×23.

The biased exponent is therefore represented with

e = 3 + bias = 3410 = 1000102 .

Finally, we can represent 9.2510 in the (1,6,5) floating-point format with

s Exponent e Unsigned mantissa m
0 100010 00101

72 2. Computer Arithmetic

Besides this fixed-point to floating-point conversion we also need the back
conversion from floating-point to integer. So, let us assume the following
floating-point number

s Exponent e Unsigned mantissa m
1 011111 00000

is given and we wish to find the fixed-point representation of this number.
We first notice that the sign bit is one, i.e., it is a negative number. Adding
the hidden one to the mantissa and subtracting the bias from the exponent,
yields

−1.000002 × 231−bias = −1.022
0 = −1.010.

We note that in the floating-point to fixed-point conversion the bias is sub-
tracted from the exponent, while in the fixed-point to floating-point conver-
sion the bias is added to the exponent. 2.15

The IEEE standard 754-1985 for binary floating-point arithmetic [45] also
defines some additional useful special numbers to handle, for instance, over-
flow and underflow. The exponent e = Emax = 1 . . . 12 in combination with
zero mantissa m = 0 is reserved for ∞. Zeros are coded with zero exponent
e = Emin = 0 and zero mantissa m = 0. Note, that due to the signed mag-
nitude representation, plus and minus zero are coded differently. There are
two more special numbers defined in the 754 standard, but these additional
representations are most often not supported in FPGA floating-point arith-
metic. These additional number are denormals and NaN ′s (not a number).
With denormalized numbers we can represent numbers smaller than 2Emin,
by allowing the mantissa to represent numbers without the hidden one, i.e.,
the mantissa can represents numbers smaller than 1.0. The exponent in de-
normals is code with e = Emin = 0, but the mantissa is allowed to be different
from zero. NaNs have proven useful in software systems to reduce the num-
ber of “exceptions” that are called when an invalid operation is performed.
Examples that produce such “quiet” NaNs include:

• Addition or subtraction of two infinities, such as ∞−∞
• Multiplication of zero and infinite, e.g., 0×∞
• Division of zeros or infinities, e.g., 0/0 or ∞/∞
• Square root of negative operand

In the IEEE standard 754-1985 for binary floating-point arithmetic NaNs
are coded with exponent e = Emax = 1 . . . 12 in combination with a nonzero
mantissa m �= 0.

We wish now to compare the fixed-point and floating-point representation
in terms of precision and dynamic range in the following example.

Example 2.16: 12-Bit Floating- and Fixed-point Representations
Suppose we use again a (1,6,5) floating-point format as in the previous ex-
ample. The (absolute) largest number we can represent is:

2.2 Number Representation 73

Table 2.4. Example values in (1,6,5) floating-point format.

(1,6,5) format Decimal Coding

0 000000 00000 +0 2Emin

1 000000 00000 −0 −2Emin

0 011111 00000 +1.0 2bias

1 011111 00000 −1.0 −2bias

0 111111 00000 +∞ 2Emax

1 111111 00000 −∞ −2Emax

±1.111112 × 231 ≈ ±4.2310 × 109.

The (absolutely measured) smallest number (not including denormals) that
can be represented is

±1.02 × 21−bias = ±1.02 × 2−30 ≈ ±9.3110 × 10−10.

Note, that Emax = 1 . . . 12 and Emin = 0 are reserved for zero and infinity in
the floating-point format, and must not be used for general number represen-
tations. Table 2.4 shows some example coding for the (1,6,5) floating-point
format including the special numbers.
For the 12-bit fixed-point format we use one sign bit, 5 integer bits, and 6
fractional bits. The maximum (absolute) values we can represent with this
12-bit fixed-point format are therefore:

±11111.1111112 = ±(16 + 8 + · · · 1

32
+

1

64
)10

= ±(32− 1

64
)10 ≈ ±32.010 .

The (absolutely measured) smallest number that this 12-bit fixed-point for-
mat represents is

±00000.0000012 = ± 1

64 10
= ±0.01562510 .

2.16

From this example we notice the larger dynamic range of the floating-point
representation (4× 109 compared with 32) but also a higher precision of the
fixed-point representation. For instance, 1.0 and 1+1/64 = 1.015625 are code
the same in (1,6,5) floating-point format, but can be distinguished in 12-bit
fixed-point representation.

Although the IEEE standard 754-1985 for binary floating-point arith-
metic [45] is not easy to implement with all its details such as four different
rounding modes, denormals, or NaNs, the early introduction in 1985 of the
standard helped as it has become the most adopted implementation for mi-
croprocessors. The parameters of this IEEE single and double format can
be seen from Table 2.5. Due to the fact that already single-precision 754
standard arithmetic designs will require

74 2. Computer Arithmetic

• a 24× 24 bit multiplier, and
• FPGAs allow a more specific dynamic range design (i.e., exponent bit

width) and precision (mantissa bit width) design

we find that FPGAs design usually do not adopt the 754 standard and define
a special format. Shirazi et al. [47], for instance, have developed a modified
format to implement various algorithms on their custom computing machine
called SPLASH-2, a multiple-FPGA board based on Xilinx XC4010 devices.
They used an 18-bit format so that they can transport two operands over the
36-bit wide system bus of the multiple-FPGA board. The 18-bit format has
a 10-bit mantissa, 7-bit exponent and a sign bit, and can represent a range
of 3.7× 1019.

Table 2.5. IEEE floating-point standard.

Single Double

Word length 32 64
Mantissa 23 52
Exponent 8 11
Bias 127 1023
Range 2128 ≈ 3.8× 1038 21024 ≈ 1.8× 10308

2.3 Binary Adders

A basic binary N -bit adder/subtractor consists of N full-adders (FA). A
full-adder implements the following Boolean equations

sk = xk XOR yk XOR ck (2.25)
= xk ⊕ yk ⊕ ck (2.26)

that define the sum-bit. The carry (out) bit is computed with:

ck+1 = (xk AND yk) OR (xk AND ck) OR (yk AND ck) (2.27)
= (xk × yk) + (xk × ck) + (yk × ck) (2.28)

In the case of a 2C adder, the LSB can be reduced to a half-adder because
the carry input is zero.

The simplest adder structure is called the “ripple carry adder” as shown
in Fig. 2.7a in a bit-serial form. If larger tables are available in the FPGA,
several bits can be grouped together into one LUT, as shown in Fig. 2.7b. For
this “two bit at a time” adder the longest delay comes from the ripple of the
carry through all stages. Attempts have been made to reduce the carry delays
using techniques such as the carry-skip, carry lookahead, conditional sum,

2.3 Binary Adders 75

c[0]FA FA FA FA

s[0]

c[4]

a[0]b[0]b[1]a[1]b[2]a[2]b[3]a[3]

c[1]c[2]c[3]

s[1]s[2]s[3]

(a)

5 x3

b[2]a[2]b[3]a[3]

s[2]s[3]

c[4] c[2]

s[0]

a[0]b[0]b[1]a[1]

s[1]

c[0]
5 x3

(b)
2-bit adder 2-bit adder

LUT 2LUT 2

Fig. 2.7. Two’s complement adders.

or carry-select adders. These techniques can speed up addition and can be
used with older-generation FPGA families (e.g., XC 3000 from Xilinx) since
these devices do not provide internal fast carry logic. Modern families, such
as the Xilinx Spartan-3 or Altera Cyclone II, possess very fast “ripple carry
logic” that is about a magnitude faster than the delay through a regular logic
LUT [1]. Altera uses fast tables (see Fig. 1.13, p. 21), while the Xilinx uses
hardwired decoders for implementing carry logic based on the multiplexer
structure shown in Fig. 2.8, see also Fig. 1.12, p. 19. The presence of the fast-
carry logic in modern FPGA families removes the need to develop hardware
intensive carry look-ahead schemes.

Figure 2.9 summarizes the size and Registered Performance of N -bit
binary adders, if implemented with the lpm_add_sub megafunction compo-
nent. Beside the EP2C35F672C6 from the Cyclone II family (that is build
currently using a 90-nm process technology), we have also included as a ref-
erence the data for mature families. The EP20K200EFC484-2X is from the
APEX20KE family and can be found on the Nios development boards, see
Chap. 9. The APEX20KE family was introduced in 1999 and used a 0.18μm
process technology. The EPF10K70RC240-4 is from the FLEX10K family
and can be found on the UP2 development boards. The FLEX10K family
was introduced in 1995 and used a 0.42μm process technology. Although the
LE cell structure has not changed much over time we can see from the ad-
vance in process technology the improvement in speed. If the operands are

76 2. Computer Arithmetic

Fig. 2.8. XC4000 fast-carry logic (c©1993 Xilinx).

placed in I/O register cells, the delays through the busses of a FPGA are
dominant and performance decreases. If the data are routed from local reg-
isters, performance improves. For this type of design additional LE register
allocation will appear (in the project report file) as increased LE use by a fac-
tor of three or four. However, a synchronous registered larger system would
not consume any additional resources since the data are registered at the per-
vious processing stage. A typical design will achieve a speed between these
two cases. For Flex10K the adder and register are not merged, and 4 × N
LEs are required. LE requirements for the Cyclone II and APEX devices are
3×N for the speed data shown in Fig. 2.9.

2.3.1 Pipelined Adders

Pipelining is extensively used in DSP solutions due to the intrinsic dataflow
regularity of DSP algorithms. Programmable digital signal processor MACs
[6, 15, 16] typically carry at least four pipelined stages. The processor:

1) Decodes the command
2) Loads the operands in registers
3) Performs multiplication and stores the product, and
4) Accumulates the products, all concurrently.

The pipelining principle can be applied to FPGA designs as well, at little
or no additional cost since each logic element contains a flip-flop, which is
otherwise unused, to save routing resources. With pipelining it is possible
to break an arithmetic operation into small primitive operations, save the
carry and the intermediate values in registers, and continue the calculation
in the next clock cycle. Such adders are sometimes called carry save adders4

4 The name carry save adder is also used in the context of a Wallace multiplier,
see Exercise 2.1, p. 154.

2.3 Binary Adders 77

8 16 24 32 40 48 56 64
0

50

100

150

200

250

300

350

400

450

Bit width of adder N

M
H

z

Cyclone II C35
APEX 200
Flex 10K70

Fig. 2.9. Adder speed and size for Cyclone II, APEX, and Flex10K.

(CSAs) in the literature. Then the question arises: In how many pieces should
we divide the adder? Should we use bit level? For Altera’s Cyclone II devices
a reasonable choice will be always using an LAB with 16LEs and 16FFs
for one pipeline element. The FLEX10K family has 8LEs per LAB, while
APEX20KE uses 10LEs per LAB. So we need to consult the datasheet before
we make a decision on the size of the pipelining group. In fact, it can be shown
that if we try to pipeline (for instance) a 14-bit adder in our Cyclone II
devices, the performance does not improve, as reported in Table 2.6, because
the pipelined 14-bit adder does not fit in one LAB.

Because the number of flip-flops in one LAB is 16 and we need an extra
flip-flop for the carry-out, we should use a maximum block size of 15 bits for
maximum Registered Performance. Only the blocks with the MSBs can be
16 bits wide, because we do not need the extra flip-flop for the carry. This
observation leads to the following conclusions:

1) With one additional pipeline stage we can build adders up to a length
15 + 16 = 31.

2) With two pipeline stages we can build adders with up to 15+15+16 = 46-
bit length.

78 2. Computer Arithmetic

Table 2.6. Performance of a 14-bit pipelined adder for the EP2C35F672C6 using
synthesis of predefined LPM modules with pipeline option.

Pipeline MHz LEs
stages

0 395.57 42
1 388.50 56
2 392.31 70
3 395.57 84
4 394.63 98
5 395.57 113

Table 2.7. Performance and resource requirements of adders with and without
pipelining. Size and speed are for the maximum bit width, for 31-, 46-, and 61-bit
adders.

Bit No With Pipeline Design
width Pipeline pipeline stages file name

MHz LEs MHz LEs

17− 31 253.36 93 316.46 125 1 add1p.vhd
32− 46 192.90 138 229.04 234 2 add2p.vhd
47− 61 153.78 183 215.84 372 3 add3p.vhd

3) With three pipeline stages we can build adders with up to 15+15+15+
16 = 61-bit length.

Table 2.7 shows the Registered Performance and LE utilization of this kind
of pipelined adder. From Table 2.7 it can be concluded that although the bit
width increases the Registered Performance remains high if we add the
appropriate number of pipeline stages.

The following example shows the code of a 31-bit pipelined adder. It turns
out that the straight forward implementation of the pipelining would require
two registers for the MSBs as shown in Fig. 2.10a. If we instead use adders
for the MSBs, we can save a set of LEs, since each LE can implement a full
adder, but only one flip-flop. This is graphically interpreted by Fig. 2.10b.

Example 2.17: VHDL Design of 31-bit Pipelined Adder
Consider the VHDL code5 of a 31-bit pipelined adder that is graphically
interpreted in Fig. 2.10. The design runs at 316.46 MHz and uses 125 LEs.

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
USE ieee.std_logic_arith.ALL;
USE ieee.std_logic_unsigned.ALL;

5 The equivalent Verilog code add1p.v for this example can be found in Ap-
pendix A on page 666. Synthesis results are shown in Appendix B on page
731.

2.3 Binary Adders 79

of X+Y

LSBs

of X+Y

+

Carry

+

of Y

of X

LSBs

LSBs

MSBs

MSBs

of Y

of X

MSBs

Register

MSBs

of X+Y

LSBs

of X+Y

of X

of Y

MSBs

MSBs

+

+
LSBs

LSBs

of X

of Y

Register Carry

+

(a) (b)

Fig. 2.10. Pipelined adder. (a) Direct implementation. (b) FPGA optimized ap-
proach.

ENTITY add1p IS
GENERIC (WIDTH : INTEGER := 31; -- Total bit width

WIDTH1 : INTEGER := 15; -- Bit width of LSBs
WIDTH2 : INTEGER := 16); -- Bit width of MSBs

PORT (x,y : IN STD_LOGIC_VECTOR(WIDTH-1 DOWNTO 0);
-- Inputs

sum : OUT STD_LOGIC_VECTOR(WIDTH-1 DOWNTO 0);
-- Result

LSBs_Carry : OUT STD_LOGIC;
clk : IN STD_LOGIC);

END add1p;

ARCHITECTURE fpga OF add1p IS

SIGNAL l1, l2, s1 -- LSBs of inputs
: STD_LOGIC_VECTOR(WIDTH1-1 DOWNTO 0);

SIGNAL r1 -- LSBs of inputs
: STD_LOGIC_VECTOR(WIDTH1 DOWNTO 0);

SIGNAL l3, l4, r2, s2 -- MSBs of inputs
: STD_LOGIC_VECTOR(WIDTH2-1 DOWNTO 0);

BEGIN

PROCESS -- Split in MSBs and LSBs and store in registers
BEGIN
WAIT UNTIL clk = ’1’;
-- Split LSBs from input x,y

80 2. Computer Arithmetic

Fig. 2.11. Simulation results for a pipelined adder.

l1 <= x(WIDTH1-1 DOWNTO 0);
l2 <= y(WIDTH1-1 DOWNTO 0);

-- Split MSBs from input x,y
l3 <= x(WIDTH-1 DOWNTO WIDTH1);
l4 <= y(WIDTH-1 DOWNTO WIDTH1);

-------------- First stage of the adder ------------------
r1 <= (’0’ & l1) + (’0’ & l2);
r2 <= l3 + l4;

------------ Second stage of the adder --------------------
s1 <= r1(WIDTH1-1 DOWNTO 0);

-- Add result von MSBs (x+y) and carry from LSBs
s2 <= r1(WIDTH1) + r2;

END PROCESS;
LSBs_Carry <= r1(WIDTH1); -- Add a test signal

-- Build a single output word of WIDTH = WIDTH1 + WIDHT2
sum <= s2 & s1 ; -- Connect s to output pins

END fpga;
The simulated performance of the 15-bit pipelined adder shows Fig. 2.11b.
Note that the addition results for 32780 and 32770 produce a carry from the
lower 15-bit adder, but there is no carry for 32 760 + 5 = 32 765 < 215. 2.17

2.3.2 Modulo Adders

Modulo adders are the most important building blocks in RNS-DSP designs.
They are used for both additions and, via index arithmetic, for multiplica-
tions. We wish to describe some design options for FPGAs in the following
discussion.

A wide variety of modular addition designs exists [48]. Using LEs only, the
design of Fig. 2.12a is viable for FPGAs. The Altera FLEX devices contain
a small number of M2K ROMs or RAMs (EABs) that can be configured
as 28 × 8, 29 × 4, 210 × 2 or 211 × 1 tables and can be used for modulo ml

correction. The next table shows size and Registered Performance 6, 7,
and 8-bit modulo adder compile for Altera FLEX10K devices [49].

2.3 Binary Adders 81

Pipeline
register

x+y M

c

1 0

MPX

+

2 -M

y

+

x

c

b
yx

+

Size: b2 b+1

ROM

c

(a) (b)

Fig. 2.12. Modular additions. (a) MPX-Add and MPX-Add-Pipe. (b) ROM-Pipe.

Pipeline Bits
stages 6 7 8

41.3 MSPS 46.5 MSPS 33.7 MSPSMPX 0
27 LE 31 LE 35 LE

76.3 MSPS 62.5 MSPS 60.9 MSPSMPX 2
16 LE 18 LE 20 LE

151.5 MSPS 138.9 MSPS 123.5 MSPSMPX 3
27 LE 31 LE 35 LE

86.2 MSPS 86.2 MSPS 86.2 MSPS
ROM 3 7 LE 8 LE 9 LE

1 EAB 1 EAB 2 EAB

Although the ROM shown in Fig 2.12 provides high speed, the ROM
itself produces a four-cycle pipeline delay and the number of ROMs is limited.
ROMs, however, are mandatory for the scaling schemes discussed before. The
multiplexed-adder (MPX-Add) has a comparatively reduced speed even if a
carry chain is added to each column. The pipelined version usually needs the
same number of LEs as the unpipelined version but runs about three times
as fast. Maximum throughput occurs when the adders are implemented with
3 pipeline stages and 6-bit width channels.

82 2. Computer Arithmetic

2.4 Binary Multipliers

The product of two N -bit binary numbers, say X and A =
∑N−1

k=0 ak2k, is
given by the “pencil and paper” method as:

P = A×X =
N−1∑

k=0

ak2kX. (2.29)

It can be seen that the input X is successively shifted by k positions and
whenever ak �= 0, then X2k is accumulated. If ak = 0, then the correspond-
ing shift-add can be ignored (i.e., nop). The following VHDL example uses
this “pencil and paper” scheme implemented via FSM to multiply two 8-bit
integers. Other FSM design examples can be found in Exercises 2.20, p. 158
and 2.21, p. 159.

Example 2.18: 8-bit Multiplier
The VHDL description6 of an 8-bit multiplier is developed below. Multiplica-
tion is performed in three stages. After reset, the 8-bit operands are “loaded”
and the product register is set to zero. In the second stage, s1, the actual
serial-parallel multiplication takes place. In the third step, s2, the product is
transferred to the output register y.

PACKAGE eight_bit_int IS -- User-defined types
SUBTYPE BYTE IS INTEGER RANGE -128 TO 127;
SUBTYPE TWOBYTES IS INTEGER RANGE -32768 TO 32767;

END eight_bit_int;

LIBRARY work;
USE work.eight_bit_int.ALL;

LIBRARY ieee; -- Using predefined packages
USE ieee.std_logic_1164.ALL;
USE ieee.std_logic_arith.ALL;

ENTITY mul_ser IS ------> Interface
PORT (clk, reset : IN STD_LOGIC;

x : IN BYTE;
a : IN STD_LOGIC_VECTOR(7 DOWNTO 0);
y : OUT TWOBYTES);

END mul_ser;

ARCHITECTURE fpga OF mul_ser IS

TYPE STATE_TYPE IS (s0, s1, s2);
SIGNAL state : STATE_TYPE;

BEGIN
------> Multiplier in behavioral style
States: PROCESS(reset, clk)

6 The equivalent Verilog code mul ser.v for this example can be found in Ap-
pendix A on page 670. Synthesis results are shown in Appendix B on page 731.

2.4 Binary Multipliers 83

Fig. 2.13. Simulation results for a shift add multiplier.

VARIABLE p, t : TWOBYTES:=0; -- Double bit width
VARIABLE count : INTEGER RANGE 0 TO 7;

BEGIN
IF reset = ’1’ THEN

state <= s0;
ELSIF rising_edge(clk) THEN
CASE state IS

WHEN s0 => -- Initialization step
state <= s1;
count := 0;
p := 0; -- Product register reset
t := x; -- Set temporary shift register to x

WHEN s1 => -- Processing step
IF count = 7 THEN -- Multiplication ready

state <= s2;
ELSE
IF a(count) = ’1’ THEN
p := p + t; -- Add 2^k

END IF;
t := t * 2;
count := count + 1;
state <= s1;

END IF;
WHEN s2 => -- Output of result to y and
y <= p; -- start next multiplication
state <= s0;

END CASE;
END IF;

END PROCESS States;

END fpga;
Figure 2.13 shows the simulation result of a multiplication of 13 and 5.
The register t shows the partial product sequence of 5, 10, 20, Since
1310 = 000011012C , the product register p is updated only three times in
the production of the final result, 65. In state s2 the result 65 is transferred
to the output y of the multiplier. The design uses 121 LEs and and no em-
bedded multiplier. With synthesis style Speed its runs with a Registered
Performance of 256.15 MHz 2.18

84 2. Computer Arithmetic

FA FA HA

a[3]x[0]

p[1]p[2]p[3]p[4]

FA FA FA

FA FA

a[2]x[1] a[1]x[1] a[0]x[1]

a[2]x[0] a[1]x[0]

p[7]

a[0]x[0]

p[0]p[5]p[6]

a[3]x[1]

a[3]x[2]

a[3]x[3]

a[2]x[2] a[0]x[2]a[1]x[2]

a[0]x[3]a[2]x[3] a[1]x[3]

HA HA HA

FA

Fig. 2.14. A 4-bit array multiplier.

Because one operand is used in parallel (i.e., X) and the second operand
A is used bitwise, the multipliers we just described are called serial/parallel
multipliers. If both operands are used serial, the scheme is called a serial/serial
multiplier [50], and such a multiplier only needs one full adder, but the latency
of serial/serial multipliers is high O(N2), because the state machine needs
about N2 cycles.

Another approach, which trades speed for increased complexity, is called
an “array,” or parallel/parallel multiplier. A 4×4-bit array multiplier is shown
in Fig. 2.14. Notice that both operands are presented in parallel to an adder
array of N2 adder cells.

This arrangement is viable if the times required to complete the carry
and sum calculations are the same. For a modern FPGA, however, the carry
computation is performed faster than the sum calculation and a different ar-
chitecture is more efficient for FPGAs. The approach for this array multiplier
is shown in Fig. 2.15, for an 8 × 8-bit multiplier. This scheme combines in
the first stage two neighboring partial products anX2n and an+1X2n+1 and
the results are added to arrive at the final output product. This is a direct
array form of the “pencil and paper” method and must therefore produce a
valid product.

We recognize from Fig. 2.15 that this type of array multiplier gives the
opportunity to realize a (parallel) binary tree of the multiplier with a total:

2.4 Binary Multipliers 85

+

+

+

+

+

X a0

1

2

3

4

5

6

7128X a

64X a

32X a

16X a

8X a

4X a

2X a

Pipeline−register optional

+

+

P
...

4

5

15P

P
P

3

2

1

0

P
P

P

Fig. 2.15. Fast array multiplier for FPGAs.

number of stages in the binary tree multiplier = log2(N). (2.30)

This alternative architecture also makes it easier to introduce pipeline stages
after each tree level. The necessary number of pipeline stages, according to
(2.30), to achieve maximum throughput is:

Bit width 2 3− 4 5− 8 9− 16 17− 32

Optimal number
of pipeline stages

1 2 3 4 5

Since the data are registered at the input and output the number of delays
in the simulation would be two larger then the pipeline stage we specified for
the lpm_mul blocks.

Figure 2.16 reports the Registered Performance of pipelined N×N -bit
multipliers, using the Quartus II lpm_mult function, for 8 × 8, to 24 × 24
bits operands. Embedded multiplier are shown with dash lines and up to
16×16-bit the multiplier do not improve with pipelining since they fit in one
embedded 18 × 18-bit array multiplier. The LE-based multiplier are shown
with a solid line. Figure 2.17 shows the LEs effort for the multiplier. The
pipelined 8 × 8 bit multiplier outperforms the embedded multiplier if 2 or

86 2. Computer Arithmetic

0 1 2 3 4 5 6
50

100

150

200

250

300

350

Number of pipeline stages

P
er

fo
rm

an
ce

 in
 M

H
z

 8x8
16x16
24x24

Fig. 2.16. Performance of an array multiplier for FPGAs, LE-based multiplier
(solid line) and embedded multiplier (dashed line).

more pipeline stages are used. We can notice from Fig. 2.16 that, for pipeline
delays longer than log2(N), there is no essential improvement for LE-based
multipliers. The multiplier architecture (embedded or LEs) must be con-
trolled via synthesis options in case we write behavioral code (e.g., p <=
a*b). This can be done in the EDA Tools Setting under the Assignments
menu. There you find the DSP Block Balancing entry under the Analysis
& Synthesis Settings. Select DSP blocks if you like to use the embed-
ded multiplier, Logic Elements to use the LEs only, or Auto, and the syn-
thesis tool will first use the embedded multiplier; if there are not enough
then use the LE-based multiplier. If we use the lpm_mul block (see Ap-
pendix B, p. 733) we have direct control using the GENERIC MAP parameter
DEDICATED MULTIPLIER CIRCUITRY => "YES" or "NO".

Other multiplier architectures typically used in the ASIC world include
Wallace-tree multipliers and Booth multipliers. They are discussed in Exer-
cises 2.1 (p. 154) and 2.2 (p. 154) but are rarely used in connection with
FPGAs.

2.4 Binary Multipliers 87

0 1 2 3 4 5 6
15

25

40

65

100

150

250

400

650

1000

Number of pipeline stages

N
um

be
r

of
 lo

gi
c

el
em

en
ts

24x24
16x16
 8x8

Fig. 2.17. Effort in LEs for array multipliers, LE-based multiplier (solid line)
and embedded multiplier (dashed line).

2.4.1 Multiplier Blocks

A 2N × 2N multiplier can be defined in terms of an N ×N multiplier block
[29]. The resulting multiplication is defined as:

P = Y ×X = (Y22N + Y1)(X22N +X1)
= Y2X222N + (Y2X1 + YlX2)2N + Y1X1, (2.31)

where the indices 2 and 1 indicate the most significant and least significantN -
bit halves, respectively. This partitioning scheme can be used if the capacity
of the FPGA is insufficient to implement a multiplier of desired size, or used
to implement a multiplier using memory blocks. A 36 × 36-bit multiplier
can be build with four 18 × 18 bit embedded multipliers and three adders.
An 8 × 8-bit LUT-based multiplier in direct form would require an LUT
size of 216 × 16 = 1Mbit. The partitioning technique reduces the table size
to four 28 × 8 memory blocks and three adders. A 16 × 16-bit multiplier
requires 16 M4K blocks. The benefit of multiplier implementation via M4Ks
versus LE-based is twofold. First, the number of LE is reduced. Secondly,
the requirements on the routing resources of the devices are also reduced.

88 2. Computer Arithmetic

Fig. 2.18. Two’s complement 8-bit additive half-square multiplier design.

Although some FPGAs families now have a limited number of embedded
array multipliers, the number is usually small, and the LUT-based multiplier
provides a way to enlarge the number of fast low-latency multipliers in these
devices. In addition, some device families like Cyclone, Flex, or Excalibur do
not have embedded multipliers; therefore, the LUT or LE multipliers are the
only option.

Half-Square Multiplier

Another way to reduce the memory requirement for LUT-based multipliers
is to decrease the bits in the input domain. One bit decrease in the input
domain decreases the number of LUT words by a factor of two. An LUT of
a square operation of an N -bit word only requires an LUT size of 2N × 2N .
The additive half-square (AHSM) multiplier

Y ×X =
(X + Y)2 −X2 − Y 2

2
=

=
⌊

(X + Y)2

2

⌋
−
⌊
X2

2

⌋
−
⌊
Y 2

2

⌋
−
{

1 X,Y odd
0 others (2.32)

was introduced by Logan [51]. If the division by 2 is included in the LUT, this
requires a correction of −1 in the event that X and Y are odd. A differential
half-square multiplier (DHSM) can then be implemented as:

Y ×X =
(X + Y)2 −X2 − Y 2

2

2.4 Binary Multipliers 89

Fig. 2.19. Two’s complement 8-bit differential half-square multiplier design.

=
⌊
X2

2

⌋
+
⌊
Y 2

2

⌋
−
⌊

(X − Y)2

2

⌋
+
{

1 X,Y odd
0 others . (2.33)

A correction of 1 is required in the event that X and Y are odd. If the
numbers are signed, an additional saving is possible by using the diminished-
by-one (D1) encoding, see Sect. 2.2.1, p. 56. In D1 coding all numbers are
diminished by 1, and the zero gets special encoding [52]. Figure 2.18 shows
for 8-bit data the AHSM multiplier, the required LUTs, and the data range
of 8-bit input operands. The absolute operation almost allows a reduction by
a factor of 2 in LUT words, while the D1 encoding enables a reduction to the
next power-of-2 table size that is beneficial for the FPGA design. Since LUT
inputs 0 and 1 both have the same square, LUT entry �A2/2�, we share this
value and do not need to use special encoding for zero. Without the division
by 2, a 17-bit output word would be required. However, the division by two
in the squaring table requires an increment (decrement) of the output result
for the AHSM (DHSM) in case both input operands are odd values. Figure
2.19 shows a DHSM multiplier that only requires two D1 encoding compared
with the AHSM design.

Quarter-Square Multiplier

A further reduction in arithmetic requirements and the number of LUTs can
be achieved by using the quarter-square multiplication (QSM) principle that
is also well studied in analog designs [53, 54]. The QSM is based on the
following equation:

90 2. Computer Arithmetic

Fig. 2.20. Two’s complement 8-bit quarter-square multiplier design.

Y ×X =
⌊

(X + Y)2

4

⌋
−
⌊

(X − Y)2

4

⌋
.

It is interesting to note that the division by 4 in (2.34) does not require
any correction for operation as in the HSM case. This can be checked as
follows. If both operands are even (odd), then the sum and the difference are
both even, and the squaring followed by a division of 4 produces no error
(i.e., 4|(2u ∗ 2v)). If one operand is odd (even) and the other operand is
even (odd), then the sum and the difference after squaring and a division
by 4 produce a 0.25 error that is annihilated in both cases. No correction
operation is necessary. The direct implementation of (2.34) would require
LUTs of (N + 1)-bit inputs to represent the correct result of X ± Y as used
in [55], which will require four 2N × 2N LUTs. Signed arithmetic along with
D1 coding will reduce the table to the next power-of-2 value, allowing the
design to use only two 2N × 2N LUTs compared with the four in [55]. Figure
2.20 shows the D1 QSM circuit.

LUT-Based Multiplier Comparison

For each of the multiplier circuits HDL code can be developed (see Exercises
2.23-2.25, p. 161) and short C programs or MatLab scripts are necessary to
generate the memory initialization files for two’s complement, unsigned, and
D1 data. The Verilog code from [55] and the half and quarter square designs
are then synthesized using the Altera Quartus II software for the popular
Cyclone II device from Altera development board. Table 2.8 quantifies the
resources required and reports the performance data for the LUT-based mul-
tipliers. The table shows the required LUTs for an 8×8-bit signed multiplier,
the number of logic elements (LEs), the maximum frequency, and the num-
ber of M4K blocks used. Results reveal that the D1 multiplier uses 50% less

2.5 Binary Dividers 91

LUT resources than proposed in [55] for Cyclone II devices with a moderate
increase in LE usage. The D1 QSM doubles the number of fast M4K-based
multipliers in the FPGA. Throughput is restricted by the synchronous M4K
blocks to 260 MHz in Cyclone II devices.

Comparing the data of Table 2.8 with the data from Figs. 2.16 (p. 86)
and 2.17 (p. 87), it can be seen that the LUT-based multiplier reduces the
number of LEs but does not improve the Registered Performance.

Table 2.8. Resource and performance data for 8× 8-bit signed LUT-based multi-
pliers.

Design LUT size LEs M4K Reg. Eq.
Perf. or

in MHz Ref

Partitioning 4× 28 × 8 40 4 260.0 (2.31)
Altera’s QSM 2× 29 × 16 34 4 180.9 [55]
D1 AHSM 2× 27 × 16, 28 × 16 118 3 260.0 (2.32)
D1 DHSM 2× 27 × 16, 28 × 16 106 3 260.0 (2.33)
D1 QSM 2× 28 × 16 66 2 260.0 (2.34)

2.5 Binary Dividers

Of all four basic arithmetic operations division is the most complex. Conse-
quently, it is the most time-consuming operation and also the operation with
the largest number of different algorithms to be implemented. For a given
dividend (or numerator) N and divisor (or denominator) D the division pro-
duces (unlike the other basic arithmetic operations) two results: the quotient
Q and the remainder R, i.e.,

N

D
= Q and R with |R| < D. (2.34)

However, we may think of division as the inverse process of multiplication,
as demonstrated through the following equation,

N = D ×Q+R, (2.35)

it differs from multiplication in many aspects. Most importantly, in multipli-
cation all partial products can be produced parallel, while in division each
quotient bit is determined in a sequential “trail-and-error” procedure.

Because most microprocessors handle division as the inverse process to
multiplications, referring to (2.35), the numerator is assumed to be the result
of a multiplication and has therefore twice the bit width of denominator and
quotient. As a consequence, the quotient has to be checked in an awkward

92 2. Computer Arithmetic

procedure to be in the valid range, i.e., that there is no overflow in the
quotient. We wish to use a more general approach in which we assume that

Q ≤ N and |R| ≤ D,

i.e., quotient and numerator as well as denominator and remainder are as-
sumed to be of the same bit width. With this bit width assumptions no range
check (except N = 0) for a valid quotient is necessary.

Another consideration when implementing division comes when we deal
with signed numbers. Obviously, the easiest way to handle signed numbers is
first to convert both to unsigned numbers and compute the sign of the result
as an XOR or modulo 2 add operation of the sign bits of the two operands.
But some algorithms, (like the nonrestoring division discussed below), can
directly process signed numbers. Then the question arises, how are the sign
of quotient and remainder related. In most hardware or software systems (but
not for all, such as in the PASCAL programming language), it is assumed
that the remainder and the quotient have the same sign. That is, although

234
50

= 5 and R = −16 (2.36)

meets the requirements from (2.35), we, in general, would prefer the following
results

234
50

= 4 and R = 34. (2.37)

Linear convergence Quadratic convergence

Anderson et al.
By reciprocation

Nonrestoring
SRT algorithm

DIVISION ALGORITHMS

CORDIC

Restoring

Fig. 2.21. Survey of division algorithms.

Let us now start with a brief overview of the most commonly used division
algorithms. Figure 2.21 shows the most popular linear and quadratic conver-
gence schemes. A basic categorization of the linear division algorithms can

2.5 Binary Dividers 93

be done according to the permissible values of each quotient digit generated.
In the binary restoring, nonperforming or CORDIC algorithms the digits are
selected from the set

{0, 1}.
In the binary nonrestoring algorithms a signed-digit set is used, i.e.,

{−1, 1} = {1, 1}.
In the binary SRT algorithm, named after Sweeney, Robertson, and Tocher
[29] who discovered the algorithms at about the same time, the digits from
the ternary set

{−1, 0, 1} = {1, 0, 1}
are used. All of the above algorithms can be extended to higher radix algo-
rithms. The generalized SRT division algorithms of radix r, for instance, uses
the digit set

{−2r − 1, . . . ,−1, 0, 1, . . . , 2r − 1}.
We find two algorithms with quadratic convergence to be popular. The

first algorithm is the division by reciprocation of the denominator, where
we compute the reciprocal with the Newton algorithm for finding zeros. The
second quadratic convergence algorithms was developed for the IBM 360/91
in the 1960s by Anderson et al. [56]. This algorithm multiplies numerator
and denominator with the same factors and converges N → 1, which results
in D → Q. Note, that the division algorithms with quadratic convergence
produce no remainder.

Although the number of iterations in the quadratic convergence algo-
rithms are in the order of log2(b) for b bit operands, we must take into account
that each iteration step is more complicated (i.e., uses two multiplications)
than the linear convergence algorithms, and speed and size performance com-
parisons have to be done carefully.

2.5.1 Linear Convergence Division Algorithms

The most obvious sequential algorithms is our “pencil-and-paper” method
(which we have used many times before) translated into binary arithmetic.
We align first the denominator and load the numerator in the remainder
register. We then subtract the aligned denominator from the remainder and
store the result in the remainder register. If the new remainder is positive
we set the quotient’s LSB to 1, otherwise the quotient’s LSB is set to zero
and we need to restore the previous remainder value by adding the denomi-
nator. Finally, we have to realign the quotient and denominator for the next
step. The recalculation of the previous remainder is why we call such an
algorithm “restoring division.” The following example demonstrates a FSM
implementation of the algorithm.

94 2. Computer Arithmetic

Example 2.19: 8-bit Restoring Divider
The VHDL description7 of an 8-bit divider is developed below. Division is
performed in four stages. After reset, the 8-bit numerator is “loaded” in the
remainder register, the 6-bit denominator is loaded and aligned (by 2N−1 for
a N bit numerator), and the quotient register is set to zero. In the second and
third stages, s1 and s2, the actual serial division takes place. In the fourth
step, s3, quotient and remainder are transferred to the output registers. Nom-
inator and quotient are assumed to be 8 bits wide, while denominator and
remainder are 6-bit values.

-- Restoring Division
LIBRARY ieee; -- Using predefined packages
USE ieee.std_logic_1164.ALL;
USE ieee.std_logic_arith.ALL;
USE ieee.std_logic_unsigned.ALL;

ENTITY div_res IS ------> Interface
GENERIC(WN : INTEGER := 8;

WD : INTEGER := 6;
PO2WND : INTEGER := 8192; -- 2**(WN+WD)
PO2WN1 : INTEGER := 128; -- 2**(WN-1)
PO2WN : INTEGER := 255); -- 2**WN-1

PORT (clk, reset : IN STD_LOGIC;
n_in : IN STD_LOGIC_VECTOR(WN-1 DOWNTO 0);
d_in : IN STD_LOGIC_VECTOR(WD-1 DOWNTO 0);
r_out : OUT STD_LOGIC_VECTOR(WD-1 DOWNTO 0);
q_out : OUT STD_LOGIC_VECTOR(WN-1 DOWNTO 0));

END div_res;

ARCHITECTURE flex OF div_res IS

SUBTYPE TWOWORDS IS INTEGER RANGE -1 TO PO2WND-1;
SUBTYPE WORD IS INTEGER RANGE 0 TO PO2WN;

TYPE STATE_TYPE IS (s0, s1, s2, s3);
SIGNAL s : STATE_TYPE;

BEGIN
-- Bit width: WN WD WN WD
-- Numerator / Denominator = Quotient and Remainder
-- OR: Numerator = Quotient * Denominator + Remainder

States: PROCESS(reset, clk)-- Divider in behavioral style
VARIABLE r, d : TWOWORDS :=0; -- N+D bit width
VARIABLE q : WORD;
VARIABLE count : INTEGER RANGE 0 TO WN;

BEGIN
IF reset = ’1’ THEN -- asynchronous reset

s <= s0;
ELSIF rising_edge(clk) THEN
CASE s IS

7 The equivalent Verilog code div res.v for this example can be found in Ap-
pendix A on page 671. Synthesis results are shown in Appendix B on page 731.

2.5 Binary Dividers 95

Fig. 2.22. Simulation results for a restoring divider.

WHEN s0 => -- Initialization step
s <= s1;
count := 0;
q := 0; -- Reset quotient register
d := PO2WN1 * CONV_INTEGER(d_in); -- Load denom.
r := CONV_INTEGER(n_in); -- Remainder = numerator

WHEN s1 => -- Processing step
r := r - d; -- Subtract denominator
s <= s2;

WHEN s2 => -- Restoring step
IF r < 0 THEN

r := r + d; -- Restore previous remainder
q := q * 2; -- LSB = 0 and SLL

ELSE
q := 2 * q + 1; -- LSB = 1 and SLL

END IF;
count := count + 1;
d := d / 2;
IF count = WN THEN -- Division ready ?

s <= s3;
ELSE

s <= s1;
END IF;

WHEN s3 => -- Output of result
q_out <= CONV_STD_LOGIC_VECTOR(q, WN);
r_out <= CONV_STD_LOGIC_VECTOR(r, WD);
s <= s0; -- Start next division

END CASE;
END IF;

END PROCESS States;

END flex;
Figure 2.22 shows the simulation result of a division of 234 by 50. The register
d shows the aligned denominator values 50× 27 = 6400, 50× 26 = 3200,
Every time the remainder r calculated in step s1 is negative, the previous
remainder is restored in step s2. In state s3 the quotient 4 and the remainder
34 are transferred to the output registers of the divider. The design uses

96 2. Computer Arithmetic

Fig. 2.23. Simulation results for a nonperforming divider.

127 LEs, no embedded multiplier, and runs with a Registered Performance
of 265.32 MHz. 2.19

The main disadvantage of the restoring division is that we need two steps
to determine one quotient bit. We can combine the two steps using a non-
performing divider algorithm, i.e., each time the denominator is larger than
the remainder, we do not perform the subtraction. In VHDL we would write
the new step as:

t := r - d; -- temporary remainder value
IF t >= 0 THEN -- Nonperforming test
r := t; -- Use new denominator
q := q * 2 + 1; -- LSB = 1 and SLL

ELSE
q := q * 2; -- LSB = 0 and SLL

END IF;

The number of steps is reduced by a factor of 2 (not counting initialization and
transfers of results), as can be seen from the simulation in Fig. 2.23. Note also
from the simulation shown in Fig. 2.23 that the remainder r is never negative
in the nonperforming division algorithms. On the downside the worst case
delay path is increased when compared with the restoring division and the
maximum Registered Performance is expected to be reduced, see Exercise
2.17 (p. 157). The nonperforming divider has two arithmetic operations and
the if condition in the worst case path, while the restoring divider has (see
step s2) only the if condition and one arithmetic operation in the worst case
path.

A similar approach to the nonperforming algorithm, but that does not
increase the critical path, is the so-called nonrestoring division. The idea
behind the nonrestoring division is that if we have computed in the restoring
division a negative remainder, i.e., rk+1 = rk−dk, then in the next step we will
restore rk by adding dk and then perform a subtraction of the next aligned

2.5 Binary Dividers 97

denominator dk+1 = dk/2. So, instead of adding dk followed by subtracting
dk/2, we can just skip the restoring step and proceed with adding dk/2, when
the remainder has (temporarily) a negative value. As a result, we have now
quotient bits that can be positive or negative, i.e., qk = ±1, but not zero.
We can change this signed-digit representation later to a two’s complement
representation. In conclusion, the nonrestoring algorithms works as follows:
every time the remainder after the iteration is positive we store a 1 and
subtract the aligned denominator, while for negative remainder, we store a
−1 = 1 in the quotient register and add the aligned denominator. To use only
one bit in the quotient register we will use a zero in the quotient register to
code the −1. To convert this signed-digit quotient back to a two’s complement
word, the straightforward way is to put all 1s in one word and the zeros, which
are actually the coded −1 = 1 in the second word as a one. Then we need
just to subtract the two words to compute the two’s complement. On the
other hand this subtraction of the −1s is nothing other than the complement
of the quotient augmented by 1. In conclusion, if q holds the signed-digit
representation, we can compute the two’s complement via

q2C = 2× qSD + 1. (2.38)

Both quotient and remainder are now in the two’s complement representation
and have a valid result according to (2.35). If we wish to constrain our results
in a way that both have the same sign, we need to correct the negative
remainder, i.e., for r < 0 we correct this via

r := r +D and q := q − 1.

Such a nonrestoring divider will now run faster than the nonperforming di-
vider, with about the same Registered Performance as the restoring di-
vider, see Exercise 2.18 (p. 157). Figure 2.24 shows a simulation of the non-
restoring divider. We notice from the simulation that register values of the
remainder are allowed now again to be negative. Note also that the above-
mentioned correction for negative remainder is necessary for this value. The
not corrected result is q = 5 and r = −16 The equal sign correction results
in q = 5− 1 = 4 and r = −16 + 50 = 34, as shown in Fig. 2.24.

To shorten further the number of clock cycles needed for the division
higher radix (array) divider can be built using, for instance, the SRT and
radix 4 coding. This is popular in ASIC designs when combined with the
carry-save-adder principle as used in the floating-point accelerators of the
Pentium microprocessors. For FPGAs with a limited LUT size this higher-
order schemes seem to be less attractive.

A totally different approach to improve the latency are the division algo-
rithms with quadratic convergence, which use fast array multiplier. The two
most popular versions of this quadratic convergence schemes are discussed in
the next section.

98 2. Computer Arithmetic

Fig. 2.24. Simulation results for a nonrestoring divider.

2.5.2 Fast Divider Design

The first fast divider algorithm we wish to discuss is the division through
multiplication with the reciprocal of the denominator D. The reciprocal can,
for instance, be computed via a look-up table for small bit width. The general
technique for constructing iterative algorithms, however, makes use of the
Newton method for finding a zero. According to this method, we define a
function

f(x) =
1
x
−D → 0. (2.39)

If we define an algorithm such that f(x∞) = 0 then it follows that

1
x∞

−D = 0 or x∞ =
1
D
. (2.40)

Using the tangent the estimation for the next xk+1 is calculated using

xk+1 = xk − f(xk)
f ′(xk)

, (2.41)

with f(x) = 1/x−D we have f ′(x) = 1/x2 and the iteration equation becomes

xk+1 = xk −
1

xk
−D

−1
x2

k

= xk(2−D × xk). (2.42)

Although the algorithm will converge for any initial D, it converges much
faster if we start with a normalized value close to 1.0, i.e., we normalized D
in such a way that 0.5 ≤ D < 1 or 1 ≤ D < 2 as used for floating-point
mantissa, see Sect. 2.6 (p. 104). We can then use an initial value x0 = 1
to get fast convergence. Let us illustrate the Newton algorithm with a short
example.

Example 2.20: Newton Algorithm

2.5 Binary Dividers 99

0.75 1 1.25

0

0.5

1

f(x
0
)

f(x
1
)

f(x
2
)

f(
x)

=1
/x
−0

.8

x

Fig. 2.25. Newton’s zero-finding algorithms for x∞ = 1/0.8 = 1.25.

Let us try to compute the Newton algorithm for 1/D = 1/0.8 = 1.25. The
following table shows in the first column the number of the iteration, in the
second column the approximation to 1/D, in the third column the error xk−
x∞, and in the last column the equivalent bit precision of our approximation.

k xk xk − x∞ Eff. bits

0 1.0 −0.25 2
1 1.2 −0.05 4.3
2 1.248 −0.002 8.9
3 1.25 −3.2× 10−6 18.2
4 1.25 −8.2× 10−12 36.8

Figure 2.25 shows a graphical interpretation of the Newton zero-finding al-
gorithm. The f(xk) converges rapidly to zero. 2.20

Because the first iterations in the Newton algorithm only produce a few bits
of precision, it may be useful to use a small look-up table to skip the first
iterations. A table to skip the first two iterations can, for instance, be found
in [29, p. 260].

We note also from the above example the overall rapid convergence of the
algorithm. Only 5 steps are necessary to have over 32-bit precision. Many
more steps would be required to reach the same precision with the linear
convergence algorithms. This quadratic convergence applies for all values not
only for our special example. This can be shown as follows:

ek+1 = xk+1 − x∞ = xk(2 −D × xk)− 1
D

= −D
(
xk − 1

D

)2

= −De2k,

100 2. Computer Arithmetic

i.e., the error improves in a quadratic fashion from one iteration to the next.
With each iteration we double the effective number of bit precision.

Although the Newton algorithm has been successfully used in micropro-
cessor design (e.g., IBM RISC 6000), it has two main disadvantages: First, the
two multiplications in each iteration are sequential, and second, the quanti-
zation error of the multiplication is accumulated due to the sequential nature
of the multiplication. Additional guard bits are used in general to avoid this
quantization error.

The following convergence algorithm, although similar to the Newton al-
gorithm, has an improved quantization behavior and uses 2 multiplications
in each iteration that can be computed parallel. In the convergence division
scheme both numerator N and denominator D are multiplied by approxima-
tion factors fk, which, for a sufficient number of iterations k, we find

D
∏

fk → 1 and N
∏

fk → Q. (2.43)

This algorithm, originally developed for the IBM 360/91, is credited to An-
derson et al. [56], and the algorithm works as follows:

Algorithm 2.21: Division by Convergence

1) Normalize N and D such that D is close to 1. Use a normalization
interval such as 0.5 ≤ D < 1 or 1 ≤ D < 2 as used for floating-point
mantissa.

2) Initialize x0 = N and t0 = D.
3) Repeat the following loop until xk shows the desired precision.

fk = 2− tk
xk+1 = xk × fk

tk+1 = tk × fk

It is important to note that the algorithm is self-correcting. Any quantization
error in the factors does not really matter because numerator and denomi-
nator are multiplied with the same factor fk. This fact has been used in the
IBM 360/91 design to reduce the required resources. The multiplier used for
the first iteration has only a few significant bits, while in later iteration more
multiplier bits are allocated as the factor fk gets closer to 1.

Let us demonstrate the multiply by convergence algorithm with the fol-
lowing example.

Example 2.22: Anderson–Earle–Goldschmidt–Powers Algorithm
Let us try to compute the division-by-convergence algorithm for N = 1.5
and D = 1.2, i.e., Q = N/D = 1.25 The following table shows in the first
column the number of the iteration, in the second column the scaling factor
fk, in the third column the approximation to N/D, in the fourth column
the error xk − x∞, and in the last column the equivalent bit precision of our
approximation.

2.5 Binary Dividers 101

k fk xk xk − x∞ Eff. bits

0 0.8 ≈ 205
256

1.5 ≈ 384
256

0.25 2
1 1.04 ≈ 267

256
1.2 ≈ 307

256
−0.05 4.3

2 1.0016 ≈ 257
256

1.248 ≈ 320
256

0.002 8.9
3 1.0 + 2.56 × 10−6 1.25 −3.2× 10−6 18.2
4 1.0 + 6.55 × 10−12 1.25 −8.2× 10−12 36.8

We note the same quadratic convergence as in the Newton algorithm, see
Example 2.20 (p. 99).
The VHDL description8 of an 8-bit fast divider is developed below. We as-
sume that denominator and numerator are normalized as, for instance, typical
for floating-point mantissa values, to the interval 1 ≤ N, D < 2. This normal-
ization step may require essential addition resources (leading-zero detection
and two barrelshifters) when the denominator and numerator are not nor-
malized. Nominator, denominator, and quotient are all assumed to be 9 bits
wide. The decimal values 1.5, 1.2, and 1.25 are represented in a 1.8-bit for-
mat (1 integer and 8 fractional bits) as 1.5× 256 = 384, 1.2× 256 = 307, and
1.25 × 256 = 320, respectively. Division is performed in three stages. First,
the 1.8-formatted denominator and numerator are loaded into the registers.
In the second state, s1, the actual convergence division takes place. In the
third step, s2, the quotient is transferred to the output register.

-- Convergence division after Anderson, Earle, Goldschmidt,
LIBRARY ieee; -- and Powers
USE ieee.std_logic_1164.ALL;
USE ieee.std_logic_arith.ALL;
USE ieee.std_logic_unsigned.ALL;

ENTITY div_aegp IS ------> Interface
GENERIC(WN : INTEGER := 9; -- 8 bit plus one integer bit

WD : INTEGER := 9;
STEPS : INTEGER := 2;
TWO : INTEGER := 512; -- 2**(WN+1)
PO2WN : INTEGER := 256; -- 2**(WN-1)
PO2WN2 : INTEGER := 1023); -- 2**(WN+1)-1

PORT (clk, reset : IN STD_LOGIC;
n_in : IN STD_LOGIC_VECTOR(WN-1 DOWNTO 0);
d_in : IN STD_LOGIC_VECTOR(WD-1 DOWNTO 0);
q_out : OUT STD_LOGIC_VECTOR(WD-1 DOWNTO 0));

END div_aegp;

ARCHITECTURE fpga OF div_aegp IS

SUBTYPE WORD IS INTEGER RANGE 0 TO PO2WN2;

TYPE STATE_TYPE IS (s0, s1, s2);
SIGNAL state : STATE_TYPE;

BEGIN
-- Bit width: WN WD WN WD
-- Numerator / Denominator = Quotient and Remainder

8 The equivalent Verilog code div aegp.v for this example can be found in Ap-
pendix A on page 673. Synthesis results are shown in Appendix B on page 731.

102 2. Computer Arithmetic

Fig. 2.26. Simulation results for a convergence divider.

-- OR: Numerator = Quotient * Denominator + Remainder

States: PROCESS(reset, clk)-- Divider in behavioral style
VARIABLE x, t, f : WORD:=0; -- WN+1 bits
VARIABLE count : INTEGER RANGE 0 TO STEPS;

BEGIN
IF reset = ’1’ THEN -- asynchronous reset

state <= s0;
ELSIF rising_edge(clk) THEN
CASE state IS

WHEN s0 => -- Initialization step
state <= s1;
count := 0;
t := CONV_INTEGER(d_in); -- Load denominator
x := CONV_INTEGER(n_in); -- Load numerator

WHEN s1 => -- Processing step
f := TWO - t;
x := x * f / PO2WN;
t := t * f / PO2WN;
count := count + 1;
IF count = STEPS THEN -- Division ready ?

state <= s2;
ELSE

state <= s1;
END IF;

WHEN s2 => -- Output of results
q_out <= CONV_STD_LOGIC_VECTOR(x, WN);
state <= s0; -- start next division

END CASE;
END IF;

END PROCESS States;

END fpga;
Figure 2.26 shows the simulation result of the division 1.5/1.2. The variable f
(which becomes an internal net and is not shown in the simulation) holds the
three scaling factors 205, 267, and 257, sufficient for 8-bit precision results.
The x and t values are multiplied by the scaling factor f and scaled down to
the 1.8 format. x converges to the quotient 1.25=320/256, while t converges
to 1.0 = 255/256, as expected. In state s3 the quotient 1.25 = 320/256

2.5 Binary Dividers 103

 0 1 2 4 8 16 24 32 48
0

50

100

150

200

250

300

350

Number of pipeline stages

P
er

fo
rm

an
ce

 in
 M

H
z

 8x8
16x16
24x24

Fig. 2.27. Performance of array divider using the lpm divide macro block.

is transferred to the output registers of the divider. Note that the divider
produces no remainder. The design uses 64LEs, 4 embedded multipliers and
runs with a Registered Performance of 134.63 MHz. 2.22

Although the Registered Performance of the nonrestoring divider (see
Fig. 2.24) is about twice as high, the total latency, however, in the conver-
gence divider is reduced, because the number of processing steps are reduced
from 8 to
√8� = 3 (not counting initialization in both algorithms). The
convergence divider uses less LEs as the nonrestoring divider but also 4 em-
bedded multipliers.

2.5.3 Array Divider

Obviously, as with multipliers, all division algorithms can be implemented in
a sequential, FSM-like, way or in the array form. If the array form and pipelin-
ing is desired, a good option will then be to use the lpm_divide block, which
implements an array divider with the option of pipelining, see Appendix B,
(p. 749) for a detailed description of the lpm_divide block.

Figure 2.27 shows the Registered Performance and Fig. 2.28 the LEs
necessary for 8 × 8−, 16 × 16−, and 24 × 24−bit array dividers. Note the

104 2. Computer Arithmetic

 0 1 2 4 8 16 24 32 48
65

100

160

250

400

650

1000

1600

2500

Number of pipeline stages

N
um

be
r

of
 lo

gi
c

ce
lls

24x24
16x16
 8x8

Fig. 2.28. Effort in LEs for array divider using the lpm divide macro block.

logarithmic like scaling for the number of pipeline stages. We conclude from
the performance measurement, that the optimal number of pipeline stages is
the same as the number of bits in the denominator.

2.6 Floating-Point Arithmetic Implementation

Due to the large gate count capacity of current FPGAs the design of floating-
point arithmetic has become a viable option. In addition, the introduction of
the embedded 18 × 18 bit array multiplier in Altera Stratix or Cyclone and
Xilinx Virtex II or Spartan III FPGA device families allows an efficient design
of custom floating-point arithmetic. We will therefore discuss the design of
basic building blocks such as a floating-point adder, subtractor, multiplier,
reciprocal and divider, and the necessary conversion blocks to and from fixed-
point data format. Such blocks are available from several IP providers, or
through special request via e-mail to Uwe.Meyer-Baese@ieee.org.

Most of the commercially available floating-point blocks use (typically 3)
pipeline stages to increase the throughput. To keep the presentation simple
we will not use pipelining. The custom floating-point format we will use is the
(1,6,5) floating-point format introduced in Sect. 2.2.3, (p. 71). This format

2.6 Floating-Point Arithmetic Implementation 105

uses 1 sign bit, 6 bits for the exponent and 5 bits for the mantissa. We
support special coding for zero and infinities, but we do not support NaNs
or denormals. Rounding is done via truncation. The fixed-point format used
in the examples has 6 integer bits (including a sign bit) and 6 fractional bits.

2.6.1 Fixed-point to Floating-Point Format Conversion

As shown in Sect. 2.2.3, (p. 71), floating-point numbers use a signed-magni-
tude format and the first step is therefore to convert the two’s complement
number to signed-magnitude form. If the sign of the fixed-point number is
one, we need to compute the complement of the fixed-point number, which
becomes the unnormalized mantissa. In the next step we normalize the man-
tissa and compute the exponent. For the normalization we first determine the
number of leading zeros. This can be done with a LOOP statement within a
sequential PROCESS in VHDL. Using this number of leading zeros, we shift the
mantissa left, until the first 1 “leaves” the mantissa registers, i.e., the hidden
one is also removed. This shift operation is actually the task of a barrelshifter,
which can be inferred in VHDL via the SLL instruction. Unfortunately we
can not use the SLL with Altera’s Quartus II because it is only defined for
BIT_VECTOR data type, but not for the STD_LOGIC_VECTOR data type we need
for other arithmetic operations. But we can design a barrelshifter in many
different ways as Exercise 2.19 (p. 157) shows. Another alternative would
be to design a function overloading for the STD_LOGIC_VECTOR that allows a
shift operation, see Exercise 1.20, p. 50.

The exponent of our floating-point number is computed as the sum of
the bias and the number of integer bits in our fixed-point format minus the
leading zeros in the not normalized mantissa.

Finally, we concatenate the sign, exponent, and the normalized mantissa
to a single floating-point word if the fixed-point number is not zero, otherwise
we set the floating-point word also to zero.

We have assumed that the range of the floating-point number is larger
than the range of the fixed-point number, i.e., the special number ∞ will
never be used in the conversion.

Figure 2.29 shows the conversion from 12-bit fixed-point data to the
(1,6,5) floating-point data for five values ±1, absolute maximum, absolute
minimum, and the smallest value. Rows 1 to 3 show the 12-bit fixed-point
number and the integer and fractional parts. Rows 4 to 7 show the com-
plete floating-point number, followed by the three parts, sign, exponent, and
mantissa. The last row shows the decimal values.

2.6.2 Floating-Point to Fixed-Point Format Conversion

The floating-point to fixed-point conversion is, in general, more complicated
than the conversion in the other direction. Depending if the exponent is

106 2. Computer Arithmetic

Fig. 2.29. Simulation results for a (1,5,6) fixed-point format to (1,6,5) floating-
point conversion.

larger or smaller than the bias we need to implement a left or right shift
of the mantissa. In addition, extra consideration is necessary for the special
values ±∞ and ±0.

To keep the discussion as simple as possible, we assume in the following
that the floating-point number has a larger dynamic range than the fixed-
point number, but the fixed-point number has a higher precision, i.e., the
number of fractional bits of the fixed-point number is larger than the bits
used for the mantissa in the floating-point number.

The first step in the conversion is the correction of the bias in the expo-
nent. We then place the hidden 1 to the left and the (fractional) mantissa to
the right of the decimal point of the fixed-point word. We then check if the
exponent is too large to be represented with the fixed-point number and set
the fixed-point number then to the maximum value. Also, if the exponent is
too small, we set the output value to zero. If the exponent is in the valid range
that the floating-point number can be represented with the fixed-point for-
mat, we shift left the 1.m mantissa value (format see (2.23), p. 71) for positive
exponents, and shift right for negative exponent values. This, in general, can
be coded with the SLL and SRL in VHDL, respectively, but these BIT_VECTOR
operations are not supported in Altera’s Quartus II for STD_LOGIC_VECTOR,
see Exercise 1.20, p. 50. In the final step we convert the signed magnitude
representation to the two’s complement format by evaluating the sign bit of
the floating-point number.

Figure 2.30 shows the conversion from (1,6,5) floating-point format to
(1,5,6) fixed-point data for the five values ±1, absolute maximum, absolute
minimum, and the smallest value. The last row shows the decimal values, rows
1 to 4 the 12-bit floating-point number and the three parts, sign, exponent,
and mantissa. The rows 5 to 7 show the complete fixed-point number, followed
by the integer and fractional parts. Note that the conversion is without any
quantization error for ±1 and the smallest value. For the absolute maximum
and minimum values, however, the smaller precision in the floating-point
numbers gives the imperfect conversion values compared with Fig. 2.29.

2.6 Floating-Point Arithmetic Implementation 107

Fig. 2.30. Simulation results for (1,6,5) floating-point format to (1,5,6) fixed-point
format conversion.

2.6.3 Floating-Point Multiplication

In contrast to fixed-point operations, multiplication in floating-point is the
simplest of all arithmetic operations and we will discuss this first. In general,
the multiplication of two numbers in scientific format is accomplished by
multiplication of the mantissas and adding of the exponents, i.e.,

f1 × f2 = (a12e1)× (a22e2) = (a1 × a2)2e1+e2 .

For our floating-point format with an implicit one and a biased exponent this
becomes

f1 × f2 = (−1)s1
(
1.m12e1−bias

)× (−1)s2
(
1.m22e2−bias

)

= (−1)s1+s2 mod 2 (1.m1 × 1.m2)︸ ︷︷ ︸
m3

2

e1 + e2 − bias︸ ︷︷ ︸
e3

−bias

= (−1)s3 1.m3 2e3−bias.

We note that the exponent sum needs to be adjusted by the bias, since the
bias is included twice in both exponents. The sign of the product is the XOR
or modulo-2 sum of the two sign bits of the two operands. We need also to
take care of the special values. If one factor is ∞ the product should be ∞
too. Next, we check if one factor is zero and set the product to zero if true.
Because we do not support NaNs, this implies that 0×∞ is set to∞. Special
values may also be produced from original nonspecial operands. If we detect
an overflow, i.e.,

e1 + e2 − bias ≥ Emax,

we set the product to ∞. Likewise, if we detect an underflow, i.e.,

e1 + e2 − bias ≤ Emin,

we set the product to zero. It can be seen that the internal representation of
the exponent e3 of the product, must have two more bits than the two factors,

108 2. Computer Arithmetic

Fig. 2.31. Simulation results for multiplications with floating-point numbers in the
(1,6,5) format.

because we need a sign and a guard bit. Fortunately, the normalization of
the product 1.m3 is relatively simple, because both operands are in the range
1.0 ≤ 1.m1,2 < 2.0, the mantissa product is therefore in the range 1.0 ≤
1.m3 < 4.0, i.e., a shift by one bit (and exponent adjustment by 1) is sufficient
to normalize the product.

Finally, we build the new floating-point number by concatenation of the
sign, exponent, and magnitude.

Figure 2.31 shows the multiplication in the (1,6,5) floating-point format
of the following values (see also last row in Fig. 2.31):

1) (−1)× (−1) = 1.010 = 1.000002× 231−bias

2) 1.75× 1.75 = 3.062510 = 11.00012 × 231−bias = 1.100012 × 232−bias

3) exponent: 7 + 7− bias = −17 < Emin → underflow in multiplication
4) 0×∞ =∞ per definition (NaNs are not supported).
5) −1.75× 0 = −0

The rows 1 to 4 show the first floating-point number f1 and the three parts:
sign, exponent, and mantissa. Rows 5 to 8 show the same for the second
operand f2, and rows 9 to 12 the product f3 and the decomposition of the
three parts.

2.6.4 Floating-Point Addition

Floating-point addition is more complex than multiplication. Two numbers
is scientific format

f3 = f1 + f2 = (a12e1)± (a22e2)

can only be added if the exponents are the same, i.e., e1 = e2. Without loss
of generality we assume in the following that the second number has the

2.6 Floating-Point Arithmetic Implementation 109

(absolute) smaller value. If this is not true, we just exchange the first and the
second number. The next step is now to “denormalize” the smaller number
by using the following identity:

a22e2 = a2/2d2e2+d.

If we select the normalization factor such as e2 + d = e1, i.e., d = e1− e2, we
get

a2/2d2e2+d = a2/2e1−e22e1 .

Now both numbers have the same exponent and we can, depending on the
signs, add or subtract the first mantissa and the aligned second, according to

a3 = a1 ± a2/2e1−e2 .

We need also to check if the second operand is zero. This is the case if e2 = 0
or d > M, i.e., the shift operation reduces the second mantissa to zero. If the
second operand is zero the first (larger) operand is forwarded to the result
f3.

The two aligned mantissas are added if the two floating-point operands
have the same sign, otherwise subtracted. The new mantissa needs to be
normalized to have the 1.m3 format, and the exponent, initially set to e3 = e1,
needs to be adjusted accordingly to the normalization of the mantissa. We
need to determine the number of leading zeros including the first one and
perform a shift logic left (SLL). We also need to take into account if one of
the operands is a special number, or if over- or underflow occurs. If the first
operand is ∞ or the new computed exponent is larger than Emax the output
is set to ∞. This implies that ∞−∞ = ∞ since NaNs are not supported.
If the new computed exponent is smaller than Emin, underflow has occurred
and the output is set to zero. Finally, we concatenate the sign, exponent, and
mantissa to the new floating-point number.

Figure 2.32 shows the addition in the (1,6,5) floating-point format of the
following values (see also last row in Fig. 2.32):

1) 9.25 + (−10.5) = −1.2510 = 1.010002× 231−bias

2) 1.0 + (−1.0) = 0
3) 1.001112× 22−bias + (−1.001002× 22−bias) = 0.000112× 22−bias = 1.12×

2−2−bias → −2 < Emin → underflow
4) 1.011112×262−bias+1.111102×262−bias = 11.011012262−bias = 1.1263−bias

→ 63 ≥ Emax → overflow
5) −∞+ 1 = −∞
The rows 1 to 4 show the first floating-point number f1 and the three parts:
sign, exponent, and mantissa. Rows 5 to 8 show the same for the second
operand f2, and rows 9 to 12 show the sum f3 and the decomposition in the
three parts, sign, exponent, and mantissa.

110 2. Computer Arithmetic

Fig. 2.32. Simulation results for additions with floating-point numbers in the
(1,6,5) format.

2.6.5 Floating-Point Division

In general, the division of two numbers in scientific format is accomplished
by division of the mantissas and subtraction of the exponents, i.e.,

f1/f2 = (a12e1)/(a22e2) = (a1/a2)2e1−e2 .

For our floating-point format with an implicit one and a biased exponent this
becomes

f1/f2 = (−1)s1
(
1.m12e1−bias

)
/(−1)s2

(
1.m22e2−bias

)

= (−1)s1+s2 mod 2 (1.m1/1.m2)︸ ︷︷ ︸
m3

2

e1 − e2 − bias︸ ︷︷ ︸
e3

+bias

= (−1)s31.m32e3+bias.

We note that the exponent sum needs to be adjusted by the bias, since
the bias is no longer present after the subtraction of the exponents. The
sign of the division is the XOR or modulo-2 sum of the two sign bits of
the two operands. The division of the mantissas can be implemented with
any algorithm discussed in Sect. 2.5 (p. 91) or we can use the lpm_divide
component. Because the denominator and quotient has to be at least M+1 bits
wide, but numerator and quotient have the same bit width in the lpm_divide
component, we need to use numerator and quotient with 2 × (M + 1) bits.
Because the numerator and denominator are both in the range 1 ≤ 1.m1,2 <
2, we conclude that the quotient will be in the range 0.5 ≤ 1.m3 < 2. It follows
that a normalization of only one bit (including the exponent adjustment by
1) is required.

2.6 Floating-Point Arithmetic Implementation 111

Fig. 2.33. Simulation results for division with floating-point numbers in the (1,6,5)
format.

We need also to take care of the special values. The result is ∞ if the
numerator is ∞, the denominator is zero, or we detect an overflow, i.e.,

e1 − e2 + bias = e3 ≥ Emax.

Then we check for a zero quotient. The quotient is set to zero if the numerator
is zero, denominator is ∞, or we detect an underflow, i.e.,

e1 − e2 + bias = e3 ≤ Emin.

In all other cases the result is in the valid range that produces no special
result.

Finally, we build the new floating-point number by concatenation of the
sign, exponent, and magnitude.

Figure 2.33 shows the division in the (1,6,5) floating-point format of the
following values (see also last row in Fig. 2.33):

1) (−1)/(−1) = 1.010 = 1.000002× 231−bias

2) −10.5/9.2510 = 1.13510 ≈ 1.0012 × 231−bias

3) 9.25/(−10.5)10 = 0.88095210 ≈ 1.112 × 230−bias

4) exponent: 60− 3 + bias = 88 > Emax → overflow in division
5) exponent: 3− 60 + bias = −26 < Emin → underflow in division
6) 1.0/0 =∞
7) 0/(−1.0) = −0.0

Rows 1 to 4 show the first floating-point number and the three parts: sign,
exponent, and mantissa. Rows 5 to 8 show the same for the second operand,
and rows 9 to 12 show the quotient and the decomposition in the three parts.

112 2. Computer Arithmetic

2.6.6 Floating-Point Reciprocal

Although the reciprocal function of a floating-point number, i.e.,

1.0/f =
1.0

(−1)s1.m2e

= (−1)s2−e/1.m

seems to be less frequently used than the other arithmetic functions, it is
nonetheless useful since it can also be used in combination with the multiplier
to build a floating-point divider, because

f1/f2 =
1.0
f2
× f1,

i.e., reciprocal of the denominator followed by multiplication is equivalent to
the division.

If the bit width of the mantissa is not too large, we may implement the
reciprocal of the mantissa, via a look-up table implemented with a case
statement or with a M4K memory block. Because the mantissa is in the
range 1 ≤ 1.m < 2, the reciprocal must be in the range 0.5 < 1

1.m ≤ 1.
The mantissa normalization is therefore a one-bit shift for all values except
f = 1.0.

The following include file fptab5.mif was generated with the program
fpinv3e.exe 9 (included on the CD-ROM under book3e/util) and shows
the first few values for a 5-bit reciprocal look-up table. The file has the
following contents:

-- This is the floating-point 1/x table for 5 bit data
-- automatically generated with fpinv3e.exe -- DO NOT EDIT!
depth = 32;
width = 5;
address_radix = uns;
data_radix = uns;
content
begin
0 : 0;
1 : 30; -- 30.060606
2 : 28; -- 28.235294
3 : 27; -- 26.514286
4 : 25; -- 24.888889
5 : 23; -- 23.351351
6 : 22; -- 21.894737
7 : 21; -- 20.512821
8 : 19; -- 19.200000

9 You need to copy the program to your harddrive first; you can not start it from
the CD directly.

2.6 Floating-Point Arithmetic Implementation 113

Fig. 2.34. Simulation results for reciprocal with floating-point numbers in the
(1,6,5) format.

....
END;

We also need to take care of the special values. The reciprocal of ∞ is
0, and the reciprocal of 0 is ∞. For all other values the new exponent e2 is
computed with

e2 = −(e1 − bias) + bias = 2× bias− e1.
Finally, we build the reciprocal floating-point number by the concatena-

tion of the sign, exponent, and magnitude.
Figure 2.34 shows the reciprocal in the (1,6,5) floating-point format of the

following values (see also last row in Fig. 2.34):

1) −1/2 = −0.510 = −1.02 × 230−bias

2) 1/1.2510 = 0.810 ≈ (32 + 19)/64 = 1.100112 × 230−bias

3) 1/1.031 = 0.969710 ≈ (32 + 30)/64 = 1.111102 × 230−bias

4) 1.0/0 =∞
5) 1/∞ = 0.0

For the first three values the entries (without leading 1) corresponds to the
MIF file from above for the address line 0, 8, and 1, respectively. Rows 1 to 4
show the input floating-point number f1 and the three parts: sign, exponent,
and mantissa. Rows 5 to 8 show the reciprocal f2 and the decomposition in
the three parts. Notice that for the simulation we have to us a clock signal,
since for Cyclone II device we can not use the M4K blocks without I/O
register. If we use a FLEX10K device it would be possible to use the memory
block also as asynchronous table only without additional I/O registers, see
[57]. In order to align the I/O values in the same time slot without an one
clock cycle delay we use a 10 ns offset.

114 2. Computer Arithmetic

2.6.7 Floating-Point Synthesis Results

In order to measure the Registered Performance, registers were added to
the input and output ports, but no pipelining inside the block has been used.
Table 2.9 shows the synthesis results for all six basic building blocks. As
expected the floating-point adder is more complex than the multiplier or the
divider. The conversion blocks also use substantial resources. The reciprocal
block uses besides the listed LEs also one M4K memory block, or, more
specifically, 160 bits of an M4K.

Table 2.9. Synthesis results for floating-point design using the (1,6,5) data format.

Block MHz LEs 9× 9-bit M4K
embedded memory
multiplier blocks

fix2fp 97.68 163 − −
fp2fix 164.8 114 − −
fp mul 168.24 63 1 −
fp add 57.9 181 − −
fp div 66.13 153 − −
fp rec 331.13 26 − 1

These blocks are available from several “intellectual property” providers,
or through special request via e-mail to Uwe.Meyer-Baese@ieee.org.

2.7 Multiply-Accumulator (MAC) and Sum of Product
(SOP)

DSP algorithms are known to be multiply-accumulate (MAC) intensive. To
illustrate, consider the linear convolution sum given by

y[n] = f [n] ∗ x[n] =
L−1∑

k=0

f [k]x[n− k] (2.44)

requiring L consecutive multiplications and L−1 addition operations per sam-
ple y[n] to compute the sum of products (SOPs). This suggests that a N×N -
bit multiplier need to be fused together with an accumulator, see Fig. 2.35a.
A full-precisionN×N -bit product is 2N bits wide. If both operands are (sym-
metric) signed numbers, the product will only have 2N − 1 significant bits,
i.e., two sign bits. The accumulator, in order to maintain sufficient dynamic
range, is often designed to be an extra K bits in width, as demonstrated in
the following example.

2.7 Multiply-Accumulator (MAC) and Sum of Product (SOP) 115

Example 2.23: The Analog Devices PDSP family ADSP21xx contains a 16×16
array multiplier and an accumulator with an extra 8 bits (for a total accumulator
width of 32+8 = 40 bits). With this eight extra bits, at least 28 accumulations are
possible without sacrificing the output. If both operands are symmetric signed, 29

accumulation can be performed. In order to produce the desired output format, such
modern PDSPs include also a barrelshifter, which allows the desired adjustment
within one clock cycle. 2.23

This overflow consideration in fixed-point PDSP is important to main-
stream digital signal processing, which requires that DSP objects be com-
puted in real time without unexpected interruptions. Recall that checking
and servicing accumulator overflow interrupts the data flow and carries a
significant temporal liability. By choosing the number of guard bits correctly,
the liability can be eliminated.

An alternative approach to the MAC of a conventional PDSP for com-
puting a sum of product will be discussed in the next section.

2.7.1 Distributed Arithmetic Fundamentals

Distributed arithmetic (DA) is an important FPGA technology. It is exten-
sively used in computing the sum of products

y = 〈 c, x 〉 =
N−1∑

n=0

c[n]× x[n]. (2.45)

Besides convolution, correlation, DFT computation and the RNS inverse
mapping discussed earlier can also be formulated as such a “sum of prod-
ucts” (SOPs). Completing a filter cycle, when using a conventional arith-
metic unit, would take approximately N MAC cycles. This amount can be
shortened with pipelining but can, nevertheless, be prohibitively long. This
is a fundamental problem when general-purpose multipliers are used.

In many DSP applications, a general-purpose multiplication is technically
not required. If the filter coefficients c[n] are known a priori, then technically
the partial product term c[n]x[n] becomes a multiplication with a constant
(i.e., scaling). This is an important difference and is a prerequisite for a DA
design.

The first discussion of DA can be traced to a 1973 paper by Croisier [58]
and DA was popularized by Peled and Liu [59]. Yiu [60] extended DA to
signed numbers, and Kammeyer [61] and Taylor [62] studied quantization
effects in DA systems. DA tutorials are available from White [63] and Kam-
meyer [64]. DA also is addressed in textbooks [65, 66]. To understand the
DA design paradigm, consider the “sum of products” inner product shown
below:

116 2. Computer Arithmetic

2
-1

X [N-1]B X [N-1] X [N-1]01

01BX [1] X [1] X [1]

01BX [0] X [0] X [0]

C[0]

X[1] X[0]

C[1]C[N-1]

X[N-1]

...

R
eg

is
te

r

Y

...
(a)

+

R
eg

is
te

r

Y

...

...

...

{Add. 0<=t<B

Sub. t=B

...
(b)

+/-

.
Word shift register Multiplier Accumulator

Accumulator

L
U

T

Arith. tableBit shift register

Pipeline register optional

Fig. 2.35. (a) Conventional PDSP and (b) Shift-Adder DA Architecture.

y = 〈 c, x 〉 =
N−1∑

n=0

c[n]× x[n]

= c[0]x[0] + c[1]x[1] + . . .+ c[N − 1]x[N − 1]. (2.46)

Assume further that the coefficients c[n] are known constants and x[n] is
a variable. An unsigned DA system assumes that the variable x[n] is repre-
sented by:

x[n] =
B−1∑

b=0

xb[n]× 2b with xb[n] ∈ [0, 1], (2.47)

where xb[n] denotes the bth bit of x[n], i.e., the nth sample of x. The inner
product y can, therefore, be represented as:

2.7 Multiply-Accumulator (MAC) and Sum of Product (SOP) 117

y =
N−1∑

n=0

c[n]×
B−1∑

b=0

xb[n]× 2b. (2.48)

Redistributing the order of summation (thus the name “distributed arith-
metic”) results in:

y = c[0]
(
xB−1[0]2B−1 + xB−2[0]2B−2 + . . .+ x0[0]20

)

+c[1]
(
xB−1[1]2B−1 + xB−2[1]2B−2 + . . .+ x0[1]20

)

...
+c[N − 1]

(
xB−1[N − 1]2B−1 + . . .+ x0[N − 1]20

)

= (c[0]xB−1[0] + c[1]xB−1[1] + . . .+ c[N − 1]xB−1[N − 1]) 2B−1

+ (c[0]xB−2[0] + c[1]xB−2[1] + . . .+ c[N − 1]xB−2[N − 1]) 2B−2

...
+ (c[0]x0[0] + c[1]x0[1] + . . .+ c[N − 1]x0[N − 1]) 20,

or in more compact form

y =
B−1∑

b=0

2b ×
N−1∑

n=0

c[n]× xb[n]︸ ︷︷ ︸
f(c[n],xb[n])

=
B−1∑

b=0

2b ×
N−1∑

n=0

f (c[n], xb[n]) . (2.49)

Implementation of the function f(c[n], xb[n]) requires special attention. The
preferred implementation method is to realize the mapping f(c[n], xb[n]) us-
ing one LUT. That is, a 2N -word LUT is preprogrammed to accept an N -bit
input vector xb = [xb[0], xb[1], · · · , xb[N − 1]], and output f(c[n], xb[n]). The
individual mappings f(c[n], xb[n]) are weighted by the appropriate power-of-
two factor and accumulated. The accumulation can be efficiently implemented
using a shift-adder as shown in Fig. 2.35b. After N look-up cycles, the inner
product y is computed.

Example 2.24: Unsigned DA Convolution
A third-order inner product is defined by the inner product equation y =

〈c, x〉 =
2∑

n=0

c[n]x[n]. Assume that the 3-bit coefficients have the values c[0] =

2, c[1] = 3, and c[2] = 1. The resulting LUT, which implements f(c[n], xb[n]),
is defined below:

118 2. Computer Arithmetic

xb[2] xb[1] xb[0] f(c[n], xb[n])

0 0 0 1× 0+3× 0+2× 0=010=0002

0 0 1 1× 0+3× 0+2× 1=210=0102

0 1 0 1× 0+3× 1+2× 0=310=0112

0 1 1 1× 0+3× 1+2× 1=510=1012

1 0 0 1× 1+3× 0+2× 0=110=0012

1 0 1 1× 1+3× 0+2× 1=310=0112

1 1 0 1× 1+3× 1+2× 0=410=1002

1 1 1 1× 1+3× 1+2× 1=610=1102

The inner product, with respect to x[n] = {x[0] = 110 = 0012, x[1] = 310 =
0112, x[2] = 710 = 1112}, is obtained as follows:

Step t xt[2] xt[1] xt[0] f [t] +ACC[t− 1]=ACC[t]

0 1 1 1 6× 20+ 0 = 6
1 1 1 0 4× 21+ 6 = 14
2 1 0 0 1× 22+ 14 = 18

As a numerical check, note that

y = 〈c, x〉 = c[0]x[0] + c[1]x[1] + c[2]x[2]

= 2× 1 + 3× 3 + 1× 7 = 18.�
2.24

For a hardware implementation, instead of shifting each intermediate
value by b (which will demand an expensive barrelshifter) it is more ap-
propriate to shift the accumulator content itself in each iteration one bit to
the right. It is easy to verify that this will give the same results.

The bandwidth of an N th-order B-bit linear convolution, using general-
purpose MACs and DA hardware, can be compared. Figure 2.35 shows the
architectures of a conventional PDSP and the same realization using dis-
tributed arithmetic.

Assume that a LUT and a general-purpose multiplier have the same delay
τ = τ(LUT) = τ(MUL). The computational latencies are then Bτ(LUT) for
DA andNτ(MUL) for the PDSP. In the case of small bit width B, the speed of
the DA design can therefore be significantly faster than a MAC-based design.
In Chap. 3, comparisons will be made for specific filter design examples.

2.7.2 Signed DA Systems

In the following, we wish to discuss how (2.46) should be modified, in order to
process a signed two’s complement number. In two’s complement, the MSB is
used to distinguish between positive and negative numbers. For instance, from
Table 2.1 (p. 57) we see that decimal −3 is coded as 1012 = −4+0+1 = −310.
We use, therefore, the following (B + 1)-bit representation

x[n] = −2B × xB [n] +
B−1∑

b=0

xb[n]× 2b. (2.50)

2.7 Multiply-Accumulator (MAC) and Sum of Product (SOP) 119

Combining this with (2.48), the outcome y is defined by:

y = −2B × f(c[n], xB[n]) +
B−1∑

b=0

2b ×
N−1∑

n=0

f (c[n], xb[n]) . (2.51)

To achieve the signed DA system we therefore have two choices to modify
the unsigned DA system. They are

• An accumulator with add/subtract control
• Using a ROM with one additional input

Most often the switchable accumulator is preferred, because the additional
input bit in the table requires a table with twice as many words. The following
example demonstrates the processing steps for the add/sub switch design.

Example 2.25: Signed DA Inner Product
Consider again a third-order inner product defined by the convolution sum

y = 〈c, x〉 =
2∑

n=0

c[n]x[n]. Assume that the data x[n] is given in 4-bit two’s

complement encoding and that the coefficients are c[0] = −2, c[1] = 3, and
c[2] = 1. The corresponding LUT table is given below:

xb[2] xb[1] xb[0] f(c[k], xb[n])

0 0 0 1× 0+3× 0−2× 0= 010

0 0 1 1× 0+3× 0−2× 1=−210

0 1 0 1× 0+3× 1−2× 0= 310

0 1 1 1× 0+3× 1−2× 1= 110

1 0 0 1× 1+3× 0−2× 0= 110

1 0 1 1× 1+3× 0−2× 1=−110

1 1 0 1× 1+3× 1−2× 0= 410

1 1 1 1× 1+3× 1−2× 1= 210

The values of x[k] are x[0] = 110 = 00012C , x[1] = −310 = 11012C , and
x[2] = 710 = 01112C. The output at sample index k, namely y, is defined as
follows:

Step t xt[2] xt[1] xt[0] f [t]× 2t +Y [t− 1]=Y [t]

0 1 1 1 2× 20 + 0 = 2
1 1 0 0 1× 21 + 2 = 4
2 1 1 0 4× 22 + 4 = 20

xt[2] xt[1] xt[0] f [t]× (−2t)+Y [t− 1]=Y [t]

3 0 1 0 3× (−23) + 20 =−4

A numerical check results in c[0]x[0]+c[1]x[1]+c[2]x[2] = −2×1+3×(−3)+
1× 7 = −4 � 2.25

120 2. Computer Arithmetic

2.7.3 Modified DA Solutions

In the following we wish to discuss two interesting modifications to the ba-
sic DA concept, where the first variation reduces the size, and the second
increases the speed.

If the number of coefficients N is too large to implement the full word
with a single LUT (recall that input LUT bit width = number of coefficients),
then we can use partial tables and add the results. If we also add pipeline
registers, this modification will not reduce the speed, but can dramatically
reduce the size of the design, because the size of a LUT grows exponentially
with the address space, i.e., the number of input coefficients N. Suppose the
length LN inner product

y = 〈c, x〉 =
LN−1∑

n=0

c[n]x[n] (2.52)

is to be implemented using a DA architecture. The sum can be partitioned
into L independent N th parallel DA LUTs resulting in

y = 〈c, x〉 =
L−1∑

l=0

N−1∑

n=0

c[Ll + n]x[Ll+ n]. (2.53)

This is shown in Fig. 2.36 for a realization of a 4N DA design requiring three
postadditional adders. The size of the table is reduced from one 24N×B LUT
to four 2N ×B tables.

Another variation of the DA architecture increases speed at the expense
of additional LUTs, registers, and adders. A basic DA architecture, for a
length N th sum-of-product computation, accepts one bit from each of N
words. If two bits per word are accepted, then the computational speed can
be essentially doubled. The maximum speed can be achieved with the fully
pipelined word-parallel architecture shown in Fig. 2.37. Here, a new result
of a length four sum-of-product is computed for 4-bit signed coefficients at
each LUT cycle. For maximum speed, we have to provide a separate ROM
(with identical content) for each bit vector xb[n]. But the maximum speed
can become expensive: If we double the input bit width, we need twice as
many LUTs, adders and registers. If the number of coefficients N is limited
to four or eight this modification gives attractive performance, essentially
outperforming all commercially available programmable signal processors, as
we will see in Chap. 3.

2.8 Computation of Special Functions Using CORDIC

If a digital signal processing algorithm is implemented with FPGAs and the
algorithm uses a nontrivial (transcendental) algebraic function, like

√
x or

2.8 Computation of Special Functions Using CORDIC 121

2
-1

+

R
eg

is
te

r

Y

{Add. 0<=t<B

Sub. t=B

+/-
...

...

...

R
O

M
01BX [3N-1] X [3N-1] X [3N-1]

...

...

...

R
O

M

X [4N-1] X [4N-1] X [4N-1]01B

B 1 0X [3N] X [3N] X [3N]

...

...
...

R
O

M

01B

...

...

...

R
O

M

01B

B 1 0

+

+

B 1 0

B 1 0X [2N]X [2N]X [2N]

X [0] X [0] X [0]

X [N-1]X [N-1]X [N-1]

X [N] X [N]X [N]

X [2N-1]X [2N-1]X [2N-1]

Pipeline-Register optional

Fig. 2.36. Distributed arithmetic with table partitioning to yield a reduced size.

arctan y/x, we can always use the Taylor series to approximate this function,
i.e.,

f(x) =
K∑

k=0

fk(x0)
k!

(x − x0)k, (2.54)

where fk(x) is the kth derivative of f(x) and k! = k × (k − 1) . . . × 1. The
problem is then reduced to a sequence of multiply and add operations. A
more efficient, alternative approach, based on the Coordinate Rotation Dig-
ital Computer (CORDIC) algorithm can also be considered. The CORDIC
algorithm is found in numerous applications, such as pocket calculators [67],
and in mainstream DSP objects, such as adaptive filters, FFTs, DCTs [68],
demodulators [69], and neural networks [40]. The basic CORDIC algorithm
can be found in two classic papers by Volder [70] and Walther [71]. Some
theoretical extensions have been made, such as the extension of range in the
hyperbolic mode, or the quantization error analysis by Hu et al. [72], and
Meyer-Bäse et al. [69]. VLSI implementations have been discussed in Ph.D.
theses, such as those by Timmermann [73] and Hahn [74]. The first FPGA
implementations were investigated by Meyer-Bäse et al. [4, 69]. The realiza-
tion of the CORDIC algorithm in distributed arithmetic was investigated by
Ma [75]. A very detailed overview including details of several applications,
was provided by Hu [68] in a 1992 IEEE Signal Processing Magazine review
paper.

122 2. Computer Arithmetic

+

X [0]B

2

0X [0]

1

X [0]

X [0]

+

+

Pipeline-Register optional

...

R
O

M
R

O
M

...

R
O

M

0

...

R
O

M

X [N-1]
...

B

2

1

2

2

21

2

B -

YX [N-1]

X [N-1]

X [N-1]

Fig. 2.37. Higher-order distributed arithmetic optimized for speed.

The original CORDIC algorithm by Volder [70] computes a multiplier-
free coordinate conversion between rectangular (x, y) and polar (R, θ) coor-
dinates. Walther [71] generalized the CORDIC algorithm to include circular
(m = 1), linear (m = 0), and hyperbolic (m = −1) transforms. For each
mode, two rotation directions are identified. For vectoring, a vector with
starting coordinates (X0, Y0) is rotated in such a way that the vector finally
lies on the abscissa (i.e., x axis) by iteratively converging YK to zero. For ro-
tation, a vector with a starting coordinate (X0, Y0) is rotated by an angle θ0
in such a way that the final value of the angle register, denoted Z, converges
to zero. The angle θk is chosen so that each iteration can be performed with
an addition and a binary shift. Table 2.10 shows, in the second column, the
choice for the rotation angle for the three modes m = 1, 0, and −1.

Now we can formally define the CORDIC algorithm as follows:

2.8 Computation of Special Functions Using CORDIC 123

Table 2.10. CORDIC algorithm modes.

Mode Angle θk Shift sequence Radius factor

circular m = 1 tan−1(2−k) 0, 1, 2, . . . K1 = 1.65
linear m = 0 2−k 1, 2, . . . K0 = 1.0
hyperbolic m = −1 tanh−1(2−k) 1, 2, 3, 4, 4, . . . K−1 = 0.80

Algorithm 2.26: CORDIC Algorithm

At each iteration, the CORDIC algorithm implements the mapping:[
Xk+1

Yk+1

]
=
[

1 mδk2−k

δk2−k 1

] [
Xk

Yk

]
(2.55)

Zk+1 = Zk + δkθk,
where the angle θk is given in Table 2.10, δk = ±1, and the two rotation
directions are ZK → 0 and YK → 0.

This means that six operational modes exist, and they are summarized in
Table 2.11. A consequence is that nearly all transcendental functions can be
computed with the CORDIC algorithm. With a proper choice of the initial
values, the function X × Y, Y/X, sin(Z), cos(Z), tan−1(Y), sinh(Z), cosh(Z),
and tanh(Z) can directly be computed. Additional functions may be gener-
ated by choosing appropriate initialization, sometimes combined with multi-
ple modes of operation, as shown in the following listing:

tan(Z)=sin(Z)/ cos(Z) Modes: m=1, 0
tanh(Z)=sinh(Z)/ cosh(Z) Modes: m=−1, 0
exp(Z)=sinh(Z) + cosh(Z) Modes: m=−1; x = y = 1

loge(W)=2 tanh−1(Y/X) Modes: m=−1
with X =W + 1, Y = W − 1√

W=
√
X2 − Y 2 Modes: m=1

with X =W + 1
4 , Y = W − 1

4 .

Table 2.11. Modes m of operation for the CORDIC algorithm.

m ZK → 0 YK → 0

1 XK = K1(X0 cos(Z0)− Y0 sin(Z0)) XK = K1

√
X2

0 + Y 2
0

YK = K1(X0 cos(Z0) + Y0 sin(Z0)) ZK = Z0 + arctan(Y0/X0)

0 XK = X0 XK = X0

YK = Y0 + X0 × Z0 ZK = Z0 + Y0/X0

−1 XK = K−1(X0 cosh(Z0)− Y0 sinh(Z0)) XK = K−1

√
X2

0 + Y 2
0

YK = K−1(X0 cosh(Z0) + Y0 sinh(Z0)) ZK = Z0 + tanh−1(Y0/X0)

124 2. Computer Arithmetic

−1 0 1 2
−1

−0.5

0

0.5

1

0

1

2

3

4
5

(b)

0 0.5 1 1.5 2
0

0.5

1

1.5
(a)

m= 1
m= 0
m=−1

Fig. 2.38. CORDIC. (a) Modes. (b) Example of circular vectoring.

A careful analysis of (2.55) reveals that the iteration vectors only approach
the curves shown in Fig. 2.38a. The length of the vectors changes with each
iteration, as shown in Fig. 2.38b. This change in length does not depend
on the starting angle and after K iterations the same change (called radius
factor) always occurs. In the last column of Table 2.10 these radius factors
are shown. To ensure that the CORDIC algorithm converges, the sum of all
remaining rotation angles must be larger than the actual rotation angle. This
is the case for linear and circular transforms. For the hyperbolic mode, all
iterations of the form nk+1 = 3nk + 1 have to be repeated. These are the
iterations 4, 13, 40, 121

Contour line 8 bit
Contour line 10 bit

Contour line 12 bit
Contour line 14 bit

8
12

16
20

8101214161820

4

8

12

16

20

Iterations n
Bit width b

Effective bits

Fig. 2.39. Effective bits in circular mode.

2.8 Computation of Special Functions Using CORDIC 125

6.5

7

7.5

8

8.5

9

9.5

10

10.5

11

11.5

10 11 12 13 14 15 16 17 18

E
ffe

ct
iv

e
Z

Z register width

[Hu92]
Mean

Minimum

Fig. 2.40. Resolution of phase for circular mode.

Output precision can be estimated using a procedure developed by Hu
[76] and illustrated in Fig. 2.39. The graph shows the effective bit precision
for the circular mode, depending on the X,Y path width, and the number
of iterations. If b bits is the desired output precision, the “rule of thumb”
suggests that the X,Y path should have log2(b) additional guard bits. From
Fig. 2.40, it can also be seen that the bit width of the Z path should have
the same precision as that for X and Y .

In contrast to the circular CORDIC algorithm, the effective resolution of
a hyperbolic CORDIC cannot be computed analytically because the preci-
sion depends on the angular values of z(k) at iteration k. Hyperbolic precision
can, however, be estimated using simulation. Figure 2.41 shows the minimum
accuracy estimate computed over 1000 test values for each bit-width/number
combination of the possible iterations. The 3D representation shows the num-
ber of iterations, the bit width of the X/Y path, and the resulting minimum
precision of the result in terms of effective bits. The contour lines allow an
exchange between the number of iterations and the bit width. For example,
to achieve 10-bit precision, one can use a 21-bit X/Y path and 18 iterations,
or 14 iterations at 24 bits.

2.8.1 CORDIC Architectures

Two basic structures are used to implement a CORDIC architecture: the
more compact state machine or the high-speed, fully pipelined processor.

If computation time is not critical, then a state machine as shown in
Fig. 2.42 is applicable. In each cycle, exactly one iteration of (2.55) will be
computed. The most complex part of this design is the two barrelshifters. The
two barrelshifters can be replaced by a single barrelshifter, using a multiplexer
as shown in Fig. 2.43, or a serial (right, or right/left) shifter. Table 2.12

126 2. Computer Arithmetic

Contour line 8 bit

Contour line 10 bit

Contour line 12 bit

10

15

20

25

17
19

21
23

25

5
6
7
8
9

10
11
12
13
14
15

Iterations

Bit width X/Y

Effective bits

Fig. 2.41. Effective bits in hyperbolic mode.

compares different design options for a 13-bit implementation using Xilinx
XC3K FPGAs.

X-register Z-registerY -register

2−(i−2)Y 2−(i−2)X

Xi ± 2−(i−2)Yi Zi ± αiYi ∓ 2−(i−2)Xi

Table αi

i

��

±

�
i

�

±

Fig. 2.42. CORDIC state machine.

If high speed is needed, a fully pipelined version of the design shown
in Fig. 2.44 can be used. Figure 2.44 shows eight iterations of a circular
CORDIC. After an initial delay of K cycles, a new output value becomes

2.8 Computation of Special Functions Using CORDIC 127

Table 2.12. Effort estimation (Xilinx XC3K) for a CORDIC a machine with 13-
bits plus sign for X/Y path. (Abbreviations: Ac=accumulator; BS=barrelshifter;
RS=serial right shifter; LRS=serial left/right shifter)

Structure Registers Multiplexer Adder Shifter
∑

LE Cycle

2BS+2Ac 2×7 0 2×14 2×19.5 81 12
2RS+2Ac 2×7 0 2×14 2×6.5 55 46
2LRS+2Ac 2×7 0 2×14 2×8 58 39

1BS+2Ac 7 3×7 2×14 19.5 75.5 20
1RS+2Ac 7 3×7 2×14 6.5 62.5 56
1LRS+2Ac 7 3×7 2×14 8 64 74

1BS+1Ac 3×7 2×7 14 19.5 68.5 20
1RS+1Ac 3×7 2×7 14 6.5 55.5 92
1LRS+1Ac 3×7 2×7 14 8 57 74

X-register Z-registerY -register

2−(i−2)U

Zi ∓ αi

Table αi

i

�

±

i

�

±

Xa-register

MPX U MPX V

Ui ± 2−(i−2)Vi

Fig. 2.43. CORDIC machine with reduced complexity.

available after each cycle. As with array multipliers, CORDIC implementa-
tions have a quadratic growth in LE complexity as the bit width increases
(see Fig. 2.44).

The following example shows the first four steps of a circular-vectoring
fully pipelined design.

Example 2.27: Circular CORDIC in Vectoring Mode
The first iteration rotates the vectors from the second or third quadrant
to the first or fourth, respectively. The shift sequence is 0,0,1, and 2. The

128 2. Computer Arithmetic

X2 = ±Y1 Y2 = ∓X1

X3 = X2 ± 20Y2 Y3 = Y2 ∓ 20X2 θ3 = θ2 ± α2

SHIFT:0
SHIFT:0

� �

�

��
�� α2

X1 Y1

θ2 = ±α1

�
α1

��

� �

� �
YX

X4 = X3 ± 2−1Y3 Y4 = Y3 ∓ 2−1X3 θ4 = θ3 ± α2

SHIFT:1
SHIFT:1

� �

�

��
�� α3��

X5 = X4 ± 2−2Y4 Y5 = Y4 ∓ 2−2X4 θ5 = θ4 ± α3

SHIFT:2
SHIFT:2

� �

�

��
�� α3��

X6 = X5 ± 2−3Y5 Y6 = Y5 ∓ 2−3X5 θ6 = θ5 ± α5

SHIFT:3
SHIFT:3

� �

�

��
�� α5��

X7 = X6 ± 2−4Y6 Y7 = Y6 ∓ 2−4X6 θ7 = θ6 ± α6

SHIFT:4
SHIFT:4

� �

�

��
�� α6��

X8 = X7 ± 2−5Y7 Y8 = Y7 ∓ 2−5X7 θ8 = θ7 ± α7

SHIFT:5
SHIFT:5

� �

�

��
�� α7��

� � �KnXn θn

�

�

�

�

�

�

Fig. 2.44. Fast CORDIC pipeline.

rotation angle of the first four steps becomes: arctan(∞) = 90◦, arctan(20) =
45◦, arctan(2−1) = 26.5◦, and arctan(2−2) = 14◦. The VHDL code10 for 8-bit
data can be implemented as follows:

PACKAGE eight_bit_int IS -- User-defined types
SUBTYPE BYTE IS INTEGER RANGE -128 TO 127;
TYPE ARRAY_BYTE IS ARRAY (0 TO 3) OF BYTE;

END eight_bit_int;

LIBRARY work;
USE work.eight_bit_int.ALL;

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
USE ieee.std_logic_arith.ALL;

10 The equivalent Verilog code cordic.v for this example can be found in Ap-
pendix A on page 674. Synthesis results are shown in Appendix B on page 731.

2.8 Computation of Special Functions Using CORDIC 129

ENTITY cordic IS ------> Interface
PORT (clk : IN STD_LOGIC;

x_in , y_in : IN BYTE;
r, phi, eps : OUT BYTE);

END cordic;

ARCHITECTURE fpga OF cordic IS
SIGNAL x, y, z : ARRAY_BYTE:= (0,0,0,0);

BEGIN -- Array of Bytes

PROCESS ------> Behavioral Style
BEGIN
WAIT UNTIL clk = ’1’; -- Compute last value first in
r <= x(3); -- sequential VHDL statements !!
phi <= z(3);
eps <= y(3);

IF y(2) >= 0 THEN -- Rotate 14 degrees
x(3) <= x(2) + y(2) /4;
y(3) <= y(2) - x(2) /4;
z(3) <= z(2) + 14;

ELSE
x(3) <= x(2) - y(2) /4;
y(3) <= y(2) + x(2) /4;
z(3) <= z(2) - 14;

END IF;

IF y(1) >= 0 THEN -- Rotate 26 degrees
x(2) <= x(1) + y(1) /2;
y(2) <= y(1) - x(1) /2;
z(2) <= z(1) + 26;

ELSE
x(2) <= x(1) - y(1) /2;
y(2) <= y(1) + x(1) /2;
z(2) <= z(1) - 26;

END IF;

IF y(0) >= 0 THEN -- Rotate 45 degrees
x(1) <= x(0) + y(0);
y(1) <= y(0) - x(0);
z(1) <= z(0) + 45;

ELSE
x(1) <= x(0) - y(0);
y(1) <= y(0) + x(0);
z(1) <= z(0) - 45;

END IF;

-- Test for x_in < 0 rotate 0,+90, or -90 degrees
IF x_in >= 0 THEN

x(0) <= x_in; -- Input in register 0
y(0) <= y_in;
z(0) <= 0;

130 2. Computer Arithmetic

Fig. 2.45. CORDIC simulation results.

ELSIF y_in >= 0 THEN
x(0) <= y_in;
y(0) <= - x_in;
z(0) <= 90;

ELSE
x(0) <= - y_in;
y(0) <= x_in;
z(0) <= -90;

END IF;
END PROCESS;

END fpga;

Figure 2.45 shows the simulation of the conversion of X0 = −41, and Y0 = 55.

Note that the radius is enlarged to R = XK = 111 = 1.618
√

X2
0 + Y 2

0 and the
accumulated angle in degrees is arctan(Y0/X0) = 123◦. The design requires
235 LEs and runs with a Speed synthesis optimization at 222.67 MHz using
no embedded multiplier. 2.27

The actual LE count in the previous example is larger than that expected
for a four-stage 8-bit pipeline design that is 5×8×3 = 120LEs. The increase
by a factor of two comes from the fact that a FPGA uses an N -bit switchable
LPM_ADD_SUB megafunction that needs 2N LEs. It needs 2N LEs because the
LE has only three inputs in the fast arithmetic mode, and the switch mode
needs four input LUTs. A Xilinx XC4K type LE, see Fig. 1.12, p. 19, would
be needed, with four inputs per LE, to reduce the count by a factor of two.

2.9 Computation of Special Functions using MAC Calls

The CORDIC algorithm introduced in the previous section allows one to
implement a wide variety of functions at a moderate implementation cost.

2.9 Computation of Special Functions using MAC Calls 131

The only disadvantage is that some high-precision functions need a large
number of iterations, because the number of bits is linearly proportional to
the number of iterations. In a pipelined implementation this results in a large
latency.

With the advent of fast embedded array multipliers in new FPGA families
like Spartan or Cyclone, see Table 1.4 (p. 11), the implementation of special
functions via a polynomial approximation has becomes a viable option. We
have introduced the Taylor series approximation in (2.54), p. 121. The Tay-
lor series approximation converges fast for some functions, e.g., exp(x), but
needs many product terms for some other special functions, e.g., arctan(x),
to approximate with sufficient precision. In these cases a Chebyshev approx-
imation can be used to shorten the number of iterations or product terms
required.

2.9.1 Chebyshev Approximations

The Chebyshev approximation is based on the Chebyshev polynomial

Tk(x) = cos (k × arccos(x)) (2.56)

defined for the range −1 ≤ x ≤ 1. The Tk(x) may look like trigonometric
functions, but using some algebraic identities and manipulations allow us to
write (2.56) as a true polynomial. The first few polynomials look like

T0(x) = 1
T1(x) = x

T2(x) = 2x2 − 1
T3(x) = 4x3 − 3x (2.57)
T4(x) = 8x4 − 8x2 + 1
T5(x) = 16x5 − 20x3 + 5x
T6(x) = 32x6 − 48x4 + 18x2 − 1

...

In [77] we find a list of the first 12 polynomials. The first six polynomials are
graphical interpreted in Fig.2.46. In general, Chebyshev polynomials obey
the following iterative rule

Tk(x) = 2xTk−1(x) − Tk−2(x) ∀ k ≥ 2. (2.58)

A function approximation can now be written as

f(x) =
N−1∑

k=0

c(k)Tk(x). (2.59)

Because all discrete Chebyshev polynomials are orthogonal to each other
it follows that forward and inverse transform are unique, i.e., bijective [78,

132 2. Computer Arithmetic

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x

A
m

pl
itu

de
 T

n(x
)

T
0

T
1

T
2

T
3

T
4

T
5

Fig. 2.46. The first 6 Chebyshev polynomials .

p. 191]. The question now is why (2.59) is so much better than, for instance,
a polynomial using the Taylor approximation (2.54)

f(x) =
N−1∑

k=0

fk(x0)
k!

(x − x0)k =
N−1∑

k=0

p(k)(x− x0)k, (2.60)

There are mainly three reasons. First (2.59) is a very close (but not exact)
approximation to the very complicated problem of finding the function ap-
proximation with a minimum of the maximum error, i.e., an optimization
of the l∞ norm max(f(x) − f̂(x)) → min . The second reason we prefer
(2.59) is the fact, that a pruned polynomial with M << N still gives a min-
imum/maximum approximation, i.e., a shorter sum still gives a Chebyshev
approximation as if we had started the computation with M as the target
from the very start. Last but not least we gain from the fact that (2.59)
can be computed (for all functions of relevance) with much fewer coefficients
than would be required for a Taylor approximation of the same precision.
Let us study these special function approximation in the following for pop-
ular functions, like trigonometric, exponential, logarithmic, and the square
root functions.

2.9 Computation of Special Functions using MAC Calls 133

1 2 3 4 5 6

4

8

12

16

20

Number of coefficients

P
re

ci
si

on
 in

 b
its

(d)

−1.5 −1 −0.5 0 0.5 1 1.5

−1

−0.5

0

0.5

1

x

f(
x)

(a)

Exact
Q8

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

x 10
−3

x

G
ue

ss
(x

)−
E

xa
ct

(x
)

(b)

error

0 1 2 3 4 5

−0.2

0

0.2

0.4

0.6

0.8

1

k

C
oe

ffi
ci

en
t c

(k
),

p(
k)

,g
(k

)

(c)
Chebyshev c(k)
Polynomial g(k)
Taylor p(k)

Fig. 2.47. Inverse tangent function approximation. (a) Comparison of full-
precision and 8-bit quantized approximations. (b) Error of quantized approxi-
mation for x ∈ [−1, 1]. (c) Chebyshev, polynomial from Chebyshev, and Taylor
polynomial coefficients. (d) Error of the three pruned polynomials.

2.9.2 Trigonometric Function Approximation

As a first example we study the inverse tangent function

f(x) = arctan(x), (2.61)

where x is specified for the range −1 ≤ x ≤ 1. If we need to evaluate function
values outside this interval, we can take advantage of the relation

arctan(x) = 0.5− arctan(1/x). (2.62)

Embedded multipliers in Altera FPGAs have a basic size of 9× 9 bits, i.e., 8
bits plus sign bit data format, or 18×18 bit, i.e., 17 bits plus sign data format.
We will therefore in the following always discuss two solutions regarding these
two different word sizes.

Fig. 2.47a shows the exact value and approximation for 8-bit quantiza-
tion, and Fig. 2.47b displays the error, i.e., the difference between the exact
function value and the approximation. The error has the typical alternating

134 2. Computer Arithmetic

minimum/maximum behavior of all Chebyshev approximations. The approx-
imation with N = 6 already gives an almost perfect approximation. If we use
fewer coefficients, e.g., N = 2 or N = 4, we will have a more-substantial
error, see Exercise 2.26 (p. 162).

For 8-bit precision we can see from Fig. 2.47d that N = 6 coefficients
are sufficient. From Fig. 2.47c we conclude that all even coefficients are zero,
because arctan(x) is an odd symmetric function with respect to x = 0. The
function to be implemented now becomes

f(x) =
N−1∑

k=0

c(k)Tk(x)

f(x) = c(1)T1(x) + c(3)T3(x) + c(5)T5(x)
f(x) = 0.8284T1(x) − 0.0475T3(x) + 0.0055T5(x). (2.63)

To determine the function values in (2.63) we can substitute the Tn(x) from
(2.57) and solve (2.63). It is however more efficient to use the iterative rule
(2.58) for the function evaluation. This is known as Clenshaw’s recurrence
formula [78, p. 193] and works as follows:

d(N) = d(N + 1) = 0
d(k) = 2xd(k + 1)− d(k + 2) + c(k) k = N − 1, N − 2, . . . , 1
f(x) = d(0) = xd(1)− d(2) + c(0) (2.64)

For our N = 6 system with even coefficients equal to zero we can simplify
(2.64) to

d(5) = c(5)
d(4) = 2xc(5)
d(3) = 2xd(4)− d(5) + c(3)
d(2) = 2xd(3)− d(4)
d(1) = 2xd(2)− d(3) + c(1)
f(x) = xd(1)− d(2). (2.65)

We can now start to implement the arctan(x) function approximation in
HDL.

Example 2.28: arctan Function Approximation
If we implement the arctan(x) using the embedded 9 × 9 bit multipliers we
have to take into account that our values are in the range −1 ≤ x < 1.
We therefore use a fractional integer representation in a 1.8 format. In our
HDL simulation these fractional numbers are represented as integers and the
values are mapped to the range −256 ≤ x < 256. We can use the same
number format for our Chebyshev coefficients because they are all less than
1, i.e., we quantize

2.9 Computation of Special Functions using MAC Calls 135

c(1) = 0.8284 = 212/256, (2.66)

c(3) = −0.0475 = −12/256, (2.67)

c(5) = 0.0055 = 1/256. (2.68)

The following VHDL code11 shows the arctan(x) approximation using poly-
nomial terms up to N = 6.

PACKAGE n_bits_int IS -- User-defined types
SUBTYPE BITS9 IS INTEGER RANGE -2**8 TO 2**8-1;
TYPE ARRAY_BITS9_4 IS ARRAY (1 TO 5) of BITS9;

END n_bits_int;

LIBRARY work;
USE work.n_bits_int.ALL;

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
USE ieee.std_logic_arith.ALL;
USE ieee.std_logic_signed.ALL;

ENTITY arctan IS ------> Interface
PORT (clk : IN STD_LOGIC;

x_in : IN BITS9;
d_o : OUT ARRAY_BITS9_4;
f_out : OUT BITS9);

END arctan;

ARCHITECTURE fpga OF arctan IS

SIGNAL x,f,d1,d2,d3,d4,d5 : BITS9; -- Auxilary signals
SIGNAL d : ARRAY_BITS9_4 := (0,0,0,0,0);-- Auxilary array
-- Chebychev coefficients for 8-bit precision:
CONSTANT c1 : BITS9 := 212;
CONSTANT c3 : BITS9 := -12;
CONSTANT c5 : BITS9 := 1;

BEGIN

STORE: PROCESS ------> I/O store in register
BEGIN
WAIT UNTIL clk = ’1’;
x <= x_in;
f_out <= f;

END PROCESS;

--> Compute sum-of-products:
SOP: PROCESS (x,d)
BEGIN

-- Clenshaw’s recurrence formula
d(5) <= c5;
d(4) <= x * d(5) / 128;
d(3) <= x * d(4) / 128 - d(5) + c3;

11 The equivalent Verilog code arctan.v for this example can be found in Ap-
pendix A on page 676. Synthesis results are shown in Appendix B on page 731.

136 2. Computer Arithmetic

Fig. 2.48. VHDL simulation of the arctan(x) function approximation for the values
x = −1 = −256/256, x = −0.5 = −128/256, x = 0, x = 0.5 = 128/256, x = 1 ≈
255/256.

d(2) <= x * d(3) / 128 - d(4);
d(1) <= x * d(2) / 128 - d(3) + c1;
f <= x * d(1) / 256 - d(2); -- last step is different
END PROCESS SOP;

d_o <= d; -- Provide some test signals as outputs

END fpga;
The first PROCESS is used to infer registers for the input and output data.
The next PROCESS blocks SOP include the computation of the Chebyshev
approximation using Clenshaw’s recurrence formula. The iteration variables
d(k) are also connected to the output ports so we can monitor them. The
design uses 100 LEs, 4 embedded multipliers and has a 32.09 MHz Registered
Performance. Comparing FLEX and Cyclone synthesis data we can conclude
that the use of embedded multipliers saves many LEs.
A simulation of the arctan function approximation is shown in Fig. 2.48. The
simulation shows the result for five different input values:

x f(x) = arctan(x) f̂(x) |error| Eff. bits

-1.0 -0.7854 −201/256 = −0.7852 0.0053 7.6
-0.5 -0.4636 −118/256 = −0.4609 0.0027 7.4
0 0.0 0 0 −
0.5 0.4636 118/256 = 0.4609 0.0027 7.4
1.0 0.7854 200/256 = 0.7812 0.0053 7.6

Note that, due to the I/O registers, the output values appear with a delay of
one clock cycle. 2.28

If the precision in the previous example is not sufficient we can use more
coefficients. The odd Chebyshev coefficients for 16-bit precision, for instance,
would be

c(2k + 1) = (0.82842712,−0.04737854, 0.00487733,
−0.00059776, 0.00008001,−0.00001282). (2.69)

2.9 Computation of Special Functions using MAC Calls 137

1 2 3 4 5 6

4

8

12

16

20

Number of coefficients

P
re

ci
si

on
 in

 b
its

(d)

−1 0 1 2
−1

−0.5

0

0.5

1

x

f(
x)

(a)

Exact
Q16

0 0.2 0.4 0.6 0.8 1

−14

−12

−10

−8

−6

−4

−2

0

x 10
−6

x

G
ue

ss
(x

)−
E

xa
ct

(x
)

(b)

error

0 1 2 3 4 5

−0.5

0

0.5

1

1.5

k

C
oe

ffi
ci

en
t c

(k
),

p(
k)

,g
(k

)

(c) Chebyshev c(k)
Polynomial g(k)
Taylor p(k)

Fig. 2.49. Sine function approximation. (a) Comparison of full-precision and 8-bit
quantized approximations. (b) Error of quantized approximation for x ∈ [0, 1]. (c)
Chebyshev, polynomial from Chebyshev, and Taylor polynomial coefficients. (d)
Error of the three pruned polynomials.

If we compare this with the Taylor series coefficient

arctan(x) = x− x3

3
+
x5

5
+ . . . (−1)k x

2k+1

2k + 1
(2.70)

p(2k + 1) = (1,−0.3̄, 0.2,−0.14285714, 0.1̄,−0.09)

we see that the Taylor coefficients converge very slowly compared with the
Chebyshev approximation.

There are two more common trigonometric functions. On is the sin(x)
and the other is the cos(x) function. There is however a small problem with
these functions. The argument is usually defined only for the first quadrant,
i.e., 0 ≤ x ≤ π/2, and the other quadrants values are computed via

sin(x) = − sin(−x) sin(x) = sin(π/2− x) (2.71)

or equivalent for the cos(x) we use

cos(x) = cos(−x) cos(x) = − cos(π/2− x). (2.72)

138 2. Computer Arithmetic

We may also find that sometimes the data are normalized f(x) = sin(xπ/2) or
degree values are used, i.e., 0◦ ≤ x ≤ 90◦. Figure 2.49a shows the exact value
and approximation for 16-bit quantization, and Fig. 2.49b displays the error,
i.e., the difference between the exact function values and the approximation.
In Fig. 2.50 the same data are plotted for the cos(xπ/2) function. The problem
now is that our Chebyshev polynomials are only defined for the range x ∈
[−1, 1]. Which brings up the question, how the Chebyshev approximation
has to be modified to take care of different range values? Luckily this does
not take too much effort, we just make a linear transformation of the input
values. Suppose the function f(y) to be approximated has a range y ∈ [a, b]
then we can develop our function approximation using a change of variable
defined by

y =
2x− b− a
b − a . (2.73)

Now if we have for instance in our sin(xπ/2) function x in the range x = [0, 1],
i.e., a = 0 and b = 1, it follows that y has the range y = [(2× 0− 1− 0)/(1−
0), (2 × 1 − 1 − 0)/(1 − 0)] = [−1, 1], which we need for our Chebyshev
approximation. If we prefer the degree representation then a = 0 and b = 90,
and we will use the mapping y = (2x − 90)/90 and develop the Chebyshev
approximation in y.

The final question we discuss is regarding the polynomial computation.
You may ask if we really need to compute the Chebyshev approximation
via the Clenshaw’s recurrence formula (2.64) or if we can use instead the
direct polynomial approximation, which requires one fewer add operation
per iteration:

f(x) =
N−1∑

k=0

p(k)xk (2.74)

or even better use the Horner scheme

s(N − 1) = p(N − 1)
s(k) = s(k + 1)× x+ p(k) k = N − 2, . . . 0.
f = s(0). (2.75)

We can of course substitute the Chebyshev functions (2.57) in the approxi-
mation formula (2.59), because the Tn(x) do not have terms of higher order
than xn. However there is one important disadvantage to this approach. We
will lose the pruning property of the Chebyshev approximation, i.e., if we use
in the polynomial approximation (2.74) fewer than N terms, the pruned poly-
nomial will no longer be an l∞ optimized polynomial. Figure 2.47d (p. 133)
shows this property. If we use all 6 terms the Chebyshev and the associated
polynomial approximation will have the same precision. If we now prune the
polynomial, the Chebyshev function approximation (2.59) using the Tn(x)
has more precision than the pruned polynomial using (2.74). The resulting

2.9 Computation of Special Functions using MAC Calls 139

1 2 3 4 5 6

4

8

12

16

20

Number of coefficients

P
re

ci
si

on
 in

 b
its

(d)

−1 0 1 2
−1

−0.5

0

0.5

1

x

f(
x)

(a)

Exact
Q16

0 0.2 0.4 0.6 0.8 1

−1

0

1

2

3
x 10

−5

x

G
ue

ss
(x

)−
E

xa
ct

(x
)

(b)

error

0 1 2 3 4 5

−1

−0.5

0

0.5

1

k

C
oe

ffi
ci

en
t c

(k
),

p(
k)

,g
(k

)

(c)
Chebyshev c(k)
Polynomial g(k)
Taylor p(k)

Fig. 2.50. Cosine function approximation. (a) Comparison of full-precision and 16-
bit quantized approximations. (b) Error of quantized approximation for x ∈ [0, 1].
(c) Chebyshev, polynomial from Chebyshev, and Taylor polynomial coefficients.
(d) Error of the three pruned polynomials.

precision is much lower than the equivalent pruned Chebyshev function ap-
proximation of the same length. In fact it is not much better than the Taylor
approximation. So the solution to this problem is not complicated: if we want
to shorten the lengthM < N of our polynomial approximation (2.74) we need
to develop first a Chebyshev approximation for length M and then compute
the polynomial coefficient g(k) from this pruned Chebyshev approximation.
Let us demonstrate this with a comparison of 8- and 16-bit arctan(x) coeffi-
cients. The substitution of the Chebyshev functions (2.57) into the coefficient
(2.69) gives the following odd coefficients:

g(2k + 1) = (0.99999483,−0.33295711, 0.19534659,
−0.12044859, 0.05658999,−0.01313038). (2.76)

If we now use the length N = 6 approximation from (2.66) the odd coefficient
will be

g(2k + 1) = (0.9982,−0.2993, 0.0876). (2.77)

140 2. Computer Arithmetic

Although the pruned Chebyshev coefficients are the same, we see from a com-
parison of (2.76) and (2.77) that the polynomial coefficient differ essentially.
The coefficient g(5) for instance has a factor of 2 difference.

We can summarize the Chebyshev approximation in the following proce-
dure.

Algorithm 2.29: Chebyshev Function Approximation

1) Define the number of coefficients N.
2) Transform the variable from x to y using (2.73)
3) Determine the Chebyshev approximation in y.
4) Determine the direct polynomial coefficients g(k) using Clenshaw’s

recurrence formula.
5) Build the inverse of the mapping y.

If we apply these five steps to our sin(xπ/2) function for x ∈ [0, 1] with four
nonzero coefficients, we get the following polynomials sufficient for a 16-bit
quantization

f(x) = sin(xπ/2)
= 1.57035062x+ 0.00508719x2− 0.66666099x3

+0.03610310x4 + 0.05512166x5

= (51457x+ 167x2 − 21845x3 + 1183x4 + 1806x5)/32768.

Note that the first coefficient is larger than 1 and we need to scale appropriate.
This is quite different from the Taylor approximation given by

sin
(xπ

2

)
=
xπ

2
− 1

3!

(xπ
2

)3

+
1
5!

(xπ
2

)5

+ . . .+
(−1)k

(2k + 1)!

(xπ
2

)2k+1

.

Figure 2.49c shows a graphical illustration. For an 8-bit quantization we
would use

f(x) = sin(xπ/2) = 1.5647x+ 0.0493x2 − 0.7890x3 + 0.1748x4

= (200x+ 6x2 − 101x3 + 22x4)/128. (2.78)

Although we would expect that, for an odd symmetric function, all even
coefficients are zero, this is not the case in this approximation, because we
only used the interval x ∈ [0, 1] for the approximation. The cos(x) function
can be derived via the relation

cos
(xπ

2

)
= sin

(
(x+ 1)

π

2

)
(2.79)

or we may also develop a direct Chebyshev approximation. For x ∈ [0, 1]
with four nonzero coefficients and get the following polynomial for a 16-bit
quantization

2.9 Computation of Special Functions using MAC Calls 141

f(x) = cos
(xπ

2

)

= 1.00000780− 0.00056273x− 1.22706059x2

−0.02896799x3 + 0.31171138x4− 0.05512166x5

= (32768− 18x− 40208x2 − 949x3 + 10214x4 − 1806x5)/32768.

For an 8-bit quantization we would use

f(x) = cos
(xπ

2

)

= (0.9999 + 0.0046x− 1.2690x2 + 0.0898x3 + 0.1748x4 (2.80)
= (128 + x− 162x2 + 11x3 + 22x4)/128. (2.81)

Again the Taylor approximation has quite different coefficients:

cos
(xπ

2

)
= 1− 1

2!

(xπ
2

)2

+
1
4!

(xπ
2

)4

+ . . .+
(−1)k

(2k)!

(xπ
2

)2k

.

Figure 2.49c shows a graphical illustration of the coefficients. We notice from
Fig. 2.49d that with the same number (i.e., six) of terms xk the Taylor ap-
proximation only provides about 6 bit accuracy, while the Chebyshev approx-
imation has 16-bit precision.

2.9.3 Exponential and Logarithmic Function Approximation

The exponential function is one of the few functions who’s Taylor approxi-
mation converges relatively fast. The Taylor approximation is given by

f(x) = ex = 1 +
x

1!
+
x2

2!
+ . . .+

xk

k!
(2.82)

with 0 ≤ x ≤ 1. For 16-bit polynomial quantization computed using the
Chebyshev coefficients we would use:

f(x) = ex

= 1.00002494 + 0.99875705x+ 0.50977984x2

+0.14027504x3 + 0.06941551x4

= (32769 + 32727x+ 16704x2 + 4597x3 + 2275x4)/32768.

Only terms up to order x4 are required to reach 16-bit precision. We notice
also from Fig. 2.51c that the Taylor and polynomial coefficient computed from
the Chebyshev approximation are quite similar. If 8 bits plus sign precision
are sufficient, we use

f(x) = ex = 1.0077 + 0.8634x+ 0.8373x2

= (129 + 111x+ 107x2)/128. (2.83)

142 2. Computer Arithmetic

1 2 3 4 5

4

8

12

16

20

Number of coefficients

P
re

ci
si

on
 in

 b
its

(d)

−2 −1 0 1 2 3

5

10

15

20

x

f(
x)

(a)

Exact
Q16

0 0.2 0.4 0.6 0.8 1

−2

−1

0

1

2

3

x 10
−5

x

G
ue

ss
(x

)−
E

xa
ct

(x
)

(b)

error

0 1 2 3 4

0.5

1

1.5

2

k

C
oe

ffi
ci

en
t c

(k
),

p(
k)

,g
(k

)

(c)
Chebyshev c(k)
Polynomial g(k)
Taylor p(k)

Fig. 2.51. Exponential f(x) = exp(x) function approximation. (a) Comparison
of full-precision and 16-bit quantized approximations. (b) Error of quantized ap-
proximation for x ∈ [0, 1]. (c) Chebyshev, polynomial from Chebyshev, and Taylor
polynomial coefficients. (d) Error of the three pruned polynomials.

Based on the fact that one coefficient is larger than c(0) > 1.0 we need to
select a scaling factor of 128.

The input needs to be scaled in such a way that 0 ≤ x ≤ 1. If x is outside
this range we can use the identity

esx = (ex)s (2.84)

Because s = 2k is a power-of-two value this implies that a series of squar-
ing operations need to follow the exponential computation. For a negative
exponent we can use the relation

e−x =
1
ex
, (2.85)

or develop a separate approximation. If we like to build a direct function ap-
proximation to f(x) = e−x we have to alternate the sign of each second term
in (2.82). For a Chebyshev polynomial approximation we get additional minor
changes in the coefficients. For a 16-bit Chebyshev polynomial approximation
we use

2.9 Computation of Special Functions using MAC Calls 143

1 2 3 4 5

4

8

12

16

20

Number of coefficients

P
re

ci
si

on
 in

 b
its

(d)

−2 −1 0 1 2 3

1

2

3

4

5

6

7

x

f(
x)

(a)

Exact
Q16

0 0.2 0.4 0.6 0.8 1

−1

0

1

2

x 10
−5

x

G
ue

ss
(x

)−
E

xa
ct

(x
)

(b)

error

0 1 2 3 4

−1

−0.5

0

0.5

1

k

C
oe

ffi
ci

en
t c

(k
),

p(
k)

,g
(k

)

(c)
Chebyshev c(k)
Polynomial g(k)
Taylor p(k)

Fig. 2.52. Negative exponential f(x) = exp(−x) function approximation. (a) Com-
parison of full-precision and 16-bit quantized approximations. (b) Error of quan-
tized approximation for x ∈ [0, 1]. (c) Chebyshev, polynomial from Chebyshev, and
Taylor polynomial coefficients. (d) Error of the three pruned polynomials.

f(x) = e−x

= 0.99998916− 0.99945630x+ 0.49556967x2

−0.15375046x3 + 0.02553654x4

= (65535− 65500x+ 32478x2 − 10076x3 + 1674x4)/65536.

where x is defined for the range x ∈ [0, 1]. Note that, based on the fact that
all coefficients are less than 1, we can select a scaling by a factor of 2 larger
than in (2.83). From Fig. 2.52d we conclude that three or five coefficients are
required for 8- and 16-bit precision, respectively. For 8-bit quantization we
would use the coefficients

f(x) = e−x = 0.9964− 0.9337x+ 0.3080x2

= (255− 239x+ 79x2)/256. (2.86)

The inverse to the exponential function is the logarithm function, which
is typically approximated for the argument in the range [1, 2]. As notation
this is typically written as f(x) = ln(1 + x) now with 0 ≤ x ≤ 1. Figure

144 2. Computer Arithmetic

1 2 3 4 5 6

4

8

12

16

20

Number of coefficients

P
re

ci
si

on
 in

 b
its

(d)

−0.5 0 0.5 1 1.5

−1

−0.5

0

0.5

1

x

f(
x)

(a)

Exact
Q16

0 0.2 0.4 0.6 0.8 1

−5

0

5

10

15
x 10

−6

x

G
ue

ss
(x

)−
E

xa
ct

(x
)

(b)

error

0 1 2 3 4 5

−0.5

0

0.5

1

k

C
oe

ffi
ci

en
t c

(k
),

p(
k)

,g
(k

)

(c) Chebyshev c(k)
Polynomial g(k)
Taylor p(k)

Fig. 2.53. Natural logarithm f(x) = ln(1 + x) function approximation. (a) Com-
parison of full-precision and 16-bit quantized approximations. (b) Error of quan-
tized approximation for x ∈ [0, 1]. (c) Chebyshev, polynomial from Chebyshev, and
Taylor polynomial coefficients. (d) Error of the three pruned polynomials.

2.53a shows the exact and 16-bit quantized approximation for this range.
The approximation with N = 6 gives an almost perfect approximation. If we
use fewer coefficients, e.g., N = 2 or N = 3, we will have a more substantial
error, see Exercise 2.29 (p. 163).

The Taylor series approximation in no longer fast converging as for the
exponential function

f(x) = ln (1 + x) = x− x2

2
+
x3

3
+ . . .+

(−1)k+1xk

k

as can be seen from the linear factor in the denominator. A 16-bit Chebyshev
approximation converges much faster, as can be seen from Fig. 2.53d. Only
six coefficients are required for 16-bit precision. With six Taylor coefficients
we get less than 4-bit precision. For 16-bit polynomial quantization computed
using the Chebyshev coefficients we would use

f(x) = ln(1 + x)

2.9 Computation of Special Functions using MAC Calls 145

= 0.00001145 + 0.99916640x− 0.48969909x2

+0.28382318x3− 0.12995720x4 + 0.02980877x5

= (1 + 65481x− 32093x2 + 18601x3 − 8517x4 + 1954x5)/65536.

Only terms up to order x5 are required to get 16-bit precision. We also notice
from Fig. 2.53c that the Taylor and polynomial coefficient computed from
the Chebyshev approximation are similar only for the first three coefficients.

We can now start to implement the ln(1 + x) function approximation in
HDL.

Example 2.30: ln(1+x) Function Approximation
If we implement the ln(1 + x) using embedded 18 × 18 bit multipliers we
have to take into account that our values x are in the range 0 ≤ x < 1. We
therefore use a fractional integer representation with a 2.16 format. We use
an additional guard bit that guarantees no problem with any overflow and
that x = 1 can be exactly represented as 216. We use the same number format
for our Chebyshev coefficients because they are all less than 1.
The following VHDL code12 shows the ln(1 + x) approximation using six
coefficients.

PACKAGE n_bits_int IS -- User-defined types
SUBTYPE BITS9 IS INTEGER RANGE -2**8 TO 2**8-1;
SUBTYPE BITS18 IS INTEGER RANGE -2**17 TO 2**17-1;
TYPE ARRAY_BITS18_6 IS ARRAY (0 TO 5) of BITS18;

END n_bits_int;

LIBRARY work;
USE work.n_bits_int.ALL;

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
USE ieee.std_logic_arith.ALL;
USE ieee.std_logic_signed.ALL;

ENTITY ln IS ------> Interface
GENERIC (N : INTEGER := 5);-- Number of coeffcients-1
PORT (clk : IN STD_LOGIC;

x_in : IN BITS18;
f_out : OUT BITS18);

END ln;

ARCHITECTURE fpga OF ln IS

SIGNAL x, f : BITS18:= 0; -- Auxilary wire
-- Polynomial coefficients for 16-bit precision:
-- f(x) = (1 + 65481 x -32093 x^2 + 18601 x^3
-- -8517 x^4 + 1954 x^5)/65536

CONSTANT p : ARRAY_BITS18_6 :=
(1,65481,-32093,18601,-8517,1954);

SIGNAL s : ARRAY_BITS18_6 ;

12 The equivalent Verilog code ln.v for this example can be found in Appendix A
on page 677. Synthesis results are shown in Appendix B on page 731.

146 2. Computer Arithmetic

Fig. 2.54. VHDL simulation of the ln(1 + x) function approximation for the
values x = 0, x = 0.25 = 16384/65536, x = 0.5 = 32768/65536, x = 0.75 =
49152/65536, x = 1.0 = 65536/65536.

BEGIN

STORE: PROCESS ------> I/O store in register
BEGIN
WAIT UNTIL clk = ’1’;
x <= x_in;
f_out <= f;

END PROCESS;

--> Compute sum-of-products:
SOP: PROCESS (x,s)
VARIABLE slv : STD_LOGIC_VECTOR(35 DOWNTO 0);
BEGIN

-- Polynomial Approximation from Chebyshev coeffiecients
s(N) <= p(N);
FOR K IN N-1 DOWNTO 0 LOOP
slv := CONV_STD_LOGIC_VECTOR(x,18)

* CONV_STD_LOGIC_VECTOR(s(K+1),18);
s(K) <= CONV_INTEGER(slv(33 downto 16)) + p(K);

END LOOP; -- x*s/65536 problem 32 bits
f <= s(0); -- make visiable outside
END PROCESS SOP;

END fpga;

The first PROCESS is used to infer the registers for the input and output data.
The next PROCESS blocks SOP includes the computation of the Chebyshev
approximation using a sum of product computations. The multiply and scale
arithmetic is implemented with standard logic vectors data types because the
36-bit products are larger than the valid 32-bit range allowed for integers.
The design uses 88 LEs, 10 embedded 9×9-bit multipliers (or half of that for
18× 18-bit multipliers) and has a 32.76 MHz Registered Performance.
A simulation of the function approximation is shown in Fig. 2.54. The simu-
lation shows the result for five different input values:

2.9 Computation of Special Functions using MAC Calls 147

1 2 3 4

4

8

12

16

20

Number of coefficients

P
re

ci
si

on
 in

 b
its

(d)

−0.5 0 0.5 1 1.5
−0.6

−0.4

−0.2

0

0.2

0.4

x

f(
x)

(a)

Exact
Q8

0 0.2 0.4 0.6 0.8 1

−6

−5

−4

−3

−2

−1

0
x 10

−4

x

G
ue

ss
(x

)−
E

xa
ct

(x
)

(b)

error

0 1 2 3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

k

C
oe

ffi
ci

en
t c

(k
),

p(
k)

,g
(k

)

(c)
Chebyshev c(k)
Polynomial g(k)
Taylor p(k)

Fig. 2.55. Base 10 logarithm f(x) = log10(x) function approximation. (a) Com-
parison of full-precision and 8-bit quantized approximations. (b) Error of quantized
approximation for x ∈ [0, 1]. (c) Chebyshev, polynomial from Chebyshev, and Tay-
lor polynomial coefficients. (d) Error of the three pruned polynomials.

x f(x) = ln(x) f̂(x) |error| Eff. bits

0 0 1 1.52 × 10−5 16
0.25 14623.9/216 14624/216 4.39 × 106 17.8
0.5 26572.6/216 26572/216 2.11 × 105 15.3
0.75 36675.0/216 36675/216 5.38 × 107 20.8
1.0 45426.1/216 45427/216 1.99 × 105 15.6

Note that, due to the I/O registers, the output values appear with a delay of
one clock cycle. 2.30

If we compare the polynomial code of the ln function with Clenshaw’s recur-
rence formula from Example 2.28 (p. 134), we notice the reduction by one
adder in the design.

If 8 bit plus sign precision is sufficient, we use

f(x) = ln(1 + x) = 0.0006 + 0.9813x− 0.3942x2 + 0.1058x3

= (251x− 101x2 + 27x3)/256. (2.87)

148 2. Computer Arithmetic

Based on the fact that no coefficient is larger than 1.0 we can select a scaling
factor of 256.

If the argument x is not in the valid range [0, 1], using the following
algebraic manipulation with y = sx = 2kx we get

ln(sx) = ln(s) + ln(x) = k × ln(2) + ln(x), (2.88)

i.e., we normalize by a power-of-two factor such that x is again in the valid
range. If we have determined s, the addition arithmetic effort is only one
multiply and one add operation.

If we like to change to another base, e.g., base 10, we can use the following
rule

loga(x) = ln(x)/ ln(a), (2.89)

i.e., we only need to implement the logarithmic function for one base and can
deduce it for any other base. On the other hand the divide operation may
be expensive to implement too and we can alternatively develop a separate
Chebyshev approximation. For base 10 we would use, in 16-bit precision, the
following Chebyshev polynomial coefficients

f(x) = log10(1 + x)
= 0.00000497 + 0.43393245x− 0.21267361x2

+0.12326284x3− 0.05643969x4 + 0.01294578x5

= (28438x− 13938x2 + 8078x3 − 3699x4 + 848x5)/65536

for x ∈ [0, 1]. Figure 2.55a shows the exact and 8-bit quantized function of
log10(1 + x). For an 8-bit quantization we would use the following approxi-
mation

f(x) = log10(1 + x)
= 0.0002 + 0.4262x− 0.1712x2 + 0.0460x3 (2.90)
= (109x− 44x2 + 12x3)/256, (2.91)

which uses only three nonzero coefficients, as shown in Fig. 2.55d.

2.9.4 Square Root Function Approximation

The development of a Taylor function approximation for the square root can
not be computed around x0 = 0 because then all derivatives fn(x0) would
be zero or even worse 1/0. However, we can compute a Taylor series around
x0 = 1 for instance. The Taylor approximation would then be

f(x) =
√
x

=
(x− 1)0

0!
+ 0.5

(x− 1)1

1!
− 0.52

2!
(x− 1)2 +

0.521.5
3!

(x− 1)3 − . . .

= 1 +
x− 1

2
− (x− 1)2

8
+

(x − 1)3

16
− 5

128
(x − 1)4 + . . .

2.9 Computation of Special Functions using MAC Calls 149

1 2 3 4 5

4

8

12

16

20

Number of coefficients

P
re

ci
si

on
 in

 b
its

(d)

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

x

f(
x)

(a)

Exact
Q16

0.5 0.6 0.7 0.8 0.9 1

−5

0

5

x 10
−6

x

G
ue

ss
(x

)−
E

xa
ct

(x
)

(b)

error

0 1 2 3 4
−1

−0.5

0

0.5

1

1.5

k

C
oe

ffi
ci

en
t c

(k
),

p(
k)

,g
(k

)

(c)
Chebyshev c(k)
Polynomial g(k)
Taylor p(k)

Fig. 2.56. Square root f(x) =
√

x function approximation. (a) Comparison of
full-precision and 16-bit quantized approximations. (b) Error of quantized approx-
imation for x ∈ [0.5, 1). (c) Chebyshev, polynomial from Chebyshev, and Taylor
polynomial coefficients. (d) Error of the three pruned polynomials.

The coefficient and the equivalent Chebyshev coefficient are graphically in-
terpreted in Fig.2.56c. For 16-bit polynomial quantization computed using
the Chebyshev coefficient we would use

f(x) =
√
x

= 0.23080201 + 1.29086721x− 0.88893983x2

+0.48257525x3− 0.11530993x4

= (7563 + 42299x− 29129x2 + 15813x3 − 3778x4)/32768.

The valid argument range is x ∈ [0.5, 1). Only terms up to order x4 are
required to get 16-bit precision. We also notice from Fig. 2.56c that the Taylor
and polynomial coefficients computed from the Chebyshev approximation are
not similar. The approximation with N = 5 shown in Fig. 2.56a is almost a
perfect approximation. If we use fewer coefficients, e.g., N = 2 or N = 3, we
will have a more-substantial error, see Exercise 2.30 (p. 163).

The only thing left to discuss is the question of how to handle argument
values outside the range 0.5 ≤ x < 1. For the square root operation this can

150 2. Computer Arithmetic

be done by splitting the argument y = sx into a power-of-two scaling factor
s = 2k and the remaining argument with a valid range of 0.5 ≤ x < 1. The
square root for the scaling factor is accomplished by

√
s =

√
2k =

{
2k/2 k even√

2× 2(k−1)/2 k odd
(2.92)

We can now start to implement the
√
x function approximation in HDL.

Example 2.31: Square Root Function Approximation
We can implement the function approximation in a parallel way using N em-
bedded 18×18 bit multiplier or we can build an FSM to solve this iteratively.
Other FSM design examples can be found in Exercises 2.20 , p. 158 and 2.21,
p. 159. In a first design step we need to scale our data and coefficients in such
a way that overflow-free processing is guaranteed. In addition we need a pre-
and post-scaling such that x is in the range 0.5 ≤ x < 1. We therefore use a
fractional integer representation in 3.15 format. We use two additional guard
bits that guarantee no problem with any overflow and that x = 1 can be
exact represented as 215. We use the same number format for our Chebyshev
coefficients because they are all less than 2.
The following VHDL code13 shows the

√
x approximation using N = 5 coef-

ficients
PACKAGE n_bits_int IS -- User-defined types

SUBTYPE BITS9 IS INTEGER RANGE -2**8 TO 2**8-1;
SUBTYPE BITS17 IS INTEGER RANGE -2**16 TO 2**16-1;
TYPE ARRAY_BITS17_5 IS ARRAY (0 TO 4) of BITS9;
TYPE STATE_TYPE IS (start,leftshift,sop,rightshift,done);
TYPE OP_TYPE IS (load, mac, scale, denorm, nop);

END n_bits_int;

LIBRARY work;
USE work.n_bits_int.ALL;

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
USE ieee.std_logic_arith.ALL;
USE ieee.std_logic_signed.ALL;

ENTITY sqrt IS ------> Interface
PORT (clk, reset : IN STD_LOGIC;

x_in : IN BITS17;
a_o, imm_o, f_o : OUT BITS17;
ind_o : OUT INTEGER RANGE 0 TO 4;
count_o : OUT INTEGER RANGE 0 TO 3;
x_o,pre_o,post_o : OUT BITS17;
f_out : OUT BITS17);

END sqrt;

ARCHITECTURE fpga OF sqrt IS

13 The equivalent Verilog code sqrt.v for this example can be found in Appendix A
on page 678. Synthesis results are shown in Appendix B on page 731.

2.9 Computation of Special Functions using MAC Calls 151

SIGNAL s : STATE_TYPE;
SIGNAL op : OP_TYPE;

SIGNAL x : BITS17:= 0; -- Auxilary
SIGNAL a,b,f,imm : BITS17:= 0; -- ALU data
-- Chebychev poly coefficients for 16-bit precision:
CONSTANT p : ARRAY_BITS17_5 :=

(7563,42299,-29129,15813,-3778);
SIGNAL pre, post : BITS17;

BEGIN

States: PROCESS(clk) ------> SQRT in behavioral style
VARIABLE ind : INTEGER RANGE -1 TO 4:=0;
VARIABLE count : INTEGER RANGE 0 TO 3;
BEGIN
IF reset = ’1’ THEN -- Asynchronous reset

s <= start;
ELSIF rising_edge(clk) THEN

CASE s IS -- Next State assignments
WHEN start => -- Initialization step
s <= leftshift;
ind := 4;
imm <= x_in; -- Load argument in ALU
op <= load;
count := 0;

WHEN leftshift => -- Normalize to 0.5 .. 1.0
count := count + 1;
a <= pre;
op <= scale;
imm <= p(4);
IF count = 3 THEN -- Normalize ready ?

s <= sop;
op<=load;
x <= f;

END IF;
WHEN sop => -- Processing step
ind := ind - 1;
a <= x;
IF ind =-1 THEN -- SOP ready ?

s <= rightshift;
op<=denorm;
a <= post;

ELSE
imm <= p(ind);
op<=mac;

END IF;
WHEN rightshift => -- Denormalize to original range

s <= done;
op<=nop;

WHEN done => -- Output of results
f_out <= f; ------> I/O store in register
op<=nop;

152 2. Computer Arithmetic

s <= start; -- start next cycle
END CASE;

END IF;
ind_o <= ind;
count_o <= count;

END PROCESS States;

ALU: PROCESS
BEGIN
WAIT UNTIL clk = ’1’;
CASE OP IS

WHEN load => f <= imm;
WHEN mac => f <= a * f /32768 + imm;
WHEN scale => f <= a * f;
WHEN denorm => f <= a * f /32768;
WHEN nop => f <= f;
WHEN others => f <= f;

END CASE;
END PROCESS ALU;

EXP: PROCESS(x_in)
VARIABLE slv : STD_LOGIC_VECTOR(16 DOWNTO 0);
VARIABLE po, pr : BITS17;
BEGIN
slv := CONV_STD_LOGIC_VECTOR(x_in, 17);
pr := 2**14; -- Compute pre- and post scaling
FOR K IN 0 TO 15 LOOP

IF slv(K) = ’1’ THEN
pre <= pr;

END IF;
pr := pr / 2;

END LOOP;
po := 1; -- Compute pre- and post scaling
FOR K IN 0 TO 7 LOOP

IF slv(2*K) = ’1’ THEN -- even 2^k get 2^k/2
po := 256*2**K;

END IF;
-- sqrt(2): CSD Error = 0.0000208 = 15.55 effective bits
-- +1 +0. -1 +0 -1 +0 +1 +0 +1 +0 +0 +0 +0 +0 +1
-- 9 7 5 3 1 -5

IF slv(2*K+1) = ’1’ THEN -- odd k has sqrt(2) factor
po := 2**(K+9)-2**(K+7)-2**(K+5)+2**(K+3)

+2**(K+1)+2**K/32;
END IF;
post <= po;

END LOOP;

END PROCESS EXP;

a_o<=a; -- Provide some test signals as outputs
imm_o<=imm;
f_o <= f;
pre_o<=pre;

2.9 Computation of Special Functions using MAC Calls 153

Fig. 2.57. VHDL simulation of the
√

x function approximation for the value x =
0.75/8 = 3072/32768.

post_o<=post;
x_o<=x;

END fpga;
The code consists of three major PROCESS blocks. The control part is placed
in the FSM block, while the arithmetic parts can be found in the ALU and
EXP blocks. The first FSM PROCESS is used to control the machine and place
the data in the correct registers for the ALU and EXP blocks. In the start
state the data are initialized and the input data are loaded into the ALU. In
the leftshift state the input data are normalized such that the input x is
in the range x ∈ [0.5, 1). The sop state is the major processing step where
the polynomial evaluation takes place using multiply-accumulate operations
performed by the ALU. At the end data are loaded for the denormalization
step, i.e., rightshift state, that reverses the normalization done before. In
the final step the result is transferred to the output register and the FSM is
ready for the next square root computation. The ALU PROCESS block performs
a f = a × f + imm operation as used in the Horner scheme (2.75), p. 139
to compute the polynomial function and will be synthesized to a single 18×
18 embedded multiplier (or two 9 × 9-bit multiplier blocks as reported by
Quartus) and some additional add and normalization logic. The block has the
form of an ALU, i.e., the signal op is used to determine the current operation.
The accumulator register f can be preloaded with an imm operand. The last
PROCESS block EXP hosts the computation of the pre- and post-normalization
factors according to (2.92). The

√
2 factor for the odd k values of 2k has

been implemented with CSD code computed with the csd3e.exe program.
The design uses 336 LEs, 2 embedded 9×9-bit multipliers (or half of that for
18× 18-bit multipliers) and has a 82.16 MHz Registered Performance.
A simulation of the function approximation is shown in Fig. 2.57. The simu-
lation shows the result for the input value x = 0.75/8 = 0.0938 = 3072/215 .
In the shift phase the input x = 3072 is normalized by a pre factor of 8. The
normalized result 24 576 is in the range x ∈ [0.5, 1) ≈ [16 384, 32 768). Then

several MAC operations are computed to arrive at f =
√

0.75×215 = 28 378.
Finally a denormalization with a post factor of

√
2×213 = 11 585 takes place

154 2. Computer Arithmetic

and the final result f =
√

0.75/8 × 215 = 10 032 is transferred to the output
register. 2.31

If 8 bit plus sign precision is sufficient, we would build a square root via

f(x) =
√
x = 0.3171 + 0.8801x− 0.1977x2

= (81 + 225x− 51x2)/256. (2.93)

Based on the fact that no coefficient is larger than 1.0 we can select a scaling
factor of 256.

Exercises

Note: If you have no prior experience with the Quartus II software, refer
to the case study found in Sect. 1.4.3, p. 29. If not otherwise noted use the
EP2C35F672C6 from the Cyclone II family for the Quartus II synthesis eval-
uations.

2.1: Wallace has introduced an alternative scheme for a fast multiplier. The basic
building block of this type of multiplier is a carry-save adder (CSA). A CSA takes
three n-bit operands and produces two n-bit outputs. Because there is no propaga-
tion of the carry, this type of adder is sometimes called a 3:2 compress or counter.
For an n× n-bit multiplier we need a total of n− 2 CSAs to reduce the output to
two operands. These operands then have to be added by a (fast) 2n-bit ripple-carry
adder to compute the final result of the multiplier.
(a) The CSA computation can be done in parallel. Determine the minimum num-
ber of levels for an n× n-bit multiplier with n ∈ [0, 16].
(b) Explain why, for FPGAs with fast two’s complement adders, these multipliers
are not more attractive than the usual array multiplier.
(c) Explain how a pipelined adder in the final adder stage can be used to implement
a faster multiplier. Use the data from Table 2.7 (p. 78) to estimate the necessary
LE usage and possible speed for:
(c1) an 8× 8-bit multiplier
(c2) a 12× 12-bit multiplier

2.2: The Booth multiplier used the classical CSD code to reduce the number of
necessary add/subtract operations. Starting with the LSB, typically two or three
bits (called radix-4 and radix-8 algorithms) are processed in one step. The following
table demonstrates possible radix-4 patterns and actions:

Exercises 155

xk+1 xk xk−1 Accumulator activity Comment

0 0 0 ACC→ACC +R∗ (0) within a string of “0s”
0 0 1 ACC→ACC +R∗ (X) end of a string of “1s”
0 1 0 ACC→ACC +R∗ (X)
0 1 1 ACC→ACC +R∗ (2X) end of a string of “1s”
1 0 0 ACC→ACC +R∗ (-2X) beginning of a string of “1s”
1 0 1 ACC→ACC +R∗ (−X)
1 1 0 ACC→ACC +R∗ (-X) beginning of a string of “1s”
1 1 1 ACC→ACC +R∗ (0) within a string of “1s”

The hardware requirements for a state machine implementation are an accu-
mulator and a two’s complement shifter.
(a) Let X be a signed 6-bit two’s complement representation of −10 = 1101102C .
Complete the following table for the Booth product P = XY = −10Y and indicate
the accumulator activity in each step.

Step x5 x4 x3 x2 x1 x0 x−1 ACC ACC + Booth rule

Start 1 1 0 1 1 0 0
0
1
2

(2.94)

(b) Compare the latency of the Booth multiplier, with the serial/parallel multiplier
from Example 2.18 (p. 82), for the radix-4 and radix-8 algorithms.

2.3: (a) Compile the HDL file add_2p with the QuartusII compiler with optimiza-
tion for speed and area. How many LEs are needed? Explain the results.
(b) Conduct a simulation with 15 + 102.

2.4: Explain how to modify the HDL design add1p for subtraction.
(a) Modify the design and simulate as an example:
(b) 3− 2
(c) 2− 3
(d) Add an asynchronous set to the carry flip-flop to avoid initial wrong sum values.
Simulate again 3− 2.

2.5: (a) Compile the HDL file mul_ser with the Quartus II compiler.
(b) Determine the Registered Performance and the used resources of the 8-bit
design. What is the total multiplication latency?

2.6: Modify the HDL design file mul_ser to multiply 12× 12-bit numbers.
(a) Simulate the new design with the values 1000 × 2000.
(b) Measure the Registered Performance and the resources (LEs, multipliers, and
M2Ks/M4Ks).
(c) What is the total multiplication latency of the 12× 12-bit multiplier?

2.7: (a) Design a state machine in Quartus II to implement the Booth multiplier
(see Exercise 2.2) for 6× 6 bit signed inputs.
(b) Simulate the four data ±5× (±9).
(c) Determine the Registered Performance.
(d) Determine LE utilization for maximum speed.

2.8: (a) Design a generic CSA that is used to build a Wallace-tree multiplier for
an 8× 8-bit multiplier.

156 2. Computer Arithmetic

(b) Implement the 8× 8 Wallace tree using Quartus II.
(c) Use a final adder to compute the product, and test your multiplier with a
multiplication of 100× 63.
(d) Pipeline the Wallace tree. What is the maximum throughput of the pipelined
design?

2.9: (a) Use the principle of component instantiation, using the predefined macros
LPM_ADD_SUB and LPM_MULT, to write the VHDL code for a pipelined complex 8-bit
multiplier, (i.e., (a + jb)(c + jd) = ac − bd + j(ad + bc)), with all operands a, b, c,
and d in 8-bit.
(b) Determine the Registered Performance.
(c) Determine LE and embedded multipliers used for maximum speed synthesis.
(d) How many pipeline stages does the optimal single LPM_MULT multiplier have?
(e) How many pipeline stages does the optimal complex multiplier have in total if
you use: (e1) LE-based multipliers?
(e2) Embedded array multipliers?

2.10: An alternative algorithm for a complex multiplier is:

s[1] = a− b s[2] = c− d s[3] = c + d
m[1] = s[1]d m[2] = s[2]a m[3] = s[3]b

s[4] = m[1] + m[2] s[5] = m[1] + m[3]
(a + jb)(c + jd) = s[4] + js[5]

(2.95)

which, in general, needs five adders and three multipliers. Verify that if one coeffi-
cient, say c + jd is known, then s[2], s[3], and d can be prestored and the algorithm
reduces to three adds and three multiplications. Also
(a) Design a pipelined 5/3 complex multiplier using the above algorithm for 8-bit
signed inputs. Use the predefined macros LPM_ADD_SUB and LPM_MULT.
(b) Measure the Registered Performance and the used resources (LEs, multipli-
ers, and M2Ks/M4Ks) for maximum speed synthesis.
(c) How many pipeline stages does the single LPM_MULT multiplier have?
(d) How many pipeline stages does the complex multiplier have in total is you use
(d1) LE-based multipliers?
(d2) Embedded array multipliers?

2.11: Compile the HDL file cordic with the Quartus II compiler, and
(a) Conduct a simulation (using the waveform file cordic.vwf) with x_in=±30
and y_in=±55. Determine the radius factor for all four simulations.
(b) Determine the maximum errors for radius and phase, compared with an un-
quantized computation.

2.12: Modify the HDL design cordic to implement stages 4 and 5 of the CORDIC
pipeline.
(a) Compute the rotation angle, and compile the VHDL code.
(b) Conduct a simulation with values x_in=±30 and y_in=±55.
(c) What are the maximum errors for radius and phase, compared with the un-
quantized computation?

2.13: Consider a floating-point representation with a sign bit, E = 7-bit exponent
width, and M = 10 bits for the mantissa (not counting the hidden one).
(a) Compute the bias using (2.24) p. 71.
(b) Determine the (absolute) largest number that can be represented.
(c) Determine the (absolutely measured) smallest number (not including denor-
mals) that can be represented.

Exercises 157

2.14: Using the result from Exercise 2.13
(a) Determine the representation of f1 = 9.2510 in this (1,7,10) floating-point
format.
(b) Determine the representation of f2 = −10.510 in this (1,7,10) floating-point
format.
(c) Compute f1 + f2 using floating-point arithmetic.
(d) Compute f1 ∗ f2 using floating-point arithmetic.
(e) Compute f1/f2 using floating-point arithmetic.

2.15: For the IEEE single-precision format (see Table 2.5, p. 74) determine the 32-
bit representation of:
(a) f1 = −0.
(b) f2 =∞ .
(c) f3 = 9.2510 .
(d) f4 = −10.510.
(e) f5 = 0.110.
(f) f6 = π = 3.14159310 .

(g) f7 =
√

3/2 = 0.866025410 .

2.16: Compile the HDL file div_res from Example 2.19 (p. 94) to divide two num-
bers.
(a) Simulate the design with the values 234/3.
(b) Simulate the design with the values 234/1.
(c) Simulate the design with the values 234/0. Explain the result.

2.17: Design a nonperforming divider based on the HDL file div_res from Example
2.19 (p. 94).
(a) Simulate the design with the values 234/50 as shown in Fig. 2.23, p. 96.
(b) Measure the Registered Performance, the used resources (LEs, multipliers,
and M2Ks/M4Ks) and latency for maximum speed synthesis.

2.18: Design a nonrestoring divider based on the HDL file div_res from Example
2.19 (p. 94).
(a) Simulate the design with the values 234/50 as shown in Fig. 2.24, p. 98.
(b) Measure the Registered Performance, the used resources (LEs, multipliers,
and M2Ks/M4Ks) and latency for maximum speed synthesis.

2.19: Shift operations are usually implemented with a barrelshifter, which can be
inferred in VHDL via the SLL instruction. Unfortunately, the SLL is not supported
for STD_LOGIC, but we can design a barrelshifter in many different ways to achieve
the same function. We wish to design 12-bit barrelshifters, that have the following
entity:

ENTITY lshift IS ------> Interface
GENERIC (W1 : INTEGER := 12; -- data bit width

W2 : integer := 4); -- ceil(log2(W1));
PORT (clk : IN STD_LOGIC;

distance : IN STD_LOGIC_VECTOR (W2-1 DOWNTO 0);
data : IN STD_LOGIC_VECTOR (W1-1 DOWNTO 0);
result : OUT STD_LOGIC_VECTOR (W1-1 DOWNTO 0));

END;

that should be verified via the simulation shown in Fig. 2.58. Use input and out-
put registers for data and result, no register for the distance. Select one of the
following devices:

158 2. Computer Arithmetic

Fig. 2.58. Testbench for the barrel shifter from Exercise 2.19.

(I) EP2C35F672C6 from the Cyclone II family
(II) EPF10K70RC240-4 from the Flex 10K family
(III) EPM7128LC84-7 from the MAX7000S family
(a1) Use a PROCESS and (sequentially) convert each bit of the distance vector in an
equivalent power-of-two constant multiplication. Use lshift as the entity name.
(a2) Measure the Registered Performance and the resources (LEs, multipliers,
and M2Ks/M4Ks).
(b1) Use a PROCESS and shift (in a loop) the input data always 1 bit only, until the
loop counter and distance show the same value. Then transfer the shifted data to
the output register. Use lshiftloop as the entity name.
(b2) Measure the Registered Performance and the resources (LEs, multipliers,
and M2Ks/M4Ks).
(c1) Use a PROCESS environment and “demux” with a loop statement the distance
vector in an equivalent multiplication factor. Then use a single (array) multiplier
to perform the multiplication. Use lshiftdemux as the entity name.
(c2) Measure the Registered Performance and the resources (LEs, multipliers,
and M2Ks/M4Ks).
(d1) Use a PROCESS environment and convert with a case statement the distance
vector to an equivalent multiplication factor. Then use a single (array) multiplier
to perform the multiplication. Use lshiftmul as the entity name.
(d2) Measure the Registered Performance and the resources (LEs, multipliers,
and M2Ks/M4Ks).
(e1) Use the lpm_clshift megafunction to implement the 12-bit barrelshifter. Use
lshiftlpm as the entity name.
(e2) Measure the Registered Performance and the resources (LEs, multipliers,
and M2Ks/M4Ks).
(d) Compare all five barrelshifter designs in terms of Registered Performance, re-
sources (LEs, multipliers, and M2Ks/M4Ks), and design reuse, i.e., effort to change
data width and the use of software other than Quartus II.

