
T E C H N O L O G Y I N A C T I O N ™

Raspberry Pi
Supercomputing and
Scientific Programming

MPI4PY, NumPy, and SciPy for
Enthusiasts
—
Ashwin Pajankar

Raspberry Pi
Supercomputing

and Scientific
Programming

MPI4PY, NumPy, and SciPy for
Enthusiasts

Ashwin Pajankar

Raspberry Pi Supercomputing and Scientific Programming

Ashwin Pajankar							
Nashik, Maharashtra, India						

ISBN-13 (pbk): 978-1-4842-2877-7		 ISBN-13 (electronic): 978-1-4842-2878-4
DOI 10.1007/978-1-4842-2878-4

Library of Congress Control Number: 2017943339

Copyright © 2017 by Ashwin Pajankar

This work is subject to copyright. All rights are reserved by the Publisher, whether the
whole or part of the material is concerned, specifically the rights of translation, reprinting,
reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any
other physical way, and transmission or information storage and retrieval, electronic
adaptation, computer software, or by similar or dissimilar methodology now known or
hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a
trademark symbol with every occurrence of a trademarked name, logo, or image we
use the names, logos, and images only in an editorial fashion and to the benefit of the
trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms,
even if they are not identified as such, is not to be taken as an expression of opinion as to
whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the
date of publication, neither the authors nor the editors nor the publisher can accept any
legal responsibility for any errors or omissions that may be made. The publisher makes
no warranty, express or implied, with respect to the material contained herein.

Managing Director: Welmoed Spahr
Lead Editor: Celestin Suresh John
Technical Reviewer: Lentin Joseph
Editorial Board: Steve Anglin, Pramila Balan, Laura Berendson, Aaron Black,

Louise Corrigan, Jonathan Gennick, Robert Hutchinson, Celestin Suresh John,
Nikhil Karkal, James Markham, Susan McDermott, Matthew Moodie, Natalie Pao,
Gwenan Spearing

Coordinating Editor: Sanchita Mandal
Copy Editor: Larissa Shmailo
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media,
LLC is a California LLC and the sole member (owner) is Springer Science + Business
Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate,
or promotional use. eBook versions and licenses are also available for most titles.
For more information, reference our Special Bulk Sales–eBook Licensing web page at
www.apress.com/bulk-sales.

Any source code or other supplementary materials referenced by the author in this text are
available to readers at www.apress.com. For detailed information about how to locate your
book’s source code, go to www.apress.com/source-code/. Readers can also access source
code at SpringerLink in the Supplementary Material section for each chapter.

Printed on acid-free paper

mailto:orders-ny@springer-sbm.com
www.springeronline.com
mailto:rights@apress.com
http://www.apress.com
http://www.apress.com/bulk-sales
www.apress.com
http://www.apress.com/source-code

iii

Contents at a Glance

About the Author��� xiii

About the Technical Reviewer�� xv

Acknowledgments�� xvii

Introduction��� xix

■■�Chapter 1: Introduction to Single Board Computers and
Raspberry Pi�� 1

■■�Chapter 2: Important Linux Commands and Remote
Connectivity��� 27

■■Chapter 3: Introduction to Python��� 43

■■Chapter 4: Introduction to Supercomputing���������������������������������� 57

■■Chapter 5: Message Passing Interface�� 61

■■Chapter 6: Building the Supercomputer�� 67

■■Chapter 7: Overclocking Raspberry Pi�� 81

■■Chapter 8: Parallel Programming in Python 3������������������������������� 87

■■�Chapter 9: Introduction to SciPy Stack and Symbolic
Programming��� 99

■■Chapter 10: Introduction to NumPy��� 109

■■Chapter 11: Introduction to SciPy��� 129

■ Contents at a Glance

iv

■■Chapter 12: Signal Processing with SciPy��� 139

■■Chapter 13: Image Processing with SciPy���������������������������������� 149

■■Chapter 14: Matplotlib��� 159

Index��� 167

v

Contents

About the Author��� xiii

About the Technical Reviewer�� xv

Acknowledgments�� xvii

Introduction��� xix

■■�Chapter 1: Introduction to Single Board Computers and
Raspberry Pi�� 1

Single Board Computers (SBCs)��� 1

Differences Between SBCs and Regular Computers��� 2

System on Chip�� 2

History of SBCs�� 3

Popular SBC Families�� 3

Raspberry Pi��� 4

Raspberry Pi Setup��� 7

Hardware required for Raspberry Pi setup�� 7

Manual Preparation of the MicroSD Card for Raspberry Pi������������������������������������� 10

Download the Required Free Software�� 11

Writing the Raspbian OS Image to the MicroSD Card�� 11

Altering the Contents of the config.txt File for VGA Monitors���������������������������������� 13

Booting up the Pi��� 14

Configuring the Pi�� 16

﻿ ■ Contents

vi

Raspbian�� 20

config.txt�� 20

Connecting Raspberry Pi to a Network and the Internet������������������������ 20

WiFi�� 21

Ethernet��� 22

Updating the Pi��� 23

Updating the Firmware�� 23

Updating and Upgrading Raspbian�� 24

Updating raspi-config�� 24

Shutting Down and Restarting Pi��� 25

Conclusion�� 25

■■�Chapter 2: Important Linux Commands and Remote
Connectivity��� 27

Important and Useful Linux Commands��� 27

Getting Help with Linux Commands�� 27

Network-related Commands��� 27

System Information Commands�� 28

Enabling Pi for SSH from raspi-config�� 30

Connecting to the Raspberry Pi Remotely from Windows���������������������� 31

Checking the Connectivity with Pi from Another Computer������������������������������������� 31

PuTTY��� 31

Accessing Raspberry Pi Desktop Remotely��� 34

WinSCP�� 37

Connecting to Raspberry Pi Using Linux or macOS�������������������������������� 40

Remote Login with SSH��� 40

Forwarding Using SSH��� 40

SCP for File Transfer�� 40

Conclusion�� 41

﻿ ■ Contents

vii

■■Chapter 3: Introduction to Python��� 43

History of Python�� 43

Features of Python��� 44

Simple��� 44

Easy to Learn��� 45

Easy to Read�� 45

Easy to Maintain�� 45

Open Source�� 45

High-level Language�� 45

Portable��� 45

Interpreted��� 46

Object-Oriented��� 46

Extensible�� 46

Extensive Libraries�� 46

Robust��� 46

Rapid Prototyping�� 47

Memory Management��� 47

Powerful�� 47

Community Support��� 47

Python 3��� 47

The Differences Between Python 2 and Python 3��� 48

Why Use Python 3?�� 49

Python 2 and Python 3 on Raspbian��� 49

Running a Python Program and Python Modes�������������������������������������� 50

Interactive Mode�� 50

Normal Mode��� 50

﻿ ■ Contents

viii

IDEs for Python��� 51

IDLE��� 51

Geany��� 52

Conclusion�� 55

■■Chapter 4: Introduction to Supercomputing���������������������������������� 57

Concept of the Supercomputer�� 57

Brief history of Supercomputers�� 57

Cluster�� 58

Heterogenous Cluster�� 58

Beowulf Cluster��� 59

Parallelism and Concurrency�� 59

Parallelism��� 59

Concurrency�� 59

Parallel Programming�� 60

Conclusion�� 60

■■Chapter 5: Message Passing Interface�� 61

Message Passing Interface�� 61

History and Evolution of the MPI Standard�� 62

Features of MPI��� 62

Implementations of MPI��� 63

MPI4PY��� 63

Why Use the Python, MPI, and MPI4PY Combination?��� 64

Installing MPI4PY for Python3 on Raspbian��� 64

Installing nmap��� 65

Conclusion�� 65

﻿ ■ Contents

ix

■■Chapter 6: Building the Supercomputer�� 67

Making a Backup of the MicroSD card��� 67

Preparing Nodes of the Supercomputer��� 68

Networking the Pis��� 69

LAN with DHCP�� 69

WiFi Network��� 70

LAN with Static IP Addresses�� 71

Using nmap to Find the IP Addresses of Pis��� 72

Running the hostname Command on Multiple Pis with mpirun������������� 73

Exchanging the ssh-keygen Keys for Automatic Authentication����������������������������� 73

Organizing the Pis in the Cluster�� 77

Conclusion�� 80

■■Chapter 7: Overclocking Raspberry Pi�� 81

Risks of Overclocking Raspberry Pi��� 81

Installing a Heatsink on Pi�� 82

Procuring Heatsinks�� 82

Overclocking the Pi with raspi-config�� 82

Overclocking the Pi with /boot/config.txt��� 83

Options in /boot/config.txt��� 83

/boot/config.txt Options for the Various Models of Pi����������������������������� 84

Options for Pi B and Pi B+��� 84

Options for Pi 2�� 85

Options for Pi 3�� 85

Conclusion�� 86

■■Chapter 8: Parallel Programming in Python 3������������������������������� 87

Basics of MPI4PY�� 87

Getting Started with MPI4PY�� 88

﻿ ■ Contents

x

Conditional Statements�� 89

Checking the Number of Processes��� 90

Sending and Receiving Data�� 91

Dynamically Sending and Receiving Data�� 92

Data Tagging��� 93

Data Broadcasting�� 94

Data Scattering�� 95

Data Gathering��� 96

Conclusion�� 97

■■�Chapter 9: Introduction to SciPy Stack and Symbolic
Programming��� 99

The Scientific Python Stack��� 99

Installation of the SciPy Stack�� 100

SymPy�� 100

Getting Started�� 101

Symbols��� 102

Converting Strings to SymPy Expressions��� 103

Sympy’s Printing Functionality�� 103

Simplification in SymPy��� 104

Calculus��� 105

Conclusion�� 107

■■Chapter 10: Introduction to NumPy��� 109

Basics of NumPy�� 109

Jupyter�� 109

Jupyter Notebooks��� 110

The N-Dimensional Array (ndarray)��� 114

ndarray Attributes�� 115

Data Types��� 116

﻿ ■ Contents

xi

Array Creation Routines��� 116

Matrix and Linear Algebra�� 120

Trigonometric Methods�� 122

Random Numbers and Statistics�� 126

Fourier Transforms��� 127

Conclusion�� 128

■■Chapter 11: Introduction to SciPy��� 129

Scientific and Mathematical Constants in SciPy���������������������������������� 129

Linear algebra�� 130

Integration�� 132

Interpolation��� 133

Conclusion�� 137

■■Chapter 12: Signal Processing with SciPy��� 139

Waveforms��� 139

Window Functions�� 142

Mexican Hat Wavelet��� 145

Convolution�� 146

Conclusion�� 147

■■Chapter 13: Image Processing with SciPy���������������������������������� 149

First Image Processing Program�� 149

Simple Image Processing��� 150

Introduction to NumPy for Image Processing��������������������������������������� 151

Matplotlib for Image Processing�� 152

Image Channels�� 156

Conclusion�� 158

■ Contents at a Glance

xii

■■Chapter 14: Matplotlib��� 159

Reading an Image�� 159

Colormaps�� 160

Colorbar�� 161

Matplotlib for Image Processing�� 162

Interpolation Methods�� 163

Conclusion�� 164

Summary of the Book��� 165

Index��� 167

xiii

About the Author

Ashwin Pajankar is a polymath. He is a science popularizer, a programmer, a maker, an
author, and a Youtuber. He graduated from IIIT Hyderabad with an MTech in computer
science and engineering. He has a keen interest in the promotion of science, technology,
engineering, and mathematics (STEM) education. He has written three books with Packt
Publication, six books with Leanpub, two books with Apress, and has also reviewed four
books for Packt Publications. This is his third book with Apress Publication and he’s
working on a few more books with Apress.

His personal website is
www.AshwinPajankar.com
His LinkedIn profile is
https://in.linkedin.com/in/ashwinpajankar
His Youtube channel is
www.youtube.com/AshwinPajankar

http://www.ashwinpajankar.com/
https://in.linkedin.com/in/ashwinpajankar
http://www.youtube.com/AshwinPajankar

xv

About the Technical
Reviewer

Lentin Joseph is an author, entrepreneur, electronics
engineer, robotics enthusiast, machine vision expert,
embedded programmer, and the founder and CEO of
Qbotics Labs (www.qboticslabs.com). He is from India.

He completed his bachelor’s degree in electronics
and communication engineering at the Federal
Institute of Science and Technology (FISAT) in Kerala.
For his final year engineering project, he made a social
robot that can interact with people. The project was
a huge success and was mentioned in many forms
of visual and print media. The main features of this
robot were that it could communicate with people and
reply intelligently, and it had some image processing
capabilities such as face, motion, and color detection.
The entire project was implemented using the Python
programming language. His interest in robotics, image
processing, and Python started with that project.

After his graduation, for three years he worked at a start-up company focusing on
robotics and image processing. In the meantime, he learned to work with famous robotic
software platforms such as Robot Operating System (ROS), V-REP, Actin (a robotic
simulation tool), and image processing libraries such as OpenCV, OpenNI, and PCL. He
also knows about robot 3D designing and embedded programming on Arduino and Tiva
Launchpad.

After three years of work experience, he started a new company called Qbotics Labs,
which mainly focuses on research to build up some great products in domains such as
robotics and machine vision. He maintains a personal website (www.lentinjoseph.com) and
a technology blog called technolabsz (www.technolabsz.com). He publishes his works on his
tech blog. He was also a speaker at PyCon2013, India, on the topic of learning robotics using
Python.

Lentin is the author of the books Learning Robotics Using Python (see www.learn-
robotics.com to find out more) and Mastering ROS for Robotics Programming
(see www.mastering-ros.com to find out more) by Packt. The first book was about building
an autonomous mobile robot using ROS and OpenCV. This book was launched at ICRA
2015 and was featured in the ROS blog, Robohub, OpenCV, the Python website, and various
other such forums. The second book is on mastering Robot Operating System, which was

http://www.qboticslabs.com/
http://www.lentinjoseph.com/
http://www.technolabsz.com/
http://www.learn-robotics.com/
http://www.learn-robotics.com/
http://www.mastering-ros.com/

﻿ ■ About the Technical Reviewer

xvi

also launched at ICRA 2016, and is one of the bestselling books on ROS. The third book is on
ROS Robotics Projects (www.rosrobots.com), which is expected to release on April 2017.

He also reviewed one book about Robot Operating System called Effective Robotics
Programming Using ROS (www.packtpub.com/hardware-and-creative/effective-
robotics-programming-ros-third-edition)

Lentin and his team were also winners of the HRATC 2016 challenge conducted as a
part of ICRA 2016. He was also a finalist in the ICRA 2015 challenge, HRATC
(www.icra2016.org/conference/challenges/).

http://www.rosrobots.com/
http://www.packtpub.com/hardware-and-creative/effective-robotics-programming-ros-third-edition
http://www.packtpub.com/hardware-and-creative/effective-robotics-programming-ros-third-edition
http://www.icra2016.org/conference/challenges/

xvii

Acknowledgments

The making of the book was a journey that I am glad I undertook. First, I would like to
thank my wife, Kavitha, without whose support the extraordinary journey would have
never been possible. The journey spanned a few months but the experience will last a
lifetime. I had my wife, Kavitha, with me onboard this journey and I wish to express my
deepest gratitude to her. Without her unwavering support and affection, I couldn’t have
pulled it off.

I am grateful to the community of professionals, students, trainers, and teachers who
with their continual bombardment of queries impelled me to learn more, simplify my
learnings and findings, and place it neatly in the book. This book is for all of them.

I wish to thank my friends and colleagues—the practitioners from the industry and
experts from academia for their good counsel and filling me in with the knowledge on
the latest in the fields of single board computers, supercomputing, parallel programming,
and Python.

I would like to thank the technical reviewer for his vigilant reviews, suggestions,
corrections, and offering his expert opinion.

I consider myself very fortunate for the editorial assistance provided by Apress
Media. This is my third book with Apress and the collaboration with them for all the
books has been fabulous. I am thankful to Celestin Suresh John, Senior Manager, Editorial
Acquisition, Apress and Springer Science and Business Media Company for giving me a
long-desired opportunity to collaborate and write with Apress. I wish to acknowledge and
appreciate Sanchita Mandal, coordinating editor; Matthew Moodie, development editor;
and the team of associates from Apress who adeptly guided me through the entire process
of preparation and publication with Apress.

xix

Introduction

“I’m sorry, buddy, you’ve got a C in parallel programming,” my classmate said to me. It
was my second semester at IIIT Hyderabad, where I was pursuing my graduate studies
towards an MTech in computer science and engineering. To be very honest, I was really
not expecting an A in parallel programming. However, I was not expecting a C either. Like
most of the folks in my class, I was expecting a B or a B- in the worst case. As I mentioned
earlier, it was my second semester and I was getting used to boring and rigorous
academics at the Institute. I was also getting used to seeing C and C- grades on my
scorecard. I was really starting to wonder if I had what it took to pursue graduate studies
at the coveted and hallowed Institute. Little did I know that the worst was yet to come,
because exactly one year after that, I saw two Ds on my scorecard.

I wondered if there was a way to make scary subjects like parallel programming more
interesting and appealing to undergrad and graduate students. I vividly remember that
our prof for the course mentioned that the US Air Force created a cluster of PS3s (http://
phys.org/news/2010-12-air-playstation-3s-supercomputer.html). You can also
check the Wikipedia page (https://en.wikipedia.org/wiki/PlayStation_3_cluster)
for the same. I fancied owning a small-scale cluster like that. However, the biggest hurdle
was and still is the cost associated with individual unit. A PS3 costs around 250 USD and
a PS2 costs 100 USD. Moreover, it is a really tedious task to install Linux OS on the PS2
and PS3. I have nothing against Sony or the PS2/PS3, as Playstations are excellent gaming
consoles, but I wanted something cheaper and simpler to build the cluster. So I shelved
my plans to build a cluster for the time being and got engrossed in academics at the
Institute.

Fast forward two years: I saw a bunch of kids booting up a strange-looking PCB
(printed circuit board) with Linux and I literally jumped with excitement. When I asked
them what it was, they said, “Raspberry Pi.” This is how I was introduced to Raspberry Pi.
The occasion was a Hackathon organized at my former workplace for specially abled kids.
When I saw those lovely and creative kids using a little computer, I immediately decided
to explore it, and after six months my first book on Raspberry Pi (www.packtpub.com/
hardware-and-creative/raspberry-pi-computer-vision-programming) got published.

It has been a while since my first book got published. Raspberry Pi underwent major
revisions. Multiple newer and more powerful models of Pi have been introduced.
I explored the world of single board computers in detail as I (correctly) thought that SBCs
could be best for cluster. Then I built a cluster with three units of Raspberry Pis for a
proof of concept. I went on building the clusters for various organizations, T-Schools, and
universities all over India.

Raspberry Pi also serves as an excellent learning platform for scientific
programming. We can use it for exploring important concepts in the scientific domains of
signal and image processing, or to perform symbolic computations with SymPy.

http://phys.org/news/2010-12-air-playstation-3s-supercomputer.html
http://phys.org/news/2010-12-air-playstation-3s-supercomputer.html
https://en.wikipedia.org/wiki/PlayStation_3_cluster
http://www.packtpub.com/hardware-and-creative/raspberry-pi-computer-vision-programming
http://www.packtpub.com/hardware-and-creative/raspberry-pi-computer-vision-programming

﻿ ■ Introduction

xx

I have explored the domain of scientific programming in detail in this book. The
book has almost 100 coding examples to demonstrate and explore the world of scientific
programming.

I hope that this book will help the scientific community and young researchers to use
Raspberry Pi and Python as tools to explore scientific frontiers.

Why This Book?
As I said earlier, I found learning and exploring the topics in parallel and scientific
programming quite boring and difficult. However, these are some of the most useful
areas in computer science, with many applications in the real world. In my past and
current jobs, I routinely used various parallel and scientific programming libraries for
accomplishing various tasks. I want more people to get interested in this wonderful field.
However, when people approach me for guest lectures and talks on this topic, they have a
common complaint. They tell me that it’s difficult to get started with Raspberry Pi, parallel
and scientific programming due to lack of reliable materials and references over the
Internet. There are many tutorials and videos which teach people how to create a small
multi-node cluster with Raspberry Pi. But due to unfamiliarity with the notion of single
board computers, they found it difficult to grasp the information provided. So I decided to
combine the topics of Raspberry Pi setup and supercomputers in a single book. This book
teaches readers how to build a Raspberry Pi cluster as well as how to use Python to exploit
its computational power for various scientific tasks. The cluster we will build in this book will
be very basic one. It will be fit to be deployed in academic and research institutions. We will
also learn how to get started with symbolic programming, scientific programming, image
processing, and signal processing in this book. The book has within its scope the following:

•	 Introduction to single board computers, Python 3, and Raspberry Pi

•	 Basic concepts in supercomputing

•	 Preparing a node and building an entire cluster

•	 Parallel programming in Python

•	 Symbolic mathematical programming

•	 Scientific programming

•	 Image processing

•	 Signal processing

•	 Visualization with Matplotlib

Who Is This Book For?
This book is for beginners in Raspberry Pi and parallel programming. It is for people who
are interested in learning how to create a low-cost supercomputer and get started with
scientific programming at very low cost. However, this book is not for people completely
new to the world of computer science. I assume that you have a decent knowledge of

﻿ ■ Introduction

xxi

computers and that you are not new to the most fundamental concepts related to it.
The perfect reader of this book may be both a hobbyist and a student, someone who is
familiar with computers and wants to learn a more powerful tool to explore computer
science further. Makers and hackers will also find this book interesting. Finally, if you
have no idea why you are reading this book, you might get interested in Raspberry Pi,
supercomputers, scientific and parallel programming. I hope all the readers will enjoy
reading this book as much as I enjoyed writing it.

What This Book Is Not
This book is not a book for learning Python 3 programming and syntax from scratch. It is
more of a DIY cookbook for Raspberry Pi, scientific programming, and supercomputing.
If your understanding of coding is limited or if you are not from a computer science
background, then you will find it difficult to follow this book.

How This Book Is Organized
This book has 14 chapters. Here is a sneak peek into the chapters of the book:

Chapter 1: This chapter introduces the readers to the history and philosophy of
single board computers. It explores Raspberry Pi basics, and teaches readers to set up the
Raspberry Pi and connect it to a network.

Chapter 2: This chapter introduces the readers to important Linux commands. It
also details the procedure to establish remote connectivity with Raspberry Pi.

Chapter 3: The aim of this chapter is to introduce the readers to Python history and
philosophy. It discusses the differences between Python 2 and Python 3. It also explores
various modes of the Python 3 interpreter.

Chapter 4: This chapter serves to introduce the concept of supercomputing to the
readers.

Chapter 5: This chapter will demonstrate how to install MPI4PY on Raspberry Pi.
Chapter 6: This chapter teaches the readers how to build a supercomputer of Pis.
Chapter 7: This chapter teaches the readers how to overclock various models of Pi

safely.
Chapter 8: This detailed chapter introduces readers to MPI4PY programming with

Python 3. It explores many important concepts and constructs in parallel programming.
Chapter 9: This chapter introduces readers to the components of the SciPy stack. It

also gets the readers started with symbolic programming using SymPy.
Chapter 10: This chapter introduces readers to the world of numerical computation

with NumPy.
Chapter 11: This chapter introduces readers to the various modules in the SciPy

library.
Chapter 12: Readers explore the amazing world of signals and signal processing

graphically in this chapter.
Chapter 13: Readers will explore the basics of image processing in this chapter.
Chapter 14: This chapter provides a brief glimpse into the world of data visualization

with Matplotlib in Python.

http://dx.doi.org/10.1007/978-1-4842-2878-4_1
http://dx.doi.org/10.1007/978-1-4842-2878-4_2
http://dx.doi.org/10.1007/978-1-4842-2878-4_3
http://dx.doi.org/10.1007/978-1-4842-2878-4_4
http://dx.doi.org/10.1007/978-1-4842-2878-4_5
http://dx.doi.org/10.1007/978-1-4842-2878-4_6
http://dx.doi.org/10.1007/978-1-4842-2878-4_7
http://dx.doi.org/10.1007/978-1-4842-2878-4_8
http://dx.doi.org/10.1007/978-1-4842-2878-4_9
http://dx.doi.org/10.1007/978-1-4842-2878-4_10
http://dx.doi.org/10.1007/978-1-4842-2878-4_11
http://dx.doi.org/10.1007/978-1-4842-2878-4_12
http://dx.doi.org/10.1007/978-1-4842-2878-4_13
http://dx.doi.org/10.1007/978-1-4842-2878-4_14

﻿ ■ Introduction

xxii

How to Get The Most Out of This Book
It is easy to leverage the book to gain the maximum by religiously abiding by the
following:

•	 Read the chapters thoroughly. Do NOT skip any chapter. Perform
hands-on by following the step-by-step instructions stated in the
code examples. Do NOT skip any code example. If need be, repeat
it a second time or until the concept is firmly etched in your mind.

•	 Join a Python community or discussion forum.

•	 Read online documentation available for MPI4PY, NumPy, and
SciPy.

•	 Read blogs on single board computers, Raspberry Pi,
supercomputers, parallel programming, scientific programming,
and Python 3.

Where Next?
I have endeavored to unleash the power of supercomputing and scientific libraries in
Python 3 as an aid to the Raspberry Pi community. I recommend you read the book
from cover to cover without skipping any chapter, text, code example, note, reference, or
exercise.

A Quick Word for Instructors
I have paid attention to the sequence of chapters and the flow of topics within each
chapter. This is particularly to assist my fellow instructors and academicians in carving
out a syllabus for their training from the table of contents of this book.

I have ensured that each concept discussed in the book is with adequate hands-
on content to enable you to teach better and provide ample hands-on practice to your
students.

