M.E. Van Valkenburg

Analog Filter Design

ubisaq 19314 bojeuy

m Holt-Saunders International Editions %

Holt
Saunders



Analog

Filter

Design




yAh'a
1| /IN\\
/ ~
I\ v HRW
Series in
/ Electrical and
Computer Engineering

M. E. Van Valkenburg, Series Editor

L. H. Bobrow ELEMENTARY LINEAR CIRCUIT ANALYSIS

C. H. Durney, L. D. Harris, C. L. Alley ELECTRIC CIRCUITS: THEORY AND
ENGINEERING APPLICATIONS

G. H. Hostetter, C. J. Savant, Jr., R. T. Stefani DESIGN OF FEEDBACK
CONTROL SYSTEMS

S. Karni and W. J. Byatt MATHEMATICAL METHODS IN CONTINUOUS
AND DISCRETE SYSTEMS

B. C. Kuo DIGITAL CONTROL SYSTEMS

A. Papoulis CIRCUITS AND SYSTEMS: A MODERN APPROACH

A. S. Sedra and K. C. Smith  MICROELECTRONIC CIRCUITS

M. E. Van Valkenburg ANALOG FILTER DESIGN



Analog

Filter
Design

M. E. VAN VALKENBURG

Department of Electrical Engineering
University of Illinois at Urbana-Champaign

Holt, Rinehart and Winston

New York Chicago  San Francisco  Philadelphia
Montreal Toronto London Sydney Tokyo
Mexico City  Rio de Janeiro  Madrid

Holt-Saunders Japan




Copyright © 1982 CBS College Publishing
All rights reserved.

Address correspondence to:

383 Madison Avenue, New York, NY 10017

Library of Congress Cataloging in Publication Data

Van Valkenburg, M.E. (Mac Elwyn)
Analog filter design.

(HRW series in electrical and computer engineering)
Bibliography: p.
Includes index.
1. Electric filters, Active. 2. Operational
amplifiers. 1. Title. II. Series.
TK7872.F5V38 621.3815'324 81-23774
ISBN 0-03-059246-1(US College Edition) AACR2
ISBN 4-8338-0091-3(Holt-Saunders International Edition)

This International Edition is not for sale in the United
States of America, its dependencies or Canada.

Printed in Japan, 1982
123 144 987654321

CBS COLLEGE PUBLISHING
Holt, Rinehart and Winston
The Dryden Press

Saunders College Publishing



Preface

Filters are essential in systems electrical engineers are called upon to design.
Thus, the topic of filters is appropriate for study by undergraduates preparing
to enter their professions and by practicing engineers wishing to extend their
skills. This book was written to fill such needs.

The course at the University of Illinois from which this book evolved was
offered to juniors and seniors for three hours of credit; an additional hour was
offered for the associated laboratory. Students taking the course had, as a
minimum background, the first course in circuits and a course that included the
study of Laplace transforms. Because the book is intended for undergraduate
use, sophisticated mathematics has been avoided in favor of algebraic deriva-
tions. In addition, the sequence of topics treated is such that design is stressed
beginning with Chapter 2.

In organizing the material for the course, the decision was made to
concentrate on inductorless filters in which the active element is the operation-
al amplifier (op amp). Such filters are required for voice and data communica-
tions systems, for which the size and weight of inductors would make their use
prohibitive. I thus exclude passive LCR filters except as prototypes from which
an active equivalent is then found. A benefit of this decision is that complicated
realizability conditions are avoided and design becomes relatively simple.

Another advantage of this choice is that the usefulness of the op amp is
stressed. Two developments that have profoundly affected the practice of
electrical engineering are the microprocessor for digital systems and the op
amp for analog systems. It seems imperative that our students have experience
with both. Most universities now offer courses in microprocessors. However,
students ordinarily encounter op amps only briefly in their study of electronic
circuits, and this seems inadequate.

Chapter 2 introduces the use of the op amp in analog operations: addition,
subtraction, multiplication, and integration. This chapter may be skipped by
students who have covered similar material in electronics courses. Chapters 3
and 4 constitute a review of sinusoidal steady-state topics recast to provide an
introduction to first-order filters. Chapter 5 features the universal biquad, and
through it the standard forms of response of filters: lowpass, bandpass,
highpass, bandstop, and allpass.

In the chapters that follow, the functions of a filter are studied in
combination with the frequency-response approximations used by filter design-
ers: Butterworth, Chebyshev, Bessel-Thompson, inverse Chebyshev, and
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vi PREFACE

Cauer (or elliptic). The sequence of topics was chosen to maintain student
interest and to provide practice in design. Once this interest is established, two
important topics are introduced: sensitivity and frequency transformations.

Chapter 14 treats the synthesis of doubly terminated passive ladders. This
together with Chapter 11 constitute an introduction to passive filter design. An
important conclusion is reached in Chapter 14 relating to sensitivity. This is the
result due to Orchard—the passive ladder circuit has low sensitivity. On this
basis, the study of simulated ladder circuits is undertaken in Chapters 15
through 17. Simulation of the passive ladder is accomplished in three ways: by
introducing new elements which make it possible to exclude the inductor,
through the simulation of the block diagram representation of the ladder, and
through the simulation of resistors using switched capacitors.

A pleasant discovery has been made by students in classes on analog
filters: synthesis or design is much simpler than analysis. In analysis, any but
the simplest circuits will require the use of a computer or hours of tedious hand
calculations. The design topics of this book require at most a hand-held
calculator, preferably one with an inverse hyperbolic function key. For faculty
willing to experiment with the curriculum, the book might be used immediately
following a first circuits course in which the sinusoidal steady state has been
introduced.

The course on analog filter design is most successful when taught with an
associated laboratory. There students may observe the amazing agreement of
theory based on the ideal op amp and measurement, as long as the frequency
range is sufficiently low. At some point in the experiments, students will
observe the need for better models and so be prepared for Chapter 20.

I am indebted to the hundreds of students over the years who participated
in testing the material of this book, and to my colleagues in the circuits and
systems area at the University of Illinois who have provided a stimulating
milieu for discussions. The book was written for the most part while I was on
leave from the University of Illinois. It is my pleasure to acknowledge the
congenial atmosphere and assistance provided by my hosts: Professor Bharat
Kinariwala of the University of Hawaii at Manoa, Professor Carl H. Durney of
the University of Utah, and Professor Donald E. Kirk of the Naval Postgradu-
ate School, Monterey. I benefited from comments by Professor Ronald A.
Rohrer who used a preliminary version of the notes for a class he taught at the
University of Maine. At the University of Illinois, the course has been taught
jointly with Professor E. I. EI-Masry, who has been generous in making helpful
suggestions. Philip R. Geffe of Scientific-Atlanta has introduced me to many of
the topics of the book through his writings; he also offered specific suggestions
which were most helpful. Teaching assistants and former students who helped
shape the coverage include Peter L. Chu, J. M. Cioffi, Leon Garza, and Gordon
Jacobs. It has been a pleasure to work with Paul Becker in the production of
the book.  Finally, I express my special thanks to my wife Evelyn for her
assistance in proofreading and for patience and encouragement during the
writing of the book.

M. E. Van Valkenburg
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CHAPTER 1
Introduction

The subject of this book is a special class of electric wave filters which make use
of the remarkable properties of the operational amplifier. Such filters are some-
times called active filters, but more often analog filters, an expression that distin-
guishes them from digital filters. In modern integrated circuit technology, both
analog and digital filters may be implemented on the same chip. This in-
troductory chapter provides some background that will be useful in the studies
that follow.

1.1 THE CIRCUIT DESIGN
PROBLEM

Figure 1.1 shows a circuit with a voltage source v, connected to the excitation ter-
minals 1-1’. The response terminals 2-2’ are characterized by the voltage v,. If the
circuit is operating in the sinusoidal steady state, then the two voltages may be
represented by the phasors

V.|£8, and  |Vy L6, (1.1)

These two phasor quantities may be used to define a transfer function. Our
choice for such a transfer function will always be

output quantity

. : (1.2)
Input quantity

Transfer function =

This choice is important since many authors use the reciprocal definition and
even construct tables using their definition. Then the magnitude of the transfer
function is

[Val _

1720 1.3

and the phase is
0=0,-6, (1.4)

When we make measurements using the configuration of Fig. 1.1, we ordinarily
keep | V)| constant, and we also select the phase reference such that §, = 0. Then
the variations of |V,| and 8, with changes in frequency w, in radians per second,
or f, in hertz, constitute the frequency response of the circuit. Unless the circuit

1
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,
———o
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1 vy
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——o0 FIGURE 1.1

contains only resistors, both the magnitude and the phase will change in value
with frequency.

Now if we know the circuit and the form of the input, we may determine the
output v,. This is known as circuit analysis. However, if we know the input and
the output or the ratio, such as |T| and 6,, and we wish to know the circuit, this is
known as circuit design (or synthesis). Throughout this textbook we will be con-
cerned with design, but will resort to analysis when we find it necessary to charac-
terize some circuit or combination of circuit elements. The circuits that we de-
sign, having a prescribed variation of the magnitude, phase, or related quantities
as a function of frequency, are known as filters.

Filtering has a commonly accepted meaning of separation—something re-
tained, something rejected. In electrical engineering we filter signals, usually volt-
ages. Any signal may be thought of as made up of packets of signal, each at a
specified frequency. Thus if a signal is made up of two tones, one at high fre-
quency, such as that produced by a piccolo, and one of low frequency, such as
that of a tuba, we can imagine a filtering action by which one tone or the other is
suppressed. You will come to understand that any signal may be thought of as
made up of components, each at a given frequency. It is as if any signal were gen-
erated by a large number of sinusoidal voltage sources connected in series, each
characterized by a frequency and an amplitude and phase. This concept will be
formalized in your education when you study Fourier analysis.

We reject components of a signal by designing a filter that provides attenua-
tion over a band of frequencies, and we retain components of a signal through the
absence of attenuation or perhaps even gain. It is important that we distinguish
between measures of attenuation and gain. We defme attenuation as

a=-201log|T1dB, |T|=<I (1.5)

where |7) is defined by Eq. (1.3). The unit of attenuation is the decibel (dB), and
the minus sign is introduced so that « is positive when the circuit provides loss, as
implied by |7] = 1. We use a different symbol for the case when |T] > 1, which
implies gain:

A=20log|TIdB, |T]>1 (1.6)

We may solve Eq. (1.5) for |7] through the following steps. First we divide
by —20 such that

a

~ 50 = logIT (L7)

Taking the antilogarithm of this equation, gives
Iﬂ =10~ (18)



1.2 KINDS OF FILTERS AND DESCRIPTIVE TERMINOLOGY 3

This equation may be solved by using the y* key on a calculator when written in
the form

1

1T = (10°%)™ o |T| = Aoeey (1.9)
(10°%)

Similarly, Eq. (1.6) may be solved to give
[T) = (10°%)* (1.10)

Using these last two equations, you may verify entries in Table 1.1.
It is sometimes useful to memorize some values from the chart to serve as
“rules of thumb.” Using Eq. (1.9), it is seen that

1 dB implies ~10% decrease in |T] (from 1.0 to 0.891)
2 dB implies =20% decrease in |T] (from 1.0 to 0.794)
3 dB implies =30% decrease in |7] (from 1.0 to 0.708)
6 dB implies =50% decrease in |7] (from 1.0 to 0.501)

Each additional 6 dB of a reduces |T] by 1/2.

1.2 KINDS OF FILTERS AND
DESCRIPTIVE TERMINOLOGY

Filters are classified according to the functions they are to perform, in terms of
ranges of frequencies, as pass bands and stop bands. In the ideal case a pass band is
such that |7] = 1 and « = 0, while in a stop band |T] = 0 and « = oo. The patterns
of pass band and stop band, which give rise to the names of the four most com-
mon filters are shown in Fig. 1.2. In terms of the four parts, the filters illustrated
in Fig. 1.2 are defined as follows:

1. A lowpass filter characteristic is one in which the pass band extends from w =
0 to w = w,, Where w, is known as the cutoff frequency (Fig. 1.2a).

2. A highpass filter is the complement of the lowpass filter in that the frequency
range from 0 to w, is a stop band, while from w, to infinity is a pass band
(Fig. 1.2b).

3. A bandpass filter is one in which frequencies extending from w, to w, are
passed, while all other frequencies are stopped (Fig. 1.2c).

4. The stop-band filter is the complement of the bandpass filter where the fre-
quencies from w, to w, are stopped and all others are passed (Fig. 1.2d).
These filters are sometimes known as notch filters.

There will be other kinds of filters introduced as our study progresses, but filter-
ing action can be visualized in terms of these basic four types of filters.

It is now possible to realize the ideal characteristics of Fig. 1.2 with a finite
number of elements. Realistic filter characteristics which correspond to the four
basic types are shown in Fig. 1.3. We will see later that the sharpness of the tran-
sition from stop band to pass band can be controlled to some extent in the design
of the filters.
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TABLE 1.1 Values of |T|

dB A a dB A a dB A a

0 1.000 1.0000 4.0 1.585 0.6310 8.0 2.512 0.3981
0.1 1.012 0.9886 4.1 1.603 0.6237 8.1 2.541 0.3936
0.2 1.023 0.9772 42 1.622 0.6166 8.2 2.570 0.3890
0.3 1.035 0.9661 43 1.641 0.6095 83 2.600 0.3846
0.4 1.047 0.9550 44 1.660 0.6026 8.4 2.630 0.3802
0.5 1.059 0.9441 4.5 1.679 0.5957 8.5 2.661 0.3758
0.6 1.072 0.9333 4.6 1.698 0.5888 8.6 2,692 0.3715
0.7 1.084 0.9226 4.7 1.718 0.5821 8.7 2.723 0.3673
0.8 1.096 0.9120 4.8 1.738 0.5754 8.8 2.754 0.3631
0.9 1.109 0.9016 49 1.758 0.5689 8.9 2.786 0.3589
1.0 1.122 0.8913 5.0 1.778 0.5623 9.0 2.818 0.3548
1.1 1.135 0.8810 5.1 1.799 0.5559 9.1 2.851 0.3508
1.2 1.148 0.8710 5.2 1.820 0.5495 9.2 2.884 0.3467
1.3 1.161 0.8610 5.3 1.841 0.5433 93 2917 0.3428
1.4 1.175 0.8511 54 1.862 0.5370 9.4 2951 0.3388
1.5 1.189 0.8414 5.5 1.884 0.5309 9.5 2.985 0.3350
1.6 1.202 0.8318 5.6 1.905 0.5248 9.6 3.020 0.3311
1.7 1.216 0.8222 5.7 1.928 0.5188 9.7 3.055 0.3273
1.8 1.230 0.8128 5.8 1.950 0.5129 9.8 3.090 0.3236
1.9 1.245 0.8035 5.9 1.972 0.5070 9.9 3.126 0.3199
20 1.259 0.7943 6.0 1.995 0.5012 10.0 3.162 0.3162
2.1 1.274 0.7852 6.1 2018 0.4955 10.1 3.199 0.3126
22 1.288 0.7762 6.2 2.042 0.4898 10.2 3.236 0.3090
23 1.303 0.7674 6.3 2.065 0.4842 10.3 3.273 0.3055
24 1.318 0.7586 6.4 2.089 0.4786 10.4 3311 0.3020
25 1.334 0.7499 6.5 2.113 0.4732 10.5 3.350 0.2985
2.6 1.349 0.7413 6.6 2.138 0.4677 10.6 3.388 0.2951
2.7 1.365 0.7328 6.7 2.163 0.4624 10.7 3.428 0.2917
2.8 1.380 0.7244 6.8 2.188 0.4571 10.8 3.467 0.2884
29 1.396 0.7161 6.9 2213 0.4519 10.9 3.508 0.2851
3.0 1.413 0.7079 7.0 2.239 0.4467 11.0 3.548 0.2818
3.1 1.429 0.6998 7.1 2.265 0.4416 1.1 3.589 0.2786
32 1.445 0.6918 7.2 2.291 0.4365 11.2 3.631 0.2754
33 1.462 0.6839 7.3 2317 0.4315 11.3 3.673 0.2723
34 1.479 0.6761 74 234 0.4266 11.4 3.715 0.2692
35 1.496 0.6683 15 2.371 0.4217 115 3.758 0.2661
3.6 1.514 0.6607 7.6 2.399 0.4169 11.6 3.802 0.2630
3.7 1.531 0.6531 71 2.427 0.4121 11.7 3.846 0.2600
3.8 1.549 0.6457 7.8 2.455 0.4074 11.8 3.890 0.2570
39 1.567 0.6383 7.9 2.483 0.4027 11.9 3.936 0.2541

In the chapters to follow we will switch from |7] characteristics to attenua-
tion characteristics, depending on the characteristic that seems to make the point
more clearly. The attenuation characteristics corresponding to those of Fig. 1.3
are shown in Fig. 1.4. The two quantities are, of course, related by Eq. (1.5).
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dB A a dB A a

12.0 3.981 0.2512 16.0 6.310 0.1585
12.1 4.027 0.2483 16.1 6.383 0.1567
12.2 4.074 0.2455 16.2 6.457 0.1549
12.3 4.121 0.2427 16.3 6.531 0.1531
12.4 4.169 0.2399 16.4 6.607 0.1514
12.5 4217 0.2371 16.5 6.683 0.1496
12.6 4.266 0.2344 16.6 6.671 0.1479
12.7 4.315 0.2317 16.7 6.839 0.1462
12.8 4.365 0.2291 16.8 6.918 0.1445
12.9 4416 0.2265 16.9 6.998 0.1429
13.0 4.467 0.2239 17.0 7.079 0.1413
13.1 4.519 0.2213 17.1 7.161 0.1396
13.2 4.571 0.2188 17.2 7.244 0.1380
133 4.624 0.2163 17.3 7.328 0.1365
13.4 4.677 0.2138 17.4 7413 0.1349
13.5 4.732 0.2113 17.5 7.499 0.1334
13.6 4.786 0.2089 17.6 7.586 0.1318
13.7 4.842 0.2065 17.7 7.674 0.1303
13.8 4.898 0.2042 17.8 7.762 0.1288
13.9 4.955 0.2018 17.9 7.852 0.1274
14.0 5.012 0.1995 18.0 7.943 0.1259
14.1 5.070 0.1972 18.1 8.035 0.1245
14.2 5.129 0.1950 18.2 8.128 0.1230
14.3 5.188 0.1928 18.3 8.222 0.1216
14.4 5.248 0.1905 18.4 8.318 0.1202
14.5 5.309 0.1884 18.5 8414 0.1189
14.6 5.370 0.1862 18.6 8.511 0.1175
14.7 5.433 0.1841 18.7 8.610 0.1161
14.8 5.495 0.1820 18.8 8.710 0.1148
14.9 5.559 0.1799 18.9 8.811 0.1135
15.0 5.623 0.1778 19.0 8.913 0.1122
15.1 5.689 0.1758 19.1 9.016 0.1109
15.2 5.754 0.1738 19.2 9.120 0.1096
15.3 5.821 0.1718 19.3 9.226 0.1084
15.4 5.888 0.1698 19.4 9.333 0.1072
15.5 5.957 0.1679 19.5 9.441 0.1059
15.6 6.026 0.1660 19.6 9.550 0.1047
15.7 6.095 0.1641 19.7 9.661 0.1035
15.8 6.166 0.1622 19.8 9.772 0.1023
15.9 6.237 0.1603 19.9 9.886 0.1012

Since it is impossible to realize filters with characteristics like those shown in
Fig. 1.2 with abrupt changes from pass to stop and from stop to pass, we must
learn to cope with realistic filter characteristics illustrated in Figs. 1.3 and 1.4.
The way this will be accomplished is explained in Fig. 1.5 in comparison with
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IT| Ideal lowpass |T| Ideal highpass

1 1+ —-

t<— Pass —»1r<— Stop—> te— Stop —>t€— Pass—>

0 O)O w 0 wo w

(a) (b)

IT| Ideal bandpass |T| Ideal bandstop

1~ 1

Stop Pass
Pass —st< Stop > Stop->te— Pass—>

() (d)
FIGURE 1.2

Fig. 1.4. We will specify the characteristics we require by the different definitions
of pass band and stop band:

1. A pass band is one in which the attenuation is always less than a value desig-
nated as apmax.

2. A stop band is one in which the attenuation is always greater than a value
designated as ap,,.

3. Bands of frequencies between the stop bands and pass bands so defined are
known as transition bands.

In terms of Fig. 1.5a we see that the pass band extends from w = 0 to w = w,, the
range of frequencies from w, to w, is the transition band, and all frequencies
greater than w, constitute the stop band. In this figure as well as in Fig 1.5b we
have used the subscripts p and s to indicate the edges of the pass bands and stop
bands. The same concept applies to the bandpass and bandstop cases shown in
Fig. 1.5c and d. Here there are two transition bands.

We will use the attenuation characteristics shown in Fig. 1.5 as the filter
specifications in later chapters. In terms of Fig. 1.5a the design problem will be as
follows: Given the four quantiti€s .., dmms ,, and w,, find an attenuation speci-
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fication that satisfies the four requirements. The form of the solution is indicated
in Fig. 1.6 by the dashed lines. In terms of Fig. 1.6a, we will have found the re-
quired attenuation characteristic a (w) if at the frequency w,, @ =< an.., and at the
frequency w,, @ = a.;,. This kind of description relates in analogous ways to the
characteristics shown in Fig. 1.6b, c, and d.

The response of Fig. 1.6a is repeated in Fig. 1.7. Again we see the frequen-
cies w, and w,, and the attenuation values ay,, and a,,, along with an indication
of the pass band, the transition band, and the stop band. Here w, designates the
half-power frequency at which a = 3 dB, and the corresponding |7] has the value
0.707. The frequency range from 0 to w, is sometimes called the bandwidth (BW).
The portion of the curve at high frequencies is sometimes called the skirt, and the
rate at which it increases is known as the rolloff. If frequency is plotted on loga-
rithmic coordinates, then it is known as a Bode plot, and the rolloff or asymptotic
slope is measured in multiples of 6 dB per octave or 20 dB per decade. This prop-
erty is examined in greater detail in Chapter 4.

Figure 1.8 shows similar quantities for the case of the bandpass filter. We
note that the pass band is defined as the band of frequencies that extends from w,
to w, where the attenuation is less than a..,, while the bandwidth is defined in
terms of the half-power frequencies and extends from w;s to we. In the case of the
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bandpass filter there is a lower stop band and an upper stop band. We will gener-
ally assume that a,,,, is the same for both stop bands, although this is not a neces-
sary condition.

Another factor must be considered in design. The attenuation curves shown
thus far have had a minimum value of « = 0 dB. Since we are using active ele-
ments, this need not be the case, for the active elements may provide gain. If it is
necessary to meet the specifications exactly, then it will be necessary to provide a
circuit to reduce the gain. We call this unwanted gain the insertion gain. If the cir-
cuit provides excess attenuation, this is called insertion loss. These two conditions
are illustrated in Fig. 1.9, in which the characteristic bandpass curve is shifted up
or down, but the shape is not changed.

1.3 WHY WE USE ANALOG
FILTERS

The basic concepts of the electric wave filter were invented in 1915 independently
by K. W. Wagner in Germany and George A. Campbell in the United States. In
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the years since that invention, the theory and realization techniques have been
developed to a high state of perfection. Making an active filter became a possi-
bility with the invention of the vacuum tube, and Black, Bode, and others made
use of the vacuum tube and feedback in the early 1930s to provide a theory for
active filter amplifiers. The present era of extensive use of active filters is due to
the development of an inexpensive monolithic operational amplifier by Widlar in
1967.

The practical active filter makes use of operational amplifiers together with
capacitors and resistors, and is generally known as an analog filter. How do we
decide whether to use an analog filter in preference to filters made up of passive
elements? In answering that question, we must consider such factors as:

The range of frequency of operation

Sensitivity to parameter changes and stability

Weight and size of the realization

Availability of voltage sources for the operational amplifiers

Ealbadi o

There is also the matter of whether to choose an analog or a digital filter for a
particular application.
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(d)

A comparison of the frequency range of operation of three kinds of filters is
shown in Fig. 1.10. Compared to the passive filter, we see that analog filters can
be realized for lower frequencies, but not for higher frequencies. This may be a
temporary limitation since better operational amplifiers may become available at
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low prices. But for frequencies near to or in the microwave range, only distrib-
uted filters, waveguide or coaxial cable filters, may be used.

If high sensitivity is an important consideration, then passive realizations of-
ten have an advantage. This is considered in greater detail in Chapter 9.

Analog filters may be realized on a chip, thus they are superior when consid-
erations of weight and size are important. This is a factor in the design of filters
for low-frequency applications where passive filters require large inductors.

Finally, analog filters do require voltage sources ranging from 1 V to about
15 V for the proper operation of the operational amplifier. Whether such voltages
are available without maintenance is an important consideration.

1.4 SOME CHOICES

It will become clear as the study progresses that filter design is primarily a fre-
quency-domain matter and that we seldom make reference to time-domain quan-
tities such as rise time or overshoot. Design specifications and physical measure-
ments are made in terms of frequency f in hertz. However, it turns out to be
much more convenient to use radian frequency w rather than f. We will follow
the practice of using w as long as possible and then convert to f only in the last
step. Experience in design will show the advantages of this choice.

We will make extensive use of both magnitude and frequency scaling and
also of normalized values of frequency as well as element values. Skill in using
scaling is important in filter design, as we will show by examples. This means that
small values for resistors and capacitors and the uniform choice of w, = 1 rad/s as
a characterizing frequency will appear in all design steps, except for the last. In
that step the denormalized values will be determined from the equations

k.,
L..= k_ILom (1.11)
Coew = 1 C, (1.12)
e = Tk, o .

R... =k, Ryq (1.13)
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These equations are derived and the concepts are explained in Appendix A.
Finally, it will become clear in the chapters to follow that ordinarily there is
no unique solution to a design problem. One of the decisions that the designer
will have to make is that of element size. Skill in such choices will come with ex-
perience. Until then, the following guidelines are offered for the passive elements:

1. Capacitors

Largest Smallest

Readily realizable 1 uF 5 pF
Practical 10 uF 0.2 pF
Marginally practical 500 uF 0.5 pF
2. Inductors
Largest Smallest
Readily realizable 1 mH 1 uH
Practical 10 mH 0.1 uH
Marginally practical 1H 50 nH

3. Resistors. Resistor size will depend on the quality of the operational ampli-
fier used and on power dissipation considerations. As a guideline,

Preferred range 1-100 k2
Lower limit 0.1-1kQ
Upper limit 100-500 k2

These choices are tentative and depend on the state of the art.






CHAPTER 2
Resistor

Operational-
Amplifier
Circuits

In this chapter we introduce the operational amplifier (op amp). Op amps are
never used alone, but only in combination with other circuit elements that pro-
vide feedback, determine gain, and so on. The simplest element used in the com-
bination is the resistor, and this is the combination studied in this chapter. We
will make use of a simple model for the op amp, postponing consideration of
more adequate models until Chapter 20. The ultimate test of a model is its suc-
cess in the laboratory. Experience has shown that even the simplest model allows
us to predict circuit operation, provided only that the frequency range is kept suf-
ficiently low.

2.1 OPERATIONAL AMPLIFIERS
AND SIMPLE MODELS

The differential amplifier is familiar in modern electronics and differs from ordi-
nary amplifiers in that two inputs are provided. Its operation is such that the out-
put voltage is the difference of the two input voltages multiplied by an overall
gain. In terms of the quantities defined in Fig. 2.1,

va(t) = A[v,(2) — v_(1)] 21

These voltages are general, and will be so assumed in this chapter. Beginning
with the next chapter, we use capital letters implying rms or effective values of
sinusoidal waveforms. The results of this chapter apply in this case with V’s re-
placing v’s. When v, and v_ include noise, then an interesting property of differ-
ential amplifiers becomes apparent. If v,(7) and v_(7) have the same noise, then
these signals cancel in forming v,(¢), and are known as common-mode signals. On
the other hand, if v,(¢) and v_(¢) are different, then each component is multiplied
by A. Such signals are known as differential-mode signals.

15
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FIGURE 2.1

Differential amplifiers of unusually high gain were developed in the early
1940s, especially by George Philbrick and his associates. These were intended for
use in analog simulation 2nd such applications as radar and control systems. To
John Ragazzini goes the credit for coining the name operational amplifier in
1947. Early units employed vacuum tubes and were both bulky and expensive.
The trend toward extremely small and inexpensive op amps began in the 1960s
when Philbrick, Burr-Brown, and other companies developed the modular solid-
state units. The modern monolithic op amp, early versions of which were the LM
101 and the pA 709, was designed in 1967 by R. J. Widlar. Quad op amps (four
on one chip) were announced in 1972, and there is little doubt that the number of
op amps on a single chip will continue to increase with the passage of time.

The construction of an integrated-circuit op amp is shown in Fig. 2.2. A sim-
plified wiring diagram of the integrated-circuit realization of the op amp is shown
in Fig. 2.3a. It shows a myriad of components—resistors, capacitors, transistors—
in an intricate arangement. Pin connections are shown in Fig. 2.3b and c. In
actual use there are external connections and adjustments to be taken into ac-
count, as pictured in Fig. 2.3c.

A simplified model* which adequately represents the op amp for many ap-
plications is illustrated in Fig. 2.4. It shows v, and v_ of Fig. 2.1 and the corre-
sponding currents i, and i_. The terminal marked v, is called the noninverting ter-
minal, and that marked v_ is the inverting terminal. The controlled voltage source
produces the voltage v, given by Eq. (2.1), R, is the input resistance, and R, the
output resistance. The quantity A is the amplifier gain. Typical parameter values
for many practical op amps are as follows:

A = 10° (with a range of 10*-10°)
R, =100 k2
R,=1008
v, —v_| < 1 mV (typically a few microvolts)

Idealized input-output characteristics of an op amp are shown in Fig. 2.5.
Saturation of the output voltage takes place when it reaches the supply voltage
Ve, which is typically less than 15 V. Thus linear operation requires the input
voltage to be

< Yee
v, —v_| < A (2.2)

This means that the op amp operates with input voltages that are typically a few
microvolts.

* A more adequate model, which is sufficiently accurate for use in computer simulation, used in com-
puter programs such as SPICE, is described by G. R. Boyle, B. M. Cohn, D. O. Pederson, and J. E.
Solomon, “Macromodeling of Integrated Circuit Operational Amplifiers,” JEEE J. Solid-State Cir-
cuits, vol. SC-9, pp. 353-363, Dec. 1974.
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Chip dimensions and bonding diagram
dimensions shown in inches (mm)

L 0.093(2.362)

’—T\lull Null '

:l—-—\OOutput

Chip edge

FIGURE 2.2

To go from the model described in Fig. 2.4 to the one we will use for most
applications, we assume limiting values of the parameters. We will assume a
model in which

~ x

4

=)
)
0

]

These assumptions will imply that
vV, =v_ and i,=i_.=0 2.3)

The symbol which we will use for this model is shown in Fig. 2.6b. The triangular
shape is to suggest the unilateral nature of the device: the difference of input volt-
ages determines the output voltage, but a voltage applied at the output does not
influence the input.

