




ARM®	Cortex®	M4	Cookbook



Table	of	Contents

ARM®	Cortex®	M4	Cookbook

Credits

About	the	Author

About	the	Reviewer

www.PacktPub.com

eBooks,	discount	offers,	and	more

Why	Subscribe?

Preface

What	this	book	covers

What	you	need	for	this	book

Who	this	book	is	for

Sections

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

See	also

Conventions

Reader	feedback

Customer	support

Downloading	the	example	code

Downloading	the	color	images	of	this	book

Errata

Piracy

Questions

1.	A	Practical	Introduction	to	ARM®	CORTEX®

Introduction

Installing	uVision5

How	to	do	it…



How	it	works…

Linking	an	evaluation	board

How	to	do	it…

How	it	works…

There’s	more…

Running	an	example	program

How	to	do	it…

How	it	works…

Writing	a	simple	program

How	to	do	it…

How	it	works…

There’s	more…

Understanding	the	simple	use	of	GPIO

How	to	do	it…

How	it	works…

There’s	more…

Estimating	microcontroller	performance

How	to	do	it…

There’s	more…

See	also

2.	C	Language	Programming

Introduction

Configuring	the	hardware	abstraction	layer

How	to	do	it…

How	it	works…

Writing	a	C	program	to	blink	each	LED	in	turn

Getting	ready…

How	to	do	it…

How	it	works…

There’s	more…

Writing	a	function



How	to	do	it

How	it	works…

There’s	more…

Writing	to	the	console	window

Getting	ready

How	to	do	it…

How	it	works…

Writing	to	the	GLCD

Getting	ready

How	to	do	it…

How	it	works…

Creating	a	game	application	–	Stage	1

How	to	do	it…

How	it	works…

Creating	a	game	application	–	Stage	2

There’s	more…

How	it	works…

Debugging	your	code	using	print	statements

How	to	do	it…

How	it	works…

Using	the	debugger

How	to	do	it…

See	also

3.	Programming	I/O

Introduction

Performing	arithmetic	operations

How	to	do	it…

How	it	works…

Illustrating	machine	storage	classes

How	to	do	it…

How	it	works…



Configuring	GPIO	ports

How	to	do	it…

How	it	works…

There’s	more…

Configuring	UART	ports

How	to	do	it…

How	it	works…

Handling	interrupts

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

Using	timers	to	create	a	digital	clock

How	to	do	it…

How	it	works…

4.	Assembly	Language	Programming

Introduction

Writing	Cortex-M4	assembly	language

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

See	also

Passing	parameters	between	C	and	the	assembly	language

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

See	also

Handling	interrupts	in	assembly	language

Getting	ready



How	to	do	it…

How	it	works…

There’s	more…

Implementing	a	jump	table

Getting	ready

How	to	do	it…

How	it	works…

Debugging	assembly	language

How	to	do	it…

How	it	works…

There’s	more…

5.	Data	Conversion

Introduction

Setting	up	the	ADC

How	to	do	it…

How	it	works…

There’s	more…

Configuring	general-purpose	timers

How	to	do	it…

How	it	works…

Using	timers	to	trigger	conversions

How	to	do	it…

How	it	works…

There’s	more…

Setting	up	the	DAC

How	to	do	it…

How	it	works…

There’s	more…

Generating	a	sine	wave

Getting	ready

How	to	do	it…



How	it	works…

6.	Multimedia	Support

Introduction

Setting	the	RTE	for	the	I2C	Peripheral	Bus

How	to	do	it…

How	it	works…

How	to	use	the	LCD	touchscreen

How	to	do	it…

How	it	works…

Writing	a	driver	for	the	audio	codec

How	to	do	it…

How	it	works…

How	to	use	the	audio	codec

How	to	do	it…

How	it	works…

How	to	use	the	camera

How	to	do	it…

How	it	works…

There’s	more…

Designing	bitmapped	graphics

How	to	do	it…

How	it	works…

There’s	more…

Ideas	for	games	using	sound	and	graphics

7.	Real-Time	Signal	Processing

Introduction

Configuring	the	audio	codec

How	to	do	it…

How	it	works…

There’s	more…

How	to	play	prerecorded	audio



Getting	ready

How	to	do	it…

How	it	works…

Designing	a	low-pass	digital	filter

Getting	ready

How	to	do	it…

How	it	works…

How	to	make	an	audio	tone	control

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

8.	Real-Time	Embedded	Systems

Introduction

Multithreaded	programs	using	event	flags

How	to	do	it…

How	it	works…

Multithreaded	programs	using	mailboxes

How	to	do	it…

How	it	works…

Why	ensuring	mutual	exclusion	is	important	when	accessing	shared	resources

How	to	do	it…

How	it	works…

There’s	more…

Why	we	must	use	a	mutex	to	access	the	GLCD

How	to	do	it…

How	it	works…

How	to	write	a	multithreaded	Pong	game

How	to	do	it…

How	it	works…

Debugging	programs	that	use	CMSIS-RTOS



How	to	do	it…

How	it	works…

9.	Embedded	Toolchain

Introduction

Installing	GNU	ARM	Eclipse

How	to	do	it…

How	it	works…

Programming	the	MCBSTM32F400	evaluation	board

How	to	do	it…

How	it	works…

How	to	use	the	STM32CubeMX	Framework	(API)

How	to	do	it…

How	it	works…

There’s	more…

How	to	port	uVision	projects	to	GNU	ARM	Eclipse

How	to	do	it…

Index





ARM®	Cortex®	M4	Cookbook





ARM®	Cortex®	M4	Cookbook
Copyright	©	2016	Packt	Publishing

All	rights	reserved.	No	part	of	this	book	may	be	reproduced,	stored	in	a	retrieval	system,
or	transmitted	in	any	form	or	by	any	means,	without	the	prior	written	permission	of	the
publisher,	except	in	the	case	of	brief	quotations	embedded	in	critical	articles	or	reviews.

Every	effort	has	been	made	in	the	preparation	of	this	book	to	ensure	the	accuracy	of	the
information	presented.	However,	the	information	contained	in	this	book	is	sold	without
warranty,	either	express	or	implied.	Neither	the	author,	nor	Packt	Publishing,	and	its
dealers	and	distributors	will	be	held	liable	for	any	damages	caused	or	alleged	to	be	caused
directly	or	indirectly	by	this	book.

Packt	Publishing	has	endeavored	to	provide	trademark	information	about	all	of	the
companies	and	products	mentioned	in	this	book	by	the	appropriate	use	of	capitals.
However,	Packt	Publishing	cannot	guarantee	the	accuracy	of	this	information.

First	published:	March	2016

Production	reference:	1020316

Published	by	Packt	Publishing	Ltd.

Livery	Place

35	Livery	Street

Birmingham	B3	2PB,	UK.

ISBN	978-1-78217-650-3

www.packtpub.com

http://www.packtpub.com




Credits
Author

Dr.	Mark	Fisher

Reviewer

Alex	Barrett

Commissioning	Editor

Kunal	Parikh

Acquisition	Editor

Sonali	Vernekar

Content	Development	Editor

Mayur	Pawanikar

Technical	Editor

Kunal	Chaudhari

Copy	Editors

Priyanka	Ravi

Sonia	Mathur

Project	Coordinator

Nidhi	Joshi

Proofreader

Safis	Editing

Indexer

Monica	Ajmera	Mehta

Graphics

Disha	Haria

Production	Coordinator

Nilesh	Mohite

Cover	Work

Nilesh	Mohite





About	the	Author
Dr.	Mark	Fisher	is	a	chartered	engineer,	MIET.	He	started	his	career	as	an	electronics
apprentice	with	the	UK	Ministry	of	Defence.	This	was	before	he	studied	Electrical	and
Electronic	Engineering	at	Aston	University,	Birmingham.	After	his	graduation,	he	joined
Ferranti	Computer	Systems,	Manchester.	However,	he	returned	to	academia	to	study
Microprocessor	Engineering	and	Digital	Electronics	at	Manchester	University	(UMIST),
and	he	then	remained	as	a	research	assistant	within	the	Department	of	Computation	to
gain	a	PhD	in	Applied	Machine	Learning.	Currently,	he	is	a	senior	lecturer	at	the	School
of	Computing	Sciences,	University	of	East	Anglia,	and	the	course	director	of	the
Computer	Systems	Engineering	Degree	programme.	Many	of	the	recipes	in	this	book	were
originally	developed	in	the	context	of	a	taught	module	that	Mark	leads,	which	is	popular
among	undergraduate	and	master’s	students	in	the	school.

Mark	currently	researches	in	the	fields	of	medical	imaging	and	computer	vision,	and	he	is
a	co-author	of	over	a	hundred	journal	and	conference	papers	in	this	area.





About	the	Reviewer
Alex	Barrett	has	been	heavily	involved	in	all	aspects	of	design,	development,	and
manufacture	of	electronic	systems	and	devices	as	a	director	of	design	consultants	Rocolec
Ltd.	for	over	twenty	years.	Prior	to	this,	he	worked	in	the	oil	industry	in	the	designing	and
manufacturing	of	remotely-operated	submersible	vehicles	(ROVs),	and	manufacturing	and
testing	television	reception	equipment.	He	enjoys	traveling,	and	he	has	an	interest	in
languages,	currently	focusing	on	learning	Russian.	He	is	also	a	volunteer	on	the	Anglian
Coastal	committee	of	The	Institution	of	Engineering	and	Technology.





www.PacktPub.com



eBooks,	discount	offers,	and	more
Did	you	know	that	Packt	offers	eBook	versions	of	every	book	published,	with	PDF	and
ePub	files	available?	You	can	upgrade	to	the	eBook	version	at	www.PacktPub.com	and	as
a	print	book	customer,	you	are	entitled	to	a	discount	on	the	eBook	copy.	Get	in	touch	with
us	at	<customercare@packtpub.com>	for	more	details.

At	www.PacktPub.com,	you	can	also	read	a	collection	of	free	technical	articles,	sign	up
for	a	range	of	free	newsletters	and	receive	exclusive	discounts	and	offers	on	Packt	books
and	eBooks.

https://www2.packtpub.com/books/subscription/packtlib

Do	you	need	instant	solutions	to	your	IT	questions?	PacktLib	is	Packt’s	online	digital
book	library.	Here,	you	can	search,	access,	and	read	Packt’s	entire	library	of	books.

http://www.PacktPub.com
mailto:customercare@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib


Why	Subscribe?
Fully	searchable	across	every	book	published	by	Packt
Copy	and	paste,	print,	and	bookmark	content
On	demand	and	accessible	via	a	web	browser





Preface
This	book	begins	with	an	introduction	to	the	ARM	Cortex	family	and	covers	its	basic
concepts.	We	cover	the	installation	of	the	ARM	uVision	Integrated	Development
Environment	and	topics,	such	as	target	devices,	evaluation	boards,	code	configuration,	and
GPIO.	You	will	learn	about	the	core	programming	topics	that	deal	with	structures,
functions,	pointers,	and	debugging	in	this	book.	You	will	also	learn	about	various
advanced	aspects,	such	as	data	conversion,	multimedia	support,	real-time	signal
processing,	and	real-time	embedded	systems.	You	will	also	get	accustomed	with	creating
game	applications,	programming	I/O,	and	configuring	GPIO	and	UART	ports.	By	the	end
of	this	book,	you	will	be	able	to	successfully	create	robust	and	scalable	ARM	Cortex-
based	applications.



What	this	book	covers
Chapter	1,	A	Practical	Introduction	to	ARM®	Cortex®,	shows	you	how	to	compile,
download,	and	run	simple	programs	on	an	evaluation	board.

Chapter	2,	C	Language	Programming,	introduces	you	to	writing	programs	in	C,	a	high-
level	language	that	was	developed	in	the	1970s	and	is	popular	among	embedded-system
developers.

Chapter	3,	Programming	I/O,	investigates	some	of	the	functions	that	configure	I/O
devices,	and	you	will	gain	an	understanding	of	what	is	involved	in	writing	I/O	interfaces
for	other	targets.

Chapter	4,	Assembly	Language	Programming,	explains	how	to	write	functions	in
assembly	language.	Assembly	language	is	a	low-level	programming	language	that	is
specific	to	particular	computer	architecture.	Therefore,	unlike	programs	written	high-level
languages,	programs	written	in	assembly	language	cannot	be	easily	ported	to	other
hardware	architectures.

Chapter	5,	Data	Conversion,	introduces	approaches	to	data	conversion,	namely	analog	to
digital	conversion	and	vice	versa.	This	chapter	also	covers	the	principal	features	used	by
microcontrollers	for	data	conversion.

Chapter	6,	Multimedia	Support,	discusses	support	for	various	multimedia	peripherals,
which	are	discrete	components	connected	to	the	microcontroller	by	a	bus.	Support	for	an
LCD	touchscreen,	audio	codec,	and	camera	peripherals	is	a	very	attractive	feature	of	the
STM32F4xxx	microcontroller,	and	selecting	an	evaluation	board	that	includes	these
peripherals,	although	more	expensive,	will	be	covered	in	this	chapter.

Chapter	7,	Real-Time	Signal	Processing,	introduces	you	to	Digital	Signal	Processing
(DSP)	and	reviews	the	ARM	Cortex	M4	instruction	set	support	for	DSP	applications.	This
chapter	will	walk	through	a	DMA	application	using	the	codec,	followed	by	designing	a
low-pass	filter.

Chapter	8,	Real-Time	Embedded	Systems,	shows	you	how	to	write	a	multithreaded
program	using	flags	for	communication	and	ensuring	mutual	exclusion	when	accessing
shared	resources.

Chapter	9,	Embedded	Toolchain,	teaches	you	how	to	install	the	GNU	ARM	Eclipse
toolchain	for	the	Windows	Operating	System	and	to	build	and	run	a	simple	Blinky
program	on	the	MCBSTM32F400	evaluation	board.	This	chapter	will	also	show	you	how
to	use	the	STM32CubeMX	Framework	(API)	and	how	to	port	projects	to	GNU	ARM
Eclipse.





What	you	need	for	this	book
You	require	the	Keil	Development	Board	MCBSTM32F400	(v1.1)	and	ARM	ULINK-ME
for	this	book.





Who	this	book	is	for
This	book	is	aimed	at	those	with	an	interest	in	designing	and	programming	embedded
systems.	These	could	include	electrical	engineers	or	computer	programmers	who	want	to
get	started	with	microcontroller	applications	using	the	ARM	Cortex	M4	architecture	in	a
short	time	frame.	This	book’s	recipes	can	also	be	used	to	support	students	learning
embedded	programming	for	the	first	time.	Basic	knowledge	of	programming	using	a	high-
level	language	is	essential	but	those	familiar	with	other	high-level	languages	such	as
Python	or	Java	should	not	have	too	much	difficulty	picking	up	the	basics	of	embedded	C
programming.





Sections
In	this	book,	you	will	find	several	headings	that	appear	frequently	(Getting	ready,	How	to
do	it…,	How	it	works…,	There’s	more…,	and	See	also).

To	give	clear	instructions	on	how	to	complete	a	recipe,	we	use	these	sections	as	follows:



Getting	ready
This	section	tells	you	what	to	expect	in	the	recipe,	and	describes	how	to	set	up	any
software	or	any	preliminary	settings	required	for	the	recipe.



How	to	do	it…
This	section	contains	the	steps	required	to	follow	the	recipe.



How	it	works…
This	section	usually	consists	of	a	detailed	explanation	of	what	happened	in	the	previous
section.



There’s	more…
This	section	consists	of	additional	information	about	the	recipe	in	order	to	make	the	reader
more	knowledgeable	about	the	recipe.



See	also
This	section	provides	helpful	links	to	other	useful	information	for	the	recipe.





Conventions
In	this	book,	you	will	find	a	number	of	text	styles	that	distinguish	between	different	kinds
of	information.	Here	are	some	examples	of	these	styles	and	an	explanation	of	their
meaning.

Code	words	in	text,	database	table	names,	folder	names,	filenames,	file	extensions,
pathnames,	dummy	URLs,	user	input,	and	Twitter	handles	are	shown	as	follows:	“Copy
the	function	named	SystemClock_Config()	from	the	example.”

A	block	of	code	is	set	as	follows:

#ifdef	__RTX

extern	uint32_t	os_time;

uint32_t	HAL_GetTick(void)	{

		return	os_time;	

}

#endif

New	terms	and	important	words	are	shown	in	bold.	Words	that	you	see	on	the	screen,
for	example,	in	menus	or	dialog	boxes,	appear	in	the	text	like	this:	“Run	the	program	by
pressing	RESET	on	the	evaluation	board.”

Note
Warnings	or	important	notes	appear	in	a	box	like	this.

Tip
Tips	and	tricks	appear	like	this.





Reader	feedback
Feedback	from	our	readers	is	always	welcome.	Let	us	know	what	you	think	about	this
book—what	you	liked	or	disliked.	Reader	feedback	is	important	for	us	as	it	helps	us
develop	titles	that	you	will	really	get	the	most	out	of.

To	send	us	general	feedback,	simply	e-mail	<feedback@packtpub.com>,	and	mention	the
book’s	title	in	the	subject	of	your	message.

If	there	is	a	topic	that	you	have	expertise	in	and	you	are	interested	in	either	writing	or
contributing	to	a	book,	see	our	author	guide	at	www.packtpub.com/authors.

mailto:feedback@packtpub.com
http://www.packtpub.com/authors




Customer	support
Now	that	you	are	the	proud	owner	of	a	Packt	book,	we	have	a	number	of	things	to	help
you	to	get	the	most	from	your	purchase.



Downloading	the	example	code
You	can	download	the	example	code	files	from	your	account	at	http://www.packtpub.com
for	all	the	Packt	Publishing	books	you	have	purchased.	If	you	purchased	this	book
elsewhere,	you	can	visit	http://www.packtpub.com/support	and	register	to	have	the	files	e-
mailed	directly	to	you.

http://www.packtpub.com
http://www.packtpub.com/support


Downloading	the	color	images	of	this	book
We	also	provide	you	with	a	PDF	file	that	has	color	images	of	the	screenshots/diagrams
used	in	this	book.	The	color	images	will	help	you	better	understand	the	changes	in	the
output.	You	can	download	this	file	from
https://www.packtpub.com/sites/default/files/downloads/ARMCortexM4Cookbook_ColorImages.pdf

https://www.packtpub.com/sites/default/files/downloads/ARMCortexM4Cookbook_ColorImages.pdf


Errata
Although	we	have	taken	every	care	to	ensure	the	accuracy	of	our	content,	mistakes	do
happen.	If	you	find	a	mistake	in	one	of	our	books—maybe	a	mistake	in	the	text	or	the
code—we	would	be	grateful	if	you	could	report	this	to	us.	By	doing	so,	you	can	save	other
readers	from	frustration	and	help	us	improve	subsequent	versions	of	this	book.	If	you	find
any	errata,	please	report	them	by	visiting	http://www.packtpub.com/submit-errata,
selecting	your	book,	clicking	on	the	Errata	Submission	Form	link,	and	entering	the
details	of	your	errata.	Once	your	errata	are	verified,	your	submission	will	be	accepted	and
the	errata	will	be	uploaded	to	our	website	or	added	to	any	list	of	existing	errata	under	the
Errata	section	of	that	title.

To	view	the	previously	submitted	errata,	go	to
https://www.packtpub.com/books/content/support	and	enter	the	name	of	the	book	in	the
search	field.	The	required	information	will	appear	under	the	Errata	section.

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support


Piracy
Piracy	of	copyrighted	material	on	the	Internet	is	an	ongoing	problem	across	all	media.	At
Packt,	we	take	the	protection	of	our	copyright	and	licenses	very	seriously.	If	you	come
across	any	illegal	copies	of	our	works	in	any	form	on	the	Internet,	please	provide	us	with
the	location	address	or	website	name	immediately	so	that	we	can	pursue	a	remedy.

Please	contact	us	at	<copyright@packtpub.com>	with	a	link	to	the	suspected	pirated
material.

We	appreciate	your	help	in	protecting	our	authors	and	our	ability	to	bring	you	valuable
content.

mailto:copyright@packtpub.com


Questions
If	you	have	a	problem	with	any	aspect	of	this	book,	you	can	contact	us	at
<questions@packtpub.com>,	and	we	will	do	our	best	to	address	the	problem.

mailto:questions@packtpub.com




Chapter	1.	A	Practical	Introduction	to
ARM®	CORTEX®
In	this	chapter,	we	will	cover	the	following	topics:

Installing	uVision5
Linking	an	evaluation	board
Running	an	example	program
Writing	a	simple	program
Understanding	the	simple	use	of	GPIO
Estimating	microcontroller	performance



Introduction
This	chapter	will	show	you	how	to	compile,	download,	and	run	simple	programs	on	an
evaluation	board.	A	software	tool	called	a	Microcontroller	Development	Kit	(MDK),
including	an	Integrated	Development	Environment	(IDE),	is	the	simplest	way	of
achieving	this.	Keil	(a	company	owned	by	ARM)	markets	an	extensive	range	of	software
tools	to	support	embedded	system	development.	Amongst	these,	the	MDK-ARM
development	kit	represents	an	integrated	software	development	environment,	supporting
devices	based	on	the	Cortex-M	(and	associated)	cores	(see
http://www.keil.com/arm/mdk.asp).

http://www.keil.com/arm/mdk.asp




Installing	uVision5
A	free	evaluation	version	of	the	IDE	known	as	the	MDK-ARM	Lite	edition,	running
(albeit	with	limited	functionality)	under	the	Windows	operating	system,	is	available	for
download.	The	main	limitation	of	the	environment	is	that	programs	that	generate	more
than	32	KB	of	code	cannot	be	compiled	and	linked	(see
http://www.keil.com/demo/limits.asp).	However,	since	most	programs	written	by	novices
tend	be	quite	small,	this	limitation	is	not	a	serious	problem.	For	those	who	expect	their
executable	image	to	exceed	32	KB,	other	open	source	compiler	and	IDE	options	are
considered	in	Chapter	9,	Embedded	Toolchain.

uVision5,	the	latest	version	of	the	IDE	is	distributed	as	two	components.	An	MDK	core
contains	all	the	development	tools,	and	software	packs,	together	with	Cortex
Microcontroller	Software	Interface	standard	(CMSIS)	and	middleware	libraries,	which
add	support	for	target	devices.

Installation	involves	downloading	and	running	an	executable	(.exe)	file.	Users	can
download	and	install	the	latest	version	after	first	registering	their	contact	details	at
http://www2.keil.com/mdk5/install/.

http://www.keil.com/demo/limits.asp
http://www2.keil.com/mdk5/install/


How	to	do	it…
1.	 Download	the	latest	version	of	the	software	by	following	the	instructions	provided	by

Keil.	Device-specific	libraries	are	not	included	in	installations	from	version	5
onwards,	so	at	the	end	of	the	installation,	we	must	configure	the	IDE	using	the	Pack
Installer	to	choose	the	resources	(that	is	target	devices,	boards,	and	examples)	that	we
need.

2.	 Select	the	Boards	tab,	choose	the	MCBSTM32F400	Keil	evaluation	board	featuring
the	STM32F407IGHx	STMicroelectronics	part,	as	this	is	the	target	for	all	the
practical	examples	described	in	this	cookbook.

3.	 With	the	Packs	tab,	in	addition	to	the	default	installation	options:	CMSIS	and	Keil
ARM	Processional	Middleware	for	ARM	Cortex-M-based	devices,	board	support	for
MCBSTM32F400	is	also	needed.	Select	the	latest	version	Keil::32F4xx_DFP
(2.6.0).

4.	 Select	the	Examples	tab,	and	copy	the	board-specific	example	programs	to	a
convenient	local	folder.	Note:	the	example	programs	illustrate	many	useful	features
of	the	evaluation	board,	and	are	an	invaluable	resource.



5.	 Once	we	have	downloaded	and	installed	MDK-ARM	uVision5,	the	IDE	can	be
invoked	from	the	Windows	Taskbar.	If	we	wish	to	update	the	installation,	the	pack
installer	can	be	invoked	by	selecting	the	pack	installer	icon	on	uVision5	toolbar.

6.	 We	demonstrate	the	basic	features	of	uVision	in	this	chapter,	but	later	on,	we’ll
probably	need	to	access	the	uVision	user	guide	via	the	Help	menu	(also	available	at
http://www2.keil.com/mdk5)	to	learn	about	the	more	advanced	features	of	the	IDE.	A
useful	guide	to	getting	started	with	uVision5	can	be	found	at
https://armkeil.blob.core.windows.net/product/mdk5-getting-started.pdf.	An
overview	of	uVision5	is	available	at	http://www2.keil.com/mdk5,	and	this	includes
some	video	clips	that	describe	the	design	philosophy,	and	explain	how	to	use	the
Pack	Installer	and	create	a	new	project.

http://www2.keil.com/mdk5
https://armkeil.blob.core.windows.net/product/mdk5-getting-started.pdf
http://www2.keil.com/mdk5


How	it	works…
Computer	programming	involves	specifying	a	sequence	of	binary	codes	that	are
interpreted	by	the	machine	as	instructions	that	together	enable	it	to	undertake	some	task.
The	instruction	sets	of	early	computers	were	small	and	easily	memorized	by	programmers,
so	programs	were	written	directly	in	machine	code,	and	each	instruction	code	word	was
set	up	on	switches	and	written	to	memory.	Finally,	once	all	the	instructions	had	been
entered,	the	program	was	executed.	With	the	development	of	more	powerful	machines	and
larger	instruction	sets,	this	approach	became	unworkable.	This	motivated	the	need	to
program	in	higher	level	(human	understandable)	languages	that	are	translated	into
machine	code	by	a	special	program	called	a	compiler.	Modern	day	programmers	rarely
need	to	interpret	individual	binary	codes;	instead,	they	use	a	text	editor	to	enter	a	sequence
of	high-level	language	statements,	a	compiler	to	convert	them	into	machine	code,	a	linker
to	allow	programs	to	reuse	previously	written	(library)	code,	and	a	loader	to	write	the
binary	codes	to	memory.	The	steps	comprising	edit,	compile,	link,	load	can	be	undertaken
by	running	each	program	(editor,	compiler,	linker,	loader)	separately.	However,	nowadays
they	are	usually	packaged	together	within	a	wrapper	called	an	IDE.	Some	IDEs	are
language-specific	and	some	are	customizable,	allowing	developers	to	create	bespoke
programming	environments	for	any	target	language	and/or	machine.

The	pack	installer	framework	allows	MDK-ARM	uVision5	to	be	customized	and	extended
to	target	a	large	number	of	devices	and	evaluation	boards	using	ARM	cores.	But	while,
IDEs	represent	the	most	popular	and	efficient	route	to	programming,	uVision	represents
just	one	of	a	number	of	IDEs	that	are	widely	available.	Other	manufacturers	and	open
source	communities	offer	alternatives,	some	of	which	we	investigate	later	in	the	book.





Linking	an	evaluation	board
This	book	focuses	on	the	Keil	STM32F400	evaluation	board	that	features	a
STM32F407IGHx	STMicroelectronics	part	to	illustrate	practical	work.	A	wide	range	of
other	evaluation	boards	are	available,	and	many	of	these	are	supported	by	the	uVision5
IDE	(that	is,	using	the	pack	installer	to	download	appropriate	software	components).



How	to	do	it…
1.	 Once	we	have	installed	uVision,	linking	the	evaluation	board	is	simply	a	matter	of

connecting	the	two	USB	cables	shown	in	the	following	image	to	your	PC.	The	small
daughter	board	shown	in	the	image	is	Keil’s	ULINK-ME	debug	adaptor
(http://www.keil.com/ulinkme/)	that	provides	the	data	connection.

Tip
The	Windows	plug-and-play	feature	will	automatically	find	and	install	the	driver
(downloaded	with	uVision5).

2.	 The	second	USB	cable	provides	power.	Evaluation	boards	can	usually	be	powered	by
a	laptop	or	PC	host	connected	via	the	USB	port,	but	some	laptop	PSUs	may	be
unable	to	supply	sufficient	current,	and	a	USB	hub	might	be	required.	Alternatively,
an	external	supply	can	be	connected	via	a	separate	power	plug.

Note
The	first	time	the	ULINK	device	is	used,	its	firmware	needs	to	be	configured.	The
configuration	depends	on	the	MDK	version,	and	if	we	wish	to	use	different	versions
of	the	MDK	(that	is,	perhaps	because	we	have	legacy	code	developed	using
uVision4)	then	the	ULINK	configuration	may	need	to	be	erased.

http://www.keil.com/ulinkme/


http://www.keil.com/support/docs/3632.htm	provides	some	further	information	and	a
download	utility	for	this	purpose.

http://www.keil.com/support/docs/3632.htm


How	it	works…
A	USB-Link	adaptor	is	needed	to	enable	the	executable	code	produced	by	the	IDE	to	be
uploaded	to	the	evaluation	board.	The	adaptor	supports	a	Joint	Test	Action	Group
(JTAG)	interface	on	the	evaluation	board,	and	offers	a	number	of	debugging	possibilities
(depending	on	the	type	of	adaptor	used).	There	are	several	debug	adaptor	connection
options.	Firstly,	the	Keil	ULINK-ME	debug	adaptor	(http://www.keil.com/ulinkme/),
packaged	together	with	the	board	as	a	starter	kit,	connects	to	the	20-pin	JTAG	connector
and	supports	serial	wire	programming	and	on-chip	debugging.	Keil’s	ULINK-2	adaptor
(http://www.keil.com/ulink2/)	represents	a	more	robust	solution	with	similar	functionality,
and	ULINK-Pro	(http://www.keil.com/ulinkpro/)	offers	extended	debug	facilities
employing	high-speed	streaming	trace	technology.

http://www.keil.com/ulinkme/
http://www.keil.com/ulink2/
http://www.keil.com/ulinkpro/


There’s	more…
The	MCBSTM32F400	(http://www.keil.com/mcbstm32f400/)	evaluation	board	shown	in
the	preceding	image	features	the	STMicroelectronics	STM32F407IGHx	microcontroller
part.	The	board	specification	includes	the	following:

STM32F407IG	Microcontroller
On-chip	and	external	memory
2.4	inch	QVGA	TFT	LCD	and	touchscreen
USB	2.0	Ports
CAN	interface
Serial/UART	Port
Micro	SD	Card	Interface
5-position	Joystick
3-axis	accelerometer
3-axis	Gyroscope
ADC	Potentiometer	input
Audio	Codec	with	Speaker	and	Microphone
Digital	Microphone
Digital	VGA	Camera
Push	Buttons	and	LEDs	directly	connected	to	I/O	ports
Debug	Interface

MCU	manufacturers	like	Texas	Instruments	(TI),	STMicroelectronics,	Freescale,	Atmel,
Analog	Devices,	Silicon	Labs,	MikroElektronika,	NXP,	and	Nordic	Semiconductor	all
market	evaluation	boards	featuring	the	Cortex-M4.	Some	of	these	offer	cheaper,	entry-
level	board	options	costing	just	a	few	dollars	with	functionality	that	can	be	enhanced	by
adding	additional	modules.

An	insight	into	the	range	of	microcontroller	devices	supported	by	MDK-ARM	can	be
gained	by	scrolling	through	the	list	of	packs	listed	by	the	Pack	Installer.	Keil	markets	a
range	of	Cortex-M	evaluation	boards	designed	by	themselves	and	other	manufacturers
(http://www.keil.com/boards/cortexm.asp)	that	feature	a	number	of	microcontrollers.
Keil’s	range	of	boards	features	NXP,	STMicroelectronics,	and	Freescale	microcontrollers.
The	MCBSTM32	(Cortex-M3)	and	MCBSTM32F400	(Cortex-M4)	evaluation	boards
offer	one	of	the	more	expensive	evaluation	routes,	but	they	are	populated	with	a
comprehensive	set	of	I/O	peripherals,	including	a	QVGA	TFT	LCD	touchscreen.	STM
(http://www.st.com)	markets	a	similar	evaluation	board	called	the	STM3241G-EVAL,
offering	almost	identical	features	to	Keil’s	but	employing	a	slightly	different	PCB	layout
and	using	the	STM32F417IG	part.

Netduino	(http://netduino.com/)	offers	a	series	of	open	source	evaluation	boards	based	on
the	STM32F405RG	microcontroller	featuring	a	Cortex-M4	core	with	open	source
software	development	support.	Netduino	is	supported	by	an	enthusiastic	community	of
developers—a	selection	of	projects	which	demonstrate	the	potential	of	the	device	are
available.

http://www.keil.com/mcbstm32f400/
http://www.keil.com/boards/cortexm.asp
http://www.st.com
http://netduino.com/


Documentation	for	target	devices	and	evaluation	boards	is	available	from	the
manufacturer.	For	example,	those	using	the	MCBSTM32F400	board	will	need	to	refer	to
the	reference	manual	RM0090	(http://www.st.com),	the	MCBSTM32F200/400	User’s
Guide	(http://www.keil.com),	the	ARM	Cortex-M4	Processor	Technical	Reference
Manual,	and	the	Cortex-M4	Devices	Generic	User	Guide	(http://infocenter.arm.com).

You	will	also	find	that	the	schematic	diagram	of	the	evaluation	board,	at
http://www.keil.com/mcbstm32f400/mcbstm32f400-schematics.pdf,	is	also	useful	for
resolving	ambiguities	in	the	libraries.	If	you	use	MDK-ARM,	then	once	a	new	project	has
been	created	and	the	target	microcontroller	identified,	most	of	the	relevant	documentation
can	be	accessed	via	the	Books	tab	within	the	project	window.

http://www.st.com
http://www.keil.com
http://infocenter.arm.com
http://www.keil.com/mcbstm32f400/mcbstm32f400-schematics.pdf




Running	an	example	program
Manufacturers	usually	make	a	small	number	of	example	programs	available	that	provide	a
tutorial	introduction	and	demonstrate	the	potential	of	their	evaluation	boards.	A	simple
program	that	flashes	(that	is,	blinks)	a	Light-emitting	diode	(LED)	on	the	board	is
usually	provided.	ANSI	C	is	by	far	the	most	popular	language	amongst	embedded	system
programmers,	but	other	high	level	languages	such	as	C++	and	C#	may	also	be	supported.
A	brief	introduction	to	the	C	programming	language	is	provided	in	Chapter	2,	C	Language
Programming.

The	Examples	tab	in	the	pack	installer	for	the	STM32F4	series	MCUs	provides	a	link	to	a
C	program	called	CMSIS-RTOS	Blinky	(MCBSTM32F400)	that	flashes	an	LED
connected	to	a	GPIO	port.	The	program	is	integrated	within	an	MDK-ARM	Project.
Integrated	development	environments	such	as	MDK-ARM	usually	manage	software
development	tasks	as	projects,	as	in	addition	to	the	program	source	code	itself,	there	are
other	target-specific	details	that	are	needed	when	the	code	is	compiled.	A	project	provides
a	good	container	for	such	things.	We	review	the	steps	required	to	create	a	project	from
scratch	in	the	next	section.



How	to	do	it…
1.	 Invoke	uVision5.	Open	the	Pack	Installer,	and	copy	the	example	program	to	a	new

folder	(name	the	folder	CMSIS-RTOS_Blinky).
2.	 Connect	the	evaluation	board	as	described	in	the	previous	section.	In	addition	to	the

ULINK	cable,	remember	to	connect	a	USB	cable	to	supply	power	to	your	evaluation
board.

3.	 Invoke	uVision5	from	the	taskbar,	select	Project	→	Open	Project;	navigate	to	the
folder	named	CMSIS-RTOS_Blinky,	and	open	the	file	named	blinky.uvprojx.

4.	 Build	the	project	by	selecting	Project	→	Rebuild	all	target	files,	and	then	download
the	executable	code	to	the	board	using	Flash	→	Download.	Take	a	moment	to	locate
the	Build,	Rebuild,	and	Download	shortcut	icons	on	the	toolbar	as	these	save	time.

5.	 Finally,	press	the	RESET	button	on	the	evaluation	board,	and	confirm	that	Blinky	is
running.	You	may	notice	that	the	Blinky	example	program	does	a	little	more	than	just
flash	one	LED.

6.	 Once	you	have	confirmed	that	your	evaluation	board	is	working,	close	the	project
(Project	→	Close	Project),	and	quit	uVision5.



How	it	works…
The	program	uses	some	advanced	concepts	such	as	CMSIS-RTOS	(discussed	in	Chapter
8,	Real-Time	Embedded	Systems.)	to	produce	a	visually	interesting	flashing	LED	pattern.
We	will	not	attempt	to	explain	the	code	here,	but	the	next	section	will	develop	a	much
simpler	Blinky	project	called	hello_blinky.uvprojx.





Writing	a	simple	program
This	section	explains	how	to	write,	build,	and	execute	a	simple	program.	We	also	describe
the	various	files	that,	together,	make	up	a	uVision	project.



How	to	do	it…
1.	 Use	Windows	Explorer	to	create	a	new	(empty)	folder	called	helloBlinky_c1v0.

Invoke	uVision5,	and	create	a	new	project	(Project	→	New	uVision	Project…).
Navigate	to	the	folder,	and	create	a	project	file	called	hello_blinky.uvprojx.	When
prompted,	choose	the	STM32F407IGHx	device.	Click	OK.

2.	 In	Manage	→	Run	Time	Environment,	choose	the	MCB32F400	board	support
using	the	drop-down	list,	and	tick	the	LED	API	(since	our	application	will	flash	an
LED).	Expand	the	Device	option	list,	and	tick	Startup	and	Classic.



3.	 Notice	that	the	Validation	Output	pane	display	warns	us	that,	to	drive	LEDs,	we
also	need	CMSIS	core,	GPIO	driver,	and	system	start-up	components.	Press	the
Resolve	button	to	automatically	include	any	libraries	needed	by	the	board	features
selected,	then	click	OK.	The	project	window	in	uVision5	should	show	that	the	files
have	been	successfully	loaded.	The	names	of	the	folders	can	be	changed	using	a
right-click	menu,	and	fields	can	be	expanded	to	show	individual	components,	thereby
allowing	the	file	components	to	be	edited.	Note:	Some	library	files	are	read-only.



4.	 Right-click	Source	Group	1,	and	select	Add	New	Item	to	Group	‘Source	Group
1’…;	then	select	a	C	File	(.c)	template.	Name	the	file	hello_Blinky.c,	and	enter	the
following	program:

/*------------------------------------------------

	*	Recipe:		helloBlinky_c1v0

	*	Name:				hello_blinky.c

	*	Purpose:	Very	Simple	MCBSTM32F400	LED	Flasher

	*------------------------------------------------

	*	

	*	Modification	History

	*	16.01.14	Created

	*	27.11.15	Updated	

	*	(uVision5	v5.17STM32F4xx_DFP2.6.0)

	*

	*	Dr	Mark	Fisher,	CMP,	UEA,	Norwich,	UK

	*------------------------------------------------*/

#include	"stm32f4xx_hal.h"

#include	"Board_LED.h"

int	main	(void)	{

		const	unsigned	int	num	=	0;

		unsigned	int	i;

		LED_Initialize();				/*	LED	Initialization	*/

		for	(;;)	{																						/*	Loop	forever	*/

	 	LED_On	(num);								/*	Turn	specified	LED	on	*/	

				for	(i	=	0;	i	<	10000000;	i++)

	 /*	empty	statement	*/	;							/*	Wait	*/

	 		LED_Off	(num);					/*	Turn	specified	LED	off	*/

				for	(i	=	0;	i	<	10000000;	i++)

	 /*	empty	statement	*/	;							/*	Wait	*/	 	 	 	

		}	/*	end	for	*/



}

5.	 The	RTE	manager	of	uVision5	will	have	configured	the	device	options	with	values
from	the	device	database,	but	the	debug	options	should	be	reviewed	by	selecting
Project	→	Options	for	Target	‘MCBSTMF400’…	to	ensure	that	they	specify	the
ULINK2/ME	Cortex	Debugger.

6.	 Build	the	project	by	selecting	Project	→	Rebuild	all	Target	Files.	Again,	there	is	a
toolbar	icon	that	provides	a	helpful	shortcut.

7.	 Write	the	executable	code	to	the	microcontroller’s	flash	memory	using	Flash	→
Download.	Press	the	RESET	button	on	the	evaluation	board	to	run	the	program.

Tip
Downloading	the	example	code

You	can	download	the	example	code	files	for	all	Packt	books	you	have	purchased	from
your	account	at	http://www.packtpub.com.	If	you	purchased	this	book	elsewhere,	you	can
visit	http://www.packtpub.com/support	and	register	to	have	the	files	e-mailed	directly	to
you.

http://www.packtpub.com
http://www.packtpub.com/support


How	it	works…
Those	familiar	with	uVision4	will	notice	that	the	most	obvious	feature	for	of	this	program
is	that	a	call	to	SystemInit()	is	missing,	as	this	code	is	executed	before	main()	is	called.
The	function	called	main()	is	the	entry	point	for	our	program,	and	each	project	should
declare	only	one	file	that	defines	a	main	function.	Conventionally,	this	might	be	called
main.c,	or	adopt	a	file	name	that	is	shared	by	the	project	such	as	helloBlinky.c.

Tip
Most	of	the	file	helloBlinky.c	comprises	comments,	which	are	highlighted	in	green.
Comments	do	not	produce	any	executable	code,	but	they	are	essential	for	understanding
the	program.	You	may	be	tempted	to	omit	comments,	but	you	will	appreciate	their	value
if,	at	some	later	date,	you	need	to	reuse	code	written	by	others,	or	even	yourself.

The	source	code	file	begins	with	a	large	comment	statement	that	extends	over	several	lines
and	contains	information	about	the	program.	Then	there	are	C	pre-processor	directives;	we
discuss	these	in	Chapter	2,	C	Language	Programming.	The	program	comprises	a	main
function	that	declares	two	variables	named	i	and	num.	There	follows	a	function	call	to
LED_Initialize()	(written	by	developers)	that	sets	up	the	GPIO	peripheral	which	drives
the	LEDs.	The	program	contains	three	so	called	for	loops.	The	outer	loop,	is	known	as	a
superloop	and	never	terminates.	These	statements	within	this	loop	are	executed	again	and
again,	forever	(well	for	as	long	as	power	is	supplied	to	the	evaluation	board).	The
statements	within	the	loop	turn	the	specified	LED	ON	and	OFF	by	calling	yet	another
function	written	by	Keil	developers.	The	other	two	for	loops,	nested	within	the	superloop,
simply	waste	time	by	incrementing	the	loop	variable	i.	Implementing	a	delay	in	this	way
represents	a	very	naïve	approach,	and	we’ll	explore	much	more	efficient	techniques	later.
If	you	have	not	programmed	in	C	before,	then	although	you’ll	probably	appreciate	that
this	program	is	very	compact,	you	may	find	it	confusing.	Don’t	worry,	we’ll	revisit	this
program	again	when	we	introduce	the	C	programming	language	in	Chapter	2,	C	Language
Programming.



There’s	more…
The	structure	of	the	uVision	MDK	projects	has	evolved	considerably	over	the	past	few
years	and	uVision5	represents	a	significant	revision	in	this	respect.	Developers	of
uVision5	have	attempted	to	make	microcontroller	software	development	much	simpler	by
providing	library	functions	that	can	be	used	to	control	peripherals	such	as	LEDs,
accelerometers,	touchscreen,	and	so	on.	Many	application	developers	migrating	from
uVision4	find	this	burdensome,	and	favor	more	classic	approaches	that	do	not	rely	on
intrinsic	interface	functions.	Application	programmers	who	wish	to	use	their	own
middleware	functions	are	advised	to	download	the	ARMs	MDK	legacy	support	pack
(http://www2.keil.com/mdk5/legacy).	The	source	files	that,	together	with	the	project
options,	define	the	helloBlinky	project	are	summarized	in	the	following	table:

File	Type File
extension Description

C	File .c Source	code	written	in	ANSI	C.

Header	File .h File	containing	additional	information	to	be	included	in	the	source	code

Assembly	Language
File .s Source	code	written	in	ARMs	Thumb2	assembly	language	(Cortex-M	cores)

Text	File .txt Text	file,	usually	containing	description	of	the	project	or	instructions	for	running
the	code.

A	configuration	wizard	is	provided	to	customize	some	files	(for	example,
startup_stm32F40xx.s).	However,	we	will	deal	with	these	more	advanced	aspects	in
subsequent	chapters.	Further,	library	and	header	file	components,	declared	within	the
source	files	themselves,	are	also	listed	in	the	project	window,	and	can	be	opened	in	the
editor	window.	The	file	types	you	will	encounter	are	described	briefly	in	the	following
table,	but	will	be	discussed	in	more	detail	in	Chapter	2,	C	Language	Programming.

File	Type File
extension Description

C	File .c Source	code	written	in	ANSI	C.

Header	File .h File	containing	additional	information	to	be	included	in	the	source	code

Assembly	Language
File .s Source	code	written	in	ARMs	Thumb2	assembly	language	(Cortex-M	cores)

Text	File .txt Text	file,	usually	containing	description	of	the	project	or	instructions	for	running
the	code.

The	project	options	are	functionally	grouped	together.	They	are	accessed	through	the	tabs
within	the	Project	Options	menu,	and	summarized	in	the	following	table.	Further	details
are	available	in	the	uVision	User	Guide.

http://www2.keil.com/mdk5/legacy


Tab Description

Device Select	the	microcontroller	device	from	the	database

Target Specify	hardware	parameters

Output Define	output	files	of	the	tool	chain

Listing Specify	all	listing	files	generated	by	the	tool	chain

User Specify	user	programs	executed	before	compilation	/	build

C/C++ Set	C	/	C++	compiler-specific	tool	options

Asm Set	assembler-specific	tool	options	such	as	macro	processing

Linker Set	linker-related	options,	and	define	physical	memory	parameters.

Debug Specify	settings	for	the	uVision	debugger

Utilities Configure	utilities	for	flash	programming

The	options	allow	the	developer	to	control	quite	small	details	of	the	build—for	example,
you	might	find	it	more	convenient	to	execute	code	as	soon	as	it	is	downloaded	to	the	target
by	configuring	the	flash	programming	settings	using	the	utilities	tab	as	shown	in	the
following	image:

The	STM32F400IGHx	microcontroller	implements	1MB	On-chip	Flash	memory.	RAM
for	Algorithm	defines	the	address	space	used	by	the	programming	algorithm	for	the



device.





Understanding	the	simple	use	of	GPIO
Making	an	LED	blink	involves	connecting	it	to	a	signal	that	alternately	switches	ON	and
OFF.	General	purpose	input/output	(GPIO)	is	the	name	of	a	microcontroller	peripheral
that	provides	functionality	to	source	many	signals	at	once	(that	is,	in	parallel).	GPIO
peripherals	are	designed	to	be	very	flexible,	so	configuring	them	can	be	rather	confusing
but	using	the	RTE	manager	makes	this	process	much	simpler.	We	will	modify	our
helloBlinky_c1v0	recipe	to	simultaneously	make	all	the	LEDs	blink	rather	than	just	one.
Each	LED	on	the	evaluation	board	is	connected	to	a	pin	on	the	microcontroller,	so	to
illuminate	an	LED	the	microcontroller	needs	to	provide	a	voltage	and	current	similar	to
the	that	of	a	torch	battery.	To	source	this	current,	the	corresponding	GPIO	port	bit
connected	to	the	pin	must	be	configured	as	an	output	that	is	switched	ON	and	OFF	by
statements	in	our	program	that	write	to	the	port	output	data	register.



How	to	do	it…
To	configure	the	GPIO	follow	the	steps	outlined:

1.	 Make	a	copy	of	the	helloBlinky_c1v0	folder	from	the	previous	recipe	(and	its
contents)	and	rename	this	copy	as	helloBlinky_c1v1.	Open	the	folder	and	open	the
helloBlinky	project	(double-click	on	the	file).	Then	edit	the	main	function	defined	in
the	helloBlinky.c	file	search	for	the	following	statement:

LED_On	(num);

2.	 Replace	this	statement	with	the	following	one:

LED_SetOut	(On_Code);

3.	 Also,	search	for	the	following	statement:

LED_Off	(num);

4.	 Replace	this	statement	with	the	following	one:

LED_SetOut	(Off_Code);

5.	 The	variables,	On_code	and	Off_Code,	are	declared,	as	follows:

const	unsigned	intOff_Code	=	0x0000;

const	unsigned	intOn_Code	=	0x00FF;

6.	 A	complete	listing	of	the	main	function	is	as	follows:

/*--------------------------------------------------

	*	Recipe:		helloBlinky_c1v1

	*	Name:				helloBlinky.c

	*	Purpose:	Simultaneous	MCBSTM32F400	LED	Flasher	

	*--------------------------------------------------

	*	Modification	History

	*	16.01.14	Created

	*	03.12.15	Updated	

	*	(uVision5v5.17+STM32F4xx_DFP2.6.0)

	*

	*	Dr	Mark	Fisher,	CMP,	UEA,	Norwich,	UK

	*--------------------------------------------------*/

#include	"stm32F4xx_hal.h"

#include	"Board_LED.h"

int	main	(void)	{

const	unsigned	intOff_Code	=	0x0000;

const	unsigned	intOn_Code	=	0x00FF;

		unsigned	inti;

LED_Initialize();																						/*	LED	Init	*/

		for	(;;)	{																									/*	Loop	forever	*/

LED_SetOut	(On_Code);												/*	Turn	LEDs	on	*/	

				for	(i	=	0;	i<	1000000;	i++)

/*	empty	statement	*/	;																/*	Wait	*/



LED_SetOut	(Off_Code);										/*	Turn	LEDs	off	*/

				for	(i	=	0;	i<	1000000;	i++)

	 /*	empty	statement	*/	;																			/*	Wait	*/

		}	/*	end	for	*/

}

7.	 Build,	download,	and	run	the	application	in	exactly	the	same	way	as	we	did	in	the
previous	version.



How	it	works…
The	GPIO	interface	is	a	particularly	important	feature	in	microcontrollers	because	it	is
designed	to	be	easily	integrated	within	user	systems	to	drive	light	emitting	diodes,	read	the
state	of	switches,	or	connect	to	other	peripheral	interface	circuits.	Early	I/O	ports	were
prewired	to	provide	either	output	or	input	interfaces,	but	soon	they	evolved	into	general
purpose	interfaces	that	could	be	programmed	to	provide	either	output	or	input
connections.	Later	devices	included	more	programmable	features.	As	GPIO	is	so
important	for	microcontroller	applications,	designers	are	keen	to	specify	as	many	I/O	pins
as	possible	on	their	devices.	However,	increasing	the	device	pin-out	adds	cost	because	the
device	becomes	physically	larger	to	accommodate	the	pins.	This	motivates	manufacturers
to	develop	devices	that	have	pins	that	are	configured	by	software.	As	you	can	imagine,
configuring	such	a	device	is	quite	a	challenge,	so	we’re	lucky	that	Keil’s	developers	have
provided	library	functions	that	make	this	task	more	manageable.	As	GPIO	represents	the
interface	between	hardware	and	software,	the	evaluation	board’s	schematic
(http://www.keil.com/mcbstm32f400/mcbstm32f400-schematics.pdf)	is	essential	to
understanding	the	I/O.

The	STM	microcontroller	used	by	the	evaluation	board	provides	eight	GPIO	ports,	named
A-I.	Port	pins	PG6,7,8;	PH2,3,6,7;	PI10	are	connected	to	LEDs.	Those	who	have	never
encountered	an	LED	may	imagine	it	as	a	filament	lamp,	but	an	LED	is	a	semiconductor
device	and	behaves	slightly	differently.	However,	sticking	with	our	initial	lamp	analogy
(for	the	time	being),	we’ll	first	consider	a	battery-operated	torch	comprising	a	battery,
switch,	and	lamp.	These	components	are	connected	by	a	copper	wire	that	is	often	hidden
within	the	body	of	the	torch.	We’ll	assume	that	the	torch	uses	two	AA	batteries	providing
a	voltage	of	about	3	Volts.	We	can	depict	the	circuit	as	a	diagram	with	symbols
representing	each	of	the	components,	as	shown	in	the	following	diagram:

When	we	close	the	switch,	the	battery	voltage	(denoted	V)	is	applied	directly	to	the	lamp,
a	current	flows	(denoted	I),	heating	the	lamp	filament,	and	this	in	turn,	gives	out	light.

The	electrical	resistance	(denoted	R)	of	the	filament	determines	the	amount	of	current	that
flows	according	to	Ohm’s	Law	that	is	as	follows:

http://www.keil.com/mcbstm32f400/mcbstm32f400-schematics.pdf


Lamp	filaments	used	in	torches	usually	have	a	resistance	of	about	10	Ohms	(10	Ω),	so	the
amount	of	current	flowing	is	about	0.3	A	or	300	mA.

Imagine	that	a	fault	develops,	which	produces	a	short	across	the	lamp.	The	current	flowing
is	now	only	limited	by	the	resistance	of	the	copper	wire	and	the	internal	resistance	of	the
battery;	these	are	both	very	small	(a	fraction	of	an	Ohm).	A	high	current	will	circulate
which	might,	if	the	battery	stored	enough	energy,	cause	the	copper	wire	to	heat	up	and
melt	the	plastic	case	of	the	torch.	However,	AA	batteries	are	unable	to	store	sufficient
energy	for	this	to	be	a	serious	problem	and	in	most	cases	the	battery	will	discharge	within
a	few	seconds.

In	modern	torches,	the	lamp	is	replaced	by	an	LED,	which	is	a	semiconductor	device	(its
electrical	properties	lie	between	those	of	conductors,	such	as	copper,	and	insulators,	such
as	glass).	An	LED	is	a	two	terminal	device	with	special	properties.	One	of	the	terminals	is
known	as	the	anode	and	the	other	as	the	cathode.	If	we	replace	the	lamp	in	our	torch	with
an	LED,	then	current	will	only	flow	and	the	LED	will	illuminate	when	the	anode	is
connected	to	the	positive-battery	terminal	and	the	cathode	to	the	negative-battery	terminal,
as	depicted	in	the	following	diagram:

If	we	connect	the	device	the	other	way	round	as	depicted	in	the	right	side	of	the	preceding
diagram,	then	no	current	will	flow;	so,	make	sure	that	the	batteries	in	your	LED	torch	are
fitted	the	right	way	round!	When	the	anode	is	connected	to	the	positive-battery	terminal,
the	diode	resistance	is	very	low	and	the	diode	is	said	to	be	forward	biased.	When	the
cathode	is	connected	to	the	positive-battery	terminal	the	diode	exhibits	an	extremely	high
resistance	(negligible	current	flow)	and	the	diode	is	said	to	be	reversed	biased.	When
forward	biased,	the	LED	exhibits	an	extremely	low	resistance,	so	an	additional	resistor



must	be	placed	in	the	circuit	to	limit	the	current	flowing.

GPIO	can	also	be	used	to	read	the	state	of	switches	that	are	connected	to	microcontroller
pins.	For	this	operation,	each	port	bit	must	be	configured	as	an	input.	When	configured	for
input	(that	is,	output	is	disabled),	each	bit	of	the	parallel	port’s	input	data	register	is
connected	to	a	pin	on	the	integrated	circuit	(on	which	the	embedded	processor	is
fabricated).	Let’s	assume	that	we	wish	to	connect	a	simple	push-button	switch	to	an	input
bit	such	that	when	the	switch	is	operated,	a	voltage	is	applied	to	the	port	(pin),	otherwise,
no	voltage	is	applied.	The	circuit	a)	shown	as	follows	will	achieve	this.	A	complementary
circuit	that	produces	a	voltage	when	the	switch	is	open,	and	no	voltage	when	the	switch	is
operated	(closed)	is	shown	in	b):

To	eliminate	the	need	for	an	additional	resistor,	the	GPIO	port	input	circuit	includes	one
that	can	be	configured	by	software	as	pull-up,	pull-down,	or	disconnected.	Obviously,
when	the	port	is	configured	as	an	output,	both	resistors	are	disconnected.



There’s	more…
Section	7	of	STMicroelectronics	Reference	manual	RM0090	(www.st.com)	for
microcontrollers	featuring	the	Cortex-M4	provides	comprehensive	programming	details
for	the	GPIO	port.	As	well	as	producing	logic	signals	(for	example,	making	LEDs	blink)
and	reading	logic	levels	(for	example,	from	switches),	GPIO	ports	also	provide	an	I/O
path	for	other	peripheral	functions,	such	as	Times	and	Digital-to-Analogue	converters.
We’ll	take	a	closer	look	at	GPIO	later	on	in	this	cookbook	when	we	write	programs	that
include	more	functionality.

http://www.st.com




Estimating	microcontroller	performance
The	millions	of	instructions	that	can	be	executed	per	second	(MIPS)	is	one	measure	of
processor	performance.	This	figure	depends	on	the	processor	architecture,	the	clock	speed,
the	memory	performance,	and	so	on.	The	microcontroller	can	be	clocked	from	one	of
three	oscillator	sources.	A	high	speed	external	(HSE)	clock	is	derived	from	a	25	MHz
crystal	oscillator	connected	between	two	pins	of	the	microcontroller.	A	high	speed
internal	(HSI)	clock	is	sourced	from	an	internal	16	MHz	resistor-capacitor	(RC)
controlled	oscillator,	and	a	Phase	Locked	Loop	(PLL)	can	be	configured	to	provide
multiples	of	either	HSE	or	HSI.

A	peripheral	called	reset	and	clock	control	(RCC)	allows	the	clock	source	to	be	selected
and	configured	using	a	circuit	known	as	a	clock	tree.	The	RCC	peripheral	also	sources
clocks	for	other	microcontroller	peripherals,	and	these	also	need	to	be	configured.
Following	a	hard	reset,	the	RCC	configuration	is	determined	by	the	RCC	register	default
values	given	in	the	RM0090	Reference	Manual	(www.st.com).	Selecting	Startup	from	the
Device	submenu	of	the	RTE	manager	copies	an	assembly	language	file	named
startup_stm32f407xx.s	(the	.s	file	extension	is	conventionally	used	to	identify	assembly
language	files)	to	our	project.	This	file	holds	the	exception	table.	The	reset	exception
generated	by	a	hard	reset	(that	is,	activating	the	reset	button	on	the	evaluation	board)
causes	the	microcontroller’s	program	counter	to	be	loaded	with	the	address	of	the	reset
handler	(identified	by	symbol	Reset_Handler),	and	this	in	turn	calls	a	function	named
SystemInit()	defined	in	the	file,	system_stm32f4xx.c	.	This	function	configures	the
RCC	to	use	the	16	MHz	HSI	clock	before	calling	the	function	main().

http://www.st.com


How	to	do	it…
1.	 Run	helloBlinky,	and	measure	the	frequency	of	the	‘blinks’.	We	should	see	about	4

blinks/second	or	4	Hz.	It	may	be	easier	to	count	the	blinks	in	a	10-second	period.
2.	 When	we	examine	the	program	code	shown	earlier,	we	see	that	the	program	spends

most	of	its	time	executing	the	two	nested	for	loops.	The	statements	inside	these
loops	are	executed	thousands	of	times.	Some	readers	may	have	spotted	that	there	are
no	statements	called	inside	the	loop;	but	even	so,	the	loop	counter	must	be	updated
on	each	iteration.	This	operation	requires	a	addition	(ADD)	instruction	followed	by	a
compare	(CMP)	instruction	to	be	executed.

3.	 We	need	to	do	some	elementary	math	to	work	out	how	long	it	will	take	to	execute
these	two	instructions.	Checking	Table	3.1	of	the	ARM	Cortex-M4	Processor
Technical	Reference	Manual,	we	see	that	these	each	take	1	cycle	to	execute.	Since
SystemInit()	configures	the	RCC	to	use	the	HSI	(16	MHz)clock,	the	time	needed	to
switch	the	LED	ON/OFF	once	will	be	2	X	(1000000)	x	1/(16	x	106)	x	2	(instructions)
=	250	ms	(that	is,	about	4	times	per	second).



There’s	more…
To	understand	how	the	processor	achieves	this	level	of	performance,	we	need	to	look	at
the	processor	architecture.	The	processor	implements	the	ARMv7-M	architecture	profile
described	at	http://infocenter.arm.com.	ARMv7-M	is	a	32-bit	architecture	and	the	internal
registers	and	data	path	are	all	32-bit	wide.	ARMv7-M	supports	the	Thumb	Instruction	Set
Architecture	(ISA)	with	Thumb-2	technology	that	includes	both	16	and	32-bit	instructions.
ARM	processors	were	originally	inspired	by	Reduced	Instruction	Set	Computing
(RISC)	architectures	developed	in	the	1980s.	RISC	architecture	attempted	to	improve	on
the	performance	of	traditional	computer	architectures	of	the	era	that	employed	the	so-
called	Complex	Instruction	Set	Computing	(CISC)	architectures,	by	defining	an	ISA
that	supported	a	small	number	of	instructions,	each	of	which	could	be	executed	in	one
processor	clock	cycle,	and	so	achieve	a	performance	advantage.	In	the	three	decades	since
RISC	was	proposed,	the	size	and	complexity	of	RISC	ISA’s	has	increased,	but	the	goal	is
still	to	minimize	the	number	of	clock	cycles	needed	to	execute	each	instruction.	With	this
in	mind,	ARM	Cortex-M3	and	M4	processors	have	a	three-stage	instruction	pipeline	and
Harvard	bus	architecture.	Computers	that	use	Harvard	architecture	have	separate
memories	and	busses	for	instructions	and	data	rather	than	the	shared	memory	systems
used	by	von	Neumann	architectures,	and	the	higher	memory	bandwidth	this	affords	can
achieve	better	performance.

The	Cortex-M4	processor	also	provides	signal	processing	support	including	a	Single
Instruction	Multiple	Data	(SIMD)	array	processor	and	a	fast	Multiply	Accumulator
(MAC).	Together	with	an	optional	Floating	Point	Unit	(FPU),	these	features	allow	the
Cortex-M4	to	achieve	much	higher	performance	in	Digital	Signal	Processing	(DSP)
applications	than	the	earlier	Cortex-M3.

http://infocenter.arm.com


See	also
Besides	manufacturers’	data	sheets,	there	are	a	few	books	that	address	the	Cortex-M4.
Joseph	Yiu’s	books	(http://store.elsevier.com/Newnes/IMP_73/)	on	the	Cortex-M3	and	M4
processors	are	aimed	at	programmers,	embedded	product	designers,	and	System-on-Chip
(SoC)	engineers.	Books	for	undergraduate	courses	include	a	series	of	books	by	Jonathan
Valvano	(http://users.ece.utexas.edu/~valvano)	and	a	text	written	by	Daniel	Lewis
(http://catalogue.pearsoned.co.uk).	Trevor	Martin	has	also	written	an	excellent	guide	to
STM32	microcontrollers.	This	document	is	one	of	a	number	of	insider	guides	that	can	be
downloaded	from	http://www.hitex.com.

http://store.elsevier.com/Newnes/IMP_73/
http://users.ece.utexas.edu/~valvano
http://catalogue.pearsoned.co.uk
http://www.hitex.com




Chapter	2.	C	Language	Programming
In	this	chapter,	we	will	cover	the	following	topics:

Configuring	the	hardware	abstraction	layer
Writing	a	C	program	to	blink	each	LED	in	turn
Writing	a	function
Writing	to	the	console	window
Writing	to	the	GLCD
Creating	a	game	application	–	Stage	1
Creating	a	game	application	–	Stage	2
Debugging	your	code	using	print	statements
Using	the	debugger



Introduction
This	chapter	will	introduce	you	to	writing	programs	in	C,	a	high-level	language	developed
in	the	1970s	and	popular	amongst	embedded	system	developers.	It	is	not	the	only	high-
level	language	that	can	be	used	to	target	embedded	system	applications,	but	it	is	the	most
widely	used,	because	it	produces	executable	code	that	is	compact	and	very	efficiently
executed.	Standards	for	C	are	published	by	the	American	National	Standards	Institute
(ANSI)	and	the	International	Organization	for	Standardization	(ISO).	The	current	standard
for	the	C	Programming	Language	(C11)	is	ISO/IEC	9899:2011	(http://www.open-
std.org/jtc1/sc22/wg14/www/standards).

Becoming	a	competent	C	programmer	will	take	time,	and	although	this	chapter	provides	a
starting	point,	you	will	undoubtedly	need	to	consult	other	texts	that	provide	a	more
thorough	treatment	of	the	topic.	There	are	also	a	number	of	online	resources	such	as
http://crasseux.com/books/ctutorial/	and	http://www.csd.uwo.ca/~jamie/C/index.html.

http://www.open-std.org/jtc1/sc22/wg14/www/standards
http://crasseux.com/books/ctutorial/
http://www.csd.uwo.ca/~jamie/C/index.html




Configuring	the	hardware	abstraction
layer
The	method	we	deployed	in	Chapter	1,	A	Practical	Introduction	to	ARM®	CORTEX®
used	Startup.c	to	provide	a	very	basic	Run	Time	Environment	(RTE),	and	although
this	is	sufficient	to	get	started	blinking	LEDs,	we	need	to	define	a	more	advanced	RTE	to
take	advantage	of	the	other	peripherals	we’ll	meet	in	future	recipes.	The	Application
Programmers	Interface	(API)	that	STMicroelectronics	(STMicro)	provide	for	their
microcontrollers	is	called	a	hardware	abstraction	layer	(HAL),	and	CMSIS	v2.0
compliant	programs	must	configure	this	before	initializing	their	peripherals.	The	RTE
manager	offers	two	routes	named	Classic	and	STM32CubeMX	to	configure	the	HAL.
Selecting	STM32CubeMX	invokes	a	graphical	tool	developed	by	STMicro	(freely
available	at	www.st.com)	that	creates	the	RTE	(that	is,	generates	RTE.h	and	imports	the
associated	libraries).	We	describe	this	process	in	Chapter	9,	Embedded	Toolchain.	Since
we’re	already	familiar	with	the	Classic	API,	we’ll	continue	to	use	this,	and	simply	add	a
few	lines	of	code	to	configure	the	HAL.

http://www.st.com


How	to	do	it…
For	configuring	the	HAL	follow	the	steps	outlined:

1.	 Make	a	copy	of	the	folder	helloBlinky_c1v1	which	we	created	in	Chapter	1,	A
Practical	Introduction	to	ARM®	CORTEX®,	Understanding	the	simple	use	of	GPIO
and	name	it	helloBlinky_c2v0.