2.20: (a) Design the PREP benchmark 3 shown in Fig. 2.59a with the Quartus II
software. The design is a small FSM with eight states, eight data input bits i, clk,
rst, and an 8-bit data-out signal o. The next state and output logic is controlled
by a positive-edge triggered clk and an asynchronous reset rst, see the simulation
in Fig. 2.59c for the function test. The following table shows next state and output
assignments,

Exercises 159

Current Next i o
state state (Hex) (Hex)
start start (3c)′ 00
start sa 3c 82
sa sc 2a 40
sa sb 1f 20
sa sa (2a)′(1f)′ 04
sb se aa 11
sb sf (aa)′ 30
sc sd − 08
sd sg − 80
se start − 40
sf sg − 02
sg start − 01

where x′ is the condition not x.
(b) Determine the Registered Performance and the used resources (LEs, multi-
pliers, and M2Ks/M4Ks) for a single copy. Compile the HDL file with the synthe-
sis Optimization Technique set to Speed, Balanced or Area; this can be found
in the Analysis & Synthesis Settings section under EDA Tool Settings in the
Assignments menu. Which synthesis options are optimal in terms of LE count and
Registered Performance?
Select one of the following devices:
(b1) EP2C35F672C6 from the Cyclone II family
(b2) EPF10K70RC240-4 from the Flex 10K family
(b3) EPM7128LC84-7 from the MAX7000S family
(c) Design the multiple instantiation for benchmark 3 as shown in Fig. 2.59b.
(d) Determine the Registered Performance and the used resources (LEs, multipli-
ers, and M2Ks/M4Ks) for the design with the maximum number of instantiations
of PREP benchmark 3. Use the optimal synthesis option you found in (b) for the
following devices:
(d1) EP2C35F672C6 from the Cyclone II family
(d2) EPF10K70RC240-4 from the Flex 10K family
(d3) EPM7128LC84-7 from the MAX7000S family

2.21: (a) Design the PREP benchmark 4 shown in Fig. 2.60a with the Quartus II
software. The design is a large FSM with sixteen states, 40 transitions, eight data
input bits i[0..7], clk, rst and 8-bit data-out signal o[0..7]. The next state is
controlled by a positive-edge-triggered clk and an asynchronous reset rst, see the
simulation in Fig. 2.60c for a partial function test. The following shows the output
decoder table

Current state o[7..0] Current state o[7..0]

s0 0 0 0 0 0 0 0 0 s1 0 0 0 0 0 1 1 0
s2 0 0 0 1 1 0 0 0 s3 0 1 1 0 0 0 0 0
s4 1 x x x x x x 0 s5 x 1 x x x x 0 x
s6 0 0 0 1 1 1 1 1 s7 0 0 1 1 1 1 1 1
s8 0 1 1 1 1 1 1 1 s9 1 1 1 1 1 1 1 1
s10 x 1 x 1 x 1 x 1 s11 1 x 1 x 1 x 1 x
s12 1 1 1 1 1 1 0 1 s13 1 1 1 1 0 1 1 1
s14 1 1 0 1 1 1 1 1 s15 0 1 1 1 1 1 1 1

where X is the unknown value. Note that the output values does not have an
additional output register as in the PREP 3 benchmark. The next state table is:

160 2. Computer Arithmetic

clk
rst

Output
register

(a)

Next state

rst
clk

logic

q o[7:0]
i[15:8] Machine

state

qd
s

First Second Last
instance

d
o o o o[7:0]i i ii[7:0]

(b)

(c)

Fig. 2.59. PREP benchmark 3. (a) Single design. (b) Multiple instantiation. (c)
Testbench to check function.

Current Next Condition Current Next Condition
state state state state
s0 s0 i = 0 s0 s1 1 ≤ i ≤ 3
s0 s2 4 ≤ i ≤ 31 s0 s3 32 ≤ i ≤ 63
s0 s4 i > 63 s1 s0 i0× i1
s1 s3 (i0× i1)′ s2 s3 −
s3 s5 − s4 s5 i0 + i2 + i4
s4 s6 (i0 + i2 + i4)′ s5 s5 i0′

s5 s7 i0 s6 s1 i6× i7
s6 s6 (i6 + i7)′ s6 s8 i6× i7′

s6 s9 i6′ × i7 s7 s3 i6′ × i7′

s7 s4 i6× i7 s7 s7 i6⊕ i7
s8 s1 (i4� i5)i7 s8 s8 (i4� i5)i7′

s8 s11 i4⊕ i5 s9 s9 i0′

s9 s11 i0 s10 s1 −
s11 s8 i �= 64 s11 s15 i = 64
s12 s0 i = 255 s12 s12 i �= 255
s13 s12 i1⊕ i3⊕ i5 s13 s14 (i1⊕ i3⊕ i5)′

s14 s10 i > 63 s14 s12 1 ≤ i ≤ 63
s14 s14 i = 0 s15 s0 i7× i1× i0
s15 s10 i7× i1′ × i0 s15 s13 i7× i1× i0′

s15 s14 i7× i1′ × i0′ s15 s15 i7′

where ik is bit k of input i, the symbol ′ is the not operation, × is the Boolean AND
operation, + is the Boolean OR operation, � is the Boolean equivalence operation,
and ⊕ is the XOR operation.
(b) Determine the Registered Performance and the used resources (LEs, multi-
pliers, and M2Ks/M4Ks) for a single copy. Compile the HDL file with the synthe-
sis Optimization Technique set to Speed, Balanced or Area; this can be found

Exercises 161

in the Analysis & Synthesis Settings section under EDA Tool Settings in the
Assignments menu. Which synthesis options are optimal in terms of LE count and
Registered Performance?
Select one of the following devices:
(b1) EP2C35F672C6 from the Cyclone II family
(b2) EPF10K70RC240-4 from the Flex 10K family
(b3) EPM7128LC84-7 from the MAX7000S family
(c) Design the multiple instantiation for benchmark 4 as shown in Fig. 2.60b.
(d) Determine the Registered Performance and the used resources (LEs, multipli-
ers, and M2Ks/M4Ks) for the design with the maximum number of instantiations
of PREP benchmark 4. Use the optimal synthesis option you found in (b) for the
following devices:
(d1) EP2C35F672C6
(d2) EPF10K70RC240-4
(d3) EPM7128LC84-7

clk

(a)

rst
clk

s

First Second Last
instance

(b)

d

rst

i[15:8]

logic
Next state

state
Machine

logic
Output

o[7:0]
o o

q
o[7:0]i i ii[7:0] o

(c)

Fig. 2.60. PREP benchmark 4. (a) Single design. (b) Multiple instantiation. (c)
Testbench to check function.

2.22: (a) Design an 8×8-bit signed multiplier smul8x8 using MK4s memory blocks
and the partitioning technique discussed in (2.31), p. 87.
(b) Use a short C or MatLab script to produce the three required MIF files. You
need signed/signed, signed/unsigned, and unsigned/unsigned tables. The last entry
in the table should be:
(b1) 11111111 : 11100001; --> 15 * 15 = 225 for unsigned/unsigned.
(b2) 11111111 : 11110001; --> -1 * 15 = -15 for signed/unsigned.
(b3) 11111111 : 00000001; --> -1 * (-1) = 1 for signed/signed.
(c) Verify the design with the three data pairs −128×(−128) = 16384;−128×127 =
−16256; 127× 127 = 16129.
(d) Measure the Registered Performance and determine the resources used.

2.23: (a) Design an 8 × 8-bit additive half-square (AHSM) multiplier ahsm8x8 as
shown in Fig. 2.18, p. 88.

162 2. Computer Arithmetic

(b) Use a short C or MatLab script to produce the two required MIF files. You
need a 7- and 8-bit D1 encoded square tables. The first entries in the 7-bit table
should be:

depth= 128; width = 14;
address_radix = bin; data_radix = bin;
content begin
0000000 : 00000000000000; --> (1_d1 * 1_d1)/2 = 0
0000001 : 00000000000010; --> (2_d1 * 2_d1)/2 = 2
0000010 : 00000000000100; --> (3_d1 * 3_d1)/2 = 4
0000011 : 00000000001000; --> (4_d1 * 4_d1)/2 = 8
0000100 : 00000000001100; --> (5_d1 * 5_d1)/2 = 12
...

(c) Verify the design with the three data pairs −128×(−128) = 16384;−128×127 =
−16256; 127× 127 = 16129.
(d) Measure the Registered Performance and determine the resources used.

2.24: (a) Design an 8 × 8-bit differential half-square (DHSM) multiplier dhsm8x8
as shown in Fig. 2.19, p. 89.
(b) Use a short C or MatLab script to produce the two required MIF files. You
need an 8-bit standard square table and a 7-bit D1 encoded table. The last entries
in the tables should be:
(b1) 1111111 : 10000000000000; --> (128 d1 * 128 d1)/2 = 8192 for the 7-bit
D1 table.
(b2) 11111111 : 111111100000000; --> (255*255)/2 = 32512 for the 8-bit half-
square table.
(c) Verify the design with the three data pairs −128×(−128) = 16384;−128×127 =
−16256; 127× 127 = 16129.
(d) Measure the Registered Performance and determine the resources used.

2.25: (a) Design an 8 × 8-bit quarter-square multiplication multiplier qsm8x8 as
shown in Fig. 2.20, p. 90.
(b) Use a short C or MatLab script to produce the two required MIF files. You
need an 8-bit standard quarter square table and an 8-bit D1 encoded quarter square
table. The last entries in the tables should be:
(b1) 11111111 : 11111110000000; --> (255*255)/4 = 16256 for the 8-bit quar-
ter square table.
(b2) 11111111 : 100000000000000; --> (256 d1 * 256 d1)/4 = 16384 for the
D1 8-bit quarter-square table.
(c) Verify the design with the three data pairs −128×(−128) = 16384;−128×127 =
−16256; 127× 127 = 16129.
(d) Measure the Registered Performance and determine the resources used.

2.26: Plot the function approximation and the error function as shown in Fig. 2.47a
and b (p. 133) for the arctan function for x ∈ [−1, 1] using the following coefficients:
(a) For N = 2 use f(x) = 0.0000 + 0.8704x = (0 + 223x)/256.
(b) For N = 4 use f(x) = 0.0000 + 0.9857x + 0.0000x2 − 0.2090x3 = (0 + 252x +
0x2 − 53x3)/256.

2.27: Plot the function approximation and the error function as shown, for instance,
in Fig. 2.47a and b (p. 133) for the arctan function using the 8-bit precision coeffi-
cients, but with increased convergence range and determine the maximum error:

Exercises 163

(a) For the arctan(x) approximation the using coefficients from (2.63), p. 134 with
x ∈ [−2, 2]
(b) For the sin(x) approximation using the coefficients from (2.78), p. 140 with
x ∈ [0, 2]
(c) For the cos(x) approximation using the coefficients from (2.81), p. 141 with
x ∈ [0, 2]
(d) For the

√
1 + x approximation using the coefficients from (2.93), p. 153 with

x ∈ [0, 2]

2.28: Plot the function approximation and the error function as shown, for instance,
in Fig. 2.51a and b (p. 142) for the ex function using the 8-bit precision coefficients,
but with increased convergence range and determine the maximum error:
(a) For the ex approximation using the coefficients from (2.83), p. 141 with x ∈
[−1, 2]
(b) For the e−x approximation using the coefficients from (2.86), p. 143 with x ∈
[−1, 2]
(c) For the ln(1 + x) approximation using the coefficients from (2.87), p. 147 with
x ∈ [0, 2]
(d) For the log10(1 + x) approximation using the coefficients from (2.91), p. 148
with x ∈ [0, 2]

2.29: Plot the function approximation and the error function as shown in Fig. 2.53a
and b (p. 144) for the ln(1+x) function for x ∈ [0, 1] using the following coefficients:
(a) For N = 2 use f(x) = 0.0372 + 0.6794x = (10 + 174x)/256.
(b) For N = 3 use f(x) = 0.0044 + 0.9182x − 0.2320x2 = (1 + 235x − 59x2)/256.

2.30: Plot the function approximation and the error function as shown in Fig. 2.56a
and b (p. 149) for the

√
x function for x ∈ [0.5, 1] using the following coefficients:

(a) For N = 2 use f(x) = 0.4238 + 0.5815x = (108 + 149x)/256.
(b) For N = 3 use f(x) = 0.3171 + 0.8801x − 0.1977x2 = (81 + 225x − 51x2)/256

3. Finite Impulse Response (FIR) Digital
Filters

3.1 Digital Filters

Digital filters are typically used to modify or alter the attributes of a signal
in the time or frequency domain. The most common digital filter is the linear
time-invariant (LTI) filter. An LTI interacts with its input signal through a
process called linear convolution, denoted by y = f ∗ x where f is the filter’s
impulse response, x is the input signal, and y is the convolved output. The
linear convolution process is formally defined by:

y[n] = x[n] ∗ f [n] =
∑

k

x[k]f [n− k] =
∑

k

f [k]x[n− k]. (3.1)

LTI digital filters are generally classified as being finite impulse response
(i.e., FIR), or infinite impulse response (i.e., IIR). As the name implies, an
FIR filter consists of a finite number of sample values, reducing the above
convolution sum to a finite sum per output sample instant. An IIR filter,
however, requires that an infinite sum be performed. An FIR design and
implementation methodology is discussed in this chapter, while IIR filter
issues are addressed in Chap. 4.

The motivation for studying digital filters is found in their growing popu-
larity as a primary DSP operation. Digital filters are rapidly replacing classic
analog filters, which were implemented using RLC components and opera-
tional amplifiers. Analog filters were mathematically modeled using ordinary
differential equations of Laplace transforms. They were analyzed in the time
or s (also known as Laplace) domain. Analog prototypes are now only used
in IIR design, while FIR are typically designed using direct computer speci-
fications and algorithms.

In this chapter it is assumed that a digital filter, an FIR in particular,
has been designed and selected for implementation. The FIR design process
will be briefly reviewed, followed by a discussion of FPGA implementation
variations.

166 3. Finite Impulse Response (FIR) Digital Filters

++ + y[n]

z−1 zz−1 −1x[n]

f[0] f[L−1]f[2]f[1]

Fig. 3.1. Direct form FIR filter.

3.2 FIR Theory

An FIR with constant coefficients is an LTI digital filter. The output of an
FIR of order or length L, to an input time-series x[n], is given by a finite
version of the convolution sum given in (3.1), namely:

y[n] = x[n] ∗ f [n] =
L−1∑

k=0

f [k]x[n− k], (3.2)

where f [0] �= 0 through f [L− 1] �= 0 are the filter’s L coefficients. They also
correspond to the FIR’s impulse response. For LTI systems it is sometimes
more convenient to express (3.2) in the z-domain with

Y (z) = F (z)X(z), (3.3)

where F (z) is the FIR’s transfer function defined in the z-domain by

F (z) =
L−1∑

k=0

f [k]z−k. (3.4)

The Lth-order LTI FIR filter is graphically interpreted in Fig. 3.1. It can
be seen to consist of a collection of a “tapped delay line,” adders, and multi-
pliers. One of the operands presented to each multiplier is an FIR coefficient,
often referred to as a “tap weight” for obvious reasons. Historically, the FIR
filter is also known by the name “transversal filter,” suggesting its “tapped
delay line” structure.

The roots of polynomial F (z) in (3.4) define the zeros of the filter. The
presence of only zeros is the reason that FIRs are sometimes called all zero
filters. In Chap. 5 we will discuss an important class of FIR filters (called
CIC filters) that are recursive but also FIR. This is possible because the poles
produced by the recursive part are canceled by the nonrecursive part of the
filter. The effective pole/zero plot also then has only zeros, i.e., is an all-zero
filter or FIR. We note that nonrecursive filters are always FIR, but recursive
filters can be either FIR or IIR. Figure 3.2 illustrates this dependence.

3.2 FIR Theory 167

FIR

Non−
recursive

IIR

Recursive

Fig. 3.2. Relation between structure and impulse length.

3.2.1 FIR Filter with Transposed Structure

A variation of the direct FIR model is called the transposed FIR filter. It can
be constructed from the FIR filter in Fig. 3.1 by:

• Exchanging the input and output
• Inverting the direction of signal flow
• Substituting an adder by a fork, and vice versa

A transposed FIR filter is shown in Fig. 3.3 and is, in general, the preferred
implementation of an FIR filter. The benefit of this filter is that we do not
need an extra shift register for x[n], and there is no need for an extra pipeline
stage for the adder (tree) of the products to achieve high throughput.

The following examples show a direct implementation of the transposed
filter.

Example 3.1: Programmable FIR Filter
We recall from the discussion of sum-of-product (SOP) computations using a
PDSP (see Sect. 2.7, p. 114) that, for Bx data/coefficient bit width and filter
length L, additional log2(L) bits for unsigned SOP and log2(L)−1 guard bits
for signed arithmetic must be provided. For a 9-bit signed data/coefficient
and L = 4, the adder width must be 9 + 9 + log2(4)− 1 = 19.

z−1 ++z

x[n]

y[n]
−1

f[L−1]

+

f[L−3]f[L−2] f[0]

Fig. 3.3. FIR filter in the transposed structure.

168 3. Finite Impulse Response (FIR) Digital Filters

The following VHDL code2 shows the generic specification for an implemen-
tation for a length-4 filter.

-- This is a generic FIR filter generator
-- It uses W1 bit data/coefficients bits
LIBRARY lpm; -- Using predefined packages
USE lpm.lpm_components.ALL;

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
USE ieee.std_logic_arith.ALL;
USE ieee.std_logic_unsigned.ALL;

ENTITY fir_gen IS ------> Interface
GENERIC (W1 : INTEGER := 9; -- Input bit width

W2 : INTEGER := 18;-- Multiplier bit width 2*W1
W3 : INTEGER := 19;-- Adder width = W2+log2(L)-1
W4 : INTEGER := 11;-- Output bit width
L : INTEGER := 4; -- Filter length

Mpipe : INTEGER := 3-- Pipeline steps of multiplier
);

PORT (clk : IN STD_LOGIC;
Load_x : IN STD_LOGIC;
x_in : IN STD_LOGIC_VECTOR(W1-1 DOWNTO 0);
c_in : IN STD_LOGIC_VECTOR(W1-1 DOWNTO 0);
y_out : OUT STD_LOGIC_VECTOR(W4-1 DOWNTO 0));

END fir_gen;

ARCHITECTURE fpga OF fir_gen IS

SUBTYPE N1BIT IS STD_LOGIC_VECTOR(W1-1 DOWNTO 0);
SUBTYPE N2BIT IS STD_LOGIC_VECTOR(W2-1 DOWNTO 0);
SUBTYPE N3BIT IS STD_LOGIC_VECTOR(W3-1 DOWNTO 0);
TYPE ARRAY_N1BIT IS ARRAY (0 TO L-1) OF N1BIT;
TYPE ARRAY_N2BIT IS ARRAY (0 TO L-1) OF N2BIT;
TYPE ARRAY_N3BIT IS ARRAY (0 TO L-1) OF N3BIT;

SIGNAL x : N1BIT;
SIGNAL y : N3BIT;
SIGNAL c : ARRAY_N1BIT; -- Coefficient array
SIGNAL p : ARRAY_N2BIT; -- Product array
SIGNAL a : ARRAY_N3BIT; -- Adder array

BEGIN

Load: PROCESS ------> Load data or coefficient
BEGIN
WAIT UNTIL clk = ’1’;
IF (Load_x = ’0’) THEN

c(L-1) <= c_in; -- Store coefficient in register
FOR I IN L-2 DOWNTO 0 LOOP -- Coefficients shift one
c(I) <= c(I+1);

2 The equivalent Verilog code fir gen.v for this example can be found in Ap-
pendix A on page 680. Synthesis results are shown in Appendix B on page 731.

3.2 FIR Theory 169

END LOOP;
ELSE

x <= x_in; -- Get one data sample at a time
END IF;

END PROCESS Load;

SOP: PROCESS (clk) ------> Compute sum-of-products
BEGIN
IF clk’event and (clk = ’1’) THEN
FOR I IN 0 TO L-2 LOOP -- Compute the transposed

a(I) <= (p(I)(W2-1) & p(I)) + a(I+1); -- filter adds
END LOOP;
a(L-1) <= p(L-1)(W2-1) & p(L-1); -- First TAP has
END IF; -- only a register
y <= a(0);

END PROCESS SOP;

-- Instantiate L pipelined multiplier
MulGen: FOR I IN 0 TO L-1 GENERATE
Muls: lpm_mult -- Multiply p(i) = c(i) * x;

GENERIC MAP (LPM_WIDTHA => W1, LPM_WIDTHB => W1,
LPM_PIPELINE => Mpipe,
LPM_REPRESENTATION => "SIGNED",
LPM_WIDTHP => W2,
LPM_WIDTHS => W2)

PORT MAP (clock => clk, dataa => x,
datab => c(I), result => p(I));

END GENERATE;

y_out <= y(W3-1 DOWNTO W3-W4);

END fpga;

The first process, Load, is used to load the coefficient in a tapped delay
line if Load_x=0. Otherwise, a data word is loaded into the x register. The
second process, called SOP, implements the sum-of-products computation.
The products p(I) are sign-extended by one bit and added to the previous
partial SOP. Note also that all multipliers are instantiated by a generate
statement, which allows the assignment of extra pipeline stages. Finally, the
output y_out is assigned the value of the SOP divided by 256, because the
coefficients are all assumed to be fractional (i.e., |f [k]| ≤ 1.0). The design
uses 184 LEs, 4 embedded multipliers, and has a 329.06 MHz Registered
Performance.
To simulate this length-4 filter consider a Daubechies DB4 filter coefficient
with

G(z) =
(1 +

√
3) + (3 +

√
3)z−1 + (3−√3)z−2 + (1−√3)z−3

4
√

2
,

G(z) = 0.48301 + 0.8365z−1 + 0.2241z−2 − 0.1294z−3 .

Quantizing the coefficients to eight bits (plus a sign bit) of precision results
in the following model:

170 3. Finite Impulse Response (FIR) Digital Filters

Fig. 3.4. Simulation of the 4-tap programmable FIR filter with Daubechies filter
coefficient loaded.

G(z) =
(
124 + 214z−1 + 57z−2 − 33z−3

)
/256

=
124

256
+

214

256
z−1 +

57

256
z−2 − 33

256
z−3.

As can be seen from Fig. 3.4, in the first four steps we load the coefficients
{124, 214, 57,−33} into the tapped delay line. Note that Quartus II can also
display signed numbers. As unsigned data the value −33 will be displayed as
512− 33 = 479. Then we check the impulse response of the filter by loading
100 into the x register. The first valid output is then available after 450 ns.

3.1

3.2.2 Symmetry in FIR Filters

The center of an FIR’s impulse response is an important point of symmetry.
It is sometimes convenient to define this point as the 0th sample instant. Such
filter descriptions are a-causal (centered notation). For an odd-length FIR,
the a-causal filter model is given by:

F (z) =
(L−1)/2∑

k=−(L−1)/2

f [k]z−k. (3.5)

The FIR’s frequency response can be computed by evaluating the filter’s
transfer function about the periphery of the unity circle, by setting z = ejωT .
It then follows that:

F (ω) = F (ejωT) =
∑

k

f [k]e−jωkT . (3.6)

We then denote with |F (ω)| the filter’s magnitude frequency response and
φ(ω) denotes the phase response, and satisfies:

φ(ω) = arctan
(�(F (ω))
�(F (ω))

)
. (3.7)

Digital filters are more often characterized by phase and magnitude than
by the z-domain transfer function or the complex frequency transform.

3.2 FIR Theory 171

Table 3.1. Four possible linear-phase FIR filters F (z) =
∑
k

f [k]z−k.

Symmetry f [n] = f [−n] f [n] = f [−n] f [n] = −f [−n] f [n] = −f [−n]
L odd even odd even

Example

−1 0 1

−1

0

1

f[n
]

n
−2 0 2

−1

0

1

n
−1 0 1

−1

0

1

n
−2 0 2

−1

0

1

n

Zeros at ±120◦ ±90◦, 180◦ 0◦, 180◦ 0◦, 2× 180◦

3.2.3 Linear-phase FIR Filters

Maintaining phase integrity across a range of frequencies is a desired system
attribute in many applications such as communications and image processing.
As a result, designing filters that establish linear-phase versus frequency is
often mandatory. The standard measure of the phase linearity of a system is
the “group delay” defined by:

τ(ω) = −dφ(ω)
dω

. (3.8)

A perfectly linear-phase filter has a group delay that is constant over a
range of frequencies. It can be shown that linear-phase is achieved if the
filter is symmetric or antisymmetric, and it is therefore preferable to use the
a-causal framework of (3.5). From (3.7) it can be seen that a constant group
delay can only be achieved if the frequency response F (ω) is a purely real or
imaginary function. This implies that the filter’s impulse response possesses
even or odd symmetry. That is:

f [n] = f [−n] or f [n] = −f [−n]. (3.9)

An odd-order even-symmetry FIR filter would, for example, have a fre-
quency response given by:

F (ω) = f [0] +
∑

k>0

f [k]e−jkωT + f [−k]ejkωT (3.10)

= f [0] + 2
∑

k>0

f [k] cos(kωT), (3.11)

which is seen to be a purely real function of frequency. Table 3.1 summarizes
the four possible choices of symmetry, antisymmetry, even order and odd
order. In addition, Table 3.1 graphically displays an example of each class of
linear-phase FIR.

172 3. Finite Impulse Response (FIR) Digital Filters

f[L−1]f[L−2]

+

−1z
−1z+

+ y[n]

+

f[1]

+ +

−1zx[n] −1z

+

−1z

f[0]

−1z−1z

Fig. 3.5. Linear-phase filter with reduced number of multipliers.

The symmetry properties intrinsic to a linear-phase FIR can also be used
to reduce the necessary number of multipliers L, as shown in Fig. 3.1. Con-
sider the linear-phase FIR shown in Fig. 3.5 (even symmetry assumed), which
fully exploits coefficient symmetry. Observe that the “symmetric” architec-
ture has a multiplier budget per filter cycle exactly half of that found in the
direct architecture shown in Fig. 3.1 (L versus L/2) while the number of
adders remains constant at L− 1.

3.3 Designing FIR Filters

Modern digital FIR filters are designed using computer-aided engineering
(CAE) tools. The filters used in this chapter are designed using the MatLab
Signal Processing toolbox. The toolbox includes an “Interactive Lowpass Fil-
ter Design” demo example that covers many typical digital filter designs,
including:

• Equiripple (also known as minimax) FIR design, which uses the Parks–
McClellan and Remez exchange methods for designing a linear-phase (sym-
metric) equiripple FIR. This equiripple design may also be used to design
a differentiator or Hilbert transformer.

• Kaiser window design using the inverse DFT method weighted by a Kaiser
window.

• Least square FIR method. This filter design also has ripple in the passband
and stopband, but the mean least square error is minimized.

• Four IIR filter design methods (Butterworth, Chebyshev I and II, and
elliptic) which will be discussed in Chap. 4.

3.3 Designing FIR Filters 173

The FIR methods are individually developed in this section. Most often we
already know the transfer function (i.e., magnitude of the frequency response)
of the desired filter. Such a lowpass specification typically consists of the
passband [0 . . . ωp], the transition band [ωp . . . ωs], and the stopband [ωs . . . π]
specification, where the sampling frequency is assumed to be 2π. To compute
the filter coefficients we may therefore apply the direct frequency method
discussed next.

3.3.1 Direct Window Design Method

The discrete Fourier transform (DFT) establishes a direct connection between
the frequency and time domains. Since the frequency domain is the domain
of filter definition, the DFT can be used to calculate a set of FIR filter
coefficients that produce a filter that approximates the frequency response of
the target filter. A filter designed in this manner is called a direct FIR filter.
A direct FIR filter is defined by:

f [n] = IDFT(F [k]) =
∑

k

F [k]ej2πkn/L. (3.12)

From basic signals and systems theory, it is known that the spectrum of
a real signal is Hermitian. That is, the real spectrum has even symmetry and
the imaginary spectrum has odd symmetry. If the synthesized filter should
have only real coefficients, the target DFT design spectrum must therefore
be Hermitian or F [k] = F ∗[−k], where the ∗ denotes conjugate complex.

Consider a length-16 direct FIR filter design with a rectangular window,
shown in Fig. 3.6a, with the passband ripple shown in Fig. 3.6b. Note that
the filter provides a reasonable approximation to the ideal lowpass filter with
the greatest mismatch occurring at the edges of the transition band. The
observed “ringing” is due to the Gibbs phenomenon, which relates to the
inability of a finite Fourier spectrum to reproduce sharp edges. The Gibbs
ringing is implicit in the direct inverse DFT method and can be expected to
be about ±7% over a wide range of filter orders. To illustrate this, consider
the example filter with length 128, shown in Fig. 3.6c, with the passband
ripple shown in Fig. 3.6d. Although the filter length is essentially increased
(from 16 to 128) the ringing at the edge still has about the same quantity.
The effects of ringing can only be suppressed with the use of a data “window”
that tapers smoothly to zero on both sides. Data windows overlay the FIR’s
impulse response, resulting in a “smoother” magnitude frequency response
with an attendant widening of the transition band. If, for instance, a Kaiser
window is applied to the FIR, the Gibbs ringing can be reduced as shown
in Fig. 3.7(upper). The deleterious effect on the transition band can also
be seen. Other classic window functions are summarized in Table 3.2. They
differ in terms of their ability to make tradeoffs between “ringing” and tran-
sition bandwidth extension. The number of recognized and published window
functions is large. The most common windows, denoted w[n], are:

174 3. Finite Impulse Response (FIR) Digital Filters

0 8 16
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

(a)

Time n

f[n
]

0 64 128
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

(c)

Time n

f[n
]

0 500 1000

0.93

1

1.07

(b)

f in Hz

F
(ω

)

0 500 1000

0.93

1

1.07

(d)

f in Hz

F
(ω

)

Fig. 3.6. Gibbs phenomenon. (a) Impulse response of FIR lowpass with L = 16.
(b) Passband of transfer function L = 16. (c) Impulse response of FIR lowpass
with L = 128. (d) Passband of transfer function L = 128.

• Rectangular: w[n] = 1
• Bartlett (triangular) : w[n] = 2n/N
• Hanning: w[n] = 0.5 (1− cos(2πn/L)
• Hamming: w[n] = 0.54− 0.46 cos(2πn/L)
• Blackman: w[n] = 0.42− 0.5 cos(2πn/L) + 0.08 cos(4πn/L)
• Kaiser: w[n] = I0

(
β
√

1− (n− L/2)2/(L/2)2
)

Table 3.2 shows the most important parameters of these windows.
The 3-dB bandwidth shown in Table 3.2 is the bandwidth where the

transfer function is decreased from DC by 3 dB or ≈ 1/
√

2. Data windows
also generate sidelobes, to various degrees, away from the 0th harmonic. De-

3.3 Designing FIR Filters 175

Table 3.2. Parameters of commonly used window functions.

Name 3-dB First Maximum Sidelobe Equivalent
band- zero sidelobe decrease Kaiser
width per octave β

Rectangular 0.89/T 1/T −13 dB −6 dB 0
Bartlett 1.28/T 2/T −27 dB −12 dB 1.33
Hanning 1.44/T 2/T −32 dB −18 dB 3.86
Hamming 1.33/T 2/T −42 dB −6 dB 4.86
Blackman 1.79 /T 3/T −74 dB −6 dB 7.04
Kaiser 1.44/T 2/T −38 dB −18 dB 3

pending on the smoothness of the window, the third column in Table 3.2
shows that some windows do not have a zero at the first or second zero DFT
frequency 1/T. The maximum sidelobe gain is measured relative to the 0th

harmonic value. The fifth column describes the asymptotic decrease of the
window per octave. Finally, the last column describes the value β for a Kaiser
window that emulates the corresponding window properties. The Kaiser win-
dow, based on the first-order Bessel function I0, is special in two respects. It
is nearly optimal in terms of the relationship between “ringing” suppression
and transition width, and second, it can be tuned by β, which determines the
ringing of the filter. This can be seen from the following equation credited to
Kaiser.

β =

⎧
⎨

⎩

0.1102(A− 8.7) A > 50,
0.5842(A− 21)0.4 + 0.07886(A− 21) 21 ≤ A ≤ 50,

0 A < 21,
(3.13)

where A = 20 log10 εr is both stopband attenuation and the passband ripple
in dB. The Kaiser window length to achieve a desired level of suppression
can be estimated:

L =
A− 8

2.285(ωs − ωp)
+ 1. (3.14)

The length is generally correct within an error of ±2 taps.

3.3.2 Equiripple Design Method

A typical filter specification not only includes the specification of passband
ωp and stopband ωs frequencies and ideal gains, but also the allowed devi-
ation (or ripple) from the desired transfer function. The transition band is
most often assumed to be arbitrary in terms of ripples. A special class of FIR
filter that is particularly effective in meeting such specifications is called the
equiripple FIR. An equiripple design protocol minimizes the maximal devia-
tions (ripple error) from the ideal transfer function. The equiripple algorithm
applies to a number of FIR design instances. The most popular are:

176 3. Finite Impulse Response (FIR) Digital Filters

0 1000 2000
−70

−60

−50

−40

−30

−20

−10

0

10
(a)

f in Hz

F
(ω

)

0 200 400 600 800

29.5

29.5

29.5

29.5

29.5

(b)

f in Hz

dθ
/d

ω

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

(c)

Re

Im

0 1000 2000
−70

−60

−50

−40

−30

−20

−10

0

10
(a)

f in Hz

F
(ω

)

0 200 400 600 800

13.5

13.5

13.5

13.5

13.5

(b)

f in Hz

dθ
/d

ω

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

(c)

Re

Im

Fig. 3.7. (upper) Kaiser window design with L = 59. (lower) Parks-McClellan
design with L = 27.
(a) Transfer function. (b) Group delay of passband. (c) Zero plot.

• Lowpass filter design (in MatLab3 use firpm(L,F,A,W)), with tolerance
scheme as shown in Fig. 3.8a

• Hilbert filter, i.e., a unit magnitude filter that produces a 90◦ phase shift
for all frequencies in the passband (in MatLab use firpm(L, F, A,
’Hilbert’)

• Differentiator filter that has a linear increasing frequency magnitude pro-
portional to ω (in MatLab use firpm(L,F,A,’differentiator’)

The equiripple or minimum-maximum algorithm is normally implemented
using the Parks–McClellan iterative method. The Parks–McClellan method
is used to produce a equiripple or minimax data fit in the frequency domain.
It is based on the “alternation theorem” that says that there is exactly one
polynomial, a Chebyshev polynomial with minimum length, that fits into a
given tolerance scheme. Such a tolerance scheme is shown in Fig. 3.8a, and
Fig. 3.8b shows a polynomial that fulfills this tolerance scheme. The length
3 In previous MatLab versions the function remez had to be used.

3.3 Designing FIR Filters 177

0 800 1200 2000

−50

−40

−30

−20

−10

0

10
(b)

f in Hz
0

−50

−40

−30

−20

−10

0

10
(a)

f in Hz

F
(ω

)
in

 d
B

1+ε
p

1−ε
p

ε
s

p

Tran-
sition-
band

f

band

band

Pass-

Stop-

f f s/2s

Fig. 3.8. Parameters for the filter design. (a) Tolerance scheme (b) Example
function, which fulfills the scheme.

of the polynomial, and therefore the filter, can be estimated for a lowpass
with

L =
−10 log10(εpεs)− 13

2.324(ωs − ωp)
+ 1, (3.15)

where εp is the passband and εs the stopband ripple.
The algorithm iteratively finds the location of locally maximum errors

that deviate from a nominal value, reducing the size of the maximal error
per iteration, until all deviation errors have the same value. Most often, the
Remez method is used to select the new frequencies by selecting the frequency
set with the largest peaks of the error curve between two iterations, see [79,
p. 478]. This is why the MatLab equiripple function was called remez in the
past (now renamed to firpm for Parks-McClellan).

Compared to the direct frequency method, with or without data windows,
the advantage of the equiripple design method is that passband and stopband
deviations can be specified differently. This may, for instance, be useful in
audio applications where the ripple in the passband may be specified to be
higher, because the ear only perceives differences larger than 3 dB.

We note from Fig. 3.7(lower) that the equiripple design having the same
tolerance requirements as the Kaiser window design enjoys a considerably
reduced filter order, i.e., 27 compared with 59.

178 3. Finite Impulse Response (FIR) Digital Filters

3.4 Constant Coefficient FIR Design

There are only a few applications (e.g., adaptive filters) where we need a
general programmable filter architecture like the one shown in Example 3.1
(p. 167). In many applications, the filters are LTI (i.e., linear time invariant)
and the coefficients do not change over time. In this case, the hardware ef-
fort can essentially be reduced by exploiting the multiplier and adder (trees)
needed to implement the FIR filter arithmetic.

With available digital filter design software the production of FIR coef-
ficients is a straightforward process. The challenge remains to map the FIR
design into a suitable architecture. The direct or transposed forms are pre-
ferred for maximum speed and lowest resource utilization. Lattice filters are
used in adaptive filters because the filter can be enlarged by one section,
without the need for recomputation of the previous lattice sections. But this
feature only applies to PDSPs and is less applicable to FPGAs. We will
therefore focus our attention on the direct and transposed implementations.
We will start with possible improvements to the direct form and will then
move on to the transposed form. At the end of the section we will discuss an
alternative design approach using distributed arithmetic.

3.4.1 Direct FIR Design

The direct FIR filter shown in Fig. 3.1 (p. 166) can be implemented in VHDL
using (sequential) PROCESS statements or by “component instantiations” of
the adders and multipliers. A PROCESS design provides more freedom to the
synthesizer, while component instantiation gives full control to the designer.
To illustrate this, a length-4 FIR will be presented as a PROCESS design. Al-
though a length-4 FIR is far too short for most practical applications, it is
easily extended to higher orders and has the advantage of a short compil-
ing time. The linear-phase (therefore symmetric) FIR’s impulse response is
assumed to be given by

f [k] = {−1.0, 3.75, 3.75,−1.0}. (3.16)

These coefficients can be directly encoded into a 5-bit fractional number. For
example, 3.7510 would have a 5-bit binary representation 011.112 where “.”
denotes the location of the binary point. Note that it is, in general, more
efficient to implement only positive CSD coefficients, because positive CSD
coefficients have fewer nonzero terms and we can take the sign of the coef-
ficient into account when the summation of the products is computed. See
also the first step in the RAG algorithm 3.4 discussed later, p. 183.

In a practical situation, the FIR coefficients are obtained from a com-
puter design tool and presented to the designer as floating-point numbers.
The performance of a fixed-point FIR, based on floating-point coefficients,
needs to be verified using simulation or algebraic analysis to ensure that de-
sign specifications remain satisfied. In the above example, the floating-point

3.4 Constant Coefficient FIR Design 179

numbers are 3.75 and 1.0, which can be represented exactly with fixed-point
numbers, and the check can be skipped.

Another issue that must be addressed when working with fixed-point de-
signs is protecting the system from dynamic range overflow. Fortunately, the
worst-case dynamic range growth G of an Lth-order FIR is easy to compute
and it is:

G ≤ log2

(
L−1∑

k=0

|f [k]|
)
. (3.17)

The total bit width is then the sum of the input bit width and the bit
growth G. For the above filter for (3.16) we have G = log2(9.5) < 4, which
states that the system’s internal data registers need to have at least four
more integer bits than the input data to insure no overflow. If 8-bit internal
arithmetic is used the input data should be bounded by ±128/9.5 = ±13.

Example 3.2: Four-tap Direct FIR Filter
The VHDL design4 for a filter with coefficients {−1, 3.75, 3.75,−1} is shown
in the following listing.

PACKAGE eight_bit_int IS -- User-defined types
SUBTYPE BYTE IS INTEGER RANGE -128 TO 127;
TYPE ARRAY_BYTE IS ARRAY (0 TO 3) OF BYTE;

END eight_bit_int;

LIBRARY work;
USE work.eight_bit_int.ALL;

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
USE ieee.std_logic_arith.ALL;

ENTITY fir_srg IS ------> Interface
PORT (clk : IN STD_LOGIC;

x : IN BYTE;
y : OUT BYTE);

END fir_srg;

ARCHITECTURE flex OF fir_srg IS

SIGNAL tap : ARRAY_BYTE := (0,0,0,0);
-- Tapped delay line of bytes

BEGIN

p1: PROCESS ------> Behavioral style
BEGIN
WAIT UNTIL clk = ’1’;

-- Compute output y with the filter coefficients weight.
-- The coefficients are [-1 3.75 3.75 -1].

4 The equivalent Verilog code fir srg.v for this example can be found in Ap-
pendix A on page 682. Synthesis results are shown in Appendix B on page 731.

180 3. Finite Impulse Response (FIR) Digital Filters

Fig. 3.9. VHDL simulation results of the FIR filter with impulse input 10.

-- Division for Altera VHDL is only allowed for
-- powers-of-two values!
y <= 2 * tap(1) + tap(1) + tap(1) / 2 + tap(1) / 4

+ 2 * tap(2) + tap(2) + tap(2) / 2 + tap(2) / 4
- tap(3) - tap(0);

FOR I IN 3 DOWNTO 1 LOOP
tap(I) <= tap(I-1); -- Tapped delay line: shift one

END LOOP;
tap(0) <= x; -- Input in register 0

END PROCESS;

END flex;
The design is a literal interpretation of the direct FIR architecture found in
Fig. 3.1 (p. 166). The design is applicable to both symmetric and asymmetric
filters. The output of each tap of the tapped delay line is multiplied by the
appropriately weighted binary value and the results are added. The impulse
response y of the filter to an impulse 10 is shown in Fig. 3.9. 3.2

There are three obvious actions that can improve this design:

1) Realize each filter coefficient with an optimized CSD code (see Chap. 2,
Example 2.1, p. 58).
2) Increase effective multiplier speed by pipelining. The output adder
should be arranged in a pipelined balance tree. If the coefficients are coded
as “powers-of-two,” the pipelined multiplier and the adder tree can be
merged. Pipelining has low overhead due to the fact that the LE registers
are otherwise often unused. A few additional pipeline registers may be nec-
essary if the number of terms in the tree to be added is not a power of
two.
3) For symmetric coefficients, the multiplication complexity can be reduced
as shown in Fig. 3.5 (p. 172).

The first two actions are applicable to all FIR filters, while the third applies
only to linear-phase (symmetric) filters. These ideas will be illustrated by
example designs.

3.4 Constant Coefficient FIR Design 181

Table 3.3. Improved FIR filter.

Symmetry no yes no no yes yes
CSD no no yes no yes yes
Tree no no no yes no yes

Speed/MHz 99.17 178.83 123.59 270.20 161.79 277.24
Size/LEs 114 99 65 139 57 81

Example 3.3: Improved Four-tap Direct FIR Filter
The design from the previous example can be improved using a CSD code for
the coefficients 3.75 = 22 − 2−2. In addition, symmetry and pipelining can
also be employed to enhance the filter’s performance. Table 3.3 shows the
maximum throughput that can be expected for each different design. CSD
coding and symmetry result in smaller, more compact designs. Improvements
in Registered Performance are obtained by pipelining the multiplier and
providing an adder tree for the output accumulation. Two additional pipeline
registers (i.e., 16 LEs) are necessary, however. The most compact design is
expected using symmetry and CSD coding without the use of an adder tree.
The partial VHDL code for producing the filter output y is shown below.

t1 <= tap(1) + tap(2); -- Using symmetry
t2 <= tap(0) + tap(3);
IF rising_edge(clk) THEN

y <= 4 * t1 - t1 / 4 - t2; Apply CSD code and add
...

The fastest design is obtained when all three enhancements are used. The
partial VHDL code, in this case, becomes:

WAIT UNTIL clk = ’1’; -- Pipelined all operations
t1 <= tap(1) + tap(2); -- Use symmetry of coefficients
t2 <= tap(0) + tap(3); -- and pipeline adder
t3 <= 4 * t1 - t1 / 4; -- Pipelined CSD multiplier
t4 <= -t2; -- Build a binary tree and add delay
y <= t3 + t4;
...

3.3

Exercise 3.7 (p. 210) discusses the implementation of the filter in more
detail.

Direct Form Pipelined FIR Filter

Sometimes a single coefficient has more pipeline delay than all the other
coefficients. We can model this delay by f [n]z−d. If we now add a positive
delay with

f [n] = zdf [n]z−d (3.18)

182 3. Finite Impulse Response (FIR) Digital Filters

+d

z

f[n]

z

=f[n]

−d

(a)

−1z −1z

(2)

(1)

pipelined
2−stage

f[n]

f[n]

−1z −1z

+

multiplier
−2

−1z

z

+

−1z

(b)

Fig. 3.10. Rephasing FIR filter. (a) Principle. (b) Rephasing a multiplier. (1)
Without pipelining. (2) With two-stage pipelining.

the two delays are eliminated. Translating this into hardware means that for
the direct form FIR filter we have to use the output of the d position previous
register.

This principle is shown in Fig. 3.10a. Figure 3.10b shows an example of
rephasing a pipelined multiplier that has two delays.

3.4.2 FIR Filter with Transposed Structure

A variation of the direct FIR filter is called the transposed filter and has been
discussed in Sect. 3.2.1 (p. 167). The transposed filter enjoys, in the case
of a constant coefficient filter, the following two additional improvements
compared with the direct FIR:

• Multiple use of the repeated coefficients using the reduced adder graph
(RAG) algorithm [31, 32, 33, 34]

• Pipeline adders using a carry-save adder

The pipeline adder increases the speed, at additional adder and register
costs, while the RAG principle will reduce the size (i.e., number of LEs) of
the filter and sometimes also increase the speed. The pipeline adder principle
has been discussed in Chap. 2 and here we will focus on the RAG algorithm.

3.4 Constant Coefficient FIR Design 183

In Chap. 2 it was noted that it can sometimes be advantageous to imple-
ment the factors of a constant coefficient, rather than implement the CSD
code directly. For example, the CSD code realization of the constant multi-
plier coefficient 93 requires three adders, while the factors 3×31 only requires
two adders, see Fig. 2.3 (p. 61). For a transposed FIR filter, the probabil-
ity is high that all the coefficients will have several factors in common. For
instance, the coefficients 9 and 11 can be built using 8 + 1 = 9 for the first
and 11 = 9 + 2 for the second. This reduces the total effort by one adder.
In general, however, finding the optimal reduced adder graph (RAG) is an
NP-hard problem. As a result, heuristics must be used. The RAG algorithm
first suggested by Dempster and Macleod is described next [33].

Algorithm 3.4: Reduced Adder Graph

1) Reduce all coefficients in the input set to positive odd fundamentals
(OF).

2) Evaluate the single-coefficient adder cost of each coefficient using the
MAG Table 2.3, p. 64.

3) Remove from the input set all power-of-two values and repeated fun-
damentals.

4) Create a graph set of all coefficients that can be built with one adder.
Remove these coefficients from the input set.

5) Check if a pair of fundamentals in the graph set can be used to gen-
erate a coefficient in the input set by using a single adder.

6) Repeat step 5 until no further coefficients are added to the graph set.
This completes the optimal part of the algorithm. Next follows the heuris-
tic part of the algorithm:
7) Add the smallest coefficient requiring two adders (if found) from the

input set and its smallest NOF. The OF and one NOF (i.e., auxiliary
coefficient) requires two adders using the fundamentals in the graph
set.

8) Go to step 5 since the two new fundamentals from step 7 can be used
to build other coefficients from the input set.

9) Add the smallest adder cost-3 or higher OF to the graph set and use
the minimum NOF sum for this coefficient.

10) Go to step 5 until all coefficients are synthesized.

Steps 1–6 are straightforward, but steps 7–10 are potentially complex since
the number of theoretical graphs increases exponentially. To simplify the
process it is helpful to use the MAG coding data shown in Table 2.3 (p. 64).
Let us briefly review some of the RAG steps that are not so obvious at first
glance.

In step 1 all coefficients are reduced to positive odd fundamentals (i.e.,
power-of-two factors are removed from each coefficient), since this maximizes
the number of partial sums, and the negative signs of the coefficients are
implemented in the output adder TAPs of the filter. The two coefficient −7
and 28 = 4× 7 would be merged. This works fine except for the unlikely case

184 3. Finite Impulse Response (FIR) Digital Filters

when all coefficients are negative. Then a sign complement operation has to
be added to the filter output.

In step 5 all sums of two extended fundamentals are considered. It may
happen that a final division is also required, i.e., g = (2uf1 ± 2vf2)/2w.
Note that multiplication or division by two can be implemented by left and
right shift, respectively, i.e., they do not require hardware resources. For
instance the coefficient set {7,105,53} MAG coding required one, two, and
three adders, respectively. In RAG the set is synthesized as 7 = 8− 1; 105 =
7 × 15; 53 = (105 + 1)/2, requiring only three adders but also a divide/right
shift operation.

In step 7 an adder cost-2 coefficient is added and the algorithm selects
the auxiliary coefficient, called the non-output fundamental (NOF), with the
smallest values. This is motivated by the fact that an additional small NOF
will generate more additional coefficients than a larger NOF. For instance, let
us assume that the coefficient 45 needs to be added and we must decide which
NOF value has to be used. The NOF LUTs lists possible NOFs as 3, 5, 9, or
15. It can now be argued that, if 3 is selected, more coefficients are generated
than if any other NOF is used, since 3, 6, 12, 24, 48, . . . can be generated with-
out additional effort from NOF 3. If 15 is used, for instance, as the NOF the
coefficients 15, 30, 45, . . . , are generated, which produces significantly fewer
coefficients than NOF 3.

To illustrate the RAG algorithm, consider coding the coefficients defining
the F6 half-band FIR filter of Goodman and Carey [80].

Example 3.5: Reduced Adder Graph for an F6 Half-band Filter
The half-band filter F6 has four nonzero coefficients, namely f [0], f [1], f [3],
and f [5], which are 346, 208,−44, and 9. For a first cost estimation we convert
the decimal values (index 10) into binary representations (index 2) and look
up the cost for the coefficients in Table 2.3 (p. 64):

f [k] Cost
f [0] = 34610 = 2× 173 = 1010110102 4
f [1] = 20810 = 24 × 13 = 110100002 2
f [3] = −4410 = −22 × 11 = −1011002 2
f [5] = 910 = 32 = 10012 1

Total 9

For the direct CSD code realization, nine adders are required. The RAG
algorithms proceeds as follows:

Step To be Already Action
realized realized

0) {346, 208,−44, 9} { − } Initialization
1a) {346,208,44,9} { − } No negative coefficients
1b) {173,13,11,9} { − } Remove 2k factors
2) {173,13,11,9} { − } Look-up coefficients costs: {3,2,2,1}
3) {173,13,11,9} { − } Remove cost-0 coefficients from set
4) {173,13,11} { 9 } Realize cost-1 coefficients: 9 = 8 + 1
5) {173,13,11} {9,11,13} Build 11 = 9 + 2 and 13 = 9 + 4

3.4 Constant Coefficient FIR Design 185

2

16

+4 208x[n]16

+

++

44x[n]

346x[n]−

+

2

9x[n]

Pipeline register optional
8

4

x[n]

Fig. 3.11. Realization of F6 using RAG algorithm.

Apply the heuristic to the remaining coefficients, starting with the coefficient
with the lowest cost and smallest value. It follows that:

Step Realize Already Action
realized Find representation

7) { − } {9,11,13,173} Add NOF 3: 173 = 11× 16− 3

Figure 3.11 shows the resulting reduced adder graph. The number of adders
is reduced from 9 to 5. The adder path delay is also reduced from 4 to 3. 3.5

A program ragopt.exe that implements the optimal part of the algo-
rithms can be found in the book CD under book3e/util. Compared with
the original algorithm only some minor improvements have been reported
over the years [81].

• The MAG LUT table used has been extended to 14 bits (Gustafsson et
al. [82] have actually extended the cost table to 19 bits but do not keep the
fundamental table) and all 32 MAG adder cost-4 graph are now considered
when computing the minimum NOF sum. Within 14 bits only two coeffi-
cients (i.e., 14 709, 15 573) are of cost 5 and, as long as these coefficients
are not used, the computed minimum NOF sum list will be optimal in the
RAG-95 sense.

• In step 7 all adder cost-2 graph are now considered. There are three such
graphs, i.e., a single fundamental followed by an adder cost-2 factor, a
sum of two fundamentals, and an adder cost-1 factor or a sum of three
fundamentals.

186 3. Finite Impulse Response (FIR) Digital Filters

• The last improvement is based on the adder cost-2 selection, which some-
times produced suboptimal results in the RAG-95 algorithm when multiple
adder cost-2 coefficients have to be implemented. This can be explained as
follows. While the selection of the smallest NOF is motivated by the statis-
tical observation this may lead to suboptional results. For instance, for the
coefficient set {13, 59, 479} the minimum NOFs values used by RAG-95 are
{3, 5, 7} because 13 = 4× 3 + 1; 59 = 64− 5; 479 = 59× 8 + 7, resulting in
a six-adder graph. If the NOF {15} is chosen instead, then all coefficients
(13 = 15− 2; 59 = 15× 4− 1; 479 = 15× 32− 1) benefit and RAG-05 only
requires four adders, a 30% improvement. Therefore, instead of selecting
the smallest NOF for the smallest adder cost-2 coefficient, a search for the
best NOF is done over all adder cost-2 coefficients.

These modifications have been implemented in the RAG-05 algorithm,
while the original RAG will be called RAG-95 based on the year of publishing
the algorithms.

Although the RAG algorithm has been in use for quite some time, a large
set of reliable benchmark data that can be verified and reproduced by anyone
was not produced until recently [81]. In a recent paper by Wang and Roy [83],
for instance, 60% of the comparison RAG data were declared “unknown.” A
benchmark should cover filters used in practical applications that are widely
published or can easily be computed – a generation of random number filter
coefficients that: (a) cannot be verified by a third party, and (b) are of no
practical relevance (although used in many publications) are less useful. The
problem with a RAG benchmark is that the heuristic part may give different
results depending on the exact software implementation or the NOF table
used. In addition, since some filters are rather long, a benchmark that lists
the whole RAG is not practical in most cases. It is therefore suggested to use a
benchmark based on the following equivalence transformation (remembering
that the number of output fundamentals is equivalent to the number of adders
required):

Theorem 3.6: RAG Equivalent Transformation

Let S1 be a coefficient set that can be synthesized by the RAG algorithm
with a set of F1 output fundamentals and N1 non-output fundamentals,
(i.e., internal auxiliary coefficients). A congruent RAG is synthesized if a
coefficient set S2 is used that contains as fundamentals both output and
non-output fundamentals from the first set S2 = F1 ∪N1.

Proof: Assume that S2 is synthesized via the RAG algorithm. Now all funda-
mentals can be synthesized with exactly one adder, since all fundamentals are
synthesized in the optimal part of the algorithm. As a result a minimum num-
ber C2 = #F1 +#N1 of adders for this fundamental set is used. If now set S1

is synthesized and generates the same fundamentals (output and non-output)
as set S2, the resulting RAG also uses the minimum number of adders. Since
both use the minimum number of adders they must be congruent. q.e.d.

3.4 Constant Coefficient FIR Design 187

A corollary of Theorem 3.6 is that graphs can now be classified as (guar-
anteed) optimal and heuristic graphs. An optimal graph has no more than
one NOF, while a heuristic graph has more than one NOF. It is only required
to provide a list of the NOFs to describe a unique OF graph. If this NOF is
added to the coefficient set, all OFs are synthesized via the optimal part of
the algorithm, which can easily be programmed. The program ragopt.exe
that implements the optimal part of the algorithms is in fact available on the
book CD under book3e/util. Some example benchmarks are given in Table
3.4. The first column shows the filter name, followed by the filter length L,
and the bitwidth of the largest coefficient B. Then the reference adder data
for CSD coding and CSE coding follows. The idea of the CSE coding is stud-
ied in Exercises 3.4 and 3.5 (p. 209) Note that the number of CSD adders
given already takes advantage of coefficient symmetry, i.e., f(k) = f(L− k).
Common subexpression (CSE) required adder data are used from [83]. For
the RAG algorithm the output fundamental (OF) and non-output fundamen-
tal (NOF) for RAG-2005 are listed. Note that the number of OFs is already
much smaller than the filter length L. We then list in column 8 the adders
required in the improved RAG-2005 version. Finally in the last column we list
the NOF values that are required to synthesize the RAG filter via the optimal
part of the RAG algorithms that is the basis for the program ragopt.exe5 on
the book CD under book3e/util. ragopt.exe uses a MAG LUT mag14.dat
to determine the MAG costs, and produces two output files: firXX.dat that
contains the filter data, and a file ragopt.pro that has the RAG-n coeffi-
cient equations. A grep command for lines that start with Build yields the
equations necessary to construct the RAG-n graph.

It can be seen that the examples from Samueli [84] and Lim and Parker
[85] all produce optimal RAG results, i.e., have a maximum of one NOF.
Notice particularly for long filters the improvement of RAG compared to
CSD and CSE adders. Filters F5-F9 are from the Goodman and Carey set of
half-band filters (see Table 5.3, p. 274) and give better results using RAG-05
than RAG-95. The benchmark data from Samueli, and Lim andParker work
very well for RAG since the filters are lowpass and therefore taper smoothly to
zero at both sides, improving the likelihood of cost-1 output fundamentals.
A more-challenging RAG design for DFT coefficients will be discussed in
Chap. 6.

Pipelined RAG FIR Filter

Due to the logic delay in the RAG running through several adders, the result-
ing register performance of the design is not very high even for a small graph.
To improve the register performance one can take advantage of the register
embedded in each LE that would not otherwise be used. A single register
5 You need to copy the program to your hard drive first; you can not start it from

the CD directly.

188 3. Finite Impulse Response (FIR) Digital Filters

Table 3.4. Required number of adders for the CSD, CSE, and RAG algorithms for
lowpass filters. Prototype filters are from Goodman and Carey [80], Samueli [84],
and Lim and Parker [85].

Filter L B CSD CSE #OF #NOF RAG-05 NOF
name adder adder adder values

F5 11 8 6 - 3 0 3 -
F6 11 9 9 - 4 1 5 3
F7 11 9 7 - 3 1 4 23
F8 15 10 10 - 5 2 7 11, 17
F9 19 13 14 - 5 2 7 13, 1261

S1 25 9 11 6 6 0 6 -
S2 60 14 57 29 26 0 26 -

L1 121 17 145 57 51 1 52 49
L2 63 13 49 23 22 0 22 -
L3 36 11 16 5 5 0 5 -

placed at the output of an adder does therefore not require any additional
logic resource. However, power-of-two coefficients that are implemented by
shifting the register input word require an additional register not included in
the zero-pipeline design. This design with one pipeline stage already enjoys
a speed improvement of 50% compared with the non-pipelined design, see
Table 3.5(Pipeline stages=1). For the fully pipelined design we need to have
the same delay for each incoming path of the adders. For the F6 design one
needs to build:

x9 <= 8× x+ x; has delay 1
x11 <= x9 + 2× x× z−1; has delay 2
x13 <= x9 + 4× x× z−1; has delay 2
x3 <= xz−1 + 2× x× z−1; has delay 2

x173 <= 16× x11− x3; has delay 3

i.e., one extra pipeline register is used for input x, and a maximum delay
of three pipeline stage is needed. The pipelined graph is shown in Fig. 3.11
with the dashed register active. Now the coefficients in the RAG are all fully
pipelined. Now we need to take care of the different delays of the coefficients.
We basically have two options: we can add to the output of all coefficients
an additional delay, that we achieve the same delay for all coefficients (three
in the case of the F6 filter) and then do not need to change the output
tap delay line structure; alternative we can use pipeline retiming, i.e., the
multiplier outputs need to be aligned in the tap delay line according to their
pipeline stages. This is a similar approach to that used in the direct FIR (see
Fig. 3.10, p. 182) by aligning the coefficient adder location according to the

3.4 Constant Coefficient FIR Design 189

Table 3.5. F6 pipeline options for the RAG algorithm.

Pipeline LEs Fmax Cost
stages (MHz) LEs/Fmax

0 225 165.95 1.36
1 234 223.61 1.05
max 252 353.86 0.71

Gain% 0/max -11 114 92

delay, and is shown in Fig. 3.12. Note in order to build only two input adder,
we had to use an additional register to delay the x13 coefficient.

For this half-band filter design the pipeline retiming synthesis results
shown in Table 3.5 reveal that the design now runs about twice as fast with a
moderate (11%) increase in LEs when compared with the unpipelined design.
Since the overall cost measured by LEs/Fmax is improved, fully pipelined de-
signs should be preferred.

3.4.3 FIR Filters Using Distributed Arithmetic

A completely different FIR architecture is based on the distributed arithmetic
(DA) concept introduced in Sect. 2.7.1 (p. 115). In contrast to a conventional
sum-of-products architecture, in distributed arithmetic we always compute
the sum of products of a specific bit b over all coefficients in one step. This is
computed using a small table and an accumulator with a shifter. To illustrate,
consider the three-coefficient FIR with coefficients {2, 3, 1} found in Example
2.24 (p. 117).

Example 3.7: Distributed Arithmetic Filter as State Machine
A distributed arithmetic filter can be built in VHDL code6 using the following
state machine description:

6 The equivalent Verilog code dafsm.v for this example can be found in Ap-
pendix A on page 683. Synthesis results are shown in Appendix B on page
731.

−1z−1

−44x[n−2]

+z −1

9x[n−1]

z−1

208x[n−2]

z−1+z−1

346x[n−3]

z−1

208x[n−2]

z−1z z

−44x[n−2]

z−1

9x[n−1]

Multiplier

−1

y[n]

x[n]

(b) + +

block

−1+z−1

−44x[n−3]

z z−1

9x[n−3]

+z +

208x[n−3]

z−1+z −1

346x[n−3]

+z−1

208x[n−3]

−1−1+z−1

−44x[n−3]

z−1

9x[n−3]

Multiplier
block

y[n]
z(a)

+

x[n]

Fig. 3.12. F6 RAG filter with pipeline retiming.

190 3. Finite Impulse Response (FIR) Digital Filters

LIBRARY ieee; -- Using predefined packages
USE ieee.std_logic_1164.ALL;
USE ieee.std_logic_arith.ALL;

ENTITY dafsm IS ------> Interface
PORT (clk, reset : IN STD_LOGIC;

x0_in, x1_in, x2_in :
IN STD_LOGIC_VECTOR(2 DOWNTO 0);

lut : OUT INTEGER RANGE 0 TO 7;
y : OUT INTEGER RANGE 0 TO 63);

END dafsm;

ARCHITECTURE fpga OF dafsm IS

COMPONENT case3 -- User-defined component
PORT (table_in : IN STD_LOGIC_VECTOR(2 DOWNTO 0);

table_out : OUT INTEGER RANGE 0 TO 6);
END COMPONENT;

TYPE STATE_TYPE IS (s0, s1);
SIGNAL state : STATE_TYPE;
SIGNAL x0, x1, x2, table_in

: STD_LOGIC_VECTOR(2 DOWNTO 0);
SIGNAL table_out : INTEGER RANGE 0 TO 7;

BEGIN

table_in(0) <= x0(0);
table_in(1) <= x1(0);
table_in(2) <= x2(0);

PROCESS (reset, clk) ------> DA in behavioral style
VARIABLE p : INTEGER RANGE 0 TO 63;-- temp. register
VARIABLE count : INTEGER RANGE 0 TO 3; -- counts shifts

BEGIN
IF reset = ’1’ THEN -- asynchronous reset

state <= s0;
ELSIF rising_edge(clk) THEN
CASE state IS

WHEN s0 => -- Initialization step
state <= s1;
count := 0;
p := 0;
x0 <= x0_in;
x1 <= x1_in;
x2 <= x2_in;

WHEN s1 => -- Processing step
IF count = 3 THEN -- Is sum of product done ?

y <= p; -- Output of result to y and
state <= s0; -- start next sum of product

ELSE
p := p / 2 + table_out * 4;
x0(0) <= x0(1);
x0(1) <= x0(2);

3.4 Constant Coefficient FIR Design 191

x1(0) <= x1(1);
x1(1) <= x1(2);
x2(0) <= x2(1);
x2(1) <= x2(2);
count := count + 1;
state <= s1;

END IF;
END CASE;
END IF;

END PROCESS;

LC_Table0: case3
PORT MAP(table_in => table_in, table_out => table_out);

lut <= table_out; -- Extra test signal

END fpga;
The LE table7 defined as CASE components was generated with the utility
program dagen3e.exe. The output is show below.

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
USE ieee.std_logic_arith.ALL;

ENTITY case3 IS
PORT (table_in : IN STD_LOGIC_VECTOR(2 DOWNTO 0);

table_out : OUT INTEGER RANGE 0 TO 6);
END case3;

ARCHITECTURE LEs OF case3 IS
BEGIN

-- This is the DA CASE table for
-- the 3 coefficients: 2, 3, 1
-- automatically generated with dagen.exe -- DO NOT EDIT!

PROCESS (table_in)
BEGIN
CASE table_in IS

WHEN "000" => table_out <= 0;
WHEN "001" => table_out <= 2;
WHEN "010" => table_out <= 3;
WHEN "011" => table_out <= 5;
WHEN "100" => table_out <= 1;
WHEN "101" => table_out <= 3;
WHEN "110" => table_out <= 4;
WHEN "111" => table_out <= 6;
WHEN OTHERS => table_out <= 0;

END CASE;
END PROCESS;

END LEs;

7 The equivalent Verilog code case3.v for this example can be found in Ap-
pendix A on page 684. Synthesis results are shown in Appendix B on page
731.

192 3. Finite Impulse Response (FIR) Digital Filters

Fig. 3.13. Simulation of the 3-tap FIR filter with input {1, 3, 7}.

As suggested in Chap. 2, a shift/accumulator is used, which shifts only one
position to the right for each step, instead of shifting k positions to the
left. The simulation results, shown in Fig. 3.13, report the correct result
(y = 18) for an input sequence {1, 3, 7}. The simulation shows the clk, reset,
state, and count signals followed by the three input signals. Next the three
bits selected from the input word to address the prestored DA LUT are
shown. The LUT output values {6, 4, 1} are then weighted and accumulated
to generate the final output value y = 18 = 6 + 4 × 2 + 1 × 4. The design
uses 32LEs, no embedded multiplier, no M4K block, and has a 420.17 MHz
Registered Performance. 3.7

By defining the distributed arithmetic table with a CASE statement, the
synthesizer will use logic cells to implement the LUT. This will result in a fast
and efficient design only if the tables are small. For large tables, alternative
means must be found. In this case, we may use the 4-kbit embedded memory
blocks (M4Ks), which (as discussed in Chap. 1) can be configured as 29 ×
9, 210× 4, 211× 2 or 212× 1 tables. These design paths are discussed in more
detail in the following.

Distributed Arithmetic Using Logic Cells

The DA implementation of an FIR filter is particularly attractive for low-
order cases due to LUT address space limitations (e.g., L ≤ 4). It should be
remembered, however, that FIR filters are linear filters. This implies that the
outputs of a collection of low-order filters can be added together to define
the output of a high-order FIR, as shown in Fig. 2.37 (p. 122). Based on the
LEs found in a Cyclone II device, namely 24 × 1-bit tables, a DA table for
four coefficients can be implemented. The number of necessary LEs increases
exponentially with order. Typically, the number of LEs is much higher than
the number of M4Ks. For example, an EP2C35 contains 35KLEs but only
105M4Ks. Also, M4Ks can be used to efficiently implement RAMs and FIFOs

3.4 Constant Coefficient FIR Design 193

3 4 5 6 7 8 9
2

5

10

20

50

100

200

500

Number of bits b

N
um

be
r

of
 L

E
s Pipelined

No pipeline

Fig. 3.14. Size comparison of synthesis results for different coding using the CASE
statement with b input and outputs.

and other high-valued functions. It is therefore sometimes desirable to use
M4Ks economically. On the other side if the design is implemented using
larger tables with a 2b× b CASE statement, inefficient designs can result. The
pipelined 29 × 9 table implemented with one VHDL CASE statement only,
for example, required over 100LEs. Figure 3.14 shows the number of LEs
necessary for tables having three to nine bits inputs and outputs using the
CASE statement generated with utility program dagen3e.exe.

Another alternative is the design using 4-input LUT only via a CASE state-
ments, and implementing table with more than 4 inputs with an additional
(binary tree) multiplexer using 2 → 1 multiplexer only. In this model it is
straightforward to add additional pipeline registers to the modular design.
For maximum speed, a register must be introduced behind each LUT and
2→ 1 multiplexer. This will, most likely, yield a higher LE count8 compared
to the minimization of the one large LUT. The following example illustrates
the structure of a 5-input table.

Example 3.8: Five-input DA Table
The utility program dagen3e.exe accepts filter length and coefficients, and re-
turns the necessary PROCESS statements for the 4-input CASE table followed by
a multiplexer. The VHDL output for an arbitrary set of coefficients, namely
{1, 3, 5, 7, 9}, is given9 in the following listing:

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
USE ieee.std_logic_arith.ALL;

ENTITY case5p IS
PORT (clk : IN STD_LOGIC;

table_in : IN STD_LOGIC_VECTOR(4 DOWNTO 0);

8 A 16:1 multiplexer and is reported with 11 LEs while we need 15 LEs or 2:1 MUX
in a tree structure, see Cyclone II Device Handbook p. 5-15 [21].

9 The equivalent Verilog code case5p.v for this example can be found in Ap-
pendix A on page 685. Synthesis results are shown in Appendix B on page 731.

194 3. Finite Impulse Response (FIR) Digital Filters

table_out : OUT INTEGER RANGE 0 TO 25);
END case5p;

ARCHITECTURE LEs OF case5p IS

SIGNAL lsbs : STD_LOGIC_VECTOR(3 DOWNTO 0);
SIGNAL msbs0 : STD_LOGIC_VECTOR(1 DOWNTO 0);
SIGNAL table0out00, table0out01 : INTEGER RANGE 0 TO 25;

BEGIN

-- These are the distributed arithmetic CASE tables for
-- the 5 coefficients: 1, 3, 5, 7, 9
-- automatically generated with dagen.exe -- DO NOT EDIT!

PROCESS
BEGIN
WAIT UNTIL clk = ’1’;
lsbs(0) <= table_in(0);
lsbs(1) <= table_in(1);
lsbs(2) <= table_in(2);
lsbs(3) <= table_in(3);
msbs0(0) <= table_in(4);
msbs0(1) <= msbs0(0);

END PROCESS;

PROCESS -- This is the final DA MPX stage.
BEGIN -- Automatically generated with dagen.exe
WAIT UNTIL clk = ’1’;
CASE msbs0(1) IS

WHEN ’0’ => table_out <= table0out00;
WHEN ’1’ => table_out <= table0out01;
WHEN OTHERS => table_out <= 0;

END CASE;
END PROCESS;

PROCESS -- This is the DA CASE table 00 out of 1.
BEGIN -- Automatically generated with dagen.exe
WAIT UNTIL clk = ’1’;
CASE lsbs IS

WHEN "0000" => table0out00 <= 0;
WHEN "0001" => table0out00 <= 1;
WHEN "0010" => table0out00 <= 3;
WHEN "0011" => table0out00 <= 4;
WHEN "0100" => table0out00 <= 5;
WHEN "0101" => table0out00 <= 6;
WHEN "0110" => table0out00 <= 8;
WHEN "0111" => table0out00 <= 9;
WHEN "1000" => table0out00 <= 7;
WHEN "1001" => table0out00 <= 8;
WHEN "1010" => table0out00 <= 10;
WHEN "1011" => table0out00 <= 11;
WHEN "1100" => table0out00 <= 12;

3.4 Constant Coefficient FIR Design 195

WHEN "1101" => table0out00 <= 13;
WHEN "1110" => table0out00 <= 15;
WHEN "1111" => table0out00 <= 16;
WHEN OTHERS => table0out00 <= 0;

END CASE;
END PROCESS;

PROCESS -- This is the DA CASE table 01 out of 1.
BEGIN -- Automatically generated with dagen.exe
WAIT UNTIL clk = ’1’;
CASE lsbs IS

WHEN "0000" => table0out01 <= 9;
WHEN "0001" => table0out01 <= 10;
WHEN "0010" => table0out01 <= 12;
WHEN "0011" => table0out01 <= 13;
WHEN "0100" => table0out01 <= 14;
WHEN "0101" => table0out01 <= 15;
WHEN "0110" => table0out01 <= 17;
WHEN "0111" => table0out01 <= 18;
WHEN "1000" => table0out01 <= 16;
WHEN "1001" => table0out01 <= 17;
WHEN "1010" => table0out01 <= 19;
WHEN "1011" => table0out01 <= 20;
WHEN "1100" => table0out01 <= 21;
WHEN "1101" => table0out01 <= 22;
WHEN "1110" => table0out01 <= 24;
WHEN "1111" => table0out01 <= 25;
WHEN OTHERS => table0out01 <= 0;

END CASE;
END PROCESS;

END LEs;
The five inputs produce two CASE tables and a 2 → 1 bus multiplexer. The
multiplexer may also be realized with a component instantiation using the
LPM function busmux. The program dagen3e.exe writes a VHDL file with
the name caseX.vhd, where X is the filter length that is also the input bit
width. The file caseXp.vhd is the same table, except with additional pipeline
registers. The component can be used directly in a state machine design or
in an unrolled filter structure. 3.8

Referring to Fig. 3.14, it can be seen that the structured VHDL code
improves on the number of requiredLEs. Figure 3.15 compares the different
design methods in terms of speed. We notice that the busmux generated
VHDL code allows to run all pipelined designs with the maximum speed of
464MHz outperforming the M4Ks by nearly a factor two. Without pipeline
stages the synthesis tools is capable to reduce the LE count essentially, but
Registered Performance is also reduced. Note that still a busmux design is
used. The synthesis tool is not able to optimize one (large) case statement in
the same way. Although we get a high Registered Performance using eight
pipeline stages for a 29 × 9 table with 464MHz the design may now be too
large for some applications. We may also consider the partitioning technique

196 3. Finite Impulse Response (FIR) Digital Filters

3 4 5 6 7 8 9
0

100

200

300

400

500

Number of bits b

P
er

fo
rm

an
ce

 in
 M

H
z

Pipelined
No pipeline
M4K

Fig. 3.15. Speed comparison for different coding styles using the CASE statement.

(Exercise 3.6, p. 210), shown in Fig. 2.36 (p. 121), or implementation with
an M4K, discussed next.

DA Using Embedded Array Blocks

As mentioned in the last section, it is not economical to use the 4-kbit M4Ks
for a short FIR filter, mainly because the number of available M4Ks is limited.
Also, the maximum registered speed of an M4K is 260MHz, and an LE
table implementation may be faster. The following example shows the DA
implementation using a component instantiation of the M4K.

Example 3.9: Distributed Arithmetic Filter using M4Ks
The CASE table from the last example can be replaced by a M4K ROM. The
ROM table is defined by file darom3.mif. The default input and output con-
figuration of the M4K is given by "REGISTERED." If it is not desirable to have
a registered configuration, set LPM ADDRESS CONTROL => "UNREGISTERED" or
LPM OUTDATA => "UNREGISTERED." Note that in Cyclone II at least one input
must be registered. With Flex devices we can also build asynchronous, i.e.,
non registered M2K ROMs. The VHDL code10 for the DA state machine
design is shown below:

LIBRARY lpm;
USE lpm.lpm_components.ALL;

LIBRARY ieee; -- Using predefined packages
USE ieee.std_logic_1164.ALL;
USE ieee.std_logic_arith.ALL;
USE ieee.std_logic_unsigned.ALL; -- Contains conversion

-- VECTOR -> INTEGER
ENTITY darom IS ------> Interface

PORT (clk, reset : IN STD_LOGIC;
x_in0, x_in1, x_in2

10 The equivalent Verilog code darom.v for this example can be found in Ap-
pendix A on page 687. Synthesis results are shown in Appendix B on page
731.

3.4 Constant Coefficient FIR Design 197

: IN STD_LOGIC_VECTOR(2 DOWNTO 0);
lut : OUT INTEGER RANGE 0 TO 7;
y : OUT INTEGER RANGE 0 TO 63);

END darom;

ARCHITECTURE fpga OF darom IS
TYPE STATE_TYPE IS (s0, s1);
SIGNAL state : STATE_TYPE;
SIGNAL x0, x1, x2, table_in, mem

: STD_LOGIC_VECTOR(2 DOWNTO 0);
SIGNAL table_out : INTEGER RANGE 0 TO 7;

BEGIN

table_in(0) <= x0(0);
table_in(1) <= x1(0);
table_in(2) <= x2(0);

PROCESS (reset, clk) ------> DA in behavioral style
VARIABLE p : INTEGER RANGE 0 TO 63; --Temp. register
VARIABLE count : INTEGER RANGE 0 TO 3;

BEGIN -- Counts the shifts
IF reset = ’1’ THEN -- Asynchronous reset

state <= s0;
ELSIF rising_edge(clk) THEN
CASE state IS

WHEN s0 => -- Initialization step
state <= s1;
count := 0;
p := 0;
x0 <= x_in0;
x1 <= x_in1;
x2 <= x_in2;

WHEN s1 => -- Processing step
IF count = 3 THEN -- Is sum of product done ?

y <= p / 2 + table_out * 4; -- Output of result
state <= s0; -- to y andstart next

ELSE -- sum of product
p := p / 2 + table_out * 4;
x0(0) <= x0(1);
x0(1) <= x0(2);
x1(0) <= x1(1);
x1(1) <= x1(2);
x2(0) <= x2(1);
x2(1) <= x2(2);
count := count + 1;
state <= s1;

END IF;
END CASE;
END IF;

END PROCESS;

rom_1: lpm_rom
GENERIC MAP (LPM_WIDTH => 3,

198 3. Finite Impulse Response (FIR) Digital Filters

LPM_WIDTHAD => 3,
LPM_OUTDATA => "REGISTERED",
LPM_ADDRESS_CONTROL => "UNREGISTERED",
LPM_FILE => "darom3.mif")

PORT MAP(outclock => clk,address => table_in,q => mem);

table_out <= CONV_INTEGER(mem);
lut <= table_out;

END fpga;
Compared with Example 3.7 (p. 189), we now have a component instan-
tiation of the LPM_ROM. Because there is a need to convert between the
STD_LOGIC_VECTOR output of the ROM and the integer, we have used the
package std_logic_unsigned from the library ieee. The latter contains the
CONV_INTEGER function for unsigned STD_LOGIC_VECTOR.
The include file darom3.mif was generated with the program dagen3e.exe.
The file has the following contents:

-- This is the DA MIF table for the 3 coefficients: 2, 3, 1
-- automatically generated with dagen3e.exe
-- DO NOT EDIT!
WIDTH = 3; DEPTH = 8; ADDRESS_RADIX = uns; DATA_RADIX = uns;
CONTENT BEGIN

0 : 0;
1 : 2;
2 : 3;
3 : 5;
4 : 1;
5 : 3;
6 : 4;
7 : 6;

END;
The design runs at 218.29 MHz and uses 27 LEs, and one M4K memory block
(more precisely, 24 bits of an M4K).
The simulation results, shown in Fig. 3.16, are very similar to the dafsm sim-
ulation shown in Fig. 3.13 (p, 3.13). Due to the mandatory 1 clock cycle delay
of the synchronous M4K memory block we notice a delay by one clock cycle
in the lut output signal; the result (y = 18) for the input sequence {1, 3, 7},
however, is still correct. The simulation shows the clk, reset, state, and
count signals followed by the three input signals. Next the three bits selected
from the input word to address the prestored DA LUT are shown. The LUT
output values {6, 4, 1} are then weighted and accumulated to generate the
final output value y = 18 = 6 + 4× 2 + 1× 4. 3.9

But M4Ks have only a single address decoder and if we implement a 23×3
table, a complete M4K would be consumed unnecessarily, and it can not be
used elsewhere. For longer filters, however, the use of M4Ks is attractive
because:

• M4Ks have registered throughput at a constant 260MHz, and
• Routing effort is reduced

3.4 Constant Coefficient FIR Design 199

Fig. 3.16. Simulation of the 3-tap FIR M4K-based DA filter with input {1, 3, 7}.

Signed DA FIR Filter

A signed DA filter will require a signed accumulator. The following example
shows the VHDL code for the previously studied three-coefficient example,
2.25 from Chap. 2 (p. 119).

Example 3.10: Signed DA FIR Filter
For the signed DA filter, an additional state is required. See the variable
count11 to process the sign bit.

LIBRARY ieee; -- Using predefined packages
USE ieee.std_logic_1164.ALL;
USE ieee.std_logic_arith.ALL;

ENTITY dasign IS ------> Interface
PORT (clk, reset : IN STD_LOGIC;

x_in0, x_in1, x_in2
: IN STD_LOGIC_VECTOR(3 DOWNTO 0);

lut : out INTEGER RANGE -2 TO 4;
y : OUT INTEGER RANGE -64 TO 63);

END dasign;

ARCHITECTURE fpga OF dasign IS

COMPONENT case3s -- User-defined components
PORT (table_in : IN STD_LOGIC_VECTOR(2 DOWNTO 0);

table_out : OUT INTEGER RANGE -2 TO 4);
END COMPONENT;

TYPE STATE_TYPE IS (s0, s1);
SIGNAL state : STATE_TYPE;
SIGNAL table_in : STD_LOGIC_VECTOR(2 DOWNTO 0);
SIGNAL x0, x1, x2 : STD_LOGIC_VECTOR(3 DOWNTO 0);
SIGNAL table_out : INTEGER RANGE -2 TO 4;

11 The equivalent Verilog code case3s.v for this example can be found in Ap-
pendix A on page 688. Synthesis results are shown in Appendix B on page 731.

200 3. Finite Impulse Response (FIR) Digital Filters

BEGIN

table_in(0) <= x0(0);
table_in(1) <= x1(0);
table_in(2) <= x2(0);

PROCESS (reset, clk) ------> DA in behavioral style
VARIABLE p : INTEGER RANGE -64 TO 63:= 0; -- Temp. reg.
VARIABLE count : INTEGER RANGE 0 TO 4; -- Counts the

BEGIN -- shifts
IF reset = ’1’ THEN -- asynchronous reset

state <= s0;
ELSIF rising_edge(clk) THEN
CASE state IS

WHEN s0 => -- Initialization step
state <= s1;
count := 0;
p := 0;
x0 <= x_in0;
x1 <= x_in1;
x2 <= x_in2;

WHEN s1 => -- Processing step
IF count = 4 THEN -- Is sum of product done?

y <= p; -- Output of result to y and
state <= s0; -- start next sum of product

ELSE
IF count = 3 THEN -- Subtract for last
p := p / 2 - table_out * 8; -- accumulator step
ELSE
p := p / 2 + table_out * 8; -- Accumulation for
END IF; -- all other steps
FOR k IN 0 TO 2 LOOP -- Shift bits

x0(k) <= x0(k+1);
x1(k) <= x1(k+1);
x2(k) <= x2(k+1);

END LOOP;
count := count + 1;
state <= s1;

END IF;
END CASE;
END IF;

END PROCESS;

LC_Table0: case3s
PORT MAP(table_in => table_in, table_out => table_out);

lut <= table_out; -- Extra test signal

END fpga;
The LE table (component case3s.vhd) was generated using the program
dagen3e.exe. The VHDL code12 is shown below:

12 The equivalent Verilog code case3s.v for this example can be found in Ap-
pendix A on page 690. Synthesis results are shown in Appendix B on page 731.

3.4 Constant Coefficient FIR Design 201

Fig. 3.17. Simulation of the 3-tap signed FIR filter with input {1,−3, 7}.

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
USE ieee.std_logic_arith.ALL;

ENTITY case3s IS
PORT (table_in : IN STD_LOGIC_VECTOR(2 DOWNTO 0);

table_out : OUT INTEGER RANGE -2 TO 4);
END case3s;

ARCHITECTURE LEs OF case3s IS
BEGIN

-- This is the DA CASE table for
-- the 3 coefficients: -2, 3, 1
-- automatically generated with dagen.exe -- DO NOT EDIT!

PROCESS (table_in)
BEGIN
CASE table_in IS

WHEN "000" => table_out <= 0;
WHEN "001" => table_out <= -2;
WHEN "010" => table_out <= 3;
WHEN "011" => table_out <= 1;
WHEN "100" => table_out <= 1;
WHEN "101" => table_out <= -1;
WHEN "110" => table_out <= 4;
WHEN "111" => table_out <= 2;
WHEN OTHERS => table_out <= 0;

END CASE;
END PROCESS;

END LEs;
Figure 3.17 shows the simulation for the input sequence {1,−3, 7}. The sim-
ulation shows the clk, reset, state, and count signals followed by the
four input signals. Next the three bits selected from the input word to ad-
dress the prestored DA LUT are shown. The LUT output values {2, 1, 4, 3}
are then weighted and accumulated to generate the final output value y =

202 3. Finite Impulse Response (FIR) Digital Filters

X [0]

2X [0]

0X [0]

1X [0]

3X [N−1]

1X_in

2X_in

3X_in

0X_in

+

+

Pipeline register

R
O

M
R

O
M

0

R
O

M

X [N−1]

2

1

2

2
R

O
M

1

2

3

YX [N−1]

X [N−1]

−

+

3

2

Fig. 3.18. Parallel implementation of a distributed arithmetic FIR filter.

2+1×2+4×4−3×8 = −4. The design uses 56LEs, no embedded multiplier,
and has a 236.91 MHz Registered Performance. 3.10

To accelerate a DA filter, unrolled loops can be used. The input is applied
sample by sample (one word at a time), in a bit-parallel form. In this case,
for each bit of input a separate table is required. While the table size varies
(input bit width equals number of filter taps), the contents of the tables are
the same. The obvious advantage is a reduction of VHDL code size, if we
use a component definition for the LE tables, as previously presented. To
demonstrate, the unrolling of the 3-coefficients, 4-bit input example, previ-
ously considered, is developed below.

Example 3.11: Loop Unrolling for DA FIR Filter
In a typical FIR application, the input values are processed in word parallel
form (i.e., see Fig. 3.18). The following VHDL code3 illustrates the unrolled
DA code, according to Fig. 3.18.

LIBRARY ieee; -- Using predefined packages
USE ieee.std_logic_1164.ALL;

3 The equivalent Verilog code dapara.v for this example can be found in Ap-
pendix A on page 691. Synthesis results are shown in Appendix B on page 731.

3.4 Constant Coefficient FIR Design 203

USE ieee.std_logic_arith.ALL;

ENTITY dapara IS ------> Interface
PORT (clk : IN STD_LOGIC;

x_in : IN STD_LOGIC_VECTOR(3 DOWNTO 0);
y : OUT INTEGER RANGE -46 TO 44);

END dapara;

ARCHITECTURE fpga OF dapara IS
TYPE ARRAY4x3 IS ARRAY (0 TO 3)

OF STD_LOGIC_VECTOR(2 DOWNTO 0);
SIGNAL x : ARRAY4x3;
TYPE IARRAY IS ARRAY (0 TO 3) OF INTEGER RANGE -2 TO 4;
SIGNAL h : IARRAY;
SIGNAL s0 : INTEGER RANGE -6 TO 12;
SIGNAL s1 : INTEGER RANGE -10 TO 8;
SIGNAL t0, t1, t2, t3 : INTEGER RANGE -2 TO 4;
COMPONENT case3s
PORT (table_in : IN STD_LOGIC_VECTOR(2 DOWNTO 0);

table_out : OUT INTEGER RANGE -2 TO 4);
END COMPONENT;

BEGIN

PROCESS ------> DA in behavioral style
BEGIN
WAIT UNTIL clk = ’1’;
FOR l IN 0 TO 3 LOOP -- For all four vectors

FOR k IN 0 TO 1 LOOP -- shift all bits
x(l)(k) <= x(l)(k+1);

END LOOP;
END LOOP;
FOR k IN 0 TO 3 LOOP -- Load x_in in the

x(k)(2) <= x_in(k); -- MSBs of the registers
END LOOP;
y <= h(0) + 2 * h(1) + 4 * h(2) - 8 * h(3);

-- Pipeline register and adder tree
-- t0 <= h(0); t1 <= h(1); t2 <= h(2); t3 <= h(3);
-- s0 <= t0 + 2 * t1; s1 <= t2 - 2 * t3;
-- y <= s0 + 4 * s1;

END PROCESS;

LC_Tables: FOR k IN 0 TO 3 GENERATE -- One table for each
LC_Table: case3s -- bit in x_in

PORT MAP(table_in => x(k), table_out => h(k));
END GENERATE;

END fpga;
The design uses four tables of size 23×4 and all tables have the same content
as the table in Example 3.10 (p. 199). Figure 3.19 shows the simulation for
the input sequence {1,−3, 7}. Because the input is applied serially (and bit-
parallel) the expected result −410 = 11111002C is computed at the 400-ns
interval. 3.11

204 3. Finite Impulse Response (FIR) Digital Filters

Fig. 3.19. Simulation results for the parallel distributed arithmetic FIR filter.

The previous design requires no embedded multiplier, 33LEs, no M4K
memory block, and runs at 214.96MHz. An important advantage of the DA
concept, compared with the general-purpose MAC design, is that pipelining
is easy achieved. We can add additional pipeline registers to the table output
and at the adder-tree output with no cost. To compute y, we replace the line

y <= h(0) + 2 * h(1) + 4 * h(2) - 8 * h(3);

In a first step we only pipeline the adders. We use the signals s0 and s1 for
the pipelined adder within the PROCESS statement, i.e.,

s0 <= h(0) + 2 * h(1); s1 <= h(2) - 2 * h(3);
y <= s0 + 4 * s1;

and the Registered Performance increase to 368.60MHz, and about the
same number of LEs are used. For a fully pipeline version we also need to
store the case LUT output in registers; the partial VHDL code then becomes:

t0 <= h(0); t1 <= h(1); t2 <= h(2); t3 <= h(3);
s0 <= t0 + 2 * t1; s1 <= t2 - 2 * t3;
y <= s0 + 4 * s1;

The size of the design increases to 47LEs, because the registers of the LE
that hold the case tables can no longer be used for the x input shift register.
But the Registered Performance increases from 214.96MHz to 420MHz.

3.4.4 IP Core FIR Filter Design

Altera and Xilinx usually also offer with the full subscription an FIR filter
generator, since this is one of the most often used intellectual property (IP)
blocks. For an introduction to IP blocks see Sect. 1.4.4, p. 35.

FPGA vendors in general prefer distributed arithmetic (DA)-based FIR
filter generators since these designs are characterized by:

• fully pipelined architecture
• short compile time

3.4 Constant Coefficient FIR Design 205

(a) (b)

Fig. 3.20. IP design of FIR (a) IP toolbench. (b) Coefficient specification.

• good resource estimation
• area results independent from the coefficient values, in contrast to the RAG

algorithm

DA-based filters do not require any coefficient optimization or the computa-
tion of a RAG graph, which may be time consuming when the coefficient set
is large. DA-based code generation including all VHDL code and testbenches
is done in a few seconds using the vendor’s FIR compilers [86].

Let us have a look at the FIR filter generation of an F6 filter from Good-
man and Carey [80] that we had discussed before, see Example 3.5, p. 184.
But this time we use the Altera FIR compiler [86] to build the filter. The
Altera FIR compiler MegaCore function generates FIR filters optimized for
Altera devices. Stratix and Cyclone II devices are supported but no ma-
ture devices from the APEX or Flex family. You can use the IP toolbench
MegaWizard design environment to specify a variety of filter architectures,
including fixed-coefficient, multicycle variable, and multirate filters. The FIR
compiler includes a coefficient generator, but can also load and use predefined
(for instance computed via MatLab) coefficients from a file.

Example 3.12: F6 Half-band Filter IP Generation
To start the Altera FIR compiler we select the MegaWizard Plug-In Manager
under the Tools menu and the library selection window (see Fig. 1.23, p. 39)
will pop up. The FIR compiler can be found under DSP→Filters. You need
to specify a design name for the core and then proceed to the ToolBench.
We first parameterize the filter and, since we want to use the F6 coefficients,
we select Edit Coefficient Set and load the coefficient filter by selecting
Imported Coefficient Set. The coefficient file is a simple text file with
each line listing a single coefficient, starting with the first coefficient in the
first line. The coefficients can be integer or floating-point numbers, which
will then be quantized by the tool since only integer-coefficient filters can
be generated with the FIR compiler. The coefficients are shown in the im-
pulse response window as shown in Fig. 3.20b and can be modified if needed.

206 3. Finite Impulse Response (FIR) Digital Filters

After loading the coefficients we can then select the Structure to be fully
parallel, fully serial, multi-bit serial, or multicycle. We select Distributed
Arithmetic: Fully Parallel Filter. We set the input coefficient width to
8 bit and let the tool compute the output bitwidth based on the method
Actual Coefficients. We select Coefficient Scaling as None since our
integer coefficients should not be further quantized. The transfer function
in integer and floating-point should therefore be seen as matching lines, see
Fig. 3.21. The FIR compiler reports an estimated size of 312 LEs. We skip
step 2 from the toolbench since the design is small and we will use the com-
piled data to verify and simulate the design. We proceed with step 3 and
the generation of the VHDL code and all supporting files follows. These files
are listed in Table 3.6. We see that not only are the VHDL and Verilog files
generated along with their component files, but MatLab (bit accurate) and
Quartus II (cycle accurate) test vectors are also provided to enable an easy
verification path. We then instantiate the FIR core in a wrapper file that also
includes registers for the input and output values. We then compile the HDL
code of the filter to enable a timing simulation and provide precise resource
data. The impulse response simulation of the F6 filter is shown in Figure
3.22. We see that two additional control signals rdy_to_ld and done have
been synthesized, although we did not ask for them. 3.12

The design from the Example 3.12 requires 426LEs and runs at 362.84MHz.
Without the wrapper file the LE count (404 LEs) is still slightly higher than
the estimation of 312LEs. The overall cost metric measured as the quotient
LEs/Fmax is 1.17 and is better than RAG without pipelining, since the DA
is fully pipelined, as you can see from the large initial delay of the impulse
response. For an appropriate comparison we should compare the DA-based
design with the fully pipelined RAG design. The cost of the DA design is
higher than the fully pipelined RAG design, see Table 3.5, p. 189. But the
Registered Performance of the DA-based IP core is slightly higher than
the fully pipelined RAG design.

3.4.5 Comparison of DA- and RAG-Based FIR Filters

In the last section we followed a detailed case study of the F6 half-band RAG-
and DA-based FIR filter designs. The question now would be whether the
results were just one single (atypical) example or if the results in terms of
speed/size/cost are typical. In order to answer this question a set of larger
filters has been designed using VHDL for fully pipelined RAG (see Exercises
3.13-3.29, p. 212) and should be compared with the synthesis data using the
FIR core compiler from Altera that implements a fully parallel DA filter [86].
Table 3.7 shows the results for three half-band filters (F6, F8, and F9) from
Goodman and Carey [80], two from Samueli [84], and two from Lim and
Parker [85]. The first column shows the filter name, followed by the pipeline
stages used. No-pipeline and fully pipelined data are reported, but no one-
pipeline design data, as in Table 3.5 (p. 189). The third column shows the

3.4 Constant Coefficient FIR Design 207

Fig. 3.21. IP parametrization of FIR core according to the F6 Example 3.5, p. 184.

Fig. 3.22. FIR core timing simulation result.

filter length L. The next three columns show the synthesis data for the RAG-
based filters, namely LEs, Registered Performance and the cost (area ×
delay) measured as the quotient LEs/Fmax. Columns 7-9 show the same three
values for the DA-based designs generated with Altera’s FIR compiler. For
each filter two rows are used to show the data for zero/no and fully pipelined
designs. Finally in the last rows the average value for zero- and fully pipelined
designs are given and, at the very end, a comparison of the gain/loss of RAG

208 3. Finite Impulse Response (FIR) Digital Filters

Table 3.6. IP files generation for FIR core.

File Description

f6_core.vhd
A MegaCore function variation file, which defines a
top-level VHDL description of the custom MegaCore
function

f6_core_inst.vhd VHDL sample instantiation file

f6_core.cmp A VHDL component declaration for the MegaCore
function variation

f6_core.inc
An AHDL include declaration file for the MegaCore
function variation function

f6_core_bb.v Verilog HDL black-box file for the MegaCore function
variation

f6_core.bsf
Quartus II symbol file to be used in the Quartus II
block diagram editor

f6_core_st.v Generated FIR filter netlist

f6_core This file contains the necessary constraints to

_constraints.tcl achieve FIR filter size and speed

f6_core_mlab.m This file provides a MatLab simulation model for the
customized FIR filter

f6_core_tb.m
This file provides a MatLab testbench for the cus-
tomized FIR filter

f6_core.vec
This file provides simulation test vectors to be used
simulating the customized FIR filter with the Quartus
II software

f6_core.html The MegaCore function report file

zero- and fully pipelined and fully pipelined RAG compared with DA-based
designs are given.

It can be seen from Table 3.7, that

• Fully pipelined RAG filters enjoy size reductions averaging 71% compared
with DA-based designs.

• The fully pipelined RAG filter requires on average only 6% more LEs than
the RAG design without pipelining.

• The Register Performance of the DA-based FIR filters is on average 8%
higher than fully pipelined RAG designs.

• The overall cost, measured as LEs/Fmax, is on average 56% better for
RAG-based compared with DA-based designs when a fully pipeline ap-
proach is used.

It can also be seen from Table 3.7 that, without pipelining (pipe=0), the
DA-based approach gives better results. With a 6% increase in area, the cost
for RAG pipelining is quite reasonable.

Exercises 209

Table 3.7. Size, speed and cost comparison of DA and RAG algorithm.

RAG DA
Filter Pipe L LEs Fmax Cost LEs Fmax Cost
name stages (MHz) LEs

Fmax
(MHz) LEs

Fmax

F6 0 11 225 165.95 1.36
max 234 353.86 0.71 396 332.34 1.19

F8 0 15 326 135.85 2.40
max 360 323.42 1.11 570 340.72 1.67

F9 0 19 461 97.26 4.74
max 534 304.04 1.76 717 326.16 2.20

S1 0 25 460 130.63 3.52
max 492 296.65 1.66 985 356.51 2.76

L3 0 36 651 205.3 3.17
max 671 310.37 2.16 1406 321.3 4.38

S2 0 60 1672 129.97 12.86
max 1745 252.91 6.90 2834 289.02 9.81

L2 0 63 1446 134.95 10.72
max 1531 265.53 5.77 2590 282.41 9.17

Mean 0 745 140.34 5.53
Mean max 793 296.60 2.86 1357 321.21 4.45

Gain% RAG-0/RAG-max RAG-max/DA
−6 111 93 71 −8 56

Exercises

Note: If you have no prior experience with the Quartus II software, refer
to the case study found in Sect. 1.4.3, p. 29. If not otherwise noted use the
EP2C35F672C6 from the Cyclone II family for the Quartus II synthesis eval-
uations.

3.1: A filter has the following specification: sampling frequency 2 kHz; passband
0–0.4 kHz, stopband 0.5–1 kHz; passband ripple, 3 dB, and stopband ripple, 48 dB.
Use the MatLab software and the “Interactive Lowpass Filter Design” demo from
the Signal Processing Toolbox for the filter design.
(a1) Design a direct filter with a Kaiser window.
(a2) Determine the filter length and the absolute ripple in the passband.
(b1) Design an equiripple filter (use the functions remex or firpm).
(b2) Determine the filter length and the absolute ripple in the passband.

3.2: (a) Compute the RAG for a length-11 half-band filter F5 that has the nonzero
coefficients f [0] = 256, f [±1] = 150, f [±3] = −25, f [±5] = 3.
(b) What is the minimum output bit width of the filter, if the input bit width is 8
bits?
(c1) Write and compile (with the Quartus II compiler) the HDL code for the filter.
(c2) Simulate the filter with impulse and step responses.
(d) Write the VHDL code for the filter in distributed arithmetic, using the state
machine approach with the table realized as LPM_ROM.

210 3. Finite Impulse Response (FIR) Digital Filters

3.3: (a) Compute the RAG for length-11 half-band filter F7 that has the nonzero
coefficients f [0] = 512, f [±1] = 302, f [±3] = −53, f [±5] = 7.
(b) What is the minimum output bit width of the filter, if the input bit width is 8
bits?
(c1) Write and compile (with the Quartus II compiler) the VHDL code for the
filter.
(c2) Simulate the filter with impulse and step response.

3.4: Hartley [87] has introduced a concept to implement constant coefficient filters,
by exploiting common subexpressions across coefficients. For instance, the filter

y[n] =

L−1∑

k=0

a[k]x[n− k], (3.19)

with three coefficients a[k] = {480,−302, 31}. The CSD code of these three coeffi-
cients is given by

512 256 128 64 32 16 8 4 2 1

480 : 1 0 0 0 −1 0 0 0 0 0
−302 : 0 −1 0 −1 0 1 0 0 1 0

31 : 0 0 0 0 1 0 0 0 0 −1

From the table we note that the pattern
1 0
0 −1

can be found four times. If we

therefore build the temporary variable h[n] = 2x[n]− x[n− 1], we can compute the
filter output with

y[n] = 256h[n] − 16h[n] − 32h[n − 1] + h[n− 1]. (3.20)

(a) Verify (3.20) by substituting h[n] = 2x[n]− x[n− 1].
(b) How many adders are required to yield the direct CSD implementation of (3.19)
and the implementation with subexpression sharing?
(c1) Implement the filter with subexpression sharing with Quartus II for 8-bit in-
puts.
(c2) Simulate the impulse response of the filter.
(c3) Determine the Registered Performance and the used resources (LEs, multi-
pliers, and M4Ks).

3.5: Use the subexpression method from Exercise 3.4 to implement a 4-tap filter
with the coefficients a[k] = {−1406,−1109,−894, 2072}.
(a) Find the CSD code and the subexpression representation for the most frequent
pattern.
(b) Substitute for the subexpression a 2 or −2, respectively. Apply the subexpres-
sion sharing one more time to the reduced set.
(c) Determine the temporary equations and check by substitution back into (3.19).
(d) How many adders are required to yield the direct CSD implementation of (3.19)
and the implementation with subexpression sharing?
(e1) Implement the filter with subexpression sharing with Quartus II for 8-bit in-
puts.
(e2) Simulate the impulse response of the filter.
(e3) Determine the Registered Performance and the used resources (LEs, multi-
pliers, and M4Ks).

3.6: (a1) Use the program dagen3e.exe to compile a DA table for the coefficients
{20, 24, 21, 100, 13, 11, 19, 7} using multiple CASE statements.

Exercises 211

Synthesize the design for maximum speed and determine the resources (LEs, mul-
tipliers, and M4Ks) and Registered Performance.
(a2) Simulate the design using power-of-two 2k; 0 ≤ k ≤ 7 input values.
(b) Use the partitioning technique to implement the same table using two sets,
namely {20, 24, 21, 100} and {13, 11, 19, 7}, and an additional adder. Synthesize the
design for maximum speed and determine the size and Registered Performance.
(b2) Simulate the design using power-of-two 2k; 0 ≤ k ≤ 7 input values.
(c) Compare the designs from (a) and (b).

3.7: Implement 8-bit input/output improved 4-tap {-1, 3.75, 3.75, -1} filter de-
signs according to the listing in Table 3.3, p. 181. For each filter write the HDL
code and determine the resources (LEs, multipliers, and M4Ks) and Registered
Performance.
(a) Synthesize fir_sym.vhd as the filter using symmetry.
(b) Synthesize fir_csd.vhd as the filter using CSD coding.
(c) Synthesize fir_tree.vhd as the filter using an adder tree.
(d) Synthesize fir_csd_sym.vhd as the filter using CSD coding and symmetry.
(e) Synthesize fir_csd_sym_tree.vhd as the filter using all three improvements.

3.8: (a) Write a short MatLab program that plots the
(a1) impulse response,
(a2) frequency response, and
(a2) the pole/zero plot for the half-band filter F3, see Table 5.3, p. 274.
Hint: Use the MatLab functions: filter, stem, freqz, zplane.
(b) What is the bit growth of the F3 filter? What is the total required output bit
width for an 8-bit input?
(c) Use the csd3e.exe program from the CD to determine the CSD code for the
coefficients.
(c) Use the ragopt.exe program from the CD to determine the reduced adder
graph (RAG) of the filter coefficients.

3.9: Repeat Exercise 3.8 for the CFIR filter of the GC4114 communication IC.
Try the WWW to download a datasheet if possible. The 31 filter coefficients are:
−23,−3, 103, 137,−21,−230,−387,−235, 802, 1851, 81,−4372,−4774, 5134, 20 605,
28 216, 20 605, 5134, −4774,−4372, 81, 1851, 802, −235,−387,−230,−21, 137, 103,
−3, −23.

3.10: Download the datasheet for the GC4114 from the WWW. Use the results
from Exercise 3.9.
(a) Design the 31-tap symmetric CFIR compensation filter as CSD FIR filter in
transposed form (see Fig. 3.3, p. 167) for 8-bit input and an asynchronous reset.
Try to match the simulation shown in Fig. 3.23.
(b) For the device EP2C35F672C6 from the Cyclone II family determine the re-
sources (LEs, multipliers, and M4Ks) and the Registered Performance.

3.11: Download the datasheet for the GC4114 from the WWW. Use the results
from Exercise 3.9.
(a) Design the 31-tap symmetric CFIR compensation filter using distributed arith-
metic. Use the dagen3e.exe program from the CD to generate the HDL code for
the coefficients. Note you should use always groups of four coefficients each and add
the results in an adder tree.
(b) Design the DA FIR filter in the full parallel form (see Fig. 3.18, p. 202) for
8-bit input and an asynchronous reset. Take advantage of the coefficient symmetry.
Try to match the simulation shown in Fig. 3.24.

212 3. Finite Impulse Response (FIR) Digital Filters

Fig. 3.23. Testbench for the CSD FIR filter in Exercise 3.10.

(c) For the device EP2C35F672C6 from the Cyclone II family determine the re-
sources (LEs, multipliers, and M4Ks) and the Registered Performance.

Fig. 3.24. Testbench for the DA-based FIR filter in Exercise 3.11.

3.12: Repeat Exercise 3.8 for the half-band filter F4, see Table 5.3, p. 274.

3.13: Repeat Exercise 3.8 for the half-band filter F5, see Table 5.3, p. 274.

3.14: Use the results from Exercise 3.13 and report the HDL code, resources (LEs,
multipliers, and M4Ks) and Registered Performance for the HDL design of the
F5 half-band HDL FIR filter as:
(a) an RAG filter without pipelining
(b) a fully pipelined RAG filter
(c) a DA fully pipelined filter using an FIR core generator

3.15: Repeat Exercise 3.8 for the half-band filter F6, see Table 5.3, p. 274.

3.16: Use the results from Exercise 3.15 and report the HDL code, resources (LEs,
multipliers, and M4Ks) and Registered Performance for the HDL design of the
F6 half-band HDL FIR filter as:
(a) an RAG filter without pipelining
(b) a fully pipelined RAG filter
(c) a DA fully pipelined filter using an FIR core generator

3.17: Repeat Exercise 3.8 for the half-band filter F7, see Table 5.3, p. 274.

3.18: Repeat Exercise 3.8 for the half-band filter F8, see Table 5.3, p. 274.

3.19: Use the results from Exercise 3.18 and report the HDL code, resources (LEs,
multipliers, and M4Ks) and Registered Performance for the HDL design of the
F8 half-band HDL FIR filter as:

Exercises 213

(a) an RAG filter without pipelining
(b) a fully pipelined RAG filter
(c) a DA fully pipelined filter using an FIR core generator

3.20: FIR features design. In this problem we want to compare the influence of
additional features like reset and enable for different device families. Use the re-
sults from Exercise 3.18 for the CSD code. For all following HDL F8 CSD designs
with 8-bit input determine the resources (LEs, multipliers, and M2Ks/M4Ks) and
Registered Performance. As the device use the EP2C35F672C6 from the Cyclone
II family and the EPF10K70RC240-4 from the Flex 10K family.
(a) Design the F8 CSD FIR filter in direct form (see Fig. 3.1, p. 166).
(b) Design the F8 CSD FIR filter in transposed form (see Fig. 3.3, p. 167).
(c) Add a synchronous reset to the transposed FIR from (b).
(d) Add an asynchronous reset to the transposed FIR from (b).
(e) Add a synchronous reset and enable to the transposed FIR from (b).
(f) Add an asynchronous reset and enable to the transposed FIR from (b).
(g) Tabulate your resources (LEs, multipliers, and M2Ks/M4Ks) and Registered
Performance results from (a)-(g). What conclusions can be drawn for Flex and
Cyclone II devices from the measurements?

3.21: Repeat Exercise 3.8 for the half-band filter F9, see Table 5.3, p. 274.

3.22: Use the results from Exercise 3.21 and report the HDL code, resources (LEs,
multipliers, and M4Ks) and Registered Performance for the HDL design of the
F9 half-band HDL FIR filter as:
(a) an RAG filter without pipelining
(b) a fully pipelined RAG filter
(c) a DA fully pipelined filter using an FIR core generator

3.23: Repeat Exercise 3.8 for the Samueli filter S1 [84]. The 25 filter coefficients
are: 1, 3, 1, 8, 7, 10, 20, 1, 40, 34, 56, 184, 246, 184, 56, 34, 40, 1, 20, 10, 7, 8, 1, 3, 1.

3.24: Use the results from Exercise 3.23 and report the HDL code, resources (LEs,
multipliers, and M4Ks) and Registered Performance for the HDL design of the
Samueli filter S1 FIR filter as:
(a) an RAG filter without pipelining
(b) a fully pipelined RAG filter
(c) a DA fully pipelined filter using an FIR core generator

3.25: Repeat Exercise 3.8 for the Samueli filter S2 [84]. The 60 filter coefficients are:
31, 28, 29, 22, 8,−17,−59,−116,−188,−268,−352,−432,−500,−532,−529, −464,
−336, −129, 158, 526, 964, 1472, 2008, 2576, 3136, 3648, 4110, 4478, 4737, 4868,
4868, 4737, 4478, 4110, 3648, 3136, 2576, 2008, 1472, 964, 526, 158, −129, −336,
−464, −529, −532,−500, −432,−352, −268,−188, −116,−59,−17, 8, 22, 29, 28,
31.

3.26: Use the results from Exercise 3.25 and report the HDL code, resources (LEs,
multipliers, and M2Ks/M4Ks) and Registered Performance for the HDL design
of the Samueli filter S2 FIR filter as:
(a) an RAG filter without pipelining.
(b) a fully pipelined RAG filter.
(c) a DA fully pipelined filter using an FIR core generator.

3.27: Repeat Exercise 3.8 for the Lim and Parker L2 filter [85]. The 63 filter coef-
ficients are: 3, 6, 8, 7, 1,−9,−19,−24,−20,−5, 15, 31, 33, 16,−15,−46,−59,−42, 4,

214 3. Finite Impulse Response (FIR) Digital Filters

61, 99, 92, 29, −71,−164, −195,−119, 74, 351, 642, 862, 944, 862, 642, 351, 74,
−119,−195,−164,−71, 29, 92, 99, 61, 4, −42,−59,−46,−15, 16, 33, 31, 15, −5,
−20, −24, −19, −9, 1, 7, 8, 6, 3.

3.28: Use the results from Exercise 3.27 and report the HDL code, resources (LEs,
multipliers, and M4Ks) and Registered Performance for the HDL design of the
Lim and Parker L2 filter FIR filter as:
(a) an RAG filter without pipelining
(b) a fully pipelined RAG filter
(c) a DA fully pipelined filter using an FIR core generator

3.29: Repeat Exercise 3.8 for the Lim and Parker L3 filter [85]. The 36 filter coef-
ficients are: 10, 1,−8,−14,−14,−3, 10, 20, 24, 9,−18,−40,−48,−20,36, 120, 192,
240, 240, 192, 120, 36, −20,−48,−40,−18, 9, 24, 20, 10, −3,−14,−14,−8, 1, 10.

3.30: Use the results from Exercise 3.29 and report the HDL code, resources (LEs,
multipliers, and M4Ks) and Registered Performance for the HDL design of the
Lim and Parker filter L3 FIR filter as:
(a) an RAG filter without pipelining
(b) a fully pipelined RAG filter
(c) a DA fully pipelined filter using an FIR core generator

4. Infinite Impulse Response (IIR) Digital
Filters

Introduction

In Chap. 3 we introduced the FIR filter. The most important properties that
make the FIR attractive (+) or unattractive (−) for selective applications
include:

+ FIR linear-phase performance is easily achieved.
+ Multiband filters are possible.
+ The Kaiser window method allows iterative-free design.
+ FIRs have a simple structure for decimators and interpolators (see
Chap. 5).
+ Nonrecursive filters are always stable and have no limit cycles.
+ It is easy to get high-speed, pipelined designs.
+ FIRs typically have low coefficient and arithmetic roundoff error budgets,
and well-defined quantization noise.
− Recursive FIR filters may be unstable because of imperfect pole/zero
annihilation.
− The sophisticated Parks–McClellan algorithms must be available for
minimax filter design.
− High filter length requires high implementation effort.

Compared to an FIR filter, an IIR filter can often be much more efficient
in terms of attaining certain performance characteristics with a given filter
order. This is because the IIR filter incorporates feedback and is capable
of realizing both zeros and poles of a system transfer function, whereas the
FIR filter is an all-zero filter. In this chapter, the fundamentals of IIR fil-
ter design will be developed. The traditional approach to the design of IIR
filters involves the transformation of an analog filter, with defined feedback
specifications, into the digital domain. This is a reasonable approach, mainly
because the art of designing analog filters is highly advanced, and many stan-
dard tables are available, i.e., [88]. We will review the four most important
classes of these analog prototype filters in this chapter, namely Butterworth,
Chebyshev I and II, and elliptic filters.

The IIR will be shown to overcome many of the deficiencies of the FIR,
but to have some less desirable properties as well. The general desired (+)
and undesired (−) properties of an IIR filter are:

216 4. Infinite Impulse Response (IIR) Digital Filters

y[n]

a=3/4

+ −1zx[n]

Fig. 4.1. First-order IIR filter used as lossy integrator.

+ Standard design using an analog prototype filter is well understood.
+ Highly selective filters can be realized with low-order designs that can
run at high speeds.
+ Design using tables and a pocket calculator is possible.
+ For the same tolerance scheme, filters are short, compared with FIR
filters.
+ Closed-loop design algorithms can be used.
− Nonlinear-phase response is typical, i.e., it is difficult to get linear-phase
response. (Using an allpass filter for phase compensation results in twice
the complexity.)
− Limit cycles may occur for integer implementation.
− Multiband design is difficult; only low, high, or bandpass filters are
designed.
− Feedback can introduce instabilities. (Most often, the mirror pole to the
unit circle can be used to produce the same magnitude response, and the
filter will be stable.)
− It is more difficult to get high-speed, pipelined designs

To demonstrate the possible benefits of using IIR filters, we will discuss
a first-order IIR filter example.

Example 4.1: Lossy Integrator I
One of the basic tasks of a filter may be to smooth a noisy signal. Assume
that a signal x[n] is received in the presence of wideband zero-mean random
noise. Mathematically, an integrator could be used to suppress the effects of
the noise. If the average value of the input signal is to be preserved over a
finite time interval, a lossy integrator is often used to process the signal with
additive noise. Figure 4.1 displays a simple first-order lossy integrator that
satisfies the discrete-time difference equation:

y[n + 1] =
3

4
y[n] + x[n]. (4.1)

As we can see from the impulse response in Fig. 4.2a, the same functionality
of the first-order lossy integrator can be achieved with a 15-tap FIR filter.
The step response to the lossy integrator is shown in Fig. 4.2b.

4. Infinite Impulse Response (IIR) Digital Filters 217

−5 0 5 10 15
0

200

400

600

800

1000
(a)

n

y[
n]

−5 0 5 10 15
0

50

100

150

200

250

300

350

400
(b)

n

Fig. 4.2. Simulation of lossy integrator with a = 3/4. (a) Impulse response for
x[n] = 1000δ[n]. (b) Step response for x[n] = 100σ[n].

The following VHDL code1 shows a possible implementation of this IIR filter.

PACKAGE n_bit_int IS -- User-defined type
SUBTYPE BITS15 IS INTEGER RANGE -2**14 TO 2**14-1;

END n_bit_int;

LIBRARY work;
USE work.n_bit_int.ALL;

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
USE ieee.std_logic_arith.ALL;

ENTITY iir IS
PORT (x_in : IN BITS15; -- Input

y_out : OUT BITS15; -- Result
clk : IN STD_LOGIC);

END iir;

ARCHITECTURE fpga OF iir IS

SIGNAL x, y : BITS15 := 0;

BEGIN

PROCESS -- Use FF for input and recursive part
BEGIN
WAIT UNTIL clk = ’1’;
x <= x_in;
y <= x + y / 4 + y / 2;

1 The equivalent Verilog code iir.v for this example can be found in Appendix A
on page 692. Synthesis results are shown in Appendix B on page 731.

218 4. Infinite Impulse Response (IIR) Digital Filters

Fig. 4.3. Impulse response for Quartus II simulation of the lossy integrator.

end process;

y_out <= y; -- Connect y to output pins

END fpga;
Registers have been implemented using a WAIT statement inside a PROCESS
block, while the multiplication and addition is implemented using CSD code.
The design uses 62 LEs, no embedded multiplier, and has a 160.69 MHz
Registered Performance, if synthesized with the Speed option. The response
of the filter to an impulse of amplitude 1000, shown in Fig. 4.3, agrees with
the MatLab simulated results presented in Fig. 4.2a. 4.1

An alternative design approach using a “standard logic vector” data type
and LPM_ADD_SUB megafunctions is discussed in Exercise 4.6 (p. 241). This
second approach will produce longer VHDL code but will have the benefit of
direct control, at the bit level, over the sign extension and multiplier.

4.1 IIR Theory

A nonrecursive filter incorporates, as the name implies, no feedback. The
impulse response of such a filter is finite, i.e., it is an FIR filter. A recursive
filter, on the other hand has feedback, and is expected, in general, to have
an infinite impulse response, i.e., to be an IIR filter. Figure 4.4a shows filters
with separate recursive and nonrecursive parts. A canonical filter is produced
if these recursive and nonrecursive parts are merged together, as shown in
Fig. 4.4b. The transfer function of the filter from Fig. 4.4 can be written as:

F (z) =

L−1∑
l=0

b[l]z−l

1−
L−1∑
l=1

a[l]z−l

. (4.2)

The difference equation for such a system yields:

y[n] =
L−1∑

l=0

b[l]x[n− l] +
L−1∑

l=1

a[l]y[n− l]. (4.3)

4.1 IIR Theory 219

−1 z−1

z−1

z−1 z−1

z−1

b[0] b[L−1]b[1] b[L−2]

a[L−2] a[1]a[L−1]

b[0] b[L−1]b[1] b[L−2]

a[L−2] a[1]a[L−1]

zx[n] z −1

+

−1

z

+ +

−1

++ y[n]+

(a)

(b)

Recursive part

Nonrecursive part

+

x[n] −1z−1z

y[n]+

z

+ +

z

−1

Fig. 4.4. Filter with feedback.

Comparing this with the difference equation for the FIR filter (3.2) on p. 166,
we find that the difference equation for recursive systems depends not only
on the L previous values of the input sequence x[n], but also on the L − 1
previous values of y[n].

If we compute poles and zeros of F (z), we see that the nonrecursive part,
i.e., the numerator of F (z), produces the zeros p0l, while the denominator of
F (z) produces the poles p∞l.

For the transfer function, the pole/zero plot can be used to look up the
most important properties of the filter. If we substitute z = ejωT in the
z-domain transfer function, we can construct the Fourier transfer function

F (ω) = |F (ω)|ejθ(ω) =

L−2∏

l=0

p0l − ejωT

L−2∏

l=0

p∞l − ejωT)

=

exp(j
∑

l

βl)
L−2∏

l=0

vl

exp(j
∑

l

αl)
L−2∏

l=0

ul

(4.4)

by graphical means. This is shown in Fig. 4.5, for a specific amplitude (i.e.,
gain) and phase value. The gain at a specific frequency ω0 is the quotient of
the zero vectors vl and the pole vectors ul. These vectors start at a specific

220 4. Infinite Impulse Response (IIR) Digital Filters

zero or pole, respectively, and end at the frequency point, ejω0T , of interest.
The phase gain for the example from Fig. 4.5 becomes θ(ω0) = β0 + β1−α0.

vu 0

0v

z−plane

1

Re

Im

Pole

Zero

ωz=exp(j /T)

0β

0α
1

β

Fig. 4.5. Computation of transfer function using the pole/zero plot. Amplitude
gain = u0u1/v0, phase gain = β0 + β1 − α0.

Using the connection between the transfer function in the Fourier domain
and the pole/zero plot, we can already deduce several properties:

1) A zero on the unit circle p0 = ejω0T (with no annihilating pole) produces
a zero in the transfer function in the Fourier domain at the frequency ω0.

2) A pole on the unit circle p∞ = ejω0T (and no annihilating zero) produces
an infinite gain in the transfer function in the Fourier domain at the
frequency ω0.

3) A stable filter with all poles inside the unit circle can have any type of
input signal.

4) A real filter has single poles and zeros on the real axis, while complex
poles and zeros appear always in pairs, i.e., if a0 + ja1 is a pole or zero,
a0 − ja1 must also be a pole or zero.

5) A linear-phase (i.e., constant group delay) filter has all poles and zeros
symmetric to the unit circle or at z = 0.

If we combine observations 3 and 5, we find that, for a stable linear-phase
system, all zeros must be symmetric to the unit circle and only poles at z = 0
are permitted.

An IIR filter (with poles z �= 0) can therefore be only approximately
linear-phase. To achieve this approximation a well-known principle from ana-
log filter design is used: an allpass has a unit gain, and introduces a nonzero

4.2 IIR Coefficient Computation 221

phase gain, which is used to achieve linearization in the frequency range of
interest, i.e., the passband.

4.2 IIR Coefficient Computation

In classical IIR design, a digital filter is designed that approximates an ideal
filter. The ideal digital filter model specifications are mathematically con-
verted into a set of specifications from an analog filter model using the bilinear
z-transform given by:

s =
z − 1
z + 1

. (4.5)

A classic analog Butterworth, Chebyshev, or elliptic model can be synthe-
sized from these specifications, and is then mapped into a digital IIR using
this bilinear z-transform.

An analog Butterworth filter has a magnitude-squared frequency response
given by:

|F (ω)|2 =
1

1 +
(

ω
ωs

)2N
. (4.6)

The poles of |F (ω)|2 are distributed along a circular arc at locations sepa-
rated by π/N radians. More specifically, the transfer function is N times dif-
ferentiable at ω = 0. This results in a locally smooth transfer function around
0 Hz. An example of a Butterworth filter model is shown in Fig. 4.6(upper).
Note that the tolerance scheme for this design is the same as for the Kaiser
window and equiripple design shown in Fig. 3.7 (p. 176).

An analog Chebyshev filter of Type I or II is defined in terms of a Cheby-
shev polynomial VN (ω) = cos(N cos(ω)), which forces the filter poles to reside
on an ellipse. The magnitude-squared frequency response of a Type I filter is
represented by:

|F (ω)|2 =
1

1 + ε2V 2
N

(
ω
ωs

) . (4.7)

An example of a typical Type I magnitude frequency and impulse response
is shown in Fig. 4.7(upper). Note the ripple in the passband, and smooth
stopband behavior.

The Type II magnitude-squared frequency response is modeled as:

|F (ω)|2 =
1

1 +
(
ε2V 2

N

(
ω
ωs

)−1
) . (4.8)

222 4. Infinite Impulse Response (IIR) Digital Filters

0 1000 2000
−70

−60

−50

−40

−30

−20

−10

0

10
(a)

f in Hz

F
(ω

)

0 200 400 600 800

10

15

20

25

(b)

f in Hz

dθ
/d

ω
−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

(c)

Re

Im

0 1000 2000
−70

−60

−50

−40

−30

−20

−10

0

10
(a)

f in Hz

F
(ω

)

0 200 400 600 800

10

20

30

40

50

(b)

f in Hz

dθ
/d

ω

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1
(c)

Re

Im

Fig. 4.6. Filter design with MatLab toolbox. (upper) Butterworth filter and
(lower) elliptic Filter.
(a) Transfer function. (b) Group delay of passband. (c) Pole/zero plot. (× = pole;
◦ = zero).

An example of a typical Type II magnitude frequency and impulse re-
sponse is shown in Fig. 4.7(lower). Note that in this case a smooth passband
results, and the stopband now exhibits ripple behavior.

An analog elliptic prototype filter is defined in terms of the solution to
the Jacobian elliptic function, UN(ω). The magnitude-squared frequency re-
sponse is modeled as:

|F (ω)|2 =
1

1 + ε2U2
N

(
ω
ωs

)−1 . (4.9)

The magnitude-squared and impulse response of a typical elliptic filter
is shown in Fig. 4.6(lower). Observe that the elliptic filter exhibits ripple in
both the passband and stopband.

If we compare the four different IIR filter implementations, we find that
a Butterworth filter has order 19, a Chebyshev has order 8, while the elliptic
design has order 6, for the same tolerance scheme shown in Fig. 3.8 (p. 177).

4.2 IIR Coefficient Computation 223

0 1000 2000
−70

−60

−50

−40

−30

−20

−10

0

10
(a)

f in Hz

F
(ω

)

0 200 400 600 800

10

20

30

40

(b)

f in Hz

dθ
/d

ω
−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1
(c)

Re

Im

0 1000 2000
−70

−60

−50

−40

−30

−20

−10

0

10
(a)

f in Hz

F
(ω

)

0 200 400 600 800

4

6

8

10

12

(b)

f in Hz

dθ
/d

ω

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1
(c)

Re

Im

Fig. 4.7. Chebyshev filter design with MatLab toolbox. Chebyshev I (upper)
and Chebyshev II (lower).
(a) Transfer function. (b) Group delay of passband. (c) Pole/zero plot (× = pole;
◦ = zero).

If we compare Figs. 4.6 and 4.7, we find that for the filter with shorter order
the ripple increases, and the group delay becomes highly nonlinear. A good
compromise is most often the Chebyshev Type II filter with medium order,
a flat passband, and tolerable group delay.

4.2.1 Summary of Important IIR Design Attributes

In the previous section, classic IIR types were presented. Each model provides
the designer with tradeoff choices. The attributes of classic IIR types are
summarized as follows:

• Butterworth: Maximally flat passband, flat stopband, wide transition
band

• Chebyshev I: Equiripple passband, flat stopband, moderate transition
band

• Chebyshev II: Flat passband, equiripple stopband, moderate transition
band

224 4. Infinite Impulse Response (IIR) Digital Filters

a[1]a[L−2]a[L−1]

b[0]b[1]b[L−2]b[L−1]
block

Multiplier

block
Multiplier

y[n]
−1z+−1z+

x[n]

++

Fig. 4.8. Direct I form IIR filter using multiplier blocks.

• Elliptic: Equiripple passband, equiripple stopband, narrow transition
band

For a given set of filter requirement, the following observations generally
hold:

• Filter order
– Lowest: Elliptic
– Medium: Chebyshev I or II
– Highest: Butterworth

• Passband characteristics
– Equiripple: Elliptic, Chebyshev I
– Flat: Butterworth, Chebyshev II

• Stopband characteristics
– Equiripple: Elliptic, Chebyshev II
– Flat: Butterworth, Chebyshev I

• Transition band characteristics
– Narrowest: Elliptic
– Medium: Chebyshev I+II
– Widest: Butterworth

4.3 IIR Filter Implementation

Obtaining an IIR transfer function is generally considered to be a straightfor-
ward exercise, especially if design software like MatLab is used. IIR filters
can be developed in the context of many architectures. The most important
structures are summarized as follows:

4.3 IIR Filter Implementation 225

b[L−1] b[L−2] b[L−3] b[0]

a[L−1]a[2]a[1]

+x[n]

y[n]

block
Multiplier

−1z + +

+−1z

−1z

−1z ++

Fig. 4.9. Direct II form IIR filter using multiplier blocks.

x[n]

(a)

x[n]

1F (z) F (z)

+ +

F (z)2(b)

1F (z) F (z)2 F (z) y[n]

y[n]

N

N

Fig. 4.10. (a) Cascade implementation F (z) =
∏N

k=1
Fk(z). (b) Parallel imple-

mentation F (z) =
∑N

k=1
Fk(z).

• Direct I form (see Fig. 4.8)
• Direct II form (see Fig. 4.9)
• Cascade of first- or second-order systems (see Fig. 4.10a)
• Parallel implementation of first- or second-order systems

(see Fig. 4.10b).
• BiQuad implementation of a typical second-order section found in basic

cascade or parallel designs (see Fig. 4.11)
• Normal [89], i.e., cascade of first- or second-order state variable systems

(see Fig. 4.10a)

226 4. Infinite Impulse Response (IIR) Digital Filters

b[0]b[1]b[2]

1/a[0]

−a[1] −a[2]

y[n]

+x[n]

−1z +

−1z

−1z

−1z ++

Fig. 4.11. Possible second-order section BiQuad with transfer function F (z) =
(b[0] + b[1]z−1 + b[2]z−2)/(a[0] + a[1]z−1 + a[2]z−2).

• Parallel normal, i.e., parallel first- or second-order state variable systems
(see Fig. 4.10b)

• Continued fraction structures
• Lattice filter (after Gray–Markel, see Fig. 4.12)
• Wave digital implementation (after Fettweis [90])
• General state space filter

Each architecture serves a unique purpose. Some of the general selection
rules are summarized below:

• Speed
– High: Direct I & II
– Low: Wave

• Fixed-point arithmetic roundoff error sensitivity
– High: Direct I & II
– Low: Normal, Lattice

• Fixed-point coefficient roundoff error sensitivity
– High: Direct I & II
– Low: Parallel, Wave

• Special properties
– Orthogonal weight outputs: Lattice
– Optimized second-order sections: Normal
– Arbitrary IIR specification: State variable

With the help of software tools like MatLab, the coefficients can easily be
converted from one architecture to another, as demonstrated by the following
example.

4.3 IIR Filter Implementation 227

++

b[k]

−1z
+ +

a[N]a[1]a[0]

N2 y[n]

SectionSection

1

Section+

x[n]

+

Fig. 4.12. Lattice filter.

Example 4.2: Butterworth Second-order System
Assume we wish to design a Butterworth filter (order N = 10, passband Fp =
0.3 Fs) realized by second-order systems. We can use the following MatLab
code to generate the coefficients:

N=10;Fp=0.3;
[B,A]=butter(N,Fp)
[sos, gain]=tf2sos(B,A)

i.e., we first compute the Butterworth coefficient using the function butter(),
and then convert this filter coefficient using the “transfer function to second-
order section” function tf2sos to compute the BiQuad coefficients. We will
get the following results using MatLab for the second-order sections:

b[0, i] b[1, i] b[2, i] a[0, i] a[1, i] a[2, i]

1.0000 2.1181 1.1220 1.0000 −0.6534 0.1117
1.0000 2.0703 1.0741 1.0000 −0.6831 0.1622
1.0000 1.9967 1.0004 1.0000 −0.7478 0.2722
1.0000 1.9277 0.9312 1.0000 −0.8598 0.4628
1.0000 1.8872 0.8907 1.0000 −1.0435 0.7753

and the gain is 4.961410−5 .
Figure 4.13 shows the transfer function, group delay, and the pole/zero plot
of the filter. Note that all zeros are near z0i = −1, which can also be seen
from the numerator coefficients of the second-order systems. Note also the
rounding error in b[1, i] = 2 and b[0, i] = b[2, i] = 1. 4.2

228 4. Infinite Impulse Response (IIR) Digital Filters

0 0.5 1
−70

−60

−50

−40

−30

−20

−10

0

10
(a)

2f/f
s

F
(ω

)

0 0.2 0.4 0.6 0.8
2

4

6

8

10

12

14

(b)

2f/f
s

dθ
/d

ω
−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

(c)

Re

Im

Fig. 4.13. Tenth-order Butterworth filter showing (a) magnitude, (b) phase, and
(c) group delay response.

Table 4.1. Data for eighth-order elliptic filter by Crochiere and Oppenheim [91]
sorted according the costs M ×W.

Type Word- Mults Adds Delays Cost
length W M M ×W

Wave 11.35 12 31 10 136
Cascade 11.33 13 16 8 147
Parallel 10.12 18 16 8 182
Lattice 13.97 17 32 8 238
Direct I 20.86 16 16 16 334
Direct II 20.86 16 16 8 334
Cont.-frac 22.61 18 16 8 408

4.3.1 Finite Wordlength Effects

Crochiere and Oppenheim [91] have shown that the coefficient wordlength
required for a digital filter is closely related to the coefficient sensitivities.
Implementation of the same IIR filter can therefore lead to a wide range of
required wordlengths. To illustrate some of the dynamics of this problem,
consider an eighth-order elliptic filter analyzed by Crochiere and Oppenheim
[91]. The resulting eighth-order transfer function was implemented with a
Wave, Cascade, Parallel, Lattice, Direct I and II, and Continuous Fraction
architecture. The estimated coefficient wordlength to meet a specific maximal
passband error criterion was conservatively estimated as shown in the second
column of Table 4.1. As a result, it can be seen that the Direct form needs
more wordlength than the Wave or Parallel structure. This has led to the
conclusion that a Wave structure gives the best complexity (MW) in terms
of the bit-width (W) multiplier product (M), as can be seen from column six
of Table 4.1.

4.3 IIR Filter Implementation 229

In the context of FIR filters (see Chap. 3), the reduced adder graph (RAG)
technique was introduced in order to simplify the design of a block of several
multipliers [92, 93]. Dempster and Macleod have evaluated the eighth-order
elliptic filter from above, in the context of RAG multiplier implementation
strategies. A comparison is presented in Table 4.2. The second column dis-
plays the multiplier block size. For a Direct II architecture, two multiplier
blocks, of size 9 and 7, are required. For a Wave architecture, no two coef-
ficients have the same input, and, as a result, no multiplier blocks can be
developed. Instead, eleven individual multipliers must be implemented. The
third column displays the number of adders/subtractors B for a canonical
signed digit (CSD) design required to implement the multiplier blocks. Col-
umn four shows the same result for single-optimized multiplier adder graphs
(MAG) [94]. Column five shows the result for the reduced adder graph. Col-
umn six shows the overall adder/wordwidth product for a RAG design. Table
4.2 shows that Cascade and Parallel forms give comparable or better results,
compared with Wave digital filters, because the multiplier block size is an
essential criterion when using the RAG algorithms. Delays have not been
considered for the FPGA design, because all the logic cells have an associ-
ated flip-flop.

4.3.2 Optimization of the Filter Gain Factor

In general, we derive the IIR integer coefficients from floating-point filter coef-
ficients by first normalizing to the maximum coefficient, and then multiplying
with the desired gain factor, i.e., bit-width 2round(W). However, most often it
is more efficient to select the gain factor within a range, 2�W� . . . 2�W	. There
will be essentially no change in the transfer function, because the coefficients
must be rounded anyway, after multiplying by the gain factor. If we apply,
for instance, this search in the range 2�W� . . . 2�W	 for the cascade filter in
the Crochiere and Oppenheim design example from above (gain used in Table
4.2 was 2�11.33�−1 = 1024), we get the data reported in Table 4.3.

Table 4.2. Data for eighth-order elliptic filter implemented using CSD, MAG, and
RAG strategies [92].

Type Block CSD MAG RAG
size B B B W (B + A)

Cascade 4× 3, 2× 1 26 26 24 453
Parallel 11× 9, 4× 2, 1× 1 31 30 29 455
Wave 11× 1 58 63 22 602
Lattice 1× 9, 8× 1 33 31 29 852
Direct I 1× 16 103 83 36 1085
Direct II 1× 9, 1× 7 103 83 41 1189
Cont.-frac 18× 1 118 117 88 2351

230 4. Infinite Impulse Response (IIR) Digital Filters

Table 4.3. Variation of the gain factor to minimize filter complexity of the cascade
filter.

CSD MAG RAG

Optimal gain 1122 1121 1121
adders for optimal gain 23 21 18
adders for gain = 1024 26 26 24
Improvement 12% 19% 25%

We note, from the comparison shown in Table 4.3 a substantial improve-
ment in the number of adders required to implement the multiplier. Although
the optimal gain factor for MAG and RAG in this case is the same, it can be
different.

4.4 Fast IIR Filter

In Chap. 3, FIR filter Registered Performance was improved using pipelin-
ing (see Table 3.3, p. 181). In the case of FIR filters, pipelining can be achieved
at essentially no cost. Pipelining IIR filters, however, is more sophisticated
and is certainly not free. Simply introducing pipeline registers for all adders
will, especially in the feedback path, very likely change the pole locations
and therefore the transfer function of the IIR filter. However strategies that
do not change the transfer function and still allow a higher throughput have
been reported in the literature. The reported methods that look promising
to improve IIR filter throughput are:

• Look-ahead interleaving in the time domain [95]
• Clustered look-ahead pole/zero assignment [96, 97]
• Scattered look-ahead pole/zero assignment [95, 98]
• IIR decimation filter design [99]
• Parallel processing [100]
• RNS implementation [39, Sect. 4.2][49]

The first five methods are based on filter architecture or signal flow tech-
niques, and the last is based on computer arithmetic (see Chap. 2). These
techniques will be demonstrated with examples. To simplify the VHDL rep-
resentation of each case, only a first-order IIR filter will be considered, but
the same ideas can be applied to higher-order IIR filters and can be found in
the literature references.

4.4.1 Time-domain Interleaving

Consider the differential equation of a first-order IIR system, namely

4.4 Fast IIR Filter 231

+ z−1−1 +

b=1

z

a^2=9/16

y[n]

x[n]

ab=3/4

−2z

Fig. 4.14. Lossy integrator with look-ahead arithmetic.

y[n+ 1] = ay[n] + bx[n]. (4.10)

The output of the first-order system, namely y[n + 1], can be computed
using a look-ahead methodology by substituting y[n+ 1] into the differential
equation for y[n+ 2]. That is

y[n+ 2] = ay[n+ 1] + bx[n+ 1] = a2y[n] + abx[n] + bx[n+ 1]. (4.11)

The equivalent system is shown in Fig. 4.14.
This concept can be generalized by applying the look-ahead transform for

(S − 1) steps, resulting in:

y[n+ S] = aSy[n] +
S−1∑

k=0

akbx[n+ S − 1− k]
︸ ︷︷ ︸

(η)

. (4.12)

It can be seen that the term (η) defines an FIR filter having coefficients
{b, ab, a2b, . . . , aS−1b}, that can be pipelined using the pipelining techniques
presented in Chap. 3 (i.e., pipelined multiplier and pipelined adder trees).
The recursive part of (4.12) can now also be implemented with an S-stage
pipelined multiplier for the coefficient aS .We will demonstrate the look-ahead
design with the following example.

Example 4.3: Lossy Integrator II
Consider again the lossy integrator from Example 4.1 (p. 216), but now with
look-ahead. Figure 4.14 shows the look-ahead lossy integrator, which is a
combination of a nonrecursive part (i.e., FIR filter for x), and a recursive
part with delay 2 and coefficient 9/16.

232 4. Infinite Impulse Response (IIR) Digital Filters

y[n + 2] =
3

4
y[n + 1] + x[n + 1] =

3

4
(
3

4
y[n] + x[n]) + x[n + 1]

=
9

16
y[n] +

3

4
x[n] + x[n + 1]. (4.13)

y[n] =
9

16
y[n− 2] +

3

4
x[n− 2] + x[n− 1] (4.14)

(4.15)

The VHDL code2 shown below, implements the IIR filter in look-ahead form.
PACKAGE n_bit_int IS -- User-defined type

SUBTYPE BITS15 IS INTEGER RANGE -2**14 TO 2**14-1;
END n_bit_int;

LIBRARY work;
USE work.n_bit_int.ALL;

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
USE ieee.std_logic_arith.ALL;

ENTITY iir_pipe IS
PORT (x_in : IN BITS15; -- Input

y_out : OUT BITS15; -- Result
clk : IN STD_LOGIC);

END iir_pipe;

ARCHITECTURE fpga OF iir_pipe IS

SIGNAL x, x3, sx, y, y9 : BITS15 := 0;

BEGIN

PROCESS -- Use FFs for input, output and pipeline stages
BEGIN
WAIT UNTIL clk = ’1’;
x <= x_in;
x3 <= x / 2 + x / 4; -- Compute x*3/4
sx <= x + x3; -- Sum of x element i.e. output FIR part
y9 <= y / 2 + y / 16; -- Compute y*9/16
y <= sx + y9; -- Compute output

END PROCESS;

y_out <= y ; -- Connect register y to output pins

END fpga;
The pipelined adder and multiplier in this example are implemented in two
steps. In the first stage, 9

16
y[n] is computed. In the second stage, x[n + 1] +

3
4
x[n] and 9

16
y[n] are added. The design uses 124 LEs, no embedded multiplier

and has a 207.08 MHz Registered Performance. The response of the filter
to an impulse of amplitude 1000 is shown in Fig. 4.15. 4.3

2 The equivalent Verilog code iir pipe.v for this example can be found in Ap-
pendix A on page 692. Synthesis results are shown in Appendix B on page 731.

4.4 Fast IIR Filter 233

Fig. 4.15. VHDL simulation of impulse response of the look-ahead lossy integrator.

Comparing the look-ahead scheme with the 62LEs and 160.69MHz solution
reported in Example 4.1 (p. 216), we find that look-ahead pipelining requires
many more resources, but attains a speed-up of about 30%. The comparison of
the two filter’s response to the impulse with amplitude 1000 shown in Fig. 4.3
(p. 218) and Fig. 4.15 reveals that the look-ahead scheme has an additional
overall delay, and that the quantization effect differs by a ±2 amount between
the two methodologies.

An alternative design approach, using a standard logic vector data type
and LPM_ADD_SUB megafunctions, is discussed in Exercise 4.7 (p. 241). The
second approach will produce longer VHDL code, but will have the benefit
of direct control at the bit level of the sign extension and multiplier.

4.4.2 Clustered and Scattered Look-Ahead Pipelining

Clustered and scattered look-ahead pipelining schemes add self-canceling
poles and zeros to the design to facilitate pipelining of the recursive portion
of the filter. In the clustered method, additional pole/zeros are introduced in
such a way that in the denominator of the transfer function the coefficients for
z−1, z−2, . . . , z−(S−1) become zero. The following example shows clustering
for a second-order filter.

Example 4.4: Clustering Method
A second-order transfer function is assumed to have a pole at 1/2 and 3/4
and a transfer function given by:

F (z) =
1

1− 1.25z−1 + 0.375z−2
=

1

(1− 0.5z−1)(1− 0.75z−1)
. (4.16)

Adding a canceling pole/zero at z = −1.25 results in a new transfer function

F (z) =
1 + 1.25z−1

1− 1.1875z−2 + 0.4688z−3
. (4.17)

The recursive part of the filter can now be implemented with an additional
pipeline stage. 4.4

The problem with clustering is that the cancelled pole/zero pair may lie
outside the unit circle, as is the case in the previous example (i.e., z∞ =

234 4. Infinite Impulse Response (IIR) Digital Filters

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

(b)

Re

Im

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

(a)

Re

Im

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

(c)

Re

Im

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

(d)

Re

Im

Fig. 4.16. Pole/zero plot for scattered look-ahead first-order IIR filter.
(a) F1(z) = (1 + az−1). (b) F2(z) = 1 + a2z−2. (c) F3(z) = 1/(1− a4z−4).
(d) F (z) =

∏
k

Fk(z) = (1 + az−1)(1 + a2z−2)/(1− a4z−4) = 1/(1− az−1).

−1.25). This introduces instability into the design if the pole/zero annihi-
lating is not perfect. In general, a second-order system with poles at r1, r2
and with one extra canceling pair, has a pole location at −(r1 + r2), which
lies outside the unit circle for |r1 + r2| > 1. Soderstrand et al. [97], have
described a stable clustering method, which in general introduces more than
one canceling pole/zero pair.

The scattered look-ahead approach does not introduce stability problems.
It introduces (S − 1) canceling pole/zero pairs located at zk = pejπk/S , for
an original filter with a pole located at p. The denominator of the transfer
function has, as a result, only zero coefficients associated with the terms
z0, zS, z−2S, etc.

Example 4.5: Scattered Look-Ahead Method
Consider implementing a second-order system having poles located at z∞1 =
0.5 and z∞2 = 0.75 with two additional pipeline stages. A second-order trans-
fer function of a filter with poles at 1/2 and 3/4 has the transfer function

4.4 Fast IIR Filter 235

F (z) =
1

1− 1.25z−1 + 0.375z−2
=

1

(1− 0.5z−1)(1− 0.75z−1)
. (4.18)

Note that in general a pole/zero pair at p and p∗ results in a transfer function
of

(1− pz−1)(1− p∗z−1) = 1− (p + p∗)z−1 + rr∗z−2

and in particular with p = r × exp(j2π/3) it follows that

(1− pz−1)(1− p∗z−1) = 1− 2r cos(2π/3)z−1 + r2z−2

= 1 + rz−1 + r2z−2.

The scattered look-ahead introduces two additional pipeline stages by adding
pole/zero pairs at 0.5e±j2π/3 and 0.75e±j2π/3. Adding a canceling pole/zero
at this location results in

F (z) =
1

1− 1.25z−1 + 0.375z−2

× (1 + 0.5z−1 + 0.25z−2)(1 + .75z−1 + 0.5625z−2)

(1 + 0.5z−1 + 0.25z−2)(1 + .75z−1 + 0.5625z−2)

=
1 + 1.25z−1 + 1.1875z−2 + 0.4687z−3 + 0.1406z−4

1− 0.5469z−3 + 0.0527z−6

=
512 + 640z−1 + 608z−2 + 240z−3 + 72z−4

512− 280z−3 + 27z−6
,

and the recursive part can be implemented with two additional pipeline
stages. 4.5

It is interesting to note that for a first-order IIR system, clustered and
scattered look-ahead methods result in the same pole/zero canceling pair
lying on a circle around the origin with angle differences 2π/S. The nonre-
cursive part can be realized with a “power-of-two decomposition” according
to

(1 + az−1)(1 + a2z−2)(1 + a4z−4) · · · . (4.19)

Figure 4.16 shows such a pole/zero representation for a first-order section,
which enables an implementation with four pipeline stages in the recursive
part.

4.4.3 IIR Decimator Design

Martinez and Parks [99] have introduced, in the context of decimation filters
(see Chap. 5, p. 254), a filter design algorithm based on the minimax method.
The resulting transfer function satisfies

F (z) =

L∑
l=0

b[l]z−l

1−
N/S∑
n=0

a[n]z−nS

. (4.20)

236 4. Infinite Impulse Response (IIR) Digital Filters

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4
(a)

ω

|F
(ω

)|

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1
(b)

Re

Im
Fig. 4.17. (a) Transfer function, and (b) pole/zero distribution of a 37-order
Martinez–Parks IIR filter with S = 5.

That is, only every other S coefficient in the denominator is nonzero. In
this case, the recursive part (i.e., the denominator) can be pipelined with
S stages. It has been found that in the resulting pole/zero distribution, all
zeros are on the unit circle, as is usual for an elliptic filter, while the poles
lie on circles, whose main axes have a difference in angle of 2π/S, as shown
in Fig. 4.17b.

4.4.4 Parallel Processing

In a parallel-processing filter implementation [100], P parallel IIR paths are
formed, each running at a 1/P input sampling rate. They are combined at the
output using a multiplexer, as shown in Fig. 4.18. Because a multiplexer, in
general, will be faster than a multiplier and/or adder, the parallel approach
will be faster. Furthermore, each path P has a factor of P more time to
compute its assigned output.

To illustrate, consider again a first-order system and P = 2. The look-
ahead scheme, as in (4.11)

y[n+ 2] = ay[n+ 1] + x[n+ 1] = a2y[n] + ax[n] + x[n+ 1] (4.21)

is now split into even n = 2k and odd n = 2k−1 output sequences, obtaining

y[n+ 2] =
{
y[2k + 2]=a2y[2k] + ax[2k] + x[2k + 1]
y[2k + 1]=a2y[2k − 1] + ax[2k − 1] + x[2k] , (4.22)

where n, k ∈ Z. The two equations are the basis for the following parallel IIR
filter FPGA implementation.

Example 4.6: Lossy Integrator III

4.4 Fast IIR Filter 237

x[n] TDL

TDL

TDL

y[n]

IIR1

IIR2

IIRp

Fig. 4.18. Parallel IIR implementation. The tapped delay lines (TDL) run with a
1/p input sampling rate.

Consider implementing a parallel lossy integrator, with a = 3/4, as an ex-
tension to the methods presented in Examples 4.1 (p. 216) and 4.3 (p. 231).
A two-channel parallel lossy integrator, which is a combination of two non-
recursive parts (i.e., an FIR filter for x), and two recursive parts with delay
2 and coefficient 9/16, is shown in Fig. 4.19. The VHDL code3 shown below
implements the design.

PACKAGE n_bit_int IS -- User-defined type
SUBTYPE BITS15 IS INTEGER RANGE -2**14 TO 2**14-1;

END n_bit_int;

LIBRARY work;
USE work.n_bit_int.ALL;

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
USE ieee.std_logic_arith.ALL;

ENTITY iir_par IS ------> Interface
PORT (clk, reset : IN STD_LOGIC;

x_in : IN BITS15;

3 The equivalent Verilog code iir par.v for this example can be found in Ap-
pendix A on page 693. Synthesis results are shown in Appendix B on page 731.

z−1 z−1

x[n]

x_odd

x_even

−1z −1z +
+

z

z + z

y[n]9/16

z

y_even

9/16

+

−1

y_odd

3/4

−1

−1

3/4

−1

Fig. 4.19. Two-path parallel IIR filter implementation.

238 4. Infinite Impulse Response (IIR) Digital Filters

x_e, x_o, y_e, y_o : OUT BITS15;
clk2 : OUT STD_LOGIC;
y_out : OUT BITS15);

END iir_par;

ARCHITECTURE fpga OF iir_par IS

TYPE STATE_TYPE IS (even, odd);
SIGNAL state : STATE_TYPE;
SIGNAL x_even, xd_even : BITS15 := 0;
SIGNAL x_odd, xd_odd, x_wait : BITS15 := 0;
SIGNAL y_even, y_odd, y_wait, y : BITS15 := 0;
SIGNAL sum_x_even, sum_x_odd : BITS15 := 0;
SIGNAL clk_div2 : STD_LOGIC;

BEGIN

Multiplex: PROCESS (reset, clk) --> Split x into even and
BEGIN -- odd samples; recombine y at clk rate
IF reset = ’1’ THEN -- asynchronous reset

state <= even;
ELSIF rising_edge(clk) THEN
CASE state IS

WHEN even =>
x_even <= x_in;
x_odd <= x_wait;
clk_div2 <= ’1’;
y <= y_wait;
state <= odd;

WHEN odd =>
x_wait <= x_in;
y <= y_odd;
y_wait <= y_even;
clk_div2 <= ’0’;
state <= even;

END CASE;
END IF;

END PROCESS Multiplex;

y_out <= y;
clk2 <= clk_div2;
x_e <= x_even; -- Monitor some extra test signals
x_o <= x_odd;
y_e <= y_even;
y_o <= y_odd;

Arithmetic: PROCESS
BEGIN
WAIT UNTIL clk_div2 = ’0’;
xd_even <= x_even;
sum_x_even <= (xd_even * 2 + xd_even) /4 + x_odd;
y_even <= (y_even * 8 + y_even)/16 + sum_x_even;
xd_odd <= x_odd;

4.4 Fast IIR Filter 239

Fig. 4.20. VHDL simulation of the response of the parallel IIR filter to an impulse
1000.

sum_x_odd <= (xd_odd * 2 + xd_odd) /4 + xd_even;
y_odd <= (y_odd * 8 + y_odd) / 16 + sum_x_odd;

END PROCESS Arithmetic;

END fpga;
The design is realized with two PROCESS statements. In the first, PROCESS
Multiplex, x is split into even and odd indexed parts, and the output y is
recombined at the clk rate. In addition, the first PROCESS statement gener-
ates the second clock, running at clk/2. The second block implements the
filter’s arithmetic according to (4.22). The design uses 268 LEs, no embedded
multiplier, and has a 168.12 MHz Registered Performance. The simulation
is shown in Fig. 4.20. 4.6

The disadvantage of the parallel implementation, compared with the other
methods presented, is the relatively high implementation cost of 268LEs.

4.4.5 IIR Design Using RNS

Because the residue number system (RNS) uses an intrinsically short word-
length, it is an excellent candidate to implement fast (recursive) IIR filters. In

FIRFIR

+

x[n]

y[n]
Scaling

Fig. 4.21. RNS implementation of IIR filters using two FIR sections and scaling.

240 4. Infinite Impulse Response (IIR) Digital Filters

a typical IIR-RNS design, a system is implemented as a collection of recursive
and nonrecursive systems, each defined in terms of an FIR structure (see
Fig. 4.21). Each FIR may be implemented in RNS-DA, using a quarter-square
multiplier, or in the index domain, as developed in Chap. 2 (p. 67).

For a stable filter, the recursive part should be scaled to control dynamic
range growth. The scaling operation may be implemented with mixed radix
conversion, Chinese remainder theorem (CRT), or the ε−CRT method. For
high-speed designs, it is preferable to add an additional pipeline delay based
on the clustered or scattered look-ahead pipelining technique [39, Sect. 4-2].
An RNS recursive filter design will be developed in detail in Sect. 5.3. It
will be seen that RNS design will improve speed from 50MHz to more than
70MHz.

Exercises

Note: If you have no prior experience with the Quartus II software, refer
to the case study found in Sect. 1.4.3, p. 29. If not otherwise noted use the
EP2C35F672C6 from the Cyclone II family for the Quartus II synthesis eval-
uations.

4.1: A filter has the following specification: sampling frequency 2 kHz; passband
0–0.4 kHz, stopband 0.5–1 kHz; passband ripple, 3 dB, and stopband ripple, 48 dB.
Use the MatLab software and the “Interactive Lowpass Filter Design” demo from
the Signal Processing Toolbox for the filter design.
(a1) Design a Butterworth filter (called BUTTER).
(a2) Determine the filter length and the absolute ripple in the passband.
(b1) Design a Chebyshev type I filter (called CHEBY1).
(b2) Determine the filter length and the absolute ripple in the passband.
(c1) Design a Chebyshev type II filter (called CHEBY2).
(c2) Determine the filter length and the absolute ripple in the passband.
(d1) Design an elliptic filter (called ELLIP).
(d2) Determine the filter length and the absolute ripple in the passband.

4.2: (a) Compute the maximum bit growth for a first-order IIR filter with a pole
at z∞ = 3/4.
(a2) Use the MatLab or C software to verify the bit growth using a step response
of the first-order IIR filter with a pole at z∞ = 3/4.
(b) Compute the maximum bit growth for a first-order IIR filter with a pole at
z∞ = 3/8.
(b2) Use the MatLab or C software to verify the bit growth using a step response
of the first-order IIR filter with a pole at z∞ = 3/8.
(c) Compute the maximum bit growth for a first-order IIR filter with a pole at
z∞ = p .

4.3: (a) Implement a first-order IIR filter with a pole at z∞0 = 3/8 and 12-bit
input width, using Quartus II.
(b) Determine the the Registered Performance and the used resources (LEs, mul-
tipliers, and M4Ks).

Exercises 241

(c) Simulate the design with an input impulse of amplitude 100.
(d) Compute the maximum bit growth for the filter.
(e) Verify the result from (d) with a simulation of the step response with amplitude
100.

4.4: (a) Implement a first-order IIR filter with a pole at z∞0 = 3/8, 12-bit input
width, and a look-ahead of one step, using Quartus II.
(b) Determine the Registered Performance and the used resources (LEs, multi-
pliers, and M4Ks).
(c) Simulate the design with an input impulse of amplitude 100.

4.5: (a) Implement a first-order IIR filter with a pole at z∞0 = 3/8, 12-bit input
width, and a parallel design with two paths, using Quartus II.
(b) Determine the Registered Performance and the used resources (LEs, multi-
pliers, and M4Ks).
(c) Simulate the design with an input impulse of amplitude 100.

4.6: (a) Implement a first-order IIR filter as in Example 4.1 (p. 216), using a 15-bit
std_logic_vector, and implement the adder with two lpm_add_sub megafunctions,
using Quartus II.
(b) Determine the Registered Performance and the used resources (LEs, multi-
pliers, and M4Ks).
(c) Simulate the design with an input impulse of amplitude 1000, and compare the
results to Fig. 4.3 (p. 218).

4.7: (a) Implement a first-order pipelined IIR filter from Example 4.3 (p. 231) us-
ing a 15-bit std_logic_vector, and implement the adder with four lpm_add_sub
megafunctions, using Quartus II.
(b) Determine the Registered Performance and the used resources (LEs, multi-
pliers, and M4Ks).
(c) Simulate the design with an input impulse of amplitude 1000, and compare the
results to Fig. 4.15 (p. 233).

4.8: Shajaan and Sorensen have shown that an IIR Butterworth filter can be ef-
ficiently designed by implementing the coefficients as signed-power-of-two (SPT)
values [101]. The transfer function of a cascade filter with N sections

F (z) =

N∏

l=1

S[l]
b[l, 0] + b[l, 1]z−1 + b[l, 2]z−2

a[l, 0] + a[l, 1]z−1 + a[l, 2]z−2
(4.23)

should be implemented using the second-order sections shown in Fig. 4.11 (p. 226).
A tenth-order filter, as discussed in Example 4.2 (p. 227), can be realized with the
following SPT filter coefficients [101]:

l S[l] 1/a[l, 0] a[l, 1] a[l, 2]

1 2−1 1 −1− 2−4 1− 2−2

2 2−1 2−1 −1− 2−1 1− 2−5

3 2−1 2−1 −1− 2−1 2−1 + 2−5

4 1 2−1 −1− 2−2 2−2 + 2−5

5 2−1 2−1 −1− 2−1 2−2 + 2−4

We choose b[0] = b[2] = 0.5 and b[1] = 1 because the zeros of the Butterworth filter
are all at z = −1.
(a) Compute and plot the transfer function of the first BiQuad and the complete

242 4. Infinite Impulse Response (IIR) Digital Filters

filter.
(b) Implement and simulate the first BiQuad for 8-bit inputs.
(c) Build and simulate the five-stage filter with Quartus II.
(d) Determine the Registered Performance and the used resources (LEs, multi-
pliers, and M4Ks) of the filter.

4.9: (a) Design a tenth-order order lowpass Butterworth filter using MatLab with
a cut-off frequency of 0.3 the sampling frequency, i.e, [b,a]=butter(10,0.3).
(b) Plot the transfer function using freqz() for ∞ bits (i.e., real coefficients) and
12-bit fractional bits. What is the stopband suppression in dB at 0.5 of the Nyquist
frequency?
Hint: round(a*2^B)/2^B has B fractional bits.
(c) Generate a pole/zero plot using zplane() for ∞ bits and 12 fractional bits.
(d) Plot the impulse response for an impulse of amplitude 100 using filter() and
stem() for coefficients with 12-bit fractional bits. Also plot the response to impulse
of amplitude 100 of the recursive part only, i.e., set the FIR part to b=[1];
(e) For the 12 fractional bit filter determine using the csd3e.exe program from
the CD the CSD representation for all coefficients a and b from part (a).

Fig. 4.22. IIR Butterworth testbench for Exercise 4.10.

4.10: (a) Using the results from Exercise 4.9 develop the VHDL code for the tenth-
order Butterworth filter for 8-bit inputs. As internal data format use a 14.12 bit
format, i.e., 14 integer and 12 fractional bits. You need to scale the input and out-
put by 212 and use an internal 26-bit format. Use the direct form II, i.e., Fig. 4.9
(p. 225) for your design. Make sure that the transfer function of Fig. 4.9 and the
MatLab representation of the transfer functions match.
Recommendation: you can start with the recursive part first and try to match the
simulation from Exercise 4.9(d). Then add the nonrecursive part.
(b) Add an active-high enable and active-high asynchronous reset to the design.
(c) Try to match the simulation from Exercise 4.9(d) shown in simulation Fig.4.22,
where t_out is the output of the recursive part.
(d) For the device EP2C35F672C6 from the Cyclone II family determine the re-
sources (LEs, multipliers, and M4Ks) and Registered Performance.

4.11: (a) Design the PREP benchmark 5 shown in Fig. 4.23a with the Quartus
II software. The design has a 4 × 4 unsigned array multiplier followed by an 8-bit
accumulator. If mac = ’1’ accumulation is performed otherwise the adder output
s shows the multiplier output without adding q. rst is an asynchronous reset and
the 8-bit register is positive-edge triggered via clk, see the simulation in Fig. 4.23c

Exercises 243

Last instance

+
a[3:0]

rst
clk

mac

+

Second

+

First

*

(a)

q[7:0]

p[7:0]

s[7:0]

b[3:0]

REGISTER
8−bit

ADDER
8−bit

rst

mac

+

clk

4x4 MULT

(b)

q[7:0]
b[3:0]

a[3:0]

(c)

Fig. 4.23. PREP benchmark 5. (a) Single design. (b) Multiple instantiation. (c)
Testbench to check function.

for the function test.
(b) Determine the Registered Performance and the used resources (LEs, mul-
tipliers, and M4Ks) for a single copy. Compile the HDL file with the synthe-
sis Optimization Technique set to Speed, Balanced or Area; this can be found
in the Analysis & Synthesis Settings section under EDA Tool Settings in the
Assignments menu. Which synthesis options are optimal for size or Registered
Performance?
Select one of the following devices:
(b1) EP2C35F672C6 from the Cyclone II family
(b2) EPF10K70RC240-4 from the Flex 10K family
(b3) EPM7128LC84-7 from the MAX7000S family
(c) Design the multiple instantiation for benchmark 5 as shown in Fig. 4.23b.
(d) Determine the Registered Performance and the used resources (LEs, multipli-
ers, and M2Ks/M4Ks) for the design with the maximum number of instantiations
of PREP benchmark 5. Use the optimal synthesis option you found in (b) for the
following devices:
(d1) EP2C35F672C6 from the Cyclone II family
(d2) EPF10K70RC240-4 from the Flex 10K family
(d3) EPM7128LC84-7 from the MAX7000S family

4.12: (a) Design the PREP benchmark 6 shown in Fig. 4.24a with the Quartus II
software. The design is positive-edge triggered via clk and includes a 16-bit accu-
mulator with an asynchronous reset rst; see the simulation in Fig. 4.24c for the
function test.
(b) Determine the Registered Performance and the used resources (LEs, multi-
pliers, and M2Ks/M4Ks) for a single copy. Compile the HDL file with the synthe-
sis Optimization Technique set to Speed, Balanced or Area; this can be found
in the Analysis & Synthesis Settings section under EDA Tool Settings in the
Assignments menu. Which synthesis options are optimal for size or Registered

244 4. Infinite Impulse Response (IIR) Digital Filters

rst

d[15:0]

First

+

rst

Second

+

(b)

clk

d[15:0]

clk

ACC 16

++

(a)

q[15:0] q[15:0]

Last instance

(c)

Fig. 4.24. PREP benchmark 6. (a) Single design. (b) Multiple instantiation. (c)
Testbench to check function.