2.2 THE OPERATIONAL AMPLIFIER
AND RESISTIVE FEEDBACK

Figure 2.7 shows the op amp encased in a harness made up of two resistors. First
let us consider the qualitative operation of this circuit in the time domain. As-
sume that v, is applied with a relatively small value. This causes the output to as-
sume the value v, = Av,. Assume that there is a short time delay in the op amp, so
that v, increases, as shown in Fig. 2.8. As soon as v, appears, current will flow in
the series resistors R, and R,. But these resistors actually form a voltage-dividing
circuit causing a voltage v, to appear at the — terminal of the op amp. If the de-
sign is such that v, is positive, then the op-amp voltage may be made to vanish,

ve=v,—v, =0 (24)
and since v, = Av,, it will not have a large value. When v, = 0, then we write
I— @.5)

R+R"”
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and the gain of the circuit will be

o+ R

" R, (2.6)

Thus we see that the circuit of Fig. 2.7 is an amplifier with a gain which may be
designed by simply selecting the proper values of R, and R,. The choice R, = 9
kQ and R, = 1 kQ, for example, gives an amplifier with a gain of 10. Through
feedback provided by the resistors the amplifier is stabilized and the output is fi-
nite, while the voltage at the input to the op amp is made vanishingly small. If we
should mix our connections in the circuit of Fig. 2.7 by interchanging the + and
— terminals, then the current i is reversed so that

= —V:
R, + R,

i 2.7
Then v, will always be negative, and it will not be possible for v, — v, to vanish. In
this case the output v, will increase without limit and destroy the op amp. Prop-
erly connected, this circuit is an important one, and is known as a noninverting
amplifier. If we have a noninverting amplifier, we must obviously have an in-
verting one, which we consider next.

The circuit of Fig. 2.9 is different from that of Fig. 2.7 in that the input volt-
age v, is applied at the terminal of the op amp. The action of this circuit is very

v
Supply voltage (15 V)

| Positive saturation
|

\ +
Negative saturation Less than 1 mV
—ogdlive saturali (usually uV)

(—15V)

FIGURE 2.5
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A(v+—v_)=v2

A > oo

i °

S

(b) FIGURE 2.6

similar to that just considered. Again, we desire to make v, = 0. To find this volt-
age, we solve the series circuit for the voltage at node a. From Kirchoff’s voltage
law we have

vi=v,+ iR, +R) 2.8)
or
S ]
i= R TR, 2.9)
Since the voltage at node a is v, + R,i, we have
= —_ vl — V2 =
v,=v,— R, (R. +R2) 0 (2.10)

e
= (a) = (b)

FIGURE 2.7 The noninverting amplifier arranged in a form convenient for analysis.
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., /

t FIGURE 2.8
or
V. _ -R,
’, = ~——Rl (2.11)

which represents a gain of R,/R, and a sign reversal which we call inverting.
Again, the op amp has been harnessed, and design is easily accomplished by the
proper choices of R, and R,.

2.3 BLOCK DIAGRAMS
AND FEEDBACK

We have a question remaining: why should 4 have an infinite value? (At least a
very large value.) Before answering this, we digress to introduce the representation
of circuits by block diagrams as an aid to visualizing feedback. The equation

Tv, = v, (2.12)

may be represented by the block diagram shown in Fig. 2.10. Both the equation
and the block diagram tell us that when v, is multiplied by 7, the result is v,. The
arrows associated with the block indicate the unilateral nature of the operation.
For example, Ohm’s law

Ri=v (2.13)
may be represented by the block diagram of Fig. 2.11.

(b)

FIGURE 2.9 Two representations of the inverting amplifier.
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The equation

Ty, = T.Ty, = v, (2.14)

implies the cascade connection of blocks shown in Fig. 2.12. The identification of
a new variable v, permits us to write

Ty, =v, and T,v;=v, (2.15)

which combine to give Eq. (2.14).

The next block diagram operation, which is addition and subtraction, is rep-
resented in Fig. 2.13a. We assume that v, is positive, but that v, may be either
positive or negative, as indicated by the =+ sign. This diagram is equivalent to the
equation

V=V, 2, (2.16)

indicating that v, is either the sum or the difference of v, and v,. Figure 2.13b il-
lustrates a pick-off point. A line drawn from another line, frequently with a heavy
dot for emphasis, indicates that v, follows two paths. Here v, is an output, but it is
picked off and connected to another part of the system.

The connection of blocks in the form of Fig. 2.14 is known as an elementary
feedback system. Here v, is the input and v, the output, and feedback is accom-
plished by feeding back v, through block H. Then Hv, is either added or sub-
tracted from v, to form e. A negative sign implies negative feedback, a positive
sign positive feedback. If H = 1 and negative feedback is used, then e is the dif-
ference between input and output, or the error. Many feedback systems are de-
signed to minimize this error so that the output will follow the input with small
error. Two equations describe the block diagram system of Fig. 2.14:

v, = Ade (2.17)

vy U4 v,

1 ]
A : | - :

(a) (b)
FIGURE 2.13
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FIGURE 2.14

and
e=v,+ Hy, (2.18)

Substituting the second of these equations into the first and rearranging the re-
sult, we have

v, A

vv 1FAH (2.19)
or

vy _ 1

v 1/AFH (2.20)

Here the + sign indicates negative feedback, the — sign positive feedback.
It has long been recognized (since the late 1920s) that if 4 becomes very
large, corresponding to a high gain, then 1/4 is negligible compared to H, and Eq.

(2.20) becomes
u_ L

= 3E @21)

This will indeed be the case when A represents an op amp with very high gain.
We begin to see how we might use an amplifier with infinite gain.

24 BLOCK DIAGRAM
REPRESENTATION OF
THE NONINVERTING AMPLIFIER

In this section and the next we examine further the last equation, Eq. (2.21). To
begin, study the four circuits of Fig. 2.15 and convince yourself that they are all
really identical to that given in Fig. 2.7. The topology of circuits sometimes fools
you, but with a little experience you will recognize this circuit in its various dis-
guises routinely. The circuit is known as a noninverting amplifier, “noninverting”
being necessary because there exists an inverting amplifier. To understand its op-
eration, let the op amp gain be A4 for the time being. The output of the op amp
was given in Eq. (2.1) as

v, = A(v, — v.) (2.22)

where these voltages are identified in Fig. 2.15a. From the same figure, note that
v_=v,and v, = v,, s0 v, in Eq. (2.22) becomes

=AW, —v,) (2.23)

This equation is represented in the circuit of Fig. 2.16 in controlled-source form.
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(a)

Ule

>
= W

FIGURE 2.15 The figure shows four equivalent ways in which the circuit diagram of the non-

inverting amplifier may be drawn.

To find v, in Eq. (2.23) we recognize that it is determined by v, and a voltage-
divider circuit, redrawn in Fig. 2.17 for clarity. The voltage-divider equation ap-

plied to this simple circuit gives

Vv, = R| V-
*" R, +R,

Substituting this equation into Eq. (2.23), we have

AR,
R, +R,*

v, = Ay, —

This equation may be rearranged in the form

Y2 A
vw 1+AR/(R +Ry)

A(v]—vx)

ol

FIGURE 2.16

(2.24)

(2.25)

(2.26)
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FIGURE 2.17

or, dividing numerator and denominator by 4,

Y _ !
v, 1/A+R/(R +R,)

(227

Comparing these last two equations with those found for the elementary feed-
back system, Egs. 2.19 and 2.20, we see that the circuit of Fig. 2.15 is operating as
a negative feedback system having the form given in Fig. 2.18. Here A represents
the gain of the op amp. As 4 — oo, the limiting form of Eq. (2.27) is

ﬁ=[+_R_2.

” R (2.28)

which is a positive constant. Any value of gain larger than 1 is easily realized by
the appropriate choices of R, and R,.

Another representation of Eq. (2.28) is a circuit shown in Fig. 2.19, which is
equivalent to that of Fig. 2.15. There we see that the output voltage is controlled
by the input, and hence the controlled-source representation is required. The in-
put terminals 1-1’ appear as an open circuit since the input current i, = 0 and

R, = lv— =0 (2.29)

The resistance measured at terminals 2-2’ is the internal resistance of the con-
trolled source which is zero,

R,.=0 (2.30)

These properties apply only to the model we have used, of course, with infinite
gain provided by the op amp. But they are approximated by more realistic mod-
els.

The properties we have found are summarized in Table 2.1.

+
R, + R, FIGURE 2.18
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Ig —o0 2
Ry
v —_ —
1 <l +R,>v' =v,
I'o . 02 FIGURE 2.19

2.5 THE VOLTAGE FOLLOWER

A voltage-follower circuit is a special case of the noninverting amplifier circuit of
Fig. 2.15. In Eq. (2.28), with R, = oo, we have
V2
== or v, =V, (2.31)
Vi
so that output and input voltages are identical. How does the voltage follower dif-
fer from simply two parallel connecting wires? The answer is that the non-
inverting amplifier properties R,, = oo and especially R,,, = 0 also apply here,
and in addition the controlled-source nature of the circuit, shown by Fig. 2.20, is
such that it provides isolation between input and output. For this reason the cir-
cuit is sometimes called a unity-gain buffer.

The steps in the evolution of a noninverting amplifier to a voltage follower
are shown in Fig. 2.21. Starting with Fig. 2.21a we let R, = oo and obtain the cir-
cuit of Fig. 2.21b. Since i_ = 0, there is no voltage drop across R,, and so it may
be replaced by a short circuit, as shown in Fig. 2.21c. Thus we have the voltage
follower.

To better understand the operation of the voltage-follower circuits, we mod-
ify Fig. 2.19 to the form shown in Fig. 2.22. As before, with finite gain A for the
op amp,

v, =AW, —v,) =A@, —v,) (2.32)
since v, = v,. Rearranging this equation gives the voltage ratio or gain
Vv, A 1

(2.33)

The block diagram representation of this equation is shown in Fig. 2.23. As the
gain A4 of the op amp becomes infinite, the voltage ratio of Eq. (2.33) becomes 1,
as found previously by Eq. (2.31). Further, the input voltage to the op amp is

Ve=V_=v,—=V,=y,—v, =0 2.39)

and the voltage is zero as before. Properties of the voltage follower are summa-
rized in Table 2.1.

The voltage follower’s main role is to provide isolation of parts of a circuit
when it is required that the two parts should not interact. This buffer action is
possible because of low output resistance and high input resistance. To show the
meaning of these statements, consider a signal generator which produces a volt-
age of 0.1 V. The internal resistance of the generator is Rs = 1000 . A load resis-
tance of 100 £ is to be connected to this source, as shown in Fig. 2.24. With the
connection made as illustrated in Fig. 2.24a, voltage-divider action gives a load
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o o
+ +
UI l)2 = Ul
o— . ° FIGURE 2.20
voltage of
100
V= m 0.1=0.009V (235)

However, if a voltage follower is employed, as illustrated by Fig. 2.24b, there is
no voltage drop across R; since there is no input current, and the full voltage of
0.1 V appears across the load, assuming that the maximum output current of the
op amp is not exceeded. This illustrates buffer action for which the voltage fol-
lower is useful as a building block in circuit design.

2.6 BLOCK DIAGRAM
REPRESENTATION OF
THE INVERTING AMPLIFIER

The second fundamental op-amp circuit we will study is the inverting amplifier
shown in Fig. 2.25. The name of the amplifier comes from the negative sign of v,/
v,. If the input voltage v, is a sine wave as shown in Fig. 2.26a, then the non-
inverting amplifier has an amplified output as shown in Fig. 2.26b. However, the
output of the inverting amplifier is indeed inverted, as shown in Fig. 2.26¢.

The circuit is analyzed making use of Kirchhoff’s voltage law. In the circuit
of Fig. 2.25b we apply Kirchhoff’s law to the path abcde and equate voltage rises
and drops. As we traverse the path chosen, we sense the polarity assigned to each
element, with — to + considered a rise and + to — a drop. Then

v,=IiR, + iR, + v, (2.36)
Solving for i,
A e )
i R+R, (2.37)

FIGURE 2.21
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0 & +
X

Yy Aw,—v) =0,

* 0 FIGURE 2.22

Similarly applying Kirchhoff’s voltage law around the path abca gives

vw=1iR, +v, (2.38)
or
v,=v, — iR, (2.39)
Substituting Eq. (2.37) for i into Eq. (2.39) and rearranging, we have
_ R R,
v, = R+R v, + R+R v, (2.40)
But from Eq. (2.1) we know that with this connection to the op amp,
v, =—Av, (2.41)
Combining these two equations, and solving for v,/v,, we have

vi 1+ A[R/(R, + R)]
or

h _ —RZ/RI
V, B {l/[ARI/(Rl + Rz)]} +1

Comparing this pair of equations with Egs. (2.19) and (2.20) and with the
block diagram structure of Fig. 2.14, we see that the inverting amplifier may be
represented as in Fig. 2.27. As A — oo, then from the block diagram, or from Eq.
(2.43),

(2.43)

V2 -R,

’, R, (2.44)

As was the case for the noninverting amplifier, the finite gain of the ampli-
fier is controlled by the two resistors R, and R,.

The gain functions v,/v, for the two amplifiers studied differ by both the sign
of R,/R, and the constant 1. However, the difference that gives rise to the names
of these basic amplifiers, inverting and noninverting, is the sign of Eq. (2.44). We
will most often interpret this in terms of a sine-wave input to the amplifier, shown
in Fig. 2.26a, normalized to have unit amplitude. In terms of this input, v, for the

ZVI@’_* )
FIGURE 2.23
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1000 £2
° ;i
>
v, =0.1V 1009 v, =001V
O———O0— 3
(a)
1000 &2
+
Voltage 09 01V
v, =01V follower 10 v, =0.
(b)
FIGURE 2.24

noninverting amplifier is that of Fig. 2.26b, while the inverting amplifier has an
output as shown in Fig. 2.26c.

2.7 THE VIRTUAL SHORT

Our studies thus far have shown the wondrous consequences of resistor feed-
back. This resistor feedback creates a stable circuit with an output-to-input ratio
fixed by the resistors. The very large gain makes operation of the circuit relatively
independent of changes in the gain of the op amp. Resistor feedback causes spe-
cial circumstances at the input to the op amp—no current and no voltage. Now
zero current normally implies an open circuit, while zero voltage normally im-
plies a short circuit, as depicted in Fig. 2.29. But here we have both, a very special
condition. We next show that resistor feedback creates another special condition
in the inverting amplifier, causing a difference in the inverting and noninverting
amplifiers with respect to input resistance.

Consider once more the inverting amplifier as shown in Fig. 2.30a. There
two additional connections to the op amp are shown, which provide the bias volt-
ages. This detail is normally left to laboratory implementation, and the equiva-
lent op-amp circuit is shown in Fig. 2.30b. The controlled-source equivalent of
Fig. 2.30b is shown in Fig. 2.30c. We note that the op-amp connection to ground,
marked a in Fig. 2.30, is normally omitted or left implied. Observe the three wires
in Fig. 2.30b and c. Connection a carries current, while connections b and c to the

v

ISy
°

8

'"_',‘ [
ol

(a) (b)
FIGURE 2.25
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input of the op amp do not, at least in the ideal case. In the actual case the cur-
rent is very small. In Fig. 2.30c we wish to calculate the input resistance, marked
R/, excluding R,.

Part of Fig. 2.30c is shown in greater detail in Fig. 2.31, with the addition of

2 x

R1+R2

vy { ol i )
R +R, ¢

(b)
FIGURE 2.27
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FIGURE 2.28

R, and R, from the more complete model of the op amp. At node 2 we employ
Kirchhoff's current law to write

©O-v) + —Av. - v, _

i+ =i+ 3 R+ R, =0 (2.45)
From this equation we solve for the ratio of v, and i,
R’ = L (2.46)

i, /IR, + R)/(A+ ) + I/R,

Various approximations may be made starting from Eq. (2.46). If R, is so large
that the term containing R, can be ignored, then

! o~ Ro + RZ
R/= = (2.47)

Since R, is ordinarily in the kilohm range of values, and R, is typically 10 2, and
also 1 can be neglected compared to A4, then

R’ = % (2.48)
Finally if A is very large indeed, then we may use the approximate value
R =0 (2.49)
If we calculate R’ using R, = 10 k2 and the values given as typical for some op
amps, then
R’ =0.1 (2.50)

which is an approximation to zero. Thus the input to the op amp is a short circuit.
Since this short is created by feedback and does not actually appear in the circuit
diagram, it is known as a virtual short. This virtual short is depicted in Fig. 2.32

+ + O—>—
v Impliesi =0 Imphesv =0
any v any 7
o o]
(a) ) (b)
i=0

T

2=0 Both ¢ and/
I - are zero
()
FIGURE 2.29
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FIGURE 2.30 Circuit representations relating to the explanation of the virtual short.

together with the special condition we found for the input to the op amp. From
this figure it is clear that

R.=—=R, +R’=R, 2.51)

The fact that R, is finite for the inverting amplifier and infinite for the non-
inverting amplifier is a significant difference which will be important in design.
We will favor the noninverting amplifier in applications for which a high input
resistance is important.

R,
——A————
i &’3
1 ) vx 3
= | - o ¥,
, A R, 7
R —> H R,

FIGURE 2.31
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i [T 1
I—) Av‘v‘v I+ =0 :
N L
v, RIn / v, = 0 :
R
/ I
Virtual  L_______ _l
short Input to
op amp FIGURE 2.32

The controlled-source equivalent representation of the inverting amplifier is
shown in Fig. 2.33 with R, connected to the input and R,,, = 0, the internal resis-
tance of the controlled source.

We will make use of the concept of the virtual short to ground to rederive v,/
v, for the inverting amplifier. Here we apply Kirchhoff’s current law at the node
marked A4 in Fig. 2.34. Using the reference directions for current shown and
equating the current into the node to the current out of the node, we have,

Vi =V, ViV
R - K (2.52)
But v, = 0 due to the virtual short to ground, and so we modify the equation to
the form

Va _ R,

v. 2 (2.53)

which is identical to Eq. (2.44). The derivation is shorter, however, since it makes
use of the virtual short and v, = 0 rather than deriving that fact. The principle of
the virtual short will be used frequently in studies that follow.

28 VOLTAGE FOLLOWER
ANALYSIS WITH A BETTER
OPERATIONAL-AMPLIFIER
MODEL

Thus far we have dealt with the simple op-amp model we will use throughout
most of the remaining chapters—one with infinite gain, infinite R,, and zero R,,..
Before proceeding we digress to ask the question: How do the results we have ob-
tained compare with those we might expect in circuit design when we use op

FIGURE 2.33
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FIGURE 2.34

amps which we might purchase for that purpose? We will obtain an answer to
this question for the specific case of the voltage follower and accept as fact that
the results apply to other op-amp configurations.

The voltage follower shown in Fig. 2.35a differs from that previously consid-
ered in that it includes Rj, the resistance of the source, and a load resistor R,.
Suppose that we use the model in Fig. 2.35b for the op amp shown in Fig. 2.35a
with finite R, and nonzero R,. The result of superimposing Fig. 2.35a and b is
shown in Fig. 2.35¢, which is the equivalent circuit of the voltage follower.

Analysis of this circuit is accomplished by the Kirchhoff laws and is straight-

- -
RS‘

(¢) FIGURE 2.35
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forward although lengthy. The result are the following three equations*:

Y2 _ R, (R, + AR) 2.54)
V. R(R,+AR)+ (R + Rs)(R, + R,) '
_, (A+ DR, +R, R,R,
R.=R R.+R, + R +R, (2.55)
___ R(R +Ry
R..= R +(1+ AR +R, (2.56)
Typical values for these parameters are as follows:
A=10
Rs=R,=1kQ
R, = 100 k2 257)
R,=10Q
Substituting these values into Eq. (2.54), we find that
:—’ =0.999989 - = | (2.58)
1
Under the condition that R, > R,, Eq. (2.55) assumes the simple form
R.=AR, (2.59)
and R, similarly has a simple form when AR, > R, and R, > Rj,
R,
Ro =~ (2.60)

Then using the numerical values of Egs. (2.57), we find that for the op amp mod-
eled in Fig. 2.35c¢,

% =0.999989, R,=10°, R, =10" 2.61)
1
which compare well with the ideal values of 1, oo, and 0. Hence we can use the
simple model of the op amp with some confidence that calculated values will
agree closely with those measured in the laboratory.

We can also estimate the input voltage and current to the op amp. The out-
put voltage will not exceed that of the supply voltage for the op amp which is typ-
ically 15 V. Thus

Vsupply
[y = v | < (2.62)

For A = 10° the input voltage will thus be less than 1.5 uV. Similarly, the input
current will be

(2.63)

* W. G. Oldham and S. E. Schwarz, An Introduction to Electronics, Holt, New York, 1972, chap. 12.
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which for the values being used will be less than 0.15 pA (picoamperes), indeed
small and so appropriately considered to be zero.

The approximate relationships we have derived and the corresponding ones
for the inverting and noninverting amplifiers are shown in Table 2.2.

2.9 ANALOG ADDITION
AND SUBTRACTION

Op-amp circuits to add and subtract voltages were highly developed in con-
nection with analog computers in the early 1940s. The ideas involved are simple
but useful in the work to follow. The circuit of Fig. 2.36 has two inputs v, and v,,
and one output v,. At node A Kirchhoff’s current law permits us to equate the
currents in to the currents out, giving

VTV VTV Ve

R, R R, (2.64)

TABLE 2.2

Circuits Approximate equations

T=1
R, = AR,
R,
Roul 7

Voltage follower

R, R,
-EWV ‘vAvAv T=1+ &
A o 1
R, = AR,
— + = AR 1+ R,/R,
Uy
v, 2 R R
_ _ R = e 5
o 4 o out A (1 + R|
Noninverting
R,
VVv -R
T=—2
Rl Rl
+ —O
, + R.=R,
Il v,
- - R R,
o < * -0 R, = —"|1+—=
=% (R

Inverting
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R, R, R,

Y1 z—‘vw— vng—lwv——wv—‘
R
”30—-‘\A3Ar—1

R, ——0 + —0

V3 0—AWN— +
+ ) vs

< = 2 <

(a) (b)
FIGURE 2.36

But v, = 0 by the principle of the virtual short circuit, and so this equation may
be simplified to

y=— (2.65)

RUTR

R, sz)
3

which indicates that v, and v, are multiplied by constants and then added to give
—v,. If R, = R, and if we let R,/R, = K, then

v, =—K(, + v5) (2.66)

If K = 1, we do have simple summation and inversion of the voltages. Thus a net-
work equivalent of Fig. 2.36 is that of Fig. 2.37, which involves a controlled-volt-
age source. We note that the input resistances are R, and R,, which are not in-
finite as is the case with the noninverting amplifier.

The result found for two inputs may be extended to any number of inputs. If
there are three, for example, then Eq. (2.64) with v, = 0 becomes

v, A Ve =V,
=+ =+ = =— 2.67
RY'RTR™R 267)
or
R R R
v, = R, v, + R, v, + R A (2.68)

As an example, if it is required to design a circuit to realize
v, = =3y, — 2v, (2.69)

then this may be accomplished by making R,/R, = 3 and R,/R, = 2. If we let
R, = 60 ©, then the design requires that R, = 20 k& and R, = 30 k<.
The differential amplifier circuit shown in Fig. 2.38 is a basic circuit for

+

K, +v3) =v,

©°

FIGURE 2.37
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+

U2

£

FIGURE 2.38

forming the difference of voltages. We will show that it will permit us to form an
analog circuit to realize the equation

v, = Kyv; — K\, (2.70)

where the constants K, and K, are determined by resistor values. Before analyz-
ing the circuit, consider the situation at the input terminals to the op amp, shown
in enlarged form in Fig. 2.39. The voltage between nodes A and B is zero, as we
have discussed earlier, which means that

Ve ="V_ 2.71)

Thus the voltage at node A is identical to the voltage at node B. Without the op
amp you might be tempted to connect the two nodes together. This cannot be
done, of course, and it is necessary to apply Kirchoff's current law separately at
each node. The voltage at both nodes is indicated as v,. Since i_ = 0, as shown in
Fig. 2.39, we write at node 4

Vl - va = va — v2

"R - R (2.72)
At node B the voltage is determined by the voltage-divider equation as

v, = R+R, v, 2.73)

If we eliminate v, from these two equations, then we obtain the following ex-
pression for v, in terms of voltages v, and v:

_ Ry R/R,+1

v, = R, RJR,+1 (vs = v) 2.74)
! N
v, 1 =0 B \\\
v, =0 v =uv

i FIGURE 2.39
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From this result we see that if R, = R, and R, = R,, then

R
v, = R_T vs—=w) (2.75)
This simplified circuit is shown in Fig. 2.40. Further simplification results when
R, =R, and

V=V, — v, (2.76)

This information is summarized in Table 2.1.
These equations permit the routine design of difference amplifiers. For ex-
ample, if we require that

v, =2vy, — 3y, Q.77)

then Eq. (2.74) may be used to determine R,/R, = 3 and R,/R, = 1, so that a suit-
able design would result with R, = 30 k2 and R, = R, = R, = 10 k. For many
applications we will wish to realize Eq. (2.76), and in this case R,, R,, R,, and R,
will have identical values—say 10 k.

Finally, with respect to the circuit of Fig. 2.40, we see that the input resis-
tance at terminal pair 1-0 is the ratio of v, and i, with v, = 0, and that is R,. Simi-
larly, the input resistance at terminal pair 3-0 is found with v, = 0 and is R, + R,.
The voltage v, is a controlled voltage given by Eq. (2.75). These facts are summa-
rized in the circuit of Fig. 2.40b, and they are also contained in Table 2.1.

2.10 APPLICATIONS OF
OP-AMP RESISTOR CIRCUITS

Thus far in this chapter, we have described circuits which provided amplification,
isolation, and analog addition and subtraction. In this section we give additional
examples of applications of resistor-op-amp circuits.

Figure 2.41 is similar to Fig. 2.40a shown earlier. In this circuit R, represents
a pressure transducer. In an application, changes in pressure cause R, to change
to R, = R, + AR,. We will show that this circuit will produce an output voltage
which is proportional to this measure of pressure change AR, and to the battery
voltage, V..

R,
AAA 14
A\ A A4 1
Rl
) ?—Wv
R, D>—+—o0 O R,
3
) vy R +R2

_L o——

(a) (b)
FIGURE 2.40
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Ry=R,+ AR, RY)=R,+ AR,

l'2

2

FIGURE 2.41 The steps shown in the figure illustrate the application ot superposition to the
analysis of the circuit shown in (a).

We make use of the principle of superposition in analyzing the circuit of Fig.
2.41a. First we observe that the insertion of a new battery of voltage V, as shown
in Fig. 2.41b does not change any voltage in the circuit. We will consider the out-
put voltage produced by these batteries separately, and then add these voltages.
To do this, we replace one battery by a short circuit, as shown in Fig. 2.41c. Since
the op-amp current i_ is zero, there is no voltage across R, and R,, meaning that
the + terminal of the op amp is at ground potential, as shown in Fig. 2.41d. With
this circuit simplification we then have a standard inverting circuit for which we
write

-R,
R,

y, = VO( (2.78)

Next we observe the output voltage due to the other battery, with the first battery
removed and so replaced by a short circuit to ground. This is shown in Fig. 2.41e,
from which we see that the voltage at the + terminal of the op amp may be deter-
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mined from the voltage-divider equation. Clearly, it is
- R
R, +R,

as shown in Fig. 2.41f. With this simplification the circuit of Fig. 2.41f is seen to

be a standard noninverting circuit, from which we see that the output voltage is

__R R/
R, +R, R,

v, Vs 2.79)

’

V2

1+ )n (2.80)

Now we are prepared to use the principle of superposition and find the total out-
put voltage:

v,=v,+v” (2.81)
_—R/R, — R/ R, + RR, + R,R/
= R.(R, + k) Vo (2.82)
_ RI(RZ - Rzl) _ - Vo
" R(R,+Ry) Vo RV+R2AR’ (2.83)

Since R,, R,, and V, are constants, the output voltage varies directly with AR, and
so is a measure of the transduced quantity, the pressure.

The circuit shown in Fig. 2.42 is used to produce an output voltage propor-
tional to the key that is depressed. It operates with a standard keyboard incorpo-
rated into the feedback resistor of the inverting circuit. The output of this circuit
is then added to the input by means of an adder-inverter circuit. Pressing a key
on the keyboard connects together points that are the horizontal and vertical pro-
jections of points 4, B, C, D, E, F, G, and H from the key. Thus pushing key 1

R/16 R/16 RJ/16
RN6 g\ F LG [

™
Vv

AAA,
Wy

) —

>
>

<
<
<

1 -1

FIGURE 2.42
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connects together points D and E such that R, = { R, pushing key 11 connects B
and G so that R, = R, pushing key 13 connects 4 and E so that R, = %R, and so
on. In general we see that

n
R,= R(l ~ % (2.84)
Now since R, = R, then
Vo 11
V—| =1 T3 (2.85)

The second op-amp circuit adds the two inputs and inverts such that
== +v,) (2.86)
or, combining the last two equations,

=—n—v
16 '

Then, as promised, the output voltage is proportional to the key pressed. The cir-
cuit might be used in component testing or as an analog voltage generator for the
control of some system.

The next circuit to be studied is an instrumentation amplifier which has very
low input current and is tuned to a desired gain by one resistor. The circuit is
shown in Fig. 2.43, and the tuning resistor is identified as R,. While the con-
nection is new to us, it is composed of circuits that have been previously studied.
We make use of the fact that the input voltage at the op-amp terminals is zero
(being a virtual short circuit) such that v, appears at both nodes 4 and B and v, at
nodes C and D. Then

(2.87)

V2

R -R

v4=(l+7§' v,+( R3|)v3 (2.88)
R -R

v5=(l+7z—;) v3+( R,,l)v' (2.89)

o' s +l

FIGURE 2.43
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We see from the circuit of Fig. 2.43 that v, and v, are combined by op amp 3 to
give

_(=R) R, R,
v, R, Ve + R+R 1+ R, Vs (2.90)

Substituting v, and v; into this equation gives v, as

v, = (l + 22') 1;: vs=v) (2.91)
v,=K(v;—v,) (2.92)

where K is the circuit gain. Thus the circuit is a differential amplifier and the gain
K is adjusted by changing R,. The input resistance is very high because the input
voltages are applied to the + terminals of op amps 1 and 2.

As an example assume that the instrumentation amplifier has the values
shown in Fig. 2.44. Then from Eq. (2.91) we determine the gain to be

K=

—1 =992 (2.93)

l+2><75
5

5

(160

Fine adjustments on the value of gain can be made by tuning R,.