Tip
Copying	a	folder	and	renaming	it	is	a	quick	way	to	extend	an	existing	project.	Future
recipes	refer	to	this	process	as	cloning	the	project.

2.	 Open	the	project,	and	using	the	RTE	manager,	expand	the	CMSIS→RTOS	(API)
software	component.	Check	the	KeilRTX	option.	Click	on	Resolve,	and	exit	using
OK.

3.	 Add	#include	"cmsis_os.h"
4.	 Add	a	function	prototype	declaration,	that	is,	void	SystemClock_Config(void)	in

the	file	helloBlinky.c.
5.	 Add	the	following	lines	of	code	(copy	and	paste	from	the	example	project	CMSIS-

RTOS	Blinky):

#ifdef	__RTX



extern	uint32_t	os_time;

uint32_t	HAL_GetTick(void)	{

		return	os_time;	

}

#endif	

6.	 Copy	the	function	named	SystemClock_Config	(	)	from	the	example	project
CMSIS-RTOS	Blinky,	and	paste	this	into	the	file	helloBlinky.c.

7.	 Add	calls	to	HAL_Init	(	)	and	SystemClock_Config	(	)	at	the	beginning	of
main().	Our	source	code	file	helloBlinky.c	should	now	appear	as	follows:

#include	"stm32f4xx_hal.h"								

#include	"Board_LED.h"

#include	"cmsis_os.h"

/*	Function	Prototype	*/

void	SystemClock_Config(void);

#ifdef	__RTX

extern	uint32_t	os_time;

uint32_t	HAL_GetTick(void)	{

		return	os_time;	

}

#endif

/**

		*	System	Clock	Configuration

		*/

void	SystemClock_Config(void)	{

		RCC_OscInitTypeDef	RCC_OscInitStruct;

		RCC_ClkInitTypeDef	RCC_ClkInitStruct;

		/*	Enable	Power	Control	clock	*/

		__HAL_RCC_PWR_CLK_ENABLE();

		/*	The	voltage	scaling	allows	optimizing	the	power	

					consumption	when	the	device	is	clocked	below	the

					maximum	system	frequency	(see	datasheet).	*/

		__HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);

		/*	Enable	HSE	Oscillator	and	activate	PLL	

						with	HSE	as	source	*/

		RCC_OscInitStruct.OscillatorType	=RCC_OSCILLATORTYPE_HSE;

		RCC_OscInitStruct.HSEState	=	RCC_HSE_ON;

		RCC_OscInitStruct.PLL.PLLState	=	RCC_PLL_ON;

		RCC_OscInitStruct.PLL.PLLSource	=	RCC_PLLSOURCE_HSE;

		RCC_OscInitStruct.PLL.PLLM	=	25;

		RCC_OscInitStruct.PLL.PLLN	=	336;

		RCC_OscInitStruct.PLL.PLLP	=	RCC_PLLP_DIV2;

		RCC_OscInitStruct.PLL.PLLQ	=	7;

		HAL_RCC_OscConfig(&RCC_OscInitStruct);



		/*	Select	PLL	as	system	clock	source	and	configure	

					the	HCLK,	PCLK1	and	PCLK2	clocks	dividers	*/

		RCC_ClkInitStruct.ClockType	=	RCC_CLOCKTYPE_SYSCLK	|

																																RCC_CLOCKTYPE_PCLK1	|

																																RCC_CLOCKTYPE_PCLK2;

		RCC_ClkInitStruct.SYSCLKSource	=	

																												RCC_SYSCLKSOURCE_PLLCLK;

		RCC_ClkInitStruct.AHBCLKDivider	=	RCC_SYSCLK_DIV1;

		RCC_ClkInitStruct.APB1CLKDivider	=	RCC_HCLK_DIV4;

		RCC_ClkInitStruct.APB2CLKDivider	=	RCC_HCLK_DIV2;

		HAL_RCC_ClockConfig(&RCC_ClkInitStruct,

																																		FLASH_LATENCY_5);

}

/**

		*	Main	function

		*/

int	main	(void)	{

		const	unsigned	int	Off_Code	=	0x0000;

		const	unsigned	int	On_Code	=	0x00FF;

		unsigned	int	i;

		

		HAL_Init	(	);			/*	Init	Hardware	Abstraction	Layer	*/

		SystemClock_Config	(	);											/*	Config	Clocks	*/								

		LED_Initialize	(	);																				/*	LED	Init	*/

		//	etc…

}

8.	 Build	and	run	the	program.

Tip
Notice	that	the	code	executes	about	10	times	faster	than	the	recipe	of	Chapter	1,	A
Practical	Introduction	to	ARM®	CORTEX®.	Try	commenting	out	the	call
SystemClock_Config	(	)	in	main	(	)	by	placing	//	immediately	before	the	statement.
Rebuild	and	run.	Compare	the	execution	speed	of	the	two	versions.



How	it	works…
The	function	SystemClock_Config	(	)	comprehensively	configures	the	clock	tree	shown
in	Figure	16	of	STMicro’s	reference	manual	RM0090	(www.st.com).	It	selects	the	Phase
Locked	Loop	(PLL)	clock	derived	from	the	25	MHz	crystal	controlled	HSE	clock	as	the
System	Clock,	and	configures	the	multiplier	N	=	336	and	dividers	P	=	2	and	M	=	25.	The
system	clock	frequency	is	given	by:

The	configuration	values	are	held	in	two	data	structures	(structs)	called
RCC_OscInitStruct	and	RCC_ClkInitStruct.

As	we	will	see	later	in	the	chapter,	functions	may	be	declared	implicitly	by	the	function
definition	or	explicitly	by	a	function	prototype.	Function	prototypes	are	considered	to	be
preferable,	and	these	are	often	declared	in	header	files	(for	example,	see	Board_LED.h).
So,	in	case	we’ve	given	a	prototype	declaration	first,

Structs	just	identify	the	arrangements	of	data	in	memory.	We	will	discuss	structs	later	once
we’ve	dealt	with	more	basic	data	types	such	as	integers.

Finally,	the	following	section	of	code:

#include	"cmsis_os.h"

#ifdef	__RTX

extern	uint32_t	os_time;

uint32_t	HAL_GetTick(void)	{

		return	os_time;	

}

#endif

It	isn’t	strictly	necessary	for	a	program	that	only	uses	GPIO,	but	subsequent	recipes	using
other	peripherals	need	it.	So,	to	avoid	illustrating	the	configuration	each	time,	we’ll
assume	this	boilerplate	is	included	in	all	future	recipes.

Lastly,	we’ve	called	our	source	code	file	helloBlinky.c.	This	is	the	same	name	we	gave
the	project.	By	convention,	this	indicates	that	this	source	code	file	contains	the	main()
function.

http://www.st.com




Writing	a	C	program	to	blink	each	LED
in	turn
This	recipe	extends	the	helloBlinky_c2v0	recipe	introduced	in	the	previous	section,	and
includes	a	few	more	C	programming	statements.	We’ll	call	our	new	recipe
helloBlinky_c2v1.	uVision5’s	IDE	features	a	so-called	folding	editor	that	allows	blocks
of	code	and	comments	to	be	hidden	or	expanded.	This	is	quite	useful	for	hiding
complexity,	allowing	us	to	focus	on	the	important	details.



Getting	ready…
First,	we’ll	draw	a	flowchart	describing	what	our	program	will	do.	Don’t	worry	about	the
details	at	this	stage,	we	just	need	to	describe	the	behavior.	A	flowchart	describing
helloBlinky_c2v1	is	shown	as	follows:

Our	program	will	need	to	change	the	value	of	a	number	stored	in	memory	that	determines
the	LED	that	is	illuminated.	Numbers	coded	in	this	way	are	called	variables.	The	name	of
the	variable	is	chosen	by	the	programmer	(usually	programmers	try	to	pick	meaningful
names);	in	this	case,	it’s	referred	to	by	the	identifier	num.	Since	there	are	only	eight	LEDs,
the	values	we	assign	to	num	are	0,1,2,3,4,5,6,	and	7.	The	subroutines	LED_On	and	LED_Off
use	the	variable	to	determine	which	LED	is	switched.

The	flowchart	illustrates	several	different	types	of	operation,	identified	by	the	geometrical
shapes	shown	in	the	preceding	diagram	as	follows:

Diamond:	A	decision	operation	with	two	outcomes	Yes	(True)	or	No	(False)
Rectangle:	A	process	operation
Parallelogram:	A	data	operation
Rounded	rectangle:	Start/End



Within	the	flowchart,	we	can	identify	processes	that	are	executed	within	a	loop,	and	so	are
repeated	until	a	certain	condition	is	fulfilled.	Structures	such	as	this	are	a	common	feature
in	algorithms,	and	high-level	programming	languages	have	evolved	to	enable	such
operations	to	be	efficiently	coded.



How	to	do	it…
1.	 Clone	helloBlinky_c2v0	to	create	helloBlinky_c2v1.
2.	 Modify	main()	as	follows	(keep	the	boilerplate	unchanged):

int	main	(void)	{

		unsigned	int	i;

		unsigned	int	num;

		

HAL_Init	(	);																/*	Init	Hardware	Abstraction	Layer	*/

SystemClock_Config	(	);						/*	Config	Clocks	*/

LED_Initialize	(	);										/*	LED	Init	*/

		for	(;;)	{																							/*	Loop	forever	*/

				LED_On	(num);																		/*	Turn	LEDs	on	*/	

				for	(i	=	0;	i	<	1000000;	i++)	

					/*	empty	statement	*/	;														/*	Wait	*/

					LED_Off	(num);											/*	Turn	LEDs	off	*/

				for	(i	=	0;	i	<	1000000;	i++)

						/*	empty	statement	*/	;														/*	Wait	*/	

				num	=	(num+1)%8;			/*	increment	num	(modulo-8)	*/

		}	/*	end	for	*/

}

3.	 Once	we	have	entered	the	code,	we	build	it	and	download	it	to	the	evaluation	board
in	exactly	manner	as	we	did	for	the	helloBlinky_c2v0	recipe.

4.	 Run	the	program	by	pressing	RESET	on	the	evaluation	board.



How	it	works…
The	program	starts	with	two	statements	beginning	with	a	#	character.	These	are	not
program	statements	but	directives	for	the	C	preprocessor.	The	preprocessor	resolves	all
these	directives	before	the	C	compiler	parses	the	rest	of	the	code.	It	is	considered	good
practice	to	group	these	together	at	the	start	of	the	program.	Preprocessor	directives	can
only	extend	over	one	line,	and	they	are	not	terminated	by	a	semicolon.	However,	to	aid
readability,	longer	directives	can	be	split	over	several	lines	by	using	a	\	character	to
terminate	each	block	of	text.	There	are	six	types	of	directives:

Macro	definition:	#define	and	#undef
Conditional	inclusion:	#ifdef,	#ifndef,	#if,	#endif,	#else,	and	#elsif
Line	control	directive:	#line
Error	directive:	#error
File	inclusion:	#include
Pragma	directive:	#pragma

We’ll	briefly	explain	these	directives	as	they	are	introduced	in	the	recipes	we	consider.
However,	there	are	plenty	of	online	resources	available	for	those	who	feel	they	need	more
detail	(for	example,	http://gcc.gnu.org/onlinedocs/cpp/).	The	preprocessor	parses	the
headers:

#include	"stm32f4xx_hal.h"

#include	"Board_LED.h"

#include	"cmsis_os.h"

replacing	each	#include	directive	with	the	contents	of	the	files	stm32f4xx_hal.h	,
Board_LED.h.	and	cmsis_os.h.	By	convention,	include	files	adopt	.h	file	extensions,
while	those	not	included	in	other	files	are	given	a	.c	file	extension.	Later	on,	we’ll	meet
another	style	of	#include	directive:

#include	<stdio.h>

In	this	case,	the	filename	is	enclosed	in	angled	brackets.	This	syntax	is	used	to	indicate
that	the	compiler’s	standard	include	path	is	to	be	searched.	When	the	filename	is	enclosed
in	double	quotes,	the	search	path	includes	the	current	directory.	We	can	add	folders	in	the
include	path,	and	select	compiler	options	using	the	C/C++	tab	in	the	project	options
window.

The	next	statement	declares	a	function	called	main().	Every	C	program	must	include	one
(but	only	one)	function	named	main().	The	structure	of	the	main()	function	of	all	the
embedded	C	programs	that	we’ll	meet	is	as	follows:

int	main	(void)	{

		...

}

We	identify	the	input	arguments	(args)	of	main()	inside	the	brackets;	in	this	case,	there	are

http://gcc.gnu.org/onlinedocs/cpp/


none,	and	so	we	use	the	reserved	word	void	to	indicate	none	are	to	be	expected.	Before
main()	we	see	(primitive	data	type)	int,	indicating	that	main()	returns	an	integer.
Conventionally,	main()	returns	a	value	0	to	indicate	to	the	program	that	called	main()
(that	is,	the	operating	system)	that	the	program	terminated	successfully.	But	since	our
program	doesn’t	run	under	an	operating	system	and	typically	declares	an	infinite	loop
(called	a	superloop),	there	is	no	need	to	include	a	return	statement	at	the	end	of	main()	(if
we	do,	the	compiler	will	warn	us	that	it’s	not	reachable).	The	other	feature	of	main()	are
the	braces,	{	and	},	that	are	used	to	identify	the	beginning	and	end	of	the	block	of
statements	that	comprise	main().	Note	that	the	curly	bracket	(opening	brace)	immediately
following	main()	is	paired	with	the	closing	brace	that	terminates	the	statements	within
main().	These	braces	mark	the	beginning	and	end	of	the	main()	function;	the	statements
inside	the	braces	belong	to	main().	We	indent	these	statements	to	make	this	clearer.	The
first	two	statements	in	main()	are	variable	declarations.	Because	C	is	a	strongly-typed
language,	we	must	declare	all	our	variables	before	we	use	them.	In	so	doing,	we’re	telling
the	compiler	how	many	bits	to	use	to	represent	the	number	so	that	it	can	determine	the	size
of	the	memory	space	needed	to	store	them.

The	values	that	a	computer	manipulates	are	stored	in	binary.	In	the	binary	system,	number
values	are	represented	by	a	sequence	of	digits,	just	like	the	decimal	system.	However,
whereas	the	decimal	system	uses	digits	0,1,2,3,4,5,6,7,8,	and	9,	the	binary	system	uses
only	0	and	1.	Digits	0	and	1	in	the	binary	number	system	are	called	bits.

The	decimal	system	is	a	positional	number	system,	where	the	value	of	the	number	is
determined	by	the	position	of	the	digits	relative	to	the	decimal	point.	Conventionally,
when	we	write	whole	numbers,	we	assume	the	decimal	point	is	immediately	to	the	right	of
the	least	significant	digit.	Hence,	if	there	are	three	digits,	each	represents	(from	left	to
right)	the	number	of	hundreds	(102),	tens	(101),	and	units	(100),	for	example:

36510	=	(3	x	102)	+	(6	x	101)	+	(5	x	100)

Consider	a	similar	3-bit	binary	number.	Here,	each	bit	represents	(from	left	to	right)
multiples	of	22,	21,	and	20,	for	example:

1012	=	(1	x	22)	+	(0	x	21)	+	(1	x	20)	=	510

In	the	preceding	examples,	we	are	using	a	subscript	to	represent	the	base	(or	radix)	of	the
number	system	just	to	avoid	any	confusion.

Inside	a	computer,	each	bit	is	represented	as	an	electrical	signal;	typically	a	+ve	signal
voltage	represents	a	‘1’	and	no	voltage	(0	v)	represents	‘0’.	To	manipulate	a	3-bit	binary
number,	a	computer	must	provide	three	signal	transmission	paths,	and	the	registers	within
the	Central	Processing	Unit	(CPU)	must	be	capable	of	storing	3	bits.	You	have	probably
already	spotted	that	three	bits	isn’t	going	to	be	of	much	use,	as	a	3-bit	computer	can	only
manipulate	quantities	between	010	and	710.	Historically,	some	simple	3-bit	computers
have	been	used	for	elementary	control	tasks,	but	many	more	have	been	designed	to
manipulate	8,	16,	32,	and	64	bits.	The	number	of	bits	that	a	computer	has	been	designed	to
manipulate	is	called	its	word	length.	As	we’ve	seen,	the	ARM	Cortex	has	been	designed



with	32-bit	registers	(that	is,	a	32-bit	word	length).	A	typical	ARM	Cortex	register	can	be
visualized	as	32	cells,	each	able	to	store	1	bit	of	data:

231 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 20

1 1 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1

MSB 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 LSB

The	preceding	register	is	shown	storing	a	binary	representation	of	the	decimal	number:

(1	x	231)	+	(1	x	230	)	+	(1	x	227	)	+	(1	x	221	)	+	(1	x	217	)	+	(1	x	23	)	+	(1	x	20	)	=
335767136310

A	32-bit	register	can	store	positive	numbers	between	0	and	(232-1),	that	is,	(0	–
429496719910).	Most	of	us	(me	included!)	need	a	pocket	calculator	to	convert	between
binary	and	decimal	(and	vice	versa),	so	we	need	a	more	human-friendly	way	of	efficiently
representing	binary	quantities.	Hexadecimal	(radix	16)	representations	provides	this	by
allowing	groups	of	4	bits	(representing	0-1510)	to	be	mapped	to	digits
0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,	and	F	,	that	is:

1 1 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1

C 	 	 	 8 	 	 	 2 	 	 	 2 	 	 	 0 	 	 	 0 	 	 	 0 	 	 	 9 	 	 	

Hence,	110010000010001000000000000010012	=	335767136310	=	C822000916.	We
identify	hexadecimal	(hex)	numbers	in	C	programs	using	the	syntax	0xC8220009.	In	this
case,	since	there	are	8	hex	digits,	we	have	an	8	x	4	=	32-bit	binary	word.

The	number	of	bits	used	to	represent	a	number	is	determined	by	its	data	type.	Some	of	the
more	common	basic	(also	called	primitive)	C	data	types	are:

char	(8-bit)
short	int	(16	bits)
unsigned	short	int	(16	bits)
int	(32	bits)
unsigned	int	(32	bits	)
long	int	(64	bits	)
unsigned	long	int	(64	bits	)

A	full	list	of	basic	types	is	available	at	https://en.wikipedia.org/wiki/C_data_types.	Data
types	qualified	by	the	identifier	unsigned	indicate	that	the	value	should	be	interpreted	as
representing	only	positive	quantities.	Sometimes,	embedded	developers	define	aliases	for
the	basic	data	types,	such	as	int32_t,	uint32_t,	and	so	on.	We’ll	explain	the	purpose	of
this	in	Chapter	3,	Assembly	Language	Programming	but	for	the	time	being,	don’t	be
concerned	if	you	see	these	identifiers	used	in	library	functions.

The	helloBlinky_c1v1	recipe	of	Chapter	1,	A	Practical	Introduction	to	ARM®

https://en.wikipedia.org/wiki/C_data_types


CORTEX®	declares	two	variables,	both	32	bits	in	length:

const	unsigned	int	num	=	0;

unsigned	int	i;

The	first	variable	declaration	is	preceded	by	the	qualifier	const	and	assigned	a	value	0.
The	const	qualifier	tells	the	compiler	to	treat	the	variable	as	a	constant,	and	so,	if	we
attempt	to	change	its	value	in	a	subsequent	assignment	statement,	then	the	compiler	will
issue	an	error.	When	a	variable	is	declared,	the	compiler	just	reserves	somewhere	to	store
it;	this	might	be	in	a	register	(registers	are	places	that	data	can	be	stored	in	the	processor)
or	in	memory.	Values	are	assigned	to	variables	by	assignment	statements;	for	example,

	p	=	0;

places	0	in	the	memory	location	or	register	referenced	by	the	identifier	p.

To	generate	a	more	interesting	LED	lightshow,	we’ll	need	to	write	to	a	different	LED	each
time	we	execute	the	superloop.	We	use	the	functions	LED_On()	and	LED_Off()	to	switch
the	LEDs	(as	we	did	in	helloBlinky_c1v1),	but	this	time,	we	increment	that	value	of	the
variable	(num)	that	controls	the	LED	that	we	switch	each	time	we	iterate	the	superloop.
Since	there	are	8	LEDs	(num	=	0	represents	the	Least	Significant	LED	and	num	=	7	the
Most	Significant),	we	need	num	to	behave	as	a	modulo-8	counter	(that	is,	7+1	=	0).	The
statement

num	=	(num+1)%8;

achieves	this.	The	%	operator	performs	modulo	division.	Of	course,	we	don’t	need	the
const	qualifier	in	the	declaration	for	num,	as	its	value	is	changed	within	main().	Variable	i
is	used	by	the	for	loop	to	implement	a	delay	in	exactly	the	same	way	as	it	was	in	our
helloBlinky_c1v1	recipe.



There’s	more…
High-level	languages	such	as	C	typically	provide	mechanisms	that	allow	the	programmer
to	express	decisions	and	iterations	within	the	algorithm	by	means	of	IF,	FOR,	and	WHILE
structures	shown	in	the	following	diagram	(a).	uVision5	provides	common	templates
shown	in	(b)	to	help	the	programmer	include	these	structures	in	their	code.

The	helloBlinky_c1v1	folder	we	developed	in	Chapter	1,	A	Practical	Introduction	to
ARM®	CORTEX®	was	quite	small	and	could	easily	be	described	by	a	flowchart	(try	to
sketch	it),	but	as	programs	become	larger,	their	flowcharts	become	large	and	unwieldy.
Handling	complexity	is	a	common	problem	in	all	engineering	disciplines	and	one	that	is
solved	by	a	technique	called	hierarchical	decomposition.	This	is	a	long	name	for
something	quite	simple.	It	just	means	we	keep	on	subdividing	complex	designs	into
smaller	and	smaller	parts	until	they	become	simple	enough	to	handle.





Writing	a	function
Functions	(sometimes	called	subroutines)	are	used	to	hide	the	complexity	of	underlying
program	statements,	thereby	presenting	a	more	abstract	view	of	the	program.	Abstraction
is	commonplace	in	engineering;	for	example,	we	can	think	of	a	car	as	comprising
subassemblies	that	include	body,	engine,	gearbox,	suspension,	and	so	on.	The	complexity
within	these	subassemblies	is	only	important	to	those	specialists	such	as	designers,	test
engineers,	and	technicians	who	need	to	interact	with	them.	For	example,	the	designers	of
the	gearbox	don’t	need	to	concern	themselves	with	the	intricacies	of	the	engine,	they	just
need	to	know	a	few	important	parameters.	Functions	provide	a	similar	abstraction
mechanism.	We	already	met	the	functions	LED_Initialize();	LED_On(),	and	LED_Off()
used	to	initialize	and	switch	the	LEDs.	We	don’t	need	to	know	exactly	how	these
functions	do	their	job	but	only	how	to	use	them.	C	provides	functions	as	a	mechanism	of
achieving	hierarchical	decomposition.	For	example,	our	main()	function	of
helloBinky_c2v1	is	becoming	a	bit	cluttered	and	difficult	to	follow.	To	simplify	the
structure,	the	two	for	loops	that	simply	introduce	a	delay	could	be	repackaged	as	a
function	called	delay()	that	accepts	one	input	arg	(that	determines	the	length	of	the	delay)
and	returns	no	output	args	(that	is,	void).



How	to	do	it
1.	 Clone	the	helloBlinky_c2v1	project	to	give	helloBlinky_c2v2.
2.	 Edit	Blinky.c,	and	define	the	function	delay()	by	adding	the	following:

void	delay	(unsigned	integer	d)	{

		unsigned	integer	i;

		for	(i=0;	i	<	d;	i++)

				/*	empty	statement	*/	;

}

3.	 It	doesn’t	matter	if	the	definition	is	placed	before	or	after	main	(	),	but	it	shouldn’t
be	nested	inside	main()	(Note:	functions	defined	inside	other	functions	are	called
nested	functions).	Declare	the	function	by	including	a	function	prototype	declaration
at	the	start	of	the	program	(that	is,	before	the	function	is	defined).

void	delay	(unsigned	int);

4.	 Replace	the	statements:

for	(i	=	0;	i	<	1000000;	i++)	

			/*	empty	statement	*/	;														/*	Wait	*/

5.	 Call	the	following	function:

delay	(num_ticks);

6.	 Declare	a	new	variable	in	main()	and	initialize	it.

const	unsigned	int	num_ticks	=	500000;

7.	 The	relevant	changes	are	shown	as	follows	(omitting	boilerplate	code):

void	delay	(unsigned	int);								/*	Func	Prototype	*/

int	main	(void)	{

		const	unsigned	int	max_LEDs	=	8;

		const	unsigned	int	num_ticks	=	500000;

		unsigned	int	num	=	0;

		HAL_Init	(	);			/*	Init	Hardware	Abstraction	Layer	*/

		SystemClock_Config	(	);											/*	Config	Clocks	*/

		LED_Initialize	(	);																				/*	LED	Init	*/

		for	(;;)	{																									/*	Loop	forever	*/

				LED_On	(num);																				/*	Turn	LEDs	on	*/

				delay	(num_ticks);

				LED_Off	(num);																		/*	Turn	LEDs	off	*/

				delay	(num_ticks);	

				num	=	(num+1)%max_LEDs;		/*	increment	num	(mod-8)	*/

		}	/*	end	for	*/

}	/*	end	main	(	)	*/

void	delay	(unsigned	int	d){									/*	Function	Def	*/

		unsigned	int	i;



		

		for	(i	=	0;	i	<	d;	i++)

		/*	empty	statement	*/	;																			/*	Wait	*/			

}	/*	end	delay	(	)	*/		



How	it	works…
Essentially,	we’ve	moved	the	for	loop	which	implements	the	delay	to	within	the	function.
The	for	loop	itself	is	very	similar	to	that	used	by	helloBlinky_c2v1,	except	that	the
compare	instruction	used	to	terminate	the	loop	now	references	the	input	argument	d	rather
than	a	literal	value	(that	is,	1000000).

for	(i=0;	i	<	d;	i++)	{

		;

}

This	is	advantageous	because	it	parameterizes	the	delay	function,	thereby	allowing	it	to	be
used	to	implement	different	length	delays,	determined	by	the	value	of	input	argument	d.
An	important	feature	of	all	programming	languages	is	the	mechanism	they	use	to	pass
arguments	to	a	function	when	it	is	called.	There	are	two	general	models,	called	pass-by-
value	and	pass-by-reference.	The	delay	function	call	we’ve	used	here:

delay	(num_ticks);

adopts	a	pass-by-value	model.	In	this	case,	a	copy	of	the	variable	num_ticks	is	passed	to
the	delay	function,	and	this	copy	can	be	referenced	through	the	variable	d.	The	statements
inside	the	function	can	only	access	the	variables	declared	within	the	function	(that	is,	local
to	the	function)	and	the	input	arguments.	The	function	may	change	the	value	of	the	copy,
but	when	the	function	terminates	the	copy	(and	the	so-called	automatic	variables	declared
inside	the	function	cease	to	exist).	This	model	works	fine	in	this	case,	because	the	function
doesn’t	need	to	change	the	value	of	the	variable	num_ticks	declared	in	main()	(that	is,	the
calling	function).

All	identifiers	in	C	need	to	be	declared	before	they	are	used.	This	is	true	of	functions	as
well	as	variables	(you	may	be	catching	onto	the	idea	that	C	compilers	don’t	tolerate
surprises!),	so	functions	should	be	declared	before	they	are	defined	or	called.	A	function
declaration	(also	called	a	function	prototype)	includes	the	type	of	variable	returned	by	the
function,	and	the	types	of	all	the	input	args.	C	compilers	accept	the	function	definition	as
an	implicit	declaration	and	lazy	programmers	sometimes	take	advantage	of	this	and	omit
the	function	prototype.	But	in	this	case,	it	must	occur	before	the	function	is	called.
Nevertheless,	it	is	considered	good	practice	to	include	prototypes	for	all	functions	used.
Function	prototypes	are	usually	placed	at	the	beginning	of	the	program	or	in	a	separate
#include	file.	The	prototype	for	our	delay	function	looks	like	this:

void	delay	(unsigned	integer);

Tip
White	space	characters	are	ignored	by	the	compiler;	we	only	include	them	to	make	our
code	more	readable.



There’s	more…
If	the	delay	function	did	need	access	to	main	functions	variable,	num_ticks,	then	it	would
need	to	access	the	memory	location	where	num_ticks	was	stored.	In	this	case,	rather	than
passing	a	copy,	we	need	to	pass	a	reference	(or	so-called	pointer)	to	the	variable.	C
includes	two	special	operators	(*	and	&)	for	handling	memory	references.	The	ability	to
manipulate	pointers	as	well	as	variables	makes	C	a	very	powerful	language,	and	it	is	a
feature	that	is	particularly	useful	for	embedded	systems	programming.	Consider	the
declaration:

unsigned	int	*ptr;

Here,	ptr	is	the	name	of	our	variable,	but	in	this	case,	it	is	preceded	by	the	dereferencing
operator	*	which	tells	the	compiler	it’s	a	pointer	variable,	and	so,	the	compiler	must
reserve	enough	memory	to	store	an	address.	It	also	says	the	address	will	reference	(that	is,
point	to)	an	unsigned	integer.	When	the	pointer	is	declared	and	hasn’t	been	assigned,	we
say	the	pointer	is	NULL	(that	is,	its	value	cannot	be	guaranteed).	To	assign	the	pointer,	we
need	to	find	the	address	of	the	variable	num_ticks;	the	&	operator	achieves	this.	For
example:

ptr	=	&num_ticks;

Let’s	consider	another	version	of	the	delay	function	that	doesn’t	declare	the	local	variable
i,	but	instead,	employs	a	while	loop	that	decrements	the	variable	num_ticks	declared	in
main.	To	do	this,	the	function	call	to	delay	(within	main)	will	need	to	pass	a	reference	(or
pointer)	to	num_ticks,	and	the	delay()	function	will	need	to	be	told	to	expect	a	pointer	to
an	unsigned	integer	as	an	input	arg.	Therefore,	the	function	prototype	will	need	to	be
changed	to

void	delay	(unsigned	int	*);

and	the	function	declaration	itself	becomes:

void	delay	(unsigned	int	*ptr)	{

				

				while	(*ptr	>	0	)	

				*ptr	=	(*ptr)-1;							/*	Wait	*/		

}

The	delay	function	uses	the	dereferencing	operator	*	whenever	it	needs	to	access	the
value	pointed	to	by	ptr.	The	following	recipe	(helloBlinky_c2v3)	represents	a	version	of
helloBlinky	that	uses	pointers:

void	delay	(unsigned	int	*);						/*	Func	Prototype	*/

int	main	(void)	{

		const	unsigned	int	max_LEDs	=	8;

		const	unsigned	int	wait_period	=	500000;

		unsigned	int	*ptr;

		unsigned	int	num_ticks;

		unsigned	int	num	=	0;



		HAL_Init	(	);			/*	Init	Hardware	Abstraction	Layer	*/

		SystemClock_Config	(	);											/*	Config	Clocks	*/

		LED_Initialize();																						/*	LED	Init	*/

		for	(;;)	{																									/*	Loop	forever	*/

				LED_On	(num);																										/*	LED	on	*/

				num_ticks	=	wait_period;								/*	(re)set	delay	*/

				ptr	=	&num_ticks;														/*	assign	pointer	*/

				delay	(ptr);														/*	call	delay	function	*/

				LED_Off	(num);																								/*	LED	off	*/

				num_ticks	=	wait_period;								/*	(re)set	delay	*/

				delay	(ptr);														/*	call	delay	function	*/

				num	=	(num+1)%max_LEDs;	 /*	increment	num	(mod-8)	*/

		}	/*	end	for	*/

}	/*	end	main	(	)	*/

void	delay	(unsigned	int	*p){								/*	Function	Def	*/

		

		while	(*p	>	0	)	

				*p	=	*p-1;																														/*	Wait	*/

		

}	/*	end	delay	(	)	*/

The	preceding	version	of	helloBlinky	is	just	a	vehicle	for	illustrating	pointers,	and	the
earlier	recipe	is	preferable	and	easier	to	understand.	So	why	are	pointers	used?	Well,	if	our
delay	function	needed	access	to	many	values,	making	the	copies	needed	for	pass-by-value
would	be	time-consuming	and	impractical.	This	is	particularly	true	when	we	come	to
consider	passing	arrays	of	data,	strings	(arrays	of	characters),	and	so	on.





Writing	to	the	console	window
While	a	variant	of	the	helloBlinky	recipe	is	usually	the	first	program	introduced	in	most
embedded	tutorials,	the	first	program	found	most	C	textbooks	usually	outputs	the	string
“Hello	World”	to	the	screen.	To	run	such	a	program	on	our	evaluation	board,	we’ll	need	to
install	a	terminal	emulation	program	on	our	PC	host.	PuTTY®
http://www.chiark.greenend.org.uk/~sgtatham/putty/,	an	open	source	terminal	emulation
program	is	a	good	choice.	We	also	need	to	connect	the	evaluation	board	to	the	PC’s
(COM)	serial	port.	Most	PCs	and	laptops	are	no	longer	fitted	with	9-pin	D-type	(COM)
ports,	so	you	may	need	to	purchase	a	USB	to	Serial	Adaptor	cable.

http://www.chiark.greenend.org.uk/~sgtatham/putty/


Getting	ready
Follow	these	steps	to	install	PuTTY,	and	connect	the	evaluation	board	to	the	PC’s	COM
port:

1.	 If	you’re	using	a	USB	Serial	Adaptor,	then	plug	it	into	the	laptop,	and	wait	for	the
driver	to	be	installed.

2.	 Open	the	Control	Panel,	and	make	a	note	of	the	COM	port	that	has	been	allocated
(you	will	need	this	later	to	configure	PuTTY).

3.	 Connect	the	9-Pin	D-type	UART1/3/4	connector	on	the	evaluation	board	to	the	PC
USB	port,	and	ensure	that	the	jumpers	J13	and	J14	are	set	to	short	pins	1	and	2
thereby	selecting	USART4.	Pin	1	can	be	easily	be	identified	by	its	square	solder	pad,
easily	visible	on	the	underside	of	the	board.	Install	PuTTY,	and	configure	the	serial
connection	to	use	the	COM	port	you	previously	identified	in	Control	Panel,
configured	to	115200	Baud,	8	data	bits,	1	stop-bit,	no	parity	or	flow	control.





How	to	do	it…
1.	 Create	a	new	folder	named	helloWorld;	invoke	uVision5,	and	create	a	new	project.

Using	the	RTE	manager,	select	the	MCBSTM32F400	board,	but	don’t	check	any	of
the	board	support	tick	boxes.	Check	CMSIS	→	CORE,	RTOS	(API)	→	KeilRTX,
Device	→	Startup,	and	Device	→	STM32Cube	Framework	(API)	→	Classic.
Click	Resolve	to	automatically	load	any	additional	software	components	needed.
Then	exit	by	clicking	on	OK.

2.	 The	source	code	for	this	project	is	divided	between	three	source	code	files.	Create	a
new	file	(File	→New…),	and	enter	the	source	code	shown.	Save	the	file	(File
→SaveAs)	as	helloWorld.c.	The	source	file	named	helloWorld.c	contains	the	main
function	in	the	project,	illustrated	using	the	folding	editor	feature	to	hide	the
boilerplate.

/***************************************************

	*	Recipe:			helloWorld_c2v0

	*	File:					helloWorld.c	

	*	Purpose:		Serial	I/O	Example																												

	***************************************************

	*	 			 	 	 																					

	*	Modification	History		 	 	 									

	*	2014	Created		 	 	 	 	 	 														

	*	03.12.15	Updated	for	uVision_5.17	&	DFP_2.6.0																																	



	*		 	 	 	 	 	 	 	 	 				

	*	Dr	Mark	Fisher,	CMP,	UEA,	Norwich,	UK.										

	***************************************************/

#include	"stm32F4xx_hal.h"

#include	"cmsis_os.h"

#include	<stdio.h>

#include	"Serial.h"	

/*	Function	prototypes	*/

void	wait(unsigned	long	delay);

extern	void	init_serial(void);

extern	int	sendchar(int	c);

extern	int	getkey(void);

#ifdef	__RTX

/*	Function	prototypes	*/

void	wait(unsigned	long	delay);

extern	void	init_serial(void);

extern	int	sendchar(int	c);

extern	int	getkey(void); 
#ifdef	__RTX

_____________________________________________________

/*-------------------------------------------------

		System	Clock	Configuration

	*-------------------------------------------------*/

_____________________________________________________

void	SystemClock_Config(void)	{

/*-------------------------------------------------

*	 wait

*--------------------------------------------------*/

void	wait	(unsigned	long	delay){

unsigned	long	i;

			for	(i	=	0;	i	<	delay;	i++)

					;

}

int	main	(void)	{

		HAL_Init	();		/*	Init	Hardware	Abstraction	Layer	*/

		SystemClock_Config	();										/*	Config	Clocks	*/

		SER_Init();

		

		for	(;;)	{																							/*	Loop	forever	*/

				wait(1000000);

				printf("Hello	World!\n");

		}

}

3.	 In	the	project	window,	right-click	on	the	Source	Group	1	folder,	and	add	the	source
file	helloWorld.c	to	the	project.



4.	 Create	a	new	file,	enter	the	following	code,	name	the	new	file	Retarget.c,	and	add	it
in	the	project.	This	source	file	redefines	some	functions	used	by	C’s	standard	input
output	library,	<stdio.h>.

/*-------------------------------------------------

	*	Name:				Retarget.c

	*	Purpose:	'Retarget'	layer	for	target-

	*										dependent	low	level	functions

	*	Note(s):

	*-------------------------------------------------

	*	This	file	is	part	of	the	uVision/ARM	

	*	development	tools.

	*-------------------------------------------------*/

#include	<stdio.h>

#include	<rt_misc.h>

#include	"Serial.h"

#pragma	import(__use_no_semihosting_swi)

struct	__FILE	{	

		int	handle;	

		/*	Add	whatever	you	need	here	*/	

};

FILE	__stdout;



FILE	__stdin;

int	fputc(int	c,	FILE	*f)	{

		return	(SER_PutChar(c));

}

int	fgetc(FILE	*f)	{

		return	(SER_GetChar());

}

int	ferror(FILE	*f)	{

		/*	Your	implementation	of	ferror	*/

		return	EOF;

}

void	_ttywrch(int	c)	{

		SER_PutChar(c);

}

void	_sys_exit(int	return_code)	{

label:		goto	label;		/*	endless	loop	*/

}

5.	 Create	a	new	file,	enter	the	SER_Init()	function,	name	the	new	file	Serial.c,	and
add	it	in	the	project.

/*-------------------------------------------------

	*	Name:				Serial.c

	*	Purpose:	Low	level	serial	routines

	*	Note(s):

	*-------------------------------------------------

	*	This	file	is	part	of	the	uVision/ARM	

	*	development	tools.

	*-------------------------------------------------*/

#include	"stm32f4xx.h"											/*	STM32F4xx	Defs	*/

#include	"Serial.h"

#ifdef	__DBG_ITM

volatile	int32_t	ITM_RxBuffer;

#endif

/*-------------------------------------------------

	*	SER_Init:		Initialize	Serial	Interface

	*-------------------------------------------------*/

void	SER_Init	(void)	{

#ifdef	__DBG_ITM

		ITM_RxBuffer	=	ITM_RXBUFFER_EMPTY;

#else		

		RCC->APB1ENR		|=	(1UL	<<	19);	/*	Enable	

																																						USART4	clock	*/

		RCC->APB2ENR		|=	(1UL	<<		0);	/*	Enable	

																																								AFIO	clock	*/

		RCC->AHB1ENR		|=	(1UL	<<		2);	/*	Enable	

																																							GPIOC	clock	*/

		GPIOC->MODER		&=	0xFF0FFFFF;

		GPIOC->MODER		|=	0x00A00000;



		GPIOC->AFR[1]	|=	0x00008800;		/*	PC10	UART4_Tx,	

																															PC11	UART4_Rx	(AF8)	*/

		/*	Configure	UART4:	115200	baud	@	42MHz,	8	bits,	

																													1	stop	bit,	no	parity	*/

		UART4->BRR	=	(22	<<	4)	|	12;		

		UART4->CR2	=	0x0000;

		UART4->CR1	=	0x200C;

#endif

}

6.	 Add	the	functions	SER_getc()	and	SER_putc()	to	Serial.c

/*-------------------------------------------------

	*	SER_PutChar:		Write	a	char	to	Serial	Port

	*-------------------------------------------------*/

int32_t	SER_PutChar	(int32_t	ch)	{

#ifdef	__DBG_ITM

		int	i;

		ITM_SendChar	(ch	&	0xFF);

		for	(i	=	10000;	i;	i--)

				;

#else

		while	(!(UART4->SR	&	0x0080));

				UART4->DR	=	(ch	&	0xFF);

#endif		

		return	(ch);

}

/*-------------------------------------------------

	*	SER_GetChar:		Read	a	char	from	Serial	Port

	*-------------------------------------------------*/

int32_t	SER_GetChar	(void)	{

#ifdef	__DBG_ITM

		if	(ITM_CheckChar())

				return	ITM_ReceiveChar();

#else

		if	(UART4->SR	&	0x0020)

				return	(UART4->DR);

#endif

		return	(-1);

}

7.	 Create	a	new	file,	enter	the	following	code,	name	the	file	Serial.h,	and	add	it	to	the
project.	This	is	the	header	file	that	declares	the	function	prototypes	for	Serial.c

/*-------------------------------------------------

	*	Name:				Serial.h

	*	Purpose:	Low	level	serial	definitions

	*	Note(s):

	*-------------------------------------------------*/

#ifndef	__SERIAL_H

#define	__SERIAL_H

extern	void	SER_Init						(void);



extern	int		SER_GetChar			(void);

extern	int		SER_PutChar			(int	c);

#endif

8.	 Configure	PuTTY	as	shown	in	part	a)	of	the	following	image.	Build,	download,	and
run	the	program	to	achieve	the	output	shown	in	b)



How	it	works…
The	evaluation	board	and	PC	communicate	by	exchanging	data	using	an	RS232	serial
Input/Output	(I/O)	connection	(http://en.wikipedia.org/wiki/RS-232).	RS232	is	a	2-wire
full-duplex	communications	standard.	PuTTY	manages	the	protocol	at	the	PC,	but	we	are
responsible	for	the	evaluation	board.	To	use	serial	I/O,	we	need	to	configure	the
microcontroller’s	Universal	Synchronous/Asynchronous	Receiver/Transmitter
(USART).	We	can	do	this	by	including	a	peripheral	driver	applications	interface	(API)	in
our	project.	uVision5’s	RTE	manager	includes	a	suitable	API,	but	this	provides	many	more
features	than	we	need	for	our	simple	helloWorld	recipe.	So,	for	the	time	being,	we’ll	use
the	simpler	driver	named	Serial.c	shown	in	step	4	and	step	5	that	ARM	shipped	with
uVision4.	File	Serial.c	comprises	three	functions	SER_Init(),	SER_PutChar(),	and
SER_GetChar().	The	function	SER_Init()	is	the	first	function	called	by	main().	It
initializes	the	USART	peripheral	by	writing	values	to	its	registers	so	that	it	is	configured
to	mirror	the	channel	setup	in	PuTTY	(that	is,	115200	baud,	8	data-bits,	1	stop-bit).	These
parameters	are	critical.	The	baud	rate	is	derived	from	the	Peripheral	Clock,	and	in	turn	the
System	Clock,	so	any	change	in	the	clock	configuration	will	affect	the	baud	rate.	The	baud
rate	is	set	by	the	value	we	write	to	the	Baud	Rate	Register	(BRR).	Reference	manual
RM0090	(www.st.com)	describes	this	as	calculated	by

Rearranging	the	preceding	formula,	with	OVER8	=	1	(since	we’re	using	8	x	oversampling)
and	fclk	=	42	MHz	we	get:

The	other	two	functions	read	and	write	characters	from/to	the	USART	(these	perform	the
low-level	I/O	).	We’ll	discuss	this	in	more	detail	in	Chapter	3,	Assembly	Language
Programming.

Any	program	that	wishes	to	use	the	services	that	Serial.c	provides	must	include	its
function	prototype.	To	facilitate	this,	the	prototypes	are	declared	in	a	so-called	header	file
called	Serial.h	shown	in	step	6,	and	included	in	the	program	using	a	#include
preprocessor	directive	(for	example,	see	line	15	of	main.c).	If	we	look	closely	at
Serial.h,	we	see	the	prototypes	are	preceded	by	the	qualifier	extern.	This	is	a	message	to
the	compiler	that	the	functions	are	defined	in	another	file	(that	is,	not	main.c),	and	the
function	call	reference	must	be	resolved	later	by	the	linker.	We	can	also	see	that	the
prototype	declarations	are	enclosed	within	a	conditional	preprocessor	statement,	that	is:

#ifndef	__SERIAL_H

http://en.wikipedia.org/wiki/RS-232
http://www.st.com


#define	__SERIAL_H

/*	function	prototypes	*/

#endif

This	ensures	that	the	code	enclosed	within	the	conditional	preprocessor	statement	is
included	in	the	project	only	once,	even	though	both,	main.c	and	Serial.c,	include	the
statement:

#include	"serial.h"	

The	main()	function	calls	printf()	to	output	the	string	"Hello	World\n".	The	string
"Hello	World\n"	is	stored	as	a	sequence	of	characters	terminated	by	a	NULL	character.	C
interprets	'\n'	as	a	newline	character,	but	the	actual	ASCII	code	(
http://en.wikipedia.org/wiki/ASCII)	used	to	represent	newline	varies	between	operating
systems;	so	to	cover	all	eventualities,	we	can	configure	PuTTY	as	shown	in	step	7.

The	function	printf()	is	defined	in	C’s	standard	input	output	library	<stdio.h>.	This
function	calls	fputc(),	which	is	also	defined	in	<stdio.h>,	but	redefined	in	Retarget.c.
So	it	calls	SER_PutChar()	to	send	the	characters	to	the	USART.	Most	microcontrollers	use
this	technique	to	allow	them	to	make	use	of	the	C	library	functions	printf()	and,	as	we’ll
see	later,	scanf()	too.

File	Retarget.c	also	uses	the	preprocessor	directive	#pragma,	which	is	used	to	specify
machine-	or	operating	system-specific	compiler	features.	In	this	case,	the	directive	is	used
to	disable	semihosting.	Semihosting	is	a	mechanism	that	allows	ARM	targets	to
communicate	with	a	host	computer	using	the	JTAG	interface.	Semihosting	can	be	used
with	the	function	trace_printf(),	to	enable	debug	statements	to	write	to	the	output
window	of	the	IDE.	Obviously,	we	can	achieve	similar	functionality	using	the	COM	port
and	PuTTY.

http://en.wikipedia.org/wiki/ASCII




Writing	to	the	GLCD
Although	the	LED	flashing	programs	we’ve	written	so	far	have	served	to	provide	a
tutorial	introduction	to	C,	you	are	probably	ready	for	something	a	little	more	exciting.	The
Graphic	LCD	(GLCD)	touchscreen	provides	an	interactive	interface	based	on	a	320	x
240	pixel	color	display.	Keil	provides	a	library	of	functions	to	write	characters	and	bit-
mapped	graphics	to	the	screen.



Getting	ready
1.	 Create	a	new	folder	and	rename	it	helloLCD_c2v0.	Invoke	uVision5,	and	create	a	new

project.
2.	 After	selecting	the	target	device	(STM32F407IGHx),	use	the	RTE	manager	to	select

the	MCBSTM32F400	target	board,	and	check	the	following	software	components:
Board	Support	→	Graphic	LCD,	CMSIS	→	CORE,	CMSIS	→	RTOS	(API)	→
KeilRTX,	Device	→	Startup,	Device	→	STM32Cube	Framework	(API)	→
Classic.	Finally,	left-click	on	Resolve	and	OK.



How	to	do	it…
1.	 Create	a	new	C	source	file	called	helloLCD.c,	and	enter	the	following	statements.

Although	hidden	by	a	fold,	don’t	forget	to	add	the	boilerplate	code	we	described	in
the	recipe	helloBlinky_c2v0.

/*--------------------------------------------------

	*	Recipe:		helloLCD_c2v0

	*	Name:				helloLCD.c

	*	Purpose:	LCD	Touchscreen	Demo

	*--------------------------------------------------

	*

	*	Modification	History

	*	06.02.14	Created

	*	08.12.15	Updated	(uVision5.17	&	DFP2.6.0)

	*

	*	Dr	Mark	Fisher,	CMP,	UEA,	Norwich,	UK

	*--------------------------------------------------*/

#include	"stm32f4xx_hal.h"

#include	"GLCD_Config.h"

#include	"Board_GLCD.h"

#define	wait_delay	HAL_Delay

extern	GLCD_FONT					GLCD_Font_6x8;

extern	GLCD_FONT					GLCD_Font_16x24;

#ifdef	__RTX

______________________________________________________

/*	Function	Prototypes	*/

void	SystemClock_Config(void);

/**

		*	System	Clock	Configuration

		*/

void	SystemClock_Config(void)	{

______________________________________________________

/**

		*	Main	function

		*/

int	main	(	)	{

		unsigned	int	count;			

		

		HAL_Init	();			/*	Init	Hardware	Abstraction	Layer	*/

		SystemClock_Config	();											/*	Config	Clocks	*/

		GLCD_Initialize();													

		GLCD_SetBackgroundColor	(GLCD_COLOR_WHITE);

		GLCD_ClearScreen	();		

		GLCD_SetBackgroundColor	(GLCD_COLOR_BLUE);

		GLCD_SetForegroundColor	(GLCD_COLOR_WHITE);

		GLCD_SetFont	(&GLCD_Font_16x24);



		GLCD_DrawString	(0,	0*24,	"	CORTEX-M4	COOKBOOK	");

		GLCD_DrawString	(0,	1*24,	"		PACKT	Publishing		");

		GLCD_SetBackgroundColor	(GLCD_COLOR_WHITE);			

		GLCD_SetForegroundColor	(GLCD_COLOR_BLUE);

		for	(;;)	{

				if	(count==0)

						GLCD_DrawString	(0,	2*24,	"					Hello	LCD!					");

				else	

						GLCD_DrawString	(0,	2*24,	"																				");																		

				wait_delay(	100	);	 										

				count	=	(	count+1	)%2;

		}		/*	end	for	*/

}

2.	 Build,	download,	and	run	the	program.



How	it	works…
The	functions	beginning	GLCD_	are	defined	in	the	file	GLCD_MCBSTM32F400.c.	We	need	to
open	this,	and	read	the	comments	in	the	function	headers	to	understand	how	to	use	them.
The	header	file	Boadd_LCD.h	that	is	included	by	the	pre-processor	contains	the	function
prototype	declarations.	The	header	file	GLCD_Config.h	provides	macros	that	define	named
colors	(like,	GLCD_COLOR_BLACK)	and	constants	such	as	GLCD_WIDTH	/	HEIGHT.
GLCD_MCBSTM32F400.c	is	the	latest	in	a	series	of	GLCD	drivers	provided	by	Keil,	and	it
represents	a	CMSIS	v2.0-compliant	revision	of	earlier	versions.

The	function	GLCD_DrawString	(uint32_t	x,	uint32_t	y,	const	char	*str)
declared	in	file	Board_GLCD.h	takes	three	input	arguments	(args).	The	first	two	position
the	text	on	the	screen,	and	the	last	arg	is	a	pointer	to	an	array	of	characters	to	be	written
(usually	a	literal	value	defined	using	quotes	”	”	in	the	function	call).	Before	calling
GLCD_DrawString	(	),	we	must	first	set	the	character	font	to	be	used	by	the	calling
function,	GLCD_SetFont	(GLCD_FONT	*font),	and	pass	a	pointer	to	the	font	used.	There
are	two	font	sizes	defined	in	file	GLCD_Fonts.c.	An	array	of	characters	terminated	by	a
NULL	character	is	called	a	string.	You	may	wonder	why	we	didn’t	need	to	use	the	&
operator	to	recover	an	address	and	assign	a	pointer	as	we	illustrated	earlier.	The	short
answer	is	that	arrays	are	always	referenced	using	pointers,	so	there	is	no	need,	but	we’ll
discuss	the	matter	further	in	Chapter	3,	Assembly	Language	Programming.

The	macro	definition	#define	wait_delay	HAL_Delay	provides	a	pseudonym	for	the
function	HAL_Delay	(	)	declared	in	the	file	st32f4xx_HAL.h.	This	is	a	more	accurate
delay	based	on	a	timer	rather	than	an	instruction	loop.





Creating	a	game	application	–	Stage	1
Now	that	we	can	write	characters	to	the	GLCD	screen,	some	interesting	possibilities
present	themselves.	The	first	one	to	consider	is	a	simple	character-based	game	application
known	as	PONG.	Pong	was	one	of	the	first	arcade	video	games	featuring	2D	graphics,
originally	marketed	by	ATARI	Inc.	(http://en.wikipedia.org/wiki/Pong).	We’ll	develop	the
game	in	stages,	as	this	is	a	good	development	strategy.	We’ll	start	by	describing	a	simple
recipe	named	Bounce	with	limited	functionality.	The	idea	of	this	recipe	is	just	to	animate	a
ball	so	that	it	appears	to	bounce	around	the	screen.	Provided	we	can	redraw	the	ball	more
than	25	times	a	second	(25	Hz),	it	will	appear	to	move.	The	ball	is	represented	by	a
character	bitmap.

http://en.wikipedia.org/wiki/Pong


How	to	do	it…
1.	 As	usual,	we’ll	start	our	development	by	making	a	new	folder	named

helloBounce_c2v0.	Create	a	project,	and	configure	the	RTE	to	include	software
support	for	the	Graphic	LCD	board	feature	(that	is,	clone	the	folder	helloLCD_c2v0,
from	the	previous	recipe).

2.	 Create	a	new	file,	enter	the	following	code,	name	the	file	helloBounce.c,	and
include	it	in	the	project.

/*--------------------------------------------------

	*	Recipe:		helloBounce_c2v0

	*	Name:				helloBounce.c

	*	Purpose:	Pong	Game	Prototype

	*--------------------------------------------------

	*

	*	Modification	History

	*	06.02.14	Created

	*	08.12.15	Updated	uVision5.17	+	DFP2.6.0

	*

	*	Dr	Mark	Fisher,	CMP,	UEA,	Norwich,	UK

	*--------------------------------------------------*/

#include	"stm32f4xx_hal.h"

#include	"GLCD_Config.h"

#include	"Board_GLCD.h"

#define	wait_delay	HAL_Delay

/*	Globals	*/

extern	GLCD_FONT					GLCD_Font_16x24;

#ifdef	__RTX

______________________________________________________

/*	Function	Prototypes	*/

void	SystemClock_Config(void);

/**

		*	System	Clock	Configuration

		*/

void	SystemClock_Config(void)	{

______________________________________________________

/**

		*	Main	function

		*/

int	main	(void)	{

		unsigned	int	dirn	=	1;

		/*	initial	ball	position	*/

		unsigned	int	x	=	(GLCD_WIDTH-GLCD_Font_16x24.width)/2;	

		unsigned	int	y	=	(GLCD_HEIGHT-

																														GLCD_Font_16x24.height)

		unsigned	long	num_ticks	=	5;

	

		HAL_Init	(	);

		SystemClock_Config	(	);



		

		GLCD_Initialize();													

		GLCD_SetBackgroundColor	(GLCD_COLOR_WHITE);

		GLCD_ClearScreen	();	

		GLCD_SetForegroundColor	(GLCD_COLOR_BLUE);

		GLCD_SetFont	(&GLCD_Font_16x24);

		GLCD_DrawChar	(x,	y,	0x81);		 							/*	Draw	Ball	*/

		for	(;;)	{																													/*	superloop	*/

				wait_delay(num_ticks);								/*	update	ball	pstn	*/

				/*	add	code	to	update	ball	position

							and	check	for	collisions	here	*/	

				GLCD_DrawChar	(x,	y,	0x81);		 				/*	Redraw	Ball	*/

		}	/*	end	for	*/

}

3.	 Build	the	project	(just	to	check	that	there	are	no	syntax	errors).

Include	the	following	code	fragment	in	the	superloop	of	bounce.c	.	This	code
updates	the	position	of	the	ball	on	each	iteration.

						/*	update	ball	position	*/

						switch	(dirn)	{

								case	0:	x++;

																break;

								case	1:	x++;

																y--;

																break;

								case	2:	y--;

																break;

								case	3:	x--;

																y--;

																break;

								case	4:	x--;

																break;

								case	5:	x--;

																y++;

																break;

								case	6:	y++;

																break;

								case	7:	x++;

																y++;

						}

Extend	the	superloop	of	bounce.c	by	including	the	code	fragment	that	is	designed	to
detect	collisions	between	the	ball	and	the	edges	of	the	screen.	The	ball	direction	is
changed	accordingly	when	a	collision	occurs.

				/*	check	collision	with	vertical	screen	edge	*/

				if	((x==0)	||	

								(x==GLCD_WIDTH-GLCD_Font_16x24.width)	)	{				

						switch	(dirn)																										

						{

								case	0:	dirn	=	(dirn+4)%8;

																break;

								case	1:	dirn	=	(dirn+2)%8;



																break;

								case	3:	dirn	=	(dirn+6)%8;

																break;

								case	4:	dirn	=	(dirn+4)%8;

																break;

								case	5:	dirn	=	(dirn+2)%8;

																break;

								case	7:	dirn	=	(dirn+6)%8;

															break;

						}

				}

		/*	check	collision	with	horizontal	screen	edge	*/

				if	((y==0)	||	

								(y==GLCD_HEIGHT-GLCD_Font_16x24.height)	)	{	

						switch	(dirn)	{

								case	1:	dirn	=	(dirn+6)%8;

																break;

								case	2:	dirn	=	(dirn+4)%8;

																break;

								case	3:	dirn	=	(dirn+2)%8;

																break;

								case	5:	dirn	=	(dirn+6)%8;

																break;

								case	6:	dirn	=	(dirn+4)%8;

																break;

								case	7:	dirn	=	(dirn+2)%8;

																break;

						}

				}

4.	 Build	the	project;	download	and	run	the	program.	Observe	the	ball	bouncing	around
the	screen.	Note	that	the	argument	passed	to	the	function	delay(	)	controls	the	ball’s
speed.	Experiment	by	changing	the	value.



How	it	works…
The	direction	of	the	ball	is	encoded	by	a	number,	0-7,	as	shown	in	the	following	diagram.
The	ball’s	behavior	when	it	strikes	the	edge	of	the	screen	depends	on	the	angle	of	collision
(in	a	similar	manner	to	those	on	a	pool	table).	Adding	a	value	to	the	direction	code
(modulo-8)	will	change	the	ball’s	direction.

Characters	we	write	to	the	GLCD	are	represented	by	bitmaps.	Each	character	bitmap	is
represented	as	a	16	x	24	grid	of	cells.	Each	row	of	cells	in	the	grid	is	encoded	as	two
bytes,	represented	in	hexadecimal.	For	example,	the	bitmap	representation	of	the	‘&‘
character	is	illustrated	in	the	following	image:



A	good	bitmap	representation	for	the	ball	is	a	‘Circle	–	Full’	character	(0x81	=	12910).	We
can	display	this	character	in	any	position	on	the	GLCD	screen	using	the	function



GLCD_DrawChar().	This	function	takes	three	args:	screen	coordinates	(x,	y),	and	the	ASCII
code	for	the	character.	The	code	fragment

GLCD_SetFont	(&GLCD_Font_16x24);

GLCD_DrawChar	(0,	0,	0x81);

will	draw	the	ball	in	the	top-left	corner	of	the	screen.	GLCD_DrawChar	(	)	interprets	the
ASCII	character	code	as	an	index	into	GLCD_Font_16x24.	The	‘Circle	–	Full’	character	is
the	97th	character	(of	a	total	of	112)	stored	in	the	array	named	GLCD_	Font_24x16.
Parameters	for	the	font	are	stored	in	the	file	GLCD_Fonts.c.

GLCD_FONT	GLCD_Font_16x24	=	{

		16,																																			///<	Character	width

		24,																																			///<	Character	height

		32,																																			///<	Character	offset

		112,																																		///<	Character	count

		Font_16x24_h																										///<	Characters	bitmaps

};

If	we	add	the	Character	offset	(3210)	to	the	character’s	position	in	the	character	bitmap
(9710),	we	get	its	code	(12910).

Finally,	since	the	character	bitmap	is	not	declared	in	bounce.c,	we	need	to	tell	the
compiler	what	type	Font_16x24_h	is,	and	that	it	is	declared	elsewhere.	The	statement

extern	GLCD_FONT					GLCD_Font_16x24;

in	file	bounce.h	achieves	this.	This	file	also	uses	the	#define	preprocessor	directive	to
declare	global	constants	(such	as	CHAR_W	and	CHAR_H).	Conventionally,	these	are
capitalized.

The	superloop	comprises	statements	that	animate	the	ball	by	updating	its	position	(x,y)	and
redrawing	the	bitmap.	Position	updates	depend	on	direction	(encoded	as,	0,1,2,3,4,5,6,	or
7).	These	eight	cases	are	identified	by	the	switch	statement	in	step	7	of	the	recipe.	Our
trusty	delay	function	provides	some	control	over	the	speed	of	the	ball.	Further	code	in	the
superloop	checks	for	collisions	between	the	ball	and	the	vertical	and	horizontal	edges	of
the	screen,	and	updates	the	balls	direction	appropriately.	The	last	statement	in	the
superloop	is	a	further	call	to	the	function	GLCD_Draw_Char()	to	redraw	the	ball	in	its	new
location.	Because	the	bitmap	represents	a	solid	circle	shape	surrounded	by	a	border	of
background	pixels,	and	since	the	ball	position	is	only	incremented	by	a	single	pixel	each
time	there,	is	no	need	to	erase	the	ball	before	it	is	redrawn.





Creating	a	game	application	–	Stage	2
This	prototype	extends	the	one	described	in	the	previous	section	to	make	a	single	player
game	that	includes	a	‘paddle‘	drawn	on	left-hand	edge	of	the	screen.	The	position	of	the
paddle	is	determined	by	a	potentiometer	(ADC1)	fitted	to	the	evaluation	board	that
provides	a	voltage	input	to	the	Analog-Digital	(A-D)	Converter.

1.	 Begin	by	creating	a	new	folder	named	helloPong_c2v0,	and	within	this,	a	new
project.	Configure	the	RTE	to	include	board	support	software	components	for	the
Graphic	LCD	(API)	and	A/D	Converter	(API).	Alternatively,	clone	the	folder
helloBounce_c2v0,	from	the	previous	recipe	and	modify	the	RTE.	Use	Resolve	to
automatically	load	any	missing	libraries.

2.	 Copy	helloBounce.c	and	helloBounce.h	from	the	previous	recipe,	rename	them
helloPong.c	and	helloPong.h,	and	include	these	in	your	project.	Change	the
#include	in	helloPong.c,	and	replace	helloBounce.h	with	helloPong.h.	Build	the
program	and	test	it	as	before.

3.	 Add	#include	"Board_ADC.h"	and	call	ADC_Initialize()	in	main().
4.	 Add	a	function	named	update_ball(),	and	move	the	code	concerned	with	updating

the	ball’s	position	and	collision	detection	into	the	body	of	the	function.	This	tidies	up
the	superloop	and	makes	the	main	function	much	easier	to	read.

5.	 Define	constants	and	declare	global	data	structures	in	helloPong.c	to	hold	the
position	of	the	ball,	paddle,	and	information	about	the	Game.

#define	wait_delay	HAL_Delay

#define	WIDTH			GLCD_WIDTH

#define	HEIGHT		GLCD_HEIGHT

#define	CHAR_H		GLCD_Font_16x24.height

/*	Character	Height	(in	pixels)	*/

#define	CHAR_W		GLCD_Font_16x24.width

/*	Character	Width	(in	pixels)		*/

#define	BAR_W			6													/*	Bar	Width	(in	pixels)	*/

#define	BAR_H			24												/*	Bar	Height	(in	pixels)	*/

#define	T_LONG			1000																			/*	Long	delay	*/

#define	T_SHORT	5																					/*	Short	delay	*/

typedef	struct	{

						int	dirn;

						int	x;	

						int	y;	

}	BallInfo;

typedef	struct	{

				int	x;

				int	y;

}	PaddleInfo;

typedef	struct	{

		unsigned	int	num_ticks;

		BallInfo	ball;

		PaddleInfo	p1;



}	GameInfo;

/*	Function	Prototypes	*/

void	game_Initialize(void);

void	update_ball	(void);

void	update_player	(void);

void	check_collision	(void);

6.	 Declare	a	global	variable	in	file	pong.c:

GameInfo	thisGame;

Tip
The	ball’s	position	is	now	accessed	as	thisGame.ball.x.

7.	 Declare	the	function	game_Initialize().	This	function	initializes	the	values	of	the
global	variables.

/*------------------------------------------------

*		game_Init()

*		Initialize	some	game	parameters.

