i ¢

Quick answers to common problems

ARMP® Cortex® M4
Cookbook

Over 50 hands-on recipes that will help you develop amazing
real-time applications using GPIO, R5232, ADC, DAC, timers,
audio codecs, graphics LCD, and a touch screen

Dr. Mark Fisher

ARMP® Cortex® M4 Cookbook

Table of Contents

ARM® Cortex® M4 Cookbook
Credits
About the Author

About the Reviewer

www.PacktPub.com

eBooks, discount offers, and more

Why Subscribe?

Preface

What this book covers

What vou need for this book
Who this book is for

Sections

Getting ready

How to do it...

How it works...

There’s more...

See also
Conventions

Reader feedback

Customer support

Downloading the example code

Downloading the color images of this book

Errata

Piracy
Questions
1. A Practical Introduction to ARM® CORTEX®

Introduction

Installing uVision5

How to do it...

How it works...

Linking an evaluation board

How to doit...

How it works...

There’s more...

RUI]IliIlg an example program

How to do it...

How it works...

Writing a simple program

How to do it...

How it works...

There’s more...

Understanding the simple use of GPIO

How to do it...

How it works...

There’s more...

Estimating microcontroller performance

How to do it...

There’s more...

See also
2. C Language Programming
Introduction

Configuring the hardware abstraction layer

How to do it...

How it works...

Writing a C program to blink each LED in turn

Getting ready...

How to do it...

How it works...

There’s more...

Writing a function

How to do it

How it works...

There’s more...

Writing to the console window

Getting ready

How to doit...

How it works...

Writing to the GLCD
Getting ready

How to do it...

How it works...

Creating a game application — Stage 1

How to do it...

How it works...

Creating a game application — Stage 2

There’s more...

How it works...

Debugging your code using print statements

How to do it...

How it works...

Using the debugger

How to do it...

See also

3. Programming [/O

Introduction

Performing arithmetic operations

How to do it...

How it works...

[lustrating machine storage classes

How to do it...

How it works...

Configuring GPIO ports

How to doit...

How it works...

There’s more...

Configuring UART ports

How to do it...

How it works...

Handling interrupts
Getting ready

How to do it...

How it works...

There’s more...

Using timers to create a digital clock

How to do it...

How it works...

4. Assembly [.anguage Programming
Introduction
Writing Cortex-M4 assembly language
Getting ready

How to do it...

How it works...

There’s more...

See also
Passing parameters between C and the assembly language

Getting ready

How to do it...

How it works...

There’s more...

See also

Handling interrupts in assembly language
Getting ready

How to do it...

How it works...

There’s more...

Implementing a jump table
Getting ready

How to do it...

How it works...

Debugging assembly language

How to do it...

How it works...

There’s more...

. Data Conversion

Introduction

Setting up the ADC

How to do it...

How it works...

There’s more...

Configuring general-purpose timers

How to do it...

How it works...

Using timers to trigger conversions

How to do it...

How it works...

There’s more...

Setting up the DAC

How to do it...

How it works...

There’s more...

Generating a sine wave

Getting ready

How to do it...

How it works...

6. Multimedia Support

Introduction

Setting the RTE for the I2C Peripheral Bus

How to do it...

How it works...

How to use the LCD touchscreen

How to do it...

How it works...

Writing a driver for the audio codec

How to do it...

How it works...

How to use the audio codec

How to do it...

How it works...

How to use the camera

How to do it...
How it works...
There’s more...

Designing bitmapped graphics
How to do it...

How it works...

There’s more...

Ideas for games using sound and graphics

7. Real-Time Signal Processing

Introduction

Configuring the audio codec

How to do it...

How it works...

There’s more...

How to play prerecorded audio

Getting ready

How to do it...

How it works...

Designing a low-pass digital filter
Getting ready

How to do it...

How it works...

How to make an audio tone control

Getting ready

How to do it...

How it works...

There’s more...

8. Real-Time Embedded Systems

Introduction

Multithreaded programs using event flags

How to do it...

How it works...

Multithreaded programs using mailboxes

How to do it...

How it works...

Why ensuring mutual exclusion is important when accessing shared resources

How to do it...

How it works...

There’s more...

Why we must use a mutex to access the GLCD

How to do it...

How it works...

How to write a multithreaded Pong game

How to do it...

How it works...

Debugging programs that use CMSIS-RTOS

How to doit...

How it works...

9. Embedded Toolchain

Introduction

Installing GNU ARM Eclipse

How to do it...

How it works...

Programming the MCBSTM32F400 evaluation board

How to do it...

How it works...

How to use the STM32CubeMX Framework (API)

How to do it...

How it works...

There’s more...

How to port uVision projects to GNU ARM Eclipse

How to do it...

Index

ARMP® Cortex® M4 Cookbook

ARMP® Cortex® M4 Cookbook

Copyright © 2016 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: March 2016
Production reference: 1020316
Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-78217-650-3

www.packtpub.com

http://www.packtpub.com

Credits

Author

Dr. Mark Fisher
Reviewer

Alex Barrett
Commissioning Editor
Kunal Parikh
Acquisition Editor
Sonali Vernekar
Content Development Editor
Mayur Pawanikar
Technical Editor
Kunal Chaudhari

Copy Editors

Priyanka Ravi

Sonia Mathur

Project Coordinator
Nidhi Joshi
Proofreader

Safis Editing

Indexer

Monica Ajmera Mehta
Graphics

Disha Haria
Production Coordinator
Nilesh Mohite

Cover Work

Nilesh Mohite

About the Author

Dr. Mark Fisher is a chartered engineer, MIET. He started his career as an electronics
apprentice with the UK Ministry of Defence. This was before he studied Electrical and
Electronic Engineering at Aston University, Birmingham. After his graduation, he joined
Ferranti Computer Systems, Manchester. However, he returned to academia to study
Microprocessor Engineering and Digital Electronics at Manchester University (UMIST),
and he then remained as a research assistant within the Department of Computation to
gain a PhD in Applied Machine Learning. Currently, he is a senior lecturer at the School
of Computing Sciences, University of East Anglia, and the course director of the
Computer Systems Engineering Degree programme. Many of the recipes in this book were
originally developed in the context of a taught module that Mark leads, which is popular
among undergraduate and master’s students in the school.

Mark currently researches in the fields of medical imaging and computer vision, and he is
a co-author of over a hundred journal and conference papers in this area.

About the Reviewer

Alex Barrett has been heavily involved in all aspects of design, development, and
manufacture of electronic systems and devices as a director of design consultants Rocolec
Ltd. for over twenty years. Prior to this, he worked in the oil industry in the designing and
manufacturing of remotely-operated submersible vehicles (ROVs), and manufacturing and
testing television reception equipment. He enjoys traveling, and he has an interest in
languages, currently focusing on learning Russian. He is also a volunteer on the Anglian
Coastal committee of The Institution of Engineering and Technology.

www.PacktPub.com

eBooks, discount offers, and more

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as
a print book customer, you are entitled to a discount on the eBook copy. Get in touch with
us at <customercare@packtpub.com> for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

IE\ PACKT!L E°

https://www?2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt’s online digital
book library. Here, you can search, access, and read Packt’s entire library of books.

http://www.PacktPub.com
mailto:customercare@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib

Why Subscribe?

e Fully searchable across every book published by Packt
e Copy and paste, print, and bookmark content
e On demand and accessible via a web browser

Preface

This book begins with an introduction to the ARM Cortex family and covers its basic
concepts. We cover the installation of the ARM uVision Integrated Development
Environment and topics, such as target devices, evaluation boards, code configuration, and
GPIO. You will learn about the core programming topics that deal with structures,
functions, pointers, and debugging in this book. You will also learn about various
advanced aspects, such as data conversion, multimedia support, real-time signal
processing, and real-time embedded systems. You will also get accustomed with creating
game applications, programming I/O, and configuring GPIO and UART ports. By the end
of this book, you will be able to successfully create robust and scalable ARM Cortex-
based applications.

What this book covers

Chapter 1, A Practical Introduction to ARM® Cortex®, shows you how to compile,
download, and run simple programs on an evaluation board.

Chapter 2, C Language Programming, introduces you to writing programs in C, a high-
level language that was developed in the 1970s and is popular among embedded-system
developers.

Chapter 3, Programming I/O, investigates some of the functions that configure I/O
devices, and you will gain an understanding of what is involved in writing I/O interfaces
for other targets.

Chapter 4, Assembly Language Programming, explains how to write functions in
assembly language. Assembly language is a low-level programming language that is
specific to particular computer architecture. Therefore, unlike programs written high-level
languages, programs written in assembly language cannot be easily ported to other
hardware architectures.

Chapter 5, Data Conversion, introduces approaches to data conversion, namely analog to
digital conversion and vice versa. This chapter also covers the principal features used by
microcontrollers for data conversion.

Chapter 6, Multimedia Support, discusses support for various multimedia peripherals,
which are discrete components connected to the microcontroller by a bus. Support for an
L.CD touchscreen, audio codec, and camera peripherals is a very attractive feature of the
STM32F4xxx microcontroller, and selecting an evaluation board that includes these
peripherals, although more expensive, will be covered in this chapter.

Chapter 7, Real-Time Signal Processing, introduces you to Digital Signal Processing
(DSP) and reviews the ARM Cortex M4 instruction set support for DSP applications. This
chapter will walk through a DMA application using the codec, followed by designing a
low-pass filter.

Chapter 8, Real-Time Embedded Systems, shows you how to write a multithreaded
program using flags for communication and ensuring mutual exclusion when accessing
shared resources.

Chapter 9, Embedded Toolchain, teaches you how to install the GNU ARM Eclipse
toolchain for the Windows Operating System and to build and run a simple Blinky
program on the MCBSTM32F400 evaluation board. This chapter will also show you how
to use the STM32CubeMX Framework (API) and how to port projects to GNU ARM
Eclipse.

What you need for this book

You require the Keil Development Board MCBSTM32F400 (v1.1) and ARM ULINK-ME
for this book.

Who this book is for

This book is aimed at those with an interest in designing and programming embedded
systems. These could include electrical engineers or computer programmers who want to
get started with microcontroller applications using the ARM Cortex M4 architecture in a
short time frame. This book’s recipes can also be used to support students learning
embedded programming for the first time. Basic knowledge of programming using a high-
level language is essential but those familiar with other high-level languages such as
Python or Java should not have too much difficulty picking up the basics of embedded C
programming.

Sections

In this book, you will find several headings that appear frequently (Getting ready, How to
do it..., How it works..., There’s more..., and See also).

To give clear instructions on how to complete a recipe, we use these sections as follows:

Getting ready

This section tells you what to expect in the recipe, and describes how to set up any
software or any preliminary settings required for the recipe.

How to do it...

This section contains the steps required to follow the recipe.

How it works...

This section usually consists of a detailed explanation of what happened in the previous
section.

There’s more...

This section consists of additional information about the recipe in order to make the reader
more knowledgeable about the recipe.

See also

This section provides helpful links to other useful information for the recipe.

Conventions

In this book, you will find a number of text styles that distinguish between different kinds
of information. Here are some examples of these styles and an explanation of their
meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLSs, user input, and Twitter handles are shown as follows: “Copy
the function named SystemClock_Config() from the example.”

A block of code is set as follows:

#ifdef _ RTX
extern uint32_t os_time;

uint32_t HAL_GetTick(void) {
return os_time;

}
#endif

New terms and important words are shown in bold. Words that you see on the screen,
for example, in menus or dialog boxes, appear in the text like this: “Run the program by
pressing RESET on the evaluation board.”

Note

Warnings or important notes appear in a box like this.
Tip
Tips and tricks appear like this.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or disliked. Reader feedback is important for us as it helps us
develop titles that you will really get the most out of.

To send us general feedback, simply e-mail <feedback@packtpub.com>, and mention the
book’s title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors.

mailto:feedback@packtpub.com
http://www.packtpub.com/authors

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to help
you to get the most from your purchase.

Downloading the example code

You can download the example code files from your account at http://www.packtpub.com
for all the Packt Publishing books you have purchased. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to have the files e-
mailed directly to you.

http://www.packtpub.com
http://www.packtpub.com/support

Downloading the color images of this book

We also provide you with a PDF file that has color images of the screenshots/diagrams
used in this book. The color images will help you better understand the changes in the
output. You can download this file from
https://www.packtpub.com/sites/default/files/downloads/ARMCortexM4Cookbook_Colorl

https://www.packtpub.com/sites/default/files/downloads/ARMCortexM4Cookbook_ColorImages.pdf

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you could report this to us. By doing so, you can save other
readers from frustration and help us improve subsequent versions of this book. If you find
any errata, please report them by visiting http://www.packtpub.com/submit-errata,
selecting your book, clicking on the Errata Submission Form link, and entering the
details of your errata. Once your errata are verified, your submission will be accepted and
the errata will be uploaded to our website or added to any list of existing errata under the
Errata section of that title.

To view the previously submitted errata, go to
https://www.packtpub.com/books/content/support and enter the name of the book in the
search field. The required information will appear under the Errata section.

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support

Piracy

Piracy of copyrighted material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy.

Please contact us at <copyright@packtpub.com> with a link to the suspected pirated
material.

We appreciate your help in protecting our authors and our ability to bring you valuable
content.

mailto:copyright@packtpub.com

Questions

If you have a problem with any aspect of this book, you can contact us at
<guestions@packtpub.com>, and we will do our best to address the problem.

mailto:questions@packtpub.com

Chapter 1. A Practical Introduction to
ARM® CORTEX®

In this chapter, we will cover the following topics:

Installing uVision5

Linking an evaluation board

Running an example program

Writing a simple program
Understanding the simple use of GPIO
Estimating microcontroller performance

Introduction

This chapter will show you how to compile, download, and run simple programs on an
evaluation board. A software tool called a Microcontroller Development Kit (MDK),
including an Integrated Development Environment (IDE), is the simplest way of
achieving this. Keil (a company owned by ARM) markets an extensive range of software
tools to support embedded system development. Amongst these, the MDK-ARM
development kit represents an integrated software development environment, supporting
devices based on the Cortex-M (and associated) cores (see
http://www.keil.com/arm/mdk.asp).

http://www.keil.com/arm/mdk.asp

Installing uVision5

A free evaluation version of the IDE known as the MDK-ARM Lite edition, running
(albeit with limited functionality) under the Windows operating system, is available for
download. The main limitation of the environment is that programs that generate more
than 32 KB of code cannot be compiled and linked (see
http://www.keil.com/demo/limits.asp). However, since most programs written by novices
tend be quite small, this limitation is not a serious problem. For those who expect their
executable image to exceed 32 KB, other open source compiler and IDE options are
considered in Chapter 9, Embedded Toolchain.

uVision5, the latest version of the IDE is distributed as two components. An MDK core
contains all the development tools, and software packs, together with Cortex
Microcontroller Software Interface standard (CMSIS) and middleware libraries, which
add support for target devices.

Installation involves downloading and running an executable (.exe) file. Users can
download and install the latest version after first registering their contact details at

http://www?2.keil.com/mdk5/install/.

http://www.keil.com/demo/limits.asp
http://www2.keil.com/mdk5/install/

How to do it...

1. Download the latest version of the software by following the instructions provided by
Keil. Device-specific libraries are not included in installations from version 5
onwards, so at the end of the installation, we must configure the IDE using the Pack
Installer to choose the resources (that is target devices, boards, and examples) that we
need.

Eile Backs Windew Help
2 | Boardt MCBSTHIZRAOA Ver 1)
 Devites ' Boaeds | Patks Eunulzs-.
senh - X Pack
BD T il = -Dewi lce‘Scecrflc
=B MCBL343 (Ver 20) | LPC1343FE04E .
< B MCBIS (1.1) LPCLS4QJB0100 Keil:STM32F4_DFP
=Bl MCBLTO0 (Ver 1.3) LPCLT58, LPCLIEE 2“[‘”5 8-16) i
- B MCBLS00 (Ver1.3) LPC1&50, LPCIRST 1 x 16 PR MO Flash, 1 x4 M. Cuad-50] Flash, 1 x 16 M8 5., A T Microslectroni ”T'-“«’F‘ Series Davice '5\-‘PP'?"- Drivers and Ex ”'P'ﬁ
= BB MCEAZ00 (Ver 1.3) LPCA350 LPCA3ST 1 416 WB NOR Flash 1 x4 W Quad-S01 Flagh 1 < IGKBEE, Kol STMERFARCOFP - Pravicus Pack Varsiens
< B MCBNUCL 1) MUCLAOVEIAN - -
=B MCBSTMIZC (Yer 1Y) T L
= Ea MCBSTMIZE (Ver 30)

12 g A B 12 At L. 4 Keils ARM_Compiler

L +1 - KeiliPMDK-Middievare o

: B psp- Ez.l=432m:|1ll SAEN + REM bl atisiack | fitssstet——1 Teil MDK-ARNM Professional Middievare Dual-Stack /1946 Network for +
+ B MSP-TSI22PT100 i e sy Bonrdei st i T2 + iPbdP 3 Install vl iz 2 light-weight implementation of the TCA/IP protocal suite

% B NS Starter Kit nRF51427 A ++-MicnumzRTOS & Install Micrium software componants

W B nRF51 PCAIONZE (V100) 2 C 4 Or-Embedded:Midd... _(Lln Bl [IidJ wartu ckage (Cyclane rLJ CyeloneSSL an d(_y Ione(_rvpl J

+ B nRF51 PCAIONEE (V100 nRFS1827 AC +i-wolfSSL-CyaSSL & Instsll Lghl weight 551 'ILSand rypt Library for Ernbe; d:lgs 53' e

+ B aRFS1FCANE V100) | nRFSIE0) e # VOGITECHARSTL AR.. g Install | VOGITECH fRSTL Functional Sefety EVAL Scftwsre Pack for .-\?M Cortex-M
e oy VDGITECHARSTLST,. % Instell | YDGITECH IRSTL Funclional Safety EVAL Soltwere Pack for STMEZFx Macrar
4 B RF52 PCAIOMO (VD)
+ NUCLED-FI30RE [Rew.C)
+ B MUCLEQ-FOTZRE (Rew.C)
= MNUCLEC-FISLRC (Rev.C)

Output
Pefiesh Padk desenplion:

2. Select the Boards tab, choose the MCBSTM32F400 Keil evaluation board featuring
the STM32F407IGHx STMicroelectronics part, as this is the target for all the
practical examples described in this cookbook.

3. With the Packs tab, in addition to the default installation options: CMSIS and Keil
ARM Processional Middleware for ARM Cortex-M-based devices, board support for
MCBSTM32F400 is also needed. Select the latest version Keil::32F4xx DFP
(2.6.0).

4. Select the Examples tab, and copy the board-specific example programs to a
convenient local folder. Note: the example programs illustrate many useful features
of the evaluation board, and are an invaluable resource.

ﬁ Pack Installer - CiKeil vSLARMARACK

Hle Packs Mindow Help
& | Board: MCESTMIZF400 (Ver 1.2)

w B M7 (Verl3)
o B MCBIED (verl3)
wi B MCB4300 (Wer13)
E MACEMNU R (w1)
= MCESTMIZC (Ver20)
= B0 McasTMazE Ver30)

LPCITS2 |PCi76e J
APC18S0, LPCL&ST, | x 16 M8 NOR Flash, 1 %4 MEB Quad-SP] Flash. § x 16 ME 3.

LPCE350, |PCA357 | x |5 MB WO Flash 1 44 ME Quad-SPI Flash 1 v 16 kB FE..
uucuw:;m

Thi 7 -} EPﬂM

| Devices | Boardi ERET] Paks | Examples | Bl
Seanche - ¥ [shows examplas from instalied Packs anly
Board /| Summany Ecample Action Descripticn

= B hacesesed nad) LABIEFS06R] BSD Client (MCBSTMEZFI00) & Copy | Example using B30 suckets to send commands Lo rer <]
= B MCBILCIA (Ver 26) LPCLICI4FRDAE/30L ESD Server (MCBSTMEZF00) ! Cogg Example usmg BSD sockets to acupt - commands | lror
= B mceLam o) \PCLITFEDGAGNL j AN Data (MCESTMIZFIC0) $ Copy || CAN wample that sends and recenes dols messages
= B MCBI33 (ver2l) LPCITI3FRME CAN RTR (MCBSTM32Fa10] @ Copy | CAM emplethat demonstrates Remote Transmissic
w B MCBI343 (Ver20) LPCI343FRO4E i D_Install CMSIS Driver Validatian APl Example
w B 81500 (Wl.1) LPC] 58BN 00 & Copy cms FTOS Blinky example

Cy:lnMSSL 551 Client Dema (MCBSTMAZFA00)

CycloneS5L 351 Senver Demo [MCEFFmFiDﬂ']
i CycloneTCP HTTP Sanver Demo (MCESTRMIZ...

I:y:lnngTCP HTTPE Server Demo (MCBSTME..

it Dermo (MCBSTMAZ.. |4

! Cog[CM?S ATOS Blinky example :onﬁgwﬁd with STMEHN

MI S5 client demo (Cyelonessl, CMSIS-ATOS and Keil T
| S51 server dema (Cyclonesst, CMSIS-RTOS and Keil -
| HTTE server cleme (CycianeTCP and CMSIS-RTOS)

[HTTPS server deme (CyclaneTCP, CycloneSSl and C

| SMATP client with S5L support [CyclaneTCP, Cyclonet

= B MCBSTMIZFZN (Verll)
= B MCBSTMIZFI0N (Ver 1.2)

| Dems sxample
[Fta Sasvarusi ing FTP protocol with SOMMMC Memer, |

= B MCATMEMIZD) TMPIHIFOEG File Syslen Dema wcns‘rmm; @ Copy | File menpulsbon sample creste, reed, copy, defete

= B MSP-EXRA3ZRA0IR MSPAZIPANIR HTTP Server (MCBSTMSZFA00) _f'togg | Compact Web Server with Col interface

@ B MsP-TH32PT100 Bt e il coany boandsl e aginstuments/ map b 3lerl 0 HTTP Server [Py AP (MCBSTMIZFI00) & Install Comnm Wabs Server with CGl interface

w B NS Starter Kt ABFSIA2D Al i SMTP Clvent (MCBSTMI2ZFA00) ! (ee} E:samph s.howmg howhmmpos.e and send emails

= B nRFS1 PCALONZE (VLOA) | aRFSI42] wAC SNMP Agent (MCBSTM32F400) & Copy Example shawing how o use 3 Simple Network Man.

w B nRFS1 PCALOO3L (V1.00) ARF51477 wehC Telnat Server (MCBSTMIZFA00) & Copy | Command:fine Host service example using Teinet pr

w B nRF51 PCAZ0006 (V1.00) oRF51E7] wma Telnet SMWNC%TMJMJ ﬁ Install :Cummwd-linc Host service examiple using Teinet pr_:-l

i B nRFSZPCAIONIE (VLOM) | nRFS2831 weld 11 SRR =17) S e S &
Outpist ax
Lipdate svsilable lor Kell: MOK-Middiewate (installed: § 5.0, svailsble: 7.00-bels) 3
lpdate available for Keil: STM32F4 DFP fnstalled: 108, availstis 260
Refresh Pack desciptions -,
Lpdate avatlable for Keil: MOK-Middlevware (installed: 654, awvasabie: 7.0.0-beta) |_E |
Refresh Pack desongtions . 3
| Ready E— —— lONLINE;_ﬂ

5. Once we have downloaded and installed MDK-ARM uVision5, the IDE can be
invoked from the Windows Taskbar. If we wish to update the installation, the pack
installer can be invoked by selecting the pack installer icon on uVision5 toolbar.

hhw-buammmunlu-ﬂ-n--m
(P N | al | ™ %o
=1k [=) | i

Lo iR

Bopgred

We demonstrate the basic features of uVision in this chapter, but later on, we’ll
probably need to access the uVision user guide via the Help menu (also available at
http://www?2_.keil.com/mdk5) to learn about the more advanced features of the IDE. A
useful guide to getting started with uVision5 can be found at
https://armkeil.blob.core.windows.net/product/mdk5-getting-started.pdf. An
overview of uVision5 is available at http://www?2.keil.com/mdk5, and this includes
some video clips that describe the design philosophy, and explain how to use the
Pack Installer and create a new project.

http://www2.keil.com/mdk5
https://armkeil.blob.core.windows.net/product/mdk5-getting-started.pdf
http://www2.keil.com/mdk5

How it works...

Computer programming involves specifying a sequence of binary codes that are
interpreted by the machine as instructions that together enable it to undertake some task.
The instruction sets of early computers were small and easily memorized by programmers,
so programs were written directly in machine code, and each instruction code word was
set up on switches and written to memory. Finally, once all the instructions had been
entered, the program was executed. With the development of more powerful machines and
larger instruction sets, this approach became unworkable. This motivated the need to
program in higher level (human understandable) languages that are translated into
machine code by a special program called a compiler. Modern day programmers rarely
need to interpret individual binary codes; instead, they use a text editor to enter a sequence
of high-level language statements, a compiler to convert them into machine code, a linker
to allow programs to reuse previously written (library) code, and a loader to write the
binary codes to memory. The steps comprising edit, compile, link, load can be undertaken
by running each program (editor, compiler, linker, loader) separately. However, nowadays
they are usually packaged together within a wrapper called an IDE. Some IDEs are
language-specific and some are customizable, allowing developers to create bespoke
programming environments for any target language and/or machine.

The pack installer framework allows MDK-ARM uVision5 to be customized and extended
to target a large number of devices and evaluation boards using ARM cores. But while,
IDEs represent the most popular and efficient route to programming, uVision represents
just one of a number of IDEs that are widely available. Other manufacturers and open
source communities offer alternatives, some of which we investigate later in the book.

Linking an evaluation board

This book focuses on the Keil STM32F400 evaluation board that features a
STM32F407IGHx STMicroelectronics part to illustrate practical work. A wide range of
other evaluation boards are available, and many of these are supported by the uVision5
IDE (that is, using the pack installer to download appropriate software components).

How to do it...

1. Once we have installed uVision, linking the evaluation board is simply a matter of
connecting the two USB cables shown in the following image to your PC. The small
daughter board shown in the image is Keil’s ULINK-ME debug adaptor
(http://www.keil.com/ulinkme/) that provides the data connection.

Tip
The Windows plug-and-play feature will automatically find and install the driver
(downloaded with uVision5).

2. The second USB cable provides power. Evaluation boards can usually be powered by
a laptop or PC host connected via the USB port, but some laptop PSUs may be
unable to supply sufficient current, and a USB hub might be required. Alternatively,
an external supply can be connected via a separate power plug.

Note

The first time the ULINK device is used, its firmware needs to be configured. The
configuration depends on the MDK version, and if we wish to use different versions
of the MDK (that is, perhaps because we have legacy code developed using
uVision4) then the ULINK configuration may need to be erased.

http://www.keil.com/ulinkme/

http://www.keil.com/support/docs/3632.htm provides some further information and a
download utility for this purpose.

http://www.keil.com/support/docs/3632.htm

How it works...

A USB-Link adaptor is needed to enable the executable code produced by the IDE to be
uploaded to the evaluation board. The adaptor supports a Joint Test Action Group
(JTAG) interface on the evaluation board, and offers a number of debugging possibilities
(depending on the type of adaptor used). There are several debug adaptor connection
options. Firstly, the Keil ULINK-ME debug adaptor (http://www.keil.com/ulinkme/),
packaged together with the board as a starter kit, connects to the 20-pin JTAG connector
and supports serial wire programming and on-chip debugging. Keil’s ULINK-2 adaptor
(http://www.keil.com/ulink2/) represents a more robust solution with similar functionality,
and ULINK-Pro (http://www.keil.com/ulinkpro/) offers extended debug facilities
employing high-speed streaming trace technology.

http://www.keil.com/ulinkme/
http://www.keil.com/ulink2/
http://www.keil.com/ulinkpro/

There’s more...

The MCBSTM32F400 (http://www.keil.com/mcbstm32f400/) evaluation board shown in
the preceding image features the STMicroelectronics STM32F4071GHx microcontroller
part. The board specification includes the following:

STM32F4071G Microcontroller

On-chip and external memory

2.4 inch QVGA TFT LCD and touchscreen
USB 2.0 Ports

CAN interface

Serial/UART Port

Micro SD Card Interface

5-position Joystick

3-axis accelerometer

3-axis Gyroscope

ADC Potentiometer input

Audio Codec with Speaker and Microphone
Digital Microphone

Digital VGA Camera

Push Buttons and LEDs directly connected to I/0 ports
Debug Interface

MCU manufacturers like Texas Instruments (TI), STMicroelectronics, Freescale, Atmel,
Analog Devices, Silicon Labs, MikroElektronika, NXP, and Nordic Semiconductor all
market evaluation boards featuring the Cortex-M4. Some of these offer cheaper, entry-
level board options costing just a few dollars with functionality that can be enhanced by
adding additional modules.

An insight into the range of microcontroller devices supported by MDK-ARM can be
gained by scrolling through the list of packs listed by the Pack Installer. Keil markets a
range of Cortex-M evaluation boards designed by themselves and other manufacturers
(http://www.keil.com/boards/cortexm.asp) that feature a number of microcontrollers.
Keil’s range of boards features NXP, STMicroelectronics, and Freescale microcontrollers.
The MCBSTM32 (Cortex-M3) and MCBSTM32F400 (Cortex-M4) evaluation boards
offer one of the more expensive evaluation routes, but they are populated with a
comprehensive set of I/O peripherals, including a QVGA TFT LCD touchscreen. STM
(http://www.st.com) markets a similar evaluation board called the STM3241G-EVAL,
offering almost identical features to Keil’s but employing a slightly different PCB layout
and using the STM32F417IG part.

Netduino (http://netduino.com/) offers a series of open source evaluation boards based on
the STM32F405RG microcontroller featuring a Cortex-M4 core with open source
software development support. Netduino is supported by an enthusiastic community of
developers—a selection of projects which demonstrate the potential of the device are
available.

http://www.keil.com/mcbstm32f400/
http://www.keil.com/boards/cortexm.asp
http://www.st.com
http://netduino.com/

Documentation for target devices and evaluation boards is available from the
manufacturer. For example, those using the MCBSTM32F400 board will need to refer to
the reference manual RM0090 (http://www.st.com), the MCBSTM32F200/400 User’s
Guide (http://www.keil.com), the ARM Cortex-M4 Processor Technical Reference
Manual, and the Cortex-M4 Devices Generic User Guide (http://infocenter.arm.com).

You will also find that the schematic diagram of the evaluation board, at

http://www.keil.com/mcbstm32f400/mcbstm32f400-schematics.pdf, is also useful for
resolving ambiguities in the libraries. If you use MDK-ARM, then once a new project has

been created and the target microcontroller identified, most of the relevant documentation
can be accessed via the Books tab within the project window.

3 .0 HSW124Nbeok v Chapleriprograms\ RTKSem2\RTKsema =
i K s: Mfead Rovas ko PR i e ag o P ghnee s o SIS MArachr o e —
NEA@) 4 ald| = n| e |pBan|ExE D o JacRe 5 alE A
e e SR BTG vnsl
Books : L=
=il Torks Users Guide
| MDK-ARM Getting Stated (PDF)
| K% Release Notes
| @ Complete User's Guide Selection
| & ARM Compiler Getting Started Guida 1505 for pWisicn (PDF)
| - ARM Compiler v5.06 for uVision (POF)
| & ARM Linker w8105 fer wVisien [PDF)
| -G ARM Libraries and Floating Point Suppart Guide v3.06 for pNision (PDF]
| @ ARM Assernbler User Guide v5.08 for Vision (PDF)
| - Using the fromelf Image Canverter v5.08 far yVision [POF)
| & Creating Static Software Libraries with armar v3.06 for uVision (PDF)
| & ARM Compiles Error snd Warnings Reference Guide 7504 for ubision (PDF)
| @ ARM Migration and Compatibility Guicie v3.06 for u\isicn (PDF)
2 il Device Data Books
| S STM3ZFA0waLx/42x/43x Reference Manual
| @ STM3ZF405/407 Data Sheet
| STMB2FA0WALx Errata Sheet
| @ Corex-WM Generic User Guide
@ STMEZFA . HAL Diivers
| -G STWEZCubeMY Liser Manual
=i} Board Data Books
~ % Uses Manusl (MCESTHIZF00)
- @ Schematics (MCBSTM3ZF400)
@ Getting Started (STM32FI-Diseovery)
@ User Manual (STM3ZR4-Discovery)
@ Bill of Matenizls (STMEZF4-Discovery)
& Gerber Files (STM32F4-Discovery)
- @ Schematics (STM32E4-Discovery)
-G MCBSTMI2FA00 Evalustion Bosnd Web Page (MCESTMIZE400)
~- @ STM2Fd-Discoveny Web Page (STM32F4-Discovery)

Ek.ul ¥ Books E {lF}lmiom I, Tempiates |
"‘-\-__‘_'_'_-’

ULINEZME Cortex Debugger CAP NUM SCRL GVR B /W

http://www.st.com
http://www.keil.com
http://infocenter.arm.com
http://www.keil.com/mcbstm32f400/mcbstm32f400-schematics.pdf

Running an example program

Manufacturers usually make a small number of example programs available that provide a
tutorial introduction and demonstrate the potential of their evaluation boards. A simple
program that flashes (that is, blinks) a Light-emitting diode (LED) on the board is
usually provided. ANSI C is by far the most popular language amongst embedded system
programmers, but other high level languages such as C++ and C# may also be supported.
A brief introduction to the C programming language is provided in Chapter 2, C Language
Programming.

The Examples tab in the pack installer for the STM32F4 series MCUs provides a link to a
C program called CMSIS-RTOS Blinky (MCBSTM32F400) that flashes an LED
connected to a GPIO port. The program is integrated within an MDK-ARM Project.
Integrated development environments such as MDK-ARM usually manage software
development tasks as projects, as in addition to the program source code itself, there are
other target-specific details that are needed when the code is compiled. A project provides
a good container for such things. We review the steps required to create a project from
scratch in the next section.

How to do it...

1.

Invoke uVision5. Open the Pack Installer, and copy the example program to a new
folder (name the folder CMSIS-RTOS_Blinky).

Connect the evaluation board as described in the previous section. In addition to the
ULINK cable, remember to connect a USB cable to supply power to your evaluation
board.

Invoke uVision5 from the taskbar, select Project — Open Project; navigate to the
folder named CMSIS-RTOS_Blinky, and open the file named blinky.uvprojx.

Build the project by selecting Project — Rebuild all target files, and then download
the executable code to the board using Flash — Download. Take a moment to locate
the Build, Rebuild, and Download shortcut icons on the toolbar as these save time.
Finally, press the RESET button on the evaluation board, and confirm that Blinky is
running. You may notice that the Blinky example program does a little more than just
flash one LED.

Once you have confirmed that your evaluation board is working, close the project
(Project — Close Project), and quit uVision5.

How it works...

The program uses some advanced concepts such as CMSIS-RTOS (discussed in Chapter
8, Real-Time Embedded Systems.) to produce a visually interesting flashing LED pattern.
We will not attempt to explain the code here, but the next section will develop a much
simpler Blinky project called hello_blinky.uvprojx.

Writing a simple program

This section explains how to write, build, and execute a simple program. We also describe
the various files that, together, make up a uVision project.

How to do it...

1. Use Windows Explorer to create a new (empty) folder called helloBlinky c1vo.
Invoke uVision5, and create a new project (Project - New uVision Project...).
Navigate to the folder, and create a project file called hello_blinky.uvprojx. When
prompted, choose the STM32F4071GHx device. Click OK.

k] Options for Target Target 1' Wi e e
Device | Target | Output | Listing | User | C/Co+ | Asm | Linker | Debug | Uities |
|'5'_-'f'.'-.'arr Packs _'J
Vendor: STMicroelectronics Software Pack
Device: STM32F407IGH: Pack: |Keil STM32F&oc DFP.2.6.0
Toolsat: ARM URL: mito-/Awww kedl com/pack
Search:
= @ STMicroelectronics ;] The 5TM32F4 family incorporates high-speed embedded memores «
% STM32F4 Seri land an extensive range of enhanced 1/0s and perpherals connected
= S to two APB buses, three AHB buses and a 32-bit multi-AHB bus
@ “§ STM32F401 matrix.
@ % STM32F405 - 64-Kbyte of CCM (core coupled memory) data RAM
= %% STM32F407 Iql._CDp:r:d interface, 80806800 modes -
- Timer with quadrature ncremental) encoder
3 1% STM32F407IE -5 Vdolerant 1/0s
= - Parallel camera interface
[- True random number generator
- RTC: subsecond accuracy, hardware calendar
-96bit unique ID
< | -

2. In Manage — Run Time Environment, choose the MCB32F400 board support
using the drop-down list, and tick the LED API (since our application will flash an
LED). Expand the Device option list, and tick Startup and Classic.

Manage Run-Time Environment

Software Component
=4 Board Support
74 A/D Converter (AP])
[l ‘ Accelerometer (AP])
& € Buttons (4P])
o] ‘ Camera (AFD)
& 4 Graphic LCD (AP
i 9 Gyroscope (APD)
-4 Joystick (APD
=T & LED (AP

5 € emWin LCD (APT)
w4 CMSIS
© 4 CMSIS Driver
i3 ’ Compiler

¥ Startup [+
=4 STM32Cube Framework (APT)

el Vfarty Version
MCBSTM32F400 ﬂ A0.0 el d 1
100 A/D Converter Interface

Description

| »

1.00 Accelerometer Interface
1.00 Buttons Interface

1.00 Camera Interface
1.00 Graphic LCD Interface
1.00 Gyroscope Interface
100 Joystick Interface

100 LED Interface

1200 LED Interface for Keil MCBSTM32F400 Development Board
1100 ' Touchscreen Interface

11 emWin LCD Interface

Cortex Microcontroller Software Interfface Compeonents

Unified Device Drivers compliant te CMSIS-Driver Specifications
ARM Compiler Software Extensions
startup, System Setup

240 System Startup for STMicroelectranics STM32F4 Series
STM32Cube Framework

140 Cenfiguration via RTE Device.h

= Keil:Device:STM32Cube Framework: Classic
=l require CMSIS:CORE
¥ ARM::CMSIS:CORE
(=) require Device5TM32Cube HAL:Common
¥ Keil:Deviee:5TM32Cube HAL:Common

Lramira Moira S TR wibha HAL W arkew

Detais

me}]mpm;

100 Configuration via STM32CubeMX j
Validation Cutput Description
=4 Keil:DeviceStartup Additional software companents required -
(=1 require CMSIS:CORE Select component from list
¥ ARM::CMSIS:CORE CMSIS-CORE for Cortex-M, 5C000, and SC300

Additional software components required

Select component from list

CMSIS-CORE for Cortex-M, SC000, and SC300

Select component from list

Common HAL driver

Lalart ramnanant Froem lick j

[]

Cancel

3. Notice that the Validation Output pane display warns us that, to drive LEDs, we
also need CMSIS core, GPIO driver, and system start-up components. Press the
Resolve button to automatically include any libraries needed by the board features
selected, then click OK. The project window in uVision5 should show that the files
have been successfully loaded. The names of the folders can be changed using a
right-click menu, and fields can be expanded to show individual components, thereby
allowing the file components to be edited. Note: Some library files are read-only.

| Eile Edt yiew Project Fiash Debug vuwn(raa Iools FVCS Window Help
=2 -1 | | ™ [& SRAM_ HandleTypeDer - =) % | @) & a;@- a4
0 @ | ¥ o & &E e~

Project o [Textt

= #% Project: helloiinky T
= i Targetl
0[5 Source Group 1
-1 % Baard Suppart
5 (%] LED_MCBSTMIZFA00.c (LED)
& oS
n @ Device

Epreject [@Bocks | O Functions | Dy Template

Build Output

L=

ULBKZ/ME Cortes Debugger L1 €1 CAP MUM SCRL 0vR

. Right-click Source Group 1, and select Add New Item to Group ‘Source Group

1’...; then select a C File (.c) template. Name the file hello_Blinky.c, and enter the

following program:

* Recipe: helloBlinky c1v0

* Name: hello_blinky.c

* Purpose: Very Simple MCBSTM32F400 LED Flasher
*

*

*

Modification History
* 16.01.14 Created
* 27.11.15 Updated
* (uvision5 v5.17STM32F4xx_DFP2.6.0)

* Dr Mark Fisher, CMP, UEA, Norwich, UK

#include "stm32f4xx_hal.h"
#include "Board_LED.h"

int main (void) {
const unsigned int num = 0O;
unsigned int 1i;

LED_Initialize(); /* LED Initialization */
for (;;) { /* Loop forever */
LED_On (num); /* Turn specified LED on */
for (1 = 0; i < 10000000; i++)
/* empty statement */ ; /* Wait */
LED_Off (num); /* Turn specified LED off */
for (1 = 0; i < 10000000; i++)
/* empty statement */ ; /* Wait */

} /* end for */

}

5. The RTE manager of uVision5 will have configured the device options with values
from the device database, but the debug options should be reviewed by selecting
Project — Options for Target ‘MCBSTMF400’... to ensure that they specify the
ULINK2/ME Cortex Debugger.

I Cptians for Target MCESTMFS00" o S
Device | Target | Output | Usting | User | C/Ces | Asm | Linker D
" Lsa Srmuistor
[T Limt Spesd o Raal-Tims
¥ Load Application & Stadup ¥ [Run o man(W Load Aopkeation st Stadup ¥ [Run 1o mand
Intinkzation Fla: Irtinkization Fa
| = e || I
Fueatorn Diebosg Sesson Semngs Rastors Debug Session Seltings

W Breskports F Toobox W Breshqpoints W Toobox

¥ Walch Windows 4 Padormance Ansbeer W Walch Windows

¥ Memory Display W Memory Display
CPLU DLL: Parameter Dierwer DLL Parameter
|sa=:r4cru DLL | REMAP -MPU [sARmMCMa DL | MFU
Dislog DLL Pammeter Dislag DLL Pammeter
[pcMoll folMe [FcMDLL [oCme

oK | Carcel | Defouks | Help

6. Build the project by selecting Project — Rebuild all Target Files. Again, there is a
toolbar icon that provides a helpful shortcut.

7. Write the executable code to the microcontroller’s flash memory using Flash —
Download. Press the RESET button on the evaluation board to run the program.

Tip

Downloading the example code

You can download the example code files for all Packt books you have purchased from
your account at http://www.packtpub.com. If you purchased this book elsewhere, you can

visit http://www.packtpub.com/support and register to have the files e-mailed directly to
you.

http://www.packtpub.com
http://www.packtpub.com/support

How it works...

Those familiar with uVision4 will notice that the most obvious feature for of this program
is that a call to SystemInit() is missing, as this code is executed before main() is called.
The function called main() is the entry point for our program, and each project should
declare only one file that defines a main function. Conventionally, this might be called
main.c, or adopt a file name that is shared by the project such as helloBlinky.c.

Tip
Most of the file helloBlinky.c comprises comments, which are highlighted in green.
Comments do not produce any executable code, but they are essential for understanding

the program. You may be tempted to omit comments, but you will appreciate their value
if, at some later date, you need to reuse code written by others, or even yourself.

The source code file begins with a large comment statement that extends over several lines
and contains information about the program. Then there are C pre-processor directives; we
discuss these in Chapter 2, C Language Programming. The program comprises a main
function that declares two variables named i and num. There follows a function call to
LED_Initialize() (written by developers) that sets up the GPIO peripheral which drives
the LEDs. The program contains three so called for loops. The outer loop, is known as a
superloop and never terminates. These statements within this loop are executed again and
again, forever (well for as long as power is supplied to the evaluation board). The
statements within the loop turn the specified LED ON and OFF by calling yet another
function written by Keil developers. The other two for loops, nested within the superloop,
simply waste time by incrementing the loop variable i. Implementing a delay in this way
represents a very naive approach, and we’ll explore much more efficient techniques later.
If you have not programmed in C before, then although you’ll probably appreciate that
this program is very compact, you may find it confusing. Don’t worry, we’ll revisit this
program again when we introduce the C programming language in Chapter 2, C Language
Programming.

There’s more...

The structure of the uVision MDK projects has evolved considerably over the past few
years and uVision5 represents a significant revision in this respect. Developers of
uVision5 have attempted to make microcontroller software development much simpler by
providing library functions that can be used to control peripherals such as LEDs,
accelerometers, touchscreen, and so on. Many application developers migrating from
uVision4 find this burdensome, and favor more classic approaches that do not rely on
intrinsic interface functions. Application programmers who wish to use their own
middleware functions are advised to download the ARMs MDK legacy support pack
(http://www?2.keil.com/mdk5/legacy). The source files that, together with the project
options, define the helloBlinky project are summarized in the following table:

. File . .
File Type extension Description
C File .Cc Source code written in ANSI C.
Header File ||h File containing additional information to be included in the source code
A ly L . .
Fﬁzemb y Language Source code written in ARMs Thumb?2 assembly language (Cortex-M cores)
Text File xt ;l;legac cf)l(ii, usually containing description of the project or instructions for running

A configuration wizard is provided to customize some files (for example,
startup_stm32F40xx.s). However, we will deal with these more advanced aspects in
subsequent chapters. Further, library and header file components, declared within the
source files themselves, are also listed in the project window, and can be opened in the
editor window. The file types you will encounter are described briefly in the following
table, but will be discussed in more detail in Chapter 2, C Language Programming.

File Type le:)i(ltinsion Description

C File .Cc Source code written in ANSI C.

Header File .h File containing additional information to be included in the source code
?ﬁzembly Language Source code written in ARMs Thumb?2 assembly language (Cortex-M cores)
Text File xt ;l"heexz (f,icii usually containing description of the project or instructions for running

The project options are functionally grouped together. They are accessed through the tabs
within the Project Options menu, and summarized in the following table. Further details
are available in the uVision User Guide.

http://www2.keil.com/mdk5/legacy

Tab ||Description

Device [|Select the microcontroller device from the database

Target [|Specify hardware parameters

Output |[Define output files of the tool chain

Listing

User Specify user programs executed before compilation / build

C/C++ ||Set C / C++ compiler-specific tool options

Asm

Specify all listing files generated by the tool chain |
Set assembler-specific tool options such as macro processing |

Linker ||Set linker-related options, and define physical memory parameters.

Debug

Specify settings for the uVision debugger |

Utilities

Configure utilities for flash programming |

The options allow the developer to control quite small details of the build—for example,
you might find it more convenient to execute code as soon as it is downloaded to the target
by configuring the flash programming settings using the utilities tab as shown in the
following image:

Cortex-M Target Driver Setup - - &J

Debug] Trace Fash Download

Download Function RAM for Algorthm
LOAD i [Program
_Fi {* Erase Sectors |V Verfy

" Donot Ease [V Reset and Run

Start: | k20000000 Size: k1000

Programming Algorithm

Description | Device Size Device Type Address Range
STM32F4c Flash M On-chip Flash 02000000H - DBOFFFFFH

| QK | | Cancel |

The STM32F400IGHx microcontroller implements 1MB On-chip Flash memory. RAM
for Algorithm defines the address space used by the programming algorithm for the

device.

Understanding the simple use of GPIO

Making an LED blink involves connecting it to a signal that alternately switches ON and
OFF. General purpose input/output (GPIO) is the name of a microcontroller peripheral
that provides functionality to source many signals at once (that is, in parallel). GPIO
peripherals are designed to be very flexible, so configuring them can be rather confusing
but using the RTE manager makes this process much simpler. We will modify our
helloBlinky_c1ve recipe to simultaneously make all the LEDs blink rather than just one.
Each LED on the evaluation board is connected to a pin on the microcontroller, so to
illuminate an LED the microcontroller needs to provide a voltage and current similar to
the that of a torch battery. To source this current, the corresponding GPIO port bit
connected to the pin must be configured as an output that is switched ON and OFF by
statements in our program that write to the port output data register.

How to do it...

To configure the GPIO follow the steps outlined:

1. Make a copy of the helloBlinky_c1ve folder from the previous recipe (and its
contents) and rename this copy as helloBlinky_c1vi1. Open the folder and open the
helloBlinky project (double-click on the file). Then edit the main function defined in
the helloBlinky.c file search for the following statement:

LED_On (num);
2. Replace this statement with the following one:
LED_SetOut (On_Code);
3. Also, search for the following statement:
LED_Off (num);
4. Replace this statement with the following one:
LED_SetoOut (Off_Code);
5. The variables, on_code and off_Code, are declared, as follows:

const unsigned intOff_Code = Ox0000;
const unsigned intOn_Code = OXQO0FF;

6. A complete listing of the main function is as follows:

~N
*

Recipe: helloBlinky_ci1vi

Name: helloBlinky.c

Purpose: Simultaneous MCBSTM32F400 LED Flasher
Modification History

16.01.14 Created

03.12.15 Updated
(uvision5v5.17+STM32F4xx_DFP2.6.0)

Dr Mark Fisher, CMP, UEA, Norwich, UK

b S R T R R N

#include "stm32F4xx_hal.h"
#include "Board_LED.h"

int main (void) {

const unsigned intOff_Code = 0x0000;

const unsigned intOn_Code = OXOOFF;
unsigned inti;

LED_Initialize(); /* LED Init */

for (;;) { /* Loop forever */
LED_SetOut (On_Code); /* Turn LEDs on */
for (1 = 0; i< 1000000; it++)
/* empty statement */ ; /* Wait */

LED_SetoOut (Off_Code); /* Turn LEDs off */
for (1 = 0; i< 1000000; i++)
/* empty statement */ ; /* Wait */
} /* end for */
}

7. Build, download, and run the application in exactly the same way as we did in the
previous version.

How it works...

The GPIO interface is a particularly important feature in microcontrollers because it is
designed to be easily integrated within user systems to drive light emitting diodes, read the
state of switches, or connect to other peripheral interface circuits. Early I/O ports were
prewired to provide either output or input interfaces, but soon they evolved into general
purpose interfaces that could be programmed to provide either output or input
connections. Later devices included more programmable features. As GPIO is so
important for microcontroller applications, designers are keen to specify as many I/O pins
as possible on their devices. However, increasing the device pin-out adds cost because the
device becomes physically larger to accommodate the pins. This motivates manufacturers
to develop devices that have pins that are configured by software. As you can imagine,
configuring such a device is quite a challenge, so we’re lucky that Keil’s developers have
provided library functions that make this task more manageable. As GPIO represents the
interface between hardware and software, the evaluation board’s schematic

(http://www.keil.com/mcbstm32f400/mcbstm32f400-schematics.pdf) is essential to
understanding the 1/0.

The STM microcontroller used by the evaluation board provides eight GPIO ports, named
A-1. Port pins PG6,7,8; PH2,3,6,7; PI10 are connected to LEDs. Those who have never
encountered an LED may imagine it as a filament lamp, but an LED is a semiconductor
device and behaves slightly differently. However, sticking with our initial lamp analogy
(for the time being), we’ll first consider a battery-operated torch comprising a battery,
switch, and lamp. These components are connected by a copper wire that is often hidden
within the body of the torch. We’ll assume that the torch uses two AA batteries providing
a voltage of about 3 Volts. We can depict the circuit as a diagram with symbols
representing each of the components, as shown in the following diagram:

:r"jie—- r e

BV —— [v ——

When we close the switch, the battery voltage (denoted V) is applied directly to the lamp,
a current flows (denoted I), heating the lamp filament, and this in turn, gives out light.

The electrical resistance (denoted R) of the filament determines the amount of current that
flows according to Ohm’s Law that is as follows:

http://www.keil.com/mcbstm32f400/mcbstm32f400-schematics.pdf

I=—
R

Lamp filaments used in torches usually have a resistance of about 10 Ohms (10 Q), so the
amount of current flowing is about 0.3 A or 300 mA.

Imagine that a fault develops, which produces a short across the lamp. The current flowing
is now only limited by the resistance of the copper wire and the internal resistance of the
battery; these are both very small (a fraction of an Ohm). A high current will circulate
which might, if the battery stored enough energy, cause the copper wire to heat up and
melt the plastic case of the torch. However, AA batteries are unable to store sufficient
energy for this to be a serious problem and in most cases the battery will discharge within
a few seconds.

In modern torches, the lamp is replaced by an LED, which is a semiconductor device (its
electrical properties lie between those of conductors, such as copper, and insulators, such
as glass). An LED is a two terminal device with special properties. One of the terminals is
known as the anode and the other as the cathode. If we replace the lamp in our torch with
an LED, then current will only flow and the LED will illuminate when the anode is
connected to the positive-battery terminal and the cathode to the negative-battery terminal,
as depicted in the following diagram:

|
/\\‘ Anode x
+ \ 4 +
VT T Cathode \) fp— T
- \ .
a) b)

If we connect the device the other way round as depicted in the right side of the preceding
diagram, then no current will flow; so, make sure that the batteries in your LED torch are
fitted the right way round! When the anode is connected to the positive-battery terminal,
the diode resistance is very low and the diode is said to be forward biased. When the
cathode is connected to the positive-battery terminal the diode exhibits an extremely high
resistance (negligible current flow) and the diode is said to be reversed biased. When
forward biased, the LED exhibits an extremely low resistance, so an additional resistor

must be placed in the circuit to limit the current flowing.

L

|
/—\ Anode

=1 — T Cathode

g ¥
N

GPIO can also be used to read the state of switches that are connected to microcontroller
pins. For this operation, each port bit must be configured as an input. When configured for
input (that is, output is disabled), each bit of the parallel port’s input data register is
connected to a pin on the integrated circuit (on which the embedded processor is
fabricated). Let’s assume that we wish to connect a simple push-button switch to an input
bit such that when the switch is operated, a voltage is applied to the port (pin), otherwise,
no voltage is applied. The circuit a) shown as follows will achieve this. A complementary
circuit that produces a voltage when the switch is open, and no voltage when the switch is
operated (closed) is shown in b):

Wee

MCroconirOller Meorooonirolor

Pull-Dicravn
Fotaiton

To eliminate the need for an additional resistor, the GPIO port input circuit includes one
that can be configured by software as pull-up, pull-down, or disconnected. Obviously,
when the port is configured as an output, both resistors are disconnected.

There’s more...

Section 7 of STMicroelectronics Reference manual RM0090 (www.st.com) for
microcontrollers featuring the Cortex-M4 provides comprehensive programming details
for the GPIO port. As well as producing logic signals (for example, making LEDs blink)
and reading logic levels (for example, from switches), GPIO ports also provide an I/0
path for other peripheral functions, such as Times and Digital-to-Analogue converters.
We’ll take a closer look at GPIO later on in this cookbook when we write programs that
include more functionality.

http://www.st.com

Estimating microcontroller performance

The millions of instructions that can be executed per second (MIPS) is one measure of
processor performance. This figure depends on the processor architecture, the clock speed,
the memory performance, and so on. The microcontroller can be clocked from one of
three oscillator sources. A high speed external (HSE) clock is derived from a 25 MHz
crystal oscillator connected between two pins of the microcontroller. A high speed
internal (HSI) clock is sourced from an internal 16 MHz resistor-capacitor (RC)
controlled oscillator, and a Phase Locked Loop (PLL) can be configured to provide
multiples of either HSE or HSI.

A peripheral called reset and clock control (RCC) allows the clock source to be selected
and configured using a circuit known as a clock tree. The RCC peripheral also sources
clocks for other microcontroller peripherals, and these also need to be configured.
Following a hard reset, the RCC configuration is determined by the RCC register default
values given in the RM0090 Reference Manual (www.st.com). Selecting Startup from the
Device submenu of the RTE manager copies an assembly language file named
startup_stm32f407xx.s (the .s file extension is conventionally used to identify assembly
language files) to our project. This file holds the exception table. The reset exception
generated by a hard reset (that is, activating the reset button on the evaluation board)
causes the microcontroller’s program counter to be loaded with the address of the reset
handler (identified by symbol Reset_Handler), and this in turn calls a function named
SystemInit() defined in the file, system_stm32f4xx.c . This function configures the
RCC to use the 16 MHz HSI clock before calling the function main().

http://www.st.com

How to do it...

1.

2.

Run helloBlinky, and measure the frequency of the ‘blinks’. We should see about 4
blinks/second or 4 Hz. It may be easier to count the blinks in a 10-second period.
When we examine the program code shown earlier, we see that the program spends
most of its time executing the two nested for loops. The statements inside these
loops are executed thousands of times. Some readers may have spotted that there are
no statements called inside the loop; but even so, the loop counter must be updated
on each iteration. This operation requires a addition (ADD) instruction followed by a
compare (CMP) instruction to be executed.

We need to do some elementary math to work out how long it will take to execute
these two instructions. Checking Table 3.1 of the ARM Cortex-M4 Processor
Technical Reference Manual, we see that these each take 1 cycle to execute. Since
SystemInit() configures the RCC to use the HSI (16 MHz)clock, the time needed to
switch the LED ON/OFF once will be 2 X (1000000) x 1/(16 x 106) x 2 (instructions)
= 250 ms (that is, about 4 times per second).

There’s more...

To understand how the processor achieves this level of performance, we need to look at
the processor architecture. The processor implements the ARMv7-M architecture profile
described at http://infocenter.arm.com. ARMv7-M is a 32-bit architecture and the internal
registers and data path are all 32-bit wide. ARMv7-M supports the Thumb Instruction Set
Architecture (ISA) with Thumb-2 technology that includes both 16 and 32-bit instructions.
ARM processors were originally inspired by Reduced Instruction Set Computing
(RISC) architectures developed in the 1980s. RISC architecture attempted to improve on
the performance of traditional computer architectures of the era that employed the so-
called Complex Instruction Set Computing (CISC) architectures, by defining an ISA
that supported a small number of instructions, each of which could be executed in one
processor clock cycle, and so achieve a performance advantage. In the three decades since
RISC was proposed, the size and complexity of RISC ISA’s has increased, but the goal is
still to minimize the number of clock cycles needed to execute each instruction. With this
in mind, ARM Cortex-M3 and M4 processors have a three-stage instruction pipeline and
Harvard bus architecture. Computers that use Harvard architecture have separate
memories and busses for instructions and data rather than the shared memory systems
used by von Neumann architectures, and the higher memory bandwidth this affords can
achieve better performance.

The Cortex-M4 processor also provides signal processing support including a Single
Instruction Multiple Data (SIMD) array processor and a fast Multiply Accumulator
(MAC). Together with an optional Floating Point Unit (FPU), these features allow the
Cortex-M4 to achieve much higher performance in Digital Signal Processing (DSP)
applications than the earlier Cortex-M3.

http://infocenter.arm.com

See also

Besides manufacturers’ data sheets, there are a few books that address the Cortex-M4.
Joseph Yiu’s books (http://store.elsevier.com/Newnes/IMP_73/) on the Cortex-M3 and M4
processors are aimed at programmers, embedded product designers, and System-on-Chip
(SoC) engineers. Books for undergraduate courses include a series of books by Jonathan
Valvano (http://users.ece.utexas.edu/~valvano) and a text written by Daniel Lewis
(http://catalogue.pearsoned.co.uk). Trevor Martin has also written an excellent guide to
STM32 microcontrollers. This document is one of a number of insider guides that can be
downloaded from http://www.hitex.com.

http://store.elsevier.com/Newnes/IMP_73/
http://users.ece.utexas.edu/~valvano
http://catalogue.pearsoned.co.uk
http://www.hitex.com

Chapter 2. C Language Programming

In this chapter, we will cover the following topics:

Configuring the hardware abstraction layer
Writing a C program to blink each LED in turn
Writing a function

Writing to the console window

Writing to the GLCD

Creating a game application — Stage 1
Creating a game application — Stage 2
Debugging your code using print statements
Using the debugger

Introduction

This chapter will introduce you to writing programs in C, a high-level language developed
in the 1970s and popular amongst embedded system developers. It is not the only high-
level language that can be used to target embedded system applications, but it is the most
widely used, because it produces executable code that is compact and very efficiently
executed. Standards for C are published by the American National Standards Institute
(ANSI) and the International Organization for Standardization (ISO). The current standard
for the C Programming Language (C11) is ISO/IEC 9899:2011 (http://www.open-

std.org/jtc1/sc22/wgl4/www/standards).
Becoming a competent C programmer will take time, and although this chapter provides a

starting point, you will undoubtedly need to consult other texts that provide a more
thorough treatment of the topic. There are also a number of online resources such as

http://crasseux.com/books/ctutorial/ and http://www.csd.uwo.ca/~jamie/C/index.html.

http://www.open-std.org/jtc1/sc22/wg14/www/standards
http://crasseux.com/books/ctutorial/
http://www.csd.uwo.ca/~jamie/C/index.html

Configuring the hardware abstraction
layer

The method we deployed in Chapter 1, A Practical Introduction to ARM® CORTEX®
used Startup.c to provide a very basic Run Time Environment (RTE), and although
this is sufficient to get started blinking LEDs, we need to define a more advanced RTE to
take advantage of the other peripherals we’ll meet in future recipes. The Application
Programmers Interface (API) that STMicroelectronics (STMicro) provide for their
microcontrollers is called a hardware abstraction layer (HAL), and CMSIS v2.0
compliant programs must configure this before initializing their peripherals. The RTE
manager offers two routes named Classic and STM32CubeMX to configure the HAL.
Selecting STM32CubeMX invokes a graphical tool developed by STMicro (freely
available at www.st.com) that creates the RTE (that is, generates RTE.h and imports the
associated libraries). We describe this process in Chapter 9, Embedded Toolchain. Since
we’re already familiar with the Classic API, we’ll continue to use this, and simply add a
few lines of code to configure the HAL.

http://www.st.com

How to do it...