As the last example of this chapter we study an op-amp circuit that is useful
in providing a stage of high gain.* Since gain for the inverting amplifier, shown
in Fig. 2.45a, is —R,/R,, we see that gain can be increased by making R, larger, or
making R, smaller. But R, is the input resistance to the inverting amplifier, and so
there is a preference for making R, larger. Suppose that we wish to increase the
gain by a, and that we do this by increasing R, to R, = a R,, as shown in Fig.
2.45b. Now the circuit we will actually use to realize this increased gain is shown
in Fig. 2.46, where R, has been replaced by a T-circuit. The circuit may be ana-
lyzed making use of Kirchhoff’s current law. The circuit of Fig. 2.47 is that given

* J. 1. Smith, Modern Operational Circuit Design, Wiley, New York, 1971, p. 137.

vV o——m ¢+

+ oo
P :: 160 k2

w3 L3 g

59 VvV . VVV
5 k2 75 k2 4 oo ——0
- A'A'A' AvAvA' s + +

Sk

Uy

} 160 kS 2
vy _;L

FIGURE 2.44
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) RI?_:D(RZ
AAA
A A A4 y—‘VW——
R, R,
} —0 } —0
+ +
v v, v, v,
(a) (b)
FIGURE 2.45

in Fig. 2.46 with references added for ease in analysis. At node 4 we have

P (2.94)
and at node B we see that
—i +i+i,=0 (2.95)
or
LY (2.96)

R, R, R,
We solve Eq. (2.94) for v, and substitute into Eq. (2.95) to give

v _ Rs+ Ry(1+Ry/R,)

v, R, .97)
Since we have assumed that
v, —R, —aR,
2= 2= 2 9
v, R, R, (2.98)
we see that our design equation is
aR2=R5+R,(1 + R (2.99)
R,

There are many ways in which the design equation (2.99) can be satisfied.

R, R
A

S
ANA

M- wW
R \ —

Yy

k-
l||—o|,f+£

FIGURE 2.46
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FIGURE 2.47
One method is to select two resistor values and then solve for the third. We select

R,=%R2 and R5=a%R2 (2.100)

Then solving Eq. (2.99) for R, gives

- X R
&—a—IZ

(2.101)

As an example of circuit design using these equations, suppose that R, = 10
k@ and R, = 100 kQ; we wish to select « = 10 so that the circuit designed will
have a gain of 100. Then the circuit will have the following values:

R, =50 kL, Rs = 500 k2, R, =55.56 kQ (2.102)

Another design approach begins with Eq. (2.99) for a R,. Suppose that we
select R, = R, as a design value. Then
Rs R

a=l+R—3+R4

(2.103)

We now select R, so that the ratio R,/R, is small, meaning much smaller than 1.
Let that number be a,. Then

o (2.104)

results in a large value for R,/R, in Eq. (2.103) and a small value for R,. Using
the same numerical values as for the last example, we have

R, =10k, R, =R, =100 kQ (2.105)

We will select R, = R, = 10 k, so that R,/R, = 0.1. Then the value for R, is
found from Eq. (2.104) as

R, = 1.124kQ (2.106)

To explain the operation of the circuit quantitatively, we use the values de-
termined for the example just given and shown in Fig. 2.48. With the 100 k2 tem-

100 k2 Node 5 10 k2

— —
- -

FIGURE 2.48
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—> v,

FIGURE 2.49

porarily disconnected, the remaining resistors form a voltage-divider circuit, so
that the voltage at node B under this circumstance is

1124
T 10+ 1.124

In other words, only about 10% of the output voltage is being fed back for addi-
tion to the input. What happens when we reduce the amount of voltage fed back?
Using the block diagram representation of a feedback circuit shown in Fig. 2.49,
we found in Eq. (2.20) that

Vg

v, = 0.101v, (2.107)

v, 1 -1

e ATEY T (2.108)

for large 4. If we reduce H by multiplying by 1/8, then Eq. (2.108) becomes
“=—-B—= (2.109)

In other words, decreasing the effective value of H increases the value of the gain.

We have used this principle in designing an inverting amplifier circuit that pro-

vides high gain. This action is known as gain enhancement, and this kind of en-
hancement will be used in later chapters.

PROBLEMS

2.1 In the op-amp circuit given in Fig. P2.1, it is required that

V.
V2=T’—2V,

FIGURE P2.1
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Determine the value of R, that gives the desired relationship.

Suppose that ¥, = —10 V and ¥, = +10 V. Find the magnitude of the current in
each resistor, and the average power dissipated by each resistor.

Repeat (b) if ¥, =10 Vand ¥V, =10 V.

Design a circuit using a single op amp so that the output voltage is
V,=V, -4V,

where V, and V; are the input voltages. Select the resistor values so that no more
than 0.25 W is dissipated by any resistor when ¥V, and V; have absolute magnitudes
less than 10 V.

Design an op-amp circuit to satisfy the relationship
Vo=2V,+ Vo=V,

where V, is the output and V,, V5, and V; are input voltages. Using the assumption
that none of the inputs will exceed 10 V in magnitude, design the circuit so that no
resistor dissipates in excess of 0.1 W.

In the circuit given in Fig. P2.4, R = 10 k. Find the value of R, so that V, = —100 V,
and calculate the energy dissipated in each resistor.

FIGURE P2.4

The circuit given in Fig. P2.4, is purely resistive.
(a) Letting G, = 1/R, show that,

— 7= _(G/G:G)(G + Gy)
V| [(GJ + Gs)/Gal - Gl/Gz

FIGURE P2.5
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(b) Let all resistors be equal except for R, which may be tuned. Sketch T as a func-
tion of R,.

(c) Explain the behavior of the circuit when R, = R/2.
2.6 For the circuit shown in Fig. P2.6, it is required that R,, = 1 &, and also that
Vi=kV, + kV,

R,
C
v
RH
v, ;_‘°+
v, Rh§ V,<= R,
I °
- FIGURE P2.6
Show that the required resistor values are
1 1 1
R,=7 Ro=g, -
*= i o Re=T e

2.7 For the circuit shown in Fig. P2.7, determine V, as a function of ¥, and V; for the
element values specified.

v, ) 5 kQ 160 k2
+
R R
3
R2 4
SKQ SR, 75kQ oV,
< + + -
R,
Vio : Ry R, °
+
r ¢ S k2 160 k2 l
FIGURE P2.7

2.8 The circuit in Fig. P2.8 has voltage input ¥, with respect to ground, but the output

load shown is “floating” with respect to ground. Determine V,, V,,and V, — V, as a
function of V.

2.9 The op-amp circuit shown in Fig. P2.9 is intended to provide any gain between —10
(when k = 0) and +10 (when k = 1) by adjusting the potentiometer. Let R, and R,
have the scaled values shown.

(a) Determine the transfer function (gain) ¥,/V, in terms of r,, r,, and k.
(b) Determine expressions for r, and r,.
(c¢) For what value of k is the gain 0?
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90 kQ
AN~

W 23‘2

v, 56 Q2
—A Vv
20 kQ
20 k2 200
56 2
— AN
FIGURE P2.8
R,=11
—AA————
" Ry =1
—E= 10k {}
10 © >4
100 -0{2 . b
2
v 4 P
(OJE 1
FIGURE P2.9

2.10 Piezoelectric tilt elements of the kind used to position laser beams and optical scan-
ners can be aligned with an op-amp circuit which converts input voltages in x-y
coordinates into a corresponding nonorthogonal (a, b, c) three-axis system as dia-
grammed in Fig. P2.10. The coordinate transformation must satisfy the relation-
ships:

x=c—a, y=b—4a+o), a+b+c=0

FIGURE P2.10
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Design an op-amp circuit that accepts voltages x and y as inputs and yields voltages
a, b, and ¢ as outputs using the transformation:

a=c+Xx, =—(a+ o), =—(x/2+y/3)

Since it is intended that the design use a 10-k2 R-net, all resistors in the design
should be 10 k2, but these may be connected in series or in parallel. Note I: R-nets
are more properly known as “resistor arrays” and are available commercially from
many companies. Note 2: If you need further information, see the Feb. 1, 1979 issue
of Electronics.

2.11  For the circuit given in Fig. P2.11, show that

_I_/l_ ab
V., 1+b[(1+a)/(]+0)

FIGURE P2.11






CHAPTER 3
Bilinear

Transfer
Functions
and
Frequency
Response

In this chapter there are two significant departures from our studies in Chapter 2.
First, we now add the capacitor as a component to the resistor and the op amp.
Second, beginning with this chapter we will assume that the circuits are driven by
sinusoidal sources and that they are in the steady state. While we will remind
ourselves from time to time of time-domain responses, the language of filter de-
sign is predominantly that of the frequency domain. This means that v(¢) and i(z)
will be replaced by the phasors ¥ and I. In the last chapter we called the ratio v,/
v, the gain. Now we will refer to ¥,/ V, as the voltage ratio transfer function, and
assign it the symbol 7. We will also characterize the elements, alone and in com-
bination, by their impedance Z(s) or admittance Y(s).

3.1 BILINEAR TRANSFER
FUNCTIONS
In keeping with the changes described above, the voltage-divider circuit shown in

Fig. 3.1 is characterized by impedances, phasor voltages, and current. Analysis
follows the pattern of Chapter 2. Since

Vi=(Z,+2Z) and V,=2Z1I 3.1

then

V4

Y=L
y=To =575 (3.2)

53
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FIGURE 3.1

For the simple RC circuit of Fig. 3.2 we see that Z, = R and Z, = 1/Cs, so that
the transfer function is

_1/RC
1) = F1/RC

This particular transfer function is one member of a larger class of transfer func-
tions, which we will next describe.

The familiar equation of a straight line in the form in which it is usually
taught in algebra courses is

(33)

y=mx+b 3.4)

where x is the independent variable, y the dependent variable, m the slope, and b
the y intercept. We may recast this equation into a form better suited to our
study:

p=as+ta 3.5)

This equation is described as being of first order because of the term s'. When a
transfer function is the quotient of linear terms like Eq. (3.5), it is said to be bilin-
ear. Thus a bilinear transfer function is of the form

_asta _ ps)
Tts) = bs+b, q() (36)

where the a and b coefficients are real constants, but may be either positive or
negative. Comparing this equation with Eq. (3.3), we see that the transfer func-
tion for the RC circuit of Fig. 3.2 is bilinear. In this chapter we study only circuits
with bilinear transfer functions.
If T(s) in Eq. (3.6) is written in the form
a, sta/a, _ , s+z

T(s)=7,- s+b,/b, s+p,

(3.7
then z, is the zero of T(s) and p, is the pole of T{(s). In the s plane these quantities
are located at

s=—z and s=-p, 3.8)

Since we have assumed that z, and p, are real, we see that the pole and zero of

FIGURE 3.2
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jw jw

(a) (b)
FIGURE 3.3

T{(s) are located on the real axis of the s plane. It will be the case that p, is always
on the negative real axis, while z, may be on either the positive or the negative
part of the real axis. Typical pole and zero locations in the s plane are shown in
Fig. 3.3. These correspond to

s+3 s+ 1 s—2

= LO=1"p TO=7 (3.9)

T =35 s+2

It should be clear from these examples that the pole and zero locations do not
specify the constant K.

If Egs. (3.6) and (3.7) are the most general forms of a bilinear function, then
we can quickly enumerate the possibilities for less general bilinear functions such
as Eq. (3.3). These are shown in Table 3.1. It is a simple matter to sketch these
pole and zero locations in the s plane.

3.2 PARTS OF T(jw)

In the introduction to this chapter we stated that the emphasis would be on cir-
cuits operating in the sinusoidal steady state. From elementary studies of circuits
we know that this case corresponds to the condition s = jw. So Eq. (3.3), which
describes the circuit of Fig. 3.2, is for the sinusoidal steady state

1 1
RC jo+ 1/RC

in which the denominator has a real and an imaginary part. Now the complex
function T(jw) may be written in either of two standard forms. In rectangular

T(jw) = (3.10)

TABLE 3.1 Bilinear functions

T(s) Pole location Zero location
Ks 5= 00 s=0
Ky(s+z) §= 00 s=-z
.El s=0 5= 00
K}
_K‘_. s=-p, §= 00
s+p,
K.
RS s=—p, s=0

s+ p,
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coordinates we write
T(jw) = Re T(jw) + j Im T(jw) (.11)
where Re T 'is the real part and Im T the imaginary part of T(jw). In polar coordi-
nates we express T(jw) in terms of its magnitude and phase as follows:
T(jw) = |T(jw)| £ 8(jw) (3.12)

Although we will need both forms, we will ordinarily deal in terms of magnitude
and phase in the design of filters. The relationship between the real and imagi-
nary parts and magnitude and phase is also familiar from elementary studies. It is

|T(jw)* = [Re T(jw)]* + [Im T(jw)}? (3.13)
and
o _ [ Im T(jw)
f(jw) = tan™" | o —r o= Tio) (3.19)

We will find frequent need to plot the magnitude and phase of T(jw) as a
function of w or f. We will make use of both linear and logarithmic scales. The
logarithm of T(jw) in Eq. (3.12) is

log T(jw) = log| T(jw)| + jO(jw) 3.15)
We will make separate plots for the two parts of this equation. If the logarithm of

the magnitude is multiplied by 20, then the unit of this quantity becomes the
decibel (dB):

A(w)=201log |T(w)| dB (3.16)

The phase function is usually plotted in degrees, less frequently in radians. Thus
the scales we will use most often are those depicted in Fig. 3.4.

Example 3.1 We may illustrate the computation of the parts of T(jw) using Eq. (3.10).
Let 1/RC = wy, so that

AR S
TG0) = 1o (3.17)

If we multiply both numerator and denominator by the conjugate of the denominator, we
have

T(jw) = l—l;_:({—:’//T":‘)’z (3.18)
From this we see that
Re T(jw) = l—+_(:>/To)2 (3.19)
and
Im T(iw) = — 2/ (3.20)

1+ (w/wo)?
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FIGURE 3.4 Various systems of coordinates to be used in showing magnitude and phase.

The magnitude function may be found directly from Eq. (3.17). It is

1

T+ /oy 620

I TGw)* =

and the phase is

1

Wo

= —tan~

(3.22)

This study of magnitude and phase serves to introduce the next section.

3.3 CLASSIFICATION OF
MAGNITUDE RESPONSES
Of the choices of coordinates given in Fig. 3.4 we will select in this section that

involving linear magnitude and linear frequency. For the RC circuit of Fig. 3.2
we have found that the magnitude squared transfer function is given by Eq.
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|
| 1=
i i
0 1 1
0 1/RC 2/RC w FIGURE 3.5
IT| Cutoff
l — o
+
v, Ideal filter v,
Pass Stop—--— °
0
0 wu w
(@) (b)
FIGURE 3.6
C
1 ©
+
Vl R V2
s ° FIGURE 3.7

(3.21). Three frequencies are of special interest and correspond to these values of

I7:

I7G0)| = 1

1
T(jwo)| = — = 0.707 3.23
| T(jwo)| 72 0.70 (3.23)
|T(joo)| — 0

The complete plot of T(jw) is shown in Fig. 3.5. The frequency w, is known as the
half-power frequency. This plot is known as the magnitude response, meaning the
response of magnitude as a function of frequency.

An idealization of the response of Fig. 3.5 is shown in Fig. 3.6a, sometimes
known as a brick wall. The ideal filter which this response would describe if it ex-
isted has a behavior which we can visualize in terms of the circuit of Fig. 3.6b,
where V, represents a sinusoidal voltage generator. As frequency increases in the
generator, the output voltage ¥, remains fixed in amplitude until a critical value
of frequency is reached, called the cutoff frequency, w,. At that frequency, and for
all higher frequencies, the output V, is zero. The range of frequencies with output
is called the pass band; the range with no output is called the stop band. The obvi-
ous classification of the filter is a lowpass filter. Now even though the response
given by Eq. (3.21) and shown in the plot of Fig. 3.5 differs from the idealization
of Fig. 3.5, it is known as a lowpass filter, and, by convention, the half-power fre-
quency is taken as the cutoff frequency.

If the positions of the resistor and the capacitor in the circuit of Fig. 3.2 are
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interchanged, then the resulting circuit is that shown in Fig. 3.7. The transfer
function may be found from Eq. (3.2) as

R s

16 = g¥ 176~ 5T 1/RC (3.24)
If we again let 1/RC = w,, then with s = jw we obtain
T(jw) = —L/%_ (3.25)

1 +jw/w,

The corresponding magnitude function of this equation may be studied for the
three frequencies, as in Eq. (3.23):

|7(jO) = 0
| T(wo)| = % ~0.707 (3.26)
[T(joo)| =1

The complete plot of the magnitude response for this circuit is shown in Fig. 3.8a
and the idealized brick wall in Fig. 3.8b. Clearly, this filter is classified as a high-
pass filter, and the cutoff frequency is w,, as it was for the lowpass filter.

The next circuit we will study has a different appearance than those consid-
ered earlier, as shown in Fig. 3.9. In Fig. 3.9a it is classified as one section of a
lattice. An equivalent form in which it may appear is shown in Fig. 3.9b, where it
is known as a bridge circuit. We frequently become confused by how a circuit
may be disguised through the form in which it is presented, but it is unusual that
two forms are distinguished by two different names. Analysis will be carried out
in terms of Fig. 3.9b. We observe that the output voltage is the difference of the

voltages at nodes 4 and B,
Cutoff

IT|
i
: Stop—>re—Pass -
|
I
0 H 1 - 0
0 1/RC  2/RC  3/RC w 0 W, w
(a) (b)
FIGURE 3.8
L.
- B
d Vi
R
(a) (b)

FIGURE 3.9
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Vi=V.=V, (3.27)

Now clearly, with equal resistors,
4
V,= > (3.28)

The other voltage, V;, comes directly from Eq. (3.24) of our last example so that

s

V= m V, (3.29)
Substituting these two values into Eq. (3.27), we have
y,<L s __s-URC, (3.30)

2 s+1/RC__ s+1/RC

The pole-zero description of this equation is shown in Fig. 3.10, with the zero in
the right half-plane and the pole in the left half-plane, on the real axis, and equal
distances from the origin.

jw

4
—1/RC 1/RC
FIGURE 3.10

As before, we now let s = jw and 1/RC = w,. Then the magnitude function
becomes

1L =j w/wo|

|T(jw)| = TESTPN (3.31)
Observe next that the magnitude of the numerator is identical with the magni-

tude of the denominator, and hence
| T(w)| = 1 for all w (3.32)

The only apt description of this characteristic, shown in Fig. 3.11, is allpass, and
the concept of a cutoff frequency has no meaning. The circuit having this charac-
teristic is known as an allpass filter.

The next simple circuit we will consider is that of Fig. 3.12, which has the
voltage-divider impedances identified so that Eq. (3.2) applies. Direct sub-
stitution gives

R, ____s+/RC
R, + 1/(Css + 1/R) s+ 1/R.C, + I/R,C,

T(s) = (3.33)

IT1

—w w FIGURE 3.1
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-0 FIGURE 3.12

If we write this in the standard form

s+ 2z,
T(s) = m (3.34)
then
z, = L and =z + L (3.35
TRG PERYRG )

so that p, > z,. The pole-zero locations for this transfer function are as shown in
Fig. 3.13, with the zero always closer to the origin than the pole. From Eq. (3.34)
it is clear that when s becomes very large, then T approaches the value of 1; while
for s = U, T has a value of z,/p, which is less than 1; that is,

|T(joo)| = 1

zi R
|T(0)| = 2 "R +R (3.36)

The magnitude response of this circuit is shown in Fig. 3.14. This does not ap-
proximate the ideal of Fig. 3.8b very well, but it is still known as a highpass filter.
The circuit of Fig. 3.15 may be analyzed using the voltage-divider equation,

FIGURE 3.13

R,/(R, tR,)

————— 0y

0 w FIGURE 3.14
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———— e e

L

FIGURE 3.15

<
ol

Eq. (3.2), to give

Z, _ R, + 1/Cys
Z,+Z, R +R,+1/Cs

Algebraic manipulation permits this equation to be written in standard form as

R, s+ 1/R,C,

T(s) = (3.37)

T) = R+ R 5+ /(R + R)C, (3.38)
or
T(s)= K j—iﬁ (3.39)

For this transfer function the pole is always closer to the origin than the zero, as
shown in Fig. 3.16; that is, p, < z,. We gain insight to the magnitude response
from the observation from Eq. (3.38)

I7TGO) =1
R,
R +R,

The complete frequency response is shown in Fig. 3.17. Again, we compare with
the kinds of responses studied thus far and see that this response is that of a low-
pass filter.

|T(oo)| = (3.40)

jw

FIGURE 3.16

(7

FIGURE 3.17
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FIGURE 3.19
0 w
Two of the cases tabulated in Table 3.1 require mention. The transfer func-
tion

K

(=" (3.41)

is that of an ideal integrator. With s = jw, the magnitude function becomes

TG = & (.42)
and the frequency response is that shown in Fig. 3.18. The transfer function
T(s) = Ks (3.43)
is that of an ideal differentiator. Here
| T(jw)| = Kw (3.49)

The frequency response corresponding to this equation is the straight line shown
in Fig. 3.19. In some sense, the integrator is a lowpass filter, and the differentiator
a highpass filter.

The magnitude responses found thus far are summarized in Table 3.2.

3.4 CLASSIFICATION OF
PHASE RESPONSES

If the input voltage to a circuit is

vi() = V, sin wt (3.45)
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TABLE 3.2
T(s) Pole and zero Magpnitude response
j 7|
K |
o o=
s ob———==-
e 7, | -
K.s - :
0 @

-
/

s+p 0 -
w
——e—lw |T4| _/
Ki(s+1z) —3 o
1 o
. jw Il
s Z,
K, —— O—x—1— \
*s+p —zy =yl ¢ o— 7
[
jw Tl -
: ) L
6 = 0
s+p Py
0 w
jw 17,1 _—
g s+ 2z, o —
s+p kpl _Z] 0
W
jw (/4 | S
s—o0, 0
§ ——— —_—
s+ o0, —o, g 0
)
and the steady-state output is
v,(t) = V, sin (wt + 6) (3.46)

then we say that v, leads v, if 8 is positive or lags v, if 8 is negative. The sinusoidal
variation of v, and v, for a negative or lagging angle 4 is shown in Fig. 3.20a and
for a positive or leading angle 8 in Fig. 3.20b. In terms of the phasor representa-
tion of the sinusoids, ¥, is chosen as the reference, and so

V.= V| L0° (347)

while the phasor representation of Eq. (3.46) is
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v, lagsv by 0 ° v, leads v, by 6.

@) FIGURE 3.20 (®

V,=|V,| L6° (3.48)
Hence we see that

Vol £6 _

TGe) =y 170

InZ6 (3.49)
so that the phase angle of T(jw) is the phase difference between v, and v,, with v,
chosen as the reference. The phasor interpretation of these two voltages is shown
in Fig. 3.21.

For the bilinear transfer function

—x3ita
T=K_ > (3.50)
letting s = jw gives
. 2z, + jw
T(jw) = K =—— 3.51
o) = K S @351
Then the phase of T(jw) is § where
0 = phase of K + phase of (z, + jw) — phase of (p, + jw) (3.52)

If K is positive, its phase is 0°, and if negative it is 180°. Assuming that it is posi-
tive, we see that from Eq. (3.14)

w w
§=tan™'|—|—tan™' [— 3.53)
Z, 1
Positive Positive
TN I~ V2

N
) / o)V

/
[
Y 9 H
\\ 1 // \\ //
N V2 \\ P

(a) (b) FIGURE 3.21




66 CHAPTER 3 BILINEAR TRANSFER FUNCTIONS AND FREQUENCY RESPONSE

We use the sign of this phase angle 6 as a means for classifying circuits. Those
giving positive § are known as lead circuits, those giving negative 8 as lag circuits.

To apply this concept to specific circuits, we begin with the RC circuit of Fig.
3.2 for which TY(s) is given by Eq. (3.3). From the last result, Eq. (3.53), we see
that

8= —tan"' wRC (3.54)

as shown in Fig. 3.22. Since 4 is negative for all w, this circuit is a lag circuit. It is
useful to observe that when w = 1/RC, then § = —tan™' 1 = —45°,

The next circuit that we considered was given in Fig. 3.7 for which T(jw) is
given by Eq. (3.25). Applying Eq. (3.53) to Eq. (3.25), we find that the phase is

#=90° — tan"' w RC (3.55)

This result is very similar to Eq. (3.54) with a constant angle of 90° added. Then
the phase response is the same as that shown in Fig. 3.22 with the angle coordi-
nates shifted upward by 90°, as shown in Fig. 3.23. Clearly the angle @ is positive
for all values of w, and so the circuit is a lead circuit.

The lattice circuit which gave the all-pass magnitude response is shown in
Fig. 3.9 and the T(jw) is given by Eq. (3.31). The application of Eq. (3.53) to Eq.
(3.31) gives the same phase characteristic for numerator and denominator, and so

§=—2tan"' wRC (3.56)

This phase is negative for all w, and so the circuit is a lag circuit. The phase re-
sponse is that shown in Fig. 3.22 with the angle coordinate multiplied by 2. This
is shown in Fig. 3.24.

The circuits of Figs. 3.12 and 3.15 are similar in that they are both character-
ized by the general bilinear transfer function of Eq. (3.51) and the corresponding
0(jw) of Eq. (3.53). From this equation we see that @ is characterized as the differ-
ence of two angles, the first a function of the zero, the second a function of the
pole. Let us write this in the form of Eq. (3.53) as

9=06,+0, (3.57)

FIGURE 3.22

FIGURE 3.23
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FIGURE 3.24

(a)

FIGURE 3.25

The inverse tangent form of these two phase angle functions is shown in Fig. 3.25
for 6, and —0,. Returning now to the two circuits under consideration, we recall
that for the circuit of Fig. 3.12, z, < p,, while for the circuit of Fig. 3.15, p, < z,, as
depicted in Fig. 3.26. This figure also reminds us that the two frequencies w = z,
and w = p, are important because the phase angle has the value of +45° under
these conditions.

The implication of the condition z, < p, is shown in Fig. 3.27a. The phase
function 6, reaches +45° at a low frequency, while 6, reaches —45° for a higher
frequency. Since @ for the circuit is the sum of §, and —,, the net phase is positive
and is thus characterized as lead. Thus the circuit of Fig. 3.12 provides phase
lead. The opposite situation, p, < z,, leads to the consequences shown in Fig.
3.27b, giving a net negative angle, or phase lag. So the circuit of Fig. 3.15 is a lag
circuit. Circuits of these two forms find frequent application in the compensation
of control systems.

In the last section we considered the transfer function for an integrator given
by Eq. (3.41), T = K/s. With s = jw, the phase of the function T = —jK/w is —90°

jw jw
— = —_fw =2
s plane -~ w=r, P 1
y /
/ Jo=>: /7 =

/ L, w=z, / e =r,
/ / / /
- P

Py T 9 T4 TPy 9

(a) (b)
FIGURE 3.26
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0 ]
90°
45°
00
- 45°
—-90°
FIGURE 3.27
0 0
90°
0 w -
-90°
p—— 0
0 w
(a) (b)
FIGURE 3.28

for all values of w. Hence for the integrator
4 = —90° for all w (3.58)

A similar analysis of the differentiator transfer function of Eq. (3.43) leads to the
conclusion that

0 = +90° for all w (3.59)
Hence the integrator is a lag circuit, while the differentiator is a lead circuit.
These two phase characteristics are shown in Fig. 3.28.

Table 3.3 extends the summary of Table 3.2 to include the phase response
information we have just found.

3.5 BODE PLOTS
The general bilinear T(jw) from Eq. (3.51) is

. z, + jw z, 1+ jw/z,
T =KL L 3.60
(o) P+ jw P 1+ jw/p, ( )

We are interested in plotting the magnitude and phase of 7T(jw)

T(jw) = |T(jw)| £ 0(jw) 3.61)
as a function of frequency w. If we plot the magnitude
A =20log|T(jw)] dB (3.62)

as a function of w with logarithmic coordinates, then the plot is known as a Bode
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TABLE 3.3
T.(s)* Pole and zero | Magnitude response Phase response
jw 7,1 0Op— @
K 0,
s g 0 —— — () fr— -
w
jw IT,| -~ [370)
K,s 0,
g
0 w 0 w
jw T w
K3 I 3I 0
—_— 0,
s+p RS 0 == | _o ==
=1 -9
jw IT,| 4 490 r——————f.-
K(s+z,) —:?—_0 _./ 0,
4
0 w 0 w
jw T =
45 I~ | s
K, —= O—r—— .
s+p, AT 2% Y
0 w
jw T --1 90
K, — 0
*s+p Py 0 o e
0 w 0 w
jw I7,1
s+z 7 ==
K —+ | »—1— _/ 0,
s+p Py I .
0 5 0 )
. W
@ Typeo | O
K, S: ol " “e Oy
s+o - . -
' ! iy o0 % | 180k ————~-—= =

* All X, are assumed positive.

plot after Hendrik Bode.* The plot of 4 as a function of w with the same logarith-
mic coordinates is also known as a Bode plot; the two together are the magnitude
and phase Bode plots. This coordinate system is illustrated in Fig. 3.29. The ori-
gin of the coordinate system is difficult to define since the position of 0 on the log-
arithmic frequency scale is an infinite distance to the left. When |T(jw)| = 1, then
A =0dB.

* Hendrik Bode grew up in Urbana, Illinois, where we pronounce his name boh dee. Purists insist on
the original Dutch boh dah. No one uses bohd. Dr. Bode spent most of his professional life at Bell
Laboratories and, until his second retirement, was a professor at Harvard University.
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w, rad/s

(a)

6, degrees

0
0.1 0.2 03 0.5 1 S 10
w, rad/s

(b)
FIGURE 3.29

The magnitude function of Eq. (3.61) is, from Eq. (3.60),

|1+ jo/z| 3.63)

. Z,
T =|K— .
ITG) ’ 1+ jo/pil

4

From this we see that A(w) is

A(w) =20log + 20 log

l+j£’—20]og
Z,

231) —tan! (ﬁ) (3.65)

The first term in Eq. (3.64) is a constant, while the second and third terms
are similar, except for the sign. We will first study the second term and then con-
sider the others in Eq. (3.64). It is

14 3‘ dB (3.64)
P

K2
b

and the phase function is

0(jw) = 0 or 180° + tan™'

Ay(w) =20log

14 zﬁ,‘ (3.66)

or

Ay(w) =201log ‘/1 + (ZEJ2= 10 log [1 +

w 2
z_,) J 3.67)

We gain insight into the form of 4,(w) if we consider the low-frequency and high-
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frequency asymptotes. When w < z,, then
Ay (w)=10log 1 =0dB (3.68)
At high frequencies the 1 in Eq. (3.67) can be neglected, and we obtain

Ay(w)=20log

w
Z) (3.69)

This is the equation of a straight line in Bode coordinates. To describe this line,
we make a number of observations. First, we see that 4, = 0 when w = z,. We
also see that the straight line has a positive slope. What is this slope, and how can
it be described? Figure 3.30 shows two points on the frequency coordinate,
marked w, and w,. The corresponding points on a linear scale are designated as u,
and u,. The relationship between the linear points and the values of frequency is

u, = log w, and u, = log w, (3.70)
The linear distance between u, and u, is
W,
u, — u, = log w, — log w, = log w_) (3.71)
1
l<_142 —uy _).‘
- o;‘ OIJZ w, rzﬁ/s (log scale)
U,y U, u (linear scale)

FIGURE 3.30

There are two common ratios in this equation. If w, = 2w,, then the two frequen-
cies are said to be separated by an octave, while if w, = 10w,, then the two fre-
quencies are separated by a decade. If the distance 4, — u, corresponds to an oc-
tave, then this distance will define an octave along the entire w scale. Thus if

w, = 2"w, (3.72)

is substituted into Eq. (3.71), then the distance from u, to u, is

=n(u, — u,) 3.73)

w
u,—u,=nlog|—=
w

1

and the distance of n octaves has been described. We see that the appropriate unit
for linear distance in the w direction of the Bode plot is either the octave or the
decade.