*-------------------------------------------------*/

void	game_Initialize(void)	

		init_pstn.dirn	=	1;

		init_pstn.x	=	WIDTH-CHAR_W)/2;

		init_pstn.y	=	(HEIGHT-CHAR_H)/2;

		thisGame.ball	=	init_pstn;

		thisGame.p1.x	=	0;

		thisGame.p1.y	=	0;

		thisGame.num_ticks	=	T_SHORT;

}

8.	 Create	a	new	function	named	check_collision(),	and	copy	the	code	concerned	with
collision	detection	into	this	function.	Modify	the	function	check_collision()	to
check	for	collisions	between	the	ball	and	the	paddle	as	well	as	collisions	between	the
ball	and	screen	edge.

/*--------------------------------------------------

*		check_collision(void)

*		check	for	contact	between	ball	and	screen	

*		edges/bat	and	change	direction	accordingly

*---------------------------------------------------*/

void	check_collision(void)	{

		/*	check	collision	with	RH	vertical	screen	

																																		edge	OR	P1	paddle	*/

		if	((thisGame.ball.x	==	BAR_W)	||	

							thisGame.ball.x	==	(WIDTH-CHAR_W))	{		

						

				switch	(thisGame.ball.dirn)	{																																																				

							case	0:	thisGame.ball.dirn	=																																	

																(thisGame.ball.dirn+4)%8;

														break;

						case	1:	thisGame.ball.dirn	=	

																(thisGame.ball.dirn+2)%8;

														break;



						case	3:	if	(	(thisGame.ball.y	>=

																						thisGame.p1.y-CHAR_H)	&&

																				(thisGame.ball.y	<=	

																							(thisGame.p1.y+BAR_H))	)

																			thisGame.ball.dirn	=	

																				(thisGame.ball.dirn+6)%8;

														else	

															/*	empty	statement	*/		

																break;

							case	4:	if	(	(thisGame.ball.y	>=	

																				thisGame.p1.y-CHAR_H)	&&	

																						(thisGame.ball.y	<=	

																								(thisGame.p1.y+BAR_H))	)

																				thisGame.ball.dirn	=

																					(thisGame.ball.dirn+4)%8;

															else

																/*	empty	statement	*/;

															break;

								case	5:	if	(	(thisGame.ball.y	>=	

																							thisGame.p1.y-CHAR_H)	&&	

																					(thisGame.ball.y	<=	

																								(thisGame.p1.y+BAR_H))	)	

																		thisGame.ball.dirn	=							

																					(thisGame.ball.dirn+2)%8;

																else	

																		/*	empty	statement	*/;

																break;

								case	7:	thisGame.ball.dirn	=	

																		(thisGame.ball.dirn+6)%8;

																break;

					}

		}

		/*	check	collision	with	horizontal	screen	edge	*/

		if	((thisGame.ball.y	<	0)	||	

								thisGame.ball.y	>	(HEIGHT-CHAR_H))	{

				switch	(thisGame.ball.dirn)	{

						case	1:	thisGame.ball.dirn	=	

																(thisGame.ball.dirn+6)%8;

														thisGame.ball.y++;

														break;

						case	2:	thisGame.ball.dirn	=	

																(thisGame.ball.dirn+4)%8;

														thisGame.ball.y++;

														break;

						case	3:	thisGame.ball.dirn	=	

																(thisGame.ball.dirn+2)%8;

														thisGame.ball.y++;

														break;

						case	5:	thisGame.ball.dirn	=	

																(thisGame.ball.dirn+6)%8;

														thisGame.ball.y--;

														break;

						case	6:	thisGame.ball.dirn	=	

																(thisGame.ball.dirn+4)%8;

														thisGame.ball.y--;

														break;



						case	7:	thisGame.ball.dirn	=	

																(thisGame.ball.dirn+2)%8;

														thisGame.ball.y--;

														break;

				}

		}

}

9.	 Add	the	following	code	fragment	to	the	function	update_ball():

/*	reset	position	*/

if	(thisGame.ball.x<BAR_W)	{	 				

		wait_delay	(T_LONG);

		/*	Erase	Ball	*/

		GLCD_DrawChar(	thisGame.ball.x,	thisGame.ball.y,	'	');	

		thisGame.ball	=	init_pstn;

}

10.	 Define	GLCD_customFont_16x24	in	the	file	GLCD_customFont.c,	and	add	this	to	the
project.

#include	"Board_GLCD.h"

	

static	const	uint8_t	customFont_16x24_h[]	=	{

/*	PONG	PADDLE	*/

		0x00,	0x3F,	0x00,	0x3F,	0x00,	0x3F,	0x00,	0x3F,	

		0x00,	0x3F,	0x00,	0x3F,	0x00,	0x3F,	0x00,	0x3F,

		0x00,	0x3F,	0x00,	0x3F,	0x00,	0x3F,	0x00,	0x3F,	

		0x00,	0x3F,	0x00,	0x3F,	0x00,	0x3F,	0x00,	0x3F,

		0x00,	0x3F,	0x00,	0x3F,	0x00,	0x3F,	0x00,	0x3F,	

		0x00,	0x3F,	0x00,	0x3F,	0x00,	0x3F,	0x00,	0x3F,		

};

GLCD_FONT	GLCD_customFont_16x24	=	{

		16,																									///<	Character	width

		24,																									///<	Character	height

		0,																										///<	Character	offset

		1,																										///<	Character	count

customFont_16x24_h												///<	Characters	bitmaps

};

11.	 Define	the	function	update_player()	by	adding	the	following	code	fragment:

/*---------------------------------------------

*	update_player(unsigned	int	*)

*	Read	the	ADC	and	draw	the	player	1's	paddle				

*----------------------------------------------*/

void	update_player(void)	{

		int	adcValue;	

		static	int	lastValue	=	0;

		ADC_StartConversion();

		adcValue	=	ADC_GetValue	();

		adcValue	=	(adcValue	>>	4)	*	(HEIGHT-BAR_H)/256;

		/*	Erase	Paddle	*/

		GLCD_DrawChar	(0,	lastValue,	'	');				



		/*	Draw	Paddle	*/

		GLCD_SetFont	(&GLCD_customFont_16x24);

		GLCD_DrawChar	(0,	adcValue,	0x00	);			

		GLCD_SetFont	(&GLCD_Font_16x24);

		lastValue	=	adcValue;

		thisGame.p1.y	=	adcValue;

}

12.	 Build	the	project,	download,	and	run.



There’s	more…
1.	 We	can	tidy	the	code	by	moving	the	function	prototype	and	data	structure

declarations	to	a	header	file	called	helloPong.h,	and	include	this	in	pong.c	with	a
#include	preprocessor	directive.

/*--------------------------------------------------

	*	Recipe:		helloPong_c1v0

	*	Name:				helloPong.h

	*	Purpose:	pong	function	prototypes	and	defs

	*--------------------------------------------------

	*

	*	Modification	History

	*	06.02.14	Created

	*	09.12.15	Updated	(uVision5.17	+	DFP2.6.0)

	*

	*	Dr	Mark	Fisher,	CMP,	UEA,	Norwich,	UK

	*--------------------------------------------------*/

#ifndef	_PONG_H

#define	_PONG_H

#define	wait_delay	HAL_Delay

#define	WIDTH	 GLCD_WIDTH

#define	HEIGHT	 GLCD_HEIGHT

#define	CHAR_H		GLCD_Font_16x24.height																	

/*	Character	Height	(in	pixels)	*/

#define	CHAR_W		GLCD_Font_16x24.width																	

/*	Character	Width	(in	pixels)		*/

#define	BAR_W			6										/*	Bar	Width	(in	pixels)	*/

#define	BAR_H				24							/*	Bar	Height	(in	pixels)	*/

#define	T_LONG		1000																/*	Long	delay	*/

#define	T_SHORT	5																		/*	Short	delay	*/

typedef	struct	{

				int	dirn;

				int	x;	

				int	y;	

		}	BallInfo;

typedef	struct	{

				int	x;

				int	y;

}	PaddleInfo;

typedef	struct	{

		unsigned	int	num_ticks;

		BallInfo	ball;

		PaddleInfo	p1;

}	GameInfo;

/*	Function	Prototypes	*/

void	game_Initialize(void);

void	update_ball	(void);

void	update_player	(void);

void	check_collision	(void);	



#endif	/*	_PONG_H	*/

2.	 The	function	declarations	game_Initialize(),	update_ball(),	update_player(),
and	check_collision()	can	be	moved	to	a	file	called	pong_utils.c,	which	shares
the	header	pong.h.



How	it	works…
The	data	structures	defined	within	pong.h	define	three	new	compound	data	types	which
build	on	the	primitive	types	such	as	char,	integer,	and	so	on,	which	are	part	of	the
language.	A	global	variable	thisGame	stores	all	the	data	used	in	the	application.	The	main
file	helloPong.c	is	shown	in	step	6.	New	functions	game_Initialize(),	update_ball(),
update_player(),	and	check_collision()	have	been	defined	within	the	file
pong_utils.c	(and	delay	has	also	been	moved)	to	declutter	main	and	improve	the
readability	of	the	code.	The	function	prototypes	are	shown	in	step	9.

The	function	game_Initialize(	)	writes	the	initial	values	to	the	global	structs,	gameInfo
and	init_pstn().	The	function	update_player()	(step	10)	reads	the	A-D	converter,	and
draws	the	paddle.	Since	the	paddle	may	move	in	large	increments,	we	must	explicitly
erase	the	paddle,	and	redraw	it	in	a	new	position.	The	static	qualifier	is	used	to	ensure
that	the	variable	lastValue	persists	after	the	function	has	terminated	(that	is,	it	behaves
rather	like	a	global	variable,	although	its	scope	is	local	to	the	function).	It	is	important	to
understand	the	scoping	rules	for	variables.	Variables	declared	within	a	function	(so-called
automatic	variables)	can	only	be	changed	by	assignments	within	the	function.	But
variables	declared	outside	a	function	have	global	scope,	and	can	be	accessed	by	any
function	declared	within	the	same	file.	The	variable	gameInfo	is	a	global	variable	and	can
be	accessed	by	any	function	declared	in	helloPong.c,	and	because	of	the	extern
declaration,	by	any	function	declared	in	pong_utils.c.

The	functions	named	check_collision()	and	update_ball()	are	similar	to	those
described	in	the	previous	section	but	with	some	important	additions.	When	the	ball	moves
in	directions	3,	4,	or	5,	we	need	to	check	for	a	collision	with	the	paddle;	modifications
necessary	to	achieve	this	are	shown	in	step	8.	If	the	ball	fails	to	make	contact	with	the
paddle,	then	a	clause	in	update_ball()	holds	the	ball	in	its	current	position	for	a	few
seconds,	and	then	restarts	the	game	(see	step	9).

The	paddle	itself	can	be	drawn	by	declaring	our	own	‘paddle’	character	bitmap	in	file
GLCD_customFont.c,	and	by	using	GLCD_DrawChar()	to	render	it	to	the	screen.	The	code
for	checking	collisions	needs	to	be	extended	to	include	collisions	between	the	ball	and	the
inner	vertical	edge	of	the	paddle.	These	can	only	occur	when	the	ball	direction	is	from
right	to	left	(that	is,	direction	codes	3,	4	and	5).	We’ll	need	variables	to	represent	the
position	of	the	paddle	(as	we	do	in	case	of	the	ball).	As	we	now	have	quite	a	few	variables,
it’s	a	good	opportunity	to	introduce	a	data	structure	that	can	be	used	to	group	them
together.	The	C	struct	provides	us	with	a	mechanism	for	achieving	this.	Information	about
the	ball	are	declared	in	a	struct	called	ballInfo.	The	information	associated	with	the
paddle	is	declared	in	paddleInfo	and	that	about	the	game	in	gameInfo,	within
helloPong.h





Debugging	your	code	using	print
statements
This	section	deals	with	debugging.	Errors	fall	into	two	classes,	compilation	errors	and	run-
time	errors.	Compilation	errors	arise	when	we	compile	our	programs,	and	the	compiler
parses	each	of	the	statements	to	produce	executable	code.	Syntactic	errors	such	as	a
missing	semi-colon	or	forgetting	to	declare	a	variable	before	assigning	it	will	produce	a
compilation	error.	Luckily,	uVision5	highlights	and	checks	the	syntax	of	our	programs	as
we	type.	So,	many	problems	that	would	have	gone	undetected	in	the	past	are	now	brought
to	our	attention	before	compilation.	When	errors	do	occur,	they	are	printed	in	the	output
window	together	with	details	of	the	file	and	the	line	number	where	the	error	occurred.	In
addition	to	errors,	the	compiler	will	also	issue	warnings	relating	to	unusual	conditions	in
the	code	that	might	be	indicative	of	a	problem.	It’s	a	good	plan	to	treat	warnings	as	errors,
and	track	down	their	source.	Further	information	about	compiler	diagnostic	messages	is	in
the	Compiler	User	Guide	that	can	be	found	in	the	Tool’s	Users	Guide	accessed	by	the
Books	tab	of	the	IDE.

Runtime	errors	are	generally	harder	to	fix	than	those	that	occur	during	compilation.
Adopting	a	good	development	strategy	can	minimize	problems,	or	at	least	enable	the
problem	to	be	quickly	isolated.	Larger	programs	are	never	written	all	at	once,	they	always
build	on	previously	tested	functions.	The	most	straightforward	way	to	debug	a	program	is
by	inserting	statements	that	print	to	the	Graphic	LCD	screen,	using
GLCD_DisplayString(	).



How	to	do	it…
To	output	the	values	of	variables	that	are	used	by	the	program,	we	need	to	convert	integer,
unsigned	integer,	and	such	values	into	their	equivalent	string	representations.

1.	 Create	a	new	folder	named	debugADC,	and	within	it,	a	new	project.	Set	the	RTE	as	we
did	for	the	previous	recipe.

2.	 Create	a	new	file,	enter	the	following	code,	name	the	file	debugADC.c,	and	add	it	to
the	project:

/*--------------------------------------------------

	*	Recipe:		debugADC_c2v0

	*	Name:				debugADC.c

	*	Purpose:	Illustrates	writing	variables	to	GLCD

	*--------------------------------------------------

	*

	*	Modification	History

	*	06.02.14	Created

	*	09.12.15	Updated	(uVision5.17	+	DFP2.6.0)

	*

	*	Dr	Mark	Fisher,	CMP,	UEA,	Norwich,	UK

	*--------------------------------------------------*/

#include	"stm32f4xx_hal.h"

#include	"GLCD_Config.h"

#include	"Board_GLCD.h"

#include	"Board_ADC.h"

#include	<stdio.h>

#define	wait_delay	HAL_Delay

/*	Globals	*/

extern	GLCD_FONT					GLCD_Font_16x24;

#ifdef	__RTX

______________________________________________________

/*	Function	Prototypes	*/

void	SystemClock_Config(void);

/**

		*	System	Clock	Configuration

		*/

void	SystemClock_Config(void)	{

______________________________________________________

/**

		*	Main	function

		*/

int	main	(void)	{

		char	buffer[128];	

		unsigned	int	ADCvalue;	

		

		HAL_Init	(	);

		SystemClock_Config	(	);

		



		ADC_Initialize	();															/*	Initialse	ADC	*/

		GLCD_Initialize	();													/*	Initialise	GLCD	*/

		GLCD_SetBackgroundColor	(GLCD_COLOR_WHITE);

		GLCD_ClearScreen	();

		GLCD_SetBackgroundColor	(GLCD_COLOR_BLUE);		

		GLCD_SetForegroundColor	(GLCD_COLOR_WHITE);

		GLCD_SetFont	(&GLCD_Font_16x24);

		GLCD_DrawString	(0,	0*24,	"	CORTEX-M4	COOKBOOK	");

		GLCD_DrawString	(0,	1*24,	"						ADC	Demo						");

		GLCD_SetBackgroundColor	(GLCD_COLOR_WHITE);

		GLCD_SetForegroundColor	(GLCD_COLOR_BLUE);

		GLCD_DrawString	(0,	3*24,	"ADC	=");

		for	(;;)	{						/*	loop	forever	*/

				ADC_StartConversion	();

				ADCvalue	=	ADC_GetValue	();									/*	Read	ADC	*/

				sprintf	(buffer,	"%i			",	ADCvalue);	 	/*	mk	str	*/

				GLCD_DrawString	(7*16,	3*24,	buffer);/*	Disp	it	*/

				wait_delay(	100	);	

		}	/*	end	for	*/

}

3.	 Build,	download,	and	run	the	program.



How	it	works…
The	array	named	buffer	just	contains	a	collection	of	data	elements,	each	the	same	type	(in
this	case	char).	We	need	to	specify	the	number	of	elements	when	the	array	is	declared	(so
that	the	compiler	can	allocate	the	necessary	storage	space).	This	provides	enough	space
for	128	characters.

Tip
Strings	are	always	terminated	by	a	NULL	character,	so	there	is	only	space	for	127	usable
characters,	but	still	plenty	for	our	purpose.

The	function	sprint(),	defined	in	the	standard	input/output	C	library	that	we’ve	imported
by	using	#include	<stdio.h>,	is	used	to	convert	the	integer	variable	ADCvalue()	to	a
string,	placing	the	result	in	the	buffer	before	being	printed	by	GLCD_DisplayString().	The
source	code	for	the	program	is	presented	in	step	2.

Running	the	program	prints	the	12-bit	ADC	value	(generated	by	converting	a	voltage
produced	by	the	thumbwheel	potentiometer)	to	the	Graphic	LCD	display.	Notice	the
values	returned	are	quite	noisy	(that	is,	there	is	quite	a	bit	of	variation	even	when	the
thumbwheel	position	is	apparently	unchanged).	If	we	shift	the	ADCvalue	right	by	four
places,	using	the	bit	manipulation	operator	>>	so	effectively	discarding	the	least	significant
4	bits	(that	is,	dividing	by	24),	then	the	result	is	smaller	and	more	stable.





Using	the	debugger
uVision5	provides	a	debugger	that	allows	us	to	suspend	execution	(by	inserting	a
breakpoint),	and	examine/change	values	of	variables	used	in	our	program.



How	to	do	it…
1.	 Download	and	run	the	previous	project,	debug_ADC.
2.	 Use	the	debug	menu	to	insert	a	breakpoint	on	line	96	of	our	program	(that	is,	at	the

statement	ADC_StartConversion	(	);.

3.	 Select	debug	→	Start/Stop	Debug	session	to	start	a	debug	session.
4.	 Observe	that	execution	stops	at	main.	This	is	because	the	default	project	debug

options	are	set	to	“Run	to	main”.



5.	 Selecting	Run	(F5)	will	execute	the	statements	up	until	the	breakpoint.
6.	 Use	Step	(F11)	to	execute	the	statements	in	the	program	one	after	the	other,	and

observe	the	values	of	variables.	For	example,	when	we	reach	line	39	(after	stepping),
the	local	variable	ADCvalue	is	assigned	to	10	(0x0000000A).	This	value	is	shown	in
the	Call	Stack	+	Locals	window.



See	also
This	chapter	has	introduced	many	more	programming	concepts	than	would	normally	be
covered	in	the	first	few	chapters	of	a	programming	textbook,	and	the	text	is	really	aimed	at
those	readers	with	experience	of	other	languages.	Those	who	are	new	to	programming	will
need	to	fill	some	of	the	gaps	by	reading	an	introductory	programming	text.	Because	C	has
been	around	for	more	than	30	years,	there	are	plenty	to	choose	from!	However,	most
novices	will	find	recently	published	or	revised	editions	of	standard	texts,	more	accessible
than	books	written	in	the	1980s	and	90s.	You	may	find	it	easier	to	learn	C	by	writing
programs	for	your	PC	rather	than	the	evaluation	board.	In	fact,	some	of	my	students
develop	and	test	their	embedded	algorithms	using	a	PC	before	porting	them	to	uVision5.
This	is	perfectly	feasible	for	programs	(or	parts	of	programs)	that	do	not	need	to	access
peripherals	such	as	the	ADC,	and	the	like.	You	will	need	to	install	a	C	compiler	to	enable
you	to	do	this;	free	options	include	Visual	Studio	Express,	Open	Watcom,	and	GCC.	The
graphical	user	environments	available	with	most	of	these	compilers	provide	a	user
interface	very	similar	to	that	of	uVision5.





Chapter	3.	Programming	I/O
In	this	chapter,	we	will	cover	the	following	topics:

Performing	arithmetic	operations
Illustrating	machine	storage	classes
Configuring	GPIO	ports
Configuring	UART	ports
Handling	interrupts
Using	timers	to	create	a	digital	clock



Introduction
The	release	of	uVision5	heralded	the	integration	of	software	packs	to	support	a	range	of
microcontroller	devices	and	simplify	the	task	of	programming	I/O	by	allowing	the	user	to
select	from	a	menu	of	I/O	options	to	provide	the	necessary	source	code	in	our	project.	This
is	extremely	helpful	and	represents	a	huge	leap	forwards	as	compared	to	previous	versions
of	the	IDE	that	provided	the	user	with	comparatively	little	help	with	configuring	I/O
libraries.	But,	it	does	raise	a	dilemma;	what	do	we	do	if	our	target	hardware	isn’t
supported?	In	this	chapter,	we’ll	investigate	some	of	the	functions	that	configure	I/O
devices	and	gain	an	understanding	of	what	is	involved	in	writing	I/O	interfaces	for	other
targets.	We’ll	need	to	refer	to	STM	Reference	manual	RM0090	(www.st.com)	throughout
this	chapter	as	it	provides	complete	information	on	how	to	use	the	STM32F405xx/07xx,
STM32F415xx/17xx,	STM32F42xxx,	and	STM32F43xxx	microcontroller	memory	and
peripherals.	We	start	by	writing	a	program	that	adds	numbers	and	then	use	this	apparently
trivial	code	to	motivate	a	deeper	discussion	of	data	types.

http://www.st.com




Performing	arithmetic	operations
Writing	a	program	that	adds	two	numbers	together	may	seem	like	a	trivial	task.	We
obviously	need	to	declare	three	variables,	two	to	hold	values	of	the	numbers	to	be	added,
known	as	addends,	and	another	to	hold	the	sum.	The	following	recipe	illustrates	some
problems	that	arise	due	to	word	length.



How	to	do	it…
The	following	steps	demonstrate	how	to	perform	arithmetic	operations:

1.	 Create	a	new	folder	and	name	it	addTwoNums_c3v0.	Invoke	uVision5	and	create	a	new
project	named	addTwoNums	within	this	folder.

2.	 Use	the	RTE	manager	to	select	the	MCBSTM32F400	evaluation	board	and
configure	it	as	we	did	for	helloWorld_c2v0,	from	the	Writing	to	console	Window
recipe	in	Chapter	2,	C	Language	Programming.

3.	 Copy	the	files,	Serial.c,	Serial.h,	and	Retarget.c,	from	the	helloWorld_c2v0
recipe	into	the	folder.

4.	 Create	a	new	source	file	named	addTwoNums.c	and	enter	the	following	program.
Please	note	that	we’re	using	the	folding	editor	feature	to	omit	boilerplate	code:

/***************************************************

	*	Recipe:			addTwoNums_c3v0

	*	File:					addTwoNums.c	

	*	Purpose:		Adds	numbers	using	terminal	I/O																								

	****************************************************

	*																																																						

	*	Modification	History																			

	*	26.02.14	Created

	*	15.12.15	Updated	uVision5.17	&	DFP2.6.0			

	*																																			

	*	Dr.	Mark	Fisher,	CMP,	UEA,	Norwich,	UK.																																																							

	****************************************************/

#include	"stm32F4xx_hal.h"

#include	<stdio.h>

#include	"Serial.h"	

#include	"cmsis_os.h"

#ifdef	__RTX

______________________________________________________

/*--------------------------------------------------

		System	Clock	Configuration

	*--------------------------------------------------*/

void	SystemClock_Config(void)	{

______________________________________________________

/*

	*	main

	*******/

int	main	(void)	{

				

				int	input;		

				int	num1,	num2,	res;

		HAL_Init	();			/*	Init	Hardware	Abstraction	Layer	*/

		SystemClock_Config	();											/*	Config	Clocks	*/

		SER_Init();

		

		for	(;;)	{																								/*	Loop	forever	*/



				printf("Enter	First	Number:	");

				scanf("%d",	&input);

				num1	=	(int)	input;

				printf("Enter	Second	Number:	");

				scanf("%d",	&input);

				num2	=	(int)	input;

				res	=	num1	+	num2;

				printf("Result	=	%d	\n",	res);

		}

}

5.	 Add	the	Serial.c,	Retarget.c,	and	addTwoNums.c	files	to	the	project.
6.	 Connect	the	evaluation	board’s	UART	1/2/3	9-pin	D-type	connector	to	the	PC’s	COM

port.
7.	 Invoke	PuTTY	and	configure	the	port	as	we	did	in	Chapter	2,	C	Language
Programming.

8.	 Check	the	Use	MicroLIB	project	option.
9.	 Build	the	project;	download	and	run	the	program	(please	note	that	you	may	need	to

reset	the	evaluation	board).
10.	 Try	adding	a	range	of	different	values	and	make	a	note	of	the	results	(are	they	all

correct?).	Some	examples	are	shown	in	the	following	screenshot:

11.	 Edit	the	main	function	and	change	the	variable	declaration	for	num1,	num2,	and	res	to
the	following:

char	num1,	num2,	res;

12.	 Rebuild,	download,	and	run	the	code.



13.	 Try	adding	both	positive	and	negative	quantities	and	make	a	note	of	the	results	(are
they	all	correct?).	Try	the	examples	that	are	shown	in	the	following	screenshot:



How	it	works…
Programming	languages	classify	the	types	of	data	they	manipulate	into	categories	called
data	types.	Examples	of	data	types	are	integer	and	floating	point	(numbers),	character,
string,	and	pointer.	Simple	(so-called	primitive)	data	types	are	part	of	the	language,	while
compound	data	types	(such	as	array,	struct,	and	so	on)	are	abstractions	built	by	the
programmer.	Programmers	coding	in	strongly-typed	languages	(such	as	C)	must	declare
the	type	of	variables	before	they	are	referenced	in	the	code.	This	enables	the	compiler	to
allocate	a	suitable	amount	of	memory	in	which	to	store	the	variable.	Typical	primitive	data
types	for	the	C	language	are	shown	in	the	following	table.	These	types	can	be	preceded	by
the	signed	or	unsigned	qualifier,	which	guarantees	that	the	number	is	stored	as	a	signed	or
unsigned	quantity:

Type Definition

char This	is	the	smallest	addressable	unit	that	can	contain	encoding	of	a	character.	It	is,	typically,	8-bits	in	size.

short

short	int
This	is	a	short-signed	integer	type.	It	is	at	least	16-bits	in	size.

int This	is	the	basic	signed	integer	type.	This	is	at	least	16-bits	in	size.

long

long	int
This	is	a	long-signed	integer	type.	It	is	at	least	32-bits	in	size.

long	long

long	long
int

This	is	a	long-long	signed	integer	type.	It	is	at	least	64-bits	in	size.

float This	is	a	single	precision	floating	point	type.	Specific	encoding	is	not	specified,	but	IEEE	754	is	a	popular
standard.

double This	is	a	double	precision	floating	point	type.	Specific	encoding	is	not	specified,	but	IEEE	754	is	a	popular
standard.

long
double

This	is	an	extended	precision	floating	point	type.	Specific	encoding	is	not	specified,	but	IEEE	754	is	a
popular	standard.

We’ve	seen	that	unsigned	numbers	are	stored	in	binary,	but	how	are	signed	numbers
represented?	To	answer	this	question,	we’ll	consider	the	type	char	used	to	represent	an	8-
bit	quantity.	The	type	unsigned	char	encodes	numbers	between	0	and	28-1	that	is
illustrated	as	follows:

unsigned	char base10

27 26 25 24 23 22 21 20 	

0 0 0 0 0 0 0 0 010



0 0 0 0 0 0 0 1 110

. . . . . . . . .

1 1 1 1 1 1 1 1 25510

The	type	definition	also	determines	a	set	of	valid	operations	on	the	type	and	how	these	are
performed.	For	example,	consider	the	arithmetic	operation	of	addition.	When	we	add	two
variables	of	type	unsigned	char,	the	result	might	be	greater	than	25510.	The	rules	of	binary
addition	are	illustrated	in	the	following	table:

SUM CARRY

0 + 0 = 0 0

0 + 1 = 1 0

1 + 0 = 1 0

1 + 1 = 0 1

Each	row	in	the	table	can	be	realized	by	digital	hardware	components	(logic	gates).	When
the	sum	is	greater	than	25510,	the	result	of	the	addition	spills	over	into	the	eighth	bit	and
gives	the	wrong	answer.	If	we	force	the	compiler	to	produce	executable	code	for	this
operation,	then	the	resulting	operation	would	set	the	CARRY	and	OVERFLOW	bits	of	the
Program	Status	Register	(PSR).	The	PSR	forms	a	fundamental	part	of	any	central
processing	unit.	Arithmetic	instructions	(and	some	others)	that	are	executed	by	the	CPU
change	the	value	stored	in	the	five	most	significant	bits	of	the	STM32f4xx	PSR	register,
setting	or	clearing	them	to	reflect	the	outcome	of	the	last	arithmetic	instruction	that	was
executed:

31 30 29 28 27 28 0

N Z C V Q Reserved 	

N=NEGATIVE
Z=ZERO
C=CARRY
V=OVERFLOW
Q=SATURATE

An	operating	system	may	read	these	bits	and	trap	a	run-time	error.	However,	as	our
programs	run	without	an	operating	system,	and	we’ve	not	included	code	to	specifically
trap	errors,	such	operations	may	simply	give	the	wrong	answer	when	the	data	type	that
we’re	using	is	too	small	to	represent	the	result.	The	following	table	illustrates	adding	8-bit
binary	representations	of	11010	and	19810:

	 	 27 26 25 24 23 22 21 20 	 102 101 100 	



AUGEND 	 0 1

1

0

1

1 1 0 + 1 1 0 +

ADDEND 	 1 1 0 0 0 1 1 0 	 1 9 8 	

SUM 	 0 0 1 1 0 0 0 0 	 3 0 8 	

CARRY 1 1 0 0 1 1 1 0 Cin 	 1 0 Cin 	

In	this	case,	the	8-bit	result	overflows	and	is	interpreted	as	4810.

Now	consider	the	following	assignment	statement:

num1	=	input;

Here	the	data	types	for	num1	and	input	are	declared	as	follows:

long	int	input;

unsigned	char	num1;

Remember	that	variable	names	are	just	pseudonyms	for	memory	locations.	The
assignment	statement	copies	the	quantity	stored	in	the	memory	location	that	is	represented
by	the	variable	name	on	the	right	to	the	memory	location	that	is	represented	by	the
variable	on	the	left.	But	in	this	case,	the	problem	is	that	these	two	are	physically	different
sizes	(that	is,	8-bit	and	32-bit,	respectively).	Typically,	the	compiler	will	report	this	as	an
error.	To	solve	this	problem,	we	must	convert	the	32-bit	integer	into	8-bit.	The	formal	term
for	this	is	type	conversion	(also	called	type	casting),	and	it	is	achieved	using	the	following
syntax:

num1	=	(unsigned	char)	input;

If	we	wish	to	add	both	positive	and	negative	quantities,	we	must	change	the	data	type	of
num1	and	num2.	Again,	the	range	of	numbers	is	limited	by	the	size	(number	of	bits)	of
memory	used.	If	we	use	8-bits	to	represent	both	positive	and	negative	numbers,	we	must
allocate	half	of	the	256	binary	codes	to	negative	numbers	and	half	to	positive.	Several
systems	have	been	proposed	to	achieve	this	(for	example,	signed	magnitude,	offset-binary,
and	2’s	complement).	The	2’s	complement	system	has	four	features	that	make	its	use	in
binary	arithmetic	very	attractive.	Firstly,	the	8-bit	code	representing	010	is	000000002.
Secondly,	negative	values	can	be	easily	identified	by	examining	the	most	significant	bit
(MSB).	Thirdly,	both	positive	and	negative	quantities	can	be	added	using	the	same	simple
logical	operation	that	we	identified,	and	finally,	the	algorithm	to	convert	between	positive
and	negative	values	is	simply	‘complement	and	add	one’.

The	char	type	is	used	to	declare	8-bit	numbers	coded	in	2’s	complement.	Please	note	that
using	8-bit	2’s	complement	the	largest	positive	number	that	can	be	represented	is	27-1
(12710)	and	the	largest	negative	number	-27	(-12810).

Now	consider	the	<stdio>	library	functions,	scanf(	)	and	printf(	),	that	are	used



inside	the	superloop	to	establish	a	dialog	with	the	user	allowing	them	to	enter	values	using
the	PC	keyboard.	Both	functions	use	a	so-called	format	control	string	to	control	the
output	and	input	format.	A	%d	format	string,	is	one	of	a	number	of	integer	conversion
specifiers	that	are	available	to	C	programmers.	The	printf(	)	function	uses	%d	to	display
signed	decimal	integers,	and	scanf(	)	uses	it	to	read	(optionally	signed)	decimal	integers.
Our	program	passes	a	pointer	to	the	scanf(	)	function,	so	the	long	int	variable	named
input	is	passed	by	reference	and	the	function	can	change	its	value.

While	working	through	the	previous	recipes	you	may	have	noticed	that	the	type	identifiers
used	in	the	Serial.h	header	file	(supplied	by	Keil)	are	named	differently	from	the
primitive	types	that	we	encountered	so	far.	The	type	identifiers,	such	as	int32_t,	and
uint8_t,	are	called	machine	storage	classes	and	represent	pseudonyms	for	primitive	types,
such	as	int,	and	unsigned	char.	The	next	section	discusses	why	we	need	them.





Illustrating	machine	storage	classes
This	recipe	illustrates	a	version	of	addTwoNums	that	uses	the	machine	storage	classes,
int32_t	and	uint8_t.	We	explain	why	it	is	advantageous	for	embedded	applications	to
define	and	use	these	as	opposed	to	the	primitive	types	that	are	provided	by	the	C	language.



How	to	do	it…
To	define	and	use	machine	storage	classes,	please	follow	the	outlined	steps:

1.	 Create	a	new	folder	named	addTwoNums_v2	by	cloning	the	previous	project.
2.	 Copy	the	addTwoNums.c	file	from	the	previous	recipe	to	the	folder	and	modify	it	as

follows:

int	main	(void)	{

		

		int32_t	input;

		uint8_t	num1,	num2,	res;

		HAL_Init	();			/*	Init	Hardware	Abstraction	Layer	*/

		SystemClock_Config	();											/*	Config	Clocks	*/

		SER_Init();

		

				for	(;;)	{																						/*	Loop	forever	*/

				printf("Enter	First	Number:	");

				scanf("%d",	&input);

				num1	=	(uint8_t)	input;

				printf("Enter	Second	Number:	");

				scanf("%d",	&input);

				num2	=	(uint8_t)	input;

				res	=	num1	+	num2;

				printf("Result	=	%d	\n",	res);

		}

}

3.	 Add	the	Serial.c,	Serial.h,	Retarget.c	and	addTwoNums.c	files	to	the	project.
4.	 Connect	the	evaluation	board’s	UART	1/2/3	9-pin	D-type	connector	to	the	PC’s	COM

port.

Invoke	PuTTY	and	configure	the	port	as	we	did	in	Chapter	2,	C	Language	Programming.

1.	 Remember	to	check	the	Use	MicroLIB	project	option.
2.	 Build	the	project;	download	and	run	the	program	(please	note	that	you	may	need	to

reset	the	evaluation	board).
3.	 Check	that	the	program	behaves	as	before.



How	it	works…
The	size	of	signed	and	unsigned	integers	that	a	microprocessor	can	manipulate	is
determined	by	its	low-level	architecture.	The	Cortex-M3	and	-M4	microcontrollers	are
based	on	the	ARMv7-M	architecture	(refer	to	ARMv7-M	Architecture	Application	Level
Reference	Manual).	Part	A	of	the	manual	details	the	application-level	architecture	and
programmers’	model,	and	it	begins	by	summarizing	the	core	data	types	and	arithmetic
operations.	ARMv7-M	processors	support	the	following	data	types	in	memory:

Byte 8-bit

Halfword 16-bit

Word 32-bit

The	manual	explains	that	processor	registers	are	32	bits	in	size,	and	the	instruction	set
supports	the	following	data	types:

32-bit	pointers
Unsigned	or	signed	32-bit	integers
Unsigned	16-bit	or	8-bit	integers	(held	in	zero-extended	form)
Signed	16-bit	or	8-bit	integers	(held	in	sign-extended	form)
Unsigned	or	signed	64-bit	integers	held	in	two	registers

It	also	describes	the	binary	format	that	is	used	to	store	these	quantities	and	provides	a
pseudo-code	description	of	how	addition	and	subtraction	are	performed.	This	description
is	consistent	with	the	results	that	we	got	with	the	recipe,	addTwoNums_c3_v0.	The	pseudo-
code	uses	the	terms	zero-extended	and	sign-extended	to	describe	how	8-	and	16-bit
numbers	are	stored	in	the	32-bit	registers	of	the	Cortex-M	architecture.	This	is	important
as	the	processor	status-register	bits	reflect	the	result	of	32-bit	arithmetic,	and	so,	8-	and
16-bit	values	must	be	appropriately	extended	to	fill	the	whole	32-bit	register	so	that	the
sign	and	overflow	bits	correctly	reflect	the	result	of	operations	on	shorter	word	lengths.

Implementations	of	C	standard	data	types,	such	as	char,	short	int,	int,	long	int,	and	so	on,
depend	on	the	(machine-specific)	compiler	implementation.	You	may	recall	that	the	C
standard	only	specifies	they	must	be	at	least	a	certain	size.	Apply	italics	to	(at	least).	This
can	be	a	problem	for	embedded	system	programs	that	need	to	be	ported	between
architectures	with	particular	sizes	of	storage.	Luckily,	C	provides	a	mechanism	called
typedef	to	create	new	types	that	are	aliases	of	existing	types.	The	C	Standard	Library
includes	stdint.h,	containing	C	type	definitions	that	can	be	customized	for	the	different
target	architectures.	The	stdint.h	header	is	included	in	stm32F4xx_hal.h,	so	there	is	no
need	to	include	it	again	in	our	program.	A	typedef	keyword	in	the	stdint.h	header
defines	the	following	machine	storage	classes:

				/*	exact-width	signed	integer	types	*/

typedef			signed											char	int8_t;

typedef			signed	short					int	int16_t;

typedef			signed											int	int32_t;



typedef			signed							__int64	int64_t;

				/*	exact-width	unsigned	integer	types	*/

typedef	unsigned											char	uint8_t;

typedef	unsigned	short					int	uint16_t;

typedef	unsigned											int	uint32_t;

typedef	unsigned											int64	uint64_t;

If	we	require	that	an	integer	be	represented	in	exactly	N	bits,	then	we	use	one	of	the
following	types:

signed: int8_t int16_t int32_t int64_t

unsigned: uint8_t uint16_t uint32_t uint64_t





Configuring	GPIO	ports
The	recipe,	helloBlinky_c1v0,	that	we	met	in	Chapter	1,	A	Practical	Introduction	to
ARM	Cortex,	uses	the	LED_On()	and	LED_Off()	functions	to	switch	the	LEDs.	These
functions	are	defined	in	a	file	named	LED_MCBSTM32F400.c,	which	is	automatically
included	in	our	project	if	we	select	LED	(API)	Board	Support	when	configuring	our
project	using	the	RTE	manager.	Let’s	write	another	LED	program	and	then	take	a	closer
look	at	LED_MCBSTM32F400.c.



How	to	do	it…
To	configure	the	GPIO	ports	follow	the	outlined	steps:

1.	 Create	a	folder	named	countBlinky_c3v0	and	a	project	named	countBlinky;	use	the
RTE	manager	to	select	Board	Support	for	the	LED	(API).

2.	 Enter	the	following	source	code	in	file	named	countBlinky.c	and	add	this	to	the
project:

/*---------------------------------------------

	*	Recipe:		countBlinky_c3v0

	*	Name:				countBlinky.c

	*	Purpose:	LED	Counter

	*---------------------------------------------

	*

	*	Modification	History

	*	03.05.15	Created

	*	16.12.15	Updated	(uVision5.17	+	DFP2.6.0)

	*

	*	Dr	Mark	Fisher,	CMP,	UEA,	Norwich,	UK

	*---------------------------------------------*/

#include	"stm32f4xx_hal.h"

#include	"cmsis_os.h"

#include	"Board_GLCD.h"

#include	"Board_LED.h"

#define	wait_delay	HAL_Delay

#ifdef	__RTX

________________________________________________

/*--------------------------------------------------

		System	Clock	Configuration

	*--------------------------------------------------*/

void	SystemClock_Config(void)	{

______________________________________________________

/*

	*	main

	********/

int	main	(void)	{

		uint8_t	val	=	0;

		

		HAL_Init	();				/*	Init	Hardware	Abstraction	Layer	*/

		SystemClock_Config	();												/*	Config	Clocks	*/		

		

		LED_Initialize();												/*	LED	Initialization	*/

		for	(;;)	{																									/*	Loop	forever	*/

				LED_SetOut	(val++);												/*	increment	LEDs	*/

				wait_delay(100);																									/*	Wait	*/		

		}	/*	end	for	*/

}

3.	 Compile,	download,	and	run	the	program.



How	it	works…
Computers	access	their	I/O	devices	either	by	special	I/O	instructions	that	read	and	write	to
peripherals	located	in	a	separate	I/O	address	space	or	using	the	instructions	that	are
provided	to	access	memory.	ARM	processors	use	the	latter	method,	known	as	memory-
mapped	I/O.	As	such,	peripheral	registers	are	mapped	into	the	memory	address	space	of
the	machine,	so	turning	LEDs	ON	and	OFF	is	achieved	simply	by	writing	binary	values	to
locations	in	memory.

As	we	explained	in	Chapter	1,	A	Practical	Introduction	to	ARM	Cortex	each	LED	is
connected	to	a	GPIO	port	pin	that	in	turn	is	mapped	as	a	GPIO	port	bit.	The	GPIO
interface	is	described	in	Reference	manual	RM00090	(www.st.com),	and	it	is	impossible
to	understand	the	functions	in	LED_MCBSTM32F400.c	without	referring	to	this.	The
STM32F407IG	has	nine	GPIO	ports	(named	A-I),	and	each	port	can	control	up	to	16	I/O
bits.	The	port	bits	are	configured	as	outputs	or	inputs	by	writing	to	so-called	port	control
registers,	and	then	data	is	either	input	or	output	by	reading/writing	to	the	data	register	that
is	associated	with	the	port.	Some	port	control	bits	configure	programmable	switches	in	the
port	that	connect	resistors	to	the	pins.	You	may	recall	that	LEDs	need	to	be	connected	to
resistors,	so	this	feature	is	particularly	useful.	The	switching	speed	of	the	port	can	also	be
configured	by	software	(lower	switching	speeds	save	power).	As	ARM	uses	memory-
mapped	I/O,	all	GPIO	registers	are	mapped	to	specific	memory	addresses.

Some	evaluation	boards	connect	all	eight	LEDs	to	one	port,	which	makes	configuring
them	easy,	but	the	eight	LEDs	on	the	MCBSTM32F400	evaluation	board	are	connected	to
different	ports,	and	each	port	is	dealt	with	separately.	The	LED_On	(),	LED_Off	(),	and
LED_SetOut	()	functions	call	HAL_GPIO_WritePin	(),	which,	in	turn,	is	defined	in	the
stm32f4xx_hal_gpio.c	file.	The	GPIO	registers	themselves	are	declared	as	a	C	struct	in
the	stm32f407xx.h	file:

/**	

		*	@brief	General	Purpose	I/O

		*/

typedef	struct

{

		__IO	uint32_t	MODER;				/*!<	GPIO	port	mode	register,

																																						Address	offset:	0x00						*/

		__IO	uint32_t	OTYPER;			/*!<	GPIO	port	output	type	register,							

																																						Address	offset:	0x04						*/

		__IO	uint32_t	OSPEEDR;		/*!<	GPIO	port	output	speed	register,							

																																						Address	offset:	0x08						*/

		__IO	uint32_t	PUPDR;				/*!<	GPIO	port	pull-up/pull-down	

																											register,		Address	offset:	0x0C						*/

		__IO	uint32_t	IDR;						/*!<	GPIO	port	input	data	register,									

																																						Address	offset:	0x10						*/

		__IO	uint32_t	ODR;						/*!<	GPIO	port	output	data	register,								

																																						Address	offset:	0x14						*/

		__IO	uint16_t	BSRRL;				/*!<	GPIO	port	bit	set/reset	low	

																											register,		Address	offset:	0x18						*/

		__IO	uint16_t	BSRRH;				/*!<	GPIO	port	bit	set/reset	high	

http://www.st.com


																												register,	Address	offset:	0x1A						*/

		__IO	uint32_t	LCKR;					/*!<	GPIO	port	configuration	lock	

																												register,	Address	offset:	0x1C						*/

		__IO	uint32_t	AFR[2];			/*!<	GPIO	alternate	function	registers,					

																																						Address	offset:	0x20-0x24	*/

}	GPIO_TypeDef;

In	the	C	language,	arrays	and	structures	are	compound	data	types	used	to	store	collections
of	data.	All	the	data	elements	stored	in	an	array	must	be	the	same	size,	(that	is,	all	the
same	type),	but	in	a	struct	(structure),	the	data	values	can	be	different	sizes	(types).	As
such,	a	struct	provides	an	ideal	abstraction	for	the	data	registers	that	are	used	by	a
peripheral.	Each	variable	in	the	struct	is	accessed	by	a	named	identifier,	which	the
compiler	translates	into	an	offset	from	a	base	address.	In	the	previous	example,	the	base
address	is	represented	by	the	GPIO_TypeDef	identifier,	and	MODER,	OTYPER,	OSPEEDR,	and	so
on	represent	offsets	of	0,	4,	8,	and	so	on	bytes	from	the	base	(that	is,	32	bits	=	4	bytes).

The	typedef	keyword	enables	the	GPIO	registers	to	be	accessed	using	the	GPIOx	->	ODR
syntax;	for	example,	where	GPIOx	is	a	pointer	to	the	base	address	of	a	particular	GPIO
port.	Consider	the	HAL_GPIO_WritePin	()	function	declared	in	Board_LED.h,	which
switches	LEDs	by	writing	to	the	bit-set-reset	register	(BSRR):

void	HAL_GPIO_WritePin(GPIO_TypeDef*	GPIOx,	uint16_t	GPIO_Pin,	

																																																																																													

GPIO_PinState	PinState)

{

		/*	Check	the	parameters	*/

		assert_param(IS_GPIO_PIN(GPIO_Pin));

		assert_param(IS_GPIO_PIN_ACTION(PinState));

		if	(PinState	!=	GPIO_PIN_RESET)

		{

				GPIOx->BSRR	=	GPIO_Pin;

		}

		else

		{

				GPIOx->BSRR	=	(uint32_t)GPIO_Pin	<<	16;

		}

}

Here,	GPIOx	is	a	pointer	to	the	struct	named	GPIO_TypeDef	that	we	described	earlier.
GPIOx->BSRRL	writes	‘1’	to	a	specific	bit	of	the	lower	Bit	Set	Reset	Register	(BSRR)	to	set
the	port	bit.	BSRR	controls	bits	0-15	of	the	parallel	port,	as	described	in	STM’s	RM0090
Reference	manual	(Chapter	8)	as	follows:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

BR

15

BR

14

BR

13

BR

12

BR

11

BR

10
BR9 BR8 BR7 BR6 BR5 BR4 BR3 BR2 BR1 BR0

w w w w w w w w w w w w w w w w

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0



BS

15

BS

14

BS

13

BS

12

BS

11

BS

10
BS9 BS8 BS7 BS6 BS5 BS4 BS3 BS2 BS1 BS0

w w w w w w w w w w w w w w w w

Before	we	can	use	the	GPIO	to	write	to	LEDs,	the	peripheral	must	first	be	configured.
This	is	achieved	by	the	LED_Initialize()	function	that	is	declared	in	Board_LED.h	and
defined	in	LED_MCBSTM32F400.c.

For	example,	within	LED_Initialize(),	the	following	code	fragment	configures	GPIO
Port	G	pins	6,7,	and	8	to	drive	LEDs:

	/*	Configure	GPIO	pins:	PG6	PG7	PG8	*/

		GPIO_InitStruct.Pin			=	GPIO_PIN_6	|	GPIO_PIN_7	|	GPIO_PIN_8;

		GPIO_InitStruct.Mode		=	GPIO_MODE_OUTPUT_PP;

		GPIO_InitStruct.Pull		=	GPIO_PULLDOWN;

		GPIO_InitStruct.Speed	=	GPIO_SPEED_LOW;

		HAL_GPIO_Init(GPIOG,	&GPIO_InitStruct);

For	each	port,	LED_Initialize()	writes	appropriate	values	to	a	GPIO_InitStruct	and
then	invokes	HAL_GPIO_Init	().	We	need	to	consult	STM’s	RM0090	Reference	manual
yet	again	to	fully	understand	HAL_GPIO_Init	()	(defined	in	stm32f4xx_hal_gpio.c),	but
some	C	language	statements	that	are	used	by	the	functions	read	and	write	specific	register
bits	are	commonly	used	by	embedded-system	programmers	and	deserve	further
explanation.	Consider	this	code	fragment	(in	stm32f4xx_hal_gpio.c)	that	configures	the
GPIO	Lock	register	(the	function	header	provides	a	detailed	description):

/**

		*	@brief		Locks	GPIO	Pins	configuration	registers.

		*	@note			The	locked	registers	are	GPIOx_MODER,	GPIOx_OTYPER,

		*									GPIOx_OSPEEDR,GPIOx_PUPDR,	GPIOx_AFRL	and	GPIOx_AFRH.

		*	@note			The	configuration	of	the	locked	GPIO	pins	can	no	

		*									longer	be	modified	until	the	next	reset.

		*	@param		GPIOx:	where	x	can	be	(A..F)	to	select	the	GPIO

		*									peripheral	for	STM32F4	family

		*	@param		GPIO_Pin:	specifies	the	port	bit	to	be	locked.

		*									This	parameter	can	be	any	combination	of	GPIO_PIN_x

		*									where	x	can	be	(0..15).

		*	@retval	None

		*/

HAL_StatusTypeDef	HAL_GPIO_LockPin(GPIO_TypeDef*	GPIOx,	

																																									uint16_t	GPIO_Pin)

{

		__IO	uint32_t	tmp	=	GPIO_LCKR_LCKK;

		etc..

/*	Apply	lock	key	write	sequence	*/

		tmp	|=	GPIO_Pin;

		/*	Set	LCKx	bit(s):	LCKK='1'	+	LCK[15-0]	*/

		GPIOx->LCKR	=	tmp;

The	tmp	|=	GPIO_Pin	statement	assigns	a	value	to	tmp,	which	is	a	bitwise	logical	OR	of
the	current	value	and	a	32-bit	mask	named	GPIO_Pin.	The	term	mask	is	used	to	describe	a



binary	variable	that	is	used	to	identify	particular	bit	patterns	in	a	target	variable.	By
carefully	choosing	the	value	of	the	mask,	we	are	able	to	set	particular	bits	of	the	Lock
Register	(LCKR	)	while	maintaining	the	other	bits	unchanged.	Please	note	that	the	tmp
|=	GPIO_Pin	statement	is	written	using	a	shorthand	C	assignment	notation.	To	explain	the
notation,	first	consider	a	more	familiar	assignment	such	as	the	following:

myVar	=	myVar	+	10;

This	statement	adds	10	to	the	variable	myVar.	This	can	be	written	in	C	shorthand	as
follows:

myVar	+=	10;

Another	commonly	used	technique	employs	a	bitwise	logical	AND	operation	with	a	mask
to	clear	particular	register	bits.	For	example,	SER_Init	()	(recipe	addTwoNums_c3v0)	uses
the	following	statement:

GPIOC->MODER	&=	0xFF0FFFFF;

This	is	used	to	clear	bits	20-23	of	the	GPIOC’s	MODE	Register	(MODER).	Similarly,	all
operators	can	be	combined	in	this	way,	so	we	could	rewrite	this	as	follows:

GPIOC->MODER	&=	~(15UL	<<	20);

The	~	symbol	represents	the	bitwise	logical	NOT	operator,	15UL	is	defined	as	an	unsigned
long	of	value	15,	and	<<	is	the	logical	shift-left	operator.

Before	explaining	how	the	GPIO	port’s	base	address	is	defined,	we’ll	deal	with	the	type
qualifier,	__IO	(refer	to	the	typedef	keyword	that	was	illustrated	earlier).	The	__IO	macro
is	resolved	by	a	#define	directive	in	the	core_cm4.h	header	file	and	replaced	by	the
volatile	qualifier.	This	qualifier	indicates	(to	the	compiler)	that	the	variable	is	held	in	a
register	and	may	be	changed	by	some	external	process.	Typically,	compilers	optimize	code
by	eliminating	redundant	loops	that	repeatedly	read	variables	that	are	stored	in	memory.
But,	as	we’ll	see	in	the	next	section,	such	busy-while	loops	are	the	key	to	many	I/O
operations,	so	the	type	volatile	qualifier	is	essential	when	declaring	I/O	registers.
Another	commonly	used	qualifier	is	__FORCE_INLINE.	This	is	used	before	a	function
definition	to	request	the	compiler	to	optimize	the	code	by	eliminating	the	function	call.

The	base	addresses	of	GPIO	ports	are	defined	in	the	stm32f407xx.h	file,	as	follows:

/*!<	AHB1	peripherals	*/

#define	GPIOA_BASE												(AHB1PERIPH_BASE	+	0x0000)

#define	GPIOB_BASE												(AHB1PERIPH_BASE	+	0x0400)

#define	GPIOC_BASE												(AHB1PERIPH_BASE	+	0x0800)

#define	GPIOD_BASE												(AHB1PERIPH_BASE	+	0x0C00)

#define	GPIOE_BASE												(AHB1PERIPH_BASE	+	0x1000)

#define	GPIOF_BASE												(AHB1PERIPH_BASE	+	0x1400)

#define	GPIOG_BASE												(AHB1PERIPH_BASE	+	0x1800)

#define	GPIOH_BASE												(AHB1PERIPH_BASE	+	0x1C00)

#define	GPIOI_BASE												(AHB1PERIPH_BASE	+	0x2000)

Here,	AHB1PERIPH_BASE	is	resolved	by	other	#define	statements	and	resolves	to
(uint32_t)0x40020000.	This	address	is	consistent	with	that	identified	in	the	RM0090



Reference	manual.

Peripherals	are	controlled	by	reading	and	writing	to	specific	bits	of	the	register	bank	and
these	are	identified	by	so-called	masks	shown	as	follows	(also	defined	in	stm32fxx.h):

/********		Bits	definition	for	GPIO_MODER	register		********/

#define	GPIO_MODER_MODER0														((uint32_t)0x00000003)

#define	GPIO_MODER_MODER0_0												((uint32_t)0x00000001)

#define	GPIO_MODER_MODER0_1												((uint32_t)0x00000002)

#define	GPIO_MODER_MODER1														((uint32_t)0x0000000C)

#define	GPIO_MODER_MODER1_0												((uint32_t)0x00000004)

#define	GPIO_MODER_MODER1_1												((uint32_t)0x00000008)

...	etc.	

The	previous	discussion	illustrates	the	importance	of	the	stm32f407xx.h	header	file.	Take
a	moment	to	look	through	the	source	code.	The	comment	at	the	beginning	describes	the
content	as	“CMSIS	STM32F407xx	Device	Peripheral	Access	Layer	Header	File.“.
Don’t	worry	too	much	about	the	identifiers	(such	as	@file,	@author,	@version,	@brief,
and	so	on).	They	are	used	by	a	tool	to	generate	documentation	from	C	(or	C++)	source
code.

Finally,	consider	the	following	statement:

assert_param(IS_GPIO_PIN(GPIO_Pin));

This	deserves	some	explanation.	The	assert_param	()	macro	is	defined	in	the
stm32f4xx_hal_conf.c	file.	A	macro	is	defined	as	an	instruction	that	expands	to	a	set	of
instructions	to	perform	a	particular	task.	So,	we	would	expect	the	following	statement	to
appear	somewhere	in	our	project:

#define	assert_param…	etc.

The	macro	definitions	that	we’ve	met	so	far	have	been	used	to	perform	simple	parameter
substitutions,	but	assert_param	()	introduces	macro	arguments,	which	makes	macro
behavior	very	similar	to	that	of	a	function.	If	we	take	a	look	at	the	assert_param	macro
definition,	we	find	the	following:

/*	Exported	macro	----------------------------------*/

#ifdef		USE_FULL_ASSERT

/**

		*	@brief		The	assert_param	macro	is	used	for	function's

		*	parameters	check.

		*	@param		expr:	If	expr	is	false,	it	calls	assert_failed

		*	function	which	reports	the	name	of	the	source	file	and	

		*	the	source	line	number	of	the	call	that	failed.	

		*	If	expr	is	true,	it	returns	no	value.

		*	@retval	None

		*/

		#define	assert_param(expr)	((expr)	?	(void)0	:	

																				assert_failed((uint8_t	*)__FILE__,	__LINE__))

/*	Exported	functions	-----------------------------	*/

		void	assert_failed(uint8_t*	file,	uint32_t	line);

#else



		#define	assert_param(expr)	((void)0)

#endif	/*	USE_FULL_ASSERT	*/

As	the	description	explains,	the	macro	checks	that	the	expr	input	argument	is	TRUE,	and
if	this	is	not	the	case,	it	calls	assert_failed	().	It	does	this	using	a	conditional	statement
that	is	written	using	C’s	only	?:	ternary	operator.	Consider	the	following	statement:

((expr)	?	(void)0	:	assert_failed((uint8_t	*)__FILE__,	__LINE__))

This	statement	is	equivalent	to	the	following:

If	(expr)

		(void)0

else

		assert_failed((uint8_t	*)__FILE__,	__LINE__)

Defining	this	as	a	macro	is	more	efficient	as	although	it	behaves	as	a	function,	the	code	is
expanded	by	the	preprocessor,	and	this	avoids	the	overhead	of	an	associated	function	call.



There’s	more…
Although	memory	mapped	I/O	is	very	efficient	the	memory	address	map	is	device	and
implementation	is	dependent,	and	this	makes	managing	portability	a	problem.	ARM
solves	this	issue	through	the	Cortex	Microcontroller	Software	Interface	Standard
(CMSIS).	CMSIS	provides	developers	using	the	Cortex-M	family	with	a	common
approach	to	interfacing	peripherals,	real-time	operating	systems,	and	middleware
components.	An	overview	of	the	standard	http://www.keil.com/support/man/docs	explains
that	it	provides	the	following:

A	Hardware	Abstraction	Layer	(HAL)	for	Cortex-M	processor	registers
Standardized	system	exception	names
Standardized	methods	to	organize	header	files
Common	methods	for	system	initialization
Standardized	intrinsic	functions
Standardized	ways	to	determine	the	system	clock	frequency

The	following	diagram	shows	CMSIS	providing	an	interface	between	the	user	application
(which	may	be	based	on	a	Real	Time	Operating	System)	and	the	hardware.	CMSIS
provides	the	following:

A	Core	Peripheral	Access	Layer
A	Device	Peripheral	Access	Layer	(MCU-specific)
Helper	functions	for	peripheral	management

In	practice,	CMSIS	is	a	framework	within	which	MCU	and	peripheral	vendors	provide

http://www.keil.com/support/man/docs


device	driver	libraries.	Each	vendor	provides	a	device-specific	{device}.h	header	file	for
users	to	include	in	their	projects,	and	this	may,	in	turn,	include	further	files	to	provide
additional	functionality.	MCU	vendors	also	provide	startup	code	written	in	assembly
language	that	contains	the	vector	table	and	initialization	code	for	stacks,	and	so	on.	In	the
typical	CMSIS	file	structure	that	is	illustrated	as	follows,	we	see	a	number	of	file	names
that	we	are	already	familiar	with	through	our	previous	projects:

{device}.h:	This	is	the	header	file	defining	the	device
core_cm4.h:This	is	the	header	file	defining	the	device	core
core_cm4.c:	This	contains	intrinsic	functions
system_{device}.h:	This	contains	device-specific	interrupt	and	peripheral	register
definitions
system_{device}.c:	This	contains	system	functions	and	initialization	code
startup_{device}.s:	This	contains	the	startup	code

CMSIS	continues	to	evolve	as	vendors	develop	new	peripherals	and	revise	how
functionality	is	exposed	by	their	device	handlers.	The	version	of	CMSIS	shipped	with
ARM’s	uVision4	IDE	is	quite	different	to	the	version	that	is	shipped	with	uVision5,	and
judging	by	some	of	the	comments	posted	on	user	forums,	some	users	have	found
migrating	to	the	new	Run	Time	Environment	manager	quite	a	challenge.	The	main
problem,	especially	for	this	text,	is	that	some	functionality	has	been	packaged	within	the
RTOS	framework	perhaps	because	this	improves	its	robustness.	More	of	a	concern	is	that
some	of	the	functionality	is	only	supported	by	the	professional	version	of	the	MDK.





Configuring	UART	ports
Programs	such	as	addTwoNums	call	the	SER_GetChar()	and	SER_PutChar()	functions	to
output	ASCII	characters	to	a	terminal.	The	Retarget.c	file	redefines	the	fgetc()	and
fputc()	functions,	which,	in	turn,	call	SER_GetChar()	and	SER_PutChar().	These	low-
level	functions	illustrate	some	important	I/O	models	that	we’ll	explore	using	a	program
that	checks	if	a	string	entered	is	a	palindrome	(for	example,	radar,	civic,	and	level	are
palindromes).	We’ll	call	this	recipe	palindrome_c3v0.



How	to	do	it…
Follow	the	steps	outlined	to	configure	UART	ports:

1.	 Create	a	project	named	palindrome;	use	the	RTE	manager	to	configure	the	board	as
we	did	for	addTwoNums_c3v0	folder,	in	the	Performing	arithemetic	operations	recipe.

2.	 Create	a	file	named	palindrome.c	and	copy	the	SystemClock_Config(void)
function	and	associated	boilerplate	from	a	previous	recipe.	Add	the	following
#include	statements:

#include	"stm32F4xx_hal.h"

#include	<stdio.h>

#include	<string.h>

#include	"Serial.h"	

#include	"cmsis_os.h"

3.	 Add	a	function	named	strRev	()	to	the	palindrome.c	file:

/*

	*	strRev	-	returns	reversed	a	string

	*******/

char	*	strRev(char	*str)

{

				int	i	=	strlen(str)-1,j=0;

				char	ch;

				while(i	>	j)

				{

								ch	=	str[i];

								str[i]=	str[j];

								str[j]	=	ch;

								i--;

								j++;

				}

				return	str;

}

4.	 Add	a	main	()	function	to	the	palindrome.c	file	and	add	this	file	to	the	project:

/*

	*	main

	*******/

int	main	(void)	{

		char	a[100],	b[100];

		

		HAL_Init	();			/*	Init	Hardware	Abstraction	Layer	*/

		SystemClock_Config	();											/*	Config	Clocks	*/

		SER_Init();

		for	(;;)	{

					printf("Enter	the	string	to	check	for	palindrome\n");

				scanf("%s",	a);

			

				strcpy(b,a);



				strRev(b);

				

				if	(strcmp(a,b)	==	0)

						printf("Entered	string	IS	a	palindrome.\n");

				else

						printf("Entered	string	IS	NOT	a	palindrome.\n");

		}

}

5.	 Remember	to	add	Retarget.c,	Serial.c	and	Serial.h	to	the	project.
6.	 Open	the	project	options	dialog,	click	the	Target	tab,	and	check	Use	MicrLIB.
7.	 Build,	download,	and	run	the	program.



How	it	works…
The	a	array	stores	the	string	that	is	entered.	The	string	is	copied	to	the	b	array	and	the
strrev()	function	is	called	to	reverse	it.	The	strcmp()	function	(defined	in	the	string.h
library)	is	used	to	check	whether	the	two	strings	match.	The	strrev()	function	copies	and
reverses	the	string	character	by	character	(remember	that	strings	are	terminated	with	a
NULL	character).

The	SER_PutChar()	function	declared	in	Serial.c	outputs	characters	by	writing	to	the
USART	Data	Register	(DR),	as	follows:

/*--------------------------------------------------------------

	*							SER_PutChar:		Write	a	character	to	Serial	Port

	*--------------------------------------------------------------*/

int32_t	SER_PutChar	(int32_t	ch)	{

#ifdef	__DBG_ITM

		int	i;

		ITM_SendChar	(ch	&	0xFF);

		for	(i	=	10000;	i;	i--);

#else

		while	(!(UART4->SR	&	0x0080));

		UART4->DR	=	(ch	&	0xFF);

#endif		

		return	(ch);

}

The	UART	data	register	is	referenced	by	a	pointer:

UART4->DR;

Note
Please	note	that	the	STM32F4xx	integrates	both	Universal	Synchronous/Asynchronous
Receiver	Transmitter	(USART)	and	Universal	Asynchronous	Receiver	Transmitter
(UART)	hardware.	USARTs	can	be	configured	to	operate	both	synchronously	and
asynchronously.	We	configure	a	UART	that	is	connected	to	the	9-pin	D-type	connector;
hence,	output	is	achieved	by	writing	to	UART4	rather	than	USARTx.