For configuring the HAL follow the steps outlined:

1. Make a copy of the folder helloBlinky_c1vl which we created in Chapter 1, A
Practical Introduction to ARM® CORTEX®, Understanding the simple use of GPIO
and name it helloBlinky_c2v0.

Tip
Copying a folder and renaming it is a quick way to extend an existing project. Future
recipes refer to this process as cloning the project.

2. Open the project, and using the RTE manager, expand the CMSIS — RTOS (API)
software component. Check the KeilRTX option. Click on Resolve, and exit using

OK.
£ Manage Run_m@ﬁ
Software Compenent Sel. Vanant Version Description
= 4 Board Support MCBSTM32F400 [+]2.0.0 Keil Development Board MCBSTM32F400 4]
@ € A/D Converter (AP]) 100 A/D Converter Interface
o 4 Accelerometer (APT) ' [1.00 Accelerometer Interface
« 4 Buttons (APD ' 1.00 Buttons Interface
o @ Camera (AP]) 1.00 Camera Interface
@ € Graphic LCD (4P) 1.00 Graphic LCD Interface
@ 4 Gyroscope (AP]) 1.00 Gyroscope Interface
= @ Joystick (4P]) 1.00 Joystick Interface
=R 4 LED (AP]) {100 LED Interface
¥ LED o 200 LED Interface for Keil MCBSTM32F400 Development Bcard
9 Touchscreen (AP) . 11.00 Touchscreen Interface
= € emWin LCD (AP]) 11 emWin LCD Interface
2 CMSIS Cortex Microcontroller Software Interface Components
¥ CORE @ 430 MSIS-CORE for e= n
¥ Dsp 146 MSIS-DSP Library for - n
= 4 RTOS (AP]) 10 MSIS- A
' @ Keil RTX @ [4.800 CMSIS-RTOS RTX implementation for Cortex-b, SCO00, and SC300
1] = € CMSIS Driver Unified Device Drivers compliant to CMSIS-Drver Specifications]
N & Compiler ARM Compiler Software Extensions
B ‘ Device Startup, System Setup
¥ Startup @ 240 System Startup for STMicroelectronics STM32F4 Series
- ’ STM32Cube Framework (API) STM Fr ork
@ Classic @ 140 onfiguration via RTE Device.h
¥ STM32CubeMX = 100 Cenfiguration via STM32CubeMX L!

Ay ammm

Validation Qutput Description

<[level}smFm]f Detais | (’ﬁ Cancel Help |

3. Add #include "cmsis_os.h"

4. Add a function prototype declaration, that is, void SystemClock_Config(void) in
the file helloBlinky.c.

5. Add the following lines of code (copy and paste from the example project CMSIS-
RTOS Blinky):

#ifdef __RTX

extern uint32_t os_time;

uint32_t HAL_GetTick(void) {
return os_time;
}

#endif

. Copy the function named SystemClock_Config () from the example project
CMSIS-RTOS Blinky, and paste this into the file helloBlinky.c.

. Add calls to HAL_Init () and SystemClock_Config () at the beginning of
main(). Our source code file helloBlinky.c should now appear as follows:

#include "stm32f4xx_hal.h"
#include "Board LED.h"
#include "cmsis_os.h"

/* Function Prototype */
void SystemClock_Config(void);

#ifdef __ RTX
extern uint32_t os_time;

uint32_t HAL_GetTick(void) {
return os_time;

}
#endif

/**
* System Clock Configuration
*/

void SystemClock_Config(void) {
RCC_OscInitTypeDef RCC_OscInitStruct;
RCC_ClkInitTypeDef RCC_ClkInitStruct;

/* Enable Power Control clock */
__HAL_RCC_PWR_CLK_ENABLE();

/* The voltage scaling allows optimizing the power
consumption when the device is clocked below the
maximum system frequency (see datasheet). */

_ HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);

/* Enable HSE Oscillator and activate PLL

with HSE as source */
RCC_OscInitStruct.OscillatorType =RCC_OSCILLATORTYPE_HSE;
RCC_OscInitStruct.HSEState = RCC_HSE_ON;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;

RCC_OscInitStruct.PLL.PLLM = 25;
RCC_OscInitStruct.PLL.PLLN = 336;
RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2;
RCC_OscInitStruct.PLL.PLLQ = 7;

HAL_RCC_OscConfig(&RCC_OscInitStruct);

/* Select PLL as system clock source and configure
the HCLK, PCLK1 and PCLK2 clocks dividers */
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_SYSCLK |
RCC_CLOCKTYPE_PCLK1 |
RCC_CLOCKTYPE_PCLKZ2;
RCC_ClkInitStruct.SYSCLKSource =
RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1i;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV4;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV2;
HAL_RCC_ClockConfig(&RCC_ClkInitStruct,
FLASH_LATENCY_5);
}

/**
* Main function
*/

int main (void) {
const unsigned int Off_Code = 0x0000;
const unsigned int On_Code = OXO0FF;
unsigned int 1i;

HAL_Init (); /* Init Hardware Abstraction Layer */

SystemClock_Config (); /* Config Clocks */
LED_Initialize (); /* LED Init */
// etc..

}

8. Build and run the program.

Tip
Notice that the code executes about 10 times faster than the recipe of Chapter 1, A

Practical Introduction to ARM® CORTEX®. Try commenting out the call
SystemClock_Config () inmain () by placing // immediately before the statement.
Rebuild and run. Compare the execution speed of the two versions.

How it works...

The function SystemClock_Config () comprehensively configures the clock tree shown
in Figure 16 of STMicro’s reference manual RM0090 (www.st.com). It selects the Phase

Locked Loop (PLL) clock derived from the 25 MHz crystal controlled HSE clock as the

System Clock, and configures the multiplier N = 336 and dividers P = 2 and M = 25. The
system clock frequency is given by:

Tx/Rx baud= Fo
8(2xOVERS)xUSARTDIV

The configuration values are held in two data structures (structs) called
RCC_OscInitStruct and RCC_ClkInitStruct.

As we will see later in the chapter, functions may be declared implicitly by the function
definition or explicitly by a function prototype. Function prototypes are considered to be
preferable, and these are often declared in header files (for example, see Board_LED.h).
So, in case we’ve given a prototype declaration first,

Structs just identify the arrangements of data in memory. We will discuss structs later once
we’ve dealt with more basic data types such as integers.

Finally, the following section of code:

#include "cmsis_os.h"

#ifdef __RTX
extern uint32_t os_time;

uint32_t HAL_GetTick(void) {
return os_time;

}
#endif

It isn’t strictly necessary for a program that only uses GPIO, but subsequent recipes using
other peripherals need it. So, to avoid illustrating the configuration each time, we’ll
assume this boilerplate is included in all future recipes.

Lastly, we’ve called our source code file helloBlinky.c. This is the same name we gave
the project. By convention, this indicates that this source code file contains the main()
function.

http://www.st.com

Writing a C program to blink each LED
in turn

This recipe extends the helloBlinky c2v0 recipe introduced in the previous section, and
includes a few more C programming statements. We’ll call our new recipe
helloBlinky_c2vi. uVision5’s IDE features a so-called folding editor that allows blocks
of code and comments to be hidden or expanded. This is quite useful for hiding
complexity, allowing us to focus on the important details.

Getting ready...

First, we’ll draw a flowchart describing what our program will do. Don’t worry about the
details at this stage, we just need to describe the behavior. A flowchart describing
helloBlinky_c2v1 is shown as follows:

(samr) Begin/End

hY
| |
- Decizion
Turn Specified LED | Fale o g |
on | -‘—{Eﬁﬁltlliljj 5 |
| P

"

N - .
o> =
et / |

.,
e =

- | >
v |
|

Turn Specified LED
off

£ » |
I |
’f—vf/ |

InCrEmEeEnt num | |

[modulo 8)

a) by

Our program will need to change the value of a number stored in memory that determines
the LED that is illuminated. Numbers coded in this way are called variables. The name of
the variable is chosen by the programmer (usually programmers try to pick meaningful
names); in this case, it’s referred to by the identifier num. Since there are only eight LEDs,
the values we assign to num are 0,1,2,3,4,5,6, and 7. The subroutines LED_0On and LED_Off
use the variable to determine which LED is switched.

The flowchart illustrates several different types of operation, identified by the geometrical
shapes shown in the preceding diagram as follows:

Diamond: A decision operation with two outcomes Yes (True) or No (False)
Rectangle: A process operation

Parallelogram: A data operation

Rounded rectangle: Start/End

Within the flowchart, we can identify processes that are executed within a loop, and so are
repeated until a certain condition is fulfilled. Structures such as this are a common feature

in algorithms, and high-level programming languages have evolved to enable such
operations to be efficiently coded.

How to do it...

1. Clone helloBlinky_c2v0 to create helloBlinky_c2vi.
2. Modify main() as follows (keep the boilerplate unchanged):

int main (void) {
unsigned int 1i;
unsigned int num;

HAL_Init (); /* Init Hardware Abstraction Layer */
SystemClock_Config (); /* Config Clocks */
LED_Initialize (); /* LED Init */
for (;;) { /* Loop forever */
LED_On (num); /* Turn LEDs on */
for (1 = 0; i < 1000000; i++)
/* empty statement */ ; /* Wait */
LED_Off (num); /* Turn LEDs off */
for (1 = 0; i < 1000000; i++)
/* empty statement */ ; /* Wait */

num = (num+1)%8; /* increment num (modulo-8) */
} /* end for */
}
3. Once we have entered the code, we build it and download it to the evaluation board
in exactly manner as we did for the helloBlinky_c2ve recipe.
4. Run the program by pressing RESET on the evaluation board.

How it works...

The program starts with two statements beginning with a # character. These are not
program statements but directives for the C preprocessor. The preprocessor resolves all
these directives before the C compiler parses the rest of the code. It is considered good
practice to group these together at the start of the program. Preprocessor directives can
only extend over one line, and they are not terminated by a semicolon. However, to aid
readability, longer directives can be split over several lines by using a \ character to
terminate each block of text. There are six types of directives:

Macro definition: #define and #undef

Conditional inclusion: #ifdef, #ifndef, #if, #endif, #else, and #elsif
Line control directive: #1ine

Error directive: #error

File inclusion: #include

Pragma directive: #pragma

We’ll briefly explain these directives as they are introduced in the recipes we consider.
However, there are plenty of online resources available for those who feel they need more
detail (for example, http://gcc.gnu.org/onlinedocs/cpp/). The preprocessor parses the
headers:

#include "stm32f4xx_hal.h"
#include "Board_LED.h"
#include "cmsis_os.h"

replacing each #include directive with the contents of the files stm32f4xx_hal.h,
Board_LED.h. and cmsis_os.h. By convention, include files adopt . h file extensions,
while those not included in other files are given a .c file extension. Later on, we’ll meet
another style of #include directive:

#include <stdio.h>

In this case, the filename is enclosed in angled brackets. This syntax is used to indicate
that the compiler’s standard include path is to be searched. When the filename is enclosed
in double quotes, the search path includes the current directory. We can add folders in the
include path, and select compiler options using the C/C++ tab in the project options
window.

The next statement declares a function called main(). Every C program must include one
(but only one) function named main(). The structure of the main() function of all the
embedded C programs that we’ll meet is as follows:

int main (void) {

}

We identify the input arguments (args) of main() inside the brackets; in this case, there are

http://gcc.gnu.org/onlinedocs/cpp/

none, and so we use the reserved word void to indicate none are to be expected. Before
main() we see (primitive data type) int, indicating that main() returns an integer.
Conventionally, main() returns a value 0 to indicate to the program that called main()
(that is, the operating system) that the program terminated successfully. But since our
program doesn’t run under an operating system and typically declares an infinite loop
(called a superloop), there is no need to include a return statement at the end of main() (if
we do, the compiler will warn us that it’s not reachable). The other feature of main() are
the braces, { and }, that are used to identify the beginning and end of the block of
statements that comprise main(). Note that the curly bracket (opening brace) immediately
following main() is paired with the closing brace that terminates the statements within
main(). These braces mark the beginning and end of the main() function; the statements
inside the braces belong to main (). We indent these statements to make this clearer. The
first two statements in main() are variable declarations. Because C is a strongly-typed
language, we must declare all our variables before we use them. In so doing, we’re telling
the compiler how many bits to use to represent the number so that it can determine the size
of the memory space needed to store them.

The values that a computer manipulates are stored in binary. In the binary system, number
values are represented by a sequence of digits, just like the decimal system. However,
whereas the decimal system uses digits 0,1,2,3,4,5,6,7,8, and 9, the binary system uses
only 0 and 1. Digits 0 and 1 in the binary number system are called bits.

The decimal system is a positional number system, where the value of the number is
determined by the position of the digits relative to the decimal point. Conventionally,
when we write whole numbers, we assume the decimal point is immediately to the right of
the least significant digit. Hence, if there are three digits, each represents (from left to

right) the number of hundreds (102), tens (101), and units (100), for example:
36510 = (3x10°) + (6x 101) + (5 x 100)

Consider a similar 3-bit binary number. Here, each bit represents (from left to right)

multiples of 22, 21, and 20, for example:
101o=(1x29)+0x2) + @ x29 =549

In the preceding examples, we are using a subscript to represent the base (or radix) of the
number system just to avoid any confusion.

Inside a computer, each bit is represented as an electrical signal; typically a +ve signal
voltage represents a ‘1’ and no voltage (0 v) represents ‘0’. To manipulate a 3-bit binary
number, a computer must provide three signal transmission paths, and the registers within
the Central Processing Unit (CPU) must be capable of storing 3 bits. You have probably
already spotted that three bits isn’t going to be of much use, as a 3-bit computer can only
manipulate quantities between 01 and 71(. Historically, some simple 3-bit computers

have been used for elementary control tasks, but many more have been designed to
manipulate 8, 16, 32, and 64 bits. The number of bits that a computer has been designed to
manipulate is called its word length. As we’ve seen, the ARM Cortex has been designed

with 32-bit registers (that is, a 32-bit word length). A typical ARM Cortex register can be
visualized as 32 cells, each able to store 1 bit of data:

= LT
1l
A

The preceding register is shown storing a binary representation of the decimal number:

Ax22) +1x230)+ax227)+ax2?)y+ax27)+ax23)+ax20)=
33576713631

A 32-bit register can store positive numbers between 0 and (232—1), that is, (0 —
42949671991 (). Most of us (me included!) need a pocket calculator to convert between

binary and decimal (and vice versa), so we need a more human-friendly way of efficiently
representing binary quantities. Hexadecimal (radix 16) representations provides this by
allowing groups of 4 bits (representing 0-151() to be mapped to digits

0,1,2,3,4,5,6,7,8,9,A,B,C,D,E, and F , that is:

|
I

Hence, 110010000010001000000000000010012 = 3357671363109 = C82200091¢. We

identify hexadecimal (hex) numbers in C programs using the syntax 0xC8220009. In this
case, since there are 8 hex digits, we have an 8 x 4 = 32-bit binary word.

The number of bits used to represent a number is determined by its data type. Some of the
more common basic (also called primitive) C data types are:

char (8-bit)

short int (16 bits)

unsigned short int (16 bits)
int (32 bits)

unsigned int (32 bits)

long int (64 bits)

unsigned long int (64 bits)

A full list of basic types is available at https://en.wikipedia.org/wiki/C_data_types. Data
types qualified by the identifier unsigned indicate that the value should be interpreted as
representing only positive quantities. Sometimes, embedded developers define aliases for
the basic data types, such as int32_t, uint32_t, and so on. We’ll explain the purpose of
this in Chapter 3, Assembly Language Programming but for the time being, don’t be
concerned if you see these identifiers used in library functions.

The helloBlinky_c1vi recipe of Chapter 1, A Practical Introduction to ARM®

https://en.wikipedia.org/wiki/C_data_types

CORTEX® declares two variables, both 32 bits in length:

const unsigned int num = 0O;

unsigned int 1i;

The first variable declaration is preceded by the qualifier const and assigned a value O.
The const qualifier tells the compiler to treat the variable as a constant, and so, if we
attempt to change its value in a subsequent assignment statement, then the compiler will
issue an error. When a variable is declared, the compiler just reserves somewhere to store
it; this might be in a register (registers are places that data can be stored in the processor)
or in memory. Values are assigned to variables by assignment statements; for example,

p=0;
places 0 in the memory location or register referenced by the identifier p.

To generate a more interesting LED lightshow, we’ll need to write to a different LED each
time we execute the superloop. We use the functions LED_0n() and LED_Off () to switch
the LEDs (as we did in helloBlinky_c1v1), but this time, we increment that value of the
variable (num) that controls the LED that we switch each time we iterate the superloop.
Since there are 8 LEDs (num = 0 represents the Least Significant LED and num = 7 the
Most Significant), we need num to behave as a modulo-8 counter (that is, 7+1 = 0). The
statement

num = (num+1)%8;

achieves this. The % operator performs modulo division. Of course, we don’t need the
const qualifier in the declaration for num, as its value is changed within main(). Variable i
is used by the for loop to implement a delay in exactly the same way as it was in our
helloBlinky_c1vl recipe.

There’s more...

High-level languages such as C typically provide mechanisms that allow the programmer
to express decisions and iterations within the algorithm by means of IF, FOR, and WHILE
structures shown in the following diagram (a). uVision5 provides common templates
shown in (b) to help the programmer include these structures in their code.

IF-ELSE FOR/WHILE LOOP
_____________ 1 SN e
| |
| ’ L 4 | |
Pl Hinclude
| False /’/ HH\. True | | i _\““;‘?H True | continue
| —<Condition? >——— | | ‘{?ﬂdltlﬂj;,)—b Loop Process | ggum
\H\. //’ | ~ | for
| o | fpainter_tupe
| False | function
| = ¥ | | | Header
if
| Process B Process A | | | iﬁt.:t
| | awitrh
| | woid
| l l | | | wihile
|_ ____________ s |_ ____________ | | Ee || {3F 0,1
a) b)

The helloBlinky_c1vi folder we developed in Chapter 1, A Practical Introduction to

ARM® CORTEX® was quite small and could easily be described by a flowchart (try to
sketch it), but as programs become larger, their flowcharts become large and unwieldy.
Handling complexity is a common problem in all engineering disciplines and one that is
solved by a technique called hierarchical decomposition. This is a long name for
something quite simple. It just means we keep on subdividing complex designs into
smaller and smaller parts until they become simple enough to handle.

Writing a function

Functions (sometimes called subroutines) are used to hide the complexity of underlying
program statements, thereby presenting a more abstract view of the program. Abstraction
is commonplace in engineering; for example, we can think of a car as comprising
subassemblies that include body, engine, gearbox, suspension, and so on. The complexity
within these subassemblies is only important to those specialists such as designers, test
engineers, and technicians who need to interact with them. For example, the designers of
the gearbox don’t need to concern themselves with the intricacies of the engine, they just
need to know a few important parameters. Functions provide a similar abstraction
mechanism. We already met the functions LED_Initialize(); LED_On(), and LED_Off()
used to initialize and switch the LEDs. We don’t need to know exactly how these
functions do their job but only how to use them. C provides functions as a mechanism of
achieving hierarchical decomposition. For example, our main() function of
helloBinky_c2v1 is becoming a bit cluttered and difficult to follow. To simplify the
structure, the two for loops that simply introduce a delay could be repackaged as a
function called delay() that accepts one input arg (that determines the length of the delay)
and returns no output args (that is, void).

How to do it

1. Clone the helloBlinky_c2v1 project to give helloBlinky_c2v2.
2. Edit Blinky.c, and define the function delay() by adding the following:

void delay (unsigned integer d) {
unsigned integer 1i;

for (i=0; i < d; i++)
/* empty statement */ ;
}

3. It doesn’t matter if the definition is placed before or after main (), but it shouldn’t
be nested inside main() (Note: functions defined inside other functions are called
nested functions). Declare the function by including a function prototype declaration
at the start of the program (that is, before the function is defined).

void delay (unsigned int);
4. Replace the statements:

for (1 = 0; 1 < 1000000; i++)
/* empty statement */ ; /* Wait */

5. Call the following function:
delay (num_ticks);
6. Declare a new variable in main() and initialize it.
const unsigned int num_ticks = 500000;
7. The relevant changes are shown as follows (omitting boilerplate code):

void delay (unsigned int); /* Func Prototype */

int main (void) {
const unsigned int max_LEDs = 8;
const unsigned int num_ticks = 500000;
unsigned int num = 0;

HAL_Init (); /* Init Hardware Abstraction Layer */

SystemClock_Config (); /* Config Clocks */
LED_Initialize (); /* LED Init */
for (;;) { /* Loop forever */
LED_On (num); /* Turn LEDs on */
delay (num_ticks);
LED_Off (num); /* Turn LEDs off */

delay (num_ticks);
num = (num+1l)%max_LEDs; /* increment num (mod-8) */
} /* end for */
} /* end main () */

void delay (unsigned int d){ /* Function Def */
unsigned int 1i;

for (1 = 0; 1 < d; i++)
/* empty statement */ ; /* Wait */
} /* end delay () */

How it works...

Essentially, we’ve moved the for loop which implements the delay to within the function.
The for loop itself is very similar to that used by helloBlinky_c2vi, except that the
compare instruction used to terminate the loop now references the input argument d rather
than a literal value (that is, 1000000).

for (i=0; i < d; i++) {

}

This is advantageous because it parameterizes the delay function, thereby allowing it to be
used to implement different length delays, determined by the value of input argument d.
An important feature of all programming languages is the mechanism they use to pass
arguments to a function when it is called. There are two general models, called pass-by-
value and pass-by-reference. The delay function call we’ve used here:

delay (num_ticks);

adopts a pass-by-value model. In this case, a copy of the variable num_ticks is passed to
the delay function, and this copy can be referenced through the variable d. The statements
inside the function can only access the variables declared within the function (that is, local
to the function) and the input arguments. The function may change the value of the copy,
but when the function terminates the copy (and the so-called automatic variables declared
inside the function cease to exist). This model works fine in this case, because the function
doesn’t need to change the value of the variable num_ticks declared in main() (that is, the
calling function).

All identifiers in C need to be declared before they are used. This is true of functions as
well as variables (you may be catching onto the idea that C compilers don’t tolerate
surprises!), so functions should be declared before they are defined or called. A function
declaration (also called a function prototype) includes the type of variable returned by the
function, and the types of all the input args. C compilers accept the function definition as
an implicit declaration and lazy programmers sometimes take advantage of this and omit
the function prototype. But in this case, it must occur before the function is called.
Nevertheless, it is considered good practice to include prototypes for all functions used.
Function prototypes are usually placed at the beginning of the program or in a separate
#include file. The prototype for our delay function looks like this:

void delay (unsigned integer);

Tip

White space characters are ignored by the compiler; we only include them to make our
code more readable.

There’s more...

If the delay function did need access to main functions variable, num_ticks, then it would
need to access the memory location where num_ticks was stored. In this case, rather than
passing a copy, we need to pass a reference (or so-called pointer) to the variable. C
includes two special operators (* and &) for handling memory references. The ability to
manipulate pointers as well as variables makes C a very powerful language, and it is a
feature that is particularly useful for embedded systems programming. Consider the
declaration:

unsigned int *ptr;

Here, ptr is the name of our variable, but in this case, it is preceded by the dereferencing
operator * which tells the compiler it’s a pointer variable, and so, the compiler must
reserve enough memory to store an address. It also says the address will reference (that is,
point to) an unsigned integer. When the pointer is declared and hasn’t been assigned, we
say the pointer is NULL (that is, its value cannot be guaranteed). To assign the pointer, we
need to find the address of the variable num_ticks; the & operator achieves this. For
example:

ptr = &num_ticks;

Let’s consider another version of the delay function that doesn’t declare the local variable
i, but instead, employs a while loop that decrements the variable num_ticks declared in
main. To do this, the function call to delay (within main) will need to pass a reference (or
pointer) to num_ticks, and the delay() function will need to be told to expect a pointer to
an unsigned integer as an input arg. Therefore, the function prototype will need to be
changed to

void delay (unsigned int *);

and the function declaration itself becomes:
void delay (unsigned int *ptr) {

while (*ptr > 0)
*ptr = (*ptr)-1; /* Wait */
}
The delay function uses the dereferencing operator * whenever it needs to access the

value pointed to by ptr. The following recipe (helloBlinky_c2v3) represents a version of
helloBlinky that uses pointers:

void delay (unsigned int *); /* Func Prototype */

int main (void) {
const unsigned int max_LEDs = 8;
const unsigned int wait_period = 500000;
unsigned int *ptr;
unsigned int num_ticks;
unsigned int num = 0;

HAL_Init (); /* Init Hardware Abstraction Layer */

SystemClock_Config (); /* Config Clocks */

LED_Initialize(); /* LED Init */

for (;;) { /* Loop forever */
LED_On (num); /* LED on */
num_ticks = wait_period; /* (re)set delay */
ptr = &num_ticks; /* assign pointer */
delay (ptr); /* call delay function */
LED_Off (num); /* LED off */
num_ticks = wait_period; /* (re)set delay */
delay (ptr); /* call delay function */
num = (num+1)%max_LEDs; /* increment num (mod-8) */

} /* end for */
} /* end main () */

void delay (unsigned int *p){ /* Function Def */

while (*p > 0)
*p = *p-1; /* Wait */

} /* end delay () */

The preceding version of helloBlinky is just a vehicle for illustrating pointers, and the
earlier recipe is preferable and easier to understand. So why are pointers used? Well, if our
delay function needed access to many values, making the copies needed for pass-by-value
would be time-consuming and impractical. This is particularly true when we come to
consider passing arrays of data, strings (arrays of characters), and so on.

Writing to the console window

While a variant of the helloBlinky recipe is usually the first program introduced in most
embedded tutorials, the first program found most C textbooks usually outputs the string
“Hello World” to the screen. To run such a program on our evaluation board, we’ll need to

install a terminal emulation program on our PC host. PuTTY®
http://www.chiark.greenend.org.uk/~sgtatham/putty/, an open source terminal emulation
program is a good choice. We also need to connect the evaluation board to the PC’s
(COM) serial port. Most PCs and laptops are no longer fitted with 9-pin D-type (COM)
ports, so you may need to purchase a USB to Serial Adaptor cable.

http://www.chiark.greenend.org.uk/~sgtatham/putty/

Getting ready

Follow these steps to install PuTTY, and connect the evaluation board to the PC’s COM

port:
1.

2.

3.

If you’re using a USB Serial Adaptor, then plug it into the laptop, and wait for the
driver to be installed.

Open the Control Panel, and make a note of the COM port that has been allocated
(you will need this later to configure PuTTY).

=nREn X
@U?|r‘§ ¢ Control Panel » Hardware and Sound » Devices and Printers » - | +4 | | Search Devices and Printers 2 |
— o ol m——
Add a device Add a printer = = -Z@ZI

- Devices (4)
> Printers and Faxes (7)

4 Unspecified (2)

2 3

Keil ULINK2 Prolific
USB-to-Serial
Comm Port
(COM3)
.‘f 13 items
— "
=l gj

Connect the 9-Pin D-type UART1/3/4 connector on the evaluation board to the PC
USB port, and ensure that the jumpers J13 and J14 are set to short pins 1 and 2
thereby selecting USART4. Pin 1 can be easily be identified by its square solder pad,
easily visible on the underside of the board. Install PuTTY, and configure the serial
connection to use the COM port you previously identified in Control Panel,
configured to 115200 Baud, 8 data bits, 1 stop-bit, no parity or flow control.

ﬁ PuTTY Reconfiguration

Categony:

[=J- Teminal

- Keyboard
... Bell

- Features
= Window

- Appearance
- Behawiour
- Translation
- Selection
- Colours

=- Cpnnectinn

.....

Options controlling local senal lines

Configure the serial line
Speed (baud)

Data bits

Stop bits

Parity

Flow control

115200
g
1

[Mone

[Mone

[

Lophy

J{

Cancel

How to do it...

1. Create a new folder named helloworld; invoke uVision5, and create a new project.
Using the RTE manager, select the MCBSTM32F400 board, but don’t check any of
the board support tick boxes. Check CMSIS - CORE, RTOS (API) - KeilRTX,
Device — Startup, and Device -~ STM32Cube Framework (API) - Classic.
Click Resolve to automatically load any additional software components needed.
Then exit by clicking on OK.

& Manage Run-Time Endronmant | IR |] |

Software Compaonent Sel, Variant Version Description
® 4 Board Support MCBSTM32F400 [+] 200 Keil Development Board MCBSTM32F400
= ° CMSIS Cortex Microcontroller Software Interface Components
¥ CORE @ 430 CMSIS-CORE for Cortex-M, SC000, and SC300
¥ Dsp 146 MSIS-DSP Library for Cortex-M ni
5 4 RTOS (AP]) 10 MBSIS-RT QS AP] for Cortex-M, SC000, and SC300
¥ Keil RTX @ 4800 -RT ¥ impl ion fi -M
® @ CMSIS Driver Unified Device Drivers compliant to CMSIS-Driver Specifications
@ € Compiler ARM Compiler Software Extensions
=4 Device Startup, System Setup
¥ Startup @ 240 System Startup for STMicroelectronics STM32F4 Series
ER 3 STM32Cube Framework (APD) STM32Cube Framework
¥ Classic o 140 Configuration via RTE Device.h
¥ STM32CubeMX Ll 100 Configuration via STM32CubeX
w4 STM32Cube HAL STM32F4wex Hardware Abstraction Layer (HAL) Drivers
© 4 File System MDK-Pro 6.5.0 File Access on various storage devices
W Graphics MDK-Pro 5300 User Interface on graphical LCD displays
| @ 4 Graphics Display Display Interface including configuration for emWIN
o @ Network MDK-Pro 700 [P/ TP Networking using Ethernet or Serial protocols
w @ USB MDK-Pro 650 USB Communication with various device classes
Validation Qutput Description

P ——
(i HesuNe_)SeledPacks Detais (o«] cancel Help |

S

2. The source code for this project is divided between three source code files. Create a
new file (File — New...), and enter the source code shown. Save the file (File
— SaveAs) as hellowWorld.c. The source file named helloworld.c contains the main
function in the project, illustrated using the folding editor feature to hide the
boilerplate.

/*'k***

* Recipe: helloworld_c2vO
* File: helloworld.c

* Purpose: Serial I/0 Example
kkhkkhkkhkkhkkhkhkkhkhkkhkhkkhkhkkhkhkkhkhkkhkhkkhhkkhkhkhhkkhhkhhkkhhkhhkhkkhhkikkhkhkihkhkkhkikkkkx*

*

* Modification History
* 2014 Created
* 03.12.15 Updated for uvision_5.17 & DFP_2.6.0

*

* Dr Mark Fisher, CMP, UEA, Norwich, UK.

***/

#include "stm32F4xx_hal.h"
#include "cmsis_os.h"
#include <stdio.h>
#include "Serial.h"

/* Function prototypes */

void wait(unsigned long delay);
extern void init_serial(void);
extern int sendchar(int c);
extern int getkey(void);

#ifdef __RTX

/* Function prototypes */

void wait(unsigned long delay);
extern void init_serial(void);
extern int sendchar(int c);
extern int getkey(void);

#ifdef __ RTX

K o e */

K o o e e o e e e e o e */
void wait (unsigned long delay){
unsigned long 1i;

for (1 = 0; 1 < delay; i++)

l4

}

int main (void) {
HAL_Init (); /* Init Hardware Abstraction Layer */
SystemClock_Config (); /* Config Clocks */
SER_Init();

for (;;) { /* Loop forever */
wait (1000000);
printf("Hello World!\n");
}
}

. In the project window, right-click on the Source Group 1 folder, and add the source
file helloworld.c to the project.

File Edit View Project Flash Debug Peripherals Tools 3SVC5 Window Help
NEd@ s B9« P | == | ® _enuc_ Fa#e @le o &&|[F]
" c | Loan =
= € | 53] rarget1 &2 oo
Pi'o}:e"ét n 7 Seriskh] Seralc | |] Retargetc |] helloworld.c - X
=¥ Project: helloWorld = 15/ A
=gy Targetl 2 T * Hame: Serial.c (W
= L5 Source Gree= 1 3 | * Purpose: Low level serial routines :‘
& j helloWt 4%, Options for Group 'Source Graup 1'.., Alt+F7 3 |
@ REtEI’Q: Add New Item to Group ‘Source Group 1'... fle iz part of the uVision/ARM development T
L [seriaks RGBS ae G Thls sortwdre Xy gnly be ':;se't'] under EHg
[seriald Bf a valid, current, end user licence from
: & cmsis Remaye Group 'Source Group 1’ and its Files br a compatible version of EKEIL software
) prent tools. Nothing else gives you the
5‘@ Device ISP Eo use this software.
& 5] stm32 8 Rebuild all target files
= ﬁ’ tm32 Build Target = Bftware is supplied "AS IS without
- fies of any kind.
w57 stm3z 2 ¥
i J Manage Project Items..,
@ %7 stm3z bht (c) 2004-2011 Keil - An ARM Company.
(] ﬁ) stm32 |V | Show Include File Dependencies ghts reserved.
£} ﬁ) stm32ffaChal_rec.c ube i |_ 2
o) et il S 19
‘J J ’i' 20 Finclude "stm32f4xx.h" /% SIM3Z2F4x= Defs */ >
=] Project @B-:--:-!'s {} Functions | [, Templates < L1} | ’
Build Cutput a
#%% Osing Compiler 'V5.06 update 1 (build 61)', folder: 'C:\Keil_vS\ARM\ARMCC\Bin' -
Build target 'Target 1°'
compiling Retarget.c...
compiling Serial.c...
compiling helloWorld.c...
linking...
Program Size: Code=1014 RO-data=442 BW-data=12 ZI-data=1636
™. \Objects\helloBlinky.axf™ - 0 Error(s), 0 Warning(s).
Build Time Elapsed: 00:00:00
L
=] Build Qutput | L& Find In Files
Add Existing Files to current Project Group ULINEZ2/ME Cortex Debugger L:87 53 EAP NUM SCEL OVR R/W

o] E-:@‘ B }’11 EZI e’ @ S LS LAY 03..-;;:;522015 |

Create a new file, enter the following code, name the new file Retarget.c, and add it
in the project. This source file redefines some functions used by C’s standard input
output library, <stdio.h>.

2
* Name: Retarget.c
* Purpose: 'Retarget' layer for target-
* dependent low level functions
* Note(s)
*

* This file is part of the uVision/ARM
* development tools.

#include <stdio.h>
#include <rt_misc.h>
#include "Serial.h"

#pragma import(__use_no_semihosting_swi)

struct __FILE {

int handle;

/* Add whatever you need here */
i
FILE _ stdout;

FILE __stdin;

int fputc(int c, FILE *f) {
return (SER_PutChar(c));
}

int fgetc(FILE *f) {
return (SER_GetChar());
3

int ferror(FILE *f) {
/* Your implementation of ferror */
return EOF;

}

void _ttywrch(int c) {
SER_PutChar(c);
}

void _sys_exit(int return_code) {
label: goto label; /* endless loop */

}

. Create a new file, enter the SER_Init() function, name the new file Serial.c, and
add it in the project.

/o e o o o e e e e e e e eeeeeo -
Name: Serial.c

Purpose: Low level serial routines

Note(s):

This file is part of the uVision/ARM

development tools.
___ */
#include "stm32f4xx.h" /* STM32F4xx Defs */
#include "Serial.h"

* %F % X X *

#ifdef _ DBG_ITM
volatile int32_t ITM_RxBuffer;
#endif

* SER_Init: 1Initialize Serial Interface

void SER_Init (void) {
#ifdef __DBG_ITM
ITM_RxBuffer = ITM_RXBUFFER_EMPTY;

#else
RCC->APB1ENR |= (1UL << 19); /* Enable
USART4 clock */
RCC->APB2ENR |= (1UL << 0); /* Enable
AFIO clock */
RCC->AHB1ENR |= (1UL << 2); /* Enable
GPIOC clock */
GPIOC->MODER &= OXFFOFFFFF;
GPIOC->MODER |= OXO0AQ0000;

GPIOC->AFR[1] |= 0x00008800; /* PC10 UART4_TX,
PC11 UART4_Rx (AF8) */

/* Configure UART4: 115200 baud @ 42MHz, 8 bits,
1 stop bit, no parity */

UART4->BRR = (22 << 4) | 12;
UART4->CR2 = 0x0000;
UART4->CR1 = 0x200C,
#endif
}
. Add the functions SER_getc() and SER_putc() to Serial.c
2
* SER_PutChar: Write a char to Serial Port
K o e Y Y e e Do */

int32_t SER_PutChar (int32_t ch) {
#ifdef _ DBG_ITM

int 1i;

ITM_SendChar (ch & OXFF);

for (i = 10000; i; i--)

4
#else
while (!(UART4->SR & 0x0080));
UART4->DR = (ch & OXxFF);
#endif

return (ch);

}

* SER_GetChar: Read a char from Serial Port

int32_t SER_GetChar (void) {
#ifdef _ DBG_ITM
if (ITM_CheckChar())
return ITM_ReceiveChar();
#else
if (UART4->SR & 0x0020)
return (UART4->DR);
#endif
return (-1);

}

. Create a new file, enter the following code, name the file Serial.h, and add it to the
project. This is the header file that declares the function prototypes for Serial.c

2
* Name: Serial.h
* Purpose: Low level serial definitions
* Note(s):
K o o e e e e e e e e o e Y M */

#ifndef __ SERIAL_H
#define __ SERIAL_H

extern void SER_Init (void);

extern int SER_GetChar (void);
extern int SER_PutChar (int c);
#endif

Configure PuTTY as shown in part a) of the following image. Build, download, and
run the program to achieve the output shown in b)

= = ———
| £ COME - PuTTY
fapnn Ciptora contvoling B tarmeal smigon
Eﬁ"" Sl it Dl O
- 4 Bufz g mocs inkuly on
Bl DL Cingens Msde iy by
-] bt CF i vy LF
Wirakrs o] gt LE in awesy OR
FeeEwe M Bk] Sk 40 s BoTean
Betarvenr Eraabie birwureg
Transator, T
Smipcior BTTY
Codwectes Lre dincpine cptora
L Lozl asche
hutz # Foroa on Forma of
Ll b g
LT Faro o Foons of
Farmte cortrobed prrirg

Pintertz sardd AMSI perter cutpad 1o

ok fancel

How it works...

The evaluation board and PC communicate by exchanging data using an RS232 serial
Input/Output (I/0) connection (http://en.wikipedia.org/wiki/RS-232). RS232 is a 2-wire
full-duplex communications standard. PuTTY manages the protocol at the PC, but we are
responsible for the evaluation board. To use serial I/O, we need to configure the
microcontroller’s Universal Synchronous/Asynchronous Receiver/Transmitter
(USART). We can do this by including a peripheral driver applications interface (API) in
our project. uVision5’s RTE manager includes a suitable API, but this provides many more
features than we need for our simple helloWorld recipe. So, for the time being, we’ll use
the simpler driver named Serial.c shown in step 4 and step 5 that ARM shipped with
uVision4. File Serial.c comprises three functions SER_Init(), SER_PutChar(), and
SER_GetChar (). The function SER_Init() is the first function called by main(). It
initializes the USART peripheral by writing values to its registers so that it is configured
to mirror the channel setup in PuTTY (that is, 115200 baud, 8 data-bits, 1 stop-bit). These
parameters are critical. The baud rate is derived from the Peripheral Clock, and in turn the
System Clock, so any change in the clock configuration will affect the baud rate. The baud
rate is set by the value we write to the Baud Rate Register (BRR). Reference manual
RMO0090 (www.st.com) describes this as calculated by

Tx/Rx baud= Fo
H{Zyoh’ERs]xUSARTDW

Rearranging the preceding formula, with OVERS8 = 1 (since we’re using 8 x oversampling)
and fclk = 42 MHz we get:

3 g 3
USARTDIV = 12X10° 55459712
16x 115200 16

The other two functions read and write characters from/to the USART (these perform the
low-level I/0). We’ll discuss this in more detail in Chapter 3, Assembly Language
Programming.

Any program that wishes to use the services that Serial.c provides must include its
function prototype. To facilitate this, the prototypes are declared in a so-called header file
called serial.h shown in step 6, and included in the program using a #include
preprocessor directive (for example, see line 15 of main.c). If we look closely at
Serial.h, we see the prototypes are preceded by the qualifier extern. This is a message to
the compiler that the functions are defined in another file (that is, not main.c), and the
function call reference must be resolved later by the linker. We can also see that the
prototype declarations are enclosed within a conditional preprocessor statement, that is:

#ifndef __ SERIAL_H

http://en.wikipedia.org/wiki/RS-232
http://www.st.com

#define ___SERIAL_H
/* function prototypes */

#endif

This ensures that the code enclosed within the conditional preprocessor statement is
included in the project only once, even though both, main.c and Serial.c, include the
statement:

#include "serial.h"

The main() function calls printf() to output the string "Hello World\n". The string
"Hello World\n" is stored as a sequence of characters terminated by a NULL character. C
interprets '\n' as a newline character, but the actual ASCII code (
http://en.wikipedia.org/wiki/ASCII) used to represent newline varies between operating
systems; so to cover all eventualities, we can configure PuTTY as shown in step 7.

The function printf() is defined in C’s standard input output library <stdio.h>. This
function calls fputc(), which is also defined in <stdio.h>, but redefined in Retarget.c.
So it calls SER_PutChar () to send the characters to the USART. Most microcontrollers use
this technique to allow them to make use of the C library functions printf() and, as we’ll
see later, scanf () too.

File Retarget.c also uses the preprocessor directive #pragma, which is used to specify
machine- or operating system-specific compiler features. In this case, the directive is used
to disable semihosting. Semihosting is a mechanism that allows ARM targets to
communicate with a host computer using the JTAG interface. Semihosting can be used
with the function trace_printf(), to enable debug statements to write to the output
window of the IDE. Obviously, we can achieve similar functionality using the COM port
and PuTTY.

http://en.wikipedia.org/wiki/ASCII

Writing to the GLCD

Although the LED flashing programs we’ve written so far have served to provide a
tutorial introduction to C, you are probably ready for something a little more exciting. The
Graphic LCD (GLCD) touchscreen provides an interactive interface based on a 320 x
240 pixel color display. Keil provides a library of functions to write characters and bit-
mapped graphics to the screen.

Getting ready

1.

2.

Create a new folder and rename it helloLCD_c2v0. Invoke uVision5, and create a new
project.

After selecting the target device (STM32F4071IGHx), use the RTE manager to select
the MCBSTM32F400 target board, and check the following software components:
Board Support - Graphic LCD, CMSIS - CORE, CMSIS - RTOS (API) -
KeilRTX, Device — Startup, Device - STM32Cube Framework (API) -
Classic. Finally, left-click on Resolve and OK.

How to do it...

1. Create a new C source file called helloLCD.c, and enter the following statements.
Although hidden by a fold, don’t forget to add the boilerplate code we described in
the recipe helloBlinky_c2ve.

20
* Recipe: hellolLCD_c2v0
* Name: helloLCD.c
* Purpose: LCD Touchscreen Demo
K o o e Y Y Y e e e
*
* Modification History
* 06.02.14 Created
* 08.12.15 Updated (uvision5.17 & DFP2.6.0)
*
* Dr Mark Fisher, CMP, UEA, Norwich, UK
*

#include "stm32f4xx_hal.h"
#include "GLCD_Config.h"
#include "Board_GLCD.h"
#define wait_delay HAL_Delay

extern GLCD_FONT GLCD_Font_6x8;
extern GLCD_FONT GLCD_Font_16x24;

#ifdef _ RTX

/* Function Prototypes */
void SystemClock_Config(void);

/**
* System Clock Configuration
*/

void SystemClock_Config(void) {

/**
* Main function
*/

int main () {
unsigned int count;

HAL_Init (); /* Init Hardware Abstraction Layer */
SystemClock_Config (); /* Config Clocks */

GLCD_Initialize();

GLCD_SetBackgroundColor (GLCD_COLOR_WHITE);
GLCD_ClearScreen ();
GLCD_SetBackgroundColor (GLCD_COLOR_BLUE);
GLCD_SetForegroundColor (GLCD_COLOR_WHITE);
GLCD_SetFont (&GLCD_Font_16x24);

GLCD_DrawString (0, 0*24, " CORTEX-M4 COOKBOOK ");
GLCD_DrawString (0, 1*24, " PACKT Publishing ");
GLCD_SetBackgroundColor (GLCD_COLOR_WHITE);
GLCD_SetForegroundColor (GLCD_COLOR_BLUE);

for (5;) {
if (count==0)
GLCD_DrawString (@, 2*24, " Hello LCD! ");
else
GLCD_DrawString (0, 2*24, " "y

wait_delay(100);
count = (count+1l)%2;
} /* end for */
}

2. Build, download, and run the program.

How it works...

The functions beginning GLCD_ are defined in the file GLCD_MCBSTM32F400.c. We need to
open this, and read the comments in the function headers to understand how to use them.
The header file Boadd_LCD.h that is included by the pre-processor contains the function
prototype declarations. The header file GLCD_Config.h provides macros that define named
colors (like, GLCD_COLOR_BLACK) and constants such as GLCD_WIDTH / HEIGHT.
GLCD_MCBSTM32F400.c is the latest in a series of GLCD drivers provided by Keil, and it
represents a CMSIS v2.0-compliant revision of earlier versions.

The function GLCD_DrawString (uint32_t x, uint32_t y, const char *str)
declared in file Board_GLCD. h takes three input arguments (args). The first two position
the text on the screen, and the last arg is a pointer to an array of characters to be written
(usually a literal value defined using quotes ” ” in the function call). Before calling
GLCD_DrawString (), we must first set the character font to be used by the calling
function, GLCD_SetFont (GLCD_FONT *font), and pass a pointer to the font used. There
are two font sizes defined in file GLCD_Fonts.c. An array of characters terminated by a
NULL character is called a string. You may wonder why we didn’t need to use the &
operator to recover an address and assign a pointer as we illustrated earlier. The short
answer is that arrays are always referenced using pointers, so there is no need, but we’ll
discuss the matter further in Chapter 3, Assembly Language Programming.

The macro definition #define wait_delay HAL_Delay provides a pseudonym for the
function HAL_Delay () declared in the file st32f4xx_HAL.h. This is a more accurate
delay based on a timer rather than an instruction loop.

Creating a game application — Stage 1

Now that we can write characters to the GLCD screen, some interesting possibilities
present themselves. The first one to consider is a simple character-based game application
known as PONG. Pong was one of the first arcade video games featuring 2D graphics,
originally marketed by ATARI Inc. (http://en.wikipedia.org/wiki/Pong). We’ll develop the
game in stages, as this is a good development strategy. We’ll start by describing a simple
recipe named Bounce with limited functionality. The idea of this recipe is just to animate a
ball so that it appears to bounce around the screen. Provided we can redraw the ball more
than 25 times a second (25 Hz), it will appear to move. The ball is represented by a
character bitmap.

http://en.wikipedia.org/wiki/Pong

How to do it...

1. As usual, we’ll start our development by making a new folder named
helloBounce_c2v0. Create a project, and configure the RTE to include software
support for the Graphic LCD board feature (that is, clone the folder helloLCD_c2ve,
from the previous recipe).

2. Create a new file, enter the following code, name the file helloBounce.c, and
include it in the project.

20
* Recipe: helloBounce_c2v0
* Name: helloBounce.c
* Purpose: Pong Game Prototype
K o o e Y Y e Do
*
* Modification History
* 06.02.14 Created
* 08.12.15 Updated uvision5.17 + DFP2.6.0
*
* Dr Mark Fisher, CMP, UEA, Norwich, UK
*

#include "stm32f4xx_hal.h"
#include "GLCD_Config.h"
#include "Board_GLCD.h"
#define wait_delay HAL_Delay

/* Globals */
extern GLCD_FONT GLCD_Font_16x24;

#ifdef _ RTX

/* Function Prototypes */
void SystemClock_Config(void);

/**
* System Clock Configuration
*/

void SystemClock_Config(void) {

/**
* Main function
*/
int main (void) {
unsigned int dirn = 1;
/* initial ball position */
unsigned int x (GLCD_WIDTH-GLCD_Font_16x24.width)/2;
unsigned int vy (GLCD_HEIGHT-
GLCD_Font_16x24.height)
unsigned long num_ticks = 5;

HAL_Init ();
SystemClock_Config ();

GLCD_Initialize();

GLCD_SetBackgroundColor (GLCD_COLOR_WHITE);
GLCD_ClearScreen ();
GLCD_SetForegroundColor (GLCD_COLOR_BLUE);
GLCD_SetFont (&GLCD_Font_16x24);

GLCD_DrawChar (x, y, 0x81); /* Draw Ball */
for (;;) { /* superloop */
wait_delay(num_ticks); /* update ball pstn */

/* add code to update ball position
and check for collisions here */
GLCD_DrawChar (x, y, 0x81); /* Redraw Ball */
} /* end for */

}

3. Build the project (just to check that there are no syntax errors).

Include the following code fragment in the superloop of bounce.c . This code
updates the position of the ball on each iteration.

/* update ball position */
switch (dirn) {
case 0: Xx++;

break;
case 1: x++;
y--1
break;
case 2: y--,
break;
case 3: X--;
y--1
break;
case 4: x--;

case 5: X--;

case 6: y++;

case 7: X++;

}

Extend the superloop of bounce.c by including the code fragment that is designed to
detect collisions between the ball and the edges of the screen. The ball direction is
changed accordingly when a collision occurs.

/* check collision with vertical screen edge */
if ((x==0) ||
(X==GLCD_WIDTH-GLCD_Font_16x24.width)) {
switch (dirn)
{
case 0: dirn = (dirn+4)%8;
break;
case 1: dirn = (dirn+2)%8;

break;
case 3: dirn = (dirn+6)%8;

break;
case 4: dirn = (dirn+4)%8;
break;
case 5: dirn = (dirn+2)%8;
break;
case 7: dirn = (dirn+6)%8;
break;
}
3
/* check collision with horizontal screen edge */
if ((y==0) ||

(y==GLCD_HEIGHT-GLCD_Font_16x24.height)) {
switch (dirn) {
case 1: dirn = (dirn+6)%8;

break;

case 2: dirn = (dirn+4)%8;
break;

case 3: dirn = (dirn+2)%8;
break;

case 5: dirn = (dirn+6)%8;
break;

case 6: dirn = (dirn+4)%8;
break;

case 7: dirn = (dirn+2)%8;
break;

3
b

4. Build the project; download and run the program. Observe the ball bouncing around
the screen. Note that the argument passed to the function delay() controls the ball’s
speed. Experiment by changing the value.

How it works...

The direction of the ball is encoded by a number, 0-7, as shown in the following diagram.
The ball’s behavior when it strikes the edge of the screen depends on the angle of collision
(in a similar manner to those on a pool table). Adding a value to the direction code
(modulo-8) will change the ball’s direction.

2
i_

Characters we write to the GLCD are represented by bitmaps. Each character bitmap is
represented as a 16 x 24 grid of cells. Each row of cells in the grid is encoded as two
bytes, represented in hexadecimal. For example, the bitmap representation of the ‘&°
character is illustrated in the following image:

0 1 2 3 4 5 5] 7 8 8 10 11 12 13 14 15
0x0000 0
0x01EO 1
0x03F0 2
Ox0738 3
Ox0618 i 4
Ox0618 | 5
0x0330 6
Ox01F0 7
0x00F0 8
Ox00F8 | g9
0x319C 10
0x330E [11
Ox1E0B 12
Ox1C06 | 13
0x1CO06 14
0x3F06 15
0x730C 16
Ox21F0 i o 17
Ox0000 18
0x0000 19
0x0000 20
0x0000 21
Ox0000 22
Ox0000 23

A good bitmap representation for the ball is a ‘Circle — Full’ character (0x81 = 12910). We
can display this character in any position on the GLCD screen using the function

GLCD_DrawcChar (). This function takes three args: screen coordinates (x, y), and the ASCII
code for the character. The code fragment

GLCD_SetFont (&GLCD_Font_16x24);

GLCD_DrawChar (0, 0, 0x81);

will draw the ball in the top-left corner of the screen. GLCD_DrawChar () interprets the
ASCII character code as an index into GLCD_Font_16x24. The ‘Circle — Full’ character is
the 97th character (of a total of 112) stored in the array named GLCD_ Font_24x16.
Parameters for the font are stored in the file GLCD_Fonts.c.

GLCD_FONT GLCD_Font_16x24 = {

16, ///< Character width

24, ///< Character height

32, ///< Character offset

112, ///< Character count

Font_16x24_h ///< Characters bitmaps
i

If we add the Character offset (327() to the character’s position in the character bitmap
(9710), we get its code (1291).

Finally, since the character bitmap is not declared in bounce.c, we need to tell the
compiler what type Font_16x24_h is, and that it is declared elsewhere. The statement

extern GLCD_FONT GLCD_Font_16x24;

in file bounce. h achieves this. This file also uses the #define preprocessor directive to
declare global constants (such as CHAR_W and CHAR_H). Conventionally, these are
capitalized.

The superloop comprises statements that animate the ball by updating its position (x,y) and
redrawing the bitmap. Position updates depend on direction (encoded as, 0,1,2,3,4,5,6, or
7). These eight cases are identified by the switch statement in step 7 of the recipe. Our
trusty delay function provides some control over the speed of the ball. Further code in the
superloop checks for collisions between the ball and the vertical and horizontal edges of
the screen, and updates the balls direction appropriately. The last statement in the
superloop is a further call to the function GLCD_Draw_cChar () to redraw the ball in its new
location. Because the bitmap represents a solid circle shape surrounded by a border of
background pixels, and since the ball position is only incremented by a single pixel each
time there, is no need to erase the ball before it is redrawn.

Creating a game application — Stage 2

This prototype extends the one described in the previous section to make a single player
game that includes a ‘paddle‘ drawn on left-hand edge of the screen. The position of the
paddle is determined by a potentiometer (ADC1) fitted to the evaluation board that
provides a voltage input to the Analog-Digital (A-D) Converter.

1. Begin by creating a new folder named helloPong_c2v0, and within this, a new
project. Configure the RTE to include board support software components for the
Graphic LCD (API) and A/D Converter (API). Alternatively, clone the folder
helloBounce_c2v0, from the previous recipe and modify the RTE. Use Resolve to
automatically load any missing libraries.

2. Copy helloBounce.c and helloBounce.h from the previous recipe, rename them

helloPong.c and helloPong.h, and include these in your project. Change the

#include in helloPong.c, and replace helloBounce.h with helloPong.h. Build the

program and test it as before.

Add #include "Board_ADC.h" and call ADC_Initialize() in main().

4. Add a function named update_ball(), and move the code concerned with updating
the ball’s position and collision detection into the body of the function. This tidies up
the superloop and makes the main function much easier to read.

5. Define constants and declare global data structures in helloPong.c to hold the
position of the ball, paddle, and information about the Game.

w

#define wait_delay HAL_Delay

#define WIDTH GLCD_WIDTH

#define HEIGHT GLCD_HEIGHT

#define CHAR_H GLCD_Font_16x24.height
/* Character Height (in pixels) */
#define CHAR_W GLCD_Font_16x24.width
/* Character wWidth (in pixels) */

#define BAR_W 6 /* Bar Width (in pixels) */
#define BAR_H 24 /* Bar Height (in pixels) */
#define T_LONG 1000 /* Long delay */
#define T_SHORT 5 /* Short delay */
typedef struct {

int dirn;

int x;

int y;

} BalllInfo;

typedef struct {
int x;
int vy;

} PaddleInfo;

typedef struct {
unsigned int num_ticks;
BallInfo ball;
PaddleInfo p1;

} GameInfo;

/* Function Prototypes */
void game_Initialize(void);
void update_ball (void);
void update_player (void);
void check_collision (void);

. Declare a global variable in file pong.c:

GameInfo thisGame;

Tip

The ball’s position is now accessed as thisGame.ball.x.

. Declare the function game_1Initialize(). This function initializes the values of the
global variables.

* game_Init()
* Initialize some game parameters.

void game_Initialize(void)
init_pstn.dirn = 1;
init_pstn.x = WIDTH-CHAR_W)/2;
init_pstn.y = (HEIGHT-CHAR_H)/2;
thisGame.ball init_pstn;
thisGame.pl.X 0;
thisGame.pl.y 0;
thisGame.num_ticks = T_SHORT;

}

. Create a new function named check_collision(), and copy the code concerned with
collision detection into this function. Modify the function check_collision() to
check for collisions between the ball and the paddle as well as collisions between the
ball and screen edge.

* check_collision(void)
* check for contact between ball and screen
* edges/bat and change direction accordingly

void check_collision(void) {
/* check collision with RH vertical screen
edge OR P1 paddle */
if ((thisGame.ball.x == BAR_W) ||
thisGame.ball.x == (WIDTH-CHAR_W)) {

switch (thisGame.ball.dirn) {
case 0: thisGame.ball.dirn =
(thisGame.ball.dirn+4)%8;
break;
case 1: thisGame.ball.dirn =
(thisGame.ball.dirn+2)%8;
break;

case 3: if ((thisGame.ball.y >=
thisGame.pl.y-CHAR_H) &&
(thisGame.ball.y <=
(thisGame.pl.y+BAR_H)))
thisGame.ball.dirn =
(thisGame.ball.dirn+6)%8;
else
/* empty statement */
break;
case 4: if ((thisGame.ball.y >=
thisGame.pl.y-CHAR_H) &&
(thisGame.ball.y <=
(thisGame.pl.y+BAR_H)))
thisGame.ball.dirn =
(thisGame.ball.dirn+4)%8;
else
/* empty statement */;
break;
case 5: if ((thisGame.ball.y >=
thisGame.pl.y-CHAR_H) &&
(thisGame.ball.y <=
(thisGame.pl.y+BAR_H)))
thisGame.ball.dirn =
(thisGame.ball.dirn+2)%8;
else
/* empty statement */;
break;
case 7: thisGame.ball.dirn =
(thisGame.ball.dirn+6)%8;
break;

}
3

/* check collision with horizontal screen edge
if ((thisGame.ball.y < 0) ||
thisGame.ball.y > (HEIGHT-CHAR_H)) {
switch (thisGame.ball.dirn) {
case 1: thisGame.ball.dirn =
(thisGame.ball.dirn+6)%8;
thisGame.ball.y++;
break;
case 2: thisGame.ball.dirn =
(thisGame.ball.dirn+4)%8;
thisGame.ball.y++;
break;
case 3: thisGame.ball.dirn =
(thisGame.ball.dirn+2)%8;
thisGame.ball.y++;
break;
case 5: thisGame.ball.dirn =
(thisGame.ball.dirn+6)%8;
thisGame.ball.y--;
break;
case 6: thisGame.ball.dirn =
(thisGame.ball.dirn+4)%8;
thisGame.ball.y--;
break;

*/

9.