Performance?
Select one of the following devices:
(b1) EP2C35F672C6 from the Cyclone II family
(b2) EPF10K70RC240-4 from the Flex 10K family
(b3) EPM7128LC84-7 from the MAX7000S family
(c) Design the multiple instantiation for benchmark 6 as shown in Fig. 4.24b.
(d) Determine the Registered Performance and the used resources (LEs, multipli-
ers, and M2Ks/M4Ks) for the design with the maximum number of instantiations
of PREP benchmark 6. Use the optimal synthesis option you found in (b) for the
following devices:
(d1) EP2C35F672C6 from the Cyclone II family
(d2) EPF10K70RC240-4 from the Flex 10K family
(d3) EPM7128LC84-7 from the MAX7000S family

5. Multirate Signal Processing

Introduction

A frequent task in digital signal processing is to adjust the sampling rate
according to the signal of interest. Systems with different sampling rates are
referred to as multirate systems. In this chapter, two typical examples will
illustrate decimation and interpolation in multirate DSP systems. We will
then introduce polyphase notation, and will discuss some efficient decimator
designs. At the end of the chapter we will discuss filter banks and a quite
new, highly celebrated addition to the DSP toolbox: wavelet analysis.

5.1 Decimation and Interpolation

If, after A/D conversion, the signal of interest can be found in a small fre-
quency band (typically, lowpass or bandpass), then it is reasonable to filter
with a lowpass or bandpass filter and to reduce the sampling rate. A narrow
filter followed by a downsampler is usually referred to as a decimator [79]. 1

The filtering, downsampling, and the effect on the spectrum is illustrated in
Fig. 5.1.

We can reduce the sampling rate up to the limit called the “Nyquist rate,”
which says that the sampling rate must be higher than the bandwidth of the
signal, in order to avoid aliasing. Aliasing is demonstrated in Fig. 5.2 for a
lowpass signal. Aliasing is irreparable, and should be avoided at all cost.

For a bandpass signal, the frequency band of interest must fall within an
integer band. If fs is the sampling rate, and R is the desired downsampling
factor, then the band of interest must fall between

k
fs
2R

< f < (k + 1)
fs
2R

k ∈ N. (5.1)

If it does not, there may be aliasing due to “copies” from the negative
frequency bands, although the sampling rate may still be higher than the
Nyquist rate, as shown in Fig. 5.3.

Increasing the sampling rate can be useful, in the D/A conversion process,
for example. Typically, D/A converters use a sample-and-hold of first-order
1 Some authors refer to a downsampler as a decimator.

246 5. Multirate Signal Processing

ω
2ππ

ω
2ππ

ω
2π

ωX()

R

π

H()ω

X ()d ω

ω

ωH()

X()

Fig. 5.1. Decimation of signal x[n] ◦−• X(ω).

at the output, which produces a step-like output function. This can be com-
pensated for with an analog 1/sinc(x) compensation filter, but most often a
digital solution is more efficient. We can use, in the digital domain, an ex-
pander and an additional filter to get the desired frequency band. We note,
from Fig. 5.4, that the introduced zeros produce an extra copy of the base-
band spectrum that must first be removed before the signal can be processed
with the D/A converter. The much smoother output signal of such an inter-
polation2 can be seen in Fig. 5.5.

5.1.1 Noble Identities

When manipulating signal flow graphs of multirate systems it is sometimes
useful to rearrange the filter and downsampler/expander, as shown in Fig. 5.6.
These are the so-called “Noble” relations [102]. For the decimator, it follows

(↓ R) F (z) = F (zR) (↓ R), (5.2)
2 Some authors refer to the expander as an interpolator.

5.1 Decimation and Interpolation 247

R2B < f

sf /R

sR2B > f

fs

sf /R 0

response
Undecimated frequency

|Y(f)|

|X(f)|

B

Aliased case

0

|Y(f)|

B

Unaliased case

B

s

0

Fig. 5.2. Unaliased and aliased decimation cases.

S(f)

f

f

ω

D
I
(f)

f
s

−f
s

2π−2π 0

S
I
(ejω)

Real
Imag.

Fig. 5.3. Integer band violation (c©1995 VDI Press [4]).

i.e., if the downsampling is done first, we can reduce the filter length F (zR)
by a factor of R.

For the interpolator, the Noble relation is defined as

F (z) (↑ R) = (↑ R) F (zR), (5.3)

i.e., in an interpolation putting the filter before the expander results in an
R-times shorter filter.

These two identities will become very useful when we discuss polyphase
implementation in Sect. 5.2 (p. 249).

248 5. Multirate Signal Processing

i ωX ()ωH()

π 2π
ω

ωX()

R

X ()ωi

H()ω π 2π
ω

π 2π
ω

Fig. 5.4. Interpolation example. R = 3 for x[n] ◦−• X(ω).

(a) (b)

Fig. 5.5. D/A conversion. (a) Low oversampling, high degradation. (b) High over-
sampling, low degradation.

5.1.2 Sampling Rate Conversion by Rational Factor

If the input and output rate of a multirate system is not an integer factor,
then a rational change factor R1/R2 in the sampling rate can be used. More

5.2 Polyphase Decomposition 249

R

H(z) R

F(z) =

=

R

R

R

R

F(z)

F(z)

x[n]

x[n] x[n]

x[n]

y[m]

y[m]

y[m]

y[m]

Fig. 5.6. Equivalent multirate systems (Noble relation).

precisely, we first use an interpolator to increase the sampling rate by R1,
and then use a decimator to downsample by R2. Since the filters used for
interpolation and decimation are both lowpass filters, it follows, from the
upper configuration in Fig. 5.7, that we only need to implement the lowpass
filter with the smaller passband frequency, i.e.,

fp = min
(
π

R1
,
π

R2

)
. (5.4)

This is graphically interpreted in the lower configuration of Fig. 5.7. We will
discuss later in Sect. 5.6, p. 280 different design options of this system.

R2

π 2/R
Lowpass

Lowpass

1R

x[n]

x[n] y[m]

y[m]

π 1/R
Lowpass

1R

π 1/R ,π 2/R)min(

R2

Fig. 5.7. Noninteger decimation system. (upper) Cascade of an interpolator and a
decimator. (lower) Result combining the lowpass filters.

5.2 Polyphase Decomposition

Polyphase decomposition is very useful when implementing decimation or in-
terpolation in IIR or FIR filter and filter banks. To illustrate this, consider
the polyphase decomposition of an FIR decimation filter. If we add downsam-
pling by a factor of R to the FIR filter structure shown in Fig. 3.1 (p. 166),
we find that we only need to compute the outputs y[n] at time instances

y[0], y[R], y[2R], (5.5)

250 5. Multirate Signal Processing

It follows that we do not need to compute all sums-of-product f [k]x[n − k]
of the convolution. For instance, x[0] only needs to be multiplied by

f [0], f [R], f [2R], (5.6)

Besides x[0], these coefficients only need to be multiplied by

x[R], x[2R], (5.7)

It is therefore reasonable to split the input signal first into R separate se-
quences according to

x[n] =
R−1∑

r=0

xr[n]

x0[n] = {x[0], x[R], . . .}
x1[n] = {x[1], x[R+ 1], . . .}

...
xR−1[n] = {x[R− 1], x[2R− 1], . . .}

and also to split the filter f [n] into R sequences

f [n] =
R−1∑

r=0

fr[n]

f0[n] = {f [0], f [R], . . .}
f1[n] = {f [1], f [R+ 1], . . .}

...
fR−1[n] = {f [R− 1], f [2R− 1], . . .}.

Figure 5.8 shows a decimator filter implemented using polyphase decompo-
sition. Such a decimator can run R times faster than the usual FIR filter fol-
lowed by a downsampler. The filters fr[n] are called polyphase filters, because
they all have the same magnitude transfer function, but they are separated
by a sample delay, which introduces a phase offset.

A final example illustrates the polyphase decomposition.

Example 5.1: Polyphase Decimator Filter
Consider a Daubechies length-4 filter with G(z) and R = 2.

G(z) =
(
(1 +

√
3) + (3 +

√
3)z−1 + (3−

√
3)z−2 + (1−

√
3)z−3

) 1

4
√

2

G(z) = 0.48301 + 0.8365z−1 + 0.2241z−2 − 0.1294z−3 .

Quantizing the filter to 8 bits of precision results in the following model:

5.2 Polyphase Decomposition 251

R F

R

z−1

+F

R

z−1

+F0

R−1

x[n] y[n]

1

Fig. 5.8. Polyphase realization of a decimation filter.

G(z) =
(
124 + 214z−1 + 57z−2 − 33z−3

)
/256

G(z) = G0(z
2) + z−1G1(z

2)

=
(

124

256
+

57

256
z−2

)

︸ ︷︷ ︸
G0(z2)

+z−1
(

214

256
− 33

256
z−2

)

︸ ︷︷ ︸
G1(z2)

,

and it follows that

G0(z) =
124

256
+

57

256
z−1 G1(z) =

214

256
− 33

256
z−1. (5.8)

The following VHDL code3 shows the polyphase implementation for DB4.
PACKAGE n_bits_int IS -- User-defined types

SUBTYPE BITS8 IS INTEGER RANGE -128 TO 127;
SUBTYPE BITS9 IS INTEGER RANGE -2**8 TO 2**8-1;
SUBTYPE BITS17 IS INTEGER RANGE -2**16 TO 2**16-1;
TYPE ARRAY_BITS17_4 IS ARRAY (0 TO 3) of BITS17;

END n_bits_int;

LIBRARY work;
USE work.n_bits_int.ALL;

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
USE ieee.std_logic_arith.ALL;
USE ieee.std_logic_signed.ALL;

ENTITY db4poly IS ------> Interface
PORT (clk, reset : IN STD_LOGIC;

x_in : IN BITS8;
clk2 : OUT STD_LOGIC;

3 The equivalent Verilog code db4poly.v for this example can be found in Ap-
pendix A on page 697. Synthesis results are shown in Appendix B on page 731.

252 5. Multirate Signal Processing

x_e, x_o, g0, g1 : OUT BITS17;
y_out : OUT BITS9);

END db4poly;

ARCHITECTURE fpga OF db4poly IS

TYPE STATE_TYPE IS (even, odd);
SIGNAL state : STATE_TYPE;
SIGNAL x_odd, x_even, x_wait : BITS8 := 0;
SIGNAL clk_div2 : STD_LOGIC;
-- Arrays for multiplier and taps:
SIGNAL r : ARRAY_BITS17_4 := (0,0,0,0);
SIGNAL x33, x99, x107 : BITS17;
SIGNAL y : BITS17 := 0;

BEGIN

Multiplex: PROCESS(reset, clk) ----> Split into even and
BEGIN -- odd samples at clk rate
IF reset = ’1’ THEN -- Asynchronous reset

state <= even;
ELSIF rising_edge(clk) THEN

CASE state IS
WHEN even =>

x_even <= x_in;
x_odd <= x_wait;
clk_div2 <= ’1’;
state <= odd;

WHEN odd =>
x_wait <= x_in;
clk_div2 <= ’0’;
state <= even;

END CASE;
END IF;

END PROCESS Multiplex;

AddPolyphase: PROCESS (clk_div2,x_odd,x_even,x33,x99,x107)
VARIABLE m : ARRAY_BITS17_4 ;
BEGIN

-- Compute auxiliary multiplications of the filter
x33 <= x_odd * 32 + x_odd;
x99 <= x33 * 2 + x33;
x107 <= x99 + 8 * x_odd;

-- Compute all coefficients for the transposed filter
m(0) := 4 * (32 * x_even - x_even); -- m[0] = 127
m(1) := 2 * x107; -- m[1] = 214
m(2) := 8 * (8 * x_even - x_even) + x_even;-- m[2] = 57
m(3) := x33; -- m[3] = -33

------> Compute the filters and infer registers
IF clk_div2’event and (clk_div2 = ’0’) THEN

------------ Compute filter G0
r(0) <= r(2) + m(0); -- g[0] = 127
r(2) <= m(2); -- g[2] = 57

5.2 Polyphase Decomposition 253

Fig. 5.9. VHDL simulation of the polyphase implementation of the length-4
Daubechies filter.

------------ Compute filter G1
r(1) <= -r(3) + m(1); -- g[1] = 214
r(3) <= m(3); -- g[3] = -33

------------ Add the polyphase components
y <= r(0) + r(1);

END IF;
END PROCESS AddPolyphase;

x_e <= x_even; -- Provide some test signal as outputs
x_o <= x_odd;
clk2 <= clk_div2;
g0 <= r(0);
g1 <= r(1);

y_out <= y / 256; -- Connect to output

END fpga;
The first PROCESS is the FSM, which includes the control flow and the splitting
of the input stream at the sampling rate into even and odd samples. The
second PROCESS includes the reduced adder graph (RAG) multiplier, and the
last PROCESS hosts the two filters in a transposed structure. Although the
output is scaled, there is potential growth by the amount

∑ |gk| = 1.673 <

21. Therefore the output y_out was chosen to have an additional guard bit.
The design uses 173 LEs, no embedded multiplier, and has a 136.65 MHz
Registered Performance.
A simulation of the filter is shown in Fig. 5.9. The first four input samples are
a triangle function to demonstrate the splitting into even and odd samples.
Impulses with an amplitude of 100 are used to verify the coefficients of the
two polyphase filters. Note that the filter is not shift invariant. 5.1

From the VHDL simulation shown in Fig. 5.9, it can be seen that such
a decimator is no longer shift invariant, resulting in a technically nonlinear
system. This can be validated by applying a single impulse. Initializing at an
even-indexed sample, the response is G0(z), while for an odd-indexed sample,
the response is G1(z).

254 5. Multirate Signal Processing

ε = 0.025
ε = 0.0031s

p

f = 0.1a

d=5

ΔF0.005 0.05

10

20

30

40

M
ul

tip
lic

at
io

ns
 p

er
 s

ec
on

d
FIR linear phase

IIR decimator

Elliptic

Fig. 5.10. Comparison of computational effort for decimators ΔF = fp − fs.

5.2.1 Recursive IIR Decimator

It is also possible to apply polyphase decomposition to recursive filters and
to get the speed benefit, if we follow the idea from Martinez and Parks [99],
in the transfer function

F (z) =

L−1∑
l=0

a[l]z−l

1−
K−1∑
l=1

b[l]z−lR

. (5.9)

i.e., the recursive part has only eachRth coefficient. We have already discussed
such a design in the context of IIR filters (Fig. 4.17, p. 236). Figure 5.10 shows
that, depending on the transition width ΔF of the filter, an IIR decimator
offers substantial savings compared with an FIR decimator.

5.2.2 Fast-running FIR Filter

An interesting application of polyphase decomposition is the so-called fast-
running FIR filter. The basic idea of this filter is the following: If we de-
compose the input signal x[n] into R polyphase components, we can use
Winograd’s short convolution algorithms to implement a fast filter. Let us
demonstrate this with an example for R = 2.

Example 5.2: Fast-Running FIR filter
We decompose the input signal X(z) and filter F (z) into even and odd
polyphase components, i.e.,

5.2 Polyphase Decomposition 255

X (z)

1X (z)

2

z−12
−1

1z Y (z^2)

z

X(z)

+

−1 − +

F (z)

−
+

F (z)

− +

F (z)
−

1F (z)

10 +

0

0

+

Y(z)

Y (z^2)

z 2

2

0

−1

Fig. 5.11. Fast-running FIR filter with R = 2.

X(z) =
∑

n

x[n]z−n = X0(z
2) + z−1X1(z

2) (5.10)

F (z) =
∑

n

f [n]z−n = F0(z
2) + z−1F1(z

2). (5.11)

The convolution in the time domain of x[n] and f [n] yields a polynomial
multiply in the z-domain. It follows for the output signal Y (z) that

Y (z) = Y0(z
2) + z−1Y1(z

2) (5.12)

= (X0(z
2) + z−1X1(z

2))(F0(z
2) + z−1F1(z

2)). (5.13)

If we split (5.13) into the polyphase components Y0(z) and Y1(z) we get

Y0(z) = X0(z)F0(z) + z−1X1(z)F1(z) (5.14)

Y1(z) = X1(z)F0(z) + X0(z)F1(z). (5.15)

If we now compare (5.13) with a 2× 2 linear convolution

A(z)×B(z) = (a[0] + z−1a[1])(b[0] + z−1b[1]) (5.16)

= a[0]b[0] + z−1(a[0]b[1] + a[1]b[0]) + a[1]b[1]z−2 , (5.17)

we notice that the factors for z−1 are the same, but for Y0(z) we must compute
an extra delay to get the right phase relation. Winograd [103] has compiled
a list of short convolution algorithms, and a linear 2 × 2 convolution can be
computed using three multiplications and six adds with

a[0] = x[0]− x[1] a[1] = x[0] a[2] = x[1]− x[0]
b[0] = f [0] − f [1] b[1] = f [0] b[2] = f [1]− f [0]

c[k] = a[k]b[k] k = 0, 1, 2
y[0] = c[1] + c[2] y[1] = c[1]− c[0].

(5.18)

With the help of this short convolution algorithm, we can now define the
fast-running filter as follows:

[
Y0

Y1

]
=

[
0 1 −1
−1 1 0

][F0 0 0
0 F0 + F1 0
0 0 F1

][
1 −1
1 0
1 −z−1

][
X0

X1

]
. (5.19)

Figure 5.11 shows the graphical interpretation. 5.2

256 5. Multirate Signal Processing

If we compare the direct filter implementation with the fast-running FIR
filter we must distinguish between hardware effort and average number of
adder and multiplier operations. A direct implementation would have L mul-
tipliers and L− 1 adders running at full speed. For the fast-running filter we
have three filters of length L/2 running at half speed. This results in 3L/4
multiplications per output sample and (2+2)/2+3/2(L/2−1) = 3L/4+1/2
additions for the whole filter, i.e., the arithmetic count is about 25% better
than in the direct implementation. From an implementation standpoint, we
need 3L/2 multipliers and 4+3(L/2−1) = 3L/2+1 adders, i.e., the effort is
about 50% higher than in the direct implementation. The important feature
in Fig. 5.11 is that the fast-running filter basically runs at twice the speed
of the direct implementation. Using a higher number R of decomposition
may further increase the maximum throughput. The general methology for
R polyphase signals with fa as input rate is now as follows:

Algorithm 5.3: Fast-Running FIR Filter

1) Decompose the input signal into R polyphase signals, using Ae adders
to form R sequences at a rate of fa/R.

2) Filter the R sequences with R filters of length L/R.
3) Use Aa additions to compute the polyphase representation of the

output Yk(z). Use a final output multiplexer to generate the output
signal Y (z).

Note that the computed partial filter of length L/R may again be decom-
posed, using Algorithm 5.3. Then the question arises: When should we stop
the iterative decomposition? Mou and Duhamel [104] have compiled a table
with the goal of minimizing the average arithmetic count. Table 5.1 shows
the optimal decomposition. The criterion used was a minimum total number
of multiplications and additions, which is typical for a MAC-based design. In
Table 5.1, all partial filters that should be implemented based on Algorithm
5.3 are underlined.

For a larger length than 60, a fast convolution using the FFT is more
efficient, and will be discussed in Chap. 6.

5.3 Hogenauer CIC Filters

A very efficient architecture for a high decimation-rate filter is the “cascade
integrator comb” (CIC) filter introduced by Hogenauer [106]. The CIC (also
known as the Hogenauer filter), has proven to be an effective element in
high-decimation or interpolation systems. One application is in wireless com-
munications, where signals, sampled at RF or IF rates, need to be reduced
to baseband. For narrowband applications (e.g., cellular radio), decimation
rates in excess of 1000 are routinely required. Such systems are sometimes
referred to as channelizers [107]. Another application area is in ΣΔ data
converters [108].

5.3 Hogenauer CIC Filters 257

Table 5.1. Computational effort for the recursive FIR decomposition [104, 105].

L Factors M + A M + A
L

2 direct 6 3
3 direct 15 5
4 2× 2 26 6.5
5 direct 45 9
6 3× 2 56 9.33
8 22 × 2 94 11.75
9 3× 3 120 13.33
10 5× 2 152 15.2
12 2× 3× 2 192 16
14 7× 2 310 22.1
15 5× 3 300 20
16 23 × 2 314 19.63
18 2× 3× 3 396 22
20 5× 2× 2 472 23.6
21 7× 3 591 28.1

L Factors M + A M + A
L

22 11× 2 668 30.4
24 22 × 3× 2 624 26
25 5× 5 740 29.6
26 13× 2 750 28.9
27 32 × 3 810 30
30 5× 3× 2 912 30.4
32 24 × 2 1006 31.44
33 11× 3 1248 37.8
35 7× 5 1405 40.1
36 22 × 3× 3 1260 35
39 13× 3 1419 36.4
55 11× 5 2900 52.7
60 5× 2× 3× 2 2784 46.4
65 13× 5 3345 51.46

CIC filters are based on the fact that perfect pole/zero canceling can
be achieved. This is only possible with exact integer arithmetic. Both two’s
complement and the residue number system have the ability to support error-
free arithmetic. In the case of two’s complement, arithmetic is performed
modulo 2b, and, in the case of the RNS, modulo M.

An introductory case study will be used to demonstrate.

5.3.1 Single-Stage CIC Case Study

Figure 5.12 shows a first-order CIC filter without decimation in 4-bit arith-
metic. The filter consists of a (recursive) integrator (I-section), followed by a
4-bit differentiator or comb (C-section). The filter is realized with 4-bit val-
ues, which are implemented in two’s complement arithmetic, and the values
are bounded by −810 = 10002C and 710 = 01112C.

Figure 5.13 shows the impulse response of the filter. Although the filter is
recursive, the impulse response is finite, i.e., it is a recursive FIR filter. This

x[n] +

−1

−

+

z−6z

w[n]
y[n]

4 44

Fig. 5.12. Moving average in 4-bit arithmetic.

258 5. Multirate Signal Processing

0 5 10
−0.5

0

0.5

1

1.5

n

Input signal x[n]

0 5 10
−0.5

0

0.5

1

1.5

n

Integrator w[n]

0 5 10
−0.5

0

0.5

1

1.5

n

Output y[n]

Fig. 5.13. Impulse response of the filter from Fig. 5.12.

is unusual because we generally expect a recursive filter to be an IIR filter.
The impulse response shows that the filter computes the sum

y[n] =
D−1∑

k=0

x[n− k], (5.20)

where D is the delay found in the comb section. The filter’s response is a
moving average defined over D contiguous sample values. Such a moving
average is a very simple form of a lowpass filter. The same moving-average
filter implemented as a nonrecursive FIR filter, would require D − 1 = 5
adders, compared with one adder and one subtractor for the CIC design.

A recursive filter having a known pole location has its largest steady-state
sinusoidal output when the input is an “eigenfrequency” signal, one whose
pole directly coincides with a pole of the recursive filter. For the CIC section,
the eigenfrequency corresponds to the frequency ω = 0, i.e., a step input.
The step response of the first-order moving average given by (5.20) is a ramp
for the first D samples, and a constant y[n] = D = 6 thereafter, as shown in
Fig. 5.14. Note that although the integrator w[n] shows frequent overflows,
the output is still correct. This is because the comb subtraction also uses two’s
complement arithmetic, e.g., at the time of the first wrap-around, the actual
integrator signal is w[n] = −810 = 10002C, and the delay signal is w[n− 6] =
210 = 00102C. This results in y[n] = −810 − 210 = 10002C − 00102C =
01102C = 610, as expected. The accumulator would continue to count upward
until w[n] = −810 = 10002C is again reached. This pattern would continue as
long as the step input is present. In fact, as long as the output y[n] is a valid 4-
bit two’s complement number in the range [−8, 7], the exact arithmetic of the
two’s complement system will automatically compensate for the integrator
overflows.

In general, a 4-bit filter width is usually much too small for a typical
application. The Harris IC HSP43220, for instance, has five stages and uses a

5.3 Hogenauer CIC Filters 259

Table 5.2. RNS mapping for the set (2, 3, 5).

a = 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

a mod 2 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
a mod 3 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0
a mod 5 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0

a = 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

a mod 2 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
a mod 3 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0
a mod 5 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0

0 10 20
−8

−6

−4

−2

0

2

4

6

n

Input signal x[n]

0 10 20
−8

−6

−4

−2

0

2

4

6

n

Integrator w[n]

0 10 20
−8

−6

−4

−2

0

2

4

6

n

Output y[n]

Fig. 5.14. Step response (eigenfrequency test) of the filter from Fig. 5.12.

66-bit integrator width. To reduce the adder latency, it is therefore reasonable
to use a multibase RNS system. If we use, for instance, the set Z30 = {2, 3, 5},
it can be seen from Table 5.2 that a total of 2 × 3 × 5 = 30 unique values
can be represented. The mapping is unique (bijective) and is proven by the
Chinese remainder theorem.

Figure 5.15 displays the step response of the illustrated RNS implementa-
tion. The filter’s output, y[n], has been reconstructed using data from Table
5.2. The output response is identical with the sample value obtained in the
two’s complement case (see Fig. 5.14). A mapping that preserves the structure
is called a homomorphism. A bijective homomorphism is called an isomor-
phism (notation ∼=), which can be expressed as:

Z30
∼= Z2 × Z3 × Z5. (5.21)

5.3.2 Multistage CIC Filter Theory

The transfer function of a general CIC system consisting of S stages is given
by:

260 5. Multirate Signal Processing

0 5 10
0

0.5

1

m
od

 2
Input signal x[n]

0 5 10
0

0.5

1

1.5

2

m
od

 3

0 5 10
0

1

2

3

4

m
od

 5

n

0 5 10
0

0.5

1
Integrator w[n]

0 5 10
0

0.5

1

1.5

2

0 5 10
0

1

2

3

4

n

0 5 10
0

0.5

1
Output mod (2,3,5)

0 5 10
0

0.5

1

1.5

2

0 5 10
0

1

2

3

4

n

0 5 10

−10

0

10

n

Output y[n]

Fig. 5.15. Step response of the first-order CIC in RNS arithmetic.

F (z) =
(

1− z−RD

1− z−1

)S

, (5.22)

whereD is the number of delays in the comb section, and R the downsampling
(decimation) factor.

It can be seen from (5.22) that F (z) is defined with respect to RDS zeros
and S poles. The RD zeros generated by the numerator term (1 − z−RD)
are located on 2π/(RD)-radian centers beginning at z = 1. Each distinct
zero appears with multiplicity S. The S poles of F (z) are located at z = 1,
i.e., at the zero frequency (DC) location. It can immediately be seen that
they are annihilated by S zeros of the CIC filter. The result is an S-stage
moving average filter. The maximum dynamic range growth occurs at the
DC frequency (i.e., z = 1). The maximum dynamic range growth is

Bgrow = (RD)S or bgrow = log2 (Bgrow) bits. (5.23)

Knowledge of this value is important when designing a CIC filter, since the
need for exact arithmetic as shown in the single-state CIC example. In prac-
tice, the worst-case gain can be substantial, as evidenced by a 66-bit dynamic
range built into commercial CIC filters (e.g., the Harris HSP43220 [107] chan-
nelizer), typically designed using two’s complement arithmetic.

5.3 Hogenauer CIC Filters 261

26−bit 26−bit26−bit26−bit26−bit 26−bitx[n] y[n]
R CCC

z
z−1

−D −

++

III

Fig. 5.16. CIC filter. Each stage 26-bit.

0 100 200 300

0

50

100

150

n

In
pu

t x
[n

]

(a)

0 100 200 300 400

−3

−2

−1

0

1

2

3

x 10
7

n

3.
 In

te
gr

at
or

 w
[n

]

(b)

0 100 200 300 400
0

0.5

1

1.5

2

2.5

3

x 10
7

n

S
ca

le
d+

de
ci

m
at

ed
 y

[n
]

(d)

n

O
ut

pu
t y

[n
]

(c)

0 100 200 300 400
0

100

200

300

400

500

Fig. 5.17. MatLab simulation of the three-stage CIC filter shown in Fig. 5.16.

Figure 5.16 shows a three-stage CIC filter that consists of a three-stage
integrator, a sampling rate reduction by R, and a three-stage comb. Note
that all integrators are implemented first, then the decimator, and finally the
comb sections. The rearrangement saves a factor R of delay elements in the
comb sections. The number of delays D for a high-decimation rate filter is
typically one or two.

A three-stage CIC filter with an input wordwidth of eight bits, along with
D = 2, R = 32, or DR = 2 × 32 = 64, would require an internal wordwidth
of W = 8 + 3 log2(64) = 26 bits to ensure that run-time overflow would not
occur. The output wordwidth would normally be a value significantly less
than W , such as 10 bits.

262 5. Multirate Signal Processing

Example 5.4: Three-Stage CIC Decimator I
The worst-case gain condition can be forced by supplying a step (DC) sig-
nal to the CIC filter. Fig. 5.17a shows a step input signal with amplitude
127. Figure 5.17b displays the output found at the third integrator section.
Observe that run-time overflows occur at a regular rate. The CIC output
shown in Fig. 5.17c is interpolated (smoothed) for display at the input sam-
pling rate. The output shown in Fig. 5.17d is scaled to 10-bit precision and
displayed at the decimated sample rate.
The following VHDL code5 shows the CIC example design.

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
USE ieee.std_logic_arith.ALL;
USE ieee.std_logic_signed.ALL;

ENTITY cic3r32 IS
PORT (clk, reset : IN STD_LOGIC;

x_in : IN STD_LOGIC_VECTOR(7 DOWNTO 0);
clk2 : OUT STD_LOGIC;
y_out : OUT STD_LOGIC_VECTOR(9 DOWNTO 0));

END cic3r32;

ARCHITECTURE fpga OF cic3r32 IS

SUBTYPE word26 IS STD_LOGIC_VECTOR(25 DOWNTO 0);

TYPE STATE_TYPE IS (hold, sample);
SIGNAL state : STATE_TYPE ;
SIGNAL count : INTEGER RANGE 0 TO 31;
SIGNAL x : STD_LOGIC_VECTOR(7 DOWNTO 0) :=

(OTHERS => ’0’); -- Registered input
SIGNAL sxtx : STD_LOGIC_VECTOR(25 DOWNTO 0);

-- Sign extended input
SIGNAL i0, i1 , i2 : word26 := (OTHERS=>’0’);

-- I section 0, 1, and 2
SIGNAL i2d1, i2d2, c1, c0 : word26 := (OTHERS=>’0’);

-- I and COMB section 0
SIGNAL c1d1, c1d2, c2 : word26 := (OTHERS=>’0’);-- COMB1
SIGNAL c2d1, c2d2, c3 : word26 := (OTHERS=>’0’);-- COMB2

BEGIN

FSM: PROCESS (reset, clk)
BEGIN
IF reset = ’1’ THEN -- Asynchronous reset

state <= hold;
count <= 0;
clk2 <= ’0’;

ELSIF rising_edge(clk) THEN
IF count = 31 THEN
count <= 0;

5 The equivalent Verilog code cic3r32.v for this example can be found in Ap-
pendix A on page 694. Synthesis results are shown in Appendix B on page 731.

5.3 Hogenauer CIC Filters 263

state <= sample;
clk2 <= ’1’;

ELSE
count <= count + 1;
state <= hold;
clk2 <= ’0’;

END IF;
END IF;

END PROCESS FSM;

sxt: PROCESS (x)
BEGIN
sxtx(7 DOWNTO 0) <= x;
FOR k IN 25 DOWNTO 8 LOOP

sxtx(k) <= x(x’high);
END LOOP;

END PROCESS sxt;

Int: PROCESS -- 3 integrator sections
BEGIN
WAIT UNTIL clk = ’1’;

x <= x_in;
i0 <= i0 + sxtx;
i1 <= i1 + i0 ;
i2 <= i2 + i1 ;

END PROCESS Int;

Comb: PROCESS -- 3 comb sections
BEGIN
WAIT UNTIL clk = ’1’;
IF state = sample THEN

c0 <= i2;
i2d1 <= c0;
i2d2 <= i2d1;
c1 <= c0 - i2d2;
c1d1 <= c1;
c1d2 <= c1d1;
c2 <= c1 - c1d2;
c2d1 <= c2;
c2d2 <= c2d1;
c3 <= c2 - c2d2;

END IF;
END PROCESS Comb;

y_out <= c3(25 DOWNTO 16); -- i.e., c3 / 2**16

END fpga;
The designed filter includes a finite state machine (FSM), a sign extension,
sxt: PROCESS, and two arithmetic PROCESS blocks. The FSM: PROCESS con-
tains the clock divider for the comb section. The Int: PROCESS realizes the
three integrators. The Comb: PROCESS includes the three comb filters, each
having a delay of two samples. The filter uses 337 LEs, no embedded mul-
tiplier and has a 282.17 MHz Registered Performance. Note that the filter

264 5. Multirate Signal Processing

Fig. 5.18. VHDL simulation of the three-stage CIC filter shown in Fig. 5.16.

would require many more LEs without the early downsampling. The early
downsampling saves 3× 32× 26 = 2496 registers or LEs.
If we compare the filter outputs (Fig. 5.18 shows the VHDL output y_out,
and the response y[n] from the MatLab simulation shown in Fig. 5.17d we
see that the filter behaves as expected. 5.4

Hogenauer [106] noted, based on a careful analysis, that some of the lower
significant bits from early stages can be eliminated without sacrificing system
integrity. Figure 5.19 displays the system’s magnitude frequency response
for a design using full (worst-case) wordwidth in all stages, and using the
wordlength “pruning” policy suggested by Hogenauer.

5.3.3 Amplitude and Aliasing Distortion

The transfer function of an S-stage CIC filter was reported to be

-60 dB

-40 dB

-20 dB

0 dB

1/64 2/64 3/64
f/f_s

All 26 bit
26,20,20,14,14,14 bit

Fig. 5.19. CIC transfer function (f s is sampling frequency at the input).

5.3 Hogenauer CIC Filters 265

Passband

Aliasing bands

1 2

Aliasing components

2f

(a) (b)

f

f/f s p

p

f/f s

Fig. 5.20. Transfer function of a three-stage CIC decimator. Note that fs is the
sampling frequency at the lower rate.

F (z) =
(

1− z−RD

1− z−1

)S

. (5.24)

The amplitude distortion and the maximum aliasing component can be com-
puted in the frequency domain by evaluating F (z) along the arc z = ej2πfT .
The magnitude response becomes

|F (f)| =
(

sin(2πfTRD/2)
sin(2πfT/2)

)S

, (5.25)

which can be used to directly compute the amplitude distortion at the pass-
band edge ωp. Figure 5.20 shows |F (f − k 1

2R)| for a three-stage CIC filter
with R = 3, D = 2, and RD = 6. Observe that several copies of the CIC
filter’s low-frequency response are aliased in the baseband.

It can be seen that the maximum aliasing component can be computed
from |F (f)| at the frequency

f |Aliasing has maximum = 1/(2R)− fp. (5.26)

Most often, only the first aliasing component is taken into consideration,
because the second component is smaller. Figure 5.21 shows the amplitude
distortion at fp for different ratios of fp/(Dfs).

Figure 5.22 shows, for different values of S, R, and D, the maximum
aliasing component for a special ratio of passband frequency and sampling
frequency, fp/fs.

266 5. Multirate Signal Processing

1/128 1/64 1/32 1/16 1/8 1/4

10

20

30

40

50

60

70

f
p
/(f

S
*D)

A
m

pl
itu

de
 d

is
to

rt
io

n
at

 f
p

in
 d

B 1 stage
2 stages
3 stages
4 stages

Fig. 5.21. Amplitude distortion for the CIC decimator.

It may be argued that the amplitude distortion can be corrected with a
cascaded FIR compensation filter, which has a transfer function 1/|F (z)| in
the passband, but the aliasing distortion can not be repaired. Therefore, the
acceptable aliasing distortion is most often the dominant design parameter.

5.3.4 Hogenauer Pruning Theory

The total internal wordwidth is defined as the sum of the input wordwidth
and the maximum dynamic growth requirement (5.23), or algebraically:

Bintern = Binput +Bgrowth. (5.27)

If the CIC filter is designed to perform exact arithmetic with this wordwidth
at all levels, no run-time overflow will occur at the output. In general, input
and output bit width of a CIC filter are in the same range. We find then
that quantization introduced through pruning in the output is, in general,
larger than quantization introduced by also pruning some LSBs at previous
stages. If σ2

T,2S+1 is the quantization noise introduced through pruning in
the output, Hogenauer suggested to set it equal to the sum of the noise σ2

k

introduced by all previous sections. For a CIC filter with S integrator and S
comb sections, it follows that:

2S∑

k=1

σ2
T,k =

2S∑

k=1

σ2
kP

2
k ≤ σ2

T,2S+1 (5.28)

σ2
T,k =

1
2S
σ2

T,2S+1 (5.29)

P 2
k =

∑

n

(hk[n])2 k = 1, 2, . . . , 2S, (5.30)

5.3 Hogenauer CIC Filters 267

1/128 1/64 1/32 1/16 1/8 1/4

10
20
30
40
50
60
70
80
90

100
110

f
p
/f

S

A
lia

si
ng

 ε
D

D=1

1 stage
2 stages
3 stages
4 stages

1/128 1/64 1/32 1/16 1/8 1/4

10
20
30
40
50
60
70
80
90

100
110

f
p
/f

S

A
lia

si
ng

 ε
p

D=2

1 stage
2 stages
3 stages
4 stages

Fig. 5.22. Maximum aliasing for one- to four stage CIC decimator.

where P 2
k is the power gain from stage k to the output. Compute next the

number of bits Bk, which should be pruned by

Bk =
⌊
0.5 log2

(
P−2

k × 6
N
× σ2

T,2S+1

)⌋
(5.31)

σ2
T,k

∣∣
k=2S+1

=
1
12

22Bk =
1
12

22(Bin−Bout+Bgrowth). (5.32)

The power gain P 2
k , k = S+1, . . . , 2S for the comb sections can be computed

using the binomial coefficient

Hk(z) =
2S+1−k∑

n=0

(−1)n

(
2S + 1− k

n

)
z−kRD

268 5. Multirate Signal Processing

δ[n] h1[n]Int. Int.� Int. Int.� · · · Co. Co. Co. Co.� · · · �

gS[k]

�

�P
2
k

· · · · · ·

Int. Co.� Int. Co.�· · · hk[n]Co. Co.� · · · �

gk[n] (S − k + 1) pairs (k − 1) Comb sections

δ[n] �

Fig. 5.23. Rearrangement to simplify the computation of P 2
k (c©1995 VDI Press

[4]).

k = S, S + 1, . . . , 2S. (5.33)

For computation of the first factor P 2
k for k = 1, 2, . . . , S, it is useful to keep

in mind that each integrator/comb pair produces a finite (moving average)
impulse response. The resulting system for stage k is therefore a series of
S− k+1 integrator/comb pairs followed by k− 1 comb sections. Figure 5.23
shows this rearrangement for a simplified computation of P 2

k .
The program cic.exe (included on the CD-ROM under book3e/util)

computes this CIC pruning. The program produces the impulse response
cicXX.imp and a configuration file cicXX.dat, where XX must be specified.
The following design example explains the results.

Example 5.5: Three-Stages CIC Decimator II
Let us design the same overall CIC filter as in Example 4 (p. 262) but this time
with bit pruning. The row data of the decimator were: Binput = 8, Boutput =
10, Bit R = 32, and D = 2. Obviously, the bit growth is

Bgrowth = �log2(RDS)� = log2(64
3)�3× 6� = 18, (5.34)

and the total internal bit width becomes

Bintern = Binput + Bgrowth = 8 + 18 = 26. (5.35)

The program cic.exe shows the following results:
-- --
-- Program for the design of a CIC decimator.
-- --
-- Input bit width Bin = 8
-- Output bit width Bout = 10
-- Number of stages S = 3
-- Decimation factor R = 32
-- COMB delay D = 2
-- Frequency resolution DR = 64
-- Passband freq. ratio P = 8
-- --
-- ----------------- Results of the Design ----------------
-- --
-- -------- Computed bit width:
-- -------- Maximum bit growth over all stages = 18

5.3 Hogenauer CIC Filters 269

-- -------- Maximum bit width including sign Bmax+1 = 26
-- Stage 1 INTEGRATOR. Bit width : 26
-- Stage 2 INTEGRATOR. Bit width : 21
-- Stage 3 INTEGRATOR. Bit width : 16
-- Stage 1 COMB. Bit width : 14
-- Stage 2 COMB. Bit width : 13
-- Stage 3 COMB. Bit width : 12
-- ------- Maximum aliasing component : 0.002135 = 53.41 dB
-- ------- Amplitude distortion : 0.729769 = 2.74 dB

5.5

The design charts shown in Figs. 5.21 and 5.22 may also be used to com-
pute the maximum aliasing component and the amplitude distortion. If we
compare this data with the tables provided by Hogenauer then the aliasing
suppression is 53.4 dB (for Delay = 2 [106, Table II]), and the passband
attenuation is 2.74 dB [106, Table I]. Note that the Table I provided by
Hogenauer are normalized with the comb delay, while the program cic.exe
does not normalize with the comb delay.

The following design example demonstrates the detailed bit-width design,
using Quartus II.

Example 5.6: Three-Stage CIC Decimator III
The data for the design should be the same as for Example 5.4 (p. 262), but
we now consider the pruning as computed in Example 5.5 (p. 268).
The following VHDL code6 shows the CIC example design with pruning.

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
USE ieee.std_logic_arith.ALL;
USE ieee.std_logic_signed.ALL;

ENTITY cic3s32 IS
PORT (clk, reset : IN STD_LOGIC;

x_in : IN STD_LOGIC_VECTOR(7 DOWNTO 0);
clk2 : OUT STD_LOGIC;
y_out : OUT STD_LOGIC_VECTOR(9 DOWNTO 0));

END cic3s32;

ARCHITECTURE fpga OF cic3s32 IS

SUBTYPE word26 IS STD_LOGIC_VECTOR(25 DOWNTO 0);
SUBTYPE word21 IS STD_LOGIC_VECTOR(20 DOWNTO 0);
SUBTYPE word16 IS STD_LOGIC_VECTOR(15 DOWNTO 0);
SUBTYPE word14 IS STD_LOGIC_VECTOR(13 DOWNTO 0);
SUBTYPE word13 IS STD_LOGIC_VECTOR(12 DOWNTO 0);
SUBTYPE word12 IS STD_LOGIC_VECTOR(11 DOWNTO 0);

TYPE STATE_TYPE IS (hold, sample);

6 The equivalent Verilog code cic3s32.v for this example can be found in Ap-
pendix A on page 696. Synthesis results are shown in Appendix B on page 731.

270 5. Multirate Signal Processing

SIGNAL state : STATE_TYPE ;
SIGNAL count : INTEGER RANGE 0 TO 31;
SIGNAL x : STD_LOGIC_VECTOR(7 DOWNTO 0)

:= (OTHERS => ’0’); -- Registered input
SIGNAL sxtx : STD_LOGIC_VECTOR(25 DOWNTO 0);

-- Sign extended input
SIGNAL i0 : word26 := (OTHERS => ’0’); -- I section 0
SIGNAL i1 : word21 := (OTHERS => ’0’); -- I section 1
SIGNAL i2 : word16 := (OTHERS => ’0’); -- I section 2
SIGNAL i2d1, i2d2, c1, c0 : word14 := (OTHERS => ’0’);

-- I and COMB section 0
SIGNAL c1d1, c1d2, c2 : word13 := (OTHERS=>’0’);--COMB 1
SIGNAL c2d1, c2d2, c3 : word12 := (OTHERS=>’0’);--COMB 2

BEGIN

FSM: PROCESS (reset, clk)
BEGIN
IF reset = ’1’ THEN -- Asynchronous reset

state <= hold;
count <= 0;
clk2 <= ’0’;

ELSIF rising_edge(clk) THEN
IF count = 31 THEN
count <= 0;
state <= sample;
clk2 <= ’1’;

ELSE
count <= count + 1;
state <= hold;
clk2 <= ’0’;

END IF;
END IF;

END PROCESS FSM;

Sxt : PROCESS (x)
BEGIN
sxtx(7 DOWNTO 0) <= x;
FOR k IN 25 DOWNTO 8 LOOP

sxtx(k) <= x(x’high);
END LOOP;

END PROCESS Sxt;

Int: PROCESS
BEGIN
WAIT
UNTIL clk = ’1’;

x <= x_in;
i0 <= i0 + x;
i1 <= i1 + i0(25 DOWNTO 5); -- i.e., i0/32
i2 <= i2 + i1(20 DOWNTO 5); -- i.e., i1/32

END PROCESS Int;

5.3 Hogenauer CIC Filters 271

Fig. 5.24. VHDL simulation of the three-stage CIC filter, implemented with bit
pruning.

Comb: PROCESS
BEGIN
WAIT UNTIL clk = ’1’;
IF state = sample THEN

c0 <= i2(15 DOWNTO 2); -- i.e., i2/4
i2d1 <= c0;
i2d2 <= i2d1;
c1 <= c0 - i2d2;
c1d1 <= c1(13 DOWNTO 1); -- i.e., c1/2
c1d2 <= c1d1;
c2 <= c1(13 DOWNTO 1) - c1d2;
c2d1 <= c2(12 DOWNTO 1); -- i.e., c2/2
c2d2 <= c2d1;
c3 <= c2(12 DOWNTO 1) - c2d2;

END IF;
END PROCESS Comb;

y_out <= c3(11 DOWNTO 2); -- i.e., c3/4

END fpga;
The design has the same architecture as the unscaled CIC shown in Example
5.4 (p. 262). The design consists of a finite state machine (FSM), a sign exten-
sion sxt: PROCESS, and two arithmetic PROCESS blocks. The FSM: PROCESS
contains the clock divider for the comb sections. The Int: PROCESS realizes
the three integrators. The Comb: PROCESS includes the three comb sections,
each having a delay of two. But now, all integrator and comb sections are
designed with the bit width suggested by Hogenauer’s pruning technique.
This reduces the size of the design to 205 LEs and the design now runs at
284.58 MHz. 5.6

This design does not improve the speed (282.17 versus 284.58MHz), but
saves a substantial number of LEs (about 30%), compared with the design
considered in Example 5.4 (p. 262). Comparing the filter output of the VHDL
simulations, shown in Figs. 5.24 and 5.18 (p. 264), different LSB quantization
behavior can be noted (see Exercise 5.11, p. 338). In the pruned design,
“noise” possesses the asymptotic behavior of the LSB (507↔ 508).

272 5. Multirate Signal Processing

The design of a CIC interpolator and its pruning technique is discussed
in Exercise 5.24, p. 340.

5.3.5 CIC RNS Design

The design of a CIC filter using the RNS was proposed by Garcia et al.
[49]. A three-stage CIC filter, with 8-bit input, 10-bit output, D = 2, and
R = 32 was implemented. The maximum wordwidth was 26 bits. For the
RNS implementation, the 4-moduli set (256, 63, 61, 59), i.e., one 8-bit two’s
complement and three 6-bit moduli, covers this range (see Fig. 5.25). The
output was scaled using an ε-CRT requiring eight tables and three two’s
complement adders [43, Fig. 1], or (as shown in Fig. 5.26) using a base removal
scaling (BRS) algorithm based on two 6-bit moduli (after [42]), and an ε-CRT
for the remaining two moduli, for a total of five modulo adders and nine
ROM tables, or seven tables (if multiplicative inverse ROM and the ε-CRT
are combined). The following table shows the speed in MSPS and the number
of LEs and EABs used for the three scaling schemes for a FLEX10K device.

Type ε-CRT BRS ε-CRT BRS ε-CRT
(Speed data for combined
BRS m4 only) ROM

MSPS 58.8 70.4 58.8
#LE 34 87 87
#Table (EAB) 8 9 7

The decrease in speed to 58.8 MSPS, for the scaling schemes 1 and 3, is
the result of the need for a 10-bit ε-CRT. It should be noted that this does
not reduce the system speed, since scaling is applied at the lower (output)
sampling rate. For the BRS ε-CRT, it is assumed that only the BRS m4

part (see Fig. 5.26) must run at the input sampling rate, while BRS m3 and
ε-CRT run at the output sampling rate.

Some resources can be saved if a scaling scheme, similar to Example 5.5
(p. 268), and illustrated in Fig. 5.25, is used. With this scheme, the BRS
ε-CRT scheme must be applied to reduce the bit width in the earlier sections
of the filter. The early use of ROMs decreases the possible throughput from
76.3 to 70.4 MSPS, which is the maximum speed of the BRS with m4. At the
output, the efficient ε-CRT scheme was applied.

The following table summarizes the three implemented filter designs on a
FLEX10K device, without including the scaling data.

Type 2C RNS Detailed bit width
26-bit 8, 6, 6, 6-bit RNS design

MSPS 49.3 76.3 70.4
#LEs 343 559 355

5.4 Multistage Decimator 273

6

66

8

6

88

6

6

6

B
 R

 S

B
 R

 S

8

8 bit
Input

Output
10 bit

ε−CRTI I I C C C

6

88

66

Fig. 5.25. CIC filter. Detail of design with base removal scaling (BRS).

2

m1
m1

m2m2
m2

m3
m33x

x2

m1
m1x1

x4

BRS m4 3BRS m

2

1

2

1

x’

x’

x’

2

1

3

+
x− −1m x−3

ROM−

−

−
+

mx −−1
3 x

+

ROM

x−

−
+

−1m

−1m x−

x−

ROM

ROM

−

−

−
+

−1m

ROM

−
ROM

ROM

ε−CRT

+

10x

X

3

2

41

4

1

4

2

x’

3

x

x

−

3

4x

4x

8

m

6

Fig. 5.26. BRS and ε-CRT conversion steps.

5.4 Multistage Decimator

If the decimation rate R is large it can be shown that a multistage design
can be realized with less effort than a single-stage converter. In particular,
S stages, each having a decimation capability of Rk, are designed to have
an overall downsampling rate of R = R1R2 · · ·RS . Unfortunately, passband
imperfections, such as ripple deviation, accumulate from stage to stage. As a
result, a passband deviation target of εp must normally be tightened on the
order of ε′p = εp/S to meet overall system specifications. This is obviously a
worst-case assumption, in which all short filters have the maximum ripple at
the same frequencies, which is, in general, too pessimistic. It is often more

274 5. Multirate Signal Processing

reasonable to try an initial value near the given passband specification εp,
and then selectively reduce it if necessary.

5.4.1 Multistage Decimator Design Using Goodman–Carey
Half-band Filters

Goodman and Carey [80] proposed to develop multistage systems based on
the use of CIC and half-band filters. As the name implies, a half-band filter
has a passband and stopband located at ωs = ωp = π/2, or midway in the
baseband. A half-band filter can therefore be used to change the sampling
rate by a factor of two. If the half-band filter has point symmetry relative to
ω = π/2, then all even coefficients (except the center tap) become zero.

Definition 5.7: Half-band Filter

The centered impulse response of a half-band filter obeys the following
rule

f [k] = 0 k = even without k = 0. (5.36)
The same condition transformed in the z-domain reads

F (z) + F (−z) = c, (5.37)
where c ∈ C. For a causal half-band filter this condition translates to

F (z)− F (−z) = cz−d, (5.38)
since now all (except one) odd coefficients are zero.

Goodman and Carey [80] have compiled a list of integer half-band filters that,
with increased length, have smaller amplitude distortions. Table 5.3 shows
the coefficients of these half-band filters. To simplify the representation, the
coefficients were noted with a center tap located at d = 0. F1 is the moving-
average filter of length L, i.e., it is Hogenauer’s CIC filter, and may therefore
be used in the first stage also, to change the rate with a factor other than
two. Figure 5.27 shows the transfer function of the nine different filters. Note
that in the logarithmic plot of Fig. 5.27, the point symmetry (as is usual for
half-band filters) cannot be observed.

Table 5.3. Centered coefficients of the half-band filter F1 to F9 from Goodman
and Carey [80].

Name L Ripple f [0] f [1] f [3] f [5] f [7] f [9]

F1 3 − 1 1
F2 3 − 2 1
F3 7 − 16 9 −1
F4 7 36 dB 32 19 −3
F5 11 − 256 150 −25 3
F6 11 49 dB 346 208 −44 9
F7 11 77 dB 512 302 −53 7
F8 15 65 dB 802 490 −116 33 −6
F9 19 78 dB 8192 5042 −1277 429 −116 18

5.4 Multistage Decimator 275

0dB

-20dB

-40dB

-60dB

-10dB

-30dB

-50dB

0 20 40 60 80 100 120 140 160 180

|F
(f

)|

Frequency in degree

F1
F2
F3
F5

0dB

-20dB

-40dB

-60dB

-10dB

-30dB

-50dB

0 20 40 60 80 100 120 140 160 180

|F
(f

)|

Frequency in degree

F4
F6
F7
F8
F9

Fig. 5.27. Transfer function of the half-band filter F1 to F9.

The basic idea of the Goodman and Carey multistage decimator design is
that, in the first stages, filters with larger ripple and less complexity can be
applied, because the passband-to-sampling frequency ratio is relatively small.
As the passband-to-sampling frequency ratio increases, we must use filters
with less distortion. The algorithm stops at R = 2. For the final decimation
(R = 2 to R = 1), a longer half-band filter must be designed.

Goodman and Carey have provided the design chart shown in Fig. 5.28.
Initially, the input oversampling factor R and the necessary attenuation in
the passband and stopband A = Ap = As must be computed. From this
starting point, the necessary filters for R,R/2, R/4, . . . can be drawn as a
horizontal line (at the same stopband attenuation). The filters F4 and F6–F9
have ripple in the passband (see Exercise 5.8, p. 337), and if several such
filters are used it may be necessary to adjust εp. We may, therefore, consider
the following adjustment

A = −20 log10 εp for F1–F3, F5 (5.39)

20

10

40

50

60

70

80

8 32 64 128 256 5122

1

3
57

6

4

8

9

R
ip

pl
e

 A

Oversampling ratio R

30

164

2

Fig. 5.28. Goodman and Carey design chart [80].

276 5. Multirate Signal Processing

20

10

40

50

60

70

80

8 32 64 128 256 5122

1

3
57

6

4

8

9
R

ip
pl

e
 A

Oversampling ratio R

30

164

2

10 20 30 40
0.98

0.99

1

1.01

1.02

|F
(ω

)|

Frequency in degree

(a) (b)

Fig. 5.29. Design example for Goodman and Carey half-band filter. (a) Design
chart. (b) Transfer function |F (ω)|.

A = −20 log10 min
(εp
S′ , εs

)
for F4, F6–F9, (5.40)

where S′ is the number of stages with ripple.
We will demonstrate the multistage design with the following example.

Example 5.8: Multistage Half-band Filter Decimator
We wish to develop a decimator with R = 160, εp = 0.015, and εs = 0.031 =
30 dB, using the Goodman and Carey design approach.
At first glance, we can conclude that we need a total of five filters and mark
the starting point at R = 160 and 30 dB in Fig. 5.29a. From 160 to 32, we
use a CIC filter of length L = 5. This CIC filter is followed by two F2 filter
and one F3 filter to reach R = 8. Now we need a filter with ripple. It follows
that

A = −20 log10 min
(

0.015

1
, 0.031

)
= 36.48 dB. (5.41)

From Fig. 5.28, we conclude that for 36 dB the filter F4 is appropriate. We
may now compute the whole filter transfer function |F (ω)| by using the No-
ble relation (see Fig. 5.6, p. 249) F (z) = F1(z)F2(z5)F2(z10)F3(z20)F4(z40),
who’s passband is shown in Fig. 5.29b. Figure 5.29a shows the design algo-
rithm, using the design chart from Fig. 5.28. 5.8

Example 5.8 shows that considering only the filter with ripple in (5.40)
was sufficient. Using a more pessimistic approach, with S = 6, we would have
obtained A = −20 log(0.015/6) = 52 dB, and we would have needed filter F8,
with essentially higher effort. It is therefore better to start with an optimistic
assumption and possibly correct this later.

5.5 Frequency-Sampling Filters as Bandpass Decimators 277

−1z
−

++

y[n]CombCombPolesPolesx[n]
R

z

a

−1+

2 1
−D/R
z

−

+

L

−

a

−

a

z−1

Fig. 5.30. Cascading of frequency-sampling filters to save a factor of R delays for
multirate signal processing [4, Sect. 3.4].

5.5 Frequency-Sampling Filters as Bandpass Decimators

The CIC filters discussed in Sect. 5.3 (p. 256) belong to a larger class of
systems called frequency-sampling filters (FSFs). Frequency-sampling filters
can be used, as channelizer or decimating filter, to decompose the information
spectrum into a set of discrete subbands, such as those found in multiuser
communication systems. A classic FSF consists of a comb filter cascaded with
a bank of frequency-selective resonators [4, 65]. The resonators independently
produce a collection of poles that selectively annihilate the zeros produced
by the comb prefilter. Gain adjustments are applied to the output of the
resonators to shape the resulting magnitude frequency response of the overall
filter. An FSF can also be created by cascading all-pole filter sections with
all-zero filter (comb) sections, as suggested in Fig. 5.30. The delay of the
comb section, 1± z−D, is chosen so that its zeros cancel the poles of the all-
pole prefilter as shown in Fig. 5.31. Wherever there is a complex pole, there
is also an annihilating complex zero that results in an all-zero FIR, with the
usual linear-phase and constant group-delay properties.

Frequency-sampling filters are of interest to designers of multirate filter
banks due, in part, to their intrinsic low complexity and linear-phase behav-
ior. FSF designs rely on exact pole-zero annihilation and are often found in
embedded applications. Exact FSF pole-zero annihilation, can be guaranteed
by using polynomial filters defined over an integer ring using the two’s com-
plement or the residue number system (RNS). The poles of an FSF filter
developed in this manner can reside on the periphery of the unit circle. This
conditionally unstable location is acceptable, due to the guarantee of exact
pole-zero cancellation. Without this guarantee, the designer would have to
locate the poles of the resonators within the unit circle, with a loss in per-
formance. In addition, by allowing the FSF poles and zeros to reside on the
unit circle, a multiplier-less FSF can be created, with an attendant reduction
in complexity and an increase in data bandwidth.

278 5. Multirate Signal Processing

Pole/Zero plot

z-plane

Re

Im

θp

Pole/Zero plot

|H(e)|jω

 0 dB

-20 dB

-40 dB
3fa/60 fafa/6 2fa/6 4fa/6 5fa/6

Frequency

Transfer function

z-plane

Re

Im

=

Fig. 5.31. Example of pole/zero-compensation for a pole angle of 60◦ and comb
delay D = 6.

Consider the filter shown in Fig. 5.30. It can be shown that first-order fil-
ter sections (with integer coefficients) produce poles at angles of 0◦ and 180◦.
Second-order sections, with integer coefficients, can produce poles at angles
of 60◦, 90◦, and 120◦, according to the relationship 2 cos(2πK/D)=1, 0, and
−1. The frequency selectivity of higher-order sections is shown in Table 5.4.
The angular frequencies for all polynomials having integer coefficients with
roots on the unit circle, up to order six, are reported. The building blocks
listed in Table 5.4 can be used to efficiently design and implement such FSF
filters. For example, a two’s complement (i.e., RNS single modulus) filter
bank was developed for use as a constant-Q speech processing filter bank. It
covers a frequency range from 900 to 8000Hz [109, 110], using 16kHz sam-
pling frequency. An integer coefficient half-band filter HB6 [80] anti-aliasing

5.5 Frequency-Sampling Filters as Bandpass Decimators 279

Table 5.4. Filters with integer coefficients producing unique angular pole locations
up to order six. Shown are the filter coefficients and nonredundant angular locations
of the roots on the unit circle.

Ck(z) Order a0 a1 a2 a3 a4 a5 a6 θ1 θ2 θ3

−C1(z) 1 1 -1 0◦

C2(z) 1 1 1 180◦

C6(z) 2 1 -1 1 60◦

C4(z) 2 1 0 1 90◦

C3(z) 2 1 1 1 120◦

C12(z) 4 1 0 -1 0 1 30◦ 150◦

C10(z) 4 1 -1 1 -1 1 36◦ 108◦

C8(z) 4 1 0 0 0 1 45◦ 135◦

C5(z) 4 1 1 1 1 1 72◦ 144◦

C16(z) 6 1 0 0 -1 0 0 1 20.00◦ 100.00◦ 140.00◦

C14(z) 6 1 -1 1 -1 1 -1 1 25.71◦ 77.14◦ 128.57◦

C7(z) 6 1 1 1 1 1 1 1 51.42◦ 102.86◦ 154.29◦

C9(z) 6 1 0 0 1 0 0 1 40.00◦ 80.00◦ 160.00◦

D=60

3x D=A/D I IIHB6 5

D=33

x[n]

D=40

E8E6

25.751.4
D=40
90

E2

D=70

E4 E3 E1

D=49 D=90
20

E5

72

E7

D=14
180120 36

3x D= 4

Fig. 5.32. Design of a filter bank consisting of a half-band and CIC prefilter and
FSF comb-resonator sections.

filter and a third-order multiplier-free CIC filter (also known as Hogenauer
filter [106] see Sect. 5.3, p. 256), was then added to the design to suppress
unwanted frequency components, as shown in Fig. 5.32. The bandwidth of
each resonator can be independently tuned by the number of stages and de-
lays in the comb section. The number of stages and delays is optimized to
meet the desired bandwidth requirements. All frequency-selective filters have
two stages and delays.

The filter bank was prototyped using a Xilinx XC4000 FPGA with the
complexity reported in Table 5.5. Using high-level design tools (XBLOCKS
from Xilinx), the number of used CLBs was typically 20% higher than the

280 5. Multirate Signal Processing

Table 5.5. Number of CLBs used in Xilinx XC4000 FPGAs (notation: F20D90
means filter pole angle 20.00◦, delay comb D = 90). Total: actual 1572 CLBs,
nonrecursive FIR: 11292 CLBs

F20D90 F25D70 F36D60 F51D49 F72D40 F90D40

Theory 122 184 128 164 124 65
Practice 160 271 190 240 190 93
Nonre. FIR 2256 1836 1924 1140 1039 1287

F120D33 F180D14 HB6 III D4 D5

Theory 86 35 122 31 24 24
Practice 120 53 153 36 33 33
Nonre. FIR 1260 550

theoretical prediction obtained by counting adders, flip-flops, ROMs, and
RAMs.

The design of an FSF can be manipulated by changing the comb delay,
channel amplitude, or the number of sections. For example, adaptation of
the comb delay can easily be achieved because the CLBs are used as 32 × 1
memory cells, and a counter realizes specific comb delays with the CLB used
as a memory cell.

5.6 Design of Arbitrary Sampling Rate Converters

Most sampling rate converters can be implemented via a rational sampling
rate converter system as already discussed. Figure 5.7, p. 249 illustrates the
system. Upsampling by R1 is followed by downsampling R2. We now discuss
different design options, ranging from IIR, FIR filters, to Lagrange and spline
interpolation.

To illustrate, let us look at the design procedure for a rational factor
change in the sampling rate with interpolation by R1 = 3 followed by a
decimation by R2 = 4, i.e., a rate change by R = R1/R2 = 3/4 = 0.75.

Example 5.9: R = 0.75 Rate Changer I
An interpolation by 3 followed by a decimation by 4 with a centered lowpass
filter has to be designed. As shown in Fig. 5.7, p. 249 we only need to im-
plement one lowpass with a cut-off frequency of min(π

3
, π

4
) = π

4
. In MatLab

the frequencies in the filter design procedures are normalized to f2/2 = π
and the design of a tenth order Chebyshev II filter with a 50 dB stopband
attenuation is accomplished by

[B, A] = cheby2(10,50,0.25)

A Chebyshev II filter was chosen because it has a flat passband, ripple in
the stopband, and moderate filter length and is therefore a good choice in
many applications. If we want to reduce the filter coefficient sensitivity to

5.6 Design of Arbitrary Sampling Rate Converters 281

0 5 10 15 20

0

20

40

60

80

100

Sample index n

A
m

pl
itu

de
 x

[n
]

(a) Original signal

0 10 20 30 40 50 60 70

0

20

40

60

80

100

Sample index u

A
m

pl
itu

de
 y

↑[
u]

(b) Upsampled R
1
=3

Upsampled
filtered

5 10 15 20

0

20

40

60

80

100

Sample index m

A
m

pl
itu

de
 y

↑↓
[m

]

(c) Downsample R=3/4

Fig. 5.33. IIR filter simulation of rational rate change. (a) Original signal (b)
upsampled and filtered version of the original signal. (c) Signal after downsampling.

quantization, we can use an implementation form with biquad sections rather
than the direct forms, see Example 4.2 (p. 227). In MatLab we use

[SOS, gain]=tf2sos(B,A)

Using this IIR filter we can now simulated the rational rate change. Figure
5.33 shows a simulation for a triangular test signal. Figure 5.33a shows the
original input sequence. (b) the signal after upsampling by 3 and after filtering
with the IIR filter, and (c) the signal after downsampling. 5.9

Although the rational interpolation via an IIR filter is not perfect we
notice that the triangular shape is well preserved, but ringing of the filter
next to the triangle when the signal should be zero can be observed. We
may ask if the interpolation can be improved if we use an exact lowpass
that we can build in the frequency domain. Instead of using the IIR filter
in the time domain, we may try to interpolate by means of a DFT/FFT-
based frequency method [111]. In order to keep the frame processing simple
we choose a DFT or FFT whose length N is a multiple of the rate change
factors, i.e., N = k × R1 × R2 with k ∈ N. The necessary processing steps
can be summarized as follows:

282 5. Multirate Signal Processing

Algorithm 5.10: Rational Rate Change using an FFT

The algorithm to compute the rate change by R = R1/R2 via an FFT is
as follows:
1) Select a block of k ×R2 samples.
2) Interpolate with (R1 − 1) zeros between each sample.
3) Compute the FFT of size N = k ×R1 ×R2.
4) Apply the lowpass filter operation in the frequency domain.
5) Compute the IFFT of size N = k ×R1 ×R2.
6) Compute finally the output sequence by downsampling by R1, i.e.,

keep k ×R2 samples.

Let us illustrate this algorithm with a small numerical example.

Example 5.11: R = 0.75 Rate Changer II
Let us assume we have a triangular input sequence x to interpolate by R =
R1/R2 = 3/4 = 0.75. and we select k = 1. The steps are as follows:
1) Original block x = (1, 2, 3, 4).
2) Interpolation 3 gives xi = (1, 0, 0, 2, 0, 0, 3, 0, 0, 4, 0, 0).
3) The FFT gives Xi = (10,−2 + j2,−2, 2 − j2, 10,−2 + j2,−2,−2 −

j2, 10,−2 + j2,−2,−2− j2).
4) The Lowpass filter operation in the frequency domain. Xlp = (10,−2 +

j2,−2, 0, 0, 0, 0, 0, 0, 0,−2,−2− j2).
5) Compute the IFFT, y = 3× ifft(Xlp).
6) Downsampling finally gives y = (0.5000, 2.6340, 4.3660).

5.11

Let us now apply this block processing to the triangular sequence shown
in Fig. 5.34a. From the results shown in Fig. 5.34b we notice the border effects
between the blocks when compared with the FFT interpolation results with
full-length input data as shown in Fig. 5.34d. This is due to the fact that the
underlying assumption of the DFT is that the signals in time and frequency
are periodic. We may try to improve the quality and reduce the border dis-
turbance by applying a window function that tapers smoothly to zero at the
borders. This will however also reduce the number of useful samples in our
output sequence and we need to implement an overlapping block processing.
This can be improved by using longer (i.e., k > 1) FFTs and removing the
leading and tailing samples. Figure 5.34c shows the result for k = 2 with
removal of 50% of the lead and tail samples. We may therefore ask, why not
using a very long FFT, which produces the best results, as can be seem from
full length FFT simulation result as shown in Fig. 5.34d? The reason we
prefer the short FFT comes from the computational perspective: the longer
FFT will require more effort per output sample. Although with k > 1 we
have more output values per FFT available and overall need fewer FFTs, the
computational effort per sample of a radix-2 FFT is ld(N)/2 complex multi-
plications, because the FFT requires ld(N)N/2 complex multiplications for

5.6 Design of Arbitrary Sampling Rate Converters 283

5 10 15 20 25

0

20

40

60

80

100

Sample index n

A
m

pl
itu

de
 x

[n
]

(a) Original signal

0 5 10 15 20

0

20

40

60

80

100

Sample index m

A
m

pl
itu

de
 y

[m
]

(b) No overlap

0 5 10 15 20

0

20

40

60

80

100
(c) 2 x overlap

Sample index m

A
m

pl
itu

de
 y

[m
]

0 5 10 15 20

0

20

40

60

80

100
(d) Full length FFT

Sample index m

A
m

pl
itu

de
 y

[m
]

Fig. 5.34. FFT based rational rate change. (a) Original signal (b) Decimation
without overlap. (c) 50% overlap. (c) Full length FFT.

the N -point radix-2 FFT. A short FFT reduces therefore the computational
effort.

Given the contradiction that longer FFTs are used to produce a better
approximation while the computational effort requires shorter FFTs, we now
want to discuss briefly what computational simplifications can be made to
simplify the computation of the two long FFTs in Algorithm 5.10. Two major
savings are basically possible.

The first is in the forward transform: the interpolated sequence has many
zeros, and if we use a Cooley–Tuckey decimation-in-time-based algorithm,
we can group all nonzero values in one DFT block and the remaining k(R1×
R2 − R2) in the other R1 − 1 groups. Then basically only one FFT of size
k×R2 needs to be computed compared with the full-length N = k×R1×R2

FFT.
The second simplification can be implemented by computing the down-

sampling in the frequency domain. For downsampling by two we compute

F↓2(k) = F (k) + F (k +N/2) (5.42)

284 5. Multirate Signal Processing

for all k ≤ N/2. The reason is that the downsampling in the time domain
leads to a Nyquist frequency repetition of the base band scaled by a factor
of 2. In Algorithm 5.10 we need downsampling by a factor R2, which we
compute as follows

F↓R2(k) =
∑

n

F (k + nN/R2). (5.43)

If we now consider that due to the lowpass filtering in the frequency domain
many samples are set to zero, the summations necessary in (5.43) can be
further reduced. The IFFT required is only of length k ×R1.

To illustrate the saving let us assume that the implemented FFT and
IFFT both require ld(N)N/2 complex multiplications. The modified algo-
rithm is improved by a factor of

F =
2kR1R2

2 ld(kR1R2)
kR1
2 ld(kR1) + kR2

2 ld(kR2)
. (5.44)

For the simulation above with R = 3/4 and 50% overlap we get

F =
ld(24)24

ld(6)6/2 + ld(8)8/2
= 5.57. (5.45)

If we can use the Winograd short-term DFT algorithms (see Sect. 6.1.6,
p. 359) instead of the Cooley–Tuckey FFT the improvement would be even
larger.

5.6.1 Fractional Delay Rate Change

In some applications the input and output sampling rate quotients are close
to 1, as in the previous example with R = 3/4. As another examples consider
a change from the CD rate (44.1 kHz) to DAT player rate (48 kHz), which
requires a rational factor change factor of R = 147/160. In this case the
direct approach using a sampling rate interpolation followed by a sampling
rate reduction would required a very high sampling rate for the lowpass
interpolation filter. In case of the CD→DAT change for instance the filter
must run with 147 times the input sampling rate.

1 2 3 4 6 8 9100 5 7

rate
Input

Output
rate

11

4

4
y[m]

4

D=−4/3
sinc(n−D) FIR

D=4/3

D=0
x[n]

Rate f*3/4Rate f

(a) (b)

Fig. 5.35. (a) Input and output sampling grid for fractional delay rate change. (b)
Filter configuration for R = 3/4 sinc filter system.

5.6 Design of Arbitrary Sampling Rate Converters 285

0 5 10
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(a) Delay=3.6̄

Sample index n

A
m

pl
itu

de

0 5 10
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(b) Delay=5

Sample index n
0 5 10

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(c) Delay=6.3̄

Sample index n

Fig. 5.36. Fractional delay filter with delays D = 5− 4/3, 5, and 5 + 4/3.

In these large-R1 cases we may consider implementation of the rate change
with the help of fractional delays. We will briefly review the idea and then
discuss the HDL code for two different versions. The idea will be illustrated by
a rate change of R = 3/4. Figure 5.35a shows the input and output sampling
grid for a system. For each block of four input values, the system computes
three interpolated output samples. From a filter perspective we need three
filters with unit transfer functions: one filter with a zero delay and two filters
that implement the delays of D = ±4/3. A filter with unit frequency is a
sinc or sin(t)/t = sinc(t) filter in the time domain. We must allow an initial
delay to make the filter realizable, i.e., causal. Figure 5.35b shows the filter
configuration and Fig. 5.35 shows the three length-11 filter impulse responses
for the delays 5− 4/3 = 3.6̄, 5, and 5 + 4/3 = 6.3̄.

We can now apply these three filters to our triangular input signal and for
each block of four input samples we compute three output samples. Figure
5.37c shows the simulation result for the length-11 sinc filter. Figure 5.37b
shows that length-5 filters produce too much ripple to be useful. The length-
11 sinc filters produce a much smoother triangular output, but some ripple
due to the Gibbs phenomenon can be observed next to the triangular function
when the output should be zero.

Let us now have a look at the HDL implementation of the fractional delay
rate changer using sinc filters.

Example 5.12: R= 0.75 Rate Changer III
The following VHDL code7 shows the sinc filter design for an R = 3/4 rate
change.

PACKAGE n_bits_int IS -- User-defined types
SUBTYPE BITS8 IS INTEGER RANGE -128 TO 127;
SUBTYPE BITS9 IS INTEGER RANGE -2**8 TO 2**8-1;
SUBTYPE BITS17 IS INTEGER RANGE -2**16 TO 2**16-1;

7 The equivalent Verilog code rc sinc.v for this example can be found in Ap-
pendix A on page 697. Synthesis results are shown in Appendix B on page 731.

286 5. Multirate Signal Processing

0 10 20 30

0

20

40

60

80

100

Sample index n

A
m

pl
itu

de
 x

[n
]

(a) Original signal

0 10 20 30

0

20

40

60

80

100

Sample index m

A
m

pl
itu

de
 y

[m
]

(d) Lagrange filter L=4

0 10 20 30

0

20

40

60

80

100

Sample index m

A
m

pl
itu

de
 y

[m
]

(c) sinc L=11

0 10 20 30

0

20

40

60

80

100

Sample index m

A
m

pl
itu

de
 y

[m
]

(b) sinc L=5

 D=−4/3

 D=0

 D=4/3

Fig. 5.37. Fraction delay interpolation (a) Original signal (b) Filtering with sinc
filter of length 5. (c) Filtering with sinc filter of length 11. (d) Interpolation using
Lagrange interpolation.

TYPE ARRAY_BITS8_11 IS ARRAY (0 TO 10) of BITS8;
TYPE ARRAY_BITS9_11 IS ARRAY (0 TO 10) of BITS9;
TYPE ARRAY_BITS8_3 IS ARRAY (0 TO 2) of BITS8;
TYPE ARRAY_BITS8_4 IS ARRAY (0 TO 3) of BITS8;
TYPE ARRAY_BITS17_11 IS ARRAY (0 TO 10) of BITS17;

END n_bits_int;

LIBRARY work;
USE work.n_bits_int.ALL;

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
USE ieee.std_logic_arith.ALL;
USE ieee.std_logic_signed.ALL;

ENTITY rc_sinc IS ------> Interface
GENERIC (OL : INTEGER := 2; -- Output buffer length -1

IL : INTEGER := 3; -- Input buffer length -1
L : INTEGER := 10 -- Filter length -1
);

5.6 Design of Arbitrary Sampling Rate Converters 287

PORT (clk : IN STD_LOGIC;
x_in : IN BITS8;
reset : IN STD_LOGIC;
count_o : OUT INTEGER RANGE 0 TO 12;
ena_in_o, ena_out_o,ena_io_o : OUT BOOLEAN;
f0_o, f1_o, f2_o : OUT BITS9;
y_out : OUT BITS9);

END rc_sinc;

ARCHITECTURE fpga OF rc_sinc IS

SIGNAL count : INTEGER RANGE 0 TO 12; -- Cycle R_1*R_2
SIGNAL ena_in, ena_out, ena_io : BOOLEAN; -- FSM enables
-- Constant arrays for multiplier and taps:
CONSTANT c0 : ARRAY_BITS9_11

:= (-19,26,-42,106,212,-53,29,-21,16,-13,11);
CONSTANT c2 : ARRAY_BITS9_11

:= (11,-13,16,-21,29,-53,212,106,-42,26,-19);
SIGNAL x : ARRAY_BITS8_11 := (0,0,0,0,0,0,0,0,0,0,0);

-- TAP registers for 3 filters
SIGNAL ibuf : ARRAY_BITS8_4 := (0,0,0,0); -- in registers
SIGNAL obuf : ARRAY_BITS8_3 := (0,0,0); -- out registers
SIGNAL f0, f1, f2 : BITS9 := 0; -- Filter outputs

BEGIN

FSM: PROCESS (reset, clk) ------> Control the system
BEGIN -- sample at clk rate
IF reset = ’1’ THEN -- Asynchronous reset

count <= 0;
ELSIF rising_edge(clk) THEN

IF count = 11 THEN
count <= 0;

ELSE
count <= count + 1;

END IF;
CASE count IS
WHEN 2 | 5 | 8 | 11 =>

ena_in <= TRUE;
WHEN others =>
ena_in <= FALSE;

END CASE;
CASE count IS
WHEN 4 | 8 =>

ena_out <= TRUE;
WHEN others =>
ena_out <= FALSE;

END CASE;
IF COUNT = 0 THEN
ena_io <= TRUE;

ELSE
ena_io <= FALSE;

END IF;

288 5. Multirate Signal Processing

END IF;
END PROCESS FSM;

INPUTMUX: PROCESS ------> One tapped delay line
BEGIN
WAIT UNTIL clk = ’1’;
IF ENA_IN THEN

FOR I IN IL DOWNTO 1 LOOP
ibuf(I) <= ibuf(I-1); -- shift one

END LOOP;
ibuf(0) <= x_in; -- Input in register 0

END IF;
END PROCESS;

OUPUTMUX: PROCESS ------> One tapped delay line
BEGIN
WAIT UNTIL clk = ’1’;
IF ENA_IO THEN -- store 3 samples in output buffer

obuf(0) <= f0 ;
obuf(1) <= f1;
obuf(2) <= f2 ;

ELSIF ENA_OUT THEN
FOR I IN OL DOWNTO 1 LOOP
obuf(I) <= obuf(I-1); -- shift one

END LOOP;
END IF;

END PROCESS;

TAP: PROCESS ------> One tapped delay line
BEGIN -- get 4 samples at one time
WAIT UNTIL clk = ’1’;
IF ENA_IO THEN

FOR I IN 0 TO 3 LOOP -- take over input buffer
x(I) <= ibuf(I);

END LOOP;
FOR I IN 4 TO 10 LOOP -- 0->4; 4->8 etc.
x(I) <= x(I-4); -- shift 4 taps

END LOOP;
END IF;

END PROCESS;

SOP0: PROCESS (clk, x) --> Compute sum-of-products for f0
VARIABLE sum : BITS17;
VARIABLE p : ARRAY_BITS17_11;
BEGIN
FOR I IN 0 TO L LOOP -- Infer L+1 multiplier

p(I) := c0(I) * x(I);
END LOOP;
sum := p(0);
FOR I IN 1 TO L LOOP -- Compute the direct

sum := sum + p(I); -- filter adds
END LOOP;
IF clk’event and clk = ’1’ THEN

5.6 Design of Arbitrary Sampling Rate Converters 289

f0 <= sum /256;
END IF;

END PROCESS SOP0;

SOP1: PROCESS (clk, x) --> Compute sum-of-products for f1
BEGIN
IF clk’event and clk = ’1’ THEN

f1 <= x(5); -- No scaling, i.e. unit inpulse
END IF;

END PROCESS SOP1;

SOP2: PROCESS (clk, x) --> Compute sum-of-products for f2
VARIABLE sum : BITS17;
VARIABLE p : ARRAY_BITS17_11;
BEGIN
FOR I IN 0 TO L LOOP -- Infer L+1 multiplier

p(I) := c2(I) * x(I);
END LOOP;
sum := p(0);
FOR I IN 1 TO L LOOP -- Compute the direct

sum := sum + p(I); -- filter adds
END LOOP;
IF clk’event and clk = ’1’ THEN

f2 <= sum /256;
END IF;

END PROCESS SOP2;

f0_o <= f0; -- Provide some test signal as outputs
f1_o <= f1;
f2_o <= f2;
count_o <= count;
ena_in_o <= ena_in;
ena_out_o <= ena_out;
ena_io_o <= ena_io;

y_out <= obuf(OL); -- Connect to output

END fpga;

The first PROCESS is the FSM, which includes the control flow and generation
of the enable signals for the input and output buffers, and the enable signal
ena_io for the three filters. The full round takes 12 clock cycles. The next
three PROCESS blocks include the input buffer, output buffer, and the TAP
delay line. Note that only one tapped delay line is used for all three filters.
The final three PROCESS blocks include the sinc filter. The output y_out was
chosen to have an additional guard bit. The design uses 448 LEs, 19 embedded
multiplier and has a 61.93 MHz Registered Performance.
A simulation of the filter is shown in Fig. 5.38. The simulation first shows the
control and enable signals of the FSM. A triangular input x_in is used. The
three filter outputs only update once every 12 clock cycles. The filter output
values (f0,f1,f2) are arranged in the correct order to generate the output
y_out. Note that the filter values 20 and 60 from f1 appear unchanged in the
output sequence, while the other values are interpolated. 5.12

290 5. Multirate Signal Processing

Fig. 5.38. VHDL simulation of the R = 3/4 rate change using three sinc filter.

Notice that in this particular case the filters are implemented in the direct
rather than in the transposed form, because now we only need one tapped
delay line for all three filters. Due to the complexity of the design the coding
style for this example was based more on clarity than efficiency. The filters can
be improved if MAG coding is used for the filter coefficients and a pipelined
adder tree is applied at the filter summations, see Exercise 5.15 (p. 338).

5.6.2 Polynomial Fractional Delay Design

The implementation of the fractional delay via a set of lowpass filters is
attractive as long as the number of delays (i.e., nominator R1 in the rate
change factor R = R1/R2 to be implemented) is small. For large R1 how-
ever, as for examples required for the CD→DAT conversion with rate change
factor R = 147/160, this implies a large implementation effort, because 147
different lowpass filters need to be implemented. It is then more attractive to
compute the fractional delay via a polynomial approximation using Lagrange
or spline polynomials [112, 113]. An N -point so-called Lagrange polynomial
approximation will be of the type:

p(t) = c0 + c1t+ c2t
2 + . . .+ cN−1t

N−1, (5.46)

where typically 3-4 points should be enough, although some high-quality
audio application use up to 10 terms [114]. The Lagrange polynomial ap-
proximation has the tendency to oscillate at the ends, and the interval to be
estimated should be at the center of the polynomial. Figure 5.39 illustrates
this fact for a signal with just two nonzero values. It can also be observed
that a length-4 polynomial already gives a good approximation for the cen-
ter interval, i.e., 0 ≤ n ≤ 1, and that the improvement from a length-4 to
a length-8 polynomial is not significant. A bad choice of the approximation
interval would be the first or last interval, e.g., the range 3 ≤ n ≤ 4 for a
length-8 polynomial. This choice would show large oscillations and errors.
The input sample set in use should therefore be placed symmetric around

5.6 Design of Arbitrary Sampling Rate Converters 291

−4 −3 −2 −1 0 1 2 3 4 5 6

−2

−1

0

1

2

3

4

5

6

Sample index n

A
m

pl
itu

de

(a)

Samples
Length−4 polynomial
Length−8 polynomial

Fig. 5.39. Polynomial approximation using a short and long polynomial.

the interval for which the fractional delay should be approximated such that
0 ≤ d ≤ 1. We use input samples at times −N/2−1, . . . , N/2. For four points
for example we will use input samples at −1, 0, 1, 2. In order to fit the poly-
nomial p(t) through the sample points we substitute the sample times and
x(t) values into (5.46) and solve this equation for the coefficients ck. This
matrix equation V c = x leads to a so-called Lagrange polynomial [78, 112]
and for N = 4, for instance, we get:

⎡

⎢⎢⎣

1 t−1 t
2
−1 t

3
−1

1 t0 t20 t30
1 t1 t21 t31
1 t2 t22 t32

⎤

⎥⎥⎦×

⎡

⎢⎢⎣

c0
c1
c2
c3

⎤

⎥⎥⎦ =

⎡

⎢⎢⎣

x(n− 1)
x(n)

x(n+ 1)
x(n+ 2)

⎤

⎥⎥⎦ (5.47)

with tk = k; we need to solve this equation for the unknown coefficients
cn. We also notice that the matrix for the tk is a Vandermonde matrix a
popular matrix type we also use for the DFT. Each line in the Vandermonde
matrix is constructed by building the power series of a basic element, i.e.,
tlk = 1, tk, t2k, Substitution of the tk and matrix inversion leads to

⎡

⎢⎢⎣

c0
c1
c2
c3

⎤

⎥⎥⎦ =

⎡

⎢⎢⎣

1 −1 1 −1
1 0 0 0
1 1 1 1
1 2 4 8

⎤

⎥⎥⎦

−1

×

⎡

⎢⎢⎣

x(n− 1)
x(n)

x(n+ 1)
x(n+ 2)

⎤

⎥⎥⎦

292 5. Multirate Signal Processing

p(d)+ + +

c1 c2 c30c

32dd d

+ p(d)

3

d

2c 1c 0c

+

c

+

d d

(a) (b)

Fig. 5.40. Fractional delay via an N = 4 polynomial approximation. (a) Direct
implementation. (b) Farrow structure.

=

⎡

⎢⎢⎣

0 1 0 0
− 1

3 − 1
2 1 − 1

6
1
2 −1 1

2 0
− 1

6
1
2 − 1

2
1
6

⎤

⎥⎥⎦×

⎡

⎢⎢⎣

x(n− 1)
x(n)

x(n+ 1)
x(n+ 2)

⎤

⎥⎥⎦ (5.48)

For each output sample we now need to determine the fractional delay
value d, solve the matrix equation (5.48), and finally compute the polynomial
approximation via (5.46). A simulation using the Lagrange approximation is
shown in Fig. 5.37d, p. 286. This give a reasonably exact approximation,
with little or no ripple in the Lagrange approximation, compared to the sinc
design next to the triangular values where the input and output values are
supposed to be zero.

The polynomial evaluation (5.46) can be more efficiently computed if we
use the Horner scheme instead of the direct evaluation of (5.46). Instead of

p(d) = c0 + c1d+ c2d
2 + c3d

3 (5.49)

we use for N = 4 the Horner scheme

p(d) = c0 + d(c1 + d(c2 + c3d)). (5.50)

The advantage is that we do not need to evaluate the power of dk values.
This was first suggested by Farrow [115] and is therefore called in the litera-
ture the Farrow structure [116, 117, 118, 119]. The Farrow structure for four
coefficients is shown in Fig. 5.40b.

Let use now look at an implementation example of the polynomial frac-
tional delay design.

Example 5.13: R = 0.75 Rate Changer IV
The following VHDL code8 shows the Farrow design using a Lagrange poly-
nomial of order 3 for a R = 3/4 rate change.

PACKAGE n_bits_int IS -- User-defined types
SUBTYPE BITS8 IS INTEGER RANGE -128 TO 127;
SUBTYPE BITS9 IS INTEGER RANGE -2**8 TO 2**8-1;
SUBTYPE BITS17 IS INTEGER RANGE -2**16 TO 2**16-1;
TYPE ARRAY_BITS8_4 IS ARRAY (0 TO 3) of BITS8;

8 The equivalent Verilog code farrow.v for this example can be found in Ap-
pendix A on page 697. Synthesis results are shown in Appendix B on page 731.

5.6 Design of Arbitrary Sampling Rate Converters 293

END n_bits_int;

LIBRARY work;
USE work.n_bits_int.ALL;

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
USE ieee.std_logic_arith.ALL;
USE ieee.std_logic_signed.ALL;

ENTITY farrow IS ------> Interface
GENERIC (IL : INTEGER := 3); -- Input puffer length -1
PORT (clk : IN STD_LOGIC;

x_in : IN BITS8;
reset : IN STD_LOGIC;
count_o : OUT INTEGER RANGE 0 TO 12;
ena_in_o, ena_out_o : OUT BOOLEAN;
c0_o, c1_o, c2_o, c3_o : OUT BITS9;
d_out, y_out : OUT BITS9);

END farrow;

ARCHITECTURE fpga OF farrow IS

SIGNAL count : INTEGER RANGE 0 TO 12; -- Cycle R_1*R_2
CONSTANT delta : INTEGER := 85; -- Increment d
SIGNAL ena_in, ena_out : BOOLEAN; -- FSM enables
SIGNAL x, ibuf : ARRAY_BITS8_4 := (0,0,0,0); -- TAP reg.
SIGNAL d : BITS9 := 0; -- Fractional Delay scaled to 8 bits
-- Lagrange matrix outputs:
SIGNAL c0, c1, c2, c3 : BITS9 := 0;

BEGIN

FSM: PROCESS (reset, clk) ------> Control the system
VARIABLE dnew : BITS9 := 0;
BEGIN -- sample at clk rate
IF reset = ’1’ THEN -- Asynchronous reset

count <= 0;
d <= delta;

ELSIF rising_edge(clk) THEN
IF count = 11 THEN
count <= 0;

ELSE
count <= count + 1;

END IF;
CASE count IS
WHEN 2 | 5 | 8 | 11 =>

ena_in <= TRUE;
WHEN others =>
ena_in <= FALSE;

END CASE;
CASE count IS
WHEN 3 | 7 | 11 =>

294 5. Multirate Signal Processing

ena_out <= TRUE;
WHEN others =>
ena_out <= FALSE;

END CASE;
-- Compute phase delay

IF ENA_OUT THEN
dnew := d + delta;
IF dnew >= 255 THEN
d <= 0;
ELSE
d <= dnew;
END IF;

END IF;
END IF;

END PROCESS FSM;

TAP: PROCESS ------> One tapped delay line
BEGIN
WAIT UNTIL clk = ’1’;
IF ENA_IN THEN

FOR I IN 1 TO IL LOOP
ibuf(I-1) <= ibuf(I); -- Shift one

END LOOP;
ibuf(IL) <= x_in; -- Input in register IL

END IF;
END PROCESS;

GET: PROCESS ------> Get 4 samples at one time
BEGIN
WAIT UNTIL clk = ’1’;
IF ENA_OUT THEN

FOR I IN 0 TO IL LOOP -- take over input buffer
x(I) <= ibuf(I);

END LOOP;
END IF;

END PROCESS;

--> Compute sum-of-products:
SOP: PROCESS (clk, x, d, c0, c1, c2, c3, ENA_OUT)
VARIABLE y : BITS9;
BEGIN

-- Matrix multiplier iV=inv(Vandermonde) c=iV*x(n-1:n+2)’
-- x(0) x(1) x(2) x(3)
-- iV= 0 1.0000 0 0
-- -0.3333 -0.5000 1.0000 -0.1667
-- 0.5000 -1.0000 0.5000 0
-- -0.1667 0.5000 -0.5000 0.1667

IF ENA_OUT THEN
IF clk’event AND clk = ’1’ THEN

c0 <= x(1);
c1 <= -85 * x(0)/256 - x(1)/2 + x(2) - 43 * x(3)/256;
c2 <= (x(0) + x(2)) /2 - x(1) ;
c3 <= (x(1) - x(2))/2 + 43 * (x(3) - x(0))/256;

5.6 Design of Arbitrary Sampling Rate Converters 295

Fig. 5.41. VHDL simulation of the R = 3/4 rate change using Lagrange polyno-
mials and a Farrow combiner.

END IF;

-- Farrow structure = Lagrange with Horner schema
-- for u=0:3, y=y+f(u)*d^u; end;

y := c2 + (c3 * d) / 256; -- d is scale by 256
y := (y * d) / 256 + c1;
y := (y * d) / 256 + c0;

IF clk’event AND clk = ’1’ THEN
y_out <= y; -- Connect to output + store in register

END IF;
END IF;

END PROCESS SOP;

c0_o <= c0; -- Provide some test signals as outputs
c1_o <= c1;
c2_o <= c2;
c3_o <= c3;
count_o <= count;
ena_in_o <= ena_in;
ena_out_o <= ena_out;
d_out <= d;

END fpga;

The HDL code for the control is similar to the rc_sinc design discussed
in Example 5.9 (p. 280). The first PROCESS is the FSM, which includes the
control flow and generation of the enable signals for input, output buffer, and
the computation of the delay D. The full round takes 12 clock cycles. The next
two PROCESS blocks include the input buffer and the TAP delay line. Note
that only one tapped delay line is used for all four polynomial coefficients ck.
The SOP PROCESS blocks includes the Lagrange matrix computation and the
Farrow combiner. The output y_out was chosen to have an additional guard
bit. The design uses 279 LEs, 6 embedded multipliers and has a 43.91 MHz
Registered Performance.
A simulation of the filter is shown in Fig. 5.41. The simulation shows first
the control and enable signals of the FSM. A triangular input x_in is used.

296 5. Multirate Signal Processing

The three filter outputs only update once every four clock cycles, i.e., three
times in an overall cycle. The filter output values are weighted using the
Farrow structure to generate the output y_out. Note that only the first and
second Lagrange polynomial coefficients are nonzero, due to the fact that a
triangular input signal does not have higher polynomial coefficient. Notice
also that the filter values 20 and 60 from c0 appear unchanged in the output
sequence (because D = 0 at these points in time), while the other values are
interpolated. 5.13

Although the implementation data for the Lagrange interpolation with
the Farrow combiner and the sinc filter design do not differ much for our
example design with R = R1/R2 = 3/4, larger differences occur when we
try to implement rate changes with large values of R1. The discussed Farrow
design only needs to be changed in the enable signal generation. The effort
for the Lagrange interpolation and Farrow combiner remain the same, while
for a sinc filter the design effort will be proportional to the number of filters
to be implemented, i.e., R1, see Exercise 5.16 (p. 338). The only disadvantage
of the Farrow combiner is the long latency due to the sequential organization
of the multiplications, but this can be improved by adding pipeline stages for
the multipliers and coefficient data, see Exercise 5.17 (p. 339).

5.6.3 B-Spline-Based Fractional Rate Changer

Polynomial approximation using Lagrange polynomials is smooth in the cen-
ter but has the tendency to have large ripples at the end of the polynomials,
see Fig. 5.38, p. 290. Much smoother behavior is promised when B-spline
approximation functions are used. In contrast to Lagrange polynomials B-
splines are of finite length and a B-spline of degree N must be N -times dif-
ferentiable, hence the smooth behavior. Depending on the border definitions,
several versions of B-splines can be defined [78, p.113-116], but the most pop-
ular are those defined via the integration of the box function, as shown in
Fig. 5.42. A B-spline of degree zero is integrated to give a triangular B-spline,
degree-one B-spline integrated yields a quadratic function, etc.

An analytic description of a B-spline is possible [120, 121] using the fol-
lowing representation of the ramp function:

(t− τ)+ =
{
t− τ ∀ t > τ

0 otherwise . (5.51)

This allows us to represent the N th-degree symmetric B-spline as

βN (t) =
1
N !

N+1∑

k=0

(−1)k

(
N + 1
k

)(
t− k +

N + 1
2

)N

+

. (5.52)

All segments of the B-splines use polynomials of degree N and are therefore
N -times differentiable, resulting in a smooth behavior also at the end of the

5.6 Design of Arbitrary Sampling Rate Converters 297

−1 −0.5 0 0.5 1
−0.2

0

0.2

0.4

0.6

0.8

1

β0(t)

A
m

pl
itu

de

−1.5 −1 −0.5 0 0.5 1 1.5
−0.2

0

0.2

0.4

0.6

0.8

1

β1(t)

−2 −1 0 1 2
−0.2

0

0.2

0.4

0.6

0.8

1

β2(t)

A
m

pl
itu

de

Time t
−2 −1 0 1 2

−0.2

0

0.2

0.4

0.6

0.8

1

β3(t)

Time t

Fig. 5.42. B-spline functions of degree zero to three.

B-splines. Zero- and first-degree B-splines give box and triangular represen-
tations, respectively; quadratic and cubic B-splines are next. Cubic B-splines
are the most popular type used in DSP although for very high-quality speech
processing degree six has been used [114]. For a cubic B-spline (5.52) for
instance we get

β3(t) =
1
6

4∑

k=0

(−1)k

(
4
k

)
(t− k + 2)3+

=
1
6
(t+ 2)3+ −

2
3
(t+ 1)3+ + t3+ −

2
3
(t− 1)3+ +

1
6
(t− 2)3+

=
1
6
(t+ 2)3

︸ ︷︷ ︸
t>−2

− 2
3
(t+ 1)3

︸ ︷︷ ︸
t>−1

+ t3︸︷︷︸
t>0

− 2
3
(t− 1)3

︸ ︷︷ ︸
t>1

+
1
6
(t− 2)3

︸ ︷︷ ︸
t>2

. (5.53)

We can now use this cubic B-spline for the reconstruction of the spline, by
summation of the weighted sequence of the B-splines, i.e.,

ŷ(t) =
∑

k

x(k)β3(t− k). (5.54)

This weighted sum is shown in Fig. 5.43 as a bold line. Although ŷ(t) is quite
smooth, we can also observe that the spline ŷ(t) does not go exactly through
the sample points, i.e., ŷ(k) �= x(k). Such a B-spline reconstruction is called

298 5. Multirate Signal Processing

0 1 2 3 4 5 6 7
−2

−1

0

1

2

3

4

5

6

7
(a)

Sample index t/T

A
m

pl
itu

de
Samples
Weighted sum
Single spline

Fig. 5.43. Spline approximation using cubic B-splines.

in the literature a B-spline approximation. From a B-spline interpolation,
however, we expect that the weighted sum goes exactly through our sample
points [122]. For cubic B-splines for instance it turns out [117, 123] that the
cubic B-spline applies a filter weight whose z-transform is given by

H(z) =
z + 4 + z−1

6
(5.55)

to the sample points. To achieve a perfect interpolation we therefore need to
apply an inverse cubic B-spline filter, i.e.,

F (z) = 1/H(z) =
6

z + 4 + z−1
(5.56)

to our input samples. Unfortunately the pole/zero plot of this filter reveals
that this IIR filter in not stable and, if we apply this filter to our input
sequence, we may produce an increasing signal for the impulse response, see
Exercise 5.18 (p. 339). Unser et al. [124] suggest spliting the filter into a
stable, causal part and a stable, a-causal filter part and applying the a-causal
filter starting with the last value of the output of the first causal filter. While
this works well in image processing with a finite number of samples in each
image line, in a continuous signal processing scheme this is not practical,
especially when the filters are implemented with finite arithmetic.

However another approach that can be used for continuous signal pro-
cessing is to approximate the filter F (z) = 1/H(z) by an FIR filter. It turns

5.6 Design of Arbitrary Sampling Rate Converters 299

2 4 6 8 10 12 14 16 18 20
0

5

10

15

20

Filter length N

E
qu

iv
al

en
t b

its
 B

IFFT
IFFT−bias
Unser matrix

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.5

1

1.5

2

2.5

3

 f/(f
s
/2)

M
ag

ni
tu

de
s

|H
(f

)|
Ideal
FIR L=5
FIR L=11

Fig. 5.44. FIR compensation filter design for cubic B-spline interpolation.

out that even very few FIR coefficients give a good approximation, because
the transfer function does not have any sharp edges, see Fig. 5.44. We just
need to compute the transfer function of the IIR filter and then take the
IFFT of the transfer function to determine the FIR time values. We may also
apply a bias correction if a DC shift is critical in the application. Unser et
al. [125] suggested an algorithm to optimize the filter coefficient set, but due
to the nature of the finite coefficient precision and finite coefficient set, the
gain compared with the direct IFFT method is not significant, see Fig. 5.44
and Exercise 5.19, p. 339.

Now we can apply this FIR filter first to our input samples and then use a
cubic B-spline reconstruction. As can be seen from Fig. 5.45 we have in fact
an interpolation, i.e., the reconstructed function goes through our original
sampling points, i.e., ŷ(k) = x(k).

The only thing left to do is to develop a fractional delay B-spline inter-
polation and to determine the Farrow filter structure. We want to use the
popular cubic B-spline set and only consider fractional delays in the range
0 ≤ d ≤ 1. For an interpolation with four points we use the samples at time
instances t = −1, 0, 1, 2 of the input signal [116, p. 780]. With the B-spline
representation (5.53) and the weighted sum (5.54) we also find that four
B-spline segments have to be considered and we arrive at

y(d) = x(n+ 2)β3(d− 2) + x(n+ 1)β3(d− 1)

300 5. Multirate Signal Processing

0 1 2 3 4 5 6 7
−2

−1

0

1

2

3

4

5

6

7

Sample index t/T

A
m

pl
itu

de

(b)

Samples
B−spline coeff.
Weighted sum
Single spline

Fig. 5.45. Interpolation using cubic B-splines and FIR compensation filter.

+x(n)β3(d) + x(n− 1)β3(d− 1) (5.57)

= x(n+ 2)
d3

6
+ x(n+ 1)

[
1
6
(d+ 1)3 − 2

3
d3

]
+ x(n)×

[
d3 − 2

3
(d+ 1)3 +

1
6
(d+ 2)3

]
+ x(n− 1)

[
−1

6
(d− 1)3

]
(5.58)

= x(n+ 2)
d3

6
+ x(n+ 1)

[
−d

3

2
+
d2

2
+
d

2
+

1
6

]

+x(n)
[
d3

2
− d2 +

2
3

]
+ x(n− 1)

[
−d

3

6
+
d2

2
− d

2
+

1
6

]
. (5.59)

In order to realize this in a Farrow structure we need to summarize ac-
cording to the factors dk, which yields the following four equations:

d0 : 0 +x(n+ 1)/6 +2x(n)/3 +x(n− 1)/6 = c0
d1 : 0 +x(n+ 1)/2 +0 −x(n− 1)/2 = c1
d2 : 0 +x(n+ 1)/2 −x(n) +x(n− 1)/2 = c2
d3 : x(n+ 2)/6 −x(n+ 1)/2 x(n)/2 −x(n− 1)/6 = c3

(5.60)

This Farrow structure can be translated directly into a B-spline rate
changer as discussed in Exercise 5.23, p. 340.

5.6 Design of Arbitrary Sampling Rate Converters 301

5.6.4 MOMS Fractional Rate Changer

One aspect9 often overlooked in traditional design of interpolation kernels
φ(t) is the order of the approximation, which is an essential parameter in
the quality of the interpolation result. Here the order is defined by the rate
of decrease of the square error (i.e., L2 norm) between the original function
and the reconstructed function when the sampling step vanishes. In terms
of implementation effort the support or length of the interpolation function
is a critical design parameter. It is now important to notice that the B-
splines used in the last section is both maximum order and minimum support
(MOMS) [126]. The question then is whether or not the B-spline is the only
kernel that has degree L− 1, support of length L, and order L. It turns out
that there is a whole class of functions that obey this MOMS behavior. This
class of interpolating polynomials can be described as

φ(t) = βN (t) +
N∑

k=1

p(k)
dk βN (t)

dtk
. (5.61)

Since B-splines are built via successive convolution with the box function the
differentiation can be computed via

dβk+1(t)
dt

= βk

(
t+

1
2

)
− βk

(
t− 1

2

)
. (5.62)

From (5.61) it can be seen that we have a set of design parameters p(k)
at hand that can be chosen to meet certain design goals. In many designs
symmetry of the interpolation kernel is desired, forcing all odd coefficients
p(k) to zero. A popular choice is N = 3, i.e., the cubic spline type, and it
follows then that

φ(t) = β3(t) + p(2)
d2β3(t)

dt2

= β3(t) + p(2)
(
β1(t+ 1)− 2β1(t) + β1(t− 1)

)
(5.63)

and only the design parameter p(2) needs to be determined. We may, for in-
stance, try to design a direct interpolating function that requires no compen-
sation filter at all. Those I-MOMS occur for p(2) = −1/6, and are identical to
the Lagrange interpolation (see Exercise 5.20, p. 339) and therefore give sub-
optimal interpolation results. Figure 5.46(b) shows the I-MOMS interpolation
of degree three. Another design goal may be to minimize the interpolation
error in the L2 norm sense. These O-MOMS require p(2) = 1/42, and the
approximation error is a magnitude smaller than for I-MOMS [127]. Figure
5.46(c) shows the O-MOMS interpolation kernel for degree three. We may
also use an iterative method to maximize a specific application the S/N of
the interpolation. For a specific set of five images, for instance, p(2) = 1/28
has been found to perform 1 dB better than O-MOMS [128].

9 This section was suggested by P. Thévenaz from EPFL.

302 5. Multirate Signal Processing

−2 −1 0 1 2
−0.2

0

0.2

0.4

0.6

0.8

1

(a) B−spline

−2 −1 0 1 2
−0.2

0

0.2

0.4

0.6

0.8

1

(b) I−MOMS

−2 −1 0 1 2
−0.2

0

0.2

0.4

0.6

0.8

1

(d) C−MOMS

Time t
−2 −1 0 1 2

−0.2

0

0.2

0.4

0.6

0.8

1

(c) O−MOMS

Time t

Fig. 5.46. Possible MOMS kernel functions of length four.

Unfortunately the compensation filter required for O-MOMS has (as for
B-splines) an instable pole location and an FIR approximation has to be used
in a continuous signal processing scheme. The promised gain via the small
L2 error of the O-MOMS will therefore most likely not result in much overall
gain if the FIR has to be built in finite-precision arithmetic. If we give up the
symmetry requirements of the kernel then we can design MOMS functions
in such a way that the interpolation function sampled at integer points φ(k)
is a causal function, i.e., φ(−1) = 0, as can be seen from Fig. 5.46(d). This
C-MOMS function is fairly smooth since p(2) = p(3) = 0. The C-MOMS
requirement demands p(1) = −1/3 and we get the asymmetric interpola-
tion function, but with the major advantage that a simple one-pole stable
IIR compensation filter with F (z) = 1.5/(1 + 0.5z−1) can be used. No FIR
approximation is necessary as for B-splines or O-MOMS [127]. It is now in-
teresting to observe that the C-MOMS maxima and sample points no longer
have the same time location as in the symmetric kernel, e.g., B-spline case.
To see this compare Fig. 5.45 with Fig. 5.47. However, the weighted sum
of the C-MOMS goes thorough the sample point as we expect for a spline
interpolation. Experiments with C-MOMS splines shows that in terms of in-
terpolation C-MOMS performs better than B-splines and a little worse than
O-MOMS, when O-MOMS is implemented at full precision.

5.6 Design of Arbitrary Sampling Rate Converters 303

0 1 2 3 4 5 6 7
−2

−1

0

1

2

3

4

5

6

7

Sample index t/T

A
m

pl
itu

de
Samples
C−MOMS coeff.
Weighted sum
Single C−MOMS

Fig. 5.47. C-MOMS interpolation using IIR compensation filter.

The only thing left to do is to compute the equation for the Farrow re-
sampler. We may use (5.53) to compute the interpolation function φ(t) =
β3(t) − 1/3dβ3(t)/dt and then the Farrow structure is sorted according to
the delays dk. Alternatively we can use the precomputed equation (5.60) for
the B-splines and apply the differentiation directly to the Farrow matrix, i.e.,
we compute cnew

k = ck − kck+1/3 for k = 1, 2, and 3, since p(1) = −1/3 and
p(2) = p(3) = 0 for cubic C-MOMS. The same principle can also be applied
to compute the Farrow equations for O-MOMS and I-MOMS, see Exercise
5.20, p. 339. For C-MOMS this yields the following four equations:

d0 : 0 +2x(n)/3 +1x(n− 1)/3 = c0
d1 : 0 +x(n+ 1)/6 +2x(n)/3 −5x(n− 1)/6 = c1
d2 : −x(n+ 2)/6 +x(n+ 1) −3x(n)/2 +2x(n− 1)/3 = c2
d3 : x(n+ 2)/6 −x(n+ 1)/2 +x(n)/2 −x(n− 1)/6 = c3

(5.64)

We now develop the VHDL code for the cubic C-MOMS fractional rate
changer.

Example 5.14: R= 0.75 Rate Changer V
The following VHDL code10 shows an R = 3/4 rate change using a C-MOMS
spline polynomial of degree three.

10 The equivalent Verilog code cmomc.v for this example can be found in Ap-
pendix A on page 697. Synthesis results are shown in Appendix B on page
731.

304 5. Multirate Signal Processing

PACKAGE n_bits_int IS -- User-defined types
SUBTYPE BITS8 IS INTEGER RANGE -128 TO 127;
SUBTYPE BITS9 IS INTEGER RANGE -2**8 TO 2**8-1;
SUBTYPE BITS17 IS INTEGER RANGE -2**16 TO 2**16-1;
TYPE ARRAY_BITS8_4 IS ARRAY (0 TO 3) of BITS8;
TYPE ARRAY_BITS9_3 IS ARRAY (0 TO 2) of BITS9;
TYPE ARRAY_BITS17_5 IS ARRAY (0 TO 4) of BITS17;

END n_bits_int;

LIBRARY work;
USE work.n_bits_int.ALL;

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
USE ieee.std_logic_arith.ALL;
USE ieee.std_logic_signed.ALL;

ENTITY cmoms IS ------> Interface
GENERIC (IL : INTEGER := 3);-- Input puffer length -1
PORT (clk : IN STD_LOGIC;

x_in : IN BITS8;
reset : IN STD_LOGIC;
count_o : OUT INTEGER RANGE 0 TO 12;
ena_in_o, ena_out_o : OUT BOOLEAN;
t_out : out INTEGER RANGE 0 TO 2;
d1_out : out BITS9;
c0_o, c1_o, c2_o, c3_o : OUT BITS9;
xiir_o, y_out : OUT BITS9);

END cmoms;

ARCHITECTURE fpga OF cmoms IS

SIGNAL count : INTEGER RANGE 0 TO 12; -- Cycle R_1*R_2
SIGNAL t : INTEGER RANGE 0 TO 2;
SIGNAL ena_in, ena_out : BOOLEAN; -- FSM enables
SIGNAL x, ibuf : ARRAY_BITS8_4 := (0,0,0,0); -- TAP regs.
SIGNAL xiir : BITS9 := 0; -- iir filter output
-- Precomputed value for d**k :
CONSTANT d1 : ARRAY_BITS9_3 := (0,85,171);
CONSTANT d2 : ARRAY_BITS9_3 := (0,28,114);
CONSTANT d3 : ARRAY_BITS9_3 := (0,9,76);
-- Spline matrix output:
SIGNAL c0, c1, c2, c3 : BITS9 := 0;

BEGIN
t_out <= t;
d1_out <= d1(t);
FSM: PROCESS (reset, clk) ------> Control the system
BEGIN -- sample at clk rate
IF reset = ’1’ THEN -- Asynchronous reset

count <= 0;
t <= 1;

ELSIF rising_edge(clk) THEN

5.6 Design of Arbitrary Sampling Rate Converters 305

IF count = 11 THEN
count <= 0;

ELSE
count <= count + 1;

END IF;
CASE count IS
WHEN 2 | 5 | 8 | 11 =>

ena_in <= TRUE;
WHEN others =>
ena_in <= FALSE;

END CASE;
CASE count IS
WHEN 3 | 7 | 11 =>

ena_out <= TRUE;
WHEN others =>
ena_out <= FALSE;

END CASE;
-- Compute phase delay

IF ENA_OUT THEN
IF t >= 2 THEN

t <= 0;
ELSE
t <= t + 1;
END IF;

END IF;
END IF;

END PROCESS FSM;

-- Coeffs: H(z)=1.5/(1+0.5z^-1)
IIR: PROCESS (clk) ------> Behavioral Style
VARIABLE x1 : BITS9 := 0;

BEGIN -- Compute iir coefficients first
IF rising_edge(clk) THEN -- iir:

IF ENA_IN THEN
xiir <= 3 * x1 / 2 - xiir / 2;
x1 := x_in;

END IF;
END IF;

END PROCESS;

TAP: PROCESS ------> One tapped delay line
BEGIN
WAIT UNTIL clk = ’1’;
IF ENA_IN THEN

FOR I IN 1 TO IL LOOP
ibuf(I-1) <= ibuf(I); -- Shift one

END LOOP;
ibuf(IL) <= xiir; -- Input in register IL

END IF;
END PROCESS;

GET: PROCESS ------> Get 4 samples at one time
BEGIN

306 5. Multirate Signal Processing

WAIT UNTIL clk = ’1’;
IF ENA_OUT THEN

FOR I IN 0 TO IL LOOP -- take over input buffer
x(I) <= ibuf(I);

END LOOP;
END IF;

END PROCESS;

-- Compute sum-of-products:
SOP: PROCESS (clk, x, c0, c1, c2, c3, ENA_OUT)
VARIABLE y, y0, y1, y2, y3, h0, h1 : BITS17;
BEGIN -- pipeline registers

-- Matrix multiplier C-MOMS matrix:
-- x(0) x(1) x(2) x(3)
-- 0.3333 0.6667 0 0
-- -0.8333 0.6667 0.1667 0
-- 0.6667 -1.5 1.0 -0.1667
-- -0.1667 0.5 -0.5 0.1667

IF ENA_OUT THEN
IF clk’event and clk = ’1’ THEN

c0 <= (85 * x(0) + 171 * x(1))/256;
c1 <= (171 * x(1) - 213 * x(0) + 43 * x(2)) / 256;
c2 <= (171 * x(0) - 43 * x(3))/256 - 3*x(1)/2 + x(2);
c3 <= 43 * (x(3) - x(0)) / 256 + (x(1) - x(2))/2;

-- No Farrow structure, parallel LUT for delays
-- for u=0:3, y=y+f(u)*d^u; end;

y := h0 + h1;
h0 := y0 + y1;
h1 := y2 + y3;
y0 := c0 * 256;
y1 := c1 * d1(t);
y2 := c2 * d2(t);
y3 := c3 * d3(t);

END IF;
END IF;
y_out <= y/256; -- Connect to output
y_full <= y;

END PROCESS SOP;
c0_o <= c0; -- Provide some test signal as outputs
c1_o <= c1;
c2_o <= c2;
c3_o <= c3;
count_o <= count;
ena_in_o <= ena_in;
ena_out_o <= ena_out;
xiir_o <= xiir;

END fpga;

The HDL code for the control is similar the the rc_sinc design discussed in
Example 5.9, p. 280. The first PROCESS is the FSM and includes the control
flow and the generation of the enable signals for input and output buffer. The
computation of the index for the delay d1=d1 and its power representation

5.6 Design of Arbitrary Sampling Rate Converters 307

Fig. 5.48. VHDL simulation of the R = 3/4 rate change using cubic C-MOMS
splines and a one-pole IIR compensation filter.

d2= d2 and d3= d3 are precomputed and stored in tables as constant. The
full round takes 12 clock cycles. The IIR PROCESS blocks include the IIR
compensation filter. The next two PROCESS blocks include the input buffer
and the TAP delay line. Note that only one tapped delay line is used for all
four polynomial coefficients ck. The SOP PROCESS block includes the cubic C-
MOMS matrix computation and the output combiner. Note that no Farrow
structure is used to speed up the computation with a parallel multiplier/adder
tree structure. This speeds up the design by a factor of 2. The output y_out
was chosen to have an additional guard bit. The design uses 372 LEs, 10
embedded multipliers and has an 85.94 MHz Registered Performance.
A simulation of the filter is shown in Fig. 5.48. The simulation shows first
the control and enable signals of the FSM. A rectangular input x_in similar
to that in Fig. 5.49 is used. The IIR filter output shows the sharpening of
the edges. The C-MOMS matrix output values ck are weighted by dk and
summed to generate the output y_out. 5.14

As with the Lagrange interpolation we may also use a Farrow combiner to
compute the output y_out. This is particular interesting if array multipliers
are available and we have large values of R1 and therefore large constant
table requirements, see Exercise 5.21 (p. 339).

Finally let us demonstrate the limits of our rate change methods. One
particularly difficult problem [129] is the rate change for a rectangular input
signal, since we know from the Gibbs phenomenon (see Fig. 3.6, p. 174) that
any finite filter has the tendency to introduce ringing at a rectangular edge.
Within a DAT recorder two frequencies 32 kHz and 48 kHz are in use and a
conversion between them is a common task. The rational rate change factor
in this case is R = 3/2, if we increase the sampling rate from 32 to 48 kHz.
This rate change is shown for a rectangular wave in Fig. 5.49 using O-MOMS
spline interpolation. The FIR prefilter output shown in Fig. 5.49b emphasizes
the edges. Figure 5.49c shows the result of the O-MOMS cubic spline rate
changer without FIR prefiltering. Although the signal without the filter seems
smoother, a closer look reveals that the edges in the O-MOMS cubic spline

308 5. Multirate Signal Processing

0 5 10 15 20

−20

0

20

40

60

80

100

Sample index n

A
m

pl
itu

de
 x

[n
]

(a) Original signal

0 5 10 15 20

−20

0

20

40

60

80

100

Sample index n

A
m

pl
itu

de
 x

F
IL

T[n
]

(b) Filtered input signal

0 5 10 15 20
−20

0

20

40

60

80

100

A
m

pl
itu

de
 y

[m
]

Sample index m

(c) O−MOMS no filter

0 5 10 15 20
−20

0

20

40

60

80

100

A
m

pl
itu

de
 y

F
IL

T[m
]

Sample index m

(d) O−MOMS with compensation

Fig. 5.49. O-MOMS-based fractional R = 3/2 rate change. (a) Original signal. (b)
Original signal filter with length-11 FIR compensation filter. (c) O-MOMS approx-
imation (no compensation filter). (d) O-MOMS rate change using a compensation
filter.

interpolation are now better preserved than without prefiltering, as shown in
Fig. 5.49d. But it can still be seen that, even with O-MOMS and a length-11
FIR compensation filter at full precision, the Gibbs phenomenon is visible.

5.7 Filter Banks

A digital filter bank is a collection of filters having a common input or out-
put, as shown in Fig. 5.50. One common application of the analysis filter bank
shown in Fig. 5.50a is spectrum analysis, i.e., to split the input signal into
R different so-called subband signals. The combination of several signals into
a common output signal, as shown in Fig. 5.50b, is called a synthesis filter
bank. The analysis filter may be nonoverlapping, slightly overlapping, or sub-
stantially overlapping. Figure 5.51 shows an example of a slightly overlapping
filter bank, which is the most common case.

Another important characteristic that distinguishes different classes of
filter banks is the bandwidth and spacing of the center frequencies of the
filters. A popular example of a nonuniform filter bank is the octave-spaced or
wavelet filter bank, which will be discussed in Sect. 5.8 (p. 328). In uniform

5.7 Filter Banks 309

F (z)

F (z)

^F (z) +

+

R−1

1

0

(a)

H (z)

H (z)

(b)

x[n]
^

^

X [k]^

x[n]
X [k]

X [k]

Analysis section Synthesis section

R−1

1

0

H (z)

0

1

R−1

Fig. 5.50. Typical filter bank decomposition system showing (a) analysis, and (b)
synthesis filters.

filter banks, all filters have the same bandwidth and sampling rates. From
the implementation standpoint, uniform, maximal decimating filter banks
are often preferred, because they can be realized with the help of an FFT
algorithm, as shown in the next section.

5.7.1 Uniform DFT Filter Bank

In a maximal decimating, or critically sampled filter bank, the decimation or
interpolation R is equal to the number of bands K. We call it a DFT filter
bank if the rth band filter hr[n] is computed from the “modulation” of a single
prototype filter h[n], according to

hr[n] = h[n]W rn
R = h[n]e−j2πrn/R. (5.65)

0 π

|H
(

)
|

ω H

Normalized frequency ω

H 10
H H2 R-1

Fig. 5.51. R channel filter bank, with a small amount of overlapping.

310 5. Multirate Signal Processing

H (z)

R

R

z−1

R

z−1

H (z)

H (z)

(b)

(a)

x[n]

x[n]

WR

WR

0

−r

^

^

R−1X [k]^

1X [k]

0X [k]

+

R−1

1

0

DFT
via
FFT

R

R

z−1

R

z−1

H (z)

H (z)

H (z)R−1

1

0

W
−r(R−1)

R

rX [k]^

Fig. 5.52. (a) Analysis DFT filter bank for channel k. (b) Complete analysis DFT
filter bank.

An efficient implementation of the R channel filter bank can be generated
if we use polyphase decomposition (see Sect. 5.2, p. 249) of the filter hr[n]
and the input signal x[n]. Because each of these bandpass filters is critically
sampled, we use a decomposition with R polyphase signals according to

h[n] =
R−1∑

k=0

hk[n] ↔ hk[m] = h[mR− k] (5.66)

x[n] =
R−1∑

k=0

xk[n] ↔ xk[m] = x[mR − k]. (5.67)

If we now substitute (5.66) into (5.65), we find that all bandpass filters hr[n]
share the same polyphase filter hk[n], while the “twiddle factors” for each
filter are different. This structure is shown in Fig. 5.52a for the rth filter hr[n].

5.7 Filter Banks 311

It is now obvious that this “twiddle multiplication” for hr[n] corresponds to
the rth DFT component, with an input vector of x̂0[n], x̂1[n], . . . , x̂R−1[n].
The computation for the whole analysis band can be reduced to filtering
with R polyphase filters, followed by a DFT (or FFT) of these R filtered
components, as shown in Fig. 5.52b. This is obviously much more efficient
than direct computation using the filter defined in (5.65) (see Exercise 5.6,
p. 336).

The polyphase filter bank for the uniform DFT synthesis bank can be
developed as an inverse operation to the analysis bank, i.e., we can use the
R spectral components X̂r[k] as input for the inverse DFT (or FFT), and
reconstruct the output signal using a polyphase interpolator structure, shown
in Fig. 5.53. The reconstruction bandpass filter becomes

f r[n] =
1
R
f [n]W−rn

R = f [n]ej2πrn/R. (5.68)

If we now combine the analysis and synthesis filter banks, we can see that
the DFT and IDFT annihilate each other, and perfect reconstruction occurs if
the convolution of the included polyphase filter gives a unit sample function,
i.e.,

hr[n] ∗ fr[n] =
{

1 n = d
0 else. (5.69)

In other words, the two polyphase functions must be inverse filters of each
other, i.e.,

Hr(z)× Fr(z) = z−d

Fr(z) =
z−d

Hr(z)
,

where we allow a delay d in order to have causal (realizable) filters. In a
practical design, these ideal conditions cannot be met exactly by two FIR
filters. We can use approximation for the two FIR filters, or we can combine
an FIR and IIR, as shown in the following example.

Example 5.15: DFT Filter Bank
The lossy integrator studied in Example 4.3 (p. 231) should be interpreted in
the context of a DFT filter bank with R = 2. The difference equation was

y[n + 1] =
3

4
y[n] + x[n]. (5.70)

The impulse response of this filter in the z-domain is

F (z) =
z−1

1− 0.75z−1
. (5.71)

In order to get two polyphase filters, we use a similar scheme as for the “scat-
tered look-ahead” modification (see Example 4.5, p. 234), i.e., we introduce
an additional pole/zero pair at the mirror position. Multiplying nominator
and denominator by (1 + 0.75z−1) yields

312 5. Multirate Signal Processing

+ x̂[n]F (z)

F (z)

F (z)R−1

0

1

IFFT

IDFT
via +R

−1z

−1z

R

R

^R−1X [k]

X [k]1^

X [k]^0

Fig. 5.53. DFT synthesis filter bank.

F (z) =
0.75z−2

1− 0.752z−2

︸ ︷︷ ︸
H0(z2)

+z−1 1

1− 0.752z−2

︸ ︷︷ ︸
H1(z2)

(5.72)

= H0

(
z2
)

+ z−1H1

(
z2
)

, (5.73)

which gives the two polyphase filters:

H0(z) =
0.75z−1

1− 0.752z−1
= 0.75z−1 + 0.4219z−2 + 0.2373z−3 + . . . (5.74)

H1(z) =
1

1− 0.752z−1
= 1 + 0.5625z−1 + 0.3164z−2 + (5.75)

We can approximate these impulse responses with a nonrecursive FIR, but
to get less than 1% error we must use about 16 coefficients. It is therefore
much more efficient if we use the two recursive polyphase IIR filters defined
by (5.74) and (5.75). After decomposition with the polyphase filters, we then
apply a 2-point DFT, which is given by

W =

[
1 1
1 −1

]
.

The whole analysis filter bank can now be constructed as shown in 5.54a.
For the synthesis bank, we first compute the inverse DFT using

W −1 =
1

2

[
1 1
1 −1

]
.

In order to get a perfect reconstruction we must find the inverse polyphase
filter to h0[n] and h1[n]. This is not difficult, because the Hr(z)′s are single-
pole IIR filters, and Fr(z) = z−d/Hr(z) must therefore be two-tap FIR filters.

5.7 Filter Banks 313

^

0.5

1.0

1.0

^

X [k]0^

x[n]

2

2

−1z

F (z)

1

IDFT

0.75

2

2

−1z

x[n]

DFT

−
+

+ X [k]0^

X [k]

F (z)

−1z+

(a)

(b)

+

0

1

−

−
+

+

−1z

4/3
+

−
+

0.5

20.75

−1z

20.75

−1z

X [k]1^

0H (z)

1H (z)

20.75

20.75

−1z

Fig. 5.54. Critically sampled uniform DFT filter bank for R = 2. (a) Analysis
filter bank. (b) Synthesis filter bank.

Using (5.74) and (5.75), we find that d = 1 is already sufficient to get causal
filters, and it is

F0[n] =
4

3

(
1− 0.752z−1

)
(5.76)

F1[n] = z−1 − 0.752z−2. (5.77)

The synthesis bank is graphically interpreted in Fig. 5.54b. 5.15

5.7.2 Two-channel Filter Banks

Two-channel filter banks are an important tool for the design of general filter
banks and wavelets. Figure 5.55 shows an example of a two-channel filter
bank that splits the input x[n] using lowpass (G(z)) and highpass (H(z))
“analysis” filters. The resulting signal x̂[n] is reconstructed using lowpass
and highpass “synthesis” filters. Between the analysis and synthesis sections

314 5. Multirate Signal Processing

0 1 2 3
−1

−0.5

0

0.5

1

0 1 2 3
−1

−0.5

0

0.5

1

0 1 2 3
−1

−0.5

0

0.5

1

0 1 2 3
−1

−0.5

0

0.5

1

+

H(z)

G(z) ^

Ĥ(z)

G(z)

^

Analysis

x[n] x[n]

Synthesis

22

22

Fig. 5.55. Two-channel filter bank using Daubechies filter of length-4.

are decimation and interpolation by 2 units. The signal between the deci-
mators and interpolators is often quantized, and nonlinearly processed for
enhancement, or compressed.

It is common practice to define only the lowpass filter G(z), and to use
its definition to specify the highpass filter H(z). The construction rule is
normally given by

h[n] = (−1)ng[n] ◦−• H(z) = G(−z), (5.78)

which defines the filters to be mirrored pairs. Specifically, in the frequency
domain, |H(ejω)| = |G(ej(ω−π))|. This is a quadrature mirror filter (QMF)
bank, because the two filters have mirror symmetry to π/2.

For the synthesis shown in Fig. 5.55, we first use an expander (a sampling
rate increase of 2), and then two separate reconstruction filters, Ĝ(z) and
Ĥ(z), to reconstruct x̂[n]. A challenging question now is, can the input signal
be perfectly reconstructed, i.e., can we satisfy

x̂[n] = x[n− d]? (5.79)

That is, a perfectly reconstructed signal has the same shape as the original,
up to a phase (time) shift. Because G(z) and H(z) are not ideal rectan-
gular filters, achieving perfect reconstruction is not a trivial problem. Both
filters produce essential aliasing components after the downsampling by 2, as
shown in Fig. 5.55. The simple orthogonal filter bank that satisfies (5.79) is
attributed to Alfred Haar (circa 1910) [130].

5.7 Filter Banks 315

Example 5.16: Two-Channel Haar Filter Bank I
The filter transfer functions of the two-channel QMF filter bank from Fig. 5.56
are12

G(z) = 1 + z−1 H(z) = 1− z−1

Ĝ(z) =
1

2
(1 + z−1) Ĥ(z) =

1

2
(−1 + z−1).

Using data found in the table in Fig. 5.56, it can be verified that the
filter produces a perfect reconstruction of the input. The input sequence
x[0], x[1], x[2], . . . , processed by G(z) and H(z), yields the sum x[n]+x[n−1]
and difference x[n] − x[n − 1], respectively. The downsampling followed by
upsampling forces every second value to zero. After applying the synthesis
filter and combining the output we again get the input sequence delayed by
one, i.e., x̂[n] = x[n− 1], a perfect reconstruction with d = 1. 5.16

In the following we will discuss the general relationships the four filters
must obey to get a perfect reconstruction. It is useful to remember that
decimation and interpolation by 2 of a signal s[k] is equivalent to multiplying
S(z) by the sequence {1, 0, 1, 0, . . . ,}. This translates, in the z-domain, to

S↓↑(z) =
1
2

(S(z) + S(−z)) . (5.80)

If this signal is applied to the two-channel filter bank, the lowpass path
X↓↑G(z) and highpass path X↓↑H(z) become

X↓↑G(z) =
1
2

(X(z)G(z) +X(−z)G(−z)) , (5.81)

X↓↑H(z) =
1
2

(X(z)H(z) +X(−z)H(−z)) . (5.82)

After multiplication by the synthesis filter Ĝ(z) and Ĥ(z), and summation
of the results, we get X̂(z) as

X̂(z) = X↓↑G(z)Ĝ(z) +X↓↑H(z)Ĥ(z)

=
1
2

(
G(z)Ĝ(z) +H(z)Ĥ(z)

)
X(z) (5.83)

+
1
2

(
G(−z)Ĝ(z) +H(−z)Ĥ(z)

)
X(−z).

The factor of X(−z) shows the aliasing component, while the term at X(z)
shows the amplitude distortion. For a perfect reconstruction this translates
into the following:
12 Sometimes the amplitude factors are chosen in such a way that orthonormal

filters are obtained, i.e.,
∑

n
|h[n]|2 = 1. In this case, the filters have an amplitude

factor of 1/
√

2. This will complicate a hardware design significantly.

316 5. Multirate Signal Processing

↓ 2 ↑ 2

↓ 2 ↑ 2

Approximation

Reconstruction + •

Detail

â[n]

d̂[n]

1/2

x[n]

d[n]

a↓↑[n]

a[n]

y[n]

d↓↑[n]

�

��

�

�

	

	

�

�

��

��

�

�

��

��

�
�

�

�

	

�

	

�	

�	

�

�

�

�

�

	

Time step n
0 1 2 3 4

x[n] x[0] x[1] x[2] x[3] x[4]
a[n] x[0] x[0] + x[1] x[1] + x[2] x[2] + x[3] x[3] + x[4]
d[n] x[0] x[1]− x[0] x[2]− x[1] x[3]− x[2] x[4]− x[3]
a↓↑[n] x[0] 0 x[1] + x[2] 0 x[3] + x[4]
d↓↑[n] x[0] 0 x[2]− x[1] 0 x[4]− x[3]
â[n] x[0] x[0] x[1] + x[2] x[1] + x[2] x[3] + x[4]

d̂[n] −x[0] x[0] x[1]− x[2] x[2]− x[1] x[3]− x[4]
x̂[n] 0 x[0] x[1] x[2] x[3]

Fig. 5.56. Two-channel Haar-QMF bank.

Theorem 5.17: Perfect Reconstruction

A perfect reconstruction for a two-channel filter bank, as shown in
Fig. 5.55, is achieved if
1) G(−z)Ĝ(z) +H(−z)Ĥ(z) = 0, i.e., the reconstruction is free of alias-

ing.
2) G(z)Ĝ(z) +H(z)Ĥ(z) = 2z−d, i.e., the amplitude distortion has am-

plitude one.

Let us check this condition for the Haar filter bank.

Example 5.18: Two-Channel Haar Filter bank II
The filters of the two-channel Haar QMF bank were defined by

G(z) = 1 + z−1 H(z) = 1− z−1

Ĝ(z) =
1

2
(1 + z−1) Ĥ(z) =

1

2
(−1 + z−1).

The two conditions from Theorem 5.17 can be proved with:

5.7 Filter Banks 317

1) G(−z)Ĝ(z) + H(−z)Ĥ(z)

=
1

2
(1− z−1)(1 + z−1) +

1

2
(1 + z−1)(−1 + z−1)

=
1

2
(1− z−2) +

1

2
(−1 + z−2) = 0 �

2) G(z)Ĝ(z) + H(z)Ĥ(z)

=
1

2
(1 + z−1)2 +

1

2
(1− z−1)(−1 + z−1)

=
1

2

(
(1 + 2z−1 + z−2) + (−1 + 2z−1 − z−2)

)
= 2z−1 �

5.18

For the proof using Theorem 5.17, it can be noted that the perfect recon-
struction condition does not change if we switch the analysis and synthesis
filters.

In the following we will discuss some restrictions that can be made in the
filter design to fulfill the condition from Theorem 5.17 more easily.

First, we limit the filter choice by using the following:

Theorem 5.19: Aliasing-Free Two-Channel Filter Bank

A two-channel filter bank is aliasing-free if
G(−z) = −Ĥ(z) and H(−z) = Ĝ(z). (5.84)

This can be checked if we use (5.84) for the first condition of Theorem 5.17.
Using a length-4 filter, these two conditions can be interpreted as follows:

g[n]={g[0], g[1], g[2], g[3]} → ĥ[n]= {−g[0], g[1],−g[2], g[3]}
h[n]={h[0], h[1], h[2], h[3]} → ĝ[n]={h[0],−h[1], h[2],−h[3]}.

With the restriction of the filters as in Theorem 5.19, we can now simplify
the second condition in Theorem 5.17. It is useful to define first an auxiliary
product filter F (z) = G(z)Ĝ(z). The second condition from Theorem 5.17
becomes

G(z)Ĝ(z) +H(z)Ĥ(z) = F (z)− Ĝ(−z)G(−z) = F (z)− F (−z) (5.85)

and we finally get

F (z)− F (−z) = 2z−d, (5.86)

i.e., the product filter must be a half-band filter.13 The construction of a
perfect reconstruction filter bank uses the following three simple steps:
13 For the definition of a half-band filter, see p. 274.

318 5. Multirate Signal Processing

Algorithm 5.20: Perfect-Reconstruction Two-Channel Filter
Bank

1) Define a normalized causal half-band filter according to (5.86).
2) Factor the filter F (z) in F (z) = G(z)Ĝ(z).
3) Compute H(z) and Ĥ(z) using (5.84), i.e., Ĥ(z) = −G(−z) and

H(z) = Ĝ(−z).
We wish to demonstrate Algorithm 5.20 with the following example. To sim-
plify the notation we will, in the following example, write a combination of
a length L filter for G(z), and length N for Ĝ(z), as an L/N filter.

Example 5.21: Perfect-Reconstructing Filter Bank Using F3
The (normalized) causal half-band filter F3 (Table 5.3, p. 274) of length 7
has the following z-domain transfer function

F3(z) =
1

16

(
−1 + 9z−2 + 16z−3 + 9z−4 − z−6

)
. (5.87)

Using (5.86) we first verify that F3(z) − F3(−z) = 2z−3. The zeros of the

transfer function are at z01−4 = −1, z05 = 2 +
√

3 = 3.7321, and z06 =
2 − √3 = 0.2679 = 1/z05. There are different choices for factoring F (z) =

G(z)Ĝ(z). A 5/3 filter is, for instance,

a) G(z) = (−1+2z−1 +6z−2+2z−3−z−4)/8 and Ĝ(z) = (1+2z−1 +z−2)/2.
We may design a 4/4 filter as:

b) G(z) = 1
4
(1 + z−1)3 and Ĝ(z) = 1

4
(−1 + 3z−1 + 3z−2 − z−3).

Another configuration of the 4/4 configuration uses the Daubechies filter con-
figuration, which is often found in wavelet applications and has the form:

c) G(z) = 1−√
3

4
√

2
(1+ z−1)2(−z05 + z−1) and Ĝ(z) = − 1+

√
3

4
√

2
(1+ z−1)2(−z06 +

z−1).

Figure 5.57 shows these three combinations, along with their pole/zero plots.
5.21

For the Daubechies filter, the condition H(z) = −z−NG(−z−1) holds in
addition, i.e., highpass and lowpass polynomials are mirror versions of each
other. This is a typical behavior in orthogonal filter banks.

From the pole/zero plots shown in Fig. 5.57, for F (z) = G(z)Ĝ(z) the
following conclusions can be made:

Corollary 5.22: Factorization of a Half-band Filter

1) To construct a real filter, we must always group the conjugate sym-
metric zeros at (z0 and z∗0) in the same filter.

2) For linear-phase filters, the pole/zero plot must be symmetrical to the
unit circle (z = 1). Zero pairs at (z0 and 1/z0) must be assigned to
the same filter.

3) To have orthogonal filters that are mirror polynomials of each other,
(F (z) = U(z)U(z−1)), all pairs z0 and 1/z0 must be assigned to
different filters.

5.7 Filter Banks 319

0 2 4

−2

−1

0

1

2 −1+2z−1+6z−2

+2z−3−z−4

(a)
Im

0 2 4

−2

−1

0

1

2 (1+z−1)2

Re

Im

0 2 4

−2

−1

0

1

2

(b)

(1+z−1)3

0 2 4

−2

−1

0

1

2 −1+3z−1+3z−2−z−3

Re

0 2 4

−2

−1

0

1

2

(c)

(1+z−1)2(−z
05

+z−1)

0 2 4

−2

−1

0

1

2 (1+z−1)2(−1/z
05

+z−1)

Re

Fig. 5.57. Pole/zero plot for different factorization of the half-band filter F3. Upper

row G(z). lower row Ĝ(z). (a) Linear-phase 5/3 filter. (b) Linear-phase 4/4 filter.
(c) 4/4 Daubechies filter.

We note that some of the above conditions can not be fulfilled at the same
time. In particular, rules 2 and 3 represent a contradiction. Orthogonal,
linear-phase filters are, in general, not possible, except when all zeros are
on the unit circle, as in the case of the Haar filter bank.

If we classify the filter banks from Example 5.21, we find that configura-
tions (a) and (b) are real linear-phase filters, while (c) is a real orthogonal
filter.

Implementing Two-Channel Filter Banks

We will now discuss different options for implementing two-channel filter
banks. We will first discuss the general case, and then special simplifications
that are possible if the filters are QMF, linear-phase, or orthogonal. We will
only discuss the analysis filter bank, as synthesis may be achieved with graph
transposition.

Polyphase two-channel filter banks. In the general case, with two filters
G(z) and H(z), we can realize each filter as a polyphase filter

320 5. Multirate Signal Processing

G (z)

0

1

H (z)

H (z)1

z−1 2 +

X(z)

G (z)0

2
+ 2X(z)G(z)

2X(z)H(z)

Fig. 5.58. Polyphase implementation of the two-channel filter bank.

H(z) = H0(z2) + z−1H1(z2) G(z) = G0(z2) + z−1G1(z2), (5.88)

which is shown in Fig. 5.58. This does not reduce the hardware effort (2L
multipliers and 2(L−1) adders are still used), but the design can be run with
twice the usual sampling frequency, 2fs.

These four polyphase filters have only half the length of the original fil-
ters. We may implement these length L/2 filters directly or with one of the
following methods:

1) Run-length filter using short Winograd convolution algorithms [104], dis-
cussed in Sect. 5.2.2, p. 254.

2) Fast convolution using FFT (discussed in Chap. 6) or NTTs (discussed
in Chap. 7).

3) Using advanced arithmetic concepts discussed in Chap. 3, such as dis-
tribute arithmetic, reduced adder graph, or residue number system.

Using the fast convolution FFT/NTT techniques has the additional benefit
that the forward transform for each polyphase filter need only be done once,
and also, the inverse transform can be applied to the spectral sum of the two
components, as shown in Fig. 5.59. But, in general, FFT methods only give
improvements for longer filters, typically, larger than 32; however, the typical
two-channel filter length is less than 32.

Lifting. Another general approach to constructing fast and efficient two-
channel filter banks is the lifting scheme introduced recently by Swelden [131]
and Herley and Vetterli [132]. The basic idea is the use of cross-terms (called
lifting and dual-lifting), as in a lattice filter, to construct a longer filter from a
short filter, while preserving the perfect reconstruction conditions. The basic
structure is shown in Fig. 5.60.

Designing a lifting scheme typically starts with the “lazy filter bank,”
with G(z) = Ĥ(z) = 1 and H(z) = Ĝ(z) = z−1. This channel bank fulfills
both conditions from Theorem 5.17 (p. 316), i.e., it is a perfect reconstruction
filter bank. The following question arises: if we keep one filter fixed, what are

5.7 Filter Banks 321

2X(z)G(z)G [n]

H [n]

G [n]

N−point

N−point

N−point
2

2−1z

FFT

FFT

X(z) IFFT1 +

0

0

N−point
IFFT X(z)H(z) 2+

1H [n]

Fig. 5.59. Two-channel filter bank with polyphase decomposition and fast convo-
lution using the FFT (c©1999 Springer Press [5]).

filters S(z) and T (z) such that the filter bank is still a perfect reconstruction?
The answer is important, and not trivial:

Lifting: G′(z) = G(z) + Ĝ(−z)S(z2) for any S(z2). (5.89)
Dual-Lifting: Ĝ′(z) = Ĝ(z) +G(−z)T (z2) for any T (z2). (5.90)

To check, if we substitute the lifting equation into the perfect reconstruction
condition from Theorem 5.17 (p. 316), and we see that both conditions are
fulfilled if Ĝ(z) and Ĥ(z) still meet the conditions of Theorem 5.19 (p. 317)
for the aliasing free filter bank (Exercise 5.9, p. 337).

The conversion of the Daubechies length-4 filter bank into lifting steps
demonstrates the design.

Example 5.23: Lifting Implementation of the DB4 Filter
One filter configuration in Example 5.21 (p. 318) was the Daubechies length-4
filter [133, p. 195]. The filter coefficients were

G(z) =

k

H(z)
+

1/k

G(z)
+

m22 T (z)S (z)

+

+

11

2

2

x[n]

T (z)S (z)

+

+

−1z

T (z)mS (z)

Fig. 5.60. Two-channel filter implementation using lifting and dual-lifting steps.

322 5. Multirate Signal Processing

(
(1 +

√
3) + (3 +

√
3)z−1 + (3−

√
3)z−2 + (1−

√
3)z−3

) 1

4
√

2

H(z) =
(
−(1−

√
3) + (3−

√
3)z−1 − (3 +

√
3)z−2 + (1 +

√
3)z−3

) 1

4
√

2
.

A possible implementation uses two lifting steps and one dual-lifting step.
The differential equations that produce a two-channel filter bank based on
the above equation are

h1[n] = x[2n + 1]−
√

3x[2n]

g1[n] = x[2n] +

√
3

4
h1[n] +

√
3− 2

4
h1[n− 1]

h2[n] = h1[n] + g1[n + 1]

g[n] =

√
3 + 1√

2
g1[n]

h[n] =

√
3− 1√

2
h2[n].

Note that the early decimation and splitting of the input into even x[2n] and
odd x[2n− 1] sequences allows the filter to run with 2fs. This structure can
be directly translated into hardware and can be implemented using Quartus
II (Exercise 5.10, p. 337). The implementation will use five multiplications
and four adders. The reconstruction filter bank can be constructed based
on graph transposition, which is, in the case of the differential equations, a
reversing of the operations and flipping of the signs. 5.23

Daubechies and Sweldens [134], have shown that any (bi)orthogonal wave-
let filter bank can be converted into a sequence of lifting and dual-lifting steps.
The number of multipliers and adders required then depends on the number
of lifting steps (more steps gives less complexity) and can reach up to 50%
compared with the direct polyphase implementation. This approach seems
especially promising if the bit width of the multiplier is small [135]. On the
other hand, the lattice-like structure does not allow use of reduced adder
graph (RAG) techniques, and for longer filters the direct polyphase approach
will often be more efficient.

Although the techniques (polyphase decomposition and lifting) discussed
so far improve speed or size and cover all types of two-channel filters, addi-
tional savings can be achieved if the filters are QMF, linear-phase, or orthog-
onal. This will be discussed in the following.

QMF implementation. For QMF [136] we have found that according to
(5.78),

h[n] = (−1)ng[n] ◦−• H(z) = G(−z). (5.91)

But this implies that the polyphase filters are the same (except the sign),
i.e.,

5.7 Filter Banks 323

z−1 2

+ 2X(z)G(z)

+ 2X(z)H(z)−

X(z)

2

G (z)1

G (z)0

Fig. 5.61. Polyphase realization of the two-channel QMF bank (c©1999 Springer
Press [5]).

G0(z) = H0(z) G1(z) = −H1(z). (5.92)

Instead of the four filters from Fig. 5.58, for QMF we only need two filters
and an additional “Butterfly,” as shown in Fig. 5.61. This saves about 50%.
For the QMF filter we need:

L real adders L real multipliers, (5.93)

and the filter can run with twice the usual input-sampling rate.

z−1
−

x[n]

a[L−1]

H(z) +

a[L−2]

−1z +

−1z +

G(z)

a[1] a[0]

+

+

−1z +

−

Fig. 5.62. Orthogonal two-channel filter bank using the transposed FIR structure.

Orthogonal filter banks. An orthogonal filter pair14 obeys the conjugate
mirror filter (CQF) [137] condition, defined by

H(z) = z−N G(−z−1). (5.94)

If we use the transposed FIR filter shown in Fig. 5.62, we need only half
the number of multipliers. The disadvantage is that we can not benefit from
polyphase decomposition to double the speed.
14 The orthogonal filter name comes from the fact that the scalar product of the

filters, for a shift by two (i.e.,
∑

g[k]h[k − 2l] = 0, k, l ∈ Z), is zero.

324 5. Multirate Signal Processing

Another alternative is realization of the CQF bank using the lattice filter
shown in Fig. 5.63. The following example demonstrates the conversion of
the direct FIR filter into a lattice filter.

Example 5.24: Lattice Daubechies L = 4 Filter Implementation
One filter configuration in Example 5.21 (p. 318) was the Daubechies length-4
filter [133, p. 195]. The filter coefficients were

G(z) =
(1 +

√
3) + (3 +

√
3)z−1 + (3−√3)z−2 + (1−√3)z−3

4
√

2

= 0.48301 + 0.8365z−1 + 0.2241z−2 − 0.1294z−3 (5.95)

H(z) =
−(1−√3) + (3−√3)z−1 − (3 +

√
3)z−2 + (1 +

√
3)z−3

4
√

2

= 0.1294 + 0.2241z−1 − 0.8365z−2 + 0.48301z−3 . (5.96)

The transfer function for a two-channel lattice with two stages is

G(z) =
(
1 + a[0]z−1 − a[0]a[1]z−2 + a[1]z−3

)
s (5.97)

H(z) =
(
−a[1]− a[0]a[1]z−1 − a[0]z−2 + z−3

)
s. (5.98)

If we now compare (5.95) with (5.97) we find

s =
1 +
√

3

4
√

2
a[0] =

3 +
√

3

4
√

2s
a[1] =

1−√3

4
√

2s
. (5.99)

We can now translate this structure direct into hardware and implement the
filter bank with Quartus II as shown in the following VHDL15 code.

+

+

z-2+

+

H(z)

G(z)

+

+

a[0]
-a[0]

z z-2

a[1]
-a[1]

-1

x[n]
s

-a[L/2-1]
a[L/2-1]

Fig. 5.63. Lattice realization for the orthogonal two-channel filter bank (c©1999
Springer Press [5]).

PACKAGE n_bits_int IS -- User-defined types
SUBTYPE BITS8 IS INTEGER RANGE -128 TO 127;
SUBTYPE BITS9 IS INTEGER RANGE -2**8 TO 2**8-1;
SUBTYPE BITS17 IS INTEGER RANGE -2**16 TO 2**16-1;
TYPE ARRAY_BITS17_4 IS ARRAY (0 TO 3) OF BITS17;

END n_bits_int;

LIBRARY work;
USE work.n_bits_int.ALL;

15 The equivalent Verilog code db4latti.v for this example can be found in Ap-
pendix A on page 709. Synthesis results are shown in Appendix B on page 731.

5.7 Filter Banks 325

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
USE ieee.std_logic_arith.ALL;
USE ieee.std_logic_unsigned.ALL;

ENTITY db4latti IS ------> Interface
PORT (clk, reset : IN STD_LOGIC;

clk2 : OUT STD_LOGIC;
x_in : IN BITS8;
x_e, x_o : OUT BITS17;
g, h : OUT BITS9);

END db4latti;

ARCHITECTURE fpga OF db4latti IS

TYPE STATE_TYPE IS (even, odd);
SIGNAL state : STATE_TYPE;
SIGNAL sx_up, sx_low, x_wait : BITS17 := 0;
SIGNAL clk_div2 : STD_LOGIC;
SIGNAL sxa0_up, sxa0_low : BITS17 := 0;
SIGNAL up0, up1, low0, low1 : BITS17 := 0;

BEGIN

Multiplex: PROCESS (reset, clk) ----> Split into even and
BEGIN -- odd samples at clk rate
IF reset = ’1’ THEN -- Asynchronous reset

state <= even;
ELSIF rising_edge(clk) THEN

CASE state IS
WHEN even =>
-- Multiply with 256*s=124

sx_up <= 4 * (32 * x_in - x_in);
sx_low <= 4 * (32 * x_wait - x_wait);
clk_div2 <= ’1’;
state <= odd;

WHEN odd =>
x_wait <= x_in;
clk_div2 <= ’0’;
state <= even;

END CASE;
END IF;

END PROCESS;

---------- Multipy a[0] = 1.7321
sxa0_up <= (2*sx_up - sx_up /4)

- (sx_up /64 + sx_up/256);
sxa0_low <= (2*sx_low - sx_low/4)

- (sx_low/64 + sx_low/256);
---------- First stage -- FF in lower tree

up0 <= sxa0_low + sx_up;
LowerTreeFF: PROCESS

326 5. Multirate Signal Processing

Fig. 5.64. VHDL simulation of the Daubechies length-4 lattice filter bank.

BEGIN
WAIT UNTIL clk = ’1’;
IF clk_div2 = ’1’ THEN

low0 <= sx_low - sxa0_up;
END IF;

END PROCESS;

---------- Second stage a[1]=0.2679
up1 <= (up0 - low0/4) - (low0/64 + low0/256);
low1 <= (low0 + up0/4) + (up0/64 + up0/256);

x_e <= sx_up; -- Provide some extra test signals
x_o <= sx_low;
clk2 <= clk_div2;

OutputScale: PROCESS
BEGIN
WAIT UNTIL clk = ’1’;
IF clk_div2 = ’1’ THEN

g <= up1 / 256;
h <= low1 / 256;

END IF;
END PROCESS;

END fpga;
This VHDL code is a direct translation of the lattice shown in Fig. 5.63.
The incoming stream is multiplied by s = 0.48 ≈ 124/256. Next, the cross-
term product multiplications, with a[0] = 1.73 ≈ (2 − 2−2 − 2−6 − 2−8), of
the first stage are computed. It follows that the stage 1 additions and the
lower tree signal must be delayed by one sample. In the second stage, the
cross multiplication by a[1] = 0.27 ≈ (2−2 + 2−6 + 2−8) and the final output
addition are implemented. The design uses 418 LEs, no embedded multiplier,
and has a 58.81 MHz Registered Performance.
The VHDL simulation is shown in Fig. 5.64. The simulation shows the re-
sponse to an impulse with amplitude 100 at even and odd positions for the
filters G(z) and H(z), respectively. 5.24

5.7 Filter Banks 327

H(z)

+

z−2

+

+
a[1]a[0]

x[n]

−a[L−1]

+

−2z

+

−1

s
+

z +

+
G(z)

+

+

+

Fig. 5.65. Lattice filter to realize linear-phase two-channel filter bank (c©1999
Springer Press [5]).

If we compare the size of the lattice with the direct polyphase implemen-
tation of G(z) shown in Example 5.1 on p. 250 (LEs multiplied by two), we
note that both designs have about the same size (208× 2 = 416LEs, versus
331LEs). Although the lattice implementation needs only five multipliers,
compared with eight multipliers for the polyphase implementation, we note
that in the polyphase implementation we can use the RAG technique to im-
plement the coefficients of the transposed filter, while in the lattice we must
implement single multipliers, which, in general, are less efficient.

Linear-phase two-channel filter bank. We have already seen in Chap. 3
that if a linear filter has even or odd symmetry, 50% of multiplier resources
can be saved. The same symmetry also applies for polyphase decomposition
of the filters if the filters, have even length. In addition, these filters may run
at twice the speed.

If G(z) and H(z) have the same length, another implementation using
lattice filters can further decrease the implementation effort, as shown in
Fig. 5.65. Notice that the lattice is different from the lattice used for the
orthogonal filter bank shown in Fig. 5.63.

The following example demonstrates how to convert a direct architecture
into a lattice filter.

Example 5.25: Lattice for L = 4 Linear-Phase Filter
One filter configuration in Example 5.21 (p. 318) was a linear-phase filter
pair, with both filters of length 4. The filters are

G(z) =
1

4

(
1 + 3z−1 + 3z−2 + 1z−3

)
(5.100)

and

H(z) =
1

4

(
−1 + 3z−1 + 3z−2 − 1z−3

)
. (5.101)

The transfer functions for the two-channel length-4 linear-phase lattice filters
are:

G(z) =
(
(1 + a[0]) + a[0]z−1 + a[0]z−2 + (1 + a[0])z−3

)
s (5.102)

H(z) =
(
−(1 + a[0]) + a[0]z−1 + a[0]z−2 − (1 + a[0])z−3

)
s. (5.103)

Comparing (5.100) with (5.102), we find

s = −1/2 a[0] = −1.5. (5.104)
5.25

328 5. Multirate Signal Processing

Table 5.6. Effort to compute two-channel filter banks if both filter are of length
L.

Type

Number of
real

multipliers

Number of
real

adders
see
Fig. Speed

Can
use

RAG ?

Polyphase with any coefficients

Direct FIR filtering 2L 2L− 2 5.58 2fs �
Lifting ≈ L ≈ L 5.60 2fs −
Quadrature mirror filter (QMF)

Identical polyphase filter L L 5.61 2fs �
Orthogonal filter

Transposed FIR filter L 2L− 2 5.62 fs �
Lattice L + 1 3L/4 5.63 2fs −
Linear-phase filter

Symmetric filter L 2L− 2 3.5 2fs �
Lattice L/2 3L/2− 1 5.65 2fs −

Note that, compared with the direct implementation, only about one quarter
of the multipliers are required.

The disadvantage of the linear-phase lattice is that not all linear-phase
filters can be implemented. Specifically, G(z) must be even symmetric, H(z)
must be odd symmetric, and both filters must be of the same length, with
an even number of samples.

Comparison of implementation options. Finally, Table 5.6 compares
the different implementation options, which include the general case and
special types like QMF, linear-phase and orthogonal.

Table 5.6 shows the required number of multipliers and adders, the refer-
ence figure, the maximum input rate, and the structurally important question
of whether the coefficients can be implemented using reduced adder graph
technique, or occur as single-multiplier coefficients. For shorter filters, the lat-
tice structure seems to be attractive, while for longer filters, RAG will most
often produce smaller and faster designs. Note that the number of multipliers
and adders in Table 5.6 are an estimate of the hardware effort required for
the filter, and not the typical number found in the literature for the compu-
tational effort per input sample in a PDSP/µP solution [104, 138].

Excellent additional literature about two-channel filter banks is available
(see [102, 135, 138, 139]).

5.8 Wavelets 329

5.8 Wavelets

A time-frequency representation of signals processed through transform me-
thods has proven beneficial for audio and image processing [135, 140, 141].
Many signals subject to analysis are known to have statistically constant
properties for only short time frames (e.g., speech or audio signals). It is
therefore reasonable to analyze such signals in a short window, compute the
signal parameter, and slide the window forward to analyze the next frame. If
this analysis is based on Fourier transforms, it is called a short-term Fourier
transform (STFT).

A short-term Fourier transform (STFT) is formally defined by

X(τ, f) =
∫ ∞

−∞
x(t)w(t − τ) e−j2πft dt, (5.105)

i.e., it slides a window function w(t − τ) over the signal x(t), and produces
a continuous time–frequency map. The window should taper smoothly to
zero, both in frequency and time, to ensure localization in frequency Δf

and time Δt of the mapping. One weight function, the Gaussian function
(g(t) = e−t2), is optimal in this sense, and provides the minimum (Heisenberg
principle) productΔfΔt (i.e., best localization), as proposed by Gabor in 1949
[142]. The discretization of the Gabor transform leads to the discrete Gabor
transform (DGT). The Gabor transform uses identical resolution windows
throughout the time and frequency plane (see Fig. 5.67a). Every rectangle
in Fig. 5.67a has exactly the same shape, but often a constant Q (i.e., the
quotient of bandwidth to center frequency) is desirable, especially in audio
and image processing. That is, for high frequencies we wish to have broadband
filters and short sampling intervals, while for low frequencies, the bandwidth
should be small and the intervals larger. This can be accomplished with the
continuous wavelet transform (CWT), introduced by Grossmann and Morlet
[143],

CWT(τ, f) =
∫ ∞

−∞
x(t)h

(
t− τ
s

)
dt, (5.106)

where h(t), known from the Heugens principle in physics, is called a small
wave or wavelet. Some typical wavelets are displayed in Fig. 5.68.

ω

DA()DD()AD()AA()ω ω

X()

ω ω
ω

(a)

ω

1D ()23 3A ()

X()

ωD () ω ωD ()ω
ω

(b)

Fig. 5.66. Frequency distribution for (a) Fourier (constant bandwidth) and (b)
constant Q.

330 5. Multirate Signal Processing

(a) STFT lattice

Time t→

Fr
eq

ue
nc

y
 f

→
(b) Wavelet lattice

Time t→

Fr
eq

ue
nc

y
 f

→
Fig. 5.67. Time frequency grids for a chirp signal. (a) Short-term Fourier trans-
form. (b) Wavelet transform.

If we use now as a wavelet

h(t) =
(
ej2πkt − e−k2/2

)
e−t2/2 (5.107)

we still enjoy the “optimal” properties of the Gaussian window, but now with
different scales in time and frequency. This so-called Morlet transform is also
subject to quantization, and is then called the discrete Morlet transformation
(DMT) [144]. In the discrete case the lattice points in time and frequency are
shown in Fig. 5.67b. The exponential term e−k2/2 in (5.107) was introduced
such that the wavelet is DC free. The following examples show the excellent
performance of the Gaussian window.

Example 5.26: Analysis of a Chirp Signal

−1 0 1 2
−1

−0.5

0

0.5

1

Daubechies wavelet

(c)
−4 −2 0 2 4
−1

−0.5

0

0.5

1

(a)

Morlet wavelet

−5 0 5
−1

−0.5

0

0.5

1

Meyer wavelet

(b)

Fig. 5.68. Some typical wavelets from Morlet, Meyer, and Daubechies.

5.8 Wavelets 331

0 200 400 600 800 1000
−1

−0.5

0

0.5

1

T
im

e
si

gn
al

0 200 400 600 800 1000
−1

−0.5

0

0.5

1

(a) Morlet analysis

S
ca

lin
g

200 400 600 800 1000
100
94
88
82
76
70
64
58
52
46
40
34
28
22
16
10
4

(b) Haar analysis

200 400 600 800 1000
100
94
88
82
76
70
64
58
52
46
40
34
28
22
16
10
4

Fig. 5.69. Analysis of a chirp signal with (a) Discrete Morlet transform. (b) Haar
transform.

Figure 5.69 shows the analysis of a constant amplitude signal with increasing
frequency. Such signals are called chirp signals. If we applied the Fourier
transform we would get a uniform spectrum, because all frequencies are
present. The Fourier spectrum does not preserve time-related information.
If we use instead an STFT with a Gaussian window, i.e., the Morlet trans-
form, as shown in Fig. 5.69a, we can clearly see the increasing frequency.
But the Gaussian window shows the best localization of all windows. On the
other hand, with a Haar window we would have less computational effort,
but, as can be seen from Fig. 5.69b, the Haar window will achieve less precise
time-frequency localization of the signal. 5.26

Both DGT and DMT provide good localization by using a Gaussian win-
dow, but both are computationally intensive. An efficient multiplier-free im-
plementation is based on two ideas [144]. First, the Gaussian window can
be sufficiently approximated by a convolution of (≥ 3) rectangular func-
tions, and second, single-passband frequency-sampling filters (FSF) can be
efficiently implemented by defining algebraic integers over polynomial rings,
as introduced in [144].

332 5. Multirate Signal Processing

2

1

G(z)

2

3

2

G(z)

H(z)

2

^

^

^

H(z)
^

^

^

SynthesisTime t x[n]^

Scaling

2

H(z)

1

G(z)

H(z)

G(z)

H(z)

G(z)

H(z)

G(z)

Analysis
x[n]

a [n]

d [n]

d [n]

a [n]
3d [n]

a [n]

2

2

2

2

2

2

2

2

2

Fig. 5.70. Wavelets tree decomposition in three octaves (c©1999 Springer Press
[5]).

In the following, we wish to focus our attention on a newly popular anal-
ysis method called the discrete wavelet transform, which better exploits the
auditory and visual human perception mode (i.e., constant Q), and also can
often be more efficiently computed, using O(n) complexity algorithms.