Happy learning, supercomputing, scientific programming, and Pythoning!
Ashwin Pajankar, author

1© Ashwin Pajankar 2017
A. Pajankar, Raspberry Pi Supercomputing and Scientific Programming,
DOI 10.1007/978-1-4842-2878-4_1

CHAPTER 1

Introduction to Single Board
Computers and Raspberry Pi

We will start our exciting journey of exploration into the scientific domain of
supercomputing and scientific programming with Raspberry Pi. But for us to begin
the journey, we must be comfortable with the basics of the single board computers
and Raspberry Pi. In this chapter, we will study the definition, history, and philosophy
behind single board computers. We will first compare it with a regular computer. We will
then move on to the most popular and best-selling single board computer of all time, the
Raspberry Pi. By the end of this chapter, readers will have adequate knowledge to set up
their own Raspberry Pi independently. This chapter aims to make the readers comfortable
with the very basic concepts of single board computers and the setup of the Raspberry Pi.

Single Board Computers (SBCs)
A single board computer (which will be referred to as SBCs from henceforth throughout
the entire book) is a fully functional computer system built around a single printed
circuit board. An SBC has microprocessor(s), memory, input/output, and other features
required of a minimal functional computer. Unlike a desktop personal computer (PC),
most of the SBCs do not have expansion slots for peripheral functions or expansion. As all
the components such as processor(s), RAM, GPU, etc., are integrated on a single PCB, we
cannot upgrade an SBC.

Few SBCs are made to plug into a backplane for system expansion. SBCs come in
many varieties, sizes, shapes, form factors, and sets of features. Due to the advances in
electronics and semiconductor technologies, prices of most SBCs are very low. One of the
most important features of SBCs is cost effectiveness. With a price around $50 apiece, we
have in our hands a development tool suitable for new applications, hacking, debugging,
testing, hardware development, and automation systems.

SBCs are usually manufactured in the following form factors:

•	 Pico-ITX

•	 PXI

•	 Qseven

Chapter 1 ■ Introduction to Single Board Computers and Raspberry Pi

2

•	 VMEbus

•	 VPX

•	 VXI

•	 AdvancedTCA

•	 CompactPCI

•	 Embedded Compact Extended (ECX)

•	 Mini-ITX

•	 PC/104

•	 PICMG

Differences Between SBCs and Regular Computers
The following is a table (Table 1-1) of the differences between SBCs and regular
computers.

System on Chip
All the SBCs are predominantly SoCs. A system on a chip or system on chip (SoC or
SOC) is an integrated circuit (IC) that has all the components of a computer on a
single chip. SoCs are very common in mobile electronic devices because of their low
power consumption and versatility. SoCs are widely used in mobile phones, SBCs,
and embedded hardware. A SoC has all the hardware and the software needed for its
operation.

Table 1-1.  Differences Between SBCs and Regular Computers

Single Board Computer Regular Computer

It is not modular. It is modular.

Its components cannot be upgraded or
replaced.

Its components can be upgraded or
replaced.

It’s a System-On-Chip. It’s not a System-On-Chip.

It has small form factor. It has large form factor.

It is portable. It is mostly non-portable or semi-portable.

It consumes less power. It consumes more power.

It is cheaper than a regular computer. It is costlier than an SBC.

Chapter 1 ■ Introduction to Single Board Computers and Raspberry Pi

3

SoC vs. Regular CPU
The biggest advantage of using a SoC is its size. If we use a CPU, it’s very hard to make
a compact computer, only because of the sheer number of individual chips and other
components that we need to arrange on a board. However, using SoCs, we can place
complete application-specific computing systems in smartphones and tablets, and still
have plenty of space for batteries, antennae, and other add-ons required for remote
telephony and data communication.

Due to the very high level of integration and compact size, a SoC uses considerably
less power than a regular CPU. This is a significant advantage of SoCs when it comes
to mobile and portable systems. Also, reducing the number of chips by eliminating
redundant ICs on a computer board results in the compact board size.

History of SBCs
Dyna-Micro was the first true SBC. It was based on the Intel C8080A and used Intel’s first
EPROM, the C1702A. The dyna-micro was re-branded and marketed by E&L Instruments
of Derby, CT in 1976 as the MMD-1 (Mini-Micro Designer 1). It became famous as
the leading example of microcomputers. SBCs were very popular in the earlier days of
computing, as many home computers were actually SBCs. However, with the rise of PCs,
the popularity of SBCs declined. Since 2010, there has been a resurgence in the popularity
of SBCs due to lower production costs associated with SBCs.

Apart from the MMD-1, a few popular historical SBCs are the following:

•	 BBC Micro was built around a MOS Technology 6502A processor
running at 2 MHz.

•	 Ferguson Big Board II was a Zilog Z80 based computer running
at 4MHz.

•	 Nascom was another Zilog Z80 based computer.

Popular SBC Families
Based on manufacturers and designers, SBCs are grouped into families, models, and
generations. A few popular SBC families are

•	 Raspberry Pi by Raspberry Pi Foundation

•	 Banana Pi and Banana Pro

•	 Intel Edison and Galileo

•	 Cubieboard

•	 Beaglebone and Beagleboard

Chapter 1 ■ Introduction to Single Board Computers and Raspberry Pi

4

Raspberry Pi
Raspberry Pi is a family of credit card-sized SBCs developed in the United Kingdom by
the Raspberry Pi Foundation. The Raspberry Pi Foundation was founded in 2009. The aim
behind developing Raspberry Pi is to promote the teaching of basic computer science in
schools and developing countries by providing a low-cost computing platform.

The Raspberry Pi Foundation’s Raspberry Pi was released in 2012. It was a massive
hit which sold over two million units in two years. Subsequently, the Raspberry Pi
Foundation revised versions of the Raspberry Pi. They also released other accessories for
the Pi.

You can find more information about the Raspberry Pi Foundation on the Raspberry
Pi Foundation’s website (www.raspberrypi.org).

The product page for Raspberry Pi’s current production models and other
accessories is www.raspberrypi.org/products.

I have written, executed, and tested all the code examples of this book on Raspberry
Pi Models B+, 2B, and 3B. Raspberry Pi 3 Model B (also known as 3B) is the most recent
model of Raspberry Pi. Let us look at the specifications (Refer Table 1-2) of Raspberry Pi 3
Model B.

Table 1-2.  Specifications of Raspberry Pi 3 Model B

Release Date February 2016

Architecture ARMv8

SoC Broadcom BCM2837

CPU 1.2 GHz 64-bit quad-core ARM Cortex-A53

GPU Broadcom VideoCore IV (3D part of GPU @ 300 MHz, video part
of GPU @ 400 MHz)

Memory 1 GB (shared with GPU)

USB 2.0 ports 4

Video Output HDMI rev 1.3 and Composite Video RCA jack

On-board storage Micro SDHC slot

On-board network 10/100 Mbps Ethernet, Bluetooth, and WiFi

Power source 5V via MicroUSB

Power ratings 800 mA (4W)

https://www.raspberrypi.org/
https://www.raspberrypi.org/products

Chapter 1 ■ Introduction to Single Board Computers and Raspberry Pi

5

The following (Figure 1-1) is the top view of Raspberry Pi 3 Model B.

The following (Figure 1-2) is the bottom view of Raspberry Pi 3 Model B.

Figure 1-1.  Raspberry Pi 3 Model B top view

Chapter 1 ■ Introduction to Single Board Computers and Raspberry Pi

6

We can get more information on Raspberry Pi 3 Model B by visiting its product page
(www.raspberrypi.org/products/raspberry-pi-3-model-b).

The following table (Table 1-3) lists the specifications of Raspberry Pi 2 Model B.

Figure 1-2.  Raspberry Pi 3 Model B bottom view

Table 1-3.  Specifications of Raspberry Pi 2 Model B

Release Date February 2015

Architecture ARMv7

SoC Broadcom BCM2836

CPU 900 MHz 32-bit quad-core ARM Cortex-A7

GPU Broadcom VideoCore IV @ 250 MHz

Memory 1 GB (shared with GPU)

USB 2.0 ports 4

Video Output HDMI rev 1.3 and Composite Video RCA jack

On-board storage Micro SDHC slot

On-board network 10/100 Mbps Ethernet, Bluetooth, and WiFi

Power source 5V via MicroUSB

Power ratings 800 mA (4W)

http://www.raspberrypi.org/products/raspberry-pi-3-model-b

Chapter 1 ■ Introduction to Single Board Computers and Raspberry Pi

7

We can get more information on Raspberry Pi 2 Model B by visiting its product page
(www.raspberrypi.org/products/raspberry-pi-2-model-b/).

The following table (Table 1-4) lists the specifications of Raspberry Pi 1Model B+.

We can get more information on Raspberry Pi 2 Model B by visiting its product page
(www.raspberrypi.org/products/model-b-plus/).

Raspberry Pi Setup
We have to set up Raspberry Pi before we can begin to use it for exploration and
adventure. Let’s see in detail how to set it up. As I have mentioned earlier, I am using
Raspberry Pi 3 Model B for the setup. The setup process is exactly the same for Raspberry
Pi 2 Model B and Raspberry Pi 1 Model B+. Let’s see the list of hardware materials you will
need for setup.

Hardware required for Raspberry Pi setup
The following hardware is required for setup.

Raspberry Pi
We need to use Raspberry Pi 3 Model B or Raspberry Pi 2 Model B or Raspberry Pi 1
Model B+ for the setup.

Table 1-4.  Specifications of Raspberry Pi 1 Model B+

Release Date July 2014

Architecture ARMv6

SoC Broadcom BCM2835

CPU 700 MHz single-core ARM1176JZF-S

GPU Broadcom VideoCore IV @ 250 MHz

Memory 512 MB (shared with GPU)

USB 2.0 ports 4

Video Output HDMI rev 1.3 and Composite Video RCA jack

On-board storage Micro SDHC slot

On-board network 10/100 Mbps Ethernet, Bluetooth, and WiFi

Power source 5V via MicroUSB

Power ratings 800 mA (4W)

http://www.raspberrypi.org/products/raspberry-pi-2-model-b/
http://www.raspberrypi.org/products/model-b-plus/

Chapter 1 ■ Introduction to Single Board Computers and Raspberry Pi

8

Computer
A Windows computer or laptop with an Internet connection is required. We need to use a
computer to prepare a microSD card with a Raspbian OS image for the Pi.

I/O Devices
A standard USB keyboard and a USB mouse are needed.

MicroSD card
A microSD card (see Figure 1-3 for example) with storage capacity of at least 8 GB
is needed. We will use the card for secondary storage for the Pi. A card of Class 10 is
recommended as the data transfer speed with class 10 is great. I recommend using at
least an 8 GB card to be on the safe side. Choosing a 16 GB card will be adequate for
most cases.

■■ Note  Before purchasing the card, do visit the link http://elinux.org/RPi_SD_cards
to check the compatibility of the card with the Raspberry Pi.

Power Supply
For all the Raspberry Pi models a 5V Micro USB power supply unit (PSU) is required.
The recommended current capacity of PSU for Raspberry Pi 3 Model B is 2.5 Amp. For all
the other models 2 Amp PSU is more than enough.

You can find Raspberry Pi’s official power supply at https://thepihut.com/
products/official-raspberry-pi-universal-power-supply.

Figure 1-3.  Class 10 microSD card (image from www.flickr.com/photos/ssoosay/)

http://elinux.org/RPi_SD_cards
https://thepihut.com/products/official-raspberry-pi-universal-power-supply
https://thepihut.com/products/official-raspberry-pi-universal-power-supply
http://www.flickr.com/photos/ssoosay/

Chapter 1 ■ Introduction to Single Board Computers and Raspberry Pi

9

SD/microSD Card Reader
We also need a card reader. Many laptops have a built-in SD card reader.

In case the laptop or the card reader works with SD cards only, then we need an
additional microSD-to-SD card adapter. The following figure (Figure 1-4) shows an
adapter.

Monitor
We need an HDMI monitor or a VGA Monitor.

For HDMI monitors we need an HDMI cable (see Figure 1-5). It is usually packaged
with the HDMI monitor.

Figure 1-4.  Card reader and microSD-to-SD adapter (image from www.flickr.com/
photos/sparkfun/)

Figure 1-5.  HDMI male-to-male cable (image from www.flickr.com/photos/sparkfun/)

http://www.flickr.com/photos/sparkfun/
http://www.flickr.com/photos/sparkfun/
http://www.flickr.com/photos/sparkfun/

Chapter 1 ■ Introduction to Single Board Computers and Raspberry Pi

10

For VGA monitors, we need a VGA cable (see Figure 1-6). This too is usually
packaged with the VGA monitor.

If we are using a VGA monitor, we will need an HDMI-to-VGA adapter, as Raspberry
Pi only has an HDMI port for video output (Figure 1-7).

Manual Preparation of the MicroSD Card for Raspberry Pi
Preparing the microSD card for Pi manually is the best way of installing an OS into a
microSD card for single board computers. Many users (including me) prefer it because it
allows the contents of the microSD card to be modified manually (if needed) before it is
used for booting. The other way to prepare the microSD is to use NOOBS (New Out Of the
Box Software), which I have not used in this book.

Figure 1-6.  VGA cable (image from www.flickr.com/photos/124242273@N07/)

Figure 1-7.  HDMI-to-VGA adapter (image from www.flickr.com/photos/sparkfun/)

http://www.flickr.com/photos/124242273@N07/
http://www.flickr.com/photos/sparkfun/

Chapter 1 ■ Introduction to Single Board Computers and Raspberry Pi

11

Manual preparation allows us to access the configuration files like /boot/config.txt
before booting. We might have to modify the configuration files in a few cases (we will discuss
that soon) before booting up the Pi. The default Raspbian image has two partitions, boot and
system. Please use at least a 16 GB microSD card for the Pi, considering any possible future
upgrades to the OS.

Download the Required Free Software
Let’s download the required software.

Download Accelerator Plus
Download the Download Accelerator Plus setup from its download page
(www.speedbit.com/dap/download/downloading.asp). This freeware is used to manage
downloads. It is useful for large downloads as we can pause and resume downloads.
If your computer shuts down suddenly or the internet is interrupted, it resumes the
download from the last checkpoint. Once you download and install it, use it to manage
the following downloads.

Win32DiskImager
Download the Win32DiskImager setup from its download page (https://sourceforge.
net/projects/win32diskimager/files/latest/download). Install.

WinZip or WinRaR
We need a file extraction utility. Download WinZip (http://www.winzip.com/win/
en/index.htm) or WinRaR (http://www.win-rar.com/download.html). Install either
of them.

Download and Extract the Raspbian OS Image
We will use the Raspbian OS for the Pi. We will discuss Raspbian in detail in the later part
of the chapter. For now, download the latest zip of the image of the Raspbian OS from
www.raspberrypi.org/downloads/raspbian. Extract the image zip file with WinZip or
WinRaR.

Writing the Raspbian OS Image to the MicroSD Card
Insert the microSD card into the card reader. If your computer or laptop has a built-in
card reader, insert it there. You might have to use a microSD-to-SD card adapter if the
card reader or your computer only has a slot for SD cards.

Open Win32DiskImager. Select the location of the image file and click the Write
button. See the following Figure 1-8.

http://www.speedbit.com/dap/download/downloading.asp
https://sourceforge.net/projects/win32diskimager/files/latest/download
https://sourceforge.net/projects/win32diskimager/files/latest/download
http://www.winzip.com/win/en/index.htm
http://www.winzip.com/win/en/index.htm
http://www.win-rar.com/download.html
http://www.raspberrypi.org/downloads/raspbian

Chapter 1 ■ Introduction to Single Board Computers and Raspberry Pi

12

If you see the following warning message (Figure 1-9), then toggle the write
protection notch of the card reader or the SD card adapter (or both). Then click the Write
button again.

The following (Figure 1-10) warning message will be displayed. Click the Yes button
to continue.

Figure 1-9.  Write protection error message

Figure 1-10.  Overwrite warning message

Figure 1-8.  Win32 Disk Imager

Chapter 1 ■ Introduction to Single Board Computers and Raspberry Pi

13

Once the OS image is written on the SD card, the following (Figure 1-11) message
will be displayed. Click the OK button.

The Raspbian OS has been flashed to the microSD card.

Altering the Contents of the config.txt File for VGA
Monitors

■■ Note  This step is a must if you are planning to use a VGA monitor. Please skip this step
if you are using an HDMI monitor.

We must use an HDMI-to-VGA cable with a VGA display. We also need to change
the contents of config.txt to get the Pi working with VGA monitors. We will learn more
about config.txt in the later part of the chapter.

Insert the microSD card into the card reader again and browse it in Windows
Explorer. In Windows Explorer, it will be represented as a removable media drive
labeled as boot.

Open file config.txt and make following changes to the file:

•	 Change #disable_overscan=1 to disable_overscan=1

•	 Change #hdmi_force_hotplug=1 to hdmi_force_hotplug=1

•	 Change #hdmi_group=1 to hdmi_group=2

•	 Change #hdmi_mode=1 to hdmi_mode=16

•	 Change #hdmi_drive=2 to hdmi_drive=2

•	 Change #config_hdmi_boost=4 to config_hdmi_boost=4

Save the file after making the above-mentioned changes.
The microSD card is now ready for the Pi and a VGA Monitor.

Figure 1-11.  Write successful message

Chapter 1 ■ Introduction to Single Board Computers and Raspberry Pi

14

Booting up the Pi
Let’s boot the Pi up with the prepared microSD card. The steps for that are as follows:

	 1.	 If you are using an HDMI monitor, connect the monitor
directly to the Pi’s HDMI port using the HDMI male-to-male
cable. If you are using a VGA monitor, use the HDMI-to-VGA
adapter to convert HDMI signals to VGA.

	 2.	 Insert the microSD card into the microSD card slot of the Pi.

	 3.	 Connect the USB mouse and the USB keyboard.

	 4.	 At this point, make sure that the power is switched off.
Connect the Pi to the power supply with the micro USB power
cable we discussed earlier.

	 5.	 Connect the monitor to the power supply.

	 6.	 Check all the connections. Switch on the power supply of the
Pi and the monitor.

At this point, the Raspberry Pi will boot up.
For all the models of Raspberry Pi with the single core processor, the boot screen will

be as follows (Figure 1-12).

Figure 1-12.  Single-core CPU RPi model boot screen

Chapter 1 ■ Introduction to Single Board Computers and Raspberry Pi

15

For all the models of Raspberry Pi with the quad-core processor, the boot screen will
be as follows (Figure 1-13).

Once the Pi boots up, the monitor displays the desktop as follows (Figure 1-14).

Figure 1-13.  Quad-core CPU RPi Model boot screen

Chapter 1 ■ Introduction to Single Board Computers and Raspberry Pi

16

Configuring the Pi
We need to configure the Pi now for further use. Let’s do that.

On the desktop, there is a taskbar. In the taskbar, we find the following icon
(Figure 1-15).

Figure 1-14.  Raspbian Desktop (as of February 2017)

Figure 1-15.  LXTerminal icon

Chapter 1 ■ Introduction to Single Board Computers and Raspberry Pi

17

Click the icon and LXTerminal window (Figure 1-16) will open.

The terminal is a desktop-independent VTE-based terminal emulator for LXDE
without any unnecessary dependency. Type sudoraspi-config in the prompt and press
Enter. The raspi-config is the configuration tool for Raspberry Pi.

Navigate to the boot options (highlighted in Figure 1-17).

Set the Boot Options to Desktop Autologin as shown in Figure 1-18 below.

Figure 1-16.  LXTerminal Window

Figure 1-17.  raspi-config with boot options highlighted

Chapter 1 ■ Introduction to Single Board Computers and Raspberry Pi

18

In the Internationalization Options, change the timezone and the Wi-Fi country
(see Figure 1-19). Change the Keyboard Layout to US.

Once done, go back to the main screen and select Finish as shown in the following
screenshot (Figure 1-20).

Figure 1-18.  Desktop Autologin highlighted

Figure 1-19.  raspi-config internationalization options

Chapter 1 ■ Introduction to Single Board Computers and Raspberry Pi

19

It will ask to reboot (Figure 1-21). Choose Yes.

It will reboot the Pi.
Our job is not done yet. We need to learn how to connect the Pi to the Internet and

how to update it.

Figure 1-20.  Finish

Figure 1-21.  Reboot Prompt

Chapter 1 ■ Introduction to Single Board Computers and Raspberry Pi

20

Raspbian
An operating system is the set of basic programs and utilities to make the computer work.
It is an interface between the user and the computer. Raspbian is a free operating system
based on the popular Linux distribution Debian. Raspbian is optimized for the Raspberry
Pi family of SBCs. It is even ported to the other similar SBCs like Banana Pro.

Raspbian has more than 35,000 packages and pre-compiled software bundled in for
easy installation and use on the Raspberry Pi. The first build of Raspbian was completed
in June of 2012. Raspbian is still under active development and updated frequently. Visit
the Raspbian homepage (www.raspbian.org) and the Raspbian documentation page
(www.raspbian.org/RaspbianDocumentation) for more information on Raspbian.

config.txt
Raspberry Pi does not have a conventional BIOS. A BIOS (Basic Input/Output System) is
the program that a computer’s microprocessor uses to get the computer system started
and load the OS into the memory after the computer is powered on. It also manages data
flow between the computer’s operating system and attached peripheral devices such as
the hard disk, video adapter, keyboard, mouse, and printer.

As Raspberry Pi does not have a BIOS, the various system configuration parameters
that are normally stored and modified using the BIOS are now stored in a text file named
config.txt.

The Raspberry Pi config.txt file is a file on the boot partition of the Raspberry Pi.
It is normally accessible as /boot/config.txt from Linux. However, from Windows and
Mac OS, it is seen as a file in the accessible part of the microSD card. The accessible part
of the card is labeled as boot. As we have already learned in earlier in this chapter, we
must edit the /boot/config.txt file if we want to connect it to a VGA display.

On Raspberry Pi, we can edit this file with the following command in LXTerminal:

sudo nano /boot/config.txt

■■ Note  nano is a simple and easy to learn text-based text editor for Linux. Visit its
homepage (www.nano-editor.org) to learn more about it. I find it easier to use than vi or
vim editors.

To learn more about config.txt, visit the page http://elinux.org/RPiconfig. Also, a
sample configuration can be found at http://elinux.org/R-Pi_configuration_file.

Connecting Raspberry Pi to a Network and the
Internet
To connect the Pi to any network, we have to edit the /etc/network/interfaces file. If
the network that Pi is connected to is connected to the Internet, then the Pi can access the
Internet.

https://www.raspbian.org/
https://www.raspbian.org/RaspbianDocumentation
http://www.nano-editor.org/
http://elinux.org/RPiconfig
http://elinux.org/R-Pi_configuration_file

Chapter 1 ■ Introduction to Single Board Computers and Raspberry Pi

21

WiFi
Raspberry Pi 3 Model B has built-in WiFi. For all the other models of Pi, we need to use a
USB WiFi adapter.

Once the USB WiFi adapter is attached to the Pi, make a backup of the /etc/
network/interfaces file with the following command:

sudo mv /etc/network/interfaces /etc/network/interfaces.bkp

The original /etc/network/interfaces file is safe this way, and can be restored if
something goes wrong.

Now create a new /etc/network/interfaces file.

sudo nano /etc/network/interfaces

Type the following lines (Listing 1-1) into that:

Listing 1-1.  /etc/network/interfaces

source-directory /etc/network/interfaces.d

auto lo
iface lo inet loopback

auto wlan0
allow-hotplug wlan0
iface wlan0 inet dhcp
wpa-ssid "ASHWIN"
wpa-psk "internet"

In the file above (Listing 1-1) replace "ASHWIN" with the ssid of your WiFi network
and replace "internet" with the password of your WiFi network. Save the file by pressing
CTRL+X and then Y.

Run the following command to restart the networking service:

sudo service networking restart

If you have followed the steps correctly, the Pi should connect to the WiFi network
and the Internet (provided that WiFi network is connected to the Internet).

To verify connectivity with the Internet, use the following command:

ping -c4 www.google.com

It should show output similar to that below.

PING www.google.com (216.58.197.68) 56(84) bytes of data.
64 bytes from maa03s21-in-f4.1e100.net (216.58.197.68): icmp_seq=1 ttl=55
time=755 ms

Chapter 1 ■ Introduction to Single Board Computers and Raspberry Pi

22

64 bytes from maa03s21-in-f4.1e100.net (216.58.197.68): icmp_seq=2 ttl=55
time=394 ms
64 bytes from maa03s21-in-f4.1e100.net (216.58.197.68): icmp_seq=3 ttl=55
time=391 ms
64 bytes from maa03s21-in-f4.1e100.net (216.58.197.68): icmp_seq=4 ttl=55
time=401 ms

--- www.google.com ping statistics ---
4 packets transmitted, 4 received, 0% packet loss, time 3003ms
rtt min/avg/max/mdev = 391.729/485.695/755.701/155.925 ms

Output like the above means the Pi is connected to the Internet.
To find the IP address of the Pi, use the ifconfig command. In its output, check the

section for wlan0. It will be as follows:

wlan0 Link encap:Ethernet HWaddr 7c:dd:90:00:e2:1e
 inet addr:192.168.0.122 Bcast:192.168.0.255 Mask:255.255.255.0
 inet6 addr: fe80::7edd:90ff:fe00:e21e/64 Scope:Link
 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
 RX packets:1974 errors:0 dropped:0 overruns:0 frame:0
 TX packets:1275 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:1000
 RX bytes:195049 (190.4 KiB) TX bytes:1204336 (1.1 MiB)

In the output above, 192.168.0.122 is the IP address of the Pi. As the IP address is
allocated with DHCP protocol, it will be different for you depending on the WiFi network
settings.

Ethernet
We can also connect the Pi to a LAN network. Based on the LAN switch’s settings, we can
allocate an IP address to the Pi statically or dynamically.