10.

11.

case 7: thisGame.ball.dirn =
(thisGame.ball.dirn+2)%8;
thisGame.ball.y--;
break;

b
3
}

Add the following code fragment to the function update_ball():

/* reset position */
if (thisGame.ball.x<BAR_W) {
wait_delay (T_LONG);
/* Erase Ball */
GLCD_DrawChar(thisGame.ball.x, thisGame.ball.y, ' ');
thisGame.ball = init_pstn;

}

Define GLCD_customFont_16x24 in the file GLCD_customFont.c, and add this to the

project.
#include "Board_GLCD.h"

static const uint8_t customFont_16x24_h[] = {

/* PONG PADDLE */
0x00, Ox3F, O0x00, 0Ox3F, 0x00, Ox3F, 0x00, Ox3F,
0x00, Ox3F, O0x00, Ox3F, 0x00, Ox3F, 0x00, 0Ox3F,
0x00, Ox3F, O0x00, Ox3F, 0x00, Ox3F, 0x00, 0Ox3F,
0x00, Ox3F, O0x00, Ox3F, 0x00, Ox3F, 0x00, 0Ox3F,
0x00, Ox3F, O0x00, Ox3F, 0x00, Ox3F, 0x00, 0Ox3F,
0x00, Ox3F, Ox00, Ox3F, 0x00, Ox3F, O0x00, 0Ox3F,

i
GLCD_FONT GLCD_customFont_16x24 = {
16, ///< Character width
24, ///< Character height
0, ///< Character offset
1, ///< Character count
customFont_16x24_h ///< Characters bitmaps
i

Define the function update_player () by adding the following code fragment:

* update_player(unsigned int *)
* Read the ADC and draw the player 1's paddle

void update_player(void) {

int adcValue;
static int lastValue = 0;

ADC_StartConversion();

adcValue = ADC_GetValue ();

adcValue = (adcvalue >> 4) * (HEIGHT-BAR_H)/256;
/* Erase Paddle */

GLCD_DrawChar (0, lastValue, ' ');

/* Draw Paddle */

GLCD_SetFont (&GLCD_customFont_16x24);
GLCD_DrawChar (O, adcvValue, 0x00);
GLCD_SetFont (&GLCD_Font_16x24);
lastValue = adcValue;

thisGame.pl.y = adcValue;

}
12. Build the project, download, and run.

There’s more...

1. We can tidy the code by moving the function prototype and data structure
declarations to a header file called helloPong.h, and include this in pong.c with a
#include preprocessor directive.

Recipe: helloPong_c1v0
Name: helloPong.h
Purpose: pong function prototypes and defs

Modification History
06.02.14 Created
09.12.15 Updated (uvVision5.17 + DFP2.6.0)

Dr Mark Fisher, CMP, UEA, Norwich, UK

L I I I T . I .

#ifndef _PONG_H
#define _PONG_H

#define wait_delay HAL_Delay

#define WIDTH GLCD_WIDTH

#define HEIGHT GLCD_HEIGHT

#define CHAR_H GLCD_Font_16x24.height

/* Character Height (in pixels) */

#define CHAR_W GLCD_Font_16x24.width

/* Character width (in pixels) */

#define BAR_W 6 /* Bar wWidth (in pixels) */
#define BAR_H 24 /* Bar Height (in pixels) */
#define T_LONG 1000 /* Long delay */
#define T_SHORT 5 /* Short delay */

typedef struct {
int dirn;
int x;
int vy;
} BalllInfo;

typedef struct {
int x;
int vy;

} PaddleInfo;

typedef struct {
unsigned int num_ticks;
BallInfo ball;
PaddleInfo p1;

} GameInfo;

/* Function Prototypes */
void game_Initialize(void);
void update_ball (void);
void update_player (void);
void check_collision (void);

#endif /* _PONG_H */

2. The function declarations game_Initialize(), update_ball(), update_player(),
and check_collision() can be moved to a file called pong_utils.c, which shares
the header pong.h.

How it works...

The data structures defined within pong.h define three new compound data types which
build on the primitive types such as char, integer, and so on, which are part of the
language. A global variable thisGame stores all the data used in the application. The main
file helloPong.c is shown in step 6. New functions game_Initialize(), update_ball(),
update_player (), and check_collision() have been defined within the file
pong_utils.c (and delay has also been moved) to declutter main and improve the
readability of the code. The function prototypes are shown in step 9.

The function game_Initialize() writes the initial values to the global structs, gameInfo
and init_pstn(). The function update_player() (step 10) reads the A-D converter, and
draws the paddle. Since the paddle may move in large increments, we must explicitly
erase the paddle, and redraw it in a new position. The static qualifier is used to ensure
that the variable lastvalue persists after the function has terminated (that is, it behaves
rather like a global variable, although its scope is local to the function). It is important to
understand the scoping rules for variables. Variables declared within a function (so-called
automatic variables) can only be changed by assignments within the function. But
variables declared outside a function have global scope, and can be accessed by any
function declared within the same file. The variable gameInfo is a global variable and can
be accessed by any function declared in helloPong.c, and because of the extern
declaration, by any function declared in pong_utils.c.

The functions named check_collision() and update_ball() are similar to those
described in the previous section but with some important additions. When the ball moves
in directions 3, 4, or 5, we need to check for a collision with the paddle; modifications
necessary to achieve this are shown in step 8. If the ball fails to make contact with the
paddle, then a clause in update_ball() holds the ball in its current position for a few
seconds, and then restarts the game (see step 9).

The paddle itself can be drawn by declaring our own ‘paddle’ character bitmap in file
GLCD_customFont.c, and by using GLCD_DrawChar () to render it to the screen. The code
for checking collisions needs to be extended to include collisions between the ball and the
inner vertical edge of the paddle. These can only occur when the ball direction is from
right to left (that is, direction codes 3, 4 and 5). We’ll need variables to represent the
position of the paddle (as we do in case of the ball). As we now have quite a few variables,
it’s a good opportunity to introduce a data structure that can be used to group them
together. The C struct provides us with a mechanism for achieving this. Information about
the ball are declared in a struct called ballInfo. The information associated with the

paddle is declared in paddleInfo and that about the game in gameInfo, within
helloPong.h

Debugging your code using print
statements

This section deals with debugging. Errors fall into two classes, compilation errors and run-
time errors. Compilation errors arise when we compile our programs, and the compiler
parses each of the statements to produce executable code. Syntactic errors such as a
missing semi-colon or forgetting to declare a variable before assigning it will produce a
compilation error. Luckily, uVision5 highlights and checks the syntax of our programs as
we type. So, many problems that would have gone undetected in the past are now brought
to our attention before compilation. When errors do occur, they are printed in the output
window together with details of the file and the line number where the error occurred. In
addition to errors, the compiler will also issue warnings relating to unusual conditions in
the code that might be indicative of a problem. It’s a good plan to treat warnings as errors,
and track down their source. Further information about compiler diagnostic messages is in
the Compiler User Guide that can be found in the Tool’s Users Guide accessed by the
Books tab of the IDE.

Runtime errors are generally harder to fix than those that occur during compilation.
Adopting a good development strategy can minimize problems, or at least enable the
problem to be quickly isolated. Larger programs are never written all at once, they always
build on previously tested functions. The most straightforward way to debug a program is
by inserting statements that print to the Graphic LCD screen, using
GLCD_DisplayString().

How to do it...

To output the values of variables that are used by the program, we need to convert integer,
unsigned integer, and such values into their equivalent string representations.

1.

2.

Create a new folder named debugADC, and within it, a new project. Set the RTE as we
did for the previous recipe.

Create a new file, enter the following code, name the file debugADC.c, and add it to
the project:

20
* Recipe: debugADC_c2v0
* Name: debugADC.c
* Purpose: Illustrates writing variables to GLCD
K o o e Y Y Y e e e
*
* Modification History
* 06.02.14 Created
* 09.12.15 Updated (uvision5.17 + DFP2.6.0)
*
* Dr Mark Fisher, CMP, UEA, Norwich, UK
*

#include "stm32f4xx_hal.h"
#include "GLCD_Config.h"
#include "Board_GLCD.h"
#include "Board_ADC.h"
#include <stdio.h>

#define wait_delay HAL_Delay

/* Globals */
extern GLCD_FONT GLCD_Font_16x24;

#ifdef _ RTX

/* Function Prototypes */
void SystemClock_Config(void);

/**
* System Clock Configuration
*/

void SystemClock_Config(void) {

/**
* Main function
*/
int main (void) {
char buffer[128];
unsigned int ADCvalue;

HAL_Init ();
SystemClock_Config ();

ADC_Initialize (); /* Initialse ADC */
GLCD_Initialize (); /* Initialise GLCD */
GLCD_SetBackgroundColor (GLCD_COLOR_WHITE);
GLCD_ClearScreen ();

GLCD_SetBackgroundColor (GLCD_COLOR_BLUE);
GLCD_SetForegroundColor (GLCD_COLOR_WHITE);
GLCD_SetFont (&GLCD_Font_16x24);

GLCD_DrawString (0, 0*24, " CORTEX-M4 COOKBOOK ");
GLCD_DrawString (0, 1*24, " ADC Demo "),
GLCD_SetBackgroundColor (GLCD_COLOR_WHITE);
GLCD_SetForegroundColor (GLCD_COLOR_BLUE);
GLCD_DrawString (0, 3*24, "ADC =");

for (;;) { /* loop forever */
ADC_StartConversion ();
ADCvalue = ADC_GetValue (); /* Read ADC */
sprintf (buffer, "%i ", ADCvalue); /* mk str */

GLCD_DrawString (7*16, 3*24, buffer);/* Disp it */
wait_delay(100);
} /* end for */
}

3. Build, download, and run the program.

How it works...

The array named buffer just contains a collection of data elements, each the same type (in
this case char). We need to specify the number of elements when the array is declared (so
that the compiler can allocate the necessary storage space). This provides enough space
for 128 characters.

Tip
Strings are always terminated by a NULL character, so there is only space for 127 usable
characters, but still plenty for our purpose.

The function sprint(), defined in the standard input/output C library that we’ve imported
by using #include <stdio.h>, is used to convert the integer variable ADCvalue() to a
string, placing the result in the buffer before being printed by GLCD_DisplayString(). The
source code for the program is presented in step 2.

Running the program prints the 12-bit ADC value (generated by converting a voltage
produced by the thumbwheel potentiometer) to the Graphic LCD display. Notice the
values returned are quite noisy (that is, there is quite a bit of variation even when the
thumbwheel position is apparently unchanged). If we shift the Abcvalue right by four
places, using the bit manipulation operator >> so effectively discarding the least significant
4 bits (that is, dividing by 24), then the result is smaller and more stable.

Using the debugger

uVision5 provides a debugger that allows us to suspend execution (by inserting a
breakpoint), and examine/change values of variables used in our program.

How to do it...

1. Download and run the previous project, debug_ADC.
2. Use the debug menu to insert a breakpoint on line 96 of our program (that is, at the
statement ADC_StartConversion ();.

@ Start/Stop Debug Session Cirl+F5

% Reset CPU

Run F5
<] Stop
{3 Step F11
Step Owver F10
Step Out Cirl+F11
i} Runto Cursor Line Ctrl+F10

Show Mext Statement

Breakpoints... Ctri+B
& Insert/Remove Breakpoint Fa
Enable/Disable Breakpoint Ctrl+F2
%' Disable All Breakpoints
& Kill All Breakpoints Ctrl+5hift+ P
05 Support 4
Execution Profiling k

Memory Map...
Inline Assembly...

Function Editor {Open Ini File)...

3. Select debug — Start/Stop Debug session to start a debug session.
4. Observe that execution stops at main. This is because the default project debug
options are set to “Run to main”.

Ut

1 EACMP_D_HSW1241\/

File Edit View Project Flash Debug Peripherals Tools SVCS Window Help
SH@| s B e |, =] B s Haw@ e o e&|E)
= S 1! E | = - L= i,
el e » OEeEEE- R BRI
Registers n Disassembly a
Register Vo |- T5: int main (void) { -
= T6: buffer 31 : |
= Core = —
H Tz un 11 int ADCvalue;
: RO 0. ?Z. gned t ADCwvalue L
g 4| 0.. = =
-~ R2 0.. = -
- R3 0.] debugADCc = |]| startup_stm32f407xs v X
i . T3 * Main function -
g =1 0.. 72)
RE L. D[> 75 Hint main (void) {
R7 Q.. T8 char buffer[128]:
Re .. il unsigned int ADCvalue;
g =1 0... 78
R0 C.. 79 HAL Init ():
R11 .. aa SystemClock Config ():
~R12 0... a1 %
25 EI 82 ADC Initialize (): /#* Initialse ADC #/
g_ 23 GLCD Initialize(): 2
=3 " 24 GLCD SetBackgroundColor (GLCD CCLOR WHITE):
b T C.. 8 GLCD ClearScreen |():
) Ea”ke‘j L GLCD_SetBackgroundColor (GLCD_COLOR BLUE): =|
ystemn 87 GLCD_SetForegroundColor (GLCD COLOR WHITE) :
i a8 GLCD SetFont (&ELCD_Font 16x24);
:;’1_0‘119 g g9 GLCD DrawString (0, 0%24, " CORTEX-M4 COOKSOOK "): -
s 30 GLCD DrawString (0, 1#%24, " LDC Demo "y
oo e P"" oy GLCD SetBackgroundColor (GLCD COLOR WHITE) ;
PO gtates : ! g2 GLCD SetForegroundColor (GLCD COLOR BLUE) ;
: ae - 33 GLCD DrawString (0, 3%24, "ADC ="); -
=] Project | = Registers Ll L3 | +
Command o B call Stack = Locals a
*#%% Currently used: 20660 Bytes (63%) - Name Location/... Type
BN m S E ¥ os. |0x08002660 Task ﬁ!
>] 7 M -]
ASS5TGN BreakDisable BreakEnable BreakKill BreakList BreakSet Breaklccess COVERAGE] .;—'jCaII Stack = Locals | Memary 1
ULINK2/ME Cortex Debugger t1: 0.00050600 sec Li75 C1 CAP NUM SCRL OVR! R /W

Selecting Run (F5) will execute the statements up until the breakpoint.

Use Step (F11) to execute the statements in the program one after the other, and
observe the values of variables. For example, when we reach line 39 (after stepping),
the local variable ADCvalue is assigned to 10 (0x0000000A). This value is shown in
the Call Stack + Locals window.

Call Stack + Locals @
Mame Location/Value Type
E- % main 00800023 C int f{]
¥ buffer (20000600 " auto - char[128]
¥ ADCvalue _ auto - unsigned int
- -5,-11 Call 5tack = Locals | Memaory 1

See also

This chapter has introduced many more programming concepts than would normally be
covered in the first few chapters of a programming textbook, and the text is really aimed at
those readers with experience of other languages. Those who are new to programming will
need to fill some of the gaps by reading an introductory programming text. Because C has
been around for more than 30 years, there are plenty to choose from! However, most
novices will find recently published or revised editions of standard texts, more accessible
than books written in the 1980s and 90s. You may find it easier to learn C by writing
programs for your PC rather than the evaluation board. In fact, some of my students
develop and test their embedded algorithms using a PC before porting them to uVision5.
This is perfectly feasible for programs (or parts of programs) that do not need to access
peripherals such as the ADC, and the like. You will need to install a C compiler to enable
you to do this; free options include Visual Studio Express, Open Watcom, and GCC. The
graphical user environments available with most of these compilers provide a user
interface very similar to that of uVision5.

Chapter 3. Programming 1/0

In this chapter, we will cover the following topics:

Performing arithmetic operations
[lustrating machine storage classes
Configuring GPIO ports
Configuring UART ports

Handling interrupts

Using timers to create a digital clock

Introduction

The release of uVision5 heralded the integration of software packs to support a range of
microcontroller devices and simplify the task of programming I/O by allowing the user to
select from a menu of I/O options to provide the necessary source code in our project. This
is extremely helpful and represents a huge leap forwards as compared to previous versions
of the IDE that provided the user with comparatively little help with configuring I/0
libraries. But, it does raise a dilemma; what do we do if our target hardware isn’t
supported? In this chapter, we’ll investigate some of the functions that configure I/0
devices and gain an understanding of what is involved in writing I/O interfaces for other
targets. We’ll need to refer to STM Reference manual RM0090 (www.st.com) throughout
this chapter as it provides complete information on how to use the STM32F405xx/07xXx,
STM32F415xx/17xx, STM32F42xxx, and STM32F43xxx microcontroller memory and
peripherals. We start by writing a program that adds numbers and then use this apparently
trivial code to motivate a deeper discussion of data types.

http://www.st.com

Performing arithmetic operations

Writing a program that adds two numbers together may seem like a trivial task. We
obviously need to declare three variables, two to hold values of the numbers to be added,
known as addends, and another to hold the sum. The following recipe illustrates some
problems that arise due to word length.

How to do it...

The following steps demonstrate how to perform arithmetic operations:

1. Create a new folder and name it addTwoNums_c3v@. Invoke uVision5 and create a new
project named addTwoNums within this folder.

2. Use the RTE manager to select the MCBSTM32F400 evaluation board and
configure it as we did for helloworld_c2ve, from the Writing to console Window
recipe in Chapter 2, C Language Programming.

3. Copy the files, serial.c, Serial.h, and Retarget.c, from the helloworld_c2ve
recipe into the folder.

4. Create a new source file named addTwoNums. ¢ and enter the following program.
Please note that we’re using the folding editor feature to omit boilerplate code:

/***

* Recipe: addTwoNums_c3v0
* File: addTwoNums.c
* Purpose: Adds numbers using terminal I/O

R IR I b I I S S b I b A S I R R I S b b I b I b b I b b S I R

*

* Modification History
* 26.02.14 Created
* 15.12.15 Updated uVvision5.17 & DFP2.6.0

*

* Dr. Mark Fisher, CMP, UEA, Norwich, UK.

**/

#include "stm32F4xx_hal.h"
#include <stdio.h>
#include "Serial.h"
#include "cmsis_os.h"

#ifdef _ RTX

void SystemClock_Config(void) {

/*
* main
*******/

int main (void) {

int input;
int numi, num2, res;

HAL_Init (); /* Init Hardware Abstraction Layer */
SystemClock_Config (); /* Config Clocks */

SER_Init();

for (;;) { /* Loop forever */

11.

12.

printf("Enter First Number: ");
scanf("%d", &input);

numl = (int) input;
printf("Enter Second Number: ");
scanf("%d", &input);

num2 = (int) input;

res = numl + num2;
printf("Result = %d \n", res);

3
}

Add the serial.c, Retarget.c, and addTwoNums . c files to the project.
Connect the evaluation board’s UART 1/2/3 9-pin D-type connector to the PC’s COM

port.
Invoke PuTTY and configure the port as we did in Chapter 2, C Language
Programming.

Check the Use MicroLIB project option.
Build the project; download and run the program (please note that you may need to
reset the evaluation board).

. Try adding a range of different values and make a note of the results (are they all

correct?). Some examples are shown in the following screenshot:

===

s COML1 - PuTTY

Edit the main function and change the variable declaration for num1, num2, and res to
the following:

char numi, num2, res;

Rebuild, download, and run the code.

13. Try adding both positive and negative quantities and make a note of the results (are
they all correct?). Try the examples that are shown in the following screenshot:

ZP COM3 - PuTTY - ESREERTC

How it works...

Programming languages classify the types of data they manipulate into categories called
data types. Examples of data types are integer and floating point (numbers), character,
string, and pointer. Simple (so-called primitive) data types are part of the language, while
compound data types (such as array, struct, and so on) are abstractions built by the
programmer. Programmers coding in strongly-typed languages (such as C) must declare
the type of variables before they are referenced in the code. This enables the compiler to
allocate a suitable amount of memory in which to store the variable. Typical primitive data
types for the C language are shown in the following table. These types can be preceded by
the signed or unsigned qualifier, which guarantees that the number is stored as a signed or
unsigned quantity:

Type Definition
char ||This is the smallest addressable unit that can contain encoding of a character. It is, typically, 8-bits in size.
short
) This is a short-signed integer type. It is at least 16-bits in size.
short int
int ||This is the basic signed integer type. This is at least 16-bits in size.
long
) This is a long-signed integer type. It is at least 32-bits in size.
long int
long long

long long [{This is a long-long signed integer type. It is at least 64-bits in size.
int

float This is a single precision floating point type. Specific encoding is not specified, but IEEE 754 is a popular

“standard.

double This is a double precision floating point type. Specific encoding is not specified, but IEEE 754 is a popular
standard.

long This is an extended precision floating point type. Specific encoding is not specified, but IEEE 754 is a

double popular standard.

We’ve seen that unsigned numbers are stored in binary, but how are signed numbers
represented? To answer this question, we’ll consider the type char used to represent an 8-

bit quantity. The type unsigned char encodes numbers between 0 and 281 that is
illustrated as follows:

unsigned char base;

L
HEPPEEE

019

1

T
NN
NN

The type definition also determines a set of valid operations on the type and how these are
performed. For example, consider the arithmetic operation of addition. When we add two
variables of type unsigned char, the result might be greater than 2551 (. The rules of binary

addition are illustrated in the following table:

|| SUM ||CARRY|

|
iy |
il

Each row in the table can be realized by digital hardware components (logic gates). When
the sum is greater than 2551), the result of the addition spills over into the eighth bit and

=]
I |
==
]I[

I |
“

gives the wrong answer. If we force the compiler to produce executable code for this
operation, then the resulting operation would set the CARRY and OVERFLOW bits of the
Program Status Register (PSR). The PSR forms a fundamental part of any central
processing unit. Arithmetic instructions (and some others) that are executed by the CPU
change the value stored in the five most significant bits of the STM32f4xx PSR register,
setting or clearing them to reflect the outcome of the last arithmetic instruction that was
executed:

jeEcom!
93831 ==

N=NEGATIVE
Z=7ZERO
C=CARRY
V=0OVERFLOW
Q=SATURATE

An operating system may read these bits and trap a run-time error. However, as our
programs run without an operating system, and we’ve not included code to specifically
trap errors, such operations may simply give the wrong answer when the data type that
we’re using is too small to represent the result. The following table illustrates adding 8-bit
binary representations of 1101 and 1981 :

In this case, the 8-bit result overflows and is interpreted as 481.

Now consider the following assignment statement:
numl = input;
Here the data types for num1 and input are declared as follows:

long int input;

unsigned char numi;

Remember that variable names are just pseudonyms for memory locations. The
assignment statement copies the quantity stored in the memory location that is represented
by the variable name on the right to the memory location that is represented by the
variable on the left. But in this case, the problem is that these two are physically different
sizes (that is, 8-bit and 32-bit, respectively). Typically, the compiler will report this as an
error. To solve this problem, we must convert the 32-bit integer into 8-bit. The formal term
for this is type conversion (also called type casting), and it is achieved using the following
syntax:

numl = (unsigned char) input;

If we wish to add both positive and negative quantities, we must change the data type of
numl and num2. Again, the range of numbers is limited by the size (number of bits) of
memory used. If we use 8-bits to represent both positive and negative numbers, we must
allocate half of the 256 binary codes to negative numbers and half to positive. Several
systems have been proposed to achieve this (for example, signed magnitude, offset-binary,
and 2’s complement). The 2’5 complement system has four features that make its use in
binary arithmetic very attractive. Firstly, the 8-bit code representing 01 is 00000000>.

Secondly, negative values can be easily identified by examining the most significant bit
(MSB). Thirdly, both positive and negative quantities can be added using the same simple
logical operation that we identified, and finally, the algorithm to convert between positive
and negative values is simply ‘complement and add one’.

The char type is used to declare 8-bit numbers coded in 2’s complement. Please note that
using 8-bit 2’s complement the largest positive number that can be represented is 271

(12710) and the largest negative number 27 (-12810).

Now consider the <stdio> library functions, scanf() and printf(), that are used

inside the superloop to establish a dialog with the user allowing them to enter values using
the PC keyboard. Both functions use a so-called format control string to control the
output and input format. A %d format string, is one of a number of integer conversion
specifiers that are available to C programmers. The printf() function uses %d to display
signed decimal integers, and scanf() uses it to read (optionally signed) decimal integers.
Our program passes a pointer to the scanf() function, so the long int variable named
input is passed by reference and the function can change its value.

While working through the previous recipes you may have noticed that the type identifiers
used in the Serial.h header file (supplied by Keil) are named differently from the
primitive types that we encountered so far. The type identifiers, such as int32_t, and
uint8_t, are called machine storage classes and represent pseudonyms for primitive types,
such as int, and unsigned char. The next section discusses why we need them.

Illustrating machine storage classes

This recipe illustrates a version of addTwoNums that uses the machine storage classes,
int32_t and uint8_t. We explain why it is advantageous for embedded applications to
define and use these as opposed to the primitive types that are provided by the C language.

How to do it...

To define and use machine storage classes, please follow the outlined steps:

1. Create a new folder named addTwoNums_v2 by cloning the previous project.
2. Copy the addTwoNums. ¢ file from the previous recipe to the folder and modify it as
follows:

int main (void) {

int32_t input;
uint8_t numi, num2, res;

HAL_Init (); /* Init Hardware Abstraction Layer */
SystemClock_Config (); /* Config Clocks */

SER_Init();

for (;;) { /* Loop forever */
printf("Enter First Number: ");

scanf("%d", &input);

numl = (uint8_t) input;

printf("Enter Second Number: ");

scanf("%d", &input);

num2 = (uint8_t) input;

res = numl + num2;

printf("Result = %d \n", res);

}
}

3. Add the Serial.c, Serial.h, Retarget.c and addTwoNums. c files to the project.

4. Connect the evaluation board’s UART 1/2/3 9-pin D-type connector to the PC’s COM
port.

Invoke PuTTY and configure the port as we did in Chapter 2, C Language Programming.

1. Remember to check the Use MicroLIB project option.

2. Build the project; download and run the program (please note that you may need to
reset the evaluation board).

3. Check that the program behaves as before.

How it works...

The size of signed and unsigned integers that a microprocessor can manipulate is
determined by its low-level architecture. The Cortex-M3 and -M4 microcontrollers are
based on the ARMv7-M architecture (refer to ARMv7-M Architecture Application Level
Reference Manual). Part A of the manual details the application-level architecture and
programmers’ model, and it begins by summarizing the core data types and arithmetic
operations. ARMv7-M processors support the following data types in memory:

Byte 8-bit |
Halfword 16—bit|
Word 32—bit|

The manual explains that processor registers are 32 bits in size, and the instruction set
supports the following data types:

32-bit pointers

Unsigned or signed 32-bit integers

Unsigned 16-bit or 8-bit integers (held in zero-extended form)
Signed 16-bit or 8-bit integers (held in sign-extended form)
Unsigned or signed 64-bit integers held in two registers

It also describes the binary format that is used to store these quantities and provides a
pseudo-code description of how addition and subtraction are performed. This description
is consistent with the results that we got with the recipe, addTwoNums_c3_v0@. The pseudo-
code uses the terms zero-extended and sign-extended to describe how 8- and 16-bit
numbers are stored in the 32-bit registers of the Cortex-M architecture. This is important
as the processor status-register bits reflect the result of 32-bit arithmetic, and so, 8- and
16-bit values must be appropriately extended to fill the whole 32-bit register so that the
sign and overflow bits correctly reflect the result of operations on shorter word lengths.

Implementations of C standard data types, such as char, short int, int, long int, and so on,
depend on the (machine-specific) compiler implementation. You may recall that the C
standard only specifies they must be at least a certain size. Apply italics to (at least). This
can be a problem for embedded system programs that need to be ported between
architectures with particular sizes of storage. Luckily, C provides a mechanism called
typedef to create new types that are aliases of existing types. The C Standard Library
includes stdint.h, containing C type definitions that can be customized for the different
target architectures. The stdint.h header is included in stm32F4xx_hal.h, so there is no
need to include it again in our program. A typedef keyword in the stdint.h header
defines the following machine storage classes:

/* exact-width signed integer types */
typedef signed char int8_t;
typedef signed short int int16_t;
typedef signed int int32_t;

typedef signed __int64 int64_t;

/* exact-width unsigned integer types */

typedef unsigned char uint8_t;
typedef unsigned short int uinti16_t;
typedef unsigned int uint32_t;
typedef unsigned int64 uint64_t;

If we require that an integer be represented in exactly N bits, then we use one of the
following types:

signed: int8_t J|int16_t ||int32_t ||lint64_t

unsigned:juint8_tjjuint16_t|juint32_tJjuint64_t

Configuring GPIO ports

The recipe, helloBlinky_c1v0, that we met in Chapter 1, A Practical Introduction to
ARM Cortex, uses the LED_on() and LED_0ff () functions to switch the LEDs. These
functions are defined in a file named LED_MCBSTM32F400.c, which is automatically
included in our project if we select LED (API) Board Support when configuring our
project using the RTE manager. Let’s write another LED program and then take a closer

look at LED_MCBSTM32F400.c.

How to do it...

To configure the GPIO ports follow the outlined steps:

1. Create a folder named countBlinky_c3ve and a project named countBlinky; use the
RTE manager to select Board Support for the LED (API).

2. Enter the following source code in file named countBlinky.c and add this to the
project:

Recipe: countBlinky_c3v0
Name: countBlinky.c
Purpose: LED Counter

Modification History
03.05.15 Created
16.12.15 Updated (uvision5.17 + DFP2.6.0)

Dr Mark Fisher, CMP, UEA, Norwich, UK

L I I I

#include "stm32f4xx_hal.h"
#include "cmsis_os.h"
#include "Board_GLCD.h"
#include "Board_LED.h"

#define wait_delay HAL_Delay

#ifdef _ RTX

void SystemClock_Config(void) {

/*
* main
********/

int main (void) {
uint8_t val = 0;

HAL_Init (); /* Init Hardware Abstraction Layer */
SystemClock_Config (); /* Config Clocks */

LED_Initialize(); /* LED Initialization */

for (;;) { /* Loop forever */
LED_SetOut (val++); /* increment LEDs */
wait_delay(100); /* Wait */
} /* end for */
}

3. Compile, download, and run the program.

How it works...

Computers access their I/O devices either by special I/0 instructions that read and write to
peripherals located in a separate I/O address space or using the instructions that are
provided to access memory. ARM processors use the latter method, known as memory-
mapped I/0. As such, peripheral registers are mapped into the memory address space of
the machine, so turning LEDs ON and OFF is achieved simply by writing binary values to
locations in memory.

As we explained in Chapter 1, A Practical Introduction to ARM Cortex each LED is
connected to a GPIO port pin that in turn is mapped as a GPIO port bit. The GPIO
interface is described in Reference manual RM00090 (www.st.com), and it is impossible
to understand the functions in LED_MCBSTM32F400. ¢ without referring to this. The
STM32F4071G has nine GPIO ports (named A-I), and each port can control up to 16 I/O
bits. The port bits are configured as outputs or inputs by writing to so-called port control
registers, and then data is either input or output by reading/writing to the data register that
is associated with the port. Some port control bits configure programmable switches in the
port that connect resistors to the pins. You may recall that LEDs need to be connected to
resistors, so this feature is particularly useful. The switching speed of the port can also be
configured by software (lower switching speeds save power). As ARM uses memory-
mapped I/0, all GPIO registers are mapped to specific memory addresses.

Some evaluation boards connect all eight LEDs to one port, which makes configuring
them easy, but the eight LEDs on the MCBSTM32F400 evaluation board are connected to
different ports, and each port is dealt with separately. The LED_On (), LED_Off (), and
LED_Setout () functions call HAL_GPIO_writePin (), which, in turn, is defined in the
stm32f4xx_hal_gpio.c file. The GPIO registers themselves are declared as a C struct in
the stm32f407xx. h file:

/**
* @brief General Purpose I/0
*/
typedef struct
{
__I0 uint32_t MODER; /*1< GPIO port mode register,
Address offset: 0x00 */
__I0 uint32_t OTYPER; /*1< GPIO port output type register,
Address offset: 0x04 */
__I0 uint32_t OSPEEDR; /*!< GPIO port output speed register,
Address offset: 0x08 */
__I0 uint32_t PUPDR; /*1< GPIO port pull-up/pull-down
register, Address offset: Ox0C */
__I0 uint32_t IDR; /*1< GPIO port input data register,
Address offset: 0x10 */
__I0 uint32_t ODR; /*1< GPIO port output data register,
Address offset: 0x14 */
__I0 uint16_t BSRRL; /*1< GPIO port bit set/reset low
register, Address offset: 0x18 */

_ IO uintl16_t BSRRH; /*1< GPIO port bit set/reset high

http://www.st.com

register, Address offset: Ox1A */
_ I0 uint32_t LCKR; /*!1< GPIO port configuration lock
register, Address offset: Ox1C */
__I0 uint32_t AFR[2]; /*1< GPIO alternate function registers,
Address offset: 0x20-0x24 */
} GPIO_TypeDef;

In the C language, arrays and structures are compound data types used to store collections
of data. All the data elements stored in an array must be the same size, (that is, all the
same type), but in a struct (structure), the data values can be different sizes (types). As
such, a struct provides an ideal abstraction for the data registers that are used by a
peripheral. Each variable in the struct is accessed by a named identifier, which the
compiler translates into an offset from a base address. In the previous example, the base
address is represented by the GPI0_TypeDef identifier, and MODER, OTYPER, OSPEEDR, and so
on represent offsets of 0, 4, 8, and so on bytes from the base (that is, 32 bits = 4 bytes).

The typedef keyword enables the GPIO registers to be accessed using the GPIOx -> ODR
syntax; for example, where GPIOx is a pointer to the base address of a particular GPIO
port. Consider the HAL_GPIO_WritePin () function declared in Board_LED.h, which
switches LEDs by writing to the bit-set-reset register (BSRR):

void HAL_GPIO_WritePin(GPIO_TypeDef* GPIOx, uintl6_t GPIO_Pin,

GPIO_PinState PinState)
{

/* Check the parameters */
assert_param(IS_GPIO_PIN(GPIO_Pin));
assert_param(IS_GPIO_PIN_ACTION(PinState));

if (PinState != GPIO_PIN_RESET)

{
GPIOXx->BSRR = GPIO_Pin;
}
else
{
GPIOX->BSRR = (uint32_t)GPIO_Pin << 16;
}
}

Here, GPIOX is a pointer to the struct named GPIO_TypeDef that we described earlier.
GPIOx->BSRRL writes ‘1’ to a specific bit of the lower Bit Set Reset Register (BSRR) to set
the port bit. BSRR controls bits 0-15 of the parallel port, as described in STM’s RM0090
Reference manual (Chapter 8) as follows:

FEEFEEFEERFEEFT

BRIIBR{IBR||BR||BR||BR|
15 |14 J|13 [|112 (|11 |10

BRI||IBRS||IBR7||BR6||BR5||BR4||BR3||BR2||BR1||BRO

<

1l 1l 1l 1l 1l 1l 1l 1l 1l 1

IS
I=EE[=8]
IEEEE
IR
1EIE[=8]
AR

BS||BS||BS[IBS||BS||BS

BSI9|IBS8||BS7||BS6||BS5||BS4||BS3||BS2||BS1||BSO
15 {j14 |13 {12 jj11 |j10
4333333 333333333

Before we can use the GPIO to write to LEDs, the peripheral must first be configured.
This is achieved by the LED_Initialize() function that is declared in Board_LED.h and
defined in LED_MCBSTM32F400.c.

For example, within LED_Initialize(), the following code fragment configures GPIO
Port G pins 6,7, and 8 to drive LEDs:

/* Configure GPIO pins: PG6 PG7 PG8 */

GPIO_InitStruct.Pin GPIO_PIN_6 | GPIO_PIN_7 | GPIO_PIN_8;
GPIO_InitStruct.Mode GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull GPIO_PULLDOWN;

GPIO_InitStruct.Speed GPIO_SPEED_LOW;

HAL_GPIO_Init(GPIOG, &GPIO_InitStruct);

For each port, LED_Initialize() writes appropriate values to a GPIO_InitStruct and
then invokes HAL_GPIO_Init (). We need to consult STM’s RM0090 Reference manual
yet again to fully understand HAL_GPIO_Init () (defined in stm32f4xx_hal_gpio.c), but
some C language statements that are used by the functions read and write specific register
bits are commonly used by embedded-system programmers and deserve further
explanation. Consider this code fragment (in stm32f4xx_hal_gpio.c) that configures the
GPIO Lock register (the function header provides a detailed description):

/**
* @brief Locks GPIO Pins configuration registers.
* @note The locked registers are GPIOx_MODER, GPIOx_OTYPER,
GPIOX_OSPEEDR, GPIOX_PUPDR, GPIOx_AFRL and GPIOX_AFRH.
@note The configuration of the locked GPIO pins can no
longer be modified until the next reset.
@param GPIOx: where x can be (A..F) to select the GPIO
peripheral for STM32F4 family
@param GPIO_Pin: specifies the port bit to be locked.
This parameter can be any combination of GPIO_PIN_x
where x can be (0..15).
@retval None

* %k ok % Kk ok Kk kX

*/

HAL_StatusTypeDef HAL_GPIO_LockPin(GPIO_TypeDef* GPIOX,
uintl6_t GPIO_Pin)

{

__I0 uint32_t tmp = GPIO_LCKR_LCKK;

etc..
/* Apply lock key write sequence */

tmp |= GPIO_Pin;

/* Set LCKx bit(s): LCKK='1l' + LCK[15-0] */

GPIOX->LCKR = tmp,

The tmp |= GPIO_Pin statement assigns a value to tmp, which is a bitwise logical OR of
the current value and a 32-bit mask named GPIO_Pin. The term mask is used to describe a

binary variable that is used to identify particular bit patterns in a target variable. By
carefully choosing the value of the mask, we are able to set particular bits of the Lock
Register (LCKR) while maintaining the other bits unchanged. Please note that the tmp
|= GPIO_Pin statement is written using a shorthand C assignment notation. To explain the
notation, first consider a more familiar assignment such as the following:

myVar = myVar + 10,

This statement adds 10 to the variable myVar. This can be written in C shorthand as
follows:

myVar += 10;

Another commonly used technique employs a bitwise logical AND operation with a mask
to clear particular register bits. For example, SER_Init () (recipe addTwoNums_c3v0) uses
the following statement:

GPIOC->MODER &= OXFFOFFFFF;

This is used to clear bits 20-23 of the GPIOC’s MODE Register (MODER). Similarly, all
operators can be combined in this way, so we could rewrite this as follows:

GPIOC->MODER &= ~(15UL << 20);

The ~ symbol represents the bitwise logical NOT operator, 15UL is defined as an unsigned
long of value 15, and << is the logical shift-left operator.

Before explaining how the GPIO port’s base address is defined, we’ll deal with the type
qualifier, __ 10 (refer to the typedef keyword that was illustrated earlier). The _ 10 macro
is resolved by a #define directive in the core_cm4.h header file and replaced by the
volatile qualifier. This qualifier indicates (to the compiler) that the variable is held in a
register and may be changed by some external process. Typically, compilers optimize code
by eliminating redundant loops that repeatedly read variables that are stored in memory.
But, as we’ll see in the next section, such busy-while loops are the key to many I/0
operations, so the type volatile qualifier is essential when declaring I/O registers.
Another commonly used qualifier is __ FORCE_INLINE. This is used before a function
definition to request the compiler to optimize the code by eliminating the function call.

The base addresses of GPIO ports are defined in the stm32f407xx.h file, as follows:

/*1< AHB1 peripherals */

#define GPIOA_BASE (AHB1PERIPH_BASE + 0x0000)
#define GPIOB_BASE (AHB1PERIPH_BASE + 0x0400)
#define GPIOC_BASE (AHB1PERIPH_BASE + 0x0800)
#define GPIOD_BASE (AHB1PERIPH_BASE + 0x0C00)
#define GPIOE_BASE (AHB1PERIPH_BASE + 0x1000)
#define GPIOF_BASE (AHB1PERIPH_BASE + 0x1400)
#define GPIOG_BASE (AHB1PERIPH_BASE + 0x1800)
#define GPIOH_BASE (AHB1PERIPH_BASE + 0x1C00)
#define GPIOI_BASE (AHB1PERIPH_BASE + 0x2000)

Here, AHB1PERIPH_BASE is resolved by other #define statements and resolves to
(uint32_t)0x40020000. This address is consistent with that identified in the RM0090

Reference manual.

Peripherals are controlled by reading and writing to specific bits of the register bank and
these are identified by so-called masks shown as follows (also defined in stm32fxx.h):

JrFxFxxx% Bits definition for GPIO_MODER register **x*x*xx*/

#define GPIO_MODER_MODER® ((uint32_t)0x00000003)

#define GPIO_MODER_MODERG_O ((uint32_t)0x00000001)

#define GPIO_MODER_MODERG_1 ((uint32_t)0x00000002)

#define GPIO_MODER_MODER1 ((uint32_t)0x0000000C)

#define GPIO_MODER_MODER1_0 ((uint32_t)Ox00000004)

#define GPIO_MODER_MODER1_1 ((uint32_t)0x00000008)
etc.

The previous discussion illustrates the importance of the stm32f407xx.h header file. Take
a moment to look through the source code. The comment at the beginning describes the
content as “CMSIS STM32F407xx Device Peripheral Access Layer Header File.“.
Don’t worry too much about the identifiers (such as @file, @author, @version, @brief,
and so on). They are used by a tool to generate documentation from C (or C++) source
code.

Finally, consider the following statement:

assert_param(IS_GPIO_PIN(GPIO_Pin));

This deserves some explanation. The assert_param () macro is defined in the
stm32f4xx_hal_conf.c file. A macro is defined as an instruction that expands to a set of
instructions to perform a particular task. So, we would expect the following statement to
appear somewhere in our project:

#define assert_param.. etc.

The macro definitions that we’ve met so far have been used to perform simple parameter
substitutions, but assert_param () introduces macro arguments, which makes macro
behavior very similar to that of a function. If we take a look at the assert_param macro
definition, we find the following:

/* Exported macro ----------------------------~--~-~--- */
#ifdef USE_FULL_ASSERT
/* *

* @brief The assert_param macro is used for function's
parameters check.

@param expr: If expr is false, it calls assert_failed
function which reports the name of the source file and
the source line number of the call that failed.

If expr is true, it returns no value.

@retval None

* ok % ok X ok

*/
#define assert_param(expr) ((expr) ? (void)O
assert_failed((uint8_t *)__FILE_ , _
/* Exported functions ----------------------------- */
void assert_failed(uint8_t* file, uint32_t 1line);
#else

LINE_))

#define assert_param(expr) ((void)O)
#endif /* USE_FULL_ASSERT */

As the description explains, the macro checks that the expr input argument is TRUE, and
if this is not the case, it calls assert_failed (). It does this using a conditional statement
that is written using C’s only ?: ternary operator. Consider the following statement:

((expr) ? (void)0 : assert_failed((uint8_t *)__FILE__, __ LINE_))
This statement is equivalent to the following:

If (expr)
(void)o
else
assert_failed((uint8_t *)__FILE__, __ _LINE_)

Defining this as a macro is more efficient as although it behaves as a function, the code is
expanded by the preprocessor, and this avoids the overhead of an associated function call.

There’s more...

Although memory mapped I/O is very efficient the memory address map is device and
implementation is dependent, and this makes managing portability a problem. ARM
solves this issue through the Cortex Microcontroller Software Interface Standard
(CMSIS). CMSIS provides developers using the Cortex-M family with a common
approach to interfacing peripherals, real-time operating systems, and middleware
components. An overview of the standard http://www.keil.com/support/man/docs explains
that it provides the following:

e A Hardware Abstraction Layer (HAL) for Cortex-M processor registers
Standardized system exception names

Standardized methods to organize header files

Common methods for system initialization

Standardized intrinsic functions

Standardized ways to determine the system clock frequency

The following diagram shows CMSIS providing an interface between the user application
(which may be based on a Real Time Operating System) and the hardware. CMSIS
provides the following:

e A Core Peripheral Access Layer
e A Device Peripheral Access Layer (MCU-specific)
e Helper functions for peripheral management

User Application Code
RTOS [Real Time Kernal
Core Peripheral Functions Device Peripheral Functions
CMSIS 5
Peripheral Registers and Interrupt/Exception Definitions
e = e = = == S
e Ol el e il e il
Processor SysTick . N‘;"LC Debug/Trace Oifer
. BslE aclor
MCU CG re RTOS Kemel Timer Interrupt Controfler |ﬁtEI‘fEIGE Periphe rals
Cortex-M Processor

In practice, CMSIS is a framework within which MCU and peripheral vendors provide

http://www.keil.com/support/man/docs

device driver libraries. Each vendor provides a device-specific {device}.h header file for
users to include in their projects, and this may, in turn, include further files to provide
additional functionality. MCU vendors also provide startup code written in assembly
language that contains the vector table and initialization code for stacks, and so on. In the
typical CMSIS file structure that is illustrated as follows, we see a number of file names
that we are already familiar with through our previous projects:

{device}.h: This is the header file defining the device

core_cmd4.h:This is the header file defining the device core

core_cmd.c: This contains intrinsic functions

system_{device}.h: This contains device-specific interrupt and peripheral register
definitions

system_{device}.c: This contains system functions and initialization code

e startup_{device}.s: This contains the startup code

<device.h> — Startup code files
core_cmd.h system_<device>.h other header files
Core Peripheral Access Layer Interrupt number and peripheral Device Peripheral Access Layer and
' register definitions ' additional access funclions
core_cmé.c system_<device>.c
Core intrinsic functions Syslemlfgljlct_mn; inchiding
initialization

CMSIS continues to evolve as vendors develop new peripherals and revise how
functionality is exposed by their device handlers. The version of CMSIS shipped with
ARM’s uVision4 IDE is quite different to the version that is shipped with uVision5, and
judging by some of the comments posted on user forums, some users have found
migrating to the new Run Time Environment manager quite a challenge. The main
problem, especially for this text, is that some functionality has been packaged within the
RTOS framework perhaps because this improves its robustness. More of a concern is that
some of the functionality is only supported by the professional version of the MDK.

Configuring UART ports

Programs such as addTwoNums call the SER_GetChar () and SER_PutChar () functions to
output ASCII characters to a terminal. The Retarget .c file redefines the fgetc() and
fputc() functions, which, in turn, call SER_GetChar () and SER_PutChar (). These low-
level functions illustrate some important I/O models that we’ll explore using a program
that checks if a string entered is a palindrome (for example, radar, civic, and level are
palindromes). We’ll call this recipe palindrome_c3ve.

How to do it...

Follow the steps outlined to configure UART ports:

1. Create a project named palindrome; use the RTE manager to configure the board as

we did for

addTwoNums_c3v0 folder, in the Performing arithemetic operations recipe.

2. Create a file named palindrome.c and copy the SystemClock_Config(void)
function and associated boilerplate from a previous recipe. Add the following
#include statements:

#include
#include
#include
#include
#include

"stm32F4xx_hal.h"
<stdio.h>
<string.h>
"Serial.h"
"cmsis_os.h"

3. Add a function named strRev () to the palindrome.c file:

/*

* strRev - returns reversed a string

*******/

char * strRev(char *str)
{
int i = strlen(str)-1,3j=0;
char ch;
while(i > j)
{
ch = str[i];
str[i]= str[]j];
str[j] = ch;
i--;
Jt+;
¥
return str;
b
4. Add amain () function to the palindrome.c file and add this file to the project:
/*
* main
*kkk k% */
int main (void) {

char a[100], b[100];

HAL_Init (); /* Init Hardware Abstraction Layer */
SystemClock_Config (); /* Config Clocks */
SER_Init();
for (;;) {
printf("Enter the string to check for palindrome\n");
scanf("%s", a);

strcpy(b,a);

strRev(b);

if (strcmp(a,b) == 0)
printf("Entered string IS a palindrome.\n");

else
printf("Entered string IS NOT a palindrome.\n");

3
}

5. Remember to add Retarget.c, Serial.c and Serial.h to the project.
6. Open the project options dialog, click the Target tab, and check Use MicrLIB.
7. Build, download, and run the program.

How it works...

The a array stores the string that is entered. The string is copied to the b array and the
strrev() function is called to reverse it. The strcmp() function (defined in the string.h
library) is used to check whether the two strings match. The strrev() function copies and
reverses the string character by character (remember that strings are terminated with a
NULL character).

The SER_PutcChar () function declared in Serial.c outputs characters by writing to the
USART Data Register (DR), as follows:

* SER_PutChar: Write a character to Serial Port

int32_t SER_PutChar (int32_t ch) {
#ifdef _ DBG_ITM
int 1i;
ITM_SendChar (ch & OXFF);
for (i = 10000; i; i--);
#else
while (!(UART4->SR & 0x0080));
UART4->DR = (ch & OXFF);
#endif

return (ch);

}
The UART data register is referenced by a pointer:

UART4->DR;
Note

Please note that the STM32F4xx integrates both Universal Synchronous/Asynchronous
Receiver Transmitter (USART) and Universal Asynchronous Receiver Transmitter
(UART) hardware. USARTSs can be configured to operate both synchronously and
asynchronously. We configure a UART that is connected to the 9-pin D-type connector;
hence, output is achieved by writing to UART4 rather than USARTX.

Once we have written to the data register, the digital value is output serially, one bit at a
time, by the hardware. As this takes considerably longer than it takes to load data in
parallel (the exact time taken will depend on the baud rate chosen), we must be careful not
to load the DR with a new value until the previous one has been successfully transmitted.
The previous line of code is as follows:

while (!'(UART4->SR & 0x0080))

/* empty statement */ ;
This line of code achieves this by checking bit 7 of the UART’s Status Register (SR).
Repeatedly reading the Status Register in a loop is called polling the Status Register (or
spinning on the Status Register). A similar situation occurs in SER_GetChar (), but here
we poll the Status Register to check whether a character has been received (that is, a bit-7

set), as follows:.

while (!(UART4->SR & 0x0020))

4

Polling or programmed 1/O is the simplest I/O model that we can conceive and the
corresponding empty while statements are known as busy-while loops. Programmed 1/0
operations are performed in the main thread of execution, so the busy-while loops prevent
the CPU from doing any useful work. If the program is simple, then this is not too
inconvenient, but in most cases, we must look to other more efficient I/O programming
models, such as interrupt-driven I/O, and Direct Memory Access.

A flexible device driver really needs to support all three I/O models, that is, programmed
I/O, interrupt-driven I/O, and DMA I/O. The USART device driver that is shipped with
uVision 5 does exactly this. However, configuring this code is challenging, especially for
novice programmers, so for the time being we’ll develop our own simple drivers to gain
some understanding of the mechanisms before migrating to ARM’s library.

Embedded processors use serial ports to communicate with Data Terminal Equipment
(DTE) and Data Communications Equipment (DCE) using the RS232 standard.
Previous recipes, such as addTwoNums_c3v0, use RS232 to communicate with a PC
running PuTTY to emulate a DTE. The RS232 signals are represented by voltage levels
with respect to a system common (power / logic ground). The idle state (MARK) has the
signal-level negative with respect to common, and the active state (SPACE) has the signal-
level positive with respect to common. RS232 transmits data serially, as shown in the
following figure:

jl+15"}'—
L5E M3E
c 1 & & o © O 1 O 1 1

Space [
=03

| O — Y S S — SN I -

o _T Irecizte rrvinate
} Regon

i === e e = ——— il il]
Ielark
=N Fees) |_ Zeven Daw Eas _l T

Y .5 ; \ N

Stan Feariy Two op
bit bit btz

|.. ...|

Data Fﬁslue:mrrespﬂnungm the ASCH characer &

Serial data is transmitted and received in normal USART mode as frames comprising the
following:

e An Idle Line prior to transmission or reception
e A start bit

e A data word (7, 8, or 9 bits), the least significant bit first
e 0.5, 1, 1.5, or 2 stop bits, indicating that the frame is complete

The STM400Fxxx USART that is described in STM’s Reference manual RM00090 uses a
fractional baud rate generator with a 12-bit mantissa and 4-bit fraction. The USART
employs the following:

e A status register (USART_SR)

e Data Register (USART_DR)

e A baud rate register (USART_BRR)—12-bit mantissa and 4-bit fraction

¢ A Guardtime Register (USART_GTPR) in case of Smartcard mode

When data is transmitted asynchronously (without a shared common clock), the receiver
and transmitter are synchronized by embedding timing information in the data signal by
appending a “start” bit. The seven, eight, or nine data bits are appended after the start bit, a
parity bit is added to detect errors, and the packet is terminated by one (or two) stop bits.
The transmission rate (time allocated for each bit) is determined by the baud rate.

Configuring the USART involves writing appropriate values to the USART registers
#ifdef and #else are preprocessor directives that facilitate conditional compilation):

* SER_Init: Initialize Serial Interface

K o o e */
void SER_Init (void) {
#ifdef _ DBG_ITM ITM_RxBuffer = ITM_RXBUFFER_EMPTY;
#else

RCC->APB1ENR |= (1UL << 19); /* Enable USART4 clock */
RCC->APB2ENR |= (1UL << 0); /* Enable AFIO clock */
RCC->AHB1ENR |= (1UL << 2); /* Enable GPIOC clock */
GPIOC->MODER &= OXFFOFFFFF;

GPIOC->MODER |= OXQO0AGO000;

GPIOC->AFR[1] |= 0x00008800; /* PC10 UART4_TX,

PC11 UART4_Rx (AF8) */

/* Configure UART4: 115200 baud @ 42MHz,
8 bits, 1 stop bit, no parity */

UART4->BRR = (22 << 4) | 12,
UART4->CR3 = 0x0000;
UART4->CR2 = 0x0000;
UART4->CR1 = 0x200C,;

#endif

}

Writing to the UART4->BRR baud rate register sets the baud rate. STM’s Reference manual
RMO00090 describes how to configure the Serial Ports. The baud rate is given by
t‘lk

Tx/Rx baud=— :
8(2xOVER S)KUSARTDIV

Where {_clk is the clock frequency of the USART clock, and USART_D1V is a 16-bit
unsigned fixed-point number with a 12-bit mantissa and 4-bit fraction. In our case, we

need a baud of 115200 and the APB1 domain clock is 48 MHz. Hence, missing f_clk
again defined as eqn. object. = 22.78679 = 0000000000010110.11007, so DIV_Mantissa

= 2210, and DIV_Fraction = 12/16. Hence, referring to the description of the Baud Rate
Register, we have the following:

UART4->BRR = (22 << 4) | 12;

§382302852050000

Reserved |
DIV_Mantissa(11:0) DIV_Fraction(3:0)

™w II'w [I'W ||f'W

]rw

USART Control Register 1 provides some USART control functions:

b P FFEE EF B FEREE

RESERVED
o 3 3

|RESER-VED|IWAKE||PCE||PEIE||TXEIE| TCIE||RXNEIE||IDLEIE|

Bits 2, 3, and 12 are set when 0x200C is written to Control Register 1 (CR1); this enables
the USART (bit-12) and also enables the USART transmitter (bit-3) receiver (bit-2)
functions. Bits 15, 12, and 9 are clear. This selects oversampling by 16 (bit-15), 8 data bits
(bit-12), and even parity (bit-9). Bits 12:13 of CR2 are clear; hence, we have 1 stop-bit.
Control register 3 functions are unused.

21

=
OVER8|

™w

Other statements in SER_Init () connect appropriate clocks that are sourced from the Real
Time Clock Control (RCC) peripheral and configure the GPIO to provide input and
output for the USART by means of the Alternate Function logic. Please note that pins are
an expensive microcontroller commodity, so GPIO pins are programmed to connect to a
range of peripherals. We discuss GPIO Alternate Function in more detail in Chapter 4,
Programming 1/0O.

Handling interrupts

This section illustrates an approach that improves on polling. We replace the busy-wait
loop and instead configure the USART peripheral to generate an interrupt signal when a
new character is received by the input data register (IDR). The interrupt signal causes a
special function, known as an interrupt service routine (ISR), to be called, and this, in
turn, reads the IDR and clears the interrupt signal. We illustrate this approach by a simple
recipe called hel1oISR c3vo0.

Getting ready

Two small changes to SER_Init() are needed to configure UART4 so that interrupts are
generated when a character is received. The value written to CR1 is changed from 0x200C
to 0x202C, thereby setting bit-5 (RXNEIE), and the Nested Vectored Interrupt Controller
(the NVIC is an ARM interrupt-dedicated peripheral close to the Cortex-M4 processor) is
configured for UART4 as follows:

void SER_Init (void) {
/* as before.. */

/* Configure UART4: 115200 baud @ 42MHz,
8 bits,
1 stop bit, no parity */

UART4->BRR = (22 << 4) | 12;
UART4->CR3 = 0x0000;
UART4->CR2 = 0x0000;
UART4->CR1 = 0x202C;

/* Enable Interrrupts */
NVIC_EnableIRQ(UART4_IRQn);
#endif

}

How to do it...

Follow these steps to handle interrupts.

1. Create a new folder (helloISR_c3v0) and within it a new project named helloISR;
use the RTE manager to configure the project as we did for all the previous projects
that use the serial port.

2. Create a file named helloISR.c and add the boilerplate code to configure clocks, and
so on. Add this file to the project.

3. Add a function to handle interrupts from UART4, as follows:

/**

* UART4_IRQHandler

*

**/

void UART4_IRQHandler (void) {
volatile unsigned int IIR;
volatile unsigned char c;

IIR = UART4->SR;

if (IIR & USART_FLAG_RXNE) { // read interrupt
Cc = UART4->DR;
printf("Interrupt! You pressed: %c \r\n", c);
UART4->SR &= ~USART_FLAG_RXNE; // clear interrupt

}

else
printf("Interrupt Error!\n");

3
4. Add amain () function:

/*
* main function

********/

int main (void) {

HAL_Init (); /* Init Hardware Abstraction Layer */
SystemClock_Config (); /* Config Clocks */

SER_Init();
printf ("Hello ISR I/0 Example\r\n");
printf ("Pressing a key generates an interupt\r\n");

for (;;) { /* Loop forever */
/* Nothing to do here */
}

b

5. Remember to modify the SER_init () function, as described previously.

6. Build, download, and run the program. Observe the response to keyboard strokes
(illustrated in the next screenshot). Please note that when we test the code, it is best to
configure PuTTY so that characters are not echoed to the terminal (as the ISR echoes
the characters).

COMS3 - PuTTY ESEEERTS)

How it works...

Interrupts allow us to eliminate busy-while loops by providing a mechanism for the
peripheral to initiate reads and writes to its I/O registers. It does this by sending a signal
directly to the central processing unit (CPU) via the Nested Vectored Interrupt
Controller (NVIC). This signal, called an interrupt, is automatically checked after each
instruction is executed by the CPU, and, if active, the processor responds by executing a
special function, known as an Interrupt Service Routine (ISR), that includes the read or
write statement. Early processors were designed with only one interrupt signal, and
several devices would be connected to this line using wired OR logic. In this case, when
the interrupt occurred, the processor first needed to establish which device generated it
before it could be serviced. The ARM Cortex employs a NVIC to manage up to 256
interrupts, each having a unique priority. This enables each device to call a unique ISR
that is tailored to provide it with the service it needs. System events (for example, reset)
and errors use exactly the same mechanism as interrupts but are called exceptions (to
emphasize that they arise due to unusual system events). Both the interrupt and exception
priorities are processor-specific and defined in stm32F407xx.h. The names of the ISRs are
defined in the vector interrupt table, given in the startup_stm32f407xx.s file (the file
extension, .s, indicates that this is an assembly language source file). Although interrupts
solve the busy-while problem, they rely on the processor to read and write data to
peripherals. While this is fine for a small number of data bytes, however, some peripherals
(for example, Memory systems) handle blocks of data. So, we may find that a large chunk
of the CPU time is consumed moving data rather than performing useful work. Direct
Memory Access (DMA) solves this problem by enabling data to be moved directly
between peripherals and memory. In this case, the data transfers are managed by a DMA
controller, thereby leaving the CPU free to execute other more useful instructions.