5.8.1 The Discrete Wavelet Transformation

A discrete-time version of the analog model leads to the discrete wavelet
transform (DWT). In practical applications, the DWT is restricted to the
discrete time dyadic DWT with a = 2, and will be considered in the fol-
lowing. The DWT achieves the constant Q bandwidth distribution shown in
Fig. 5.66b and Fig. 5.67b by always applying the two-channel filter bank in
a filter tree to the lowpass signal, as shown in Fig. 5.70.

We now wish to focus on what conditions for the CWT wavelet allow it
to be realized with a two-channel DWT filter bank. We may argue that if
we sample a continuous wavelet at an appropriate rate (above the Nyquist
rate), we may call the sampled version a DWT. But, in general, only those
continuous wavelet transforms that can be realized with a two-channel filter
bank are called DWT.

Closely related to whether a continuous wavelet ψ(t) can be realized with
a two-channel DWT, is the question of whether the scaling equation

5.8 Wavelets 333

φ(t) =
∑

n

g[n] φ(2t− n) (5.108)

exists, where the actual wavelet is computed with

ψ(t) =
∑

n

h[n]φ(2t− n), (5.109)

where g[n] is a lowpass, and h[n] a highpass filter. Note that φ(t) and ψ(t)
are continuous functions, while g[n] and h[n] are sample sequences (but still
may also be IIR filters). Note that (5.108) is similar to the self-similarity
(φ(t) = φ(at)) exhibited by fractals. In fact, the scaling equation may iterate
to a fractal, but that is, in general, not the desired case, because most often a
smooth wavelet is desired. The smoothness can be improved if we use a filter
with maximal numbers of zeros at π.

We consider now backwards reconstruction: we start with the filter g[n],
and construct the corresponding wavelet. This is the most common case,
especially if we use the half-band design from Algorithm 5.20 (p. 318) to
generate perfect reconstruction filter pairs of the desired length and property.

To get a graphical interpretation of the wavelet, we start with a rectan-
gular function (box function) and build, according to (5.108), the following
graphical iteration:

φ(k+1)(t) =
∑

n

g[n] φ(k)(2t− n). (5.110)

If this converges to a stable φ(t), the (new) wavelet is found. This itera-
tion obviously converges for the Haar filter {1, 1} immediately after the first
iteration, because the sum of two box functions scaled and added is again a
box function, i.e.,

r(t) r(2t)+r(2t-1)

=

Let us now graphically construct the wavelet that belongs to the filter
g[n] = {1, 1, 1, 1}, which we will call Hutlet4 [145].

Example 5.27: Hutlet of Length-4
We start with four box functions weighted by g[n] = {1, 1, 1, 1}. The sum

shown in Fig. 5.71a is the starting φ(1)(t). This function is scaled by two,
and the sum gives a two-step function. After 10 iterations we already get a
very smooth trapezoid function. If we now use the QMF relation, from (5.78)
(p. 314), to construct the actual wavelet, we get the Hutlet4, which has two
triangles as shown in Fig. 5.72. 5.27

334 5. Multirate Signal Processing

0 1 2 3
0

0.2

0.4

0.6

0.8

1

(a)

Time t

1.
 It

er
at

io
n

H
ut

le
t4

0 1 2 3
0

0.2

0.4

0.6

0.8

1

(b)

Time t

2.
 It

er
at

io
n

H
ut

le
t4

0 1 2 3
0

0.2

0.4

0.6

0.8

1

(c)

Time t

3.
 It

er
at

io
n

H
ut

le
t4

0 1 2 3
0

0.2

0.4

0.6

0.8

1

(d)

Time t

10
. I

te
ra

tio
n

H
ut

le
t4

Fig. 5.71. Iteration steps 1, 2, 3, and 10 for Hutlet4. (solid line: φ(k+1)(t); dotted

line: φ(k)(2t− n); and ideal Hut-function: dashed)

We note that g[n] is the impulse response of the moving-average filter,
and can be implemented as an one-stage CIC filter [146]. Figure 5.72 shows
all scaling functions and wavelets for this type of wavelet with even length
coefficients.

As noted before, the iteration defined by (5.110) may also converge to
a fractal. Such an example is shown in Fig. 5.73, which is the wavelet for
the length-5 “moving average filter.” This indicates the challenge of the fil-
ter selection g[n]: it may converge to a smooth or, totally chaotic function,
depending only on an apparently insignificant property like the length of the
filter!

We still have not explained why the two-scale equation (5.108) is so im-
portant for the DWT. This can be better understood if we rearrange the
downsampler (compressor) and filter in the analysis part of the DWT, using
the “Noble” relation

(↓M) H(z) = H(zM) (↓M), (5.111)

which was introduced in Sect. 5.1.1, p. 246. The results for a three-level
filter bank are shown in Fig. 5.74. If we compute the impulse response of the
cascade sequences, i.e.,

H(z)↔ d1[k/2]

5.8 Wavelets 335

−0.5 0 0.5 1
−1

−0.5

0

0.5

1
Hutlet2

φ(
t)

 a
nd

 ψ
(t

)

0 1 2 3
−1

−0.5

0

0.5

1
Hutlet4

0 2 4
−1

−0.5

0

0.5

1
Hutlet6

0 2 4 6
−1

−0.5

0

0.5

1
Hutlet8

Time t

φ(
t)

 a
nd

 ψ
(t

)

0 2 4 6 8
−1

−0.5

0

0.5

1
Hutlet10

Time t

0 5 10
−1

−0.5

0

0.5

1
Hutlet12

Time t

Fig. 5.72. The Hutlet wavelet family (solid line) and scaling function (dashed
line) after 10 iterations (c©1999 Springer Press [5]).

G(z)H(z2) ↔ d2[k/4]
G(z)G(z2)H(z4) ↔ d3[k/8]
G(z)G(z2)G(z4) ↔ a3[k/8],

we find that a3 is an approximation to the scaling function, while d3 gives
an approximation to the mother wavelet, if we compare the graphs with the
continuous wavelet shown in Fig. 5.68 (p. 330).

This is not always possible. For instance, for the Morlet wavelet shown in
Fig. 5.68 (p. 330), no scaling function can be found, and a realization using
the DWT is not possible.

Two-channel DWT design examples for the Daubechies length-4 filter
have already been discussed, in combination with polyphase representation
(Example 5.1, p. 250), and the lattice implementation of orthogonal filters in
Example 5.24 (p. 324).

336 5. Multirate Signal Processing

−5 0 5
0

0.2

0.4

0.6

0.8

1

(a)

Time t

1.
 It

er
at

io
n

H
ut

le
t5

−5 0 5
0

0.2

0.4

0.6

0.8

1

(b)

Time t

2.
 It

er
at

io
n

H
ut

le
t5

−5 0 5
0

0.2

0.4

0.6

0.8

1

(c)

Time t

4.
 It

er
at

io
n

H
ut

le
t5

−5 0 5
0

0.2

0.4

0.6

0.8

1

(d)

Time t

8.
 It

er
at

io
n

H
ut

le
t5

Fig. 5.73. Iteration step 1,2,4, and 8 for Hutlet5. The sequence converges to a
fractal!

Exercises

Note: If you have no prior experience with the Quartus II software, refer
to the case study found in Sect. 1.4.3, p. 29. If not otherwise noted use the
EP2C35F672C6 from the Cyclone II family for the Quartus II synthesis eval-
uations.

5.1: Let F (z) = 1 + z−d. For which d do we have a half-band filter according to
Definition 5.7 (p. 274)?

5.2: Let F (z) = 1 + z−5 be a half-band filter.
(a) Draw |F (ω)|. What kind of symmetry does this filter have?
(b) Use Algorithm 5.20 (p. 318) to compute a perfectly reconstructing real filter
bank. What is the total delay of the filter bank?

5.3: Use the half-band filter F3 from Example 5.21 (p. 318) to build a perfect-
reconstruction filter bank, using Algorithm 5.20 (p. 318), of length
(a) 1/7.
(b) 2/6.

5.4: How many different filter pairs can be built, using F3 from Example 5.21
(p. 318), if both filters are
(a) Complex.
(b) Real.

Exercises 337

G(z)4

x[n]

3

d [n/8]3

a [n/8]

d [n/4]2

d [n/2]1

3d [n]
8

2d [n]
4

1d [n]
2

3a [n]
8

x[n]

G(z)

H(z)

2

G(z)2

4

H(z)

H(z)

(a) (b)

Fig. 5.74. DWT filter bank rearrange using Noble relations. (a) Transfer function
in the z-domain. (b) Impulse response for the length-4 Daubechies filters.

(c) Linear-phase.
(d) Orthogonal filter bank.

5.5: Use the half-band filter F2(z) = 1+2z−1+z−2 to compute, based on Algorithm
5.20 (p. 318), all possible perfect-reconstructing filter banks.

5.6: (a) Compute the number of real additions and multiplications for a direct im-
plementation of the critically sampled uniform DFT filter bank shown in Fig. 5.50
(p. 309). Assume the length L analysis and synthesis filters have complex coeffi-
cients, and the inputs are real valued.
(b) Assume an FFT algorithm is used that needs (15N log2(N)) real additions and
multiplications. Compute the total effort for a uniform DFT filter bank, using the
polyphase representation from Figs. 5.52 (p. 310) and 5.53 (p. 312), for R of length
L complex filters.
(c) Using the results from (a) and (b) compute the effort for a critically sampled
DFT filter bank with L = 64 and R = 16.

5.7: Use the lossy integrator from Example 5.15 (p. 311) to implement an R = 4
uniform DFT filter bank.
(a) Compute the analysis polyphase filter Hk(z).
(b) Determine the synthesis filter Fk(z) for perfect reconstruction.
(c) Determine the 4×4 DFT matrix. How many real additions and multiplications
are used to compute the DFT?
(d) Compute the total computational effort of the whole filter bank, in terms of
real additions and multiplications per input sample.

5.8: Analyze the frequency response of each Goodman and Carey half-band filter
from Table 5.3 (p. 274). Zoom in on the passband to estimate the ripple of the
filter.

338 5. Multirate Signal Processing

5.9: Prove the perfect reconstruction for the lifting and dual-lifting scheme from
(5.89) and (5.90) on p. 321.

5.10: (a) Implement the Daubechies length-4 filter using the lifting scheme from
Example 5.23 (p. 321), with 8-bit input and coefficient, and 10-bit output quanti-
zation.
(b) Simulate the design with two impulses of amplitude 100, similar to Fig. 5.64
(p. 326).
(c) Determine the Registered Performance and the used resources (LEs, multi-
pliers, and M4Ks).
(d) Compare the lifting design with the direct polyphase implementation (Example
5.1, p. 250) and with the lattice implementation (Example 5.24, p. 324), in terms
of size and speed.

5.11: Use component instantiation of the two designs from Example 5.4 (p. 262) and
Example 5.6 (p. 269) to compute the difference of the two filter outputs. Determine
the maximum positive and negative deviation.

5.12: (a) Use the reduced adder graph design from Fig. 3.11 (p. 185) to build a
half-band filter F6 (see Table 5.3, p. 274) for 8-bit inputs using Quartus II. Use the
transposed FIR structure (Fig. 3.3, p. 167) as the filter architecture.
(b) Verify the function via a simulation of the impulse response.
(c) Determine the Registered Performance and the used resources (LEs, multi-
pliers, and M4Ks), of the F6 design.

5.13: (a) Compute the polyphase representation for F6 from Table 5.3, p. 274.
(b) Implement the polyphase filter F6 with decimation R = 2 for 8-bit inputs with
Quartus II.
(c) Verify the function via a simulation of the impulse (one at even and one at odd)
response.
(d) Determine the Registered Performance and the used resources (LEs, multi-
pliers, and M4Ks) of the polyphase design.
(e) What are the advantages and disadvantages of the polyphase design, when
compared with the direct implementation from Exercise 5.12 (p. 338), in terms of
size and speed.

5.14: (a) Compute the 8-bit quantized DB4 filters G(z) by multiplication of (5.95)
with 256 and taking the integer part. Use the programm csd3e.exe from the CD-
ROM or the data from Table 2.3, p. 64.
(b1) Design the filter G(z) only from Fig. 5.62, p. 323 for 9-bit inputs with Quartus
II. Assume that input and coefficient are signed, i.e., only one additional guard bit
is required for a filter of length 4.
(b2) Determine the Registered Performance and the used resources (LEs, multi-
pliers, and M4Ks) of the filter G(z).
(b3) What are the advantages and disadvantages of the CSD design, when com-
pared with the programmable FIR filter from Example 3.1 (p. 167), in terms of size
and speed.
(c1) Design the filter bank with H(z) and G(z) from Fig. 5.62, p. 323.
(c2) Determine the Registered Performance and the used resources (LEs, multi-
pliers, and M4Ks) of the filter bank.
(c3) What are the advantages and disadvantages of the CSD filter bank design,
when compared with the lattice design from Example 5.24, (p. 324), in terms of
size and speed.

Exercises 339

5.15: (a) Use the MAG coding from Table 2.3 (p. 64) to build the sinc filter from
Example 5.12, (p. 285).
(a1) Determine the Registered Performance and the used resources (LEs, multi-
pliers, and M4Ks) of the MAG rc_sinc design.
(b) Implement a pipelined adder tree to improve the throughput of the filter
rc_sinc design.
(b1) Determine the Registered Performance and the used resources (LEs, multi-
pliers, and M4Ks) for the improved design.

5.16: (a) Use the sinc filter data from Example 5.12, (p. 285) to estimate the im-
plementation effort for an R = 147/160 rate changer. Assume that the two filters
each account for 50% of the resources.
(b) Use the Farrow filter data from Example 5.13, (p. 292) to estimate the imple-
mentation effort for an R = 147/160 rate changer.
(c) Compare the two design options from (a) and (b) for small and large values of
R1 in terms of required LEs and Registered Performance.

5.17: The Farrow combiner from Example 5.13, (p. 292) uses several multiplications
in series. Pipeline register for the data and multiplier can be added to perform a
maximum-speed design.
(a) How many pipeline stages (total) are required for a maximum-speed design if
we use:
(a1) an embedded array multiplier?
(a2) an LE-based multiplier?
(b) Design the HDL code for a maximum-speed design using:
(b1) an embedded array multiplier
(b2) an LE-based multiplier
(c) Determine the Registered Performance and the used resources (LEs, multi-
pliers, and M4Ks) for the improved designs.

5.18: (a) Compute and plot using MatLab or C the impulse response of the IIR
filter given in (5.56), p. 298. Is this filter stable?
(b) Simulate the IIR filter using the following input signal: x = [0, 0, 0, 1, 2, 3, 0,
0, 0]; using the filter F= [1 4 1]/6 determine
(b1) x filtered by F (z) followed by 1/(F (z) and plot the results.
(b2) x filtered by 1/F (z) followed by F (z) and plot the results.
(c) Split the filter 1/F (z) in a stable causal and a-causal part and apply the causal
first-to-last sample while the a-causal is applied last-to-first sample. Repeat the
simulation in (b).

5.19: (a) Plot the filter transfer function of the IIR filter given in (5.56), p. 298.
(b) Build the length-11 IFFT of the filter and apply a DC correction, i.e.,∑

k
h(k) = 0.

(c) Unser et al. [125] determined the following length-11 FIR approximation for the
IIR: [−0.0019876, 0.00883099, −0.0332243, 0.124384, −0.46405, 1.73209, −0.46405,
0.124384, −0.0332243, 0.00883099, −0.0019876]. Plot the impulse response and
transfer function of this filter.
(d) Determine the error of the two solutions in (b) and (c) by computing the convo-
lution with the filter (5.55) and building the square sum of the elements (excluding
1).

5.20: Use the Farrow equation (5.60) (p. 300) for B-splines to determine the Farrow
matrix for the ck for

(a) I-MOMS with φ(t) = β3(t)− 1
6

d2β3(t)

dt2

(b) O-MOMS with φ(t) = β3(t) + 1
42

d2β3(t)

dt2

340 5. Multirate Signal Processing

5.21: Study the FSM part of the cubic B-spline interpolator from Example 5.14,
(p. 303) for an R = 147/160 rate changer.
(a) Assume that the delays dk are stored in LUTs or M4Ks tables. What is the
required table size if dk are quantized to
(a1) 8 bit unsigned?
(a2) 16 bit unsigned?
(b) Determine the first five phase values for (a1) and (a2). Is 8 bit sufficient preci-
sion?
(c) Assume that the Farrow structure is used, i.e., the delays dk are computed
successively using the Horner scheme. What are the FSM hardware requirements
for this solution?

5.22: Use the results from Exercise 5.20 and the fractional rate change design from
Example 5.14, (p. 303) to design an R = 3/4 rate changer using O-MOMS.
(a) Determine the RAG-n for the FIR compensation filter with the following coeffi-
cients: (−0.0094, 0.0292,−0.0831, 0.2432,−0.7048, 2.0498,−0.7048, 0.2432, . . .)
= (−1, 4,−11, 31,−90, 262,−90, 31,−11, 4,−1)/128.
(b) Replace the IIR filter with the FIR filter from (a) and adjust the Farrow matrix
coefficients as determined in Exercise 5.20(b).
(c) Verify the functionality with a triangular test function as in Fig. 5.48, p. 307.
(d) Determine the Registered Performance and the used resources (LEs, embed-
ded multipliers, and M4Ks) for the O-MOMS design.

5.23: Use the Farrow matrix (5.60) (p. 300) and the fractional rate change design
from Example 5.14, (p. 303) to design an R = 3/4 rate changer using B-splines.
(a) Determine the RAG-n for the FIR compensation filter with the following coef-
ficients: (0.0085,−0.0337, 0.1239,−0.4645, 1.7316,−0.4645, 0.1239,−0.0337, 0.0085)
= (1,−4, 16,−59, 222,−59, 16,−4, 1)/128
(b) Replace the IIR filter with the FIR filter from (a).
(c) Verify the functionality with a triangular test function as in Fig. 5.48, p. 307.
(d) Determine the Registered Performance and the used resources (LEs, embed-
ded multipliers, and M4Ks) for the B-spline design.

5.24: (a) The GC4114 has a four-stage CIC interpolator with a variable sampling
change factor R. Try to download and study the datasheet for the GC4114 from
the WWW.
(b) Write a short C or MatLab program that computes the bit growth Bk =
log2(Gk) for the CIC interpolator using Hogenauers [106] equation:

Gk =

{
2k k = 1, 2, . . . , S
22S−k(RD)k−S

R
k = S + 1, S + 2, . . . , 2S

(5.112)

where D is the delay of the comb, S is number of stages, and R is the interpolation
factor. Determine for the GC4114 (S = 4 stages, delay comb D = 1) the output bit
growth for R=8, R=32, and R=16 384.
(c) Write a MatLab program to simulate a four-stage CIC interpolator with delay 1
in the comb and R=32 upsampling. Try to match the simulation shown in Fig. 5.75.
(d) Measure the bit growth for each stage using the program from (c) for a step
input and compare the results to (b).

5.25: Using the results from Exercise 5.24
(a) Design a four-stage CIC interpolator with delay D = 1 in the comb and R = 32
rate change for 16-bit input. Use for the internal bit width the output bit width
you determined in Exercise 5.24(b) for R=32. Try to match the MatLab simulation

Exercises 341

0 10 20 30

−1

−0.5

0

0.5

1

 n

In
pu

t x
[n

]
(a)

0 10 20 30

−3

−2

−1

0

1

2

3

 n

4.
 C

om
b

c4
[n

]

(b)

0 200 400 600 800 1000

−3

−2

−1

0

1

2

3

 m

U
ps

am
pl

ed
 c

4[
m

]

(c)

0 200 400 600 800 1000

−3

−2

−1

0

1

2

3

x 10
4

 m

O
ut

pu
t h

ig
h

ra
te

 y
[m

]

(d)

Fig. 5.75. Simulation of the GC4114 CIC interpolator.

shown in Fig. 5.75 with the HDL simulation for the input and output.
(b) Design the four-stage CIC interpolator now with the detailed bit width deter-
mined in Exercise 5.24(b). Try to match the MatLab simulation with the HDL
simulation for the input and output.
(c) Determine the Registered Performance and the used resources (LEs, multi-
pliers, and M2Ks/M4Ks) for the two designs from (a) and (b) using:
(c1) the device EPF10K70RC240-4 from the UP2 board
(c2) the device EP2C35F672C6 from the Cyclone II family

6. Fourier Transforms

The discrete Fourier transform (DFT) and its fast implementation, the fast
Fourier transform (FFT), have played a central role in digital signal process-
ing.

DFT and FFT algorithms have been invented (and reinvented) in many
variations. As Heideman et al. [147] pointed out, we know that Gauss used
an FFT-type algorithm that today we call the Cooley–Tukey FFT. In this
chapter we will discuss the most important algorithms summarized in Fig. 6.1.

We will follow the terminology introduced by Burrus [148], who classi-
fied FFT algorithms simply by the (multidimensional) index maps of their
input and output sequences. We will therefore call all algorithms that do not
use a multidimensional index map, DFT algorithms, although some of them,
such as the Winograd DFT algorithms, enjoy an essentially reduced com-
putational effort. DFT and FFT algorithms do not “stand alone”: the most

Winograd FFT algorithms

Cooley−Tukey FFTGoertzel algorithm

Hartley transform

Winograd DFT

Blustein chirp−z transform

Rader algorithm

Computation of
DFT

Good−Thomas FFT

time (DIT)
Decimation in

frequency (DIF)
Decimation in

dimensional index map

Without multi−

dimensional index map

With multi−

Fig. 6.1. Classifications of DFT and FFT algorithms.

344 6. Fourier Transforms

efficient implementations often result in a combination of DFT and FFT al-
gorithms. For instance, the combination of the Rader prime algorithm and
the Good–Thomas FFT results in excellent VLSI implementations. The lit-
erature provides many FFT design examples. We find implementations with
PDSPs and ASICs [149, 150, 151, 152, 153, 154]. FFTs have also been devel-
oped using FPGAs for 1-D [155, 156, 157] and 2-D transforms [47, 158].

We will discuss in this chapter the four most important DFT algorithms
and the three most often used FFT algorithms, in terms of computational
effort, and will compare the different implementation issues. At the end of the
chapter, we will discuss Fourier-related transforms, such as the DCT, which
is an important tool in image compression (e.g., JPEG, MPEG). We start
with a short review of definitions and the most important properties of the
DFT.

For more detailed study, students should be aware that DFT algorithms
are covered in basic DSP books [5, 79, 159, 160], and a wide variety of FFT
books are also available [66, 161, 162, 163, 164, 165].

6.1 The Discrete Fourier Transform Algorithms

We will start with a review of the most important DFT properties and will
then review basic DFT algorithms introduced by Bluestein, Goertzel, Rader,
and Winograd.

6.1.1 Fourier Transform Approximations Using the DFT

The Fourier transform pair is defined by

X(f) =
∫ ∞

−∞
x(t)e−j2πft dt ←−−→ x(t) =

∫ ∞

−∞
X(f)ej2πft df. (6.1)

The formulation assumes a continuous signal of infinite duration and
bandwidth. For practical representation, we must sample in time and fre-
quency, and amplitudes must be quantized. From an implementation stand-
point, we prefer to use a finite number of samples in time and frequency. This
leads to the discrete Fourier transform (DFT), where N samples are used
in time and frequency, according to

X [k] =
N−1∑

n=0

x[n]e−j2πkn/N =
N−1∑

n=0

x[n]W kn
N , (6.2)

and the inverse DFT (IDFT) is defined as

x[n] =
1
N

N−1∑

k=0

X [k]ej2πkn/N =
1
N

N−1∑

k=0

X [k]W−kn
N , (6.3)

6.1 The Discrete Fourier Transform Algorithms 345

 0 N/2
0

0.25

0.5

0.75

1

Time k

A
m

pl
itu

de

Hanning
Gauss
Blackman
Kaiser

0 1 2 3 4 5 6 7
−80

−60

−40

−20

0

Frequency

A
m

pl
itu

de
 in

 d
B

Fig. 6.2. Window functions in time and frequency.

or, in vector/matrix notation

X = Wx ↔ x =
1
N

W ∗X. (6.4)

If we use the DFT to approximate the Fourier spectrum, we must remember
the effect of sampling in time and frequency, namely:

• By sampling in time, we get a periodic spectrum with the sampling fre-
quency fS. The approximation of a Fourier transform by a DFT is rea-
sonable only if the frequency components of x(t) are concentrated on a
smaller range than the Nyquist frequency fS/2, as stated in the “Shannon
sampling theorem.”

• By sampling in the frequency domain, the time function becomes periodic,
i.e., the DFT assumes the time series to be periodic. If an N -sample DFT
is applied to a signal that does not complete an integer number of cycles
within an N -sample window, a phenomenon called leakage occurs. There-
fore, if possible, we should choose the sampling frequency and the analysis
window in such a way that it covers an integer number of periods of x(t),
if x(t) is periodic.

A more practical alternative for decreasing leakage is the use of a window
function that tapers smoothly to zero on both sides. Such window functions
were already discussed in the context of FIR filter design in Chap. 3 (see
Table 3.2, p. 175). Figure 6.2 shows the time and frequency behavior of some
typical windows [107, 166].

An example illustrates the use of a window function.

Example 6.1: Windowing
Figure 6.3a shows a sinusoidal signal that does not complete an integer num-
ber of periods in its sample window. The Fourier transform of the signal
should ideally include only the two Dirac functions at ±ω0, as displayed in
Fig. 6.3b. Figures 6.3c and d show the DFT analysis with different windows.
We note that the analysis with the box function has somewhat more ripple

346 6. Fourier Transforms

(d)

(a)

(b)

DFT with box window DFT with Hanning window

(b)

ω0

DFT window

ω

Fourier transform

0−ω

Fig. 6.3. Analysis of periodic function through the DFT, using window functions.

than the analysis with the Hanning window. An exact analysis would also
show that the main lope width with Hanning analysis is larger than the width
achieved with the box function, i.e., no window. 6.1

6.1.2 Properties of the DFT

The most important properties of the DFT are summarized in Table 6.1.
Many properties are identical with the Fourier transform, e.g., the transform
is unique (bijective), the superposition applies, and real and imaginary parts
are related through the Hilbert transform.

The similarity of the forward and inverse transform leads to an alternative
inversion algorithm. Using the vector/matrix notation (6.4) of the DFT

X = Wx ↔ x =
1
N

W ∗X, (6.5)

we can conclude

x∗ =
1
N

(W ∗X)∗ =
1
N

WX∗, (6.6)

i.e., we can use the DFT of X∗ scaled by 1/N to compute the inverse DFT.

6.1 The Discrete Fourier Transform Algorithms 347

Table 6.1. Theorems of the DFT

Theorem x[n] X[k]

Transform x[n]
N−1∑
n=0

x[n]e−j2πnk/N

Inverse Transform 1
N

N−1∑
k=0

X[k]ej2πnk/N X[k]

Superposition s1x1[n] + s2x2[n] s1X1[k] + s2X2[k]
Time reversal x[−n] X[−k]
Conjugate complex x∗[n] X∗[−k]
Split
Real part �(x[n]) (X[k] + X∗[−k])/2
Imaginary part �(x[n]) (X[k] + X∗[−k])/(2j)
Real even part xe[n] = (x[n] + x[−n])/2 �(X[k])
Real odd part xo[n] = (x[n]− x[−n])/2 j�(X[k])
Symmetry X[n] Nx[−k]

Cyclic
convolution

x[n] � f [n] X[k]F [k]

Multiplication x[n]× f [n] 1
N

X[k] � F [k]

Periodic shift x[n− d mod N] X[k]e−j2πdk/N

Parseval
theorem

N−1∑
n=0

|x[n]|2 1
N

N−1∑
k=0

|X[k]|2

DFT of a Real Sequence

We now turn to some additional computational savings for DFT (and FFT)
computations, when the input sequence is real. In this case, we have two
options: we can compute with one N -point DFT the DFT of two N -point
sequences, or we can compute with an N -point DFT a length 2N DFT of a
real sequence.

If we use the Hilbert property from Table 6.1, i.e., a real sequence has an
even-symmetric real spectrum and an odd imaginary spectrum, the following
algorithms can be synthesized [161].

348 6. Fourier Transforms

Algorithm 6.2: Length 2N Transform with N-point DFT

The algorithm to compute the 2N -point DFT X [k] = Xr[k]+ jXi[k] from
the time sequence x[n] is as follows:
1) Build an N -point sequence y[n] = x[2n] + jx[2n + 1] with n =

0, 1, . . .N − 1.
2) Compute y[n] ◦−•Y [k] = Yr[k] + jYi[k]. where �(Y [k]) = Yr[k] is the

real and �(Y [k]) = Yi[k] is the imaginary part of Y [k], respectively.
3) Compute

Xr[k] =
Yr[k] + Yr[−k]

2
+ cos (πk/N)

Yi[k] + Yi[−k]
2

− sin (πk/N)
Yr[k]− Yr[−k]

2

Xi[k] =
Yi[k]− Yi[−k]

2
− sin (πk/N)

Yi[k] + Yi[−k]
2

− cos (πk/N)
Yr[k]− Yr[−k]

2
with k = 0, 1, . . .N − 1.

The computational effort, therefore, besides an N -point DFT (or FFT), is 4
N real additions and multiplications, from the twiddle factors ± exp(jπk/N).

To transform two length-N sequences with a length-N DFT, we use the
fact (see Table 6.1) that a real sequence has an even spectrum, while the
spectrum of a purely imaginary sequence is odd. This is the basis for the
following algorithm.

Algorithm 6.3: Two Length N Transforms with one N-point
DFT

The algorithm to compute the N -point DFT g[n] ◦−•G[k] and
h[n] ◦−•H [k] is as follows:
1) Build an N -point sequence y[n] = h[n]+ jg[n] with n = 0, 1, . . .N−1.
2) Compute y[n] ◦−•Y [k] = Yr[k] + jYi[k], where �(Y [k]) = Yr[k] is the

real and �(Y [k]) = Yi[k] is the imaginary part of Y [k], respectively.
3) Compute, finally

H [k] =
Yr[k] + Yr[−k]

2
+ j

Yi[k]− Yi[−k]
2

G[k] =
Yi[k] + Yi[−k]

2
− j

Yr[k]− Yr[−k]
2

,

with k = 0, 1, . . .N − 1.

The computational effort, therefore, besides an N -point DFT (or FFT), is 2
N real additions, to form the correct two N -point DFTs.

Fast Convolution Using DFT

One of the most frequent applications of the DFT (or FFT) is the computa-
tion of convolutions. As with the Fourier transform, the convolution in time is

6.1 The Discrete Fourier Transform Algorithms 349

x[n] Re

Im

FFT

*

H[k]/N

Y[k]

*

y[n]

u[k]

Re(u[k])+Im(u[k])

X[k]

Re(H[k]X[k])/N
+Im(H[k]X[k])/N

*

(Y[k]+Y [−k])/2

(Y[k]+Y [−k])/2j

Fig. 6.4. Real convolution using a complex FFT [66].

done by multiplying the two transformed sequences: the two time sequences
are transformed in the frequency domain, we compute a (scalar) pointwise
product, and we transform the product back into the time domain. The main
difference, compared with the Fourier transform, is that now the DFT com-
putes a cyclic, and not a linear, convolution. This must be considered when
implementing fast convolution with the FFT. This leads to two methods
called “overlap save” and “overlap add.” In the overlap save method, we ba-
sically discharge the samples at the border that are corrupted by the cyclic
convolution. In the overlap add method, we zero-pad the filter and signal
in such a way that we can directly add the partial sequences to a common
product stream.

Most often the input sequences for the fast convolution are real. An effi-
cient convolution may therefore be accomplished with a real transform, such
as the Hartley transform discussed in Exercise 6.15, p. 393. We may also con-
struct an FFT-like algorithm for the Hartley transform, and can get about
twice the performance compared with a complex transform [167].

If we wish to utilize an available FFT program, we may use one of the
previously discussed Algorithms, 6.2 or 6.3, for real sequences. An alternative
approach is shown in Fig. 6.4. It shows a similar approach to Algorithm 6.3,
where we implemented two N -point transforms with one N -point DFT, but
in this case we use the “real” part for a DFT, and the imaginary part for
the IDFT, which is needed for the back transformation, according to the
convolution theorem.

It is assumed that the DFT of the real-valued filter (i.e., F [k] = F [−k]∗)
has been computed offline and, in addition, in the frequency domain we need
only N/2 multiplications to compute X [k]F [k].

6.1.3 The Goertzel Algorithm

A single spectral component X [k] in the DFT computation is given by

X [k] = x[0] + x[1]W k
N + x[2]W 2k

N + . . .+ x[N − 1]W (N−1)k
N .

350 6. Fourier Transforms

We can combine all x[n] with the same common factor W k
N , and get

X [k] = x[0] +W k
N

(
x[1] +W k

N

(
x[2] + . . .+W k

Nx[N − 1]) . . .
))
.

It can be noted that this results in a possible recursive computation of
X [k]. This is called the Goertzel algorithm, and is graphically interpreted
by Fig. 6.5. The computation of y[n] starts with the last value of the input
sequence x[N − 1]. After step three, a spectrum value of X [k] is available at
the output.

NW

y[n]x[n]

Register 1

−1z

+

k

Step x[n] Register 1 y[n]

0 x[3] 0 x[3]
1 x[2] W k

4 x[3] x[2] + W k
4 x[3]

2 x[1] W k
4 x[2] + W 2k

4 x[3] x[1] + W k
4 x[2] + W 2k

4 x[3]
3 x[0] W k

4 x[1] x[0] + W k
4 x[1]

+W 2k
4 x[2] + W 3k

4 x[3] +W 2k
4 x[2] + W 3k

4 x[3]

Fig. 6.5. The length-4 Goertzel algorithm.

If we have to compute several spectral components, we can reduce the
complexity if we combine factors of the type e±j2πn/N . This will result in
second-order systems having a denominator according to

z2 − 2z cos
(

2πn
N

)
+ 1.

All complex multiplications are then reduced to real multiplications.
In general, the Goertzel algorithm can be attractive if only a few spec-

tral components have to be computed. For the whole DFT, the effort is of
order N2, and therefore yields no advantage compared with the direct DFT
computation.

6.1.4 The Bluestein Chirp-z Transform

In the Bluestein chirp-z transform (CZT) algorithm, the DFT exponent nk
is quadratic expanded to

nk = −(k − n)2/2 + n2/2 + k2/2. (6.7)

6.1 The Discrete Fourier Transform Algorithms 351

The DFT therefore becomes

X [k] = W
k2/2
N

N−1∑

n=0

(
x[n]Wn2/2

N

)
W

−(k−n)2/2
N . (6.8)

This algorithm is graphically interpreted in Fig. 6.6. This results in the fol-
lowing

Algorithm 6.4: Bluestein Chirp-z Algorithm

The computation of the DFT is done in three steps, namely
1) N multiplication of x[n] with Wn2/2

N

2) Linear convolution of x[n]Wn2/2
N ∗Wn2/2

N

3) N multiplications with W
k2/2
N

For a complete transform, we therefore need a length-N convolution and
2N complex multiplications. The advantage, compared with the Rader algo-
rithms, is that there is no restriction to primes in the transform length N.
The CZT can be defined for every length.

Narasimha et al. [168] and others have noticed that in the CZT algorithm
many coefficients of the FIR filter part are trivial or identical. For instance,
the length-8 CZT has an FIR filter of length 14, but there are only four
different complex coefficients, as graphically interpreted in Fig. 6.7. These
four coefficients are 1, j, and ±e22.5◦

, i.e., we only have two nontrivial real
coefficients to implement.

It may be of general interest what the maximum DFT length for a fixed
number CN of (complex) coefficients is. This is shown in the following table.

DFT
length 8 12 16 24 40 48 72 80 120 144 168 180 240 360 504

CN 4 6 7 8 12 14 16 21 24 28 32 36 42 48 64

As mentioned before, the number of different complex coefficients does not
directly correspond to the implementation effort, because some coefficients

exp(−j k^2/N)

with chirp signal
Postmultiplication

π

Linear
convolution

exp(−j n^2/N)

x[n]

with chirp signal
Premulitplication

X[k]

π

Fig. 6.6. The Bluestein chirp-z algorithm.

352 6. Fourier Transforms

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

1,7,9

2,6,10,14

3,5,11,13

4,8,12

Real(C(n))

Im
ag

(C
(n

))

CZT with 8 points

Fig. 6.7. CZT coefficients C(n) = ej2π
n2/2 mod 8

8 ; n = 1, 2, . . . , 14.

may be trivial (i.e., ±1 or ±j) or may show symmetry. In particular, the
power-of-two length transform enjoys many symmetries, as can be seen from
Fig. 6.8. If we compute the maximum DFT length for a specific number of
nontrivial real coefficients, we find as maximum-length transforms:

DFT length 10 16 20 32 40 48 50 80 96 160 192

sin/cos 2 3 5 6 8 9 10 11 14 20 25

Length 16 and 32 are therefore the maximum length DFTs with only three
and fix real multipliers, respectively.

In general, power-of-two lengths are popular FFT building blocks, and
the following table therefore shows, for length N = 2n, the effort when im-
plementing the CZT filter in transposed form.

N CN sin/cos CSD RAG NOFs for 14-bit
adder adder coefficients

8 4 2 23 7 3,5,33,49,59
16 7 3 91 8 3,25,59,63,387
32 12 6 183 13 3,25,49,73,121,375
64 23 11 431 18 5,25,27,93,181,251,7393
128 44 22 879 31 5,15,25,175,199,319,403,499,1567
256 87 42 1911 49 5,25,765,1443,1737,2837,4637

6.1 The Discrete Fourier Transform Algorithms 353

0 20 40 60 80 100 120
0

10

20

30

40

50

60

70

80
CZT with 4..128 points

DFT length N

N
um

be
r

of
 W

(n
*n

/2
)

N
 c

oe
ffi

ci
en

ts

Complex coefficients
Nontrivial coefficients

Fig. 6.8. Number of complex coefficients and nontrivial real multiplications for the
CZT.

The first column shows the DFT length N. The second column shows
the total number of complex exponentials CN . The worst-case effort for CN

complex coefficients is that 2CN real, nontrivial coefficients must be imple-
mented. The actual number of different nontrivial real coefficients is shown
in column three. We note when comparing columns two and three that for
power-of-two lengths the symmetry and trivial coefficients reduce the num-
ber of nontrivial coefficients. The next columns show, for CZT DFTs up to
length 256, the effort (i.e., number of adders) for a 15-bit (14-bit unsigned
plus sign bit) coefficient precision implementation, using the CSD and RAG
algorithms (discussed in Chap. 2), respectively. For CSD coding no coefficient
symmetry is consider and the adder count is quite high. We note that the
RAG algorithm when compared with CSD can essentially reduce the effort
for DFT lengths larger than 16.

6.1.5 The Rader Algorithm

The Rader algorithm [169, 170] to compute a DFT,

354 6. Fourier Transforms

X [k] =
N−1∑

n=0

x[n]Wnk
N k, n ∈ ZN ; ord(WN) = N (6.9)

is defined only for prime length N. We first compute the DC component with

X [0] =
N−1∑

n=0

x[n]. (6.10)

Because N = p is a prime, we know from the discussion in Chap. 2 (p. 67)
that there is a primitive element, a generator g, that generates all elements
of n and k in the field Zp, excluding zero, i.e., gk ∈ Zp/{0}. We substitute n
by gn mod N and k with gk mod N, and get the following index transform:

X [gk mod N]− x[0] =
N−2∑

n=0

x[gn mod N]W gn+k mod N
N (6.11)

for k ∈ {1, 2, 3, . . . , N − 1}. We note that the right side of (6.11) is a cyclic
convolution, i.e.,

[
x[g0 mod N], x[g1 mod N], . . . , x[gN−2 mod N]

]

�
[
WN ,W

g
N , . . . ,W

gN−2 mod N
N

]
. (6.12)

An example with N = 7 demonstrates the Rader algorithms.

Example 6.5: Rader Algorithms for N = 7
For N = 7, we know that g = 3 is a primitive element (see, for instance, [5],
Table B.7), and the index transform is

[30, 31, 32, 33, 34, 35] mod 7 ≡ [1, 3, 2, 6, 4, 5]. (6.13)

We first compute the DC component

X[0] =

6∑

n=0

x[n] = x[0] + x[1] + x[2] + x[3] + x[4] + x[5] + x[6],

and in the second step, the cyclic convolution of X[k]− x[0]

[x[1], x[3], x[2], x[6], x[4], x[5]] � [W7, W
3
7 , W 2

7 , W 6
7 , W 4

7 , W 5
7],

or in matrix notation⎡

⎢⎢⎢⎢⎣

X[1]
X[3]
X[2]
X[6]
X[4]
X[5]

⎤

⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎢⎣

W 1
7 W 3

7 W 2
7 W 6

7 W 4
7 W 5

7

W 3
7 W 2

7 W 6
7 W 4

7 W 5
7 W 1

7

W 2
7 W 6

7 W 4
7 W 5

7 W 1
7 W 3

7

W 6
7 W 4

7 W 5
7 W 1

7 W 3
7 W 2

7

W 4
7 W 5

7 W 1
7 W 3

7 W 2
7 W 6

7

W 5
7 W 1

7 W 3
7 W 2

7 W 6
7 W 4

7

⎤

⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎣

x[1]
x[3]
x[2]
x[6]
x[4]
x[5]

⎤

⎥⎥⎥⎥⎦
+

⎡

⎢⎢⎢⎢⎣

x[0]
x[0]
x[0]
x[0]
x[0]
x[0]

⎤

⎥⎥⎥⎥⎦
. (6.14)

This is graphically interpreted using an FIR filter in Fig. 6.9.
We now verify the p = 7 Rader DFT formula, using a test triangular signal
x[n] = 10λ[n] (i.e., a triangle with step size 10). Directly interpreting (6.14),
one obtains

6.1 The Discrete Fourier Transform Algorithms 355

−1

Load

z

Run
−1z −1z

+ +

z−1 −1

x[0] +

z

546231

7W

Cyclic shift register

x[1],x[3],x[2],x[6],x[4],x[5]

permuted input sequence

DFT: X[5],X[4],X[6],X[2],X[3],X[1]

7W 7W7W7W7W

−1z

++ +

Fig. 6.9. Length p = 7 Rader prime-factor DFT implementation.

⎡

⎢⎢⎢⎢⎣

X[1]
X[3]
X[2]
X[6]
X[4]
X[5]

⎤

⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎢⎣

W 1
7 W 3

7 W 2
7 W 6

7 W 4
7 W 5

7

W 3
7 W 2

7 W 6
7 W 4

7 W 5
7 W 1

7

W 2
7 W 6

7 W 4
7 W 5

7 W 1
7 W 3

7

W 6
7 W 4

7 W 5
7 W 1

7 W 3
7 W 2

7

W 4
7 W 5

7 W 1
7 W 3

7 W 2
7 W 6

7

W 5
7 W 1

7 W 3
7 W 2

7 W 6
7 W 4

7

⎤

⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎣

20
40
30
70
50
60

⎤

⎥⎥⎥⎥⎦
+

⎡

⎢⎢⎢⎢⎣

10
10
10
10
10
10

⎤

⎥⎥⎥⎥⎦

=

⎡

⎢⎢⎢⎢⎣

−35 + j72
−35 + j8
−35 + j28
−35− j72
−35− j8
−35− 28

⎤

⎥⎥⎥⎥⎦
.

The value of X[0] is the sum of the time series, which is 10+20+· · ·+70 = 280.
6.5

In addition, in the Rader algorithms we may use the symmetries of the
complex pairs e±j2kπ/N , k ∈ [0, N/2], to build more-efficient FIR realizations
(Exercise 6.5, p. 391). Implementing a Rader prime-factor DFT is equivalent
to implementing an FIR filter, which we discussed in Chap. 3. In order to
implement a fast FIR filter, a fully pipelined DA or the transposed filter struc-
ture using the RAG algorithm is attractive. The RAG FPGA implementation
is illustrated in the following example.

Example 6.6: Rader FPGA Implementation
An RAG implementation of the length-7 Rader algorithm is accomplished
as follows. The first step is quantizing the coefficients. Assuming that the
input values and coefficients are to be represented as a signed 8-bit word, the
quantized coefficients are:

k 0 1 2 3 4 5 6

Re{256 ×W k
7 } 256 160 −57 −231 −231 −57 160

Im{256×W k
7 } 0 −200 −250 −111 111 250 200

A direct-form implementation of all the individual coefficients would (con-
sulting Table 2.3, p. 64) consume 24 adders for the constant coefficient mul-
tipliers. Using the transposed structure, the individual coefficient implemen-

356 6. Fourier Transforms

tation effort is reduced to 11 adders by exploiting the fact that several co-
efficients differ only in sign. Optimizing further (reduced adder graph, see
Fig. 2.4, p. 63), the number of adders reaches a minimum of seven (see
Factor: PROCESS and Coeffs: PROCESS below). This is more than a three
times improvement over the direct FIR architecture. The following VHDL
code1 illustrates a possible implementation of the length-7 Rader DFT, us-
ing transposed FIR filters.

PACKAGE B_bit_int IS ------> User-defined types
SUBTYPE WORD8 IS INTEGER RANGE -2**7 TO 2**7-1;
SUBTYPE WORD11 IS INTEGER RANGE -2**10 TO 2**10-1;
SUBTYPE WORD19 IS INTEGER RANGE -2**18 TO 2**18-1;
TYPE ARRAY_WORD IS ARRAY (0 to 5) OF WORD19;

END B_bit_int;

LIBRARY work;
USE work.B_bit_int.ALL;

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
USE ieee.std_logic_arith.ALL;
USE ieee.std_logic_unsigned.ALL;

ENTITY rader7 IS ------> Interface
PORT (clk, reset : IN STD_LOGIC;

x_in : IN WORD8;
y_real, y_imag : OUT WORD11);

END rader7;

ARCHITECTURE fpga OF rader7 IS

SIGNAL count : INTEGER RANGE 0 TO 15;
TYPE STATE_TYPE IS (Start, Load, Run);
SIGNAL state : STATE_TYPE ;
SIGNAL accu : WORD11 := 0; -- Signal for X[0]
SIGNAL real, imag : ARRAY_WORD := (0,0,0,0,0,0);

-- Tapped delay line array
SIGNAL x57, x111, x160, x200, x231, x250 : WORD19 := 0;

-- The (unsigned) filter coefficients
SIGNAL x5, x25, x110, x125, x256 : WORD19 ;

-- Auxiliary filter coefficients
SIGNAL x, x_0 : WORD8; -- Signals for x[0]

BEGIN

States: PROCESS (reset, clk)-----> FSM for RADER filter
BEGIN
IF reset = ’1’ THEN -- Asynchronous reset

state <= Start;
ELSIF rising_edge(clk) THEN

CASE state IS
WHEN Start => -- Initialization step

1 The equivalent Verilog code rader7.v for this example can be found in Ap-
pendix A on page 710. Synthesis results are shown in Appendix B on page 731.

6.1 The Discrete Fourier Transform Algorithms 357

state <= Load;
count <= 1;
x_0 <= x_in; -- Save x[0]
accu <= 0 ; -- Reset accumulator for X[0]
y_real <= 0;
y_imag <= 0;

WHEN Load => -- Apply x[5],x[4],x[6],x[2],x[3],x[1]
IF count = 8 THEN -- Load phase done ?
state <= Run;

ELSE
state <= Load;
accu <= accu + x ;

END IF;
count <= count + 1;

WHEN Run => -- Apply again x[5],x[4],x[6],x[2],x[3]
IF count = 15 THEN -- Run phase done ?
y_real <= accu; -- X[0]
y_imag <= 0; -- Only re inputs i.e. Im(X[0])=0
state <= Start; -- Output of result

ELSE -- and start again
y_real <= real(0) / 256 + x_0;
y_imag <= imag(0) / 256;
state <= Run;

END IF;
count <= count + 1;

END CASE;
END IF;

END PROCESS States;

Structure: PROCESS -- Structure of the two FIR
BEGIN -- filters in transposed form
WAIT UNTIL clk = ’1’;
x <= x_in;
-- Real part of FIR filter in transposed form
real(0) <= real(1) + x160 ; -- W^1
real(1) <= real(2) - x231 ; -- W^3
real(2) <= real(3) - x57 ; -- W^2
real(3) <= real(4) + x160 ; -- W^6
real(4) <= real(5) - x231 ; -- W^4
real(5) <= -x57 ; -- W^5

-- Imaginary part of FIR filter in transposed form
imag(0) <= imag(1) - x200 ; -- W^1
imag(1) <= imag(2) - x111 ; -- W^3
imag(2) <= imag(3) - x250 ; -- W^2
imag(3) <= imag(4) + x200 ; -- W^6
imag(4) <= imag(5) + x111 ; -- W^4
imag(5) <= x250; -- W^5

END PROCESS Structure;

Coeffs: PROCESS -- Note that all signals
BEGIN -- are globally defined
WAIT UNTIL clk = ’1’;

358 6. Fourier Transforms

Fig. 6.10. VHDL simulation of a seven-point Rader algorithm.

-- Compute the filter coefficients and use FFs
x160 <= x5 * 32;
x200 <= x25 * 8;
x250 <= x125 * 2;
x57 <= x25 + x * 32;
x111 <= x110 + x;
x231 <= x256 - x25;

END PROCESS Coeffs;

Factors: PROCESS (x, x5, x25) -- Note that all signals
BEGIN -- are globally defined
-- Compute the auxiliary factor for RAG without an FF
x5 <= x * 4 + x;
x25 <= x5 * 4 + x5;
x110 <= x25 * 4 + x5 * 2;
x125 <= x25 * 4 + x25;
x256 <= x * 256;

END PROCESS Factors;

END fpga;

The design consists of four blocks of statements within the four PROCESS
statements. The first – Stages: PROCESS – is the state machine, which dis-
tinguishes the three processing phases, Start, Load, and Run. The second –
Structure: PROCESS – defines the two FIR filter paths, real and imaginary.
The third item implements the multiplier block using the reduced adder
graph. The forth block – Factor: PROCESS – implements the unregistered
factors of the RAG algorithm. It can be seen that all coefficients are realized
by using six adders and one subtractor. The design uses 443 LEs, no embed-
ded multiplier, and has a 137.06 MHz Registered Performance. Figure 6.10
displays simulation results using Quartus II for a triangular input sequence
x[n] = {10, 20, 30, 40, 50, 60, 70}. Note that the input and output sequences,
starting at 1 µs, occur in permuted order, and negative results appear signed
if we use the signed data type in the simulator. Finally, at 1.7 µs, X[0] = 280
is forwarded to the output and rader7 is ready to process the next input
frame. 6.6

6.1 The Discrete Fourier Transform Algorithms 359

Because the Rader algorithm is restricted to prime lengths there is less
symmetry in the coefficients, compared with the CZT. The following table
shows, for primes length 2n±1, the implementation effort of the circular filter
in transposed form.

DFT sin/cos CSD RAG NOFs for 14-bit
length adder adder coefficients

7 6 52 13 7,11,31,59,101,177,319
17 16 138 23 3,35,103,415,1153,1249,8051
31 30 244 38 3,9,133,797,877,975,1179,3235
61 60 496 66 5,39,51,205,265,3211
127 124 1060 126 5

The first column shows the cyclic convolution length N, which is also the
number of complex coefficients. Comparing column two and the worst case
with 2N real sin/cos coefficients, we see that symmetry and trivial coeffi-
cients reduce the number of nontrivial coefficients by a factor of 2. The next
two columns show the effort for a 14-bit (plus sign) coefficient precision im-
plementation using CSD or RAG algorithms, respectively. The last column
shows the auxiliary coefficient, i.e., NOFs used by RAG. Note the advantage
of RAG for longer filters. It can be seen from this table that the effort for
CSD-type filters can be estimated by BN/2, where B is the coefficient bit
width (14 in this table) and N is the filter length. For RAG, the effort (i.e.,
the number of adders) is only N, i.e., a factor B/2 improvement over CSD for
longer filters (for B = 14, a factor ≈ 14/2 = 7 of improvement). For longer
filters, RAG needs only one additional adder for each additional coefficient,
because the already-synthesized coefficient produces a dense grid of small
coefficients.

6.1.6 The Winograd DFT Algorithm

The first algorithm with a reduced number of multiplications necessary we
want to discuss is the Winograd DFT algorithm. The Winograd algorithm
is a combination of the Rader algorithm (which translates the DFT into a
cyclic convolution), and Winograd’s [103] short convolution algorithm, which
we have already used to implement fast-running FIR filters (see Sect. 5.2.2,
p. 254).

The length is therefore restricted to primes or powers of primes. Table 6.2
gives an overview of the number of arithmetic operations necessary.

The following example for N = 5 demonstrates the steps to build a Wino-
grad DFT algorithm.

Example 6.7: N = 5 Winograd DFT Algorithm
An alternative representation of the Rader algorithm, using X[0] instead of
x[0], is given by [5]

360 6. Fourier Transforms

Table 6.2. Effort for the Winograd DFT with real inputs. Trivial multiplications
are those by ±1 or ±j. For complex inputs, the number of operations is twice as
large.

Block length Total number Total number Total number
of real nontrivial of real

multiplications multiplications additions

2 2 0 2
3 3 2 6
4 4 0 8
5 6 5 17
7 9 8 36
8 8 2 26
9 11 10 44
11 21 20 84
13 21 20 94
16 18 10 74
17 36 35 157
19 39 38 186

X[0] =

4∑

n=0

x[n] = x[0] + x[1] + x[2] + x[3] + x[4]

X[k] −X[0]

= [x[1], x[2], x[4], x[3]] � [W5 − 1, W 2
5 − 1, W 4

5 − 1, W 3
5 − 1]

k = 1, 2, 3, 4.

If we implement the cyclic convolution of length 4 with a Winograd algorithm
that costs only five nontrivial multiplications, we get the following algorithm:

X[k] =

4∑

n=0

x[n]e−j2πkn/5 k = 0, 1, . . . , 4

⎡

⎢⎢⎣

X[0]
X[4]
X[3]
X[2]
X[1]

⎤

⎥⎥⎦ =

⎡

⎢⎢⎣

1 0 0 0 0 0
1 1 1 1 0 −1
1 1 −1 1 1 0
1 1 −1 −1 −1 0
1 1 1 −1 0 1

⎤

⎥⎥⎦

×diag(1,
1

2
(cos(2π/5) + cos(4π/5)) − 1,

1

2
(cos(2π/5)− cos(4π/5)), j sin(2π/5),

j(− sin(2π/5) + sin(4π/5)), j(sin(2π/5) + sin(4π/5)))

6.1 The Discrete Fourier Transform Algorithms 361

Fig. 6.11. Winograd 5-point DFT signal flow graph.

×

⎡

⎢⎢⎢⎢⎣

1 1 1 1 1
0 1 1 1 1
0 1 −1 −1 1
0 1 −1 1 −1
0 1 0 0 −1
0 0 −1 1 0

⎤

⎥⎥⎥⎥⎦

⎡

⎢⎢⎣

x[0]
x[1]
x[2]
x[3]
x[4]

⎤

⎥⎥⎦ .

The total computational effort is therefore only 5 or 10 real nontrivial multi-
plications for real or imaginary input sequences x[n], respectively. The signal
flow graph shown in Fig. 6.11 shows also how to implement the additions in
an efficient fashion. 6.7

It is quite convenient to use a matrix notation for the Winograd DFT
algorithm, and so we get

W Nl
= Cl ×Bl ×Al, (6.15)

where Al incorporates the input addition, Bl is the diagonal matrix with the
Fourier coefficients, and Cl includes the output additions. The only disad-
vantage is that now it is not as easy to define the exact steps of the short
convolution algorithms, because the sequence in which input and output ad-
ditions are computed is lost with this matrix representation.

This combination of Rader algorithms and a short Winograd convolution,
known as the Winograd DFT algorithm, will be used later, together with
index mapping to introduce the Winograd FFT algorithm. This is the FFT
algorithm with the least number of real multiplications among all known FFT
algorithms.

362 6. Fourier Transforms

6.2 The Fast Fourier Transform (FFT) Algorithms

As mentioned in the introduction of this chapter, we use the terminology
introduced by Burrus [148], who classified all FFT algorithms simply by
different (multidimensional) index maps of the input and output sequences.
These are based on a transform of the length N DFT (6.2)

X [k] =
N−1∑

n=0

x[n] Wnk
N (6.16)

into a multidimensional N =
∏

l Nl representation. It is, in general, sufficient
to discuss only the two-factor case, because higher dimensions can be built
simply by iteratively replacing again one of these factors. To simplify our
representation we will therefore discuss the three FFT algorithms presented
only in terms of a two-dimensional index transform.

We transform the (time) index n with

n = An1 +Bn2 mod N
{

0 ≤n1≤N1 − 1
0 ≤n2≤N2 − 1, (6.17)

where N = N1N2, and A,B ∈ Z are constants that must be defined later.
Using this index transform, a two-dimensional mapping f : C

N → C
N1×N2

of the data is built, according to

[x[0] x[1] x[2] · · ·x[N − 1]]

=

⎡

⎢⎢⎢⎣

x[0, 0] x[0, 1] · · · x[0, N2 − 1]
x[1, 0] x[1, 1] · · · x[1, N2 − 1]

...
...

. . .
...

x[N1 − 1, 0] x[N1 − 1, 1] · · · x[N1 − 1, N2 − 1]

⎤

⎥⎥⎥⎦ . (6.18)

Applying another index mapping k to the output (frequency) domain yields

k = Ck1 +Dk2 mod N
{

0 ≤k1≤N1 − 1
0 ≤k2≤N2 − 1, (6.19)

where C,D ∈ Z are constants that must be defined later. Because the DFT
is bijective, we must choose A,B,C, and D in such a way that the trans-
form representation is still unique, i.e., a bijective projection. Burrus [148]
has determined the general conditions for how to choose A,B,C, and D for
specific N1 and N2 such that the mapping is bijective (see Exercises 6.7 and
6.8, p. 392). The transforms given in this chapter are all unique.

An important point in distinguishing different FFT algorithms is the
question of whether N1 and N2 are allowed to have a common factor, i.e.,
gcd(N1, N2) > 1, or whether the factors must be coprime. Sometimes algo-
rithms with gcd(N1, N2) > 1 are referred to as common-factor algorithms
(CFAs), and algorithms with gcd(N1, N2) = 1 are called prime-factor algo-
rithms (PFAs). A CFA algorithm discussed in the following is the Cooley–
Tukey FFT, while the Good–Thomas and Winograd FFTs are of the PFA

6.2 The Fast Fourier Transform (FFT) Algorithms 363

type. It should be emphasized that the Cooley–Tukey algorithm may indeed
realize FFTs with two factors, N = N1N2, which are coprime, and that for
a PFA the factors N1 and N2 must only be coprime, i.e., they must not be
primes themselves. A transform of length N = 12 factored with N1 = 4 and
N2 = 3, for instance, can therefore be used for both CFA FFTs and PFA
FFTs!

6.2.1 The Cooley–Tukey FFT Algorithm

The Cooley–Tukey FFT is the most universal of all FFT algorithms, because
any factorization of N is possible. The most popular Cooley–Tukey FFTs
are those where the transform length N is a power of a basis r, i.e., N = rν .
These algorithms are often referred to as radix-r algorithms.

The index transform suggested by Cooley and Tukey (and earlier by
Gauss) is also the simplest index mapping. Using (6.17) we have A = N2

and B = 1, and the following mapping results

n = N2n1 + n2

{
0 ≤n1≤N1 − 1
0 ≤n2≤N2 − 1. (6.20)

From the valid range of n1 and n2, we conclude that the modulo reduction
given by (6.17) need not be explicitly computed.

For the inverse mapping from (6.19) Cooley and Tukey, choose C = 1 and
D = N1, and the following mapping results

k = k1 +N1k2

{
0 ≤k1≤N1 − 1
0 ≤k2≤N2 − 1. (6.21)

The modulo computation can also be skipped in this case. If we now substi-
tute n and k in Wnk

N according to (6.20) and (6.21), respectively, we find

Wnk
N = WN2n1k1+N1N2n1k2+n2k1+N1n2k2

N . (6.22)

Because W is of order N = N1N2, it follows that WN1
N = WN2 and WN2

N =
WN1 . This simplifies (6.22) to

Wnk
N = Wn1k1

N1
Wn2k1

N Wn2k2
N2

. (6.23)

If we now substitute (6.23) in the DFT from (6.16) it follows that

X [k1, k2] =
N2−1∑

n2=0

Wn2k2
N2

⎛

⎜⎜⎜⎜⎜⎝
Wn2k1

N

N1−1∑

n1=0

x[n1, n2]Wn1k1
N1

︸ ︷︷ ︸
N1-point transform

⎞

⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
x̄[n2,k1]

(6.24)

364 6. Fourier Transforms

=
N2−1∑

n2=0

Wn2k2
N2

x̄[n2, k1].

︸ ︷︷ ︸
N2-point transform

(6.25)

We now can define the complete Cooley–Tukey algorithm

Algorithm 6.8: Cooley–Tukey Algorithm

An N = N1N2-point DFT can be done using the following steps:
1) Compute an index transform of the input sequence according to

(6.20).
2) Compute the N2 DFTs of length N1.
3) Apply the twiddle factors Wn2k1

N to the output of the first transform
stage.

4) Compute N1 DFTs of length N2.
5) Compute an index transform of the output sequence according to

(6.21).

The following length-12 transform demonstrates these steps.

Example 6.9: Cooley–Tukey FFT for N = 12
Assume N1 = 4 and N2 = 3. It follows then that n = 3n1 + n2 and k =
k1 + 4k2, and we can compute the following tables for the index mappings:

n2 n1

0 1 2 3
0 x[0] x[3] x[6] x[9]
1 x[1] x[4] x[7] x[10]
2 x[2] x[5] x[8] x[11]

k2 k1

0 1 2 3
0 X[0] X[1] X[2] X[3]
1 X[4] X[5] X[6] X[7]
2 X[8] X[9] X[10] X[11]

With the help of this transform we can construct the signal flow graph shown
in Fig. 6.12. It can be seen that first we must compute three DFTs with
four points each, followed by the multiplication with the twiddle factors, and
finally we compute four DFTs each having length 3. 6.9

For direct computation of the 12-point DFT, a total of 122 = 144 complex
multiplications and 112 = 121 complex additions are needed. To compute
the Cooley–Tukey FFT with the same length we need a total of 12 complex
multiplication for the twiddle factors, of which 8 are trivial (i.e., ±1 or ±j)
multiplications. According to Table 6.2 (p. 360), the length-4 DFTs can be
computed using 8 real additions and no multiplications. For the length-3
DFTs, we need 4 multiplications and 6 additions. If we implement the (fixed
coefficient) complex multiplications using 3 additions and 3 multiplications
(see Algorithm 6.10, p. 367), and consider that W 0 = 1,W 3 = −j and
W 6 = −1 are trivial, the total effort for the 12-point Cooley–Tukey FFT is
given by

3× 16 + 4× 3 + 4× 12 = 108 real additions and
4× 3 + 4× 4 = 28 real multiplications.

6.2 The Fast Fourier Transform (FFT) Algorithms 365

Twiddle factors
3−point DFTs4−point DFTs

n =2

w0

x[0]
x[3]
x[6]
x[9]

0w

w6

0

n =1

n =0

3

2

1

0

3

2

1

0

3

2

1

0

w

3

n =1

2

2

2

x[11]
x[8]
x[5]
x[2]

x[10]
x[7]
x[4]
x[1]

w

w0

1w

w2

w0

w2

4w

w0

k =3

k =0

k =1

k =2

X[10]
X[6]
X[2]
X[9]

X[0]

X[8]
X[4]

X[3]
X[7]
X[11]

k =

1

1

1

1

2

X[1]
X[5]

0

1

2

1

0

2

1

0

2

1

0

2

Fig. 6.12. Cooley–Tukey FFT for N = 12.

For the direct implementation we would need 2 × 112 + 122 × 3 = 674 real
additions and 122 × 3 = 432 real multiplications. It is now obvious why the
Cooley–Tukey algorithm is called the “fast Fourier transform” (FFT).

Radix-r Cooley–Tukey Algorithm

One important fact that distinguishes the Cooley–Tukey algorithm from
other FFT algorithms is that the factors for N can be chosen arbitrarily.
It is therefore possible to use a radix-r algorithm in which N = rS . The most
popular algorithms are those of basis r = 2 or r = 4, because the necessary
basic DFTs can, according to Table 6.2 (p. 360), be implemented without
any multiplications. For r = 2 and S stages, for instance, the following index
mapping results

n = 2S−1n1 + · · ·+ 2nS−1 + nS (6.26)
k = k1 + 2k2 + · · ·+ 2S−1kS . (6.27)

For S > 2 a common practice is that in the signal flow graph a 2-point
DFT is represented with a Butterfly, as shown in Fig. 6.13 for an 8-point
transform. The signal flow graph representation has been simplified by using
the fact that all arriving arrows at a node are added, while the constant
coefficient multiplications are symbolized through a factor at an arrow. A
radix-r algorithm has logr(N) stages, and for each group the same type of
twiddle factor occurs.

366 6. Fourier Transforms

2. Stage 3. Stage1. Stage

W

1

2

3

x[7]

x[6]

x[5]

x[4]

x[3]

x[2]

x[1]

x[0] X[0]

X[4]

X[2]

X[6]

X[1]

X[5]

X[3]

X[7]

−1

−1

−1

−1

Group Butterfly

W

0W

W2

0W

W

0W

W2

−1

−1

−1

−1

−1

−1

−1

−1

Fig. 6.13. Decimation-in-frequency algorithm of length-8 for radix-2.

It can be seen from the signal flow graph in Fig. 6.13 that the compu-
tation can be done “in-place,” i.e., the memory location used by a butterfly
can be overwritten, because the data are no longer needed in the next com-
putational steps. The total number of twiddle factor multiplications for the
radix-2 transform is given by

log2(N)N/2, (6.28)

because only every second arrow has a twiddle factor.
Because the algorithm shown in Fig. 6.13 starts in the frequency do-

main to split the original DFT into shorter DFTs, this algorithm is called
a decimation-in-frequency (DIF) algorithm. The input values typically occur
in natural order, while the index of the frequency values is in bit-reversed
order. Table 6.3 shows the characteristic values of a DIF radix-2 algorithm.

Table 6.3. Radix-2 FFT with frequency decimation.

Stage 1 Stage 2 Stage 3 · · · Stage log2(N)

Number of
groups 1 2 4 · · · N/2

Butterflies
per group N/2 N/4 N/8 · · · 1

Increment
exponent
twiddle factors

1 2 4

· · ·
N/2

6.2 The Fast Fourier Transform (FFT) Algorithms 367

We may also construct an algorithm with decimation in time (DIT). In
this case, we start by splitting the input (time) sequence, and we find that
all frequency values will appear in natural order (Exercise 6.10, p. 392).

The necessary index transform for index 41, for an radix-2 and radix-4
algorithm, is shown in Fig. 6.14. For a radix-2 algorithm, a reversing of the
bit sequence, a bitreverse, is necessary. For a radix-4 algorithm we must first
build “digits” of two bits, and then reverse the order of these digits. This
operation is called digitreverse.

Bitreverse r=2

Original

Reversed X[26]

X[41]

X[37]

Digitreverse r=4

X[41]

1

0

1 0

11 10

1

0 1

0 01

0

0 1

0 0

0 0

1 1

1

Fig. 6.14. Bitreverse and digitreverse.

Radix-2 Cooley–Tukey Algorithm Implementation

A radix-2 FFT can be efficiently implemented using a butterfly processor
which includes, besides the butterfly itself, an additional complex multiplier
for the twiddle factors.

A radix-2 butterfly processor consists of a complex adder, a complex sub-
traction, and a complex multiplier for the twiddle factors. The complex mul-
tiplication with the twiddle factor is often implemented with four real mul-
tiplications and two add/subtract operations. However, it is also possible to
build the complex multiplier with only three real multiplications and three
add/subtract operations, because one operand is precomputed. The algorithm
works as follows:

Algorithm 6.10: Efficient Complex Multiplier

The complex twiddle factor multiplication R+ jI = (X + jY)× (C + jS)
can be simplified, because C and S are precomputed and stored in a table.
It is therefore also possible to store the following three coefficients

C, C + S, and C − S. (6.29)
With these three precomputed factors we first compute

E = X − Y, and then Z = C × E = C × (X − Y). (6.30)
We can then compute the final product using

R = (C − S)× Y + Z (6.31)
I = (C + S)×X − Z. (6.32)

368 6. Fourier Transforms

To check:

R = (C − S)Y + C(X − Y)
= CY − SY + CX − CY = CX − SY �

I = (C + S)X − C(X − Y)
= CX + SX − CX + CY = CY + SX. �

The algorithm uses three multiplications, one addition, and two subtractions,
at the cost of an additional, third table.

The following example demonstrates the implementation of this twiddle
factor complex multiplier.

Example 6.11: Twiddle Factor Multiplier
Let us first choose some concrete design parameters for the twiddle factor
multiplier. Let us assume we have 8-bit input data, the coefficients should

have 8 bits (i.e., 7 bits plus sign), and we wish to multiply by ejπ/9 = ej20◦ .

Quantized to 8 bits, the twiddle factor becomes C + jS = 128 × ejπ/9 =
121 + j39. If we use an input value of 70 + j50, then the expected result is

(70 + j50)ejπ/9 = (70 + j50)(121 + j39)/128

= (6520 + j8780)/128 = 50 + j68.

If we use Algorithm 6.10 to compute the complex multiplication, the three
factors become:

C = 121, C + S = 160, and C − S = 82.
We note from the above that, in general, the tables C + S and C − S must
have one more bit of precision than the C and S tables.
The following VHDL code2 implements the twiddle factor multiplier.

LIBRARY lpm;
USE lpm.lpm_components.ALL;

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
USE ieee.std_logic_arith.ALL;

ENTITY ccmul IS
GENERIC (W2 : INTEGER := 17; -- Multiplier bit width

W1 : INTEGER := 9; -- Bit width c+s sum
W : INTEGER := 8); -- Input bit width

PORT (clk : STD_LOGIC; -- Clock for the output register
x_in, y_in, c_in -- Inputs

: IN STD_LOGIC_VECTOR(W-1 DOWNTO 0);
cps_in, cms_in -- Inputs

: IN STD_LOGIC_VECTOR(W1-1 DOWNTO 0);
r_out, i_out -- Results

: OUT STD_LOGIC_VECTOR(W-1 DOWNTO 0));
END ccmul;

2 The equivalent Verilog code ccmul.v for this example can be found in Ap-
pendix A on page 713. Synthesis results are shown in Appendix B on page
731.

6.2 The Fast Fourier Transform (FFT) Algorithms 369

ARCHITECTURE fpga OF ccmul IS

SIGNAL x, y, c : STD_LOGIC_VECTOR(W-1 DOWNTO 0);
-- Inputs and outputs

SIGNAL r, i, cmsy, cpsx, xmyc -- Products
: STD_LOGIC_VECTOR(W2-1 DOWNTO 0);

SIGNAL xmy, cps, cms, sxtx, sxty -- x-y etc.
: STD_LOGIC_VECTOR(W1-1 DOWNTO 0);

BEGIN
x <= x_in; -- x
y <= y_in; -- j * y
c <= c_in; -- cos
cps <= cps_in; -- cos + sin
cms <= cms_in; -- cos - sin

PROCESS
BEGIN
WAIT UNTIL clk=’1’;
r_out <= r(W2-3 DOWNTO W-1); -- Scaling and FF
i_out <= i(W2-3 DOWNTO W-1); -- for output

END PROCESS;
---------- ccmul with 3 mul. and 3 add/sub ---------------

sxtx <= x(x’high) & x; -- Possible growth for
sxty <= y(y’high) & y; -- sub_1 -> sign extension

sub_1: lpm_add_sub -- Sub: x - y;
GENERIC MAP (LPM_WIDTH => W1, LPM_DIRECTION => "SUB",

LPM_REPRESENTATION => "SIGNED")
PORT MAP (dataa => sxtx, datab => sxty, result => xmy);

mul_1: lpm_mult -- Multiply (x-y)*c = xmyc
GENERIC MAP (LPM_WIDTHA => W1, LPM_WIDTHB => W,

LPM_WIDTHP => W2, LPM_WIDTHS => W2,
LPM_REPRESENTATION => "SIGNED")

PORT MAP (dataa => xmy, datab => c, result => xmyc);

mul_2: lpm_mult -- Multiply (c-s)*y = cmsy
GENERIC MAP (LPM_WIDTHA => W1, LPM_WIDTHB => W,

LPM_WIDTHP => W2, LPM_WIDTHS => W2,
LPM_REPRESENTATION => "SIGNED")

PORT MAP (dataa => cms, datab => y, result => cmsy);

mul_3: lpm_mult -- Multiply (c+s)*x = cpsx
GENERIC MAP (LPM_WIDTHA => W1, LPM_WIDTHB => W,

LPM_WIDTHP => W2, LPM_WIDTHS => W2,
LPM_REPRESENTATION => "SIGNED")

PORT MAP (dataa => cps, datab => x, result => cpsx);

sub_2: lpm_add_sub -- Sub: i <= (c-s)*x - (x-y)*c;
GENERIC MAP (LPM_WIDTH => W2, LPM_DIRECTION => "SUB",

LPM_REPRESENTATION => "SIGNED")
PORT MAP (dataa => cpsx, datab => xmyc, result => i);

370 6. Fourier Transforms

Fig. 6.15. VHDL simulation of a twiddle factor multiplier.

add_1: lpm_add_sub -- Add: r <= (x-y)*c + (c+s)*y;
GENERIC MAP (LPM_WIDTH => W2, LPM_DIRECTION => "ADD",

LPM_REPRESENTATION => "SIGNED")
PORT MAP (dataa => cmsy, datab => xmyc, result => r);

END fpga;

The twiddle factor multiplier is implemented using component instantiations
of three lpm_mult and three lpm_add_sub modules. The output is scaled such
that it has the same data format as the input. This is reasonable, because
multiplication with a complex exponential ejφ should not change the magni-
tude of the complex input. To ensure short latency (for an in-place FFT),
the complex multiplier only has output registers, with no internal pipeline
registers. With only one output register, it is impossible to determine the
Registered Performance of the design, but from the simulation results in
Fig. 6.15, it can be estimated. The design uses 39 LEs, 3 embedded multipli-
ers, and may run faster, if the lpm_mult components can be pipelined (see
Fig. 2.16, p. 86). 6.11

An in-place implementation, i.e., with only one data memory, is now pos-
sible, because the butterfly processor is designed without pipeline stages. If
we introduce additional pipeline stages (one for the butterfly and three for
the multiplier) the size of the design increases insignificantly (see Exercise
6.23, p. 395), however, the speed increases significantly. The price for this
pipeline design is the cost for extra data memory for the whole FFT, be-
cause data read and write memories must now be separated, i.e., no in-place
computation can be done.

Using the twiddle factor multiplier introduced above, it is now possible
to design a butterfly processor for a radix-2 Cooley–Tukey FFT.

Example 6.12: Butterfly Processor
To prevent overflow in the arithmetic, the butterfly processor computes the
two (scaled) butterfly equations

6.2 The Fast Fourier Transform (FFT) Algorithms 371

Dre + j×Dim = ((Are + j×Aim) + (Bre + j×Bim)) /2

Ere + j× Eim = ((Are + j×Aim)− (Bre + j×Bim)) /2

Then the temporary result Ere + j× Eim must be multiplied by the twiddle
factor.
The VHDL code3 of the whole butterfly processor is shown in the following.

LIBRARY lpm;
USE lpm.lpm_components.ALL;

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
USE ieee.std_logic_arith.ALL;

PACKAGE mul_package IS -- User-defined components
COMPONENT ccmul
GENERIC (W2 : INTEGER := 17; -- Multiplier bit width

W1 : INTEGER := 9; -- Bit width c+s sum
W : INTEGER := 8); -- Input bit width

PORT
(clk : IN STD_LOGIC; -- Clock for the output register
x_in, y_in, c_in: IN STD_LOGIC_VECTOR(W-1 DOWNTO 0);

-- Inputs
cps_in, cms_in : IN STD_LOGIC_VECTOR(W1-1 DOWNTO 0);

-- Inputs
r_out, i_out : OUT STD_LOGIC_VECTOR(W-1 DOWNTO 0));

-- Results
END COMPONENT;

END mul_package;

LIBRARY work;
USE work.mul_package.ALL;

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
USE ieee.std_logic_arith.ALL;

LIBRARY lpm;
USE lpm.lpm_components.ALL;

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
USE ieee.std_logic_arith.ALL;
USE ieee.std_logic_unsigned.ALL;

ENTITY bfproc IS
GENERIC (W2 : INTEGER := 17; -- Multiplier bit width

W1 : INTEGER := 9; -- Bit width c+s sum
W : INTEGER := 8); -- Input bit width

PORT

3 The equivalent Verilog code bfproc.v for this example can be found in Ap-
pendix A on page 715. Synthesis results are shown in Appendix B on page 731.

372 6. Fourier Transforms

(clk : STD_LOGIC;
Are_in, Aim_in, c_in, -- 8 bit inputs
Bre_in, Bim_in : IN STD_LOGIC_VECTOR(W-1 DOWNTO 0);
cps_in, cms_in : IN STD_LOGIC_VECTOR(W1-1 DOWNTO 0);

-- 9 bit coefficients
Dre_out, Dim_out, -- 8 bit results
Ere_out, Eim_out : OUT STD_LOGIC_VECTOR(W-1 DOWNTO 0)

:= (OTHERS => ’0’));
END bfproc;

ARCHITECTURE fpga OF bfproc IS

SIGNAL dif_re, dif_im -- Bf out
: STD_LOGIC_VECTOR(W-1 DOWNTO 0);

SIGNAL Are, Aim, Bre, Bim : INTEGER RANGE -128 TO 127:=0;
-- Inputs as integers

SIGNAL c : STD_LOGIC_VECTOR(W-1 DOWNTO 0)
:= (OTHERS => ’0’); -- Input

SIGNAL cps, cms : STD_LOGIC_VECTOR(W1-1 DOWNTO 0)
:= (OTHERS => ’0’); -- Coeff in

BEGIN

PROCESS -- Compute the additions of the butterfly using
BEGIN -- integers and store inputs in flip-flops
WAIT UNTIL clk = ’1’;
Are <= CONV_INTEGER(Are_in);
Aim <= CONV_INTEGER(Aim_in);
Bre <= CONV_INTEGER(Bre_in);
Bim <= CONV_INTEGER(Bim_in);
c <= c_in; -- Load from memory cos
cps <= cps_in; -- Load from memory cos+sin
cms <= cms_in; -- Load from memory cos-sin
Dre_out <= CONV_STD_LOGIC_VECTOR((Are + Bre)/2, W);
Dim_out <= CONV_STD_LOGIC_VECTOR((Aim + Bim)/2, W);

END PROCESS;

-- No FF because butterfly difference "diff" is not an
PROCESS (Are, Bre, Aim, Bim) -- output port
BEGIN
dif_re <= CONV_STD_LOGIC_VECTOR(Are/2 - Bre/2, 8);
dif_im <= CONV_STD_LOGIC_VECTOR(Aim/2 - Bim/2, 8);

END PROCESS;

---- Instantiate the complex twiddle factor multiplier ----
ccmul_1: ccmul -- Multiply (x+jy)(c+js)
GENERIC MAP (W2 => W2, W1 => W1, W => W)
PORT MAP (clk => clk, x_in => dif_re, y_in => dif_im,

c_in => c, cps_in => cps, cms_in => cms,
r_out => Ere_out, i_out => Eim_out);

END fpga;

The butterfly processor is implemented using one adder, one subtraction,
and the twiddle factor multiplier instantiated as a component. Flip-flops

6.2 The Fast Fourier Transform (FFT) Algorithms 373

Fig. 6.16. VHDL simulation of a radix-2 butterfly processor.

have been implemented for input A, B, the three table values, and the out-
put port D, in order to have single input/output registered design. The de-
sign uses 131 LEs, 3 embedded multipliers, and has a 95.73 MHz Registered
Performance. Figure 6.16 shows the simulation for the zero-pipeline design,
for the inputs A = 100 + j110, B = −40 + j10, and W = ejπ/9. 6.12

6.2.2 The Good–Thomas FFT Algorithm

The index transform suggested by Good [171] and Thomas [172] transforms
a DFT of length N = N1N2 into an “actual” two-dimensional DFT, i.e.,
there are no twiddle factors as in the Cooley–Tukey FFT. The price we pay
for the twiddle factor free flow is that the factors must be coprime (i.e.,
gcd(Nk, Nl) = 1 for k �= l), and we have a somewhat more complicated
index mapping, as long as the index computation is done “online” and no
precomputed tables are used for the index mapping.

If we try to eliminate the twiddle factors introduced through the index
mapping of n and k according to (6.17) and (6.19), respectively, it follows
from

Wnk
N = W

(An1+Bn2)(Ck1+Dk2)
N (6.33)

= WACn1k1+ADn1k2+BCk1n2+BDn2k2
N

= WN2n1k1
N WN1k2n2

N = Wn1k1
N1

W k2n2
N2

,

that we must fulfill all the following necessary conditions at the same time:

〈AD〉N = 〈BC〉N = 0 (6.34)
〈AC〉N = N2 (6.35)
〈BD〉N = N1. (6.36)

374 6. Fourier Transforms

The mapping suggested by Good [171] and Thomas [172] fulfills this condition
and is given by

A = N2 B = N1 C = N2〈N−1
2 〉N1 D = N1〈N−1

1 〉N2 . (6.37)

To check: Because the factors AD and BC both include the factorN1N2 = N,
it follows that (6.34) is checked. With gcd(N1, N2) = 1 and a theorem due to
Euler, we can write the inverse as N−1

2 mod N1 = N
φ(N1)−1
2 mod N1 where

φ is the Euler totient function. The condition (6.35) can now be rewritten as

〈AC〉N = 〈N2N2〈Nφ(N1)−1
2 〉N1〉N . (6.38)

We can now solve the inner modulo reduction, and it follows with ν ∈ Z and
νN1N2 mod N = 0 finally

〈AC〉N = 〈N2N2(N
φ(N1)−1
2 + νN1)〉N = N2. (6.39)

The same argument can be applied for the condition (6.36), and we have
shown that all three conditions from (6.34)–(6.36) are fulfilled if the Good–
Thomas mapping (6.37) is used. �

In conclusion, we can now define the following theorem

Theorem 6.13: Good–Thomas Index Mapping

The index mapping suggested by Good and Thomas for n is

n = N2n1 +N1n2 mod N
{

0 ≤n1≤N1 − 1
0 ≤n2≤N2 − 1 (6.40)

and as index mapping for k results

k = N2〈N−1
2 〉N1k1 +N1〈N−1

1 〉N2k2 mod N
{

0 ≤k1≤N1 − 1
0 ≤k2≤N2 − 1 .(6.41)

The transform from (6.41) is identical to the Chinese remainder theorem 2.13
(p. 67). It follows, therefore, that k1 and k2 can simply be computed via a
modulo reduction, i.e., kl = k mod Nl.

If we now substitute the Good–Thomas index map in the equation for the
DFT matrix (6.16), it follows that

X [k1, k2] =
N2−1∑

n2=0

Wn2k2
N2

⎛

⎜⎜⎜⎜⎜⎝

N1−1∑

n1=0

x[n1, n2]Wn1k1
N1

︸ ︷︷ ︸
N1-point transform

⎞

⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
x̄[n2,k1]

(6.42)

=
N2−1∑

n2=0

Wn2k2
N2

x̄[n2, k1]

︸ ︷︷ ︸
N2-point transform

, (6.43)

6.2 The Fast Fourier Transform (FFT) Algorithms 375

i.e., as claimed at the beginning, it is an “actual” two-dimensional DFT
transform without the twiddle factor introduced by the mapping suggested
by Cooley and Tukey. It follows that the Good–Thomas algorithm, although
similar to the Cooley–Tukey Algorithm 6.8, has a different index mapping
and no twiddle factors.

Algorithm 6.14: Good–Thomas FFT Algorithm

An N = N1N2-point DFT can be computed according to the following
steps:
1) Index transform of the input sequence, according to (6.40).
2) Computation of N2 DFTs of length N1.
3) Computation of N1 DFTs of length N2.
4) Index transform of the output sequence, according to (6.41).

An N = 12 transform shown in the following example demonstrates the steps.

Example 6.15: Good–Thomas FFT Algorithm for N = 12
Suppose we have N1 = 4 and N2 = 3. Then a mapping for the input index
according to n = 3n1 +4n2 mod 12, and k = 9k1 +4k2 mod 12 for the output
index results, and we can compute the following index mapping tables

n2 n1

0 1 2 3
0 x[0] x[3] x[6] x[9]
1 x[4] x[7] x[10] x[1]
2 x[8] x[11] x[2] x[5]

k2 k1

0 1 2 3
0 X[0] X[9] X[6] X[3]
1 X[4] X[1] X[10] X[7]
2 X[8] X[5] X[2] X[11]

Using these index transforms we can construct the signal flow graph shown
in Fig. 6.17. We realize that the first stage has three DFTs each having four
points and the second stage four DFTs each of length 3. Multiplication by
twiddle factors between the stages is not necessary. 6.15

6.2.3 The Winograd FFT Algorithm

The Winograd FFT algorithm [103] is based on the observation that the
inverse DFT matrix (6.4) (without prefactor N−1) of dimension N1 × N2,
with gcd(N1, N2) = 1, i.e.,

x[n] =
N−1∑

k=0

X [k]W−nk
N (6.44)

x = W ∗
N X (6.45)

can be rewritten using the Kronecker product4 with two quadratic IDFT
matrices each, with dimension N1 and N2, respectively. As with the index
4 A Kronecker product is defined by

376 6. Fourier Transforms

3−point DFTs4−point DFTs

2

1

0

0

1

2

k =1

k =2

2

1

0

2

3

1

0

n =0

2

1

0

3
1

2

1

0

1

2
1k =0

2

X[11]
X[7]
X[3]
X[2]
X[10]
X[6]
X[5]
X[1]
X[9]

X[4]
X[8]

X[0]
k =1n =

2

2

1

n =2

n =1

k =3

x[0]

x[5]
x[2]

x[11]
x[8]
x[1]

x[10]
x[7]
x[4]
x[9]
x[6]
x[3]

3

2

1

0

Fig. 6.17. Good–Thomas FFT for N = 12.

mapping for the Good–Thomas algorithm, we must write the indices of X [k]
and x[n] in a two-dimensional scheme and then read out the indices row by
row. The following example for N = 12 demonstrates the steps.

Example 6.16: IDFT using Kronecker Product for N = 12
Let N1 = 4 and N2 = 3. Then we have the output index transform k =
9k1 + 4k2 mod 12 according to the Good–Thomas index mapping:

A ⊗B = [a[i, j]]B

=

⎡

⎣
a[0, 0]B · · · a[0, L− 1]B

...
...

a[K − 1, 0]B · · · a[K − 1, L− 1]B

⎤

⎦

where A is a K × L matrix.

6.2 The Fast Fourier Transform (FFT) Algorithms 377

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

X[0]
X[1]
X[2]
X[3]
X[4]
X[5]
X[6]
X[7]
X[8]
X[9]
X[10]
X[11]

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

→

k2 k1

0 1 2 3
0 X[0] X[9] X[6] X[3]
1 X[4] X[1] X[10] X[7]
2 X[8] X[5] X[2] X[11]

→

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

X[0]
X[9]
X[6]
X[3]
X[4]
X[1]
X[10]
X[7]
X[8]
X[5]
X[2]
X[11]

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

We can now construct a length-12 IDFT with

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x[0]
x[9]
x[6]
x[3]
x[4]
x[1]
x[10]
x[7]
x[8]
x[5]
x[2]
x[11]

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

[
W 0

12 W 0
12 W 0

12

W 0
12 W−4

12 W−8
12

W 0
12 W−8

12 W−4
12

]
⊗

⎡

⎢⎣
W 0

12 W 0
12 W 0

12 W 0
12

W 0
12 W−3

12 W−6
12 W−9

12

W 0
12 W−6

12 W 0
12 W−6

12

W 0
12 W−9

12 W−6
12 W−3

12

⎤

⎥⎦

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

X[0]
X[9]
X[6]
X[3]
X[4]
X[1]
X[10]
X[7]
X[8]
X[5]
X[2]
X[11]

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

6.16

So far we have used the Kronecker product to (re)define the IDFT. Using
the short-hand notation x̃ for the permuted sequence x, we may use the
following matrix/vector notation:

x̃ = W N1 ⊗W N2 X̃. (6.46)

For these short DFTs we now use the Winograd DFT Algorithm 6.7 (p. 359),
i.e.,

W Nl
= Cl ×Bl ×Al, (6.47)

where Al incorporate the input additions, Bl is a diagonal matrix with the
Fourier coefficients, and Cl includes the output additions. If we now substi-
tute (6.47) into (6.46), and use the fact that we can change the sequence of
matrix multiplications and Kronecker product computation (see for instance
[5, App. D], we get

W N1 ⊗W N2 = (C1 ×B1 ×A1)⊗ (C2 ×B2 ×A2)
= (C1 ⊗C2)(B1 ⊗B2)(A1 ⊗A2). (6.48)

Because the matrices Al and Cl are simple addition matrices, the same ap-
plies for its Kronecker products, A1 ⊗ A2 and C1 ⊗ C2. The Kronecker

378 6. Fourier Transforms

product of two quadratic diagonal matrices of dimension N1 and N2, respec-
tively, obviously also gives a diagonal matrix of dimension N1N2. The total
number of necessary multiplications is therefore identical to the number of
diagonal elements of B = B1 ⊗B2, i.e., M1M2, if M1 and M2, respectively,
are the number of multiplications used to compute the smaller Winograd
DFTs according to Table 6.2 (p. 360).

We can now combine the different steps to construct a Winograd FFT.

Theorem 6.17: Winograd FFT Design

A N = N1N2-point transform with coprimes N1 and N2 can be con-
structed as follows:
1) Index transform of the input sequence according to the Good–Thomas

mapping (6.40), followed by a row read of the indices.
2) Factorization of the DFT matrix using the Kronecker product.
3) Substitute the lengthN1 andN2 DFT matrices through the Winograd

DFT algorithm.
4) Centralize the multiplications.

After successful construction of the Winograd FFT algorithm, we can com-
pute the Winograd FFT using the following three steps:

Theorem 6.18: Winograd FFT Algorithm

1) Compute the preadditions A1 and A2.
2) Compute M1M2 multiplications according to the matrix B1 ⊗B2.
3) Compute postadditions according to C1 and C2.

Let us now look at a construction of a Winograd FFT of length-12, in detail
in the following example.

Example 6.19: Winograd FFT of Length 12
To build a Winograd FFT, we have, according to Theorem 6.17, to compute
the necessary matrices used in the transform. For N1 = 3 and N2 = 4 we
have the following matrices:

A1 ⊗A2 =

[
1 1 1
0 1 1
0 1 −1

]
⊗

⎡

⎢⎣
1 1 1 1
1 −1 1 −1
1 0 −1 0
0 1 0 −1

⎤

⎥⎦ (6.49)

B1 ⊗B2 = diag(1,−3/2,
√

3/2)⊗ diag(1, 1, 1,−i) (6.50)

C1 ⊗C2 =

[
1 0 0
1 1 i
1 1 −i

]
⊗

⎡

⎢⎣
1 0 0 0
0 1 0 0
1 0 −1 0
0 0 1 −1

⎤

⎥⎦ . (6.51)

Combining these matrices according to (6.48) results in the Winograd FFT
algorithm. Input and output additions can be realized multiplier free, and
the total number of real multiplication becomes 2× 3× 4 = 24. 6.19

6.2 The Fast Fourier Transform (FFT) Algorithms 379

So far we have used the Winograd FFT to compute the IDFT. If we now
want to compute the DFT with the help of an IDFT, we can use a technique
we used in (6.6) on p. 346 to compute the IDFT with help of the DFT. Using
matrix/vector notation we find

x∗ = (W ∗
N X)∗ (6.52)

x∗ = W N X∗, (6.53)

if W N = [e2πjnk/N] with n, k ∈ ZN is a DFT. The DFT can therefore be
computed using the IDFT with the following steps: Compute the conjugate
complex of the input sequence, transform the sequence with the IDFT algo-
rithm, and compute the conjugate complex of the output sequence.

It is also possible to use the Kronecker product algorithms, i.e., the Wino-
grad FFT, to compute the DFT directly. This leads to a slide-modified output
index mapping, as the following example shows.

Example 6.20: A 12-point DFT can be computed using the following Kronecker
product formulation:

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

X[0]
X[3]
X[6]
X[9]
X[4]
X[7]
X[10]
X[1]
X[8]
X[11]
X[2]
X[5]

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

[
W 0

12 W 0
12 W 0

12

W 0
12 W 4

12 W 8
12

W 0
12 W 8

12 W 4
12

]
⊗

⎡

⎢⎣
W 0

12 W 0
12 W 0

12 W 0
12

W 0
12 W 3

12 W 6
12 W 9

12

W 0
12 W 6

12 W 0
12 W 6

12

W 0
12 W 9

12 W 6
12 W 3

12

⎤

⎥⎦

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x[0]
x[9]
x[6]
x[3]
x[4]
x[1]
x[10]
x[7]
x[8]
x[5]
x[2]
x[11]

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (6.54)

The input sequence x[n] can be considered to be in the order used for Good–Thomas
mapping, while in the (frequency) output index mapping for X[k], each first and
third element are exchanged, compared with the Good–Thomas mapping. 6.20

6.2.4 Comparison of DFT and FFT Algorithms

It should now be apparent that there are many ways to implement a DFT.
The choice begins with the selection of a short DFT algorithm from among
those shown in Fig. 6.1 (p. 343). The short DFT can then be used to develop
long DFTs, using the indexing schemes provided by Cooley–Tukey, Good–
Thomas, or Winograd. A common objective in choosing an implementation
is minimum multiplication complexity. This is a viable criterion when the
implementation cost of multiplication is much higher compared with other
operations, such as additions, data access, or index computation.

380 6. Fourier Transforms

Table 6.4. Number of real multiplications for a length-12 complex input FFT
algorithm (twiddle factor multiplications by W 0 are not counted). A complex mul-
tiplication is assumed to use four real multiplications.

Index mapping

DFT Good–Thomas Cooley–Tukey Winograd
Method Fig. 6.17 Fig. 6.2 Example 6.16

p. 376 p. 363 p. 376

Direct 4× 122 = 4× 144 = 576

RPFA

4(3(4− 1)2

+4(3− 1)2) = 172 4(43 + 6) = 196 −

WFTA
3× 0× 2

+4× 2× 2 = 16 16 + 4× 6 = 40 2× 3× 4 = 24

Figure 6.18 shows the number of multiplications required for various FFT
lengths. It can be concluded that the Winograd FFT is most attractive,
based purely on a multiply complexity criterion. In this chapter, the design of
N = 4×3 = 12-point FFTs has been presented in several forms. A comparison
of a direct, Rader prime-factor algorithms, and Winograd DFT algorithms

10
1

10
2

10
3

10
1

10
2

10
3

10
4

N
um

be
r

of
 r

ea
l m

ul
tip

lic
at

io
ns

Transform length N

1 Butterfly
2 Butterflies
3 Butterflies
Good−Thomas FFT
Winograd FFT

Fig. 6.18. Comparison of different FFT algorithm based on the number of neces-
sary real multiplications.

6.2 The Fast Fourier Transform (FFT) Algorithms 381

Table 6.5. Important properties for FFT algorithms of length N =
∏

Nk.

Property Cooley–Tukey Good–Thomas Winograd

Any transform no
Length yes gcd(Nk, Nl) = 1

Maximum
order of W N max(Nk)

Twiddle
factors needed yes no no

Multiplications bad fair best
Additions fair fair fair
Index comput-

ation effort best fair bad
Data in-place yes yes no

Implementation small can use RPFA, small size for
advantages butterfly fast, simple full parallel, medium-

processor FIR array size FFT (< 50)

used for the basic DFT blocks, and the three different index mappings called
Good–Thomas, Cooley–Tukey, and Winograd FFT, is presented in Table 6.4.

Besides the number of multiplications, other constraints must be consid-
ered, such as possible transform lengths, number of additions, index compu-
tation overhead, coefficient or data memory size, and run-time code length.
In many cases, the Cooley–Tukey method provides the best overall solution,
as suggested by Table 6.5.

Some of the published FPGA realizations are summarized in Table 6.6.
The design by Goslin [157] is based on a radix-2 FFT, in which the butterflies
have been realized using distributed arithmetic, discussed in Chap. 2. The
design by Dandalis et al. [173], is based on an approximation of the DFT
using the so-called arithmetic Fourier transform and will be discussed in
Sect. 7.1. The ERNS FFT, from Meyer-Bäse et al. [174], uses the Rader
algorithm in combination with the number theoretic transform, which will
also be discussed in Chap. 7.

With FPGAs reaching complexities of more than 1M gates today, full in-
tegration of an FFT on a single FPGA is viable. Because the design of such
an FFT block is labor intensive, it most often makes sense to utilize com-
mercially available “intellectual property” (IP) blocks (sometimes also called
“virtual components” VCs). See, for instance, the IP partnership programs
at www.xilinx.com or www.altera.com. The majority of the commercially
available designs are based on radix-2 or radix-4.

382 6. Fourier Transforms

Table 6.6. Comparison of some FPGA FFT implementations [5].

Name Data FFT N-point Clock Internal Design
type type FFT rate RAM/ aim/

time P ROM source

Xilinx 8 bit Radix=2 N = 256 70MHz No 573
FPGA FFT 102.4 µs 4.8W CLBs

@3.3 V [157]

Xilinx 16 bit AFT N = 256 50MHz No [173]
FPGA 82.48 µs 15.6 W 2602 CLBs

42.08 µs
@ 3.3 V
29.5 W 4922 CLBs

Xilinx 12.7 bit FFT N = 97 26MHz No 1178
FPGA using 9.24 µs 3.5W CLBs
ERNS-
NTT NTT @3.3 V [174]

6.2.5 IP Core FFT Design

Altera and Xilinx offer FFT generators, since this is, besides the FIR filter,
one of the most often used intellectual property (IP) blocks. For an introduc-
tion to IP blocks see Sect. 1.4.4, p. 35. Xilinx has some free fixed-length and
bitwidth hard core [175], but usually the FFT parameterized cores have to
be purchased from the FPGA vendors for a (reasonable) licence fee.

Let us have a look at the 256-point FFT generation that we discussed
before, see Example 6.12, p. 370, for a radix-2 butterfly processor. But this
time we use the Altera FFT compiler [176] to build the FFT, including the
FSM to control the processing. The Altera FFT MegaCore function is a
high performance, highly parameterizable FFT processor optimized for Altera
devices. Stratix and Cyclone II devices are supported but no mature devices
from the APEX or Flex family. The FFT function implements a radix-2/4
decimation-in-frequency (DIF) FFT algorithm for transform lengths of 2S ,
where 6 ≤ S ≤ 14. Internally a block-floating-point architecture is used to
maximize signal dynamic range in the transform calculation. You can use the
IP toolbench MegaWizard design environment to specify a variety of FFT
architectures, including 4×2+ and 3×5+ butterfly architectures and different
parallel architectures. The FFT compiler includes a coefficient generator for
the twiddle factors that are stored in M4K blocks.

Example 6.21: Length-256 FFT IP Generation
To start the Altera FFT compiler we select MegaWizard Plug-In Manager
under the Tools menu, and the library selection window (see Fig. 1.23, p. 39)
will pop up. The FFT generator can be found under DSP→Transform. You
need to specify a design name for the core and we can then proceed to the
ToolBench, see Fig. 6.19a. We first select Parameters and choose as the FFT
length 256, and set the data and coefficient precision to 16 bits. We then have

6.2 The Fast Fourier Transform (FFT) Algorithms 383

(a) (b)

Fig. 6.19. IP design of an FFT (a) IP toolbench. (b) Coefficient specification.

a choice of different architecture: Streaming, Buffered Burst, and Burst. The
different architectures use more or fewer additional buffers to allow block-by-
block processing that requires, in the case of the Streaming architecture, no
additional clock cycles. Every 256 cycles, we submit a new data set to the
FFT core and, after some processing, get a new 256-point data set. With the
3∗×5+ selection in the Implementation Options the logic resource estimation
for the Cyclone II family will be as follows:

Resource Streaming Buffered burst Burst

LEs 4581 4638 4318
M4K 22 18 10
Mega RAM 0 0 0
M512 0 0 0
DSP block 9-bit 18 18 18
Transform calculation
cycles

256 258 262

Block throughput cycles 256 331 775

Step 2 from the toolbench will generate a simulation model that is required
for the ModelSim simulation. We proceed with step 3, and the generation of
the VHDL code and all supporting files follows. We then instantiate the FFT
core in a wrapper file that we can compile with Quartus II. The coefficient
files for the twiddle factor, along with MatLab testbenches and ModelTech
simulation files and scripts, are generated within a few seconds. This files
are listed in Table 6.7. We see that not only are the VHDL and Verilog
files generated along with their component file, but MatLab (bit accurate)
and ModelSim (cycle accurate) test vectors are provided to enable an easy
verification path. Unfortunately there is no vector file *.vwf that can be used
for the Quartus II simulation and we need to put together our own testbench.
As test data we use a short triangular sequence generated in MatLab as
follows:

384 6. Fourier Transforms

x=[(1:8)*20,zeros(1,248)];
Y=fft(x);

with the following instruction we quantize and list the first five samples scaled
by 2−3 as in the Quartus II simulation:

sprintf(’%d ’,real(round(Y(1:5)*2^-3)))
sprintf(’%d ’,imag(round(Y(1:5)*2^-3))),

and the (expected) test data will be

90 89 87 84 79 73 67 59 50 41 ... (real)
0 -10 -20 -30 -39 -47 -55 -61 -66 -70 ... (imag)

Table 6.7. IP files generation for FFT core.

File Description

fft256.vhd
A MegaCore function variation file, which defines a
top-level VHDL description of the custom MegaCore
function

fft256_inst.vhd A VHDL sample instantiation file

fft256.cmp
A VHDL component declaration for the MegaCore
function variation

fft256.inc An AHDL include declaration file for the MegaCore
function variation function.

fft256_bb.v Verilog HDL black-box file for the MegaCore function
variation

fft256.bsf
Quartus II symbol file to be used in the Quartus II
block diagram editor

fft256.vho Functional model used by the ModelSim simulation

fft_tb.vhd
Testbench used by the ModelSim simulation (can not
be used with Quartus II simulator)

fft256_vho_msim.tcl Compile script used by the ModelSim simulation

fft256_model.m This file provides a MatLab simulation model for the
customized FFT

fft256_wave.do Waveform scripts used by the ModelSim simulation

*.txt Two text files with random real and imaginary input
data

fft256_tb.m
This file provides a MatLab testbench for the cus-
tomized FFT

*.hex Six sin/cos twiddle coefficient tables

f6_core.vec
This file provides simulation test vectors to be used
simulating the customized FFT with the Quartus II
software

fft256.html The MegaCore function report file

The simulation of the FFT block is shown in Figs. 6.20 and 6.21. We see
that the processing works in several steps. After reset is low we set the

6.3 Fourier-Related Transforms 385

Fig. 6.20. Quartus II simulation of the IP FFT block initialization steps.

data available signal .._dav from the sink and source. Then the FFT block
response with a high in the enable signal master_sink_ena. We then set the
signal processing start flag mast_sink_sop to high for one clock cycle. At the
same time we apply the first input data (i.e., value 20 in our test) to the
FFT block followed by the next data in each clock cycles. After 256 clock
cycles all input data are processed. Since the FFT uses Steaming mode a
total latency of one extra block is required and the first data are available
after 256×2×10 ns ≈ 5μs, as indicated by the master_source_sop signal, see
Fig. 6.21a. After 256 clock cycles all output data are transmitted as shown by
the pulse in the master_source_eop signal (see Fig. 6.21b) and the FFT will
output the next block. Notice that the output data shows little quantization,
but have a block exponent of −3, i.e., are scaled by 1/8. This is a result of the
block floating-point format used inside the block to minimize the quantization
noise in the multistage FFT computation. To unscale use a barrelshifter and
shift all real and imaginary data according to this exponent value. 6.21

The design from the previous example runs at 144.09MHz and requires
4461LEs, 18 embedded multipliers of size 9 × 9 bits (i.e., nine blocks of size
18 × 18 bits), and 19 M4Ks embedded memory blocks, see the floorplan in
Fig. 6.22. If we compare this with the estimation of 22 M4Ks, 18 multipli-
ers, 4581LEs given by the FFT core toolbench, we observe no error for the
multiplier, a 3% error for the LEs, and an 18% error for the M4Ks estimation.

6.3 Fourier-Related Transforms

The discrete cosine transform (DCT) and discrete sine transform (DST) are
not DFTs, but they can be computed using a DFT. However, DCTs and DSTs

386 6. Fourier Transforms

(a) (b)

Fig. 6.21. FFT core simulation output results. (a) Start of the output frame. (b)
End of the output frame.

Fig. 6.22. Annotated Quartus II floorplan of the 256-point FFT.

can not be used directly to compute fast convolution, by multiplying the
transformed spectra and an inverse transform, i.e., the convolution theorem
does not hold. The applications for DCTs and DSTs are therefore not as broad
as those for FFTs, but in some applications, like image compression, DCTs
are (due to their close relationship to the Kahunen–Loevé transform) very
popular. However, because DCTs and DSTs are defined by sine and cosine
“kernels,” they have a close relation to the DFT, and will be presented in this

6.3 Fourier-Related Transforms 387

chapter. We will begin with the definition and properties of DCTs and DSTs,
and will then present an FFT-like fast computation algorithm to implement
the DCT. All DCTs obey the following transform pattern observed by Wang
[177]:

X [k] =
∑

n

x[n]Cn,k
N ←→ x[n] =

∑

k

X [k]Cn,k
N . (6.55)

The kernel functions Cn,k
N , for four different DCT instances, are defined by

DCT-I: Cn,k
N =

√
2/Nc[n]c[k] cos

(
nk π

N

)
n, k = 0, 1, . . . , N

DCT-II: Cn,k
N =

√
2/Nc[k] cos

(
k(n+ 1

2) π
N

)
n, k = 0, 1, . . . , N − 1

DCT-III: Cn,k
N =

√
2/Nc[n] cos

(
n(k + 1

2) π
N

)
n, k = 0, 1, . . . , N − 1

DCT-IV: Cn,k
N =

√
2/N cos

(
(k + 1

2)(n+ 1
2) π

N

)
n, k = 0, 1, . . . , N − 1,

where c[m] = 1 except c[0] = 1/
√

2. The DST has the same structure, but the
cosine terms are replaced by sine terms. DCTs have the following properties:

1) DCTs implement functions using cosine bases.
2) All transforms are orthogonal, i.e., C ×Ct = k[n]I.
3) A DCT is a real transform, unlike the DFT.
4) DCT-I is its own inverse.
5) DCT-II is the inverse of DCT-III, and vice versa.
6) DCT-IV is its own inverse. Type IV is symmetric, i.e., C = Ct.
7) The convolution property of the DCT is not the same as the convolution

multiplication relationship in the DFT.
8) The DCT is an approximation of the Kahunen–Loevé transformation

(KLT).

The two-dimensional 8× 8 transform of the DCT-II is used most often in
image compression, i.e., in the H.261, H.263, and MPEG standards for video
and in the JPEG standard for still images. Because the two-dimensional
transform is separable into two dimensions, we compute the two-dimensional
DCT by row transforms followed by column transforms, or vice versa (Ex-
ercise 6.17, p. 394). We will therefore focus on the implementation of one-
dimensional transforms.

6.3.1 Computing the DCT Using the DFT

Narasimha and Peterson [178] have introduced a scheme describing how to
compute the DCT with the help of the DFT [179, p. 50]. The mapping of
the DCT to the DFT is attractive because we can then use the wide variety
of FFT-type algorithms. Because DCT-II is used most often, we will further

388 6. Fourier Transforms

develop the relationship of the DFT and DCT-II. To simplify the representa-
tion, we will skip the scaling operation, since it can be included at the end of
the DFT or FFT computation. Assuming that the transform length is even,
we can rewrite the DCT-II transform

X [k] =
N−1∑

n=0

x[n] cos
(
k

(
n+

1
2

)
π

N

)
, (6.56)

using the following permutation

y[n] = x[2n] and y[N − n− 1] = x[2n+ 1]
for n = 0, 1, . . . , N/2− 1.

It follows then that

X [k] =
N/2−1∑

n=0

y[n] cos
(
k(2n+

1
2
)
π

N

)

+
N/2−1∑

n=0

y[N − n− 1] cos
(
k(2n+

3
2
)
π

N

)

X [k] =
∑

n

y[n] cos
(
k(2n+

1
2
)
π

N

)
. (6.57)

If we now compute the DFT of y[n] denoted with Y [k], we find that

X [k] = � (W4NY [k])

= cos
(
πk

2N

)
�(Y [k])− sin

(
πk

2N

)
�(Y [k]). (6.58)

This can be easily transformed in a C or MatLab program (see Exercise
6.17, p. 394), and can be used to compute the DCT with the help of a DFT
or FFT.

6.3.2 Fast Direct DCT Implementation

The symmetry properties of DCTs have been used by Byeong Lee [180] to
construct an FFT-like DCT algorithm. Because of its similarities to a radix-
2 Cooley–Tukey FFT, the resulting algorithm is sometimes referred to as
the fast DCT or simply FCT. Alternatively, a fast DCT algorithm can be
developed using a matrix structure [181]. A DCT can be obtained by “trans-
posing” an inverse DCT (IDCT) since the DCT is known to be an orthog-
onal transform. IDCT Type II was introduced in (6.55) and, noting that
X̂ [k] = c[k]X [k], it follows that

x[n] =
N−1∑

k=0

X̂[k]Cn,k
N , n = 0, 1, . . . , N − 1. (6.59)

6.3 Fourier-Related Transforms 389

c[6]

c[6]

c[2]

c[2] c[7]

c[5]

c[3]

c[1]

−1 −1

−1

−1

−1

x[5]

x[4]

x[6]

x[7]

x[2]

x[3]

x[1]

x[0]
0.5^0.5

−1

−1

−1

−1

−1

−1

−1

h[2]

h[3]

h[1]

h[0]

g[2]

g[3]

g[1]

g[0]

H[3]

H[2]

H[1]

H[0]

G[3]

G[2]

G[1]

G[0]

X[7]

X[3]

X[6]

X[1]

c[4]

X[2]

X[4]

X[0]

x[5]
c[4]

c[4]

c[4]

Fig. 6.23. 8-point fast DCT flow graph with the short-hand notation c[p] =
1/(2 cos(pπ/16)).

Decomposing x[n] into even and odd parts it can be shown that x[n] can be
reconstructed by two N/2 DCTs, namely

G[k] = X̂[2k], (6.60)
H [k] = X̂[2k + 1] + X̂ [2k − 1], k = 0, 1, . . . , N/2− 1. (6.61)

In the time domain, we get

g[n] =
N/2−1∑

k=0

G[k]Cn,k
N/2, (6.62)

h[n] =
N/2−1∑

k=0

H [k]Cn,k
N/2, k = 0, 1, . . . , N/2− 1. (6.63)

The reconstruction becomes

x[n] = g[n] + 1/(2Cn,k
N)h[n], (6.64)

x[N − 1− n] = g[n]− 1/(2Cn,k
N)h[n], (6.65)

n = 0, 1, . . . , N/2− 1.

By repeating this process, we can decompose the DCT further. Compar-
ing (6.62) with the radix-2 FFT twiddle factor shown in Fig. 6.13 (p. 366)
shows that a division seems to be necessary for the FCT. The twiddle factors
1/(2Cn,k

N) should therefore be precomputed and stored in a table. Such a
table approach is also appropriate for the Cooley–Tukey FFT, because the
“online” computation of the trigonometric function is, in general, too time
consuming. We will demonstrate the FCT with the following example.

390 6. Fourier Transforms

IDCT input permutation

ReversedX[37]

X[41]

IDCT output permutation

Original

1 1 0

1

00

1

0

110 0

011 1100 0

1

0

1

1 01110111 100 00 01000 10

1

0

0

0

1 00

010

11

11

Fig. 6.24. Input and output permutation for the 8-point fast DCT.

Example 6.22: A 8-point FCT
For an 8-point FCT (6.60)–(6.65) become

G[k] = X̂ [2k], (6.66)

H [k] = X̂ [2k + 1] + X̂[2k − 1], k = 0, 1, 2, 3. (6.67)

and in the time domain we get

g[n] =

3∑

k=0

G[k]Cn,k
4 , (6.68)

h[n] =

3∑

k=0

H [k]Cn,k
4 , n = 0, 1, 2, 3. (6.69)

The reconstruction becomes

x[n] = g[n] + 1/(2Cn,k
8)h[n], (6.70)

x[N − 1− n] = g[n]− 1/(2Cn,k
8)h[n], n = 0, 1, 2, 3. (6.71)

Equations (6.66) and (6.67) form the first stage in the flow graph in Fig. 6.23,
and (6.70) and (6.71) build the last stage in the flow graph. 6.22

In Fig. 6.23, the input sequence X̂[k] is applied in bit-reversed order.
The order of the output sequence x[n] is generated in the following manner:
starting with the set (0, 1) we form the new set by adding a prefix 0 and 1.
For the prefix 1, all bits of the previous pattern are inverted. For instance,
from the sequence 10 we get the two babies 010 and 11̄0̄ = 101. This scheme
is graphically interpreted in Fig. 6.24.

Exercises 391

Exercises

Note: If you have no prior experience with the Quartus II software, refer
to the case study found in Sect. 1.4.3, p. 29. If not otherwise noted use the
EP2C35F672C6 from the Cyclone II family for the Quartus II synthesis eval-
uations.

6.1: Compute the 3-dB bandwidth, first zero, maximum sidelobe, and decrease per
octave, for a rectangular and triangular window using the Fourier transform.

6.2: (a) Compute the cyclic convolution of x[n] = {3, 1,−1} and f [n] = {2, 1, 5}.
(b) Compute the DFT matrix W 3 for N = 3.
(c) Compute the DFT of x[n] = {3, 1,−1} and f [n] = {2, 1, 5}.
(d) Now compute Y [k] = X[k]F [k], followed by y = W −1

3 Y , for the signals from
part (c).
Note: use a C compiler or MatLab for part (c) and (d).

6.3: A single spectral component X[k] in the DFT computation

X[k] = x[0] + x[1]W k
N + x[2]W 2k

N + . . . + x[N − 1]W
(N−1)k
N

can be rearranged by collecting all common factors W k
N , such that we get

X[k] = x[0] + W k
N(x[1] + W k

N(x[2] + . . . + W k
Nx[N − 1]) . . .)).

This results in a possibly recursive computation of X[k]. This is called the Goertzel
algorithm and is graphically interpreted by Fig. 6.5 (p. 350). The Goertzel algo-
rithm can be attractive if only a few spectral components must be computed. For
the whole DFT, the effort is of order N2 and there is no advantage compared with
the direct DFT computation.
(a) Construct the recursive signal flow graph, including input and output register,
to compute a single X[k] for N = 5.
For N = 5 and k = 1, compute all registers contents for the following input se-
quences:
(b) {20, 40, 60, 80, 100}.
(c) {j20, j40, j60, j80, j100}.
(d) {20 + j20, 40 + j40, 60 + j60, 80 + j80, 100 + j100}.

6.4: The Bluestein chirp-z algorithm was defined in Sect. 6.1.4 (p. 350). This algo-
rithm is graphically interpreted in Fig. 6.6 (p. 351).
(a) Determine the CZT algorithms for N = 4.
(b) Using C or MatLab, determine the CZT for the triangular sequence x[n] =
{0, 1, 2, 3}.
(c) Using C or MatLab, extend the length to N = 256, and check the CZT results
with an FFT of the same length. Use a triangular input sequence, x[n] = n.

6.5: (a) Design a direct implementation of the nonrecursive filter for the N = 7
Rader algorithm.
(b) Determine the coefficients that can be combined.
(c) Compare the realizations from (a) and (b) in terms of realization effort.

6.6: Design a length N = 3 Winograd DFT algorithm and draw the signal flow
graph.

392 6. Fourier Transforms

6.7: (a) Using the two-dimensional index transform n = 3n1 + 2n2 mod 6, with
N1 = 2 and N2 = 3, determine the mapping (6.18) on p. 362. Is this mapping
bijective?
(b) Using the two-dimensional index transform n = 2n1 + 2n2 mod 6, with N1 = 2
and N2 = 3, determine the mapping (6.18) on p. 362. Is this mapping bijective?
(c) For gcd(N1, N2) > 1, Burrus [148] found the following conditions such that the
mapping is bijective:

A = aN2 and B �= bN1 and gcd(a,N1) = gcd(B, N2) = 1

or

A �= aN2 and B = bN1 and gcd(A,N1) = gcd(b, N2) = 1,

with a, b ∈ Z. Suppose N1 = 9 and N2 = 15. For A = 15, compute all possible
values for B ∈ Z20.

6.8: For gcd(N1, N2) = 1, Burrus [148] found that in the following conditions the
mapping is bijective:

A = aN2 and/or B = bN1 and gcd(A, N1) = gcd(B, N2) = 1, (6.72)

with a, b ∈ Z. Assume N1 = 5 and N2 = 8. Determine whether the following
mappings are possibly bijective index mappings:
(a) A = 8, B = 5.
(b) A = 8, B = 10.
(c) A = 24, B = 15.
(d) For A = 7, compute all valid B ∈ Z20.
(e) For A = 8, compute all valid B ∈ Z20.

6.9: (a) Draw the signal flow graph for a radix-2 DIF algorithm where N = 16.
(b) Write a C or MatLab program for the DIF radix-2 FFT.
(c) Test your FFT program with a triangular input x[n] = n+jn with n ∈ [0, N−1].

6.10: (a) Draw the signal flow graph for a radix-2 DIT algorithm where N = 8.
(b) Write a C or MatLab program for the DIT radix-2 FFT.
(c) Test your FFT program with a triangular input x[n] = n+jn with n ∈ [0, N−1].

6.11: For a common-factor FFT the following 2D DFT (6.24; p. 363) is used:

X[k1, k2] =

N2−1∑

n2=0

W n2k2
N2

(
W n2k1

N

N1−1∑

n1=0

x[n1, n2]W
n1k1
N1

)
(6.73)

(a) Compile a table for the index map for a N = 16 radix-4 FFT with: n = 4n1 +n2

and k = k1 + 4k2, and 0 ≤ n1, k1 ≤ N1 and 0 ≤ n2, k2 ≤ N2.
(b) Complete the signal flow graph (x, X and twiddle factors) for the N = 16 radix
4 shown in Fig.6.25.
(c) Compute the 16-point FFT for x = [0 1, 0, 0, 0, 2, 0, 0, 0, 3, 0, 0, 0, 4, 0, 0]
using the following steps:
(c1) Map the input data and compute the DFTs of the first stage.
(c2) Multiply the (none-zero DFTs) with the twiddle factors (hint: w =
exp(−j2π/16)).
(c3) Compute the second level DFT.
(c4) Sort the output sequence X in the right order (use two fractional digits).
Note: Consider using a C compiler or MatLab for part (c).

Exercises 393

Fig. 6.25. Incomplete 16-point radix-4 FFT signal flow graph.

6.12: Draw the signal flow graph for an N = 12 Good–Thomas FFT, such that no
crossings occur in the signal flow graph.
(Hint: Use a 3D representation of the row and column DFTs)

6.13: The index transform for FFTs by Burrus and Eschenbacher [182] is given by

n = N2n1 + N1n2 mod N

{
0 ≤n1≤N1 − 1
0 ≤n2≤N2 − 1,

(6.74)

and

k = N2k1 + N1k2 mod N

{
0 ≤k1≤N1 − 1
0 ≤k2≤N2 − 1.

(6.75)

(a) Compute the mapping for n and k with N1 = 3 and N2 = 4.
(b) Compute W nk.
(c) Substitute W nk from (b) in the DFT matrix.
(d) What type of FFT algorithm is this?
(e) Can the Rader algorithm be used to compute the DFTs of length N1 or N2?

6.14: (a) Compute the DFT matrices W 2 and W 3.
(b) Compute the Kronecker product W ′

6 = W 2 ⊗W 3.
(c) Compute the index for the vectors X and x, such that X = W ′

6x is a DFT of
length 6.
(d) Compute the index mapping for x[n] and X[k], with x = W ∗

2 ⊗W ∗
3X being

the IDFT.

6.15: The discrete Hartley transformation (DHT) is a transform for real signals. A
length N transform is defined by

394 6. Fourier Transforms

H [n] =

N−1∑

k=0

cas(2πnk/N) h[k], (6.76)

with cas(x) = sin(x) + cos(x). The relation with the DFT (f [k]
DFT←→ F [n]) is

H [n] = �{F [n]} − �{F [n]} (6.77)

F [n] = E[n]− jO[n] (6.78)

E[n] =
1

2
(H [n] + H [−n]) (6.79)

O[n] =
1

2
(H [n]−H [−n]) , (6.80)

where � is the real part, � the imaginary part, E[n] the even part of H [n], and
O[n] the odd part of H [n].
(a) Compute the equation for the inverse DHT.
(b) Compute (using the frequency convolution of the DFT) the steps to compute
a convolution with the DHT.
(c) Show possible simplifications for the algorithms from (b), if the input sequence
is even.

6.16: The DCT-II form is:

X[k] = c[k]

√
2

N

N−1∑

n=0

x[n] cos
(

2π

4N
(2n + 1)k

)
(6.81)

c[k] =

{√
1/2 k = 0

1 otherwise
. (6.82)

(a) Compute the equations for the inverse transform.
(b) Compute the DCT matrix for N = 4.
(c) Compute the transform of x[n] = {1, 2, 2, 1} and x[n] = {1, 1,−1,−1}.
(d) What can you say about the DCT of even or odd symmetric sequences?

6.17: The following MatLab code can be used to compute the DCT-II transform
(assuming even length N = 2n), with the help of a radix-2 FFT (see Exercise 6.9).

function X = DCTII(x)
N = length(x); % get length
y = [x(1:2:N); x(N:-2:2)]; % re-order elements
Y = fft(y); % Compute the FFT
w = 2*exp(-i*(0:N-1)’*pi/(2*N))/sqrt(2*N); % get weights
w(1) = w(1) / sqrt(2); % make it unitary
X = real(w .* Y); % compute pointwise product

(a) Compile the program with C or MatLab.
(b) Compute the transform of x[n] = {1, 2, 2, 1} and x[n] = {1, 1,−1,−1}.

6.18: Like the DFT, the DCT is a separable transform and, we can therefore im-
plement a 2D DCT using 1D DCTs. The 2D N ×N transform is given by

X[n1, n2] =

c[n1]c[n2]

4

N−1∑

k=0

N−1∑

l=0

x[k, l] cos
(
n1(k +

1

2
)

π

N

)
cos

(
n2(l +

1

2
)

π

N

)
, (6.83)

Exercises 395

where c[0] = 1/
√

2 and c[m] = 1 for m �= 0.
Use the program introduced in Exercise 6.17 to compute an 8× 8 DCT transform
by
(a) First row followed by column transforms.
(b) First column followed by row transforms.
(c) Direct implementation of (6.83).
(d) Compare the results from (a) and (b) for the test data x[k, l] = k + l with
k, l ∈ [0, 7]

6.19: (a) Implement a first-order system according to Exercise 6.3, to compute the
Goertzel algorithm for N = 5 and n = 1, and 8-bit coefficient and input data, using
Quartus II.
(b) Determine the Registered Performance and the used resources (LEs, multi-
pliers, and M4Ks).
Simulate the design with the three input sequences:
(c) {20, 40, 60, 80, 100},
(d) {j20, j40, j60, j80, j100}, and
(e) {20 + j20, 40 + j40, 60 + j60, 80 + j80, 100 + j100}.

6.20: (a) Design a Component to compute the (real input) 4-point Winograd DFT
(from Example 6.16, p. 376) using Quartus II. The input and output precision
should be 8 bits and 10 bit, respectively.
(b) Determine the Registered Performance and the used resources (LEs, multi-
pliers, and M4Ks).
Simulate the design with the three input sequences:
(c) {40, 70, 100, 10}.
(d) {0, 30, 60, 90}.
(e) {80, 110, 20, 50}.

6.21: (a) Design a Component to compute the (complex input) 3-point Winograd
DFT (from Example 6.16, p. 376) using Quartus II. The input and output precision
should be 10 bits and 12 bits, respectively.
(b) Determine the Registered Performance and the used resources (LEs, multi-
pliers, and M4Ks).
(c) Simulate the design with the input sequences {180, 220, 260}.

6.22: (a) Using the designed 3- and 4-point Components from Exercises 6.20 and
6.21, use component instantiation to design a fully parallel 12-point Good–Thomas
FFT similar to that shown in Fig. 6.17 (p. 376), using Quartus II. The input and
output precision should be 8 bit and 12 bit, respectively.
(b) Determine the Registered Performance and the used resources (LEs, multi-
pliers, and M4Ks).
(c) Simulate the design with the input sequences x[n] = 10n with 0 ≤ n ≤ 11.

6.23: (a) Design a component ccmulp similar to the one shown in Example 6.11
(p. 368), to compute the twiddle factor multiplication. Use three pipeline stages for
the multiplier and one for the input subtraction X−Y, using Quartus II. The input
and output precision should again be 8 bits.
(b) Conduct a simulation to ensure that the pipelined multiplier correctly com-
putes (70 + j50)(121 + j39).
(c) Determine the Registered Performance and the used resources (LEs, multi-
pliers, and M4Ks) of the twiddle factor multiplier.
(d) Now implement the whole pipelined butterfly processor.
(e) Conduct a simulation, with the data from Example 6.12 (p. 370).
(f) Determine the Registered Performance and the used resources (LEs, multi-
pliers, and M4Ks) of the whole pipelined butterfly processor.

396 6. Fourier Transforms

Fig. 6.26. Incomplete 15-point CFA FFT signal flow graph.

6.24: (a) Compute the cyclic convolution of x[n] = {1, 2, 3, 4, 5} and f [n] = {−1, 0,
−2, 0, 4}.
(b) Compute the DFT matrix W 5 for N = 5.
(c) Compute the DFT of x[n] and f [n].
(d) Now compute Y [k] = X[k]F [k], followed by y = W −1

5 Y , for the signals from
part (c).
Note: use a C compiler or MatLab for part (c) and (d).

6.25: For a common-factor FFT the following 2D DFT (6.24; p. 363) is used:

X[k1, k2] =

N2−1∑

n2=0

W n2k2
N2

(
W n2k1

N

N1−1∑

n1=0

x[n1, n2]W
n1k1
N1

)
. (6.84)

(a) Compile a table for the index map for a N = 15, N1 = 5, and N2 = 3 FFT with
n = 3n1 + n2 and k = k1 + 5k2.
(b) Complete the signal flow graph shown in Fig. 6.26 for the N = 15 transform.
(c) Compute the 15-point FFT for x = [0, 1, 0, 0, 2, 0, 0, 3, 0, 0, 4, 0, 0, 5, 0] using
the following steps:
(c1) Map the input data and compute the DFTs of the first stage.
(c2) Multiply the (nonzero DFTs) with the twiddle factors, i.e., w = exp(−j2π/15).
(c3) Compute the second-level DFT.
(c4) Sort the output sequence X into the right order (use two fractional digits).
Note: use a C compiler or MatLab for part (c).

6.26: For a prime-factor FFT the following 2D DFT (6.42); p. 374 is used:

X[k1, k2] =

N2−1∑

n2=0

W n2k2
N2

(
N1−1∑

n1=0

x[n1, n2]W
n1k1
N1

)
. (6.85)

Exercises 397

(a) Compile a table for the index map for a N = 15, N1 = 5, N2 = 3 FFT with
n = 3n1 + 5n2 mod 15 and k = 6k1 + 10k2 mod 15, and 0 ≤ n1, k1 ≤ N1 and
0 ≤ n2, k2 ≤ N2.
(b) Draw the signal flow graph for the N = 15 transform.
(c) Compute the 15-point FFT for x = [0, 0, 5, 0, 0, 1, 0, 0, 2, 0, 0, 3, 0, 0, 4] using
the following steps:
(c1) Map the input data and compute the DFTs of the first stage.
(c2) Compute the second-level DFTs.
(c3) Sort the output sequence X into the right order (use two fractional digits).
Note: use a C compiler or MatLab to verify part (c).

6.27: (a) Develop the table for the 5× 2 Good–Thomas index map (see Theorem
6.13, p. 374) for N1 = 5 and N2 = 2.
(b) Develop a program in MatLab or C to compute the (real-input) five-point
Winograd DFT using the signal flow graph shown in Fig. 6.11, p. 6.11. Test your
code using the two input sequences {10 , 30, 50, 70, 90 } and {60, 80, 100, 20, 40}.
(c) Develop a program in MatLab or C to compute the (complex input) two-point
Winograd DFT. Test your code using the two input sequences {250, 300} and
{−50 +−j67, −j85}.
(d) Combine the two programs from (b) and (c) and build a Good–Thomas 5× 2
FFT using the mapping from (a). Test your code using the input sequences x[n] =
10n with 1 <= n <= 10.

6.28: (a) Design a five-point (real-input) DFT in HDL. The input and output pre-
cision should be 8 and 11 bits, respectively. Use registers for the input and output.
Add a synchronous enable signal to the registers. Quantize the center coefficients
using the program csd.exe from the CD and use a CSD coding with at least 8-bit
precision.
(b) Simulate the design with the two input sequences {10, 30, 50, 70, 90} and {60,
80, 100, 20, 40}, and match the simulation shown in Fig. 6.27.
(c) Determine the Registered Performance and the used resources (LEs, embed-
ded multipliers, and M4Ks) of the five-point DFT.

6.29: (a) Design a two-point (complex input) Winograd DFT in HDL. Input and
output precision should be 11 and 12 bits, respectively. Use registers for the input
and output. Add a synchronous enable signal to the registers.
(b) Simulate the design with the two input sequences {250, 300} and {−50 +
j67,−j85}, and match the simulation shown in Fig. 6.28.
(c) Determine the Registered Performance and the used resources (LEs, embed-
ded multipliers, and M4Ks) of the two-point DFT.

6.30: (a) Using the designed five- and two-point components from Exercises 6.28
and 6.29 use component instantiation to design a fully parallel 10-point Good–
Thomas FFT similar to your software code from Exercise 6.27. The input and
output precision should be 8 and 12 bits, respectively. Add an asynchronous reset
for the I/O FSM and I/O registers. Use a signal ENA to indicate when a set of I/O
values has been transferred.
(b) Simulate the design with the input x[n] = 10n with 1 ≤ n ≤ 10. Try to match
the simulation shown in Fig. 6.29.
(c) Determine the Registered Performance and the used resources (LEs, embed-
ded multipliers, and M4Ks) of the 10-point Good–Thomas FFT.

398 6. Fourier Transforms

Fig. 6.27. VHDL simulation of a five-point real-input Winograd DFT.

Fig. 6.28. VHDL simulation of a two-point complex-input Winograd DFT.

6.31: Fast IDCT design.
(a) Develop a fast IDCT (MatLab or C) code for the length-8 transform according

to Fig. 6.23 (p. 389). Note that the scaling for X[0] is
√

1/2 and the DCT scaling√
2/N according to (6.55) is not shown in Fig. 6.23 (p. 389).

(a) Verify your program with the MatLab function idct for the sequence X =

Exercises 399

(a)

(b)

Fig. 6.29. VHDL simulation of a 10-point Good–Thomas FFT. (a) Begin of frame.
(b) End of frame.

10, 20, . . . 80.
(c) Determine the maximum bit growth for each spectral component. Hint: in
MatLab take advantage of the functions abs, max, dctmtx, and sum.
(d) Using the program csd.exe from the CD determine for each coefficient c[p] =
0.5/ cos(p/16) the CSD presentation for at least 8-bit precision.
(e) For the input sequence X = 10, 20, . . . , 80 compute the output in float and
integer format.
(f) Tabulate the intermediate values behind the first-, second-, and third-stage
multiplication by c[p]. As input use the sequence X from (e) with additional four
guard bits, i.e., scaled by 24 = 16.

6.32: (a) Develop the HDL code for the length-8 transform according to Fig. 6.23
(p. 6.23). Include an asynchronous reset and a signal ena when the transform is
ready. Use serial I/O. Input x_in should be 8 bit, as the output y_out and internal
data format use a 14 integer format with four fractional bits, i.e., scale the input
(×16) and output (/16) in order to implement the four fractional bits.
(b) Use the data from Exercise 6.31(f) to debug the HDL code. Match the simula-
tion from Fig. 6.30 for the input and output sequences.
(c) Determine the Registered Performance and the used resources (LEs, embed-
ded multipliers, and M4Ks) of the 8-point IDCT.
(d) Determine the maximum output error in percent comparing the HDL and soft-
ware results from Exercise 6.31.

400 6. Fourier Transforms

Fig. 6.30. VHDL simulation of an 8-point IDCT.

7. Advanced Topics

Several algorithms exist that enable FPGAs to outperform PDSPs by an
order of magnitude, due to the fact that FPGAs can be built with bitwise
implementations. Such applications are the focus of this chapter.

For number theoretic transforms (NTTs), the essential advantage of FP-
GAs is that it is possible to implement modulo arithmetic in any desired bit
width. NTTs are discussed in detail in Sect. 7.1.

For error control and cryptography, two basic building blocks are used:
Galois field arithmetic and linear feedback shift registers (LFSR). Both can
be efficiently implemented with FPGAs, and are discussed in Sect. 7.2. If,
for instance, an N -bit LFSR is used as an M -multistep number generator,
this will give an FPGA at least an MN speed advantage over a PDSPs or
microprocessor.

Finally, in Sect. 7.3, communication systems designed with FPGAs will
demonstrate low system costs, high throughput, and the possibility of fast
prototyping. A comprehensive discussion of both coherent and incoherent
receivers will close this chapter.

7.1 Rectangular and Number Theoretic Transforms
(NTTs)

Fast implementation of convolution, and discrete Fourier transform (DFT)
computations, are frequent problems in signal and image processing. In prac-
tice these operations are most often implemented using fast Fourier transform
(FFT) algorithms. NTTs can, in some instances, outperform FFT-based sys-
tems. In addition, it is also possible to use a rectangular transform, like the
Walsh–Hadamard or the arithmetic Fourier transform, to get an approxima-
tion of the DFT or convolution, as will be discussed at the end of Sect. 7.1.

In 1971, Pollard [183] defined the NTT, over a finite group, as the trans-
form pair

x[n] = N−1
N−1∑

k=0

X [k]α−nk mod M ↔ X [k] =
N−1∑

n=0

x[k]αkn mod M, (7.1)

402 7. Advanced Topics

where N × N−1 ≡ 1 exists, and α ∈ ZM (ZM = {0, 1, 2, . . . ,M − 1}, and
ZM

∼= Z/MZ) is an element of order N, i.e., αN ≡ 1 and αk �≡ 1 for all
k ∈ {1, 2, 3, . . . , N − 1} in the finite group (ZM ,×) (see Exercise 7.1, p. 472).

It is important to be able to ensure that, for a given tuple (α,M,N), such
a transform pair exists. Clearly, α must be of order N modulo M. In order
to ensure that the inverse NTT (INTT) exists, other requirements are:

1) The multiplicative inverse N−1 mod M must exist, i.e., the equation x×
N ≡ 1 mod M must have a solution x ∈ ZM .

2) The determinant of the transform matrix |A| = |[αkn]| must be nonzero
so that the matrix is invertible, i.e., A−1 exists.

1) It can only be concluded that a multiplicative inverse exists if α and
M do not share a common factor, or in short notation, gcd(α,M) = 0.

2) For the second condition, a well-known fact from algebra is used: The
NTT matrix is a special case of the Vandermonde matrix (with a[k] = αk

N),
and it follows for the determinant

det(V) =

∣∣∣∣∣∣∣∣∣

1 a[0] a[0]2 · · · a[0]L−1

1 a[1] a[1]2 · · · a[1]L−1

...
... · · · . . .

...
1 a[L− 1] a[L− 1]2 · · · a[L− 1]L−1

∣∣∣∣∣∣∣∣∣

=
∏

k>l

(a[k]− a[l]). (7.2)

For det(V) �= 0, it is required that a[k] �= a[l] ∀ k �= l. Since the calculations
are, in fact, modulo M, a second constraint arises. Specifically, there cannot

be a zero multiplier in the determinant (i.e., gcd
(∏

k>l

ak − al,M

)
= 1).

In conclusion, to check the existence of an NTT, it must be verified that:

Theorem 7.1: Existence of an NTT over ZM

An NTT of length N for α defined over ZM exists, if:
1) gcd(α,M) = 1.
2) α is of order N , i.e.,

αn mod M
{

= 1 n = N
�= 1 1 ≤ n < N.

(7.3)

3) The inverse det(A)−1 exist, i.e., gcd(αl − 1,M) = 1 for l =
1, 2, . . . , N − 1.

For Zp, p = prime, all the conditions shown above are automatically satisfied.
In Zp elements up to an order p−1 can be found. But transforms length p−1
are, in general, of limited practical interest, since in this case “general” mul-
tiplications and modulo reductions are necessary, and it is more appropriate
to use a “normal” FFT in binary or QRNS arithmetic [184] and [39, paper
5-6].

There are no useful transforms in the ring M = 2b. But it is possible to
use the next neighbors, 2b ± 1. If primes are used, then conditions 1 and 3
are automatically satisfied. We therefore need to discuss what kind of primes
2b ± 1 are known.

7.1 Rectangular and Number Theoretic Transforms (NTTs) 403

Mersenne and Fermat Numbers. Primes of the form 2b−1 were first in-
vestigated by the French mathematician Marin Mersenne (1588–1648). Using
the geometry series

(
1 + 2q + 22q + . . .+ 2qr−1

)
(2q − 1) = 2qr − 1

it can be concluded that exponent b of a Mersenne prime must also be a
prime. This is necessary, but not sufficient, as the example 211− 1 = 23× 89
shows. The first Mersenne primes 2b − 1 have exponents

b = 2, 3, 5, 7, 13, 17, 31, 61, 89, 107, 127, 521, 607, 1279. (7.4)

Primes of the type 2b + 1 are known from one of Fermat’s old letters.
Fermat conjectured that all numbers 2(2t)+1 are primes but, as for Mersenne
primes, this is necessary but not sufficient. It is necessary because if b is odd,
i.e., b = q2t then

2q2t

=
(
2(2t) + 1

)(
2(q−1)2t − 2(q−2)2t

+ 2(q−3)2t − · · ·+ 1
)

is not prime, as in the case of (24 + 1)|(212 + 1), i.e., 17|4097. There are five
known Fermat primes

F0 = 3 F1 = 5 F2 = 17 F3 = 257 F4 = 65537, (7.5)

but Euler (1707-1783) showed that 641 divides F5 = 232 +1. Up to F21 there
are no Fermat primes, which reduce the possible prime Fermat primes for
NTTs to the first five.

7.1.1 Arithmetic Modulo 2b ± 1

In Chap. 2, the one’s complement (1C) and diminished-by-one (D1) coding
were reviewed. Consult Table 2.1 (p. 57) for C1 and D1 coding. It was claimed
that C1 coding can efficiently represent arithmetic modulo 2b−1. This is used
to build Mersenne NTTs, as suggested by Rader [185]. D1 coding efficiently
represents arithmetic modulo 2b + 1, and is therefore preferred for Fermat
NTTs, as suggested by Leibowitz [52].

The following table illustrates again the 1C and D1 arithmetic for com-
puting addition.

1C D1

s = a+ b+ cN if((a == 0)&&(b == 0))s = 0
else s = a+ b+ cN

where a and b are the input operands, s is the sum and cN the carry bit of
the intermediate sum a+ b without modulo reduction. To implement the 1C
addition, first form the intermediate B-bit sum. Then add the carry of the
MSB cN to the LSB. In D1 arithmetic, the carry must first be inverted before

404 7. Advanced Topics

adding it to the LSB. The hardware requirement to add modulo 2B ± 1 is
therefore a total of two adders. The second adder may be built using half-
adders, because one operand, besides the carry in the LSB, is zero.

Example 7.2: As an example, compute 10 + 7 mod M.

1C D1
Decimal M = 15 M = 17

7 0111 00110
+10 +1010 +01001

17 10001 01111
Correction +1 = 0010 +1 = 1.0000

Check: 1710 mod 15 = 2 1710 mod 17 = 0

7.2

Subtraction is defined in terms of an additive inverse. Specifically, B =
−A is said to be the additive inverse of A if A + B = 0. How the additive
inverse is built can easily be seen by consulting Table 2.1 (p. 57). Additive
inverse production is

1C D1

a if(zf(a)! = 1)a

It can be seen that a bitwise complement must first be computed. That is
sufficient in the case of 1C, and for the nonzero elements in D1, coding. But
for the zero in D1, the bitwise complement should be inhibited.

Example 7.3: The computation of the inverse of two is as follows

1C D1
Decimal M = 15 M = 17

2 0010 0001
−2 1101 1110

which can be verified using the data provided in Table 2.1 (p. 57).
7.3

The simplest α for an NTT is 2. Depending on M = 2b±1, the arithmetic
codings (C1 for Mersenne transforms and D1 for Fermat NTTs) is selected
first. The only necessary multiplications are then those with αk = 2k. These
multiplications are implemented, as shown in Chap. 2, by a binary (left)
rotation by k bit positions. The leftmost outgoing bit, i.e., carry cN , is copied
to the LSB. For the D1 coding (other than where A = 0) a complement of
the carry bit must be computed, as the following table shows:

7.1 Rectangular and Number Theoretic Transforms (NTTs) 405

1C D1

shl(X, k, cN) if(X ! = 0) shl(X, k, cN)

The following example illustrates the multiplications by αk = 2k used
most frequently in NTTs.

Example 7.4: Multiplication by 2k for 1C and D1 Coding
The following table shows the multiplication of ±2 by 2, and finally a multi-
plication of 2 by 8 = 23 to demonstrate the modulo operation for 1C and D1
coding.

1C D1
Decimal M = 15 M = 17

2×21 0010 0001
= 4 0100 0011

−2× 21 1101 1110
=−4 1011 1100

2×23 0010 0001
= 16 0001 1111

which can be verified using the data found in Table 2.1 (p. 57). 7.4

7.1.2 Efficient Convolutions Using NTTs

In the last section we saw that with α being a power of two, multiplication
was reduced to data shifts that can be built efficiently and fast with FPGAs,
if the modulus is M = 2b ± 1. Obviously this can be extended to complex
αs of the kind 2u ± j2v. Multiplication of complex αs can also be reduced to
simple data shifts.

In order to avoid general multiplications and general modulo operations,
the following constraints when building NTTs should be taken into account:

Theorem 7.5: Constraints for Practical Useful NTTs

A NTT is only of practical interest if
1) The arithmetic is modulo M = 2b ± 1.
2) All multiplications x[k]αkn can be realized with a maximum of 2

modulo additions.

7.1.3 Fast Convolution Using NTTs

Fast cyclic convolution of two sequences x and h may be performed by multi-
plying two transformed sequences [66, 170, 185], as described by the following
theorem.

406 7. Advanced Topics

Theorem 7.6: Convolution by NTT

Let x and y be sequences of length N defined modulus M, and z =
〈x � y〉M be the circular convolution of x and y. Let X = NTT(x), and
Y = NTT(y) be the length-N NTTs of x and y computed over M. Then

z = NTT−1(X � Y). (7.6)

To prove the theorem, it must first be known that the commutative, associa-
tive, and distributive laws hold in a ring modulo M . That these properties
hold is obvious, since Z is an integral domain (a commutative ring with unity)
[186, 187].

Specifically, the circular convolution outcome, y[n], is given by

y[n] =

〈
N−1

N−1∑

l=0

(
N−1∑

m=0

x[m]αml

)(
N−1∑

k=0

h[k]αkl

)
α−ln

〉

M

. (7.7)

Applying the properties of commutation, association, and distribution, the
sums and products can be rearranged, giving

y[n] =

〈
N−1∑

k=0

N−1∑

m=0

x[m]h[k]

(
N−1

N−1∑

l=0

α(m+k−n)l

)〉

M

. (7.8)

Clearly for combinations of m,n, and k such that 〈m + n − k〉 ≡ 0 mod N,
the sum over l gives N ones and is therefore equal to N . However, for 〈m+
n− k〉N ≡ r �≡ 0, the sum is given by

N−1∑

l=0

αrl = 1 + αr + α2r + . . .+ αr(N−1) =
1− αrN

1− αr
≡ 0 (7.9)

for αr �≡ 1. Because α is of order N, and r < N, it follows that αr �≡ 1. It
follows that for the sum over l, (7.8) becomes

N−1
N−1∑

l=0

α(m+k−n)l =
{ 〈NN−1 ≡ 1〉M for m+ l− n≡0 mod N

0 for m+ l− n�≡0 mod N
.

It is now possible to eliminate either the sum over k, using k ≡ 〈n −m〉, or
the sum over m, using m ≡ 〈n− k〉. The first case gives

y[n] =
〈∑N−1

m=0 x[m]h[〈n−m〉N]
〉

M
, (7.10)

while the second case gives

y[n] =
〈∑N−1

k=0 h[k]x[〈n− k〉N]
〉

M
. � (7.11)

The following example demonstrates the convolution.

Example 7.7: Fermat NTT of Length 4

7.1 Rectangular and Number Theoretic Transforms (NTTs) 407

Compute the cyclic convolution of length-4 time series x[n] = {1, 1, 0, 0} and
h[n] = {1, 0, 0, 1}, using a Fermat NTT modulo 257.
Solution: For the NTT of length 4 modulo M = 257, the element α = 16
has order 4. In addition, using a symmetric range [−128, . . . , 128], we need
4−1 ≡ −64 mod 257 and 16−1 ≡ −64 mod 257. The transform and inverse
transform matrices are given by

T =

⎡

⎢⎣
1 1 1 1
1 16 −1 −16
1 −1 1 −1
1 −16 −1 16

⎤

⎥⎦ T −1 =

⎡

⎢⎣
1 1 1 1
1 −16 −1 16
1 −1 1 −1
1 16 −1 −16

⎤

⎥⎦ . (7.12)

The transform of x[n] and h[n] is followed by the multiplication element by
element, of the transformed sequence. The result for y[n], using the INTT, is
shown in the following

n, k = {0, 1, 2, 3}
x[n] = {1, 1, 0, 0}
X[k] = {2, 17, 0, −15}
h[n] = {1, 0, 0, 1}
H [k] = {2, −15, 0, 17}

X[k]×H [k] = {4 2, 0 2}
y[n] = x[n] � h[n] = {2 1 0 1}.

7.7

Wordlength limitations for NTT. When using an NTT to perform con-
volution, remember that all elements of the output sequence y[n] must be
bounded by M . This is true (for simplicity, unsigned coding is assumed) if

xmaxhmaxL ≤M. (7.13)

If the bit widths Bx = log2(xmax), Bh = log2(hmax), BL = log2(L), and
BM = log2(M) are used, it follows that for Bx = Bh the maximum bit width
of the input is bounded by

Bx = BM −BL
2 , (7.14)

with the additional constraint that M = 2b ± 1, and α is a power of two. It
follows that very few prime M transforms exist. Table 7.1 displays the most
useful choices of αs, and the attendant transform length (i.e., order of αs) of
Mersenne and Fermat NTTs.

If complex transforms and nonprime Ms are also considered, then the
number and length of the transform becomes larger, and the complexity also
increases. In general, for nonprime modul, the conditions from Theorem 7.1
(p. 402) should be checked. It is still possible to utilize Mersenne or Fermat
arithmetic, by using the following congruence

a mod u ≡ (a mod (u× v)) mod u, (7.15)

408 7. Advanced Topics

Table 7.1. Prime M = 2b ± 1 NTTs including complex transforms.

Mersenne M = 2b − 1 Fermat M = 2b + 1

α ordM (α) α ordM (α)

2 b 2 b
−2 2b

√
2 2b

±2j 4b 1 + j 4b
1± j 8b

which states that everything is first computed modulo M = u× v = 2b ± 1,
and only the output sequence need be computed modulo u, which is the
valid module regarding Theorem 7.1. Although using M = u × v = 2b ± 1
increases the internal bit width, 1C or D1 arithmetic can be used. They have
lower complexity than modulo arithmetic modulo u, and this will, in general,
reduce the overall effort for the system.

Such nonprime NTTs are called pseudotransforms, i.e., pseudo-Mersenne
transforms or pseudo-Fermat transforms. The following example demonstra-
tes the construction for a pseudo-Fermat transform.

Example 7.8: A Fermat NTT of Length 50
Using the MatLab utility order.m (see Exercise 7.1, p. 472), it can be deter-
mined that α = 2 is of order 50 modulo 225 +1. From Theorem 7.1, we know
that gcd(α2 − 1, M) = 3, and a length 50 transform does not exist modulo
225 +1. It is therefore necessary to identify the “bad” factors in M = (2b±1),
those that do not have order 50, and exclude these factors by using the final
modulo operation in (7.15).
Solution: Using the standard MatLab function factor(2^25+1), the prime-
factors of M are:

225 + 1 = 3× 11× 251 × 4051. (7.16)

The order of α = 2 for the single factor can be computed with the algorithm
given in Exercise 7.1 on p. 472. They are

ord3(2) = 2 ord11(2) =10
ord251(2)=50 ord4051(2)=50.

(7.17)

In order to have an NTT of length 50, a final modulo reduction with (225 +
1)/33 must be computed. 7.8

Comparing Fermat and Mersenne NTT implementations, consider that

• A Mersenne NTT of length b, with b primes, can be converted by the
chirp-z transform (CZT), or the Rader prime factor theorem (PFT) [169],
into a cyclic convolution, as shown in Fig. 7.1a. In addition this allows a
simplified bus structure if a multi-FPGA implementation [174] is used.

• Fermat NTTs with M = 2(2t) + 1 have a power-of-two length N = 2t, and
can therefore be implemented with the usual Cooley–Tukey radix-2-type
FFT algorithm, which we discussed in Chap. 6.

7.1 Rectangular and Number Theoretic Transforms (NTTs) 409

Table 7.2. Data for some Agarwal–Burrus NTTs, to compute cyclic convolution
using real Fermat NTTs (b = 2t, t = 0 to 4) or pseudo-Fermat NTTs t = 5, 6.

Module α 1D 2D

2b + 1 2 2b 2b2

2b + 1
√

2 4b 8b2

7.1.4 Multidimensional Index Maps for NTTs and the
Agarwal–Burrus NTT

For NTTs, in general the transform length N is proportional to the bit width
b. This constraint makes it impossible to build long (one-dimensional) trans-
forms, because the necessary bit width will be tremendous. It is possible to try
the multidimensional index maps, called Good–Thomas and Cooley–Tukey,
which we discussed in Chap. 6. If these methods are applied to NTTs, the
following problems arise:

• In Cooley–Tukey algorithms of length N = N1N2, an element of order N
in the twiddle factors is needed. It follows that the transform length is not
increased, compared with the one-dimensional case, and will result in large
bit width. It is therefore not attractive.

• If Good–Thomas mapping is applied, there is no need for an element of
length N, for a length N = N1N2 transform. However, two coprime length
transforms N1 and N2 are needed for the same M. That is impossible for
NTTs, if the transforms listed in Table 7.1 (p. 408) are used. The only
way to make Good–Thomas NTTs work is to use different extension fields,
as reported in [174], or to use them in combination with Winograd short-
convolution algorithms, but this will also increase the complexity of the
implementation.

An alternative method suggested by Agarwal and Burrus [188] seems to be
more attractive. In the Agarwal–Burrus algorithm, a one-dimensional array is
also first mapped into a two-dimensional array, but in contrast to the Good–
Thomas methods, the lengths N1 and N2 must not be coprime. The Agarwal–
Burrus algorithm can be understood as a generalization of the overlap-save
method, where periodic extensions of the signals are built. If an α of order
2L is used, a convolution of size

N = 2L2 (7.18)

can be built. From Table 7.2, it can be seen that this two-dimensional method
improves the maximum length of the transforms.

To compute the Agarwal–Burrus NTT, the following five steps are used:

410 7. Advanced Topics

Algorithm 7.9: Agarwal–Burrus NTT

The cyclic convolution of x � h of length N = 2L2, with an NTT of
length L, is accomplished with the following steps:

1) Index transformation of the one-dimensional sequence into a two-
dimensional array according to

x =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x[0] x[L] · · · x[N − L]
x[1] x[L + 1] · · · x[N − L+ 1]

...
...

. . .
...

x[L− 1] x[2L− 1] · · · x[N − 1]
0 0 · · · 0
...

...
. . .

...
0 0 0 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(7.19)

h =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h[N − L+ 1] h[L] · · · h[N − 2L+ 1]
...

...
. . .

...
h[N − 1] h[L− 1] · · · h[N − L− 1]
h[0] h[L] · · · h[N − L]
h[1] h[L+ 1] · · · h[N − L+ 1]

...
...

. . .
...

h[L− 1] h[2L− 1] · · · h[N − 1]

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (7.20)

2) Computation of the row transforms

[→
...

]
followed by the column

transforms [↓↓ · · ·] .
3) Computation of the element-by-element matrix multiplication, Y =

H �X.
4) Inverse transforms of the columns [↓↓ · · ·] followed by the inverse row

transforms

[→
...

]
.

5) Reconstruction of the output sequence from the lower part of y, ac-
cording to

y =

⎡

⎢⎢⎢⎢⎢⎢⎣

...
...

. . .
...

y[0] y[L] · · · y[N − L]
y[1] y[L+ 1] · · · y[N − L+ 1]
...

...
. . .

...
y[L− 1] y[2L− 1] · · · y[N − 1]

⎤

⎥⎥⎥⎥⎥⎥⎦
. (7.21)

The Agarwal–Burrus NTT can be demonstrated with the following example:

Example 7.10: Length 8 Agarwal–Burrus NTT
An NTT modulo 257 of length 4 exists for α = 16. Compute the convolution
of X(z) = 1 + z−1 + z−2 + z−3 with F (z) = 1 + 2z−1 + 3z−2 + 4z−3 using a

7.1 Rectangular and Number Theoretic Transforms (NTTs) 411

Fermat NTT modulo 257.
Solution: First, the index maps and transforms of x[n] and f [n] are com-
puted. It follows that

x =

⎡

⎢⎣
1 1 0 0
1 1 0 0
0 0 0 0
0 0 0 0

⎤

⎥⎦ ←→ X =

⎡

⎢⎣
4 34 0 227
34 32 0 2
0 0 0 0

227 2 0 225

⎤

⎥⎦ (7.22)

f =

⎡

⎢⎣
0 0 0 0
0 2 4 0
1 3 0 0
2 4 0 0

⎤

⎥⎦ ←→ F =

⎡

⎢⎣
16 143 255 112
253 114 66 206
249 212 255 51
253 45 195 145

⎤

⎥⎦ . (7.23)

Now, an element-by-element multiplication is computed, which results in

Y =

⎡

⎢⎣
64 236 0 238
121 50 0 155
0 0 0 0

120 90 0 243

⎤

⎥⎦ ←→ y =

⎡

⎢⎣
2 6 4 0
0 2 6 4
1 6 9 4
3 10 7 0

⎤

⎥⎦ . (7.24)

From the lower half of y, the element of y[n] = {1, 3, 6, 10, 9, 7, 4, 0} can be
seen. 7.10

With the Agarwal–Burrus NTT, a double-size intermediate memory is
needed, but much longer transforms can be computed. The two-dimensional
principle can easily be extended to three-dimensional index maps, but most
often the transform length achieved with the two-dimensional method will be
sufficient. For instance, for α = 2 and b = 32, the transform length is increased
from 64 in the one-dimensional case to 211 = 2048 in the two-dimensional
case.

7.1.5 Computing the DFT Matrix with NTTs

Most often DFTs and NTTs are used to compute convolution, and it can be
attractive to use NTTs to compute this convolution with FPGAs, because
1C and D1 can be efficiently implemented. But sometimes it is necessary to
compute the DFT to estimate the Fourier spectrum. Then a question arises: Is
it possible to use the more efficient NTT to compute the DFT? This question
has been addressed in detail by Siu and Constantinides [189].

The idea is as follows: For prime p-length DFTs, the Rader algorithm can
be used, which converts the task into a length p− 1 cyclic convolution. This
cyclic convolution is then computed by an NTT of the original sequence and
the DFT twiddle factors in the NTT domain, multiplication elementwise, and
the back conversion. These processing steps are illustrated in Fig. 7.1b. The
principle is demonstrated in the following example.

Example 7.11: Rader Algorithm for N = 5
For N = 5, a generator is g = 2, which gives the following index map,
{20, 21, 22, 23} mod 5 ≡ {1, 2, 4, 3}. First, the DC component is computed
with

412 7. Advanced Topics

Table 7.3. Building blocks to compute DFT with Fermat NTT.

DFT Number α Number of real
length ring Mul. Shift-Add.

3 F1, F2, F3, F4, F5, F6 22, 24, 28, 216, 232, 264 2 6
5 F1, F2, F3, F4, F5, F6 2, 22, 24, 28, 216, 232 4 20
17 F3, F4, F5, F6 2, 22, 24, 28 16 144
257 F6

√
2 256 4544

13 F1, F2, F3, F4, F5, F6 2, 22, 24, 28, 216, 232 16 104
97 F4, F5, F6 2, 22, 23, 24 128 1408
193 F5, F6 2, 22 256 3200

769 F6

√
2 1024 16448

X[0] =

4∑

n=0

x[n] = x[0] + x[1] + x[2] + x[3] + x[4]

and in the second step, X[k]− x[0], the cyclic convolution

{x[1], x[2], x[4], x[3]} � {W 1
5 , W 2

5 , W 4
5 , W 3

5 }.
Now the NTT is applied to the (reordered) sequences x[n] and W k

5 , as shown
in Example 7.7 (p. 407). The transformed sequences are then multiplied el-
ement by element, in the NTT domain, and finally the INTT is computed.

7.11

For Mersenne NTTs a problem arises, in that the NTT itself is of prime
length, and therefore the length increased by one can not be of prime length.
But for a Fermat NTT, the length is 2t, since M = 2t + 1, which is a prime.
Siu and Constantinides found eight such short-length DFT building blocks
to be useful. These basic building blocks are summarized in Table 7.3.

The first part of Table 7.3 shows blocks that do not need an index trans-
form. In the second part are listed the building blocks that have two coprime
factors. They are 13 − 1 = 3 × 4, 97 − 1 = 3 × 32, 193 − 1 = 3 × 64, and
769 − 1 = 3 × 256. The disadvantage of the two-factor case is that, in a
two-dimensional index map, for only one dimension every second transform
of the twiddle factor becomes zero.

In the multidimensional map, it is also possible to implement a radix-2
FFT-like algorithm, or to combine Fermat NTTs with other NTT algorithms,
such as the (pseudo-) Fermat NTT transform, (pseudo-) Mersenne transform,
Lagrange interpolation, Eisenstein NTTs or a short convolution algorithm
such as the Winograd algorithm [66, 189].

In the following, the techniques for the two-factor case using a length
13 − 1 = 3 × 4 multidimensional index map are reviewed. This is similar to
the discussion in Chap. 6 for FFTs.

7.1 Rectangular and Number Theoretic Transforms (NTTs) 413

x[〈gn〉N] � W
〈gn〉N
N + x[0]

X[0] =
∑

n
x[n]

x[n]

�

�

�

�

X[0]

X[k]

k ∈ [1, N − 1]

NTT
x[〈gn〉N]

NTT

W
〈gn〉N
N

X[0] =
∑

n
x[n]

x[n]

�

� �

X[0]

X[k]

k ∈ [1, N − 1]

�
	

�

� INTT
X ·W

�

(a)

(b)

	

	

Fig. 7.1. The use of NTTs in Rader’s prime-length algorithm for computing the
DFT. (a) Rader’s original algorithm. (b) Modification of the Rader prime algorithm
using NTTs.