Static IP address
If the LAN network allocates IP addresses statically, then configure the /etc/network/
interfaces as follows (Listing 1-2):

Listing 1-2.  /etc/network/interfaces

source-directory /etc/network/interfaces.d

auto lo
iface lo inet loopback

auto eth0
allow-hotplug eth0

Chapter 1 ■ Introduction to Single Board Computers and Raspberry Pi

23

iface eth0 inet static
Your static IP
address 192.168.0.2
Your gateway IP
gateway 192.168.0.1
netmask 255.255.255.0
Your network address family
network 192.168.0.0
broadcast 192.168.0.255

In the file above, the parameters address, gateway, netmask, network, and broadcast
are based on the LAN’s configuration. Please check the manual of the LAN switch or
router. If you are working in an organization, then check with the network administrator
for these parameters.

Dynamic IP address
This is an easy one. If the LAN has DHCP capability, then configure the /etc/network/
interfaces as follows (Listing 1-3):

Listing 1-3.  /etc/network/interfaces

source-directory /etc/network/interfaces.d

auto lo
iface lo inet loopback

auto eth0
allow-hotplug eth0
iface eth0 inet dhcp

This will configure the Pi to acquire the IP address automatically with DHCP.

■■ Note  All the information needed for network setup on Debian and its derivatives can be
found on https://wiki.debian.org/NetworkConfiguration.

Updating the Pi
Pi must be connected to the internet for this.

Updating the Firmware
The firmware is the software embedded into the ROM chip of an electronic device.
It provides control and monitoring of the device. To update the firmware of the Pi, run
sudo rpi-update. It will update the firmware.

https://wiki.debian.org/NetworkConfiguration

Chapter 1 ■ Introduction to Single Board Computers and Raspberry Pi

24

Updating and Upgrading Raspbian
We will use APT for this. APT stands for Advanced Package Tool. It is a program that
handles the installation and removal of software on Debian and other Debian derivatives.
APT simplifies the process of managing software on Debian systems by automating the
fetching, configuration, and installation of software packages. We will need an Internet
connection for this too.

First, update the system’s package list by entering the following command in
LXTerminal:

sudo apt-get update

apt-get update downloads the package lists from the respective remote repositories
and updates them on the local computer to get information on the newest versions of
packages and their dependencies which are available for installation and update. It
should be run before running the install or upgrade command.

Next, upgrade all the installed packages to their latest versions with the command:

sudo apt-get dist-upgrade -y

apt-get dist-upgrade fetches new versions of packages existing on the machine
which are marked for upgrade on the local machine. It also detects and installs
dependencies. It might remove obsolete packages.

Doing this regularly will keep the RaspbianOS installed on the Pi up to date. After
entering these commands, it will take a while to update the OS as these commands fetch
data and packages from the remote repositories.

■■ Note  sudo apt-get --help will list all the options associated with apt-get

Updating raspi-config
In raspi-config, go to the advanced options (see Figure 1-22) and choose Update.

Figure 1-22.  Updating raspi-config

Chapter 1 ■ Introduction to Single Board Computers and Raspberry Pi

25

Shutting Down and Restarting Pi
We can shutdown Pi safely with sudo shutdown -h now.

We can restart Pi with sudo reboot -h now.

Conclusion
In this chapter, we were introduced to the concept and philosophy of SBCs. We also
got started with a popular family of SBCs, Raspberry Pi. Now we can confidently move
ahead with further exploration. In the next chapter, we will learn a few important Linux
commands and how to connect to the Pi remotely.

27© Ashwin Pajankar 2017
A. Pajankar, Raspberry Pi Supercomputing and Scientific Programming,
DOI 10.1007/978-1-4842-2878-4_2

CHAPTER 2

Important Linux Commands
and Remote Connectivity

In the last chapter, we studied the basics of single board computers and how to set up
your Pi. We also learned to connect the Pi to the Internet. I hope all readers are quite
comfortable with the basics now. With this accomplished, we will dig a bit deeper into
some more basics. In this chapter, we will be studying a few important Linux commands
which will be useful to us. We will also study how to connect to the Pi remotely.

Important and Useful Linux Commands
In this section, we will study a few important Linux commands which will be useful to
all of us in understanding the hardware environment (the Pi) which will be used for
supercomputing and parallel programming.

Getting Help with Linux Commands
We can use the man command or --help option to get more information on a command.
For example, if we want to know more about the cat command usage, then we can issue
the commands man cat or cat --help.

Network-related Commands
The following network-related commands are handy in understanding network
infrastructure.

ifconfig
ifconfig is used to check network status. We can use ifconfig eth0 or ifconfig wlan0 to
check the status of WiFi or ethernet respectively.

Chapter 2 ■ Important Linux Commands and Remote Connectivity

28

iwconfig
We can use iwconfig to check wireless network status. Its output is as follows:

wlan0 IEEE 802.11bg ESSID:"ASHWIN"
Mode:Managed Frequency:2.412 GHz Access Point: A2:EC:80:FB:E2:66
Bit Rate=6 Mb/s Tx-Power=20 dBm
Retry short limit:7 RTS thr:off Fragment thr:off
Power Management:off
Link Quality=45/70 Signal level=-65 dBm
Rx invalid nwid:0 Rx invalid crypt:0 Rx invalid frag:0
Tx excessive retries:24 Invalid misc:6 Missed beacon:0

lo no wireless extensions.

eth0 no wireless extensions.

iwlist wlan0 scan
iwlist wlan0 scan displays a list of all the available wireless networks.

ping
ping tests network connectivity between two devices. We have already seen its usage for
checking Internet connectivity in the first chapter.

System Information Commands
These commands help us know more about the status of systems and hardware on the Pi.

CPU-related Information
We can use cat /proc/cpuinfo to see information about the CPU.

To check the other details (namely the operating speed of the CPU), the lscpu
command is used. The output of lscpu is as follows:

Architecture: armv7l
Byte Order: Little Endian
CPU(s): 4
On-line CPU(s) list: 0-3
Thread(s) per core: 1
Core(s) per socket: 4
Socket(s): 1
Model name: ARMv7 Processor rev 5 (v7l)
CPU max MHz: 900.0000
CPU min MHz: 600.0000

Chapter 2 ■ Important Linux Commands and Remote Connectivity

29

Memory-related Information
We can use cat /proc/meminfo to get details about memory. We can also use the free
command to see how much free memory is available as follows:

 total used free shared buffers cached
Mem: 996476 210612 785864 7208 15152 113668
-/+ buffers/
cache: 81792 914684
Swap: 102396 0 102396

System and OS Version Information
uname -a provides information about the current system as follows:

Linux raspberrypi 4.4.11-v7+ #888 SMP Mon May 23 20:10:33 BST 2016 armv7l
GNU/Linux

To identify the Linux release, run the command cat /proc/version.

Partition-related Information
df -h displays microSD card partition related information in human-readable format as
follows:

Filesystem Size Used Avail Use% Mounted on
/dev/root 15G 3.6G 11G 26% /
devtmpfs 483M 0 483M 0% /dev
tmpfs 487M 0 487M 0% /dev/shm
tmpfs 487M 6.6M 480M 2% /run
tmpfs 5.0M 4.0K 5.0M 1% /run/lock
tmpfs 487M 0 487M 0% /sys/fs/cgroup
/dev/mmcblk0p1 63M 21M 43M 33% /boot
tmpfs 98M 0 98M 0% /run/user/1000

cat /proc/partitions provides partition block allocation information.

Other Useful Commands
hostname -I shows the IP address.
lsusb shows the list of all the USB devices connected to Pi.
vcgencmd measure_temp shows the temperature of the CPU.
vcgencmd get_mem arm && vcgencmd get_mem gpu shows the memory split between
the CPU and GPU.

Chapter 2 ■ Important Linux Commands and Remote Connectivity

30

Enabling Pi for SSH from raspi-config
To connect to Pi remotely, we need to enable SSH server from raspi-config. Open
LXTerminal and run the command sudo raspi-config.

In the main menu of raspi-config select Advanced Options. In the Advanced
Options screen, choose A4 SSH, and the following screen (Figure 2-1) will appear.

Figure 2-1.  Enabling the SSH server

Figure 2-2.  SSH server enable confirmation

Select Yes and the following message (Figure 2-2) will be displayed.

Chapter 2 ■ Important Linux Commands and Remote Connectivity

31

Press the Enter key. Select Finish from the main menu of raspi-config and select Yes
when prompted for reboot. Once the Pi reboots, we can access it remotely.

Connecting to the Raspberry Pi Remotely from
Windows
It is possible to connect to the Pi remotely, provided that the computer we are using to
connect to the Raspberry Pi is also in the same network (either physically or through
VPN). We have to use various tools and utilities for that. In this chapter, we will learn to
connect to the Pi remotely. We will also learn how to transfer files to and from the Pi. This
is important when we want to use the Pi in headless mode (“headless” simply means we
are using the Pi with no visual display attached to it). It is useful in scenarios where we do
not have a display or simply do not want to spare one due to resource/space constraints.
For example, when we make a cluster of Pis, we cannot spare a display for each Pi in the
cluster. Headless mode is very useful in such cases. In this part of the chapter, we will
explore multiple methods for remotely working with Pi.

Checking the Connectivity with Pi from Another
Computer
It is essential that the computer which we are planning to connect to Pi must be in the
same network. There should not be any proxy and firewall restrictions between the other
computer and the Pi. The best example of this setup is the Pi and the other computer
connected under the same router/network switch. To check the connectivity, we can use
the ping utility.

	 1.	 Open cmd, the Windows command line, on your computer.

	 2.	 Turn on the Pi and write down its IP address. Use ifconfig
command to find its IP address. Suppose it is 192.168.0.2
(It does not matter whether it is ethernet or WiFi).

	 3.	 In cmd, run ping 192.168.0.2 to check the connectivity.

We can use the same ping command on any computer with a Linux distribution or
macOS if they are in the same network as Pi.

PuTTY
PuTTY is a free implementation of SSH and Telnet for Windows and Unix platforms,
along with an xterm terminal emulator. It is written and maintained primarily by
Simon Tatham. You can explore the PuTTY homepage (www.chiark.greenend.org.
uk/~sgtatham/putty/) for more information.

PuTTY is open-source software that is available with source code and is developed
and supported by a team of volunteers.

Now let’s download and install PuTTY. PuTTY can be downloaded from its
download page (www.chiark.greenend.org.uk/~sgtatham/putty/latest.html).

http://www.chiark.greenend.org.uk/~sgtatham/putty/
http://www.chiark.greenend.org.uk/~sgtatham/putty/
http://www.chiark.greenend.org.uk/~sgtatham/putty/latest.html

Chapter 2 ■ Important Linux Commands and Remote Connectivity

32

Download the file PuTTY.exe. Once downloaded, place it in a directory of your choice
and create a desktop shortcut (Figure 2-3) for your convenience.

Figure 2-3.  PuTTY desktop shortcut

Figure 2-4.  PuTTY Window

Double-click the putty shortcut and the PuTTY (Figure 2-4) window will open.

Chapter 2 ■ Important Linux Commands and Remote Connectivity

33

Type the IP address or the host name in the Host Name (or IP address) text box.
Make sure SSH is selected as connection type. For future use, you may want to save
the settings (I usually do this). Now, click the Open button. It opens a terminal-style
window. It will ask you for the username and the password, which are pi and raspberry
respectively. While logging in for the first time, it shows the following (Figure 2-5)
message dialogue. Click Yes.

Figure 2-5.  PuTTY security alert

Once we login, it will show a prompt (Figure 2-6) as follows.

Chapter 2 ■ Important Linux Commands and Remote Connectivity

34

We can now remotely work with the Pi’s command prompt.

Accessing Raspberry Pi Desktop Remotely
Raspberry Pi desktop is LXDE (Lightweight X11 Desktop Environment). We can access
it from Windows computer remotely using an RDP (Remote Desktop Protocol) client.
For that, we need to install xrdp on Pi. Install it by running sudo apt-get install xrdp.
Reboot the Pi after the installation.

We have to use Windows Remote Desktop Client to connect to the Pi now. The
client can be found with the Search option in Windows. Click the Remote Desktop Client
icon to open it.

In the dialog box below (Figure 2-7), click Options to expand it.

Figure 2-6.  PuTTY remote connection window

Chapter 2 ■ Important Linux Commands and Remote Connectivity

35

It expands and shows various options (Figure 2-8). Enter the IP address of the Pi and
pi as user name. Click the checkbox and the Save button to save the same configuration
for future use.

Figure 2-7.  Remote Desktop Connection

Chapter 2 ■ Important Linux Commands and Remote Connectivity

36

When logging in, it will prompt for the password. Enter the password. If we are
connecting to the Pi with a Windows computer for the very first time, then it will display
the following dialog box (Figure 2-9). Select the checkbox so it will not ask us again and
then click Yes.

Figure 2-8.  Remote Desktop Connection options

Chapter 2 ■ Important Linux Commands and Remote Connectivity

37

It will display the Raspberry Pi desktop. Speed of operations will be a bit slow as the
Pi is streaming the desktop over a network. However, it works pretty well.

This is how we can access the Pi’s desktop with a Windows computer/laptop.
However, none of the methods we have learned allows us to transfer a file between
a Windows computer and the Pi. We will learn how to do it in the next section of this
chapter.

WinSCP
For file transfers between a Windows computer and a Raspberry Pi, we will use WinSCP
(https://winscp.net/eng/index.php). WinSCP is a free open-source SFTP and FTP
client for Windows. Its main function is the secure file transfer between local and remote
computers.

Download its setup (https://winscp.net/eng/download.php) and install it. Create its
shortcut on the Windows desktop. Open WinSCP by double-clicking the icon (Figure 2-10).

Figure 2-9.  First time remote login

https://winscp.net/eng/index.php
https://winscp.net/eng/download.php

Chapter 2 ■ Important Linux Commands and Remote Connectivity

38

Enter the IP address of the Pi in the host name text box. Also, enter pi as the
username and raspberry as the password.

We can also save the settings for future use. The save session (Figure 2-11) dialog box
is as follows.

Figure 2-11.  Save session

Figure 2-10.  WinSCP window

Chapter 2 ■ Important Linux Commands and Remote Connectivity

39

Once we login, if we are connecting for the first time then the following dialog box
(Figure 2-12) is displayed. Click the Add button to continue.

Figure 2-12.  First time login dialog box

Figure 2-13.  WinSCP file transfer window

Once we login, the following window (Figure 2-13) is displayed.

Chapter 2 ■ Important Linux Commands and Remote Connectivity

40

The file system of the local Windows computer is in the left panel and Raspberry Pi’s
pi user’s home directory i.e. /home/pi is in the right panel. We can transfer files between
both computers now.

Connecting to Raspberry Pi Using Linux or
macOS
Let’s learn to connect to the Pi using a Linux computer or macOS.

Remote Login with SSH
SSH is built into Linux distributions and macOS. We can use SSH to connect to the Pi
from a Linux computer (which could also be another Raspberry Pi) or from the Mac
terminal, without installing additional software.

Open the terminal in your Linux computer or Mac and type the following command:

ssh pi@192.168.0.2

192.168.0.2 is my Pi’s IP address. Replace it with the IP address of your Pi. Once we
press Enter, it will show a security/authenticity warning prompt. Type yes to continue.
This warning is shown only when we connect for the first time.

Now it will prompt for the password. Enter pi user’s default password raspberry.
We will see the Raspberry Pi prompt which will be identical to the one found on the
Raspberry Pi itself.

Forwarding Using SSH
We can also forward our X11 session over SSH to allow use of graphical applications by
using the -Y flag in the ssh command as follows,

ssh -Y pi@192.168.0.2

Let’s access a graphical program like scratch remotely. Run the following command,

scratch &

It will start a new X11 session of the Pi program scratch in a new window on a Linux
computer or Mac. The & makes the command run in the background.

SCP for File Transfer
In Windows, we used WinSCP for the file transfer between the Windows computer and
the Pi. In the same way, we can transfer files between a Linux computer/Mac and the Pi.
We need to use the scp utility for that. It is built into all Linux distributions and macOS.

Chapter 2 ■ Important Linux Commands and Remote Connectivity

41

To copy a file from the Pi to a Linux computer or Mac, we have to run the following
command in the terminal on the Linux computer or the Mac:

scp pi@192.168.0.2:/home/pi/test.txt /home/ashwin

The command above copies test.txt from /home/pi directory of Pi to /home/ashwin
directory of our Linux computer or Mac.

In the same way, we might want to copy a file from a Linux computer or Mac to the Pi.
To do that, run the following command in the terminal of the Linux computer or the Mac:

scp /home/ashwin/test_again.txt pi@192.168.0.2:/home/pi

You can read more about the scp command in detail on www.computerhope.com/
unix/scp.htm.

EXERCISE

Complete the following exercise to understand this chapter better.

•	 Practice the man command.

•	 Practice the --help option for various Linux commands.

•	 Run the iwlist wlan0 scan command.

•	 Run the ping www.AshwinPajankar.com command to check the
connectivity to the Internet.

•	 Try to see the output of all the system-related commands
demonstrated in this chapter.

•	 Try to access Raspberry Pi desktop remotely with VNC.

Conclusion
In this chapter, we explored various ways to connect to the Pi remotely. We also learned
how to transfer files between the Pi and other computers with Linux, Windows, and Mac
as OS.

http://www.computerhope.com/unix/scp.htm
http://www.computerhope.com/unix/scp.htm
http://www.ashwinpajankar.com/

43© Ashwin Pajankar 2017
A. Pajankar, Raspberry Pi Supercomputing and Scientific Programming,
DOI 10.1007/978-1-4842-2878-4_3

CHAPTER 3

Introduction to Python

In the last chapter, we learned important Linux commands and how to connect to
Raspberry Pi from other computers remotely. We also learned how to transfer files to and
from Raspberry Pi.

In this chapter, we will get started with Python.
Let’s begin this chapter with an introduction to Python. I personally find Python

amazing and have been enchanted by it. Python is a simple yet powerful programming
language. When we use Python, it’s easy to focus on the implementation of the solution
to a given problem, since programmers do not have to worry about the syntax of the
programming language. Python perfectly fits the philosophy of Raspberry Pi, which is
“programming for everyone.” That’s why Python is the preferred programming platform
for Raspberry Pi and many other SBCs.

History of Python
Python was designed and conceived in the late 1980s. Its actual implementation was
started in late 1989 by Guido van Rossum in Centrum Wiskunde & Informatica
(National Research Institute for Mathematics and Computer Science) in the
Netherlands. Python is a successor to the ABC Programming Language. The ABC
Programming Language itself was inspired by SETL. In February 1991, Van Rossum
publicly published the Python source code to the alt.sources newsgroup. The name
Python was inspired by the television show Monty Python’s Flying Circus. Van Rossum
is a big fan of Monty Python.

Van Rossum is the principal author of the Python programming language. He plays
a central role in guiding the direction of the development, bug-fixing, enhancement, and
further evolution of the Python programming language. He holds the title of Benevolent
Dictator for Life for Python. He currently (as of February 2017) works for Dropbox
and dedicates almost half of his time towards further development of the Python
programming language.

The central philosophy of Python Programming language, the Zen of Python, is
explained in PEP-20 (PEP stands for Python Enhancement Proposal) which can be found
at www.python.org/dev/peps/pep-0020.

https://www.python.org/dev/peps/pep-0020

Chapter 3 ■ Introduction to Python

44

It is a collection of 20 software principles, out of which 19 have been documented.
The principles are as follows:

	 1.	 Beautiful is better than ugly.

	 2.	 Explicit is better than implicit.

	 3.	 Simple is better than complex.

	 4.	 Complex is better than complicated.

	 5.	 Flat is better than nested.

	 6.	 Sparse is better than dense.

	 7.	 Readability counts.

	 8.	 Special cases aren’t special enough to break the rules.

	 9.	 Although practicality beats purity.

	 10.	 Errors should never pass silently.

	 11.	 Unless explicitly silenced.

	 12.	 In the face of ambiguity, refuse the temptation to guess.

	 13.	 There should be one—and preferably only one—obvious way
to do it.

	 14.	 Although that way may not be obvious at first unless you’re
Dutch.

	 15.	 Now is better than never.

	 16.	 Although never is often better than right now.

	 17.	 If the implementation is hard to explain, it’s a bad idea.

	 18.	 If the implementation is easy to explain, it may be a good idea.

	 19.	 Namespaces are one honking great idea—let’s do more of
those!

Features of Python
The following are the features of Python for which it has become popular and beloved in
the programming community.

Simple
Python is a simple and minimalist language. Reading a good, well-written Python
program makes us feel as if we are reading English text.

Chapter 3 ■ Introduction to Python

45

Easy to Learn
Due to its simple, English-like syntax, Python is extremely easy to learn for beginners.
That is the prime reason that nowadays it is taught as the first programming language
to high school and university students who take introduction to programming and
programming 101 Courses. An entire new generation of programmers is learning Python
as their first programming language.

Easy to Read
Unlike other high-level programming languages, Python does not provide much
provision for obfuscating the code and making it unreadable. The English-like structure
of Python code makes it easier to read compared with the code written in other
programming languages. This makes it easier to understand and easier to learn compared
with other high-level languages like C and C++.

Easy to Maintain
As Python code is easy to read, easy to understand, and easy to learn, anyone maintaining
the code becomes comfortable with the codebase in considerably less time. I can
vouch for this from my personal experience of maintaining and enhancing large legacy
codebases which were written in a combination of bash and Python 2.

Open Source
Python is an Open Source Project. Its source code is freely available. We can make
changes to it to suit our needs, and use both the original and the changed code in our
applications.

High-level Language
While writing Python programs, we do not have to manage low-level details like memory
management, CPU timings, and scheduling processes. All these tasks are managed by
the Python interpreter. We can directly write the code in easy-to-understand English-like
syntax.

Portable
The Python interpreter has been ported on many OS platforms. Python code is also
portable. All Python programs can work on any of the supported platforms without
requiring many changes, if we are careful enough to avoid any system-dependent coding.

We can use Python on GNU/Linux, Windows, Android, FreeBSD, Mac OS, iOS,
Solaris, OS/2, Amiga, Palm OS, QNX, VMS, AROS, AS/400, BeOS, OS/390, z/OS, Psion,
Acorn, PlayStation, Sharp Zaurus, RISC OS, VxWorks, Windows CE, and PocketPC.

Chapter 3 ■ Introduction to Python

46

Interpreted
Python is an interpreted language. Let’s understand what that means. Programs written
in high-level programming languages like C, C++, and Java are first compiled. This means
that they are first converted into an intermediate format. When we run the program, this
intermediate format is loaded from secondary storage (i.e. hard disk) to the memory
(RAM) by the linker/loader. So C, C++, and Java have a separate compiler and linker/
loader. This is not the case with Python. Python runs the program directly from the source
code. We do not have to bother with compiling and linking to the proper libraries. This
makes Python programs truly portable as we can copy the program from one computer to
another and the program runs just fine, as long as the necessary libraries are installed on
the target computer.

Object-Oriented
Python supports procedure-oriented programming as well as object-oriented
programming paradigms.

Python supports object-oriented programming paradigms. All object-oriented
programming paradigms are implemented in Python. In object-oriented programming
languages, the program is built around objects which combine data and related
functionality. Python is a very simple but powerful object-oriented programming language.

Extensible
One of the features of Python is that we can call C and C++ routines from Python
programs. If we want the core functionality of the application to run faster, then we can
code that part in C/C++ and call it in the Python program (C/C++ programs generally run
faster than Python).

Extensive Libraries
Python has an extensive standard library, which comes pre-installed with Python. The
standard library has all the essential features for a modern-day programming language.
It has provision for databases, unit testing (which we will explore in this book), regular
expressions, multi-threading, network programming, computer graphics, image processing,
GUI, and other utilities. This is part of Python’s “batteries-included” philosophy.

Apart from the standard library, Python has a numerous and ever-growing set of
third-party libraries. A list of these libraries can be found at the Python Package Index.

Robust
Python provides robustness by means of ability to handle errors. A full stack trace of
encountered errors is available and makes the life of a programmer more bearable.
Runtime errors are known as exceptions. The feature which allows handling of these
errors is known as the exception handling mechanism.

Chapter 3 ■ Introduction to Python

47

Rapid Prototyping
Python is used as a Rapid Prototyping Tool. As we have seen earlier, the properties of
Python are that it has extensive libraries and is easy to learn, so many software architects
are increasingly using it as a tool to rapidly prototype their ideas into working models in a
very short time.

Memory Management
In assembly languages and programming languages like C and C++, memory
management is the responsibility of the programmer. This is in addition to the task at
hand, which creates an unnecessary burden for the programmer. In Python, the Python
interpreter takes care of memory management. This helps programmers steer clear of
memory issues and focus on the task at hand.

Powerful
Python has everything needed for a modern programming language. It is used for
applications like computer vision, supercomputing, drug discovery, scientific computing,
simulation, and bioinformatics. Millions of programmers around the world use Python.
Many big brands like NASA, Google, SpaceX, and Cisco (I worked there!) use Python for
their applications and infrastructure.

Community Support
Personally, I find this the most appealing feature of Python. As we have seen, since
Python is open-source as well as having a community of almost a million programmers
(probably more, as today high school kids are learning Python too) throughout the world,
there are plenty of forums on the Internet to support programmers who encounter any
roadblock. None of my queries related to Python has gone unanswered yet.

Python 3
Python 3 was released in 2008. The Python development team had decided to do away
with some of the redundant features of the Python language, simplify some other
features, rectify some design flaws, and add a few more much-needed features.

It was decided that a major revision number was needed for this and the resulting
release would not be backward-compatible. Python 2.x and 3.x were supposed to co-
exist in parallel for the programmers’ community to have enough time to migrate their
code and the third-party libraries from 2.x to 3.x. Python 2.x code cannot be run as is, in
many cases, as there are significant differences between 2.x and 3.x.

Chapter 3 ■ Introduction to Python

48

The Differences Between Python 2 and Python 3
The following are a few of the most noticeable differences between Python 2 and Python
3, which are worth understanding. We will be using many features of Python 3 related to
these differences. Let’s have a look at them in brief:

•	 The print() function

This is the most noticeable difference between Python 2 and
Python 3. The print statement of Python 2 is replaced by the
print() function in Python 3.