Inspecting the interrupt vector table that is defined in startup_stm32f4xx.s allows us to
identify the UART4 interrupt vector (that is UART4_IRQHandler). We must define a
function named UART_IRQHandler to handle the interrupts. This ISR must read the USART
status register (SR) and test the receive register not empty (RXNE) bit to confirm that the
interrupt was generated by the port (if not, an error is indicated). Then the data register is
read, echoed to the console terminal (PuTTY), and the interrupt is cleared (by writing zero
to the RXNE).

The SER_GetcChar () function in the retarget.c source file will need to be modified if we
wish to use stdio library functions, such as scanf (), and so on. The best strategy would
be to arrange for the ISR to write received characters to a buffer that could subsequently
be read by SER_GetChar ().

There’s more...

Interrupts provide a mechanism that allows the processor to multitask. Multitasking is a
technique where a single processor divides its time between several instruction streams.
This creates an illusion of parallelism as, to the user, it appears that different programs are
executed concurrently when, in fact, they are not. Our programs that use ISR’s have two
threads of execution, but later we will write programs employing a real-time operating
system kernel, and these may involve several threads. The differences between how
normal threads and ISR threads are used have motivated processor designers to include
features that enable multithreaded applications to be robust and recover from errors.
Exceptions that are generated automatically when an error occurs are handled using
exactly the same mechanism as interrupts and the term exception is generally used to
describe either. When an error occurs, the strategy to recover from the exception may well
involve reading/writing to processor registers that normal threads cannot access.

The Cortex-M4 processor operates in one of two modes. During the execution of the main
program, the processor is in thread mode, and during execution of an exception handler or
ISR, the processor is in handler mode. The two modes are distinguished by bits 0:8 of the
PSR. In thread mode, bits 0:8 are zero, and in handler mode they are set to a number that
identifies the exception type. As there are 8 bits, then 256 types of exceptions can be
identified. When an exception is recognized the processor responds as follows:

1. The contents of processor registers R0:R3, R12, the return address, PSR, and link
register (LR) are pushed to the active stack.

2. The processor identifies the exception number and uses this (offset) to access the
interrupt vector table and locate the address of the exception handler, which is loaded
into the program counter (PC).

3. The LR is loaded with a value that represents the execution mode of the processor
(that is, thread or handler) prior to the exception having occurred.

4. The processor switches to handler mode and begins execution.

When the handler finishes, the return sequence pops the eight words from the stack and
restores them to registers R0:R3, R12, LR, and PSR. It also loads the PC with the return
address.

Access to special registers and system resources is determined by the privilege level of the
processor. There are two levels, user and privileged. When in handler mode the processor
is always in a privileged access level and can access all registers and memory resources.
In thread mode, the processor is normally in user access privilege level and access to the
System Control Space, an area of memory used to configure registers and debugging
components, and access to some special registers is blocked. However, it is possible to
switch from handler mode to user mode and maintain privileged access level, but the
scenarios where this would be necessary are few. For most applications, the simple model
of thread and handler modes that is shown as follows will suffice. After a reset, the
processor is working in privilege mode in order to access all necessary resources.

User Access
Level

Exception

Frivileged Access
Level

Handler

Mode

Using timers to create a digital clock

A digital clock application provides a good platform to illustrate the components that we
discussed in this chapter. We’ll use PuTTY to allow the user to set the time and then call
HAL_GetTick () to provide a time-base for our digital clock that is displayed on the
GLCD. We’ll call this recipe ticToc_c3vo.

How to do it...

Follow the following steps to create a digital clock:

1. Create a new folder for the ticToc_c3v0 recipe and, within it, a new project (ticToc)
and use the RTE manager to select board support for Graphic LCD.

2. Copy the retarget.c, serial.c and serial.h files to the project folder and add
them to the project.

3. Define a new type (time_t) in the ticToc.h header file. Please note that we could
declare each variable (hours, minutes, seconds, and so on) as separate unsigned
integers, but it is better practice to group them together as a structured type named
time_t:

#ifndef _ TICTOC_H
#define _ TICTOC_H

typedef struct { /* structure of the clock record */
unsigned char hour; /* hour */
unsigned char min; /* minute */
unsigned char sec; /* second */
} time_t;

#endif /* _ TICTOC_H */

4. Create a new file named ticToc.c, add the necessary boilerplate and #include
statements, and enter the following main () function:

/*
* mailn

*******/

int main (void) {

time_t time;
int32_t input;
char buffer[128];

uint32_t tic, toc = 0;
uint32_t elapsed_t;

HAL_Init (); /* Init Hardware Abstraction Layer */
SystemClock_Config (); /* Config Clocks */

SER_Init();

GLCD_Initialize();

GLCD_SetBackgroundColor (GLCD_COLOR_WHITE);
GLCD_ClearScreen (); /* clear the GLCD */
GLCD_SetBackgroundColor (GLCD_COLOR_BLUE);
GLCD_SetForegroundColor (GLCD_COLOR_WHITE);
GLCD_SetFont (&GLCD_Font_16x24);

GLCD_DrawString (0, 0*24, " CORTEX-M4 COOKBOOK ");
GLCD_DrawString (0, 1*24, " PACKT Publishing ");
GLCD_SetBackgroundColor (GLCD_COLOR_WHITE);
GLCD_SetForegroundColor (GLCD_COLOR_BLACK);

for (;;) { /* Loop forever */

b
}

5. Add ticToc.c to the project. Build, download, and test this. Please note that the

compiler may issue some warnings as we have declared some unused variables.
6. Add the following code fragment immediately before the for statement:

/* Set the current time using PuTTY */
printf ("Clock Example\n");

printf ("Set Hours: ");

scanf("%d", &input); time.hour = input;
printf ("Set Minutes: ");

scanf("%d", &input); time.min = input;
printf ("Set Seconds: ");
scanf("%d", &input); time.sec = input;

/* elapsed_t is elapsed (10 * msec) since midnight */
elapsed_t =
time.sec*100+time.min*60*100+time.hour*60*60*100;
7. Build, download, and test this.
8. Add the following code fragment within the for loop:

for (;;) { /* Loop forever */
tic = HAL_GetTick()/10;
if (tic != toc) { /* 10 ms update */

toc = tic;

time.sec = (elapsed_t/100)%60; /* update time */
time.min = (elapsed_t/6000)%60;

time.hour = (elapsed_t/360000)%24;

/* Update Display */

sprintf(buffer, "%d : %d : %d", time.hour,
time.min, time.sec);

GLCD_DrawString (4*16, 3*24, " "),

GLCD_DrawString (4*16, 3*24, buffer);

elapsed_t = (elapsed_t+1)%DAY;

b
b

9. Remember to define the constant DAY as follows:

#define DAY 8640000; /* 10 ms ticks in a day */

10. Compile, download, and run the program. The following below shows the GLCD
screen:

How it works...

Once we have declared a variable of type time_t, the fields (hours, min, sec) of the
struct can be accessed using the dot operator (.) or the arrow operator (->). The dot
operator accesses the structure field via the structure variable name, and the arrow
operator accesses it via a pointer to the structure. We already used the arrow operator to
access fields of structs that were used to represent peripheral registers. In this case, the
arrow operator was used because the variable that was used to represent the struct
(GPIOC, RCC, UART4 etc.) defines a pointer. As our main() function declares a variable
(time) as time_t time;, we access the fields as time.hours, and so on.

The function named HAL_GetTick () returns a value that is incremented every
millisecond. We use this timebase to increment a counter variable named elapsed_t,
which is initialized by the user’s console (PuTTY). The tic and toc variables are updated
to ensure that the display only needs to be updated every 160 ms. We call the function
sprint() (declared in stdio.h) to format a string (stored in buffer [128]) representing the
current time and write this to the Graphic LCD in a similar way to what was illustrated in
this recipe, debugADC_c2vo0.

Chapter 4. Assembly Language
Programming

In this chapter, we will cover the following:

Writing Cortex-M4 assembly language

Passing parameters between C and the assembly language
Handling interrupts in assembly language

Implementing a jump table

Debugging assembly language

Introduction

This chapter explains how to write functions in assembly language. Assembly language is
a low-level programming language that is specific to a particular computer architecture.
So, unlike programs written in high-level languages, programs written in assembly
language cannot be easily ported to other hardware architectures. Assembly language
programs are converted into object code by a program called an assembler. In practice,
assembly language is used only rarely and most embedded software is written in a high-
level language, such as C. Assembly language is only used when the programmer needs
precise control over the machine architecture and needs to access specific registers or
when execution time is an important consideration. Such occasions typically occur during
the following:

e Initializing the system
e Servicing I/O devices
e Handling interrupts

Assembly language programmers need a model of the computer architecture to enable
them to write programs. This so called programmers’ model identifies the registers,
memory model, and instruction set for a particular machine architecture. The Cortex-M4
programmers’ model is described in the ARMv7-M Architecture Reference Manual (please
note that ARM restricts access to this document, but copies are available via third parties).
Chapter A2 identifies 13 general-purpose 32-bit registers (R0-rR12) and three additional
special registers (R13-R15) comprising Stack Pointer (SP), Link Register (LR), and

Program Counter (PC). Chapter A3 describes a flat address space that is 232 bytes (4 GB)
in size, and it identifies specific regions that are reserved for code, data, and memory-
mapped I/O devices. The large number of instructions that are supported by the ARMv7-
M architecture makes the prospect of writing an assembly language program quite
daunting. A good strategy is to index instructions according to functionality (for example,
branch, data processing, and data movement (load/store, and so on) as presented in
Chapter A4 of the reference manual.

The architecture supports a combination of 16-bit (Thumb) and 32-bit (ARM) instruction
formats in an instruction set that is known as Thumb-2 technology. ARM’s Unified
Assembler Language (UAL) was developed to support both 16-bit and 32-bit
instructions. We can specify a 32-bit instruction format using the .w (wide) suffix or the
16-bit format using the .N (narrow) suffix. If we omit the suffix, then the assembler
chooses for us based on other constraints. For example, if the instruction references a high
register (R8-R13), then a 32-bit variant must be used as most 16-bit instructions can only
reference RO-R7. Instructions may also include other optional suffixes that identify the
following:

e Status register flags in the Program Status Register (PSR) {cond} that determine
execution (such as for branch instructions)

e If the condition flags are updated {S}

e The element size specified either as unsigned byte {B}, signed byte {SB}, unsigned

half-word {H}, signed half-word {SH} or word (default)

The startup_stm32f407xx.s file that we include in all our projects is written in assembly
language (conventionally, ARM file extensions, .s and .a, identify assembly language
source code files). This is because one of its tasks is to set the Stack Pointer (SP) and
writing to a specific register is impossible in C. Assembly language uses a mnemonic to
represent each machine instruction. Other instructions called pseudo-instructions or
assembler directives give commands to the assembler itself. Each line of the program
combines instruction and pseudo-instruction mnemonics with operands and labels to carry
out each program step. Labels may be included to act as symbolic references that are used
to refer to memory locations, and so they save the programmer the tedious job of keeping
track of addresses. An assembly language program is written so that labels, mnemonics,
operands, and comments are arranged neatly in tabulated columns, that is,

[label] [mnemonic] [operand(s)] ; [comment]

Each column must be separated by at least one whitespace character, and comments are
preceded by a semicolon. Most assemblers are known as two pass because they parse the
source code twice, first to build a table of symbolic references and associated addresses
(called the symbol table) and again to produce the object code.

Writing Cortex-M4 assembly language

Before we start to write an assembly language subroutine, we need an idea of what the
function has to achieve. The best way to specify this is to first write the function in a high-
level language, such as C, and then translate the C code into assembly language line by
line. Some experienced assembly language programmers argue that this is inefficient, but
the technique produces well-documented code that can be optimized in further iterations
of the design.

Getting ready

To translate the C code, we need to be familiar with both the instruction set and the
addressing modes that are used by the Cortex-M4. Details of the instruction set can be
found in ARM’s Architecture Reference Manual and also in the ARM Cortex-M4 Generic
User Guide (http://infocenter.arm.com/). Addressing modes are fundamental to a general
understanding of computer architecture, but they are of practical interest to compiler
writers and those writing assembly language. The following paragraph provides a very
brief introduction.

The addressing mode describes the mechanism that an instruction uses to access its
operands. In RISC architectures, such as the ARM Cortex, most instructions reference
operands stored in registers directly (that is, register direct addressing). However, load and
store instructions may reference a register value that is interpreted as an address in
memory that contains the operand (that is, a pointer to the operand), so-called register
indirect addressing. Additionally, if the value is interpreted as a pointer, then the effective
address may be formed by adding an additional value (called the offset). The offset value
may be specified as a constant and stored as part of the instruction, a technique known as
immediate addressing, or stored in another register called an index register. The latter
case, known as indexed addressing, is particularly efficient to access values stored in data
structures, such as arrays, and structures. These addressing modes are summarized in the
following table, and further information on additional addressing modes that are supported
by the ARM Cortex-M4 can be found in Chapter A6 of the ARMv7-M Architecture
Reference Manual.

Syntax ||Addressing Mode||Description
<Rn> Direct ||This is the operand that is stored in the register
[<Rn>] Indirect ||This register holds a pointer to the operand
This is the effective address formed by adding the contents of base register <Rn> +
[<Rn>, Offset/Indexed <offset>. Offset may be the following:
<offset>] [{Addressing e An immediate constant, for example, <imm8> or <imm12>
e An index register <Rm>

Consider translating the C code const declaration into assembly language, as follows:

const uint32_t delay = 10000;

ARM’s Unified Assembler Language (described in the ARM compiler toolchain
assembler reference http://infocenter.arm.com/) makes translating simple constant variable
declarations very simple by providing a pseudo-instruction LDR that automatically
produces appropriate ARM instructions to complete this task. In this case, assuming that
we choose to store variable num_ticks in RO, then we can write the following:

;7 Translating a const declaration
LDR RO, =10000 ; const uint32_t num_ticks = 10000;

http://infocenter.arm.com/
http://infocenter.arm.com/

The ARM assembler will convert this into an appropriate load instruction to move the
required data value to the register. Let’s suppose that we need to translate a variable
declaration that doesn’t include an assignment, as follows:

uint32_t cnt;

This doesn’t require writing any code; we simply need to make a note of the register used
to store the data:

;7 Translating a variable declaration
;R1 <- cnt ; uint32_t count;

We can then use LDR when a value is assigned:

;7 Translating an assignment statement

LDR R1, =0 ; count = 0;

We will now illustrate the translation of a whole function by considering the simple delay
used in the helloBlinky_c2v2 recipe that was introduced in Chapter 2, C Language
Programming. We’ll call this recipe asmBlinky_c4ve.

How to do it...

1. Create a new project (in a new folder) called asmBlinky. Use the same RTE as
helloBlinky c2v2 from the Writing a function recipe in Chapter 2, C Language
Programming).

2. Make a copy of helloBlinky.c (the helloBlinky_c2v2 folder from the Writing a
function recipe in Chapter 2, C Language Programming.) and rename it
asmBlinky.c.

3. Replace the comment at the start of the file with something more appropriate, let’s
take the following example:

20
* Recipe: asmBlinky_c4v0
* Name: asmBlinky.c
* Purpose: Very Simple LED Flasher using
* Assembly Language delay function
K o o e Y Y e o
*
* Modification History
* 17.03.14 Created
* 02.12.15 Updated
* (uvision5 v5.17+STM32F4xx_DFP2.6.0)
*
* Dr Mark Fisher, CMP, UEA, Norwich, UK
K o e */
4. Declare an external function called delay ():
/* Function Prototype */
extern void delay(void); /* asm subroutine */

5. Delete the C function named delay () defined after main () (a legacy of
helloBlinky.c).

6. Add asmBlinky.c to the project.

7. Create a new file, enter the following assembly language code, and save the file as
delay.s. Please note that the .s file extension is reserved for assembly language
source code files:

kkhkhkkhkkhkkhkhkkhkhkkhkhkhkhkkhkhkkhkhkkhkhkhkhkhkhkhhkhhkhhkhhkhhkkhhkhhkhhkihkhhkikhkhhkikkikk*x*%

* delay: Very simple assembly language delay routine *

* *
* Dr. Mark Fisher, CMP, UEA, Norwich, UK. *
* Last updated 19.03.14 *

R R S S S Sk b e S Sk b S S R Rk S S S b b b S S S Sk R I I Sk b b S

AREA example, CODE, READONLY

N= N= N= N= N= N=
NE= N= N= W= N= N=

EXPORT delay ;
delay ; void delay(void) {
;RO <- num_ticks ; uint32_t num_ticks

LDR RO, =100000600600 ,;
;R1 <- c¢nt ; uint32_t cnt;
LDR R1, =0 ; for (cnt=0;
cnt!=<num_ticks; cnt++)

for CMP RO, R1
BEQ forEnd
ADD R1, #1
BAL for

/* empty statement */ ;

forEnd
BX 1r
END

N® N® N= N= N= N= N=

. Add delay.s to the project.
. Build, download, and run the program.

How it works...

The name of the function translates to a label that acts as a pseudonym for the address of
the start of the function. The variables are stored in Re and R1 and assigned using LDR
pseudo-instruction. R1 is incremented by adding an immediate constant (the immediate
addressing mode is identified using #) to R1, the result is stored in R1. Its value is then
compared to RO. The compare instruction subtracts R1 and RO and sets the PSR flags but
does not store the result of the operation. The conditional branch not equal (BNE) tests the
zero flag and loads the program counter (PC) with the address of the label for if the flag is
not set; otherwise, the program continues.

Programs often combine both C and assembly language functions, also known as
subroutines. The assembly language code is written in a separate file that is read by the
assembler. The main output produced by assembling an input assembly language source
file is the translation of that file into an object file in Executable and Linking Format
(ELF). ELF files produced by the assembler are relocatable files that hold code and/or
data. The term relocatable means that all variables and branch targets are PC-relative, and
so the code can be loaded anywhere in memory and executed. Relocatable ELF files
produced by the assembler comprise of the following:

e An ELF header
e A Section header table
e Sections

Sections are the smallest independent, named, and indivisible units of code or data that are
manipulated by the linker. The AREA assembler directive is used to subdivide our assembly
language source file into ELF sections. Normally, we need at least two sections: one for
program code, and another for data. There are two reasons for this. Firstly, some
applications may store executable code in read-only memory (ROM), but variables need to
be stored in read-write memory (RAM). Secondly, as the ARM Cortex-M4 uses a Harvard
architecture model (that is, separate program and data memories) there is a considerable
performance advantage in storing variables as data rather than code (even though both
memories are implemented as nonvolatile RAM). As the examples we will investigate are
not optimized for performance, our code and data can share the same section. Every
program that includes assembly language must have at least one AREA directive
(startup_stm32f407xx.s includes several).

As the delay assembly language subroutine is defined in another source file, then in order
to call it from the main C function, we need to declare delay() as an external function.
The name of the function resolves to the entry point in our assembly language subroutine
(that is, an address), which is identified by adding the delay label in our code. We also
need to include the EXPORT directive to enable the linker to resolve the symbol references.

When a function (written in C or assembler) is called, the program counter (PC) that holds
the return address must first be saved and then overwritten with the address of the first
instruction in the function. The ARM Cortex instruction set contains a primitive
subroutine call instruction named branch-with-link (BL) that performs this function.

When the function completes, a branch indirect (BX) instruction is used to load the PC
register with the (saved) return address.

Every assembly language source file must end with an END assembler directive.

The ARM Architecture Procedure Call Standard (details in the next section) permits
subroutines to overwrite RO-R3, so we can safely use R@ and R1 to store our local variables.

The AREA directive declares a CODE section called example that is READONLY and the delay
label identifies the ENTRY to the subroutine. This symbol is exported to the linker. The RO
and R1 registers are used to hold the 32-bit const num_ticks and the cnt variable.
Normally, one would need to save the contents of registers used by an assembly language
subroutine; however, the ARM Architecture Procedure Call Standard
(http://infocenter.arm.com/) permits subroutines to use RO-R3 without regard to their
original contents (that is, their contents have been saved and restored by the calling
function).

Values are loaded using the LDR pseudo-instruction and the register values are compared.
If equal, the subroutine exits; otherwise, cnt is incremented. When the subroutine exits the
register indirect branch, BX 1r loads the PC register with the value given by the link
register (R14).

http://infocenter.arm.com/

There’s more...

In addition to the object file identified by its file extension (. o), the assembler also creates
a listing file (.1st) in the subdirectories named Objects and Listings. The listing file is
very useful because it includes the instruction codes and the address labels used. A
fragment of the listing for the delay subroutine is shown. This file can be a useful
debugging aid. Please note that the comment field has been deleted for clarity:

8 00000000 AREA example, CODE, READONLY
9 000000060 ;
10 000000060 EXPORT delay ;
11 000000060 delay ;
12 000000060 ;RO <- num_ticks ;
13 00000000 4804 LDR RO, =10000000;
14 00000002 ;R1 <- cnt ;
15 00000002 FO4F 0100 LDR R1, =0 ;
16 00000006 4288 for CMP RO, R1 ;
17 00000008 DOO3 BEQ forEnd ;
18 OOOOOOOA F101 0101 ADD R1, #1 ;
19 OOOOOOOE BFE8 E7F9 BAL for ;
20 00000012 forkEnd ;
21 00000012 4770 BX 1r ;
14

22 00000014 END

See also

Documentation for the ARM Compiler Toolchain (including assembler directives) and
ARM Instruction Set can be found in the Tools Users’ Guide (accessed via uVision5’s

Books Tab).

Passing parameters between C and the
assembly language

When a function or subroutine is called, its address must be loaded into the PC so that it
can be executed and, when it terminates, execution of the calling routine must continue. In
addition, there must be a convention that defines the following:

e How parameters are passed to the function
e How parameters are returned
e Which (if any) registers can be modified by the function

The ARM Architecture Procedure Call Standard deals with these issues (refer to
Procedure Call Standard for the ARM Architecture, http://infocenter.arm.com/).

http://infocenter.arm.com/

Getting ready

In this section, we will learn more about the ARM Architecture Procedure Call
Standard (AAPCS) by writing an assembly language subroutine that receives a parameter
from the C function that calls it. Moreover, in this example, the assembly language
subroutine itself calls another C function. Functions or subroutines that call other
functions or subroutines are called nested functions/subroutines.

How to do it...

We’ll write another version of helloworld_c2ve (introduced in the Writing to the GLCD
recipe in Chapter 2, C Language Programming), but this time we’ll use our own simple
assembly language subroutine called asmPrintf (), instead of printf(), to output the
string. We’ll call this recipe asmPrintf_c4ve:

1.

Create a new project (in a new folder) called asmPrintf by cloning helloworld_c2ve
(that is, use the same RTE as helloworld).

Copy helloWorld.c; rename it asmPrintf.c.

Change the description to something more appropriate, as follows:

Recipe: asmPrintf_c4v0

Name: asmPrintf.c

Purpose: Outputs string using assembly language
(illustrates parameter passing)

Modification History
23.03.14 Created
17.12.15 Updated (uvision5 v5.17+DFP2.6.0)

I R I . .

Dr Mark Fisher, CMP, UEA, Norwich, UK

Declare an external function named asmPrintf ():

/* function prototypes */
extern void asmPrintf(char *);

Define a main () function:

/**
* Main function
*/

int main (void) {

HAL_Init(),
SystemClock_Config();

SER_Init();

for (;;) { /* Loop forever */
asmPrintf("Hello wWorld!\n");
wait_delay(1000); }

}

Add asmPrintf.c to the project.

Create a new file, enter the following assembly language code, and save the file as
asmPrintf.s. Please note that the .s file extension is reserved for assembly language
source code files:

PR R Ik Sk I b S S S S b b S S kS S kS b S R S S Sk kS Sk b b S S S
14 14

10.

11.

12.

* A simple subroutine to print a string to the console *

kkhkkkkkhkhkhkhkhhkhkhkhkhkhkhkhkhhhkhkhkhkhhkhhhkhkhkhhkhhhk kikhkhhhkhkikhkkhk khkikikxx*x

* *
* Dr Mark Fisher, CMP, UEA, Norwich, UK *
* Last updated 23.03.14 *

N= Ns= N= N= N= N=
N= N= N= N= N= N=

kkhkkkhkkhkhkhkhkhhkhkhkhkhkhkhkhkhhhkhkhkhkhkhkhhhkhkhkhhkhhkhk k khkkhhkhk) khkkkk) kikikx*x*x

AREA hellow, CODE, READONLY
EXTERN SER_PutChar
EXPORT asmPrintf
NULL EQU 0 » #define NULL 0O

asmPrintf void printf(char *ptr) {
PUSH {R5, LR}

; R5 <- ptr

; RO <- C
MOV R5, RO

LDRB RO, [R5], #1
while CMP RO, #NULL
BEQ endwhl
BL SER_PutChar
LDRB RO, [R5], #1
B while
endwhl POP {R5, LR}
BX 1r
END

char ¢ = *(ptr++);
while (c != NULL) {

SER_PutChar(c);
char ¢ = *(ptr++);

}

N® N® Ns= N= Ns N= N= W= W= W= W= W= W= N= N

Add asmPrintf.s to the project.

Include Retarget.c and Serial.c in the project.

Connect the 9-Pin D-type UART1/3/4 connector on the evaluation board to the PC
USB port (as we did in Chapter 2, C Language Programming).

Run the terminal emulator (PuTTy) configuring it as we did in Chapter 2, C
Language Programming.

Build, download, and run the program.

How it works...

Our assembly language function needs a pointer to the first character of the string (exactly
as printf() declared in stdio.h does), so our function prototype is as follows:

// Function prototype for assembly language subroutine
extern void asmPrintf(char *ptr);

As AAPCS uses R0-R3 to hold the first four words of parameters passed to a function, we
only need to pass one parameter (a pointer), so this is passed in Ro.

As many novices find it difficult to write assembly language, we adopted the strategy of
writing in C and then translating this code, line by line, into assembly language. The
asmPrintf() C function is defined as follows:

// Function asmPrintf()
void asmPrintf(char *ptr) {
char ¢ = *(ptr++);

while (¢ !'= NULL) {
SER_PutChar(c);
c = *(ptr++);
}
}
We include this in the comment field of our assembly language program to document the

code. A key statement in the function is as follows:
c = *(ptr++);

This statement assigns a value to the c variable. The value is identified by a pointer
variable, which is (later) incremented after the assignment is performed (so, ptr always
points to the next character to be assigned to c). The while loop exits if c is a NULL
character (strings are terminated by NULL characters).

The following is the assembly language instruction:

LDR{type} Rt, [Rn], #offset

This variant of LDR uses postindexed addressing; type determines the element size (that is,
B, SB, H, and SH) and is omitted for word size memory access. Rt is the (target) register
that we have to load. The address obtained from Rn is used as the address for the memory
access. The offset value is added or subtracted from the address and written back to Rn.

To call the SER_Putchar () C function, the PC register must be loaded with its address. But
as the function is defined in another file, we must leave it to the linker to sort out the
detail. The EXTERN assembler directive identifies the SER_PutChar symbol as external.
Working within the AAPCS, we must save any registers (other than RO-R3) that we use.
When functions are nested then the link register (LR) must also be saved.

The ptr variable is passed in RO, but as Re is needed to pass the input parameter to
SER_PutChar (), we copy ptr to R5. The first instruction pushes the contents of R5 and LR
onto the stack, and the last restores them, so the subroutine preserves state. Translating the

while loop involves branching conditionally on the result of a comparison undertaken at
the start of the loop.

There’s more...

We can optimize the asmPrintf subroutine further using a Compare and Branch on Zero
(cBz) instruction. The instruction is as follows:

CBz Rn, label

This is equivalent to the following sequence:

CMP Rn, label
BEQ label

However, Rn must be in the R0-R7 range, and the branch destination must be within 4-130
bytes of the instruction. Both of these restrictions are met in our case. A new version of
our asmPrintf subroutine (asmPrintf_v2.s) is shown as follows:

s hkkhkkkkkhkkhkkhkkhkkhkhkhkhkkhkkhkhkkhkkhkhkhkhkkhkhkhkhkhkhhhkhkhkhkhkhkhkhkhkhkhkkhkhhhkhkhkhkhkhkhhhkhkhkhkkkkkhkikhkhkk.
l4 14

;* A subroutine to print a string to the console *;
IR IR R I IR R R A R I b R R R R I I I I R R I R S R R I R I R R R R R R I I R S R O Y
4 4
;* Optimized using CBZ instruction (Cortex M3/M4) *;
%k * »
4 14
;* Mark Fisher, CMP, UEA, Norwich, UK *;
;* Last Updated 26.03.14 *;

TR R I b S b I b b I b b b S I b b b b S A R S b S S b R I b I b S b b b Y
4 4

AREA hellow, CODE, READONLY
EXTERN SER_PutChar
EXPORT asmPrintf

asmPrintf ; volid asmPrintf(char *ptr) {
PUSH {R5, LR} ;

; R5 <- ptr ;

; RO <- C ;
MOV R5, RO ; char ¢ = *(ptr++);
LDRB RO, [R5], #1 ;

while CBZ RO, endwhl ; while (c !'= NULL) {
BL SER_PutChar ; SER_PutChar(c);
LDRB RO, [R5], #1 ; char ¢ = *(ptr++);
B while ; }

endwhl POP {R5, LR} ;
BX 1r ;

END PR

See also

In addition to the instruction set, an assembly language programmer also needs knowledge
of the assembler directives, such as EQu, and so on. For further information, refer to the

ARM Assembler Directives Reference (http://infocenter.arm.com/).

http://infocenter.arm.com/

Handling interrupts in assembly language

ARM Cortex interrupt handlers can be programmed completely in C, but programmers
coding time-critical applications prefer to use assembler (some programmers claim, rather
ambitiously, that their hand-crafted assembler programs run up to 30-times faster than
compiler generated code, but I suspect that the actual figure is 2-3 times).

When an interrupt (also known as an exception) occurs, the processor responds by
performing the following actions:

e Pushing Registers R0-R3, R12, link register (LR), program counter (PC), and program
status (PSR) onto the stack

e Reading the address of the exception handler from the interrupt vector table

e Updating the stack pointer, program status, link register, and program counter

The eight words pushed onto the stack are collectively known as the Stack Frame
(illustrated later). These are referred to as caller-saved registers by the (AAPCS), and so
the exception executes exactly as a C function. If the processor is in privileged mode, then
the main stack will be used; otherwise the process stack is used.

The NVIC identifies the exception vector, and this is read from the vector table. On entry
to the exception handler, either MSP or PSP is updated, the lower 8-bits of PSR (that is,
ISR) are updated to show the exception number, the PC is loaded with the exception
handler’s address, and LR is loaded with a special value known as EXEC_RETURN, which is
defined in the following table:

Bits 31:4 ||Bit 3 Bit 2 Bit 1 Bit 0 |
Return Mode Reserved ||[Process State
O0xFFFFFFF Return Stack
(thread/handler) Must be Ol Thumb/ARM

Stack Pointer
Before Exception

Stack Pointer After
Exception

32-bits

*PSR

PC

LR

R12

R3

R2

R1

RO

Stack
Frame

Getting ready

To illustrate an assembly language interrupt handler, we’ll translate the he1l10ISR _c3v0
interrupt request handler recipe that we first introduced in the Handling Interrupts recipe
in Chapter 3, Programming 1/0. We call this recipe asmHe110ISR_c4v0. An
interrupt/exception handler must perform three steps:

e Process the interrupt request
e Deassert the request in the peripheral
e Return

How to do it...

1. Create a new project (in a new folder) called asmHe110ISR by cloning helloISR (that
is, use the same RTE as helloISR_c3v0 introduced in Chapter 3, Programming I/O).

2. Copy the helloIsRr.c file and rename it asmHelloISR.c. Delete the C function
named UART4_IRQHandler () and add a new descriptive comment:

2
* Recipe: asmHelloISR_c4v0
* Name: asmHelloISR.c
* Purpose: Gets user key input using ISR
* (handler written in assembler)
K o o e Y Y Y e e o
*
* Modification History
* 05.03.14 Created
* 17.12.15 Updated
* (uvision5 v5.17+STM32F4xx_DFP2.6.0)
*
* Dr Mark Fisher, CMP, UEA, Norwich, UK
K o o e e o e */
3. Add this main function to the asmHelloISR.c file:

/**
* Main function
*/

int main (void) {
HAL_Init (); /* Init Hardware Abstraction Layer */
SystemClock_Config (); /* Config Clocks */

SER_Init();

printf ("Hello ISR I/O Example\r\n");
printf ("Pressing a key generates an interupt\r\n");

for (;;) { /* Loop forever */
/* Nothing to do here */
}

}

4. Add asmHellISR.c to the project.
5. Create a new file, enter the following code, and save it as asmHel11loISR.s:

PR S Ik b S S S kR S Sk kS S R Sk Sk kb S S S R S Sk I kb e S S b o S Rk I S
14 14

;* Assembly language UART4_IRQHandler *;
s kkhkkkhkkkhkkkhkkkhkkkhkkhhkkhhkkhhkkhhkkhhkkhhkkhhkkhhkhhkhhkhhkkhhkhhkhhkhhkhkhkhhkhkhkhhkhkkhkikhk*k.
;* Dr Mark Fisher, UEA, Norwich, UK *
;* Last Updated 26.03.14 *

PR S kb S S Sk Sk S kS S Sk kb S S R R S S kS b b S S S kR I I S S S b
14 14

AREA example, CODE, READONLY
EXPORT UART4_IRQHandler
EXTERN printf ;

UART4 EQU 0x40004C00 ;

SR EQU 0x00 ;

DR EQU 0x04 ;

RXNE EQU OXx0020 ;

msgl = "Interrupt! You Pressed: %c \r\n",0

msg2 = "Interrupt Error! \r\n",0

UART4_IRQHandler ; void UART4_IRQHandler (void)
p {

PUSH {R4, LR} ;

;RO <- ptr ; char *ptr;

;R2 <- TIR ; unsigned int IIR;

;R1 <- ¢ ; unsigned char c;
14

:R4 <- UART4

l4

uint32_t *UART4;

LDR R4, =UART4
LDR R2, [R4, #SR]
if_ AND R2, #RXNE

IIR = UART4->SR;

if (IIR &
USART_FLAG_RXNE) {

CBZ R2, else_

LDR R1, [R4, #DR] Cc = UART4->DR;

N® Ns Ns= N= N= N= N=

ADR RO, msgl ptr = msgl

I
BL printf ; printf(msgl, c);
LDR R2, [R4, #SR] ; IIR = UART4->SR;
AND R2, #~RXNE UART4->SR &=
STR R2, [R4, #SR] ~USART_FLAG_RXNE,
BAL ifend 3

else_ else

ADR RO, msg2

BL printf
ifend POP {R4, LR}

BX 1r

ALIGN

END

printf("Interrupt
Error!\n");

N®= N= N®= N= N= W= N= N= N

Add asmHellolISR.s to the project.

Remember to add Serial.c and Retarget.c to the project.

Check Use MicroLIB in the project options dialog.

Connect the 9-Pin D-type UART1/3/4 connector on the evaluation board to the PC

USB port (as we did in Chapter 2, C Programming Language).

10. Run the terminal emulator (PuTTY), configuring it as we did in Chapter 2, C
Programming Language.

11. Build, download, and run the program.

0 eNd

How it works...

We need to write an assembly language subroutine called UART4_IRQHandler because this
is the label referenced in the interrupt vector table that is defined in
startup_stm32f407xx.s. As the handler must read and write to the registers of UART4, we
also need its base address and the address offsets needed for the Status Register (SR) and
Data Register (DR). This information can be found in the stm32f407xx.h header as
follows:

;» UART4 addresses

UART4_BASE EQU 0x40004C00 ; UART base address

SR EQU 0Ox00 ; Status Register offset
DR EQU 0x04 ; Data Register offset

We load R4 with the UART4 base address and use a base + offset addressing mode to load
R1, the UART register. For example, the following sequence of instructions reads the Data
Register:

LDR R4, =UART4_BASE ;
LDR R1, [R4, #DR] ;¢ = UART4->DR;

We also need to define masks to identify important flags, such as SR bit-5, and read data
register not empty (RXNE):

RXNE EQU 0x0020

We can define message strings to be output using the = pseudo instruction:

"Interrupt! You Pressed: %c \r\n",6 &0
"Interrupt Error! \r\n", &0

msgl
msg2

You will notice that C strings are automatically terminated by a NULL character, but in
assembly language we need to explicitly tack o to the end. We’ll use the stdio library’s
printf() function to output the string. This function takes two input arguments. The first
is a pointer to the first character, and the second is the character argument referenced by
the %c format specifier. We use the load PC-relative address assembly language instruction
to load the location labelled as msg1 into Ro:

ADR RO, msgl

There’s more...

Again, the ARM instruction set includes assembly language instructions that we can use to
optimize things a little. The if-then condition instruction (IT) makes up to the four
following instructions conditional. The conditions can be all the same or some can be the
logical inverse of the others. The conditional instructions following the IT instruction are
called the IT block. As there can be only four conditional instructions, we’ll need to
rewrite our C function so that it can be coded using an IT instruction:

Void UART4_IRQHandler (void) {
uint8_t *ptr;
uint32_t IIR;
char c;
uint32_t *USART_ptr;

IIR = UART4->SR;
= (char) UART4->DR;
if (IIR & USART_Flag_RXNE)
printf("Interrupt! You pressed %c \r\n", c);
else
print("Interrupt Error!");
USART4->SR &= ~USART_Flag_RXNE;

}

The changes that we made to UART4_IRQHandler () do not change its run time operation,
but a compiler wouldn’t be able to reorder the statements and ,thus take advantage of the
if-then optimization. The complete subroutine is as follows:

s kkkkkkhkkkhkhkkhkhkhkhkkhkhkkhkhkkhkhkhhkhhkhhkkhkhkhhkhkhkhhkhkhkhhhhhhhhhhhkhhhhkhkhkhhkkhkhkkhhkkhkkhk

’ ’
;* Assembly language UART4_IRQHandler *
v hkhkkhkkkhkkhkkhkkhkkhkhkhkhkhkhkhkhkkhkkhkkhhkhkhIrhkhkhkkhkkhkkhkhkhhhkhkhkhkhkhkkhkkhkhhhErIrhkhkkhkkhkkhkkhkhhEhkhkhkhkhkhkkhkk.
14 14
;* Optimised using if-Then instruction *;
-k * »
4 14
;* Dr Mark Fisher, UEA, Norwich, UK *
;* Last Updated 26.03.14 *

s kkkkhkkkhkkhkhkkhkhkhhkkhkhkkhhkkhkhkkhhkkhkhkkhhkhkhkhhkhkhkhhkhkhkhhkhhkhkhkhkkhkhkhkhkkhkhkhkkhkkhkkhhkkhkkhkkhk
4 4

AREA example, CODE, READONLY
EXPORT UART4_IRQHandler ;

EXTERN printf ;
UART4 EQU 0x40004C00 ;
SR EQU 0Ox00 ;
DR EQU 0x04 ;
RXNE EQU OXx0020 ;
msgl = "Interrupt! You Pressed %c \r\n", 0
msg2 = "Interrupt Error! \r\n",
ALIGN
UART4_IRQHandler ; void UART4_IRQHandler (void) {
PUSH {R4, LR}
;RO <- ptr ; char *ptr;
sR2 <- TIR ; unsigned int IIR;
;R1 <- ¢ ; unsigned char c;
;R4 <- UART4 ; uint32_t *UART4;

.
4

LDR R4, =UART4 :

if_

LDR R2
LDR R1

4

4

[R4, #SR]
[R4, #DR]

AND R2, #RXNE
CMP R2, #0O

ITE NE

ADRNE RO, msgl
ADREQ RO, msg2
printf

BL
LDR R2

4

[R4, #SR]

AND R2, #~RXNE

STR R2
POP {R
BX
END

4
4,
1r

[R4, #SR]
LR}

/

4

4

4

; ITR = UART4->SR;
C = UART4->DR;
if (IIR & USART_FLAG_RXNE) {

printf("Interrupt! You
Pressed: %c \r\n"), c);
else
printf("Interrupt Error!\n");
4

UART4->SR &= ~USART_FLAG_RXNE;

Implementing a jump table

Under certain circumstances, a jump table provides a very efficient way of implementing a
C language switch statement block. We can define a jump table as a list of unconditional
branch instructions—each referencing a different procedure or subroutine. We branch to
one of the subroutines by loading the program counter with the address of the
unconditional branch that is stored in the jump table. The effective addresses of items in
the jump table are formed using a base + offset addressing mode. Base + offset addressing
is commonly used to access data items stored in arrays, and a jump table is effectively just
an array of address items.

Getting ready

To illustrate a jump table, we’ll develop a recipe called asmJumpTable_c4ve. Assume that
we have a function named jumpT () that accepts a val integer input argument. The
function calls either proc1 (), proc2 (), or proc3 (), depending on the value of the
input argument:

void jumpT (int val) {

switch (val) {

case 1 :
procl ();
break;

case 2 :
proc2 ();
break;

case 3 :
proc3 ();
break;

default :
printf("Unrecognized!

Enter value between 1-3\n");

break;

3
}

We’ll implement jumpT () in assembly language using a jump table.

How to do it...

1. Create a new project (in a new folder) called asmJumpTable_c4ve by cloning
asmHelloWorld (that is, use the same RTE as asmHelloworld).

2. Create a new file, enter the usual boilerplate, include the following, and save it as
asmJumpTable.c:

#include "stm32F4xx_hal.h"
#include <stdio.h>
#include "Serial.h"
#include "cmsis_os.h"

/* Function Prototype */
extern void asmJumpT(int);

3. Add a main function, as follows:

/*
* main

*******/

int main (void) {
int input, value;

HAL_Init (); /* Init Hardware Abstraction Layer */
SystemClock_Config (); /* Config Clocks */

SER_Init();

for (;;) { /* Loop forever */
printf("\nJump Table Demo\n");
printf("Enter Number from 1-3: ");
scanf("%d", &input);
value = (int) input;
asmJumpT(value);
}
}

4. Add asmJumpTable.c to the project.
Create a new file, enter the following assembly language code, and save the file as

asmJumpTable.s. Please note that the .s file extension is reserved for assembly
language source code files:

o

s kkhkkkhkkkhkkkhkhkkhkhkhhkkhkhkkhhkkhkhkkhhkkhhkkhhkhhkhhkhkkhkhhkhkkhkhkhkhkkhkhkhkhkkhkkkhkhkkhkkhkkk.
14 14
;* A simple subroutine to illustrate a Jump Table *;

PR R I S b Rk Sk b e S S kR I Ik b S S S S Sk b e S S I R S Sk S kb b
14 14

- k .
;* Dr Mark Fisher, CMP, UEA, Norwich, UK s
;* Last updated 19.12.15 *

PR R S S b S S Sk S Sk b S S R S S kb b b S S S S kR S Ik kb b S S S b b
4 14

AREA example, CODE, READONLY
EXPORT asmJumpT ;
EXTERN printf ;

msgl = "Case 1\n",0 ;

msg2 = "Case 2\n",0 ;
msg3 = "Case 3\n",0 ;
msgDef = "Unrecognized! Value between 1-3 needed\n", 0
14
ALIGN ;
asmJumpT ; void JumpT(int val) {
PUSH {R4, LR} ;
ADR r3, jumpTable ;
; val->RO ; switch (val) {
SUB RO, #1 ;
CMP RO, #2 ;
BGT default ;
LDR pc, [r3,r0,LSL#2] ; case '1' :
’ procl();
; break;
; case '2'
’ proc2();
; break;
; case '3' :
’ proc3();
; break;
default ; default
ADR RO, msgDef ; printf(msgDef);
BL printf ; break;
endsw POP {R4, LR} ; }
BX 1r B

6. Add the jump table and associated subroutines to asmJumpTable.s:

jumpTable ;

DCD procl ;

DCD proc2 ;

DCD proc3 ;
v hkkhkkkkhkkhkkhkkhkkhkkhkhkhkhkhkhkhkhkkhkkhkhhhIrhrkhkhkkhkkhkkhhhhIrhkhkhkhkkhkkhkkhkkhkhkhkhkirkhkhkkhkkhkhkhk.
14 4
;* Procedure 1 *
v hkhkkkkkhkkhkkhkkhkkhkhkhkhkhkhkhkhkkhkkhkhkhhErhrkhkhkkhkkhkkhhkhhErhkhkhkhkkhkkhkkhkkhkhkhkhkhrkhkhkkhkkhKhkhk.
14 14

ALIGN ; void procl() {
procil ADR RO, msgl ;

BL printf ; printf(msgl);

BAL endSWw M
v hkhkkkkkkhkkhkkhkkhkhkhkhkhkhkhkhkkhkkhkhkhhErhkhkhkkhkkhkkhkhkhkhkErkhkhkhkhkkhkkhkkhkkhhkhkhkhrkhkhkkkhKhkhk.
14 14
;* Procedure 2 *
s kkhkkkhkkkhkkkhkkkhkhkhhkkhhkkhhkkhkhkkhhkkhhkkhhkhhkhhkhkkhkhhkhkkhkhkhkhkkhkhkhkhkkhkhkkhkkkhkkhk.
14 14

ALIGN ; void proc2() {
proc2 ADR RO, msg2 ;

BL printf ; printf(msg2);

BAL endSWw .
s kkhkkkhkkkhkkkhkhkkhkhkhhkkhhkkhhkkhhkkhhkhhkkhhkhkhkhhkhkkhkhhkhkkhkhkhkhkkhkhkhkhkkhkkhkkhkkhkkhk.
14 14
;* Procedure 3 *
s kkhkkkhkkkhkkhkkhkhkhhkkhhkkhhkkhkhkkhkhkkhkhkkhhkhkhkhhkhkkhkhhkhkkhkhkhkhkkhkhkhkhkkhkhkkhkhkkhkkhkkhk.
14 14

ALIGN ; void proc3() {
proc3 ADR RO, msg3 ;

BL printf ; printf(msg3);

BAL endSWw .

® N

10.

11.

END ;
Add asmJumpTable.s to the project.

Remember to add Serial.c and Retarget.c to the project.

Connect the 9-Pin D-type UART1/3/4 connector on the evaluation board to the PC
USB port (as we did in Chapter 2, C Programming Language.).

Run the terminal emulator (PuTTY), configuring it as we did in Chapter 2, C
Programming Language.

Compile, download, and run the program.

How it works...

The jump table is defined as follows:

jumpTable
DCD procl
DCD proc2
DCD proc3

N= N= W= N

Here, proci, proc2, and proc3 are address labels that are used to identify the start of the
subroutines. The jumpTable base address is loaded into R3 by the ADR pseudo-instruction:

ADR r3, jumpTable ;

The assembler attempts to replace ADR to produce a single ADD or SUB instruction to load
the address using a PC-relative addressing mode. This ensures that ADR always assembles
to one instruction. The assembler will produce an error if it can’t load the effective address
in one instruction. The most likely reason for this will be that the target base address is too
far away, and we will need to replace ADR with ADRL.

The value passed in RO will be an integer between 1-3, so subtracting 1 will give the
address offset directly:

SUB RO, #1 :

Finally, we use the following to load the program counter with the appropriate jump table
address (that is, entry 1, 2, or 3):

LDR pc, [r3,r0,LSL#2];

Each jump table entry is a 32-bit (4-byte) address, so the value in R0 needs to be
multiplied by 4 (that is, LSL #2). This is achieved by LDR, and the Register Offset
instruction. Finally, a Branch and Link instruction BL is needed to execute the function.

We’ve used the ALIGN pseudo-operation quite liberally in all our assembly language
programs. ARM compilers normally access data in memory aligned on word boundaries
and pad data structures so that items can be accessed efficiently. Consequently, address
labels need to be placed on word boundaries. The ALIGN pseudo-operation ensures this.
Leaving it out will produce a message from the assembler warning that some padding has
been inserted.

Debugging assembly language

We can gain a useful insight into how assembly language instructions execute, and also
why the compiler is rather poor at translating C using the debugger.

First, we’ll compare a fragment of assembly language code produced by the compiler with
our translation.

How to do it...

1. Open the helloISR_c3vo recipe that we introduced in the Handling interrupts recipe
Chapter 3, C Language Programming.
2. Insert a breakpoint adjacent to the first statement of the UART4_IRQHandler (that is,
IIR = UART4->SR;).

o

Select Debug — Start/Stop Debug Session from the uVision5 pull-down menu.

4. Run (F5) to the breakpoint (you will need to select the console window (PuTTY) and
enter a character).

5. uVision5 will now open a Disassembly window (illustrated in the following
screenshot), which shows the assembly and machine code generated by the compiler
for each C language statement.

Disassembly n []
27: void UART4 TR{QHandler (wvoid) -
28: volatile unsigned int IIR;
29: volatile unsigned char c;
30:
0x08000230 BSI1C PUSH fr2-r4, 1r}
1 B ITIR = UART4->5R:;
G}O:-:CISOCICIZSZ 4813 LDR r0, [pc,#76] : B0Ox0B000280
0x08000234 8300 LDRH rD, [z0, #0x00]
0x08000236 BS001 STR r0, [sp, #0=04]
£ if (IIR & USART FLAG RXNE) { ff read interrupt
0x08000238 5301 LDR r0, [sp, #0=04]
0x0800023A FO100F20 TST r0, #0x20
0x0800023E DO10 BEQ Ox08000262
% i c = UART4->DR;
0x08000240 480F LDR r0, [pc,#60] : @B0Ox08000280
0x08000242 1D0O0O ADDS r0,r0, #4
0x08000244 8300 LDRH rD, [c0, #0x00]
0x08000246 B2CO UXTB rd, 0
0x08000248 5000 5TR r0, [=p, #0x00] -
4 I

How it works...

Some interesting observations from the disassembly are evident. First, by default, the
compiler stores its variables in memory (rather than registers), so assignment statements
resolve to a sequence of load (LDR) and store (STR) instructions. Overall, the compiler
produces slightly more assembly language instructions than an assembly language
programmer coding by hand.

There’s more...

Now, open asmHelloISR_c4ve, which was introduced in the Handling interrupts in

assembly language recipe:

1. Place a breakpoint at the first instruction of the assembly language subroutine
UART4_IRQHandler (make sure you identify an ARM instruction and not a label or

pseudo instruction).

2. Use the debugger to run to the breakpoint, as illustrated in the following screenshot.
Now, use the step (F11) command and observe the register contents changing as each

instruction is executed:

Registers n Disassembly n
Register | Value L:l 253 LDE R4, =UART4 H +
SR Ox0D8001F36 4CO4 LDR r4, [pc, #40]1 @Ox{]:|:|
(hFEFEEEEE 26: LDR R2, [R4, #3R] H ITl
Ox08001F38 6822 LDR r2, [r4, #0=001 i
(20000000 « [p
(cDB0O003ZT ==
(08000329 hellalsR.c startup_stm32f40i0cs %] asmHelloISR.s 5 X
18 UART4 TRQHandler ; wvoid UART4 TRQH: «
20 PUSH {R4, LR}
21 ;R0 <- pCr G char *ptr:;
22 sR2 <- IIR - unsigned int 1
23 Rl <- ¢ unsigned char
24 ;R4 <— UART4 uint32 t *DAR]
> 25 LDR R4, =UART4
28 LDR R2, [R4, #5R] , ITR = UART4->I
500006 27 LDR R1, [R4, #DR] H c = UART4->DR;
?I;:FFFFFFEg L i AND ERZ, #BXNE - if (IIR & USAF__
02001F36 258 CMP R2, #0
61000044 30 ITE HE printf("Inte
é_ Banked SHL ADRWE RO, msgl Pres:
”Ef“'S‘_.'stem 32 ADREQ RO, msg2 else
[ns)
El Ficariad 23 BL. printf printf ("Inte|=
= Horilhr i LDR R2Z, [R4, #SR]
o Prnsfce Privieged i) AND R2Z, #~RXNE UART4->5R &= -
;""'Stackeg MSF‘EQ 36 STR R2Z, [R4, #5SR]
; a4 IR
- States 1387083006 — :; gﬂp 1t -
[g 138 70830060 i tE =
m rro e vl 35 END Sl
[iE] Project | = Registers 4 m r

You will notice that observing how register values change as we single step through
assembly language code provides a useful insight into the operation of the Cortex-M4
machine architecture.

Chapter 5. Data Conversion

In this chapter, we will cover the following topics:

Setting up the ADC

Configuring general-purpose timers
Using timers to trigger conversions
Setting up the DAC

Generating a sine wave

Introduction

Most signals that we encounter in the natural world are continuous; for example, we
perceive sound produced by an orchestra as a continuum of intensities ranging from
pianissimo (very soft) to fortissimo (very loud). Computers, on the other hand, work with
binary quantities that are inherently discrete. The number of discrete values that can be
represented depends on the number of bits that are used to represent the quantity (for

example, 8 bits can represent 28 discrete values). Computers that are designed to interact
with real-world phenomena (for example, sound, light, heat, and so on) need to overcome
two problems. Firstly, they need to convert between its physical manifestation and a
(continuous) electrical signal, and secondly, they need to convert between the signal’s
continuous and discrete representation. Returning to our sound example, solving the first
problem requires a transducer to convert sound (pressure) waves to electrical signals and
vice versa (that is, a microphone and loud speaker). Solving the second requires
converting the analog (continuous) signal to a discrete form and vice versa. The device
that is used to achieve this is called an Analog-te-Digital converter (ADC)—and
conversely a Digital-to-Analog converter (DAC).

Analog-to-Digital conversion requires measuring (sampling) the signal at regular time
intervals and converting each sample into a digital value. This raises the question, how
often should we take the measurement? This fundamental question is addressed by signal
processing theory. The short answer is that samples must be taken at least twice as
frequently as the period of the highest-frequency component in the signal. However, the
maximum number of samples that can be taken every second (that is, the maximum
sampling frequency) is limited by the speed of conversion, and this, in turn, depends on
the type of ADC. The STM32F4071G microcontroller includes a successive
approximation ADC, which is fast enough for most audio applications (that is, signals
having frequency components up to about 20 KHz). A block diagram of a successive
approximation ADC is shown as follows:

Conversion

——
Clock —3» Successive Approx. Register Complete
-
D11 DO
Y
Vet — DAC

Wi e Comparitor

Vi, —— Sample/Hold L

Successive approximation ADC

A single comparator is at the heart of the successive approximation ADC. This is simply a
device that outputs a binary signal that depends on a comparison of Vpac and Vip,

where VA ¢ represents the analog voltage corresponding to the output of the Successive

Approximation Register (SAR). By testing the output of the comparator, an algorithm
aims to update the SAR so as to find the value Vya (that is closest to Vjp. The

successive approximation DAC achieves this by undertaking a search that aims to find
VDAC (< Vref) in the fewest number of guesses. The time needed for the search depends

on the value of the voltage, but the worst-case conversion time ultimately determines the
maximum sampling frequency. The DAC is a much simpler analog circuit that uses a
summing amplifier to add together the (weighted) digital outputs DO-D11. Hence, the
DAC operates much faster than the ADC.

The purpose of the Sample/Hold block is to take a snapshot of the input voltage, and so,
provide a stable signal for the ADC. The Sample/Hold block is not ideal and it takes some
time (called the aperture time) to capture the input signal. The signal voltage stored by the
Sample/Hold block also decays with time, but the Sample/Hold time can be adjusted to
address these problems. A range of values can be specified in terms of a number of ADC
clock cycles by writing to the two ADC sample time registers (SMPR1 and SMPR2).
The time can be set for each channel using the following codes:

SMPx[2 0]| Chan.x Sample Time (cycles)||SMPx[2: 0]| Chan.x Sample Time (cycles)
w | I |
o s o |- |
o0 | [s |
011 | ||111 || |

The maximum conversion time, Tgny, for a successive approximation converter is equal

to the Sample/Hold time + (clock period X number of bits). As a rule of thumb, it’s best to
make the Sample/Hold time short relative to the sample period.

Setting up the ADC

The aim of this recipe is to configure the ADC in single-conversion mode and then
convert the voltage set by the thumbwheel into a 12-bit digital value. We’ll configure the
ADC to generate an interrupt at the end of each conversion and write an interrupt handler
to read the ADC and initiate a new conversion. The only task for our main function to
perform is to output the ADC value to the LEDs, but as there are only 8 LEDs we can only
display the most-significant 8-bits of the ADC value. We’ll call this recipe adcISR_c5vo.

How to do it...

To set up the ADC follow the steps outlined:

1.

2.

Open a new folder named adcISR_c5v0 and create a new project named
adcISR.uvprojx.

Select LED (API) from RTE Board Support but do not select A/D converter (we
will write our own code for this). Set the CMSIS and Device software components as
for previous projects. Be sure to select resolve so that the correct runtime
environment (RTE) is included.

Create an adcISR.c file (the main function) and enter the source code that is shown
next. Remember to include the boilerplate code (hidden by the editor folds):

Recipe: adcISR_c5v0

Name: adcISR.c

Purpose: A/D Conversion Demo for MCBSTM32F400
using IRQ

Modification History

16.04.14 created

22.12.15 updated uvision5.17 + DFP2.6.0

Dr Mark Fisher, UEA, Norwich

L R I B . T R .

#include ""stm32f4xx_hal.h""
#include ""Board_LED.h""
#include ""Custom_ADC.h""
#define wait_delay HAL_Delay

/* Globals */
uint32_t adcValue;

#ifdef _ RTX

/* Function Prototypes */
void SystemClock_Config(void);

/**
* System Clock Configuration
*/

void SystemClock_Config(void) {

Include code to handle the interrupt generated by the ADC:

void ADC_IRQHandler (void) {

ADC3->SR &= ~2; /* Clear EOC interrupt flag */
adcvValue = (ADC3->DR); /* Get converted value */
ADC3->CR2 |= (1 << 30); /* Start next conversion */

}

5. Include amain () function:
int main (void) {

HAL_Init ();
SystemClock_Config ();

LED_Initialize (); /* LED Initialization */
ADC_Initialize_and_Set_IRQ ();/* ADC Special Init */

while (1) { /* output 8-bit adcVvalue */
LED_SetOut (adcvalue >> 4); /* to LEDs */
wait_delay (100); /* wait */
}
}

6. Create a Custom_ADC. c file and enter code to set up the ADC:

#include ""stm32f4xx_hal.h"" /* STM32F4xx Definitions */
#include "'"Custom_ADC.h""

/o o o o e e e e e e e e meeeeeeo-
* ADC_Initialize_and_Set_IRQ: Initialize Analog to
* Digital Converter and Enable IRQ
K o o e o o e */

void ADC_Initialize_and_Set_IRQ (void) {
/* Setup potentiometer pin PF9 (ADC3_7) and ADC3 */

RCC->APB2ENR

|= (1UL << 10); /* En. ADC3 clk */
RCC->AHB1ENR |
|

(
(1UL << 5); /* En. GPIOF clk */
(3UL << 2*9);/* PF9 is Analog mde */

GPIOF->MODER

ADC3->SQR1 = 0;

ADC3->SQR2 = 0;

ADC3->SQR3 = (7UL << 0); /* SQ1 = channel 7 */
ADC3->SMPR1 = 0, /* Channel 7 smple */
ADC3->SMPR2 = (7UL << 18); /* time = 480 cyc. */
ADC3->CR1 = (1UL << 8); /* Scan mode on */
ADC3->CR2 &= ~2; /* single conv. mode */
ADC3->CR1 |= (1UL << 5); /* En. EOC IRQ */
ADC3->CR2 |= (1UL << 0); /* ADC enable */
NVIC_EnableIRQ(ADC_IRQn); /* En. IRQ */

ADC3->CR2 |= (1 << 30); /* Start 1st conversion */
}

Add the adcISR.c and custom_ADC. c files to the project.