7.1.6 Index Maps for NTTs

To directly realize the NTT matrix is generally too expensive. This prob-
lem may be resolved by suitable multidimensional techniques. Burrus [148]
gives a systematic overview of different common and prime factor maps,
from one dimension to multiple dimensions. The mapping is explained for
the two-dimensional case. Higher-order mapping is equivalent. The mapping
from the one-dimensional cyclic length-N convolution from (7.1), into a two-
dimensional convolution with dimension N = N1 × N2, can be written in
linear form as follows:

n = M1n1 +M2n2 mod N, (7.25)

where n1 ∈ {0, 1, 2, . . . , N1−1} and n2 ∈ {0, 1, 2, . . . , N2−1}. For gcd(N1, N2)
�= 1, the well-known Cooley–Tukey FFT algorithm may be used. Burrus [148]

414 7. Advanced Topics

shows that the map is cyclic in both dimensions if and only if N1 and N2 are
relatively prime, i.e., gcd(N1, N2) = 1. In order for this map to be one-to-one
and onto (i.e., a bijection), the mapping constants M1 and M2 must satisfy
certain conditions. For the relatively prime case, the conditions to make the
mapping bijective are:

[M1 = βN1 and/or M2 = γN1] and
gcd(M1, N1) = gcd(M2,M2) = 1. (7.26)

As an example, consider N1 = 3 and N2 = 4, N = 12. From condi-
tion (7.26) we see that it is necessary to choose M1 (a multiple of N2),
or M2 (a multiple of N1), or both. Make M1 the simplest multiple of N2,
i.e., M1 = N2 = 4, which also satisfies gcd(M1, N1) = gcd(4, 3) = 1. Then,
noting that gcd(M2, N2) = gcd(M2, 4) = 1, the possible values for M2 are
{1, 3, 5, 7, 9, 11}. As a simple choice, select M2 = N1 = 3. The map becomes
n = 〈4n1 + 3n2〉12. Now let us apply the map to consider a 12-point convo-
lution example. The transform of the one-dimensional cyclic array x[n] into
a 3× 4 two-dimensional array x[n1, n2], produces

[x[0]x[1]x[2] . . . x[11]]↔
⎡

⎣
x[0] x[3] x[6] x[9]
x[4] x[7] x[10] x[1]
x[8] x[11] x[2] x[5]

⎤

⎦ . (7.27)

To recover the sequence X [k] from the X [k1, k2], use the Chinese remainder
theorem, as suggested by Good [171],

k =
〈
(N−1

2 mod N1)N2k1 + (N−1
1 mod N2)N1k2

〉
N
. (7.28)

The α matrix can now be rewritten as

X [k1, k2] =
N1−1∑

n1=0

(
N2−1∑

n2=0

x[n1, n2]αn2k2
N2

)
αn1k1

N1
, (7.29)

where αNi is an element of order Ni. Having mapped the original sequence
x[n] into the two-dimensional array x[n1, n2], the desired matrix can be eval-
uated by the following two steps:

1) Perform an N2-point NTT on each row of the matrix x[n1, n2].
2) Perform an N1-point NTT on each column of the resultant matrix, to

yield X [k1, k2].

These processing steps are shown in Fig. 7.2. The input map is given by
(7.27), while the output map can be computed with (7.28),

k =
〈〈4−1〉34k1 + 〈3−1〉43k2

〉
12

= 〈4k1 + 9k2〉12. (7.30)

The array X [k1, k2] will therefore have the following arrangement:

[X [0]X [1]X [2] . . .X [11]]↔
⎡

⎣
X [0] X [9] X [6] X [3]
X [4] X [1] X [10] X [7]
X [8] X [5] X [2] X [11]

⎤

⎦ . (7.31)

7.1 Rectangular and Number Theoretic Transforms (NTTs) 415

X[9]
X[0]

x[8]
x[2]

x[5]
x[4]

x[7]
x[10]

x[1]
x[0]

x[3]
x[6]

x[9]

x[11]

3−point NTTs4−point NTTs

X[11]
X[2]

X[5]
X[8]

X[4]
X[1]

X[10]
X[7]

X[3]
X[6]

Fig. 7.2. Two-dimensional map. First stage: three 4-point NTTs. Second stage:
four 3-point NTTs.

Length 97 DFT case study. In recent years programmable digital sig-
nal processors (e.g., TMS320; Motorola 56K; AT&T 32C) have become the
dominant vehicle to implement fast convolution via FFT algorithms. These
PDSPs provide a fast (real) multiplier with typical cycle times of 10 to 50 ns.
There are also some NTT implementations [190], but NTT implementations
need modulo arithmetic, which is not supported by general-purpose PDSPs.
Dedicated accelerators, such as the FNT from McClellan [190], use 90 stan-
dard ECL 10K ICs. In recent years, field-programmable gate arrays (FPGAs)
have become dense enough and fast enough to implement typical high-speed
DSP applications [4, 158]. It is possible to implement several arithmetic cores
with only one FPGA, producing good packaging, speed, and power character-
istics. FPGAs, with their fine granularity, can implement modulo arithmetic
efficiently, without penalty, as in the PDSP case.

In NTT implementation of Fermat number arithmetic, the previously dis-
cussed speed and hardware advantages, compared with conventional FFT im-
plementations, become an even bigger advantage for an FPGA implementa-
tion. By implementing the DFT algorithm with the Rader prime convolution
strategy, the required I/O performance can be further reduced.

To clarify the NTT design paradigm, a length-97 DFT in the Fermat
number system, F4 and F5, for real input data, will be shown. A Xilinx XC4K
multi-FPGA board has been used to implement this design, as reported in
[174].

For modulo Fermat number arithmetic (modulo 2n +1) it is advantageous
to use, instead of the usual two’s complement arithmetic (2C), the “Dimin-
ished one” (D1) number system from Leibowitz [52]. Negative numbers are
the same as in 2C, and positive numbers are diminished by one. The zero is
encoded as a zero string and the MSB “ZERO-FLAG” is one. Therefore the
diminished system consists of a ZERO-FLAG and integer bits xk. For 2C,
the MSB is the sign bit, while for D1 the second MSB is the sign bit. With
this encoding the basic operations of 2C↔D1 conversion, negation, addition,

416 7. Advanced Topics

and multiplication by 2m can easily be determined, as shown in Sect. 7.1.1
(p. 403).

The rough processing steps of the 97-point transform are shown in
Fig. 7.1b. A direct length-96 implementation for a single NTT will cost at
least 96×2 barrel shifters and 96×2 accumulators and, therefore, approxi-
mately 96(2× 32 + 2× 18) = 9600 Xilinx combinatorial logic blocks (CLBs).
Therefore it seemed reasonable to use a 32 × 3 index map, as described in
the last section. The length-32 FFT now becomes a simpler length-32 Fermat
NTT, and the length-3 transform has αk = 1; ĵ and −1 − ĵ with ĵ2 = ĵ+ 1.
The 32-point FNT can be realized with the usual radix-2 FFT-type algo-
rithm, while the length-3 transform can be implemented by a two-tap FIR
filter. The following table gives CLB utilization estimates for Xilinx XC4000
FPGAs, for F4:

Length-32 Length-3 14 Multipliers Length-3 Two length-32
FNT FIR NTT 32-bit NTTS−1 FNT−1

104 108 462 288 216

The design consumes a total of 1178 CLBs. To get high throughput, the
buffer memory between the blocks must be doubled. Two real buffers for the
first FNT, and three complex buffers, are required. If the buffers are realized
internally, an additional 748 CLBs are required, which will also minimize the
I/O requirements. If 80% utilization is assumed, then about six XC4010s are
needed for the design, including the buffer memory.

The time-critical path in the design is the length-32 FNT. To maximize
the throughput, a three-stage pipeline is used inside the butterfly. For a 5-ns
FPGA, the butterfly speed is 28 ns for F4, and 38.5ns for F5. For three length-
32 FNTs, five stages, each with 16 butterflies, must be computed. This gives
a total transform time of 7.15 µs for F4, and 9.24 µs for F5, for the length-97
DFT. To set this result in perspective, the time for the butterfly computation
gives a fair comparison. A TMS320C50 PDSP with a 50-ns cycle time needs
17 cycles for a butterfly [191], or 850ns, assuming zero wait-state memory.
Another “conventional” FPGA fixed-point arithmetic design [158] uses four
serial/parallel multipliers (2 MHz), and therefore has a latency of 500ns for
the butterfly.

7.1.7 Using Rectangular Transforms to Compute the DFT

Rectangular transforms also map an input sequence in an image domain, but
do not necessarily have the DFT structure, i.e., A = [αnk]. Examples are Haar
transforms [130], the Walsh–Hadamard transform [71], a ruff-quantized DFT
[5], or the arithmetic Fourier transform [173, 192, 193]. These rectangular
transforms, in general, do not support cyclic convolution, but they may be
used to approximate the DFT spectrum [165]. The advantage of rectangular

7.1 Rectangular and Number Theoretic Transforms (NTTs) 417

1

0

X[k]

Matrix TMatrix G

Y[k]

1

1

0
1

1

x[n]

Fig. 7.3. DFT computation using rectangular transform and map matrix T .

transforms is that the coefficients are from the set {−1, 0, 1} and they do not
need any multiplications.

How to compute the DFT is shown in Fig. 7.3. In order to have a useful
system, it is assumed that the rectangular transform can be computed with
low effort, and the second transform using the matrix T , which maps the
rectangular transform to the DFT vectors, has only a few nonzero elements.

Table 7.4. Comparison of different transforms to approximate the DFT [5].

Transform
Number of

base
Algorithmic
complexity

Zeros in
16× 16 T Matrix

Walsh N N log2(N) 66
Hadamard N N log2(N) 66
Haar N 2N 18
AFT N + 1 N2 82
QDFT 2N (N/8)2+3N 86

Table 7.4 compares different implementations. The algorithmic complex-
ity of the Walsh–Hadamard and Haar transforms is most interesting, but
from the number of zeros in the second transform T it can be concluded
that the arithmetic Fourier transform and the ruff-quantized DFT are more
attractive for approximating the DFT.

418 7. Advanced Topics

7.2 Error Control and Cryptography

Modern communications systems, such as pagers, mobile phones or satellite
transmission systems, use algorithms to correct transmission errors, since
error-correction coding better utilizes the band-limited channel capacity than
special modulation schemes (see Fig. 7.4). In addition, most systems also use
cryptography algorithms, not just to protect messages against unauthorized
listeners, but also to protect messages against unauthorized changes.

In a typical transmission scheme, such as that shown in Fig. 7.5, the
encoder (for error correction or cryptography) is placed between the data
source and the actual modulation. On the receiver side, the decoder is located
between demodulation and the data destination (sink). Often an encoder and
decoder are combined in one circuit, referred to as a CODEC.

Typical error correction and cryptographic algorithms use finite field
arithmetic and are therefore more suitable for FPGAs than they are for
PDSPs [195]. Bitwise operations or linear feedback shift registers (LFSR)
can be very efficiently realized with FPGAs. Some CODEC schemes use
large tables, and one objective when selecting the appropriate algorithms
for FPGAs is therefore to find out which algorithms are most suitable. The

0 5 10 15 20 25
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

E
rr

or
 p

ro
ba

bi
lit

y
P

e

E
b
/N

0

ASK
PSK
FSK
BCH code
Shannon limit

Fig. 7.4. Performance of modulation schemes [194]. Solid line coherent demodu-
lation and dashed line incoherent demodulation.

7.2 Error Control and Cryptography 419

Source Encoder Channel Decoder Sink� � � �
�

Noise

Demod.�Mod. �

Fig. 7.5. Typical communications system configuration.

algorithms presented in this section are mainly based on previous publica-
tions [4] and have been used to develop a paging system for low frequencies
[196, 197, 198, 199, 200], and an error-correction scheme for radio-controlled
watches [201, 202].

It is impossible in a short section to present the whole theory of error
correction and cryptography. We will present the basic ideas and suggest, for
further investigation, one of the excellent textbooks in this area [163, 203,
204, 205, 206, 207, 208].

7.2.1 Basic Concepts from Coding Theory

The simplest way to protect a digital transmission against random errors
is to repeat the message several times. This is called repetition code. For a
repetition of 5, for instance, the message is sent five times, i.e.,

0 ⇔ 00000 (7.32)
1 ⇔ 11111, (7.33)

where the left side shows the k information bits and the right side the n-
bit codewords. The minimum distance between two codewords, also called
the Hamming distance d∗, is also n and the repetition code is of the form
(n, k, d∗) = (5, 1, 5).With such a code it is possible to correct up to �(n−1)/2�
random errors. But from the perspective of channel efficiency, this code is
not very attractive. If our system is two-way then it is more efficient to use a
technique such as a parity check and an automatic repeat request (ARQ) for
any detected parity error. Such parity checks are used, for instance, in PC
memory.

Error correction using a Hamming code. If a few more parity check
bits are added, it is possible to correct a word with a parity error.

If the parities P1,0, P1,1, P1,2, and P1,3 are computed using modulo 2 op-
erations, i.e., XOR, according to

P1,0 = i21 ⊕ i22 ⊕ i23 ⊕ i24 ;⊕ i25 ⊕ i26 ⊕ i27
P1,1 = i21 ⊕ i23 ⊕ i25 ⊕ i27
P1,2 = i21 ⊕ i22 ⊕ i25 ⊕ i26
P1,3 = i21 ⊕ i22 ⊕ i23 ⊕ i24

420 7. Advanced Topics

(a)

(b)

Correction logic

Fig. 7.6. (a) Coder and (b) Decoder for Hamming code.

then the parity detector is i′28(= P1,0) and three additional bits are necessary
to locate the error position. Figure 7.6a shows the encoder, and Fig. 7.6b
the decoder including the correction logic. On the decoder side the incoming
parities are XOR’d with the newly computed parities. This forms the so-
called syndrome (S1,0 · · ·S1,3). The parities have been chosen in such a way
that the syndrome pattern corresponds to the position of the bit in binary
code, i.e., a 3→ 7 demultiplexer can be used to decode the error location.

For a more compact representation of the decoder, the following parity
check matrix H can be used

H =
[
P T

...I
]

=

⎡

⎢⎢⎣

1 1 1 1 1 1 1 1 0 0 0
1 0 1 0 1 0 1 0 1 0 0
1 1 0 0 1 1 0 0 0 1 0
1 1 1 1 0 0 0 0 0 0 1

⎤

⎥⎥⎦ . (7.34)

7.2 Error Control and Cryptography 421

Table 7.5. Estimated effort for error correction with Hamming code.

CLB effort for

Block Minutes Hours Date
Hamming code (11,7,3) (10,6,3) (27,22,3)

Register 6 6 14
Syndrome computation 5 5 16
Correction logic 4 4 22
Output register 4 4 11
Sum 19 19 63

Total 101

It is possible to describe the encoder using a generator matrix. G = [I
...P], i.e.,

the generator matrix consists of a systematic identity matrix I followed by
the parity-bits matrix P . A codeword v is computed by multiplying (modulo
2) the information word i with the generator matrix G:

v = i×G. (7.35)

The (de)coders shown in Fig. 7.6 are those for a (11,7,3) Hamming code,
and it is possible to detect and correct one error. In general, it can be shown
that for 4 parity bits, up to 15 information bits, can be used, i.e., a (15,11,3)
Hamming code has been shortened to a (11,7,3) code.

A Hamming code with distance 3 generally has a (2m − 1, 2m − m, 3)
structure. The dates in radio-controlled watches, for instance, are coded with
22 bits, and a (31,26,3) Hamming code can be shortened to a (27,22,3) code
to achieve a single-error correcting code. The parity check matrix becomes:

H =

⎡

⎢⎢⎣

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 0
1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 1 0 0 0
1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 0 0
1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 1 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1

⎤

⎥⎥⎦ .

Again, the syndromes can be sorted in such a way that the correction logic
is a simple 5→ 22 demultiplexer.

Table 7.5 shows the estimated effort in CLBs using Xilinx XC3K FP-
GAs for an error-correction unit for radio-controlled watches that uses three
separate data blocks for minutes, hours, and date.

In conclusion, with an additional 3+3+5=11 bits and the parity bits for
the minutes using about 100 CLBs, it is possible to correct one error in each
of the three blocks.

Survey of Error Correction Codes

After the introductory case study in the last section, commonly used codes
and possible encoder and decoder implementations will be discussed next.

422 7. Advanced Topics

ConvolutionalBlock

Decoder

Fano
Stack�

�

Algebraic
algorithms

�����

Cyclic code

decoder

Sequential
algorithms

Euclidian
Berlekampian�

�

Error-trapping

Kasami
Permutation�

�
�

Meggitt
Majority logic�

� Viterbi� Syndrome
Majority�

�

������� �

�������
�

�
��

�
�
��

�����

Algebraic
algorithm

ML sequence

decoder

Fig. 7.7. Decoder for error correction.

Most often the effort for the decoder is of greater concern, since many com-
munications systems like pager or radios use one sender and several receivers.
Figure 7.7 shows a diagram of possible decoders.

Some nearly optimal decoders use huge tables and are not included in
Fig. 7.7. The difference between block and convolutional codes is based on
whether “memory” is used in the code generation. Both methods are charac-
terized by the code rate R, which is the quotient of the information bits and
the code length, i.e., R = k/n. For tree codes with memory, the actual output
block, which is n bits long, depends not only on the present k information
bits, but also on the previous m symbols, as shown in Fig. 7.8. Character-
istics of convolution codes are the memory length ν = m × k, as well the
distance profile, the free distance df , and the minimum distance dm (see, for
instance, [163]). Block codes can most often be constructed with algebraic
methods using Galois fields, but tree codes are often only found in computer
simulations.

Our discussion will be limited to linear codes, i.e., codes where the sum of
two codewords is again a codeword, because this simplifies the decoder imple-
mentation. For linear codes, the Hamming distance can always be computed
as the difference between a codeword and the zero word, which simplifies com-
parisons of the performance of the code. Linear tree codes are often called
convolutional codes, because the codes can be built using an FIR-like struc-
ture. Convolutional codes may be catastrophic or noncatastrophic. In the case
of a catastrophic code, a single error will be propagated forever. It can be

7.2 Error Control and Cryptography 423

��
�

� �Information block

��
�
��
�
��
�
��
�
��
�
��
�
��
�

Logic

�

Encoder

�

 �
Code word

�� Constrain length

�

Fig. 7.8. Parameters of the convolutional encoders.

shown that systematic convolutional codes are always noncatastrophic. It is
also common to distinguish between random error correction codes and burst
error correction codes. In burst error correction, there may be a long burst
of errors (or erasures). In random error correction code, the capability to cor-
rect errors is not limited to consecutive bits – the error may have a random
position in the received codeword.

Coding bounds. With coding bounds we can compare different coding
schemes. The bounds show the maximum error correction capability of the
code. A decoder can never be better than the upper bound of the code, and
sometimes to reduce the complexity of the decoder it is necessary to decode
less than the theoretical bound.

A simple but still good, rough estimation is the Singleton bound or the
Hamming bound. The Singleton bound states that the minimum Hamming
distance d∗ is upper bounded by the number of parity bits (n− k). It is also
known [163, p. 256] that the number of correctable errors t and the number
of erasures e for a code is upper bounded by the Hamming distance. This
gives the following bounds:

e+ 2t+ 1 ≤ d∗ ≤ n− k + 1. (7.36)

A code with d∗ = n−k+1 is called maximum distance separable, but besides
the repetition code and the parity check code, there are no binary maximum
distance separable codes [163, p. 431]. Following the example in the last
section from Table 7.5, with 11 parity bits the upper bound can be used to
correct up to five errors.

For a t-error-correcting binary code, the following Hamming bound pro-
vides a good estimation:

2n−k ≥
t∑

m=0

(
n

m

)
. (7.37)

424 7. Advanced Topics

Equation (7.37) says that the possible number of parity check patterns (2n−k)
must be greater than or equal to the number of error patterns. If the equal
sign is valid in (7.37), such codes are called perfect codes. A perfect code is,
for instance, the Hamming code discussed in the last section. If it is desired,
for instance, to find a code to protect all 44 bits transmitted in one minute for
radio-controlled watches, using the maximum-available 13 parity bits, then
it follows that

213 >

(
44
0

)
+
(

44
1

)
+
(

44
2

)
but (7.38)

213 <

(
44
0

)
+
(

44
1

)
+
(

44
2

)
+
(

44
3

)
, (7.39)

i.e., it should be possible to find a code with the capability to correct two
random errors but none with three errors. In the following sections we will
review such block encoders and decoders, and then discuss convolutional
encoders and decoders.

7.2.2 Block Codes

The linear cyclic binary BCH codes (from Bose, Chaudhuri, and Hocquen-
ghem) and the subclass of Reed−Solomon codes, consist of a large class of
block codes. BCH codes have various known efficient decoders in the time
and frequency domains. In the following, we will illustrate the shortening of
a (63,50,6) to a (57,44,6) BCH code. The algorithm is discussed in detail by
Blahut [163, pp. 162−6].

The code is based on a transformation of GF(26) to GF(2). To describe
GF(26), a primitive polynomial of degree 6 is needed, such as P(x) = x6+x+
1. To compute the generator polynomial, the least common multiple of the
first d−1 = 5 minimal polynomials in GF(26) must be computed. If α denotes
a primitive element in GF(26), it follows then that α0 = 1 and m1(x) = x−1.
The minimum polynomials of α, α2 and α4 are identical mα(x) = x6 + x+ 1,
and the minimum polynomial to α3 is mα3(x) = x6 + x4 + x2 + x + 1. It is
now possible to build the generator polynomial, g(x):

g(x) = m1(x) ×mα(x) ×mα3(x) (7.40)

= x13 + x12 + x11 + x10 + x9 + x8 + x6 + x3 + x+ 1. (7.41)

Using this generator polynomial (to compute the parity bits), it is now a
straight forward procedure to build the encoder and decoder.

Encoder. Since a systematic code is desired, the first codeword bits are iden-
tical with the information bits. The parity bits p(x) are computed by modulo
reduction of the information bits i(x) shifted in order to get a systematic
code according to:

p(x) = i(x)× xn−k mod g(x). (7.42)

7.2 Error Control and Cryptography 425

Information Code word

Fig. 7.9. Encoder for (57,44,6) BCH code.

Such a modulo reduction can be achieved with a recursive shift register as
shown in Fig. 7.9. The circuit works as follows: In the beginning, switches
A and B are closed and C is open. Next, the information bits are applied
(MSB first) and directly transferred to the codeword. At the same time, the
recursive shift register computes the parity bits. After the information bits
are all processed, switches A and B are opened and C is closed. The parity
bits are now shifted into the codeword.

Decoder. The decoder is usually more complex than the encoder. A Meg-
gitt decoder can be used for decoding in the time domain, and frequency
decoding is also possible, but it needs a detailed understanding of the alge-
braic properties of BCH codes ([163, pp. 166−200], [203, pp. 81−107], [204,
pp. 65−73]). Such frequency decoders for FPGAs are already available as in-
tellectual property (IP) blocks, sometimes also called “virtual components,”
VC (see [19, 20, 209]).

The Meggitt decoder (shown in Fig. 7.10) is very efficient for codes with
only a few errors to be corrected, since the decoder uses the cyclic properties
of BCH codes. Only errors in the highest bit position are corrected and then
a cyclic shift is computed, so that eventually all corrupted bits pass the MSB
position and are corrected.

In order to use a shortened code and to regain the cyclic properties of
the codes, a forward incoupling of the received data a(x) must be computed.
This condition can be gained for code shortened by b bits using the condition

s(x) = a(x)i(x)mod g(x) = xn−k+bi(x)mod g(x). (7.43)

For the shortened (57,44,6) BCH code this becomes

a(x) = x63−50+6 mod g(x) = x19 mod g(x)
= x19 mod (x13 + x12 + x11 + x10 + x9 + x8 + x6 + x3 + x+ 1)
= x10 + x7 + x6 + x5 + x3 + x+ 1.

The developed code has the ability to correct two errors. If only the error in
the MSB need be corrected, a total of 1 +

(
56
1

)
= 1 + 56 = 57 different error

patterns must be stored, as shown in Table 7.6. The 57 syndrome values can
be computed through a simulation and are listed in [202, B.3].

426 7. Advanced Topics

(n− k) shift register

��

Modulo g(x)

�+
�

n-bit shift register

�

�+
�� ��+

�

� �

�
�

��

�

Received
sequence

i′0, i
′
1 · · ·

i0, i1 · · ·

Syndrome match?

Table of all syndromes

Fig. 7.10. Basic blocks of the Meggitt decoder.

Now all the building blocks are available for constructing the Meggitt
decoder for the (57,44,6) BCH code. The decoder is shown in Fig. 7.11.

The Meggitt decoder has two stages. In the initialization phase, the syn-
drome is computed by processing the received bits modulo the generator
polynomial g(x). This takes 57 cycles. In the second phase, the actual error
correction takes place. The content of the syndrome register is compared with
the values of the syndrome table. If an entry is found, the table delivers a
one, otherwise it delivers a zero. This hit bit is then XOR’d with the received
bits in the shift register. In this way, the error is removed from the shift reg-
ister. The hit bit is also wired to the syndrome register, to remove the error
pattern from the syndrome register. Once again the syndrome and the shift
register are clocked, and the next correction can be done. At the end, the
shift register should include the corrected word, while the syndrome register
should contain the all-zero word. If the syndrome is not zero, then more than
two errors have occurred, and these can not be corrected with this BCH code.

Table 7.6. Table of possible error patterns.

No. Error pattern

1 0 0 0 · · · 0 0 1
2 0 0 0 · · · 0 1 1
3 0 0 0 · · · 1 0 1
... .
56 0 1 0 · · · 0 0 1
57 1 0 0 · · · 0 0 1

7.2 Error Control and Cryptography 427

codeword
Corrected

Table with all syndromes: 1 for hit else 0

57-bit shift register for codeword with errors

A(x)

G(x)

Code-
word
input

Sy
nd

ro
m

e
up

da
te

Fig. 7.11. Meggitt decoder for (57,44,6) BCH code.

Our only concern for an FPGA implementation of the Meggitt decoder
is the large number (13) of inputs for the syndrome table, because the LUTs
of FPGAs typically have 4 to 8 inputs. It is possible to use an external
EPROM or (for Altera Flex 10K) four 2-kbit EABs to implement a table
of size 213 × 1. The syndrome is wired to the address lines, which deliver a
hit (one) for the 57 syndromes, and otherwise a zero. It is also possible to
use the logic synthesis tool to compute the table with internal logic blocks
on the FPGA. The Xilinx XNFOPT (used in [202]) needs 132 LUTs, each
with 24×2 bits. If modern binary decision diagrams (BBDs) synthesizer type
[210, 211, 212] are used, this number can (at the cost of additional delays)
be reduced to 58 LUTs with a size of 24 × 2 bits [213]. Table 7.7 shows the
estimated effort, using Flex 10K, for the Meggitt decoder using the different
kinds of syndrome tables.

Table 7.7. Estimated effort for Altera FLEX devices, for the three versions of the
Meggitt decoder based on XC3K implementations [4]. (EABs are used as 211 × 1
ROMs.)

Syndrome table

Function group Using EABs Only LEs BDD [213]

Interface 36LEs 36LEs 36 LEs
Syndrome table 2 LEs, 4 EABs 264 LEs 116 LEs
64-bit FIFO 64LEs 64LEs 64 LEs
Meggitt decoder 12LEs 12LEs 12 LEs
State machine 21LEs 21LEs 21 LEs

Total 135 LEs, 4 EABs 397 LEs 249 LEs

428 7. Advanced Topics

7.2.3 Convolutional Codes

We also want to explore the kind of convolutional error-correcting decoders
that are suitable for an FPGA realization. To simplify the discussion, the
following constraints are defined, which are typical for communications sys-
tems:

• The code should minimize the complexity of the decoder. Encoder com-
plexity is of less concern.

• The code is linear systematic.
• The code is convolutional.
• The code should allow random error correction.

A systematic code is stipulated to allow a power-down mode, in which
only incoming bits are received without error correction [201]. A random-
error-correction code is stipulated if the channel is slow fading.

Figure 7.12 shows a diagram of the possible tree codes, while Fig. 7.7
(p. 422) shows possible decoders. Fano and stack decoders are not very suit-
able for an FPGA implementation because of the complexity of organizing a
stack [200]. A conventional µP/µC realization is much more suitable here. In
the following sections, maximum-likelihood sequence decoders and algebraic
algorithms are compared regarding hardware complexity, measured in CLBs
usage for the Xilinx XC3K FPGA, and achievable error correction.

Viterbi maximum likelihood sequence decoder. The Viterbi decoder
deals with an erroneous sequence by determining the corresponding sender
sequence with the minimum Hamming distance. Put differently, the algorithm
finds the optimal path through the trellis diagram, and is therefore an optimal
memoryless noisy-sequence estimator (MLSE).

The advantage of the Viterbi decoder is its constant decoding time and
MLSE optimality. The disadvantage lies in its high memory requirements and
resulting limitation to codes with very short constraint length. Figures 7.13
and 7.14 show an R = k/n = 1/2 encoder and the attendant trellis diagram.
The constraint length ν = m× k is 2, so the trellis has 2ν nodes. Each node
has 2k = 2 outgoing and at most 2k = 2 incoming edges. For a binary trellis
(k = 1) like this, it is convenient to show a zero as an upward edge and a one
as a downward edge.

For MLSE decoding it is sufficient to store only the 2ν paths (and their
metrics) passing through the nodes at a given level, because the MLSE path
must pass through one of these nodes. Incoming paths with a smaller metric
than the “survivor” with the highest metric need not be stored, because these
paths will never be part of the MLSE path. Nevertheless, the maximum
metric at any given time may not be part of the MLSE path if it is part
of a short erroneous sequence. Voting down such a local error is analogous
to demodulating a digital FM signal with memory [214]. Simulation results
in [163, p. 381] and [203, pp. 120−3] show that it is sufficient to construct a

7.2 Error Control and Cryptography 429

� �

�

�

� � �

� � �

�

�

Tree codes

Trellis codes

Systematic
linear

tree codes

Systematic
trellis codes

Sliding
block codes

Convolutional codes

Linear
tree codes

Systematic
sliding

block codes

Systematic
convolutional codes

Linear Finite constraint length

Systematic

Finite constraint
length and
time invariant

Time invariant Systematic

Time
invariant

Finite constraint
length and
time invariant

Linear Systematic

LinearSystematic

Fig. 7.12. Survey of tree codes [163].

path memory of four to five times the constraint length. Infinite path memory
yields no significant improvement.

The Viterbi decoder hardware consists of three main parts: path memory
with output decoder (see Fig. 7.15), survivor computation, and maximum
detection (see Fig. 7.16). The path memory is 4ν2ν bits, consuming 2ν2ν

CLBs. The output decoder uses (1 + 2 + . . . + 2ν−1) 2-to-1 multiplexers.

430 7. Advanced Topics

��

�

����

�

�
�

�

�Input sequence

Codeword

�

�

Fig. 7.13. Encoder for an R = 1/2 convolutional decoder.

Metric update adders, registers and comparisons are each (
log2(ν ∗ n)�+ 1)
bits wide. For the maximum computation, additional comparisons, 2-to-1
multiplexers and a decoder are necessary.

The hardware for decoders with k > 1 seems too complex to implement
with today’s FPGAs. For n > 2 the information rate R = 1/n is too low,
so the most suitable code rate is R = 1/2. Table 7.8 lists the complexity in
CLBs in a XC3K FPGA for constraint lengths ν = 2, 3, 4, and the general
case, for R = 1/2. It can be seen that complexity increases exponentially
with constraint length ν, which should thus be as short as possible. Although
very few errors can be corrected in the short window allowed by such a small
constraint length, the MLSE algorithm guarantees acceptable performance.

Next it is necessary to choose an appropriate generating polynomial. It
is shown in the literature ([215, pp. 306−8], [216, p. 465], [205, pp. 402−7],
[163, p. 367]) that, for a given constraint length, nonsystematic codes have
better performance than systematic codes, but using a nonsystematic code
contradicts the demand for using the information bits without error correc-
tion. Quick look in (QLI) codes are nonsystematic convolution codes with
R = 1/2, providing free distance values as good as any known code for con-
straint lengths ν = 2 to 4 [217]. The advantage of QLI codes is that only one
XOR gate is necessary for the reconstruction of the information sequence.
QLIs with ν = 2, 3, and 4 have a free distance of df = 5, 6, and 7, respectively

� � � � ��������

����
����

����
�������

���
���

�������
����

����
�������

���
���

����
��

��
�!

�
��

��
�

�
��

��
�!

�
��

��
�!

�
��

��
� �

��

��
��

��"

�
��"

�
��"

�
��"

�
��

�
��

�
��

�
��� � ���

�!
��
�!

��
�!��

�
��
�

��
�

00

01

10

11

State
00 		 	

	

	

	

	

	

	

	

	

	

	

	

	 	

	

	
11

11
00

01
10

10

01

	000000

0101

1010

00

11 11 11 11

1111
0000

010101
101010

Fig. 7.14. Trellis for R = 1/2 convolutional decoder.

7.2 Error Control and Cryptography 431

M
U
X

M
U
X

R
E
G

M
U
X

R
E
G

M
U
X

R
E
G

. . .
M
U
X

R
E
G

�

� M
U
X

R
E
G

M
U
X

R
E
G

M
U
X

R
E
G

. . .
M
U
X

R
E
G

�

�
20

� � � �

� � � �

V0

V1

�
�0

0

�
�1

1

M
U
X

M
U
X

R
E
G

M
U
X

R
E
G

M
U
X

R
E
G

. . .
M
U
X

R
E
G

�

� M
U
X

R
E
G

M
U
X

R
E
G

M
U
X

R
E
G

. . .
M
U
X

R
E
G

�

�

�
20

� � � �

� � � �

V2

V3

�
�0

0

�
�1

1

M
U
X

�
21

�

�
�OUT

Path memory and output decoder

�

�
�

�

�
�

�

�

00

01

10

11

�

�

�

�
�

�
�

�

�
�

�

�

�

Fig. 7.15. Viterbi decoder with constraint length 4ν and 2ν=2 nodes: path memory
and output decoder.

[216, p. 465]. This seems to be a good compromise for low power consump-

Table 7.8. Hardware complexity in CLBs for an R = 1/2 Viterbi decoder for
ν = 2, 3, 4, and the general case.

Function ν = 2 ν = 3 ν = 4 ν ∈ N

Path memory 16 48 128 4× ν × 2ν−1

Output decoder 1,5 3,5 6,5 1 + 2 + . . . + 2ν−2

Metric ΔM 4 4 4 4
Metric clear 1 2 4 �(2 + 4 + . . . + 2ν−1)/4�
Metric adder 24 64 128 (�log2(nν)�+ 1)× 2ν+1

Survivor-MUX 6 24 48 (�log2(nν)�+ 1) × 2ν−1

Metric compare 6 24 48 (�log2(nν)�+ 1) × 2ν−1

Maximum compare 4,5 14 30

(�log2(nν)�+ 1)

× 1
2
× (1 + 2 + . . . 2ν−1)

MUX 3 12 28

(2 + . . . + 2ν−1)

× 1
2
× (�log2(nν)�+ 1)

Decoder 1 2 4 �(2 + . . . + 2ν−1)/4�
State machine 4 4 4

Sum: 67 197.5 428.5

432 7. Advanced Topics

ΔM00

∑

∑
M
U
X

>
<
�

�

��
�

�

�

R
E
G

M0

∑

∑
M
U
X

>
<
�

�

��
�

�

�

R
E
G

M1

�
�
�
�
�
�
�

�

�

�

�

�

∑

∑
M
U
X

>
<
�

�

��
�

�

�

R
E
G

M2

�

�

∑

∑
M
U
X

>
<
�

�

��
�

�

�

R
E
G

M3

�

�

��

�

�

��

�

�
�
�
�
�

ΔM11

ΔM10

ΔM01

i p

�

�

�

�

�

�
�
�
�
�
�
�
�

��
��
�

#
#
#
#
#
#

$$$$$
�
�
�
�
�
�
�
�

M
U
X

>
<
�

�

��
�

�

�

Metric update

M
U
X

>
<
�

�

��
�

�

�
�

�

>
<
�

�

Dec. MUX

���

�

�

��
20 21

Maximum detector

V0

V1

V2

V3

�

�
�

�
�

�
�

Fig. 7.16. Viterbi decoder with constraint length 4ν and 2ν=2 nodes: metric cal-
culation.

tion. The upper part of Table 7.9 shows the generating polynomials in octal
notation.

Error-correction performance of the QLI decoder. To compute the
error-correction performance of the QLI decoder, it is convenient to use the
“union bound” method. Because QLI codes are linear, error sequences can be
computed as a difference from the zero sequence. An MLSE decoder will make
an incorrect decision if a sequence that starts at the null state, and differs
from the null-word at j separate time steps, contains at least j/2 ones. The
probability of this occurrence is

Pj =

⎧
⎨

⎩

∑j
i=(j+1)/2

(
j
i

)
piqj−i for odd j

1
2

(
j

j/2

)
pj/2qj/2 +

∑j
i=j/2+1

(
j
i

)
piqj−i for even j.

(7.44)

Now the only thing necessary for a bit-error probability formula is to
compute the number wj of paths with weight j for the code, which is an
easily programmable task [200, C.4]. Because Pj decreases exponentially with

7.2 Error Control and Cryptography 433

Table 7.9. Union-bound weights for a Viterbi decoder with ν = 2 to 4 using QLI
codes.

Code O1 = 7 O1 = 74 O1 = 66
O2 = 5 O2 = 54 O2 = 46

Constraint length ν = 2 ν = 3 ν = 4

Distance Weight wj

0-4 0 0 0
5 1 0 0
6 4 2 0
7 12 7 4
8 32 18 12
9 80 49 26
10 192 130 74
11 448 333 205
12 1024 836 530
13 2304 2069 1369
14 5120 5060 3476
15 11 264 12 255 8470
16 24 576 29 444 19 772
17 53 079 64 183 43 062
18 109 396 126 260 83 346
19 103 665 223 980 147 474
20 262 144 351 956 244 458

increasing j, only the first few wj must be computed. Table 7.9 shows the wj

for j = 0 to 20. The total error probability can now be computed with:

Pb <
1
k

∞∑

j=0

wjPj . (7.45)

Syndrome algebraic decoder. The syndrome decoder (Fig. 7.17) and en-
coder (Fig. 7.18), like standard block decoders, computes a number of parity
bits from the data sequence. The decoder’s newly computed parity bits are
XOR’d with the received parity bits to create the “syndrome” word, which
will be nonzero if an error occurs in transmission. The error position and
value are determined from the syndrome value. In contrast to block codes,
where only one generator polynomial is used, convolutional codes at data rate
R = k/n have k+ 1 generating polynomials. The complete generator may be
written in a compact n×k generator matrix. For the encoder of Fig. 7.18 the
matrix is

G(x) =
[
1 x21 + x20 + x19 + x17 + x16 + x13 + x11 + 1

]
. (7.46)

434 7. Advanced Topics

Fig. 7.17. Trial and error majority decoder with J = 8.

For a systematic code the matrix has the form G(x) = [I
...P (x)]. The

parity check matrix H(x) = [−P (x)T
...I] is easily computed, given that G×

HT = 0. The desired syndrome vector is thus S = v ×HT , where v is the
received bit sequence.

The syndrome decoder now looks up the calculated syndrome in a table
to find the correct sequence. To keep the table small, only sequences with
an error at the first bit position are included. If the decoder needs to correct
errors of more than one bit, we cannot clear the syndrome after the correction.
Instead, the syndrome value must be subtracted from a syndrome register (see
the “Majority” signal in Fig. 7.17).

A 22-bit table would be necessary for the standard convolutional decoder,
but it is unfortunately difficult to implement a good FPGA look-up table
with more than 4 to 11 bit addresses [201]. Majority codes, a special class of
syndrome-decodable codes, offer an advantage here. This type of canonical
self-orthogonal code (CSOC) has exclusively ones in the first row of the {Ak}
parity check matrix (where the J columns are used as an orthogonal set to
compute the syndrome) [205, p. 284]. Thus, every error in the first-bit position

Fig. 7.18. Systematic (44, 22) encoder with rate R = 1/2 and constraint length
ν = 22.

7.2 Error Control and Cryptography 435

Table 7.10. Some majority-decodable “trial and error” codes [205, p. 406].

J tMD ν Generating polynomial Orthogonal equation

2 1 2 1 + x s0, s1

4 2 6 1 + x3 + x4 + x5 s0, s3, s4, s1 + s5

6 3 12 1 + x6 + x7 + x9 + x10 + x11 s0, s6, s7, s9, s1 + s3 + s10,
s4 + s8 + s11

8 4 22 1 + x11 + x13 + x16 + x17 + x19 s0, s11, s13, s16, s17, s2 + s3 + s6+
+x20 + x21 s19, s4 + s14 + s20, s1 + s5 + s8+

s15 + s21

10 5 36 1 + x18 + x19 + x27 + x28 + x29 s0, s18, s19, s27, s1 + s9 + s28, s10+
+x30 + x32 + x33 + x35 s20 + s29, s11 + s30 + s31,

s13 + s21 + s23 + s32, s14+
s33 + s34, s2 + s3 + s16 + s24+
s26 + s35

will cause at least
J/2� ones in the syndrome register. The decoding rule is
therefore

ei
0 =

{
1 for

∑J
k=1 Ak >
J/2�

0 otherwise
. (7.47)

Thus the name “majority code”: instead of the expensive syndrome table
only a majority vote is needed. Massey [205, p. 289] has designed a class
of majority codes, called trial and error codes, which, instead of evaluating
the syndrome vector directly, manipulate a combination of syndrome bits to
get a vector orthogonal to ei

0. This small additional hardware cost results
in slightly better error correction performance than the conventional CSOC
codes. Table 7.10 lists some trial and error codes with data rate R = 1/2.
Figure 7.17 shows a trial and error decoder with J = 8. Table 7.11 shows the
complexity in CLBs of decoders with J = 4 to 10.

Error-correction capability of the trial and error decoder. To calcu-
late the error-correction performance of trial and error codes, we must first

Table 7.11. Complexity in CLBs of a majority decoder with J = 4 to 10.

Function J = 4 J = 6 J = 8 J = 10

Register 6 12 22 36
XOR-Gate 2 4 7 11
Majority-circuit 1 5 7 15

Sum 9 22 36 62

436 7. Advanced Topics

-14

-12

-10

-8

-6

-4

-2

0

-6 -4 -2 0

B
it

er
ro

r
pr

ob
ab

ili
ty

 w
ith

 c
or

re
ct

io
n

P
=

10
^y

 P=10^x

Uncoded

Syndrom-

decoder

t=5 (72,36)

t=4 (44,22)

Simulation 1 MBit

t=3 (24,12)

t=2 (12,6)

 Coding-

 gain

Viterbi decoder

Union bound

df=7

df=6

df=5

Fig. 7.19. Performance comparison of Viterbi and majority decoders.

note that in a window twice the constraint length, the codes allow up to
�J/2�-bit errors [163, p. 440]:

P (J) =
�J/2�∑

k=0

(
2ν
k

)
pk(1− p)2ν−k. (7.48)

A computer simulation of 106 bits, in Fig. 7.19, reveals good agreement
with this equation. The equivalent single-error probability PB of an (n, k)
code can be computed with

P (J) = P (0) = (1− PB)k (7.49)
→ PB = 1− eln(P (J))/k. (7.50)

Final comparison. Figure 7.19 shows the error-correction performance of
Viterbi and majority decoders. For a comparable hardware cost (Viterbi,
ν = 2, df = 5, 67 CLBs and trial and error, t = 5, 62 CLBs) the better per-
formance of the majority decoder, due to the greater constraint length per-
mitted, is immediately apparent. The optimal MLSE property of the Viterbi
algorithm cannot compensate for its short constraint length.

7.2.4 Cryptography Algorithms for FPGAs

Many communication systems use data-stream ciphers to protect relevant
information, as shown in Fig. 7.20. The key sequence K is more or less a

7.2 Error Control and Cryptography 437

��

��
��
��

����
��
��

Key sequence

Plaintext Ciphertext
��

������
��
��

Plaintext

Key sequence

Fig. 7.20. The principle of a synchronous data-stream cipher.

“pseudorandom sequence” (known to the sender and the receiver), and with
the modulo 2 property of the XOR function, the plaintext P can be recon-
structed at the receiver side, because

P ⊕K ⊕K = P ⊕ 0 = P. (7.51)

In the following, we compare an algorithm based on a linear-feedback
shift register (LFSR) and a “data encryption standard” (DES) cryptographic
algorithm. Neither algorithm requires large tables and both are suitable for
an FPGA implementation.

Linear Feedback Shift Registers Algorithm

LFSRs with maximal sequence length are a good approach for an ideal se-
curity key, because they have good statistical properties (see, for instance,
[218, 219]). In other words, it is difficult to analyze the sequence in a crypto-
graphic attack, an analysis called cryptoanalysis. Because bitwise designs are
possible with FPGAs, such LFSRs are more efficiently realized with FPGAs
than PDSPs. Two possible realizations of a LFSR of length 8 are shown in
Fig. 7.21.

For the XOR LFSR there is always the possibility of the all-zero word,
which should never be reached. If the cycle starts with any nonzero word,
the cycle length is always 2l − 1. Sometimes, if the FPGA wakes up with
an all-zero state, it is more convenient to use a “mirrored” or inverted LFSR
circuit. If the all-zero word is a valid pattern and produces exactly the inverse
sequence, it is necessary to substitute the XOR with a “not XOR” or XNOR
gate. Such LFSRs can easily be designed using a PROCESS statement in VHDL,
as the following example shows.

Example 7.12: Length 6 LFSR
The following VHDL code2 implements a LFSR of length 6.

2 The equivalent Verilog code lfsr.v for this example can be found in Appendix A
on page 716. Synthesis results are shown in Appendix B on page 731.

438 7. Advanced Topics

+ X8

5 6 7 8+1 2 3 + 4 +

2+ X1 + X + X3 4

+ 18X + X + X + X4 3 2

1 2 3 4 5 6 7 8

+ + +

(b)

(a) y

y

Fig. 7.21. Possible realizations of LFSRs. (a) Fibonacci configuration. (b) Galois
configuration.

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
USE ieee.std_logic_arith.ALL;

ENTITY lfsr IS ------> Interface
PORT (clk : IN STD_LOGIC;

y : OUT STD_LOGIC_VECTOR(6 DOWNTO 1));
END lfsr;

ARCHITECTURE fpga OF lfsr IS

SIGNAL ff : STD_LOGIC_VECTOR(6 DOWNTO 1)
:= (OTHERS => ’0’);

BEGIN

PROCESS -- Implement length 6 LFSR with xnor
BEGIN
WAIT UNTIL clk = ’1’;
ff(1) <= NOT (ff(5) XOR ff(6));
FOR I IN 6 DOWNTO 2 LOOP -- Tapped delay line:

ff(I) <= ff(I-1); -- shift one
END LOOP;

END PROCESS ;

PROCESS (ff)
BEGIN -- Connect to I/O cell
FOR k IN 1 TO 6 LOOP

y(k) <= ff(k);
END LOOP;

END PROCESS;

END fpga;

From the simulation of the design in Fig. 7.22, it can be concluded that the
LFSR goes through all possible bit patterns, which results in the maximum
sequence length of 26 − 1 = 63 ≈ 630 ns/10 ns. The design uses 6 LEs, no
embedded multiplier, and has a 420.17 MHz Registered Performance. 7.12

7.2 Error Control and Cryptography 439

Fig. 7.22. LFSR simulation.

Note that a complete cycle of an LFSR sequence fulfills the three criteria
for optimal length 2l − 1 pseudorandom sequences defined by Golomb [220,
p. 188]:

1) The number of 1s and 0s in a cycle differs by no more than one.
2) Runs of length k (e.g., 111 · · · sequence, 000 · · · sequence) have a total

fractional part of all runs of 1/2k.
3) The autocorrelation function C(τ) is constant for τ ∈ [1, n− 1].

LFSRs are usually constructed from primitive polynomials in GF(2) us-
ing the circuits shown in Fig. 7.21. Stahnke [206] has compiled a list of
such primitive polynomials up to order 168. This paper is available online
at http://www.jstor.org. With today’s available algebraic software pack-
ages like Maple, Mupad, or Magma such a list can easily be extended. The
following is a code example for Maple to compute the primitive polynomials
of type xl + xa + 1 with the smallest a.

with(numtheory):
for l from 2 by 1 to 45 do
for a from 1 by 1 to l-1 do
if (Primitive(x^l+x^a+1) mod 2) then
print(l,a);
break;

fi;
od;

od;

Table 7.12 shows the necessary XOR list of the first 45 maximum length LFSRs
according to Fig. 7.21a. For instance, the entry for polynomial fourteen (14,
13, 11, 9) means the primitive polynomial is

p14(x) = x14 + x14−13 + x14−11 + x14−9 + 1
= x14 + x5 + x3 + x+ 1.

For l > 2 these primitive polynomials always have “twins,” which are
also primitive polynomials [221]. These are the “time” reversed versions xl +
xl−a + 1.

Stahnke [19, XAPP52] has computed primitive polynomials of type xl +
xa + 1. There are no primitive polynomials with four elements, i.e. (xl +

440 7. Advanced Topics

Table 7.12. A list of the first 45 LFSR.

l Exponents

1 1
2 2, 1
3 3, 2
4 4, 3
5 5, 3
6 6, 5
7 7, 6
8 8, 6, 5, 4
9 9, 5
10 10, 7
11 11, 9
12 12, 11, 8, 6
13 13, 12, 10, 9
14 14, 13, 11, 9
15 15, 14

l Exponents

16 16, 14, 13, 11
17 17, 14
18 18, 11
19 19, 18, 17, 14
20 20, 17
21 21, 19
22 22, 21
23 23, 18
24 24, 23, 21, 20
25 25, 22
26 26, 25, 24, 30
27 27, 26, 25, 22
28 28, 25
29 29, 27
30 30, 29, 26, 24

l Exponents

31 31, 28
32 32, 30, 29, 23
33 33, 20
34 34, 31, 30, 26
35 35, 33
36 36, 25
37 37, 36, 33, 31
38 37, 36, 33, 31
39 39, 35
40 40, 37, 36, 35
41 41, 38
42 42, 39, 38, 35
43 43, 41, 40, 36
44 44, 42, 41, 37
45 45, 44, 43, 41

xb + xa + 1) for l < 45. But it is possible to find polynomials of the type
xl + xa+b + xb + xa + 1, which Stahnke used for those l where a polynomial
of the type xl + xa + 1 (l = 8, 12, 13, etc.) does not exist.

The LFSRs with four elements in Table 7.12 were computed to have the
maximum sum (i.e., a+ b) for the tap exponents. We will see later that, for
multistep LFSR implementations, this usually gives the minimum complexity.

If n random bits are used at once, it is possible to clock our LFSR n
times. In general, it is not a good idea to use just the lowest n bits of our
LFSR, since this will lead to weak random properties, i.e., low cryptographic
security. But it is possible to compute the equation for n-bit shifts, so that
only one clock cycle is needed to generate n new random bits. The necessary
equation can be computed more easily if a “state-space” description of the
LFSR is used, as the following example shows.

Example 7.13: Three Steps-at-Once LFSR
Let us assume a primitive polynomial of length 6, e.g., p = x6+x+1, is used to
compute random sequences. The task now is to compute three “new” bits in
one clock cycle. To obtain the required equation, the state-space description
of our LFSR must first be computed, i.e., x(t + 1) = Ax(t)⎡

⎢⎢⎢⎢⎣

x6(t + 1)
x5(t + 1)
x4(t + 1)
x3(t + 1)
x2(t + 1)
x1(t + 1)

⎤

⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎢⎣

0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
1 1 0 0 0 0

⎤

⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎣

x6(t)
x5(t)
x4(t)
x3(t)
x2(t)
x1(t)

⎤

⎥⎥⎥⎥⎦
. (7.52)

With this state-space description, the actual values x(t) and the transition
matrix A are used to compute the new values x(t + 1). To compute the
values for x(t+2), simply compute x(t+2) = Ax(t+1) = A2x(t). The next

7.2 Error Control and Cryptography 441

iteration gives x(t+3) = A3x(t). The equations for an n-step-at-once LFSR
can therefore be computed by evaluating An mod 2. For n = 3 it follows that

A3 mod 2 =

⎡

⎢⎢⎢⎢⎣

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
1 1 0 0 0 0
0 1 1 0 1 0
0 0 1 1 0 1

⎤

⎥⎥⎥⎥⎦
. (7.53)

As expected, for the register x6 to x4 there is a shift of three positions, while
the other three values x1 to x3 are computed using an EXOR operation. The
following VHDL code3 implements this three-step LFSR.

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
USE ieee.std_logic_arith.ALL;

ENTITY lfsr6s3 IS ------> Interface
PORT (clk : IN STD_LOGIC;

y : OUT STD_LOGIC_VECTOR(6 DOWNTO 1));
END lfsr6s3;

ARCHITECTURE fpga OF lfsr6s3 IS

SIGNAL ff : STD_LOGIC_VECTOR(6 DOWNTO 1) := (OTHERS => ’0’);

BEGIN

PROCESS -- Implement three step length-6 LFSR with xnor
BEGIN
WAIT UNTIL clk = ’1’;
ff(6) <= ff(3);
ff(5) <= ff(2);
ff(4) <= ff(1);
ff(3) <= NOT (ff(5) XOR ff(6));
ff(2) <= NOT (ff(4) XOR ff(5));
ff(1) <= NOT (ff(3) XOR ff(4));

END PROCESS ;

PROCESS (ff)
BEGIN -- Connect to I/O cell
FOR k IN 1 TO 6 LOOP

y(k) <= ff(k);
END LOOP;

END PROCESS;

END fpga;

Figure 7.23 shows a simulation of the three-step LFSR design. Comparing
the simulation of this LFSR in Fig. 7.23 with the simulation of the single-
step LFSR in Fig. 7.22, it can be concluded that now every third sequence
value occurs. The cycle length is reduced from 26−1 to (26−1)/3 = 21. The

3 The equivalent Verilog code lfsr6s3.v for this example can be found in Ap-
pendix A on page 717. Synthesis results are shown in Appendix B on page 731.

442 7. Advanced Topics

Fig. 7.23. Multistep LFSR simulation.

design uses 6 LEs, no embedded multiplier, and has a 420.17 MHz Registered
Performance. 7.13

To implement such a multistep LFSR, we want to select the primitive
polynomial that results in the lowest circuit effort, which can be computed
by counting the nonzero entries in the Ak mod 2 matrix, and/or the max-
imum fan-in for the register, which corresponds to the number of ones in
each row. For a few shifts, the fan-in for the circuit from Fig. 7.21a may be
advantageous. It can also be observed 4 that if the feedback signals are close
in the A matrix, some entries in the Ak matrix may become zero, due to
the modulo 2 operations. As mentioned earlier, the two and four-tap LFSR
data in Table 7.12 were therefore computed to yield the maximum sum of all
taps. For the same sum, the primitive polynomial that has the larger value
for the smallest tap was selected, e.g., (11, 12) is better than (10, 13). This
was chosen because tap l is mandatory for the maximum-length LFSR, and
the other values should be close to this tap.

If, for instance, Stanke’s s14,a(x) = x14 + x12 + x11 + x + 1 primitive
polynomial is used, this will result in 58 entries for an n = 8 multistep LFSR,
while if the LFSR from Table 7.12, p14 = x14 + x5 + x3 + x1 + 1 (i.e., taps
14,13,11,9) is used, the A8 mod 2 matrix has only 35 entries (Exercise 7.6,
p. 474). Fig. 7.24 shows the total number of ones for the LFSR for the two
polynomials with the two different implementations from Fig. 7.21, while
Fig. 7.25 shows the maximum fan-in (i.e., the maximum needed input bit
width for a LC) for this LFSR. It can be concluded from the two figures that
a careful choice of the polynomial and LFSR structure can provide substantial
savings. For the multistep LFSR synthesis, it can be seen from Fig. 7.25 that
the LFSR of Fig. 7.21b has fewer fan-ins (i.e., smaller LC input bit width), but
for longer multistep k, the effort seems similar for the primitive polynomials
from Table 7.12.
4 It is obviously not applicable to select the LFSR with the smallest implemen-

tation effort, because there are φ(2l − 1)/l primitive polynomials, where φ(x) is
the Euler function that computes the number of coprimes to x. For instance, a
16-bit register has φ(216 − 1)/16 = 2048 different primitive polynomials [221]!

7.2 Error Control and Cryptography 443

1 2 3 4 5 6 7 8
15

20

25

30

35

40

45

50

N
um

be
r

of
 n

on
ze

ro
 e

le
m

en
ts

 in
 A

k

Multistep k

s
14

p
14

Fig. 7.24. Number of ones in Ak
14.

Combining LFSR

An additional gain in performance in cryptographic security can be achieved
if several LFSR registers are combined into one key generator. Several linear
and nonlinear combinations exist [208], [207, pp. 150−173]. Meaningful for
implementation effort and security are nonlinear combinations with thresh-
olds. For a combination of three different LFSRs with length L1, L2, and L3

the linear complexity, which is the equivalent length of one LFSR (which may
be synthesized with the Berlekamp−Massey algorithm, for instance, [207,
pp. 141−9]), provides

Lges = L1 × L2 + L2 × L3 + L1 × L3. (7.54)

Figure 7.26 shows a realization for such a scheme.
Since the key in the selected paging format has 50 bits, a total length of

2× 50 = 100 registers was chosen, and the three feedback polynomials are:

p33(x) = x33 + x6 + x4 + x+ 1 (7.55)
p29(x) = x29 + x2 + 1 (7.56)
p38(x) = x38 + x6 + x5 + x+ 1. (7.57)

444 7. Advanced Topics

1 2 3 4 5 6 7 8
2

3

4

5

6

7

8

M
ax

im
um

 fa
n−

in

Multistep k

s
14

 type (a)

s
14

 type (b)

p
14

 type (a)

p
14

 type (b)

Fig. 7.25. Maximum fan-in for multistep length-14 LFSR.

All the polynomials are primitive, which guarantees that the length of all
three shift-register sequences gives a maximum. For the linear complexity of
the combination it follows that:

L1 = 33; L2 = 29; L3 = 38
Ltotal = 33× 29 + 33× 38 + 29× 38 = 3313.

Table 7.13. Cost, measured in CLBs, of a 3K Xilinx FPGA.

Function group CLBs

50-bit key register 25
100-bit shift register 50
Feedback 3
Threshold 0.5
XOR with message 0.5

Total 79

7.2 Error Control and Cryptography 445

+��

&

Enable

�

+� +�+�
�

�

+�
�

�

+� +� +�
�

�

� �

k0

k49
k0

k49

Fig. 7.26. Realization of the data-stream cipher with 3 LFSR.

After each coding the key is lost, and an additional 50 registers are needed
to store the key. The 50-bit key is used twice. Table 7.13 shows the hardware
resources required with Xilinx FPGAs of the 3K family.

DES-Based Algorithm. The data encryption standard (DES), outlined in
Fig. 7.27, is typically used in a block cipher. By selecting the “output feedback
mode” (OFB) it is also possible to use the modified DES in a data-stream
cipher (see Fig. 7.28). The other modes (ECB, CBC, or CFB) of the DES are,
in general, not applicable for communication systems, due to the “avalanche
effect”: A single-bit error in the transmission will alter approximately 50% of
all bits in a block.

We will review the principles of the DES algorithm and then discuss
suitable modifications for FPGA implementations.

The DES comprises a finite state machine translating plaintext blocks
into ciphertext blocks. First the block to be substituted is loaded into the
state register (32 bits). Next it is expanded (to 48 bits), combined with the
key (also 48 bits) and substituted in eight 6→4 bit-width S-boxes. Finally,
permutations of single bits are performed. This cycle may be (if desired,
with a changing key) applied several times. In the DES, the key is usually

446 7. Advanced Topics

Textregister

Permutation

S1 S2 S3 S4 S5 S6

��

��
��
��

����

�����������

Key

Expansion

����

����

�����������

���� ���� ���� ���� ���� ����

Fig. 7.27. State machine for a block encryption system (DES).

shifted one or two bits so that after 16 rounds the key is back in the original
position. Because the DES can therefore be seen as an iterative application
of the Feistel cipher (shown in Fig. 7.29), the S-boxes must not be invertible.
To simplify an FPGA realization some modifications are useful, such as a
reduction of the length of the state register to 25 bits. No expansion is used.
Use the final permutations as listed in Table 7.14.

Because most FPGAs only have four to five input look-up tables (LUTs),
S-boxes with five inputs have been designed, as displayed in Table 7.15.

Although the intention was to use the OFB mode only, the S-boxes in
Table 7.16 were generated in such a manner that they can be inverted. The
modified DES may therefore also be used as a normal block cipher (electronic
code book).

7.2 Error Control and Cryptography 447

����
��
��

��
��

Textregister

Substitution
as in

Fig. 7.27
Key

Initial value

��
��

��"
��

��
+

��

��

��
+
�

� �

Fig. 7.28. Block cipher in the OFB-mode used as data-stream cipher.

Li

Ri Fi

��

��
��
��

��
��
����

��
��

��
��

Ri+1

Li+1

����

Ki

Fig. 7.29. Principle of the Feistel network.

A reasonable test for S-boxes is the dependency matrix. This matrix
shows, for every input/output combination, the probability that an output
bit changes if an input bit is changed. With the avalanche effect the ideal
probability is 1/2. Table 7.16 shows the dependency matrix for the new five
S-boxes. Instead of the probability, the table shows the absolute number of

448 7. Advanced Topics

Table 7.14. Table for permutation.

From bit no. 0 1 2 3 4 5 6 7 8 9 10 11 12

To bit no. 20 4 5 10 15 21 0 6 11 16 22 1 7

From bit no. 13 14 15 16 17 18 19 20 21 22 23 24

To bit no. 12 17 23 2 8 13 18 24 3 9 14 19

Table 7.15. The five new designed substitution boxes (S-boxes).

Input Box 1 Box 2 Box 3 Box 4 Box 5

0 1E F 14 19 6
1 13 1 1D 14 E
2 14 13 16 D 1A
3 1 1F B 4 3
4 1A 19 5 1C B
5 1B 1C E 1A 1E
6 E 12 8 1E 0
7 B 11 F 1 2
8 D 8 4 C 1D
9 10 7 C F C
A 3 1B 1E 1B 18
B 0 0 13 1D 17
C 4 1A 10 5 1
D 6 C 1 15 15
E A 1D 18 E 1B
F 17 2 17 13 9
10 19 B 1C 17 19
11 16 1E A 9 A
12 7 18 1B 3 4
13 1C D 3 10 14
14 1D 5 19 A 13
15 5 14 D 16 11
16 2 15 0 12 10
17 1F 9 2 1F 12
18 F 3 15 B 5
19 11 10 6 2 F
1A C 6 7 6 8
1B 18 17 12 18 16
1C 9 4 1F 11 1C
1D 15 16 1A 8 7
1E 8 E 9 7 D
1F 12 A 11 0 1F

occurrences. Since there are 25 = 32 possible input vectors for each S-box,
the ideal value is 16. A random generator was used to generate the S-boxes.
The reason that some values differ much from the ideal 16 may lie in the
desired inversion.

The hardware effort of the DES-based algorithm is summarized in Table
7.17.

Cryptographic performance comparison. We will next discuss the cryp-
tographic performance analysis of the LFSR- and DES-based algorithms. Sev-
eral security tests have been defined and the following comparison shows the

7.2 Error Control and Cryptography 449

Table 7.16. Dependency matrix for the five substitution boxes (ideal value is 16).

Box 1
20 12 20 20 20
12 20 12 16 16
12 16 16 12 8
16 16 20 12 16
20 16 20 12 12

Box 2
20 16 20 12 20
20 20 20 16 16
12 20 20 16 8
16 24 12 16 12
16 20 16 20 20

Box 3
20 12 16 16 16
16 20 16 16 16
16 16 20 12 12
16 8 12 16 20
20 12 12 20 12

Box 4
20 16 20 20 16
12 16 12 16 20
20 16 16 20 16
20 16 16 20 24
16 12 28 20 16

Box 5
12 20 8 12 20
20 12 16 24 20
16 12 12 20 16
16 20 16 20 12
12 16 16 12 24

Table 7.17. Hardware effort of the modified DES based algorithm.

Function group CLBs

25-bit key register 12.5
25-bit additions 12.5
25-bit state register 12.5
Five S-boxes 5→5 25
Permutation 0
25-bit initialization vector 12.5
Multiplex: Initialization vector/S-box 12.5
XOR with message 1

Total 87.5

two most interesting (the others do not show clear differences between the
two schemes). For both tests, 100 random keys were generated.

1) Using different keys, the generated sequences were analyzed. In each ran-
dom key, one bit was changed and the number of bit changes in the
plaintext was recorded. On average, about 50% of the bits should be
inverted (avalanche effect).

2) Similar to Test 1, but this time the number of changes in the output
sequence were analyzed, depending on the changed position of the key.
Again, 50% of the bits should change in sign.

For both tests, plaintext with 64-bit length were used (see again Fig. 7.20,
p. 437). The plaintext is arbitrary. For Test 1, all variations over each individ-
ual key position were accumulated. For Test 2, all changes depending on the
position in the output sequence were accumulated. This test was performed
for 100 random keys. For Test 1, the ideal value is 64× 0.5× 100 = 3200 and
for Test 2 the optimal value is 50× 0.5× 100 = 2500. Figures 7.30 and 7.31

450 7. Advanced Topics

0

1000

2000

3000

4000

5000

6000

0 5 10 15 20 25 30 35 40 45 50

Count
of

changes

Position of the bit changed in the key

3SR
3200

DES–OFB

Fig. 7.30. Results of test 1.

display the results. They clearly show that the DES-OFB scheme is much
more sensitive to changes in the key than is the scheme with three LFSRs.
The conclusion from Test 2 is that the SR scheme needs about 32 steps until a
change in the key will affect the output sequence. For the DES-OFB scheme,
only the first four samples differ considerably from the ideal value of 2500.

0

500

1000

1500

2000

2500

3000

3500

4000

0 10 20 30 40 50 60

Count
of

changes

Bit position in the ciphertext

3SR
2500

DES–OFB

Fig. 7.31. Results of test 2.

Due to the superior test results, the DES-OFB scheme may be preferred
over the LFSR scheme.

7.2 Error Control and Cryptography 451

A final note on encryption security. In general, it is not easy to conclude
that an encryption system is secure. Besides the fact that a key may be stolen,
the fact that a fast crack algorithm is not now known does not prove that there
are no such fast algorithms. Differential power attack algorithms, for instance,
recently showed how to explore weakness in the implementation rather than
a weakness in the algorithms itself [222]. There is also the problem of a “brute
force attack” using more powerful computers and/or parallel attacks. A good
example is the 56-bit key DES algorithm, which was the standard for many
years but was finally declared insecure in 1997. The DES was first cracked
by a network of volunteer computer owners on the Internet, which cracked
the key in 39 days. Later, in July 1997, the Electronic Frontier Foundation
(EFF) finished the design of a cracker machine. It has been documented in
a book [223], including all schematics and software source code, which can
be downloaded from http://www.eff.org/. This cracker machine performs
an exhaustive key search and can crack any 56-bit key in less than five days.
It was built out of custom chips, each of which has 24 cracker units. Each
of the 29 boards used consists of 64 “Deep Crack” chips, i.e., a total of 1856
chips, or 44 544 units, are in use. The system cost was $250,000. When DES
was introduced in 1977 the system costs were estimated at $20 million, which
corresponds to about $40 million today. This shows a good approximation to
“Moore’s law,” which says that every 18 months the size or speed or price
of microprocessors improves by a factor 2. From 1977 to 1998 the price of
such a machine should drop to 40×106/222/1.5 ≈ fifteen hundred dollars, i.e.,
it should be affordable to build a DES cracker today (as was proven by the
EFF).

K2K

Decryption

E E
text text

1K K K2 3

Encryption

D

3 1

D D
text

Plain−

Chipher− Plain−

Chipher−

K

E
text

Fig. 7.32. Triple DES (Kl = keys; E=single Encryption; D=single Decryption).

452 7. Advanced Topics

Table 7.18. Encryption algorithms [224].

Algorithm Key Mathematical Sym- Developed
size operations/ me- by

(bits) principle try (year)

DES 56 XOR, fixed S-boxes s IBM (1977)

Triple DES 122− 168 XOR, fixed S-boxes s

AES 128− 256 XOR, fixed S-boxes s Daemen/Rijmen (1998)

RSA variable Prime factors a

Rivest/Shamir/

Adleman (1977)

IDEA 128 XOR, add., mult. s Massey/Lai (1991)

Blowfish < 448
XOR, add.

fixed S-boxes s Schneider (1993)

RC5 < 2048 XOR, add., rotation s Rivest (1994)

CAST-128 40− 128
XOR, rotation,

S-boxes s Adams/Tavares (1997)

Therefore the 56-bit DES is no longer secure, but it is now common to
use triple DES, as displayed in Fig. 7.32, or other 128-bit key systems. Table
7.18 shows that these systems seem to be secure for the next few years. The
EFF cracker, for instance, today will need about 5 × 2112 days, or 7 × 1031

years, to crack the triple DES.
The first column in Table 7.18 is the commonly used abbreviations for the

algorithms. The second and third columns contain the typical parameters of
the algorithm. Symmetric algorithms (designated in the fourth column with
an “s”) are usually based on Feistel’s algorithm, while asymmetric algorithms
can be used in a public/private key system. The last column displays the name
of the developer and the year the algorithm was first published.

7.3 Modulation and Demodulation 453

7.3 Modulation and Demodulation

For a long time the goal of communications system design was to realize a
fully digital receiver, consisting of only an antenna and a fully programmable
circuit with digital filters, demodulators and/or decoders for error correction
and cryptography on a single programmable chip. With today’s FPGA gate
count above one million gates this has become a reality. “FPGAs will clearly
be a key technology for communication systems well into the 21st century”
as predicted by Carter [225] . In this section, the design and implementation
of a communication system is developed in the context of FPGAs.

7.3.1 Basic Modulation Concepts

A basic communication system transmits and receives information broadcast
over a carrier frequency, say f0. This carrier is modulated in amplitude, fre-
quency or phase, proportional to the signal x(t) being transmitted. Figure
7.33 shows a modulated signal for a binary transmission. For binary trans-
mission, the modulations are called amplitude shift keying (ASK), phase shift
keying (PSK), and frequency shift keying (FSK).

In general, it is more efficient to describe a (real) modulated signal with
a projection of a rotating arrow on the horizontal axis, according to

A
S

K
P

S
K

1 0 1 1 0

F
S

K

Fig. 7.33. ASK, PSK, and FSK modulation.

454 7. Advanced Topics

ASK

Real

Im
ag

.

PSK

Real

Im
ag

.

FSK

Real

Im
ag

.

Fig. 7.34. Modulation in the complex plan.

s(t) = �
{
A(t)ej(2πf0t+Δφ(t)+φ0)

}

= A(t) cos(2πf0t+Δφ(t) + φ0), (7.58)

where φ0 is a (random) phase offset, A(t) describes the part of the amplitude
envelope, andΔφ(t) describes the frequency- or phase-modulated component,
as shown in Fig. 7.34. As can be seen from (7.58), AM and PM/FM can be
used separately to transmit different signals.

An efficient solution (that does not require large tables) for realizing uni-
versal modulator is the CORDIC algorithm discussed in Chap. 2 (p. 120).
The CORDIC algorithm is used in the rotation mode, i.e., it is a coordinate
converter from (R, θ) → (X,Y). Figure 7.35 shows the complete modulator
for AM, PM, and FM.

To implement amplitude modulation, the signal A(t) is directly connected
with the radius R input of the CORDIC. In general, the CORDIC algorithm
in rotation mode has an attendant linear increase in the radius. This corre-
sponds to a change in the gain of an amplifier and need not be taken into
consideration for the AM scheme. When the linear increased radius (factor
1.6468, see Table 2.1, p. 57), is not desired, it is possible either to scale the
input or the output by 1/1.6468 with a constant coefficient multiplier.

7.3 Modulation and Demodulation 455

Δω

+

Δφ
PM=

+ −kz

AM R

Θ

CORDIC

X

Yω0

Carrier Phase accumulator

FM=

+

Fig. 7.35. Universal modulator using CORDIC.

The phase of the transmitted signal θ = 2πf0t + Δφ(t) must also be
computed. To generate the constant carrier frequency, a linearly increasing
phase signal according to 2πf0t must be generated, which can be done with
an accumulator. If FM should be generated, it is possible to modify f0 by Δf,
or to use a second accumulator to compute 2πΔft, and to add the results of
the two accumulators. For the PM signal, a constant offset (not increasing in
time) is added to the phase of the signal. These phase signals are added and
applied to the angle input z or θ of the CORDIC processor. The Y register
is set to zero at the beginning of the iterations.

The following example demonstrates a fully pipelined version of the
CORDIC modulator.

Example 7.14: Universal Modulator using CORDIC
A universal modulator for AM, PM, and FM according to Fig. 7.35, can be
designed with the following VHDL code5 of the CORDIC part.

PACKAGE nine_bit_int IS -- User-defined types
SUBTYPE NINE_BIT IS INTEGER RANGE -256 TO 255;
TYPE ARRAY_NINE_BIT IS ARRAY (0 TO 3) OF NINE_BIT;

END nine_bit_int;

LIBRARY work;
USE work.nine_bit_int.ALL;

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
USE ieee.std_logic_arith.ALL;

ENTITY ammod IS ------> Interface
PORT (clk : IN STD_LOGIC;

r_in , phi_in : IN NINE_BIT;
x_out, y_out, eps : OUT NINE_BIT);

END ammod;

5 The equivalent Verilog code ammod.v for this example can be found in Ap-
pendix A on page 717. Synthesis results are shown in Appendix B on page
731.

456 7. Advanced Topics

ARCHITECTURE fpga OF ammod IS

BEGIN

PROCESS ------> Behavioral Style
VARIABLE x, y, z : ARRAY_NINE_BIT := (0,0,0,0);

BEGIN -- Tapped delay lines
WAIT UNTIL clk = ’1’; -- Compute last value first
x_out <= x(3); -- in sequential statements !!
eps <= z(3);
y_out <= y(3);

IF z(2) >= 0 THEN -- Rotate 14 degrees
x(3) := x(2) - y(2) /4;
y(3) := y(2) + x(2) /4;
z(3) := z(2) - 14;

ELSE
x(3) := x(2) + y(2) /4;
y(3) := y(2) - x(2) /4;
z(3) := z(2) + 14;

END IF;

IF z(1) >= 0 THEN -- Rotate 26 degrees
x(2) := x(1) - y(1) /2;
y(2) := y(1) + x(1) /2;
z(2) := z(1) - 26;

ELSE
x(2) := x(1) + y(1) /2;
y(2) := y(1) - x(1) /2;
z(2) := z(1) + 26;

END IF;

IF z(0) >= 0 THEN -- Rotate 45 degrees
x(1) := x(0) - y(0);
y(1) := y(0) + x(0);
z(1) := z(0) - 45;

ELSE
x(1) := x(0) + y(0);
y(1) := y(0) - x(0);
z(1) := z(0) + 45;

END IF;

IF phi_in > 90 THEN -- Test for |phi_in| > 90
x(0) := 0; -- Rotate 90 degrees
y(0) := r_in; -- Input in register 0
z(0) := phi_in - 90;

ELSIF phi_in < -90 THEN
x(0) := 0;
y(0) := - r_in;
z(0) := phi_in + 90;

ELSE
x(0) := r_in;

7.3 Modulation and Demodulation 457

Fig. 7.36. Simulation of an AM modulator using the CORDIC algorithm.

y(0) := 0;
z(0) := phi_in;

END IF;
END PROCESS;

END fpga;

Figure 7.36 reports the simulation of an AM signal. Note that the Altera
simulation allows you to use signed data, rather then unsigned binary data
(where negative values have a 512 offset). A pipeline delay of four steps is
seen and the value 100 is enlarged by a factor of 1.6. A switch in radius r_in
from 100 to 25 results in the maximum value x_out dropping from 163 to
42. The CORDIC modulator runs at 215.98 MHz and uses 316 LEs and no
embedded multiplier. 7.14

Demodulation may be coherent or incoherent. A coherent receiver must
recover the unknown carrier phase φ0, while an incoherent one does not need
to do so. If the receiver uses an intermediate frequency (IF) band, this type
of receiver is called a superhet or double superhet (two IF bands) receiver.
IF receivers are also sometimes called heterodyne receivers. If no IF stages
are employed, a zero IF or homodyne receiver results. Figure 7.37 presents a
systematic overview of the different types of receivers. Some of the receivers
can only be used for one modulation scheme, while others can be used for
multiple modes (e.g., AM, PM, and FM). The latter is called a universal
receiver. We will first discuss the incoherent receiver, and then the coherent
receiver.

All receivers use intensive filters (as discussed in Chaps. 3 and 4), in order
to select only the signal components of interest. In addition, for heterodyne
receivers, filters are needed to suppress the mirror frequencies, which arise
from the frequency shift

s(t)× cos(2πfmt)←−−→ S(f + fm) + S(f − fm). (7.59)

7.3.2 Incoherent Demodulation

In an incoherent demodulation scheme, it is assumed that the exact carrier
frequency is known to the receiver, but the initial phase φ0 is not.

458 7. Advanced Topics

Envelop Detector (only AM)
Limiter Discriminator (only FM)
Quadratur Mixer

Hilbert Sampler
Hilbert−Transformer

Phased locked Loop (PLL)

Quadratur Sampler

Costas Loop (CL)

coherentincoherent
Demodulator

with CORDIC
in combination

Fig. 7.37. Coherent and incoherent demodulation schemes.

If the signal component is successfully selected with digital or analog fil-
tering, the question arises whether only one demodulation mode (e.g., AM or
FM) or universal demodulator is needed. An incoherent AM demodulator can
be as simple as a full or half-wave rectifier and an additional lowpass filter.
For FM or PM demodulation, only the limiter/discriminator type of demod-
ulator is an efficient implementation. This demodulator builds a threshold of
the input signal to limit the values to ±1, and then basically “measures” the
distance between the zero crossings. These receivers are easily implemented
with FPGAs but sometimes produce 2π jumps in the phase signal (called
“clicks” [226, 227]). There are other demodulators with better performance.

We will focus on universal receivers using in-phase and quadrature compo-
nents. This type of receiver basically inverts the modulation scheme relative
to (7.58) from p. 454. In a first step we have to compute, from the received
cosines, components that are “in-phase” with the sender’s sine components
(which are in quadrature to the carrier, hence the name Q phase). These I
and Q phases are used to reconstruct the arrow (rotating with the carrier
frequency) in the complex plane. Now, the demodulation is just the inversion
of the circuit from Fig. 7.35. It is possible to use the CORDIC algorithm in
the vectoring mode, i.e., a coordinate conversion X,Y → R, θ with I = X
and Q = Y is used. Then the output R is directly proportional to the AM
portion, and the PM/FM part can be reconstructed from the θ signal, i.e.,
the Z register.

A difficult part of demodulation is I/Q generation, and typically two meth-
ods are used: a quadrature scheme and a Hilbert transform.

In the quadrature scheme the input signal is multiplied by the two mixer
signals, 2 cos(2πfmt) and −j2 sin(2πfmt). If the signals in the IF band fIF =
f0 − fm are now selected with a filter, the complex sum of these signals is
then a reconstruction of the complex rotating arrow. Figure 7.38 shows this
scheme while Fig. 7.39 displays an example of the I/Q generation. From the

7.3 Modulation and Demodulation 459

hBP(t)

hBP1(t)�
�

2cos(ωmt)

�
�

-j2sin(ωmt)

hBP1(t)

�

� �

� �

�s(t)

Bandpass Mixer Bandpass

��

�
� sI + jsQ

�

�

+ ��

�
sIBP + jsQBP

�

+ �

��

�

sIBP

jsIBP

sI

jsQ

Fig. 7.38. Generation of I- and Q-phase using quadrature scheme.

spectra shown in Fig. 7.39 it can be seen that the final signal has no negative
spectral components. This is typical for this type of incoherent receiver and
these signals are called analytic.

To decrease the effort for the filters, it is desirable to have an IF fre-
quency close to zero. In an analog scheme (especially for AM) this often
introduces a new problem, that the amplifier drifts into saturation. But for a
fully digital receiver, such a homodyne or zero IF receiver can be built. The
bandpass filters then reduce to lowpass filters. Hogenauer’s CIC filters (see
Chap. 5, p. 258) are efficient realizations of these high decimation filters. Fig-

S(f)

f

f

f

f

f

f

S
2cos

(f)

S
−j2sin

(f)

S
I
(f)

jS
Q

(f)

S
I
(f)+jS

Q

0 f
0

−f
0

f
m

−f
m

f
0
−f

m
−(f

0
+f

m
)

S
IBP

+jS
QBP

f

Real

Imag.

Filter

Fig. 7.39. Spectral example of the I/Q generation.

460 7. Advanced Topics

Real
Imag.
Filter

f

f

f

f

f

f

f

f
S(f)

S(ejω)

S
2cos

(ejω)

S
−j2sin

(ejω)

S
I
(ejω)

jS
Q

(ejω)

S
I
+jS

Q

0 π−π 2π−2π

0 π−π 2π−2π

0 π−π 2π−2π

0 π−π 2π−2π

0 π−π 2π−2π

0 π−π 2π−2π

0 π−π 2π−2π

0 f
0

−f
0

f
s

−f
s

S
Id

+jS
Qd

Fig. 7.40. Spectra for the zero IF receiver. Sampling frequency was 2π.

ure 7.40 shows the corresponding spectra. The real input signal is sampled
at 2π. Then the signal is multiplied with a cosine signal S2 cos(ejω) and a
sine signal S−j2 sin(ejω). This produces the in-phase component SI(ejω) and
the quadrature component jSQ(ejω). These two signals are now combined
into a complex analytic signal SI + jSQ. After the final lowpass filtering, a
decimation in sampling rate can be applied.

Such a fully digital zero IF for LF has been built using FPGA technology
[228].

Example 7.15: Zero IF Receiver
This receiver has an antenna, a programmable gain adjust (AGC), and a
Cauer lowpass 7th-order followed by an 8-bit video A/D converter. The re-
ceiver uses eight times oversampling (0.4–1.2 MHz) for the input range from
50 to 150 kHz. The quadrature multipliers are 8 × 8-bit array multipliers.
Two-stage CIC filters were designed with 24- and 19-bit integrator precision,
and 17- and 16-bits precision for the comb sections. The final sampling rate
reduction was 64. The full design could fit on a single XC3090 Xilinx FPGA.
The following table shows the effort for the single units:

7.3 Modulation and Demodulation 461

PD LP VCO�
� �

÷M2
�

∑M1

Fosc

Fref �
�

Overflow Fout
�

�

�
N Bit

Fig. 7.41. PLL with accumulator as reference.

(a) (b)

Fig. 7.42. PLL synthesizers with accumulator reference. (a) Behavior of the syn-
thesizer for switching Fout from 900 kHz to 1.2 MHz. (b) Histogram of the frequency
error, which is less than 2Hz.

Design part CLBs

Mixer with sin/cos tables 74
Two CIC filters 168
State machine and PDSP interface 18
Frequency synthesizer 32

Total 292

For the tunable frequency synthesizer an accumulator as reference for an
analog phase-locked loop (PLL) was used [4]. Figure 7.41 shows this type
of frequency synthesizer and Fig. 7.42 displays the measured performance of
the synthesizer. The accumulator synthesizer could be clocked very high due
to the fact that only the overflow is needed. A bitwise carry save adder was
therefore used. The accumulator was used as a reference for the PLL that
produces Fout = M2F

′
in = M1M2Fin/2N . 7.15

462 7. Advanced Topics

�

�

��
Re

Im
f

H(f)

(b)

jH(f)�

�

(a)

−j

j

��

�
I(t) + jQ(t)

�

+ �

� I(t)

jQ(t)�

�

Fig. 7.43. Hilbert transformer. (a) Filter. (b) Spectrum of H(f).

The Hilbert transformer scheme relies on the fact that a sine signal can
be computed from the cosine signal by a phase delay of 90◦. If a filter is used
to produce this Hilbert transformer, the amplitude of the filter must be one
and the phase must be 90◦ for all frequencies. Impulse response and transfer
function can be found using the definition of the Fourier transform, i.e.,

h(t) =
1
πt
←→ H(jω) = −jγ(ω) =

{
j −∞< ω < 0
−j 0 < ω <∞, (7.60)

with γ(ω) = −1 ∀ ω < 0 and γ(ω) = 1 ∀ ω ≥ 0 as the sign function.
A Hilbert filter can only be approximated by an FIR filter and resulting
coefficients have been reported (see, for instance, [229, 230], [159, pp. 168–
174], or [79, p. 681]).

Simplification for narrowband receivers. If the input signals are nar-
rowband signals, i.e., the transmitted bit rate is much smaller than the carrier
frequency, some simplifications in the demodulation scheme are possible. In
the input sampling scheme it is then possible to sample at the carrier rate, or
at a multiple of the period T0 = 1/f0 of the carrier, in order to ensure that
the sampled signals are already free of the carrier component.

The quadrature scheme becomes trivial if the zero IF receiver samples
at 4f0. In this case, the sine and cosine components are elements of 0, 1
or −1, and the carrier phase is 0, 90◦, 180◦ This is sometimes referred
to as “complex sampling” in the literature [231, 232]. It is possible to use
undersampling, i.e., only every second or third carrier period is evaluated
by the sampler. Then the sampled signal will still be free from the carrier
frequency.

The Hilbert transformer can also be simplified if the signal is sampled
at T0/4. A Hilbert sampler of first order with Q−1 = 1 or a second-order

7.3 Modulation and Demodulation 463

(a) (b)

Fig. 7.44. (a) Two versions of the Hilbert sampler of first order.

type using the symmetric coefficients Q1 = −0.5;Q−1 = 0.5 or asymmetric
Q−1 = 1.5;Q−3 = 0.5 coefficients can be used [233].

Table 7.19. Coefficients of the Hilbert sampler.

Type Coefficients Bit Δf/f0

Zero Q−1 = 1, 0 8 0.005069
order Q−1 = 1, 0 12 0.000320

Q−1 = 1, 0 16 0.000020

First- Q−1 = 1, 5;Q−3 = 0.5 8 0.032805
order Q−1 = 1, 5;Q−3 = 0.5 12 0.008238
asymmetric Q−1 = 1, 5;Q−3 = 0.5 16 0.002069

First- Q1 = −0.5;Q−1 = 0.5 8 0.056825
order Q1 = −0.5;Q−1 = 0.5 12 0.014269
symmetric Q1 = −0.5;Q−1 = 0.5 16 0.003584

Table 7.19 reports the three short-term Hilbert transformer coefficients
and the maximum allowed frequency offset Δf of the modulation, for the
Hilbert filter providing a specified accuracy.

Figure 7.44 shows two possible realizations for the Hilbert transformer
that have been used to demodulate radio control watch signals [234, 235].
The first method uses three Sample & Hold circuits and the second method
uses three A/D converters to build a symmetric Hilbert sampler of first order.

Figure 7.45 shows the spectral behavior of the Hilbert sampler with a
direct undersampling by two.

464 7. Advanced Topics

Real

Imag.

f

f

f

f

f

S(f)

(1+jH(f))S(f)

D
I
(f)

S
d
(ejω)

0 f
0

−f
0

f
s

−f
s

S
dd

(ejω)

Fig. 7.45. Spectra for the Hilbert sampler with undersampling.

7.3.3 Coherent Demodulation

If the phase φ0 of the receiver is known, then demodulation can be accom-
plished by multiplication and lowpass filtering. For AM, the received signal
s(t) is multiplied by 2 cos(ω0t+ φ0) and for PM or FM by −2 sin(ω0t+ φ0).
It follows that
AM:

A(t) cos(2πf0t+ φ0)× 2 cos(2πf0t+ φ0)
= A(t)︸︷︷︸

Lowpass component

+ A(t) cos(4πf0t+ 2φ0) (7.61)

sAM(t) = A(t)−A0. (7.62)

PM:

−2 sin(2πf0t+ φ0)× cos(2πf0t+ φ0 +Δφ(t))
= sin(Δφ(t))︸ ︷︷ ︸

Lowpass component

+ cos(4πf0t+ 2φ0 +Δφ(t)) (7.63)

sin(Δφ(t)) ≈ Δφ(t) (7.64)

sPM(t) =
1
η
Δφ(t). (7.65)

7.3 Modulation and Demodulation 465

hBP(t) hLP(t)�

V C O

��PD

�

� �

�

udem(t)

s(t)

Fig. 7.46. Phase-locked loop (PLL) with (necessary) bandpass (hBP(t)), phase
detector (PD), lowpass (hLP(t)), and voltage-controlled oscillator (VCO).

FM:

sFM(t) =
1
η

d Δφ(t)
d t

. (7.66)

η is the so-called modulation index.
In the following we will discuss the types of coherent receivers that are

suitable for an FPGA implementation. Typically, coherent receivers provide
a 1 dB better signal-to-noise ratio than an incoherent receiver (see Fig. 7.4,
p. 418). A synchronous or coherent FM receiver tracks the carrier phase of
the incoming signal with a voltage-controlled oscillator (VCO) in a loop.
The DC part of this voltage is directly proportional to the FM signal. PM
signal demodulation requires integration of the VCO control signal, and AM
demodulation requires the addition of a second mixer and a π/2 phase shifter
in sequence with a lowpass filter. The risk with coherent demodulation is
that for a low signal-to-noise channel, the loops may be out-of-lock, and
performance will decrease tremendously.

There are two common types of coherent receiver loops: the phase-locked
loop (PLL) and the Costas loop (CL). Figures 7.46 and 7.47 are block dia-
grams of a PLL and CL, respectively, showing the nearly doubled complex-
ity of the CL. Each loop may be realized as an analog (linear PLL/CL) or
all-digital (ADPLL, ADCL) circuit (see [236, 237, 238, 239]). The stability
analysis of these loops is beyond the scope of the book and is well covered in
the literature ([240, 241, 242, 243, 244]). We will discuss efficient realizations
of PLLs and CLs [245, 246]. The first PLL is a direct translation of an analog
PLL to FPGA technology.

Linear phase-locked loop. The difference between linear and digital loops
lies in the type of input signal to be processed. A linear PLL or CL uses a fast
multiplier as a phase detector, providing a possibly multilevel input signal to
the loop. A digital PLL or CL can process only binary input signals. (Digital
refers to the quality of the input signal here, not to the hardware realization!)

466 7. Advanced Topics

hBP(t)

hLP1(t)

hLP2(t)

��

π/2
V C O hLP3(t)� �

�

�
udem(t)

s(t)

�PDI

PDQ

PDI·Q

UI(t)

UQ(t)

UI·Q(t)

�

�
�

� �

�

�

�

Fig. 7.47. Costas loop with (necessary) bandpass (hBP(t)), three phase detectors
(PD), three lowpass filters (hLP(t)), and a voltage-controlled oscillator (VCO) with
π/2 phase shifter.

As shown in Fig. 7.46, the linear PLL has three main blocks:

• Multiplier as phase detector
• Loop filter
• VCO

To keep the loop in-lock, a loop output signal-to-noise ratio larger than 4 =
6 dB is required [239, p. 35]. Since the selection of typical antennas is not
narrow enough to achieve this, an additional narrow bandpass filter has been
added to Figs. 7.46 and 7.47 as a necessary addition to the demodulator [246].
The “cascaded bandpass comb” filter (see Table 5.4, p. 279) is an efficient
example. However, the filter design is much easier if a fixed IF is used, as in
the case of a superhet or double superhet receiver.

The VCO (or digitally controlled oscillator (DCO) for ADPLLs) oscillates
with a frequency ω2 = ω0 +K0×Uf (t), where ω0 is the resting point and K0

the gain of the VCO/DCO. For sinusoidal input signals we have the signal

udem(t) = Kd sin (Δφ(t)) (7.67)

at the output of the lowpass, where Δφ(t) is the phase difference between
the DCO output and the bandpass-filtered input signal. For small differences,
the sine can be approximated by its argument, giving udem(t) proportional
to Δφ(t) (the loop stays in-lock). If the input signal has a very sudden phase
discontinuity, the loop will go out-of-lock. Figure 7.48 shows the different
operation areas of the loop. The hold-in range ω0±ΔωH is the static operation
limit (useful only with a frequency synthesizer). The lock-in range is the area
where the PLL will lock-in within a single period of the frequency difference
ω1 − ω2. Within the pull-in range, the loop will lock-in within the capture
time TL, which may last more than one period of ω1 − ω2. The pull-out

7.3 Modulation and Demodulation 467

Table 7.20. Cost in CLBs of a linear PLL universal demodulator in a Xilinx
XC3000 FPGA.

Function group FM only FM, AM, and PM

Phase detector (8× 8-bit multiplier) 65 72
Loop filter (two-stage CIC) 84 168
Frequency synthesizer 34 34
DCO (N/N + K divider, sin/cos table) 16 16+2
PDSP Interface 15 15

Total 214 307

range is the maximum frequency jump the loop can sustain without going
out-of-lock. ω0±ΔωPO is the dynamic operation limit used in demodulation.
There is much literature optimizing PD, loop filter and the VCO gain; see
[240, 241, 242, 243, 244].

The major advantage of the linear loop over the digital PLL and CL is its
noise-reduction capability, but the fast multiplier used for the PD in a linear
PLL has a particularly high hardware cost, and this PD has an unstable rest
point at π/2 phase shift (−π/2 is a stable point), which impedes lock-in. Table
7.20 estimates the hardware cost in CLBs of a linear PLL, using the same
functional blocks as the 8-bit incoherent receiver (see Example 7.15, p. 460).
Using a hardware multiplier in multiplex for AM and PM demodulation, the
right-hand column reduces the circuit’s cost by 58 CLBs, allowing it to fit
into a 320 CLB Xilinx XC3090 device.

A comparison of these costs to those of an incoherent receiver, consuming
292 CLBs without CORDIC demodulation and 367.5 CLBs with an addi-
tional CORDIC processor [69], shows a slight improvement in the linear PLL
realization. If only FM and PM demodulation are required, a digital PLL or
CL, described in the next two sections, can reduce complexity dramatically.

ω0

−+ 150 Hz Sender range

ω0

Δω−+ P

ω

Static/dynamic stability limit

−+ 180 Hz Costas range

Lock-in range

ω

Δω−+ L

Pull-out range

Static stability limit

Dynamic stability limit

Δω−+ PO

Hold-in rangeΔω− H
+

Pull-in range

= =Δω− H
+ Δω−+ P Δω−+ L

(a) (b)

Fig. 7.48. (a) Operation area PLL/CL. (b) Operation area of the CL of Fig. 7.51.

468 7. Advanced Topics

�
��
�
��
%%% $$$

�
��
�
��
%%% $$$ �

��

�
��

�
��

�

�
�
��

�
�� �

UP�

�DOWN�From DCO

Input signal

%%%
�

$$$ �

�
��

�

�

�

�

Fig. 7.49. Phase detector [19, Chap. 8 p. 127].

These designs were developed to demodulate WeatherFAX pictures, which
were transmitted in central Europe by the low-frequency radio stations
DCF37 and DCF54 (Carrier 117.4 kHz and 134.2 kHz; frequency modulation
F1C: ± 150Hz).

Digital PLLs. As explained in the last section, a digital PLL works with
binary input signals. Phase detectors for a digital PLL are simpler than the
fast multipliers used for linear PLLs; usual choices are XOR gates, edge-
triggered JK flip-flops, or paired RS flip-flops with some additional gates
[239, pp. 60–65]. The phase detector shown in Fig. 7.49 is the most complex,
but it provides phase and frequency sensitivity and a quasi-infinite hold-in
range.

Modified counters are used as loop filters for DPLLs. These may be
N/(N + K) counters or multistage counters, such as an N -by-M divider,
where separate UP and DOWN counters are used, and a third counter mea-
sures the UP/DOWN difference. It is then possible to break off further sig-
nal processing if a certain threshold is not met. For the DCO, any typical
all-digital frequency synthesizer, such as an accumulator, divider, or multi-
plicative generator may be used. The most frequently used synthesizer is the
tunable divider, popular because of its low phase error. The low resolution
of this synthesizer can be improved by using a low receiver IF [247].

One DPLL realization with very low complexity is the 74LS297 circuit,
which utilizes a “pulse-stealing” design. This scheme may be improved with
the phase- and frequency-sensitive J-K flip-flop, as displayed in Fig. 7.50. The
PLL works as follows: the “detect flip-flop” runs with rest frequency

Fcomp =
Fin

N
=
Fosc

KM
. (7.68)

7.3 Modulation and Demodulation 469

Fosc+

÷K

Detect Deglitch Delay

÷M

÷NFin

CLR

D D D

CLR CLREnable

� Fout

�
B

A

� �

Steal
pulse ����

�

Fig. 7.50. “Pulse-stealing” PLL [248].

Table 7.21. Hardware complexity of a pulse-stealing DPLL [247].

Function group CLBs

DCO 16
Phase detector 5
Loop filter 6
Averaging 11
PC–interface 10
Frequency synthesizer 26
Stage machine 10

Total 84

To allow tracking of incoming frequencies higher than the rest frequency,
the oscillator frequency Fosc+ is set slightly higher:

Tcomp − Tcomp+ =
1
2
Tosc, (7.69)

such that the signal at point B oscillates half a period faster than the Fosc

signal. After approximately two periods at the rest frequency, a one will be
latched in the detector flip-flop. This signal runs through the deglitch and
delay flip-flops, and then inhibits one pulse of the ÷K divider (thus the name
“pulse-stealing”). This delays the signal at B such that the phase of signal A
runs after B, and the cycle repeats. The lock-in range of the PLL has a lower
bound of Fin|min=0Hz. The upper bound depends on the maximum output
frequency Fosc+/K, so the lock-in range becomes

±ΔωL = ±N × Fosc+/(K ×M). (7.70)

A receiver can be simplified by leaving out the counters N and M. In
a WeatherFAX image-decoding application the second IF of the double-

470 7. Advanced Topics

BP+A/D

PD1

UP/
DOWN

PDSPDCOref. (τ ≈1 s)
PLL with ACC �

0
1

Zero crossing

In
Out� �

PD2

UP/
DOWN

0
1

Maximum

In
Out� �

0 shift

π/2 shift

∑� �

�

�

�

To the
PC

�

�

�

Loop

filter

�

�

Fig. 7.51. Structure of the Costas loop.

superhet receiver is set in such a way that the frequency modulation of 300Hz
(δf = 0 Hz → white; δf = 300 Hz → black) corresponds to exactly 32 steal
pulses, so that the steal pulses correspond directly to the greyscale level. We
set a pixel rate of 1920 Baud, and a IF of 16.6 kHz. For each pixel, four “steal
values” (number of steal pulses in an interval) are determined, so a total of
log2(2× 4) = 3 bit shifts are used to compute the 16 gray-level values. Table
7.21 shows the hardware complexity of this PLL type.

Costas loop. This extended type of coherent loop was first proposed by
John P. Costas in 1956, who used the loop for carrier recovery. As shown in
Fig. 7.47, the CL has an in-phase and a quadrature path (subscripted I and
Q there). With the π/2 phase shifter and the third PD and lowpass, the CL
is approximately twice as complex as the PLL, but locks onto a signal twice
as fast. Costas loops are very sensitive to small differences between in-phase
and quadrature gain, and should therefore always be realized as all-digital
circuits. The FPGA seems to be an ideal realization vehicle ([249, 250]).

For a signal U(t) = A(t) sin(ω0t + Δφ(t)) we get, after the mixer and
lowpass filters,

UI(t) = KdA(t) cos (Δφ(t)) (7.71)
UQ(t) = KdA(t) sin (Δφ(t)) , (7.72)

where 2Kd is the gain of the PD. UI(t) and UQ(t) are then multiplied together
in a third PD, and are lowpass filtered to get the DCO control signal:

7.3 Modulation and Demodulation 471

Table 7.22. Loop filter output and DCO correction values at 32-times oversam-
pling.

Accumulator

Under-
flow

Over-
flow Sum DCO-IN

gray
value fcarrier ± δf

Yes No s< −(213 − 1) 3 0 +180 Hz
No No −(213 − 1) ≤s< −2048 2 0 +120 Hz
No No −2048 ≤s< −512 1 4 +60 Hz
No No −512 ≤s< 512 0 8 +0Hz
No No 512≤s< 2048 −1 12 −60 Hz
No No 2048 ≤s< 213 − 1 −2 15 −120 Hz
No Yes s≥ 213 − 1 −3 15 −180 Hz

UI×Q(t) ∼ Kd sin (2Δφ(t)) . (7.73)

A comparison of (7.67) and (7.73) shows that, for small modulations ofΔφ(t),
the slope of the control signal UI×Q(t) is twice the PLL’s. As in the PLL, if
only FM or PM demodulation is needed, the PDs may be all digital.

Figure 7.51 shows a block diagram of a CL. The antenna signal is first
filtered and amplified by a fourth-order Butterworth bandpass, then digitized
by an 8-bit converter at a sampling rate 32 or 64 times the carrier base
frequency. The resulting signal is split, and fed into a zero-crossing detector
and a minimum/maximum detector. Two phase detectors compare the signals
with a reference signal, and its π/2-shifted counterpart, synthesized by a high
time-constant PLL with a reference accumulator [4, section 2]. Each phase
detector has two edge detectors, which should generate a total of 4 UP and
4 DOWN signals. If more UP signals than DOWN are generated by the
PDs, then the reference frequency is too low, and if more DOWN signals are
generated, it is too high. The differences

∑
UP –

∑
DOWN are accumulated

for one pixel duration in a 13-bit accumulator acting as a loop filter. The loop
filter data are passed to a pixel converter, which gives “correction values” to
the DCO as shown in Table 7.22. The accumulated sums are also used as
greyscale values for the pixel, and passed onto a PC to store and display the
WeatherFAX pictures.

The smallest detectable phase offset for a 2 kBaud pixel rate is

fcarrier+1 =
1

1/fcarrier − tph37 × 2 kBaud/fcarrier
= 117.46 kHz, (7.74)

where tph37 = 1/(32 × 117 kHz)=266ns is the sampling period at 32-times
oversampling. The frequency resolution is 117.46kHz −(fcarrier = 117.4kHz)
= 60Hz. With a frequency modulation of 300Hz, five greyscale values can
be distinguished. Higher sampling rates for the accumulator are not possible

472 7. Advanced Topics

Table 7.23. Complexity of a fully digital Costas loop [246, p. 60].

CLBs with
oversampling

Function group 32 times 64 times

Frequency synthesizer 33 36
Zero detection 42 42
Maximum detection 16 16
Four phase detectors 8 8
Loop filter 51 51
DCO 12 15
TMS interface 11 11

Sum 173 179

with the 3164-4ns FPGA and the limited A/D converter used. With a fast
A/D converter and an Altera Flex or Xilinx XC4K FPGA, 128- and 256-times
oversampling are possible.

For a maximum phase offset of π, the loop will require a maximum lock-
in time TL of
16/3� = 6 samples, or about 1.5 μs. Table 7.23 shows the
complexity of the CL for 32 and 64 times oversampling.

Exercises

Note: If you have no prior experience with the Quartus II software, refer
to the case study found in Sect. 1.4.3, p. 29. If not otherwise noted use the
EP2C35F672C6 from the Cyclone II family for the Quartus II synthesis
evaluations.

7.1: The following MatLab code can be used to compute the order of an element.

function N = order(x,M)
% Compute the order of x modulo M
p = x; l=1;
while p ~= 1
l = l+1; p = p * x;
re =real(p); im = imag(p);
p = mod(re,M) + i * mod(im,M);

end;
N=l;

If, for instance, the function is called with order(2,2^25+1) the result is 50. To com-
pute the single factors of 225 + 1, the standard MatLab function factor(2^25+1)
can be used.
For
(a) α = 2 and M = 241 + 1
(b) α = −2 and M = 229 − 1

Exercises 473

(c) α = 1 + j and M = 229 + 1
(d) α = 1 + j and M = 226 − 1
compute the transform length, the “bad” factors ν (i.e., order not equal
order(α, 2B ± 1)), all “good” prime factors M/ν, and the available input bit width
Bx = (log2(M/ν)− log2(L))/2.

7.2: To compute the inverse x−1 mod M for gcd(x, M) = 1 of the value x, we can
use the fact that the following diophantic equation holds:

gcd(x, M) = u× x + v ×M with u, v ∈ Z. (7.75)

(a) Explain how to use the MatLab function [g u v]=gcd(x,M) to compute the
multiplication inverse.
Compute the following multiplicative inverses if possible:
(b) 3−1 mod 73;
(c) 64−1 mod 232 + 1;
(d) 31−1 mod 231 − 1;
(e) 89−1 mod 211 − 1;
(f) 641−1 mod 232 + 1.

7.3: The following MatLab code can be used to compute Fermat NTTs for length
2, 4, 8, and 16 modulo 257.

function Y = ntt(x)
% Compute Fermat NTT of length 2,4,8 and 16 modulo 257
l = length(x);
switch (l)
case 2, alpha=-1;
case 4, alpha=16;
case 8, alpha=4;
case 16, alpha=2;
otherwise, disp(’NTT length not supported’)

end
A=ones(l,l); A(2,2)=alpha;
%*********Computing second column
for m=3:l
A(m,2)=mod(A(m-1,2)* alpha, 257);
end
%*********Computing rest of matrix
for m=2:l
for n=2:l-1

A(m,n+1)=mod(A(m,n)*A(m,2),257);
end

end
%*********Computing NTT A*x
for k = 1:l
C1 = 0;
for j = 1:l

C1 = C1 + A(k,j) * x(j);
end
X(k) = mod(C1, 257);

end
Y=X;

474 7. Advanced Topics

(a) Compute the NTT X of x = {1, 1, 1, 1, 0, 0, 0, 0}.
(b) Write the code for the appropriate INTT. Compute the INTT of X from part
(a).
(c) Compute the element-by-element product Y = X �X and INTT(Y) = y.
(d) Extend the code for a complex Fermat NTT and INTT for α = 1+j. Test your
program with the identity x = INTT(NTT(x)).

7.4: The Walsh transform for N = 4 is given by:

W 4 =

⎡

⎢⎣
1 1 1 1
1 1 −1 −1
1 −1 −1 1
1 −1 1 −1

⎤

⎥⎦ .

(a) Compute the scalar product of the row vectors. What property does the matrix
have?
(b) Use the results from (a) to compute the inverse W −1

4 .
(c) Compute the 8 × 8 Walsh matrix W 8, by scaling the original row vector by
two (i.e., h[n/2]) and computing an additional two “children” h[n] + h[n − 4] and
h[n] − h[n − 4] from row 3 and 4. There should be no zero in the resulting W 8

matrix.
(d) Draw a function tree to construct Walsh matrices of higher order.

7.5: The Hadamard matrix can be computed using the following iteration

H2l+1 =

[
H2l H2l

H2l −H2l

]
, (7.76)

with H1 = [1].
(a) Compute H2, H4, and H8.
(b) Find the appropriate index for the rows in H4 and H8, compared with the
Walsh matrix W 4 and W 8 from Exercise 7.4.
(c) Determine the general rule to map a Walsh matrix into a Hadamard matrix.
Hint: First compute the index in binary notation.

7.6: The following MatLab code can be used to compute the state-space description
for p14 = x14 +x5 +x3 +x1 +1, the nonzero elements using nnz, and the maximum
fan-in.

p= input(’Please define power of matrix = ’)
A=zeros(14,14);
for m=1:13
A(m,m+1)=1;

end
A(14,14)=1;
A(14,13)=1;
A(14,11)=1;
A(14,9)=1;
Ap=mod(A^p,2);
nnz(Ap)
max(sum(Ap,2))

(a) Compute the number of nonzero elements and fan-in for p = 2 to 8.
(b) Modify the code to compute the twin p14 = x14 + x13 + x11 + x9 + 1. Compute
the number of nonzero elements for the modified polynomial for p = 2 to 8.
(c) Modify the original code to compute the alternative LFSR implementation (see
Fig. 7.21, p. 438) for (a) and (b) and compute the nonzero elements for p = 2 to 8.

Exercises 475

7.7: (a) Compile the code for the length-6 LFSR lfsr.vhd from Example 7.12
(p. 437) using MaxPlus II.
(b) For the line

ff(1) <= NOT (ff(5) XOR ff(6));

substitute

ff(1) <= ff(5) XNOR ff(6);

and compile with MaxPlus II.
(c) Now change the Compiler settings Interfaces → VHDL Netlist Reader
Settings from VHDL 1987 to VHDL 1993 and compile again. Explain the results.
Note: Using Quartus II will not produce any differences by changing the
VHDL version settings from VHDL 1993 to VHDL 1987.

8. Adaptive Filters

The filters we have discussed so far had been designed for applications where
the requirements for the “optimal” coefficients did not change over time, i.e.,
they were LTI systems. However, many real-world signals we find in typical
DSP fields like speech processing, communications, radar, sonar, seismology,
or biomedicine, require that the “optimal” filter or system coefficients need to
be adjusted over time depending on the input signal. If the parameter changes
slowly compared with the sampling frequency we can compute a “better”
estimation for our optimal coefficients and adjust the filter appropriate.

In general, any filter structure, FIR or IIR, with the many architectural
variations we have discussed before, may be used as an adaptive digital filter
(ADF). Comparing the different structural options, we note that

• For FIR filters the direct form from Fig. 3.1 (p. 166) seems to be advanta-
geous because the coefficient update can be done at the same time instance
for all coefficients.

• For IIR filters the lattice structure shown in Fig. 4.12 (p. 227) seems to
be a good choice because lattice filters possess a low fixed-point arithmetic
roundoff error sensitivity and a simplified stability control of the coeffi-
cients.

From the published literature, however, it appears that FIR filters have been
used more successfully than IIR filters and our focus in this chapter will
therefore be efficient and fast implementation of adaptive FIR filters.

The FIR filter algorithms should converge to the optimum nonrecursive es-
timator solution given (originally for continuous signal) through the Wiener–
Hopf equation [251]. We will then discuss the optimum recursive estimator
(Kalman filter). We will compare the different options in terms of compu-
tational complexity, stability of the algorithms, initial speed of convergence,
consistency of convergence, and robustness to additive noise.

Adaptive filters can now be seen to be a mature DSP field. Many books
in their first edition had been published in the mid-1980s and can be used
for a more in-depth study [252, 253, 254, 255, 256, 257]. More recent results
may be found in textbook like [258, 259, 260]. Recent journal publications
like IEEE Transactions on Signal Processing show, especially in the area of
stability of LMS and its variations, essential research activity.

478 8. Adaptive Filters

8.1 Application of Adaptive Filter

Although the application fields of adaptive filters are quite broad in nature,
they can usually be described with one of the following four system configu-
rations:

• Interference cancellation
• Prediction
• Inverse modeling
• Identification

We wish to discuss in the following the basic idea of these systems and
present some typical successful applications for these classes. Although it may
not always exactly describe the nature of the specific signals it is common to
use the following notation for all systems, namely

x = input to the adaptive filter
y = output of the adaptive filter
d = desired response (of the adaptive filter)
e = d− y = estimation error

8.1.1 Interference Cancellation

In these very popular applications of the adaptive filter the incoming signal
contains, beside the information-bearing signal, also an interference, which
may, for example, be a random white noise or the 50/60Hz power-line hum.
Figure 8.1 shows the configuration for this application. The incoming (sensor)
signal d[n] and the adaptive filter output response y[n] to a reference signal
x[n] is used to compute the error signal e[n], which is also the system output
in the interference cancellation configuration. Thus, after convergence, the
(modified) reference signal, which will represent the additive inverse of the
interference is subtracted from the incoming signal.

.

Primary
signal

d[n]
y[n]

+ System
output

e[n]

filter −x[n]signal
Input Adaptive

Fig. 8.1. Basic configuration for interference cancellation.

8.1 Application of Adaptive Filter 479

We will later study a detailed example of the interference cancellation
of the power-line hum. A second popular application is the adaptive noise
cancellation of echoes on telephone systems. Interference cancellation has
also been used in an array of antennas (called beamformer) to adaptively
remove noise interferring from unknown directions.

8.1.2 Prediction

In the prediction application the task of the adaptive filter is to provide a
best prediction (usually in the least mean square sense) of a present value of
a random signal. This is obviously only possible if the input signal is essential
different from white noise. Prediction is illustrated in Fig. 8.2. It can be seen
that the input d[n] is applied over a delay to the adaptive filter input, as well
as to compute the estimation error.

The predictive coding has been successfully used in image and speech
signal processing. Instead of coding the signal directly, only the prediction
error is encoded for transmission or storage. Other applications include the
modeling of power spectra, data compression, spectrum enhancement, and
event detection [253].

8.1.3 Inverse Modeling

In the inverse modeling structure the task is to provide an inverse model that
represents the best fit (usually in the least squares sense) to an unknown
time-varying plant. A typical communication example would be the task to
estimate the multipath propagation of the signal to approximate an ideal
transmission. The system shown in Fig. 8.3 illustrates this configuration.
The input signal d[n] enters the plant and the output of the unknown plant
x[n] is the input to the adaptive filter. A delayed version of the input d[n] is
then used to compute the error signal e[n] and to adjust the filter coefficients
of the adaptive filter. Thus, after convergence, the adaptive filter transfer
function approximates the inverse of the transfer function of the unknown
plant.

Besides the already-mentioned equalization in communication systems,
inverse modeling with adaptive filters has been successfully used to improve

Z −
−Δ

x[n]
Adaptive

filter output
System+

y[n]
d[n]

Input
signal

e[n]

Fig. 8.2. Block diagram for prediction.

480 8. Adaptive Filters

Unknown
system

System
input

−
x[n]

Adaptive
filter

+

d[n]

y[n]
output
System

e[n]
−Δ

Z

Fig. 8.3. Schematic diagram illustrating the inverse system modeling.

S/N ratio for additive narrowband noise, for adaptive control systems, in
speech signal analysis, for deconvolution, and digital filter design [253].

8.1.4 Identification

In a system identification application the task is that the filter coefficients of
the adaptive filter represent an unknown plant or filter. The system identi-
fication is shown in Fig. 8.4 and it can be seen that the time series, x[n], is
input simultaneously to the adaptive filter and another linear plant or filter
with unknown transfer function. The output of the unknown plant d[n] be-
comes the output of the entire system. After convergence the adaptive filter
output y[n] will approximate d[n] in an optimum (usually least mean squares)
sense. Provided that the order of the adaptive filter matches the order of the
unknown plant and the input signal x[n] is WSS the adaptive filter coeffi-
cients will converge to the same values as the unknown plant. In a practical
application there will normally be an additive noise present at the output of
the unknown plant (observation errors) and the filter structure will not ex-
actly match that of the unknown plant. This will result in deviation from the
perfect performance described. Due to the flexibility of this structure and the
ability to individually adjust a number of input parameters independently it
is one of the structures often used in the performance evaluations of adap-
tive filters. We will use these configurations to make a detailed comparison
between LMS and RLS, the two most popular algorithms to adjust the filter
coefficient of an adaptive filter.

Such system identification has been used for modeling in biology, or to
model social and business systems, for adaptive control systems, digital filter
design, and in geophysics [253]. In a seismology exploration, such systems
have been used to generate a layered-earth model to unravel the complexities
of the earth’s surface [252].

8.2 Optimum Estimation Techniques

Required signal properties. In order to use successfully the adaptive filter
algorithms presented in the following and to guarantee the convergence and

8.2 Optimum Estimation Techniques 481

stability of the algorithms, it is necessary to make some basic assumptions
about the nature of our input signals, which from a probabilistic standpoint,
can be seen as a vector of random variables. First, the input signal (i.e.,
the random variable vector) should be ergodic, i.e., statistical properties like
mean

η = E{x} = lim
N→∞

1
N

N−1∑

n=0

x[n]

or variance

σ2 = E{x2} = lim
N→∞

1
N

N−1∑

n=0

(x[n]− η)2

computed using a single input signal should show the same statistical prop-
erties like the average over an assemble of such random variables. Secondly,
the signals need to be wide sense stationary (WSS), i.e., statistics measure-
ments like average or variance measured over the assemble averages are not
a function of the time, and the autocorrelation function

r[τ] = E{x[t1]x[t2]} = E{x[t+ τ]x[t]}

= lim
N→∞

1
N

N−1∑

n=0

x[n]x[n+ τ]

depends only on the difference τ = t1 − t2. We note in particular that

r[0] = E {x[t]x[t]} = E
{|x[t]|2} (8.1)

computes the average power of the WSS process.

Definition of cost function. The definition of the cost function applied to
the estimator output is a critical parameter in all adaptive filter algorithms.
We need to “weight” somehow the estimation error

e[n] = d[n]− y[n], (8.2)

d[n]

x[n]
Adaptive

Unknown
system output

System
input

filter

System

y[n]

+

n[n]
AWGN

− +

e[n]

Fig. 8.4. Basic configuration for identification.

482 8. Adaptive Filters

−2 0 2
0

1

2

3

4
e2

−2 0 2
0

1

2

3

4
|e|

−2 0 2
0

1

2

3

4
sign(|e|)

Fig. 8.5. Three possible error cost functions.

where d[n] is the random variable to be estimated, and y[n] is the computed
estimate via the adaptive filter. The most commonly used cost function is
the least-mean-squares (LMS) function given as

J = E{e2[n]} = (d[n]− y[n])2. (8.3)

It should be noted that this is not the only cost function that may be used.
Alternatives are functions such as the absolute error or the nonlinear thresh-
old functions as shown in Fig 8.5 on the right. The nonlinear threshold type
may be used if a certain error level is acceptable and as we will see later
can reduce the computational burden of the adaptation algorithm. It may
be interesting to note that the original adaptive filter algorithms by Widrow
[255] uses such a threshold function for the error.

On the other hand, the quadratic error function of the LMS method will
enable us to build a stochastic gradient approach based on the Wiener–Hopf
relation originally developed in the continuous signal domain. We review the
Wiener–Hopf estimation in the next subsection, which will directly lead to
the popular LMS adaptive filter algorithms first proposed by Widrow et al.
[261, 262].

8.2.1 The Optimum Wiener Estimation

The output of the adaptive FIR filter is computed via the convolution sum

y[n] =
L−1∑

k=0

fkx[n− k], (8.4)

where the filter coefficients fk have to be adjusted in such a way that the
defined cost function J is minimum. It is, in general, more convenient to write
the convolution with vector notations according to

y[n] = xT [n]f = fT x[n], (8.5)

8.2 Optimum Estimation Techniques 483

with f = [f0f1 . . . fL−1]
T
, x[n] = [x[n]x[n− 1] . . . x[n− (L− 1)]]T , are size

(L× 1) vectors and T means matrix transposition or the Hermitian transpo-
sition for complex data. For A = [a[k, l]] the transposed matrix is “mirrored”
at the main diagonal, i.e., AT = [a[l, k]] . Using the definition of the error
function (8.2) we get

e[n] = d[n]− y[n] = d[n]− fT x[n]. (8.6)

The mean square error function now becomes

J = E{e2[n]} = E{d[n]− y[n]}2 = E{d[n]− fT x[n]}2
= E{(d[n]− fT x[n])(d[n]− xT [n]f)}
= E{d[n]2 − 2d[n]fT x[n] + fT x[n]xT [n]f}. (8.7)

Note that the error is a quadratic function of the filter coefficients that can be
pictured as a concave hyperparaboloidal surface, a function that never goes
negative, see Fig. 8.6 for an example with two filter coefficients. Adjusting
the filter weights to minimize the error involves descending along this surface
with the objective of getting to the bottom of the bowl. Gradient methods
are commonly used for this purpose. The choice of mean square type of
cost function will enable a well-behaved quadratic error surface with a single
unique minimum. The cost is minimum if we differentiate (8.7) with respect
to f and set this gradient to zero, i.e.,

∇ =
∂J

∂fT
= E

{
(−2d[n]x[n] + 2xT [n]x[n]fopt

}
= 0.

Assuming that the filter weight vector f and the signal vector x[n] are sta-
tistically independent (i.e., uncorrelated), it follows, that

E{d[n]x[n]} = E{x[n]xT [n]}fopt,

then the optimal filter coefficient vector fopt can be computed with,

fopt = E{x[n]xT [n]}−1E{d[n]x[n]}. (8.8)

The expectation terms are usually defined as follows:

Rxx = E{x[n]xT [n]}

= E

⎡

⎢⎢⎢⎣

x[n]x[n] x[n]x[n− 1] . . . x[n]x[n− (L− 1)]
x[n− 1]x[n] x[n− 1]x[n− 1] . . .

...
. . .

...
x[n− (L− 1)]x[n] . . .

⎤

⎥⎥⎥⎦

=

⎡

⎢⎢⎢⎣

r[0] r[1] . . . r[L − 1]
r[1] r[0] . . . r[L − 2]
...

. . .
...

r[L − 1] r[L − 2] . . . r[0]

⎤

⎥⎥⎥⎦

484 8. Adaptive Filters

0
10

20
30

40
50

0

20

40

60

80

100
0

500

1000

1500

2000

2500

f
0

f
1

C
os

t f
un

ct
io

n
J

Fig. 8.6. Error cost function for the two-component case. The minimum of the
cost function is at f0 = 25 and f1 = 43.3.

is the (L×L) autocorrelation matrix of the input signal sequence, which has
the form of the Toeplitz matrix, and

rdx = E{d[n]x[n]}

= E

⎡

⎢⎢⎢⎣

d[n]x[n]
d[n]x[n− 1]

...
d[n]x[n− (L− 1)]

⎤

⎥⎥⎥⎦ =

⎡

⎢⎢⎢⎣

rdx[0]
rdx[1]

...
rdx[L− 1]

⎤

⎥⎥⎥⎦

is the (L×1) cross-correlation vector between the desired signal and the refer-
ence signal. With these definitions we can now rewrite (8.8) more compactly
as

fopt = Rxx
−1rdx. (8.9)

This is commonly recognized as the Wiener–Hopf equation [251], which
yields the optimum LMS solution for the filter coefficient vector fopt. One
requirement to have a unique solution for (8.9) is that Rxx

−1 exist, i.e., the
autocorrelation matrix must be nonsingular, or put differently, the determi-
nate is nonzero. Fortunately, it can be shown that for WSS signals the Rxx

matrix is nonsingular [252, p. 41] and the inverse exists.

8.2 Optimum Estimation Techniques 485

0 1 2 3 4 5
−100

−50

0

50

100
(a) Data

0 1 2 3 4 5
−100

−50

0

50

100
(b) Noise

0 0.1 0.2 0.3 0.4 0.5
−100

−50

0

50

100
(c) Hum

time in s
0 0.1 0.2 0.3 0.4 0.5

−1

−0.5

0

0.5

1

(d) Reference

time in s

Fig. 8.7. Signals used in power-line hum example 8.1.

Using (8.7) the residue error of the optimal estimation becomes:

Jopt = E{d[n]− fT
optx[n]}2

= E{d[n]}2 − 2fT
optrdx + fT

opt Rxxfopt︸ ︷︷ ︸
rdx

Jopt = rdd[0]− fT
optrdx, (8.10)

where rdd[0] = σ2
d is the variance of d.

We now wish to demonstrate the Wiener–Hopf algorithm with the follow-
ing example.

Example 8.1: Two-tap FIR Filter Interference Cancellation
Suppose we have an observed communication signal that consists of three
components: The information-bearing signal, which is a Manchester encoded
sensor signal m[n] with amplitude B = 10, shown in Fig. 8.7a; an additive
white Gaussian noise n[n], shown in Fig. 8.7b; and a 60-Hz power-line hum
interference with amplitude A = 50, shown in Fig. 8.7c. Assuming the sam-
pling frequency is 4 times the power-line hum frequency, i.e., 4×60 = 240 Hz,
the observed signal can therefore be formulated as follows

486 8. Adaptive Filters

d[n] = A cos[πn/2] + Bm[n] + σ2n[n].

The reference signal x[n] (shown in Fig. 8.7d), which is applied to the adaptive
filter input, is given as

x[n] = cos[πn/2 + φ],
where φ = π/6 is a constant offset. The two-tap filter then has the following

output:

x[n] = f0 cos
[
π

2
n + φ

]
+ f1 cos

[
π

2
(n− 1) + φ

]
.

To solve (8.9) we compute first the autocorrelation for x[n] with delays 0 and
1:

rxx[0] = E{(cos[πn/2 + φ])2} =
1

2
rxx[1] = E{cos[πn/2 + φ] sin[πn/2 + φ]} = 0.

For the cross-correlation we get

rdx[0] = E
{
(A cos[πn/2] + Bm[n] + σ2n[n]) cos[πn/2 + φ]

}

=
A

2
cos(φ) = 12.5

√
3

rdx[1] = E
{
(A cos[πn/2] + Bm[n] + σ2n[n]) sin[πn/2 + φ]

}

=
A

2
cos(φ− π) =

50

4
= 12.5.

As required for the Wiener–Hopf equation (8.9) we can now compute the
(2 × 2) autocorrelation matrix and the (2 × 1) cross-correlation vector and
get

f opt = Rxx
−1rdx

[
rxx[0] rxx[1]
rxx[1] rxx[0]

]−1 [
rdx[0]
rdx[1]

]

=

[
0.5 0
0 0.5

]−1 [
12.5
√

3
12.5

]
=

[
2 0
0 2

][
12.5
√

3
12.5

]

=

[
25
√

3
25

]
=

[
43.3
25

]
.

The simulation of these data is shown in Fig. 8.8. It shows (a) the sum of
the three signals (Manchester-coded 5 bits, power-line hum of 60 Hz, and the
additive white Gaussian noise) and the system output (i.e., e[n]) with the
canceled power-line hum. 8.1

8.3 The Widrow–Hoff Least Mean Square Algorithm 487

0 1 2 3 4 5
−100

−50

0

50

100
(b) System output e[n]

time in s
0 1 2 3 4 5

−100

−50

0

50

100
(a) d[n]=data+noise+hum

time in s

Fig. 8.8. Canceling 60-Hz power-line interference of a Manchester-coded data signal
using optimum Wiener estimation.

8.3 The Widrow–Hoff Least Mean Square Algorithm

There may exist a couple of reasons why we wish to avoid a direct com-
putation of the Wiener estimation (8.9). First, the generation of the au-
tocorrelation matrix Rxx and the cross-correlation vector rdx are already
computationally intensive. We need to compute the autocorrelation of x and
the cross-correlation between d and x and we may, for instance, not know
how many data samples we need to use in order to have sufficient statistics.
Secondly, if we have constructed the correlation functions we still have to
compute the inverse of the autocorrelation matrix Rxx

−1, which can be very
time consuming, if the filter order gets larger. Even if a procedure is available
to invert Rxx, the precision of the result may not be sufficient because of the
many computational steps involved, especially with a fixed-point arithmetic
implementation.

The Widrow–Hoff least mean square (LMS) adaptive algorithm [261] is a
practical method for finding a close approximation to (8.9) in real time. The
algorithm does not require explicit measurement of the correlation functions,
nor does it involve matrix inversion. Accuracy is limited by statistical sample
size, since the filter coefficient values are based on the real-time measurements
of the input signals.

The LMS algorithm is an implementation of the method of the steepest
descent. According to this method, the next filter coefficient vector f [n+ 1]
is equal to the present filter coefficient vector f [n] plus a change proportional
to the negative gradient:

f [n+ 1] = f [n]− μ

2
∇[n]. (8.11)

The parameter μ is the learning factor or step size that controls stability
and the rate of convergence of the algorithm. During each iteration the true
gradient is represented by ∇[n].

488 8. Adaptive Filters

The LMS algorithm estimates an instantaneous gradient in a crude but
efficient manner by assuming that the gradient of J = e[n]2 is an estimate of
the gradient of the mean-square error E{e[n]2}. The relationship between the
true gradient ∇[n] and the estimated gradients ∇̂[n] is given by the following
expression:

∇[n] =
[
∂E{e[n]2}

∂f0
,
∂E{e[n]2}

∂f1
, . . . ,

∂E{e[n]2}
∂fL−1

]T

(8.12)

∇̂[n] =
[
∂e[n]2

∂f0
,
∂e[n]2

∂f1
, . . . ,

∂e[n]2

∂fL−1

]T

= 2e[n]
[
∂e[n]
∂f0

,
∂e[n]
∂f1

, . . . ,
∂e[n]
∂fL−1

]T

. (8.13)

The estimated gradient components are related to the partial derivatives
of the instantaneous error with respect to the filter coefficients, which can be
obtained by differentiating (8.6), it follows that

∇̂[n] = −2e[n]
∂e[n]
∂f

= −2e[n]x[n]. (8.14)

Using this estimate in place of the true gradient in (8.11) yields:

f [n+ 1] = f [n]− μ

2
∇̂[n] = f [n] + μe[n]x[n]. (8.15)

Let us summarize all necessary step for the LMS algorithm2 in the fol-
lowing

Algorithm 8.2: Widrow–Hoff LMS Algorithm

The Widrow–Hoff LMS algorithm to adjust the L filter coefficients of an
adaptive uses the following steps:
1) Initialize the (L× 1) vector f = x = 0 = [0, 0, . . . , 0]T .
2) Accept a new pair of input samples {x[n], d[n]} and shift x[n] in the

reference signal vector x[n].
3) Compute the output signal of the FIR filter, via

y[n] = fT [n]x[n]. (8.16)
4) Compute the error function with

e[n] = d[n]− y[n]. (8.17)
5) Update the filter coefficients according to

f [n+ 1] = f [n] + μe[n]x[n]. (8.18)
Now continue with step 2.

Although the LMS algorithm makes use of gradients of mean-square error
functions, it does not require squaring, averaging, or differentiation. The al-
2 Note that in the original presentation of the algorithm [261] the update equation

f [n + 1] = f [n] + 2μe[n]x[n] is used because the differentiation of the gradient
in (8.14) produces a factor 2. The update equation (8.15) follows the notation
that is used in most of the current textbooks on adaptive filters.

8.3 The Widrow–Hoff Least Mean Square Algorithm 489

0 1 2 3 4 5
−100

−50

0

50

100
System output e[n]

0 1 2 3 4 5
−100

−50

0

50

100

0 1 2 3 4 5
−100

−50

0

50

100

time in s

0 1 2 3 4 5
−20

0

20

40

60
μ = 1/2 = 0.5

f
0
f
1

0 1 2 3 4 5
−20

0

20

40

60
μ = 1/16 = 0.0625

f
0
f
1

0 1 2 3 4 5
−20

0

20

40

60
μ = 1/128 = 0.0078

time in s

f
0
f
1

Fig. 8.9. Simulation of the power-line interference cancellation using the LMS
algorithm for three different values of the step size μ. (left) System output e[n].
(right) Filter coefficients.

gorithm is simple and generally easy to implement in software (MatLab code
see, for instance, [260, p. 332]; C code [263], or PDSP assembler code [264]).

A simulation using the same system configuration as in Example 8.1
(p. 485) is shown in Fig. 8.9 for different values of the step size μ. Adap-
tation starts after 1 second. System output e[n] is shown in the left column
and the filter coefficient adaptation on the right. We note that depending on
the value μ the optimal filter coefficients approach f0 = 43.3 and f1 = 25.

It has been shown that the gradient estimate used in the LMS algorithm
is unbiased and that the expected value of the weight vector converges to
the Wiener weight vector (8.9) when the input signals are WSS, which was
anyway required in order to be able to compute the inverse of the autocor-
relation matrix Rxx

−1 for the Wiener estimate. Starting with an arbitrary
initial filter coefficient vector, the algorithm will converge in the mean and
will remain stable as long as the learning parameter μ is greater than 0 but
less than an upper bound μmax. Figure 8.10 shows an alternative form to

490 8. Adaptive Filters

5 10 15 20 25 30 35 40 45 50

10

20

30

40

50

60

70

80

Contour plot

 f
1

 f
0

Fig. 8.10. Demonstration of the convergence of the power-line interference example
using a 2D contour plot for μ = 1/16.

represent the convergence of the filter coefficient adaptation by a projection
of the coefficient values in a (f0, f1) mapping. The figure also shows the con-
tour line with equal error. It can be seen that the LMS algorithm moves in a
zigzag way towards the minimum rather than the true gradient, which would
move exactly orthogonal to these error contour lines.

Although the LMS algorithm is considerably simpler than the RLS al-
gorithm (we will discuss this later) the convergence properties of the LMS
algorithm are nonetheless difficult to analysis rigorously. The simplest ap-
proach to determine an upper bound of μ makes use of the eigenvalues of
Rxx by solving the homogeneous equation

0 = det(λI −Rxx), (8.19)

where I is the L×L identity matrix. There are L eigenvalues λ[k] that have
the following properties

det(Rxx) =
L−1∏

k=0

λ[k] and (8.20)

trace(Rxx) =
L−1∑

k=0

λ[k]. (8.21)

8.3 The Widrow–Hoff Least Mean Square Algorithm 491

From this eigenvalue analysis of the autocorrelation matrix it follows that
the LMS algorithm will be stable (in the mean sense) if

0 < μ <
2

λmax
. (8.22)

Although the filter is assumed to be stable, we will see later that this upper
bound will not guarantee a finite mean square error, i.e., that f [n] converges
to fopt and a much more stringent bound has to be used.

The simulation of the LMS algorithm in Fig. 8.9 also reveals the underly-
ing exponential nature of the individual learning curves. Using the eigenvalue
analysis we may also transform the filter coefficient in independent so-called
“modes” that are no longer linear dependent. The number of natural modes
is equal to the number of degrees of freedom, i.e., the number of independent
components and in our case identically with the number of filter coefficients.
The time constant of the kth mode is related to the k eigenvalue λ[k] and the
parameter μ by

τ [k] =
1

2μλ[k]
. (8.23)

Hence the longest time constant, τmax, is associated with the smallest eigen-
value, λmin via

τmax =
1

2μλmin
. (8.24)

Combining (8.22) and (8.24) gives

τmax >
λmax

2λmin
, (8.25)

which suggests that the larger the eigenvalue ratio (EVR), λmax/λmin of the
autocorrelation matrix Rxx the longer the LMS algorithm will take to con-
verge. Simulation results that confirm this finding can be found for instance,
in [259, p. 64] and will be discussed, in Sect. 8.3.1 (p. 493).

The results presented so far on the ADF stability can be found in most
original published work by Widrow and many textbooks. However, these
conditions do not guarantee a finite variance for the filter coefficient vector,
neither do they guarantee a finite mean-square error! Hence, as many users
of the algorithm realized, considerably more stringent conditions are required
to ensure convergence of the algorithm. In the examples in [260, p. 130], for
instance, you find the “rule of thumb” that a factor 10 smaller values for μ
should be used.

More recent results indicate that the bound from (8.22) must be more
restrictive. For example, the results presented by Horowitz and Senne [265]
and derived in a different way by Feuer and Weinstein [266] show that the
step size (assuming that the elements of the input vector x[n] are statistically
independent) has to be restricted via the two conditions:

492 8. Adaptive Filters

0 1 2 3 4 5
−100

−50

0

50

100
System output e[n]

0 1 2 3 4 5
−20

0

20

40

60
μ = 4

f
0
f
1

0 1 2 3 4 5
−100

−50

0

50

100

time in s
0 1 2 3 4 5

−20

0

20

40

60
μ = 2/3 = 0.666

time in s

f
0
f
1

Fig. 8.11. Simulation of the power-line interference cancellation using the maxi-
mum step size values for the LMS algorithm. (left) System output e[n]. (right)
filter coefficients.

0 < μ <
1
λl

l = 0, 1, . . . , L− 1 and (8.26)

L−1∑

l=0

μλl

1− μλl
< 2, (8.27)

to ensure convergence. These conditions can not be solved analytically, but
it can be shown that they are closely bounded by the following condition:

0 < μ <
2

3× trace(Rxx)
=

2
3× L× rxx[0]

. (8.28)

The upper bound of (8.28) has a distinct practical advantage. Trace of Rxx

is, by definition, (see (8.21), p. 490) the total average input signal power of
the reference signal, which can easily be estimated from the reference signal
x[n].

Example 8.3: Bounds on Step Size

8.3 The Widrow–Hoff Least Mean Square Algorithm 493

From the analysis in (8.22) we see that we first need to compute the eigen-
values of the Rxx matrix, i.e.

0 = det(λI −Rxx) =

[
rxx[0]− λ rxx[1]

rxx[1] rxx[0]− λ

]
(8.29)

= det

[
0.5− λ 0

0 0.5− λ

]
= (0.5− λ)2 (8.30)

λ[1, 2] = 0.5. (8.31)

Using (8.22) gives

μmax =
2

λmax
= 4. (8.32)

Using the more restrictive bound from (8.28) yields

μmax =
2

L× 3× rxx[0]
=

2

3× 2× 0.5
=

2

3
. (8.33)

The simulation results in Fig. 8.11 indicate that in fact μ = 4 does not show

convergence, while μ = 2/3 converges. 8.3

We also note from the simulation shown in Fig. 8.11 that even with
μmax = 2/3 the convergence is much faster, but the coefficients “ripple
around” essentially. Much smaller values for μ are necessary to have a smooth
approach of the filter coefficient to the optimal values and to stay there.

The condition found by Horowitz and Senne [265] and Feuer and Wein-
stein [266] made the assumption that all inputs x[n] are statistically indepen-
dent. This assumption is true if the input data come, for instance, from an
antenna array of L independent sensors, however, for ADFs with the tapped
delay structure, it has been shown, for instance, by Butterweck [252], that
for a long filter the stability bound can be relaxed to

0 < μ <
2

L× rxx[0]
, (8.34)

i.e., compared with (8.28) the upper bound can be relaxed by a factor of 3 in
the denominator. But the condition (8.34) only applies for a long filter and
it may therefore saver to use (8.28).

8.3.1 Learning Curves

Learning curve, i.e., the error function J displayed over the number of itera-
tions is an important measurement instrument when comparing the perfor-
mance of different algorithms and system configurations. We wish in the fol-
lowing to study the LMS algorithm regarding the eigenvalue ratio λmax/λmin

and the sensitivity to signal-to-noise (S/N) ratio in the system to be identi-
fied.

494 8. Adaptive Filters

3−tap
FIR filter

16−tap
FIR filter

White x[n]
noise

e[n]

d[n]

+

+

n[n]
AWGN

−
Adaptive

filter

y[n]

Fig. 8.12. System identification configuration for LMS learning curves.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

0

10
1

10
2

10
3

10
4

b

E
V

R

L=2
L=4
L=8
L=16

Fig. 8.13. Eigenvalues ratio for a three-tap filter system for different system size
L.

A typical performance measurement of adaptive algorithms using a sys–
tem-identification problem is displayed in Fig. 8.12. The adaptive filter has a
length of L = 16 the same length as the “unknown” system, whose coefficients
have to be learned. The additive noise level behind the “unknown” system
has been set to two different levels −10 dB for a high-noise environment and
to −48 dB for a low-noise environment equivalent to an 8-bit quantization.

8.3 The Widrow–Hoff Least Mean Square Algorithm 495

Table 8.1. Four different noise-shaping FIR filters to generate power-of-ten eigen-
value ratios for L = 16.

No. Impulse response EVR

1 0 + 1z−1 + 0.0z−2 1
2 0.247665 + 0.936656z−1 + 0.247665z−2 10
3 0.577582 + 0.576887z−1 + 0.577582z−2 100
4 0.432663 + 0.790952z−1 + 0.432663z−2 1000

For the LMS algorithm the eigenvalue ratio (EVR) is the critical param-
eter that determines the convergence speed, see (8.25), p. 491. In order to
generate a different eigenvalue ratio we use a white Gaussian noise source
with σ2 = 1 that is shaped by a digital filter. We may, for instance, use a
first-order IIR filter that generates a first-order Markov process, see Exercise
8.10 (p. 533). We may alternatively filter the white noise by a three-tap sym-
metrical FIR filter whose coefficients are cT = [a, b, a]. The FIR filter has the
advantage that we can easily normalize the power. The coefficients should be
normalized

∑
k c

2
k = 1 in such a way that input and output sequences have

the same power. This requires that

1 = a2 + b2 + a2 or a = 0.5×
√

1− b2. (8.35)

With this filter it is possible to generate different eigenvalue ratios λmax/λmin

as shown in Fig. 8.13 for different system size L = 2, 4, 8, and 16. We can
now use Table 8.1 to get power-of-ten EVRs for the system of length L = 16.

For a white Gaussian source the Rxx matrix is a diagonal matrix σ2I
and the eigenvalues are therefore all one, i.e., λl = 1; l = 0, 1, . . . , L− 1. The
other EVRs can be verified with MatLab, see Exercise 8.9 (p. 533). The
impulse response of the unknown system gk is an odd filter with coefficients
1,−2, 3,−4, . . . ,−3, 2,−1 as shown in Fig. 8.14a. The step size for the LMS
algorithm has been determined with

μmax =
2

3× L× E{x2} =
1
24
. (8.36)

In order to guarantee perfect stability the step size has been chosen to be
μ = μmax/2 = 1/48. The learning curve, or coefficient error is computed via
the normalized error function

J [n] = 20 log10

(∑15
k=0(gk − fk[n])2
∑15

k=0 g
2
k

)
. (8.37)

The coefficient adaptation for a single adaptation run with EVR=1 is shown
in Fig. 8.14b. It can be seen that after 200 iterations the adaptive filter has
learned the coefficient of the unknown system without an error. From the
learning curves (average over 50 adaptation cycles) shown in Fig. 8.14c and
d it can be seen that the LMS algorithm is very sensitive to the EVR. Many

496 8. Adaptive Filters

0 5 10 15

−5

0

5

(a) "unknown" system
g k

k
0 100 200 300

−10

−5

0

5

10
(b) EVR=1

Iteration

 f
k

0 1000 2000 3000 4000
−60

−50

−40

−30

−20

−10

0

(c) S/N = −10 dB

Iteration

J f /
dB

EVR=1
EVR=10
EVR=1000

0 1000 2000 3000 4000
−60

−50

−40

−30

−20

−10

0

(d) S/N = −48 dB

Iteration

J f /
dB

Fig. 8.14. Learning curves for the LMS algorithm using the system identification
configuration shown in Fig. 8.12. (a) Impulse response gk of the “unknown” system.
(b) Coefficient learning over time. (c) Average over 50 learning curves for large
system noise. (d) Average over 50 learning curves for small system noise.

iterations are necessary in the case of the high EVR. Unfortunately, many
real-world signals have high EVR. Speech signals, for instance, may have
EVR of 1874 [267]. On the other hand, we see from Fig. 8.14c that the LMS
algorithm still adapts well in a high-noise environment.

8.3.2 Normalized LMS (NLMS)

The LMS algorithm discussed so far uses a constant step size μ proportional to
the stability bound μmax = 2/(L×rxx[0]). Obviously this requires knowledge
of the signal statistic, i.e., rxx[0], and this statistic must not change over time.
It is, however, possible that this statistic changes over time, and we wish to
adjust μ accordingly. These can be accomplished by computing a temporary
estimate for the signal power via

rxx[0] =
1
L

xT [n]x[n], (8.38)

and the “normalized” μ is given by

8.3 The Widrow–Hoff Least Mean Square Algorithm 497

0 200 400 600 800 1000
−4

−2

0

2

4

re
fe

re
nc

e
x[

n]
(a)

0 200 400 600 800 1000
0

0.01

0.02

0.03

0.04

0.05

0.06

m
u

(c)

Iteration

mu
LMS

mu

NLMS

0 200 400 600 800
−60

−50

−40

−30

−20

−10

0

J[
n]

(d) EVR = 668.13250

Iteration

J
LMS

J

NLMS

0 200 400 600 800 1000
−10

−5

0

5

10
(b) NLMS

 f
N

LM
S
[n

]

Fig. 8.15. Learning curves for the normalized LMS algorithm using the system
identification configuration shown in Fig. 8.12. (a) The reference signal input x[n]
to the adaptive filter and the “unknown” system. (b) Coefficient learning over time
for the normalized LMS. (c) Step size μ used for LMS and NLMS. (d) Average
over 50 learning curves.

μmax[n] =
2

xT [n]x[n]
. (8.39)

If we are concerned that the denominator can temporary become very small
and μ too large, we may add a small constant δ to xT [n]x[n], which yields

μmax[n] =
2

δ + xT [n]x[n]
. (8.40)

To be on the safe side, we would not choose μmax[n]. Instead we would use
a somewhat smaller value, like 0.5 × μmax[n]. The following example should
demonstrate the normalized LMS algorithm.

498 8. Adaptive Filters

Example 8.4: Normalized LMS
Suppose we have again the system identification configuration from Fig. 8.12
(p. 494), only this time the input signal x[n] to the adaptive filter and the “un-
known system” is the noisy pulse-amplitude-modulated (PAM) signal shown
in Fig. 8.15a. For the conventional LMS we compute first rxx[0], and calculate
μmax = 0.0118. The step size for the normalized LMS algorithm is adjusted
depending on the momentary power

∑
x[n]2 of the reference signal. For the

computation of μNLMS[n] shown in Fig. 8.15c it can be seen that at times
when the absolute value of the reference signal is large the step size is re-
duced and for small absolute values of the reference signal, a larger step size
is used. The adaptation of the coefficient displayed over time in Fig. 8.15b
reflects this issue. Larger learning steps can be seen at those times when
μNLMS[n] is larger. An average over 50 adaptations is shown in the learning
curves in Fig. 8.15d Although the EVR of the noisy PAM is larger than 600, it
can be seen that the normalized LMS has a positive effect on the convergence
behavior of the algorithm. 8.4

The power estimation using (8.38) is a precise power snapshot of the
current data vector x[n]. It may, however, be desired to have a longer memory
in the power computation to avoid a temporary small value and a large μ
value. This can be accomplished using a recursive update of the previous
estimations of the power, with

P [n] = βP [n− 1] + (1− β)|x[n]|2, (8.41)

with β less than but close to 1. For a nonstationary signal such as the one
shown in Fig. 8.15 the choice of the parameter β must be done carefully. If
we select β too small the NLMS will more and more have the performance
of the original LMS algorithm, see Exercise 8.14 (p. 534).

8.4 Transform Domain LMS Algorithms

LMS algorithms that solve the filter coefficient adjustment in a transform
domain have been proposed for two reasons. The goal of the fast convolution
techniques [268] is to lower the computational effort, by using block update
and transforming the convolution to compute the adaptive filter output and
the filter coefficient adjustment in the transform domain with the help of a
fast cyclic convolution algorithm. The second method that uses transform-
domain techniques has the main goal to improve the adaptation rate of the
LMS algorithm, because it is possible to find transforms that allow a “decou-
pling” of the modes of the adaptive filter [267, 269].

8.4.1 Fast-Convolution Techniques

Fast cyclic convolution using transforms like FFTs or NTTs can be applied
to FIR filters. For the adaptive filter this leads to a block-oriented processing

8.4 Transform Domain LMS Algorithms 499

of the data. Although we may use any block size, the block size is usually
chosen to be twice the size of the adaptive filter length so that the time
delay in the coefficient update becomes not too large. It is also most often
from a computational effort a good choice. In the first step a block of 2L
input values x[n] are convolved via transform with the filter coefficients fL,
which produces L new filter output values y[n]. These results are then used
to compute L error signals e[n]. The filter coefficient update is then done also
in the transform domain, using the already transformed input sequence x[n].
Let us go through these block processing steps using a L = 3 example. We
compute the three filter output signals in one block:

y[n] = f0x[n] + f1[n]x[n− 1] + f2[n]x[n− 2]
y[n+ 1] = f0x[n+ 1] + f1[n]x[n] + f2[n]x[n− 1]
y[n+ 2] = f0x[n+ 2] + f1[n]x[n+ 1] + f2[n]x[n].

These can be interpreted as a cyclic convolution of

{f0, f1, f2, 0, 0, 0}� {x[n+ 2], x[n+ 1], x[n], x[n− 1], x[n− 2], 0}.
The error signals follow then with

e[n] = d[n]− y[n] e[n+ 1] = d[n+ 1]− y[n+ 1]
e[n+ 2] = d[n+ 2]− y[n+ 2].

The block processing for the filter gradient ∇ can now be written as

∇[n] = e[n]x[n] ∇[n+ 1] = e[n+ 1]x[n+ 1]
∇[n+ 2] = e[n+ 2]x[n+ 2].

The update for each individual coefficient is then computed with

∇0 = e[n]x[n] + e[n+ 1]x[n+ 1] + e[n+ 2]x[n+ 2]
∇1 = e[n]x[n− 1] + e[n+ 1]x[n] + e[n+ 2]x[n− 1]
∇2 = e[n]x[n− 2] + e[n+ 1]x[n+ 1] + e[n+ 2]x[n].

We again see that this is a cyclic convolution, only this time the input se-
quence x[n] appears in reverse order

{0, 0, 0, e[n], e[n+ 1], e[n+ 2]}
� {0, x[n− 2], x[n− 1], x[n], x[n+ 1], x[n+ 2]}.

In the Fourier domain the reverse order in time yields that we need to com-
pute the conjugate transform of X. The coefficient update then becomes

f [n+ L] = f [n] +
μB

L
∇[n]. (8.42)

Figure 8.16 shows all the necessary steps, when using the FFT for the
fast convolution.

From the stability standpoint the block delay in the coefficient is not
uncritical. Feuer [270] has shown that the step size has to be reduced to

500 8. Adaptive Filters

.

−

System

output

2L−point

IFFT

2L−point

F[k] storage

+

d[n]

*X [k]

Conjugate

Re(X)−j*Im(X)

y[n]

1. block zero

2L−point FFT

2L−point FFT

2. block zero

Input

x[n]

Combine

two blocks

2L−point

FFTsignal

2L−point

IFFT

e[n]

−

Y[k]X[k]

Fig. 8.16. Fast transform-domain filtering method using the FFT.

0 < μB <
2B

(B + 2)× trace(Rxx)
=

2
(1 + 2/B)L× rxx[0]

. (8.43)

for a block update of B steps each. If we compare this result with the result
for μmax from (8.28) page 492 we note that the values are very similar. Only
for large block sizes B >> L will the change in μB have considerable impact.
This reduces to (8.28) for a block size of B = 1. However, the time constant
is measured in blocks of L data and it follows that the largest time constant
for the BLMS algorithm is L times larger then the largest time constant
associated with the LMS algorithm.

8.4.2 Using Orthogonal Transforms

We have seen in Sect. 8.3.1 (p. 493) that the LMS algorithm is highly sen-
sitive to the eigenvalue ratio (EVR). Unfortunately, many real-world signals
have high EVRs. Speech signals, for instance, may have EVR of 1874 [267].
But it is also well known that the transform-domain algorithms allow a “de-
coupling” of the mode of the signals. The Karhunen–Loéve transform (KLT)
is the optimal method in this respect, but unfortunately not a real time op-
tion, see Exercise 8.11 (p. 534). Discrete cosine transforms (DCT) and fast
Fourier transform (FFT), followed by other orthogonal transforms like Walsh,

8.4 Transform Domain LMS Algorithms 501

Hadamard, or Haar are the next best choice in terms of convergence speed,
see Exercise 8.13, (p. 534) [271, 272].

Let us try in the following to use this concept to improve the learning
rate of the identification experiment presented in Sect. 8.3.1 (p. 493), where
the adaptive filter has to “learn” an impulse response of an unknown 16-tap
FIR filter, as shown in Fig. 8.12 (p. 494). In order to apply the transform
techniques and still to monitor the learning progress we need to compute in
addition to the LMS algorithm 8.2 (p. 488) the DCT of the incoming reference
signal x[n] as well as the IDCT of the coefficient vector fn. In a practical
application we do not need to compute the IDCT, it is only necessary to
compute it once after we reach convergence. The following MatLab code
demonstrates the transform-domain DCT-LMS algorithm.

for k = L:Iterations % adapt over full length
x = [xin;x(1:L-1)]; % get new sample
din = g’*x + n(k); % "unknown" filter output + AWGN
z = dct(x); % LxL orthogonal transform
y = f’ * z; % transformed filter output
err = din-y; % error: primary - reference
f = f + err*mu.*z; % update weight vector
fi = idct(f); % filter in original domain
J(k-L+1) = J(k-L+1) + sum((fi-g).^2); % Learning curve

end

The effect of a transform T on the eigenvalue spread can be computed
via

Rzz = TRxxT H , (8.44)

where the superscript H denotes the transpose conjugate.
The only thing we have not considered so far is that the L “modes” or fre-

quencies of the transformed input signal z[l] are now more or less statistically
independent input vectors and the step size μ in the original domain may no
longer be appropriate to guarantee stability, or allow fast convergence. In
fact, the simulations by Lee and Un [272] show that if no power normaliza-
tion is used in the transform domain then the convergence did not improve
compared with the time-domain LMS algorithm. It is therefore reasonable
to compute for these L spectral components different step sizes according
to the stability bound (8.28), p. 492, just using the power of the transform
components:

μmax[k] =
2

3× L× rzz,k[0]
for k = 0, 1, . . . , L− 1.

The additional effort is now the computation of the power normalization
of all L spectral components. The MatLab code above already includes a
componentwise update via mu.*z, where the .* stands for the componentwise
multiplication.

502 8. Adaptive Filters

0 5 10 15
0

0.01

0.02

0.03

0.04

0.05
(a) EVR=1

μ[
k]

0 5 10 15
0

0.1

0.2

0.3

0.4
(b) EVR=10

0 5 10 15
0

0.5

1

1.5

(c) EVR=100

k

μ[
k]

0 5 10 15
0

5

10

15

20
(d) EVR=1000

k

Fig. 8.17. Optimal step size for the DCT-LMS transform-domain algorithm using
the system identification configuration shown in Fig. 8.12 (p. 494) for four differ-
ent eigenvalue ratios. (a) Eigenvalue ratios of 1. (b) Eigenvalue ratios of 10. (c)
Eigenvalue ratios of 100. (d) Eigenvalue ratios of 1000.

The adjustment in μ is somewhat similar to the normalized LMS algo-
rithm we have discussed before. We may therefore use directly the power
normalization update similar to (8.39) p. 496 for the frequency component.
The effect of power normalization and transform T on the eigenvalue spread
can be computed via

Rzz = λ−1TRxxT Hλ−1, (8.45)

where λ−1 is a diagonal matrix that normalizes Rzz in such a way that the
diagonal elements all become 1, see [271].

Figure 8.17 shows the computed step sizes for four different eigenvalue
ratios of the L = 16 FIR filter. For a pure Gaussian input all spectral com-
ponents should be equal and the step size is almost the same, as can be seen
from Fig. 8.17a. The other filter shapes the noise in such a way that the
power of these spectral components is increased (decreased) and the step size
has to be set to a lower (higher) value.

From Fig. 8.18 the positive effect on the performance of the DCT-LMS
transform-domain approach can be seen. The learning converges, even for

8.5 Implementation of the LMS Algorithm 503

0 100 200 300 400 500 600 700 800 900 1000
−60

−50

−40

−30

−20

−10

0

Iteration

J f /
dB

EVR=1
EVR=10
EVR=100
EVR=1000

Fig. 8.18. Learning curves for the DCT transform-domain LMS algorithm using
the system identification configuration shown in Fig. 8.12 (p. 494) for an average
of 50 cycles using four different eigenvalue ratios.

very high eigenvalue ratios like 1000. Only the error floor and consistency of
the error at −48 dB is not reached as well for high EVRs as for the lower
EVRs.

One factor that must be considered in choosing the transform for real-time
application algorithms is the computational complexity. In this respect, real
transforms like DCT or DST transforms are superior to complex transform
like the FFT, transforms with fast algorithms are better than the algorithms
without. Integer transforms like Haar or Hadamard, that do not need multi-
plications at all, are desirable [271]. Lastly, we also need to take into account
that the RLS (discussed later) is another alternative, which has, in general, a
higher complexity than the LMS algorithm, but may be more efficient than a
transform-domain filter approach and also yield as fast a convergence as the
KLT-based LMS algorithm.

8.5 Implementation of the LMS Algorithm

We now wish to look at the task to implement the LMS algorithm with
FPGAs. Before we can proceed with a HDL design, however, we need to
ensure that quantization effects are tolerable. Later in this section we will

504 8. Adaptive Filters

then try to improve the throughput by using pipelining, and we need to
ensure then also that the ADF is still stable.

8.5.1 Quantization Effects

Before we can start to implement the LMS algorithm in hardware we need
to ensure that the parameter and data are well in the “green” range. This
can be done if we change the software simulation from full precision to the
desired integer precision. Figure 8.19 shows the simulation for 8-bit integer
data and μ = 1/4, 1/8 and 1/16. Note that we can not choose μ too small,
otherwise we will no longer get convergence through the large scaling of the
gradient e[n]x[n] with μ in the coefficient update equation (8.18), p. 488.
The smaller the step size μ the more problem the algorithm has to converge
to the optimal values f0 = 43.3 and f1 = 25. This is somehow a contrary
requirement to the upper bound on μ given through the stability requirement
of the algorithm. It can therefore be necessary to add fractional bits to the
system to overcome these two contradictions.

8.5.2 FPGA Design of the LMS Algorithm

A possible implementation of the algorithm represented as a signal flow graph
is shown in Fig. 8.20. From a hardware implementation standpoint we note
that we need one scaling for μ and 2L general multipliers. The effort is there-
fore more than twice the effort of the programmable FIR filter as discussed
in Chap. 3, Example 3.1 (p. 167).

We wish to study in the following the FPLD implementation of the LMS
algorithm.

Example 8.5: Two-tap Adaptive LMS FIR Filter
The VHDL design3 for a filter with two coefficients f0 and f1 with a step size
of μ = 1/4 is shown in the following listing.

-- This is a generic LMS FIR filter generator
-- It uses W1 bit data/coefficients bits
LIBRARY lpm; -- Using predefined packages
USE lpm.lpm_components.ALL;

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
USE ieee.std_logic_arith.ALL;
USE ieee.std_logic_signed.ALL;

ENTITY fir_lms IS ------> Interface
GENERIC (W1 : INTEGER := 8; -- Input bit width

W2 : INTEGER := 16; -- Multiplier bit width 2*W1
L : INTEGER := 2 -- Filter length

3 The equivalent Verilog code fir lms.v for this example can be found in Ap-
pendix A on page 719. Synthesis results are shown in Appendix B on page 731.

8.5 Implementation of the LMS Algorithm 505

0 0.2 0.4 0.6 0.8 1

−20

0

20

System output

e[
n]

0 0.2 0.4 0.6 0.8 1

−20

0

20

e[
n]

0 0.2 0.4 0.6 0.8 1

−20

0

20

time in s

e[
n]

0 0.2 0.4 0.6 0.8 1

−20

0

20

40

60

80
μ = 1/4 = 0.25

f
0
f
1

0 0.2 0.4 0.6 0.8 1

−20

0

20

40

60

80
μ = 1/8 = 0.125

f
0
f
1

0 0.2 0.4 0.6 0.8 1

−20

0

20

40

60

80
μ = 1/16 = 0.0625

time in s

f
0
f
1

Fig. 8.19. Simulation of the power-line interference cancellation using the LMS
algorithm for integer data. (left) System output e[n]. (right) filter coefficients.

);
PORT (clk : IN STD_LOGIC;

x_in : IN STD_LOGIC_VECTOR(W1-1 DOWNTO 0);
d_in : IN STD_LOGIC_VECTOR(W1-1 DOWNTO 0);

e_out, y_out : OUT STD_LOGIC_VECTOR(W2-1 DOWNTO 0);
f0_out, f1_out : OUT STD_LOGIC_VECTOR(W1-1 DOWNTO 0));

END fir_lms;

ARCHITECTURE fpga OF fir_lms IS

SUBTYPE N1BIT IS STD_LOGIC_VECTOR(W1-1 DOWNTO 0);
SUBTYPE N2BIT IS STD_LOGIC_VECTOR(W2-1 DOWNTO 0);
TYPE ARRAY_N1BIT IS ARRAY (0 TO L-1) OF N1BIT;
TYPE ARRAY_N2BIT IS ARRAY (0 TO L-1) OF N2BIT;

SIGNAL d : N1BIT;
SIGNAL emu : N1BIT;
SIGNAL y, sxty : N2BIT;

SIGNAL e, sxtd : N2BIT;

506 8. Adaptive Filters

f[L−1]f[1]f[0]

−

z−1

+

+ z−1 + z−1 + z−1

+ +

z−1x[n]

d[n]

y[n] e[n]

μ

x[n−1] x[n−L+1]

f[L−1]f[1]f[0]

Fig. 8.20. Signal flow graph of the LMS algorithm.

SIGNAL x, f : ARRAY_N1BIT; -- Coeff/Data arrays
SIGNAL p, xemu : ARRAY_N2BIT; -- Product arrays

BEGIN

dsxt: PROCESS (d) -- 16 bit signed extension for input d
BEGIN
sxtd(7 DOWNTO 0) <= d;
FOR k IN 15 DOWNTO 8 LOOP

sxtd(k) <= d(d’high);
END LOOP;

END PROCESS;

Store: PROCESS ------> Store these data or coefficients
BEGIN
WAIT UNTIL clk = ’1’;

d <= d_in;
x(0) <= x_in;
x(1) <= x(0);
f(0) <= f(0) + xemu(0)(15 DOWNTO 8); -- implicit
f(1) <= f(1) + xemu(1)(15 DOWNTO 8); -- divide by 2

END PROCESS Store;

MulGen1: FOR I IN 0 TO L-1 GENERATE
FIR: lpm_mult -- Multiply p(i) = f(i) * x(i);

GENERIC MAP (LPM_WIDTHA => W1, LPM_WIDTHB => W1,
LPM_REPRESENTATION => "SIGNED",
LPM_WIDTHP => W2,
LPM_WIDTHS => W2)

PORT MAP (dataa => x(I), datab => f(I),
result => p(I));

END GENERATE;

8.5 Implementation of the LMS Algorithm 507

y <= p(0) + p(1); -- Compute ADF output

ysxt: PROCESS (y) -- Scale y by 128 because x is fraction
BEGIN
sxty(8 DOWNTO 0) <= y(15 DOWNTO 7);
FOR k IN 15 DOWNTO 9 LOOP

sxty(k) <= y(y’high);
END LOOP;

END PROCESS;

e <= sxtd - sxty;
emu <= e(8 DOWNTO 1); -- e*mu divide by 2 and

-- 2 from xemu makes mu=1/4
MulGen2: FOR I IN 0 TO L-1 GENERATE
FUPDATE: lpm_mult -- Multiply xemu(i) = emu * x(i);

GENERIC MAP (LPM_WIDTHA => W1, LPM_WIDTHB => W1,
LPM_REPRESENTATION => "SIGNED",
LPM_WIDTHP => W2,
LPM_WIDTHS => W2)

PORT MAP (dataa => x(I), datab => emu,
result => xemu(I));

END GENERATE;

y_out <= sxty; -- Monitor some test signals
e_out <= e;
f0_out <= f(0);
f1_out <= f(1);

END fpga;

The design is a literal interpretation of the adaptive LMS filter architecture
found in Fig. 8.20 (p. 506). The output of each tap of the tapped delay line is
multiplied by the appropriate filter coefficient and the results are added. The
response of the adaptive filter y and of the overall system e to a reference
signal x and a desired signal d is shown in Fig. 8.21. The filter adapts after
approximately 20 steps at 1µs to the optimal values f0 = 43.3 and f1 =
25. The design uses 50 LEs, 4 embedded multipliers, and has a 74.59 MHz
Registered Performance. 8.5

The previous example also shows that the standard LMS implementation
has a low Registered Performance due to the fact that two multipliers and
several add operations have to be performed in one clock cycle before the
filter coefficient can be updated. In the following section we wish therefore
to study how to achieve a higher throughput.