•	 Integer division produces float value

The nature of integer division has been changed in Python
3 for the sake of mathematical correctness. In Python 2, the
result of division of two integers is an integer. However, in
Python 3, it is a float value which is mathematically correct
and makes more sense to a beginner. In most programming
languages, the integer division is an integer.

•	 Removal of xrange()

In Python 2, for creating iterable objects, the xrange()
function is used. In Python 3, range() is implemented like
xrange(). Thus a separate xrange() is not required anymore
in Python 3. Using xrange() in Python 3 raises a nameError
exception.

•	 Raising exceptions

It is mandatory in Python 3 to enclose exception arguments, if
any, in parentheses, whereas in Python 2 it is optional.

•	 Handling exceptions

In Python 3, while handling exceptions, the as keyword before
the parameter to handle arguments is a must. In Python 2, it is
not needed.

•	 New style classes

Python 2 supports both old style classes and new style classes,
whereas Python 3 supports only new style classes. Python 3
does not support old style classes at all. All the classes created
in Python 3 are new style classes by default.

•	 New features of Python 3

The following new features of Python 3 have not yet been
backported to Python 2.

•	 Strings are Unicode by default

•	 Clean Unicode/byte separation

Chapter 3 ■ Introduction to Python

49

•	 Exception chaining

•	 Function annotations

•	 Syntax for keyword-only arguments

•	 Extended tuple unpacking

•	 Non-local variable declarations

From the list above, we will be extensively using the print() method, new-style classes,
exceptions, and the exception-handling mechanism in the code examples in this book.

■■ Note  See the Python Wiki page for differences between Python 2 and Python 3:
https://wiki.python.org/moin/Python2orPython3

Why Use Python 3?
From the list above, we will be frequently using new style classes and exceptions in the
code examples in this book.

While many Python experts are still advocating for Python 2, I totally disagree with them.
The Python Wiki (https://wiki.python.org/moin/Python2orPython3) says:

Python 2.x is legacy, Python 3.x is the present and future of the language.

One of the major arguments in favor of Python 2 is the extensive documentation,
books, and third-party libraries. However, most developers are porting their custom
libraries to Python 3 already. Almost all the major third-party libraries are ported and
fully supported for Python 3. As far as books and documentation are concerned, authors
like me are extensively writing for Python 3. As time passes, more documentation for
Python 3 will surely be available.

A new generation of programmers are being introduced to Python 3 as their first
programming language. When they are comfortable with the concept and philosophy of
Python programming, they are gradually introduced to Python 2.

Most organizations have already started migrating codebases from Python 2 to
Python 3. Almost all new projects in Python are extensively using Python 3.

I personally think that these are pretty good reasons to use Python 3.

Python 2 and Python 3 on Raspbian
Raspbian is a Debian variant. Python 2 and Python 3 interpreters are pre-installed in
Raspbian. The Python 2 interpreter can be invoked by running the command python in
lxterminal. The Python 3 interpreter can be invoked by running the command python3
in lxterminal. We can check the Python 3 interpreter version by running python3 -V or
python --version. We can check the location of the Python 3 binary by running which
python3 at lxterminal.

https://wiki.python.org/moin/Python2orPython3
https://wiki.python.org/moin/Python2orPython3

Chapter 3 ■ Introduction to Python

50

Running a Python Program and Python Modes
We have set up our environment for Python programming now. Let’s get started with a
simple concept of Python. Python has two modes, normal and interactive. Let’s look at
these modes in detail.

Interactive Mode
Python’s interactive mode is a command line shell. It provides immediate output for
every executed statement. It also stores the output of previously executed statements in
active memory. As the new statements are executed by the Python interpreter, the entire
sequence of previously executed statements is considered while evaluating the current
output. We have to type python3 in the lxterminal to invoke the Python 3 interpreter into
interactive mode as follows:

pi@raspberrypi:~ $
Python 3.4.2 (default, Oct 19 2014, 13:31:11)
[GCC 4.9.1] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>>

We can execute Python statements directly in this interactive mode just like we run
commands from the OS shell/console, as follows:

>>>print ('Hello World!')
Hello World!
>>>

We will not be using interactive mode in this book. However, it’s the quickest way to
check small snippets of code (5 to 10 lines). We can quit interactive mode with the exit()
statement as follows:

>>> exit()
pi@raspberrypi:~ $

Normal Mode
Normal mode is the mode where Python script files (.py) are executed by the Python
interpreter.

Create a file with filename test.py and add the statement print (‘Hello World!’) to
the file. Save the file and run it with the Python 3 interpreter as follows:

pi@raspberrypi:~ $ python3 test.py
HelloWorld!
pi@raspberrypi:~ $

Chapter 3 ■ Introduction to Python

51

In the above example, python3 is the interpreter and test.py is the filename. In a
case where the python test.py file is not in the same directory where we’re invoking the
python3 interpreter from, we have to provide the absolute path of the python file.

IDEs for Python
An Integrated Development Environment (IDE) is a software suite which has all the basic
tools to write and test programs. A typical IDE has a compiler, a debugger, a code editor,
and a build automation tool. Most programming languages have various IDEs to make
programmers’ lives better. Python too has many IDEs. Let’s have a look at a few IDEs for
Python.

IDLE
IDLE stands for Integrated DeveLopment Environment. It comes bundled with Python
installation. IDLE3 is for Python 3. It’s popular with beginners in Python. Just run idle3
in lxterminal. The following is a screenshot (Figure 3-1) of an IDLE3 code editor and an
interactive prompt.

Figure 3-1.  IDLE3

Chapter 3 ■ Introduction to Python

52

Geany
Geany is a text editor using the GTK+ toolkit with the basic features of an integrated
development environment. It supports many filetypes and has some nice features. See
www.geany.org for more details. The following (Figure 3-2) is a screenshot of the Geany
text editor.

Figure 3-2.  Geany

Geany is pre-installed in the latest versions of Raspbian. If your Raspbian installation
does not have Geany then it can be installed by running sudo apt-get install geany in
lxterminal. Once installed, it can be found the Raspbian Menu ➤ Programming ➤
Geany Programmer’s Editor as shown in the screenshot (Figure 3-3) below.

https://www.geany.org/

Chapter 3 ■ Introduction to Python

53

Type print(“Hello World!”) in the code editor and save the file in /home/pi
directory as test.py. Click Build in the menu bar and then Execute. We can also use
the keyboard shortcut key F5 to execute the program. The program will execute in an
lxterminal window. We have to press the Enter key to close the execution window. The
default Python interpreter for Geany is Python 2. We need to change it to Python 3. To do
that, go to Build ➤ Set Build Commands. The following (Figure 3-4) window will appear.

Figure 3-3.  Raspbian Menu

Chapter 3 ■ Introduction to Python

54

In this window, under the Execute commands section, change python “%f”
(highlighted in the red box in the image above) to python3 “%f” to set the Python 3
interpreter as the default interpreter. After that, run the program again to verify that
everything is done correctly.

EXERCISE

Complete the following exercise for understanding Python 3 background better.

•	 Visit and explore the Python homepage www.python.org

•	 Visit and explore the Python Documentation page https://docs.
python.org/3/

•	 Check the version-wise new features of the latest releases of
Python at https://docs.python.org/3/whatsnew/index.html

•	 Search for the 20th undocumented principle of the Zen of Python on
the Internet.

Figure 3-4.  Set Build Commands

http://www.python.org/
https://docs.python.org/3/
https://docs.python.org/3/
https://docs.python.org/3/whatsnew/index.html

Chapter 3 ■ Introduction to Python

55

Conclusion
In this chapter, we learned the background, history, and features of Python. We also
studied the important differences between Python 2.x and Python 3.x. We learned to
use Python 3 in scripting and interpreter modes. We had a look at a few popular IDEs for
Python and configured geany for Python 3 on the Pi. We will use Python 3 with mpi4py in
the later parts of the book for parallel programming for the mini-supercomputer we are
shortly going to build. In the next chapter, we will learn the basics of supercomputing.

57© Ashwin Pajankar 2017
A. Pajankar, Raspberry Pi Supercomputing and Scientific Programming,
DOI 10.1007/978-1-4842-2878-4_4

CHAPTER 4

Introduction to
Supercomputing

In the last chapter, we learned the history and philosophy of the Python programming
language.

In this short chapter, we will study the concepts and history of supercomputing.

Concept of the Supercomputer
A supercomputer is a special computer with a lot of processing power. This is the
simplest definition of the term supercomputer. The key feature which distinguishes
supercomputers from other classes of computers is their massive processing power.

Supercomputers are used in computationally intensive applications. Mostly these
are scientific applications. A few examples are the following:

•	 Weather prediction

•	 Climate research

•	 Molecular modelling

•	 Physical Simulations

•	 Quantum mechanics

•	 Oil and gas exploration

Brief history of Supercomputers
Control Data Corporation (CDC) is the cradle of supercomputers. Here, in 1964,
Seymour Cray built CDC 6600. It was dubbed as the first supercomputer as it
outperformed all other contemporary computers. Its processing speed was about 10
MHz. In 1968, Seymour Cray built CDC 7600. Its processing speed was 35 MHz. Again, it
was the fastest computer and outran all other computers in terms of computing power.

Chapter 4 ■ Introduction to Supercomputing

58

This was the genesis of supercomputers. Eventually, Cray left CDC and formed his
own company for designing and developing supercomputers. Cray created some of the
most successful supercomputers in history, namely Cray 1, Cray X-MP, Cray 2, and Cray
Y-MP. The 1990s saw the era of massively parallel supercomputers with thousands of
processors connected to each other in various configurations. A notable example of this is
the Intel Paragon which could have many Intel i860 processors.

The speed of a supercomputer is measured in Floating Point Operations Per
Second (FLOPS) instead of MIPS (Million Instructions Per Second). Intel ASCI Red
was the first TFLOPS (Tera FLOPS) supercomputer. In 2008, IBM Roadrunner became
the first supercomputer with the speed of PFLOPS (Peta FLOPS).

The next breakthrough in the area of supercomputing will be the Exascale
supercomputer with the processing speed to be measured in Exa-FLOPS.

I am not providing a list here of the top 10 supercomputers or the fastest
supercomputers. This is because the list keeps on changing every year. Also,
supercomputers are ranked based on various parameters, so no ranking from different
sources based on diverse parameters will ever be the same.

Cluster
While designing massively parallel computing systems, generally two approaches
are followed. The first one is to involve thousands of computers spread across a wide
geographical area using the Internet to solve a particular problem. This works well over a
wide area network like the Internet. These types of systems are called distributed systems.
Another approach to this is to place thousands of processing nodes in close proximity
to each other. This saves a lot of time on communication and most of the processing
power is used to solve the computationally massive problem. This approach is known as
clustering. All supercomputers fall in this category.

A computer cluster is defined as a group of loosely or tightly coupled computers that
work together. The computers in a cluster are known as nodes. All the nodes in a cluster
do exactly same type of task.

The mini-supercomputer we are going to develop is going to be a cluster of Pis.
All supercomputers are clusters, but all clusters are not supercomputers. As we have learned
in the definition of the supercomputer, supercomputers have massive processing power.
That’s why every cluster does not qualify to be called a supercomputer. The cluster we will
build here is not a supercomputer as it pales before a real-world supercomputer in terms of
processing power, but it works on the same principle as a real-world supercomputer. Hence
we will call it a mini-supercomputer. Ever since the introduction of massively parallel systems,
the boundaries between large-scale clusters and less powerful computers have begun to
fade. Few homemade clusters today are as powerful as 1980s supercomputers. Based on their
configuration, commodity clusters are classified into the following two categories.

Heterogenous Cluster
When all the nodes of the cluster do not have the exactly same hardware configuration,
then the cluster is called a heterogeneous cluster. When making my cluster, I used two units
of Pi B+, one unit of Pi 2, and one unit of Pi 3, so my cluster is a heterogeneous cluster.

Chapter 4 ■ Introduction to Supercomputing

59

Beowulf Cluster
Unlike the heterogeneous clusters, all the nodes in a Beowulf cluster have exactly the
same configuration. We can make homogeneous and Beowulf clusters out of
commodity-grade hardware as well as SBCs like Raspberry Pi. Almost all clusters use
some distribution of Linux as the OS for their nodes.

Depending on the availability of the models of Pi near you, you can make either a
heterogeneous or a Beowulf cluster.

Parallelism and Concurrency
Let’s explore a few important terms in the area of supercomputing.

Parallelism
Parallelism means the computational tasks are carried out in parallel. This means that the
tasks are carried out simultaneously (at the same time). Parallelism is usually employed
in cases where the computational problems are very large. Large problems are often
divided into smaller sub-problems and then solved parallelly by the computers. With the
introduction of multi-core processors, execution of parallel programs is supported by
the hardware itself. Another way to run parallel programs is to create parallel systems by
using multiple different computers. Parallel is an antonym of serial which means in series
and one after the other. Parallelism is closely related to another term, concurrency.

Let me explain parallelism in simple words. Suppose there are two jobs to be completed
and two people are available to take up the jobs. Both the people are assigned one job each
and they start working independently of each other. This is known as parallelism.

Concurrency
Concurrency means many computational tasks are concurrently progressing. It is not
necessary for the tasks to progress at the same time. In parallelism, all the tasks are
executing at the same time. In concurrency, they need not. A concurrent system is
one where a computation can advance without waiting for all other computations to
complete, and more than one computation can advance at the same time. The best
example of concurrency is the process scheduling in the OS.

Let me explain concurrency in simple words. Suppose two jobs are to be completed
and only one person is available to do all the work. The person decides to start with the
first job. He does 30% of it and then switches to the second job. He completes 40% of the
second job and switches back to the first job. This type of switch happens multiple times.
We can say that the work on both the jobs is in progress. Although the jobs are not done
simultaneously, the jobs are progressing towards completion. In the end, both jobs are
finished. Concurrent is an antonym of sequential.

Chapter 4 ■ Introduction to Supercomputing

60

Parallel Programming
All clusters and supercomputers use parallelism to decompose a computationally
massive task into smaller chunks and then collect the results back for the final output.
The programming paradigm which supports this type of operation is called parallel
programming. Message Passing Interface (MPI) is one of the most-used parallel
programming standards in industry and academics. We will study how to install it on the
Pi for Python 3 in the next chapter.

Conclusion
In this short chapter, we learned a few important concepts related to supercomputing and
we also studied the history of supercomputers.

In the next chapter, we will study how to set up a node of a Raspberry Pi cluster.

61© Ashwin Pajankar 2017
A. Pajankar, Raspberry Pi Supercomputing and Scientific Programming,
DOI 10.1007/978-1-4842-2878-4_5

CHAPTER 5

Message Passing Interface

In the last chapter, we learned the history and philosophy of supercomputers. We also
learned important concepts related to supercomputing.

In this short chapter, we will get started with installing necessary packages and
libraries on a Raspberry Pi. We will install MPI4PY, which is a Python library for MPI.
Finally, we will install the utility nmap for node discovery.

Message Passing Interface
The Message Passing Interface Standard (MPI) is a message passing library standard
based on the recommendations of the MPI Forum. The MPI Forum has over 40
participating organizations in the USA and Europe. The goal of the Message Passing
Interface is to define a portable, efficient, and flexible standard for message passing
that will be widely used for writing a wide variety of message passing programs. MPI
is the first vendor-independent message passing library standard. The advantages of
developing message passing programs using the MPI standard are portability, efficiency,
and flexibility. Although MPI is not an IEEE or ISO standard, it has become the industry
standard for writing message passing programs for a variety of platforms like High
Performance Computing (HPC), parallel computers, clusters, and distributed systems.
The MPI standard defines the syntax and semantics of library routines for writing
portable message-passing programs in C, C++, and Fortran.

A few important facts related to MPI are the following:

•	 MPI is a specification for libraries. MPI itself is not a library.

•	 The goal of MPI is that the message passing standard should be
practical, portable, efficient, and flexible.

•	 Actual MPI libraries differ a bit depending on how the MPI
standard is implemented.

•	 The MPI standard has gone through several revisions. The most
recent version is MPI-3.2.

Chapter 5 ■ Message Passing Interface

62

■■ Note  Explore the MPI Forum’s homepage (www.mpi-forum.org) and the MPI standard
documentation page (www.mpi-forum.org/docs/docs.html) for more information on the
MPI Forum and standard.

History and Evolution of the MPI Standard
On April 29–30 of 1992, a workshop on Standards for Message Passing in a Distributed
Memory Environment was held in Williamsburg, Virginia. The basic features essential to
a standard message passing interface were discussed and a working group to continue
the standardization process was established. From there on, the work on MPI continued
and the working group met regularly. The draft MPI standard was presented at the
Supercomputing ‘93 conference in November 1993. After a period of public comments,
which resulted in some changes in MPI standards, version 1.0 of MPI was released in June
1994. These meetings and the email discussion together led to the formation of the MPI
Forum. The MPI standardization efforts involved about 80 people from 40 organizations
in the United States and Europe. As of now, the latest version of MPI is MPI-3.2 which we
will use for building the cluster.

Features of MPI
MPI is optimized for distributed systems with distributed memory and a network that
connects all the nodes as depicted in Figure 5-1.

Network

Processor 0 Processor 1 Processor 2 Processor n-1

Memory

CPU

Memory

CPU

Memory

CPU

Memory

CPU

Figure 5-1.  Distributed memory system

http://www.mpi-forum.org/
http://www.mpi-forum.org/docs/docs.html

Chapter 5 ■ Message Passing Interface

63

The following are the features of the Message Passing Interface:

•	 Simplicity: The basics of the paradigm in MPI are traditional
communication operations.

•	 Generality: It can be implemented on most systems built on
parallel architectures.

•	 Performance: The implementation can match the speed of the
underlying hardware.

•	 Scalability: The same program can be deployed on larger systems
without making any changes to it.

We will study more details of MPI paradigms when we start learning how to code
with MPI4PY.

Implementations of MPI
As we have seen that MPI is not a library but a standard for development of message-
passing libraries, there are several implementations of MPI. The following are the most
popular implementations:

•	 MPICH

•	 MP-MPICH (MP stands for multi-platform)

•	 winmpich

•	 MPI BIP

•	 HP’s MPI

•	 IBM’s MPI

•	 SGI’s MPI

•	 STAMPI

•	 OpenMPI

MPI4PY
MPI4PY stands for MPI for Python. MPI for Python provides MPI bindings for Python.
This allows any Python program to use a multiple-processor configuration computer.
This package is built on top of the MPI-1/2/3 specifications. It provides an object-oriented
interface for parallel programming in Python. It supports point-to-point (send and
receive) and collective (broadcast, scatter, and gather) communications for any Python
object.

Figure 5-2 depicts the overview of MPI4PY.

Chapter 5 ■ Message Passing Interface

64

Why Use the Python, MPI, and MPI4PY Combination?
Python is one of the three most-used programming languages in HPC (High
Performance Computing). The other two are C and FORTRAN. As we have seen earlier,
Python syntax is easy to understand and learn. MPI is the de facto standard for HPC and
parallel programming. It is well established and has been there since around 1994 (over
20 years). MPI4PY is a well-regarded, clean, and efficient implementation of MPI for
Python. It covers most of the MPI-2 standard. That’s why we should use Python 3 with
MPI4PY on the Raspberry Pi for parallel programming.

Installing MPI4PY for Python3 on Raspbian
Installing MPI4PY for Python 3 on Raspbian is very simple. The user just has to run the
following command in lxterminal:

sudo apt-get install python3-mpi4py -y

It will take a few minutes to install MPI4PY for Python 3.
To check if it is installed, run the following command:

mpirun hostname

It should print the hostname raspberrypi as the output.
Run the following command to launch multiple processes:

mpirun -np 3 hostanme

Python

MPI4PY

MPI

Data Management

Interface

Communication

Figure 5-2.  Philosophy of MPI4PY

Chapter 5 ■ Message Passing Interface

65

The output is as follows:

raspberrypi
raspberrypi
raspberrypi

We can also run the following command to check the MPI version installed on the
system:

mpirun -V

This way we can install, run, and verify MPI4PY.

■■ Note  Visit the mpirun manual page (www.open-mpi.org/doc/v1.8/man1/
mpirun.1.php) for more details. In the later part of the book, we will use mpirun extensively
with Python 3, and there we will study it in detail.

Installing nmap
nmap is a network security scanner. We are going to use it to discover the IP addresses
of our Pi. We will use it in the next chapter. For now, just install nmap by running the
following command:

sudo apt-get install nmap

Conclusion
In this chapter, we learned to prepare a Pi for supercomputing by installing MPI4PY. In
the next chapter, we will build a supercomputer by connecting multiple Pis together.

http://www.open-mpi.org/doc/v1.8/man1/mpirun.1.php
http://www.open-mpi.org/doc/v1.8/man1/mpirun.1.php

67© Ashwin Pajankar 2017
A. Pajankar, Raspberry Pi Supercomputing and Scientific Programming,
DOI 10.1007/978-1-4842-2878-4_6

CHAPTER 6

Building the Supercomputer

In the previous chapter, we prepared the Pi for supercomputing by installing the
necessary libraries, frameworks, and tools. In this chapter, we will learn to create a
network of multiple Pis and use it to run various commands in parallel.

Making a Backup of the MicroSD card
Once we configure the Pi, update it, and install necessary packages and utilities, we should
make a backup of the microSD card. This is necessary because (God forbid!) if the microSD
card or the Pi were damaged or lost, then we could resume our work with the backup.
It is advised to always have a backup of a microSD card with Raspbian OS installed and
updated. Additionally, backing up after installing the necessary packages, tools, and utilities
required for the project is also a good idea which I always follow without fail.

To make a backup of the microSD card, first remove it from the Pi and insert it
into the SD card reader. Connect the SD card reader to a Windows computer where
Win32DiskImager is installed. Open Win32DiskImager and choose a location of your
choice. Choose an appropriate name for the backup file. Append the extension .img
or .IMG after the filename. The .img or .IMG extension is used for raw storage disk
images. See the following (Figure 6-1) screenshot for an example.

Figure 6-1.  Taking the microSD card backup

Chapter 6 ■ Building the Supercomputer

68

Then click the Read button. Once finished, it will display the following (Figure 6-2)
dialogue box.

The image file of the updated version of the Raspbian OS, MPICH, and MPI4PY
installation is now saved on the hard drive. We can use this image to prepare other
microSD cards for the rest of the nodes of the supercomputer. To do that, we just need to
write this image to other microSD cards with Win32DiskImager.

Preparing Nodes of the Supercomputer
Using the OS image which we prepared in the previous section, we will prepare other
nodes of the supercomputer. Write this OS image onto other microSD cards using
Win32DiskImager. Once all the microSD cards are ready, insert them into Pis. We
should have a unique hostname for each Pi. We can change the hostname of a Pi with
raspi-config. Go to Advanced Options and select A2 Hostname. Change the hostname as
shown in the screenshot below (Figure 6-3).

Figure 6-2.  Backup completed

Figure 6-3.  Changing the hostname

Chapter 6 ■ Building the Supercomputer

69

Once the hostname is changed, the prompt in lxterminal appears as in the
screenshot below (Figure 6-4).

As you can see, the hostname raspberrypi in the prompt and in the title of the
lxterminal window is replaced with pi001.

Follow the same steps for all the Pis and change their hostnames to pi002, pi003,
and so on.

Networking the Pis
Now, this is a bit of a tricky part. There are many ways we can network the Pis together.
The choice depends upon the infrastructure and the budget available. Let’s explore a few
ways to accomplish this without much hassle.

LAN with DHCP
This option works well for managed network switches and WiFi routers. Access the
management console of the managed switch or WiFi router. After logging in to the
management console, there will be options to set the range of addresses for DHCP.
Modify that range as we are going to add more devices to that.

Figure 6-4.  The lxterminal prompt after changing the hostname

Chapter 6 ■ Building the Supercomputer

70

For WiFi routers, the management console is usually a webpage. It can be accessed
by connecting to the WiFi and then typing its IP address into a browser. It usually has
authentication in the form of a username and a password, which is usually listed in the
WiFi router manual. Every WiFi router has ethernet ports for wired LAN as shown below
(Figure 6-5).

Update the network settings in /etc/network/interfaces for connecting
automatically to the LAN and DHCP as an IP address allocation scheme. Following is a
sample /etc/network/interfaces file:

source-directory /etc/network/interfaces.d

auto lo
iface lo inet loopback

auto eth0
iface eth0 inet dhcp

WiFi Network
We know that all the models of Pi prior to Pi 3 require a USB WiFi adapter. The best option
is if you have a WiFi router and many Pi 3s. If the Pis are of earlier models than Pi 3, you
will have to invest in buying USB WiFi adapters. After equipping the relevant models of
Pi with USB WiFi adapters, update the network settings in /etc/network/interfaces for
connecting automatically to the WiFi.

Figure 6-5.  Rear side of a WiFi router (image from https://www.flickr.com/photos/
smemon/)

https://www.flickr.com/photos/smemon/
https://www.flickr.com/photos/smemon/

Chapter 6 ■ Building the Supercomputer

71

The following is a sample /etc/network/interfaces file.

source-directory /etc/network/interfaces.d

auto lo
iface lo inet loopback

auto wlan0
iface wlan0 inet dhcp
wpa-ssid "ASHWIN"
wpa-psk "internet"

Replace ASHWIN with the ssid of your WiFi network and replace internet with the
password of your WiFi network.

LAN with Static IP Addresses
This is my preferred method. All managed network switches and WiFi routers have a
range for static IP addresses. Choose a few addresses for the nodes in the cluster and then
update the /etc/network/interfaces file. Use the IP address of the managed network
switch or WiFi router as the value for the gateway.