Once	we	have	written	to	the	data	register,	the	digital	value	is	output	serially,	one	bit	at	a
time,	by	the	hardware.	As	this	takes	considerably	longer	than	it	takes	to	load	data	in
parallel	(the	exact	time	taken	will	depend	on	the	baud	rate	chosen),	we	must	be	careful	not
to	load	the	DR	with	a	new	value	until	the	previous	one	has	been	successfully	transmitted.
The	previous	line	of	code	is	as	follows:

while	(	!(UART4->SR	&	0x0080)	)

		/*	empty	statement	*/	;

This	line	of	code	achieves	this	by	checking	bit	7	of	the	UART’s	Status	Register	(SR).
Repeatedly	reading	the	Status	Register	in	a	loop	is	called	polling	the	Status	Register	(or
spinning	on	the	Status	Register).	A	similar	situation	occurs	in	SER_GetChar	(),	but	here
we	poll	the	Status	Register	to	check	whether	a	character	has	been	received	(that	is,	a	bit-7



set),	as	follows:.

while	(	!(UART4->SR	&	0x0020)	)

		;

Polling	or	programmed	I/O	is	the	simplest	I/O	model	that	we	can	conceive	and	the
corresponding	empty	while	statements	are	known	as	busy-while	loops.	Programmed	I/O
operations	are	performed	in	the	main	thread	of	execution,	so	the	busy-while	loops	prevent
the	CPU	from	doing	any	useful	work.	If	the	program	is	simple,	then	this	is	not	too
inconvenient,	but	in	most	cases,	we	must	look	to	other	more	efficient	I/O	programming
models,	such	as	interrupt-driven	I/O,	and	Direct	Memory	Access.

A	flexible	device	driver	really	needs	to	support	all	three	I/O	models,	that	is,	programmed
I/O,	interrupt-driven	I/O,	and	DMA	I/O.	The	USART	device	driver	that	is	shipped	with
uVision	5	does	exactly	this.	However,	configuring	this	code	is	challenging,	especially	for
novice	programmers,	so	for	the	time	being	we’ll	develop	our	own	simple	drivers	to	gain
some	understanding	of	the	mechanisms	before	migrating	to	ARM’s	library.

Embedded	processors	use	serial	ports	to	communicate	with	Data	Terminal	Equipment
(DTE)	and	Data	Communications	Equipment	(DCE)	using	the	RS232	standard.
Previous	recipes,	such	as	addTwoNums_c3v0,	use	RS232	to	communicate	with	a	PC
running	PuTTY	to	emulate	a	DTE.	The	RS232	signals	are	represented	by	voltage	levels
with	respect	to	a	system	common	(power	/	logic	ground).	The	idle	state	(MARK)	has	the
signal-level	negative	with	respect	to	common,	and	the	active	state	(SPACE)	has	the	signal-
level	positive	with	respect	to	common.	RS232	transmits	data	serially,	as	shown	in	the
following	figure:

Serial	data	is	transmitted	and	received	in	normal	USART	mode	as	frames	comprising	the
following:

An	Idle	Line	prior	to	transmission	or	reception
A	start	bit



A	data	word	(7,	8,	or	9	bits),	the	least	significant	bit	first
0.5,	1,	1.5,	or	2	stop	bits,	indicating	that	the	frame	is	complete

The	STM400Fxxx	USART	that	is	described	in	STM’s	Reference	manual	RM00090	uses	a
fractional	baud	rate	generator	with	a	12-bit	mantissa	and	4-bit	fraction.	The	USART
employs	the	following:

A	status	register	(USART_SR)
Data	Register	(USART_DR)
A	baud	rate	register	(USART_BRR)—12-bit	mantissa	and	4-bit	fraction
A	Guardtime	Register	(USART_GTPR)	in	case	of	Smartcard	mode

When	data	is	transmitted	asynchronously	(without	a	shared	common	clock),	the	receiver
and	transmitter	are	synchronized	by	embedding	timing	information	in	the	data	signal	by
appending	a	“start”	bit.	The	seven,	eight,	or	nine	data	bits	are	appended	after	the	start	bit,	a
parity	bit	is	added	to	detect	errors,	and	the	packet	is	terminated	by	one	(or	two)	stop	bits.
The	transmission	rate	(time	allocated	for	each	bit)	is	determined	by	the	baud	rate.

Configuring	the	USART	involves	writing	appropriate	values	to	the	USART	registers
#ifdef	and	#else	are	preprocessor	directives	that	facilitate	conditional	compilation):

/*--------------------------------------------------------------

	*							SER_Init:		Initialize	Serial	Interface

	*--------------------------------------------------------------*/

void	SER_Init	(void)	{

#ifdef	__DBG_ITM		ITM_RxBuffer	=	ITM_RXBUFFER_EMPTY;

#else		

		RCC->APB1ENR		|=	(1UL	<<	19);										/*	Enable	USART4	clock	*/

		RCC->APB2ENR		|=	(1UL	<<		0);												/*	Enable	AFIO	clock	*/

		RCC->AHB1ENR		|=	(1UL	<<		2);											/*	Enable	GPIOC	clock	*/

		GPIOC->MODER		&=	0xFF0FFFFF;

		GPIOC->MODER		|=	0x00A00000;

		GPIOC->AFR[1]	|=	0x00008800;												/*	PC10	UART4_Tx,	

																																												PC11	UART4_Rx	(AF8)	*/

		/*	Configure	UART4:	115200	baud	@	42MHz,	

																						8	bits,	1	stop	bit,	no	parity	*/

		UART4->BRR	=	(22	<<	4)	|	12;

		UART4->CR3	=	0x0000;

		UART4->CR2	=	0x0000;

		UART4->CR1	=	0x200C;

#endif

}

Writing	to	the	UART4->BRR	baud	rate	register	sets	the	baud	rate.	STM’s	Reference	manual
RM00090	describes	how	to	configure	the	Serial	Ports.	The	baud	rate	is	given	by	

.

Where	f_clk	is	the	clock	frequency	of	the	USART	clock,	and	USART_DIV	is	a	16-bit
unsigned	fixed-point	number	with	a	12-bit	mantissa	and	4-bit	fraction.	In	our	case,	we



need	a	baud	of	115200	and	the	APB1	domain	clock	is	48	MHz.	Hence,	missing	f_clk
again	defined	as	eqn.	object.	=	22.78610	=	0000000000010110.11002,	so	DIV_Mantissa
=	2210,	and	DIV_Fraction	=	12/16.	Hence,	referring	to	the	description	of	the	Baud	Rate
Register,	we	have	the	following:

		UART4->BRR	=	(22	<<	4)	|	12;

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DIV_Mantissa(11:0) DIV_Fraction(3:0)

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

USART	Control	Register	1	provides	some	USART	control	functions:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RESERVED

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

OVER8 RESER-VED UE M WAKE PCE PS PEIE TXEIE TCIE RXNEIE IDLEIE TE RE RWU SBK

rw res rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits	2,	3,	and	12	are	set	when	0x200C	is	written	to	Control	Register	1	(CR1);	this	enables
the	USART	(bit-12)	and	also	enables	the	USART	transmitter	(bit-3)	receiver	(bit-2)
functions.	Bits	15,	12,	and	9	are	clear.	This	selects	oversampling	by	16	(bit-15),	8	data	bits
(bit-12),	and	even	parity	(bit-9).	Bits	12:13	of	CR2	are	clear;	hence,	we	have	1	stop-bit.
Control	register	3	functions	are	unused.

Other	statements	in	SER_Init()	connect	appropriate	clocks	that	are	sourced	from	the	Real
Time	Clock	Control	(RCC)	peripheral	and	configure	the	GPIO	to	provide	input	and
output	for	the	USART	by	means	of	the	Alternate	Function	logic.	Please	note	that	pins	are
an	expensive	microcontroller	commodity,	so	GPIO	pins	are	programmed	to	connect	to	a
range	of	peripherals.	We	discuss	GPIO	Alternate	Function	in	more	detail	in	Chapter	4,
Programming	I/O.





Handling	interrupts
This	section	illustrates	an	approach	that	improves	on	polling.	We	replace	the	busy-wait
loop	and	instead	configure	the	USART	peripheral	to	generate	an	interrupt	signal	when	a
new	character	is	received	by	the	input	data	register	(IDR).	The	interrupt	signal	causes	a
special	function,	known	as	an	interrupt	service	routine	(ISR),	to	be	called,	and	this,	in
turn,	reads	the	IDR	and	clears	the	interrupt	signal.	We	illustrate	this	approach	by	a	simple
recipe	called	helloISR_c3v0.



Getting	ready
Two	small	changes	to	SER_Init()	are	needed	to	configure	UART4	so	that	interrupts	are
generated	when	a	character	is	received.	The	value	written	to	CR1	is	changed	from	0x200C
to	0x202C,	thereby	setting	bit-5	(RXNEIE),	and	the	Nested	Vectored	Interrupt	Controller
(the	NVIC	is	an	ARM	interrupt-dedicated	peripheral	close	to	the	Cortex-M4	processor)	is
configured	for	UART4	as	follows:

/*--------------------------------------------------------------

	*							SER_Init:		Initialize	Serial	Interface	for	interrupts

	*--------------------------------------------------------------*/

void	SER_Init	(void)	{

		/*	as	before…	*/

		

		/*	Configure	UART4:	115200	baud	@	42MHz,	

																																			8	bits,	

																															1	stop	bit,	no	parity	*/

		UART4->BRR	=	(22	<<	4)	|	12;

		UART4->CR3	=	0x0000;

		UART4->CR2	=	0x0000;

		UART4->CR1	=	0x202C;

		

		/*	Enable	Interrrupts	*/

		NVIC_EnableIRQ(UART4_IRQn);

#endif

}



How	to	do	it…
Follow	these	steps	to	handle	interrupts.

1.	 Create	a	new	folder	(helloISR_c3v0)	and	within	it	a	new	project	named	helloISR;
use	the	RTE	manager	to	configure	the	project	as	we	did	for	all	the	previous	projects
that	use	the	serial	port.

2.	 Create	a	file	named	helloISR.c	and	add	the	boilerplate	code	to	configure	clocks,	and
so	on.	Add	this	file	to	the	project.

3.	 Add	a	function	to	handle	interrupts	from	UART4,	as	follows:

/********************************************************

	*	UART4_IRQHandler

	*

**********************************************************/

void	UART4_IRQHandler	(void)	{

		volatile	unsigned	int	IIR;

		volatile	unsigned	char	c;

				

		IIR	=	UART4->SR;

		if	(IIR	&	USART_FLAG_RXNE)	{	//	read	interrupt

				c	=	UART4->DR;

				printf("Interrupt!	You	pressed:	%c	\r\n",	c);

				UART4->SR	&=	~USART_FLAG_RXNE;	//	clear	interrupt

		}

		else

				printf("Interrupt	Error!\n");

}

4.	 Add	a	main	()	function:

/*

*	main	function

********/

int	main	(void)	{

		

		HAL_Init	();			/*	Init	Hardware	Abstraction	Layer	*/

		SystemClock_Config	();											/*	Config	Clocks	*/

		

		SER_Init();

		printf	("Hello	ISR	I/O	Example\r\n");

		printf	("Pressing	a	key	generates	an	interupt\r\n");

		

		for	(;;)	{																								/*	Loop	forever	*/

				/*	Nothing	to	do	here	*/

		}

}

5.	 Remember	to	modify	the	SER_init()	function,	as	described	previously.
6.	 Build,	download,	and	run	the	program.	Observe	the	response	to	keyboard	strokes

(illustrated	in	the	next	screenshot).	Please	note	that	when	we	test	the	code,	it	is	best	to
configure	PuTTY	so	that	characters	are	not	echoed	to	the	terminal	(as	the	ISR	echoes
the	characters).





How	it	works…
Interrupts	allow	us	to	eliminate	busy-while	loops	by	providing	a	mechanism	for	the
peripheral	to	initiate	reads	and	writes	to	its	I/O	registers.	It	does	this	by	sending	a	signal
directly	to	the	central	processing	unit	(CPU)	via	the	Nested	Vectored	Interrupt
Controller	(NVIC).	This	signal,	called	an	interrupt,	is	automatically	checked	after	each
instruction	is	executed	by	the	CPU,	and,	if	active,	the	processor	responds	by	executing	a
special	function,	known	as	an	Interrupt	Service	Routine	(ISR),	that	includes	the	read	or
write	statement.	Early	processors	were	designed	with	only	one	interrupt	signal,	and
several	devices	would	be	connected	to	this	line	using	wired	OR	logic.	In	this	case,	when
the	interrupt	occurred,	the	processor	first	needed	to	establish	which	device	generated	it
before	it	could	be	serviced.	The	ARM	Cortex	employs	a	NVIC	to	manage	up	to	256
interrupts,	each	having	a	unique	priority.	This	enables	each	device	to	call	a	unique	ISR
that	is	tailored	to	provide	it	with	the	service	it	needs.	System	events	(for	example,	reset)
and	errors	use	exactly	the	same	mechanism	as	interrupts	but	are	called	exceptions	(to
emphasize	that	they	arise	due	to	unusual	system	events).	Both	the	interrupt	and	exception
priorities	are	processor-specific	and	defined	in	stm32F407xx.h.	The	names	of	the	ISRs	are
defined	in	the	vector	interrupt	table,	given	in	the	startup_stm32f407xx.s	file	(the	file
extension,	.s,	indicates	that	this	is	an	assembly	language	source	file).	Although	interrupts
solve	the	busy-while	problem,	they	rely	on	the	processor	to	read	and	write	data	to
peripherals.	While	this	is	fine	for	a	small	number	of	data	bytes,	however,	some	peripherals
(for	example,	Memory	systems)	handle	blocks	of	data.	So,	we	may	find	that	a	large	chunk
of	the	CPU	time	is	consumed	moving	data	rather	than	performing	useful	work.	Direct
Memory	Access	(DMA)	solves	this	problem	by	enabling	data	to	be	moved	directly
between	peripherals	and	memory.	In	this	case,	the	data	transfers	are	managed	by	a	DMA
controller,	thereby	leaving	the	CPU	free	to	execute	other	more	useful	instructions.

Inspecting	the	interrupt	vector	table	that	is	defined	in	startup_stm32f4xx.s	allows	us	to
identify	the	UART4	interrupt	vector	(that	is	UART4_IRQHandler).	We	must	define	a
function	named	UART_IRQHandler	to	handle	the	interrupts.	This	ISR	must	read	the	USART
status	register	(SR)	and	test	the	receive	register	not	empty	(RXNE)	bit	to	confirm	that	the
interrupt	was	generated	by	the	port	(if	not,	an	error	is	indicated).	Then	the	data	register	is
read,	echoed	to	the	console	terminal	(PuTTY),	and	the	interrupt	is	cleared	(by	writing	zero
to	the	RXNE).

The	SER_GetChar()	function	in	the	retarget.c	source	file	will	need	to	be	modified	if	we
wish	to	use	stdio	library	functions,	such	as	scanf(),	and	so	on.	The	best	strategy	would
be	to	arrange	for	the	ISR	to	write	received	characters	to	a	buffer	that	could	subsequently
be	read	by	SER_GetChar().



There’s	more…
Interrupts	provide	a	mechanism	that	allows	the	processor	to	multitask.	Multitasking	is	a
technique	where	a	single	processor	divides	its	time	between	several	instruction	streams.
This	creates	an	illusion	of	parallelism	as,	to	the	user,	it	appears	that	different	programs	are
executed	concurrently	when,	in	fact,	they	are	not.	Our	programs	that	use	ISR’s	have	two
threads	of	execution,	but	later	we	will	write	programs	employing	a	real-time	operating
system	kernel,	and	these	may	involve	several	threads.	The	differences	between	how
normal	threads	and	ISR	threads	are	used	have	motivated	processor	designers	to	include
features	that	enable	multithreaded	applications	to	be	robust	and	recover	from	errors.
Exceptions	that	are	generated	automatically	when	an	error	occurs	are	handled	using
exactly	the	same	mechanism	as	interrupts	and	the	term	exception	is	generally	used	to
describe	either.	When	an	error	occurs,	the	strategy	to	recover	from	the	exception	may	well
involve	reading/writing	to	processor	registers	that	normal	threads	cannot	access.

The	Cortex-M4	processor	operates	in	one	of	two	modes.	During	the	execution	of	the	main
program,	the	processor	is	in	thread	mode,	and	during	execution	of	an	exception	handler	or
ISR,	the	processor	is	in	handler	mode.	The	two	modes	are	distinguished	by	bits	0:8	of	the
PSR.	In	thread	mode,	bits	0:8	are	zero,	and	in	handler	mode	they	are	set	to	a	number	that
identifies	the	exception	type.	As	there	are	8	bits,	then	256	types	of	exceptions	can	be
identified.	When	an	exception	is	recognized	the	processor	responds	as	follows:

1.	 The	contents	of	processor	registers	R0:R3,	R12,	the	return	address,	PSR,	and	link
register	(LR)	are	pushed	to	the	active	stack.

2.	 The	processor	identifies	the	exception	number	and	uses	this	(offset)	to	access	the
interrupt	vector	table	and	locate	the	address	of	the	exception	handler,	which	is	loaded
into	the	program	counter	(PC).

3.	 The	LR	is	loaded	with	a	value	that	represents	the	execution	mode	of	the	processor
(that	is,	thread	or	handler)	prior	to	the	exception	having	occurred.

4.	 The	processor	switches	to	handler	mode	and	begins	execution.

When	the	handler	finishes,	the	return	sequence	pops	the	eight	words	from	the	stack	and
restores	them	to	registers	R0:R3,	R12,	LR,	and	PSR.	It	also	loads	the	PC	with	the	return
address.

Access	to	special	registers	and	system	resources	is	determined	by	the	privilege	level	of	the
processor.	There	are	two	levels,	user	and	privileged.	When	in	handler	mode	the	processor
is	always	in	a	privileged	access	level	and	can	access	all	registers	and	memory	resources.
In	thread	mode,	the	processor	is	normally	in	user	access	privilege	level	and	access	to	the
System	Control	Space,	an	area	of	memory	used	to	configure	registers	and	debugging
components,	and	access	to	some	special	registers	is	blocked.	However,	it	is	possible	to
switch	from	handler	mode	to	user	mode	and	maintain	privileged	access	level,	but	the
scenarios	where	this	would	be	necessary	are	few.	For	most	applications,	the	simple	model
of	thread	and	handler	modes	that	is	shown	as	follows	will	suffice.	After	a	reset,	the
processor	is	working	in	privilege	mode	in	order	to	access	all	necessary	resources.







Using	timers	to	create	a	digital	clock
A	digital	clock	application	provides	a	good	platform	to	illustrate	the	components	that	we
discussed	in	this	chapter.	We’ll	use	PuTTY	to	allow	the	user	to	set	the	time	and	then	call
HAL_GetTick	()	to	provide	a	time-base	for	our	digital	clock	that	is	displayed	on	the
GLCD.	We’ll	call	this	recipe	ticToc_c3v0.



How	to	do	it…
Follow	the	following	steps	to	create	a	digital	clock:

1.	 Create	a	new	folder	for	the	ticToc_c3v0	recipe	and,	within	it,	a	new	project	(ticToc)
and	use	the	RTE	manager	to	select	board	support	for	Graphic	LCD.

2.	 Copy	the	retarget.c,	serial.c	and	serial.h	files	to	the	project	folder	and	add
them	to	the	project.

3.	 Define	a	new	type	(time_t)	in	the	ticToc.h	header	file.	Please	note	that	we	could
declare	each	variable	(hours,	minutes,	seconds,	and	so	on)	as	separate	unsigned
integers,	but	it	is	better	practice	to	group	them	together	as	a	structured	type	named
time_t:

#ifndef	__TICTOC_H

#define	__TICTOC_H

typedef	struct	{						/*	structure	of	the	clock	record	*/

		unsigned	char				hour;									/*	hour	*/

		unsigned	char					min;																					/*	minute	*/

		unsigned	char					sec;																					/*	second	*/

}	time_t;

#endif	/*	__TICTOC_H		*/

4.	 Create	a	new	file	named	ticToc.c	,	add	the	necessary	boilerplate	and	#include
statements,	and	enter	the	following	main	()	function:

/*

	*	main

	*******/

int	main	(void)	{

		

		time_t	time;

		int32_t	input;

		char	buffer[128];

		

		uint32_t	tic,	toc	=	0;	

		uint32_t	elapsed_t;

		

		HAL_Init	();			/*	Init	Hardware	Abstraction	Layer	*/

		SystemClock_Config	();											/*	Config	Clocks	*/	

				

		SER_Init();

		GLCD_Initialize();

		GLCD_SetBackgroundColor	(GLCD_COLOR_WHITE);

		GLCD_ClearScreen	();												/*	clear	the	GLCD	*/

		GLCD_SetBackgroundColor	(GLCD_COLOR_BLUE);

		GLCD_SetForegroundColor	(GLCD_COLOR_WHITE);

		GLCD_SetFont	(&GLCD_Font_16x24);

		GLCD_DrawString	(0,	0*24,	"	CORTEX-M4	COOKBOOK	");

		GLCD_DrawString	(0,	1*24,	"		PACKT	Publishing		");

		GLCD_SetBackgroundColor	(GLCD_COLOR_WHITE);			

		GLCD_SetForegroundColor	(GLCD_COLOR_BLACK);



		for	(;;)	{																								/*	Loop	forever	*/

		}

}

5.	 Add	ticToc.c	to	the	project.	Build,	download,	and	test	this.	Please	note	that	the
compiler	may	issue	some	warnings	as	we	have	declared	some	unused	variables.

6.	 Add	the	following	code	fragment	immediately	before	the	for	statement:

		/*	Set	the	current	time	using	PuTTY	*/

		printf	("Clock	Example\n");

		printf	("Set	Hours:	");

		scanf("%d",	&input);	time.hour	=	input;

		printf	("Set	Minutes:	");

		scanf("%d",	&input);	time.min	=	input;

		printf	("Set	Seconds:	");

		scanf("%d",	&input);	time.sec	=	input;

		

		/*	elapsed_t	is	elapsed	(10	*	msec)	since	midnight	*/

		elapsed_t	=	

								time.sec*100+time.min*60*100+time.hour*60*60*100;

7.	 Build,	download,	and	test	this.
8.	 Add	the	following	code	fragment	within	the	for	loop:

				for	(;;)	{																								/*	Loop	forever	*/	

						tic	=	HAL_GetTick()/10;					

						if	(tic	!=	toc)	{																	/*	10	ms	update	*/

								toc	=	tic;

								time.sec	=	(elapsed_t/100)%60;			/*	update	time	*/

							time.min	=	(elapsed_t/6000)%60;

							time.hour	=	(elapsed_t/360000)%24;

								/*	Update	Display	*/

								sprintf(buffer,	"%d	:	%d	:	%d",	time.hour,	

																																time.min,	time.sec);

								GLCD_DrawString	(4*16,	3*24,	"													");

							GLCD_DrawString	(4*16,	3*24,	buffer);				

						

								elapsed_t	=	(elapsed_t+1)%DAY;

						}

				}

9.	 Remember	to	define	the	constant	DAY	as	follows:

#define	DAY	8640000;								/*	10	ms	ticks	in	a	day	*/

10.	 Compile,	download,	and	run	the	program.	The	following	below	shows	the	GLCD
screen:





How	it	works…
Once	we	have	declared	a	variable	of	type	time_t,	the	fields	(hours,	min,	sec)	of	the
struct	can	be	accessed	using	the	dot	operator	(.)	or	the	arrow	operator	(->).	The	dot
operator	accesses	the	structure	field	via	the	structure	variable	name,	and	the	arrow
operator	accesses	it	via	a	pointer	to	the	structure.	We	already	used	the	arrow	operator	to
access	fields	of	structs	that	were	used	to	represent	peripheral	registers.	In	this	case,	the
arrow	operator	was	used	because	the	variable	that	was	used	to	represent	the	struct
(GPIOC,	RCC,	UART4	etc.)	defines	a	pointer.	As	our	main()	function	declares	a	variable
(time)	as	time_t	time;,	we	access	the	fields	as	time.hours,	and	so	on.

The	function	named	HAL_GetTick	(	)	returns	a	value	that	is	incremented	every
millisecond.	We	use	this	timebase	to	increment	a	counter	variable	named	elapsed_t,
which	is	initialized	by	the	user’s	console	(PuTTY).	The	tic	and	toc	variables	are	updated
to	ensure	that	the	display	only	needs	to	be	updated	every	100	ms.	We	call	the	function
sprint()	(declared	in	stdio.h)	to	format	a	string	(stored	in	buffer	[128])	representing	the
current	time	and	write	this	to	the	Graphic	LCD	in	a	similar	way	to	what	was	illustrated	in
this	recipe,	debugADC_c2v0.





Chapter	4.	Assembly	Language
Programming
In	this	chapter,	we	will	cover	the	following:

Writing	Cortex-M4	assembly	language
Passing	parameters	between	C	and	the	assembly	language
Handling	interrupts	in	assembly	language
Implementing	a	jump	table
Debugging	assembly	language



Introduction
This	chapter	explains	how	to	write	functions	in	assembly	language.	Assembly	language	is
a	low-level	programming	language	that	is	specific	to	a	particular	computer	architecture.
So,	unlike	programs	written	in	high-level	languages,	programs	written	in	assembly
language	cannot	be	easily	ported	to	other	hardware	architectures.	Assembly	language
programs	are	converted	into	object	code	by	a	program	called	an	assembler.	In	practice,
assembly	language	is	used	only	rarely	and	most	embedded	software	is	written	in	a	high-
level	language,	such	as	C.	Assembly	language	is	only	used	when	the	programmer	needs
precise	control	over	the	machine	architecture	and	needs	to	access	specific	registers	or
when	execution	time	is	an	important	consideration.	Such	occasions	typically	occur	during
the	following:

Initializing	the	system
Servicing	I/O	devices
Handling	interrupts

Assembly	language	programmers	need	a	model	of	the	computer	architecture	to	enable
them	to	write	programs.	This	so	called	programmers’	model	identifies	the	registers,
memory	model,	and	instruction	set	for	a	particular	machine	architecture.	The	Cortex-M4
programmers’	model	is	described	in	the	ARMv7-M	Architecture	Reference	Manual	(please
note	that	ARM	restricts	access	to	this	document,	but	copies	are	available	via	third	parties).
Chapter	A2	identifies	13	general-purpose	32-bit	registers	(R0-R12)	and	three	additional
special	registers	(R13-R15)	comprising	Stack	Pointer	(SP),	Link	Register	(LR),	and
Program	Counter	(PC).	Chapter	A3	describes	a	flat	address	space	that	is	232	bytes	(4	GB)
in	size,	and	it	identifies	specific	regions	that	are	reserved	for	code,	data,	and	memory-
mapped	I/O	devices.	The	large	number	of	instructions	that	are	supported	by	the	ARMv7-
M	architecture	makes	the	prospect	of	writing	an	assembly	language	program	quite
daunting.	A	good	strategy	is	to	index	instructions	according	to	functionality	(for	example,
branch,	data	processing,	and	data	movement	(load/store,	and	so	on)	as	presented	in
Chapter	A4	of	the	reference	manual.

The	architecture	supports	a	combination	of	16-bit	(Thumb)	and	32-bit	(ARM)	instruction
formats	in	an	instruction	set	that	is	known	as	Thumb-2	technology.	ARM’s	Unified
Assembler	Language	(UAL)	was	developed	to	support	both	16-bit	and	32-bit
instructions.	We	can	specify	a	32-bit	instruction	format	using	the	.W	(wide)	suffix	or	the
16-bit	format	using	the	.N	(narrow)	suffix.	If	we	omit	the	suffix,	then	the	assembler
chooses	for	us	based	on	other	constraints.	For	example,	if	the	instruction	references	a	high
register	(R8-R13),	then	a	32-bit	variant	must	be	used	as	most	16-bit	instructions	can	only
reference	R0-R7.	Instructions	may	also	include	other	optional	suffixes	that	identify	the
following:

Status	register	flags	in	the	Program	Status	Register	(PSR)	{cond}	that	determine
execution	(such	as	for	branch	instructions)
If	the	condition	flags	are	updated	{S}
The	element	size	specified	either	as	unsigned	byte	{B},	signed	byte	{SB},	unsigned



half-word	{H},	signed	half-word	{SH}	or	word	(default)

The	startup_stm32f407xx.s	file	that	we	include	in	all	our	projects	is	written	in	assembly
language	(conventionally,	ARM	file	extensions,	.s	and	.a,	identify	assembly	language
source	code	files).	This	is	because	one	of	its	tasks	is	to	set	the	Stack	Pointer	(SP)	and
writing	to	a	specific	register	is	impossible	in	C.	Assembly	language	uses	a	mnemonic	to
represent	each	machine	instruction.	Other	instructions	called	pseudo-instructions	or
assembler	directives	give	commands	to	the	assembler	itself.	Each	line	of	the	program
combines	instruction	and	pseudo-instruction	mnemonics	with	operands	and	labels	to	carry
out	each	program	step.	Labels	may	be	included	to	act	as	symbolic	references	that	are	used
to	refer	to	memory	locations,	and	so	they	save	the	programmer	the	tedious	job	of	keeping
track	of	addresses.	An	assembly	language	program	is	written	so	that	labels,	mnemonics,
operands,	and	comments	are	arranged	neatly	in	tabulated	columns,	that	is,

[label]				[mnemonic]				[operand(s)]								;[comment]

Each	column	must	be	separated	by	at	least	one	whitespace	character,	and	comments	are
preceded	by	a	semicolon.	Most	assemblers	are	known	as	two	pass	because	they	parse	the
source	code	twice,	first	to	build	a	table	of	symbolic	references	and	associated	addresses
(called	the	symbol	table)	and	again	to	produce	the	object	code.





Writing	Cortex-M4	assembly	language
Before	we	start	to	write	an	assembly	language	subroutine,	we	need	an	idea	of	what	the
function	has	to	achieve.	The	best	way	to	specify	this	is	to	first	write	the	function	in	a	high-
level	language,	such	as	C,	and	then	translate	the	C	code	into	assembly	language	line	by
line.	Some	experienced	assembly	language	programmers	argue	that	this	is	inefficient,	but
the	technique	produces	well-documented	code	that	can	be	optimized	in	further	iterations
of	the	design.



Getting	ready
To	translate	the	C	code,	we	need	to	be	familiar	with	both	the	instruction	set	and	the
addressing	modes	that	are	used	by	the	Cortex-M4.	Details	of	the	instruction	set	can	be
found	in	ARM’s	Architecture	Reference	Manual	and	also	in	the	ARM	Cortex-M4	Generic
User	Guide	(http://infocenter.arm.com/).	Addressing	modes	are	fundamental	to	a	general
understanding	of	computer	architecture,	but	they	are	of	practical	interest	to	compiler
writers	and	those	writing	assembly	language.	The	following	paragraph	provides	a	very
brief	introduction.

The	addressing	mode	describes	the	mechanism	that	an	instruction	uses	to	access	its
operands.	In	RISC	architectures,	such	as	the	ARM	Cortex,	most	instructions	reference
operands	stored	in	registers	directly	(that	is,	register	direct	addressing).	However,	load	and
store	instructions	may	reference	a	register	value	that	is	interpreted	as	an	address	in
memory	that	contains	the	operand	(that	is,	a	pointer	to	the	operand),	so-called	register
indirect	addressing.	Additionally,	if	the	value	is	interpreted	as	a	pointer,	then	the	effective
address	may	be	formed	by	adding	an	additional	value	(called	the	offset).	The	offset	value
may	be	specified	as	a	constant	and	stored	as	part	of	the	instruction,	a	technique	known	as
immediate	addressing,	or	stored	in	another	register	called	an	index	register.	The	latter
case,	known	as	indexed	addressing,	is	particularly	efficient	to	access	values	stored	in	data
structures,	such	as	arrays,	and	structures.	These	addressing	modes	are	summarized	in	the
following	table,	and	further	information	on	additional	addressing	modes	that	are	supported
by	the	ARM	Cortex-M4	can	be	found	in	Chapter	A6	of	the	ARMv7-M	Architecture
Reference	Manual.

Syntax Addressing	Mode Description

<Rn> Direct This	is	the	operand	that	is	stored	in	the	register

[<Rn>] Indirect This	register	holds	a	pointer	to	the	operand

[<Rn>,
<offset>]

Offset/Indexed
Addressing

This	is	the	effective	address	formed	by	adding	the	contents	of	base	register	<Rn>	+
<offset>.	Offset	may	be	the	following:

An	immediate	constant,	for	example,	<imm8>	or	<imm12>
An	index	register	<Rm>

Consider	translating	the	C	code	const	declaration	into	assembly	language,	as	follows:

const	uint32_t	delay	=	10000;

ARM’s	Unified	Assembler	Language	(described	in	the	ARM	compiler	toolchain
assembler	reference	http://infocenter.arm.com/)	makes	translating	simple	constant	variable
declarations	very	simple	by	providing	a	pseudo-instruction	LDR	that	automatically
produces	appropriate	ARM	instructions	to	complete	this	task.	In	this	case,	assuming	that
we	choose	to	store	variable	num_ticks	in	R0,	then	we	can	write	the	following:

;;	Translating	a	const	declaration

LDR	R0,	=10000				;	const	uint32_t	num_ticks	=	10000;				

http://infocenter.arm.com/
http://infocenter.arm.com/


The	ARM	assembler	will	convert	this	into	an	appropriate	load	instruction	to	move	the
required	data	value	to	the	register.	Let’s	suppose	that	we	need	to	translate	a	variable
declaration	that	doesn’t	include	an	assignment,	as	follows:

uint32_t	cnt;

This	doesn’t	require	writing	any	code;	we	simply	need	to	make	a	note	of	the	register	used
to	store	the	data:

;;	Translating	a	variable	declaration

;R1	<-	cnt												;	uint32_t	count;

We	can	then	use	LDR	when	a	value	is	assigned:

;;	Translating	an	assignment	statement

LDR	R1,	=0								;	count	=	0;

We	will	now	illustrate	the	translation	of	a	whole	function	by	considering	the	simple	delay
used	in	the	helloBlinky_c2v2	recipe	that	was	introduced	in	Chapter	2,	C	Language
Programming.	We’ll	call	this	recipe	asmBlinky_c4v0.



How	to	do	it…
1.	 Create	a	new	project	(in	a	new	folder)	called	asmBlinky.	Use	the	same	RTE	as

helloBlinky_c2v2	from	the	Writing	a	function	recipe	in	Chapter	2,	C	Language
Programming).

2.	 Make	a	copy	of	helloBlinky.c	(the	helloBlinky_c2v2	folder	from	the	Writing	a
function	recipe	in	Chapter	2,	C	Language	Programming.)	and	rename	it
asmBlinky.c.

3.	 Replace	the	comment	at	the	start	of	the	file	with	something	more	appropriate,	let’s
take	the	following	example:

/*--------------------------------------------------

	*	Recipe:		asmBlinky_c4v0

	*	Name:				asmBlinky.c

	*	Purpose:	Very	Simple	LED	Flasher	using	

	*										Assembly	Language	delay	function

	*--------------------------------------------------

	*

	*	Modification	History

	*	17.03.14	Created

	*	02.12.15	Updated	

	*	(uVision5	v5.17+STM32F4xx_DFP2.6.0)

	*

	*	Dr	Mark	Fisher,	CMP,	UEA,	Norwich,	UK

	*--------------------------------------------------*/

4.	 Declare	an	external	function	called	delay	():

/*	Function	Prototype	*/

extern	void	delay(void);										/*	asm	subroutine	*/

5.	 Delete	the	C	function	named	delay	()	defined	after	main	()	(a	legacy	of
helloBlinky.c).

6.	 Add	asmBlinky.c	to	the	project.
7.	 Create	a	new	file,	enter	the	following	assembly	language	code,	and	save	the	file	as

delay.s.	Please	note	that	the	.s	file	extension	is	reserved	for	assembly	language
source	code	files:

;******************************************************;

;*	delay:	Very	simple	assembly	language	delay	routine	*;

;*																																																				*;

;*	Dr.	Mark	Fisher,	CMP,	UEA,	Norwich,	UK.												*;

;*	Last	updated	19.03.14																														*;

;******************************************************;

								AREA				example,	CODE,	READONLY

								EXPORT	delay						;

delay																					;	void	delay(void)	{

;R0	<-	num_ticks										;			uint32_t	num_ticks	

															

								LDR	R0,	=10000000	;

;R1	<-	cnt																;			uint32_t	cnt;

								LDR	R1,	=0							;			for	(cnt=0;																																			

cnt!=<num_ticks;	cnt++)	



for					CMP	R0,	R1							;

								BEQ	forEnd							;					/*	empty	statement	*/	;

								ADD	R1,	#1							;

								BAL	for										;

forEnd																			;	}												

								BX	lr												;

								END														;

8.	 Add	delay.s	to	the	project.
9.	 Build,	download,	and	run	the	program.



How	it	works…
The	name	of	the	function	translates	to	a	label	that	acts	as	a	pseudonym	for	the	address	of
the	start	of	the	function.	The	variables	are	stored	in	R0	and	R1	and	assigned	using	LDR
pseudo-instruction.	R1	is	incremented	by	adding	an	immediate	constant	(the	immediate
addressing	mode	is	identified	using	#)	to	R1,	the	result	is	stored	in	R1.	Its	value	is	then
compared	to	R0.	The	compare	instruction	subtracts	R1	and	R0	and	sets	the	PSR	flags	but
does	not	store	the	result	of	the	operation.	The	conditional	branch	not	equal	(BNE)	tests	the
zero	flag	and	loads	the	program	counter	(PC)	with	the	address	of	the	label	for	if	the	flag	is
not	set;	otherwise,	the	program	continues.

Programs	often	combine	both	C	and	assembly	language	functions,	also	known	as
subroutines.	The	assembly	language	code	is	written	in	a	separate	file	that	is	read	by	the
assembler.	The	main	output	produced	by	assembling	an	input	assembly	language	source
file	is	the	translation	of	that	file	into	an	object	file	in	Executable	and	Linking	Format
(ELF).	ELF	files	produced	by	the	assembler	are	relocatable	files	that	hold	code	and/or
data.	The	term	relocatable	means	that	all	variables	and	branch	targets	are	PC-relative,	and
so	the	code	can	be	loaded	anywhere	in	memory	and	executed.	Relocatable	ELF	files
produced	by	the	assembler	comprise	of	the	following:

An	ELF	header
A	Section	header	table
Sections

Sections	are	the	smallest	independent,	named,	and	indivisible	units	of	code	or	data	that	are
manipulated	by	the	linker.	The	AREA	assembler	directive	is	used	to	subdivide	our	assembly
language	source	file	into	ELF	sections.	Normally,	we	need	at	least	two	sections:	one	for
program	code,	and	another	for	data.	There	are	two	reasons	for	this.	Firstly,	some
applications	may	store	executable	code	in	read-only	memory	(ROM),	but	variables	need	to
be	stored	in	read-write	memory	(RAM).	Secondly,	as	the	ARM	Cortex-M4	uses	a	Harvard
architecture	model	(that	is,	separate	program	and	data	memories)	there	is	a	considerable
performance	advantage	in	storing	variables	as	data	rather	than	code	(even	though	both
memories	are	implemented	as	nonvolatile	RAM).	As	the	examples	we	will	investigate	are
not	optimized	for	performance,	our	code	and	data	can	share	the	same	section.	Every
program	that	includes	assembly	language	must	have	at	least	one	AREA	directive
(startup_stm32f407xx.s	includes	several).

As	the	delay	assembly	language	subroutine	is	defined	in	another	source	file,	then	in	order
to	call	it	from	the	main	C	function,	we	need	to	declare	delay()	as	an	external	function.
The	name	of	the	function	resolves	to	the	entry	point	in	our	assembly	language	subroutine
(that	is,	an	address),	which	is	identified	by	adding	the	delay	label	in	our	code.	We	also
need	to	include	the	EXPORT	directive	to	enable	the	linker	to	resolve	the	symbol	references.

When	a	function	(written	in	C	or	assembler)	is	called,	the	program	counter	(PC)	that	holds
the	return	address	must	first	be	saved	and	then	overwritten	with	the	address	of	the	first
instruction	in	the	function.	The	ARM	Cortex	instruction	set	contains	a	primitive
subroutine	call	instruction	named	branch-with-link	(BL)	that	performs	this	function.



When	the	function	completes,	a	branch	indirect	(BX)	instruction	is	used	to	load	the	PC
register	with	the	(saved)	return	address.

Every	assembly	language	source	file	must	end	with	an	END	assembler	directive.

The	ARM	Architecture	Procedure	Call	Standard	(details	in	the	next	section)	permits
subroutines	to	overwrite	R0-R3,	so	we	can	safely	use	R0	and	R1	to	store	our	local	variables.

The	AREA	directive	declares	a	CODE	section	called	example	that	is	READONLY	and	the	delay
label	identifies	the	ENTRY	to	the	subroutine.	This	symbol	is	exported	to	the	linker.	The	R0
and	R1	registers	are	used	to	hold	the	32-bit	const	num_ticks	and	the	cnt	variable.
Normally,	one	would	need	to	save	the	contents	of	registers	used	by	an	assembly	language
subroutine;	however,	the	ARM	Architecture	Procedure	Call	Standard
(http://infocenter.arm.com/)	permits	subroutines	to	use	R0-R3	without	regard	to	their
original	contents	(that	is,	their	contents	have	been	saved	and	restored	by	the	calling
function).

Values	are	loaded	using	the	LDR	pseudo-instruction	and	the	register	values	are	compared.
If	equal,	the	subroutine	exits;	otherwise,	cnt	is	incremented.	When	the	subroutine	exits	the
register	indirect	branch,	BX	lr	loads	the	PC	register	with	the	value	given	by	the	link
register	(R14).

http://infocenter.arm.com/


There’s	more…
In	addition	to	the	object	file	identified	by	its	file	extension	(.o),	the	assembler	also	creates
a	listing	file	(.lst)	in	the	subdirectories	named	Objects	and	Listings.	The	listing	file	is
very	useful	because	it	includes	the	instruction	codes	and	the	address	labels	used.	A
fragment	of	the	listing	for	the	delay	subroutine	is	shown.	This	file	can	be	a	useful
debugging	aid.	Please	note	that	the	comment	field	has	been	deleted	for	clarity:

	8	00000000																		AREA					example,	CODE,	READONLY

	9	00000000																																							;

10	00000000																	EXPORT			delay							;

11	00000000									delay																								;

12	00000000									;R0	<-	num_ticks													;

13	00000000	4804												LDR					R0,	=10000000;

14	00000002									;R1	<-	cnt																			;

15	00000002	F04F	0100							LDR						R1,	=0						;																	

16	00000006	4288				for					CMP						R0,	R1						;

17	00000008	D003												BEQ						forEnd						;

18	0000000A	F101	0101							ADD						R1,	#1						;

19	0000000E	BFE8	E7F9							BAL						for									;

20	00000012									forEnd																							;			

21	00000012	4770												BX							lr										;

22	00000014																	END																		;



See	also
Documentation	for	the	ARM	Compiler	Toolchain	(including	assembler	directives)	and
ARM	Instruction	Set	can	be	found	in	the	Tools	Users’	Guide	(accessed	via	uVision5’s
Books	Tab).





Passing	parameters	between	C	and	the
assembly	language
When	a	function	or	subroutine	is	called,	its	address	must	be	loaded	into	the	PC	so	that	it
can	be	executed	and,	when	it	terminates,	execution	of	the	calling	routine	must	continue.	In
addition,	there	must	be	a	convention	that	defines	the	following:

How	parameters	are	passed	to	the	function
How	parameters	are	returned
Which	(if	any)	registers	can	be	modified	by	the	function

The	ARM	Architecture	Procedure	Call	Standard	deals	with	these	issues	(refer	to
Procedure	Call	Standard	for	the	ARM	Architecture,	http://infocenter.arm.com/).

http://infocenter.arm.com/


Getting	ready
In	this	section,	we	will	learn	more	about	the	ARM	Architecture	Procedure	Call
Standard	(AAPCS)	by	writing	an	assembly	language	subroutine	that	receives	a	parameter
from	the	C	function	that	calls	it.	Moreover,	in	this	example,	the	assembly	language
subroutine	itself	calls	another	C	function.	Functions	or	subroutines	that	call	other
functions	or	subroutines	are	called	nested	functions/subroutines.



How	to	do	it…
We’ll	write	another	version	of	helloWorld_c2v0	(introduced	in	the	Writing	to	the	GLCD
recipe	in	Chapter	2,	C	Language	Programming),	but	this	time	we’ll	use	our	own	simple
assembly	language	subroutine	called	asmPrintf(),	instead	of	printf(),	to	output	the
string.	We’ll	call	this	recipe	asmPrintf_c4v0:

1.	 Create	a	new	project	(in	a	new	folder)	called	asmPrintf	by	cloning	helloWorld_c2v0
(that	is,	use	the	same	RTE	as	helloWorld).

2.	 Copy	helloWorld.c;	rename	it	asmPrintf.c.
3.	 Change	the	description	to	something	more	appropriate,	as	follows:

/*--------------------------------------------------

	*	Recipe:		asmPrintf_c4v0

	*	Name:				asmPrintf.c

	*	Purpose:		Outputs	string	using	assembly	language

	*											(illustrates	parameter	passing)

	*--------------------------------------------------

	*

	*	Modification	History

	*	23.03.14	Created

	*	17.12.15	Updated	(uVision5	v5.17+DFP2.6.0)

	*

	*	Dr	Mark	Fisher,	CMP,	UEA,	Norwich,	UK

	*--------------------------------------------------*/

4.	 Declare	an	external	function	named	asmPrintf	():

/*	function	prototypes	*/

extern	void	asmPrintf(char	*);	

5.	 Define	a	main	()	function:

/**

		*	Main	function

		*/

int	main	(void)	{

		HAL_Init();

		SystemClock_Config();

		

		SER_Init();

		

		for	(;;)	{																								/*	Loop	forever	*/

				asmPrintf("Hello	World!\n");

				wait_delay(1000);		}

}

6.	 Add	asmPrintf.c	to	the	project.
7.	 Create	a	new	file,	enter	the	following	assembly	language	code,	and	save	the	file	as

asmPrintf.s.	Please	note	that	the	.s	file	extension	is	reserved	for	assembly	language
source	code	files:

;********************************************************;



;*	A	simple	subroutine	to	print	a	string	to	the	console	*;

;********************************************************;

;*																																																						*;

;*	Dr	Mark	Fisher,	CMP,	UEA,	Norwich,	UK																*;

;*	Last	updated	23.03.14																																*;

;********************************************************;

								AREA	helloW,	CODE,	READONLY

								EXTERN	SER_PutChar

								EXPORT	asmPrintf

NULL				EQU	0														;	#define	NULL	0

asmPrintf																		;	void	printf(char	*ptr)	{

								PUSH	{R5,	LR}						;	

;	R5	<-	ptr																;			

;	R0	<-	c																		;

								MOV	R5,	R0									;													

								LDRB	R0,	[R5],	#1		;			char	c	=	*(ptr++);	

while				CMP	R0,	#NULL					;				while	(c	!=	NULL)	{

								BEQ	endWhl									;

								BL	SER_PutChar					;					SER_PutChar(c);

								LDRB	R0,	[R5],	#1		;				char	c	=	*(ptr++);	

								B	while												;			}

endWhl				POP	{R5,	LR}					;

								BX	lr														;	

								END																;	}

8.	 Add	asmPrintf.s	to	the	project.
9.	 Include	Retarget.c	and	Serial.c	in	the	project.
10.	 Connect	the	9-Pin	D-type	UART1/3/4	connector	on	the	evaluation	board	to	the	PC

USB	port	(as	we	did	in	Chapter	2,	C	Language	Programming).
11.	 Run	the	terminal	emulator	(PuTTy)	configuring	it	as	we	did	in	Chapter	2,	C

Language	Programming.
12.	 Build,	download,	and	run	the	program.



How	it	works…
Our	assembly	language	function	needs	a	pointer	to	the	first	character	of	the	string	(exactly
as	printf()	declared	in	stdio.h	does),	so	our	function	prototype	is	as	follows:

//	Function	prototype	for	assembly	language	subroutine

extern	void	asmPrintf(char	*ptr);

As	AAPCS	uses	R0-R3	to	hold	the	first	four	words	of	parameters	passed	to	a	function,	we
only	need	to	pass	one	parameter	(a	pointer),	so	this	is	passed	in	R0.

As	many	novices	find	it	difficult	to	write	assembly	language,	we	adopted	the	strategy	of
writing	in	C	and	then	translating	this	code,	line	by	line,	into	assembly	language.	The
asmPrintf()	C	function	is	defined	as	follows:

//	Function	asmPrintf(	)

void	asmPrintf(char	*ptr)	{	

		char	c	=	*(ptr++);

		

		while	(c	!=	NULL)	{

					SER_PutChar(c);

					c	=	*(ptr++);

		}

}

We	include	this	in	the	comment	field	of	our	assembly	language	program	to	document	the
code.	A	key	statement	in	the	function	is	as	follows:

c	=	*(ptr++);	

This	statement	assigns	a	value	to	the	c	variable.	The	value	is	identified	by	a	pointer
variable,	which	is	(later)	incremented	after	the	assignment	is	performed	(so,	ptr	always
points	to	the	next	character	to	be	assigned	to	c).	The	while	loop	exits	if	c	is	a	NULL
character	(strings	are	terminated	by	NULL	characters).

The	following	is	the	assembly	language	instruction:

LDR{type}	Rt,	[Rn],	#offset

This	variant	of	LDR	uses	postindexed	addressing;	type	determines	the	element	size	(that	is,
B,	SB,	H,	and	SH	)	and	is	omitted	for	word	size	memory	access.	Rt	is	the	(target)	register
that	we	have	to	load.	The	address	obtained	from	Rn	is	used	as	the	address	for	the	memory
access.	The	offset	value	is	added	or	subtracted	from	the	address	and	written	back	to	Rn.

To	call	the	SER_PutChar()	C	function,	the	PC	register	must	be	loaded	with	its	address.	But
as	the	function	is	defined	in	another	file,	we	must	leave	it	to	the	linker	to	sort	out	the
detail.	The	EXTERN	assembler	directive	identifies	the	SER_PutChar	symbol	as	external.
Working	within	the	AAPCS,	we	must	save	any	registers	(other	than	R0-R3)	that	we	use.
When	functions	are	nested	then	the	link	register	(LR)	must	also	be	saved.

The	ptr	variable	is	passed	in	R0,	but	as	R0	is	needed	to	pass	the	input	parameter	to
SER_PutChar(),	we	copy	ptr	to	R5.	The	first	instruction	pushes	the	contents	of	R5	and	LR
onto	the	stack,	and	the	last	restores	them,	so	the	subroutine	preserves	state.	Translating	the



while	loop	involves	branching	conditionally	on	the	result	of	a	comparison	undertaken	at
the	start	of	the	loop.



There’s	more…
We	can	optimize	the	asmPrintf	subroutine	further	using	a	Compare	and	Branch	on	Zero
(CBZ)	instruction.	The	instruction	is	as	follows:

CBZ					Rn,label

This	is	equivalent	to	the	following	sequence:

CMP	Rn,label

BEQ					label

However,	Rn	must	be	in	the	R0-R7	range,	and	the	branch	destination	must	be	within	4-130
bytes	of	the	instruction.	Both	of	these	restrictions	are	met	in	our	case.	A	new	version	of
our	asmPrintf	subroutine	(asmPrintf_v2.s)	is	shown	as	follows:

;***************************************************************;

;*	A	subroutine	to	print	a	string	to	the	console															*;

;***************************************************************;

;*	Optimized	using	CBZ	instruction	(Cortex	M3/M4)														*;

;*																																																													*;

;*	Mark	Fisher,	CMP,	UEA,	Norwich,	UK																										*;

;*	Last	Updated	26.03.14																																							*;

;***************************************************************;

								AREA	helloW,	CODE,	READONLY

								EXTERN	SER_PutChar

								EXPORT	asmPrintf

asmPrintf																				;	void	asmPrintf(char	*ptr)	{

												PUSH	{R5,	LR}				;	

;	R5	<-	ptr																		;			

;	R0	<-	c																			;

								MOV	R5,	R0										;			char	c	=	*(ptr++);																																			

								LDRB	R0,	[R5],	#1			;				

while				CBZ	R0,	endWhl					;			while	(c	!=	NULL)	{								

								BL	SER_PutChar						;					SER_PutChar(c);

								LDRB	R0,	[R5],	#1			;					char	c	=	*(ptr++);	

								B	while													;			}

endWhl				POP	{R5,	LR}						;

								BX	lr															;	

								END																	;			}



See	also
In	addition	to	the	instruction	set,	an	assembly	language	programmer	also	needs	knowledge
of	the	assembler	directives,	such	as	EQU,	and	so	on.	For	further	information,	refer	to	the
ARM	Assembler	Directives	Reference	(http://infocenter.arm.com/).

http://infocenter.arm.com/




Handling	interrupts	in	assembly	language
ARM	Cortex	interrupt	handlers	can	be	programmed	completely	in	C,	but	programmers
coding	time-critical	applications	prefer	to	use	assembler	(some	programmers	claim,	rather
ambitiously,	that	their	hand-crafted	assembler	programs	run	up	to	30-times	faster	than
compiler	generated	code,	but	I	suspect	that	the	actual	figure	is	2-3	times).

When	an	interrupt	(also	known	as	an	exception)	occurs,	the	processor	responds	by
performing	the	following	actions:

Pushing	Registers	R0-R3,	R12,	link	register	(LR),	program	counter	(PC),	and	program
status	(PSR)	onto	the	stack
Reading	the	address	of	the	exception	handler	from	the	interrupt	vector	table
Updating	the	stack	pointer,	program	status,	link	register,	and	program	counter

The	eight	words	pushed	onto	the	stack	are	collectively	known	as	the	Stack	Frame
(illustrated	later).	These	are	referred	to	as	caller-saved	registers	by	the	(AAPCS),	and	so
the	exception	executes	exactly	as	a	C	function.	If	the	processor	is	in	privileged	mode,	then
the	main	stack	will	be	used;	otherwise	the	process	stack	is	used.

The	NVIC	identifies	the	exception	vector,	and	this	is	read	from	the	vector	table.	On	entry
to	the	exception	handler,	either	MSP	or	PSP	is	updated,	the	lower	8-bits	of	PSR	(that	is,
ISR)	are	updated	to	show	the	exception	number,	the	PC	is	loaded	with	the	exception
handler’s	address,	and	LR	is	loaded	with	a	special	value	known	as	EXEC_RETURN,	which	is
defined	in	the	following	table:

Bits	31:4 Bit	3 Bit	2 Bit	1 Bit	0

0xFFFFFFF
Return	Mode

(thread/handler)
Return	Stack

Reserved

Must	be	0

Process	State

Thumb/ARM





Getting	ready
To	illustrate	an	assembly	language	interrupt	handler,	we’ll	translate	the	helloISR_c3v0
interrupt	request	handler	recipe	that	we	first	introduced	in	the	Handling	Interrupts	recipe
in	Chapter	3,	Programming	I/O.	We	call	this	recipe	asmHelloISR_c4v0.	An
interrupt/exception	handler	must	perform	three	steps:

Process	the	interrupt	request
Deassert	the	request	in	the	peripheral
Return



How	to	do	it…
1.	 Create	a	new	project	(in	a	new	folder)	called	asmHelloISR	by	cloning	helloISR	(that

is,	use	the	same	RTE	as	helloISR_c3v0	introduced	in	Chapter	3,	Programming	I/O).
2.	 Copy	the	helloISR.c	file	and	rename	it	asmHelloISR.c.	Delete	the	C	function

named	UART4_IRQHandler	()	and	add	a	new	descriptive	comment:

	/*--------------------------------------------------

	*	Recipe:		asmHelloISR_c4v0

	*	Name:				asmHelloISR.c

	*	Purpose:		Gets	user	key	input	using	ISR

	*											(handler	written	in	assembler)

	*--------------------------------------------------

	*

	*	Modification	History

	*	05.03.14	Created

	*	17.12.15	Updated	

	*	(uVision5	v5.17+STM32F4xx_DFP2.6.0)

	*

	*	Dr	Mark	Fisher,	CMP,	UEA,	Norwich,	UK

	*--------------------------------------------------*/

3.	 Add	this	main	function	to	the	asmHelloISR.c	file:

/**

		*	Main	function

		*/

int	main	(void)	{

		

		HAL_Init	();				/*	Init	Hardware	Abstraction	Layer	*/

		SystemClock_Config	();												/*	Config	Clocks	*/

		SER_Init();

				printf	("Hello	ISR	I/O	Example\r\n");

				printf	("Pressing	a	key	generates	an	interupt\r\n");

		

		for	(;;)	{																								/*	Loop	forever	*/

								/*	Nothing	to	do	here	*/

		}

}

4.	 Add	asmHellISR.c	to	the	project.
5.	 Create	a	new	file,	enter	the	following	code,	and	save	it	as	asmHelloISR.s:

;*********************************************************;

;*	Assembly	language	UART4_IRQHandler																				*;

;*********************************************************;

;*	Dr	Mark	Fisher,	UEA,	Norwich,	UK																						*;

;*	Last	Updated	26.03.14																																	*;

;*********************************************************;

								AREA	example,	CODE,	READONLY

								EXPORT	UART4_IRQHandler

								EXTERN	printf						;

UART4				EQU	0x40004C00				;



SR								EQU	0x00									;

DR								EQU	0x04									;

RXNE				EQU	0x0020									;

msg1				=	"Interrupt!	You	Pressed:	%c	\r\n",0

msg2				=	"Interrupt	Error!	\r\n",0

UART4_IRQHandler											;	void	UART4_IRQHandler	(void)	

																											;	{

								PUSH	{R4,	LR}						;

;R0	<-	ptr																	;	char	*ptr;

;R2	<-	IIR																	;	unsigned	int	IIR;

;R1	<-	c																			;	unsigned	char	c;	

;R4	<-	UART4															;	uint32_t	*UART4;																														

;

								LDR	R4,	=UART4					;

								LDR	R2,	[R4,	#SR]		;	IIR	=	UART4->SR;

if_								AND	R2,	#RXNE			;	if	(IIR	&	

																											;			USART_FLAG_RXNE)	{

								CBZ	R2,	else_						;				

								LDR	R1,	[R4,	#DR]		;					c	=	UART4->DR;

								ADR	R0,	msg1							;					ptr	=	msg1																																

;												

								BL				printf							;					printf(msg1,	c);						

								LDR	R2,	[R4,	#SR]				;			IIR	=	UART4->SR;

								AND	R2,	#~RXNE							;			UART4->SR	&=	

								STR	R2,	[R4,	#SR]				;			~USART_FLAG_RXNE;

								BAL	ifend												;					}

else_																								;					else

								ADR	R0,	msg2									;							printf("Interrupt	

								BL				printf									;												Error!\n");

ifend				POP	{R4,	LR}								;

								BX				lr													;	}

								ALIGN

								END

6.	 Add	asmHelloISR.s	to	the	project.
7.	 Remember	to	add	Serial.c	and	Retarget.c	to	the	project.
8.	 Check	Use	MicroLIB	in	the	project	options	dialog.
9.	 Connect	the	9-Pin	D-type	UART1/3/4	connector	on	the	evaluation	board	to	the	PC

USB	port	(as	we	did	in	Chapter	2,	C	Programming	Language).
10.	 Run	the	terminal	emulator	(PuTTY),	configuring	it	as	we	did	in	Chapter	2,	C

Programming	Language.
11.	 Build,	download,	and	run	the	program.



How	it	works…
We	need	to	write	an	assembly	language	subroutine	called	UART4_IRQHandler	because	this
is	the	label	referenced	in	the	interrupt	vector	table	that	is	defined	in
startup_stm32f407xx.s.	As	the	handler	must	read	and	write	to	the	registers	of	UART4,	we
also	need	its	base	address	and	the	address	offsets	needed	for	the	Status	Register	(SR)	and
Data	Register	(DR).	This	information	can	be	found	in	the	stm32f407xx.h	header	as
follows:

;;	UART4	addresses

UART4_BASE				EQU	0x40004C00				;	UART	base	address

SR												EQU	0x00								;	Status	Register	offset

DR												EQU	0x04								;	Data	Register	offset

We	load	R4	with	the	UART4	base	address	and	use	a	base	+	offset	addressing	mode	to	load
R1,	the	UART	register.	For	example,	the	following	sequence	of	instructions	reads	the	Data
Register:

LDR	R4,	=UART4_BASE								;

LDR	R1,	[R4,	#DR]											;		c	=	UART4->DR;

We	also	need	to	define	masks	to	identify	important	flags,	such	as	SR	bit-5,	and	read	data
register	not	empty	(RXNE):

RXNE								EQU	0x0020

We	can	define	message	strings	to	be	output	using	the	=	pseudo	instruction:

msg1								=	"Interrupt!	You	Pressed:	%c	\r\n",&0

msg2								=	"Interrupt	Error!	\r\n",&0			

You	will	notice	that	C	strings	are	automatically	terminated	by	a	NULL	character,	but	in
assembly	language	we	need	to	explicitly	tack	0	to	the	end.	We’ll	use	the	stdio	library’s
printf()	function	to	output	the	string.	This	function	takes	two	input	arguments.	The	first
is	a	pointer	to	the	first	character,	and	the	second	is	the	character	argument	referenced	by
the	%c	format	specifier.	We	use	the	load	PC-relative	address	assembly	language	instruction
to	load	the	location	labelled	as	msg1	into	R0:

ADR	R0,	msg1



There’s	more…
Again,	the	ARM	instruction	set	includes	assembly	language	instructions	that	we	can	use	to
optimize	things	a	little.	The	if-then	condition	instruction	(IT)	makes	up	to	the	four
following	instructions	conditional.	The	conditions	can	be	all	the	same	or	some	can	be	the
logical	inverse	of	the	others.	The	conditional	instructions	following	the	IT	instruction	are
called	the	IT	block.	As	there	can	be	only	four	conditional	instructions,	we’ll	need	to
rewrite	our	C	function	so	that	it	can	be	coded	using	an	IT	instruction:

Void	UART4_IRQHandler	(void)	{

		uint8_t	*ptr;

		uint32_t	IIR;

		char	c;

		uint32_t	*USART_ptr;

		

		IIR	=	UART4->SR;

		c	=	(char)	UART4->DR;

		if	(IIR	&	USART_Flag_RXNE)

				printf("Interrupt!	You	pressed	%c	\r\n",	c);

		else

				print("Interrupt	Error!");

		USART4->SR	&=	~USART_Flag_RXNE;

}

The	changes	that	we	made	to	UART4_IRQHandler()	do	not	change	its	run	time	operation,
but	a	compiler	wouldn’t	be	able	to	reorder	the	statements	and	,thus	take	advantage	of	the
if-then	optimization.	The	complete	subroutine	is	as	follows:

;**************************************************************;

;*	Assembly	language	UART4_IRQHandler																									*;

;**************************************************************;

;*	Optimised	using	if-Then	instruction																								*;

;*																																																												*;

;*	Dr	Mark	Fisher,	UEA,	Norwich,	UK																											*;

;*	Last	Updated	26.03.14																																						*;

;**************************************************************;

								AREA	example,	CODE,	READONLY

								EXPORT	UART4_IRQHandler	;

								EXTERN	printf							;

UART4				EQU	0x40004C00				;

SR								EQU	0x00								;

DR								EQU	0x04								;

RXNE				EQU	0x0020								;

msg1				=	"Interrupt!	You	Pressed:	%c	\r\n",0

msg2				=	"Interrupt	Error!	\r\n",0

								ALIGN

UART4_IRQHandler								;	void	UART4_IRQHandler	(void)	{

								PUSH	{R4,	LR}

;R0	<-	ptr												;				char	*ptr;

;R2	<-	IIR												;					unsigned	int	IIR;

;R1	<-	c																;					unsigned	char	c;	

;R4	<-	UART4												;				uint32_t	*UART4;																																		

;

								LDR	R4,	=UART4				;



								LDR	R2,	[R4,	#SR]					;				IIR	=	UART4->SR;

								LDR	R1,	[R4,	#DR]		;					c	=	UART4->DR;

if_								AND	R2,	#RXNE				;					if	(IIR	&	USART_FLAG_RXNE)	{

								CMP	R2,	#0								;

								ITE	NE												;						printf("Interrupt!	You

								ADRNE	R0,	msg1				;											Pressed:	%c	\r\n"),	c);

								ADREQ	R0,	msg2				;					else	

								BL				printf								;						printf("Interrupt	Error!\n");

								LDR	R2,	[R4,	#SR]				;

								AND	R2,	#~RXNE				;				UART4->SR	&=	~USART_FLAG_RXNE;

								STR	R2,	[R4,	#SR]				;																

								POP	{R4,	LR}								;

								BX				lr								;	}

								END





Implementing	a	jump	table
Under	certain	circumstances,	a	jump	table	provides	a	very	efficient	way	of	implementing	a
C	language	switch	statement	block.	We	can	define	a	jump	table	as	a	list	of	unconditional
branch	instructions—each	referencing	a	different	procedure	or	subroutine.	We	branch	to
one	of	the	subroutines	by	loading	the	program	counter	with	the	address	of	the
unconditional	branch	that	is	stored	in	the	jump	table.	The	effective	addresses	of	items	in
the	jump	table	are	formed	using	a	base	+	offset	addressing	mode.	Base	+	offset	addressing
is	commonly	used	to	access	data	items	stored	in	arrays,	and	a	jump	table	is	effectively	just
an	array	of	address	items.



Getting	ready
To	illustrate	a	jump	table,	we’ll	develop	a	recipe	called	asmJumpTable_c4v0.	Assume	that
we	have	a	function	named	jumpT	()	that	accepts	a	val	integer	input	argument.	The
function	calls	either	proc1	(),	proc2	(),	or	proc3	(),	depending	on	the	value	of	the
input	argument:

void	jumpT	(	int	val	)	{

		switch	(val)	{

				case	1	:	

						proc1	(	);

						break;

				case	2	:

						proc2	(	);

						break;

				case	3	:

						proc3	(	);

						break;

				default	:

						printf("Unrecognized!	