8.5.3 Pipelined LMS Filters

As can be seen from Fig. 8.20 (p. 506) the original LMS adaptive filter has
a long update path and hence the performance already for 8-bit data and
coefficients is relatively slow. It is therefore no surprise that many attempts

508 8. Adaptive Filters

Fig. 8.21. VHDL simulation of the power-line interference cancellation using the
LMS algorithm.

have been made to improve the throughput of the LMS adaptive filter. The
optimal number of pipeline stages from Fig. 8.20 (p. 506) can be computed
as follows: For the (b × b) multiplier fk a total of log2(b) stages are needed,
see also (2.30) p. 85. For the adder tree an additional log2(L) pipeline stages
would be sufficient and one additional stage for the computation of the error.
The coefficient update multiplication requires an additional log2(b) pipeline
stages. The total number of pipeline stages for a maximum throughput are
therefore

Dopt = 2 log2(b) + log2(L) + 1, (8.46)

where we have assumed that μ is a power-of-two constant and the scaling with
μ can be done without the need of additional pipeline stages. If, however, the
normalized LMS is used, then μ will no longer be a constant and depending
on the bit width of μ additional pipeline stages will be required.

Pipelining an LMS filter is not as simple as for an FIR filter, because the
LMS has, as the IIR filter, feedback. We need therefore to ensure that the
coefficient of the pipelined filter still converges to the same coefficient as the
adaptive filter without pipelining. Most of the ideas to pipeline IIR filters can
be used to pipeline an LMS adaptive filter. The suggestion include

• Delayed LMS [263, 273, 274]
• Look-ahead transformation of the pipelined LMS [258, 275, 276]
• Transposed form LMS filter [277]
• Block transformation using FFTs [268]

We have already discussed the block transform algorithms and now wish
in the following to briefly review the other techniques to improve the LMS
throughput.

The Delayed LMS Algorithm. In the delayed LMS algorithm (DLMS)
the assumption is that the gradient of the error ∇[n] = e[n]x[n] does not
change much if we delay the coefficient update by a couple of samples, i.e.,
∇[n] ≈ ∇[n −D]. It has been shown [273, 274] that as long as the delay is
less than the system order, i.e., filter length, this assumption is well true and
the update does not degrade the convergence speed. Long’s original DLMS

8.5 Implementation of the LMS Algorithm 509

algorithm only considered pipelining the adder tree of the adaptive filter as-
suming also that multiplication and coefficient update can be done in one
clock cycle (like for programmable digital signal processors [263]), but for a
FPGA implementation multiplier and the coefficient update requires addi-
tional pipeline stages. If we introduce a delay of D1 in the filter computation
path and D2 in the coefficient update path the LMS Algorithm 8.2 (p. 488)
becomes:

e[n−D1] = d[n−D1]− fT [n−D1]x[n−D1]
f [n+ 1] = f [n−D1 −D2] + μe[n−D1 −D2]x[n−D1 −D2].

The Look-ahead DLMS Algorithm. For long adaptive filters with D =
D1 + D2 < L the delayed coefficient update presented in the previous sec-
tion, in general, does not change the convergence of the ADF much. It can,
however, for shorter filters become necessary to reduce or even remove the
change in system function completely. From the IIR pipelining method we
have discussed in Chap. 4, the time domain interleaving method can always
be applied. We perform just a look-ahead in coefficient computation, without
alternating the overall system. Let us start with the DLMS update equations
with pipelining only in the coefficient computation, i.e.,

eDLMS[n−D] = d[n−D]− xT [n−D]f [n−D]
f [n+ 1] = f [n] + μe[n−D]x[n−D].

But the error function of the LMS would be

eLMS[n−D] = d[n−D]− xT [n]f [n−D].

We follow the idea from Poltmann [275] and wish to compute the correc-
tion term Λ[n], which cancels the change of the DLMS error computation
compared with the LMS, i.e.,

Λ[n] = eLMS[n−D]− eDLMS[n−D].

The error function of the DLMS is now changed to

eD̄LMS[n−D] = d[n−D]− xT [n−D]f [n−D]− Λ[n].

We need therefore to determine the term

Λ[n] = xT [n−D](f [n]− f [n−D]).

The term in brackets can be recursively determined via

f [n]− f [n−D]
= f [n− 1] + μe[n−D − 1]x[n−D1]− f [n−D]
= f [n− 2] + μe[n−D − 2]x[n−D − 2]

+μe[n−D − 1]x[n−D − 1]− f [n−D]

510 8. Adaptive Filters

=
D∑

s=1

μe[n−D − s]x[n−D − s],

and it follows for the correction term Λ[n] finally

Λ[n] = xT [n−D]

(
D∑

s=1

μe[n−D − s]x[n−D − s]
)

eD̄LMS[n−D] = d[n−D]− xT [n−D]f [n−D]

−xT [n−D]

(
D∑

s=1

μe[n−D − s]x[n−D − s]
)
.

It can be seen that this correction term needs an additional 2D multiplication,
which may be too expensive in some applications. It has been suggested
[276] to “relax” the requirement for the correction term but some additional
multipliers are still necessary.

We can, however, remove the influence of the coefficient update delay, by
applying the look-ahead principle [258], i.e.,

f [n+ 1] = f [n−D1] + μ

D2−1∑

k=0

e[n−D1 − k]x[n−D1 − k]. (8.47)

The summation in (8.47) builds the moving average over the last D2 gradient
values, and makes it intuitively clear that the convergence will proceed more
smoothly. The advantage compared with the transformation from Poltmann
is that this look-ahead computation can be done without a general multi-
plication. The moving average in (8.47) may even be implemented with a
first-order CIC filter (see Fig. 5.15, p. 260), which reduced the arithmetic
effort to one adder and a subtractor.

Similar approaches to the idea from Poltmann to improve the DLMS
algorithm have also been suggested [278, 279, 280].

8.5.4 Transposed Form LMS Filter

We have seen that the DLMS algorithm can be smoothed by introducing a
look-ahead computation in the coefficient update, as we have used in IIR
filters, but is, in general, not without additional cost. If we use, however, the
transposed FIR structure (see Fig. 3.3, p. 167) instead of the direct structure,
we can eliminate the delay by the adder tree completely. This will reduce the
requirement for the optimal number of pipeline stages from (8.46), p. 508,
by log2(L) stages. For a LTI system both direct and transposed filters are
described by the same convolution equation, but for a time-varying coefficient
we need to change the filter coefficient from

fk[n] to fk[n− k]. (8.48)

8.5 Implementation of the LMS Algorithm 511

The equation for the estimated gradient (8.14) on page 488 now becomes

∇̂[n] = −2e[n]
∂e[n− k]
∂fk[n]

(8.49)

= −2e[n]x[n− k]fk[n− k]
∂fk[n]

. (8.50)

If we now assume that the coefficient update is relatively slow, i.e., fk[n−k] ≈
fk[n] the gradient becomes,

∇̂[n] ≈ −2e[n]x[n], (8.51)

and the coefficient update equation becomes:

fk[n− k + 1] = fk[n− k] + μe[n]x[n]. (8.52)

The learning characteristics of the transposed-form adaptive filter algo-
rithms have been investigated by Jones [277], who showed that we will get
a somewhat slower convergence rate when compared with the original LMS
algorithm. The stability bound regarding μ also needs to be determined and
is found to be smaller than for the LMS algorithm.

8.5.5 Design of DLMS Algorithms

If we wish to pipeline the LMS filter from Example 8.5 (p. 504) we conclude
from the discussion above (8.46) that the optimal number of pipeline stages
becomes:

Dopt = 2 log2(b) + log2(L) + 1 = 2× 3 + 1 + 1 = 8. (8.53)

On the other hand, pipelining the multiplier can be done without additional
costs and we may therefore consider only using 6 pipeline stages. Figure 8.22
shows a MatLab simulation in 8-bit precision with a delay 6. Compared with
the original LMS design from Example 8.5 (p. 504) it shows some “overswing”
in the adaptation process.

Example 8.6: Two-tap Pipelined Adaptive LMS FIR Filter
The VHDL design 4 for a filter with two coefficients f0 and f1 with a step
size of μ = 1/4 is shown in the following listing.

-- This is a generic DLMS FIR filter generator
-- It uses W1 bit data/coefficients bits
LIBRARY lpm; -- Using predefined packages
USE lpm.lpm_components.ALL;

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
USE ieee.std_logic_arith.ALL;
USE ieee.std_logic_signed.ALL;

4 The equivalent Verilog code fir lms.v for this example can be found in Ap-
pendix A on page 721. Synthesis results are shown in Appendix B on page 731.

512 8. Adaptive Filters

0 0.2 0.4 0.6 0.8 1
−30

−20

−10

0

10

20

30

time in s

ou
tp

ut
: e

[n
]

0 0.2 0.4 0.6 0.8 1

−20

0

20

40

60

80
μ = 1/4

time in s

f
0
f
1

Fig. 8.22. 8-bit MatLab simulation of the power-line interference cancellation
using the DLMS algorithm with a delay of 6.

ENTITY fir6dlms IS ------> Interface
GENERIC (W1 : INTEGER := 8; -- Input bit width

W2 : INTEGER := 16;-- Multiplier bit width 2*W1
L : INTEGER := 2; -- Filter length
Delay : INTEGER := 3 -- Pipeline Delay
);

PORT (clk : IN STD_LOGIC;
x_in : IN STD_LOGIC_VECTOR(W1-1 DOWNTO 0);
d_in : IN STD_LOGIC_VECTOR(W1-1 DOWNTO 0);
e_out, y_out : OUT STD_LOGIC_VECTOR(W2-1 DOWNTO 0);

f0_out, f1_out : OUT STD_LOGIC_VECTOR(W1-1 DOWNTO 0));
END fir6dlms;

ARCHITECTURE fpga OF fir6dlms IS

SUBTYPE N1BIT IS STD_LOGIC_VECTOR(W1-1 DOWNTO 0);
SUBTYPE N2BIT IS STD_LOGIC_VECTOR(W2-1 DOWNTO 0);
TYPE ARRAY_N1BITF IS ARRAY (0 TO L-1) OF N1BIT;
TYPE ARRAY_N1BITX IS ARRAY (0 TO Delay+L-1) OF N1BIT;
TYPE ARRAY_N1BITD IS ARRAY (0 TO Delay) OF N1BIT ;
TYPE ARRAY_N1BIT IS ARRAY (0 TO L-1) OF N1BIT;
TYPE ARRAY_N2BIT IS ARRAY (0 TO L-1) OF N2BIT;

SIGNAL xemu0, xemu1 : N1BIT;
SIGNAL emu : N1BIT;
SIGNAL y, sxty : N2BIT;

SIGNAL e, sxtd : N2BIT;
SIGNAL f : ARRAY_N1BITF; -- Coefficient array
SIGNAL x : ARRAY_N1BITX; -- Data array
SIGNAL d : ARRAY_N1BITD; -- Reference array
SIGNAL p, xemu : ARRAY_N2BIT; -- Product array

BEGIN

8.5 Implementation of the LMS Algorithm 513

dsxt: PROCESS (d) -- make d a 16 bit number
BEGIN
sxtd(7 DOWNTO 0) <= d(Delay);
FOR k IN 15 DOWNTO 8 LOOP

sxtd(k) <= d(3)(7);
END LOOP;

END PROCESS;

Store: PROCESS ------> Store these data or coefficients
BEGIN
WAIT UNTIL clk = ’1’;

d(0) <= d_in; -- Shift register for desired data
d(1) <= d(0);
d(2) <= d(1);
d(3) <= d(2);
x(0) <= x_in; -- Shift register for data
x(1) <= x(0);
x(2) <= x(1);
x(3) <= x(2);
x(4) <= x(3);
f(0) <= f(0) + xemu(0)(15 DOWNTO 8); -- implicit
f(1) <= f(1) + xemu(1)(15 DOWNTO 8); -- divide by 2

END PROCESS Store;

MulGen1: FOR I IN 0 TO L-1 GENERATE
FIR: lpm_mult -- Multiply p(i) = f(i) * x(i);

GENERIC MAP (LPM_WIDTHA => W1, LPM_WIDTHB => W1,
LPM_REPRESENTATION => "SIGNED",
LPM_PIPELINE => Delay,
LPM_WIDTHP => W2,
LPM_WIDTHS => W2)

PORT MAP (dataa => x(I), datab => f(I),
result => p(I), clock => clk);

END GENERATE;

y <= p(0) + p(1); -- Computer ADF output

ysxt: PROCESS (y) -- scale y by 128 because x is fraction
BEGIN
sxty(8 DOWNTO 0) <= y(15 DOWNTO 7);
FOR k IN 15 DOWNTO 9 LOOP

sxty(k) <= y(y’high);
END LOOP;

END PROCESS;

e <= sxtd - sxty; -- e*mu divide by 2 and 2
emu <= e(8 DOWNTO 1); -- from xemu makes mu=1/4

MulGen2: FOR I IN 0 TO L-1 GENERATE
FUPDATE: lpm_mult -- Multiply xemu(i) = emu * x(i);

GENERIC MAP (LPM_WIDTHA => W1, LPM_WIDTHB => W1,
LPM_REPRESENTATION => "SIGNED",

514 8. Adaptive Filters

Table 8.2. Size and performance data of different pipeline options of the DLMS
algorithms.

D LEs 9× 9-bit MHz Comment
multipliers

0 50 4 74.59 Original LMS
1 58 4 109.28 Original DLMS
3 74 4 123.30 Pipeline of f update only
6 138 4 176.15 Pipeline all multipliers
8 179 4 368.19 Optimal number of stages

Fig. 8.23. VHDL simulation of the power-line interference cancelation using the
DLMS algorithm with a delay of 6.

LPM_PIPELINE => Delay,
LPM_WIDTHP => W2,
LPM_WIDTHS => W2)

PORT MAP (dataa => x(I+Delay), datab => emu,
result => xemu(I), clock => clk);

END GENERATE;

y_out <= sxty; -- Monitor some test signals
e_out <= e;
f0_out <= f(0);
f1_out <= f(1);

END fpga;

The design is a literal interpretation of the adaptive LMS filter architecture
found in Fig. 8.20 (p. 489) with the additional delay of three pipeline stages
for each multiplier. The output of each tap of the tapped delay line is mul-
tiplied by the appropriate filter coefficient and the results are added. Note
the additional delays for x and d in the Store: PROCESS to make the signals
coherent. The response of the adaptive filter y and of the overall system e to
a reference signal x and a desired signal d is shown in the VHDL simulation
in Fig. 8.23. The filter adapts after approximately 30 steps at 1.5 µs to the
optimal values f0 = 43.3 and f1 = 25, but it also shows some overswing in
the adaptation process. The design uses 138 LEs, 4 embedded multipliers,
and has a 176.15 MHz Registered Performance. 8.6

8.5 Implementation of the LMS Algorithm 515

Compared with the previous example we may also consider other pipelin-
ing options. We may, for instance, use pipelining only in the coefficient up-
date, or we may implement the optimal number of pipeline stages, i.e., 8.
Table 8.2 gives an overview of the different options.

From Table 8.2 it can be seen that compared to the original LMS algo-
rithm we may gain up to a factor of 4 speed improvement, while at the same
time the additional hardware cost are only about 10%. The additional effort
comes from the extra delays of the reference data d[n] and the filter input
x[n]. The limitation is just that it may become necessary for large pipeline
delays to adjust μ in order to guarantee stability.

8.5.6 LMS Designs using SIGNUM Function

We saw in the previous section that the implementation cost of the LMS
algorithm is already high for short filter length. The highest cost of the filter
comes from the large number of general multipliers and the major goal in
reducing the effort is to reduce the number of multipliers. Obviously the FIR
filter part can not be reduced, but different simplifications in the computation
of the coefficient update have been investigated. Given the fact that to ensure
stability usually the step size is chosen much smaller than μmax, the following
suggestions have been made:

• Use only the sign of the reference data x[n] not the full precision value to
update the filter coefficients.

• Use only the sign of the error e[n] not the full precision value to update
the filter coefficients.

• Use both of the previous simplifications via the sign of error and data.

The three modifications can be described with the following coefficient
update equations in the LMS algorithm:

f [n+ 1] = f [n] + μ× e[n]× sign(x[n]) sign data function
f [n+ 1] = f [n] + μ× x[n]× sign(e[n]) sign error function
f [n+ 1] = f [n] + μ× sign(e[n])× sign(x[n]) sign-sign function.

We note from the simulation of the three possible simplifications shown
in Fig. 8.24 that for the sign-data function almost the same result occurs
as in the full precision case. This is no surprise, because our input refer-
ence signal x[n] = cos[πn/2 + φ] will not be much quantized through the
sign operation anyway. This is much different for the sign-error function.
Here the quantization through the sign operation essentially alters the time
constant of the system. But finally, after about 2.5 s the correct values are
reached, although from the system output e[n] we note the essential ripple in
the output function even after a long simulation time. Finally, the sign-sign
algorithm converges faster than the sign-error algorithm, but here also the

516 8. Adaptive Filters

0 1 2 3 4 5
−100

−50

0

50

100
System output e[n]

si
gn

(d
at

a)

0 1 2 3 4 5
−100

−50

0

50

100

si
gn

(e
rr

or
)

0 1 2 3 4 5
−100

−50

0

50

100

time in s

si
gn
−

si
gn

0 1 2 3 4 5

−20

0

20

40

60

80
μ = 1/8 = 0.125

f
0
f
1

0 1 2 3 4 5

−20

0

20

40

60

80
μ = 1/8 = 0.125

f
0
f
1

0 1 2 3 4 5

−20

0

20

40

60

80
μ = 1/8 = 0.125

time in s

f
0
f
1

Fig. 8.24. Simulation of the power-line interference cancellation using the 3 sim-
plified signed LMS (SLMS) algorithms. (left) System output e[n]. (right) filter
coefficients.

system output shows essential ripple for e[n]. From the simulation it can be
seen that the sign-function simplification (to save the L multiplications in the
filter coefficient update) has to be evaluated carefully for the specific appli-
cation to still guarantee a stable system and acceptable time constants of the
system. In fact, it has been shown that for specific signals and application
the sign algorithms does not converge, although the full precision algorithm
would converge. Besides the sign effect we also need to ensure that the integer
quantization through the implementation does not alter the desired system
properties.

Another point to consider when using the sign function is the error floor
that can be reached. This is discussed in the following example.

Example 8.7: Error Floor in Signum LMS Filters
Suppose we have a system identification configuration as discussed in Sect.
8.3.1 (p. 493), and we wish to use one of the signum-type ADF algorithms.
What will then be the error floor that can be reached? Obviously through the
signum operation we will lose some precision and we expect that we will not

8.5 Implementation of the LMS Algorithm 517

0 1000 2000 3000 4000
−70

−60

−50

−40

−30

−20

−10

0

(a) LMS
J f /

dB

0 1000 2000 3000 4000
−70

−60

−50

−40

−30

−20

−10

0

(b) sign(data)

J f /
dB

0 1000 2000 3000 4000
−70

−60

−50

−40

−30

−20

−10

0

(c) sign(error)

Iteration

J f /
dB

EVR=1
EVR=10

0 1000 2000 3000 4000
−70

−60

−50

−40

−30

−20

−10

0

(d) sign−sign

Iteration

J f /
dB

Fig. 8.25. Simulation of the system identification experiment using the 3 simplified
signed LMS algorithms for an average of 50 learning curves for an error floor of
−60 dB. (a) LMS with full precision. (b) signed data. (c) signed error algorithms.
(d) sign-sign LMS algorithm.

reach the same low-noise level as with a full-precision LMS algorithm. We
also expect that the learning rate will be somewhat decreased when compared
with the full-precision LMS algorithm. This can be verified by the simulation
results shown in Fig. 8.25 for an average over 50 learning curves and two dif-
ferent eigenvalue ratios (EVRs). The sign data algorithms shows some delay
in the adaptation when compared with the full-precision LMS algorithm, but
reaches the error floor, which was set to −60 dB. Signed error and sign-sign
algorithms show larger delays in the adaptation and also reach only an error
floor of about −40 dB. This larger error may or may not be acceptable for
some applications. 8.7

The sign-sign algorithm is attractive from a software or hardware imple-
mentation standpoint and has been used for the International Telecommuni-
cation Union (ITU) standard for adaptive differential pulse code modulation
(ADPCM) transmission. From a hardware implementation standpoint we
actually do not need to implement the sign-sign algorithm, because the mul-
tiplication with μ is just a scaling with a constant and one of the single sign

518 8. Adaptive Filters

algorithms will already allow us to save the L multipliers we usually need for
the filter coefficient update in Fig. 8.20 (p. 506).

8.6 Recursive Least Square Algorithms

In the LMS algorithm we have discussed in the previous sections the fil-
ter coefficients are gradually adjusted by a stochastic gradient method to
finally approximate the Wiener–Hopf optimal solution. The recursive least
square (RLS) algorithm takes another approach. Here, the estimation of the
(L×L) autocorrelation matrix Rxx and the cross-correlation vector rdx are
iteratively updated with each new incoming data pair (x[n], d[n]). The sim-
plest approach would be to reconstruct the Wiener–Hopf equation (8.9), i.e.,
Rxxfopt = rdx and resolve it. However, this would be the equivalent of one
matrix inversion as each new data point pair arrives and has the potential of
being computationally expensive. The main goal of the different RLS algo-
rithms we will discuss in the following is therefore to seek a (iterative) time
recursion for the filter coefficients f [n+1] in terms of the previous least square
estimate f [n] and the new data pair (x[n], d[n]). Each incoming new value x[n]
is placed in the length-L data array x[n] = [x[n]x[n− 1] . . . x[n− (L− 1)]]T .
We then wish to add x[n]x[n] to Rxx[0, 0], x[n]x[n − 1] to Rxx[0, 1], etc.
Mathematically we just compute the product xxT and add this (L×L) ma-
trix to the previous estimation of the autocorrelation matrix Rxx[n]. The
recursive computation may be computed as follows:

Rxx[n+ 1] = Rxx[n] + x[n]xT [n] =
n∑

s=0

x[s]xT [s]. (8.54)

For the cross-correlation vector rdx[n + 1] we also build an “improved” es-
timate by adding with each new pair (x[n], d[n]) the vector d[n]x[n] to the
previous estimation of rdx[n]. The recursion for the cross-correlation becomes

rdx[n+ 1] = rdx[n] + d[n]x[n], (8.55)

we can now use the Wiener–Hopf equation in a time recursive fashion and
compute

Rxx[n+ 1]fopt[n+ 1] = rdx[n+ 1]. (8.56)

For the true estimates of cross- and autocorrelation matrices we would need to
scale by the number of summations, which is proportional to n, but the cross-
and autocorrelation matrices are scaled by the same factor, which cancel each
other out in the iterative algorithm and we get for the filter coefficient update

fopt[n+ 1] = Rxx
−1[n+ 1]rdx[n+ 1]. (8.57)

Although this first version of the RLS algorithms is computationally inten-
sive (approximately L3 operations are needed for the matrix inversion) it

8.6 Recursive Least Square Algorithms 519

still shows the principal idea of the RLS algorithm and can be quickly pro-
grammed, for instance in MatLab, as the following code segment shows the
inner loop for length-L RLS filter algorithm:

x = [xin;x(1:L-1)]; % get new sample
y = f’ * x; % filter output
err = din - y; % error: reference - filter output
Rxx = Rxx + x*x’; % update the autocorrelation matrix
rdx = rdx + din .* x; % update the cross-correlation vector
f = Rxx^(-1) * rdx; % compute filter coefficients

where Rxx is a (L×L) matrix and rdx is a (L×1) vector. The cross-correlation
vector is usually initialized with rdx[0] = 0. The only problem with the
algorithm so far arises at the first n < L iterations, when Rxx[n] only has a
few nonzero entries, and consequently will be singular and no inverse exists.
There are a couple of ways to tackle this problem:

• We can wait with the computation of the inverse until we find that the
autocorrelation matrix is nonsingular, i.e., det (Rxx[n]) > 0.

• We can use R+
xx[n] = (RT

xx[n]Rxx[n])−1RT
xx[n] the so-called pseudoin-

verse, which is a standard result in linear algebra regarding the solution of
an overdetermined set of linear equations.

• We can initialize the autocorrelation matrix Rxx with δI where δ is chosen
to be a small (large) constant for high (low) S/N ratio of the input signal.

The third approach is the most popular due to the computational benefit
and the possibility to set an initial “learning rate” using the constant δ. The
influence of the initialization in the RLS algorithm for an experiment similar
to Sect. 8.3.1 (p. 493) with an average over 5 learning curves is shown in
Fig. 8.26. The upper row shows the full-length simulation over 4000 itera-
tions, while the lower row shows the first 100 iterations only. For high S/N
(−48 dB) we may use a large value for the initialization, which yields a fast
convergence. For low S/N values (−10 dB) small initialization values should
be used, otherwise large errors at the first iterations can occur, which may
or may not be tolerable for the specific application.

A more computationally attractive approach than the first “brute force”
RLS algorithm will be discussed in the following. The key idea is that we do
not compute the matrix inversion at all and use a time recursion directly for
Rxx

−1[n], we actually will never have (or need) Rxx[n] available. To do so,
we substitute the Wiener equation for time n+ 1, i.e., f [n+ 1]Rxx[n+ 1] =
rdx[n+ 1] into (8.55) it follows that

Rxx[n+ 1]f [n+ 1] = Rxx[n]f [n] + d[n+ 1]x[n+ 1]. (8.58)

Now we use (8.54) to get

Rxx[n+ 1]f [n+ 1] =
(
Rxx[n+ 1]− x[n+ 1]xT [n+ 1]

)
f [n]

+d[n+ 1]x[n+ 1]. (8.59)

520 8. Adaptive Filters

0 1000 2000 3000 4000
−70

−60

−50

−40

−30

−20

−10

0

10
S/N=−10dB

J f /
dB

0 20 40 60 80 100
−70

−60

−50

−40

−30

−20

−10

0

10
S/N=−10dB

J f /
dB

Iteration

1/1000
1
1000

0 1000 2000 3000 4000
−70

−60

−50

−40

−30

−20

−10

0

10
S/N=−48dB

J f /
dB

0 20 40 60 80 100
−70

−60

−50

−40

−30

−20

−10

0

10
S/N=−48dB

J f /
dB

Iteration

Fig. 8.26. Learning curves of the RLS algorithms using different initialization of
R−1

xx[0] = δI or Rxx [0] = δ−1I . High S/N is -48 dB and low is -10 dB. δ = 1000, 1
or 1/1000.

We can rearrange (8.59) by multiplying by R−1
xx[n + 1] to have f [n + 1] on

the lefthand side of the equation:

f [n+ 1] = f [n] + R−1
xx[n+ 1]x[n+ 1]︸ ︷︷ ︸

k[n+1]

(
d[n+ 1]− fT [n]x[n+ 1]

)
︸ ︷︷ ︸

e[n+1]

= f [n] + k[n+ 1]e[n+ 1],

where the a priori error is defined as

e[n+ 1] = d[n+ 1]− fT [n]x[n+ 1],

and the Kalman gain vector is defined as

k[n+ 1] = R−1
xx[n+ 1]x[n+ 1]. (8.60)

As mentioned above the direct computation of the matrix inversion is com-
putationally intensive, and it is much more efficient to use again the iteration
equation (8.54) to actually avoid the inversion at all. We use the so-called
“matrix inversion lemma,” which can be written as the following matrix iden-
tity

8.6 Recursive Least Square Algorithms 521

(A + BCD)−1

= A−1 −A−1B(A−1BDA−1)(C + DA−1B)−1,

which holds for all matrices A, B, C, and D, of compatible dimensions and
nonsingular A. We make the following associations:

A =Rxx[n+ 1] B =x[n]

C =1 D =xT [n].

The iterative equation for R−1
xx becomes:

R−1
xx[n+ 1] =

(
R−1

xx[n] + x[n]xT [n]
)−1

= R−1
xx[n] +

R−1
xx[n]x[n]xT [n]R−1

xx[n]
1 + xT [n]R−1

xx[n]x[n]
. (8.61)

If we use the Kalman gain factor k[n] from (8.60) we can rewrite (8.61) more
compactly as:

R−1
xx[n+ 1] =

(
R−1

xx[n] + x[n+ 1]xT [n+ 1]
)−1

= R−1
xx[n] +

k[n]kT [n]
1 + xT [n]k[n]

.

This recursion is as mentioned before initialized [252] with

R−1
xx[0] = δI with δ =

{
large positive constant for high SNR
small positive constant for low SNR.

With this recursive computation of the inverse autocorrelation matrix the
computation effort is now proportional to L2, an essential saving for large
values of L. Figure 8.27 shows a summary of the RLS adaptive filter algo-
rithm.

8.6.1 RLS with Finite Memory

As we can see from (8.54) and (8.55) the adaptive algorithm derived so far
has an infinite memory. The values of the filter coefficients are functions of
all past inputs starting with time zero. As will be discussed next it is often
useful to introduce a “forgetting factor” into the algorithm, so that recent
data are given greater importance than older data. This not only reduces the
influence of older data, it also accomplishes that through the update of the
cross- and autocorrelation with each new incoming data pair no overflow in
the arithmetic will occur. One way of accomplishing a finite memory is to
replace the sum-of-squares cost function, by an exponentially weighted sum
of the output:

J =
n∑

s=0

ρn−se2[s], (8.62)

522 8. Adaptive Filters

.

filter
y[n]Adaptive

x[n] − output
System+

d[n]

signal
Primary

Input
signal

Compute
k[n+1]

f[n+1]=f[n]+k[n+1]e[n+1]

Adaptive algorithm

x[n]

e[n]

Fig. 8.27. Basic configuration for interference cancellation using the RLS algo-
rithm.

where 0 ≤ ρ ≤ 1 is a constant determining the effective memory of the
algorithm. The case ρ = 1, is the infinite-memory case, as before. When
ρ < 1 the algorithm will have an effective memory of τ = −1/ log(ρ) ≈
1/(1 − ρ) data points. The exponentially weighted RLS algorithm can now
be summarized as:

Algorithm 8.8: RLS Algorithm

The exponentially weighted RLS algorithm to adjust the L coefficients of
an adaptive filter uses the following steps:
1) Initialize x = f = [0, 0, . . . , 0]T and R−1

xx[0] = δI.
2) Accept a new pair of input samples {x[n+1], d[n+1]} and shift x[n+1]

input the reference signal vector x[n+1].
3) Compute the output signal of the FIR filter, via

y[n+ 1] = fT [n]x[n+ 1]. (8.63)
4) Compute the a priori error function with

e[n+ 1] = d[n+ 1]− y[n+ 1]. (8.64)
5) Compute the Kalman gain factor with

k[n+ 1] = R−1
xx[n+ 1]x[n+ 1]. (8.65)

6) Update the filter coefficient according to
f [n+ 1] = f [n] + k[n+ 1]e[n+ 1]. (8.66)

7) Update the filter inverse autocorrelation matrix according to

R−1
xx[n+ 1] =

1
ρ

(
R−1

xx[n] +
k[n+ 1]kT [n+ 1]

ρ+ xT [n+ 1]k[n+ 1]

)
. (8.67)

Next continue with step 2.

8.6 Recursive Least Square Algorithms 523

0 5 10 15

−5

0

5

(a) unknown system

0 20 40 60 80 100
−20

−10

0

10

20
(b) RLS EVR=100

Iteration

 f
R

LS
[n

]
Fig. 8.28. Simulation of the L = 16 tap adaptive filter system identification. (a)
Impulse response of the “unknown system.” (b) RLS coefficient learning curves for
EVR = 100.

The computational cost of the RLS are (3L2 + 9L)/2 multiplications and
(3L2 + 5L)/2 additions or subtractions, per input sample, which is still more
essential than the LMS algorithm. The advantage as we will see in the fol-
lowing example will be a higher rate of convergence and no need to select the
step size μ, which may at times be difficult when stability of the adaptive
algorithm has to be guaranteed.

Example 8.9: RLS Learning Curves
In this example we wish to evaluate a configuration called system identifi-
cation to compare RLS and LMS convergence. We have used this type of
performance evaluation already for LMS ADF in Sect. 8.3.1 (p. 493) The
system configuration is shown in Fig. 8.12 (p. 494). The adaptive filter has
a length of L = 16, the same length as the “unknown” system, whose co-
efficients have to be learned. The additive noise level behind the “unknown
system” has been set to −48 dB equivalent for an 8-bit quantization. For
the LMS algorithm the eigenvalue ratio (EVR) is the critical parameter that
determines the convergence speed, see (8.25), p. 491. In order to generate a
different eigenvalue ratio we use a white Gaussian noise source with σ2 = 1
that is filtered by a FIR type filter shown in Table 8.1 (p. 495). The coef-
ficients are normalized to

∑
k

h[k]2 = 1, so that the signal power does not
change. The impulse response of the unknown system is an odd filter with
coefficients 1,−2, 3,−4, . . . ,−3, 2,−1 as shown in Fig. 8.28a. The step size
for the LMS algorithm has been determined with

μmax =
2

3× L× E{x2} =
1

24
. (8.68)

In order to guarantee perfect stability the step size for the LMS algorithm has
been chosen to be μ = μmax/2 = 1/48. For the transform-domain DCT-LMS
algorithm a power normalization for each coefficient is used, see Fig. 8.17
(p. 502). From the simulation results shown in Fig. 8.29 it can be seen that
the RLS converges faster than the LMS with increased EVR. DCT-LMS
converges faster than LMS and in some cases quite as fast as the RLS algo-

524 8. Adaptive Filters

0 1000 2000 3000 4000
−70

−60

−50

−40

−30

−20

−10

0

(a) EVR=1

Iteration

J f /
dB

0 1000 2000 3000 4000
−70

−60

−50

−40

−30

−20

−10

0

(b) EVR=10

Iteration

J f /
dB

0 1000 2000 3000 4000
−70

−60

−50

−40

−30

−20

−10

0

(c) EVR=100

Iteration

J f /
dB

0 1000 2000 3000 4000
−70

−60

−50

−40

−30

−20

−10

0

(d) EVR=1000

Iteration

J f /
dB

LMS
DCT−LMS
RLS

Fig. 8.29. Simulation results for a L = 16-tap adaptive filter system identification.
Learning curve J for LMS, transform-domain DCT-LMS, and RLS with R−1

xx [0] =
I . (a) EVR = 1. (b) EVR = 10. (c) EVR = 100. (d) EVR = 1000.

rithm. The DCT-LMS algorithm has less good performance when we look at
the residue-error level and consistency of convergence. For higher EVR the
RLS performance is better for both level and consistency of convergence. For
EVR=1 the DCT-LMS reaches the value in the 50 dB range, but for EVR =
100 only 40 dB are reached. The RLS converges below the system noise. 8.9

8.6.2 Fast RLS Kalman Implementation

For the least-quare FIR fast Kalman algorithm first presented by Ljung et
al. [281] the concept of single-step linear forward and backward prediction
play a central role. Using these forward and backward coefficients in an all-
recursive, one-dimensional Levison–Durbin type algorithm it will be possible
to update the Kalman gain vector with only an O(L) type effort.

A one-step forward predictor is presented in Fig. 8.30. The predictor es-
timates the present value x[n] based on its L most recent past values. The a
posteriori error in the prediction is quantified by

8.6 Recursive Least Square Algorithms 525

−x[n]
Adaptive

filter output
System+

y[n]
d[n]

Input
signal

e[n]

−1
Z

Fig. 8.30. Linear forward prediction of order L.

εfL[n] = x[n]− x̂[n] = x[n]− aT [n]xL[n− 1]. (8.69)

The superscript indicates that it is the forward prediction error, while the
subscript describes the order (i.e., length) of the predictor. We will drop the
index L and the vector length should be L for the remainder of this section,
if not otherwise noted. It is also advantageous to compute also the a priori
error that is computed using the filter coefficient of the previous iteration,
i.e.,

ef
L[n] = x[n]− aT [n− 1]xL[n− 1]. (8.70)

The least-quare minimum of εfL[n] can be computed via

∂(εf [n])2

∂aT [n]
= −E{(x[s]− aT [s]x[n])x[n− s]} = 0 (8.71)

for s = 1, 2, . . . , L.

This leads again to an equation with the (L×L) autocorrelation matrix, but
the right-hand side is different from the Wiener–Hopf equation:

Rxx[n− 1]a[n] = rf [n] =
n∑

s=0

x[s− 1]x[s]. (8.72)

The minimum value of the cost function is given by

αf [n] = rf
0 [n]− aT [n]rf [n], (8.73)

where rf
0 [n] =

n∑
s=0

x[s]2.

The important fact about this predictor is now that the Levinson–Durbin
algorithm can solve the least-quare error minimum of (8.69) in a recursive
fashion, without computing a matrix inverse. To update the predictor coef-
ficient we need the same Kalman gain factor as in (8.66) for updating the
filter coefficients, namely

aL[n+ 1] = aL[n] + kL[n]ef
L[n].

We will see later how the linear prediction coefficients can be used to
iteratively update the Kalman gain factor. In order to take advantage of the
fact that the data vectors from one iteration to the next only differ in the

526 8. Adaptive Filters

first and last element, we use an augmented-by-one version kL+1[n] of the
Kalman gain update equation (8.65) which is given by

kL+1[n+ 1] = R−1
xx,L+1[n+ 1]xL+1[n+ 1]. (8.74)

=

[
rf
0L[n+ 1] rfT

L [n+ 1]
rf

L[n] R−1
xx,L[n]

][
x[n+ 1]
xL[n]

]
. (8.75)

In order to compute the matrix inverse of R−1
xx,L+1[n] we use a well-known

theorem of matrix inversion of block matrices, i.e.,

M−1 =
[

A B
C D

]−1

= (8.76)

[−(AD−1C −A)−1 (AD−1C −A)−1BD−1

D−1C − (AD−1C −A)−1 D−1 − (D−1CBD−1)(AD−1C −A)−1

]
,

if D−1 is nonsingular. We now make the following associations:

A=rf
0L[n+ 1] B=rfT

L [n+ 1]

C=rf
L[n] D=R−1

xx[n],

we then get

D−1C = R−1
xx,L[n]rf

L[n] = aL[n+ 1]

BD−1 = rfT
L [n+ 1]R−1

xx[n] = aT
L[n+ 1]

−(AD−1C −A)−1 = −rfT
L [n+ 1]R−1

xx,L[n]rf
L[n] + rf

0L[n+ 1]

= rf
0L[n+ 1]− aT

L[n+ 1]rf
L[n] = αf

L[n+ 1].

We can now rewrite R−1
xx,L+1[n+ 1] from (8.74) as

R−1
xx,L+1[n+ 1] =

⎡

⎣
1

αf
L
[n+1]

aT
L [n+1]

αf
L

[n+1]

aL[n+1]

αf
L
[n+1]

R−1
xx,L[n] + aL[n+1]aT

L [n+1]

αf
L
[n+1]

⎤

⎦ . (8.77)

After some rearrangements (8.74) can be written as

kL+1[n+ 1] =
[

0
kL[n+ 1]

]
+
εfL[n+ 1]

αf
L[n+ 1]

[
1

aL[n+ 1]

]

=
[

gL[n+ 1]
γL[n+ 1]

]
.

Unfortunately, we do not have a closed recursion so far. For the iterative
update of the Kalman gain vector, we need besides the forward prediction
coefficients, also the coefficients of the one-step backward predictor, whose a
posteriori error function is

εb[n] = x[n− L]− x̂[n− L] = x[n− L]− bT [n]x[n], (8.78)

8.6 Recursive Least Square Algorithms 527

−x[n]
Adaptive

filter output
System+

y[n]
d[n]

e[n]

Input
signal

−L
Z

Fig. 8.31. Linear backward prediction of order L.

again all vectors are of size (L × 1). The linear backward predictor is shown
in Fig. 8.31.

The a priori error for the backward predictor is given by

eb
L[n] = x[n− L]− bT [n− 1]xL[n],

The iterative equation to compute the least-quare coefficients for the back-
ward predictor is equivalent to the forward case and given by

Rxx[n]b[n] = rb[n] =
n∑

s=0

x[s]x[s− L], (8.79)

and the minimum value for the total squared error becomes

αf [n] = rb
0[n]− bT [n]rb[n],

where rb
0[n] =

∑n
s=0 x[s − L]2. To update the backward predictor coefficient

we need again the Kalman gain factor in (8.66) as for the updating of the
filter coefficients, namely

bL[n+ 1] = bL[n] + kL[n+ 1]eb
L[n+ 1].

Now we can again find a Levinson–Durbin type of recursive equation for the
extended Kalman gain vector, only this time using the backward prediction
coefficients. It follows that

kL+1[n+ 1] = R−1
xx,L+1[n+ 1]xL+1[n+ 1]. (8.80)

=
[

Rxx,L[n] rb
L[n+ 1]

rbT
L [n] rb

0L[n+ 1]

]−1 [
xL[n+ 1]
x[n− L+ 1]

]
. (8.81)

To solve the matrix inversion, we define as in (8.76) a (L+1)× (L+1) block
matrix M , only this time the block A needs to be nonsingular and it follows
that

M−1 =
[

A B
C D

]−1

=

A−1 − (A−1BCA−1)(CA−1B −D)−1 A−1B(CA−1B −D)−1

(CA−1B −D)−1CA−1 −(CA−1B −D)−1 .

528 8. Adaptive Filters

We now make the following associations:

A =Rxx,L[n] B = rb
L[n+ 1]

C = rbT
L [n] D = rb

0L[n+ 1],

we then get the following intermediate results

A−1B = R−1
xx,L[n]rb

L[n+ 1] = bL[n+ 1]

CA−1 = rbT
L [n+ 1]R−1

xx,L[n] = bT
L[n+ 1]

−(CA−1B −D) = −bT
L[n+ 1]rb

L[n+ 1] + rb
0L[n+ 1] = αb

L[n+ 1].

Using this intermediate results in (8.78) we get

R−1
xx,L+1[n] =

⎡

⎣R−1
xx,L[n] + bL[n+1]bT

L [n+1]

αb
L
[n]

bT
L [n+1]

αb
L
[n]

bL[n+1]

αb
L
[n]

1
αb

L
[n]

⎤

⎦ .

After some rearrangements (8.80) can now, using the backward prediction
coefficients, be written as

kL+1[n+ 1] =
[

kL[n+ 1]
0

]
+
εbL[n+ 1]
αb

L[n+ 1]

[
bL[n+ 1]

1

]

=
[

gL[n+ 1]
γL[n+ 1]

]
.

The only iterative update equation missing so far is for the minimum values
of the total square errors, which is given by

αf
L[n+ 1] = αf

L[n] + εfL[n+ 1]ef
L[n+ 1] (8.82)

αb
L[n+ 1] = αb

L[n] + εbL[n+ 1]eb
L[n+ 1]. (8.83)

We now have all iterative equations available to define the

8.6 Recursive Least Square Algorithms 529

Algorithm 8.10: Fast Kalman RLS Algorithm

The prewindowed fast Kalman RLS algorithm to adjust the L filter coef-
ficients of an adaptive filter uses the following steps:
1) Initialize x = a = b = f = k = [0, 0, . . . , 0]T and αf = αb = δ
2) Accept a new pair of input samples {x[n+ 1], d[n+ 1]}.
3) Compute now the following equations to update a, b, and k in se-

quential order
ef

L[n+ 1] = x[n+ 1]− aT [n]xL[n]

aL[n+ 1] = aL[n] + kL[n]ef
L[n+ 1]

εfL[n+ 1] = x[n+ 1]− aT [n+ 1]xL[n]

αf
L[n+ 1] = αf

L[n] + εfL[n+ 1]ef
L[n+ 1]

kL+1[n+ 1] =
[

0
kL[n+ 1]

]
=
εfL[n+ 1]

αf
L[n+ 1]

[
1

aL[n+ 1]

]

=
[

gL[n+ 1]
γL[n+ 1]

]

eb
L[n+ 1] = x[n+ 1− L]− bT [n]xL[n+ 1]

kL[n+ 1] =
gL[n+ 1]− γL[n+ 1]bT [n]

1 + γL[n+ 1]eb
L[n+ 1]

bL[n+ 1] = bL[n] + kL[n+ 1]eb
L[n+ 1].

4) Shift the x[n + 1] in the reference signal vector x[n+1] and compute
the following two equations in order to update the adaptive filter
coefficients:

eL[n+ 1] = d[n+ 1]− fT
L [n]xL[n+ 1]

fL[n+ 1] = fL[n] + kL[n+ 1]eL[n+ 1].
Next continue with step 2.

Counting the computational effort we find that step 3 needs 2 divisions, 8L+2
multiplications, and 7L+2 add or subtract operations. The coefficient update
in step 4 uses an additional 2L multiply and add/subtract operations, that
the total computational effort is 10L+2 multiplications, 9L+2 add/subtract
operations and 2 divisions.

8.6.3 The Fast a Posteriori Kalman RLS Algorithm

A careful inspection of Algorithm 8.10 reveals that the original fast Kalman
algorithm as introduced by Ljung et al. [281] is mainly based on the a priori
error equations. In the fast a posteriori error sequential technique (FAEST)
introduced by Carayannis et al. [282] to a greater extent the a posteriori
error is used. The algorithm explores even more the iterative nature of the
different parameters in the fast Kalman algorithm, which will reduce the com-
putational effort by an additional 2L multiplications. Otherwise, the original
fast Kalman and the FAEST use mainly the same ideas, i.e., extended by one

530 8. Adaptive Filters

length Kalman gain, and the use of the forward and backward predictions a
and b. We also introduce the forgetting factor ρ. The following listing shows
the inner loop of the FAEST algorithm in MatLab:

%********* FAEST Update of k, a, and b
ef=xin - a’*x; % a priori forward prediction error
ediva=ef/(rho*af); % a priori forward error/minimal error
ke(1)=-ediva; % extended Kalman gain vector update
ke(2:l+1)=k - ediva*a;% split the l+1 length vector
epsf=ef*psi; % a posteriori forward error
a=a+epsf*k; % update forward coefficients
k=ke(1:l) + ke(l+1).*b; % Kalman gain vector update
eb=-rho*alphab*ke(l1); % a priori backward error
alphaf=rho*alphaf+ef*epsf; % forward minimal error
alpha=alpha+ke(l+1)*eb+ediva*ef; % prediction crosspower
psi=1.0/alpha; % psi makes it a 2 div algorithm
epsb=eb*psi; % a posteriori backward error update
alphab=rho*alphab+eb*epsb; % minimum backward error
b=b-k*epsb; % update backward prediction coefficients
x=[xin;x(1:l-1)]; % shift new value into filter taps
%******** Time updating of the LS FIR filter
e=din-f’*x; % error: reference - filter output
eps=-e*psi; % a posteriori error of adaptive filter
f=f+w*eps; % coefficient update

The total effort (not counting the exponential weight with ρ) is 2 divisions,
7L+ 8 multiplications and 7L+ 4 additions or subtractions.

8.7 Comparison of LMS and RLS Parameters

Finally, Table 8.3 compares the algorithms we have introduced in this chap-
ter. The table shows a comparison in terms of computation complexity for the
basic stochastic gradient (SG) methods like signed LMS (SLMS), normalized
LMS (NLMS) or block LMS (BLMS) algorithm using a FFT. Transform-
domain algorithms are listed next, but the effort does not include the power
normalization, i.e., L normalizations in the transform domain. From the RLS
algorithms we have discussed the (fast) Kalman algorithm and the FAEST
algorithm. Lattice algorithm (not discussed) in general, require a large num-
ber of division and square root computations and it has been suggested to
use the logarithmic number system (see Chap. 2, p. 65) in this case [283].

The data in Table 8.3 are based on the discussion in Chap. 6 of DCT and
DFT and their implementation using fast DIF or DIT algorithms. For DCT or
DFT of length 8 and 16 more efficient (Winograd-type) algorithms have been
developed using even fewer operations. A length-8 DCT (see Fig. 6.23, p. 389),

8.7 Comparison of LMS and RLS Parameters 531

Table 8.3. Complexity comparison for LMS and RLS algorithms for length-L
adaptive filter. TDLMS without normalization. Add L multiplications and 2L
add/subtract and L divide, if normalization is used in the TDLMS algorithms.

Algorithm Implementation Computational load
mult add/sub div

SG LMS 2L 2L -
SLMS L 2L -
NLMS 2L + 1 2L + 2 1

BLMS (FFT) 10 log2(L) + 8 15 log2)L) + 30

SG Hadamard 2L 4L− 2 -
TDLMS Haar 2L 2L + 2 log2(L) -

DCT 2L + 3L
2

log2(L) + L 2L + 3L
2

log2(L) -
DFT 2L + 3L

2
log2(L) 2L + 3L

2
log2(L) -

KLT 2L + L2 + L 2L + 2L -

RLS direct 2L2 + 4L 2L2 + 2L− 2 2
fast Kalman 10L + 2 9L + 2 2

lattice 8L 8L 6L
FAEST 7L + 8 7L + 4 2

for instance, uses 12 multiplications and a DCT transform-domain algorithm
can then be implemented with 2×8+12 = 28 multiplications, which compares
to the FAEST algorithms 7×8+8 = 64. But this calculation does not take into
account that a power normalization is mandatory for all TDLMS (otherwise
there is no fast convergence compared with the standard LMS algorithm
[271, 272]). The effort for the division may be larger than the multiplication
effort. When the power normalization factor can be determined beforehand it
may be possible to implement the division with hardwired scaling operations.
FAEST needs only 2 divisions, independent of the ADF length.

A comparison of the RLS and LMS adaptation speed was presented in Ex-
ample 8.9 (p. 523), which shows that RLS-type algorithms adapt much faster
than the LMS algorithm, but the LMS algorithm can be improved essentially
with transform-domain algorithms, like the DCT-LMS. Also, error floor and
consistency of the error is, in general, better for the RLS algorithm, when
compared with LMS or TDLMS algorithms. But none of the RLS-type algo-
rithms can be implemented without division operations, which will require
usually a larger overall system bit width, at least a fractional number repre-
sentation, or even a floating-point representation [283]. The LMS algorithm
on the other hand, can be implemented with only a few bits as presented in
Example 8.5 (p. 504).

532 8. Adaptive Filters

Exercises

Note: If you have no prior experience with the Quartus II software, refer
to the case study found in Sect. 1.4.3, p. 29. If not otherwise noted use the
EP2C35F672C6 from the Cyclone II family for the Quartus II synthesis eval-
uations.

8.1: Suppose the following signal is given

x[n] = A cos[2πn/T + φ].

(a) Determine the power or variance σ2.
(b) Determine the autocorrelation function rxx[τ].
(c) What is the period of rxx[τ]?

8.2: Suppose the following signal is given

x[n] = A sin[2πn/T + φ] + n[n],

where n[n] is a white Gaussian noise with variance σ2
n.

(a) Determine the power or variance σ2 of the signal x[n]
(b) Determine the autocorrelation function rxx[τ].
(c) What is the period of rxx[τ]?

8.3: Suppose the following two signals are given:

x[n] = cos[2πn/T0] y[n] = cos[2πn/T1].

(a) Determine the cross-correlation function rxy[τ].
(b) What is the condition for T0 and T1 that rxy [τ] = 0?

8.4: Suppose the following signal statistics have been determined:

Rxx =

[
2 1
1 2

]
rdx =

[
4
5

]
Rdd [0] = 20.

Compute

(a) Compute R−1
xx .

(b) The optimal Wiener filter weight.
(c) The error for the optimal filter weight.
(d) The eigenvalues and the eigenvalue ratio.

8.5: Suppose the following signal statistics for a second-order system are given:

Rxx =

[
r0 r1

r1 r0

]
rdx =

[
c0

c1

]
Rdd [0] = σ2

d .

The optimal filter with coefficient should be f0 and f1.

(a) Compute R−1
xx .

(b) Determine the optimal filter weight error as a function of f0 and f1.
(c) Determine f0 and f1 as a function of r and c.
(d) Assume now that r1 = 0. What are the optimal filter coefficients f0 and f1?

Exercises 533

8.6: Suppose the desired signal is given as:

d[n] = cos[2πn/T0].

The reference signal x[n] that is applied to the adaptive filter input is given as

x[n] = sin[2πn/T0] + 0.5 cos[2πn/T1],

where T0 = 5 and T1 = 3. Compute for a second-order system:
(a) Rxx, rdx. and Rdd [0].
(b) The optimal Wiener filter weight.
(c) The error for the optimal filter weight.
(d) The eigenvalues and the eigenvalue ratio.
(e) Repeat (a)–(d) for a third-order system.

8.7: Suppose the desired signal is given as:

d[n] = cos[2πn/T0] + n[n],

where n[n] is a white Gaussion noise with variance 1. The reference signal x[n] that
is applied to the adaptive filter input is given as

x[n] = sin[2πn/T0],

where T0 = 5. Compute for a second-order system:
(a) Rxx, rdx. and Rdd [0].
(b) The optimal Wiener filter weight.
(c) The error for the optimal filter weight.
(d) The eigenvalues and the eigenvalue ratio.
(e) Repeat (a)–(d) for a third-order system.

8.8: Suppose the desired signal is given as:

d[n] = cos[4πn/T0]

where n[n] is a white Gaussian noise with variance 1. The reference signal x[n],
which is applied to the adaptive filter input, is given as

x[n] = sin[2πn/T0]− cos[4πn/T0],

with T0 = 5. Compute for a second-order system:
(a) Rxx, rdx. and Rdd [0].
(b) The optimal Wiener filter weight.
(c) The error for the optimal filter weight.
(d) The eigenvalues and the eigenvalue ratio.
(e) Repeat (a)–(d) for a third-order system.

8.9: Using the 4 FIR filters given in Sect. 8.3.1 (p. 493) use C or MatLab to compute
the autocorrelation function and the eigenvalue ratio using the autocorrelation for
of a (filtered) sequence of 10 000 white noise samples. For the following system
length (i.e., size of autocorrelation matrix):
(a) L = 2.
(b) L = 4.
(c) L = 8.
(d) L = 16.
Hint: The MatLab functions: randn, filter, xcorr, toeplitz, eig are helpful.

8.10: Using an IIR filter with one pole 0 < ρ < 1 use C or MatLab to compute the
autocorrelation function and plot the eigenvalue ratio using the autocorrelation for

534 8. Adaptive Filters

a (filtered) sequence of 10 000 white noise samples. For the following system length
(i.e., size of autocorrelation matrix):
(a) L = 2.
(b) L = 4.
(c) L = 8.
(d) L = 16.
(e) Compare the results from (a) to (d) with the theoretical value EVR = (1 +
ρ)/(1− ρ))2 of Markov-1 processes [269].
Hint: The MatLab functions: randn, filter, xcorr, toeplitz, eig are helpful.

8.11: Using the FIR filter for EVR = 1000 given in Sect. 8.3.1 (p. 493) use C or
MatLab to compute the eigenvectors of the autocorrelation for L = 16. Compare
the eigenvectors with the DCT basis vectors.

8.12: Using the FIR filter for EVR = 1000 given in Sect. 8.3.1 (p. 493) use C or
MatLab to compute the eigenvalue ratios of the transformed power normalized
autocorrelation matrices from (8.45) on page 502 for L = 16 using the following
transforms:
(a) Identity transform (i.e., no transform).
(b) DCT.
(c) Hadamard.
(d) Haar.
(e) Karhunen–Loéve.
(f) Build a ranking of the transform from (a)–(e).

8.13: Using the one pole IIR filter from Exercise 8.10 use C or MatLab to compute
for 10 values of ρ in the range 0.5 to 0.95 the eigenvalue ratios of the transformed
power normalized autocorrelation matrices from (8.45) on page 502 for L = 16
using the following transforms:
(a) Identity transform (i.e., no transform).
(b) DCT.
(c) Hadamard.
(d) Haar.
(e) Karhunen–Loéve.
(f) Build a ranking of the transform from (a)–(e).

8.14: Use C or MatLab to rebuild the power estimation shown for the nonstationary
signal shown in Fig. 8.15 (p. 497). For the power estimation use
(a) Equation (8.38) page 496.
(b) Equation (8.41) page 498 with β = 0.5.
(c) Equation (8.41) page 498 with β = 0.9.

8.15: Use C or MatLab to rebuild the simulation shown in Example 8.1 (p. 485)
for the following filter length:
(a) L=2.
(b) L=3.
(c) L=4.
(d) Compute the exact Wiener solution for L=3.
(e) Compute the exact Wiener solution for L=4.

8.16: Use C or MatLab to rebuild the simulation shown in Example 8.3 (p. 492)
for the following filter length:
(a) L=2.
(b) L=3.
(c) L=4.

Exercises 535

8.17: Use C or MatLab to rebuild the simulation shown in Example 8.6 (p. 511)
for the following pipeline configuration:
(a) DLMS with 1 pipeline stages.
(b) DLMS with 3 pipeline stages.
(c) DLMS with 6 pipeline stages.
(d) DLMS with 8 pipeline stages.

8.18: (a) Change the filter length of the adaptive filter in Example 8.5 (p. 504) to
three.
(b) Make a functional compilation (with the Quartus II compiler) of the HDL code
for the filter.
(c) Perform a functional simulation of the filter with the inputs d[n] and x[n].
(d) Compare the results with the simulation in Exercise 8.15b and d.

8.19: (a) Change the filter length of the adaptive filter in Example 8.5 (p. 504) to
four.
(b) Make a functional compilation (with the Quartus II compiler) of the HDL code
for the filter.
(c) Perform a functional simulation of the filter with the inputs d[n] and x[n].
(d) Compare the results with the simulation in Exercise 8.15c and e.

8.20: (a) Change the DLMS filter design from Example 8.6 (p. 511) pipeline of e[n]
only, i.e. DLMS with 1 pipeline stage.
(b) Make a functional compilation (with the Quartus II compiler) of the HDL code
for the filter.
(c) Perform a functional simulation of the filter with the inputs d[n] and x[n].
(d) Compare the results with the simulation in Exercise 8.17a.
(e) Determine the Registered Performance and the used resources (LEs, multi-
pliers, and M4Ks) of your D=1 design using the device EP2C35F672C6 from the
Cyclone II family.
(f) Repeat (e) for the EPF10K70RC240-4 from the Flex 10K family.

8.21: (a) Change the DLMS filter design from Example 8.6 (p. 511) pipeline of f
update only, i.e. DLMS with 3 pipeline stages.
(b) Make a functional compilation (with the Quartus II compiler) of the HDL code
for the filter.
(c) Perform a functional simulation of the filter with the inputs d[n] and x[n].
(d) Compare the results with the simulation in Exercise 8.17b.
(e) Determine the Registered Performance and the used resources (LEs, multi-
pliers, and M4Ks) of your D=3 design using the device EP2C35F672C6 from the
Cyclone II family.
(f) Repeat (e) for the EPF10K70RC240-4 from the Flex 10K family.

8.22: (a) Change the DLMS filter design from Example 8.6 (p. 511) pipeline with
an optimal number of stages, i.e. DLMS with 8 pipeline stages, 3 for each multiplier
and one stage each for e[n] and y[n].
(b) Make a functional compilation (with the Quartus II compiler) of the HDL code
for the filter.
(c) Perform a functional simulation the filter with the inputs d[n] and x[n].
(d) Compare the results with the simulation in Exercise 8.17d.
(e) Determine the Registered Performance and the used resources (LEs, multi-
pliers, and M4Ks) of your D=8 design using the device EP2C35F672C6 from the
Cyclone II family.
(f) Repeat (e) for the EPF10K70RC240-4 from the Flex 10K family.

9. Microprocessor Design

Introduction

When you think of current microprocessors (µPs), the Intel Itanium proces-
sor with 592 million transistors may come to mind. Designing this kind of
microprocessor with an FPGA, you may ask? Now the author has become
overconfident with the capabilities of today’s FPGAs. Clearly today’s FP-
GAs will not be able to implement such a top-of-the-range µP with a single
FPGA. But there are many applications where a less-powerful µP can be
quite helpful. Remember a µP trades performance of the hardwired solution
with gate efficiency. In software, or when designed as an FSM, an algorithm
like an FFT may ran slower, but usually needs much less resources. So the
µP we build with FPGAs are more of the microcontroller type than a fully
featured modern Intel Pentium or TI VLIW PDSP. A typical application we
discuss later would be the implementation of a controller for a radix-2 FFT.
Now you may argue that this can be done with an FSM. And yes that is true
and we basically consider our FPGA µP design nothing else then an FSM
augmented by a program memory that includes the operation the FSM will
perform, see Fig. 9.1. In fact the early versions of the Xilinx PicoBlaze proces-
sor were called Ken Chapman programmable state machine (KCPSM) [284].
A complete µP design usually involves several steps, such as the architecture
exploration phase, the instruction set design, and the development tools. We
will discuss these steps in the following in more details. You are encouraged
to study in addition a computer architecture book; there are many available
today as this is a standard topic in most undergraduate computer engineering
curricula [285, 286, 287, 288, 289, 290, 291]. But before we go into details of
µP design let us first have a look back at the begin of the µP era.

9.1 History of Microprocessors

Usually microprocessor are classified into three major classes: the general-
purpose or CISC processor, reduced instruction set processors (RISC), and
programmable digital signal processors (PDSP). Let us now have a brief look
how these classes of microprocessor have developed.

538 9. Microprocessor Design

ALU

DATA PATH

MEMORY

PROGRAM
CONTROL

DATA

Central processing unit (CPU)

Programmable state machine (PSM)

MEMORY

Fig. 9.1. The Xilinx KCPSM a.k.a. PicoBlaze.

9.1.1 Brief History of General-Purpose Microprocessors

By 1968 the typical general-purpose minicomputers in use were 16-bit archi-
tectures using about 200 MSI chips on a single circuit board. The MSI had
about 100 transistors each per chip. A popular question [292] then was: can
we also build a single CPU with (only) 150, 80, or 25 chips?

At about the same time Robert Noyce and Gordon Moore, formerly with
Fairchild Corp., started a new company first called NM Electronics and later
renamed Intel, whose main product was memory chips. In 1969 Busicom, a
Japanese calculator manufacture, asked Intel to design a set of chips for their
new family of programmable calculators. Intel did not have the manpower
to build the 12 different custom chips requested by Busicom, since good
IC designers at that time were hard to find. Instead Intel’s engineer Ted
Hoff suggested building a more-general four-chip set that would access its
instructions from a memory chip. A programmable state machine (PSM)
with memory was born, which is what we today call a microprocessor. After
nine months with the help of F. Faggin the group of Hoffs delivered the
Intel 4004, a 4-bit CPU that could be used for the BCD arithmetic used in
the Busicom calculators. The 4004 used 12-bit program addresses and 8-bit
instructions and it took five clock cycles for the execution of one instruction.
A minimum working system (with I/O chips) could be build out of two chips
only: the 4004 CPU and a program ROM. The 1 MHz clock allowed one to
add multidigit BCD numbers at a rate of 80 ns per digit [293].

Hoff’s vision was now to extend the use of the 4004 beyond calculators to
digital scales, taxi meters, gas pumps, elevator control, medical instruments,
vending machines, etc. Therefore he convinced the Intel management to ob-
tain the rights from Busicom to sell the chips to others too. By May 1971
Intel gave a price concession to Busicom and obtained in exchange the rights
to sell the 4004 chips for applications other then calculators.

9.1 History of Microprocessors 539

Table 9.1. The family of Intel microprocessors [294] (IA = instruction set archi-
tecture).

Name Year MHz IA Process #Trans-
intro. technology istors

4004 1971 0.108 4 10μ 2300
8008 1972 0.2 8 10μ 3500
8080 1974 2 8 6μ 4500
8086 1978 5-10 16 3μ 29K
80286 1982 6-12.5 16 1.5μ 134K
80386 1985 16-33 32 1μ 275K
80486 1989 25-50 32 0.8μ 1.2M
Pentium 1993 60-66 32 0.8μ 3.1M
Pentium II 1997 200-300 32 0.25μ 7.5M
Pentium 3 1999 650-1400 32 0.25μ 9.5M
Pentium 4 2000 1300-3800 32 0.18μ 42M
Xeon 2003 1400-3600 64 0.09μ 178M
Itanium 2 2004 1000-1600 64 0.13μ 592M

One of the concerns was that the performance of the 4004 could not com-
pete with state-of-the-art minicomputers at the time. But another invention,
the EPROM, also from Intel by Dov Frohamn-Bentchkovsky helped to mar-
ket a 4004 development system. Now programs did not need an IC factory
to generate the ROM, with the associated long delays in the development.
EPROMs could be programmed and reprogrammed by the developer many
times if necessary.

Some of Intel’s customer asked for a more-powerful CPU, and an 8-bit
CPU was designed that could handle the 4-bit BCD arithmetic of the 4004.
Intel decided to build a 8008 and it also supported standard RAM and ROM
devices, custom memory was no longer required as for the 4004 design. Some
of the shortcoming of the 8008 design were fixed by the 8080 design in 1974
that used now about 4500 transistors. In 1978 the first 16-bit µP was intro-
duced, the 8086. In 1982 the 80286 followed: a 16-bit µP but with about six
times the performance of the 8086. The 80386, introduced in 1985, was the
first µP to support multitasking. In the 80387 a mathematics coprocessor
was added to speed up floating-point operations. Then in 1989 the 80486 was
introduced with an instruction cache and instruction pipelining as well as a
mathematics coprocessor for floating-point operations. In 1993 the Pentium
family was introduced, with now two pipelines for execution, i.e., a super-
scalar architecture. The next generation of Pentium II introduced in 1997
added multimedia extension (MMX) instructions that could perform some
parallel vector-like MAC operations of up to four operands. The Pentium 3
and 4 followed with even more advanced features, like hyperthreading and
SSE instructions to speed up audio and video processing. The largest proces-
sor as of 2006 is the Intel Itanium with two processor cores and a whopping

540 9. Microprocessor Design

1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007
0

5

10

15

20

25

30

35

Year

R
ev

en
ue

 in
 B

ill
io

n
$

Intel
Samsung
TI
Toshiba
STMicro.
Renesas
Motorola
NEC
AMD
Infineon
Philips

Fig. 9.2. Top semiconductor company revenue.

592 million transistors. It includes 9 MB of L3 cache alone. The whole family
of Intel processors is shown in Table 9.1.

Looking at the revenue of semiconductor companies it is still impressive
that Intel has maintained its lead over many years mainly with just one
product, the microprocessor. Other microprocessor-dominated companies like
Texas Instruments, Motorola/Freescale or AMD have much lower revenue.
Other top companies such as Samsung or Toshiba are dominated by memory
technology, but still do not have Intel’s revenue, which has been in the lead
for many years now.

9.1.2 Brief History of RISC Microprocessors

The Intel architecture discussed in the last section is sometimes called a
complex instruction set computer (CSIC). Starting from the early CPUs,
subsequent designs tried to be compatible, i.e., being able to run the same
programs. As the bitwidth of data and programs expanded you can imagine
that this compatibility came at a price: performance, although Moore’s law
allowed this CISC architecture to be quite successful by adding new com-
ponents and features like numeric coprocessors, data and program caches,
MMX, and SSE instructions and the appropriate instructions that support
these additions to improve performance. Intel µPs are characterized by having

9.1 History of Microprocessors 541

many instructions and supporting many addressing modes. The µP manuals
are usually 700 or more pages thick.

Around 1980 research from CA University of Berkeley (Prof. Patterson),
IBM (later called PowerPC) and at Stanford University (Prof. Henessy, on
what later become the microprocessor without interlocked pipeline stages,
i.e., MIPS µP family) analyzed µPs and came to the conclusion that, from a
performance standpoint, CISC machines had several problems. In Berkeley
this new generation of µPs were called RISC-1 and RISC-2 since one of their
most important feature was a limited number of instructions and addressing
modes, leading to the name reduced instruction set computer (RISC).

Let us now briefly review some of the most important features by which
(at least early) RISC and CISC machines could be characterized.

• The instruction set of a CISC machines is rich, while a RISC machine
typically supports fewer than 100 instructions.

• The word length of RISC instructions is fixed, and typically 32 bits long.
In a CISC machine the word length is variable. In Intel machines we find
instructions from 1 to 15 bytes long.

• The addressing modes supported by a CISC machine are rich, while in
a RISC machine only very few modes are supported. A typically RISC
machine supports just immediate and register base addressing.

• The operands for ALU operations in a CISC machine can come from in-
struction words, registers, or memory. In a RISC machine no direct memory
operands are used. Only memory load/store to or from registers is allowed
and RISC machine are therefore called load/store architectures.

• In subroutines parameters and data are usually linked via a stack in CISC
machines. A RISC machine has a substantial number of registers, which
are used to link parameter and data to subroutines.

In the early 1990s it become apparent that neither RISC nor CISC archi-
tectures in their purest form were better for all applications. CISC machines,
although still supporting many instruction and addressing modes, today take
advantage of a larger number of CPU registers and deep pipelining. RISC
machines today like the MIPS, PowerPC, SUN Sparc or DEC alpha, have
hundreds of instructions, and some need multiple cycles and hardly fit the
title reduced instruction set computer.

9.1.3 Brief History of PDSPs

In 1980 Intel [295] introduced the 2930, an analog signal processor that was
used in control systems and included an ADC and DAC on chip1 to implement
the algorithms in a DSP-like fashion, see Fig. 9.3.
1 We would call today such a µP a microcontroller, since I/O functions are inte-

grated on the chip.

542 9. Microprocessor Design

LOGIC
&

PROGRAM
COUNTER

CLOCK

SIGIN(1)
SIGIN(0)

RUN
VSP

ALU

D
A

R

SCRATCH
PAD

A

B
B

D/A

MEMORY

SIGOUT(6)
SIGOUT(5)
SIGOUT(4)

VREF

SIGOUT(7)

SIGIN(3)
SIGIN(2)

SH
IF

T

194x24

A/D

RST

MUX
&

S&H

PROGRAM STORAGE (EPROM)

&
S&H’s

SIGOUT(3)
SIGOUT(2)
SIGOUT(1)
SIGOUT(0)

DMUX

Fig. 9.3. The 2920 functional block diagram [295].

The 2920 had a 40 × 25 bit scratch path memory, a 192-word program
EPROM, a shifter, and an ALU and could implement multiplications with a
series shift-and-add/subtracts.

Example 9.1: A multiplication in the 2920 with a constant C = 1.8818410 =
1.11100001112 was coded first in CSD as C = 10.001̄0001001̄2 and was then imple-
mented with the following instructions:

ADD Y,X,L01;
SUB Y,X,R03;
ADD Y,X,R07;
SUB Y,X,R10;

where the last operand Rxx (Lxx) describes the right (left) shift by xx of the second
operand before the adding or subtracting. 9.1

There are a few building block macrofunctions that can be used for the 2920,
they are listed in the following table:

Function # Instructions

Constant multiply 1-5
Variable multiply 10-26
Triangle generator 6-10
Threshold detector 2-4
Sine wave generator 8-12
Single real pole 2-6

although we will not call the 2920 a PDSP it shares same important fea-
tures with the PDSP, which was improved with the first-generation PDSPs
introduced at the start of the 1980s. The first-generation PDSPs like TI’s
TSM320C10 and NEC’s µPD 7720 were characterized by a Harvard architec-
ture, i.e., the program and data were located in separate memory. The first

9.1 History of Microprocessors 543

1999 2001 2003 2005
0

2

4

6

8

PDSP revenue
R

ev
en

ue
 in

 B
ill

io
n

$

Year

49%

13%

19%

10%

9%

TI
Agere
Others
Freescale
Analog Dev.

(a) (b)

Fig. 9.4. PDSPs (a) processor revenue. (b) Market share (Agere formerly Lu-
cent/AT&T; Freescale formerly Motorola).

generation also had a hardwired multiplier that consumed most of the chip
area and allowed a single multiply in one clock cycle. The second-generation
PDSPs introduced around 1985 with TI’s TMS 320C25, Motorola’s MC56000,
or the DSP16 from AT&T allowed a MAC operation in one clock cycle and
zero-overhead loops were introduced. The third generation of PDSPs, with
µPs like the TMS320C30, Motorola’s 96002, and the DSP32C, introduced
after 1988, now supported a single clock cycle 32-bit floating-point multipli-
cation typically using the IEEE single-precision floating-point standard, see
Sect. 2.2.3, p. 71. The forth generation with the TMS320C40 and TMS320C80
introduced around 1992 now included multi-core MACs. The newest and
most powerful PDSPs introduced after 1997 like the TMS320C60x, Philips
Trimedia, or Motorola Starcore, are very long instruction word (VLIW) ma-
chines. Other architectures in today’s PDSPs are SIMD architectures (e.g.,
ADSP-2126x SHARC), superscalar machines (e.g., Renesas SH77xxx), matrix
math engine (e.g., Intrinsity, FastMath), or a combination of these techniques.
PDSPs architectures today are more diverse than ever.

PDSPs have done very well in the last 20 years, as can be seen from
Fig. 9.4a and are expected to deliver three trillion instructions per second
by 2010 [296]. The market share of PDSPs has not changed much over the
years and is shown in Fig. 9.4b, with Texas Instruments (TI) leading the
field by a large margin. Recently some PDSP cores have also become avail-
able for FPGA designs such as Cast Inc.’s (www.cast.com) version of the TI
TMS32025 and Motorola/Freescale’s 56000. We can assume that most of the
core instructions and architecture features are supported, while some of the
I/O units such as the timer, DMA, or UARTs included on the PDSPs are
usually not implemented in the FPGA cores.

544 9. Microprocessor Design

9.2 Instruction Set Design

The instruction set of a microprocessor (µP) describes the collection of actions
a µP can perform. The designer usually asks first, which kind of arithmetic
operation do I need in the applications for which I will use my µP. For DSP
application, for instance, special concern would be applied to support for
(fast) add and multiply. A multiply done by a series of smaller shift-adds
is probably not a good choice in heavy DSP processing. As well as these
ALU operations we also need some data move instructions and some program
flow-type instructions such as branch or goto.

The design of an instruction set also depends however on the underlying
µP architecture. Without considering the hardware elements we can not fully
define our instruction set. Because instruction set design is a complex task,
it is a good idea to break up the development into several steps. We will
proceed by answering the following questions:

1) What are the addressing modes the µP supports?
2) What is the underlying data flow architecture, i.e., how many operands

are involved in an instruction?
3) Where can we find each of these operands (e.g., register, memory, ports)?
4) What type of operations are supported?
5) Where can the next instruction be found?

9.2.1 Addressing Modes

Addressing modes describe how the operands for an operation are located.
A CISC machine may support many different modes, while a design for per-
formance like in RISC or PDSPs requires a limitation to the most often used
addressing modes. Let us now have a look at the most frequently supported
modes in RISC and PDSPs.

Implied addressing. In implied addressing operands come from or go to
a location that is implicitly and not explicitly defined by the instruction,
see Fig. 9.5. An example would be the ADD operation (no operands listed)
used in a stack machine. All arithmetic operations in a stack machine are
performed using the two top elements of the stack. Another example is the
ZAC operation of a PDSP, which clears the accumulator in a TMS320 PDSP
[297]. The following listing shows some examples of implied addressing for
different microprocessors:

9.2 Instruction Set Design 545

Operand

Operand

Operand

Extention?

Reg file

Register

M
SB

s

Instruction Additional elements involvedAddressing
mode

Implied
Special location

in the machine

Immediate

Fig. 9.5. Implied, immediate and register addressing.

Instruction Description µP

ZAT Clear accumulator and T register. TMS320C50

APAC
The contents of the P register is added
to the accumulator register and replaces
the accumulator register value.

TMS320C50

RET
The PC is loaded with the value of the
ra register. Nios II

BRET
Copies the b status into the status reg-
ister and loads the PC with the ba reg-
ister value.

Nios II

Immediate addressing. In the immediate addressing mode the operand
(i.e., constant) is included in the instruction itself. This is shown in Fig. 9.5.
A small problem arises due to the fact that the constant provided within
one instruction word is usually shorter in terms of number of bits than the
(full) data words used in the µP. There are several approaches to solve this
problem:

a) Use a sign extension since most constants (like increments or loop coun-
ters) used in programs are small and do not require full length anyway.
We should use sign extension (i.e., MSB is copied to the high word) rather
then zero extension so that the value −1 is extended correctly (see the
MPY -5 example below).

546 9. Microprocessor Design

b) Use two or more separate instructions to load the low and high parts
of the constant one after the other and concatenate the two parts to a
full-length word (see the LPH DAT0 example below).

c) Use a double-length instruction format to access long constants. If we
extend the default size by a second word, this usually provides enough
bits to load a full-precision constant (see RPT #1111h example below).

d) Use a (barrel) shift alignment of the operand that aligns the constant
in the desired way (see ADD #11h,2 example below).

The following listing shows five examples for immediate addressing for
different microprocessors. Examples 2-5 describe the extension method men-
tioned above.

Instruction Description µP

CNTR=10; Set the loop counter to 10. ADSP

MPY -5

The 13-bit constant is sign extended
to 16 bits and then multiplied by the
TREG0 register and the result is stored
in the P register.

TMS320C50

LPH DAT0
Load the upper half of the 32-bit prod-
uct register with the data found in
memory location DAT0.

TMS320C50

RPT #1111h

Repeat the next instruction 111116 +
1 = 437010 times. This is a two-word
instruction and the constant is 16 bits
long.

TMS320C50

ADD #11h,2 Add 11h shifted by two bits to the ac-
cumulator.

TMS320C50

To avoid having always two memory accesses, we can also combine method
(a) sign extension and (b) high/low addressing. We then only need to make
sure that the load high is done after the sign extension of the low word.

Register addressing. In the register addressing mode operands are ac-
cessed from registers within the CPU, and no external memory access takes
place, see Fig. 9.5. The following listing shows some examples of register
addressing for different microprocessors:

9.2 Instruction Set Design 547

Instruction Description µP

MR=MX0*MY0(RND)
Multiply the MX0 and MY0 regis-
ters with round and store in the
MR register.

ADSP

SUB sA,sB
Subtract the sB from the sA reg-
ister and store in the sA register. PicoBlaze

XOR r6,r7,r8

Compute the logical exclusive
XOR of the registers r7 and r8
and store the result in the regis-
ter r6.

Nios II

LAR AR3,#05h Load the auxiliary register AR3
with the value 5.

TMS320C50

OR %i1,%i2
OR the registers i1 and i2 and
replace i1. Nios

SWAP %g2
Swap the 16-bit half-word values
in the 32-bit register g2 and put
it back in g2.

Nios

Since in most machines register access is much faster and consumes less
power than regular memory access this is a frequently used mode in RISC
machines. In fact all arithmetic operations in a RISC machine are usually
done with CPU registers only; memory access is only allowed via separate
load/store operations.

Memory addressing. To access external memory direct, indirect, and com-
bination modes are typically used. In the direct addressing mode part of the
instruction word specifies the memory address to be accessed, see Fig. 9.6, and
the FETCH example below. Here the same problem as for immediate address-
ing occurs: the bits provided in the instruction word to access the memory
operand is too small to specify the full memory address. The full address
length can be constructed by using an auxiliary register that may be ex- or
implicitly specified. If the auxiliary register is added to the direct memory
address this is called based addressing, see the LDBU example below. If the
auxiliary register is just used to provide the missing MSB this is called page-
wise addressing, since the auxiliary register allows us to specify a page within
which we can access our data, see the AND example below. If we need to access
data outside the page, we need to update the page pointer first. Since the
register in the based addressing mode represents a full-length address we can
use the register without a direct memory address. This is then called indirect
addressing, see the PM(I6,M6) example below.

The following listing shows four examples for typical memory addressing
modes for different microprocessors.

548 9. Microprocessor Design

Instruction Description µP

FETCH sX,ss
Read the scratch pad RAM loca-
tion ss into register sX. PicoBlaze

LDBU r6,100(r5)

Compute the sum of 100 and
the register r5 and load the data
from this address into the regis-
ter r6.

Nios II

AND DAT16

Assuming that the 9-bit data
page register points to page 4,
this will access the data word
from memory location 4× 128 +
16 and perform an AND operation
with the accumulator.

TMS320C50

PM(I6,M6)=AR

The AR register is stored in the
program memory by using the
register I6 as the address. Af-
ter the memory access the ad-
dress register I6 is incremented
by the value from the modify reg-
ister M6.

ADSP

Since the indirect address mode can usually only point to a limited number
of index registers this usually shortens the instruction words and it is the most
popular addressing mode in PDSPs. In RISC machines based addressing is
preferred, since it allows easy access to an array by specifying the base and
the array element via an offset, see the LDBU example above.

PDSP specific addressing modes. PDSPs are known to process DSP
algorithms much more efficiently than standard GPP or RISC machines. We
now want to discuss three addressing modes typical used in PDSPs that have
shown to be particular helpful in DSP algorithms:

• Auto de/increment addressing
• Circular addressing
• Bitreversed addressing

The auto and circular addressing modes let us compute convolutions and
correlations more efficiently, while bitreversed addressing is used in FFT al-
gorithms.

The auto increment or decrement of the address pointer is a typical ad-
dress modification that is used in PDSPs for convolutions or correlations.
Since convolutions or correlations can be described by a repeated multiply-
accumulate (MAC) operation, i.e., the inner (scalar) product of two vec-
tors [see (3.2), p. 166] it can be argued that, after each MAC operation, an
address modification increment or decrement depending on the ordering of
the data and coefficient is necessary to update the address pointer for the

9.2 Instruction Set Design 549

Operand

Operand

Operand

Memory
Operand

Memory

Reg file

Indirect

DMA

Base

L
SB

s

Concardinate

M
SB

s
Reg filePaged

Reg file

ADD

Instruction Additional elements involvedAddressing
mode

Direct Memory

Memory

Fig. 9.6. Memory addressing: direct, based, paged, and indirect.

next data/coefficient pair. After each memory access a de/increment of the
data/coefficient read pointer is therefore performed. This allow us to design
a single-cycle MAC – the address update is not done by the CPU as in RISC
machines; a separate address register file is used for this purpose, see Fig. 9.7.
An FIR filtering using the ADSP assembler coding can be done via the fol-
lowing few steps:

CNTR = 256;
MR=0, MX0=DM(I0,M1), MY0(I4,M5)
DO FIR UNTIL CE;

FIR: MR=MR+MX0*MY0(SS), MX0=DM(I0,M1), MY0=PM(I4,M5)

After initializing the loop counter CNTR and the pointer for data x coming
from the data memory DM and y coming from the program memory PM, the
DO UNTIL loop allows one to compute one MAC instruction and two data
loads in each clock cycle. The data pointers I0 and I4 are then updated via
M1 and M5, respectively. This example also shows another feature of PDSPs,

550 9. Microprocessor Design

Table 9.2. Properties of PDSPs useful in convolutions (c©1999 Springer Press [5]).

Vendor Type
Accu
bits

Super
Harvard

Modulo
address

Bit-
re-

verse

Hard-
ware
loops

MAC
rate
MHz

PDSPs 16×16 bit integer multiplier

Analog ADSP-2187 40 � � � � 52
Device ADSP-21csp01 40 � � − − 50

Lucent DSP1620 36 � − � � 120

Motorola DSP56166 36 � � � � 60

NEC µPD77015 40 � � � � 33

Texas TMS320F206 32 � − � � 80
Instrum- TMS320C51 32 � � � � 100
ents TMS320C549 40 � � � � 200

TMS320C601 40 2 MAC � � � 200
TMS320C80 32 4 MAC � � � 50

PDSPs 24×24 bit integer multiplier

Motorola DSP56011 56 � � � � 80
DSP56305 56 � � � � 100

PDSPs 24×24 bit float multiplier

Analog
Device SHARC 21061 80 � � � � 40

Motorola DSP96002 96 � � � � 60

Texas TMS320C31 40 � � � � 60
Instru- TMS320C40 40 � � � � 60
ments

the so-called zero-overhead loop. The update and loop counter check done at
the end of the loop do not require any additional cycles as in GPP or RISC
machines.

To motivate circular addressing let us revisit how data and coefficient
typically are arranged in a continuous data processing scheme. In the first
instance to compute y[0] the data x[k] and coefficient f [k] are aligned as
follows:

f [L− 1] f [L− 2] f [L− 3] · · · f [1] f [0]
x[0] x[1] x[2] · · · x[L− 2] x[L− 1]

where the coefficient and data in the same column are multiplied and all
products are accumulated to compute y[0]. In the next step to compute y[1]
we need the following data

9.2 Instruction Set Design 551

16

2

2

INSTRUCTION
FROM

FROM

14
14

14

L
REGISTERS

4x14

DMD−BUS

14 MUX

LOGIC
MODULUS REGISTERS

4x14

I
REGISTERS

4x14

M

REVERSE

ADDRESS

BIT

ONLY
DAG#1

ADD

INSTRUCTION

Fig. 9.7. Address generation in the ADSP programmable digital signal processor.

f [L− 1] f [L− 2] f [L− 3] · · · f [1] f [0]
x[1] x[2] x[3] · · · x[L − 1] x[L]

We can solve this problem by shifting every data word after a MAC operation.
The TMS320 family, for instance, provides such a MACD, i.e., a MAC plus data
move instruction [298]. After N MACD operations the whole vector x is shifted
by one position. Alternatively we can look at the data that are used in the
computation and we see that all data can stay in the same place; only the
oldest element x[0] needs to be replaced by x[L] – the other coefficients keep
their place. We therefore have the following memory arrangement for the x
data vector:

x[L] x[1] x[2] · · · x[L − 2] x[L− 1]

If we now start our data pointer with x[1] the processing works fine as before;
only when we reach the end of the data buffer x[L − 1] we do need to reset
the address pointer. Assuming the address buffer can be described by the
following four parameters:

• L = buffer length
• I = current address
• M = modify value (signed)
• B = base address of buffer

we can describe the required address computation by the following equation

new address = (I +M −B) mod L+B. (9.1)

This is called circular addressing, since after each memory modification we
check if the resulting address is still in the valid range. Figure 9.7 shows the
address generator that is used by the ADSP PDSPs, using (9.1).

552 9. Microprocessor Design

The third special addressing mode we find in PDSPs is used to simplify
the radix-2 FFT. We have discussed in Chap. 6 that the input or output
sequence in radix-2 FFTs appear in bitreverse order, see Fig. 6.14, p. 367.
The bitreverse index computation usually take many clock cycles in software
since the location of each bit must be reversed. PDSPs support this by a
special addressing mode as the following example shows.

Example 9.2: The ADSP [299] and TMS320C50 [298] both support bitreverse
addressing. Here is an assembler code example from the TMS320 family:

ADD * BR0-,8

The content of the INDX register is first subtracted from the current auxiliary regis-
ter. Then a bitreverse of the address value is performed to locate the operand. The
loaded data word is added after a shift of 8 bits to the accumulator. 9.2

Table 9.2 shows an overview of PDSPs and the supported addressing
modes. All support auto de/increment. Circular buffers and bitreverse is also
supported by most PDSPs.

9.2.2 Data Flow: Zero-,One-, Two- or Three-Address Design

A typical assembler coding of an instruction lists first the operation code
followed by the operand(s). A typical ALU operation requires two operands
and, if we also want to specify a separate result location, a natural way that
makes assembler easy for the programmer would be to allow that the in-
struction word has an operation code followed by three operands. However,
a three-operand choice can require a long instruction word. Assume our em-
bedded FPGA memory has 1K words then at least 30 bits, not counting
the operation code, are required in the direct addressing mode. In a modern
CPU that address 4 GB requires a 32-bit address, three operands in direct
addressing would require at least 96-bit instruction words. As a result limit-
ing the number of operands will reduce the instruction word length and save
resources. A zero-address or stack machine would be perfect in this regard.
Another way would be to use a register file instead of direct memory access
and only allow load/store of single operands as is typical in RISC machines.
For a CPU with eight registers we would only need 9 bits to specify the three
operands. But we then need extra operation code to load/store data memory
data in the register file.

In the following sections we will discuss the implications the hardware
and instruction sets when we allow zero to three operands in the instruction
word.

Stack machine: a zero-address CPU. A zero-address machine, you may
ask, how can this work? We need to recall from the addressing modes, see
Sect. 9.2.1, p. 544, that operands can be specified implicitly in the instruction.
For instance in a TI PDSP all products are stored in the product register P,

9.2 Instruction Set Design 553

and this does not need to be specified in the multiply instruction since all
multiply results will go there. Similarly in a zero-address or stack machine, all
two-operand arithmetic operations are performed with the two top elements
of a stack [300]. A stack by the way can be seen as a last-in first-out (LIFO).
The element we put on the stack with the instruction PUSH will be the first
that comes out when we use a POP operation. Let us briefly analyze how an
expression like

d = 5− a+ b ∗ c (9.2)

is computed by a stack machine. The left side shows the instruction and the
right side the contents of the stack with four entries. The top of the stack is
to the left.

Instruction Stack
TOP 2 3 4

PUSH 5 5 − − −
PUSH a a 5 − −
SUB 5− a − − −
PUSH b b 5− a − −
PUSH c c b 5− a −
MUL c× b 5− a − −
ADD c× b+ 5− a − − −
POP d − − − −

It can be seen that all arithmetic operations (ADD, SUB, MUL) use the im-
plicitly specified operands top-of-stack and second-of stack, and are in fact
zero-address operations. The memory operations PUSH and POP however re-
quire one operand.

The code for the stack machine is called postfix (or reverse Polish) op-
eration, since first the operands are specified and then the operations. The
standard arithmetic as in (9.2) is called infix notation, e.g., we have the two
congruent representations:

5− a+ b ∗ c︸ ︷︷ ︸
Infix

←→ 5a− bc ∗+︸ ︷︷ ︸
Postfix

(9.3)

In Exercises 9.8-9.11 (p. 636) some more examples of these two different
arithmetic modes are shown. Some may recall that the postfix notation is
exactly the same coding the HP41C pocket calculator requires. The HC41C
too used a stack with four values. Figure 9.8a shows the machine architecture.

Accumulator machine: a one-address CPU. Let use now add a single
accumulator to the CPU and use this accumulator both as the source for one
operand and as the destination for the result. The arithmetic operations are
of the form

acc← acc � op1, (9.4)

554 9. Microprocessor Design

Second of stack

Third of stack

Last of stack

register file

Top of stack

ALUPUSH

POP or
Op1

Memory or

Op1

STORE

LOAD

register file
Memory or

ALU

Accumulator

(a) (b)

Fig. 9.8. (a) Stack CPU architecture. (b) Accumulator machine architecture.

where � describes an ALU operation like ADD, MUL, or AND. The underlying
architecture of the TI TMS320 [297] family of PDSPs is of this type and is
shown in Fig. 9.8b. In ADD or SUB operations, for instance, a single operand
is specified. The example equation (9.2) from the last section would be coded
in the TMS320C50 [298] assembler code as follows:

Instruction Description

ZAP ; Clear accu and P register
ADD #5h ; Add 5 to the accu
SUB DAT1 ; Subtract DAT1 from the accu
LT DAT2 ; Load DAT2 in the T register
MPY DAT3 ; Multiply T and DAT3 and store in P register
APAC ; Add the P register to the accu
SACL DAT4 ; Store accu at the address DAT4

The example assumes that the variables a-d have been mapped to data mem-
ory words DAT1-DAT4. Comparing the stack machine with the accumulator
machine we can make the following conclusions:

• The size of the instruction word has not changed, since the stack machine
also requires POP and PUSH operations that include an operand

• The number of instructions to code an algebraic expression is not essentially
reduced (seven for an accumulator machine; eight for a stack machine)

A more-substantial reduction in the number of instructions required to code
an algebraic expression is expected when we use a two-operand machine, as
discussed next.

9.2 Instruction Set Design 555

The two-address CPU. In a two-address machine we have arithmetic op-
erations that allows us to specify the two operands independently, and the
destination operand is equal to the first operand, i.e., the operations are of
the form

op1← op1 � op2, (9.5)

where � describes an ALU operation like SUB, DIV, or NAND. The PicoBlaze
from Xilinx [301, 284] and the Nios processor [302] from Altera use this kind
of data flow, which is shown in Fig. 9.9a. The limitation to two operands
allows in these cases the use of a 16-bit instruction word2 format. The coding
of our algebraic example equation (9.2) would be coded in assembler for the
PicoBlaze as follows:

Instruction Description

LOAD sD,sB ; Store register B in register D
MUL sD,sC ; Multiply D with register C
ADD sD,5 ; Add 5 to D
SUB sD,sA ; Subtract A from D

In order to avoid an intermediate result for the product a rearrangement of
the operation was necessary. Note that PicoBlaze does not have a separate
MUL operation and the code is therefore for demonstration of the two-operand
principle only. The PicoBlaze uses 16 registers, each 8 bits wide. With two
operands and 8-bit constant values this allows us to fit the operation code
and operands or constant in one 16-bit data word.

We can also see that two-operand coding reduces the number of operations
essentially compared with stack or accumulator machines.

The three-address CPU. The three-address machine is the most flexible
of all. The two operands and the destination operand can come or go into
different registers or memory locations, i.e., the operations are of the form

op1← op2 � op3. (9.6)

Most modern RISC machine like the PowerPC, MicroBlaze or Nios II favor
this type of coding [303, 304, 305]. The operands however are usually register
operands or no more than one operand can come from data memory. The
data flow is shown in Fig. 9.9b.

Programming in assembler language with the three-operand machine is
a straightforward task. The coding of our arithmetic example equation (9.2)
will look for a Nios II machine as follows:
2 Some recent PicoBlaze coding now use 18-bit instruction words since this is the

memory width of the Xilinx block RAMs [284, 301].

556 9. Microprocessor Design

Memory or

Result
Op1

register file

ALU

Op2

register file
Memory or

Result

Op2

ALU

Op1

Op3

(a) (b)

Fig. 9.9. (a) Two address CPU architecture. (b) Three address machine architec-
ture.

Instruction Description

SUBI r4,r1,5 ; Subtract 5 from r1 register and store in r4
MUL r5,r2,r3 ; Multiply registers r2 and r3 and store in r5
ADD r4,r4,r5 ; Add registers r4 and r5 and store in r4

assuming that the registers r1-r4 hold the values for the variables a through
d. This is the shortest code of all four machines we have discussed so far.
The price to pay is the larger instruction word. In terms of hardware imple-
mentation we will not see much difference between two- and three-operand
machines, since the register files need separate multiplexer and demultiplexer
anyway.

Comparison of Zero-,One-, Two- and Three-Address CPUs

Let us summarize our findings:

• The stack machine has the longest program and the shortest individual
instructions.

• Even a stack machine needs a one-address instruction to access memory.
• The three-address machine has the shortest code but requires the largest

number of bits per instruction.
• A register file can reduce the size of the instruction words. Typically in

three-address machines two registers and one memory operand are allowed.
• A load/store machine only allows data moves between memory and regis-

ters. Any ALU operation is done with the register file.
• Most designs make the assumption that register access is faster than mem-

ory access. While this is true in CBIC or FPGAs that use external memory,

9.2 Instruction Set Design 557

Table 9.3. Comparison of different design goal in zero- to three-operand CPUs.

Goal # of operands
0 1 2 3

Ease of assembler worst best
Simple C compiler best worst
of code words worst best
Instruction length best worst
Range of immediate worst best
Fast operand fetch and decode best worst
Hardware size best worst

inside the FPGA register file access and embedded memory access times
are in the same range, providing the option to realize the register file with
embedded (three-port) memories.

The above finding seems unsatisfying. There seems no best choice and as
a result each style has been used in practice as our coding examples show.
The question then is: why hasn’t one particular data flow type emerged as
optimal? An answer to this question is not trivial since many factors, like ease
of programming, size of code, speed of processing, and hardware requirements
need to be considered. Let us compare the different designs based on this
different design goals. The summary is shown in Table 9.3.

The ease of assembler coding is proportional to the complexity of the
instruction. A three-address assembler code is much easier to read and code
than the many PUSH and POP operations we find in stack machine assembler
coding. The design of a simple C compiler on the other hand is much simpler
for the stack machine since it easily employs the postfix operation that can
be much more simply analyzed by a parser. Managing a register file in an
efficient way is a very hard task for a compiler. The number of code words in
arithmetic operation is much shorter for two- and three-address operation,
since intermediate results can easily be computed. The instruction length is
directly proportional to the number of operands. This can be simplified by
using registers instead of direct memory access, but the instruction length
still is much shorter with less operands. The size of the immediate operand
that can be stored depends on the instruction length. With shorter instruction
words the constants that can be embedded in the instructions are shorter and
we may need multiple load or double word length instructions, see Fig. 9.6
(memory addressing). The operand fetch and decode is faster if fewer operands
are involved. As a stack machine always uses the two top elements of a stack,
no long MUX or DEMUX delays from register files occur. The hardware size
mainly depends on the register file. A three-operand CPU has the highest
requirements, a stack machine the smallest; ALU and control unit are similar
in size.

558 9. Microprocessor Design

Program

Data Y

Program

(a)

CPU

program

and

Data X,Y

CPU

(b)

Data X,Y

CPU

(c)

Data X

Cache Cache Cache

Fig. 9.10. Memory architectures (a) Von-Neuman machine (GPP) [15, 16]. (b)
Harvard architecture with separate program and data bus. (c) Super Harvard ar-
chitecture with two data busses.

In conclusion we can say that each particular architecture has its strengths
and weaknesses and must also match the designer tools, skills, design goal
in terms of size/speed/power, and development tools like the assembler, in-
struction set simulator, or C compiler.

9.2.3 Register File and Memory Architecture

In the early days of computers when memory was expensive von Neuman
suggested a new highly celebrated innovation: to place the data and program
in the same memory, see Fig. 9.10a. At that time computer programs were
often hardwired in an FSM and only data memory used RAM. Nowadays
the image is different: memory is cheap, but access speed is still for a typical
RISC machine much slower than for CPU registers. In a three-address ma-
chine we therefore need to think about where the three operands should come
from. Should all operands be allowed to come from main memory, or only
two or one, or should we implement a load/store architecture that only allows
single transfer between register and memory, but require that all ALU oper-
ations are done with CPU registers? The VAX PDP-11 is always quoted as
the champion in this regard and allows multiple memory as well as multiple
register operations. For an FPGA design we have the additional limitation
that the number of instruction words is typically in the kilo range and the
von Neuman approach is not a good choice. All the requirements for mul-
tiplexing data and program words would waste time and can be avoided if
we use separate program and data memory. This is what is called a Harvard
architecture, see Fig. 9.10b. For PDSPs designs it would be even better (think
of an FIR filter application) if we can use three different memory ports: the
coefficient and data come from two separate data memory locations x and y,
while the accumulated results are held in CPU registers. The third memory
is required for the program memory. Since many DSP algorithms are short,
some PDSPs like the ADSP try to save the third bus by implementing a

9.2 Instruction Set Design 559

small cache. After the first run through the loop the instructions are in the
cache and the program memory can be used as a second data memory. This
three-bus architecture is shown in Fig. 9.10c and is usually called a super
Harvard architecture.

A GPP machine like Intel’s Pentium or RISC machines usually use a
memory hierarchy to provide the CPU with a continuous data stream but
also allow one to use cheaper memory for the major data and programs. Such
a memory hierarchy starts with very fast CPU registers, followed by level-1,
level-2 data and/or program caches to main DRAM memory, and external
media like CD-ROMs or tapes. The design of such a memory system is much
more sophisticated then what we can design inside our FPGA.

From a hardware implementation standpoint the design of a CPU can be
split into three main parts:

• Control path, i.e., a finite state machine,
• ALU
• Register file

of the three items, although not difficult to design, the register file seems to
be the block with the highest cost when implemented with LEs. From these
high implementation costs it appears that we need to compromise between
more registers that make a µP easy to use and the high implementation costs
of a larger file, such as 32 registers. The following example shows the coding
of a typical RISC register file.

Example 9.3: A RISC Register File
When designing a RISC register file we usually have a larger number of
registers to implement. In order to avoid additional instructions for indirect
addressing (offset zero) or to clear a register (both operands zero) or register
move instructions, usually the first register is set permanently to zero. This
may appear to be a large waste for a machine with few registers, but simplifies
the assembler coding essential, as the following examples show:

Instruction Description

ADD r3,r0,r0 ; Set register r3 to zero.
ADD r4,r2,r0 ; Move register r2 to register r4.

LDBU r5,100(r0) ;
Compute the sum of 100 and register r0=0
and load data from this address into regis-
ter r5.

Note that the pseudo-instruction above only work under the assumption that
the first register r0 is zero.
The following VHDL code3 shows the generic specification for a 16-register
file with 8-bit width.

-- Desciption: This is a W x L bit register file.
LIBRARY ieee;
USE ieee.std_logic_1164.ALL;

3 The equivalent Verilog code reg file.v for this example can be found in Ap-
pendix A on page 723. Synthesis results are shown in Appendix B on page 731.

560 9. Microprocessor Design

ENTITY reg_file IS
GENERIC(W : INTEGER := 7; -- Bit width-1

N : INTEGER := 15); -- Number of regs-1
PORT (clk, reg_ena : IN std_logic;

data : IN STD_LOGIC_VECTOR(W DOWNTO 0);
rd, rs, rt : IN integer RANGE 0 TO 15;
s, t : OUT STD_LOGIC_VECTOR(W DOWNTO 0));

END;

ARCHITECTURE fpga OF reg_file IS

SUBTYPE bitw IS STD_LOGIC_VECTOR(W DOWNTO 0);
TYPE SLV_NxW IS ARRAY (0 TO N) OF bitw;
SIGNAL r : SLV_NxW;

BEGIN

MUX: PROCESS -- Input mux inferring registers
BEGIN
WAIT UNTIL clk = ’1’;
IF reg_ena = ’1’ AND rd > 0 THEN

r(rd) <= data;
END IF;

END PROCESS MUX;

DEMUX: PROCESS (r, rs, rt) -- 2 output demux
BEGIN -- without registers
IF rs > 0 THEN -- First source

s <= r(rs);
ELSE

s <= (OTHERS => ’0’);
END IF;
IF rt > 0 THEN -- Second source

t <= r(rt);
ELSE

t <= (OTHERS => ’0’);
END IF;

END PROCESS DEMUX;

END fpga;

The first process, MUX, is used to store the incoming data in the register file.
Note that the register zero is not overwritten since it should be zero all the
time. The second process, DEMUX, hosts the two decoders to read out the two
operands for the ALU operations. Here again access to register 0 is answered
with a value of zero. The design uses 211 LEs, no embedded multiplier, and
no M4Ks. A Registered Performance can not be measured since there is no
register-to-register path.
We check the register file with the simulation shown in Fig. 9.11. The input
data (address rd) is written continuously as data into the file. The output s
is set via the rs to register 2, while output t is set to register 3 using rt. We
note that the register enable low signal between 500 and 700 ns means that
register 2 is not overwritten with the data value 12. But for register 3 the

9.2 Instruction Set Design 561

Fig. 9.11. Simulation of the register file.

 4 8 16 32

65

100

160

250

400

650

1000

1500

Number of registers N

N
um

be
r

of
 lo

gi
c

el
em

en
ts

32 bits
24 bits
16 bits
 8 bits

Fig. 9.12. LEs for different register file configurations.

enable is again high at 750 ns and the new value 14 is written into register
3, as can be seen from the t signal. 9.3

Figure 9.12 shows the LEs data for register number in the range 4 to 32
and bitwidth 8, 16, 24, and 32.

With Xilinx FPGAs it would also be possible to use the LEs as 16 × 1
dual-port memory, see Chap. 1, Table 1.4, p. 11. With Altera FPGAs the only
option to save the substantial number of LEs used for the register file would

562 9. Microprocessor Design

be to use a three-port memory, or two embedded dual-port memory blocks
as the register file. We would write the same data in both memories and can
read the two sources from the other port of the memory. This principle has
been used in the Nios µP and can greatly reduce the LE count. We may then
only use the lower 16 or 32 registers or offer (as it is done in the Nios µP) a
window of registers. The window can be moved, for instance, in a subroutine
call and the basic register do not need to be saved on a stack or in memory
as would otherwise be necessary.

From the timing requirement however we now have the problem that
BlockRAMs are synchronous memory blocks, and we can not load and store
memory addresses and data with the same clock edge from both ports, i.e.,
replacing the same register value using the current demultiplexer value can
not be done with the same clock edge. But we can use the rising edge to
specify the operand address to be loaded and then use the falling edge to
store the new value and set the write enable.

9.2.4 Operation Support

Most machines have at least one instruction out of the three categories:
arithemtic/logic unit (ALU), data move, and program control. Let us in the
following briefly review some typical examples from each category. The un-
derlying data type is usually a multiple of bytes, i.e., 8, 16, or 32 bits of
integer data type; some more-sophisticated processors use a 32- or 64-bit
IEEE floating-point data type, see Sect. 2.2.3, p. 71.

ALU instructions. ALU instruction include arithmetic, logic, and shift
operations. Typical supported arithmetic instructions for two operands are
addition (ADD), subtraction (SUB), multiply (MUL) or multiply-and-accumulate
(MAC). For a single operand, absolute (ABS) and sign inversion (NEG) are part
of a minimum set. Division operation is typically done by a series of shift-
subtract-compare instructions since an array divider can be quite large, see
Fig. 2.28, p. 104.

The shift operation is useful since in b-bit integer arithmetic a bit grow
to 2×b occurs after each multiplications. The shifter may be implicit as in
the TMS320 PDSP from TI or provided as separate instructions. Logical
and arithmetic (i.e., correct sign extension) as well as rotations are typical
supported. In a block floating-point data format exponent detection (i.e.,
determining the number of sign bits) is also a required operation.

The following listing shows arithmetic and shift operations for different
microprocessors.

9.2 Instruction Set Design 563

Instruction Description µP

ADD *,8,AR3

The * indicates that the auxil-
iary memory point ARP points to
one of the eight address regis-
ters that is used for the mem-
ory access. The word from that
location is left shifted by eight
bits before being added to the ac-
cumulator. After the instruction
the ARP points to AR3, which is
used for the next instruction.

TMS320C50

MACD Coeff,Y

Multiply the coefficient and Y
and store the result in the prod-
uct register P. Then move the
register Y by one location.

TMS320C50

NABS r3, r4 Store the negative absolute value
of r4 in r3.

PowerPC

DIV r3,r2,r1
This instruction divides the reg-
ister r2 by r1 and stores the quo-
tient in the register r3.

Nios II

SR=SRr OR ASHIFT 5
Right shift the SR register by five
bits and use sign extension. ADSP

Although logic operations are less often used in basic DSP algorithms
like filtering or FFT, some more-complex systems that use cryptography or
error correction algorithms need basic logic operations such as AND, OR, and
NOT. For error correction EXOR and EQUIV are also useful. If the instruction
number is critical we can also use a single NAND or NOR operation and all
other Boolean operations can be derived from these universal functions, see
Exercise 1.1, p. 42.

Data move instructions. Due to the large address space and performance
concerns most machines are closer to the typical RISC load/store architecture
than the universal approach of the VAX PDP-11 that allows all operands of
an instruction to come from memory. In the load/store philosophy we only
allow data move instructions between memory and CPU registers, or different
registers – a memory location can not be part of an ALU operation. In PDSP
designs a slightly different approach is taken. Most data access is done with
indirect addressing, since a typical PDSP like the ADSP or TMS320 has
separate memory address generation units that allow auto de/increment and
modulo addressing, see Fig. 9.7, p. 551. These address computations are done
in parallel to the CPU and do not require additional CPU clock cycles.

The following listing shows data move instructions for different micropro-
cessors.

564 9. Microprocessor Design

Instruction Description µP

st [%fp],%g1
Store register g1 at the memory loca-
tion specified in the fp register. Nios

LWZ R5,DMA
Move the 32-bit data from the memory
location specified by DMA to register
R5

PowerPC

MX0=DM(I2,M1)

Load from data memory into register
MX0 the word pointed to by the address
register I2 and post-increment I2 by
M1.

ADSP

IN STAT, DA3
Read the word from the peripheral on
port address 3 and store the data in the
new location STAT.

TMS320

Program flow instructions. Under control flow we group instructions that
allow us to implement loops, call subroutines, or jump to a specific program
location. We may also set the µP to idle, waiting for an interrupt to occur,
which indicates new data arrival that need to be processed.

One specific type of hardware support in PDSPs that is worth mentioning
is the so-called zero-overhead loops. Usually at the end of a loop the µP
decrements the loop counter and checks if the end of the loop is reached. If
not, the program flow continues at the begin of the loop. This check would
require about four instructions, and with typical PDSP algorithms (e.g., FIR
filter) with a loop length of instruction 1, i.e., a single MAC, 80% of the
time would be spent on the loop control. The loops in PDSP are in fact so
short that the TMS320C10 provides a RPT #imm instruction such that the
next instruction is repeated #imm+1 times. Newer PDSPs like the ADSP or
TMS320C50 also allow longer loops and nested loops of several levels. In most
RISC machine applications the loops are usually not as short as for PDSPs
and the loop overhead is not so critical. In addition RISC machines use delay
branch slots to avoid NOPs in pipeline machines.

The following listing shows program flow instructions for different micro-
processors.

9.2 Instruction Set Design 565

Instruction Description µP

CALL FIR Call the subroutine that starts at
the label FIR.

TMS32010

BUN r1

Branch to the location stored in
the register r1 if in the previ-
ous floating-point operation one
or more values were NANs.

PowerPC

RET

The end of a subroutine is
reached and the PC is loaded
with the value stored in the reg-
ister ra.

Nios II

RPT #7h

Repeat the next instruction 7 +
1 = 8 times. This is a one-word
instruction due to the small con-
stant value.

TMS320C50

CNTR=10;
DO L UNTIL CE;

Repeat the loop from the next in-
struction on up to the label L un-
til the counter CNTR expires.

ADSP

Additional hardware logic is provided by PDSPs to enable these short
loops without requiring additional clock cycles at the end of the loop. The
initialization of zero-overhead loops usually consists of specifying the number
of loops and the end-of-loop label or the number of instructions in the loop;
see the ADSP example above. Concurrently to the operation execution the
control unit checks if the next instruction is still in the loop range, otherwise
it loads the next instruction into the instruction register and continues with
the instruction from the start of the loop. From the overview in Table 9.2,
p. 550 it can be concluded that all second-generation PSDPs support this
feature.

9.2.5 Next Operation Location

In theory we can simplify the next operation computation by providing a
fourth operand that includes the address of the next instruction word. But
since almost all instructions are executed one after the other (except for
jump-type instructions), this is mainly redundant information and we find
no commercial microprocessor today that uses this concept.

Only if we design an ultimate RISC machine (see Exercise 9,12, p. 637)
that contains only one instruction we do need to include the next address
or (better) the offset compared to the current instruction in the instruction
word [306].

566 9. Microprocessor Design

9.3 Software Tools

According to Altera’s Nios online net seminar [307] one of the main reasons
why Altera’s Nios development systems have been a huge success4 is based on
the fact that, besides a fully functional microprocessor, also all the necessary
software tools including a GCC-based C compiler is generated at the same
time when the IP block parametrization takes place. You can find many free
µP cores on the web, see for instance:

• http://www.opencores.org/ OPENCORES.ORG
• http://www.free-ip.com/ The free IP project
• http://www.fpgacpu.org/ FPGA CPU

but most of them lack a full set of development tools and are therefore less
useful. A set of development tools (best case) should include

• Assembler, linker, and loader/basic terminal program
• Instruction set simulator
• C compiler

Figure 9.13 explains the different levels of abstraction in the development
tools. In the following we will briefly describe the main programs used to
develop these tools. You may also consider using the language for instruction
set architecture (LISA) system originally developed at ISS, RWTH Aachen
[308], and now a commercial product of CoWare Inc., which automatically
generates an assembler and instruction set simulator, and the C compiler with
a few additional specifications in a semiautomatic way. In Sect. 9.5.2 (p. 610)
we will review this type of design flow.

Writing a compiler can be a time-consuming project. A good C compiler,
for instance, requires up to 50 man-years of work [309, 310, 311].

Nowadays we can benefit from the program developed in the GNU project
that provides several useful utilities that speed up compiler development:

• The GNU tool Flex [312] is a scanner or lexical analyzer that recognizes
patterns in text, similar to what the UNIX utility grep or the line editor
sed can do for single pattern.

• The GNU tool Bison [313] a, YACC-compatible parser generator [314] allows
us to describe a grammar in Bakus–Naur form (BNF), which can initiate
actions if expressions are found in the text.

• For the GNU C compiler gcc we can take advantage of the tutorial written
by R. Stallman [315] to adapt the C compiler to the actual µP we have or
plan to build.

All three tools are freely available under the terms of the GNU public licence
and for all three tools we have included documentation on the book CD under
book3e/uP, which also includes many useful examples.
4 10,000 systems were sold in the first four years after introduction.

9.3 Software Tools 567

SWAP(a,b)

Compiler

instructions
Machine

instructions
binary/hex

High−level
language
statements Assembly

task language

t=a;
a=b;
b=t;

PUSH a
POP t
PUSH b

Object or

PUSH t
POP b

Assembleror
Interpreter

Preprocessor

One task =

POP a

several instructions
One statement =

Most often
one−to−one

many statements

Fig. 9.13. Models and tools in programming.

9.3.1 Lexical Analysis

A program that can recognize lexical patterns in a text is called a scanner.
Flex, compatible with the original AT&T Lex, is a tool that can generate such
a scanner [316]. Flex uses an input file (usual extension *.l) and produces C
source code that can then be compiled on the same or a different system. A
typical scenario is that you generate the parser under UNIX or Linux with
the GNU tools and, since most Altera tools run on a PC, we compile the
scanner under MS-DOS so that we can use it together with the Quartus II
software. The default UNIX file that is produced by Flex uses a lex.yy.c
file name. We can change this by using the option -oNAME.C to generate the
output NAME.C instead. Note that there is no space between -o and the new
name under UNIX. Assume we have a Flex input file simple.l then we use
the two steps:

flex -osimple.c simple.l
gcc -o simple.exe simple.c

to generate a scanner called simple.exe under UNIX. Even a very short
input file produces about 1,500 lines of C-code and has a size of 35 KB. We
can already see from these data the great help this utility can be. We can
also FTP the C-code simple.c to an MS-DOS PC and then compile it with a
C compiler of our choice. The question now is how do we specify the pattern
in Flex for our scanner, i.e., how does a typical Flex input file look? Let use
first have a look at the formal arrangement in the Flex input file. The file
consists of three parts:

%{

568 9. Microprocessor Design

C header and defines come here
%}
definitions ...
%%
rules ...
%%
user C code ...

The three sections are separated by two %% symbols. Here is a short example
of an input file.

/* A simple flex example */
%{
/* C-header and definitions */
#include <stdlib.h> /* needed for malloc, exit etc **/
#define YY_MAIN 1
%}
%%
.|\n ECHO; /* Rule section */
%%
/* User code here */
int yywrap(void) { return 1; }

The YY_MAIN define is used in case you want Flex to provide the main routine
for the scanner. We could also have provided a basic main routine as follows

main() { lex(); }

The most important part is the rule section. There we specify the pattern
followed by the actions. The pattern . is any character except new line,
and \n is new line. The bar | stands for the or combination. You can see
that most coding has a heavy C-code flavor. The associated action ECHO will
forward each character to standard output. So our scanner works similarly
to the more, type, or cat utility you may have used before. Note that Flex
is column sensitive. Only patterns in the rule section are allowed to start in
the first column; not even a comment is allowed to start here. Between the
pattern and the actions, or between multiple actions combined in parenthesis
{}, a space is needed.

We have already discussed two special symbols used by Flex: the dot .
that describes any character and the new line symbol \n. Table 9.4 shows
the most often used symbols. Note that these are the same kinds of symbols
used by the utility grep or the line editor sed to specify regular expressions.
Here are some examples of how to specify a pattern:

9.3 Software Tools 569

Pattern Matches

a the character a.
a{1,3} One to three a’s, i.e., a|aa|aaa.
a|b|c any single character from a, b, or c.
[a-c] any single character from a, b, or c, i.e., a|b|c.
ab* a and zero or more b’s, i.e., a|ab|abb|abbb...
ab+ a and one or more b’s, i.e., ab|abb|abbb...
a\+b string a+b .
[\t\n]+ one or more space, tab or new lines.
^L Begin of line must be an L.
[^a-b] any character except a, b, or c.

Using these pattern we now build a more-useful scanner that performs a
lexical analysis of a VHDL file and reports the types of items he finds. Here
is the Flex file vhdlex.l

/* Lexical analysis for a toy VHDL-like language */

%{
#include <stdio.h>
#include <stdlib.h>
%}
DIGIT [0-9]
ID [a-z][a-z0-9_]*
ASSIGNMENT [(<=)|(:=)]
GENERIC [A-Z]
DELIMITER [;,)(’:]
COMMENT "--"[^\n]*
LABEL [a-zA-Z][a-zA-Z0-9]*[:]
%%
{DIGIT}+ { printf("An integer: %s (%d)\n", yytext,

atoi(yytext)); }
IN|OUT|ENTITY|IS|END|PORT|ARCHITECTURE|OF|WAIT|UNTIL {

printf("A keyword: %s\n", yytext); }
BEGIN|PROCESS { printf("A keyword: %s\n", yytext); }

{ID} printf("An identifier: %s\n", yytext);
"<=" printf("An assignment: %s\n", yytext);
"=" printf("Equal condition: %s\n", yytext);
{DELIMITER} printf("A delimiter: %s\n", yytext);
{LABEL} printf("A label: %s\n", yytext);

"+"|"-"|"*"|"/" printf("An operator: %s\n", yytext);
{COMMENT} printf("A comment: %s\n", yytext);
[\t\n]+ /* eat up whitespace */

570 9. Microprocessor Design

Table 9.4. Special symbols used by Flex.

Symbol Meaning

. Any single character except new line
\n New line
* Zero or more copies of the preceding expression
+ One or more copies of the preceding expression
? Zero or one of the preceding expression
^ Begin of line or negated character class
$ End of line symbol
| Alternate, i.e., or expressions
() Group of expressions
"+" Literal use of expression within quotes
[] Character class
{} How many times an expression is used
\ Escape sequence to use a special symbol as a character only

. printf("Unrecognized character: %s\n", yytext);

%%

int yywrap(void) { return 1; }

main(argc, argv)
int argc;
char **argv;
{
++argv, --argc; /* skip over program name */
if (argc > 0)
yyin = fopen(argv[0], "r");

else
yyin = stdin;

yylex();
}

We compile the files with the following step under UNIX:

flex -ovhdlex.c vhdlex.l
gcc -o vhdlex.exe vhdlex.c

Assume we have the following small VHDL example:

ENTITY d_ff IS -- Example flip-flop
PORT(clk, d :IN bit;

q :OUT bit);
END;

9.3 Software Tools 571

ARCHITECTURE fpga OF d_ff IS
BEGIN
P1: PROCESS (clk)
BEGIN

WAIT UNTIL clk=’1’; --> gives always FF
q <= d;

END PROCESS;
END fpga;

then calling our scanner with vhdlex.exe < d_ff.vhd will produce the fol-
lowing output:

A keyword: ENTITY
An identifier: d_ff
A keyword: IS
A comment: -- Example flip-flop
A keyword: PORT
A delimiter: (
An identifier: clk
A delimiter: ,
An identifier: d
A delimiter: :
A keyword: IN
An identifier: bit
A delimiter: ;
An identifier: q
A delimiter: :
A keyword: OUT
An identifier: bit
A delimiter:)
A delimiter: ;
A keyword: END
A delimiter: ;
A keyword: ARCHITECTURE
An identifier: fpga
A keyword: OF
An identifier: d_ff
...

After the two introductory examples we can now take on a more-chal-
lenging task. Let us build an asm2mif converter that reads in assembler code
and outputs an MIF file that can be loaded into the block memory as used
by the Quartus II software. To keep things simple let us use the assembler
code of a stack machine with the following 16 operations (sorted by their
operation code):

ADD, NEG, SUB, OPAND, OPOR, INV, MUL, POP,

572 9. Microprocessor Design

PUSHI, PUSH, SCAN, PRINT, CNE, CEQ, CJP, JMP

Since we should also allow forward referencing labels in the assembler code
we need to have a two-pass analysis. In the first pass we make a list of all
variables and labels and their code lines. We also assign a memory location
to variables when we find one. In the second run we can then translate our
assembler code line-by-line into MIF code. We start with the MIF file header
that includes the data formats and then each line will have a address, an
operation and possibly an operand. We can display the original assembler
code at the end of each line by preceding -- comment symbols as in VHDL.
Here is the Flex input file for our two-pass scanner:

/* Scanner for assembler to MIF file converter */
%{
#include <stdio.h>
#include <string.h>
#include <math.h>
#include <errno.h>
#include <stdlib.h>
#include <time.h>
#include <ctype.h>
#define DEBUG 0
int state =0; /* end of line prints out IW */
int icount =0; /* number of instructions */
int vcount =0; /* number of variables */
int pp =1; /** preprocessor flag **/
char opis[6], lblis[4], immis[4];
struct inst {int adr; char opc; int imm; char *txt;} iw;
struct init {char *name; char code;} op_table[20] = {
"ADD" , ’0’, "NEG" , ’1’, "SUB" , ’2’,
"OPAND" , ’3’, "OPOR" , ’4’, "INV" , ’5’,
"MUL" , ’6’, "POP" , ’7’, "PUSHI" , ’8’,
"PUSH" , ’9’, "SCAN" , ’a’, "PRINT" , ’b’,
"CNE" , ’c’, "CEQ" , ’d’, "CJP" , ’e’,
"JMP" , ’f’, 0,0 };

FILE *fid;
int add_symbol(int value, char *symbol);
int lookup_symbol(char *symbol);
void list_symbols();
void conv2hex(int value, int Width);
char lookup_opc(char *opc);
%}
DIGIT [0-9]
VAR [a-z][a-z0-9_]*
COMMENT "--"[^\n]*
LABEL L[0-9]+[:]

9.3 Software Tools 573

GOTO L[0-9]+
%%
\n {if (pp) printf("-- end of line \n");

else { if ((state==2) && (pp==0))
/* print out an instruction at end of line */
{conv2hex(iw.adr,8); printf(" : %c",iw.opc);
conv2hex(iw.imm,8);
printf("; -- %s %s\n",opis,immis); }
state=0;iw.imm=0;
}}

{DIGIT}+ { if (pp) printf("-- An integer: %s (%d)\n",
yytext, atoi(yytext));

else {iw.imm=atoi(yytext); state=2;
strcpy(immis,yytext);}}

POP|PUSH|PUSHI|CJP|JMP {
if (pp)

printf("-- %d) Instruction with operand: %s\n",
icount++, yytext);

else {state=1; iw.adr=icount++;
iw.opc=lookup_opc(yytext);}}

CNE|CEQ|SCAN|PRINT|ADD|NEG|SUB|OPAND|OPOR|INV|MUL {
if (pp) printf("-- %d) ALU Instruction: %s\n",

icount++, yytext);
else { state=2; iw.opc=lookup_opc(yytext);

iw.adr=icount++; strcpy(immis," ");}}
{VAR} { if (pp) {printf("-- An identifier: %s\n",

yytext); add_symbol(vcount, yytext);}
else {state=2;iw.imm=lookup_symbol(yytext);

strcpy(immis,yytext);}}
{LABEL} { if (pp) {printf("-- A label: %s lenth=%d

Icount=%d\n", yytext , yyleng, icount);
add_symbol(icount, yytext);}}

{GOTO} {if (pp) printf("-- A goto label: %s\n", yytext);
else {state=2;sprintf(lblis,"%s:",yytext);

iw.imm=lookup_symbol(lblis);strcpy(immis,yytext);}}
{COMMENT} {if (pp) printf("-- A comment: %s\n", yytext);}
[\t]+ /* eat up whitespace */
. printf("Unrecognized character: %s\n", yytext);
%%

int yywrap(void) { return 1; }

int main(argc, argv)
int argc;

574 9. Microprocessor Design

char **argv;
{
++argv, --argc; /* skip over program name */
if (argc > 0)
yyin = fopen(argv[0], "r");

else
{ printf("No input file -> EXIT\n"); exit(1);}
printf("--- First path though file ---\n");
yylex();
if (yyin != NULL) fclose(yyin);
pp=0;
printf("\n-- This is the T-RISC program with ");
printf("%d lines and %d variables\n",icount,vcount);
icount=0;
printf("-- for the book DSP with FPGAs 3/e\n");
printf("-- Copyright (c) Uwe Meyer-Baese\n");
printf("-- WIDTH = 12; DEPTH = 256;\n");
if (DEBUG) list_symbols();
printf("ADDRESS_RADIX = hex; DATA_RADIX = hex;\n\n");
printf("CONTENT BEGIN\n");
printf("[0..FF] : F00; -- ");
printf("Set all address from 0 to 255 => JUMP 0\n");
if (DEBUG) printf("--- Second path through file ---\n");
yyin = fopen(argv[0], "r");
yylex();
printf("END;\n");

}

/* define a linked list of symbols */
struct symbol { char *symbol_name; int symbol_value;

struct symbol *next; };

struct symbol *symbol_list;/*first element in symbol list*/

extern void *malloc();

int add_symbol(int value, char *symbol)
{

struct symbol *wp;

if(lookup_symbol(symbol) >= 0) {
printf("-- Warning: symbol %s already defined \n", symbol);

return 0;
}

9.3 Software Tools 575

wp = (struct symbol *) malloc(sizeof(struct symbol));
wp->next = symbol_list;
wp->symbol_name = (char *) malloc(strlen(symbol)+1);
strcpy(wp->symbol_name, symbol);

if (symbol[0]!=’L’) vcount++;
wp->symbol_value = value;
symbol_list = wp;
return 1; /* it worked */

}

int lookup_symbol(char *symbol)
{

struct symbol *wp = symbol_list;
for(; wp; wp = wp->next) {

if(strcmp(wp->symbol_name, symbol) == 0)
{if (DEBUG)

printf("-- Found symbol %s value is: %d\n",
symbol, wp->symbol_value);

return wp->symbol_value;}
}
if (DEBUG) printf("-- Symbol %s not found!!\n",symbol);
return -1; /* not found */

}

char lookup_opc(char *opc)
{ int k;
strcpy(opis,opc);
for (k=0; op_table[k].name != 0; k++)
if (strcmp(opc,op_table[k].name) == 0)

return (op_table[k].code);
printf("******* Ups, no opcode for: %s --> exit \n",opc);
exit(1);

}

void list_symbols()
{

struct symbol *wp = symbol_list;
printf("--- Print the Symbol list: ---\n");

for(; wp; wp = wp->next)
if (wp->symbol_name[0]==’L’) {

printf("-- Label : %s line = %d\n",
wp->symbol_name, wp->symbol_value);

} else {
printf("-- Variable : %s memory @ %d\n",

576 9. Microprocessor Design

wp->symbol_name, wp->symbol_value);
}

}

/************ CONV_STD_LOGIC_VECTOR(value, bits) *********/
void
conv2hex(int value, int Width)
{

int W, k, t;
extern FILE *fid;
t = value;
for (k = Width - 4; k >= 0; k-=4) {

W = (t >> k) % 16; printf("%1x", W);
}

}

The variable pp is used to decide if the preprocessing phase or the second
phase is running. Labels and variables are stored in a symbol table using the
functions add_symbol and lookup_symbol. For labels we store the instruction
line the label occurs, while for variables we assign a running number as we
go through the code. An output of the symbol table for two labels and two
variables will look as follows:

...
--- Print the Symbol list: ---
-- Label : L01: line = 17
-- Label : L00: line = 4
-- Variable : k memory @ 1
-- Variable : x memory @ 0
...

This will be displayed in the debug mode (set #define DEBUG 1) of the
scanner, to display the symbol list. Here are the UNIX instructions to compile
and run the code:

flex -oasm2mif.c asm2mif.l
gcc -o asm2mif.exe asm2mif.c
asm2mif.exe factorial.asm

The factorial program factorial.asm for the stack machine looks as follows.

PUSHI 1
POP x
SCAN
POP k

L00: PUSH k

9.3 Software Tools 577

PUSHI 1
CNE
CJP L01
PUSH x
PUSH k
MUL
POP x
PUSH k
PUSHI 1
SUB
POP k
JMP L00

L01: PUSH x
PRINT

The output generated by asm2mif is shown next.

-- This is the T-RISC program with 19 lines and 2 variables
-- for the book DSP with FPGAs 3/e
-- Copyright (c) Uwe Meyer-Baese
WIDTH = 12;
DEPTH = 256;
ADDRESS_RADIX = hex;
DATA_RADIX = hex;

CONTENT BEGIN
[0..FF] : F00; -- Set address from 0 to 255 => JUMP 0
00 : 801; -- PUSHI 1
01 : 700; -- POP x
02 : a00; -- SCAN
03 : 701; -- POP k
04 : 901; -- PUSH k
05 : 801; -- PUSHI 1
06 : c00; -- CNE
07 : e11; -- CJP L01
08 : 900; -- PUSH x
09 : 901; -- PUSH k
0a : 600; -- MUL
0b : 700; -- POP x
0c : 901; -- PUSH k
0d : 801; -- PUSHI 1
0e : 200; -- SUB
0f : 701; -- POP k
10 : f04; -- JMP L00
11 : 900; -- PUSH x
12 : b00; -- PRINT

578 9. Microprocessor Design

END;

9.3.2 Parser Development

From the program name YACC, i.e., yet another compiler-compiler [314], we
see that at the time YACC was developed it was an often performed task to
write a parser for each new µP. With the popular GNU UNIX equivalent
Bison, we have a tool that allows us to define a grammar. Why not use Flex
to do the job, you may ask? In a grammar we allow recursive expressions
like a+ b, a+ b+ c, a+ b+ c+ d, and if we use Flex then for each algebraic
expression it would be necessary to define the patterns and actions, which
would be a large number even for a small number of operations and operands.

YACC or Bison both use the Bakus–Naur form or BNF that was developed
to specify the language Algol 60. The grammar rules in Bison use terminals
and nonterminals. Terminals are specified with the keyword %token, while
nonterminals are declared through their definition. YACC assigns a numerical
code to each token and it expects these codes to be supplied by a lexical
analyzer such as Flex. The grammar rule use a look-ahead left recursive
parsing (LALR) technique. A typical rule is written like

expression : NUMBER ’+’ NUMBER { $$ = $1 + $3; }

We see that an expression consisting of a number followed by the add symbol
and a second number can be reduced to a single expression. The associated
action is written in {} parenthesis. Say in this case that we add element 1
and 3 from the operand stack (element 2 is the add sign) and push back the
result on the value stack. Internally the parser uses an FSM to analyze the
code. As the parser reads tokens, each time it reads a token it recognizes,
it pushes the token onto an internal stack and switches to the next state.
This is called a shift. When it has found all symbols of a rule it can reduce
the stack by applying the action to the value stack and the reduction to the
parse stack. This is the reason why this type of parser is sometimes called a
shift-reduce parser.

Let us now build a complete Bison specification around this simple add
rule. To do so we first need the formal structure of the Bison input file, which
typically has the extension *.y. The Bison file has three major parts:

%{
C header and declarations come here

%}
Bison definitions ...
%%
Grammar rules ...
%%
User C code ...

9.3 Software Tools 579

It is not an accident that this looks very similar to the Flex format. Both
original programs Lex and YACC were developed by colleagues at AT&T [314,
316] and the two programs work nicely together as we will see later. Now we
are ready to specify our first Bison example add2.y

/* Infix notation add two calculator */
%{
#define YYSTYPE double
#include <math.h>
void yyerror(char *);
%}

/* BISON declarations */
%token NUMBER
%left ’+’

%% /* Grammar rules and actions follows */
program : /* empty */

| program exp ’\n’ { printf(" %lf\n",$2); }
;

exp : NUMBER { $$ = $1;}
| NUMBER ’+’ NUMBER { $$ = $1 + $3; }
;

%% /* Additional C-code goes here */

#include <ctype.h>
int yylex(void)
{ int c;
/* skip white space and tabs */
while ((c = getchar()) == ’ ’|| c == ’\t’);
/* process numbers */
if (c == ’.’ || isdigit(c)) {
ungetc(c,stdin);
scanf("%lf", &yylval);
return NUMBER;

}
/* Return end-of-file */
if (c==EOF) return(0);
/* Return single chars */
return(c);

}

580 9. Microprocessor Design

/* Called by yyparse on error */
void yyerror(char *s) { printf("%s\n", s); }

int main(void) { return yyparse(); }

We have added the token NUMBER to our rule to allow us to use a single number
as a valid expression. The other addition is the program rule so that the parser
can accept a list of statements, rather than just one statement. In the C-code
section we have added a little lexical analysis that reads in operands and
the operation and skips over whitespace. Bison calls the routine yylex every
time it needs a token. Bison also requires an error routine yyerror that is
called in case there is a parse error. The main routine for Bison can be short,
a return yyparse() is all that is needed. Let use now compile and run our
first Bison example.

bison -o -v add2.c add2.y
gcc -o add2.exe add2.c -lm

If we now start the program, we can add two floating-point numbers at a
time and our program will return the sum, e.g.,

user: add2.exe
user: 2+3
add2: 5.000000
user: 3.4+5.7
add2: 9.100000

Let us now have a closer look at how Bison performs the parsing. Since we
have turned on the -v option we also get an output file that has the listing
of all rules, the FSM machine information, and any shift-reduce problems or
ambiguities. Here is the output file add2.output

Grammar
rule 1 program ->/* empty */
rule 2 program -> program exp ’\n’
rule 3 exp -> NUMBER
rule 4 exp -> NUMBER ’+’ NUMBER

Terminals, with rules where they appear

$ (-1)
’\n’ (10) 2
’+’ (43) 4
error (256)
NUMBER (257) 3 4

Nonterminals, with rules where they appear

9.3 Software Tools 581

program (6)
on left: 1 2, on right: 2

exp (7)
on left: 3 4, on right: 2

state 0
$default reduce using rule 1 (program)
program go to state 1

state 1
program -> program . exp ’\n’ (rule 2)
$ go to state 7
NUMBER shift, and go to state 2
exp go to state 3

state 2
exp -> NUMBER . (rule 3)
exp -> NUMBER . ’+’ NUMBER (rule 4)
’+’ shift, and go to state 4
$default reduce using rule 3 (exp)

state 3
program -> program exp . ’\n’ (rule 2)
’\n’shift, and go to state 5

state 4
exp -> NUMBER ’+’ . NUMBER (rule 4)
NUMBER shift, and go to state 6

state 5
program -> program exp ’\n’ . (rule 2)
$default reduce using rule 2 (program)

state 6
exp -> NUMBER ’+’ NUMBER . (rule 4)
$default reduce using rule 4 (exp)

state 7
$ go to state 8

state 8
$default accept

582 9. Microprocessor Design

At the start of the output file we see our rules are listed with separate rule
values. Then the list of terminals follow. The terminal NUMBER, for instance,
was assigned the token value 257. These first lines are very useful if you
want to debug the input file, for instance, if you have ambiguities in your
grammar rules this would be the place to check what went wrong. More
about ambiguities a little later. We can see that in normal operation of the
FSM the shifts are done in states 1, 2, and 4, for the first number, the add
operation, and the second number, respectively. The reduction is done in
state 6, and the FSM has a total of eight states.

Our little calculator has many limitations, it can, for instance, not do any
subtraction. If we try to subtract we get the following message

user: add2.exe
add2: 7-2
parse error

Not only is our repertoire limited to adds, but also the number of operands
is limited to two. If we try to add three operands our grammar does not yet
allow it, e.g.,

user: 2+3+4
add2: parse error

As we see the basic calculator can only add two numbers not three. To have a
more-useful version we add a recursive grammar rule, the operations *,/,-,^,
and a symbol table that allows us to specify variables. The C-code for the
symbol table can be found in examples in the literature, see, for instance,
[313, p. 23], [317, p. 15], or [318, p. 65]. The lexical analysis for Flex is shown
next.

/* Inifix calculator with symbol table, error recovery and
power-of */

%{
#include "ytab.h"
#include <stdlib.h>
void yyerror(char *);

%}

%%

[a-z] { yylval = *yytext - ’a’;
return VARIABLE; }

[0-9]+ { yylval = atoi(yytext);
return INTEGER; }

[-+()^=/*\n] { return *yytext; }

9.3 Software Tools 583

[\t] ; /* skip whitespace */

. yyerror("Unknown character");

%%

int yywrap(void) { return 1; }

We see that we now also have VARIABLEs using the small single characters
a to z besides the integer NUMBER tokens. yytext and yylval are the text
and value associated with each token. Table 9.5 shows the variables used
in the Flex ↔Bison communication. The grammar for our more-advanced
calculator calc.y now looks as follows.

%{
#include <stdio.h>
#include <math.h>
#define YYSTYPE int
void yyerror(char *);
int yylex(void);
int symtable[26];

%}

%token INTEGER VARIABLE
%left ’+’ ’-’
%left ’*’ ’/’
%left NEG /* Negation, i.e. unary minus */
%right ’^’ /* exponentiation */

%%

program:
program statement ’\n’
| /* NULL */
;

statement:
expression { printf("%d\n", $1);}
| VARIABLE ’=’ expression { symtable[$1] = $3; }
;

expression:
INTEGER
| VARIABLE { $$ = symtable[$1];}
| expression ’+’ expression { $$ = $1 + $3; }

584 9. Microprocessor Design

Table 9.5. Special functions and variables used in the Flex↔Bison communica-
tion, see Appendix A [313] for a full list.

Item Meaning

char *yytext Token text
file *yyin Flex input file
file *yyout Flex file destination for ECHO
int yylength Token length
int yylex(void) Routine called by parser to request tokens
int yylval Token value

int yywrap(void) Routine called by the Flex when end of file
is reached

void yyparse(); The main parser routine
void yyerror(char *s) Called by yyparse on error

| expression ’-’ expression { $$ = $1 - $3; }
| expression ’*’ expression { $$ = $1 * $3; }
| expression ’/’ expression {
if ($3) $$ = $1 / $3;
else { $$=1; yyerror("Division by zero !\n");}}

/* Exponentiation */
| expression ’^’ expression { $$ = pow($1, $3); }
/* Unary minus */
| ’-’ expression %prec NEG { $$ = -$2; }
| ’(’ expression ’)’ { $$ = $2; }
;

%%

void yyerror(char *s) { fprintf(stderr, "%s\n", s); }

int main(void) { yyparse(); }

There are several new things in this grammar specification we need to discuss.
The specification of the terminals using %left and %right ensures the right
associativity. We prefer that 2− 3− 5 is computed as (2− 3)− 5 = −6 (i.e.,
left associative) and not as 2 − (3 − 5) = 4, i.e., right associativity. For the
exponentiation ^ we use right associativity, since 2^2^2 should be grouped as
2^(2^2). The operands listed later in the token list have a higher precedence.
Since * is listed after + we assign a higher precedence to multiply compared
with add, e.g., 2 + 3 ∗ 5 is computed as 2 + (3 ∗ 5) rather than (2 + 3) ∗ 5. If
we do not specify this precedence the grammar will report many reduce-shift
conflicts, since it does not know if it should reduce or shift if an item like
2 + 3 ∗ 5 is found.

9.3 Software Tools 585

For the divide grammar rule we have introduced error handling for divide
by zero. If we had not used this kind of error handling a divide by zero would
terminate the calculator, like

user: 10/0
calc: Floating exception (core dumped)

producing a large core dump file. With the error handling we get much
smoother behavior, e.g.,

user: 30/3
calc: 10
user: 10/0
calc: Division by zero !

but calc would allow us to continue operation.
The grammar rules are now written in a recursive fashion, i.e., an expres-

sion can consist of expression operation expression terms. Here are a
few more examples that also show the use of left and right associativity.

user: 2+3*5
calc: 17
user: 1-2-5
calc: -6
user: x=3*10
user: y=2*5-9
user: x+y
calc: 31
user: #
calc: Unknown character
calc: parse error

Any special unknown character will stop the calculator. The book CD con-
tains the C source code as well as an executable you can play with.

Let us now briefly look at the compilation steps and the Flex↔Bison
communication. Since we first need to know from Bison which kind of token
it expects from Flex we run this program first, i.e.,

bison -y -d -o ytab.c calc.y

This will generate the files ytab.c, ytab.output, and ytab.h. The header
file ytab.h contains the token values:

#ifndef YYSTYPE
#define YYSTYPE int
#endif
#define INTEGER 257
#define VARIABLE 258
#define NEG 259
extern YYSTYPE yylval;

586 9. Microprocessor Design

Now we can run Flex to generate the lexical analyzer. With

flex -olexyy.c calc.l

we will get the file lexyy.c. Finally we compile both C source files and link
them together in calc.exe

gcc -c ytab.c lexyy.c
gcc ytab.o lexyy.o -o calc.exe -lm

The -lm option for the math library was used since we have some more-
advanced math function like pow in our calculator.

We should now have the knowledge to write a more-challenging task. One
would be a program c2asm that generates assembler code from a simple C-like
language. In [319] we find such code for a three-address machine. In [317] all
the steps to produce assembler code for a C-like language for a stack machine
are given. [320, 315, 309, 321] describe more-advanced C compiler designs. For
a stack-like machine we would allow as input a file for a factorial code as

x=1;
scan k;
while (k != 1) {

x = x * k;
k = k - 1;

}
print x;

The program reads data from the inport (e.g., 8-pin DIP switch) calculates
the factorial and outputs the data to a two-digit seven-segment display, as we
have on the UP2 or Cyclone II boards. Using the c2asm.exe program from
the book CD, see book3e/uP, we would get

PUSHI 1
POP x
SCAN
POP k

L00: PUSH k
PUSHI 1
CNE
CJP L01
PUSH x
PUSH k
MUL
POP x
PUSH k
PUSHI 1
SUB
POP k

9.3 Software Tools 587

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1

2

3

5

10

15

20

30

40

50

DSPstone

Benchmark number

T
im

e
C

/ti
m

e
as

se
m

bl
er

MAC
N−MAC

CMAC

N−CMAC
VP

MM1x3

MM10x10
Conv

FIR

FIR2D
IIR

N−IIR

LMS
FFT16

FFT1024

AT&T
AD
Mot.
NEC
TI

Fig. 9.14. The 15 benchmarks from the DSPstone project.

JMP L00
L01: PUSH x

PRINT

We can then use our asm2mif utility (see p. 578) to produce a program that
can be used to generate an MIF file that can be used in a stack machine. All
that is needed is to design a stack machine, which will be discussed in the
next section.

A challenge that remains is the design of a good C compiler for a PDSP
due to the dedicate registers and computational units like the address gener-
ators in PDSPs. The DSPstone benchmark developed at ISS, RWTH Aachen
[322, 323] uses 15 typical PDSP routines ranging from simple MACs to com-
plex FFT to evaluate the code produced by C compilers in comparison with
hand-written assembler code. As can be seen from the DSPstone benchmark
shown in Fig. 9.14, the GCC-based compiler for AT&T, Motorola, and Ana-
log PDSPs produce on average 9.58 times less-efficient code than optimized
assembler code. The reason the GCC retargetable compiler was used is that
the development of a high-performance compiler usually requires an effort
of 20 to 50 man-years, which is prohibitively large for most projects, given

588 9. Microprocessor Design

Table 9.6. DSP additions to traditional µP [324].

Company Part Key DSP additions

ARM ARM9E Single-cycle MAC

Fujitsu SPARClite family Integer MAC and multimedia
assistance

IBM PowerPC family Integer MAC
IDT 79RC4650 (MIPS) Integer MAC
MIPS Technologies MIPS64 5Kc Single-cycle integer MAC

Hewlett-Packard PA 8000 family Registers for MPEG decode
Intel Pentium III Streaming SIMD extensions
Motorola PowerPC G4 Vector processor
SUN Microsystems UltraSPARC family VIZ imaging instruction set

the fact that PDSP vendors have many different variations of their PDSPs
and each requires a different set of development tools. At the cost of less-
optimized C compiler much shorter development time can be observed, if
retargetable compilers like GNU GCC or LCC are used [315, 321]. A solution
to this critical design problem has been provided by the associated compiler
experts (ACE). ACE provides a highly flexible, easy-retargetable compiler de-
velopment system that creates high-quality, high-performance compilers for
a broad spectrum of PDSPs. They have implemented many optimizations for
the intermediate code representation derived from the high-level language.

9.4 FPGA Microprocessor Cores

In recent years we have seen that traditional µPs have been enhanced to en-
able DSP operations more efficiently. In addition for some processor like Intel
Pentiums or SUN SPARC we have seen the addition of MMX multimedia in-
struction extensions and VIZ instruction set extensions, that allows graphics
and matrix multiplication more efficiently. Table 9.6 gives an overview of
enhancements of traditional µPs.

The traditional RISC µP has been the basis for FPGA designs for hard-
core as well as softcore processors. CISC processors are usually not used in
embedded FPGA applications. Xilinx used the PowerPC as a basis for their
very successful Virtex II PRO FPGA family that includes 1-4 PowerPC RISC
processors. Altera decided to use the ARM processor family in their Excalibur
FPGA series, which is one of the most popular RISC processors in embedded
applications like mobile phones. Although these Altera FPGAs are still avail-
able they are no longer recommended for new designs. Since the performance
of the processor also depends on the process technology used and that ARM-
based FPGAs are not produced in the new technology, we have witnessed
that Altera’s softcore Nios II processor achieves about the same performance

9.4 FPGA Microprocessor Cores 589

Table 9.7. Dhrystone µP performance.

µP Device Speed D-MIPS
name used (MHz) measured

ARM922T Excalibur 200 210
MicroBlaze Virtex-II PRO-7 150 125
MicroBlaze Spartan-3(-4) 85 68

Nios II Cyclone 2 90 105
PPC405 Virtex-4 FX 450 700

as ARM-based hardcore µPs. Xilinx also offer a 32-bit RISC softcore, called
MicroBlaze and an 8-bit PicoBlaze processor. No Xilinx 16-bit softcore pro-
cessor is available and since 16 bit is a good bitwidth for DSP algorithms we
design such a machine in Sect. 9.5.2, p. 610.

Table 9.7 gives an overview of the performance of FPGA hard- and soft-
core µPs measured in Dhrystone MIPS (D-MIPS). D-MIPS is a collection
of rather short benchmark compared with the SPEC benchmark most of-
ten used in computer architecture literature. Some of the SPEC benchmarks
would probably not run, especially on softcore processors.

9.4.1 Hardcore Microprocessors

Hardcore microprocessor, although not as flexible as softcore processors, are
still attractive due to their relative small die sizes and the higher possible
clock rate and Dhrystone MIPS rates. Xilinx favor the PowerPC series from
IBM and Motorola, while Altera has used the ARM922T core, a standard
core used in many embedded applications like mobile phones. Let us have in
the following a brief look at both architectures.

Xilinx PowerPC. The Xilinx hardcore processor used in Virtex II PRO
devices is a fully featured PowerPC 405 core. The RISC µP has a 32-bit
Harvard architecture and consists of the following functional unit, shown in
Fig. 9.15:

• Instruction and data cache, 16 KB each
• Memory management unit with 64-entry translation lookaside buffer

(TLB)
• Fetch & decode unit
• Execution unit with thirty two 32-bit general-purpose registers, ALU, and

MAC
• Timers
• Debug logic

The PPC405 instruction and data caches are both 16KB in size while
they are organized in 256 lines each with 32 bytes, i.e., 28 × 32 × 8 = 216.

590 9. Microprocessor Design

Since data and program are separated this should give a similar performance
as a four-way set associate cache in a von Neuman machine. The cache or-
ganization along with higher speed are the major reasons that the PPC405
outperforms a softcore, although here the cache size can be adjusted to the
specific application, but are usually organized as direct mapped caches, see
Exercise 9.29, p. 640.

The key feature of the 405 core can be summarized as follows:

• Embedded 450+ MHz Harvard architecture core
• Five-stage data path pipeline
• 16 KB two-way set associative instruction cache
• 16 KB two-way set associative data cache
• Hardware multiply/divide unit

The instruction cache unit (ICU) delivers one or two instructions per
clock cycle over a 64-bit bus. The data cache unit (DCU) transfers 1,2,3,4,
or 8 bytes per clock cycle. Another difference to most softcores is the branch
prediction, which usually assumes that branches with negative displacements
are taken. The execution unit (EXU) of the PPC405 is a single issue unit
that contains a register file with 32 32-bit general-purpose registers (GPRs),
an ALU, and a MAC unit that performs all integer instructions in hardware.
As with typical RISC processors a load/store method is used, i.e., reading
and writing of ALU or MAC operation is done with GPRs only. Another
features usually not found in softcores is the MMU that allows the PPC405
to address a 4 GB address space. To avoid access to the page table a cache
that keeps track of recently used address mappings, called the translation
look-aside buffer (TLB) with 64 entries, is used. The PPC also contains three
64-bit timers: the programmable interval timer (PIT), the fixed interval timer
(FIT), and a watchdog timer (WDT). All resources of the PPC405 core can
be accessed through the debug logic. The ROM monitor, JTAG debugger,
and instruction trace tool are supported. For more details on the PPC405
core, see [325].

The auxiliary processor unit (APU) is a key embedded processing feature
that has been added to the PowerPC for Virtex-4 FX devices,5 see Table 1.4,
p. 11. Here is a summary of the most interesting APU features [326]:

• Supports user defined instructions
• Supports up to four 32-bit word data transfers in a single instruction
• Allows to build a floating-point or general-purpose coprocessor
• Supports autonomous instructions, i.e., no pipeline stalls
• 32-bit instruction width and 64-bit data
• four cycle cache line transfer

The APU is hooked up directly to the PowerPC pipeline and assembler or
C-code instructions allow the access of this unit. For floating-point FIR filters
5 This section was suggested by A. Vera from UNM.

9.4 FPGA Microprocessor Cores 591

D−cache

Timers

(FIT,PIT,
wathdog)

8 entries
table

Data shadow

Timers
&

debug

interface OCM
PLB master

PLB master
interface

Data

Instruction
OCM

Cache units

array controller

I−cache

unit
cache

Instruction
4 entries

table
Instruction shadow

3−element
fetch
queue
(PFB1,
PFB0,
DCD)

I−cache

unit
Execution

32x32 Debug
logic

JTAG Instruction
Trace

GPR
ALU

Memory management
unit

(EXU)

MAC

64 entries
Unified table

Fetch
and

decode
logic

unit
cache

Instruction

array controller

D−cache

Fetch & decode

Fig. 9.15. The PPC405 core used by Xilinx Virtex II PRO devices.

improvements by a factor of 20 over software emulations have been reported
[326]. A 16-bit integer 8 × 8 pixel 2D-IDCT block interfaced via the APU
results also in a speed-up factor of about 20. By comparison, if the IDCT
hardware is connected via the PowerPC local bus and not through the APU
the system performance will be reduced. This is caused by the PowerPC
local bus arbitration overhead and the large number of 32-bit load/store
instructions required in the 8× 8 pixel 2D-IDCT block [326].

Altera’s ARM. Altera has included in the Excalibur FPGA family the
ARM922T hardcore processor, which includes the ARM9TDMI core, instruc-
tion and data caches, a memory management unit (MMU), debug logic, an
AMBA bus interface, and a coprocessor interface. The key features of the
ARM922T core can be summarized as follows:

• Embedded 200 MHz (210 Dhrystone MIPS) Harvard architecture core
• Five-stage data path pipeline
• 8 KB 64-way set associative instruction cache
• 8 KB 64-way set associative data cache
• Hardware multiply unit
• Low-power 0.8 mW/MHz; small size 6.55 mm2

• Three-operand 32-bit instructions or
• Two-operand 16-bit thumb instructions

592 9. Microprocessor Design

AMBA ASB

Multiplier

32

GPR

ALU

Control logic and bus interface unit

ETM interface

Write
buffer

ARM922T

ARM9TDMI core

cache

8KB

MMU

Instruction

cache

MMU

Data
8KB

interface
Coprocessor

interface

Barrel shifter

Fig. 9.16. The ARM922T overall architecture [327]. The ARM9TDMI core internal
architecture is shown in dark gray [328].

The MMU and cache architecture used in these embedded processor are
usually more sophisticated and complex and are the reason the Dhrystone
MIPS rate is higher than for a softcore running with the same clock rate. The
ARM922T uses an 8-word-per-line architecture. Both data and instruction
cache a 64-way set-associate. In addition the ARM922T included a write
buffer with 16 data words and four addresses to avoid stalling in case of
cache miss. The MMU can map memory of sizes as small as 1 KB to 1 MB
pages. The MMU uses two separate 64-entry translation lookaside buffers
(TLBs) for the data and instructions.

The advanced microprocessor bus architecture (AMBA) is an often used
bus architecture in embedded systems and is supported by the ARM922T.

The ARM9TDMI core is shown in Fig. 9.16 as the grey area. The core
can operate on standard 32-bit instructions as well on the shorter thumb set
that uses 16 bits only and allows one to pack two instructions in one 32-
bit memory word. The core uses a five-stage pipeline that has the following
sequence: (1) fetch, (2) decode and register read, (3) execute, (4) memory
access, and multiply completion, (5) write register. The CPU contains 31
general-purpose registers, with 16 registers visible at a time, while the others

9.4 FPGA Microprocessor Cores 593

are reserved for context switching. Register 15 is used as the PC, register 14
holds return address for subroutine calls, and register 13 is usually used as
the stack pointer. Besides the registers the core includes an ALU, a barrel
shifter, and a hardware multiplier. In the following we will briefly study the
thumb instruction coding.

Example 9.4: Thumb Instruction Coding
The instructions show first the regular 32-bit coding and then the thumb
coding of the same instruction. The first instruction ADDS an 8-bit immediate
value to a register and stores the result in the same register, i.e., Rd = Rd +
immed8

1110 00101001 Rd4 Rd4 0000 immed8

The thumb instruction keeps the immediate length at 8 bits, but the two
register must be the same, and the register selection is reduced from 16 to 8
registers to fit in the 16-bit instruction:

00110 Rd3 immed8

The arithmetic shift right (ASR) instruction allows one to divide a signed num-
ber by a power-of-2 value. The shift amount is specified as 5-bit immediate.
Rd is the destination register and Rm the source, i.e., Rd = Rm >>> immed5.
For the standard 32-bit instruction all 16 register can be used, i.e.,

1110 00011011 SBZ4 Rd4 immed5 100 Rm4

while for the thumb encoding only the first eight can be used as the source
and destination to meet the 16-bit instruction length, i.e.,

00010 immed5 Rm3 Rd3

The multiply operation produces a 32-bit result only, and our source and
destination must be the same in the thumb instruction, i.e., Rd = (Rm *
Rd)32. The thumb encoding has the following format:

010000 1101 Rm3 Rd3

while the equivalent 32-bit instruction has the following format:

1110 00000001 Rd4 SBZ4 Rd4 1001 Rd4 9.4

As we can see from the previous example the 16-bit thumb instruction
set preserves most of the feature of the 32-bit ISA, however most operations
are now of the two-operand form, i.e., have to share one operand, and the
number of register is reduced from 16 to 8.

Some of the more-complex instructions like the multiply-accumulate in-
struction MLA, which is actually a four-operand operation in the ARM922T,
has no equivalent in the thumb instruction set, as the following example
shows.

Example 9.5: The 32-bit instruction MLA to compute Rd = (Rm * Rs) + Rn32

is coded as follows

cond4 0000001 S Rd4 Rn4 Rs4 1001 Rm4

It is interesting to notice that it is a four-operand operation and therefore will not
fit in the thumb ISA. 9.5

594 9. Microprocessor Design

The fact the the MLA (a.k.a. MAC) is not included in the 16-bit thumb set is
particular unfortunate if you think of DSP operations that have many MACs.

9.4.2 Softcore Microprocessors

Altera and Xilinx provide their own proprietary µP softcores. These proces-
sors do not try to reproduce an industry-standard processor but rather take
advantage of the special hardware elements available with the FPGAs. The
Xilinx PicoBlaze, for instance, makes use of the feature that the LEs can be
used as dual-port RAMs, resulting in very small area requirements; Altera’s
Nios processor replaces the register file with M4K memory blocks that allow
one to save a large number of LEs.

The most popular FPGA-based industry-standard processors are offered
by third-party vendors through the FPGA vendor partner programs. We
find here popular embedded µP softcores such as the Motorola’s 68HC11,
Microchip’s PIC, or the TMS320C25 from Texas Instruments. Let us now
have a closer look at these FPGA-based softcore processors.

An 8-bit processor: the Xilinx PicoBlaze. 8-bit FPGA softcores are
available for many instruction sets like Intel’s 8080 or 8051, Zilog’s Z80, Mi-
crochip’s PIC family, MOS Technology’s 6502 (popular in early Apple and
Atari computer), Motorola/Freescales 68HC11, or Atmel AVR microproces-
sors. At www.edn.com/microprocessor a full list of current controllers is
provided. The 8-bitters have become the favorite controllers. Sales are about
3 billion controllers per year, compared with 1 billion 4- or 16/32-bit con-
trollers. 4-bit processors usually do not have the required performance, while
16- or 32-bit controllers are usually too expensive.

One of the most important driving forces in the microcontroller market
has been the automotive and home appliance market. In cars, for instance,
only a few high-performance microcontrollers are needed for audio, or engine
control; the other more than 50 microcontrollers are used in such functions as
electric mirrors, air bags, the speedometer, and door locking, to name just a
few. Xilinx PicoBlaze fits right in these popular 8-bit applications and provide
a nice and free-of-charge development platform. The assembler/link/loader
and VHDL code for the core are available royalty free. Optimized for Xilinx
devices (the low-level LUT implementation of many functions like the ALU
and register file using dual-port memories would make it hard to use an Altera
device) the core is very small, and characterized by the following key features
and performance (depending on the device family used) data, see Fig. 9.17.

• 16-byte-wide general-purpose data registers
• 256-1024 instruction words
• Byte-wide ALU operation with carry and zero flags
• 64-byte internal scratchpad RAM
• 256 input/output ports
• Four to 31 locations of CALL/RETURN stack

9.4 FPGA Microprocessor Cores 595

s5 s6 s7
s8 s9 sA sB
sC sD sE sF

ALU

16 byte registers

Instruction
decoder

In port

Program
counter

Interrupt

Out port

Port IDConstants

64 byte

Scratchpad RAM(PC)

instruction
ROM

31x10
Call/return

stack

s0 s1 s2 s3
s4

1Kx18

Fig. 9.17. The PicoBlaze a.k.a. KCPSM core from Xilinx.

• Each instruction takes two clock cycles
• Twenty-one MIPS for CoolRunner II to 100 MIPS for Virtex-4
• Instruction size 16 to 18-bits
• Eight to 16 8-bit registers
• Size 76-96 slices (Virtex/Spartan) or 212 macrocells in CoolRunner-II

A free C compiler is also available written by Francesco Poderico; it is
royalty free and available for download, see www.xilinx.com.

Example 9.6: The following C-code segment

// DSPstone benchmark 1
char a, b, c, d;
void main()
{ d = c + a * b; }

will be translated into the following assembler code for the PicoBlaze:

;**
; Picoblaze Small C Compiler for Xilinx PicoBlaze
; Picoblaze C Compiler for PicoBlaze, Version alpha 1.7.7
;**

NAMEREG sf , XL
NAMEREG se , YL
NAMEREG sd , ZL
NAMEREG sc , XH
NAMEREG sa , ZH
NAMEREG sb , TMP
NAMEREG s9 , SH
NAMEREG s8 , SL
NAMEREG s7 , KH
NAMEREG s6 , KL
NAMEREG s5 , TMP2
CONSTANT _a ,ff
CONSTANT _b ,fe
CONSTANT _c ,fd

596 9. Microprocessor Design

CONSTANT _d ,fc
LOAD YL , fc
JUMP _main

;// DSPstone benchmark 1
;char a, b, c, d;
;void main(){
_main:
;d = c + a*b;
INPUT ZL ,_c
SUB YL , 01
OUTPUT ZL,(YL)
INPUT ZL ,_a
SUB YL , 01
OUTPUT ZL,(YL)
INPUT ZL ,_b
INPUT XL,(YL)
ADD YL , 01
LOAD XH,XL
AND XH,80
JUMP Z,L2
LOAD XH,ff
L2:
LOAD ZH,ZL
AND ZH,80
JUMP Z,L3
LOAD ZH,ff
L3:
call _sign_mult
INPUT XL,(YL)
ADD YL , 01
ADD XL , ZL
OUTPUT XL,_d
;}
_end_main: jump _end_main; end of program!

; MULT SUBROUTINE
_mult:
LOAD TMP , 0f
LOAD SL, XL
LOAD SH, XH
LOAD XL, 00
LOAD XH, 00
_m1: SR0 ZH
SRA ZL
JUMP NC , _m2
ADD XL , SL
ADDCY XH , SH
_m2: SL0 SL
SLA SH
SUB TMP , 01

9.4 FPGA Microprocessor Cores 597

JUMP NZ , _m1
LOAD ZL,XL
LOAD ZH,XH
RETURN
_sign_mult:
LOAD TMP2,00
LOAD TMP,XH
AND TMP,80
JUMP Z,_check_member2
LOAD TMP2,01
XOR XL,ff
XOR XH,ff
ADD XL,01
ADDCY XH,00
_check_member2:
LOAD TMP,ZH
AND TMP,80
JUMP Z,_do_mult
XOR TMP2,01
XOR ZL,ff
XOR ZH,ff
ADD ZL,01
ADDCY ZH,00
_do_mult:
CALL _mult
AND TMP2,01
JUMP NZ,_invert_mult
RETURN
_invert_mult:
XOR XL,ff
XOR XH,ff
ADD XL,01
ADDCY XH,00
RETURN

;0 error(s) in compilation

9.6

As can be seen from the example the C compiler uses many instructions
for this short DSP code sequence; even worse because the PicoBlaze, as most
8-bitter, does not have a hardware multiply, which is done by a series of shift
and adds that slows down the program further.