8. Declare a function prototype for ADC_Initialize_and_Set_IRQ () in the
Custom_ADC. h file.

9. Build, download, and run the program.

>

How it works...

The STM32F407xx features 3 x 12-bit successive approximation ADCs, each sharing up
to 16 external channels and performing conversions in single-shot or scan mode. A
simplified schematic showing the architecture of each converter is presented next (please
note that a more detailed diagram is included in STM’s RM0090 Reference manual at

http://www.st.com).

To NVIC e
Regu-
4|\ lar '\
Data-
—l/ Regist ’—l/
&rs
Conversion I
Complete ke ”
7 — N N E
ADCx_IND - Data- 2;
G , ’—l/ Regist —l/ i
P Reg. Chan. [3
| - a
a g = aDC .
IA0OCx_IN15 > = =
Injected
Temp Sensor —————» Chan. Start Trigger | Start Trigger -
Viai — | {Reg. Chan] [{Injected Chan.) \/
/ A .
. B —1 T Exr r
TiM_1 —— ™ /_// — TIM_1
.,
TM_3 — — TIM_5
TM_8 — F .. [TIM_E
L~)

Simplified STM32F4xxxx microcontroller ADC schematic

The 16 multiplexed input channels are organized in two groups comprising regular and
injected channels. A subset of GPIO port pins can be connected to the ADC multiplexer
by configuring the pin as a high-impedance analog input. The pin/input channel mapping
is device-dependent. Details for the STM32F4071G device used by the ARM
MCBSTM32F400 evaluation board can be found in the STM32F405xx and
STM32F407xx Datasheet (http://www.st.com), and a simplified form is given in the
following table. The ADC can be configured to carry out a sequence of up to 16

conversions on each group, each triggered separately by either an external-or-timed start
signal.

ADC1 Input Channel|| GPIO Port||ADC2 Input Channel||GPIO Port||]ADC3 Input Channel||GPIO Port
IN_O ||PAO ||IN_0 ||PAO ||IN_0 ||PAO |
IN_1 ||PA1 ||IN_1 ||PA1 ||IN_1 ||PA1 |
IN_2 ||PA2 ||IN_2 ||PA2 ||IN_2 ||PA2 |
IN_3 ||PA3 ||IN_3 ||PA3 "IN 3 ||PA3 |

http://www.st.com
http://www.st.com

I I I I I
IN_4 ||PA4 ||IN_4 ||PA4 ||IN_4 ||PF6
IN_5 ||PA5 ||IN_5 ||PA5 ||IN_5 ||PF7
IN_6 ||PA6 ||IN_6 ||PA6 ||IN_6 ||PF8
IN_7 ||PA7 ||IN_7 ||PA7 ||IN_7 ||PF9
IN_8 ||PBO ||IN_8 ||PBO ||IN_8 ||PF10
IN_9 ||PB1 ||IN_9 ||PB 1 ||IN_9 ||PF3
IN_10 ||PCO ||IN_10 ||PCO ||IN_10 ||PCO
IN_11 ||PC 1 ||IN_11 ||PC 1 ||IN_11 ||PC1
IN_12 ||PC2 ||IN_12 ||PC2 ||IN_12 ||PC2
IN_13 ||PC3 ||IN_13 ||PC3 ||IN_13 ||PC3
IN_14 ||PC4 ||IN_14 ||PC4 ||IN_14 ||PF4
IN_15 ||PC5 ||IN_15 PC5 ||IN_15 ||PF5

The GPIO ports used by the ADC must be configured as analog inputs by writing
appropriate values to MODERYy[1:0] bits of the Mode Register that is shown as follows:

30 ||29 ||28 ||27 ||26 ||25 ||24 |

MODER15[1:0]|| MODER14[1:0]||]MODER13[1:0]f|MODER12[1:0]

31 |

13 ||12

B ||rw | |rw [~ |

MODERO03[1:0]|| MODEO02[1:0] ||[MODERO1[1:0]fjMODERO0[1:0]

The Mode Register bits are defined as follows:

MODERy[l:O]"I/O Mode |

00: Input |
01: General Purpose output
10 : |Alternate Function |
11: Analog Input

The ADC is configured by an initialization function named
ADC_Initialize_and_Set_IRQ() that has been written specially for this recipe. The
following description should be read with reference to STM”s RM0090 Reference manual
(http://www.st.com).

The thumbwheel labelled ADC1 on the evaluation board provides a variable voltage input
connected to GPIO port F pin 9 (ADC3 channel 7). To sample this voltage, we first
configure GPIOF pin 9 as an analog input by writing to the port mode register
(GPIOF_MODER). Statements in ADC_Initialize_and_Set_IRQ() are explained as follows:

1. The bit map for the port mode register shown in the MODER register bit table
indicates that we must write logic-1 to bit 18 and 19. ARM writes the code like this
to emphasize that we’re configuring port F bit-9 (PF9):

GPIOF->MODER |= (3UL << 2*9);

2. We also need to select the clock for ADC3 and GPIOF:

RCC->APB2ENR |= (1UL << 10);
RCC->AHB1ENR |= (1UL << 5);

3. Our aim is to set up a single conversion in the regular sequence. The first conversion
is identified by the bits 4:0 of ADC regular sequence register 3 (ADC_SQR3). As PF9
maps to ADC3 channel 7, we write 7 to this register and © to ADC_SQR1 and

ADC_SQR2:
ADC3->SQR1 = 0;
ADC3->SQR2 = 0;
ADC3->SQR3 = (7UL << 0);

4. The Sample/Hold time can be set (for each channel) by writing to the two ADC
Sample Time Registers (SMPR1 and SMPR2). In this case, as the input voltage is
derived from a potentiometer, the sample frequency can be quite low, and so, a long
Sample/Hold time of 480 cycles can be set:

ADC3->SMPR1
ADC3->SMPR2

0;
(7UL << 18);

5. We carry out a single conversion on each group of channels identified by the regular
sequence register, so we enable scan mode by writing to bit-8 of Control Register 1:

ADC3->CR1 = (1UL << 8);

http://www.st.com

6. To set up single conversion mode, enable an end of conversion interrupt (EOCIE),
and enable the ADC (ADON), we write the following code:

ADC3->CR2 &= ~2;
ADC3->CR1 |= (1UL << 5);
ADC3->CR2 |= (1UL << 0);

7. Finally, we must configure the Nested Vectored Interrupt Controller (NVIC) to
respond to interrupts from the ADC and initiate the first conversion by writing
SWSTART (bit-30), as follows:

NVIC_EnableIRQ(ADC_IRQn);
ADC3->CR2 |= (1 << 30);

The ADC_IRQHandler () interrupt handler needs to clear the interrupt, read the ADC data,
and start another conversion cycle. The super-loop in the main function calls the
LED_Setout () function to display the most significant 8-bits of the ADC output on the
LEDs.

There’s more...

In continuous conversion mode, the ADC starts a new conversion as soon as the previous
one has been completed. In practice, the new conversion starts after a delay of 15 cycles to
allow the ADC to stabilize. Only the regular group of channels can be converted in
continuous mode, as follows:

1. We can enable continuous mode by changing the last line of the function,
ADC_Initialize (), to the following:

ADC3->CR2 |= 2;

2. As our interrupt handler no longer needs to trigger a new conversion, we only need
the following two statements:

ADC3->SR &= ~2;
adcValue = (ADC3->DR);

Configuring general-purpose timers

The idea of this recipe, which we’ll call timerISR_c5ve, is to use a general purpose timer
(TIM2) to generate an interrupt every 100 ms (that is, 10 Hz). The interrupt handler
maintains a counter that, in turn, sets the global variables, LEDONn, LEDOff, which are used

within main () to flash the LEDs.

How to do it...

Follow the steps to configure general purpose timers:

1.

2.

Create a new recipe (folder) named timerISR_c5v0. Invoke uVision5 and create a
new project named timerISR.uvprojx.

Select the LED (API) driver from the RTE Board Support drop-down menu and
configure CMSIS and Device options as in previous projects.

Create a new file, name it timerISR.c, and enter the following statements.
Remember to include the boilerplate:

#include ""stm32f4xx_hal.h""
#include ""Board_LED.h""
#include <stdbool.h>
#include ""timer.h""

/* Globals */
uint32_t tic = 0;

#ifdef __ RTX

/* Function Prototypes */
void SystemClock_Config(void);

/**
* System Clock Configuration
*/

void SystemClock_Config(void) {

Define a handler for the timer interrupt by adding these statements to the timerISR.c
file:

void TIM2_IRQHandler (void) {

/* check IRQ source */
if ((TIM2->SR & 0x0001) !'= 0) {
tic++;
TIM2->SR &= ~(1<<0); /* clear UIF flag */
3
}

Define a main () function in the timerISR.c file:

int main (void) {
int32_t num = 0;
uint32_t toc;
uint32_t count = 0;

HAL_Init ();
SystemClock_Config ();

TIM2_Initialize ();/* Gen. interrupt each 100 ms */
LED_Initialize(); /* LED Initialization */

while (1) {
if (toc != tic) {
toc = tic;
LED_Off (num);
if (count < 7)
num = (num+1);
else
num = (num-1);
LED_On (num);
count = (count+1)%14;
}
}
}

6. Open a new file, add the following source code, save the file, and name it timer.c:

Recipe: timerISR_c5v0
Name: timer.c
Purpose: Low level timer functions

Modification History
16.04.14 created
22.12.15 updated (uVision5.17+DFP2.6.0)

Mark Fisher, CMP, UEA, Norwich

L B I . T I .

#include ""stm32f4xx_hal.h"" /* STM32F4xx Defs */
#include ""timer.h""

/**

* TIM2_Initialize ()

kkhkkhkkhkhkhkhhhkhkkhkkhkkhkkhkhkhkhkhhhhkkhkkhkhkhkhkhdhhhhkhkhkhkhkhkhhhhhkhkkhkkhkkhkhkhkhkkhkikk

* Initializes TIM2 generates interrupts every 100ms (0.1s)

* SystemCoreClock = 168 MHz - set by SystemInit ()

* Refer to Figure 134 of STM Reference Manual RMOG90

* TIMXCLK = SystemCoreClock/2

* Hence ticks = 0.1 * 168,000,000 / 2 = 8,400,000

* Prescaler = 8400-1; ARR = 1000-1,;

***/
void TIM2_Initialize (void) {

const uint16_t PSC_val = 8400;

const uintl16_t ARR_val 1000;

RCC->APB1ENR |= RCC_APB1ENR_TIM2EN; /* En TIM2 clk */

TIM2->PSC = PSC_val - 1; /* set prescaler */
TIM2->ARR = ARR_val - 1; /* set auto-reload */
TIM2->CR1 = (1UL << 0); /* set command reg. */
TIM2->DIER = (1UL << 0); /* Enable TIM2 IRQ */
NVIC_EnableIRQ(TIM2_IRQn); /* En. NVIC TIM2 IRQ */

}
7. Add timer.c and timerISR.c to the project.

8. Create a suitable header file named timer .h containing function prototypes for
timer.c.
9. Build, download, and run the program.

How it works...

As microcontrollers were conceived to target real-time applications, counter-timers have
always been a prominent feature of their architecture. Timers can be used for a variety of
purposes, including measuring pulse lengths of input signals, generating output signals,
triggering interrupts, or other events. The STM32F407xx microcontroller family that is
used by the evaluation board provides 14 timers (TIM1-TIM14).

Size Identifier |

Type

Advanced Control Timers

16-bit ||TIM1, TIM8 |

General Purpose Timers

16/32—bit||TIM2—TIM5 |

16-bit ||TIM6, TIM7 |

Basic Timers |

General Purpose Timers

16-bit ||TIM9—TIM14|

A simplified schematic for general purpose timers is shown in the following diagram (a
more detailed schematic can be found in STM’s RM0090 Reference manual at
http://www.st.com).

Internal Clock from RCC
{CK_INT) >
—— TRGO
Tinte_ETR —b{ Prescaler |—>| I/P Filter+EdgeDet. Trigger
Contral
(TRO TRGI nira Reset, enable, up/down,
TR | TR counE

TR2 J
TR3

Autoreload Register

J L Stop, clear, up/down

Y

L— ! Prescaler Counter

<

o1 1 [
Tithe_CH1 [P Filter+EdgeDet +J_>| Prescaler |_>1 Capture/Compare Register 1 |—p OC |y TINx_CHI
TN R ElteraEdgenet: =™ Presealer Captuﬂe}:jﬂarl R|Egi5t|er|2 OC | TiMx_CHZ
>
TIMz_CH3 |/P Filter+Edgelet. —f <7 | |
2 Prescaler |—)-| Capture/Compare Register 3 |—b OC | TIMN_CH3
+J e
ITIMx_CH4 I/F Filter+EdgeDet. =B .
R /P Filter+Edge i L _; |—p| Prescaler |—b-| Capture/Compare Register 4 l—b OC | —g TIMx_CHA
b

TRC —

Advanced timers, TIM1 and TIMS, provide similar functionality and include some
additional features, such as a repetition counter, break inputs, and complementary outputs
with programmable dead time. These are useful when implementing complex pulse width

http://www.st.com

modulation (PWM) schemes. The main component is the time-base unit comprising a
16/32-bit counter and its related auto-reload register and prescaler. The prescaler clock
(CK_PSC) can be selected from one of the following:

¢ Internal clock (CK_INT): This is derived from the reset and clock control (RCC)
peripheral.

e External clock mode 1: This is the External input pin (TIx)

e External clock mode 2: The External trigger input (ETR) is available on TIM2,
TIM3, and TIM4, only

¢ Internal trigger inputs (ITRx): This allows one timer to act as a prescaler for
another

Following RESET, the CK_INT internal clock is selected. CK_INT is derived from the
APBx timer output of the Reset and Clock Control (RCC) unit; refer to STM’s RM0090
Reference manual, Figure 21, (http://www.st.com). The timer clock frequencies are set
automatically by hardware. The frequency depends on the setup used for the APB domain
prescaler. There are two cases, as follows:

o If the APB prescaler is 1, the timer clock frequencies are set to the same frequency as
that of the APB domain to which the timers are connected

e Otherwise, they are set to twice (x2) the frequency of the APB domain to which the
timers are connected

The RCC unit manages all the clocks used by the microcontroller. The system clock
(SYSCLK) can be derived from one of three sources:

e HSI clock
e HSE clock
e PLL clock

The SystemInit() function defined in the system_stm32f4xx.c file is called by the
startup_stm32f4xx.s file to configure the system clock before branching to the main
program. The SystemCoreClock global variable is assigned a value representing the
SYSCLK frequency and is available to user applications (for example, to set the SysTick
timer). SystemInit() also configures the AHB and APB domain prescalers.

The internal (HIS) clock and external crystal-controlled oscillator (HSE) clock are
connected to the main phase locked loop (PLL) within the microcontroller and this
provides two outputs:

e The first output is used to generate the high-speed system clock (upto 168 MHz)
e The second output is used to generate the clock for the USB OTG FS (48 MHz), the
random analog generator (<48 MHz), and the SDIO (<48 MHz)

The MCBSTM32F400 evaluation board uses a 25 MHz external oscillator, which gives a
PLL frequency of 168 MHz, and SystemInit () selects this as SYSCLK.

The main component of the time-base unit is a 16-bit or 32-bit counter (CNT) and its
associated auto-reload register (ARR). The counter clock can be divided by a prescaler
(PSC). Both the counter, prescaler, and auto-reload register can be written or read by

http://www.st.com

software. The prescaler can divide the counter clock frequency by any factor between 1

and 65,536 (216). The operation of the counter and auto-reload register depends on the
how the counter is configured. Three configuration modes are available, named upcounter,
downcounter, and center-aligned. The timing diagram shown next illustrates the upcounter
mode with the prescaler set to divide by 2 (other modes are described in the RM0090
Reference manual, http://www.st.com). In upcounting mode, the counter counts from 0 to
the auto-reload value (the content of the TIMx_ARR register), then restarts from 0 and
generates a counter overflow event.

«com _| L] L L LU O OO UL L L
oNT_en]
CK_CNT |_| |_| |_| |_| |_| |_| |_L

| L1 LAY L1 LY ! L1
Counter Register 00018 { ooms f o0 Y 0w0000){ o001k ow0o02 f 0w0003){

Counter Owverflow
Update Event {UEW)

Update Interrupt Flag [LIF]

The steps required to configure TIM2 are as follows:
1. First enable the TIM2 clock by writing to the Rcc APB1 Enable Register:
RCC->APB1ENR |= RCC_APB1ENR_TIM2EN;
The number of SYSCLK ticks in 0.1 s can be found by:
. SYSCLK

2

—

0.1

when SYSCLK = 168 MHz this gives a value of 8,400,000, which is achieved by a
prescaler value of 8,400 and auto-reload register value of 1,000, that is, as follows:

const uint16_t PSC_val
const uintl16_t ARR_val

8400;
1000;

The prescaler divides the input clock by a factor PSC[15:0] +1:

http://www.st.com

CK_CNT = fex psc/PSC[15:0] + 1

So we write the following
TIM2->PSC = PSC_val - 1;

2. Similarly, as the counter is reset to zero, we write the following:
TIM2->ARR = ARR_val -1;

3. Then, enable the counter and enable interrupts:

TIM2->CR1 = (1UL << 0);
TIM2->DIER = (1UL << 0);

4. Finally, configure the Nested Vectored Interrupt Controller to respond to TIM2
interrupts:

NVIC_EnableIRQ(TIM2_IRQn);

Once configured, Timer 2 generates interrupts every 100 ms, and the interrupt handler
increments a counter (tic). The code within the superloop generates a visually interesting
pattern.

Using timers to trigger conversions

As sampling frequency plays such a critical role in determining the quality of the digital
representation of the analog signal input, and to avoid aliasing artifacts, it is preferable to
use a timer to trigger the conversion rather than to enable continuous conversions as we
did in the previous recipe. This recipe, adcTimerISR_c5v0, illustrates this technique. The
aim of this recipe is to configure TIM2 _CH2 in output compare mode so that it toggles
every 100 ms and then use this timing signal to trigger the ADC.

How to do it...

1.

First create a new project called adcTimerISR.uvprojx and use the RTE manager to
configure it as we did for the folder adcISR_c5v0 for the Setting up the ADC recipe.
Copy timer.c and Custom_ADC.c from the previous recipes and add these to the
project. Copy adcISR.c and rename it adcTimerISR.c. Add this to the project.

Add #include timer.h to adcTimerISR.c and call TIM2_Initialize() in main().
Check whether the project successfully builds.

Modify the TIM2_Initialize() function so that it no longer produces an update
interrupt flag (UIF) by deleting the following statements:

TIM2->DIER = (1UL << 0);
NVIC_EnableIRQ(TIM2_IRQn);

Configure TIM2_CH2 to toggle channel 2 capture/compare output by writing to the
appropriate fields of Capture/Compare Mode Register 1 (CCMR1) and
Capture/Compare Enable Register (CCER):

TIM2->CCMR1 |= (3UL << 12);
TIM2->CCER |= (1UL << 4);

Tip
There is no need to write to the Capture/Compare Register. If we leave it set to zero

(that is, Reset), then the Capture/Compare output will toggle each time TIM2_CNT is
zero (that is, every 100 ms):

/***

* TIM2_Initialize ()

kkhkkhkkhkkhkhkhhhkkhkkhkkhkkhkkhkkhkhkhkhhhhkkhkkhkhkhkhkhhhhhkhkkhkhkhkhkhkhhhhkhkkhkkhkkhkhkhkhkk*k

* Initializes TIM2

* Capture Compare 2 Interrupt Flag (CC2IF)

* generates interrupts every 100ms (0.1s)

* SystemCoreClock = 168 MHz - set by SystemInit ()

* Refer to Figure 134 of STM Reference Manual

* TIMXCLK = SystemCoreClock/2

* Hence ticks = 0.1 * 168,000,000 / 2 = 8,400,000

* Prescaler = 8400-1; ARR = 1000-1,;

* Note: Capture Compare Register is left in Reset

***/
void TIM2_Initialize (void) {

const uint16_t PSC_val = 8400;

const uintl16_t ARR_val 1000;

/* En. clk for TIM2 */
RCC->APB1ENR |= RCC_APB1ENR_TIMZ2EN;

TIM2->PSC = PSC_val - 1; /* set prescaler */

TIM2->ARR = ARR_val - 1; /* set auto-reload */

TIM2->CR1 = (1UL << 0); /* set Ctr. En. (CEN) */
|

TIM2->CCMR1 |= (3UL << 12); /* OC1REF toggles
when

TIMX_CNT=TIMx_CCR1*/

TIM2->CCER |= (1UL << 4); /* CC2E set */
3

6. Modify the adc_Initialize and_Set_IRQ () function to trigger conversions on
both the rising and falling edge of TIM2_cH2 by writing to Control Register 2:

ADC3->CR2

|= (3UL << 28);
ADC3->CR2 |

(3UL << 24);

7. Remember to run the ADC in single conversion mode:

void ADC_Initialize_and_Set_IRQ (void) {
/* Setup potentiometer pin PF9 (ADC3_7) and ADC3 */

RCC->APB2ENR |
RCC->AHB1ENR |
GPIOF->MODER |

(1UL << 10); /* En. ADC3 clk */
(1UL << 5); /* En. GPIOF clk */
(3UL << 2*9);/* PF9 = Analog mode */

ADC3->SQR1 = 0;

ADC3->SQR2 = 0;

ADC3->SQR3 = (7UL << 0); /* SQ1 = chan. 7 */
ADC3->SMPR1 = 0O; /* Chan. 7 sample */
ADC3->SMPR2 = (7UL << 18); /* time = 480 cyc. */
ADC3->CR1 = (1UL << 8); /* Scan mode on */
ADC3->CR1 |= (1UL << 5); /* En. EOC IRQ */
ADC3->CR2 |= (3UL << 28); /* Trig on both edg */
ADC3->CR2 |= (3UL << 24); /* of TIM2_cC2 */
ADC3->CR2 = (1UL << 0); /* ADC enable */
NVIC_EnableIRQ(ADC_IRQn); /* Enable IRQ */

ADC3->CR2 |= (1 << 30); /* Start 1st conversion */
}

8. Build, download, and run the program. You will notice that, when we execute this
program, the output appears much more stable than it did using a continuous mode.
This is just a consequence of performing fewer conversions, but it does serve to
emphasize the need to avoid oversampling unless there is good reason.

How it works...

In addition to the update event interrupt, each timer also allows interrupts to be generated
by up to four capture compare channels (TIMx_CH1-TIMx_CH4). Each
Capture/Compare channel comprises a Capture/Compare register, an input stage for
capture (with digital filter, multiplexing, and prescaler), and an output stage (with
comparator and output control). Each can be configured as the input capture, PWM input,
forced output, output compare, PWM, or one-pulse modes. The output compare mode can
be used to provide timing signals that can be used to start A-D conversions.

One of 16 possible start conversion triggers can be selected for the regular group of
channels by writing to the ADC control register 2 (ADC_CR2) bit field, EXTSEL[3:0]. The
following table shows how the trigger sources are encoded

Note

CH1-CH4 and TRGO refer to timer channels. For further information, refer to STM’s
RMO0090 Reference manual (http://www.st.com), Chapters 17 and 18.

|EXTSEL[3:0] Start Trigger||[EXTSEL[3:0]||Start Trigger
0000 ||TIM1_CH 1 || 1000 ||TIM3_TRGO |
0001 ||TIM1_CH2 ||1001 ||TIM4_CH4 |
0010 ||TIM1_CH3 ||1010 ||TIM5_CH1 |
0011 ||TIM2_CH2 ||1011 ||TIM5_CH2 |
0100 ||TIM2_CH3 ||1100 ||TIM5_CH3 |
0101 ||TIM2_CH4 ||1101 ||TIM8_CH1 |
0110 ||TIM2_TRGO || 1110 ||TIM8_TRGO |
0111 ||TIM3_CH1 ||1111 ||EXT11 |

The polarity of the trigger is determined by EXTEN, as shown in the following table:

IEXTEN Trigger Polarity |
00 Trigger detection disabled |
01 Trigger detection on the rising edge |
10 Trigger detection on the falling edge |

11 Trigger detection on both the rising and falling edges

http://www.st.com

There’s more...

If we wish to confirm that the ADC is sampled every 100 ms, then simply add a global
tick variable and increment this in the IRQ handler. Change the code within the super-loop
to blink the LEDs every 10 ticks.

Setting up the DAC

The aim of this recipe is to echo the analog voltage input to the ADC to the DAC. The
DAC operation is relatively simple as compared to the ADC. The MCBSTM400
evaluation board doesn’t provide any means of directly monitoring either of the DAC
channels. As DAC channel 2 (output to PA5) drives the clock for the USB 2.0 transceiver
(IC6), the only option that we have is to use DAC channel 1 (output PA4). To see an
output, we’ll need to probe the output PA4 with a test meter. This recipe is called

echo_adc_dac_c5ve0.

How to do it...

To set up the DAC follow the steps outlined:

1. Clone adcTimerISR_c5v0 from the Using timers to trigger conversions recipe and
extend it by adding the dac.c and dac.h files. These will be used to define a function
called DAC_Initialize() (shown next) that will be used to set up the DAC; the DAC
registers and mask definitions are defined as a data structure in the stm32f4xx_hal.h
file:

#include ""stm32f4xx_hal.h"" /* STM32F4xx Defs */
#include ""DAC.h""

DAC _Initialize: Initialize DAC

Return: (none)
__ * /
void DAC_Initialize (void) {

*
*
* Parameters: (none)
*
*

RCC->APB1ENR |= RCC_APB1ENR_DACEN; /* En. DAC clk */
/* En. GPIOA clk */

RCC->AHB1ENR |= RCC_AHB1ENR_GPIOAEN;

GPIOA->MODER |= (3UL << 2*4);/* PA4 = Analog mode */

DAC->CR |= DAC_CR_ENZ1; /* Enable DAC 1 */
DAC->CR |= DAC_CR_BOFF1l; /* Enable DAC 1 OP Buff */
}

2. Add dac.c to the project.

Add a function prototype to dac. h.

4. Modify the main() function to call the DAC_Initialize() function and add a
statement in the main loop to write the ADC value to the DAC:

w

int main (void) {

HAL_Init(),
SystemClock_Config();

LED_Initialize (); /* LED Init. */

ADC_Initialize_and_Set_IRQ ();/* ADC Special Init. */

DAC_Initialize (); /* DAC Init. */

TIM2_Initialize (); /* TIM2 Init. */

while (1) { /* output 8-bit adcValue */
DAC->DHR12R1 = adcValue; /* Echo ADC to DAC */
LED_SetOut (DAC->DOR1 >> 4); /* Echo DOR to LEDs */
¥

}

5. Build, download, and run the program.

How it works...

The STM32F407xx features 2 x 12-bit buffered DAC converter channels, DAC1 and
DAC2. Eight DAC trigger inputs are provided for each device. The STM32F405xx and
STM32F407xx Datasheet Table 7 (http://www.st.com) shows that the DAC1 and 2 outputs
are featured as an additional function of GPIO PA4 and PAS5, respectively. The GPIO I/O
port bit must be configured as analog to disable the GPIO output buffer. A simplified
block diagram of a DAC channel is shown as follows (a more detailed diagram can be
found in STM’s RM0090 Reference manual at http://www.st.com):

DaC Control Register
TSELx[2:0] |
SWTRIG | (==
TINZ oo T
el
| AHE
| =
| =| =
|
TIME g
Ext —-
-
Control Logic
N
DHAx i g
il —————
DORx
s < DAC_OUTH
L Digital-ta-Analogue
> Converter >

The DAC can be configured in 8- or 12-bit mode. In 12-bit mode, the data can be left- or
right-aligned by writing to the appropriate Data Holding Register (DHR). The DAC
Data Output Register (DOR) cannot be written to directly. Data is transferred from the
DHR to the DOR after one APB1 clock if no trigger is selected; or if a trigger is selected,
then the transfer occurs three APB1 clocks after the trigger event.

The DAC_Initialize() function performs the following operations:

1. The first step is to write to the Reset and Clock Control (RCC) peripheral and enable

clocks for the DAC and GPIO port A.
2. To enable the DAC clock, we write bit-29 of the APB1 peripheral clock enable

register:

RCC->APB1ENR |= RCC_APB1ENR_DACEN;

http://www.st.com
http://www.st.com

3. To enable Port A, clocks write bit-0 of the AHB1 peripheral clock enable register:
RCC->AHB1ENR |= RCC_AHB1ENR_GPIOAEN;

4. Then, we configure Port A bit-4 (PA4) in analog mode to source the analog output by
writing to the mode register:

GPIOA->MODER |= (3UL << 2*4);

5. Finally, we enable the DAC channel 1 and its associated output buffer. This step
involves writing to the DAC control register:

DAC->CR |= DAC_CR_EN1;
DAC->CR |= DAC_CR_BOFF1;
DAC->DHR12R1 = adcValue;

We write a statement in the main loop to write the ADC value to the DAC. We use the
simplest conversion mode that triggers a conversion each time data is written to the
(DHR). There are three Data Holding Registers for each channel. Each loads the (DOR)
slightly differently. We choose the DHR that loads the DOR with a right-aligned 12-bit
value. Writing to the DHR is achieved by the following:

Instead of writing adcvalue to the LEDs, we read the DAC DOR and write its value
instead. Please note that the DOR is read-only (it cannot be written by software). Writing
the LEDs in this way will confirm that we’ve correctly configured the DAC. If the DOR
shows the correct value but there is no output voltage on PA4, then the problem lies with
the GPIO Port configuration. The following statement writes the DAC1 DOR value to the
LEDs:

LED_Out (DAC->DOR1 >> 4);

There’s more...

The DAC converter includes a linear-feedback shift register (LFSR) and can be
configured to generate pseudo-random noise and a programmable triangle-wave generator
is also available; refer to STM’s RM0090 Reference manual and STM, Application Note
AN3216: Audio and waveform generation using the DAC in STM32 microcontroller
families (http://www.st.com) for more details.

http://www.st.com

Generating a sine wave

Sinusoidal signals are commonly used in signal processing applications and generating
these waveforms provides an interesting project that is the focus of this recipe. A common
approach is a direct method that stores the sinusoidal waveform samples in a look-up-

table (LUT). This recipe is called dacSinusoid_c5ve.

Getting ready

First, we need to calculate the (12-bit) DAC values that will be stored in the LUT. We’ll
attempt to generate a 50 Hz sinusoidal signal and use a spreadsheet (for example,
Microsoft Excel) to calculate the following values:

|Smpl. No||Theta Rads||floor((sin(theta)+1)*4095/2)
0 | 2047 |
1 ||0 31415927 ||2680 |
2 ||0 62831853 ||3250 |
3 ||0 9424778 ||3703 |
4 ||1 25663706 ||3994 |
5 ||1 57079633 ||4095 |
6 ||1 88495559 ||3994 |
7 ||2 19911486 ||3703 |
8 ||2 51327412 ||3250 |
9 ||2 82743339 ||2680 |
10 ||3 14159265 ||2047 |
11 ||3 45575192 ||1414 |
12 ||3 76991118 ||844 |
13 ||4 08407045 ||391 |
14 ||4 39822972 ||100 |
15 ||4 71238898 ||0 |
16 ||5 02654825 ||100 |
17 ||5 34070751 ||391 |
18 ||5 65486678 ||844 |
19 ||5 96902604 ||1414 |

How to do it...

Follow the outlined steps to generate a sine wave:

1. Create a new recipe called dacSinusoid_c5v0 by cloning timerISR_c5v0 from the
Using timers to trigger conversions recipe.

2. Replace timerIsR.c with a file named dacSinusoid.c and add a declaration for an
LUT:

uint16_t dacLUT [] = {2047, 2680, 3250, 3703, 3994,
4095, 3994, 3703, 3250, 2680,
2047, 1414, 844, 391, 100,
0, 100, 391, 844, 1414 };

3. Add an interrupt handler to service TIM2:

void TIM2_IRQHandler (void) {
static uint8_t idx = 0;

if (TIM2->SR & (1<<0)) {
TIM2->SR &= ~(1<<0); /* clear UIR flag */
/* write LUT val to DAC */
DAC->DHR12R1 = dacLUT[idx++];

idx %= 20;
LED_Out (1idx); /* Write idx to LEDs */
3
Add the following main() function:
/* o o o o e e e e e e e e e e e e e e ee o
Main function
K o o e e e e e e o e */

int main (void) {

HAL_Init(),
SystemClock_Config();

/* LED Init. */
/* DAC Init */

LED_Initialize ();
DAC_Initialize ();
TIM2_Initialize ();

while (1) {
/* empty statement */ ;
¥
}

4. Add dacSinusoid.c to the project.
Only one statement in the TIM2_Initialize () function (in the timer.c file) needs
to be changed:

v

/***

* TIM2_Initialize ()

kkhkkkhkkhkhkhkhkhkhkhkhkhkhkhkhkhkhhhkhkhkhhhhhkhkikhkhkkhhkhk kikhkkhhkikikhkikkkk*%

* Initializes TIM2 generates interrupts every 1ms

* SystemCoreClock = 168 MHz - set by SystemInit ()

* Refer to Figure 134 of STM Reference Manual RMOG90

* TIMXCLK = SystemCoreClock/2

* Hence ticks = 0.001 * 168,000,000 / 2 = 84,000

* Prescaler = 84-1; ARR = 1000-1;

***/
void TIM2_Initialize (void) {

const uint16_t PSC_val = 84;

const uint16_t ARR_val 1000;

/* En. TIM2 clk */
RCC->APB1ENR |= RCC_APB1ENR_TIMZ2EN;

TIM2->PSC = PSC_val - 1; /* set prescaler */
TIM2->ARR = ARR_val - 1; /* set auto-reload */
TIM2->CR1 = (1UL << 0); /* set command reg. */
TIM2->DIER = (1UL << 0); /* En. TIM2 IRQ */

NVIC_EnableIRQ(TIM2_IRQn); /* En. NVIC TIM2 Int. */
}

6. Build, download, and run the program.

How it works...

The many techniques that could be used to generate a sinusoidal waveform are the subject
of the digital signal processing literature. A common approach is a direct method that
stores the sinusoidal waveform samples in a look-up-table (LUT). This may seem very
crude but if the output is passed through an analog low-pass filter with a cut-off frequency
set to the fundamental frequency of the output signal, then the result is a reasonably pure
sinusoid. In fact, this approach works equally well for a triangular waveform (which can
be generated by the DAC hardware), but the LUT approach will produce something that
looks convincing when displayed on an oscilloscope without the need for a filter.

In theory, the minimum number of samples needed is determined by the Nyquist-Shannon
Sampling Theorem. This states that we need a minimum of two samples per cycle. At this
limit the raw samples describe a 50 Hz square wave that will produce a sinusoid when
processed by a suitable low-pass output filter. However, as an ideal square wave contains
only components of odd-integer harmonic frequencies (of the form 2m(2k-1)f), the order of
the filter will need to be ~12 so that the harmonics are highly attenuated while the
fundamental is unaffected. To achieve a satisfactory output with a much simpler second-
order filter, the number of samples is usually increased by a factor of ~10.

We store the samples in an array, as follows:

uint32_t dacLUT [] = {2047, 2680, 3250, 3250, 3994,
4095, 3994, 3703, 3250, 2680,

2047, 1414, 844, 391,

100,
0, 100, 391, 844,

1414 };
Then, we use a timer to generate an interrupt every 1 ms (that is, the period of the sinusoid
T = 20 ms; 1/20 ms = 50 Hz.). Please note that we could use any timer (in this case, we

use TIM2; reusing code discussed previously but changing the prescaler value):
uintil6_t PSC_val = 84,

We write the sample to the DAC’s Data Holding Register in the timer ISR (we
postincrement idx), as follows:

DAC->DHR12R1 = dacLUT[idx++];

To ensure the index is incremented by modulo 20 (because the LUT array stores 20
values), we use the following:

idx %= 20;

We output the idx variable to the LEDs just to give a visual check that the program is
running. A screenshot of an oscilloscope connected to PortA4 is shown as follows:

The lower trace shows the output (Vout) of the low-pass filter. The cut-off frequency for
the low-pass filter is set to 50 Hz approximately, (refer to T. Floyd and D. Buchla,
Electronics Applications Circuits Devices and Applications (8e), Pearson Education,
2014) which can be seen in the following figure:

470K

SE00 pF Veat

Chapter 6. Multimedia Support

In this chapter, we will cover the following topics:

Setting the RTE for the I2C Peripheral Bus
How to use the LCD touchscreen

Writing a driver for the audio codec

How to use the audio codec

How to use the camera

Designing bitmapped graphics

Ideas for games using sound and graphics

Introduction

Multimedia peripherals are discrete components that are connected to the microcontroller
by a bus. Support for LCD touchscreens, audio codecs, and camera peripherals is a very
attractive feature of the STM32F4xxx microcontroller, and selecting an evaluation board
that includes these peripherals, although more expensive, will increase the range of
projects that can be undertaken. Multimedia projects using the touchscreen and codec are
great fun and much more likely to motivate young programmers than blinking LEDs.
These peripherals are quite complex, but the libraries that are provided to support them are
reasonably straightforward to use.

Setting the RTE for the I12C Peripheral
Bus

The LCD touchscreen, three-axis motion sensor (LIS302DL), audio-codec (CS42L52),
64k EEPROM (M24C64), camera, and other peripherals that are supported by the
MCBSTM32F400 evaluation board are connected to the STM32C microcontroller by a
synchronous serial bus called I2C. The bus standard adopted is called the Inter-
Integrated Circuit (I2C) Interface, which was developed by Phillips in the 1980s. Before
we can use any peripherals that are connected to the I2C bus, we must first configure the
I2C interface. We’ll illustrate this by a recipe called touchScreenDemo_c6v0. Later in this
chapter, we’ll show you how to configure other 12C peripherals.

How to do it...
To set RTE for an I2C Peripheral Bus perform the following steps:

1. Open a new project (touchScreenbemo), in a new folder named

2.

touchScreenDemo_c6v0.

Using the RTE manager, select Touchscreen (an I2C peripheral) under Software

Component | Board Support.

Set the CMSIS and Device options, as we’ve done for the previous recipes. Click

Resolve and then OK:
BT Vimiage R T B R —— W —— e e——— [
Software Component Sel. Variant Version Description
= € Board Support MCBSTM32F400 [+] 200 il Development Boar TM32F4]
5 4 A/D Converter (API) 1.00 A/D Converter Interface
s 4 Accelerometer (AP]) 1.00 Accelerometer Interface
7 € Buttons (AP]) 1.00 Buttons Interface
+ ‘ Camera (AP]) 1.00 Camera Interface
4 Graphic LCD (AP]) 1.00 raphi nterf,
7 @ Gyroscope (API) 1.00 Gyroscope Interface
o @ Joystick (AP]) 1.00 Joystick Interface
o € LED (APD) 1.00 LED Interface
5 4 Touchscreen (API) 1.00 Touchscreen Interface
¥ Touchscreen ® 200 Touchscreen Interface for STMPES11
7 € emWin LCD (AP]) 11 emWin LCD Interface
5 @ CMsis Microcontroller re Interf mponen
¥ CORE @ 430 CMSIS-CORE for Cortex-M, SC000,_and SC300
¥ DSP 146 MSIS-DSP Library for Cortex-M and
i = € RTOS (AP) 10 MSIS-RTQS APl for -M an
! ¥ Keil RTX @ 4800 MSIS-RTOS RTX implementation for Cortex-M, n
® ’ CMSIS Driver Unified Device Drivers compliant to CMSIS-Driver Specifications =
|| = € Compiler ARM Compiler Software Ext
If | = @ Device Startup, System Setup
! ¥ Startup @ 240 System Startup for STMicroelectronics STM32F4 Series
£ € STM32Cube Framework (API) STM32Cube Framework
¢ Classic @ 140 nfiguration via RT| vice.h
¥ STM32CubeMX 1.00 onfiguration via ST| WX lJ
P N ——— P e Al e S 3 p p s —

Validation Output Description

Resolve |) Select Packs| [Details

Open the RTE_Device.h file, select the Configuration Wizard editor tab, and enter
the configuration choices that are shown in the following screenshot:

] RTE_Deviceh v x
Expand Al | Collapse All | Hep | I Show Gad
Option

|

USARTL (Universal synchronous asynchronous receiver trans...

=

USART2 (Universal synchronous asynchronous receiver trans..,

=

USART3 (Universal synchronous asynchronous receiver trans...

£

UART4 (Universal asynchronous recerver transmitter] [Driver_...

23]

UARTS (Universal asynchronous receiver transmitter) [Driver_..,

23]

USART6 (Universal synchronous asynchronous receiver trans..,

=

UART7? (Universal asynchronous receiver transmitter) [Driver_...

&

UARTS (Universal asynchronous recerver transmitter) [Driver_..,

NO0000000FS
c
m

@

2C1 (Inter-integrated Circuit Interface 1) [Driver_[2Cl1]
12C1_SCL Pin
12C1_SDA Pin

- DMA Rx

= 4
&

B9

DMA Tx

12C1 (Inter-integrated Circuit Interface 1) [Driver_[2C1]
Configuration settings for Driver_12C1 in component ::CMS5IS Driver:12C

i 0110
i

Configuration Wizard /

5. Open the RTX_Conf_cM.c file, select the Configuration Wizard editor tab, and enter
the configuration choices that are shown in the following screenshot:

_] RTX_Conf_CM.c

Epand Al | Collapse Al Help I~ Show Grid

Option Value

=l Thread Configuration
Number of concurrent ru...
Default Thread stack size [...
Main Thread stack size [b...
Mumber of threads with wu...
Total stack size [bytes] for...
Stack overflow checking

Stack usage watermark

Processor mode for threa... Privileged mode
= RTX Kernel Timer Tick Config...

Use Cortex-M SysTick tim... [

RTOS Kernel Timer input ... 168000000

RTX Timer tick interval val... 1000
= System Configuration

& Round-Robin Thread swit... [#

B User Timers r
ISR FIFO Queue size 16 entries
Thread Configuration

|, TextEditor)\ Configuration Wizard

6. Check whether the program successfully compiles by declaring an empty main
function (name the file, touchScreenbemo.c) and include this in the project:

int main (void) {
HAL_Init (); /* Init Hardware Abstraction Layer */
SystemClock_Config (); /* Config Clocks */
3

How it works...

A bus is the name that is given to a collection of signals (data, address, and control) that
interconnect the processor infrastructure. The microcontroller uses a serial (rather than
parallel) bus interconnection, and to keep the microcontroller pin count low, the bus
signals are driven via a GPIO port that is configured in alternate function mode. I2C is a
half-duplex synchronous serial bus comprising clock (SCL) and serial data (SDA) lines.
Devices that are connected to the bus are identified by a 7- or 10-bit address and can be
configured as master or slave. The following diagram shows a master node (in this case,
the microcontroller) sourcing the clock and controlling slave devices connected to the bus
(note that the master node does not have to be a microcontroller):

Vdd

DA

sCL

ul Master Touch Screen Camera Accelerometer

Before we can use the I2C bus, the bus master (that is, the microcontroller) must be
configured. The MCBSTM32F400 evaluation board drives signals SDA and SCL via
GPIO Port B bits 8 and 9, so before the interface can be used, GPIOB must be configured.
This task is simplified using the uVision v5.x Run Time Environment (RTE) manager. To
successfully compile a program that needs 12C, we must configure the RTE_Device.h file
for our evaluation board. As we chose the Device option STMCube_Framework -
Classic, the RTE_Device.h file for our evaluation board is provided by the RTE manager.
A configuration wizard provides a simple user interface that allows different peripherals
and parameters to be selected by tick boxes and drop-down lists. (Note that the Board
Schematic confirms GPIO bits PB8 and PB9 are used to source signals, SDA and SCL.)

Accurate control of bus timing is critical for successful operation of the [2C. The RTE
solves this by using a real-time kernel called RTX (we’ll meet RTX in Chapter 8, Real-
Time Embedded Systems). The Configuration Wizard for the RTX_Conf_cM.c file
establishes certain scheduling parameters for the kernel.

Another serial interface standard supported by the MCU is known as Serial Peripheral
Interface (SPI) and was developed by Motorola. For further information on I2C and SPI,
refer to http://www.byteparadigm.com/applications/introduction-to-i2c-and-spi-protocols/.

http://www.byteparadigm.com/applications/introduction-to-i2c-and-spi-protocols/

How to use the L.CD touchscreen

The LCD touchscreen used by the MCBSTM32F400 evaluation board is a resistive film
giving a resolution of 4000 x 4000 (that is, far greater than the GLCD). This recipe
extends touchScreenDemo_c2v0 and illustrates how to use the LCD touchscreen.

How to do it...

Perform the following steps to use the LCD touchscreen:

1.
2.

Return to touchScreenDemo_c2v0 and open the project.

Use the RTE manager to add Software Component — Board Support for the
Graphic LCD (in addition to the Touchscreen). Click Resolve and then OK.
Open touchScreenDemo . c, and include the following headers:

#include <stdio.h>
#include "stm32f4xx_hal.h"
#include "cmsis_os.h"
#include "Driver_I2C.h"
#include "Board_GLCD.h"
#include "GLCD_Config.h"
#include "Board_Touch.h"

Define the following macros, global variables, and function prototypes:

// The size of the touch-screen co-ordinates system.
#define SCREEN_TS_WIDTH 4000
#define SCREEN_TS_HEIGHT 4000

#define wait_delay HAL_Delay

/* Globals */
extern GLCD_FONT GLCD_Font_16x24;

/* Function Prototypes */

void screenTransformTS(TOUCH_STATE *ts);
void SystemClock_Config(void);

void setDisplay(void);

void updateDisplay(TOUCH_STATE *tsc_state);
void clearDisplay(void);

Extend the main() function:

K o e e e e e e o e M */
int main (void) {
TOUCH_STATE tsc_state;

HAL_Init (); /* Init Hardware Abstraction Layer */

SystemClock_Config (); /* Config Clocks */
Touch_Initialize(); /* Touchscrn Controller Init */
GLCD_Initialize(); /* Graphical Display Init */
setDisplay(); /* Draw GLCD Display */
while (1) {

Touch_GetState (&tsc_state); /* Get touch state */

if (tsc_state.pressed)
updateDisplay(&tsc_state);

else
clearDisplay();

wait_delay(100);

3
}

6. Add the setDisplay() function to touchScreenDemo.c file:

void setDisplay() {
GLCD_SetBackgroundColor (GLCD_COLOR_WHITE);
GLCD_ClearScreen (); /* clear the GLCD */

GLCD_SetBackgroundColor (GLCD_COLOR_BLUE);
GLCD_SetForegroundColor (GLCD_COLOR_WHITE);
GLCD_SetFont (&GLCD_Font_16x24);

GLCD_DrawString (©, 0*24, " CORTEX-M4 COOKBOOK ");
GLCD_DrawString (0, 1*24, " PACKT Publishing ");

GLCD_SetBackgroundColor (GLCD_COLOR_WHITE);
GLCD_SetForegroundColor (GLCD_COLOR_BLACK);

GLCD_DrawString (©, 3*24, "Touch:");

GLCD_DrawString (0, 4*24, "x Y
GLCD_DrawString (0, 5*24, "y "y,
GLCD_DrawString (0, 6*24, "xt "),
GLCD_DrawString (0, 7*24, "yt ")

}

7. Add the updateDisplay() function to file touchScreenbDemo.c:

/e
updateDisplay
R * /

void updateDisplay(TOUCH_STATE *tsc_state) {
char buffer[128];

GLCD_SetForegroundColor (GLCD_COLOR_BLACK);
GLCD_DrawString (7*16, 3*24, "DETECTED");

sprintf(buffer, "%i ", tsc_state->x); /* raw x_coord

GLCD_DrawString (7*16, 4*24, buffer);

sprintf(buffer, "%i ", tsc_state->y); /* raw y_coord

GLCD_DrawString (7*16, 5*24, buffer);

screenTransformTS(tsc_state);
sprintf(buffer, "%i ", tsc_state->x);
GLCD_DrawString (7*16, 6*24, buffer);

sprintf(buffer, "%i ", tsc_state->y),;
GLCD_DrawString (7*16, 7*24, buffer);

}
8. Add the clearbisplay() function to file touchScreenbemo. c:

*/

*/

10.
11.

void clearDisplay() {
GLCD_SetForegroundColor (GLCD_COLOR_LIGHT_GREY);
GLCD_DrawString (7*16, 3*24, "DETECTED");

GLCD_DrawString (7*16, 4*24, " "y
GLCD_DrawString (7*16, 5*24, " "y
GLCD_DrawString (7*16, 6*24, " "y
GLCD_DrawString (7*16, 7*24, " "y

}

Add the screenTransformTS() function to file touchScreenbemo. c:

/% .
Touch Screen Transform

B e * /

void screenTransformTS(TOUCH_STATE *ts) {

int y = ts->y;
int x = ts->x;
// Note: co-ordinates are inverted
if (x > 0)
ts->y = GLCD_HEIGHT - (int)(((double)x /
(double)SCREEN_TS_HEIGHT)* (double)GLCD_HEIGHT);
if (y > 0)
ts->x = (int)(((double)y /
(double)SCREEN_TS_WIDTH)*(double)GLCD_WIDTH);

Check the Use MicroLIB project option.
Build the project, download it, and run the program. The GLCD will display the LCD
touchscreen and screen coordinates when touched (refer to the following screenshot):

How it works...

The Touch_GetState() function updates the tsc_state variable, which stores the status
of the LCD touchscreen and coordinates. These are stored as a structure that is defined by
a typedef keyword in the Board_Touch.h file:

/* Touch state */
typedef struct _TOUCH_STATE {

int16_t x; ///< Position X
intl6_t vy; ///< Position Y
uint8_t pressed; ///< Pressed flag

} TOUCH_STATE;

The LCD touchscreen and GLCD coordinate systems are different in resolution and
origin. The screenTransformTS() function maps between GLCD and touchscreen
coordinate systems. Notice how we pass a pointer to the tsc_state variable and access
specific fields such as ts->y, and so on.

Writing a driver for the audio codec

The audio codec is a peripheral that enables an analog signal to be converted and coded to
a digital data stream or conversely the data stream to be decoded and converted back to an
analog signal (https://en.wikipedia.org/wiki/Codec). The MCBSTM32F400 evaluation
board uses a CS42L.52 device that is manufactured by Cirrus Logic
(http://www.cirrus.com/en/products/). As, this codec is not yet included in Board Support,
and as no CMSIS-compliant device driver is available, we are faced with the task of
having to write our own driver.

However, this is not as daunting as it first appears because the code to set up and manage
data transfer across the I2C bus can be lifted from the previous recipe (the
Touch_STMPE811.c file) and the configuration of the CS42L.52 codec is described in the
data sheet. The recipe to develop and test this codec driver is called codecbemo_c6ve.

https://en.wikipedia.org/wiki/Codec
http://www.cirrus.com/en/products/

How to do it...

Perform the following steps to write a driver for the audio codec:

1.

Create a new project called codecbemo, and using the Run-Time Environment
manager, include Board Support for the Graphic LCD. Remember to configure
Software Support for CMSIS and Device as in earlier projects.

Create a new file named codecDemo.c. Add the boilerplate to configure clocks, and
so on, and a skeleton main() function:

int main (void) {

HAL_Init (); /* Init Hardware Abstraction Layer */
SystemClock_Config (); /* Config Clocks */

}
Add the #include files for the codecbemo. c file:

#include "stm32f4xx_hal.h"
#include "cmsis_os.h"
#include "codec_CS42L52.h"
#include "GLCD_Config.h"
#include "Board_GLCD.h"
#include <stdio.h>

Create a new file called timer.c and add this to the source code group. Add a
function named TIM3_Initialize() to this file:

void TIM3_Initialize (void) {
const uintl16_t ARR_val = 7;

/* enable clock for TIM3 */
RCC->APB1ENR |= RCC_APB1ENR_TIM3EN;

TIM3->CCMR1 = Ox00000070; /* Set PWM Mode 2 */
TIM3->ARR = ARR_val - 1; /* set auto-reload */
TIM3->CCR1 = 3; /* Duty cycle (~50%) */
/* Enable capture/compare on Chan 1 */

TIM3->CCER = 0Ox000B0O00O0O1;

TIM3->CR1 = Ox000B0O0OO1; /* Enable counter */

}

Create a new file called codec_cs42L52.c and add this to the source code group.
Copy the first 75 lines of the Touch_STMPE811.c file to codec_CS42L52.c, the first
part of the file, including the Touch_Read() and Touch_write() functions.
Change the #include directives in the codec_cS42L52.c file to the following:

#include "CS42L52.h"
#include "codec_CS42L52.h"
#include "stm32f4xx_hal.h"
#include "Driver_I2C.h"
#include "timer.h"

Replace any references to TSC_I2C_ADDR with CODEC_I2C_ADDR.

10.

11.

12.

13.

14.

15.

Replace any references to TSC_I2C_PORT with CODEC_I2C_PORT.
Replace TsC_12C_ADDR with that given in the CS42L.52 data sheet, as follows:

/* 7-bit I2C Address = 1001010b */
#define CODEC_I2C_ADDR OXx4A

Rename the Touch_Read() and Touch_Write() functions to Codec_Read() and
Codec_Write(), respectively.
Add a global typedef to the codec_CS42L52.c file:

/* Global TypeDef - Register value */
typedef struct {

uint8_t Addr;

uint8_t Vval;
} REG_VAL;

Add a function named configureCodec() to the codec_cS42L52.c file. The first two
statements of configureCodec power the device down and wait for 10 ms. Note
#define delay_ms HAL_Delay:

void configureCodec () {
Codec_Write(0Ox02, 0x01); /* Keep Codec Power-down */
delay_ms(10);

for (1 = 0; 1 < ARR_SZ(CODEC_Config_Init); 1i++)
Codec_Write (CODEC_Config_Init[i].Addr,
CODEC_Config_Init[i].val);

for (i = 0; 1 < ARR_SZ(CODEC_Config_Beep); i++)
Codec_Write (CODEC_Config_Beep[i].Addr,
CODEC_Config_Beep[i].Val);
} /* configureCodec */

Include this macro definition to calculate the size of a (const) array, as follows:

/* Calculate array size */
#define ARR_SZ(x) (sizeof (x) / sizeof(x[0]))

Define a global array of codec register address/value pairs named
CODEC_Config_Init:

/***

* CODEC initialization based on p38
* of CS42L52 data sheet DS680F2
*****/
REG_VAL CODEC_Config_Init[] = {

{0x00, 0x99},

{0x3E, OxBA},

{0x47, 0x80},

{06x32, 0x80},

{06x32, 0x00},

{0x00, 0x00},

i
Define a global array of codec register address/value pairs named
CODEC_Config_Beep:

16.

17.

18.

/***

* CODEC initialization for Beep Generator
* of CS42L52 (Grant Ashton)
*kk k% /
REG_VAL CODEC_Config_Beep[] ={
/* Set I2S Ser. Mstr Op Only, for Beep Gen */
{CS42L52_IFACE_CTL1, 0x80}%,
/* Speaker Vol B=A, MONO */
{CS42L52_PB_CTL2, Ox0A},
/* Set master vol for A */
{CS42L52_MASTERA_VOL, 0xC0},
/* Ignore jpr setting */
{CS42L52_PWRCTL3, OxAA}
Iy
Create a new file named cs42L52.h defining symbolic names (for example,

CS42L52_ IFACE_CTL1, CS42L52_PB_CTL2, CS42L52_MASTERA_VOL, and so on) for
CS42L52 register addresses. For example, as in the following addresses:

/* Register addresses */
#define CS42L52_CHIP_ID Ox01
#define CS42L52_PWRCTL1 Ox02
#define CS42L52_PWRCTL2 Ox03
#define CS42L52_PWRCTL3 Ox04
#define CS42L52_CLK_CTL OXx05
// etc.

Add a function named genMCLK() to the codec_cS42L52.c file:

static void genMCLK(void) {
GPIO_InitTypeDef GPIO_InitStruct;

TIM3_Initialize();
_ _GPIOC_CLK_ENABLE();

/* Configure GPIO pin: PC6 */
GPIO_InitStruct.Pin = GPIO_PIN_6;
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
GPIO_InitStruct.Pull = GPIO_PULLUP;
GPIO_InitStruct.Speed = GPIO_SPEED_FAST;
GPIO_InitStruct.Alternate = GPIO_AF2_TIM3;
HAL_GPIO_Init(GPIOC, &GPIO_InitStruct);

}

Add a function named codecInitialize() to the codec_CS42L52.c file. Note that
the code to configure the I2C bus is identical to the code in Touch_Initialize():

int32_t codecInitialize() {
int32_t status;
/* Configure I2C */
ptrI2C->Initialize (NULL);
ptrI2C->PowerControl (ARM_POWER_FULL);
ptrI2C->Control (ARM_I2C_BUS_SPEED,

ARM_I2C_BUS_SPEED_FAST);

ptrI2C->Control (ARM_I2C_BUS_SPEED,

19.

20.

21.
22.

23.

24.

25.

/* Configure CODEC */
configureCodec();
genMCLK() ;

/* CODEC Power up */
status = Codec_Write(CS42L52_PWRCTL1, 0x00);
delay_ms(10); /* wait 10ms */

return status;

3
Add a function named readCodecChipID() to the codec_cS42L52.c file:

int32_t readCodecChipID(uint8_t *val) {
int32_t status = Codec_Read(1, val);

return status;

3
Add a function named Beep() to the codec_CS42L52.c file:

void Beep(noteInfo note) {

/* Beep off time 1.23s and volume 0dB */
Codec_Write(CS42L52_BEEP_VOL, 0x00);
/* Set beep note and beep duration */
Codec_Write(CS42L52_BEEP_FREQ,

note.pitch | note.duration);
/* play single beep */
Codec_Write(CS42L52_BEEP_TONE_CTL, 0x40);
/* Disable beep */
Codec_Write(CS42L52_BEEP_TONE_CTL, 0x00);

}

Create the timer.h header file containing the timer.c function prototypes.

Create the codec_CS42L52.h header file containing the codec_cs42L52.c function
prototypes.

Define symbolic names for the pitch of notes in the codec_cs42L52.h file, for
example, as in the following frequencies:

// Beep note frequency
#define A5 0Ox60
#define A6 OxDO
#define B5 Ox70
#define B6 OXEO

// etc.

Define symbolic names for the duration of notes in the codec_cs42L52.h file, for
example, as in the following:

#define TENTH_SECOND Ox00
#define HALF_SECOND Ox01
#define ONE_SECOND 0x02
// etc.

Extend the main() function by adding code to initialize the GLCD and Codec. Define

a super-loop that outputs a beep every 0.5 seconds:

26.

27.

28.
29.
30.

31.

int main (void) {
noteInfo note = {G5, 0x02};

uint8_t codeclID;
char buffer[128];

HAL_Init (); /* Init Hardware Abstraction Layer */
SystemClock_Config (); /* Config Clocks */

GLCD_Initialize();
setDisplay();

showStatus(CodecInitialize());
showStatus(readCodecChipID(&codecID));
sprintf(buffer, "Chip ID: 0x%x", codecID);
GLCD_DrawString (1*16, 9*24, buffer);

while (1) {
Beep(note); /* Play the note */
wait_delay(500); /* pause */

} /* WHILE */

}

Add a function named setDisplay() (copy the first 12 lines of the similarly-named
function used in touchScreenbDemo_c6v0).
Add a function named showStatus():

void showStatus(int32_t stat) {
if (stat==0) GLCD_DrawString (1*16, 8*24,"Codec OK ");
else GLCD_DrawString (1*16, 8*24,'"Codec FAIL");

}

Check that the codec_CS42L52.c and timer.c files are added to the project.