																Enter	value	between	1-3\n");

						break;

		}

}

We’ll	implement	jumpT	()	in	assembly	language	using	a	jump	table.



How	to	do	it…
1.	 Create	a	new	project	(in	a	new	folder)	called	asmJumpTable_c4v0	by	cloning

asmHelloWorld	(that	is,	use	the	same	RTE	as	asmHelloWorld).
2.	 Create	a	new	file,	enter	the	usual	boilerplate,	include	the	following,	and	save	it	as

asmJumpTable.c:

#include	"stm32F4xx_hal.h"

#include	<stdio.h>

#include	"Serial.h"	

#include	"cmsis_os.h"

/*	Function	Prototype	*/

extern	void	asmJumpT(	int	);

3.	 Add	a	main	function,	as	follows:

/*

	*	main

	*******/

int	main	(void)	{

				

		int	input,	value;

		HAL_Init	();			/*	Init	Hardware	Abstraction	Layer	*/

		SystemClock_Config	();											/*	Config	Clocks	*/

		SER_Init();

		

		for	(;;)	{																								/*	Loop	forever	*/	

				printf("\nJump	Table	Demo\n");				

					printf("Enter	Number	from	1-3:	");

					scanf("%d",	&input);

					value	=	(int)	input;

				asmJumpT(value);

		}

}

4.	 Add	asmJumpTable.c	to	the	project.
5.	 Create	a	new	file,	enter	the	following	assembly	language	code,	and	save	the	file	as

asmJumpTable.s.	Please	note	that	the	.s	file	extension	is	reserved	for	assembly
language	source	code	files:

;****************************************************;

;*	A	simple	subroutine	to	illustrate	a	Jump	Table			*;

;****************************************************;

;*																																																		*;

;*	Dr	Mark	Fisher,	CMP,	UEA,	Norwich,	UK												*;

;*	Last	updated	19.12.15																												*;

;****************************************************;																												

;

								AREA	example,	CODE,	READONLY

								EXPORT	asmJumpT							;	

								EXTERN	printf									;				



msg1				=	"Case	1\n",0								;

msg2				=	"Case	2\n",0								;

msg3				=	"Case	3\n",0								;

msgDef				=	"Unrecognized!	Value	between	1-3	needed\n",0

																														;

								ALIGN																	;

asmJumpT																						;	void	JumpT(int	val)	{

								PUSH	{R4,	LR}									;															

								ADR	r3,	jumpTable					;

;	val->R0																					;			switch	(val)	{

								SUB	R0,	#1												;

								CMP	R0,	#2												;

								BGT	default											;

								LDR	pc,	[r3,r0,LSL#2]	;					case	'1'	:

																														;							proc1(	);

																														;							break;

																									 		;					case	'2'	:	

																														;							proc2(	);

																														;							break;

																														;					case	'3'	:

																														;							proc3(	);

																														;						break;

default																							;					default	:

								ADR	R0,	msgDef								;						printf(msgDef);

								BL	printf													;							break;

endSW				POP	{R4,	LR}									;				}

								BX	lr																	;	}

6.	 Add	the	jump	table	and	associated	subroutines	to	asmJumpTable.s:

jumpTable																				;

								DCD	proc1												;

								DCD	proc2												;

								DCD	proc3												;

;****************************************************;

;*	Procedure	1																																						*;

;****************************************************;	

								ALIGN																;	void	proc1()	{

proc1				ADR	R0,	msg1								;		

								BL	printf												;			printf(	msg1	);

								BAL	endSW												;	}

;****************************************************;

;*	Procedure	2																																						*;

;****************************************************;	

								ALIGN																;	void	proc2()	{

proc2				ADR	R0,	msg2								;

								BL	printf												;				printf(	msg2	);

								BAL	endSW												;	}

;****************************************************;

;*	Procedure	3																																						*;

;****************************************************;	

								ALIGN																;	void	proc3()	{

proc3				ADR	R0,	msg3								;

								BL	printf												;				printf(	msg3	);

								BAL	endSW												;	}

																								;



								END																;

7.	 Add	asmJumpTable.s	to	the	project.
8.	 Remember	to	add	Serial.c	and	Retarget.c	to	the	project.
9.	 Connect	the	9-Pin	D-type	UART1/3/4	connector	on	the	evaluation	board	to	the	PC

USB	port	(as	we	did	in	Chapter	2,	C	Programming	Language.).
10.	 Run	the	terminal	emulator	(PuTTY),	configuring	it	as	we	did	in	Chapter	2,	C

Programming	Language.
11.	 Compile,	download,	and	run	the	program.



How	it	works…
The	jump	table	is	defined	as	follows:

jumpTable																				;

								DCD	proc1												;

								DCD	proc2												;

								DCD	proc3												;

Here,	proc1,	proc2,	and	proc3	are	address	labels	that	are	used	to	identify	the	start	of	the
subroutines.	The	jumpTable	base	address	is	loaded	into	R3	by	the	ADR	pseudo-instruction:

								ADR	r3,	jumpTable								;

The	assembler	attempts	to	replace	ADR	to	produce	a	single	ADD	or	SUB	instruction	to	load
the	address	using	a	PC-relative	addressing	mode.	This	ensures	that	ADR	always	assembles
to	one	instruction.	The	assembler	will	produce	an	error	if	it	can’t	load	the	effective	address
in	one	instruction.	The	most	likely	reason	for	this	will	be	that	the	target	base	address	is	too
far	away,	and	we	will	need	to	replace	ADR	with	ADRL.

The	value	passed	in	R0	will	be	an	integer	between	1-3,	so	subtracting	1	will	give	the
address	offset	directly:

								SUB	R0,	#1												;

Finally,	we	use	the	following	to	load	the	program	counter	with	the	appropriate	jump	table
address	(that	is,	entry	1,	2,	or	3):

								LDR	pc,	[r3,r0,LSL#2];

Each	jump	table	entry	is	a	32-bit	(4-byte)	address,	so	the	value	in	R0	needs	to	be
multiplied	by	4	(that	is,	LSL	#2).	This	is	achieved	by	LDR,	and	the	Register	Offset
instruction.	Finally,	a	Branch	and	Link	instruction	BL	is	needed	to	execute	the	function.

We’ve	used	the	ALIGN	pseudo-operation	quite	liberally	in	all	our	assembly	language
programs.	ARM	compilers	normally	access	data	in	memory	aligned	on	word	boundaries
and	pad	data	structures	so	that	items	can	be	accessed	efficiently.	Consequently,	address
labels	need	to	be	placed	on	word	boundaries.	The	ALIGN	pseudo-operation	ensures	this.
Leaving	it	out	will	produce	a	message	from	the	assembler	warning	that	some	padding	has
been	inserted.





Debugging	assembly	language
We	can	gain	a	useful	insight	into	how	assembly	language	instructions	execute,	and	also
why	the	compiler	is	rather	poor	at	translating	C	using	the	debugger.

First,	we’ll	compare	a	fragment	of	assembly	language	code	produced	by	the	compiler	with
our	translation.



How	to	do	it…
1.	 Open	the	helloISR_c3v0	recipe	that	we	introduced	in	the	Handling	interrupts	recipe

Chapter	3,	C	Language	Programming.
2.	 Insert	a	breakpoint	adjacent	to	the	first	statement	of	the	UART4_IRQHandler	(that	is,

IIR	=	UART4->SR;).
3.	 Select	Debug	→	Start/Stop	Debug	Session	from	the	uVision5	pull-down	menu.
4.	 Run	(F5)	to	the	breakpoint	(you	will	need	to	select	the	console	window	(PuTTY)	and

enter	a	character).
5.	 uVision5	will	now	open	a	Disassembly	window	(illustrated	in	the	following

screenshot),	which	shows	the	assembly	and	machine	code	generated	by	the	compiler
for	each	C	language	statement.



How	it	works…
Some	interesting	observations	from	the	disassembly	are	evident.	First,	by	default,	the
compiler	stores	its	variables	in	memory	(rather	than	registers),	so	assignment	statements
resolve	to	a	sequence	of	load	(LDR)	and	store	(STR)	instructions.	Overall,	the	compiler
produces	slightly	more	assembly	language	instructions	than	an	assembly	language
programmer	coding	by	hand.



There’s	more…
Now,	open	asmHelloISR_c4v0,	which	was	introduced	in	the	Handling	interrupts	in
assembly	language	recipe:

1.	 Place	a	breakpoint	at	the	first	instruction	of	the	assembly	language	subroutine
UART4_IRQHandler	(make	sure	you	identify	an	ARM	instruction	and	not	a	label	or
pseudo	instruction).

2.	 Use	the	debugger	to	run	to	the	breakpoint,	as	illustrated	in	the	following	screenshot.
Now,	use	the	step	(F11)	command	and	observe	the	register	contents	changing	as	each
instruction	is	executed:

You	will	notice	that	observing	how	register	values	change	as	we	single	step	through
assembly	language	code	provides	a	useful	insight	into	the	operation	of	the	Cortex-M4
machine	architecture.





Chapter	5.	Data	Conversion
In	this	chapter,	we	will	cover	the	following	topics:

Setting	up	the	ADC
Configuring	general-purpose	timers
Using	timers	to	trigger	conversions
Setting	up	the	DAC
Generating	a	sine	wave



Introduction
Most	signals	that	we	encounter	in	the	natural	world	are	continuous;	for	example,	we
perceive	sound	produced	by	an	orchestra	as	a	continuum	of	intensities	ranging	from
pianissimo	(very	soft)	to	fortissimo	(very	loud).	Computers,	on	the	other	hand,	work	with
binary	quantities	that	are	inherently	discrete.	The	number	of	discrete	values	that	can	be
represented	depends	on	the	number	of	bits	that	are	used	to	represent	the	quantity	(for
example,	8	bits	can	represent	28	discrete	values).	Computers	that	are	designed	to	interact
with	real-world	phenomena	(for	example,	sound,	light,	heat,	and	so	on)	need	to	overcome
two	problems.	Firstly,	they	need	to	convert	between	its	physical	manifestation	and	a
(continuous)	electrical	signal,	and	secondly,	they	need	to	convert	between	the	signal’s
continuous	and	discrete	representation.	Returning	to	our	sound	example,	solving	the	first
problem	requires	a	transducer	to	convert	sound	(pressure)	waves	to	electrical	signals	and
vice	versa	(that	is,	a	microphone	and	loud	speaker).	Solving	the	second	requires
converting	the	analog	(continuous)	signal	to	a	discrete	form	and	vice	versa.	The	device
that	is	used	to	achieve	this	is	called	an	Analog-to-Digital	converter	(ADC)—and
conversely	a	Digital-to-Analog	converter	(DAC).

Analog-to-Digital	conversion	requires	measuring	(sampling)	the	signal	at	regular	time
intervals	and	converting	each	sample	into	a	digital	value.	This	raises	the	question,	how
often	should	we	take	the	measurement?	This	fundamental	question	is	addressed	by	signal
processing	theory.	The	short	answer	is	that	samples	must	be	taken	at	least	twice	as
frequently	as	the	period	of	the	highest-frequency	component	in	the	signal.	However,	the
maximum	number	of	samples	that	can	be	taken	every	second	(that	is,	the	maximum
sampling	frequency)	is	limited	by	the	speed	of	conversion,	and	this,	in	turn,	depends	on
the	type	of	ADC.	The	STM32F407IG	microcontroller	includes	a	successive
approximation	ADC,	which	is	fast	enough	for	most	audio	applications	(that	is,	signals
having	frequency	components	up	to	about	20	KHz).	A	block	diagram	of	a	successive
approximation	ADC	is	shown	as	follows:

Successive	approximation	ADC

A	single	comparator	is	at	the	heart	of	the	successive	approximation	ADC.	This	is	simply	a
device	that	outputs	a	binary	signal	that	depends	on	a	comparison	of	VDAC	and	Vin,



where	VDAC	represents	the	analog	voltage	corresponding	to	the	output	of	the	Successive
Approximation	Register	(SAR).	By	testing	the	output	of	the	comparator,	an	algorithm
aims	to	update	the	SAR	so	as	to	find	the	value	VDAC	that	is	closest	to	Vin.	The
successive	approximation	DAC	achieves	this	by	undertaking	a	search	that	aims	to	find
VDAC	(	≤	Vref)	in	the	fewest	number	of	guesses.	The	time	needed	for	the	search	depends
on	the	value	of	the	voltage,	but	the	worst-case	conversion	time	ultimately	determines	the
maximum	sampling	frequency.	The	DAC	is	a	much	simpler	analog	circuit	that	uses	a
summing	amplifier	to	add	together	the	(weighted)	digital	outputs	D0-D11.	Hence,	the
DAC	operates	much	faster	than	the	ADC.

The	purpose	of	the	Sample/Hold	block	is	to	take	a	snapshot	of	the	input	voltage,	and	so,
provide	a	stable	signal	for	the	ADC.	The	Sample/Hold	block	is	not	ideal	and	it	takes	some
time	(called	the	aperture	time)	to	capture	the	input	signal.	The	signal	voltage	stored	by	the
Sample/Hold	block	also	decays	with	time,	but	the	Sample/Hold	time	can	be	adjusted	to
address	these	problems.	A	range	of	values	can	be	specified	in	terms	of	a	number	of	ADC
clock	cycles	by	writing	to	the	two	ADC	sample	time	registers	(SMPR1	and	SMPR2).
The	time	can	be	set	for	each	channel	using	the	following	codes:

SMPx[2:0] Chan.x	Sample	Time	(cycles) SMPx[2:0] Chan.x	Sample	Time	(cycles)

000 3 100 84

001 15 101 112

010 28 110 144

011 56 111 480

The	maximum	conversion	time,	Tconv,	for	a	successive	approximation	converter	is	equal
to	the	Sample/Hold	time	+	(clock	period	×	number	of	bits).	As	a	rule	of	thumb,	it’s	best	to
make	the	Sample/Hold	time	short	relative	to	the	sample	period.





Setting	up	the	ADC
The	aim	of	this	recipe	is	to	configure	the	ADC	in	single-conversion	mode	and	then
convert	the	voltage	set	by	the	thumbwheel	into	a	12-bit	digital	value.	We’ll	configure	the
ADC	to	generate	an	interrupt	at	the	end	of	each	conversion	and	write	an	interrupt	handler
to	read	the	ADC	and	initiate	a	new	conversion.	The	only	task	for	our	main	function	to
perform	is	to	output	the	ADC	value	to	the	LEDs,	but	as	there	are	only	8	LEDs	we	can	only
display	the	most-significant	8-bits	of	the	ADC	value.	We’ll	call	this	recipe	adcISR_c5v0.



How	to	do	it…
To	set	up	the	ADC	follow	the	steps	outlined:

1.	 Open	a	new	folder	named	adcISR_c5v0	and	create	a	new	project	named
adcISR.uvprojx.

2.	 Select	LED	(API)	from	RTE	Board	Support	but	do	not	select	A/D	converter	(we
will	write	our	own	code	for	this).	Set	the	CMSIS	and	Device	software	components	as
for	previous	projects.	Be	sure	to	select	resolve	so	that	the	correct	runtime
environment	(RTE)	is	included.

3.	 Create	an	adcISR.c	file	(the	main	function)	and	enter	the	source	code	that	is	shown
next.	Remember	to	include	the	boilerplate	code	(hidden	by	the	editor	folds):

/*--------------------------------------------------

	*	Recipe:		adcISR_c5v0

	*	Name:				adcISR.c

	*	Purpose:	A/D	Conversion	Demo	for	MCBSTM32F400

	*										using	IRQ

	*--------------------------------------------------

	*	Modification	History

	*	16.04.14	created

	*	22.12.15	updated	uVision5.17	+	DFP2.6.0

	*

	*	Dr	Mark	Fisher,	UEA,	Norwich

	*--------------------------------------------------*/

#include	""stm32f4xx_hal.h""

#include	""Board_LED.h""

#include	""Custom_ADC.h""

#define	wait_delay	HAL_Delay

/*	Globals	*/

uint32_t	adcValue;

#ifdef	__RTX

______________________________________________________

/*	Function	Prototypes	*/

void	SystemClock_Config(void);

/**

		*	System	Clock	Configuration

		*/

void	SystemClock_Config(void)	{

______________________________________________________

4.	 Include	code	to	handle	the	interrupt	generated	by	the	ADC:

void	ADC_IRQHandler	(void)	{

				

		ADC3->SR	&=	~2;							/*	Clear	EOC	interrupt	flag	*/

		adcValue	=	(ADC3->DR);					/*	Get	converted	value	*/

		ADC3->CR2	|=	(1	<<	30);		/*	Start	next	conversion	*/

												



}

5.	 Include	a	main	()	function:

int	main	(void)	{

		

		HAL_Init	(	);

		SystemClock_Config	(	);

		LED_Initialize	();										/*	LED	Initialization	*/

		ADC_Initialize_and_Set_IRQ	();/*	ADC	Special	Init	*/

		while	(1)	{														/*	output	8-bit	adcValue	*/

				LED_SetOut	(adcValue	>>	4);			/*	to	LEDs								*/

				wait_delay	(	100	);																					/*	wait	*/

		}

}

6.	 Create	a	Custom_ADC.c	file	and	enter	code	to	set	up	the	ADC:

#include	""stm32f4xx_hal.h""	/*	STM32F4xx	Definitions	*/

#include	""Custom_ADC.h""

/*--------------------------------------------------

	*	ADC_Initialize_and_Set_IRQ:	Initialize	Analog	to	

	*												Digital	Converter	and	Enable	IRQ

	*--------------------------------------------------*/

void	ADC_Initialize_and_Set_IRQ	(void)	{

			/*	Setup	potentiometer	pin	PF9	(ADC3_7)	and	ADC3	*/

		RCC->APB2ENR	|=	(1UL	<<		10);					/*	En.	ADC3	clk	*/

		RCC->AHB1ENR	|=	(1UL	<<			5);				/*	En.	GPIOF	clk	*/

		GPIOF->MODER	|=	(3UL	<<	2*9);/*	PF9	is	Analog	mde	*/

		ADC3->SQR1			=			0;

		ADC3->SQR2			=			0;

		ADC3->SQR3			=		(7UL	<<		0);			/*	SQ1	=	channel	7	*/

		ADC3->SMPR1		=			0;												/*	Channel	7	smple	*/

		ADC3->SMPR2		=			(7UL	<<		18);	/*	time	=	480	cyc.	*/

		ADC3->CR1				=		(1UL	<<		8);						/*	Scan	mode	on	*/

		ADC3->CR2			&=	~2;											/*	single	conv.	mode	*/

				

		ADC3->CR1			|=		(	1UL	<<		5);						/*	En.	EOC	IRQ	*/

		ADC3->CR2			|=		(	1UL	<<		0);							/*	ADC	enable	*/				

		NVIC_EnableIRQ(	ADC_IRQn	);												/*	En.	IRQ	*/				

		ADC3->CR2	|=	(1	<<	30);			/*	Start	1st	conversion	*/

}

7.	 Add	the	adcISR.c	and	Custom_ADC.c	files	to	the	project.
8.	 Declare	a	function	prototype	for	ADC_Initialize_and_Set_IRQ	()	in	the

Custom_ADC.h	file.
9.	 Build,	download,	and	run	the	program.



How	it	works…
The	STM32F407xx	features	3	×	12-bit	successive	approximation	ADCs,	each	sharing	up
to	16	external	channels	and	performing	conversions	in	single-shot	or	scan	mode.	A
simplified	schematic	showing	the	architecture	of	each	converter	is	presented	next	(please
note	that	a	more	detailed	diagram	is	included	in	STM’s	RM0090	Reference	manual	at
http://www.st.com).

Simplified	STM32F4xxxx	microcontroller	ADC	schematic

The	16	multiplexed	input	channels	are	organized	in	two	groups	comprising	regular	and
injected	channels.	A	subset	of	GPIO	port	pins	can	be	connected	to	the	ADC	multiplexer
by	configuring	the	pin	as	a	high-impedance	analog	input.	The	pin/input	channel	mapping
is	device-dependent.	Details	for	the	STM32F407IG	device	used	by	the	ARM
MCBSTM32F400	evaluation	board	can	be	found	in	the	STM32F405xx	and
STM32F407xx	Datasheet	(http://www.st.com),	and	a	simplified	form	is	given	in	the
following	table.	The	ADC	can	be	configured	to	carry	out	a	sequence	of	up	to	16
conversions	on	each	group,	each	triggered	separately	by	either	an	external-or-timed	start
signal.

ADC1	Input	Channel GPIO	Port ADC2	Input	Channel GPIO	Port ADC3	Input	Channel GPIO	Port

IN_0 PA0 IN_0 PA0 IN_0 PA0

IN_1 PA1 IN_1 PA1 IN_1 PA1

IN_2 PA2 IN_2 PA2 IN_2 PA2

IN_3 PA3 IN_3 PA3 IN_3 PA3

http://www.st.com
http://www.st.com


IN_4 PA4 IN_4 PA4 IN_4 PF6

IN_5 PA5 IN_5 PA5 IN_5 PF7

IN_6 PA6 IN_6 PA6 IN_6 PF8

IN_7 PA7 IN_7 PA7 IN_7 PF9

IN_8 PB0 IN_8 PB0 IN_8 PF10

IN_9 PB1 IN_9 PB1 IN_9 PF3

IN_10 PC0 IN_10 PC0 IN_10 PC0

IN_11 PC1 IN_11 PC1 IN_11 PC1

IN_12 PC2 IN_12 PC2 IN_12 PC2

IN_13 PC3 IN_13 PC3 IN_13 PC3

IN_14 PC4 IN_14 PC4 IN_14 PF4

IN_15 PC5 IN_15 PC5 IN_15 PF5

The	GPIO	ports	used	by	the	ADC	must	be	configured	as	analog	inputs	by	writing
appropriate	values	to	MODERy[1:0]	bits	of	the	Mode	Register	that	is	shown	as	follows:

31 30 29 28 27 26 25 24

MODER15[1:0] MODER14[1:0] MODER13[1:0] MODER12[1:0]

rw rw rw rw rw rw rw rw

23 22 21 20 19 18 17 16

MODER11[1:0] MODER10[1:0] MODER09[1:0] MODER08[1:0]

rw rw rw rw rw rw rw rw

15 14 13 12 11 10 09 08

MODER07[1:0] MODER06[1:0] MODER05[1:0] MODER04[1:0]

rw rw rw rw rw rw rw rw

07 06 05 04 03 02 01 00

MODER03[1:0] MODE02[1:0] MODER01[1:0] MODER00[1:0]

rw rw rw rw rw rw rw rw

The	Mode	Register	bits	are	defined	as	follows:



MODERy[1:0] I/O	Mode

00	: Input

01	: General	Purpose	output

10	: Alternate	Function

11	: Analog	Input

The	ADC	is	configured	by	an	initialization	function	named
ADC_Initialize_and_Set_IRQ()	that	has	been	written	specially	for	this	recipe.	The
following	description	should	be	read	with	reference	to	STM”s	RM0090	Reference	manual
(http://www.st.com).

The	thumbwheel	labelled	ADC1	on	the	evaluation	board	provides	a	variable	voltage	input
connected	to	GPIO	port	F	pin	9	(ADC3	channel	7).	To	sample	this	voltage,	we	first
configure	GPIOF	pin	9	as	an	analog	input	by	writing	to	the	port	mode	register
(GPIOF_MODER).	Statements	in	ADC_Initialize_and_Set_IRQ()	are	explained	as	follows:

1.	 The	bit	map	for	the	port	mode	register	shown	in	the	MODER	register	bit	table
indicates	that	we	must	write	logic-1	to	bit	18	and	19.	ARM	writes	the	code	like	this
to	emphasize	that	we’re	configuring	port	F	bit-9	(PF9):

GPIOF->MODER	|=	(3UL	<<	2*9);

2.	 We	also	need	to	select	the	clock	for	ADC3	and	GPIOF:

RCC->APB2ENR	|=	(1UL	<<		10);

RCC->AHB1ENR	|=	(1UL	<<			5);

3.	 Our	aim	is	to	set	up	a	single	conversion	in	the	regular	sequence.	The	first	conversion
is	identified	by	the	bits	4:0	of	ADC	regular	sequence	register	3	(ADC_SQR3).	As	PF9
maps	to	ADC3	channel	7,	we	write	7	to	this	register	and	0	to	ADC_SQR1	and
ADC_SQR2:

ADC3->SQR1			=			0;

ADC3->SQR2			=			0;

ADC3->SQR3			=		(7UL	<<		0);

4.	 The	Sample/Hold	time	can	be	set	(for	each	channel)	by	writing	to	the	two	ADC
Sample	Time	Registers	(SMPR1	and	SMPR2).	In	this	case,	as	the	input	voltage	is
derived	from	a	potentiometer,	the	sample	frequency	can	be	quite	low,	and	so,	a	long
Sample/Hold	time	of	480	cycles	can	be	set:

ADC3->SMPR1		=			0;	

ADC3->SMPR2		=			(7UL	<<		18);	

5.	 We	carry	out	a	single	conversion	on	each	group	of	channels	identified	by	the	regular
sequence	register,	so	we	enable	scan	mode	by	writing	to	bit-8	of	Control	Register	1:

ADC3->CR1		=		(1UL	<<		8);

http://www.st.com


6.	 To	set	up	single	conversion	mode,	enable	an	end	of	conversion	interrupt	(EOCIE),
and	enable	the	ADC	(ADON),	we	write	the	following	code:

ADC3->CR2			&=		~2;

ADC3->CR1			|=		(	1UL	<<		5);

ADC3->CR2			|=		(	1UL	<<		0);

7.	 Finally,	we	must	configure	the	Nested	Vectored	Interrupt	Controller	(NVIC)	to
respond	to	interrupts	from	the	ADC	and	initiate	the	first	conversion	by	writing
SWSTART	(bit-30),	as	follows:

NVIC_EnableIRQ(	ADC_IRQn	);

ADC3->CR2	|=	(1	<<	30);

The	ADC_IRQHandler	()	interrupt	handler	needs	to	clear	the	interrupt,	read	the	ADC	data,
and	start	another	conversion	cycle.	The	super-loop	in	the	main	function	calls	the
LED_SetOut	()	function	to	display	the	most	significant	8-bits	of	the	ADC	output	on	the
LEDs.



There’s	more…
In	continuous	conversion	mode,	the	ADC	starts	a	new	conversion	as	soon	as	the	previous
one	has	been	completed.	In	practice,	the	new	conversion	starts	after	a	delay	of	15	cycles	to
allow	the	ADC	to	stabilize.	Only	the	regular	group	of	channels	can	be	converted	in
continuous	mode,	as	follows:

1.	 We	can	enable	continuous	mode	by	changing	the	last	line	of	the	function,
ADC_Initialize	(),	to	the	following:

ADC3->CR2			|=		2;

2.	 As	our	interrupt	handler	no	longer	needs	to	trigger	a	new	conversion,	we	only	need
the	following	two	statements:

ADC3->SR	&=	~2;

adcValue	=	(ADC3->DR);





Configuring	general-purpose	timers
The	idea	of	this	recipe,	which	we’ll	call	timerISR_c5v0,	is	to	use	a	general	purpose	timer
(TIM2)	to	generate	an	interrupt	every	100	ms	(that	is,	10	Hz).	The	interrupt	handler
maintains	a	counter	that,	in	turn,	sets	the	global	variables,	LEDOn,	LEDOff,	which	are	used
within	main	()	to	flash	the	LEDs.



How	to	do	it…
Follow	the	steps	to	configure	general	purpose	timers:

1.	 Create	a	new	recipe	(folder)	named	timerISR_c5v0.	Invoke	uVision5	and	create	a
new	project	named	timerISR.uvprojx.

2.	 Select	the	LED	(API)	driver	from	the	RTE	Board	Support	drop-down	menu	and
configure	CMSIS	and	Device	options	as	in	previous	projects.

3.	 Create	a	new	file,	name	it	timerISR.c,	and	enter	the	following	statements.
Remember	to	include	the	boilerplate:

#include	""stm32f4xx_hal.h""

#include	""Board_LED.h""

#include	<stdbool.h>

#include	""timer.h""

/*	Globals	*/

uint32_t	tic	=	0;

	

#ifdef	__RTX

______________________________________________________

/*	Function	Prototypes	*/

void	SystemClock_Config(void);

/**

		*	System	Clock	Configuration

		*/

void	SystemClock_Config(void)	{

______________________________________________________	

4.	 Define	a	handler	for	the	timer	interrupt	by	adding	these	statements	to	the	timerISR.c
file:

void	TIM2_IRQHandler	(void)	{

		

		/*	check	IRQ	source	*/

		if	((TIM2->SR	&	0x0001)	!=	0)	{

						tic++;	

						TIM2->SR	&=	~(1<<0);								/*	clear	UIF	flag	*/

				}

}

5.	 Define	a	main	()	function	in	the	timerISR.c	file:

int	main	(void)	{	

		int32_t	num	=	0;

		uint32_t	toc;

		uint32_t	count	=	0;

		

		HAL_Init	(	);

		SystemClock_Config	(	);

		TIM2_Initialize	(	);/*	Gen.	interrupt	each	100	ms	*/

		LED_Initialize();											/*	LED	Initialization	*/



		while	(1)	{

				if	(toc	!=	tic)	{

						toc	=	tic;

						LED_Off	(num);																							

				if	(count	<	7)

						num	=	(num+1);

				else

						num	=	(num-1);

				LED_On	(num);

				count	=	(count+1)%14;

				}

		}

}

6.	 Open	a	new	file,	add	the	following	source	code,	save	the	file,	and	name	it	timer.c:

/*--------------------------------------------------

	*	Recipe:		timerISR_c5v0

	*	Name:				timer.c

	*	Purpose:	Low	level	timer	functions

	*--------------------------------------------------

	*

	*	Modification	History

	*	16.04.14	created

	*	22.12.15	updated	(uVision5.17+DFP2.6.0)

	*

	*	Mark	Fisher,	CMP,	UEA,	Norwich

	*--------------------------------------------------*/

#include	""stm32f4xx_hal.h""								/*	STM32F4xx	Defs	*/

#include	""timer.h""

/****************************************************

	*	TIM2_Initialize	(	)

	****************************************************

	*	Initializes	TIM2	generates	interrupts	every	100ms	(0.1s)

	*	SystemCoreClock	=	168	MHz	-	set	by	SystemInit	(	)

	*	Refer	to	Figure	134	of	STM	Reference	Manual	RM0090

	*	TIMxCLK	=	SystemCoreClock/2

	*	Hence	ticks	=	0.1	*	168,000,000	/	2	=	8,400,000

	*	Prescaler	=	8400-1;	ARR	=	1000-1;

	*****************************************************/

void	TIM2_Initialize	(void)	{

		const	uint16_t	PSC_val	=	8400;

		const	uint16_t	ARR_val	=	1000;

				

		RCC->APB1ENR	|=	RCC_APB1ENR_TIM2EN;	/*	En	TIM2	clk	*/

		TIM2->PSC	=	PSC_val	-	1;										/*	set	prescaler	*/

		TIM2->ARR	=	ARR_val	-	1;								/*	set	auto-reload	*/

		TIM2->CR1	=	(1UL	<<	0);								/*	set	command	reg.	*/

		TIM2->DIER	=	(1UL	<<	0);										/*	Enable	TIM2	IRQ	*/

		NVIC_EnableIRQ(TIM2_IRQn);								/*	En.	NVIC	TIM2	IRQ	*/				

}

7.	 Add	timer.c	and	timerISR.c	to	the	project.



8.	 Create	a	suitable	header	file	named	timer.h	containing	function	prototypes	for
timer.c.

9.	 Build,	download,	and	run	the	program.



How	it	works…
As	microcontrollers	were	conceived	to	target	real-time	applications,	counter-timers	have
always	been	a	prominent	feature	of	their	architecture.	Timers	can	be	used	for	a	variety	of
purposes,	including	measuring	pulse	lengths	of	input	signals,	generating	output	signals,
triggering	interrupts,	or	other	events.	The	STM32F407xx	microcontroller	family	that	is
used	by	the	evaluation	board	provides	14	timers	(TIM1-TIM14).

Type Size Identifier

Advanced	Control	Timers 16-bit TIM1,	TIM8

General	Purpose	Timers 16/32-bit TIM2-TIM5

Basic	Timers 16-bit TIM6,	TIM7

General	Purpose	Timers 16-bit TIM9-TIM14

A	simplified	schematic	for	general	purpose	timers	is	shown	in	the	following	diagram	(a
more	detailed	schematic	can	be	found	in	STM’s	RM0090	Reference	manual	at
http://www.st.com).

Advanced	timers,	TIM1	and	TIM8,	provide	similar	functionality	and	include	some
additional	features,	such	as	a	repetition	counter,	break	inputs,	and	complementary	outputs
with	programmable	dead	time.	These	are	useful	when	implementing	complex	pulse	width

http://www.st.com


modulation	(PWM)	schemes.	The	main	component	is	the	time-base	unit	comprising	a
16/32-bit	counter	and	its	related	auto-reload	register	and	prescaler.	The	prescaler	clock
(CK_PSC)	can	be	selected	from	one	of	the	following:

Internal	clock	(CK_INT):	This	is	derived	from	the	reset	and	clock	control	(RCC)
peripheral.
External	clock	mode	1:	This	is	the	External	input	pin	(TIx)
External	clock	mode	2:	The	External	trigger	input	(ETR)	is	available	on	TIM2,
TIM3,	and	TIM4,	only
Internal	trigger	inputs	(ITRx):	This	allows	one	timer	to	act	as	a	prescaler	for
another

Following	RESET,	the	CK_INT	internal	clock	is	selected.	CK_INT	is	derived	from	the
APBx	timer	output	of	the	Reset	and	Clock	Control	(RCC)	unit;	refer	to	STM’s	RM0090
Reference	manual,	Figure	21,	(http://www.st.com).	The	timer	clock	frequencies	are	set
automatically	by	hardware.	The	frequency	depends	on	the	setup	used	for	the	APB	domain
prescaler.	There	are	two	cases,	as	follows:

If	the	APB	prescaler	is	1,	the	timer	clock	frequencies	are	set	to	the	same	frequency	as
that	of	the	APB	domain	to	which	the	timers	are	connected
Otherwise,	they	are	set	to	twice	(×2)	the	frequency	of	the	APB	domain	to	which	the
timers	are	connected

The	RCC	unit	manages	all	the	clocks	used	by	the	microcontroller.	The	system	clock
(SYSCLK)	can	be	derived	from	one	of	three	sources:

HSI	clock
HSE	clock
PLL	clock

The	SystemInit(	)	function	defined	in	the	system_stm32f4xx.c	file	is	called	by	the
startup_stm32f4xx.s	file	to	configure	the	system	clock	before	branching	to	the	main
program.	The	SystemCoreClock	global	variable	is	assigned	a	value	representing	the
SYSCLK	frequency	and	is	available	to	user	applications	(for	example,	to	set	the	SysTick
timer).	SystemInit()	also	configures	the	AHB	and	APB	domain	prescalers.

The	internal	(HIS)	clock	and	external	crystal-controlled	oscillator	(HSE)	clock	are
connected	to	the	main	phase	locked	loop	(PLL)	within	the	microcontroller	and	this
provides	two	outputs:

The	first	output	is	used	to	generate	the	high-speed	system	clock	(upto	168	MHz)
The	second	output	is	used	to	generate	the	clock	for	the	USB	OTG	FS	(48	MHz),	the
random	analog	generator	(≤48	MHz),	and	the	SDIO	(≤48	MHz)

The	MCBSTM32F400	evaluation	board	uses	a	25	MHz	external	oscillator,	which	gives	a
PLL	frequency	of	168	MHz,	and	SystemInit	()	selects	this	as	SYSCLK.

The	main	component	of	the	time-base	unit	is	a	16-bit	or	32-bit	counter	(CNT)	and	its
associated	auto-reload	register	(ARR).	The	counter	clock	can	be	divided	by	a	prescaler
(PSC).	Both	the	counter,	prescaler,	and	auto-reload	register	can	be	written	or	read	by

http://www.st.com


software.	The	prescaler	can	divide	the	counter	clock	frequency	by	any	factor	between	1
and	65,536	(216).	The	operation	of	the	counter	and	auto-reload	register	depends	on	the
how	the	counter	is	configured.	Three	configuration	modes	are	available,	named	upcounter,
downcounter,	and	center-aligned.	The	timing	diagram	shown	next	illustrates	the	upcounter
mode	with	the	prescaler	set	to	divide	by	2	(other	modes	are	described	in	the	RM0090
Reference	manual,	http://www.st.com).	In	upcounting	mode,	the	counter	counts	from	0	to
the	auto-reload	value	(the	content	of	the	TIMx_ARR	register),	then	restarts	from	0	and
generates	a	counter	overflow	event.

The	steps	required	to	configure	TIM2	are	as	follows:

1.	 First	enable	the	TIM2	clock	by	writing	to	the	RCC	APB1	Enable	Register:

RCC->APB1ENR	|=	RCC_APB1ENR_TIM2EN;

The	number	of	SYSCLK	ticks	in	0.1	s	can	be	found	by:

when	SYSCLK	=	168	MHz	this	gives	a	value	of	8,400,000,	which	is	achieved	by	a
prescaler	value	of	8,400	and	auto-reload	register	value	of	1,000,	that	is,	as	follows:

const	uint16_t	PSC_val	=	8400;

const	uint16_t	ARR_val	=	1000;

The	prescaler	divides	the	input	clock	by	a	factor	PSC[15:0]	+1:

http://www.st.com


So	we	write	the	following

TIM2->PSC	=	PSC_val	-	1;

2.	 Similarly,	as	the	counter	is	reset	to	zero,	we	write	the	following:

TIM2->ARR	=	ARR_val	-1;

3.	 Then,	enable	the	counter	and	enable	interrupts:

TIM2->CR1	=	(1UL	<<	0);

TIM2->DIER	=	(1UL	<<	0);

4.	 Finally,	configure	the	Nested	Vectored	Interrupt	Controller	to	respond	to	TIM2
interrupts:

NVIC_EnableIRQ(TIM2_IRQn);

Once	configured,	Timer	2	generates	interrupts	every	100	ms,	and	the	interrupt	handler
increments	a	counter	(tic).	The	code	within	the	superloop	generates	a	visually	interesting
pattern.





Using	timers	to	trigger	conversions
As	sampling	frequency	plays	such	a	critical	role	in	determining	the	quality	of	the	digital
representation	of	the	analog	signal	input,	and	to	avoid	aliasing	artifacts,	it	is	preferable	to
use	a	timer	to	trigger	the	conversion	rather	than	to	enable	continuous	conversions	as	we
did	in	the	previous	recipe.	This	recipe,	adcTimerISR_c5v0,	illustrates	this	technique.	The
aim	of	this	recipe	is	to	configure	TIM2	_CH2	in	output	compare	mode	so	that	it	toggles
every	100	ms	and	then	use	this	timing	signal	to	trigger	the	ADC.



How	to	do	it…
1.	 First	create	a	new	project	called	adcTimerISR.uvprojx	and	use	the	RTE	manager	to

configure	it	as	we	did	for	the	folder	adcISR_c5v0	for	the	Setting	up	the	ADC	recipe.
2.	 Copy	timer.c	and	Custom_ADC.c	from	the	previous	recipes	and	add	these	to	the

project.	Copy	adcISR.c	and	rename	it	adcTimerISR.c.	Add	this	to	the	project.
3.	 Add	#include	timer.h	to	adcTimerISR.c	and	call	TIM2_Initialize()	in	main().

Check	whether	the	project	successfully	builds.
4.	 Modify	the	TIM2_Initialize()	function	so	that	it	no	longer	produces	an	update

interrupt	flag	(UIF)	by	deleting	the	following	statements:

				TIM2->DIER	=	(1UL	<<	0);

				NVIC_EnableIRQ(TIM2_IRQn);

5.	 Configure	TIM2_CH2	to	toggle	channel	2	capture/compare	output	by	writing	to	the
appropriate	fields	of	Capture/Compare	Mode	Register	1	(CCMR1)	and
Capture/Compare	Enable	Register	(CCER):

				TIM2->CCMR1	|=	(	3UL	<<	12	);

				TIM2->CCER	|=	(	1UL	<<	4	);

Tip
There	is	no	need	to	write	to	the	Capture/Compare	Register.	If	we	leave	it	set	to	zero
(that	is,	Reset),	then	the	Capture/Compare	output	will	toggle	each	time	TIM2_CNT	is
zero	(that	is,	every	100	ms):

/***************************************************

	*	TIM2_Initialize	(	)

	***************************************************

	*	Initializes	TIM2

	*	Capture	Compare	2	Interrupt	Flag	(CC2IF)		

	*	generates	interrupts	every	100ms	(0.1s)

	*	SystemCoreClock	=	168	MHz	-	set	by	SystemInit	(	)

	*	Refer	to	Figure	134	of	STM	Reference	Manual

	*	TIMxCLK	=	SystemCoreClock/2

	*	Hence	ticks	=	0.1	*	168,000,000	/	2	=	8,400,000

	*	Prescaler	=	8400-1;	ARR	=	1000-1;

	*	Note:	Capture	Compare	Register	is	left	in	Reset

	***************************************************/

void	TIM2_Initialize	(void)	{

		const	uint16_t	PSC_val	=	8400;

		const	uint16_t	ARR_val	=	1000;

				

		/*	En.	clk	for	TIM2	*/

		RCC->APB1ENR	|=	RCC_APB1ENR_TIM2EN;	

		TIM2->PSC	=	PSC_val	-	1;								/*	set	prescaler	*/

		TIM2->ARR	=	ARR_val	-	1;						/*	set	auto-reload	*/

		TIM2->CR1	=	(	1UL	<<	0	);										/*	set	Ctr.	En.	(CEN)	*/

TIM2->CCMR1	|=	(	3UL	<<	12	);			/*	OC1REF	toggles	

																																																			when	

TIMx_CNT=TIMx_CCR1*/



		TIM2->CCER	|=	(	1UL	<<	4	);						/*	CC2E	set	*/

}

6.	 Modify	the	adc_Initialize_and_Set_IRQ	(	)	function	to	trigger	conversions	on
both	the	rising	and	falling	edge	of	TIM2_CH2	by	writing	to	Control	Register	2:

				ADC3->CR2			|=		(	3UL	<<	28);

				ADC3->CR2			|=		(	3UL	<<	24);	

7.	 Remember	to	run	the	ADC	in	single	conversion	mode:

void	ADC_Initialize_and_Set_IRQ	(void)	{

			/*	Setup	potentiometer	pin	PF9	(ADC3_7)	and	ADC3	*/

		RCC->APB2ENR	|=	(1UL	<<		10);					/*	En.	ADC3	clk	*/

		RCC->AHB1ENR	|=	(1UL	<<			5);				/*	En.	GPIOF	clk	*/

		GPIOF->MODER	|=	(3UL	<<	2*9);/*	PF9	=	Analog	mode	*/

		ADC3->SQR1			=			0;

		ADC3->SQR2			=			0;

		ADC3->SQR3			=		(7UL	<<		0);					/*	SQ1	=	chan.	7	*/

		ADC3->SMPR1		=			0;													/*	Chan.	7	sample	*/

		ADC3->SMPR2		=			(7UL	<<		18);	/*	time	=	480	cyc.	*/

		ADC3->CR1				=		(1UL	<<		8);						/*	Scan	mode	on	*/

				

		ADC3->CR1			|=		(	1UL	<<		5);						/*	En.	EOC	IRQ	*/

		ADC3->CR2			|=		(	3UL	<<	28);	/*	Trig	on	both	edg	*/

		ADC3->CR2			|=		(	3UL	<<	24);						/*	of	TIM2_CC2	*/

		ADC3->CR2			|=		(	1UL	<<		0);							/*	ADC	enable	*/								

		NVIC_EnableIRQ(	ADC_IRQn	);									/*	Enable	IRQ	*/				

		ADC3->CR2	|=	(1	<<	30);			/*	Start	1st	conversion	*/

}

8.	 Build,	download,	and	run	the	program.	You	will	notice	that,	when	we	execute	this
program,	the	output	appears	much	more	stable	than	it	did	using	a	continuous	mode.
This	is	just	a	consequence	of	performing	fewer	conversions,	but	it	does	serve	to
emphasize	the	need	to	avoid	oversampling	unless	there	is	good	reason.



How	it	works…
In	addition	to	the	update	event	interrupt,	each	timer	also	allows	interrupts	to	be	generated
by	up	to	four	capture	compare	channels	(TIMx_CH1-TIMx_CH4).	Each
Capture/Compare	channel	comprises	a	Capture/Compare	register,	an	input	stage	for
capture	(with	digital	filter,	multiplexing,	and	prescaler),	and	an	output	stage	(with
comparator	and	output	control).	Each	can	be	configured	as	the	input	capture,	PWM	input,
forced	output,	output	compare,	PWM,	or	one-pulse	modes.	The	output	compare	mode	can
be	used	to	provide	timing	signals	that	can	be	used	to	start	A-D	conversions.

One	of	16	possible	start	conversion	triggers	can	be	selected	for	the	regular	group	of
channels	by	writing	to	the	ADC	control	register	2	(ADC_CR2)	bit	field,	EXTSEL[3:0].	The
following	table	shows	how	the	trigger	sources	are	encoded

Note
CH1-CH4	and	TRGO	refer	to	timer	channels.	For	further	information,	refer	to	STM’s
RM0090	Reference	manual	(http://www.st.com),	Chapters	17	and	18.

EXTSEL[3:0] Start	Trigger EXTSEL[3:0] Start	Trigger

0000 TIM1_CH1 1000 TIM3_TRGO

0001 TIM1_CH2 1001 TIM4_CH4

0010 TIM1_CH3 1010 TIM5_CH1

0011 TIM2_CH2 1011 TIM5_CH2

0100 TIM2_CH3 1100 TIM5_CH3

0101 TIM2_CH4 1101 TIM8_CH1

0110 TIM2_TRGO 1110 TIM8_TRGO

0111 TIM3_CH1 1111 EXT11

The	polarity	of	the	trigger	is	determined	by	EXTEN,	as	shown	in	the	following	table:

EXTEN Trigger	Polarity

00 Trigger	detection	disabled

01 Trigger	detection	on	the	rising	edge

10 Trigger	detection	on	the	falling	edge

11 Trigger	detection	on	both	the	rising	and	falling	edges

http://www.st.com


There’s	more…
If	we	wish	to	confirm	that	the	ADC	is	sampled	every	100	ms,	then	simply	add	a	global
tick	variable	and	increment	this	in	the	IRQ	handler.	Change	the	code	within	the	super-loop
to	blink	the	LEDs	every	10	ticks.





Setting	up	the	DAC
The	aim	of	this	recipe	is	to	echo	the	analog	voltage	input	to	the	ADC	to	the	DAC.	The
DAC	operation	is	relatively	simple	as	compared	to	the	ADC.	The	MCBSTM400
evaluation	board	doesn’t	provide	any	means	of	directly	monitoring	either	of	the	DAC
channels.	As	DAC	channel	2	(output	to	PA5)	drives	the	clock	for	the	USB	2.0	transceiver
(IC6),	the	only	option	that	we	have	is	to	use	DAC	channel	1	(output	PA4).	To	see	an
output,	we’ll	need	to	probe	the	output	PA4	with	a	test	meter.	This	recipe	is	called
echo_adc_dac_c5v0.



How	to	do	it…
To	set	up	the	DAC	follow	the	steps	outlined:

1.	 Clone	adcTimerISR_c5v0	from	the	Using	timers	to	trigger	conversions	recipe	and
extend	it	by	adding	the	dac.c	and	dac.h	files.	These	will	be	used	to	define	a	function
called	DAC_Initialize()	(shown	next)	that	will	be	used	to	set	up	the	DAC;	the	DAC
registers	and	mask	definitions	are	defined	as	a	data	structure	in	the	stm32f4xx_hal.h
file:

#include	""stm32f4xx_hal.h""								/*	STM32F4xx	Defs	*/

#include	""DAC.h""

/*--------------------------------------------------

	*						DAC_Initialize:	Initialize	DAC

	*

	*	Parameters:		(none)

	*	Return:						(none)

	*--------------------------------------------------*/

void	DAC_Initialize	(void)	{

				

		RCC->APB1ENR	|=	RCC_APB1ENR_DACEN;	/*	En.	DAC	clk	*/

																																			/*	En.	GPIOA	clk	*/

		RCC->AHB1ENR	|=	RCC_AHB1ENR_GPIOAEN;	

		GPIOA->MODER	|=	(3UL	<<	2*4);/*	PA4	=	Analog	mode	*/

		DAC->CR	|=	DAC_CR_EN1;												/*	Enable	DAC	1	*/

		DAC->CR	|=	DAC_CR_BOFF1;		/*	Enable	DAC	1	OP	Buff	*/	

}

2.	 Add	dac.c	to	the	project.
3.	 Add	a	function	prototype	to	dac.h.
4.	 Modify	the	main()	function	to	call	the	DAC_Initialize()	function	and	add	a

statement	in	the	main	loop	to	write	the	ADC	value	to	the	DAC:

int	main	(void)	{

		

		HAL_Init();

		SystemClock_Config();

		LED_Initialize	();												/*	LED	Init.									*/

		ADC_Initialize_and_Set_IRQ	();/*	ADC	Special	Init.	*/

		DAC_Initialize	();																				/*	DAC	Init.	*/

		TIM2_Initialize	();																		/*	TIM2	Init.	*/

		while	(1)	{															/*	output	8-bit	adcValue	*/

				DAC->DHR12R1	=	adcValue;						/*	Echo	ADC	to	DAC	*/

				LED_SetOut	(DAC->DOR1	>>	4);	/*	Echo	DOR	to	LEDs	*/

				}

}

5.	 Build,	download,	and	run	the	program.



How	it	works…
The	STM32F407xx	features	2	x	12-bit	buffered	DAC	converter	channels,	DAC1	and
DAC2.	Eight	DAC	trigger	inputs	are	provided	for	each	device.	The	STM32F405xx	and
STM32F407xx	Datasheet	Table	7	(http://www.st.com)	shows	that	the	DAC1	and	2	outputs
are	featured	as	an	additional	function	of	GPIO	PA4	and	PA5,	respectively.	The	GPIO	I/O
port	bit	must	be	configured	as	analog	to	disable	the	GPIO	output	buffer.	A	simplified
block	diagram	of	a	DAC	channel	is	shown	as	follows	(a	more	detailed	diagram	can	be
found	in	STM’s	RM0090	Reference	manual	at	http://www.st.com):

The	DAC	can	be	configured	in	8-	or	12-bit	mode.	In	12-bit	mode,	the	data	can	be	left-	or
right-aligned	by	writing	to	the	appropriate	Data	Holding	Register	(DHR).	The	DAC
Data	Output	Register	(DOR)	cannot	be	written	to	directly.	Data	is	transferred	from	the
DHR	to	the	DOR	after	one	APB1	clock	if	no	trigger	is	selected;	or	if	a	trigger	is	selected,
then	the	transfer	occurs	three	APB1	clocks	after	the	trigger	event.

The	DAC_Initialize()	function	performs	the	following	operations:

1.	 The	first	step	is	to	write	to	the	Reset	and	Clock	Control	(RCC)	peripheral	and	enable
clocks	for	the	DAC	and	GPIO	port	A.

2.	 To	enable	the	DAC	clock,	we	write	bit-29	of	the	APB1	peripheral	clock	enable
register:

RCC->APB1ENR	|=	RCC_APB1ENR_DACEN;

http://www.st.com
http://www.st.com


3.	 To	enable	Port	A,	clocks	write	bit-0	of	the	AHB1	peripheral	clock	enable	register:

RCC->AHB1ENR	|=	RCC_AHB1ENR_GPIOAEN;

4.	 Then,	we	configure	Port	A	bit-4	(PA4)	in	analog	mode	to	source	the	analog	output	by
writing	to	the	mode	register:

GPIOA->MODER	|=	(3UL	<<	2*4);

5.	 Finally,	we	enable	the	DAC	channel	1	and	its	associated	output	buffer.	This	step
involves	writing	to	the	DAC	control	register:

				DAC->CR	|=	DAC_CR_EN1;

				DAC->CR	|=	DAC_CR_BOFF1;

DAC->DHR12R1	=	adcValue;	

We	write	a	statement	in	the	main	loop	to	write	the	ADC	value	to	the	DAC.	We	use	the
simplest	conversion	mode	that	triggers	a	conversion	each	time	data	is	written	to	the
(DHR).	There	are	three	Data	Holding	Registers	for	each	channel.	Each	loads	the	(DOR)
slightly	differently.	We	choose	the	DHR	that	loads	the	DOR	with	a	right-aligned	12-bit
value.	Writing	to	the	DHR	is	achieved	by	the	following:

Instead	of	writing	adcValue	to	the	LEDs,	we	read	the	DAC	DOR	and	write	its	value
instead.	Please	note	that	the	DOR	is	read-only	(it	cannot	be	written	by	software).	Writing
the	LEDs	in	this	way	will	confirm	that	we’ve	correctly	configured	the	DAC.	If	the	DOR
shows	the	correct	value	but	there	is	no	output	voltage	on	PA4,	then	the	problem	lies	with
the	GPIO	Port	configuration.	The	following	statement	writes	the	DAC1	DOR	value	to	the
LEDs:

LED_Out	(DAC->DOR1	>>	4);



There’s	more…
The	DAC	converter	includes	a	linear-feedback	shift	register	(LFSR)	and	can	be
configured	to	generate	pseudo-random	noise	and	a	programmable	triangle-wave	generator
is	also	available;	refer	to	STM’s	RM0090	Reference	manual	and	STM,	Application	Note
AN3216:	Audio	and	waveform	generation	using	the	DAC	in	STM32	microcontroller
families	(http://www.st.com)	for	more	details.

http://www.st.com




Generating	a	sine	wave
Sinusoidal	signals	are	commonly	used	in	signal	processing	applications	and	generating
these	waveforms	provides	an	interesting	project	that	is	the	focus	of	this	recipe.	A	common
approach	is	a	direct	method	that	stores	the	sinusoidal	waveform	samples	in	a	look-up-
table	(LUT).	This	recipe	is	called	dacSinusoid_c5v0.



Getting	ready
First,	we	need	to	calculate	the	(12-bit)	DAC	values	that	will	be	stored	in	the	LUT.	We’ll
attempt	to	generate	a	50	Hz	sinusoidal	signal	and	use	a	spreadsheet	(for	example,
Microsoft	Excel)	to	calculate	the	following	values:

Smpl.	No Theta	Rads floor((sin(theta)+1)*4095/2)

0 0 2047

1 0.31415927 2680

2 0.62831853 3250

3 0.9424778 3703

4 1.25663706 3994

5 1.57079633 4095

6 1.88495559 3994

7 2.19911486 3703

8 2.51327412 3250

9 2.82743339 2680

10 3.14159265 2047

11 3.45575192 1414

12 3.76991118 844

13 4.08407045 391

14 4.39822972 100

15 4.71238898 0

16 5.02654825 100

17 5.34070751 391

18 5.65486678 844

19 5.96902604 1414



How	to	do	it…
Follow	the	outlined	steps	to	generate	a	sine	wave:

1.	 Create	a	new	recipe	called	dacSinusoid_c5v0	by	cloning	timerISR_c5v0	from	the
Using	timers	to	trigger	conversions	recipe.

2.	 Replace	timerISR.c	with	a	file	named	dacSinusoid.c	and	add	a	declaration	for	an
LUT:

uint16_t	dacLUT	[]	=	{2047,	2680,	3250,	3703,	3994,	

																4095,	3994,	3703,	3250,	2680,

																2047,	1414,		844,		391,		100,	

																0,					100,		391,		844,	1414	};

3.	 Add	an	interrupt	handler	to	service	TIM2:

/*------------------------------------------------

		TIM2	IRQ	Handler

	*------------------------------------------------*/

void	TIM2_IRQHandler	(void)	{

		static	uint8_t	idx	=	0;

		

		if	(TIM2->SR	&	(1<<0))	{

				TIM2->SR	&=	~(1<<0);								/*	clear	UIR	flag	*/

																										/*	write	LUT	val	to	DAC	*/

				DAC->DHR12R1	=	dacLUT[idx++];

					idx	%=	20;

					LED_Out	(idx);											/*	Write	idx	to	LEDs	*/

				}

Add	the	following	main()	function:

/*---------------------------------------------------

		Main	function

	*---------------------------------------------------*/

int	main	(void)	{

		HAL_Init();

		SystemClock_Config();

		

		LED_Initialize	();																				/*	LED	Init.	*/

		DAC_Initialize	();																					/*	DAC	Init	*/

		TIM2_Initialize	();

		while	(1)	{		

					/*	empty	statement	*/		;

				}

}

4.	 Add	dacSinusoid.c	to	the	project.
5.	 Only	one	statement	in	the	TIM2_Initialize	(	)	function	(in	the	timer.c	file)	needs

to	be	changed:

/***************************************************

	*	TIM2_Initialize	(	)



	***************************************************

	*	Initializes	TIM2	generates	interrupts	every	1ms

	*	SystemCoreClock	=	168	MHz	-	set	by	SystemInit	(	)

	*	Refer	to	Figure	134	of	STM	Reference	Manual	RM0090

	*	TIMxCLK	=	SystemCoreClock/2

	*	Hence	ticks	=	0.001	*	168,000,000	/	2	=	84,000

	*	Prescaler	=	84-1;	ARR	=	1000-1;

	***************************************************/

void	TIM2_Initialize	(void)	{

		const	uint16_t	PSC_val	=	84;

		const	uint16_t	ARR_val	=	1000;

				

																																			/*	En.	TIM2	clk	*/

		RCC->APB1ENR	|=	RCC_APB1ENR_TIM2EN;	

		TIM2->PSC	=	PSC_val	-	1;								/*	set	prescaler	*/

		TIM2->ARR	=	ARR_val	-	1;						/*	set	auto-reload	*/

		TIM2->CR1	=	(1UL	<<	0);						/*	set	command	reg.	*/

		TIM2->DIER	=	(1UL	<<	0);									/*	En.	TIM2	IRQ	*/

		NVIC_EnableIRQ(TIM2_IRQn);	/*	En.	NVIC	TIM2	Int.	*/

}

6.	 Build,	download,	and	run	the	program.



How	it	works…
The	many	techniques	that	could	be	used	to	generate	a	sinusoidal	waveform	are	the	subject
of	the	digital	signal	processing	literature.	A	common	approach	is	a	direct	method	that
stores	the	sinusoidal	waveform	samples	in	a	look-up-table	(LUT).	This	may	seem	very
crude	but	if	the	output	is	passed	through	an	analog	low-pass	filter	with	a	cut-off	frequency
set	to	the	fundamental	frequency	of	the	output	signal,	then	the	result	is	a	reasonably	pure
sinusoid.	In	fact,	this	approach	works	equally	well	for	a	triangular	waveform	(which	can
be	generated	by	the	DAC	hardware),	but	the	LUT	approach	will	produce	something	that
looks	convincing	when	displayed	on	an	oscilloscope	without	the	need	for	a	filter.

In	theory,	the	minimum	number	of	samples	needed	is	determined	by	the	Nyquist-Shannon
Sampling	Theorem.	This	states	that	we	need	a	minimum	of	two	samples	per	cycle.	At	this
limit	the	raw	samples	describe	a	50	Hz	square	wave	that	will	produce	a	sinusoid	when
processed	by	a	suitable	low-pass	output	filter.	However,	as	an	ideal	square	wave	contains
only	components	of	odd-integer	harmonic	frequencies	(of	the	form	2π(2k-1)f),	the	order	of
the	filter	will	need	to	be	~12	so	that	the	harmonics	are	highly	attenuated	while	the
fundamental	is	unaffected.	To	achieve	a	satisfactory	output	with	a	much	simpler	second-
order	filter,	the	number	of	samples	is	usually	increased	by	a	factor	of	~10.

We	store	the	samples	in	an	array,	as	follows:

uint32_t	dacLUT	[]	=	{2047,	2680,	3250,	3250,	3994,

																								4095,	3994,	3703,	3250,	2680,

	 	 	 	 	 	 	2047,	1414,		844,		391,		

100,

	 	 	 	 	 	 				0,		100,		391,		844,	

1414	};

Then,	we	use	a	timer	to	generate	an	interrupt	every	1	ms	(that	is,	the	period	of	the	sinusoid
T	=	20	ms;	1/20	ms	=	50	Hz.).	Please	note	that	we	could	use	any	timer	(in	this	case,	we
use	TIM2;	reusing	code	discussed	previously	but	changing	the	prescaler	value):

Uint16_t	PSC_val	=	84;

We	write	the	sample	to	the	DAC’s	Data	Holding	Register	in	the	timer	ISR	(we
postincrement	idx),	as	follows:

DAC->DHR12R1	=	dacLUT[idx++];

To	ensure	the	index	is	incremented	by	modulo	20	(because	the	LUT	array	stores	20
values),	we	use	the	following:

idx	%=	20;						

We	output	the	idx	variable	to	the	LEDs	just	to	give	a	visual	check	that	the	program	is
running.	A	screenshot	of	an	oscilloscope	connected	to	PortA4	is	shown	as	follows:



The	lower	trace	shows	the	output	(Vout)	of	the	low-pass	filter.	The	cut-off	frequency	for
the	low-pass	filter	is	set	to	50	Hz	approximately,	(refer	to	T.	Floyd	and	D.	Buchla,
Electronics	Applications	Circuits	Devices	and	Applications	(8e),	Pearson	Education,
2014)	which	can	be	seen	in	the	following	figure:





Chapter	6.	Multimedia	Support
In	this	chapter,	we	will	cover	the	following	topics:

Setting	the	RTE	for	the	I2C	Peripheral	Bus
How	to	use	the	LCD	touchscreen
Writing	a	driver	for	the	audio	codec
How	to	use	the	audio	codec
How	to	use	the	camera
Designing	bitmapped	graphics
Ideas	for	games	using	sound	and	graphics



Introduction
Multimedia	peripherals	are	discrete	components	that	are	connected	to	the	microcontroller
by	a	bus.	Support	for	LCD	touchscreens,	audio	codecs,	and	camera	peripherals	is	a	very
attractive	feature	of	the	STM32F4xxx	microcontroller,	and	selecting	an	evaluation	board
that	includes	these	peripherals,	although	more	expensive,	will	increase	the	range	of
projects	that	can	be	undertaken.	Multimedia	projects	using	the	touchscreen	and	codec	are
great	fun	and	much	more	likely	to	motivate	young	programmers	than	blinking	LEDs.
These	peripherals	are	quite	complex,	but	the	libraries	that	are	provided	to	support	them	are
reasonably	straightforward	to	use.





Setting	the	RTE	for	the	I2C	Peripheral
Bus
The	LCD	touchscreen,	three-axis	motion	sensor	(LIS302DL),	audio-codec	(CS42L52),
64k	EEPROM	(M24C64),	camera,	and	other	peripherals	that	are	supported	by	the
MCBSTM32F400	evaluation	board	are	connected	to	the	STM32C	microcontroller	by	a
synchronous	serial	bus	called	I2C.	The	bus	standard	adopted	is	called	the	Inter-
Integrated	Circuit	(I2C)	Interface,	which	was	developed	by	Phillips	in	the	1980s.	Before
we	can	use	any	peripherals	that	are	connected	to	the	I2C	bus,	we	must	first	configure	the
I2C	interface.	We’ll	illustrate	this	by	a	recipe	called	touchScreenDemo_c6v0.	Later	in	this
chapter,	we’ll	show	you	how	to	configure	other	I2C	peripherals.



How	to	do	it…
To	set	RTE	for	an	I2C	Peripheral	Bus	perform	the	following	steps:

1.	 Open	a	new	project	(touchScreenDemo),	in	a	new	folder	named
touchScreenDemo_c6v0.

2.	 Using	the	RTE	manager,	select	Touchscreen	(an	I2C	peripheral)	under	Software
Component	|	Board	Support.

3.	 Set	the	CMSIS	and	Device	options,	as	we’ve	done	for	the	previous	recipes.	Click
Resolve	and	then	OK:

4.	 Open	the	RTE_Device.h	file,	select	the	Configuration	Wizard	editor	tab,	and	enter
the	configuration	choices	that	are	shown	in	the	following	screenshot:



5.	 Open	the	RTX_Conf_CM.c	file,	select	the	Configuration	Wizard	editor	tab,	and	enter
the	configuration	choices	that	are	shown	in	the	following	screenshot:



6.	 Check	whether	the	program	successfully	compiles	by	declaring	an	empty	main
function	(name	the	file,	touchScreenDemo.c)	and	include	this	in	the	project:

int	main	(void)	{

		HAL_Init	();				/*	Init	Hardware	Abstraction	Layer	*/

		SystemClock_Config	();												/*	Config	Clocks	*/

}



How	it	works…
A	bus	is	the	name	that	is	given	to	a	collection	of	signals	(data,	address,	and	control)	that
interconnect	the	processor	infrastructure.	The	microcontroller	uses	a	serial	(rather	than
parallel)	bus	interconnection,	and	to	keep	the	microcontroller	pin	count	low,	the	bus
signals	are	driven	via	a	GPIO	port	that	is	configured	in	alternate	function	mode.	I2C	is	a
half-duplex	synchronous	serial	bus	comprising	clock	(SCL)	and	serial	data	(SDA)	lines.
Devices	that	are	connected	to	the	bus	are	identified	by	a	7-	or	10-bit	address	and	can	be
configured	as	master	or	slave.	The	following	diagram	shows	a	master	node	(in	this	case,
the	microcontroller)	sourcing	the	clock	and	controlling	slave	devices	connected	to	the	bus
(note	that	the	master	node	does	not	have	to	be	a	microcontroller):

Before	we	can	use	the	I2C	bus,	the	bus	master	(that	is,	the	microcontroller)	must	be
configured.	The	MCBSTM32F400	evaluation	board	drives	signals	SDA	and	SCL	via
GPIO	Port	B	bits	8	and	9,	so	before	the	interface	can	be	used,	GPIOB	must	be	configured.
This	task	is	simplified	using	the	uVision	v5.x	Run	Time	Environment	(RTE)	manager.	To
successfully	compile	a	program	that	needs	I2C,	we	must	configure	the	RTE_Device.h	file
for	our	evaluation	board.	As	we	chose	the	Device	option	STMCube_Framework	→
Classic,	the	RTE_Device.h	file	for	our	evaluation	board	is	provided	by	the	RTE	manager.
A	configuration	wizard	provides	a	simple	user	interface	that	allows	different	peripherals
and	parameters	to	be	selected	by	tick	boxes	and	drop-down	lists.	(Note	that	the	Board
Schematic	confirms	GPIO	bits	PB8	and	PB9	are	used	to	source	signals,	SDA	and	SCL.)