Although Altera does not promote its own 8-bitter, the AMPP partner
supports several instruction sets, like 8081, Z80, 68HC11, PIC and 8051, see
Table 9.8. For Xilinx devices we find besides the PicoBlaze also support for
8051, 68HC11, and PIC ISA.

Notice how the low-level hardware optimization of the PicoBlaze with
only 177 four-input LUTs makes it the smallest and fastest 8-bitter for Xilinx
devices.

598 9. Microprocessor Design

Table 9.8. FPGA 8-bitter ISA support. Vendors: DI= Dolphin Integration
(France); CI= CAST Inc.(NJ, USA); DCD=Digital core design (Poland); N/A=
Information not available

µP Device LE / BRAM/ Speed Vendor
name used Slices M4Ks (MHz)

C8081 EP1S10-5 2061 3 108 CI
CZ80CPU EP1C6-6 3897 − 82 CI

DF6811CPU Stratix-7 2220 4 73 DCD
DFPIC1655X Cyclone-II-6 663 N/A 91 DCD

DR8051 Cyclone-II-6 2250 N/A 93 DCD

Flip8051 Xc2VP4-7 1034 N/A 62 DI
DP8051 Spartan-III-5 1100 N/A 73 DCD

DF6811CPU Spartan-III-5 1312 N/A 73 DCD
DFPIC1655X Spartan-III-5 386 3 52 DCD

PicoBlaze Spartan-III 96 1 88 Xilinx

An 16-bit processor: the Altera Nios. The Nios embedded processor is
a configurable RISC processor with a 16- or 32-bit datapath. Nios embedded
systems can be created with any number of peripherals. Figure 9.18 shows
the SOPC builder 32-bit standard configuration of the Nios processor.

Fig. 9.18. SOPC Nios 32-bit standard processor template.

Table 9.9 shows the base core sizes for the Nios embedded processor and
some of the IP core peripherals that integrate with the standard Nios em-

9.4 FPGA Microprocessor Cores 599

Table 9.9. Nios core and peripheral sizes, logic elements (LE) count, and embedded
array blocks (M4K).

Unit LE M4K

16-bit data path Nios 950 2
32-bit datapath Nios 1250 3
UART, fixed baud rate 170
Timer 244
Serial peripheral interface(SPI):
8-bit master, one slave 103
SPI: 8-bit master, two slaves 108
General-purpose I/O: 32-bit, tristate 138
SDRAM controller 380
External memory/peripheral: 32 bit 110
External memory/peripheral: 16 bit 85

bedded processor to form complete microprocessing units. Most peripherals
can be parameterized to fit the specific application and can be instantiated
multiple times within a single µP. In addition, customer-designed logic and
peripherals can be integrated with the Nios processor to deliver a unique µP.
The creation of these custom µPs can be done in minutes using the Altera
SOPC builder tool, and synthesized to run on any Altera FPGA. In addition
to the IP cores listed in Fig. 9.18, SOPC builder features additional IP cores
available from Altera and Altera’s megafunction partners program (AMPP).

Nios processors lower than version 2.0 have a three-stage pipeline (load,
decode, execute) and each instruction takes a predictable amount of time.
For versions later than 2.0 the three-stage pipeline is replaced by a five-stage
pipeline with sophisticated prefetch logic, interlocking, and hazard manage-
ment. The pipeline logic hides these details from the programmer and makes
it more difficult to analyze the execution time just via instruction count only,
since the latency of the instruction depends on many factors, like the pre-
or post instruction, operands, and memory location, to name just a few.
Altera provide a best-case estimate for each instruction the actual latency
however maybe longer. The minimum clock-cycle estimate for some typical
instructions is shown in Table 9.10.

The Altera Nios differs from other softcore processor solutions in the
market by including custom instruction features, see Fig. 9.19. Custom in-
struction design is a process of implementing a complex sequence of stan-
dard instructions in hardware in order to reduce them to a single-instruction
macro that can be accessed by software. The custom instructions can be
used to implement complex processing tasks in single-cycle (combinatorial)
and multi-cycle (sequential) operations. In addition, these user-added custom
instructions can access memory as well as logic outside the Nios system. As
an example design in the case study section, we will see a radix-2 FFT for
custom implementation due to its wide range of possible transform lengths

600 9. Microprocessor Design

Fig. 9.19. Custom instruction features of the Nios processor.

Table 9.10. Altera clock cycles in 5 stage pipeline Nios processors [329].

Function memory Clock Comment
name location cycle

ASR,ASRI,LSL,LSLI,LSR,LSRI − 1 Shift operations
MUL − 2 16× 16→ 32-bit

JMP, CALL − 2 control flow
LD, ST on-chip 2 Load and store
TRET − 3 Return function
TRAP − 4 Hold processor
LD, ST off-chip 4 Load and store

(all power-of-two transform lengths), DFT calculations, decreased memory
requirement, and easy hardware implementation of the small butterfly pro-
cessor. The butterfly processor is implemented as a custom logic block and
its software macro generated is then used in the software code for the radix-2
FFT. The performance of the software code with custom instructions for the
butterfly processor with different multiplier optimizations available with the
Nios processor is then compared with software-only code.

With the wide range of densities available in FPGA devices and the small
sizes of Nios embedded systems, system designers can divide complex prob-
lems into smaller tasks and use multiple Nios embedded processors. These
Nios processors can be customized with a wide selection of peripherals, defin-
ing very simple to very complex µP systems. By targeting low-cost devices,
powerful, customized embedded systems can be realized at the best cost in
the industry.

The Nios processor shown in Fig. 9.20 has a pipelined general-purpose
RISC architecture [330, 331, 332, 302, 333]. The 32-bit processor has a sep-
arate 16-bit instruction bus and 32-bit data bus. The register file is config-
urable to have 128, 256 or 512 registers but at one time only 32 of these
registers are accessible as general-purpose registers through software using

9.4 FPGA Microprocessor Cores 601

Table 9.11. Nios processor core multiplier options.

Multiplication Clock cycles Hardware
option 32-bit product effort

Software 80 0
MSTEP 18 14-24 LEs
MUL 3 427-462 LEs

port

Data
master

port

Reset

irq[31..0]

Clock

JTAG debug
module

Control
registers

ctl0 to ctl4Custom
I/O

signals

Instruction
master

controller

debugger

JTAG
interface to

software

Interrupt
controller

Arithmetic logic unit

Data
cache

Intruction
cache

General-
purpose
registers
r0 to r31

Program
controller
& address
generation

Exception

logic
instruction

Custom

NIOS processor core

Fig. 9.20. Nios processor core.

a sliding window. These large numbers of internal registers are used to ac-
celerate subroutine calls and local variable access. The CPU template is in
general configurable with instruction and data cache memory, which increases
its performance, but the APEX device with its limited M4K memory block
architecture, used by Altera in the Nios development board, does not support
this feature. The Nios instruction set can be configured to increase software
performance and can be modified either by adding custom instructions or by
using predefined instruction set extensions provided with the processor tem-
plate. The three predefined multiplier optimizations for the Nios processor
are listed in Table 9.11, giving the number of clock cycles and size required
for each of the multiplier options:

• The MUL instruction includes a hardware 16× 16-bit integer multiplier.
• The MSTEP instruction provides the hardware to execute one step of a

16× 16-bit multiply in one clock cycle.
• Software multiplication uses the C runtime libraries to implement integer

multiplication with sequences of shift and add instructions.

602 9. Microprocessor Design

Table 9.12. FPGA 16/24-bit ISA support. Vendors: CI= CAST Inc.(NJ, USA);
DCD=Digital core design (Poland)

µP Device LE / BRAM/ Speed Vendor
name used slices M4Ks (MHz)

C56000 PDSP EP1C25-6 13,531 12 51 CI
C68000 EP1C12C-6 6152 − 57 CI
D68000 Cyclone-6 6604 n/a 44 DCD

C32025 PDSP Spartan-III-5 2211 19 44 CI
D68000 Virtex-II PRO-7 3415 n/a 65 DCD

Any of these three multiplier options could be used to implement 16×16-
bit multiplication in software. Depending on the overall processor architecture
the additional hardware effort may vary.

Alternative 16/24-bit microprocessors are offered by IP vendors, that re-
build standard PDSPs (Motorola 56000; TI TMS320C25) or GPP (Motorola
68000). Table 9.12 give an overview of available core and required resources.

An 32-bit processor: the Xilinx MicroBlaze. As an example of a 32-bit
softcore processor let us in the following study the Xilinx MicroBlaze. The
MicroBlaze is a Harvard 32-bit data and instruction RISC processor, that is
available with three or five pipeline stages. The standard key features of the
MicroBlaze core can be summarized as follows:

• MicroBlaze v4 is a three-pipeline-stage core with 0.92 DMIPS/MHz
• MicroBlaze v5 is a five-pipeline-stage core with 1.15 DMIPS/MHz
• The ALU, shifter, and 32× 32 register file are standard

Optional items that can be included at configuration time are:

• Barrel shifter
• Array multiplier
• Divider
• Floating-point unit for add, subtraction, multiply, divide, and comparison
• Data cache from 2-64 KB
• Instruction cache from 2 to 64 KB

The five-stage pipeline is executed in the following steps: (1) fetch, (2)
decode, (3) execute, (4) memory access, and (5) writeback.

The data and instruction caches have a direct mapped cache architecture.
The cache can be access in blocks of four or eight words. One or more Block-
RAMs are used to store the data, while an additional BlockRAM is used to
store the tag data. Let us study a typical cache configuration.

Example 9.7: MicroBlaze Cache Configuration

9.4 FPGA Microprocessor Cores 603

Shifter

ALU

Barrel shifter

Multiplier

FPU

Instruction decoder

Data
cache interface

D−cache

DOPB

DLMB

Instruction
buffer

Program
counterinterface

I−cache

IOPB

Divider

32

GPR

Special

registers
purpose

Instruction
cache

Grey blocks
are optional

ILMB

Fig. 9.21. The MicroBlaze softcore architecture core from Xilinx.

Tag

Tag

{address
Cache

−
−

9

Word
address

7

address
Line

13

5

32

Cache data

Cache hitTag

RAM

Data

RAM

Valid

0

31
30

21

8

20

13{

Fig. 9.22. The MicroBlaze cache configuration for 16MB cache.

Let us design in the following a cache that uses only two BlockRAMs. Since
BlockRAMs in Spartan-III are of size 16 Kbits, we conclude, for 32-bit word
size, that we can store 512 × 32 words in a single BlockRAM. Using a cache
size of less than 16Kbits or 2KB will not really save any resources and that
is why this is the smallest available cache size. Now we have do decide if we
want to use the four or eight words-per-line configuration. Usually with eight
words per line we can address a larger external memory, while four words per
line gives a faster decoder, so let us start with the four word per line and see
what the maximum external memory we can address is.
With 512 words in our cache, and four words per line we conclude that we
have to store 128 tags in our tag memory. Then our tag BlockRAM needs to
be configured as 128×32 memory. Each line now needs a valid bit and four
valid bits for each word, which leaves up to 27 bits for the tags. Therefore the
external memory will be limited to an address space of 27 tag bits plus 11
LSBs used to address 2KB by the cache, i.e., a 38-bit word can be addressed,
i.e., 238 =256 GB memory. This is probably much larger than the actual
main memory and more than the 32-bit address space of the MicroBlaze.
This configuration (with 13 tag bits to address the 16 MB of the Nexsys
board) is shown in Fig. 9.22.

604 9. Microprocessor Design

Table 9.13. DMIPS comparison for different memory organizations (D=data;
I=program memory).

External Internal LCs DMIPS
SRAM Cache BRAM
D I D I D I

� � − − − − 8718 7.139
� � � � − − 9076 29.13
− � − − � − 8812 47.81
− − − − � � 8718 59.78

At the upper end Xilinx allows one to use a 64KB cache memory. We then
need 32 BlockRAMs for the cache data alone. If we now use one more Block-
RAM to store the tags, we again have to decide if we use the four or eight
words-per-line configuration. The 64 KB requires 16K words, and 4K lines
for the four words-per-line configuration. With 4 K lines we then need to use
the 212 × 4 BlockRAM configuration. We need four valid and one line bit, so
one BlockRAM for the tags will not be enough. With two BlockRAMs for the
tags we will have three bits for tags, i.e., the main memory can have a size
of 512 KB. With each additional BlockRAM we can then increase the main
memory by a factor of 16. 9.7

Other example configurations are discussed in Exercises 9.33 and 9.34,
p. 641.

Given the option that we can now use a cache memory for the MicroBlaze
one question is still open: what is the best memory configuration for maximum
performance? This question has been evaluated by Fletcher [334] and the
results are shown in Table 9.13. For almost all embedded microprocessor,
when the FPGA just hosts the processor and the program and data are kept
in external SRAM memory, the performance improves if we add an on-chip
data and/or program cache, see rows 4 and 5 in Table 9.13. However, if we
are able to keep the whole main memory inside the FPGA this will be better
than a design with external memory plus caches, as Table 9.13 shows for the
Dhrystone benchmarks, which are much smaller then the SPEC benchmarks
in a conventional computer and fit inside the FPGA BlockRAMs.

Alternative 32-bit microprocessors are offered by Altera and IP vendors,
which rebuild custom or standard GPP (e.g., Motorola 68000). The Altera
Nios II is available in three different versions: A fast six-stage pipeline version
that provides 1.16 DMIPS/MHz; a standard version with five pipeline stages
that delivers 0.74 DMIPS/MHz; and an economy version with minimal core
size and a one-stage pipeline that provides 0.15 DMIPS/MHz. Table 9.14
gives an overview of available core and required resources.

9.5 Case Studies 605

Table 9.14. FPGA 16/24-bit ISA support. Vendors: CI= CAST Inc.(NJ, USA);
N/A = data not available

µP Device LE / BRAM/ Speed Vendor
name used slices M4Ks

C68000-AHB EP1C6F256C6 5822 4 59 MHz CI
Nios-II fast EP2C20F484C6 1595 N/A 105 DMIPS Altera
Nios-II std EP2C20F484C6 1033 N/A 57 DMIPS Altera
Nios-II eco. EP2C20F484C6 542 N/A 22 DMIPS Altera

C68000-AHB Spartan-III 2923 − 40 MHz CI

9.5 Case Studies

Finally let use have a look at three more-detailed design projects. The first
is the HDL design of a complete zero-address, i.e., stack machine, that uses
the assembler and C compiler tools we developed in Sect. 9.3, p. 566. The
second case study is a LISA-based DWT processor design that shows the
wide variety (simple µP to true vector processor) that can be built with
a few LISA instructions [335]. The final case study shows how a custom
DSP block can be tightly couple with Altera’s Nios processor. The FFT
butterfly processor is chosen and hardware as well as software optimizations
are discussed [336, 337].

9.5.1 T-RISC Stack Microprocessors

Let us start our design explorations with a simple stack machine. Although
the stack machine is called a zero-address machine, we still need a couple of
bits in the instruction to define immediate operands. If we select 8-bit data
and 4-bit instructions then we can define 16 instructions and have a 12-bit
data word that is easily represented in the simulation by three half bytes. We
can choose seven ALU instructions (0-6), five data move instructions (7-11),
and four control flow instructions. More specifically, our instructions set then
becomes:

• The ALU instructions use the top of the stack (TOS) and the second of
the stack (if applicable) and can be further split into:
– Four arithmetic operations: ADD, SUB, MUL, and INV
– Three logic operations: OPAND, OPOR, and OPNOT

• Data move instructions move data from/to the top of the stack:
– POP <var> stores the TOS data word memory location var.
– PUSH <var> loads a data word var from memory and places it on TOS.
– PUSHI <imm> puts the immediate value imm on TOS.
– SCAN reads 8 bits from the input port and puts them on TOS.
– PRINT writes 8 bits from the TOS to the output port.

606 9. Microprocessor Design

• The four program control instructions are:
– CNE and CEQ compare the two top elements of the stack and set the jump

control register JC accordingly.
– CJP <imm> loads the PC with the value imm if the JC is set to true.
– JMP <imm> loads the PC with the value imm.

Since with Cyclone II devices we can only implement synchronous memory, we
have to use a register for the input data or address. This makes it impossible
to have a PC update, program, data, and TOS update in one clock cycle
and a minimum of two clock cycles must be used. Figure 9.23a shows the
implemented timing. The PC is update on the first falling edge. This update
is used as the input for the address of the program memory. The output data
of the program memory is stored by the next rising edge in the PROM output
register. The instructions are then decoded, and only for the POP operation
do we store TOS with the next falling edge in the data memory. For any
ALU or PUSH operation the memory is routed through the ALU and stored
in the TOS register with the next rising edge. At the same time we update
the values in the stack. A four-value stack as used in the popular HP41
pocket calculators should provide enough stack depth. Since such a short
stack is used, it is much easier to use registers than a LIFO M4K memory
block. The proposed timing works for all instructions except the control flow
instructions. Since the comparison values has to be stored in the JC register
we need an extra clock cycle to implement a conditional jump operation. In
the first step we update the JC register and in the next clock cycle the PC is
updated according to the JC register, see Fig. 9.23b.

Example 9.8: A Stack Machine
The following VHDL code6 shows the four-entry stack machine. As a test
program, factorial computation (C-code see p. 586; MIF code see p. 578) is
shown in the simulation.

-- Title: T-RISC stack machine
-- Description: This is the top control path/FSM of the
-- T-RISC, with a single three-phase clock cycle design
-- It has a stack machine/0-address-type instruction word
-- The stack has only four words.

LIBRARY lpm; USE lpm.lpm_components.ALL;

LIBRARY ieee;
USE ieee.STD_LOGIC_1164.ALL;
USE ieee.STD_LOGIC_arith.ALL;
USE ieee.STD_LOGIC_signed.ALL;

ENTITY trisc0 IS
GENERIC (WA : INTEGER := 7; -- Address bit width -1

WD : INTEGER := 7); -- Data bit width -1

6 The equivalent Verilog code trisc0.v for this example can be found in Ap-
pendix A on page 724. Synthesis results are shown in Appendix B on page 731.

9.5 Case Studies 607

counter (PC)

Load data
from program

memory

Store TOS
and update

stack

Data
memory

read/write

1

2

3

4

1

2

3

4

5
(b)

PC+=1

(a)

PC=IMM

Store in register

JC=TRUE?

Compare instruction

Conditional jump

Compute JC

Update
program

PC+=1

Fig. 9.23. Timing for T-RISC operations. (a) Usual four clock edges used in most
instructions. (b) Two-instruction sequence timing used for conditional jump in-
structions.

PORT(reset, clk : IN STD_LOGIC;
jc_OUT : OUT BOOLEAN;
me_ena : OUT STD_LOGIC;
iport : IN STD_LOGIC_VECTOR(WD DOWNTO 0);
oport : OUT STD_LOGIC_VECTOR(WD DOWNTO 0);
s0_OUT, s1_OUT, dmd_IN, dmd_OUT : OUT

STD_LOGIC_VECTOR(WD DOWNTO 0);
pc_OUT, dma_OUT, dma_IN : OUT

STD_LOGIC_VECTOR(WA DOWNTO 0);
ir_imm : OUT STD_LOGIC_VECTOR(7 DOWNTO 0);
op_code : OUT STD_LOGIC_VECTOR(3 DOWNTO 0));

END;

ARCHITECTURE fpga OF trisc0 IS

TYPE state_type IS (ifetch, load, store, incpc);
SIGNAL state : state_type;
SIGNAL op : STD_LOGIC_VECTOR(3 DOWNTO 0);
SIGNAL imm, s0, s1, s2, s3, dmd

: STD_LOGIC_VECTOR(wd DOWNTO 0);
SIGNAL pc, dma : STD_LOGIC_VECTOR(wa DOWNTO 0);
SIGNAL pmd, ir : STD_LOGIC_VECTOR(11 DOWNTO 0);
SIGNAL eq, ne, mem_ena, not_clk : STD_LOGIC;

608 9. Microprocessor Design

SIGNAL jc : boolean;

-- OP Code of instructions:
CONSTANT add : STD_LOGIC_VECTOR(3 DOWNTO 0) := X"0";
CONSTANT neg : STD_LOGIC_VECTOR(3 DOWNTO 0) := X"1";
CONSTANT sub : STD_LOGIC_VECTOR(3 DOWNTO 0) := X"2";
CONSTANT opand : STD_LOGIC_VECTOR(3 DOWNTO 0) := X"3";
CONSTANT opor : STD_LOGIC_VECTOR(3 DOWNTO 0) := X"4";
CONSTANT inv : STD_LOGIC_VECTOR(3 DOWNTO 0) := X"5";
CONSTANT mul : STD_LOGIC_VECTOR(3 DOWNTO 0) := X"6";
CONSTANT pop : STD_LOGIC_VECTOR(3 DOWNTO 0) := X"7";
CONSTANT pushi : STD_LOGIC_VECTOR(3 DOWNTO 0) := X"8";
CONSTANT push : STD_LOGIC_VECTOR(3 DOWNTO 0) := X"9";
CONSTANT scan : STD_LOGIC_VECTOR(3 DOWNTO 0) := X"A";
CONSTANT print : STD_LOGIC_VECTOR(3 DOWNTO 0) := X"B";
CONSTANT cne : STD_LOGIC_VECTOR(3 DOWNTO 0) := X"C";
CONSTANT ceq : STD_LOGIC_VECTOR(3 DOWNTO 0) := X"D";
CONSTANT cjp : STD_LOGIC_VECTOR(3 DOWNTO 0) := X"E";
CONSTANT jmp : STD_LOGIC_VECTOR(3 DOWNTO 0) := X"F";

BEGIN

FSM: PROCESS (op, clk, reset) -- FSM of processor
BEGIN -- store in register ?

CASE op IS -- always store except Branch
WHEN pop => mem_ena <= ’1’;
WHEN OTHERS => mem_ena <= ’0’;

END CASE;
IF reset = ’1’ THEN
pc <= (OTHERS => ’0’);

ELSIF FALLING_EDGE(clk) THEN
IF ((op=cjp) AND NOT jc) OR (op=jmp) THEN

pc <= imm;
ELSE

pc <= pc + "00000001";
END IF;

END IF;
IF reset = ’1’ THEN
jc <= false;

ELSIF rising_edge(clk) THEN
jc <= (op=ceq AND s0=s1) OR (op=cne AND s0/=s1);

END IF;
END PROCESS FSM;

-- Mapping of the instruction, i.e., decode instruction
op <= ir(11 DOWNTO 8); -- Operation code
dma <= ir(7 DOWNTO 0); -- Data memory address
imm <= ir(7 DOWNTO 0); -- Immidiate operand

prog_rom: lpm_rom
GENERIC MAP (lpm_width => 12,

lpm_widthad => 8,
lpm_outdata => "registered",

9.5 Case Studies 609

lpm_address_control => "unregistered",
lpm_file => "TRISC0FAC.MIF")

PORT MAP (outclock => clk, address => pc, q => pmd);
not_clk <= NOT clk;

data_ram: lpm_ram_dq
GENERIC MAP (lpm_width => 8,

lpm_widthad => 8,
lpm_indata => "registered",
lpm_outdata => "unregistered",
lpm_address_control => "registered")

PORT MAP (data => s0, we => mem_ena, inclock => not_clk,
address => dma, q => dmd);

ALU: PROCESS (op, clk)
VARIABLE temp: STD_LOGIC_VECTOR(2*WD+1 DOWNTO 0);
BEGIN
IF rising_edge(clk) THEN

CASE op IS
WHEN add => s0 <= s0 + s1;
WHEN neg => s0 <= -s0;
WHEN sub => s0 <= s1 - s0;
WHEN opand => s0 <= s0 AND s1;
WHEN opor => s0 <= s0 OR s1;
WHEN inv => s0 <= NOT s0;
WHEN mul => temp := s0 * s1;

s0 <= temp(WD DOWNTO 0);
WHEN pop => s0 <= s1;
WHEN push => s0 <= dmd;
WHEN pushi => s0 <= imm;
WHEN scan => s0 <= iport;
WHEN print => oport <= s0; s0<=s1;
WHEN OTHERS => s0 <= (OTHERS => ’0’);

END CASE;
CASE op IS -- Specify the stack operations
WHEN pushi | push | scan => s3<=s2; s2<=s1; s1<=s0;

-- Push type
WHEN cjp | jmp | inv | neg => NULL;

-- Do nothing for branch
WHEN OTHERS => s1<=s2; s2<=s3; s3<=(OTHERS=>’0’);

-- Pop all others
END CASE;

END IF;
END PROCESS ALU;

-- Extra test pins:
dmd_OUT <= dmd; dma_OUT <= dma; -- Data memory I/O
dma_IN <= dma; dmd_IN <= s0;
pc_OUT <= pc; ir <= pmd; ir_imm <= imm; op_code <= op;

-- Program
jc_OUT <= jc; me_ena <= mem_ena; -- Control signals
s0_OUT <= s0; s1_OUT <= s1; -- Two top stack elements

610 9. Microprocessor Design

Fig. 9.24. T-RISC simulation of factorial example.

END fpga;
We see in the coding first the generic definition followed by the entity that
includes the ports and the test pins. The architecture part starts with general-
purpose signals and then the op-code for all 16 instructions are listed as
constant values. The first process in the architecture body FSM hosts the finite
state machine that is used to control the microprocessor. Then program and
data memory are instantiated via ROM and RAM blocks. All operations that
include an update of the stack are included in ALU. The previous constant
definitions allow very intuitive coding of the actions. Finally some extra test
pins are assigned that are visible as output ports. The design uses 198 LEs,
two M4Ks, 1 embedded multiplier and has a Registered Performance of
115.65 MHz. 9.8

The simulation from the previous design for a factorial program is shown
in Fig. 9.24. The program starts by loading the input value from the IPORT.
Then the computation of the factorial starts. First the loop variable is eval-
uated; if it is larger than 1, then x is multiplied by k. Then k is decremented
and the program jumps to the start of the loop. After two runs through the
loop the program is finished and the factorial result (2×3 = 6) is transported
to OPORT.

9.5.2 LISA Wavelet Processor Design

A microprocessor is a much more-efficient way of using FPGA resources than
a direct hardware implementation of an algorithm and has become in recent
years one of the most important IP blocks for FPGA vendors. Altera, for
instance, reported that they sold 10,000 systems of the Nios microprocessor
development systems in the first three years alone. Xilinx reported an even
larger number of downloads of their MicroBlaze microprocessors.

A new generation of design tools is empowering software developers to
take their algorithmic expressions straight into FPGA hardware without hav-

9.5 Case Studies 611

Fig. 9.25. LISA development tools: (left) disassembler, (center) memory monitor
and pipeline profiles, (right) file and register window.

ing to learn traditional hardware design techniques. These tools and associ-
ated design methodologies are classified collectively as electronic system-level
(ESL) design, broadly referring to system design and verification methodolo-
gies that begin at a higher level of abstraction than the current mainstream
HDL. The language for instruction set architecture (LISA), for instance, al-
lows us to specify a processor instruction or cycle accurately using a few LISA
operations, then explore architecture using a tool generator and profiler (see
Fig. 9.25), and finally determine speed/size/power parameters via automat-
ically synthesized VHDL or Verilog code. ESL tools have been around for a
while, and many perceive that these tools are predominantly focused on ASIC
design flows. But with ASIC mask charges of $4 million in 65 nm technol-
ogy the number of designs using FPGAs is rapidly increasing. In reality, an
increasing number of ESL tool providers (e.g., Celoxica, Codetronix, CoW-
are, Binachip, Impulse Accelerated, Mimosys) are focusing on programmable
logic.

Today the majority of microprocessors are employed in embedded sys-
tems. This number is not surprising because a typical home today may have a
Laptop/PCs with a high-performance microprocessor but probably dozens of
embedded systems, including electronic entertainment, household, and tele-

612 9. Microprocessor Design

com devices, each of them equipped with one or more embedded processors.
A modern car typically has more than 50 microprocessors. Embedded proces-
sors are often developed by relatively small teams with short time-to-market
requirements, and the processor design automation is clearly a very impor-
tant issue. Once a model of a new processor is available, existing hardware
synthesis tools enable the path to FPGA implementation. However embedded
processor design typically begins at a much higher abstraction level, even far
beyond an instruction set and involves several architecture exploration cycles
before the optimum hardware/software partioning has been found. It turns
out that this requires a number of tools for software development and pro-
filing. These are normally written manually – a major source of cost and
inefficiency in embedded processor design so far. The LISA processor design
platform (LPDP), originally developed at RWTH Aachen and now a product
of CoWare Inc. addresses these issues in a highly innovative and satisfactory
manner, see Fig. 9.25. The LISA language supports profiling-based stepwise
refinement of processor models down to cycle accuracy and even VHDL or
Verilog RTL synthesis models. In an elegant way, it avoids model inconsis-
tencies otherwise inevitable in traditional design flows. Microprocessors from
simple RISC to highly complex VLIW processor have been described and
successfully implemented using LPDP for FPGAs and cell-based ASICs.

CoWare provides 14 different models. This include seven tutorial mod-
els that are used as part of CoWare training material. Some have multiple
versions like the more than ten different designs in the QSIP_X models. Four
starting point models are provided and used as a skeleton for starting a
new architecture. Three different IP models for classic architectures are also
included. All models are instruction accurate and most of the models are
Harvard-type RISC models that are also cycle accurate. Pipeline stages vary
from three to five. Provided are all types of modern processor from simple
RISC (QSIP), over PDSP like LT_DSP_32p3 to VLIW LT_VLIW_32p4 to spe-
cial processors like a 16- to 4096-point FFT processor LT_FFT_48p3. Table
9.15 shows the properties of some example models.

LISA 18-bit instruction word RISC processor. Xilinx offers a 32-bit
MicroBlaze and a 8-bit PicoBlaze RISC processor but no processor with 16 or
24-bit, as typically for DSP algorithms used, is offered. Let us in the following
design such a 16-bit RISC machine with the LPDP. Since a 16-bit processor
fits in between the Micro- and PicoBlaze we will call our RISC processor
NanoBlaze.

For an FPGA design we can start with the three-pipeline RISC tutorial
design of the LISA 2.0 QSIP_12 model and extend the ISA to make it more
useful for the FPGA design. The BlockRAMs in Xilinx FPGAs are 18 bits
wide and the instruction words should therefore also be 18 bits wide. When
using BlockRAM there will be no gain when using instruction words short
than 18 bits. The byte-wide access in QSIP model should be changed to flat
18-bit instruction and data access. Changes then have to be included in the

9.5 Case Studies 613

Table 9.15. LISA example models (CC=C compiler generated).

Name CC Pipeline Description
stages

QSIP_X − 3

• Harvard RISC architecture
• 12 different tutorial versions
• Single cycle ALU
• Pipeline and zero pipeline version

LT_DSP_32p3 � 3

• Single cycle ALU with MAC
• Zero overhead loops
• 32-bit instruction
• 24-bit data path
• 48-bit accumulator

LT_VLIW_p4 − 4
• QSIP like ISA
• Parallel load/store
• Parallel arithmetic instructions

instruction counter, memory configuration *.cmd file, step_cyle, and the
data memory instructions LDL, LDH, and LDR. The following listing show the
supported instructions of the designed NanoBlaze.

• Arithemtic/logic unit (ALU) instructions:
– ADD: three-operand add operation with two source operands and a third

destination operand.
– MUL: three-operand multiply operation with two source operands and a

third destination operand. Only the lower 16 bits of the product are
preserved.

• Data move instructions:
– LDL: load the lower 8 bits of the data word with a constant value.
– LDH: load the upper 8 bits of the data word with a constant value.
– LDR: load register from memory. The memory location can be specified

explicitly as a constant or indirectly via a general-purpose register.
– STR: store register content to memory. The memory location can be

specified explicitly or indirectly via a general-purpose register.
• Program control instructions:

– BC: the condition branch checks a (loop) register for zero and not zero.
– B: an unconditional branch.
– BDS: the delay branch is a condition BC with the feature that the next

instruction after the BDS instruction is also executed.

The basic instruction set of the DWT RISC processor consists of nine
instructions that were designed using 28 LISA operations. The instruction
coding of the instruction in the execution pipeline stage is shown in Fig. 9.26.

The NanoBlaze processor can now be synthesized and implemented in an
FPGA. Depending on the type of memory used (i.e., CLB- or BlockRAM-
based) we get the synthesis results shown in Table 9.16.

614 9. Microprocessor Design

Fig. 9.26. NanoBlaze instruction set architecture.

Table 9.16. NanoBlaze synthesis result for the Xilinx device XC3S1000-4ft256.

Parameter NanoBlaze with NanoBlaze with
CLB-based RAM BlockRAM

Slices 1896 1893
4-input LUT 3443 3602
Multiplier 1 1

BlockRAMs 0 2
Total gates 32,986 162,471

Clock period 13.293 ns 13.538 ns
Fmax 75.2 MHz 73.9 MHz

Example 9.9: If we now use the RISC processor to implement a length-8 DWT
processor as shown in Fig. 5.55, p. 314, we need two length-8 filter g[n] and h[n] and
for each output sample pair 16 multiply and 14 add operations are necessary. For
100 samples with an output downsampling by 2 the arithmetic requirements for the
DWT filter band would therefore be 8×100 = 800 multiplications and 7×100 = 700
additions. From the Calls shown in the instruction profile in Fig. 9.27 we see that
the number of multiplication is in fact 800, however the number of add instructions

9.5 Case Studies 615

Fig. 9.27. NanoBlaze operation profile for 100-point length-8 dual-channel DWT
including memory initialization, i.e., 300 instructions.

was more than four times higher as expected. This is due to the fact that the register
updates for the memory access are also computed with the general-purpose ALU.

9.9

In addition to the large number of add operations to update the memory
register pointer also 1 600 LDR load operations were performed. This can be
substantially improved if we use auto-increment, indirect memory access as
used for the MAC operation in PDSPs.
LISA programmable digital signal processor. From the DWT proces-
sor discussed in the last section we have seen the large required arithmetic
count for updating the memory pointer and the memory access itself. A single
multiply accumulate instruction in NanoBlaze requires the following opera-
tions:

; use pointer R[2] and R[3] to load operands
LDR R[8], R[2]
LDR R[9], R[3]
; increment register pointer using R[1]=1
; multiply and add result in R[4] and avoid data hazards
ADD R[2], R[2], R[1]
MUL R[7], R[8], R[9]
ADD R[3], R[3], R[1]
ADD R[4], R[4], R[7]

DSP algorithms typically operate on linear data arrays (i.e., vectors) and
post-auto-increments or decrements in the memory pointer are therefore fre-
quently used. In addition a fused add and multiply, usually called MAC, allows
the previous six instructions to be combined into one single instruction, i.e.,

; load and multiply the values from pointer R[2] and R[3],
; and add the product to register R[4]
MAC R[4],R[3],R[2]

616 9. Microprocessor Design

Fig. 9.28. Programmable digital signal processor (DSP18) instruction set addi-
tions.

The ISA additions to the NanoBlaze is shown in Fig. 9.28. The addition of
such a MAC operation to the instruction set requires two major modification.
First we need to provide a LISA operation that allows two indirect memory
accesses. In hardware this results in a more-complex address generation unit
and a dual-output-port data memory that supports two reads in one clock
cycle. Secondly, we need to add the LISA operation for the MAC instructions.

The LISA operation to implement the MAC instruction can be implemented
as follows:

/* This LISA operation implements the instruction MAC. */
/* It accumulates the product of two register and stores */
/* the result in a destination register. */
OPERATION MAC IN pipe.EX
{
DECLARE
{
REFERENCE address;
REFERENCE reg;

}
CODING { 0b01101 }
SYNTAX { "MAC" }
BEHAVIOR
{
short tmp1, tmp2, s1, s2; /* Temporary */
short tmp_reg;
short res;

tmp_reg = reg;

s1 = (data_mem[EX.IN.ar] & (char)0xffff);
s2 = (data_mem[EX.IN.ar1] & (char)0xffff);
res = tmp_reg + s1 * s2;

9.5 Case Studies 617

#pragma analyze(off)
printf ("%04X * %04X + %04X = %04X\n",

s1, s2, tmp_reg, res);
#pragma analyze(on)

reg = res;

}
}

The MAC LISA operation starts with the DECLARE section that refers to
elements that are defined in other LISA operations. The CODING section that
describes the OP code follows. The assembler syntax would be MAC, and finally
in the BEHAVIOR section the implementation of the instruction is shown. We
have used an additional printf inside the operation to monitor progress.
While this does not change the hardware, we can monitor the output of our
MAC instruction directly in the debugger window; see the lower window in
Fig. 9.25.

We can then go ahead and synthesize the new processor that we want to
call DSP18 due to the PDSP-like added features in the instruction set and
perform a testbench simulation in the ModelSim simulator.

Example 9.10: To verify the functionality of the generated VHDL code we use
the ModelSim simulator. LPDP generated all the required HDL code (VHDL or
Verilog) and all the required simulation scripts (i.e., ModelTech *.do-files). As the
test values we use x = [1, 2, 3]; g = [10, 20, 40]; and the MAC operation should
progress as follows:

1. MAC = 1*10=10
2. MAC = 2*20=40 => 40+10=50
3. MAC = 3*40=120 =>120+50=170

The correct function can be seen from the ModelSim simulation from reg_r_4,
shown in Fig 9.29, which shows the contents of register r[4]. 9.10

If we now write the program for the same 100-point length-8 DWT as in
the last section, we will see the large impact the MAC operation has on the
overall instruction count. Now the 800 MAC operations are the dominate oper-
ations and much fewer explicit add or memory operations are required. The
total instruction count improves from 5,870 for the NanoBlaze to 1,968 for the
DSP18. The operation profile (including memory initialization, i.e., 300 oper-
ations) for the DWT example is shown in Fig. 9.30. Since the DSP18 is larger
and the addressing modes are more sophisticated than in the NanoBlaze, the
overall registered performance decreases to 39 MHz when using CLB-based
RAM and 51 MHz when using BlockRAM. Table 9.17 shows the implemen-
tation results for two different external memory configurations.

618 9. Microprocessor Design

Fig. 9.29. DSP18 testbench for MAC operation.

Fig. 9.30. DSP18 operation profile for 100-points length-8 dual-channel DWT
including memory initialization, i.e., 300 instructions.

LISA true vector processor. General-purpose CPUs have improved in
recent years by exploring instruction-level parallelism (ILP), adding on-chip
cache and floating-point units, speculative branch execution, and improved
speed etc. One particular problem that occurs now is that the logic to track
dependencies between all in-flight instructions grows quadratically with the
number of instructions [287]. As a result these improvements have consid-
erably slowed down since 2002 and the use of multiple CPUs on the same
die is now favored instead of increasing clock speed. This requires code to be
written for parallel processors, which may be less efficient than using a vector
processor to start with. Vector processors were successfully commercialized
long before ILP machines and use an alternative approach to controlling mul-
tiple function units with deep pipelines. Vector processors like Cray, NEC,
or Fujitsu VP100 provide high-level instructions that work on vectors, i.e., a
linear array of numbers. Usually vector processor are characterized by using:

• a vector array with dedicated load/store unit

9.5 Case Studies 619

Table 9.17. DSP18 synthesis result for the XC3S1000-4ft256 Spartan-3 Xilinx
device.

Parameter DSP18 with DSP18 with
CLB-based RAM BlockRAM

Slices 3145 2679
4-input LUT 6053 5183
Multiplier 2 2

BlockRAMs 0 2
Total gates 81,509 177,203

Clock period 25.542 ns 19.565 ns
Fmax 39.15 MHz 51.11 MHz

• functional unit that are highly pipelined
• hazard control is minimized
• support of vector instruction, that replace a complete loop by a single

instruction

Figure 9.31 shows an experimental vector processor that is a vector extension
of the popular MIPS machine called VMIPS. VMIPS was introduced in 2001
has eight vector registers each with 64 elements, one load/store, and five
arithmetic units, one lane, and runs at 500 MHz.

The second DSPstone benchmark: d[k] = a[k] × b[k]; 0 ≤ k ≤ N, for
instance, would be implemented in VMIPS by

MULV. D V1,V2,V3

i.e., multiply the elements of the vectors V2 and V3 and put each result in
the vector register V1.

However, as can be seen from Fig. 9.31, the typically implemented vector
processor architecture only looks to a programmer as a vector machine. Inside
the vector processor we may typically find eight vector registers where each
vectors has 32 to 1024 (Fujitsu VP100) elements but usually only one floating-
point arithmetic unit for each operation. A vector multiply or add, like in
DSPstone2, still requires N clock cycles (not counting the initialization).
Multiple lanes that allow more than one floating-point operation per clock
cycle are limited. In the last 30 years of vector processor history only two
machines (the NEC SX/5 from 1998 and the Fujitsu VPP5000 introduced in
1999) have had over 10 lanes, but the quotient of register elements to lanes
is still only 3% for the 512-elements-per-vector NEC SX/5 with 16 lanes.
The reason that typically VPs do not have more than one lane is that the
floating-point units in 64 bits need a large die area.

Another weakness of current vector processors is their limited usefulness
for DSP operations. In DSPs we not only need a vector multiply, instead
more often we need a inner product computation, i.e.,

620 9. Microprocessor Design

Vector

Scalar

Vector
load/store

memory
Main

FP add/subtract

registers

FP multiply

Integer ALU

registers

Forward muxes

FP divide

Fig. 9.31. The VMIPS vector processor.

X×Y =
N−1∑

k=0

X [k]× Y [k]. (9.7)

While the multiplication can be done in a vector element-by-element parallel
fashion the summation requires the addition of all products in an adder tree.
This is usually not supported with vector instructions. A third operation
that is not supported in most vector processors is the (cyclic) shift of the
vector register elements. For instance, if an FIR application requires the vec-
tor elements x[0] . . . x[N − 1], then in the next step the elements x[1] . . . x[N]
are needed. A PDSP uses cyclic addressing to address this issue. In a vector
processor it is usually necessary to reload the complete vector.

In an FPGA design we can therefore improve the processing by

• Adding the vector shift instructions VSXY and VSXY to our instruction set
to load two words from data memory, shift the two vector registers of the
data or coefficients, and place the two new values in the first location.

9.5 Case Studies 621

Fig. 9.32. The true vector processor (TVP) instruction set additions.

• Since modern FPGA can have up to 512 embedded multipliers, we can
implement as many multipliers as vector elements are in a vector. A VMUL
instruction will perform 2×8 multiplications and place the products in the
two product vector registers P and Q.

• Implement (inner product) vector sum instructions VAP and VAQ that adds
up all elements in a (product) register vector.

We call such a machine a true vector processor (TVP) since vector oper-
ations like vector multiply are no longer translated into a sequence of single
multiplies – all operations are done in parallel. For a two-channel length-8
wavelet processor we would therefore require 16 embedded multipliers. The
Spartan-3 device XC3S1000-4ft256 that is used in the low-cost Nexys Digi-
lent university boards, for instance, has 24 embedded 18× 18-bit multipliers
available, more than enough for our TVP.

The inner product sum may be a concern in terms of speed since here
horizontal L− 1 additions need to be performed for a vector register with L

622 9. Microprocessor Design

elements. But we can perform the additions on a binary adder tree, as the
following LISA code examples shows for the VAP instruction

/* Vector scalar add of all P register */
OPERATION VAP IN pipe.EX {
DECLARE
{
REFERENCE dst;

}
CODING { 0b100101 }
SYNTAX { "VAP" }
BEHAVIOR
{short t1,t2,t3,t4,t5,t6,t7;
t1 = P[0] + P[1];
t2 = P[2] + P[3];
t3 = P[4] + P[5];
t4 = P[6] + P[7];
t5 = t1 + t2;
t6 = t3 + t4;
t7 = t5 + t6;
dst = t7;

}
}

which reduces the worst-case delay from seven adds to three.
If we now implement the DWT length-8 processor with the TVP ISA

we find that the inner loop is much shorter, i.e., only nine instructions. The
downsampling by 2 of the DWT requires two shifts of the vectors X and Y for
each new output sample.

_loop:
VSXY R[2],R[3]
VSXY R[2],R[3]
VMUL
VAP R[4]
VAQ R[5]
STR R[4], R[6]
STR R[5], R[6]
BDS @_loop, R[7]
; next instruction is in the branch delay slot
SUB R[7],R[7],R[1]

The overall instruction count when compared with the DSP18 is further
decreased, as can be seen from the profile shown in Fig. 9.34. The total
instruction count for TVP is only 479 instructions.

9.5 Case Studies 623

Vector registers

Y

H

Q

Vector registers

G

P

MAC

generation
Address

X

True Vector Processor

DSP18
NanoBlaze

16

GPR

Integer ALU

Program
memory

Data
memory

Fig. 9.33. The true vector processor (TVP) architecture.

Table 9.18. TVP synthesis result for the Xilinx device XC3S1000-4ft256.

Parameter µP with
only BlockRAM

Slices 4907 4993
4-input LUT 8850 9226
Multiplier 18 18

BlockRAMs 0 2
Total gates 141,158 274,463

Clock Period 22.082 ns 20.799
Fmax 45.3 MHz 48.1 MHz

From Table 9.18 we notice the larger resource requirements and lower
maximum operation frequency.

Final LISA processor design comparison. Let us finally compare all
three designs in terms of size, speed, and overall throughput in MSPS for
a DWT length-8 example. The key synthesis properties are summarized in

624 9. Microprocessor Design

Fig. 9.34. TVP1 operation profile for length-8 dual-channel DWT.

Table 9.19. BlockRAM synthesis results of three different DWT length-8 processor
designs using LISA for Xilinx device: XC3S1000-4ft256

Parameter NanoBlaze DSP18 TVP

LISA operations 28 32 40
Prog. memory 27 × 18 27 × 18 27 × 18
Data memory 28 × 16 28 × 16 28 × 16
BRAMs 2 2 2
Gates 162,471 177,203 274,463
MHz 73.9 51.11 48.1

Table 9.19. The device used is a Spartan-3 XC3S1000-4ft256 as in the Nexys
Digilent university boards (see http://www.digilentinc.com/), with 7680
slices, 15360 four-input LUTs, 24 embedded multiplier, and 24 BlockRAMs
with 18 Kbit each, see Fig. 1.11, p. 18. When data or program memory are
implemented with CLB-based RAM (called distributed RAM by Xilinx) then
about 800 four-input LUTs are required for a 28×16 and about 120 four-input
LUTs for a 27 × 18 memory.

The overall performance of the three processors is measured by the mega
samples per second (MSPS) throughput when implementing a length-8 DWT
as shown in Fig. 5.55, p. 314. We need two length-8 filter g[n] and h[n] and for
each output sample pair 16 multiply and 14 add operations are computed. For
100 samples with an output downsampling by 2 the arithmetic requirements
for the DWT filter band would therefore be 8×100 = 800 multiplications and
7× 100 = 700 additions, or 800 MAC calls. From the NanoBlaze instruction
profile however we see that many addition cycles for LDR and ADD are required,

9.5 Case Studies 625

Table 9.20. Comparison of three different DWT length-8 processor designs using
LISA for the Xilinx Spartan-3 device XC3S1000-4ft256.

Parameter NanoBlaze DSP18 TVP

LDL 261 260 7
LDH 309 308 7
LDR 1600 0 0
VSXY − − 107
VSGH − − 8
VMUL − − 50
VAP − − 50
VAQ − − 50
MAC − 800 0
STR 100 100 100
ADD 2750 400 0
SUB − 50 50
MUL 800 0 0
BC 0 0 0
BC 0 0 0
BDS 50 50 50

Total 5870 1968 479
Clock 73.9 51.1 48.1

MSPS 1.26 2.60 10.0

due to the fact that the register updates for memory access are also computed
with the general-purpose ALU. The DSP18 processor reduces the LDR and
ADD essentially, and although the maximum clock frequency is decreased,
the overall throughput is improved by a factor of 2. If we use a true vector
processor, then an inner product can be computed in two clock cycles and
the overall throughput is improved by a factor of 8 compared with NanoBlaze
and a factor of 4 when compared with a single-core MAC DSP18 design.

Finally, the performance data of the three LISA based processors and
a direct RNS polyphase implementation (4217 LEs, 155 MSPS, [338]) are
compared in Fig. 9.35. We see the large improvement from NanoBlaze to
TVP, but still a direct mapping into hardware is another magnitude faster
than any microprocessor solution. The hardware architecture however can
only implement one configuration, while the TVP software architecture can
implement many different algorithms.

9.5.3 Nios FFT Design

As a Nios design example we will now study a DIF radix-2 FFT [164] using
the custom instruction feature for the butterfly processor implementation.
The discrete Fourier transform for an N -point input signal x[n] has been
discussed in Chap. 6, see (6.2), p. 344, i.e.,

626 9. Microprocessor Design

NanoBlaze DSP18 TVP Polyphase

1

2

3

4

6

10

20

30

40

60

100

150

200

Processor

M
S

P
S

Fig. 9.35. Comparison of LISA-based processor and direct RNS polyphase imple-
mentation.

X [k] =
N−1∑

n=0

x[n]e−j2πkn/N =
N−1∑

n=0

x[n]W kn
N . (9.8)

For the DIF radix-2 FFT algorithm, decimation is used to decompose the
N -point DFT into successively smaller DFT. The decimation process for an
N -point input sequence is carried out log2(N) times. Each decimation step
rearranges the input sequence into even and odd indexed sequences. The total
number of complex multiplications is therefore reduced to (N/2) log2(N).
Fig. 9.36a illustrates the signal flow graph of the eight-point decimation-
in-frequency radix-2 FFT algorithm, showing the different stages, groups,
and butterflies. The basic computation performed at each stage is called a
butterfly, as shown in Fig. 9.36b. In this algorithm, the input is in normal
order while the DFT output is in bitreverse order.

To evaluate the custom instruction feature of the Nios processor, the DIF
radix-2 FFT algorithm described above is implemented in two steps:

• Software implementation
• Software implementation with custom instruction for butterfly processor

Software implementation. Software implementation uses the characteris-
tics of the algorithm illustrated in Table 9.21. As the Gnupro compiler pro-
vided with the Nios development board, APEX edition, supports C programs,

9.5 Case Studies 627

Table 9.21. Characteristics of the DIF radix-2 algorithm.

Stage number k Stage 0 Stage 1 Stage 2 . . . Stage
log2(N)− 1

Number of
groups per stage 1 2 4 . . . N/2
(p = 2k)

Butterflies
per group N/2 N/4 N/8 . . . 1
(t = N/2p)

Increment
exponent 1 2 4 . . . N/2
twiddle-factors

(a)

3. Stage2. Stage1. Stage

−1

−1

−1

−1

0W

W2

0W

W2

0W

0W

X[0]

X[4]

X[2]

X[6]

X[1]

X[5]

X[3]

X[7]

W0

W

W1

W3

2

x[6]

x[7]

x[4]

x[5]

x[2]

x[3]

x[0]

x[1]

−1

−1

−1

−1

0

W0

−1

−1

−1

−1
W

(b)

nk

N
B

A
W

D=A+B

−1

N E=(A−B)W
nk

Fig. 9.36. DIF FFT. (a) Signal flow graph length-8. (b) Butterfly computation.

the software code for the algorithm is written in the C language [332, 329, 302].
The first row gives the stage number for a length-N FFT and is designed as
the outermost loop. The second row gives the number of groups based on the
stage number and is considered the second loop in the algorithm implemen-
tation. The third row gives the number of butterflies per group based on the
group number and forms the innermost loop. The final row shows how the

628 9. Microprocessor Design

twiddle-factors increment based on a particular stage. The hardware effort
for the Nios processor depending on the multiplier implemented without a
custom logic block ranges from 2701 to 3163 logic cells is shown in the second
column of Table 9.22.

Table 9.22. Hardware effort of Nios processor with different multiplier options and
butterfly custom logic.

Multiplier option Standard processor Custom processor
Software 2701 LCs 4414 LCs
MSTEP 2716 LCs 4433 LCs
MUL 3163 LCs 4841 LCs

Creation of custom logic block. For the custom implementation of a but-
terfly processor, the custom instruction features of the Nios processor must
be considered [333]. The custom logic block in the Nios processor connects
directly to the ALU of the Nios processor as a reconfigurable functional unit
and therefore provides an interface with predefined ports and names present
in the processor. The predefined physical ports and names that could be used
for custom logic design are shown in Fig. 9.37a. The number of custom logic
blocks that can be implemented in the Nios embedded processor system is
restricted to five, but with the presence of an 11-bit prefix port up to 2048
functions for each block can be performed. In the butterfly processor cus-
tom instruction design, the custom logic block for the butterfly processor is
written in VHDL [339].

Chapter 6 describes an efficient butterfly processor code bfproc.vhd for
8-bit data values, see Example 6.12, p. 370. In this code, the processor is
implemented with one adder, one subtraction, and a component instanti-
ation for twiddle-factor multiplier. The twiddle-factor multiplication is ef-
ficiently computed using component instantiations of three lpm_mult and
three lpm_add_sub modules. The output of the twiddle-factor multiplier
is scaled such that it has the same data format as the input. The algo-
rithm used for the twiddle-factor multiplier uses three coefficients of the
twiddle-factor, C,C + S, and C − S, where C and S are the real and imag-
inary coefficients of the twiddle-factor. The complex twiddle-factor multipli-
cation R + j × I = (X + j × Y)(C + j × S) is efficiently performed when
these coefficients are used. The real and imaginary parts of the complex
twiddle-factor multiplication using these three coefficients can be computed
as R = (C−S)×Y +C×(X−Y) and I = (C+S)×X−C×(X−Y), respec-
tively. To ensure short latency for in-place FFT computation, the complex
multiplier is implemented without pipeline stages. The butterfly processor
is designed to compute scaled outputs where the output produced by the
design is equal to half the actual output value. The butterfly processor de-

9.5 Case Studies 629

RESULT[31..0]

A[31..0]

B[31..0]
OR

AND

SRA
SLL

ADD
SUB

M
PX

To FIFO, memory, or other logic

logic

Custom

NIOS processor core

datab[31..0]

prefix[10..0]

clk

clk_en

dataa[31..0]

start

Multi−cycle

Parameterized

reset

To FIFO, memory, or other logic

Combinational

result[31..0]

(a) (b)

Fig. 9.37. (a) Adding custom logic to the Nios ALU. (b) Physical ports for the
custom logic block.

sign uses flip-flops for the input, coefficient, and the output data to have a
single-input/output registered design.

For custom implementation, this design is modified to use the predefined
physical ports for multicycle logic shown in Fig. 9.37b. The parameterized
prefix port is used in the design to define various read and write functions
required to read and write the complex input and output data present in
the butterfly computation. A total of eight prefix-defined functions are re-
quired for proper implementation of the design. The design is compiled with
a EPF20k200EFC484-2X (APEX device) present in the Nios development
board using the Quartus II software. It requires about 1700 LEs on the
APEX device. The performance (fmax) of the design is found to be 30.82
MHz. The simulation of the design shows that it requires two clock cycles for
valid implementation of the design.

Instantiation of custom logic block. The custom logic block is instanti-
ated with the aid of the Nios CPU configuration wizard, which is a part of
SOPC builder (system integration tool) present in the Quartus II software
available with the Nios development kit. The only input for this instantiation
process is the number of clock cycles required for valid implementation of the
custom logic block created. For the butterfly processor custom logic block,
the number of clock cycles required is eight, based on the simulation result.
The instantiation process includes the custom logic block with the Nios ALU
and generates a software macro for this block known as a custom instruction.
The new Nios processor with the custom logic block is then recompiled and
downloaded to the APEX FPLD device in the Nios development board. The

630 9. Microprocessor Design

3 4 5 6 7 8 9 10 11

3000

10000

30000

100000

300000

1000000

3000000

10000000

30000000

100000000

300000000

1000000000

Nios standard 32−bit processor

log
2
(Number of points)

C
lo

ck
 c

yc
le

s

DFT
DFT+Array Mul.
FFT
FFT+Array Mul.
Custom

Fig. 9.38. Number of clock cycles with and without an array multiplier.

entire design requires, depending on the multiplier used, between 4414 and
4841 LEs of the APEX device, see the third column in Table 9.22. The down-
loaded design acts as a platform for software implementation using custom
instruction. The butterfly computation in software could then be performed
using the software macro functions where the function of the software macro
is defined by the prefix port values. Finally the software implementation of
the DIF radix-2 FFT is modified by using custom instructions for the but-
terfly computation.

Code optimization for custom logic design. A first direct approach to
code the DIF FFT is to use a standard program like the FORTRAN code
by Burrus and Parks [164], convert the code to the language C and introduce
the custom instructions. Such a code [336] will look like:

1: dwStartTick=GetTickCount(); // Record Start Time
2: S = log10(N)/log10(2); // Number of stages
3: Stages for (k=0; k<S; k++)
4: Loop
5: { p = 1<<k; // Number of groups
6: t = N/(p << 1); // Number of butterflies
7: f = t << 1; // in each Group
8: for (j=0; j<p; j++) // Group Loop

9.5 Case Studies 631

9: { I = f * j; // Jump to each group in a stage
10: for (i=0; i<t; i++) // Butterfly Loop
11: { a = I + t; // Butterfly calculation
12: Are = (*(xr+I) << 1); Aim = (*(xi+I) << 1);
13: /***Custom Instructions**/
14: nm_bfpr_pfx(1,Are,Aim); // Read Are and Aim
15: Bre = (*(xr+a) << 1); Bim = (*(xi+a) << 1);
16: nm_bfpr_pfx(2,Bre,Bim); // Read Bre and Bim
17: Wr = *(wnr+(p*i)); Wi = *(wni+(p*i));
18: nm_bfpr_pfx(3,Wr,0); // Read C
19: W1 = Wr + Wi; W2 = Wr - Wi;
20: nm_bfpr_pfx(4,W1,W2); // Read C+S and C-S
21: *(xr+I) = nm_bfpr_pfx(5,0,0); // Write real
22: *(xi+I) = nm_bfpr_pfx(6,0,0); // Write imaginary
23: *(xr+a) = nm_bfpr_pfx(7,0,0); // Write the real
24: *(xi+a) = nm_bfpr_pfx(8,0,0); // Write imaginary
25: I = I + 1; // Jump to each butterfly
26: } } } // in a Group
27: lTicksUsed=GetTickCount(); // Record end time

Several different DIF Radix-2 FFT versions were tested and the following
list shows the most successful changes:

0) Initial version using direct C conversion from FORTRAN [336], but with
log10() computation for the number of stages outside the FFT routine,
i.e., a LUT. Now the FFTs with custom instructions should not depend
on the Nios multiplier type.

1) Improved software code: no multiplications or divides in the index compu-
tations and moving code to avoid multiplies or divides, see, for instance,
listing line 5.

2) COS/SIN load outside the butterfly, i.e., computes all groups with the
same twiddle-factor, rather then running through a whole group.

3) Uses a complex data type, i.e., real and imaginary parts are stored in
memory next to each other. This improves memory access, which was
verified by analyzing the generated assembler code.

These different methods can improve the number of clock cycles, depend-
ing on the multiplier type, between 17% and 61% for 256-point FFTs, as
shown in Table 9.23.

On the VHDL hardware side additional improvements were implemented
as follows:

0) Original version from the 2/e Springer book DSP with FPGAs [57] ad-
justed in MS project [336]:
• change the I/O ports (dataa, datab result, etc.) as required by Nios
• change to 32-bit-width I/O and internal 18× 18-bit multipliers

1) Removal of second pipeline from CCMUL

632 9. Microprocessor Design

Table 9.23. Speed increase for 256-point FFT with software-only improvements
for different multiplier options.

Multiplier Clock cycles Clock cycles Clock cycles
option software multiplier MSTEP multiplier array multiplier

Original 0 1345627 771295 331836
Improved 1 1236345 695673 281765
Improved 2 1228978 688306 268772
Improved 3 518953 643423 227663

Gain 61% 17% 31%

• CMUL included in the bfp2.vhd code
• No lpm, only STD_LOGIC functions for add and multiply
• Move COS+/−SIN to the FPGA side from software (removing one

custom instruction)
• No scaling by 2 in the hardware → remove (<<1) in software

2) Further VHDL optimizations:
• simplify result sign extension
• Reset is asynchronous
• Start is used as the enable for the flip-flops

Table 9.24. Speed increase for 256-point FFT with software and hardware im-
provements.

Clock cycles Gain
array multiplier

Original software 331836
Custom instructions 181747 45%
Software only 135615 59%
Hardware only 113054 65%
Software+hardware 75516 77%

The overall gain using the custom instruction and further optimization is
in the range of 45%− 65%. Together with a careful software development a
gain of 77% for a 256-point FFT is observed, see Table 9.24. The following
code shows the optimized C-code. Both hardware as well as software modifi-
cations are present in the code.

1: dwStartTick=GetTickCount();
2: k2 = N; dw = 1;
3: for (l = 1; l <= S; l++)
4: {k1 = k2; k2 >>= 1; w = 0;

9.5 Case Studies 633

6: for (k = 0; k < k2; k++) {
7: Wr = coef[w].r;
8: Wi = coef[w].i;
9: nm_bfp3_pfx(3,Wr,Wi); // Read COS+SIN
10: w += dw;
11: for (i1 = k; i1 < N; i1 += k1) {
12: i2 = i1 + k2;
13: /***Custom Instructions**/
14: tr = x[i1].r; ti = x[i1].i;
15: nm_bfp3_pfx(1,tr,ti); // Read Are and Aim
16: tr = x[i2].r; ti = x[i2].i;
17: nm_bfp3_pfx(2,tr,ti); // Read Bre and Bim
18: x[i1].r = nm_bfp3_pfx(4,0,0); // Write real
19: x[i1].i = nm_bfp3_pfx(5,0,0); // Write imaginary
20: x[i2].r = nm_bfp3_pfx(6,0,0); // Write real
21: x[i2].i = nm_bfp3_pfx(7,0,0); // Write imaginary
22: }
23: }
24: dw <<= 1;
25: }

Nios FFT performance results. By measuring the number of clock cy-
cles required for custom implementation and software-only implementation of
the butterfly processor, the speed relation between the two can be measured
with different multiplier optimizations, as shown in Table 9.25. The clock
cycle measurements are taken based on the Gnupro C/C++ compiler avail-
able with the Nios development board. The increase in speed from custom
implementation for a single butterfly computation is given by

Speed increase =
Clock cycles software only design
Clock cycles for custom design

(9.9)

Table 9.25. Speed increase for a single butterfly computation.

Multiplier Clock cycles Clock cycles with Improvement
option with software custom instruction factor

Software 1227 119 10.3
MSTEP 698 119 5.8
MUL 295 119 2.47

Furthermore, the performance of FFTs of different length using custom
implementation and software-only implementation of the butterfly processor
can be compared. Figures 9.38 and 9.39 show this comparison along with
reference DFT data using the direct computation as in Equation (9.8), p. 626.

634 9. Microprocessor Design

3 4 5 6 7 8 9 10 11
1

3

10

30

100

300

1000

3000

10000

30000
Nios standard 32−bit processor

log
2
(Number of points)

F
F

T
s

pe
r

se
co

nd

DFT
DFT+Array Mul.
FFT
FFT+Array Mul.
Custom

Fig. 9.39. Number of DFT/FFT per second with and without array multiplier.

It is observed that the overall performance decreases with increasing
length of the FFT for each implementation while the performance of the
custom implementation for each of the FFTs computed is higher than the
software-only implementation. Of all the multiplier optimizations the MUL
optimization gives the best overall performance for both implementations.
Apart from the performance calculations, it is observed that custom im-
plementation results in a small additional quantization error in the output
values, which increases with increasing length of the FFT.

Exercises

Note: If you have no prior experience with the Quartus II software, refer
to the case study found in Sect. 1.4.3, p. 29. If not otherwise noted use the
EP2C35F672C6 from the Cyclone II family for the Quartus II synthesis eval-
uations.

9.1: Using the following categories

Exercises 635

(A) Applications software (F) Output device
(B) Systems software (G) Input device
(C) High-level programming language (H) Semiconductor
(D) Personal computer (I) Integrated circuit
(E) Minicomputer/workstation (J) Supercomputer

classify the following examples by putting the answers in the provided brackets []
to the right.

Device driver [] GCC [] LCD display []
Wafer [] Pentium Pro [] copy (DOS) or cp (UNIX) []
MS Word [] SRAM [] Internet browser []
Microphone [] SUN [] Loudspeaker []
CD-ROM [] Metal layer [] dir (DOS) or ls (UNIX)[]

9.2: Repeat Exercise 9.1 for the following items:

Spreadsheet [] Mouse [] Silicon []
DEC Alpha [] Cray-1 [] Macintosh []
Operating system [] DRAM [] Pascal []
Microprocessor [] PowerPC [] Compiler []
Cathode ray tube display [] Printer [] Assembler []

9.3: Consider a machine with three instructions (ADD/MUL/DIV) with the following
clock cycles per instruction (CPI) data:

Instruction class CPI for this instruction class
ADD = 1, MUL = 1, DIV= 1.

We have measured the code for the same program for two different compilers
and obtained the following data:

Code from Instruction counts for each class
ADD MUL DIV

Compiler 1 25× 109 5× 109 5× 109

Compiler 2 47× 109 18× 109 5× 109

Assume that the machine’s clock rate is 200 MHz. Compute execution time and
MIPS rate = instruction count /(execution time ×106) for the two compilers using
the following steps. Compute:
(a) CPU clock cycles for compiler 1 =
(b) Execution time using compiler 1 =
(c) MIPS rate using compiler 1 =
(d) CPU clock cycles for compiler 2 =
(e) Execution time using compiler 2 =
(f) MIPS rate using compiler 2 =
(g) Which compiler is better in terms of MIPS?
(h) Which compiler is better in terms of execution time?

9.4: Repeat Exercise 9.3 for the following CPI data: ADD=1 MUL=5 DIV=8 and a ma-
chine clock rate of 250 MHz. We have measured the code for the same program for
two different compilers and obtained the following data:

636 9. Microprocessor Design

Code from Instruction counts for each class
ADD MUL DIV

Compiler 1 35× 109 10× 109 5× 109

Compiler 2 60× 109 5× 109 5× 109

Answer the questions (a)-(h).

9.5: Compare zero- to three-address machines by writing programs to compute

g = (a ∗ b− c)/(d ∗ e− f) (9.10)

for the following instruction sets:
(a) Stack: PUSH Op1, POP Op1, ADD, SUB, MUL, DIV.
(b) Accumulator LA Op1, STA Op1, ADD Op1, SUB Op1, MUL Op1, DIV Op1. All arith-
metic operation use as the second operand the accumulator and the result is stored
in the accumulator, see (9.4), p. 553
(c) Two-operand LT Op1, M; ST Op1, M; ADD Op1, Op2; SUB Op1, Op2; MUL Op1,
Op2; DIV Op1, Op2. All arithmetic operations use two operands according to (9.5),
p. 555.
(c) Three-operand LT Op1, M; ST Op1, M; ADD Op1, Op2, Op3; SUB Op1, Op2,
Op3; MUL Op1, Op2, Op3; DIV Op1, Op2, Op3. All arithmetic operations use three
operands according to (9.6), p. 555.

9.6: Repeat Exercise 9.5 for the following arithmetic expression:

f = (a− b)/(c + d× e). (9.11)

You may rearrange the expression if necessary.

9.7: Repeat Exercise 9.5 for the following arithmetic expression:

h = (a− b)/((c + d) ∗ (f − g)). (9.12)

You may use additional temporary variables if necessary.

9.8: Convert the following infix arithmetic expressions to postfix expressions.
(a) a + b− c− d + e
(b) (a + b) ∗ c
(c) a + b ∗ c
(d) (a + b)̂ (c− d) (̂ power-of sign)
(e) (a− b)× (c + d) + e
(f) a× b + c× d− e× f
(g) (a− b)× (((c− d× e)× f)/g)× h

9.9: For the arithmetic expression from Exercise 9.8 generate the assembler code
for a stack machine using the program c2asm.exe from the book CD.

9.10: Convert the following postfix notation to infix.
(a) abc + /
(b) ab + cd− /
(c) ab− c + d×
(d) ab/cd×−
(e) abcde +×× /
(f) ab + c ˆ (with ˆ power-of sign)
(g) abcde/f ×−g + h/×+

Exercises 637

9.11: Which of the following pairs of postfix expression are equivalent?
(a) ab + c+ and abc + +
(b) ab− c− and abc−−
(c) ab ∗ c∗ and abc ∗ ∗
(d) ab̂ ĉ and abĉ ˆ (with ˆ power-of sign)
(e) ab× c+ and cab×+
(f) ab× c+ and abc +×
(g) abc +× and ab× bc×+

9.12: The URISC machine suggested by Parhami [306] has a single instruction
only, which performs the following: subtract operand 1 from operand 2 and replace
operand 2 with the result, then jump to the target address if the result was negative.
The instructions are of the form urisc op1,op2,offset, where offset specifies the
next instruction offset, which is 1 most of the time. Develop URISC code for the
following functions:
(a) clear (src).
(b) dest = (src1)+(src2).
(c) exchange (src1) and (src2).
(d) goto label.
(e) if (src1>=src2), goto label.
(f) if (src1=src2), goto label.

9.13: Extend the lexical VHDL analysis vhdlex.l (see p. 571) to include pattern
matching for:
(a) Bits ’0’ and ’1’
(b) Bit vectors "0/1..0/1"
(c) Data type definition like BIT and STD_LOGIC
(d) All keywords found in HDL code example
(e) All keywords found in HDL code sqrt

9.14: Write a lexical VHDL analysis float.l that recognizes floating-point numbers
of the type
(a) 1.5
(b) 1.5e10
(c) 1.5e10 and integers, e.g., 5

9.15: Write a lexical VHDL analysis vhdlwc.l that counts character, VHDL key
words, other words, and lines, similar to the UNIX commands wc.

9.16: Write a simple lexical natural-language analyzer. Your scanner should classify
each word into verbs and others. Example session:

user: do you like vhdl
lexer: do: is a verb
lexer: you: is not a verb
lexer: like: is a verb
lexer: vhdl: is not a verb

9.17: Extend the natural-language lexical analyzer from Exercise 9.16 so that the
scanner classifies the items into verb, adverb, preposition, conjunction, adjective,
and pronoun. Examples: is, very, to, if, their, and I, respectively.

9.18: Extend the natural-language lexical analyzer from Exercise 9.16 by adding a
symbol table that allows you to add new words and its type to your dictionary. The
type definition has to start in the first column. Example session:

638 9. Microprocessor Design

user: verb is am run
user: noun dog cat
user: dog run
lexer: dog: noun
lexer: run: verb

9.19: Develop a Bison grammar nlp that finds a valid sentence of the form subject
VERB object, where subject can be of type NOUN or PRONOUN and object is of type
NOUN. For the lexical analysis use a similar scanner to that developed in Exercise
9.18. If you run the sentence parser, print out a statement if the sentence is valid
or invalid. Example session:

user: verb like enjoy hate
user: noun vhdl verilog
user: pronoun I you she he
user: I like vhdl
nlp: Sentence is valid
user: you like she
nlp: Sentence is invalid

9.20: Add to the Bison grammar of add2.y for float number type the grammar
rules for
(a) Basic math -,*,/
(b) Trigonometric functions, e.g., sin, cos, arctan
(c) The operations sqrt, ln, and log.
Example session:

user: sqrt(4*4+3*3)
calc: 5.0
user: arctan(1)
calc: 0.7853
user: log(1000)
calc: 3.0

9.21: Rewrite the Bison grammar of calc.y (keep calc.l) to have a reverse Pol-
ish or postfix rpcalc.y calculator. The calculator should support the operations
+,-,*,/, and ^. Verify your calculator with the following example session:

user: 1 3 +
rpcalc: 4
user: 1 3 + 5 * 2 ^
rpcalc: 256
user: (5*9)/(6*5-3*3*3)
rpcalc: 15

9.22: Write a Bison grammar to analyze arithmetic expression and output three-
address code. Use temporary variables to store intermediate results. At the end
print the operation code and the symbol table. Example session:

r=(a*b-c)/(d*e-f);
-- Result from quads:

Intermediate code:
Quadruples 3AC
Op Dst Op1 Op2
(*, 4, 2, 3) T1 <= a * b

Exercises 639

(-, 6, 4, 5) T2 <= T1 - c
(*, 9, 7, 8) T3 <= d * e
(-, 11, 9, 10) T4 <= T3 - f
(/, 12, 6, 11) T5 <= T2 / T4
(=, 1, 12, --) r <= T5

Symbol table:
1 : r
2 : a
3 : b
4 : T1
5 : c
6 : T2
7 : d
8 : e
9 : T3
10 : f
11 : T4
12 : T5

9.23: Determine the equivalent assembler code and the values of the registers $t0,
$t1, and $t2 for the C program below. Assume that the C language variables A, B,
and C have the following register assignments: A=$t0, B=$t1, and C=$t2. Use – if
the register value is unknown. Do not leave blank fields in the table. Use ADD, SUB,
ADDI, or the SRL (shift right logical) instructions. Do not use SLL.

Step C-code Assembler instruction $t0 $t1 $t2

1 A = 48;
2 B= 2 * A;
3 C = 10;
4 C = C / 4;
5 A = A / 16;

Instruction formats:

Addition (with overflow) ADD rd, rs, rt
Subtract (with overflow) SUB rd, rs, rt
Addition immediate (with overflow) ADDI rd, rs, imm
Shift right logical SRL rd, rs, shamt

9.24: Repeat Exercise 9.23 for the following instructions:

Step C-code Assembler instruction $t0 $t1 $t2

1 B = 96;
1 A= 2*B;
3 C = 20;
4 C = C / 8;
5 B = B / 32;

9.25: Many RISC machines do not have a special instruction to reset a register.
Show using add, addi, or substract instructions how to reset the register $t0.
Register $zero and the immediate value 0 should be used. Fill in the blanks in the
following code.

640 9. Microprocessor Design

(a) ADD # Compute t0 = register with zero + register with zero
(b) ADDI # Compute t0 = register with zero + 0
(c) SUB # Compute t0 = t0 - t0;

9.26: Many RISC machines do not have a special move instruction. Show using
add, addi, or substract instructions how to move the register $s0 to $t0, i.e., set
$t0 to $s0. Register $zero and the immediate value 0 should be used. Fill in the
blanks in the following code.
(a) ADD # Compute t0 = s0 + register with zero
(b) ADDI # Compute t0 = s0 + 0
(c) SUB # Compute t0 = s0 - 0

9.27: Determine the equivalent C-code and the values of the registers $t0, $t1, and
$t2 for the assembler program below. Assume that the C language variables a, b,
and c have the following register assignments: a=$t0, b=$t1, and c=$t2. Use – if
the register value is unknown. Do not leave blank fields in the table.

Step Instruction C-code $t0 $t1 $t2

1 ADDI $t2, $zero, 32
2 SRL $t1, $t2, 3
3 ADDI $t0, $zero, 2
4 SUB $t2, $zero, $t0
5 SLL $t0, $t0, 5

9.28: Repeat Exercise 9.27 for the following instructions:

Step Instruction C-code $t0 $t1 $t2

1 ORI $t0, $zero, 4
2 SLL $t0, $t0, 2
3 SUB $t1, $zero, $t0
4 ORI $t2, $zero, 64
5 SRL $t1, $t2, 3

9.29: Determine the cache contents for the memory access sequence 2,1,2,5,1 for
the following three caches with four blocks.
(a) Direct mapped cache

Address Cache contents

Hit or miss 0 1 2 3

2
1
2
5
1

Exercises 641

(b) Fully associative (starting with first unused location)

Address Cache contents

Hit or miss 0 1 2 3

2
1
2
5
1

(c) Two-way set associative (replacing the least recently used)

Addr. Cache contents

Hit or Set Flag Set Flag Set Flag Set Flag
miss 0 0 1 1

2
1
2
5
1

9.30: Repeat Exercise 9.29 for the following memory access sequence: 2,6,3,2,3.

9.31: For a cache with 8 KB of data and with a 32-bit data/address word width
compute the total memory size using the following steps:
(a) How many words are there in the cache?
(b) How many tag bits are there in the cache?
(c) What is the total size of the cache?
(d) Compute the overhead in percentage of the cache.

9.32: Repeat Exercise 9.31 with 4 KB of data and a 32-bit data/address word
width.

9.33: In Example 9.7 (p. 603) the MicroBlaze cache was discussed. Determine the
number of BlockRAMs for the following MicroBlaze data: main memory 64 KB;
cache size 4KB; words per line=8.
(a) The number of BlockRAMs to store the data
(b) The number of BlockRAMs to store the tags
(c) Using the data from (a) and (b), determine the maximum main memory size
that can be addressed with this configuration.

9.34: In Example 9.7 (p. 603) the MicroBlaze cache was discussed. Determine the
number of BlockRAMs for the following MicroBlaze data: main memory 16 KB;
cache size 2 kB; words per line=4.
(a) The number of BlockRAMs to store the data
(b) The number of BlockRAMs to store the tags
(c) Using the data from (a) and (b), determine the maximum main memory size
that can be addressed with this configuration.

9.35: (a) Design the PREP benchmark 7 (which is equivalent to benchmark 8)
shown in Fig. 9.40a with the Quartus II software. The design is a 16-bit binary up-
counter. It has an asynchronous reset rst, an active-high clock enable ce, an active-
high load signal fd, and 16-bit data input d[15..0]. The registers are positive-edge

642 9. Microprocessor Design

triggered via clk, see the simulation in Fig. 9.40c for the function test. The following
table summarizes the functions:

clk rst ld ce q[15..0]
X 0 X X 0000

1 1 X d[15..0]
1 0 0 No change
1 0 1 Increment

(b) Determine the Registered Performance and the used resources (LEs, mul-
tipliers, and M4Ks) for a single copy. Compile the HDL file with the synthesis
optimization technique set to Speed, Balanced or Area as found in the Analysis &
Synthesis Settings section under EDA Tool Settings in the Assignments menu.
Which synthesis options are optimal in terms of size and Registered Performance?
Select one of the following devices:
(b1) EP2C35F672C6 from the Cyclone II family
(b2) EPF10K70RC240-4 from the Flex 10K family
(b3) EPM7128LC84-7 from the MAX7000S family
(c) Design the multiple instantiation for benchmark 7, as shown in Fig. 9.40b.
(d) Determine the Registered Performance and the used resources (LEs, multipli-
ers, and M2Ks/M4Ks) for the design with the maximum number of instantiations
of PREP benchmark 7. Use the optimal synthesis option you found in (b) for the
following devices:
(d1) EP2C35F672C6 from the Cyclone II family
(d2) EPF10K70RC240-4 from the Flex 10K family
(d3) EPM7128LC84-7 from the MAX7000S family

d[15:0]

First Second

q[15:0]

Last instance

(b)

+1 +1 +1

rst
clk

ld

Counter

(a)

q[15:0]

+1
d[15:0]

ld
ce
clk

rst
ce

(c)

Fig. 9.40. PREP benchmark 7 and 8. (a) Single design. (b) Multiple instantiation.
(c) Testbench to check the function.

Exercises 643

First Second Last instance

(b)

Decoder

(a)

clk

rst

be

al[7:0]

ah[7:0]

q[7:0]

ah[7:0]

q[15:0]al[7:0]

as

clk

as

as as asbe be be be

al

ah

q al

ah

q al

ah

q

rst

(c)

Fig. 9.41. PREP benchmark 9. (a) Single design. (b) Multiple instantiation. (c)
Testbench to check the function.

9.36: (a) Design the PREP benchmark 9 shown in Fig. 9.41a with the Quartus II
software. The design is a memory decoder common in microprocessor systems. The
addresses are decoded only when the address strobe as is active. Addresses that fall
outside the decoder activate a bus error be signal. The design has a 16-bit input
a[15..0], an asynchronous active-low reset rst and all flip-flops are positive-edge
triggered via clk. The following table summarizes the behavior:

rst as clk A q[7..0] be
(hex) (binary)

0 X X X 00000000 0
1 0 X 00000000 0
1 1 0 X q[7..0] be
1 1 FFFF to F000 00000001 0
1 1 EFFF to E800 00000010 0
1 1 E7FF to E400 00000100 0
1 1 E3FF to E300 00001000 0
1 1 E2FF to E2C0 00010000 0
1 1 E2BF to E2B0 00100000 0
1 1 E2AF to E2AC 01000000 0
1 1 E2AA 10000000 0
1 1 E2AA to 0000 00000000 1

Where X is don’t care. Try to match the simulation in Fig. 9.41c for the function
test. Note that the original be definition requires be stored be for as=f, but the
simulation shows be differently. The coding matches the simulation rather then the
original truth table.

644 9. Microprocessor Design

(b) Determine the Registered Performance and the used resources (LEs, multi-
pliers, and M2Ks/M4Ks) for a single copy. Compile the HDL file with the synthesis
optimization technique set to Speed, Balanced or Area as found in the Analysis &
Synthesis Settings section under EDA Tool Settings in the Assignments menu.
Which synthesis options are optimal in terms of size and Registered Performance?
Select one of the following devices:
(b1) EP2C35F672C6 from the Cyclone II family
(b2) EPF10K70RC240-4 from the Flex 10K family
(b3) EPM7128LC84-7 from the MAX7000S family
(c) Design the multiple instantiation for benchmark 9, as shown in Fig. 9.41b.
(d) Determine the Registered Performance and the used resources (LEs, multipli-
ers, and M2Ks/M4Ks) for the design with the maximum number of instantiations
of PREP benchmark 9. Use the optimal synthesis option you found in (b) for the
following devices:
(d1) EP2C35F672C6 from the Cyclone II family
(d2) EPF10K70RC240-4 from the Flex 10K family
(d3) EPM7128LC84-7 from the MAX7000S family

References

1. B. Dipert: “EDN’s first annual PLD directory,” EDN , pp. 54–84 (2000).
http://www.ednmag.com/ednmag/reg/2000/08172000/17cs.htm

2. S. Brown, Z. Vranesic: Fundamentals of Digital Logic with VHDL Design
(McGraw-Hill, New York, 1999)

3. D. Smith: HDL Chip Design (Doone Publications, Madison, Alabama, USA,
1996)

4. U. Meyer-Bäse: The Use of Complex Algorithm in the Realization of Univer-
sal Sampling Receiver using FPGAs (in German) (VDI/Springer, Düsseldorf,
1995), Vol. 10, no. 404, 215 pages

5. U. Meyer-Bäse: Fast Digital Signal Processing (in German) (Springer, Heidel-
berg, 1999), 370 pages

6. P. Lapsley, J. Bier, A. Shoham, E. Lee: DSP Processor Fundamentals (IEEE
Press, New York, 1997)

7. D. Shear: “EDN’s DSP Benchmarks,” EDN 33, 126–148 (1988)
8. J. Donovan: (2002), “The truth about 300 mm,” http://www.eet.com
9. Plessey: (1990), “Datasheet,” ERA60100

10. J. Greene, E. Hamdy, S. Beal: “Antifuse Field Programmable Gate Arrays,”
Proceedings of the IEEE , pp. 1042–56 (1993)

11. J. Rose, A. Gamal, A. Sangiovanni-Vincentelli: “Architecture of Field-
Programmable Gate Arrays,” Proceedings of the IEEE , pp. 1013–29 (1993)

12. Xilinx: “PREP Benchmark Observations,” in Xilinx-Seminar , San Jose (1993)
13. Altera: “PREP Benchmarks Reveal FLEX 8000 is Biggest, MAX 7000 is

Fastest,” in Altera News & Views, San Jose (1993)
14. Actel: “PREP Benchmarks Confirm Cost Effectiveness of Field Programmable

Gate Arrays,” in Actel-Seminar (1993)
15. E. Lee: “Programmable DSP Architectures: Part I,” IEEE Transactions on

Acoustics, Speech and Signal Processing Magazine, pp. 4–19 (1988)
16. E. Lee: “Programmable DSP Architectures: Part II,” IEEE Transactions on

Acoustics, Speech and Signal Processing Magazine pp. 4–14 (1989)
17. R. Petersen, B. Hutchings: “An Assessment of the Suitability of FPGA-Based

Systems for Use in Digital Signal Processing,” Lecture Notes in Computer
Science 975, 293–302 (1995)

18. J. Villasenor, B. Hutchings: “The Flexibility of Configurable Computing,”
IEEE Signal Processing Magazine pp. 67–84 (1998)

19. Xilinx: (1993), “Data book,” XC2000, XC3000 and XC4000
20. Altera: (1996), “Datasheet,” FLEX 10K CPLD family
21. Altera: (2005), “Cyclone II Device Handbook,” Vol. 1
22. F. Vahid: Embedded System Design (Prentice Hall, Englewood Cliffs, New

Jersey, 1990)
23. J. Hakewill: “Gainin Control over Silicon IP,” Communication Design, online

(2000)

646 References

24. E. Castillo, U. Meyer-Baese, L. Parrilla, A. Garcia, A. Lloris: “Watermarking
Strategies for RNS-Based System Intellectual Property Protection,” in Proc.
of 2005 IEEE Workshop on Signal Processing Systems SiPS’05 Athens (2005),
pp. 160–165

25. O. Spaniol: Computer Arithmetic: Logic and Design (John Wiley & Sons, New
York, 1981)

26. I. Koren: Computer Arithmetic Algorithms (Prentice Hall, Englewood Cliffs,
New Jersey, 1993)

27. E.E. Swartzlander: Computer Arithmetic, Vol. I (Dowden, Hutchingon and
Ross, Inc., Stroudsburg, Pennsylvania, 1980), also reprinted by IEEE Com-
puter Society Press 1990

28. E. Swartzlander: Computer Arithmetic, Vol. II (IEEE Computer Society
Press, Stroudsburg, Pennsylvania, 1990)

29. K. Hwang: Computer Arithmetic: Principles, Architecture and Design (John
Wiley & Sons, New York, 1979)

30. N. Takagi, H. Yasuura, S. Yajima: “High Speed VLSI multiplication algorithm
with a redundant binary addition tree,” IEEE Transactions on Computers 34
(2) (1985)

31. D. Bull, D. Horrocks: “Reduced-Complexity Digital Filtering Structures using
Primitive Operations,” Electronics Letters pp. 769–771 (1987)

32. D. Bull, D. Horrocks: “Primitive operator digital filters,” IEE Proceedings-G
138, 401–411 (1991)

33. A. Dempster, M. Macleod: “Use of Minimum-Adder Multiplier Blocks in FIR
Digital Filters,” IEEE Transactions on Circuits and Systems II 42, 569–577
(1995)

34. A. Dempster, M. Macleod: “Comments on “Minimum Number of Adders for
Implementing a Multiplier and Its Application to the Design of Multiplierless
Digital Filters”,” IEEE Transactions on Circuits and Systems II 45, 242–243
(1998)

35. F. Taylor, R. Gill, J. Joseph, J. Radke: “A 20 Bit Logarithmic Number System
Processor,” IEEE Transactions on Computers 37 (2) (1988)

36. P. Lee: “An FPGA Prototype for a Multiplierless FIR Filter Built Using the
Logarithmic Number System,” Lecture Notes in Computer Science 975, 303–
310 (1995)

37. J. Mitchell: “Computer multiplication and division using binary logarithms,”
IRE Transactions on Electronic Computers EC-11, 512–517 (1962)

38. N. Szabo, R. Tanaka: Residue Arithmetic and its Applications to Computer
Technology (McGraw-Hill, New York, 1967)

39. M. Soderstrand, W. Jenkins, G. Jullien, F. Taylor: Residue Number System
Arithmetic: Modern Applications in Digital Signal Processing, IEEE Press
Reprint Series (IEEE Press, New York, 1986)

40. U. Meyer-Bäse, A. Meyer-Bäse, J. Mellott, F. Taylor: “A Fast Modified
CORDIC-Implementation of Radial Basis Neural Networks,” Journal of VLSI
Signal Processing pp. 211–218 (1998)

41. V. Hamann, M. Sprachmann: “Fast Residual Arithmetics with FPGAs,” in
Proceedings of the Workshop on Design Methodologies for Microelectronics
Smolenice Castle, Slovakia (1995), pp. 253–255

42. G. Jullien: “Residue Number Scaling and Other Operations Using ROM Ar-
rays,” IEEE Transactions on Communications 27, 325–336 (1978)

43. M. Griffin, M. Sousa, F. Taylor: “Efficient Scaling in the Residue Number
System,” in IEEE International Conference on Acoustics, Speech, and Signal
Processing (1989), pp. 1075–1078

References 647

44. G. Zelniker, F. Taylor: “A Reduced-Complexity Finite Field ALU,” IEEE
Transactions on Circuits and Systems 38 (12), 1571–1573 (1991)

45. IEEE: “Standard for Binary Floating-Point Arithmetic,” IEEE Std 754-1985
pp. 1–14 (1985)

46. IEEE: “A Proposed Standard for Binary Floating-Point Arithmetic,” IEEE
Transactions on Computers 14 (12), 51–62 (1981). Task P754

47. N. Shirazi, P. Athanas, A. Abbott: “Implementation of a 2-D Fast Fourier
Transform on an FPGA-Based Custom Computing Machine,” Lecture Notes
in Computer Science 975, 282–292 (1995)

48. M. Bayoumi, G. Jullien, W. Miller: “A VLSI Implementation of Residue
Adders,” IEEE Transactions on Circuits and Systems pp. 284–288 (1987)

49. A. Garcia, U. Meyer-Bäse, F. Taylor: “Pipelined Hogenauer CIC Filters using
Field-Programmable Logic and Residue Number System,” in IEEE Interna-
tional Conference on Acoustics, Speech, and Signal Processing Vol. 5 (1998),
pp. 3085–3088

50. L. Turner, P. Graumann, S. Gibb: “Bit-serial FIR Filters with CSD Coeffi-
cients for FPGAs,” Lecture Notes in Computer Science 975, 311–320 (1995)

51. J. Logan: “A Square-Summing, High-Speed Multiplier,” Computer Design pp.
67–70 (1971)

52. Leibowitz: “A Simplified Binary Arithmetic for the Fermat Number Trans-
form,” IEEE Transactions on Acoustics, Speech and Signal Processing 24,
356–359 (1976)

53. T. Chen: “A Binary Multiplication Scheme Based on Squaring,” IEEE Trans-
actions on Computers pp. 678–680 (1971)

54. E. Johnson: “A Digital Quarter Square Multiplier,” IEEE Transactions on
Computers pp. 258–260 (1980)

55. Altera: (2004), “Implementing Multipliers in FPGA Devices,” application note
306, Ver. 3.0

56. D. Anderson, J. Earle, R. GOldschmidt, D. Powers: “The IBM System/360
Model 91: Floating-Point Execution Unit,” IBM Journal of Research and De-
velopment 11, 34–53 (1967)

57. U. Meyer-Baese: Digital Signal Processing with Field Programmable Gate Ar-
rays, 2nd edn. (Springer-Verlag, Berlin, 2004), 527 pages

58. A. Croisier, D. Esteban, M. Levilion, V. Rizo: (1973), “Digital Filter for PCM
Encoded Signals,” US patent no. 3777130

59. A. Peled, B. Liu: “A New Realization of Digital Filters,” IEEE Transactions
on Acoustics, Speech and Signal Processing 22 (6), 456–462 (1974)

60. K. Yiu: “On Sign-Bit Assignment for a Vector Multiplier,” Proceedings of the
IEEE 64, 372–373 (1976)

61. K. Kammeyer: “Quantization Error on the Distributed Arithmetic,” IEEE
Transactions on Circuits and Systems 24 (12), 681–689 (1981)

62. F. Taylor: “An Analysis of the Distributed-Arithmetic Digital Filter,” IEEE
Transactions on Acoustics, Speech and Signal Processing 35 (5), 1165–1170
(1986)

63. S. White: “Applications of Distributed Arithmetic to Digital Signal Process-
ing: A Tutorial Review,” IEEE Transactions on Acoustics, Speech and Signal
Processing Magazine, 4–19 (1989)

64. K. Kammeyer: “Digital Filter Realization in Distributed Arithmetic,” in
Proc. European Conf. on Circuit Theory and Design (1976), Genoa, Italy

65. F. Taylor: Digital Filter Design Handbook (Marcel Dekker, New York, 1983)
66. H. Nussbaumer: Fast Fourier Transform and Convolution Algorithms

(Springer, Heidelberg, 1990)
67. H. Schmid: Decimal Computation (John Wiley & Sons, New York, 1974)

648 References

68. Y. Hu: “CORDIC-Based VLSI Architectures for Digital Signal Processing,”
IEEE Signal Processing Magazine pp. 16–35 (1992)

69. U. Meyer-Bäse, A. Meyer-Bäse, W. Hilberg: “COordinate Rotation DIgital
Computer (CORDIC) Synthesis for FPGA,” Lecture Notes in Computer Sci-
ence 849, 397–408 (1994)

70. J.E. Volder: “The CORDIC Trigonometric computing technique,” IRE Trans-
actions on Electronics Computers 8 (3), 330–4 (1959)

71. J. Walther: “A Unified algorithm for elementary functions,” Spring Joint Com-
puter Conference pp. 379–385 (1971)

72. X. Hu, R. Huber, S. Bass: “Expanding the Range of Convergence of the
CORDIC Algorithm,” IEEE Transactions on Computers 40 (1), 13–21 (1991)

73. D. Timmermann (1990): “CORDIC-Algorithmen, Architekturen und mono-
lithische Realisierungen mit Anwendungen in der Bildverarbeitung,” Ph.D.
thesis, VDI Press, Serie 10, No. 152

74. H. Hahn (1991): “Untersuchung und Integration von Berechnungsverfahren el-
ementarer Funktionen auf CORDIC-Basis mit Anwendungen in der adaptiven
Signalverarbeitung,” Ph.D. thesis, VDI Press, Serie 9, No. 125

75. G. Ma (1989): “A Systolic Distributed Arithmetic Computing Machine for
Digital Signal Processing and Linear Algebra Applications,” Ph.D. thesis, Uni-
versity of Florida, Gainesville

76. Y.H. Hu: “The Quantization Effects of the CORDIC-Algorithm,” IEEE Trans-
actions on Signal Processing pp. 834–844 (1992)

77. M. Abramowitz, A. Stegun: Handbook of Mathematical Functions, 9th edn.
(Dover Publications, Inc., New York, 1970)

78. W. Press, W. Teukolsky, W. Vetterling, B. Flannery: Numerical Recipes in C ,
2nd edn. (Cambridge University Press, Cambrige, 1992)

79. A.V. Oppenheim, R.W. Schafer: Discrete-Time Signal Processing (Prentice
Hall, Englewood Cliffs, New Jersey, 1992)

80. D.J. Goodman, M.J. Carey: “Nine Digital Filters for Decimation and Inter-
polation,” IEEE Transactions on Acoustics, Speech and Signal Processing pp.
121–126 (1977)

81. U. Meyer-Baese, J. Chen, C. Chang, A. Dempster: “A Comparison of Pipelined
RAG-n and DA FPGA-Based Multiplierless Filters,” in IEEE Asia Pacific
Conference on Circuits and Systems, APCCAS 2006. (2006), pp. 1555–1558

82. O. Gustafsson, A. Dempster, L. Wanhammer: “Extended Results for
Minimum-Adder Constant Integer Multipliers,” in IEEE International Con-
ference on Acoustics, Speech, and Signal Processing Phoenix (2002), pp. 73–76

83. Y. Wang, K. Roy: “CSDC: A New Complexity Reduction Technique for Mul-
tiplierless Implementation of Digital FIR Filters,” IEEE Transactions on Cir-
cuits and Systems I 52 (0), 1845–1852 (2005)

84. H. Samueli: “An Improved Search Algorithm for the Design of Multiplierless
FIR Filters with Powers-of-Two Coefficients,” IEEE Transactions on Circuits
and Systems 36 (7), 1044-1047 (1989)

85. Y. Lim, S. Parker: “Discrete Coefficient FIR Digital Filter Design Based Upon
an LMS Criteria,” IEEE Transactions on Circuits and Systems 36 (10), 723–
739 (1983)

86. Altera: (2004), “FIR Compiler: MegaCore Function User Guide,” ver. 3.1.0
87. R. Hartley: “Subexpression Sharing in Filters Using Canonic Signed Digital

Multiplier,” IEEE Transactions on Circuits and Systems II 30 (10), 677–688
(1996)

88. R. Saal: Handbook of Filter Design (AEG-Telefunken, Frankfurt, Germany,
1979)

References 649

89. C. Barnes, A. Fam: “Minimum Norm Recursive Digital Filters that Are Free
of Overflow Limit Cycles,” IEEE Transactions on Circuits and Systems pp.
569–574 (1977)

90. A. Fettweis: “Wave Digital Filters: Theorie and Practice,” Proceedings of the
IEEE pp. 270–327 (1986)

91. R. Crochiere, A. Oppenheim: “Analysis of Linear Digital Networks,” Proceed-
ings of the IEEE 63 (4), 581–595 (1995)

92. A. Dempster, M. Macleod: “Multiplier blocks and complexity of IIR struc-
tures,” Electronics Letters 30 (22), 1841–1842 (1994)

93. A. Dempster, M. Macleod: “IIR Digital Filter Design Using Minimum Adder
Multiplier Blocks,” IEEE Transactions on Circuits and Systems II 45, 761–
763 (1998)

94. A. Dempster, M. Macleod: “Constant Integer Multiplication using Minimum
Adders,” IEE Proceedings - Circuits, Devices & Systems 141, 407–413 (1994)

95. K. Parhi, D. Messerschmidt: “Pipeline Interleaving and Parallelism in Re-
cursive Digital Filters - Part I: Pipelining Using Scattered Look-Ahead and
Decomposition,” IEEE Transactions on Acoustics, Speech and Signal Process-
ing 37 (7), 1099–1117 (1989)

96. H. Loomis, B. Sinha: “High Speed Recursive Digital Filter Realization,” Cir-
cuits, Systems, Signal Processing 3 (3), 267–294 (1984)

97. M. Soderstrand, A. de la Serna, H. Loomis: “New Approach to Clustered
Look-ahead Pipelined IIR Digital Filters,” IEEE Transactions on Circuits
and Systems II 42 (4), 269–274 (1995)

98. J. Living, B. Al-Hashimi: “Mixed Arithmetic Architecture: A Solution to the
Iteration Bound for Resource Efficient FPGA and CPLD Recursive Digital
Filters,” in IEEE International Symposium on Circuits and Systems Vol. I
(1999), pp. 478–481

99. H. Martinez, T. Parks: “A Class of Infinite-Duration Impulse Response Dig-
ital Filters for Sampling Rate Reduction,” IEEE Transactions on Acoustics,
Speech and Signal Processing 26 (4), 154–162 (1979)

100. K. Parhi, D. Messerschmidt: “Pipeline Interleaving and Parallelism in Recur-
sive Digital Filters - Part II: Pipelined Incremental Block Filtering,” IEEE
Transactions on Acoustics, Speech and Signal Processing 37 (7), 1118–1134
(1989)

101. M. Shajaan, J. Sorensen: “Time-Area Efficient Multiplier-Free Recursive Filter
Architectures for FPGA Implementation,” in IEEE International Conference
on Acoustics, Speech, and Signal Processing (1996), pp. 3269–3272

102. P. Vaidyanathan: Multirate Systems and Filter Banks (Prentice Hall, Engle-
wood Cliffs, New Jersey, 1993)

103. S. Winograd: “On Computing the Discrete Fourier Transform,” Mathematics
of Computation 32, 175–199 (1978)

104. Z. Mou, P. Duhamel: “Short-Length FIR Filters and Their Use in Fast Non-
recursive Filtering,” IEEE Transactions on Signal Processing 39, 1322–1332
(1991)

105. P. Balla, A. Antoniou, S. Morgera: “Higher Radix Aperiodic-Convolution Al-
gorithms,” IEEE Transactions on Acoustics, Speech and Signal Processing 34
(1), 60–68 (1986)

106. E.B. Hogenauer: “An Economical Class of Digital Filters for Decimation and
Interpolation,” IEEE Transactions on Acoustics, Speech and Signal Processing
29 (2), 155–162 (1981)

107. Harris: (1992), “Datasheet,” HSP43220 Decimating Digital Filter
108. Motorola: (1989), “Datasheet,” DSPADC16 16–Bit Sigma–Delta Analog–to–

Digital Converter

650 References

109. O. Six (1996): “Design and Implementation of a Xilinx universal XC-4000
FPGAs board,” Master’s thesis, Institute for Data Technics, Darmstadt Uni-
versity of Technology

110. S. Dworak (1996): “Design and Realization of a new Class of Frequency Sam-
pling Filters for Speech Processing using FPGAs,” Master’s thesis, Institute
for Data Technics, Darmstadt University of Technology

111. L. Wang, W. Hsieh, T. Truong: “A Fast Computation of 2-D Cubic-Spline
Interpolation,” IEEE Signal Processing Letters 11 (9), 768–771 (2004)

112. T. Laakso, V. Valimaki, M. Karjalainen, U. Laine: “Splitting the Unit Delay,”
IEEE Signal Processing Magazine 13 (1), 30–60 (1996)

113. M. Unser: “Splines: a Perfect Fit for Signal and Image Processing,” IEEE
Signal Processing Magazine 16 (6), 22–38 (1999)

114. S. Cucchi, F. Desinan, G. Parladori, G. Sicuranza: “DSP Implementation of
Arbitrary Sampling Frequency Conversion for High Quality Sound Appli-
cation,” in IEEE International Symposium on Circuits and Systems Vol. 5
(1991), pp. 3609–3612

115. C. Farrow: “A Continuously Variable Digital Delay Element,” in IEEE Inter-
national Symposium on Circuits and Systems Vol. 3 (1988), pp. 2641–2645

116. S. Mitra: Digital Signal Processing: A Computer-Based Approach, 3rd edn.
(McGraw Hill, Boston, 2006)

117. S. Dooley, R. Stewart, T. Durrani: “Fast On-line B-spline Interpolation,” IEE
Electronics Letters 35 (14), 1130–1131 (1999)

118. Altera: “Farrow-Based Decimating Sample Rate Converter,” in Altera Appli-
cation Note AN-347 San Jose (2004)

119. F. Harris: “Performance and Design Considerations of the Farrow Filter when
used for Arbitrary Resampling of Sampled Time Series,” in Conference Record
of the Thirty-First Asilomar Conference on Signals, Systems & Computers
Vol. 2 (1997), pp. 1745–1749

120. M. Unser, A. Aldroubi, M. Eden: “B-spline Signal Processing: I – Theory,”
IEEE Transactions on Signal Processing 41 (2), 821–833 (1993)

121. P. Vaidyanathan: “Generalizations of the Sampling Theorem: Seven Decades
after Nyquist,” Circuits and Systems I: Fundamental Theory and Applications
48 (9), 1094–1109 (2001)

122. Z. Mihajlovic, A. Goluban, M. Zagar: “Frequency Domain Analysis of B-
spline Interpolation,” in Proceedings of the IEEE International Symposium
on Industrial Electronics Vol. 1 (1999), pp. 193–198

123. M. Unser, A. Aldroubi, M. Eden: “Fast B-spline Transforms for Continu-
ous Image Representation and Interpolation,” IEEE Transactions on Pattern
Analysis and Machine Intelligence 13 (3), 277–285 (1991)

124. M. Unser, A. Aldroubi, M. Eden: “B-spline Signal Processing: II – Efficiency
Design and Applications,” IEEE Transactions on Signal Processing 41 (2),
834–848 (1993)

125. M. Unser, M. Eden: “FIR Approximations of Inverse Filters and Perfect Re-
construction Filter Banks,” Signal Processing 36 (2), 163–174 (1994)

126. T. Blu, P. Thévenaz, M. Unser: “MOMS: Maximal-Order Interpolation of
Minimal Support,” IEEE Transactions on Image Processing 10 (7), 1069–
1080 (2001)

127. T. Blu, P. Thévenaz, M. Unser: “High-Quality Causal Interpolation for On-
line Unidimenional Signal Processing,” in Proceedings of the Twelfth European
Signal Processing Conference (EUSIPCO’04) (2004), pp. 1417–1420

128. A. Gotchev, J. Vesma, T. Saramäki, K. Egiazarian: “Modified B-Spline Func-
tions for Efficient Image Interpolation,” in First IEEE Balkan Conference on

References 651

Signal Processing, Communications, Circuits, and Systems (2000), pp. 241–
244

129. W. Hawkins: “FFT Interpolation for Arbitrary Factors: a Comparison to Cu-
bic Spline Interpolation and Linear Interpolation,” in Proceedings IEEE Nu-
clear Science Symposium and Medical Imaging Conference Vol. 3 (1994), pp.
1433–1437

130. A. Haar: “Zur Theorie der orthogonalen Funktionensysteme,” Mathematische
Annalen 69, 331–371 (1910). Dissertation Göttingen 1909

131. W. Sweldens: “The Lifting Scheme: A New Philosophy in Biorthogonal
Wavelet Constructions,” in SPIE, Wavelet Applications in Signal and Image
Processing III (1995), pp. 68–79

132. C. Herley, M. Vetterli: “Wavelets and Recursive Filter Banks,” IEEE Trans-
actions on Signal Processing 41, 2536–2556 (1993)

133. I. Daubechies: Ten Lectures on Wavelets (Society for Industrial and Applied
Mathematics (SIAM), Philadelphia, 1992)

134. I. Daubechies, W. Sweldens: “Factoring Wavelet Transforms into Lifting
Steps,” The Journal of Fourier Analysis and Applications 4, 365–374 (1998)

135. G. Strang, T. Nguyen: Wavelets and Filter Banks (Wellesley-Cambridge Press,
Wellesley MA, 1996)

136. D. Esteban, C. Galand: “Applications of Quadrature Mirror Filters to Split
Band Voice Coding Schemes,” in IEEE International Conference on Acoustics,
Speech, and Signal Processing (1977), pp. 191–195

137. M. Smith, T. Barnwell: “Exact Reconstruction Techniques for Tree-Structured
Subband Coders,” IEEE Transactions on Acoustics, Speech and Signal Pro-
cessing pp. 434–441 (1986)

138. M. Vetterli, J. Kovacevic: Wavelets and Subband Coding (Prentice Hall, En-
glewood Cliffs, New Jersey, 1995)

139. R. Crochiere, L. Rabiner: Multirate Digital Signal Processing (Prentice Hall,
Englewood Cliffs, New Jersey, 1983)

140. M. Acheroy, J.M. Mangen, Y. Buhler.: “Progressive Wavelet Algorithm versus
JPEG for the Compression of METEOSAT Data,” in SPIE, San Diego (1995)

141. T. Ebrahimi, M. Kunt: “Image Compression by Gabor Expansion,” Optical
Engineering 30, 873–880 (1991)

142. D. Gabor: “Theory of communication,” J. Inst. Elect. Eng. (London) 93,
429–457 (1946)

143. A. Grossmann, J. Morlet: “Decomposition of Hardy Functions into Square
Integrable Wavelets of Constant Shape,” SIAM J. Math. Anal. 15, 723–736
(1984)

144. U. Meyer-Bäse: “High Speed Implementation of Gabor and Morlet Wavelet
Filterbanks using RNS Frequency Sampling Filters,” in Aerosense 98 SPIE,
Orlando (1998), Vol. 3391, pp. 522–533

145. U. Meyer-Bäse: “Die Hutlets – eine biorthogonale Wavelet-Familie: Effiziente
Realisierung durch multipliziererfreie, perfekt rekonstruierende Quadratur
Mirror Filter,” Frequenz pp. 39–49 (1997)

146. U. Meyer-Bäse, F. Taylor: “The Hutlets - a Biorthogonal Wavelet Family
and their High Speed Implementation with RNS, Multiplier-free, Perfect Re-
construction QMF,” in Aerosense 97 SPIE, Orlando (1997), Vol. 3078, pp.
670–681

147. M. Heideman, D. Johnson, C. Burrus: “Gauss and the History of the Fast
Fourier Transform,” IEEE Transactions on Acoustics, Speech and Signal Pro-
cessing Magazine 34, 265–267 (1985)

652 References

148. C. Burrus: “Index Mappings for Multidimensional Formulation of the DFT
and Convolution,” IEEE Transactions on Acoustics, Speech and Signal Pro-
cessing 25, 239–242 (1977)

149. B. Baas: (1998), “SPIFFEE an energy-efficient single-chip 1024-point FFT
processor,” http://www-star.stanford.edu/ bbaas/fftinfo.html

150. G. Sunada, J. Jin, M. Berzins, T. Chen: “COBRA: An 1.2 Million Transistor
Exandable Column FFT Chip,” in Proceedings of the International Conference
on Computer Design: VLSI in Computers and Processors (IEEE Computer
Society Press, Los Alamitos, CA, USA, 1994), pp. 546–550

151. TMS: (1996), “TM-66 swiFFT Chip,” Texas Memory Systems
152. SHARP: (1997), “BDSP9124 Digital Signal Processor,”

http://www.butterflydsp.com
153. J. Mellott (1997): “Long Instruction Word Computer,” Ph.D. thesis, Univer-

sity of Florida, Gainesville
154. P. Lavoie: “A High-Speed CMOS Implementation of the Winograd Fourier

Transform Algorithm,” IEEE Transactions on Signal Processing 44 (8), 2121–
2126 (1996)

155. G. Panneerselvam, P. Graumann, L. Turner: “Implementation of Fast Fourier
Transforms and Discrete Cosine Transforms in FPGAs,” in Lecture Notes in
Computer Science Vol. 1142 (1996), pp. 1142:272–281

156. Altera: “Fast Fourier Transform,” in Solution Brief 12 , Altera Corparation
(1997)

157. G. Goslin: “Using Xilinx FPGAs to Design Custom Digital Signal Processing
Devices,” in Proceedings of the DSPX (1995), pp. 595–604

158. C. Dick: “Computing 2-D DFTs Using FPGAs,” Lecture Notes in Computer
Science: Field-Programmable Logic pp. 96–105 (1996)

159. S.D. Stearns, D.R. Hush: Digital Signal Analysis (Prentice Hall, Englewood
Cliffs, New Jersey, 1990)

160. K. Kammeyer, K. Kroschel: Digitale Signalverarbeitung (Teubner Studi-
enbücher, Stuttgart, 1989)

161. E. Brigham: FFT , 3rd edn. (Oldenbourg Verlag, München Wien, 1987)
162. R. Ramirez: The FFT: Fundamentals and Concepts (Prentice Hall, Englewood

Cliffs, New Jersey, 1985)
163. R.E. Blahut: Theory and practice of error control codes (Addison-Wesley, Melo

Park, California, 1984)
164. C. Burrus, T. Parks: DFT/FFT and Convolution Algorithms (John Wiley &

Sons, New York, 1985)
165. D. Elliott, K. Rao: Fast Transforms: Algorithms, Analyses, Applications (Aca-

demic Press, New York, 1982)
166. A. Nuttall: “Some Windows with Very Good Sidelobe Behavior,” IEEE Trans-

actions on Acoustics, Speech and Signal Processing ASSP-29 (1), 84–91
(1981)

167. U. Meyer-Bäse, K. Damm (1988): “Fast Fourier Transform using Signal Pro-
cessor,” Master’s thesis, Department of Information Science, Darmstadt Uni-
versity of Technology

168. M. Narasimha, K. Shenoi, A. Peterson: “Quadratic Residues: Application to
Chirp Filters and Discrete Fourier Transforms,” in IEEE International Con-
ference on Acoustics, Speech, and Signal Processing (1976), pp. 12–14

169. C. Rader: “Discrete Fourier Transform when the Number of Data Samples is
Prime,” Proceedings of the IEEE 56, 1107–8 (1968)

170. J. McClellan, C. Rader: Number Theory in Digital Signal Processing (Prentice
Hall, Englewood Cliffs, New Jersey, 1979)

References 653

171. I. Good: “The Relationship between Two Fast Fourier Transforms,” IEEE
Transactions on Computers 20, 310–317 (1971)

172. L. Thomas: “Using a Computer to Solve Problems in Physics,” in Applications
of Digital Computers (Ginn, Dordrecht, 1963)

173. A. Dandalis, V. Prasanna: “Fast Parallel Implementation of DFT Using Con-
figurable Devices,” Lecture Notes in Computer Science 1304, 314–323 (1997)

174. U. Meyer-Bäse, S. Wolf, J. Mellott, F. Taylor: “High Performance Implemen-
tation of Convolution on a Multi FPGA Board using NTT’s defined over the
Eisenstein Residuen Number System,” in Aerosense 97 SPIE, Orlando (1997),
Vol. 3068, pp. 431–442

175. Xilinx: (2000), “High-Performance 256-Point Complex FFT/IFFT,” product
specification

176. Altera: (2004), “FFT: MegaCore Function User Guide,” ver. 2.1.3
177. Z. Wang: “Fast Algorithms for the Discrete W transfrom and for the discrete

Fourier Transform,” IEEE Transactions on Acoustics, Speech and Signal Pro-
cessing pp. 803–816 (1984)

178. M. Narasimha, A. Peterson: “On the Computation of the Discrete Cosine
Transform,” IEEE Transaction on Communications 26 (6), 934–936 (1978)

179. K. Rao, P. Yip: Discrete Cosine Transform (Academic Press, San Diego, CA,
1990)

180. B. Lee: “A New Algorithm to Compute the Discrete Cosine Transform,” IEEE
Transactions on Acoustics, Speech and Signal Processing 32 (6), 1243–1245
(1984)

181. S. Ramachandran, S. Srinivasan, R. Chen: “EPLD-Based Architecture of Real
Time 2D-discrete Cosine Transform and Qunatization for Image Compres-
sion,” in IEEE International Symposium on Circuits and Systems Vol. III
(1999), pp. 375–378

182. C. Burrus, P. Eschenbacher: “An In-Place, In-Order Prime Factor FFT Al-
gorithm,” IEEE Transactions on Acoustics, Speech and Signal Processing 29
(4), 806–817 (1981)

183. J. Pollard: “The Fast Fourier Transform in a Finite Field,” Mathematics of
Computation 25, 365–374 (1971)

184. F. Taylor: “An RNS Discrete Fourier Transform Implementation,” IEEE
Transactions on Acoustics, Speech and Signal Processing 38, 1386–1394 (1990)

185. C. Rader: “Discrete Convolutions via Mersenne Transforms,” IEEE Transac-
tions on Computers C-21, 1269–1273 (1972)

186. N. Bloch: Abstract Algebra with Applications (Prentice Hall, Englewood Cliffs,
New Jersey, 1987)

187. J. Lipson: Elements of Algebra and Algebraic Computing (Addison-Wesley,
London, 1981)

188. R. Agrawal, C. Burrus: “Fast Convolution Using Fermat Number Transforms
with Applications to Digital Filtering,” IEEE Transactions on Acoustics,
Speech and Signal Processing 22, 87–97 (1974)

189. W. Siu, A. Constantinides: “On the Computation of Discrete Fourier Trans-
form using Fermat Number Transform,” Proceedings F IEE 131, 7–14 (1984)

190. J. McClellan: “Hardware Realization of the Fermat Number Transform,”
IEEE Transactions on Acoustics, Speech and Signal Processing 24 (3), 216–
225 (1976)

191. TI: (1993), “User’s Guide,” TMS320C50, Texas Instruments
192. I. Reed, D. Tufts, X. Yu, T. Truong, M.T. Shih, X. Yin: “Fourier Analysis

and Signal Processing by Use of the Möbius Inversion Formula,” IEEE Trans-
actions on Acoustics, Speech and Signal Processing 38 (3), 458–470 (1990)

654 References

193. H. Park, V. Prasanna: “Modular VLSI Arichitectures for Computing the
Arithmetic Fourier Transform,” IEEE Transactions on Signal Processing 41
(6), 2236–2246 (1993)

194. H. Lüke: Signalübertragung (Springer, Heidelberg, 1988)
195. D. Herold, R. Huthmann (1990): “Decoder for the Radio Data System (RDS)

using Signal Processor TMS320C25,” Master’s thesis, Institute for Data Tech-
nics, Darmstadt University of Technology

196. U. Meyer-Bäse, R. Watzel: “A comparison of DES and LFSR based FPGA
Implementable Cryptography Algorithms,” in 3rd International Symposium
on Communication Theory & Applications (1995), pp. 291–298

197. U. Meyer-Bäse, R. Watzel: “An Optimized Format for Long Frequency Pag-
ing Systems,” in 3rd International Symposium on Communication Theory &
Applications (1995), pp. 78–79

198. U. Meyer-Bäse: “Convolutional Error Decoding with FPGAs,” Lecture Notes
in Computer Science 1142, 376–175 (1996)

199. R. Watzel (1993): “Design of Paging Scheme and Implementation of the Suit-
able Cryto-Controller using FPGAs,” Master’s thesis, Institute for Data Tech-
nics, Darmstadt University of Technology

200. J. Maier, T. Schubert (1993): “Design of Convolutional Decoders using FPGAs
for Error Correction in a Paging System,” Master’s thesis, Institute for Data
Technics, Darmstadt University of Technology

201. U. Meyer-Bäse et al.: “Zum bestehenden Übertragungsprotokoll kompatible
Fehlerkorrektur,” in Funkuhren Zeitsignale Normalfrequenzen (1993), pp. 99–
112

202. D. Herold (1991): “Investigation of Error Corrections Steps for DCF77 Sig-
nals using Programmable Gate Arrays,” Master’s thesis, Institute for Data
Technics, Darmstadt University of Technology

203. P. Sweeney: Error Control Coding (Prentice Hall, New York, 1991)
204. D. Wiggert: Error-Control Coding and Applications (Artech House, Dedham,

Mass., 1988)
205. G. Clark, J. Cain: Error-Correction Coding for Digital Communications

(Plenum Press, New York, 1988)
206. W. Stahnke: “Primitive Binary Polynomials,” Mathematics of Computation

pp. 977–980 (1973)
207. W. Fumy, H. Riess: Kryptographie (R. Oldenbourg Verlag, München, 1988)
208. B. Schneier: Applied Cryptography (John Wiley & Sons, New York, 1996)
209. M. Langhammer: “Reed-Solomon Codec Design in Programmable Logic,”

Communication System Design (www.csdmag.com) pp. 31–37 (1998)
210. B. Akers: “Binary Decusion Diagrams,” IEEE Transactions on Computers pp.

509–516 (1978)
211. R. Bryant: “Graph-Based Algorithms for Boolean Function Manipulation,”

IEEE Transactions on Computers pp. 677–691 (1986)
212. A. Sangiovanni-Vincentelli, A. Gamal, J. Rose: “Synthesis Methods for Field

Programmable Gate Arrays,” Proceedings of the IEEE pp. 1057–83 (1993)
213. R. del Rio (1993): “Synthesis of boolean Functions for Field Programmable

Gate Arrays,” Master’s thesis, Univerity of Frankfurt, FB Informatik
214. U. Meyer-Bäse: “Optimal Strategies for Incoherent Demodulation of Narrow

Band FM Signals,” in 3rd International Symposium on Communication The-
ory & Applications (1995), pp. 30–31

215. J. Proakis: Digital Communications (McGraw-Hill, New York, 1983)
216. R. Johannesson: “Robustly Optimal One-Half Binary Convolutional Codes,”

IEEE Transactions on Information Theory pp. 464–8 (1975)

References 655

217. J. Massey, D. Costello: “Nonsystematic Convolutional Codes for Sequential
Decoding in Space Applications,” IEEE Transactions on Communications pp.
806–813 (1971)

218. F. MacWilliams, J. Sloane: “Pseudo-Random Sequences and Arrays,” Pro-
ceedings of the IEEE pp. 1715–29 (1976)

219. T. Lewis, W. Payne: “Generalized Feedback Shift Register Pseudorandom
Number Algorithm,” Journal of the Association for Computing Machinery
pp. 456–458 (1973)

220. P. Bratley, B. Fox, L. Schrage: A Guide to Simulation (Springer-Lehrbuch,
Heidelberg, 1983), pp. 186–190

221. M. Schroeder: Number Theory in Science and Communication (Springer, Hei-
delberg, 1990)

222. P. Kocher, J. Jaffe, B.Jun: “Differential Power Analysis,” in Lecture Notes in
Computer Science (1999), pp. 388–397, www.cryptography.com

223. EFF: Cracking DES (O’Reilly & Associates, Sebastopol, 1998), Electronic
Frontier Foundation

224. W. Stallings: “Encryption Choices Beyond DES,” Communication System De-
sign (www.csdmag.com) pp. 37–43 (1998)

225. W. Carter: “FPGAs: Go reconfigure,” Communication System Design
(www.csdmag.com) p. 56 (1998)

226. J. Anderson, T. Aulin, C.E. Sundberg: Digital Phase Modulation (Plenum
Press, New York, 1986)

227. U. Meyer-Bäse (1989): “Investigation of Thresholdimproving Lim-
iter/Discriminator Demodulator for FM Signals through Computer sim-
ulations,” Master’s thesis, Department of Information Science, Darmstadt
University of Technology

228. E. Allmann, T. Wolf (1991): “Design and Implementation of a full digital zero
IF Receiver using programmable Gate Arrays and Floatingpoint DSPs,” Mas-
ter’s thesis, Institute for Data Technics, Darmstadt University of Technology

229. O. Herrmann: “Quadraturfilter mit rationalem Übertragungsfaktor,” Archiv
der elektrischen Übertragung (AEÜ) pp. 77–84 (1969)

230. O. Herrmann: “Transversalfilter zur Hilbert-Transformation,” Archiv der elek-
trischen Übertragung (AEÜ) pp. 581–587 (1969)

231. V. Considine: “Digital Complex Sampling,” Electronics Letters pp. 608–609
(1983)

232. T.E. Thiel, G.J. Saulnier: “Simplified Complex Digital Sampling Demodula-
tor,” Electronics Letters pp. 419–421 (1990)

233. U. Meyer-Bäse, W. Hilberg: (1992), “Schmalbandempfänger für Digitalsig-
nale,” German patent no. 4219417.2-31

234. B. Schlanske (1992): “Design and Implementation of a Universal Hilbert Sam-
pling Receiver with CORDIC Demodulation for LF FAX Signals using Digi-
tal Signal Processor,” Master’s thesis, Institute for Data Technics, Darmstadt
University of Technology

235. A. Dietrich (1992): “Realisation of a Hilbert Sampling Receiver with CORDIC
Demodulation for DCF77 Signals using Floatingpoint Signal Processors,”
Master’s thesis, Institute for Data Technics, Darmstadt University of Tech-
nology

236. A. Viterbi: Principles of Coherent Communication (McGraw-Hill, New York,
1966)

237. F. Gardner: Phaselock Techniques (John Wiley & Sons, New York, 1979)
238. H. Geschwinde: Einführung in die PLL-Technik (Vieweg, Braunschweig, 1984)
239. R. Best: Theorie und Anwendung des Phase-locked Loops (AT Press,

Schwitzerland, 1987)

656 References

240. W. Lindsey, C. Chie: “A Survey of Digital Phase-Locked Loops,” Proceedings
of the IEEE pp. 410–431 (1981)

241. R. Sanneman, J. Rowbotham: “Unlock Characteristics of the Optimum Type
II Phase-Locked Loop,” IEEE Transactions on Aerospace and Navigational
Electronics pp. 15–24 (1964)

242. J. Stensby: “False Lock in Costas Loops,” Proceedings of the 20th Southeastern
Symposium on System Theory , pp. 75–79 (1988)

243. A. Mararios, T. Tozer: “False-Lock Performance Improvement in Costas
Loops,” IEEE Transactions on Communications pp. 2285–88 (1982)

244. A. Makarios, T. Tozer: “False-Look Avoidance Scheme for Costas Loops,”
Electronics Letters pp. 490–2 (1981)

245. U. Meyer-Bäse: “Coherent Demodulation with FPGAs,” Lecture Notes in
Computer Science 1142, 166–175 (1996)

246. J. Guyot, H. Schmitt (1993): “Design of a full digital Costas Loop using pro-
grammable Gate Arrays for coherent Demodulation of Low Frequency Sig-
nals,” Master’s thesis, Institute for Data Technics, Darmstadt University of
Technology

247. R. Resch, P. Schreiner (1993): “Design of Full Digital Phase Locked Loops us-
ing programmable Gate Arrys for a low Frequency Reciever,” Master’s thesis,
Institute for Data Technics, Darmstadt University of Technology

248. D. McCarty: “Digital PLL Suits FPGAs,” Elektronic Design p. 81 (1992)
249. J. Holmes: “Tracking-Loop Bias Due to Costas Loop Arm Filter Imbalance,”

IEEE Transactions on Communications pp. 2271–3 (1982)
250. H. Choi: “Effect of Gain and Phase Imbalance on the Performance of Lock De-

tector of Costas Loop,” IEEE International Conference on Communications,
Seattle pp. 218–222 (1987)

251. N. Wiener: Extrapolation, Interpolation and Smoothing of Stationary Time
Series (John Wiley & Sons, New York, 1949)

252. S. Haykin: Adaptive Filter Theory (Prentice Hall, Englewood Cliffs, New Jer-
sey, 1986)

253. B. Widrow, S. Stearns: Adaptive Signal Processing (Prentice Hall, Englewood
Cliffs, New Jersey, 1985)

254. C. Cowan, P. Grant: Adaptive Filters (Prentice Hall, Englewood Cliffs, New
Jersey, 1985)

255. A. Papoulis: Probability, Random Variables, and Stochastic Processes
(McGraw–Hill, Singapore, 1986)

256. M. Honig, D. Messerschmitt: Adaptive Filters: Structures, Algorithms, and
Applications (Kluwer Academic Publishers, Norwell, 1984)

257. S. Alexander: Adaptive Signal Processing: Theory and Application (Springer,
Heidelberg, 1986)

258. N. Shanbhag, K. Parhi: Pipelined Adaptive Digital Filters (Kluwer Academic
Publishers, Norwell, 1994)

259. B. Mulgrew, C. Cowan: Adaptive Filters and Equalisers (Kluwer Academic
Publishers, Norwell, 1988)

260. J. Treichler, C. Johnson, M. Larimore: Theory and Design of Adaptive Filters
(Prentice Hall, Upper Saddle River, New Jersey, 2001)

261. B. Widrow, J. Glover, J. McCool, J. Kaunitz, C. Williams, R. Hearn, J. Zei-
dler, E. Dong, R. Goodlin: “Adaptive Noise Cancelling: Principles and Appli-
cations,” Proceedings of the IEEE 63, 1692–1716 (1975)

262. B. Widrow, J. McCool, M. Larimore, C. Johnson: “Stationary and Nonsta-
tionary Learning Characteristics of the LMS Adaptive Filter,” Proceedings of
the IEEE 64, 1151–1162 (1976)

References 657

263. T. Kummura, M. Ikekawa, M. Yoshida, I. Kuroda: “VLIW DSP for Mobile
Applications,” IEEE Signal Processing Magazine 19, 10–21 (2002)

264. Analog Device: “Application Handbook,” 1987
265. L. Horowitz, K. Senne: “Performance Advantage of Complex LMS for Control-

ling Narrow-Band Adaptive Arrays,” IEEE Transactions on Acoustics, Speech
and Signal Processing 29, 722–736 (1981)

266. A. Feuer, E. Weinstein: “Convergence Analysis of LMS Filters with Uncor-
related Gaussian Data,” IEEE Transactions on Acoustics, Speech and Signal
Processing 33, 222–230 (1985)

267. S. Narayan, A. Peterson, M. Narasimha: “Transform Domain LMS Algo-
rithm,” IEEE Transactions on Acoustics, Speech and Signal Processing 31,
609–615 (1983)

268. G. Clark, S. Parker, S. Mitra: “A Unified Approach to Time- and Frequency-
Domain Realization of FIR Adaptive Digital Filters,” IEEE Transactions on
Acoustics, Speech and Signal Processing 31, 1073–1083 (1983)

269. F. Beaufays (1995): “Two-Layer Structures for Fast Adaptive Filtering,”
Ph.D. thesis, Stanford University

270. A. Feuer: “Performance Analysis of Block Least Mean Square Algorithm,”
IEEE Transactions on Circuits and Systems 32, 960–963 (1985)

271. D. Marshall, W. Jenkins, J. Murphy: “The use of Orthogonal Transforms for
Improving Performance of Adaptive Filters,” IEEE Transactions on Circuits
and Systems 36 (4), 499–510 (1989)

272. J. Lee, C. Un: “Performance of Transform-Domain LMS Adaptive Digital
Filters,” IEEE Transactions on Acoustics, Speech and Signal Processing 34
(3), 499–510 (1986)

273. G. Long, F. Ling, J. Proakis: “The LMS Algorithm with Delayed Coefficient
Adaption,” IEEE Transactions on Acoustics, Speech and Signal Processing
37, 1397–1405 (1989)

274. G. Long, F. Ling, J. Proakis: “Corrections to “The LMS Algorithm with
Delayed Coefficient Adaption”,” IEEE Transactions on Signal Processing 40,
230–232 (1992)

275. R. Poltmann: “Conversion of the Delayed LMS Algorithm into the LMS Al-
gorithm,” IEEE Signal Processing Letters 2, 223 (1995)

276. T. Kimijima, K. Nishikawa, H. Kiya: “An Effective Architecture of Pipelined
LMS Adaptive Filters,” IEICE Transactions Fundamentals E82-A, 1428–
1434 (1999)

277. D. Jones: “Learning Characteristics of Transpose-Form LMS Adaptive Fil-
ters,” IEEE Transactions on Circuits and Systems II 39 (10), 745–749 (1992)

278. M. Rupp, R. Frenzel: “Analysis of LMS and NLMS Algorithms with Delayed
Coefficient Update Under the Presence of Spherically Invariant Processess,”
IEEE Transactions on Signal Processing 42, 668–672 (1994)

279. M. Rupp: “Saving Complexity of Modified Filtered-X-LMS abd Delayed Up-
date LMS,” IEEE Transactions on Circuits and Systems II 44, 57–60 (1997)

280. M. Rupp, A. Sayed: “Robust FxLMS Algorithms with Improved Convergence
Performance,” IEEE Transactions on Speech and Audio Processing 6, 78–85
(1998)

281. L. Ljung, M. Morf, D. Falconer: “Fast Calculation of Gain Matrices for Recur-
sive Estimation Schemes,” International Journal of Control 27, 1–19 (1978)

282. G. Carayannis, D. Manolakis, N. Kalouptsidis: “A Fast Sequential Algorithm
for Least-Squares Filtering and Prediction,” IEEE Transactions on Acoustics,
Speech and Signal Processing 31, 1394–1402 (1983)

658 References

283. F. Albu, J. Kadlec, C. Softley, R. Matousek, A. Hermanek, N. Coleman, A. Fa-
gan: “Implementation of (Normalised RLS Lattice on Virtex,” Lecture Notes
in Computer Science 2147, 91–100 (2001)

284. Xilinx: (2005), “PicoBlaze 8-bit EMbedded Microcontroller User Guide,”
www.xilinx.com

285. V. Heuring, H. Jordan: Computer Systems Design and Architecture, 2nd
edn. (Prentice Hall, Upper Saddle RIver, New Jersey, 2004), contribution by
M. Murdocca

286. D. Patterson, J. Hennessy: Computer Organization & Design: The Hard-
ware/Software Interface, 2nd edn. (Morgan Kaufman Publishers, Inc., San
Mateo, CA, 1998)

287. J. Hennessy, D. Patterson: Computer Architecture: A Quantitative Approach,
3rd edn. (Morgan Kaufman Publishers, Inc., San Mateo, CA, 2003)

288. M. Murdocca, V. Heuring: Principles of Computer Architecture, 1st edn.
(Prentice Hall, Upper Saddle River, NJ, 2000), jAVA machine overview

289. W. Stallings: Computer Organization & Architecture, 6th edn. (Prentice Hall,
Upper Saddle River, NJ, 2002)

290. R. Bryant, D. O’Hallaron: Computer Systems: A Programmer’s Perspective,
1st edn. (Prentice Hall, Upper Saddle River, NJ, 2003)

291. C. Rowen: Engineering the Complex SOC , 1st edn. (Prentice Hall, Upper
Saddle River, NJ, 2004)

292. S. Mazor: “The History of the Microcomputer – Invention and Evolution,”
Proceedings of the IEEE 83 (12), 1601–8 (1995)

293. H. Faggin, M. Hoff, S. Mazor, M. Shima: “The History of the 4004,” IEEE
Micro Magazine 16, 10–20 (1996)

294. Intel: (2006), “Microprocessor Hall of Fame,” http://www.intel.com/museum
295. Intel: (1980), “2920 Analog Signal Processor,” design handbook
296. TI: (2000), “Technology Inovation,” www.ti.com/sc/techinnovations
297. TI: (1983), “TMS3210 Assembly Language Programmer’s Guide,” digital sig-

nal processor products
298. TI: (1993), “TMS320C5x User’s Guide,” digital signal processing products
299. Analog Device: (1993), “ADSP-2103,” 3-Volt DSP Microcomputer
300. P. Koopman: Stack Computers: The New Wave, 1st edn. (Mountain View

Press, La Honda, CA, 1989)
301. Xilinx: (2002), “Creating Embedded Microcontrollers,” www.xilinx.com, Part

1-5
302. Altera: (2003), “Nios-32 Bit Programmer’s Reference Manual,” Nios embed-

ded processor, Ver. 3.1
303. Xilinx: (2002), “Virtex-II Pro,” documentation
304. Xilinx: (2005), “MicroBlaze – The Low-Cost and Flexible Processing Solu-

tion,” www.xilinx.com
305. Altera: (2003), “Nios II Processor Reference Handbook,” NII5V-1-5.0
306. B. Parhami: Computer Architecture: From Microprocessor to Supercomputers,

1st edn. (Oxford University Press, New York, 2005)
307. Altera: (2004), “Netseminar Nios processor,” http://www.altera.com
308. A. Hoffmann, H. Meyr, R. Leupers: Architecture Exploration for Embedded

Processors with LISA, 1st edn. (Kluwer Academic Publishers, Boston, 2002)
309. A. Aho, R. Sethi, J. Ullman: Compilers: Principles, Techniques, and Tools,

1st edn. (Addison Wesley Longman, Reading, Massachusetts, 1988)
310. R. Leupers: Code Optimization Techniques for Embedded Processors, 2nd edn.

(Kluwer Academic Publishers, Boston, 2002)
311. R. Leupers, P. Marwedel: Retargetable Compiler Technology for Embedded

Systems, 1st edn. (Kluwer Academic Publishers, Boston, 2001)

References 659

312. V. Paxson: (1995), “Flex, Version 2.5: A Fast Scanner Generator,”
http://www.gnu.org

313. C. Donnelly, R. Stallman: (2002), “Bison: The YACC-Compatible Parser Gen-
erator,” http://www.gnu.org

314. S. Johnson: (1975), “YACC – Yet Another Compiler-Compiler,” technical re-
port no. 32, AT&T

315. R. Stallman: (1990), “Using and Porting GNU CC,” http://www.gnu.org
316. W. Lesk, E. Schmidt: (1975), “LEX – a Lexical Analyzer Generator,” technical

report no. 39, AT&T
317. T. Niemann: (2004), “A Compact Guide to LEX & YACC,”

http://www.epaperpress.com
318. J. Levine, T. Mason, D. Brown: lex & yacc, 2nd edn. (O’Reilly Media Inc.,

Beijing, 1995)
319. T. Parsons: Intorduction to Compiler Construction, 1st edn. (Computer Sci-

ence Press, New York, 1992)
320. A. Schreiner, H. Friedman: Introduction to Compiler Construction with UNIX ,

1st edn. (Prentice-Hall, Inc, Englewood Cliffs, New Jersey, 1985)
321. C. Fraser, D. Hanson: A Retargetable C Compilers: Design and Implementa-

tion, 1st edn. (Addison-Wesley, Boston, 2003)
322. V. Zivojnovic, J. Velarde, C. Schläger, H. Meyr: “DSPSTONE: A DSP-

orioented Benchmarking Methodology,” in International Conference (19), pp.
1–6

323. Institute for Integrated Systems for Signal Processing: (1994), “DSPstone,”
final report

324. W. Strauss: “Digital Signal Processing: The New Semiconductor Industry
Technology Driver,” IEEE Signal Processing Magazine pp. 52–56 (2000)

325. Xilinx: (2002), “Virtex-II Pro Platform FPGA,” handbook
326. Xilinx: “Accelerated System Performance with APU-Enhanced Processing,”

Xcell Journal pp. 1-4, first quarter (2005)
Xilinx: (2007), “Virtex-4 Online Documentation,” http://www.xilinx.com

327. ARM: (2001), “ARM922T with AHB: Product Overview,”
http://www.arm.com

328. ARM: (2000), “ARM9TDMI Technical Reference Manual,”
http://www.arm.com

329. Altera: (2004), “Nios Software Development Reference Manual,”
http://www.altera.com

330. Altera: (2004), “Nios Development Kit, APEX Edition,” Getting Started User
Guide

331. Altera: (2004), “Nios Development Board Document,” http://www.altera.com
332. Altera: (2004), “Nios Software Development Tutorial,”

http://www.altera.com
333. Altera: (2004), “Custom Instruction Tutorial,” http://www.altera.com
334. B. Fletcher: “FPGA Embedded Processors,” in Embedded Systems Conference

San Francisco, CA (2005), p. 18, www.memec.com
335. U. Meyer-Baese, A. Vera, S. Rao, K. Lenk, M. Pattichis: “FPGA Wavelet

Processor Design using Language for Instruction-set Architectures (LISA),”
in Proc. SPIE Int. Soc. Opt. Eng. Orlando (2007), Vol. 6576, pp. 6576U1–U12

336. D. Sunkara (2004): “Design of Custom Instruction Set for FFT using FPGA-
Based Nios processors,” Master’s thesis, FSU

337. U. Meyer-Baese, D. Sunkara, E. Castillo, E.A. Garcia: “Custom Instruction
Set NIOS-Based OFDM Processor for FPGAs,” in Proc. SPIE Int. Soc. Opt.
Eng. Orlando (2006), Vol. 6248, pp. 6248o01–15

660 References

338. J. Ramirez, U. Meyer-Baese, A. Garcia: “Efficient Wavelet Architectures using
Field- Programmable Logic and Residue Number System Arithmetic,” in Proc.
SPIE Int. Soc. Opt. Eng. Orlando (2004), Vol. 5439, pp. 222–232

339. J. Bhasker: Verilog HDL Synthesis (Start Galaxy Publishing, Allentown, PA,
1998)

340. IEEE: (1995), “Standard Hardware Description Language Based on the Ver-
ilog Hardware Description Language,” language reference manual std 1364-
1995

341. IEEE: (2001), “Standard Verilog Hardware Description Language,” language
reference manual std 1364-2001

342. S. Sutherland: “The IEEE Verilog 1364-2001 Standard: Whats New, and Why
You Need It,” in Proceedings 9th Annual International HDL Conference and
Exhibition Santa Clara, CA (2000), p. 8, http://www.sutherland-hdl.com

343. Xilinx: (2004), “Verilog-2001 Support in XST,” XST version 6.1 help
344. Altera: (2004), “Quartus II Support for Verilog 2001,” Quartus II version 4.2

help
345. Synopsys: (2003), “Common VCS and HDL Compiler (Presto Verilog) 2001

Constructs,” SolvNet doc id: 002232
346. J. Ousterhout: Tcl and the Tk Toolkit , 1st edn. (Addison-Wesley, Boston,

1994)
347. M. Harrison, M. McLennan: Effective Tcl/Tk Programming , 1st edn.

(Addison-Wesley, Reading, Massachusetts, 1998)
348. B. Welch, K. Jones, H. J: Practical Programming in Tcl and Tk , 1st edn.

(Prentice Hall, Upper Saddle River, NJ, 2003)

A. Verilog Source Code 2001

The first and second editions of the book include Verilog using the IEEE
1364-1995 standard [340]. This third edition takes advantage of several im-
provements that are documented in the IEEE 1364-2001 standard, which
is available for about $100 from the IEEE bookstore [341, 342]. The Ver-
ilog 2001 improvements have now found implementations in all major design
tools, [343, 344, 345] and we want to briefly to review the most important
new features that are used. We only review the implemented new features;
for all the new features see [341].

• The entity description in the 1364-1995 standard requires that (similar to
the Kernighan and Ritchie C coding) all ports appear twice, first in the
port list and then in the port data-type description, e.g.,

module iir_pipe (x_in, y_out, clk); //----> Interface

parameter W = 14; // Bit width - 1
input clk;
input [W:0] x_in; // Input
output [W:0] y_out; // Result
...

Note that all ports (x_in, y_out, and clk) are defined twice. In the 1364-
2001 standard (see Sect. 12.3.4 LRM) this duplication is no longer required,
i.e., the new coding is done as follows:

module iir_pipe //----> Interface
#(parameter W = 14) // Bit width - 1
(input clk,
input signed [W:0] x_in, // Input
output signed [W:0] y_out); // Result

• Signed data types are available in the 1364-2001 standard, which allows
arithmetic signed operations to be simplified. In the signal definition line
the signed keyword is introduced after the input, output, reg or wire key-
words, e.g.,

reg signed [W:0] x, y;

662 A. Verilog Source Code 2001

Conversion between signed and unsigned type can be accomplished via the
$signed or $unsigned conversion functions, see Sect. 4.5 LRM. For signed
constants we introduce a small s or capital S between the hyphen and the
base, e.g., ’sd90 for a signed constant 90. Signed arithmetic operations
can be done using the conventional divide / or multiply * operators. For
power-of-2 factors we can use the new arithmetic left <<< or right shift >>>
operations, see Sect. 4.1.23 LRM. Note the three shift operations symbols
used to distinguished to the unsigned shifts that use two shift symbols.
Signed or zero extension is automatically done depending on the data type.
From the IIR filter examples we can now replace the old-style operation:

...
y <= x + {y[W],y[W:1]} + {{2{y[W]}},y[W:2]};
... // i.e., x + y / 2 + y / 4;

with the 1364-2001 Verilog style operations using the divide operator:

y <= x + y / ’sd2 + y / ’sd4; // div with / uses 92 LEs.

Note the definition as signed divide for the constants, the code

y <= x + y / 2 + y / 4;

will show incorrect simulation results in Quartus II in versions 4.0, 4.2,
5.0, 5.1 but works fine in our web edition 6.0. Alteratively we can use
the arithmetic right shift operator to implement the divide by power-of-2
values.

y <= x + (y >>> 1) + (y >>> 2);// div with >>> uses 60 LEs

It is evident that this notation makes the arithmetic operation much more
readable than the old-style coding. Although both operations are functional
equivalent, the Quartus synthesis results reveals that the divide is mapped
to a different architecture and needs therefore more LEs (92 compared with
60 LEs) than used by the arithmetic shift operations. From the comparison
to the VHDL synthesis data we conclude that 60 LEs is the expect result.
This is the reason we will use the arithmetic left and right shift throughout
the examples.

• The implicit event_expression list allows one to add automatically all
right-hand-side variables to be added to the event expression, i.e., from
the bfproc examples

...
always @(Are or Bre or Aim or Bim)
begin
...

we now simply use

A. Verilog Source Code 2001 663

...
always @(*)
begin
...

This reduces essentially the RTL simulation errors due to missing variables
in the event listing, see Sect. 9.7.5 LRM for details.

• The generate statement introduced in the 1364-2001 Verilog standard al-
lows one to instantiate several components using a single generate loop
construct. The LRM Sects. 12.1.3.2-4 show eight different generate exam-
ples. We use the generate in the fir_gen, fir_lms, and fir6dlms files.
Note that you also need to define a genvar as a loop variable used for the
generate statement, see Sect. 12.1.3.1 LRM for details.

The 1364-2001 Verilog standard introduces 21 new keywords. We use the new
keywords endgenerate, generate, genvar, signed, and unsigned. We have
not used the new keywords:

automatic, cell, config, design, endconfig, incdir, include,
instance, liblist, library, localparam, noshowcancelled,
pulsestyle_onevent, pulsestyle_ondetect, showcancelled, use

The next pages contain the Verilog 1364-2001 code of all design examples.
The old style Verilog 1364-1995 code can be found in [57]. The synthesis
results for the examples are listed on page 731.