Using a low-cost unmanaged network switch is probably the cheapest option.
“Unmanaged” means that there is no management console for them. Just connect the Pis
to the switch with ethernet cables and update the /etc/network/interfaces as follows:

source-directory /etc/network/interfaces.d

auto lo
iface lo inet loopback

auto eth0
iface eth0 inet static

Your static IP
address 192.168.0.2

Your gateway IP
gateway 192.168.0.1
netmask 255.255.255.0

Your network address family
network 192.168.0.0
broadcast 192.168.0.255

For all the Pis, the network settings (except the IP address) will be the same as above.
The IP addresses will be unique. Also, as the switch is unmanaged, we are assigning it an
IP address manually by using the same value for the gateway (192.168.0.1 in the example
above). The value of the gateway must be the same for all the Pis.

Chapter 6 ■ Building the Supercomputer

72

Reboot the Pis after changing the network settings.
The following are a few low-cost unmanaged switches and their respective product

pages.

•	 www.dlink.ru/mn/products/1

•	 www.dlink.lt/en/products/1/1857.html

•	 www.dlink.ru/mn/products/1/2110.html

Using nmap to Find the IP Addresses of Pis
Regardless of the type of network (ethernet or WiFi) and the IP address allocation scheme
(static or dynamic), we will need to know the IP addresses of all the Pis in the network in
order to use the network of Pis as a cluster. In the previous chapter, we installed the nmap
utilty. We will now use it for finding the IP addresses of the Pis in the network.

Connect a monitor, keyboard, and mouse to pi001. We will use pi001 as the master
node. We will use lxterminal in pi001 for running commands and parallel programs for
the supercomputer.

Connect all the Pis to the network. We need not connect any display or I/O devices to
other Pis.

Boot up all the Pis. Once all the Pis boot up, scan the network with nmap.
The following is the command for scanning the network:

sudo nmap -sn 192.168.0.*

In the command above, the first three bytes in 192.168.0.* correspond to the IP
address of my network. Replace them with the first three bytes of your network identifier
and run the command in lxterminal on pi001.

The output will be as follows:

Starting Nmap 6.47 (http://nmap.org) at 2016-09-15 18:02 IST
mass_dns: warning: Unable to determine any DNS servers. Reverse DNS is
disabled.\
Try using --system-dns or specify valid servers with --dns-servers
Nmap scan report for 192.168.0.2
Host is up (0.0020s latency).
Nmap scan report for 192.168.0.3
Host is up (0.0018s latency).
Nmap scan report for 192.168.0.4
Host is up (0.0016s latency).
Nmap scan report for 192.168.0.5
Host is up (0.0014s latency).
Nmap done: 256 IP addresses (4 hosts up) scanned in 2.70 seconds

http://www.dlink.ru/mn/products/1
http://www.dlink.lt/en/products/1/1857.html
http://www.dlink.ru/mn/products/1/2110.html

Chapter 6 ■ Building the Supercomputer

73

Write down the IP addresses of all the Raspberry Pis in the network. In this case, the
IP addresses are 192.168.0.2, 192.168.0.3, 192.168.0.4, and 192.168.0.5.

Running the hostname Command on Multiple
Pis with mpirun
On pi001, navigate to /home/pi by running the following command:

cd ~

Create a new file named myhostfile. Add all the IP addresses written down earlier to
myhostfile as follows:

192.168.0.2
192.168.0.3
192.168.0.4
192.168.0.5

Now run the following command:

mpirun -hostfile myhostfile -np 4 hostname

It will show an output with an error and the command hostname will not run on all
the hosts listed in the file myhostfile.

This is because we are trying to run a command from pi001 remotely on pi002,
pi003, and pi004. We do not have authentication for that.

Exchanging the ssh-keygen Keys for Automatic
Authentication
The ssh-keygen utility is used to generate authentication keys. To establish
authentication between any two Linux computers, these are the steps:

	 1.	 Generate keys for both the hosts using ssh-keygen.

	 2.	 Exchange the keys between hosts by remotely copying them
to each other.

	 3.	 Add the keys to the list of authorized hosts.

Once this is done, we can do the following actions without a password, since after
the key exchange the password will not be prompted for again.

	 1.	 Log in to the remote host.

	 2.	 Execute a shell command on the remote host.

Chapter 6 ■ Building the Supercomputer

74

We can also use the ssh command in a shell script to automate the tasks in a remote
host. We are using pi001 as the master node, so we want to remotely run the commands
from pi001 on other nodes and vice-versa. I have set up a cluster of four nodes, so the
pairs of hosts for the key exchange are (pi001,pi002), (pi001,pi003), and (pi001,pi004).

Let’s exchange the keys. Open lxterminal and go to the home directory of pi001.

cd ~

Run the ssh-keygen command to generate the key. Just press the Enter key every
time it prompts for any input. The following is the output on lxterminal:

Generating public/private rsa key pair.
Enter file in which to save the key (/home/pi/.ssh/id_rsa):
Enter passphrase (empty for no passphrase):
Enter same passphrase again:
Your identification has been saved in /home/pi/.ssh/id_rsa.
Your public key has been saved in /home/pi/.ssh/id_rsa.pub.
The key fingerprint is:
03:bc:3f:5a:28:88:b7:ac:6c:50:f0:81:5e:f9:6d:5f pi@pi001
The key's randomart image is:
+---[RSA 2048]----+
| . . |
|o .o . |
|.o... + |
| .o . = E |
| . o S . |
|.. . o o |
|o o . . + |
|.+ . . o . |
|ooo . |
+-----------------+

Note that the image displayed on the command prompt will be different every time
as the key generated for each execution is different.

The above execution creates a hidden directory .ssh in the home directory of the Pi.
Go to the .ssh directory.

cd .ssh

Check the contents of the .ssh directory by running the ls command as follows:

pi@pi001:~/.ssh $ ls
id_rsa id_rsa.pub

In the output above, id_rsa is the private key and id_rsa.pub is the public key for
the host pi001. We have to copy the public key to the hosts where we want to remotely
login and execute commands.

Chapter 6 ■ Building the Supercomputer

75

To keep things organized, we copy the public key id_rsa.pub to a new file, pi01.

cp id_rsa.pub pi01

We need to add the contents of this pi01 file to the authorized_keys file of other
hosts to enable remote access without authentication.

Now log in to pi002 with the following command:

ssh pi@192.168.0.3

We will be prompted for the password of pi002. Enter the password.
Like we did on pi001, run the following commands on pi002 to generate the

public key:

ssh-keygen
cd .ssh
cp id_rsa.pub pi02

Now we need to copy the public key file of pi001 to pi002 using scp.

scp 192.168.0.2:/home/pi/.ssh/pi01 .

Add the contents of pi01 to authorized_keys by running the following command:

cat pi01>>authorized_keys

Finally, log out from pi002 using the logout commands.
For pi003, we have to follow the same steps again.
Login to pi003.

ssh pi@192.168.0.4

Run the following sequence of commands on pi003:

ssh-keygen
cd .ssh
cp id_rsa.pub pi03
scp 192.168.0.2:/home/pi/.ssh/pi01 .
cat pi01>>authorized_keys
logout

For pi004, we have to follow the same steps again.
Login to pi004.

ssh pi@192.168.0.5

Chapter 6 ■ Building the Supercomputer

76

Run the following sequence of commands on pi004:

ssh-keygen
cd .ssh
cp id_rsa.pub pi04
scp 192.168.0.2:/home/pi/.ssh/pi01 .
cat pi01>>authorized_keys
logout

In pi001 run the following sequence of commands to copy the public keys of pi002,
pi003, and pi004 to pi001.

cd /home/pi/.ssh
scp 192.168.0.3:/home/pi/.ssh/pi02 .
scp 192.168.0.4:/home/pi/.ssh/pi03 .
scp 192.168.0.5:/home/pi/.ssh/pi04 .

Then run the following commands to add these public keys to the list of authorized
keys of pi001:

cat pi02>>authorized_keys
cat pi03>>authorized_keys
cat pi04>>authorized_keys

This completes the setup of the cluster. To test the setup, run the following command
on pi001:

mpirun -hostfile myhostfile -np 4 hostname

The output of the command above should be as follows:

pi001
pi002
pi003
pi004

Congrats! We have built our own mini-supercomputer cluster. In the next section, we
will learn how to organize our cluster in a nice-looking stack.

Chapter 6 ■ Building the Supercomputer

77

Organizing the Pis in the Cluster
When I built my first cluster, I thought of creating a custom acrylic case; however, the
estimated cost exceeded my budget. I also thought of creating a custom case for the
cluster by 3D printing, but the 3D printing contractor also quoted an astronomical sum
for this. So I decided to try out a more cost-effective way to organize the Pis in the cluster.
I used M3 Hex standoff spacers for creating a stack of Pis. We need two types of standoffs
for this, male-to-female and female-to-female. We will use these to create a stack now.
It is essential that the length of the standoffs must be at least 25mm to avoid the contact of
Raspberry Pi PCBs to each other altogether.

■■ Note  Search for M3 Hex standoff spacers on Google.

Take four male-to-female standoffs and attach them to a Pi as shown in the image
(Figure 6-6) below.

Figure 6-6.  Attaching male-to-male standoffs to the Pi

Chapter 6 ■ Building the Supercomputer

78

After that, take four female-to-female standoffs and attach them to the bottom of the
Pi as shown in the image (Figure 6-7) below.

Now attach the second Pi to this as shown (Figure 6-8) below.

Figure 6-7.  Attaching female-to-female standoffs to the cluster base

Chapter 6 ■ Building the Supercomputer

79

Finally, after adding the remaining two Pis to this, the cluster stack looks like the
picture below (Figure 6-9).

Figure 6-8.  Adding second Pi to the stack

Chapter 6 ■ Building the Supercomputer

80

Conclusion
In this chapter, we learned how to connect several Pis together to build an ultra-low-cost
mini-supercomputer cluster. We also learned how to organize the cluster in a convenient
stack. In the next chapter, we will learn how to overclock the various models of Pi to
increase the computational power of the Pis in the cluster at no additional cost.

Figure 6-9.  Raspberry Pi Supercomputer stack

81© Ashwin Pajankar 2017
A. Pajankar, Raspberry Pi Supercomputing and Scientific Programming,
DOI 10.1007/978-1-4842-2878-4_7

CHAPTER 7

Overclocking Raspberry Pi

In this chapter, we will learn how to increase the computing power of the various models
of Raspberry Pi by overclocking the various components of this amazing little computer.
We will study how to overclock through raspi-config and by altering the contents of
config.txt.

Overclocking means to configure a computer’s hardware parts to run at a faster
rate than what was certified by the original manufacturer. The rate at which the part
operates is generally specified in terms of clock frequency like MHz, GHz, etc. Usually the
operating voltage of the overclocked component is also increased, which helps maintain
the component’s operational stability at the accelerated speeds. However, the downside
of overclocking is that the given semiconductor device will generate and dissipate more
heat when operated at higher frequencies and voltages than the stock settings, so most
overclocking attempts will increase power consumption and heat dissipation as well.
To mitigate the increased heat dissipation in the overclocked component, we usually have
to install heatsinks and cooling systems.

Let’s get started with the basics of overclocking Raspberry Pi. In this chapter, we will
explore in detail how to install passive heatsinks and how to overclock various models of
Raspberry Pi.

Risks of Overclocking Raspberry Pi
Overclocking Raspberry Pi allows us to get the best out of it. However, we should not do it
without understanding the risks involved. It is vitally important that we understand what
we are getting into.

Here are a few risks of overclocking which we MUST be aware of:

•	 Life reduction: Components may fail sooner.

•	 Heat generation: Operating at higher speeds generates and
dissipates more heat.

•	 File corruption: Many overclockers have observed file
corruptions at un-optimized overclocking settings.

•	 Warranty-voiding: Forced overvolting will void the warranty.

Chapter 7 ■ Overclocking Raspberry Pi

82

Installing a Heatsink on Pi
A heatsink is a device or substance for absorbing excessive, unwanted heat. If you are
planning to overclock your Pi then installing heatsinks on the processor, RAM, and GPU is
recommended.

Most heatsinks have adhesive stickers glued to them. Use them to install the
heatsinks on the chips of Pi. Most people use passive heatsinks only when working
with the Raspberry Pi, as active heat dissipation mechanisms like liquid cooling and/or
radiators would be overkill for the Raspberry Pi.

Procuring Heatsinks
Many distributors sell heatsinks online. You can google the keywords raspberry pi
heatsink.

The following are links to the websites of various distributors selling heatsinks:

•	 www.sparkfun.com/products/121

•	 www.adafruit.com/categories/151

•	 https://shop.pimoroni.com/products/heatsink

•	 www.modmypi.com/raspberry-pi/accessories/heat-sinks-and-
cooling/raspberry-pi-heat-sink-kit-black

Overclocking the Pi with raspi-config
We can overclock the Pi using the overclock option in the raspi-config tool.

The following (Figure 7-1) is a screenshot of overclock options in Pi B and Pi B+.

Figure 7-1.  Overclock options in Pi B and Pi B+

http://www.sparkfun.com/products/121
http://www.adafruit.com/categories/151
https://shop.pimoroni.com/products/heatsink
http://www.modmypi.com/raspberry-pi/accessories/heat-sinks-and-cooling/raspberry-pi-heat-sink-kit-black
http://www.modmypi.com/raspberry-pi/accessories/heat-sinks-and-cooling/raspberry-pi-heat-sink-kit-black

Chapter 7 ■ Overclocking Raspberry Pi

83

The following (Figure 7-2) is a screenshot of overclock options in Pi 2.

Overclocking the Pi with /boot/config.txt
We have learned how to overclock with raspi-config; however, it does not allow fine-
tuning of the Pi which is to be overclocked. There is another way of overclocking the Pi,
which we can do manually by changing a few parameters in/boot/config.txt.

Options in /boot/config.txt
We can add or change options in the /boot/config.txt file. If you have already used the
raspi-config tool for overclocking and/or memory splitting, then you will find many of
these options already present in the /boot/config.txt file.

•	 arm_freq: Frequency of a core in the ARM in MHz.

•	 core_freq: Frequency of GPU processor core in MHz.

•	 h264_freq: Frequency of hardware video block in MHz.

•	 isp_freq: Frequency of image sensor pipeline block in MHz.

•	 v3d_freq: Frequency of 3D block in MHz.

•	 avoid_pwm_pll: Don’t dedicate a pll to PWM audio. This will
reduce analogue audio quality slightly. The spare PLL allows
the core_freq to be set independently from the rest of the GPU,
allowing for more control over overclocking.

Figure 7-2.  Overclock options in Pi 2

Chapter 7 ■ Overclocking Raspberry Pi

84

•	 dram_freq: Frequency of SDRAM in MHz.

•	 over_voltage: ARM/GPU core voltage adjust.

•	 over_voltage_sdram_c: SDRAM controller voltage adjust.

•	 over_voltage_sdram_i: SDRAM I/O voltage adjust.

•	 over_voltage_sdram_p: SDRAM phy voltage adjust.

•	 force_turbo: Disables dynamic cpufreq driver and minimum
settings below. Enables H.264/V3D/ISP overclock options. May
set warranty bit.

•	 temp_limit: Overheat protection. Sets clocks and voltages to
default when the SoC reaches this Celsius value. Setting this
higher than the default voids warranty.

•	 gpu_mem: GPU memory in megabyte. Sets the memory split
between the ARM and GPU. ARM gets the remaining memory. No
need to set this if the value is already set using raspiconfig.

/boot/config.txt Options for the Various
Models of Pi
Every Pi is unique. The values of the options in /boot/config.txt for overclocking the
Pi have to be customized for the individual Pi. There is no single set of values for these
options which is the best fit for all Pis. I have learned this by trial and error. If the values
you set for the overclocking options are not the best fit, the Pi will either be unstable or
not boot up at all. In these cases, you can try changing the values of the overclocking
options in config.txt on the microSD card by using some other computer and then
boot up the Pi with the same card. Do it until you get a set of stable and optimal values for
your Pi. In general, for any type of hardware (such as CPU and RAM), overclock settings
depend on the individual IC.

We can find detailed explanations of the options above at the eLinux RPi
configuration page (http://elinux.org/RPiconfig).

Options for Pi B and Pi B+
The following are the values of the overclocking options for Pi B and Pi B+:

arm_freq=950
core_freq=450
sdram_freq=500
gpu_mem=16

http://elinux.org/RPiconfig

Chapter 7 ■ Overclocking Raspberry Pi

85

Options for Pi 2
The following are the values of the overclocking options for Pi 2:

arm_freq=1100
over_voltage=4
core_freq=550
sdram_freq=483
over_voltage_sdram_p=0
over_voltage_sdram_i=0
over_voltage_sdram_c=0
gpu_mem=16
force_turbo=1
avoid_pwm_pll=1
v3d_freq=450
h264_freq=0
isp_freq=0
avoid_safe_mode=1

Options for Pi 3
The following are the values of the overclocking options for Pi 3:

arm_freq=1350
over_voltage=6
temp_limit=80
core_freq=500
h264_freq=333
avoid_pwm_pll=1
gpu_mem=450
v3d_freq=550
sdram_freq=588
sdram_schmoo=0x02000020
over_voltage_sdram_p=6
over_voltage_sdram_i=4
over_voltage_sdram_c=4
force_turbo=1

If your Pi does not boot up or becomes unstable with the values listed above, try to
tweak the values to get the best settings.

We cannot cover all possible combinations of working settings for stable overclock.
Explore the following web links for information related to overclocking:

http://linuxonflash.blogspot.in/2015/02/a-look-at-raspberry-pi-2-
performance.html
https://github.com/retropie/retropie-setup/wiki/Overclocking

http://linuxonflash.blogspot.in/2015/02/a-look-at-raspberry-pi-2-performance.html
http://linuxonflash.blogspot.in/2015/02/a-look-at-raspberry-pi-2-performance.html
https://github.com/retropie/retropie-setup/wiki/Overclocking

Chapter 7 ■ Overclocking Raspberry Pi

86

After overclocking, use the cat /proc/cpuinfo command to check the processor
speed for all models.

■■ Note  DO NOT insert the microSD card of an overclocked Pi into another Pi. Remember!
Every piece of hardware has unique settings for overclocking. If you want to use the
microSD card of an overclocked Pi for another Pi, disable overclock settings in /boot/config.
txt and then use it with the other Pi.

EXERCISE

Overclock all the Raspberry Pis you are planning to use for building the mini-
supercomputer cluster. This will boost the individual and the overall performance in
terms of runtime.

Conclusion
In this chapter, we learned how to overclock the various models of Raspberry Pi. From the
next chapter onward, we will start studying how to exploit the computational power of the
cluster we built. We will write code in Python 3 with MPI4PY for demonstrating concepts
in MPI and parallel programming.

87© Ashwin Pajankar 2017
A. Pajankar, Raspberry Pi Supercomputing and Scientific Programming,
DOI 10.1007/978-1-4842-2878-4_8

CHAPTER 8

Parallel Programming in
Python 3

In the last chapter, we learned how to overclock various models of Raspberry Pi to increase
their computational power. In this chapter, we will learn how to write parallel programs
with Python and MPI4PY. I prefer Python due to its simplicity, and the code in Python is
less scary. We will explore MPI concepts and implement those in Python with MPI4PY.

The MPI concepts we will study and implement are as follows:

•	 MPI rank and processes

•	 Sending and receiving data

•	 Data tagging

•	 Broadcasting data

•	 Scattering and gathering data

Basics of MPI4PY
In the earlier part of this book, we studied a few MPI concepts. Let’s study a few more in
this chapter.

MPI uses the concept of Single-Program Multiple-Data (SPMD). The following are
the key points in SPMD architecture:

•	 All processes (known as ranks) run the same code and each
process accesses a different portion of data.

•	 All processes are launched simultaneously.

A parallel program is decomposed into separate processes, known as ranks. Each
rank has its own address space, which requires partitioning data across ranks. Each rank
holds a portion of the program’s data in its own private memory. Ranks are numbered
sequentially from 0 to n-1. The following diagram (Figure 8-1) depicts the multiple ranks
running simultaneously.

Chapter 8 ■ Parallel Programming in Python 3

88

In the next section, we will see a basic program with ranks.

Getting Started with MPI4PY
Let’s get started with the simple Hello World! program in Python with MPI4PY.

Listing 8-1.  prog01.py

from mpi4py import MPI
import sys

comm = MPI.COMM_WORLD
name = MPI.Get_processor_name()

sys.stdout.write("Hello World!")
sys.stdout.write(" Name: %s, My rank is %d\n" % (name, comm.rank))

In the code above (Listing 8-1), the statement from mpi4py import MPI imports the
needed MPI4PY libraries. In Chapter 6 we studied the concept of communicators in MPI.
MPI.COMM_WORLD is the communicator. It is used for all MPI communication between the
processes running on the processes of the cluster. Get_processor_name() returns the
hostname on which the current process is running. comm.rank is the rank of the current
process. The following diagram (Figure 8-2) depicts COMM_WORLD.

Rank i Rank jRank o

Data

Code

Data

Code

Data

Code

Figure 8-1.  Multiple ranks running simeltaneously

0 1 2 n-1

COMM_WORLD

Figure 8-2.  COMM_WORLD

http://dx.doi.org/10.1007/978-1-4842-2878-4_6

Chapter 8 ■ Parallel Programming in Python 3

89

You might have noticed that we are using sys.stdout.write() for printing on the
console. This is because I want the code to be compatible for both interpreters of the
Python programming language, python (the interpreter for Python 2) and python3. In
this book, we won’t be using any feature or programming construct specific to either
interpreter. Thus, the code can be run using both interpreters.

We have started coding in this chapter, and the next chapters have a lot of code
samples and exercises. It is a good idea to organize the code and the data in separate
directories. Run the following commands in lxterminal one by one:

mpirun -hostfile myhostfile -np 4 mkdir /home/pi/book
mpirun -hostfile myhostfile -np 4 mkdir /home/pi/book/code
mpirun -hostfile myhostfile -np 4 mkdir /home/pi/book/code/chapter08

This will create the same directory structure on the all nodes of the mini-supercomputer.
Now save the above code in a file called prog01.py in the ~/book/code/chapter08 directory.
Copy the code file to that directory on all the nodes using scp as follows:

scp book/code/chapter08/prog01.py 192.168.0.2:/home/pi/book/code/chapter08/
scp book/code/chapter08/prog01.py 192.168.0.3:/home/pi/book/code/chapter08/
scp book/code/chapter08/prog01.py 192.168.0.4:/home/pi/book/code/chapter08/

Finally, run it with mpirun on pi001 as follows:

mpirun -hostfile myhostfile -np 4 python3 ~/book/code/chapter08/prog01.py

The following is the output:

Hello World! Name: pi001, My rank is 0
Hello World! Name: pi002, My rank is 1
Hello World! Name: pi004, My rank is 3
Hello World! Name: pi003, My rank is 2

We have to follow the same steps for all the other code examples we will discuss
in the rest of the chapter. Let me repeat them again in brief: create a Python code file in
the chapter08 directory, copy that file to the chapter08 directory of all the nodes of the
cluster, and finally use mpirun with the Python interpreter to execute the code.

Conditional Statements
We can use conditional statements in the MPI4PY code as follows (Listing 8-2):

Listing 8-2.  prog02.py

from mpi4py import MPI
import sys

Chapter 8 ■ Parallel Programming in Python 3

90

comm = MPI.COMM_WORLD
sys.stdout.write("My rank is: %d\n" % (comm.rank))

if comm.rank == 0:
 sys.stdout.write("Doing the task of Rank 0\n")

if comm.rank == 1:
 sys.stdout.write("Doing the task of Rank 1\n")

In this code, we’re checking if the process rank is 0 or 1 and then printing more
messages to the console. Run the program with mpiexec as follows:

mpirun -hostfile myhostfile -np 4 python3 ~/book/code/chapter08/prog02.py

The output of the program above (Listing 8-2) is as follows:

My rank is: 0
Doing the task of Rank 0
My rank is: 1
Doing the task of Rank 1
My rank is: 3
My rank is: 2

Checking the Number of Processes
Let’s write the code (Listing 8-3) to display the rank and the number of MPI processes.

Listing 8-3.  prog03.py

from mpi4py import MPI
import sys

comm = MPI.COMM_WORLD
rank = comm.rank
size = comm.size

sys.stdout.write("Rank: %d," % rank)
sys.stdout.write(" Process Count: %d\n" % size)

In the code above, comm.size gives the number of MPI processes running across the
cluster. Run the code above with mpiexec as follows:

mpirun -hostfile myhostfile -np 4 python3 ~/book/code/chapter08/prog03.py

Chapter 8 ■ Parallel Programming in Python 3

91

The output is as follows:

Rank: 0, Process Count: 4
Rank: 1, Process Count: 4
Rank: 2, Process Count: 4
Rank: 3, Process Count: 4

Sending and Receiving Data
Using send() and receive() for data transfer between processes is the simplest form of
communication between processes. We can achieve one-to-one communication with
this. The following diagram (Figure 8-3) explains this clearly.

data
(original)

MEMORY

data
(copy)

MEMORY

CPUCPU

message

Figure 8-3.  One-to-one communication

Let’s see the code example (Listing 8-4) for the same.

Listing 8-4.  prog04.py

from mpi4py import MPI
import time
import sys

comm = MPI.COMM_WORLD

rank = comm.rank
size = comm.size
name = MPI.Get_processor_name()

shared = 3.14

Chapter 8 ■ Parallel Programming in Python 3

92

if rank == 0:
 data = shared
 comm.send(data, dest=1)
 comm.send(data, dest=2)
 sys.stdout.write("From rank %s, we sent %f\n" % (name, data))
 time.sleep(5)

elif rank == 1:
 data = comm.recv(source=0)
 sys.stdout.write("On rank %s, we received %f\n" % (name, data))

elif rank == 2:
 data = comm.recv(source=0)
 sys.stdout.write("On rank %s, we received %f\n" % (name, data))

In the code example above, we are sending data from the process with rank 0. The
processes with rank 1 and 2 are receiving the data.