Accurate	control	of	bus	timing	is	critical	for	successful	operation	of	the	I2C.	The	RTE
solves	this	by	using	a	real-time	kernel	called	RTX	(we’ll	meet	RTX	in	Chapter	8,	Real-
Time	Embedded	Systems).	The	Configuration	Wizard	for	the	RTX_Conf_CM.c	file
establishes	certain	scheduling	parameters	for	the	kernel.

Another	serial	interface	standard	supported	by	the	MCU	is	known	as	Serial	Peripheral
Interface	(SPI)	and	was	developed	by	Motorola.	For	further	information	on	I2C	and	SPI,
refer	to	http://www.byteparadigm.com/applications/introduction-to-i2c-and-spi-protocols/.

http://www.byteparadigm.com/applications/introduction-to-i2c-and-spi-protocols/




How	to	use	the	LCD	touchscreen
The	LCD	touchscreen	used	by	the	MCBSTM32F400	evaluation	board	is	a	resistive	film
giving	a	resolution	of	4000	×	4000	(that	is,	far	greater	than	the	GLCD).	This	recipe
extends	touchScreenDemo_c2v0	and	illustrates	how	to	use	the	LCD	touchscreen.



How	to	do	it…
Perform	the	following	steps	to	use	the	LCD	touchscreen:

1.	 Return	to	touchScreenDemo_c2v0	and	open	the	project.
2.	 Use	the	RTE	manager	to	add	Software	Component	→	Board	Support	for	the

Graphic	LCD	(in	addition	to	the	Touchscreen).	Click	Resolve	and	then	OK.
3.	 Open	touchScreenDemo.c,	and	include	the	following	headers:

#include	<stdio.h>

#include	"stm32f4xx_hal.h"

#include	"cmsis_os.h"

#include	"Driver_I2C.h"

#include	"Board_GLCD.h"

#include	"GLCD_Config.h"

#include	"Board_Touch.h"

4.	 Define	the	following	macros,	global	variables,	and	function	prototypes:

//	The	size	of	the	touch-screen	co-ordinates	system.

#define	SCREEN_TS_WIDTH		4000

#define	SCREEN_TS_HEIGHT	4000

#define	wait_delay	HAL_Delay

/*	Globals	*/

extern	GLCD_FONT					GLCD_Font_16x24;

/*	Function	Prototypes	*/

void	screenTransformTS(TOUCH_STATE	*ts);

void	SystemClock_Config(void);

void	setDisplay(void);

void	updateDisplay(TOUCH_STATE		*tsc_state);

void	clearDisplay(void);

5.	 Extend	the	main()	function:

/*--------------------------------------------------

		Main	function

	*--------------------------------------------------*/

int	main	(void)	{

		TOUCH_STATE		tsc_state;

		HAL_Init	();			/*	Init	Hardware	Abstraction	Layer	*/

		SystemClock_Config	();											/*	Config	Clocks	*/

		

		Touch_Initialize();		/*	Touchscrn	Controller	Init	*/

		GLCD_Initialize();						/*	Graphical	Display	Init	*/

		setDisplay();																/*	Draw	GLCD	Display	*/

		while	(1)	{

				Touch_GetState	(&tsc_state);	/*	Get	touch	state	*/

				

				if	(tsc_state.pressed)

						updateDisplay(&tsc_state);



				else	

						clearDisplay();

				

				wait_delay(100);			

		}

}

6.	 Add	the	setDisplay()	function	to	touchScreenDemo.c	file:

/*--------------------------------------------------

		setDisplay

	*--------------------------------------------------*/

void	setDisplay(	)	{

		GLCD_SetBackgroundColor	(GLCD_COLOR_WHITE);

		GLCD_ClearScreen	();		/*	clear	the	GLCD	*/

		

		GLCD_SetBackgroundColor	(GLCD_COLOR_BLUE);

		GLCD_SetForegroundColor	(GLCD_COLOR_WHITE);

		GLCD_SetFont	(&GLCD_Font_16x24);

		GLCD_DrawString	(0,	0*24,	"	CORTEX-M4	COOKBOOK	");

		GLCD_DrawString	(0,	1*24,	"		PACKT	Publishing		");

		

		GLCD_SetBackgroundColor	(GLCD_COLOR_WHITE);					

		GLCD_SetForegroundColor	(GLCD_COLOR_BLACK);

		GLCD_DrawString	(0,	3*24,	"Touch:");

		GLCD_DrawString	(0,	4*24,	"x				:");

		GLCD_DrawString	(0,	5*24,	"y				:");

		GLCD_DrawString	(0,	6*24,	"xt			:");

		GLCD_DrawString	(0,	7*24,	"yt			:");

}

7.	 Add	the	updateDisplay()	function	to	file	touchScreenDemo.c:

/*--------------------------------------------------

		updateDisplay

	*--------------------------------------------------*/

void	updateDisplay(TOUCH_STATE		*tsc_state)	{

		char	buffer[128];

		

		GLCD_SetForegroundColor	(GLCD_COLOR_BLACK);

		GLCD_DrawString	(7*16,	3*24,	"DETECTED");

		sprintf(buffer,	"%i			",	tsc_state->x);	/*	raw	x_coord	*/

		GLCD_DrawString	(7*16,	4*24,	buffer);

		

		sprintf(buffer,	"%i			",	tsc_state->y);	/*	raw	y_coord	*/

		GLCD_DrawString	(7*16,	5*24,	buffer);

		

		screenTransformTS(tsc_state);

		sprintf(buffer,	"%i			",	tsc_state->x);

		GLCD_DrawString	(7*16,	6*24,	buffer);

		

		sprintf(buffer,	"%i			",	tsc_state->y);

		GLCD_DrawString	(7*16,	7*24,	buffer);

}

8.	 Add	the	clearDisplay()	function	to	file	touchScreenDemo.c:



/*--------------------------------------------------

		clearDisplay

	*--------------------------------------------------*/

void	clearDisplay()	{

		GLCD_SetForegroundColor	(GLCD_COLOR_LIGHT_GREY);

		GLCD_DrawString	(7*16,	3*24,	"DETECTED");

		GLCD_DrawString	(7*16,	4*24,	"								");

		GLCD_DrawString	(7*16,	5*24,	"								");

		GLCD_DrawString	(7*16,	6*24,	"								");

		GLCD_DrawString	(7*16,	7*24,	"								");

}

9.	 Add	the	screenTransformTS()	function	to	file	touchScreenDemo.c:

/*--------------------------------------------------

		Touch	Screen	Transform

	*--------------------------------------------------*/

void	screenTransformTS(TOUCH_STATE	*ts)	{

		int	y	=	ts->y;

		int	x	=	ts->x;

		//	Note:	co-ordinates	are	inverted

		if	(x	>	0)

				ts->y	=	GLCD_HEIGHT	-	(int)(((double)x	/	

												(double)SCREEN_TS_HEIGHT)*(double)GLCD_HEIGHT);

		if	(y	>	0)

				ts->x	=	(int)(((double)y	/

												(double)SCREEN_TS_WIDTH)*(double)GLCD_WIDTH);

}

10.	 Check	the	Use	MicroLIB	project	option.
11.	 Build	the	project,	download	it,	and	run	the	program.	The	GLCD	will	display	the	LCD

touchscreen	and	screen	coordinates	when	touched	(refer	to	the	following	screenshot):





How	it	works…
The	Touch_GetState()	function	updates	the	tsc_state	variable,	which	stores	the	status
of	the	LCD	touchscreen	and	coordinates.	These	are	stored	as	a	structure	that	is	defined	by
a	typedef	keyword	in	the	Board_Touch.h	file:

/*	Touch	state	*/

typedef	struct	_TOUCH_STATE	{

		int16_t	x;																												///<	Position	X

		int16_t	y;																												///<	Position	Y

		uint8_t	pressed;																						///<	Pressed	flag

}	TOUCH_STATE;

The	LCD	touchscreen	and	GLCD	coordinate	systems	are	different	in	resolution	and
origin.	The	screenTransformTS(	)	function	maps	between	GLCD	and	touchscreen
coordinate	systems.	Notice	how	we	pass	a	pointer	to	the	tsc_state	variable	and	access
specific	fields	such	as	ts->y,	and	so	on.





Writing	a	driver	for	the	audio	codec
The	audio	codec	is	a	peripheral	that	enables	an	analog	signal	to	be	converted	and	coded	to
a	digital	data	stream	or	conversely	the	data	stream	to	be	decoded	and	converted	back	to	an
analog	signal	(https://en.wikipedia.org/wiki/Codec).	The	MCBSTM32F400	evaluation
board	uses	a	CS42L52	device	that	is	manufactured	by	Cirrus	Logic
(http://www.cirrus.com/en/products/).	As,	this	codec	is	not	yet	included	in	Board	Support,
and	as	no	CMSIS-compliant	device	driver	is	available,	we	are	faced	with	the	task	of
having	to	write	our	own	driver.

However,	this	is	not	as	daunting	as	it	first	appears	because	the	code	to	set	up	and	manage
data	transfer	across	the	I2C	bus	can	be	lifted	from	the	previous	recipe	(the
Touch_STMPE811.c	file)	and	the	configuration	of	the	CS42L52	codec	is	described	in	the
data	sheet.	The	recipe	to	develop	and	test	this	codec	driver	is	called	codecDemo_c6v0.

https://en.wikipedia.org/wiki/Codec
http://www.cirrus.com/en/products/


How	to	do	it…
Perform	the	following	steps	to	write	a	driver	for	the	audio	codec:

1.	 Create	a	new	project	called	codecDemo,	and	using	the	Run-Time	Environment
manager,	include	Board	Support	for	the	Graphic	LCD.	Remember	to	configure
Software	Support	for	CMSIS	and	Device	as	in	earlier	projects.

2.	 Create	a	new	file	named	codecDemo.c.	Add	the	boilerplate	to	configure	clocks,	and
so	on,	and	a	skeleton	main()	function:

int	main	(void)	{

		

		HAL_Init	();			/*	Init	Hardware	Abstraction	Layer	*/

		SystemClock_Config	();											/*	Config	Clocks	*/

}

3.	 Add	the	#include	files	for	the	codecDemo.c	file:

#include	"stm32f4xx_hal.h"

#include	"cmsis_os.h"

#include	"codec_CS42L52.h"

#include	"GLCD_Config.h"

#include	"Board_GLCD.h"

#include	<stdio.h>

4.	 Create	a	new	file	called	timer.c	and	add	this	to	the	source	code	group.	Add	a
function	named	TIM3_Initialize()	to	this	file:

void	TIM3_Initialize	(void)	{

		const	uint16_t	ARR_val	=	7;

		/*	enable	clock	for	TIM3	*/

		RCC->APB1ENR	|=	RCC_APB1ENR_TIM3EN;	

		TIM3->CCMR1	=	0x00000070;							/*	Set	PWM	Mode	2	*/

		TIM3->ARR	=	ARR_val	-	1;							/*	set	auto-reload	*/

		TIM3->CCR1	=	3;														/*	Duty	cycle	(~50%)	*/

		/*	Enable	capture/compare	on	Chan	1				*/

		TIM3->CCER	=	0x000B00001;

		TIM3->CR1	=	0x000B00001;									/*	Enable	counter	*/				

}

5.	 Create	a	new	file	called	codec_CS42L52.c	and	add	this	to	the	source	code	group.
Copy	the	first	75	lines	of	the	Touch_STMPE811.c	file	to	codec_CS42L52.c,	the	first
part	of	the	file,	including	the	Touch_Read()	and	Touch_Write()	functions.

6.	 Change	the	#include	directives	in	the	codec_CS42L52.c	file	to	the	following:

#include	"CS42L52.h"

#include	"codec_CS42L52.h"

#include	"stm32f4xx_hal.h"

#include	"Driver_I2C.h"

#include	"timer.h"

7.	 Replace	any	references	to	TSC_I2C_ADDR	with	CODEC_I2C_ADDR.



8.	 Replace	any	references	to	TSC_I2C_PORT	with	CODEC_I2C_PORT.
9.	 Replace	TSC_I2C_ADDR	with	that	given	in	the	CS42L52	data	sheet,	as	follows:

/*	7-bit	I2C	Address	=	1001010b	*/

#define	CODEC_I2C_ADDR				0x4A	

10.	 Rename	the	Touch_Read()	and	Touch_Write()	functions	to	Codec_Read()	and
Codec_Write(),	respectively.

11.	 Add	a	global	typedef	to	the	codec_CS42L52.c	file:

/*	Global	TypeDef	-	Register	value	*/

typedef	struct	{

		uint8_t	Addr;

		uint8_t	Val;

}	REG_VAL;

12.	 Add	a	function	named	configureCodec()	to	the	codec_CS42L52.c	file.	The	first	two
statements	of	configureCodec	power	the	device	down	and	wait	for	10	ms.	Note
#define	delay_ms	HAL_Delay:

void	configureCodec	(	)	{

		Codec_Write(0x02,	0x01);				/*	Keep	Codec	Power-down	*/		

		delay_ms(10);	

	

		for	(i	=	0;	i	<	ARR_SZ(CODEC_Config_Init);	i++)

				Codec_Write	(CODEC_Config_Init[i].Addr,

						CODEC_Config_Init[i].Val);

		for	(i	=	0;	i	<	ARR_SZ(CODEC_Config_Beep);	i++)

				Codec_Write	(CODEC_Config_Beep[i].Addr,

						CODEC_Config_Beep[i].Val);

}	/*	configureCodec	*/

13.	 Include	this	macro	definition	to	calculate	the	size	of	a	(const)	array,	as	follows:

/*	Calculate	array	size	*/

#define	ARR_SZ(x)	(sizeof	(x)	/	sizeof(x[0]))

14.	 Define	a	global	array	of	codec	register	address/value	pairs	named
CODEC_Config_Init:

/***

*	CODEC	initialization	based	on	p38

*	of	CS42L52	data	sheet	DS680F2

*****/

REG_VAL	CODEC_Config_Init[]	=	{					

		{0x00,	0x99},

		{0x3E,	0xBA},

		{0x47,	0x80},

		{0x32,	0x80},

		{0x32,	0x00},

		{0x00,	0x00},

};

15.	 Define	a	global	array	of	codec	register	address/value	pairs	named
CODEC_Config_Beep:



/***

*	CODEC	initialization	for	Beep	Generator

*	of	CS42L52	(Grant	Ashton)

*****/

REG_VAL	CODEC_Config_Beep[]	={

		/*	Set	I2S	Ser.	Mstr	Op	Only,	for	Beep	Gen	*/

		{CS42L52_IFACE_CTL1,	0x80},

		/*	Speaker	Vol	B=A,	MONO	*/

		{CS42L52_PB_CTL2,	0x0A},

		/*	Set	master	vol	for	A	*/

		{CS42L52_MASTERA_VOL,	0xC0},

		/*	Ignore	jpr	setting	*/

		{CS42L52_PWRCTL3,	0xAA}

};

16.	 Create	a	new	file	named	CS42L52.h	defining	symbolic	names	(for	example,
CS42L52_IFACE_CTL1,	CS42L52_PB_CTL2,	CS42L52_MASTERA_VOL,	and	so	on)	for
CS42L52	register	addresses.	For	example,	as	in	the	following	addresses:

/*	Register	addresses	*/

#define	CS42L52_CHIP_ID				0x01

#define	CS42L52_PWRCTL1				0x02

#define	CS42L52_PWRCTL2				0x03

#define	CS42L52_PWRCTL3				0x04

#define	CS42L52_CLK_CTL				0x05

//	etc.

17.	 Add	a	function	named	genMCLK()	to	the	codec_CS42L52.c	file:

static	void	genMCLK(void)	{

		GPIO_InitTypeDef	GPIO_InitStruct;

		

		TIM3_Initialize();

		__GPIOC_CLK_ENABLE();

		/*	Configure	GPIO	pin:	PC6	*/

		GPIO_InitStruct.Pin			=	GPIO_PIN_6;

		GPIO_InitStruct.Mode	=	GPIO_MODE_AF_PP;

		GPIO_InitStruct.Pull		=	GPIO_PULLUP;

		GPIO_InitStruct.Speed	=	GPIO_SPEED_FAST;

		GPIO_InitStruct.Alternate	=	GPIO_AF2_TIM3;

		HAL_GPIO_Init(GPIOC,	&GPIO_InitStruct);

}

18.	 Add	a	function	named	codecInitialize()	to	the	codec_CS42L52.c	file.	Note	that
the	code	to	configure	the	I2C	bus	is	identical	to	the	code	in	Touch_Initialize():

int32_t	codecInitialize()	{

		int32_t	status;

		/*	Configure	I2C	*/

		ptrI2C->Initialize	(NULL);

		ptrI2C->PowerControl	(ARM_POWER_FULL);

		ptrI2C->Control	(ARM_I2C_BUS_SPEED,

																											ARM_I2C_BUS_SPEED_FAST);

		ptrI2C->Control	(ARM_I2C_BUS_SPEED,



		/*	Configure	CODEC	*/

		configureCodec();

		genMCLK();

		/*	CODEC	Power	up				*/

		status	=	Codec_Write(CS42L52_PWRCTL1,	0x00);	

		delay_ms(10);	/*	Wait	10ms	*/

		

		return	status;

}

19.	 Add	a	function	named	readCodecChipID()	to	the	codec_CS42L52.c	file:

int32_t	readCodecChipID(uint8_t	*val)	{

		int32_t	status	=	Codec_Read(1,	val);

		

		return	status;

}

20.	 Add	a	function	named	Beep()	to	the	codec_CS42L52.c	file:

void	Beep(noteInfo	note	)	{

		/*	Beep	off	time	1.23s	and	volume	0dB	*/

		Codec_Write(CS42L52_BEEP_VOL,	0x00);

		/*	Set	beep	note	and				beep	duration	*/	

		Codec_Write(CS42L52_BEEP_FREQ,	

																note.pitch	|	note.duration);

		/*	play	single	beep	*/				

		Codec_Write(CS42L52_BEEP_TONE_CTL,	0x40);

		/*	Disable	beep	*/

		Codec_Write(CS42L52_BEEP_TONE_CTL,	0x00);

}

21.	 Create	the	timer.h	header	file	containing	the	timer.c	function	prototypes.
22.	 Create	the	codec_CS42L52.h	header	file	containing	the	codec_CS42L52.c	function

prototypes.
23.	 Define	symbolic	names	for	the	pitch	of	notes	in	the	codec_CS42L52.h	file,	for

example,	as	in	the	following	frequencies:

//	Beep	note	frequency

#define	A5	0x60

#define	A6	0xD0

#define	B5	0x70

#define	B6	0xE0

//	etc.

24.	 Define	symbolic	names	for	the	duration	of	notes	in	the	codec_CS42L52.h	file,	for
example,	as	in	the	following:

#define	TENTH_SECOND					0x00

#define	HALF_SECOND					0x01

#define	ONE_SECOND					0x02

//	etc.

25.	 Extend	the	main()	function	by	adding	code	to	initialize	the	GLCD	and	Codec.	Define
a	super-loop	that	outputs	a	beep	every	0.5	seconds:



int	main	(void)	{

		noteInfo	note	=	{G5,	0x02};

		uint8_t	codecID;

		char	buffer[128];

		

		HAL_Init	();			/*	Init	Hardware	Abstraction	Layer	*/

		SystemClock_Config	();											/*	Config	Clocks	*/

		GLCD_Initialize();

		setDisplay();

		

		showStatus(CodecInitialize());	

		showStatus(readCodecChipID(&codecID));

		sprintf(buffer,	"Chip	ID:	0x%x",	codecID);

		GLCD_DrawString	(1*16,	9*24,	buffer);

		while	(1)	{				

				Beep(note);																							/*	Play	the	note	*/		

				

				wait_delay(500);																							/*	pause	*/

		}	/*	WHILE	*/

}

26.	 Add	a	function	named	setDisplay()	(copy	the	first	12	lines	of	the	similarly-named
function	used	in	touchScreenDemo_c6v0).

27.	 Add	a	function	named	showStatus(	):

void	showStatus(int32_t	stat)	{

		if	(stat==0)	GLCD_DrawString	(1*16,	8*24,"Codec	OK		");

		else	GLCD_DrawString	(1*16,	8*24,"Codec	FAIL");

}

28.	 Check	that	the	codec_CS42L52.c	and	timer.c	files	are	added	to	the	project.
29.	 Select	the	Use	MicroLIB	project	option.
30.	 Remember	to	configure	the	RTE_Device.h	and	RTX_Conf_CM.c	files,	as	we	did	for	the

touchScreenDemo_c6v0	folder	from	the	Setting	the	RTE	for	the	I2C	Peripheral	Bus
recipe.

31.	 Build	the	project,	then	download	and	run	the	program.



How	it	works…
A	Linux	driver	for	the	CS42L52	device	has	been	written	by	Cirrus	Logic	(http://lxr.free-
electrons.com/source/sound/soc/codecs/cs42l52.c)	and	is	freely	distributed	under	the	terms
of	the	GNU	General	Public	License.	So,	we	can	use	this	together	with	information	from
the	datasheet	(http://www.cirrus.com)	as	a	basis	for	our	driver	for	the	MCBSTM32F400
evaluation	board.	As	the	audio	codec	is	also	connected	to	the	I2C	serial	bus,	the
touchscreen	driver	that	we	met	in	the	previous	section	provides	a	good	template	for	our
audio	codec	driver.	Therefore,	we	will	organize	the	codec	driver	in	three	files	that	mirror
those	of	the	touchscreen	driver,	as	follows:

CS42L52.h:	This	defines	codec	registers
Codec_CS42L52.c:	This	declares	functions
Codec_CS42L52.h:	This	declares	function	prototypes	and	defines	symbolic	names
for	constants

The	code	in	the	Codec_CS42L52.c	file	first	defines	the	I2C	port	that	is	used	to
communicate	with	the	audio	codec.	The	board	schematic	confirms	that	the	touchscreen
and	the	audio	codec	are	connected	to	the	same	I2C	port	(that	is,	serial	clock	SCL	=	PB8
and	SDA	=	PB9),	so	we	configure	the	RTE	and	RTX	exactly	as	touchScreenDemo_c6v0
using	I2C	port	1	(I2C1).	The	following	preprocessor	directives	define	the	port	number:

#ifndef	CODEC_I2C_PORT

#define	CODEC_I2C_PORT				1		/*	I2C	Port	number*/

#endif

The	following	preprocessor	macro	ensures	that	the	ptrI2C	identifier	points	to	the
appropriate	I2C	driver:

/*	I2C	Driver	*/

#define	_I2C_Driver_(n)		Driver_I2C##n

#define		I2C_Driver_(n)	_I2C_Driver_(n)

extern	ARM_DRIVER_I2C				I2C_Driver_(CODEC_I2C_PORT);

#define	ptrI2C									(&I2C_Driver_(CODEC_I2C_PORT))

The	most-significant	6-bit	audio	codec’s	I2C	address	is	shown	on	the	board	schematic	and
the	CS42L52	datasheet	as	1001012.	Bit-0	reflects	the	logic	level	of	the	AD0	pin	(that	is,	0
V),	and	the	LSB	is	0	(for	write	operations).	So,	our	codec’s	I2C	address	is	0x94,	that	is,
the	following:

#define	CODEC_I2C_ADDR				0x4A	/*	I2C	address	*/

Note	that	in	practice,	all	accesses	to	the	codec	are	writes	because	the	read	protocol	uses	an
abortive	write	cycle	first	to	select	the	codec	register	before	reading	its	contents	(refer	to
http://www.cirrus.com	for	further	details).

We	declare	two	functions:	Codec_Write(	)	and	Codec_Read(	),	which	mirror
Touch_Write(	)	and	Touch_Read(	),	which	were	declared	in	Touch.c	to	read	and	write	to
the	audio	codec.

The	function	named	CodecInitialize()	performs	three	tasks.	It	configures	the	I2C

http://lxr.free-electrons.com/source/sound/soc/codecs/cs42l52.c
http://www.cirrus.com
http://www.cirrus.com


interface,	then	it	generates	the	12	MHz	master	clock	MCLK	(codec	Pin	37),	and	finally,	it
performs	the	codec’s	initialization	sequence.

The	function	named	genMCLK()	configures	TIM3	to	generate	a	12-MHz	clock	and	maps
this	onto	the	Alternate	Function	(AF)	GPIO	Port	C	pin	6	output.	The	initialization	for
TIM3	is	similar	to	that	described	in	the	previous	chapter	except	that	we	use	the	PWM
mode	with	the	capture/compare	register	to	give	an	approximate	50%	duty	cycle.	The	code
to	configure	the	GPIO	pin	that	is	used	to	source	MCLK	is	similar	to	the	one	that	we	saw	in
the	LED_Initialize()	function.

The	initialization	sequence	for	the	audio	codec	is	given	on	page	38	of	the	CS42L52	data
sheet.	The	initialization	sequence	is	stored	in	an	array	named	CODEC_RegInit[].	The	array
entries	are	structured	as	follows:

/*	Register	value	*/

typedefstruct	{

		uint8_tAddr;

		uint8_t	Val;

}	REG_VAL;

The	register	names	(for	example,	MASTERA_VOL,	and	so	on)	are	defined	in	the	CS42L52.h
header	file	(note	that	the	register	names	can	be	copied	from	the	Linux	CS42L52	driver).
To	prevent	odd	pops	and	crackles,	the	data	sheet	advises	that	the	chip	is	powered	down
before	initialization	and	then	powered	up.	This	configuration	code	is	included	in	the
configureCodec()	function.	This	function	includes	a	nice	example	of	a	macro	named
ARR_SZ	to	compute	the	size	of	the	array:

/*	Calculate	array	size	*/

#define	ARR_SZ(x)	(sizeof	(x)	/	sizeof(x[0]))

Note	that	unlike	some	languages,	such	as	Java,	C	doesn’t	perform	any	array	bounds
checking,	so	it	can	be	quite	difficult	to	track	errors	due	to	incorrect	array	access;	because
of	this,	this	macro	is	particularly	useful.

In	this	recipe,	we’re	only	using	the	codec’s	beep	generator	(section	4.3	of	the	data	sheet),
and	the	values	stored	in	the	CODEC_Config_Beep[]	array	are	concerned	with	setting	the
codec	up	for	this	task.	The	remaining	functions	declared	in	the	codec_CS42L52.c	file	are
concerned	with	generating	beeps	and	adjusting	the	volume	of	the	speaker.	The	beep
generator	can	be	configured	to	produce	single,	multiple,	or	continuous	beeps,	but	we	only
need	single	beeps	to	play	our	tune.	The	Beep(	)	function	generates	a	single	beep.	This
function	takes	an	input	parameter	that	determines	the	pitch	and	duration	of	the	beep,	and
this	is	combined	into	one	byte	and	written	to	the	codec	register	address	offset	0x1C	in	the
format	shown	in	the	following	table:

Bit-7 Bit-6 Bit-5 Bit-4 Bit-3 Bit-2 Bit-1 Bit-0

FREQ3 FREQ2 FREQ1 FREQ0 ONTIME3 ONTIME2 ONTIME1 ONTIME0





How	to	use	the	audio	codec
Listening	to	the	beep	generated	by	codecDemo_c6v0	gets	very	annoying	after	a	couple	of
minutes,	so	we	will	try	and	improve	matters	by	adding	a	couple	of	functions	that	will
enable	us	to	change	and	mute	the	volume.	We’ll	also	modify	the	code	to	use	the	beep
generator	to	play	a	tune.	We’re	limited	to	a	fairly	simple	tune	because	the	beep	generator
only	generates	audio	frequencies	across	two	octave	major	scales.	For	those	who	are
musically	minded,	we	define	the	mapping	between	notes	(pitch)	and	beep	frequencies,	and
the	beep	ON	time	(see	section	6.21	of	the	data	sheet)	as	well,	in	the	codec_CS42L52.h
header	file.	We	call	this	recipe	codecDemo_c6v1.



How	to	do	it…
Follow	the	outlined	steps	to	use	the	audio	codec:

1.	 Clone	the	previous	recipe	and	name	the	folder	codecDemo_C6v1.
2.	 Open	the	RTE	manager	and	add	Board	Support	for	Buttons	(API)	and	LED	(API).

Click	Resolve	and	OK.
3.	 Add	a	function	named	setVolume()	to	the	codec_CS42L52.c	file:

static	void	setVolume(int32_t	vol)	{

		

		if	(vol	<	-128)

				Codec_Write(CS42L52_MASTERA_VOL,	(uint8_t)	vol+256);

		else	

				Codec_Write(CS42L52_MASTERA_VOL,	(uint8_t)	vol);

}

4.	 Add	a	function	named	getVolume()	to	the	codec_CS42L52.c	file:

int32_t	getVolume(	)	{

		int32_t	vol,	out_vol;

		uint8_t	val;

		

		Codec_Read(CS42L52_MASTERA_VOL,	&val);

		vol	=	(int32_t)	val;

		if	(vol	>	24)	{

				out_vol	=	-204;	/*	-102	db	(saturated)	*/	

				if	(vol	>	52)	out_vol	=	vol-256;

		}

		else	out_vol	=	vol;

				

		return	out_vol;

}

5.	 Add	a	function	named	decreaseVolume()	to	the	codec_CS42L52.c	file:

void	decreaseVolume(uint32_t	stepSize)	{

		int32_t	currentVolume	=	getVolume();

		const	int32_t	minVolume	=	MIN_VOL_DB*2;	/*	-102dB	*/	

		uint32_t	n	=	0;

		

		while	((currentVolume	>	minVolume)	&&	(n<stepSize))	{	

				currentVolume--;	/*	0.5dB	decrement	*/	

				setVolume(currentVolume);

				n++;

		}

}

6.	 Add	a	function	named	increaseVolume()	to	the	codec_CS42L52.c	file:

void	increaseVolume(uint32_t	stepSize)

{

		int32_t	currentVolume	=	getVolume();

		const	int32_t	maxVolume	=	MAX_VOL_DB*2;		/*	+12dB	*/

		uint32_t	n=0;



		while	((currentVolume	<	maxVolume)	&&	(n<stepSize)){	

				currentVolume++;	/*	0.5dB	increment	*/

				setVolume(currentVolume);

				n++;

		}

}

7.	 Add	a	function	named	setMute()	to	the	codec_CS42L52.c	file:

void	setMute(bool	state)	{

		uint8_t	val;

		

		if	(state)	val	=	0x01;

		else	val	=	0x00;

		Codec_Write(CS42L52_PB_CTL1,	val);		

}

8.	 Declare	a	global	constant	array	in	the	codecDemo.c	file	and	assign	values
representing	the	notes	for	our	tune:

noteInfo	tune[]	=	{

		{G5,	0x02},	{G5,	0x02},	{A5,	0x02},	{F5,	0x04},	

		{G5,	0x01},	{A5,	0x02},	{B5,	0x02},	{B5,	0x02},	

		{C6,	0x02},	{B5,	0x04},	{A5,	0x01},	{G5,	0x02},	

		{A5,	0x02},	{G5,	0x02},	{F5,	0x02},	{G5,	0x02},	

		{G5,	0x01},	{A5,	0x01},	{B5,	0x01},	{C6,	0x01},	

		{D6,	0x02},	{D6,	0x02},	{D6,	0x02},	{D6,	0x04},	

		{C6,	0x01},	{B5,	0x02},	{C6,	0x02},	{C6,	0x02},

		{C6,	0x02},	{C6,	0x04},	{B5,	0x01},	{A5,	0x02},	

		{B5,	0x02},	{C6,	0x01},	{B5,	0x01},	{A5,	0x01},	

		{G5,	0x01},	{B5,	0x04},	{C6,	0x01},	{D6,	0x02},	

		{E6,	0x01},	{C6,	0x01},	{B5,	0x02},	{A5,	0x02},	

		{G5,	0x09}	};

9.	 Replace	function	named	setDisplay()	in	the	codecDemo.c	file:

void	setDisplay(	)	{

		

		GLCD_SetBackgroundColor	(GLCD_COLOR_WHITE);

		GLCD_ClearScreen	();

		GLCD_SetFont	(&GLCD_Font_16x24);

		GLCD_SetForegroundColor	(GLCD_COLOR_BLACK);

		GLCD_DrawString	(1*16,	1*24,	"Volume:	");

		GLCD_DrawString	(1*16,	5*24,	"Wakeup	toggles	MUTE");

		GLCD_DrawString	(1*16,	6*24,	"User	and	Tamper");

		GLCD_DrawString	(1*16,	7*24,	"Adjust	Volume");

	

		#ifdef	__DEBUG		

		showCodecInfo(	);

		#endif

}

10.	 Add	a	function	named	volumeUserInput()	to	the	codecDemo.c	file:

void	volumeUserInput(	)	{

		uint32_t	keyMsk;

		



		keyMsk	=	Buttons_GetState	();	

				if	(keyMsk	&	BUTTONS_TAMPER_MASK)	

						increaseVolume(10);

				else	{

						if	(	keyMsk	&	BUTTONS_USER_MASK	)	

								decreaseVolume(10);

						else

								if	(keyMsk	&	BUTTONS_WAKEUP_MASK)	{	

										mute	=	!mute;

										setMute(mute);

				}	/*	IF-ELSE	*/

		}	/*	IF-ELSE	*/

}

11.	 Add	a	function	named	showVolumeGraph()	to	the	codecDemo.c	file:

void	showVolumeGraph(	)	{

		if	(mute)	{/*	If	codec	is	muted,	display	red	graph	*/

				GLCD_SetForegroundColor	(GLCD_COLOR_RED);

				GLCD_DrawString(1*16,	2*24,	"(Muted)");

		}

		else	{																								/*	else	blue	graph	*/

				GLCD_SetForegroundColor	(GLCD_COLOR_BLUE);

				GLCD_DrawString(1*16,	2*24,	"							");

		}

		GLCD_DrawBargraph(130,	24,	180,	20,	

																					(getVolume()	-	(MIN_VOL_DB*2))/2);

}

12.	 Replace	the	main()	function	in	the	codecDemo.c	file:

int	main	(void)	{

		uint32_t	i	=	0;

		uint32_t	beepTimeOut	=	0;

	

		HAL_Init	();			/*	Init	Hardware	Abstraction	Layer	*/

		SystemClock_Config	();											/*	Config	Clocks	*/

		GLCD_Initialize();

		LED_Initialize	();

		Buttons_Initialize	();

		CodecInitialize();								

		setDisplay(	);		

		while	(1)	{		

				if	(!beepTimeOut)	{

						Beep(tune[i]);												/*	Play	the	next	note	*/						

						beepTimeOut	=	tune[i].duration;

						i	=	(i+1)%ARR_SZ(tune);

				}

				else

						beepTimeOut--;	/*	Wait	*/

				

				volumeUserInput(	);

				showVolumeGraph(	);



				LED_SetOut(i);

				

				wait_delay(BEAT_TIME);

		}	/*	WHILE	*/

}

13.	 Build,	download,	and	run	the	program.	You	should	get	something	similar	to	the
following	screenshot

:



How	it	works…
The	functions	in	steps	2	and	3	of	this	recipe	are	concerned	with	controlling	the	speaker
volume.	The	setVolume()	function	can	be	made	static	to	enforce	privacy	(static
functions	can	only	be	called	within	the	file	in	which	they	are	defined).	Both	functions
access	the	register	that	controls	the	master	volume	for	codec	channel	A	(Address	Offset
0x20):

Bit-7 Bit-6 Bit-5 Bit-4 Bit-3 Bit-2 Bit-1 Bit-0

MSTxVOL7 MSTxVOL6 MSTxVOL5 MSTxVOL4 MSTxVOL3 MSTxVOL2 MSTxVOL1 MSTxVOL0

The	master	the	volume	is	represented	using	a	special	8-bit	2’s-complement	code,	which
allocates	values	0-24	to	positive	numbers,	and	the	remaining	values	to	negative	ones	(note
that	a	normal	8-bit	2s-complement	representation	allocates	code	words	equally	between
positive	and	negative	quantities).	The	function	to	read	the	getVolume(	)	master	volume
register	converts	the	value	read	from	the	register	to	a	signed	32-bit	integer	that	represents
twice	the	volume	in	decibels	(dB)	(that	is,	values	between	-204	and	+24	represent	-102	dB
to	+12	dB).

An	input	parameter	of	the	setVolume()	function	represents	twice	the	volume	(dB).	If	the
volume	lies	in	the	-128	to	+24	range,	then	it	simply	casts	the	32-bit	signed	integer	as	an	8-
bit	value	before	writing	it	to	the	codec’s	register.	Otherwise,	it	adds	an	offset	of	+256.	The
binary	code	that	is	used	to	represent	the	volume	is	explained	in	the	CS42L52	data	sheet.
The	inceaseVolume(),	decreaseVolume(),	and	setMute()	functions	described	in	steps	4
to	6	of	the	recipe	provided	a	simple	high-level	interface	that	allows	the	volume	to	be
manipulated.

Now	that	we	have	defined	a	codec	driver,	we	can	turn	our	attention	to	writing	the	main
function	for	our	audio	codec	demo.	This	simply	needs	to	initialize	the	codec	and	then
write	appropriate	values	to	the	beep	generator.	The	pitch	and	time	values	are	stored	in	the
global	array	named	tune	[	];	can	you	guess	the	‘tune’?	The	wakeup,	tamper,	and	user
buttons	are	used	to	increase,	decrease,	and	mute	the	volume,	so	they	need	to	be	initialized
too.	The	super-loop	inside	main()	outputs	the	array	values	(notes	and	durations	by
stepping	through	the	tune	[	]	array.	The	VolumeUserInput()	function	checks	and
processes	button	inputs,	and	the	ShowVolumeGraph()	function	displays	a	bar	indicating	the
volume	on	the	GLCD.	The	function	named	wait_delay()	ensures	that	each	call	to	Beep(
)	is	separated	by	an	appropriate	time	interval	set	by	the	BEAT_TIME	constant.





How	to	use	the	camera
The	camera	is	another	I2C	peripheral,	but	to	display	video	we	need	to	read	the	array	pixels
that	make	up	an	image	and	write	their	values	to	the	GLCD	very	rapidly.	We	achieve	this
by	using	Direct	Memory	Access	(DMA)	to	stream	image	frames	directly	to	the	GLCD
rather	than	writing	individual	values	as	we	did	for	the	audio	codec	demo.	We’ll	name	this
recipe	cameraDemo_c6v0.



How	to	do	it…
1.	 Create	a	new	project	named	cameraDemo.	Using	the	RTE	manager,	go	to	Board

Support	and	select	the	Camera	(API)	and	Graphic	LCD	(API)	software
components.

2.	 Set	the	CMSIS	and	Device	software	components,	as	we’ve	done	for	previous
projects.	Set	the	Use	MicroLIB	project	option.

3.	 Create	a	file	named	cameraDemo.c	and	add	boilerplate	code	to	configure	clocks,	and
so	on.	Add	this	file	to	the	project.

4.	 Add	a	main()	function	to	the	cameraDemo.c	file:
5.	 Build,	download,	and	run	the	program,	as	follows:

int	main	(void)	{

		uint32_t	addr;

		

		HAL_Init();									/*	Initialize	the	HAL	Library	*/

		SystemClock_Config();								/*	Config	System	Clk	*/

		GLCD_Initialize();						/*	Graphical	Display	Init	*/

																										/*	Get	fremebuffer	addr	*/

		addr	=	GLCD_FrameBufferAddress();

		Camera_Initialize(addr);											/*	Camera	Init	*/

		

				/*	Prepare	display	for	video	stream	from	camera	*/

		GLCD_SetBackgroundColor	(GLCD_COLOR_BLUE);

		GLCD_ClearScreen	();

		GLCD_FrameBufferAccess	(true);

		/*	Turn	camera	on	*/

		Camera_On	();

		while	(1)	{

				;								/*	Nothing	to	do	here;	all	done	by	DMA	*/

		}

}

6.	 Open	the	RTE_Device.h	file	and	use	the	configuration	wizard	to	set	the	I2C	port
parameters.	Remember	to	check	the	DMA	transmit	and	receive	options	(we	can
accept	the	default	DMA	parameters):



7.	 Build	the	project,	then	download	and	run	the	program.



How	it	works…
As	the	camera	is	another	I2C	peripheral	and	the	driver	(API)	named	Camera_OVM7690.c
provided	by	ARM	is	structured	in	a	similar	way	to	that	for	the	touchscreen	and	audio
codec,	the	array	named	Camera_RegInit	[	]	stores	a	number	of	addresses	and	value	pairs
that	are	written	by	the	function	named	Camera_Initialize().	The	camera	used	on	the
evaluation	board	is	an	OVM7690	part	manufactured	by	OmniVision
(http://www.ovt.com).	The	camera	resolution	is	640	×	480	pixels	and	operates	at	up	to	30
frames	per	second	(fps).	We	need	to	access	OmniVision’s	OVM7690	Software
Application	Note	in	order	to	understand	the	code	used	to	initialize	the	camera,	but
currently,	these	documents	are	company-confidential	and	protected	by	Non-Disclosure
Agreements	(NDAs).	The	camera	is	aimed	at	mobile	phone,	notebook,	and	automotive
applications	and	includes	a	number	of	programmable	controls	for	image-processing
functions,	such	as	exposure,	gamma,	white	balance,	hue,	and	so	on.
Camera_Initialize()	also	configures	a	DMA	channel	to	stream	data	from	the	camera	to
SDRAM,	so	it	needs	to	be	provided	with	the	base	address	of	a	memory	segment.	This
address	is	defined	by	the	GLCD	(API)	and	acquired	by	the	GLCD_FrameBufferAddress	(
)	function.

http://www.ovt.com


There’s	more…
A	demo	project	that	exercises	many	of	the	features	of	the	MCBSTM32F400	evaluation
board	can	be	downloaded	by	the	pack	installer	with	the	Device	Family	Pack	(currently	the
version	is	DFP	2.6.0).	As	the	demo	program	displays	icons	on	the	GLCD	that	are	encoded
as	bitmaps,	the	executable	image	for	the	program	exceeds	the	limit	imposed	by	the
evaluation	version	of	the	uVision	IDE.	This	code	is	read-only,	but	it	has	been	precompiled
so	that	the	project	can	be	downloaded	and	run	on	the	board.

The	main	function	declared	in	the	demo.c	file	implements	a	finite-state	machine	(FSM)
that	determines	the	operating	mode	of	the	program.	An	integer	variable	named	mode	is
assigned	a	value	of	0,	1,	2,	or	3	depending	on	the	mode	that	was	selected.	These	modes	are
mapped	to	the	M_INIT,	M_STD,	M_MOTION,	and	M_CAM	literals	by	the	enumerated	type
definition:

/*	Mode	definitions	*/

enum	{

		M_INIT	=	0,

M_STD,

		M_MOTION,

		M_CAM,

};

The	mode	variable	is	assigned	by	the	function	called	SwitchMode()	that	takes	an	input
argument	that	identifies	the	current	state	(that	is,	0,	1,	2,	and	3)	and	returns	the	next	state.
For	example,	the	first	call	to	SwitchMode()	is	made	when	the	current	state	is	M_INIT:

mode	=	SwitchMode	(M_INIT);

A	switch	statement	in	main()	determines	different	behaviors	for	each	mode,	as	follows:

switch	(mode)	{

case	M_STD:

				...

break;

case	M_MOTION:

				...

break;

case	M_CAM:

				...

break;

default:

mode	=	SwitchMode	(mode);

break;

}

This	behavior	is	better	described	by	a	state	diagram	(shown	as	follows).	This	diagram	is	a
graph	where	states	are	identified	by	vertices	and	the	permitted	transitions	between	states
by	edges.	The	edges	are	labeled	with	events	that	give	rise	to	the	changes	of	state.



The	Demo	project	is	a	very	useful	resource	as	it	provides	example	code	for	many	of	the
evaluation	board	functions.	The	#include	statements	at	the	start	of	the	main	source	file
provide	some	insight	into	what	is	available:





Designing	bitmapped	graphics
User	interfaces	and	games	can	be	made	much	more	interesting	using	color	graphics.	The
GLCD	library	includes	a	function	called	GLCD_DrawBitmap()	that	can	be	used	to	render
16-bit	color	bitmaps.	Bitmaps	can	be	designed	using	standard	editors	or	downloaded	from
elsewhere.	The	following	recipe	shows	you	how	to	generate	a	simple	bitmapped
representation	of	a	ball	that	can	be	used	with	the	helloBounce	and	helloPong	recipes	we
developed	in	Chapter	2,	C	Language	Programming.	We’ll	call	this	recipe
bitmapBounce_c6v0.



How	to	do	it…
To	design	bitmapped	graphics,	follow	these	instructions:

1.	 Create	a	color	bitmap	of	width	16	pixels	and	height	24	pixels	using	the	Windows
Paint	application.	A	screenshot	of	what	this	should	look	like	is	displayed,	as	follows:

2.	 Save	the	ball	icon	as	a	standard	24-bit	bitmap,	with	the	filename	as	ball.bmp.
3.	 Use	GIMP	(http://www.gimp.org)	to	convert	the	24-bit-per-pixel	bitmap	to	a	16-bit-

per-pixel	format	and	store	the	pixel	values	in	an	array.	First	install	GIMP	and	open
the	ball.bmp	file.

4.	 Export	the	image	as	a	C	source	file	in	16-bit	format	using	the	GIMP	export	sub-
menu.	This	creates	the	C	source	file	(in	this	case,	named	ball_16bit.c).

http://www.gimp.org


5.	 Clone	the	folder	named	helloBounce_c2v0	from	the	Creating	a	game	application	–
Stage	1	recipe	that	we	introduced	in	Chapter	2,	C	Language	Programming,	and	cut
and	paste	the	contents	of	the	ball_16bit.c	file	into	helloBounce.c,	as	follows:

/*	GIMP	RGB	C-Source	image	dump	(ball_16bit.c)	*/

static	const	struct	{

unsigned	int				width;

unsigned	int				height;

unsigned	int				bytes_per_pixel;	/*	2:RGB16	3:RGB	4:RGBA	*/	

unsigned	char				pixel_data[16	*	24	*	2	+	1];

}	gimp_image	=	{

		16,	24,	2,

		"\377\377\377\377\377\377\...	etc.

}

6.	 Delete	the	extern	GLCD_FONT	GLCD_Font_16x24;	declaration:
7.	 Search	for	the	following	references:

GLCD_Font_16x24.width	

GLCD_Font_16x24.height

Replace	these	reference	with	the	following	ones:

gimp_image.width	

gimp_image.height

8.	 Delete	the	call	to	GLCD_SetFont	(&GLCD_Font_16x24);.
9.	 Search	for	the	following	statement:

GLCD_DrawChar	(	x,	y,	0x81	);

Replace	this	statement	with	the	following	one:



GLCD_DrawBitmap	(	x,	y,	gimp_image.width,	gimp_image.height,	

gimp_image.pixel_data	);

10.	 Rebuild,	download,	and	run	the	program.



How	it	works…
The	ball	used	in	the	original	recipes	in	Chapter	2,	C	Language	Programming,	is	rendered
using	the	filled	circle	character,	which	is	one	of	a	number	of	binary	character	bitmaps
defined	in	a	file	named	GLCD_Fonts.c.	We’re	now	using	the	GLCD_Bitmap()	function	to
render	the	ball	rather	than	GLCD_DrawChar().	This	function	expects	a	pointer	to	a	16-bpp
bitmap.	The	bitmap	data	is	provided	by	GIMP.	The	escape	sequences	\377\377\377,	and
so	on,	represent	characters	in	the	string	encoded	in	octal.	Therefore,	3778	=	111111112
and	two	bytes	encode	each	16-bit	pixel,	so	16-bit	bitmaps	can	represent	65,536	colors.	If
the	alpha	channel	is	omitted	(as	in	our	case),	then	RGB	channels	are	encoded	by	5,	6,	and
5-bits,	respectively.



There’s	more…
The	pixel	data	field	of	gimp_image	comprises	16	x	24	x	2	+	1	=	769	bytes.	If	we	store
larger	images	in	this	way,	our	executable	code	image	will	quickly	exceed	the	maximum
allowed	under	the	terms	of	our	free	MDK	license.	However,	after	examining	the	values	in
the	array,	we	can	see	that	many	of	the	values	are	repeated,	and	this	suggests	that	there	may
be	a	more	efficient	way	of	storing	the	pixel	values.	Run-length	encoding	(RLE)	is	a
lossless	compression	algorithm	that	exploits	the	fact	that	there	are	often	many	repeated
values	in	a	bitmap	(that	is,	adjacent	pixels	are	often	the	same	color).	There	are	many
variations	of	run	length	encoding,	and	a	good	introduction	to	the	topic	is	given	by	Arturo
Campos	(http://www.arturocampos.com/ac_rle.html).	We	can	export	a	run	length	encoded-
version	of	our	16-bit	BMP	using	GIMP.

GIMP	adopts	a	run	length	encoding	format	known	as	PackBits,	which	was	originally
developed	by	Apple.	A	data	stream	encoded	by	PackBits	comprises	a	series	of	packets.
Each	packet	consists	of	a	one	byte	header	followed	by	data.	The	header	byte	(n)	is
interpreted	as	a	signed	value	(8-bit	2’s	complement)	and	the	data.	A	positive	value	(n)
indicates	that	the	n	data	elements	that	follow	should	be	interpreted	as	literal	values,	and	a
negative	value	implies	that	the	single	data	element	that	follows	should	be	repeated	n	times.
The	data	structure	(produced	by	GIMP)	with	run	length	encoded	data	representing	the
pixel	values	exported	from	the	ball.bmp	file	is	as	follows:

/*	GIMP	RGB	C-Source	image	dump	1-byte-run-length-encoded	

			(ball_16-bit_rle.c)	*/

static	const	struct	{

unsigned	int		width;

unsigned	int		height;

http://www.arturocampos.com/ac_rle.html


unsigned	int		bytes_per_pixel;	/*	2:RGB16	3:RGB	4:RGBA	*/

unsigned	char		rle_pixel_data[390	+	1];

		}	gimp_image	=	{

				16,	24,	2,

				"\325\377\377\5\377\377\...	etc.

}

The	run	length	encoded	image	comprises	just	391	bytes	(approximately	50%
compression).To	render	the	encoded	bitmap,	we’ll	need	to	define	a	version	of
GLCD_Bitmap()	that	unpacks	the	data	before	writing	it	to	the	GLCD:

int32_t	GLCD_RLE_Bitmap	(uint32_t	x,	uint32_t	y,	uint32_t	width,	uint32_t	

height,	const	uint8_t	*bitmap)	{

		

		int32_t	npix	=	width	*	height;

		int32_t	i=0,	j;

		uint16_t	*ptr_bmp;

		uint8_t	count;

	

#if	(GLCD_SWAP_XY	==	0)

		y	=	(y	+	Scroll)	%	GLCD_HEIGHT;

#endif

		GLCD_SetWindow(x,	y,	width,	height);

		wr_cmd(0x22);

		wr_dat_start();

		while	(i<npix)	{

				count	=	*bitmap++;

				ptr_bmp	=	(unsigned	short	*)	bitmap;

				if	(count	>=	128)	{

						count	=	count-128;

						for	(j	=	0;	j<count;	j++)	{	/*	repeated	pixels	*/

						wr_dat_only(*ptr_bmp);								

				}

				bitmap+=2;	/*	adjust	the	pointer	*/

		}

		else	{

				for	(j=0;	j<count;	j++)	

				wr_dat_only(ptr_bmp[j]);

				bitmap+=(count*2);	/*	adjust	the	pointer	*/				

		}

		i+=count;

		}	/*	while	*/

		wr_dat_stop();

		return	0;

}

As	the	library	source	file,	GLCD_MCBSTM32F400.c,	is	read-only,	we’ll	need	to	add	the
GLCD_RLE_Bitmap()	function	to	a	local	copy	(named	GLCD_MCBSTM32F400_plus.c).	We’ll
also	need	to	add	a	local	copy	of	Board_GLCD.h	(Board_GLCD_plus.h)	that	includes	the
function	prototype,	GLCD_RLE_Bitmap().	Remember	to	modify	the	conditional



preprocessor	statement,	as	follows:

#ifndef	__BOARD_GLCD_PLUS_H

#define	__BOARD_GLCD_PLUS_H

Include	a	modified	version	of	the	header	in	rle_bounce.c	and
GLCD_MCBSTM32F400_plus.c.	We’ve	named	this	recipe	that	uses	run	length	encoding
rleBounce_c6v0.





Ideas	for	games	using	sound	and	graphics
The	scope	to	develop	games	for	the	MCBSTM32F400	evaluation	board	is	unlimited;
however,	the	restricted	memory	image	imposed	by	the	evaluation	version	of	the	MDK
constrains	their	complexity	and	the	size	of	bitmaps	that	can	be	used	(we	address	this	issue
in	Chapter	9,	Embedded	Toolchain).	A	number	of	general	introductory	texts	on	game
development	can	inspire	new	ideas.	While	we	used	the	topic	of	generating	audio	mainly	to
introduce	the	audio	codec,	it	is	a	topic	in	its	own	right	and	those	who	wish	to	create	a
really	professional	gaming	experience	should	refer	to	the	book,	The	essential	guide	to
game	audio:	The	theory	and	practice	of	sound	for	games
(http://www.taylorandfrancis.com/books).	Screenshots	of	a	few	examples	of	games
developed	by	students	studying	embedded	systems	are	shown	in	the	following	screenshot:

The	board	lends	itself	to	single-player	games	but	two-player	scenarios	can	be
accommodated	by	designing	an	Artificial	Intelligence	(AI)	opponent.	Two	(human)
players	can	compete	either	by	taking	turns	or	linking	two	boards	together	using	the	RS232
COM	port.

http://www.taylorandfrancis.com/books




Chapter	7.	Real-Time	Signal	Processing
In	this	chapter,	we	will	cover	the	following	topics:

Configuring	the	audio	codec
How	to	play	prerecorded	audio
Designing	a	low-pass	digital	filter
How	to	make	an	audio	tone	control



Introduction
In	the	last	chapter,	we	used	the	audio	codec’s	beep	generator	to	play	a	tune,	but	if	you
looked	at	the	codec	manufacturer’s	data	sheet,	you	must	have	noticed	that	the	device	can
do	much	more.	Audio	signals	can	be	recorded	by	connecting	a	microphone	to	the
evaluation	board’s	stereo	analog	audio	input,	and	the	signal	can	be	sampled	using	the
audio	codec’s	on-chip	ADC.	Digital	audio	can	be	played	by	sending	digital	samples	to	the
codec,	and	the	left	and	right	speakers	can	be	driven	by	the	output	of	an	on-chip	DAC.	A
dedicated	digital	serial	audio	interface	using	a	protocol	called	I2S	(I2S,	or	IIS)	conveys
digital	samples	between	the	microcontroller	and	audio	codec.	Inter-IC-Sound	(I2S)	or
Integrated	Interchip	Sound	(IIS)	is	a	serial	bus	interface	standard	developed	by	Phillips
Semiconductors	in	1986	(revised	1996)	that	is	used	to	connect	digital	audio	devices
together.	This	specification	is	widely	available	online	(for	example,	www.cypress.com).
Unfortunately,	the	STM32F400	evaluation	board	only	supports	a	half-duplex	channel,	so
audio	cannot	be	recorded	and	played	simultaneously.

Connecting	a	powerful	microcontroller	(that	is,	the	computer)	and	codec	together	brings
the	prospect	of	Digital	Signal	Processing	(DSP).	DSP	applications	manipulate	digital
audio	samples	to	create	digital	filters	and	other	amazing	audio	effects.

http://www.cypress.com




Configuring	the	audio	codec
The	STM32F400	evaluation	board	schematic	(http://www.keil.com)	shows	that	a	Cirrus
Logic	CS42L52	codec	IC	(http://www.cirrus.com)	is	used,	and	the	I2S	bus	signals	are
driven	by	GPIO	port	I	bits	0,	1,	and	3.	SDIN	and	SDOUT	are	wired	together,	so	the	I2S
interface	must	be	operated	half-duplex.	In	addition	to	managing	the	I2S	interface,	the
microcontroller	must	also	source	a	Master	Clock	(MCLK),	which	clocks	the	codec’s
delta-sigma	modulators	(Note	that	we	described	a	function	to	achieve	this	in	Chapter	6,
Multimedia	Support).	A	block	diagram	that	summarizes	the	I2S	interface	connection	is
shown,	as	follows:

The	codec	also	uses	MCLK	to	power	an	inverter,	which	supplies	a	higher	DC	voltage	to
support	analog	parts	of	the	codec.	The	codec	data	sheet	explains	that	MCLK	should	be
instantiated	and	the	codec’s	registers	must	be	configured	while	the	device	is	powered
down	and	the	power	up/down	sequence	outlined	in	the	data	sheet	must	be	carefully
followed	to	ensure	the	codec	operates	correctly.

The	I2S	specification	identifies	master	and	slave	roles.	An	I2S	bus	must	include	one
master	(to	source	SCLK	and	LRCK),	and	it	may	include	more	than	one	slave.	Normally,
the	microcontroller	is	configured	as	master,	and	as	SDIN	and	SDOUT	are	connected
together	(externally),	SDOUT	must	be	switched	to	a	high-impedance	(HI-Z)	state	before
SDIN	is	driven.	If	we	refer	to	the	following	table	the	only	option	that	allows	for	SDOUT
to	be	HI-Z	is	to	configure	the	codec	as	slave:

3ST_SP
Serial	port	status

Slave	mode Master	mode

0 This	is	when	serial	port	clocks	are	inputs,	and	SDOUT	is
output.

This	is	when	serial	port	clocks	and	SDOUT	are
outputs.

1 This	is	when	serial	port	clocks	are	inputs,	and	SDOUT	is
HI-Z.

This	is	when	serial	port	clocks	and	SDOUT	are
HI-Z.

The	microcontroller’s	Serial	Peripheral	Interface	(SPI)	and	I2S	interface	is	described	in
section	28	of	STM’s	RM0090	Reference	Manual	(http://www.st.com).	The	following
recipe,	codecDemo_c7v0,	describes	how	to	configure	the	codec	and	output	a	continuous
audio	tone.

http://www.keil.com
http://www.cirrus.com
http://www.st.com


How	to	do	it…
1.	 Clone	codecDemo_c6v0	from	the	Writing	a	driver	for	the	audio	codec	recipe	in

Chapter	6,	Multimedia	Support	to	a	new	folder	named	codecDemo_c7v0.
2.	 Configure	the	Runtime	Environment,	as	we	did	for	the	folder,	codecDemo_c6v0	from

the	Writing	a	driver	for	the	audio	codec	recipe	in	Chapter	6,	Multimedia	Support,	and
add	support	for	Device	→	STM32Cube	HAL	→	I2S,	as	follows:

Tip
There	is	no	need	to	select	CMSIS	Driver→	SPI	(API).

3.	 Use	the	Configuration	Wizard	tabs	in	RTE_Device.h	and	RTX_Conf_CM.c	to
configure	I2C	and	RTX	parameters,	as	we	did	in	the	folder,	codecDemo_c6v0	from	the
Writing	a	driver	for	the	audio	codec	recipe	in	Chapter	6,	Multimedia	Support.

4.	 Create	a	new	file	named	I2S_audio.c	and	add	this	to	the	project:



5.	 Add	a	global	I2S_HandleTypeDef	handle	structure	in	the	I2S_audio.c	file,	as
follows:

/*	Global	I2S	handle	structure	*/

I2S_HandleTypeDef	hi2s;

6.	 Define	the	Set_I2S_GPIO_Pins()	function	in	the	I2S_audio.c	file,	as	follows:

void	Set_I2S_GPIO_Pins(void)	{

		GPIO_InitTypeDef	GPIO_InitStruct;

		

		__GPIOC_CLK_ENABLE();

		__GPIOI_CLK_ENABLE();

		

				/*	Configure	GPIO	pin:	PI0,1,3	*/

		GPIO_InitStruct.Pin			=	GPIO_PIN_0	|	

																										GPIO_PIN_1	|	GPIO_PIN_3;

		GPIO_InitStruct.Mode	=	GPIO_MODE_AF_PP;

		GPIO_InitStruct.Pull		=	GPIO_NOPULL;

		GPIO_InitStruct.Speed	=	GPIO_SPEED_FAST;

		GPIO_InitStruct.Alternate	=	GPIO_AF5_SPI2;

		HAL_GPIO_Init(GPIOI,	&GPIO_InitStruct);

		

		/*	Configure	GPIO	pin:	PC6	*/



		GPIO_InitStruct.Pin			=	GPIO_PIN_6;

		GPIO_InitStruct.Mode	=	GPIO_MODE_AF_PP;

		GPIO_InitStruct.Pull		=	GPIO_NOPULL;

		GPIO_InitStruct.Speed	=	GPIO_SPEED_FAST;

		GPIO_InitStruct.Alternate	=	GPIO_AF5_SPI2;

		HAL_GPIO_Init(GPIOC,	&GPIO_InitStruct);

}

7.	 Define	the	I2S_Audio_Initialize()	function	(skeleton)	in	the	I2S_audio.c	file:

HAL_StatusTypeDef	I2S_Audio_Initialize(void)	{

		HAL_StatusTypeDef	status;

		/*	Enable	the	SPIx	interface	clock.	*/

		/*	Configure	I2S	Pins	*/

		/*	Program	the	Mode,	Standard,	Data	Format,	

					MCLK	Output,	Audio	frequency	and	Polarity

					using	HAL_I2S_Init()	function.	*/

}

8.	 Add	this	code	to	enable	the	clock	in	the	I2S_Audio_Initialize()	function:

/*	Enable	the	SPIx	interface	clock.	*/

RCC->CR	|=	RCC_CR_PLLI2SON;		/*	Enable	the	PLLI2S	*/

																/*	Wait	till	the	main	PLL	is	ready	*/

while((RCC->CR	&	RCC_CR_PLLI2SRDY)	==	0)

				{}

__HAL_RCC_SPI2_CLK_ENABLE();

9.	 Call	Set_I2S_GPIO_Pins(),	as	follows:

/*	Configure	I2S	Pins	*/

Set_I2S_GPIO_Pins(	);

10.	 Set	the	appropriate	fields	of	the	global	I2S_HandleTypeDef	handle	structure	and	call
HAL_I2S_Init(	):

/*	Program	the	Mode,	Standard,	Data	Format,	

			MCLK	Output,	Audio	frequency	and	Polarity

			using	HAL_I2S_Init()	function.	*/

		hi2s.Instance	=	SPI2;		

		hi2s.State	=	HAL_I2S_STATE_RESET;				

		hi2s.Init.Mode	=	I2S_MODE_MASTER_TX;

		hi2s.Init.Standard	=	I2S_STANDARD_MSB;

		hi2s.Init.DataFormat	=	I2S_DATAFORMAT_16B;

		hi2s.Init.MCLKOutput	=	I2S_MCLKOUTPUT_ENABLE;

		hi2s.Init.AudioFreq	=	I2S_AUDIOFREQ_22K;

		hi2s.Init.CPOL	=	I2S_CPOL_LOW;

		hi2s.Init.ClockSource	=	I2S_CLOCK_PLL	;

		hi2s.Init.FullDuplexMode	=	I2S_FULLDUPLEXMODE_DISABLE;

		

		status	=	HAL_I2S_Init(&hi2s);

11.	 Add	the	#include	files	to	the	I2S_audio.c	file:



#include	"codec_CS42L52.h"

#include	"stm32f4xx_hal.h"

#include	"I2S_audio.h"

#include	"stm32f4xx_hal_i2s.h"

12.	 Open	the	codec_45L52.c	file	and	add	an	array	of	register	or	value	pairs	to	configure
the	codec	for	sampled	audio:

REG_VAL	CODEC_Audio_I2S_Slave[]	={

		/****

			*Configure	I2S	Interface	as	Slave,	16bits

			******/

		{CS42L52_IFACE_CTL1,	0x03},		

		/*	SDOUT	is	HI-Z	*/

		{CS42L52_IFACE_CTL2,	0x10},

		/*	Speaker	Vol	B=A,	MONO	*/

		{CS42L52_PB_CTL2,	0x0A},

		/*	Set	master	vol	for	A/B	*/

		{CS42L52_MASTERA_VOL,	0xC0},

		/*	Ignore	jpr	setting	(speaker	always	ON)	*/

		{CS42L52_PWRCTL3,	0xAA}	

};	

13.	 Modify	the	function	named	configureCodec	(	)	so	that	we	can	select	an	appropriate
setup,	depending	on	an	input	argument	named	mode:

static	void	configureCodec(codecMode	mode)	{

		uint32_t	i;

		

		Codec_Write(0x02,	0x01);			/*	Keep	Codec	Power-down	*/		

		delay_ms(10);	/*	Wait	10ms	*/

		

		for	(i	=	0;	i	<	ARR_SZ(CODEC_Config_Init);	i++)

				Codec_Write	(CODEC_Config_Init[i].Addr,

																			CODEC_Config_Init[i].Val);

		

		if	(mode	==	AUDIO_BEEP)

				for	(i	=	0;	i	<	ARR_SZ(CODEC_Config_Beep);	i++)

						Codec_Write	(CODEC_Config_Beep[i].Addr,

																					CODEC_Config_Beep[i].Val);

		else

				if	(mode	==	AUDIO_SAMPLED)

						for	(i	=	0;	i	<	ARR_SZ(CODEC_Audio_I2S_Slave);	i++)

								Codec_Write	(CODEC_Audio_I2S_Slave[i].Addr,

																							CODEC_Audio_I2S_Slave[i].Val);

}

14.	 Use	mode	to	manage	calls	to	configureCodec()	and	genMCLK()	in	the
codecInitialize()	function:

/*	Configure	CODEC	*/

			configureCodec(mode);

		

		/*	Configure	I2S	*/

		if	(mode	==	AUDIO_SAMPLED)



				status	=	I2S_Audio_Initialize();

		else

				if	(mode	==	AUDIO_BEEP)

						genMCLK();

15.	 Define	mode	in	codec_42L52.h,	as	follows:

typedef	enum	{

		AUDIO_BEEP,

		AUDIO_SAMPLED

}	codecMode;

16.	 Open	the	codecDemo.c	file	and	add	the	following:

#include	"I2S_audio.h"

#include	"stm32f4xx_hal_i2s.h"

/*	Timeout	value	fixed	to	100	ms	*/

#define	I2S_TX_TIMEOUT_VALUE	((uint32_t)100)	

/*	Macro	to	calculate	array	size	*/

#define	ARR_SZ(x)	(sizeof	(x)	/	sizeof(x[0]))

/*	Global	External	Vars	*/

extern	I2S_HandleTypeDef	hi2s;

17.	 Add	a	global	const	array	of	audio	samples	to	the	codecDemo.c	file:

/*	20	left+right	channel	samples	@	22kHz	~=	1.4	kHz.	*/

const	int16_t	dacLUT	[	]	=	{							

																				0,						0,				9830,				9830,		19660,		

																19660,		26214,			26214,			31456,		31456,

																32767,		32767,			31456,			31456,		26214,

																26214,		19660,			19660,				9830,			9830,

																				0,						0,			-9830,			-9830,	-19661,	

															-19661,	-26214,		-26214,		-31457,	-31457,	

															-32768,	-32768,		-31457,		-31457,	-26214,

															-26214,	-19661,		-19661,			-9830,		-9830		};																									

18.	 Modify	the	main()	function	in	the	codecDemo.c	file.	Add	and	initialize	the	variable
mode	and	pass	the	value	to	CodecInitialize(),	as	follows:

int	main	(void)	{

		noteInfo	note	=	{G5,	0x02};

		codecMode	mode	=	AUDIO_SAMPLED;

		HAL_StatusTypeDef	status;

		

		/*	Uncomment	for	BEEP	*/

		//mode	=	AUDIO_BEEP;

		

		HAL_Init(	);

			SystemClock_Config(	);

			GLCD_Initialize();

				status	=	CodecInitialize(mode);

			setDisplay(	);

		//	etc.