//***
// IEEE STD 1364-2001 Verilog file: example.v
// Author-EMAIL: Uwe.Meyer-Baese@ieee.org
//***
//‘include "220model.v" // Using predefined components

module example //----> Interface
#(parameter WIDTH =8) // Bit width

(input clk,
input [WIDTH-1:0] a, b, op1,
output [WIDTH-1:0] sum, d);

wire [WIDTH-1:0] c; // Auxiliary variables
reg [WIDTH-1:0] s; // Infer FF with always
wire [WIDTH-1:0] op2, op3;

wire clkena, ADD, ena, aset, sclr, sset, aload, sload,
aclr, ovf1, cin1; // Auxiliary lpm signals

// Default for add:
assign cin1=0; assign aclr=0; assign ADD=1;

664 A. Verilog Source Code 2001

assign ena=1; assign aclr=0; assign aset=0;
assign sclr=0; assign sset=0; assign aload=0;
assign sload=0; assign clkena=0; // Default for FF

assign op2 = b; // Only one vector type in Verilog;
// no conversion int -> logic vector necessary

// Note when using 220model.v ALL component’s signals
// must be defined, default values can only be used for
// the parameters.

lpm_add_sub add1 //----> Component instantiation
(.result(op3), .dataa(op1), .datab(op2)); // Used ports

// .cin(cin1),.cout(cr1), .add_sub(ADD), .clken(clkena),
// .clock(clk), .overflow(ovl1), .aclr(aclr)); // Unused

defparam add1.lpm_width = WIDTH;
defparam add1.lpm_representation = "SIGNED";

lpm_ff reg1
(.data(op3), .q(sum), .clock(clk)); // Used ports

// .enable(ena), .aclr(aclr), .aset(aset), .sclr(sclr),
// .sset(sset), .aload(aload), .sload(sload)); // Unused

defparam reg1.lpm_width = WIDTH;

assign c = a + b; //----> Continuous assignment statement

always @(posedge clk) //----> Behavioral style
begin : p1 // Infer register
s = c + s; // Signal assignment statement

end
assign d = s;

endmodule

//***
// IEEE STD 1364-2001 Verilog file: fun_text.v
// Author-EMAIL: Uwe.Meyer-Baese@ieee.org
//***
// A 32-bit function generator using accumulator and ROM
//‘include "220model.v"

module fun_text //----> Interface
#(parameter WIDTH = 32) // Bit width

(input clk,

A. Verilog Source Code 2001 665

input [WIDTH-1:0] M,
output [7:0] sin, acc);

wire [WIDTH-1:0] s, acc32;
wire [7:0] msbs; // Auxiliary vectors
wire ADD, ena, aset, sclr, sset; // Auxiliary signals
wire aload, sload, aclr, ovf1, cin1, clkena;

// Default for add:
assign clkena=0; assign cin1=0; assign ADD=1;
//default for FF:
assign ena=1; assign aclr=0; assign aset=0;
assign sclr=0; assign sset=0; assign aload=0;
assign sload=0;

lpm_add_sub add_1 // Add M to acc32
(.result(s), .dataa(acc32), .datab(M)); // Used ports

// .cout(cr1), .add_sub(ADD), .overflow(ovl1), // Unused
// .clock(clk),.cin(cin1), .clken(clkena), .aclr(aclr));
//

defparam add_1.lpm_width = WIDTH;
defparam add_1.lpm_representation = "UNSIGNED";

lpm_ff reg_1 // Save accu
(.data(s), .q(acc32), .clock(clk)); // Used ports

// .enable(ena), .aclr(aclr), .aset(aset), // Unused ports
// .sset(sset), .aload(aload), .sload(sload),.sclr(sclr));

defparam reg_1.lpm_width = WIDTH;

assign msbs = acc32[WIDTH-1:WIDTH-8];
assign acc = msbs;

lpm_rom rom1
(.q(sin), .inclock(clk), .outclock(clk),

.address(msbs)); // Used ports
// .memenab(ena)) ; // Unused port

defparam rom1.lpm_width = 8;
defparam rom1.lpm_widthad = 8;
defparam rom1.lpm_file = "sine.mif";

endmodule

//***
// IEEE STD 1364-2001 Verilog file: cmul7p8.v

666 A. Verilog Source Code 2001

// Author-EMAIL: Uwe.Meyer-Baese@ieee.org
//***
module cmul7p8 // ------> Interface

(input signed [4:0] x,
output signed [4:0] y0, y1, y2, y3);

assign y0 = 7 * x / 8;
assign y1 = x / 8 * 7;
assign y2 = x/2 + x/4 + x/8;
assign y3 = x - x/8;

endmodule

//***
// IEEE STD 1364-2001 Verilog file: add1p.v
// Author-EMAIL: Uwe.Meyer-Baese@ieee.org
//***
//‘include "220model.v"

module add1p
#(parameter WIDTH = 19, // Total bit width

WIDTH1 = 9, // Bit width of LSBs
WIDTH2 = 10) // Bit width of MSBs

(input [WIDTH-1:0] x, y, // Inputs
output [WIDTH-1:0] sum, // Result
input clk, // Clock
output LSBs_Carry); // Test port

reg [WIDTH1-1:0] l1, l2, s1; // LSBs of inputs
reg [WIDTH1:0] r1; // LSBs of inputs
reg [WIDTH2-1:0] l3, l4, r2, s2; // MSBs of input

always @(posedge clk) begin
// Split in MSBs and LSBs and store in registers
// Split LSBs from input x,y
l1[WIDTH1-1:0] <= x[WIDTH1-1:0];
l2[WIDTH1-1:0] <= y[WIDTH1-1:0];
// Split MSBs from input x,y
l3[WIDTH2-1:0] <= x[WIDTH2-1+WIDTH1:WIDTH1];
l4[WIDTH2-1:0] <= y[WIDTH2-1+WIDTH1:WIDTH1];

/************* First stage of the adder *****************/
r1 <= {1’b0, l1} + {1’b0, l2};
r2 <= l3 + l4;

/************** Second stage of the adder ****************/
s1 <= r1[WIDTH1-1:0];

A. Verilog Source Code 2001 667

// Add MSBs (x+y) and carry from LSBs
s2 <= r1[WIDTH1] + r2;

end

assign LSBs_Carry = r1[WIDTH1]; // Add a test signal

// Build a single output word of WIDTH = WIDTH1 + WIDTH2
assign sum = {s2, s1};

endmodule

//***
// IEEE STD 1364-2001 Verilog file: add2p.v
// Author-EMAIL: Uwe.Meyer-Baese@ieee.org
//***
// 22-bit adder with two pipeline stages
// uses no components

//‘include "220model.v"

module add2p
#(parameter WIDTH = 28, // Total bit width

WIDTH1 = 9, // Bit width of LSBs
WIDTH2 = 9, // Bit width of middle
WIDTH12 = 18, // Sum WIDTH1+WIDTH2
WIDTH3 = 10) // Bit width of MSBs

(input [WIDTH-1:0] x, y, // Inputs
output [WIDTH-1:0] sum, // Result
output LSBs_Carry, MSBs_Carry, // Single bits
input clk); // Clock

reg [WIDTH1-1:0] l1, l2, v1, s1; // LSBs of inputs
reg [WIDTH1:0] q1; // LSBs of inputs
reg [WIDTH2-1:0] l3, l4, s2; // Middle bits
reg [WIDTH2:0] q2, v2; // Middle bits
reg [WIDTH3-1:0] l5, l6, q3, v3, s3; // MSBs of input

// Split in MSBs and LSBs and store in registers
always @(posedge clk) begin
// Split LSBs from input x,y
l1[WIDTH1-1:0] <= x[WIDTH1-1:0];
l2[WIDTH1-1:0] <= y[WIDTH1-1:0];
// Split middle bits from input x,y
l3[WIDTH2-1:0] <= x[WIDTH2-1+WIDTH1:WIDTH1];
l4[WIDTH2-1:0] <= y[WIDTH2-1+WIDTH1:WIDTH1];

668 A. Verilog Source Code 2001

// Split MSBs from input x,y
l5[WIDTH3-1:0] <= x[WIDTH3-1+WIDTH12:WIDTH12];
l6[WIDTH3-1:0] <= y[WIDTH3-1+WIDTH12:WIDTH12];

//************** First stage of the adder ****************
q1 <= {1’b0, l1} + {1’b0, l2}; // Add LSBs of x and y
q2 <= {1’b0, l3} + {1’b0, l4}; // Add LSBs of x and y
q3 <= l5 + l6; // Add MSBs of x and y

//************* Second stage of the adder *****************
v1 <= q1[WIDTH1-1:0]; // Save q1

// Add result from middle bits (x+y) and carry from LSBs
v2 <= q1[WIDTH1] + {1’b0,q2[WIDTH2-1:0]};

// Add result from MSBs bits (x+y) and carry from middle
v3 <= q2[WIDTH2] + q3;

//************* Third stage of the adder ******************
s1 <= v1; // Save v1
s2 <= v2[WIDTH2-1:0]; // Save v2

// Add result from MSBs bits (x+y) and 2. carry from middle
s3 <= v2[WIDTH2] + v3;

end

assign LSBs_Carry = q1[WIDTH1]; // Provide test signals
assign MSBs_Carry = v2[WIDTH2];

// Build a single output word of WIDTH=WIDTH1+WIDTH2+WIDTH3
assign sum ={s3, s2, s1}; // Connect sum to output pins

endmodule

//***
// IEEE STD 1364-2001 Verilog file: add3p.v
// Author-EMAIL: Uwe.Meyer-Baese@ieee.org
//***
// 37-bit adder with three pipeline stages
// uses no components

//‘include "220model.v"

module add3p
#(parameter WIDTH = 37, // Total bit width

WIDTH0 = 9, // Bit width of LSBs
WIDTH1 = 9, // Bit width of 2. LSBs
WIDTH01 = 18, // Sum WIDTH0+WIDTH1
WIDTH2 = 9, // Bit width of 2. MSBs
WIDTH012 = 27, // Sum WIDTH0+WIDTH1+WIDTH2

A. Verilog Source Code 2001 669

WIDTH3 = 10) // Bit width of MSBs
(input [WIDTH-1:0] x, y, // Inputs
output [WIDTH-1:0] sum, // Result
output LSBs_Carry, Middle_Carry, MSBs_Carry, // Test pins
input clk); // Clock

reg [WIDTH0-1:0] l0, l1, r0, v0, s0; // LSBs of inputs
reg [WIDTH0:0] q0; // LSBs of inputs
reg [WIDTH1-1:0] l2, l3, r1, s1; // 2. LSBs of input
reg [WIDTH1:0] v1, q1; // 2. LSBs of input
reg [WIDTH2-1:0] l4, l5, s2, h7; // 2. MSBs bits
reg [WIDTH2:0] q2, v2, r2; // 2. MSBs bits
reg [WIDTH3-1:0] l6, l7, q3, v3, r3, s3, h8;

// MSBs of input

always @(posedge clk) begin
// Split in MSBs and LSBs and store in registers
// Split LSBs from input x,y
l0[WIDTH0-1:0] <= x[WIDTH0-1:0];
l1[WIDTH0-1:0] <= y[WIDTH0-1:0];
// Split 2. LSBs from input x,y
l2[WIDTH1-1:0] <= x[WIDTH1-1+WIDTH0:WIDTH0];
l3[WIDTH1-1:0] <= y[WIDTH1-1+WIDTH0:WIDTH0];
// Split 2. MSBs from input x,y
l4[WIDTH2-1:0] <= x[WIDTH2-1+WIDTH01:WIDTH01];
l5[WIDTH2-1:0] <= y[WIDTH2-1+WIDTH01:WIDTH01];
// Split MSBs from input x,y
l6[WIDTH3-1:0] <= x[WIDTH3-1+WIDTH012:WIDTH012];
l7[WIDTH3-1:0] <= y[WIDTH3-1+WIDTH012:WIDTH012];

//************* First stage of the adder *****************
q0 <= {1’b0, l0} + {1’b0, l1}; // Add LSBs of x and y
q1 <= {1’b0, l2} + {1’b0, l3}; // Add 2. LSBs of x / y
q2 <= {1’b0, l4} + {1’b0, l5}; // Add 2. MSBs of x/y
q3 <= l6 + l7; // Add MSBs of x and y

//************* Second stage of the adder *****************
v0 <= q0[WIDTH0-1:0]; // Save q0

// Add result from 2. LSBs (x+y) and carry from LSBs
v1 <= q0[WIDTH0] + {1’b0, q1[WIDTH1-1:0]};

// Add result from 2. MSBs (x+y) and carry from 2. LSBs
v2 <= q1[WIDTH1] + {1’b0, q2[WIDTH2-1:0]};

// Add result from MSBs (x+y) and carry from 2. MSBs
v3 <= q2[WIDTH2] + q3;

670 A. Verilog Source Code 2001

//************** Third stage of the adder *****************
r0 <= v0; // Delay for LSBs
r1 <= v1[WIDTH1-1:0]; // Delay for 2. LSBs

// Add result from 2. MSBs (x+y) and carry from 2. LSBs
r2 <= v1[WIDTH1] + {1’b0, v2[WIDTH2-1:0]};

// Add result from MSBs (x+y) and carry from 2. MSBs
r3 <= v2[WIDTH2] + v3;

//************ Fourth stage of the adder ******************
s0 <= r0; // Delay for LSBs
s1 <= r1; // Delay for 2. LSBs
s2 <= r2[WIDTH2-1:0]; // Delay for 2. MSBs

// Add result from MSBs (x+y) and carry from 2. MSBs
s3 <= r2[WIDTH2] + r3;

end

assign LSBs_Carry = q0[WIDTH1]; // Provide test signals
assign Middle_Carry = v1[WIDTH1];
assign MSBs_Carry = r2[WIDTH2];

// Build a single output word of
// WIDTH = WIDTH0 + WIDTH1 + WIDTH2 + WIDTH3
assign sum = {s3, s2, s1, s0}; // Connect sum to output

endmodule

//***
// IEEE STD 1364-2001 Verilog file: mul_ser.v
// Author-EMAIL: Uwe.Meyer-Baese@ieee.org
//***
module mul_ser //----> Interface
(input clk, reset,
input signed [7:0] x,
input [7:0] a,
output reg signed [15:0] y);

always @(posedge clk) //-> Multiplier in behavioral style
begin : States
parameter s0=0, s1=1, s2=2;
reg [2:0] count;
reg [1:0] s; // FSM state register
reg signed [15:0] p, t; // Double bit width
reg [7:0] a_reg;

if (reset) // Asynchronous reset

A. Verilog Source Code 2001 671

s <= s0;
else
case (s)

s0 : begin // Initialization step
a_reg <= a;
s <= s1;
count = 0;
p <= 0; // Product register reset
t <= x; // Set temporary shift register to x

end
s1 : begin // Processing step
if (count == 7) // Multiplication ready
s <= s2;

else
begin
if (a_reg[0] == 1) // Use LSB for bit select
p <= p + t; // Add 2^k

a_reg <= a_reg >>> 1;
t <= t <<< 1;
count = count + 1;
s <= s1;

end
end
s2 : begin // Output of result to y and
y <= p; // start next multiplication
s <= s0;

end
endcase

end

endmodule

//***
// IEEE STD 1364-2001 Verilog file: div_res.v
// Author-EMAIL: Uwe.Meyer-Baese@ieee.org
//***
// Restoring Division
// Bit width: WN WD WN WD
// Numerator / Denominator = Quotient and Remainder
// OR: Numerator = Quotient * Denominator + Remainder

module div_res(
input clk, reset,
input [7:0] n_in,
input [5:0] d_in,

672 A. Verilog Source Code 2001

output reg [5:0] r_out,
output reg [7:0] q_out);

parameter s0=0, s1=1, s2=2, s3=3; // State assignments

// Divider in behavioral style
always @(posedge clk or posedge reset)
begin : F // Finite state machine
reg [3:0] count;
reg [1:0] s; // FSM state
reg [13:0] d; // Double bit width unsigned
reg signed [13:0] r; // Double bit width signed
reg [7:0] q;

if (reset) // Asynchronous reset
s <= s0;

else
case (s)

s0 : begin // Initialization step
s <= s1;
count = 0;
q <= 0; // Reset quotient register
d <= d_in << 7; // Load aligned denominator
r <= n_in; // Remainder = numerator

end
s1 : begin // Processing step
r <= r - d; // Subtract denominator
s <= s2;

end
s2 : begin // Restoring step
if (r < 0) begin // Check r < 0
r <= r + d; // Restore previous remainder
q <= q << 1; // LSB = 0 and SLL
end

else
q <= (q << 1) + 1; // LSB = 1 and SLL

count = count + 1;
d <= d >> 1;

if (count == 8) // Division ready ?
s <= s3;

else
s <= s1;

end

A. Verilog Source Code 2001 673

s3 : begin // Output of result
q_out <= q[7:0];
r_out <= r[5:0];
s <= s0; // Start next division

end
endcase

end

endmodule

//***
// IEEE STD 1364-2001 Verilog file: div_aegp.v
// Author-EMAIL: Uwe.Meyer-Baese@ieee.org
//***
// Convergence division after
// Anderson, Earle, Goldschmidt, and Powers
// Bit width: WN WD WN WD
// Numerator / Denominator = Quotient and Remainder
// OR: Numerator = Quotient * Denominator + Remainder

module div_aegp
(input clk, reset,
input [8:0] n_in,
input [8:0] d_in,
output reg [8:0] q_out);

always @(posedge clk or posedge reset) //-> Divider in
begin : States // behavioral style
parameter s0=0, s1=1, s2=2;
reg [1:0] count;
reg [1:0] state;
reg [9:0] x, t, f; // one guard bit
reg [17:0] tempx, tempt;

if (reset) // Asynchronous reset
state <= s0;

else
case (state)

s0 : begin // Initialization step
state <= s1;
count = 0;
t <= {1’b0, d_in}; // Load denominator
x <= {1’b0, n_in}; // Load numerator

end
s1 : begin // Processing step

674 A. Verilog Source Code 2001

f = 512 - t; // TWO - t
tempx = (x * f); // Product in full
tempt = (t * f); // bitwidth
x <= tempx >> 8; // Factional f
t <= tempt >> 8; // Scale by 256
count = count + 1;
if (count == 2) // Division ready ?
state <= s2;

else
state <= s1;

end
s2 : begin // Output of result
q_out <= x[8:0];
state <= s0; // Start next division

end
endcase

end

endmodule

//***
// IEEE STD 1364-2001 Verilog file: cordic.v
// Author-EMAIL: Uwe.Meyer-Baese@ieee.org
//***
module cordic #(parameter W = 7) // Bit width - 1
(input clk,
input signed [W:0] x_in, y_in,
output reg signed [W:0] r, phi, eps);

// There is bit access in Quartus array types
// in Verilog 2001, therefore use single vectors
// but use a separate line for each array!
reg signed [W:0] x [0:3];
reg signed [W:0] y [0:3];
reg signed [W:0] z [0:3];

always @(posedge clk) begin //----> Infer registers
if (x_in >= 0) // Test for x_in < 0 rotate
begin // 0, +90, or -90 degrees
x[0] <= x_in; // Input in register 0
y[0] <= y_in;
z[0] <= 0;
end

else if (y_in >= 0)

A. Verilog Source Code 2001 675

begin
x[0] <= y_in;
y[0] <= - x_in;
z[0] <= 90;
end

else
begin
x[0] <= - y_in;
y[0] <= x_in;
z[0] <= -90;
end

if (y[0] >= 0) // Rotate 45 degrees
begin
x[1] <= x[0] + y[0];
y[1] <= y[0] - x[0];
z[1] <= z[0] + 45;
end

else
begin
x[1] <= x[0] - y[0];
y[1] <= y[0] + x[0];
z[1] <= z[0] - 45;
end

if (y[1] >= 0) // Rotate 26 degrees
begin
x[2] <= x[1] + (y[1] >>> 1); // i.e. x[1] + y[1] /2
y[2] <= y[1] - (x[1] >>> 1); // i.e. y[1] - x[1] /2
z[2] <= z[1] + 26;
end

else
begin
x[2] <= x[1] - (y[1] >>> 1); // i.e. x[1] - y[1] /2
y[2] <= y[1] + (x[1] >>> 1); // i.e. y[1] + x[1] /2
z[2] <= z[1] - 26;
end

if (y[2] >= 0) // Rotate 14 degrees
begin

x[3] <= x[2] + (y[2] >>> 2); // i.e. x[2] + y[2]/4
y[3] <= y[2] - (x[2] >>> 2); // i.e. y[2] - x[2]/4
z[3] <= z[2] + 14;

end

676 A. Verilog Source Code 2001

else
begin

x[3] <= x[2] - (y[2] >>> 2); // i.e. x[2] - y[2]/4
y[3] <= y[2] + (x[2] >>> 2); // i.e. y[2] + x[2]/4
z[3] <= z[2] - 14;

end

r <= x[3];
phi <= z[3];
eps <= y[3];

end

endmodule

//***
// IEEE STD 1364-2001 Verilog file: arctan.v
// Author-EMAIL: Uwe.Meyer-Baese@ieee.org
//***
module arctan #(parameter W = 9, // Bit width

L = 5) // Array size
(input clk,
input signed [W-1:0] x_in,
//output reg signed [W-1:0] d_o [1:L],
output wire signed [W-1:0] d_o1, d_o2 ,d_o3, d_o4 ,d_o5,
output reg signed [W-1:0] f_out);

reg signed [W-1:0] x; // Auxilary signals
wire signed [W-1:0] f;
wire signed [W-1:0] d [1:L]; // Auxilary array
// Chebychev coefficients c1, c2, c3 for 8-bit precision
// c1 = 212; c3 = -12; c5 = 1;

always @(posedge clk) begin
x <= x_in; // FF for input and output
f_out <= f;

end

// Compute sum-of-products with
// Clenshaw’s recurrence formula

assign d[5] = ’sd1; // c5=1
assign d[4] = (x * d[5]) / 128;
assign d[3] = ((x * d[4]) / 128) - d[5] - 12; // c3=-12
assign d[2] = ((x * d[3]) / 128) - d[4];
assign d[1] = ((x * d[2]) / 128) - d[3] + 212; // c1=212
assign f = ((x * d[1]) / 256) - d[2];

A. Verilog Source Code 2001 677

// last step is different

assign d_o1 = d[1]; // Provide test signals as outputs
assign d_o2 = d[2];
assign d_o3 = d[3];
assign d_o4 = d[4];
assign d_o5 = d[5];

endmodule

//***
// IEEE STD 1364-2001 Verilog file: ln.v
// Author-EMAIL: Uwe.Meyer-Baese@ieee.org
//***
module ln #(parameter N = 5, // -- Number of coeffcients-1

parameter W= 17) // -- Bitwidth -1
(input clk,
input signed [W:0] x_in,
output reg signed [W:0] f_out);

reg signed [W:0] x, f; // Auxilary register
wire signed [W:0] p [0:5];
reg signed [W:0] s [0:5];

// Polynomial coefficients for 16-bit precision:
// f(x) = (1 + 65481 x -32093 x^2 + 18601 x^3
// -8517 x^4 + 1954 x^5)/65536
assign p[0] = 18’sd1;
assign p[1] = 18’sd65481;
assign p[2] = -18’sd32093;
assign p[3] = 18’sd18601;
assign p[4] = -18’sd8517;
assign p[5] = 18’sd1954;

always @(posedge clk)
begin : Store
x <= x_in; // Store input in register

end

always @(posedge clk) // Compute sum-of-products
begin : SOP
integer k; // define the loop variable
reg signed [35:0] slv;

s[N] = p[N];

678 A. Verilog Source Code 2001

// Polynomial Approximation from Chebyshev coefficients
for (k=N-1; k>=0; k=k-1)
begin
slv = x * s[k+1]; // no FFs for slv
s[k] = (slv >>> 16) + p[k];

end // x*s/65536 problem 32 bits
f_out <= s[0]; // make visable outside

end

endmodule

//***
// IEEE STD 1364-2001 Verilog file: sqrt.v
// Author-EMAIL: Uwe.Meyer-Baese@ieee.org
//***

module sqrt ////> Interface
(input clk, reset,
input [16:0] x_in,
output [16:0] a_o, imm_o, f_o,
output reg [2:0] ind_o,
output reg [1:0] count_o,
output [16:0] x_o,pre_o,post_o,
output reg [16:0] f_out);

// Define the operation modes:
parameter load=0, mac=1, scale=2, denorm=3, nop=4;
// Assign the FSM states:
parameter start=0, leftshift=1, sop=2,

rightshift=3, done=4;

reg [2:0] s, op;
reg [16:0] x; // Auxilary
reg signed [16:0] a, b, f, imm; // ALU data
reg [16:0] pre, post;
// Chebychev poly coefficients for 16-bit precision:
wire signed [16:0] p [0:4];

assign p[0] = 7563;
assign p[1] = 42299;
assign p[2] = -29129;
assign p[3] = 15813;
assign p[4] = -3778;

always @(posedge reset or posedge clk) //------> SQRT FSM

A. Verilog Source Code 2001 679

begin : States // sample at clk rate
reg signed [3:0] ind;
reg [1:0] count;

if (reset) // Asynchronous reset
s <= start;

else begin
case (s) // Next State assignments

start : begin // Initialization step
s <= leftshift; ind = 4;
imm <= x_in; // Load argument in ALU
op <= load; count = 0;

end
leftshift : begin // Normalize to 0.5 .. 1.0
count = count + 1; a <= pre; op <= scale;
imm <= p[4];
if (count == 3) begin // Normalize ready ?
s <= sop; op <= load; x <= f;

end
end
sop : begin // Processing step
ind = ind - 1; a <= x;
if (ind == -1) begin // SOP ready ?
s <= rightshift; op <= denorm; a <= post;

end else begin
imm <= p[ind]; op <= mac;

end
end
rightshift : begin // Denormalize to original range
s <= done; op <= nop;

end
done : begin // Output of results
f_out <= f; // I/O store in register
op<=nop;
s <= start;
end // start next cycle

endcase
end
ind_o <= ind;
count_o <= count;

end

always @(posedge clk) // Define the ALU operations
begin : ALU

680 A. Verilog Source Code 2001

case (op)
load : f <= imm;
mac : f <= (a * f / 32768) + imm;
scale : f <= a * f;
denorm : f <= (a * f /32768);
nop : f <= f;
default : f <= f;

endcase
end

always @*
begin : EXP
reg [16:0] slv;
reg [16:0] po, pr;
integer K, L;

slv = x_in;
// Compute pre-scaling:
for (K=0; K <= 15; K= K+1)
if (slv[K] == 1)

L <= K;
pre = 1 << (14-L);
// Compute post scaling:
po = 1;
for (K=0; K <= 7; K= K+1) begin
if (slv[2*K] == 1) // even 2^k gets 2^k/2

po = 1 << (K+8);
// sqrt(2): CSD Error = 0.0000208 = 15.55 effective bits
// +1 +0. -1 +0 -1 +0 +1 +0 +1 +0 +0 +0 +0 +0 +1
// 9 7 5 3 1 -5

if (slv[2*K+1] == 1) // odd k has sqrt(2) factor
po = (1<<(K+9)) - (1<<(K+7)) - (1<<(K+5))

+ (1<<(K+3)) + (1<<(K+1)) + (1<<(K-5));
end
post <= po;

end

assign a_o = a; // Provide some test signals as outputs
assign imm_o = imm;
assign f_o = f;
assign pre_o = pre;
assign post_o = post;
assign x_o = x;

A. Verilog Source Code 2001 681

endmodule

//***
// IEEE STD 1364-2001 Verilog file: fir_gen.v
// Author-EMAIL: Uwe.Meyer-Baese@ieee.org
//***
// This is a generic FIR filter generator
// It uses W1 bit data/coefficients bits
module fir_gen
#(parameter W1 = 9, // Input bit width

W2 = 18, // Multiplier bit width 2*W1
W3 = 19, // Adder width = W2+log2(L)-1
W4 = 11, // Output bit width
L = 4, // Filter length
Mpipe = 3) // Pipeline steps of multiplier

(input clk, Load_x, // std_logic
input signed [W1-1:0] x_in, c_in, // Inputs
output signed [W4-1:0] y_out); // Results

reg signed [W1-1:0] x;
wire signed [W3-1:0] y;

// 1D array types i.e. memories supported by Quartus
// in Verilog 2001; first bit then vector size
reg signed [W1-1:0] c [0:3]; // Coefficient array
wire signed [W2-1:0] p [0:3]; // Product array
reg signed [W3-1:0] a [0:3]; // Adder array

wire signed [W2-1:0] sum; // Auxilary signals
wire clken, aclr;

assign sum=0; assign aclr=0; // Default for mult
assign clken=0;

//----> Load Data or Coefficient
always @(posedge clk)
begin: Load
if (! Load_x) begin
c[3] <= c_in; // Store coefficient in register
c[2] <= c[3]; // Coefficients shift one
c[1] <= c[2];
c[0] <= c[1];
end

else begin
x <= x_in; // Get one data sample at a time

end

682 A. Verilog Source Code 2001

end

//----> Compute sum-of-products
always @(posedge clk)
begin: SOP

// Compute the transposed filter additions
a[0] <= p[0] + a[1];
a[1] <= p[1] + a[2];
a[2] <= p[2] + a[3];
a[3] <= p[3]; // First TAP has only a register

end
assign y = a[0];

genvar I; //Define loop variable for generate statement
generate
for (I=0; I<L; I=I+1) begin: MulGen

// Instantiate L pipelined multiplier
lpm_mult mul_I // Multiply x*c[I] = p[I]
(.clock(clk), .dataa(x), .datab(c[I]), .result(p[I]));

// .sum(sum), .clken(clken), .aclr(aclr)); // Unused ports
defparam mul_I.lpm_widtha = W1;
defparam mul_I.lpm_widthb = W1;
defparam mul_I.lpm_widthp = W2;
defparam mul_I.lpm_widths = W2;
defparam mul_I.lpm_pipeline = Mpipe;
defparam mul_I.lpm_representation = "SIGNED";

end
endgenerate

assign y_out = y[W3-1:W3-W4];

endmodule

//***
// IEEE STD 1364-2001 Verilog file: fir_srg.v
// Author-EMAIL: Uwe.Meyer-Baese@ieee.org
//***
module fir_srg //----> Interface
(input clk,
input signed [7:0] x,
output reg signed [7:0] y);

// Tapped delay line array of bytes
reg signed [7:0] tap [0:3];

// For bit access use single vectors in Verilog

A. Verilog Source Code 2001 683

integer I;

always @(posedge clk) //----> Behavioral style
begin : p1
// Compute output y with the filter coefficients weight.
// The coefficients are [-1 3.75 3.75 -1].
// Multiplication and division for Altera MaxPlusII can
// be done in Verilog 2001 with signed shifts !
y <= (tap[1] <<< 1) + tap[1] + (tap[1] >>> 1) - tap[0]

+ (tap[1] >>> 2) + (tap[2] <<< 1) + tap[2]
+ (tap[2] >>> 1) + (tap[2] >>> 2) - tap[3];

for (I=3; I>0; I=I-1) begin
tap[I] <= tap[I-1]; // Tapped delay line: shift one

end
tap[0] <= x; // Input in register 0

end

endmodule

//***
// IEEE STD 1364-2001 Verilog file: dafsm.v
// Author-EMAIL: Uwe.Meyer-Baese@ieee.org
//***
‘include "case3.v" // User-defined component

module dafsm //--> Interface
(input clk, reset,
input [2:0] x_in0, x_in1, x_in2,
output [2:0] lut,
output reg [5:0] y);

reg [2:0] x0, x1, x2;
wire [2:0] table_in, table_out;

reg [5:0] p; // temporary register

assign table_in[0] = x0[0];
assign table_in[1] = x1[0];
assign table_in[2] = x2[0];

always @(posedge clk or posedge reset)
begin : DA //----> DA in behavioral style
parameter s0=0, s1=1;
reg [0:0] state;

684 A. Verilog Source Code 2001

reg [1:0] count; // Counts the shifts

if (reset) // Asynchronous reset
state <= s0;

else
case (state)
s0 : begin // Initialization

state <= s1;
count = 0;
p <= 0;
x0 <= x_in0;
x1 <= x_in1;
x2 <= x_in2;

end
s1 : begin // Processing step

if (count == 3) begin // Is sum of product done?
y <= p; // Output of result to y and
state <= s0; // start next sum of product

end
else begin
p <= (p >> 1) + (table_out << 2); // p/2+table*4
x0[0] <= x0[1];
x0[1] <= x0[2];
x1[0] <= x1[1];
x1[1] <= x1[2];
x2[0] <= x2[1];
x2[1] <= x2[2];
count = count + 1;
state <= s1;

end
end

endcase
end

case3 LC_Table0
(.table_in(table_in), .table_out(table_out));

assign lut = table_out; // Provide test signal

endmodule

//***
// IEEE STD 1364-2001 Verilog file: case3.v
// Author-EMAIL: Uwe.Meyer-Baese@ieee.org
//***

A. Verilog Source Code 2001 685

module case3
(input [2:0] table_in, // Three bit
output reg [2:0] table_out); // Range 0 to 6

// This is the DA CASE table for
// the 3 coefficients: 2, 3, 1

always @(table_in)
begin
case (table_in)
0 : table_out = 0;
1 : table_out = 2;
2 : table_out = 3;
3 : table_out = 5;
4 : table_out = 1;
5 : table_out = 3;
6 : table_out = 4;
7 : table_out = 6;
default : ;

endcase
end

endmodule

//***
// IEEE STD 1364-2001 Verilog file: case5p.v
// Author-EMAIL: Uwe.Meyer-Baese@ieee.org
//***
module case5p
(input clk,
input [4:0] table_in,
output reg [4:0] table_out); // range 0 to 25

reg [3:0] lsbs;
reg [1:0] msbs0;
reg [4:0] table0out00, table0out01;

// These are the distributed arithmetic CASE tables for
// the 5 coefficients: 1, 3, 5, 7, 9

always @(posedge clk) begin
lsbs[0] = table_in[0];
lsbs[1] = table_in[1];
lsbs[2] = table_in[2];
lsbs[3] = table_in[3];

686 A. Verilog Source Code 2001

msbs0[0] = table_in[4];
msbs0[1] = msbs0[0];

end

// This is the final DA MPX stage.
always @(posedge clk) begin
case (msbs0[1])
0 : table_out <= table0out00;
1 : table_out <= table0out01;
default : ;

endcase
end

// This is the DA CASE table 00 out of 1.
always @(posedge clk) begin
case (lsbs)
0 : table0out00 = 0;
1 : table0out00 = 1;
2 : table0out00 = 3;
3 : table0out00 = 4;
4 : table0out00 = 5;
5 : table0out00 = 6;
6 : table0out00 = 8;
7 : table0out00 = 9;
8 : table0out00 = 7;
9 : table0out00 = 8;
10 : table0out00 = 10;
11 : table0out00 = 11;
12 : table0out00 = 12;
13 : table0out00 = 13;
14 : table0out00 = 15;
15 : table0out00 = 16;
default ;

endcase
end

// This is the DA CASE table 01 out of 1.
always @(posedge clk) begin
case (lsbs)
0 : table0out01 = 9;
1 : table0out01 = 10;
2 : table0out01 = 12;
3 : table0out01 = 13;
4 : table0out01 = 14;

A. Verilog Source Code 2001 687

5 : table0out01 = 15;
6 : table0out01 = 17;
7 : table0out01 = 18;
8 : table0out01 = 16;
9 : table0out01 = 17;
10 : table0out01 = 19;
11 : table0out01 = 20;
12 : table0out01 = 21;
13 : table0out01 = 22;
14 : table0out01 = 24;
15 : table0out01 = 25;
default ;

endcase
end

endmodule

//***
// IEEE STD 1364-2001 Verilog file: darom.v
// Author-EMAIL: Uwe.Meyer-Baese@ieee.org
//***
//‘include "220model.v"

module darom //--> Interface
(input clk, reset,
input [2:0] x_in0, x_in1, x_in2,
output [2:0] lut,
output reg [5:0] y);

reg [2:0] x0, x1, x2;
wire [2:0] table_in, table_out;

reg [5:0] p; // Temporary register
wire ena;

assign ena=1;

assign table_in[0] = x0[0];
assign table_in[1] = x1[0];
assign table_in[2] = x2[0];

always @(posedge clk or posedge reset)
begin : DA //----> DA in behavioral style
parameter s0=0, s1=1;
reg [0:0] state;

688 A. Verilog Source Code 2001

reg [1:0] count; // Counts the shifts

if (reset) // Asynchronous reset
state <= s0;

else
case (state)

s0 : begin // Initialization
state <= s1;
count = 0;
p <= 0;
x0 <= x_in0;
x1 <= x_in1;
x2 <= x_in2;

end
s1 : begin // Processing step

if (count == 3) begin // Is sum of product done?
y <= (p >> 1) + (table_out << 2);// Output to y
state <= s0; // and start next sum of product

end
else begin
p <= (p >> 1) + (table_out << 2);
x0[0] <= x0[1];
x0[1] <= x0[2];
x1[0] <= x1[1];
x1[1] <= x1[2];
x2[0] <= x2[1];
x2[1] <= x2[2];
count = count + 1;
state <= s1;

end
end
default : ;

endcase
end

lpm_rom rom_1 // Used ports:
(.outclock(clk),.address(table_in), .q(table_out));

// .inclock(clk), .memenab(ena)); // Unused
defparam rom_1.lpm_width = 3;
defparam rom_1.lpm_widthad = 3;
defparam rom_1.lpm_outdata = "REGISTERED";
defparam rom_1.lpm_address_control = "UNREGISTERED";
defparam rom_1.lpm_file = "darom3.mif";

A. Verilog Source Code 2001 689

assign lut = table_out; // Provide test signal

endmodule

//***
// IEEE STD 1364-2001 Verilog file: dasign.v
// Author-EMAIL: Uwe.Meyer-Baese@ieee.org
//***
‘include "case3s.v" // User-defined component

module dasign //-> Interface
(input clk, reset,
input signed [3:0] x_in0, x_in1, x_in2,
output [3:0] lut,
output reg signed [6:0] y);

reg signed [3:0] x0, x1, x2;
wire signed [2:0] table_in;
wire signed [3:0] table_out;

reg [6:0] p; // Temporary register

assign table_in[0] = x0[0];
assign table_in[1] = x1[0];
assign table_in[2] = x2[0];

always @(posedge clk or posedge reset)// DA in behavioral
begin : DA // style
parameter s0=0, s1=1;
integer k;
reg [0:0] state;
reg [2:0] count; // Counts the shifts

if (reset) // Asynchronous reset
state <= s0;

else
case (state)

s0 : begin // Initialization step
state <= s1;
count = 0;
p <= 0;
x0 <= x_in0;
x1 <= x_in1;
x2 <= x_in2;

end

690 A. Verilog Source Code 2001

s1 : begin // Processing step
if (count == 4) begin// Is sum of product done?
y <= p; // Output of result to y and
state <= s0; // start next sum of product

end else begin //Subtract for last accumulator step
if (count ==3) // i.e. p/2 +/- table_out * 8
p <= (p >>> 1) - (table_out <<< 3);

else // Accumulation for all other steps
p <= (p >>> 1) + (table_out <<< 3);

for (k=0; k<=2; k= k+1) begin // Shift bits
x0[k] <= x0[k+1];
x1[k] <= x1[k+1];
x2[k] <= x2[k+1];

end
count = count + 1;
state <= s1;

end
end

endcase
end

case3s LC_Table0
(.table_in(table_in), .table_out(table_out));

assign lut = table_out; // Provide test signal

endmodule

//***
// IEEE STD 1364-2001 Verilog file: case3s.v
// Author-EMAIL: Uwe.Meyer-Baese@ieee.org
//***
module case3s
(input [2:0] table_in, // Three bit
output reg [3:0] table_out); // Range -2 to 4 -> 4 bits

// This is the DA CASE table for
// the 3 coefficients: -2, 3, 1

always @(table_in)
begin
case (table_in)
0 : table_out = 0;
1 : table_out = -2;
2 : table_out = 3;

A. Verilog Source Code 2001 691

3 : table_out = 1;
4 : table_out = 1;
5 : table_out = -1;
6 : table_out = 4;
7 : table_out = 2;
default : ;

endcase
end

endmodule

//***
// IEEE STD 1364-2001 Verilog file: dapara.v
// Author-EMAIL: Uwe.Meyer-Baese@ieee.org
//***
‘include "case3s.v" // User-defined component

module dapara //----> Interface
(input clk,
input signed [3:0] x_in,
output reg signed[6:0] y);

reg signed [2:0] x [0:3];
wire signed [3:0] h [0:3];
reg signed [4:0] s0, s1;
reg signed [3:0] t0, t1, t2, t3;

always @(posedge clk) //----> DA in behavioral style
begin : DA
integer k,l;
for (l=0; l<=3; l=l+1) begin // For all 4 vectors
for (k=0; k<=1; k=k+1) begin // shift all bits
x[l][k] <= x[l][k+1];

end
end
for (k=0; k<=3; k=k+1) begin // Load x_in in the
x[k][2] <= x_in[k]; // MSBs of the registers

end
// y <= h[0] + (h[1] <<< 1) + (h[2] <<< 2) - (h[3] <<< 3);
// Sign extensions, pipeline register, and adder tree:
t0 <= h[0]; t1 <= h[1]; t2 <= h[2]; t3 <= h[3];
s0 <= t0 + (t1 <<< 1);
s1 <= t2 - (t3 <<< 1);
y <= s0 + (s1 <<< 2);
end

692 A. Verilog Source Code 2001

genvar i;// Need to declare loop variable in Verilog 2001
generate // One table for each bit in x_in
for (i=0; i<=3; i=i+1) begin:LC_Tables
case3s LC_Table0 (.table_in(x[i]), .table_out(h[i]));

end
endgenerate

endmodule

//***
// IEEE STD 1364-2001 Verilog file: iir.v
// Author-EMAIL: Uwe.Meyer-Baese@ieee.org
//***
module iir #(parameter W = 14) // Bit width - 1

(input signed [W:0] x_in, // Input
output signed [W:0] y_out, // Result
input clk);

reg signed [W:0] x, y;

// initial begin
// y=0;
// x=0;
// end

// Use FFs for input and recursive part
always @(posedge clk) begin // Note: there is a signed
x <= x_in; // integer in Verilog 2001
y <= x + (y >>> 1) + (y >>> 2); // >>> uses fewer LEs

//y <= x + y / 2 + y / 4; // div with / uses more LEs

end

assign y_out = y; // Connect y to output pins

endmodule

//***
// IEEE STD 1364-2001 Verilog file: iir_pipe.v
// Author-EMAIL: Uwe.Meyer-Baese@ieee.org
//***
module iir_pipe //----> Interface

A. Verilog Source Code 2001 693

#(parameter W = 14) // Bit width - 1
(input clk,
input signed [W:0] x_in, // Input
output signed [W:0] y_out); // Result

reg signed [W:0] x, x3, sx;
reg signed [W:0] y, y9;

always @(posedge clk) // Infer FFs for input, output and
begin // pipeline stages;
x <= x_in; // use nonblocking FF assignments
x3 <= (x >>> 1) + (x >>> 2);

// i.e. x / 2 + x / 4 = x*3/4
sx <= x + x3; // Sum of x element i.e. output FIR part
y9 <= (y >>> 1) + (y >>> 4);

// i.e. y / 2 + y / 16 = y*9/16
y <= sx + y9; // Compute output

end

assign y_out = y ; // Connect register y to output pins

endmodule

//***
// IEEE STD 1364-2001 Verilog file: iir_par.v
// Author-EMAIL: Uwe.Meyer-Baese@ieee.org
//***
module iir_par //----> Interface
#(parameter W = 14) // bit width - 1
(input clk, reset,
input signed [W:0] x_in,
output signed [W:0] y_out,
output clk2);

reg signed [W:0] x_even, xd_even, x_odd, xd_odd, x_wait;
reg signed [W:0] y_even, y_odd, y_wait, y;
reg signed [W:0] sum_x_even, sum_x_odd;
reg clk_div2;

always @(posedge clk) // Clock divider by 2
begin : clk_divider // for input clk

clk_div2 <= ! clk_div2;
end

always @(posedge clk) // Split x into even

694 A. Verilog Source Code 2001

begin : Multiplex // and odd samples;
parameter even=0, odd=1; // recombine y at clk rate
reg [0:0] state;

if (reset) // Asynchronous reset
state <= even;

else
case (state)

even : begin
x_even <= x_in;
x_odd <= x_wait;
y <= y_wait;
state <= odd;

end
odd : begin

x_wait <= x_in;
y <= y_odd;
y_wait <= y_even;
state <= even;

end
endcase

end

assign y_out = y;
assign clk2 = clk_div2;

always @(negedge clk_div2)
begin: Arithmetic
xd_even <= x_even;
sum_x_even <= x_odd+ (xd_even >>> 1) + (xd_even >>> 2);

// i.e. x_odd + x_even / 2 + x_even /4
y_even <= sum_x_even + (y_even >>> 1) + (y_even >>> 4);

// i.e. sum_x_even + y_even / 2 + y_even /16
xd_odd <= x_odd;
sum_x_odd <= xd_even + (xd_odd >>> 1) + (xd_odd >>> 4);

// i.e. x_even + xd_odd / 2 + xd_odd /4
y_odd <= sum_x_odd + (y_odd >>> 1)+ (y_odd >>> 4);

// i.e. sum_x_odd + y_odd / 2 + y_odd / 16
end

endmodule

//***
// IEEE STD 1364-2001 Verilog file: cic3r32.v
// Author-EMAIL: Uwe.Meyer-Baese@ieee.org

A. Verilog Source Code 2001 695

//***
module cic3r32 //----> Interface
(input clk, reset,
input signed [7:0] x_in,
output signed [9:0] y_out,
output reg clk2);

parameter hold=0, sample=1;
reg [1:0] state;
reg [4:0] count;
reg signed [7:0] x; // Registered input
reg signed [25:0] i0, i1 , i2; // I section 0, 1, and 2
reg signed [25:0] i2d1, i2d2, c1, c0; // I + COMB 0
reg signed [25:0] c1d1, c1d2, c2; // COMB section 1
reg signed [25:0] c2d1, c2d2, c3; // COMB section 2

always @(posedge clk or posedge reset)
begin : FSM
if (reset) begin // Asynchronous reset
count <= 0;
state <= hold;
clk2 <= 0;

end else begin
if (count == 31) begin

count <= 0;
state <= sample;
clk2 <= 1;

end else begin
count <= count + 1;
state <= hold;
clk2 <= 0;

end
end

end

always @(posedge clk) // 3 integrator sections
begin : Int

x <= x_in;
i0 <= i0 + x;
i1 <= i1 + i0 ;
i2 <= i2 + i1 ;

end

always @(posedge clk) // 3 comb sections

696 A. Verilog Source Code 2001

begin : Comb
if (state == sample) begin
c0 <= i2;
i2d1 <= c0;
i2d2 <= i2d1;
c1 <= c0 - i2d2;
c1d1 <= c1;
c1d2 <= c1d1;
c2 <= c1 - c1d2;
c2d1 <= c2;
c2d2 <= c2d1;
c3 <= c2 - c2d2;

end
end

assign y_out = c3[25:16];

endmodule

//***
// IEEE STD 1364-2001 Verilog file: cic3s32.v
// Author-EMAIL: Uwe.Meyer-Baese@ieee.org
//***
module cic3s32 //----> Interface
(input clk, reset,
output reg clk2,
input signed [7:0] x_in,
output signed [9:0] y_out);

parameter hold=0, sample=1;
reg [1:0] state;
reg [4:0] count;
reg signed [7:0] x; // Registered input
reg signed [25:0] i0; // I section 0
reg signed [20:0] i1; // I section 1
reg signed [15:0] i2; // I section 2
reg signed [13:0] i2d1, i2d2, c1, c0; // I+C0
reg signed [12:0] c1d1, c1d2, c2; // COMB 1
reg signed [11:0] c2d1, c2d2, c3; // COMB 2

always @(posedge clk or posedge reset)
begin : FSM
if (reset) begin // Asynchronous reset
count <= 0;
state <= hold;

A. Verilog Source Code 2001 697

clk2 <= 0;
end else begin
if (count == 31) begin

count <= 0;
state <= sample;
clk2 <= 1;

end
else begin

count <= count + 1;
state <= hold;
clk2 <= 0;

end
end

end

always @(posedge clk) // 3 integrator sections
begin : Int

x <= x_in;
i0 <= i0 + x;
i1 <= i1 + i0[25:5];
i2 <= i2 + i1[20:5];

end

always @(posedge clk) // 3 comb sections
begin : Comb
if (state == sample) begin
c0 <= i2[15:2];
i2d1 <= c0;
i2d2 <= i2d1;
c1 <= c0 - i2d2;
c1d1 <= c1[13:1];
c1d2 <= c1d1;
c2 <= c1[13:1] - c1d2;
c2d1 <= c2[12:1];
c2d2 <= c2d1;
c3 <= c2[12:1] - c2d2;

end
end

assign y_out = c3[11:2];

endmodule

//***
// IEEE STD 1364-2001 Verilog file: db4poly.v

698 A. Verilog Source Code 2001

// Author-EMAIL: Uwe.Meyer-Baese@ieee.org
//***
module db4poly //----> Interface
(input clk, reset,
output clk2,
input signed [7:0] x_in,
output signed [16:0] x_e, x_o, g0, g1, // Test signals
output signed [8:0] y_out);

reg signed [7:0] x_odd, x_even, x_wait;
reg clk_div2;

// Register for multiplier, coefficients, and taps
reg signed [16:0] m0, m1, m2, m3, r0, r1, r2, r3;
reg signed [16:0] x33, x99, x107;
reg signed [16:0] y;

always @(posedge clk or posedge reset) // Split into even
begin : Multiplex // and odd samples at clk rate
parameter even=0, odd=1;
reg [0:0] state;

if (reset) // Asynchronous reset
state <= even;

else
case (state)

even : begin
x_even <= x_in;
x_odd <= x_wait;
clk_div2 = 1;
state <= odd;

end
odd : begin
x_wait <= x_in;
clk_div2 = 0;
state <= even;

end
endcase

end

always @(x_odd, x_even)
begin : RAG

// Compute auxiliary multiplications of the filter
x33 = (x_odd <<< 5) + x_odd;

A. Verilog Source Code 2001 699

x99 = (x33 <<< 1) + x33;
x107 = x99 + (x_odd << 3);

// Compute all coefficients for the transposed filter
m0 = (x_even <<< 7) - (x_even <<< 2); // m0 = 124
m1 = x107 <<< 1; // m1 = 214
m2 = (x_even <<< 6) - (x_even <<< 3)

+ x_even; // m2 = 57
m3 = x33; // m3 = -33

end

always @(negedge clk_div2) // Infer registers;
begin : AddPolyphase // use nonblocking assignments

//---------- Compute filter G0
r0 <= r2 + m0; // g0 = 128
r2 <= m2; // g2 = 57

//---------- Compute filter G1
r1 <= -r3 + m1; // g1 = 214
r3 <= m3; // g3 = -33

// Add the polyphase components
y <= r0 + r1;

end

// Provide some test signals as outputs
assign x_e = x_even;
assign x_o = x_odd;
assign clk2 = clk_div2;
assign g0 = r0;
assign g1 = r1;

assign y_out = y >>> 8; // Connect y / 256 to output

endmodule

//***
// IEEE STD 1364-2001 Verilog file: rc_sinc.v
// Author-EMAIL: Uwe.Meyer-Baese@ieee.org
//***
module rc_sinc #(parameter OL = 2, //Output buffer length-1

IL = 3, //Input buffer length -1
L = 10) // Filter length -1

(input clk, reset, // Clock + reset for the registers
input signed [7:0] x_in,
output [3:0] count_o,
output ena_in_o, ena_out_o, ena_io_o,
output signed [8:0] f0_o, f1_o, f2_o,

700 A. Verilog Source Code 2001

output signed [8:0] y_out);

reg [3:0] count; // Cycle R_1*R_2
reg ena_in, ena_out, ena_io; // FSM enables
reg signed [7:0] x [0:10]; // TAP registers for 3 filters
reg signed [7:0] ibuf [0:3]; // TAP in registers
reg signed [7:0] obuf [0:2]; // TAP out registers
reg signed [8:0] f0, f1, f2; // Filter outputs

// Constant arrays for multiplier and taps:
wire signed [8:0] c0 [0:10];
wire signed [8:0] c2 [0:10];

// filter coefficients for filter c0
assign c0[0] = -19; assign c0[1] = 26; assign c0[2]=-42;
assign c0[3] = 106; assign c0[4] = 212; assign c0[5]=-53;
assign c0[6] = 29; assign c0[7] = -21; assign c0[8]=16;
assign c0[9] = -13; assign c0[10] = 11;

// filter coefficients for filter c2
assign c2[0] = 11; assign c2[1] = -13;assign c2[2] = 16;
assign c2[3] = -21;assign c2[4] = 29; assign c2[5] = -53;
assign c2[6] = 212;assign c2[7] = 106;assign c2[8] = -42;
assign c2[9] = 26; assign c2[10] = -19;

always @(posedge reset or posedge clk)
begin : FSM // Control the system and sample at clk rate
if (reset) // Asynchronous reset
count <= 0;

else begin
if (count == 11)

count <= 0;
else

count <= count + 1;
end

end

always @(posedge clk)
begin // set the enable signal for the TAP lines

case (count)
2, 5, 8, 11 : ena_in <= 1;
default : ena_in <= 0;

endcase

A. Verilog Source Code 2001 701

case (count)
4, 8 : ena_out <= 1;
default : ena_out <= 0;

endcase

if (count == 0)
ena_io <= 1;

else
ena_io <= 0;

end

always @(posedge clk) //----> Input delay line
begin : INPUTMUX
integer I; // loop variable

if (ena_in) begin
for (I=IL; I>=1; I=I-1)

ibuf[I] <= ibuf[I-1]; // shift one
ibuf[0] <= x_in; // Input in register 0

end
end

always @(posedge clk) //----> Output delay line
begin : OUPUTMUX
integer I; // loop variable

if (ena_io) begin // store 3 samples in output buffer
obuf[0] <= f0;
obuf[1] <= f1;
obuf[2] <= f2;

end
else if (ena_out) begin
for (I=OL; I>=1; I=I-1)

obuf[I] <= obuf[I-1]; // shift one
end

end

always @(posedge clk) //----> One tapped delay line
begin : TAP // get 4 samples at one time
integer I; // loop variable

if (ena_io) begin
for (I=0; I<=3; I=I+1)
x[I] <= ibuf[I]; // take over input buffer

702 A. Verilog Source Code 2001

for (I=4; I<=10; I=I+1) // 0->4; 4->8 etc.
x[I] <= x[I-4]; // shift 4 taps

end
end

always @(posedge clk) // Compute sum-of-products for f0
begin : SOP0
reg signed [16:0] sum; // temp sum
reg signed [16:0] p [0:10]; // temp products
integer I;

for (I=0; I<=L; I=I+1) // Infer L+1 multiplier
p[I] = c0[I] * x[I];

sum = p[0];
for (I=1; I<=L; I=I+1) // Compute the direct
sum = sum + p[I]; // filter adds

f0 <= sum >>> 8;
end

always @(posedge clk) // Compute sum-of-products for f1
begin : SOP1
f1 <= x[5]; // No scaling, i.e., unit inpulse

end

always @(posedge clk) // Compute sum-of-products for f2
begin : SOP2
reg signed[16:0] sum; // temp sum
reg signed [16:0] p [0:10]; // temp products
integer I;

for (I=0; I<=L; I=I+1) // Infer L+1 multiplier
p[I] = c2[I] * x[I];

sum = p[0];
for (I=1; I<=L; I=I+1) // Compute the direct
sum = sum + p[I]; // filter adds

f2 <= sum >>> 8;
end

A. Verilog Source Code 2001 703

// Provide some test signals as outputs
assign f0_o = f0;
assign f1_o = f1;
assign f2_o = f2;
assign count_o = count;
assign ena_in_o = ena_in;
assign ena_out_o = ena_out;
assign ena_io_o = ena_io;

assign y_out = obuf[OL]; // Connect to output

endmodule

//***
// IEEE STD 1364-2001 Verilog file: farrow.v
// Author-EMAIL: Uwe.Meyer-Baese@ieee.org
//***
module farrow #(parameter IL = 3) // Input buffer length -1

(input clk, reset, // Clock/reset for the registers
input signed [7:0] x_in,
output [3:0] count_o,
output ena_in_o, ena_out_o,
output signed [8:0] c0_o, c1_o, c2_o, c3_o,
output [8:0] d_out,
output reg signed [8:0] y_out);

reg [3:0] count; // Cycle R_1*R_2
wire [6:0] delta; // Increment d
reg ena_in, ena_out; // FSM enables
reg signed [7:0] x [0:3];
reg signed [7:0] ibuf [0:3]; // TAP registers
reg [8:0] d; // Fractional Delay scaled to 8 bits
// Lagrange matrix outputs:
reg signed [8:0] c0, c1, c2, c3;

assign delta = 85;

always @(posedge reset or posedge clk) // Control the
begin : FSM // system and sample at clk rate
reg [8:0] dnew;
if (reset) begin // Asynchronous reset
count <= 0;
d <= delta;

end else begin
if (count == 11)

704 A. Verilog Source Code 2001

count <= 0;
else

count <= count + 1;
if (ena_out) begin // Compute phase delay
dnew = d + delta;
if (dnew >= 255)
d <= 0;

else
d <= dnew;

end
end

end

always @(posedge clk)
begin // Set the enable signals for the TAP lines

case (count)
2, 5, 8, 11 : ena_in <= 1;
default : ena_in <= 0;

endcase

case (count)
3, 7, 11 : ena_out <= 1;
default : ena_out <= 0;

endcase
end

always @(posedge clk) //----> One tapped delay line
begin : TAP
integer I; // loop variable

if (ena_in) begin
for (I=1; I<=IL; I=I+1)

ibuf[I-1] <= ibuf[I]; // Shift one

ibuf[IL] <= x_in; // Input in register IL

end
end

always @(posedge clk)
begin : GET // Get 4 samples at one time
integer I; // loop variable

if (ena_out) begin

A. Verilog Source Code 2001 705

for (I=0; I<=IL; I=I+1)
x[I] <= ibuf[I]; // take over input buffer

end
end

// Compute sum-of-products:
always @(posedge clk) // Compute sum-of-products for f0
begin : SOP
reg signed [8:0] y; // temp’s

// Matrix multiplier iV=inv(Vandermonde) c=iV*x(n-1:n+2)’
// x(0) x(1) x(2) x(3)
// iV= 0 1.0000 0 0
// -0.3333 -0.5000 1.0000 -0.1667
// 0.5000 -1.0000 0.5000 0
// -0.1667 0.5000 -0.5000 0.1667

if (ena_out) begin

c0 <= x[1];
c1 <= (-85 * x[0] >>> 8) - (x[1]/2) + x[2] -

(43 * x[3] >>> 8);
c2 <= ((x[0] + x[2]) >>> 1) - x[1] ;
c3 <= ((x[1] - x[2]) >>> 1) +

(43 * (x[3] - x[0]) >>> 8);

// Farrow structure = Lagrange with Horner schema
// for u=0:3, y=y+f(u)*d^u; end;

y = c2 + ((c3 * d) >>> 8); // d is scale by 256
y = ((y * d) >>> 8) + c1;
y = ((y * d) >>> 8) + c0;

y_out <= y; // Connect to output + store in register
end

end

assign c0_o = c0; // Provide test signals as outputs
assign c1_o = c1;
assign c2_o = c2;
assign c3_o = c3;
assign count_o = count;
assign ena_in_o = ena_in;
assign ena_out_o = ena_out;
assign d_out = d;

706 A. Verilog Source Code 2001

endmodule

//***
// IEEE STD 1364-2001 Verilog file: cmoms.v
// Author-EMAIL: Uwe.Meyer-Baese@ieee.org
//***
module cmoms #(parameter IL = 3) // Input buffer length -1

(input clk, reset, // Clock/reset for registers
input signed [7:0] x_in,
output [3:0] count_o,
output ena_in_o, ena_out_o,
output signed [8:0] c0_o, c1_o, c2_o, c3_o, xiir_o,
output signed [8:0] y_out);

reg [3:0] count; // Cycle R_1*R_2
reg [1:0] t;
reg ena_in, ena_out; // FSM enables
reg signed [7:0] x [0:3];
reg signed [7:0] ibuf [0:3]; // TAP registers
reg signed [8:0] xiir; // iir filter output

reg signed [16:0] y, y0, y1, y2, y3, h0, h1; // temp’s

// Spline matrix output:
reg signed [8:0] c0, c1, c2, c3;

// Precomputed value for d**k :
wire signed [8:0] d1 [0:2];
wire signed [8:0] d2 [0:2];
wire signed [8:0] d3 [0:2];

assign d1[0] = 0; assign d1[1] = 85; assign d1[2] = 171;
assign d2[0] = 0; assign d2[1] = 28; assign d2[2] = 114;
assign d3[0] = 0; assign d3[1] = 9; assign d3[2] = 76;

always @(posedge reset or posedge clk) // Control the
begin : FSM // system sample at clk rate
if (reset) begin // Asynchronous reset
count <= 0;
t <= 1;

end else begin
if (count == 11)

count <= 0;

A. Verilog Source Code 2001 707

else
count <= count + 1;

if (ena_out)
if (t>=2) // Compute phase delay
t <= 0;

else
t <= t + 1;

end
end
assign t_out = t;

always @(posedge clk) // set the enable signal
begin // for the TAP lines

case (count)
2, 5, 8, 11 : ena_in <= 1;
default : ena_in <= 0;

endcase

case (count)
3, 7, 11 : ena_out <= 1;
default : ena_out <= 0;

endcase
end

// Coeffs: H(z)=1.5/(1+0.5z^-1)
always @(posedge clk) //----> Behavioral Style
begin : IIR // Compute iir coefficients first
reg signed [8:0] x1; // x * 1

if (ena_in) begin
xiir <= (3 * x1 >>> 1) - (xiir >>> 1);
x1 = x_in;

end
end

always @(posedge clk) //----> One tapped delay line
begin : TAP
integer I; // loop variable

if (ena_in) begin
for (I=1; I<=IL; I=I+1)

ibuf[I-1] <= ibuf[I]; // Shift one

ibuf[IL] <= xiir; // Input in register IL

708 A. Verilog Source Code 2001

end
end

always @(posedge clk) //----> One tapped delay line
begin : GET // get 4 samples at one time
integer I; // loop variable

if (ena_out) begin
for (I=0; I<=IL; I=I+1)
x[I] <= ibuf[I]; // take over input buffer

end
end

// Compute sum-of-products:
always @(posedge clk) // Compute sum-of-products for f0
begin : SOP

// Matrix multiplier C-MOMS matrix:
// x(0) x(1) x(2) x(3)
// 0.3333 0.6667 0 0
// -0.8333 0.6667 0.1667 0
// 0.6667 -1.5 1.0 -0.1667
// -0.1667 0.5 -0.5 0.1667

if (ena_out) begin

c0 <= (85 * x[0] + 171 * x[1]) >>> 8;
c1 <= (171 * x[1] - 213 * x[0] + 43 * x[2]) >>> 8;
c2 <= (171 * x[0] - (43 * x[3]) >>> 8)

- (3 * x[1] >>> 1) + x[2];
c3 <= (43 * (x[3] - x[0]) >>> 8)

+ ((x[1] - x[2]) >>> 1);

// No Farrow structure, parallel LUT for delays
// for u=0:3, y=y+f(u)*d^u; end;

y0 <= c0 * 256; // Use pipelined adder tree
y1 <= c1 * d1[t];
y2 <= c2 * d2[t];
y3 <= c3 * d3[t];
h0 <= y0 + y1;
h1 <= y2 + y3;
y <= h0 + h1;

end
end
assign y_out = y >>> 8; // Connect to output

A. Verilog Source Code 2001 709

assign c0_o = c0; // Provide some test signals as outputs
assign c1_o = c1;
assign c2_o = c2;
assign c3_o = c3;
assign count_o = count;
assign ena_in_o = ena_in;
assign ena_out_o = ena_out;
assign xiir_o = xiir;

endmodule

//***
// IEEE STD 1364-2001 Verilog file: db4latti.v
// Author-EMAIL: Uwe.Meyer-Baese@ieee.org
//***
module db4latti
(input clk, reset,
output clk2,
input signed [7:0] x_in,
output signed [16:0] x_e, x_o,
output reg signed [8:0] g, h);

reg signed [7:0] x_wait;
reg signed [16:0] sx_up, sx_low;
reg clk_div2;
wire signed [16:0] sxa0_up, sxa0_low;
wire signed [16:0] up0, up1, low1;
reg signed [16:0] low0;

always @(posedge clk or posedge reset) // Split into even
begin : Multiplex // and odd samples at clk rate
parameter even=0, odd=1;
reg [0:0] state;

if (reset) // Asynchronous reset
state <= even;

else
case (state)

even : begin
// Multiply with 256*s=124
sx_up <= (x_in <<< 7) - (x_in <<< 2);
sx_low <= (x_wait <<< 7) - (x_wait <<< 2);
clk_div2 <= 1;
state <= odd;

710 A. Verilog Source Code 2001

end
odd : begin
x_wait <= x_in;
clk_div2 <= 0;
state <= even;

end
endcase

end

//******** Multipy a[0] = 1.7321
// Compute: (2*sx_up - sx_up /4)-(sx_up /64 + sx_up /256)
assign sxa0_up = ((sx_up <<< 1) - (sx_up >>> 2))

- ((sx_up >>> 6) + (sx_up >>> 8));
// Compute: (2*sx_low - sx_low/4)-(sx_low/64 + sx_low/256)
assign sxa0_low = ((sx_low <<< 1) - (sx_low >>> 2))

- ((sx_low >>> 6) + (sx_low >>> 8));

//******** First stage -- FF in lower tree
assign up0 = sxa0_low + sx_up;
always @(negedge clk_div2)
begin: LowerTreeFF

low0 <= sx_low - sxa0_up;
end

//******** Second stage: a[1]=-0.2679
// Compute: (up0 - low0/4) - (low0/64 + low0/256);
assign up1 = (up0 - (low0 >>> 2))

- ((low0 >>> 6) + (low0 >>> 8));
// Compute: (low0 + up0/4) + (up0/64 + up0/256)
assign low1 = (low0 + (up0 >>> 2))

+ ((up0 >>> 6) + (up0 >>> 8));

assign x_e = sx_up; // Provide some extra
assign x_o = sx_low; // test signals
assign clk2 = clk_div2;

always @(negedge clk_div2)
begin: OutputScale
g <= up1 >>> 8; // i.e. up1 / 256
h <= low1 >>> 8; // i.e. low1 / 256;

end

endmodule

//***

A. Verilog Source Code 2001 711

// IEEE STD 1364-2001 Verilog file: rader7.v
// Author-EMAIL: Uwe.Meyer-Baese@ieee.org
//***
module rader7 //---> Interface
(input clk, reset,
input [7:0] x_in,
output reg signed [10:0] y_real, y_imag);

reg signed [10:0] accu; // Signal for X[0]
// Direct bit access of 2D vector in Quartus Verilog 2001
// possible no auxiliary signal for this purpose necessary
reg signed [18:0] im [0:5];
reg signed [18:0] re [0:5];

// real is keyword in Verilog and can not be an identifier
// Tapped delay line array

reg signed [18:0] x57, x111, x160, x200, x231, x250 ;
// The filter coefficients

reg signed [18:0] x5, x25, x110, x125, x256;
// Auxiliary filter coefficients

reg signed [7:0] x, x_0; // Signals for x[0]

always @(posedge clk or posedge reset) // State machine
begin : States // for RADER filter
parameter Start=0, Load=1, Run=2;
reg [1:0] state;
reg [4:0] count;

if (reset) // Asynchronous reset
state <= Start;

else
case (state)

Start : begin // Initialization step
state <= Load;
count <= 1;
x_0 <= x_in; // Save x[0]
accu <= 0 ; // Reset accumulator for X[0]
y_real <= 0;
y_imag <= 0;

end
Load : begin // Apply x[5],x[4],x[6],x[2],x[3],x[1]
if (count == 8) // Load phase done ?
state <= Run;

else begin
state <= Load;

712 A. Verilog Source Code 2001

accu <= accu + x;
end
count <= count + 1;

end
Run : begin // Apply again x[5],x[4],x[6],x[2],x[3]
if (count == 15) begin // Run phase done ?
y_real <= accu; // X[0]
y_imag <= 0; // Only re inputs => Im(X[0])=0
state <= Start; // Output of result

end // and start again
else begin
y_real <= (re[0] >>> 8) + x_0;

// i.e. re[0]/256+x[0]
y_imag <= (im[0] >>> 8); // i.e. im[0]/256
state <= Run;

end
count <= count + 1;

end
endcase

end

always @(posedge clk) // Structure of the two FIR
begin : Structure // filters in transposed form
x <= x_in;
// Real part of FIR filter in transposed form
re[0] <= re[1] + x160 ; // W^1
re[1] <= re[2] - x231 ; // W^3
re[2] <= re[3] - x57 ; // W^2
re[3] <= re[4] + x160 ; // W^6
re[4] <= re[5] - x231 ; // W^4
re[5] <= -x57; // W^5

// Imaginary part of FIR filter in transposed form
im[0] <= im[1] - x200 ; // W^1
im[1] <= im[2] - x111 ; // W^3
im[2] <= im[3] - x250 ; // W^2
im[3] <= im[4] + x200 ; // W^6
im[4] <= im[5] + x111 ; // W^4
im[5] <= x250; // W^5

end

always @(posedge clk) // Note that all signals
begin : Coeffs // are globally defined
// Compute the filter coefficients and use FFs

A. Verilog Source Code 2001 713

x160 <= x5 <<< 5; // i.e. 160 = 5 * 32;
x200 <= x25 <<< 3; // i.e. 200 = 25 * 8;
x250 <= x125 <<< 1; // i.e. 250 = 125 * 2;
x57 <= x25 + (x <<< 5); // i.e. 57 = 25 + 32;
x111 <= x110 + x; // i.e. 111 = 110 + 1;
x231 <= x256 - x25; // i.e. 231 = 256 - 25;

end

always @* // Note that all signals
begin : Factors // are globally defined
// Compute the auxiliary factor for RAG without an FF
x5 = (x <<< 2) + x; // i.e. 5 = 4 + 1;
x25 = (x5 <<< 2) + x5; // i.e. 25 = 5*4 + 5;
x110 = (x25 <<< 2) + (x5 <<< 2);// i.e. 110 = 25*4+5*4;
x125 = (x25 <<< 2) + x25; // i.e. 125 = 25*4+25;
x256 = x <<< 8; // i.e. 256 = 2 ** 8;

end

endmodule

//***
// IEEE STD 1364-2001 Verilog file: ccmul.v
// Author-EMAIL: Uwe.Meyer-Baese@ieee.org
//***
//‘include "220model.v"

module ccmul #(parameter W2 = 17, // Multiplier bit width
W1 = 9, // Bit width c+s sum
W = 8) // Input bit width

(input clk, // Clock for the output register
input signed [W-1:0] x_in, y_in, c_in, // Inputs
input signed [W1-1:0] cps_in, cms_in, // Inputs
output reg signed [W-1:0] r_out, i_out); // Results

wire signed [W-1:0] x, y, c ; // Inputs and outputs
wire signed [W2-1:0] r, i, cmsy, cpsx, xmyc, sum; //Prod.
wire signed [W1-1:0] xmy, cps, cms, sxtx, sxty;//x-y etc.

wire clken, cr1, ovl1, cin1, aclr, ADD, SUB;
// Auxiliary signals

assign cin1=0; assign aclr=0; assign ADD=1; assign SUB=0;
assign cr1=0; assign sum=0; assign clken=0;

// Default for add

714 A. Verilog Source Code 2001

assign x = x_in; // x
assign y = y_in; // j * y
assign c = c_in; // cos
assign cps = cps_in; // cos + sin
assign cms = cms_in; // cos - sin

always @(posedge clk) begin
r_out <= r[W2-3:W-1]; // Scaling and FF for output
i_out <= i[W2-3:W-1];

end

//********* ccmul with 3 mul. and 3 add/sub **************
assign sxtx = x; // Possible growth for
assign sxty = y; // sub_1 -> sign extension

lpm_add_sub sub_1 // Sub: x - y
(.result(xmy), .dataa(sxtx), .datab(sxty));// Used ports

// .add_sub(SUB), .cout(cr1), .overflow(ovl1), .cin(cin1),
// .clken(clken), .clock(clk), .aclr(aclr)); // Unused

defparam sub_1.lpm_width = W1;
defparam sub_1.lpm_representation = "SIGNED";
defparam sub_1.lpm_direction = "sub";

lpm_mult mul_1 // Multiply (x-y)*c = xmyc
(.dataa(xmy), .datab(c), .result(xmyc)); // Used ports

// .sum(sum), .clock(clk), .clken(clken), .aclr(aclr));
// Unused ports

defparam mul_1.lpm_widtha = W1;
defparam mul_1.lpm_widthb = W;
defparam mul_1.lpm_widthp = W2;
defparam mul_1.lpm_widths = W2;
defparam mul_1.lpm_representation = "SIGNED";

lpm_mult mul_2 // Multiply (c-s)*y = cmsy
(.dataa(cms), .datab(y), .result(cmsy)); // Used ports

// .sum(sum), .clock(clk), .clken(clken), .aclr(aclr));
// Unused ports

defparam mul_2.lpm_widtha = W1;
defparam mul_2.lpm_widthb = W;
defparam mul_2.lpm_widthp = W2;
defparam mul_2.lpm_widths = W2;
defparam mul_2.lpm_representation = "SIGNED";

lpm_mult mul_3 // Multiply (c+s)*x = cpsx

A. Verilog Source Code 2001 715

(.dataa(cps), .datab(x), .result(cpsx)); // Used ports
// .sum(sum), .clock(clk), .clken(clken), .aclr(aclr));

// Unused ports
defparam mul_3.lpm_widtha= W1;
defparam mul_3.lpm_widthb = W;
defparam mul_3.lpm_widthp = W2;
defparam mul_3.lpm_widths = W2;
defparam mul_3.lpm_representation = "SIGNED";

lpm_add_sub add_1 // Add: r <= (x-y)*c + (c-s)*y
(.dataa(cmsy), .datab(xmyc), .result(r)); // Used ports

// .add_sub(ADD), .cout(cr1), .overflow(ovl1), .cin(cin1),
// .clken(clken), .clock(clk), .aclr(aclr)); // Unused

defparam add_1.lpm_width = W2;
defparam add_1.lpm_representation = "SIGNED";
defparam add_1.lpm_direction = "add";

lpm_add_sub sub_2 // Sub: i <= (c+s)*x - (x-y)*c
(.dataa(cpsx), .datab(xmyc), .result(i)); // Used ports

// .add_sub(SUB), .cout(cr1), .overflow(ovl1), .clock(clk),
// .cin(cin1), .clken(clken), .aclr(aclr)); // Unused

defparam sub_2.lpm_width = W2;
defparam sub_2.lpm_representation = "SIGNED";
defparam sub_2.lpm_direction = "sub";

endmodule

//***
// IEEE STD 1364-2001 Verilog file: bfproc.v
// Author-EMAIL: Uwe.Meyer-Baese@ieee.org
//***
//‘include "220model.v"
//‘include "ccmul.v"

module bfproc #(parameter W2 = 17, // Multiplier bit width
W1 = 9, // Bit width c+s sum
W = 8) // Input bit width

(input clk, // Clock for the output register
input signed [W-1:0] Are_in, Aim_in, // 8-bit inputs
input signed [W-1:0] Bre_in, Bim_in, c_in,// 8-bit inputs
input signed [W1-1:0] cps_in, cms_in, // coefficients
output reg signed [W-1:0] Dre_out, Dim_out,// registered
output signed [W-1:0] Ere_out, Eim_out); // results

reg signed [W-1:0] dif_re, dif_im; // Bf out

716 A. Verilog Source Code 2001

reg signed [W-1:0] Are, Aim, Bre, Bim; // Inputs integer
reg signed [W-1:0] c; // Input
reg signed [W1-1:0] cps, cms; // Coefficient in

always @(posedge clk) // Compute the additions of the
begin // butterfly using integers
Are <= Are_in; // and store inputs
Aim <= Aim_in; // in flip-flops
Bre <= Bre_in;
Bim <= Bim_in;
c <= c_in; // Load from memory cos
cps <= cps_in; // Load from memory cos+sin
cms <= cms_in; // Load from memory cos-sin
Dre_out <= (Are >>> 1) + (Bre >>> 1); // Are/2 + Bre/2
Dim_out <= (Aim >>> 1) + (Bim >>> 1); // Aim/2 + Bim/2

end

// No FF because butterfly difference "diff" is not an
always @(*) // output port
begin
dif_re = (Are >>> 1) - (Bre >>> 1);//i.e. Are/2 - Bre/2
dif_im = (Aim >>> 1) - (Bim >>> 1);//i.e. Aim/2 - Bim/2

end

//*** Instantiate the complex twiddle factor multiplier
ccmul ccmul_1 // Multiply (x+jy)(c+js)
(.clk(clk), .x_in(dif_re), .y_in(dif_im), .c_in(c),
.cps_in(cps), .cms_in(cms), .r_out(Ere_out),

.i_out(Eim_out));

endmodule

//***
// IEEE STD 1364-2001 Verilog file: lfsr.v
// Author-EMAIL: Uwe.Meyer-Baese@ieee.org
//***
module lfsr //----> Interface
(input clk,
output [6:1] y); // Result

reg [6:1] ff; // Note that reg is keyword in Verilog and
// can not be variable name

integer i;

always @(posedge clk) begin // Length-6 LFSR with xnor

A. Verilog Source Code 2001 717

ff[1] <= ff[5] ~^ ff[6]; // Use nonblocking assignment
for (i=6; i>=2 ; i=i-1) // Tapped delay line: shift one
ff[i] <= ff[i-1];

end

assign y = ff; // Connect to I/O pins

endmodule

//***
// IEEE STD 1364-2001 Verilog file: lfsr6s3.v
// Author-EMAIL: Uwe.Meyer-Baese@ieee.org
//***
module lfsr6s3 //----> Interface
(input clk,
output [6:1] y); // Result

reg [6:1] ff; // Note that reg is keyword in Verilog and
// can not be variable name

always @(posedge clk) begin // Implement three-step
ff[6] <= ff[3]; // length-6 LFSR with xnor;
ff[5] <= ff[2]; // use nonblocking assignments
ff[4] <= ff[1];
ff[3] <= ff[5] ~^ ff[6];
ff[2] <= ff[4] ~^ ff[5];
ff[1] <= ff[3] ~^ ff[4];

end

assign y = ff;

endmodule

//***
// IEEE STD 1364-2001 Verilog file: ammod.v
// Author-EMAIL: Uwe.Meyer-Baese@ieee.org
//***
module ammod #(parameter W = 8) // Bit width - 1
(input clk, //----> Interface
input signed [W:0] r_in,
input signed [W:0] phi_in,
output reg signed [W:0] x_out, y_out, eps);

reg signed [W:0] x [0:3]; // There is bit access in 2D

718 A. Verilog Source Code 2001

reg signed [W:0] y [0:3]; // array types in
reg signed [W:0] z [0:3]; // Quartus Verilog 2001

always @(posedge clk) begin //----> Infer register
if (phi_in > 90) // Test for |phi_in| > 90
begin // Rotate 90 degrees
x[0] <= 0;
y[0] <= r_in; // Input in register 0
z[0] <= phi_in - ’sd90;
end

else
if (phi_in < - 90)

begin
x[0] <= 0;
y[0] <= - r_in;
z[0] <= phi_in + ’sd90;
end

else
begin
x[0] <= r_in;
y[0] <= 0;
z[0] <= phi_in;
end

if (z[0] >= 0) // Rotate 45 degrees
begin
x[1] <= x[0] - y[0];
y[1] <= y[0] + x[0];
z[1] <= z[0] - ’sd45;
end

else
begin
x[1] <= x[0] + y[0];
y[1] <= y[0] - x[0];
z[1] <= z[0] + ’sd45;
end

if (z[1] >= 0) // Rotate 26 degrees
begin
x[2] <= x[1] - (y[1] >>> 1); // i.e. x[1] - y[1] /2
y[2] <= y[1] + (x[1] >>> 1); // i.e. y[1] + x[1] /2
z[2] <= z[1] - ’sd26;
end

else

A. Verilog Source Code 2001 719

begin
x[2] <= x[1] + (y[1] >>> 1); // i.e. x[1] + y[1] /2
y[2] <= y[1] - (x[1] >>> 1); // i.e. y[1] - x[1] /2
z[2] <= z[1] + ’sd26;
end

if (z[2] >= 0) // Rotate 14 degrees
begin

x[3] <= x[2] - (y[2] >>> 2); // i.e. x[2] - y[2]/4
y[3] <= y[2] + (x[2] >>> 2); // i.e. y[2] + x[2]/4
z[3] <= z[2] - ’sd14;

end
else
begin

x[3] <= x[2] + (y[2] >>> 2); // i.e. x[2] + y[2]/4
y[3] <= y[2] - (x[2] >>> 2); // i.e. y[2] - x[2]/4
z[3] <= z[2] + ’sd14;

end

x_out <= x[3];
eps <= z[3];
y_out <= y[3];

end

endmodule

//***
// IEEE STD 1364-2001 Verilog file: fir_lms.v
// Author-EMAIL: Uwe.Meyer-Baese@ieee.org
//***
// This is a generic LMS FIR filter generator
// It uses W1 bit data/coefficients bits

module fir_lms //----> Interface
#(parameter W1 = 8, // Input bit width

W2 = 16, // Multiplier bit width 2*W1
L = 2, // Filter length

Delay = 3) // Pipeline steps of multiplier
(input clk, // 1 bit input
input signed [W1-1:0] x_in, d_in, // Inputs
output signed [W2-1:0] e_out, y_out, // Results
output signed [W1-1:0] f0_out, f1_out); // Results

// Signed data types are supported in 2001
// Verilog, and used whenever possible

720 A. Verilog Source Code 2001

reg signed [W1-1:0] x [0:1]; // Data array
reg signed [W1-1:0] f [0:1]; // Coefficient array
reg signed [W1-1:0] d;
wire signed [W1-1:0] emu;
wire signed [W2-1:0] p [0:1]; // 1. Product array
wire signed [W2-1:0] xemu [0:1]; // 2. Product array
wire signed [W2-1:0] y, sxty, e, sxtd;

wire clken, aclr;
wire signed [W2-1:0] sum; // Auxilary signals

assign sum=0; assign aclr=0; // Default for mult
assign clken=0;

always @(posedge clk) // Store these data or coefficients
begin: Store
d <= d_in; // Store desired signal in register
x[0] <= x_in; // Get one data sample at a time
x[1] <= x[0]; // shift 1
f[0] <= f[0] + xemu[0][15:8]; // implicit divide by 2
f[1] <= f[1] + xemu[1][15:8];

end

// Instantiate L pipelined multiplier
genvar I;
generate
for (I=0; I<L; I=I+1) begin: Mul_fx

lpm_mult mul_xf // Multiply x[I]*f[I] = p[I]
(.dataa(x[I]), .datab(f[I]), .result(p[I]));

// .clock(clk), .sum(sum),
// .clken(clken), .aclr(aclr)); // Unused ports

defparam mul_xf.lpm_widtha = W1;
defparam mul_xf.lpm_widthb = W1;
defparam mul_xf.lpm_widthp = W2;
defparam mul_xf.lpm_widths = W2;

// defparam mul_xf.lpm_pipeline = Delay;
defparam mul_xf.lpm_representation = "SIGNED";
end // for loop

endgenerate

assign y = p[0] + p[1]; // Compute ADF output

A. Verilog Source Code 2001 721

// Scale y by 128 because x is fraction
assign e = d - (y >>> 7) ;
assign emu = e >>> 1; // e*mu divide by 2 and

// 2 from xemu makes mu=1/4

// Instantiate L pipelined multiplier
generate
for (I=0; I<L; I=I+1) begin: Mul_xemu

lpm_mult mul_I // Multiply xemu[I] = emu * x[I];
(.dataa(x[I]), .datab(emu), .result(xemu[I]));

// .clock(clk), .sum(sum),
// .clken(clken), .aclr(aclr)); // Unused ports

defparam mul_I.lpm_widtha = W1;
defparam mul_I.lpm_widthb = W1;
defparam mul_I.lpm_widthp = W2;
defparam mul_I.lpm_widths = W2;

// defparam mul_I.lpm_pipeline = Delay;
defparam mul_I.lpm_representation = "SIGNED";
end // for loop

endgenerate

assign y_out = y; // Monitor some test signals
assign e_out = e;
assign f0_out = f[0];
assign f1_out = f[1];

endmodule

//***
// IEEE STD 1364-2001 Verilog file: fir6dlms.v
// Author-EMAIL: Uwe.Meyer-Baese@ieee.org
//***
// This is a generic DLMS FIR filter generator
// It uses W1 bit data/coefficients bits

module fir6dlms //----> Interface
#(parameter W1 = 8, // Input bit width

W2 = 16, // Multiplier bit width 2*W1
L = 2, // Filter length
Delay = 3) // Pipeline steps of multiplier

(input clk, // 1 bit input
input signed [W1-1:0] x_in, d_in, // Inputs
output signed [W2-1:0] e_out, y_out, // Results
output signed [W1-1:0] f0_out, f1_out); // Results

722 A. Verilog Source Code 2001

// 2D array types memories are supported by Quartus II
// in Verilog, use therefore single vectors
reg signed [W1-1:0] x [0:4], f0, f1;
reg signed [W1-1:0] f[0:1];
reg signed [W1-1:0] d[0:3]; // Desired signal array
wire signed [W1-1:0] emu;
wire signed [W2-1:0] xemu[0:1]; // Product array
wire signed [W2-1:0] p[0:1]; // Product array
wire signed [W2-1:0] y, sxty, e, sxtd;

wire clken, aclr;
wire signed [W2-1:0] sum; // Auxilary signals

assign sum=0; assign aclr=0; // Default for mult
assign clken=0;

always @(posedge clk) // Store these data or coefficients
begin: Store
d[0] <= d_in; // Shift register for desired data
d[1] <= d[0];
d[2] <= d[1];
d[3] <= d[2];
x[0] <= x_in; // Shift register for data
x[1] <= x[0];
x[2] <= x[1];
x[3] <= x[2];
x[4] <= x[3];
f[0] <= f[0] + xemu[0][15:8]; // implicit divide by 2
f[1] <= f[1] + xemu[1][15:8];

end

// Instantiate L pipelined multiplier
genvar I;
generate
for (I=0; I<L; I=I+1) begin: Mul_fx

lpm_mult mul_xf // Multiply x[I]*f[I] = p[I]
(.clock(clk), .dataa(x[I]), .datab(f[I]), .result(p[I]));

// .sum(sum), .clken(clken), .aclr(aclr)); // Unused ports
defparam mul_xf.lpm_widtha = W1;
defparam mul_xf.lpm_widthb = W1;
defparam mul_xf.lpm_widthp = W2;
defparam mul_xf.lpm_widths = W2;

A. Verilog Source Code 2001 723

defparam mul_xf.lpm_pipeline = Delay;
defparam mul_xf.lpm_representation = "SIGNED";
end // for loop

endgenerate

assign y = p[0] + p[1]; // Compute ADF output

// Scale y by 128 because x is fraction
assign e = d[3] - (y >>> 7);
assign emu = e >>> 1; // e*mu divide by 2 and

// 2 from xemu makes mu=1/4

// Instantiate L pipelined multiplier
generate
for (I=0; I<L; I=I+1) begin: Mul_xemu

lpm_mult mul_I // Multiply xemu[I] = emu * x[I];
(.clock(clk), .dataa(x[I+Delay]), .datab(emu),

.result(xemu[I]));
// .sum(sum), .clken(clken), .aclr(aclr)); // Unused ports

defparam mul_I.lpm_widtha = W1;
defparam mul_I.lpm_widthb = W1;
defparam mul_I.lpm_widthp = W2;
defparam mul_I.lpm_widths = W2;
defparam mul_I.lpm_pipeline = Delay;
defparam mul_I.lpm_representation = "SIGNED";
end // for loop

endgenerate

assign y_out = y; // Monitor some test signals
assign e_out = e;
assign f0_out = f[0];
assign f1_out = f[1];

endmodule

// Desciption: This is a W x L bit register file.
//***
// IEEE STD 1364-2001 Verilog file: reg_file.v
// Author-EMAIL: Uwe.Meyer-Baese@ieee.org
//***
module reg_file #(parameter W = 7, // Bit width -1

N = 15) //Number of register - 1
(input clk, reg_ena,
input [W:0] data,
input [3:0] rd, rs, rt ,

724 A. Verilog Source Code 2001

output reg [W:0] s, t);

reg [W:0] r [0:N];

always @(posedge clk) // Input mux inferring registers
begin : MUX
if ((reg_ena == 1) & (rd > 0))
r[rd] <= data;

end

// 2 output demux without registers
always @*
begin : DEMUX
if (rs > 0) // First source
s = r[rs];

else
s = 0;

if (rt > 0) // Second source
t = r[rt];

else
t = 0;

end

endmodule

//***
// IEEE STD 1364-2001 Verilog file: trisc0.v
// Author-EMAIL: Uwe.Meyer-Baese@ieee.org
//***
// Title: T-RISC stack machine
// Description: This is the top control path/FSM of the
// T-RISC, with a single three-phase clock cycle design
// It has a stack machine/0-address-type instruction word
// The stack has only four words.
//‘include "220model.v"

module trisc0 #(parameter WA = 7, // Address bit width -1
WD = 7) // Data bit width -1

(input reset, clk, // Clock for the output register
output jc_OUT, me_ena,
input [WD:0] iport,
output reg [WD:0] oport,
output [WD:0] s0_OUT, s1_OUT, dmd_IN, dmd_OUT,
output [WA:0] pc_OUT, dma_OUT, dma_IN,
output [7:0] ir_imm,

A. Verilog Source Code 2001 725

output [3:0] op_code);

//parameter ifetch=0, load=1, store=2, incpc=3;
reg [1:0] state;

wire [3:0] op;
wire [WD:0] imm, dmd;
reg [WD:0] s0, s1, s2, s3;
reg [WA:0] pc;
wire [WA:0] dma;
wire [11:0] pmd, ir;
wire eq, ne, not_clk;
reg mem_ena, jc;

// OP Code of instructions:
parameter
add = 0, neg = 1, sub = 2, opand = 3, opor = 4,
inv = 5, mul = 6, pop = 7, pushi = 8, push = 9,
scan = 10, print = 11, cne = 12, ceq = 13, cjp = 14,
jmp = 15;

// Code of FSM:
always @(op) // Sequential FSM of processor

// Check store in register ?
case (op) // always store except Branch

pop : mem_ena <= 1;
default : mem_ena <= 0;

endcase

always @(negedge clk or posedge reset)
if (reset == 1) // update the program counter

pc <= 0;
else begin // use falling edge

if (((op==cjp) & (jc==0)) | (op==jmp))
pc <= imm;

else
pc <= pc + 1;

end

always @(posedge clk or posedge reset)
if (reset) // compute jump flag and store in FF
jc <= 0;

else
jc <= ((op == ceq) & (s0 == s1)) |

726 A. Verilog Source Code 2001

((op == cne) & (s0 != s1));

// Mapping of the instruction, i.e., decode instruction
assign op = ir[11:8]; // Operation code
assign dma = ir[7:0]; // Data memory address
assign imm = ir[7:0]; // Immidiate operand

lpm_rom prog_rom
(.outclock(clk),.address(pc), .q(pmd)); // Used ports

// .inclock(clk), .memenab(ena)); // Unused
defparam prog_rom.lpm_width = 12;
defparam prog_rom.lpm_widthad = 8;
defparam prog_rom.lpm_outdata = "REGISTERED";
defparam prog_rom.lpm_address_control = "UNREGISTERED";
defparam prog_rom.lpm_file = "TRISC0FAC.MIF";

assign not_clk = ~clk;

lpm_ram_dq data_ram
(.inclock(not_clk),.address(dma), .q(dmd),
.data(s0), .we(mem_ena)); // Used ports

// .outclock(clk)); // Unused
defparam data_ram.lpm_width = 8;
defparam data_ram.lpm_widthad = 8;
defparam data_ram.lpm_indata = "REGISTERED";
defparam data_ram.lpm_outdata = "UNREGISTERED";
defparam data_ram.lpm_address_control = "REGISTERED";

always @(posedge clk)
begin : P3
integer temp;

case (op)
add : s0 <= s0 + s1;
neg : s0 <= -s0;
sub : s0 <= s1 - s0;
opand : s0 <= s0 & s1;
opor : s0 <= s0 | s1;
inv : s0 <= ~ s0;
mul : begin temp = s0 * s1; // double width

s0 <= temp[WD:0]; end // product
pop : s0 <= s1;
push : s0 <= dmd;

A. Verilog Source Code 2001 727

pushi : s0 <= imm;
scan : s0 <= iport;
print : begin oport <= s0; s0<=s1; end
default: s0 <= 0;

endcase
case (op) // SPECIFY THE STACK OPERATIONS
pushi, push, scan : begin s3<=s2; s2<=s1; s1<=s0; end

// Push type
cjp, jmp, inv | neg : ; // Do nothing for branch
default : begin s1<=s2; s2<=s3; s3<=0; end

// Pop all others
endcase

end

// Extra test pins:
assign dmd_OUT = dmd; assign dma_OUT = dma; //Data memory
assign dma_IN = dma; assign dmd_IN = s0;
assign pc_OUT = pc; assign ir = pmd; assign ir_imm = imm;
assign op_code = op; // Program control
// Control signals:
assign jc_OUT = jc; assign me_ena = mem_ena;
// Two top stack elements:
assign s0_OUT = s0; assign s1_OUT = s1;

endmodule

B. VHDL and Verilog Coding

Unfortunately, today we find two HDL languages are popular. The US west
coast and Asia prefer Verilog, while the US east coast and Europe more fre-
quently use VHDL. For digital signal processing with FPGAs, both languages
seem to be well suited, but some VHDL examples were in the past a little
easier to read because of the supported signed arithmetic and multiply/divide
operations in the IEEE VHDL 1076-1987 and 1076-1993 standards. This gap
has disappeared with the introduction of the Verilog IEEE standard 1364-
2001, as it also includes signed arithmetic. Other constraints may include
personal preferences, EDA library and tool availability, data types, readabil-
ity, capability, and language extensions using PLIs, as well as commercial,
business and marketing issues, to name just a few. A detailed comparison
can be found in the book by Smith [3]. Tool providers acknowledge today
that both languages need to be supported.

It is therefore a good idea to use an HDL code style that can easily be
translated into either language. An important rule is to avoid any keyword
in both languages in the HDL code when naming variables, labels, constants,
user types, etc. The IEEE standard VHDL 1076-1987 uses 77 keywords and
an extra 19 keywords are used in VHDL 1076-1993 (see VHDL 1076-1993
Language Reference Manual (LRM) on p. 179). New in VHDL 1076-1993
are:

GROUP, IMPURE, INERTIAL, LITERAL, POSTPONED, PURE, REJECT
ROL, ROR, SHARED, SLA, SLL, SRA, SRL, UNAFFECTED, XNOR,

which are unfortunately not highlighted in the MaxPlus II editor but with
the Quartus II. The IEEE standard Verilog 1364-1995, on the other hand,
has 102 keywords (see LRM, p. 604). Together, both HDL languages have
201 keywords, including 19 in common. Table B.1 shows VHDL 1076-1993
keywords in capital letters, Verilog 1364-2001 keywords in small letters, and
the common keywords with a capital first letter. New in Verilog 1076-2001
are:

automatic, cell, config, design, endconfig, endgenerate,
generate, genvar, incdir, include, instance, liblist,
library, localparam, noshowcancelled, pulsestyle_onevent,
pulsestyle_ondetect, showcancelled, signed, unsigned, use

730 B. VHDL and Verilog Coding

Table B.1. VHDL 1076-1993 and Verilog 1364-2001 keywords.

ABS
ACCESS
AFTER
ALIAS
ALL
always
And
ARCHITECTURE
ARRAY
ASSERT
assign
ATTRIBUTE
automatic
Begin
BLOCK
BODY
buf
BUFFER
bufif0
bufif1
BUS
Case
casex
casez
cell
cmos
config
COMPONENT
CONFIGURATION
CONSTANT
deassign
default
defparam
design
disable
DISCONNECT
DOWNTO
edge
Else
ELSIF
End
endcase
endconfig
endfunction
endgenerate
endmodule
endprimitive
endspecify
endtable
endtask
ENTITY

event
EXIT
FILE
For
force
forever
fork
Function
Generate
GENERIC
genvar
GROUP
GUARDED
highz0
highz1
If
ifnone
IMPURE
IN
incdir
include
INERTIAL
initial
Inout
input
instance
integer
IS
join
LABEL
large
liblist
Library
LINKAGE
LITERAL
LOOP
localparam
macromodule
MAP
medium
MOD
module
Nand
negedge
NEW
NEXT
nmos
Nor
noshowcancelled
Not

notif0
notif1
NULL
OF
ON
OPEN
Or
OTHERS
OUT
output
PACKAGE
parameter
pmos
PORT
posedge
POSTPONED
primitive
PROCEDURE
PROCESS
pull0
pull1
pulldown
pullup
pulsestyle_onevent
pulsestyle_ondetect
PURE
RANGE
rcmos
real
realtime
RECORD
reg
REGISTER
REJECT
release
REM
repeat
REPORT
RETURN
rnmos
ROL
ROR
rpmos
rtran
rtranif0
rtranif1
scalared
SELECT
SEVERITY
SHARED
showcancelled

SIGNAL
signed
OF
SLA
SLL
small
specify
specparam
SRA
SRL
strong0
strong1
SUBTYPE
supply0
supply1
table
task
THEN
time
TO
tran
tranif0
tranif1
TRANSPORT
tri
tri0
tri1
triand
trior
trireg
TYPE
UNAFFECTED
UNITS
unsigned
UNTIL
Use
VARIABLE
vectored
Wait
wand
weak0
weak1
WHEN
While
wire
WITH
wor
Xnor
Xor

B.1 List of Examples 731

B.1 List of Examples

These synthesis results for all examples can be easily reproduced by using
the scripts qvhdl.tcl in the VHDL or Verilog directories of the CD-ROM.
Run the TCL script with

quartus_sh -t qvhdl.tcl > qvhdl.txt

The script produces for each design four parameters. For the trisc0.vhd,
for instance, we get:

....

trisc0 fmax: 115.65 MHz (period = 8.647 ns)
trisc0 LEs: 198 / 33,216 (< 1 %)
trisc0 M4K bits: 5,120 / 483,840 (1 %)
trisc0 DSP blocks: 1 / 70 (1 %)

....

then grep through the report qvhdl.txt file using fmax:, LEs: etc.
From the script you will notice that the following special options of Quar-

tus II web edition 6.0 were used:

• Device set Family to Cyclone II and then under Available devices
select EP2C35F672C6.

• For Timing Analysis Settings set Default required fmax: to 3 ns.
• For Analysis & Synthesis Settings from the Assignments menu

– set Optimization Technique to Speed
– Deselect Power-Up Don’t Care

• In the Fitter Settings select as Fitter effort Standard Fit
(highest effort)

The table below displays the results for all VHDL and Verilog examples
given in this book. The table is structured as follows. The first column shows
the entity or module name of the design. Columns 2 to 6 are data for the
VHDL designs: the number of LEs shown in the report file; the number of
9 × 9-bit multipliers; the number of M4K memory blocks; the Registered
Performance; and the page with the source code. The same data are provided
for the Verilog design examples, shown in columns 7 to 9. Note that VHDL
and Verilog produce the same data for number of 9 × 9-bit multiplier and
number of M4K memory blocks, but the LEs and Registered Performance
do not always match.

732 B. VHDL and Verilog Coding

VHDL Verilog
Design LEs 9× 9 M4Ks fMAX Page LEs fMAX Page

Mult. MHz MHz

add_1p 125 no 0 316.46 78 77 390.63 666
add_2p 234 no 0 229.04 78 144 283.85 667
add_3p 372 no 0 215.84 78 229 270.42 668
ammod 316 no 0 215.98 455 277 288.85 717
arctan 100 4 0 32.09 134 99 32.45 676
bfproc 131 3 0 95.73 370 83 116.09 715
ccmul 39 3 0 − 368 39 − 713
cic3r32 337 no 0 282.17 262 337 269.69 694
cic3s32 205 no 0 284.58 269 205 284.50 696
cmoms 372 10 0 85.94 303 239 107.48 705
cmul7p8 48 no 0 - 59 48 − 665
cordic 235 no 0 222.67 126 197 317.16 674
dafsm 32 no 0 420.17 189 30 420.17 683
dapara 33 no 0 214.96 202 45 420.17 691
darom 27 no 1 218.29 196 27 218.96 687
dasign 56 no 0 236.91 199 47 328.19 688
db4latti 418 no 0 58.81 324 248 74.69 709
db4poly 173 no 0 136.65 250 158 136.31 697
div_aegp 64 4 0 134.63 94 64 134.63 671
div_res 127 no 0 265.32 100 115 257.86 673
example 24 no 0 420.17 15 24 420.17 663
farrow 279 6 0 43.91 292 175 65.77 703
fir6dlms 138 4 0 176.15 511 138 174.52 721
fir_gen 184 4 0 329.06 167 184 329.06 680
fir_lms 50 4 0 74.59 504 50 74.03 719
fir_srg 114 no 0 97.21 179 70 106.15 682
fun_text 32 no 1 264.20 30 32 264.20 664
iir 62 no 0 160.69 217 30 234.85 692
iir_par 268 no 0 168.12 237 199 136.87 693
iir_pipe 124 no 0 207.08 231 75 354.48 692
lfsr 6 no 0 420.17 437 6 420.17 716
lfsr6s3 6 no 0 420.17 440 6 420.17 717
ln 88 10 0 32.76 145 88 32.76 677
mul_ser 121 no 0 256.15 82 140 245.34 670
rader7 443 no 0 137.06 355 404 159.41 710
rc_sinc 448 19 0 61.93 285 416 81.47 699
reg_file 211 no 0 - 559 211 − 723
sqrt 336 2 0 82.16 150 317 82.73 678
tris0 198 1 2 115.65 606 166 71.94 724

B.2 Library of Parameterized Modules (LPM) 733

B.2 Library of Parameterized Modules (LPM)

Throughout the book we use six different LPM megafunctions (see Fig. B.1),
namely:

• lpm_ff, the flip-flop megafunction
• lpm_add_sub, the adder/subtractor megafunction
• lpm_ram_dq, the RAM megafunction
• lpm_rom, the ROM megafunction
• lpm_divide, the divider megafunction, and
• lpm_mult, the multiplier megafunction

These megafunctions are explained in the following, along with their port
definitions, parameters, and resource usage. This information is also available
using the Quartus II help under megafunctions/LPM.

Fig. B.1. Six LPM megafunction used.

B.2.1 The Parameterized Flip-Flop Megafunction (lpm ff)

The lpm_ff function is useful if features are needed that are not available in
the DFF, DFFE, TFF, and TFFE primitives, such as synchronous or asynchronous
set, clear, and load inputs. We have used this megafunction for the following
designs: example, p. 15 and fun_text, p. 30.

Altera recommends instantiating this function as described in “Using the
MegaWizard Plug-In Manager” in the Quartus II help.
The port names and order for Verilog HDL prototypes are:

734 B. VHDL and Verilog Coding

module lpm_ff (q, data, clock, enable, aclr,
aset, sclr, sset, aload, sload) ;

The VHDL component declaration is shown below:

COMPONENT lpm_ff
GENERIC (LPM_WIDTH: POSITIVE;

LPM_AVALUE: STRING := "UNUSED";
LPM_FFTYPE: STRING := "FFTYPE_DFF";
LPM_TYPE: STRING := "L_FF";
LPM_SVALUE: STRING := "UNUSED";
LPM_HINT: STRING := "UNUSED");

PORT (data: IN STD_LOGIC_VECTOR(LPM_WIDTH-1 DOWNTO 0);
clock: IN STD_LOGIC;

enable: IN STD_LOGIC := ’1’;
sload: IN STD_LOGIC := ’0’;
sclr: IN STD_LOGIC := ’0’;
sset: IN STD_LOGIC := ’0’;
aload: IN STD_LOGIC := ’0’;
aclr: IN STD_LOGIC := ’0’;
aset: IN STD_LOGIC := ’0’;

q: OUT STD_LOGIC_VECTOR(LPM_WIDTH-1 DOWNTO 0));
END COMPONENT;

Ports

The following table displays all input ports of lpm_ff:

B.2 Library of Parameterized Modules (LPM) 735

Port
name

Re-
quired Description Comments

data No

T-type flip-flop:
Toggle enable
D-type flip-flop:
Data input

Input port LPM_WIDTH wide. If the data in-
put is not used, at least one of the aset,
aclr, sset, or sclr ports must be used.
Unused data inputs default to GND.

clock Yes
Positive-edge trig-
gered clock

enable No Clock Enable input Default = 1

sclr No
Synchronous clear in-
put

If both sset and sclr are used and both
are asserted, sclr is dominant. The sclr
signal affects the output q values before po-
larity is applied to the ports.

sset No
Synchronous set in-
put

Sets q outputs to the value specified by
LPM_SVALUE, if that value is present, or sets
the q outputs to all 1s. If both sset and
sclr are used and both are asserted, sclr
is dominant. The sset signal affects the
output q values before polarity is applied
to the ports.

sload No

Synchronous load in-
put. Loads the flip-
flop with the value
on the data input on
the next active clock
edge.

Default = 0. If sload is used, data must
be used. For load operation, sload must
be high (1) and enable must be high (1)
or unconnected. The sload port is ignored
when the LPM_FFTYPE parameter is set to
DFF.

aclr No
Asynchronous clear
input

If both aset and aclr are used and both
are asserted, aclr is dominant. The aclr
signal affects the output q values before po-
larity is applied to the ports.

aset No
Asynchronous set in-
put

Sets q outputs to the value specified by
LPM_AVALUE, if that value is present, or sets
the q outputs to all 1s.

aload No

Asynchronous
load input. Asyn-
chronously loads the
flip-flop with the
value on the data
input.

Default = 0. If aload is used, data must
be used.

The following table displays all OUTPUT ports of lpm_ff:

Port
Name

Re-
quired Description Comments

q Yes Data output from
D or T flip-flops

Output port LPM_WIDTH
wide

736 B. VHDL and Verilog Coding

Parameters

The following table shows the parameters of the lpm_ff component:

Parameter Type
Re-

quired Description

LPM_WIDTH Integer Yes Width of the data and q ports

LPM_AVALUE Integer No

Constant value that is loaded when
aset is high. If omitted, defaults to
all 1s. The LPM_AVALUE parameter is
limited to a maximum of 32 bits.

LPM_SVALUE Integer No
Constant value that is loaded on the
rising edge of clock when sset is
high. If omitted, defaults to all 1s.

LPM_FFTYPE String No

Values are DFF, TFF, and UNUSED.
Type of flip-flop. If omitted, the de-
fault is DFF. When the LPM_FFTYPE
parameter is set to DFF, the sload
port is ignored.

LPM_HINT String No
Allows you to specify Altera-specific
parameters in VHDL design files.
The default is UNUSED.

LPM_TYPE String No Identifies the LPM entity name in
the VHDL design files.

Note that for Verilog LPM 220 synthesizable code (i.e., 220model.v) the
following parameter ordering applies: lpm_type, lpm_width, lpm_avalue,
lpm_svalue, lpm_pvalue, lpm_fftype, lpm_hint.

Function

The following table is an example of the T-type flip-flop behavior in lpm_ff:

Inputs Outputs
aclr aset enable clock sclr sset sload Q[LPM_WIDTH-1..0]

1 X X X X X X 000...
0 1 X X X X X 111... or LPM_AVALUE
0 0 0 X X X X q[LPM_WIDTH-1..0]
0 0 1 1 X X 000...
0 0 1 0 1 X 111... or LPM_SVALUE
0 0 1 0 0 1 data[LPM_WIDTH-1..0]
0 0 1 0 0 0 q[LPM_WIDTH-1..0]

xor data[LPM_WIDTH-1..0]

B.2 Library of Parameterized Modules (LPM) 737

Resource Usage

The megafunction lpm_ff uses one logic cell per bit.

B.2.2 The Parameterized Adder/Subtractor Megafunction
(lpm add sub)

Altera recommends using the lpm_add_sub function to replace all other types
of adder/subtractor functions, including old-style adder/subtractor macro-
functions. We have used this megafunction for the following designs: example,
p. 15, fun_text, p. 30, ccmul, p. 368.

Altera recommends instantiating this function as described in “Using the
MegaWizard Plug-In Manager” in the Quartus II help.
The port names and order for Verilog HDL prototypes are:

module lpm_add_sub (cin,
dataa, datab,
add_sub, clock, aclr,
result, cout, overflow);

The VHDL component declaration is shown below:

COMPONENT lpm_add_sub
GENERIC (LPM_WIDTH: POSITIVE;

LPM_REPRESENTATION: STRING := "SIGNED";
LPM_DIRECTION: STRING := "UNUSED";
LPM_HINT: STRING := "UNUSED";
LPM_PIPELINE: INTEGER := 0;
LPM_TYPE: STRING := "L_ADD_SUB");

PORT (dataa, datab
: IN STD_LOGIC_VECTOR(LPM_WIDTH-1 DOWNTO 0);

aclr, clken, clock, cin : IN STD_LOGIC := ’0’;
add_sub : IN STD_LOGIC := ’1’;
result : OUT STD_LOGIC_VECTOR(LPM_WIDTH-1 DOWNTO 0);
cout, overflow : OUT STD_LOGIC);

END COMPONENT;

738 B. VHDL and Verilog Coding

Ports

The following table displays all input ports of lpm_add_sub:

Port
name

Re-
quired Description Comments

cin No

Carry-in to the low-
order bit. If the oper-
ation is ADD, low = 0
and high = +1. If the
operation is SUB, low
= −1 and high = 0.

If omitted, the default is 0 (i.e., low if
the operation is ADD and high if the op-
eration is SUB).

dataa Yes Augend/Minuend Input port LPM_WIDTH wide

datab Yes Addend/Subtrahend Input port LPM_WIDTH wide

add_sub No

If the signal is high,
the operation =
dataa + datab. If
the signal is low, the
operation = dataa −
datab.

If the LPM_DIRECTION parameter is
used, add_sub cannot be used. If omit-
ted, the default is ADD. Altera recom-
mends that you use the LPM_DIRECTION
parameter to specify the operation of
the lpm_add_sub function, rather than
assigning a constant to the add_sub
port.

clock No
Clock for pipelined
usage

The clock port provides pipelined op-
eration for the lpm_add_sub function.
For LPM_PIPELINE values other than 0
(default value), the clock port must be
connected.

clken No
Clock enable for
pipelined usage

Available for VHDL only

aclr No
Asynchronous clear
for pipelined usage

The pipeline initializes to an undefined
(X) logic level. The aclr port can be
used at any time to reset the pipeline
to all 0s, asynchronously to the clock
signal.

B.2 Library of Parameterized Modules (LPM) 739

The following table displays all output ports of lpm_add_sub:

Port
Name

Re-
quired Description Comments

result Yes dataa + or −
datab + or − cin

Output port LPM_WIDTH
wide

cout No Carry-out (borrow-
in) of the MSB

If overflow is used, cout
cannot be used. The cout
port has a physical inter-
pretation as the carry-out
(borrow-in) of the MSB.
cout is most meaningful
for detecting overflow in
UNSIGNED operations.

overflow No Result exceeds
available precision.

If overflow is used,
cout cannot be used. The
overflow port has a phys-
ical interpretation as the
XOR of the carry-in to the
MSB with the carry-out
of the MSB. overflow is
meaningful only when the
LPM_REPRESENTATION pa-
rameter value is SIGNED.

Parameters

The following table shows the parameters of the lpm_add_sub component:

740 B. VHDL and Verilog Coding

Parameter Type
Re-

quired Description

LPM_WIDTH Integer Yes
Width of the dataa, datab, and result
ports.

LPM_DIRECTION String No

Values are ADD, SUB, and UNUSED. If omit-
ted, the default is DEFAULT, which directs
the parameter to take its value from the
add_sub port. The add_sub port cannot be
used if LPM_DIRECTION is used. Altera rec-
ommends that you use the LPM_DIRECTION
parameter to specify the operation of the
lpm_add_sub function, rather than assign-
ing a constant to the add_sub port.

LPM
REPRESEN-
TATION String No

Type of addition performed: SIGNED,
UNSIGNED, or UNUSED. If omitted, the de-
fault is SIGNED.

LPM_PIPELINE Integer No

Specifies the number of clock cycles of la-
tency associated with the result output.
A value of zero (0) indicates that no la-
tency exists, and that a purely combinato-
rial function will be instantiated. If omit-
ted, the default is 0 (nonpipelined).

LPM_HINT String No
Allows you to specify Altera-specific pa-
rameters in VHDL design files. The default
is UNUSED.

LPM_TYPE String No
Identifies the LPM entity name in VHDL
design files.

ONE INPUT
IS CONSTANT String No

Altera-specific parameter. Values are YES,
NO, and UNUSED. Provides greater optimiza-
tion, if one input is constant. If omitted,
the default is NO.

MAXIMIZE
SPEED Integer No

Altera-specific parameter. You can spec-
ify a value between 0 and 10. If used,
MaxPlus II attempts to optimize a spe-
cific instance of the lpm_add_sub function
for speed rather than area, and overrides
the setting of the Optimize option in the
Global Project Logic Synthesis dialog
box (Assign menu). If MAXIMIZE_SPEED
is unused, the value of the Optimize op-
tion is used instead. If the setting for
MAXIMIZE_SPEED is 6 or higher, the com-
piler will optimize lpm_add_sub megafunc-
tions for higher speed; if the setting is 5 or
less, the compiler will optimize for smaller
area.

Note that for Verilog LPM 220 synthesizable code (i.e., 220model.v) the
following parameter ordering applies: lpm_type, lpm_width, lpm_direction,
lpm_representation, lpm_pipeline, lpm_hint.

B.2 Library of Parameterized Modules (LPM) 741

Function

The following table is an example of the UNSIGNED behavior in
lpm_add_sub:

Inputs Outputs
add_sub dataa datab cout,result overflow

1 a b a + b + cin cout
0 a b a - b - cin !cout

The following table is an example of the SIGNED behavior in lpm_add_sub:

Inputs Outputs
add_sub dataa datab cout,sum overflow

1 a b a+ b+cin a ≥ 0 and b ≥ 0
and sum < 0

or a < 0 and b < 0 and
sum ≥ 0

0 a b a− b−cin a >= 0 and b < 0
and sum < 0

or a < 0 and b ≥ 0
and sum ≥ 0

Resource Usage

The following table summarizes the resource usage for an lpm_add_submega-
function used to implement a 16-bit unsigned adder with a carry-in input and
a carry-out output. Logic cell usage scales linearly in proportion to adder
width.

Design goals Design results

Device family Optimization LEs Speed (ns) Notes

FLEX 6K, 8K, Routability 45 53 Speed for
and 10K Speed 18 17 EPF8282A-2

MAX 5K, 7K, Routability 28 (22) 23 Speed for
and 9K EPM7128E-7

Numbers of shared expanders used are shown in parentheses.

B.2.3 The Parameterized Multiplier Megafunction
(lpm mult)

Altera recommends that you use lpm_mult to replace all other types of mul-
tiplier functions, including old-style multiplier macrofunctions. We have used

742 B. VHDL and Verilog Coding

this megafunction for the designs fir_gen, p. 167, ccmul, p. 368. fir_lms,
p. 504, and fir6dlms, p. 511.

Altera recommends instantiating this function as described in “Using the
MegaWizard Plug-In Manager” in the Quartus II help.

The port names and order for Verilog HDL prototype are:

module lpm_mult (dataa, datab, sum, aclr, clock,
result);

The VHDL component declaration is shown below:

COMPONENT lpm_mult
GENERIC (LPM_WIDTHA: POSITIVE;

LPM_WIDTHB: POSITIVE;
LPM_WIDTHS: POSITIVE;
LPM_WIDTHP: POSITIVE;
LPM_REPRESENTATION: STRING := "UNSIGNED";
LPM_PIPELINE: INTEGER := 0;
LPM_TYPE: STRING := "L_MULT";
LPM_HINT : STRING := "UNUSED");

PORT (dataa : IN STD_LOGIC_VECTOR(LPM_WIDTHA-1 DOWNTO 0);
datab : IN STD_LOGIC_VECTOR(LPM_WIDTHB-1 DOWNTO 0);
aclr, clken, clock : IN STD_LOGIC := ’0’;
sum : IN STD_LOGIC_VECTOR(LPM_WIDTHS-1 DOWNTO 0)

:= (OTHERS => ’0’);
result: OUT STD_LOGIC_VECTOR(LPM_WIDTHP-1 DOWNTO 0)
);

END COMPONENT;

Ports

The following table displays all input ports of lpm_mult:

B.2 Library of Parameterized Modules (LPM) 743

Port
name

Re-
quired Description Comments

dataa Yes Multiplicand Input port LPM_WIDTHA wide

datab Yes Multiplier Input port LPM_WIDTHB wide

sum No Partial sum Input port LPM_WIDTHS wide

clock No
Clock for pipelined
usage

The clock port provides pipelined op-
eration for the lpm_mult function. For
LPM_PIPELINE values other than 0 (default
value), the clock port must be connected.

clken No
Clock enable for
pipelined usage

Available for VHDL only.

aclr No
Asynchronous clear
for pipelined usage

The pipeline initializes to an undefined (X)
logic level. The aclr port can be used at
any time to reset the pipeline to all 0s,
asynchronously to the clock signal.

The following table displays all output ports of lpm_mult:

Port
Name

Re-
quired Description Comments

result Yes

result = dataa *
datab + sum. The
product LSB is
aligned with the
sum LSB.

Output port LPM_WIDTHP
wide. If LPM_WIDTHP
< max (LPM_WIDTHA +
LPM_WIDTHB, LPM_WIDTHS)
or (LPM_WIDTHA +
LPM_WIDTHS), only the
LPM_WIDTHP MSBs are
present.

Parameters

The following table shows the parameters of the lpm_mult component:

744 B. VHDL and Verilog Coding

Parameter Type
Re-

quired Description

LPM_WIDTHA Integer Yes Width of the dataa port

LPM_WIDTHB Integer Yes Width of the datab port

LPM_WIDTHP Integer Yes Width of the result port

LPM_WIDTHS Integer Yes
Width of the sum port. Required even
if the sum port is not used.

LPM
REPRESENTATION String No

Type of multiplication performed:
SIGNED, UNSIGNED, or UNUSED. If omit-
ted, the default is UNSIGNED.

LPM_PIPELINE Integer No

Specifies the number of clock cycles of
latency associated with the result out-
put. A value of zero (0) indicates that
no latency exists, and that a purely
combinatorial function will be instanti-
ated. If omitted, the default is 0 (non-
pipelined).

LPM_HINT String No
Allows you to assign Altera-specific pa-
rameters in VHDL design files. The de-
fault is UNUSED.

LPM_TYPE String No
Identifies the LPM entity name in
VHDL design files.

INPUT A
IS CONSTANT String No

Altera-specific parameter. Values are
YES, NO, and UNUSED. If dataa is con-
nected to a constant value, setting
INPUT_A_IS_CONSTANT to YES optimizes
the multiplier for resource usage and
speed. If omitted, the default is NO.

INPUT B
IS CONSTANT String No

Altera-specific parameter. Values are
YES, NO, and UNUSED. If datab is con-
nected to a constant value, setting
INPUT_B_IS_CONSTANT to YES optimizes
the multiplier for resource usage and
speed. The default is NO.

B.2 Library of Parameterized Modules (LPM) 745

Parameter Type
Re-

quired Description

USE_EAB String No

Altera-specific parameter. Values are ON, OFF, and
UNUSED. Setting the USE_EAB parameter to ON al-
lows Quartus II to use EABs to implement 4
× 4 or (8 × constant value) building blocks in
FLEX 10K devices. Altera recommends that you
set USE_EAB to ON only when LCELLS are in short
supply. If you wish to use this parameter, when
you instantiate the function in a GDF, you must
specify it by entering the parameter name and
value manually with the Edit Ports/Parameters
dialog box (Symbol menu). You can also use this
parameter name in a TDF or a Verilog design file.
You must use the LPM_HINT parameter to specify
the USE_EAB parameter in VHDL design files.

DEDICATED
MULTIPLIER
CIRCUITRY String No

Altera-specific parameter. You must use
the LPM_HINT parameter to specify the
DEDICATED_MULTIPLIER_CIRCUITRY parame-
ter in VHDL design files. Specifies whether to use
dedicated multiplier circuitry. Values are ‘AUTO,
YES, and ‘NO,. If omitted, the default is AUTO.

LATENCY Integer No

Altera-specific parameter. Same as LPM_PIPELINE.
(This parameter is provided only for backward
compatibility with MaxPlus II pre-version 7.0
designs. For all new designs, you should use the
LPM_PIPELINE parameter instead.)

MAXIMIZE
SPEED Integer No

Altera-specific parameter. You can specify a value
between 0 and 10. If used, MaxPlus II attempts
to optimize a specific instance of the lpm_mult
function for speed rather than area, and overrides
the setting of the Optimize option in the Global
Project Logic Synthesis dialog box (Assign
menu). If MAXIMIZE_SPEED is unused, the value of
the Optimize option is used instead. If the setting
for MAXIMIZE_SPEED is 6 or higher, the compiler
will optimize lpm_mult megafunctions for higher
speed; if the setting is 5 or less, the compiler will
optimize for smaller area.

LPM_HINT String No
Allows you to specify Altera-specific parameters
in VHDL design files. The default is UNUSED.

Note that specifying a value for MAXIMIZE_SPEED has an effect only if
LPM_REPRESENTATION is set to SIGNED.

Note that for Verilog LPM 220 synthesizable code (i.e., 220model.v) the
following parameter ordering applies: lpm_type, lpm_widtha, lpm_widthb,
lpm_widths, lpm_widthp, lpm_representation, lpm_pipeline, lpm_hint.

746 B. VHDL and Verilog Coding

Function

The following table is an example of the UNSIGNED behavior in lpm_mult:

Inputs Outputs
dataa datab sum product

a b s LPM_WIDTHP most significant
bits of a ∗ b+ s

Resource Usage

The following table summarizes the resource usage for an lpm_mult function
used to implement 4-bit and 8-bit multipliers with LPM_PIPELINE = 0 and
without the optional sum input. Logic cell usage scales linearly in proportion
to the square of the input width.

Design goals Design results

Device family Optimization Width LEs Speed (ns) Notes

FLEX 6K, 8K, Routability 8 121 80 Speed for
and 10K Speed 8 163 52 EPF8282A-2

FLEX 6K, 8K, Routability 4 29 34 Speed for
and 10K Speed 4 41 27 EPF8282A-2

MAX 5K, 7K, Routability 4 26 (11) 23 Speed for
and 9K Speed 4 27 (4) 19 EPM7128E-7

Numbers of shared expanders used are shown in parentheses. In the FLEX
10K device family, the 4-bit by 4-bit multiplier example shown above can be
implemented in a single EAB.

B.2.4 The Parameterized ROM Megafunction (lpm rom)

The lpm_rom block is parameterized ROM with separate input and output
clocks. We have used this megafunction for the designs fun_text, p. 30 and
darom, p. 196.

The lpm_rom block can also be used with older device families, e.g., Flex
10K. Altera translates for newer devices like Cyclone II the lpm_rom in the
altsyncram megafunction block. But the altsyncram is not supported for
Flex 10K that is used on the popular UP2 boards.

Altera recommends instantiating this function as described in “Using the
MegaWizard Plug-In Manager” in the Quartus II help.

The port names and order for Verilog HDL prototype are:

B.2 Library of Parameterized Modules (LPM) 747

module lpm_rom (address, inclock, outclock, memenab,
q);

The VHDL component declaration is shown below:

COMPONENT lpm_rom
GENERIC (LPM_WIDTH : POSITIVE;

LPM_TYPE : STRING := "L_ROM";
LPM_WIDTHAD : POSITIVE;
LPM_NUMWORDS : POSITIVE;
LPM_FILE : STRING;
LPM_ADDRESS_CONTROL : STRING := "REGISTERED";
LPM_OUTDATA : STRING := "REGISTERED";
LPM_HINT : STRING := "UNUSED");

PORT(address : IN STD_LOGIC_VECTOR(LPM_WIDTHAD-1 DOWNTO 0);
inclock : IN STD_LOGIC := ’1’;
outclock : IN STD_LOGIC := ’1’;
memenab : IN STD_LOGIC := ’1’;
q : OUT STD_LOGIC_VECTOR(LPM_WIDTH-1 DOWNTO 0)
);

END COMPONENT;

Ports

The following table displays all input ports of lpm_rom:

Port
name

Re-
quired Description Comments

address Yes
Address input to
the memory

Input port LPM_WIDTHAD wide

inclock No
Clock for input
registers

The address port is synchronous (regis-
tered) when the inclock port is connected,
and is asynchronous (registered) when the
inclock port is not connected.

outclock No
Clock for output
registers

The addressed memory content-to-q re-
sponse is synchronous when the outclock
port is connected, and is asynchronous
when it is not connected.

memenab No
Memory enable
input

High = data output on q, Low = high-
impedance outputs

The following table displays all output ports of lpm_rom:

Port
Name

Re-
quired Description Comments

q Yes Output of memory Output port LPM_WIDTH wide

748 B. VHDL and Verilog Coding

Parameters

The following table shows the parameters of the lpm_rom component:

Parameter Type
Re-

quired Description

LPM_WIDTH Integer Yes Width of the q port.

LPM_WIDTHAD Integer Yes

Width of the address port.
LPM_WIDTHAD should be (but is
not required to be) equal to
log2(LPM_NUMWORDS). If LPM_WIDTHAD is
too small, some memory locations will
not be addressable. If it is too large,
addresses that are too high will return
undefined logic levels.

LPM_NUMWORDS Integer Yes

Number of words stored in memory.
In general, this value should be (but

is not required to be) 2LPM WIDTHAD −
1 < LPM NUMWORDS ≤ 2LPM WIDTHAD. If

omitted, the default is 2LPM WIDTHAD.

LPM_FILE String No

Name of the Memory Initialization
File (*.mif) or Hexadecimal (Intel-
format) File (*.hex) containing ROM
initialization data (<filename>), or
UNUSED.

LPM_ADDRESS_CONTROL String No

Values are REGISTERED, UNREGISTERED,
and UNUSED. Indicates whether the ad-
dress port is registered. If omitted, the
default is REGISTERED.

LPM_OUTDATA String No

Values are REGISTERED, UNREGISTERED,
and UNUSED. Indicates whether the q
and eq ports are registered. If omitted,
the default is REGISTERED.

LPM_HINT String No
Allows you to specify Altera-specific
parameters in VHDL design files. The
default is UNUSED.

LPM_TYPE String No
Identifies the LPM entity name in
VHDL design files.

Note that for Verilog LPM 220 synthesizable code (i.e., 220model.v) the follow-
ing parameter ordering applies: lpm_type, lpm_width, lpm_widthad, lpm_numwords,
lpm_address_control, lpm_outdata, lpm_file, lpm_hint.

B.2 Library of Parameterized Modules (LPM) 749

Function

The following table shows the synchronous read from memory behavior of lpm_rom:

OUTCLOCK MEMENAB Function

X L q output is high impedance (memory not enabled)
H No change in output

H

The output register is loaded with
the contents of the memory location
pointed to by address. q outputs
the contents of the output register.

The output q is asynchronous and reflects the data in the memory to which
address points. The following table shows the asynchronous memory operations
behavior of lpm_rom:

MEMENAB Function

L q output is high-impedance (memory not enabled)
H The memory location pointed to by address is read

Totally asynchronous memory operations occur when neither inclock nor
outclock is connected. The output q is asynchronous and reflects the memory
location pointed to by address. Since this totally asynchronous memory operation
is only available with Flex 10K devices, but not with Cyclone II, we do not use this
mode in our designs. Either input or output is registered in all of our designs that
use memory blocks.

Resource Usage

The Megafunction lpm_rom uses one embedded cell per memory bit.

B.2.5 The Parameterized Divider Megafunction
(lpm divide)

Altera recommends that you use lpm_divide to replace all other types of divider
functions, including old-style divide macrofunction. We have used this megafunction
for the array divider designs p. 103.

Altera recommends instantiating this function as described in “Using the
MegaWizard Plug-In Manager” in the Quartus II help.
The port names and order for Verilog HDL prototype are:

module lpm_divide (quotient, remain, numer, denom,
clock, clken, aclr)

The VHDL component declaration is shown below:

COMPONENT lpm_divide
GENERIC (LPM_WIDTHN: POSITIVE;

LPM_WIDTHD: POSITIVE;
LPM_NREPRESENTATION: STRING: = "UNSIGNED";
LPM_DREPRESENTATION: STRING: = "UNSIGNED";
LPM_TYPE: STRING :="LPM_DIVIDE";

750 B. VHDL and Verilog Coding

LPM_PIPELINE: INTEGER := 0;
LPM_HINT: STRING:= "UNUSED";

);
PORT (numer: IN STD_LOGIC_VECTOR(LPM_WIDTHN-1 DOWNTO 0);

denom: IN STD_LOGIC_VECTOR(LPM_WIDTHD-1 DOWNTO 0);
clock, aclr: IN STD_LOGIC := ’0’;
clken: IN STD_LOGIC := ’1’;
quotient: OUT STD_LOGIC_VECTOR(LPM_WIDTHN-1 DOWNTO 0);
remain: OUT STD_LOGIC_VECTOR(LPM_WIDTHD-1 DOWNTO 0)
);

END COMPONENT;

Ports

The following table displays all input ports of lpm_divide:

Port
name

Re-
quired Description Comments

numer Yes Numerator Input port LPM_WIDTHN wide.

denom Yes Denominator Input port LPM_WIDTHD wide.

clock No
Clock input for
pipelined usage.

You must connect the clock input if you
set LPM_PIPELINE to a value other than 0.

clken No
Clock enable for
pipelined usage.

aclr No
Asynchronous clear
signal.

The aclr port may be used at any time to
reset the pipeline to all 0s asynchronously
to the clock input.

The following table displays all output ports of lpm_divide:

Port
Name

Re-
quired Description Comments

quotient Yes Output port
LPM_WIDTHN wide.

You must use either the
quotient or the remain
ports.

remain Yes Output port
LPM_WIDTHD wide.

You must use either the
quotient or the remain
ports.

B.2 Library of Parameterized Modules (LPM) 751

Parameters

The following table shows the parameters of the lpm_divide component:

Parameter Type
Re-

quired Description

LPM_WIDTHN Integer Yes Width of the numer and quotient port

LPM_WIDTHD Integer Yes Width of the denom and remain port

LPM
NREPRESENTATION String No

Specifies whether the numerator is
SIGNED or UNSIGNED. Only UNSIGNED is
supported for now.

LPM
DREPRESENTATION String No

Specifies whether the denominator is
SIGNED or UNSIGNED. Only UNSIGNED is
supported for now.

LPM_PIPELINE Integer No

Specifies the number of clock cycles of
latency associated with the quotient
and remain outputs. A value of zero
(0) indicates that no latency exists,
and that a purely combinatorial func-
tion will be instantiated. If omit-
ted, the default is 0 (nonpipelined).
You cannot specify a value for the
LPM_PIPELINE parameter that is higher
than LPM_WIDTHN.

LPM_TYPE String No
Identifies the LPM entity name in
VHDL design files.

LPM_HINT String No
Allows you to assign Altera-specific pa-
rameters in VHDL design files. The de-
fault is UNUSED.

You can pipeline a design by connecting the clock input and specifying the
number of clock cycles of latency with the LPM_PIPELINE parameter.

Note that for Verilog LPM 220 synthesizable code (i.e., 220model.v)
the following parameter ordering applies: lpm_type, lpm_widthn, lpm_widthd,
lpm_nrepresentation, lpm_drepresentation, lpm_pipeline.

B.2.6 The Parameterized RAM Megafunction (lpm ram dq)

The lpm_ram_dq block is parameterized RAM with separate input and output ports.
The lpm_ram_dq block can also be used with older device families, e.g., Flex10K. Al-
tera translates for newer devices like Cyclone II the lpm_ram_dq in the altsyncram
megafunction block. But the altsyncram is not supported for Flex10K that is used
on the popular UP2 boards.

We have used this megafunction for the design trisc0, p. 606.
Altera recommends instantiating this function as described in “Using the

MegaWizard Plug-In Manager” in the Quartus II help.
The port names and order for Verilog HDL prototype are:

module lpm_ram_dq (q, data, inclock, outclock, we, address);

752 B. VHDL and Verilog Coding

The VHDL component declaration is shown below:

COMPONENT lpm_ram_dq
GENERIC (LPM_WIDTH : POSITIVE;

LPM_WIDTHAD : POSITIVE;
LPM_NUMWORDS : NATURAL := 0;
LPM_INDATA : STRING := "REGISTERED";
LPM_ADDRESS_CONTROL : STRING := "REGISTERED";
LPM_OUTDATA : STRING := "REGISTERED";
LPM_FILE : STRING := "UNUSED";
LPM_TYPE : STRING := "LPM_RAM_DQ";
LPM_HINT : STRING := "UNUSED");

PORT (data : IN STD_LOGIC_VECTOR(LPM_WIDTH-1 DOWNTO 0);
address : IN STD_LOGIC_VECTOR(LPM_WIDTHAD-1 DOWNTO 0);

inclock, outclock : IN STD_LOGIC := ’0’;
we : IN STD_LOGIC;
q : OUT STD_LOGIC_VECTOR(LPM_WIDTH-1 DOWNTO 0)
);

END COMPONENT;

Ports

The following table displays all input ports of lpm_ram_dq:

Port
name

Re-
quired Description Comments

address Yes
Address input to
the memory

Input port LPM_WIDTHAD wide

data Yes
Data input to the
memory

Input port LPM_WIDTHAD wide

inclock No
Clock for input
registers

The address port is synchronous (regis-
tered) when the inclock port is connected,
and is asynchronous (registered) when the
inclock port is not connected.

outclock No
Clock for output
registers

The addressed memory content-to-q re-
sponse is synchronous when the outclock
port is connected, and is asynchronous
when it is not connected.

we Yes
Memory enable
input

Write enable input. Enables write opera-
tions to the memory when high.

The following table displays all output ports of lpm_ram_dq:

Port
Name

Re-
quired Description Comments

q Yes Output of memory Output port LPM_WIDTH wide

B.2 Library of Parameterized Modules (LPM) 753

Parameters

The following table shows the parameters of the lpm_ram_dq component:

Parameter Type
Re-

quired Description

LPM_WIDTH Integer Yes Width of the q port.

LPM_WIDTHAD Integer Yes

Width of the address port.
LPM_WIDTHAD should be (but is
not required to be) equal to
log2(LPM_NUMWORDS). If LPM_WIDTHAD is
too small, some memory locations will
not be addressable. If it is too large,
addresses that are too high will return
undefined logic levels.

LPM_NUMWORDS Integer Yes

Number of words stored in memory.
In general, this value should be (but

is not required to be) 2LPM WIDTHAD −
1 < LPM NUMWORDS ≤ 2LPM WIDTHAD. If

omitted, the default is 2LPM WIDTHAD.

LPM_FILE String No

Name of the Memory Initialization
File (*.mif) or Hexadecimal (Intel-
format) File (*.hex) containing ROM
initialization data (<filename>), or
UNUSED.

LPM_ADDRESS_CONTROL String No

Values are REGISTERED, UNREGISTERED,
and UNUSED. Indicates whether the ad-
dress port is registered. If omitted, the
default is REGISTERED.

LPM_OUTDATA String No

Values are REGISTERED, UNREGISTERED,
and UNUSED. Indicates whether the q
and eq ports are registered. If omitted,
the default is REGISTERED.

LPM_HINT String No
Allows you to specify Altera-specific
parameters in VHDL design files. The
default is UNUSED.

LPM_TYPE String No
Identifies the LPM entity name in the
VHDL design files.

Note that for Verilog LPM 220 synthesizable code (i.e., 220model.v) the follow-
ing parameter ordering applies: lpm_type, lpm_width, lpm_widthad, lpm_numwords,
lpm_address_control, lpm_outdata, lpm_file, lpm_hint.

754 B. VHDL and Verilog Coding

Function

The following table shows the synchronous read and write memory behavior of
lpm_ram_dq:

inclock we Function

X - No change (requires rising clock edge).

H The memory location pointed to by address is
loaded with data.

L
The memory location pointed to by address is
read from the array. If outclock is not used, the
read data appears at the outputs.

The following table shows the synchronous read from memory from memory
operations behavior of lpm_ram_dq:

outclock Function

− No change
The memory location pointed to by address is
read and written into the output register.

Totally asynchronous memory operations occur when neither inclock nor
outclock is connected. The output q is asynchronous and reflects the memory
location pointed to by address. Since this totally asynchronous memory operation
is only available with Flex 10K devices, but not with Cyclone II, we do not use this
mode in our designs. Either the input or output is registered in all of our designs
that use memory blocks.

Resource Usage

The Megafunction lpm_ram_dq uses one embedded cell per memory bit.

C. Glossary

ACC Accumulator
ACT Actel FPGA family
ADC Analog-to-digital converter
ADCL All-digital CL
ADF Adaptive digital filter
ADPCM Adaptive differential pulse code modulation
ADPLL All-digital PLL
ADSP Analog Devices digital signal processor family
AES Advanced encryption standard
AFT Arithmetic Fourier transform
AHDL Altera HDL
AHSM Additive half square multiplier
ALU Arithmetic logic unit
AM Amplitude modulation
AMBA Advanced microprocessor bus architecture
AMD Advanced Micro Devices, Inc.
ASCII American standard code for information interchange
ASIC Application-specific IC
AWGN Additive white Gaussian noise

BCD Binary coded decimal
BDD Binary decision diagram
BLMS Block LMS
BP Bandpass
BRS Base removal scaling
BS Barrelshifter

CAE Computer-aided engineering
CAM Content addressable memory
CAST Carlisle Adams and Stafford Tavares
CBC Cipher block chaining
CBIC Cell-based IC
CD Compact disc
CFA Common factor algorithm
CFB Cipher feedback
CIC Cascaded integrator comb
CISC Complex instruction set computer
CL Costas loop
CLB Configurable logic block
C-MOMS Causal MOMS

756 Glossary

CMOS Complementary metal oxide semiconductor
CODEC Coder/decoder
CORDIC Coordinate rotation digital computer
COTS Commercial off-the-shelf technology
CPLD Complex PLD
CPU Central processing unit
CQF Conjugate quadrature filter
CRNS Complex RNS
CRT Chinese remainder theorem
CSOC Canonical self-orthogonal code
CSD Canonical signed digit
CWT Continuous wavelet transform
CZT Chirp-z transform

DA Distributed arithmetic
DAC Digital-to-analog converter
DAT Digital audio tap
DB Daubechies filter
DC Direct current
DCO Digital controlled oscillator
DCT Discrete cosine transform
DCU Data cache unit
DES Data encryption standard
DFT Discrete Fourier transform
DHT Discrete Hartley transform
DIF Decimation in frequency
DIT Decimation in time
DLMS Delayed LMS
DMA Direct memory access
DMIPS Dhrystone MIPS
DMT Discrete Morlet transform
DPLL Digital PLL
DSP Digital signal processing
DST Discrete sine transform
DWT Discrete wavelet transform

EAB Embedded array block
ECB Electronic code book
ECL Emitter coupled logic
EDIF Electronic design interchange format
EFF Electronic Frontier Foundation
EPF Altera FPGA family
EPROM Electrically programmable ROM
ERA Plessey FPGA family
ERNS Eisenstein RNS
ESA European Space Agency
EVR Eigenvalue ratio
EXU Execution unit

FAEST Fast a posteriori error sequential technique
FCT Fast cosine transform
FC2 FPGA compiler II
FF Flip-flop

Glossary 757

FFT Fast Fourier transform
FIFO First-in first-out
FIR Finite impulse response
FIT Fused internal timer
FLEX Altera FPGA family
FM Frequency modulation
FNT Fermat NTT
FPGA Field-programmable gate array
FPL Field-programmable logic (combines CPLD and FPGA)
FPLD FPL device
FSF Frequency sampling filter
FSK Frequency shift keying
FSM Finite state machine

GAL Generic array logic
GF Galois field
GNU GNU’s not Unix
GPP General-purpose processor
GPR General-purpose register

HB Half-band filter
HI High frequency
HDL Hardware description language
HSP Harris Semiconductor DSP ICs

IBM International Business Machines (corporation)
IC Integrated circuit
ICU Instruction cache unit
IDCT Inverse DCT
IDEA International data encryption algorithm
IDFT Inverse discrete Fourier transform
IEEE Institute of Electrical and Electronics Engineers
IF Inter frequency
IFFT Inverse fast Fourier transform
IIR Infinite impulse response
I-MOMS Interpolating MOMS
INTT Inverse NTT
IP Intellectual property
I/Q In-/Quadrature phase
ISA Instruction set architecture
ITU International Telecommunication Union

JPEG Joint photographic experts group
JTAG Joint test action group

KCPSM Ken Chapman PSM
KLT Karhunen–Loeve transform

LAB Logic array block
LAN Local area network
LC Logic cell
LE Logic element
LIFO Last-in first-out

758 Glossary

LISA Language for instruction set architecture
LF Low frequency
LFSR Linear feedback shift register
LMS Least-mean-square
LNS Logarithmic number system
LO Low frequency
LP Lowpass
LPM Library of parameterized modules
LRS Serial left right shifter
LS Least-square
LSB Least-significant bit
LSI Large scale integration
LTI Linear time-invariant
LUT Look-up table

MAC Multiplication and accumulate
MACH AMD/Vantis FPGA family
MAG Multiplier adder graph
MAX Altera CPLD family
MIF Memory initialization file
MIPS Microprocessor without interlocked pipeline
MIPS Million instructions per second
MLSE Maximum-likelihood sequence estimator
MMU Memory management unit
MMX Multimedia extension
MNT Mersenne NTT
MOMS Maximum order minimum support
µP Microprocessor
MPEG Moving Picture Experts Group
MPX Multiplexer
MSPS Millions of sample per second
MRC Mixed radix conversion
MSB Most significant bit
MUL Multiplication

NCO Numeric controlled oscillators
NLMS Normalized LMS
NP Nonpolynomial complex problem
NRE Nonreccurring engineering costs
NTT Number theoretic transform

OFB Open feedback (mode)
O-MOMS Optimal MOMS

PAM Pulse-amplitude modulated
PC Personal computer
PCI Peripheral component interconnect
PD Phase detector
PDSP Programmable digital signal processor
PFA Prime factor algorithm
PIT Programmable interval timer
PLA Programmable logic array
PLD Programmable logic device

Glossary 759

PLL Phase-locked loop
PM Phase modulation
PREP Programmable Electronic Performance (cooperation)
PRNS Polynomial RNS
PROM Programmable ROM
PSK Phase shift keying
PSM Programmable state machine

QDFT Quantized DFT
QLI Quick look-in
QFFT Quantized FFT
QMF Quadrature mirror filter
QRNS Quadratic RNS
QSM Quarter square multiplier

RAM Random-access memory
RC Resistor/capacity
RF Radio frequency
RISC Reduced instruction set computer
RLS Recursive least square
RNS Residue number system
ROM Read-only memory
RPFA Rader prime factor algorithm
RS Serial right shifter
RSA Rivest, Shamir, and Adelman

SD Signed digit
SG Stochastic gradient
SIMD Single instruction multiple data
SLMS Signed LMS
SM Signed magnitude
SNR Signal-to-noise ratio
SPEC System performance evaluation cooperation
SPLD Simple PLD
SPT Signed power-of-two
SR Shift register
SRAM Static random-access memory
SSE Streaming SIMD extension
STFT Short-term Fourier transform

TDLMS Transform-domain LMS
TLB Translation look-aside buffer
TLU Table look-up
TMS Texas Instruments DSP family
TI Texas Instruments
TOS Top of stack
TTL Transistor transistor logic
TVP True vector processor

UART Universal asynchronous receiver/transmitter

VCO Voltage-control oscillator
VHDL VHSIC hardware description language

760 Glossary

VHSIC Very-high-speed integrated circuit
VLIW Very long instruction word
VLSI Very large integrated ICs

WDT Watchdog timer
WFTA Winograd Fourier transform algorithm
WSS Wide sense stationary

XC Xilinx FPGA family
XNOR Exclusive NOR gate

YACC Yet another compiler-compiler

D. CD-ROM File: “1readme.ps”

The accompanying CD-ROM includes

• A full version of the Quartus II software
• Altera datasheets for Cyclone II devices
• All VHDL/Verilog design examples and utility programs and files

To install the Quartus II 6.0 web edition software first read the licence agree-
ment carefully. Since the Quartus II 6.0 web edition software uses many other tools
(e.g., GNU, Berkeley Tools, SUN microsystems tool, etc.) you need to agree to
their licence agreements too before installing the software. To install the software
start the self-extracting file quartusii_60_web_edition.exe on the CD-ROM in
the Altera folder. After the installation the user must register the software through
Altera’s web page at www.altera.com in order to get a permanent licence key. Oth-
erwise the temporary licence key expires after the 30-day grace period and the
software will no longer run. Altera frequently update the Quartus II software to
support new devices and you may consider downloading the latest Quartus II ver-
sion from the Altera webpage directly, but keep in mind that the files are large and
that the synthesis results will differ slightly for another version. Altera’s Univer-
sity program now delivers the files via download, which can take long time with a
56 Kbit/s MODEM.

The design examples for the book are located in the directories book3e/vhdl and
book3e/verilog for the VHDL and Verilog examples, respectively. These directories
contain, for each example, the following four files:

• The VHDL or Verilog source code (*.vhd and *.v)
• The Quartus project files (*.qpf)
• The Quartus setting files (*.qsf)
• The Simulator wave form file (*.vwf)

For the design fun_graf, the block design file (*.bdf) is included in
book3e/vhdl. For the examples that utilize M4Ks (i.e., fun_text, darom, and
trisc0), the memory initialization file (*.mif) can be found on the CD-ROM.
To simplify the compilation and postprocessing, the source code directories include
the additional (*.bat) files and Tcl scripts shown below:

762 D. CD-ROM File: “1readme.ps”

File Comment

qvhdl.tcl

Tcl script to compile all design examples. Note that the
device can be changed from Cyclone II to Flex, Apex or
Stratix just by changing the comment sign # in column
1 of the script.

qclean.bat
Cleans all temporary Quartus II compiler files, but not
the report files (*.map.rpt), the timing analyzer output
files (*.tan.rpt), and the project files *.qpf and *.qsf.

qveryclean.bat
Cleans all temporary compiler files, including all report
files (*.rep) and project files.

Use the DOS prompt and type

quartus_sh -t qvhdl.tcl > qvhdl.txt

to compile all design examples and then qclean.bat to remove the unnecessary
files. The Tcl script qvhdl.tcl is included on the CD. The Tcl script language
developed by the Berkeley Professor John Ousterhout [346, 347, 348] (used by
most modern CAD tools: Altera Quartus, Xilinx ISE, ModelTech, etc.) allows a
comfortable scripting language to define setting, specify functions, etc. Given the
fact that many tools also use the graphic toolbox Tcl/Tk we have witnessed that
many tools now also looks almost the same.

Two search procedures (show_fmax and show_resources) are used within the
Tcl script qvhdl.tcl to display resources and Registered Performance. The
script includes all settings and also alternative device definitions. The protocol file
qvhdl.txt has all the useful synthesis data. For the trisc0 processor, for instance,
the list for the Cyclone II device EP2C35F672C6 is:

....

trisc0 fmax: 115.65 MHz (period = 8.647 ns)
trisc0 LEs: 198 / 33,216 (< 1 %)
trisc0 M4K bits: 5,120 / 483,840 (1 %)
trisc0 DSP blocks: 1 / 70 (1 %)

....

The results for all examples are summarized in Table B.1, p. 731.
Other devices are prespecified and include the EPF10K20RC240-4

and EPF10K70RC240-4 from the UP1 and UP2 University boards, the
EP20K200EFC484-2X from the Nios development boards, and three devices from
other DSP boards available from Altera, i.e., the EP1S10F484C5, EP1S25F780C5,
and EP2S60F1020C4ES.

Using Compilers Other Then Quartus II

Synopsys FPGA CompilerII

The main advantage of using the FPGA CompilerII (FC2) from Synopsys was that
it was possible to synthesize examples for other devices like Xilinx, Vantis, Actel,
or QuickLogic with the same tool. The Tcl scripts vhdl.fc2, and verilog.fc2,

D. CD-ROM File: “1readme.ps” 763

respectively, were provided the necessary commands for the shell mode of FC2, i.e.,
fc2_shell in the second edition of the book [57]. Synopsys, however, since 2006 no
longer supports the FPGA CompilerII and it is therefore not a good idea to use
the compiler anymore since the newer devices can not be selected.

Model Technology

By using the synthesizable public-domain models provided by the EDIF organiza-
tion (at www.edif.org), it is also possible to use other VHDL/Verilog simulators
then Quartus II.

Using MTI and VHDL. For VHDL, the two files 220pack.vhd and
220model.vhd must first be compiled. For the ModelSim simulator vsim from Model
Technology Inc., the script mti_vhdl.do can be used for device-independent com-
pilation and simulation of the design examples. The script is shown below:

#--
Model Technology VHDL compiler script for the book
Digital Signal Processing with FPGAs (3.edition)
Author-EMAIL: Uwe.Meyer-Baese@ieee.org
#--

echo Create Library directory lpm
vlib lpm

echo Compile lpm package.
vcom -work lpm -explicit -quiet 220pack.vhd 220model.vhd

echo Compile chapter 1 entitys.
vcom -work lpm -quiet example.vhd fun_text.vhd

echo Compile chapter 2 entitys.
vcom -work lpm -explicit -quiet add1p.vhd add2p.vhd
vcom -work lpm -explicit -quiet add3p.vhd mul_ser.vhd
vcom -work lpm -explicit -quiet cordic.vhd

echo Compile chapter 3 components.
vcom -work lpm -explicit -quiet case3.vhd case5p.vhd
vcom -work lpm -explicit -quiet case3s.vhd
echo Compile chapter 3 entitys.
vcom -work lpm -explicit -quiet fir_gen.vhd fir_srg.vhd
vcom -work lpm -explicit -quiet dafsm.vhd darom.vhd
vcom -work lpm -explicit -quiet dasign.vhd dapara.vhd

echo Compile chapter 4 entitys.
vcom -work lpm -explicit -quiet iir.vhd iir_pipe.vhd
vcom -work lpm -explicit -quiet iir_par.vhd

echo Compile chapter 5 entitys.
vcom -work lpm -explicit -quiet cic3r32.vhd cic3s32.vhd
vcom -work lpm -explicit -quiet db4poly.vhd db4latti.vhd

echo Compile chapter 6 entitys.

764 D. CD-ROM File: “1readme.ps”

vcom -work lpm -explicit -quiet rader7.vhd ccmul.vhd
vcom -work lpm -explicit -quiet bfproc.vhd

echo Compile chapter 7 entitys.
vcom -work lpm -explicit -quiet rader7.vhd ccmul.vhd
vcom -work lpm -explicit -quiet bfproc.vhd

echo Compile 2. edition entitys.
vcom -work lpm -explicit -quiet div_res.vhd div_aegp.vhd
vcom -work lpm -explicit -quiet fir_lms.vhd fir6dlms.vhd

echo Compile 3. edition entitys from chapter 2.
vcom -work lpm -explicit -quiet cmul7p8.vhd arctan.vhd
vcom -work lpm -explicit -quiet ln.vhd sqrt.vhd

echo Compile 3. edition entitys from chapter 5.
vcom -work lpm -explicit -quiet rc_sinc.vhd farrow.vhd
vcom -work lpm -explicit -quiet cmoms.vhd

echo Compile 3. edition entitys from chapter 9.
vcom -work lpm -explicit -quiet reg_file.vhd trisc0.vhd

Start the ModelSim simulator and then type

do mti_vhdl.do

to execute the script.

Using MTI and Verilog. Using the Verilog interface with the lpm library from
EDIF, i.e., 220model.v, needs some additional effort. When using 220model.v it
is necessary to specify all ports in the Verilog lpm components. There is an extra
directory book3e/verilog/mti, which provides the design examples with a full set
of lpm port specifications. The designs use

‘\include "220model.v"

at the beginning of each Verilog file to include the lpm components, if necessary.
Use the script mti_v1.csh and mti_v2.csh to compile all Verilog design examples
with Model Technology’s vcom compiler.

In order to load the memory initialization file (*.mif), it is required to be famil-
iar with the programming language interface (PLI) of the Verilog 1364-1995 IEEE
standard (see LRM Sect. 17, p. 228 ff). With this powerful PLI interface, conven-
tional C programs can be dynamically loaded into the Verilog compiler. In order
to generate a dynamically loaded object from the program convert_hex2ver.c,
the path for the include files veriuser.h and acc_user.h must be specified. Use
-I when using the gcc or cc compiler under SUN Solaris. Using, for instance, the
gcc compiler under SUN Solaris for the Model Technology Compiler, the following
commands are used to produce the shared object:

gcc -c -I/<install_dir>/modeltech/include convert_hex2ver.c
ld -G -B symbolic -o convert_hex2ver.sl convert_hex2ver.o

By doing so, ld will generate a warning “Symbol referencing errors,” because all
symbols are first resolved within the shared library at link time, but these warnings
can be ignored.

It is then possible to use these shared objects, for instance, with Model Tech-
nology’s vsim in the first design example fun_text.v, with

D. CD-ROM File: “1readme.ps” 765

vsim -pli convert_hex2verl.sl lpm.fun_text

To learn more about PLIs, check out the Verilog IEEE standard 1364-1995, or the
vendor’s user manual of your Verilog compiler.

We can use the script mti_v1.do to compile all Verilog examples with MTI’s
vlog. Just type

do mti_v1.do

in the ModelTech command line. But vlog does not perform a check of the correct
component port instantiations or shared objects. A second script, mti_v2.do, can
be used for this purpose. Start the vsim simulator (without loading a design) and
execute the DO file with

do mti_v2.do

to perform the check for all designs.

Using Xilinx ISE The conversion of designs from Altera Quartus II to Xilinx
ISE seems to be easy if we use standard HDL. Unfortunately there a couple of
issues that needs to be addressed. We assume that the ModelTech simulation envi-
ronment and the web version (i.e., no core generation) is used. We like to discuss in
the following a couple of items that address the ISE/ModelTech design entry. We
describe the Xilinx ISE 6.2 web edition and ModelTech 5.7g version.

1) The Xilinx simulation with timing (“Post-Place & Route”) uses a bitwise sim-
ulation model on the LUT level. Back annotations are only done for the I/O
ports, and are ALL from type standard_logic or standard_logic_vector. In
order to match the behavior and the simulation with timing we therefore need
to use only the standard_logic or standard_logic_vector data type for I/O.
As a consequence no integers, generic, or custom I/O data type, (e.g., like the
subtype byte see cordic.vhd) can be used.

2) The ISE software supports the development of testbenches with the “Test
Bench Waveform.” Use New Source... under the Project menu. This wave-
form will give you a quick way to generate a testbench that is used by Mod-
elTech, both for behavior as well as simulation with timing. There are some
benefits and drawbacks with the testbencher. For instance, you can not assign
negative integers in the waveforms, you need to build the two’s complement,
i.e., equivalent unsigned number by hand.

3) If you have feedback, you need to initialize the register to zero in your HDL
code. You can not do this with the testbencher: for instance, ModelTech ini-
tialize all integer signals to the smallest value, i.e., −128 for a 8-bit number, if
you add two integers, the result will be −128− 128 = −256 < −128 and Mod-
elTech will stop and report an overflow. Some designs, e.g., cordic, cic3r32,
cic3s32, only work correctly in behavior simulation if all integers are changed
to standard_logic_vector data type. Changing I/O ports alone and using the
conversion function does not always guarantee correct simulation results.

4) Simulation with timing usually needs one clock cycle more than behavior code
until all logic is settled. The input stimuli should therefore be zero in the
first clock cycle (ca. 100 ns) and, if you want to match behavior and timing
simulation, and the design uses a (small) FSM for control, you need to add a
synchronous or asynchronous reset. You need to do this for the following 2/e
designs: dafsm, dadrom, dasign, db4latti, db4poly, div aegp, div res,
iir par, mul ser, rader7.
Just add a control part for the FSM like this:

766 D. CD-ROM File: “1readme.ps”

-- IF rising_edge(clk) THEN -- Synchronous reset
-- IF reset = ’1’ THEN
-- state <= s0;
-- ELSE

IF reset = ’1’ THEN -- Asynchronous reset
state <= s0;

ELSIF rising_edge(clk) THEN
CASE state IS
WHEN s0 => -- Initialization step

...

Although at first glance this synchronous or asynchronous control seems to be
cheap because the FSM is small, we need to keep in mind that, if the reset
is active, all signals that are assigned in the state s0 of the FSM need to be
preserved with their initial state value. The following table shows the synthesis
results for the three different reset styles for the design file dafsm.vhd (small
distribute arithmetic state machine):

Reset style Performance/ns 4-input LUT Gates

No reset (original code) 3.542 20 339
synchronous 3.287 29 393
asynchronous 3.554 29 393

Designs with reset usually have a higher LUT and gate count. Depending on
the design, synchronous or asynchronous reset can also have a (small) influence
on performance.

5) Back annotation is only done for I/O ports. If we want to monitor internal nets,
we can try to find the appropriate net name in the *_timesim.vhd file, but that
is quite complicated and may change in the next compiler run. A better idea is
to introduce additional test outputs, see, for instance, fir_lms.vhd for f1_out
and f2_out. In the behavioral (but not in the timing) simulation internal test
signals and variables can be monitored. Modify the *.udo file and add, for
instance for the fir_srg_tb.vhd file, add wave /fir srg tb/uut/tap to the
testbench.

3) There are a couple of nice features in the Xilinx ISE package too: there is no
need for special lpm blocks to use the internal resources for multiplier, shifter,
RAMs or ROMs. Some other features are:
a) ISE converts a shift register in a single CLB-based shift register. This can

save some resources.
b) Multipliers can be implemented with LUTs only, including block multi-

pliers (if available) or even pipelined LUTs, which is done via pipeline
retiming. Just right click on the Synthesize-XST menu in the Processes,
select HDL Options under Process Properties and the last entry is the
multiplier style. But note that for pipelined LUT design the additional
register must be placed at the output of the multiplier. Pipeline retiming
is not done if the additional registers are at the inputs. You need about
log2(B) additional registers to have good timing (see Chap. 2 on pipeline
multiplier). This has an impact on the Registered Performance, LUT us-
age, and gates as the following table shows for the fir_gen.vhd example,
i.e., length 4 programmable FIR filter (from Chap. 3):

D. CD-ROM File: “1readme.ps” 767

Synthesis Speed 4-input mul. Gates
style in ns LUT blocks

Block multiplier 9.838 57 4 17552
LUT (no pipeline) 15.341 433 0 6114
LUT (3 stage pipeline) 6.762 448 0 9748

For this multiplier size (9 bit) the pipelined LUT seems to be attractive,
both for speed as well as gate count. If the number of LUTs is limited, the
block multiplier provides the next best alternative.

c) If you follow the recommended style the Xilinx software synthesis tool (see
XST manual and ISE help “Inferring BlockRAM in VHDL”) maps your
HDL code to the block RAM (see, fun_text.vhd). If the table is small, the
ISE auto option selects the LUT-based implementation for a ROM table
(see darom.vhd). You can also initialize the table in the HDL code and use
it as a ROM. Please see the XST manual Chap. 3, “FPGA Optimization”
for details on ROM implementation. There are some limitations that apply
to the initialization of BlockRAMs (see, XST Chap. 2)

Utility Programs and Files

A couple of extra utility programs are also included on the CD-ROM1 and can be
found in the directory book3e/util:

File Description

sine3e.exe
Program to generate the MIF files for the function gen-
erator in Chap. 1

csd3e.exe
Program to find the canonical signed digit representation
of integers or fractions as used in Chap. 2

fpinv3e.exe
Program to compute the floating-point tables for recip-
rocals as used in Chap. 2

dagen.exe
Program to generate the VHDL code for the distributed
arithmetic files used in Chap. 3

ragopt.exe

Program to compute the reduced adder graph for
constant-coefficient filters as used in Chap. 3. It has 10
predefined lowpass and half-band filters. The program
uses a MAG cost table stored in the file mag14.dat

cic.exe
Program to compute the parameters for a CIC filter as
used in Chap. 5

The programs are compiled using the author’s MS Visual C++ standard edition
software (available for $50–100 at all major retailers) for DOS window applications
and should therefore run on Windows 95 or higher. The DOS script Testall.bat
produces the examples used in the book.

Also under book3e/util we find the following utility files:

1 You need to copy the programs to your harddrive first; you can not start them
from the CD directly since the program write out the results in text files.

768 D. CD-ROM File: “1readme.ps”

File Description

quickver.pdf Quick reference card for Verilog HDL from QUALIS
quickvhd.pdf Quick reference card for VHDL from QUALIS

quicklog.pdf
Quick reference card for the IEEE 1164 logic package
from QUALIS

93vhdl.vhd The IEEE VHDL 1076-1993 keywords

95key.v The IEEE Verilog 1364-1995 keywords
01key.v The IEEE Verilog 1364-2001 keywords
95direct.v The IEEE Verilog 1364-1995 compiler directives
95tasks.v The IEEE Verilog 1364-1995 system tasks and functions

In addition, the CD-ROM includes a collection of useful Internet links (see file
dsp4fpga.htm under book3e/util), such as device vendors, software tools, VHDL
and Verilog resources, and links to online available HDL introductions, e.g., the
“Verilog Handbook” by Dr. D. Hyde and “The VHDL Handbook Cookbook” by
Dr. P. Ashenden.

Microprocessor Project Files and Programs

All microprocessor-related tools and documents can be found in the book3e/uP
folder. Six software Flex/Bison projects along with their compiler scripts are in-
cluded:

• build1.bat and simple.l are used for a simple Flex example.
• build2.bat, d_ff.vhd, and vhdlcheck.l are a basic VHDL lexical analysis.
• build3.bat, asm2mif.l, and add2.txt are used for a simple Flex example.
• build4.bat, add2.y, and add2.txt are used for a simple Bison example.
• build5.bat, calc.l, calc.y and calc.txt is an infix calculator and are used to

demonstrate the Bison/Flex communication.
• build6.bat, c2asm.h, c2asm.h, c2asm.c, lc2asm.c, yc2asm.c and factorial.c

are used for a C-to-assembler compiler for a stack computer.

The *.txt files are used as input files for the programs. The buildx.bat can be
used to compile each project separately; alternatively you can use the uPrunall.bat
under Unix to compile and run all files in one step. The compiled files that run under
SunOS UNIX end with *.exe while the DOS programs end with *.com.

Here is a short description of the other supporting files in the book3e/uP di-
rectory: Bison.pdf contains the Bison compiler, i.e., the YACC-compatible parser
generator, written by Charles Donnelly and Richard Stallman; Flex.pdf is the
description of the fast scanner generator written by Vern Paxson.

Index

Accumulator 10, 257
- µP 553, 557
Actel 9
Adaptive filter 477–535
Adder
- binary 75
- fast carry 76
- floating-point 110, 114
- LPM 15, 30, 78, 368, 733, 737
- pipelined 78
- size 77
- speed 77
Agarwal–Burrus NTT 410
Algorithms
- Bluestein 350
- chirp-z 350
- Cooley–Tukey 367
- CORDIC 120–130
- common factor (CFA) 362
- Goertzel 350
- Good–Thomas 363
- fast RLS 10
- LMS 488, 531
- prime factor (PFA) 362
- Rader 353, 413
- Radix-r 366
- RLS 522, 531
- Widrow–Hoff LMS 488
- Winograd DFT 360
- Winograd FFT 376
Altera 9, 20
AMD 9
Arbitrary rate conversion 280–308
Arctan approximation132
ARM922T µP 592

Bartlett window 175, 345
Bijective 259
Bison µP tool 567, 578
Bitreverse 390

Blackman window 175, 345
Blowfish 452
B-spline rate conversion 296
Butterfly 366, 370

CAST 452
C compiler 586, 587
Chebyshev series 131
Chirp-z algorithm 350
CIC filter 258–273
- RNS design 260
- interpolator 340
Coding bounds 423
Codes
- block
- - decoders 426
- - encoder 425
- convolutional
- - comparison 436
- - complexity 435
- - decoder 430, 434
- - encoder 430, 434
- tree codes 429
Contour plot 490
Convergence 490, 491, 492
- time constant 491
Convolution
- Bluestein 391
- cyclic 391
- linear 116, 165
Cooley–Tuckey
- FFT 367
- NTT 409
CORDIC algorithm 120–130
cosine approximation 137
Costas loop
- architecture 470
- demodulation 470
- implementation 472
CPLD 6, 5

770 Index

Cryptography 436–452
Cypress 9

Daubechies 314, 319, 330, 337, 337
Data encryption standard (DES) 446–
452
DCT
- definition 387
- fast implementation 389
- 2D 387
- JPEG 387
Decimation 245
Decimator
- CIC 261
- IIR 236
Demodulator 458
- Costas loop 470
- I/Q generation 459
- zero IF 460
- PLL 465
DFT
- computation using
- - NTT 417
- - Walsh–Hadamard transformation 417
- - AFT 417
- definition 344 - inverse 344
- filter bank 309
- Rader 363
- real 347
- Winograd 360
Digital signal processing (DSP) 2, 116
Discrete
- Cosine transform, see DCT 390
- Fourier transform, see DFT 344
- Hartley transform 393
- Sine transform (DST) 387
- Wavelet transform (DWT) 332–337
- - LISA µP 610
Distributed arithmetic 116–122
- Optimization
- - Size 121
- - Speed 122
- signed 199
Divider 91–104
- array
- - performance 103
- - size 104
- convergence 100
- fast 99
- LPM 103, 733, 749
- nonperforming 96, 157
- nonrestoring 98, 157
- restoring 94

- types 92
Dyadic DWT 332

Eigenfrequency 259
Eigenvalues ratio 494, 495, 501, 502, 524
Encoder 425, 430, 434
Error
- control 418–436
- cost functions 482
- residue 485
Exponential approximation 141

Farrow rate conversion 292
Fast RLS algorithm 10
Fermat NTT 407
FFT
- comparison 380
- Good–Thomas 363
- group 366
- Cooley–Tukey 367
- in-place 381
- IP core 383
- index map 362
- Nios co-processor 627
- Radix-r 366
- rate conversion 282
- stage 366
- Winograd 376
Filter 165–239
- cascaded integrator comb (CIC)
258–273
- causal 170
- CSD code 179 - conjugate mirror 323
- distributed arithmetic (DA) 189
- finite impulse response (FIR) 165–204
- frequency sampling 277
- infinite impulse response (IIR) 216–210
- IP core 205
- lattice 324
- polyphase implementation 250
- signed DA 199
- symmetric 172
- transposed 167
- recursive 280
Filter bank
- constant
- - bandwidth 329
- - Q 329
- DFT 309
- two-channel 314−328
- - aliasing free 317
- - Haar 316
- - lattice 324

Index 771

- - linear-phase 327
- - lifting 321
- - QMF 314
- - orthogonal 323
- - perfect reconstruction 316
- - polyphase 323
- - mirror frequency 314
- - comparison 328
Filter design
- Butterworth 222
- Chebyshev 223
- Comparison of FIR to IIR 216
- elliptic 222
- equiripple 177
- frequency sampling 277
- Kaiser window 174
- Parks–McClellan 177
Finite impulse response (FIR), see
Filter 165–204
Flex µP tool 567, 571
Flip-flop
- LPM 15, 30, 78, 78, 78, 733
Floating-point
- addition 110
- arithmetic 104
- conversion to fixed-point 106
- division 111
- multiplication 108
- numbers 71
- reciprocal 113
- synthesis results 114
FPGA
- Altera’s Cyclone II 22
- architecture 6
- benchmark 10
- Compiler II 762
- design compilation 33
- floor plan 33
- graphical design entry 30
- performance analysis 36
- power dissipation 13
- registered performance 36
- routing 5, 23
- simulation 34
- size 20, 22
- technology 9
- timing 26
- waveform files 43
- Xilinx Spartan-3 20
FPL, see FPGA and CPLD
Fractal 336
Fractional delay rate conversion 284
Frequency sampling filter 277

Function approximation
- arctan 132
- cosine 137
- Chebyshev series 131
- exponential 141
- logarithmic 145
- sine 137
- square root 150
- Taylor series 121

Galois Field 423
Gauss primes 69
General-purpose µP 538, 588
Generator 67, 68
Gibb’s phenomenon 174
Good–Thomas
- FFT 363
- NTT 409
Goodman/Carey half-band filter 275,
318, 337
Gradient 487

Hadamard 474
half-band filter
- decimator 276
- factorization 317
- Goodman and Carey 275, 318
- definition 274
Hamming window 175, 345
Hann window 175, 345
Harvard µP 558
Hogenauer filter, see CIC
Homomorphism 258

IDEA 452
Identification 480, 494, 503
Isomorphism 258
Image compression 387
Index 67
- multiplier 68
- maps
- - in FFTs 362
- - in NTTs 409
Infinite impulse response (IIR) filter
216–239
- finite wordlength effects 228
- fast filtering using
- - time-domain interleaving 231
- - clustered look-ahead pipelining 233
- - scattered look-ahead pipelining 234
- - decimator design 235
- - parallel processing 237
- - RNS design 239

772 Index

In-place 381
Instruction set design 544
Intel 539
Interference cancellation 478, 522
Interpolation
- CIC 340
- see rate conversion
Inverse
- multiplicative 363
- additive 404
- system modeling 480
IP core
- FFT 383
- FIR filter 205
- NCO 35

JPEG, see Image compression

Kaiser
- window 345
- window filter design 175
Kalman gain 520, 522, 526
Kronecker product 376

Learning curves 493
- RLS 520, 523
Lexical analysis (see Flex)
LISA µP 567, 610–626
LPM
- add sub 15, 30, 78, 368, 733, 737
- divider 103, 733, 749
- flip-flop 15, 30, 78, 78, 78, 733
- multiplier 167, 504, 511, 368, 733, 741
- RAM 606
- ROM 30, 196, 733, 746
Lifting 321
Linear feedback shift register 438
LMS algorithm 488, 531
- normalized 496, 498
- design 506,
- pipelined 508
- - delayed 508
- - design 511, 514
- - look-ahead 510
- - transposed 511
- - block FFT 500
- simplified 516, 517
- - error floor 516
Logarithmic approximation 145

MAC 78
Mersenne NTT 408
MicroBlaze µP 603

Microprocessor
- Accumulator 553, 557
- Bison tool 567, 578
- C compiler 586, 587
- DWT 610
- GPP 538, 588
- Instruction set design 544
- - Profile 611, 615, 618, 624
- Intel 539
- FFT co-processor 627
- Flex tool 567, 571
- Lexical analysis (see Flex)
- LISA 567, 610–626
- Hardcore
- - PowerPC 591
- - ARM922T 592
- Harvard 558
- Softcore
- - MicroBlaze 603
- - Nios 598
- - PicoBlaze 538, 595
- Parser (see Bison)
- PDSP 2, 12, 114, 550, 616
- RISC 540
- - register file 559
- Stack 553, 557, 606
- Super Harvard 558
- Three address 555, 557
- Two address 555, 557
- Vector 620
- Von-Neuman 558
Möbius function 416
MOMS rate conversion 301
Multiplier
- adder graph 184, 229
- array 84
- block 91
- Booth 154
- complex 156, 368
- FPGA array 85
- floating-point 108, 114
- half-square 88
- index 68
- LPM 167, 504, 511, 368, 733, 741
- performance 86
- QRNS 69
- quarter square 90, 239
- serial/parallel 83
- size 87
Modulation 453
- using CORDIC 457
Modulo
- adder 68

Index 773

- multiplier 68,
- reconstruction 273

NAND 5, 42
NCO IP core 35
Nios µP 598
Number representation
- canonical signed digit (CSD) 58, 229
- diminished by one (D1) 57, 405
- floating-point 74
- fractional 59, 178
- one’s complement (1C) 57, 405
- two’s complement (2C) 57
- sign magnitude (SM) 57
Number theoretic transform 401–417
- Agarwal–Burrus 410
- convolution 405
- definition 401
- Fermat 407
- Mersenne 408
- wordlength 408

Order
- filter 166
- for NTTs 408
Ordering, see index map
Orthogonal
- wavelet transform 319
- filter bank 323

Parser (see Bison)
Perfect reconstruction 316
Phase-locked loop (PLL)
- with accumulator reference 461
- demodulator 466
- digital 468
- implementation 467, 469
- linear 465
PicoBlaze µP 538, 595
Plessey ERA 5
Pole/zero diagram 236, 323
Polynomial rate conversion 290
Polyphase representation 250, 320
Power
- dissipation 13
- estimation 496, 498
- line hum 485, 487, 490, 492, 505, 516
PowerPC µP 591
Prediction 479
- forward 525
- backward 527
Prime number
- Fermat 403

- Mersenne 403
Primitive element 67
Programmable signal processor 2, 12,
114, 550, 616
- addressing generation 551
Public key systems 452

Quadratic RNS (QRNS) 69
Quadrature Mirror Filter (QMF) 314

Rader
- DFT 363
- NTT 413
Rate conversion
- arbitrary 280–308
- B-spline 296
- Farrow 292
- FFT-based 282
- fractional delay 284
- MOMS 301
- polynomial 290
- rational 249
Rational rate conversion 249
RC5 452
Rectangular window 175, 345
Reduced adder graph 184, 229
RISC µP 540
- register file 559
RLS algorithm 518, 522, 529
RNS
- CIC filter 260
- complex 70
- IIR filter 239
- Quadratic 69
- scaling 273
ROM
- LPM 30, 196, 733, 746
RSA 452

Sampling
- Frequency 345
- Time 345
- see rate conversion
Sea of gates Plessey ERA 5
Self-similar 332
Sine approximation 137
Simulator
- ModelTechnology 618, 763
Square root approximation150
Stack µP 553, 557, 606
Step size 492, 492, 493, 502
Subband filter 309
Super Harvard µP 558

774 Index

Symmetry
- in filter 172
- in cryptographic algorithms 452
Synthesizer
- accumulator 29
- PLL with accumulator 461

Taylor series 121
Theorem
- Chinese remainder 67
Three address µP 555, 557
Two-channel filter bank 314–328
- comparison 328
- lifting 321
- orthogonal 323
- QMF 323
- polyphase 320
Transformation
- arithmetic Fourier 417
- continuous Wavelet 332
- discrete cosine 390
- discrete Fourier 344
- - inverse (IDFT) 344
- discrete Hartley 393
- discrete Wavelet 332–337
- domain LMS 500
- Fourier 345
- Fermat NTT 407
- pseudo-NTT 409
- short-time Fourier (STFT) 329
- discrete sine 387
- Mersenne NTT 408
- number theoretic 401–417
- Walsh–Hadamard 417
Triple DES 451
Two address µP 555, 557

Vector µP 620
Verilog
- key words 729
VHDL
- styles 15
- key words 729
Von-Neuman µP 558

Walsh 473
Wavelets 332–337
- continuous 332
- linear-phase 327
- LISA processor 610–626
- orthogonal 319
Widrow–Hoff LMS algorithm 488
Wiener–Hopf equation 484

Windows 175, 345
Winograd DFT algorithm 360
Winograd FFT algorithm 376
Wordlength
- IIR filter 228
- NTT 408

Zech logarithm 68

	Digital Signal Processingwith Field ProgrammableGate Arrays
	Preface
	Contents
	1. Introduction
	1.1 Overview of Digital Signal Processing (DSP)
	1.2 FPGA Technology
	1.3 DSP Technology Requirements
	1.4 Design Implementation
	Exercises

	2. Computer Arithmetic
	2.1 Introduction
	2.2 Number Representation
	2.3 Binary Adders
	2.4 Binary Multipliers
	2.5 Binary Dividers
	2.6 Floating-Point Arithmetic Implementation
	2.7 Multiply-Accumulator (MAC) and Sum of Product(SOP)
	2.8 Computation of Special Functions Using CORDIC
	2.9 Computation of Special Functions using MAC Calls
	Exercises

	3. Finite Impulse Response (FIR) DigitalFilters
	3.1 Digital Filters
	3.2 FIR Theory
	3.3 Designing FIR Filters
	3.4 Constant Coefficient FIR Design
	Exercises

	4. Infinite Impulse Response (IIR) DigitalFilters
	Introduction
	4.1 IIR Theory
	4.2 IIR Coefficient Computation
	4.3 IIR Filter Implementation
	4.4 Fast IIR Filter
	Exercises

	5. Multirate Signal Processing
	Introduction
	5.1 Decimation and Interpolation
	5.2 Polyphase Decomposition
	5.3 Hogenauer CIC Filters
	5.4 Multistage Decimator
	5.5 Frequency-Sampling Filters as Bandpass Decimators
	5.6 Design of Arbitrary Sampling Rate Converters
	5.7 Filter Banks
	5.8 Wavelets
	Exercises

	6. Fourier Transforms
	6.1 The Discrete Fourier Transform Algorithms
	6.2 The Fast Fourier Transform (FFT) Algorithms
	6.3 Fourier-Related Transforms
	Exercises

	7. Advanced Topics
	7.1 Rectangular and Number Theoretic Transforms(NTTs)
	7.2 Error Control and Cryptography
	7.3 Modulation and Demodulation
	Exercises

	8. Adaptive Filters
	8.1 Application of Adaptive Filter
	8.2 Optimum Estimation Techniques
	8.3 The Widrow–Hoff Least Mean Square Algorithm
	8.4 Transform Domain LMS Algorithms
	8.5 Implementation of the LMS Algorithm
	8.6 Recursive Least Square Algorithms
	8.7 Comparison of LMS and RLS Parameters
	Exercises

	9. Microprocessor Design
	Introduction
	9.1 History of Microprocessors
	9.2 Instruction Set Design
	9.3 Software Tools
	9.4 FPGA Microprocessor Cores
	9.5 Case Studies
	Exercises

	References
	A. Verilog Source Code 2001
	B. VHDL and Verilog Coding
	C. Glossary
	D. CD-ROM File: “1readme.ps”
	Index