Going back to Eq. (3.69), we see that if w, = z, and w, = 2z,, then 4, will
have increased from 0 dB to 6.0206 dB. It is conventional to round this down to 6
dB. If w, is equal to 10z,, then A, will increase by 20 dB. Thus we see that the
slope of the straight line of Eq. (3.69) can be described as either

dB . dB
octave ° decade

(3.74)
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20 dB/octave
’
A,.dB| 6 dB/octave ’/

w (log scale) w (log scale)

FIGURE 3.31

The line that we just described is shown in Fig. 3.31. We observe that if the low-
frequency asymptote of O dB is extended, it intersects the high-frequency asymp-
tote at the frequency w = z,. These two asymptotes constitute the asymptotic plot
of Eq. (3.66).

For many applications the asymptotic plot alone will suffice. If we require
accuracy, then a plot may be made using Eq. (3.67) or its inverse

w=2z, JIOO =] (3.75)

Both equations are well suited for use of the calculator. However, for a simple
though approximate method of plotting the actual curve, the following steps may
be taken:

1. Plot the straight-line asymptotes, as in Fig. 3.31.
2. The difference between the actual and the asymptotic curves will be as fol-
lows:
a. At z, (called the break frequency) the difference is 3 dB.
b. One octave above and one octave below the break frequency, the differ-
ence is 1 dB.

These three points allow you to rough in the actual response with fair accuracy.
This is summarized in Fig. 3.32.

Now let us return to Eq. (3.64) and compare the second and third terms. The
second involves z,, while the third involves p,, but these are simply break fre-
quencies as identified in Fig. 3.32. The significant difference is the sign, which is
negative. This simply means that the slope of the high-frequency asymptotic
curve will be negative, as shown in Fig. 3.33. Otherwise everything that has been
described for the second term applies to the third.

Actual Ve
response

A, dB
. Asymptotic
response

1 dB

—_—T
j__,___ ——3dB

1 :1/2 2 2z,

w (log scale)

FIGURE 3.32
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/1} . dB

Low-frequency

'/ asy mptote

w (log scale)
—6 dB/octave

High-frequency
asymptote N\, FIGURE 3.33

Example 3.2 As an example of the bilinear transfer function that we have been describ-
ing, consider

s+ 0.5
T(s)=6 "= (3.76)
Let s = jw so that
- 14jw/05
Tyw) =757 T jo/3 3.7

Written in this form, we recognize that z, = 0.5 and p, = 3. The numerator and denomina-
tor factors are shown in asymptotic form in Fig. 3.34. Adding these two gives the total re-
sponse in both asymptotic and actual forms, as identified in the figure. The corresponding
phase plots are shown in Fig. 3.34c. These are also added. From the plots we conclude that
the 7(s) of this example represents a highpass phase-lead circuit.

Example 3.3 As our next example we invert Eq. (3.76) as well as Eq. (3.77) so that

1+ jw/3

1+ jw/0.5 378

T(jw) =
Here z, = 3 and p, = 0.5. The Bode plot for the magnitude factors is shown in Fig. 3.35a

and b and for the phase factors in Fig. 3.35c. We conclude that this 7(s) represents a low-
pass circuit which provides phase lag.

There remain the transfer functions with a single zero or pole at the origin,
those representing the differentiator and the integrator. In addition, such factors
may appear in other transfer functions. Consider a differentiator with the transfer
function

T(s)=K.s (3.79
For this 7(s) we calculate
@
1/K,
This equation is the same as Eq. (3.69) given for 4,, with 1/K, replacing z, and

valid for all w rather than only for high frequencies. This is shown in Fig. 3.36a.
Note that 4 = 0 when w = 1/K,,.

A(w) =201log ( (3.80)
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Numerator Total
factor L7
18 -
12 =1
6 Actual T
A, dB N A
0 P
—6 Denominator ™ u
factor NN
12 |
0.1 0.3 0.5 1 3 S 10
w, rad/s
(a)
6 l
0 0 dB a
F()tul\y
A,dB —6 /
A
—12
—15.6 dB Y
8 1
0.1 0.3 0.5 1 3 10
w, rad/s
(b)
90
BEs — |
45 —+1 i ™~
4—/’ Phase lead S~ L
0. degrees = H -
==
\
RS \T\NN~-
-90 O
0.1 0.3 0S5 1 3 5 10
w. rad/s
(¢)
FIGURE 3.34

The transfer function of an integrator may be written

1(s) = 1—;’;

and for this function

w

A(w) = —20 log /K

(3.81)

(3.82)

This equation is identical with Eq. (3.80), except for the sign which indicates that
the slope is negative rather than positive as it was for the differentiator. As before,

A = 0dB when w = 1/K,, and the Bode plot is shown in Fig. 3.36b.

In summary, compared with linear plots, Bode plots offer a number of fea-

tures that will be important in filter design. These include:
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1. With frequency plotted on a logarithmic scale, the octave and the decade are
equal linear distances, as shown in Fig. 3.37.

2. Using a logarithmic measure for the magnitude of T makes it possible to add
and subtract rather than multiply and divide. For example, if

_T.I.T,
T= —T4 (3.83)
then
A=A+ A, +A4,— A, (3.84)

just as is the case for angles,
0=0,+6,+6,—-46, (3.85)

Figure 3.38 shows how simple it is to add lines to obtain segments of lines for
A=A, +A4,+ A,

3. The slope of all lines for bilinear functions is +6 dB per octave or +20 dB
per decade. In the general case all asymptotic lines are integer multiples of
these two numbers.

4. In many applications we deal only with the asymptotic plots without “filling
in the corners” to obtain the actual plots. In some sense the asymptotic plots
are a shorthand with which you can sketch out your ideas in design.

5. Because of item 1, the shape of a Bode magnitude plot is maintained when
frequency is scaled, as shown by Fig. 3.39. This makes it possible to use tem-
plates with these characteristic shapes for magnitude and phase such that the
template can be moved to the right or left and up or down.

6. The phase angle plots for first-order factors are shown in Figs. 3.34 and 3.35.
These have a different appearance than the linear plots, but there is nothing
distinctive about them. As indicated by Eq. (3.85), angle plots are added and
subtracted to obtain total angle response.

- L ! 1 1 1 ) B, -_— ! 1 1 L _—
1/4 1/2 1 2 4 8 w 1/10 1 10 100 w
(log scale) (log scale)
FIGURE 3.37
All—/", A, A, 4,
o T <& t < = — NG
| | ~ | S pAN
FIGURE 3.38
A, dB
Scale
L T N

] N Shape N @

~ conle
S~ maintamed s (log scale)

FIGURE 3.39
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3.6 AND NOW DESIGN

We are now prepared to introduce some of the aspects of circuit design which will
be amplified throughout the book. We do so in terms of some of the circuits ana-
lyzed earlier in this chapter. The RC circuit given in Fig. 3.2 and shown again in
Fig. 3.40a is a lowpass lag filter having the transfer function

_ _I/RC _ p
T(s)_s+ l/RC_s+p.

(3.86)

If a design is specified in terms of the half-power frequency p,, then the design
equation becomes

P=Re (3.87)
R lp,
C I 1
o———-l—o o——I———o
(a) (b) FIGURE 3.40

This equation represents a situation that is typical of design. We have one equa-
tion and two unknowns, the values of R and C. The approach which will become
standard is to choose one and so determine the other. We let C = 1 F; it is then
required that

1
R=— (3.88)
j2

These design values are given in Fig. 3.40b. To see how this works, we consider
an example.

Example 3.4 We are required to design a lowpass filter with a half-power frequency of
1000 rad/s. This means that the frequency response on Bode coordinates is as shown in
Fig. 3.41, and also that p, = 1000. Then the circuit elements are determined as R = 1/1000
and C = 1. These are not very practical values, and so we next resort to magnitude scaling

0dB N
= T T T T 1.1
—3F——= HPT Asymptotic
7~
-6 7 N
A.dB 12 Actual \7

\N
—18 ;\
'_2ﬁ ~
100 300 1000 3000 10,000

w, rad/s

FIGURE 3.41
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as described in Appendix A. For magnitude scaling the appropriate equations are Egs.
(A.15) and (A.17):

Cnew = Cold (389)

1
km
Rnew = kaold (390)

Any value of k,, may be selected; a good one is k,, = 10° giving the values of 1 k& and 1
pF shown in Fig. 3.42.

1 k2
I 1 uF
O—LO FIGURE 3.42

A second circuit to which we will apply this design strategy is the highpass
phase-lead circuit of Fig. 3.12, for which the following set of design equations

were given as Eq. (3.35):

R.C, R.C, (3.91)
Rearranging these equations,
RC, = 1 (3.92)
Z,
and
1
R,C, e (3.93)

An obvious choice for the element value to select at this point is C, = 1 F. Once
this choice is made, then the other two design equations become

1

R=— (3.94)
and
R,= ! (3.95)
: Pr— 2 ’
These are shown in Fig. 3.43. Again, we illustrate with an example.
]/:l
—AWA—
1 Y r
]
1 F
I'o FIGURE 3.43
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Example 3.5 Our design is based on the information given in Example 3.2, except that the
desired break frequencies are 500 and 3000 rad/s. This difference can be accommodated
by frequency scaling. If we substitute the values z, = 0.5 and p, = 3, into Egs. (3.94) and
(3.95), we obtain these design values:

2
C=1F,  R=20 R=3%8 (3.96)
The scaling equations
C=— ¢ 3.97
new k,k,,, old ( . )
and
Roew = kpm Royq (3.98)

will be used to complete the design. The requirements of the problem dictate that k, =
1000. The choice of k,, = 1000 gives the following element values:

C,=1pF, R =2KkQ R,=4009Q (3.99)

which are in a reasonable and practical range. These are shown in Fig. 3.44.

2 k2
R <l
| uF < 400 Q
o o FIGURE 3.44

Example 3.6 We require a circuit that will provide 45° of phase lead at a frequency of
1000 rad/s. First we take advantage of lessons learned from the last two examples and de-
sign for w = 1, with later frequency scaling to meet the specifications. The phase relation-
ship for a bilinear circuit is given by Eq. (3.53), which may also be written in the form

9 =tan' [%ﬁl} (3.100)

using a trigonometric identity. Since we require that § = 45° at w = 1, this equation be-
comes

P~ 2
£ 7 3.101
1+ p.z, : ( )

which is equivalent to
Ppr—zi=pz +1 (3.102)

Again we have a design problem with one equation and two unknowns, which we resolve
by selecting a value for either p, or z, to see if a reasonable value results for the other
quantity. If we let p, = 5, then Eq. (3.102) gives z, = %. This gives us the element values
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AND FREQUENCY RESPONSE
3/28 1.5 k2
1 F 3/13Q2
1'o- +———072' 10
(a)
FIGURE 3.45

shown in Fig. 3.45a. We are now ready to complete the design by scaling. From the state-
ment of the problem we know that k; = 1000. One of the possible choices for k,, is 1000.
This scaling gives the circuit shown in Fig. 3.45b.

The application of these techniques to the other circuits of this chapter is
summarized in Table 3.4.
The design procedure described may be summarized in the following steps:
Specification Some aspect of the magnitude or phase response that is required

must be given in order that the pole and zero locations may be found. For

example, if a Bode plot is given, then the break frequencies and so the pole
and zero locations can be found by a cut-and-try procedure.

TABLE 3.4
Pole and zero T(s) Circuit Classification
1/z,
jw v v
s+ 2z, >z ! 2 Lead
A\ s¥p PTE ;| higheass
o +—O
Jw !
Vio—] v,
s 1! | Lead
9 s+p/’ Pr=Rrc l/p, highpass
o +—o0
) 1/p,— 1)z
jw v, 0——}\N\I——IT—'—OV2
s+ 2z, 1 Lag
O T
I Ms+p D7P %1/2 lowpass
1
o *+—0
) R=1/p,
Jw V1 V2
P _ 1 ] Lag
i o |s+p” 7T Re T lowpass
o —<4—o
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Required We require the complete circuit with element values in a practical
range.
Procedure The following six steps are suggested.

1.

Select a circuit that seems to satisfy the requirements of magnitude or
phase variation with frequency.

2. Proceed from the specifications to determine pole and zero locations.

3. Use scaling if desired to reduce the pole and zero values to small integer
values.

4. Determine element values from the values of the poles and zeros.

5. Scale: frequency scale to meet specifications, magnitude scale to give
convenient and practical element values.

6. Since there are never unique solutions in design, it will usually be neces-
sary to repeat the process to see the range of possibilities available.

PROBLEMS

3.1 Prepare an asymptotic Bode plot for both magnitude and phase for the following
transfer functions. In making the plot, it is useful to make use of four- or five-cycle

semilog paper.

3.2

()

(b)

©

@)

(e

®

(8)

(1 + 0.25s)(1 + 0.15)

Tt9) = 1000 (1 + 0.0255)
T(s) = %
T9=0% 0.011;:?0 T 0.00253)
Tes) = 180 (;E)IS;;((:'T?)).OOIS)
T(s) = 50 %T%%)l

T(s) = s(1+ 0.01s1)(z(l) +0.001s)
T(s) = 1000 °

(1 + 0.17s)(1 + 0.53s)

Figure P3.2 shows only the asymptotes of a Bode magnitude plot. The characteristic
response is used for gain enhancement—increasing the gain over a band of frequen-
cies, but not changing either high- or low-frequency behavior. For this response, de-
termine 7(s), evaluating all constants.



82 CHAPTER 3 BILINEAR TRANSFER FUNCTIONS AND FREQUENCY RESPONSE

6 dB/octave

0dB

5% 103 w, rad/s
FIGURE P3.2

3.3 Repeat Problem 3.2 for the Bode magnitude plot shown in Fig. P3.3.

8 dB————

6 dB/octave
0dB

8750 w, rad/s
FIGURE P3.3

3.4 The bandpass response shown in Fig. P3.4 is given as a specification. As the first step
in the design of the figure, determine 7{(s), evaluating all constants.

20 log |T(jw)l dB
+6 dB/octave 20 dB —6 dB/octave
|

0 ! 0 dB

/0 lowad/s
e

// S
FIGURE P34

3.5 The problem is to design an amplifier-filter having the Bode asymptotic plot shown
in Fig. P3.5. Determine 7(s), evaluating all constants.

6 dB/octave 20 dB —6 dB/octave
| |
| |
| |
|
rd | \
7 ! SQ
1600 2500 w, rad/s

FIGURE P3.5
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3.6 Given the Bode asymptotic plot for a notch filter as shown in Fig. P3.6, determine
T1(s), evaluating all constants.

|T(jw)l dB w, rad/s
w w
0dB 1?0 i 1 2 (log scale)

|
|
|
|

—40 dB/decade I 20 dB/decade
|

—40 B ———————————

FIGURE P3.6

3.7 The transfer function corresponding to the asymptotic Bode plot shown in Fig. P3.7
has only real poles and zeros. Construct 7(s), determining all constants.

ITIdB
—+ 40

0.01 0.1 1 w (log scale)

—20

FIGURE P3.7

3.8 The asymptotic Bode plot shown in Fig. P3.8a represents a filter-amplifier having a
break frequency of 1000 rad/s. Determine a transfer function Ty(s) which when mul-
tiplied by 7(s) of Fig. P3.8a gives that specified in Fig. P3.8b.

|T| db |T| dB
20 dB . 20dB N
1000 w 5000 w, rad/s
—12 dB/octave —19 dB/octave
N\
\\\ N
(a) (b)

FIGURE P3.8
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3.9 Figure P3.9 shows the asymptotes of a Bode plot.
(a) Determine the half-power frequency for this plot
(b) Determine 7T{(s), evaluating all constants.

+12 dB/octave I —6 dB/octave

I

0dB |
500 1000

w, rad/s

FIGURE P3.9



CHAPTER 4
Cascade

Design
with
First-Order
Circuits

In this chapter we study techniques for connecting first-order circuits in cascade
such that the overall transfer function is related to the transfer functions of the
individual circuits by the chain rule

T=TT.T, - 4.1
We first examine the conditions under which the chain rule is valid, and then tab-

ulate first-order op-amp circuits that will be useful in design. This will differ from
the last chapter where all realizations were passive.

4.1 WHEN MAY WE CASCADE
CIRCUITS?

Figure 4.1a shows a ladder circuit made up of two resistors and two capacitors. If
this circuit is routinely analyzed, the transfer function is found to be

v _ (1/RCy
V. &+ (3/RC)s+ (1/RC) 4.2)

Now suppose that we break the ladder in half and insert a unit-gain voltage-con-
trolled voltage source ¥, as shown in Fig. 4.1b. This will cause the two circuits to
be isolated in the sense that the current I, = 0; the second circuit does not “load”
the first. Under this condition we see that the transfer function of the first section
is given by Eq. (3.3):

T, = %= 1/RC @3)

. s+ 1/RC

85
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- . —0
Voltage follower

(c) FIGURE 4.1

Similarly, the transfer function of the second section is
vy _ 1/RC

L= =% 1re “4
The product of these two transfer functions is
Vo Vo VW _rp o
2R 7R 2 T.T,=T 4.5)
Multiplying the two transfer functions together, we have
2
TT,= 1/RC 1/RC (1/RC) @.6)

s+ 1/RCs+ 1/RC_ &+ (2/RC)s + (1/RC)

First we observe that this equation differs from Eq. (4.2) for the circuit without
isolation of the two sections. Then we see that a practical realization of the volt-
age-controlled source of Fig. 4.1b is as shown in Fig. 4.1c, which uses the voltage
follower studied in Chapter 2. There we found that the input current to the volt-
age follower is zero, meaning that R,, is infinite. At the output of the voltage fol-
lower R, = 0, and the circuit behaves as a controlled-voltage source with zero
internal resistance.

We may generalize the observation with a simple cascade of two RC circuits
to say that the chain rule applies, provided that the sections being connected in
cascade are isolated in the sense that each successive circuit does not load the pre-
vious circuit. When this condition is satisfied, then, with circuits cascaded as
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shown in Fig. 4.2,
T=TT,T.T, T, 4.7)

for n circuits (or modules) connected in cascade. Circuits of the inverting and
noninverting types studied in Chapter 2 are well suited to cascade-connection de-
sign.

4.2 INVERTING
OPERATIONAL-AMPLIFIER
CIRCUITS

The circuits derived in Chapter 2 for op amps and resistors apply for the sinusoi-
dal steady state with values of R replaced by Z(s). Hence the transfer function of
the basic inverting op-amp circuit shown in Fig. 4.3 is

T(s) = — -;i (4.8)

Since we are considering only the bilinear function for 7(s), we have

Z, Ks+z.

Z, s+p, “.9)

The problem to be considered may be formulated in terms of this equation. We
assume that the specifications of the design problem are the values of X, z,, and
p:. These may be found from a Bode plot—the break frequencies and the gain at
some frequency—or obtained in any other way. The solution to the design prob-
lem involves finding a circuit and the values of the elements in that circuit. We
will assume that inductors are excluded from our consideration. Hence we wish
to find the values of the R’s and the C’s. Once found, these values can be ad-
justed by any necessary frequency scaling, and then by magnitude scaling to ob-
tain convenient element values.

The procedure we will follow requires that some parts of Eq. (4.9) be as-
signed to Z, and some to Z,. These are arbitrary assignments, each resulting in a
different design strategy. Since inductors are excluded, we must avoid making the
identifications Z = Ks and Y = 1/Ks. Some of the possible assignments are identi-
fied in Table 4.1. In fact, these are all of the forms of the Z, and Z, circuits of Fig.
4.3 if we consider circuits with no more than two capacitors and two resistors.

We will illustrate the procedure by starting from the specification for a low-
pass phase-lag circuit described by Eq. (3.3). From Eq. (4.9) we require that

zZ, K

7.= s+p (4.10)

Note first that we cannot make the assignment that Z, = K and Z, = s + p, for
this would require that Z, include an inductor. However, if we write Eq. (4.10) in
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Z,
o )
}, o + +
v, ,;Lz v (=Z,1Z,)V, =V,
o 4 o o—4 +—o
(a) (b)
FIGURE 4.3
the form
Z, _ 1
Z, s/K+p/K @D
then we can make the following assignments:
Z =1
Z,= ! = L 4.12)
" s/K+p/K Cs+1/R, )

The last part of this equation was found from Table 4.1 by examining the four
possibilities. We have now found the design equations

1 K

R=1 GC=-  R==— (4.13)
P

K
and also the circuit structure shown in Fig. 4.4. This set of element values in
terms of the specification parameters completes the design procedure, except for
scaling.

Example 4.1 Reconsider Example 3.4 of the last chapter which relates to the design of a
lowpass circuit to satisfy the specifications of Fig. 3.41. In terms of those specifications, it

TABLE 4.1
Z, or Z, elements Impedance Admittance
R 1
o—AMWNV—o0 =
R R
¢
1
— C.
o——-——"—o G s
R
1 1
| ;; ' : Cs+ /R G+ g
¢
R C

1 1
o—WW—]}-o R+ & R+1/Cs
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Kip,

FIGURE 4.4

was found that

1000

) = 51000

4.14)

so that p, = 1000 and K = 1000. Substituting these values into Egs. (4.13), we obtain the
circuit shown in Fig. 4.5a. As in the previous case, frequency scaling is not required, and a
magnitude scaling factor of k,, = 1000 gives the values shown in Fig. 4.5b.

Applying this same procedure to the general bilinear function, we make the
following identification:

s+ 2z, _ 1/(3/K+p|/K)___Zi
s+p,  l@s+z)  Z

(4.15)

This identification is identical to that of Eq. (4.12), from which we write the de-
sign equations as
1 K 1
R, = z—l, C =1, R, = p—l, C,= X (4.16)
The realization is shown in Fig. 4.6. This is a general solution for the bilinear
transfer function and applies whether p, is larger or smaller than z,.
Another strategy in making circuit identification makes use of division of
both the numerator and the denominator by s. Starting with Eq. (4.9) we have,

| 1 k2

| 1/1000

e

i
po! =+
ol 5 +¢

(a) (b)
FIGURE 4.5
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K/pl

FIGURE 4.6

with K = K,/K,, an arbitrary division:

_ K(s+z)/s _ K, +K,z,/s _ Z,
K,(s +p)/s K, + K,p\/s Z,

.17

Comparing this result with the possible values given in Table 4.1, we see that
both Z, and Z, represent series RC circuits. Then the design equations are

1 1
= K2p|’ Rz = Kn Cz = E

This realization is shown in Fig. 4.7. It is another general solution for the bilinear
transfer function and applies for either relationship between p, and z,.

R, =K, C

(4.18)

Example 4.2 Example 3.2 of the last chapter had as specifications

s+ 0.5
s+3

T(s) =6 (4.19)

Assuming that an inverting solution, with a minus sign added to 7(s), is a satisfactory so-
lution (or another inverting stage can be added), we see that the specifications are
2, =05 p =6 K=6 (4.20)

Using the design equations given as Eq. (4.16), we find that the element values are

R =2 C=1 R=1 C= a.21)

N —

These element values are shown in Fig. 4.8a. Suppose that the 7T{(s) of this example is a
scaled transfer function, and that all frequencies are to be multiplied by k, = 10°. We will
arbitrarily select the magnitude scaling of k,, = 1000, and the element values given in Fig.
4.8b result.

I/szx

K, VK,

=

ifo
il
ot =+

FIGURE 4.7
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1 10 k2

- }

(a) (b)
FIGURE 4.8

4

z

o

III‘—O{ S +0
lll—ol = 40

o = +T

The approach that has been illustrated by two examples can be applied to
other forms of 7(s) to give the entries in Table 4.2. We know that the element val-
ues in Table 4.2 are not unique, and so other entries can be found.

The circuit of the last example, shown in different form in Fig. 4.9, provides
insight into the operation of the inverting amplifier. Analysis of the circuit gives

C, s+ 1/R,C,

From this we see that the elements in Z, control the position of the zero, while the
elements in Z, control the position of the pole. Hence adjustment is very simple
and routine. The pole and zero are always on the negative real axis, as shown in
Fig. 4.10, but the positions of the pole and zero can easily be interchanged. For
low frequencies we see from Eq. (4.22) that T = —R,/R,, while for high frequen-
cies T=-C,/C,.

The last three entries in Table 4.2 illustrate another point. If we use a series
RC connection for Z, but a shunt RC connection for Z,, then the transfer func-
tion becomes one of second order. So the manner in which the capacitors are con-
nected in the circuit determines the order of the circuit.

4.3 NONINVERTING
OPERATIONAL-AMPLIFIER
CIRCUITS

The noninverting op-amp circuit of Chapter 2, generalized with R’s replaced by
2Z’s, is shown in Fig. 4.11a. The transfer function is
Y42

T(s) = V.= 1+ Z, (4.23)
This is shown in Fig. 4.11b, which reminds us that the circuit operates as a con-
trolled-voltage source. The figure also reminds us of the attractive feature of this
connection that Z, is infinite, while the Z,, of the inverting op-amp circuit is Z,.
We will next show that there is a disadvantage to this connection to compensate
for the infinite input impedance advantage. Solving Eq. (4.23) for Z,/Z, and sub-
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TABLE 4.2

Pole and zero T(s) Circuit

1
” 1l
K V,O—Wv—J

jw
‘+ s —oV,
jw
{ 0

2

—K(s+z))
4
jw
| x
—pl I [ s+ p
S 1
jw x Kip,
—Ks V oMW} ,
- 4 s+p, 2

stituting the general bilinear 77(s), we have
Z, s+ 2z,

=K _1=S(K_l)+(Kzl_pl)
Z, s+p s+p,

(4.24)

Since our objective is to identify terms in this equation with Z, and Z, represent-
ing a passive RC circuit, we see that there are constraints on K and on the rela-
tionship for z, and p,. In some cases the limitation will be on K, which can be
overcome by additional stages (modules) to provide only gain. But in some cases
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TABLE 4.2 (continued)
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Pole and zero T(s) Circuit
6
jw
_xita
s - s+p,’
or any p, and z,
7 ] s+ z,
@ s+p’
.0
o - K,
or
any p, and z, e
8 1/K
jw
—Ks 1
~py —ry] 0 [s+pi+paf STV I oV
- ]/pg 2
9 1/K
jw
—Ks lp,
=p, 7| % |(s+p)(s+p) oV

—Ks

(s+p)s+p2)

k=3
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- FIGURE 4.9

no realization will be possible. For example, suppose that we wish a realization in
the form of Fig. 4.11 for the low-pass transfer function

I(s)=

s+p (4.25)
Then
Z, _-—s+(K-p)

Z, s+p, (4.26)

and the presence of the —s term in the numerator means that no passive realiza-
tion can be found. The same conclusion will hold for T= K/s and T = Ks. How-
ever, there are some realizations possible.

Suppose that we let K = 1 so that Eq. (4.24) becomes

é _Zi— P
Z Py o, 4.27)
If we divide numerator and denominator by s, we have
Z, _(z—p)/s
Z, -1 Tpi/s (4.28)

Next we make the identifications
1

= P _ L
z=1+8=R+
_a-p_ 1
z,= 2= or (4.29)

The circuit of Fig. 4.12 is then found to be a realization, provided that p, < z, and
K = 1. A different manipulation of Eq. (4.27) gives a different realization. If we

FIGURE 4.10
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o )
+ +
v, U +(Zyz)V, =V,
° °
(b)
FIGURE 4.11
let
Z, = ! and Z,= ! (4.30)
'z, —p 2T s+p )

we have the circuit shown in Fig. 4.13, which is subject to the same constraints as
the circuit of Fig. 4.12.

Returning to Eq. (4.24), suppose that we next select the value of K so that
the constant in the numerator vanishes. This requires that

Kz,—p,=0 or K= % 4.31)
1

Substituting this value for X into Eq. (4.24) gives

é _ [(p, — z)/z\]s _ @ — 2))/z,
Z, s+p, T 1+pJ/s (4.32)

From this equation we see that the identification of terms with Z, and Z, can be
made such that in the circuit of Fig. 4.14a

P~z
R,=——, R =1, C=— 433
=2 = 433)
Another possible identification in Eq. (4.32) leads to
1 1
Z= [, — 2))/z2\]s B C_ls
z, L ! (4.39)

T 5+p  Cs+1/R,

FIGURE 4.12
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o——+
—O
1
’/(Zl—!)]) VWV
1/p

FIGURE 4.13

and from this the circuit of Fig. 4.14b is identified. Each of the two circuits found
requires that z, < p, and K = p,/z,. These circuits are shown in Table 4.3.

Example 4.3 First we observe that the methods we have developed do not apply to the
transfer function considered in Example 4.1. If we consider the 7{(s) of Example 4.2 and
the circuit of Fig. 4.14b, then the element values become those shown in Fig. 4.15a. If we
scale frequency such that k; = 10°, and then scale magnitude with k,, = 10% then the cir-
cuit values of Fig. 4.15b are found. This particular realization gives us a gain of K = p,/z,
= 12, which is twice that specified by Eq. (4.19). To meet the specification exactly, it is
necessary to reduce the gain by !, which is done with a voltage divider at the output.

The method that has been illustrated in this section and the preceding one
can be summarized in a number of steps:

1. Reduce Bode plot information (or the equivalent) to values of X, p,, and z,.

2. Look in the tables provided (a catalog) for a suitable realization in terms of
pole and zero locations. Determine element values.