		

			}	



19.	 If	required,	we	can	add	a	function	named	showCodecI2SInfo()	that	displays	the
status	(to	debug):

#ifdef	__DEBUG

		if	(mode	==	AUDIO_SAMPLED)	

				showCodecI2SInfo(status);

#endif

20.	 Modify	the	super	loop	in	main()	and	call	HAL_I2S_Transmit(),	as	follows:

while	(1)	{

		if	(mode	==	AUDIO_BEEP)	{

				Beep(note);																		/*	Play	the	note	*/		

				wait_delay(500);																					/*	pause	*/

		}

		else

				if	(mode	==	AUDIO_SAMPLED)					/*	Play	a	tone	*/

						HAL_I2S_Transmit(&hi2s,	(uint16_t	*)	dacLUT,	

															ARR_SZ(dacLUT),	I2S_TX_TIMEOUT_VALUE	);

}	/*	WHILE	*/

21.	 Uncomment	the	mode	=	AUDIO_BEEP;	statement.	Build	and	run	the	program	to
confirm	that	I2C	communication	with	the	audio	codec	is	established	and	the	program
performs	as	codecDemo_c6v0	from	the	Writing	a	driver	for	the	audio	codec	recipe	in
Chapter	6,	Multimedia	Support.

22.	 Reinstate	the	comment.	Build,	download,	and	run	the	code.	We	should	now	hear	a
shrill	tone.



How	it	works…
Before	powering	the	codec	up	(by	clearing	bit	0	of	the	codec’s	power	control	1	register),
we	must	first	ensure	that	MCLK	is	established.	As	we’re	using	the	stm32f4xx_hal_i2s.h
HAL	library	to	manage	the	I2S	low-level	interface,	we	can	take	advantage	of	its	ability	to
generate	MCLK	rather	than	configuring	a	timer	as	we	did	in	Chapter	6,	Multimedia
Support.	The	I2S	bus	and	audio	codec	channels	are	configured	by	a	function	named
I2S_Audio_Initialize(),	which,	in	turn,	is	called	by	CodecInitialize().	The
I2S_Audio_Initialize()	function	performs	the	tasks	that	are	identified	in	the	comment
at	the	start	of	the	stm32f4xx_hal_i2s.c	file.	This	enables	the	I2S	clock,	configures	the
GPIO	pins,	sets	GPIO	for	I2S	Alternate	Function	(AF),	sets	the	I2S	handle	struct,	and
initializes	the	I2S	peripheral	(using	the	HAL	device	driver).	Referring	to	STM’s	reference
manual,	RM0090	(http://www.st.com),	we	can	see	that	the	microcontroller	has	a	number
of	I2C	and	SPI	peripherals,	which	begs	the	question,	How	do	we	decide	which	instance	of
a	peripheral	to	use?	The	answer	is	that,	as	we’re	using	an	evaluation	board,	the	board’s
designer	already	made	this	choice	when	they	laid	out	the	PCB.	The	board	schematic
(http://www.keil.com)	shows	that	port	pins	GPIOB	8	and	9	are	used	by	the	I2C	interface.
Table	9	(Alternate	Function	Mapping)	of	the	STM32F405xx	and	STM32F407xx
Datasheets	(DocID022152	Rev	6)	shows	that	Port	B	Pins	8	and	9	are	used	by	the
AF2/3/4/5/9/11/13/15	alternate	functions	and	AF5	connects	instance	I2C1.	Similarly,	the
codec	connections	shown	on	the	schematic	and	the	Alternate	Function	Mapping	(Table	9)
mean	we	must	use	SPI2	as	the	I2S	peripheral.

Information	on	sourcing	the	I2S	clock	can	be	found	by	referring	to	the	clock	tree	in
RM0090	Reference	Manual	(Doc	ID	018909	Rev	6),	Figure	21.	If	the	I2S	Phase	Locked
Loop	(I2SPLL)	is	not	running	or	an	external	I2S	clock	is	not	sourced,	then	we	must	enable
the	I2SPLL	function,	I2S_Audio_Initialize():

RCC->CR	|=	RCC_CR_PLLI2SON;		/*	Enable	the	PLLI2S	*/

															/*	Wait	till	the	main	PLL	is	ready	*/

while((RCC->CR	&	RCC_CR_PLLI2SRDY)	==	0)	{	}

As	the	SPI2	peripheral	uses	the	APB1Periph	clock,	we	also	include	the	following:

__HAL_RCC_SPI2_CLK_ENABLE();

Configuring	the	GPIO	pins	and	connecting	the	SPI2	AF	is	relatively	straightforward;	for
example,	we	use	GPIO_Initialize()	as	we	did	in	earlier	recipes.	Note	that	we	also	need
GPIO	C	Pin6	to	source	MCLK.

The	final	step	is	to	initialize	the	I2S	handle	struct	(defined	in	stm32f4xx_hal_i2s.h)
with	default	values.	A	pointer	to	this	structure	is	passed	to	the	function	named
HAL_I2S_Init()	that	performs	the	low-level	initialization.	An	important	task	within
HAL_I2S_Init()	is	for	the	I2SPLL	clock	divider	to	give	the	desired	I2S	SCLK	frequency.

The	function	used	to	initialize	the	codec	named	CodecInitialize	(	)	is	very	similar	to
the	one	that	was	presented	in	codecDemo_c6v0	in	the	Writing	a	driver	for	the	audio	codec
recipe	in	Chapter	6,	Multimedia	Support,	but	we’ve	added	some	extra	statements	to	allow
this	function	to	be	used	for	either	BEEP	or	SAMPLED	audio.	Similarly,

http://www.st.com
http://www.keil.com


configureCodec()	also	selects	the	appropriate	setup.

The	main()	function	super	loop	uses	the	function,	HAL_I2S_Transmit(),	to	output	audio
samples	representing	a	sinusoid.	We	can	reuse	the	Look-up-table	(LUT)	that	was
introduced	in	dacSinusoid_c5v0	from	the	Generating	a	sine	wave	recipe	in	Chapter	5,
Data	Conversion	to	represent	the	sampled	sinusoid.	However,	as	the	I2S	serial	interface
supports	16-bit	signed	samples,	we’ll	need	to	convert	the	LUT	to	this	format.

The	I2S	interface	standard	supports	two	(stereo)	channels,	and	although	we’re	operating
the	codec	in	mono	(that	is,	channel	A=B),	we	still	need	to	transmit	left	and	right	samples,
so	each	sample	is	repeated	in	the	LUT	array.

We’ve	described	the	audio	initialization	in	some	detail	and	seem	to	have	done	a	lot	of
work	to	produce	very	little	so	far,	but	judging	from	the	number	of	posts	on	associated
microcontroller	internet	forums,	many	novice	embedded-system	programmers	have
difficulty	with	this	topic.	Many	developers	use	source	code	published	by	STM	for	their
evaluation	boards	as	a	starting	point,	but	they	all	tend	to	use	different
codec/microcontroller	combinations,	so	reusing	the	code	isn’t	always	straightforward.



There’s	more…
Having	generated	a	‘note’,	the	question,	what	frequency?,	arises.	The	I2S	standard
(Phillips	Semiconductors,	1986)	can	help	us	answer	this.	The	timing	diagram	depicted	as
follows	illustrates	an	I2S	data	transmission:

As	the	sinusoid	is	described	by	20	samples	and	a	sample	frequency	of	22	kHz	(Fs),	the
period	will	be	20	×	10^(-3)⁄960.909	ms,	that	is,	a	frequency	of	approximately	1.2	kHz.	We
can	confirm	this	by	connecting	an	oscilloscope	to	the	audio	jack.

Currently,	the	main	super	loop	only	comprises	one	function	call.	We	must	be	mindful	that
adding	further	statements	in	the	loop	may	result	in	the	I2S	transmit	register	being	starved.





How	to	play	prerecorded	audio
This	recipe	demonstrates	how	to	play	audio	clips	downloaded	from	the	Internet	globally.
When	you	search	for	digital	audio,	you	will	encounter	two	common	digital	audio	formats:
Waveform	Audio	File	Format	(WAVE	or	WAV)	and	MPEG-1,	MPEG-2	Audio	Layer
III	Format	(MP3).	This	recipe	focuses	on	playing	WAV-encoded	audio	clips.	The
STM3241G-EVAL	and	STM32F4-DISCOVERY	evaluation	boards	both	include	an	MP3
player	demo	that	can	be	ported	to	other	systems.	This	recipe	illustrates	a	skeleton	that
could	form	the	basis	for	a	similar	application	on	the	MCBSTM32F400	evaluation	board.
We’ll	call	this	recipe	codecDemo_c7v1.



Getting	ready
The	easiest	way	to	import	WAV	audio	samples	into	our	program	is	to	convert	them	into	C
source	code	(in	the	same	way	that	images	were	imported	in	Chapter	6,	Multimedia
Support).	A	number	of	programs	to	manipulate	WAV	files	and	write	samples	to	a	C	source
file	are	available.	This	recipe	uses	a	free	converter	by	Colin	Seymour	called	WAVtoCode
that	supports	a	number	of	WAV	file	formats.	The	following	screenshot	shows	the
conversion	program	being	used	(note	that	this	program	also	includes	a	mixing	desk):

The	program	exports	samples	in	8/16	mono/stereo	formats,	as	follows:

1.	 Download	a	1-kHz	WAV	test	signal	sampled	at	96	kHz	(that	is,	Fs	=	96	kHz)
(http://www.rme-audio.com).	Play	the	test	signal	using	the	converter,	then	select	16-
bit	Mix	to	Mono	from	the	Tools	menu,	and	save	as	signed	16-bit	C	Code.	A	sample
of	the	output	is	as	follows:

BYTE	data[NUM_ELEMENTS]	=	{

		-23417,	-21874,	-20238,	-18517,	-16716,	-14844,

		-12909,	-10920,		-8885,		-6811,		-4709,		-2586,	

				-452,			1683,			3812,			5923,			8010,		10063,

			12073,		14033,		15931,		17763,		19519,		21193,

			22775,		24261,		25645,		26919,		28078,		29119,

			30037,		30825,		31483,		32008,		32397,		32648,

			32760,		32733,		32567,		32262,		31821,		31244,

			30535,		29696,		28730,		27642,		26438,		25121,

			23696,		22171,		20553,		18847,		17060,		15201,

			13279,		11299,...

More	exciting	audio	clips	are	available!

2.	 Examine	the	output	to	confirm	that	the	sinusoidal	cycle	repeats	approximately	every

http://www.rme-audio.com


96	samples	(that	is,	approximately	half	a	cycle	is	shown	previously)	giving	a
frequency	of	1	kHz.	Note:	the	size	of	the	global	array	needed	to	store	the	samples
exceeds	the	limit	imposed	by	an	unlicensed	copy	of	uVision	5.	Chapter	9,	Embedded
Toolchain,	offers	some	open	source	compiler	options	that	can	be	adopted	to	solve	this
problem.



How	to	do	it…
Follow	the	outlined	steps	to	play	prerecorded	audio:

1.	 Clone	codecDemo_c7v0	from	the	Configuring	the	audio	codec	recipe	that	we
described	earlier	in	this	chapter.

2.	 Store	the	test	signal	samples	in	a	simple	global	array	(note	that	the	samples	are
duplicated	for	left	and	right	channels),	as	follows:

int16_t	data	[]	=	{

		-23417,	-23417,	-21874,	-21874,	-20238,	-20238,	

		-18517,	-18517,	-16716,	-16716,	-14844,	-14844,

		-12909,	-12909,	-10920,	-10920,	etc…

};

3.	 Open	I2S_audio.c	and	change	the	sample	frequency	defined	in	the
I2S_Audio_Initialize()	function	to	match	that	of	the	WAV	file:

hi2s.Init.AudioFreq	=	I2S_AUDIOFREQ_96K;

4.	 Add	a	statement	in	I2S_Audio_Initialize()	to	enable	interrupts:

NVIC_EnableIRQ(SPI2_IRQn);	

5.	 Include	the	following	Interrupt	Service	Routine	(ISR)	in	the	codecDemo.c	file:

void	SPI2_IRQHandler(void)	{

		HAL_I2S_IRQHandler(&hi2s);

}

6.	 Include	a	transfer	complete	callback	in	the	codecDemo.c	file	(that	is,	overriding	this
in	stm32f4xx_hal_i2s.c):

void	HAL_I2S_TxCpltCallback(I2S_HandleTypeDef	*hi2s)	{

		HAL_I2S_Transmit_IT(hi2s,	(uint16_t	*)	dacLUT,	

																																			ARR_SZ(dacLUT));

}

7.	 Modify	the	main()	function	so	that	it	calls	the	HAL_I2S_Transmit_IT()	function
before	entering	the	super	loop	(note	that	there	is	nothing	left	to	do	in	the	super	loop
as	the	interrupt	service	routine	takes	care	of	everything):

HAL_I2S_Transmit_IT(&hi2s,	(uint16_t	*)	dacLUT,			

																																				ARR_SZ(dacLUT));

while	(1)	{

				if	(mode	==	AUDIO_BEEP)	{

						Beep(note);															/*	Play	the	note	*/		

						wait_delay(500);																				/*	pause	*/

				}

}	/*	WHILE	*/

8.	 Build,	download,	and	run	the	program.



How	it	works…
The	HAL_I2S_Transmit()	function	that	we	deployed	in	codecDemo_c7v0	from	the
Configuring	the	audio	codec	recipe	sends	a	block	of	audio	samples	to	the	codec.	This
function	operates	in	polling	mode	to	establish	when	the	I2S	transmit	data	register	is	empty,
and	it	spins	(busy	waiting)	on	the	codec’s	status	register	to	determine	when	successive
samples	are	needed.	Unfortunately,	while	the	processor	is	doing	this,	it	can’t	perform
much	useful	work.	To	address	this	problem,	this	recipe	uses	the	HAL_I2S_Transmit_IT()
library	function	to	set	the	I2S	interface	to	generate	an	interrupt	when	the	I2S	transmit	data
register	is	empty.	It	also	keeps	count	of	the	number	of	samples	that	are	transmitted	and
calls	a	function	named	HAL_I2S_TxCpltCallback()	when	the	last	audio	sample	in	the
block	has	been	sent.

Prior	to	calling	HAL_I2S_TxCpltCallback(),	we	need	to	enable	interrupts	(step	4),
provide	an	interrupt	service	routine	(step	5),	and	override	the	HAL_I2S_TxCpltCallback()
function	(step	6).

As	the	audio	channel	is	essentially	managed	by	the	ISR,	there	isn’t	anything	for	the
main()	function	to	do!





Designing	a	low-pass	digital	filter
Joseph	Fourier	discovered	that	a	complex	signal	could	be	described	by	a	sum	of	sinusoids
that	is	known	as	a	Fourier	series,	and	applying	this	idea	enables	us	to	visualize	a	signal
frequency	spectrum.	A	spectrum	analyzer	is	a	device	that	allows	the	frequency	content	of
a	signal	to	be	displayed	and	measurements	to	be	made.	Two	parameters,	known	as
magnitude	(amplitude)	and	phase,	describe	a	sinusoidal	signal.	The	magnitude	spectrum
describes	the	amplitude	of	each	sinusoidal	component	that	is	summed,	and	the	phase
spectrum	describes	its	associated	phase.	Often,	we	ignore	the	phase	information	and	focus
on	the	magnitude	spectrum,	but	for	some	applications,	particularly	those	that	involve
feedback,	the	phase	of	the	signal	is	very	important.

The	magnitude	spectrum	of	a	pure	10	kHz	sinusoidal	signal	is	illustrated	in	the	following
diagram	(the	left	panel)	and	that	of	a	sampled	version	of	the	signal	(the	right	panel):

When	we	sample	a	signal,	the	steps	in	the	digitized	waveform	(illustrated	in	Chapter	5,
Data	Conversion)	introduce	significant	frequency	components	at	higher	frequencies.
These	appear	as	sidebands	that	are	symmetrically	displaced	around	integer	multiples	of
the	sampling	frequency	(Fs).	As	we	saw	in	Chapter	5,	Data	Conversion,	an	analogue	low-
pass	filter	connected	across	the	output	of	the	D-A	converter	removes	these	harmonics	and
leaves	the	pure	sinusoid.

The	aim	of	digital	filtering	is	to	simulate	the	effect	of	analogue	filters	by	writing	a
program	that	manipulates	the	digital	signal	samples.	A	digital	filter	is	a	function	that
accepts	signal	samples	as	inputs	and	returns	samples	that	represent	the	processed	signal	in
real	time.	In	this	case,	real	time	implies	that,	if	the	input	samples	cannot	be	processed	so
as	to	produce	output	samples	in	a	time	frame	1/Fs,	then	the	filter	will	fail.

We	can	only	hope	to	provide	an	introduction	to	digital	filters	in	this	short	chapter,	and	so
we’ll	skip	the	preliminaries	that	are	needed	to	gain	a	deeper	understanding	of	this	topic.
Those	motivated	to	find	out	more	should	consult	an	introductory	text	book.



Getting	ready
The	structure	of	a	simple	Finite	Impulse	Response	(FIR)	digital	filter	is	shown	next.	It’s
called	FIR	because	the	output	of	the	y(n)	filter	is	only	produced	from	input	samples.	FIR
filters	are	inherently	stable,	but	they	cannot	be	implemented	as	efficiently	as	another	class
of	digital	filter,	known	as	Infinite	Impulse	Response	(IIR)	filters.	In	IIR	filters,	the	y(n)
output	is	fed	back	and	reused	as	another	filter	input.	Potentially,	this	technique	can
produce	instability,	but	this	can	be	eliminated	with	careful	design.	We’ll	restrict	ourselves
to	FIR	designs	here.	In	the	following	diagram,	the	block	labeled	T	represents	a	time	delay
that	is	equal	to	the	sample	period,	1/Fs.	So,	in	this	case,	the	y(n)	output	is	formed	by	the
(equally-weighted)	average	of	the	current	sample,	x(n),	and	four	previous	input	samples:
x(n-1),	x(n-2),	x(n-3),	and	x(n-4):

The	output	of	a	digital	filter	can	be	computed	by	a	mathematical	operation	called	discrete
convolution	and	can	be	described	mathematically,	as	follows:

Here	x(n),y(n)	represent	the	input	and	output	and	h(n-k)	represents	the	filter	coefficients
that	are	used	to	scale	the	input	samples	before	they	are	summed.	The	number	of
coefficients	used	and	their	values	determine	the	filter	characteristic,	and	methods	of
calculating	these	parameters	form	the	core	of	digital	signal	processing	texts.

Rather	than	compute	the	filter	weights	longhand,	which	is	rather	tedious,	we’ll	use	a
mathematical	prototyping	language	called	MATLAB	to	calculate	them	for	us.	Readers
who	do	not	have	access	to	MATLAB	could	compute	the	filter	coefficients	using	one	of	the
techniques	described	in	a	digital	signal	processing	text.	Alternatively,	there	are	a	number
of	open	source	environments	that	are	similar	to	MATLAB,	such	as	GNU	Octave,	Sage,
Scilab,	and	FreeMAT.	The	MATLAB	script	to	design	the	filter	is	presented,	as	follows:



%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%	MATLAB	Script	to	generate	low	pass	filter	coefficients

%	

%	Mark.Fisher@uea.ac.uk

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%	set	filter	parameters	

d=	fdesign.lowpass('Fp,Fst,Ap,Ast',1000,2000,1,20,22000);

%	design	filter

Hd=design(d,'FIR');	

	

%	plot	fiter	respose

fvtool(Hd,'legend','on');	axis([0	22	-70	10])

The	MATLAB	script	computes	coefficients	for	a	FIR	filter	having	a	pass	band	from	<	1
kHz	and	a	stop	band	from	>	2	kHz.	Attenuation	in	the	pass	band	is	<	1	dB,	and	in	the	stop
band	this	is	<	20	dB.	The	sampling	frequency	is	22	kHz.	The	filter’s	transfer	function	can
be	visualized	using	MATLAB’s	fvtool.

This	frequency	response	confirms	that	our	design	meets	the	specifications.	We	can	obtain
the	filter	coefficients	by	plotting	the	filter	impulse	response,	as	shown	in	the	next
screenshot,	and	these	can	also	be	printed	by	the	following	MATLAB	command	prompt:

>>	Hd.Numerator

ans	=

Columns	1	through	9



-0.0537	-0.0138	-0.0071	0.0063	0.0259	0.0502	0.0767	0.1021	0.1233

Columns	10	through	18

0.1372	0.1421	0.1372	0.1233	0.1021	0.0767	0.0502	0.0259	0.0063

Columns	19	through	21

-0.0071	-0.0138	-0.0537

We’ll	implement	this	filter	on	our	evaluation	board	as	recipe	codecDemo_c7v2.



How	to	do	it…
1.	 Clone	folder	codecDemo_c7v1	in	the	How	to	play	prerecorded	audio	recipe.	Change

the	RTE	to	include	the	LED	(API).
2.	 Add	the	filter()	function	to	the	codecDemo.c	file,	as	follows:

uint16_t	filter(int16_t	inSmpl)	{

		/*	Normalized	Filter	Coefficients	*/	

		static	const	float	lpfiltCoef[]	=	

				{				0.0,	0.0184,	0.0215,	0.0277,	0.0368,	0.0480,

						0.0602,	0.0720,	0.0818,	0.0882,	0.0905,	0.0882,

						0.0818,	0.0720,	0.0602,	0.0480,	0.0368,	0.0277,

						0.0215,	0.0184,	0.0	};	

		static	float	smplBuff[]	=	

				{	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,

						0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	

						0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0	};

		static	uint8_t	idx	=	0;

		float	lpVal	=	0.0,	outVal	=	0.0;

		uint8_t	coefIdx,	newIdx;

		static	const	float	int16max	=	(float)	INT16_MAX;																												

																												

		/*	update	buffer	*/

		newIdx	=	(nTaps-1-idx);

		smplBuff[newIdx]	=	(float)	inSmpl;

		/*	do	convolution	*/

		for	(coefIdx	=	0;	coefIdx<nTaps;	coefIdx++)

				lpVal	+=	lpfiltCoef[coefIdx]	*

																					smplBuff[(newIdx+coefIdx)%nTaps];					

		outVal	=	(int16_t)		(lpVal*sFactor	*	int16max);

		idx	=	(idx+1)%nTaps;

		

		return	(uint16_t)	outVal;

}			

3.	 Change	the	ISR	to	write	samples	directly	to	the	I2S	data	register:

void	SPI2_IRQHandler(void)	{

		

		if	(flag)	LED_On(0);

		else

				LED_Off(0);				

		/*	Transmit	data	*/

		hi2s.Instance->DR	=	sample;

		flag	=	true;

}

4.	 Change	the	global	LUT	to	hold	audio	data	samples	for	a	square	wave	(note:	we’re
only	storing	data	for	one	channel	rather	than	a	pair):

{	0,		0,		0,		0,	0,	

			0,		0,		0,		0,	0,

			1,		1,		1,		1,	1,	

			1,		1,		1,		1,	1		};



5.	 Delete	the	HAL_I2S_TxCpltCallback()	function.
6.	 Define	global	variables,	as	follows:

uint16_t	sample	=	0;

bool	flag	=	false;

7.	 In	main(),	remove	the	call	to	HAL_I2S_Transmit_IT()	and	replace	this	with	the
following:

/*	Enable	I2S	peripheral	*/

__HAL_I2S_ENABLE(&hi2s);

	

/*	Enable	I2S	Interrupts	*/

__HAL_I2S_ENABLE_IT(&hi2s,	(I2S_IT_TXE	|	I2S_IT_ERR));

8.	 Call	LED_Initialize()	in	main()	and	remember	to	add	#include	"Board_LED.h".
9.	 Add	the	code	for	the	appropriate	call	to	filter()	within	the	super	loop	(note	that,	as

the	left	and	right	channels	carry	the	same	signal,	we	only	need	to	filter	one):

			while	(1)	{

				if	(mode	==	AUDIO_BEEP)	{

						Beep(note);																			/*	Play	the	note	*/		

						wait_delay(500);																									/*	pause	*/

				}

				else	{

						if	(flag)	{

								rightSmpl	=	i%2;	

								if	(!rightSmpl)																			/*	run	filter	*/

										sample	=	filter(data[i>>1]);

								

								i++;

								i	%=	(sz<<1);																							/*	MOD	2*sz	*/

								flag	=	false;

						}	

				}

10.	 Build,	download,	and	run	the	program.



How	it	works…
At	the	heart	of	the	filter	function	is	a	mathematical	operation	known	as	convolution.	This
operation	forms	the	sum	of	the	current	and	previous	20	samples	(that	is,	21	in	total),	each
of	them	is	multiplied	by	a	filter	coefficient	(weight).	This	is	computationally	demanding,
and	we’re	lucky	that	the	ARM	Cortex-M4	includes	a	floating	point	unit.	This	unit	can
perform	single	precision	multiplications	in	three	cycles	(that	is,	~18ns)	plus	the	time
needed	for	memory	access.	The	most	recent	21	input	samples	are	stored	in	an	array	that	is
configured	to	operate	as	a	circular	buffer.	A	variable	named	newIdx	identifies	the	oldest
sample	in	the	array	and	this	sample	is	overwritten	when	a	new	sample	becomes	available.
As	it	is	critical	that	each	sample	is	processed	before	it	is	written	to	the	I2S	transmit
register,	we	clear	a	global	boolean	flag	once	the	filter	completes.	If	the	ISR	detects	the	flag
set,	then	we	switch	an	LED	on	to	indicate	an	error.	As	time	is	critical,	we	chose	to	output
samples	directly	to	the	I2S	transmit	register	rather	than	use	the	HAL_I2S_Transmit_IT()
library	function.	We	chose	to	use	a	square	wave	as	our	test	signal	as	it	contains	higher
frequency	harmonics.	Note	that	the	values	of	the	filter	coefficients	(given	by	MATLAB)
used	in	the	program	have	been	scaled,	so	they	sum	up	to	1.0.	We	do	this	to	avoid	problems
due	to	a	possible	overflow	occurring	when	we	assign	the	outVal	variable.	The	following
screenshot	of	an	oscilloscope	trace	shows	that	the	filter	is	recovering	the	fundamental
frequency	component	(~1.2kHz)	quite	nicely	with	little	evidence	of	distortion:





How	to	make	an	audio	tone	control
For	the	final	recipe	of	this	chapter,	we’ll	make	a	digital	tone	control	that	emulates
analogue	circuits	found	on	portable	radios,	and	so	on.	Simple	analogue	tone	circuits	take
the	form	of	an	active	filter	that	uses	a	potentiometer	to	affect	the	filter	transfer	function
(that	is,	emphasizing	low/high	frequencies—bass/treble—in	the	audio	signal.

Although	this	recipe	illustrates	our	filter	operating	in	real	time,	it	isn’t	the	most	efficient
way	of	filtering	digital	audio.	The	audio	codec	includes	its	own	DSP	processing	block,	and
this	can	be	programmed	to	produce	similar	results	more	efficiently.	We’ll	refer	to	this
recipe	as	codecDemo_c7v3.



Getting	ready
The	high-	and	low-pass	FIR	filter	coefficients	that	we	need	for	this	recipe	are	found	using
MATLAB.	We’ve	chosen	the	pass	and	stop	bands	that	are	shown	in	the	following
screenshot:



How	to	do	it…
1.	 Clone	codecDemo_c7v2	from	the	Designing	a	low-pass	digital	filter	recipe	and	name

the	new	folder	codecDemo_c7v3.
2.	 Use	the	runtime	management	tool	to	add	board	support	for	the	A/D	converter.	Add

this	statement	to	initialize	the	A/D	converter:

ADC_Initialize_and_Set_IRQ();

3.	 Add	#include	"Custom_ADC.h".
4.	 Include	the	Custom_ADC.c	file	in	the	project	and	copy	the	Custom_ADC.h	file	into	the

project	folder.	We	developed	these	in	adcISR_c5v0	from	the	Setting	up	the	ADC
recipe	in	Chapter	5,	Data	Conversion.

5.	 Add	high-pass	filter	coefficients	to	the	filter()	function,	as	follows:

		static	const	float	hpfiltCoef[]	=	 				{	0.0511,	0.0540,	0.0524,	
0.0533,	0.0528,	0.0517,

						0.0493,	0.0450,	0.0363,	0.0			,	0.1000,	0.0637,

						0.0550,	0.0507,	0.0483,	0.0472,	0.0467,	0.0476,		

						0.0460,	0.0489,	0.0	};																																						

6.	 Modify	the	filter()	function	so	that	the	output	is	formed	by	a	weighted	sum	of	low-
pass	and	high-pass	samples:

for	(coefIdx	=	0;	coefIdx<nTaps;	coefIdx++)	{

				lpVal	+=	lpfiltCoef[coefIdx]	*

																					smplBuff[(newIdx+coefIdx)%nTaps];

				hpVal	+=	hpfiltCoef[coefIdx]	*

																					smplBuff[(newIdx+coefIdx)%nTaps];

		}					

		outVal	=	(int16_t)	(	(lpVal*sFactor	+

														hpVal*((float)1.0-sFactor))	*	int16max);

7.	 Add	an	ISR	to	service	interrupts	from	the	ADC,	as	follows:

void	ADC_IRQHandler	(void)	{

			

		ADC3->SR	&=	~2;							/*	Clear	EOC	interrupt	flag	*/

		adcValue	=	(ADC3->DR)>>	4;	/*	Get	converted	value	*/

		ADC3->CR2	|=	(1	<<	30);		/*	Start	next	conversion	*/

									

}	

8.	 Change	the	main()	super	loop	so	that	we	compute	a	global	scale	factor	when	we’re
not	filtering	the	signal,	that	is,	as	follows:

if	(flag)	{

		rightSmpl	=	i%2;	

		if	(!rightSmpl)															/*	run	filter	*/

				sample	=	filter(data[i>>1]);

		else																		/*	update	scalefactor	*/

				sFactor	=	(	(float)	adcValue	)	/	c;

								

		i++;



		i	%=	(sz<<1);																			/*	MOD	2*sz	*/

		flag	=	false;

}

9.	 Add	the	following	global	variables:

int32_t	adcValue;																											

float	sFactor	=	0.0;

const	float	c	=	255.0;																															

10.	 Build,	download,	and	run	the	program.



How	it	works…
The	output	sample	is	a	weighed	sum	of	the	low-pass	and	unfiltered	signal.	These	weights
depend	on	the	ADC	value	that,	in	turn,	reflects	the	position	of	the	potentiometer
thumbwheel.	The	computation	of	the	scale	factor	(0.0	≤	sFactor	≤	1.0)	involves	division,
and	as	this	is	more	time-consuming	than	the	multiply	accumulate	operation,	we	choose	to
do	this	when	we’re	not	running	the	filter.



There’s	more…
To	implement	convolution	requires	the	multiplication	and	addition	of	real	numbers.	These
operations	are	performed	by	the	Floating	Point	Unit	(FPU)	of	the	Cortex-M4.	Real
numbers	are	represented	using	a	floating-point	binary	format.	Early	computers	used	many
different	(manufacturer-specific)	formats	to	represent	real	numbers,	but	nowadays	formats
are	standardized.	The	IEEE	754-2008	standard	defines	two	formats	known	as	IEEE
double-	and	single-precision.	Our	programs	use	the	single-precision	(32-bit)	format	by
declaring	variables	of	the	float	type.	Numbers	encoded	using	the	double-precision	format
are	declared	using	the	double	(64-bit)	type.	It	is	important	to	understand	that	the
representations	of	floating-point	numbers	approximate	the	real	values	that	they	represent
and	the	rounding	errors	introduced	can	be	particularly	problematic	for	DSP	applications.

Early	16-bit	microprocessors,	such	as	Intel	8086,	were	unable	to	carry	out	arithmetic
operations	on	floating	point	numbers	without	using	a	floating	point	library,	and	users	who
didn’t	purchase	the	additional	8087	coprocessor	were	faced	with	quite	poor	performance.
However,	in	the	last	decade,	integrated	hardware	FPUs	have	become	more	common.
Convolutions,	at	the	heart	of	DSP	applications,	make	repeated	use	of	Multiply-
Accumulate	(MAC)	operations,	and	processors	aimed	at	DSP	applications,	such	as	the
Cortex-M4,	include	specific	instructions	that	allow	these	to	be	executed	very	efficiently.





Chapter	8.	Real-Time	Embedded	Systems
In	this	chapter,	we	will	cover	the	following	topics:

Multithreaded	programs	using	event	flags
Multithreaded	programs	using	mailboxes
Why	ensuring	mutual	exclusion	is	important	when	accessing	shared	resources
Why	we	must	use	a	mutex	to	access	the	GLCD
How	to	write	a	multithreaded	Pong	game
Debugging	programs	that	use	CMSIS-RTOS



Introduction
The	title	of	the	last	chapter	included	the	phrase,	“Real	Time“.	The	term,	Real	Time,	is	used
to	describe	a	computing	system	that	must	meet	deadlines.	We	did	not	define	this	term	in
Chapter	7,	Real-Time	Signal	Processing	because,	in	the	context	of	handling	audio
samples,	an	implicit	deadline	is	the	sampling	rate.	However,	you	may	recall	that	our	ISR
illuminated	an	error	LED	if	the	main	super	loop	did	not	output	the	previous	sample	before
a	new	sample	arrived.

The	audio	application	is	an	example	of	a	soft	deadline.	It	wouldn’t	be	a	catastrophe	if	the
system	missed	this	deadline	once	or	twice;	the	audio	quality	would	suffer,	but	this	may	go
unnoticed.	Contrast	this	with	other	applications,	such	as	an	embedded	system	used	in	fly-
by-wire	avionic	applications,	medical	equipment,	or	a	nuclear	reactor.	In	these	cases,
missing	a	deadline	could	be	catastrophic	and	result	in	death.	Deadlines	in	these	cases	are
known	as	hard	deadlines	and,	in	order	to	meet	safety	standards,	designers	need	to
guarantee	that	the	system	meets	them.	They	may	even	be	required	to	design	redundancies
to	ensure	that	the	system	is	robust	to	the	catastrophic	failure	of	a	processor.

The	last	chapter	illustrated	that,	although	it	is	possible	to	design	a	simple	real-time
embedded	system	using	a	super	loop,	it	gets	increasingly	tricky	to	ensure	that	deadlines
are	met	as	the	system	becomes	more	complex.	An	operating	system	is	what	is	needed,	but
real-time	systems	do	not	use	standard	desktop	operating	systems,	such	as	Windows	or
Linux,	because	it	is	impossible	to	guarantee	that	such	systems	will	meet	deadlines.
Imagine	a	scenario	where	the	pilot	was	landing	an	aircraft	and	the	computer	avionics
system	decided	that	now	was	a	good	time	to	defragment	the	hard	disk!	Instead	of	this,	they
use	so-called	real-time	operating	systems	(RTOS),	which	are	sometimes	referred	to	as
simply	an	embedded	RTOS.	Embedded	RTOS	are	compact	because	the	hardware	running
an	embedded	operating	system	is	very	limited	in	resources,	such	as	RAM	and	ROM.
Unlike	a	desktop	operating	system,	the	embedded	operating	system	does	not	load	and
execute	applications.	This	means	that	the	system	is	only	able	to	run	a	one	application	that
is	statically	linked	as	a	single	executable	image.

Operating	systems	based	on	the	Linux	kernel,	and	known	as	embedded	Linux,	are	a
popular	choice	as	they	are	free	from	license	fees.	Embedded	Linux	forms	the	basis	of	the
Android	OS	developed	for	smart	phones	and	tablets.	Many	other	examples	of	open	source
embedded	RTOS	exist.	Most	adopt	the	Portable	Operating	System	Interface	(POSIX)
standard	that	supports	open-standard	application	programming	interfaces	(APIs).	We’ve
adopted	ARM’s	RTOS	kernel,	called	RTX,	as	the	RTOS	used	by	examples	in	this	chapter
as	it’s	included	in	the	uVision5	IDE	distribution.	RTX	was	originally	distributed	as	a	Real-
Time	Library	(RL-ARM™),	designed	to	solve	the	real-time	and	communication
challenges	of	embedded	systems	that	are	based	on	ARM	processor-based	microcontroller
devices	(refer	to	www.keil.com/product/brochures/rl-arm_gs.pdf).	This	library	was
recently	revised	and	added	to	the	CMSIS	middleware	standard	and	is	now	known	as
CMSIS-RTOS.	A	description	of	the	API	can	be	found	at
https://www.keil.com/pack/doc/CMSIS/RTOS/html/index.html,	and	advice	on	migrating

http://www.keil.com/product/brochures/rl-arm_gs.pdf
https://www.keil.com/pack/doc/CMSIS/RTOS/html/index.html


from	RL-ARM	to	CMSIS-RTOS	is	available	here	at
http://www.keil.com/appnotes/docs/apnt_264.asp.

Support	for	multitasking	is	a	key	function	of	any	operating	system.	Multitasking	is	a
rudimentary	form	of	parallel	processing	in	which	several	tasks	are	run	at	the	same	time.
Multitasking	doesn’t	mean	that	tasks	are	executed	in	parallel.	On	a	uniprocessor,	there	can
be	no	true	simultaneous	execution	of	different	tasks.	Instead	of	this,	the	operating	system
switches	between	them,	executing	part	of	one	task,	then	part	of	another,	and	so	on.	To	the
user,	it	appears	that	all	the	tasks	are	executing	at	the	same	time.	The	job	of	the	operating
system	is	to	schedule	each	task	on	the	CPU.	The	act	of	reassigning	a	CPU	from	one	task	to
another	one	is	called	a	context	switch.

Embedded	systems	are	at	the	heart	of	many	everyday	devices,	such	as	smartphones,	TVs,
cameras,	dishwashers,	and	so	on.	The	system	may	comprise	many	tasks.	For	example,	the
dishwasher	may	embody	a	user	interface,	pump	controller,	and	sensors.	It	is	efficient	to
partition	the	software	dealing	with	these	elements	into	separate	tasks.	At	any	time,	the
total	number	of	tasks	can	be	divided	into	two	groups:	those	that	can	be	executed,	and	those
suspended	and	waiting	for	an	external	event	to	occur	(for	example,	the	water	temperature
reaching	a	specific	value	or	user	input).	RTOS	supports	preemptive	scheduling,	which
allows	tasks	to	be	prioritized	and	can	guarantee	that	some	tasks	in	waiting	will	be	given
the	CPU	when	an	external	event	occurs.

We	can	illustrate	how	tasks	are	executed	on	the	CPU	by	drawing	an	execution	diagram.
Consider	three	processes	(just	another	name	for	tasks):	a,	b,	and	c	that	are	executed
periodically	with	a	period	of	T	seconds	and	have	computation	time	(that	is,	they	must	be
allocated	on	the	CPU)	of	C	seconds,	as	shown	in	the	following	table.	The	tasks	are
prioritized	so	that	the	task	with	the	shortest	period	is	allocated	the	highest	priority	(higher
numbers	imply	a	higher	priority):

Process	(P) Period	(T) Computation	Time	(C) Priority

a 50 12 1

b 40 10 2

c 30 10 3

http://www.keil.com/appnotes/docs/apnt_264.asp


All	the	processes	are	released	at	t=0.	Processes	b	and	c	are	both	meeting	their	respective
deadlines.	Process	a	gets	preempted	by	b	and	c	and	misses	its	deadline.	We	can	see	from
the	execution	trace	that,	in	this	case,	the	tasks	cannot	be	successfully	scheduled.

Tip
We’ve	assumed	the	context	switch	takes	place	instantly	and	the	RTOS	consumes	no	CPU
time	(in	practice,	both	will	incur	some	overhead).

Processes	may	need	to	share	resources,	and	this	raises	the	question	of	how	they	might
communicate.	The	CMSIS-RTOS	API	solves	both	of	these	problems	and	more.





Multithreaded	programs	using	event	flags
This	recipe	will	illustrate	how	to	use	CMSIS-RTOS	to	make	an	LED	blink.	We’ll	define
two	tasks	or	threads.	The	job	of	one	task	is	to	switch	the	LED	ON,	and	the	other	one	is	to
switch	it	OFF.	The	ON	and	OFF	events	are	triggered	by	the	tasks	sending	messages	to
each	other.	CMSIS-RTOS	supports	a	number	of	intertask-communication	strategies;	our
program	uses	event	flags.	We	can	illustrate	our	program	using	a	state	diagram,	as	follows:

We’ll	call	our	first	recipe,	RTOS_Blinky_c8v0.



How	to	do	it…
Create	a	new	project	(in	a	new	folder)	named	RTOS_Binky	and	use	the	Run-Time
Environment	manager	to	select	Board	Support	→	LED	(API)	and	CMSIS	→	Keil	RTX
as	shown	in	the	following	screenshot.	As	usual,	we	can	select	Resolve	to	fix	the	warning
messages.	Note	that	this	RTE	is	the	same	as	the	one	that	we	introduced	in	Chapter	2,	C
Language	Programming.

1.	 Create	a	new	file	named	RTXBlinky.c,	and	create	a	skeleton	by	adding	boilerplate
code	for	SystemClock_Config(),	and	so	on.	Add	this	file	to	the	project.

2.	 Select	the	Configuration	Wizard	tab	for	the	RTX_Conf_CM.c	file	and	configure	the
RTOS:



3.	 Open	the	RTXBlinky.c	file	and	tasks	A	and	B:

#include	"RTXBlinky.h"

/*--------------------------------------------------

	*						Thread	1	'taskA':	Switch	LED	ON

	*--------------------------------------------------*/

void	taskA	(void	const	*argument)	{

		for	(;;)	{

				/*	wait	for	an	event	flag	0x0001	*/

				osSignalWait(0x0001,	osWaitForever);

				LED_On	(LED_A);

				osDelay(500);

				/*	set	signal	to	taskB	thread	*/

				osSignalSet(tid_taskB,	0x0001);

		}

}



/*--------------------------------------------------

	*						Thread	2	'taskB':	Switch	LED	OFF

	*--------------------------------------------------*/

void	taskB	(void	const	*argument)	{

		for	(;;)	{

				/*	wait	for	an	event	flag	0x0001	*/

				osSignalWait(0x0001,	osWaitForever);

				LED_Off	(LED_A);

				osDelay(500);

				/*	set	signal	to	taskA	thread	*/

				osSignalSet(tid_taskA,	0x0001);										

		}

}

/*--------------------------------------------------

	*						Main:	Initialize	and	start	RTX	Kernel

	*--------------------------------------------------*/

int	main	(void)	{

		HAL_Init	();			/*	Init	Hardware	Abstraction	Layer	*/

		SystemClock_Config	();											/*	Config	Clocks	*/

		LED_Initialize();										/*	Initialize	the	LEDs	*/

		tid_taskA	=	osThreadCreate(osThread(taskA),	NULL);

		tid_taskB	=	osThreadCreate(osThread(taskB),	NULL);

		/*	set	signal	to	taskA	thread	*/

		osSignalSet(tid_taskA,	0x0001);	

		osDelay(osWaitForever);

		while(1);

}

4.	 Create	the	RTXBlinky.h	header	file	and	add	the	following	code:

#ifndef	__RTX_BLINKY_H

#define	__RTX_BLINKY_H

#include	"stm32f4xx_hal.h"								/*	STM32F4xx	Defs	*/

#include	"Board_LED.h"

#include	"cmsis_os.h"

#define	LED_A			0

/*	Task	ids	*/

osThreadId	tid_taskA;			

osThreadId	tid_taskB;

/*	Function	Prototypes	*/

void	taskA	(void	const	*argument);

void	taskB	(void	const	*argument);

/*	Define	Threads	*/

osThreadDef(taskA,	osPriorityNormal,	1,	0);

osThreadDef(taskB,	osPriorityNormal,	1,	0);



#endif	/*	__RTX_BLINKY_H	*/

5.	 Build,	download,	and	run	the	program.



How	it	works…
In	RTOS,	the	basic	unit	of	execution	is	a	task.	A	task	is	very	similar	to	a	C	procedure,	but
it	must	contain	an	endless	loop:

void	taskA	(void	const	*argument)	{

		for	(;;)	{

				/*	taskA	statements	*/

												}

}

So,	a	task	never	terminates	and	thus	runs	forever	in	a	similar	manner	to	the	way	that	a
program	does.	We	can	think	of	tasks	as	small	self-contained	programs.	While	each	task
runs	in	an	endless	loop,	the	task	itself	may	be	started	by	other	tasks	and	stopped	by	itself
or	other	tasks.

An	RTOS-based	program	is	made	up	of	a	number	of	tasks,	which	are	controlled	by	the
RTOS	scheduler.	The	scheduler	is	essentially	a	timer	interrupter	that	allots	a	certain
amount	of	execution	time	to	each	task.	So,	task	1	may	run	for	(say)	100	ms,	then	be
descheduled	to	allow	task	2	to	run	for	a	similar	period	of	time;	task	2	will	give	way	to	task
3;	and	finally,	control	passes	back	to	task	1.	If	we	open	the	Configuration	Wizard	tab	for
the	RTX_Conf_CM.c	file	and	expand	the	System	Configuration	menu,	then	we’ll	see	that
we’re	allocating	slices	of	runtime	to	each	task	in	a	round-robin	fashion,	and	tasks	are
switched	every	5	ms	(refer	to	the	following	screenshot):



It	is	useful	to	think	of	all	tasks	running	simultaneously,	and	each	of	them	performing	a
specific	function.	This	allows	each	functional	block	to	be	coded	and	tested	in	isolation	and
then	integrated	into	a	fully	running	program	that,	in	turn,	imposes	structure	and	aids
debugging.	When	a	task	is	created,	it	is	allocated	its	own	task	ID.	This	is	a	variable,	which
acts	as	a	handle	for	each	task	and	is	used	when	we	want	to	manage	the	activity	of	the	task.
We	declare	two	such	variables,	one	for	taskA	and	one	for	taskB:

osThreadId	tid_taskA;

osThread	tid_taskB;

When	CMSIS-RTOS	runs	on	ARM-Cortex	it	uses	the	SysTick	timer	within	the	processor
to	provide	the	RTOS	time	reference.	Each	time	we	switch	running	tasks,	the	RTOS	saves
the	state	of	all	the	task	variables	to	a	task	stack	and	stores	the	runtime	information	about	a
task	in	a	Task	Control	Block	that	is	referenced	by	the	task	ID.	In	addition	to	the	task
variables,	the	Task	Control	Block	also	contains	information	about	the	status	of	a	task.	Part
of	this	information	is	its	run	state.



A	task	can	be	in	one	of	four	basic	states:	RUNNING,	READY,	WAITING,	or
INACTIVE.	Only	one	task	can	be	running	at	a	time,	so	the	other	tasks	must	be	either
READY,	WAITING,	or	INACTIVE.	A	task	is	placed	in	the	WAITING	state	when	its
execution	is	suspended.	This	may	occur	when	it	is	waiting	for	an	event	to	occur,	such	as	a
signal	from	another	task.	CMSIS-RTOS	provides	a	number	of	mechanisms	to	enable	tasks
to	communicate	with	each	other,	such	as	events,	semaphores,	and	messages.

There	may	be	many	tasks	that	are	READY	for	execution	and	it	is	the	job	of	the	scheduler
to	switch	between	them.	CMSIS-RTOS	is	preemptive;	the	active	thread	with	the	highest
priority	becomes	the	RUNNING	thread,	provided	that	it	is	not	waiting	for	any	event.	The
initial	priority	of	a	thread	is	defined	with	the	osThreadDef()	function	but	may	be	changed
during	execution	using	the	osThreadSetPriority()	function.	The	function	prototype	for
osThreadSetPriority()	in	the	cmsis_os.h	file	identifies	the	function	parameters,	as
follows:

///	\param						name									name	of	the	thread	fn.

///	\param						priority					initial	priority	of	the	thread	fn.

///	\param						instances				number	of	possible	thread	instances.

///	\param						stacksz						stack	size	(bytes)	for	the	thread	fn.

Our	program	uses	two	threads,	one	to	switch	an	LED	ON	and	another	to	switch	it	OFF,	so
we	define	them,	as	follows:

osThreadDef(taskA,	osPriorityNormal,	1,	0);

osThreadDef(taskB,	osPriorityNormal,	1,	0);

Tip
The	osPriorityNormal	argument	is	a	pseudonym	for	the	value,	0	(positive	numbers
indicate	a	higher	priority,	negative	numbers	a	lower	one).

Threads	are	created	by	the	osThreadCreate()	function,	which	returns	a	pointer	to	the
Task	Control	Block.	This	function	requires	two	arguments,	a	pointer	to	the	thread
definition	and	a	pointer	to	its	start	argument.	In	our	case,	we	write	the	following:

	tid_taskA	=	osThreadCreate(osThread(taskA),	NULL);

	tid_taskB	=	osThreadCreate(osThread(taskB),	NULL);

When	each	task	is	first	created,	it	has	sixteen	event	flags	stored	in	the	Task	Control	Block.
It	is	possible	to	halt	the	execution	of	a	task	until	a	particular	event	flag	or	group	of	event
flags	are	set	by	another	task	in	the	system.	Our	A	and	B	tasks	are	very	similar;	the	first
statement	in	each	is	as	follows:

osSignalWait(0x0001,	osWaitForever);

This	system	call,	suspends	the	execution	of	the	task	and	places	it	into	the	WAIT_EVNT	state.
Any	task	can	set	the	event	flags	of	any	other	task	in	a	system	with	the	osSignalSet()
CMSIS-RTOS	function	call.	The	main	program	statement	is	as	follows:

osSignalSet(tid_taskA,	0x0001);

This	statement	sends	a	signal	to	taskA,	which	has	been	held	by	the	following	statement



since	this	task	was	created:

osSignalWait(0x0001,	osWaitForever);	

The	remaining	taskA	statements	are	as	follows:

LED_on	(LED_A);

osDelay(500);

osSignalSet(tid_taskB,	0x0001);

These	statements	turn	the	LED	ON,	invoke	a	delay,	and	then	signal	taskB.	As	well	as
running	our	application	code	as	tasks,	CMSIS-RTOS	also	provides	some	timing	services,
which	can	be	accessed	through	CMSIS-RTOS	function	calls;	osDelay()	exemplifies	the
most	basic	of	them.	As	CMSIS-RTOS	ticks	have	been	set	at	1	ms,	the	delay	is	set	at	0.5
seconds.





Multithreaded	programs	using	mailboxes
The	event	flags	that	we	saw	in	the	last	recipe	can	only	been	used	to	trigger	the	execution
of	tasks.	In	contrast	to	this,	mailboxes	support	the	exchange	of	program	data	between
tasks.	CMSIS-RTOS	provides	a	mailbox	system	that	buffers	messages	into	mail	slots	and
queues	them	between	the	sending	and	receiving	tasks.	This	recipe,	RTOS_Blinky_c8v1,
provides	an	introduction	to	sending	fixed-length	messages	between	tasks	using	mailboxes.



How	to	do	it…
1.	 Clone	the	RTOS_Blinky_c8v0	folder	in	the	Multithreaded	programs	using	event	flags

recipe	that	we	described	earlier.
2.	 Replace	taskA(	)	with	the	following	function	definition:

void	taskA	(void	const	*argument)	{

		uint32_t	i=0;

		for	(;;)	{

				mail_t	*mail	=	(mail_t*)osMailAlloc(mail_box,

																																											osWaitForever);

				mail->counter	=	i++;

				osMailPut(mail_box,	mail);

				osDelay(1000);

		}

}

3.	 Replace	taskB(	)	with	the	following	function	definition:

void	taskB	(void	const	*argument)	{

		for	(;;)	{

				osEvent	evt	=	osMailGet(mail_box,	osWaitForever);

				if	(evt.status	==	osEventMail)	{

						mail_t	*mail	=	(mail_t*)evt.value.p;

						LED_Out(mail->counter);						

						osMailFree(mail_box,	mail);

				}

		}

}

4.	 Replace	the	main()	function	with	the	following:

int	main	(void)	{

		HAL_Init	();			/*	Init	Hardware	Abstraction	Layer	*/

		SystemClock_Config	();											/*	Config	Clocks	*/								

		LED_Initialize();										/*	Initialize	the	LEDs	*/

		mail_box	=	osMailCreate(osMailQ(mail_box),	NULL);

		tid_taskA	=	osThreadCreate(osThread(taskA),	NULL);

		tid_taskB	=	osThreadCreate(osThread(taskB),	NULL);

		osDelay(osWaitForever);

		while(1);

}

5.	 Declare	the	mailbox	in	the	header	file,	RTXBlinky.h,	by	adding	the	following	lines	of
code:

/*	Mailbox	*/

typedef	struct	{

		uint32_t	counter;	/*	A	counter	value															*/

}	mail_t;

osMailQDef(mail_box,	16,	mail_t);



osMailQId		mail_box;

6.	 Build,	download,	and	run	the	program.



How	it	works…
There	are	two	tasks,	named	taskA	and	taskB.	The	role	of	taskA	is	to	increment	a	counter,
taskB	displays	the	count	value	on	the	LEDs.	The	two	tasks	communicate	by	a	mailbox,	as
shown	in	the	following	figure:

The	message	passed	from	taskA	to	taskB	is	declared	as	a	struct	named	mail_t.	The
mailbox	comprises	a	buffer	that	is	formatted	into	a	series	of	mail	slots	with	pointers	to
each	slot	stored	as	an	array.	Take	an	example	of	the	following	statement:

osMailQDef(mail_box,	16,	mail_t);

This	statement	creates	a	mail	queue	definition.	We’ve	chosen	to	use	16	mail	slots,	an
arbitrary	number	that	can	be	changed	according	to	the	complexity	of	our	system.
Sufficient	memory	is	allocated	to	store	16	messages	of	type	mail_t.	Once	defined,	the
following	statement	declares	a	mailbox	variable:

osMailQId		mail_box;

The	main	function	then	creates	and	initializes	the	mail	queue,	assigning	this	variable:

mail_box	=	osMailCreate(osMailQ(mail_box),	NULL);

The	transmitter	thread	named	taskA()	calls	osMailAlloc(	mail_box,	osWaitForever)
to	allocate	a	slot	in	the	mailbox,	and	assigns	a	pointer	to	it.	The	second	parameter
represents	a	timeout	value	(we	may	need	to	wait	for	a	slot	to	become	free).	The	following
statements	assign	a	count	value	to	the	memory	slot	and	put	it	in	the	mail	queue:

mail->counter	=	i++;

osMailPut(mail_box,	mail);

The	receiver	thread	named	taskB(	)	calls	osMailGet(mail_box,	osWaitForever)	to
check	for	messages	in	the	mailbox.	This	function	returns	an	event	that	contains	mail
information.	Again,	the	second	parameter	represents	a	timeout	(that	is,	there	may	be
none).	If	there	is	a	mail	event,	a	pointer	to	the	message	data	(that	is,	a	mail_t	struct)	is
assigned	and	the	count	is	output	to	the	LEDs.	The	following	statement	frees	the	memory
slot:



osMailFree(mail_box,	mail);

Further	information	on	mailboxes	can	be	found	in	the	CMSIS-RTOS	API
(https://www.keil.com/).

https://www.keil.com/




Why	ensuring	mutual	exclusion	is
important	when	accessing	shared
resources
A	fundamental	problem	in	multitasking	is	accessing	shared	resources.	Text	books	often
introduce	this	topic	by	considering	the	following	problem.	Imagine	two	tasks,	both	having
access	to	a	global	variable.	The	job	of	one	task,	called	an	incrementer,	is	to	increment	the
shared	variable.	The	other	task,	called	the	decrementer,	decrements	the	shared	variable.
The	increment	and	decrement	operations	in	each	task	are	embedded	within	identical	for
loops.	In	this	way,	we	arrange	for	the	variable	to	be	incremented	and	decremented	the
same	number	of	times.	The	shared	variable	is	reset	to	zero	before	the	tasks	are	created	and
run.	Once	the	tasks	complete,	one	may	expect	the	value	of	the	shared	variable	to	equal
zero,	as	increment	and	decrement	have	been	executed	in	equal	measure	by	the	two	tasks.
This	recipe,	named	RTOS_Sem_c8v0,	illustrates	that,	surprisingly,	this	is	not	the	case.



How	to	do	it…
1.	 Create	a	new	project	and	using	the	manager	configure	the	RTE	to	provide	support	for

the	Graphic	LCD.
2.	 Add	the	following	code	to	the	project:

#include	"RTXSem.h"

#define	NCYCLES	500000								/*	User	Modified	Value	*/

int	sharedVar;																			/*	Shared	Variable	*/

/*--------------------------------------------------

	*	Thread	1	'taskA':	Increment	Shared	Variable

	*--------------------------------------------------*/

void	taskA	(void	const	*argument)	{

		uint32_t	p;

		bool	flag	=	true;

		for	(;;)	{

				if	(flag==true)	{

						/*	Inccrement	the	Shared	Variable	*/

						for	(p=0;	p<NCYCLES;	p++)

								sharedVar++;

						/*	set	signal	to	taskC	thread			*/

						osSignalSet(tid_taskC,	0x0001);

						flag	=	false;

				}

		}

}

/*--------------------------------------------------

	*	Thread	2	'taskB':	Decrement	Shared	Variable

	*--------------------------------------------------*/

void	taskB	(void	const	*argument)	{

		uint32_t	p;

		bool	flag	=	true;

		for	(;;)	{

				if	(flag==true)	{

						/*	Decrement	the	Shared	Variable	*/

						for	(p=0;	p	<	NCYCLES;	p++)

								sharedVar--;

						/*	set	signal	to	taskC	thread	*/

						osSignalSet(tid_taskC,	0x0002);

						flag	=	false;

				}

		}

}

/*--------------------------------------------------

	*	Thread	3	'taskC':	Display	Shared	Variable

	*--------------------------------------------------*/

void	taskC	(void	const	*argument)	{

		for	(;;)	{



				/*	wait	for	an	event	flag	0x0003	*/

				osSignalWait(0x0003,	osWaitForever);				

				GLCD_show_result(sharedVar);

				/*	Kill	Threads	*/

				osThreadTerminate	(tid_taskA);

				osThreadTerminate	(tid_taskB);

				osThreadTerminate	(tid_taskC);

			}

}

/*--------------------------------------------------

	*	Main:	Initialize	and	start	RTX	Kernel

	*--------------------------------------------------*/

int	main	(void)	{

		HAL_Init	();			/*	Init	Hardware	Abstraction	Layer	*/

		SystemClock_Config	();											/*	Config	Clocks	*/								

		GLCD_setup();

		sharedVar	=	0;

		tid_taskA	=	osThreadCreate(osThread(taskA),	NULL);

		tid_taskB	=	osThreadCreate(osThread(taskB),	NULL);

		tid_taskC	=	osThreadCreate(osThread(taskC),	NULL);

		

		osDelay(osWaitForever);

		while(1);

}

3.	 Create	file	header	file,	RTXSem.h,	and	add	the	following	code:

#ifndef	__RTX_SEM_H

#define	__RTX_SEM_H

#include	"stm32f4xx.h"					/*	STM32F4xx	Definitions	*/

#include	"RTXBlinkyUtils.h"

#include	"cmsis_os.h"

/*	Thread	id	of	thread:	task_a,	b,	c	*/

osThreadId	tid_taskA;																			

osThreadId	tid_taskB;																		

osThreadId	tid_taskC;

/*	Function	Prototypes	*/

void	taskA	(void	const	*argument);

void	taskB	(void	const	*argument);

void	taskC	(void	const	*argument);

/*	Thread	Definitions	*/

osThreadDef(taskA,	osPriorityNormal,	__FI,	0);

osThreadDef(taskB,	osPriorityNormal,	__FI,	0);

osThreadDef(taskC,	osPriorityNormal,	__FI,	0);

#endif	/*	__RTX_SEM_H	*/



4.	 Create	the	RTXBlinkyUtils.c	file,	enter	the	following	code,	and	add	it	to	the	project:

#include	"RTXBlinkyUtils.h"

void	GLCD_setup(void)	{

		GLCD_Initialize();														/*	Initialise	and	*/

		GLCD_SetBackgroundColor	(GLCD_COLOR_WHITE);

		GLCD_ClearScreen	();												/*	clear	the	GLCD	*/

		GLCD_SetBackgroundColor(GLCD_COLOR_BLUE);

		GLCD_SetForegroundColor(GLCD_COLOR_WHITE);

		GLCD_SetFont	(&GLCD_Font_16x24);

		GLCD_DrawString(0,	0*24,	"	CORTEX-M4	COOKBOOK	");

		GLCD_DrawString(0,	1*24,	"		PACKT	Publishing		");

}

void	GLCD_show_result(int	value)	{

		char	buffer[128];

		

		GLCD_SetBackgroundColor(GLCD_COLOR_WHITE);

		GLCD_SetForegroundColor(GLCD_COLOR_BLACK);		

		GLCD_DrawString	(0,	3*24,	"VAL	=");

		sprintf	(buffer,	"%i			",	value);					/*	make	string	*/

		GLCD_DrawString	(7*16,	3*24,	buffer);			/*	Display	it	*/

}

5.	 Define	the	header	file,	RTXBlinkyUtils.h,	and	enter	the	following	code:

#ifndef	__RTX_BLINKY_GLCD_UTILS_H

#define	__RTX_BLINKY_GLCD_UTILS_H

#include	"Board_GLCD.h"

#include	"GLCD_Config.h"

#include	<stdio.h>

#include	<stdlib.h>

#include	<stdbool.h>

#define	__FI				1																							/*	Font	index	*/

extern	GLCD_FONT					GLCD_Font_16x24;

/*	Function	Prototypes	*/

void	GLCD_setup(void);

void	GLCD_show_result(int	);

#endif	/*	__RTX_BLINKY_GLCD_UTILS_H	*/

6.	 Build,	download	and	run	the	program.

Tip
Note	the	value	of	the	shared	variable	output	to	the	GLCD	(it	should	be	0).	Try
running	the	program	a	few	times.

7.	 Change	the	value	of	NCYCLES,	as	follows:



#define	NCYCLES	500000

8.	 Build,	download,	and	run	the	program.	The	value	of	the	shared	variable	is	output	to
the	GLCD	(it	should	be	≠	0).	Try	running	the	program	a	few	times.



How	it	works…
There	are	three	tasks.	Tasks	A	and	B	are	incrementer	and	decrementer	tasks,	task	C
outputs	the	value	of	the	shared	variable	to	the	GLCD.	Task	C	waits	for	signals	from	both
tasks,	A	and	B,	before	calling	the	GLCD_show_result(	)	function.	To	achieve	this,	task	A
sets	flag	0x0001	and	task	B	sets	flag	0x0002;	task	C	is	released	on	flag	0x0003	(that	is,	the
logical	AND	of	task	A	and	B	flags).