Select the Use MicroLIB project option.

Remember to configure the RTE_Device.h and RTX_Conf_cCM.c files, as we did for the
touchScreenDemo_c6v0 folder from the Setting the RTE for the I12C Peripheral Bus
recipe.

Build the project, then download and run the program.

How it works...

A Linux driver for the CS42L52 device has been written by Cirrus Logic (http:/Ixr.free-
electrons.com/source/sound/soc/codecs/cs42152.c) and is freely distributed under the terms
of the GNU General Public License. So, we can use this together with information from
the datasheet (http://www.cirrus.com) as a basis for our driver for the MCBSTM32F400
evaluation board. As the audio codec is also connected to the I2C serial bus, the
touchscreen driver that we met in the previous section provides a good template for our
audio codec driver. Therefore, we will organize the codec driver in three files that mirror
those of the touchscreen driver, as follows:

e (CS42L.52.h: This defines codec registers

e Codec_CS421.52.c: This declares functions

e Codec_CS421.52.h: This declares function prototypes and defines symbolic names
for constants

The code in the Codec_CS42L52. c file first defines the I2C port that is used to
communicate with the audio codec. The board schematic confirms that the touchscreen
and the audio codec are connected to the same I2C port (that is, serial clock SCL. = PB8
and SDA = PB9), so we configure the RTE and RTX exactly as touchScreenDemo_c6v0
using 12C port 1 (I2C1). The following preprocessor directives define the port number:

#ifndef CODEC_I2C_PORT
#define CODEC_I2C_PORT 1 /* I2C Port number*/
#endif

The following preprocessor macro ensures that the ptri2c identifier points to the
appropriate 12C driver:

/* 12C Driver */

#define _I2C_Driver_(n) Driver_I2C##n

#define 1I2C_Driver_(n) _I2C_Driver_(n)

extern ARM_DRIVER_I2C I2C_Driver_(CODEC_I2C_PORT);
#define ptrI2C (&I2C_Driver_(CODEC_I2C_PORT))

The most-significant 6-bit audio codec’s I2C address is shown on the board schematic and
the CS42L.52 datasheet as 1001012. Bit-0 reflects the logic level of the ADO pin (that is, 0
V), and the LSB is 0 (for write operations). So, our codec’s [2C address is 0x94, that is,
the following:

#define CODEC_I2C_ADDR Ox4A /* I2C address */

Note that in practice, all accesses to the codec are writes because the read protocol uses an
abortive write cycle first to select the codec register before reading its contents (refer to
http://www.cirrus.com for further details).

We declare two functions: Codec_Write() and Codec_Read(), which mirror
Touch_Write() and Touch_Read(), which were declared in Touch.c to read and write to
the audio codec.

The function named CodecInitialize() performs three tasks. It configures the I2C

http://lxr.free-electrons.com/source/sound/soc/codecs/cs42l52.c
http://www.cirrus.com
http://www.cirrus.com

interface, then it generates the 12 MHz master clock MCLK (codec Pin 37), and finally, it
performs the codec’s initialization sequence.

The function named genMCLK() configures TIM3 to generate a 12-MHz clock and maps
this onto the Alternate Function (AF) GPIO Port C pin 6 output. The initialization for
TIM3 is similar to that described in the previous chapter except that we use the PWM
mode with the capture/compare register to give an approximate 50% duty cycle. The code
to configure the GPIO pin that is used to source MCLK is similar to the one that we saw in
the LED_Initialize() function.

The initialization sequence for the audio codec is given on page 38 of the CS42L.52 data
sheet. The initialization sequence is stored in an array named CODEC_RegInit[]. The array
entries are structured as follows:

/* Register value */
typedefstruct {

uint8_tAddr;

uint8_t Vval;
} REG_VAL;
The register names (for example, MASTERA_VOL, and so on) are defined in the CS42L52.h
header file (note that the register names can be copied from the Linux CS42L52 driver).
To prevent odd pops and crackles, the data sheet advises that the chip is powered down
before initialization and then powered up. This configuration code is included in the
configureCodec() function. This function includes a nice example of a macro named
ARR_SZ to compute the size of the array:

/* Calculate array size */
#define ARR_SZ(x) (sizeof (x) / sizeof(x[0]))

Note that unlike some languages, such as Java, C doesn’t perform any array bounds
checking, so it can be quite difficult to track errors due to incorrect array access; because
of this, this macro is particularly useful.

In this recipe, we’re only using the codec’s beep generator (section 4.3 of the data sheet),
and the values stored in the CODEC_Config_Beep[] array are concerned with setting the
codec up for this task. The remaining functions declared in the codec_cs42L52.c file are
concerned with generating beeps and adjusting the volume of the speaker. The beep
generator can be configured to produce single, multiple, or continuous beeps, but we only
need single beeps to play our tune. The Beep() function generates a single beep. This
function takes an input parameter that determines the pitch and duration of the beep, and
this is combined into one byte and written to the codec register address offset 0x1C in the
format shown in the following table:

Bit-7 ||Bit-6 ||Bit-5 [|Bit-4 ||Bit-3 Bit-2 Bit-1

Bit-0 |

FREQ3||FREQ2||FREQ1||FREQO||ONTIME3||ONTIME2||ONTIME1||ONTIMEO|

How to use the audio codec

Listening to the beep generated by codecDemo_c6v0 gets very annoying after a couple of
minutes, so we will try and improve matters by adding a couple of functions that will
enable us to change and mute the volume. We’ll also modify the code to use the beep
generator to play a tune. We’re limited to a fairly simple tune because the beep generator
only generates audio frequencies across two octave major scales. For those who are
musically minded, we define the mapping between notes (pitch) and beep frequencies, and
the beep ON time (see section 6.21 of the data sheet) as well, in the codec_CS42L52.h
header file. We call this recipe codecDemo_c6v1.

How to do it...

Follow the outlined steps to use the audio codec:

1. Clone the previous recipe and name the folder codecbemo_Cé6v1.

2. Open the RTE manager and add Board Support for Buttons (API) and LED (API).
Click Resolve and OK.

3. Add a function named setVolume() to the codec_cS42L52.c file:

static void setVolume(int32_t vol) {

if (vol < -128)

Codec_Write(CS42L52_MASTERA_VOL, (uint8_t) vol+256);
else

Codec_Write(CS42L52_MASTERA_VOL, (uint8_t) vol);

3
4. Add a function named getVolume() to the codec_cs42L52.c file:

int32_t getvVolume() {
int32_t vol, out_vol;
uint8_t val;

Codec_Read(CS42L52_MASTERA_VOL, &val);

vol = (int32_t) val;

if (vol > 24) {
out_vol = -204; /* -102 db (saturated) */
if (vol > 52) out_vol = vol-256;

}

else out_vol = vol;

return out_vol;

}
5. Add a function named decreaseVolume() to the codec_CS42L52.c file:

void decreaseVolume(uint32_t stepSize) {
int32_t currentVolume = getVolume();
const int32_t minVolume = MIN_VOL_DB*2; /* -102dB */
uint32_t n = 0;

while ((currentVolume > minVolume) && (n<stepSize)) {
currentvVolume--; /* 0.5dB decrement */
setVolume(currentVolume);
n++;

4

b
}

6. Add a function named increasevolume() to the codec_CS42L52.c file:

void increaseVolume(uint32_t stepSize)

{
int32_t currentVolume = getVolume();
const int32_t maxVolume = MAX_VOL_DB*2; /* +12dB */
uint32_t n=0;

while ((currentVolume < maxVolume) && (n<stepSize)){
currentVolume++; /* 0.5dB increment */
setVolume(currentVolume);
n++;
}
}

7. Add a function named setMute() to the codec_cS42L52.c file:

void setMute(bool state) {
uint8_t val;

if (state) val = 0x01;
else val = 0x00;
Codec_Write(CS42L52_PB_CTL1, val);

}

8. Declare a global constant array in the codecbemo.c file and assign values
representing the notes for our tune:

noteInfo tune[] = {

{G5, 0x02}, {G5, 0x02}, {A5, 0x02}, {F5, 0Ox04},
{G5, 0x01}, {A5, 0x02}, {B5, 0x02}, {B5, 0x02},
{c6, 0x02}, {B5, 0x04}, {A5, 0x01}, {G5, 0x02},
{A5, 0x02}, {G5, 0x02}, {F5, 0x02}, {G5, 0x02},
{G5, 0x01}, {A5, 0x01}, {B5, 0x01}, {C6, 0Ox01},
{D6, 0x02}, {D6, 0x02}, {D6, 0x02}, {D6, 0x04},
{c6, 0x01}, {B5, 0x02}, {C6, 0x02}, {C6, Ox02},
{c6, 0x02}, {C6, 0x04}, {B5, 0x01}, {A5, 0x02},
{B5, 0x02}, {C6, 0x01}, {B5, 0x01}, {A5, 0x01},
{G5, 0x01}, {B5, 0x04}, {C6, 0x01}, {D6, 0Ox02},
{E6, 0x01}, {C6, 0x01}, {B5, 0x02}, {A5, 0x02},
{G5, 0Ox09} };

9. Replace function named setDisplay() in the codecDemo. c file:

void setDisplay() {

GLCD_SetBackgroundColor (GLCD_COLOR_WHITE);
GLCD_ClearScreen ();

GLCD_SetFont (&GLCD_Font_16x24);
GLCD_SetForegroundColor (GLCD_COLOR_BLACK);
GLCD_DrawString (1*16, 1*24, "Volume: ");
GLCD_DrawString (1*16, 5*24, "wakeup toggles MUTE");
GLCD_DrawString (1*16, 6*24, "User and Tamper");
GLCD_DrawString (1*16, 7*24, "Adjust Volume");

#ifdef __DEBUG
showCodecInfo();
#endif

}

10. Add a function named volumeUserInput () to the codecDemo.c file:

void volumeUserInput() {
uint32_t keyMsk;

keyMsk = Buttons_GetState ();
if (keyMsk & BUTTONS_TAMPER_MASK)
increaseVolume(10);
else {
if (keyMsk & BUTTONS_USER_MASK)
decreaseVolume(10);
else
if (keyMsk & BUTTONS_WAKEUP_MASK) {
mute = !mute;
setMute(mute);
} /* IF-ELSE */
} /* IF-ELSE */
}

11. Add a function named showVolumeGraph() to the codecDemo.c file:
void showVolumeGraph() {

if (mute) {/* If codec is muted, display red graph */
GLCD_SetForegroundColor (GLCD_COLOR_RED);
GLCD_DrawString(1*16, 2*24, "(Muted)");

}

else { /* else blue graph */
GLCD_SetForegroundColor (GLCD_COLOR_BLUE);
GLCD_DrawString(1*16, 2*24, " "),

}

GLCD_DrawBargraph(130, 24, 180, 20,

(getVolume() - (MIN_VOL_DB*2))/2);

3
12. Replace the main() function in the codecDemo. c file:

int main (void) {

uint32_t i = 0;
uint32_t beepTimeOut = 0;

HAL_Init (); /* Init Hardware Abstraction Layer */
SystemClock_Config (); /* Config Clocks */

GLCD_Initialize();
LED_Initialize ();
Buttons_Initialize ();
CodecInitialize();
setDisplay();

while (1) {

if (!beepTimeOut) {
Beep(tune[i]); /* Play the next note */
beepTimeOut = tune[i].duration;
i = (i+1)%ARR_SZ(tune);

¥

else
beepTimeQut--; /* Wait */

volumeUserInput();
showVolumeGraph();

LED_SetOut(1i);

wait_delay(BEAT_TIME);
} /* WHILE */

}

13. Build, download, and run the program. You should get something similar to the
following screenshot

How it works...

The functions in steps 2 and 3 of this recipe are concerned with controlling the speaker
volume. The setVolume() function can be made static to enforce privacy (static
functions can only be called within the file in which they are defined). Both functions
access the register that controls the master volume for codec channel A (Address Offset
0x20):

Bit-7 Bit-6 Bit-5 Bit-4 Bit-3 Bit-2 Bit-1 Bit-0 |

MSTxVOL7

MSTXVOLO|

MSTXVOLG"MSTXVOL 5||MSTXVOL4 MSTXVOL3||MSTXVOL2||MSTXVOL 1|

The master the volume is represented using a special 8-bit 2’s-complement code, which
allocates values 0-24 to positive numbers, and the remaining values to negative ones (note
that a normal 8-bit 2s-complement representation allocates code words equally between
positive and negative quantities). The function to read the getvolume() master volume
register converts the value read from the register to a signed 32-bit integer that represents
twice the volume in decibels (dB) (that is, values between -204 and +24 represent -102 dB
to +12 dB).

An input parameter of the setvolume() function represents twice the volume (dB). If the
volume lies in the -128 to +24 range, then it simply casts the 32-bit signed integer as an 8-
bit value before writing it to the codec’s register. Otherwise, it adds an offset of +256. The
binary code that is used to represent the volume is explained in the CS421.52 data sheet.
The inceaseVolume(), decreaseVolume(), and setMute() functions described in steps 4
to 6 of the recipe provided a simple high-level interface that allows the volume to be
manipulated.

Now that we have defined a codec driver, we can turn our attention to writing the main
function for our audio codec demo. This simply needs to initialize the codec and then
write appropriate values to the beep generator. The pitch and time values are stored in the
global array named tune []; can you guess the ‘tune’? The wakeup, tamper, and user
buttons are used to increase, decrease, and mute the volume, so they need to be initialized
too. The super-loop inside main() outputs the array values (notes and durations by
stepping through the tune [] array. The VolumeUserInput () function checks and
processes button inputs, and the ShowvolumeGraph () function displays a bar indicating the
volume on the GLCD. The function named wait_delay() ensures that each call to Beep(

) is separated by an appropriate time interval set by the BEAT_TIME constant.

How to use the camera

The camera is another I12C peripheral, but to display video we need to read the array pixels
that make up an image and write their values to the GLCD very rapidly. We achieve this
by using Direct Memory Access (DMA) to stream image frames directly to the GLCD
rather than writing individual values as we did for the audio codec demo. We’ll name this
recipe cameraDemo_c6Vv0.

How to do it...

1. Create a new project named camerabemo. Using the RTE manager, go to Board
Support and select the Camera (API) and Graphic LCD (API) software
components.

2. Set the CMSIS and Device software components, as we’ve done for previous
projects. Set the Use MicroLIB project option.

3. Create a file named camerabemo.c and add boilerplate code to configure clocks, and
so on. Add this file to the project.

4. Add amain() function to the camerabemo. c file:

5. Build, download, and run the program, as follows:

int main (void) {

uint32_t addr;

HAL_Init(); /* Initialize the HAL Library */
SystemClock_Config(); /* Config System Clk */
GLCD_Initialize(); /* Graphical Display Init */

/* Get fremebuffer addr */
addr = GLCD_FrameBufferAddress();
Camera_Initialize(addr); /* Camera Init */

/* Prepare display for video stream from camera */
GLCD_SetBackgroundColor (GLCD_COLOR_BLUE);
GLCD_ClearScreen ();

GLCD_FrameBufferAccess (true);
/* Turn camera on */
Camera_On ();

while (1) {
; /* Nothing to do here; all done by DMA */
¥

}

6. Open the RTE_Device.h file and use the configuration wizard to set the I2C port
parameters. Remember to check the DMA transmit and receive options (we can
accept the default DMA parameters):

|_‘|__I!1'E__D_:ui;:;,l-|;_[' ;_'l cameraDemo.c] s xl"
|

Expand Al | Collapse Al | Hep | T ShowGnd

Option

®

-USARTL (Universal synchronous asynchronous receiver trans...

=

USARTZ (Universal synchronous asynchrenous receiver trans...

=

USART3 (Universal synchronous asynchronous receiver trans...

=

UART4 (Universal asynchronous receiver transmitter) [Driver...

=

UARTS5 (Universal asynchronous receiver transmitter) [Driver...

3]

USART®6 (Universal synchronous asynchronous receiver trans...

=

UART7 (Universal asynchronous receiver transmitter) [Driver...

=

UARTS (Universal asynchronous receiver transmitter) [Driver...
12C1 (Inter-integrated Circuit Interface 1) [Driver_12C1]
12C1_SCL Pin
12C1_SDA Pin
=--DMA Rx
Number

m

= O
®%g@—l‘l‘l‘l_l‘l‘l_lgf

Stream

Channel

Priority
= DMA Tx

Number

— = o

o
=

Stream

Channel
Priority Low ﬂ

[2C1 (Inter-integrated Circuit Interface 1) [Driver_[2C1]
Configuration settings for Driver_[2C1 in component ::CMSIS Driver:2C

Configuration Wizard |

. Build the project, then download and run the program.

How it works...

As the camera is another [2C peripheral and the driver (API) named Camera_0VM7690.c
provided by ARM is structured in a similar way to that for the touchscreen and audio
codec, the array named Camera_RegInit [] stores a number of addresses and value pairs
that are written by the function named Camera_Initialize(). The camera used on the
evaluation board is an OVM7690 part manufactured by OmniVision
(http://www.ovt.com). The camera resolution is 640 x 480 pixels and operates at up to 30
frames per second (fps). We need to access OmniVision’s OVM7690 Software
Application Note in order to understand the code used to initialize the camera, but
currently, these documents are company-confidential and protected by Non-Disclosure
Agreements (NDAs). The camera is aimed at mobile phone, notebook, and automotive
applications and includes a number of programmable controls for image-processing
functions, such as exposure, gamma, white balance, hue, and so on.
Camera_Initialize() also configures a DMA channel to stream data from the camera to
SDRAM, so it needs to be provided with the base address of a memory segment. This
address is defined by the GLCD (API) and acquired by the GLCD_FrameBufferAddress (
) function.

http://www.ovt.com

There’s more...

A demo project that exercises many of the features of the MCBSTM32F400 evaluation
board can be downloaded by the pack installer with the Device Family Pack (currently the
version is DFP 2.6.0). As the demo program displays icons on the GLCD that are encoded
as bitmaps, the executable image for the program exceeds the limit imposed by the
evaluation version of the uVision IDE. This code is read-only, but it has been precompiled
so that the project can be downloaded and run on the board.

The main function declared in the demo.c file implements a finite-state machine (FSM)
that determines the operating mode of the program. An integer variable named mode is
assigned a value of 0, 1, 2, or 3 depending on the mode that was selected. These modes are
mapped to the M_INIT, M_STD, M_MOTION, and M_CAM literals by the enumerated type
definition:

/* Mode definitions */
enum {
M_INIT = O,
M_STD,
M_MOTION,
M_CAM,
iy
The mode variable is assigned by the function called SwitchMode() that takes an input

argument that identifies the current state (that is, 0, 1, 2, and 3) and returns the next state.
For example, the first call to SwitchMode () is made when the current state is M_INIT:

mode = SwitchMode (M_INIT);

A switch statement in main() determines different behaviors for each mode, as follows:

switch (mode) {
case M_STD:

break;
case M_MOTION:

break;
case M_CAM:

break;

default:

mode = SwitchMode (mode);
break;

}

This behavior is better described by a state diagram (shown as follows). This diagram is a
graph where states are identified by vertices and the permitted transitions between states
by edges. The edges are labeled with events that give rise to the changes of state.

s

WAKELP

RESET

WAKELP
WAKEUP

WAKELIP

Moe i

The Demo project is a very useful resource as it provides example code for many of the
evaluation board functions. The #include statements at the start of the main source file
provide some insight into what is available:

Acceleration [g]

¥ B

Angular rate [d/s

Designing bitmapped graphics

User interfaces and games can be made much more interesting using color graphics. The
GLCD library includes a function called GLCD_DrawBitmap () that can be used to render
16-bit color bitmaps. Bitmaps can be designed using standard editors or downloaded from
elsewhere. The following recipe shows you how to generate a simple bitmapped
representation of a ball that can be used with the helloBounce and helloPong recipes we
developed in Chapter 2, C Language Programming. We’ll call this recipe
bitmapBounce_c6vO.

How to do it...

To design bitmapped graphics, follow these instructions:

1. Create a color bitmap of width 16 pixels and height 24 pixels using the Windows
Paint application. A screenshot of what this should look like is displayed, as follows:

3 urtited - Point S o=l
E o 1T 'l|||r i ¢
el Rulers -5 o |

L ah L 7| Gridlines —

Zoom Zoom 100 Full Thumbnail
in out % #| Status bar SCrEen

Zoom

T i1 B 8 ¥ =
alnlain

Show or hide Display

2. Save the ball icon as a standard 24-bit bitmap, with the filename as ball.bmp.

3. Use GIMP (http://www.gimp.org) to convert the 24-bit-per-pixel bitmap to a 16-bit-
per-pixel format and store the pixel values in an array. First install GIMP and open

the ball.bmp file.

@ [ball] (imported)-1.0 (Indexed color, 1 layer) 16x24 — mmiE ﬂ%
i:

File Edit 5elect View Image Layer Colors Tools Filters Windows Help

I:EI | |_2|.Dq 11 |_1|5q [l |_1|Dqﬁ | |_¥JI 11 |ﬂ| 111 |5'q 111 |]-W| 11 |15’Q| 11 |2qﬂl -q-‘
a -~
(1] i =
£ -
I 1 | » Q.

m%H ball.bmp (21.7 kB)

4. Export the image as a C source file in 16-bit format using the GIMP export sub-
menu. This creates the C source file (in this case, named ball_16bit.c).

http://www.gimp.org

0o

4 Export Image as C-Source [&J

Prefixed name: | gimp_image

Comment:

| Save comment to file

| ilse GLib types l{guintE*jE

[7] Use macros instead of struct
Use 1l byte Run-Length-Encoding
Save alpha channel (RGBA/RGE)
| Save as RGB565 (16-bit)

Opacity: [] |1000 [

Help | [Export l | Cancel |

Clone the folder named helloBounce_c2v0 from the Creating a game application —
Stage 1 recipe that we introduced in Chapter 2, C Language Programming, and cut
and paste the contents of the ball_16bit.c file into helloBounce.c, as follows:

/* GIMP RGB C-Source image dump (ball_16bit.c) */

static const struct {

unsigned int width;

unsigned int height;

unsigned int bytes_per_pixel; /* 2:RGB16 3:RGB 4:RGBA */
unsigned char pixel_data[16 * 24 * 2 + 1];

} gimp_image = {
16, 24, 2,
"\377\377\377\377\377\377\... etc.
}

Delete the extern GLCD_FONT GLCD_Font_16x24; declaration:
Search for the following references:

GLCD_Font_16x24.width
GLCD_Font_16x24.height

Replace these reference with the following ones:

gimp_image.width
gimp_image.height

Delete the call to GLCD_SetFont (&GLCD_Font_16x24);.
Search for the following statement:

GLCD_DrawChar (x, y, 0x81);

Replace this statement with the following one:

GLCD_DrawBitmap (X, Yy, gimp_image.width, gimp_image.height,
gimp_image.pixel_data);

10. Rebuild, download, and run the program.

How it works...

The ball used in the original recipes in Chapter 2, C Language Programming, is rendered
using the filled circle character, which is one of a number of binary character bitmaps
defined in a file named GLCD_Fonts.c. We’re now using the GLCD_Bitmap () function to
render the ball rather than GLCD_DrawcChar (). This function expects a pointer to a 16-bpp
bitmap. The bitmap data is provided by GIMP. The escape sequences \377\377\377, and
so on, represent characters in the string encoded in octal. Therefore, 3778 = 111111112
and two bytes encode each 16-bit pixel, so 16-bit bitmaps can represent 65,536 colors. If
the alpha channel is omitted (as in our case), then RGB channels are encoded by 5, 6, and
5-bits, respectively.

There’s more...

The pixel data field of gimp_image comprises 16 x 24 x 2 + 1 = 769 bytes. If we store
larger images in this way, our executable code image will quickly exceed the maximum
allowed under the terms of our free MDK license. However, after examining the values in
the array, we can see that many of the values are repeated, and this suggests that there may
be a more efficient way of storing the pixel values. Run-length encoding (RLE) is a
lossless compression algorithm that exploits the fact that there are often many repeated
values in a bitmap (that is, adjacent pixels are often the same color). There are many
variations of run length encoding, and a good introduction to the topic is given by Arturo
Campos (http://www.arturocampos.com/ac_rle.html). We can export a run length encoded-
version of our 16-bit BMP using GIMP.

4 Export Image as C-Source &‘!J
Prefixed name: | gimp_image
Comment:
Save comment to file
Use GLib types (guintd®)
Use macros instead of struct

O Use 1 byte Run-Length-Encoding

Save alpha channel (RGEA/RGE

@Save as RGE565 (16-bit)i

Opacity: [] 1000 -

Help Export | Cancel

GIMP adopts a run length encoding format known as PackBits, which was originally
developed by Apple. A data stream encoded by PackBits comprises a series of packets.
Each packet consists of a one byte header followed by data. The header byte (n) is
interpreted as a signed value (8-bit 2’s complement) and the data. A positive value (n)
indicates that the n data elements that follow should be interpreted as literal values, and a
negative value implies that the single data element that follows should be repeated n times.
The data structure (produced by GIMP) with run length encoded data representing the
pixel values exported from the ball.bmp file is as follows:

/* GIMP RGB C-Source image dump 1-byte-run-length-encoded
(ball_16-bit_rle.c) */

static const struct {

unsigned int width;

unsigned int height;

http://www.arturocampos.com/ac_rle.html

unsigned int bytes_per_pixel; /* 2:RGB16 3:RGB 4:RGBA */
unsigned char rle_pixel_data[390 + 1];
} gimp_image = {
16, 24, 2,
"\325\377\377\5\377\377\... etc.
}

The run length encoded image comprises just 391 bytes (approximately 50%
compression).To render the encoded bitmap, we’ll need to define a version of
GLCD_Bitmap() that unpacks the data before writing it to the GLCD:

int32_t GLCD_RLE_Bitmap (uint32_t x, uint32_t y, uint32_t width, uint32_t
height, const uint8_t *bitmap) {

int32_t npix = width * height;
int32_t i=0, j;

uintli6_t *ptr_bmp;

uint8_t count;

#if (GLCD_SWAP_XY == 0)
y = (y + Scroll) % GLCD_HEIGHT;
#endif

GLCD_SetWindow(x, y, width, height);

wr_cmd(0x22);
wr_dat_start();

while (i<npix) {
count = *bitmap++;
ptr_bmp = (unsigned short *) bitmap;

if (count >= 128) {
count = count-128;
for (j = 0; j<count; j++) { /* repeated pixels */
wr_dat_only(*ptr_bmp);
}
bitmap+=2; /* adjust the pointer */
}
else {
for (j=0; j<count; j++)
wr_dat_only(ptr_bmp[j]);
bitmap+=(count*2); /* adjust the pointer */
¥
i+=count;
} /* while */

wr_dat_stop();
return 0;

}

As the library source file, GLCD_MCBSTM32F400. c, is read-only, we’ll need to add the
GLCD_RLE_Bitmap() function to a local copy (named GLCD_MCBSTM32F400_plus.c). We’ll
also need to add a local copy of Board_GLCD.h (Board_GLCD_plus.h) that includes the
function prototype, GLCD_RLE_Bitmap(). Remember to modify the conditional

preprocessor statement, as follows:

#ifndef _ BOARD_GLCD_PLUS_H
#define _ BOARD_GLCD_PLUS_H

Include a modified version of the header in rle bounce.c and
GLCD_MCBSTM32F400_plus.c. We’ve named this recipe that uses run length encoding
rleBounce_c6v0.

Ideas for games using sound and graphics

The scope to develop games for the MCBSTM32F400 evaluation board is unlimited;
however, the restricted memory image imposed by the evaluation version of the MDK
constrains their complexity and the size of bitmaps that can be used (we address this issue
in Chapter 9, Embedded Toolchain). A number of general introductory texts on game
development can inspire new ideas. While we used the topic of generating audio mainly to
introduce the audio codec, it is a topic in its own right and those who wish to create a
really professional gaming experience should refer to the book, The essential guide to
game audio: The theory and practice of sound for games
(http://www.taylorandfrancis.com/books). Screenshots of a few examples of games
developed by students studying embedded systems are shown in the following screenshot:

: Score=00 Lives=1
@ Collect for Points

® Avoid
se Joystick
4 Double Points

Tap Screen to Start

Space Invaders Score:0 Lives:5
_—

Easy

-| Medium |- e
L2 2 2 2 F F T
Hard

L E X X X T T T
Instructions allalala
* []

The board lends itself to single-player games but two-player scenarios can be
accommodated by designing an Artificial Intelligence (AI) opponent. Two (human)
players can compete either by taking turns or linking two boards together using the RS232
COM port.

http://www.taylorandfrancis.com/books

Chapter 7. Real-Time Signal Processing

In this chapter, we will cover the following topics:

e Configuring the audio codec

e How to play prerecorded audio

e Designing a low-pass digital filter
e How to make an audio tone control

Introduction

In the last chapter, we used the audio codec’s beep generator to play a tune, but if you
looked at the codec manufacturer’s data sheet, you must have noticed that the device can
do much more. Audio signals can be recorded by connecting a microphone to the
evaluation board’s stereo analog audio input, and the signal can be sampled using the
audio codec’s on-chip ADC. Digital audio can be played by sending digital samples to the
codec, and the left and right speakers can be driven by the output of an on-chip DAC. A
dedicated digital serial audio interface using a protocol called 12S (I2S, or IIS) conveys
digital samples between the microcontroller and audio codec. Inter-IC-Sound (I12S) or
Integrated Interchip Sound (IIS) is a serial bus interface standard developed by Phillips
Semiconductors in 1986 (revised 1996) that is used to connect digital audio devices
together. This specification is widely available online (for example, www.cypress.com).
Unfortunately, the STM32F400 evaluation board only supports a half-duplex channel, so
audio cannot be recorded and played simultaneously.

Connecting a powerful microcontroller (that is, the computer) and codec together brings
the prospect of Digital Signal Processing (DSP). DSP applications manipulate digital
audio samples to create digital filters and other amazing audio effects.

http://www.cypress.com

Configuring the audio codec

The STM32F400 evaluation board schematic (http://www.keil.com) shows that a Cirrus
Logic CS42L.52 codec IC (http://www.cirrus.com) is used, and the 12S bus signals are
driven by GPIO port I bits 0, 1, and 3. SDIN and SDOUT are wired together, so the 12S
interface must be operated half-duplex. In addition to managing the 12S interface, the
microcontroller must also source a Master Clock (MCLK), which clocks the codec’s
delta-sigma modulators (Note that we described a function to achieve this in Chapter 6,
Multimedia Support). A block diagram that summarizes the 12S interface connection is
shown, as follows:

GPIOCE MCLE
SCLK -
PIOIG L
STMI2F40Ts0x ShOK L
{[w]]
Microcontroller GPOIL LRCK ERLTI Copler:
{MASTER) GPIOI3 5DIN {SLAVE)
=
SDOUT

The codec also uses MCLK to power an inverter, which supplies a higher DC voltage to
support analog parts of the codec. The codec data sheet explains that MCLK should be
instantiated and the codec’s registers must be configured while the device is powered
down and the power up/down sequence outlined in the data sheet must be carefully
followed to ensure the codec operates correctly.

The I2S specification identifies master and slave roles. An I2S bus must include one
master (to source SCLK and LRCK), and it may include more than one slave. Normally,
the microcontroller is configured as master, and as SDIN and SDOUT are connected
together (externally), SDOUT must be switched to a high-impedance (HI-Z) state before
SDIN is driven. If we refer to the following table the only option that allows for SDOUT
to be HI-Z is to configure the codec as slave:

| Serial port status

3ST_SP

Slave mode

Master mode

This is when serial port clocks are inputs, and SDOUT is
output.

This is when serial port clocks and SDOUT are
outputs.

This is when serial port clocks are inputs, and SDOUT is
HI-Z.

This is when serial port clocks and SDOUT are
HI-Z.

The microcontroller’s Serial Peripheral Interface (SPI) and 12S interface is described in
section 28 of STM’s RM0090 Reference Manual (http://www.st.com). The following
recipe, codecDemo_c7v0, describes how to configure the codec and output a continuous
audio tone.

http://www.keil.com
http://www.cirrus.com
http://www.st.com

How to do it...

1. Clone codecbemo_c6v0e from the Writing a driver for the audio codec recipe in
Chapter 6, Multimedia Support to a new folder named codecbDemo_c7ve.

2. Configure the Runtime Environment, as we did for the folder, codecbDemo_c6ve from
the Writing a driver for the audio codec recipe in Chapter 6, Multimedia Support, and
add support for Device -~ STM32Cube HAL - 128, as follows:

LJ Manage Run-Time Environment R [] |
—— - g L S - S
Software Component Sel. Variant Version Description
'-‘ TM2F & Hardware Abstraction r (H rver ﬂ

¥ ADC r 140 Analog-to-digital converter (ADC) HAL driver
¥ CAN r 140 Controller area network (CAN) HAL driver
¢ CRC Il 140 CRC calculation unit (CRC) HAL driver
¥ Commaon [+ 140 Common HAL driver
¥ Cortex F 140 Cortex HAL driver
¥ DAC r 140 Digital-to-analog converter (DAC) HAL driver
¥ DCMI Ll 140 Digital camera interface (DCMI) HAL driver
¥ DMA v 140 DMA controller (DMA) HAL driver
@ ETH r 140 Ethernet MAC (ETH) HAL driver
¥ Flash r 140 Embedded Flash memory HAL driver
¥ GPIO I~ 140 General-purpose /0 (GPIO) HAL driver
¥ HCD r 140 USB Host controller (HCD) HAL driver
¥ 2C 7 .1.4.0 Inter-integrated circuit (I2C) interface HAL driver
v s @ 140 125 HAL driver
¥ IRDA 140 IrDA HAL driver
¥ MWDG r 140 Independent watchdog (IWDG) HAL driver
¥ NAND r 140 MNAND Flash controller HAL driver

' ¥ NOR r 140 NOR Flash controller HAL driver

J @ PCCard r 140 PC Card controller HAL driver

! ¢ PCD IS 140 USB Peripheral controller (PCD) HAL driver
¢ PWR e 140 Power controller (PWR) HAL driver
¥ RCC i 140 Reset and clock control (RCC) HAL driver =
¥ RNG r 140 Random number generator (RNG) HAL driver
@ RTC r 140 Real-time clock (RTC) HAL driver
¢ SD r 140 Secure digital (SD) interface HAL driver
v 5Pl r 140 Serial peripheral interface (SPI) HAL driver
¢ SRAM e 140 SRAM controller (SRAM) HAL driver
¥ Smartcard r 140 Smartcard HAL driver
v TIM | 140 Timers (TIM) HAL driver :J

I
Resolve | (Select Packs| | Detais | oK | cancel Help

Tip
There is no need to select CMSIS Driver — SPI (API).

3. Use the Configuration Wizard tabs in RTE_Device.h and RTX_Conf_CM.c to
configure I2C and RTX parameters, as we did in the folder, codecbemo_c6ve from the

Writing a driver for the audio codec recipe in Chapter 6, Multimedia Support.
4. Create a new file named 12S_audio.c and add this to the project:

Project 2 B
=} 1% Project: codecDemo
B~ Targetl
= \F Source Group1
+ j codecDemo.c
%] codec_CS42L52.c
7] 125_audio.c
1] timer.c
@ € Board Support
=€ CMsis
T RTX_CM4.lib (RTOS:Keil RTX)
] RTX_Conf_CM.c
€ CMSIS Driver
59 Device

hﬂpruject :-- : {}:'_:::" n “*-T-:':-.'—

5. Add a global 12s_HandleTypeDef handle structure in the 12S_audio.c file, as
follows:

/* Global I2S handle structure */
I2S_HandleTypeDef hi2s;

6. Define the set_12S_GPIO_Pins() function in the 12S_audio.c file, as follows:

void Set_I2S_GPIO_Pins(void) {
GPIO_InitTypeDef GPIO_InitStruct;

_ _GPIOC_CLK_ENABLE();
_ _GPIOI_CLK_ENABLE();

/* Configure GPIO pin: PIO,1,3 */

GPIO_InitStruct.Pin = GPIO_PIN_O |
GPIO_PIN_1 | GPIO_PIN_3;

GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FAST;
GPIO_InitStruct.Alternate = GPIO_AF5_SPI2;
HAL_GPIO_Init(GPIOI, &GPIO_InitStruct);

/* Configure GPIO pin: PC6 */

GPIO_InitStruct.Pin
GPIO_InitStruct.Mode =
GPIO_InitStruct.Pull GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FAST;
GPIO_InitStruct.Alternate = GPIO_AF5_SPI2;
HAL_GPIO_Init(GPIOC, &GPIO_InitStruct);

GPIO_PIN_6;
GPIO_MODE_AF_PP;

}
7. Define the 12S_Audio_Initialize() function (skeleton) in the 12S_audio.c file:
HAL_StatusTypeDef I2S_Audio_Initialize(void) {
HAL_StatusTypeDef status;
/* Enable the SPIx interface clock. */
/* Configure I2S Pins */
/* Program the Mode, Standard, Data Format,
MCLK Output, Audio frequency and Polarity
using HAL_I2S_Init() function. */
}
8. Add this code to enable the clock in the 12S_Audio_Initialize() function:
/* Enable the SPIx interface clock. */
RCC->CR |= RCC_CR_PLLI2SON; /* Enable the PLLI2S */
/* Wait till the main PLL is ready */
while((RCC->CR & RCC_CR_PLLI2SRDY) == 0)
{}
__HAL_RCC_SPI2_CLK_ENABLE();
9. Call set_125_GPIO_Pins(), as follows:
/* Configure I2S Pins */
Set_I2S_GPIO_Pins();
10. Set the appropriate fields of the global 12S_HandleTypeDef handle structure and call

HAL_I2S_Init():

/* Program the Mode, Standard, Data Format,
MCLK Output, Audio frequency and Polarity
using HAL_I2S_Init() function. */

hi2s.
hi2s.State =

Instance = SPI2;
HAL_I2S_STATE_RESET;

hi2s.
hi2s.
hi2s.
hi2s.
hi2s.
hi2s.
hi2s.
hi2s.

Init.

Init

Init

Init.
Init.
Init.

status =

Mode =

DataFormat
MCLKOutput

.AudioFreq =
I2S_
ClockSource
FullDuplexMode =

CPOL =

125
.Standard =
Init.
Init.

MODE_MASTER_TX;

I2S_STANDARD_MSB;
I2S_DATAFORMAT_16B,
I2S_MCLKOUTPUT_ENABLE;

I2S_AUDIOFREQ_22K;

CPOL_LOW,
= I2S_CLOCK_PLL ;

I2S_FULLDUPLEXMODE_DISABLE;

HAL_I2S Init(&hi2s);

11. Add the #include files to the 12S_audio.c file:

#include "codec_CS42L52.h"
#include "stm32f4xx_hal.h"
#include "I2S_audio.h"
#include "stm32f4xx_hal_i2s.h"

12. Open the codec_45L52.c file and add an array of register or value pairs to configure
the codec for sampled audio:

REG_VAL CODEC_Audio_I2S_Slave[] ={

/****

*Configure I2S Interface as Slave, 16bits
******/
{CS42L52_IFACE_CTL1, 0x03},
/* SDOUT is HI-Z */
{CS42L52_IFACE_CTL2, 0x10},
/* Speaker Vol B=A, MONO */
{CS42L52_PB_CTL2, Ox0A},
/* Set master vol for A/B */
{CS42L52_MASTERA_VOL, 0OxC0},
/* Ignore jpr setting (speaker always ON) */
{CS42L52_PWRCTL3, OxAA}
iy

13. Modify the function named configureCodec () so that we can select an appropriate
setup, depending on an input argument named mode:

static void configureCodec(codecMode mode) {
uint32_t 1i;

Codec_Write(0Ox02, 0x01); /* Keep Codec Power-down */
delay_ms(10); /* wWait 10ms */

for (1 = 0; 1 < ARR_SZ(CODEC_Config_Init); i++)
Codec_Write (CODEC_Config_Init[i].Addr,
CODEC_Config_Init[i].val);

if (mode == AUDIO_BEEP)
for (1 = 0; 1 < ARR_SZ(CODEC_Config_Beep); i++)
Codec_Write (CODEC_Config_Beep[i].Addr,
CODEC_Config_Beep[i].Vval);
else
if (mode == AUDIO_SAMPLED)
for (1 = 0; 1 < ARR_SZ(CODEC_Audio_I2S_Slave); i++)
Codec_Write (CODEC_Audio_I2S Slave[i].Addr,
CODEC_Audio_I2S_Slave[i].val);

}

14. Use mode to manage calls to configurecCodec() and genMCLK() in the
codecInitialize() function:

/* Configure CODEC */
configureCodec(mode);

/* Configure I2S */
if (mode == AUDIO_SAMPLED)

status = I2S Audio_Initialize();
else
if (mode == AUDIO_BEEP)
genMCLK() ;

15. Define mode in codec_42L52.h, as follows:

typedef enum {
AUDIO_BEEP,
AUDIO_SAMPLED
} codecMode;

16. Open the codecDemo.c file and add the following:

#include "I2S_audio.h"
#include "stm32f4xx_hal_i2s.h"

/* Timeout value fixed to 100 ms */

#define I2S_TX_TIMEOUT_VALUE ((uint32_t)100)
/* Macro to calculate array size */

#define ARR_SZ(x) (sizeof (x) / sizeof(x[0]))
/* Global External Vars */

extern I2S_HandleTypeDef hiZs;

17. Add a global const array of audio samples to the codecbemo.c file:

/* 20 left+right channel samples @ 22kHz ~= 1.4 kHz. */
const intl16_t dacLUT [] = {
0, 0, 9830, 9830, 19660,
19660, 26214, 26214, 31456, 31456,
32767, 32767, 31456, 31456, 26214,
26214, 19660, 19660, 9830, 9830,
0, 0, -9830, -9830, -19661,
-19661, -26214, -26214, -31457, -31457,
-32768, -32768, -31457, -31457, -26214,
-26214, -19661, -19661, -9830, -9830 };

18. Modify the main() function in the codecDemo.c file. Add and initialize the variable
mode and pass the value to CodecInitialize(), as follows:

int main (void) {
noteInfo note = {G5, 0x02};
codecMode mode = AUDIO_SAMPLED;
HAL_StatusTypeDef status;

/* Uncomment for BEEP */
//mode = AUDIO_BEEP;

HAL_Init();
SystemClock_Config();
GLCD_Initialize();

status = CodecInitialize(mode);
setDisplay();

// etc.

}

19.

20.

21.

22.

If required, we can add a function named showCodecI2SInfo() that displays the
status (to debug):

#ifdef ___DEBUG
if (mode == AUDIO_SAMPLED)
showCodecI2SInfo(status);
#endif

Modify the super loop in main() and call HAL_I2S_Transmit(), as follows:

while (1) {
if (mode == AUDIO_BEEP) {
Beep(note); /* Play the note */
wait_delay(500); /* pause */
}
else
if (mode == AUDIO_SAMPLED) /* Play a tone */

HAL_I2S Transmit(&hi2s, (uintl16_t *) dacLUT,
ARR_SZ(dacLUT), I2S_TX_TIMEOUT_VALUE);

} /* WHILE */
Uncomment the mode = AUDIO_BEEP; statement. Build and run the program to
confirm that I2C communication with the audio codec is established and the program
performs as codecDemo_c6v0 from the Writing a driver for the audio codec recipe in
Chapter 6, Multimedia Support.
Reinstate the comment. Build, download, and run the code. We should now hear a
shrill tone.

How it works...

Before powering the codec up (by clearing bit 0 of the codec’s power control 1 register),
we must first ensure that MCLK is established. As we’re using the stm32f4xx_hal_i2s.h
HAL library to manage the 12S low-level interface, we can take advantage of its ability to
generate MCLK rather than configuring a timer as we did in Chapter 6, Multimedia
Support. The 12S bus and audio codec channels are configured by a function named
I2S_Audio_Initialize(), which, in turn, is called by CodecInitialize(). The
I2S_Audio_Initialize() function performs the tasks that are identified in the comment
at the start of the stm32f4xx_hal_i2s.c file. This enables the 12S clock, configures the
GPIO pins, sets GPIO for I2S Alternate Function (AF), sets the I12S handle struct, and
initializes the I2S peripheral (using the HAL device driver). Referring to STM’s reference
manual, RM0090 (http://www.st.com), we can see that the microcontroller has a number
of I12C and SPI peripherals, which begs the question, How do we decide which instance of
a peripheral to use? The answer is that, as we’re using an evaluation board, the board’s
designer already made this choice when they laid out the PCB. The board schematic
(http://www.keil.com) shows that port pins GPIOB 8 and 9 are used by the 12C interface.
Table 9 (Alternate Function Mapping) of the STM32F405xx and STM32F407xx
Datasheets (DocID022152 Rev 6) shows that Port B Pins 8 and 9 are used by the
AF2/3/4/5/9/11/13/15 alternate functions and AF5 connects instance 12C1. Similarly, the
codec connections shown on the schematic and the Alternate Function Mapping (Table 9)
mean we must use SPI2 as the 12S peripheral.

Information on sourcing the I12S clock can be found by referring to the clock tree in
RMO0090 Reference Manual (Doc ID 018909 Rev 6), Figure 21. If the I2S Phase Locked
Loop (I2SPLL) is not running or an external I2S clock is not sourced, then we must enable
the I2SPLL function, 12S_Audio_Initialize():

RCC->CR |= RCC_CR_PLLI2SON; /* Enable the PLLI2S */
/* Wait till the main PLL is ready */
while((RCC->CR & RCC_CR_PLLI2SRDY) == 0) { }

As the SPI2 peripheral uses the APB1Periph clock, we also include the following:

__HAL_RCC_SPI2_CLK_ENABLE();

Configuring the GPIO pins and connecting the SPI2 AF is relatively straightforward; for
example, we use GPIO_Initialize() as we did in earlier recipes. Note that we also need
GPIO C Pin6 to source MCLK.

The final step is to initialize the I12S handle struct (defined in stm32f4xx_hal_i2s.h)
with default values. A pointer to this structure is passed to the function named
HAL_I2S_Init() that performs the low-level initialization. An important task within
HAL_I12S_Init() is for the I2SPLL clock divider to give the desired 12S SCLK frequency.

The function used to initialize the codec named CodecInitialize () is very similar to
the one that was presented in codecDemo_c6v0 in the Writing a driver for the audio codec
recipe in Chapter 6, Multimedia Support, but we’ve added some extra statements to allow
this function to be used for either BEEP or SAMPLED audio. Similarly,

http://www.st.com
http://www.keil.com

configureCodec() also selects the appropriate setup.

The main() function super loop uses the function, HAL_I2S_Transmit (), to output audio
samples representing a sinusoid. We can reuse the Look-up-table (LUT) that was
introduced in dacSinusoid_c5v0 from the Generating a sine wave recipe in Chapter 5,
Data Conversion to represent the sampled sinusoid. However, as the I2S serial interface
supports 16-bit signed samples, we’ll need to convert the LUT to this format.

The 12S interface standard supports two (stereo) channels, and although we’re operating
the codec in mono (that is, channel A=B), we still need to transmit left and right samples,
so each sample is repeated in the LUT array.

We’ve described the audio initialization in some detail and seem to have done a lot of
work to produce very little so far, but judging from the number of posts on associated
microcontroller internet forums, many novice embedded-system programmers have
difficulty with this topic. Many developers use source code published by STM for their
evaluation boards as a starting point, but they all tend to use different
codec/microcontroller combinations, so reusing the code isn’t always straightforward.

There’s more...

Having generated a ‘note’, the question, what frequency?, arises. The I2S standard
(Phillips Semiconductors, 1986) can help us answer this. The timing diagram depicted as
follows illustrates an I2S data transmission:

AL

e T\ /
D €5 S) T G

| [
| [

RIGHT CHAMMNEL : LEFT CHAMMEL : RIGHT CHAMMEL
| I

As the sinusoid is described by 20 samples and a sample frequency of 22 kHz (Fs), the
period will be 20 x 10/(-3)960.909 ms, that is, a frequency of approximately 1.2 kHz. We
can confirm this by connecting an oscilloscope to the audio jack.

Currently, the main super loop only comprises one function call. We must be mindful that
adding further statements in the loop may result in the I2S transmit register being starved.

How to play prerecorded audio

This recipe demonstrates how to play audio clips downloaded from the Internet globally.
When you search for digital audio, you will encounter two common digital audio formats:
Waveform Audio File Format (WAVE or WAV) and MPEG-1, MPEG-2 Audio Layer
III Format (MP3). This recipe focuses on playing WAV-encoded audio clips. The
STM3241G-EVAL and STM32F4-DISCOVERY evaluation boards both include an MP3
player demo that can be ported to other systems. This recipe illustrates a skeleton that
could form the basis for a similar application on the MCBSTM32F400 evaluation board.
We’ll call this recipe codecbemo_c7vi.

Getting ready

The easiest way to import WAV audio samples into our program is to convert them into C
source code (in the same way that images were imported in Chapter 6, Multimedia
Support). A number of programs to manipulate WAV files and write samples to a C source
file are available. This recipe uses a free converter by Colin Seymour called WAVtoCode
that supports a number of WAV file formats. The following screenshot shows the
conversion program being used (note that this program also includes a mixing desk):

WAVToCode: 0.
File Tools Help
Original

Mix

00 0o oo 0o 0o 0o

=

Mix

1111/
(-

11—

(-

(-

-
(1M1
(10
(A1
I
(1
(10
MII

The program exports samples in 8/16 mono/stereo formats, as follows:

1. Download a 1-kHz WAV test signal sampled at 96 kHz (that is, F's = 96 kHz)
(http://www.rme-audio.com). Play the test signal using the converter, then select 16-
bit Mix to Mono from the Tools menu, and save as signed 16-bit C Code. A sample
of the output is as follows:

BYTE data[NUM_ELEMENTS] = {
-23417, -21874, -20238, -18517, -16716, -14844,
-12909, -10920, -8885, -6811, -4709, -2586,
452, 1683, 3812, 5923, 8010, 10063,
12073, 14033, 15931, 17763, 19519, 21193,
22775, 24261, 25645, 26919, 28078, 29119,
30037, 30825, 31483, 32008, 32397, 32648,
32760, 32733, 32567, 32262, 31821, 31244,
30535, 29696, 28730, 27642, 26438, 25121,
23696, 22171, 20553, 18847, 17060, 15201,
13279, 11299, ...

More exciting audio clips are available!

2. Examine the output to confirm that the sinusoidal cycle repeats approximately every

http://www.rme-audio.com

96 samples (that is, approximately half a cycle is shown previously) giving a
frequency of 1 kHz. Note: the size of the global array needed to store the samples
exceeds the limit imposed by an unlicensed copy of uVision 5. Chapter 9, Embedded
Toolchain, offers some open source compiler options that can be adopted to solve this

problem.

How to do it...

Follow the outlined steps to play prerecorded audio:

1.

Clone codecbemo_c7ve from the Configuring the audio codec recipe that we
described earlier in this chapter.

Store the test signal samples in a simple global array (note that the samples are
duplicated for left and right channels), as follows:

int16_t data [] = {
-23417, -23417, -21874, -21874, -20238, -20238,
-18517, -18517, -16716, -16716, -14844, -14844,
-12909, -12909, -10920, -10920, etc..

iy

Open 12S_audio.c and change the sample frequency defined in the
I12S_Audio_Initialize() function to match that of the WAV file:

hi2s.Init.AudioFreq = I2S_AUDIOFREQ_96K;

Add a statement in I2S_Audio_Initialize() to enable interrupts:
NVIC_EnableIRQ(SPI2_IRQn);

Include the following Interrupt Service Routine (ISR) in the codecbemo. c file:

void SPI2_IRQHandler(void) {

HAL_I2S_TIRQHandler(&hi2s);
}

Include a transfer complete callback in the codecDemo. c file (that is, overriding this
in stm32f4xx_hal_i2s.c):

void HAL_I2S_TxCpltCallback(I2S_HandleTypeDef *hi2s) {
HAL_I2S Transmit_IT(hi2s, (uintl16_t *) dacLUT,
ARR_SZ(dacLUT));
}

Modify the main() function so that it calls the HAL_12S_Transmit_IT() function
before entering the super loop (note that there is nothing left to do in the super loop
as the interrupt service routine takes care of everything):

HAL_I2S Transmit_IT(&hi2s, (uintl16_t *) dacLUT,
ARR_SZ(dacLUT));

while (1) {
if (mode == AUDIO_BEEP) {
Beep(note); /* Play the note */
wait_delay(500); /* pause */
¥

} /* WHILE */

Build, download, and run the program.

How it works...

The HAL_12S Transmit () function that we deployed in codecDemo_c7ve from the
Configuring the audio codec recipe sends a block of audio samples to the codec. This
function operates in polling mode to establish when the I2S transmit data register is empty,
and it spins (busy waiting) on the codec’s status register to determine when successive
samples are needed. Unfortunately, while the processor is doing this, it can’t perform
much useful work. To address this problem, this recipe uses the HAL_I2S_Transmit_IT()
library function to set the 12S interface to generate an interrupt when the I12S transmit data
register is empty. It also keeps count of the number of samples that are transmitted and
calls a function named HAL_I2S TxCpltCallback() when the last audio sample in the
block has been sent.

Prior to calling HAL_12S_TxCpltCallback(), we need to enable interrupts (step 4),
provide an interrupt service routine (step 5), and override the HAL_I2S TxCpltCallback()
function (step 6).

As the audio channel is essentially managed by the ISR, there isn’t anything for the
main() function to do!

Designing a low-pass digital filter

Joseph Fourier discovered that a complex signal could be described by a sum of sinusoids
that is known as a Fourier series, and applying this idea enables us to visualize a signal
frequency spectrum. A spectrum analyzer is a device that allows the frequency content of
a signal to be displayed and measurements to be made. Two parameters, known as
magnitude (amplitude) and phase, describe a sinusoidal signal. The magnitude spectrum
describes the amplitude of each sinusoidal component that is summed, and the phase
spectrum describes its associated phase. Often, we ignore the phase information and focus
on the magnitude spectrum, but for some applications, particularly those that involve
feedback, the phase of the signal is very important.

The magnitude spectrum of a pure 10 kHz sinusoidal signal is illustrated in the following
diagram (the left panel) and that of a sampled version of the signal (the right panel):

lhmplitude {d&)

0

F

0.0

-

Frequency (kHz)

Amplitude (d8)

a

&

Low Pass Filter [Fc = Fs/(2)

Fsf2 85,0 96.0 106.0

|

Sampling Freguency (Fs)

{b)

=

Frequency (kHz)

When we sample a signal, the steps in the digitized waveform (illustrated in Chapter 5,
Data Conversion) introduce significant frequency components at higher frequencies.
These appear as sidebands that are symmetrically displaced around integer multiples of
the sampling frequency (Fs). As we saw in Chapter 5, Data Conversion, an analogue low-
pass filter connected across the output of the D-A converter removes these harmonics and

leaves the pure sinusoid.

The aim of digital filtering is to simulate the effect of analogue filters by writing a
program that manipulates the digital signal samples. A digital filter is a function that
accepts signal samples as inputs and returns samples that represent the processed signal in
real time. In this case, real time implies that, if the input samples cannot be processed so
as to produce output samples in a time frame 1/Fs, then the filter will fail.

We can only hope to provide an introduction to digital filters in this short chapter, and so
we’ll skip the preliminaries that are needed to gain a deeper understanding of this topic.
Those motivated to find out more should consult an introductory text book.

Getting ready

The structure of a simple Finite Impulse Response (FIR) digital filter is shown next. It’s
called FIR because the output of the y(n) filter is only produced from input samples. FIR
filters are inherently stable, but they cannot be implemented as efficiently as another class
of digital filter, known as Infinite Impulse Response (IIR) filters. In IIR filters, the y(n)
output is fed back and reused as another filter input. Potentially, this technique can
produce instability, but this can be eliminated with careful design. We’ll restrict ourselves
to FIR designs here. In the following diagram, the block labeled T represents a time delay
that is equal to the sample period, 1/Fs. So, in this case, the y(n) output is formed by the
(equally-weighted) average of the current sample, x(n), and four previous input samples:
x(n-1), x(n-2), x(n-3), and x(n-4):

®ir) ®[n-1] ®n-2) ®(n-3) w[n-4]

T’ T T T T T T T j

b2 /7 N\ 02 7/ Ca £ i
[x) fie Yy D2 0.2 { Y 02 g 5 b1
LY

™ | | -I.T
"

E _—
yin)

™,
'
=
\ J
S
”
(.
= ._“ A

-

The output of a digital filter can be computed by a mathematical operation called discrete
convolution and can be described mathematically, as follows:

n

y(n) = Z x(n)h(n — k)

k=0

Here x(n),y(n) represent the input and output and h(n-k) represents the filter coefficients
that are used to scale the input samples before they are summed. The number of
coefficients used and their values determine the filter characteristic, and methods of
calculating these parameters form the core of digital signal processing texts.

Rather than compute the filter weights longhand, which is rather tedious, we’ll use a
mathematical prototyping language called MATLAB to calculate them for us. Readers
who do not have access to MATLAB could compute the filter coefficients using one of the
techniques described in a digital signal processing text. Alternatively, there are a number
of open source environments that are similar to MATLAB, such as GNU Octave, Sage,
Scilab, and FreeMAT. The MATLAB script to design the filter is presented, as follows:

%000OO0000000000Oo00000000000°00000000Oo00Oo0000OO0000000000Oo00OO00000000000000000000Oo0000Oo00000000000000000000000

% MATLAB Script to generate low pass filter coefficients
%
% Mark.Fisher@uea.ac.uk

%000000000000000Oo00OO0000000°000000000000Oo00000000000000000000OO0000Oo0000OOO%%O00Oo00000000000000000000000000000

% set filter parameters

d= fdesign.lowpass('Fp,Fst,Ap,Ast',1000,2000,1,20,22000);
% design filter

Hd=design(d, 'FIR');

% plot fiter respose

fvtool(Hd, 'legend', 'on'); axis([0 22 -70 10])

The MATLAB script computes coefficients for a FIR filter having a pass band from < 1
kHz and a stop band from > 2 kHz. Attenuation in the pass band is < 1 dB, and in the stop
band this is < 20 dB. The sampling frequency is 22 kHz. The filter’s transfer function can
be visualized using MATLAB'’s fvtool.

Filter Visualization Tool - Figure 1: Magnitude Response (dB) _—— [= iz-]
File Edit Analysic Insert View Debug Desktop Window Help q A X
D&R| K OTXNNM\U| & < 00 |EE B D a0

BI&Rd # [0~ B b @ &

Figure 1: Magnitude Response (dE)

Magnitude Response (dB)
& ! ! ! ! ! !) ' ' !

Filter #1

20 S e F R 1 e Rt e e e

Magnitude (dB)
(o8]
L]
I

40 ________L___________.____________E __________________________________ =
- N OO SO WU N SISO T 1 SO SUSN AU SUNSOUSS SUSSUS. S—
i et S e e S
70 i i i 1 1 1 i 1 |
0 2 4 6 8 10 12 14 16 18 20 22
Frequency (kHz)

This frequency response confirms that our design meets the specifications. We can obtain
the filter coefficients by plotting the filter impulse response, as shown in the next
screenshot, and these can also be printed by the following MATLAB command prompt:

>> Hd.Numerator
ans =

Columns 1 through 9

-0.0537 -0.0138 -0.0071 0.0063 0.0259 0.0502 0.0767 0.1021 0.1233
Columns 10 through 18

0.1372 0.1421 0.1372 0.1233 0.1021 0.0767 0.0502 0.0259 0.0063
Columns 19 through 21

-0.0071 -0.0138 -0.0537

AN # [Bk OXE

Figure 1: Impuls.e Re.spon:e

Impulse Response

L . L SN S L S I
0.14 3 : ; e % } 4 a H
By L RS | T N [T e A B D S D S e S S o
T R S R T H
R ccimns S sy e e e e Emia b H
o 0.06[---mmneaeoad et e] S T s AaREOt EREE T PR TSR H
= ' '
= ? !
Et L e S s B e S S S S S e e et B H
= ! :
1. SRR R I st S R o e I ------------------------ H
T BT

] :
0 100 200 300 400 500 600 700 800 900

Time (useconds)

Filter Visualization Tool - Figure 1: Impulse Response“. —_— - l =
File Edit Analysis Insert View Debug Desktop Window Help w A X
DE&R|KOTNN\D| & <« &0 |EE B O =[O

We’ll implement this filter on our evaluation board as recipe codecbemo_c7v2.