3. If any element values are awkward, try another realization, or derive one not
in the catalog.

4. Frequency scale if this is called for in the specifications.

5. Magnitude scale to get convenient element values.

Example 4.4 To illustrate these steps, we wish to design a circuit to satisfy the require-
ments shown in Fig. 4.16a. The circuit has the purpose of providing 6 dB of loss at low
frequencies, but no loss at high frequencies. The figure shows only the asymptotic Bode
plot. From the analysis of Fig. 4.16b we see that 4(w) is made up from three factors: a con-

(py—z2)lz,

(py 2z,
n 1

(a) (b)
FIGURE 4.14
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TABLE 4.3
Pole and zero T(s) Circuit
1 v,
Vs
jw
s+ 2z,
~ s+p,’ Lag
z,>p, 1 1z, =py)
nT
2 Vl
. Y,
j@ s+ 2z,
s+p’
o La
z>p &
N 1/p,
= e, —p)
3 v,
—O V2
. s+ 2z,
Jw s
s+p,
o P=x (p,— 2z,
K= _p_| 1 Lead
Z,
i
4
jw s+ 2z,
s+p,’
g P>z,
k=2
Z)
5
Vi
jw —oV,
K(s + z,),
o _1 !
1/z Lead
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1.667 k2

(a) (b)
FIGURE 4.15

stant, a zero factor with a break point at w = 4, and a pole factor with a break point at w =
8. In equation form,

A(w)=Ao+2010gl+j%—2010gl+j% (4.35)
where
A, =20log K or K=10"%® (4.36)
Since 4, = —6 dB from Fig. 4.16b, then K = . Hence we have found that
1 1+jw/4
T(jw) = > T+70/8 +j /8 4.37)
Letting jw be replaced by s, we have
) s+4
=175 (4.38)

The circuit realization shown in Fig. 4.17 is found in Table 4.3 and provides a gain of 2.

A,dB
. 0dB
@ 0 4 18 w, rad/s (log scale)
—6 dB :
|
|
|
P
A, dB
|
]
® 0 4 8 w. rad/s
—6 —6dB
\\\

FIGURE 4.16 The decomposition of the response shown in (a) into component first-order fac-
tors in (b). The poles and zeros corresponding to (b) are shown in (c).
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1/29Q
——AM——
1Q
V, 0—AAA—
VZ
= 1Q
1Q
1/8 F
FIGURE 4.17

An inverting op-amp circuit has been used to reduce the gain by a factor of 'z to meet the
specifications exactly. Frequency and magnitude scaling are accomplished as in earlier ex-
amples.

44 CASCADE DESIGN

In this section we make use of cascaded modules, each of first order, to satisfy
specifications that are more complicated than the bilinear function. The proce-
dure will be illustrated by three examples.

Example 4.5 The asymptotic Bode plot shown in Fig. 4.18 for A(w) is that of a bandstop
filter. There is no loss at low and high frequencies, but 20 dB of loss is provided in an in-

A.dB
0dB 0 dB
(a)
w, rad/s (log scale)
—20dB
102 10°  10¢
A.dB ,

’
’

©)

b L
® \ de/s (log scale)
\\ \\

AS

0’ %
| |
| |
| |
| |
| |
[ |
| |

r———————-0

FIGURE 4.18
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termediate frequency range. The composite plot may be decomposed into four first-order
factors as shown in Fig. 4.18b, plus the possibility of a constant factor. Those marked 1
and 4 represent pole factors, while those marked 2 and 3 are zero factors. In other words,
we see that

Aw)y=Ao— A, + A, + A3 — A, (4.39)
From the break frequencies given, we see that

(1 +jw/10°1 + j w/10%
(T +j o/10%)(1 + j 0/10°)

T(jw) =K (4.40)
Written in this form, it is clearly seen that when w = 0, then T(;0) = K. From the figure we
see that the low-frequency value of A(w) = A, = 0 dB, so that by Eq. (4.36), K = 1. Sub-
stituting s for jw in Eq. (4.40) gives us the transfer function

_(s+10%(s + 10%)

S G IPG+ 109 @4n

T(s)
With experience it will be possible to write 7(s) in this form directly from the Bode asymp-
totic plot, bypassing these steps.
We next write 7(s) as a product of bilinear functions. The choice is arbitrary, but one
possibility is
s+ 10° <3 +10°
s+ 1027 s+10°

T(s) = T\(s) Ty(s) = 4.42)
For a circuit realization of T, and T,, we next decide to use the inverting op-amp circuit 6
in Table 4.2. Using the formulas for element values given there, we obtain the realization
shown in Fig. 4.19. Frequency scaling is not required for this design since we have worked
directly with specified frequencies; so k; = 1. The magnitude scaling of the circuit is ac-
complished with the equations

Coew = kL Coa and R... = kR (4.43)
If we decide to make all capacitors have the value of 0.01 pF, this is accomplished in Eq.
(4.43) by making k,, = 10%. The element values that result are shown in Fig. 4.20, and the
design is complete. A characteristic of design that now becomes apparent is that there is
not a unique solution. If the spread of resistor sizes in the circuit of Fig. 4.20 is too large,
then we begin the design process again and obtain a different solution. This process may
be repeated several times before a decision is made on the circuit that will actually be

used.

1073 1072 1074 107°
——A\N- ANV AM_1
VI o'_"F »—0 V2
—t —J i I
1F 1 F 1F 1 F

FIGURE 4.19
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100 k2 1 MQ 10 kQ 1 k2
—VWW———WWAV——WAV—
v, L——o v,
i H+ I—t——
0.01 uF 0.01 uF 0.01 uF 0.01 uF
FIGURE 4.20

Example 4.6 The asymptotic Bode plot of Fig. 4.21a describes a band-enhancement filter.
We wish to provide additional gain over a narrow band of frequencies, leaving the gain at
higher and lower frequencies unchanged. We wish to design a filter to these specifications
and the additional requirement that all capacitors have the value C = 0.01 pF. This partic-
ular problem specifies that the maximum gain of the asymptotic plot is 6 dB. An asymp-
totic plot increases 6 dB in an octave, so that w, = 200 rad/s. Since the plot returns to 0
dB, w, must be one octave greater than w,, or 400 rad/s. Next the first-order factors, which
make up the composite Bode plot, are shown in Fig. 4.21b. As frequency increases, the
first break frequency identifies a zero factor, then a double pole factor, followed by an-
other zero factor. The pole-zero plot corresponding to these factors is shown in Fig. 4.21c.

A.dB

(a)

A.dB

|

6 dB/octave
|
{A

100

(b)

12 dB/octave

o)
p
¢

(¢)

FIGURE 4.21 The decomposition of the band-enhancement filter magnitude response of (a) into
component parts shown in (b), having poles and zeros for T(s) as indicated in (c).
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From this information we construct T(jw) as

(1 +j w/100)(1 + j w/400)

TUe) = K=—"1%7 w200y (4.44)
Since A(0) = 0 dB, K = 1, and T(s) is
s+ 100 s+ 400
T(s) = T\(s) To(s) = 4200 X 54200 (4.45)

If we make use of the same strategy that was used in Example 4.5, we obtain the circuit
shown in Fig. 4.22. But in design there are always many possibilities. Suppose that we de-
cide to try a design for this transfer function using the noninverting op-amp circuits of
Table 4.3. The sequence of steps to be accomplished is shown in Fig. 4.23. Having identi-
fied T, and T, in Eq. (4.45), we make our choices of realizations from Table 4.3 as circuits
4 and 2. These are good choices in that all R’s have the same value and all C’s the value of
1. Frequency scaling is not required, and magnitude scaling is done to obtain the required
C values of 0.01 uF by the choice of k,, = 10%. The final circuit is shown in Fig. 4.24. Mod-
ule 1 produces a gain of 2, and so a voltage divider is provided to reduce the gain by ! to
meet specifications exactly. Now the problem remaining for the designer is to decide
whether to use the circuit of Fig. 4.22, that of Fig. 4.24, or whether to find other designs
before a final selection is made.

Example 4.6 called for a maximum gain enhancement of 6 dB. Let us gener-
alize this problem as follows: Given a maximum gain enhancement of 4 dB at a
center frequency of w,, find the two break frequencies w, and w,; all of these
quantities are identified in Fig. 4.25. With w, and w, determined, then 7(s) may
be determined following the steps of the last two examples.

We first observe that the distances AB and BC in Fig. 4.25 are equal, since
the slope of one line is 6 dB per octave and that of the other is —6 dB per octave.
Then

log w, = log w, + % (log w, — log w,) (4.46)
-1 lo + 1 ! =1 1 4.47
=3 g W, 2 ogw.—2 og w,w, 47)
so that finally
W’ = W, W, (4.48)
1 MQ 500 k§2 250 k2 500 k2
——MW—— WV ANV —-AMWV—
Vio—e oV,
—} — il i
0.01 uF 0.01 uF 0.01 uF 0.01 uF

FIGURE 4.22
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Item Module 1 Module 2
jw jw
Pole—zero ! |
locations © *

—200 —Tool o |-400 —200 | o

Transfer _s+100 _ s +400
functions 17 5 4200 27 5 4200
Choice of - .
circuit Table 4.3, circuit 4 | Table 4.3, circuit 2
1/200 1/200
z, / /
element
values

1 1

oL

element 1/200
value 1_

FIGURE 4.23

~<— Reduce gain—)'(——ModuIe 1——>|<—Modu|e 2—>

FIGURE 4.24
A, dB
+6 dB/octave
——h dB
| —6 dB/octave
0aB| 4 |5 c 0dB
w, w, w, w, rad/s (log scale)

FIGURE 4.25
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This is an important relationship which will be used frequently in the chapters
that follow. Returning to Fig. 4.25, we make two observations. Let the frequen-
cies w, and w, be separated by n octaves so that

2oy (4.49)

w,
If the line of positive slope is extended to w,, then its value will be 4 = 2h, so that

nx6=2h dB (4.50)

Combining these two equations gives

Q2 _ g 4.51)
w,

Combining this result with Eq. (4.48) gives us the values for the two break fre-
quencies

Wy, W, = Wy 2% (4.52)

where the + sign gives w,, the — sign w,. As a check, note that # = 6 dB gives the
values found for Example 4.6.

Example 4.7 The asymptotic Bode plot shown in Fig. 4.26 is that of a filter amplifier
which provides bandpass filtering with a midband gain of A,,,. If we are given A4, w,,
and w,, then we are required to find a circuit realization including element values. We pro-
ceed by decompositing the Bode plot into first-order factors, as shown in Fig. 4.26b. Ob-
serve the following factors:

A, =20log (4.53)

w
W)

which has zero value when w = w,. The flat midband characteristic is provided by the fac-
tor

Ay =—20log |1+ wﬂ (4.54)

1
and the high-frequency rolloff is due to

w

Ay=~20log| 1+ (4.55)

2

The gain at frequency w, is called 4,4 and is represented by the constant term in Fig.
4.26b. Because of the way the frequency was normalized in Eq. (4.53), 4,(w,) = 0 dB. At
the break frequency w,, 4, has 0 dB value; and since the break frequency w, is larger than
w,, the value of A4, is zero at w,. Thus we see that

A(w) = Ama (4.56)

From the decomposition of 4(w), which we have just completed, we see that
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[\(gB/octuvc
|
|
1

|
|
|
(a) | .
/ olal w, w, w. rad/s (log scale)
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|
|
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|

|

|

|

| A Y
|

|/

|
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e
mid \>/

|

|

|

{/ 'I

(o) 0 dB 0dB |

w, rad/s (log scale)

20 log |1 + j(w/wl)l
asymptotes 20 log |1 +/(w/w2)|
asymptotes

FIGURE 4.26

LN Jw/w,
Tw) = K T+ jw/wy) (1 + jo/wy) @57

Letting jw become s,

s

s+ w)(s +wy) (4.58)

T(s) = Kw,

where
K = 10"ma/ (4.59)

Let us now consider a specific example. We desire to find a circuit that will provide 20
dB of gain at a frequency of 1000 rad/s, with the break frequencies w, = 800 rad/s and w,
= 1250 rad/s. We note that w,w, = w,?, so that the specified frequencies are consistent. Re-
ferring to Table 4.2, we see that we might use a cascade connection of circuits 3 and 5.
However, circuit 9 seems well suited to this problem, and its use will save one op amp. If
we use the values K = 12,500, p, = 800, p, = 1250, and select k,, = 10°, we obtain the ele-
ment values shown in Fig. 4.27, and the circuit design is complete.

There will often be the question as to whether the specifications exclude or permit
phase inversion. In this example the design of the first module of Fig. 4.27 assumes that an
inverting module is permitted. If it is not, then the second module is needed.
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10 k§2

10 k§2
1.25 uF

— MW
0.08 uF
V1°m4 ” 10k 8
VZ

FIGURE 4.27

4.5 THE ALLPASS CIRCUIT:
PHASE SHAPING

A passive RC circuit was introduced as Fig. 3.9 to attain an allpass frequency re-
sponse, meaning that | T(jw)| does not change with frequency, but the phase does.
Such circuits are useful to obtain some specified phase shift at one frequency or
over some band of frequencies. We will make use of allpass circuits in Chapter 18
to accomplish delay equalization.

One allpass circuit is shown in Fig. 4.28. Rather than writing node voltage
equations, we employ superposition and illustrate the steps taken in terms of the
circuit of Fig. 4.29. With switch S, in position a, and switch S, in position c, the
circuit is a noninverting one with the voltage at the + terminal of the op amp eas-
ily determined using the voltage-divider equation. Let the voltage output for this
condition be V7', which is then

R _ __2R_,
> R+1/Cs R+1/Cs '
Next we move switch S, to position b, and S, to position d. Observe that this ac-
tion connects the + terminal of the op amp to ground, since there is no current in
R or C. The output voltage under this circumstance is identified as ¥,”, and
R

v=-xV (4.61)

R

1+ 7) v, (4.60)

Now the output voltage is determined by superimposing V," and V,” to give
2R

V,=V,+V, =—V.+mV. (4.62)
R
—MW—
RA
14 C 14
R
o o

- FIGURE 4.28
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C
=
V D—' +
' v 5 ¢ "y
1 1 T b R
L 2 O
<=

FIGURE 4.29 The switching is arranged to illustrate the application of superposition to the analy-
sis of the circuit of Fig. 4.28.

From this we obtain

%= T(s):

s—1/RC

s+ 1/RC 463)

which has the form of an allpass transfer function as discussed in Chapter 3. An-
other allpass circuit is shown in Fig. 4.30. Using superposition once more as the
analysis tool, we see that

-_[_ 2R __ 2R _\V,
V2= (R+ 1/Cs V'*(' "R+ l/Cs) 2 (568
This simplifies to the transfer function
V, _ __1s—-1/RC
v, =10 ==3 T1/rRC (4.65)

which has the pole and zero combination of the allpass circuit, but differs from
Eq. (4.63) with the negative sign indicating an inverting action, and also a magni-
tude factor of Y.

We will study the transfer function of Eq. (4.63) first, and then compare the
result with Eq. (4.65). With s = jw the denominator of Eq. (4.63) is

. 1
Jw + 'R_E, =ml¢, (4.66)
while the numerator is
jo - me =ML, (4.67)
2R
—AM—

i — o

. +

v,

°

FIGURE 4.30
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jo, )
o = ——— ]w]
ijl i
|
4’]: O
1/RC —=1/RC Y
(a) (b)
e jw,
| ~0 0
| 1 7, 1
I __l_ it \‘
—1/RC e o
(¢) (d)
FIGURE 4.31
~1/RC | IIRC  ©
FIGURE 4.32

An s-plane interpretation of these factors is shown in Fig. 4.31. In Fig. 4.31a the
real and imaginary parts of Eq. (4.66) are shown together with the phasor addi-
tion of the real and imaginary parts to give the polar form of Eq. (4.66). In Fig.
4.31b we show that the magnitude and phase angle are the same if the phasor is
drawn from the pole position to the point jw,. A similar analysis of Eq. (4.67) is
shown in Fig. 4.31c and d, and the two factors are superimposed in Fig. 4.32 with
w, used to indicate the design frequency. Since m, = M, for all points on the
imaginary axis, it is clear that the magnitude |T(jw)| = m,/M, = 1 for all values
of frequency. The design phase angle is

6,=06,— ¢ (4.68)

or

6,=tan™' tan™' (4.69)

L
+1/RC

_—w —
—1/RC,
If we let the frequency w, move up the imaginary axis, starting at the origin and
moving toward infinity, we see that the range of the two angles will be

90° < 4, < 180° and 0° < ¢, < 90° (4.70)
Since §, = —¢, + 6,, the range of 4, will be
0° < 6,< 180° 4.71)

with 6, approaching 180° for small w and 0° for large w. This is shown in Fig.
4.33. Since the phase angle 6, is the phase of ¥, with V| as the reference, we can
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o w = 1/RC
s Radius = V,
v,
w=0 W =00
Vl FIGURE 4.33
|7
1

0

(a) (b)
FIGURE 4.34

picture ¥, moving with constant magnitude through a range of 180° as frequency
increases, as depicted in Fig. 4.33. The corresponding magnitude and phase plots
on rectangular coordinates are shown in Fig. 4.34.

The transfer function for the inverting allpass circuit of Fig. 4.30, given by
Eq. (4.65), differs from that just studied only by having a negative multiplier and
a constant of %. Since —1 corresponds to a constant angle of 180°, the phase
angle is advanced by 180° compared to that shown in Fig. 4.33, and the result is
shown in Figs. 4.35 and 4.36. The transfer function has a magnitude of ! for all
values of frequency, as shown in Fig. 4.36b. Given the two circuits, we can
achieve any specified phase shift from 0° to 360°.

Given an angle 6, required in a design, how do we determine the values of R
and C for one of the circuits?

Return to Fig. 4.32 and observe that the angle from the pole to w, is the same
as that from the zero to w,, the angle being ¢,. Then it is seen that

¢ + 0, = 180° 4.72)

If we combine this equation with Eq. (4.68), we have

0, = —;—(180" +4,) 4.73)

FIGURE 4.35
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0° 1/ {?C = IT|
{ 12
i
|
b0 —g0°f--—-
-180° --- 0
w
(a) (b)
FIGURE 4.36

From Eq. (4.69) we have

6, = —tan™' RC w,

so that

tan 6,
Wa

4.74)

(4.75)

As in previous design procedures, we now have one equation and two unknowns.
This situation is resolved by selecting either R or C, or by a trial-and-error proce-
dure which is continued until a suitable set of values is found.

Example 4.8 We wish to design a circuit to provide a phase shift of 6, = 135° at a fre-
quency w, = 10 rad/s. We do this in the following steps:

L
2.
3.

Since 6, is positive and in quadrant II, we must use the circuit of Fig. 4.28.
From Eq. (4.73), 6, = 4(135° + 180°) = 157.5°, and tan 157.5° = —0.4142.

Then from Eq. (4.75) we have the design equation
RC = 0.04124
One possible choice is
C = 1yF, R =4142kQ

The required circuit is then that shown in Fig. 4.37.

(4.76)

4.77)

Example 4.9 We wish to design a circuit to provide a set of three-phase 60-Hz voltages,
each separated by 120° and equal in magnitude, as shown in Fig. 4.38. These voltages will
simulate those used in ordinary three-phase transmission systems. We first design a circuit
to provide 6, = 120°. Going through the steps of Example 4.8,

41.42 k2
AVAVAf
41.42 kQ
A' —_—
——O0
| +
1 uF <
4: 41.42kQ2
—0 FIGURE 4.37
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120°
120° v

120°

1. We will use the circuit of Fig. 4.28.
2. 0, ='A(120° + 180°) = 150°, and tan 150°

FIGURE 4.38

= —0.57735.
3. Then since w, = 377, we have the design equation

RC = 0.001531

4. The design values selected are

C=1uF, R=1531Q

(4.78)

(4.79)

Now if we use two such circuits connected in cascade, then the phase shift of the combina-
tion will be twice the phase shift of the first circuit. The final design is shown in Fig. 4.39.

v, v, v,
1531 9 1531 §
1531 Q 1531 2
— AVAV —_—
+ —O
+ + + +
V\ 1 uF Vv, 1uF @ v,
B 1531 Q Si1s31Q _
Ug * — )

]!

FIGURE 4.39 When a sinusoidal voltage represented by ¥, is applied to this circuit, then V,
and V; satisfy the phase relationships of Fig. 4.38.

PROBLEMS

4.1 For the circuit given in Fig. P4.1, prepare an asymptotic Bode plot for the magnitude
of T(jw). Carefully identify slopes and low- and high-frequency asymptotes.
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5k
—AMW—
. 10 kQ
- o V,
+
5kQ
I

I FIGURE P4.1
4.2 The circuit shown in Fig. P4.2 consists of the cascade connection of two op-amp cir-
cuits. For this circuit, determine 7(s) and plot the Bode asymptotic magnitude func-

tion. Identify slopes and the low- and high-frequency asymptotes.

100 k2
10 k2

v, ] 1ka  1WF 100 nF
+ I_ \ 4 “’ . V2
1 nF I‘ 4 +

4.3 For the circuit given in Fig. P4.3, prepare the asymptotic Bode plot for the magni-
tude of T(jw). Carefully identify all slopes and low- and high-frequency asymptotes.

FIGURE P4.2

10 k2 10 kQ
A'A'A' AV‘V‘V
1 nF l‘xg 10 pF
v 10 kQ
1
+ ——O Vz

FIGURE P4.3

4.4 The circuit given in Fig. P4.4 consists of the cascade connection of three sections.
The first is an inverting stage in which the input is the sum of voltages ¥V, and V,; the
second stage is a passive RC circuit; and the third stage is a noninverting op-amp
circuit. In the total circuit, all C’s are equal, and all R’s are equal.

(a) Let ¥, = 0 and find the transfer function 7 = V,/V,.
(b) Connect node 0 to node 2 such that ¥, = V,, and determine the transfer func-
tion under this condition.
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C
< i
V) o— A
yl R
1 0—MW— +
+

FIGURE P4.4 =

4.5 Design an amplifier-filter having the Bode asymptotic plot shown in Fig. P4.5. Find
the circuit, give the schematic and element values. Scale so that the element values
are in a practical range.

IT(jw)l dB

—6 dB/octave

|
| —12 dB/octave
|
|

|
I
I
|
|
|
|
I
!

0dB |
1000 2000 3000 4000\ w, rad/s
\,
\

\
FIGURE P4.5

4.6 The accompanying Fig. P4.6 shows the asymptotic Bode plot for a desired magni-
tude response. Design an amplifier-filter using a minimum number of op amps. Give
the schematic and indicate the element values for your design.

|7 dB
-404
|
|
|
|
|
| . 0dB .
100 1000 104 w, rad/s
(log scale)
_20 __________
\\

FIGURE P4.6
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4.7 Design a bandpass filter having the asymptotic Bode plot shown in Fig. P4.7. Use a
minimum number of op amps in your realization. Scale element values until they are
in a practical range.

IT(jw)l dB

+6 dB/octave —6 dB/octave

0 /0 1000 w, rad/s (log scale)

FIGURE P4.7

4.8 Figure P4.8 shows the asymptotic Bode plot for a bandpass filter. Design a circuit
that realizes the given frequency response. Give the schematic, and indicate element
values chosen for your design.

40 dB

6 dB/octave —6 dB/octave

~
\\

| !
400 rad/s 5000 rad/s w. rad/s

FIGURE P4.8
4.9 Design an RC op-amp filter to realize the bandpass response shown in Fig. P4.9. Use

a minimum number of op amps in your design, and scale so that the elements are in
a practical range.

T(jw) dB
+6 dB/octave 20 dB —6 dB/octave
|
|
0 ! 0dB
/0 104\0, rad/s
~N
,’I/ ~
FIGURE P4.9

4.10 The accompanying Fig. P4.10 shows only the asymptotes of a Bode plot. The char-
acteristic response is used for gain enhancement—increasing the gain over a small
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band of frequencies, but not changing either high- or low-frequency behavior. Find
a circuit that will realize this specification characteristic. Give a schematic and the
circuit element values.

6 dB/octave

0dB
5 X103 FIGURE P4.10 w, rad/s

4.11 Repeat Problem 4.10 for the specification given in Fig. 4.11.

8 dB--—=

6 dB/octave
0dB

8750 w, rad/s
FIGURE P4.11

4.12 The asymptotes of the Bode plot shown in Fig. P4.12 represent a characteristic
which has the opposite objective to that described in Problem 4.11. In this case, we
wish to reduce the gain over a band of frequencies. Find a circuit that will realize
the given specification characteristic. Give the schematic for the circuit chosen and
also the element values.

0dB 5X 10:‘ rad/s —6 dB/octave 0dB

w, rad/s
—6 dB————
FIGURE P4.12

4.13 Repeat Problem 4.12 for the notch characteristic shown in Fig. P4.13.

|T(jw)l dB
w w
0dB 100 ) 2 __

{ w, rad/s (log scale)
|
I

—40 dB/decade } 20 dB/decade

|
|
—40 dB r— ————————————

FIGURE P4.13
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4.14 The asymptotic Bode plot shown in Fig. P4.14a represents a filter-amplifier with a
break frequency of w = 1000 rad/s. Design a circuit to be connected in cascade with
the amplifier such that the break frequency is extended to w = 5000 rad/s, but there
is no change in the magnitude characteristic as far as the 20 dB of gain is concerned.

|T| dB |71 dB
2048 1000 20 4B 5000
w w, rad/s
—12 dB/octave —12 dB/octave
N ‘\\
N
b
@ FIGURE P4.14 (®)

4.15 The asymptotic Bode plot shown in Fig. P4.15 represents a lowpass filter with gain
enhancement over a range of frequencies. Design a circuit using no more than two
op amps that will have this magnitude characteristic using one or both of the circuits
shown in Fig. P4.15b and c.

—6 dB/octave
+12 dB/octave

0dB

500 1000
(a)
Vl O

oV,

T

= (b)

FIGURE P4.15

4.16 The characteristic shown in the asymptotic Bode plot of Fig. P4.16 indicates that
considerable gain enhancement is required over a large band of frequencies, but
there should be no change in gain at low and high frequencies. Design an op-amp
circuit that realizes these specifications.
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IT(jw)l dB

20 dB| .

|

|

[

0dB !

10 10? 103 104 w, rad/s
FIGURE P4.16

4.17 The circuit shown in Fig. P4.17 is known as a noninverting integrator. For the ele-
ment values given, show that the transfer function is

T°
- FIGURE P4.17






CHAPTER 5

The
Biquad
Circuit

The biquad circuit is one of the most useful circuits to the electrical engineer be-
cause it is a universal filter. It is widely available as a module from industrial
sources. It serves as our introduction to second-order filters. In Chapters 3 and 4
we considered transfer functions with poles and zeros on the real axis of the s
plane. Beginning with this chapter, poles will be complex conjugates in the left
half of the s plane, and zeros will also be complex conjugates, but in either the
left or the right half of the s plane.

5.1 DESIGN PARAMETERS
Q AND w,

Jargon fills a special need for the engineer. It is a shorthand that permits the ex-
pression of ideas quickly and compactly. “Design a bandpass filter with a Q of 5
and an w, of 10,000.” In this section we will explore what this statement means.

We begin with the RLC circuit shown in Fig. 5.1, which has the now familiar
form of a voltage-divider circuit. We can anticipate the form of the transfer func-
tion T(s) = V(s)/V.(s) by considering the behavior of the elements at low and
high frequencies. At low frequencies C behaves as an open circuit; thus there is
no current in R and L, and so V¥, = V, approximately. At high frequencies the
capacitor C behaves as a short circuit so that ¥, approaches the value ¥, = 0 in
the limit. From this we see that the circuit is a lowpass filter of the type familiar
from studies in the last two chapters. From the voltage-divider equation,

Vi _ _Z,  _ 1/Cs
Vi(s) Z,+Z, Ls+R+1/Cs
Dividing numerator and denominator by L and multiplying by s, we obtain

1/LC
£+ (R/L)s+ 1/LC

This result may be put into a standard form by defining two new quantities. First

T(s) =

(.1)

T(s) = (-2

119
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I

= BN
el | +

Vl VZ
5

(b) FIGURE 5.1

we observe that when the circuit is lossless with R = 0, then the denominator re-
duces to the simple form from which the pole positions may be determined:

F+-—=0 (5.3)

or
Spy $ = thI = tjw, (5.4
1 LC —J%0

This means that the poles are on the imaginary axis and are conjugates. The

other parameter which we require originated in studies of lossy coils for which a
quality factor Q was defined by Johnson* as

wl _1 [L
2="% ‘R‘/c G-3)

which is the ratio of reactance at the frequency w, to resistance. The historical
identification of Q with a lossy coil is no longer appropriate, of course, since we
will identify many kinds of circuits with the parameter Q. The last equation may
be solved for the ratio R/L in Eq. (5.2):

R W
= -Q— (5.6)
Substituting this equation and Eq. (5.4) for 1/LC into Eq. (5.2), we obtain
_ Wy _ N@)
=gy (wo/Q)s + w,>  D(s) S

This is the desired standard form. Before studying T(jw), we turn our attention to
the s-plane location for the poles of T(s).
The poles of T(s) are the values for which D(s) = 0 in Eq. (5.7). Let their s-

* E. I. Green, “The Story of Q,” Monograph 2491, Bell Laboratories, Murray Hill, NJ, 1954.
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plane location be —a * jB so that
D(s) = (s + a + jB)(s + a — jB)
=5 +2as5+ (* + ) (5.8)
Equating like terms of this equation and D(s) in Eq. (5.7), we find that

Wo
a= 55 5.9)
or
=%
Q0= 2a (5.10)
Similarly, equating the constant terms in D(s) in Egs. (5.7) and (5.8)
w'=a+ B (5.11)
Combining this with Eq. (5.9) and solving for B, gives
1
B=w0‘/1—4—Q2 (512)

All of these relationships are shown in Fig. 5.2. In this figure we also define the
angle ¢ with respect to the negative real axis as

Y =cos™' (5.13)

1
ZQ)

a -
—| = COSs
Wo

|
|
| <
\,’/=cos’1(l/3Q): 4 6=w0\/1_(1/4Q2)
|
|

‘ch=wo/2Q<— ’

FIGURE 5.2

Figure 5.3 shows important contours in the s plane. Contours of constant w,
are circles of radius w, with their centers at the origin, as shown in Fig. 5.3a.
From Eq. (5.13) we see that lines of constant Q are lines of constant angle ¢, as
shown in Fig. 5.3b. Finally, lines of constant ratio w,/2Q are lines parallel to the
imaginary axis, as shown in Fig. 5.3c.

In circuit design we will ordinarily deal with Q values greater than 1. This
has implications with respect to pole positions. From Eq. (5.13) we make the fol-
lowing tabulation:
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12

0 (degrees)
0.707 45

1 60

2 75.52

S 843
20 88.5
100 89.7

Hence we conclude that we will be interested in a small sector of the s plane,
which is shaded in Fig. 5.4. Observe that when Q is greater than 5, then Eq. (5.12)
for B simplifies to 8 = w, with an error less than 1%.

Example 5.1 The two poles of a given T{(s) are located in the s plane on lines of slope
+2, as shown in Fig. 5.5. (a) Determine an expression for the Q of these poles. (b) Express
the pole locations —a + jB in l rms of w,.