Let’s run the program.

mpirun -hostfile myhostfile -np 4 python3 ~/book/code/chapter08/prog04.py

The output of the program above (Listing 8-4) is as follows:

On rank pi002, we received 3.140000
On rank pi003, we received 3.140000
From rank pi001, we sent 3.140000

Dynamically Sending and Receiving Data
Until now, we have written conditional statements for the processes to send and receive
data. However, in large and distributed networks this type of data transfer is not always
possible due to constant changes in the process count. Also, users might not want to
hand-code the conditional statements.

The example below (Listing 8-5) demonstrates the concept of dynamic data transfer.

Listing 8-5.  prog05.py

from mpi4py import MPI
import sys

comm = MPI.COMM_WORLD
rank = comm.rank
size = comm.size
name = MPI.Get_processor_name()

shared = (rank+1)*(rank+1)

Chapter 8 ■ Parallel Programming in Python 3

93

comm.send(shared, dest=(rank+1) % size)
data = comm.recv(source=(rank-1) % size)

sys.stdout.write("Name: %s\n" % name)
sys.stdout.write("Rank: %d\n" % rank)
sys.stdout.write("Data %d came from rank: %d\n" % (data, (rank-1) % size))

In the code above (Listing 8-5), every process receives the data from the earlier
process. This goes on till the end and wraps around so that the first process receives the
data from the last process.

Let’s run the code.

mpirun -hostfile myhostfile -np 4 python3 ~/book/code/chapter08/prog05.py

The output of the code is as follows:

Name: pi001
Rank: 0
Data 16 came from rank: 3
Name: pi002
Rank: 1
Data 1 came from rank: 0
Name: pi003
Rank: 2
Data 4 came from rank: 1
Name: pi004
Rank: 3
Data 9 came from rank: 2

As discussed earlier, the process with rank 0 (the first process) receives the data from
the process with rank 3 (the last process).

Data Tagging
In the earlier example (Listing 8-5), we studied how to send and receive data with MPI.
This raises a basic question for curious programmers: how do we exchange multiple
data items between processes? We can send multiple data items from one process to
another. However, at the receiving end, we will encounter problems in distinguishing one
data item from another. The solution for this is tagging. Have a look at the code example
(Listing 8-6) below.

Listing 8-6.  prog06.py

from mpi4py import MPI
import sys

Chapter 8 ■ Parallel Programming in Python 3

94

comm = MPI.COMM_WORLD
rank = comm.rank
size = comm.size
name = MPI.Get_processor_name()

if rank == 0:
 shared1 = {'d1': 55, 'd2': 42}
 comm.send(shared1, dest=1, tag=1)

 shared2 = {'d3': 25, 'd4': 22}
 comm.send(shared2, dest=1, tag=2)

if rank == 1:
 receive1 = comm.recv(source=0, tag=1)
 sys.stdout.write("d1: %d, d2: %d\n" % (receive1['d1'], receive1['d2']))
 receive2 = comm.recv(source=0, tag=2)
 sys.stdout.write("d3: %d, d4: %d\n" % (receive2['d3'], receive2['d4']))

In the example above, we are sending two different dictionaries shared1 and
shared2 from the process with rank 0 to the process with rank 1. At the source, shared1
is tagged with 1 and shared2 is tagged with 2. At the destination, we can distinguish the
different data items from the tags associated with them.

Run the code above (Listing 8-6) with the following command:

mpirun -hostfile myhostfile -np 4 python3 ~/book/code/chapter08/prog06.py

The output is as follows:

d1: 55, d2: 42
d3: 25, d4: 22

Data tagging gives programmers more control over the flow of data. When multiple
data are exchanged between processes, data tagging is a must.

Data Broadcasting
When data is sent from a single process to all the other processes then it is known as
broadcasting. Consider the following code (Listing 8-7):

Listing 8-7.  prog07.py

from mpi4py import MPI
import sys

comm = MPI.COMM_WORLD
rank = comm.rank

Chapter 8 ■ Parallel Programming in Python 3

95

if rank == 0:
 data = {'a': 1, 'b': 2, 'c': 3}
else:
 data = None

data = comm.bcast(data, root=0)
sys.stdout.write("Rank: %d, Data: %d, %d, %d\n"
 % (rank, data['a'], data['b'], data['c']))

In the code above (Listing 8-7), in the if statement we are assigning a dictionary to
data only if the rank of process is 0. bcast() broadcasts the data to all the processes.

Run the program.

mpirun -hostfile myhostfile -np 4 python3 ~/book/code/chapter08/prog07.py

The output is as follows:

Rank: 0, Data: 1, 2, 3
Rank: 1, Data: 1, 2, 3
Rank: 2, Data: 1, 2, 3
Rank: 3, Data: 1, 2, 3

Data Scattering
In broadcasting, we send the same data to all the processes. In scattering, we send the
different chunks of the data to all the processes. For example, we have a list with four
items. In broadcasting, we send all these four items to all the processes, whereas in
scattering, we send the items of the list to the processes, such that every process receives
an item from the list. The following program (Listing 8-8) demonstrates this.

Listing 8-8.  prog08.py

from mpi4py import MPI
import sys

comm = MPI.COMM_WORLD
size = comm.Get_size()
rank = comm.Get_rank()

if rank == 0:
 data = [x for x in range(0,size)]
 sys.stdout.write("We will be scattering: ")
 sys.stdout.write(" ".join(str(x) for x in data))
 sys.stdout.write("\n")
else:
 data = None

data = comm.scatter(data, root=0)
sys.stdout.write("Rank: %d has data: %d\n" % (rank, data))

Chapter 8 ■ Parallel Programming in Python 3

96

In the code above (Listing 8-8), we are creating a list with the name data which has a
number of elements equal to the process count in the cluster. scatter() is used to scatter
the data to all the processes.

Run the code.

mpirun -hostfile myhostfile -np 4 python3 ~/book/code/chapter08/prog08.py

The following is the output:

Rank: 1 has data: 1
We will be scattering: 0 1 2 3
Rank: 0 has data: 0
Rank: 2 has data: 2
Rank: 3 has data: 3

As we can see, each process receives an item from the list. The limitation of scatter()
is that the size of the data list we are scattering must not exceed the number of processes.

Data Gathering
The idea of gathering the data is opposite of scattering. The master process gathers all the
data processed by the other processes.

The program below (Listing 8-9) demonstrates the gather() method.

Listing 8-9.  prog09.py

from mpi4py import MPI
import sys

comm = MPI.COMM_WORLD
size = comm.Get_size()
rank = comm.Get_rank()

if rank == 0:
 data = [x for x in range(0,size)]
 sys.stdout.write("We will be scattering: ")
 sys.stdout.write(" ".join(str(x) for x in data))
 sys.stdout.write("\n")
else:
 data = None

data = comm.scatter(data, root=0)
sys.stdout.write("Rank: %d has data: %d\n" % (rank, data))
data *= data

newData = comm.gather(data, root=0)

Chapter 8 ■ Parallel Programming in Python 3

97

if rank == 0:
 sys.stdout.write("We have gathered: ")
 sys.stdout.write(" ".join(str(x) for x in newData))
 sys.stdout.write("\n")

In the program above (Listing 8-9), the master process scatters the list of numbers.
All the MPI processes receive an element from the list (the size of the list equals the
number of MPI processes). Each process performs an operation of the element it receives.
In our case, it is the calculation of the square of the number. However, in real-world
supercomputing, the operation could be quite complex.

Once the operation completes, the master process gathers all the processed
elements in a new list.

Run the code.

mpirun -hostfile myhostfile -np 4 python3 ~/book/code/chapter08/prog09.py

The output is as follows:

Rank: 1 has data: 1
Rank: 3 has data: 3
We will be scattering: 0 1 2 3
Rank: 0 has data: 0
We have gathered: 0 1 4 9
Rank: 2 has data: 2

Conclusion
In this chapter, we were introduced to the MPI4PY library for Python. We learned and
experimented with various interesting concepts in parallel programming with MPI4PY. In
the next chapter, we will get started with the SciPy stack in Python 3 with Raspberry Pi.

99© Ashwin Pajankar 2017
A. Pajankar, Raspberry Pi Supercomputing and Scientific Programming,
DOI 10.1007/978-1-4842-2878-4_9

CHAPTER 9

Introduction to SciPy Stack
and Symbolic Programming

In the last chapter, we learned how to use the Raspberry Pi cluster we built for parallel
programming with MPI4PY and Python 3. In this chapter, we will be introduced to the
SciPy stack and install it on the Pi. We will also get started with symbolic programming
with SymPy.

The Scientific Python Stack
SciPy (short for Scientific Python) is an open-source library for scientific and technical
computing in Python.

SciPy has modules for numerical operations, ordinary differential equation solvers,
fast Fourier transforms, optimization, linear algebra, integration, interpolation, signal
processing, and image processing. SciPy is extensively used by scientific, mathematical,
and engineering communities around the world. There are many other libraries which
use core modules of SciPy and NumPy for operations. OpenCV and SciKit are the best
examples of other major libraries using NumPy and/or SciPy.

The SciPy stack has the following components:

•	 NumPy is a library for numerical computations. It provides all the
basic data types required for numeric and scientific computing.

•	 SciPy Library has many modules for scientific programming.

•	 Matplotlib is used for data visualization.

•	 SymPy is used for Symbolic Programming.

•	 IPython is an advanced Python interpreter with added features.

•	 Pandas is used for data analysis.

•	 Nose is used for automating test cases.

The following figure (Figure 9-1) summarizes the role of the Python SciPy stack in
the world of scientific computing.

Chapter 9 ■ Introduction to SciPy Stack and Symbolic Programming

100

In this book, we will study NymPy, SciPy Library, Matplotlib, and SymPy.

Installation of the SciPy Stack
The best way to install the SciPy stack on Raspberry Pi is to use apt-get and pip.

First, upgrade pip with the following command:

sudo python3 -m pip install --upgrade pip

Install SymPy with the following command:

sudo pip3 install sympy

The rest of the components of the SciPy stack can conveniently be installed with the
apt-get utility as follows:

sudo apt-get install python3-matplotlib -y
sudo apt-get install python3-scipy -y
sudo apt-get install python3-numpy -y

This installs the required components of the SciPy stack.

SymPy
The SymPy website says:

SymPy is a Python library for symbolic mathematics. It aims to become
a full-featured computer algebra system (CAS) while keeping the code as
simple as possible in order to be comprehensible and easily extensible.
SymPy is written entirely in Python.

Python core packages

NumPySciPy

matplotlib

= Matlab

Figure 9-1.  The components of the SciPy stack

Chapter 9 ■ Introduction to SciPy Stack and Symbolic Programming

101

SymPy is licensed under BSD and free. It has been written entirely in Python. It
depends on mpmath and is lightweight in nature as there are no other dependencies.

Getting Started
Let’s get started with SymPy. Run the following commands to create and navigate to the
directory for the chapter:

cd ~
cd book
cd code
mkdir chapter09
cd chapter09

We will keep the code for this chapter in the directory chapter09 and will continue
this practice for the rest of the book, i.e. creating directories by chapter for organizing
the code.

I assume that you have some basic knowledge of mathematics and calculus, so I
do not have to explain the basics when explaining the code. Let’s see a simple example
(Listing 9-1) of the concept of symbolic computation.

Listing 9-1.  prog01.py

import math
import sympy
print(math.sqrt(9))
print(math.sqrt(8))
print(sympy.sqrt(9))
print(sympy.sqrt(8))

Run the code above (Listing 9-1). The following is the output:

3.0
2.8284271247461903
3
2*sqrt(2)

In the output above, we can see that the math.sqrt() method directly produces
the results in numeric format, whereas the sympy.sqrt() method produces the result
in numeric format only in the case where it is an integer. Rather than producing a
fractional value, it keeps sqrt(2) as it is. This way, we can symbolically compute a lot
of mathematical equations. Equipped with this knowledge of the concept of symbolic
mathematics, let’s go deeper into SymPy with Python 3.

Chapter 9 ■ Introduction to SciPy Stack and Symbolic Programming

102

Symbols
Let’s study the concept of symbols. Symbols are analogous to variables in mathematics.
We can use them for evaluations in equations and expressions. They can also be used to
solve equations. The sympy.symbols() method converts a string into symbolic variables
as follows (Listing 9-2):

Listing 9-2.  prog02.py

from sympy import *

x = symbols('x')
sigma, y = symbols('sigma y')
print(x, y, sigma)

The output is as follows:

x y sigma

The above code (Listing 9-2) demonstrates that the symbols() method can accept a
string where the tokens are separated by whitespace as an argument.

Let’s see one more example (Listing 9-3) which demonstrates the evaluation of an
expression with symbols.

Listing 9-3.  prog03.py

from sympy import *

x = symbols('x')
expr = x + 1
print(expr.subs(x, 3))

This will substitute 3 in place of x in the expression and evaluate that. The code
(Listing 9-3) produces 4 as output.

We can substitute for multiple symbols as follows (Listing 9-4):

Listing 9-4.  prog04.py

from sympy import *

x, y = symbols('x y')
expr = x + y
print(expr.subs({x:3, y:2}))

Here, we are substituting for multiple symbols at once. Run the code and check the
output.

Chapter 9 ■ Introduction to SciPy Stack and Symbolic Programming

103

Converting Strings to SymPy Expressions
We can convert strings to SymPy expressions. Just as in Python, we can use the **
operator for the exponent. The following code (Listing 9-5) shows this:

Listing 9-5.  prog05.py

from sympy import *

str = "x**3 + 4*y - 1/5"
expr = sympify(str)
print(expr)

The sympify() method converts a string to a SymPy expression.
We can also use the evalf() method for evaluating expressions to a floating point

number. It has a default precision of 15 digits after the decimal; however, we can pass the
precision as an argument. The following (Listing 9-6) shows the example use cases of the
evalf() method:

Listing 9-6.  prog06.py

from sympy import *

expr = sqrt(10)
print(expr.evalf())

print(pi.evalf(20))

x = symbols('x')
expr = sin(2*x)
print(expr.evalf(subs={x: 2.4}))
The output is as follows,
3.16227766016838
3.1415926535897932385
-0.996164608835841
Printing in SymPy

Sympy’s Printing Functionality
SymPy has many printers. In any environment, use of init_session() method at the
command prompt will start an interactive session. The following is an example of a sample
interactive session. The commands I typed into the console are highlighted in bold.

pi@pi001:~/book/code/chapter09 $ python3
Python 3.4.2 (default, Oct 19 2014, 13:31:11)
[GCC 4.9.1] on linux

Chapter 9 ■ Introduction to SciPy Stack and Symbolic Programming

104

Type "help", "copyright", "credits" or "license" for more information.
>>> from sympy import *
>>> init_session()
Python console for SymPy 1.0 (Python 3.4.2-32-bit) (ground types: python)

These commands were executed:

>>> from __future__ import division
>>> from sympy import *
>>> x, y, z, t = symbols('x y z t')
>>> k, m, n = symbols('k m n', integer=True)
>>> f, g, h = symbols('f g h', cls=Function)
>>> init_printing()

Documentation can be found at http://docs.sympy.org/1.0/

>>> Integral(sqrt(1/x), x)
⌠
⎮ ___
⎮ ╱ 1
⎮ ╱ ─ dx
⎮╲╱ x
⌡
>>> sqrt(x)
√x
>>> (sqrt(x) + sqrt(y))**2
 2
(√x + √y)
>>>

This is how we can print expressions in a nice format in the interactive console.

Simplification in SymPy
We can use the simplify() method to simplify mathematical expressions to the best
possible extent. A large number of expressions are covered under this. The following
(Listing 9-8) is an example of this:

Listing 9-8.  prog08.py

from sympy import *
x = symbols('x')
print(simplify(sin(x)**2 + cos(x)**2))
print(simplify((x**3 + x**2 - x - 1)/(x**2 + 2*x + 1)))
print(simplify(gamma(x)/gamma(x - 2)))

Chapter 9 ■ Introduction to SciPy Stack and Symbolic Programming

105

The simplified output is as follows:

1
x - 1
(x - 2)*(x - 1)

There are more simplification methods in SymPy. We can use expand() for a
polynomial expression’s expansion as shown below (Listing 9-9).

Listing 9-9.  prog09.py

from sympy import *
x, y = symbols('x y')
print(expand((x + y)**2))
print(expand((x + 3)*(y + 5)))

The following is the expanded output:

x**2 + 2*x*y + y**2
x*y + 5*x + 3*y + 15

Similarly, we can use the factor() method (Listing 9-10) for finding irreducible
factors of polynomials.

Listing 9-10.  prog10.py

from sympy import *
x = symbols('x')
print(factor(x**3 - x**2 + x))

The output is as follows:

x*(x**2 - x + 1)

Calculus
We can even use SymPy for calculus. We can use the diff() method to calculate the
derivatives as follows (Listing 9-11):

Listing 9-11.  prog11.py

from sympy import *
x = symbols('x')
print(diff(x**3 - x**2 + x, x))
print(diff(x**5, x))
print(diff(sin(x), x))

Chapter 9 ■ Introduction to SciPy Stack and Symbolic Programming

106

The output is:

3*x**2 - 2*x + 1
5*x**4
cos(x)

We can also find the higher order derivative of the expressions as follows
(Listing 9-12):

Listing 9-12.  prog12.py

from sympy import *
x = symbols('x')
print(diff(10*x**4, x, x, x))
print(diff(10*x**4, x, 3))

The output is as follows:

240*x
240*x

We can also calculate integrals with SymPy using the integrate() method. The
following code (Listing 9-13) demonstrates this:

Listing 9-13.  prog13.py

from sympy import *
x = symbols('x')
print(integrate(sin(x), x))

The output is as follows:

-cos(x)

We can also have integration with limits as follows (Listing 9-14):

Listing 9-14.  prog14.py

from sympy import *
x = symbols('x')
print(integrate(exp(-x), (x, 0, oo)))

Chapter 9 ■ Introduction to SciPy Stack and Symbolic Programming

107

Here, we are integrating the exponent of -x from zero to infinity (denoted by oo). Run
this and check the output. We can also calculate multiple integrals with multiple limits as
follows (Listing 9-15):

Listing 9-15.  prog15.py

from sympy import *
x, y = symbols('x y')
print(integrate(exp(-x)*exp(-y), (x, 0, oo), (y, 0, oo)))

Run the code (Listing 9-15) and verify the output by carrying out the integration
manually.

■■ Note  SymPy is really a big topic. It cannot be covered completely in a single chapter.
I recommend readers explore more on the websites http://docs.sympy.org and
www.sympy.org.

Conclusion
In this chapter, we got started with SymPy and learned how to perform symbolic
computation in Python. In the next chapter, we will get started with NumPy and
Matplotlib.

http://docs.sympy.org/
http://www.sympy.org/

109© Ashwin Pajankar 2017
A. Pajankar, Raspberry Pi Supercomputing and Scientific Programming,
DOI 10.1007/978-1-4842-2878-4_10

CHAPTER 10

Introduction to NumPy

In the last chapter, we learned how to install the SciPy stack and how to use SymPy for
symbolic computation with Python 3. In this chapter, we will be introduced to the NumPy
library, and we will study the basics of NumPy. We will also learn the basics of plotting
and visualizing data with Matplotlib. So let’s begin the exciting journey into the world of
scientific computing by learning the foundations of NumPy.

Basics of NumPy
NumPy is short for Numeric(al) Python. Its website (http://www.numpy.org) says:

NumPy is the fundamental package for scientific computing with Python

Its features are as follows:

•	 It has a powerful custom N-dimensional array object for efficient
and convenient representation of data.

•	 It has tools for integration with other programming languages
used for scientific programming like C/C++ and FORTRAN.

•	 It is used for mathematical operations like linear algebra, matrix
operations, image processing, and signal processing.

Jupyter
Until now, we have been saving our code in .py files and running it with the Python 3
interpreter. In this chapter, we will use a tool known as Jupyter, which is an advanced
web-based tool for interactive coding in the programming languages Julia, Python, and R.

Julia + Python + R = Jupyter

It saves Python 3 (or any other supported languages like R and Julia) code and the
result in an interactive format called a notebook. Jupyter uses the IPython kernel for
Python 2 and Python 3. IPython is an advanced interactive shell for Python, which has
visualization capabilities. Project Jupyter is a spin-off of IPython.

http://www.numpy.org/

Chapter 10 ■ Introduction to NumPy

110

Jupyter and IPython have the following features:

•	 Interactive terminal- and Qt-based shells

•	 Browser-based notebooks for the support of code and interactive
visualizations

•	 Support for parallel computing

It can be installed easily with the following commands:

sudo pip3 install --upgrade pip
sudo pip3 install jupyter

This installs Jupyter and all of its dependencies on Raspberry Pi.

Jupyter Notebooks
Jupyter notebooks are documents produced by the Jupyter Notebook App, which have
Python code and Rich Text elements like paragraphs, equations, figures, links, and
interactive visualizations. Notebooks have human-readable components and machine-
readable (executable) components.

Let’s get started with NumPy and Jupyter notebooks now. Open lxterminal and run
the following sequence of commands:

cd ~
cd book
cd code
mkdir chapter10
cd chapter10

This will create and navigate to the directory corresponding to the current chapter,
chapter10.

Now, this is our notebook startup folder, so let’s launch the notebook from here with
the following command:

jupyter notebook

It will start the Jupyter Notebook App and a browser window (Chromium browser in
the latest releases of Raspbian) will open.

Chapter 10 ■ Introduction to NumPy

111

The following (Figure 10-1) is a screenshot of the console when the Jupyter
notebook starts:

The following (Figure 10-2) is a screenshot of the Chromium browser window tab
running the notebook app:

Figure 10-1.  Jupyter Notebook App console

Figure 10-2.  Jupyter Notebook App running in Chromium

Chapter 10 ■ Introduction to NumPy

112

In the upper right part of the browser window click New and then in the subsequent
dropdown select Python 3. See the following (Figure 10-3) screenshot:

Figure 10-3.  New Python 3 notebook

Figure 10-4.  Python 3 notebook tab

It will open a new notebook tab (Figure 10-4) in the same browser window.

Chapter 10 ■ Introduction to NumPy

113

Change the name of the Jupyter notebook to Chapter10_Practice as shown in the
screenshot (Figure 10-5) below.

Figure 10-5.  Renaming the notebook

Figure 10-6.  Notebook running

The Notebook app will show an instance of a new notebook with the updated name,
with status as “running,” as shown in the screenshot (Figure 10-6) below.

Now, if you check the Chapter10 directory, you will find a file Chapter10_Practice.
ipynb corresponding to the notebook.

In the menubar at the top of the window, there are options like you would have in
any other IDE—for example, save, copy, paste, and run.

Type import numpy as np in the first cell and click the Run button. The control
will automatically create the next text cell and focus the cursor on it as shown below
(Figure 10-7).

Chapter 10 ■ Introduction to NumPy

114

We have just imported NumPy to our notebook, so we do not have to import again.
Also, we can edit the previous cells of the notebook too. At the type of execution, if the
interpreter highlights a mistake in the syntax, we can fix it by editing any of the cells. We
will learn more about Jupyter as we go forward in scientific computing.

The N-Dimensional Array (ndarray)
The most powerful construct of NumPy is the N-Dimensional array (ndarray). ndarray
provides a generic container for multi-dimensional homogeneous data. Homogeneous
means the data items in an ndarray are of the same data-type. Let’s see an example of
various ndarray type variables in Python. Type the following code in the notebook:

x = np.array([1, 2, 3], np.int16)
y = np.array([[0, 1, 2], [3, 4, 5]], np.int32)
z = �np.array([[[0, 1, 2], [2, 3, 4], [4, 5, 6]],[[1, 1, 1], [0, 0, 0],

[1, 1, 1]]], np.float16)

Congrats, we have just created one-, two-, and three-dimensional ndarray objects.
We can verify that by running the following code in Jupyter notebook:

print(x.shape)
print(y.shape)
print(z.shape)

The output is:

(3,)
(2, 3)
(3, 3, 3)

The indexing scheme of the ndarray in NumPy is the same as in C language i.e. the
first element is indexed from 0. The following line prints the value of an element in the
second row and third column in an ndarray.

Figure 10-7.  Working with Python 3 code

Chapter 10 ■ Introduction to NumPy

115

We can slice the arrays as follows:

print(z[:,1])

The following is the output:

[[2. 3. 4.]
 [0. 0. 0.]]

ndarray Attributes
The following is a demonstration of important attributes of the ndarray:

print(z.shape)
print(z.ndim)
print(z.size)
print(z.itemsize)
print(z.nbytes)
print(z.dtype)

The following is the output:

(2, 3, 3)
3
18
2
36
float16

Here is what is happening:

•	 ndarray.shape returns the tuple of array dimensions.

•	 ndarray.ndim returns the number of array dimensions.

•	 ndarray.size returns the number of elements in the array.

•	 ndarray.itemsize returns the length of one array element in
bytes.

•	 ndarray.nbytes returns the total bytes consumed by the
elements of the array. It is the result of the multiplication of
attributes ndarray.size and ndarray.itemsize.

•	 ndarray.dtype returns the data type of items in the array.

Chapter 10 ■ Introduction to NumPy

116

Data Types
Data types are used for denoting the type and size of the data. For example, int16 means
16-bit signed integer and uint8 means 8-bit unsigned integer. NumPy supports a wide
range of data types. Please explore the data type objects webpage (https://docs.scipy.
org/doc/numpy/reference/arrays.dtypes.html) for more details about data types.

■■ Note  To see an exhaustive list of various data types supported by NumPy visit
https://docs.scipy.org/doc/numpy/user/basics.types.html.

Equipped with the basics of the ndarray construct in NumPy, we will get started with
array creation routines in the next section.

Array Creation Routines
Let’s create ndarrays with built-array creation routines. We are also going to use
matplotlib to visualize the arrays created. We will use matplotlib for visualizing the data
as and when needed. The last chapter of this book is dedicated to matplotlib, where we
will learn more about it.