How to do it...

1. Clone folder codecbemo_c7v1 in the How to play prerecorded audio recipe. Change
the RTE to include the LED (API).
2. Add the filter () function to the codecbDemo.c file, as follows:

uint16_t filter(int16_t inSmpl) {
/* Normalized Filter Coefficients */
static const float lpfiltCoef[] =
{ 0.0, 0.0184, 0.0215, 0.0277, 0.0368, 0.0480,

0.0602, 0.0720, 0.0818, 0.0882, 0.0905, 0.0882,
0.0818, 0.0720, 0.0602, 0.0480, 0.0368, 0.0277,
0.0215, 0.0184, 0.0 };

static float smplBuff[] =

{ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 };

static uint8_t idx = 0;
float lpval = 0.0, outvVal = 0.0;

uint8_t coefIdx, newIdx;
static const float intl6max = (float) INT16_MAX;

/* update buffer */
newIdx = (nTaps-1-1idx);
smplBuff[newIdx] = (float) inSmpl;
/* do convolution */
for (coefIdx = 0; coefIdx<nTaps; coefIdx++)

lpval += 1pfiltCoef[coefIdx] *

smplBuff[(newIdx+coefIdx)%nTaps];

outvVal = (int16_t) (lpval*sFactor * intil6max);
idx = (1idx+1)%nTaps;

return (uintl6_t) outval;
}

3. Change the ISR to write samples directly to the I2S data register:
void SPI2_IRQHandler(void) {

if (flag) LED_On(0);
else
LED_Off(0);
/* Transmit data */
hi2s.Instance->DR = sample;
flag = true;
}

4. Change the global LUT to hold audio data samples for a square wave (note: we’re
only storing data for one channel rather than a pair):

{0, 0, 0, 0, 0

©, 0, 0, 0, 0,
1, 1, 1, 1, 1,
i, 1, 1, 1, 1 };

Ul

. Delete the HAL_I2S_TxCpltCallback() function.
. Define global variables, as follows:

(e}

uintl6_t sample = 0;
bool flag = false;

7. Inmain(), remove the call to HAL_I2S Transmit_IT() and replace this with the
following:

/* Enable I2S peripheral */
__HAL_I2S_ENABLE(&hi2s);

/* Enable I2S Interrupts */
__HAL_I2S_ENABLE_IT(&hi2s, (I2S_IT_TXE | I2S_IT_ERR));

8. Call LED_Initialize() inmain() and remember to add #include "Board_LED.h".
9. Add the code for the appropriate call to filter () within the super loop (note that, as
the left and right channels carry the same signal, we only need to filter one):

while (1) {
if (mode == AUDIO_BEEP) {
Beep(note); /* Play the note */
wait_delay(500); /* pause */
3
else {
if (flag) {
rightSmpl = i%2;
if (!'rightSmpl) /* run filter */
sample = filter(data[i>>1]);
i++;
i %= (sz<<1); /* MOD 2*sz */
flag = false;
}
3

10. Build, download, and run the program.

How it works...

At the heart of the filter function is a mathematical operation known as convolution. This
operation forms the sum of the current and previous 20 samples (that is, 21 in total), each
of them is multiplied by a filter coefficient (weight). This is computationally demanding,
and we’re lucky that the ARM Cortex-M4 includes a floating point unit. This unit can
perform single precision multiplications in three cycles (that is, ~18ns) plus the time
needed for memory access. The most recent 21 input samples are stored in an array that is
configured to operate as a circular buffer. A variable named newIdx identifies the oldest
sample in the array and this sample is overwritten when a new sample becomes available.
As it is critical that each sample is processed before it is written to the I2S transmit
register, we clear a global boolean flag once the filter completes. If the ISR detects the flag
set, then we switch an LED on to indicate an error. As time is critical, we chose to output
samples directly to the I2S transmit register rather than use the HAL_I2S Transmit_IT()
library function. We chose to use a square wave as our test signal as it contains higher
frequency harmonics. Note that the values of the filter coefficients (given by MATLAB)
used in the program have been scaled, so they sum up to 1.0. We do this to avoid problems
due to a possible overflow occurring when we assign the outval variable. The following
screenshot of an oscilloscope trace shows that the filter is recovering the fundamental
frequency component (~1.2kHz) quite nicely with little evidence of distortion:

Digital low pass filter
(Fc ~= 1.2kHz)
applied to 1.2kHz
square wave,

How to make an audio tone control

For the final recipe of this chapter, we’ll make a digital tone control that emulates
analogue circuits found on portable radios, and so on. Simple analogue tone circuits take
the form of an active filter that uses a potentiometer to affect the filter transfer function
(that is, emphasizing low/high frequencies—bass/treble—in the audio signal.

Although this recipe illustrates our filter operating in real time, it isn’t the most efficient
way of filtering digital audio. The audio codec includes its own DSP processing block, and
this can be programmed to produce similar results more efficiently. We’ll refer to this
recipe as codecDemo_c7v3.

Getting ready

The high- and low-pass FIR filter coefficients that we need for this recipe are found using
MATLAB. We’ve chosen the pass and stop bands that are shown in the following
screenshot:

Filter Visualization Tool - Figure 3: Magnitude Response (dB)

File Edit Analysis Insert View Debug Desktop Window Help

D&R| K |OTNN\D (R« &0 |EE B O =[O
IS # # @~ Bk @ & Zeomil
Figure 1: Impulse Response Figure 2: Impulse Response Figure 3: Magnitude Response (dB)

Magnitude Response (dB)

Magnitude (dB)

— Filter #1
— Filter #2 | : :
70 11 | | | |

|
0 2 4 6 8 10 12 14 16 18 20 22
Frequency (kHz)

How to do it...

1.

2.

w

Clone codecbemo_c7v2 from the Designing a low-pass digital filter recipe and name
the new folder codecbemo_c7vs.

Use the runtime management tool to add board support for the A/D converter. Add
this statement to initialize the A/D converter:

ADC_Initialize_and_Set_IRQ();

Add #include "Custom_ADC.h".

Include the custom_ADC. c file in the project and copy the Custom_ADC. h file into the
project folder. We developed these in adcISR_c5ve from the Setting up the ADC
recipe in Chapter 5, Data Conversion.

Add high-pass filter coefficients to the filter () function, as follows:

static const float hpfiltCoef[] = { 0.0511, 0.0540, 0.0524,
0.0533, 0.0528, 0.0517,
0.0493, 0.0450, 0.0363, 0.0 , 0.1000, 0.0637,
0.0550, 0.0507, 0.0483, 0.0472, 0.0467, 0.0476,
0.0460, 0.0489, 0.0 };

Modify the filter () function so that the output is formed by a weighted sum of low-
pass and high-pass samples:

for (coefIdx = 0; coeflIdx<nTaps; coefIdx++) {
lpval += 1pfiltCoef[coefIdx] *
smplBuff[(newIdx+coefIdx)%nTaps];
hpval += hpfiltCoef[coefIdx] *
smplBuff[(newIdx+coefIdx)%nTaps];
}

outvVal = (int16_t) ((lpval*sFactor +
hpval*((float)1.0-sFactor)) * intl6max);

Add an ISR to service interrupts from the ADC, as follows:

void ADC_IRQHandler (void) {

ADC3->SR &= ~2; /* Clear EOC interrupt flag */
adcvValue = (ADC3->DR)>> 4; /* Get converted value */
ADC3->CR2 |= (1 << 30); /* Start next conversion */

}

Change the main() super loop so that we compute a global scale factor when we’re
not filtering the signal, that is, as follows:

if (flag) {
rightSmpl = i%2;
if (!rightSmpl) /* run filter */
sample = filter(data[i>>1]);
else /* update scalefactor */

sFactor = ((float) adcvalue) / c;

i++;

4

1 %= (sz<<1); /* MOD 2*sz */
flag = false;
}

9. Add the following global variables:

int32_t adcVvalue;
float sFactor = 0.0;
const float c 255.0;

10. Build, download, and run the program.

How it works...

The output sample is a weighed sum of the low-pass and unfiltered signal. These weights
depend on the ADC value that, in turn, reflects the position of the potentiometer
thumbwheel. The computation of the scale factor (0.0 < sFactor < 1.0) involves division,
and as this is more time-consuming than the multiply accumulate operation, we choose to
do this when we’re not running the filter.

There’s more...

To implement convolution requires the multiplication and addition of real numbers. These
operations are performed by the Floating Point Unit (FPU) of the Cortex-M4. Real
numbers are represented using a floating-point binary format. Early computers used many
different (manufacturer-specific) formats to represent real numbers, but nowadays formats
are standardized. The IEEE 754-2008 standard defines two formats known as IEEE
double- and single-precision. Our programs use the single-precision (32-bit) format by
declaring variables of the float type. Numbers encoded using the double-precision format
are declared using the double (64-bit) type. It is important to understand that the
representations of floating-point numbers approximate the real values that they represent
and the rounding errors introduced can be particularly problematic for DSP applications.

Early 16-bit microprocessors, such as Intel 8086, were unable to carry out arithmetic
operations on floating point numbers without using a floating point library, and users who
didn’t purchase the additional 8087 coprocessor were faced with quite poor performance.
However, in the last decade, integrated hardware FPUs have become more common.
Convolutions, at the heart of DSP applications, make repeated use of Multiply-
Accumulate (MAC) operations, and processors aimed at DSP applications, such as the
Cortex-M4, include specific instructions that allow these to be executed very efficiently.

Chapter 8. Real-Time Embedded Systems

In this chapter, we will cover the following topics:

Multithreaded programs using event flags

Multithreaded programs using mailboxes

Why ensuring mutual exclusion is important when accessing shared resources
Why we must use a mutex to access the GLCD

How to write a multithreaded Pong game

Debugging programs that use CMSIS-RTOS

Introduction

The title of the last chapter included the phrase, “Real Time*. The term, Real Time, is used
to describe a computing system that must meet deadlines. We did not define this term in
Chapter 7, Real-Time Signal Processing because, in the context of handling audio
samples, an implicit deadline is the sampling rate. However, you may recall that our ISR
illuminated an error LED if the main super loop did not output the previous sample before
a new sample arrived.

The audio application is an example of a soft deadline. It wouldn’t be a catastrophe if the
system missed this deadline once or twice; the audio quality would suffer, but this may go
unnoticed. Contrast this with other applications, such as an embedded system used in fly-
by-wire avionic applications, medical equipment, or a nuclear reactor. In these cases,
missing a deadline could be catastrophic and result in death. Deadlines in these cases are
known as hard deadlines and, in order to meet safety standards, designers need to
guarantee that the system meets them. They may even be required to design redundancies
to ensure that the system is robust to the catastrophic failure of a processor.

The last chapter illustrated that, although it is possible to design a simple real-time
embedded system using a super loop, it gets increasingly tricky to ensure that deadlines
are met as the system becomes more complex. An operating system is what is needed, but
real-time systems do not use standard desktop operating systems, such as Windows or
Linux, because it is impossible to guarantee that such systems will meet deadlines.
Imagine a scenario where the pilot was landing an aircraft and the computer avionics
system decided that now was a good time to defragment the hard disk! Instead of this, they
use so-called real-time operating systems (RTOS), which are sometimes referred to as
simply an embedded RTOS. Embedded RTOS are compact because the hardware running
an embedded operating system is very limited in resources, such as RAM and ROM.
Unlike a desktop operating system, the embedded operating system does not load and
execute applications. This means that the system is only able to run a one application that
is statically linked as a single executable image.

Operating systems based on the Linux kernel, and known as embedded Linux, are a
popular choice as they are free from license fees. Embedded Linux forms the basis of the
Android OS developed for smart phones and tablets. Many other examples of open source
embedded RTOS exist. Most adopt the Portable Operating System Interface (POSIX)
standard that supports open-standard application programming interfaces (APIs). We’ve
adopted ARM’s RTOS kernel, called RTX, as the RTOS used by examples in this chapter
as it’s included in the uVision5 IDE distribution. RTX was originally distributed as a Real-
Time Library (RL-ARM™), designed to solve the real-time and communication
challenges of embedded systems that are based on ARM processor-based microcontroller
devices (refer to www.keil.com/product/brochures/rl-arm_gs.pdf). This library was
recently revised and added to the CMSIS middleware standard and is now known as
CMSIS-RTOS. A description of the API can be found at

https://www.keil.com/pack/doc/CMSIS/RTOS/html/index.html, and advice on migrating

http://www.keil.com/product/brochures/rl-arm_gs.pdf
https://www.keil.com/pack/doc/CMSIS/RTOS/html/index.html

from RL-ARM to CMSIS-RTOS is available here at
http://www.keil.com/appnotes/docs/apnt_264.asp.

Support for multitasking is a key function of any operating system. Multitasking is a
rudimentary form of parallel processing in which several tasks are run at the same time.
Multitasking doesn’t mean that tasks are executed in parallel. On a uniprocessor, there can
be no true simultaneous execution of different tasks. Instead of this, the operating system
switches between them, executing part of one task, then part of another, and so on. To the
user, it appears that all the tasks are executing at the same time. The job of the operating
system is to schedule each task on the CPU. The act of reassigning a CPU from one task to
another one is called a context switch.

Embedded systems are at the heart of many everyday devices, such as smartphones, TVs,
cameras, dishwashers, and so on. The system may comprise many tasks. For example, the
dishwasher may embody a user interface, pump controller, and sensors. It is efficient to
partition the software dealing with these elements into separate tasks. At any time, the
total number of tasks can be divided into two groups: those that can be executed, and those
suspended and waiting for an external event to occur (for example, the water temperature
reaching a specific value or user input). RTOS supports preemptive scheduling, which
allows tasks to be prioritized and can guarantee that some tasks in waiting will be given
the CPU when an external event occurs.

We can illustrate how tasks are executed on the CPU by drawing an execution diagram.
Consider three processes (just another name for tasks): a, b, and c that are executed
periodically with a period of T seconds and have computation time (that is, they must be
allocated on the CPU) of C seconds, as shown in the following table. The tasks are
prioritized so that the task with the shortest period is allocated the highest priority (higher
numbers imply a higher priority):

Process (P)

Period (T)||Computation Time (C)||Priority|

http://www.keil.com/appnotes/docs/apnt_264.asp

c

t 10 20 30 40 50
Process Preempted f Process Released O Deadline Met

. Process Executing O Deadline Missed

All the processes are released at t=0. Processes b and c are both meeting their respective
deadlines. Process a gets preempted by b and ¢ and misses its deadline. We can see from
the execution trace that, in this case, the tasks cannot be successfully scheduled.

Tip
We’ve assumed the context switch takes place instantly and the RTOS consumes no CPU

time (in practice, both will incur some overhead).

Processes may need to share resources, and this raises the question of how they might
communicate. The CMSIS-RTOS API solves both of these problems and more.

Multithreaded programs using event flags

This recipe will illustrate how to use CMSIS-RTOS to make an LED blink. We’ll define
two tasks or threads. The job of one task is to switch the LED ON, and the other one is to
switch it OFF. The ON and OFF events are triggered by the tasks sending messages to
each other. CMSIS-RTOS supports a number of intertask-communication strategies; our
program uses event flags. We can illustrate our program using a state diagram, as follows:

JI.--' N -n_.o—\..}_ " o
LED ON) —y s
;1 Er e | LED OFF)
- - — M
k| B g | g
Ao j...\ ,-/__'___"".f / N f : } /
— '-.@ _,.-'"_L‘""x\ e T b, S f
'd ™, r, % P
| 1 i |
| taskA | | taskB |
Y z"l '-.__ F,
- T\zf 7_____.—-
e -f_____,
e R P

We’ll call our first recipe, RTOS_Blinky_c8ve.

How to do it...

Create a new project (in a new folder) named RT0S_Binky and use the Run-Time
Environment manager to select Board Support — LED (API) and CMSIS - Keil RTX
as shown in the following screenshot. As usual, we can select Resolve to fix the warning
messages. Note that this RTE is the same as the one that we introduced in Chapter 2, C
Language Programming.

rﬂ Manage Run-Time Envi_ronmii_'lt a i lﬁj
Software Component Sel, Variant Version Description
=] @ Board Support MCBSTMZ2F400 |E| 1.00 Keil Development Board MCBSTM22F400 B
54 MCBSTM32F400 '
- ASD Converter El | 1.0.0 .AID Converter driver for Keil MCBS.TM32F4CIG Development Board
¥ Accelerometer 5 | |1.00 | Accelerometer driver for Keil MCBSTM32F400 Developrment Board
- Camera o | 1.00 | Camera driver for Keil MCBSTM32F400 Development Board
¥ Graphic LCD =3 |1.00 . Graphic LCD driver for Keil MCBSTM32F400 Development Board
¥ Gyroscope o | 1.00 . Gyroscope driver for Keil MCBSTM32F400 Development Board ﬂ
@ Joystick r | |1.00 |Joystick driver for Keil MCBSTM32F400 Development Board
%@ Keyboard 0| 100 | Keyboard driver for Keil MCBSTM32F400 Development Board
@ LED P |100 | LED driver for Keil MCBSTM32F400 Development Board
- Touchsereen 0| 1.00 | Touchscreen driver for Keil MCBSTM32F400 Development Board
¥ emWin LCD [llﬁ—bitIF .1.0.0 .emWin LCD driver (16-bit Interface) for Keil MCBSTM32F400 Development Board =
= @ CMSIS | .Cortex Microcontroller Software Interface Components
¥ CORE = [3.300 | CMSIS-CORE for Cortex-M. SC000, and SC300
¥ DSP o | 142 | CMSIS-DSP Library for Cortex-M, SC000, and SC300
=€ RTOS (AP]) ' |10 | CIMSIS-RTOS AP for Cortex-I. SC000. and 5C300
N Kcil RTx 1~ |4740 | CMSIS-RTOS RTX implementation for Cortex-h. SC000. and SC300 =
B Y o At s - [e e S oty i = — e
Validation Output Description
=8 ARM:CMSIS:RTOS:Keil RTX Additional software components required =
=) require Device:Startup Select component from list
¥ Keil:Device:Startup .S}-'stem Startup for STMicroelectronics STM32F4 Series
=8 KeillMCBSTM32F400:Board SupportMCBSTM32F.. | Additional software components required
E1-require CMSIS:CORE [select component from list
- W ARM:CMSIS:CORE CMSI5-CORE for Cortex-M, 5C000, and 5C300
El-require Device:GPIO |select component from list Lj
Resaolve | | Details OK | Cancel Help

1. Create a new file named RTXBlinky.c, and create a skeleton by adding boilerplate
code for SystemClock_Config(), and so on. Add this file to the project.

2. Select the Configuration Wizard tab for the RTX_Conf_cM. c file and configure the
RTOS:

kA EACMP_D_HSW124)\book v2\Chapter8\programs\RTXBlinky\RTXBlinky.uvprojx - pVision

File Edit ¥iew Project Flash Debug Peripherals Tools SVCS Window Help
-3 | | | BB R EEJE G| @ ohaser
¥ | Target1 EFESE
2 RTX_Conf_CM.c v X
----- stdint.h -
_____ stdldef Expand All | Collapse Al I Help I~ Show Grid
""" strn32fdich Opticn Value
""" COiE il I =1 Thread Configuration
""" Sl Mumber of concurr.. &
----- core_cmFunc.t
F ; Default Thread stac... 200
----- core_cméd_simi
_____ systern_stm32f Main Thread stack ... 200
_____ LED.h h Mumber of threads ... 0
..... GLCD.h Total stack size [byt... 0
-4 Board Support Check for stack ove.. [
E LED.c (MCB5TM3: Processor mode for.. Unprivileged mode
24 CMSIS =l |l & RTXKernel Timer Tick ...
i [£] RTX_CM4.lib (RTO Use Cortex-M SysTi... [+
= [F
= E&&wjﬂiﬁ RTOS Kernel Timer ... 168000000
] cmsis_os,
stdint_h RTX Tirner tick inter... 1000
_____ ctddefh =R Systemn Configuration
_____ RTX CM lib.h #--Round-Robin Threa... [+
|-__-|0 Device User Timers [+
E GPIO_STM32Fdo.e ISR FIFQ Queue size 16 entries
5 RTE_Device.h (Star—
. startup_strn32f40_ _ System Configuration
4 |___;f | Ty
| [E=] Pr... Bo..| 1} Fu.. [[,Te.., Text Editor } Configuration Wizard |
Build Output a B
Programming Done. »
T — B
Application running ... —
4 b
ULIMKZ/ME
3. Open the RTXBlinky.c file and tasks A and B:
#include "RTXBlinky.h"
2
* Thread 1 'taskA': Switch LED ON
K o */

void taskA (void const *argument) {
for (;;) {

/* wait for an event flag Ox0001 */
osSignalwWait (0x0001, osWaitForever);
LED_On (LED_A);
osDelay(500);
/* set signal to taskB thread */
osSignalSet(tid_taskB, 0x0001);

* Thread 2 'taskB': Switch LED OFF

K o o e Y Y e e e Y e e */
void taskB (void const *argument) {

for (7;) {

/* wait for an event flag 0x0001 */
osSignalwait (0x0001, osWaitForever);
LED_Off (LED_A);

osDelay(500);

/* set signal to taskA thread */
osSignalSet(tid_taskA, 0x0001);

* Main: Initialize and start RTX Kernel
K o o e Y Y Y e e o */
int main (void) {

HAL_Init (); /* Init Hardware Abstraction Layer */

SystemClock_Config (); /* Config Clocks */
LED_Initialize(); /* Initialize the LEDs */
tid_taskA osThreadCreate(osThread(taskA), NULL);

tid_taskB osThreadCreate(osThread(taskB), NULL);

/* set signal to taskA thread */
osSignalSet(tid_taskA, 0x0001);

osDelay(osWaitForever);
while(1);
}

. Create the RTXBlinky.h header file and add the following code:

#ifndef _ RTX_BLINKY_H
#define __ RTX_BLINKY_H

#include "stm32f4xx_hal.h" /* STM32F4xx Defs */
#include "Board_LED.h"
#include "cmsis_os.h"

#define LED_A 0

/* Task ids */
osThreadId tid_taskA;
osThreadId tid_taskB;

/* Function Prototypes */
void taskA (void const *argument);
void taskB (void const *argument);

/* Define Threads */
osThreadDef (taskA, osPriorityNormal, 1, 0);
osThreadDef (taskB, osPriorityNormal, 1, 0);

#endif /* _ RTX_BLINKY_H */

5. Build, download, and run the program.

How it works...

In RTOS, the basic unit of execution is a task. A task is very similar to a C procedure, but
it must contain an endless loop:

void taskA (void const *argument) {

for (;;) {
/* taskA statements */

}
}
So, a task never terminates and thus runs forever in a similar manner to the way that a
program does. We can think of tasks as small self-contained programs. While each task
runs in an endless loop, the task itself may be started by other tasks and stopped by itself
or other tasks.

An RTOS-based program is made up of a number of tasks, which are controlled by the
RTOS scheduler. The scheduler is essentially a timer interrupter that allots a certain
amount of execution time to each task. So, task 1 may run for (say) 100 ms, then be
descheduled to allow task 2 to run for a similar period of time; task 2 will give way to task
3; and finally, control passes back to task 1. If we open the Configuration Wizard tab for
the RTX_Conf_CM. c file and expand the System Configuration menu, then we’ll see that
we’re allocating slices of runtime to each task in a round-robin fashion, and tasks are
switched every 5 ms (refer to the following screenshot):

B2 EACMP_D_HSW124\book v2\Chapter8iprograms\RTXBlinky\RTXBlinky.uvprajx - uVision e

File Edit View Project Flash Debug Peripherals Tools SWCS Window Help

Edd| Y | | | | = = JE 2| @ praser B0 Q|
@ L&] f%” Target 1 E £\| é ¢ @
Project 1 B RTX_Conf_CM.c RTXElinky.c v X
E-224 Target1 - : -
s T _ Bpand Al | Collapse Al | Help ™ Show Grid
EB RTXB“FII(_\J.C Option Value
cm.5|5_05.|“'| - Thread Configuration
(] ernel Timer Tick Configuration
5::';;’; RTX Kernel Timer Tick Configurati
o] S :
ctrn3 2o = System Configuration
(5 core_cmt Bl Round-obin Thread switching
cote crninstihl Round-Robin Timeout [ticks] 5
cgre_cmFunc.}i_ [--User Tirmers [+
core_cmd _simy~ ISR FIFO Queue size 16 entries
- [] system_stm32f
- [LED.h

[_]«% Board Support |
- [5] LED.c (MCBSTMZZ
B4 CMSIS

@ RTX_CW4.lib (RTO|
f RTX_Conf CM.c (F

cmsts osh L I el it Fhureeanl et by
stdint.h Enables Round-Robin Thread switching.
.. [4] stddef.h

o [5] RTH_CM_lib.h
|'_—'|<$ Device =

Er :

4 T
il pr... (@50, | {3 Fu..|04Te. Text Editor}, Configuration Wizard |

Build Output L=
Programming Done. -
Verify OCE.

Application running ...

-

|I ULINK2/ME Cortex Debugger II

It is useful to think of all tasks running simultaneously, and each of them performing a
specific function. This allows each functional block to be coded and tested in isolation and
then integrated into a fully running program that, in turn, imposes structure and aids
debugging. When a task is created, it is allocated its own task ID. This is a variable, which
acts as a handle for each task and is used when we want to manage the activity of the task.
We declare two such variables, one for taskA and one for taskB:

osThreadId tid_taskA;
osThread tid_taskB;

When CMSIS-RTOS runs on ARM-Cortex it uses the SysTick timer within the processor
to provide the RTOS time reference. Each time we switch running tasks, the RTOS saves
the state of all the task variables to a task stack and stores the runtime information about a
task in a Task Control Block that is referenced by the task ID. In addition to the task
variables, the Task Control Block also contains information about the status of a task. Part
of this information is its run state.

A task can be in one of four basic states: RUNNING, READY, WAITING, or
INACTIVE. Only one task can be running at a time, so the other tasks must be either
READY, WAITING, or INACTIVE. A task is placed in the WAITING state when its
execution is suspended. This may occur when it is waiting for an event to occur, such as a
signal from another task. CMSIS-RTOS provides a number of mechanisms to enable tasks
to communicate with each other, such as events, semaphores, and messages.

There may be many tasks that are READY for execution and it is the job of the scheduler
to switch between them. CMSIS-RTOS is preemptive; the active thread with the highest
priority becomes the RUNNING thread, provided that it is not waiting for any event. The
initial priority of a thread is defined with the osThreadbef () function but may be changed
during execution using the osThreadSetPriority() function. The function prototype for
osThreadSetPriority() in the cmsis_os.h file identifies the function parameters, as
follows:

/// \param name name of the thread fn.

/// \param priority initial priority of the thread fn.
/// \param instances number of possible thread instances.
/// \param stacksz stack size (bytes) for the thread fn.

Our program uses two threads, one to switch an LED ON and another to switch it OFF, so
we define them, as follows:

osThreadDef (taskA, osPriorityNormal, 1, 0);
osThreadDef (taskB, osPriorityNormal, 1, 0);

Tip
The osPriorityNormal argument is a pseudonym for the value, 0 (positive numbers

indicate a higher priority, negative numbers a lower one).

Threads are created by the osThreadCreate () function, which returns a pointer to the
Task Control Block. This function requires two arguments, a pointer to the thread
definition and a pointer to its start argument. In our case, we write the following:

tid_taskA
tid_taskB

osThreadCreate(osThread(taskA), NULL);
osThreadCreate(osThread(taskB), NULL);

When each task is first created, it has sixteen event flags stored in the Task Control Block.
It is possible to halt the execution of a task until a particular event flag or group of event
flags are set by another task in the system. Our A and B tasks are very similar; the first
statement in each is as follows:

osSignalwWait (0x0001, osWaitForever);

This system call, suspends the execution of the task and places it into the WAIT_EVNT state.
Any task can set the event flags of any other task in a system with the osSignalset()
CMSIS-RTOS function call. The main program statement is as follows:

osSignalSet(tid_taskA, 0x0001);

This statement sends a signal to taskA, which has been held by the following statement

since this task was created:

osSignalwait (0x0001, osWaitForever);

The remaining taskA statements are as follows:

LED_on (LED_A);
osDelay(500);
osSignalSet(tid_taskB, 0x0001);

These statements turn the LED ON, invoke a delay, and then signal taskB. As well as
running our application code as tasks, CMSIS-RTOS also provides some timing services,
which can be accessed through CMSIS-RTOS function calls; osbelay() exemplifies the
most basic of them. As CMSIS-RTOS ticks have been set at 1 ms, the delay is set at 0.5
seconds.

Multithreaded programs using mailboxes

The event flags that we saw in the last recipe can only been used to trigger the execution
of tasks. In contrast to this, mailboxes support the exchange of program data between
tasks. CMSIS-RTOS provides a mailbox system that buffers messages into mail slots and
queues them between the sending and receiving tasks. This recipe, RT0S_Blinky_c8v1,
provides an introduction to sending fixed-length messages between tasks using mailboxes.

How to do it...

1. Clone the RTOS_Blinky_c8ve folder in the Multithreaded programs using event flags
recipe that we described earlier.
2. Replace taskA() with the following function definition:

void taskA (void const *argument) {
uint32_t i=0;
for (;;) {
mail_t *mail = (mail_t*)osMailAlloc(mail_box,
osWaitForever);
mail->counter = i++;
osMailPut(mail_box, mail);
osDelay(1000);
}
}

3. Replace taskB() with the following function definition:

void taskB (void const *argument) {

for (7;) {
osEvent evt = osMailGet(mail_box, osWaitForever);
if (evt.status == osEventMail) {

mail t *mail = (mail_t*)evt.value.p;
LED_Out(mail->counter);
osMailFree(mail_box, mail);
}
}
}

4. Replace the main() function with the following:
int main (void) {
HAL_Init (); /* Init Hardware Abstraction Layer */
SystemClock_Config (); /* Config Clocks */
LED_Initialize(); /* Initialize the LEDs */

mail_box = osMailCreate(osMailQ(mail_box), NULL);

tid_taskA
tid_taskB

osThreadCreate(osThread(taskA), NULL);
osThreadCreate(osThread(taskB), NULL);

osDelay(oswWaitForever);
while(1);
}

5. Declare the mailbox in the header file, RTXBlinky.h, by adding the following lines of
code:
/* Mailbox */
typedef struct {

uint32_t counter; /* A counter value */
} mail_t;

osMailQDef(mail_box, 16, mail_t);

osMailQId mail_box;

6. Build, download, and run the program.

How it works...

There are two tasks, named taskA and taskB. The role of taskA is to increment a counter,
taskB displays the count value on the LEDs. The two tasks communicate by a mailbox, as
shown in the following figure:

taskA taskB

(transmitter) (receiver)

The message passed from taskA to taskB is declared as a struct named mail_t. The
mailbox comprises a buffer that is formatted into a series of mail slots with pointers to
each slot stored as an array. Take an example of the following statement:

osMailQDef(mail_box, 16, mail_t);

This statement creates a mail queue definition. We’ve chosen to use 16 mail slots, an
arbitrary number that can be changed according to the complexity of our system.
Sufficient memory is allocated to store 16 messages of type mail_t. Once defined, the
following statement declares a mailbox variable:

osMailQId mail_box;

The main function then creates and initializes the mail queue, assigning this variable:

mail box = osMailCreate(osMailQ(mail_box), NULL);

The transmitter thread named taskA() calls osMailAlloc(mail_box, osWaitForever)
to allocate a slot in the mailbox, and assigns a pointer to it. The second parameter
represents a timeout value (we may need to wait for a slot to become free). The following
statements assign a count value to the memory slot and put it in the mail queue:

mail->counter = i++;

osMailPut(mail_box, mail);

The receiver thread named taskB() calls osMailGet(mail_box, osWaitForever) to
check for messages in the mailbox. This function returns an event that contains mail
information. Again, the second parameter represents a timeout (that is, there may be
none). If there is a mail event, a pointer to the message data (that is, a mail_t struct) is
assigned and the count is output to the LEDs. The following statement frees the memory
slot:

osMailFree(mail_box, mail);

Further information on mailboxes can be found in the CMSIS-RTOS API
(https://www.keil.com/).

https://www.keil.com/

Why ensuring mutual exclusion is
important when accessing shared
resources

A fundamental problem in multitasking is accessing shared resources. Text books often
introduce this topic by considering the following problem. Imagine two tasks, both having
access to a global variable. The job of one task, called an incrementer, is to increment the
shared variable. The other task, called the decrementer, decrements the shared variable.
The increment and decrement operations in each task are embedded within identical for
loops. In this way, we arrange for the variable to be incremented and decremented the
same number of times. The shared variable is reset to zero before the tasks are created and
run. Once the tasks complete, one may expect the value of the shared variable to equal
zero, as increment and decrement have been executed in equal measure by the two tasks.
This recipe, named RTOS_Sem_c8v0, illustrates that, surprisingly, this is not the case.

How to do it...

1. Create a new project and using the manager configure the RTE to provide support for
the Graphic LCD.
2. Add the following code to the project:

#include "RTXSem.h"

#define NCYCLES 500000 /* User Modified Value */
int sharedvar; /* Shared Variable */
/* __

* Thread 1 'taskA': Increment Shared Variable

K o o e Y Y Y e e o */
void taskA (void const *argument) {

uint32_t p;

bool flag = true;

for (;;) {
if (flag==true) {

/* Inccrement the Shared Variable */

for (p=0; p<NCYCLES; p++)
sharedVvar++;

/* set signal to taskC thread */

osSignalSet(tid_taskC, 0x0001);

flag = false;

3

}
}
/o e o e e e e e e e e ee o -

* Thread 2 'taskB': Decrement Shared Variable

K o o e */
void taskB (void const *argument) {

uint32_t p;

bool flag = true;

for (;;) {
if (flag==true) {

/* Decrement the Shared Variable */

for (p=0; p < NCYCLES; p++)
sharedvar--;

/* set signal to taskC thread */

osSignalSet(tid_taskC, 0x0002);

flag = false;

¥
}
}
/o e o e o e e e e e oo
* Thread 3 'taskC': Display Shared Variable
K o e e e e e e e o e */

void taskC (void const *argument) {

for (;;) {

/* wait for an event flag 0x0003 */
osSignalwait (0x0003, osWaitForever);
GLCD_show_result(sharedvar);

/* Kill Threads */
osThreadTerminate (tid_taskA);
osThreadTerminate (tid_taskB);
osThreadTerminate (tid_taskC);

* Main: Initialize and start RTX Kernel
int main (void) {

HAL_Init (); /* Init Hardware Abstraction Layer */
SystemClock_Config (); /* Config Clocks */

GLCD_setup();

sharedvar = 0;

tid_taskA = osThreadCreate(osThread(taskA), NULL);
tid_taskB = osThreadCreate(osThread(taskB), NULL);
tid_taskC = osThreadCreate(osThread(taskC), NULL);

osDelay(osWaitForever);
while(1);
}

3. Create file header file, RTXSem. h, and add the following code:

#ifndef _ RTX_SEM_H
#define _ RTX_SEM_H

#include "stm32f4xx.h" /* STM32F4xx Definitions */
#include "RTXBlinkyUtils.h"
#include "cmsis_os.h"

/* Thread id of thread: task_a, b, c */
osThreadId tid_taskA;
osThreadId tid_taskB;
osThreadId tid_taskC;

/* Function Prototypes */

void taskA (void const *argument);
void taskB (void const *argument);
void taskC (void const *argument);

/* Thread Definitions */

osThreadDef (taskA, osPriorityNormal, __ FI, 0);
osThreadDef (taskB, osPriorityNormal, _ FI, 0);
osThreadDef (taskC, osPriorityNormal, _ FI, 0);

#endif /* _ RTX_SEM_H */

4. Create the RTXBlinkyUtils.c file, enter the following code, and add it to the project:

#include "RTXBlinkyUtils.h"

void GLCD_setup(void) {

GLCD_Initialize(); /* Initialise and */
GLCD_SetBackgroundColor (GLCD_COLOR_WHITE);
GLCD_ClearScreen (); /* clear the GLCD */

GLCD_SetBackgroundColor (GLCD_COLOR_BLUE);
GLCD_SetForegroundColor (GLCD_COLOR_WHITE);
GLCD_SetFont (&GLCD_Font_16x24);
GLCD_DrawString(®, 0*24, " CORTEX-M4 COOKBOOK ");
GLCD_DrawString(@, 1*24, " PACKT Publishing ");

}

void GLCD_show_result(int value) {
char buffer[128];

GLCD_SetBackgroundColor (GLCD_COLOR_WHITE);

GLCD_SetForegroundColor (GLCD_COLOR_BLACK);

GLCD_DrawString (0, 3*24, "VAL =");

sprintf (buffer, "%1i ", value); /* make string */

GLCD_DrawString (7*16, 3*24, buffer); /* Display it */
}

5. Define the header file, RTXBlinkyUtils.h, and enter the following code:

#ifndef _ RTX_BLINKY_GLCD_UTILS_H
#define _ RTX_BLINKY_GLCD_UTILS_H

#include "Board_GLCD.h"
#include "GLCD_Config.h"
#include <stdio.h>
#include <stdlib.h>
#include <stdbool.h>

#define __FI 1 /* Font index */
extern GLCD_FONT GLCD_Font_16x24;

/* Function Prototypes */
void GLCD_setup(void);
void GLCD_show_result(int);

#endif /* _ RTX_BLINKY_GLCD_UTILS_H */
6. Build, download and run the program.
Tip
Note the value of the shared variable output to the GLCD (it should be 0). Try

running the program a few times.

7. Change the value of NCYCLES, as follows:

#define NCYCLES 500000

8. Build, download, and run the program. The value of the shared variable is output to
the GLCD (it should be # 0). Try running the program a few times.

How it works...

There are three tasks. Tasks A and B are incrementer and decrementer tasks, task C
outputs the value of the shared variable to the GLCD. Task C waits for signals from both
tasks, A and B, before calling the GLCD_show_result() function. To achieve this, task A
sets flag 0x0001 and task B sets flag 0x0002; task C is released on flag 0x0003 (that is, the
logical AND of task A and B flags).

To explain how the value of the shared variable can be anything other than zero, once the
program terminates, we must consider how low-level machine instructions implementing
increment or decrement operations will be executed for every possible scheduling of
taskA and taskB. The increment operation involves reading a value from memory, storing
it in one of the processor registers, adding one to it, and storing the result back in memory.
Decrement will work in a similar way.

Assuming that the task switch between A and B always occurs after the task has written
the updated value of the shared variable to memory, then the program operates
successfully. When NCYCLES = 10, this will probably be the case. However, if the task
switch occurs at the point just before the shared variable is written, then one task will be
working with an outdated copy of the shared variable. This problem manifests as the error
we observed.

There’s more...

CMSIS-RTOS provides a solution to the problem of providing safe access to a shared
resource (in this case a shared variable) by implementing a primitive known as a
Semaphore. In general, a number of tasks (say, p tasks) may share a resource (that is, the
resource can support a maximum of p tasks). To ensure that no more than p tasks access
the resource at any time, we provide a variable (initialized to p) that will decrement each
time a resource needs to use it and is incremented when the resource finishes with it. Thus,
processes can only access the resource when p>0.

The case when a shared resource can only support one task (that is, p=1) can be managed
by a binary semaphore called a Mutual Exclusion (Mutex). Mutexs are often used to
ensure that critical sections of code are thread-safe. A piece of code is thread safe if it only
manipulates shared data structures in a manner that guarantees safe execution by multiple
threads at the same time. To ensure that the read, modify, or write operation produced by
the increment or decrement is thread safe, we enclose the increment/decrement statement
in task A or B as follows:

osMutexWait(mut_sharedvar, osWaitForever);
sharedVar++;
osMutexRelease(mut_sharedvar);

The variable named mut_sharedvar holds the semaphore. However, before we can use the
semaphore, we must declare, register, and initialize it. The following recipe illustrates how
this is done for a mutex used to control access to the GLCD. The same code statements
can be used here; simply replace the mut_GLCD variable with mut_sharedvar. Once we’ve
protected our critical section in this way, the program will run correctly and always return
a value of zero, no matter how many cycles we specify.

Although the previous program is thread safe, there is another potential problem. Data is
transmitted to the GLCD by a serial bus that is managed by functions that are defined in
the GLCD library. If a task using the GLCD is switched while it is mid-way through
writing to the GLCD, then there is a chance that the GLCD serial bus will stall and we’ll
lose data. This will manifest as a corruption of the screen and there is a chance that we’ll
misdiagnose this as a hardware fault, when in fact it is due to software. Many students try
to fix this problem by arranging for all GLCD write statements to be in one task. This
doesn’t work because the serial bus is stalled as soon as a context switch occurs
irrespective of what goes on in the other tasks. The solution is to treat the GLCD as a
shared resource and enclose every invocation of the library code with calls to
osMutexwait() and osMutexRelease(), even if they occur within the same thread. The
following recipe illustrates this by emulating the RT0S_Blinky_c8ve folder in the
Multithreaded programs using event flags recipe that we considered earlier in this chapter,
this time using the GLCD to simulate the LEDs. We’ll call this: RToS_Blinky_c8v2.

Why we must use a mutex to access the
GLCD

How to do it...

To access the GLCD using mutual exclusion, follow the steps outlined:

1. Create a new project and using the manager configure the RTE to provide support for

2.

the Graphic LCD.

Create a new file named RTXBlinky.c, add the boilerplate code, and then add this

source file to the project.
Add the following code to RTXBlinky.c:

#include "stm32f4xx_hal.h" /* STM32F4xx Defs */

#include "RTXBlinkyUtils.h"
#include "cmsis_os.h"

osThreadId tid_taskA; /* id of thread:
osThreadId tid_taskB; /* id of thread:

task_a */
task_b */

osMutexId mut_GLCD; /* Mutex to control GLCD access */

void switch_On (unsigned char led) {

osMutexWait(mut_GLCD, osWaitForever);
GLCD_SetBackgroundColor (GLCD_COLOR_WHITE);
GLCD_SetForegroundColor (GLCD_COLOR_RED);
GLCD_SetFont (&GLCD_Font_16x24);
GLCD_DrawChar (led+(7*16), 4*24, 0x80+1);
osMutexRelease(mut_GLCD);

void switch_Off (unsigned char led) {

osMutexWait(mut_GLCD, osWaitForever);
GLCD_SetBackgroundColor (GLCD_COLOR_WHITE);
GLCD_SetForegroundColor (GLCD_COLOR_RED);
GLCD_SetFont (&GLCD_Font_16x24);
GLCD_DrawChar (led+(7*16), 4*24, 0x80+0);
osMutexRelease(mut_GLCD);

* Thread 1 'taskA': Switch LED ON

void taskA (void const *argument) {
for (;;) {
osSignalwWait (0x0001, osWaitForever);
switch_On(LED_A);
osDelay(500);
osSignalSet(tid_taskB, 0x0001); /* signal

______ */

taskB */

}
2
* Thread 2 'taskB': Switch LED OFF
K o e Y e Y e e e Y e e e */
void taskB (void const *argument) {
for (;;) {
osSignalwWait (0x0001, osWaitForever);
switch_Off(LED_A);
osDelay(500);
osSignalSet(tid_taskA, 0x0001); /* signal taskA */
}
}

osMutexDef (mut_GLCD);

osThreadDef (taskA, osPriorityNormal, __FI, 0);

osThreadDef (taskB, osPriorityNormal, __FI, 0);
* Main: Initialize and start RTX Kernel

int main (void) {

HAL_Init (); /* Init Hardware Abstraction Layer */
SystemClock_Config (); /* Config Clocks */

GLCD_setup();
mut_GLCD = osMutexCreate(osMutex(mut_GLCD));

tid_taskA
tid_taskB

osThreadCreate(osThread(taskA), NULL);
osThreadCreate(osThread(taskB), NULL);

osSignalSet(tid_taskA, 0x0001); /* signal taskA */

osDelay(oswWaitForever);
while(1);
}

. Create the RTXBlinkyUtils.c file, enter the following code, and add this to the
project:

#include "RTXBlinkyUtils.h"
void GLCD_setup(void) {

unsigned char led;

GLCD_Initialize(); /* Initialize and */
GLCD_SetBackgroundColor (GLCD_COLOR_WHITE);
GLCD_ClearScreen (); /* clear the GLCD */

GLCD_SetBackgroundColor (GLCD_COLOR_BLUE);
GLCD_SetForegroundColor (GLCD_COLOR_WHITE);
GLCD_SetFont (&GLCD_Font_16x24);

GLCD_DrawString(0, 0*24, " CORTEX-M4 COOKBOOK ");

GLCD_DrawString(0, 1*24, " PACKT Publishing ");

GLCD_SetBackgroundColor (GLCD_COLOR_WHITE);

GLCD_SetForegroundColor (GLCD_COLOR_RED);

for (led=LED_A; led<LED_G+1; led++)
GLCD_DrawChar((led+7)*16, 4*24, 0x80+0);

}

5. Modify RTXBlinkyUtils.h (defined in the previous recipe), accordingly.
6. Build, download, and run the program.

How it works...

Calls to GLCD functions within switch_0ff() and switch_on() are protected by
mut_GLCD, thus enforcing mutual exclusion. The mut_GLCD variable is declared as follows:

osMutexId mut_GLCD; /* Mutex to control GLCD access */

We also need to register the semaphore by including the following statement:

osMutexDef (mut_GLCD);

We initialize this statement within main() by including the following:

mut_sharedvVar = osMutexCreate(osMutex(mut_GLCD));

How to write a multithreaded Pong game

To further illustrate how to use the features of CMSIS-RTOS that we’ve introduced in this
chapter, we’ll return to the Pong program that we first introduced in Chapter 2, C
Language Programming. We’ll call this recipe: RT0S_Pong_v8ve. Due to space limitations,
we’re only showing those parts of the code that are relevant to the RTOS implementation.
Refer to Chapter 2, C Language Programming for details of helper functions defined in
the pong_utils.c file.

How to do it...

To create a multithreaded pong game, follow the steps given:

1. Create a new project (new folder) called RT0S_Pong. Set the RTE to include board
support for the ADC and GLCD. Include CMSIS-RTOS.
2. Create a file named RT0S_Pong.c and add a task to handle the GLCD:

void taskGLCD (void const *argument) {
BallInfo init_pstn = thisGame.ball;

for (7;) {
osEvent evt = osMailGet(mail_box, oswWaitForever);
if (evt.status == osEventMail) {

mail_t *mail = (mail_t*)evt.value.p;
thisGame.pl.y = mail->pdl;
osMailFree(mail_box, mail);

osMutexWait (mut_GLCD, osWaitForever);
update_player();

if (thisGame.ball.x<BAR_W) { /* reset pstn */
osDelay(T_LONG);
erase_ball();
thisGame.ball = init_pstn;

}

draw_ball();

osMutexRelease(mut_GLCD);

osDelay(T_SHORT);
osSignalSet(tid_taskBall, 0x0001);

b
b
}

3. Add a task to update the ball and check for collisions:

void taskBall (void const *argument) {

for (;;) {
osSignalwWait (0x0001, osWaitForever);

update_ball();
check_collision();

osSignalSet(tid_taskGLCD, 0x0001);

b
}

4. Add a task to handle the ADC:

void taskADC (void const *argument) {
uint32_t adcValue;
for (;;) {
mail_t *mail = (mail_t*)osMailAlloc(mail_box,
osWaitForever);

ADC_StartConversion();
adcvValue = ADC_GetVvalue ();

mail->pdl = (adcValue >> 4) * (HEIGHT-BAR_H)/256;
osMailPut(mail box, mail);
osDelay(T_SHORT);
}
}

5. Add main(), save RTOS_Pong.c, and add the file to the project:

int main (void) {
HAL_Init ();
SystemClock_Config ();

game_Initialize();

ADC_Initialize();

GLCD_Initialize ();

GLCD_Clear (White); /* Clear the GLCD */
GLCD_SetBackColor (White); /* Set the Back Color */
GLCD_SetTextColor (Blue); /* Set the Text Color */

mail box
mut_GLCD

= osMailCreate(osMailQ(mail_box), NULL);

= osMutexCreate(osMutex(mut_GLCD));
tid_taskGLCD osThreadCreate(osThread(taskGLCD), NULL);
tid_taskBall osThreadCreate(osThread(taskBall), NULL);
tid_taskADC = osThreadCreate(osThread(taskADC), NULL);

osDelay(osWaitForever);
while(1)

}
6. Create an appropriate header file named RT0S_Pong. h:

#ifndef _RTOS_PONG_H
#define _RTOS_PONG_H

#include "cmsis_os.h"
#define __ FI 1 /* Font index 16x24 */

/* Mailbox */
typedef struct {

uint32_t pdl; /* paddle position */
} mail_t;

osMailQDef(mail_box, 1, mail_t);
osMailQId mail_box;

/* Mutex */
osMutexDef (mut_GLCD);
osMutexId mut_GLCD; /* Mutex to control GLCD access */

/* Function Prototypes for Tasks */
void taskGLCD (void const *argument);

void taskBall (void const *argument);
void taskADC (void const *argument);

/* Declare Task IDs */

osThreadId tid_taskGLCD; /* id of thread: taskGLCD */
osThreadId tid_taskBall; /* id of thread: taskGreq */
osThreadId tid_taskADC; /* id of thread: taskMotor */

/* Define Threads */

osThreadDef (taskGLCD, osPriorityNormal, __FI, 0);
osThreadDef (taskBall, osPriorityNormal, __FI, 0);
osThreadDef (taskADC, osPriorityNormal, __FI, 0);

#endif /* _RTOS_PONG_H */

7. Copy the pong_utils.c and pong_utils.h files (refer to Chapter 2, C Language
Programming.) and add these to the project.
8. Build, download, and run the program.

How it works...

The tasks named taskGLCD() and taskBall() are synchronized using a flag so the ball
position is updated every time the screen is refreshed. The task named taskADC() sends
the position of the paddle to a mailbox; taskGLCD() receives this value and uses it to
render the paddle. The tasks are illustrated in the following diagram:

P Sl S
'{j mailbox \.j flag = ?K?U'Ui
s H\--—J\ 5 J SEL s
FT T g Ny
| taskADC | '\ taskGLCD | f taskBall ﬁ:
| I / \ f
L N . _

The tasks are loosely coupled and can be independently tested. For example, during
debuging, the taskADC() function and statements within taskGLCD(), which read the
mailbox and render the paddle, can be “commented out,” leaving a simpler program that
just moves the ball around the screen. The mailbox has only one slot. This is a key design
decision that ensures that the paddle is rendered each time the ADC is read, so everything
is synchronized to taskADC().

Debugging programs that use CMSIS-
RTOS

Using Keil’s ULINK, we can gather and display general information about system
resources while debugging our program.

How to do it...

1. Clone the RTXBlinky project that we described earlier in this chapter.
2. Select Project — Options. Under the Debug tab, select Settings.

- X

Device] Target 1 Output] Listing] |ser 1 CJ-*CH1 Asm] Linker Debug] |tilities]

kJ Options for Target 'MCBSTM32C!

" Use Simulator Settings || * Use:]LILINKEIME Cortex Debugger I@
[Limit Speed to Real-Time
¥ Load Application &t Startup ¥ Funto main{) ¥ Load Application &t Startup ¥ Funto main()
Initialization File: Initialization File:
Restore Debug Session Settings 1 Restore Debug Session Settings

¥ Breakpoints W Toolbox ¥ Breakpoints v Toolbox

W Watch Windows & Peformance Analyzer ¥ Watch Windows

¥ Memory Display ¥ System Viewer W Memary Display W System Viewer
CPUDLL: Parameter: Diriver DLL: Farameter:
jsmmcm.DLL |-HEI'-J1AP -MPU]SAHMCME.DLL j-MPu
Dialog DLL: Parameter: Dialog DLL: Parameter:
IDCM.DLL |1:cru14 |TCM.DLL |1:cw|4

ok || cancsl || Defauts | Help

3. In the Cortex-M Target Driver Setup dialog, use the Debug tab to select the Serial
Wire (SW) Communications protocol:

Cortex-M Target Driver Setup % #% % e 0 e

Debug | Trace | ash Downioad |

Firmware Version: \'2
W swJ P
Max Clock:

ULINK USB - JTAG/SW Adapter — ~ SW Device
Sedal No: [[IEINEE | IDCODE Device Name ; Move
SWDIO | ® (x2BAD1477 ARM CoreSight SW-DP I
ULINK Version: |UUNK—HE © gt p |

(<00

—Connect & Reset Options

Cumect:lenal LI RBH:IMM&G

¥ Cache Code I~ Verfy Code Download

= :

¥ FHeset after Connect

WV Cache Memory | | [Download to Fash

OK

4. Still in the Cortex-M Target Driver Setup dialog, use the Trace tab to set the Core
Clock frequency (168.0 MHz) and check Trace Enable:

Cortex-M Target Driver Setup % #% =% & e

Debug Trace | Flash Downioad |

D e

— Trace Port | Timestamps r~ Trace Events
[Serial Wire Output - UART/NRZ ~| | | W Enable Prescaler:[1 | | | ™ CPI: Cycles per Instruction
[T EXC: Exception overhead
SWO Clock Prescaler:
7 At PC Samping [~ SLEEP: Sleep Cycles
poa Prescaler: | 102416 2] | | = {SU: Load Store Unit Cycles
SWOCock:| 1.166666 MHz | | [~ perodc Perod: [<Disabled> | | ™ FOLD: Folded Instuctions
™ on Data R/W Sample [T EXCTRC: Exception Tracing
~ ITM Stimulus Ports —
Pot 2423 Pot 1615 Pot 8 7 Pt O
Enable: [OcFFFFFFFF e A IS e S L A AL
Pmiegel Port 31.24 Port23.16 [T Pot15.8 ™ Port 7.0 ™
o] [ooen

5. Download and run the program.

6. Debug the program by selecting Debug — Start/Stop Debug Session (Ctri+F5).
7. Select Debug — Run (F5) to run the program.
8. Select Debug — OS Support — System and Thread Viewer.

System and Thread Viewer &l
Property | Value

Tick Timer: 1.000 m5ec

Round Robin Timeout: 5.000 m5ec

Default Thread Stack Size: 200

Thread Stack Overflow Check: Yes

Thread Usage: Available: 7, Used: 4

= Threads Priority State Del Event Value | Event Mask | Stack Load
mm——-———

255 | os_idle_dernon Running

3 taskA Normal [MGHEDINENN SSOREN 00000 0:0001 40%
2 main Mormal Wait_DLY 32%
1 osTimerThread High Wait_MBX 40%

Tip
The cells that are highlighted in the previous screenshot are updated in real time as
the program is running.

9. Select Debug — OS Support — Event Viewer. The cells that are highlighted in the
following screenshot are updated in real time as the program is running:

[™ Task Info
[~ Show

Transition

Jump to
[Code [Trace]

Update Screen
| Stop || Clear |

Zoom
[In J[out][Al |

Grid

Max Time
| 146.0001s [10ms

Min Time
25 us
Idle (255)

SHSE] |1y

[Load...|

| 1] =douig=

ain (2)

E

[£] w=®

It] @5

|G5e]) 2P|

1459364 s

1458664 s

B

How it works...

The System and Thread Viewer window provides some useful information on System
configuration and Threads. The values shown for the System reflect the ones that are
defined in the RTX_Conf_cM. c file in the Configuration Wizard. There are a total of four
threads, as CMSIS-RTOS manages main() and the osTimerThread() as discrete threads
in their own right. When configuring the Trace (refer to step 4), it is very important to set
the Core Clock frequency to agree with what is defined in RTX_Conf_cCM.c:

2] RTX_Conf_CM.c v X
Bpand Al | Collapse Al | Hep | T Show Grd
Option Value

= Thread Configuration

Mumber of concurrent runni... 6

Default Thread stack size [byt... 200

Main Thread stack size [bytes] 200

Mumber of threads with user-... 0

Total stack size [bytes] for thr... 0

Check for stack overflow g

Processor mode for thread ex... Privileged mode
= RTX Kernel Timer Tick Configurat..,

Use Cortex-M SysTick timer a... [2
RTOS Kernel Timer input cloc..
RTX Timer tick interval value ... 1000

Round-Robin Thread switching I¥

+ User Timers 3
ISR FIFO Queue size 16 entries
System Configuration =
Text Editor), Configuration Wizard |

Further features of the debugger are discussed in Keil Application Note No. 261 (refer to
http://www.keil.com/appnotes/files/apnt_261.pdf).

http://www.keil.com/appnotes/files/apnt_261.pdf

Chapter 9. Embedded Toolchain

In this chapter, we will cover the following topics:

Installing GNU ARM Eclipse

Programming the MCBSTM32F400 evaluation board
How to use the STM32CubeMX Framework (API)
How to port uVision projects to GNU ARM Eclipse

Introduction

A toolchain is a term that is used to describe a set of programming tools that are used to
create a software product, which is typically an application program. A simple software
development toolchain usually comprises a text editor, compiler, and linker, and often
these are packaged together with other tools, such as a debugger, as an Integrated
Development Environment (IDE). The ARM uVision5 IDE is very easy to use, but the
constraints imposed on the free evaluation version and the relatively high cost of the
licensed, professional version motivate many programmers to explore alternative, free,
open source toolchains. Here is just a sample of the available alternatives:

emIDE: This can be found at http://www.emide.org/

YAGARTO: This can be found at http://www.yagarto.org

CooCox: This can be found at http://www.coocox.org/

GNU ARM Ecdlipse: This can be found at http://gnuarmeclipse.github.io/

Open source software is usually made available as source code and then released under a
GNU General Public License. The GNU General Public License is intended to guarantee
users the freedom to share and change all versions of a program, ensuring that it remains
free software for all its users. Luckily, developers usually make precompiled versions of
most software released under the GNU license available, often supporting the Windows,
Linux, and Macintosh (OSX) operating systems.

However, installing and configuring an open source toolchain from a precompiled binary
is not easy, so the aim of this chapter is to guide us through the process. We will illustrate
the installation of the GNU ARM Edclipse toolchain on a Windows platform. We are
choosing this route because the toolchain has recently migrated to GitHub and the
installation guide has been revised.

http://www.emide.org/
http://www.yagarto.org
http://www.coocox.org/
http://gnuarmeclipse.github.io/

Installing GNU ARM Eclipse

What is GNU ARM Eclipse? Well, Eclipse is an open source, integrated-development
environment that can be configured for any toolchain. This is achieved, typically, by an
extensible system of plug-ins that allows the environment to be customized. Eclipse is
written mostly in Java, but plug-ins are available allowing it to be configured for a variety
of languages. GNU ARM Eclipse plug-ins provide Eclipse CDT (C/C++ Development
Tooling) extensions for GNU ARM toolchains, such as GNU Tools for ARM Embedded
Processors, and others such as Linaro (https://www.linaro.org/), YAGARTO

(http://www.yagarto.org/), and so on.
To install GNU ARM Eclipse, we need the following components:

e The Eclipse IDE: This is the IDE itself, and it can be found at

https://www.eclipse.org/
¢ GCC ARM Embedded Toolchain: This is the GNU toolchain, and it an be found at

https://launchpad.net/gcc-arm-embedded
e Windows Build Tools: These are the tools for make, rm, and so on (native to Linux),

and they can be found at https://github.com/gnuarmeclipse/windows-build-tools
e GNU ARM Edclipse plug-ins: These are the plug-ins, and thy can be found at

https://github.com/gnuarmeclipse/plug-ins

e GNU ARM Eclipse QEMU Emulator plug-in: This is an embedded processor
emulator, and it can be found at http://gnuarmeclipse.github.io/gemu/

e GNU ARM OpenOCD Debugging plug-in: This is a debugging tool, and it can be
found at http://gnuarmeclipse.github.io/openocd/

e MDK-ARM Eclipse plug-in: This is support for the U-Link debugger, and it can be
found at http://www.keil.com/support/man/docs/ecluv/default.htm

Mostly, these are installed by downloading the latest version of their Windows installer
.exe file. As the MDK-ARM Eclipse plug-in only works with the Windows 32-bit version
of Eclipse, we chose 32-bit versions of the toolchain. The installation documentation
provided is comprehensive, so the following recipe (GNU_ARM_Eclipse_Install c9v0)
just gives us an overview and links to the relevant web pages.

https://www.linaro.org/
http://www.yagarto.org/
https://www.eclipse.org/
https://launchpad.net/gcc-arm-embedded
https://github.com/gnuarmeclipse/windows-build-tools
https://github.com/gnuarmeclipse/plug-ins
http://gnuarmeclipse.github.io/qemu/
http://gnuarmeclipse.github.io/openocd/
http://www.keil.com/support/man/docs/ecluv/default.htm

How to do it...