Since the slope of the s-plane line is 2, then tan ¥ = 2. For this angle, shown in Fig.
5.5b, cos ¢ = 1/./5. Combining this result with Eq. (5.13), we see that

cosy = (5.14)

Sl

1 _
20

Lines of constant « = w0/2Q

jw
Q0
w Q 2
03 ! Lines of constant Q
“o3 | Contours of — 0,<0,
Woy constant Wy
W3 < wyy < Wy, —a,| —«
o 0 0
9,
0,
(
jw

a) (b) (<)
FIGURE 5.3

— Sectors ofusual
pole locations
o
FIGURE 5.4




5.1 THE DESIGN PARAMETERS Q AND w, 123

\ jw
2 _Slope = 2
] 2 \&
v
0 1
(b)
/
/
(a) FIGURE 5.5
Vi—s 2 v,
0 FIGURE 5.6
so that
0= % (.15)

Once Q is determined, then Eqgs. (5.9) and (5.12) give the pole location as

== g fl- =L
ZQwO_ ek Wo 4Q2—J§w°

If w, is also specified, then the pole locations are fixed.

(5.16)

Returning to the circuit of Fig. 5.1a and the associated transfer function
which described it, Eq. (5.2), we see that the specification of the three element
values R, L, and C completely specifies 7(s). But we have now shown that the
specification of the two parameters Q and w, also specifies 7(s), as given by Eq.
(5.7). We now have to relate Q and w, to the magnitude and phase responses
which we will in turn relate to specifications. In doing so, we now assume that the
second-order circuit can be specified by the parameters Q and w,, as suggested by
the block diagram of Fig. 5.6.

5.2 THE BIQUAD CIRCUIT*

The transfer function for the low-pass filter derived as Eq. (5.7) was written in a
normalized form such that 7(;0) = 1. A more general form for 7(s) will recognize
the possibility of gain and also that the associated circuit may be inverting or
noninverting. Such a transfer function is

+Hw,’

/05T 617

T(s) =

* The name biquad for this circuit was first suggested by J. Tow, “Active RC Filters—a State-space
Realization,” Proc. IEEE, vol. 56, pp. 1137-1139, 1968 and by L. C. Thomas in two papers, “The Bi-
quad: Part I—Some Practical Design Considerations,” /EEE Trans. Circuits and Syst., vol. CAS-18,
pp. 350-357, 1971, and “The Biquad: Part II—A Multipurpose Active Filtering System,” IEEE
Trfms. Circuits and Syst., vol. CAS-18, pp. 358-361, 1971. It is also sometimes called the ring of 3 cir-
cuit.
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Next we do what will be done frequently in the chapters to follow: we scale fre-
quency so that w, = 1. We also choose the negative sign in Eq. (5.17), meaning
that we anticipate an inverting realization from the transfer function. Then Eq.
(5.17) becomes

H___7

S+(1/0s+1 ¥, (5.13)

I(s) =
We wish to manipulate this equation until it has a form that can be identified

with simple circuits which have been studied in past chapters. We rewrite Eq.
(5.18) as

(s2+ és+ 1) V,=—-HV, (5.19)

If we divide this equation by the factor s(s + 1/0Q), it becomes

1 -H
- =" 5.20
[l+s(s+l/Q)} Va s(s+l/Q)Vl 420
We may now manipulate this equation to the form
-1 —-H 1
V,—[S+I/QV2+S+1/QV.J (—;) (-1) (5.21)

Starting at the right-hand side of this equation, we recognize that the (—1) term
may be realized by an inverting circuit of gain 1. Similarly, the factor (—1/s) is
realized by an inverting integrator. Two operations are indicated by the remain-
ing factor. The circuit realization must produce a sum of voltages, and it must
have a transfer function of the form 1/(s + 1/Q). The three circuits that provide
for these three operations are shown in Fig. 5.7. The circuit marked 7, sums volt-
ages V, and V, with appropriate multiplication, and also realizes the first-order
transfer function with a circuit that is sometimes called a lossy integrator. The
circuit marked 7, is the standard inverting integrator circuit, and the circuit
marked T, is an inverting circuit of unity gain. If we connect the three circuits to-
gether, including a feedback connection of the output ¥, to the input, the result is
the circuit shown in Fig. 5.8. This is a scaled version of the circuit called the bi-
quad circuit or the ring of 3 circuit, or sometimes the Tow—Thomas biquad.

0
) 1

| —

= T = T 7']';

1 2

FIGURE 5.7
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As a different approach to the study of this circuit, suppose that we start with
the circuit itself, with the elements identified by R’s and C’s as in Fig. 5.9. Think-
ing of this circuit would be quite natural for an engineer with a background in
analog computers since the three modules involved are familiar in analog com-
puters. Routine analysis of the circuit gives us

Vi _ -1/R,R,C,C,
V., ~ #+(1/R,C)s + 1/R.R,C,C,

We may identify this result with the standard form of the low-pass filter transfer
function by equating the appropriate coefficients here to those of Eq. (5.17):

1

(5.22)

I(s)=

P —
“ = RRCC (5.23)
R:C
0= \RRe (5.24)
- R (5.25)

R,

To the design parameters introduced in Section 5.1 we now add a third,
which is identified with the low-frequency gain. We wish to design to satisfy the
parameters w,, @, and H, and we have six circuit elements to adjust to satisfy
these parameters. This is a typical situation in design, and our approach will al-
ways be to arbitrarily select any three and then examine the consequences on the
remaining three. Since we intend to use both frequency and magnitude scaling,
we have no hesitation in selecting unit values for the circuit elements. Let us
make the following choices:

C=GC-=1 and R, =1 (5.26)
Let us also decide that we will scale frequency so that w, = 1. Then we may solve
Egs. (5.23)-(5.25) to obtain the values

R =0  R,=1, R,=% (5.27)

This choice gives us exactly the circuit previously derived and shown as Fig. 5.8.

1
MV

|

U ST

—VMW—¢
Fio—AAA— |
1/ — AAA— |
b AAN—

—ol,

r = T, = 7

FIGURE 5.8
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R 2
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—oV, —oV,

1
:

FIGURE 5.9

An important property of the biquad circuit is that it can be orthogonally
tuned. By this we mean that

—

R, can be adjusted to a specified value of w,.

2. R, can then be adjusted to give the specified value of Q without changing w,,
which has already been adjusted.

3. Finally R, can be adjusted to give the desired value of H or gain for the cir-

cuit, without affecting either w, or Q which have already been set.

These steps are often called the tuning algorithm. This algorithm provides for or-
thogonal tuning. If this tuning is not possible, then the tuning is called iterative,
meaning that we try to adjust successively each of the tuning elements until all
specifications are met. Orthogonal tuning is always much preferred, especially
when the filter is to be produced on a production line with a laser used to adjust
each circuit element value.
One other voltage in the biquad circuit is of special interest. Referring to Fig.
5.9, observe that V,/V, = —1, so that
r.rnr vn__%

A 2 A v, (5.28)

This tells us that the transfer function V,/V, represents a noninverting low-pass
filter. Moving back one module in the circuit, we see that V; is related to V,’ by
the transfer function

i__1
V= R.Cas (5.29)
From the chain rule
AN AN
7 7. X V.=V, (5.30)
we obtain the result
V.’ (—=1/R,C))s (5.31)

V., T+ (I/R,C)s + 1/R,R.C,C,
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We show in the next section that this is the transfer function of a bandpass filter.
To emphasize that the filter is a bandpass filter, the schematic of Fig. 5.9 may be
redrawn as shown in Fig. 5.10.

Referring to Fig. 5.9, let us consider the function of the unit-gain inverting
section of the biquad circuit, which was referred to as T, in Fig. 5.7. This biquad
circuit operates with negative feedback. Since each section in the biquad is in-
verting, there must be an odd number of sections, for otherwise the feedback
would be positive. So the circuit marked T; has the function of inverting the out-
put marked V; to provide negative feedback. The same would be accomplished
by any odd number of sections in cascade. An alternative approach, which ac-
complishes the same objective, is to have one inverting stage and one non-
inverting stage, as shown in Fig. 5.11. The second stage will be recognized as a
noninverting integrator (see Problem 5.5), so that it accomplishes the same object-
tive as T, and T, together.

Example 5.2 We require a circuit that will provide poles at —577 + ;j816.5 and a dc
(w—0) gain of 2. Using the equations of Section 5.1, we find that these pole locations cor-
respond to w, = 1000 rad/s and Q = /3/2, and that the gain of 2 requirement means that
H = 2. First we set w, = 1, and then use the biquad circuit of Fig. 5.8, noting that H and Q
values are specified. To do the necessary scaling, we set k; = 1000, and then note that se-
lecting k,, = 10,000 gives convenient element sizes in the circuit shown in Fig. 5.12.

5.3 FREQUENCY RESPONSE OF
THE BIQUAD CIRCUIT

We have found that the biquad circuit shown in Fig. 5.9 is described by two
transfer functions, depending on our selection of the output. To begin, let the out-
put be ¥, so that the transfer function that applies is that given by Eq. (5.18). We
are interested in the magnitude and phase of this T(jw). For simplicity, let H = 1

o

—0 Out

FIGURE 5.10
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and also frequency scale so that w, = 1. Then
1

T(jw) = =790 ¥70/0 (5.32)
From this complex quantity we find that the magnitude is
1
T(jw)| = 5.33
T = g (533)
and the phase is
o[ w/Q
f=—tan™' ITL? (5.34)
10 k2
N A'~A'
0.1 pk
0.1 uF 10 k§2

1

V. 5skQ 8.66 k2
In o—A W\ :
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FIGURE 5.12



5.3 FREQUENCY RESPONSE OF THE BIQUAD CIRCUIT 129

The magnitude and phase functions are plotted in Fig. 5.13 for a given value of
Q. For the magnitude function we see from Eq. (5.33) that

TGOl =1, |TGDI=Q,  [T(jo) -0 (5.35)
and that for large w|7T(jw)| = 1/« Similarly for the phase
0(jo)=0°  6(j1) = —90°,  f(joo) —> —180° (5.36)

The magnitude plot on Bode coordinates is shown in Fig. 5.14 for a range of val-
ues of Q from 0.707 to 10. The asymptotic Bode plot decreases at the rate of —12
dB per octave, and this is sometimes described as two-pole rolloff.

These responses can be visualized in terms of the pole locations of the trans-
fer function. Starting with Eq. (5.18),

1

1) = s 70 +1

(5.37)
The poles of this function are located on a circle of radius 1 and at an angle with
respect to the negative real axis of

1

20

This equation can be combined with the previous one to give an alternative rep-
resentation:

Y =cos™' (5.38)

1

T = ¥ 2cos ysr1 (5:39)
Wpeak =V 1~ (1/20%) ~ |
|
Y
ITI= lr’ —————— |

! : ITI~ 1/w?
: (or —12 dB/octave)
|
|

00 1 w

o AllQ

0, degrees
|
)
S

—180° asymptote
for all Q

—180
0 1 w

FIGURE 5.13
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In terms of the poles shown in Fig. 5.15,
I(s) =

where p, is the conjugate of p,. With s = jw, the two factors in this equation be-

come

Jw + p, = mlé, and

(s+p)Gs+p)

Jw + pr = myo,

(5.40)

(5.41)
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In terms of these quantities, the magnitude and phase are
. 1
[T(w)| = o, (5.42)
and
0=—(¢ + ¢) (5.43)

Phasors representing Eq. (5.41) are shown in Fig. 5.16, as was done in Fig. 4.31.
The figure shows the values computed using these last two equations for three
different values of frequency—one below w,, one at w,, and one above w,. From
this construction we see that the short length m, near the frequency w, is the rea-
son why the magnitude function reaches a peak near w,. These plots are useful in

Jw jw
n,
Py —- Py jw
e 1 0
/m /o
R [
{\ m g =\ m 7 ¢
\ ! \
WAL NS4
S- =]
» P
(a) (b)
l/mlml 0—- *(45] + ¢:) w, w, w,
0 2
/\ ’
1
-90°
S~ —ISOO _____________
0 w, w, w, w

Lowpass case
(d) (e)
FIGURE 5.16
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visualizing the behavior of the circuit. In solving problems, Egs. (5.33) and (5.34)
may be evaluated using a hand-held calculator.

For a lowpass filter the usual specifications will be the half-power frequency
and the value of | T|,..,; these quantities are identified in Fig. 5.17. The term half-
power comes from the equation for power P = I’R, from which we see that if P is
to be reduced by one-half, then it is necessary that I be reduced by 1//2. We
are not dealing with current, but with |T(jw)|; however, the name half-power is
now applied to most response curves. So we see that the half-power frequency w,,
corresponds to the value of |T| of 0.707. The relationship between w, and w,, can
be estimated from Fig. 5.17. Since |T|,.., is approximately equal to Q, the specifi-
cation of a relatively flat response in the pass band implies a low value of Q. Bet-
ter methods for designing filters with flat pass-band characteristics will be consid-
ered in Chapter 6.

We now return to the biquad circuit of Fig. 5.9 and consider the case where
the output voltage is taken to be ¥, for which Eq. (5.31) was found to apply. This
transfer function differs from that for the low-pass case in that it has a zero at the
origin. The denominators of the two transfer functions are identical, of course.
The general transfer function for which Eq. (5.31) is a special case must have a
form patterned after Eq. (5.17), but with a different numerator. It must be

Ks

§ + (wo/Q)s + wy’ (5.44)

I(s) =

with K to be determined. Suppose that we require that | 7(jw,)| have the value H,
which will be analogous to dc gain for the lowpass case. Setting s = jw, in Eq.
(5.44) and then setting the equation to H, we see that the first and last terms in
the denominator cancel and

K=H% 5.45
H 0 (5.45)

so that Eq. (5.44) is
T(s) H(w,/Q)s (5.46)

TF+ (wo/Q)s + wy’

71 = 1Vy/V,|

FIGURE 5.17
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where H may be either positive or negative. If we now return to Eq. (5.31), we see
that
R

H= _RT (5.47)

and the equations for w, and Q given by Egs. (5.23) and (5.24) apply to this case
as well as to the lowpass filter.

Now we scale frequency by letting w, = 1 and then let s = jw in Eq. (5.46).
From this we find that

Huw/Q

TCio)| = 5.48
TN = =+ @/or G489
and
o o w/
9 = 90° — tan 'l—_% (5.49)
IT1=1V,/V,l
10p———————
0.707p—————~ -
1-pole rolloff
0.5+

e

90

45

0.degrees 0

--45

—90

FIGURE 5.18
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Plots of these two functions for one value of Q are given in Fig. 5.18 with H = 1.
From the magnitude response we see that it starts with zero value at w = 0, in-
creases to unit value at w = 1, and then decreases at the rate of —6 dB per octave,
or with one-pole rolloff. The phase response differs from that found for the low-
pass case only in that 90° is added to all values. Hence it has a value of 90° when
w =0, 0° when w = 1, and then approaches —90° as w increases.

An analysis similar to that given in terms of the pole locations in Fig. 5.16 is
presented for this case in Fig. 5.19. The difference here and in the lowpass case is
that a zero at the origin has been added, which contributes the factor M,Z6, to the
magnitude and phase characteristics.

We next compute the half-power frequencies for the bandpass response. If
we let H = 1 and impose the requirement that |7}’ = 4 in Eq. (5.48), then we ob-
tain an equation for which there are four solutions. Selecting only those that are
positive, we have

112 1
Wy W, = ‘/1 + (Z—Q) + Z_Q (5.50)

These frequencies are identified in Fig. 5.18. The product and difference of these
two frequencies are

ww, =1 and W, — W == (5.51)
)
Jw jw
p p Moyl
1 ye——] 1 Jw
/m ¢2 :;MI 4 "\0
/ 2 . 0| / L2 61
! [y i é;Ml\
\\ m o I\\ m,
\\)U) NS @
1] —
= 5~
(a) (b)
M, [mm, 0,—¢,— 9,
90°
1
00
~~e. —9O°fb————"———————— ::
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FIGURE 5.19
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Restoring the w, gives

WW; = Wy’ and W — W, = E (5.52)
This frequency difference is defined as the bandwidth (BW); so we see that
Wo
BW=— 5.53
0 (3.53)
or
= Yo _ %
“BW - (5.54)

These equations tell us that Q and BW are inversely related, as shown in Fig.
5.20. We can use these results to show that there is symmetry in this response in
that

| TGw))| = |T(w,)| (5.55)
and
0(jw,) = —0(jw,) (5.56)
We also observe that Eq. (5.46) with H = 1 can be written
—-BWys
Tes) = £+ BW s + w,? (5:37)

However, this applies only for the bandpass case.

Example 5.3 We wish to design a bandpass filter with a center frequency at w, = 1000
rad/s, a bandwidth of 200 rad/s, and a maximum gain of 1, using the biquad circuit. From
the given facts we see that Q = 5 from Eq. (5.54) and H = 1 in the biquad circuit of Fig.
5.8, which was based on w, = 1. Hence it is necessary to frequency scale to match specifi-
cations, and this is done by letting k, = 1000. The choice of the magnitude scale of k,, =
10,000 gives the circuit elements shown in Fig. 5.21. It is interesting to note that we can
find the half-power frequencies by solving the two equations

wy — w, =200 and ww, = 10° (5.58)
to give
w, = 1105 rad/s and w, = 905 rad/s (5.59)
ITI
R Low Q, large BW
0.707 F———f—H——
0.5 i N
{ High Q. small BW
ol |
1

1 =
=
2

w FIGURE 5.20
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5.4 The FOUR-OP-AMP
BIQUAD CIRCUIT

The addition of a fourth op amp to the biquad circuit gives it versatility in the
kinds of filtering it can provide. Since it is common to manufacture op amps with
four units on a chip—the quad op amp—the fourth unit is available to the de-
signer. We use the extra op amp to add voltages taken from the biquad circuit. In
terms of the quantities in Fig. 5.22 we see that

V, ==V, + V) (5.60)
Dividing by V,, we have a new transfer function:
v _( v, L)

v, (v, ¥V

(5.61)

If we merge the circuit of Fig. 5.22 with that for the biquad circuit given in Fig.
5.9, the result is the circuit of Fig. 5.23. If we substitute Eq. (5.31) for V,’/V, into
the last equation, there results

144 (=1/R,C))s £+ (1/R,C)s + 1/R,R.C,C,

V, = _5'2+(1/R,C,)s+ 1/R,R,C,C, s+ (1/R,C)s+ 1/R,R,C,C, (5-62)
Combining the two equations gives us
£=_.s'2+(l/R.C. - 1/R,C))s + 1/R,R,C,C, (5.63)
vV, s+ (1/R,C)s + 1/R,R,C,C, ’
R R,
V) o——AAAN—1
Ré
V o——AAA—4

FIGURE 5.22
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This equation reduces to an especially simple form if we let R, = R,. The con-
sequence of this choice is seen from Egs. (5.27) to be that the gain is specified

1

H=— 5.64
0 (5.64)
Under this condition, Eq. (5.63) becomes
" s+ 1/R,R,C,C,

V. £+ (I/R.C)s + 1/RR.C,C, (5:65)

The denominator has already been identified in terms of the parameters w, and
0, and from the equation we see that the constant of the numerator is w,’. The
minus sign indicates that the circuit is an inverting one and will be omitted until
later. Then Eq. (5.65) becomes

V,” s+ wo’

V, i+ (wo/ Q)s + wo? (5.66)

The poles are those associated with the lowpass and bandpass filter operation of
the biquad circuit, but the zeros are located on the imaginary axis, as shown in
Fig. 5.24. Both the poles and the zeros are located on a circuit of radius w,. Let
the transfer function of Eq. (5.66) be designated as Tyg, which has a magnitude
response

ol = NG
Tee = 5.67
IToci)l = iy (5.67)

We have already studied |D(jw)| in Eq. (5.33). From Eq. (5.66), we see that
IN(w)| = |wo’ — ] (5.68)
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FIGURE 5.24

such that | N(jw,)| = 0, and there is no output at frequency w,. If T:(jw) is plotted
as a function of w for some Q, then the result is that shown in Fig. 5.25. Because
of the particular shape of this magnitude response, the filter giving this response
is known as a notch filter and also as a band-elimination or a bandstop filter. This
kind of filter is useful in applications where a specific frequency must be elimi-
nated. For example, instrumentation systems require that the power-line fre-
quency of 60 Hz be eliminated. But it reduces the output voltage for a fixed input
voltage over a band of frequencies, and in this sense it is band elimination in na-
ture. The relationship between the band of frequencies and the frequencies at
which there is half-power (or 3 dB of loss) is the same as that found for the band-
pass case. For the frequencies w, and w, and bandwidth BW, as identified in Fig.
5.25, then

Wo

WW, = Wo? and w,—w, =BW= 0 (5.69)
It is also useful to note that there is the following symmetry:
[TGw)| = |T(jw)| (5.70)
and )
0(jw)) = =6(jw,) (5.71)
This symmetry exists for all frequencies which are related by the equation
Wy = Wy’ (5.72)

Sometimes the specifications for a notch filter are given in terms of the depth

1Tyl
1.0
0.707
|
| Zero value
|
0 /
0 W, w w w

0 2

FIGURE 5.25
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of the notch and the band of frequencies to be eliminated. Let it be required to
provide a, dB of loss over a bandwidth bw,. Then it may be shown (see Problem
5-30) that

Lo (5.73)

0 i T

is required. Note that when «, = 3 dB, then bw, = w,/Q, as in Eq. (5.69).

We next return to Eq. (5.63) and select the value of R, = R,/2. This causes
the multiplier of s in the numerator to be the negative of the multiplier of s in the
denominator. Then the general form of the transfer function of Eq. (5.63) in
terms of w, and Q is

5 — (wo/ Q)A‘ + wy’

T = T G/ O)s + o

(5.74)

If we follow Eq. (5.67) and let T,;(jw) = N(jw)/D(jw), then we see that
IN(jw)| = |D(jw)| and | Tap(jw)| = 1 for all w (5.75)

Thus the circuit has an allpass frequency response as found in Chapters 3 and 4
for first-order transfer functions. From Eq. (5.74) we also see that the positions of
the poles and zeros of T,.(s) differ in the sign of the real part. The pole-zero con-
figuration shown in Fig. 5.26 is known as a quad. We postpone consideration of
the phase characteristic associated with T,(s) until the next section. Allpass cir-
cuits find application in the design of delay compensation systems to be studied
in Chapter 18.

Following the same pattern in modifying the biquad circuit that was used to
obtain the notch and allpass circuits, we modify the circuit by adding a con-
nection to ¥,, as shown in Fig. 5.27, such that

V) ==V + Vs + V) (5.76)

Dividing by ¥, gives the required transfer function
¥ __ (Y, (6.77)

4 Vi Vi

To Eq. (5.63) we add the transfer function V,/V, of Eq. (5.22) so that
v,” 8+ (1/RC, = 1/R,C)s + (1/rR.C.C, — 1/RR.C,C,)

Ty =

v, s+ (1/R,C)s + 1/R,R,C,C, (5.78)
jw Radius is w,)
e \
I L\
1 T
Sl
FIGURE 5.26
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Now the choices R, = R, and R, = R, cause the second and third terms in the
numerator to vanish, leaving only the s* term. Writing this result in general for w,
and Q, we have

s

Tar(s) = 5+ (wo/ Q)s + W,

(5.79)
For s = jw the numerator has a magnitude of w? and the denominator has a mag-
nitude of the same form as in earlier cases. For w, = 1, it is

w2

VI =)+ (w/Q)
From this equation we see the following:

[Twe(JO) =0,  |Twe(UDI=©Q,  [Tue(joo)| =1 (5.81)

which verifies the highpass filter nature of this response. A plot of this magnitude
function is given in Fig. 5.28. We note the similarity of this response and that
found earlier for the lowpass case with the behavior at 0 and oo frequencies inter-
changed. We will show later that with w, = 1, the relationship between responses
is

| Tup(Jw)| = (5.80)

Wyp = 1 (5.82)

Wep

The locations of the poles and zeros for the highpass case are given by Eq.
(5.79). We see in Fig. 5.29 that there is a double zero at the origin of the s plane,
with poles in the same position as has been the case previously.
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ITI=1V,/V,l

FIGURE 5.28

We now see the great advantage to the four-op-amp biquad circuit. Starting
with the most general case, which we have just considered, with connections
made as shown in Fig. 5.27, the simple disconnecting of certain resistors from the
circuit makes it possible to also realize the allpass, notch or bandstop, bandpass,
or lowpass filter. In this sense the biquad circuit is a truly universal filter. It is
manufactured by a number of companies and is widely applied in solving practi-
cal filtering problems.

Example 5.4 A notch filter is required to remove an objectionable 60-Hz hum associated
with a power supply in an audio application. The filter must pass frequencies below 55 Hz
and above 65 Hz with at most 3 dB of loss and the dc loss must be 0 dB. We are required
to design the notch filter. The biquad circuit with a notch frequency characteristic is that
given in Fig. 5.23 with the condition that R, = R,, meaning that both must have the value
of Q. In addition, this will cause H = 1/Q by Eq. (5.64), for which we must compensate.
This can be accomplished by making the feedback R, for the fourth op amp have the
value Ry’ = QR,. From the statement of the problem we see that f, = 60 Hz and BW = 10
Hz, so that we require a Q of 6. Now the design equations for the biquad circuit of Fig.
5.23 were given on the basis that w, = 1. Since we require w, = 377 rad/s, we require that
the frequency scaling constant be k, = 377, and we may choose k,, to give appropriate ele-
ment sizes. No single value of k,, will give convenient element sizes for both resistors and
capacitors. In this application suppose that we decide to make the resistors have the value
of an integer times 10 k§2. Thi< will make it possible to use a resistor network such as that
shown in Fig. 5.30 with some resistors connected in series as required. Since

1
Roew = kmRowa and Coew = % Coia (5.83)

we must select k,, = 10*, making R in Fig. 5.30 the required value of 10 k2 and the C’s
have the value of 0.2653 uF. The complete design is shown in Fig. 5.31.

Radius1s w, jw

FIGURE 5.29
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Example 5.5 For some applications, a deep notch is not required, but a dip for gain equal-
ization such as that shown in Fig. 5.32. In a particular cable transmission system it is de-
sired that |T(jw,)| = 4|7(j0)|, which corresponds to 6 dB of loss at w,. We are to design a
filter to achieve this response with w, = 100 rad/s.

We will select Q = 5 and base the design on the biquad circuit of Fig. 5.23. Then

s +as+ 10

1) = 2205+ 10°

(5.84)

When w, = 100, then the first and last terms of both numerator and denominator vanish so
that
a jwo a

TGwo) = 25 s 20 (5.85)

Then a = 10 meets the specifications of Fig. 5.32. For the notch circuit the cancellation
was achieved by making V.’ cancel part of V,. For this problem we wish only partial can-
cellation. If instead of the condition of Eq. (5.60) we make

Yy = —(% vy + V,) (5.86)

then we achieve the desired modification of Eq. (5.63). This is realized by changing the

summing circuit of the fourth op amp, as shown in Fig. 5.33, where 2R, has replaced R.

R; = QR achieves the 0-dB requirement at low frequencies, as it did in Example 5.4.
The procedure we have followed has had the result shown in the pole and zero plot of

10 k2
A'A'Av
0.2653 uF
’_‘l 0.2653 uF 10 k2
Input 1
v 60 k2 60 kS2
10 AN - 10 k2
+ —AMN— 10 k2
+ v,

A A A A A
10 k2
AAN— Output
———O "
+ 72

I
o

FIGURE 5.31
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0 100 w FIGURE 5.32

<

Fig. 5.34 for Eq. (5.84) with a = 10. The zeros on the imaginary axis for the notch fre-
quency response have moved into the left half-plane and remain on the circuit of radius
wo. Clearly, they could have moved into the right plane with a different value chosen to
multiply R in Fig. 5.33. To complete the design, we frequency and magnitude scale using
Eq. (5.84). The choice &,, = 10,000 along with the required k, = 100 gives the element val-
ues shown in Fig. 5.35, which is the final design.

FIGURE 5.33

In summary, we can write the general form of the biquadratic transfer func-
tion as
_ ks + ky(wo/ Q)s + kywo
S+ (wo/ Q)s + wo’

T(s) (5.87)

in which the constants k,, k,, and k, are =1 or 0. The possibilities and names as-
sociated with the cases are given in Table 5.1. For each of the first five cases in
Table 5.1, the magnitude response |7T(jw)| and the pole-zero locations in the s
plane are shown in Table 5.2. We note that since the denominators of the five
forms of transfer function are the same, the pole locations are also the same. The
biquad circuit with the five kinds of responses studied and identified as to output
location is shown in Fig. 5.36 (on page 146).

5.5 PHASE RESPONSE OF
THE BIQUAD CIRCUIT

The phase angle for the lowpass filter function was found in Eq. (5.34) and is
shown in Fig. 5.14b. This angle is

6., = —tan~

w/Q ) (5.88)

1 —?

for w, = 1, or, in general,

_ o] (1/Q)(w/wo)
6., = —tan { T— (/@) } (5.89)
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FIGURE 5.34
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FIGURE 5.35

The plot of Fig. 5.14b is repeated for several values of Q in Fig. 5.37. In this sec-
tion we wish to tabulate the phase responses for the five magnitude responses
studied, the first being 6, ,. For the transfer function with s = jw,

N(jw)
D(jw)

T(jw) = (5.90)

We have let 8, be the angle of N(jw), ¢, be the angle of D(jw), and 8 be the angle

TABLE 5.1

Case k, k, k; Name
a 0 0 1 Lowpass
b 1 0 0 Highpass
c 0 1 0 Bandpass
d 1 0 1 Bandstop
e 1 -1 1 Allpass
I 0 1 1 Lowpass

* 1 1 0 Bandpass

* No realizations were considered.
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TABLE 5.2 Standard forms of second-order responses

[
£+ 25+ w

Frequency response Poles/zeros Name
jw
IT] x ]
/
W [
Tip= ” —-0\—— = Lowpass
£+ E" s+ wo? “ \
w x
-
jw
IT| X7
Log /
/
Tgp = 0 —-o——e}— Bandpass
Wy \ o
£+ 0° + wo? ~~ \
w \"\~
jw
I7| ¢
2+ wy? I Bandstop
TBE - o, o “notch”
P+ =25+ w? \ o
Q o
jw
I7T| -7
/x 2
- /
Typ= ———sz———— —&—% Highpass
2 Wo 2 \ o
+ 6 s+ wy \\
w L.
IT|
- % 5+ we?
Thr= Allpass

(=]
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of T(jw), so that

FIGURE 5.36

0=20,— ¢ (5.91)

Since the poles of all five kinds of filter responses studied are the same, ¢, will be

the same for all of the responses, namely, —,,. Then we must find 6, for the other
four responses.