To	explain	how	the	value	of	the	shared	variable	can	be	anything	other	than	zero,	once	the
program	terminates,	we	must	consider	how	low-level	machine	instructions	implementing
increment	or	decrement	operations	will	be	executed	for	every	possible	scheduling	of
taskA	and	taskB.	The	increment	operation	involves	reading	a	value	from	memory,	storing
it	in	one	of	the	processor	registers,	adding	one	to	it,	and	storing	the	result	back	in	memory.
Decrement	will	work	in	a	similar	way.

Assuming	that	the	task	switch	between	A	and	B	always	occurs	after	the	task	has	written
the	updated	value	of	the	shared	variable	to	memory,	then	the	program	operates
successfully.	When	NCYCLES	=	10,	this	will	probably	be	the	case.	However,	if	the	task
switch	occurs	at	the	point	just	before	the	shared	variable	is	written,	then	one	task	will	be
working	with	an	outdated	copy	of	the	shared	variable.	This	problem	manifests	as	the	error
we	observed.



There’s	more…
CMSIS-RTOS	provides	a	solution	to	the	problem	of	providing	safe	access	to	a	shared
resource	(in	this	case	a	shared	variable)	by	implementing	a	primitive	known	as	a
Semaphore.	In	general,	a	number	of	tasks	(say,	p	tasks)	may	share	a	resource	(that	is,	the
resource	can	support	a	maximum	of	p	tasks).	To	ensure	that	no	more	than	p	tasks	access
the	resource	at	any	time,	we	provide	a	variable	(initialized	to	p)	that	will	decrement	each
time	a	resource	needs	to	use	it	and	is	incremented	when	the	resource	finishes	with	it.	Thus,
processes	can	only	access	the	resource	when	p>0.

The	case	when	a	shared	resource	can	only	support	one	task	(that	is,	p=1)	can	be	managed
by	a	binary	semaphore	called	a	Mutual	Exclusion	(Mutex).	Mutexs	are	often	used	to
ensure	that	critical	sections	of	code	are	thread-safe.	A	piece	of	code	is	thread	safe	if	it	only
manipulates	shared	data	structures	in	a	manner	that	guarantees	safe	execution	by	multiple
threads	at	the	same	time.	To	ensure	that	the	read,	modify,	or	write	operation	produced	by
the	increment	or	decrement	is	thread	safe,	we	enclose	the	increment/decrement	statement
in	task	A	or	B	as	follows:

osMutexWait(mut_sharedVar,	osWaitForever);

sharedVar++;

osMutexRelease(mut_sharedVar);

The	variable	named	mut_sharedVar	holds	the	semaphore.	However,	before	we	can	use	the
semaphore,	we	must	declare,	register,	and	initialize	it.	The	following	recipe	illustrates	how
this	is	done	for	a	mutex	used	to	control	access	to	the	GLCD.	The	same	code	statements
can	be	used	here;	simply	replace	the	mut_GLCD	variable	with	mut_sharedVar.	Once	we’ve
protected	our	critical	section	in	this	way,	the	program	will	run	correctly	and	always	return
a	value	of	zero,	no	matter	how	many	cycles	we	specify.

Although	the	previous	program	is	thread	safe,	there	is	another	potential	problem.	Data	is
transmitted	to	the	GLCD	by	a	serial	bus	that	is	managed	by	functions	that	are	defined	in
the	GLCD	library.	If	a	task	using	the	GLCD	is	switched	while	it	is	mid-way	through
writing	to	the	GLCD,	then	there	is	a	chance	that	the	GLCD	serial	bus	will	stall	and	we’ll
lose	data.	This	will	manifest	as	a	corruption	of	the	screen	and	there	is	a	chance	that	we’ll
misdiagnose	this	as	a	hardware	fault,	when	in	fact	it	is	due	to	software.	Many	students	try
to	fix	this	problem	by	arranging	for	all	GLCD	write	statements	to	be	in	one	task.	This
doesn’t	work	because	the	serial	bus	is	stalled	as	soon	as	a	context	switch	occurs
irrespective	of	what	goes	on	in	the	other	tasks.	The	solution	is	to	treat	the	GLCD	as	a
shared	resource	and	enclose	every	invocation	of	the	library	code	with	calls	to
osMutexWait(	)	and	osMutexRelease(	),	even	if	they	occur	within	the	same	thread.	The
following	recipe	illustrates	this	by	emulating	the	RTOS_Blinky_c8v0	folder	in	the
Multithreaded	programs	using	event	flags	recipe	that	we	considered	earlier	in	this	chapter,
this	time	using	the	GLCD	to	simulate	the	LEDs.	We’ll	call	this:	RTOS_Blinky_c8v2.





Why	we	must	use	a	mutex	to	access	the
GLCD



How	to	do	it…
To	access	the	GLCD	using	mutual	exclusion,	follow	the	steps	outlined:

1.	 Create	a	new	project	and	using	the	manager	configure	the	RTE	to	provide	support	for
the	Graphic	LCD.

2.	 Create	a	new	file	named	RTXBlinky.c,	add	the	boilerplate	code,	and	then	add	this
source	file	to	the	project.

3.	 Add	the	following	code	to	RTXBlinky.c:

#include	"stm32f4xx_hal.h"								/*	STM32F4xx	Defs	*/

#include	"RTXBlinkyUtils.h"

#include	"cmsis_os.h"

osThreadId	tid_taskA;							/*	id	of	thread:	task_a	*/

osThreadId	tid_taskB;							/*	id	of	thread:	task_b	*/

osMutexId	mut_GLCD;	/*	Mutex	to	control	GLCD	access	*/

/*--------------------------------------------------

	*						Switch	LED	on

	*--------------------------------------------------*/

void	switch_On	(unsigned	char	led)	{

		osMutexWait(mut_GLCD,	osWaitForever);

		GLCD_SetBackgroundColor	(GLCD_COLOR_WHITE);

		GLCD_SetForegroundColor(GLCD_COLOR_RED);

		GLCD_SetFont	(&GLCD_Font_16x24);

		GLCD_DrawChar(led+(7*16),	4*24,	0x80+1);	

		osMutexRelease(mut_GLCD);

}

/*--------------------------------------------------

	*						Switch	LED	off

	*--------------------------------------------------*/

void	switch_Off	(unsigned	char	led)	{

		osMutexWait(mut_GLCD,	osWaitForever);

		GLCD_SetBackgroundColor	(GLCD_COLOR_WHITE);													

		GLCD_SetForegroundColor(GLCD_COLOR_RED);			

		GLCD_SetFont	(&GLCD_Font_16x24);

		GLCD_DrawChar(led+(7*16),	4*24,	0x80+0);					

		osMutexRelease(mut_GLCD);

}

/*--------------------------------------------------

	*						Thread	1	'taskA':	Switch	LED	ON

	*--------------------------------------------------*/

void	taskA	(void	const	*argument)	{

		for	(;;)	{

				osSignalWait(0x0001,	osWaitForever);				

				switch_On(LED_A);

				osDelay(500);

				osSignalSet(tid_taskB,	0x0001);	/*	signal	taskB	*/



		}

}

/*--------------------------------------------------

	*						Thread	2	'taskB':	Switch	LED	OFF

	*--------------------------------------------------*/

void	taskB	(void	const	*argument)	{

		for	(;;)	{

				osSignalWait(0x0001,	osWaitForever);	

				switch_Off(LED_A);

				osDelay(500);

				osSignalSet(tid_taskA,	0x0001);	/*	signal	taskA	*/

		}

}

osMutexDef(mut_GLCD);

osThreadDef(taskA,	osPriorityNormal,	__FI,	0);

osThreadDef(taskB,	osPriorityNormal,	__FI,	0);

/*--------------------------------------------------

	*						Main:	Initialize	and	start	RTX	Kernel

	*--------------------------------------------------*/

int	main	(void)	{

		HAL_Init	();			/*	Init	Hardware	Abstraction	Layer	*/

		SystemClock_Config	();											/*	Config	Clocks	*/								

		GLCD_setup();

		mut_GLCD	=	osMutexCreate(osMutex(mut_GLCD));

		tid_taskA	=	osThreadCreate(osThread(taskA),	NULL);

		tid_taskB	=	osThreadCreate(osThread(taskB),	NULL);

		osSignalSet(tid_taskA,	0x0001);				/*	signal	taskA	*/

		osDelay(osWaitForever);

		while(1);

}

4.	 Create	the	RTXBlinkyUtils.c	file,	enter	the	following	code,	and	add	this	to	the
project:

#include	"RTXBlinkyUtils.h"

void	GLCD_setup(void)	{

		unsigned	char	led;

		GLCD_Initialize();															/*	Initialize	and	*/

		GLCD_SetBackgroundColor	(GLCD_COLOR_WHITE);

		GLCD_ClearScreen	();													/*	clear	the	GLCD	*/

		GLCD_SetBackgroundColor(GLCD_COLOR_BLUE);

		GLCD_SetForegroundColor(GLCD_COLOR_WHITE);

		GLCD_SetFont	(&GLCD_Font_16x24);



		GLCD_DrawString(0,	0*24,	"	CORTEX-M4	COOKBOOK	");

		GLCD_DrawString(0,	1*24,	"		PACKT	Publishing		");

		GLCD_SetBackgroundColor(GLCD_COLOR_WHITE);

		GLCD_SetForegroundColor(GLCD_COLOR_RED);

		for	(led=LED_A;	led<LED_G+1;	led++)

						GLCD_DrawChar((led+7)*16,	4*24,	0x80+0);	

}

5.	 Modify	RTXBlinkyUtils.h	(defined	in	the	previous	recipe),	accordingly.
6.	 Build,	download,	and	run	the	program.



How	it	works…
Calls	to	GLCD	functions	within	switch_Off()	and	switch_On()	are	protected	by
mut_GLCD,	thus	enforcing	mutual	exclusion.	The	mut_GLCD	variable	is	declared	as	follows:

osMutexId	mut_GLCD;			/*	Mutex	to	control	GLCD	access	*/

We	also	need	to	register	the	semaphore	by	including	the	following	statement:

osMutexDef(mut_GLCD);

We	initialize	this	statement	within	main()	by	including	the	following:

mut_sharedVar	=	osMutexCreate(osMutex(mut_GLCD));





How	to	write	a	multithreaded	Pong	game
To	further	illustrate	how	to	use	the	features	of	CMSIS-RTOS	that	we’ve	introduced	in	this
chapter,	we’ll	return	to	the	Pong	program	that	we	first	introduced	in	Chapter	2,	C
Language	Programming.	We’ll	call	this	recipe:	RTOS_Pong_v8v0.	Due	to	space	limitations,
we’re	only	showing	those	parts	of	the	code	that	are	relevant	to	the	RTOS	implementation.
Refer	to	Chapter	2,	C	Language	Programming	for	details	of	helper	functions	defined	in
the	pong_utils.c	file.



How	to	do	it…
To	create	a	multithreaded	pong	game,	follow	the	steps	given:

1.	 Create	a	new	project	(new	folder)	called	RTOS_Pong.	Set	the	RTE	to	include	board
support	for	the	ADC	and	GLCD.	Include	CMSIS-RTOS.

2.	 Create	a	file	named	RTOS_Pong.c	and	add	a	task	to	handle	the	GLCD:

void	taskGLCD	(void	const	*argument)	{

		BallInfo	init_pstn	=	thisGame.ball;

		for	(;;)	{

				osEvent	evt	=	osMailGet(mail_box,	osWaitForever);

				if	(evt.status	==	osEventMail)	{

						mail_t	*mail	=	(mail_t*)evt.value.p;

						thisGame.p1.y	=	mail->pdl;												

						osMailFree(mail_box,	mail);

						osMutexWait(mut_GLCD,	osWaitForever);			

						update_player();

	

						if	(thisGame.ball.x<BAR_W)	{				/*	reset	pstn	*/							

								osDelay(T_LONG);

								erase_ball();						

								thisGame.ball	=	init_pstn;

						}	

						draw_ball();									

						osMutexRelease(mut_GLCD);

						osDelay(T_SHORT);

						osSignalSet(tid_taskBall,	0x0001);

				}

		}

}

3.	 Add	a	task	to	update	the	ball	and	check	for	collisions:

void	taskBall	(void	const	*argument)	{

			for	(;;)	{

				osSignalWait(0x0001,	osWaitForever);

				update_ball();			

				check_collision();

				osSignalSet(tid_taskGLCD,	0x0001);

			}

}

4.	 Add	a	task	to	handle	the	ADC:

void	taskADC	(void	const	*argument)	{

uint32_t	adcValue;

		for	(;;)	{

				mail_t	*mail	=	(mail_t*)osMailAlloc(mail_box,	

																																							osWaitForever);



				ADC_StartConversion();

				adcValue	=	ADC_GetValue	();

										

				mail->pdl	=	(adcValue	>>	4)	*	(HEIGHT-BAR_H)/256;

				osMailPut(mail_box,	mail);

				osDelay(T_SHORT);

		}

}

5.	 Add	main(),	save	RTOS_Pong.c,	and	add	the	file	to	the	project:

int	main	(void)	{

		HAL_Init	(	);

		SystemClock_Config	(	);

		game_Initialize();

		ADC_Initialize();

		GLCD_Initialize	();

		GLCD_Clear	(White);													/*	Clear	the	GLCD	*/

		GLCD_SetBackColor	(White);		/*	Set	the	Back	Color	*/

		GLCD_SetTextColor	(Blue);			/*	Set	the	Text	Color	*/

		mail_box	=	osMailCreate(osMailQ(mail_box),	NULL);

		mut_GLCD	=	osMutexCreate(osMutex(mut_GLCD));

	

		tid_taskGLCD	=	osThreadCreate(osThread(taskGLCD),	NULL);

		tid_taskBall	=	osThreadCreate(osThread(taskBall),	NULL);

		tid_taskADC	=	osThreadCreate(osThread(taskADC),	NULL);

		osDelay(osWaitForever);

		while(1)

				;

}

6.	 Create	an	appropriate	header	file	named	RTOS_Pong.h:

#ifndef	_RTOS_PONG_H

#define	_RTOS_PONG_H

#include	"cmsis_os.h"

#define	__FI				1															/*	Font	index	16x24	*/

/*	Mailbox	*/

typedef	struct	{

		uint32_t	pdl;	/*	paddle	position	*/

}	mail_t;

osMailQDef(mail_box,	1,	mail_t);

osMailQId		mail_box;

/*	Mutex	*/

osMutexDef(mut_GLCD);

osMutexId	mut_GLCD;	/*	Mutex	to	control	GLCD	access	*/

/*	Function	Prototypes	for	Tasks	*/

void	taskGLCD	(void	const	*argument);



void	taskBall	(void	const	*argument);

void	taskADC	(void	const	*argument);

/*	Declare	Task	IDs	*/

osThreadId	tid_taskGLCD;		/*	id	of	thread:	taskGLCD	*/

osThreadId	tid_taskBall;		/*	id	of	thread:	taskGreq	*/

osThreadId	tid_taskADC;		/*	id	of	thread:	taskMotor	*/

/*	Define	Threads	*/

osThreadDef(taskGLCD,	osPriorityNormal,	__FI,	0);

osThreadDef(taskBall,	osPriorityNormal,	__FI,	0);

osThreadDef(taskADC,	osPriorityNormal,	__FI,	0);

#endif	/*	_RTOS_PONG_H	*/

7.	 Copy	the	pong_utils.c	and	pong_utils.h	files	(refer	to	Chapter	2,	C	Language
Programming.)	and	add	these	to	the	project.

8.	 Build,	download,	and	run	the	program.



How	it	works…
The	tasks	named	taskGLCD(	)	and	taskBall(	)	are	synchronized	using	a	flag	so	the	ball
position	is	updated	every	time	the	screen	is	refreshed.	The	task	named	taskADC(	)	sends
the	position	of	the	paddle	to	a	mailbox;	taskGLCD(	)	receives	this	value	and	uses	it	to
render	the	paddle.	The	tasks	are	illustrated	in	the	following	diagram:

The	tasks	are	loosely	coupled	and	can	be	independently	tested.	For	example,	during
debuging,	the	taskADC(	)	function	and	statements	within	taskGLCD(	),	which	read	the
mailbox	and	render	the	paddle,	can	be	“commented	out,”	leaving	a	simpler	program	that
just	moves	the	ball	around	the	screen.	The	mailbox	has	only	one	slot.	This	is	a	key	design
decision	that	ensures	that	the	paddle	is	rendered	each	time	the	ADC	is	read,	so	everything
is	synchronized	to	taskADC().





Debugging	programs	that	use	CMSIS-
RTOS
Using	Keil’s	ULINK,	we	can	gather	and	display	general	information	about	system
resources	while	debugging	our	program.



How	to	do	it…
1.	 Clone	the	RTXBlinky	project	that	we	described	earlier	in	this	chapter.
2.	 Select	Project	→	Options.	Under	the	Debug	tab,	select	Settings.

3.	 In	the	Cortex-M	Target	Driver	Setup	dialog,	use	the	Debug	tab	to	select	the	Serial
Wire	(SW)	Communications	protocol:



4.	 Still	in	the	Cortex-M	Target	Driver	Setup	dialog,	use	the	Trace	tab	to	set	the	Core
Clock	frequency	(168.0	MHz)	and	check	Trace	Enable:

5.	 Download	and	run	the	program.



6.	 Debug	the	program	by	selecting	Debug	→	Start/Stop	Debug	Session	(Ctrl+F5).
7.	 Select	Debug	→	Run	(F5)	to	run	the	program.
8.	 Select	Debug	→	OS	Support	→	System	and	Thread	Viewer.

Tip
The	cells	that	are	highlighted	in	the	previous	screenshot	are	updated	in	real	time	as
the	program	is	running.

9.	 Select	Debug	→	OS	Support	→	Event	Viewer.	The	cells	that	are	highlighted	in	the
following	screenshot	are	updated	in	real	time	as	the	program	is	running:





How	it	works…
The	System	and	Thread	Viewer	window	provides	some	useful	information	on	System
configuration	and	Threads.	The	values	shown	for	the	System	reflect	the	ones	that	are
defined	in	the	RTX_Conf_CM.c	file	in	the	Configuration	Wizard.	There	are	a	total	of	four
threads,	as	CMSIS-RTOS	manages	main()	and	the	osTimerThread()	as	discrete	threads
in	their	own	right.	When	configuring	the	Trace	(refer	to	step	4),	it	is	very	important	to	set
the	Core	Clock	frequency	to	agree	with	what	is	defined	in	RTX_Conf_CM.c:

Further	features	of	the	debugger	are	discussed	in	Keil	Application	Note	No.	261	(refer	to
http://www.keil.com/appnotes/files/apnt_261.pdf).

http://www.keil.com/appnotes/files/apnt_261.pdf




Chapter	9.	Embedded	Toolchain
In	this	chapter,	we	will	cover	the	following	topics:

Installing	GNU	ARM	Eclipse
Programming	the	MCBSTM32F400	evaluation	board
How	to	use	the	STM32CubeMX	Framework	(API)
How	to	port	uVision	projects	to	GNU	ARM	Eclipse



Introduction
A	toolchain	is	a	term	that	is	used	to	describe	a	set	of	programming	tools	that	are	used	to
create	a	software	product,	which	is	typically	an	application	program.	A	simple	software
development	toolchain	usually	comprises	a	text	editor,	compiler,	and	linker,	and	often
these	are	packaged	together	with	other	tools,	such	as	a	debugger,	as	an	Integrated
Development	Environment	(IDE).	The	ARM	uVision5	IDE	is	very	easy	to	use,	but	the
constraints	imposed	on	the	free	evaluation	version	and	the	relatively	high	cost	of	the
licensed,	professional	version	motivate	many	programmers	to	explore	alternative,	free,
open	source	toolchains.	Here	is	just	a	sample	of	the	available	alternatives:

emIDE:	This	can	be	found	at	http://www.emide.org/
YAGARTO:	This	can	be	found	at	http://www.yagarto.org
CooCox:	This	can	be	found	at	http://www.coocox.org/
GNU	ARM	Eclipse:	This	can	be	found	at	http://gnuarmeclipse.github.io/

Open	source	software	is	usually	made	available	as	source	code	and	then	released	under	a
GNU	General	Public	License.	The	GNU	General	Public	License	is	intended	to	guarantee
users	the	freedom	to	share	and	change	all	versions	of	a	program,	ensuring	that	it	remains
free	software	for	all	its	users.	Luckily,	developers	usually	make	precompiled	versions	of
most	software	released	under	the	GNU	license	available,	often	supporting	the	Windows,
Linux,	and	Macintosh	(OSX)	operating	systems.

However,	installing	and	configuring	an	open	source	toolchain	from	a	precompiled	binary
is	not	easy,	so	the	aim	of	this	chapter	is	to	guide	us	through	the	process.	We	will	illustrate
the	installation	of	the	GNU	ARM	Eclipse	toolchain	on	a	Windows	platform.	We	are
choosing	this	route	because	the	toolchain	has	recently	migrated	to	GitHub	and	the
installation	guide	has	been	revised.

http://www.emide.org/
http://www.yagarto.org
http://www.coocox.org/
http://gnuarmeclipse.github.io/




Installing	GNU	ARM	Eclipse
What	is	GNU	ARM	Eclipse?	Well,	Eclipse	is	an	open	source,	integrated-development
environment	that	can	be	configured	for	any	toolchain.	This	is	achieved,	typically,	by	an
extensible	system	of	plug-ins	that	allows	the	environment	to	be	customized.	Eclipse	is
written	mostly	in	Java,	but	plug-ins	are	available	allowing	it	to	be	configured	for	a	variety
of	languages.	GNU	ARM	Eclipse	plug-ins	provide	Eclipse	CDT	(C/C++	Development
Tooling)	extensions	for	GNU	ARM	toolchains,	such	as	GNU	Tools	for	ARM	Embedded
Processors,	and	others	such	as	Linaro	(https://www.linaro.org/),	YAGARTO
(http://www.yagarto.org/),	and	so	on.

To	install	GNU	ARM	Eclipse,	we	need	the	following	components:

The	Eclipse	IDE:	This	is	the	IDE	itself,	and	it	can	be	found	at
https://www.eclipse.org/
GCC	ARM	Embedded	Toolchain:	This	is	the	GNU	toolchain,	and	it	an	be	found	at
https://launchpad.net/gcc-arm-embedded
Windows	Build	Tools:	These	are	the	tools	for	make,	rm,	and	so	on	(native	to	Linux),
and	they	can	be	found	at	https://github.com/gnuarmeclipse/windows-build-tools
GNU	ARM	Eclipse	plug-ins:	These	are	the	plug-ins,	and	thy	can	be	found	at
https://github.com/gnuarmeclipse/plug-ins
GNU	ARM	Eclipse	QEMU	Emulator	plug-in:	This	is	an	embedded	processor
emulator,	and	it	can	be	found	at	http://gnuarmeclipse.github.io/qemu/
GNU	ARM	OpenOCD	Debugging	plug-in:	This	is	a	debugging	tool,	and	it	can	be
found	at	http://gnuarmeclipse.github.io/openocd/
MDK-ARM	Eclipse	plug-in:	This	is	support	for	the	U-Link	debugger,	and	it	can	be
found	at	http://www.keil.com/support/man/docs/ecluv/default.htm

Mostly,	these	are	installed	by	downloading	the	latest	version	of	their	Windows	installer
.exe	file.	As	the	MDK-ARM	Eclipse	plug-in	only	works	with	the	Windows	32-bit	version
of	Eclipse,	we	chose	32-bit	versions	of	the	toolchain.	The	installation	documentation
provided	is	comprehensive,	so	the	following	recipe	(GNU_ARM_Eclipse_Install_c9v0)
just	gives	us	an	overview	and	links	to	the	relevant	web	pages.

https://www.linaro.org/
http://www.yagarto.org/
https://www.eclipse.org/
https://launchpad.net/gcc-arm-embedded
https://github.com/gnuarmeclipse/windows-build-tools
https://github.com/gnuarmeclipse/plug-ins
http://gnuarmeclipse.github.io/qemu/
http://gnuarmeclipse.github.io/openocd/
http://www.keil.com/support/man/docs/ecluv/default.htm


How	to	do	it…
1.	 Follow	the	instructions	at	http://gnuarmeclipse.github.io/toolchain/install/	and	install

the	latest	version	(currently	gcc-arm-none-eabi-4_9-2015q3-20150921-win32.exe)
of	the	prebuilt	GNU	toolchain	for	ARM	Embedded	Processors.	Execute	the	installer
(in	the	final	window,	be	sure	to	disable	adding	the	toolchain	path	to	the	environment).

2.	 Test	the	gcc	compiler	by	typing	"C:\Program	Files	(x86)\GNU	Tools	ARM
Embedded\4.9	2015q3\bin\arm-none-eabi-gcc.exe"	--version	in	a	command
window:

3.	 Refer	to	http://gnuarmeclipse.github.io/windows-build-tools/download/;	download
and	run	the	latest	version	(currently	gnuarmeclipse-build-tools-win32-2.6-
201507152002-setup.exe)	of	Windows	Build	Tools	from	this	link.

4.	 Check	whether	Windows	Build	Tools	is	functional	by	opening	a	command	window
in	the	folder	where	it	was	installed	(that	is,	"C:\Program	Files\GNU	ARM
Eclipse\Build	Tools\2.6-201507152002")	and	run	make	--version	as	follows:

5.	 Refer	to	http://gnuarmeclipse.github.io/qemu/install/,	then	download	and	run	the
latest	version	of	the	installer	(currently	gnuarmeclipse-qemu-win32-2.3.50-
201508041609-dev-setup.exe)	from	this	link.

6.	 Refer	to	http://gnuarmeclipse.github.io/openocd/install/,	then	download
and	run	the	latest	version	of	the	installer	(currently	gnuarmeclipse-openocd-win32-
0.9.0-201505190955-setup.exe)	from	this	link.	Note	that	the	documentation
advises	using	the	SEGGER	J-Link	debugger;	other	hardware	is	more	difficult	to	set

http://gnuarmeclipse.github.io/toolchain/install/
http://gnuarmeclipse.github.io/windows-build-tools/download/
http://gnuarmeclipse.github.io/qemu/install/


up.
7.	 Refer	to	http://www.keil.com/support/man/docs/ecluv/default.htm	and	install	MDK

Version	5	-	Legacy	Support.
8.	 Refer	to	https://www.eclipse.org,	then	download	and	run	the	latest	version	of	the

installer	(currently	Eclipse	Mars.	1)	from	this	link.	Choose	the	version	for	C/C++
developers:

9.	 Refer	to	http://gnuarmeclipse.github.io/eclipse/workspace/preferences/	and	set	the
Eclipse	preferences.

10.	 Refer	to	http://gnuarmeclipse.github.io/plugins/install/	and	install	the	GNU	ARM
Eclipse	plug-ins	using	the	standard	Eclipse	installer	in	the	Help	→	Install	New
Software	menu.	Note	that,	as	we	are	working	with	Mars	and	we	installed	Eclipse
configured	for	C/C++,	then	we	may	find	that	we	already	have	some	CDT	tools	(by
default,	plug-ins	that	are	already	installed	are	not	displayed).

11.	 Refer	to	http://gnuarmeclipse.github.io/plugins/packs-manager/.	To	install	packs,	we

http://www.keil.com/support/man/docs/ecluv/default.htm
https://www.eclipse.org
http://gnuarmeclipse.github.io/eclipse/workspace/preferences/
http://gnuarmeclipse.github.io/plugins/install/
http://gnuarmeclipse.github.io/plugins/packs-manager/


need	to	select	the	pack	perspective	and	find	available	packs,	then	install	the	ones	that
we	want	(make	local	copies).	We’re	going	to	test	our	Eclipse	IDE	with	the	emulator
configured	as	Discovery	Board.	So,	we’ll	need	the	STM32F4	support	pack:

12.	 Refer	to	http://gnuarmeclipse.github.io/tutorials/blinky-arm/	and	use	the	wizard	to
create	a	Blinky	ARM	test	project:

13.	 Refer	to	http://gnuarmeclipse.github.io/tutorials/blinky-arm/.	Build	the	project	and
run	the	program	on	the	Discovery	Board	emulator:

http://gnuarmeclipse.github.io/tutorials/blinky-arm/
http://gnuarmeclipse.github.io/tutorials/blinky-arm/




How	it	works…
Assuming	that	we	successfully	ran	this	code,	then	we	have	a	working	IDE.	The	Blinky
wizard	generates	C++	code,	so	it	may	look	a	little	strange.	Don’t	worry;	for	the	next	recipe
we’ll	create	a	C	project.





Programming	the	MCBSTM32F400
evaluation	board
This	recipe	will	detail	modifications	that	are	necessary	for	the	Blinky	program	created	by
the	Eclipse	project	wizard	and	will	show	how	to	use	the	MDK-ARM	Eclipse	plug-in	to
flash	the	STM32F407IG	part.	We’ll	call	this	recipe	GNU_ARM_Blinky_c9v0.



How	to	do	it…
1.	 Invoke	Eclipse.
2.	 The	MCBSTM32F400	evaluation	board	uses	the	STM32F407IG	device,	so	we

install	the	pack	supporting	this.	To	install	the	pack,	switch	to	the	Packs	perspective
and	right-click	the	name	of	the	pack:

3.	 Refer	to	http://www.keil.com/support/man/docs/ecluv/ecluv_flashSetup.htm	and
install	the	MDK-ARM	Eclipse	plug-in.	Note	that,	once	this	plug-in	is	successfully
installed,	the	uVision	icon	and	menu	will	appear	in	the	toolbar:

http://www.keil.com/support/man/docs/ecluv/ecluv_flashSetup.htm


4.	 Switch	to	the	C/C++	perspective.	Select	File	→	New	→C	Project	and	create	a	new
project;	give	the	project	a	name,	select	the	STM32F4xx	toolchain,	and	click	Next:

5.	 Choose	the	STM32F407xx	Chip	Family,	and	select	None	(no	trace	output)	in
Trace	output:



6.	 Open	BlinkLed.c;	in	the	blink_led_int()	function,	search	for	the	following
statement:

GPIO_InitStructure.Pull	=	GPIO_PULLUP;

Replace	this	statement	with	the	following	one:

GPIO_InitStructure.Pull	=	GPIO_PULLDOWN;

7.	 Open	the	header	file	named	BlinkLed.h.	Replace	the	STM32F4DISCOVERY	definitions
with	the	following:

//	MCBSTM32F400	Eval.	Board	defs	(led	G6,	active	high)

#define	BLINK_PORT_NUMBER															(6)

#define	BLINK_PIN_NUMBER																(6)

#define	BLINK_ACTIVE_LOW																(0)



8.	 Select	Project	→	Build	All	and	build	the	project	(or	use	the	hammer	icon	shortcut).
9.	 Select	U-Link	Load	→	Flash	Download	Configurations…	and	create	a	new

configuration	as	shown	in	the	following	screenshot.	Note	that	selecting	Target
Options	will	open	the	familiar	uVision	project	options	dialog	window.

10.	 Select	Flash	Download.	We	may	need	to	reset	the	board	(depending	on	how	we	set
the	Target	Options).



How	it	works…
We’ve	simply	configured	the	U-Link	as	a	device	programmer	in	this	recipe.	If	you	find
that	this	doesn’t	work,	then	refer	to	http://www.keil.com/support/docs/3061.htm.	Copy	the
.hex	file	created	by	Eclipse	to	a	uVision	project	and	use	uVision	to	flash	the	board.	You
may	need	to	use	the	UL2_EraseFW.exe	utility	that	we	discussed	in	Chapter	2,	C	Language
Programming.	If	you	do	erase	the	U-Link	firmware	and	subsequently	flash	the	board
using	Eclipse,	then	expect	the	following	to	appear	in	the	uVision	Output	Console:

The	calls	to	the	trace_printf()	function	that	appear	in	main	can	be	ignored	(or
commented	out).	They	are	present	to	allow	text	strings	to	be	displayed	in	the	console
debug	window	using	a	U-Link	communication	channel;	however,	although	they	work	with
the	discovery	board	emulator,	they	don’t	with	the	U-Link2	hardware.	This	is	not	a	serious
problem	because	Chapter	2,	C	Language	Programming	describes	other	equally	good
approaches	to	debugging	code.

You	may	have	noticed	that	the	GPIO	support	for	LEDs	provided	by	the	Eclipse	wizard	is
inferior	to	that	in	uVision.	To	drive	multiple	LEDs,	we’ll	need	to	adapt	some	of	the
functions	in	the	LED.c	uVision	file	that	is	part	of	the	Hello_Blinky	project	that	we
encountered	in	Chapter	1,	A	Practical	Introduction	to	Arm®	Cortex®.

http://www.keil.com/support/docs/3061.htm




How	to	use	the	STM32CubeMX
Framework	(API)
uVision5	provides	two	routes	for	users	to	configure	their	RTE.	The	first	option,	called
Classic	(used	for	all	the	recipes	in	Chapters	2-8),	configures	the	STM’s	Hardware
Abstraction	Layer	(HAL)	using	the	RTE_Device.h	header	file.	This	option	allows	users
to	quickly	configure	the	RTE	for	most	CMSIS-enabled	devices.	The	second	option	uses
STM’s	graphical	configuration	tool,	STM32Cube	MX,	to	perform	low-level	configuration
of	the	HAL	directly.	Example	projects	using	both	approaches	are	shipped	with	recent
versions	of	Device	Family	Packs	(for	example,	DFP	2.6.0).	This	recipe	(named
ARM_STM32CubeMX_Blinky_c9v0)	shows	you	how	to	build	a	Blinky	project	using	STM’s
tool.



How	to	do	it…
1.	 Create	a	new	project	named	STM32CubeMX_Blinky.	Choose	the	STM32F407IGHx

device.
2.	 Configure	the	RTE	for	the	MCBSTM32F400	board.	Check	the	Board	Support	→

LED	(API)	and	Device	→	STM32Cube	Framework	(API)	→	STM32CubeMX
options.	Then,	select	Resolve	and	OK.

3.	 If	you	haven’t	installed	STM32CubeMX	yet,	you	will	be	prompted	to	do	so.	It	is
freely	available	from	www.st.com	(search	for	STM32Cube	initialization	code
generator).

4.	 If	you	have	installed	STM32CubeMX,	then	you	should	see	this	window	asking	you
to	launch	the	program:

5.	 Once	STM32CubeMX	is	launched,	you	should	see	the	initial	welcome	screen.
Choose	New	Project:

http://www.st.com


6.	 You	should	now	see	the	microcontroller	part	rendered	on	the	screen,	as	in	the
following	screenshot:

7.	 Select	pin	[G1]	(left	mouse	button)	and	use	the	drop-down	menu	to	configure	the	pin



as	RCC	OSC	IN,	as	in	the	following	screenshot:

8.	 Similarly,	configure	pin	[H1]	as	RCC	OSC	OUT.
9.	 Expand	Peripherals	→	RCC	and	use	the	drop-down	menu	to	configure	the	HSE	to

use	a	Crystal/Ceramic	Resonator:

10.	 Open	the	Clock	Configuration	tab	and	configure	the	clock	tree	to	use	a	25	MHz



input	(crystal),	set	the	clock	divider,	and	select	PLLCLK	to	give	a	SYSCLK
frequency	of	168	MHz.	Also,	set	the	AHB,	APB1,	and	APB2	Prescalers:

11.	 Select	Project	→	Generate	Code.
12.	 Select	File	→	Save	Project.	Note	that	the	Toolchain	/	IDE	is	EWARM:



13.	 Select	OK;	then,	quit	STM32CubeMX	by	navigating	to	File	→	Exit.
14.	 We	should	see	the	following	message	when	we	return	to	uVision.	Select	Yes	to

import	the	code	that	we’ve	just	generated:



15.	 Open	the	Project	tab	and	check	whether	we	have	successfully	imported	the	code:

16.	 Open	the	file,	main.c	(found	in	folder	STM32CubeMX:Common	Sources),	navigate	to
the	main()	function	definition,	and	add	this	statement	in	the	section	identified	by	the
/*	USER	CODE	BEGIN	2	*/	comment:

LED_Initialize	(	);

17.	 Add	this	code	fragment	in	the	section	identified	by	the	/*	Infinite	loop	*/



comment:

LED_On(0);

for	(i=0;	i<1000000;	i++)

		;

			LED_Off(0);

for	(i=0;	i<1000000;	i++)

		;

18.	 Remember	to	declare	the	loop	variables:	i	and	#include	"Board_LED.h".
19.	 Build,	download,	and	run	the	program.



How	it	works…
We’ve	used	STM32CubeMX	to	generate	a	very	basic	runtime	environment.	We’re	still
using	the	Board	Support	API	to	provide	functions	to	configure	GPIO	and	drive	LEDs.
STM32CubeMX	is	much	more	powerful,	and	we’ve	only	illustrated	a	very	basic
configuration.	More	details	and	further	tutorials	can	be	found	at	www.st.com.

http://www.st.com


There’s	more…
We	can	also	use	STM32CubeMX	to	configure	the	GPIO	pins	that	are	used	to	drive	the
LEDs.	We	illustrate	this	in	the	ARM_STM32CubeMX_Blinky_c9v1:

1.	 After	configuring	the	oscillator	(Step	7),	select	each	of	the	GPIO	pins	that	are
connected	to	the	LEDs	(GPIO	PG6,7,8,	PH2,3,6,7,	PI10)	and	configure	them	as
outputs,	as	in	the	following	screenshot:

2.	 Then,	select	the	GPIO	menu	in	the	configuration	tab	to	set	the	other	GPIO	pin
parameters	(GPIO	Mode,	Pull-up,	and	so	on.):



3.	 Use	STMCubeMX,	as	we	did	before,	to	generate	the	code.	When	we	open	the	main.c
file,	we	should	now	find	that	STM32CubeMX	has	added	code	to	configure	the	GPIO
pins	in	the	MX_GPIO_Init()	function,	as	follows:

void	MX_GPIO_Init(void)

{

		GPIO_InitTypeDef	GPIO_InitStruct;

		/*	GPIO	Ports	Clock	Enable	*/

		__GPIOI_CLK_ENABLE();

		__GPIOH_CLK_ENABLE();

		__GPIOG_CLK_ENABLE();

		/*Configure	GPIO	pin	:	LED_3_Pin	*/

		GPIO_InitStruct.Pin	=	LED_3_Pin;

		GPIO_InitStruct.Mode	=	GPIO_MODE_OUTPUT_PP;

		GPIO_InitStruct.Pull	=	GPIO_NOPULL;

		GPIO_InitStruct.Speed	=	GPIO_SPEED_LOW;

		HAL_GPIO_Init(LED_3_GPIO_Port,	&GPIO_InitStruct);



		/*Configure	GPIO	pins	:	LED_7_Pin	

																						LED_0_Pin	LED_1_Pin	LED_2_Pin	*/

		GPIO_InitStruct.Pin	=

														LED_7_Pin|LED_0_Pin|LED_1_Pin|LED_2_Pin;

		GPIO_InitStruct.Mode	=	GPIO_MODE_OUTPUT_PP;

		GPIO_InitStruct.Pull	=	GPIO_NOPULL;

		GPIO_InitStruct.Speed	=	GPIO_SPEED_LOW;

		HAL_GPIO_Init(GPIOH,	&GPIO_InitStruct);

		/*Configure	GPIO	pins	:	LED_6_Pin	LED_5_Pin	LED_4_Pin	*/

		GPIO_InitStruct.Pin	=	LED_6_Pin|LED_5_Pin|LED_4_Pin;

		GPIO_InitStruct.Mode	=	GPIO_MODE_OUTPUT_PP;

		GPIO_InitStruct.Pull	=	GPIO_NOPULL;

		GPIO_InitStruct.Speed	=	GPIO_SPEED_LOW;

		HAL_GPIO_Init(GPIOG,	&GPIO_InitStruct);

}

4.	 The	MX_GPIO_Init()	function	that	was	generated	by	STM32CubeMX	is	almost
identical	to	that	of	LED_Initialize().	As	such,	there	is	no	need	to	call
LED_Initialize	()	before	calling	LED_On()	and	LED_Off().





How	to	port	uVision	projects	to	GNU
ARM	Eclipse
STM32CubeMX	can	also	be	integrated	within	the	Eclipse	IDE	and	used	to	configure	the
RTE	in	a	similar	way	because	it	is	used	by	uVision.	However,	although	STM	provides	a
plug-in	to	invoke	STM32CubeMX	(refer	to	STSW-STM32095	at	www.st.com),	the	current
situation	is	that	the	code	generated	is	not	automatically	copied	across	to	the	Eclipse
project.	Luckily,	there	is	a	Python	v2.7	script	called	CubeMXImporter	that	allows	this	to
be	done	easily	(note	that	the	procedure	is	documented	at
http://www.carminenoviello.com/).	As	Carmine	documents	this	process	so	thoroughly,	this
recipe	will	just	explain	how	to	port	one	of	the	recipes	that	we	developed	earlier	in	the
book.	We’ve	chosen	HelloLCD_c2v0	from	the	Writing	to	the	GLCD	recipe	in	Chapter	2,	C
Language	Programming,	to	illustrate	this	procedure;	we	call	this	recipe:
Eclipse_STM32CubeMX_HelloLCD_c9v0.

http://www.st.com
http://www.carminenoviello.com/


How	to	do	it…
1.	 Follow	the	instructions	at	http://www.carminenoviello.com/	and	create	a	new	Eclipse

project	using	the	GNU	ARM	Plugin	(that	is,	navigate	to	File	→	New	→	C	Project).
We’ll	assume	that	this	project	is	called	test5.	Use	the	Hello	World	ARM	Cortex-M
C/C++	project	template.	Note	that	STM32F407IG	has	1024	Kb	Flash	and	192	Kb
RAM.

2.	 Install	and	invoke	the	STM32CubeMX	Eclipse	plug-in	(refer	to	UM1718	sections
3.2.2	and	3.4.3	at	www.st.com).	Note	that,	alternatively,	we	can	run	STM32CubeMX	as	a
standalone	application.

3.	 Use	STM32CubeMX	to	configure	and	generate	code	for	the	STM32F407IGHX	exactly	as
we	did	in	the	ARM_STM32CubeMX_Blinky_c9v0	folder	in	the	How	to	use	the
STM32CubeMX	Framework.	Note	that	it’s	really	important	to	choose	SW4STM32	as
Toolchain/IDE	(rather	than	EWARM)	before	generating	the	code.	Note	that	I	named
my	STM32CubeMX	project	mymcu.

4.	 Open	a	command	window	and	run	the	following:

$python	cubemximporter.py	<path-to-eclipse-workspace>/test5	<path-to-

cubemx-out>/mymcu

5.	 We	now	need	to	import	the	Board	Support	to	handle	the	LCD.	We	can	locate	the
necessary	source	and	include	files	by	right-clicking	them	in	the	HelloLCD_c2v0
folder	in	the	Writing	to	the	GLCD	recipe	in	Chapter	2,	C	Language	Programming:

http://www.carminenoviello.com/
http://www.st.com


6.	 Open	main.c	and	update	main()	as	follows:

int	main(void)

{

		/*	Reset	of	all	peripherals,	Initializes	the	Flash

					interface	and	the	Systick.	*/

		HAL_Init();

		/*	Configure	the	system	clock	*/

		SystemClock_Config();

		/*	Initialize	all	configured	peripherals	*/

		MX_GPIO_Init();

		/*	USER	CODE	BEGIN	2	*/

		GLCD_Initialize();

		GLCD_SetBackgroundColor	(GLCD_COLOR_WHITE);

		GLCD_ClearScreen	();														/*	clear	the	GLCD	*/

		GLCD_SetBackgroundColor(GLCD_COLOR_BLUE);	

		GLCD_SetForegroundColor(GLCD_COLOR_WHITE);



		GLCD_SetFont	(&GLCD_Font_16x24);

		GLCD_DrawString(0,	0*24,	"	CORTEX-M4	COOKBOOK	");

		GLCD_DrawString(0,	1*24,	"		PACKT	Publishing		");

		GLCD_SetBackgroundColor(GLCD_COLOR_WHITE);

		GLCD_SetForegroundColor(GLCD_COLOR_BLUE);

		GLCD_DrawString(0,3*24,"				Hello	LCD				");

		GLCD_DrawString(0,4*24,"	ARM	GNU	Eclipse!");

		/*	USER	CODE	END	2	*/

7.	 Create	a	Flash	Download	Configuration	and	flash	the	program.	(Note	that	Target
Options	invokes	uVision5.):



Index
A

ADC1	/	How	it	works…
Alternate	Function	(AF)	/	How	it	works…
Analog-to-Digital	converter	(ADC)

about	/	Introduction
setting	up	/	Setting	up	the	ADC,	How	to	do	it…,	How	it	works…,	There’s
more…

aperture	time	/	Introduction
Approximation	Register	(SAR)

about	/	Introduction
arithmetic	operations

performing	/	Performing	arithmetic	operations,	How	to	do	it…,	How	it	works…
ARM	Architecture

URL	/	Passing	parameters	between	C	and	the	assembly	language
ARM	Architecture	Procedure	Call	Standard

URL	/	How	it	works…
ARM	Architecture	Procedure	Call	Standard	(AAPCS)	/	Getting	ready
ARM	Assembler	Directives

URL	/	See	also
ARM	Unified	Assembler	Language

URL	/	Getting	ready
ARMv7-M

URL	/	There’s	more…
Arturo	Campos

URL	/	There’s	more…
ASCII	code

URL	/	How	it	works…
assembly	language

and	C,	parameters	passing	between	/	Passing	parameters	between	C	and	the
assembly	language
interrupts,	handling	/	Handling	interrupts	in	assembly	language,	Getting	ready,
How	to	do	it…,	How	it	works…,	There’s	more…
debugging	/	Debugging	assembly	language,	How	it	works…,	There’s	more…

audio	codec
driver,	writing	for	/	Writing	a	driver	for	the	audio	codec,	How	to	do	it…,	How	it
works…
using	/	How	to	use	the	audio	codec,	How	to	do	it…,	How	it	works…
configuring	/	Configuring	the	audio	codec,	How	to	do	it…,	How	it	works…,
There’s	more…

audio	tone	control
creating	/	How	to	make	an	audio	tone	control,	How	to	do	it…,	There’s	more…



automatic	variables	/	How	it	works…,	How	it	works…



B
Baud	Rate	Register	(BRR)	/	How	it	works…
bitmapped	Graphics

designing	/	Designing	bitmapped	graphics,	How	to	do	it…,	How	it	works…,
There’s	more…

bits	/	How	it	works…
branch-with-link	(BL)	/	How	it	works…
branch	indirect	(BX)	/	How	it	works…



C
C

and	assembly	language,	parameters	passing	between	/	Passing	parameters
between	C	and	the	assembly	language,	How	to	do	it…,	How	it	works…,	See
also

camera
using	/	How	to	use	the	camera,	How	to	do	it…,	How	it	works…,	There’s
more…

Cirrus
URL	/	Configuring	the	audio	codec

Cirrus	Logic
URL	/	Writing	a	driver	for	the	audio	codec,	How	it	works…

Classic	/	How	to	use	the	STM32CubeMX	Framework	(API)
CMSIS-RTOS

about	/	Introduction
used,	for	debugging	programs	/	Debugging	programs	that	use	CMSIS-RTOS,
How	to	do	it…,	How	it	works…

CMSIS-RTOS	API	/	Introduction
code

debugging,	print	statements	used	/	Debugging	your	code	using	print	statements,
How	to	do	it…,	How	it	works…

Complex	Instruction	Set	Computing	(CISC)	architectures	/	There’s	more…
console	window

writing	to	/	Writing	to	the	console	window,	Getting	ready,	How	to	do	it…,	How
it	works…

context	switch	/	Introduction
CooCox

URL	/	Introduction
Cortex-M3	and	M4	processors

URL	/	See	also
Cortex-M4	assembly	language

writing	/	Writing	Cortex-M4	assembly	language,	Getting	ready,	How	to	do	it…,
How	it	works…,	There’s	more…
user	guide,	URL	/	Getting	ready

Cortex	Microcontroller	Software	Interface	Standard	(CMSIS)	/	There’s	more…
C	program

writing,	to	blink	each	LED	in	turn	/	Writing	a	C	program	to	blink	each	LED	in
turn,	Getting	ready…,	How	it	works…,	There’s	more…

C	Programming	Language	(C11)
URL	/	Introduction
online	resources,	URL	/	Introduction



D
Data	Communications	Equipment	(DCE)	/	How	it	works…
Data	Holding	Register	(DHR)

configuring	/	How	it	works…
Data	Output	Register	(DOR)	/	How	it	works…
Data	Register	(DR)	/	How	it	works…
Data	Terminal	Equipment	(DTE)	/	How	it	works…
data	types

URL	/	How	it	works…
debugger

using	/	Using	the	debugger,	How	to	do	it…,	See	also
decrementer	/	Why	ensuring	mutual	exclusion	is	important	when	accessing	shared
resources
Digital-to-Analog	converter	(DAC)

about	/	Introduction
setting	up	/	Setting	up	the	DAC,	How	to	do	it…,	How	it	works…

digital	clock
creating,	Timers	used	/	Using	timers	to	create	a	digital	clock,	How	to	do	it…,
How	it	works…

Digital	Signal	Processing	(DSP)	/	There’s	more…,	Introduction
directives

URL	/	How	it	works…
Direct	Memory	Access	(DMA)	/	How	it	works…,	How	to	use	the	camera
Discovery	Board	emulator	/	How	to	do	it…
driver

writing,	for	audio	codec	/	Writing	a	driver	for	the	audio	codec,	How	to	do	it…,
How	it	works…



E
Eclipse	IDE

URL	/	Installing	GNU	ARM	Eclipse
emIDE

URL	/	Introduction
end	of	conversion	interrupt	(EOCIE)	/	How	it	works…
evaluation	boards	schematic

URL	/	How	it	works…
event	flags

used,	for	multithreaded	programs	/	Multithreaded	programs	using	event	flags,
How	to	do	it…,	How	it	works…

exception	/	Handling	interrupts	in	assembly	language
Executable	and	Linking	Format	(ELF)	/	How	it	works…



F
finite-state	machine	(FSM)	/	There’s	more…
Finite	Impulse	Response	(FIR)	digital	filter	/	Getting	ready
Floating	Point	Unit	(FPU)	/	There’s	more…,	There’s	more…
format	control	string	/	How	it	works…
function

writing	/	Writing	a	function,	How	it	works…,	There’s	more…



G
game	application

stage	1,	creating	/	Creating	a	game	application	–	Stage	1,	How	to	do	it…,	How	it
works…
stage	2,	creating	/	Creating	a	game	application	–	Stage	2,	There’s	more…,	How
it	works…

GCC	ARM	Embedded	Toolchain
URL	/	Installing	GNU	ARM	Eclipse

General	purpose	input/output	(GPIO)
about	/	Understanding	the	simple	use	of	GPIO,	How	to	do	it…,	How	it	works…
configuring	/	How	to	do	it…,	How	it	works…,	There’s	more…

general	purpose	timers
configuring	/	Configuring	general-purpose	timers,	How	to	do	it…,	How	it
works…

GIMP
URL	/	How	to	do	it…

GLCD
accessing,	mutex	used	/	How	to	do	it…,	How	it	works…

GNU	ARM	Eclipse
URL	/	Introduction
installing	/	Installing	GNU	ARM	Eclipse,	How	to	do	it…,	How	it	works…
components,	URL	/	Installing	GNU	ARM	Eclipse
port	uVision	projects,	porting	/	How	to	port	uVision	projects	to	GNU	ARM
Eclipse,	How	to	do	it…

GNU	ARM	Eclipse	plug-ins
URL	/	Installing	GNU	ARM	Eclipse

GNU	ARM	Eclipse	QEMU	Emulator	plug-in
URL	/	Installing	GNU	ARM	Eclipse

GNU	ARM	OpenOCD	Debugging	plug-in
URL	/	Installing	GNU	ARM	Eclipse

GNU	General	Public	License
URL	/	How	it	works…

GPIO	ports
configuring	/	Configuring	GPIO	ports,	How	to	do	it…,	How	it	works…

Graphic	LCD	(GLCD)
about	/	Writing	to	the	GLCD,	How	it	works…



H
hardware	abstraction	layer	(HAL)

about	/	Configuring	the	hardware	abstraction	layer,	How	to	do	it…,	How	it
works…

Hardware	Abstraction	Layer	(HAL)	/	How	to	use	the	STM32CubeMX	Framework
(API)
hierarchical	decomposition	/	There’s	more…
high	speed	external	(HSE)	clock	/	Estimating	microcontroller	performance
high	speed	internal	(HSI)	clock	/	Estimating	microcontroller	performance



I
I2C	Peripheral	Bus

RTE,	setting	/	Setting	the	RTE	for	the	I2C	Peripheral	Bus,	How	to	do	it…,	How
it	works…

incrementer	/	Why	ensuring	mutual	exclusion	is	important	when	accessing	shared
resources
Infinite	Impulse	Response	(IIR)	filter	/	Getting	ready
input	data	register	(IDR)	/	Handling	interrupts
Integrated	Development	Environment	(IDE)	/	Introduction
Integrated	Interchip	Sound	(IIS)

about	/	Introduction
Inter-IC-Sound	(I2S)	/	Introduction
Inter-Integrated	Circuit	(I2C)	Interface	/	Setting	the	RTE	for	the	I2C	Peripheral	Bus
Internal	trigger	inputs	(ITRx)	/	How	it	works…
interrupts

handling	/	Handling	interrupts,	Getting	ready,	How	to	do	it…,	How	it	works…,
There’s	more…
in	assembly	language,	handling	/	Handling	interrupts	in	assembly	language,
Getting	ready,	How	to	do	it…,	There’s	more…,	Implementing	a	jump	table,
Getting	ready,	How	to	do	it…,	How	it	works…

interrupt	service	routine	(ISR)	/	Handling	interrupts
Interrupt	Service	Routine	(ISR)	/	How	to	do	it…



J
jump	table

implementing	/	Implementing	a	jump	table,	Getting	ready,	How	to	do	it…,	How
it	works…



K
Keil

URL	/	There’s	more…



L
LCD	touchscreen

using	/	How	to	use	the	LCD	touchscreen,	How	to	do	it…,	How	it	works…
Linaro

URL	/	Installing	GNU	ARM	Eclipse
linear-feedback	shift	register	(LFSR)	/	There’s	more…
Link	Register	(LR)	/	Introduction
Lock	Register	(LCKR)	/	How	it	works…
Look-up-table	(LUT)	/	How	it	works…
look-up-table	(LUT)	/	Generating	a	sine	wave
low-pass	digital	filter

designing	/	Designing	a	low-pass	digital	filter,	Getting	ready,	How	to	do	it…,
How	it	works…



M
machine	storage	classes

illustrating	/	Illustrating	machine	storage	classes,	How	it	works…
mailboxes

used,	for	multithreaded	programs	/	Multithreaded	programs	using	mailboxes,
How	to	do	it…,	How	it	works…

Master	Clock	(MCLK)	/	Configuring	the	audio	codec
MCBSTM32F400	Evaluation	Board

programming	/	Programming	the	MCBSTM32F400	evaluation	board,	How	to
do	it…,	How	it	works…

MDK-ARM	Eclipse	plug-in
URL	/	Installing	GNU	ARM	Eclipse

MDK	Version	5	-	Legacy	Support
URL	/	How	to	do	it…

microcontroller	performance
estimating	/	Estimating	microcontroller	performance,	There’s	more…

Multiply-Accumulate	(MAC)	operations	/	There’s	more…
Multiply	Accumulator	(MAC)	/	There’s	more…
multithreaded	Pong	game

writing	/	How	to	write	a	multithreaded	Pong	game,	How	to	do	it…,	How	it
works…

multithreaded	programs
event	logs	used	/	Multithreaded	programs	using	event	flags,	How	to	do	it…,
How	it	works…
mailboxes	used	/	Multithreaded	programs	using	mailboxes,	How	to	do	it…,
How	it	works…

mutex
used,	for	accessing	GLCD	/	How	to	do	it…,	How	it	works…

mutual	exclusion
about	/	Why	ensuring	mutual	exclusion	is	important	when	accessing	shared
resources,	How	to	do	it…



N
nested	functions	/	How	to	do	it
Nested	Vectored	Interrupt	Controller.(NVIC)	/	How	it	works…



O
OmniVision

URL	/	How	it	works…



P
PackBits	/	There’s	more…
parameters

passing,	between	C	and	assembly	language	/	Passing	parameters	between	C	and
the	assembly	language,	Getting	ready,	How	to	do	it…,	How	it	works…,	See	also

pass-by-reference	/	How	it	works…
pass-by-value	/	How	it	works…
Phase	Locked	Loop	(PLL)	/	Estimating	microcontroller	performance
Phase	Locked	Loop	(PLL)	clock	/	How	it	works…
Pong

about	/	Creating	a	game	application	–	Stage	1
URL	/	Creating	a	game	application	–	Stage	1

Portable	Operating	System	Interface	(POSIX)	/	Introduction
prerecorded	audio

playing	/	How	to	play	prerecorded	audio,	Getting	ready,	How	to	do	it…,	How	it
works…

primitive	/	How	it	works…
print	statements

used,	for	debugging	code	/	Debugging	your	code	using	print	statements
Program	Counter	(PC)	/	Introduction
programs

debugging,	CMSIS-RTOS	used	/	Debugging	programs	that	use	CMSIS-RTOS,
How	to	do	it…,	How	it	works…

Program	Status	Register	(PSR)	/	How	it	works…
pulse	width	modulation	(PWM)	schemes	/	How	it	works…
PuTTY®

URL	/	Writing	to	the	console	window



R
Real-Time	Library	(RL-ARM™)	/	Introduction
real-time	operating	systems	(RTOS)	/	Introduction
Real	Time	Clock	Control	(RCC)	/	How	it	works…
Reduced	Instruction	Set	Computing	(RISC)	architectures	/	There’s	more…
reset	and	clock	control	(RCC)	/	Estimating	microcontroller	performance
Reset	and	Clock	Control	(RCC)	unit	/	How	it	works…
resistor-capacitor	(RC)	/	Estimating	microcontroller	performance
RS232

URL	/	How	it	works…
RTE

setting,	for	I2C	Peripheral	Bus	/	Setting	the	RTE	for	the	I2C	Peripheral	Bus,
How	to	do	it…,	How	it	works…

RTOS	/	Introduction
Run-length	encoding	(RLE)	/	There’s	more…
Run	Time	Environment	(RTE)	/	Configuring	the	hardware	abstraction	layer



S
Sample/Hold	block	/	Introduction
sample	time	registers	/	Introduction
Semaphore	/	There’s	more…
Serial	Peripheral	Interface	(SPI)

URL	/	How	it	works…
/	Configuring	the	audio	codec
simple	program

writing	/	There’s	more…
sine	wave

generating	/	Generating	a	sine	wave,	How	to	do	it…,	How	it	works…
Single	Instruction	Multiple	Data	(SIMD)	/	There’s	more…
sound	and	graphics

used,	for	gaming	ideas	/	Ideas	for	games	using	sound	and	graphics
sound	for	games

URL	/	Ideas	for	games	using	sound	and	graphics
Stack	Pointer	(SP)	/	Introduction
Status	Register	(SR)	/	How	it	works…
STM

URL	/	How	it	works…
STM32	microcontroller	/	There’s	more…
STM32CubeMX	Framework	(API)

using	/	How	to	use	the	STM32CubeMX	Framework	(API),	How	to	do	it…,
There’s	more…

string	/	How	it	works…
struct	(structure)	/	How	it	works…
superloop	/	How	it	works…
symbol	table	/	Introduction
system	clock	(SYSCLK)	/	How	it	works…



T
Task	Control	Block	/	How	it	works…
TIM1	/	How	it	works…
TIM2

configuring	/	How	it	works…
TIM8	/	How	it	works…
Timers

used,	for	creating	digital	clock	/	Using	timers	to	create	a	digital	clock,	How	to
do	it…,	How	it	works…

timers
used,	for	triggering	conversations	/	Using	timers	to	trigger	conversions,	How	to
do	it…,	How	it	works…,	There’s	more…



U
UART	ports

configuring	/	Configuring	UART	ports,	How	to	do	it…,	How	it	works…
Unified	Assembler	Language	(UAL)	/	Introduction
Universal	Synchronous/Asynchronous	Receiver/Transmitter	(USART)	/	How	it
works…
Universal	Synchronous/Asynchronous	Receiver	Transmitter	(USART)	/	How	it
works…
uVision5	/	Introduction
uVision	projects

porting,	to	GNU	ARM	Eclipse	/	How	to	port	uVision	projects	to	GNU	ARM
Eclipse,	How	to	do	it…

Universal	Asynchronous	Receiver	Transmitter	(UART)	/	How	it	works…



W
WAV	/	How	to	play	prerecorded	audio
Waveform	Audio	File	Format	(WAVE)	/	How	to	play	prerecorded	audio
WAVtoCode	/	Getting	ready
Windows	Build	Tools	/	Installing	GNU	ARM	Eclipse

URL	/	How	to	do	it…



Y
YAGARTO

URL	/	Introduction


	ARM® Cortex® M4 Cookbook
	Credits
	About the Author
	About the Reviewer
	www.PacktPub.com
	eBooks, discount offers, and more
	Why Subscribe?
	Preface
	What this book covers
	What you need for this book
	Who this book is for
	Sections
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also
	Conventions
	Reader feedback
	Customer support
	Downloading the example code
	Downloading the color images of this book
	Errata
	Piracy
	Questions
	1. A Practical Introduction to ARM® CORTEX®
	Introduction
	Installing uVision5
	How to do it…
	How it works…
	Linking an evaluation board
	How to do it…
	How it works…
	There's more…
	Running an example program
	How to do it…
	How it works…
	Writing a simple program
	How to do it…
	How it works…
	There's more…
	Understanding the simple use of GPIO
	How to do it…
	How it works…
	There's more…
	Estimating microcontroller performance
	How to do it…
	There's more…
	See also
	2. C Language Programming
	Introduction
	Configuring the hardware abstraction layer
	How to do it…
	How it works…
	Writing a C program to blink each LED in turn
	Getting ready…
	How to do it…
	How it works…
	There's more…
	Writing a function
	How to do it
	How it works…
	There's more…
	Writing to the console window
	Getting ready
	How to do it…
	How it works…
	Writing to the GLCD
	Getting ready
	How to do it…
	How it works…
	Creating a game application – Stage 1
	How to do it…
	How it works…
	Creating a game application – Stage 2
	There's more…
	How it works…
	Debugging your code using print statements
	How to do it…
	How it works…
	Using the debugger
	How to do it…
	See also
	3. Programming I/O
	Introduction
	Performing arithmetic operations
	How to do it…
	How it works…
	Illustrating machine storage classes
	How to do it…
	How it works…
	Configuring GPIO ports
	How to do it…
	How it works…
	There's more…
	Configuring UART ports
	How to do it…
	How it works…
	Handling interrupts
	Getting ready
	How to do it…
	How it works…
	There's more…
	Using timers to create a digital clock
	How to do it…
	How it works…
	4. Assembly Language Programming
	Introduction
	Writing Cortex-M4 assembly language
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also
	Passing parameters between C and the assembly language
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also
	Handling interrupts in assembly language
	Getting ready
	How to do it…
	How it works…
	There's more…
	Implementing a jump table
	Getting ready
	How to do it…
	How it works…
	Debugging assembly language
	How to do it…
	How it works…
	There's more…
	5. Data Conversion
	Introduction
	Setting up the ADC
	How to do it…
	How it works…
	There's more…
	Configuring general-purpose timers
	How to do it…
	How it works…
	Using timers to trigger conversions
	How to do it…
	How it works…
	There's more…
	Setting up the DAC
	How to do it…
	How it works…
	There's more…
	Generating a sine wave
	Getting ready
	How to do it…
	How it works…
	6. Multimedia Support
	Introduction
	Setting the RTE for the I2C Peripheral Bus
	How to do it…
	How it works…
	How to use the LCD touchscreen
	How to do it…
	How it works…
	Writing a driver for the audio codec
	How to do it…
	How it works…
	How to use the audio codec
	How to do it…
	How it works…
	How to use the camera
	How to do it…
	How it works…
	There's more…
	Designing bitmapped graphics
	How to do it…
	How it works…
	There's more…
	Ideas for games using sound and graphics
	7. Real-Time Signal Processing
	Introduction
	Configuring the audio codec
	How to do it…
	How it works…
	There's more…
	How to play prerecorded audio
	Getting ready
	How to do it…
	How it works…
	Designing a low-pass digital filter
	Getting ready
	How to do it…
	How it works…
	How to make an audio tone control
	Getting ready
	How to do it…
	How it works…
	There's more...
	8. Real-Time Embedded Systems
	Introduction
	Multithreaded programs using event flags
	How to do it…
	How it works…
	Multithreaded programs using mailboxes
	How to do it…
	How it works…
	Why ensuring mutual exclusion is important when accessing shared resources
	How to do it…
	How it works…
	There's more…
	Why we must use a mutex to access the GLCD
	How to do it…
	How it works…
	How to write a multithreaded Pong game
	How to do it…
	How it works…
	Debugging programs that use CMSIS-RTOS
	How to do it…
	How it works…
	9. Embedded Toolchain
	Introduction
	Installing GNU ARM Eclipse
	How to do it…
	How it works…
	Programming the MCBSTM32F400 evaluation board
	How to do it…
	How it works…
	How to use the STM32CubeMX Framework (API)
	How to do it…
	How it works…
	There's more…
	How to port uVision projects to GNU ARM Eclipse
	How to do it…
	Index