The first method for creating ndarrays is ones(). As you must have guessed, it
creates arrays where all the values are ones. Run the following statements in the notebook
to see a demonstration of the method:

a = np.ones(5)
print(a)
b = np.ones((3,3))
print(b)
c = np.ones((5, 5), dtype=np.int16)
print(c)

Similarly we have the np.zeros() method for generating multidimensional arrays of
zeros. Just run the examples above by passing the same set of arguments to the method
np.zeros(). The np.eye() method is used for creating diagonal matrices. We can also
specify the index of the diagonals. Run the following examples in the notebook for a
demonstration:

a = np.eye(5, dtype=np.int16)
print(a)
b = np.eye(5, k=1)
print(b)
c = np.eye(5, k=-1)
print(c)

https://docs.scipy.org/doc/numpy/reference/arrays.dtypes.html
https://docs.scipy.org/doc/numpy/reference/arrays.dtypes.html
https://docs.scipy.org/doc/numpy/user/basics.types.html

Chapter 10 ■ Introduction to NumPy

117

np.arange() returns a list of evenly spaced numbers in a specified range. Try the
following examples in the notebook:

a = np.arange(5)
print(a)
b = np.arange(3, 25, 2)
print(b)

The output is as follows:

[0 1 2 3 4]
[3 5 7 9 11 13 15 17 19 21 23]

Let’s have some fun with matplotlib now. Run the following example in the notebook:

import matplotlib.pyplot as plt
x = np.arange(10)
y = np.arange(10)
print(x)
print(y)
plt.plot(x, y, 'o')
plt.show()

In the example above, we are graphically representing the ndarrays. The text result is
as follows:

[0 1 2 3 4 5 6 7 8 9]
[0 1 2 3 4 5 6 7 8 9]

The graphical output (Figure 10-8) is as follows:

Chapter 10 ■ Introduction to NumPy

118

With the statement import matplotlib.pyplot as plt, we are importing the
pyplot module of the myplotlib library. plt.plot() prepares the plot graph for display
and plt.show() displays it on the screen.

We have a similar method, np.linspace(), for generating a linear array. The major
difference between linspace() and arange() is that linspace() accepts the number of
samples to be generated as an argument rather than stepsize. The following code snippet
shows the way linspace() generates the data:

N = 8
y = np.zeros(N)
x1 = np.linspace(0, 10, N)
x2 = np.linspace(0, 10, N)
plt.plot(x1, y - 0.5, 'o')
plt.plot(x2, y + 0.5, 'o')
plt.ylim([-1, 1])
plt.show()

plt.ylim() specifies the limit of the Y co-ordinate on the graph. The following
(Figure 10-9) is the output:

Figure 10-8.  Graphical Output of arange()

Chapter 10 ■ Introduction to NumPy

119

Similarly, we have the logspace() method which generates the array value on a
logarithmic scale. The following code demonstrates that:

N = 64
x = np.linspace(1, N, N)
y = np.logspace(0.1, 1, N)
plt.plot(x, y, 'o')
plt.show()

Run the statements in the notebook and it generates the following (Figure 10-10)
output:

Figure 10-9.  linspace() graph

Chapter 10 ■ Introduction to NumPy

120

Matrix and Linear Algebra
NumPy has routines for matrix creation. Let’s see a few examples. np.matrix() interprets
the given data as a matrix. The following are examples:

a = np.matrix('1 2; 3 4')
b = np.matrix([[1, 2], [3, 4]])
print(a)
print(b)

Run the code in the notebook and you will see that both the examples return the
matrices even though the input was in a different format.

[[1 2]
 [3 4]]
[[1 2]
 [3 4]]

Figure 10-10.  linspace() versus logspace() graph

Chapter 10 ■ Introduction to NumPy

121

np.bmat() builds a matrix from arrays or sequences.

A = np.mat('1 1; 1 1')
B = np.mat('2 2; 2 2')
C = np.mat('3 4; 5 6')
D = np.mat('7 8; 9 0')
a = np.bmat([[A, B], [C, D]])
print(a)

The code above returns a matrix combined from all the sequences. Run the code in
the notebook to see the output as follows:

[[1 1 2 2]
 [1 1 2 2]
 [3 4 7 8]
 [5 6 9 0]]

np.matlib.zeros() and np.matlib.ones() return the matrices of zeros and ones
respectively. np.matlib.eye() returns a diagonal matrix. np.matlib.identity() returns
a square identity matrix of a given size. The following code example demonstrates these
methods:

from numpy.matlib import *
a = zeros((3, 3))
print(a)
b = ones((3, 3))
print(b)
c = eye(3)
print(c)
d = eye(5, k=1)
print(d)
e = eye(5, k=-1)
print(e)
f = identity(4)
print(f)

The rand() and randn() methods return matrices with random numbers.

a = rand((3, 3))
b = randn((4, 4))
print(a)
print(b)

Chapter 10 ■ Introduction to NumPy

122

Let’s study a few methods related to linear algebra (matrix operations). We have
the dot() method, which calculates the dot product of two arrays, whereas vdot()
calculates the dot product of two vectors. inner() calculates the inner product of two
arrays. outer() calculates the outer product of two vectors. The following code example
demonstrates all these methods:

a = [[1, 0], [0, 1]]
b = [[4, 1], [2, 2]]
print(np.dot(a, b))
print(np.vdot(a, b))
print(np.inner(a, b))
print(np.outer(a, b))

The output is as follows:

[[4 1]
 [2 2]]
6
[[4 2]
 [1 2]]
[[4 1 2 2]
 [0 0 0 0]
 [0 0 0 0]
 [4 1 2 2]]

Trigonometric Methods
Let’s visualize trigonometric methods. We will visualize sin(), cos(), tan(), sinh(), and
cosh() methods with matplotlib. The following example demonstrates the usage of these
methods:

x = np.linspace(-np.pi, np.pi, 201)
plt.plot(x, np.sin(x))
plt.xlabel('Angle in radians')
plt.ylabel('sin(x)')
plt.show()

The output (Figure 10-11) is as follows:

Chapter 10 ■ Introduction to NumPy

123

The following code examples demonstrate usage of cos():

x = np.linspace(-np.pi, 2*np.pi, 401)
plt.plot(x, np.cos(x))
plt.xlabel('Angle in radians')
plt.ylabel('cos(x)')
plt.show()

The following (Figure 10-12) is the output:

Figure 10-11.  Graph for sin(x)

Chapter 10 ■ Introduction to NumPy

124

Let’s move on to the hyperbolic Cosine and Sine waves as follows,

x = np.linspace(-5, 5, 2000)
plt.plot(x, np.cosh(x))
plt.show()
plt.plot(x, np.sinh(x))
plt.show()

Figure 10-12.  graph for cos(x)

Chapter 10 ■ Introduction to NumPy

125

The following (Figure 10-13) is the output of cosh():

Figure 10-13.  Graph of cosh(x)

Chapter 10 ■ Introduction to NumPy

126

The following (Figure 10-14) is the graph of sinh(x):

Figure 10-14.  Graph of sinh(x)

Random Numbers and Statistics
The rand() method generates a random matrix of given dimensions. The randn()
method generates a matrix with numbers sampled from the normal distribution.
randint() generates a number in given limits excluding the limits. random_integers()
generates a random integer including the given limits. The following code demonstrates
the first three of the above methods:

import numpy as np
a = np.random.rand(3, 3)
b = np.random.randn(3, 3)
c = np.random.randint(4, 15)
print(a)
print(b)
print(c)

We can calculate median, average, mean, standard deviation, and variance of a
ndarray as follows:

Chapter 10 ■ Introduction to NumPy

127

a = np.array([[10, 7, 4], [1, 2, 3], [1, 1, 1]])
print(median(a))
print(average(a))
print(mean(a))
print(std(a))
print(var(a))

Fourier Transforms
NumPy has a module for basic signal processing. The fft module has the fft() method,
which is used for computing one-dimensional discrete Fourier transforms as follows:

t = np.arange(256)
sp = np.fft.fft(np.sin(t))
freq = np.fft.fftfreq(t.shape[-1])
plt.plot(freq, sp.real, freq, sp.imag)
plt.show()

The output (Figure 10-15) is as follows:

Figure 10-15.  Fast Fourier Transform

Chapter 10 ■ Introduction to NumPy

128

fft2() and fftn() are used for calculating two-dimensional and n-dimensional
discrete Fourier transforms respectively. Try to write code for these.

Conclusion
In this chapter, we got started with NumPy, matplotlib, and Jupyter, and we learned how
to perform numeric computations and basic visualizations in Python. In the next chapter,
we will get started with the SciPy Library.

129© Ashwin Pajankar 2017
A. Pajankar, Raspberry Pi Supercomputing and Scientific Programming,
DOI 10.1007/978-1-4842-2878-4_11

CHAPTER 11

Introduction to SciPy

In the last chapter, we learned how to perform numerical computation with NumPy.
We also learned how to use Jupyter for our convenience and how to use matplotlib for
visualization. In this chapter, we will be introduced to the SciPy library. However, our
journey with NumPy and matplotlib is far from over. We will learn new functionalities in
NumPy and matplotlib throughout the remainder of the book. So let’s embark upon the
exciting journey of scientific computing with SciPy.

Scientific and Mathematical Constants in SciPy
Before we begin, let’s complete the ritual of creating a new directory for this chapter.
Please create a directory, chapter11, for this chapter.

cd ~
cd book
cd code
mkdir chapter11
cd chapter11

Now start the Jupyter Notebook App with the following command:

jupyter notebook

Open a new notebook and rename it to Chapter11_Practice. This notebook will
hold the code for this chapter.

The SciPy library has a module called scipy.constants which has the values of
many important mathematical and scientific constants. Let’s try a few of them. Run the
following code in the notebook:

import numpy as np
import matplotlib.pyplot as plt
from scipy.constants import *
print("Pi = " + str(pi))
print("The golden ratio = " + str(golden))
print("The speed of light = " + str(c))

Chapter 11 ■ Introduction to SciPy

130

print("The Planck constant = " + str(h))
print("The standard acceleration of gravity = " + str(g))
print("The Universal constant of gravity = " + str(G))

The output is as follows:

Pi = 3.141592653589793
The golden ratio = 1.618033988749895
The speed of light = 299792458.0
The Planck constant = 6.62606957e-34,
The standard acceleration of gravity = 9.80665
The Universal constant of gravity = 6.67384e-11

Note that the SciPy constants do not include a unit of measurement, only the
numeric value of the constants. These are very useful in numerical computing.

■■ Note T here are more of these constants. Please visit https://docs.scipy.org/doc/
scipy/reference/constants.html to see more of these.

Linear algebra
Now we will study a few methods related to linear algebra. Let’s get started with the
inverse of a matrix:

import numpy as np
from scipy import linalg
a = np.array([[1, 4], [9, 16]])
b = linalg.inv(a)
print(b)

The following is the output:

[[-0.8 0.2]
 [0.45 -0.05]]

We can also solve the matrix equation ax = b as follows:

a = np.array([[3, 2, 0], [1, -1, 0], [0, 5, 1]])
b = np.array([2, 4, -1])
from scipy import linalg
x = linalg.solve(a, b)
print(x)
print(np.dot(a, x))

https://docs.scipy.org/doc/scipy/reference/constants.html
https://docs.scipy.org/doc/scipy/reference/constants.html

Chapter 11 ■ Introduction to SciPy

131

The following is the output:

[2. -2. 9.]
[2. 4. -1.]

We can calculate the determinant of a matrix as follows:

a = np.array([[0, 1, 2], [3, 4, 5], [6, 7, 8]])
print(linalg.det(a))

Run the code above in the notebook and see the results for yourself.
We can also calculate the norms of a matrix as follows:

a = np.arange(16).reshape((4, 4))
print(linalg.norm(a))
print(linalg.norm(a, np.inf))
print(linalg.norm(a, 1))
print(linalg.norm(a, -1))

The following are the results:

35.2136337233
54
36
24

We can also compute QR and RQ decompositions as follows:

from numpy import random
from scipy import linalg
a = random.randn(3, 3)
q, r = linalg.qr(a)
print(a)
print(q)
print(r)
r, q = linalg.rq(a)
print(r)
print(q)

Chapter 11 ■ Introduction to SciPy

132

Integration
SciPy has the integrate module for various integration operations, so let’s look at a few
of its methods. The first one is quad(). It accepts the function to be integrated as well as
the limits of integration as arguments, and then returns the value and approximate error.
The following are a few examples:

from scipy import integrate
f1 = lambda x: x**4
print(integrate.quad(f1, 0, 3))
import numpy as np
f2 = lambda x: np.exp(-x)
print(integrate.quad(f2, 0, np.inf))

The following are the outputs:

(48.599999999999994, 5.39568389967826e-13)
(1.0000000000000002, 5.842606742906004e-11)

trapz() integrates along a given axis using the trapezoidal rule:

print(integrate.trapz([1, 2, 3, 4, 5]))

The following is the output:

12.0

Let’s see an example of cumulative integration using the trapezoidal rule.

import matplotlib.pyplot as plt
x = np.linspace(-2, 2, num=30)
y = x
y_int = integrate.cumtrapz(y, x, initial=0)
plt.plot(x, y_int, 'ro', x, y[0] + 0.5 * x**2, 'b-')
plt.show()

The following (Figure 11-1) is the output:

Chapter 11 ■ Introduction to SciPy

133

Interpolation
This module has methods for interpolation. Let’s study a few of these with the help of
the graphical representation of matplotlib. interp1d() is used for 1-D interpolation as
demonstrated below.

from scipy import interpolate
x = np.arange(0, 15)
y = np.exp(x/3.0)
f = interpolate.interp1d(x, y)
xnew = np.arange(0, 14, 0.1)
ynew = f(xnew)
plt.plot(x, y, 'o', xnew, ynew, '-')
plt.show()

Figure 11-1.  Cumulative integration using the trapezoidal rule

Chapter 11 ■ Introduction to SciPy

134

The following (Figure 11-2) is the result:

Figure 11-2.  1-D interpolation

interp1d() works for y=f(x) type of functions. Simillary, interp2d() works on
z=f(x, y) type of functions. It is used for two-dimensional interpolation.

x = np.arange(-5.01, 5.01, 0.25)
y = np.arange(-5.01, 5.01, 0.25)
xx, yy = np.meshgrid(x, y)
z = np.sin(xx**3 + yy**3)
f = interpolate.interp2d(x, y, z, kind='cubic')
xnew = np.arange(-5.01, 5.01, 1e-2)
ynew = np.arange(-5.01, 5.01, 1e-2)
znew = f(xnew, ynew)
plt.plot(x, z[0, :], 'ro-', xnew, znew[0, :], 'b-')
plt.show()

Chapter 11 ■ Introduction to SciPy

135

The following (Figure 11-3) is the result:

Figure 11-3.  2-D interpolation

Next, we are going to study splev(), splprep(), and splrep(). The splev()
method is used to evaluate B-spline or its derivatives. We will use this method along with
splprep() and splrep(), which are used for representations of B-spline.

splrep() is used for representation of a 1-D curve as follows:

from scipy.interpolate import splev, splrep
x = np.linspace(-10, 10, 50)
y = np.sinh(x)
spl = splrep(x, y)
x2 = np.linspace(-10, 10, 50)
y2 = splev(x2, spl)
plt.plot(x, y, 'o', x2, y2)
plt.show()

Chapter 11 ■ Introduction to SciPy

136

The following (Figure 11-4) is the result:

Figure 11-4.  Representation of a 1-D curve

splprep() is used for representation of an N-dimensional curve.

from scipy.interpolate import splprep
theta = np.linspace(0, 2*np.pi, 80)
r = 0.5 + np.cosh(theta)
x = r * np.cos(theta)
y = r * np.sin(theta)
tck, u = splprep([x, y], s=0)
new_points = splev(u, tck)
plt.plot(x, y, 'ro')
plt.plot(new_points[0], new_points[1], 'r-')
plt.show()

Chapter 11 ■ Introduction to SciPy

137

The following (Figure 11-5) is the result.

Figure 11-5.  Representation of an N-D curve

Conclusion
In this chapter, we were introduced to a few important and frequently used modules in
the SciPy library. The next two chapters will be focused on introducing readers to the
specialized scientific areas of signal and image processing. In the next chapter, we will
study a few modules related to the area of signal processing.

139© Ashwin Pajankar 2017
A. Pajankar, Raspberry Pi Supercomputing and Scientific Programming,
DOI 10.1007/978-1-4842-2878-4_12

CHAPTER 12

Signal Processing with SciPy

In the last chapter, we learned how to perform scientific computations with SciPy. We
were introduced to a few modules of the SciPy library. In this chapter, we will explore an
important scientific area, signal processing, and we will learn the methods in the SciPy.
signal module. So let’s get started with signal processing in SciPy. This will be a quick,
short chapter with only a handful of code examples to provide you with a glimpse of a few
fundamentals in the world of signal processing.

Waveforms
Let’s get started with the waveform generator functions. Create a new directory chapter12
in the ~/book/code directory. Run the following command to start the Jupyter Notebook
App:

jupyter notebook

Rename the current notebook to Chapter12_Practice. As in previous chapters,
run all the code from this chapter in the same notebook. Let’s import NumPy and
matplotlib first.

import numpy as np
import matplotlib.pyplot as plt

The first example we will study is a sawtooth generator function.

from scipy import signal
t = np.linspace(0, 2, 5000)
plt.plot(t, signal.sawtooth(2 * np.pi * 4 * t))
plt.show()

The function accepts the time sequence and the width of signal and generates
triangular or sawtooth shaped continuous signals. The following (Figure 12-1) is the
output,

Chapter 12 ■ Signal Processing with SciPy

140

Let’s have a look at a square wave generator which accepts time array and duty cycle
as inputs.

t = np.linspace(0, 1, 400)
plt.plot(t, signal.square(2 * np.pi * 4 * t))
plt.ylim(-2, 2)
plt.title('Square Wave')
plt.show()

Figure 12-1.  Sawtooth wave signal

Chapter 12 ■ Signal Processing with SciPy

141

Figure 12-2.  Square wave signal

A pulse-width modulated square sine wave can be demonstrated as follows:

sig = np.sin(2 * np.pi * t)
pwm = signal.square(2 * np.pi * 30 * t, duty=(sig +1)/2)
plt.subplot(2, 1, 1)
plt.plot(t, sig)
plt.title('Sine Wave')
plt.subplot(2, 1, 2)
plt.plot(t, pwm)
plt.title('PWM')
plt.ylim(-1.5, 1.5)
plt.show()

The output is as follows:

Chapter 12 ■ Signal Processing with SciPy

142

Window Functions
A window function is a mathematical function which is zero outside a specific interval.
We will now look at three different window functions. The first one is the Hamming
window function. We have to pass the number of points in the output window as an
argument to all the functions.

window = signal.hamming(101)
plt.plot(window)
plt.title('Hamming Window Function')
plt.xlabel('Sample')
plt.ylabel('Amplitude')
plt.show()

Figure 12-3.  Modulated wave

The output (Figure 12-3) is as follows:

Chapter 12 ■ Signal Processing with SciPy

143

The Hanning window function is as follows:

window = signal.hanning(101)
plt.plot(window)
plt.title('Hanning Window Function')
plt.xlabel('Sample')
plt.ylabel('Amplitude')
plt.show()

Figure 12-4.  Hamming window demo

The output (Figure 12-4) is as follows:

Chapter 12 ■ Signal Processing with SciPy

144

The Kaiser window function is as follows,

window = signal.kaiser(51, beta=20)
plt.plot(window)
plt.title('Kaiser Window Function Beta = 20')
plt.xlabel('Sample')
plt.ylabel('Amplitude')
plt.show()

Figure 12-5.  Hanning window demo

The output (Figure 12-5) is as follows:

Chapter 12 ■ Signal Processing with SciPy

145

Mexican Hat Wavelet
We can generate a Mexican hat wavelet with the Ricker function by passing the number of
points and the amplitude as parameters, as in the following:

plt.plot(signal.ricker(200, 6.0))
plt.show()

Figure 12-6.  Kaiser window demo

The output (Figure 12-6) is as follows:

Chapter 12 ■ Signal Processing with SciPy

146

Convolution
We can convolve two N-dimensional arrays with the convolve() method as follows:

sig = np.repeat([0., 1., 0.], 100)
win = signal.hann(50)
filtered = signal.convolve(sig, win, mode='same') / sum(win)
plt.subplot(3, 1, 1)
plt.plot(sig)
plt.ylim(-0.2, 1.2)
plt.title('Original Pulse')
plt.subplot(3, 1, 2)
plt.plot(win)
plt.ylim(-0.2, 1.2)

The Mexican hat wavelet is a special case in the family of continuous wavelets. It is
used for filtering and averaging spectral signals. The output is as follows:

Figure 12-7.  Mexican hat wavelet

Chapter 12 ■ Signal Processing with SciPy

147

Conclusion
In this short chapter, we were introduced to a few important classes of methods in the
scipy.signal module of SciPy. In the next chapter, we will explore the area of image
processing.

Figure 12-8.  Convolution

plt.title('Filter Impulse Response')
plt.subplot(3, 1, 3)
plt.plot(filtered)
plt.ylim(-0.2, 1.2)
plt.title('Filtered Signal')
plt.show()

The signal, the window, and the convolution of those are as shown in Figure 12-8.
Convolution of two signals provides a combination of both the signals to form a third
signal. It is a very important signal combination technique in signal processing. If the
signals represent image or audio data, we get an improved image or audio based on the
degree of convolution. If you have not noticed already, we are using the repeat() method
of NumPy, which takes the pattern to be repeated and the number of repetitions as
arguments. In this example, we’re generating a signal with the sample size of 300.

149© Ashwin Pajankar 2017
A. Pajankar, Raspberry Pi Supercomputing and Scientific Programming,
DOI 10.1007/978-1-4842-2878-4_13

CHAPTER 13

Image Processing with SciPy

In the last chapter, we studied signal processing with SciPy. We studied a few of the major
classes of functions offered by SciPy, consolidated under scipy.signal. In this chapter,
we will study a SciPy package, scipy.misc, and a few examples of using it for image
processing.

First Image Processing Program
The scipy.misc module is used for basic image processing operations. Create a directory
called Dataset to store all the sample images we are going to use.

cd ~/book
mkdir Dataset

The sample image dataset is available in the Downloads section online on the
Apress page for this book. Also, create a directory chapter13 for the book code as follows:

cd ~/book/code
mkdir chapter13
cd chapter13

Let’s look at a basic example (Listing 13-1) of reading and displaying an image.

Listing 13-1.  prog01.py

from scipy import misc

img = misc.imread('/home/pi/book/Dataset/4.2.01.tiff')

misc.imshow(img)

The code (Listing 13-1) will read an image from the path provided in the imread()
method, and imshow() method will display it using xlib.

The scipy.misc has three built-in images. Those can be used as follows
(Listing 13-2):

Chapter 13 ■ Image Processing with SciPy

150

Listing 13-2.  prog02.py

from scipy import misc

img1 = misc.face()
img2 = misc.lena()
img3 = misc.ascent()

misc.imshow(img1)
misc.imshow(img2)
misc.imshow(img3)

face() is the face of a raccoon, lena() is a standard test image, and ascent() is a
grayscale image.

Simple Image Processing
scipy.misc has three methods for simple operations. scipy.imfilter() applies various
filters on images. The following (Listing 13-3) is an example:

Listing 13-3.  prog03.py

from scipy import misc

misc.imshow(misc.imfilter(misc.face(), 'edge_enhance_more'))

In the code above (Listing 13-3), I am not using any intermediate variable to store
the image. I am displaying it directly by passing to the imshow() method. The method
imfilter() accepts two arguments.

•	 The first is the image to be filtered.

•	 The second is the type of pre-defined filter to be applied.

Allowed values for the filter-type are 'blur', 'contour', 'detail', 'edge_enhance',
'edge_enhance_more', 'emboss', 'find_edges', 'smooth', 'smooth_more', 'sharpen'.

We can resize the image to 50% as follows (Listing 13-4):

Listing 13-4.  prog04.py

from scipy import misc
misc.imshow(misc.imresize(misc.face(), 50))

We can also rotate the image by a certain angle as follows (Listing 13-5):

Listing 13-5.  prog05.py

from scipy import misc
misc.imshow(misc.imrotate(misc.face(), 45))

Chapter 13 ■ Image Processing with SciPy

151

Introduction to NumPy for Image Processing
Let’s get started with the basics of using the NumPy library for image processing.
Consider the following (Listing 13-6) code:

Listing 13-6.  prog06.py

from scipy import misc

img = misc.face()

print(type(img))

The output of the program (Listing 13-6) above is as follows:

<class 'numpy.ndarray'>

This means that the data-type of the image is ndarray in NumPy. We need to
understand a few important ndarray properties which will help us understand the
important attributes of the images it represents.

Consider the following code (Listing 13-7):

Listing 13-7.  prog07.py

from scipy import misc

img = misc.face()

print(img.dtype)
print(img.shape)
print(img.ndim)
print(img.size)

The output is as follows:

uint8
(768, 1024, 3)
3
2359296

Let’s understand what each of these mean.

•	 The dtype attribute is for the data-type of the elements which
represent the image. In this case, it is uint8 which means
unsigned 8-bit integer. This means it can have 256 distinct values.

Chapter 13 ■ Image Processing with SciPy

152

•	 shape means the size of images, dimension-wise. In this case, it
is a color image. Its resolution is 1024x768 and it has three color
channels corresponding to the colors red, green, and blue. Each
channel for each pixel can have one of a possible 256 values.
Therefore, a combination of these can produce 256*256*256
distinct colors for each pixel. You can visualize a color image as an
arrangement of three two-dimensional planes. A grayscale image
is a single plane of grayscale values.

•	 ndim represents the dimensions. A color image has three
dimensions and a grayscale image has two dimensions.

•	 size stands for the total number of elements in the array. It can
be calculated by multiplying the values for the dimensions. In this
case, it is 768*1024*3=2359296.

We can see the RGB value corresponding to an individual pixel as follows (Listing 13-8):

Listing 13-8.  prog08.py

from scipy import misc

img = misc.face()

print(img[10, 10]))

In the code above (Listing 13-8), we are accessing the value of the pixel located at
(10, 10). The output is [172 169 188].