0, degrees  —90

—180

1
0 0.5 wo=1 1.5 20 w
FIGURE 5.37
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TABLE 5.3
Name N(s) N(jw) Plot of 0,(w)
Lowpass wp? wp? 6, 0°
w
90°
Bandpass Lo jeL 6,
) 0 _
180°
Bandstop £+ w? —w? + wo’ 0, ”
’ (:.)0 w
180° .
Highpass s —w? 0,
‘ w

The different forms for N(s) are given in Table 5.3. For the bandpass case we
found that N(s) = (w./Q)s, for which N(jw) = j(w,w/Q) and the j signifies a phase
angle of +90°. Then

Ope = 0.5 + 90° (5.92)

Similarly, for the highpass case N(s) = s* and N(jw) = —w?, which means a phase
angle of 180°, and

Bup = B, + 180° (5.93)

For the allpass circuit the transfer function was such that the angle of N(jw) is the
same as the angle of D(jw), and these relate simply to the lowpass case as

Bar = 20,0 (5.94)

From these equations and from the plot of Fig. 5.38 it is apparent that the phase
angles for these three cases—bandpass, highpass, and allpass—are the same as
that for the lowpass case in appearance, with an angle added for the highpass and
bandpass cases, and the angle simply doubled for the allpass case.

The bandstop filter function has an N(jw)

N(jw) = —w* + w,’ (5.95)

which is positive for w < w, and negative for w > w,. In other words, the phase
abruptly jumps from 0° to 180° when w = w,. Hence

Bse = 0,5 + 0° or 180° (5.96)

as shown in Fig. 5.39. Thus all of the phase responses for the biquad circuit are
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8, degrees for case:
LP BP HP AP

0 90 180] 0 jmm————y——————————

—45 | 4§ 135 —90 F——A-swa\{t-————-

—90 0 90 | —180

—135| —45 | 45 | —270f-————————-

|

I

— — — 1 1 n
180 %0 0 360 0 0.5 w, =1 1.5 2 w

FIGURE 5.38

basically inverse tangent functions, with the allpass case being special in that

there is an abrupt shift of angle when w = w,.
Finally we should note that all of the rules just given apply for the non-
inverting circuit. For an inverting circuit an additional phase shift of 180° is re-

quired.

90 ——————————

-

6, degrees 0

—90

0 0.5 wy =1 1.5 20 w
FIGURE 5.39

PROBLEMS
5.1 For the circuit given in Fig. P5.1, let R, = QR and w, = 1/RC.
(a) Show that the transfer function then becomes

Vi 25(w/Q)
Vi 4+ (wo/Q)s+ w?
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4""" C
1 R b VC
o0—AAA— +
+ l ©
' v
2
Vl C — R
_T. :[: = R =
= = AN
FIGURE P5.1

(b) Design a bandpass filter for which f, = 10 kHz, and BW = 1 kHz, scaling ele-

ment sizes to be in a practical range.

In the circuit of Fig. P5.2, the capacitors have the same value C and all resistors ex-

cept one have the common value of R. Analyze the circuit to determine the transfer
functions

Vs
v’

and T = %

and classify each as lowpass, bandpass, bandstop, etc.

54

5.5

AAA
R A\ A A4
; —
R '\ R
] > A VA N
+ —o + —O0
| + + +
i _ 2 = Vs
Jv‘v‘v i =
R,=(Q— DR v,
FIGURE P5.2 l

Using one of the connections described in Problem 5.2, design a bandpass filter for
which w, = 10,000 rad/s with a bandwidth of 1,000 rad/s. Scale the circuit so that all
element values are in a practical range.

For the op-amp filter shown in Fig. P5.4, determine sizes for C, and Cj so that the
bandpass filter has a center frequency of 1 kHz and a Q of 10.

For the circuit shown in Fig. P5.5, show that

v, 1

V., RCs

Show that the use of this circuit in the biquad circait permits us to reduce the num-
ber of op amps required to two.
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FIGURE P5.4

FIGURE P5.5
5.6 Consider the three-op-amp circuit shown in Fig. P5.6. Writing node equations at
nodes a, b, and ¢, determine the transfer function 7 = V,/V,. Show that when R, =
R;, the filter becomes a notch filter, while when R, = 2R, the filter is an allpass one.
Show that design can be accomplished by the choices C, = C, = 1, R, = 1/Q, and
R, = Q.

R 3 3

[og AN MV

+

8 l
i
- b L

C
Vh
+
FIGURE P5.6

5.7 Using the results of Problem 5.6, design a filter such that

) = s? + 10s + 10,000
9= #4205 + 10,000
and scale your design to practical element values.
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5.8 (a) For the circuit shown in Fig. P5.8, show that with K = 1 + (R,/Ry),

Va_ R $+R/RRRCG
Vi R; 2+ (1/R,Cy)s + K/R,R,C,C,

R,
MV

ll'——o! A +l

!

(b) Devisea tuning algorithm for the circuit to meet Q, wy, w, and gain
specifications.

(c) Devise a design algorithm for the circuit to match the specifications given in (b).

FIGURE P5.8

5.9 The circuit shown in Fig. P5.9 is a generalization of that given in Fig. 5.23. We wish
to use it to study the lowpass notch and highpass notch filters illustrated by Fig.
12.39, and also the gain-equalizer filter illustrated by Fig. 5.32. Let R, = R, = R, =
R, =R,=R,C,=C,=C R,=QR, and R, = R/K.

(a) Show that w, = 1/RC and

Yo e £+ (1/Q = R/KR3) wos + (1 £ R/KR;Rg)w,’
vV, £+ (wo/Q) § + Wy

where + is — when Sw, is closed, + when Sw, is closed. Let the denominator
of this equation be D(s) and V,/V, = T.
Find the values for R;, R, and the switch positions that will provide the following
values of T(s):

2+ 2
b T="72 o<
2+ w?
c) T= D [
57+ (w/Q)s + wy?
d rTr=———— "
@ D

5.10 Using the results of Problem 5.9, design a so-called “universal filter” for which Q =
5 and f, = 10 kHz. The preferred value of Cis 0.01 uF. Devise a switching arrange-
ment so that you may obtain bandpass, lowpass, highpass, and allpass, character-
istics.
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FIGURE P5.9

Figure P5.11 shows the pole and zero plot for T{(s). Sketch the magnitude and phase
for T(jw). Make clear the w = 0 value, the w = oo value, and the general shape of
the response.

Repeat Problem 5.11 for the pole zero plot for 7(s) which has only one finite zero
rather than two (Fig. P5.12).

A bandpass filter has a Q of 2. Find the pole locations in the s plane as a function of
the bandwidth, BW.

Problems 5.14 to 5.24 are intended to give experience in the design of filters.

5.14
5.15
5.16
5.17
5.18
5.19
5.20
5.21
5.22
5.23
5.24

Design w, 0 Kind of filter Preferred C
10,000 5 LP + AP 0.001 uF
10,000 5 LP + BE 0.001 uF
10,000 5 LP + HP 0.001 uF

5,000 8 LP + AP 0.01 pF
5,000 8 LP + BE 0.01 uF
5,000 8 LP + HP 0.01 uF
7,500 10 BP + AP 0.1 uF
7,500 10 BP + BE 0.1 uF
7,500 10 BP + HP 0.01 uF
10,000 5 BP + BE 0.01 uF

10,000 5 BP + HP 0.01 uF
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FIGURE P5.11

One cero \

5.25

5.26

5.27

FIGURE P5.12

Figure P5.25a shows a passive RLC circuit for which C=1/4F,L=1H,and R =
1/2 Q. Design an inductorless circuit to fit in the box of Fig. P5.25b which is the
analog of that shown in Fig. P5.25a with respect to w, and Q. Give schematic and
element values.

C L
a —_— a
+ e +
R v, V1 RCist.lVL v,
cireuit -
o b —o b

(a) (b)
FIGURE P5.25

Consider an RLC circuit as shown in Fig. P5.26 in which one element is varied over
its range of values from 0 to oo. Verify that the locus of the poles of T(s) = V,/V,
are those shown in the figure.

Consider the RLC circuit shown in Fig. P5.27.
(a) Show that the transfer function 7(s) = V,/V, has the form

2+ w?

Tts) = 2+ (wo/Q) 5 + Wy’

(b) Express w,, w,, Q and the low- and high-frequency asymptotic gains in terms
of the element values.
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(b)
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(c) Determine expressions for |T(jw)| and the phase of T(jw).
(d) In the expressions determined for Part (c), let w, = | and Q = 5. Sketch the
magnitude and phase as a function of frequency from w = 0 to w = 5 rad/s.

5.28 Repeat the steps outlined in Problem 5.27 for the circuit shown in Fig. P5.28 which
is a lowpass notch circuit.

C
i

o——¢ —o
+ L +
L vy
Y C= R Y,
o— i SN FIGURE P5.28

5.29 Repeat the steps outlined in Problem 5.27 for the circuit shown in Fig. P5.29 which
is a highpass notch circuit.

c
i

o—
+ L
LYY Y \_
v, g
o ° FIGURE P5.29

5.30 As a generalization of Eq. (5.73), let a,. be the loss at w = 0, and a, be the loss in
excess of a,. corresponding to the bandwidth frequencies w,, and w,,, as shown in
the accompanying Fig. P5.30. Show that the required Q is

0= . T
bw, 10%7= =]
«,dB 1
1
1
|
|
1
|
o, ___I__
|
w, w
-<—wa—;
wlx w2x

FIGURE P5.30






CHAPTER 6
Butterworth

Lowpass
Filters

This chapter is concerned with the design of lowpass filters of the general class
realized by the biquad circuit of the last chapter. In the biquad circuit the param-
eter w, fixed the transition from pass band to stop band, leaving only Q to shape
the magnitude response. Here our objective is to approximate the lowpass filter
characteristic through the cascade connection of a number of circuits, each tuned
to a different Q (said to be stagger tuned), together contributing to achieve the
required overall response.

6.1 THE IDEAL LOWPASS
FILTER

The input voltage v, shown in Fig. 6.1 contains a low-frequency signal plus hash,
a term we apply to unwanted high-frequency signals such as shrill tones, scratch-
ing sounds, or chirps. To remove the hash, leaving only the low-frequency signal,
requires that we have a lowpass filter capable of passing low frequencies and re-
jecting high frequencies. Had voltage v, contained several low-frequency signal
components, we would like the filter design to be such that each was transmitted
without change in amplitude. This would not be the case if we had used the bi-
quad circuit of the last chapter with a moderately high value of Q, for, as shown
by Fig. 6.2, signals near w, = 1 rad/s would be multiplied by as much as Q, in
contrast with lower frequency signals which pass through the filter without multi-
plication.

From this discussion it is clear that the ideal filter characteristic we seek is
that shown in Fig. 6.3. Below the normalized frequency of w, = 1, the amplitude
of T(jw) is a constant; above that frequency the value of T is 0. The pass band
and stop band are clearly separated at w = 1. Because of its shape, this character-
istic is called a brick wall; it is the ideal lowpass filter characteristic. While we rec-
ognize that we will not be able to achieve the ideal, it provides a basis on which
we can rate an approximation. As shown in Fig. 6.4, we desire that |T| be as
nearly constant as possible in the pass band. In the stop band we require n-pole

157
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Lowpass filter

FIGURE 6.1

rolloff, where n is a large number, in contrast to the n = 2 rolloff for the biquad
circuit. We want the transition from pass band to stop band to be as abrupt as
possible.

The method we will use in our approach to this problem is illustrated in
Figs. 6.5 and 6.6. Suppose that we connect three modules in cascade such that the
overall transfer function T is equal to the product T,7,7T,. The product of the
magnitudes is shown in Fig. 6.6 as the dashed line, which is of the form required
in Fig. 6.4. The large values of |T| are just overcome by the small values of |T5)
and |T;| to achieve the approximation to the brick wall. The transfer functions
have the same value of w,, but different values of Q. How do we determine the
required values of Q? To answer this question will be our first objective.

6.2 BUTTERWORTH RESPONSE

We first review a topic in the algebra of complex numbers. If we denote the real
and imaginary parts of the complex transfer function as

T(jw) = Re T(jw) + j Im T(jw) (6.1)

then we may enumerate some of the properties of 7T(jw). Now the real part of Eq.
(6.1) is an even function, while the imaginary part is an odd function. This means
that replacing jw by —jw will change the sign of the imaginary part, but not that
of the real part. Hence

T(—jw) = Re T(jw) — j Im T(jw) 6.2)
This function is also known as the conjugate of T(jw), so that
T(—jw) = T*(jw) (6.3
Q ________

2-pole rolloff

|
|
|
|
|
|
|
|
|
[
|
|
1
1
6

FIGURE 6.2
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Brick wall
T1=1V,/V,l "
t<— Pass band —>t<—Stop band—>
0
0 1 w
FIGURE 6.3
Since
T(jw)T*(jw) = (Re T)* + (Im T)* = |T(jw)|* (6.4)
we have the important relationship
ITGw)* = T(jw)T(—jw) (6.5)
In the past we have frequently replaced s by jw or jw by s, so that
ITGw)* = T($)T(=9)| = (6.6)

which is an important relationship in our study. Now the magnitude-squared
function is an even function in that | T(jw)|> = | T(—jw)|*. If we represent the mag-
nitude-squared function as a quotient of polynomials, then both the numerator
and the denominator polynomial must be even. Let this quotient be

. A(w?)
2=
IT.UOF = B ©.7)
We choose a simple form for A(w?) by letting it be a constant 4,. Then
. A
IT.(jw)|* = 5 (6.8)

B, + B,w’ + Bw* + -+ + B,w”

The reason for this choice is that we wish to make the rolloff of |T,(jw)| large for
large w, which is accomplished by making the difference of the degree of 4 and
the degree of B as large as possible. This choice will give a |T,(jw)| with n-pole
rolloff and a T,(s) that will be known as an all-pole function. The special case in
which all B coefficients except B, and B,, have zero value, 4, = B, such that
T,(0) =1, and

By = (i) 69)

Wo
IT| Small error
e Brick wall
|

n-pole rolloff

~—-

w FIGURE 6.4
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, T, T, Ty, =V,
V,=TT,T,V,
FIGURE 6.5

gives us the simple form of Eq. (6.8):

1

|T.(jw)* = T /o (6.10)

This response is known as the Butterworth response.* We may follow our usual
procedure and let the frequency be normalized such that w, = 1, giving

1
L0 = Ao (6.11)
From this equation we may observe some interesting properties of the Butter-
worth response:

1. |T,(0)| = 1 for all n; the consequence of normalization.
2. |T(D)| = 1/42 = 0.707 for all n.
3. For large w, |T,(jw)| exhibits n-pole rolloff.
4. The derivatives of |T,(jw)| for small w are of interest. If we express Eq. (6.10)
by a Taylor series,
TG = (1 + @) = 1= a4 S = 6.12)
then it follows that
a"|T,(jw)|
= = e 2n—1 .
do | 0, k=12, 2n (6.13)
while
aTyw)l| __1
o |l.="2 (6.14)

Since this form of response has all derivatives but one equal to zero near w =
0, the response is also known as maximally flat. These properties are shown in
Fig. 6.7. Observe the maximally flat property, and also that the case n = 10
comes close to our brick-wall ideal response.

6.3 BUTTERWORTH POLE
LOCATIONS

Our next objective is to determine the location of the poles for the transfer func-
tion with a Butterworth response. We begin by combining Eq. (6.6) with Eq.

*S. Butterworth’s original paper appears in the collection of papers in M. E. Van Valkenburg, Circuit
Theory: Foundations and Classical Contributions, Dowden, Hutchinson & Ross, Stroudsburg, Pa.,
1974. This form of response was used by other earlier contributors to the field, but its association with
the name Butterworth is now secure.
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T
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FIGURE 6.6
(6.10) modified by letting w, = 1 and w = s/j:
_
1+ (/)™

_ 1
1+ (-l

0

T(s)T(—s) = (6.15)

(6.16)

The poles of Eq. (6.16) are the roots of the equation
B,(5)B(—s) =1+ (=1)ys" =0 6.17)

where B, has been introduced to designate the Butterworth polynomial.

1.0
N \\\
0s AN
N
o NS
n lw
R
. s\ N
: ! \
E= G
) | \§\_\_
0 04 0.8 1.2 1.6 2.0

w
FIGURE 6.7
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We will illustrate the solution of Eq. 6.17 by considering several examples.
Let n = 1 so that

l-f=0+s)(1-5=0 (6.18)

Thus the poles are located as s = +1, as shown in Fig. 6.8a. The pole in the right
half-plane corresponds to an unstable system, and so we select the pole in the left
half-plane to associate with B, and T,. Then

B =s5s+1 and T, = ;% (6.19)
If we let n = 2, then Eq. (6.17) becomes
sf+1=0 or s'=-1 (6.20)
If we write —1 + 0 in the polar form,
—1 =1 £(180° + k360°) 6.21)

for integer values of k and k = 0, then we see that the angles of this equation are

_ 180° + k360°

6, = 2 = 45°,135°,225°, 315° (6.22)

as shown in Fig. 6.8b. As we did for the n = 1 case, we select the roots in the left
half-plane to assign to 7(s).

B,(s) = (=0.707 + f0.707)(—=0.707 — 0.707) = & + V2s+ 1  (6.23)

jw
n=1 _1
// \\
/ \\
L
(a) \\ /T >
\,
~L -7
jw
n=2 _1_
X/ \X
/ \
(b) —t \
\ /o
\x x/
P
Jjw
n=3 _1__
X x\
/ \
(¢) |
\ ] [4
\ /
\X\ /X/
] FIGURE 6.8
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and
T,= 1 (6.24)
S+ 25+ 1
For n = 3 the form of Eq. (6.17) is
1-s5s"=0 or =1 (6.25)
The angles corresponding to Eq. (6.22) are
0. = k3§0° =0°, 60°, 120°, 180°, 240°, 300° (6.26)

and all roots of Eq. (6.25) are on a unit circle. If we generalize the two angle rela-
tionships of Egs. (6.22) and (6.26), we have

2k+n—-1

. k=1,2...,2n (6.27)

0. =90°(

We will seldom use this, since a different form is better suited to our needs.

All of the poles of T,(s) will be located on a unit circle because of the fre-
quency normalization in which we set w, = 1. In addition, we will always select
the poles in the left half-plane, since only these correspond to a stable circuit.
Now 6, in Eq. (6.27) is the angle measured from the positive real axis. Since our
concern is in the left half-plane, let us measure the angle with respect to the nega-
tive real axis, designating it as y,, as in Chapter 5. Using this approach, we return
to the case n = 3 and Eq. (6.25) and see that the angles of the poles are

Y = 0°, +60°, —60° (6.28)

Knowing the sine and cosine of 60°, we see that

Bi(s)=(s+1) s+%+ j—‘é—j)(s+é——j§)=(s+l)(s2+s+ 1) (6.29)

This form is better suited to our needs, especially if we use the form of Eq. (5.29),
from which

1
B,= or [[ (#+2costus+1) (6.30)
s+1 &

Two simple rules permit us to determine y,:

1. If nis odd, then there is a pole at Y = 0°; if n is even, then there are poles at
Y = +£90°/n.
2. Poles are separated by ¢ = 180°/n.

The consequences of these rules are that there are never poles on the imaginary
axis, and there is always symmetry with respect to both the real and the imagi-
nary axes when the poles for both 7(s) and 7(—s) are included.

There are various ways in which information about the Butterworth re-
sponse can be presented. The angles for each value of n can be presented, as is
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done in Fig. 6.9, as derived from the rules given following Eq. (6.30). Table 6.1
tabulates the pole locations for n = 2 to n = 10, and Table 6.2 gives the coeffi-
cients of the Butterworth polynomials B,(s). The value of Q for each of the pole
locations is routinely found using the result given in Eq. (5.39) and apparent in
Eq. (6.30), since w, = 1,

1

0= 5oy (6.31)

Such values are given in Table 6.3. Finally, the phase angle associated with the
Butterworth response is found, once B,(s) is known, as

Im B,(jw)
Re B,(jw)

These angles for n = 1 to n = 10 are given in Fig. 6.10.

6, = —tan™' (6.32)

Example 6.1 We wish to tabulate information concerning the fifth-order Butterworth re-
sponse and calculate the phase angle at the frequency w = 1.

Since n = § indicates an odd Butterworth function, we know that one pole is located
at Y = 0 and that the others are separated from it by multiples of 180°/5 = 36°. Thus

Y = 0°, £36°, £72° (6.33)
The pole locations are
P pi = —cos Y * jsin ¢ (6.34)
They are then at
—1.0000000
—0.3090170 + ; 0.9510565
—0.8090170 + ; 0.5877852

The values of Q for the poles are found from Eq. (6.31) as 0.500, 0.618 and 1.618. The
fifth-order Butterworth function is

By(s)=(s+ 1)(s* +2cos36°s+ 1)(s> +2cos 72° s + 1) 6.35)

which can be compared with values tabulated in Table 6.3. The phase angle at w = 1 can
be calculated from Eq. (6.35) by simply determining the phase of each of the terms. Here
we see that

05(j1) = 45° + 90° + 90° = 225° (6.36)

which agrees with an estimated value taken from Fig. 6.10.
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6.4 LOWPASS FILTER
SPECIFICATIONS

Since the early 1920s it has been traditional for those who design electronic am-
plifiers to think in terms of gain decibels being positive, while those who design
filters think of loss in decibels as being positive. With the advent of the op amp
and thus active filters, we need both concepts. Rather than adopt one point of
view or the other, we resolve the problem by using two symbols as explained in
Chapter 1. Thus

a=—-4 dB 6.37)
where
A =20log |T(jw) dB (6.38)

In doing so we are simply introducing another coordinate system which reverses
the direction of our plots up or down. The Butterworth response of Fig. 6.7 is
shown on linear coordinates. The corresponding plot of a in decibels as a func-
tion of linear w is shown in Figs. 6.11 and 6.12, one for the pass band and the
other for the stop band. Such plots are useful for visualizing magnitudes, but de-
sign values will always be found using a calculator.

The manner in which specifications for a filter will be given to the engineer
is illustrated by the plot of Fig. 6.13. For the pass band extending from w = 0 to
w = w,, the attenuation should not exceed a,,,. From w, to w, we have a transition
band. Then the specifications indicate that from w, and for all higher frequencies
the attenuation should not be less than a,,,. Given this information, we need to
find n and w, as applied to the Butterworth response, from which the design can
proceed. We begin with Eq. (6.10) for the Butterworth response, retaining w,
since it is now one of the unknowns. Substituting this equation into Egs. (6.37)
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w
FIGURE 6.11
and (6.38) gives us
w 2n
a=10log [l + ——) J dB (6.39)
Wo
Dividing by 10 and then finding the antilogarithm gives us
2n
100 =1 + (i, (6.40)
Wo
and from this equation,
o = (6.41)

Thus if we are given corresponding values of a and w, then w, is determined. If
we select a.,,, and w, as defined in Fig. 6.13, then Eq. (6.41) becomes

= W,
- [loa,,,,,/lo _ l]l/Zn

Wo

(6.42)
which expresses w, in terms of specified quantities.

To determine n, we start with Eq. (6.40) and substitute values of « and w that
go together, as indicated in Fig. 6.13. Then

2n
(&, = 1010 — ] (6.43)
Wo
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and
W 2n
(—‘ = 1070 — | (6.44)
Wo
Dividing these equations gives us
W 2n loamm/lo -1
= = 6.45
(w,, 10%=/1 — ] (6.43)

Taking the logarithm of this equation and solving for n gives the desired result:

_ log [(10°=="" — 1)/(10°="" — 1)]
" 2 log (w./w,)

(6.46)

o, dB

FIGURE 6.13
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a, dB

FIGURE 6.14

This is the second required equation to be used in design. A calculator is useful in
carrying out the operations indicated by this equation.
A design procedure is carried out in two steps:

1. Using Eq. (6.46), find n. This will ordinarily be a noninteger, so we round up
to the next integer value and assign it to n.

2. Using this integer n, we find w,. We cannot meet the specifications exactly
now because we are not using the noninteger n. However, we have two
choices:

a. If we use the value of w, given by Eq. (6.42), then we meet one specifica-
tion exactly, as shown in Fig. 6.14a, but there is excess a at ..
b. If we compute w, using Eq. (6.41) matched to the other specification
point,
w,

= (0= = 17 (6.47)

Wo
as shown in Fig. 6.14b, this will result in meeting one specification ex-
actly with a smaller value of attenuation in the pass band than is re-
quired.

In a given design problem we can try both possibilities with the aid of a calcu-
lator to see which offers an advantage.

Example 6.2 Suppose that we are required to realize the following specifications with a
Butterworth response:

Umax = 0.5 dB, Qi = 20 dB,
w, = 1000 rad/s, w, = 2000 rad/s
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For these specifications we wish to determine the transfer function 7(s) from which a real-
ization can be found. Substituting the required values into Eq. (6.46) we find that

n = 4.83209, roundupton=>5 (6.48)

Suppose that we decide to use Eq. (6.47) to determine w,. It is found to be w, = 1263.2. If
we had used Eq. (6.42), it would have been found to be w, = 1234. The Butterworth case
n =5 has been considered earlier in this chapter, and it was found that the required values
of Q are 0.5, 0.618, and 1.618. Hence the realization of circuits to meet these specifications
will be in the block diagram form shown in Fig. 6.15, where each block could be realized
using the biquad circuit of Chapter 5, for example, but other alternatives will be given in

w, =1263.2 wy = 1263.2 wy = 1263.2
Q=05 Q=0.618 Q=1.618
FIGURE 6.15

the next section. We will do our design by letting w, = 1 initially and then frequency scale
to the required w, by using the scaling constant k, = 1263.2. Finally we should check to
see what the attenuation is at w,. Using Eq. (6.39), we find that

000 )"’J = 0.4007 dB (6.49)

1
(1000) = 10 logI:l +| 52633

which is less than the specified 0.5 dB as predicted.

6.5 SALLEN AND KEY CIRCUIT

The circuit given in Fig. 6.16 is one of a class of circuits that were described in
1955 by Sallen and Key,* then at MIT’s Lincoln Laboratory. In the circuit the
noninverting op-amp circuit provides a constant relationship between ¥, and V,,
which is

R,
72 1+ R,

The controlled-source representation of the Sallen and Key circuit is given in Fig.
6.17. This circuit may be routinely analyzed using Kirchhoff’s current law. At
node a the currents directed out of the node must sum to zero, or

=K (6.50)

i—;—’—Vb+ %—0C2s=0 (6.51)
Similarly, the sum of the currents out of node b is
L(V,,——-Vi)+C,s(V,,—V2)+L(V,,— V)=0 (6.52)
R, K R,
We next rearrange this equation in a form for solution:
1%+L2+C.sj V,,—I%—VK1=%:+C.sV2 (6.53)

* R. P. Sallen and E. L. Key, “A Practical Method of Designing RC Active Filters,” IRE Trans. Cir-
cuit Theory, vol. CT-2, pp. 74-85, 1955.
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FIGURE 6.16
and
1 1 vV, _
R vV, + ( R + Czs’ X = 0 (6.54)

We now eliminate the voltage V, and solve for the ratio V,/V, = T. The result is,
after some algebraic simplification,

1A K 1/R\R,C,C,

T6) =5 = F¥(/RC ¥ 1/RC, + I/R.C, - K/R.Cys + I/RR.C G &Y
This transfer function is recognized as being of the general form
_ K w?
T(s) = T ¥ @/ Oy F o (6.56)

which is that of a lowpass filter. As was the case in Chapter S, our objective is to
find a design strategy to determine K and the four circuit elements, given the de-
sign parameters w, and Q. Before doing this, we will examine the role of K with
respect to pole placement. If we let C, = C, = 1 and also R, = R, = 1, then Eq.
(6.55) reduces to

v, K

Vi, £+G-Ks+1 6.57)
The locus of poles for the upper left half of the s plane is shown in Fig. 6.18.
Since w, = 1 in Eq. (6.57), the locus is on a circle of radius 1. When K = 1, then
the poles of Eq. (6.57) are both at —1. As K increases, the poles move into the
complex plane, and when K = 3, they are on the imaginary axis. Thus we see that
K alone can place the poles in a position to satisfy any Q requirement. This is also
seen from the relationship in Eq. (6.57):

1

=3°"% (6.58)

(Since K may have any value simply by adjusting R, and R,, we are left with the
question of the meaning of a circuit with negative Q.)
Returning to the general equation for 7(s) for the Sallen—Key circuit, we
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b
¢
=

now outline design procedures to permit choices of element sizes. We have al-
ready made the decision that frequency will be scaled such that w, = 1, which re-
duces the specification parameters to simply the value of Q. A few of the large
number of possible choices will be outlined as different design strategies. In gen-
eral we will select most of the elements to have unit value, knowing that these will
be changed to a practical range of values by frequency and magnitude scaling.

FIGURE 6.17

Design 1

For this design we will use the element values that led to Eq. (6.57), R, = R, =1,
and C, = C, = 1. Then from Eq. (6.58),

K=3—é=l+% (6.59)

If we make the further choice that R, = 1, then R, is determined:

1
R,=2- ~Q— (6.60)

The resulting circuit is given in Fig. 6.19a. Only Q need be specified to complete
the design to which frequency and magnitude scaling can be applied.

Design 2

We make the choice K = 1, which requires that the noninverting op-amp circuit
be replaced by a voltage follower, as shown in Fig. 6.19b. We also make the deci-
sion that R, = R, = 1 and w, = 1. Applying these choices to Eq. (6.55), gives the

K=1]10=1/2

1 <K<3 FIGURE 6.18
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two conditions

2 1

a = 6 and C|Cz =] (661)
From these equations we find that
1
C,=2Q and C = 30 (6.62)

which become the design equations, as shown in Fig. 6.19b.

Design 3

Since using equal resistors has an advantage in design, suppose that we let R, =
R, = 1 so that K = 2. As always, w, = 1, and as assumptions we let C, = 1 and
R,C, = R,C,. Applying these conditions to Eq. (6.55), we find that

R=1, R=0 C=1, G (6.63)

=1

Q
as shown in Fig. 6.19c. A fourth realization, which differs from the other three in
that it is inverting, is given in Fig. 6.19d.