1. Follow the instructions at http://gnuarmeclipse.github.io/toolchain/install/ and install
the latest version (currently gcc-arm-none-eabi-4 9-201593-20150921-win32.exe)

of the prebuilt GNU toolchain for ARM Embedded Processors. Execute the installer
(in the final window, be sure to disable adding the toolchain path to the environment).
2. Test the gcc compiler by typing "C:\Program Files (x86)\GNU Tools ARM

Embedded\4.9 2015g3\bin\arm-none-eabi-gcc.exe" --version in a command
window:
BN Administrator: CAWINDOWS\system32\cmd.exe |ﬂ|i-J

C:sProgram Files (x86>~GHU Toolz ARM Embhedded>4.? 2815g3>"C:“Program Files <x86>
~GMU Tools ARMH Embedded-~4.? 2815g3-~bin“~arm—none—eahi—gcc.exe'" —wversion
arm—none—eahi—gcc.exe (GHU Tools for ARM Embhedded Processors) 4.9.3 201568529 (re
leaze?> [ARMsembedded—4_?-branch revision 2279771

Copyright (G 2014 Free Software Foundation, Inc.

Thiz iz free softuware; see the zource for copying conditions. There iz HNO
warranty; not even for MERCHANTABILITY ox FITHESS FOR A PARTICULAR PURFPOSE.

C:“Program Files <(x86>~GHU Toolz ARM Emhedded>~4.9? 2815g3>

3. Refer to http://gnuarmeclipse.github.io/windows-build-tools/download/; download

and run the latest version (currently gnuarmeclipse-build-tools-win32-2.6-
201507152002-setup.exe) of Windows Build Tools from this link.

4. Check whether Windows Build Tools is functional by opening a command window
in the folder where it was installed (that is, "C:\Program Files\GNU ARM
Eclipse\Build Tools\2.6-201507152002") and run make --version as follows:

EH C:\WINDOWS\system32\cmd.exe oo

-~

C:sProgram Files“GHU ARM Eclipsze“Build Tools%2.6—-201587152002%hin*make —version

GHU Make 4.1

Built for xB86_b4—wbd—minguwd2

Copyright ¢G> 1988-2014 Free Software Foundation, Inc.

License GPLv3+: GHU GPL version 3 or later <http:/Agnu.org-slicensessgpl.html>

Thiz iz free software: you are free to change and redistribute it.
There iz NO WARRANTY. to the extent permitted hy law.

C:~Program Files“GHU ARM Eclipsze“Build Tools-2.6—-281587152002%hin>_

5. Refer to http://gnuarmeclipse.github.io/gemu/install/, then download and run the
latest version of the installer (currently gnuarmeclipse-gemu-win32-2.3.50-
201508041609-dev-setup.exe) from this link.

6. Refer to http://gnuarmeclipse.github.io/openocd/install/, then download
and run the latest version of the installer (currently gnuarmeclipse-openocd-win32-
0.9.0-201505190955-setup.exe) from this link. Note that the documentation
advises using the SEGGER J-Link debugger; other hardware is more difficult to set

http://gnuarmeclipse.github.io/toolchain/install/
http://gnuarmeclipse.github.io/windows-build-tools/download/
http://gnuarmeclipse.github.io/qemu/install/

up.

7. Refer to http://www.keil.com/support/man/docs/ecluv/default.htm and install MDK
Version 5 - Legacy Support.

8. Refer to https://www.eclipse.org, then download and run the latest version of the
installer (currently Eclipse Mars. 1) from this link. Choose the version for C/C++
developers:

eclipse

C Eclipse IDE for C/C++ Developers
-

An IDE for C/C++ developers with Mylyn integration.

Installation Folder Chcpp-mars

v
v

> LAUNCH

show readme file

keep installer

{ BACK

9. Refer to http://gnuarmeclipse.github.io/eclipse/workspace/preferences/ and set the
Eclipse preferences.

10. Refer to http://gnuarmeclipse.github.io/plugins/install/ and install the GNU ARM
Eclipse plug-ins using the standard Eclipse installer in the Help — Install New
Software menu. Note that, as we are working with Mars and we installed Eclipse
configured for C/C++, then we may find that we already have some CDT tools (by
default, plug-ins that are already installed are not displayed).

11. Refer to http://gnuarmeclipse.github.io/plugins/packs-manager/. To install packs, we

http://www.keil.com/support/man/docs/ecluv/default.htm
https://www.eclipse.org
http://gnuarmeclipse.github.io/eclipse/workspace/preferences/
http://gnuarmeclipse.github.io/plugins/install/
http://gnuarmeclipse.github.io/plugins/packs-manager/

need to select the pack perspective and find available packs, then install the ones that
we want (make local copies). We’re going to test our Eclipse IDE with the emulator
configured as Discovery Board. So, we’ll need the STM32F4 support pack:

Eile Edt MNevigste Segrch Project Bun wVision \findow Help
- ! %Bv L_Q'QO‘_C,.;'G' - - Quick Access
Ho. He. = [% Packs 1 m # ¥ = 0O | % outline 52 3
HEI R Description . B STMI2Fdw DFP
%% 250
< 250
¥ 240
130
220
210
200
108
1.07
106
105
104
103
102

K
)

» Ambag Micro
» Analog Devices
= ARM
» Atmel
= Clannox
5 Embedded Artists
Freescale

Glyn

SAMG_DFP Atmel SAMG Senes Dewice Support and Examples

SAM-L_DFP Atrmel SAM L Series Device Support and Examples

SAMR21_DFP Atmel SAM R21 Sesies Device Support and Examples

SAM-5_DFP Atmel SAMST0 Senes Device Support

SAM-V_DFP Atmel SAMVT Series Device Support

STM32F0hx_DFP STMicroelectronics STM32FD) Senes Device Support and Examples

STM32FLo_DFP (installed STMicroelectronics STM32F1 Series Device Suppont, Drivers and Examples

- STM32F2:x_DFP STMicroelectronics STMB2F2 Series Dievice Support, Drivers and Eamples

> Hitex STM32F3a_DFP STMicroslectronics STM32F3 Senies Device Support and Examples
Infineon STM32F4xx_DFP (installed STMicroelectronics STMI2F4 Series Device Suppent, Diivers and Examples

> Keil b %® 260 (installed) Updated 5TMicroslectronics STM32CubeFd Firmware Package to Version 180 ad...

EEREEEEERE

> Maxim a8 250 301MB) Updated to STMicroelectronics STM32CubeFd Firmware Package v1.60

> Microserni %" 240 (13M8B) Required PACKs: ARM.CMSI5.4.3.0.pack, Keil MDK-Middieware.6.3.0.pack, Kell AR...
% NGX =

» NordicSemiconductor = 101
% Nuveton 1.00
» NXP 001

= Silicon Labs

[Console 1

GNU ARM Eclipse Packs console

2015-18-19 17:82:52

Parsing “Ci\Users\mhf\Packages\Keil\STM32F4xx_DFP\2.6.0\Keil.STMI2F4xx_DFP.pdsc”...
Parse completed in 47ms.

Refer to http://gnuarmeclipse.github.io/tutorials/blinky-arm/ and use the wizard to
create a Blinky ARM test project:

| £ ~
i File Edt Mavigate Search Project Run pVision Window Help

MmN L Qe e e e : Quick Access [| M c/ce~ (B Packs]

il = B g Packs 52 BE|BAR| S =28 | Sodine BR =8

®m 5 | % - Mame Description lf .ai STM32F4s DFP

SAMG_DFP Atmel SAMG Series Device Support and Examples .". ;ig

SAM-L_DFP Atmel SAM L Series Device Support and Examples * ZIJID

SAMRZ1_DFP Atrnel SAM R21 Series Device Support and Examples 55

SAM-5_DFP Atrel SAMSTO Series Device Support 23D

SAM-V_DFP Atrel SAMVT Series Device Support iy

STM32F0o DFP STMicroelectronics STM32F0 Series Device Support and Examples

STM32FLioe_DFP (installed STMicroelectronics STM32FL Senes Device Support, Drivers and Examples

STM32F2xx_DFP STMlicroelectronics STM32F2 Series Device Suppert, Drivers and Examples

STM32F3xx_DFP STMicroelectronics STM32F3 Series Device Support and Examples

STM32Fdo DFP (installed STMicroelectronics STM32F4 Senes Device Support, Drivers and Examples

o %9 260 (installed) Updated STMicroslectronics STM32CubeF4 Firmiware Package to Version 180 2d...
©® 250 301MB) Updated to STMicroelectrenics STM32CubeFd Firmware Package V1.6.0

Microsemi &® 240 (213MB) Required PACKs: ARM.CMSIS.4 3.0, pack, Keil. MDK-Middleware.6.3.0.pack, Keil AR...
> NGX ==

% NordicSemiconductor =
Muvoton
[NXP
{F= Silicon Labs

Ambag Micro
Anzlog Devices

=~ ARM

= Atmel

-~ Clarinox
Embedded Artists

= Freescale

- Glyn
Hitex
Infineon

6 & 6 8 6 #6566

In %
Ly
o o g 0y 0y 05 g tp 00

Problems &) Console 32
GMNU ARM Eclipse Packs console
2615-18-19 17:82:52
Parsing "C:\Users'mhf\Packages'\Kell\STM32F4xx_DFPY2.6.08\Kell.STM32F4xx_DFP.pdsc”...
Parse completed in 47ms.

4

Refer to http://gnuarmeclipse.github.io/tutorials/blinky-arm/. Build the project and
run the program on the Discovery Board emulator:

http://gnuarmeclipse.github.io/tutorials/blinky-arm/
http://gnuarmeclipse.github.io/tutorials/blinky-arm/

il [t

LE

A | it
st.com/stm32f4-discovery
14 I 3 @8]

]
R5g 58

ﬂaa

kit for STM32F407/417 Fines‘

B ' 5T Discovery

How it works...

Assuming that we successfully ran this code, then we have a working IDE. The Blinky
wizard generates C++ code, so it may look a little strange. Don’t worry; for the next recipe
we’ll create a C project.

Programming the MCBSTM32F400
evaluation board

This recipe will detail modifications that are necessary for the Blinky program created by
the Eclipse project wizard and will show how to use the MDK-ARM Eclipse plug-in to
flash the STM32F4071G part. We’ll call this recipe GNU_ARM_Blinky_c9ve.

How to do it...
1. Invoke Eclipse.

2. The MCBSTM32F400 evaluation board uses the STM32F4071G device, so we
install the pack supporting this. To install the pack, switch to the Packs perspective

and right-click the name of the pack:

2 Packs - Blinkey_MCBSTMVEZFE00_LEODFP sre/Blinided.c - Echipse

File Edit Source Refactor Mavigate Search Project Bun (Mo Window Help

| o B H-U G- E iR o S
B Deic_ 77 (& = B W Pecks i GRSIRCE =B
GRSER Mame Description a2
(& ABOW Semiconductar B STM32FLx DFP (instalied STMicroelectronics STM3ZFL Series Device Support, Drivers and Examples
& Ambig Mecro B STM32F2o DFP STMicroelectronics STMI2F2 Series Devioe Support, Dirvers and Examphes.
@ Analog Devices B SIA =t hcroglectronecs STMIIFS Serigs Dewoe Support ani
ARM 7 B STM32Fhe DFP (nstalled STMicroslectronics STMI2FA Series Device Support, Drivers 2nd Examples.
Azl &8 250 (installed) Updated STMicroelectronics STM32CubeFd Firmware Package to Version 180
(= Fresscale dndatas 82 5T IAEIC ekl E sy
(& Holtek Fequired PACKs: ARM.CMSISA 30 pack, Kl MDK-Middses are 5,30, pack. Keil AR,
E= Tnfineon = USB Host:
2 Maim PACK based on STMicroel STMIZCubeFd F Paciage V1.3.0
& Microsemi L PACK Based on STMicroelectromics STMI2Cubefd Femware Package V1.3.0
(= Nordic Serniconductor i Workshop Releaze not released publically s
= Muvoton &5 1.08(35ME) Device: Stamup files for GCC added, conditions enended to reflact toalchain depe i
(= % 1.07 (35MB) Updsted UART driver [Adsled UARTT UARTE)
= Renesss % 105 (35MB) Added MCESTMIZROD
2 Silicon Labs ®* 105 2IME) Added STMIZFO0L devices
= SOm 55 104 (n/a) Updated diivers (namespace prefis ARM_ added)
(i Spansion F 103 () Added MCBSTMIZHI00 Board Support Bundic
SThiscroelectronics %® 102 (nfa) added emiVin Example and GUIDema for MCBSTMIZRI00 .

& Teas Instruments
> Toshiba

BlinkLed.c I

> void
blink_led_init{)
2 {

B Console
_MCESTIMIZFA00_26.00¢9]
Finished building target: Blinky MCBSTM3ZF400_2.6.00FF.elf

Invoking: Cross ARM GNU Create Flash Image
arm-none-eabl-objcopy -O ihex “Blinky MCESTM3IF400_2.6.00FP.elf”
Finished building: 8linky MCBSTMI2F408 2.6.00FF . hex

“Blinky MCESTM3ZFAS8 2.6.Q0FF . hex”

Invoking: Cross ARM ONU Print Size

=
ick Acc £ | B csce- [BEPacks
9= Qutline 52 EE *= 08
8 STMIZFbo DFP 2
o8 260]
4 259

¥ B MCBSTMGEZFI00

240
2340
220
210

i Device Suppont

| Device Family Package STMicroelectronics
i STMBZR

i STME2F

(@) 28

3. Refer to http://www.keil.com/support/man/docs/ecluv/ecluv_flashSetup.htm and
install the MDK-ARM Eclipse plug-in. Note that, once this plug-in is successfully

installed, the uVision icon and menu will appear in the toolbar

S C/C+ + - Blinky_MCESTMB2F400/src/main.c - Edlipse
File Edit Soue Refactor Mavigate Segrch Project g«n Windew Help
=iw o, Soray - N R R S R B RS R
) Project Explorer 1 BERl & =0 |[Q mincs
1 Blinky_Discovery !
&5 Blinky_MCBSTME2F400 7/ This file is .
L Blinky MCBSTMB2FI00_1.0.80FP EOpyW=ge (T
T Blinky_MCBSTMI2F400_1.6,00FP
1 Blinkey MCMSTMEZC
winelude <stdio
include <stdli
#include “diag/Trace.h”
12 #include “Timer .k
13 Winclude "BlinkLed.h"
B Consele i1
CDT Build Consobe [Blinky_MCBSTME2F400_2 6, 00FP]
‘ It 4
Wiitable Srruaet Inert

]

ol
Quick Acce ® | [FOE=) % Packs
S| =0
vERR e %
M sdioh
= M stalibh
U disg/Traceh
o Timerh
U Blskledh
BUMNK_OM_TICKS

BLINE_OFF_TICKS
mainfint, char'TD

1 C/Co s Indeser: (60%)

http://www.keil.com/support/man/docs/ecluv/ecluv_flashSetup.htm

4. Switch to the C/C++ perspective. Select File -~ New — C Project and create a new
project; give the project a name, select the STM32F4xx toolchain, and click Next:

& C Project = [& |[ek3al
C Project)
Create C project of selected type

==

Project name: Blinky_MCBSTMI2F400

[# Use default location

C:h\Users\mhfworkspace\Blinky_MCBSTW3IZF400

default
Project type: Toclchains:
GMU Autotools Cross ARM GCC
Executable
& Empty Project

Hello Werld AMSI C Project

Hello World ARM C Project

Hello World ARM Cortex-M C/C++ Project
Freescale Kinetis KLwog CfCe+ Project
Freescale Processor Expert CfC++ Project
STW32Rex C/C+ + Project

STMI2F10x C/C++ Project

STM32F20: C/C++ Project

(@ STM32F4ux C/Co+ Project|

Static Library
Makefile project
i : m] ¢

¢ & e 0 EEE

[¥] Show project types and toolchains only if they are supported on the platferm

':” < Bach Mest = Finich [cancal

5. Choose the STM32F407xx Chip Family, and select None (no trace output) in
Trace output:

£ C Project = [& |[eEEal
Target processor settings —
Select the target processor family and define flash and RAM sizes,

Chip family: -
Flash size (kB): 1024

External clock (Hz): 5000000

Content: | Blanky (blink a led) ']
Use system calls: (ﬁ:mm@) = |

Trace output: MNone (no trace output) v]

Check some wamings ¥

Check most warnings

Emable -Werrar

Use -Og on debug +
Use newdib nano Il
Exclude unused <

Use link optimizations

'7 « Back]i hlext » Finich . Cancel

6. Open BlinkLed.c; in the blink_led_int() function, search for the following
statement:

GPIO_InitStructure.Pull = GPIO_PULLUP;
Replace this statement with the following one:

GPIO_InitStructure.Pull = GPIO_PULLDOWN;

7. Open the header file named BlinkLed.h. Replace the STM32F4DISCOVERY definitions
with the following:

// MCBSTM32F400 Eval. Board defs (led G6, active high)

#define BLINK_PORT_NUMBER (6)
#define BLINK_PIN_NUMBER (6)
#define BLINK_ACTIVE_LOW (0)

S C/Co v - Blinky MCBSTMIZFAO finclude/Blinkd ed.h - Eclipse = -E -
Eile Edt Source Refactor Mavigate Search Project Bun uiision Window Help
=ie ER R R WIS N S AV R AR R R R R B B N Rl s SRS R AR o Quick Access | {5 | [CiCes | % Packs
{4 Project Explorer £ S| % © % B |ldmaine (g Blinkledc [§ Blinkledh =8| =0 i "
L3 Blinky_Discovery & #if defined{BOARD OLIMEX_STM3Z_E487) - vEREY o % T
a (E5 Blinky_ MCBSTM32F400 17 # ELINKLED H_ -
il Includes A U sm32fhxh
4 (B src 28 // Port numbers: 8=A, 1=B, 2=C, 3 U stm3Zfdoe_halh
|g] _initialize_hardware.c 21 #define BLINK_PORT_WUMEER ¥ F PO
_write.c 22 mdefine BLINK_PIN_NUMBER {13) B # 0
[BlinkLedc 27 mdefine BLINK_ACTIVE_LOW (1) o ¢ AT
[&) main.c S # BLINK_PORT_NUMBER
[E| Tumerc g # ELINK_PIN_NUMBEER i
(S system # BLNK ACTIVELOW
(= include] # BLINK_GPIOu)
[BlinkLed.h] v:ef_ine ELINK_PORT_HUMEER ¥ BLINK I MASKD
.‘f. stm32f4x_hal_conéh 8 W ef:.lne BLIN[_PIN_NLNBEi &
I = hal. | #define BLINK_ACTIVE LOW ol
| Timerh 4 blink_led_initivaid] : void
(= Idscripts 33 mendif ++ blink_led_on(void) : void
13 Blinky_ MCBSTM32F400 1.0 EDFP 4 H blink,_led_offiveid) :
13 Blinky_MCBSTM32FA00_26.0DFF 35 #define BLINK_GPIOx{_N) ({GPIO_TypeDef *)(GPIOA_BASE + (GPIOB_BASE-GPIOA_BASE)™(I~= . blink_led_onivoid) 1d
13 Blinky_MCMSTM3ZC il ! b o Wl ek fFLnY i
2 Console 53 [Propertis B EEE& rE-m-= 8B
COT Build Cansole [Blinky_MCBSTM32F400]
5 m :
\Writable Srnart Insert 3:1

8. Select Project — Build All and build the project (or use the hammer icon shortcut).

9. Select U-Link Load — Flash Download Configurations... and create a new
configuration as shown in the following screenshot. Note that selecting Target
Options will open the familiar uVision project options dialog window.

"= Flash MWEQUM’

Create, manage, and run configurations -
' $3

| iR E - ba
type filter text Hj Main
W C/C+= Application with uVision Debugger))
3 Blinky_MCBSTM32F400_1.0 3DFP.hex Eclipze profect
Wl Blinky_MCBSTME2FADD_2.6 0DFP.hex [Browe. |
3 Blinky_MCBSTM32F400_2.6 ODFP{Blinky_MCESTMIZF400_26.00FF hex) —
I3 Blinky_MCBSTMS2F400 (Blinky_MCESTM3I2F400.hex) Application to dehug f
Blinky_MCMSTMIZC. hex Debug/Blinky_MCBSTMIZFA00 he Browse.. |
& wVision Project
Target device to debug application
STM32RAOTIG (STMicroelectonics) Select.. |

b Source | TG

[Target Qphuns_.]

Connection
Port number 5101

Filter matehed 7 of 7 items

5 Flash Download Clese !

10. Select Flash Download. We may need to reset the board (depending on how we set
the Target Options).

How it works...

We’ve simply configured the U-Link as a device programmer in this recipe. If you find
that this doesn’t work, then refer to http://www.keil.com/support/docs/3061.htm. Copy the
.hex file created by Eclipse to a uVision project and use uVision to flash the board. You
may need to use the UL2_EraseFW. exe utility that we discussed in Chapter 2, C Language
Programming. If you do erase the U-Link firmware and subsequently flash the board
using Eclipse, then expect the following to appear in the uVision QOutput Console:

& /0= - Edlipse :—? e E
File Edit Source Refactor Mavigate Search Project Bun pVision Window Help

o - i o B Hrair -0 0-GQ- & 4~ > .= S Quick Access = | [FEC/ces | % Packs

1 Project Explorer 3 = 2w ! = 0 | =ou. 3 -3
L3 Blinky_Discovery
> Blinky_MCMSTMZ32C An gutline is not available.

pVision Chatput Console
Connected to uVision
wsC =23

UVSOCK: V2,23

Flash download...

ne
- .. Done
... Done

Disconnected from uWision

L3 Blinky_MCMSTMIZC

The calls to the trace_printf() function that appear in main can be ignored (or
commented out). They are present to allow text strings to be displayed in the console
debug window using a U-Link communication channel; however, although they work with
the discovery board emulator, they don’t with the U-Link2 hardware. This is not a serious
problem because Chapter 2, C Language Programming describes other equally good
approaches to debugging code.

You may have noticed that the GPIO support for LEDs provided by the Eclipse wizard is
inferior to that in uVision. To drive multiple LEDs, we’ll need to adapt some of the
functions in the LED.c uVision file that is part of the Hello_Blinky project that we

encountered in Chapter 1, A Practical Introduction to Arm® Cortex®.

http://www.keil.com/support/docs/3061.htm

How to use the STM32CubeMX
Framework (API)

uVision5 provides two routes for users to configure their RTE. The first option, called
Classic (used for all the recipes in Chapters 2-8), configures the STM’s Hardware
Abstraction Layer (HAL) using the RTE_Device.h header file. This option allows users
to quickly configure the RTE for most CMSIS-enabled devices. The second option uses
STM’s graphical configuration tool, STM32Cube MX, to perform low-level configuration
of the HAL directly. Example projects using both approaches are shipped with recent
versions of Device Family Packs (for example, DFP 2.6.0). This recipe (named
ARM_STM32CubeMX_Blinky c9v@) shows you how to build a Blinky project using STM’s
tool.

How to do it...

1. Create a new project named STM32CubeMX_Blinky. Choose the STM32F4071GHx
device.

2. Configure the RTE for the MCBSTM32F400 board. Check the Board Support —
LED (API) and Device -~ STM32Cube Framework (API) -~ STM32CubeMX
options. Then, select Resolve and OK.

3. If you haven’t installed STM32CubeMX yet, you will be prompted to do so. It is
freely available from www.st.com (search for STM32Cube initialization code
generator).

4. If you have installed STM32CubeMX, then you should see this window asking you
to launch the program:

MDK: Requires Code Generation by: "STM32CubeMX [I

f " | A selected Software Component requires code generation or
o configuration by an external code generator.

Component:
Keil:Device:5TM32Cube FrameworkSTM32 CubeMX

Program:
STM32CubeMX

Generates:

EACMP_D_HSWI124MNArchive\2015-16\Teaching CMP-6024 B\book\650
3EN_09_ForRewrites\ProgshARM_STM32CubeMX_Blinky_chvWRTENDevi
ce\STM3ZH07IGHA FrameworkCubeMX.gpdsc

Do you want to launch Program?

5. Once STM32CubeMX is launched, you should see the initial welcome screen.
Choose New Project:

http://www.st.com

ke

- 0 STM32CubeM Untitled
e et Window Hep

RecRuUR &8 20 4

New Project

Load Project

Help

6. You should now see the microcontroller part rendered on the screen, as in the
following screenshot:

o STMA2CubeMK STCubeGenerated ine: STMAZFAOTIGH:
(File Project Pinout Window Help.

i lﬂ;h e B d o [ClkeeoCurentSignalsPlacement 9 o O — @ 4 Fndi_ v:|'!, 4 =, []Show user Label PP
| Pinout | clodk & | [Power c: Calcuator

€ ration -

1 MiddleWares '

| E @ FATFS
| & % FREERTOS
| e L
[b use o
(=-Peripherals

W ADC1

- & ADCZ

- % ADC3
o6 CANL
[® CANZ
[
[

L8 CRC
i @ DAC
¢ & DOMI
w8 ETH
£ FSMC
E-8 121
Loe D02
N e
i 8 1252 i
Fo8 1253

w o TWDG

£ 8 ROC
ioo RNG
b & RIC
i ® SDIO
[F % SPI1
& SPIZ
- & SPI3
E- o SYs
& & TIM1
& 5 TIM2

B

7. Select pin [G1] (left mouse button) and use the drop-down menu to configure the pin

as RCC OSC IN, as in the following screenshot:
gﬁ STM32CubeMX STCubeGenerated.ioc: smszmo;fﬁmq_ r “ ==

File Project Pinout Window Help
—RUB d 5 [Keep Current Signals Placement 4 o] = @ 4 F|r1d| v|'-"\ 4 =, [¥] Show user Label % > HER
Finout | Clock Configuration | Configuration | Power Consumption Calculator |

|Configuration ~
E-MiddleWares I
. - & FATFS

B
| @ 0 FREERTOS
-

B

I

58
£-Peripherals

- % ADC1 .
i % ADC2 : 2 " :

S A o —
Ho & CANL L -

G & CAN2 [G1]-PH0-0SC_IN:

t- % CRC # RCC_OSC_IN (High Speed Clock (HSE) Crystal/Ceramic Resanatar)
- & DAC L

[

e

£

e

£

e
— y &
- & ETH ¥

[% FSMC 7

[& 12C1

f % 1202

B % 1203

[5 1252

- % 1263

[% IWDG

[® RCC u

L

8. Similarly, configure pin [H1] as RCC OSC OUT.
9. Expand Peripherals -~ RCC and use the drop-down menu to configure the HSE to
use a Crystal/Ceramic Resonator:

s smszcmemxsmuheﬁemmmdjucgmzmmw_" - .-. h. lt: a B _"u:_-: :

File Project Pinout Window Help
E = B U& @3 Q [Keep Current Signals Placement 4 o] = @ 4 F|r1d| v|'-"\ "4 =, [¥] Show user Label % > HER
Pinout | Clock Cenfiguration | Configuration | Power Consumption Calculator |

»
l - 1252

- 1253

- & IWDG

- @ RCC

~High Speed Clock (HSE) [Crystal/Ceramic Res. .~
~Low Speed Clock (LSE) i_ﬂsable v
Master Clock Output 1

Master Clock Output 2 7
e Audio Clock Input {I125_CKIN)

m

i & RNG

i @ RTC

i & SDIO
i} @ SPI1
i+ @ SPI2
i} @ SPI3
i @ SYS

k- & TIM1
3

3

3

3

3

3]

m

-« & TIM2
- @ TIM3
- & TIM4
- @ TIMS
-« & TIM6
- @ TIM7 -

B
B
B
:
B
B
B
t
B
B
B
:
B
B

10. Open the Clock Configuration tab and configure the clock tree to use a 25 MHz

input (crystal), set the clock divider, and select PLL.CLK to give a SYSCLK
frequency of 168 MHz. Also, set the AHB, APB1, and APB2 Prescalers:

L

Fite Project Clock Configuration Window Help
Feomel 435

==

X

v

2000 TP

pingut ‘Jeck Configuraton | Configuration | Power Consumption Calaulator

RTC Clotk M
£ HEE_RTC
=] i
2.7 J: L5E - - Ta RTC [KHz}
= Emmvwdax[um
LSI RC -
Tes TWDG {KHz)

System Clock Mux

= “ HCLK to AHE bus, core,
2 memary and DHA [MHz)

i - - ¥

- T [o Cort e s

I FCLK Cortex dlock (MHz)
o SYSCLK (MHZ) AHE Prascaler HICLK (W) i E
HEE : i
- - s il b, ¥ e 4 APB1 perpheral docks [MHz)|
PLL Seurcs Mux == = X2 nmu Timer clocks [Mkz)
HSI Lk APB2 Prescaler
!

|
Tngut aguancy | [rdSae - xas [Enastecas |

- (2 - :&T.?_\'IIlADn periphsral cocks (MH:)
! ~r i1 w—

-

48MHz chocks (MHz)
Main PLL

- w 125 clocks (MHz)

11. Select Project -~ Generate Code.
12. Select File - Save Project. Note that the Toolchain / IDE is EWARM:

% Project Settings (e S

{Project ! Code Generator

Project Settings

Project Mame
STCubeGenerated

Project Location

_09_ForRewrites\Progs'\ARM_STM32CubeMy_Blinky_c9v0\RTE\Device\STM3IZF407IGH

Toolchain Folder Location
1_09_ForRewrites\Progs\ARM_STM32CubeMy_Blinky_c9vI\RTE\Device\STM32F407IGH \STCubeGenerated’,

Toolchain [IDE
EWARM -

Mcu and Firmware Package

Mcu Reference
STMIZF407IGHx

Firmware Package Mame and Version
STM32Cube FW _F4v1.9.0

Ok] [Cancel

13. Select OK; then, quit STM32CubeMX by navigating to File — Exit.
14. We should see the following message when we return to uVision. Select Yes to
import the code that we’ve just generated:

=

@ For the current project new generated code is available for import.

Project:
EACMP_D_HSWI124 MNArchive\2015-16\TeachinghCMP-6024 B\boolk\650

3EN_09_ForRewrites\Progs\ARM_STM32 CubeMiX_Blinky_cOvNSTM32C
ubeMX_Blinky.uvprojpx

Generated:

EACMP_D_HSWI124 MNArchive\2015-16\TeachinghCMP-6024 B\boolk\650
3EN_09_ForRewrites\Progs\ARM_STM32 CubeMX_Blinky_cSvMRTE Devi
ce\STME2H07IGH FrameworkCubeMX.gpdsc

Import Changes?

Mo |

15. Open the Project tab and check whether we have successfully imported the code:

|m—————

(=

Eile Edit View Projec Flash Debug Peripherals Tael: SVCS Window Help
MNEAd@| 2 cBoc| v |Ponm|EEEGDwsuwe 3@l eo0da|ETR
caEer DR d=e>@
Project s @
=% Project STM32CubeMX_Blinky
=4 Targetl
[J Source Group1
3 STM32CubeMX:Commeon Sources
@4 Board Support
& cmais
24 Device
ﬂ stm32fduo_hal.c (STM32Cube HAL: Commoen)
5T stm32fdohal_cortex.c (STM32Cube HAL:Cortex)
- BT stm32ftc_hal gpio.c (STM32Cube HAL:GPIO)
- BT stm32f4o hal_pwr.c (STM32Cube HAL:PWR)
5] stm32fhoc_hal_pwr_ex.c (STM32Cube HAL:PWR)

; ﬁ strr32fdo_hal_rec.c (STM32Cube HALRCC)

®T stm32f4oc_hal_rcc_sx.c (STM32Cubs HAL-RCC)

I _] strr32fdaoc_hal_msp.c (STM32Cube Framework: STM32CubeMX)
] startup_stm3214070cs (Startup)

] system_stm32fdocc (Startup)

|
[E] Project eﬂooks {} Functions | Oy Tempilates |

e

ULINKZ/ME Cortex Debugger 1| CAP| NUM SCRL OVR R /W

16. Open the file, main.c (found in folder STM32CubeMX:Common Sources), navigate to
the main() function definition, and add this statement in the section identified by the
/* USER CODE BEGIN 2 */ comment:
LED_Initialize ();

17. Add this code fragment in the section identified by the /* Infinite loop */

comment:

LED_On(0);
for (i=0; i<1000000; i++)

14
LED_Off(0);
for (i=0; i<1000000; i++)
'

18. Remember to declare the loop variables: i and #include "Board_LED.h".
19. Build, download, and run the program.

How it works...

We’ve used STM32CubeMX to generate a very basic runtime environment. We’re still
using the Board Support API to provide functions to configure GPIO and drive LEDs.
STM32CubeMX is much more powerful, and we’ve only illustrated a very basic
configuration. More details and further tutorials can be found at www.st.com.

http://www.st.com

There’s more...

We can also use STM32CubeMX to configure the GPIO pins that are used to drive the
LEDs. We illustrate this in the ARM_STM32CubeMX_Blinky_c9vi:

1. After configuring the oscillator (Step 7), select each of the GPIO pins that are
connected to the LEDs (GPIO PG6,7,8, PH2,3,6,7, PI110) and configure them as
outputs, as in the following screenshot:

"5 STM32CubeMX STCubeGenerated.ioc: STM32FA0TIGH W " - Elm
File Project Pinout Window Help |

B M e B @ D CKeeo Curent Signals Pacement 4 g—@+m1_' vi-, 4 % [Wshowuserlabel © (7 o
| Finout | Cladk | cor [Power ¢ Caleuiator

2. Then, select the GPIO menu in the configuration tab to set the other GPIO pin
parameters (GP10O Mode, Pull-up, and so on.):

=

[t

& Pin Configuration
 GRIG |
Search Signals
Search (Crtl+F) [] Show only Medified Pins
=
PFin Mame GPIO mode GPIO Pull-up/Pu... Maximum outpu... lUser Label Modified
|PGa nfa Cutput Push Pull [Mo pull-up and no... [Low LED 4 Fl
PGT nfa Cutput Push Pull [Mo pull-up and no... [Low LED 5 Fi
|I PGE nfa Cutput Push Pull |{MNo pull-up and no... |Low LED & [#]
{PHz n/a Output Push Pull [Mo pull-up and no... [Low LED 7
{PH3 n/fa Output Push Pull [Mo pull-up and no... [Low LED 0
||F'H6 nfa Output Push Pull |Mo pull-up and no... |Low LED 1
IiF‘H? nfa Cutput Push Pull Mo pull-up and no... |Low LED 2]
|||F'Ill] nfa Cutput Push Pull [Mo pull-up and no... [Low LED 3 Fi
| ?| Select Pins from table to configure them. Multiple selection is Allowed.
[7] Group By IP Apply] [Ok] [Cancel

3. Use STMCubeMX, as we did before, to generate the code. When we open the main.c
file, we should now find that STM32CubeMX has added code to configure the GPIO

pins in the MX_GPIO0_Init() function, as follows:

void MX_GPIO_Init(void)

{

GPIO_InitTypeDef GPIO_InitStruct;

/*

GPIO Ports Clock Enable */

_ _GPIOI_CLK_ENABLE();
__ GPIOH_CLK_ENABLE();
__GPIOG_CLK_ENABLE();

/*Configure GPIO pin
GPIO InitStruct.Pin
GPIO InitStruct.Mode =

LED_3_Pin */

= LED_3_Pin;

GPIO_InitStruct.Pull = GPIO_NOPULL;

GPIO_InitStruct.Speed = GPIO_SPEED_LOW;

GPIO_MODE_OUTPUT_PP;

HAL_GPIO_Init(LED_3_GPIO_Port, &GPIO_InitStruct);

/*Configure GPIO pins : LED_7_Pin
LED_O_Pin LED_1_Pin LED_2_Pin */

GPIO_InitStruct.Pin =

LED_7_Pin|LED_O_Pin|LED_1_Pin|LED_2_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_LOW;
HAL_GPIO_Init(GPIOH, &GPIO_InitStruct);

/*Configure GPIO pins : LED_6_Pin LED_5_Pin LED_4_Pin */
GPIO_InitStruct.Pin = LED_6_Pin|LED_5_Pin|LED_4_Pin;
GPIO_InitStruct.Mode GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_LOW;
HAL_GPIO_Init(GPIOG, &GPIO_InitStruct);

}

4. The MX_GPI0_Init() function that was generated by STM32CubeMX is almost
identical to that of LED_Initialize(). As such, there is no need to call
LED_Initialize () before calling LED_On() and LED_Off().

How to port uVision projects to GNU
ARM Eclipse

STM32CubeMX can also be integrated within the Eclipse IDE and used to configure the
RTE in a similar way because it is used by uVision. However, although STM provides a
plug-in to invoke STM32CubeMX (refer to STSW-STM32095 at www.st.com), the current
situation is that the code generated is not automatically copied across to the Eclipse
project. Luckily, there is a Python v2.7 script called CubeMXImporter that allows this to
be done easily (note that the procedure is documented at
http://www.carminenoviello.com/). As Carmine documents this process so thoroughly, this
recipe will just explain how to port one of the recipes that we developed earlier in the
book. We’ve chosen HelloLCD_c2ve from the Writing to the GLCD recipe in Chapter 2, C
Language Programming, to illustrate this procedure; we call this recipe:
Eclipse_STM32CubeMX_HelloLCD_c9v0.

http://www.st.com
http://www.carminenoviello.com/

How to do it...

1.

Follow the instructions at http://www.carminenoviello.com/ and create a new Eclipse
project using the GNU ARM Plugin (that is, navigate to File -~ New — C Project).
We’ll assume that this project is called test5. Use the Hello World ARM Cortex-M
C/C++ project template. Note that STM32F407IG has 1024 Kb Flash and 192 Kb
RAM.

Install and invoke the STM32CubeMX Eclipse plug-in (refer to UM1718 sections
3.2.2 and 3.4.3 at www.st.com). Note that, alternatively, we can run STM32CubeMX as a
standalone application.

Use STM32CubeMX to configure and generate code for the STM32F4071IGHX exactly as
we did in the ARM_STM32CubeMX_Blinky_c9v0 folder in the How to use the
STM32CubeMX Framework. Note that it’s really important to choose SW4STM32 as
Toolchain/IDE (rather than EWARM) before generating the code. Note that I named
my STM32CubeMX project mymcu.

Open a command window and run the following:

$python cubemximporter.py <path-to-eclipse-workspace>/test5 <path-to-
cubemx-out>/mymcu

We now need to import the Board Support to handle the LCD. We can locate the
necessary source and include files by right-clicking them in the HelloLCD_c2ve
folder in the Writing to the GLCD recipe in Chapter 2, C Language Programming:

http://www.carminenoviello.com/
http://www.st.com

(5 Project Explorer I3 | T = 8

I3 Blinky Discovery!
LI Blinky_ MCBSTM32C
L3 Blinky_MCBSTM32F400
L3 Blinky_MCBSTM32F400+ CubeMX
4 (=5 Hello_LCD_MCBSTM32F400+ CubeMX
. 42, Binaries

nil! Includes
<

1c| GLCD Fonts.c
e| GLCD_MCBSTM32F400.c

| stm32fdix_hal_msp.c

L] stm32fdux_it.c
4 [system
= include
= src
= Debug

[5 Board_GLCD.h
5 GLCD_Config.h

I stm32fdxx_hal_conf.h
| stm32fdse it.h

0 items selected

6. Open main.c and update main() as follows:

int main(void)

{

/* Reset of all peripherals, Initializes the Flash
interface and the Systick. */
HAL_Init();

/* Configure the system clock */
SystemClock_Config();

/* Initialize all configured peripherals */
MX_GPIO_Init();

/* USER CODE BEGIN 2 */

GLCD_Initialize();

GLCD_SetBackgroundColor (GLCD_COLOR_WHITE);
GLCD_ClearScreen (); /* clear the GLCD
GLCD_SetBackgroundColor (GLCD_COLOR_BLUE);
GLCD_SetForegroundColor (GLCD_COLOR_WHITE);

*/

GLCD_SetFont (&GLCD_Font_16x24);
GLCD_DrawString(0, 0*24, " CORTEX-M4 COOKBOOK ");

GLCD_DrawString(©0, 1*24, " PACKT Publishing ");

GLCD_SetBackgroundColor (GLCD_COLOR_WHITE);
GLCD_SetForegroundColor (GLCD_COLOR_BLUE);

GLCD_DrawString(0,3*24,"

Hello LCD ",

GLCD_DrawString(0,4*24," ARM GNU Eclipse!");

/* USER CODE END 2 */

Options invokes uVision5.):

7. Create a Flash Download Configuration and flash the program. (Note that Target

£ Flash Download Configurations

==

Create, manage, and run configurations

4 WA C/C++ Application with pVision Debugger
i3 Blinky_MCBSTM32C
3 Blinky_MCBSTM32F400_HEX
Eﬁ Blinky_MCESTM32F400(Blinky_MCBSTM32F400.elf)
pVision Project

Filter matched 5 of 5 items

@

|| Mame: Blinky_MCBSTM32F400_HEX

E&i Mairl1 E Source E Envirenment | [Common |

Eclipse project
Hello_LCD_MCBSTM32F400+ CubelMiX

Application to debug
Debug/Hello_LCD_MCBSTM32F400+ CubehX hex

Target device to debug application
STM32F4071G (STMicroelectronics)

Connection

Port number: 5101

LOAD

51

Browsze...

Browsze...

-
e
[T

Target Options...

[Flash Download] | Close

Index
A

e ADCI1 /How it works...
e Alternate Function (AF) / How it works...
e Analog-to-Digital converter (ADC)
o about / Introduction
o setting up / Setting up the ADC, How to do it..., How it works..., There’s
more...
e aperture time / Introduction
e Approximation Register (SAR)
o about / Introduction
e arithmetic operations
o performing / Performing arithmetic operations, How to do it..., How it works...
e ARM Architecture
o URL / Passing parameters between C and the assembly language
e ARM Architecture Procedure Call Standard
o URL /How it works...
e ARM Architecture Procedure Call Standard (AAPCS) / Getting ready
e ARM Assembler Directives
o URL / See also
e ARM Unified Assembler Language
o URL / Getting ready
e ARMv7-M
o URL / There’s more...
e Arturo Campos
o URL / There’s more...
e ASCII code
o URL / How it works...
e assembly language
o and C, parameters passing between / Passing parameters between C and the
assembly language
o interrupts, handling / Handling interrupts in assembly language, Getting ready,
How to do it..., How it works..., There’s more...
o debugging / Debugging assembly language, How it works..., There’s more...
¢ audio codec
o driver, writing for / Writing a driver for the audio codec, How to do it..., How it
works...
o using / How to use the audio codec, How to do it..., How it works...
o configuring / Configuring the audio codec, How to do it..., How it works...,
There’s more...
¢ audio tone control
o creating / How to make an audio tone control, How to do it..., There’s more...

e automatic variables / How it works..., How it works...

Baud Rate Register (BRR) / How it works...
bitmapped Graphics
o designing / Designing bitmapped graphics, How to do it..., How it works...,
There’s more...
bits / How it works...
branch-with-link (BL) / How it works...
branch indirect (BX) / How it works...

C
o and assembly language, parameters passing between / Passing parameters
between C and the assembly language, How to do it..., How it works..., See
also
camera
o using / How to use the camera, How to do it..., How it works..., There’s
more...
Cirrus
o URL / Configuring the audio codec
Cirrus Logic
o URL / Writing a driver for the audio codec, How it works...
Classic / How to use the STM32CubeMX Framework (API)
CMSIS-RTOS
o about / Introduction
o used, for debugging programs / Debugging programs that use CMSIS-RTQOS,
How to doit..., How it works...
CMSIS-RTOS API / Introduction
code
o debugging, print statements used / Debugging your code using print statements,
How to doit..., How it works...
Complex Instruction Set Computing (CISC) architectures / There’s more...
console window
o writing to / Writing to the console window, Getting ready, How to do it..., How
it works...
context switch / Introduction
CooCox
o URL / Introduction
Cortex-M3 and M4 processors
o URL / See also
Cortex-M4 assembly language
o writing / Writing Cortex-M4 assembly language, Getting ready, How to do it...,
How it works..., There’s more...
o user guide, URL / Getting ready
Cortex Microcontroller Software Interface Standard (CMSIS) / There’s more...
C program
o writing, to blink each LED in turn / Writing a C program to blink each LED in
turn, Getting ready..., How it works..., There’s more...
C Programming Language (C11)
o URL / Introduction
o online resources, URL / Introduction

Data Communications Equipment (DCE) / How it works...
Data Holding Register (DHR)
o configuring / How it works...
Data Output Register (DOR) / How it works...
Data Register (DR) / How it works...
Data Terminal Equipment (DTE) / How it works...
data types
o URL / How it works...
debugger
o using / Using the debugger, How to do it..., See also

decrementer / Why ensuring mutual exclusion is important when accessing shared

resources

Digital-to-Analog converter (DAC)
o about / Introduction
o setting up / Setting up the DAC, How to do it..., How it works...
digital clock
o creating, Timers used / Using timers to create a digital clock, How to do it...,
How it works...
Digital Signal Processing (DSP) / There’s more..., Introduction
directives
o URL /How it works...
Direct Memory Access (DMA) / How it works..., How to use the camera
Discovery Board emulator / How to do it...
driver
o writing, for audio codec / Writing a driver for the audio codec, How to do it...,
How it works...

Eclipse IDE
o URL / Installing GNU ARM Eclipse
emIDE
o URL / Introduction
end of conversion interrupt (EOCIE) / How it works...
evaluation boards schematic
o URL / How it works...
event flags

o used, for multithreaded programs / Multithreaded programs using event flags,
How to doit..., How it works...

exception / Handling interrupts in assembly language
Executable and Linking Format (ELF) / How it works...

finite-state machine (FSM) / There’s more...
Finite Impulse Response (FIR) digital filter / Getting ready
Floating Point Unit (FPU) / There’s more..., There’s more...
format control string / How it works...
function

o writing / Writing a function, How it works..., There’s more...

game application
o stage 1, creating / Creating a game application — Stage 1, How to do it..., How it

works...
o stage 2, creating / Creating a game application — Stage 2, There’s more..., How
it works...

GCC ARM Embedded Toolchain
o URL / Installing GNU ARM Eclipse

General purpose input/output (GPIO)
o about / Understanding the simple use of GPIO, How to do it..., How it works...
o configuring / How to do it..., How it works..., There’s more...

general purpose timers

o configuring / Configuring general-purpose timers, How to do it..., How it
works...

GIMP
o URL/How todoit...
GLCD
o accessing, mutex used / How to do it..., How it works...
GNU ARM Eclipse
o URL / Introduction
o installing / Installing GNU ARM Eclipse, How to do it..., How it works...
o components, URL / Installing GNU ARM Eclipse
o port uVision projects, porting / How to port uVision projects to GNU ARM
Eclipse, How to do it...
GNU ARM Eclipse plug-ins
o URL / Installing GNU ARM Eclipse
GNU ARM Eclipse QEMU Emulator plug-in
o URL / Installing GNU ARM Eclipse
GNU ARM OpenOCD Debugging plug-in
o URL / Installing GNU ARM Eclipse
GNU General Public License
o URL /How it works...
GPIO ports
o configuring / Configuring GPIO ports, How to do it..., How it works...
Graphic LCD (GLCD)
o about / Writing to the GLCD, How it works...

H

e hardware abstraction layer (HAL)
o about / Configuring the hardware abstraction layer, How to do it..., How it
works...
Hardware Abstraction Layer (HAL) / How to use the STM32CubeMX Framework
(APD)
hierarchical decomposition / There’s more...
high speed external (HSE) clock / Estimating microcontroller performance
high speed internal (HSI) clock / Estimating microcontroller performance

[2C Peripheral Bus
o RTE, setting / Setting the RTE for the 12C Peripheral Bus, How to do it..., How
it works...
incrementer / Why ensuring mutual exclusion is important when accessing shared
resources
Infinite Impulse Response (IIR) filter / Getting ready
input data register (IDR) / Handling interrupts
Integrated Development Environment (IDE) / Introduction
Integrated Interchip Sound (IIS)
o about / Introduction
Inter-IC-Sound (12S) / Introduction
Inter-Integrated Circuit (I2C) Interface / Setting the RTE for the [2C Peripheral Bus
Internal trigger inputs (ITRx) / How it works...
interrupts
o handling / Handling interrupts, Getting ready, How to do it..., How it works...,
There’s more...

o in assembly language, handling / Handling interrupts in assembly language,

Getting ready, How to do it..., There’s more..., Implementing a jump table,
Getting ready, How to do it..., How it works...

interrupt service routine (ISR) / Handling interrupts
Interrupt Service Routine (ISR) / How to do it...

J

e jump table

o implementing / Implementing a jump table, Getting ready, How to do it..., How
it works...

K

o Keil
o URL / There’s more...

LCD touchscreen
o using / How to use the LLCD touchscreen, How to do it..., How it works...
Linaro
o URL / Installing GNU ARM Eclipse
linear-feedback shift register (LFSR) / There’s more...
Link Register (LR) / Introduction
Lock Register (LCKR) / How it works...
Look-up-table (LUT) / How it works...

look-up-table (LUT) / Generating a sine wave
low-pass digital filter

o designing / Designing a low-pass digital filter, Getting ready, How to do it...,
How it works...

machine storage classes
o illustrating / Illustrating machine storage classes, How it works...
mailboxes
o used, for multithreaded programs / Multithreaded programs using mailboxes,
How to doit..., How it works...
Master Clock (MCLK) / Configuring the audio codec
MCBSTM32F400 Evaluation Board
o programming / Programming the MCBSTM32F400 evaluation board, How to
do it..., How it works...
MDK-ARM Eclipse plug-in
o URL / Installing GNU ARM Eclipse
MDK Version 5 - Legacy Support
o URL/How to doit...
microcontroller performance
o estimating / Estimating microcontroller performance, There’s more...
Multiply-Accumulate (MAC) operations / There’s more...
Multiply Accumulator (MAC) / There’s more...
multithreaded Pong game
o writing / How to write a multithreaded Pong game, How to do it..., How it
works...
multithreaded programs

o event logs used / Multithreaded programs using event flags, How to do it...,
How it works...

o mailboxes used / Multithreaded programs using mailboxes, How to do it...,
How it works...
mutex
o used, for accessing GLCD / How to do it..., How it works...
mutual exclusion
o about / Why ensuring mutual exclusion is important when accessing shared
resources, How to do it...

N

¢ nested functions / How to do it
e Nested Vectored Interrupt Controller.(NVIC) / How it works...

O

e OmniVision
o URL / How it works...

PackBits / There’s more...
parameters
o passing, between C and assembly language / Passing parameters between C and
the assembly language, Getting ready, How to do it..., How it works..., See also
pass-by-reference / How it works...
pass-by-value / How it works...
Phase Locked Loop (PLL) / Estimating microcontroller performance
Phase Locked Loop (PLL) clock / How it works...
Pong

o about / Creating a game application — Stage 1

o URL / Creating a game application — Stage 1
Portable Operating System Interface (POSIX) / Introduction

prerecorded audio
o playing / How to play prerecorded audio, Getting ready, How to do it..., How it
works...
primitive / How it works...
print statements
o used, for debugging code / Debugging vour code using print statements
Program Counter (PC) / Introduction
programs
o debugging, CMSIS-RTOS used / Debugging programs that use CMSIS-RTQOS,
How to doit..., How it works...
Program Status Register (PSR) / How it works...
pulse width modulation (PWM) schemes / How it works...
PuTTY®
o URL / Writing to the console window

re)

Real-Time Library (RL-ARM™) / Introduction
real-time operating systems (RTOS) / Introduction
Real Time Clock Control (RCC) / How it works...
Reduced Instruction Set Computing (RISC) architectures / There’s more...
reset and clock control (RCC) / Estimating microcontroller performance
Reset and Clock Control (RCC) unit / How it works...
resistor-capacitor (RC) / Estimating microcontroller performance
RS232
o URL /How it works...
RTE
o setting, for I2C Peripheral Bus / Setting the RTE for the [2C Peripheral Bus,
How to doit..., How it works...
RTOS / Introduction
Run-length encoding (RLE) / There’s more...
Run Time Environment (RTE) / Configuring the hardware abstraction layer

Sample/Hold block / Introduction
sample time registers / Introduction
Semaphore / There’s more...
Serial Peripheral Interface (SPI)
o URL /How it works...
/ Configuring the audio codec
simple program
o writing / There’s more...
sine wave
o generating / Generating a sine wave, How to do it..., How it works...
Single Instruction Multiple Data (SIMD) / There’s more...
sound and graphics

o used, for gaming ideas / Ideas for games using sound and graphics
sound for games

o URL / Ideas for games using sound and graphics
Stack Pointer (SP) / Introduction
Status Register (SR) / How it works...
STM
o URL / How it works...
STM32 microcontroller / There’s more...
STM32CubeMX Framework (API)
o using / How to use the STM32CubeMX Framework (API), How to do it...,
There’s more...
string / How it works...
struct (structure) / How it works...
superloop / How it works...
symbol table / Introduction
system clock (SYSCLK) / How it works...

Task Control Block / How it works...
TIM1 / How it works...
TIM2
o configuring / How it works...
TIMS8 / How it works...
Timers
o used, for creating digital clock / Using timers to create a digital clock, How to
do it..., How it works...
timers
o used, for triggering conversations / Using timers to trigger conversions, How to
doit..., How it works..., There’s more...

UART ports

o configuring / Configuring UART ports, How to do it..., How it works...
Unified Assembler Language (UAL) / Introduction
Universal Synchronous/Asynchronous Receiver/Transmitter (USART) / How it
works...
Universal Synchronous/Asynchronous Receiver Transmitter (USART) / How it
works...
uVision5 / Introduction
uVision projects

o porting, to GNU ARM Eclipse / How to port uVision projects to GNU ARM

Eclipse, How to do it...

Universal Asynchronous Receiver Transmitter (UART) / How it works...

23

WAV / How to play prerecorded audio
Waveform Audio File Format (WAVE) / How to play prerecorded audio
WAVtoCode / Getting ready
Windows Build Tools / Installing GNU ARM Eclipse
o URL/How to doit...

Y

e YAGARTO
o URL / Introduction

	ARM® Cortex® M4 Cookbook
	Credits
	About the Author
	About the Reviewer
	www.PacktPub.com
	eBooks, discount offers, and more
	Why Subscribe?
	Preface
	What this book covers
	What you need for this book
	Who this book is for
	Sections
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also
	Conventions
	Reader feedback
	Customer support
	Downloading the example code
	Downloading the color images of this book
	Errata
	Piracy
	Questions
	1. A Practical Introduction to ARM® CORTEX®
	Introduction
	Installing uVision5
	How to do it…
	How it works…
	Linking an evaluation board
	How to do it…
	How it works…
	There's more…
	Running an example program
	How to do it…
	How it works…
	Writing a simple program
	How to do it…
	How it works…
	There's more…
	Understanding the simple use of GPIO
	How to do it…
	How it works…
	There's more…
	Estimating microcontroller performance
	How to do it…
	There's more…
	See also
	2. C Language Programming
	Introduction
	Configuring the hardware abstraction layer
	How to do it…
	How it works…
	Writing a C program to blink each LED in turn
	Getting ready…
	How to do it…
	How it works…
	There's more…
	Writing a function
	How to do it
	How it works…
	There's more…
	Writing to the console window
	Getting ready
	How to do it…
	How it works…
	Writing to the GLCD
	Getting ready
	How to do it…
	How it works…
	Creating a game application – Stage 1
	How to do it…
	How it works…
	Creating a game application – Stage 2
	There's more…
	How it works…
	Debugging your code using print statements
	How to do it…
	How it works…
	Using the debugger
	How to do it…
	See also
	3. Programming I/O
	Introduction
	Performing arithmetic operations
	How to do it…
	How it works…
	Illustrating machine storage classes
	How to do it…
	How it works…
	Configuring GPIO ports
	How to do it…
	How it works…
	There's more…
	Configuring UART ports
	How to do it…
	How it works…
	Handling interrupts
	Getting ready
	How to do it…
	How it works…
	There's more…
	Using timers to create a digital clock
	How to do it…
	How it works…
	4. Assembly Language Programming
	Introduction
	Writing Cortex-M4 assembly language
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also
	Passing parameters between C and the assembly language
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also
	Handling interrupts in assembly language
	Getting ready
	How to do it…
	How it works…
	There's more…
	Implementing a jump table
	Getting ready
	How to do it…
	How it works…
	Debugging assembly language
	How to do it…
	How it works…
	There's more…
	5. Data Conversion
	Introduction
	Setting up the ADC
	How to do it…
	How it works…
	There's more…
	Configuring general-purpose timers
	How to do it…
	How it works…
	Using timers to trigger conversions
	How to do it…
	How it works…
	There's more…
	Setting up the DAC
	How to do it…
	How it works…
	There's more…
	Generating a sine wave
	Getting ready
	How to do it…
	How it works…
	6. Multimedia Support
	Introduction
	Setting the RTE for the I2C Peripheral Bus
	How to do it…
	How it works…
	How to use the LCD touchscreen
	How to do it…
	How it works…
	Writing a driver for the audio codec
	How to do it…
	How it works…
	How to use the audio codec
	How to do it…
	How it works…
	How to use the camera
	How to do it…
	How it works…
	There's more…
	Designing bitmapped graphics
	How to do it…
	How it works…
	There's more…
	Ideas for games using sound and graphics
	7. Real-Time Signal Processing
	Introduction
	Configuring the audio codec
	How to do it…
	How it works…
	There's more…
	How to play prerecorded audio
	Getting ready
	How to do it…
	How it works…
	Designing a low-pass digital filter
	Getting ready
	How to do it…
	How it works…
	How to make an audio tone control
	Getting ready
	How to do it…
	How it works…
	There's more...
	8. Real-Time Embedded Systems
	Introduction
	Multithreaded programs using event flags
	How to do it…
	How it works…
	Multithreaded programs using mailboxes
	How to do it…
	How it works…
	Why ensuring mutual exclusion is important when accessing shared resources
	How to do it…
	How it works…
	There's more…
	Why we must use a mutex to access the GLCD
	How to do it…
	How it works…
	How to write a multithreaded Pong game
	How to do it…
	How it works…
	Debugging programs that use CMSIS-RTOS
	How to do it…
	How it works…
	9. Embedded Toolchain
	Introduction
	Installing GNU ARM Eclipse
	How to do it…
	How it works…
	Programming the MCBSTM32F400 evaluation board
	How to do it…
	How it works…
	How to use the STM32CubeMX Framework (API)
	How to do it…
	How it works…
	There's more…
	How to port uVision projects to GNU ARM Eclipse
	How to do it…
	Index