These are the basics of NumPy for image processing. We will learn more about
NumPy as and when needed throughout the chapter.

Matplotlib for Image Processing
We have used the misc.imshow() method for displaying images. While the method is
useful for simple applications, it is primitive. We need to use a more advanced framework
for scientific applications. We know that matplotlib serves this purpose. It is a MATLAB-
style plotting and data visualization library for Python, and we installed it while installing
the SciPy stack. We have also used it in the earlier chapter. In this and the next chapter, we
will use it for displaying images. It is an integral part of the SciPy stack. Just like NumPy,
matplotlib is too vast a topic for one book, and warrants another one. We will just use the
pyplot module in matplotlib for our image processing requirements. Let’s see a simple
program (Listing 13-9) for image processing as follows:

Listing 13-9.  prog09.py

import scipy.misc as misc
import matplotlib.pyplot as plt

Chapter 13 ■ Image Processing with SciPy

153

img = misc.face()

plt.imshow(img)
plt.show()

In the code above (Listing 13-9), we are importing the pyplot module. The imshow()
method is used to add the image to the plot window. The show() method shows the
plotting window. The output (Figure 13-1) is as follows:

Figure 13-1.  pyplot imshow() demo for color image

Chapter 13 ■ Image Processing with SciPy

154

We can also turn off the axes (or ruler) and add a title to the image as follows
(Listing 13-10):

Listing 13-10.  prog10.py

import scipy.misc as misc
import matplotlib.pyplot as plt

img = misc.lena()

plt.imshow(img, cmap='gray')
plt.axis('off')
plt.title('face')
plt.show()

As the image is a grayscale image, we have to choose a gray colormap in the
imshow() method so that the image’s colorspace is properly displayed in the plotting
window. axis('off') is used to turn the axes off. The title() method is used for
specifying the title of the image. The output (Figure 13-2) is as follows:

Figure 13-2.  Lena image with title and axis off

We can use imshow() to push multiple images to an image grid in the plotting
window (see Listing 13-11) as follows:

Chapter 13 ■ Image Processing with SciPy

155

Listing 13-11.  prog11.py

import scipy.misc as misc
import matplotlib.pyplot as plt

img1 = misc.face()
img2 = misc.ascent()
img3 = misc.lena()

titles = ['face', 'ascent', 'lena']
images = [img1, img2, img3]

plt.subplot(1, 3, 1)
plt.imshow(images[0])
plt.axis('off')
plt.title(titles[0])

plt.subplot(1, 3, 2)
plt.imshow(images[1], cmap='gray')
plt.axis('off')
plt.title(titles[1])

plt.subplot(1, 3, 3)
plt.imshow(images[2], cmap='gray')
plt.axis('off')
plt.title(titles[2])

plt.show()

We have used the subplot() method before imshow(). The first two arguments in the
subplot() method specify the dimensions of the grid and the third argument specifies
the position of the image in the grid. The position numbering of the images in the grid
starts from the top-left. The top-left position is the first position, the next position is the
second one and so on. Let’s see the output (Figure 13-3):

Figure 13-3.  Multiple image grid

Chapter 13 ■ Image Processing with SciPy

156

Image Channels
We can separate the image channels of a multi-channel image. The code (Listing 13-12)
for that is as follows:

Listing 13-12.  Prog12.py

import scipy.misc as misc
import matplotlib.pyplot as plt

img = misc.face()

r = img[:, :, 0]
g = img[:, :, 1]
b = img[:, :, 2]

titles = ['face', 'Red', 'Green', 'Blue']
images = [img, r, g, b]

plt.subplot(2, 2, 1)
plt.imshow(images[0])
plt.axis('off')
plt.title(titles[0])

plt.subplot(2, 2, 2)
plt.imshow(images[1], cmap='gray')
plt.axis('off')
plt.title(titles[1])

plt.subplot(2, 2, 3)
plt.imshow(images[2], cmap='gray')
plt.axis('off')
plt.title(titles[2])

plt.subplot(2, 2, 4)
plt.imshow(images[3], cmap='gray')
plt.axis('off')
plt.title(titles[3])

plt.show()

Chapter 13 ■ Image Processing with SciPy

157

Figure 13-4.  Separate image channels

The output (Figure 13-4) of the code (Listing 13-12) is as follows:

We can use the np.dstack() method to merge all channels to create the original
image, as follows (Listing 13-13):

Listing 13-13.  prog13.py

import scipy.misc as misc
import matplotlib.pyplot as plt
import numpy as np

img = misc.face()

r = img[:, :, 0]
g = img[:, :, 1]
b = img[:, :, 2]

output = np.dstack((r, g, b))

Chapter 13 ■ Image Processing with SciPy

158

plt.imshow(output)
plt.axis('off')
plt.title('Combined')
plt.show()

Run the code above (Listing 13-13) and see the workings of np.dstack() for yourself.

■■ Note  I have written a detailed book on image processing with Raspberry Pi. It can be
purchased at www.apress.com/us/book/9781484227305.

Conclusion
In this chapter, we were introduced to the world of image processing with SciPy. We also
learned how images are represented using the NumPy ndarray. We learned to perform a
few basic operations on images with the scipy.misc package. In the next chapter, we will
learn data representation and processing with matplotlib.

http://www.apress.com/us/book/9781484227305

159© Ashwin Pajankar 2017
A. Pajankar, Raspberry Pi Supercomputing and Scientific Programming,
DOI 10.1007/978-1-4842-2878-4_14

CHAPTER 14

Matplotlib

In the last chapter, we studied digital image processing with SciPy. We studied a few of the
major classes of functions offered by SciPy, consolidated under scipy.misc, for digital
image processing. In this chapter, we will study a few more image processing and data
representation techniques with matplotlib. We have already used matplotlib in earlier
chapters for plotting and displaying images. As mentioned in earlier chapters, matplotlib
is a MATLAB-style data visualization library. Data processing and mining is a vast topic
and outside the scope of this book; however, we can use images as a convenient data
source to demonstrate some of the data processing capabilities of matplotlib. So let's get
started with that.

Reading an Image
Create a directory chapter14 for the code samples. The following code (Listing 14-1)
demonstrates how to read and display an image:

Listing 14-1.  prog01.py

import matplotlib.pyplot as plt
import matplotlib.image as mpimg
import numpy as np
img = mpimg.imread('/home/pi/book/Dataset/Sample01.jpg')
plt.imshow(img)
plt.show()

The output (Figure 14-1) is as follows:

Chapter 14 ■ Matplotlib

160

Colormaps
Colormaps are used to apply colors to a dataset. Grayscale images are automatically
applied with the default colormaps. We can even set the colormap for the image. To
display grayscale images properly, we need to set the colormap to the value gray as we
have done in earlier chapters. In the example below (Listing 14-2), we are going to display
one of the channels of an image with the default colormap. Then we will apply another
colormap to the channel.

Listing 14-2.  prog02.py

import matplotlib.pyplot as plt
import matplotlib.image as mpimg
import numpy as np

img = mpimg.imread('/home/pi/book/Dataset/4.2.01.tiff')
img_ch = img[:, :, 0]

plt.subplot(1, 2, 1)
plt.imshow(img_ch)
plt.title('Default Colormap')
plt.xticks([]), plt.yticks([])

Figure 14-1.  Reading and displaying an image

Chapter 14 ■ Matplotlib

161

plt.subplot(1, 2, 2)
plt.imshow(img_ch, cmap='hot')
plt.title('Hot Colormap')
plt.xticks([]), plt.yticks([])

plt.show()

The output (Figure 14-2) is as follows:

Colorbar
We can also display the colorbar to let the viewers know the relative intensity values in an
image. The following code (Listing 14-3) demonstrates that:

Listing 14-3.  prog03.py

import matplotlib.pyplot as plt
import matplotlib.image as mpimg
import numpy as np

img = mpimg.imread('/home/pi/book/Dataset/4.2.01.tiff')
img_ch = img[:, :, 0]

plt.imshow(img_ch, cmap='nipy_spectral')
plt.title('Colorbar Demo')
plt.colorbar()
plt.xticks([]), plt.yticks([])

plt.show()

Figure 14-2.  Colormaps

Chapter 14 ■ Matplotlib

162

The output (Figure 14-3) is as follows:

Matplotlib for Image Processing
A histogram is the graphical representation of frequency tables in statistics. It is a graph of
the number of occurrences for every value in the dataset. We can also use the plt.hist()
method in matplotlib for plotting the histogram of a single channel or a grayscale image.
The following (Listing 14-4) is an example:

Listing 14-4.  prog04.py

import matplotlib.pyplot as plt
import matplotlib.image as mpimg
import numpy as np

img = mpimg.imread('/home/pi/book/Dataset/Sample03.jpg')
img_ch = img[:, :, 0]

plt.hist(img_ch.ravel(), 256, [0, 256])
plt.title('Histogram Demo')
plt.xticks([]), plt.yticks([])

plt.show()

Figure 14-3.  Colorbar demo

Chapter 14 ■ Matplotlib

163

The output (Figure 14-4) is as follows:

Figure 14-4.  Histogram demo

Interpolation Methods
There are many interpolation types in plt.imshow(). The interpolation type decides how
the image is to be displayed. The best way to understand how they work is to use them
against a gradient image. The following (Listing 14-5) code example demonstrates this
very well:

Listing 14-5.  prog05.py

import matplotlib.pyplot as plt
import numpy as np

methods = [None, 'none', 'nearest', 'bilinear', 'bicubic', 'spline16',
 'spline36', 'hanning', 'hamming', 'hermite', 'kaiser', 'quadric',
 'catrom', 'gaussian', 'bessel', 'mitchell', 'sinc', 'lanczos']

Chapter 14 ■ Matplotlib

164

grid = np.arange(16).reshape(4, 4)

fig, axes = plt.subplots(3, 6, figsize=(12, 6),
subplot_kw={'xticks': [], 'yticks': []})

fig.subplots_adjust(hspace=0.3, wspace=0.05)

for ax, interp_method in zip(axes.flat, methods):
 ax.imshow(grid, interpolation=interp_method)
 ax.set_title(interp_method)

plt.show()

The output (Figure 14-5) is as follows:

Figure 14-5.  Interpolation demo

Conclusion
In this chapter, we learned how to represent data with matplotlib. We studied colormaps,
colorbars, and histograms. We also studied the concept of interpolation. We can use
matplotlib this way for representing data, images, and signals.

Chapter 14 ■ Matplotlib

165

Summary of the Book
In this book, we got started with the very fundamentals of Raspberry Pi and single board
computers. We learned how to set up the Raspberry Pi and connect it to the Internet.
We also learned to access it with a network.

Then we moved on to the basics of supercomputing and parallel programming.
We prepared the nodes of our Pis and joined them together over a network for them to
act as a cluster. We also exploited the power of the cluster with MPI4PY.

Then we studied symbolic computing with Python. We also studied the NumPy
library for numerical computation. We then explored the scientific computing library
SciPy and its applications in signal and image processing.

Finally, we studied how to represent image data and calculate histograms with the
matplotlib library.

This is not the end, though. This is merely the beginning of your journey in the
amazing world of scientific computing. You can further explore matplotlib, OpenCV,
and Scientific Kit (SciKit) libraries. For folks who want to try OS programming, they can
explore pthread and POSIX libraries in C on Raspberry Pi. Possibilities are endless with
the Raspberry Pi. I wish you all the best in getting started on this amazing journey of
exploration.

167© Ashwin Pajankar 2017
A. Pajankar, Raspberry Pi Supercomputing and Scientific Programming,
DOI 10.1007/978-1-4842-2878-4

�       � A
Array creation routines

arange(), 118
linspace() graph, 119
linspace() vs. logspace() graph,

119–120
method, 116
np.arange() method, 117
np.zeros() method, 116

�       � B
Beowulf cluster, 59
/boot/config.txt file

options, 83
Pi 2, 85
Pi 3, 85
Pi B and Pi B+, 84

Broadcasting, 94

�       � C
Cluster

Beowulf cluster, 59
definition, 58
heterogenous, 58
Pis

female-to-female standoffs, 78
male-to-female standoffs, 77
male-to-male standoffs, 77
Raspberry Pi, 80
second Pi, 79

Colorbar, 161
Colormaps, 160
Computer algebra system (CAS), 100
Concurrency, 59
config.txt file, 20
Control Data Corporation (CDC), 57

�       � D, E
Data tagging, 93
Desktop connection, 35

LXDE, 34
remote options, 36
time remote login, 37

Distributed memory system, 62

�       � F
Floating Point Operations Per Second

(FLOPS), 58
Fourier transforms, 127

�       � G
Gathering, 96
Geany

Raspbian menu, 52–53
set build commands, 53–54
text editor, 52

�       � H
Heterogenous cluster, 58

�       � I
Image processing program

image channels, 156
Matplotlib, 152

Lena image, 154
multiple image grid, 155
plotting window, 153
pyplot imshow(), 153

NumPy, 151
scipy.misc module, 149–150
simple image processing, 150

Index

■ INDEX

168

Integrated Development
Environment (IDE), 51

Geany, 52
IDLE, 51

Integration, 132
Interpolation, 133

a 1-D curve, 136
1-D interpolation, 134
2-D interpolation, 135
methods, 163
N-D curve, 136–137

�       � J, K
Jupyter, 109

commands, 110
IPython, 110
notebooks

Chromium browser, 111
commands, 110
components, 110
console, 111
Python 3 code, 114
Python 3 notebook, 112
running, 113
screenshot, 113
tab, 112

�       � L
LAN with DHCP, 69
LAN with static IP addresses, 71
Lightweight X11 Desktop

Environment (LXDE), 34
Linear algebra, 130
Linux commands, 27

Help option, 27
network-related

commands
ifconfig, 27
iwconfig, 28
iwlist wlan0 scan, 28
ping, 28

system information
CPU, 28
hostname-I, 29
lsusb, 29
memory, 29
partition, 29
system and OS version

information, 29
vcgencmd measure_temp, 29

�       � M
Matplotlib, 152

colorbar, 161
colormaps, 160
histogram demo, 163
image processing, 162
image reading, 159
interpolation methods, 163
Lena image, 154
multiple image grid, 155
plotting window, 153
pyplot imshow(), 153

Matrix and linear algebra, 120
Message Passing Interface (MPI)

distributed memory
system, 62

facts, 61
features of, 62
forum, 61
history and evolution of, 62
implementations, 63
MPI4PY (see MPI for Python

(MPI4PY))
nmap, 65

MicroSD card, backup of, 67–68
MPI for Python (MPI4PY)

combination, 64
overview, 63
parallel programs, 88
philosophy of, 64
Python 3 on Raspbian, 64
SPMD architecture, 87

�       � N
N-Dimensional array (ndarray)

attributes, 115
notebook, 114

nmap, 65, 72
Numeric(al) Python (NumPy), 151

built-array creation routines, 116
data types, 116
features, 109
fourier transforms, 127
Jupyter (see Jupyter)
matrix and linear algebra, 120
ndarray

attributes, 115
notebook, 114

random numbers and statistics, 126
trigonometric methods, 122

■ INDEX

169

�       � O
Overclocking

/boot/config.txt file
models, 84
options, 83
Pi 2, 85
Pi 3, 85
Pi B and Pi B+, 84

heatsink
installation, 82
procurement, 82

meaning, 81
raspi-config, 82
risks of, 81

�       � P, Q
Parallelism, 59
Parallel programs, 60

broadcasting, 94
COMM_WORLD, 88
conditional statements, 89
data tagging, 93
dynamic data transfer, 92
gathering, 96
MPI concepts, 87
MPI4PY, 87
multiple ranks, 88
one-to-one communication, 91
processes, 90
scattering, 95

Peta FLOPS (PFLOPS), 58
Pis

cluster, 77
hostname command

mpirun, 73
ssh-keygen keys, 73

LAN with DHCP, 69
nmap, 72
static IP addresses and LAN, 71
WiFi network, 70

Python
community support, 47
easy to learn, 45
easy to maintain, 45
easy to read, 45
extensible, 46
extensive libraries, 46
features of, 44
high-level language, 45
history of, 43

IDE (see Integrated Development
Environment (IDE))

interactive mode, 50
interpreted, 46
memory management, 47
normal mode, 50
object-oriented, 46
open source project, 45
parallel programs (see Parallel

programs)
portable, 45
powerful, 47
principles, 44
Python 2 and 3, 47

classes, 48
differences, 48
features, 48
handling exceptions, 48
print() function, 48
raising exceptions, 48
Raspbian, 49
use of, 49
xrange() function, 48

rapid prototyping, 47
robust, 46
simple and minimalist

language, 44

�       � R
Raspberry Pi

booting up
quad-core processor, 15
Raspbian desktop, 16
single core processor, 14
steps, 14

bottom view, 5–6
config.txt file, 13
configuration

desktop autologin, 17–18
icon, 16
internationalization options, 18
LXTerminal window, 17
raspi-config, 17
screenshot, 18–19

ethernet
dynamic IP address, 23
static IP address, 22

fileconfig.txt, 13
foundation, 4
hardware requirement

computer/laptop, 8

■ INDEX

170

HDMI male-to-male
cable, 9

HDMI-to-VGA adapter, 10
I/O devices, 8
microSD card, 8
monitor, 9
power supply, 8
Raspberry Pi, 7
SD/microSD card

reader, 9
VGA cable, 10

HDMI-to-VGA cable, 13
manual preparation, 11
microSD card, 10–11

error message, 12
overwrite warning

message, 12
successful message, 13
Win32DiskImager, 11

reboot prompt, 19
shutdown, 25
software requirement, 11

download accelerator
plus, 11

Raspbian OS image, 11
Win32DiskImager, 11
WinZip/WinRaR, 11

specifications (1 Model B+), 7
specifications (2 Model B), 6
specifications (3 Model B), 4
top view, 5
update

firmware, 23
raspi-config, 24
upgrading Raspbian, 24

WiFi, 21
Raspbian, 20
raspi-config file, 30

enable confirmation, 30
SSH server, 30

raspi-config tool, 82
Remote connectivities

file transfer, 40
Raspberry Pi, 31

desktop, 34
Linux/macOS, 40–41
ping command, 31
PuTTY, 31
WinSCP, 37

raspi-config, 30
SSH, 40

Remote Desktop Protocol (RDP), 34

�       � S
Scattering, 95
Scientific computing, SciPy, 129

integration, 132
interpolation, 133

a 1-D curve, 136
1-D interpolation, 134
2-D interpolation, 135
N-D curve, 136–137

linear algebra, 130
mathematical constants, 129

Scientific Python (SciPy)
stack, 99

components, 99
installation, 100
role of, 99
SymPy (see Symbolic

programming (SymPy))
Signal processing, 139

waveforms
generator function, 139
modulated wave, 142
sawtooth wave signal, 140
square wave signal, 141

window function
convolution, 146
Hamming function, 142–143
Hanning demo, 144
Kaiser demo, 144–145
Mexican hat wavelet, 145

Single board computers (SBCs), 1
factors, 1
functional computer, 1
history of, 3
popular families, 3
regular computers, 2
SoC vs. regular CPU, 3
system on chip (SoC), 2

Single-Program Multiple-Data
(SPMD), 87

Supercomputers
cluster, 58
concept of, 57
concurrency, 59
history of, 57

Raspberry Pi (cont.)

■ INDEX

171

networks (see Pis)
nodes

hostname, 68
lxterminal prompt, 69

parallelism, 59
parallel programming, 60

Symbolic programming (SymPy), 99
calculus, 105–106
create and navigate, 101
printers, 103
simplification, 104
string conversion, 103
symbols, 102
website, 100

System on chip (SoC), 2

�       � T, U, V
Tera FLOPS (TFLOPS), 58
Trigonometric methods, 122

�       � W, X, Y, Z
Waveforms

generator function, 139
modulated wave, 142
sawtooth wave

signal, 140
square wave signal, 141

WiFi network, 21, 70
Window function

convolution, 146
Hamming function, 142–143
Hanning demo, 144
Kaiser demo, 144–145
Mexican hat wavelet, 145

WinSCP
dialog box, 39
file transfer window, 39
save session, 38
window, 37–38

	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Introduction to Single Board Computers and Raspberry Pi
	Single Board Computers (SBCs)
	Differences Between SBCs and Regular Computers
	System on Chip
	SoC vs. Regular CPU

	History of SBCs
	Popular SBC Families

	Raspberry Pi
	Raspberry Pi Setup
	Hardware required for Raspberry Pi setup
	Raspberry Pi
	Computer
	I/O Devices
	MicroSD card
	Power Supply
	SD/microSD Card Reader
	Monitor

	Manual Preparation of the MicroSD Card for Raspberry Pi
	Download the Required Free Software
	Download Accelerator Plus
	Win32DiskImager
	WinZip or WinRaR
	Download and Extract the Raspbian OS Image

	Writing the Raspbian OS Image to the MicroSD Card
	Altering the Contents of the config.txt File for VGA Monitors
	Booting up the Pi
	Configuring the Pi

	Raspbian
	config.txt
	Connecting Raspberry Pi to a Network and the Internet
	WiFi
	Ethernet
	Static IP address
	Dynamic IP address

	Updating the Pi
	Updating the Firmware
	Updating and Upgrading Raspbian
	Updating raspi-config

	Shutting Down and Restarting Pi
	Conclusion

	Chapter 2: Important Linux Commands and Remote Connectivity
	Important and Useful Linux Commands
	Getting Help with Linux Commands
	Network-related Commands
	ifconfig
	iwconfig
	iwlist wlan0 scan
	ping

	System Information Commands
	CPU-related Information
	Memory-related Information
	System and OS Version Information
	Partition-related Information
	Other Useful Commands

	Enabling Pi for SSH from raspi-config
	Connecting to the Raspberry Pi Remotely from Windows
	Checking the Connectivity with Pi from Another Computer
	PuTTY
	Accessing Raspberry Pi Desktop Remotely
	WinSCP

	Connecting to Raspberry Pi Using Linux or macOS
	Remote Login with SSH
	Forwarding Using SSH
	SCP for File Transfer

	Conclusion

	Chapter 3: Introduction to Python
	History of Python
	Features of Python
	Simple
	Easy to Learn
	Easy to Read
	Easy to Maintain
	Open Source
	High-level Language
	Portable
	Interpreted
	Object-Oriented
	Extensible
	Extensive Libraries
	Robust
	Rapid Prototyping
	Memory Management
	Powerful
	Community Support

	Python 3
	The Differences Between Python 2 and Python 3
	Why Use Python 3?

	Python 2 and Python 3 on Raspbian
	Running a Python Program and Python Modes
	Interactive Mode
	Normal Mode

	IDEs for Python
	IDLE
	Geany

	Conclusion

	Chapter 4: Introduction to Supercomputing
	Concept of the Supercomputer
	Brief history of Supercomputers
	Cluster
	Heterogenous Cluster
	Beowulf Cluster

	Parallelism and Concurrency
	Parallelism
	Concurrency
	Parallel Programming

	Conclusion

	Chapter 5: Message Passing Interface
	Message Passing Interface
	History and Evolution of the MPI Standard
	Features of MPI
	Implementations of MPI

	MPI4PY
	Why Use the Python, MPI, and MPI4PY Combination?
	Installing MPI4PY for Python3 on Raspbian

	Installing nmap
	Conclusion

	Chapter 6: Building the Supercomputer
	Making a Backup of the MicroSD card
	Preparing Nodes of the Supercomputer
	Networking the Pis
	LAN with DHCP
	WiFi Network
	LAN with Static IP Addresses

	Using nmap to Find the IP Addresses of Pis
	Running the hostname Command on Multiple Pis with mpirun
	Exchanging the ssh-keygen Keys for Automatic Authentication

	Organizing the Pis in the Cluster
	Conclusion

	Chapter 7: Overclocking Raspberry Pi
	Risks of Overclocking Raspberry Pi
	Installing a Heatsink on Pi
	Procuring Heatsinks

	Overclocking the Pi with raspi-config
	Overclocking the Pi with /boot/config.txt
	Options in /boot/config.txt

	/boot/config.txt Options for the Various Models of Pi
	Options for Pi B and Pi B+
	Options for Pi 2
	Options for Pi 3

	Conclusion

	Chapter 8: Parallel Programming in Python 3
	Basics of MPI4PY
	Getting Started with MPI4PY
	Conditional Statements
	Checking the Number of Processes
	Sending and Receiving Data
	Dynamically Sending and Receiving Data
	Data Tagging
	Data Broadcasting
	Data Scattering
	Data Gathering
	Conclusion

	Chapter 9: Introduction to SciPy Stack and Symbolic Programming
	The Scientific Python Stack
	Installation of the SciPy Stack
	SymPy
	Getting Started
	Symbols
	Converting Strings to SymPy Expressions
	Sympy’s Printing Functionality
	Simplification in SymPy
	Calculus

	Conclusion

	Chapter 10: Introduction to NumPy
	Basics of NumPy
	Jupyter
	Jupyter Notebooks
	The N-Dimensional Array (ndarray)
	ndarray Attributes
	Data Types

	Array Creation Routines
	Matrix and Linear Algebra
	Trigonometric Methods
	Random Numbers and Statistics
	Fourier Transforms
	Conclusion

	Chapter 11: Introduction to SciPy
	Scientific and Mathematical Constants in SciPy
	Linear algebra
	Integration
	Interpolation
	Conclusion

	Chapter 12: Signal Processing with SciPy
	Waveforms
	Window Functions
	Mexican Hat Wavelet
	Convolution

	Conclusion

	Chapter 13: Image Processing with SciPy
	First Image Processing Program
	Simple Image Processing
	Introduction to NumPy for Image Processing
	Matplotlib for Image Processing
	Image Channels
	Conclusion

	Chapter 14: Matplotlib
	Reading an Image
	Colormaps
	Colorbar
	Matplotlib for Image Processing
	Interpolation Methods
	Conclusion
	Summary of the Book

	Index