Returning now to the Butterworth response, we recall that the zero-fre-
quency response is 7(j0) = 1, or 0 dB, while we see that the Sallen-Key circuits
give us a zero-frequency gain 7(j0) = K. If we must meet the specifications of the
filter exactly, then we must reduce the gain of our circuit realization. This is done
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with a resistive voltage divider, which we consider next. Observe from Fig. 6.19
that all of the realizations have a resistor R, = 1 in series with the input voltage
V,, as shown in Fig. 6.20a. The proposed voltage divider is shown in Fig. 6.20b,
for which we require that R,, = 1 and that the voltage be reduced by the amount
H, which is

R,
R, +R,’

If the circuit of Fig. 6.20b is such that R,, = 1, then it can replace the circuit of
Fig. 6.20a without changing the overall transfer function except for the gain con-
stant. So in addition to satisfying Eq. (6.64), we require that

R.R,

% =H= H<l (6.64)

R +R, =1 (6.65)
If we divide this equation by Eq. (6.64), we find that
1
R, = i (6.66)
Then solving Eq. (6.64) gives
1
R, = 7 6.67)

These values are shown in the circuit of Fig. 6.20c.
We next apply this result to two different situations. The transfer functions
for the Sallen-Key circuit given by Eq. (6.55) have a zero-frequency gain of

T(0) = K (6.68)

R =1
Vl< > <—R =1
n
(a)
R

a

FIGURE 6.20
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Hence for gain equalization it is necessary that a resistive voltage divider be pro-
vided such that H = 1/K, meaning that
1

R,=K and R, = -1 (6.69)

Let us apply this result to the Sallen-Key circuit of Fig. 6.19a for which

1
=3-— 6.70
K=3 0 (6.70)

Then combining Egs. (6.69) and (6.70) gives the required values of the voltage-
divider resistors

—3-1 S
R,=3 0 and R, 30 -1 6.71)
Then the circuit shown in Fig. 6.21a has a gain of 0 dB at zero frequency for all

values of Q. Rather than accepting this requirement, we wish the gain adjusted so
that it has the value of 0 dB at the normalized frequency w = 1. Since

__3-1/90
T = ey @0y +1 (6.72)

we have from this

TG =30 -1 (6.73)
3—-1/0
v ()
0/(20 — 1
i
30— | 1 !
——o
+
VICD > 1 —AAN— v,
301 e 2-1/0
302 1< B
> * -0

(b) FIGURE 6.21
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so that we require that

S
30-1

This gives the circuit of Fig. 6.21b. The response function a(w) is shown in Fig.

6.22 for several values of Q.

H (6.74)

Example 6.3 We now return to the design of the fifth-order Butterworth filter specified in
Fig. 6.15 as to Q and ¢,. For the realization we will select the circuit of Fig. 6.19b because
of its simplicity and due to the fact that it requires no gain adjustment with a voltage-divi-
der circuit. The cascade connection of the three modules is shown in Fig. 6.23. The re-
sponses of the individual stages and the overall response of the circuit are shown in Fig.
6.24. To complete the design requires scaling. We had found that k; = 1263.2, and we will
make the choice that k,, = 10% so that all resistors will have the value of 10 k. The ca-
pacitor values are found from

1
kk,

where 1/k/k,, = 0.79164 X 10~°. The capacitor values are given in the following tabula-
tion:

. Cnew = Cold (6.75)

Values of C,...
Stage 1 Stage 2 Stage 3
Coa Q=05 Q,=0618 Q,=1618
1 0.79164 nF — —
20 — 0.9784 nF 2.5617 nF
1/2Q — 0.6405 nF 0.2446 nF

6.6 RESISTIVE GAIN
ENHANCEMENT

In studying the Sallen-Key circuit we have found that the gain X is adjusted to
control Q. Any excess gain is compensated by a resistive voltage-divider circuit.



178 CHAPTER 6 BUTTERWORTH LOWPASS FILTERS
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= K=1+Ry,R,

FIGURE 6.24

In this section we consider a different problem. Suppose that we want the lowpass
Butterworth response, but we also want more gain than the Sallen-Key circuit
provides. While such gain is realized with additional stages, it can also be at-
tained by a modification of the Sallen-Key circuit, or other circuits operating on
the same principle. In the circuit shown in Fig. 6.25 the Sallen-Key circuit is
modified in that only a fraction of the output voltage V, is fed back through the
capacitor, the amount being kV,, where, from the voltage-divider equation,

= R2
R, +R,

k (6.76)

The circuit used for analysis as shown in Fig. 6.17 need only be changed with kV,
substituting V>, the controlled source. If we let R, = R, = Rand C, = C, = C,
then it is found that the transfer function becomes

K/R*C*

T6) = Z 3 [(3=kK)/RC] s + 1/(RC? ©.77)
From this
1
Q = 3_7( (678)
This compares with the value given in Eq. (6.58), which is
= (6.79)

3-K
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Comparing these two equations we see that for a Q that is given as a result of
specifications, K can be made larger provided that k is made smaller to com-
pensate. This permits a much larger value of K to be employed in the circuit real-
ization. This is known as resistive gain enhancement.

6.7 RC-CR
TRANSFORMATION

The general subject of frequency transformations is covered in Chapter 11. Post-
poning this detailed study, we now present a simple and very useful transforma-
tion known as the RC-CR transformation. The consequence of it is that if we can
design lowpass filters, then we can design highpass filters by a simple change of
the kind of element. This objective is indicated in Fig. 6.26.

If we divide the frequency scale of Fig. 6.27a into two parts, from 0 to 1 and
from 1 to oo, then the portion of the frequency scale of interest is seen to have a
reciprocal relationship for the lowpass and the highpass filter cases. This may be
written in equation form as

1
w=—= 6.80
5 (6:80)
We will later generalize this to
Wo
= — 6.81
; 631)
RC—op-amp RC—op-amp
lowpass p—— highpass
filter filter FIGURE 6.26
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where the normalized frequency 1 has been scaled to w,. It was initially shown by
Mitra* that this transformation is accomplished if the circuit is modified as fol-
lows:

1
R,

R;is replaced by C, =

C,is replaced by R, = CL (6.82)
J
as shown in Fig. 6.28. We have modeled the op amp as a voltage-controlled
source which is not affected by this transformation, and so K, a gain factor used
earlier in this chapter, is not changed. Note also that it is not necessary to apply
this transformation to the resistors used to set the gain for the noninverting op-
amp circuit, R, and R;.
To illustrate the procedure, we return to Design 2 of the Sallen-Key circuit
shown in Fig. 6.19b for which the design equations were given in Eq. (6.62). With
K =1and R, = R, = 1, then Eq. (6.55) was

1/C,C,
£+ @2/C)s+1/C.C,

From the requirement that C,C, = 1 and 2/C, = 1/Q, we found the design equa-

T(s) = (6.83)

* S. K. Mitra, “A Network Transformation for Active RC Networks,” Proc. IEEE, vol. 55, pp. 2021-
2022, 1967.

Lowpass Highpass
R, 1R,
<G 1/C

o -0 o o
+ + + +
kV kV
1 1
v, y Vi Yy
o +——o o— o

FIGURE 6.28
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tions to be

=L

20
The resulting circuit of Fig. 6.19b is also shown in Fig. 6.29a. If we apply the ele-
ment transformations specified in Egs. (6.82), then we obtain the highpass filter

shown in Fig. 6.29b which has the magnitude response shown in Fig. 6.30. Sub-
stituting

C,=20 and G (6.84)

=L
-3

along with replacing s by (1/s) gives us

R, and R,=20 (6.85)

s
£+ (2/R) s+ 1/RR,

which is the transfer function for the highpass circuit of Fig. 6.29b.
As a second example of the use of the RC-CR transformation we make use

T(s) =

(6.86)

C,=20
| 1
—o0
+
V] C: = l/gQT 5
J _
(a)
]|__J , Ry =120
——o
+
|4 5
: R,=203 Vs
(b) FIGURE 6.29
V1Vl
_______ 1._____._‘:.-_'_

w FIGURE 6.30
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of the circuit due to Geffe,* shown in Fig. 6.31, which realizes a third-order But-
terworth frequency response with w, = 1. Applying the RC-CR transformation,
we obtain the circuit shown in Fig. 6.32, which will have the frequency response
given in Fig. 6.33. Such a circuit will substitute for the cascade connection of a
first-order and a second-order circuit.

Example 6.4 We require a highpass filter having the attenuation characteristics shown in
Fig. 6.34, which indicate an attenuation of at least 30 dB at 60 Hz and 3 dB or less attenu-
ation for all frequencies in excess of 200 Hz.

For our design we first test the suitability of the Geffe circuit of Fig. 6.32. This is a
third-order Butterworth circuit. The normalizing frequency is 200 Hz or 1256.6 rad/s,
which will be made to correspond to w, = 1 in the Geffe circuit. In terms of this frequency
normalization, 60 Hz corresponds to 0.3 rad/s. To compute the attenuation at that fre-
quency, we use Eq. (6.39) which was derived for the lowpass case and recognize that 0.3

* P. R. Geffe, “How to Build High-Quality Filters out of Low-Quality Parts,” Electronics, pp. 111-
113, Nov. 11, 1976.
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200 f.Hz
FIGURE 6.34

rad/s for the highpass case is equivalent to 1/0.3 = 3.333 for the lowpass case. Then from
Eq. (6.39)

a=10log (1 + 3.333%) = 31.35 dB (6.87)

which means that the Geffe circuit provides more than the needed attenuation at 60 Hz.

From the specifications we must frequency scale 1 rad/s to 1256.6 rad/s (200 Hz),
meaning that k; = 1256.6. Suppose that we decide to use 0.1-uF capacitors. This then fixes
the value of k,, in Eq. (6.75) at

k, = — = ——— =7958 (6.88)

We may now scale the resistors of the Geffe circuit, Fig. 6.32, by multiplying each value
by 7958. This gives the final design shown in Fig. 6.35.

2.244 kQ
Av‘v‘v
0.1 uF 0.1 uF|0.1 uF
oL
—o0 2
<> ‘)
$5714kQ  $3931kn
1'e 02’
FIGURE 635

PROBLEMS

6.1 In the circuit shown in Fig. P6.1, it is given that R, = 1. The elements L, and C, are
to be determined such that ¥,/V, gives a Butterworth frequency response.

g

[N

FIGURE P6.1
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6.2 Figure P6.2 shows an RLC circuit in which R, = 1 and L, and G, are to be deter-
mined so that V,/V, gives a Butterworth frequency response.

FIGURE P6.2

6.3 Figure P6.3 shows an RLC circuit driven by a current source /,. It is given that R, =
1. You are to find the values of C, and L, such that V,/I, gives a Butterworth fre-
quency response.

L

[

FIGURE P6.3

6.4 Consider the following three sets of specifications:

Qmay, dB Qminy dB w,, rad/s w,, rad/s
(a) 025 15 10,000 14,000
(b) 0.50 30 750 1,750
© 1.00 25 1,250 4,375

For each of the three cases, do the following:
(1) Determine n, the required order of the Butterworth LP filter.
(i) Determine the half-power frequency, w,.
(iii) Determine the actual attenuation at the edge of the passband and the edge of
the stop band, a(w,) and a(w,).
(iv) Determine the attenuation at the frequencies 2 X w, and 10 X w,

6.5 Repeat Problem 6.4 for the following three specifications:

Omax, dB Uminy dB f» Hz f,, Hz
(a) 0.25 18 1000 1400
(b) 0.50 20 2000 2800
(© 0.50 30 1000 1400

6.6 A fifth-order lowpass Butterworth filter characteristic has the values w, = 1000 rad/s
and a,,,, = 0.35 dB. What will be the attenuation of the Butterworth response when
w = 2000 rad/s?
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In this series of problems, a lowpass filter is to be studied having specified loss character-
istics as shown in Fig. P6.4. For each set of specifications, determine the following:
(a) Determine n, the required order of the Butterworth response.
(b) Determine the s plane location of the poles, and the Q of each pole.
(c) Determine the actual loss at the edge of the passband and the edge of the stopband,
a(w,) and a(w,).
(d) Determine the half-power frequency, w,.
o, dB

o
min

w w, rad/s
FIGURE P6.4
Omax, dB ®min, dB w,, rad/s w,, rad/s
6.7 0.5 30 1000 2330
6.8 0.5 20 1000 2000
6.9 1.0 35 1000 3500
6.10 0.5 20 1000 1725

6.11 Repeat Problem 6.9 if the frequencies specified are in Hz rather than rad/s: f, =
1000 Hz and f, = 3500 Hz.

We wish to design a lowpass filter to satisfy the loss specifications shown in Fig. P6.12.
Thus we wish a filter with a flat loss of «; dB and a Butterworth response specified by a,,
a3, w), and w,. Our final design might better be described as a filter-attenuator. For unifor-
mity, we will specify that the Sallen-Key circuit of Fig. 6.19c be used and that the capaci-
tors in the realization should have the value of 1 uF.

a,, dB a,, dB as, dB w,, rad/s w,, rad/s
6.12 8 9 23 1000 2300
6.13 6 8 32 1000 3000
6.14 10 10.5 40 100 800

6.15 It is required that we design a lowpass filter. However, only one op-amp is available
and the stockroom has only 0.1-uF capacitors. It does have a good stock of resistors.
You are to design a filter to meet the following specifications:
(a) The response is to be Butterworth.
(b) You are to obtain the maximum value of n that is possible.
(c) The half-power frequency is to be w, = 2000 rad/s.
(d) In addition to the filtering action, we wish a low-frequency gain of 14 dB.
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o, dB

w, w, rad/s
FIGURE P6.12

6.16 You are required to design an amplifier-filter using two stages of Sallen-Key cir-
cuits. The gain at dc is to be 4 = 20 dB, and a fourth-order Butterworth response is
required with 4 = 17 dB at w = 10,000 rad/s. Use magnitude scaling to obtain ele-
ments in a practical range.

The next series of problems relates to the specifications given in Problems 6.7 through 6.11.

For each set of specifications, do the following:

(a) Find a Sallen-Key realization and magnitude scale to obtain elements in a practical
range.

(b) Modify the circuit found in (a) to obtain gain enhancement of 20 dB (flat for all fre-
quencies).

6.17 Design using the specifications in Problem 6.7.
6.18 Design using the specifications in Problem 6.8.
6.19 Design using the specifications in Problem 6.9.
6.20 Design using the specifications in Problem 6.10.
6.21 Design using the specifications in Problem 6.11.

6.22 Design a lowpass filter with a Butterworth response to meet the specifications:
Qpmay = 0.50 dB, a,,,, = 30 dB, w, = 750 rad, w, = 1750 rad/s.
(a) Make use of Sallen-Key circuits with K = 1, and magnitude scale to obtain
elements in a practical range.
(b) To the filter designed in part (a), we wish to add gain enhancement of 20 dB
(flat for all frequencies). Modify the design of part (a) to accomplish this ob-
jective.

6.23 Consider the Sallen-Key lowpass circuit with the following choice made for the de-
sign of the fixed elements:
K=2, R,C, = R,G,, C =1

Determine design equations which express the values of R,, R,, and C, in terms of
wo and Q.

6.24 Consider the Sallen-Key lowpass circuit for K = 1 which is to be designed to realize
a pair of poles located at the angles +y with respect to the negative real axis of the s
plane. Using the assumption that R, = R, = 1, show that cos ¢ = JC,/C,.

6.25 Show that the circuit given in Fig. P6.25 provides a Butterworth lowpass response
with 60 dB of gain at dc and with a half-power frequency of 1.577 kHz.
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6.27 Consider the RC op-amp circuit shown in Fig. P6.27. What value of R, and R, will
give the transfer function

SZ

TO = ios+1

R 1
— AMWA—————————
1F I F
i i :
+
v, R, ,
2
: o
FIGURE P6.27

6.28 A highpass filter is required to meet the specifications shown in Fig. P6.28. Make

use of the circuit given in Fig. 6.32 to design the filter, and scale so that all capaci-
tors have the value of C = 0.1 uF.

1 dB

0 1250 4375 @, 1ads
FIGURE P6.28



CHAPTER 7
Butterworth

Bandpass
Filters

This chapter is a continuation of the preceding one with the range of frequencies
over which |7] is maximally flat transformed from the lowpass case to the band-
pass case, as shown in Fig. 7.1. The main question to be answered is how to locate
the poles and zeros of T{(s). This must be known so that poles can be assigned to
cascaded modules from which a circuit can be designed to meet specifications.

7.1 A FREQUENCY
TRANSFORMATION

One of the outputs for the biquad circuit studied in Chapter 5 made it a bandpass
filter having a frequency response as shown in Fig. 7.2a. The sharpness of this re-
sponse depended on the Q of the circuit, but for all values of Q the response had
one-pole rolloff. The response was produced by a pair of complex conjugate poles
and a zero at the origin, as shown in Fig. 7.2b. For a bandpass filter that is an
approximation to the brick wall studied in the last chapter, we anticipate the ad-
vantages of a maximally flat response in the pass band and also n-pole rolloff out-
side the pass band. For this response we may anticipate that the zeros of T(s) will
be located at or near the origin, and that the poles will be in the cross-hatched
regions shown in Fig. 7.2d. The exact location of the poles will next be deter-
mined through the use of a frequency transformation.

Figure 7.3 shows the lowpass brick wall with the frequency marked £, nor-
malized to extend from —1 to +1. We wish to transform values of  to the corre-
sponding values of w that will define the pass bands and stop bands shown in Fig.
7.3b. Only frequency is to be transformed, with | 7] unchanged in going from Fig.
7.3a to Fig. 7.3b. Such a transformation may be written

Q= X(w) (1.1)

Frequency transformations play an important role in filter design, and Chapter
11 will be devoted to this subject in its entirety. In that chapter we will find that
the appropriate transformation from the lowpass to the bandpass case has the

189
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Maximally flat Maximally flat
IVZ/VII IVz/Vll
<1 r -1
| | |
|
| ]
|
I -
1 e II ! Se-
0 W, w 0 W, W, w
(a) (b)
FIGURE 7.1
|V2/Vl| jw
- Radius is w,,
| 1-pole rolloff \,x’
| /
, _(._Q_
l \ ’
o .
I
05 w 5 (b)
(a)
Region of poles
|V2/V1[ Brick wall

Approximation /

7

n-pole rolloff

el

(c)

(d)

FIGURE 7.2 The bandpass magnitude characteristic of a corresponds to the poles and zero of b.
The figure suggests by analogy the magnitude response of ¢ will correspond to poles located in
the crosshatched region and zeros at the origin as in d.

IT|

(a)
FIGURE 7.3
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general form
QUo)=K % (@ = o) (12)

where K is an unknown, and w,* would normally be an unknown, but we have
anticipated its value. This function is one of a class of functions known as Foster
reactance functions, to be studied extensively in Chapter 16. To match it to the
problem we are studying, we make use of the fact, shown in Fig. 7.4, that we wish
Q = +1 to transform into w, and £ = —1 to transform to w,. Substituting these
facts into Eq. (7.1) gives

2,2
Qo) =—-1=K L2 "% (1.3)
W,
W, — wy’
Qw)) = +1=K 22— (7.4)
2
Solving these two equations, we obtain
W' = Ww, .5)
and
1
K= —o (1.6)

Thus w, is the geometrical mean of the two frequencies w, and w,, and K is the
reciprocal of a bandwidth. In Fig. 7.4 this bandwidth is defined as the ends of the
brick wall, while in earlier studies of the Butterworth response it has been the fre-
quency at which the response had decreased to 0.707 of its maximum value. To
maintain the generality of bandwidth, we designate the half-power or 3-dB band-
width as BW, and a bandwidth in general as bw. Hence Eq. (7.2) becomes

_ 1l & —ww
Uw) =5 = .7
If we replace w by s/j and similarly € by S/j, then this equation has the general

1T

4 ~” \
/ > \
/ 7N N\
/ //ITI \\
/ A
/ // \\ \\
—w, —w, 0 w, w, w

FIGURE 7.4
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form

1 £+’
bw s

S(s) = (1.8)

Before continuing, we examine Eq. (7.7) by considering the special case w, = 1
and bw = 1. For these values Eq. (7.7) becomes

w =1 1

= =w—— 7.
Q 5 w= = 7.9)
or
W —w=-1=0 (7.10)
We make use of the quadratic equation to solve for the four values of w:
+Q + JO?
W,y Wpy Wy Wy = 0+ VP +4 (7.11)

2

Let w, and w, be the two positive values of the solution (with corresponding nega-
tive values for w, and w,). These are tabulated in Table 7.1. From this table and
Fig. 7.5 we see that one value moves toward the origin and the other toward in-
finity for increasing values of 2. From the example, we see that the transforma-
tion indeed “maps” all values of  into the corresponding values for w, as was in-
tended.

7.2 GEFFE ALGORITHM

The example used in the last section provides a good starting point for explaining
the problem of calculating the pole positions. From Eq. (7.8) with bw = 1 and w,
= 1, the transformation is

S=s+% (1.12)

We wish to apply this frequency transformation to the third-order Butterworth
function given in Table 6.1 with pole positions as shown in Fig. 7.6. The transfer
function is

1 1

T(s) = = .
©) S+27+25+1 (s+1)(F+s+1) (7.13)

TABLE 7.1

Q Wy W,

0 1 1
+0.5 1.28 0.78
+1 1.618 0.618
+1.5 2 0.5
+2 2414 0414

*10 10.1 0.1
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IT| IT]
I
Il 1 1
-1 0] +1 @ 0] w,0.618 1608  w, w
FIGURE 7.5

The second form of the equation reminds us that the Butterworth polynomial
B,(s) contains the factor (s + 1) for n odd, but otherwise is the product of second-
order factors (s* + (1/Q)s + 1) with w, = 1. For the example we are studying, let
T = T,T,. Using the lowpass variable S = ¥ + j(, then

1 1

T, = S—+—1 and T; =S';§TS—I—1 (7.14)
We will call our study of T, case I. Substituting Eq. (7.12) into T,’s denominator,
S+I=s+%+l=£i%il (1.15)

Then the case I pole on the negative real axis has transformed into two conjugate
poles at +60° with respect to the negative real axis and a zero at the origin, as
shown in Fig. 7.7. The same operation for T, gives

Sf+58+37+s+ 1
s

Then for case II the two poles transform into four poles and two zeros at the ori-
gin. The location of the poles is determined by finding the roots of the equation

FHS 32 +s+1=0 (7.17)

When we find them, the poles and zeros in the s plane are as shown in the case II
part of Fig. 7.7. How do we solve Eq. (7.17)?

If you have ready access to a computer, the roots of Eq. (7.17) can be found.
Or you might use an iterative procedure, guessing the location of two roots and
then testing to see if it is a solution. Fortunately there is a routine procedure for
accomplishing the factoring of Eq. (7.17) due to Geffe* which has been arranged
to give the answer in terms of w,, and Q.. It is known as Geffe’s algorithm and is of
great value to filter designers.

2
S’+S+1=s+%)+(s+%’+l= (7.16)

* P. R. Geffe, “Designers’ Guide to Active Bandpass Filters,” EDN, pp. 46-52, Apr. 5, 1974. The
name is pronounced “geffie,” with the g sounded as in “golley.”

FIGURE 7.6
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We next generalize the simple example of Egs. (7.14) for which the fre-
quency transformation of Eq. (7.8) was specialized to the case of bw = 1 and w, =
1. In particular we wish to examine the quantity bw. If Eq. (7.8) is written in the
form
s Wo W,

5
—+T —qc(;o'f'—" (718)

g “o 0
Wo s

bw

then we have defined a new quantity:

Wo W
q=7_=
bw

o—w (7.19)
If the bandwidth is defined as the half-power or 3-dB frequencies, then bw be-
comes BW and g, becomes Q, the design quantity introduced in Chapter 5. In a
more general sense bw is defined in terms of a,,,, as shown in Fig. 7.8, as the fre-
quency difference w, — w,. Now a,,, may have any design value (0.1 dB, 1 dB,
etc.), and so the quantity g, is one related to the specifications. On the other hand,
the 3-dB bandwidth relates to the design value Q because the circuits we will use
in our realizations relate to this Q. This important difference will become clear
when we give design examples.

* The denominator of the first-order transfer function of Eq. (7.14) will be
written in terms of the pole location being at —2,, as shown in Fig. 7.9a. Then

S W
=q|—+ =2+ .
S+3,=gq. o 3, (7.20)
&+ (Z,w0/q.)s + Wy’ 1

= . 7.21

s (wo/ qc) ( )
The standard form of the second-order factor is

£+ 25+ w (7.22)

Q
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FIGURE 7.8

and so we see that the design Q is related to the defined g, as

_ 4
Q 3, (7.23)
The fact that the constant term in the numerator of Eq. (7.21) is w,’, which is the
same as the standard form Eq. (7.22), may be indicated by saying that the radius

to which the simple pole of Fig. 7.9a is transformed is

Wr = Wy (7.24)
The angle of the poles with respect to the negative real axis is
)
= cos' [ 7.25
¥ =cos” |3 (7.25)
1% i
——1i9,
|
|
!
-3, z —Z, z
|
I
- 8,

(a) (b) FIGURE 7.9
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These quantities are shown in Fig. 7.10. We note that it may be convenient to let
w, = wr = 1 and later frequency scale. Then we see that the simple pole on the
negative real axis transforms to a pair of complex poles and a zero at the origin,
and that the pole locations are fixed by the radius of the circle and the angle .

The second-order poles of T,(S) are shown in Fig. 7.9b and are located at
-2, £ jQ,. Then

1

)= g s+ v o (7.26)
If we let w, = 1, then the frequency transformation is
S=gq. s+ —;— (7.27)
When this is substituted into Eq. (7.26), the denominator becomes
mwf+'2+nmcf:1+zg+&z (7.28)
and this reduces to the fourth-order equation
s‘+(&y’+ 2+§22+—2922s’+(2q—22)s+1=0 (7.29)

for which we wish to find the four roots.
Leaving this result, we recognize that the transfer function of a standard
bandpass filter section was given in Chapter 5 as

_ (‘4’0|/ Ql)s

T = § + wo/ Q1 + wo (7.30)
where w,, and Q, are the design values from which a circuit may be found. Fur-
ther, to realize a fourth-order specification such as Eq. (7.29), we will require two
modules connected in cascade, each having the transfer function of the form of
Eq. (7.30). Letting the second module have the transfer function of Eq. (7.30), but
with the subscript 1 replaced by the _subscript 2, then the denominator of
T\(s)Ty(s) will be

W
£+ 2wl + 225+ wy? 731
o Q.
i S plane jo
g N e s \ X
S planc Radius is w, \x/‘ jw,
7\
/ \1/\\
-z, z v o
N/
\,x\J Y = cos ‘(Zl 124,)
/

Wr =W,

FIGURE 7.10
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Carrying out the multiplication and rearranging the terms in an orderly fashion,
we obtain

Wo2 . Wo Wo1Wo2
£+ |2+ DS+ |wn” + w0+ R
0, QI) ( ” " 0.0,
2 2
+ Wo1Wo + WoaWor 5+ wo|2w022 =0 (7.32)
Ql Q2

The strategy that we will follow is to equate coefficients of this equation and Eq.
(7.29) and thereby determine the conditions for a solution in the cascade module
form assumed.
The most obvious equality is that
wor” wer” =1 (7.33)
or
1

Wo1Wo = 1 or Wor = —— (7.34)
02

Furthermore, since the 1 in Eq. (7.29) arose because we required that w, = 1, the
general form of Eq. (7.34) will be
W0 Wo2 = Wo’ (7.35)

In Eq. 7.29 we note that the coefficients of s’ and s are identical. For this to be the
case in Eq. (7.32), we must require that

2 2
Woz Woi _ WoiWo2 WorWoy (7.36)

. QO o 0,
Since wy,wo; = 1, this condition is satisfied only if
0,=0=0 (7.37)

an important result!
There remains only the coefficient of s°, which we know is the same as that
for s, plus the coefficient of s*>. The first of these is now simplified to

2%, 1 1
— = + — 7.38
4. Q Wo2 woz) ( )
The second, after adding 2 to both sides of the equation, is
27+ Q7 1y 1
—272—2+4=(w02+: +@ (7.39)
Let
C=322+Q; (7.40)
23,
= —= (7.41)
q.

E=4+5 (1.42)

<
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Geffe showed that the conditions for satisfying Eqs. (7.38) and (7.39) could be ex-
pressed in algorithmic form in terms of the defined quantities C, D, and E. The
Geffe algorithm requires that the following calculations be made:

G=JE-4D? (7.43)
0=+ E+G (1.44)

DY2 )

2,0
= 7.45
2. (7.45)
W=K+ JK -1 (7.46)
Then finally,

We, = W w, and Wo = Pleo (7.47)

The form of these equations makes calculation particularly easy with a calcu-
lator. The result is that Q is given by Eq. (7.44), and the two pole locations are
specified in terms of w, and a factor W. The transformation also gives two zeros
at the origin. All of this is shown in Fig. 7.11.

To illustrate the application of this important algorithm, let us return to the
unfinished business of factoring Eq. (7.17). This equation arose from the con-
jugate poles for which

3, =-05 (7.48)
and
Q,==%0.866
i 0 jw
——1iWw,
Z,+i8, “ .
_____ / jwg
/
/
/ j(wy /W)
]
|
5 s ' >
\\ 2 zeros
e
—I,7i%,

FIGURE 7.11
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and the further requirements that bw = 1 and w, = 1. We begin the algorithm
with Eq. (7.40) and then carry out the calculations in a step-by-step manner as
follows:

c=1

D=1

E=5

G = 4.5826

0 =2.189 (7.49)
K = 1.0945

W =1.5393

wg; = 1.5393 rad/s
wo; = 0.6497 rad/s

Thus the three quantities we will need for design are now known; namely, Q, wy,,
and w,,. These pole locations for the upper half of the s plane, together with that
found previously arising from the pole on the negative real axis, are shown in Fig.
7.12, together with the two zeros at the origin. If we are specifically interested in
pole location, as we are in order to factor Eq. (7.17), then we may find the s-plane
locations of the poles from the equations

B: = wy, sin cos” (7.50)

L
)

1

1 Wo;
Z_Q,’ = E—Q (7.51)

Using these equations and a calculator, we find that the roots of Eq. (7.17) are
—0.148 £+ j0.6325
—0.3516 + j1.4985

a; = Wy; COS COS™

(1.52)

[ FIGURE 7.12
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The corresponding quadratic terms are
(82 + 0.296s + 0.422)(s* + 0.7032s + 2.3691) (7.53)

Finally, if this multiplication is carried out, we find that (with tolerance for
round-off errors)

s+ +3s7+s+1=0 (7.54)

While this algorithm is very useful for design, it is also useful as a method for fac-
toring fourth-order algebraic equations, assuming only that the roots are com-
plex.

Returning to Fig. 7.12 we now ask the question concerning the loci of the
poles: might they be on a circle? Stated in other terms, does a circle in the S plane
transform into a circle in the s plane? The answer is no; the property we have just
described applies for bilinear transformations, but the transformation of Eq. (7.8)
is not bilinear. Actually the poles in the s plane are on a curve that might be
called a distorted ellipse. This is illustrated in Fig. 7.13. The circle of radius 1 in
the S plane, shown in Fig. 7.13a, maps into the s plane as shown in Fig. 7.13b.
Notice also the way in which lines of constant Q are distorted by the transforma-
tion.

7.3 FINDING n:
BANDPASS BACK TO LOWPASS

In the example of the last section, we assumed that n = 3 was specified. This as-
sumption is not necessary, of course, since » is obtained directly from the specifi-
cation. The strategy for finding the required value of n is very simple. We use the
lowpass to bandpass transformation in reverse, and convert the bandpass specifi-
cation into equivalent lowpass specifications which we studied in Chapter 6.
The bandpass specifications are given in Fig. 7.14. The two frequencies w,
and w, which define the bandwidth bw are identical to those shown in Fig. 7.8.

v = 060°

Y =600 9 1
Circle r =1
frele S plane roo s plane
y=0 |
z b0 4
v = 60°\ 7
, © i S S S T S |
Y -2 —1 0
o
(a) (b)

FIGURE 7.13
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